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Abstract

The present thesis proposes an innovative technique of applying enrichment to the

Boundary Element Method to allow accurate analysis of 2D crack problems. An

overview of fracture mechanics is given, with particular emphasis given to numerical

methods and the techniques used to extract the highly important stress intensity

factors - a measure of the singularity of a crack tip. The Boundary Element Method

framework is described and later, the implementation of the new technique of en-

richment is defined in detail. Finally, several crack problems are used to verify the

accuracy of the method where the results are shown to compare very favourably

with other well-established numerical methods.
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Nomenclature

αij Jump term for Tij kernel

δij Kronecker delta function

∆(X −X′) Dirac delta function

εij (Mathematical) Strain component

Γ Domain boundary

Γc Crack surface

Γc+ Upper crack surface

Γc− Lower crack surface

ΓJ J-integral path

Γn Element boundary

κ Kosolov constant

Λ Strain energy jump term for Jk-integral

λ Lamé constant

µ Shear modulus

ν Poisson’s Ratio

Ω Volume domain

Φ Airy stress function

ψu
l Displacement crack tip enrichment function (PUM enrichment)

ψ̄u
lja Displacement crack tip enrichment function evaluated at node a

vi
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ψt
lj Traction crack tip enrichment function (combined basis)

ψu
lj Displacement crack tip enrichment function (combined basis)

(ρ, θ) Polar crack-tip coordinates

σij Stress component

ξ Local 2D boundary coordinate

ξ′ Local coordinate of source point

a Crack length

Ana
jl Enrichment coefficient (PUM enrichment)

an Coefficient of Williams expansion (symmetric terms)

bi Body force component

bn Coefficient of Williams expansion (antisymmetric terms)

Cij Jump term

Dkij Differentiated displacement fundamental solution

E Young’s Modulus

e Volumetric strain

E ′ Modified Young’s modulus

ei Unit load vector component

Ena
kij Element integral of Skij kernel

Ẽna
kij Element integral of enriched Skij kernel

F−1(ξ
′), F−2(ξ

′) Power series functions (subtraction of singularity integration)

F na
kij Element integral of Dkij kernel

G Strain energy release rate

ha Singular Tij integral matrix

h̄a Singular Skij integral matrix
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I Identity matrix

J J-integral (J1-integral)

J2 J2-integral

J(ξ) Jacobian of transformation

KI Mode I stress intensity factor

KII Mode II stress intensity factor

K̃I Mode I enrichment coefficient

K̃II Mode II enrichment coefficient

m Tangential vector

n Normal vector

n′ Source point normal matrix

n̄ Element containing collocation point (PUM enrichment)

Na Shape function for node a

Ne Number of elements

N̄enr Normalised number of enriched elements

ni Normal component

P na
ij Element integral of Tij kernel

P̃ na
ijl Element integral of enriched Tij kernel

Qna
ij Element integral of Uij kernel

R Cutoff radius for Jk-integral evaluation

r Distance between source and field points

Rc Curved crack radius

Skij Differentiated traction fundamental solution

Tij Traction fundamental solution
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T T-stress

U Strain energy

u Displacement vector

Uij Displacement fundamental solution

ui Displacement component

V na
lj Traction crack-tip boundary integral term

W Strain energy density

W+ Strain energy on upper crack face

W− Strain energy on lower crack face

JW K Strain energy jump

W na
lj Displacement crack-tip boundary integral term

X Domain field point

x Boundary field point

X′ Domain source point

x′ Boundary source point

xi Coordinate component

−
∫

Cauchy Principal Value integral

=
∫

Hadamard finite part integral

∇2 Laplacian operator

(

eg. in 2D ∇2f =
∂2f

∂x2
1

+
∂2f

∂x2
2

)
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Chapter 1

Introduction

“...I heard the noise of an aircraft..but I did not pay any attention to it.

Suddenly, however, my attention was caught by a roaring sound in the

air in the direction from which the noise of an aircraft was coming, and

distinctly noticed, in that direction, two pieces of an aircraft, the smaller

in flames, falling in almost parallel line into the sea...” [2]

(eyewitness, de Havilland Comet disaster, 1954)

On the 10th January 1954, Comet G-ALYP departing from Rome’s Ciampino

airport crashed into the waters near the Mediterranean island of Elba, killing all

thirty-five on board. There was no immediate obvious explanation for the cause

of the crash, but eventually it was decided that fire was responsible [3], and after

some modifications to the aircraft to protect against this, normal passenger service

resumed. Approximately two weeks later, the second Comet fatality occured and

with immediate effect, the entire Comet fleet was grounded and a full-scale inves-

tigation was carried out under the direction of the Royal Aircraft Establishment

(RAE). Headed by Sir Arnold Hall, the investigation provided an exceptionally de-

tailed account of the crash and described, during a public inquiry, that:

[The probable cause of failure was] “a phenomenon known as fatigue.

The essence of the phenomenon, is that whereas the structure will stand

one application of the load quite satisfactorily, it may not stand many

hundreds, thousands or millions of applications of the load satisfactorily,

and may in the end fail under a load which it is well capable of bearing

when new...” [2]

(Sir Arnold Hall, The Comet Inquiry, 1954)

1
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This marked the start of an intensive period of study into the mechanisms and

factors that control fracture and fatigue and formed the birth of a new subject,

entitled “fracture mechanics”. The importance of this subject has remained high

to the present day and, for the design of components subject to repeated loads, the

application of the principles of fracture and fatigue remain an integral part of the

engineering process. In particular, it is found that the majority of fatigue calcu-

lations are empirical and rely on the use of parameters known as stress intensity

factors (SIFs) - a measure of the strength of a crack tip singularity - and accu-

rate determination of these values is vital for efficient design. At present, there

are a variety of methods available to the engineer to determine SIFs ranging from

handbooks detailing numerous crack geometries to the more recent computational

methods that have exploded in popularity, attributable to the abundance and con-

stantly increasing power of the portable computer. But what is especially useful

when computational methods are employed, is the ability to model completely ar-

bitrary geometries thus allowing a certain type of “bespoke” analysis to be carried

out. For this reason, they represent one of the most popular tools of choice for de-

signing against fracture and a large variety of software packages are available - these

implement computational methods ranging from the hugely popular Finite Element

Method (FEM) to the less well-known Boundary Element Method (BEM). Each

demonstrates certain advantages and disadvantages, but what is common to all, is

the difficulty encountered when cracks are modelled and the large inaccuracies that

result if special treatment is not applied. A variety of techniques are available to

overcome these problems, but the search to find increasingly efficient and accurate

methods is ever-present. This thesis concentrates the technique of “enriching” a

certain region surrounding the crack tip and how this can be applied to the BEM to

allow accurate and efficient modelling of cracks; this is achieved by using functions

that are known to capture the required crack-tip behaviour, and once these are in-

cluded, significant increases in accuracy are seen for a variety of crack geometries. In

fact, two variants of implementing enrichment are described where the enrichment

functions are included in different ways. Both are assessed for their ability to model

a crack tip field and compared against standard methods and reference solutions to

verify the high accuracy of the new implementation.

Several key advancements have been made in the field of fracture mechanics and

it is the goal of Chapter 2 to give an overview of some of the most important findings,

varying from the early work by Griffith in 1921 to the more recent studies into the

advancement of computational methods. Since this thesis concentrates on the use of
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the Boundary Element Method and to allow clear understanding of later work that

presents certain modifications to the method, a detailed derivation of the BEM is

given in Chapter 3. Furthermore, since problems are sometimes encountered when

the Boundary Element Method is applied directly to crack models, the Dual Bound-

ary Element Method (which provides an elegant solution to overcome these difficul-

ties) is described and the mathematical details of the method outlined. Chapter 4

introduces the various integration scenarios that are encountered in BEM/DBEM

implementations and the appropriate integration routines that are available. This

overview is important since, in contrast to methods such as the FEM, “singular”

integrals (which present challenges for conventional integration routines) are com-

monly encountered and must be evaluated accurately. Next, Chapter 5 outlines the

difficulties encountered by conventional implementations of computational methods

to crack problems and some of the most popular techniques used to overcome these,

with emphasis given to BEM implementations.

Chapters 6 to 8 present the new forms of enrichment applied to the BEM/DBEM

with Chapter 6 describing how the Partition of Unity Method (PUM) can be used to

apply enrichment functions in a region surrounding the crack tip thereby increasing

the accuracy of the approximation. The second form of enrichment is then outlined

in Chapter 7 in which the enrichment functions are combined to reduce the number

of introduced unknowns with associated benefits on the behaviour of the system.

Finally, each method of enrichment is compared and the improvement in accuracy

demonstrated by analysing a variety of crack geometries with known reference so-

lutions (Chapter 8) where it is shown that the methods presented in this thesis

compare very favourably.



Chapter 2

Fracture Mechanics

Fracture mechanics, a subject which is focused on studying the effects of cracks

within materials, is a topic whose beginnings can be traced back to the early 20th

century. It is generally regarded that the birth of the subject was due to the pioneer-

ing work of Inglis [4] in 1913 and Griffith [5] in 1921. Inglis investigated the problem

of an elliptical hole within an infinite plate and considered the limit as the radius of

curvature at the ends of the major axis of the ellipse tended to zero, in essence mod-

elling a crack within the material. Griffith took a different approach by considering

the energies associated with fracture and demonstrated his theory by performing

experiments on glass rods which were subject to brittle fracture. However, little

attention was paid towards these early theories and many designs, to prevent failure

by fracture, were based on high factors of safety with additional material used in

regions of high stress. But, with the start of the Second World War and the rise

in demand for structures with large strength-to-weight ratios, the need for more

efficient fracture-resistant designs arose. 1940-1960 marked an intense period in the

advancement of Linear Elastic Fracture Mechanics (LEFM) where several major

failures provided the impetus to develop a unified code for design against fracture.

One such example was the series of Liberty ships which were constructed using the

relatively new technique of joining sections together by welding, thus allowing for a

substantial increase in the rate of construction. What was not understood though,

was the ability of welded joints to act as crack propagation sites and, coupled with

the effect of increased brittleness in cold water, the potential for catastrophic failure

(see Fig. 2.1). Another example of failure by fracture but with greater loss of life

was the de Havilland Comet aircraft - the first commercial jet-engined aircraft to be

put into service. In the early years of its use several fatal accidents occurred leaving

investigators with the destroyed remains of the cabin to determine the cause. The

4
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failures were traced to sharp corners in the design of cabin windows where the effect

of the corner acted as a stress-raiser. In turn, stresses within the fuselage were able

to reach the critical value for crack propagation and catastrophic failure occurred.

Figure 2.1: Failure due to fracture: Liberty ship

To investigate the inclusion of a crack, Inglis studied the effect of a shallow el-

lipse and considered the limiting case as the length of the minor axis tended to zero

(therefore approaching the crack-tip solution) and found the stresses to be raised

significantly along the axis of the ellipse. However, the exact solution of a crack,

where the root radius is equal to zero, was not determined. It was the work by

Williams in 1952 [6] and 1957 [7] which first considered the solution of a wedge with

traction free faces and arbitrary loadings elsewhere (see Fig. 2.2a). The work used

an Airy stress function with the semi-inverse method to find a solution but, more

significantly, the case for which the apex angle α was equal to π resulting in the edge-

crack geometry of Fig. 2.2b was considered. This provided the crack-tip solution

which exhibits a theoretically infinite stress at the crack tip but, more importantly,

the solution showed that the magnitudes of stress and displacement may vary from

one crack geometry to another, but the distribution of these parameters would re-

main the same. In fact, the only change between geometries is the magnitude of

certain constants which are now commonly known as stress intensity factors (SIFs)

denoted KI, KII and KIII. These give a description of the magnitude of the crack-tip

singularities in certain orientations defined in Figs 2.3a to 2.3c and, once they have

been determined for a crack geometry, a complete description of the stresses and

displacements surrounding the crack can be found. For this reason, along with the
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large accuracy dependence of fatigue crack growth calculations on SIFs, they are

regarded as the single most important parameters in design against fracture. How-

ever, since analytical solutions exist only for a limited number of cracked geometries,

alternative techniques, like the use of handbook solutions and numerical methods,

are required to allow engineers to evaluate the ability of designs to resist fracture.

(a) Wedge of angle α subject to arbi-
trary loading

(b) Wedge with α = π resulting in edge crack

Figure 2.2: Wedge geometries for Williams solution

The stress intensity factor handbooks such as that by Tada et al. [8] give solutions

to a variety of crack geometries and loadings allowing SIFs to be determined quickly

and easily. During design, since the geometry and loading of a certain component
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(a) Mode I (b) Mode II (c) Mode III

Figure 2.3: Fracture mode definitions

may not be given by handbook solutions, it is sometimes possible to combine several

known solutions into one by the process of superposition. In some circumstances

though, a solution is unobtainable by these means and it is necessary to make use

of numerical methods. These rely heavily on the processing power of computers but

offer significant advantages to the engineer. In particular, for the analysis of 3D

cracks where very few analytical solutions exist, it is almost always necessary to use

numerical methods to find SIFs. At present, the most widely used methods are the

Boundary Collocation Method (BCM), the Finite Element Method (FEM) and the

Boundary Element Method (BEM). Each of these exhibits certain advantages over

each other, but what is common to all numerical methods used for fracture analysis

are the problems created by the singular field around a crack tip. Chapter 4 outlines

some of the methods used to overcome these problems for both the FEM and BEM

while chapter 6, which is the basis of the present thesis, describes a new method for

enriching the BEM to allow SIFs to be determined accurately and efficiently.

The present chapter gives an overview of the important advancements in the

field of fracture mechanics with particular attention paid to analytical solutions

since these play an important role in later work. Overviews of the most popular

numerical methods used in fracture mechanics are given and finally, the techniques

which are used as post-processing tools to determine stress intensity factors are

described.
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2.1 Energy approaches - Griffith’s law

The first approach to determine whether unstable crack growth would occur in a

material under load was carried out by A.A. Griffith in 1921 [5]. He first noticed

that glass rods fractured at stresses significantly lower than those predicted by con-

ventional failure laws and postulated that the presence of cracks (and the associated

local increase in stress) was the cause. To prove this, tests were carried out on glass

rods which varied in age and in diameter and the results suggested that the lowest

failure stresses were seen in older rods and those with larger diameters. Griffith

explained that the aging process introduced flaws and defects to the material while

larger rods, due to their increased surface area, were more likely to contain flaws

compared to similar thin rods. But the most important feature of the work was the

introduction of a law, now known as Griffith’s law, which governs crack growth in a

brittle material.

Before this is stated, we consider the problem of a crack of length 2a within an

infinite body and define a quantity known as the strain energy release rate G as

G = −∂U
∂a

(2.1)

where U is the stored strain energy of the system and a negative sign is introduced

to make G a positive quantity. Then, for unstable crack growth to occur, the rate at

which strain energy is released must be greater than or equal to the rate of energy

required to create new crack surfaces. Mathematically, this can be written as

G ≥ ∂Ws

∂a
(2.2)

where Ws is the surface energy required to propagate the crack. By comparing the

elastic strain energy of an infinite plate under a stress σ with that of a similar plate

with a crack of length 2a, it can be shown that the change in energy is given by

U = −πa
2σ2

E
(2.3)

where E is the Young’s modulus of the material. Also, by defining a quantity γs

known as the surface energy per unit area, the quantity Ws can be written as

Ws = 2.γs.2a (2.4)
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This is the energy required to create two crack surfaces (upper and lower) of length

2a and it has been assumed that the plate is of unit thickness. Now, by inspecting

the condition (2.2) which governs crack growth, it is clear that crack growth just

occurs when the strain energy release rate is equal to the rate of energy required to

create new crack surfaces. ie.

G =
∂Ws

∂a
. (2.5)

By substituting (2.3) into (2.1) and differentiating to give G and then differentiating

(2.4) to obtain ∂Ws/∂a, the following is given

π2aσ2

E
= 4γs (2.6)

Since this is the condition at which crack growth just occurs, the stress σ is re-

placed by σc which denotes the critical stress for crack growth and the equation is

rearranged:

σc =

√

2Eγs

πa
(2.7)

The law proposed by Griffith was largely ignored for many years, mainly due

to the restriction of the law to brittle materials, and it was not until the work of

Orowan [9] and Irwin [10] who considered the energy due to plastic deformation

that the original work was more widely recognised. Orowan showed that significant

plastic deformation occurred along the crack surfaces and this plastic work was many

orders of magnitude greater than the surface energy γs. Therefore, by introducing a

term known as the plastic work per unit area γp and replacing γs with the combined

term γs + γp in Eq. (2.7), the critical stress for crack growth can be extended to

metals in plane strain by

σc =

√

2E(γs + γp)

πa
(2.8)

Irwin also recognised the importance of including an additional term to account for

the plastic work done but in addition, he provided a relation between the strain

energy release rate G and stress intensity factors. Irwin showed, by considering a

crack in an infinite plate extending by an infinitesimal distance and calculating the
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energy required to close the crack, that the following relations could be defined

GI =















K2
I

E
plane stress

K2
I (1 − ν2)

πE
plane strain

(2.9a)

GII =















K2
I

E
plane stress

K2
I (1 − ν2)

πE
plane strain

(2.9b)

where the strain release rate components are related by

G = GI +GII (2.10)

These equations are extremely important in fracture since they relate the energy

release rates GI and GII which are based on global energy concepts to those of the

stress intensity factors KI and KII which are based on local stress fields. Therefore,

even though the Griffith crack growth laws are based on the solution of an infinite

plate, they can be used (through Eqns (2.9a) (2.9b)) to provide the solution for

any crack geometry. The most widely used method which makes heavy use of this

principle is the J-integral which allows calculation of stress intensity factors through

a path/domain integral. It can be shown the value obtained from this integral J is

in fact related to the strain energy release rate (in the case of linear elasticity) by

J = G (2.11)

Further details of this method are given in Secs 2.6.2 and 2.6.3 with a full derivation

in App D.3.

The Griffith law, due to its basis on energy principles, gives no solution for

displacements or stresses surrounding the crack - it can only determine whether

or not failure due to fracture will occur. Instead, we require a solution which is

capable of providing expressions for these parameters. This solution is very well-

known within fracture mechanics and in fact, many numerical methods are reliant

on it. The next section outlines two mathematical methods which have been used

to arrive at the solution of a domain containing a crack tip and emphasises the

importance of the stress intensity factors (briefly mentioned here) in their use for

fracture design.
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2.2 Williams solution

As described in Sec. 2, the first solution to the problem of a crack within a material

subject to arbitrary loadings on the boundary was given by Williams [6]. Since

fracture mechanics relies heavily on this solution (the Williams solution is recalled on

numerous occasions in this thesis), it is instructive to follow through the derivation

to prevent any gaps in understanding. The solution is dependent on an appropriate

choice of Airy stress function and the application of the semi-inverse method (see [11]

for an overview of these topics) which ensures the initial choice of Airy stress function

is correct by verifying boundary conditions. Williams considered the problem of a

wedge of apex angle 2α (see Fig. 2.2a), and chose the the following Airy stress

function

Φ(ρ, θ) = ρλ+1.f(θ) (2.12)

where (ρ, θ) is the polar coordinate system defined in Fig. 2.4 while the eigenvalue

λ and the function f(θ) are yet to be determined as part of the solution. Using

Figure 2.4: Definition of crack-tip polar coordinates

the expressions relating stresses in polar coordinates to the Airy stress function (see

Eq. B.1.2 in Appendix B.1), the crack-tip stresses can be expressed as

σρρ = ρλ−1[(λ+ 1)f(θ) + f ′′(θ)] (2.13a)

σθθ = λ(λ+ 1)ρλ−1f(θ) (2.13b)

σρθ = −λρλ−1f ′(θ). (2.13c)
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where ′ implies differentiation of a function. Using the imposed boundary conditions

of traction free faces

σρρ = 0, σρθ = 0 for θ = ±α, ρ ≥ 0 (2.14)

certain conditions on the function f(θ) can be written

f(α) = f(−α) = 0 (2.15a)

f ′(α) = f ′(−α) = 0 (2.15b)

assuming that λ 6= 0. If the assumed Airy stress function Φ is then substituted into

the biharmonic equation in polar form (B.1.5), the ordinary differential equation

can be written as

[

d2

dθ2
+ (λ− 1)2

]

.

[

d2

dθ2
+ (λ+ 1)2

]

f(θ) = 0 (2.16)

with the general solution of

f(θ) = a cos(λ− 1)θ + b sin(λ− 1)θ + c cos(λ+ 1)θ + d sin(λ+ 1)θ. (2.17)

where a, b, c and d are constants. By substituting into (2.17) the boundary conditions

of (2.15), four simultaneous equations are formed

a cos(λ− 1)α+ b sin(λ− 1)α+ c cos(λ+ 1)α + d sin(λ+ 1)α = 0 (2.18a)

a cos(λ− 1)α− b sin(λ− 1)α + c cos(λ+ 1)α− d sin(λ+ 1)α = 0 (2.18b)

−a(λ− 1) sin(λ− 1)α+ b(λ− 1) cos(λ− 1)α

−c(λ + 1) sin(λ+ 1)α+ d(λ+ 1) cos(λ+ 1)α = 0 (2.18c)

a(λ− 1) sin(λ− 1)α+ b(λ− 1) cos(λ− 1)α

+c(λ+ 1) sin(λ+ 1)α+ d(λ+ 1) cos(λ+ 1)α = 0 (2.18d)
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which, after some simple manipulations, can be written more succinctly as

(

cos(λ− 1)α cos(λ+ 1)α

(λ− 1) sin(λ− 1)α (λ+ 1) sin(λ+ 1)α

)(

a

c

)

=

(

0

0

)

(2.19a)

(

sin(λ− 1)α sin(λ+ 1)α

(λ− 1) cos(λ− 1)α (λ+ 1) cos(λ+ 1)α

)(

b

d

)

=

(

0

0

)

(2.19b)

For non-trivial solutions the determinant for each of these matrices must be zero,

giving, after simplification,

sin(2λα) = 0 (2.20a)

λ sin(2α) = 0 (2.20b)

In the case of a crack where α = π, the second of these equations is automatically

satisfied. The first equation is satisfied if

λ =
n

2
where n = ±0,±1,±2,±3 . . . (2.21)

But before we can proceed, some comments need to be made on the choice of the

values λ and n. Considering first the relations for stresses around the crack tip

(Eqns. (2.13)) which are of O(ρλ−1), it is found that strains, which will be shown to

be related to stresses by relations (3.5), will also be of O(ρλ−1). Since displacements

are obtained through integration of strain components, these will be of O(ρλ) which

places some restrictions on the choice of λ. If λ is negative then infinite displacements

are experienced at the crack tip where ρ = 0 - this discounts any negative values of

λ from the solution. If λ is equal to zero, displacements are finite but, due to the

inclusion of functions which are dependent on θ, the displacements at the crack tip

become multi-valued when in fact we know displacements are equal to zero. The

only feasible values of λ are therefore

λ =
n

2
, n > 0 (2.22)

Once these eigenvalues are substituted into Eqns (2.19) and denoting the coefficients

an, bn, cn and dn to correspond to the eigenvalue n, it can be shown that these
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coefficients are related as follows

cn = −n− 2

n + 2
an, dn = −bn, n = 1, 3, 5 . . . (2.23a)

cn = −an, dn = −n− 2

n+ 2
bn, n = 2, 4, 6 . . . (2.23b)

allowing the final expression for the Airy stress function to be written as

Φ(ρ, θ) =
∑

n=1,3...

ρ1+ n
2

[

an

(

cos
n− 2

2
θ − n− 2

n+ 2
cos

n+ 2

2
θ

)

+ bn

(

sin
n− 2

2
θ − sin

n + 2

2
θ

)]

+
∑

n=2,4,...

ρ1+ n
2

[

an

(

cos
n− 2

2
θ − cos

n + 2

2
θ

)

+ bn

(

sin
n− 2

2
θ − n− 2

n+ 2
sin

n+ 2

2
θ

)]

(2.24)

By inspecting the terms related to an, it can be seen in each case the cosine function

is present. Since this is a symmetric function, we regard the coefficient an to relate

to the opening fracture mode as illustrated in Fig. 2.3a. Similarly, since the sine

function (which is antisymmetric) is present in each bn term, we regard this coeffi-

cient to correspond to the forward shear mode shown in Fig. 2.3b. Later, it will be

shown that certain coefficients in the expansion are related to the stress intensity

factors while any higher order terms are usually omitted. But before expression

(2.24) is of any practical use, it must first be substituted into Eqns (B.1.1) to obtain
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expressions for crack-tip stresses

σxx =

∞
∑

n=1

n

2
ρn/2−1

{

an

[(

2 +
n

2
+ (−1)n

)

cos
(n

2
− 1
)

θ +
(n

2
− 1
)

cos
(n

2
− 3
)

θ
]

−bn
[(

2 +
n

2
− (−1)n

)

sin
(n

2
− 1
)

θ −
(n

2
− 1
)

sin
(n

2
− 3
)

θ
]

}

(2.25a)

σyy =
∞
∑

n=1

n

2
ρn/2−1

{

an

[(

2 − n

2
− (−1)n

)

cos
(n

2
− 1
)

θ +
(n

2
− 1
)

cos
(n

2
− 3
)

θ
]

−bn
[(

2 − n

2
+ (−1)n

)

sin
(n

2
− 1
)

θ +
(n

2
− 1
)

sin
(n

2
− 3
)

θ
]

}

(2.25b)

σxy =
∞
∑

n=1

n

2
ρn/2−1

{

an

[(n

2
− 1
)

sin
(n

2
− 3
)

θ −
(n

2
+ (−1)n

)

sin
(n

2
− 1
)

θ
]

+bn

[(n

2
− 1
)

cos
(n

2
− 3
)

θ −
(n

2
− (−1)n

)

cos
(n

2
− 1
)

θ
]

}

(2.25c)

where the global Cartesian coordinate system xy is used. In this coordinate system

the x-axis lies in the plane θ = 0 (Fig. 2.4). Finally, by using the constitutive equa-

tions to obtain strains and then integrating to find displacements (these relations

will be described in Sec. 3.1.1), the following series expressions can be written for

crack-tip displacements

ux =
∞
∑

n=0

ρn/2

2µ

{

an

[(

κ +
n

2
+ (−1)n

)

cos
n

2
θ − n

2
cos
(n

2
− 2
)

θ
]

−bn
[(

κ+
n

2
− (−1)n

)

sin
n

2
θ − n

2
sin
(n

2
− 2
)

θ
]

}

(2.26a)

uy =

∞
∑

n=0

ρn/2

2µ

{

an

[(

κ− n

2
− (−1)n

)

sin
n

2
θ +

n

2
sin
(n

2
− 2
)

θ
]

+bn

[(

κ− n

2
+ (−1)n

)

cos
n

2
θ +

n

2
cos
(n

2
− 2
)

θ
]

}

. (2.26b)

where µ is defined as the shear modulus and κ is known as the Kosolov constant. The

solutions for stresses and displacements given by (2.25) and (2.26) are fundamental
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to linear elastic fracture mechanics since they give an exact analytical solution to

which other methods can be compared against. But what is important to note is the

form each of these expressions take. Taking first the crack-tip stresses, we see that

a singularity of O(1/ρ1/2) is experienced at the crack-tip creating a theoretically

infinite stress while displacements, of O(ρ1/2), exhibit an infinite-gradient at the

crack-tip. As will be seen later, these singularities in the crack solution create

problems for numerical methods since, most often, polynomial expressions are used

for the interpolation of stresses and displacements. In fact, this thesis is centred on a

method of overcoming this difficultly for implementation of cracks in the Boundary

Element Method.

2.3 Westergaard solution

Another very successful technique used to provide solutions to crack problems is

the approach developed by Westergaard in 1939 [12]. The method makes use of

the complex analysis technique originally developed by Muskhelishvili [13] which is

particularly convenient due to the automatic satisfaction of the biharmonic equation

if the complex functions are shown to be analytic (see Appendix B.2 for details).

Taking the example of a centre crack with two local polar crack tip coordinate

systems, as defined in Fig. 2.5, the complex analysis approach allows the complex

variable z to be expressed as

z − a = (x− a) + iy = ρ1e
iθ1 (2.27a)

z + a = (x+ a) + iy = ρ2e
iθ2 (2.27b)

In Westergaard’s solution, he first proposed a complex function of the form

F (z) = Re ˜̃Z(z) + y(ImZ̃(z) + ImỸ (z)) (2.28)

where Z(z) and Y (z) are complex functions which will be defined later and the

symbol ∼ represents integration with respect to the complex variable z. Therefore

d ˜̃Z

dx
= Z̃

dZ̃

dz
= Z

dỸ

dz
= Y (2.29)
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It is possible, through the use of the Cauchy-Riemann equations, to obtain the

following derivative expressions

∂F

∂x
= ReZ̃ + y(ImZ + ImY ) (2.30a)

∂F

∂y
= ImỸ + y(ReZ + ReY ) (2.30b)

which, once differentiated again, and substituted into the expressions relating the

Airy stress function to stresses (Eqns B.1.1), give

σxx = ReZ − y(ImZ ′ + Y ′) + 2ReY (2.31a)

σyy = ReZ + y(ImZ ′ + ImY ′) (2.31b)

σxy = −ImY − y(ReZ ′ +ReY ′) (2.31c)

Using the elastic constitutive equations, these expressions can be used to derive

strains and, through integration, displacements. The only task then is to make an

appropriate choice of the complex functions Z and Y which, through the semi-inverse

method, are shown to satisfy the boundary conditions of the problem. Westergaard

considered the problem of a central crack in an infinite plate (see Fig. 2.5) and chose

the following complex functions

Z(z) =
σz√
z2 − a2

Y (z) = 0. (2.32)

By substituting relations (2.27) into the functions which relate the stress components

to the Airy stress function (Eqns (B.1.1)), the following solution for stresses in a

centre crack can be written

σxx =
σρ√
ρ1ρ2

cos

(

θ − θ1 + θ2
2

)

− σa2

(ρ1ρ2)3/2
ρ1 sin θ1 sin

3

2
(θ1 + θ2) (2.33a)

σyy =
σρ√
ρ1ρ2

cos

(

θ − θ1 + θ2
2

)

+
σa2

(ρ1ρ2)3/2
ρ1 sin θ1 sin

3

2
(θ1 + θ2) (2.33b)

σxy =
σa2

(ρ1ρ2)3/2
ρ1 sin θ1 cos

3

2
(θ1 + θ2) (2.33c)

If a point is chosen which lies close to one of the crack tips (here, the crack tip on
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Figure 2.5: Centre crack in infinite plate

the right is chosen) then the following assumptions can be made

ρ2 ≈ 2a ρ ≈ a θ2 ≈ θ ≈ 0 (2.34)

When these are substituted into Eqns (2.33) the following relations for stresses in

the immediate vicinity of one of the crack tips are obtained

σxx =
σ
√
πa√

2πρ1

cos(θ/2) [1 − sin(θ/2) sin(3θ/2)] (2.35a)

σyy =
σ
√
πa√

2πρ1

cos(θ/2) [1 + sin(θ/2) sin(3θ/2)] (2.35b)

σxy =
σ
√
πa√

2πρ1

cos(θ/2) sin(θ/2) cos(3θ/2) (2.35c)

Since the term σ
√
πa is a constant for a given geometry and loading, we can replace

this with the constant KI and compare the relation with those given by the first-

order terms of the Williams expansion for an edge crack (Eqns (2.25)). What can

be seen is that, if the constant K = a1

√
2π, the two equations are exactly the same.

This proves that the equations relating stresses and displacements around a crack

are of the same form regardless of the geometry and loading while the constant

KI, known as the mode I stress intensity factor, is the sole governing parameter
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for determining the magnitudes of stresses and displacements. In a similar fashion,

expressions for mode II loading can be obtained which can be combined with those

of (2.35) to give the general expressions for stresses around a crack tip

σxx =
KI√
2πρ

cos(θ/2) [1 − sin(θ/2) sin(3θ/2)]

− KII√
2πρ

sin(θ/2) [2 + cos(θ/2) cos(3θ/2)] +H.O.T. (2.36a)

σyy =
KI√
2πρ

cos(θ/2) [1 + sin(θ/2) sin(3θ/2)]

+
KII√
2πρ

sin(θ/2) cos(θ/2) sin(3θ/2) +H.O.T. (2.36b)

σxy =
KI√
2πρ

cos(θ/2) sin(θ/2) cos(3θ/2)

+
KII√
2πρ

cos(θ/2) [1 − sin(θ/2) sin(3θ/2)] +H.O.T. (2.36c)

Then, by use of the constitutive equation to obtain strains which can then be inte-

grated, displacements around a crack tip are written as

ux =
KI

2µ

√

ρ

2π
cos(θ/2)[κ− 1 + 2 sin2(θ/2)]

+
KII

2µ

√

ρ

2π
sin(θ/2)[κ+ 1 + 2 cos2(θ/2)] (2.37a)

uy =
KII

2µ

√

ρ

2π
sin(θ/2)[κ+ 1 − 2 cos2(θ/2)]

−KII

2µ

√

ρ

2π
cos(θ/2)[κ− 1 − 2 sin2(θ/2)] (2.37b)

These expressions are extremely important in fracture mechanics since, once the

parameters KI and KII are determined, the stress and displacement at any point

surrounding the crack can be calculated. The importance of accurate stress intensity

factors cannot be overemphasized and in fact, as will be discussed in the next section,
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it is generally accepted that these are the sole governing parameters that dictate

fracture for linear elasticity.

2.4 Stress intensity factors as governing

parameters

The equations which describe the stresses and displacements around a crack tip

have been shown to follow the same dependence on the crack-tip coordinates ρ and

θ regardless of the geometry or applied loading. Rather, it is the magnitude of the

constants KI, KII (and KIII in 3D) which change and in fact, as will be argued in

this section, a complete description of the region surrounding the crack tip can be

described by these parameters. Therefore, what is paramount, and provides the

main impetus for this thesis, is the accurate determination of these constants.

One application which illustrates clearly the need for accurate SIFs is in macro

crack growth assessments and damage tolerant design. One fundamental equation

which might often be used is the Paris law [14] which is probably the simplest of

many crack growth laws. It dictates that the rate of crack growth da/dN (where N

is the number of loading cycles) is given by

da

dN
= C(∆K)n (2.38)

where C and n represent material constants and ∆K, related to the maximum

difference in applied stresses, is the range of the stress intensity factor encountered

in the cyclical loading regime. Taking for example 7075-T6 aluminum with a value

of n = 4 1, it is clear from (2.38) that any inaccuracy in K will be magnified greatly

in the crack growth rate estimation.

However, some researchers have postulated that higher order terms in the crack

solution must be included to provide an accurate representation of stresses and

displacements surrounding the crack tip. Karihaloo and Xiao [16] implemented a

“hybrid” crack element which is capable of calculating higher-order terms seen in

Eqns (2.25) and (2.26) and found that the inclusion of these additional terms was

beneficial to convergence. However, studies were also carried out by Chona et al. [1]

using photoelastic experiments combined with the boundary collocation method

(BCM). The formulation of the BCM incorporated a truncated form of the series

1in some ceramic materials n can be found to be as high as 24 to 131 [15]
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given by (2.25) allowing higher-order terms to be included in the solution. Then, by

comparing the stresses obtained through experiments with those calculated using

only the first-order terms (ie. those including KI and KII) and those calculated

using higher-order terms, they were able to define regions in which the singularity

is most dominant. Fig. 2.6 illustrates one such plot in which the regions where the

single-parameter solution differs from the series solution by 2% and 5% are defined

for a specific crack length ratio. However, one of the most important features of

their findings was the proof that there exists a region in which the stresses and

displacements are governed by the singular terms and are completely described by

the terms KI andKII - it is only a matter of substituting these values into expressions

(2.36) and (2.37) to obtain stresses and displacements at any point within this zone.

It becomes clear then, that in order to describe the singular field surrounding a crack

tip with high accuracy, effort must be focused on finding accurate values of KI and

KII . To achieve this, several methods are available to the engineer where more

recently, due to their flexibility and ability to model arbitrary crack geometries,

numerical methods have grown in popularity. A few methods in particular have

seen extensive development and it is these, along with with some of the more recent

advancements, that are described in the next section.

Figure 2.6: Singularity dominated zone for modified-compact-tension specimen,
a/w = 0.7 (figure reproduced from [1])

2.5 Numerical methods for fracture

Analytical solutions like those given by Williams and Westergaard are limited in

their practical application due to specified loadings on the boundary and the added

assumption that cracks lie in an infinite domain. This clearly is an unreasonable
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assumption to make for cracked bodies in finite plates (see Figs. 2.7a and 2.7b)

since the proximity of the boundary to the crack plays an important role in the

distribution of stresses. By considering certain infinite plate problems (such as a

the problem of an infinite array of collinear cracks) and making certain assumptions

on the distribution of stress, it is possible to derive solutions for a certain number

of finite plate problems (see [17] for a comprehensive review). In addition, since

materials are considered to be linear elastic, the principle of superposition can be

used to combine certain problems and solve a greater number of problems. However,

when geometries and loadings are considered that do not follow any solution given

in handbooks, then the situation is made more complicated. It is in these scenarios

that the use of numerical methods, which make no restrictions on the geometry and

loading of the cracked body, prove most useful.

(a) Centre crack in infinite plate (b) Centre crack in finite plate

Figure 2.7: Comparison of infinite and finite boundaries

2.5.1 Boundary Collocation Method

One of the earliest numerical methods developed for use in fracture mechanics is

the boundary collocation method (BCM) with the preliminary development of the

method attributable to Gross et al. [18]. Use is made of the complex stress func-

tions introduced by Westergaard (see Sec. 2.3) but, in the case of finite boundaries,

complications arise due to the need to satisfy boundary conditions. To allow for

this, complex functions in the form a truncated series can be used in which the first

term corresponds to the singular solution of the crack tip and higher-order terms

are included to satisfy the remote boundary conditions. One possible set of com-

plex functions which can be used for the case of a single-ended traction-free crack is
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expressed as

Z(z) =

∞
∑

j=0

Ajz
−1/2 (2.39a)

Y (z) =

∞
∑

m=0

Bmz
m. (2.39b)

Then, by using the above complex functions with Eqns (2.30) and (2.31), it is

possible to write the following general expression for stress at any point with the

complex coordinate z = x+ iy

σ =
∞
∑

j=0

Ajfj(z) +
∞
∑

m=0

Bmgm(z) (2.40)

where fj(z) and gm(z) are known, real functions. In fact, for the case of an edge

crack, it can be shown that these functions are equivalent to those given by the

Williams’ expansion (Eqns 2.25 and Eqns 2.26). For other crack geometries, like

that of a curved crack [19], the functions fj(z) and gm(z) can be derived through

complex analysis methods. The task then is to find the values of the coefficients

Aj and Bm. The BCM achieves this by evaluating expression (2.40) at a discrete

number of points around the boundary in a process known as collocation. Then, if

the number of collocation points is equal to to the number of unknown coefficients,

the system is square and can be solved. In partitioned matrix form, the system of

equations can be written as

[

fj(ρi, θi) gm(ρi, θi)
]

[

Aj

Bm

]

= [σi] (2.41)

where i represents the row number of the matrix corresponding to a particular

collocation point and polar coordinates have been assumed. If the matrix expression

(2.41) is written more succinctly as

[f | g]
[

A

B

]

= [σ] (2.42)

then the coefficients can be solved simply by

[

A

B

]

= [f | g]−1 [σ] . (2.43)
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However, in the straightforward implementation of (2.43), large differences between

required boundary values and those given by (2.42) at points in between collocation

points lead to inaccuracies in the method. A simple least-squares procedure is often

used [20] which uses a greater number of collocation points to produce an over-

determined system. If we define the matrix [C] as

[C] = [f | g]T [f | g] (2.44)

then the least squares solution for the over-determined system is written as

[

A

B

]

= [C]−1 [f | g]T [σ] (2.45)

The BCM is one of the first numerical methods to be applied to fracture prob-

lems with finite, general geometries and it has been shown that high accuracies are

seen in the implementation of the method, with errors of less than 0.2% found in

KI [21]). However, as briefly described here, the method suffers from the limitation

that the complex functions Z(z) and Y (z) must be known a priori and, as seen in

the case of a curved crack in a finite domain [19], the derivation of these can lead to

rather complicated expressions. It must be noted though, that in many of the im-

plementations of new numerical methods and variations thereof, solutions provided

by the BCM for fracture problems are often used since they give a benchmark for

problems that have no analytical solution. In fact, as will be shown in Chapter 8,

the BCM is used for comparison of the new method outlined in this thesis for certain

crack geometries.

2.5.2 Finite Element Method

Without doubt, the most popular numerical method at present is the Finite Element

Method (FEM) [22] shown by its proven success in numerous applications. Within

the field of fracture mechanics it too has shown a dominance over other methods,

mainly due to its well-understood technologies and accepted use rather than its

suitability for problems containing singularities. However, numerous methods have

been developed to overcome the problem of a singularity created by a crack, with the

eXtended Finite Element Method (XFEM) representing the most recent significant

advance. Chapter 4 gives an overview of the these techniques along with a detailed

description of the XFEM.

