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CR Submanifolds m Kaehler and Nearly Kaehler Mani­
folds 

l\1Ia.tthew Thomas Gregg 

ABSTRACT. A review of the study of CR submanifolds within Kaehler and 
nearly Kaehler manifolds, and the properties of such manifolds with respect 
submanifold theory in differential geometry. The study in such a fashion is rel­
atively young, most being carried out within the past thirty years. \'Te consider 
CR submanifolds as a generalization of complex and real submanifolds, with 
the tangent bundle decomposing into real and complex parts. "Te demonstrate 
that the CR structure has strong consequences, and is heavily dependant on the 
properties of the ambient manifold. 

The integrability of the real and complex parts is examined in various spaces, 
and we consider the existence of CR submanifolds with product, warped prod­
uct, and foliate structure. The relationship governing the curvatures of the 
ambient manifold, the CR submanifold and leaves of the complex and real dis­
tributions are all considered. 

vVe consider the general cases of complex, almost complex, Kaehler and 
nearly Kaehler manifolds. Further detail is included for the specific manifolds 
of fiat complex space, complex hyperbolic space, complex projective space and 
the 6-sphere. 

As an example of the applications of CR structure we include some work on 
the index of paths, and some topological consequences. 

Examples of CR submanifolds are generated for the 6-sphere, and the prop­
erties of these submanifolds are considered, including the minimality and the 
second fundamental form. \~le include details of possible further study, and 
suggestions for how techniques used might be fruitfully employed elsewhere. 
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Submanifold theory has a long and deep history, being born in the classical 
notion of surfaces in three dimensional space. The more general theory of sub­
manifolds has been well studied, and with many applications. If the ambient 
manifold has an almost complex structure it is natural to ask how the subman­
ifold interacts with the complex structure, giving rise to the idea of real and 
holomorphic submanifolds. 

This thesis is concerned with CR suhmanifolcls - a class of submanifolcls 
which is a generalisation of holomorphic and real submanifolds, but less well 
studied than either. \Vhile the behaviour and existence of holomorphic and real 
submanifolds has been examined extensively, CR submanifolds are relatively 
neglected despite having some interesting additional features. vVe study the 
existence of CR submanifolcls, the restrictions on CR submanifolds dependant 
on the ambient manifold, and the properties of given CR submanifolds. It is 
our intention to demonstrate that CR sumanifolds are of intere:,;t in their own 
right, not a mere curious extension. vVe hope to show that the structure of CR 
submanifolcls is deeply connected to the properties of the ambient manifold. 

vVe are concerned mainly with the specific case of CR submanifolds in 
Kaehler and nearly Kaehler manifolds. The Kaehler structure will be shown to 
have immediate consequences for CR submanifolds. For nearly Kaehler struc­
tures we :,;hall mainly con::;ider the 6-sphere, su, interesting due to being ::>imple 
enough to be well understood, whilst being complex enough to admit interesting 
:,;ubmanifolds. The published work on holornorphic manifolds in both Kaehler 
manifolds and S'u is extensive (see for example Berndt, Bolton, and vVood­
ward[6]), and much CR subrnanifold study has been inspired by this existing 
work. 

The main body of the thesis consists of a review of published work - we 
consider existence theorems for the case of Hermitian and Kaehler ambient 
manifolds in general and then some specific cases of well studied manifolds such 
as projective spaces, hyperbolic spaces and flat spaces. As an example of the 
use of the CR structure we shall recount some recent results concerning index 
theorems for CR submanifolds. 

A large part is spent con:,;iclering examples of CR submanifolcls of su, cul­
minating in an examination of warped-product CR submanifolds. The general 
construction of such submanifolcls (with geodesic complex leaves) i::; original 
work clue to the author and Dr John Bolton, inspired by the restricted exam­
ples demonstrated by Sekigawa, Hashimo and r>'Iashirnoto in [15] and [23]. \Ve 
finish with some discussion of the properties of such submanifolds, ami ideas for 
possible further study. 

Proofs have been omitted in the cases where they are obvious or fully cletailecl 
on the referenced texts. \Ve have also omitted proofs where they are overly long, 
or the ideas present have been previously indicated, and the presentation of the 
proof in full would not be of interest to the general reader. For example the proof 
of topolgocial results from l'viorse theory would be of limited interest. Where 
proofs have been reproduced we have added notes and comments, or expanded 
steps from the referenced texts. 
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- - ----- ------------

Chapter 1 

Assumed Material and 
Some Notation 

\Ve shall be studying CR. submanifolds, and hence will w>e some general results 
from Riemannian geometry, submanifolcl theory and complex structures. Some 
elements from other disciplines will also be required on an ad hoc basis (e.g. 
some results on ?\Iorse theory, group theory, homotopy theory), and will he 
quoted where required. \Vhere a theorem or concept is used in isolation the 
defintions and related therems will be quoted where appropriate. 

Basic differential geometry will be assumed, such as the clefintion of a dif­
ferentiable manifold, vectors, tensors, metrics, connections and so forth. Any 
introductory text on differential geometry will contain details of these concepts. 

General theorems and definitions relating to submanifold theory, complex 
structures, and some other general concepts will be covered in the following 
chapters, as they will be referred to often. Some points where proofs and iden­
tities are standard the proofs have been omitted. 

References for theorems will generally be quoted where required, however for 
general theory the reader is referred to \Vilmore's book on Riemannian geometry 
[26], which contains many of t.he basic defintions and theorems required. \.Ye also 
refer the reader to Do Carmo[ll], and Spivak[24] as containing much general 
theory for Riemannian geometry and submanifold theory. 
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Chapter 2 

Basic Defintions and 
Submanifold Theory 

2.1 Basic Defintions and Notation 

Let AI be a differentiable manifold. We shall then assume that M is of cla:-;s 
c=. For a point p in AI, we ::;hall u::;e TPAI to denote the tangent ::;pace at thi::; 
point. We ::;hall use TAl t.o denote the tangent bundle over AI, and use f(T1H) 
to denote the set of smooth vector fields over AI (i.e. we shall use X E r( 1\1) 
to indicate that X is a vector field over 1\I). 

\Ve define a metric as a ::;mooth non-degenerate bilinear map g : Tpi\I x 
TpAI-> R for each p E Af. We also use the notation: 

g(X, Y) =< X, Y > . 
A metric is a Riemannian metric, if it is positive definite (i.e. <X, X > 

is positive, except in the case where X is identically 0). A manifold equipped 
with a Riemannian metric is called a Riemannian manifold. 

A submanifold is a manifold 1\1 equipped with an injective map 1/J : Af -> 

i{, where 1\-;f is some other differentiable manifold called the ambient mani­
fold. We further require that d~J i::; injective - where (f.~J maps the vector spaces 
TpAI-> T<J;(p)M. If 1/J is a homeomorphism preserving the topology of AI, then 
the map is described as an imbedding. If 1/J is a bijection, ~J and the inverse 
~)-l both c= then the map called a diffeomorphism. 

vVe shall often need to consider vectors over the subrnanifold 1\1 as vectors 
in (M). vVe therefore implicitly identify the vector space Tpi\1 with the relevant 
subspace of Tpi\f. 

We define a distribution D, to be a map M -> (subsets of TAI), s.t. 
D(p) C ~,AI", such that each D(p) is a vector subspace of 1~,1\I, dirn D(p) is 
independent of p, and that D is a smooth map. 

vVe use r(D) to indicate the set of vector fields taking values in D(p) at each 
point p. An integral sub manifold of a distribution is a sub manifold W s. t. 
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TpW C D(p)Vp E IV. A maximal integral submanifold is a submanifold Hi 
s.t. Tp W = D(p)Vp E l·V, not contained in any other integral subrnanifold. vVe 
normally indicate a mmcimal integral submanifold by some point in the ambient 
manifold - if an integral submanifolcl exists through a point, then there is a 
unique integrable submanifold. 

We define a distribution as involutive if the distribution is closed under 
the action of the Lie bracket. vVe shall make free use of Frobenius' Theorem 
which states that any involutive distribution is integrable. (The converse is 
ol JVious) 

2.2 Inherited Metrics, Connection, Riemannian 
Curvature, and the Second Fundamental Form 

vVe shall in general be considering some Riemannian manifold A! (the Ambient 
Manifold), with submanifold !11. \¥e note that given this metric there is the 
natural Levi-Civita connection on A!, denoted V, the unique torsion free con­
nection which is compatible with the metric. Associated with such a connection 
we have the Riemannian curvature tensor, R, given by : 

R(X, Y)Z = '\?x'\?yZ- Vy'\?xZ- V[x.YJZ, 

where X, Y, Z are vector fields on 1fi. 

(2.1) 

vVe assume all normal properties of the curvature tensor, the associated 
symmetries (e.g. anti-symmetry under X, Y above). vVe may also associate a 
Ricci Tensor, and a scalar curvature by the contractions: 

R R"' ij = ikj> 

R = Rj, 

(2.2) 

(2.3) 

respectively, where we use normal index notation for these tensors, and assume 
contraction over repeated indices. 

Given a submanifold 111 we naturally inherit a connection V' from the am­
bient manifold AI as follows. Given vectors U, V E Tplii any p E M, then 
U, V E Tpi\l in a natural way, and so there is an induced metric on Af. Hence 
there is an induced Levi-Civita connection V' on 1\1 given by this metr~c. Fur­
ther we may show that V' is in fact just the tangential component on V' when 
applied to vector fields in r(TM). 

Hence we may write : 

Vu V = V'u V + h(U, V), (2.4) 

for U, V E f(T1\f) over M and h(U, V) perpendicular to Till. This defines the 
t.ensor field h called the Second Fundamental Form of 1\f in 1fi. Note we 
have implicitly extended U, V E r(M) into fields in r(Jf/) on some region of 
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ii, but this is acceptable as it is easily shown that V' and h are independent 
of the extension chosen. The second fundamental form contains a great deal of 
information about how the submanifold is embedded in the manifold - we shall 
see that by using the Gauss equation the second fundamnetal form completely 
determines how the curvature tensor of the submanifold is related to the of the 
ambient manifold. 

'Ve also note that there is an associated normal bundle to 11£, which at 
each point fJ E 1\J consists of that part of T!,if perpendicular to Tj,AI. 'Ve 
also have a natural induced metric on this bundle, and an induced normal 
connection V' .l. 

For ~ in the normal bundle, X tangential to f-I, we write: 

(2.5) 

where the first term is tangential to AI, and the second term perpendicular. 
This defines the operator A, which is related to the second fundamental form 
as follows: 

< A.~U, V >=< h(U, V),~ >, (2.6) 

where U, V are tangential fields to 11I, and ~ perpendicular to AI. In some cases 
A is referred to as the shape operator of the submanifold. It may be shown 
that either of these two definitions of A are equivalent. The identity above 
relating A and h is someteimes referred to as the Weingarten Equation. 

Observe that the tensor h is symmetric: 

h( U, V) - h(V, U) (VuV- V'uV)- (VvU- V'vU) 

(VuV- VvU)- (V'uV- V'vU) 

[U, V] - [U, V] 
0. 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(Observe that the Lie bracket [U, V] is conatained wholly in TAI as the 
tangent bundle is necessarily integrable. Hence the evaluatiion is the same on 
the submanifold or in the ambient manifold). 

vVe deduce that h may he diagonalised - let the entries of the diagonalisation 
of h be r 1 , ... , r, called the pronicpal curvatures of the submanifold. vVe define 
two associated curvatures: 

The Mean Curvature 

1 
H = -(rl + ... r,), 

n 

and the Gaussian Curvature 

J( = l"JI"z ... r,., 
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(the product of the principal curvatures). 
It is of interest to note that the Gaussian curvature, although defined in 

terms of ~;ome embedding i~; actually an intrinsic property of the submanifold. 
It may be demonstrated that J( is invariant under isometries of a surface. 

vVe ~;hall be particularly interested in the condition H = 0, defining minimal 
submanifolds. Such manifolds are studied classically as minimizing certain 
energy conditions, and most easily recognised as the surfaces formed by soap 
films. 

\Ve also note that there is also a naturally induced Riemannian cnrvature 
tensor, R, exactly as expected. However we will make use of several structural 
equations, referred to as equations of Gauss and Codazzi respectively. 

< R(U, V)W, Z >=< R(U, V)W, Z > + < h(U, Z), h(\1, \V) > 
- < h(U, W), h(V, Z) >, (2.13) 

(R(U, V)W) = ('Vu)h(V, W)- ('Vv)h(U, Hl), 

(2.12) 

(2.14) 

where U, V, \·V, Z are tangential fields to 1\f, and we assume the connection acts 
on h by: 

('Vu)h(V, W) = 'Vu(h(V, ~V))- h('VuV, W)- h(v', 'VuW). 

A submanifolcl 1\f is a totally geodesic submanifold in Jlf if every geodesic 
in Af is a geodesic in Af. Totally geodesic submanifolds are of interest because 
of their general simplicity, and the simple forms that induced curvatures, con­
nections and the second fundamental forms necessarily take. For example in 
R" planes through the origin are totally geodesic submanifolds. Similarly in 
the n-sphere S'" the totally geodesic submanifolds are precisely great spheres. 
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Chapter 3 

Complex Structures 

Given a real manifold Ai, we will define an almost complex structure, 
usually written as .J, as a linear map on the tangent bundle Till such that 
.]2 = -Identity. Observe that for such a structure to exist, the manifold must 
be of even dimension. 

Observe that an n-dimeusional complex manifold may be viewed as a 2n 
dimensional real manifold, in which case multiplication by ·i induces a complex 
structure. Observe that for local coordinate .1:; we may write tangent vectors 
in the form X = A; "'8 . + iB i r"a. at a point. Multiplation by i maps X to u:z::l · 'J,r; 1 

iX = - B; ,,D. + Aj "8 . , and it. is clear that such a transformation satisfies the 
u.ri u.z::1 

requirements for an almost complex structure. 
Hence every complex manifold generates an almost complex structure, but 

the converse is not true. vVe introduce the Nijenhuis tensor, N, by: 

N(X, Y) = [JX, .JY]- [X, Y]- .J[.JX, Y]- .J[X, JY]. 

For vector fields X, Y over the manifold. The Nijenhuis tensor is identically 
zero if and only if the almost complex structure has been derived from a complex 
structure. vVe use the alternative notation: 

N(X, Y) = [.J, J](X, Y), 

and extend the notation for arbitrary linear maps, cp of the tangent bundle, 
by: 

[cp, t/J](X, Y) =[¢X, c!)Y] + ¢2 [X, Y]- cp[cpX, Y]- ¢[X, ¢Y]. 

If a manifold Af admits an almost complex structure we shall call it an 
Almost Complex Manifold (As distinct from a complex manifold). 

Given a Riemannian manifoldii~I with a submanifold M we will find it useful 
to decompose .J into tangential and normal parts with respect to the submanifold 
AI: 

18 



.JU = ¢U +wU, 

J~ = B~ + C~, 
(3.1) 

(3.2) 

(3.3) 

where U is a tangential vector field to AI, ~ perpendicular to AI. The first 
terms, in qJ and B, are tangential to 11£ and the second terms, in w and C are 
perpendicular to 11£. 

If an almost complex structure is compatible with the metric as: 

< JX,JY >=<X, Y >, 

then we call the metric Hermitian. An almost complex manifold with Her­
mitian metric will be called Almost Hermitian. (And naturally a complex 
manifold with Hermitian metric is called a Hermitian manifold). vVe note 
in passing that any almost complex manifold can be given a Hermitian metric, 
e.g. by: 

<X, Y >= g(X, Y) + g(JX, JY), 

where g is any metric on the manifold. Almost all common manifolds of interest 
( C", complex projective spaces, complex hyperbolic spaces, S6 ) are Hermitian 
with the normal metric. 

\Ve define the Kaehler form on an almost Hermitian manifold A1 by: 

<I>(X, Y) =<X, JY >, 

for X, Y vector fields on ii. If <f> is closed (i.e. d<f> = 0) then we call 1ff a 
Kaehler manifold. An equivalent defintion is a manifold over which tl x .J = 0 
for abitrary vector field X. V/e note that the equivalence of these two definitions 
is dependant on the Hermitian structure. 

It is also possible to define a Kaehler metric in terms of a Kaehler potential, 
but we shall not be using this property. 

There are several interesting Kaehler manifolds such as CP", C", and com­
plex hyperbolic spaces. 

The Kaehler property is of great use in manipulating terms involving the 
complex structure in connection terms. For example, consider some vector fields 
X, Y, then: 

tlx(JY) (tix.J)Y + J(tixY) 

JtixY. 

( :3.4) 

(3.5) 

So we see that in Kaehler manifolds the complex structure may be pushed 
through covariant differentiation. 
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3.1 Nearly Kaehler Manifolds and S6 

We shall wish to consider manifolds such as S6 which are not Kaehler, but 
instead have the property that: 

(Vx.J)X = o. 

vVe call manifolds with this property nearly Kaehler. Note that various 
manipulations will fail in the nearly Kaehler case, for example: 

(Vx.J)Y + .J(Vx Y), 

cannot be sitnplified further. However: 

Vx(JX) (Vx.J)X + .!(Vx X) 

JVxX. 

(:3.6) 

(3.7) 

(:3.8) 

(3.0) 

(:3.10) 

This will have important consequences for the attempts to carry theorems 
over from the Kaehler case to the nearly Kaehler case. 

The most common nearly Kaehler manifold, (often the only one considered) 
is 5'6 with the almost complex structure defined as follows. 

It is well known that the idea of complex numbers may be extended to four 
dimensional quaternions, of the form: 

q = u.• + :ri + yj + zk, 

with w,:r,y,z E R, and i,j,k i:mtisfying the relations: 

ij = k, jk = i, ki = j, 

ji = -k, kj = -i, ik = -j. 

And conjugation by: 

{j = w - :ci - yj - zk. 

vVe may further define an eight dimensional aualogtte, the Octonians (or 
sometimes called Cayley numbers), as ordered pairs of quaternions, i.e. 

:r = (ql,qz), 

where q; are quaternions. Addition and subtraction is defined as might be 
expected: 
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and multiplication by: 

Conjugation is defined by: 

( qi, l/2) = ( r[l, -q2). 

