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Abstract 

Soft and collinear singularities, known collectively as infrared singularities 

here, plague the calculation of scattering amplitudes in gauge theories with 

massless particles such as QCD. The aim of this thesis is to describe meth

ods of deriving amplitudes that are infrared finite and therefore do not suffer 

from this problem. We begin with an overview of scattering theory which in

cludes a detailed discussion of the source of infrared singularities and outlines 

approaches that can be used to avoid them. Taking one of these approaches, 

namely that of dressed states, we give a detailed description of how such 

states can be constructed. We then proceed to give an explicit example cal

culation of the total cross section of the process e+ e- ---> 2 jets at NLO. In 

this example we construct dressed amplitudes and demonstrate their lack of 

infrared singularities and then go on to show that the total cross section is 

the same as that calculated using standard field theory techniques. 

We then move on and attempt to improve the efficiency of calculations 

using dressed states amplitudes. We describe some of the problems of the 

method, specifically the large numbers of diagrams produced and the multiple 

different delta functions present in each amplitude. In attempting to fix these 

issues we demonstrate the difficulties of producing covariant amplitudes from 

this formalism. Finally we propose the use of the asymptotic interaction 

representation as a solution to these difficulties and outline a method of 

producing covariant infrared finite scattering amplitudes using this. 
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Chapter 1 

Introduction 

1.1 Physical observables 

The aim of all theoretical calculations is to produce predictions for the out

come of experimental processes. Particle physics experiments at colliders 

produce large amounts of data which can be analysed in many different ways. 

Quantities known as physical observables are then calculated from this anal

ysis. Theoretical calculations must therefore produce predictions of these 

physical observables. This is usually achieved by perturbatively expanding 

and then calculating scattering elements, known as amplitudes, of the field 

theory describing the physics of the experiment, for example QED or QCD. 

The modulus squared of these amplitudes is then integrated over the entire 

allowed region of their parameter space. This is known as integrating over 

the phase space. To calculate a specific physical observable this integral is 

then weighted by some function describing the physical observable for which 

a prediction is required. Schematically this calculation takes the form, 

( 1.1) 

Where dLips represents the phase space integral measure, J ( ki, ... ) is the 

weighting function and A is the amplitude. 

The weighting function given by J(ki, ... ) can have many forms. The 

simplest of which is when it is taken to be equal to one, this gives us the total 

1 
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cross section, a quantity which is very difficult to measure experimentally. 

Therefore more complicated weighting functions for easier measurements are 

required, for example jet definitions and thrust. 

The important part of Eq.(1.1) as far as this thesis will be concerned 

with, is the amplitude A. This contains all the details of the physics of the 

theory being used to describe the experiment. The rest of this thesis deals 

with defining new methods of calculating this quantity. 

1.2 Quantum field theory calculations 

We want to be able to calculate A, given in Eq.(1.1). The starting point of 

all field theory calculations is a Lagrangian describing the theory in which 

we wish to calculate. This usually takes the form of a kinetic part (also 

known as the free part) and an interaction part, for example the Lagrangian 

of massless QED is given by [1], 

L Lkinetic + Lint 

'1/J(x)i fjJ'ljJ(x)- ~ (o~tAv(x)- ovA~t(x)) (oiL Av(x)- av A~t(x)) 
-e'l/J(x)J(x)'l/J(x) (1.2) 

Here the '1/J(x) are the fermionic electron fields at x and A~t(x) is the vector 

photon field also at x. We want to work with a quantum field theory and so 

we will need to quantise the theory described by our chosen Lagrangian. Here 

and for the rest of this thesis we will assume that canonical quantisation has 

been used. Quantisation using this method involves promoting all the fields 

and their conjugate momenta to operators [1, 2, 3]. Commutation relations 

for integer spin fields and their conjugate moments are then defined on points 

of a particular space-time surface. Similarly for half-integer spin fields we 

have anti-commutation relations. Traditionally field theory commutation (or 

anti-commutation) relations are defined to exist between fields at equal times. 

This is not the only choice that could be made, other space-time surfaces can 

also be used. For example the surface of the light cone is used in light cone 

quantisation [4]. 
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To compute A from the quantised theory we are then led to calculate 

the overlap of the in states with the out states [1]. These states describe 

the incoming and outgoing particle content of the system respectively. For 

example we could have, 

(1.3) 

This would describe the overlap of two incoming "quarks" (with momenta p3 

and p4), which are fields of the full Lagrangian, with two outgoing "quarks" 

(with momenta p1 and p2), which are also fields of the full Lagrangian. What 

is meant by a "quark" depends upon the theory we are calculating with. 

There are multiple ways of calculating this quantity A. The main method 

which will be used throughout this thesis is that of scattering theory, this 

method will be discussed in detail in Chapter 2. An alternative technique 

which we will describe here and use in Chapter 4 is to relate the overlap 

of in and out states to time ordered correlation functions. The calculation 

of the overlap of the out states with momentum qi, to the in states with 

momentum Pi is related to the S-Matrix (see Section 2.1.8). We can then 

use the LSZ reduction formulation [1], to relate these S-Matrix elements to 

the expectation value of a time ordered product (denoted by T { ... }) of fields 

'1/J of the full theory at Xi and Yi in a correlation function, 

in(Pl, ... , Pn\S\ql, ... , qm)in 

z-"t" J d4 X1 ... d4 Xnd4y1 ... d4 ymeiL_p;.y;e-iL_q;.X; 

X0y 1 ... 0YnDx 1 .. .0xm (0\T{ '1/J(yl) ... 'l/J(yn)'l/J(x!) ... 'l/J(xm)}\0) (1.4) 

Here Z is a renormalisation factor [1] which relates the full fields ¢ to the in 

and out fields ¢in/out at t -----+ ±oo via, 

(1.5) 

From Eq.(1.4) we see that the S-Matrix is the residue of the multi-particle 



CHAPTER 1. INTRODUCTION 4 

pole when when all the external particles go on-shell (i.e P? = m 2 ) in the 

correlation function. 