Before we consider how the FEM is able to model singularities, it is beneficial
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to give an overview of the method introducing the basic concepts that will be used

in later chapters. The derivation of the method can be achieved by different routes,

but all may be shown to be equivalent. For simplicity, the method which uses the

principle of virtual work is adopted here. First, we consider a domain Ω with bound-

ary Γ subject to a set of body forces bi and tractions ti which allows the principle

of virtual work to be expressed as (assuming the index summation convention)

∫

Ω

σijδεijdΩ =

∫

Ω

biδuidΩ +

∫

Γ

tiδuidΓ (2.46)

where σij and δεij are components of stress and virtual strain and ui and δui are

the components of displacements and virtual displacement respectively. Expression

(2.46) can also be written in matrix notation as

∫

Ω

δε
T
σdΩ =

∫

Ω

δuTbdΩ +

∫

Γ

δuTtdΓ (2.47)

The next step relies on what is arguably one of the most important concepts of the

method, which is that an integral taken over the entire domain is equivalent to the

sum of the integrals taken over the smaller sub-domains known as “elements”. This

is shown in Figs 2.8a and 2.8b where an arbitrary global domain Ω with boundary

Γ can be split into elements with local sub-domains Ωe, e = 1, ...Ne. Regarding

displacements over one of these elements and mapping from a global coordinate

system (x, y) to a local coordinate system (ξ, η) (see Fig. 2.8c), it is possible to

formulate an expression which gives the displacement at any point within the element

by interpolation. The displacement components can then be written as

u = [Ne]{ue} (2.48a)

δu = [Ne]{δue} (2.48b)

where in both cases [Ne] represents a matrix containing the local shape functions and

{δue} and {ue} represent vectors of nodal displacements and virtual displacements

respectively. In most cases the functions used for interpolation in [Ne] are chosen to

be quadratic polynomials due to their relative accuracy and computational efficiency

and depend on the local coordinates ξ and η. Using the above expressions, it is then
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(a) Global domain Ω

(b) Sub-domain Ωe defining a particular “element”

(c) Element in global and local coordinate systems

Figure 2.8: Global and local domains for FEM
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possible to define strains and virtual strains as

ε = [Be]{ue} (2.49a)

δε = [Be]{δue} (2.49b)

where the matrix [Be] is defined as

[Be] =

















∂

∂x
0

0
∂

∂y

∂

∂y

∂

∂x

















[Ne] (2.50)

where engineering strain has been assumed. Having found the strains, stresses can

be derived by using an appropriate set of constitutive equations through the relation

σ = [D]ε = [D][Be]{ue} (2.51)

where, for a linear elastic body under plane stress, for example,

[D] =
E

1 − ν2









1 ν 0

ν 1 0

0 0
1 − ν

2









(2.52)

Since displacements, strains and stresses are now defined by Eqns (2.48), (2.49) and

(2.51) over a particular element e, substitution of these expressions into (2.47) gives

the following integral over the local sub-domain for virtual work

{δue}T

{
∫

Ωe

[Be]T[D][Be]{ue} dΩe −
∫

Ωe

[Ne]T{be} dΩe −
∫

Ωe

[Ne]T{te} dΩe

}

= 0

(2.53)

Since this must be true for any virtual displacement {δue}, the second term of (2.53)

must be equal to zero. Defining the element stiffness matrix as

[Ke] =

∫

Ωe

[Be]T[D][Be] dΩe (2.54)
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and the local body force and traction vectors as

{Fe

b
} =

∫

Ωe

[Ne]T{be} dΩe (2.55a)

{Fe

t
} =

∫

Ωe

[Ne]T{te} dΩe (2.55b)

which can be expressed in terms of a single vector known as the nodal force vector

{Fe} = {Fe

b
} + {Fe

t
} (2.56)

the FEM formulation can be reduced, for a particular element, to

[Ke]{ue} = {Fe} (2.57)

Now, referring back to the concept described earlier where an integral over a domain

Ω is equivalent to the sum of the integrals taken over all the sub-domains Ωe, ex-

pression (2.57) can be found for all elements and combined to form a global stiffness

matrix [K] and generalised nodal force vector {F}. This allows the following global

system of equations to be written

[K]{u} = {F} (2.58)

Once sufficient boundary conditions are imposed on the domain, it is possible to

solve the above equation and find all unknown nodal displacements and forces for any

arbitrary problem. This flexibility makes the method extremely powerful for solving

a wide variety of problems but, in the case of problems containing singularities or

discontinuities, problems arise. A domain containing a crack is one such problem

since, as described in Sec. 2.2, a singular stress of O(1/ρ1/2) is seen at the crack

tip. It is clear then that if conventional quadratic shape functions are used to

interpolate this singular stress, large errors will occur if relatively coarse meshes

are used. In order to overcome this problem using conventional elements, very

refined meshes are required in the region surrounding the crack tip (see Fig. 2.9)

and even with this refinement, convergence is not guaranteed [23]. Various methods

are available to overcome this problem including special elements that can capture

the crack-tip singularity and the more recently developed eXtended Finite Element

Method (XFEM), but in certain circumstances other alternative numerical methods

are available which provide more economical solutions.
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Figure 2.9: Mesh refinement for FEM using conventional, non-singular elements

2.5.3 Boundary Element Method

The Boundary Element Method (BEM) is another numerical technique which has

seen success in a wide variety of applications and, as shown by numerous researchers

(eg. [24] and [25]), the method demonstrates particular advantages in problems

containing singularities. For various reasons, the BEM has not been popularised to

the same extent as the FEM, but recent developments have shown that in many

cases the BEM provides a more economical implementation. The case of Linear

Elastic Fracture Mechanics (LEFM) is one such example.

The inherent advantage of the BEM over domain-discretisation methods such as

the FEM is that only the boundary need be discretised. Therefore, to model the

same crack problem as that shown in Fig. 2.9 for a BEM analysis, the mesh shown

in Fig. 2.10 could be used. Clearly, far fewer elements are required which, even

if mesh-grading is used around the crack tip, leads to a more efficient solution. Of

course, as with any numerical method, there are some drawbacks to the BEM such as

the creation of fully populated matrices (in comparison to the diagonally dominant

matrices seen in the FEM) and difficulties in implementing non-linear materials. But

for models which are linear elastic and exhibit high stress gradients, the BEM is an

extremely strong contender for the most efficient computational method available to
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the engineer. In fact, for a model which includes a crack, the method is particularly

suitable not only due to its ability to model high stress gradients, but also due to the

fact that fracture analysis is mostly concerned with parameters on the boundary.

Figure 2.10: Example BEM mesh for crack problem

A much more detailed description of the method could be given here but, in

keeping with previous sections, only a brief overview of the method rather than

a complete derivation is outlined. Instead, Chapter 3 is devoted to a much more

detailed description of the method since extensive use is made of the BEM in this

thesis.

2.5.4 Meshless methods

In both the FEM and BEM meshes are constructed which divide the domain and

boundary into discrete elements over which parameters are interpolated. A rela-

tively new approach which has seen rapid growth within the academic community

precludes the use of meshes but instead relies on an interpolation scheme using

the method of moving least squares (MLS). These methods fall under the general

name of meshless methods. The first use of a meshless method within the context

of elastostatics can be attributed to Belytschko et al. [26] which is now known as

the Element Free Galerkin (EFG) method. Instead of dividing the domain into a



2.5. Numerical methods for fracture 31

grid made up of elements, nodes are spaced throughout the domain which can be

spaced arbitrarily (within reason) and each is contained with a region known as the

nodal support (shown in Fig. 2.11). Within this region a weight function is defined

such that any point within the domain is covered by at least three distinct weight

functions. There are several common weight functions including quartic splines and

exponential functions (see Fig. 2.12) which are defined over this nodal support. The

shape functions can then be created using a weighted MLS routine and are usually

expressed in the following manner

Na(x) = pT(x)A−1(x)Ca(x) (2.59)

where pT(x) is a basis vector that, for a linear basis, is denoted by

pT(x) = [1, x, y] (2.60)

and the terms A−1(x) (often called the moment matrix) and Ca(x) are made up

of combinations of the basis vector and the chosen weight functions. Displacements

can then be interpolated in the conventional manner as

uj =
n
∑

a=1

Nau
a
j (2.61)

where n is the number of neighbours to the point a and ua
j is a nodal displace-

ment. However, as is well-known in mesh-free methods, if the shape functions are

formulated in this way then they do not possess the kronecker delta property and

alternative ways of enforcing boundary conditions have to be employed. The two

most popular methods are the use of Lagrange multipliers and penalty methods

where additional terms, included in the variational equation, are used to satisfy the

required boundary conditions.

The EFG method has been applied successfully to fracture problems where the

absence of a mesh is found to be particularly useful, especially for crack propagation.

One of the first implementations of crack problems in EFG can be attributed to

Belytschko et al. [27] who showed that accurate SIFs (∼1% error) could be obtained

using the method2. Of course, with high stress gradients surrounding the crack tip,

high densities of nodes were required in this region (such as those shown in Fig. 2.11),

2Compared to ∼0.1% seen using local PUM enrichment illustrated in this thesis.
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Figure 2.11: Example of arbitrary nodal arrangement for the Element Free Galerkin
Method
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Figure 2.12: Exponential weight function defined over nodal support
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but the relative ease of advancing the crack represented a significant advantage

over the FEM. The EFG method has since been developed to incorporate functions

which “enrich” certain nodes surrounding the crack tip [28] and therefore reduce

the required number of nodes for a given accuracy. In addition, several techniques

which overcome the problems of defining nodal supports around discontinuities have

been outlined and these have helped to make meshless methods recognised as a key

method in numerical fracture mechanics.

2.6 Methods for evaluating stress intensity

factors

As described in Sec. 2.4, fracture mechanics is centred around the task of finding

accurate SIFs and since most numerical methods do not output SIFs directly,3 it is

necessary to carry out post-processing routines. The techniques which can achieve

this fall into two categories: those which use either stresses or displacements sur-

rounding the crack tip to calculate SIFs which are then extrapolated to the crack

tip, and the use of energy methods requiring path/domain integrals.

2.6.1 Displacement extrapolation

Since displacements within a certain region surrounding the crack tip are known to

be described by the singular terms given by both the Williams and Westergaard

expressions (Eqns (2.26) and (2.37)), it is possible, through rearrangement of these

expressions and values of displacements from a numerical analysis, to determine

SIFs. These values can then be plotted against the distance ρ to the crack tip and,

by extrapolation, a single value for the SIF can be found. To illustrate how this can

be achieved, 2D boundary elements such as those illustrated in Fig. 2.13 can be used

where, for illustration purposes, the elements on each of the crack surfaces have been

drawn with a finite separation when in reality these will be coincident. Therefore,

by making the assumption that the elements are flat, the crack angle θ will be equal

to π and −π along the top and bottom crack surfaces respectively. By substituting

these values into the expressions for crack tip displacements (Eqns 2.37a and 2.37b),

3There are, however, some methods that do and these will be described in Chapter 4. In
addition, one of the enrichment formulations for the BEM presented in this thesis is capable of
direct SIF output and is shown in Chapter 6.
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the following can be written

uT
y − uB

y =
κ + 1

µ
KI

√

ρ

2π
(2.62a)

uT
x − uB

x =
κ+ 1

µ
KII

√

ρ

2π
(2.62b)

where the superscripts T and B denote the top and bottom crack faces respectively.

These could be used directly with one set of adjacent nodes (eg. nodes 2 and 3

or 4 and 5 in Fig. 2.13) where the formula is known as the one-point displacement

formula. Instead, SIFs can be determined at each of the nodal pairs and then

extrapolated to the crack tip to produce a two-point displacement formula. This

can be derived by first noting that in Fig. 2.13 the nodes 2 and 3 are positioned at a

distance l/2 from the crack tip. Substituting this for ρ in Eqns (2.62a) and (2.62b)

gives

K23
I =

2µ

κ + 1

√

π

l
(u2

y − u3
y) (2.63a)

K23
II =

2µ

κ + 1

√

π

l
(u2

x − u3
x) (2.63b)

and likewise, by substituting l for ρ a similar set of equations are given for nodes 4

and 5

K23
I =

µ

κ + 1

√

2π

l
(u4

y − u5
y) (2.64a)

K23
II =

µ

κ + 1

√

2π

l
(u4

x − u5
x). (2.64b)

Finally, using linear extrapolation to the crack tip, a single value for each of the

SIFs can be obtained from

KI = 2K23
I −K45

I (2.65a)

KII = 2K23
II −K45

II . (2.65b)

These expressions are extremely simple to implement as a post-processing proce-

dure and are probably the fastest way to obtains SIFs from a numerical analysis.

However, before other more complex SIF evaluation techniques are disregarded,
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some significant drawbacks of the present approach must be outlined. Perhaps the

Figure 2.13: Crack tip elements used for displacement extrapolation

most prominent of these is the failure of the crack-tip elements to account for the
√
ρ variation seen at a crack tip. When the above formulae are used for these

types of elements, inaccurate SIFs are often produced. For example, Fig. 2.14 il-

lustrates displacement extrapolation of SIFs using conventional quadratic elements

and special “enriched” elements which are capable of capturing the singularity seen

at the crack tip. This figure was obtained for a mode I centre crack using the Dual

Boundary Element Method (unenriched) and local PUM enriched formulation out-

lined in Chapter 6. Clearly in the unenriched case an extrapolation of nodal values

closest to the crack tip produces highly inaccurate results whereas the “enriched”

elements much more closely approximate the solution. Therefore special elements

or shape functions must be used in conjunction with the displacements extrapola-

tion method if reasonably accurate results are to be obtained. Even so, Mart́ınez

and Domı́nguez [29] showed that the displacement extrapolation method used with

quarter-point elements (these are described in Sec. 5.1.1) was unreliable due to a

dependence on crack-tip element length and errors greater than 5% in SIFs were

not uncommon. However, it must not be forgotten that the method is one of the

simplest and quickest techniques to obtain SIFs and therefore, if the limitations

in accuracy are acknowledged, the displacement extrapolation method provides a

quick, rough estimate of SIFs for the engineer.

2.6.2 J-integral for flat cracks

The J-integral is the most popular technique used to evaluate SIFs, especially for

FEM and BEM implementations, and is attributed to the work carried out by Rice

[30]. The integral is based on energy methods and has the important property

of path-independence, a particularly useful feature in fracture problems since an

integration path, positioned far from the high stress gradients seen at the crack
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Figure 2.14: Comparison of SIF extrapolation using quadratic elements and “en-
riched” elements

tip, can be used. However, as will be shown shortly, the direct implementation

of the J-integral for mixed-mode problems does not allow the SIF components to

be determined - instead, certain decomposition routines or modified forms of the

integral must be used. Once implemented though, the method presents one of

the most accurate techniques for evaluation of SIFs and for this reason, it is used

routinely for the numerical examples presented in this thesis.

To begin with, we consider a flat crack within a domain with local crack-tip

coordinates (x,y) and take a path ΓJ starting at one crack face and ending at the

other (see Fig. 2.15). We can then define the J-integral as

J =

∫

ΓJ

(

Wnx − ti
∂ui

∂x

)

dΓ (2.66)

where W is the strain energy density defined as

W =
1

2
σijεij , (2.67)

nx is the x-component of the normal vector n and (ui,ti) are displacement and

traction components. In the strict sense, the J-integral path should be the closed

contour formed by the union of ΓJ with the portions of the upper and lower crack

surfaces lying between the crack tip and the end points of ΓJ . It should be noted

that, for the case of a flat crack subject to zero tractions on the crack surfaces, the
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Figure 2.15: Definition of J-integral path

situation is simplified and the path ΓJ is sufficient, because no contribution is made

to the J-integral along each of the surfaces since nx = 0 and ti = 0. The direct

implementation of Eq. (2.66) is simple, but, for the J-integral to be of practical use,

it is necessary to express it in terms of the SIFs. By noting that J is related to the

strain energy release rate (see Sec. 2.1), it is possible to write the following equation

which expresses J in terms of the Mode I and II SIFs for 2D plane stress problems

J =
K2

I +K2
II

E ′
(2.68)

where E ′ is the modified Young’s modulus defined as

E ′ =











E plane stress

E

1 − ν2
plane strain

(2.69)

In the case of pure Mode I problems where KII equals zero, a simple rearrangement

of the equation will return KI directly. However, for mixed-mode fracture, problems

arise due to the summation of KI and KII terms. Several researchers have studied

this problem [31], [32], [33], [34], [35] while all achieve the same goal - decomposition

of the J-integral into individual SIF components. In the present work, use is made

of the decomposition technique using symmetric points [31]. An outline of the

technique is given presently.

Ishikawa et al. [31] showed that, if the internal points used for the numerical

integration of the J-integral are located symmetrically about the crack (assuming it

is flat), then it is possible to derive two integral expressions which allow evaluation

of the SIF components. If a circular integration path is used, then the points may
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be positioned in a manner such as those in Fig. 2.16. Considering two points P (x, y)

and P ′(x,−y) with displacements, strains and stresses at each of these defined by

(ui, εij, σij) and (u′i, ε
′
ij , σ

′
ij) respectively (while noting that ti = σijnj), then the

following symmetric and anti-symmetric components can be defined as

Figure 2.16: Circular J-integral path with symmetric internal points
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{

uI
x

uI
y

}

=
1

2

{

ux + u′x

uy − u′y

} {

uII
x

uII
y

}

=
1

2

{

ux − u′x

uy + u′y

}

(2.70c)

where

σij = σI
ij + σII

ij (2.71a)

εij = εI
ij + εII

ij (2.71b)

ui = uI
i + uII

i (2.71c)

When the above equations are substituted into the original J-integral expression

(Eq. 2.66), and the following expression relating normal components is used

(n′
x, n

′
y) = (nx,−ny) (2.72)
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then the J-integral can be written as

J = JI + JII (2.73)

where

JI =

∫

ΓJ

(

1

2
σI

ijε
I
ijnx − σI

ijnju
I
i,y

)

dΓ (2.74a)

JII =

∫

ΓJ

(

1

2
σII

ijε
II
ijnx − σII

ijnju
II
i,y

)

dΓ (2.74b)

Therefore, once these components are known, is it possible to extract SIFs through

the relations

JI =
K2

I

E ′
JII =

K2
II

E ′
(2.75)

The technique is simple to implement making it very attractive for FEM and BEM

formulations and, as shown by Portela et al. [24], the accuracy of the SIFs is shown to

be very high. However, as is the case with many other J-integral decomposition rou-

tines, the method breaks-down when non-flat cracks are considered. Further details

on why this is the case, along with alternative techniques to overcome this problem,

will be outlined shortly, but the present method, due to its ease of implementation

and high accuracy, is favoured in problems with flat cracks.

2.6.3 J-integral for non-flat cracks

The majority of fracture problems analysed using numerical techniques are mod-

elled with flat cracks which, in many cases, is a valid assumption. However, there

are scenarios where this assumption cannot be made and alternative techniques to

model the crack must be employed. In addition, the straightforward application of

the J-integral described previously to non-flat cracks is no longer valid requiring

certain modifications in the implementation. This section aims to describe, by tak-

ing the case of a curved crack, why the conventional J-integral expression presents

difficulties for numerical implementation and how the use of an additional integral,

termed the J2 integral, can be used to provide a complete description of the crack

behaviour.

Fig. 2.17 illustrates a curved, traction-free crack with local Cartesian crack-

tip coordinates and a normal vector n defined for the upper crack surface. If the

technique illustrated in Sec. 2.6.2 is used for this example, then the results will no
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longer be valid. This is because the assumption that along the crack surfaces the

normal component nx = 0 is no longer true, and an additional component Wnx must

be included. But before this is evaluated, it is important to observe the behaviour of

the strain energy W as the crack tip is approached. We know that Eq. (2.67) is used

to calculate W where, from the expressions describing stresses around a crack tip,

the terms εij and σij are both of O(1/ρ1/2). This gives a strain energy of O(1/ρ) but,

since the normal component nx → 0 as the crack tip is approached, the productWnx

is non-singular and can be evaluated using standard numerical integration routines.

Therefore the evaluation of the J-integral does not present undue difficulties for

curved cracks. But what presents a problem is the decomposition of the integral

into separate components that will allow the determination of SIFs.

Figure 2.17: Traction-free curved crack

To address this, it is necessary to introduce a more general form of the J-integral

expression which is written as

Jk =

∫

ΓJ

(Wnk − tiui,k) dΓ, k = 1, 2 (2.76)

where, in keeping with other common notation, the component directions 1 and 2

are used which are equivalent to the local crack tip coordinates x and y. What

this expression shows is that the J-integral is in fact the J1 component while a

new integral, known as the J2-integral, is introduced. By evaluating both of these

components and noting that J1 is related to the SIFs by Eq. (2.68) and J2 is expressed

likewise as

J2 = −2KIKII

E ′
, (2.77)

the mode I and II SIFs can be found. However, in contrast to the J1 integral

where the component Wnk is regular, the normal component n2 (ny) tends to unity

as the crack tip is approached and therefore the term Wn2 is singular of O(1/ρ).

Integration of this term using a standard integration routine would introduce large
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errors and so an alternative procedure which can account for this singularity must

be used. Eischen [36] first introduced a technique that defines a certain region with

radius R which is regarded as being dominated by the singular term (see Fig. 2.18).

By defining a strain energy jump across the crack faces in the region R as

JW K = W+ −W− (2.78)

where W+ and W− are the strain energies on the upper and lower crack faces

respectively, it is possible, through the use of Eqns (2.36) (and similar expressions

for strain), to show that the strain energy jump can be rewritten as

JW K ≈ Λρ−1/2 + O(1) (2.79)

where the constant Λ is an invariant for a given problem. Using this definition,

along with the integration paths defined in Fig. 2.18, the Jk-integral can then be

rewritten as

Jk =

∫

ΓJ

(

Wnk − σijnj

(

∂ui

∂xk

))

dΓ+

∫

(Γc+
J

−R)+(Γc−
J

−R)

WnkdΓ+2Λδk2R
1/2 (2.80)

where δ denotes the kronecker delta function. Therefore, in the evaluation of the J1

integral, the third term of (2.80) is simply omitted. In the case of the J2 integral,

it is necessary to make an appropriate choice of R and in fact, since both J2 and

Λ are both unknowns, it is necessary to choose multiple values of R to allow both

values to be determined by a least-squares scheme [37]. This is possible since both

values are invariant for a given problem.

It can be seen, by comparing this technique to that described for flat cracks

in Sec. 2.6.2, that the introduction of non-flat cracks creates certain complications

for the evaluation of fracture parameters. These can not be avoided if an accurate

representation of the problem is required, but it is convenient that in most cases -

and in fact, for most standard testing specimens - flat cracks are seen.

2.6.4 Contour integral method

In addition to the popularised J-integral approach, there are a variety of integral

approaches proposed which are capable of producing decomposed SIFs. One of

the original methods, proposed by Stern et al. [33], uses Betti’s reciprocal theorem

with an appropriate auxiliary equilibrium state which allows, after carrying out
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Figure 2.18: Definition of integral paths used for evaluation of J1 and J2 integrals

an appropriate path integral, KI and KII to be determined separately. Since this

method is used in later work, an outline of the derivation and implementation is

given here.

Betti’s reciprocal theorem [38] states that two equilibrium states (ui, ti) and

(u∗i , t
∗
i ) for a domain with boundary Γ can be related by the following integral equa-

tion
∫

Γ

(uit
∗
i − u∗i ti)dΓ = 0. (2.81)

Considering a body with a flat crack, a region with an arbitrarily small radius ε is re-

moved from the domain leaving the boundaries Γ, Γε,Γ
+
c and Γ−

c (see Fig. 2.19). Ap-

plying Eq. (2.81) to these boundaries and assuming traction-free cracks4, Eq. (2.81)

can be rewritten as

−
∫

Γε

(uit
∗
i − u∗i ti)dΓ =

∫

Γ

(uit
∗
i − u∗i ti)dΓ. (2.82)

Since the integral on the LHS of (2.82) is evaluated at a small distance from the

crack tip, the equilibrium state (ui, ti) can be represented by Eqns (2.37) and (2.36)

(while noting that ti = σijnj) which describe displacements and stresses surrounding

a crack. The equilibrium state (u∗i , t
∗
i ) however is chosen in such a way that when it

is substituted into (2.82) and combined with the exact crack tip displacements and

4Therefore no contribution is made to the integral from the crack surfaces Γc+ and Γc−
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tractions ui and ti, the integral equation reduces to the following

c1KI + c2KII =

∫

Γ

(uit
∗
i − u∗i ti)dΓ (2.83)

where c1 and c2 are constants included in the expressions for the state (u∗i , t
∗
i ).

These “auxiliary” solutions are derived through a complex analysis method where

the Cartesian form of the equations are given in Appendix D.4. Then, by performing

an integral around the crack using these auxiliary solutions along with displacements

and tractions obtained from a numerical analysis, it is possible, by combing all those

terms relating to c1 and c2, to determine the SIFs KI and KII.

Figure 2.19: Definition of boundaries about crack tip used for contour integral

Since the introduction of the method by Stern et al. [33], the method has since

been extended to 3D problems [39], [35] where the integral is now taken over a

domain such as that shown in Fig. (2.20). It is found, however, that much of the

effort required in implementing the method is centred on the definition of a suitable

3D coordinate system which can, for cracks that are non-planar (ie. curved) and

have a curved crack front, become even more complicated.
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Figure 2.20: Example integration domain used for 3D implementation of contour
integral



Chapter 3

The Boundary Element Method

The history of the Boundary Element Method (BEM) dates back to the 1960s when,

with the introduction of computers that could handle thousands of calculations per

second, numerical methods became feasible analytical tools. It is generally regarded

that Jaswon [40] and Symm [41] were the first to utilise this power with the BEM

and carry out computational analyses for 2D potential problems. However, with the

introduction of the FEM and its broad acceptance amongst engineers, the original

work on the BEM was slow in development and remained relatively dormant for a

period of time. Some key advances that did appear in this period though included an

extension of the method to elastostatics by Rizzo [42] which was later adapted for 3D

problems by Cruse [43], but the lack of active research in the field made progress slow.

Eventually, a group of determined researchers emerged who were convinced of the

benefits the BEM could provide and rapid development of the method ensued. Some

of the most important work is attributed to Lachat [44] and later Lachat and Watson

[45] who were the first to explain the benefits of using quadratic isoparametric

elements and outlined a very effective and simple technique to calculate singular

integrals - thus only integrals of, at most, weak singularity needed to be evaluated.

The 1980s marked a peak in activity for the method and several BEM packages, most

notably the software BEASY, were developed for commercial use while advances

were made in particular areas such as fracture mechanics and efficient numerical

solvers. Unfortunately, the continued success of the FEM stifled widespread use of

the BEM, even with significant advantages in particular areas of application - this

remains true to the present day. There are however, active research groups who are

presently making significant advances in the method demonstrating the efficiency

and superior accuracy of the method for certain applications, but engineers are slow

to accept new technologies and it will take some time yet for the method to become

45
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widespread throughout the industry.

This chapter presents a derivation of the BEM which is based on a collocation

procedure - other forms such as the Galerkin method and indirect BEM are not

used here, but the interested reader should consult [46] and [47] for further details.

Furthermore, details on how the mathematical formulation can be used to generate

a system of equations for computer implementation are given. The more recent

development known as the Dual Boundary Element Method - a technique used

to overcome the difficulties encountered when the conventional BEM is applied to

fracture problems - is also outlined.

3.1 BEM formulation

The derivation of the BEM is often regarded as too complicated by engineers and

many are left with puzzling questions such as how, if only parameters on the bound-

ary are required, internal displacements and stresses can be found? This section

aims to provide a comprehensive yet understandable discussion on the BEM deriva-

tion and hopes to alleviate any misunderstandings and misconceptions that often are

associated with the method. The boundary value problem considered throughout is

an elastostatic problem assuming linear elasticity.

3.1.1 Equations of elasticity

Before consideration is given to any boundary integrals, it is necessary to provide

the equations of elasticity that underpin the framework of the BEM. These are

well-known within the field of computational mechanics but are stated here for

future reference. The first of these comes from consideration of equilibrium on an

infinitesimal cube (see Fig. 3.1) with sides ∆x, ∆y and ∆z and contains a body

force per unit volume represented by the components bi. If stresses on this cube are

defined as σij where i is the direction of the normal component on that face and j

is the direction the stress acts in, then by equating forces, the following differential

equation can be written

∂σij

∂xi
+
∂σij

∂xj
+
∂σij

∂xk
+ bi = 0 i, j, k = x, y, z (3.1)
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or in indicial notation, where repeated indices imply summation and a comma im-

plies differentiation

σij,j + bi = 0 (3.2)

Denoting displacement components as ui, tensorial strains can then be defined as

Figure 3.1: Definition of stress component directions on infinitesimal cube

εij =
1

2

(

∂ui

∂xj
+
∂uj

∂xi

)

(3.3)

To find a valid solution it is necessary to define additional relations known as com-

patibility equations1 defined in indicial notation as

∂2εii

∂x2
j

+
∂2εjj

∂x2
i

− 2
∂2εij

∂xi∂xj
= 0 (3.4a)

∂εij

∂xj∂xk
− ∂

∂xi

(

−∂εjk

∂xi
+
∂εik

∂xj
+
∂εij

∂xk

)

= 0 i 6= j 6= k (3.4b)

1These ensure that the body will remain continuous under an arbitrary set of forces
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For an elastic, isotropic material strains and stresses are related by Hooke’s law

allowing the strain components to be expressed as

εxx =
1

E
[σxx − ν(σyy + σzz)], εxy =

1 + ν

E
σxy,

εyy =
1

E
[σyy − ν(σxx + σzz)], εyz =

1 + ν

E
σyz,

εzz =
1

E
[σzz − ν(σxx + σyy)], εzx =

1 + ν

E
σzx (3.5)

where E and ν are the Young’s modulus and Poisson’s ratio respectively. Likewise,

expressions for stress in terms of strain can be stated

σxx = λe+ 2µεxx, σxy = 2µεxy,

σyy = λe+ 2µεyy, σyz = 2µεyz,

σzz = λe+ 2µεzz, σzx = 2µεzx (3.6)

where µ is the shear modulus defined as

µ =
E

2(1 + ν)
(3.7)

λ is the Lamé constant

λ =
2µν

(1 − 2ν)
(3.8)

and e is the volumetric strain

e ≡ εxx + εyy + εzz (3.9)

The previous equations are completely general in nature since they apply to a three-

dimensional body under an arbitrary set of forces, but in many cases certain as-

sumptions can be made to simplify the problem into that of a two-dimensional

body. There are two scenarios in which this may occur - that of plane strain and

plane stress. Plane strain conditions occur for example in thick plates where the

geometry and loading does not vary significantly in the z direction and it can be as-

sumed that εzz = εzx = εzy = 0. Likewise, plane stress conditions can occur in thin

plates where, since stresses in the z direction cannot reach any appreciable value,

they can be assumed to be zero (ie. σzz = σzx = σzy = 0). Using these assumptions,



3.1. BEM formulation 49

it is possible to express strains for plane strain as

εxx =
1 − ν2

E

(

σxx −
ν

1 − ν
σyy

)

,

εyy =
1 − ν2

E

(

σyy −
ν

1 − ν
σxx

)

,

εxy =
1 + ν

E
σxy (3.10)

and for the case of plane stress

εxx =
1 − ν2

E

(

σxx −
ν

1 − ν
σyy

)

,

εyy =
1 − ν2

E

(

σyy −
ν

1 − ν
σxx

)

,

εxy =
1 + ν

E
σxy,

εzz = − ν

1 − ν
(εxx + εyy) (3.11)

A much more convenient way of expressing both of these equations is to take the

plane strain case as the general case and substitute modified values of Young’s mod-

ulus, Poisson’s ratio and Shear Modulus as given in Table 3.1 where, for completion,

Table 3.1: Effective material properties

Plane strain E∗ = E ν∗ = ν µ∗ = µ

Plane stress E∗ =
E(1 + 2ν)

(1 + ν)2
ν∗ =

ν

1 + ν
µ∗ = µ

the plane strain expressions are stated again but with modified material properties

εxx =
1 − ν2

E∗

(

σxx −
ν∗

1 − ν∗
σyy

)

,

εyy =
1 − ν2

E∗

(

σyy −
ν∗

1 − ν∗
σxx

)

,

εxy =
1 + ν∗

E∗
σxy (3.12)
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Finally, although technically not an equation of elasticity, a definition of traction

components is given since they are used on numerous occasions in future work.

Considering a tetrahedron under a state of stress σij such as that in Fig. 3.2a, it

is possible to imagine a face with a normal vector n which must be acted on by a

force to ensure equilibrium of the body. This force is known as a traction and it can

be shown, by consideration of equilibrium, that the components of this traction are

related to the stresses by

tx = σxxnx + σxyny + σxznz,

ty = σyxnx + σyyny + σyznz,

tz = σzxnx + σzyny + σzznz (3.13)

with the normal components defined in Fig. 3.2b. The Eqns in (3.13) are more often

written in indicial notation as

ti = σijnj (3.14)

(a) Traction components on tetrahedron (b) Normal
components

Figure 3.2: Tractions definition
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3.1.2 Betti’s reciprocal theorem

The previous section outlined the underlying equations of elasticity which apply to

any numerical method which considers elastostatic problems, but the theory now

specialises towards the derivation of the BEM with the relation known as Betti’s

reciprocal theorem, which is fundamental to the BEM, now described in detail.

Betti’s reciprocal theorem states that if there are two systems (a) and (b) where

the stresses and strains associated with each of these systems are (σij , εij) and

(σ∗
ij , ε

∗
ij) respectively, then the work done by the stresses of (a) on the strains of

(b) is equal to the work done by the stresses of (b) on the strains of (a). This can

be written mathematically as:

∫

Ω

σijε
∗
ij dΩ =

∫

Ω

σ∗
ijεij dΩ (3.15)

where Ω is an arbitrary domain. Clearly this is not in a form sufficient for a “bound-

ary only” method since both terms involve domain integrals. What will be shown

now is that, by utilising the divergence theorem and carrying out certain manipu-

lations, it is possible to arrive at a boundary integral expression. First, expression

(3.3) is written in indicial notation and substituted into Eq. (3.15) replacing both

ε∗ij and εij
∫

Ω

1

2
σij(u

∗
i,j + u∗j,i) dΩ =

∫

Ω

1

2
σ∗

ij(ui,j + uj,i) dΩ (3.16)

But, by noting that the terms σij and σ∗
ij are symmetric (ie. σij = σji, σ

∗
ij = σ∗

ji),

the following simplification can be made

1

2
σij(u

∗
i,j + u∗j,i) =

1

2
(σiju

∗
i,j + σiju

∗
j,i)

=
1

2
(σiju

∗
i,j + σjiu

∗
j,i)

= σiju
∗
i,j (3.17)

Therefore Eq. (3.16) can be written as

∫

Ω

σiju
∗
i,j dΩ =

∫

Ω

σ∗
ijui,j dΩ (3.18)

We now focus our attention to the left hand side of this equation where we find that
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the integral term can be expressed as

∫

Ω

σiju
∗
i,j dΩ =

∫

Ω

[(σiju
∗
i ),j − σij,ju

∗
i ] dΩ (3.19)

This can be explained by considering the product rule on the integral

∫

Ω

(σiju
∗
i ),j dΩ

∫

Ω

(σiju
∗
i ),j dΩ =

∫

Ω

σiju
∗
i,j dΩ +

∫

Ω

σij,ju
∗
i dΩ (3.20)

which can be rearranged to give expression 3.19. We note that the term σij,j is

related to the body force term bi by Eq. (3.2) which gives, after substitution into

(3.19)
∫

Ω

σiju
∗
i,j dΩ =

∫

Ω

(σiju
∗
i ),j dΩ +

∫

Ω

biu
∗
i dΩ (3.21)

At this point it is necessary to introduce the divergence theorem - a crucial step

in the BEM formulation, since it allows a domain integral to be transformed into

a boundary integral. Denoting f as an arbitrary function, the theorem can be

expressed as
∫

Ω

fi,i dΩ =

∫

Γ

fini dΓ (3.22)

where Γ is the boundary of the domain and ni is a component of the outward

pointing normal vector n as shown in Fig. 3.3. Applying this to the second term of

(3.21), we have
∫

Ω

σiju
∗
i,j dΩ =

∫

Γ

(σiju
∗
i )nj dΓ +

∫

Ω

biu
∗
i dΩ (3.23)

and, by noting that ti = σijnj , this can be further simplified to

Figure 3.3: Arbitrary domain Ω with boundary Γ

∫

Ω

σiju
∗
i,j dΩ =

∫

Γ

tiu
∗
i dΓ +

∫

Ω

biu
∗
i dΩ (3.24)
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Remembering that this equation applies to the left hand side of Eq. (3.18), and

following exactly the same procedure for the right hand side, the final expression for

the integral equation is written

∫

Γ

tiu
∗
i dΓ +

∫

Ω

biu
∗
i dΩ =

∫

Γ

t∗iui dΓ +

∫

Ω

b∗iui dΩ (3.25)

This is known as Betti’s reciprocal work theorem. It should be noted that there still

exist integral terms which which are taken over the domain Ω, but in many cases

these can either ignored (zero body force assumption) or can be transformed into

boundary integrals. Therefore we are well on our way to the goal of a boundary-

only formulation that will allow displacements and tractions to be found for a body

under an arbitrary set of loads. But before it is complete, our attention is now

drawn to the expressions for u∗i and t∗i which will be shown shortly to take the form

of fundamental solutions.

3.1.3 Fundamental solutions

A well-known feature of the BEM formulation is the heavy dependence on appro-

priate fundamental solutions specific to the problem being solved. These can be

regarded as a two-edged sword - on the one hand, the use of exact fundamental so-

lutions allows extremely accurate resolution of parameters throughout the domain

but on the other, since the fundamental solutions are specific to the problem being

considered (eg. linear elastic materials), there are restrictions on the applicability

of the boundary integral equation. The problem of applying the BEM to problems

containing plasticity is one such example where the integral terms can no longer be

evaluated entirely on the boundary but instead, additional domain integrals must

be computed. There are methods such as the Dual-Reciprocity Method [48] which

overcome this problem, but the implementation quickly becomes complicated and

other methods are sought. Fortunately, within the context of fracture mechanics

where the assumption of linear elasticity is valid for most problems, fundamental

solutions can be found and implemented easily with the boundary integral equations.

These relations are now presented for both two-dimensional and three-dimensional

problems.

The first necessary step in the derivation of the fundamental solutions for linear

elasticity is to state the partial differential equation for displacements - more com-

monly known as Navier’s equation. Before this can be done, Eqns (3.6), (3.8) and
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(3.9) are first expressed in indicial notation as

σij =
2µν

1 − 2ν
δijεmm + 2µεij (3.26)

If the relation between displacements and strains (Eq. 3.3) is then substituted into

this equation, we have

σij =
2µν

1 − 2ν
δij

(

∂um

∂xm

)

+ µ

(

∂ui

∂xj
+
∂uj

∂xi

)

(3.27)

which, once substituted into the equilibrium equation of (3.2), the final expression

(Navier’s equation) for the auxiliary state (u∗i , t
∗
i , b

∗
i ) can be written as

∂2u∗i
∂xj∂xj

+
1

1 − 2ν

∂2u∗j
∂xi∂xj

= −b
∗
i

µ
(3.28)

or

u∗i,jj +
1

1 − 2ν
u∗j,ji = −b

∗
i

µ
(3.29)

An important step is now made to substitute the body force term b∗i with that

of an infinite point force

b∗i = ∆(X − X′)ei (3.30)

where ∆ is the Dirac delta function defined as

∆(X − X′) =







+∞ X = X′

0 X 6= X′
(3.31)

and ei is a unit load vector in direction i. It will be shown in the next section that

the solution to the PDE when the right hand side is equal to a Dirac delta function

(as is the case when (3.30) is used) defines a fundamental solution. For now, we

introduce two points X′ and X which both lie within the domain (X,X′ ∈ Ω) and

are known as the source and field points respectively (see Fig. 3.4a) . If the point X′

corresponds to the location of the infinite point force (Fig. 3.4b), Navier’s equation

can be written for u∗i as

µu∗i,jj +
µ

1 − 2ν
u∗j,ji + ∆(X − X′)ei = 0 (3.32)

More commonly though, this equation is expressed in terms of a relation known as
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(a) 2D domain with point force at
X

′

(b) 3D representation of point
force

Figure 3.4: Definition of domain with point force

the Galerkin vector which allows the displacements u∗i to be expressed as

u∗i = Gi,kk −
1

2(1 − ν)
Gk,ik (3.33)

If this is now substituted into (3.32), Navier’s equation can be rewritten as

µGi,kkjj −
µ

2(1 − ν)
Gk,ikjj +

µ

(1 − 2ν)

(

Gj,kkij −
1

2(1 − ν)
Gk,jkij

)

+∆(X−X′)ei = 0

(3.34)

and, since Gk,ikjj = Gj,kkij = Gk,jkij, the second and third terms disappear giving

µGi,kkjj + ∆(X −X′)ei = 0 (3.35)

or, by expressing Gi,kkjj as ∇2(∇2Gi) (where ∇2 is the Laplacian operator),

∇2(∇2Gi) +
1

µ
∆(X − X′)ei = 0 (3.36)

The solution to this problem is well-known from potential theory and is commonly

referred to as Kelvin’s point force solution [49]. For two-dimensional problems the

solution is given by

Gi = − 1

8πµ
r2 ln(r)ei (3.37)

where r denotes the distance between the source and field points. By substituting

this solution into (3.33) to obtain displacements and then using relations (3.27) and
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(3.14) to obtain tractions, the components u∗i and t∗i can be written as

u∗i = Uijej t∗i = Tijej (3.38)

where the terms Uij and Tij , defined as the fundamental solutions, are given by

Uij(X
′,X) =

1

8πµ(1 − ν)

{

(3 − 4ν) ln

(

1

r

)

δij + r,ir,j

}

(3.39a)

Tij(X
′,X) = − 1

4π(1 − ν)r

{

∂r

∂n
[(1 − 2ν)δij + 2r,ir,j] − (1 − 2ν)(r,inj − r,jni)

}

(3.39b)

In a similar manner, solutions can be found for 3D domains with the expressions

for Uij and Tij given in Appendix A.1.2. What will be shown next is that, by

substituting these equations for u∗i and t∗i and making note of the choice for the

body force function b∗i , the expression known as the displacement boundary integral

equation (DBIE), which allows displacements to be found at any point within the

domain, can be derived.

3.1.4 Displacement Boundary Integral Equation

The DBIE, which is the fundamental underlying equation of the BEM, marks the

final point in the mathematical derivation of the method in this thesis. The first

step required is to substitute the auxiliary state u∗i , t
∗
i , b

∗
i given by Eqns (3.38), (3.39)

and (3.30) into Betti’s reciprocal work theorem Eq. (3.25)

∫

Γ

tiUij(X
′,X)ej dΓ+

∫

Ω

biUij(X
′,X)ej dΩ =

∫

Γ

Tij(X
′,X)ejui dΓ+

∫

Ω

∆(X−X′)eiui dΩ

(3.40)

Particular attention is paid to the last term of this expression since it can be sim-

plified using a property of the Dirac-delta function. That is,

∫

Ω

f(X)∆(X− X′) dΩ = f(X′) (3.41)

and therefore
∫

Ω

∆(X −X′)eiui dΩ = ui(X
′)ei (3.42)
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Simplifications can also be made to the other three terms with simple rearrangement

and cancellation of the unit vector component ei giving

ui(X
′) =

∫

Γ

Uij(X
′,X)tj(X) dΓ −

∫

Γ

Tij(X
′,X)uj(X) dΓ +

∫

Ω

Uij(X
′,X)bj(X) dΩ

(3.43)

Since the goal is to formulate a boundary-only method, the field point is now posi-

tioned on the boundary (x ∈ Γ). This does not present any restrictions or difficulties,

but if the same procedure is applied to the source point X′, some complications oc-

cur. This can be explained with the aid of Fig. 3.5 and Eqns (3.39) which show the

Figure 3.5: Source and field points located on the boundary

dependence the fundamental solutions have with the distance r. First, the case in

which the source and field points lie far apart is considered where, since the distance

r is large, the functions Uij(x
′,x) and Tij(x

′,x) are well-behaved and present little

difficulties for integration. However, in the case when the source and field points

become close and eventually coincide, difficulties arise. The fundamental solutions

become singular and, in the limit where x′ = x, there is a requirement to integrate

a function that becomes infinite. Fortunately, it is possible to evaluate these terms

by considering them in a limiting process and, as will be shown in the section for

numerical implementation (Sec. 3.1.6), the explicit evaluation of singular integrals

can often be avoided.

Mathematically speaking, we want to know the limit of the integral terms as

X′ → x′ where x′ ∈ Γ and for this to be achieved, an additional semi-circular

boundary segment centred at the point x′ and with radius ε is defined (Fig. 3.6). The

integrals are then taken over two segments - the non-singular part of the boundary

Γ − Γε and the singular part Γε. Then, by considering the limit as ε → 0 for each

of the terms in (3.43), the displacement boundary integral equation can be written
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Figure 3.6: Definition of boundaries for CPV limiting process

in terms of parameters which are entirely on the boundary. Considering the first

integral term, this can be written as

∫

Γ

Uij(X
′,x)tj(x) dΓ = lim

ε→0

∫

Γ−Γε

Uij(x
′,x)tj(x) dΓ + lim

ε→0

∫

Γε

Uij(x
′,x)tj(x) dΓ

(3.44)

The first term on the right hand side of this equation contains a singularity of

O(ln(1/r)) in two-dimensions and can be evaluated using an appropriate numerical

integration scheme (Chapter 5 provides an overview of these methods) while the

second is found to disappear in the limit as ε → 0 (further details on this can be

found in Appendix C.3).