Naturally we have a metric by l:r:l 2 = :z:.r. \Ve define the real part of (lJ 1,q2) 

to be the real part of q 1, and by extension a purely imaginary octonian to be 
one with identically zero real part. 

vVe now icleutify the uormal euclidean space R 7 with the purely imaginary 
octonians, and define a wedge product (or vector product, or cross product), 
by: 

:c 1 1\ :r2 = Im(:c 1:c2 ), 

where the multiplication is to be carried out as defined above in the held of 
octonians. \Ve may also define an inner product by the rela part of the multi­
plication, and observe that this is a natural extension of the concepts as clelined 
in R:J - where the normal wedge and inner products may be identified as corre­
sponding to multiplication in the held of quaternions. \Ve note in passing that 
no higher dimensional algebras with these properties may be constructed - see 
Harvey and Lawson[l4] for more details and a fuller treatment. 

Let S'" he the unit sphere in R 7 with the normal euclidean metric, the inner 
and wedge products as defined above. Then for some point p E S'6 , and a vector 
X E TPSli, we define: 

JX=pi\X, 

where we have identified TpiH with the vector space in R 7
. 

After some calculation we can demonstrate that J so defined is indeed an 
almost complex structure as .J2 = -identity. Further the Nijenhuis tensor 
is non vanishing, and hence S'6 with the given structure is not derived from 
a complex manifold. The given metric is Hermitian, and the almost complex 
structure is nearly Kaehler. 

\Ve note in passing that any 6-climensional orienta.ble manifold embedded in 
R 7 may inherit this almost complex structure via the gauss map. 

A large part of this work is concerned with the submanifolcls of S'6 - this 
manifold is of interest clue to its nearly Kahler structure (as opposed to Kaehler 
for many other interesting spaces), and the spheres S'11 do not admit almost 
complex structures, except in the ca.'ie n = 2, 6. As shall be shown CR subman­
ifolds are only of interest in dimensions 3 and higher, requiring ambient spaces 
of dimension 4. Hence S'6 ha._-; a unique structure and construction, and admits 
many interesting results which are not found in other spaces. 
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Chapter 4 

Totally Real, Complex, and 
CR Submanifolds 

Given a almost complex manifold AI we are interested in how a submanifold 1\I 
interacts with the almost complex structure J. 

Traditionally two types have been studied - complex submanifolds ami to­
tally real submanifolds. vVe label a submanifold M as complex or holomor­
phic if its tangent bundle is preserved by J, i.e. J : nH ----+ TAl. There has 
been extensive work identifying these types of suhmanifolds and studying their 
properties, for example Bolton, Vrancken, \Vooclwanl[8]. 

A submauifold AI is called totally real if J(TM) is perpendicular to TM. 
i.e. < JX, Y >= 0, VX, Y E TM. A totally real submanifold is sometimes 
labellecl lagrangian or anti-holomorphic if it is of mCLximal dimension - i.e. 
half that of the ambient manifold. As with complex submanifolcls there is con­
siderable literature on the existence and properties of such subrnanifolds. 

This work is concerned with a generalisation of these ideas to CR. submani­
folds, as defined by Bejancu in [1]. 

1\1, a submanifolcl of 1fi, is a CR submanifold if there exist orthogonal 
distributions D, Dl_ over 1H s.t. 

TAl= D ffi Dj_, 

where D is preserved by J, and Dl_ is mapped to (T !vi) j_ in T Jf!, and D, Dl_ 
are of constant dimension. It is very quickly seen that real and complex sub­
manifolds are special cases where D or Dl_ respectively, is the trivial zero­
distribution. \Ve therefore call the case excluding these, where both D and 
Dl_ are both non-trivial, proper CR submanifolds. vVe see that a CR. sub­
manifold is an extension of complex and real submanifolds in that part of the 
tangent space acts &'l a real subrnanifold, and part as a complex submanifold. 
Hence we will sometimes refer to D as the complex distributions, and Dj_ as 
the real distribution. It should be noted that not all submanifolds are of CR. 
type- we shall give firm examples lat.er in 5 6 , but submanifolds may fail (for 
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example) clue to the real part being non-perpendicular to the complex part, or 
the complex or real distributions being of non-constant dimension. 

V/e shall sometimes find it useful to denote the vector bundle perpendicular 
to both TM and .J(TM) by v, so that 

T if = D ~B DJ. EB J Dl. cB t/. 

In the case where I/ is the zero chapter, (equivalently DJ. is of maximal 
dimension permitted by D) then the subrnanifold is called anti-holomorphic, 
an extension of the previous defintion. 

Having defined the basic concept of CR submanifold we also find it useful 
to define certain properties that sm:h a submanifold may have. 

vVe will call a CR submanifold M a CR product if it. is locally about 
'Vp E Af the Riemannian product of sub manifolds 1H' and 1'1 l. respectively 
leaves of D and DJ.. By definition therefore the distributions D and DJ. must 
be integrable on a CR product. 

\Ve define CR submanifold as mixed geodesic if h( U, X) = 0 'VU E D, X E 
DJ.. 

\Ve describe a CR submanifold M as mixed foliate if D is integrable and 
!II is mixed geodesic. 

4.1 Levi Structure 

We shall find it useful to use an adapted definition of the Levi Structure 
of a CR submanifolcl !II, as defined by Lei and Wolfson in [ 18]. In [18] only 
submanifolcb with real diruensiou (equal to dim( DJ.) ) 1 are considered. If we 
define a local frame on a CR submanifold {U;, JU;} s.t. U; E r(D) (so that 
there is no degeneracy in the framing), and X E r( DJ.), then we define the 
Levi Form c;J by: 

[U;, JUJ] = ci.iX + terms in D. 

Clearly the exact form of cu i::; dependent on the framing chosen, however we 
defiue a 2-form T ( T;j -cij·ininde:rnotationinthisframing), andtherankandnv.llityoftheLeuifortnT 
are well defined. 

The nullity of the submanifold is defined as the complex dimension of the 
null space of the Levi form. M is called Levi flat if the Levi-form vanishes. 
By referring to Frobenius' theorem we see that. this corresponds to the case in 
which the distribution D is integrable. 

vVe extend the definition of Levi form by using a local framing {X;} for the 
distribution DJ. and associating a fonn ct by: 

[Ui, JUJ] = ctX~o + tem1s in D. 

(Assuming summation over k). 
Again the case where the Levi-form vanishes corresponds to the case in which 

both D aucl DJ. are integTable. 
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4.2 Alternative Definitions 

\Ve note that similar structures called variously CR structures, CR man­
ifolds may be defined with respect to complex manifolds - see for example 
Jacobowitz[ 17], and indeed there has been a longer history of study of :mch 
structures. Although in ma.ny ca::;es roughly equivalent, there are important 
differences in exact definitions and exact properties, and often the defintion is 
restricted to the case where the real part of the manifold is of dimension 1, 
and ::;ometimes other conditions are imposed on the tangent spaces. Such ob­
jects naturally occur as (2n-1) dimensional real ::;ubmanifolds in n-dimensional 
complex space::;. 

\Ve will not give the definition here, and will only be considering tho::;e ::;ub­
manifolds as defined above following Bejancu et al. We should note that these 
structures have strong relations to the Cauchy-Riemann equations over a com­
plex manifold, and for this reason in this context CR is taken to stand for 
Cauchy-Riemann. Using CR submanifolds as a generalisation of real and com­
plex submanifolcl::; there is a ca::;e for considering CR as standing for Complex­
Real in this situation. 

For completeness we shall also note the definition of Quaternionic sub­
manifolds, where the single linear map J, is extended to a set of linear maps 
J, K, L, in analogue with the exten::;ion of complex numbers to quaterniouic 
numbers. In the same way we may define QR-Submanifolds as submanifolcl::; 
\Vith quaternionic and real distributions. 
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Chapter 5 

Products and Warped 
Products 

For general theory of warped product.~ and t.wi~ted product~, we refer the reader 
to the paper by Ponge and Reckziegel [20]. 

The mo~t general ca~e of a twisted product may be defined as follows: Let 
( j\11, Y1) , ( 1\I'2, gz) be Riemannian manifolds with their associated metrics, and 
define smooth, positive functions: 

fi : All X i\h ---> R, 

h : Ml X i\h ---> R. 

\Ve define Tt 1 , Ttz as the projections onto 1\h, AI2 . The twisted product AI1 x 
1\12 is then a manifold equipped with the Riemannian metric g given at a point 
P = (PI , P2), by: 

vVe shall be more concerned with the restricted case where fi is the identity, 
and fz depends only on p 1 E A11• We denote this as the warped product of 
AI1 and 1\12, and denote it by 1\11 x J2 1\h. The case where fz is the ideutity 
corresponds to a Riemannian product manifold. vVe shall often refer to h 
as the warping function of 1\12 over 1\11 . 

We apply these concepts to CR submanifolds by considering the case where 
D and Dj_ are both integrable distributions, with each leaf in Dj_ isometric to 
every other leaf of Dl_, and each leaf of D isometric to every other leaf of D. 
We call M a CR warped product if it is a warped product 1\£1 x 1 M 2 with 
M 1 a holomorphic submanifold, and M 2 totally real. We shall call 1\1 a CR 
product if .f is the identity, i.e. M is a Riemannian product. CR products, 
and CR warped products are natural objects to investigate as their structure is 
defined in terms of the simpler complex and real parts, and hence there is some 
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idea of how to cow;truct them, and sufficient structure to enable analysis to be 
carried out. 

vVe will find the following theorem of use: 

5.0.1 Theorem 

Let AI be a warped product sub manifold of some Riemannian manifold as above, 
M = M 1 x f M 2 , then M 1 is totally geodesic in M. 

Proof Take some geodesic 1(t) in 11£1 . Take arbitrary points 1(t0 ), r(t 1 ), then, 
for sufficieutly short geodesics, the distance between these points is minimised 
in AI1 . lf this is so we now need to show that the length is minimized in 11£. 
Consider some small variation in M, <5 1 (t), 62 (t), respectively in M 1 and Ah. 
Then: 

l
tl 

< "y(t) + 6(t), "y(t) + 6(t) > dt 
to 

(5.1) 

i
t! 

< ~t(t) + r)l (t), "'f(t) + Jl (t) >1 + 
to 

(5.2) 

f(r(t) + 61 (t), 1(t) + 61 (t)) < J2 (t), J2 (t) >2 dt.(5.3) 

Now observe that as AI is a submanifolcl of a Riemannian manifold it neces­
sarily has a positive definite metric, and so f is a strictly positive function. vVe 
therefore see that : 

And as this is true for arbitrary points on the geodesic, we see that ~~ is a 
geodesic in 1H, and hence 1\11 is totally geodesic in AI.// 

vVe note that the same is not true for AI2 due to the fact that we may vary 
in kh so as to move to lower values for f. Consider for example the punctured 
sphere 5 2 {poles} = R. x f 5 1 , where the totally geodesic R form great circles, 
but the warped 5 1 form t>mall circles, not geodesic in 5 2 . 

vVe note at> a consequence that iff is identically equal to one, then we have: 

5.0.2 Theorem 

If AI is a product CR submanifold then D and Dj_ are both integrable, and the 
complex and real leaves are each totally geodesic in 111. 

The converse is also true: If M is a CR submanifolcl with integrable D, Dj_, 
such that the real and complex leaves are each totally geodesic in 111, and each 
the integral submanifolds in D, Dl_ are isometric respectively, then ill is a CR 
product submanifold. 
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Proof Take j\Jc an arbitrary leaf of the clit;tribution D, and observe that the 
distribution Dj_ defines totally real manifolds through each point, hence 111 does 
indeed have a twisted product structure. Consider some geodesic in 1\JC, then if 
we move to adjacent leaves of the distribution the length of the geodesic varies 
depending on the warping function .f : AI 1_ --> R, where AI I pe'lp is the leaf of 
Dl_. If .f is not a local minimum ( with respect to both the chosen geodet;ic 
and leaf JHc), then we may vary the geodesic so as to reduce its length in 111, 
contradicting the assumption that all leave::; of Dj_ are totally geode::;ic in A!. 
Hence f i::; a local minimum for this choice of leaf and geodesic - hut as this 
choice was arbitrary we see that f is a loacl minimum for all lea vet; of D, and 
for all geodesics in each leaf, hence for all of AI 1_, and hence a constant. I3y a 
similar argument the warping function on .f' : 1\Ic --> R is also constant, and so 
we deduce that the manifold 1\I is indeed a product manifold./ j 
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Chapter 6 

G2 structure 

G 2 is of interest as one of the exceptional Lie groups, and is a subject of much 
interest in its own right, and as might be expected may be defined and inves­
tigated in various ways. We shall be mostly interetecl in how G 2 relates to the 
almost. complex ::;tructure of 5 6 , and the consequences for CR submanifolds in 
s~'. 

\Ve define G2 as the subgroup of G L(R, 7) which preserve:; the standard 
euclidean metric, and the almost complex structure on 5 6

, with determinant 
+ 1. vVe quickly see that it is the subgroup of 50(7) which preserves the wedge 
product on R 7 . i.e. 

A( X!\ Y) =AX!\ AY, 'v'A E G2 , X, Yvectors in R 7 . 

G 2 is a Lie group and hence analysis is helped by examining the associated 
Lie algebra 92 . vVe may define 92 either as the set of left invarient vector fields 
on G2, or equivalently the tangent :;pace to G2 at the identity. 

\Ve observe first of all that the metric preserving condition implies that 
g2 C so(7), and it is well known that so(7} consists of 7 x 7 skew symmetric 
matrices. vVe must impose a further condition derived from preserving the 
complex structure as follows: 

Let A(s) be some path in G2 , s.t. A(O) is the identity. \\Te shall let e;, e.i to 
be a basis for the tangent space of R 7 at the identity. By the clefintion of G2 : 

A(s)(e; !\ ej) = A(s)e; !\ A(s)eJ. 

Differentiate this with respect to s, and evaluate at zero, to obtain an element 
of the tangent at the identity: 

A'(O)(e;/\e.i) 

A'(O)(e;!\e.i) 

A'(O)e; !\ A(O)e.i + A(O)e; !\ A'(O)eJ 

A'(O)e; !\ e1 + e; !\ A'(O)e1 . 
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For any element of the tanagent space we may find some n::>::>ociatecl path in 
G2 (by definition of the tangent space) and so every element X E y 2 obeys this 
relation: 

X(e, 1\ eJ) = Xe; 1\ CJ + e; 1\ Xei. 

In fact if X E so(7) this is a sufficient condition for X E g2 . Tim::; 

q2 {X E y/(R, 7)1X E so(7), X(e; 1\ eJ) = Xe; 1\ ei + e,l\ Xej'<:/i,j = l, ... , 7} 

{X E gl(R, 7)IXT = -X,X(e; l\e1 ) = Xe; 1\eJ +e; 1\ Xe}h,j = 1, ... , 7}. 

This is sufficient information to constmct the general form of g2 . \Ve start 
by setting the following relations: 

Xe1 a1e2 + a2e:3 + a:3e4 + a4e:; + a5e6 + a5e7, 

X e2 -a1 e1 + 1> 1 e:3 + b2e4 + h:3e5 + h4e6 + b5 e7 . 

vVhere the choice of -a 1 e 1 as a factor iu X e2 has been forced by the anti­
symmetry requirement. vVe are free to choose these factors as the wedge product 
relations involve three basis elements. Consider therefore the relationship e 1 1\ 
e2 = e:3 . If X E g2 we must fulfil: 

We can completely write out the right hand side: 

Xc:3 (-a2 +0)e 1 +(0-hl)e2 +0e:J+ 

(a:,- b:J)c4 + (ofl + b2)e5 

( -a:3 + b5 )c6 + ( -a4 - b4). 

Further ob::;erve that there is no wedge product relation involving only c 1 , e2 , e3 

and e4 • Hence we are free to pick the action of X c4 , as long as we respect the 
anti-symmetry. 

Hence: 

X e4 = -a:3e1 - b2c2 + ( -a5 + b:3)c:3 + c1 e5 + c2e6 + c3e7. 

vVith c1 , c2 , c:3 E R. Note further that the action of X on e5 , e6 , c7 is now 
fully determined by further wedge product relations, most simply e1 1\ e4 = e5, 
e2 1\ e4 = eli and e:3 1\ e4 = e7. Hence we are now free to write out the most 
general form of X E g2 . 
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0 -ILl -(/,2 -IL:J -aA -(l5 -afi 

CLJ 0 -bl -b'2 -b:J -64 -b5 
(12 b! 0 -(15 + li:J -(l.fj + b2 (13 -be, (/,[ + b.1 

X = Cl:J b2 as - b:J 0 -Cl -c2 -c3 

a" b:l a6 + b2 Ct 0 -a! - C:J -(1,2 + c2 
ll-!) "" -a:3 + b5 c2 Oj + C:J 0 -hi - Ct 

a(; h:, -(LI - b4 C:J (L2 - c2 bl +c, 0 

with: 
a 1 , ... , iL0 , IJ 1 , ... , h:;, c 1 , c2 , C:J E R. 

Observe that y2 therefore has fourteen real dimensions, and hence C 2 is also 
of real dimension fourteen. 

vVe note a further notation that is sometimes of use: 
\\Trite Au for the element of yl (7) which acts on basis elements as: 

{e; fm· e,... = e1 

{ -e1 for e,... = e; 

{0 otherwise. 

\Ve note that these elements span so(7), as they generate all anti-symmetric 
matrices. Hence it is possible to form a basis for g2 , equivalent to the matrix 
form above. Note that they are the infinitesimal parts of various rotations in 
R 7 . For example: 

e:rp(Aijt):c""e,... = (e; cost+ ej sin t):c:; + ( ej cost-e; sin t):rj. 

In [15] it is observed that g2 is spanned by a series of two-dimensional sub­
spaces, for example: 

where a + b + c = 0. \Ve observe that the relevent co-efficients in the matrix 
form arc: 

b = CJ, 

C = -/Jl- CJ, 

and so the subspace is indeed in g2 . The full set of subspaces is: 
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aA23 + IJA4s + cA76: 

aA31 + bA45 + cA.'i7: 

aA 12 + bAt7 + cA55, 

aA51 + hA73 + cA62 , 

aA 14 + hA72 + cA3 fi, 

aA11 + hA24 + cA5:~, 

a Au, + IJA,34 + cA25, 

where in each ~;ubspace a+ iJ + c = 0. \"e have obtained a set of two-dimen~;ional 
subspace~; of g2 , which form the whole of g2 under the direct sum. Thi~; decom­
position is useful shorthand for looking at specific g2 elements, as occurs in [15] 
where it is uc;ed extensively in identifying subgroup~; of G2 and the associated 
sub-algebras of Y'2· 
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Part IV 

CR Submanifolds in Almost 
Hermitian Manifolds 



\Ne start the investigation of CR submanifolds with the case of almost Her­
mitian manifolds as ambient spaces. This is the most general case that we shall 
consider, as any almm;t complex manifold may be given a Hermitian metric, and 
in practice many manifolds under investigation have Hermitian structure with 
their usual metrics. It is also a common feature of Kaehler and nearly Kaehler 
manifolds which we will examine in greater detail. Hence results in this chapter 
will show common theorems between these two types, where as later we shall 
indicate the differences in theorems. 