Currently we cannot analytically solve these correlation functions for any 

"realistic" theories1
. Only solutions for free field theories (i.e. Lint = 0) 

exist. This is due to the complexity of the Lagrangian's involved. Progress 

is being made though with numerical attempts to calculate these quantities. 

This process is known as lattice theory, where the space-time in which the 

Lagrangian sits is discretised as a set of points, i.e. a lattice. This lattice 

can then be numerically modelled with the accuracy of the final results being 

then limited by the available computing power. This thesis will not be in

volved with numerical solutions of this sort. Instead to solve these correlation 

functions we will be forced to use perturbation theory. 

Perturbation theory usually involves relating the full fields of the theory 

to the fields of the free theory (i.e. the theory given when Lint = 0 in the 

Lagrangian of the full theory). To do this we must switch the full fields into 

the interaction picture using evolution operators (see Section 2.1. 7). Using 

these we can then relate the correlation function of the full fields 7/J, to fields 

'1/Jr, which evolve in time with only the free part of the Hamiltonian [1], 

This perturbative expansion now consists of correlation functions containing 

only fields which evolve in time in the same way as free fields. Therefore 

the problem of calculating the overlap of states has been reduced to that of 

calculating the correlation functions of time ordered products of free fields. 

Wicks theorem can then be used to replace these time ordered correlation 

functions with free field propagators [1, 2]. This whole procedure can be 

encapsulated by the method of Feynman diagrams. If we want to calculate 

an amplitude at a particular order n in perturbation theory we can draw 

all topologically different ways of connecting, with lines, the incoming and 

outgoing particles with n vertices. Each diagram produced in this way will 

1These are theories we would use, for example, to make predictions for collider experi
ments, such theories include QED, QCD etc. 
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then correspond to one of the ways of replacing the time ordered product of 

fields in the free field correlation functions with propagators. The vertices 

in the Feynman diagrams therefore represent interactions and any internal 

lines represent propagators between these interactions, for example see Figure 

1.1. The sum of all Feynman diagrams with n vertices is therefore the entire 

perturbative amplitude at order n. 

1.3 Perturbative calculations 

The calculation of an amplitude A is split up order by order in a perturbation 

series. Different Feynman diagrams can be used to describe the contributions 

to these amplitudes. The order of a contribution to a process is determined 

by counting the power of the coupling constant in the contributing amplitude. 

If this power is the same as that of the lowest order diagram that contributes 

to that process then the contribution is known as leading order (LO). The 

topological structure of Feynman diagrams contributing at LO is usually 

that of a tree diagram. The next order above this is known as the next-to

leading order (NLO). This will have one power more in the coupling constant 

than the LO contribution and therefore must have an extra vertex but no new 

external legs. Hence NLO contributions must have an extra loop compared to 

the leading order diagrams. This means that NLO contributions usually have 

the topology of a single loop, this would be a one-loop Feynman diagram. 

Similarly the next order higher, which is known as next-to-next-to-leading 

order (NNLO) will consist of one further loop in the topology and so is 

usually given by two-loop Feynman diagrams. 

As we are working with a perturbation series we will therefore also cal

culate the physical observables Eq.(l.l) to a particular order. The physical 

observable contains the modulus squared of the amplitude. So the contri

butions to the physical observable at a particular order will come from the 

multiplication of amplitudes at different orders. For a general physical ob

servable O" 1 , at order n we will have, 
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+ J dLips(p1, ... ,Pm+I)A; X An-2 J(p1, ... ,JJm+1) 

+. .. + j dLips(p1, ... ,pm)A~-1 X A1 J(p1, ... ,prn) (1.7) 

Here Lips (p1, ... , ]Jj) is the phase space associated with integrating over the 

momentum P1, ... ,pj of the external particles in the amplitudes given by Ai, 
which contributes at order i in the coupling. For example the term An-1 

would contain the diagram consisting of n - 1 vertices where n is the order 

at which we are calculating the physical observable. Finally J(p1 , ... ,pj) is 

the weighting function for the physical observable, this also depends upon the 

momenta of the external particles. So to calculate a process up to NNLO for 

example, we would need LO, NLO and NNLO amplitudes to get the complete 

result (see the example in Section 1.4 for an NLO process). The sum of 

amplitudes here is an incoherent sum as the amplitudes at different orders 

contain different numbers of incoming and outgoing states. Correspondingly 

each piece will in general have a different phase space integral. The complete 

sum of pieces will contain all physically indistinguishable contributions to 

that process at the specified order. 

To proceed further the contributing amplitudes would have to be calcu

lated. It is at this point that we run into calculational difficulties. Beyond 

tree level the majority of Feynman diagrams are divergent. There are two 

types of divergence that are encountered. The first are ultraviolet (UV) sin

gularities. These are caused by high momentum modes appearing in the 

integrals over the momentum of internal loops. These can be systematically 

dealt with by firstly regularising the integral in some way, the most common 

method used being that of dimensional regularisation. Then using the pro

cedure of renormalisation the singularities can be systematically removed. 

Renormalisation relates the quantities in the Lagrangian, such as those la

belled as the mass and interaction coupling to the renormalised mass and 

coupling of the theory in some renormalisation scheme. Any UV divergences 

are removed in this procedure as the difference between the renormalised 

quantities of the theory and the quantities in the Lagrangian is infinite. 