Our attention now turns to the second integral in (3.43) and its behaviour in the

limit as ε → 0. It can be written, in the same manner as before, as

∫

Γ

Tij(X
′,x)uj(x) dΓ = lim

ε→0

∫

Γ−Γε

Tij(x
′,x)uj(x) dΓ + lim

ε→0

∫

Γε

Tij(x
′,x)uj(x) dΓ

(3.45)

where the integrands now contain singularities of O(1/r) (2D). Before, it was stated

that the Uij integral over the boundary Γ − Γε could be evaluated using special

numerical integration routines. In this case, the stronger singularity precludes the

use of these techniques and it is necessary to evaluate the integral in a limiting

process known as the Cauchy Principal Value (CPV) integral. If we imagine a

function f(x)/(x − xp) in an interval [a, c] with a < xp < b, then this function

is undefined at the point xp. Therefore the integral of this function is undefined

and is classed as improper. The CPV integral considers this improper integral and

evaluates it in a limiting sense as

−
∫ c

a

f(x)

x− xp
dx = lim

ε→0

{

∫ xp−ε

a

f(x)

x− xp
dx+

∫ c

xp+ε

f(x)

x− xp
dx

}

(3.46)

where the integral sign −
∫

denotes that the integral is evaluated in a CPV sense.

Therefore, returning to Eq. (3.45), it is possible to express the first integral on the
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right hand side as

lim
ε→0

∫

Γ−Γε

Tij(x
′,x)uj(x) dΓ = −

∫

Γ

Tij(x
′,x)uj(x) dΓ (3.47)

There are particular integration routines which are capable of evaluating this integral

- and in fact, a large section of this thesis concentrates on the use of one of these to

allow certain enriched integrals to be calculated - but in most cases a very simple

technique, which actually precludes the need to evaluate the term altogether, can

be used. The only integral which now remains is that given by the last term in

Eq. (3.45). Assuming that the displacements uj(x) are differentiable, this can be

regularised by the first term of a Taylor series expansion as

lim
ε→0

∫

Γε

Tij(x
′,x)uj(x) dΓ = lim

ε→0

∫

Γε

Tij(x
′,x) [uj(x) − uj(x

′)] dΓ

+ uj(x
′) lim

ε→0

∫

Γε

Tij(x
′,x) dΓ (3.48)

Since displacements must be continuous, the first term is equal to zero while the

second can be written as

uj(x
′) lim

ε→0

∫

Γε

Tij(x
′,x) dΓ = αij(x

′)uj(x
′) (3.49)

where αij is a jump term that is dependent on the geometry at the source point x′.

If the source point lies on a smooth surface then αij = −δij/2 (a full derivation of

the limiting procedure along with this result is given in Appendix C.4).

Since each of the boundary integral terms given by Eqns (3.44), (3.47) and (3.49)

is now expressed in terms of the boundary points x′ and x, by substituting these

equations into the original integral equation (3.43) the DBIE can be written in terms

of boundary parameters as

ui(x
′) + αij(x

′)uj(x
′) + −

∫

Γ

Tij(x
′,x)uj(x) dΓ =

∫

Γ

Uij(x
′,x)tj(x) dΓ

+

∫

Ω

Uij(x
′,X)bj(X) dΩ(3.50)
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The first two terms of these equations can be combined as

ui(x
′) + αij(x

′)uj(x
′) = ui(x

′) − δij
2
uj(x

′)

= δijuj(x
′) − δij

2
uj(x

′)

= Cij(x
′)uj(x

′) (3.51)

where Cij = 0.5δij (for smooth boundaries) is a jump term. This coefficient varies for

different geometries at the source point - Fig. 3.7 illustrates three common bound-

ary geometries with the associated jump terms. And finally, by substituting the

(a) Cij = 0.5δij (b) Cij = 0.25δij (c) Cij = 0.75δij

Figure 3.7: Jump terms for various boundary geometries

simplification given by (3.51) and assuming zero body forces, the expression for the

DBIE which is expressed entirely of boundary parameters, can be written as

Cij(x
′)uj(x

′) + −
∫

Γ

Tij(x
′,x)uj(x) dΓ =

∫

Γ

Uij(x
′,x)tj(x) dΓ (3.52)

This equation is important since it provides a relation between displacements and

tractions around the boundary for an arbitrary body. Therefore, with appropriate

boundary conditions imposed and sufficiently accurate evaluation of the boundary

integrals2, it is possible to determine unknown boundary displacements and trac-

tions. Of course, for the numerical implementation of the method the DBIE cannot

be used in this form but instead, the boundary must be split into segments (ele-

ments) and certain assumptions are made for the variation of displacements and

tractions. This process of discretisation to allow numerical implementation of the

BEM is given in detail in Sec. 3.1.6.

The preceding discussion has been focused on the process of moving all parame-

2Note that there are no domain integrals
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ters to the boundary, but no mention has been made to the calculation of parameters

which are interior to the boundary (X′ ∈ Ω\Γ). In fact, to find interior displace-

ments no new expression is necessary since Eq. (3.43) is in the required form. First,

a BEM analysis can be performed to find all boundary displacements and tractions

and then, by positioning the source point X′ at the point of interest and evaluat-

ing the non-singular boundary integrals, the displacements ui(X
′) can be found. In

the case of strains and stresses, however, further manipulation of this equation is

required.

3.1.5 Stresses at interior points

If we recall Hooke’s law (Eq. 3.27) which relates stress components to displacement

derivatives, then it becomes clear that the task of finding the BIE for interior stresses

involves substituting the displacement components in this expression with those

given by the DBIE of (3.43). The first step required then is to differentiate Eq. (3.43)

with respect to the source point X′ to obtain displacement derivatives. This can be

written in indicial notation as

∂ui(X
′)

∂X′
k

=

∫

Γ

Uij,k(X
′,x)tj(x) dΓ−

∫

Γ

Tij,k(X
′,x)uj(x) dΓ+

∫

Ω

Uij,k(X
′,X)bj(X) dΩ

(3.53)

where, for the 2D case, the terms Uij,k and Tij,k are given by

Uij,k(X
′,x) = − 1 − ν

4π(1 − ν)E

1

r
[(3 − 4ν)δijr,k − δjkr,i − δikr,j + 2r,ir,jr,k] (3.54a)

Tij,k(X
′,x) = − 1

4π(1 − ν)

1

r2

{

2
∂r

∂n
[δikr,j + δjkr,i − r,k((1 − 2ν)δij + 4r,ir,j)]

+ nk[(1 − 2ν)δij + 2r,ir,j] − nj(1 − 2ν)[δik − 2r,ir,k]

+ ni(1 − 2ν)[δjk − 2r,jr,k]

}

(3.54b)

These equations are valid for both plane strain and plane stress since it is only a

matter of substituting in the effective material properties shown in Table 3.1 to

obtain the required relation. To aid in the derivation, Eq. (3.27) which expresses

stress components in terms of displacement derivatives is restated making use of the

Lamé constant λ given by (3.8)

σij = λδijum,m + µ(ui,j + uj,i) (3.55)
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By substituting the displacement derivatives given by (3.53) into this equation, the

stress components at the point X′ can be written in terms of boundary integrals as

σij(X
′) =

∫

Γ

[λδijUmk,m + µ(Uik,j + Ujk,i)] tk(x) dΓ(x) (3.56)

−
∫

Γ

[λδijTmk,m + µ(Tik,j + Tjk,i)]uk(x) dΓ(x) (3.57)

+

∫

Ω

[λδijUmk,m + µ(Uik,j + Ujk,i)] bk(x) dΓ(x) (3.58)

and, if the terms within brackets are combined into a single term, this can be

simplified to

σij(X
′) =

∫

Γ

Dkij(X
′,x)tk(x) dΓ(x) −

∫

Γ

Skij(X
′,x)uk(x) dΓ(x)

+

∫

Ω

Dkij(X
′,x)bk(x) dΓ(x) (3.59)

with the expressions for Dkij and Skij given in Appendix A.1.1. Therefore, once

displacements and tractions are known for all boundary points, Eq. (3.59) can be

used to determine the stress at any point within the domain. However, by inspecting

the expressions for Dkij and Skij (Eqns (A.1.1) and (A.1.2)), it can be seen that as

the source point approaches the boundary (X′ → Γ) the first two integral terms

encounter singularities of O(1/r) and O(1/r2) respectively. There are integration

techniques which are capable of evaluating these integrals - and in fact, as will be

shown shortly, the Dual Boundary Element Method requires the use of these methods

- but often the simplest way to evaluate boundary stresses is through consideration

of boundary tractions. This process is illustrated in Appendix A.2, but the reader

is strongly encouraged to first understand the process of discretising the DBIE to

allow for computer implementation.

3.1.6 Discretisation

The DBIE given by Eq. (3.52) is, in its present form, unsuitable for computer im-

plementation since it can only be solved for very simple geometries. A much more

general procedure that is conducive for computation involves the process of discreti-

sation where the boundary of the problem is split into “elements” over which both

the geometry and parameters uj,tj can be described in terms of certain predeter-
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mined functions - these are commonly referred to as “shape functions”. To illustrate

the process Fig. 3.8a shows an arbitrary domain with a boundary Γ = Γu ∪ Γt over

which the boundary conditions u = ū and t = t̄ are prescribed over Γu and Γt respec-

tively. Fig. 3.8b shows the same problem after discretisation where the boundary

is now split into much smaller sub-boundaries (elements) denoted by Γn. Fig. 3.9

illustrates one such element with three nodal points 1,2 and 3 and a local-coordinate

system ξ. If the element is defined in this way, then the coordinates of a general

(a) Problem definition with boundary conditions
imposed

(b) Discretised boundary

Figure 3.8: Boundary discretisation

Figure 3.9: Local coordinate system over a continuous boundary element
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point on this element can be written as

xi(ξ) =

3
∑

a=1

Na(ξ)x
a
i (3.60)

where Na(ξ) is the shape function associated with node a and xa
i is the global

coordinate in direction i. The shape functions allow interpolation between nodal

values and therefore demonstrate the kronecker delta property. That is, if ξb denotes

the local coordinate of nodal point b, then

Na(ξb) = δab (3.61)

Here, three nodal points have been used over the boundary element and, as can be

shown relatively easily, the shape functions must vary quadratically. For the case

where the nodal points are positioned at the local coordinates ξ = −1, 0, 1 and using

the kronecker-delta property of (3.61), the shape functions take the form

N1(ξ) = − ξ

2
(1 − ξ) (3.62a)

N2(ξ) =(1 + ξ)(1 − ξ) (3.62b)

N3(ξ) =
ξ

2
(1 + ξ) (3.62c)

These are also shown graphically in Fig. 3.10 which demonstrates more clearly the

kronecker-delta property at each of the nodal positions. It should be noted that

this nodal arrangement and the associated shape functions of (3.62) is not the

only element configuration choice; it is entirely possible to choose different nodal

coordinates with simple calculations to achieve the required shape functions. As

will be shown in Sec. 4.4.3, the integration of the kernels in the Dual Boundary

Element Method is greatly simplified by the use of discontinuous elements where

nodes are positioned at points inside the element. A common configuration for this

type of element is to position nodes at local coordinates ξ = −2/3, 0, 2/3 since this

allows an even distribution of nodes along the boundary. Bearing in mind that shape

functions must be equal to unity at the appropriate node and zero elsewhere, the

following shape functions can be written for a discontinuous element with this nodal
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Figure 3.10: Continuous element with quadratic shape functions

configuration:

N1(ξ) =
9

8
ξ

(

ξ − 2

3

)

(3.63a)

N2(ξ) =

(

1 − 3

2
ξ

)(

1 +
3

2
ξ

)

(3.63b)

N3(ξ) =
9

8
ξ

(

ξ +
2

3

)

(3.63c)

where, as before, these functions can be plotted and are shown in Fig. 3.11.

Attention is now drawn to the interpolation of displacements and tractions over

the element boundary where, most often, exactly the same form of interpolation is

used as for the geometry, commonly referred to as isoparametric interpolation. Most

BEM implementations use quadratic isoparametric elements since they are generally

accepted as giving the best compromise between accuracy and efficiency [45]. Using

this strategy, the displacements and tractions can be interpolated over a boundary

element as

ui(ξ) =
3
∑

a=1

Na(ξ)u
a
i (3.64a)

ti(ξ) =

3
∑

a=1

Na(ξ)t
a
i (3.64b)
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Figure 3.11: Discontinuous element with quadratic shape functions

where ua
i and tai are the nodal displacements and nodal tractions respectively. Using

these interpolations and summing the contribution of each element integration over

the entire boundary, the discretised DBIE can now be written as

Cij(x
′)uj(x

′)+
Ne
∑

n=1

∫

Γn

Tij(x
′,x)

3
∑

a=1

Na(ξ)u
na
j dΓn =

Ne
∑

n=1

∫

Γn

Uij(x
′,x)

3
∑

a=1

Na(ξ)t
na
j dΓn

(3.65)

where n is the element number, Ne is the number of elements and una
j ,tna

j are the

displacements and tractions on element n at local node a. The integral terms are

taken over the element boundaries Γn, but for numerical implementation is it more

convenient to express these integrals in terms of the local coordinate ξ. The Jacobian

of transformation - which relates one coordinate system to another - is therefore used.

It is stated as

J(ξ) =
dΓ

dξ
=

√

(

dx

dξ

)2

+

(

dy

dξ

)2

(3.66)

Substituting this into the integral expressions in (3.65) and noting that the terms

una
j and tna

j are constants which can be taken outside the integral, the discretised
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DBIE is now expressed as

Cij(x
′)uj(x

′) +

Ne
∑

n=1

3
∑

a=1

[
∫ +1

−1

Tij(x
′,x(ξ))Na(ξ)J

n(ξ) dξ

]

una
j

=

Ne
∑

n=1

3
∑

a=1

[
∫ +1

−1

Uij(x
′,x(ξ))Na(ξ)J

n(ξ) dξ

]

tna
j (3.67)

where Jn(ξ) corresponds to the Jacobian taken over element n. Eq. (3.67) can be

written more compactly as

Cij(x
′)uj(x

′) +
Ne
∑

n=1

3
∑

a=1

P na
ij u

na
j =

Ne
∑

n=1

3
∑

a=1

Qna
ij t

na
j (3.68)

where

P na
ij =

∫ +1

−1

Tij(x
′,x(ξ))Na(ξ)J

n(ξ) dξ (3.69a)

Qna
ij =

∫ +1

−1

Uij(x
′,x(ξ))Na(ξ)J

n(ξ) dξ (3.69b)

By formulating the DBIE in this fashion, the task of implementing the BEM becomes

clearer, but there still remain a few unanswered questions. The integral expressions

of (3.69a) and (3.69b) must be evaluated numerically, but we know that in certain

cases these contain singular functions, so what integration routines must be used?

The discretised DBIE of (3.68) gives a relation between boundary displacements

and tractions, but how will this create a system of equations that will allow all

boundary unknowns to be found? Also, the method must be capable of enforcing

arbitrary boundary conditions, but how will these be applied? The answer to the

first of these questions is devoted an entire chapter since it plays a crucial role in the

BEM implementation but the latter two, which can be explained relatively easily,

are considered in the next section.

3.1.7 Equation assembly and enforcement of boundary

conditions

By inspecting the discretised form of the DBIE given by (3.65) it can be seen that

this relation gives two sets of equations (one for each direction of the source point)

which relate boundary displacements and tractions. Of course, this single set is
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insufficient to allow a solution to be found for all unknown boundary parameters

and therefore additional relations must be found. In most BEM implementations

this is achieved through nodal collocation. This process involves placing the source

point x′ at each nodal point in turn (see Fig. 3.12) while at each, the DBIE of

(3.65) is evaluated. Since the integral terms (3.69a) and (3.69b) contain functions

that depend on the distance r between the source and field points, each collocation

point provides a unique relation between boundary displacements and tractions.

Therefore, if there exist N nodal points, nodal collocation will obtain 2N boundary

integral equations. Bearing in mind that at each node there exist four degrees of

freedom (ux, uy, tx and ty) and that two of these must be prescribed (appropriate

boundary conditions), then the entire problem contains 2N unknowns. With 2N

unknowns and 2N equations, the system can then be solved.

Figure 3.12: Nodal collocation procedure

Our attention is now diverted slightly to give a matrix formulation of the BEM

since this often makes the process of computer implementation much simpler. In

addition, the process of applying boundary conditions is greatly simplified since it

is merely a task of swapping matrix columns and vector rows to achieve the desired

result. But before the matrix form can be written, a few manipulations of Eq. (3.68)

are required. We begin by letting xc denote the location of the collocation point

allowing the discretised DBIE to be written for all collocation points as

Cij(x
c)uj(x

c) +

Ne
∑

n=1

3
∑

a=1

P na
ij (xc)una

j =

Ne
∑

n=1

3
∑

a=1

Qna
ij (xc)tna

j c = 1, N (3.70)

where N is the number of nodes. Before this can be generalised any further, a note
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on displacements and tractions shared between elements must be made3. Consider

two elements numbered 1 and 2 over which displacement boundary conditions are

prescribed (Fig. 3.13a). It is a requirement that displacements must be continuous

over the boundary and therefore the displacement components u13
i must equal u21

i .

On the other hand, taking the case of tractions applied to each of the two elements,

it is entirely feasible for the tractions on one side of a shared node to differ from

those on the other side (t13i 6= t21i ). These conditions are important since they have

an effect on how the matrices are constructed. More specifically, taking the second

term of Eq. 3.70 and noting that shared nodes must have equal displacement values,

it can be rewritten as

Ne
∑

n=1

3
∑

a=1

P na
ij (xc)una

j =

N
∑

γ=1

H̄cγ
ij u

γ
j (3.71)

where shared nodes are now combined into one term and the summation can now

be taken over nodes denoted by γ, a global nodal number. Contrary to this, since

tractions can differ on shared nodes, the second summation term is still taken over

elements and local nodal numbers with no combining of shared nodes. It is therefore

given by
Ne
∑

n=1

3
∑

a=1

Qna
ij (xc)tna

j =

Ne
∑

n=1

3
∑

a=1

Gcna
ij tna

j (3.72)

The system of equations can now be expressed as

Cij(x
c)uj(x

c) +

N
∑

γ=1

H̄cγ
ij u

γ
j =

Ne
∑

n=1

3
∑

a=1

Gcna
ij tna

j c = 1, N (3.73)

In Sec. 3.1.4 it was shown that the jump term Cij arises when the source point and

field point coincide (x′ = x), therefore the first two terms of(3.73) can be combined

as
N
∑

γ=1

Hcγ
ij = Cijδcγ +

N
∑

γ=1

H̄cγ
ij (3.74)

to give
N
∑

γ=1

Hcγ
ij u

γ
j =

Ne
∑

n=1

3
∑

a=1

Gcna
ij tna

j c = 1, N (3.75)

3This only applies to continuous elements since nodes are not shared between discontinuous
elements (Fig. 3.11)
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We are now in a position to express the equation in matrix notation as

[H]{u} = [G]{t} (3.76)

which is fundamental to the BEM implementation. u and t are vectors contain-

(a) Displacement boundary conditions (b) Traction boundary conditions

Figure 3.13: Boundary conditions for shared nodes with continuous elements

ing nodal displacements and tractions respectively, H is a matrix with dimensions

2N×2N which, from relation (3.74), contains jump terms down its diagonal and the

rectangular matrix G is 2N ×M where M = Ne ×6 (assuming quadratic elements).

Some physical significance can also be given to each of the terms within these ma-

trices: each row of the matrices H and G corresponds to the source point lying at a

particular node and relates to a particular direction. Likewise, each column of the

matrices corresponds to a field point which “feels” the effect of the source point in a

particular direction. In this way the matrices form a table of coefficients that relate

the effects of each of the source points to each of the field points.

Clearly, Eq. (3.76) is quite restrictive in its current form since displacements

and tractions are grouped together into the vectors u and t on the left hand side

and right hand side respectively. In reality, the boundary conditions will usually be

prescribed in such a way that there will be both displacement and traction unknowns

around the boundary which must be grouped together on the left hand side and all

prescribed boundary values must be taken to the right hand side. Once the equations

are in this form, the problem can be solved easily using a conventional numerical

solver. The actual process to achieve this required matrix form is very simple - it

is a simple case of swapping the columns of both the H and G matrices to take all

boundary unknowns to the left hand side and prescribed values to the right hand
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side. The system of equations can then be written as

[A]{x} = [B]{y} (3.77)

where x is a vector containing all unknown boundary parameters, y is a vector con-

taining prescribed boundary parameters and the matrices A and B are combinations

of H and G created by swapping appropriate columns.

3.2 BEM applied to fracture

The power of numerical methods is the ability to analyse problems with arbitrary

geometries and loadings where no analytical solutions exist. In the case of the

BEM, the use of fundamental solutions (Green’s functions) allow extremely accurate

displacements and stresses to be obtained throughout the domain where errors are

only introduced by discretisation of boundary conditions. For this reason, and the

need to only discretise the boundary of the problem (rather than the entire domain),

the BEM is one of the most efficient numerical methods for linear elastic fracture

analysis. Several researchers have noted this, and as a result, there exist a variety

of BEM implementations which demonstrate high accuracies for a variety of crack

problems. This section aims to give an overview of some of the most important

methods with particular attention given to the Dual Boundary Element Method

(DBEM).

3.2.1 BIE degeneracy

Early work by Cruse [50] on applying the conventional BEM formulation to fracture

problems discovered that problems are encountered when two surfaces of a boundary

mesh coincide (as is the case in crack problems). In fact, the system of equations

becomes singular and no sensible solution can be found. This can be easily explained

by considering the case of a wedge which, in the limit as the distance between the

faces becomes zero, becomes an edge crack problem (Fig. 3.14). Each row of the

matrices H and G is formed by collocating at each nodal point in turn which presents

no serious issues for the wedge problem. However, in the case of the edge crack where

the nodal points lie at coincident positions, collocation at nodal points will produce

identical rows for the upper and lower crack surfaces. As a result, it is not possible
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to use a straightforward application of the BEM to general fracture problems4 (with

coincident surfaces), and alternative techniques must be used.

Figure 3.14: Edge crack as limiting case of wedge problem

3.2.2 Multi-region formulation

One of the simplest methods which can be used to overcome the indeterminate

system of equations created by coincident crack surfaces is to simply sub-divide the

domain along the line of the crack to create two sub-domains. If this procedure

is used, then it is necessary to enforce displacement continuity and equilibrium of

tractions across the boundary where the domain is split. This can be illustrated with

the aid of Fig. 3.15 which denotes the interior boundary along which the domain is

split as Γint and the newly created boundaries on the sub-domains as Γ1
int and Γ2

int.

If the displacements and tractions along each of these newly created boundaries are

denoted as (u1
i , t

1
i ) and (u2

i , t
2
i ) respectively, then displacement continuity is enforced

by

u1
i = u2

i (3.78)

and equilibrium of tractions is enforced through

t1i = −t2i (3.79)

Applying these relations to a partitioned form of Eq. (3.76) (which contains the ma-

trices corresponding to each sub-domain) it is possible to evaluate the displacements

and tractions for all boundaries.

A major shortcoming of the method is the need to create additional boundaries

(Γ1
int and Γ2

int) which incur additional computational costs due to discretisation and

extra DOF. In the case of multiple cracks, several sub-domains (with associated

boundaries) are required and it is clear that the method is computationally ineffi-

cient. The implementation of crack propagation routines presents issues too, since

4in some simple cases it may be possible to use symmetry. eg. Figs 5.3 and 5.4
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Figure 3.15: Multi-region strategy for crack problems

for each growth increment a new set of sub-domains must be determined and dis-

cretised in a rather cumbersome procedure.

3.2.3 Use of special fundamental solutions

The BEM formulation is reliant on the solutions to a point force within an infinite

domain (Eqns 3.39), but it was shown by Snyder and Cruse [51] that it is also possible

to formulate similar fundamental solutions for an infinite domain containing a flat,

traction-free crack. If these are used, then it is only necessary to discretise non-

cracked boundaries since the crack is included implicitly within the fundamental

solutions. It is also possible to formulate the boundary integral equations in such a

way that SIFs are output directly, but, since the fundamental solutions turn out to

be complicated algebraic expressions involving complex variables, the method is an

unattractive solution for general fracture problems. However, in the case of a 2D

fracture problem containing a flat, traction free crack, it is found that the method

can be used to find very accurate SIFs with Mews demonstrating the accuracy of

the technique for both mode I and II problems [52].

3.2.4 The Dual Boundary Element Method

In recent years the Dual Boundary Element Method (DBEM) [24] has become firmly

established as an efficient yet simple to implement method for applying the BEM

to fracture problems. It overcomes the problem of a singular system created by the

presence of coincident crack surfaces by using an additional, independent boundary

integral equation on one of the crack surfaces while the conventional DBIE is used

on the other. Therefore, even although collocation will occur twice at nodal points
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on the crack, the use of this additional equation will prevent identical rows being

produced in (3.76).

The idea of using an independent BIE to overcome the problem of coincident

crack surfaces actually predates the DBEM with the existence of several other BEM

methods which use the same technique. Martha et al. [53] applied the TBIE to

3D fracture problems and used a displacement smoothing technique to ensure suf-

ficient continuity for the hypersingular integration, but the implementation soon

became cumbersome. Another method by Watson [54] makes use of three addi-

tional hypersingular BIEs that require special “particular solutions” for singular

integral evaluation - where rigid body motion is one such solution (Sec. 4.4.2) - and

enforced the required continuity by using Hermitian elements. This too ends up

presenting complexities during implementation but shows accurate results for a va-

riety of crack geometries. More recently, Domı́nguez and Ariza [55] have developed

a method which uses a hypersingular BIE and overcomes the need to explicitly eval-

uate the singular integrals by performing a regularisation procedure on the kernels -

this leaves only regular and weakly-singular integrals. In addition, the required C1

continuity at collocation points is ensured by collocating at points internal to ele-

ments (rather than the conventional nodal positions). Since all singular integrals are

removed the method is attractive, but the absence of an additional BIE on the crack

surfaces means that the difference between upper and lower crack displacements is

output rather than individual crack displacements. Since some post-processing rou-

tines such as the J-integral require these individual components, implementation of

these procedures would present unnecessary difficulties.

Returning back to the DBEM, the first step required in the formulation is to

derive the Traction Boundary Integral Equation (TBIE) which provides a relation

between boundary displacements and tractions that is independent of the DBIE.

Eq. (3.59), which allows stress components to be found at any point within the

domain, is first recalled. This is only valid for points which do not lie on the

boundary (X′ /∈ Γ) and therefore, for the equation to relate to entirely boundary

parameters, a limiting process similar to that carried out in Sec. 3.1.4 for the DBIE,

is applied. What is found is that in the limit as the source point approaches the

field point, the following BIE is obtained

1

2
σij(x

′) + =

∫

Γ

Skij(x
′,x)uk(x) dΓ(x) = −

∫

Γ

Dkij(x
′,x)tk(x) dΓ(x) (3.80)

where the first term is a jump term created by the limiting process (assuming the
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source point lies on a smooth surface) and the integral sign =
∫

denotes a Hadamard

finite part integral. This is similar to the Cauchy Principal Value integral but in-

stead is applicable to integrals containing more strongly singular integrands, termed

hypersingular. For instance, the integral of the function f(x)/(x − xp)
2 over an

interval [a, b] where xp ∈ [a, b] is hypersingular and can be evaluated in a Hadamard

finite part sense as

=

∫ b

a

f(x)

(x− xp)2
= lim

ε→0

{

∫ xp−ε

a

f(x)

(x− xp)2
dx+

∫ b

xp+ε

f(x)

(x− xp)2
dx− 2f(xp)

ε

}

(3.81)

Since the third term of Eq. (3.80) is a strongly singular integral, it is evaluated in the

CPV sense as described in Sec. 3.1.4. The details of the limiting procedure which

allows (3.80) to be written have been omitted, but an important point which was

assumed in the process must be mentioned before we proceed. Referring back to

the CPV liming process for the integral
∫

Γ
Tij(x

′,x)uj(x) dΓ, it was assumed that

the displacements uj(x) were continuous at the source point x′. Similarly, for the

evaluation of the hypersingular integral =
∫

Γ
Skij(x

′,x)uk(x) dΓ(x), it is a requirement

that the displacement derivatives must be continuous at the point x′. The use of

quadratic continuous elements makes the satisfaction of this requirement difficult,

so instead, discontinuous quadratic elements are usually applied on surfaces where

the TBIE is collocated. In addition, if flat elements are used on the crack surfaces,

then both the strongly singular and hypersingular integrals can be calculated using

simple analytical expressions (see Sec. 4.4.3).

Eq. (3.80) does not constitute a BIE that can be used to relate displacements

and tractions around the boundary since the first term (which is a stress component)

is not in the required form. Using the relation which converts stresses to tractions

(Eq. 3.14), it is clear that if we multiply (3.80) by the normal component ni(x
′),

then we can convert this stress component into a traction

1

2
tj(x

′) + ni(x
′)=

∫

Γ

Skij(x
′,x)uk(x) dΓ(x) = ni(x

′)−
∫

Γ

Dkij(x
′,x)tk(x) dΓ(x) (3.82)

This equation can be discretised in the same manner as the DBIE (see Sec. 3.1.6)

to give

1

2
tj(x

′) + ni(x
′)

Ne
∑

n=1

3
∑

a=1

Ena
kiju

na
k = ni(x

′)

Ne
∑

n=1

3
∑

a=1

F na
kijt

na
k (3.83)

where quadratic elements have been assumed and the terms Ena
kij and F na

kij are given
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by

Ena
kij =

∫ 1

−1

Skij(x
′,x(ξ))Na(ξ)J

n(ξ)dξ (3.84a)

F na
kij =

∫ 1

−1

Dkij(x
′,x(ξ))Na(ξ)J

n(ξ)dξ (3.84b)

We are now in a position where the TBIE can be used for collocation to overcome

the problem of coincident crack surfaces and any arbitrary crack problem can be

analysed using the DBEM. Referring to Figs 3.16 and 3.17, the following crack

modelling strategy is used in the implementation of the DBEM:

Figure 3.16: Edge-crack problem with boundary mesh for DBEM analysis

Figure 3.17: DBEM collocation strategy for elements on crack surfaces

• The DBIE is used for collocation on all non-crack surfaces (i.e. when xc ∈ ΓR)

• Discontinuous boundary elements are used along all crack surfaces

• The TBIE is used for collocation on one of the crack surfaces (xc ∈ Γc−) while

the DBIE is used for collocation on the other (xc ∈ Γc+)



Chapter 4

Evaluation of Boundary Integrals

The implementation of the Boundary Element Method (BEM) and Dual Boundary

Element Method (DBEM) is reliant on the accurate evaluation of boundary integrals

given by Eqns (3.69a) and (3.69b) in the case of the Displacement Boundary Integral

Equation (DBIE) and Eqns (3.84a) and (3.84b) in the case of the Traction Boundary

Integral Equation (TBIE). These integrals are dependent on the distance r between

the source point (x′) and field point (x) which varies in value as the integrals are

taken around the boundary. For the case when x′ 6= x, the distance r is greater

than zero and it is found that in most cases the kernels are regular, presenting few

problems for integration. In the case x′ = x, r is equal to zero and the kernels exhibit

singularities whose order is dependent on the type of kernel - see Table 4.1 for a

summary and Appendix C.1 for formal definitions of singular integrals. To evaluate

these singular integrals, several techniques exist which are often developed for the

evaluation of a particular order of singularity, and it is the goal of this chapter to

present some of the most common methods. Each type of integral that is encountered

in a BEM/DBEM implementation is considered - regular, nearly singular, weakly

singular, strongly singular and hypersingular integrals - and the scenarios in which

each occurs are described. Particular attention is given to the evaluation of the

strongly singular and hypersingular integrals since these often present the greatest

challenges for any BEM/DBEM implementation.

4.1 Non-singular integration

The first and simplest type of integral to consider is that of regular (non-singular

integrals) which occur when the distance r between the source and field points is

large. By itself, this statement is imprecise since it is not clear how “large” the

77



4.1. Non-singular integration 78

Table 4.1: Degrees of singularity for 2D linear elastic kernels

Kernel Methoda Order Singularity type

Uij B/D O ln(1/r) weakly singular

Tij B/D O(1/r) strongly singular

Dkij D O(1/r) strongly singular

Skij D O(1/r2) hypersingular

aB=BEM,D=DBEM

distance must be before the integrals become regular. One concept which can help

to resolve this is to define the term field element which refers to the element on

which the field point x is positioned and over which the boundary integrals are

evaluated (see Fig. 4.1). Therefore, by using this definition, the integrals (3.69a),

(3.69b), (3.84a) and (3.84b) can be defined as regular if the source point x′ lies at

points which are not on or near the field element. In this case the integrals can

be evaluated easily by using a numerical quadrature routine, the most common of

which is Gauss-Legendre (GL) quadrature. This allows the integral of a function

f(ξ) which is defined over an interval −1 ≤ ξ ≤ +1 to be evaluated numerically as

∫ +1

−1

f(ξ) dξ ∼=
Ng
∑

g=1

f(ξg)wg (4.1)

where ξg and wg are Gauss points and weights that can be found in many textbooks

(eg. [56] and [47]) and Ng is the desired number of Gauss points. As an example,

Fig. 4.2 illustrates a scenario when the Tij kernel is regular and can be evaluated

using Gauss-Legendre quadrature. It shows the positions for an eight point quadra-

ture rule and the corresponding values of the function evaluated at those points.

The accuracy of this technique can be improved by increasing the number of Gauss

points, but this is at the cost of computational resources. As a compromise, many

BEM codes implement adaptive integration routines such as that developed by Gao

and Davies [57] which determine the number of Gauss points from the ratio r/l

(where l is the field element length)1.

1Most commonly values in the range Ng = 2 to Ng = 8 are used.
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Figure 4.1: Definition of field element

Figure 4.2: Non-singular integral of Tij kernel



4.2. Nearly singular integrals 80

4.2 Nearly singular integrals

The previous section described the use of GL quadrature to evaluate integrals that

are regular - defined as those integrals where the source point does not lie on or

near the field element. As the source point starts to approach the field element,

the singularity seen in each of the kernels starts to have an appreciable effect on the

accuracy of integration (known as nearly singular integrals) and it becomes necessary

to use higher orders of integration. In the case of the kernels Uij , Tij and Dkij which

exhibit, at most, a singularity of O(1/r) (in 2D), it is found that high-order GL (ie.

≥ 8 gauss points) is sufficient for their evaluation. In the case of the more strongly

singular Skij kernel, however, this is not the case and an alternative integration

technique must be employed.

4.2.1 Sub-elements

One of the simplest methods to evaluate nearly singular integrals is to divide the el-

ement into “sub-elements” and, by dividing the element appropriately, Gauss points

can be concentrated in the location where the near-singularity is seen. Fig. 4.3 il-

lustrates an element where a near singularity is experienced at ξ = −1 and, by the

use of sub-elements, Gauss points are concentrated around this singular region. One

drawback of using this technique is a requirement to perform additional transfor-

mations to local sub-element coordinate systems (shown as ηa and ηb in Fig. 4.3)

and compute the associated Jacobians for each. Despite this, the method is simple

to implement and uses numerical techniques that are readily understood. It is also

found that the Telles transformation, which is primarily used for evaluating weakly

singular integrals (Sec. 4.3.2 gives an outline of the method), is capable of evaluating

nearly singular integrals and provides a very elegant solution to the problem.

Figure 4.3: Sub-elements for nearly singular integrals
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4.3 Weakly singular integrals

The previous discussion dealt with the case when the source point lies outside the

field element and the integrals are, at most, nearly singular. But when the source

point lies within the field element, the singularities play a large role on the type

of numerical integration method required. In the case of the Uij kernel the inte-

gral is weakly singular (in 2D elasticity) and the application of conventional GL

quadrature, even with a large number of Gauss points, is insufficiently accurate.

Two commonly used methods which overcome this problem are the application of a

specific logarithmic Gaussian quadrature routine and the use of a coordinate trans-

formation that is formulated in such a way that the singularity is cancelled. An

overview of each is given here.

4.3.1 Logarithmic Gaussian quadrature

If a boundary integral contains a logarithmic singularity then often the first choice

is to evaluate the integral using logarithmic Gaussian quadrature. This allows the

logarithmically singular integrand to be evaluated in much the same manner as

conventional GL quadrature but using different Gauss points and weights that are

determined in such a way that the logarithmic singularity is accounted for. If the

integrand can be expressed in the form f(ξ) ln(1/ξ), then the integral can be deter-

mined from
∫ 1

0

f(ξ) ln

(

1

ξ

)

dξ ∼=
Ngl
∑

gl=1

f(ξgl)wgl (4.2)

where ξgl and wgl are logarithmic Gauss points and weights respectively (these are

tabulated in [47] and [56] for various values of Ngl) and, importantly, the integral

is taken over the limits ξ = 0 to ξ = 1. Since the integral we wish to evaluate

is expressed with the limits ξ = −1 to ξ = +1 (Eq. (3.69b)), it is necessary to

perform a linear transformation that is dependent on the position of the source

point within the element. Referring to the continuous boundary element shown in

Fig. 3.9 and taking the source point to lie at each local node in turn, the required

linear transformations for each node are given in Table 4.2. where node 2 requires

the use of sub-elements to apply the two separate transformations. In the case of a

discontinuous quadratic element, sub-elements are required for all three nodes.
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Table 4.2: Linear transformations for logarithmic Gaussian quadrature

Local node Transformation

1 η = 0.5(1 + ξ)

2 η =

{

−ξ −1 < ξ < 0

+ξ 0 < ξ < 1

3 η = 0.5(1 − ξ)

4.3.2 Telles transformation

An elegant and simple to implement technique which avoids the use of special log-

arithmic Gaussian quadrature is the variable transformation technique attributable

to Telles [58]. The transformation is formulated in such a way that the Jacobian

cancels the singularity and the integral can be evaluated with great accuracy using

Gauss-Legendre quadrature. If a function f(ξ) is weakly singular at a point ξ′ where

|ξ′| = 1, and we wish to find the integral

∫ +1

−1

f(ξ) dξ (4.3)

then by using the transformation given by Telles, this integral can be expressed as

∫ +1

−1

f

[

(1 − γ2)
ξ′

2
+ γ

]

(1 − γξ′) dγ (4.4)

where γ is the new transformed coordinate. Importantly, the term given by (1−γξ′)
(which is the Jacobian required to transform into the new coordinate system γ) is

equal to zero at the point of singularity. Therefore, the transformation cancels the

singularity and produces a non-singular function. For example, the function ln(1−ξ)
is singular at the point ξ = 1 and if GL quadrature is used to evaluate the integral

over the range [−1, 1], then inaccuracies arise due to the singularity (see Fig. 4.4a).

If the Telles transformation is used for this function (where ξ′ = 1), the singularity

is removed and there are no difficulties in applying GL quadrature (see Fig. 4.4b).

In addition, since the method concentrates Gauss points around the singular point,

the integral can be evaluated to a high level of accuracy with a relatively low-order

quadrature scheme.
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(a) Weakly singular function ln(1 − ξ)

(b) Telles transformation for ln(1 − ξ)

Figure 4.4: Telles transformation for weakly singular functions
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The astute reader will notice that the condition |ξ′| = 1 which allows the use

of Eq. (4.4) is restrictive and does not allow the evaluation of integrals where the

singularity is found at points within the element2. To resolve this, an additional

transformation as outlined in Appendix C.2 allows the location of the singular point

to lie at any point within the element (−1 ≤ ξ′ ≤ +1). This represents a completely

general technique for the evaluation of weakly singular integrals and, in the author’s

opinion, represents one of most efficient and simple to implement techniques to

evaluate integrals of this type.

4.4 Strongly singular and hypersingular integrals

The last types of integral which need to be considered are those which often create

the most problems for implementation of the BEM. They are classed as strongly

singular and hypersingular which, in 2D problems, correspond to those integrals

which show singularities of O(1/r) and O(1/r2) (the last three terms in Table 4.1).

Because of these high orders of singularity, GL quadrature cannot be used and other

techniques must be employed. As will be shown shortly, there are a variety of meth-

ods available which range from the use of analytical expressions to manipulations

that avoid the need to calculate the integral altogether, but focus will be given to

numerical integration methods which are used in later work on enrichment.

4.4.1 Interaction between shape functions and kernels

Before the various techniques which allow the evaluation of the strongly singular

and hypersingular integrals are reviewed, it is beneficial to investigate the form of

the functions being evaluated and in particular, the interaction between the shape

functions and singular kernels. This is because in some cases the functions behave

in such a way that the singularity is cancelled and there is no need to use special

integration methods.

If we consider the case of strongly singular integrals first, we find that the sit-

uations in which integrals of this type arise are when the source point x′ lies on

the field element (Fig. 4.1) and the integrals contain the kernels Tij and Dkij . But

what is found is that, if quadratic shape functions are used for the interpolation of

displacements and tractions, and the shape function within the integral corresponds

2For example, the middle node of a continuous quadratic element and all three nodes of a
discontinuous quadratic element
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to a different local node to that of the source point3, then the integral becomes

regular. This can be illustrated clearly by an example where the integral containing

the Tij kernel (Eq. (3.69a)) is evaluated over a continuous quadratic element which

contains the source point at its middle node. If the shape function in the integrand

corresponds to a different local node to that of the source point (a = 1 is chosen

here), then the function we wish to integrate is

∫ +1

−1

Tij(x
′,x(ξ))N1(ξ)J(ξ) dξ (4.5)

This integrand can be split into two functions - that of the shape function N1(ξ) and

the remaining term Tij(x
′,x(ξ))J(ξ) - and then plotted over the integration interval

[−1, 1] (Fig. 4.5a). This illustrates the strong singularity of the Tij kernel around

the source point but also demonstrates that the shape function passes through zero

at the point of singularity. It can be shown that the rate at which the shape function

approaches zero is of O(r), and therefore, since the kernel is of O(1/r), the product of

these functions contains no singularity (see Fig. 4.5b). Therefore in this case, when it

would seem initially that a strong singularity would present difficulties for numerical

integration, the integral can actually be evaluated easily using GL quadrature; it is

only the case when the local node of the source point and the shape function node

coincide that special singular integration techniques are required.

From the reasoning described previously for strongly singular integrals of O(1/r),

it becomes clear that in the case of hypersingular integrals of O(1/r2) the interaction

between the shape functions and the kernel will not completely cancel the singular-

ity - it will merely reduce the order of the singularity. This can be illustrated in the

same manner as before where the hypersingular Skij kernel can be plotted alongside

the shape function for a node different to that of the source point (Fig. 4.6). But

when the product of the two functions is plotted, a singularity of O(1/r) still re-

mains. Therefore, unlike before, singular integrals are seen for all three nodes on the

element (which in one case is hypersingular) requiring the use of singular integration

techniques in each case.

3both are assumed to lie on the field element
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(a) Shape function and strongly singular kernel over a con-
tinuous quadratic element

(b) Non-singular function for Tij integrand when local
shape function node and source point node are not
equal

Figure 4.5: Interaction between strongly singular kernels and quadratic shape func-
tions

Figure 4.6: Remaining strong singularity for Skij kernel when source point and shape
function nodes do not coincide
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4.4.2 Rigid body motion

Probably the most common method used to evaluate the strongly singular integrals

in a conventional BEM implementation is to use rigid body motion which, through

an ingenious procedure, precludes the need to explicitly evaluate the singular terms.

As explained in the previous section, if the kernel is strongly singular then only

the integral terms which relate to the condition when the source point and field

points coincide present problems for GL quadrature. Therefore, in a conventional

BEM implementation the only integral terms which cannot be evaluated using one

of the quadrature schemes described previously is the strongly singular Tij kernel

when x′ = x. Rigid body motion computes these unknown terms by enforcing zero

tractions around the boundary and then applying two rigid-body unit translations

- one in each of the global coordinate system directions (Fig. 4.7). If Eqn. (3.76) is

recalled, then application of rigid-body motion with zero tractions gives the following

system of equations

[H]{ūRB} = 0 (4.6)

where ūRB is a vector containing unit displacements in either the x or y global

directions. For example, applying unit displacements in the x-direction yields the

following vector

ūRB =



































1

0

1

0
...



