·while a relatively weak comlition, the Hermitian property gives some inter­
esting general results - often neglected, or not noted as such when developed 
for more specialised results. For example in [23] Sekigawa produces results for 
the specific case of S'0 , which are actually of more general application. It is a 
primary use of reviews of this type to isolate results and indicate their position 
in the more general theory. ?viany of the given results may be found in Bejancu 
[3]. 

Throughout this chapter we shall generally be considering A1 as an almost 
Hermitian manifold, with submanifold 1U. vVe denote the complex structure by 
J, and decornpose into tangential and perpendicular components as before (cf 
eq. ??eqno3), and (3.2)) - for U a tangential vector field to M, ~ perepndicular 
to AI: 

.JU = cjJU +wU, 

.1~ = B~ + CC 

where rpU, B~ are tangential to 1H, and wU, C~ are perpendicular to A1. 
In cases where Af is a CR submanifold we will use P and Q to represent 

projection of T1H onto D and DJ. respectively. 

6.0.3 Theorem 

M is a CR subrnanifold if and only if 
a. rank( cjJ) = constant, and 
b. w. dJ = 0 

Proof Firstly assume that 1H is 11 CR submanifold. vVe see that: 

rpX = JPX, 

wX = .JQX, 1::/X E r(TM). 

Hence rank( cjJ) is a constant, as it is equal to rank( J P), and by definition of 
a CR subrnanifolcl P is of constant rank. If we combine these two expressions, 
then we may write: 

w · rpX = JQ(JPX) = 0, 

as .JPX ED. 
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Conversely suppose conditions a. and b. are satisfied. vVe then define D 
by D = Image(q!). Observe now that if X E r(D), then X = cjJY for some 
Y E r(TM). Then: 

JX = JrpY = ¢ 2 Y + (w · rp)Y = ¢ 2 Y E Image(¢)= r(D). 

Hence D is indeed preserved by J. vVe now define DJ.. as the bundle perpen­
dicular to Din TM. For an arbitrary Y E r(TAI) we can write Y = U + Z, U E 

f(D),Z E r(DJ..), and X E r(DJ..), then: 

< .JX, y > < JX,U + Z > 
-<X, JU + JZ > 
-<X,JZ> 

-<X, dJZ > 
0. 

So we see that J DJ.. is indeed perpendicular to 1\f, and so 1\J is truly a CR 
submanifold as reuired./ / 

vVe can prove a related theorem: 

6.0.4 Theorem 

M is a CR submanifold if and only if 
a. rank(B) = constant, and 
b. q) · B = 0 

Proof In the case that AI is a CR submanifold, we do not define B explicitly. 
vVe note that Image(Br) c o; at each point p E 1U. To see this consider: 

< BV, Y >=< JV. Y >=- < V, JY >= 0, 

for V E r(TMJ..) andY E f(D).On the other hand if we take U E r(DJ..) so 
that JU E r(TM J.. ), then we see that: 

-U = J 2 U = BJU + CJU = BJU. 

Hence DJ.. C Image( B), and so DJ.. = fuwge(B), and so B is of constant 
rank. Further we may write: 

JBV = ¢BV + wBV. 

And we deduce that ¢ · B = 0, as both sides are perpendicular to T11f. 
Conversely suppose that conditions a. and b. hold. Then we define DJ.. as 

the image of B, and D as the distribution perpendicular to DJ.. in TiVJ. It is 
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simple to show that Dj_ maps to Tj\Il_ under .J- take X E r(Dj_), Y E r(T11I) 
then, for some V E r( Dl_): 

< JX, Y >=< J BV, Y >=< rjJ · BV, Y >=< 0, Y >= 0. 

Further we demonstrate that J D is perpendicular to both T f.,J 1_ and Dl_, 
and hence is preserved- for X E r(D), Y = BV E r(Dj_), Z E r(Tj_), then 

< JX, Y >=- <X, .JY >=<X, J BV >=- <X, dJ · BV >= 0, 

< JX.Z >=- < X,JZ >=- < X,BZ >= 0. 

Hence D, Dl_ are as required, and AI is a CR submanifolcl./ / 

Note in both of these theorems we needed the almost Hermitian structure to 
show that certain spaces are perpendicular. vVithout the Hermitian structue 
we have no information concerning the way in which J relates to the metric, 
and hence no manipulations are available between equations involving the met­
ric. vVe may compare this with the way in which Kaehler and nearly-Kaehler 
structures give methods for moving the complex structure through covariant 
differentiation. vVe note that there is very little work on CR submanifolds (or 
indeed more generally) in cases of non-Hermitian manifolds. 

vVe note in passing that for a CR submauifold 1H, ¢has the properties: 

and 

and so by defintion ¢ is an £-structure on the bundle Till. Similarly C forms 
an £-structure on the tangent space perpendicular to T11! in A1. An f-structure 
may be defined by these two properties, and there is a body of work on such 
structures, and the reader is referred to I3ejancu[5] for how these ideas may be 
applied to CR submanifolds. One may naively consider them as an analogu of 
amost complex structures on odd dimensional submanifolds, an idea which may 
he made more precise. vVe shall not go into further details of f-structure here. 

Recall that we extended the Nijenhuis tensor N = [.!, J], to aribtrary linear 
maps on vector fields such as rp by: 

[¢, cb](X, Y) = [r1~X, ¢Y] + ¢2 [X, Y]- q~[X, ¢Y]- ¢[¢X, Y], 

and similarly for w, B, C. 
It is then useful to write the relation: 

N(U, V) = [¢, ¢](U, V)- Q[U, V]- w([¢U, V] + [U, ¢V]), (6.1) 

for U, V E r(D). 
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Proof l3y direct substitution.// 

\·Ve consider some examples of integrability conditions for the distributions D 
and Dj_. 

6.0.5 Theorem 

A CR ~mbmanifold Af has D integrable if and only if 

N (U, V) T = [dJ, r;'J) (U, V), 

for all U, V E f(D). 

Proof Take tangential parts of the identity (??eq29)). If Dis integrable then 
the terms [¢U, V], [U, ¢V) are contained in D, and sow of these is zero, leaving 
the indeitiy required. The converse follows similarly. // 

Several other integrability conditions may be demonstrated for D, but these 
are of similar character to those already given. As they will not be used for 
further proofs we refer the reader to chapter 2 of l3ejnacu's work[3]. 

As contrast we will prove an integrability result for the real distribution Dj_. 

6.0.6 Theorem 

Let kf be a CR submanifolcl of an almost Hermitian manifold, with real dis­
tribution Dj_. Then Dj_ is integrable if and only if the tensor [¢, ¢] vanishes 
identically on Dj_. 

Proof For X, Y E f( Dj_) then we may write: 

[¢, <P](X, Y) = -P[X, Y], 

and the result follows. The identity may be demonstrated by substitution 

[¢,¢](X, Y) [¢X, ~~X]+ ¢ 2 [X, Y]- d>[X, ¢Y]- ¢[¢X, Y) 

¢2 [X,Y] 

-P[X,Y). 

Recalling that ¢acts only on vector fields in f(D). // 

vVe note in passing that the analogous result holds for D in the case of Her­
mitian manifolds - simply observe that N is identically zero for Hermitian man­
ifolds. 

It is also worth noting that when the ambient manifold is given a Kaehler 
structure both of these theorems may be strengthened considerably - in fact we 
shall see that in Kaehler manifolds the distribution Dj_ is always integrable. 
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6.1 Parallel Distributions and ¢ -connections 

\"'e consider now some results proven in general by I3ejancu in [4], the main 
result being that CR submanifolds with ¢ connections are necessarily CR prod­
uct sub manifolds (see 6.1.2 for defintition). Although proved by Bejancu for 
CR subrnanifolds in almost Hermitian submanifolcls it is used extensively by 
Chen[ 10] with respect to Kaehler manifolds, who developed the theorem in the 
case of ambient manifolds with Kaehler structure independantly. Chen gives 
an alternative proof (of a weaker theorem) for Kaehler manifolds which will be 
indicated in the relevant chapter. 

A distihution K is parallel with respect to some connection V' if: 

Y'x Y E f(J\) \IY E f(K), 

and X an arbitrary vector field on the relevant manifold. \.Ye may then show 
that: 

6.1.1 Thoerem 

Given a CR submanifolcl 11!, in an almost Hermitian manifold 1f! with Levi­
Civita connection '\7, the distribution D and Dj_ are parallel with respect to V' 
if and only if D and Dj_ are both integrable distributions, with leaves totally 
geodesic in 1H. 

Proof SupposeD and Dj_ are paralle with respect to V'. Then as V' is torsion 
free, for U, V E f(D) and X, Y E f(Dj_) we may write: 

[U, VJ = Y'uV- Y'vU E r(D), 

[X, YJ = V'xY- \i'yX E f(Dj_). 

And hence by Frobenius theorem D, Dl_ are integrable distributions. Now 
take AJC some leaf of D, and consider the second fundamental form he of Ale 
in M, then: 

hc(U, V) = '\?u V- V'(J F, 

where U, V E f(TAfc) and vc is inherited connection on 1Hc. However observe 
that the first term is parallel to T kfC as D is a parallel distribution, and he is 
defined as the perpendicular part of V' u F hence is identically zero. Hence 11fc 

is geodesic: in AI. Similary for any arbitrary leaf of Dj_. 
Conversely suppose that D, Dl_ are integrable distributions, and the leaves 

are all totally geodesic in !vi. As the leaves are totally geodesic the second 
fundamental form of each leaf is zero. Hence for U, V E f(T A1c ), for some leaf 
11lc of D, the covariant derivatives '\7 u V has no part perpendicular to T 11fc, by 
similar arguments as those above. Hence: 



Vu FE r(D), VU, FE r(D), 

and by identical arguments: 

VxY E r(Dj_), vx, Y E r(Dj_). 

It remains to demonstrate that V x V E r( D), and V u Y E r( Dj_), however: 

0 'Vx < Y, V > 

< Vx Y, V > + < Y, Vx V > 
<Y,VxV>. 

Hence V x V E r( D) and similarly we show that V u Y E r( Dj_). And so D, 
Dl_ are both parallel with respect to V and the proof is complete.// 

vVe recall that if Af has distributions D, Dl_ with integrable leaves, each leaf 
geodesic in AI then AI has a product manifold structure, and further JH is a 
CR product, and hence derive the following corollary. 

6.1.2 Corollary 

Given a CR submanifold AI, in the manifold ii with Levi-Civita connection V, 
then the distribution D and Dj_ are parallel \Vith respect to \7 if and only if 11! 
is a CR product suhmanifolcl. 

We will call a connection \7 on a CR submanifolcl AI a r,&-connection if: 

'Vx¢ = OVX E f(TM), 

where 0 is the tangential component of the complex structure J on the CR 
submanifolcl 1H as usual. \Ve prove the following useful theorem: 

6.1.3 Theorem 

If 1H is a CR submanifolcl of an almost Hermitian manifold 1ff, and the Levi­
Civita connection \7 on 1H is a ¢-connection then 1H is a CR product subman­
ifold. 

Proof For the proof we require the following lemma: 

6.1.4 Lemma 

All ¢;-connections on M take the form: 

'Vx Y = P'V\PY +Q'V',QY +~(('V:,¢)¢Y+PK(X, PY)-rpK(X, ¢Y))+QS(X, QY), 
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for all X, Y E r(Ti\1). vVhere \7' is a connection with respect to which D, 
Dl_ are parallel, and K, S are arbitrary vector fields of type (1, 2) on AI. The 
proof of the lemma is of reasonable length, and does not provide great insights 
into the CR. structure of the submanifold. The reader is referred to Theorem 
3.1 in Chapter 2 of Bejancu[3] for the full proof. 

Given this Lemma, we quickly observe that for any c,b-connection, D and 
Dl_ are parallel with respect to the Levi-Civita connection, and hence by the 
previous theorem 1H is a CR. product submanifolcl./ / 

A more direct. proof, of a slightly weaker theorem for the case of Kaehler 
manifolds will be demonstrated in the chapter on Kaehler manifolds, not purely 
out of interest but also because in the course of the proof several interesting 
results arc demonstrated. Further although slightly weaker in requirements, we 
shall see that for Kaehler manifolds we can obtain a. converse theorem, lacking 
here. 
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Part V 

Some Results for CR 
Submanifolds in 

Nearly=Kaehler Manifolds 
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vVe include some results here, partly because they follow naturally from the 
previous work on almost Hermitian spaces, and partly because we can make 
inferences to the Kaehler case, which will be considered in the next chapter. 

If 1'~[ is a nearly-Kaehler manifold, X, Y E r(D), we have the following 
identity: 

[.JX, YJ +[X, JY] ~.J([.J, .I]( X, Y)) + .J[X, YJ + (6.2) 

\7 n Y- V'n· X+ h(J X, Y) - h(X, JY), 

which we obtain by writing out the expressions in the usual way, observing the 
anti-symmetry of the Nijenhuis tensor, and using the nearly-Kaehler property 
that: 

to eliminate further terms. It is further possible to ::;implify the two brackets 
on the left hand side, and combine with the terms in \7 as \7 is a torsion free 
connection. \Ve use this identity to prove the following three results, the first 
ofwhich is clue to Sato [21]. 

6.1.5 Theorem 

The distribution D is integrable if and only if h(JU, V) h(U, JV) and 
N(U, V) ED for U, V ED. 

Proof \Ve refer to Eq (6.2) and deduce that if D is integrable then: 

1 
h(U, .IV)- h(.JU, V) = 2./([.J, .J](U, V)). 

We obtain this result by taking only terms perpendicular to D, and applying 
Frobenius theorem a::; usual.// 

We have already shown that when D is integrable and Af is an almost Her-
mitian manifold (Theorem 6.0.5) we have: 

[.I, .J] = [¢;, ¢] on D, [.I, .J].l = 0 on D and Q[~6, r/)] = 0 on D. 
Hence : h(U, JV) - h(.JU, V) = 0, and the two required statements hold. 
Conversely, if the conditions hold then from equation (30) we may write: 

1 
.J[U, VJ = V'u.JV- V'v.JU- 2'.J[.J, J](U, V). 

We now take some Z E r( D.l), (and consequently J Z is perpendicular to 
1'"1), and so: 

< [U, VJZ >=- < J[U, VJ, .JZ >= 0, 
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where we have noted that the terms in \7 are parallel to 1H and the term in 
[.J, .J] are in r(D) by our assumption. Hence [U, VJ E f(D), (it is necessarily 
in r(T 1\1), by virtue of 1\1 being a submanifolcl, hence its tangent bundle is 
integrable), and by Frohenius theorem D is an integrable distribution.// 

\Ve require a Lemma, which is cleclucecl in Bejancu[3], and is also derived in 
the course of Sekigawa's work[23]. 

6.1.6 Lemma 

The Nijenhuis tensor on a nearly Kaehler manifold may be written as: 

[.!,.!](X Y) = 4J(Vy.f X). 

Proof Firstly we note that we are using a torsion free tensor, arne! so: 

[X, YJ = VxY = VyX. 

Further we have the nearly Kaehler structure, ( V x J)X = 0. If we apply 
this to vector field X + Y, we see that: 

and hence 

From this we derive the relation: 

(V.;}'.J)X -(Vx.J)(JY) 

Vx Y + .J(Vx.JY) 

.J((Vx.J)Y). 

(6.3) 

(6.4) 

(6.5) 

Now we may write out the Nijenhuis tensor in full, and use these relations 
to simplify: 

[.J, .J](X, Y) (V .;x.l)Y- (V J}'.J)X + .J((V}'.J)X (6.6) 

-.J((Vx.J)Y) (6.7) 

2(VyX + .l(Vy.!X)- VxY- .J(VclY)) (6.8) 

2.J((Vy.JX- .J(V}'X))- (Vx.JY- .J(VxY))) (6.9) 

2J((Vy.!)X- (Vx.!)Y) (6.10) 

4.J((Vy.!)X). (6.11) 

This proves the lemma.// 
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\Ve apply this lemma to obtain the following theorem, originally clue to Ur­
bano[25] (the proof follows immediately from the given work) 

6 .1. 7 Theorem 

Let JH be a CR sub manifold of a nearly Kaehler manifold if. Then the distri­
bution D is integrable if and only if: 

(VuJ)Y E f(D), 

and 

h(U, JV) = h(JU, V). 

Similar results may be obtained for integrability on Dj_, or altemative con­
ditions can be shown for the integrability of D. vVe do not quote them here 
however, as (has been remarked) generally nearly-Kaehler manifolds are of re­
stricted interest beyond S'G. The given results are sufficient. for a discussion of 
the consequences for Kaehler manifolds and 8 6 . 
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Part VI 

CR Submanifolds in 
Kaehler Manifolds 



Chapter 7 

General Results for CR 
submanifolds of Kaehler 
Manifolds 

\Ve now consider the case of CR submanifolds where the ambient manifold AI 
has a Kaehler structure. Recall that this is equivalent to the almost complex 
structure being parallel : 

'\!x.J = 0 'v'X E f(Tllf). 

This definition is of considerable interest due to the fact that many well 
known spaces are Kaehler with respect to their usual metric - we shall partic­
ularly consider complex projective, complex hyperbolic and the flat space en. 
vVe refer the reader to (for example) Lei, Wolfson[18], chapter 2, where several 
more complicated Kaehler manifolds are listed - amongst which are some Grass­
manian spaces, and quotient spaces, such a1; E?/(EG x TJ). vVe contrast this 
with the case of nearly Kaehler manifolds, where research is often restricted to 
S'{j. 

vVe shall see that in many cases stronger theorems can be proven for Kaehler 
manifolds. The key result in this chapter is to relate the curvature of a CR 
product submanifolcl to the length of its second fundamental form, and hence 
place limits on the existence of CR products in some common spaces. 

l'vlany of the Kaehler results that we will quote are derived from those in 
Chen[lO]. vVhere the proof is clear, or fully given in references, we will often 
omit it, but have given further details at points where non-obvious steps may 
have been skipped in the original paper, or the proof is of interest for the 
methods used. 
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7.1 Some General Results 

Here we use standard suhmanifold theory to derive some relations which hold 
for CR submanifolds in Kaehler manifolds, and will prove useful in later proofs. 