The second type of divergence that we meet are the so called infrared (IR) 
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divergences2
. These arise in the low momentum modes of loop integrals in 

amplitudes and also in the phase space integrals of Eq.(1.7). They manifest 

themselves in two different ways, the first occurs when a particle emitted from 

an initial or final state particle goes soft (i.e. its energy goes to zero). The 

second occurs when a particle goes collinear to one of the external particles. 

Renormalisation does not remove these singularities as their root cause is 

very different from that of UV singularities (see Section 2.2). 

The problems of IR divergences limits the type of quantities that we can 

calculate with a perturbation theory. We are forced to only deal with physical 

observables which can be defined in an infrared safe way [3, 5]. These IR safe 

quantities are such that they do not depend on the long range behaviour of 

the theory. This can be stated equivalently (see Section 2.2) as that IR safe 

quantities do not depend on whether or not a parton emits an arbitrarily 

soft gluon and also do not depend on whether or not a parton splits into two 

collinear partons. 

To handle the IR divergences we must regulate the amplitudes in some 

way. The simplest method being to introduce a mass for any massless fields 

in the Lagrangian. Amplitudes thus regulated will now contain logarithms 

of the mass which diverge as the mass regulator is taken to zero. More 

commonly dimensional regularisation can be used, whereby the amplitudes 

are evaluated in D - 4 - 2t: dimensions. The infrared singularities then 

reveal themselves as poles in 1 I E. Dimensional regularisation has also the 

added advantage of simultaneously regularising the UV divergences. So one 

regulator can be used for all the divergences in the amplitude. The UV poles 

will arise as 1 I En factors for n-loop amplitudes and IR poles will arise as 1 I t:2
n 

factors for n-loop amplitudes, in the integrated results. The poles from the 

two types of singularities will therefore mix together. This mixing however 

does not cause any problems with UV renormalisation. 

If we were now to use our IR regulated amplitudes to calculate an IR 

safe quantity then we will get a completely finite result when we combine all 

the pieces of Eq.(l.7) except in one significant case [5, 6, 7, 8]. Any parts 

2We use the terms "infrared divergences" and "infrared singularities" for both, soft and 
collinear singularities throughout this thesis. 
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of amplitudes contributing to Eq. ( 1. 7) which would give a divergence, if the 

IR regulator were to be removed, will cancel between other such terms. The 

regulator can then be safely removed leaving us with an infrared finite re

sult. The one exception to this result is the case when we have initial state 

collinear singularities. In this situation all the initial state singularities do 

not cancel and instead are absorbed into the definition of what are known 

as parton distribution functions (PDF's) [7]. The PDF's describe the prob

ability of finding a certain type of parton within an incoming particle. The 

factorisation theorem [7, 8] then informs us that we can separate out the long 

distance behaviour, including the collinear singularities and non-perturbative 

effects, into these PDF's. The short distance behaviour then has no initial 

state infrared divergences and can be calculated perturbatively. 

1.4 An example IR safe quantity calculation 

To demonstrate this cancellation of IR divergences in the calculation of IR 

safe quantities we will now give a simple example of how this occurs. This 

example is the calculation of the total cross section for e+ e- --+ 2 jets at 

NLO. We will have to compute two amplitudes for this process. The first 

amplitude that contributes is commonly known as the virtual contribution 

because the IR singularities arise from the loop integrals. It contains an 

incoming photon and an outgoing quark and anti-quark, this is shown in 

Figure 1.1. The amplitude for this is given by, 

p 

Figure 1.1: The vertex correction diagram 
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A(qpl, iip2; 'Y(P)) = 

eAo,l(qpl, ifp2; 'Y(P)) + eg2 A2,1(qp1, iJp2; "!(P)) + O(l) (1.8) 

where Ao,1 contains a single quark-antiquark-photon vertex and A2,1 con

tains a single quark-antiquark-photon vertex and two quark-antiquark-gluon 

vertices. Here e is the electromagnetic coupling constant and g is the strong 

coupling constant. 

The second amplitude which contributes to this is commonly known as 

the real emission because the IR singularities arise from external particles 

going soft and/ or collinear in the phase space integration. It contains an 

incoming photon and an outgoing quark, anti-quark and gluon, this is shown 

in Figure 1.2. The amplitude for this is given by, 

p 

Figure 1. 2: The one-gluon emission diagram. 

Here A1,1 indicates that this amplitude has a single quark-antiquark-photon 

vertex and a single quark-antiquark-gluon vertex. We can write Eq.(1.7) for 

this process at order e2g2 as, 
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+ J dLips(pl, P2, P3)IA1,1i 2 J(pl, P2, P3) 

+ J dLips(pl,P2)1A~, 1 x A2,1IJ(p1,P2)) 

10 

(1.10) 

where E is the regulator in dimensional regularisation. For o-J to be an IR 

safe observable we then require that the weighting function J(p 1 , ... ) satisfies 

the following conditions in the soft and collinear limits, 

J(p1,P2,p3) ~ J(p1,P2,0) = J(pl,P2) 

J(p1,P2,p3) ~ J((1- >.)pl,P2, >.p1) = J(pl,P2) 

J(p1, P2, P3) ~ J(p1, (1 - >.)p2, >.p2) = J(p1, P2) (1.11) 

These conditions can be generalised for processes which contain greater num

bers of external particle momenta. 