(4.7)

If all the non-singular terms are evaluated and the rigid-body displacement vec-

tor ūRB is applied, then the system of equations can be symbolically represented by

Fig. 4.8 where a distinction is made between the unknown and known terms. Taking

each row of the H matrix in turn, multiplication with the displacement vector pro-

duces an equation where one of the unknown singular terms is expressed in terms

of entirely known values. To calculate the second unknown singular term of this

row, it is simply a case of applying the displacement vector corresponding to the

other global direction (in this case the y direction). Using the notation described in

Sec. 3.1.7, this process can be written mathematically as

Hcc
ij = −

N
∑

γ=1
γ 6=c

Hcγ
ij (4.8)



4.4. Strongly singular and hypersingular integrals 88

(a) x-direction (b) y-direction

Figure 4.7: Application of rigid-body motion for singular integration

Figure 4.8: System of equations with rigid-body motion applied

Due to its simplicity and the avoidance of having to calculate strongly singular

integrals altogether, this procedure if favoured for most BEM implementations, but

in the case of the DBEM where coincident nodes are seen along crack faces, the

technique can no longer be used. There are two reasons for this:

1. Using the DBIE to collocate on a crack face will produce strongly singular

integrals for both the upper and lower crack faces. If all non-singular terms

are evaluated, then four unknown singular terms will remain for each row of

the H matrix with only two unique equations given by rigid-body motion.

2. As explained in Sec. 4.4.1, integration of the Skij kernel when the source point

lies within the field element will yield not only hypersingular integrals for when

the source point and field point coincide, but also strongly singular integrals

for when the field point lies at the two other nodes of the element. Since these

integrals cannot be evaluated by conventional means, collocation of the TBIE
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will produce twelve unknown singular terms (six for the lower surface and six

for the upper) with only two equations provided by rigid-body motion.

Therefore, for the implementation of the DBEM it is necessary to explicitly evaluate

the strongly singular and hypersingular integrals.

4.4.3 Analytical integration

In some cases, the need for numerical integration schemes to evaluate strongly sin-

gular and hypersingular integrals can be avoided altogether by the use of analytical

solutions for both 2D [24] and 3D problems [43]. This is particularly convenient

for the implementation of the DBEM since, as explained previously, the use of the

rigid-body motion technique can no longer be used. What is shown here is that by

assuming flat discontinuous elements along the crack, both the strongly singular and

hypersingular integrals are reduced to very simple expressions. Expressions for both

type of singularity are outlined here, but more focus is given to the evaluation of

the hypersingular terms because, once the derivation is understood for integrals of

this type, the task of applying the same procedure to the strongly singular integrals

is simple.

Before the analytical integral expressions are given, the conditions which must be

enforced to allow the evaluation of hypersingular integrals are recalled (Sec. 3.2.4).

The limiting process for integrals of this type requires that the integrand must

have a continuous derivative at the limiting point and therefore, in the case of the

TBIE (which exhibits hypersingular integrals), the displacement derivatives must

be continuous at all collocation points. This is a higher degree of continuity than

that required in the DBIE which only requires displacement continuity, presenting no

issues for continuous elements. The same is not true for hypersingular integrals since

continuity of displacement derivatives is required and this cannot be guaranteed

with continuous elements. This can be explained by considering the case of a node

positioned at a corner where the displacement gradient is allowed to jump from one

value to another across the shared node. Therefore, it would seem that applying

the TBIE introduces additional complexities due continuity requirements, but by

simply using elements where nodes are positioned at interior points of elements

(discontinuous elements), the problem is overcome. A technique to allow the use

of continuous elements with the TBIE was proposed by Wilde et al. [59], but the

method is inordinately complex to implement. Instead, it is much more favourable

to use discontinuous elements (which exhibit continuous derivatives at nodal points)
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on boundaries where the TBIE is collocated.

To allow the strongly singular and hypersingular integrals to be evaluated ana-

lytically, it is necessary to make the assumption that flat elements are used. This

puts restrictions on the geometry of the problem being analysed, but in the case

of fracture problems - which in many cases can be modelled with straight cracks -

the assumption is often valid. If this assumption can be made, then in turns out

that the strongly singular and hypersingular integrals seen in the DBIE and TBIE

reduce to rather simple expressions. In fact, a further simplification to the analytical

expressions shown in [24] is given here.

The first integral to consider is that of the strongly singular Tij kernel in the

DBIE which occurs when the source point and field point coincide (x′ = x). This

can be written as

−
∫ +1

−1

Tij(ξ
′,x(ξ))Na(ξ)J

n(ξ) dξ ua
j = haua (4.9)

where ξ′ denotes the local coordinate of the source point and ua is a vector containing

displacements for node a. By noting that the Jacobian is given by l/2 and the

derivatives r,i are related to the normal components ni, the matrix ha can be written

as

ha =
1 − 2ν

4π(1 − ν)

[

0 −1

1 0

]

Ia (4.10)

where the terms Ia are analytical integral expressions4 given by

I1 = −
∫ +1

−1

N1

ξ − ξ′
dξ =

3

4

(

ξ′(3ξ′ − 2)

2
ln

∣

∣

∣

∣

1 − ξ′

1 + ξ′

∣

∣

∣

∣

+ 3ξ′ − 2

)

(4.11a)

I2 = −
∫ +1

−1

N2

ξ − ξ′
dξ =

1

2

(

(3ξ′ − 2)(3ξ′ + 2)

2
ln

∣

∣

∣

∣

1 + ξ′

1 − ξ′

∣

∣

∣

∣

− 9ξ′
)

(4.11b)

I3 = −
∫ +1

−1

N3

ξ − ξ′
dξ =

3

4

(

ξ′(3ξ′ + 2)

2
ln

∣

∣

∣

∣

1 − ξ′

1 + ξ′

∣

∣

∣

∣

+ 3ξ′ + 2

)

(4.11c)

and it is assumed that the shape functions given by Eqns (3.63) are used. The next

integral to consider is that of the hypersingular Skij integral which can be written,

4They are obtained by integration through substitution
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in the same manner as before, as

ni(ξ
′)=

∫ +1

−1

Skij(ξ
′,x(ξ))Na(ξ)J(ξ)dξ ua

k = h̄aua (4.12)

The matrix h̄a is given by

h̄a =
E

4π(1 − ν2)

2

l
Īan

′S (4.13)

where n′ is matrix containing the source point normal components

n′ =

[

n′
x 0 n′

y 0

0 n′
x 0 n′

y

]

(4.14)

and S contains field point normal components (the derivation of these components

is given in Appendix C.5)

S =













+nx(2n
2
y + 1) +ny(2n

2
y − 1)

+ny(−2n2
x + 1) +nx(−2n2

y + 1)

+ny(−2n2
x + 1) +nx(−2n2

y + 1)

+nx(2n
2
x − 1) +ny(2n

2
x + 1)













(4.15)

The integral terms Īa are determined, as before, from analytical integration and are

written as

Ī1 = =

∫ +1

−1

N1

(ξ − ξ)2
dξ =

3

4

(

(3ξ′ − 1) log

∣

∣

∣

∣

1 − ξ′

1 + ξ′

∣

∣

∣

∣

+
6ξ′2 − 2ξ′ − 3

ξ′2 − 1

)

(4.16a)

Ī2 = =

∫ +1

−1

N2

(ξ − ξ)2
dξ =

1

2

(

9ξ′ log

∣

∣

∣

∣

1 + ξ′

1 − ξ′

∣

∣

∣

∣

− 18ξ′2 − 13

ξ′2 − 1

)

(4.16b)

Ī3 = =

∫ +1

−1

N3

(ξ − ξ)2
dξ =

3

4

(

(3ξ′ + 1) log

∣

∣

∣

∣

1 − ξ′

1 + ξ′

∣

∣

∣

∣

+
6ξ′2 + 2ξ′ − 3

ξ′2 − 1

)

(4.16c)

Furthermore, by multiplying the matrices n′ and S and noting that the source point

normal n′ and field point normal n are equal for the case x′ and x lie on the same

element and opposite for the case in which x′ and x lie on opposite elements, the

following simplification can be made

n′S = (n′.n)

[

1 0

0 1

]

= (n′.n)I (4.17)
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where I is the identity matrix and . denotes the dot product. The matrix h̄a can

then be expressed simply as

h̄a =
E

4π(1 − ν2)

2

l
Īa(n

′.n)I (4.18)

It should be clear then that the introduction of the TBIE to overcome the prob-

lem of coincident crack surfaces presents little difficulties for implementation when

flat elements are used; all singular integrals along the crack surfaces can be evalu-

ated analytically using the simple expressions given by (4.10) and (4.18). The use

of curved or enriched elements precludes the use of these expressions however, and

in these cases other numerical integration techniques are required.

4.4.4 Numerical integration

The evaluation of strongly singular and hypersingular boundary integrals has been

studied extensively by BEM researchers and there exist a variety of numerical meth-

ods specifically developed for this purpose. Quadrature schemes such as that pre-

sented by Kutt [60], [61], Paget [62] and further developed by Ioakimidis [63] use a

set of specially constructed integration points and weights that implicitly account for

the singularity. Unfortunately, extremely high precision is required since in some

cases the magnitude of the weights is as high as 1010. Rudolphi [64] proposed a

scheme that uses a particular solution, very similar to that of rigid body motion,

capable of evaluating both strongly singular and hypersingular terms, but, as men-

tioned in [65], the method lacks general applicability. Gray [66] developed a scheme,

later implemented for 3D crack problems [53], that enforces continuity of displace-

ment derivatives by introducing a cubic approximation solved using a least-squares

scheme. Accurate results are seen, but even the author himself comments on the

implementation complexity of the method [67]! A solution to this was therefore

proposed [67] by using Hermitian elements which enforce continuity of displacement

derivatives at nodal points and the hypersingular integrals are determined directly

by considering the limit as the source point approaches the boundary. In the case

of flat elements the scheme is simple, but curved elements necessitate the use of

extensive symbolic computation [68].

The method which is considered here for the evaluation of all singular integrals

is a numerical technique commonly referred to as the subtraction of singularity

method [69], [70], [71]. This allows the evaluation of the singular integrals through a

regularisation process (Hilbert transformation) which removes the singular term(s)
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from the integrand leaving a regular function that can be evaluated easily using

conventional GL quadrature. The singular term is then included back in by an ad-

ditional integral which, since its form is already known, can be integrated using a

simple analytical expression. It is a powerful numerical integration method since it

can be used generally for both strongly singular and hypersingular kernels and, as

long as displacement derivatives are continuous at the point of singularity, the tech-

nique can be used for any displacement approximation. This is especially important

for the evaluation of singular integrals in the enriched BEM since the standard dis-

placement approximation is replaced by a form that can account for the crack tip

singularity.

First, let F (ξ′, ξ) define a hypersingular function, infinite at the point ξ′, which

we wish to integrate over a 2D boundary element. In the case of the DBEM, the

integral containing the Skij kernel contains a singularity of this type

=

∫ +1

−1

Skij(ξ
′,x(ξ))Na(ξ)J(ξ)dξ (4.19)

Using this integral as an example, we can therefore define the function F (ξ′, ξ) as

F (ξ′, ξ) = Skij(ξ
′,x(ξ))Na(ξ)J(ξ) (4.20)

The key to the method is to represent this function in a series form thus separating

it into singular and non-singular components. This is possible through the use of

Laurent’s theorem (see [72] for a review), allowing F (ξ′, ξ) to be written as

F (ξ′, ξ) =
F−2(ξ

′)

(ξ − ξ′)2
+
F−1(ξ

′)

(ξ − ξ′)
+ O(1) (4.21)

The singularities are now made explicit by the expressions (ξ− ξ′)2 and ξ− ξ′ which

are found to be in a convenient form for integration. The non-singular functions

F−2(ξ
′) and F−1(ξ

′) depend on the first and second derivatives of the shape functions

at the singular point ξ′ and can be determined using a procedure such as that shown

in Appendix C.6.2. By now subtracting this function from the original integrand

(Eq. (4.20)) a regular function is produced. To illustrate this clearly, Fig. 4.9a

shows the hypersingular function given by (4.20) which then subtracts the singular

terms to give the function shown in Fig. 4.9b. Of course, if the singular terms are

removed from the integrand then they must must be included back in elsewhere.

Our attention is now focused towards this task.
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(a) Hypersingular integrand

(b) Regularised integrand

Figure 4.9: Regularisation of hypersingular integrand by subtraction of singularity
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It is necessary to define the boundary over which the integral is evaluated and

to construct a semi-circle (centred at the source point x′) which allows the limiting

procedure to be carried out. In the global coordinate system this can be represented

by Fig. 4.10a where the integral is taken over the boundary Γe∪Γ∆ (Γ∆ is represented

by the dashed line) and the assumption is made that the source point lies at a point

internal to the element5. By transforming this into the local coordinate system ξ

(Fig. 4.10b), the integral can then be taken over two intervals [−1, ξ′ − ∆ξ] and

[ξ′ + ∆ξ,+1] while taking the limit as ∆ξ → 0.

(a) Global coordinate system

(b) Local coordinate system

Figure 4.10: Limiting procedure for subtraction of singularity method

Now that the integration intervals are defined, it is possible to write the entire

integral expression with the singular integrals included as

I =

∫ +1

−1

[

F (ξ′, ξ) −
(

F−2(ξ
′)

(ξ − ξ′)2
+
F−1(ξ

′)

ξ − ξ′

)]

dξ

+ lim
ε→0

{
∫ ξ′−∆ξ

−1

F−1(ξ
′)

ξ − ξ′
dξ +

∫ +1

ξ′+∆ξ

F−1(ξ
′)

ξ − ξ′
dξ

+

∫ ξ′−∆ξ

−1

F−2(ξ
′)

(ξ − ξ′)2
dξ +

∫ +1

ξ′+∆ξ

F−2(ξ
′)

(ξ − ξ′)2
dξ +Na(ξ)

bkij(ξ
′)

ε

}

(4.22)

By writing the integral in this way, the natural division of the expression into three

components should be made clear: the first consists of the regularised integral which

can be evaluated easily using a numerical quadrature scheme, the second contains

the singular integral expressions involving F−1 while the third contains the singular

integrals involving F−2 with an introduced jump term Na(ξ)bkij(ξ
′)/ε. This term

5This is a valid assumption if discontinuous elements are used
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arises from the limiting procedure, in much the same way that the the jump term

Cij arises in the DBIE (Sec. 3.1.4). If the three components are denoted as I0, I−1

and I−2 respectively, then we can write

I0 =

∫ +1

−1

[

F (ξ′, ξ) −
(

F−2(ξ
′)

(ξ − ξ′)2
+
F−1(ξ

′)

ξ − ξ′

)]

dξ (4.23a)

I−1 = lim
ε→0

{
∫ ξ′−∆ξ

−1

F−1(ξ
′)

ξ − ξ′
dξ +

∫ +1

ξ′+∆ξ

F−1(ξ
′)

ξ − ξ′
dξ

}

(4.23b)

I−2 = lim
ε→0

{
∫ ξ′−∆ξ

−1

F−2(ξ
′)

(ξ − ξ′)2
dξ +

∫ +1

ξ′+∆ξ

F−2(ξ
′)

(ξ − ξ′)2
dξ +Na(ξ)

bkij(ξ
′)

ε

}

(4.23c)

where

I = I0 + I−1 + I−2 (4.24)

As mentioned previously, the integral I0 can be integrated easily and requires no

further manipulation. The singular integrals I−1 and I−2 are integrated analytically

but must be considered in the limit as ε → 0. Therefore, since Eqns (4.23b) and

(4.23c) are written in terms of the infinitesimal boundary ∆ξ, it is necessary to

introduce a relation between ε and ∆ξ by using a Taylor series approximation about

the source point ξ′

ε = J(ξ′)∆ξ + O(∆ξ2) (4.25)

which allows, after ignoring higher order terms, ∆ξ to be expressed as

∆ξ =
ε

J(ξ′)
(4.26)

Substituting this into 4.23b we can write

I−1 = lim
ε→0

{
∫ ξ′− ε

J(ξ′)

−1

F−1(ξ
′)

ξ − ξ′
dξ +

∫ +1

ξ′+ ε

J(ξ′)

F−1(ξ
′)

ξ − ξ′
dξ

}

(4.27)

which is integrated analytically6 to give

I−1 = F−1(ξ
′) ln

∣

∣

∣

∣

1 − ξ′

−1 − ξ′

∣

∣

∣

∣

(4.28)

6see Appendix C.6.1 for details of the integration
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Likewise, I−2 is given by

I−2 = lim
ε→0

{
∫ ξ′− ε

J(ξ′)

−1

F−2(ξ
′)

(ξ − ξ′)2
dξ +

∫ +1

ξ′+ ε

J(ξ′)

F−2(ξ
′)

(ξ − ξ′)2
dξ +Na(ξ)

bkij(ξ
′)

ε

}

(4.29)

which is integrated to give

I−2 = F−2(ξ
′)

[

1

−1 − ξ′
− 1

1 − ξ′

]

(4.30)

where all unbounded terms are cancelled. By combining Eqns (4.23a), (4.28) and

(4.30) using relation (4.24), the final expression used to evaluate the hypersingular

integral is

I =

∫ +1

−1

[

F (ξ′, ξ) −
(

F−2(ξ
′)

(ξ − ξ′)2
+
F−1(ξ

′)

ξ − ξ′

)]

dξ

+ F−1(ξ
′) ln

∣

∣

∣

∣

1 − ξ′

−1 − ξ′

∣

∣

∣

∣

+ F−2(ξ
′)

[

1

−1 − ξ′
− 1

1 − ξ′

]

(4.31)

which, once the values F−1(ξ
′) and F−2(ξ

′) are known, can be implemented easily.

Finally, it is useful to consider the application of the technique to strongly sin-

gular integrals where it is found that the terms in (4.31) relating to F−2(ξ
′) simply

equal zero. A procedure specifically formulated to evaluate strongly singular bound-

ary integrals using the same regularisation process was outlined by Guiggiani and

Casalini [69], but to allow the use of any displacement approximation (thus allowing

the implementation of enriched displacements) the technique outlined here is used.



Chapter 5

Singular Elements, Enrichment

and Partition of Unity Methods

From early work on fracture using computational methods (primarily the FEM),

many researchers encountered a common problem of large inaccuracies when mod-

elling the singular field seen around a crack tip. For instance, in the work carried out

by Chan, Tuba and Wilson [73] to evaluate stress intensity factors (SIFs), accuracies

in the region of, at best, 5% were achieved. The problem was more closely exam-

ined by Tong et al. [23] who concluded that, if the FEM is used to analyse a model

containing a crack with no form of enrichment, the rate of convergence is controlled

by the presence of the crack-tip singularity. They showed that, in order to improve

the rate of convergence, the singularity must be included within the approximation

and that this must be used in a finite region surrounding the crack tip. Since then

several methods have been developed to capture the correct singular behaviour of a

crack using special elements and displacement approximations which, in many cases,

must be used if fracture problems are to be modelled with sufficient accuracy. This

chapter aims to give an overview of some of these methods but particular attention

is paid to the more recent developments that utilise the power of the partition of

unity method (PUM).

5.1 Crack tip elements and singular shape func-

tions

The majority of numerical methods use polynomial functions for interpolation and

therefore, unless a very refined mesh is used, the singular field experienced at a

98
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crack tip cannot be captured. This can be seen clearly in Fig. 5.1 which illustrates

the displacement approximation using a discontinuous quadratic element adjacent

to the crack tip. The use of a fine mesh in the region surrounding the crack tip

can be used (and was the primary technique used to obtain reasonable accuracies

in early fracture work), but with the large increase in DOF this is an uneconomical

option. Instead, since the form of displacements around a crack is already known, a

more appropriate solution is to use this knowledge to make certain modifications to

the elements adjacent to the crack and therefore improve accuracy. In this section

two types of element modification are outlined: the popular quarter-point element

and the use of special singular shape functions.

Figure 5.1: Quadratic approximation of crack-tip displacements

5.1.1 Quarter-point elements

In a conventional 2D analysis the most common type of element used in FEM imple-

mentations is either the six-noded triangular or eight-noded quadrilateral isopara-

metric element. Likewise, in the BEM, the three-noded isoparametric elements are

most popular (see Fig. 5.2a). Using elements of this type, the correct displacement

behaviour of a crack cannot be captured correctly and it was Henshell and Shaw [74]

and Barsoum [75] who, almost at exactly the same time, arrived at a simple and

elegant solution to the problem. They proposed a special element, now referred

to as quarter-point (QP) elements, that captures the required
√
ρ (where ρ is the

distance from the crack tip) variation seen at the crack tip by simply moving the

midnode to a quarter-point position on the element. To explain why the correct

interpolation is obtained, we can compare the displacement approximation of the

three-noded quadratic boundary element in Fig. 5.2a and the corresponding QP el-
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ement shown in Fig. 5.2b. Denoting l as the element length and letting y = 0, the

nodal coordinates of the QP element can be expressed as

x1 = l x2 = l/4 x3 = 0 (5.1)

Using the continuous shape functions given by Eqns (3.62) and substituting the

above expressions for nodal coordinates, the following relation can be written for

the general point x on the element

x =
1

2
ξ(1 + ξ)l + (1 − ξ2)

l

4
(5.2)

Rearranging this for ξ and noting that x = ρ,

ξ = −1 + 2

√

x

l
= −1 + 2

√

ρ

l
(5.3)

This can then be substituted into Eq. (3.64a) to arrive at the final expression for

displacement interpolation using a QP element

ui = u1
i + (−3u1

i + 4u2
i − u3

i )

√

ρ

l
+ 2(u1

i − 2u2
i + u3

i )
ρ

l

= c0 + c1

√

ρ

l
+ c2

ρ

l
(5.4)

If the same procedure is applied to an element with no repositioning of the middle

node, then the displacement interpolation is expressed as

ui = d0 + d1

(ρ

l

)

+ d2

(ρ

l

)2

(5.5)

where d0, d1 and d2 are constants. What should be clear by comparing Eq. (5.4) with

Eq. (5.5) is that QP elements are able to account for the known
√
ρ displacement

behaviour while the conventional quadratic polynomial approximation cannot. The

particularly attractive feature of the method is the simplicity by which this can be

achieved - only the midnode needs to be repositioned and changes to existing FEM

or BEM codes are kept to a minimum.

Eq. (5.4) showed that QP elements are capable of capturing the
√
ρ variation

in displacements seen around a crack, but in the BEM, which represents tractions

independently of displacements, it is also necessary to account for the singular trac-

tions. For instance, the problem of a double edge crack (Fig. 5.3) can be modelled
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(a) Standard quadratic element

(b) Quarter-point element

Figure 5.2: Comparison of standard and quarter-point boundary elements

with symmetry (Fig 5.4a) resulting in a singular displacement gradient on one side

of the crack tip and a singular traction field on the other. The singular displacement

gradient can be captured using the QP element outlined previously, but it is also

possible to formulate a traction QP element. This is also achieved by shifting the

midnode of the element to the quarter-point position and it is then found [76] that

the tractions are then interpolated over the element as

ti = t1i

√

l

ρ
+ (−3t1i + 4t2i − t3i ) + 2(t1i − 2t2i + t3i )

√

ρ

l
(5.6)

which, by noting that the stresses around a crack are of O(1/ρ1/2), is the desired

interpolation. Using this strategy, both displacement and traction QP elements

can be used with a mesh such as that shown in Fig. 5.4b to carry out a BEM

fracture analysis with improvements over conventional interpolation. A model very

similar to this was used by Mart́ınez et al. [29] to illustrate the individual effects

of using displacement and traction QP elements. Tests were also carried out to

study the effect of using both displacement and traction extrapolation methods to

determine SIFs. Their results concluded that there was a significant dependence

on element size when using displacement QP elements while the most consistently

accurate results were obtained using traction QP elements with traction nodal value

extrapolation to obtain SIFs. They also noted that the best results for displacement

QP elements were obtained for small ratios of element length to crack length and

concluded that, if the element size was reduced below the optimum length, then the

singularity would extend to elements beyond the singular element. Since quadratic

interpolation is used in this region, inaccuracies would occur as a result.

Other researchers noted the limitations of QP elements such as Harrop [77] who

described the difficulties on obtaining the optimum size of quarter-point elements

and concluded that no general strategy could be obtained. This was verified later
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Figure 5.3: Double edge crack problem

(a) Boundary conditions mod-
elled with symmetry

(b) Boundary mesh with QP
elements

Figure 5.4: Double edge crack with displacement and traction quarter-point ele-
ments
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by Yehia and Shephard [78] who also noted a dependence on the crack propagation

angle with QP element size. Furthermore, when the elements were applied to 3D

models in the FEM Ingraffea et al. [79] showed that surprisingly, the optimum choice

of element size is dependent on Poisson’s ratio. But even with these limitations, QP

elements still remain one of the simplest and fastest ways to improve crack tip

interpolation over standard polynomial functions.

5.1.2 Modified shape functions

Rather than change the nodal positions on the elements to achieve the desired ρ1/2

and ρ−1/2 variation in displacements and tractions respectively, it is also possible to

construct shape functions that achieve the same effect. But before these are given,

it is useful to investigate in more detail the polynomial approximation that is most

often used for interpolation of these parameters. If we consider an element adjacent

to the crack tip (Figs 5.5a and 5.5b) where ξ̂ denotes the local coordinate of the crack

tip, then it is possible to take a Taylor series expansion about this point allowing

the geometry, displacement and traction vectors to be expressed as

(a) Global coordinate system (b) Local coordinate system

Figure 5.5: Crack tip boundary element for Taylor series expansion

x = x̂ + x̂(1)(ξ − ξ̂) + . . .+
1

(m− 1)!
x̂(m−1)(ξ − ξ̂)m−1 (5.7a)

u = û + û(1)(ξ − ξ̂) + . . .+
1

(m− 1)!
û(m−1)(ξ − ξ̂)m−1 (5.7b)

t = t̂ + t̂(1)(ξ − ξ̂) + . . .+
1

(m− 1)!
t̂(m−1)(ξ − ξ̂)m−1 (5.7c)

where the symbolˆrefers to the value of a parameter at the crack tip and a number

in brackets denotes the order of differentiation with respect to ξ. For the simple
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case of a flat element, x can be approximated as

x = x̂ + x̂(1)(ξ − ξ̂) (5.8)

(since any higher order derivatives are simply zero). Using this relation and noting

that the distance between the points x̂ and x is equal to the polar crack coordinate

ρ, we can write

|x − x̂| = ρ = |x̂(1)|.|(ξ − ξ̂)| (5.9)

It can be shown that |x̂(1)| = l/2 (where l is the element length) for a flat element

giving

ρ =
l

2
|(ξ − ξ̂)| (5.10)

It is also necessary to determine the parameters x̂, û and t̂ which can be expressed

in terms of Lagrangian shape functions as

x̂ =
M
∑

a=1

Na(ξ0)x
a, û =

M
∑

a=1

Na(ξ0)u
a, t̂ =

M
∑

a=1

Na(ξ0)t
a (5.11)

and, by differentiating these expressions, the derivatives x̂(n), û(n) and t̂(n) are given

by

x̂(n) =
M
∑

a=1

d(n)Na(ξ̂)

dξ(n)
xa, û(n) =

M
∑

a=1

d(n)Na(ξ̂)

dξ(n)
ua, t̂(n) =

M
∑

a=1

d(n)Na(ξ̂)

dξ(n)
ta

(5.12)

We are now in a position where the expressions for displacements and tractions

given by Eqns (5.7b) and (5.7c) respectively can be reformulated by substituting in

Eq. (5.10) for ξ− ξ̂ and using the interpolations given by Eqns (5.11) and (5.12). In

this example, we use the continuous quadratic shape functions given by (3.62) and

let ξ̂ = −1 which gives the following expression for displacement interpolation

u =u1 + (−3u1 + 4u2 − u3)
(ρ

l

)

+ (2u1 − 4u2 + 2u3)
(ρ

l

)2

(5.13)

=c0 + c1

(ρ

l

)

+ c2(
ρ

l
)2 (5.14)

From inspection this expression cannot correctly capture the required variation in

crack tip displacements which we know from analytical solutions are of O(ρ1/2).

However, by simply replacing ρ/l with (ρ/l)1/2 in Eq. (5.13) the correct variation is

achieved. Then, by using relation (5.10) and grouping all terms relating to u1, u2
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and u3, it is possible to write the following shape functions, obtained by Yamada et

al. [80], which can be used for crack tip displacement interpolation

N1(ξ) = 1 − 3√
2

√

ξ + 1 + (ξ + 1) (5.15a)

N2(ξ) = 2
√

2
√

ξ + 1 − 2(ξ + 1) (5.15b)

N3(ξ) =
−1√

2

√

ξ + 1 + (ξ + 1) (5.15c)

A more general procedure was proposed by Akin [81] who derived singular displace-

ment shape functions by considering a new function given by

F (ξ) = 1 −N1(ξ) (5.16)

where it is assumed that the crack tip lies at node 1. The shape functions can then

be derived by using the following relations

N1 = 1 −
√

F (ξ) (5.17a)

Nα =
Nα(ξ)
√

F (ξ)
, α = 2,M (5.17b)

which, for a quadratic 2D elements gives the following shape functions

N1 = 1 −
√

1 − ξ

2
(ξ − 1) (5.18a)

N2 =
1 − ξ2

√

1 − ξ

2
(ξ − 1)

(5.18b)

N3 =
ξ(1 + ξ)

2

√

1 − ξ

2
(ξ − 1)

(5.18c)

Since tractions are represented independently of displacements in the BEM for-

mulation, the application of the method to fracture problems also presents singular

tractions on elements adjacent to the crack tip. Therefore, to achieve acceptable ac-

curacies, it is also important to interpolate these singular tractions correctly. Tanaka

and Itoh [82] presented special shape functions for interpolating tractions which are

derived using a similar procedure to that given above and, for a continuous quadratic
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boundary element where ξ̂ = 1, they can be written as

N trac
1 =

ξ(ξ − 1)

2
√
ξ + 1

(5.19a)

N trac
2 =

(1 − ξ)2

√
ξ + 1

(5.19b)

N trac
3 =

ξ(ξ + 1)
√

2(ξ + 1)
(5.19c)

The use of singular crack tip shape functions such as these is subject to certain

restrictions similar to those outlined in the previous section for quarter-point ele-

ments. For example, the expressions given here are only valid for elements adjacent

to the crack tip while in reality, the singular zone may extend beyond this. Further-

more, the functions can only be applied to flat elements which restricts the type of

fracture problem that can be modelled. However, as is true with QP elements, they

present a simple and easy to implement procedure to improve the approximation of

conventional quadratic elements when modelling cracks.

5.2 Singular boundary element methods

The previous section illustrated special crack tip elements and shape functions that

could be applied to both the FEM and BEM, but now focus is given to the discussion

of methods specific to the BEM which account for the crack tip singularity. Perhaps

the most popular boundary element technique is that of the DBEM (which was

outlined in Sec. 3.2.4), but the method does not explicitly account for the singular

field experienced around the crack. Rather, the main feature of the method is the

use of an independent BIE to overcome the problem of coincident crack surfaces.

Two boundary element methods which explicitly account for the singular crack tip

field are outlined presently: the singularity subtraction technique and the use of

singular Hermitian elements.

5.2.1 Singularity subtraction technique

The singularity subtraction technique (SST) was first introduced by Symm [83]

and later by Papamichel and Symm [84], but the first application of the method

to fracture problems was by Aliabadi et al. [85] with later modifications of the

method to incorporate the DBEM formulation [86]. The technique represents the
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displacements and tractions as the sum of a “regular” and “singular” field and, by

performing a BEM analysis using the regular field (where the difficulties created

by the singularity have been removed), crack problems can be solved with great

accuracy. In addition, since the SIFs become unknowns in the formulation, they can

be output directly, with no post-processing required. A brief outline of the method

is given here along with a description of how the BEM matrices are constructed

using the regularised displacement and traction fields.

If the state (uR, tR) represents the regular field which has the singularity re-

moved and (us, ts) represents the singular field of a crack tip, then, using the SST,

displacements and tractions can be written as

ui = (ui − us) + us ti = (ti − ts) + ts (5.20)

= uR + us = tR + ts (5.21)

Secs 2.2 and 2.3 demonstrated that the form of the singular field around a crack tip

is already known, which allows, (assuming the body contains a single edge crack)

us and ts to be expressed in terms of the known functions and SIFs given by (2.36)

and (2.37). But, by regularising the field in this way, the boundary conditions of

the problem must also be modified in a similar fashion if the singular field is to

be removed. Denoting the applied boundary conditions as (ūi, t̄i) and the values of

the singular displacements and tractions on the boundary as (ūs
i , t̄

s
i )

1, the boundary

conditions for the regular problem become

uR
i = ūi − ūs

i tRi = t̄i − t̄si (5.22)

Now, the regular field is used to construct the matrices which are used to perform

a conventional BEM analysis (3.77) giving

[A]{xR} = [B]{yR} (5.23)

Since yR is a vector containing the regular field boundary conditions given by

1These will contain the SIFs as unknowns
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Eqns (5.22), the above system of equations can be written as

[A]{xR} = [B]
(

{y} − [E]{z}
)

(5.24)

= {f} − [C]{z} (5.25)

where y is a vector of the real applied boundary conditions (ūi, t̄i), E is a matrix

containing the singular field components evaluated at the boundary and z is a vector

of the unknown SIFs. By taking all unknowns to the left hand side, the partitioned

form the matrix equation can be expressed as

[

A
... C

]















xR

· · ·
z















= {f} (5.26)

which is underdetermined and cannot be solved by conventional means. To provide

additional relations, Portela et al. proposed a condition that forces the traction of

the regular field at the crack tip to equal zero (ie. tR = 0). Then, by considering an

internal point p lying on the crack plane and approaching the crack tip, it is possible

to use the TBIE (3.82) to formulate an independent equation that can be used to

solve the additional unknowns. Denoting the traction at the point p as tR
p , this can

be written in matrix form as

tR
p + [Ap]{xR} = [Bp]

(

{y} − [E]{z}
)

(5.27)

= {fp} − [Cp]{z} (5.28)

The internal point can not lie directly on the crack tip due to unbounded terms,

so instead a series of internal points which are then extrapolated to the crack tip

are used. By introducing the above equation to (5.26), the partitioned system of

equations becomes








A
... C

. . . . . .

Ap
... Cp























xR

· · ·
z















=















f

· · ·
fp















(5.29)

which is square and can now be solved.

One shortcoming of the method which was pointed out in [86] is the use of the

first-order terms of the Williams expansion to represent the singular field which
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are only valid in a local region surrounding the crack tip. They cannot be used

for regularisation over the global domain but instead, partitioning of the domain

into near-tip fields and far-tip fields (see Fig. 5.6), is required. This introduces an

additional computational burden due to the creation of a shared boundary and an

increased implementation complexity with the need for equilibrium and compatibil-

ity equations in a multi-region analysis. The method does, however, demonstrate

very high accuracies for SIF determination with few degrees of freedom and has the

added advantage of requiring no post-processing to determine SIFs.

Figure 5.6: Domain partitioning for application of SST technique

5.2.2 Singular Hermitian elements with additional BIEs

Another boundary element technique which explicitly includes the singular crack

tip field with Hermitian elements is that originally proposed by Watson [25] and

then later extended to 3D problems [87]. Use is made of cubic Hermitian elements

which not only demonstrate C1 continuity, but, due to the requirement of fewer

elements for a given accuracy, offer computational advantages over other element

types. Fig. 5.7 illustrates a cubic Hermitian element which allows interpolation of

geometry in the following manner:

xi =

2
∑

a=1

[Ma(ξ)x
a
i +Na(ξ)m

a
i ] (5.30)
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where xa
i is a nodal coordinate and ma

i is a tangential vector component at node a.

The shape function expressions Ma(ξ) and Na(ξ) are given by

M1(ξ) =
1

4
(1 + ξ)2(2 − ξ) N1(ξ) = −1

4
(1 + ξ)2(1 − ξ) (5.31)

M2(ξ) =
1

4
(1 − ξ)2(2 + ξ) N2(ξ) =

1

4
(1 − ξ)2(1 + ξ) (5.32)

For the formulation of singular crack tip elements, the interpolation of displace-

Figure 5.7: Cubic Hermitian boundary element

ments and tractions is modified to include the singular field by using the following

expressions

ui(ξ) =
2
∑

a=1

[

Ma(ξ)u
a
i +Na(ξ)w

a
i +

4
∑

k=1

Ψu
aikφk

]

(5.33)

ti(ξ) =
2
∑

a=1

[

Ma(ξ)t
a
i +Na(ξ)s

a
i +

4
∑

k=1

Ψt
aikφk

]

(5.34)

where wa
i and sa

i are nodal derivative components of displacement and tractions

respectively, φk are the first and second order coefficients of the Williams expansion

and the functions Ψu
aik and Ψt

aik are constructed in such a way that they exhibit

the desired crack tip behaviour but allow inter-element continuity. For example,

if ψu
ik corresponds to the kth term of the Williams expansion for displacements

(Eqns (2.26)) and the crack is assumed to lie at the position ξ = −1 on the element,

then the function Ψu
aik is given by

Ψu
aik = ψu

aik(ξ) −
{

M2(ξ)ψ
u
2ik +N2(ξ)

dψu
2ik

dξ

}

(5.35)

By expressing the displacement and tractions using Eqns (5.33) and (5.34), it

can be seen that on singular elements there will be eight unknowns whereas the
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straightforward application of the DBIE (Eq. (3.52)) only provides two independent

relations. As a solution to this, Watson derived three additional BIEs by differ-

entiating with respect to the source point and multiplying the kernels by source

point normals and tangents (similar to the formulation of the TBIE). The singular

integrals seen in each of these can not be evaluated in a CPV or Hadamard finite

part sense and therefore the use of several trial displacement fields, similar to the

rigid-body motion technique described previously, is needed. Unfortunately, the

implementation of the method becomes very complex, and it is even noted in [25]

that one of the additional BIEs would be very complicated to calculate analytically

but instead is obtained through numerical differentiation. The application of the

method to 3D problems introduces an even greater number of unknowns and in this

case, rather than deriving additional BIEs, additional collocation points are used to

provide the extra relations. This is an important feature since a similar technique is

used in the present work to solve for the additional unknowns created enrichment.

5.3 Singular finite elements

5.3.1 Fractal elements

The fractal finite element method (FFEM), pioneered by Leung and Su [88], is

a method that technically does not fall under the category of either singular or

enriched elements since it relies on the use of multiple “self-similar” elements that

decrease in size towards the crack tip. By incorporating several layers of these

self-similar elements and relating the degrees of freedom of each to a much smaller

number of global degrees of freedom, the resulting system of equations is reduced

significantly. Fig. 5.8a illustrates the use of fractal elements to model an edge crack

(the crack surface is denoted by Γc) where the domain is separated into a “regular”

and “singular” region. A detailed view of the singular region is shown in Fig. 5.8b.

The formulation is based on the fact that displacements around a crack tip are

known to vary according to the Williams expansions of (2.26a) and (2.26b) where

the unknowns an are dependent on the problem being solved. By expressing the

displacements in the singular region as

{d} = [T ]{a} (5.36)
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where d and a are vectors containing the singular region displacements and Williams

expansion coefficients respectively and [T ] is a rectangular transformation matrix,

a large number of DOF can be reduced to a much smaller number. Then, by

using the transformation given by (5.36) along with a geometric series representing

the number of self-similar layers, the global stiffness matrix can be formed with a

significant reduction in size.

(a) Fractal finite element mesh for edge crack

(b) Singular region surrounding crack tip

Figure 5.8: Fractal finite element meshes
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5.3.2 Hybrid elements

Another successful technique that has been applied in the FEM is the use of “hybrid”

elements that incorporate the crack-tip singular behaviour through a variational

formulation. A FEM mesh is constructed by using a hybrid element at the crack tip

while elements using conventional interpolation are used elsewhere (see Fig. 5.9).

The work can be originally attributed to Tong et al. [89] and has been more recently

been extended by Karihaloo and Xiao to incorporate higher order terms of the

Williams expansion [16] and also to formulate a coupled method with XFEM [90].

The method is based on the Modified Hellinger-Reissner principle (see [91] for an

excellent overview of variational methods applied to mechanics) which, after suitable

manipulation, allows the element variational functional to be expressed as

Πe
m =

∫

Se
σ

(

1

2
ti − t̄i

)

uids−
∫

˜∂Ae

ti

(

1

2
ui − ūi

)

ds (5.37)

where ui and ti represent unknown displacements and tractions while ūi and t̄i

represent known displacements and tractions over parts of the boundary Se
σ and

˜∂Ae respectively. Using truncated expressions of (2.26) and (2.25) to substitute for

ui and ti (while noting ti = σijnj), the unknowns then become the coefficients of the

Williams expansion (an, bn). The element stiffness matrix and nodal force vector are

determined by setting (5.37) equal to zero (since this is the stationary condition).

Interestingly, in the calculation of the element stiffness matrix and the nodal force

vector, it is found that all numerical integrations are taken along the boundary

with no domain integration required. In fact, as noted by Fawkes et al. [92], it is

found that the hybrid element formulation is a type of boundary integral equation

identical to that derived by Brebbia [93] using a Galerkin procedure and goes on to

comment that an improvement in the method would be to cast the problem entirely

as a boundary element method.

5.3.3 Benzley singular elements

The idea of enriching elements surrounding the crack tip has been studied exten-

sively where various approaches have been taken. Benzley [94] took the approach of

expressing displacements within enriched elements in the following manner

uj =

M
∑

a=1

Nau
a
j +KI

(

QIj −
M
∑

a=1

NaQ̄Ija

)

+KII

(

QIIj −
M
∑

a=1

NaQ̄IIja

)

(5.38)
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Figure 5.9: Finite element mesh for an edge crack modelled with a “hybrid” element

where the functions Qlj are given by the near-field terms of the Williams expansion

QI1 =
1

2µ

√

ρ

2π
cos(θ/2)

[

κ− 1 + 2 sin2(θ/2)
]

(5.39a)

QII1 =
1

2µ

√

ρ

2π
sin(θ/2)

[

κ+ 1 + 2 cos2(θ/2)
]

(5.39b)

QI2 =
1

2µ

√

ρ

2π
sin(θ/2)

[

κ+ 1 − 2 cos2(θ/2)
]

(5.39c)

QII2 = − 1

2µ

√

ρ

2π
cos(θ/2)

[

κ− 1 − 2 sin2(θ/2)
]

(5.39d)

and the term Q̄lja is the value of Qlj evaluated at node a. By formulating the

elements in this way the term ua
j represents real displacements while the SIFs are

direct outputs of the system. In the implementation of the method, only elements

adjacent to the crack tip were enriched while those that bordered the enriched

elements and conventional elements were formulated to include a bilinear smoothing

function. This ensured displacement compatibility between adjoining element nodes.