Let AI be a Kaehler manifold with complex structure J. vVe will take Af 
to be a CR submanifold of 1fi with complex distribution D and totally real 
distribution Dj_. We use ~ as the Levi-Civita connection on i{, \7 the inherited 
connection on AI, \7 j_ the connection ou the normal bundle to 111, and h the 
second fun dam en tal form of 11I. 

Recall t.he Gauss (eq 12) and Weiugarten (eq 5) formulae relating these, 
hence: 

h(X, Y) = ~x Y- V'x Y, (7.1) 

(7.2) 

where X, Y are in the tangent bundle of JH. ~ in the normal bundle to AI, and 
A the shape operator related to h by: 

< AeY, Y >=< h(X, Y), ~ >. (7.3) 

As before we nhall decompose .J into partn tangential and perpendicular to 
M: 

JX =¢X+ wX, X E [(TM), 

J~ = B~ + C~, ~ E r((TM)j_). 

Finally recall that v indicates the orthogonal sub bundle of J Dj_ in Tj_ 1\I, 
i.e. s.t. 

Tj_ M = .] Dj_ 83 I/, .] Dj_ j_ v, (7.4) 

and so, more fully: 
Ti\J = D i:B Dj_ EB J Dj_ EB v. 

\Ve now prove some results for general Kaehler manifolds. 
First observe that for a Kaehler manifold j\;J, 111 any submanifold we have 

the result: 

J\i'uZ + Jh(U, Z) = -A.JZU + \i'uJZ, (7.5) 

where Z is in Dj_ and U is tangential to 111. This follows immediately from 
equations (2.12) and (6), Gauss and Weingarten, using ~ = JZ in (41) and 
using torsion free properties of ~ and the Kaehler property ~ J = 0. 
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7.1.1 Lemma 

Let AI be a CR submanifold of Kaehler manifold if, then we have the results: 

< \i'uZ, X>=< JAJzU, X>, (7.6) 

A.;zT·V = A.1wZ, (7. 7) 

A.1EX = -A1JX, (7.8) 

where U is tangential to M, X E f(D), Z, WE f(Dj_ ), and~ E f(v). 
The first follows from (7.5) by multiplying by J and then observing that his 

normal to 1H. and for the final term we can write X = JY for some Y E f(D): 

< J\i'[,JZ,JY > 

< \i'f,JZ, y > 
o. 

The second follows in a similar fashion- we may write (7.5) in the two forms: 

J\i'wZ + Jh(W, Z) = -AJZW + Vh-JZ, 

J\i'zW + Jh(Z, TV)= -A.1wZ + \i'~JW, 
and then subtract one from the other using the usual equations, and symmetric 
properties of h to eliminate terms. 

The third follows on observing that: 

< AEJX, Y > 

for arbitray Y E f(TM). 

7.1.2 Lemma 

< h(JX, Y),~ > 
<f:lyJX,~> 

< Jf:l \'X, ~ > 
< Jh(X, Y), ~ > 

- < h(X, Y), J~ > 
< -A1~;X, Y >, 

Let if be a Kaehler manifold, with CR submanifold 1\I. Then for Z, W in 
f(Dl_) 

(7.9) 
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Proof Take ~ in t/ then : 

< A,;~Z, W > - < VzJ~, W > 

< V'~~. JW > 

- < ~' V'~J!·V >. 

(For the final step we observe that 0 = V'~ < ~' .JT-17 >=< V'~~' JvV > + < 
~, V'~JW >.) 

Hence: 

And as this holds for arbitrary ~ E v the result is proved. 
"Ve note that as a consequence: 

J[Z, IV] J(\i'zW- V'wZ) 

V'~JH1 - V'~rJZ. 

The second step is obtained by writing clown the two identities: 

.TV'wZ + Jh(W, Z) = -AJZ!V + V'~rJZ, 

J\i'zW + Jh(Z, W) = -AJwZ + V'~JW, 

(7.10) 

and subtracting one from the other, using the above theor·mes to remove the 
unrequirecl terms. And so by applying this result, and Frobenius theorem to 
the fact that Dj_ is closed under the Lie bracket, we obtain: 

7 .1.3 Theorem 

The totally real distribution Dj_ of a CR submanifold 11£ in a Kaehler manifold 
is integrable. 

This result is actually generalizable to locally conformal Kaehler mani­
folds, see[7] for proof and full definition. A locally conformal Kaehler manifold 
may be clefinecl as a manifold, with an atlas such that the restriction of the the 
metric to any co-ordinate chart is conformally related to a Kaehler manifold. We 
contrast this to the nearly-Kaehler, and general almost Hermitian case where 
such a result is not known. The theorem is not extendable to the more general 
case, as in [7] Blair and Chen give an explicit example of a CR submanifold in 
a Hermitian manifold with non-integrable Dj_. 

"Ve also obtain results on the integrability of the complex distribution D. 
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7.1.4 Theorem 

Let AI be a CR submanifolcl of a Kaehler manifold l,;I. Then the complex 
distribution D is integrable if and only if: 

< h(X, JY), .J Z >=< h(.J X, Y), .J Z >, 

for any X, Y in D, and Z in DJ.. 

(7.11) 

Proof This follows from Theorem 6.1.7 in nearly-Kaehler manifolds. Although 
the statment. is slightly different it is possible to show that the two conditions 
are equivalent (see further I3ejancu[3] Chapter 3)./ / 

7.1.5 Lemma 

Let lH be a CR submanifold of Kaehler manifold if. The leaf AI J. of DJ. 1s 
totally geodesic in M if and only if : 

< h(D,D1.),JDJ. >= 0. (7.12) 

Proof This follows from (7.9), see [2] 

Recall that the leaves are totally geodesic in a CR product submanifold, hence 
we have a condition for CR products. \Ve also obtain the following lemma: 

7.1.6 Lemma 

If JU is a CR submanifolcl of Kaehler manifold Ai, D integrable, and equation 
(7.12) holds (i.e. the leaves of DJ. are totally geodesic), then for any X in D 
and ~ in J DJ., we have that: 

Proof This follows very quickly frmu the alJove condition that: 

< h(X,JY),JZ >=< h(JX,Y),JZ >. 

For X, Y E f(D), Z E r(DJ.).We observe that: 

< h(X, JY), ~ > 
< A~X,JY > 
< -A~X,Y > 

and hence the result follows.// 
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< h(.JX, Y),~ > 
< A~JX,Y > 
< A~.JX, Y >, 

(7.13) 

(7.14) 

(7.15) 

(7 .16) 



vVe will explicitly define define a COllllection \7 on the forms (p, w, B, c derived 
from the complex structure .!, extending the usual connection \7 naturally, as 
follows: 

('Vu(/J)V = 'Vu(0V)- r,D'VuV 

('Vuw)V = 'Vu(wV)- w('Vu V). 

('VuB)C: = 'Vu(Bt:)- B"Vu(. 

(\luG)(= 'Vj_(C()- C'Vu(, 

where U, V are tangential to M, ( is normal to 1H. 

(7.17) 

(7.18) 

(7.19) 

(7.20) 

Recall that we call ¢ parallel if \7¢ = 0 (and similarly for (;.,', B, C). We 
have already shown that if ,for a CR submanifold J\I, \7 is ¢-connection then 
AI is a CR product sub manifold (in almost Hermitian ambient manifold if). 
Certainly if \7 is a 0-connection then ¢ is parallel, hence we immediately have 
the weaker result that if¢ is parallel (on kf) then M is a product sub manifold. 
\Ve shall also be able to prove the converse (which we did not have for the almost 
Hermitian case). vVe shall therefore find the following Lemma useful: 

7.1.7 Lemma 

('Vu0)V = Bh(U, V) + A.uvU. (7.21) 

Proof This follows from making the relevant substitutions from the defini­
tions.// 

vVe now prove a key theorem for CR product submanifolds in Kaehler mani­
folds: 

7.1.8 Theorem 

Let Ai be a Kaehler manifold, with a CR submanifold JH, then Af is a CR 
product if and only if Pis parallel, \70 = 0. 

Proof If¢ is parallel then from Lemma(7.1.7) we have, 

Bh(U, V) = -AwU, (7.22) 

for U, V tangential toM. Fmther if X E f(D) then r;'JX = 0, and so Bh(U, X)= 
0. Hence by the symmetry of h we have : 

(7.23) 
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for X E [(D), Z E [(Dj_). Hence by Theorem 7.1.3 and Lemma 7.1.5 , we 
have the result that Dl_ is both integrable and has totally geodesic leaves in 
1H. Finally we consider some leaf Jl{T of the distribution D, and suppose 
X, Y E f(TM'~'), and Z E f(Dj_ ), then: 

0 < AJzX, Y > (7.24) 

< .J AJ z Y, J X > (7.25) 

< V'},z, .JX > (7.26) 

< Z, 'VvJX >, (7.27) 

where we have used equation ( 45) in the third step, and considering \7 }' < 
Z, J X > in the final step. vVe deduce that as the tangential connection on 
MT (within AI) ir:; entirely contained in MT, then 1HT is toUtly geodesic in M. 
Hence combining these rer:;ults A/ is a CR product submanifold. 

Conversely we suppose that 111 is a CR product, then for X E f(Tkf) and 
U E f(D), then 

\i'xU E f(D). 

(Using the totally geodesic property of leaves of D). Then we may write: 

(Simply observe that 

.Jh(X, U) = h(X, .JU). 

h(X, .JU) = VxJU- 'Vx.JU, 

Jh(X, U) = JVsU- .1\i'sU, 

allCl note that on the right hand side the first times are equal by the Kaehler 
structure, and the second terms are in [(D) and hence must be equal as h is 
perpendicular to A/, and .J h is certainly perepndicular to D.) 

Hence using the expression for \7¢ above we may show that (V'x¢)U = 0: 

(V'x¢)U \7x(¢U)- ¢(\i'sU) 

VxJU- h(X, JU)- J(\7-xU- h(X, U)) 

.!VxU- Jh(X, U)- J\7-xU + Jh.(X, U) 

0, 

where we use the fact that q) = .J on D. 

(7.28) 

(7.29) 

(7.30) 

(7.31) 

Similarly taking Z E f( Dj_), then \7 x Z E r ( Dj_), by leaves of Dj_ being 
totally geodesic, and (V'x¢)Z = 0 (this follows immediate! on observing that 
¢Dl_ = 0). Heuce the full result.// 
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\Ve have in the course of the proof also: 

7.1.9 Lemma 

A CR suhrnauifold 1\f iu a Kaehler manifold 1fi is a CR product if and only if: 

A.Jo-LD = 0. 

Note "Te compare this result with the similar result Theorem 7.1.8 for the 
more general almost hernritian case. vVe note that the result here is stronger 
in that we also have the converse result. Although proved by Chen iu [10] in 
the way indicated we note that the proof was previously demonstrated for anti­
holomorphic submanifolds (Bejancu, Kon, Yano [2]), and of course the proof in 
one direction could be inferred from the almost-Hermitian case. It is interesting 
to note that the converse (that CR product implies that ¢ is parallel) is the 
more direct part of the proof, but reliant on the Kaehler structure. \Ve also call 
attention to some notation variation between sources, for example Chen calls ¢ 
parallel for \7 dJ = 0, but Bejancu[3] calls this a manifold with a ¢ -connection. 
This is possibly to differentiate from his previous defintion of parallel in the case 
of the distributions D, D.L, where he only requires that the connection preserves 
the distribution, rather than being zero. 

vVe now prove a result of great interest, relating the curvature of the ambient 
manifold to the second fundamental form of a CR product. This immediately 
has consequences for simple Kaehler manifolds. 

7.1.10 Theorem 

If AI is a CR product submanifold of a Kaehler manifold i! then for unit vectors 
X in D and Z in D.L then: 

Hs(X, Z) = 2llh(X, Z)ll 2
, (7.32) 

where Hs(X, Z) 
vature of X, Z. 

R( X, J X;.] Z, Z) defines the holomorphic bicha.pteral cur-

Proof Take III to be a CR product, so we are free to use the lemmas above. 
Recall the Coclazzi equation for an embedded subrnanifold: 

R(X, JX; Z, JZ) =< Vth(JX, Z)- 'Y]xh(X, Z), JZ >. (7.33) 

And so using the theorems for Kaehler manifolds we may re-arrange: 

52 



R(X,.] X; Z, .JZ) < h(X, Z), 'l]x.IZ >- < h(JX, Z), Vt;JZ > 
< h(X, Z), .J'\7 r..:Z >- < h(JX, Z), .lVxZ > 
< h(X, Z), Ja(JX, Z) >-<a(.! X, Z), Jh(X, Z) > 
< h(X, Z), h(X, Z) > + < h(X, Z), h(X, Z) > 
2llh(X, Z) 11

2
, 

and hence the result is proved.// 

As a11 immediate consequence we note the following corollary: 

7.1.11 Corollary 

If if is a Kaehler manifold with positive holomrophic bichapteral curvature, 
fl B > 0, a11d AI a proper CR product. Then 1\I is not anti-holomrophic, and 
1\1 is not totally geodesic in if. 

Proof Observe that if i\I were anti-holomorphic then we would have fl B = 0, 
as in that caHe h(X, Z) = 0 in 1\~I as well as M. Further as h(X, Z) f. 0 we 
deduce that M is not totally geodesic in 1fi. (Note that h(X, Z) = 0 for the 
second fundamental for of leaves of D, DJ.. in 11!, and if A/ were totally geodesic 
iu AI then the second fundament.al form would be unchanged.)// 

\Ve will now consider some specific Kaehler manifolds, and show how the 
general theory developed can be used. 

7.2 Product CR Submanifolds In Complex Hy­
perbolic Space Hn 

For a CR product 1\1 in a Kaehler manifold Ai we have the result that: 

Hs(X, Z) = 2llh(X, Z)ll 2
, 

where X is in D and Z in DJ... Hence for any space of negative bichapteral 
curvature there can be no proper CR products. In particular there are no 
proper CR products in any complex hyperbolic spaces. 

7.3 Product CR Submanifolds in em 
7.3.1 Theorem 

Every CR product 1\I in em is locally the Riemannian product of a complex 
submanifold, JYJT, in a linear complex subspace eN and a totally real subman­
ifold, M j_, of a em-N. i.e.: 
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Proof As M is a CR product in em then Theorem 7.1.10 implies that: 

h(D, Dl..) = 0. (7.34) 

Let 11Ir, AI 1.. be integral sub manifolds of D, Dl... vVe apply a result of 
1vioore[19], so that, given the restrictions on the second fundamental form, we 
may conclude that AI = 11IT x Afl.. is a product of submanifolds in Rr x R 2 m-r, 
for some r, clearly greater than di.mR(D), and at most 2m.- 2diTn.(Dl..). As 
J1fF is a complex submanifold of em it is possible to choose Rr to be a complex 
linear subspace of em. 

Further if 11I is antiholomorphic we see that leaves of D, Dl.. must be holo­
morphic and real hyperplanes in em, simply clue to dimension restrictions. 
The anti-holomorphic examples of CR product submanifolds are therefore of 
extremely simple form. 

7.4 Product CR Submanifolds in Complex Pro­
jective Space C pn 

In this chapter we shall examine a specific form of proper CR products in com­
plex projective space via a Segre embedding which we shall call a Standard CR 
Pmduct. Further we show that these proper CR products have the smallest 
possible coclimension, and that no other CR product has the same codimension. 

7.4.1 Definition 

Let epm be m.-climensional complex projective space. vVe recall that epm has 
constant positive holomorphic chapteral curvature of 4. For real numbers k, p 
we define a Segre mapping: 

hy 

where (z0 , .. , Zk) and ('t]o, ... , t),) are homogeneous coordinates of epk ancl epP 
respectively. Then let 1111.. be a p-climensional totally real submanifold of ePP. 
Then epk X AIl_ induces a natural CR product in epk+p+kp via the mapping 
S'kp· 
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7.4.2 Definition 

Let AI = MT X Ml_ be a CR product in cpm, Let k = dimcD, and p = 
chmnDl_. Then AI is called a Standard CR Product if and only if : 
a. m = k + p + kp, 
b. AfT is a totally geodesic holomorphic submanifold of cpm. 

\Ve see that this clefinitiou iuclucles Segre embeddings, although is not exclu­
sively Segre em beddings (we have some freedom in how the real submanifolds 
AI j_ are embedded in the space). We shall see that the definition is partly 
redundant iu this case as we shall demonstrate that (a.) implies (b.) for CR 
products. 

7.4.3 Lemma 

Let AI be a CR product iu cpm. Theu: 

{h(X;, Zn)}i = 1, ... , 2k, a= 1, ... ,p 

are orthonormal vectors in I/, where X 1 , ... , X2 ~,, and Z1 , ... , Zp are orthonormal 
bases for D, Dl_ respectively. 

Proof Firstly we note that as cprn has constant holomorphic bichapteral 
curvature we can use the theorem: 

H8 (X, Z) = 2 < h(X, Z), h(X, Z) >, 

and so 
lh(X, Z)l = l. 

\Ve uote that h is defined linearly in V, 'V, and these are in terms linear in their 
vector field arguments, and so : 

< h(X;, Z), h(XJ, X)>= 0, i-=/= j. 

Further we have already shown (Lemma 7 .1. 9), that for a CR product 
A.tnj_D = 0. 

Hence we see that: 

< h(X, Z), JY >=< Aj}'X, Z >= 0, 

for Y E f(Dj_ ), and hence h(X, Z) E v. If dim(Dl_) = 1 then the proof 
is complete. If dint( Dl_) > 1 then (again arguing from h being linear in its 
arguments) we can infer that: 

< h(Xi, Zn, h(XJ, Za) > + < h(X;, Zo), h(XJ, Zn) >= 0, 

for i -=/= j, o -=/= /3. 
As 1\f is a CR product we have: 

55 



< R(X;, XJ)Z0 , Z:1 >= 0. 

We ~hall quote a result from Blair, Chen[7] (Theorem 6.1), that for a CR 
product in CP" we have: 

Combining the~e two curvature results, with the Gauss equation (2.12) we 
see that: 

< R(X;, XJ)Z0 , ZB >=< R(X1, XJ)Z0 , ZB > + < h(X;, Z1,), h(XJ, Z0 ) > 

- < h(X;, Zn), h(XJ, Zo >, 

and so: 

And hence we see that this expression i~ actually equal to zero, and so the 
h(X;, Zn) do indeed form an orthonormal ba~is for the perpendicular ~pace v.j / 

As a consequence we immediately ~ee that: 

7.4.4 Theorem 

Let 1H be a CR product in cpm, then 

m 2: k + p + kp. 

Indeed as the given Segre mapping gives result~ where equality holds, we see 
that thi~ inequality is the best possible. 