For the case of the total cross section we set J = 1 and so the conditions in 

Eq. ( 1.11) are trivially met. Upon performing the integration over the phase 

space we obtain, 

where, 

do-o rv IAo,l(Qpl,qp2;/(P))I 2 

do-qif rv 2Re [Ao,l ( Qpl, qp2; !(P) )A;,1 ( Qpl, qp2; !( P))] 

do-qqg rv IAl,l(Qpll qp2, 9p3; i(P))I 2 

(1.12) 

(1.13) 

(1.14) 

( 1.15) 

The virtual cross section, do-qq and the real cross section, do-qqg both contain 

infrared singularities and only when combined to form an infrared safe ob

servable do these divergences cancel. So for the total cross section calculated 

here we obtain, 

(1.16) 
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CX8 ( 1 3 19 n
2

) CJoCp-cr -+-+--- +O(t:) 
7f t:2 2t: 4 2 

(1.17) 

rJqqg = CX8 ( 1 3 n
2

) CJo C F -cr -- - - - 4 + - + 0( E) 
7f t:2 2t: 2 

( 1.18) 

where cr = 1 + O(t:) and Cp = (N; - 1)/(2Nc) = 4/3. Thus, at next to 

leading order the total cross section is given after setting t: to zero by, 

CJ = CJqil + CJqqg = CJo ( 1 + :; 3CF) (1.19) 

and we see that all dependence on E has vanished and therefore the regulator 

can be removed. 

1.5 General methods for dealing with IR sin

gularities 

In the example in the previous section we saw that IR divergences cancel 

between different physically indistinguishable contributions after the phase 

space integration has been performed. These different phase space integrals 

generally contain different numbers of particles. Therefore we cannot com

bine all the contributing terms before performing these integrals. This would 

then appear to preclude the use of an entirely numerical approach for the 

calculation of these quantities. For simple leading order calculations this is 

not such a problem, but as we attempt to gain greater accuracy by going 

to higher orders in the perturbation series, the complexity of the amplitudes 

makes analytic progress difficult. 

To surmount this problem much theoretical work has gone into developing 

techniques where the integration can be split up in such away as the singular 

regions can be analytically integrated, whilst the rest of the amplitude is 

calculated numerically. There are two such methods, the first of which is 

known as the phase space slicing method [9] and the second is known as the 

subtraction method [10, 11 J. 
Both techniques have been generalised to processes involving any number 
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of jets involving both lepton and hadron collisions at the NLO level. The 

subtraction procedure at NLO works as follows [11]. We start with the total 

contribution to an observable at NLO. This can be split up into a real piece 

daR (e.g. Eq.(1.9)) and a virtual piece dav (e.g. Eq.(1.8)). The calculation 

can then be rewritten as follows, 

O"NLO 

(1.20) 

where the subscript on the integrals indicates the number of external particles 

which are to be integrated over in the phase space integrals. Here das is an 

approximation of daR such that it contains the same soft and/ or collinear 

singularity structure in the IR regulator. The first term in Eq.(1.20) is now 

IR finite as the das acts as a counter term to cancel any singularities. The 

regulator can therefore be removed from this term and it can be numerically 

integrated. We now need to be able to perform the single analytical integral 

over das in the second term of Eq.(1.20). If this is possible then the poles 

given in terms of the regulator will cancel with those in dav. The regulator 

can then be removed from these two terms and the rest of the phase space 

integrals performed numerically. 

The crucial part of the above procedure is that we can chose a form for 

das such that it can be integrated over analytically. A general method for 

generating das for any process contributing at NLO was developed in [11]. 

Furthermore the virtual piece can, if we choose suitable counter-terms da3 , 

also be numerically integrated over the internal one-loop integral [12]. This 

means that it should be possible to completely numerically integrate any 

NLO observable. 

Although great progress has been made with NLO calculations if we want 

to increase the accuracy of our theoretical predictions we will require NNLO 

results. Unfortunately the amplitudes required will be more complex. These 
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will now include two-loop contributions as well as one-loop and tree contribu

tions. The greater complexity of the amplitudes combined with the greater 

complexity of the phase space integrals has made progress slow in this area. 

To move ahead then with NNLO calculations there has been great focus 

into two main areas. The first is that of the calculation of the amplitudes 

themselves. Much work has been devoted to the development of general 

methods for the calculation of the two-loop integrals involved [13] and the 

use of these in explicit amplitudes [14]. Work is also being directed towards 

the necessary one-loop and tree contributing amplitudes at NNLO. 

The second region of development has been in the area of the phase space 

integrals of the amplitudes required at NNLO. This has lead to attempts 

to derive a general subtraction procedure for NNLO processes. The start

ing point of such a subtraction procedure involves understating and being 

able to generate in a general form the soft and collinear singularities of the 

various amplitudes involved. For the two-loop virtual correction a general 

form of these poles has been given in [15, 16]. Further work also includes 

explicit derivations of the forms for the splitting functions and soft limits for 

quarks and gluons [17, 18]. Factorisation formula for the soft and collinear 

singularities of real emissions at NNLO in one-loop and tree diagrams are 

also being produced [19, 20, 21, 22]. These have then been used to examine 

explicit processes [23, 24]. However the difficulty of integrating over the IR 

divergent phase spaces of the amplitudes involved is still a bottleneck to the 

further calculation NNLO physical observables. 

1.6 Infrared finite amplitudes 

Even though we can make headway in performing calculations using the 

usual approaches described above the difficulties that exist suggest that new 

methods of avoiding the problem of infrared singularities at the amplitude 

level would be of benefit. It is therefore useful to investigate the origin 

of these singularities in order to explore the possibility of avoiding them 

altogether. The origin of the problem lies in the long-range nature of the 

interactions. As a consequence the usual in and out states do not evolve in 
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time asymptotically according to the free Hamiltonian. It is this breakdown 

of the standard assumption that results in the non-existence of the scattering 

operator (this will be discussed in detail in chapter 2). Thus, if we want to 

avoid infrared singularities from the outset we have to construct an S-Matrix 

that successfully maps the full states of the theory to the asymptotic states 

we want to calculate with. 