This is written as

uj =

M
∑

a=1

Nau
a
j +R(ξ, η)

{

KI

(

QIj −
M
∑

a=1

NaQ̄Ija

)

+KII

(

QIIj −
M
∑

a=1

NaQ̄IIja

)}

(5.40)

where the function R(ξ, η) is such that it equals 1 on boundaries with enriched

elements and 0 on boundaries of unenriched elements.
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5.4 Enrichment through the partition of unity

method

The concept of Partition of Unity can be attributed to work by Babuška and Me-

lenk [95] with the original idea now implemented in several successful numerical

methods such as the Generalised Finite Element Method [96], [97] and the eX-

tended Finite Element Method [98]. Without delving into the mathematical details

of the derivation, the method can be explained simply by considering a function

that forms a partition of unity. That is, if a set of functions fa(x) are defined on a

domain ΩPU and the functions satisfy the following relation

∑

a

fa(x) = 1, ∀x ∈ ΩPU (5.41)

then they are said to form a partition of unity. This means that at any point within

the domain the sum of the functions will always equal one. Using this relation, the

following can also be written

∑

a

fa(x)ψ(x) = ψ(x) (5.42)

where ψ(x) is an arbitrary function. This is an extremely powerful relation and

it’s importance cannot be overemphasized in the present work. It states that if we

know a function that forms a partition of unity fa(x) and another function ψ(x)

which we know from a priori knowledge captures the field we are trying to recover,

then we are able to include the function ψ(x) within the approximation and more

accurate results are expected. In many cases the field that is being approximated

does not present difficulties for conventional interpolation functions, but in the case

of problems containing singularities (such as a crack or inclusion), the approximation

performs poorly. For example, the interpolation that is most often used in the FEM

and BEM for displacements takes the form

uj(x) =
∑

a∈S

Na(x)ua
j (5.43)

where S is the set of nodes of the mesh, Na(x) is the global shape function associated

with node a and ua
j is a nodal displacement. The shape functions Na(x), which are

most often represented by polynomial functions, form a partition of unity and have

a large influence on the displacement approximation. For many cases the use of
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polynomial functions is sufficient, but in the case of a crack where a ρ1/2 singularity

in displacements is seen, the approximation is often poor. The PUM provides a

solution to this by taking into account relation (5.42) and making the following

enriched approximation

uj(x) =
∑

a∈S

Na(x)ua
j +

∑

b∈P.U.

fb(x)ψ(x)Ab
j (5.44)

where P.U. refers to the set of functions that form the partition of unity, fb(x)

is the bth function of the partition of unity, ψ(x) is the appropriate enrichment

function and Ab
j is the coefficient (associated with the function fb(x)) that remains

unknown. If more than one enrichment function is used for enrichment then the

relation becomes

uj(x) =
∑

a∈S

Na(x)ua
j +

∑

b∈P.U.l

fb(x)
∑

l

ψl(x)Ab
jl (5.45)

In many cases the function fb(x) is replaced by the conventional shape functions

and enrichment can now be applied over a set of enriched nodes denoted by Senr.

This is written as

uj(x) =
∑

a∈S

Na(x)ua
j +

∑

b∈Senr

Nb(x)
∑

l

ψl(x)Ab
jl (5.46)

This expression illustrates an example of extrinsic enrichment where additional de-

grees of freedom are introduced for each enrichment function at each enriched node.

An additional computational cost is associated with each of these, and it soon be-

comes clear that as the number of enriched nodes is increased, the size of the system

will increase at a faster rate than if conventional interpolation is used. However, the

use of enrichment allows much fewer elements to be used and usually, a local en-

richment strategy enrichment is employed where only those nodes that fall within a

certain region of the singularity are enriched; any nodes that do not lie in this region

are approximated in the normal way and the number of additional DOF is reduced

to a minimum. This form of local enrichment has been applied successfully to the

FEM to allow accurate solutions of cracked problems to be found and is commonly

referred to as the eXtended Finite Element Method (XFEM).
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5.4.1 The eXtended Finite Element Method (XFEM)

The original implementation of XFEM can be attributed to the work by Belytschko

and Black [99] who used the PUM to enrich nodes surrounding the crack with

asymptotic functions that are capable of capturing the singular field around a crack

tip. In most cases (except for extremely curved cracks) remeshing was not required

for incremental crack propagation steps representing a significant improvement over

the standard application of the FEM to fracture problems. But perhaps the most

well-known paper related to the development of XFEM is that by Moës et al. [98]

which outlined a more general procedure that not only included the asymptotic

crack-tip functions, but made use of the Heaviside step function to account for the

strong discontinuity seen across the crack faces. In this way, both the singular

strains seen at the crack-tip field and the strong discontinuity in strains across the

crack faces are accounted for and represented completely independently of the mesh.

There are two clear advantages of using this strategy:

• Since the crack is represented independently of the mesh then, with minimal

remeshing required for each crack propagation step, significant computational

savings are made.

• As mentioned at the beginning of this chapter, the rate of convergence of

a problem containing a crack is governed by the strength of the singularity.

Therefore, by including functions which can capture this singular field, we

expect to obtain both smaller errors and higher convergence rates.

The XFEM conventionally uses an extrinsic form of enrichment where additional

degrees of freedom are introduced to each enriched node. Including the two forms of

enrichment - Heaviside step functions to account for the discontinuity across crack

faces and asymptotic functions describing the crack tip behaviour - displacements

can be represented as

uj(x) =
∑

a∈S

Na(x)ua
j +

∑

b∈SH

Nb(x)H(x)Bb
j +

∑

d∈Scr

Nd(x)
∑

l

ψl(x)Dd
jl (5.47)

where Bb
j and Dd

jl represent additional enrichment coefficients corresponding to the

Heaviside and crack-tip functions respectively. S is the set of nodes of the mesh

while the sets SH and Scr represent the nodes that are enriched by the Heaviside

and asymptotic functions respectively. To illustrate this clearly, Fig. 5.11 shows a

mesh in which a crack spans several elements and does not conform to the mesh.
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Any nodes whose support (ie. those elements which are connected to that particular

node) are cut by the crack but do not contain the crack are denoted by the set SH ,

and it is these nodes that are enriched with the Heaviside step function (circled nodes

in Fig. 5.11). Any nodes whose support contains the crack tip itself are denoted by

the set Scr and are enriched by the crack-tip basis given by (5.48) (square nodes in

Fig. 5.11). The Heaviside function H(x) is defined by considering a point x within

the domain (see Fig. 5.10) and it’s nearest point to the crack surface x∗. By using

a curvilinear coordinate s to define a normal and tangent vector en and es, the

Heaviside function is defined as +1 when the sign of the scalar product (x− x∗).en

is positive and −1 otherwise. ψl(x) is the set of crack-tip basis functions obtained

Figure 5.10: Coordinate system used for Heaviside function definition

from the first-order terms of the Williams expansions given by

ψl(ρ, θ) =

{√
ρ cos

(

θ

2

)

,
√
ρ sin

(

θ

2

)

,
√
ρ sin

(

θ

2

)

sin(θ),
√
ρ cos

(

θ

2

)

sin(θ)

}

(5.48)

To illustrate the effects of each type of enrichment we first consider an element

whose nodes are enriched with the Heaviside function such as that in Fig. 5.12a.

Then, by plotting the functionN1H(x) (whereN1 is the linear shape function 1/4(ξ−
1)(η − 1)), the ability of the enriched approximation to model a discontinuity is

evident. In a similar manner, an element containing the crack tip and whose

nodes are enriched by the crack-tip basis functions is considered (see Fig. 5.13a).

By taking, for example, the basis function
√
ρ sin θ/2 and the shape function N1,

the resulting product can be plotted as shown in Fig. 5.13b. In this case, the crack-

tip basis function is discontinuous across the crack face allowing, in combination

with the other enrichment functions in (5.48), both the strong discontinuity and the

correct variation in crack-tip displacements to be captured.

One consequence of expressing the displacement approximation in this manner is

the careful consideration that must be given to the integration of enriched elements.

Normally Gaussian quadrature (which is capable of evaluating the integral of a poly-

nomial function exactly) is used for element integration, but the use of asymptotic
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Figure 5.11: Example of XFEM mesh with enriched nodes

(a) Element with nodes enriched
with Heaviside step function

(b) Plot of N1H(x)

Figure 5.12: XFEM Heaviside enrichment
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(a) Element with nodes enriched with
crack-tip basis

(b) Plot of N1

√
ρ sin(θ/2)

Figure 5.13: XFEM crack-tip enrichment

functions and the Heaviside function presents difficulties for conventional numerical

integration techniques. In the case of the asymptotic crack-tip enrichment func-

tions this problem is created by the singular gradient seen at the crack tip (due

to the ρ1/2 dependency) while in the case of the Heaviside function, the integrand

becomes discontinuous and conventional numerical quadrature routines cannot be

applied. For the asymptotic crack tip functions one solution, of course, is to use

high-order quadrature to reduce the error in integration2, but this is inefficient and

other methods are sought. Dolbow [100] proposed two techniques to deal with the

case when the crack cuts an element and is enriched with the Heaviside function

(eg. Fig. 5.12). The first involves splitting the element into sub-triangles which

conform to the crack while the second applies a regular grid of sub-quads, much like

the integration technique outlined in Sec. 4.2.1. For the evaluation of the singular

integrals seen in an element which contains a crack tip (Fig. 5.13a) element sub-

division is often used, but a more efficient technique outlined by Bechet et al. [101]

performs multiple transformations to arrive at a non-singular integral over a regular

quad. They showed that by using this technique, higher convergence rates are to be

expected.

One final feature of XFEM which should be mentioned is the region over which

enrichment should be applied. Referring back to Fig. 5.11 it can be seen that

the crack-tip basis enrichment is applied only to the element containing the crack

tip. The flexibility of XFEM allows the crack-tip enrichment to be applied over an

2For the function
√

ξ + 1 evaluated over the interval [−1, 1] at least 5 Gauss points must be
used for 0.1% accuracy
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arbitrary region where two main types, as outlined in [101], can be implemented:

• Topological enrichment. Only those elements which touch the crack tip

are enriched (Fig. 5.14). The enrichment zone therefore depends on the mesh

density.

• Geometrical enrichment. A fixed radius is specified within which all ele-

ments are enriched (Fig. 5.15). As the mesh is refined the number of enriched

elements will increase.

(a) Coarse mesh (b) Fine mesh

Figure 5.14: Topological enrichment strategy

(a) Coarse mesh (b) Fine mesh

Figure 5.15: Geometrical enrichment strategy

5.4.2 Enrichment of meshless methods

Meshless methods, which offer distinct advantages for the analysis of crack problems

due to absence of a mesh, can also be enriched through the PUM in a similar manner
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to XFEM. Without enrichment, high densities of nodes are required to capture the

singular field around the crack tip (eg. Fig. 2.11) and in some cases this may lead

to ill-conditioned matrices. It is therefore much more efficient to include crack-tip

enrichment functions and, as shown by Fleming et al. [102], it may be necessary to

use enrichment if large errors are to be avoided. Two techniques, termed extrinsic

and intrinsic enrichment, can be used to apply the asymptotic crack-tip functions

where each differs in the way shape functions are constructed.

Extrinsic enrichment can be used with an interpolation scheme similar to that of

Benzley (Sec. 5.3.3) which allows the direct output of SIFs if Eq. (5.38) is used. An-

other form of extrinsic enrichment uses the interpolation given by (5.46) which intro-

duces additional unknowns that do not take on any meaningful values by themselves

but, when combined with the terms ua
j , return enriched displacements. Contrary to

this, intrinsic enrichment prevents the need to introduce additional unknowns but

instead includes the branch functions (as given by (5.48)) within the basis that is

used to construct the MLS shape functions. For example, combining a linear basis

with the enrichment functions, the new basis vector can be written as

pT(x) =

[

1, x, y,
√
ρ cos

(

θ

2

)

,
√
ρ sin

(

θ

2

)√
ρ sin

(

θ

2

)

sin(θ),
√
ρ cos

(

θ

2

)

sin(θ)

]

(5.49)

which can be used to construct the shape functions given by (2.59). In some cases,

the introduction of additional enrichment functions within the basis causes problems

to allow the inversion of the moment matrix (denoted by A−1(x) in Eq. (2.59)) where

special preconditioning techniques such as that illustrated in [103] can be used to

alleviate ill-conditioning.

5.5 BEM enrichment

In Sec. 5.2 two BEM techniques which allow fracture problems to be modelled accu-

rately were described but both exhibit certain drawbacks in their implementation.

The DBEM (Sec. 3.2.4) offers a much more simple and general approach, but, if the

implementation of [24] is used, then no explicit account of the crack tip singularity

is made. This thesis proposes a new method where enrichment through the PUM is

applied to the BEM (and DBEM) in much the same manner as that for XFEM and

enriched meshless methods with considerable gains in accuracy.



Chapter 6

Enriched BEM through PUM

(local formulation)

This chapter is focused on the discussion of a new method which applies enrichment

to the BEM (and DBEM) for accurate fracture modelling. By using functions which

are known to capture the singular field around a crack tip and incorporating these

within the formulation through the PUM, enrichment is applied in a manner very

similar to that of the XFEM. Obviously due to the differences between a domain and

a boundary discretisation method the implementation shown here differs, but the

underlying principle is the same. The discussion is split into three sections: first, the

formulation of the method is given with the enriched boundary integral equations

outlined; next, the implementation of the method is described and finally, verifica-

tion and testing of the method is made by comparing against results of standard

fracture specimens.

6.1 Formulation

The objective of any enrichment strategy is to include, via the approximation, func-

tions that capture the required variation that would present difficulties for con-

ventional polynomial interpolation functions. Various enrichment techniques were

outlined in chapter 5, but the technique which presents particularly attractive fea-

tures is that of the PUM since it allows arbitrary functions to be included within

the approximation in a simple manner. In the case of a crack, the most sensible

choice of functions correspond to the first-order terms of the exact crack tip solution

which is the methodology used in XFEM. The same functions are used here to give

an identical expression for enriched displacements, and these are then applied to the

123
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DBIE and TBIE to arrive at an enriched BEM/DBEM through the PUM.

6.1.1 Enriched displacement approximation

The PUM states that if we have a set of functions that form a partition of unity over a

domain, then it is possible to include another function, which we know from a priori

knowledge captures the field we are trying to recover, within the approximation.

The advantage of the method, is that whereas conventional polynomial functions will

encounter difficulties trying to approximate a singular field (for example), the PUM

can capture the field with much higher accuracy for fewer degrees of freedom. In

the conventional BEM formulation, displacements are approximated by Eq. (3.64a)

where the shape functions usually take the form of quadratic polynomial functions.

We note that these functions form a partition of unity over the local sub-domain of

a boundary element and therefore, it is possible to express enriched displacements

over an element n as

un
j (ξ) =

M
∑

a=1

Na(ξ)u
na
j +

M
∑

a=1

L
∑

l=1

Na(ξ)ψ
u
l (ξ)Ana

jl (6.1)

where M is the number of nodes on the element (M = 3 for quadratic elements),

ψu
l (ξ) is the set of L basis functions derived from the first-order terms of the Williams

expansion and given by (5.48) and Ana
jl represents an enrichment coefficient. It

should be noted that una
j no longer represents a nodal displacement but is instead

a nodal coefficient that, when combined with the second term of (6.1), returns real

displacements. The power of this expression is the ability to capture the crack-tip

singular field using relatively coarse meshes that would otherwise incur large errors

with the use of conventional polynomial shape functions. As with any numerical

method, any gain in accuracy is accompanied by a corresponding computational cost,

and in this case the compromise is made with the requirement to compute additional

unknown terms represented by Ana
jl . However, as will be shown shortly, by employing

an enrichment strategy where only those elements affected by the singularity are

enriched, the number of additional DOF required is kept to a minimum and is very

small compared with the total DOF.

It is now instructive to consider two crack examples that may be encountered in a

BEM fracture analysis: that of a flat crack and a curved crack. Using discontinuous

quadratic boundary elements, a flat crack can be represented by Fig. 6.1a while

similarly, a curved crack can be represented by Fig. 6.1b. In the case of a flat crack
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(a) Flat crack (b) Curved crack

Figure 6.1: Local crack tip coordinate system for different crack geometries

the polar crack angle θ remains constant on both the upper and lower crack surfaces

(θ = ±π) and only the polar distance ρ varies as we move along the element. The

consequence of this is that, referring back to the crack tip basis functions given by

Eq. (5.48), three of the terms equate to zero and the enrichment basis reduces to

ψu
l (ξ) = {√ρ} (6.2)

where L = 1. With this reduced enrichment basis each enriched node only introduces

two additional DOF (one for each direction). Contrary to this, the curved crack

shows a variation in the crack angle θ over the element allowing us to use all four

enrichment functions (L = 4) and eight additional DOF for each enriched node.

Therefore, since an additional equation is required for each introduced DOF, it is

important to note this dependency on geometry to allow a square, solvable system

to be formed.

All the work in this thesis assumes traction free cracks and, since the DBEM is

used to model fracture problems, singular tractions are not seen on any boundary

elements. As a result, it is not necessary to provide enrichment of tractions, but it

would be entirely possible to formulate an expression similar to (6.1) using a set of

basis functions derived from the stresses given by the Williams expansion and the

relation ti = σijnj .

6.1.2 Enriched DBIE and TBIE

Now that the enriched approximation for displacements has been described, the

process of including this relation within both the DBIE and TBIE to allow the

formation of an enriched BEM is outlined. Dealing with the case of the DBIE first,

Eq. (6.1) is substituted into the discretised form of the boundary integral equation
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(3.68) to give

Cij(x
′)

(

M
∑

a=1

Na(ξ
′)un̄a

j +
M
∑

a=1

L
∑

l=1

Na(ξ
′)ψu

l (ξ′)An̄a
jl

)

+
Ne
∑

n=1

M
∑

a=1

P na
ij u

na
j +

Ne
∑

n=1

M
∑

a=1

L
∑

l=1

P̃ na
ijlA

na
jl =

Ne
∑

n=1

M
∑

a=1

Qna
ij t

na
j (6.3)

ξ′ is the local coordinate of the source point located on element n̄, the components

P na
ij and Qna

ij are still given by Eqns (3.69) and the new enrichment term P̃ na
ijl is

given by

P̃ na
ijl = −

∫ 1

−1

Tij(x
′,x(ξ))Na(ξ)ψ

u
l (ξ)Jn(ξ) dξ (6.4)

This is evaluated only for enriched elements; for all other unenriched elements this

term is neglected.

Before we proceed to enrichment of the TBIE, a few important points need to be

made about this equation. In the conventional application of the BEM, collocation

takes place at nodal points giving jump terms that only apply to the source point

node. Equation (6.3) is more general than this since it allows collocation points

to lie at any local coordinate ξ′ (not necessarily at nodal points) and does so by

distributing the jump term using the shape functions Na and the basis functions

ψu
l . To illustrate this difference we first consider a discontinuous element (Fig. 3.11)

where the source point is located at the first node (ξ′ = −2/3). In this case the only

shape function which is non-zero is N1 and therefore the jump term only contributes

to that node. If the collocation point is on a flat surface then the jump terms for

the singular element are given by the bold values in Table 6.1 which clearly shows

that only the first node is affected. If collocation now takes places at a non-nodal

location - the coordinate ξ′ = −0.8 is chosen arbitrarily here - and the enriched

displacement interpolation is used, then the jump term must be distributed across

all the nodes of the element. Inspecting Fig. 3.11 shows that at the point ξ = −0.8

all the shape functions are non-zero and the corresponding jump terms for un̄a
j are

given by the second column in Table 6.2. Next, by letting ψu = ρ1/2 and multiplying

this enrichment function by each of the shape functions (see Fig. 6.2), the value of

each can be determined at ξ = −0.8 and used to distribute the jump term giving

the values shown in the fourth column of Table 6.2. The same technique has been

applied successfully to wave problems by Perrey-Debain et al. [104] but it is believed

that this is the first application of the method to allow enrichment of elastostatic
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problems.

Table 6.1: Jump term for nodal collocation with conventional displacement interpo-
lation (ξ′ = −2/3)

a Na(ξ
′)c CijNa(ξ

′)d

1 1.0 0.5

2 0.0 0.0

3 0.0 0.0

cUsing Eqns (3.63)
dAssuming Cij = 0.5

Table 6.2: Jump term for general collocation with enriched displacement interpola-
tion (ξ′ = −0.8, ψu = ρ1/2)

a Na(ξ
′) CijNa(ξ

′) Na(ξ
′)ψu(ξ′) CijNa(ξ

′)ψu(ξ′)

1 1.32 0.66 1.77 0.89

2 -0.44 -0.22 -0.59 -0.30

3 0.12 0.06 0.16 0.08

The reader may wonder why such effort has been made to allow for collocation

at any general point on an element when the formulation becomes much simpler

when nodal collocation is used. To explain this, we refer back to Eq. (6.1) which

shows that by including enrichment additional coefficients Ana
jl are introduced. The

strategy which is used to solve for these additional unknowns, which is the same

as that used in [104], is to collocate at additional points between nodes on the

boundary. This should be a satisfactory explanation for now, with further details

on the application of the technique given in the implementation section.

The previous discussion has focused on the enrichment of the DBIE, but to allow

the use of the DBEM to allow general fracture problems to be modelled, enrichment

must also be applied to the TBIE. This is achieved in exactly the same manner by

substituting Eq. (6.1) into the discretised form of the BIE (3.83)

1

2

( M
∑

a=1

Na(ξ
′)tn̄a

j

)

+ ni(x
′)

Ne
∑

n=1

M
∑

a=1

Ena
kiju

na
k

+ ni(x
′)

Ne
∑

n=1

M
∑

a=1

4
∑

l=1

Ẽna
kijlA

na
kl = ni(x

′)
Ne
∑

n=1

M
∑

a=1

F na
kijt

na
k (6.5)
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Figure 6.2: Enriched interpolation functions evaluated at arbitrary collocation point

where, as before, Ena
kij and F na

kij are given by (3.84a) and (3.84b) respectively and the

integral term Ẽna
kijl containing the enrichment functions is given by

Ẽna
kijl = =

∫ 1

−1

Skij(x
′,x(ξ))Na(ξ)ψ

u
l (ξ)Jn(ξ) dξ (6.6)

which is only included for enriched elements. To allow the collocation point to lie at

any general position on an element the jump term (given by the first term in (6.5)) is

distributed using the shape functions in exactly the same manner as before. In this

case though, because it is assumed that the cracks are traction free and the integral

equation of (6.5) is only used for collocation on a crack surface (see Sec. 3.2.4), this

term simply equals zero.

The enriched BIEs given by Eqns (6.3) and (6.5) are not quite in their final

form since they do not provide a system of equations that will allow all unknown

boundary parameters to be solved for. Therefore, in the same manner as Sec. 3.1.7,

the source point is chosen to lie at a series of collocation points, where each point

provides a unique relation between the boundary parameters. Replacing the source

point x′ with xc and noting that the DBIE is used for the boundary ΓR ∪Γc+ while

the TBIE is used for the boundary Γc− (see Figs 3.16 and 3.17), the enriched BIEs
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can then be written as

Cij(x
c)

( M
∑

a=1

Na(ξ
c)un̄a

j +
M
∑

a=1

L
∑

l=1

Na(ξ
c)ψu

l (ξc)An̄a
jl

)

+
Ne
∑

n=1

M
∑

a=1

P na
ij (xc)una

j

+

Ne
∑

n=1

M
∑

a=1

L
∑

l=1

P̃ na
ijl (x

c)Ana
jl =

Ne
∑

n=1

M
∑

a=1

Qna
ij (xc)tna

j xc ∈ ΓR ∪ Γc+ (6.7)

and

1

2

( M
∑

a=1

Na(ξ
c)tn̄a

j

)

+ ni(x
c)

Ne
∑

n=1

M
∑

a=1

Ena
kij(x

c)una
k

+ ni(x
c)

Ne
∑

n=1

M
∑

a=1

4
∑

l=1

Ẽna
kijl(x

c)Ana
kl = ni(x

c)
Ne
∑

n=1

M
∑

a=1

F na
kij(x

c)tna
k xc ∈ Γc−

(6.8)

where ξc is the local coordinate of the collocation point on element n̄. It is now

possible to use these equations to form an implementation strategy for the modelling

of crack problems:

• The enriched DBIE (Eq. (6.7)) is used for collocation on one side of each crack

face and for all non-cracked surfaces. For any elements which are enriched,

the integral given by (6.4) must be evaluated, otherwise P̃ na
ijl = 0.

• The enriched TBIE (Eq. (6.8) is used for collocation on the opposite crack faces

to which the DBIE is applied. Any enriched elements require the evaluation

of (6.6), but otherwise Ẽna
kijl = 0.

• The same degree of displacement continuity required for the DBEM is also

needed for the enriched TBIE, therefore discontinuous elements are used on

all crack surfaces.

However, before this strategy is applied, there are a few key issues that must be

dealt with before the method can be fully implemented. Primarily, these are:

1. By applying enrichment additional DOF are introduced to the system. The

use of additional collocation points was discussed briefly here as a solution,

but more thought needs to be given to the implementation of this technique.
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2. As was shown in Sec. 4.4.3, the integration of the strongly singular and hyper-

singular integrals seen in the unenriched DBIE and TBIE can be evaluated us-

ing simple analytical expressions, but with the introduction of the enrichment

functions ψu
l , these can no longer be used. Alternative integration techniques

must therefore be employed.

3. An enrichment strategy which details the number of elements which should be

enriched needs to be employed. Enriching all elements is not a feasible option

since the large increase in DOF would be costly.

The next section aims to address each of these items.

6.2 Implementation

Constructing the enriched DBIE and TBIE is relatively straightforward since, as

was shown in Sec. 6.1.1, it is merely a case of substituting the enriched displacement

relation into the relevant BIEs. However, the task of applying the method requires

some further thought and it is the goal of this section to outline the procedures that

are required to apply the enriched BEM for numerical computation.

6.2.1 Additional collocation points

The present work draws many parallels with XFEM since the same expression for

displacement enrichment is used (excluding the Heaviside enrichment functions), but

the manner in which the additional unknowns are solved for differs and is it here

that we find the methods diverge. In the XFEM, by interpolating displacements

using Eq. (5.47), those elements which are chosen to be enriched have extra terms

in their element stiffness matrices and body force vectors which are created by the

additional enrichment functions. For example, the elements stiffness matrix [Ke] is

made up of components given by

[Ke]ij =









Kuu
ij Kua

ij Kub
ij

Kau
ij Kaa

ij Kab
ij

Kbu
ij Kba

ij Kbb
ij









i, j = 1,M (6.9)

where M is the number of nodes on each element and the symbols u, a and b refer to

conventional displacement interpolation, Heaviside functions and crack tip enrich-

ment functions. The element force vector also increases in size in a similar fashion
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where further details can be found, for example, in [105]. What is important is that

in this formulation the additional DOF introduced by enrichment are accounted for

implicitly within the method; in contrast, introducing enrichment to the BEM and

DBEM does not account for the extra DOF and so it is necessary to explicitly in-

troduce additional equations. In the present method this is achieved by the use of

extra1 collocation points.

The idea of using additional collocation points to solve for additional unknowns

introduced by enrichment is not new and has been applied successfully to apply

enrichment of the BEM for wave applications by Perrey-Debain et al. [104]. In

this work a plane wave basis is introduced through the PUM that demonstrates

a substantial increase in accuracy but at the cost of calculating additional DOF

corresponding to each plane wave at an enriched node. However, by collocating at

points positioned between nodes, it is possible to obtain a sufficient number of extra

equations that relate all the boundary parameters and a square system can then be

formed.

Exactly the same technique is applied in the present work to solve for the en-

richment coefficients Ana
jl (Eq. (6.1)) and it should become clear now why such effort

was made in the formulation of the enriched BIEs to allow collocation at any general

position on an element. All that is necessary now is to determine the number and

position of these collocation points that will allow the additional coefficients to be

solved for. For this purpose, we consider two scenarios: enrichment of a flat crack

and enrichment of a curved crack.

As explained in Sec. 6.1.1, in the case of a flat crack the enrichment functions

reduce to the simple basis given by (6.2). Bearing in mind that for each enriched node

an additional coefficient will be introduced for each basis function in each direction,

the use of discontinuous quadratic elements will result in six additional DOF for each

enriched element. Therefore, since collocation produces two equations (one in each

global direction), three additional collocation points are required for enrichment of a

flat element. This is illustrated in Fig. 6.3 which shows the additional points spaced

arbitrarily between nodes for two enriched elements. In fact, since the crack is made

up of two coincident surfaces (it may be helpful to refer back to Fig. 3.17), there are

four enriched elements with three additional collocation points on each - they are

just drawn as coincident in Fig. 6.3.

Considering now the case of a curved crack, where, due to the variation in the

1that is, in addition to collocation at nodal points
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Figure 6.3: Additional collocation points for enrichment of flat crack elements

crack angle θ along each of the crack surfaces, it is possible to use all four crack

tip enrichment functions. Using the example of a discontinuous quadratic element

once again, application of enrichment to a curved element will produce a total

of twenty-four additional DOF requiring the use of twelve additional collocation

points2. Fig. 6.4 illustrates two coincident curved crack elements with enrichment

applied and containing twelve additional collocation points .

Figure 6.4: Additional collocation points for enrichment of curved crack elements

In Figs 6.3 and 6.4 which illustrate enriched elements, the additional collocation

points are positioned between nodes and spaced evenly throughout the element.

Using this strategy, an assumption has been made that the additional collocation

points are to be placed on the boundary of the problem (rather than the interior or

exterior of the domain) and that they should be placed on enriched elements (rather

than other, unenriched elements). What was found after trying other strategies was

the creation of a singular system such that, even with a special numerical solver3, a

sensible solution could not be retrieved. The technique outlined in [104] of spacing

the extra points evenly throughout enriched elements was also used but, as will be

2where each point produces two equations - one for each direction
3a singular value decomposition (SVD) technique was used
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shown in Sec. 6.3.3, as long as these points do not lie too close to one another or

to existing nodes (since this will create identical rows in the system of equations), a

valid solution is obtained.

6.2.2 Singular integration for general collocation points

An important feature of any BEM implementation is the evaluation of the singu-

lar integrals encountered when the source and field points coincide. For the en-

riched BEM, the way in which the integrals are evaluated was touched on briefly

in Sec. 4.4.4, but a more thorough explanation and justification of the technique is

given presently.

The most desirable method of evaluating singular integrals is to use analytical

expressions such as those given by Eqns (4.11) and (4.16), but when the enriched

integrals of (6.4) and (6.6) are considered, the task of obtaining analytical expres-

sions becomes more complex. Even for the simplest case of a flat crack with an

enriched element adjacent to the crack tip, the integral expressions are given by

lengthy functions (see Appendix C.7). In addition, it is found that for the case of

curved enriched elements, analytical expressions cannot be found and other methods

must be adopted. It is for these reasons that a numerical integration routine, based

on the subtraction of singularity method, is used for the evaluation of all singular

enriched integrals.

Recalling Eqn. (4.31) which allows the evaluation of hypersingular and strongly

singular integrals through the subtraction of singularity method, the expression can

be seen to rely on the determination of the functions F−2(ξ
′) and F−1(ξ

′). These non-

singular functions can be determined by using appropriate Taylor series expansions

around the source point ξ′ which, in the case of the enriched hypersingular integral

given by Eq. 6.6, are given by

F−2(ξ
′) =DS−2(ξp)Na(ξ

′)ψu
l (ξ′) (6.10a)

F−1(ξ
′) =D

[

S−2(ξ
′)

(

Na(ξ
′)h(ξ′)

dψu
l (ξ′)

dξ

+ ψu
l (ξ′)

(

h(ξ′)
dNa(ξ

′)

dξ
+Na(ξ

′)g(ξ′)

))

+ S−1(ξ
′)Na(ξ

′)h(ξ′)ψu
l (ξ′)

]

(6.10b)
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whereD is a constant and the functions S−1(ξ
′), S−2(ξ

′), h(ξ′) and g(ξ′) are algebraic

expressions involving the components r,i, n,i and the Jacobian of transformation

Jn(ξ′). A full definition of these terms is given in Appendix C.6.2. Exactly the

same technique can be used for the evaluation of the strongly singular enriched

integrals given by Eq. 6.4 where it is found, due to the lower order of singularity,

that the term F−2(ξ
′) = 0. Since these enriched integrals (P̃ na

ijl and Ẽna
kijl) are the

only new terms added to the conventional BEM and DBEM formulation, it is now

possible to evaluate all integrals for the implementation of the enriched method.

6.2.3 Enrichment strategy

The technique by which crack tip enrichment functions are included has been de-

scribed, but no mention has been made of the number of elements that should be

enriched to achieve an accurate but also efficient solution. This subject draws many

parallels with XFEM where - as was described in Sec. 5.4.1 - there are two forms

of enrichment: topological and geometrical. Out of these two choices geometrical

enrichment is preferred, since there is no dependence on the mesh density and, as

is generally accepted in LEFM, the singularity dominates a finite region surround-

ing the crack tip (see Sec. 2.4). However, as described by Bechet et al. [101] and

Laborde et al. [106] the enrichment of multiple elements may lead to ill-conditioned

matrices. As will be shown shortly, the same is found to be true in the present work

and it is necessary in the current formulation, without undue loss of accuracy, to

apply topological enrichment for the enriched BEM (see Fig. 6.5).

(a) Coarse mesh

(b) Fine mesh

Figure 6.5: Topological enrichment for enriched BEM
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6.2.4 Matrix construction

Before results are given for the application of the method, it is also useful to make

some comments on how the system of equations is formed and in particular, how

the submatrices which are used to construct the matrices H and G (Eq. (3.76))

are determined. So far indicial notation has been used primarily throughout the

formulation of the method, therefore this section may be of particular use for readers

more familiar with matrix notation.

The easiest way to demonstrate the formation of the matrices is through an

example which, in this case, is chosen to be the problem of straight edge crack in

a finite plate. By discretising the boundary with quadratic discontinuous boundary

elements and applying enrichment solely to crack tip elements, the problem can

be represented by Fig. 6.6. Since the crack is flat, it is necessary to include three

additional collocation points on each enriched element which in the present example

are positioned at coincident points on the upper and lower crack surfaces.

Figure 6.6: Edge crack problem with enrichment applied to crack tip elements

The first step in forming the matrices is to collocate at each of the nodal points

and additional collocation points around the boundary. If the point lies on any non-

crack surface or on the upper crack surface the enriched DBIE of (6.3) is used, but

in the case the collocation point lies on the lower crack surface, the enriched TBIE

of (6.5) is used instead. It may be useful to refer back to Fig. (3.17) which illustrates

this collocation strategy. Each collocation point forms two rows in the matrices H

and G (one for each source point direction x, y) where the columns within these

rows are formed by integrating over each of the elements around the boundary.
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To facilitate the construction of these matrices, the integral terms corresponding

to a particular element and collocation point are most often placed in submatrices

which can then be manipulated easily to form each row of the matrices H and G.

To illustrate this process more clearly and to show the formation of a submatrix

for an enriched element, we take the example of collocation at an additional point

on an element enriched using (6.2). Assuming the collocation point lies on the

enriched element on the upper crack surface (element nine) and using an unenriched

element for comparison, the submatrices are constructed in the manner shown in

Fig. 6.7. The notation Hn
c and Gn

c is used to denote the submatrices corresponding

to collocation point c and field element n

Figure 6.7: DBIE submatrices for general collocation point on enriched element

Comparing first the G submatrices for each element, each is of dimension 2 × 6

because, as explained previously, the assumption of traction free cracks precludes

the need for traction enrichment. The use of displacement enrichment however,

increases the size of the H submatrix for element nine to 2 × 12. In addition,

since the collocation point has been deliberately placed at non-nodal point on this

element, the jump term must be distributed amongst all the nodes as shown by the

shaded terms.

One the submatrices haven been determined, they are placed within the matrices

H and G according to the collocation number c and the element number n. Fig. 6.8

demonstrates this process and shows explicitly the creation of rows by collocation

and the formation of columns by integrating over elements. The vector u now con-

tains the enrichment coefficients Ana
jl (in addition to the conventional displacement

terms una
j ) whereas the the vector t remains unchanged. Once each of these matrices

are fully populated, it is a simple task of swapping columns to place all unknown

parameters on the LHS and multiplying the known terms on the RHS to arrive at
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the familiar relation Ax = b which can then be solved.

Figure 6.8: Construction of H and G matrices from submatrix terms

6.3 Verification and testing

Now that the various issues required for implementation of the enriched BEM have

been discussed, attention is now focussed towards numerical results to verify the

ability of the method to accurately analyse crack problems. To achieve this, the

section is split into four parts: first, the ability of the method to capture the sin-

gular crack tip field is verified; next, a comparison is made between methods for

determining SIFs; the effect of the position of additional collocation points is shown

and finally, the effect of increasing the number of enrichment elements is quantified.

At present, more focus is given to the implementation of the method - application

of the method to a variety of crack geometries is left until Chapter 8 since this will

allow for comparison with the enrichment method presented in the next chapter.

6.3.1 Enriched BIE verification

Before the enriched BEM can be applied to crack problems to evaluate the accuracy

of the method, it is first necessary to ensure that the enriched BIEs are capable

of capturing the displacement and traction field encountered around a crack. To

do this, the problem of a centre crack within an infinite plate is used where a

certain region surrounding one of the crack tips (see Fig. 6.9a) is used to create a

boundary mesh (eg. Fig. 6.9b). Using Eqns (2.36) and (2.37) and setting KI = 1.0

(arbitrarily) and KII = 0, the exact displacements and stresses can be found around

the entire boundary for the problem. In addition, by noting that the crack tip

displacement in this problem is equal to zero (una
j = 0), the values of each of the

enrichment coefficients Ana
jl in Eq. (6.1) can be found exactly by comparing the

appropriate enrichment functions of (5.48) with expressions (2.37). Enriching every
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element around the boundary and substituting in the exact values for Ana
jl and tna

j ,

the LHS and RHS of Eq. (6.3) can be evaluated at each of the collocation points

and compared. If the boundary integrals are evaluated to sufficient accuracy, then

the difference between LHS and RHS should approximately equal zero (to machine

precision), and if this is not the case, then any integration inaccuracies will be

highlighted. Implementing the above strategy shows that for all collocation points

around the boundary, including additional collocation points, the enriched BIEs are

capable of capturing the singular field with differences between the LHS and RHS

in the order of 5 × 10−5%. We can therefore be confident that the enriched BEM

is capable of capturing the singular field around a crack tip. In order to assess the

accuracy of the method however, it is necessary to formulate the problem in such

a way that certain variable over part of the boundary remain unknown, and this is

what the discussion focusses on next.

(a) Selected region surrounding crack
tip in infinite plate

(b) Example boundary mesh of
selected region

Figure 6.9: Discretisation of uniaxially loaded infinite plate problem

If the exact displacements for the infinite plate problem are prescribed on all non-

crack boundaries and zero tractions are specified on the crack itself, then the crack

displacements become unknowns. It is then possible, by comparing the results of

both the unenriched and enriched formulations to the known solution, to investigate

the effects of including enrichment and quantify the improvements seen in accuracy.

The mesh used for the analysis is shown in Fig. 6.10a where four elements per line

were used and only the elements adjacent to the crack were enriched. Exactly the

same mesh was used in the unenriched case, with no crack elements enriched. By

plotting the displacements of the nodes nearest to the crack tip (since these are most
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affected by the singularity) it is possible to see the effects of including enrichment.

Fig. 6.11 shows that the enriched displacements match the exact values closely

whereas the unenriched values, as the crack tip is approached, diverge from the exact

solution. However, even although it is apparent from this figure that enrichment is

capturing the singular field of the crack tip, it is still necessary to assess the accuracy

of the method in determining SIFs, since accurate evaluation of these parameters is

crucial in fracture mechanics. Therefore, using the same problem, attention is now

drawn to the evaluation of SIFs using different techniques.

(a) Four elements per line
(coarse mesh)

(b) Twelve elements per line
(fine mesh)

Figure 6.10: Boundary meshes used for infinite plate problem

Figure 6.11: Crack tip displacement comparison for infinite plate problem
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6.3.2 SIF determination

In Sec. 2.6.1 the technique of using displacements along the crack to determine SIFs

was outlined, but it was also noted that the method often presents difficulties in ob-

taining a single value for the SIF. Nevertheless, the method is still useful in providing

an assessment of SIF accuracy for both the unenriched and enriched formulations

and it is used presently for this purpose. The same infinite plate problem as imple-

mented in Sec. 6.3.1 (where exact displacement boundary conditions are specified on

all non-cracked boundaries) was used to carry out four simulations: two unenriched

analyses where a coarse and fine mesh were used with four and twelve elements on

each line respectively, two enriched analyses with a coarse and fine mesh (using the

same number of elements as before) and enriching only the crack tip elements. Sub-

stituting the nodal displacements Eq. (2.62a), the mode I SIF can be determined

for each of the nodes along the crack. Fig. 6.12 illustrates the results of each of the

simulations. Two important comments can be made about this figure:

• A clear improvement in accuracy is seen once enrichment is introduced - the

unenriched SIFs diverge from the exact solution as the crack tip is approached

while the enriched SIFs remain consistently accurate

• Comparing the fine and coarse mesh results for the enriched implementation

the results are accurate for both meshes. The enrichment is therefore achieving

the desired result of obtaining higher accuracies for fewer degrees of

freedom

A much more robust method of calculating SIFs, and one which is used widely in

numerical fracture mechanics, is that of the J-integral as described in Sec. 2.6.2.

Defining a set of circular integration paths centred at the crack and numbered as

shown in Fig. 6.13, it is possible to evaluate the J-integral for each and determine

the mode I SIF using expression (2.68) (noting that for this problem, KII = 0).

The reason for evaluating the integral multiple times over different paths is to verify

the path-independence of the method and to give confidence in the determined SIF

value. Fig. 6.13 also illustrates the placement of integration points around each of the

circular paths which allows, using an appropriate integration rule (eg. trapezoidal

rule, Gaussian quadrature), the J-integral to be evaluated. The implementation

of this procedure outlined in [24] which evaluates SIFs using the DBEM (with no

enrichment) uses a total of twelve integration points using the trapezoidal rule but, as

will be shown shortly, this does not represent the converged value of the J-integral
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Figure 6.12: Comparison of enriched and unenriched mode I SIF using nodal dis-
placements

and more integration points (or a higher-order quadrature routine) are required.

Taking the case of the unenriched DBEM first, a coarse mesh of four elements per

line was used while the J-integral was evaluated using an increasing number of

integration points varying from ten to fifty. The results for each of the integration

paths are shown in Fig. 6.14 which, after inspection, allow a few points to be made

on the J-integral convergence. Firstly, there is a notable difference between paths

two and three compared to all others which is attributed to errors in integration

as the points are positioned very close to the boundary; Sec. (7.3.1) gives a much

more comprehensive investigation into this. Paths four to eight are consistent with

one another and convergence is achieved at approximately thirty points. If the

same analysis is applied to the enriched DBEM, the results shown in Fig. 6.15 are

obtained where, once again, a clear difference between paths two and three and

the others is seen. At first glance it appears that there is a much larger variation

between the results of paths four to eight (compared to the unenriched analysis),

but after comparing the y-axis scales of Figs 6.14 and 6.15, it can be seen that

in fact, the results of the enriched analysis show much less variation. The results

converge at approximately thirty integration points except for paths two and four:

in the case of path two the integration path is so small that as the number of points

increases, eventually they lie at locations close to the boundary resulting in nearly-
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singular integrals (see Sec. 4.2) which affect the accuracy; path four converges at

approximately fifty points but, comparing this value with that obtained at thirty

points for example, the change in value can be seen to be minimal. The following

recommendations can therefore be made for the implementation of the J-integral

in the DBEM: if circular integration paths centred at the crack tip are used then

those paths which do not start/finish on the crack tip elements will yield the most

accurate results; if the trapezoidal rule is used, then it is recommended to use more

than thirty integration points.