7.4.5 Theorem 

If AI i~ a CR product of CPm, with rn = k + p + kp then 111 is a standard CR 
product. 

Proof Take M to be a CR product submanifold in cpm with 1n. = k + p + kp. 
Take X, Y, Z E f(D), WE f(Dj_). Then from the Gauss equation: 

0 =< R(X, Y)Z, W > + < h(X, l+'), h(Y, Z) >- < h(X, Z), h(Y, W) >, 

where we have used the fact that the leaves of D, Dl_ are totally geodesic in AI 
to see that the term in R is zero. Further as cpm is a complex space form, 
we may use the following identity for the curvature (see ~tanclarcl texts for the 
cleri vation): 
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R(X,Y)Z =< Y,Z >X-< X,Z > Y+ < JY,Z > JX 

- < .JX,Z > .JY +2 < X,JY > JZ, 

and hence < R(X, Y)Z, ~V >= 0. 
Hence: 

< h(X, W), h(Y, Z) >=< h(X, Z), h(Y, W) >. 

Further if we set Y = .1 X, and w;ing Theorem 7.1.4 to manipulate terms in 
h, we have: 

< h(X, Z), h(.JX, l'V) > < h(JX, Z), h(X, W) > 
< Jh(X, Z), h(X, W) > 
- < h(X, Z), Jh(X, W) > 

- < h(X, Z), h(JX, W) >, 

(7.35) 

(7.36) 

(7.37) 

(7.38) 

and so< h(X, Z), h(.J X, W) >=< h(.J X, Z), h(X, TV) >= 0. Further< h(X, Z), h(X, TV) >= 
0. 

Hence, 

0 < h(X + Y,Z),h(X + Y, W) > 
< h(X, Z), h(Y, W) > + < h(Y, Z), h(X, W) >. 

(7.3!)) 

(7.40) 

Given< h(X, Z), h(X, TV)>= 0 we see (by dimension counting arguments), 
that h( X, Z) lies in J D (we have shown that I/ is covered completely by h( D, Dl_)). 
However recall the earlier condition for CR products (Lemma 7.1.9) that AJ 0 1_ D = 
0 - we see that this implies h(X, Z) lies in 1/. 

(To see this we write 

< h(X, Z), JU >=< AJuX, Z >= 0, 

for any U E r( Dj_)) 
Hence we must have h(D, D) = 0. Also as M is a CR product the leaves 

11fT of D are totally geodesic in 11£, and as the second fundamental form over 
D is zero, we see that each Jv[T is totally geodesic in cpm. I I 

Hence we see that for CR submanifolds of minimal codimension the integral 
submanifolds of the complex distribution D are totally geodesic in CP"'. vVe 
may contrast this with the results in en, and the non-existence of CR products 
in hyperbolic space, and S6 (see later), to see that to be a CR product is a 
relatively strong condition, and constructing examples of any complexity is not 
a trivial task. 
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7.5 Mixed Foliate Submanifolds 

\Ve define a CR subnmnifold of a Kaehler manifold as mixed foliate if D is 
integrable, and h(D, Dj_) = 0. The condition on the second fundamental form 
is sometimes chescribed as defining a mixed geodesic CR submanifolcl. As the 
definition is given on Kaehler manifolds the distribution Dj_ is automatically 
integrable. It seems sensible that in extending the definition to non-Kaehler am­
bient spaces, the condition that Dj_ is integrable should be added. By analogue 
with the results obtained for CR products, we obtain the following: 

7.5.1 Lemma 

Let J1I be a mixed foliate CR submanifold (in a Kaehler manifold 1ff). Then 
taking X E D and Z E D_!_, then we have: 

Ha(X, Z) = -2IIAJZII 2
. 

Proof Firstly note that the mixed foliate condition gives us the following: 

h(D, Dj_) = 0, 

[D,D] cD, 

h(X, .JY) = h(.!X, Y), 

for arbitrary X, Y E r(D). (The last is a consequence of integrability of D that 
we have obtained for almost-Hermitian rnanifolds, Theorem (6.1. 7) ). 

\Ve make substitutions into the Codazzi equation: 

Ha(X,Z) < R(X, .JX)JZ, z > 
- < R(X, JX)Z, .JZ > 

- < (\lsh)(Z, .!X)- (\7 Jsh)(X, Z), JZ > 
- < -h(\lsZ, .!X)- h(Z, \ls.!X) + h(\1 JXX, Z) 

+h(X, \1 n.:Z), JZ > 

(7.41) 

(7.42) 

(7.43) 

(7.44) 

< h(\lxZ, JX)- h(X, \1 JsZ) + h([X, JX], Z), JZ 17.45) 

< h(\lxZ, JX), JZ >- < h(X, 'VJ:.,:Z), JZ > (7.46) 

< AJZJX, \lsZ >- < AJZX, \1.1sZ > (7.47) 

< AJZJX,JAJzX >- < AJZX,JAJZJX > (7.48) 

- < JAJZX,JAJZX >- < AJZX,-J2 AJZX > (7.49) 

-IIAJZXII 2
, (7.50) 

as required, where we have also used the identities in Lemma 7.1.1./ / 

vVe immediately have the following theorem: 
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7.5.2 Theroem 

Let ii be some Kaehler manifold with strictly positive holomorphic bichapteral 
curvature, then there are no mixed foliate CR submanifolds of ii. 

In particular we see that epm admits no mixed foliate CR submanifolds, 
a result reached independantly by Bejancu, Kon and Yano [2], who proved 
the more specific result that any complex space form of positive bichapteral 
curvature admits no mixed foliate CR subamnifold. 

Chen[lO] also call attention to the fact that geodesic spheres of epm are 
real hypersurfaces, with h(D, Dl_) = 0, where we take Dj_ to he the tangent 
huudle over the sphere, and D may be chosen arbitrarily in the tangent space 
perpendicular to the sphere. Hence as any CR submanifold with real part a 
totally geodesic sphere is mixed foliate - which we have shown cannot hold. 
Hence there are no CR submanifolds in complex projective space with real part 
totally geodesic spheres. 

vVe finally prove a theorem for ern. 

7.5.3 Theorem 

Let M be a CR subma.nifold in em, then 1\I is mixed foliate if and only if 1\I is 
a CR product. 

Proof Let 1H be some CR submanifold in e"'. If JH is mixed foliate, then : 

Hence, AJ z X = 0, for all X E D, Z E Dj_. However we have already shown 
(Lemma 7.1.9) that this is a necessary and sufficient condition for 1\! to be a 
CR product. 

Conversely if M is a CR product we already have an expression for fl for 
CR products: 

0 = Ha(X, Z) = 2llh(X, Z)ll 2
, 

with X E r(D), Z E r(Dj_ ). Hence h(X, Z) = 0, and so M is indeed mixed 
foliate (the integrability of D is part of the definition for CR product).// 

Again Bejancu, Kon and Yano[2] developed the above theorem independantly 
for antiholomorphic CR submanifolds. 
It is interesting to note that the existenc of CR products and CR mixed foliate 
submanifolds mirror each other, for spaces of positive bichapteral curvature 
( eg projective spaces) CR products are admitted but not mixed foliates, in 
manifolds of negative bichapteral curvature ( eg hyperbolic spaces) CR products 
are not admitted but mixed foliates are. Finally in spaces of zero holomorphic 
bichapteral curvature ( eg em) the two definitions coincide. 
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7.6 Some Comments on Further Work on Kaehler 
Manifolds 

Also of interest are several results derived by Chen placing bounds ou the length 
of the secoud fuudarnental form. \Ve shall only give the simplest result for CP 171 , 

but refer the reader to the referenced papers for further work on the same 
subject. \Ve pick out a result concerning the length of the second fundamental 
form, which follows quickly from the work already given: 

7.6.1 Theorem 

Let 11! be a CR submanifold of CP"'. Then the length of the second funda­
mental form is bounded: 

where k = dime D and p = dimRDj_. If equality holds then leaves of D, Dj_ 
are totally geodesic in cpm. 

Proof Firstly observe that CP"' is of constant holomorphic bichapteral cur­
vature 4, ami as a consequence: 

iih(X, Z)li = 1, 

for X E f(D) and Z E r(Dj_). Further we have shown that we may write 
orthonormal bases forD, Dj_ of {XI, ... , X2k }, { Z1, ... , Zp}, with h(XA, Zn) = 0. 
Hence, using the linearity of the second fundamental form, we may write: 

A.B e>.(3 

where we have been able to evaluate the cross terms h(X, Z) m; 1. Hence we 
have the required inequality, and immediately observe that equality holds only 
if h(D, D)= 0 and h(Dj_, Dj_) = 0, which may be shown as equivalent to the 
integral submanifolds of the distributions being totally geodesic in the ambient 
manifold.// 

VIe end this chapter by noting that Chen[lOJ pursues similar lines of argu­
ment to deduce further relationships between the second fundamental form, the 
curvatures and the CR structure of suhrnanifolds. 
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Part VII 

Some Morse Theory Results 
on CR Submanifolds 
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The results up to this point have been concerned with the traditional sub­
manifold properties of CR subrnanifolds, such as the curvature properties, Rie­
mannian product structure, and properties of the second fundamental form. As 
a contrast we will consider some results obtained by Lei Ni and .Jon vVolfson in 
[18], relating to the application of some rdorse theory results and consequences 
for the topology of CR submanifolds. The work is an extension of techniques 
applied by Schoen and Wolfson in [22] to complex submanifolds of a Kaehler 
manifold. 

\·Ve shall quote several required results, which although far from obvious and 
of interest in themselves, lie outside the context of the current work. 

In [ 18] work is exclusively carried out for ambient manifolds having Kaehler 
structure (and ::;ome further restrictions), and for the real dimen::;ion of the real 
distribution Dj_ to be equal to 1. The restrictions permit the use of some quoted 
thereoms, and manipulations. Some consideration of the problems encountered 
for extending the ideas to more general cases are given. 

7. 7 Some Definitions 

Throughout this part we shall consider the ambient space 1fi to be an irreducbile 
compact Kaehler manifold, complex dimension v of non-negative holomorphic 
bichapteral curvature. 

\Ve define a symmetric bilinear form: 

Hy(W, Z) =< R(Y, .JY) W, J Z >, 

for vector fields IV, Y, Z over if. By the general symmetries of the cmvature 
tensor, for fixed Y =/= 0, observe that Hy is positive semi-definite. The null space 
of H\· is then denoted Ny, and we write l(Y) for the complementary dimension 
of Ny. vVe define the complex positivity of the manifold ii as : 

l= ~l(Y). 
y =I= 0 

vVe will simply quote the result that l is a well defined on the manifold, and 
is independent of the evaluation point chosen. Further we note that values of 
l have been computed for various spaces, and of particnlar interest. to us is the 
fact that the complex projective space cpv has complex positivity V. 

vVe refer the reader to Part I for definitions of the Levi form, and the nullity 
as defined for a CR submanifolcl JI.I. vVe shall assume the the real distribution 
Dj_ over !vi has dimension 1, and the distribution D complex dimem;ion p. 

7.8 Critical Paths Between a Complex Subman­
ifold and a CR Submanifold 

Let the ambient space J1~I be an irreducible compact Kaehler manifold with 
complex positivity l and complex dimension v. Let AI be a smooth compact CR 
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submanifolcl of real dimension (2p + 1), and N a compact cotnplex sub manifold 
of complex dimension n. 

\Ve consider the space rl(1\l; AI, N) consisting of piecewise smooth paths 
r: [0, 1] ---> 1\l s.t. ~t(O) is on M, and /'(1) 011 N. We define an energy function 
on these paths by: 

E(r) = t 11'1'11
2

· .fo 
It may be ::;hown that ~, i::; a critical point of E if: 
fl. r is a ::;mooth geodesic in Xi, 

b. /'is normal to 1\I at r(O) and toN at 1(1). 

(7.51) 

This result may be obtained by considering some first variation of the energy 
function: 

[,

1 d 
- < -y, ~~ > dt 

. 0 ds 

1
1 d d 

- < -r,"f >- < 
0 dt ds 

(7.52) 

d d2 

-, ~~, -l " r > dt, 
(.8 ( t-

(7.53) 

and observing that the second term is zero if conditio11 (a) holds, and the first 
part is zero if condition (b) hold::;. 
\Ve are interested in the index of ::;uch critical pa.ths in order to apply !vlorse 
theory idea::;, and hence need to con::;ider the second variation of the energy 
function. \Ve observe that the second variation of E may be put i11to the form: 

< v w 1 W2, 'Y >I (~ + 11 

< v "~ vV1 , v "~ W:3 > dt 

-11 

< R('Y, WI)')', W2 > dt. 
() 

\Ve now need to determi11e the subspaces for which E** i::; negative. \Ve will 
prove the following: 

7.8.1 Theorem 

Let JI.I be a CR submanifold in 1fi, let N be a complex submanifold of ii, 
subject to the restrictions above. Let Jii be of real dimension 2p + 1 and 1\l 
have complex po::;itivity l. If the nullity of Jl.f i::; everywhere greater than or 
equal to r, (where neces::;arily 0 < r <::; p), then the index of a critical path /' of 
the energy function E i::; at least l + 1 - (v - r) - (v - n). 

The proof of this re::;ult is surprisingly straightforward when the necessary 
manipulations are shown, being in e::;sence a dimension counting problem. The 
chief interest is how this result may be combined with more general results to 
generate topological theorems. 
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Proof Given the situation above let 1 be a critical path of E : ll ---> R. Let AI 
have nullity everwhere greater than or equal to r. Then for any point on 111 we 
may pick local vectors X 1, ... , X,. lying in the null space of the Levi form. Further 
it is possible to select X; such that X; = l-l';- iJW;, where IY1, ... W,., JI·V1 , JI·V,. 
are orthonormal vector::;. vVe construct such a basis at 1(0). 

We extend the vectors l.V; at r(O) to vector fields W;(t), along the whole of/', 
by parallel trausport. Observe that the vector fields l·V; so defined necessarily 
define varitions of the the path r· vVe have chosen Hi; to lie in T

1
(o)AI, so 

variations keep ~r(O) lying in 1\I. However the construction does not necessarily 
mean that l·V;(l) lies in Tr(l)N, and so r(l) may under the W; variation be 
moved off of N, leading to a path not in ll. Hence IV; does not nece::;sarily 
belong to T1 1l. Because we are only attempting to set a bound on the index it 
is sufficient to consider the H'; which do belong to T1 1l. 

vVe consider the second variation of the energy for some such varition Hi;: 

1 
-E(W.W) 
2 

n I. I < V'1v, W;, "r >16 + 11 

< V'"~IV;, 'V1 W; > dt (7.54) 

-!1 

< R("r, W;), W; > dt (7.55) 
.o 

< 'Vw,W;,"f >16- .fo
1 

< R("t, IV;), W; > dt. (7 .. 56) 

(NB vVe here use V' to indicate the metric connection on 11~!, we shall not 
consider connections on the subamnifolds in this chapter). The second term in 
the first line is observed to be zero as IV; has been constructed by parallel trans­
portation. Similarly we construct fields JvV; along 1 by parallel transportation, 
and obtain the identity: 

However we now use the Kaehler structure to move J through covariant 
differentiation: 

< \7 JW, JvV;, "f > < J('V Jw;),"'; > 

- < 'VJw, W;, J"f > 
- < 'VwJW;, Fy > + < [JW;, W;J, J"f > 
- < 'Vw,W;,"f > + < [JW;, W;],J"( >. 

(7.57) 

(7.58) 

(7.59) 

(7.60) 

Note This is the only element of the proof of the inde:c of paths that relies on 
the Kaehler structure of the ambient manifold - for almost Kaehler· man·ifolds a 
fur·ther ter·rns will be introduced in this expression. 
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,~le now show that the second term is zero when evaluated at 1(0) and 1(1). 
As 1 is a critical path,)' is perpendicular to A1,N at 1(0),1(1) respectively. 
Further since (by construction) X; = ~V; + J~V; lies in the null space of the Levi 
form then [JW;, W;] is perpendicular to JT-r(o). Further as 1 is a critical path, 
)' is perpendicular to AI, and hence to [JW;, W;]. ("We have used Frobenius 
theorem to infer that [JW;, W;] lies in T-r(o)M). 

In order to show that< [.!W;, H';], J)' >= 0 when evaluated at 1'(1), we use 
an argument clue to Frankel(19). Let V be some analytic cmve passing through 
1( 1) with tangent vectors l·V;, JH';. Extend l·V;, .Jl·V; to vector fields in some 
region U of 1(1). On this region U, [JW;, W1], J[JW;, W;] are tangential to V, 
and so at 1(1) are perpendicular to both~· and P:. 

Hence we may drop the associated terms for the second variation: 

1 il -
2E,,(JW;, JW;) =- < 'ilw, W;, )' > 116- < R(i', JW;)i', JW; > dt . 

. u 

Thus we have: 

~E .(W IV)+ ~E (JW.JW) =- ;·\< R(i' IV)i'.JW > 2 *~ I l I 2 '* I. I. • () l I , I 

+ < R(')·, JW;)i', JWI > dt. 

Rewriting using the usual symmetries of R : 

(E**(W;, l·V;) + E**(.JW;, J~V;)) =- t ( < R("y, J')t)W;, JW; >, lo 
and the term on the right hanclside is (minus) the holomorphic bichapteral 
curvature of the complex lines )' 1\ Fy and Hl; 1\ n·V;. vVe see therefore that 
the second variation is necessarily non-positive (as the holomorphic bichapteral 
curvature is non-negative) for all ~V;, .JTV; which define a variation in T1 0.. -
i.e. those where W;(l), .JW;(1) E T1 (1)N. Hence the index of the path 1 is at 
least equal to the number of such H1; which are variations in T-y0.. for which the 
holomorphic bichapteral curvature given is psoitive. 
We consider the full set of W1 , ... , W,., JW1 , ... , JW,.. Firstly observe that W;, .IW; 
are perpendicular to both of )' and Fy (from the arguments above). Hence the 
span of such vectors, say: 

S' = span{l·V1 , ... , ~V,., .JW1 , ... , JW,.}, 

is an r-dimensional complex vector space, within a (v -1) dimensional subspace 
of '1~(1)1\f. Hence the space S n 1~(l)N has complex dimension of at least 

r + n- (v- 1). If it is given that Jfj has complex positivity l, then we see that 
the subspace of S' n T1 (1)N for which the holomorphic bichapteral curvature is 
strictly positive is (r + n- (v- 1)- (v- l). Hence: 
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inde:t:(!) 2: r + n- (v -1)- (v-I)= 1 + 1- (v -r)- (u- n)), 

as required.// 

Given this result for the index we may derive theorems concerning the topol­
ogy of the manifolds, for example: 

7.8.2 Theorem 

Let i£ be a compact Kaehler manifold of non-negative holomorphic bichapteral 
curvature, of complex dimension v, and complex positivity l. Let 1\1 be a 
compact CR submanifolcl on Ai of real dimension 2k + 1, where dim Dl_ = 1. 
Suppose the nullity of the Levi form of AI is everywhere greater than or equal 
to r. Let N be a compact complex sub manifold of complex dimension n. Then 
the homomorphisms induced by inclusion: 

are isomorphisms for j <::: n + r - v - (v - l) and is a surjection for j = 
n + r - v - (v - L) + 1. 