Previous work in this area has been split between the use of two types 

of state. The first type of states used are the true asymptotic states of the 

full theory. Transition amplitudes are then calculated between these asymp

totic states with a modified S-Matrix (see Section 2.3) [25, 26, 27]. The 

second types of states used are called dressed states, transition amplitudes 

can then be calculated using the normal S-Matrix between these modified 

states. Work in this area has been carried out initially for QED with massive 

fermions [28, 29] and then many steps have been made to extend it to soft 

singularities in non-abelian theories [30, 31, 32]. It is possible to construct 

dressed states (also known as generalised coherent states) which include mul

tiple soft gluon emission to all orders in the coupling [33]. It can be shown 

that the S-matrix between such states is free of soft singularities [34, 35]. 

Apart from the more complicated structure of the soft singularities due to 

the self-interaction of the gauge bosons there is the additional complication 

of collinear singularities in a non-abelian gauge theory. Due to the collinear 

singularities the asymptotic Hamiltonian is more complicated [27, 36, 37, 38] 

and the prospect of being able to include these effects to all orders in per

turbation theory is not very promising. But the idea of constructing an 

asymptotic Hamiltonian that takes into account the asymptotic dynamics 

and using the corresponding evolution operator to either construct asymp

totic states or to dress the usual states [39, 40] can still be applied and is not 

tied to any particular theory. In particular, four-point interactions that are 

present in non-abelian gauge theories can be incorporated [ 41]. 
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1. 7 Overview of the contents of this thesis 

In this thesis we investigate the practical feasibility of constructing scatter

ing amplitudes that are free from soft and collinear singularities. We are 

not so much interested in general considerations but rather try to establish 

a method to define and explicitly compute infrared finite amplitudes order

by-order in perturbation theory. Apart from the conceptional advantage of 

avoiding divergent amplitudes such a method would have a variety of prac

tical advantages. Obviously, the finiteness of the amplitudes would facilitate 

a completely numerical approach to the calculation of amplitudes. This also 

applies to the combination of fixed order results with parton shower Monte 

Carlo programs. 

The structure of the rest of thesis will then be as follows. Chapter 2 will 

begin with an overview of scattering theory and then explicitly highlight the 

source of infrared singularities. The chapter concludes with basic outlines 

of the different methods of deriving scattering amplitudes which are free of 

infrared singularities and will be the basis of the calculations performed in 

chapters 3 and 4. Chapter 3 then contains a detailed discussion of the use 

of dressed states and gives an explicit example of the calculation of the total 

cross section for e+ e- ----+ 2 jets at NLO. The technical details of this calcu

lation are relegated to Appendix A. Chapter 4 will be split into two halves 

the first half highlights the difficulties in simplifying the calculational pro

cess involved in the use of dressed state infrared finite scattering amplitudes. 

This will focus around the issues of producing covariant amplitudes and the 

conservation of energy across the whole amplitude. The second part of the 

chapter will focus on the use of the asymptotic interaction picture to solve 

the issues discussed in the first half of the chapter. Finally Chapter 5 will 

summarise the different ideas and techniques presented in this thesis and give 

an outlook to future work. 



Chapter 2 

Scattering Theory 

In the previous chapter we gave an overview of how scattering amplitudes 

in field theories are usually derived. This involved using the LSZ reduction 

formula and switching into the interaction picture. We could then define a 

covariant perturbative expansion which could be calculated using Feynman 

diagrams. Amplitudes calculated in this way contain infrared singularities 

which are a major stumbling block to higher order calculations. 

The aim of this chapter is to present an alternative method of deriving 

a perturbative expansion for scattering amplitudes. This method is usually 

known as scattering theory or the Hamiltonian formalism. We will start as 

before from the overlap of the initial and final states of the process being 

calculated. From this we derive a form for the amplitudes in time ordered 

perturbation theory instead of covariant perturbation theory as in the last 

chapter. During this derivation the fundamental causes of infrared singu

larities will become apparent. The amplitudes generated in this way will 

be equivalent to those of the previous chapter and so also contain infrared 

singularities. The advantage of using the Hamiltonian formalism though is 

that the intricacies of the infrared divergences are most apparent here. This 

allows us greater control in developing a formalism for avoiding them in the 

calculation of scattering amplitudes. We will therefore conclude this chapter 

with an overview of the different methods of modifying the above procedure 

to produce amplitudes that are completely free of infrared singularities. 

16 
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2.1 The S~Matrix and in & out states 

We want to be able to calculate the amplitude A given in Eq.(1.1) using 

scattering theory [42]. This requirement can be translated into the need 

to calculate the overlap of the initial and final states of the theory we are 

calculating with. So we have as our starting point, 

(2.1) 

We will see how this form of A relates to that of Eq.(1.3) in Section 2.1.6. 

The states I W i ( t)) are full states of the theory i.e. they satisfy the Schrodinger 

equation, 

(2.2) 

Here H f is the full Hamiltonian of the theory being calculated. The states 

consist of a complete set of quantum numbers i which are eigenvalues of 

operators which commute with H 1. These quantum numbers describe all the 

properties of the states such as the particle content and spin. 

As these states satisfy the Schrodinger equation Eq.(2.2) they evolve in 

time according to the full Hamiltonian. It is currently not possible to diag

onalise H1 for the type of process's we will want to calculate in this thesis. 

Therefore we cannot calculate A directly from the evolution of these states. 

We must instead use perturbation theory and attempt to calculate this quan

tity approximately. 