The J-integral was applied, in the same manner as before, using four tests to

assess the effect on the SIF after introducing enrichment: a coarse and fine mesh

using no enrichment and a coarse and fine mesh with enrichment only applied to

elements adjacent to the crack tip. Exactly the same meshes as used for displacement

extrapolation were applied. Fig. 6.16 demonstrates the results obtained for each of

the analyses and after inspection, some conclusions can be drawn:

• As expected, all four meshes show slightly less accurate results for paths two

and three while for paths four to eight, the path independence of the integral

is demonstrated clearly .

• A large improvement in accuracy is seen once enrichment is introduced for

both the coarse and fine meshes.

• Accurate results are seen for both the fine and coarse meshes in the enriched

analyses.

Figure 6.13: Definition of J-integral paths for SIF determination

6.3.3 Placement of additional collocation points

Sec. 6.2.1 explained the technique of using additional collocation points to solve for

the additional unknowns introduced through enrichment where it was proposed that
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Figure 6.14: Convergence of J-integral for various integration paths using unen-
riched DBEM

Figure 6.15: Convergence of J-integral for various integration paths using enriched
DBEM
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Figure 6.16: Comparison of unenriched and enriched KI values evaluated using J-
integral

these should be placed on enriched elements and spaced evenly between nodes. The

reasoning behind this placement strategy can be explained twofold: intuitively, the

points should be positioned near the nodes that are enriched rather than far away

where the singularity has little effect; secondly, placing the points on or near existing

nodes will create a singular system and should be avoided. The objective of this

section is to demonstrate that this strategy is the most appropriate for collocation

point placement with the aid of numerical results.

To demonstrate the effect of additional collocation point placement, the infinite

plate problem with Dirichlet boundary conditions imposed on all non-crack bound-

aries was used. The plate was modelled with a coarse mesh of four elements per

line (Fig. 6.10a) with enrichment only applied to the elements adjacent to the crack

tip. First, the additional collocation points were placed on the elements next to

the enriched elements (which are themselves unenriched) and placed at positions

as indicated in Fig. 6.17a to investigate the effect of moving the additional points

further away from the enrichment. What is immediately apparent is the significant

effect on the conditioning of the system where, even for this example where the

additional points are relatively close to the enriched elements, condition numbers in

the order of 1021 are seen. Tests were also carried out with additional points placed

outside the problem domain (a technique which has been implemented by Berger
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et al. [107]) but these too showed similar detrimental effects on the conditioning of

the system. In contrast, placement of additional points within enriched elements

had a much smaller influence on the conditioning where, using the same example as

before but placing the points as in Fig. 6.17b, a much smaller condition number of

order 1010 was experienced. It was therefore decided that all future analyses should

include additional collocation points within enriched elements.

(a) Outside enriched elements (b) Inside enriched elements

Figure 6.17: Effect of global position of additional collocation points

The second series of tests investigated the effect of the collocation point place-

ment within enriched elements by changing the local coordinates of the additional

points. Since only the elements adjacent to the crack tip were enriched, only six

additional points (three for each element) were required and these were placed at

coincident points on the upper and lower crack surfaces. A variety of collocation

point positions were tested while the mode I SIF was determined for each (using

the J-integral with path four) to illustrate the effect on accuracy. The results are

shown in Table 6.3. The first four tests show that the position of the points has

little effect on the accuracy, even when they are positioned close together or close

to nodal points. In addition, the condition number of the system remains largely

unchanged. The last four tests investigate the effect as one of the additional points

approaches a nodal point and, as expected, the conditioning of the system is af-

fected. A Gaussian elimination solver can be used in the first of these tests, but as

the point is moved closer to the nodal position, the SVD solver needs to be employed

(as signified by the dashed line). Even so, sensible results are still obtained and it is

only when machine precision is approached that the accuracy begins to deteriorate.

There is therefore a large degree of flexibility on the placement of the collocation

points within the enriched elements and there can be confidence in the strategy of

placing the points evenly spaced between nodes.

6.3.4 Effect of enrichment zone size

One of the features of enriching the approximation through the PUM is the ability

to extend the zone of enrichment and therefore capture the crack tip singularity
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Table 6.3: Effect of collocation point placement (local coordinates)

Collocation positions ξ KI % error Condition Numbera

-0.8,-0.3,0.8 0.999444 0.0556 6.80 × 1010

-0.6,-0.5,-0.4 0.999397 0.0603 4.73 × 1012

-0.6,-0.5,0.65 0.999445 0.0555 3.65 × 1011

-0.67,-0.1,0.65 0.999511 0.0489 1.18 × 1012

-0.8,1e-3,0.8 0.999520 0.0480 8.03 × 1012

-0.8,1e-6,0.8 0.999520 0.0480 8.04 × 1015

-0.8,1e-9,0.8 0.998912 0.1088 1.06 × 1019

-0.8,1e-12,0.8 0.998912 0.1088 1.71 × 1021

adashed line signifies point after which SVD solver must be used

with greater accuracy. What is expected is that as the number of enriched elements

increases, the error in SIF should decrease but, of course, with an associated cost of

computing additional enrichment coefficients. To determine the effect of increasing

enrichment five meshes ranging from four elements to twelve elements per line were

used to model a flat crack within an infinite plate. For each mesh the number

of enriched elements was increased from zero (unenriched) to the case where all

elements on the crack faces were enriched. To allow comparison between different

mesh densities the following expression is used to normalise the number of enriched

elements

N̄enr =
number of enriched elements

number elements on crack faces
(6.11)

where, using the coarse mesh of four elements per line as an example, N̄enr = 0.25

for enriching the crack tip elements (Fig. 6.18a) and N̄enr = 1 for all elements on the

crack faces enriched (Fig. 6.18b). The J-integral with path four (Fig. 6.13) was used

to determine the SIF with the results for each mesh shown in Fig. 6.19. Inspection of

the results shows that initially the error in SIF is reduced as enrichment increases for

each mesh, but as enrichment is applied to greater numbers of elements this is not

necessarily true. For low mesh densities with large numbers of enriched elements no

problems are encountered, but for high mesh densities with many enriched elements

the accuracy deteriorates. In fact, the results for the mesh with twelve elements

per line diverge so much from the solution that they are not plotted here. To
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(a) Crack tip elements enriched

(b) Full enrichment of crack faces

Figure 6.18: Varying enrichment over crack faces

understand what is happening in these simulations it is beneficial to calculate the

condition number as the number of enriched element increases. Fig. 6.20 illustrates

the results for the coarse and fine meshes with four and twelve elements per line

respectively and it is immediately apparent that the conditioning of the system is

affected significantly by enrichment (the y axis is plotted with a log scale). Close

inspection shows that by comparing the condition numbers between the coarse and

fine meshes with no enrichment applied a difference of approximately an order of

magnitude is seen. Noting that each point as we move from left to right along

each of the plots in Fig. 6.19 signifies two additional enriched elements (one on each

crack surface), it can be seen this this order of magnitude difference is maintained

between equal numbers of enriched elements. Therefore, it can be deduced that

the main contribution to the adverse conditioning of the system is the number of

enriched elements while, in comparison, the effect of increasing the mesh density is

negligible.

Referring back to the enrichment strategies known as geometrical and topologi-

cal enrichment (Sec. 5.4.1) it becomes clear that, with the knowledge that there is

a detrimental effect on the conditioning of the system as the number of enriched

elements is increased, topological enrichment is preferred in the current implemen-

tation. If geometrical enrichment is employed, then as the mesh density increases

the number of enriched elements also increases and may reach a critical number

at which the accuracy of the solution degrades. Topological enrichment, however,

gives control over the number of enriched elements (and therefore the conditioning

of the system) lending more confidence to the results. For this reason, all future

applications of the method apply enrichment using the topological strategy
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Figure 6.19: SIF accuracy for increasing enrichment

Figure 6.20: Effect of increasing enrichment on condition number
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6.3.5 Curved crack

Finally, since all of the previous analyses have been concerned with a flat crack that

(as explained in Sec. 6.2.1) reduce the enrichment basis to a single simple function,

it is useful to consider the case of a curved crack that will make use of the complete

enrichment basis. Before any assessment of accuracy was made by comparing with

analytical solutions, the ability of the method to incorporate the multiple basis

functions was first tested. To do this, a finite plate containing a circular crack

(Fig. 6.21a) was modelled with a coarse mesh of four elements per line (Fig. 6.21b)

and enrichment was applied only to the elements adjacent to the crack tip. Since

the full basis of enrichment functions may be used, a total of twenty-four additional

collocation points (twelve for each enriched element) were placed on the enriched

elements and spaced evenly as in Fig. 6.4. The [exaggerated] displacements along

each of the crack faces for unenriched and local PUM enriched analyses are shown in

Fig. 6.22 where it can be seen that the unenriched displacements display the expected

profile while in contrast, the enriched implementation is showing erroneous results.

Since Sec. 6.3.4 demonstrated that enrichment can have a detrimental effect on the

conditioning of the system, the condition numbers of the unenriched and enriched

implementations are compared (Table. 6.4) and, as can be clearly seen, there is

a very significant effect after introducing enrichment. For such an ill-conditioned

system, even the use of a SVD solver is unable to produce sensible results.

Table 6.4: Condition numbers for unenriched and enriched implementations of
curved crack problem

Method Condition Number

unenriched 4.52 × 106

enriched 2.40 × 1022

6.4 Remarks

The implementations have shown that great improvements in accuracy are obtained

when enrichment through the PUM is applied to the BEM, but a recurring theme

which occurs throughout all the results is the effect enrichment has on the condi-

tioning of the system. The effect becomes so detrimental in the case of a curved

crack that no sensible results can be obtained. Therefore, the impetus to arrive at
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(a) Problem dimensions and loading (b) Boundary element mesh

Figure 6.21: Curved crack in a finite plate

Figure 6.22: Exaggerated displacements along crack faces for enriched and unen-
riched analyses of curved crack problem
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an alternative form of enrichment which does not affect the singularity of the system

is great, and it is for this reason that a new implementation, which precludes the

need for additional collocation points, is now presented.



Chapter 7

Enriched BEM with combined

basis (global formulation)

As demonstrated in Chapter 6, the application of enrichment through the PUM to

the BEM/DBEM brought large increases accuracy for a small number of introduced

degrees of freedom, thus demonstrating a significant improvement over the conven-

tional BEM/DBEM implementation. However, the use of a large number of enriched

elements or the implementation of a curved crack had a detrimental effect on the

conditioning of the system which, in many cases, led to a solution of poor quality.

To provide a solution to these problems, this chapter introduces an alternative form

of enrichment which has little effect on the conditioning of the system and includes

only two additional degrees of freedom. In addition, the implementation of the

method is simplified, since it precludes the need for additional collocation points.

Instead, it significantly reduces the number of introduced unknowns and formulates

additional boundary integral equations from the crack tip solution; this leads to a

restriction that only a single crack tip can be modelled using the method. In much

the same manner as before, a detailed outline of the formulation is given first and

then, by using an exact reference solution, the ability of the method to capture the

singularity of a crack tip is verified and compared against the unenriched formula-

tion. In addition, the much more favourable conditioning of the system is illustrated

which allows (in contrast to the previous method of enrichment) application of the

technique to a curved crack problem.

152
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7.1 Formulation

The previous enrichment formulation described in Sec. 6.1.1 included the required

singular crack tip field through the use of appropriate basis functions and the Par-

tition of Unity Method. Instead, it is also possible to include enrichment with a

combined form of the basis functions seen in Eqn. (5.48) in a fashion very similar to

that implemented by Benzley (Sec. 5.3.3). In this way, only two additional degrees

of freedom - which correspond to mode I and mode II fracture - are introduced and

these take the form of enrichment coefficients. Furthermore, it is also possible, by

subtracting off the nodal values of the shape functions, to return nodal displace-

ments and SIFs directly which eliminates the need to carry out a post-processing

routine. This section describes both forms of interpolation and, once these have

been included in the DBIE and TBIE, the procedure by which two additional BIEs,

derived from the first-order terms of Williams crack tip solution (Eqns (2.25) and

(2.26)), is described.

7.1.1 Enriched displacement interpolation

To arrive at the expression for enriched displacements, it is necessary to use the

first-order terms of Eqn. (2.26) to express crack tip displacements as

uj = KIψ
u
Ij(ρ, θ) +KIIψ

u
IIj(ρ, θ) (7.1)

where the the usual mode I and II SIFs are present and the combined enrichment

functions ψu
Ij and ψu

IIj are given by

ψu
Ix =

1

2µ

√

ρ

2π
cos(θ/2)[κ− 1 + 2 sin2(θ/2)] (7.2a)

ψu
IIx =

1

2µ

√

ρ

2π
sin(θ/2)[κ+ 1 + 2 cos2(θ/2)] (7.2b)

ψu
Iy =

1

2µ

√

ρ

2π
sin(θ/2)[κ+ 1 − 2 cos2(θ/2)] (7.2c)

ψu
IIy = − 1

2µ

√

ρ

2π
cos(θ/2)[κ− 1 − 2 sin2(θ/2)] (7.2d)

Expression (7.1) on its own gives the required crack tip displacement field, but to

allow any arbitrary displacement field to be approximated (which may contain rigid
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body motion), it is necessary to reformulate this as

uj =
M
∑

a=1

Nau
a
j + K̃Iψ

u
Ij + K̃IIψ

u
IIj (7.3)

which is very similar to that given by Eqn. (5.38). By including the nodal terms

ua
j in this fashion, the terms K̃I and K̃II do not correspond to SIFs but rather,

they represent enrichment coefficients for each fracture mode. Therefore, to return

real displacements, these coefficients must be multiplied by the relevant enrichment

functions (Eqns 7.2) and then combined with the terms ua
j , which can be interpreted

as displacements representing rigid-body motion of the crack tip. Since the correct

crack tip displacement behaviour is included in this formulation, it is expected, in

much the same manner as the PUM formulation, that more accurate results will be

obtained for crack problems once this expression is substituted into the DBIE and

TBIE for the crack tip displacement approximation.

7.1.2 Alternative enriched interpolation - direct SIF output

The interpolation procedure outlined in the previous section showed that the nodal

values ua
j did not represent real displacements and an additional calculation was

required to obtain the correct result. Instead, an alternative form of interpolation,

and one that was successfully implemented by Benzley (Eqn. (5.38)), is to subtract

off the nodal values of the enrichment functions, thereby returning real displacements

and, more importantly, stress intensity factors. Using the same notation as in the

previous section, this is achieved by interpolating displacements in the following way

uj =
M
∑

a=1

Nau
a
j +KI

M
∑

a=1

Na

(

ψu
Ij − ψ̄u

Ija

)

+KII

M
∑

a=1

Na

(

ψu
IIj − ψ̄u

IIja

)

(7.4)

where the function ψ̄u
lja denotes the value of the enrichment function ψu

lj at node a.

The ability of this interpolation to return real displacements is obtained by the use of

the functions Na

(

ψu
lj − ψ̄u

lja

)

(l = I, II) which not only equal zero at node a, but also

equal zero at all other nodal points on the element. To illustrate this more clearly,

the enrichment function ψu
Iy(ξ), shown in Fig. 7.1a, is taken over a flat discontin-

uous element (lying adjacent to the crack tip) and then combined with the shape

function for node a = 1 to arrive at the required interpolation function, illustrated

in Fig. (7.1b). From this, it can be clearly seen that the enrichment function passes

through zero at each of the nodal points and thus, the second and third terms of
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Eqn. (7.4) will disappear at nodal points. However, even although the direct output

of displacements is useful, what is even more beneficial when interpolating displace-

ments in this manner is the ability to return KI and KII directly (rather than nodal

enrichment coefficients) precluding the need for post-processing routines. But be-

fore post-processing routines can be discarded altogether, the accuracy of the SIFs

returned directly must be assessed and compared with other methods. The details

and results of such a study are outlined in Sec. 7.3.2.

(a) Enrichment function for flat crack, θ = π

(b) Enrichment interpolation function for node 1

Figure 7.1: Enrichment interpolation for direct direct SIF output

7.1.3 Enriched DBIE and TBIE

The previous two sections outlined enriched displacement approximations that can

be used to capture the singular field experienced around a crack tip, but to arrive

at an enriched BEM/DBEM formulation, it is necessary to substitute these expres-

sions into the displacement BIE and traction BIE given by Eqns (3.68) and (3.83)

respectively. This is exactly the same procedure as carried out for the PUM enrich-
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ment, but with some fundamental differences. Before, to solve for the additional

DOF created by enrichment, the PUM enrichment method made use of additional

collocation points that provide extra relations between the boundary parameters.

Because of this, it was necessary to formulate the BIEs in such a way that collo-

cation could take place at any arbitrary point on the boundary (not necessarily at

nodal points). In contrast, the present method makes no such demand since, as will

be shown in Sec. 7.2.1, the enrichment coefficients are combined into just two terms

and these can be solved for by two appropriately formed BIEs.

With the assumption that collocation only occurs at nodal points, the enriched

DBIE can be formed by substituting either the displacement approximation given by

Eq. (7.3) or (7.4) (in the case of direct SIF output) into Eq. (3.68). For illustration,

only the approximation given by (7.3) will be applied here since the task of applying

the second displacement approximation is almost identical. Following the same

procedure as for the PUM enrichment, the enriched DBIE is given by

Cij(x
′)
(

uj(x
′) + K̃lψ

u
lj(x

′)
)

+

Ne
∑

n=1

M
∑

a=1

P na
ij u

na
j +

Ne
∑

n=1

M
∑

a=1

P̃ na
ijl K̃l =

Ne
∑

n=1

M
∑

a=1

Qna
ij t

na
j ,

l = I,II. (7.5)

The terms P na
ij and Qna

ij are the same as Eqns (3.69a) and (3.69b) while P̃ na
ijl is given

by

P̃ na
ijl =

∫ 1

−1

Na(ξ)Tij[x
′,x(ξ)]ψu

lj(ξ)J
n(ξ)dξ (7.6)

if element n is enriched or P̃ na
ijl = 0 otherwise. Unlike Eq. (6.3) where shape functions

were used to distribute the jump term Cij , allowing collocation at any general point

on the boundary, no shape functions are present in the first term of (7.5) since

additional collocation points are not required. Meanwhile, for the implementation

of the DBEM, the TBIE is enriched in exactly the same manner by substituting

expression (7.3) into the discretised TBIE given by (3.83). This can then be written

as

1

2
tj(x

′) + ni(x
′)

Ne
∑

n=1

M
∑

a=1

Ena
kiju

na
k + ni(x

′)

Ne
∑

n=1

M
∑

a=1

Ẽna
kijlK̃l

= ni(x
′)

Ne
∑

n=1

M
∑

a=1

F na
kijt

na
k (7.7)



7.1. Formulation 157

where

Ẽna
kijl =

∫ 1

−1

Na(ξ)Skij[x
′,x(ξ)]ψu

lk(ξ)J
n(ξ)dξ (7.8)

if element n is enriched or Ẽna
kijl = 0 otherwise.

Now that the enriched BIEs have been described, the system of equations can

be formed - in exactly the same manner as described in Sec. 6.1.2 - by collocating

around the boundary but taking care to use different BIEs on each side of the crack

surface. Replacing x′ with xc in Eqns (7.5) and (7.7), and arbitrarily choosing the

enriched DBIE for the upper crack surface Γc+ while the enriched TBIE is used on

the lower crack surface Γc− (it may be useful to refer back to Figs 3.16 and 3.17),

the system of equations can be written as

Cij(x
c)
(

uj(x
c) + K̃lψ

u
lj(x

c)
)

+
Ne
∑

n=1

M
∑

a=1

P na
ij (xc)una

j

+
Ne
∑

n=1

M
∑

a=1

P̃ na
ijl (x

c)K̃l =
Ne
∑

n=1

M
∑

a=1

Qna
ij (xc)tna

j xc ∈ ΓR ∪ Γc+ (7.9)

and

1

2
tj(x

′) + ni(x
′)

Ne
∑

n=1

M
∑

a=1

Ena
kij(x

c)una
k

+ ni(x
′)

Ne
∑

n=1

M
∑

a=1

Ẽna
kijl(x

c)K̃l = ni(x
′)

Ne
∑

n=1

M
∑

a=1

F na
kij(x

c)tna
k xc ∈ Γc− (7.10)

This marks the end of the enrichment formulation, but before we move on, it is

useful to make some key points relating the present procedure to the previous form

of enrichment and the tasks that are required to fully implement the method:

• The introduction of enrichment functions to singular and hypersingular inte-

grals (P̃ na
ijl and Ẽna

kijl) requires the use of a special numerical integration routine.

Although analytical expressions can be derived, they are limited in their ap-

plication and cannot be used for curved elements. An integration procedure

capable of evaluating general singular and hypersingular integral was presented

in Sec. 6.2.2 and exactly the same routine is used in the present work.

• Eqns (7.9) and (7.10) allow a system of equations to be formed, but these

do not provide a sufficient number of relations to solve for the additional un-

knowns K̃I and K̃II. It has been mentioned briefly before that additional
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BIEs, formed from the crack tip solution, are used to provide the extra rela-

tions, but a description of how they are formed and the process by which they

are implemented is now required.

7.2 Implementation

With the introduction of only two additional degrees of freedom, the current en-

richment formulation demonstrates a simplification over the previous method of

enrichment since no additional collocation points are required and, correspondingly,

the system of equations is reduced in size. What will be shown here is the construc-

tion of two additional BIEs formed from the crack solution which, when used in

conjunction with the enriched BIEs given in the previous section, creates a simple

procedure that can be easily implemented.

7.2.1 Additional crack tip BIEs

To explain the use of the crack-tip displacements and stresses as fundamental solu-

tions, Betti’s reciprocal theorem, which can be used to derive the BEM, is recalled.

Denoting two separate states as (ui, ti) and (u∗i , t
∗
i ) and ignoring body forces, Betti’s

reciprocal theorem can be written as

∫

Γ

t∗jujdΓ =

∫

Γ

u∗jtjdΓ (7.11)

where both integrals are taken along the boundary of the domain. Conventionally,

the state (u∗i , t
∗
i ) is chosen to correspond to Kelvin’s point force solution in an infinite

domain where certain assumptions are made about the behaviour of the material

(i.e. linear elasticity). Instead, the crack-tip solution for displacements and tractions

can be used where u∗j is given by Eq. (7.1) and t∗j can be expressed as

t∗j = KIψ
t
Ij(ρ, θ) +KIIψ

t
IIj(ρ, θ) (7.12)

where the functions ψt
Ij and ψt

IIj are determined from the stresses given by Eqns (2.36)

and the relation ti = σijnj (see Appendix D.1). Then, by arbitrarily choosingKI = 1

and KII = 0, an addition BIE is formulated

∫

Γ

ψt
Ij(ρ, θ)ujdΓ =

∫

Γ

ψu
Ij(ρ, θ)tjdΓ (7.13)
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This can be discretised using shape functions and summing over all elements to give

Ne
∑

n=1

M
∑

a=1

V na
Ij u

na
j =

Ne
∑

n=1

M
∑

a=1

W na
Ij t

na
j (7.14)

where

V na
Ij =

∫ 1

−1

Na(ξ)ψ
t
Ij(ξ)J

n(ξ)dξ (7.15a)

W na
Ij =

∫ 1

−1

Na(ξ)ψ
u
Ij(ξ)J

n(ξ)dξ (7.15b)

The second additional BIE is derived in exactly the same manner but instead using

the values KI = 0 and KII = 1. However, before Eq. (7.14) can be applied to

the enriched formulation, expression (7.3) must be substituted for uj. This can be

written as
Ne
∑

n=1

M
∑

a=1

V na
Ij u

na
j +

Ne
∑

n=1

M
∑

a=1

Ṽ na
Ijl K̃l =

Ne
∑

n=1

M
∑

a=1

W na
Ij t

na
j (7.16)

where the additional term Ṽ na
Ijl is expressed as

Ṽ na
Ijl =

∫ 1

−1

Na(ξ)ψ
t
Ij(ξ)ψ

u
lj(ξ)J

n(ξ)dξ (7.17)

except for unenriched elements where Ṽ na
Ijl = 0.

In this way two additional BIEs are formed allowing the solution of the extra

DOF K̃I and K̃II.

7.2.2 Matrix construction

Now that each BIE has been described, it is useful to explain how the matrices

H and G are constructed from submatrix terms in exactly the same manner as

described in Sec. 6.2.4 for PUM enrichment. The fundamental difference however, is

the combination of all enrichment coefficients into two additional unknowns K̃I and

K̃II (orKI andKI in the case of direct SIF output) requiring no additional collocation

points. Construction of the matrices can be described using the same example of a

plate with a flat edge crack (Fig. 3.14) in which enrichment is applied to elements

adjacent to the crack tip. The collocation point xc is taken to lie at each nodal point

in turn where, if the point lies on any non-crack surface or the upper crack surface,

the enriched DBIE of (7.5) is used. If the point lies on the lower crack surface, then
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the enriched TBIE (7.7) is used. Taking elements eight and nine as an example where

the collocation point is chosen to lie on the first node of element nine, the submatrices

for the enriched DBIE can be constructed as shown in Fig. 7.2a. The submatrices Hn
c

and Gn
c are formed in exactly the same manner as in the unenriched DBEM while

the enrichment terms are grouped together in the submatrix H̃n
c . Inspection of the

terms A,B,C and D reveals that, due to the summation of the integral terms for each

local node, it is not necessary to perform the integral of (7.6) for each local node

- instead, the integration could be simplified by omitting the shape function and

performing only one integral. However, implementing this into an existing DBEM

computer routine may prove to be more costly than simply evaluating each nodal

term and performing a summation.

In a very similar fashion, the additional BIEs (7.16) can be included by con-

structing a series of submatrices Vn, Wn and combining all enrichment terms into

a submatrix Ṽn (Fig. 7.2b). But, in contrast to the previous submatrix terms, since

the additional BIEs do not correspond to a particular collocation point, these are

only evaluated once for each element. Fig. 7.3 illustrates how the matrices H and

G can then be constructed by substituting in the submatrix terms Hn
c , Gn

c and H̃n
c

for each collocation point xc (thus forming multiple rows) while the matrices Vn,

Wn and Ṽn are placed at the bottom of the matrix (arbitrarily). The symbol +=

denotes that a submatrix is added to any existing values in the matrix and there-

fore, for any particular row in the matrix H, all the enrichment terms corresponding

to that collocation point (or additional BIE) will be accumulated in the last two

columns. For example, the present model applies enrichment to elements nine and

ten and therefore, the last two columns in the matrix H will be made up of H̃9
c+H̃10

c

(or Ṽ9+Ṽ10). Finally, once the matrices are fully populated after collocating at each

nodal point in turn, all unknowns are taken to the LHS while all known parameters

are taken to the RHS thus forming the familiar system of equations Ax = b which

can then be solved.

7.3 Verification and testing

With the details of implementation now covered, it is necessary, using exactly the

same procedure as for the previous method of enrichment (6.3.1), to verify that the

method is capable of capturing the exact crack tip solution. Therefore, a portion of

an infinite plate containing a straight centre crack and subject to a uniaxial stress

(Fig. 6.9a) is modelled using a boundary element mesh where exact displacements
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(a) H and G submatrices formed by collocation

(b) Submatrices for additional BIEs

Figure 7.2: Construction of submatrices for combined enrichment method
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Figure 7.3: Construction of H and G matrices from submatrix terms for combined
enrichment method

and tractions can be prescribed on all boundaries. If all elements around the bound-

ary are enriched, then the displacement at each node is given by Eq. (7.3) where

the terms ua
j , K̃I and K̃II can be found from the exact crack solution. In fact, since

the terms ua
j represent rigid body motion of the crack tip, they equal zero for the

infinite plate problem and the coefficients K̃I and K̃II are equal to the real SIFs

(set arbitrarily to KI = 1.0 and KII = 0). Imposing these boundary conditions and

comparing the LHS and RHS for each of the collocation points, it is found, as be-

fore, that both sides are equal (to machine precision) with differences in the order of

10−5%. We can therefore be confident that, assuming no conditioning problems are

encountered in solving the system of equations, the method will be able to capture

the singularity experienced at a crack tip.

The next step is to assess the ability of the method to solve a more realistic

scenario where parameters on part of the boundary remain unknown and need to

be solved for. Like before, the problem of an infinite plate1 can be formulated in

this way by imposing the exact displacement boundary conditions on all non-crack

boundaries (using Eqns (2.37) and letting KI = 1.0 and KII = 0) and zero tractions

on crack faces. Using exactly the same mesh as for the previous form of enrichment

where four elements are used on all lines and spaced equally throughout (Fig. 6.10a),

an initial qualitative assessment of the ability of the method to capture the crack tip

singularity can be made by comparing displacements along the crack faces. Fig. 7.4

illustrates the results of an unenriched DBEM analysis (using the same mesh) and

the results from the present enrichment strategy where only the crack tip elements

are enriched. The inclusion of enrichment is clearly improving accuracy, particularly

as the crack tip is approached, and exhibits results very similar to the previous form

of enrichment (see Fig. 6.11). This confirms that enrichment is achieving its goal of

1This problem continues to be used to allow comparison with exact solutions
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Figure 7.4: Crack tip displacement comparison for combined enrichment and unen-
riched DBEM

higher accuracies for a small number of introduced DOF, but by themselves these

results are not especially useful since it is the value of the SIFs - whose accuracy is

paramount in fracture design - that we are most concerned with. For this reason,

the discussion now focusses on the accurate evaluation of these parameters.

7.3.1 J-integral SIF determination

The simplest technique of obtaining SIFs is through displacement extrapolation

where a rearranged form of the crack tip displacements given by Eqns (2.37) can be

used. However, as shown by Fig. 6.12, it is often not clear what value represents the

best approximation and in some cases it is difficult to make any sensible approxima-

tion (particularly in the case of quadratic approximations). Therefore this method

is not used here but instead, the much more robust J-integral method, which has

been applied successfully to the previous form of enrichment, is employed.

Using a set of circular integration paths centred at the crack tip and starting

and finishing at nodal points (Fig. 6.13), the mode I SIFs can be determined using

Eq. (2.68) (since KII = 0). Two meshes were used for comparison: a coarse mesh

of four elements per line and a fine mesh with twelve elements per line (Figs 6.10a

and 6.10b) where only the crack tip elements were enriched in each case. Fig. 7.5

illustrates the results for both the unenriched and enriched analyses where a large

improvement is seen once enrichment is applied. The difference between the coarse
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and fine meshes for the enriched analyses is minimal, but this is only because both

results [for paths four to eight] are so accurate. For example, path four of the coarse

mesh gives KII = 0.999969064 while the fine mesh, using the same integral path,

gives a slightly more accurate value of KII = 0.9999726713; it is only because there is

such a large improvement in accuracy that these values appear coincident. However,

one feature of the plot which requires further thought, and which was actually

demonstrated in the previous form of enrichment (Fig. 6.16), is the discrepancy

between the results obtained from the first two paths (two and three) and each of

the others. To explain the reason behind this, it is necessary to investigate in more

detail the J-integral values obtained from these paths.

Figure 7.5: SIF comparison of unenriched and combined basis enrichment using the
J-integral

In the present implementation, each of the J-integral paths consists of a series of

points at which the integrand of Wnx − tiui,x is evaluated and then integrated over

the entire path using an appropriate integration technique. The number of points can

be varied, and it is expected that as this number increases, the resulting SIF should

approximate the correct value more closely. However, Fig. 7.6, which illustrates the

SIFs for the enriched coarse mesh with varying numbers of J-integral points, shows

that this is not necessarily always the case. Path four shows the expected result

where the error in the SIF decreases as the number of points increases, although

at a large number of points the error increases. Path three shows an altogether
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completely different trend where the error in the SIF actually increases as the number

of points increases. To explain these features, we examine the values of the integrand

as we move around each of the integral paths ΓJ .

Figure 7.6: SIF dependence on number of J-integral points - combined enrichment

Taking the case of path four first (which we know demonstrates more accurate

results), the computed values of the integrand can be plotted along ΓJ and compared

to the known exact solution which is found using Eqns (2.36), (2.37) and (3.14)

while noting that the outward pointing normals around a circle are given by simple

trigonometric functions. The computed values for ten and fifty points are shown in

Figs 7.7a and 7.7b where it can be seen that both sets of results compare favourably

with the exact solution and explain the high accuracy of SIFs for this path. The

results for path three are illustrated in Figs 7.8a and 7.8b where close inspection

reveals the reason for the decrease in accuracy at higher number of J-integral points.

For the case of ten points, all the computed values lies close to the exact profile, but

in the case of fifty points, the values diverge from those expected at the beginning

and end of the integral path. This is due to the combination of two effects:

• As the integration path decreases in size the internal points along the path

move close to the boundary

• As the number of J-integral points is increased along the path, the proximity

to the boundary is increased further
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Therefore, since the kernels which are used to evaluate σij and εij are of O(1/r2),

the closer the internal points move to the boundary the larger the inaccuracies

introduced by nearly-singular integrals (Sec. 4.2). The values obtained in Figs 7.7

and 7.8 were obtained using high-order Gauss-Legendre quadrature which can be

seen to be insufficient for the smaller integral paths and it is therefore necessary,

either through the use of sub-elements or another technique such as the subtraction

of singularity technique illustrated in [108] or a transformation [58], to accurately

evaluate the nearly-singular integrals.

(a) 10 J-integral points

(b) 50 J-integral points

Figure 7.7: Comparison of computed and exact values for J-integral - path four

Lastly, since all the previous plots of the J-integral have used data from en-

riched analyses, it is useful to compare these with that obtained with an unenriched

implementation. Fig. 7.9 illustrates the values obtained for an unenriched analysis

using the coarse mesh of four elements per line and path four of the J-integral using

fifty internal points. A direct comparison can therefore be made with the enriched
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(a) 10 J-integral points

(b) 50 J-integral points

Figure 7.8: Comparison of computed and exact values for J-integral - path three
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analysis shown in Fig. 7.7b. Fig. 7.9 can be imagined as split into four parts cor-

responding to the quadrants of the circular integration path: the second and third

parts show a close correspondence with the exact result while the first and fourth

demonstrate a sizeable difference. The reason for this can be explained once again

by noting that the kernels used for stress and strain evaluation at internal points

contain singularities that become more pronounced as the boundary is approached.

The difference is not, however, created by a failure to integrate nearly-singular inte-

grals with sufficient accuracy, but is instead created by the inaccurate displacements

along the crack faces which, when multiplied by the Skij kernel in (3.59), magnifies

the error. A sensible question may be to ask why all four sections of the plot are not

affected by this inaccuracy, but this can be answered simply by realising that the

first and fourth quadrants of the integration path are closest to the crack boundary

(which is where the errors arise) while the second and third are further away and

less affected.

Figure 7.9: Comparison of computed and exact values for J-integral with no enrich-
ment - path four

7.3.2 Direct SIF output

As an alternative to the J-integral technique, the present method is also capable of

producing SIFs directly if the interpolation scheme outlined in Sec. 7.1.2 is used.

This has an obvious advantage over the J-integral since no post-processing is re-

quired - the values can simply be obtained from the solution vector x - but to assess

the accuracy of this technique, a direct comparison needs to be made with the results

obtained with the J-integral. The infinite plate example was used with initially four

elements per line which was increased in steps of two up to a total of twelve elements
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per line. In both methods enrichment was applied to the crack tip elements. The re-

sults are shown in Fig. 7.10 where only the J-integral results of path four are shown

to allow for a clear comparison. What can be concluded from this plot is that, even

Figure 7.10: Comparison of J-integral and direct SIF output

though the direct output is capable of evaluating the SIF with an approximate error

of 2.5%, the results obtained through the J-integral are far superior. Of course, the

cost of obtaining these highly accurate results is the use of a post-processing routine

that requires additional computation due to evaluation of stresses and strains at

internal points, but the importance of SIF accuracy makes this procedure worth-

while. To give an idea of the proportion of the total computational time which is

taken up by the J-integral evaluation, Tbl. 7.1 quantifies the runtimes for the BEM

analysis and J-integral routine for both the coarse and fine meshes. It should be

noted that each of the analyses used a fixed number of Gauss points and therefore

considerable computational savings could be made if an adaptive integration proce-

dure was implemented. All results were obtained on a dual core 2.20 GHz processor.

The results show that the J-integral post-processing routine is comparable to BEM

analysis time and, as expected, there is a linear relationship between the J-integral

runtime and the number of internal points. But what is most important is that the

extra runtime required to achieve highly accurate results through the J-integral is

not unreasonable and, in the author’s opinion, entirely justifiable.
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Table 7.1: Comparison of runtimes for coarse and fine meshes and J-integral post-
processing routine

J-integral analysis(s)
Mesh Enriched BEM analysis(s)b 10pts 20pts 30pts 40pts 50pts
Coarse 2.50 0.89 1.66 2.53 3.06 3.78
Fine 23.06 2.24 4.84 7.44 9.19 12.00

bMeshing and solution of system of equations (excludes J-integral)

7.3.3 Effect of enrichment zone size

Just like the previous form of enrichment, the present method allows the zone of

enrichment to be extended over multiple elements and therefore, as the zone of

enrichment is increased, accuracy should improve. In this case, the cost of enriching

additional elements is to compute extra integral terms that contribute to the last two

columns of the A matrix, but it is found during implementation that for most cases

the additional effort required to compute the enriched integrals once the unenriched

integrals have already been determined is negligible, and enrichment can be extended

easily. The same tests used to determine the effect of increasing enrichment on the

PUM enrichment were used where the infinite plate example was modelled using a

boundary mesh varying from four to twelve elements per line. Using Eqn. (6.11),

the number of enriched elements was varied from N̄enr = 0 (no enrichment) to

N̄enr = 1 (crack faces fully enriched) and, as before, path four of the J-integral

was used to determine KI. Fig. 7.11, which shows the results from each of the

analyses, illustrates a few key features. The first point note is that the results

appear to converge to a value that is incorrect - in fact, the converged value is

approximately 0.99997 and the difference is only created due to the high accuracy

of all the plotted results. But what is common amongst each of the meshes is the

convergence achieved as the number of enriched elements is increased and this, in

contrast to the PUM enrichment, is seen for all mesh densities. As described in

Sec. 6.3.4, as the number of enriched elements increases in the PUM enrichment,

there is a direct effect on the conditioning of the system which becomes so severe

that at high values of N̄enr and high mesh densities, no sensible solution can be

found. In contrast, the current method of enrichment has a negligible effect on the

conditioning of the system. This can be shown by plotting the condition numbers

for the coarse and fine meshes as N̄enr increases (Fig. 7.12). This shows a rise in

the condition number from no enrichment to enrichment of the crack tip elements,

but as N̄enr increases further, no further rises are seen. Importantly, the values for
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Figure 7.11: Effect on SIF for increasing enrichment - combined basis method

Figure 7.12: Condition numbers for combined basis enrichment with coarse and fine
meshes
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both meshes are relatively low which prevents the need for a special numerical solver

routine - a conventional Gaussian elimination solver can be used for all cases - and

this represents a significant advantage over the previous form of enrichment.

7.3.4 Curved crack analysis

As discovered in Sec. 6.3.5, the previous form of enrichment encountered difficulties

when modelling curved cracks due to the large condition numbers experienced once

enrichment was introduced. The present strategy has been shown to have a much

smaller effect on the conditioning of the system and it is therefore expected that

the same problems will not be encountered when the method is applied to a curved

crack problem. As a first step in the verification of the method, the problem of a

curved crack within a finite plate can be modelled (Fig. 6.21) where inspection of

displacements along the crack face will reveal any irregularities. Applying a coarse

mesh of four elements per line (Fig. 6.21b) and applying enrichment only to the

crack tip elements, the crack face displacements are shown in Fig. 7.13 where the

displacements obtained from an unenriched analysis using the same mesh are also

plotted for comparison. By comparing this displacement plot with that obtained

using the PUM enrichment strategy (Fig. 6.22) it is clear that the current enrich-

ment strategy is producing a much more sensible displacement profile. However,

even though the enriched implementation demonstrates the expected displacement

profile, it is not possible to assess the accuracy of the method since no exact solution

is given for displacements around a curved crack. Instead, by employing the ana-

lytical solution given by Muskhelishvili [13] for a curved crack in an infinite domain

which states exact values for stress intensity factors, it is possible to quantify the

improvements seen once enrichment is introduced.

Fig. 7.14 illustrates the problem of a curved crack within an infinite domain

subject to a biaxial load which, if the loading, geometry and material properties

are as described, is found to have exact values for J1=0.06592 and J2=-0.04661

(where J1 and J2 are defined by Eq. (2.76)). These values can also be represented

in terms of SIFs (using relations 2.68 and 2.77), but for the purposes of this study

there is little need to do so - we are simply interested in accuracy of the method

which can be readily found using the computed values of J1 and J2. However, in

contrast to all previous implementations of the J-integral where only the value of

J1 (J) was determined, the presence of a curved crack necessitates the use of the

procedure described in Sec. 2.6.3 due to the presence of a non-zero integral term



7.3. Verification and testing 173

Figure 7.13: Exaggerated displacements for curved crack for unenriched and en-
riched analysis

found along the crack faces. Recalling Eqn. (2.80) which is the expression used to

numerically determine both J1 and J2, the first integral term was evaluated by taking

a circular integration path (centred at the crack tip) which started and finished at

nodal points on the crack surface (Fig. 7.15). In addition, the integral is taken

over the crack surfaces (as shown in Fig. 2.18) requiring the definition of a cutoff

radius R which must take multiple values to allow Λ to be evaluated by a least-

squares routine. In the present implementation five values were chosen as R=0.01l,

0.015l, 0.02l, 0.025l, 0.03l which are of the recommended order as described in [37].

To approximate an infinite plate, a boundary mesh with dimensions L=40mm and

w/2=20mm was used where an equal number of elements was applied to each line

(Fig. 7.16a shows an example boundary mesh of six elements per line) while in the

case of the enriched analysis, the elements adjacent to the crack tip were enriched

(Fig. 7.16b). A convergence study was performed in which the number of elements

on each line was increased from four to sixteen with the results obtained for J1 and

J2 using path four illustrated in Figs 7.17 and 7.18 respectively. In addition, to

illustrate the difference between different integral paths, Figs 7.19 and 7.20 show

the results for integral paths two to eight for the enriched analyses (the results for

the unenriched analyses are shown in Appendix E.1).

Clearly, the introduction of enrichment brings an increase in accuracy which
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Figure 7.14: Curved crack within an infinite domain subject to a biaxial load -
problem definition

Figure 7.15: Definition of J-integral paths for curved crack (path three shown)
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(a) Boundary element mesh - six el-
ements per line

(b) Crack surface mesh with
enriched elements

Figure 7.16: Boundary element mesh for curved crack problem

is evident in both J1 and J2, although it appears that at convergence an error is

obtained in both values - an explanation for this will be given shortly. Turning

now to the results for differing integral paths, path independence is demonstrated

for paths four to eight (for both J1 and J2) while paths two and three demonstrate

results which differ from the other paths. The reason for this is exactly the same as

that given for flat cracks in Sec. 7.3.1 - the close proximity of internal integration

points to the boundary results in errors that are accumulated in the Jk-integral. But

the most important point which is realised from these results is the obvious benefit

of using enrichment where, for only two additional degrees of freedom, a significant

increase in accuracy is obtained.

It was mentioned previously that, even although the results obtained through

the enriched implementation show higher accuracies than the unenriched implemen-

tation, the values for J1 and J2 did not converge to the exact values. It is useful to

investigate the source of this error, and to do this, it is necessary to recall the crack

tip functions which are used as weighting functions to solve for the extra unknowns

(Eqns (7.2) and (D.1.1)). The expressions, in fact, are taken from the solution of

a flat crack and it soon becomes clear that the application of these functions to a

curved crack will introduce a certain error. However, with the increase in accuracy

illustrated in the previous results this error must be small, and it is possible to show

that this is the case by performing a study on the additional boundary integrals,

using a variety of curved crack geometries.