The 1r1 referred to are relative homotopy groups for the relevant spaces. The 
proof follows from the results on the index of critical paths combined with some 
more general results from l'viorse theory connecting index values with such homo­
topy groups. The reader is referred to the references (e.g. Schoen-\Volfson[22]) 
for details, which are not immediately relevant. 

7.9 Critical Paths Between Two CR Submani­
folds 

Lei and vVolfson continue by extending the results in the previous chapter to 
the case where both 1H and N are CR submanifolds. 

7.9.1 Theorem 

Let 1H he an irreducible compact Kaehler manifold of complex dimension v, 
nonegative holomorphicbichapteral curvature, and complex positivity l. Let ill, 
N be CR submanifolcls of A£ with real distributions of dimension 1, complex 
distributions of (real) dimensions 2p, 2q respectively. Let M have nullity every­
where greater than or equal to r. Let N have nullity everywhere greater than 
or equal to s. Then the index of a critical path 1 (in the space of paths from 
M to N) is at least: 

l + 1- (v- r)- (u-s). 
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Proof The proof is almost identical to that in the case where N is complex, 
with some minor variation caused by replacing the complex manifold with a CR 
submanifolcl. The idea involved are identical however. // 

Results concerning the relevant topologies of the two submanifolds is again 
possible. In addition we may consider the case where AI and N are identified as 
the same submanifold, and so obtain results concerning a single CR submanifolcl. 
For example Lei and \Volfson[18] obtain the result 

7.9.2 Theorem 

Let A£ be m; above. If rn :::0: 2(u + 1) - l then there are no smooth Levi fiat 
subamnifolds of dimension min 11~1 with compact leaves of D. 

Proof The proof is via comparing topological consequences of the index results 
given here, with further general topological results about submanifolds. The 
details are not of direct relevance to this work.// 

7.10 Conclusions 

\Ve have shown how very specific CR structure has been used by Lei and \Volfson 
to place restrictions on the index of paths in the ambient space. It is a direct 
extension of work for complex subma.nifolds, and so it is of interest to see how CR 
structures contrast with the complex case. Here we observe how the estimates 
on the index may take into account the Levi form, which is not available in the 
purely complex case, modifying the estimate considerably. 

Observe that the work is restricted to CR submanifolds with real distribu­
tions of dimension 1 - however it would be simple to extend to a more general 
case if the nullity were approriately redefined. The restriction to Kaehler man­
ifolds is more complicated - we observed that relaxing the Kaehler condition 
would generate extra terms in the expression for the second variation. N atu­
rally restrictions could be placed on these extra terms, hut. it. is unlikely that 
these would be sensible restrictions to place on a manifold. It is more practi­
cal to suppose that the relevant steps could be tested for specific non-Kaehler 
ambient manifolds, for example S 6

. 

The work in its entirety is highly abstract, it may be that consideration 
of specific subrnanifolds, e.g projective spaces, S 6 , in which the form of the 
curvature and connection are well known, might permit more direct proofs, 
or more restricitve estimates. It is unclear whether the given estimates are 
improvable, and it would also be of use to produce examples - the most readily 
available are those clue to the Segre mappings in complex projective spaces. 
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Part VIII 

CR Submanifolds in 56 
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Chapter 8 

Totally Geodesic CR 
Submanifolds of S6 

It is a known result that the only totally geodesic submanifolds of the sphere are 
great spheres, most easily described as the interchapter of the sphere with linear 
subspaces through the origin. In order to simplify analysis of submanifolds 
we shall use the fact that we only consider CR subrnanifolds up to some G2 

variation. Hence we can freely choose the direction of e1 a.ncl e2 , and c 1 as a 
vector perpendicular to e 1 , e2 and e 1 1\ e2 . 

For completeness we also consider totally real and totally complex exam­
ples as degenerate examples of CR submanifolds. We will generally consider 
dimensions to be in terms of real dimensions unles otherwise specified. \Ve shall 
call the constructed submanifold AI as usual. Submanifolcl which are neither 
complex, real or CR will be described as unclassified. 

8.1 !-Dimensional Examples 

Necessarily any one dimensional submanifold is totally real. Just observe that 
for any vector p: 

< p,Jp > < Jp, J2p > 
- < Jp, -p > 
- < p,Jp >. 

This implies that < p, Jp >= 0, and hence specifically any totally geodesic 
example (i.e. some S1 about the origin) is totally real. 

This follows immediately from the almost-Hermitian structure, and so sim­
ilarly holds in any Hermitian manifold. 
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8.2 2-Dimensional Examples 

These consist of the interchapters of 5 6 with some 3-plane. vVe can use G2 

action to force this 3-plane to include e1 and e2 . 

If ea completes the 3-plane then the submanifold is totally complex. 
Suppose instead that the 3-plane is completed by JW:J + ve4 . 

Certainly if p. = 0, I/ = 1 then the submanifolcl is totally real. Again 
this is essentially unique up to G 2 actions. However if 11 is not zero then the 
s11 bmanifold is unclassified, as (for example) at e1 , .J e2 = e1 !\ e2 = e:3 is neither 
contained in, nor perpendicular to Te, 11! =span< e2 , pe:J + ve4 >. 

8.3 3-Dimensional Examples 

The most interesting possibility is one with a two (real) dimensional complex 
distribution D, and a one dimensional real distribution Dj_. Let us take the 
point e1 to be on JH, select e2 as being in Te,AI and D(eJ) and so ea is also. 
vVe are free to ::;elect a further perpendicular direction e4 which is in Te, AI 
and Dl_(el). However observe that at the point e4 we have tangent space 
< e1 ,e2 ,e3 >,but .Je 1 = e5 , .Je2 = e6 and .le:J = e7, and so the manifold ha::; 
totally real characterisitics at this point. hence the s11bmanifold is of undefined 
type. 

The only further option is a totally real example. Again we look at the point 
e1 , and can assume e2 , e4 are in the tangent ::;pace at this point. Observe that 
at e1 , J e2 = e:J, .l e4 = e5 and at the point e2 , .J e4 = e6 . Hence we are forced 
to complete the 4-plane with e7 . Observe that this indeed forms a totally real 
submanifold (simply notice that e1 , e2 , e4 , e7 wedge product::; all have results in 
e:J , e 5 , e6 ) . 

8.4 4-Dimensional Examples 

vVe firstly note that Grey[l3] has previosly demonstrated that there are no 
four (real) dimensional complex submanifolds of 5 6

. vVe refer the reader to this 
reference for the general proof, but give a proof for totally geodesic submanifolcls 
here. Take e1 to belong the submanifold, and as uefore we can pick e2 , e3 , e4 

to lie in the tangent space. Fmther to make the tangent space complex we 
require e.5 E Te, j\J. However if we now look at the point e4 , observe that 
J e2 = -e6 tf Te

4 
AI, and so the sub manifold constructed is of undefined type. 

It is not possible to com;truct a totally real example clue to the restriction to 
6 dimensions - a totally real manifold of dimension 4 would require a minimum 
of 8 dimensions. 

Therefore consider a non-trivial CR example, with 2 (complex) dimensional 
complex distribution, and 2 (real) dimensional real distribution. vVe select e1 

as a point on the submanifold, and take e2 , e:3 , e4 E Te, 111, defining a complex 
distribution D = span < e2 , e:3 >, and partially defining the real distribution 
by e4 E Dl_ at this point. Observe that Je4 = e5 , hence e5 _l Te, 11! and 
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so is perpendicular to the intersecting 5-plane. Further as e1 , e2 , e3 form an 
associative plane, at points e2 and e:1 note that e4 E Dl pcrp. However at c2 , 

.Je4 = c6, and at e:_l, .Je4 = e7, and so we similarly deduce that e6, e7 are 
both perpendicular to the intersecting 5-plane as well. This means that it is 
impossible to construct an intersecting 5-plane with the required properties. 

Hence all 4-dimensional totally geodesic submanifolds of SG are of unclassi­
fied type. 

8.5 5-Dimensional Examples 

\~e observe that any G dimensional manifold AI of Sfi is CR, with one dimen­
sional real distribution D, with D(p) = p 1\ ~' for~ the orthogonal complement 
of TpM in TpS6 . 

8.6 Summary of Totally Geodesic CR Subman­
ifolds in S6 

In 1 dimension all submanifolds are totally real. 
In 2 dimensions there are unique real and complex submanifolds, plus undefined 
submanifolds. 
In 3 dimensions there is a unique real subamnifolcl, pl11s undefined submanifolcls. 
In 4 dimensions all submanifolds are of undefined type. 
In 5 dimensions all submanifolcls are (trivially) CR. 
(Uniqueness up to G2 actions.) 
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Chapter 9 

Small Sphere CR 
subamnifolds in s6 

vVe continue to the next simplest class of submanifolds in 5 6
, those of small 

spheres, formed by the interchapter of 8 6 with planes not passing through the 
origin of R 7 . 

9.1 !-Dimensional Examples 

\Ve have already observe that all 1-climensional examples are totally real. 

9.2 2-Dimensional Examples 

\Vithout loss of generality we will take the intersecting plane to be offset perpen­
dicularly by the vector Ae1 with A E (0, 1). (actually A = 0 would correspond 
to the totally geodesic great spheres). vVe may also choose e2 to lie in the inter­
secting plane, and also ne:1 + (3e4, for some a,{J yet to be determined, however 
not both zero. 

Let us first attempt. to construct a complex example: 
Look at a point p = Ae1 + tte2 , where p has been chosen s.t. p indeed lies on 

5 6
. Consider then the result of the tangent space under the complex structure: 

(Ae 1 + Jte 2 ) 1\ (ae:3 + {3e4 ) 

/\( -oe2 + {Je:;) + Jt( -oel + (3e5). 

(9.1) 

(9.2) 

Now observe that we require the e1 component of this to be indentically zero 
(the tangent space is by construction perpendicular to e 1 ), hence o: = 0, and we 
may take {3 = 1. vVe may therefore rewrite: 
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(Ae1 + tw2) 1\ e4 

Ae5 + JLE6 . 

(9.3) 
(9.4) 

\Ve dec! nee that the intersecting plane is spanned by vee tore < e2 , e4 , Ae5 + 
JW6 >. However observe then that at other points on the submanifold we will 
have components in e1 e.g. generated by e4 /\ e5, and hence A = 0 contradicting 
the original assumption. Observe further that this difficulty will arise with 
constructing any (specifically 4 dimensional) holomorphic submanifold from a 
small sphere, hence we deduce that there are actually no holomorphic small 
spheres in 56

. 

vVe now attempty to construct some totally real example: again we look at 
the point p = Ae 1 + JW2 and the image of the tangent space under J. 

(/\e1 + 11e2) 1\ (cte:l + {-Je4) 

A( -oe2 + f3eG) + JL( -oe 1 + f3eG). 

(9.5) 

(9.6) 

\Ve see that this is perpendicular to e2 if and only if C\' = 1, and so again: 

( Aet + pe2) 1\ e., 
/\e5 + JlEfi. 

(9. 7) 

(9.8) 

vVe deduce that the intersecting plane is spanned by < e2, e4, JLe5 - Aefi >. 
However moving to the point p = Ae 1 + fte4 , then : 

(Ae1 + JLe4) 1\ e2 

AE:3 - JWG 

(9.9) 
(9.10) 

But this is not perpendicular to the vector JLe;, - Ae6 , as by construction 
A and IL are both non-zero. Hence we cannot construct a totally real small 
sphere in 2 dimensions. Observe further that the argument extends to trying to 
construct totally real small spheres of any dimension. 

9.3 3-Dimensional Examples 

vVe have observed that we cannot construct totally real examples of any dimen­
sion, and so the only interesting type is CR with D of dimension 2, and DJ. of 
dimension 1. 

As before we will take the intersecting plane to be offset perpendicularly 
by the vector Ae 1 with /\ E (0, 1). (actually A = 0 would correspond to the 
totally geodesic great spheres). We may also choose e2 to lie in the intersecting 
plane, and also ne:3 + (3e4 , for some o:, (3 yet to be determined, however not 
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both zero. Further we as~;ume ne:> + /3e4 to lie in D(p) where p = /\e1 + Jte 2 . 

But by previou~; arguments we deuce that o = 0 and that D(p) i~; ~;panned by 
span < e4 , Ae5 + JLCu >. 

Now consider a further point P = Ae 1 + JW4 . Ob~;erve that D ha~; non-zero 
interchapter with span< e2 , Ae0 + p.eu >. However c5 will generate elements in 
e1, hence we observe that e2 E D(i'J). Hence we deduce that the complex part 
of the tangent ~;pace is completed by: 

( Ae 1 + JLe") 1\ ( e2) 

( AC;j - JLe(j). 

(9.11) 

(9.12) 

Hence the intersecting plane mu~;t be spanned by span < e4 , /\e5 + JLe6 , Ae:3-
Jle6 >. vVhilst bearing in mind that we must orthonormalize to : 

. 2 
span < e4, Aec; + JLe0 , /\e:l - tte6 + JL ( Ae5 + Jte6 >, 

(recall that A, JL are chosen ~;uch that A2 + 112 = 1). 
?\·loving back to the point p = Ae 1 + JLC2 observe that : 

Thi::; has component in e4 of: 

A(- /\e2 + JLC7 + Jt 2 
(-Ac4 - pe7) + Jt( k'-9>.113) 

+pe4 + Jt 2 (Ae7- fLe,l). 

Which i::; zero if and only if /\ + J1 = 1, but this i::; incompatible with the 
construction that A2+tt2 = 1, and both are non-zero. Hence we cannot con::;truct 
a 3 dimensional CR subma.nifold which is a. small sphere. Ob~;erve that the same 
argument will follow if we attempt to build a higher dimensional CR sub manifold 
with (Hm(D) = 2, d-im(Dl_) > 1, in each case we are restricted to the choice of 
D, and thi::; i::; then incompatible with con:;tructing a totally real Dj_. 

9.4 4-Dimensional Examples 

We have observed that con::;truction of holomorphic example::;, and CR examples 
with d-im.(D) = 2 are not po~;sible. The::;e are the only case::; to be considered. 

9.5 5-Dimensional Examples 

As previously observed all 5-dimensional submanifolcb of S 6 are trivially of CR 
type. 
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9.6 Summary of Small Sphere CR Submanifolds 
in S6 

In 1 dimension all submanifolds are totally real. 
In 2 dimensions all small spheres are of unclassified type. 
In 3 dimensions all small spheres are of unclassified type. 
In 4 dimensions all small spheres are of unclassified type. 
In 5 dimensions all submanifolds are (trivially) CR. 

Hence small spheres are of little interest regarding their CR character. 

75 



Chapter 10 

CR Product Submanifolds 
in S6 

We now prove that there are no CR product submanifolcls in 5 6 . This is a 
result initially clue to Sekigawa in [23]. A slightly adapted version occurs in 
Bejancu 's text [3], although the technique is essentially the same. The proof 
is by contradiction on the relationship of the various associated distributions 
D, D.L, J D.L, and v. 

\Ve first of all derive some results: 

10.0.1 Lemma 

If J\! is a CR product then D is closed under covariant differentiation in 11I, 
i.e. \i'x V E r(D) for all X, Y E r(D). Similarly D.L is closed under covariant 
differentiation in 111. 

Proof This can be shown by recalling that the integral manifolds of D and 
D.L are both totally geodesic in AI for a CR product. 

10.0.2 Lemma 

h(.JU, V) = h(U, JV). 

Proof This has already been proven for almost Hermitian manifolds in general 
so we will not repeat the proof. 

We further derive the following directly from the Gauss equation. 

0 

0 

0 

1+ < h(U, U), h(X, X)- < h(U, X), h(U, X) >, 
< h(U, .JU), h(X, X) > - < h(U, X), h(JU, x) >, 
< h(U,.JU),h(U,X) >- < h(U,U),h(.JU,X) >. 
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where U E D, X E Dj_, and both are unit vectors. 
vVe shall prove the first of these as an example. Substituting the relevant 

vector fields into the Gauss equation we obtain: 

< R(U, X)U, X> < R(X, X)Z, Z > + < h(X, X), h(U, U) > (10.4) 

- < h(X, U), h(X, U) > 
-1 

0 

0+ < h(X, X), h(U, U) > 

- < h(U, X), h(U, X)> 

1+ < h(X, X), h(U, U) > 
- < h(U, X), h(U, X)>. 

The other two follow in a similar fashion. 

(10.5) 

(10.6) 

It is also useful to define a vector field E E f(D) relative to a choice of vector 
field Z E r( Dj_), by: 

Afa:z: 
< h(E, E), h(Z, Z) >= U U < h(U, U), h(Z, Z) >. < , U >= 1, ED 

vVe now prove the following : 

10.0.3 Lemma 

h(E, Z) -=F 0 and dim M = 3. 

Proof Suppose that h(E, Z) = 0. Then from the Gauss identities (113 to 115) 
we have: 

< h(E, E), h(E, Z) > +1 = 0. 

However also note that we have: 

Afa:1; 
< h(E, Z), h(E, Z) >= < U, U >= 1, U ED < h(U, U), h(Z, Z) > +1. 

\Ve deduce therefore that < h(J E, Z), h( .l E, Z) >= 0, as this must be 
minimized and h is cliagonalizable, and hence attains a minimum of zero. 

Hence by the above Gauss identity (12): 

0 = 1+ < h(JE, JE), h(Z, Z) > +0, 

0 =- < h(E, E), h(Z, Z) > +1. 

I3ut this is a contracliciton and so we deduce that h(E, Z) -I 0. 
Now note that by a result clue to Gray[13] there are no four dimensional holo­

morphic submanifolcls of su. Hence we are forced to conclude that d-im( D) = 2. 
Further by totally geodesic property of the leaves of Dj_ we have 

< h(JE, Z), JX >= O'lfX E Dj_ 

, and so Dj_ has maximal dimension of 1. Hence dim.ll1 = 3.// 
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Further by counting climensiom; we can infer that : 

h(JE,Z) = aJh(E,Z), 

for some a E R. 
\Ve now reach the main theorem of this chapter: 

10.0.4 Theorem 

There are no CR product sub manifolds in 8 6 . 