2.1.1 Green's functions 

If we are to perturbatively expand A we will find it useful to define the 

Green's functions. These describe how states propagate through time. We 

define c- as the advanced Green's function which describes the evolution of 

a state backwards in time. Similarly we define c+ as the retarded Green's 

function which describes the evolution of the states forwards in time. They 
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are given by the following [42], 

Gi(t- t') 

c-;(t-t') 

-ie(t- t')e-iH;(t-t') 

ie(t' - t)e-iH;(t-t') 

18 

(2.3) 

where Hi is the Hamiltonian of the theory the states are evolving with, for 

example Hi = H1 for the Green's functions of the full states of the theory, 

Gf. 

The Green's functions describe how the states evolve or propagate through 

time because they are solutions of the equation, 

with the initial conditions, 

ct ( t) = 0 for t < 0 

Gi ( t) = 0 for t > 0 

(2.4) 

So we can describe a state of the Hamiltonian Hi, at time t' where t' > t in 

terms of the state at t using, 

(2.5) 

and similarly describe the evolution to a time t' where t' < t using, 

(2.6) 

We can easily see that the Green's functions are hermitian and so we have, 

(2.7) 

2.1.2 In & out states 

We require a form for A with which we can calculate. To do this we will 

need to relate a subset of the eigenstates I W a ( t)) of the Hamiltonian of the 
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full theory H f, to a new subset of eigenstates of the Hamiltonian of a second 

theory. We will be using a scattering theory formalism and so the Hamilto

nian of this second theory should be the asymptotic theory of the full system 

H asym. The states of this asymptotic theory I¢ A,a ( t)), satisfy a Schrodinger 

equation for which the Hamiltonian Hasym, is equivalent to that of the full 

theory in the remote past and future. The usual form taken for Hasym is H0 , 

the Hamiltonian of the free theory (this is discussed in more detail in Section 

2.1.4). 

These asymptotic states evolve in time according to their own set of 

Green's functions which are given by, 

ctsym ( t - t') 

c;;sym(t- t') 

Using these we initially define, 

-iO(t _ t')e-iHasym(t-t') 

iO(t' _ t)e-iHasym(t-t') (2.8) 

(2.9) 

This describes a state I¢ A,a ( t)) which has evolved from time t' to t according 

to the asymptotic Hamiltonian and looked like the state IWa(t')) at timet'. 

If we now take t'-+ -oo then the asymptotic state I<PA,a(t)) will have evolved 

from the full state which existed in the infinite past. So if we assume that 

the states of the full theory in the remote past were equivalent to those of 

the asymptotic theory, then we say that the state I¢ A,a ( t)) is the in state of 

the theory at time t. This is given by, 

(2.10) 

Similarly we can define an out state by assuming that the states of the full 

theory will be equivalent to the asymptotic theory in the infinite future, 

I<Pout(t)) = lim -iG;;sym(t- t')IWa(t')) 
t 1->oo 

(2.11) 

Although suppressed in the definitions of Eq. (2.10) and Eq. (2.11) the in and 
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out states carry with them the same quantum numbers as the full states. 

These quantum numbers are eigenvalues of operators which now must com

mute with Hasym· 

We can think of the in state as being prepared or controlled in the infinite 

past as an eigenstate with eigenvalues a of operators which commute with 

Hasym· This in state then evolves through time eventually becoming an out 

state, which is then not controlled but determined by its evolution through 

time according to the full theory. Throughout this we should really take the 

in states as being initially described by well separated wave packets in the 

far past [43]. These then evolve through time to collide in some interaction 

region and then separate out to become out states in the remote future. In 

explicit calculations though we can usually "get away" with treating the in 

states as an incoming monochromatic beam (i.e. a state with an energy 

which is an exact eigenvalue of the system and not a distribution) and avoid 

any issues with convergence [42, 43]. 

Unless otherwise stated we will use for the rest of this thesis the labels in 

and out on the states 1¢) to refer to wave-packets containing a distribution 

of asymptotic states. Then states l¢i) which have a specified eigenvalue label 

i, are exact eigenstates of Hasym with a single energy eigenvalue Ei. When 

performing calculations with the wave-packet states l¢in/out) we will though 

always assume that we can take the idealised situation of a monochromatic 

beam and use a state with a single energy eigenvalue, l¢i). 

2.1.3 M~ller operators 

Now that we have related the full states of the theory to the asymptotic 

theory in the remote past and future we would like to be able to relate the 

full fields at any time t to the asymptotic states. We can do this by defining 

Moller operators. The first definition is given by [42], 

(2.12) 

So nj+l maps a state of the full theory, with Hamiltonian H1, at timet onto 

that of an in state at timet. The ( +) superscript on the 0 indicates the type 
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of Green's function involved in the definition of the in state. In this case the 

advanced Green's function was used. Similarly we can define a second M¢ller 

operator, 

(2.13) 

Here nj-) maps the out state at time t to a state of the full theory also at time 

t. The (-) superscript indicates the use of the retarded Green's function to 

define the out state. As in the last section we have suppressed the eigenvalue 

label from the in and out states in the definitions above. 

Only a subset of the full states of the theory can be mapped using these 

M¢ller operators. The states which can be mapped are known as the scatter

ing states because they can be represented by superpositions of the asymp

totic states. Any states of the full theory which cannot be mapped in this 

way are known as a bound states of the theory and their interactions cannot 

be described using scattering theory. 

Due to the hermiticity of the Green's functions Eq.(2.7), we can define a 

reverse mapping for Eq.(2.12) and Eq.(2.13) respectively, these are given by, 

\¢in(t)) 

\¢out(t)) 

nj+ltlwa(t)) 

nj-lt\wa(t)) 

(2.14) 

(2.15) 

We can use the M¢ller operators therefore to map all the states of the 

full theory which are of interest in scattering experiments onto those of the 

asymptotic theory. The hope then is that we can perform any calculations 

required in the asymptotic theory. 