In Sec. 7.2.1, it was explained that two additional boundary integral equations

could be obtained by substituting the exact solution for displacements and tractions
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Figure 7.17: Comparison of unenriched and enriched J1 values for increasing mesh
density

Figure 7.18: Comparison of unenriched and enriched J2 values for increasing mesh
density



7.3. Verification and testing 177

Figure 7.19: J1 path independence for enriched curved crack analysis

Figure 7.20: J2 path independence for enriched curved crack analysis
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(a) Rc=20mm (b) Rc=50mm

Figure 7.21: Curved crack geometries for error study

around a flat crack for u∗j and t∗j in Eq. (7.11). If we presume that there exists

a solution for displacements and tractions around a curved crack, and these are

denoted by the functions ψ̂u
Ij and ψ̂t

Ij (for mode I), then an additional BIE can be

written as
∫

Γ

ψ̂t
Ij(ρ, θ)ujdΓ =

∫

Γ

ψ̂u
Ij(ρ, θ)tjdΓ (7.18)

or
∫

Γ

ψ̂t
Ij(ρ, θ)ujdΓ −

∫

Γ

ψ̂u
Ij(ρ, θ)tjdΓ = 0 (7.19)

where uj and tj are the displacements and tractions for a curved crack problem.

Since the curved crack solution does not exist, the flat crack solution is used instead

which, when applied to a curved crack problem, will introduce an error e as

∫

Γ

ψt
Ij(ρ, θ)ujdΓ −

∫

Γ

ψu
Ij(ρ, θ)tjdΓ = e (7.20)

Therefore, to determine the value of e, it is a requirement to find a solution to a

curved crack problem (uj, tj). Ideally, this should be an exact solution, but, as men-

tioned before, this does not exist and can only be approximated by an unenriched

DBEM analysis using a fine mesh. The present study used the curved crack example

illustrated in Fig. 6.21 with a mesh of sixteen elements per line. Then, to demon-

strate the effect of an increasing crack radius (flatter crack), the integrals seen in

Eq. (7.20) were evaluated for crack radii varying from 20mm to 50mm (Figs 7.21a

and 7.21b) in steps of 5mm with a flat crack also evaluated to allow for comparison.

The values of each integral term with the associated error are shown in Table 7.2

with the errors also plotted for each mode in Fig. 7.22 for clarity.

As expected, the error for both modes decreases as the the crack becomes flat-

ter, with the the mode II values showing a more prominent decrease. Inspecting the

values for the flat crack (Rc=∞) where it is expected that the error should approx-

imately equal zero, it is clear (especially for mode II) that this is not the case. This

is caused by inaccuracies in integration and the inability of the unenriched DBEM
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Table 7.2: Comparison of additional boundary integrals and errors for application
of flat crack solution to curved crack with varying crack radius

Mode I Mode II

Rc

∫

Γ
ψt

IjujdΓ
∫

Γ
ψu

IjtjdΓ
∣

∣

∣

e
max(I1

I ,I2
I )

∣

∣

∣

∫

Γ
ψt

IIjujdΓ
∫

Γ
ψu

IIjtjdΓ
∣

∣

∣

e
max(I1

II,I
2
II)

∣

∣

∣

(mm) (I1
I ) (I2

I ) (I1
II) (I2

II)

20 0.29619 0.29367 0.00851 0.69011 0.68481 0.00767
25 0.33954 0.33727 0.00668 0.66225 0.65917 0.00465
30 0.36591 0.36389 0.00551 0.63556 0.63371 0.00292
35 0.38360 0.38179 0.00472 0.61299 0.61188 0.00181
40 0.39625 0.39461 0.00414 0.59426 0.59364 0.00104
45 0.40573 0.40423 0.00370 0.57866 0.57840 0.00046
50 0.41309 0.41170 0.00337 0.56557 0.56557 0.00001
∞ 0.47039 0.46984 0.00115 0.42500 0.42640 0.00328

Figure 7.22: Relative error in additional boundary integral equations for increasing
crack radius
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analysis to capture the crack tip singularity - the most likely source of the inaccuracy

- but what is most important is the relative magnitude between the integral terms

and the values of e. The large difference reveals that the error introduced when

using the flat crack solution in a curved crack problem is small and explains why

good results are obtained when implemented. However, as is clear from Fig. 7.22,

as the crack radius is decreased the introduced error increases in value.



Chapter 8

Method comparison and

application

The previous two chapters outlined two methods of applying enrichment to the

BEM/DBEM that allow accurate SIFs to be determined for fracture problems, but

no direct comparison has been made between each technique. This first section of

this chapter provides two comparisons: the first is the infinite plate problem (with

an exact solution) used in Chapters 6 and 7 and the second is the edge crack problem

in a finite plate. In addition, results obtained using the unenriched DBEM are also

given. Leaving the details for later, it is found that the local PUM enrichment

strategy in fact provides a more accurate and versatile procedure for modelling flat

cracks. For this reason, the local PUM strategy is used to demonstrate the accuracy

for a variety of mode I flat crack problems (centre crack and double edge crack)

and mode II flat crack problems (slanted edge crack, slanted centre crack in a finite

domain and slanted crack in an infinite domain). Of particular interest is the centre

crack within an infinite domain where a comparison is made with results obtained

using XFEM.

The curved crack problem is then considered again to allow comparison with

published FEM results where, due to the conditioning problems experienced by the

local PUM strategy for curved crack problems, the global enrichment strategy is

used. Finally, since no justification has been given for the use of the J-integral over

the contour integral outlined in Sec. 2.6.4, a comparison these two methods is made

and conclusions drawn.

181
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8.1 Local versus global enrichment formulations

8.1.1 Infinite plate problem - method comparison

In Secs 6.3.1 and 7.3 the problem used to demonstrate the improvement in accuracy

seen once each form of enrichment was introduced was that of a crack contained in

an infinite plate. Since the problem is exact, an accurate assessment can be made

on the error in SIFs, and this was carried out for each type of enrichment. Each

showed an improvement over the conventional DBEM implementation (which uses

quadratic elements), but so far no mention has been made on the relative accuracy

of the two enrichment methods. Therefore, using the same infinite plate problem

and determining the mode I SIF error for each method, the relative errors can be

compared. To allow for a fair comparison, only the crack tip elements were enriched

in each method while in all analyses, the elements were spaced evenly (Fig. 6.10a).

In each step of mesh refinement, the number of elements on each line was increased

while no mesh grading was used throughout the analysis. The results for the three

methods (unenriched, local PUM enrichment and global enrichment formulation)

are presented in Fig. 8.1. Since the two methods of enrichment introduce additional

Figure 8.1: Comparison of error in stress intensity factor for methods of enrichment
- infinite plate problem
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DOF1, this variable is used as a measure of mesh refinement. All three results

show the expected reduction in error as the mesh is refined but with a significant

difference between the unenriched and enriched analyses. For a very coarse mesh

of two elements per line the results are comparable, but as the mesh is refined

further, there is approximately an order of magnitude improvement. Of course, this

comes at the price of additional DOF introduced by enrichment, but this is vastly

outweighed by the improvement in accuracy. Interestingly, the results obtained with

local enrichment formulation outperform the global enrichment formulation.

8.1.2 Edge crack in finite plate comparison - method com-

parison

The second problem which is used to provide a comparison between each enrichment

formulation while also comparing against the commonly used quarter-point elements

(Sec. 5.1.1) is that of an edge crack in an infinite plate (Fig. 8.2a). This problem

has been analysed by Civelek and Erdogan [109] for a variety of crack lengths (a/w)

with the results obtained from the study used here as a reference. The present study

carried out five analyses to compare the improvement seen once enrichment is in-

troduced. These included: unenriched DBEM, DBEM with quarter-point elements,

local PUM enrichment, global enrichment with the J-integral and global enrichment

with direct output. To investigate the effect of increasing the mesh density, the num-

ber of elements on each line was increased from two to twelve with no mesh grading

used (the mesh for four elements per line is shown in Fig. 8.2b). All methods (except

for the direct SIF output) used the J-integral with path four (Fig. 6.13) and a total

of thirty integration points. In the case of enrichment being applied, only the ele-

ments adjacent to the crack tip were enriched (Fig. 8.3a) while the implementation

of quarter-point elements required the use of discontinuous quarter-point elements,

as shown in Fig. 8.3b.

The exaggerated displacement profile of an analysis run with four elements per

line and the local PUM enrichment strategy is illustrated in Fig. 8.4 while, to allow

a comparison to be made between the accuracy of each method, the normalised

SIFs for each mesh are shown in Fig. 8.5. Interestingly, the use of QP elements

has a marginal improvement in accuracy for low mesh densities but actually ensures

the method converges to the correct value (in contrast to the unenriched DBEM).

1two for each enriched node in the PUM enrichment and two for the global system in the
combined enrichment
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(a) Problem geometry (b) Example bound-
ary mesh

Figure 8.2: Edge crack under uniaxial tension

(a) Enrichment of crack tip ele-
ments

(b) Discontinuous quarter-point
elements

Figure 8.3: Crack tip elements for edge crack example
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Once enrichment is introduced, however, the accuracy is improved greatly and this

is seen even for very coarse meshes. In the case of direct SIF output, the results

obtained do not demonstrate the same high accuracy as those obtained through the

J-integral (this was also shown in Sec. 7.3.2) and it is therefore recommended to use

the J-integral over direct SIF output.

Lastly, to demonstrate the path independence of the J-integral after applying

enrichment using the local PUM formulation, the normalised SIFs for paths two to

eight are shown in Tbl. 8.1 for a variety of crack lengths. The results were obtained

with a coarse mesh of four elements per line in which no grading was used. Paths

four to eight are consistent with one another for all crack lengths while paths two

and three, for the reasons explained in Sec. 7.3.1, show values which differ slightly.

Figure 8.4: Exaggerated displacement plot for edge crack problem

Table 8.1: Mode I normalised stress intensity factors for edge crack problem (4 ele-
ments/line) - varying crack length and J-integral path using local PUM
enrichment formulation

J-integral path
a/w 2 3 4 5 6 7 8 Ref.

0.2 1.498 1.499 1.496 1.497 1.497 1.497 1.497 1.488

0.3 1.855 1.855 1.852 1.852 1.852 1.853 1.853 1.848

0.4 2.328 2.328 2.325 2.325 2.325 2.325 2.326 2.324

0.5 3.011 3.011 3.007 3.007 3.006 3.007 3.007 3.010

0.6 4.151 4.151 4.145 4.144 4.143 4.144 4.145 4.152

The two examples illustrated in this section show quantitatively that introducing

enrichment has a large improvement in SIF accuracy where, in the case of the
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Figure 8.5: Comparison of normalised mode I SIFs for edge crack problem

infinite plate problem, this can be seen to be approximately an order of magnitude

improvement. In the second example, both the enriched formulations were shown

to outperform quarter-point elements with an even greater improvement over the

unenriched implementation.

If a choice is to be made between the enriched local PUM formulation and

global formulation it is sensible to make a decision based on the results obtained

using the infinite plate example since this compares against an exact solution (in

contrast to the finite plate problem). Therefore, it appears that if the problem being

analysed is a flat crack2, the local PUM enrichment should be preferred if accuracy

is paramount. Moreover, a second, slightly more subtle difference between the two

enrichment strategies also contributes to the choice of the local PUM enrichment for

future flat crack examples. The global enrichment formulation relies on the use of

additional BIEs which are derived from the first order terms of the Williams solution.

Therefore, since only two additional BIEs can be used (corresponding to mode I and

II fracture), a square system can only be formed for a single crack tip. Because the

local PUM enrichment formulation does not exhibit such a limitation, multiple crack

tips can be enriched and the method provides a more versatile approach; for these

2The problems encountered with curved cracks using the local PUM formulation were illustrated
in Sec. 6.3.5
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reasons the local PUM approach is used in the next two sections.

8.2 Mode I fracture applications

(local PUM enrichment)

8.2.1 Centre crack in a semi-infinite plate

The previous problem considered a crack to lie within a finite plate, but it is also

useful to analyse the problem of a centre crack within a semi-infinite plate (Fig. 8.6)

since this is known to have an exact solution. Tada et al. [8] note that for a finite

plate with h/w ≥ 3, the plate can be regarded as a good approximation to the

semi-infinite plate problem. To confirm this, and also to verify the accuracy of the

enriched BEM against the analytical solution, a series of tests was carried out with

an increasing h/w ratio while keeping a constant value of a/w = 0.5. The first set of

tests used models varying from h/w = 2 to h/w = 3 with eight elements per line for

all meshes (see Figs 8.8a and 8.8b) and all elements adjacent to crack tips enriched.

However, by using a constant number of elements on side faces that increase in

length, certain inaccuracies arise that are most easily explained by inspecting a plot

of nodal displacements. Fig. 8.7 shows the exaggerated displacements obtained from

an enriched analysis with attention given to the displacement profile on one of the

side faces, adjacent to one of the crack tips. As the crack opens and creates a void,

the side faces must move in creating a profile that is poorly modelled if a coarse mesh

is used. Therefore, by using a fixed number of elements on these side faces, as h/w

increases the length of the elements used to capture this displacement profile will

also increase, leading to a detrimental effect on accuracy. An alternative strategy is

required.

The second set of tests applied a graded mesh, where the sizes of the elements

on the side faces were chosen to grade down to the same order of length as those

on the crack faces. This ensured that the correct displacement profile was captured,

regardless of the length of the side faces (see Figs 8.9a and 8.9b). The normalised

mode I SIF was determined using the J-integral with the integral taken over path

four, as defined in Fig. 6.13 where the results from both sets of analyses, including

those using the unenriched DBEM, are shown in Fig. 8.10.

The first point to note - which is relevant to both the enriched and unenriched

analyses - is the difference between the ungraded and graded meshes as the h/w

ratio increases. For the ungraded meshes the normalised SIF actually increases as
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Figure 8.6: Centre crack within a semi-infinite plate
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the plate increases in length (contradictory to what is expected) and this is explained

by the use of large elements on the side faces near the crack tips. Using a graded

mesh provides a much better convergence, and this is seen in both the unenriched

and enriched analyses. The improvement once enrichment is introduced is clear,

and at convergence, the enriched analysis obtains a normalised SIF of 1.1870 with

an error of 0.025%.

Figure 8.7: Nodal displacements for semi-infinite centre crack problem

(a) h/w = 2 (b) h/w = 3

Figure 8.8: Boundary meshes for semi-infinite plate problem - no mesh grading
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(a) h/w = 2 (b) h/w = 3

Figure 8.9: Boundary meshes for semi-infinite plate problem - graded mesh

Figure 8.10: Normalised mode I SIFs for centre crack within a semi-infinite plate
and increasing h/w ratio
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8.2.2 Double edge crack

Another standard problem which is often used to evaluate SIF accuracy is that of

the double edge crack problem (Fig. 8.11a) for which accurate results for a variety

of crack lengths are given by Tada et al. [8]. This problem is useful since, in contrast

to the edge crack problem seen in Sec. 8.1.2, two crack tips are present, each with

an associated singular field. This presents a particular challenge since, as the cracks

increase in length (increasing a/w ratio), the singular crack tip fields approach one

another and it becomes increasingly difficult to capture the correct displacement

and stress fields.

(a) Problem geometry (b) Example bound-
ary mesh

Figure 8.11: Double edge crack under uniaxial load

Figure 8.12: Enrichment of crack tip elements for double edge crack problem

To assess the improvement seen once enrichment is introduced, the problem was

modelled with a coarse mesh of four elements per line (Fig. 8.11b) for a variety of

crack lengths varying from a/w=0.2 to 0.9 (the height of the plate remained constant

at h/w=2). In each, the J-integral was used to evaluate SIFs over the integral paths

defined in Fig. 6.13. In the case of enriched analyses, the PUM enrichment strategy

was applied with all elements adjacent to a crack tip enriched as shown in Fig. 8.12.
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An example displacement profile (exaggerated for clarity) is illustrated in Fig. 8.13

while the results for both the unenriched and enriched SIFs obtained using path

four3 are shown in Fig. 8.14. From this, it can be seen that close agreement with the

reference solution is seen for crack lengths a/w=0.2 to 0.5 for both the unenriched

and enriched implementations. But once the crack lengths are extended beyond

this, the results obtained using the unenriched DBEM start to diverge from the

reference solution which is explained by the use of quadratic interpolation to model

the singular fields. In contrast to this, the enriched formulation follows the reference

solution for all crack lengths and shows that, even when the crack tips lie very close

to one another, the interpolation scheme used is capable of capturing the singular

field.

Figure 8.13: Exaggerated displacement profile for double edge crack

8.3 Mixed mode fracture applications

(local PUM enrichment)

All the previous flat-crack implementations (including the method verifications in

Chapters 6 and 7) have used geometries that exhibit only mode I fracture. This

limits the number of crack problems that can be analysed and therefore, to illustrate

that the local PUM enrichment strategy is capable of capturing the singular field

for both modes I and II, the results for a number of mixed-mode fracture problems

are outlined here.

3except for a/w=0.9 where, due to the close proximity of the crack tips, path three was used
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Figure 8.14: Comparison of normalised stress intensity factors for increasing crack
length - double edge crack

8.3.1 Slant edge crack

The slant edge crack (Fig. 8.15a) is a commonly used specimen for fracture testing

and is found in many stress intensity factor handbooks [8]. In addition, accurate

results are given by Wilson [110] using the boundary collocation method (Sec. 2.5.1)

to provide SIFs for both mode I and II for a variety of crack lengths a/w and angles

β. Using these results as a reference, two sets of analyses were carried out: first,

an unenriched DBEM analysis was carried out using a coarse mesh of four elements

per line (Fig. 8.15b) for crack lengths varying from a/w=0.3 to 0.6 and β = 45◦; the

second carried out an enriched analysis using exactly the same geometry and mesh

but with enrichment applied to the elements adjacent to the crack tip. The PUM

enrichment strategy was employed throughout while SIFs were evaluated using the

decomposed J-integral routine with path four (see Fig. 6.13). Normalised SIFs for

each analysis are illustrated in Figs 8.16a and 8.16b with the results by Wilson

plotted for comparison.

Inspection of the results shows that for each crack length (excluding a/w = 0.3 for

KII) the enriched results agree more closely with Wilson for both modes of fracture.

This illustrates that the enrichment implementation is capable of producing accurate

solutions for both mode I and mode II fracture which could not be verified with any
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(a) Problem geometry (b) Example
boundary
mesh

Figure 8.15: Slanted edge crack problem

of the previous crack geometries. Finally, to verify the accuracy of the enriched

implementation for different crack angles, the same analysis was carried out for

β = 62.5◦ with the results present in Fig. 8.17 alongside the results of Wilson. Good

agreement is seen for all crack lengths and crack angles.

To provide reference values for normalised SIFs, Appendix E.2 tabulates the

values for crack angles β = 45◦ and β = 62.5◦ for crack lengths varying from

a/w = 0.3 to a/w = 0.6 for a mesh of eight elements per line (at which point

convergence was achieved) with the PUM enrichment strategy applied to crack tip

elements.

8.3.2 Inclined centre crack

The second mixed mode problem analysed was that of an inclined centre crack

within a finite plate (Fig. 8.18a) for which accurate results have been published by

Murakami [111]. In addition, the problem was analysed by Portela et al. [24] using

the DBEM where no special form of interpolation or enrichment was employed

to take account of the crack tip singularity. However, before comparison is made

with these results, it is useful to quantify the improvement seen once enrichment is

introduced to the current DBEM implementation. Three sets of tests were run: the

first used no enrichment, the second used enrichment on only one of the crack tips

and the third used enrichment on both crack tips. In each, no mesh grading was

used while the number of elements on each line of the model was increased from
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(a) Mode I SIF comparison

(b) Mode II SIF comparison

Figure 8.16: Comparison of unenriched and enriched SIFs for β = 45◦ and varying
a/w
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Figure 8.17: Comparison of mode I and II SIFs for slant edge crack with varying
crack angle β and crack length a/w

four to twelve - Fig. 8.18b illustrates an example mesh with four elements per line.

For the enriched models, enrichment was applied through the PUM (Chapter 6)

while only those elements adjacent to the crack tip were chosen to be enriched.

Figs 8.19a and 8.19b illustrate this enrichment strategy applied to the meshes with

one and two crack tips enriched respectively. The model dimensions were chosen

such that h/w = 2, a/w = 0.5 and β = 45◦ and normalised SIFs were obtained

using the decomposed J-integral routine (Sec. 2.6.2) using the rightmost crack tip

in each case - the integral was therefore always taken over a contour surrounding an

enriched crack tip.

The undeformed and deformed4 nodal positions are shown in Fig. 8.20 for the

mesh with both crack tips enriched. The J-integral results taken over path four (see

Fig. 6.13) are shown in Figs 8.21 and 8.22 for mode I and II respectively. The ex-

pected improvement in accuracy after introducing enrichment is illustrated in both

plots but, in contrast to previous analyses where only one crack tip has been en-

riched, the improvement after taking account of the singularity at both crack tips is

also demonstrated. The results for mode I show that a large improvement in accu-

racy is seen over the single crack tip enrichment and, importantly, high accuracies

4For clarity, the displacements have been exaggerated
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(a) Problem geometry (b) Example boundary
mesh - four ele-
ments per line

Figure 8.18: Inclined centre crack in a finite plate

(a) One crack tip enriched (b) Two crack tips enriched

Figure 8.19: Crack face meshes for inclined centre crack with enrichment applied
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are seen for all meshes. The mode II results show a similar trend, although it ap-

pears that both enriched results converge to a different value (∼ 0.5456) compared

to the reference value (0.546). However, this is because the reference value is only

prescribed to three significant figures - if a more accurate solution were available,

then it is believed that the results would show a correct convergence.

Figure 8.20: Undeformed and deformed nodal positions for inclined centre crack

It was noted previously that the same problem was analysed by Portela et al.

using the DBEM with quadratic interpolation and, in addition, the same J-integral

decomposition technique with circular integration paths was used to determine SIFs.

Therefore, it is possible to compare both the accuracy and path-independence of the

results with that of the present enriched formulation. The implementation in [24]

used a total of 36 quadratic elements on the boundary with 6 used on each side of the

crack face and, in contrast to the present implementation, the elements were graded

towards the crack tip. Using the same example as before with h/w = 2, a/w = 0.5

and β = 45◦, the results for each of the J-integral paths (both implementations

use the same path definitions) are shown in Figs 8.23 and 8.24 where, to allow for

comparison, meshes of four and six elements per line were used with enrichment

applied to both crack tips. These show an improvement in accuracy for all integral

paths, but what is most interesting is the improvement in path independence which

can be seen for both modes of fracture. Finally, the method was used to determine

SIFs for varying angles of β and crack length (a/w) using converged results obtained

using a mesh of eight elements per line. The results for a crack length of a/w = 0.5
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Figure 8.21: Comparison of unenriched and enriched normalised mode I SIFs for
inclined centre crack

Figure 8.22: Comparison of unenriched and enriched normalised mode II SIFs for
inclined centre crack
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Figure 8.23: Normalised mode I SIFs for different J-integral paths - inclined centre
crack

Figure 8.24: Normalised mode II SIFs for different J-integral paths - inclined centre
crack



8.3. Mixed mode fracture applications (local PUM enrichment) 201

are shown in Fig. 8.25 while those for crack lengths of a/w = 0.2, 0.3, 0.4 and 0.6

are given in Appendix E.3.

Figure 8.25: Normalised SIFs for inclined centre crack with a/w = 0.5 and varying
crack angle

8.3.3 Inclined crack within an infinite domain

The last mixed mode problem to be considered (containing a flat crack) is that

of a crack inclined at an angle β within an infinite domain under uniaxial load

(Fig. 8.26a). The problem is particularly useful since an analytical solution is given

for mode I and II SIFs which can be expressed as

KI = σ
√
πa cos2 β (8.1a)

KII = σ
√
πa sin β cosβ (8.1b)

But most importantly, the same problem has been analysed using the XFEM by

Bordas et al. [112] which allows (bearing in mind the significant differences between

a domain-based and boundary-based method) a comparison to be made between

SIF accuracy.

In the XFEM analysis of [112] the problem was modelled with a finite plate

(Fig. 8.26b) with dimensions of 2h = 2w = 10mm and a = 0.5mm to approximate
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(a) infinite domain
problem

(b) finite domain approxi-
mation

(c) example boundary
element mesh

Figure 8.26: Inclined centre crack in an infinite domain under uniaxial load

that of the infinite plate problem. They used 1520 triangular elements throughout

the domain and determined SIFs using a domain integral with varying radii. The

present comparison uses the best results of the XFEM analysis which were obtained

with a domain integral radius ratio of rd/hlocal = 2.5 (rd is the domain integral radius

and hlocal is the size of the crack tip element). The enriched BEM analysis used the

PUM enrichment strategy outlined in Chapter 6 with elements adjacent to crack

tips enriched (Fig. 8.19b) and the decomposed J-integral to determine SIFs. The

analysis was carried out with a coarse mesh of four elements per line (Fig. 8.26c)

since any subsequent mesh refinement had little effect on accuracy. It should be

noted that no mesh grading was used. Exactly the same plate dimensions were used

as for the XFEM implementation with the results obtained using integration path

four shown in Tbl 8.2 alongside the XFEM results to allow for comparison.

Table 8.2: Comparison of normalised SIFs obtained through XFEM and enriched
DBEM for inclined crack in an infinite plate (% errors shown in brackets)

XFEM Enr. DBEM
β(◦) Mode I Mode II Mode I Mode II

15 0.9312 (0.19) 0.2489 (0.44) 0.9423 (1.00) 0.2501 (0.06)

30 0.7484 (0.21) 0.4413 (1.91) 0.7587 (1.16) 0.4343 (0.29)

45 0.5010 (0.20) 0.5022 (0.44) 0.5056 (1.12) 0.5011 (0.30)

60 0.2549 (1.96) 0.4366 (0.83) 0.2530 (1.20) 0.4351 (0.48)

75 0.0690 (3.00) 0.2535 (1.40) 0.0682 (1.76) 0.2512 (0.48)
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Since the mesh used for the XFEM analysis is not known, it is difficult to make

a fair comparison between the methods but, nonetheless, a few points can be made

after inspecting the results. For the first three crack angles the XFEM outperforms

the enriched DBEM for mode I SIFs, but for the latter two, the reverse is true. In

the case of the mode II SIFs, the enriched DBEM outperforms the XFEM for all

crack angles. Therefore, it can be stated that the results are comparable but, in the

case of the enriched DBEM, these are obtained using very few DOF (24 quadratic

elements).

One very useful feature of boundary element methods is the ability to increase

the size of the domain without the need to use an unreasonable number of additional

elements (unlike the FEM). Therefore, for infinite plate problems, it is possible to

use larger domains (which more accurately represent the far-field boundary condi-

tions) with very little additional computational cost. In fact, if the same number of

elements are used around the boundary, then no additional computational cost will

be incurred. In the analyses carried out previously on the inclined crack with an

infinite plate, the far-field boundary conditions were approximated by using a square

plate of length 2h=2w=10mm but, to assess the effect of using a larger domain, the

same analysis was also carried out on increasing side lengths up to a maximum of

2h=2w=50mm. In each test exactly the same crack length of a=0.5mm was chosen

and, most importantly, a mesh of four elements per line was used in each case. Using

the results for β = 45◦, the normalised SIFs can be plotted as a function of the plate

side length as shown in Fig. 8.27. This reveals that using a plate with a side length

of 2h=10mm is not providing a good approximation to the far-field boundary con-

ditions and that even a small increase in length improves the results dramatically.

Since the results converge at approximately 2h=30mm, a second series of tests was

carried out using this side length while using the same mesh of four elements per line

(Fig. 8.26c). The results for each crack angle are shown in Fig. 8.28 with the XFEM

results plotted for comparison. What is seen is that the enriched BEM formulation

with a larger domain now outperforms XFEM for all crack angles for both modes I

and II where no additional computational cost has been incurred.
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Figure 8.27: Normalised SIFs for inclined centre crack (β = 45◦) in an infinite do-
main with increasing plate dimensions

Figure 8.28: XFEM error comparison for infinite plate with inclined crack - four
elements per line and 2h = 30mm
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8.4 Curved crack (global enrichment)

Now that several flat crack examples have been used to show the accuracy of the

local PUM formulation, our attention now focuses on the application of enrichment

to a curved crack since this precludes the use of local enrichment. Instead, it is

necessary to use the global enrichment formulation where it was seen in Sec. 7.3.4

that an improvement in accuracy over the unenriched DBEM was seen through

the problem of a curved crack within an infinite domain. The following section

illustrates some additional results obtained through analysis of the curved crack

problem where firstly, comparisons are made with flat crack elements and graded

meshes. A comparison is then made between values of J1 and J2 obtained through

an enriched DBEM analysis and those of a FEM analysis to demonstrate the relative

accuracy of the current implementation.

An interesting study which can be carried out on the problem of a curved crack

is the change in accuracy which results from the use of flat elements along a curved

crack surface (see Fig. 8.29). It may seem completely inappropriate to use flat

elements along a curved surface, but noting that analytical expressions can be used

for the integrals along flat elements, it becomes clear that the implementation is

simplified. For coarse meshes it is expected that large inaccuracies will occur due

to the poor approximation of a curve, but as the mesh density increases, this error

should decrease to a value of the same order as that for curved elements as the

approximation improves. To illustrate the difference, a study was carried out using

flat and curved crack elements applied to the same problem as used in Sec. 7.3.4 of a

curved crack in an infinite domain. Approximating the problem with a finite plate,

the same strategy as used previously was applied, where an equal number of elements

are used on each line with no grading (Fig. 7.16a), while the number of elements per

line was increased from four to sixteen. J1 and J2 were evaluated using the technique

described in Sec. 2.6.3 with the integral paths as defined in Fig. 7.15. The results

(a) Curved elements (b) Flat elements

Figure 8.29: Use of curved and flat elements on curved crack surface

obtained using path four for both flat and curved crack elements (unenriched) are

shown in Fig. 8.30 and, to allow for comparison, the results obtained from enriched



8.4. Curved crack (global enrichment) 206

(a) J1 comparison

(b) J2 comparison

Figure 8.30: Comparison of Jk values for curved crack problem with flat and curved
crack elements
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(a) Flat crack elements

(b) Curved crack elements

Figure 8.31: J2 path independence for both flat and curved elements applied to
curved crack problem
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curved elements are also plotted. In addition, to illustrate path independence, the

results obtained using paths two to eight for J2
5 are shown in Fig. 8.31.

By comparing the relative errors of unenriched curved and flat elements it can

be seen, especially for coarse meshes, that the accuracy in J1 suffers due to the

approximation of a curved surface with straight lines. Much of the same is true

for the J2 integrals where a clear improvement in accuracy is seen after introducing

enrichment. Interestingly, by observing the unenriched element results for J2, an

improvement in accuracy is realised for coarse meshes by using curved elements over

flat elements. But at convergence, where the meshes are so fine that the flat elements

very closely approximate a curve, the accuracies are very similar and, in fact, the flat

elements give slightly better results. By inspecting the plots illustrating J2 values

for different integration paths (Figs 8.31a and 8.31b), it can be seen that both types

of element demonstrate path independence. However, at very coarse meshes, curved

elements show a larger difference in values, but this quickly reduces as the number

of elements increase. In fact, at higher mesh densities the difference in values is

smaller that those obtained using flat elements, and this is seen up to the highest

mesh density.

Since all previous analyses used meshes with uniform element spacing, a study

was carried out to investigate the effect of including graded elements. This was

achieved by carrying out a convergence study where the number of elements per line

was increased from four to sixteen. Therefore, the number of elements in both the

uniform and graded meshes were equal - Figs 7.16a and 8.32a show the meshes for

a uniform mesh and graded mesh with six elements per line. In each, enrichment

was applied to crack tip elements. Fig. 8.32b, which illustrates the results for both

meshes, shows that an improvement for coarse meshes is seen for the graded mesh

while at convergence, the values converge to the same value (as expected). Inter-

estingly, the results for the graded and ungraded meshes converge from different

directions while it is expected that both exhibit the same behaviour. The reason for

this can be only be speculated and further study is required.

To demonstrate the implementation of the J2-integral routine (Sec. 2.6.3), Chang

and Yeh [113] used the problem of a curved crack in an infinite domain modelled

with a fine FEM mesh, graded towards the crack tip. They used the same technique

of taking a series of exclusions zones (centred at the crack tip and with radius R)

allowing J2 to be determined using a least-squares routine (Fig. 2.18 and Eqn. 2.80).

5the results for J1 show identical trends
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(a) Graded mesh (b) Comparison of uniform and graded mesh J2 values

Figure 8.32: Graded curved crack analysis - boundary mesh and results

Using exactly the same geometry as for the FEM analysis, a DBEM analysis was

carried out with curved elements (unenriched and enriched) and flat elements (un-

enriched) each with uniform mesh of twelve elements per line (twice the number of

elements in Fig. 7.16a). In the enriched analysis, only the crack tip elements were

chosen to be enriched since any further increase in enrichment brought little increase

in accuracy. The results for each analysis, including the exact solution, are shown

in Table 8.3.

Table 8.3: Comparison of J1 and J2 values for curved crack in an infinite domain,
with % errors in parentheses

exacta
unenriched unenriched

enriched FEM [113]
(flat) (curved)

J1 0.06592 0.06729 (2.08) 0.06693 (1.54) 0.06617 (0.38) 0.06684 (1.40)

J2 -0.04661 -0.04540 (2.60) -0.04745 (1.81) -0.04676 (0.32) -0.04716 (1.18)

aall values in Pa m

As expected (and also demonstrated in the previous section), the use of curved

elements over flat elements gives higher accuracy for both J1 and J2 with the results

comparable to those obtained using FEM. The use of enrichment, however, gives an

even more significant increase in accuracy and it is seen that the percentage errors

are more than halved for both values. But the most important result which can be

drawn from Table 8.3 is the improvement in accuracy over the FEM results using the

enriched DBEM; not only are the results more accurate, but they are obtained using

a significantly lower number of degrees of freedom - the enriched DBEM analysis

used here exhibited 506 DOF while the FEM analysis, assuming the analysis of [113]
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used quadratic quadrilateral elements, exhibited ∼3000 DOF.

8.5 Contour integral vs J-integral

All the previous crack examples have almost exclusively used the J-integral to de-

termine SIFs with circular integration paths centred at the crack tip. However, as

illustrated in Sec. 2.6.4, an alternative technique commonly known as the contour

integral is also available for SIF determination. This sections aims to show, by

comparing the results obtained by application of the J-integral and contour integral

to an edge crack problem, the differences in SIF accuracy and path independence

between each method.

For all tests, the edge crack illustrated in Fig. 8.2a was used with h/w=0.5 and

a crack length of a/w=0.5. A reference solution of KI/σ
√
πa= 3.010 is given for

this problem [109]. To allow a fair comparison between each integral routine, the

integration paths defined in Fig. 6.13 were used for both methods with thirty internal

points. As before, the number of elements per line was increased from four to twelve

(see Fig. 8.2b for an example mesh) where the integral methods were evaluated for

both the unenriched and enriched DBEM. Fig. 8.33 illustrates the normalised SIFs

obtained using integral path four for each mesh and plots the results for both the

unenriched and enriched analyses. A few important comments can be made after

inspecting this plot.

Considering the unenriched analyses first, the J-integral demonstrates more ac-

curate results for the first three meshes, but at high mesh densities, the contour in-

tegral demonstrates higher accuracies. Once enrichment is introduced, the expected

increase in accuracy is seen in both methods with the J-integral showing consistently

more accurate results. The contour integral however, actually shows a decrease in

accuracy as the mesh density is increased and this is most likely attributable to the

relatively small integration paths (in comparison to the crack length) at high mesh

densities.

In addition, the path-independence of each method was assessed by perform-

ing the integral over paths two to eight, where the results for the unenriched and

enriched analyses are shown in Figs 8.34 and 8.35 respectively. Dealing with the

unenriched results first, both methods show the same erroneous results for paths two

and three, and this is due to the close proximity of the internal points to the bound-

ary, as explained in Sec. 7.3.1. For all other paths however, path-independence is

demonstrated for both integral methods. In the case of the enriched analyses, the
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first notable point is the much smaller range of normalised SIFs (y-axis values) due

to the high accuracy of the results, but what is most interesting is the obvious in-

crease in value of the SIF between the integral paths of the contour integral method.

Ignoring paths two and three, the J-integral demonstrates relatively consistent re-

sults between the integral paths while in comparison, the contour integral shows a

dependence on the integral path that is even more prominent as the mesh density

is increased. It therefore seems that the most sensible choice, particularly for the

implementation of the enriched DBEM, is to use the J-integral for the evaluation

of SIFs.

Figure 8.33: Comparison of J-integral and contour integral for edge crack crack
problem - integral path four and increasing mesh density
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Figure 8.34: Comparison of J-integral and contour integral path independence -
unenriched

Figure 8.35: Comparison of J-integral and contour integral path independence -
using local PUM enrichment



Chapter 9

Conclusions and recommendations

for future work

As outlined at the beginning of this thesis, the importance of accuracy in SIFs

provides the motivation to formulate numerical methods that can model fracture

problems both accurately and efficiently. To achieve this goal, two methods of en-

riching the BEM/DBEM have been outlined in which the crack tip singularity is

captured by using functions derived from crack tip solutions. In the first method

of enrichment, termed local PUM enrichment, crack tip basis functions were in-

cluded in the approximation (by virtue of the PUM) in a manner very similar to

the eXtended Finite Element Method. Chapter 6 outlined this procedure where

first, the enriched displacement approximation was stated with the additional DOF

introduced by enrichment made clear. Once this expression was substituted into the

Displacement BIE and Traction BIE, an enriched BEM was introduced capable of

modelling cracks with coincident crack surfaces. However, with the introduction of

additional local enrichment coefficients, additional equations were required to solve

for these additional unknowns and this was realised by using additional collocation

points to arrive at a square system. Then, to verify the accuracy of the method and

to determine any implications during implementation, the new enriched formulation

was applied to a flat crack problem with an exact solution. From this, a few key

points were noted, namely:

• By applying enrichment to elements on a flat crack surface, it was seen that

the crack tip enrichment basis reduced to one simple function that in turn

reduced the number introduced DOF.

• Due to the need to calculate boundary integrals containing crack-tip enrich-

213
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ment functions and the additional need to compute these integrals for collo-

cation at any general point on an element, a general numerical integration

scheme was outlined for the evaluation of strongly singular and hypersingular

integrals.

• More accurate crack tip displacements were seen in the enriched formulation

and, by utilising the J-integral to calculate SIFs, almost an order of magnitude

improvement was realised over the unenriched formulation.

• The J-integral path was chosen to start and finish at nodal points on the crack

surface where it was found the most accurate results were obtained on paths

starting/finishing on elements away from the crack tip.

• Applying a geometrical enrichment strategy suffered from the effect of increas-

ing condition numbers as the mesh density increased. Even with a SVD solver

the conditioning of the system sometimes became so poor that no sensible

solution could be found. As a result, the recommendation was made to use a

topological enrichment strategy, without undue loss of accuracy.

• It was found that the optimum location of the additional collocation points

was to place them on enriched elements. It was also shown that the additional

points could be placed arbitrarily within these elements (within reason).

This analysis was instrumental in verifying the accuracy of a simple flat crack prob-

lem, but in the case of non-flat cracks, the crack-tip enrichment basis is not reduced

to a simple, single function (first point above) and therefore the full basis has to be

employed. To demonstrate this, the problem of a curved crack within an infinite

domain was modelled in which the full crack-tip basis was employed and, due to

the increased number of DOF (in comparison to the flat enriched crack), a much

larger number of additional collocation points was required. After implementation

it was found that the conditioning of the system was affected adversely and the

problem was so great that no sensible solution could be obtained. For this reason,

another enrichment strategy involving only two global additional degrees of freedom

(corresponding to mode I and II fracture) was investigated.

The global enrichment formulation was presented in Chapter 7 in which two

forms of the approximation were shown: first, the approximation was given in terms

of the global enrichment coefficients K̃I and K̃II and second, an expression was given

which leads to the SIFs KI and KI being output directly. The functions used for
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enrichment could be interpreted as a combined form of the enrichment basis used in

Chapter 6, but in fact they come directly from the first order terms of the Williams

expansion. The principle advantage of using the combined enrichment functions is

the reduction in the additional DOF over the previous formulation requiring only two

additional sets of equations. In addition, rather than using additional collocation

points, the global enrichment formulation used additional BIEs, formulated from the

crack tip solution that allowed a square system to be formed. In the same manner

as in Chapter 6, a flat crack was utilised to evaluate the accuracy of the method

where some key results were obtained:

• As before, the enrichment brought about an increase in accuracy in displace-

ments over the unenriched formulation with the cost of only two additional

DOF.

• The J-integral was employed to evaluate SIFs where, as before, a vast im-

provement in accuracy was seen over the unenriched formulation. Likewise,

integral paths starting/finishing on elements away from the crack tip yielded

the most accurate results.

• To investigate the reason for lower accuracies at paths nearer the crack tip,

the numerically calculated J-integral values were plotted against analytical

values. It was found that for paths nearer the crack tip numerical integration

inaccuracies arose due to nearly singular integrals. However, the accuracy of

SIFs using these paths was still very high.

• A comparison was made between SIFs obtained directly from the solution (us-

ing the alternative displacement formulation) and those obtained using the

J-integral. Much higher accuracy was obtained through the J-integral and,

even though a small additional computational cost is introduced, it is recom-

mended that SIFs should be obtained using this technique.

• Importantly, the use of the global enrichment formulation has a much less

detrimental effect on the conditioning of the system allowing enrichment to

extend beyond crack tip elements bringing an increase in SIF accuracy (in

contrast to the previous implementation).

The last point is doubly important, since it not only allows multiple elements to be

enriched, but the application of enrichment to curved cracks now becomes possible.

To show this, the global enrichment formulation was applied to a curved crack within

an infinite domain demonstrating that:
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• An improvement in SIF accuracy over the unenriched BEM was seen for the

curved crack problem with optimum results obtained by enriching crack tip

elements.

• For the enriched implementation, increasing the mesh density brought about

an increase in SIF accuracy (as expected), but the results did not converge to

the exact values. To explain this, further analysis was carried out in which it

was found, due to the use of enrichment functions which are derived from a

flat crack, errors are introduced as the curvature increases. However this error

was minimal.

Chapter 8 made a direct comparison between the two methods of enrichment

while also comparing against the commonly used quarter-point elements. From

these results, it was concluded that:

• For both methods of enrichment, approximately an order of magnitude

improvement over the unenriched DBEM was realised for errors in SIFs.

• The local enrichment formulation exhibited more accurate results than the

global enrichment formulation while both methods were seen to show an im-

provement in accuracy over quarter-point elements.

The local enrichment formulation was applied to a variety of crack geometries (some

including multiple enriched crack tips) exhibiting both pure mode I and mixed-mode

fracture where in each, improvements in accuracy were seen throughout. But most

interestingly, a comparison with the well-known XFEM showed that the results ob-

tained using the present local PUM enrichment strategy compared very favourably.

The global enrichment formulation was then compared with a FEM implementation

of the curved crack problem where, once again, the accuracy of the results compared

very favourably. A final comparison was then made between the J-integral and con-

tour integral where it was shown that the J-integral exhibits higher accuracies in

SIFs.