Proof ·we show that there is no a satisfying the requirement that 

h(J E, Z) = aJh(E, Z) 

, hence contradicting results for a product CR submanifolcl 1H, and so we de­
duce the non existence of such a submanifold. The full details are not of great 
interest in themselves and the reader is referred to Sekigawa[23] or 13ejnacu's 
review text[3] for full details. The idea of the proof is to derive of number of 
contradictory statements concerning the hypothesi::;ed a. For example we have 
derived from the Gaus::; equation: 

0 =< h(U, JU), h(U, X)> - < h(U, U), h(JU, X) >. 

13y substitution we then have: 

0 

0 

< h(E,JE),h(E,Z) >- < h(E,E),h(JE,Z) > 
< JhE, E), h(E, Z) > - < h(E, E), aJh(E, Z) > 
- < h(E, E), Jh(E, Z) > -a< h(E, E), Jh(E, Z) > 
(a+ 1) < h(E, E), Jh(E, Z) >. 

(10.7) 

(10.8) 

(10.9) 

(10.10) 

13y application of the CR ::;ubmanifold theory already developed Sekigawa 
obtains a number of ::;imilar, contradictory expressions, hence proving the non­
existence of a, and proving the non-existence of product CR submanifolds in 
86. 
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Chapter 11 

Homogeneous Submanifolds 
of S6 

This chapter is largely a review of the paper by Hashimo, Mashimoto[15]. 
Clearly a submanifold generated by the image of some point under a 3-dimensional 
subgroup of G 2 will be a 3-dimensional homogeneous submanifold. In [15] each 
3-dimensional subgroup of G2 is considered (they are classified into four types), 
and tested for generating a manifold with CR structure. It shall be seen that 
the CR snbmanifold genrated may, or may not, depend on the initial point. 

The following theorem gives a test for CR submanifolcls: 

11.0.5 Theorem 

Let e1 , ... ,e0 be a basis for the standard complex space C 3, with e4 = Je 1 , 

C!j = .J e2, en = J e:3, J the standard complex structure. Let w1 , ... w6 be the dual 
basis to e1 , ... , e0 . Further define a lagrangean form w by: 

w = (wl + iw4) 1\ (w2 + iw:_,) 1\ (w:3 + iw6 ). 

Given any three dimensional rea.! subspace V of C>, then dim.R(V n .J(V)) = 
2 if and only if w(V) = 0 

Proof That this must be the case can be carried out by observing that if 
w(V) =1- 0 then V must be spanned by three vectors, one iu each of {e1 ,e4 }, 

{ e2 , e:_,} and { e3 , e0 }. However by construction this will be a totally real subspace 
dimR(V n J(V)) = 0. Conversely if w(V) = 0 V must have empty interchapter 
with one of these subspaces, and so by dimension counting V will contain a.t 
least one of the preserved su bspaces { e 1 , e4 }, { e2 , e:_,}, { e:3 , eu} and so din1.R(V n 
.J(V)) = 2./ I 

And heuce: 

79 



11.0.6 Corollary 

For TV a 6-climensional (almost) complex manifold. A three dimensional sub­
manifold kf of vV is a CR submanifold with one dimensional real distribution 
if and only if w(T.,.M) = 0, 'V:c E M. 

This follows immediately as the condition dimR(T.rlH n J(TxA'I)) = 2 is an 
assertion that some two dimensional subspace of the tangent space is preserved 
under the complex structure - i.e. the complex distribution D is non-empty at 
this point. If this is true 'V:c E M then it follows that AI is a CR submanifold 
of the required type. 
Also we are interested in the existence of product and warped product examples. 
Hence it would be of interest if any of the subgroups contain a 2-dimensional 
subgroup which generates a holomoporhic submanifold at each point of the sub­
manifold. The existence of such a subgroup would be a requirement for a CR 
(warped) product - this is not considered by Hashimo and 11-.'!ashimoto, and it 
does not appear that the existence of such holomorphic submanifolds is trivial. 
There are four families of three dimensional simple subgroups of G 2 . The fol­
lowing conclusions are reached. \\Te describe each suhgToup in terms of its 
subalgebra. vVe shall not give full details of the analysis, although in each case 
we apply the corollary above. \Ve also take advantage of G 2 action to simplify 
calculations. 

11.1 Orbits of Type I 

This subalgebra has basis: 

XI = -A45 + A76' 

X2 = -A46 + A!i7, 

x3 = -A47 + AGs· 

("Where Au is the element of .go(7) which maps e j --> e;, e; --> -ei and 
e~.-, k f. i, j to 0) These orbits are small or great spheres, and recall from above 
that none of these arc of CR type, except for a unique totally real submanifold 
based on the interchapter with e.g . .span< e4 , es, eG, e7 >. 

Orbits of Type II This subalgebra has basis: 

XI = -2A23 + A4G + A76: 

x2 = -2A:H + Aw + Ar;7, 

X3 = -2A12 + At7 + Aw;· 

This orbit generates a CR submanifold 11£, unique up to G 2 action. The CR 
subamnifold may be generated by taking for a base point the point :r, with: 

·r2 + x2 1 . ') . 3 == -, 
~ 9 
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.. 2 8 

.t4 = g· 

Every orbit through such a point is congruent to AI by the transformation 
e:rp(t(ib:3 - A76 )), for some real t. Note that not all orbits of this subgroup 
have CR structure. 

Orbits of Type III This subalgebra has basis: 

XI = -2A2I - 2A65: 

X2 = -2A:l2 - 2A.75, 

X:l = -2A:JI - 2A.75· 

It is shown that no CR submanifold is an orbit of an element of this subgroup. 

Orbits of Type IV This subalgebra has basis: 

XI = 4A:l2 + 2A.54 + 6A76: 

x2 = J6(A:n + AzG - 2AI;;) + JiO(AI2- A:l5): 

X:l = J6(Ao:J + A27- 2A.4I) + JiO(A25 - A:H)· 

It is shown that the orbit of a point x E S 6 is a CR submanifold if and only 
if the function f is identically zero. \Vhere: 

f(:z:) -5:z::: - lO:r~x~ - 5:r~ + 42:dx~ + 42:r~:z:~ 
g.z.4 2,1 ~15·r2 ~· ·r + 8 ~15·z;:3 r - «7- v E>. 4·'·5· 7 v l·J .. s··7· 

Further it is demonstrated that such submanifold form a two parameter 
family. This is demonstrated by considering the point x, with: 

1 
;z;I = 3' 

:r7 = 2 ;;, 

(And other :r; = 0). For which f = 0, and notinng that the .Jacobean of .f 
at this point is regular with respect to :r I, x 7 on S6 , and hence we (locally) have 
a two parameter family of such submanifolds. 
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11.2 Extension to Higher Dimesnions 

As used in [15] the form w is an effective test for three dimensional CR-submanifolds 
where dimRD = 2. It is natural to wonder whether alternative forms might be 
of use in detecting other CR submanifolds. In the higher dimensional ca.':le: 

\Vhere w 1 , ... w2 n is a dual basis to e1 , ... , e2 , an orthonormal basis of complex 
vector space C", then for ann dimensional real vector space V, di1n( lin( JV)) -2: 
2 if and only if w(V) = 0. Hence any real submanifold AI of n, where n is odd, 
s.t. w(TpAI) = 0 , 'V p E M will be a non-trivial CR subrnanifold, although 
the dimensions of D, Dj_ are not cletenninecl. Note the restrictions on both the 
ambient space and the submanifold that n is odd. The vanishing of this w only 
indicates that part of the space behaves like a holomorphic subspace, in the case 
that n is even there is the possibility that A/ is purely holomorphic. 

In the specific case of 5 6 however we have the theorem clue to Gray[l3] that 
there are no 4-climensional complex submanifolds of 5 6

• vVe still have the possi­
bility that a submanifold may locally, or at a point, be completely holomorphic, 
so the vanishing of w is not quite sufficient for 4-dimensional submanifolds. 

The analysis of 4-dimensional subgroups of G 2 is therefore more problematic, 
although it would be immediately possible to demonstrate the non-existence of 
CR submanifolds using the method above. 
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Chapter 12 

Some Warped Product 
CR-Submanifolds in S6 

12.1 Previous Examples of CR warped products 

In [23] a warped product submanifold of sn is constructed of the form: 

(.l]2cust)e2 - (!12Sint)ea + (.IJ4 cos2t)e4 + (12.1) 

(y4 s·in2t)e5 + (y6 cost)eG- (.t;6 sint)e7 . (12.2) 

( 12.3) 

Where .IJ~ + ul + :IJ~ = 1, so that this is a mapping of 5'2 x 5' 1 into 5 6 . This 
is not an embedding as !j;(y2 ,y4 ,y6 ,ei1) = lj;(-y2 ,y4 , -yn,ei(t+~rl). It is shown 
that this is indeed a CR suhmanifold with the distributions D and Dj_ both 
integrable. 

In [15] this is extended to a family of examples parameterised by p1 , p2 , ]J:~ E 

R, s. t. P1 + P2 + Pa = 0 and P1P2P:J 1=- 0, given by: 

e:rp(t(p 1A"1 + p2 An2 + JJ:lAn)(:c 1e1 + :r2 e2 + :c3 e:~) 

:r 1 ( cos(tp 1 )e 1sin( tpt)e&) + :c:2 ( r:os( tp2 )e2 + sin( tpz)e6 ) + 
x:3(cos(tp3 )e3 + sin(tp3 )e7 ). 

Where :ri + :c§ + :ca = 1' and t E R. \Ve observe that this is a map 5'2 X R --> S6 . 

It is shown that the example in [23] is given by p 1 = 2, P2 = -1, p3 = -1 with 
some G2 action. By the description of 1/J it is clear that it is the orbit of a 
complex manifold 5 2 under the one geodesic path in G2 given by the g2 algebra 
element PtAGt + P2A52 + p3A7:3 (i.e. the path in G 2 formed by the exponential 
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map acting on this algebra element). We shall demonstrate that this is in fact 
a specific example of a more general class of CR submanifolds. 

It is also discussed in [1.5] as to under what circumstances this is a map of 
S 2 X Rand when it is a map of S 2 X st. Certainly if the parameters Pt,JJ2,JJ:J 

are all co-rational (i.e. the ratios of any two are rational) then it is possible 
to find some value oft E R s.t. tpt, tp2 , tp3 are all multiples of 21r and hence 
the map is indeed of S 2 x st. However if the Pi are not co-rational, then no 
such t exists, and the mapping is instead that of S 2 x R. vVe may compare this 
situation with that of the irrational line on the torus. 

12.2 General Warped Products in S6 

The examples given in [1.5], [23] have been shown to be the submanifolds gener­
ated by the orbit of a complex submanifolcl under some G2 action. vVe naturally 
a~k therefore how this may be generalised ancl what other warped product sub­
manifolds may be formed from the orbit of some complex submanifold. 

Let J\JC be some complex subrrwnifold of 86 , and let ~, : R X S6 -> S6 be 
some parameterised transformation on S6 , with ~r(O) the identity map. Let W 
be the submanifold consisting over the image of Ale under 1 for all R. If 1 is 
to generate a warped product suhmanifold then we require: 

a. ~, preserves the metric on Ale 
b. The distribution ,~~./(r)lr,JH \:fr0 E R must be perpendicular to the 

tangent vector field T(1(r0 )Mc). 
c. The submanifolds 1(r)l\Ic must be complex submanifolds \:/r E R. 
d. The variation is non-zero over all 1Hc 

vVe will initially be concerned with constructing examples locally, and hence 
not immediately concerned with (d). 

Consider for what variations this is true, i.e. for what perpendicular varia­
tions on a submanifolcl is the metric preserved: 

12.2.1 Theorem 

A submanifold .l\1 C J\~I, iJ a Riemannian manifold, is acted on by ~i : R x IVI -> 

M, r(O) the identity map, and d~ r(r)J\fC is everywhere perpendicular to TMc. 
Then 1 preserves the metric on 1\Jc (i.e. each r(r)Jl1c is isometric) if and only 
if £=r(r)l,.0 is everywhere perpendicular to the second fundamental form on 
1(r0 )McVr0 E R 

proof It is sufficient to prove the result on a r(r0 )A1c, and we can take this 
to be Ale itself without loss of generality. Consider a point p E Ale, then there 
is an orthonormal basis e; to the vector space Tpl\Ic. Let o:;(t) be paths in l\Ic 
through p s.t. a:';(O) = e;. A,;sume that the variaton does peserve the metric. 
We analyse the situation locally: 
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d d d 
< --;(r)o;, -~,.(r)o > + 

dr rlt cit 1 

d d cl 
< -

1 
l'(r)n;, -

1 
-
1 

;(r)ni > lr=O.t=O 
It crct · 

- -
< \lEe;,e.i > + < e;, 'Vt,eJ > 
< At,e;, e.7 > + < e;, A~;eJ > 
< (h(e;,eJ) > + < h(e;,e1 ),~ > 
2 < E,,h(e;,eJ) >. 

Where we have written E, for the vector field on 11fc, ,~;.;(r)A/clr=O, and '\7 for 

the metric connection on 1\~I. vVe have also used the fact that E, is perpendicular 
to the tangent vector space on AI, ancl the identity< h(X, Y), ~ >=< A.; X, Y > 
where AEX i:; the tangential (w.r.t. Me) component of V.;X. 

Hence the variation field must be perpendicular to the secoud fundamental 
form, at all point:; of the :;ubmanifoldi\1. The proof of the converse is obtained 
by simply reversing the argument, and showing that fh < e;, eJ >= 0 if it is 
assumed that < E,, h( e;, e J) >= 0, 'Vi, j at all points of Afc. 

12.3 Warped Products from Totally Geodesic S2 

vVe will intially examine the simplest example of warped product submanifolcls 
in 5'6 , that of totally geodesic 5'2 under the action of totally geodesic paths in 
Gz. Formally we take i\JC = S'6 n < e[, Cz, e:3 >a complex submanifold. Further 
;(t) = e;rp(Xt) for some X E g2 . \Vith thi:; choice ~~ necessarily preserves 
the metric on M (as ;(t) E 5'0(7)) and by virtue of being in G 2 the complex 
structure on 1\Jc is preserved. It is therefore only necessary to ensure that the 
variation field ~ is perpendicular to 1\Ic. 

Firstly we must define the relation between X and ~. Let p E 5'2 then p ----> 

e:~;p(Xt)p under the given transformation. Hence, ~(p) = fhe:rp(Xt)Pit=O = Xp. 
Let X be the most general element of Y2: 

0 -a! -(L2 -a3 -a4 -as -(1,6 

(/,1 0 -bl -bz -b3 -b4 -b5 
(1,2 bt 0 -a, +b:1 -aG - bz a:l - b.s a4 + b,t 

X= a:3 b2 as - b:3 0 -c1 -cz -c3 

a4 b3 a6 + b2 c, 0 -a! - C:J -az + Cz 

aG b.l -a:3 + b5 Cz a.,+ C:3 0 -bl - cl 
ll(j b5 -(l4 - b4 C:3 a2- Cz bl + c, 0 
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Let general point p E S 2 be given by p = :r1e1 + x2e2 + :r:3e:3 , where :rf + 
:r~ + :r:~ = 1. Now ~(p) = Xp, and so: 

~(p) = Xp = 

-ar:r2 - a2x:3 

a1:1:r- bt:r:J 

a2.T1 + br :r2 
a3:r 1 + b2:r2 + (a 5 - b3 ):r:3 

a4:r1 + b;3:r2 + (a6 + b2):r3 
a;;:r 1 + b4 :r: 2 + ( -a3 + b5 ):r:3 
auxr + b5:r:2 + ( -a4 - b,l)x3 

Rather than examining than forcing ~(p) perpendicular to TpS2 for general 
p E S 2, consider instead p = e 1 , :r: 1 = 1, :r2 = :r:3 = 0. At e1 , the tangent space 
is span< e2, e3 >, and hence we require: 

·writing these out: 

<~(e 1 ),e2 > a1 , 

<~(e 1 ),e:3 > a2 . 

And so we deduce a 1 = a2 = 0. vVe know also consider the point p = e2 , 

and observe that: 

< ~(e2),e:3 >= b1, 

and so by similar arguments b1 = 0. Hence ~(p) is reduced to: 

~(p) = Xp = 

0 
0 
0 

a;3:r: 1 + b2:r:2 + (as - ba ):r:J 
a4:r:1 + b3:r:2 +(au+ b2):r:3 

a5:r 1 + b4 x 2 + ( -a:J + b5 ):r3 

a6 x 1 + b5 x 2 + ( -a4 - b4):r3 

vVe observe that this ~(p) is everywhere perpendicular to the entire subspace 
span < e1 , e2 , e3 >, and hence no further restrictions may be imposed. vVe 
only consider submanifolds as distinct when not related by some G2 action, 
i.e. by a co-ordinate change. Recall that G 2 action allows free choice of some 
associative three plane, and a further perpendicular direction. vVe have already 
made the choice of the three plane e1 , e2 , e:3 in fixing a specific S 2 , but there is 
still a free choice of an e4 direction. For simplicity we will pick this such that 
a4 = a5 = a 6 = 0. Further we observe that by reparameterization of 1( t) we 
art perfectly free to alter the length of~' hence we make pick a3 = 1. Hence up 
to G2 actions there is a four dimensional space of perpendicular variation fields 
~(p) given by: 
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~(p) = Xp = 

0 
0 
0 

:1:1 + b2:rz + -b3 .r3 

l1;3:r2 + b2:c:3 

IJ.(Dz + ( -1 + IJG)x:3 
b5:r2 - b4 :r:3 

And derived from a variation r(t) = e:rp(Xt), for 

0 0 0 -1 0 0 
0 0 () -h -b:3 -b4 
0 0 0 h:3 -bz 1- br, 

.)( = 1 hz -b:3 0 -Cl -Cz 

0 h:3 b'2 Ct 0 -C;j 

0 b4 -1 + br, c2 C;3 () 

0 h;; b4 C:J -c2 CJ 

0 
-b,., 
b4 

-C;j 

c2 

-Ct 

0 

Hence we infer a seven dimensional family of CR submanifolcls generated in 
this way. 

12.4 Valid variation fields over the whole of S2 

Although we have demonstrated that there is a local family of CR submanifolds, 
generated by S2(e 1,e2 ,e:J) under a seven dimensional famil of G2 variations, it 
is not certain that this variation is everywhere non-zero. 