2.1.4 The free states as the asymptotic states 

Clearly from the discussion in the last section the choice of which asymptotic 

Hamiltonian we use is very important. Usually field theory calculations are 

done by choosing the free Hamiltonian as the asymptotic Hamiltonian. This 

free Hamiltonian is defined as the Hamiltonian of the full theory without any 
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of its interaction terms. So we have, 

(2.16) 

where H0 is the free Hamiltonian and Hint contains all the interaction terms. 

The free Hamiltonian therefore only contains the kinetic energy terms for 

the fields and any mass terms. Of course for our purposes for the rest of this 

thesis we will assume that any masses are all set to zero, as we are interested 

in massless theories. 

The choice Hasym = H 0 is usually made because it is assumed that the 

interactions die off quickly enough that outside of the interaction region of 

the wave packets their effects are negligible. Therefore the full states of the 

theory should resemble non-interacting free states. Furthermore a theory 

with no interactions can be completely diagonalised and so it is possible to 

perform the types of calculations we will require using such eigenstates. 

Calculations will require the use of normalised states and so we have to 

define a normalisation for the states. We start from, 

( cPo,(J ( E') I c/Jo,a (E)) 

N1(3(E')I'lfa(E)) 

N 26(E- E')6f3a 

!1126(E- E')6f3a 

(2.17) 

(2.18) 

where the states I c/Jo,a (E)) are eigenstates of H0 with a set of eigenvalues o: 

and the states I W a (E)) are eigenstates of H f with eigenvalues o:. We have 

also replaced the time dependence of these states by Fourier transforming 

them so as to explicitly refer to their energy dependence instead (see Section 

2.1.6). As we can solve the free theory exactly and we would want to work 

with eigenstates of this theory we will choose the boundary conditions such 

that the normalisation of the free states gives N 2 = 1. Now we would naively 

think that because of the properties of the M¢ller operators that we would 

have, 

(¢f3(E') 1nj±lt nj±l lc/Ja(E)) 

(¢f3(E')I¢a(E)) = b(E- E')6f3a (2.19) 
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and therefore that 111!2 = 1. This is not the case though for field theory 

calculations, instead we will have M 2 = z-1 . The reason for this is that 

the fields and parameters in the Lagrangian of the free theory are in fact 

completely different from those of the full theory. This difference arises from 

the self-interactions of the fields due to the interaction terms in the full 

Hamiltonian. Instead Eq. (2.19) must be written as, 

(z-! w fj( E') I z-! w a(E)) z-1 (¢fj(E') IOj±)t oj±) I<Pa (E)) 

z-1 (¢f3(E')I¢a(E)) = z-18(£- E')8f3a 

(2.20) 

where Z represents a multiplicative factor containing all the various renor

malisation terms required to relate the full fields to the free fields (see Section 

1.2). In perturbative calculations therefore we will also have to include these 

factors which themselves will also be determined perturbatively. 

Finally because we have set N 2 = 1, we will then also have, 

L I<Po,c) (¢o,cl = 1 (2.21) 
c 

This relation expresses the fact that the free states are a complete set and 

span the entire Hilbert space. 

2.1.5 Properties of the M0ller operators 

We can easily see from Eq.(2.12) and Eq.(2.14) that, 

(2.22) 

Now we know that the in and out must span the entire Hilbert space and so 

we can conclude that the M0ller operators are isometric, 

(2.23) 
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In general the converse is not true, i.e. 

(2.24) 

because the full states of the theory (as described in Section 2.1.3) can contain 

bound states and therefore the M0ller operators do not span the entire Hilbert 

space of the full theory. This means that the M0ller operators are not unitary 

(if there are no bound states then the M0ller operators will be unitary). We 

will find though that fixed order perturbative forms of the M0ller operators 

will act in a unitary way. This occurs because the fixed order perturbative 

forms of the M0ller operators will only act on a reduced closed subspace of 

the full space of the full theory and hence appear unitary. 

As the M0ller operators are isometric we therefore have, 

H n(±) 
f f 

n(±)t H 
f f (2.25) 

This allows us to demonstrate that every eigenvalue of Hasym is also an 

eigenvalue of Hf, 

Hfn(+l[¢a(t)) = n(+) Hasym[¢a(t)) = Ean(+l[¢a(t)) 

Ea[Wa(t)) (2.26) 

where we have dropped the in label from the in state and replaced it with 

its explicit eigenvalue label. The converse that every eigenvalue of Hf is an 

eigenvalue of Hasym is not true as there is no reverse form of Eq.(2.25). 

As the mapping provided by the M0ller operators is isometric this implies 

that we require a one-to-one relation between the states of the full theory 

and those of the asymptotic theory. This translates to the requirement that 

the asymptotic space which the M0ller operator acts upon cannot contain 

degenerate states. Otherwise we cannot uniquely define the mapping between 

the spaces. 
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2.1.6 The time-independent form of the Moller oper

ators 

In order to proceed further we will need explicit forms for the M¢ller oper

ators. We can derive an explicit time-independent form for Eq.(2.12) if we 

take, 

(2.27) 

the reversed form of Eq. (2.10) and differentiate with respect to t', 

i~1 (Gj(t- t')l¢in(t'))) 

= -5(t- t')l¢in(t'))- Gj(t- t')(HJ- Hasym)l¢in(t')) (2.28) 

Where the states l¢in) are the eigenstates of Hasym· Integrating with respect 

tot' and using Eq.(2.27) then gives, 

l'lla(t)) = l¢in(t)) +I: dt'Gj(t- t')(HJ- Hasym)l¢in(t')) (2.29) 

Using the Green's function of the free theory we can write this as, 

nj+)l¢a(t)) 

l¢a(t))- i I: dt'Gj(t- t')(HJ- Hasym)G-;;sym(t'- t)l¢a(t)) 

(2.30) 

Comparing this with Eq.(2.12) then shows that, 

nj+) = 1- i I: dt'Gj(t- t')(HJ- Hasym)G-;;sym(t'- t) (2.31) 

A time independent form of this M¢ller operator can then be derived by 

using the explicit form of the Green's functions given in Eq.(2.3) on Eq.(2.29). 
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This gives, 

(2.32) 

Now the theta function bounds this integral from above, so the upper limit 

becomes t and the lower limit of the integral is unbounded. We can easily 

see that the exponential will not converge in this lower limit of t --+ -oo 

by itself. The M0ller operator though is defined to be isometric and so we 

should assume that this integral does in-fact converge at the lower limit. 