Finally, as is the case with all numerical methods, there is scope for further

application and improvement of the method where, without delving into too much

detail, a few points can be made:

• An obvious future application of the method is to include a crack propagation

procedure where most often, the maximum principal stress criterion is used

for determining the crack propagation angle θc. If flat propagation steps are
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Figure 9.1: Crack tip coordinate system for 3D crack front

used, however, errors are introduced due to the tendency of cracks to follow

curved paths. This can be resolved with appropriate routines like that out-

lined by Portela et al. [114] which uses an iterative procedure with a correction

angle to ensure the correct crack path is followed. In addition, a key advan-

tage of using a BEM/DBEM formulation is the ability to include additional

elements for each crack propagation step with little difficulty - it is merely a

matter of calculating a small number of additional rows and columns (in 3.77)

corresponding to the new crack tip elements.

• Two-dimensional fracture problems have been used exclusively in the present

work which, for many cases, represent good approximations for a wide variety

of practical applications. However, for completely general fracture modelling,

the method should be extended to 3D where certain implementation issues

need to be overcome:

– A suitable crack tip coordinate system must be defined such as that used

by Sukumar et al. [115] (eg. Fig. 9.1) to allow the crack tip basis functions

to be evaluated at an arbitrary point.

– The fundamental solutions for 3D BEM/DBEM implementation exhibit

higher orders of singularity which must be accounted for, but the integra-

tion procedure outlined in Sec. 6.2.2 for the evaluation of hypersingular

enriched integrals is not limited to 2D and can be applied, with some

minor alterations, to 3D kernels.

– The matrices given by 3.77 are often relatively small for 2D problems

(but fully populated), while for the 3D problems the much larger size of

the matrices often requires the use of special solvers to give reasonable
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runtimes. One such procedure is the ACA routine that has been recently

applied to the unenriched DBEM for 3D crack problems [116] and shows

encouraging results. Other techniques such as iterative solvers may prove

to be beneficial.

– As outlined in Sec. 6.3.4, conditioning may be an issue once enrichment

is applied, and the effects encountered in a 3D implementation may even

be more severe. For these situations it may be necessary to use precon-

ditioners like that implemented by Bechet et al. [101] for XFEM.
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Appendix A

BEM - supplementary material

A.1 Fundamental solutions

A.1.1 Kelvin’s fundamental solutions (2D)

The 2D fundamental solutions Uij and Tij are given by Eqns (3.39) and the expres-

sions Dkij and Skij, which are used to determine strains and stresses, are written

as

Dkij(X
′,x) =

1

4π(1 − ν)r
[(1 − 2ν)(r,iδjk + r,jδki − r,kδij) + 2r,ir,jr,k] (A.1.1)

Skij(X
′,x) =

µ

2π(1 − ν)r2

{

2
∂r

∂n
[(1 − 2ν)δijr,k + ν(r,jδik + r,iδjk) − 4r,ir,jr,k]

+2ν(nir,jr,k + njr,ir,k) + (1 − 2ν)(2nkr,ir,j + njδik + niδjk)

−(1 − 4ν)nkδij

}

(A.1.2)

A.1.2 Kelvin’s fundamental solutions (3D)

The fundamental solution for displacement for a 3D domain is

Uij(X
′,x) =

1

16πµ(1 − ν)r
[(3 − 4ν)δij + r,i + r,j] (A.1.3)

and the traction fundamental solution

Tij(X
′,x) = − 1

8π(1 − ν)r2

{

∂r

∂n
[(1 − 2ν)δij + 3r,ir,j − (1 − 2ν)(njr,i − nir,j)]

}

(A.1.4)
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A.2 Stresses at boundary points

To calculate the stresses at boundary points it is possible to use the stress boundary

equation of (3.59), but this comes at the price of calculating integrals which are

strongly singular and hypersingular (O(1/r) and O(1/r2) in 2D). For flat elements

it is possible to use analytical expressions (see Sec. 4.4.3) to evaluate these singular

terms, but in the general case it is necessary to use special numerical integration

routines that can handle these singularities. A much more simple approach is to use

the boundary displacements at nodal points which, along with differentiated shape

functions, allows the tangential strain to be found. Then, using this strain along

with the known values of boundary tractions, boundary stresses can be found with

the aid of Hooke’s law. This method is not as accurate as the former, but is perfectly

adequate for most BEM analyses. First, the unit normal vector n and unit tangent

(a) Normal and tangent vectors (b) Traction components for surface
stresses

Figure A.1: Calculation of boundary stresses using surface tractions

vector m are defined in Fig. A.1a 1. The components of the tangent vector are given

by

mi =
1

J(ξ)

dxi(ξ)

dξ
i = x, y (A.2.5)

where the derivatives can be found using the shape functions and nodal coordinates

as
dxi(ξ)

dξ
=

3
∑

a=1

dNa(ξ)

dξ
xa

i (A.2.6)

(assuming quadratic interpolation). Knowing the tangent components mi and the

displacement components ui (in the global coordinate system), the tangential dis-

placement is expressed as

u1(ξ) = ux(ξ)mx + uy(ξ)my (A.2.7)

1Note that the tangent vector is pointing in the same direction as the boundary coordinate Γ
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or, using the nodal displacements with shape function interpolation

u1(ξ) = mx

3
∑

a=1

Na(ξ)u
a
x +my

3
∑

a=1

Na(ξ)u
a
y (A.2.8)

By differentiating this expression with respect to ξ and using the Jacobian J(ξ),

tangential strains can be written as

ε11(ξ) =
1

J(ξ)

{

mx

3
∑

a=1

dNa(ξ)

dξ
ua

x +my

3
∑

a=1

dNa(ξ)

dξ
ua

y

}

(A.2.9)

Our attention now focuses on Fig. A.1b which defines the traction components both

in the local coordinate system aligned with the boundary and the global coordinate

system (x, y). Denoting the angle between these coordinate systems as α and using

the coordinate transformation matrix, the tangential and normal tractions can be

found from
[

t1

t2

]

=

[

− sinα cosα

cosα sinα

][

tx

ty

]

(A.2.10)

The stress components in the local coordinate system σ12 and σ22 can then be found

simply from

σ22 = t2 σ12 = t1 (A.2.11)

The component σ11 however, is found using Hooke’s law (Eqns 3.10) with the tan-

gential strain ε11 and the stress component σ22(= t2) giving

σ11 =
E

1 − ν2
ε11 +

ν

1 − ν
t2 (A.2.12)

Finally, to obtain stresses in the global coordinate system, these components are

transformed using an appropriate transformation matrix to obtain σxx, σxy and σyy









σxx

σxy

σyy









=









sin2 α −2 sinα cosα cos2 α

− sinα cosα (cos2 α− sin2 α) sinα cosα

cos2 α 2 sinα cosα sin2 α

















σ11

σ12

σ22









(A.2.13)

A.3 Continuity

A function f(x) is said to possess Cn continuity if dnf
dx

is continuous in value. Imag-

ining a point which joins two curves, we can state:

• C0 continuity ensures that the curves join at the point
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• C1 continuity ensures that the first derivatives of each curve are equal at the

point

• C2 continuity ensures that the first and second derivatives of each curve are

equal at the point



Appendix B

Elastic analysis

B.1 Airy stress function

In order to solve 2D problems in elasticity, the number of unknown quantities is

such that eight independent equations are required. These comprise of the two

equilibrium equations (Eqn. (3.2)), three strain-displacement equations (Eqn. (3.3))

and the three stress-strain relations (Eqns (3.12)). G.B. Airy [117] instead chose to

combine these equations into one function known as the Airy stress function. This

simplifies the process of finding a solution since it is only the function Φ which now

must be found. The function can be used with the semi-inverse method where an

Airy stress function is proposed (using a priori knowledge of the solution) and the

solution is validated by checking against the imposed boundary conditions. For a

cartesian coordinate system (x, y) the relations between the Airy stress function Φ

and stresses can be written as

σxx =
∂2Φ

∂y2
, σyy =

∂2Φ

∂x2
, σxy = − ∂2Φ

∂x∂y
(B.1.1)

and likewise for a polar coordinate system (ρ, θ)

σρρ =
1

ρ

∂Φ

∂ρ
+

1

ρ2

∂2Φ

∂θ2
, σθθ =

∂2Φ

∂ρ2
, σρθ = − ∂

∂ρ

(

1

ρ

∂Φ

∂θ

)

(B.1.2)

Use of the compatibility equation (Eq. (3.4a)) with (B.1.1) yields the following

differential equation
∂4Φ

∂x4
+ 2

∂4Φ

∂x2∂y2
+
∂4Φ

∂y4
= 0 (B.1.3)
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and if we introduce the harmonic operator defined as

∇2 =
∂2

∂x2
+

∂2

∂y2
(B.1.4)

or, in polar form

∇2 =

(

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂θ2

)

, (B.1.5)

then Eq. (B.1.3) can be written simply as

∇4Φ = 0 (B.1.6)

which is the well-known form of a bi-harmonic equation.

B.2 Complex variables applied to elasticity

The use of complex variables in elasticity, as popularised by Muskhelishvili [13], has

been shown to provide solutions to a wide variety of 2D problems. As illustrated

in App. B.1, the solution of a problem in elasticity can be reduced to the task of

finding a suitable Airy stress function that satisfies the boundary conditions. The

complex-variable method also requires that the Airy stress function be satisfied but,

as will be shown presently, if the solution can be represented by complex functions

and these are shown to be analytic (ie. they satisfy the Cauchy-Riemann equations),

then the biharmonic equation is automatically satisfied. If we consider the complex

variable z defined as

z = x+ iy (B.2.7)

and define a complex function Z(z) as

Z(z) = ReZ(z) + iImZ(z) (B.2.8)

then we can use this function as a potential Airy stress function. To explain why

this is useful we state the Cauchy-Riemann equations as [118]

∂ReZ(z)

∂y
= −∂ImZ(z)

∂x
(B.2.9a)

∂ImZ(z)

∂y
= −∂ReZ(z)

∂x
(B.2.9b)
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If these conditions are satisfied then the function Z(z) is defined as analytic which

ensures that the derivative of the function can be evaluated at all points within a

domain. Furthermore, if (B.2.9a) is differentiated with respect to y and (B.2.9b)

with respect to x and the resulting equations are added, the following can be written

(

∂2

∂x2
+

∂2

∂y2

)

ReZ(z) = ∇2ReZ(z) = 0 (B.2.10)

Likewise, if we differentiate (B.2.9a) with respect to x and (B.2.9b) with respect to

y and sum, a similar expression can be written

(

∂2

∂x2
+

∂2

∂y2

)

ImZ(z) = ∇2ImZ(z) = 0 (B.2.11)

These expressions show that the real and imaginary parts of an analytic complex

function are harmonic functions, and therefore also satisfy the biharmonic equation.

Therefore, by simply proving that a complex function is analytic, then it can be

inferred that the same function is also a valid Airy stress function that satisfies

the biharmonic equation. Furthermore, due to the principle of superposition, if

the real and imaginary functions are shown to be valid solutions then the sum of

these functions is also a valid solution. These principles are used extensively in the

analysis of cracked bodies by Westergaard [12].



Appendix C

Singular integrals

C.1 Definitions

To allow an appropriate choice of integration method for singular boundary integrals

to be chosen, it is necessary to provide formal definitions that allows each to be

categorised into three types: weakly singular, strongly singular and hypersingular.

• Weakly singular integrals are defined as those which do not depend on the

shape of the exclusion zone (see Fig. 3.6) used in the limiting process.

• Strongly singular integrals are defined as those integrals which require a

symmetric exclusion zone (ie. a semi-circle or hemisphere) in the limiting

process.

• Hypersingular integrals are those which contain higher orders of singularities

than strongly singular integrals.

At first, it seems intuitively wrong that a function which is infinite at a point

can be integrated over a certain interval to give a finite result. In fact, it does not

matter that the function is infinite at a point, rather, it is the behaviour of the

function around this singular point that matters. Thus, by considering the limit as

an infinitesimal exclusion zone shrinks to zero, the integral can be determined.

C.2 General Telles transformation

The transformation developed by Telles [58] for a singularity lying at a point located

at the end of an element was shown in Sec. 4.3.2, but to allow the singular point
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to lie an any point within the element, a more general transformation is required.

Denoting the function we wish to integrate over the limits ξ = −1, 1 as f(ξ) which

contains a weak singularity at ξ′ (where −1 ≤ ξ′ ≤ +1), then the transformed

integral can be written as1

∫ +1

−1

f

{

(γ − γ′)3 + γ′(γ′2 + 3)

1 + 3γ′2

}

3(γ − γ′)2

1 + 3γ′2
dγ (C.2.1)

where γ′ is given by

γ′ = 3
√

ξ′ξ∗ + |ξ∗| + 3
√

ξ′ξ∗ − |ξ∗| + ξ′ (C.2.2)

with ξ∗ defined as

ξ∗ = ξ′2 − 1 (C.2.3)

Applying this to the function ln |0.3 + ξ| which contains a weak singularity at

ξ′ = −0.3 (see Fig. C.1a), it is clear that the transformation removes the singularity

(Fig. C.1b) and can therefore be evaluated easily using GL quadrature.

C.3 Limiting process for Uij boundary integral

To formulate the BEM, it is necessary to consider the limit of the boundary integrals

as the source point x′ approaches the field point x. As described in Sec. 3.1.4, an

additional boundary Γε with radius ε (see Fig. 3.6) is included allowing the limit

as ε → 0 to be found. For the integral expression containing Uij , this is written as

(3.44) where the first term can be found using an appropriate numerical integration

scheme (capable of evaluating a function with a singularity of O(ln(1/r)) but the

second must be considered in greater detail. By substituting in the expression for

Uij given by Eq. (3.39a), the integral term over the boundary Γε can be written as

lim
ε→0

∫

Γε

1

8πµ(1 − ν)

{

(3 − 4ν) ln

(

1

r

)

δij + r,ir,j

}

tj(x) dΓ (C.3.4)

Using the polar coordinate system as defined in Fig. C.2, it is possible to express the

parameters dependent on r and Γ in terms of the polar coordinates ε and θ. These

1The transformation shown in [58] in fact contains an error - the corrected version is shown
here
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(a) Weakly singular function with ξ′ = −0.3

(b) Telles transformation for ln |0.3 + ξ|

Figure C.1: General Telles transformation for weakly singular functions

Figure C.2: Semi-circular arc on boundary used for limiting process
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are written as

r = ε cos θ + ε sin θ (C.3.5)

dΓε = εdθ (C.3.6)

r,x = cos θ r,y = sin θ (C.3.7)

∂r

∂n
= 1 (C.3.8)

where the last expression is true since r = εn and n is in the same direction as

r. Taking the case of i = x and j = x as an example, the above relations can be

substituted into Eq. (C.3.4) to give

lim
ε→0

∫

Γε

1

8πµ(1 − ν)

{

(3 − 4ν) ln

(

1

ε(cos θ + sin θ)

)

+ cos2 θ

}

tj(x) εdθ (C.3.9)

As ε→ 0 the second term of this expression simply equals zero due to the multiplica-

tion by ε. The first term however, requires some further manipulation. Considering

just the logarithmic term, this can be written using logarithmic rules as

ln

(

1

ε(cos θ + sin θ)

)

= ln

(

1

ε

)

+ ln

(

1

(cos θ + sin θ)

)

(C.3.10)

Therefore, since the second term will equal zero once multiplied by ε, we are left

with the integral

C lim
ε→0

∫

Γε

ln

(

1

ε

)

tj(x) εdθ (C.3.11)

where C is a constant. Assuming that tj(x) is non-singular and noting that the

logarithmic term does not depend on θ, we are interested in finding

lim
ε→0

ε ln

(

1

ε

)

(C.3.12)

which can be rewritten as

lim
ε→0

ln
(

1
ε

)

1
ε

(C.3.13)

Employing L’Hôpital’s rule, which is stated as

lim
ε→c

f(x)

g(x)
= lim

ε→c

f ′(x)

g′(x)
(C.3.14)
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Eq. C.3.13 can be expressed as

lim
ε→0

ε

−ε−2
= −ε3 (C.3.15)

= 0 (C.3.16)

Therefore the entire integral over the boundary Γε is equal to zero for the case

i = j = x. It is simple to show that this is also the case of each of the other

components.

C.4 Limiting process for Tij boundary integral

The limiting process for the boundary integral containing the Tij kernel is carried

out in exactly the same manner as in Sec. C.3 by making use of a semi-circular arc

with radius ε (Fig. C.2). By evaluating the integral in the limit as ε → 0, we end

up with the desired expression in which the source point x′ lies on the boundary.

As described in Sec. 3.1.4, the boundary integral containing the Tij kernel exhibits

a jump term αij (Eq. (3.49)) corresponding to the integral over the portion of the

boundary Γε. To evaluate this, the expressions given by Eqns (C.3.5) to (C.3.8) are

substituted into the Tij kernel (given by (3.39b) for 2D) where, for illustration, the

expression for i = x and j = x is given presently. The jump term αxx can then be

written as

αxx = − 1

4π(1 − ν)
lim
ε→0

∫

Γε

1

ε
[(1 − 2ν) + 2r,xr,x] ε dθ (C.4.17)

where, since nx = r,x, the last term in (3.39b) is cancelled. Evaluating this integral

over the limits 0 to π and substituting (C.3.7) for r,x

αxx = − 1

4π(1 − ν)

∫ π

0

[

(1 − 2ν) + 2 cos2 θ
]

dθ

= − 1

4π(1 − ν)

[

(1 − 2ν)θ + θ +
1

2
sin(2θ)

]π

0

= −1

2
(C.4.18)

The same procedure can be carried out for different components of i and j to give

αij = −δij
2

(C.4.19)
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C.5 Analytical integration of hypersingular Skij

integrals

The implementation of the DBEM is greatly simplified by the use of flat elements

along the crack surfaces since analytical expressions can be used for the evaluation

of all singular integrals. The expressions for the integration of the singular Skij

kernels are given in Sec. 4.4.3, but the details of how the matrix terms are obtained

were omitted. For completeness, the derivation of these terms is given here by

demonstrating how one of the components is obtained (Sxxx) while all others are

found in exactly the same fashion. First, the tensor and matrix forms of the integral

are written as

ni(ξ
′)=

∫ +1

−1

Skij(ξ
′,x(ξ))Na(ξ)J(ξ)dξ (C.5.20)

=

[

n′
x 0 n′

y 0

0 n′
x 0 n′

y

]

=

∫ +1

−1













Sxxx Syxx

Sxxy Syxy

Sxyx Syyx

Sxyy Syyy













Na(ξ)J(ξ) dξ (C.5.21)

Then, by inspecting Fig. C.3, it is possible to write the following expressions for

Figure C.3: Relationship between derivatives of r and normal components on a flat
element
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r(= |r|), r,x, r,y and ∂r/∂n:

r = |ξ − ξ′| l
2

(C.5.22)

cos θ =
|r|r,x

|r| = − ny

|n| ⇒ r,x = −ny (C.5.23)

sin θ =
|r|r,y

|r| =
nx

|n| ⇒ r,y = nx (C.5.24)

r.n = 0 ⇒ ∂r

∂n
= 0 (C.5.25)

By substituting the above expressions into Eq. A.1.2 with the components i = j =

k = x, the following simplifications can be made

Sxxx =
µ

2π(1 − ν)

1

(ξ − ξ′)2

(

2

l

)2
{

2ν(nxn
2
y + nxn

2
y)

+ (1 − 2ν)(2nxn
2
y + nx + nx)

− (1 − 4ν)nx

}

(C.5.26)

=
µ

2π(1 − ν)

1

(ξ − ξ′)2

(

2

l

)2
{

4νnxn
2
y

+ 2nxn
2
y + 2nx

− 4νnxn
2
y − 4νnx

− nx + 4νnx

}

(C.5.27)

=
µ

2π(1 − ν)

1

(ξ − ξ′)2

(

2

l

)2
{

nx(2n
2
y + 1)

}

(C.5.28)

Noting that the Jacobian is given simply by l/2 (where l is the element length),

and taking all constants outside of the integral, the integral component Sxxx seen in

Eq. (C.5.21) is then given by

µ

2π(1 − ν)
nx(2n

2
y + 1)

(

2

l

)

=

∫ +1

−1

Na(ξ)

(ξ − ξ′)2
dξ (C.5.29)

To arrive at exactly the same form as seen in Eq. (4.13), it is a trivial matter of

substituting in the relation given by (3.7) to replace µ.
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C.6 Subtraction of singularity

C.6.1 Analytical terms

The subtraction of singularity technique that is used for the numerical integration

of hypersingular (and strongly singular) terms relies on the analytical integration of

certain functions that allow the singular integrand to be regularised. Only the final

result was given in Sec. 4.4.4, therefore for completion, the full integration procedure

is given here.

The first integral, represented as I−1 (Eq. (4.27)) is integrated analytically to

give

I−1 = lim
ε→0

{

F−1

[

ln |ξ − ξ′|
]ξ′− ε

J(ξ′)

−1

+ F−1

[

ln |ξ − ξ′|
]+1

ξ′+ ε

J(ξ′)

}

= lim
ε→0

{

F−1

(

ln

∣

∣

∣

∣

ε

J(ξ′)

∣

∣

∣

∣

− ln | − 1 − ξ′|
)

+ F−1

(

ln |1 − ξ′| − ln

∣

∣

∣

∣

ε

J(ξ′)

∣

∣

∣

∣

)

}

(C.6.30)

which gives the desired result

I−1 = F−1 ln

∣

∣

∣

∣

1 − ξ′

−1 − ξ′

∣

∣

∣

∣

(C.6.31)

Similarly, I−2 (given by Eq. 4.29) is integrated as

I−2 = lim
ε→0

{

F−2

[ −1

ξ − ξ′

]ξ′− ε

J(ξ′)

−1

+ F−2

[ −1

ξ − ξ′

]+1

ξ′+ ε

J(ξ′)

+Na(ξ)
bkij(ξ

′)

ε

}

= lim
ε→0

{

F−2

[ −1

−ε/J(ξ′)
− −1

−1 − ξ′

]

+ F−2

[

− −1

1 − ξ′
− −1

ε/J(ξ′)

]

+Na(ξ)
bkij(ξ

′)

ε

}

= F−2

[

1

−1 − ξ′
− 1

1 − ξ′

]

+ lim
ε→0

{

F−2

[

2J(ξ′)

ε

]

+Na(ξ)
bkij(ξ

′)

ε

}

(C.6.32)

and since the terms within the limit cancel each other (see [70])

I−2 = F−2

[

1

−1 − ξ′
− 1

1 − ξ′

]

(C.6.33)
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C.6.2 Power series terms

The procedure outlined by Guiggiani et al. [71] is used to allow the evaluation of

hypersingular integrals for cases where analytical expressions cannot be used. The

method is valid for 2D and 3D boundary integrals, but for illustration purposes

we consider the 2D Skij kernel. All hypersingular integrals involving this term are

multiplied by the shape function Na(ξ) and the Jacobian of transformation Jn(ξ)

and, in the case of enriched integrals, the function ψu
l (ξ). This can be written as

∫ +1

−1

Skijψ
u
l (ξ)Na(ξ)J

n(ξ)dξ (C.6.34)

which is of O(1/r2) when the source and field point coincide. The method is based

on expressing the integrand seen in (C.6.34) in a Taylor series form where definitions

are made to simplify later expressions. All the proceeding expressions assume the

summation convention for repeated indices.

If the components of the field and source point locations are expressed as xi and

yi respectively (in keeping with the notation of [69]), then the following Taylor series

expansion about the point ξ′ can be written

xi − yi =
dxi

dξ

∣

∣

∣

∣

ξ=ξ′
(ξ − ξ′) +

d2xi

dξ2

∣

∣

∣

∣

ξ=ξ′

(ξ − ξ′)2

2
+ · · ·

= Ai(ξ − ξ′) +Bi(ξ − ξ′)2 + · · ·

= Aiδ +Biδ
2 +O(δ3), (C.6.35)

which defines the constants Ai and Bi along with the term δ := ξ−ξ′. The constants

A and C are also defined as

A :=

(

2
∑

k=1

A2
k

)1/2

(C.6.36)

C :=

2
∑

k=1

AkBk (C.6.37)

However, to determine Ai and Bi (and therefore A and C), the first and second

derivatives about the source point must be found. This is achieved by utilising the
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relevant shape functions and the nodal coordinates in the following way

dxi

dξ
=
dNa

dξ
xa

i (C.6.38a)

d2xi

dξ2
=
d2Na

dξ2
xa

i (C.6.38b)

Now the derivative r,i can be expressed as

r,i =
xi − yi

r
=
Ai

A
+

(

Bi

A
− Ai

AkBk

A3

)

δ +O(δ2)

=: di0 + di1δ +O(δ2) (C.6.39)

while the term 1/r2 can also be rewritten as

1

r2
=

1

A2δ2
− 2C

A4δ
+O(1) (C.6.40)

=:
S−2

δ2
+
S−1

δ
+O(1) (C.6.41)

It is also useful to express the Jacobian of transformation in terms of its components

Ji(ξ) where Jn(ξ) =
√

J1(ξ)2 + J2(ξ)2 and

J1 = A2 + 2B2δ +O(δ2) (C.6.42a)

J2 = −A1 − 2B1δ +O(δ2) (C.6.42b)

As a generalisation, these are written as

Jk = Jk0 + Jk1δ +O(δ2) (C.6.43)

Finally, we express the shape functions Na and the enrichment functions ψu
l as

Taylor expansions

Na(ξ) = Na(ξ
′) +

dNa

dξ

∣

∣

∣

∣

ξ=ξ′
(ξ − ξ′) + · · ·

= Na0 +Na1δ +O(δ2) (C.6.44)
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and

ψu
l (ξ) = ψu

l (ξ′) +
dψu

l

dξ

∣

∣

∣

∣

ξ=ξ′
(ξ − ξ′) + · · ·

= ψu
l0 + ψu

l1δ +O(δ2). (C.6.45)

The integrand in (C.6.34) can now be expressed as a Taylor series by substituting

in expressions (C.6.39), (C.6.40), (C.6.43), (C.6.44) and (C.6.45) while also noting

that Ji = niJ
n. By collecting all the terms that contain 1/δ2 and 1/δ where, due to

the use of quadratic shape functions, any higher order terms are zero, the following

expression can be written for the integrand

Na(ξ)Skijψ
u
l (ξ)Jn(ξ) =D

{

S−2(ξ
′)Na0h(ξ

′)ψu
l0

δ2

+
[

S−2(ξ
′)
[

Na0h(ξ
′)ψu

l1

+ ψu
l0 (Na1h(ξ

′) + g(ξ′)Na0)
]

+ S−1Na0h(ξ
′)ψu

l0

]

/δ

}

(C.6.46)

where the constant D is defined as µ/2π(1 − ν), and the terms h(ξ′) and g(ξ′) are
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given by

h(ξ′) = 2ν(Ji0dj0dk0 + Jj0di0dk0)

+ (1 − 2ν)(2Jk0di0dj0 + Jj0δik + Ji0δjk)

− (1 − 4ν)Jk0δij (C.6.47)

g(ξ′) = 2(dl1Jl0 + dl0Jl1)
[

(1 − 2ν)dk0δij

+ ν(dj0δik + di0δjk) − 4di0dj0dk0

]

+ 2ν
[

Ji0(dj1dk0 + dj0dk1) + Ji1dj0dk0

+ Jj0(di1dk0 + di0dk1) + Jj1di0dk0

]

+ (1 − 2ν)
[

2(Jk1di0dj0 + Jk0(di1dj0

+ di0dj1)) + Jj1δik + Ji1δjk
]

− (1 − 4ν)Jk1δij (C.6.48)

where the repeated index in the first two terms in expression (C.6.48) should be

noted.

C.7 Analytical expressions for enriched integrals

The enriched BEM outlined in Chapter 6 requires the evaluation of boundary in-

tegrals which are both strongly singular and hypersingular and contain crack tip

enrichment functions. Since the analytical expressions given by Eqns. (4.11) and

(4.16) are only valid for unenriched boundary integrals, the subtraction of singular-

ity technique is used which offers a further advantage of allowing curved elements to

be used. However, in the case when flat elements are used along the crack surface

(which is often the case) and only the elements adjacent to the crack tip are enriched,

it may be possible to use analytical expressions for the enriched singular integrals.

This section outlines the analytical expressions that can be used to evaluate the

strongly singular and hypersingular enriched integrals for this particular scenario.

The singular integral expressions which we wish to evaluate are those given by

(6.4) and (6.6) in which, if the element is flat and adjacent to the crack tip, the
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enrichment function is given by ψu
1 (ξ) = (1 − ξ)1/2 (for the upper crack surface

Γc+). Treating the integrals in the same manner as in Sec. 4.4.3 where the singular

component of the integrand is separated from all other terms and assuming the

use of discontinuous shape functions given by Eqns (3.63), the enriched integral

expressions are given by

Figure C.4: Local coordinate system for analytical integration for enriched elements

IΓc+

1 (ξ′) = −
∫ +1

−1

N1

√
1 − ξ

(ξ − ξ′)
dξ =

1

20

(

√
2[−46 − 45ξ′(ξ′ − 2)]

+ 15ξ′(3ξ′ − 4)
√

1 − ξ′ tanh−1

( √
2√

1 − ξ′

))

(C.7.49a)

IΓc+

2 (ξ′) = −
∫ +1

−1

N2

√
1 − ξ

(ξ − ξ′)
dξ = − 1

10

(

√
2[14 + ξ′(30 − 45ξ′)]

+ 5(2 + 3ξ′)(3ξ′ − 2)
√

1 − ξ′ tanh−1

( √
2√

1 − ξ′

))

(C.7.49b)

IΓc+

3 (ξ′) = −
∫ +1

−1

N3

√
1 − ξ

(ξ − ξ′)
dξ =

1

20

(

√
2[34 − ξ′(45ξ′ + 30)]

+ 15ξ′(3ξ′ + 4)
√

1 − ξ′ tanh−1

( √
2√

1 − ξ′

))

(C.7.49c)

In the case that the element lies on the lower crack surface Γc− and lies adjacent to

the crack tip, the enrichment function is given by ψu
1 (ξ) = −(ξ + 1)1/2. If the nodes

on the upper and lower surface are coincident (as in Fig. C.4), then the integrals
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over the lower enriched element are related to those on the upper element by

IΓc−

1 (ξ′) = IΓc+

3 (−ξ′) IΓc−

2 (ξ′) = IΓc+

2 (−ξ′) IΓc−

3 (ξ′) = IΓc+

1 (−ξ′) (C.7.50)

In a similar fashion, the hypersingular enriched integrals for a flat element on the

upper crack surface are given by

ĪΓc+

1 (ξ′) = =

∫ +1

−1

N1

√
1 − ξ

(ξ − ξ′)2
dξ = − 3

8(1 + ξ′)

(

√
2(15ξ′2 + 2ξ′ − 8)

+
(−15ξ′3 + 3ξ′2 + 14ξ′ − 4)√

ξ′ − 1
arctan

( √
2√

ξ′ − 1

))

(C.7.51a)

ĪΓc+

2 (ξ′) = =

∫ +1

−1

N2

√
1 − ξ

(ξ − ξ′)2
dξ = − 1

4(1 + ξ′)

(

√
2(−45ξ′2 − 24ξ′ + 16)

+
(45ξ′3 + 9ξ′2 − 40ξ′ − 4)√

ξ′ − 1
arctan

( √
2√

ξ′ − 1

))

(C.7.51b)

ĪΓc+

3 (ξ′) = =

∫ +1

−1

N3

√
1 − ξ

(ξ − ξ′)2
dξ = − 3

8(1 + ξ′)

(

√
2ξ′(15ξ′ + 14)

+
(−15ξ′3 − 9ξ′2 + 10ξ′ + 4)√

ξ′ − 1
arctan

( √
2√

ξ′ − 1

))

(C.7.51c)

and, as before,

ĪΓc−

1 (ξ′) = ĪΓc+

3 (−ξ′) ĪΓc−

2 (ξ′) = ĪΓc+

2 (−ξ′) ĪΓc−

3 (ξ′) = ĪΓc+

1 (−ξ′) (C.7.52)



Appendix D

Fracture mechanics -

supplementary material

D.1 Crack-tip solutions as fundamental solutions

The use of the crack-tip solution as a weighting function to form additional boundary

integral equations requires the analytical expressions for stress around a crack tip

to be expressed in terms of tractions. Using ti = σijnj and the stresses given by

(2.36), the functions ψt
Ij and ψt

IIj used in Eq. (7.12) can be written as

ψt
Ix =

1√
2πρ

{

nx cos(θ/2) [1 − sin(θ/2) sin(3θ/2)]

+ny cos(θ/2) sin(θ/2) cos(3θ/2)
}

(D.1.1a)

ψt
Iy =

1√
2πρ

{

nx cos(θ/2) sin(θ/2) cos(3θ/2)

+ny cos(θ/2) [1 + sin(θ/2) sin(3θ/2)]
}

(D.1.1b)

ψt
IIx =

1√
2πρ

{

nx sin(θ/2) [2 + cos(θ/2) cos(3θ/2)]

+ny cos(θ/2) [1 − sin(θ/2) sin(3θ/2)]
}

(D.1.1c)

ψt
IIy =

1√
2πρ

{

nx cos(θ/2) [1 − sin(θ/2) sin(3θ/2)]

+ny sin(θ/2) cos(θ/2) sin(3θ/2)
}

(D.1.1d)
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D.2 Westergaard’s complex analysis solution

As outlined in Sec. 2.3, Westergaard used complex variables to arrive at the solution

of a crack problem in elasticity. The relations between stresses and the complex

functions Z and Y are given by Eqns. (2.31), but for completeness the expressions

for strains and displacements are given as

Eǫxx = (1 − ν)ReZ − (1 + ν)[yImZ ′ + yImY ′] + 2ReY (D.2.2a)

Eǫyy = (1 − ν)ReZ + (1 + ν)[yImZ ′ + yImY ′] − 2νReY (D.2.2b)

Eγxy = −2(1 + ν)ImY − 2(1 + ν)[yReZ ′ + yReY ′] (D.2.2c)

and

Eux = (1 − ν)ReZ̃ − (1 + ν)[yImZ + yImY ] + 2ReỸ (D.2.3a)

Euy = 2ImZ̃ − (1 + ν)[yReZ + yReY ] + (1 − ν)ImỸ (D.2.3b)

D.3 J-integral derivation

As described in Sec. 2.6.2 the J-integral is attributed to the work carried out by

J. Rice [30] who realised that an energy approach could be taken to evaluate a

path integral that is related to the stress intensity factors. By taking any arbitrary

integration path around the crack tip - where importantly, this can be positioned to

lie away from the singular zone around a crack tip - accurate evaluation of SIFs can

be achieved. Since the method is used for numerous examples in the present thesis

it is instructive to give a derivation of the integral.

We begin by considering an arbitrary cracked body with area A, boundary

Γ,thickness h and subject to arbitrary tractions on non crack-face boundaries as

shown in Fig. D.1. It is assumed that the crack faces are traction free. Using this

body as a control volume we can consider the change in total energy as the crack

progresses by an incremental amount. The total potential energy of the control

volume is given by the strain energy W minus the product of tractions and displace-

ments tiui along the boundary Γ (since positive values of tractions and displacements
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Figure D.1: Cracked body with thickness h subject to arbitrary tractions on non-
crack faces

represent energy being removed from the system). This can be written as

Π =

{
∫

A

WdA−
∫

Γ

tiuidΓ

}

h (D.3.4)

But what we are interested in is the change in potential energy which occurs as the

crack extends. Therefore, by considering the potential energy release rate (which

is covered in Sec. 2.1), and defining the potential energy of the system before and

after crack propagation as Π1 and Π2 respectively, the following can be written

−∂Π
∂A

= − lim
∆a→0

(

Π2 − Π1

h∆a

)

(D.3.5)

where by convention, a negative sign has been introduced to make the quantities

positive. Equation (D.3.4), which can be written for both states (Γ1, A1) and (Γ2,

A2), is now substituted into D.3.5 to give

−∂Π
∂A

= lim
∆a→0

1

h∆a

{(
∫

A2

WdA−
∫

Γ2

tiuidΓ

)

−
(
∫

A1

WdA−
∫

Γ1

tiuidΓ

)}

h

= lim
∆a→0

1

∆a

{
∫

A1−A2

WdA+

∫

Γ2

tiuidΓ −
∫

Γ1

tiuidΓ

}

(D.3.6)

Since ∆a is an infinitesimal quantity that tends to zero, an assumption is made that

the displacements between each of the boundaries are related by a linear relationship.
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(a) Crack advancement by ∆a (b) Equivalent crack advancement by move-
ment of control volume

Figure D.2: Crack advancement for J-integral definition

If this is true, then by the relationship between strains and displacements, the

stresses and tractions must be constant. Knowing this, we can replace the last two

terms in (D.3.6) with a single term giving

−∂Π
∂A

= lim
∆a→0

1

∆a

{
∫

A1−A2

WdA−
∫

Γ

ti(u
1
i − u2

i )dΓ

}

(D.3.7)

where u1
i and u2

i are the displacements on the boundaries Γ1 and Γ2 respectively.

In addition, since the boundaries are separated by a horizontal distance ∆a (see

Fig. D.3), the displacements on each of these boundaries are related by

u1
i = u2

i +
∂ui

∂x
(D.3.8)

where a simple rearrangement and substitution into (D.3.7) gives

−∂Π
∂A

= lim
∆a→0

1

∆a

{
∫

A1−A2

WdA−
∫

Γ

ti
∂ui

∂x
∆adΓ

}

(D.3.9)

By inspecting Fig. D.3 it can be seen that the incremental area dA can be written

as dA = ∆a.dy allowing (D.3.9) to be written as

−∂Π
∂A

= lim
∆a→0

1

∆a

{
∫

Γ

W∆ady −
∫

Γ

ti
∂ui

∂x
∆adΓ

}

(D.3.10)

then, by defining J as

J = −∂Π
∂A

(D.3.11)
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(D.3.10) can be simplified to give the final expression for the J-integral

J =

∫

Γ

(

Wdy − ti
∂ui

∂y
dΓ

)

(D.3.12)

It is often convenient to express this is a slightly different form by expressing the

Figure D.3: Incremental quantities between boundaries Γ1 and Γ2

differential dy in terms of the normal components at the boundary. Using Fig. D.4

it can be shown that dy = nxdΓ allowing (D.3.12) to be rewritten as

J =

∫

Γ

(

Wnx − ti
∂ui

∂y

)

dΓ (D.3.13)

In fact to be strictly correct, the above integral is known as the J1 integral where

the J2 integral can be defined in a similar manner. Using indicial notation these can

be written compactly as

Jk =

∫

Γ

(Wnk − tiui,k) dΓ, k = 1, 2 (D.3.14)

Figure D.4: Relation between normals and differential quantities along J-integral
path
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D.4 Contour integral auxiliary equations

The use of a contour integral [33] to determine individual stress intensity factors

is reliant on the use of appropriate auxiliary equations. Using a cartesian coordi-

nate system (x, y) and the polar crack-tip coordinate system (ρ, θ), the auxiliary

displacements are given by

u∗x =
1

2µ
√

2πρ
{[(1 − κ) cos(θ/2) + sin θ sin(3θ/2)]c1 (D.4.15a)

+[(1 + κ) sin(θ/2) + sin θ cos(3θ/2)]c2} (D.4.15b)

u∗y =
1

2µ
√

2πρ
{[(1 + κ) sin(θ/2) − sin θ cos(3θ/2)]c1 (D.4.15c)

+[(κ− 1) cos(θ/2) + sin θ sin(3θ/2)]c2} (D.4.15d)

and the auxiliary stresses

σ∗
xx =

1
√

2πρ3

[(

cos(3θ/2) − 3

2
sin θ sin(5θ/2)

)

c1 (D.4.16a)

+

(

− 2 sin(3θ/2) − 3

2
sin θ cos(5θ/2)

)

c2

]

(D.4.16b)

σ∗
yy =

1
√

2πρ3

[(

cos(3θ/2) +
3

2
sin θ sin(5θ/2)

)

c1 (D.4.16c)

+

(

3

2
sin θ cos(5θ/2)

)

c2

]

(D.4.16d)

σ∗
xy =

1
√

2πρ3

[(

3

2
sin θ cos(5θ/2)

)

c1 (D.4.16e)

+

(

cos(3θ/2) − 3

2
sin θ cos(5θ/2)

)

c2

]

. (D.4.16f)

These can be transformed into the required tractions by ti = σijnj .



Appendix E

Supplementary results

E.1 Curved crack

To demonstrate path independence of J1 and J2 when analysing a curved crack, the

results for a variety of integral paths were shown for a series of enriched analyses in

Sec. 7.3.4. For completion, the results obtained from a series of unenriched analyses

(using the same meshes) are shown presently:

Figure E.1: J1 path independence for unenriched curved crack analysis
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Figure E.2: J2 path independence for unenriched curved crack analysis

E.2 Inclined edge crack

The ability of the enriched implementation to capture the singularity experienced in

a slant edge crack (Fig. 8.15a) was verified in Sec. 8.3.1 where a coarse mesh of four

elements per line was used throughout. To provide a reference solution for crack

lengths varying from a/w=0.3 to 0.6 and for crack angles β=45◦ and 62.5◦, a more

refined mesh of eight elements per line was used (with no element grading) where

the results of each are shown in Table E.1. As before, the J-integral with path four

was used to determine SIFs.

E.3 Inclined centre crack

In Sec. 8.3.2, the mode I and II SIFs for an inclined centre crack in a finite plate

with varying angles of β and a crack length of a/w = 0.5 were given. In addition,

the results for crack lengths a/w = 0.2, 0.3, 0.4 and 0.6 are given presently where

Figs E.3 to E.6 illustrate the results for each crack length respectively.
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Table E.1: Normalised stress intensity factors for slant edge crack with varying crack
angle and crack length - enriched analysis with eight elements per line

β = 45◦ β = 62.5◦

a/w Mode I Mode II Mode I Mode II

0.30 0.884 0.446 1.419 0.338

0.31 0.895 0.451 1.447 0.344

0.32 0.906 0.456 1.476 0.350

0.33 0.918 0.462 1.506 0.355

0.34 0.930 0.468 1.538 0.361

0.35 0.944 0.473 1.571 0.367

0.36 0.958 0.479 1.605 0.374

0.37 0.971 0.486 1.640 0.381

0.38 0.986 0.493 1.677 0.389

0.39 1.001 0.499 1.715 0.397

0.40 1.017 0.505 1.755 0.404

0.41 1.033 0.512 1.797 0.412

0.42 1.050 0.519 1.841 0.420

0.43 1.067 0.526 1.886 0.429

0.44 1.085 0.533 1.934 0.438

0.45 1.103 0.541 1.983 0.447

0.46 1.122 0.548 2.034 0.457

0.47 1.140 0.557 2.088 0.467

0.48 1.160 0.565 2.145 0.477

0.49 1.181 0.573 2.204 0.488

0.50 1.203 0.582 2.264 0.500

0.51 1.225 0.591 2.329 0.511

0.52 1.247 0.600 2.396 0.524

0.53 1.271 0.609 2.467 0.536

0.54 1.295 0.619 2.541 0.549

0.55 1.320 0.629 2.619 0.563

0.56 1.347 0.639 2.701 0.576

0.57 1.373 0.649 2.789 0.591

0.58 1.400 0.661 2.879 0.607

0.59 1.429 0.672 2.974 0.624

0.60 1.458 0.684 3.074 0.643
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Figure E.3: Normalised SIFs for inclined centre crack with a/w = 0.2 and varying
crack angle

Figure E.4: Normalised SIFs for inclined centre crack with a/w = 0.3 and varying
crack angle
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Figure E.5: Normalised SIFs for inclined centre crack with a/w = 0.4 and varying
crack angle

Figure E.6: Normalised SIFs for inclined centre crack with a/w = 0.6 and varying
crack angle