Recall that we have the form for the varition at a point p = (:r: 1 , :r2 , x 3 ) E 5 2 

given by: 

E,(p) = Xp = 

0 
0 
0 

1:1 + b2:r2 + -b:3:c:3 

b3:!:2 + b2:C;3 

b4 :c 2 + ( -1 + b5 ).7::3 
b5:r2 - b4:r:3 

Let us firstly rewrite into spherical polars, :c 1 = cos¢, .1: 2 = cos 8 sin rb. 
:r:3 = sin B cos¢. The condition that E,(p) = 0 is equivalent to solving the set of 
equations: 

cos¢ + ( b2 cos 8 - b3 sin B) sin¢ = 0, 

(b3 cos (i + b2 sin 8) sin¢= 0, 

(b4 cos B + (b5 - 1) sin 8) sin¢= 0, 

(IJ5 cos (i- b4 sin B) siu ¢ = 0. 
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\Ve can rearrange these, assuming sin¢ of 0, to the form: 

cot¢ 
b2 = b:j tan e - -- ' 

cosH 
b:l = -b2 tan e' 

IJ4 = (1- IJ,,) tanH, 

b, = b" tan e. 

\Ve may solve these equations as follows: 

b2 = - cot q'> cos H, 

b:3 = cot dJ sin H, 

IJ4 = sin e cos()' 

h;; = sin2 e. 

(12.8) 

(12.9) 

(12.10) 

(12.11) 

(12.12) 

(12.13) 

(12.14) 

(12.15) 

These are certainly soluble for fixed (), ¢. The points sin¢ = 0 correspond 
to the point [:r 1 [ = 1, :r2 = :r:3 = 0, at which point ~(p) of 0 (in fact is in the 
c1 direction). This should not be a surprise, a..<; it is a consequence of some a 
non-vanishing vector at e 1 to be e4 . 

vVe observe that for any other point p E 5 2 it is possible to select a G 2 action 
which is zero at this point. Also that opposite points on the sphere map to the 
same b2 , ba, b4, b5 . Further we observe that if we relax the condition that a:3 is 
identically 1, then we may normalize the vector a a, b2 , b:3 , b4 , b5 , and so observe 
that the map constructed appears to be a map from RP 1 to RP4 . However 
this map still has a singularity at sin¢ = 0, where a:3 = 0, and b2 , b:3, b4, b5 are 
undefined. 

If we remove our restriction that a.4 , ar;, a.6 , a 7 = 0, then we still see that at 
the point :r 1 = 1, :r2 , :r:3 = 0, b2 , b3 , b4 , b5 are undefined, and we actually have a 
mapping to a '1-plane in R 8 . Further in this situation there is no preferred point 
on 5 2 ( e 1 , e 2 , e:_l), so we deduce that every point in RP1 maps to some 4-plane in 
R 8 . vVe deduce that the map of points of 5 2 to their invalid points, is actually 
a map from RP 1 to the ::;pace of 4-planes in R 8 . 

vVhere we use G2 to simplify matters, we implicitly prefer some directions, 
and reduce most of these 4-planes, to rays, or points, depending on whether re­
sults are normalized. vVe see that this reduction cannot be carried out smoothly 
over the whole sphere, hence the singularities occuring when we attempt to sim­
plify. vVe deduce a mapping from 4-planes in R 8 to RP4 , except at the points 
corresponding to these singularities. 

12.5 Suitablitiy of non-G2 Variations 

Here we demonstrate that the only varitions which produce warped product 
submanifolds on totally geodesic 5 2 are locally generated by g2 variations as 
above. vVe prove the following theorem: 
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12.5.1 Theorem 

Let Ale be some totally geodesic holomorphic S 2 in S 6 . Let ~r(t) be some path in 
G£(7), such that 1(t)A/c is holomorphic and isometric to Me. Then -fhl(t)Mclto 
is equal to f/o'(t)!IIc tu for some 1' a path in G 2 dependant on t0 , for each t0 

over which 1 is defined. 

Proof This is a purely local result, so it is enough to consider a fixed t0 = 0. 
Further it is enough to consider 1' to be geodesic, i.e. the exponential map of 
some element of y2 . We also require the fact that the only isometric manifolds 
to totally geodesic S2 in S6 , are other totally geodesic S2

. Hence we see that 
1 will necessarily transform assosciative 3-planes to assosciative 3-planes, and 
given any such motion ·we can find a path in G2 which moves the relevant 3-
planes in the required fashion (this is a basic property of G2 , and has been 
implicitly used when we move assosciative three planes to e1 ,e2 ,e3 ). The only 
difficulty would be some non-S0(:3) varition within the 3-plane, but this would 
not be metric preserving on 11fc I I 

Note that there is no restriction on the action of 1 off the image of 11Ic, but this 
is of no consequence for the generated submanifold j\I. Also note that although 
locally 1 may be approximated by a totally geodesic 1', it is not necessarily 
globally totally geodesic, and we shall consider this case. 

Note further that we are in the restricted case where Ale is some S2 . In 
order to extend to more complicated AJC it would be necessary to prove that 
all isometric holomorphic submanifolds to Ale are related by some G 2 variation 
locally. The converse, that holornrophic submanifolds under some G 2 variation 
are isometric and holomorphic, naturally holds regardless, and so defines at least 
some subset of warped product submanifolds. 

12.6 Second Fundamental Form of Warped Prod­
uct Examples 

vVe know consider the properties of this family of submanifolds. vVe construct 
a CR snhrnanifold AI as the orbit of S 2 under a suitable G2 geodesic variation 
as above. vVe calculate the second fundamental form on the base manifolds S2

, 

in terms of spherical polar coordinates B, ¢, on S2
, where :c1 =cos B cos r/>, :c2 = 

sin B cos¢, :c3 = sin¢. First of all we note that the second fundamental form 
of great spheres in S 6 is identically zero (although along radial directions in 
R 7 ). Hence the second fundamental form of ill between vectors in some S2 is 
identically zero. i.e. 

[) [) 

h(ae' De/)= 0' 

a a 
h(ae·ae)=o, 
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a a 
h( 8¢' iJ¢) = 0. 

Remembering that h is a symmetric function. 
Recall that the second fundamenta~ form h(X, Y) is given by the perpen­

dicular part of a covariant derivation V'x Y. Hence we first need the tangent 
D d 8 . . I d k 1· . I vectors, 00 an 0 ,b. :n, ts a rea y nown exp tctt y. 

I) 

ae 

And similarly: 

i);J; i I) 
--
()8 OX; 

a a 
(- sin e cos ¢)-::;-- + (cos e cos rjJ) -::;-- 0 

o:r:1 u:J;2 

a iJ:c; a 
--

8¢ 8¢ o:J;; 

a 
(- cos e sin rjJ) -, - -

o:r:l 

a 
(sin e sin ¢)-::;-- + 

u:t:2 
I) 

(cos cb) -::;-- 0 

uX:3 

Now we calculate the relvant covariant derivative V .;~ at some point : 

d 
dt ( ~ ( exp( t.; (p))) lt=U 

d 
dt (Xe:r:p(t~(p)))it=O 

(X ~(p )e.Tp(t~(p))) lt=U 

(X~(p)) 

xzp. 

Where X 2 is calculated by matrix multiplication. 
vVe calculate that: 

\Vhere k; are expressed by: 

0 
0 
0 

-c1k1 - c2 k:3 - c3 k4 

c1k1 - c3k3 + c2k4 

c2 k1 + C;3k2 - c1k4 

c3 k1 - c2 k2 + c1k3 
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k: 1 = :c 1 + b2 :c2 - b:;:z:a, 

k2 = b:;:rz + b2:z::;, 

k3 = b,(z:2 + (b5 - 1):r;;, 

k4 = b:,:r2 - h4 :z:3 . 

(12.16) 

(12.17) 

(12.18) 

(12.19) 

vVe calculate the h( ~, 0 by removing parts parallel to ~, however we need 
not clo this to observe that h( ( ~) will be identically zero over the whole of S'2 

if and only if c1 = c2 = C:; = 0. Recall that the second fundamental form on 
S'2 is already identically zero, and so we deduce that the CR. subamnifold 111 is 
minimal if and only if c; = 0. Further note that c; do not occur in the description 
of that tangent field on S'2 . YVe reach the following conclusions about the CR. 
submanifolcls constructed: 

1. The variation fields on S 2 form a four dimensional connected family 
(taking into account some space of invalid variations). 

2. Corresponding to each variation field there is a three dimensional family 
of CR. sub manifolds (clue to the choice of c;), of each exactly one is minimal. 

vVe now consider the diagonal part of the second fundamental form by con­
sidering ~(p) as a function of e, q'i. It is simple to calculate that: 

0 0 
0 0 

a~ 
0 0 
1 (- sin (} cos q)) + b2 (cos e cos ¢) , ae 
0 b:; 
0 b4 
0 bs 

and, 

0 0 0 
0 0 0 

i)~ 
0 0 0 
1 (- cos e sin cp) + b2 (- sin e sin q)) + -ba (cos q) ). 

()q) 
0 b:; 62 
0 b4 -1 + b5 
0 bij -b4 

The second fundamental form is calculated by removing the parts of these 
tangential to the manifold, i.e. by removiug the parts along /]0 , !}<!> and /}f.. 
Consider these quanitities evaluated at sin q) = 0, cos q) = 1, i.e. around some 
great circle parameterised by e. It is immediately seen that Z! is constant along 
this circle, dependant on the b; chosen. Consider further the form derived for 
a< ao and we see that at cos(} = 1 the value is constant, indepenclant of the chosen 
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variation, although away from this point there is a depenclancy on b;. vVe see 
therefore that the non-diagonal entries of the second fundamental form is non­
constant, and of non-coustant length. 
In general we see therefore that the second fundamental form is non-constant, 
and argue from this that the scalar curvature of the submanifolcl is non constant 
(from the Gauss equation relating the second fundamental form to the curvature 
tensor). \Vhether the b;, c; might be chosen so as to generate a submanifolcl 
with constant curvature is left as an open question. 

12.7 Totally real parts in 8 1 and R 

As observed the examples in [15] and [23] were shown to be maps of S2 x S 1 

or S 2 x R depending on whether certain coefficients are corational. Certainly 
in our more general case if all components of the 92 variation element, X, are 
corational then the resultant submanifolcl will indeed be the image of S'2 x S1

. 

Simply observe that under the exponential map, although the full form is more 
complicated than that of [ 15], the result will consist of trigonometric functions 
with co-efficients multiples and sums of the components of the given X E 92 -

and hence all corational. 
The converse does not immediately follow - it is only certainly necesscu·y 

that coefficients of e:rp( X t) are corational, or equivalently that there exists 
some t0 s.t. exp(Xt0 ) is the identity. The form of e:rp(Xt) involving trigono­
metric functions will not involve all combinations of elements of X and so it is 
not absoltutely certain that every pair elementt of X be corational. Certainly 
examples of S2 x R exist (e.g. the example in [15]), and are not difficult to 
construct. 

vVe note that these comments only apply to the case where the holomorphic 
submanifold j\1c is acted on by a geodesic path in G2 . For a more arbitrary 
path "(, then the distinction between the two cases is only dependant on the 
existence of a fo S.t. "f(f) = ')'(t +to), for the mapping to be that of S'2 

X 8 1
. 

Further the case of 8 2 x R is indicated by~, taking distinct values for all values 
of t E R. We also note that these are not. the only two cases possible. 

12.8 Non-geodesic Paths in G2 

All examples explicitly constructed so far have been through totally geodesic 
paths, Me under the action e:cp(Xt) fortE Rand X E g2 , with X subject to 
the given restrictions. However the analysis has all been performed locally, and 
it would certainly be possible to envisage a path I'( f) in G 2 which is not of this 
type. This would be CR as long as -!/o(t)Mclt0 , an element of g2 , satisfies the 
required restrictions w.r.t. the subrnanifold "((t0 )i11c (i.e. that the variation is 
perpendicular to the subamnifold and its tangent space at each point). Certainly 
we have demonstrated there is a 4-climensional choice of valid variation fields 
on each leaf, so the choice of a valid such Af is not too heavily constrained. vVe 
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deduce that it is possible to construct warped product CR submanifolds which 
are locally identical, but not globally. 

As we are more concerned with the submanifold 111, rather than the exact 
details of construction we have ignored any consideration of the length of the 
variation field, equivalent to the velocity of the path in G2 . Certainly the 
generated submanifold is inclependant velocity of the path, except in the special 
case where at either or both ends the velocity of the path tends to zero faster 
than a critical value. As an example with X E g2 , generating a valid varition 
on Ale, consider the following two cases: 

M = e:rp(Xt)Mc, 

M = e:~:p(X tan- 1 t)i\JC. 

The first case is that considered previously. In the second case we note 
that tan- 1 is restricted to the interval ( -7f /2, +1r /2), and hence the mapping 
is in reality the image of i\1c x (0, 1), i.e. some open interval - a distinct CR 
submanifold to those considered before. It can be seen that any smooth mapping 
could be appplied to the t variable, and so produce CR submanifolds which are 
warped products of Ale and open intervals or semi-open intervals. The local 
properties of such manifolds remain unchanged. 

vVe note that any warped product CR submanifold is locally equivalent to 
some warped product CR subrnanifold where the real part is generated hy a 
geodesic variation, although not uniquely. Further in the case where the holo­
morphic part is S'2 there is a correspondane to a unique minimal submanifold 
with geodesic real part. The existence of minimal CR submanifolds which are 
warped products of S'2 x R with non-geodesic real parts are certainly possible. 

12.9 Four dimensional Warped Product Exam­
ples 

vVe now consider whether it is possible to create higher dimension CR sub­
manifolds using the methods so far employed. Let liS consider therefore a CR 
submanifolcl 11£ which is the orbit of some complex submanifold 1Hc under the 
map r.Tp(Xt), where X E g2 subject to the given restrictions due to Me. Sup­
pose that there were a further Y E g2 , would 1\1c under the double variation 
e:rp( X t )e:rp(Ys) be a 4-climensional CR subamnifold with 2-dimensional real 
part? 

Certainly the generated submanifold is a warped product submanifold of the 
type Ale x R 2 . We require that both X and Y are valid variations for every 
value of s, t. vVe consider the case where Ale is a totally geodesic S'2 as above, 
and so we have a specific form that X, Y may take at s = 0, t = 0. We now 
observe that X, Y must be both of the form 

93 



0 0 0 -1 0 0 0 
0 0 0 -b2 -b3 -b4 -bG 
0 0 0 b:J -b2 1- bs b4 
1 b2 -b:J 0 -Ct -c2 -ca 
0 b:J b2 Ct 0 -CJ c2 
0 b4 -1 + b5 c2 c3 0 -Ct 

0 br, b4 C:J -c2 CJ 0 

And perpendicular to each other. It is possible to demonstrate that these two 
conditions are incompatible, and so we cannot generate a '1-dimensioual CR 
submauifold of this form. Further as we have shown that any warped product 
CR submanifold on a holomorphic S 2 must have its real variation generated 
locally by g2 elements. Hence we deduce that there are no 4-climensional CR 
warped product submanifolds of S 6 with holomorphic part a totally geodesic 
S2. 

12.10 Further Ideas 

The study of warped product submanifolcls has been shown to be a way of easily 
generating CR submanifolds in S 6 , and there are several ways in which this work 
might be extended. 

12.10.1 Further Analysis of Given Examples 

The analysis of the examples given is far from exhaustive, and there are many 
extensions which immediately suggest themselves from comparison with other 
work. For example it would be possible to consider how the constructed exam­
ples have foliate, or mixed foliate structure. Further we may consider whether 
such submanifolds are linearly full in S6 (not contained in some interchapter 
of a linear subspace with S6

). \Ve would like to consider whether any of the 
examples given are holomorphic, and consider other submanifold properties. 

12.10.2 More General Base Manifolds 

\,Ye have considered only the restricted case of CR submanifolds generated from 
the orbit of a totally geodesic holomorphic submanifold. Ideally we would like 
to have a general theory for orbits of an arbitrary holomorphic submanifold. Al­
though a start could be made by considering a specific holomorphic manifold, it 
\Vould be more useful to consider a general such, through a local analysis. It has 
been suggested that such an analysis might be facilitated by the consideration 
of harmonic maps, similar to the work in Bolton, Vrancken and vVoodward[8] or 
Bolton and vVoodward[9], where harmonic maps are succesfully applied to the 
study of holomorphic submanifolds in S6

. 
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Conclusions 



'vVe have ,;een that the ,;tucly of the existence of CR product suhmanifolds 
has reached a sufficient stage as to make general statements about the existence 
of CR products in variou,; ,;paces. Further the construction of such spaces in 
cnandCPn is well understood. 

The study of CR warped products is less well understood, although we have 
demonstrated existence, explicitly constructed a family of such subrnanifolcls 
in 5 6

. As far as we know there has been no study of CR warped products in 
general Kaehler manifolds, and this may provide a useful area for further study. 
\Vhether the construction methods employed in 5 6 might be extended to other 
manifolds is an open question. 

The study of CR suhmanifolds with non-integrable real and complex leaves is 
relatively untouched. 'vVe have the general morse theory ideas clue to Lei, Wolf­
son[l8]. The homogeneous examples in 5 6 [ 15] do not rely on integrability of the 
distributions, although integrability is not explicitly considered. Other papers 
have considered general properties, such as [16] clue to Hashimoto, l1dashimo and 
Sekigawa, where some topological restriction are placed on general4-clirnensional 
CR submanifolcls. There is not however a comprehensive classification of such 
submanifolds, and examples are few compared those with integrable leaves. 

'vVe note that there has not been sufficient space for all of the related results 
developed in the past thirty years, however we hope that we have given a flavour 
of the results which are possible in the field, and an indication of some further 
results. \Ve are confident that this is the first time that these particular results 
have been collected and compared in a single paper. 

Thi::; work has hopefully demonstrated that the existence of a CR structure 
has interesting con,;equences for its relation with the ambient manifolds. The 
fact that CR ~;ubmanifolds are readily understandable once holomorphic and 
real manifolds have been con~;iderecl is in its favour. Considering the large body 
of work relating to the~;e submanifolcls, and the success with which results have 
so far been obtained for CR sumanifolcls, it seem~; highly likely that further 
study will be rewarded. 'vVe have indicated in the text where we have seen 
immediate opportunities for research, particularly in the field of warped prod­
uct snhmanifolds, but almost any text studying holomorphic submanifolds will 
suggest possible extension~;. 
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