We can make this integral converge by regulating it in some way, the 

most common form of this is to use what is called adiabatic switching. Here 

we add to the integral in Eq.(2.32) an extra exponential factor containing a 

parameter E. This extra exponential factor then makes the integral converge 

and we expect to be able to safely set E --+ 0 at the end of the calculation. 

So we now have, 

To get a time independent form we now Fourier transform this, 

l: dteiEat\¢a(t)) 

-i I: dtdt'B(t- t')e-i(HrEc,-iE)(t-t'l(Hf- Hasym)eiEat'\¢a(t')) 

\¢a(E))- i 1: dtB( -t)ei(Ht-Ea-iE)t\¢a(E)) (2.34) 

Performing the time integrals then gives the time independent form for the 

M0ller operator as, 

(2.35) 
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Similarly we also have, 

(¢n(E)Jnj+lt = (¢n(E)J (1 + (Hf- Hasym) E ~ . ) 
Q- f-U. 

(2.36) 

The forms of nj-l and nj-lt are the same as Eq.(2.35) and Eq.(2.36) but 

with +iE - -iE in the denominator of Eq.(2.35) and -iE - +iE in the 

denominator of Eq.(2.36). 

For these relations to be of any use we would need to be able to diagonalise 

Hf, which as stated before we do not know how to do. These definitions 

therefore need to be perturbatively expanded. We can do this using [43], 

1 = 1 1 H-K 1 
E - H ± iE E - f{ ± iE + E - f{ ± iE ( ) E - H ± iE 

(2.37) 

where K is an arbitrary operator. If we choose K = Hasym then Eq.(2.35) 

becomes, 

( 1 + E _ H 
1 

+ . ( H f - H asym) 
n asym ZE 

1 1 
+ H . ( Hf - Hasym) E H . En - asym + ZE n - asym + ZE 

x(HJ- Hasym) + ···) I<Pn(E)) (2.38) 

We can derive similar perturbative forms for nj+lt, nj-l and nj-lt. We 

are free to choose any K to perturbatively expand with, the choice being 

determined by the K which is the most useful to perform calculations with. 

From this we can see that in a fixed order perturbative calculation we have 

the initial state evolving with the asymptotic Hamiltonian until the time of its 

first interaction. After this interaction it then evolves with the asymptotic 

Hamiltonian up until its next interaction. It then repeats this process for 

each interaction, the total number of interactions being equal to the order 

calculated. 

By relating the asymptotic states isometrically to the full states we see 

that the M0ller operators are defining a basis for the full states. As stated 
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in Section 2.1.3 the space the M0ller operators span is not the entire space 

of the full states. This means that the M0ller operators provide a basis for 

only the scattering states of the full theory. Furthermore as there are two 

forms of the M0ller operators, the n<+l and the n<-l, then there will be two 

different basis of the scattering states. These will differ only in the way they 

converge in the far past and future. They are given by, 

nj+ll¢a) 

nj-) lr/>a) 
(2.39) 

(2.40) 

The± superscript on the I \II) states indicates which M0ller operator was used 

to define that basis, and through this the type of basis it defines. 

The I\IIt) describes a state which was initially a well defined in state 

wave-packet with eigenvalues specified by a. Therefore the a in I\IIt) relates 

to a set of eigenstates of operators which commute with Hasym and not with 

H1. This state then evolves forward in time scattering until it leaves the 

interaction region and becomes an out state. At this point it is no longer in 

a controlled state with definite eigenvalues a but instead has deviated from 

the in state by an amount determined by the details of the interaction. 

Similarly I \II;;-) describes a state which was initially a well defined out 

state wave-packet with eigenvalues a. Again the a in 1\II;:;,-) refers to a set 

of eigenvalues of operators which commute with Hasym· This can then be 

evolved backwards in time until the wave-packet leaves the interaction region 

and becomes an in state. This in state is not well defined and has indef

inite eigenvalues a. Instead it is altered from the out state by an amount 

determined by the interaction. 

As we are interested in calculating the interactions of scattering states 

we can use these basis' to replace the appropriate full states used in the 

definition given in Eq.(2.1). So instead we will now calculate, 

(2.41) 

The choice of basis used for this replacement is determined by what we are 

calculating. So the initial state being well defined must be represented by a 
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basis of+ states. Similarly the - basis must be used for the outgoing states 

as these have a well defined form in the far future. We can now see from 

this choice how this definition relates to Eq.(1.3), the state wt become the 

in states of Eq.(1.3) and the state w~ becomes the out states of Eq.(1.3). 

2.1. 7 Time-dependent M0ller operators 

We will now derive a time dependent form for the M¢ller operators. The 

time dependence of operators in quantum mechanics can be dealt with in 

many equivalent ways. Initially we have given all the time dependence of 

the eigenstates and the M¢ller operators in the Schrodinger picture. This 

means that the states evolve in time with the full Hamiltonian HI whilst the 

operators do not evolve in time at all. So we can describe the evolution of a 

state I"Ws(t)) and a general operator Os(t), both in the Schrodinger picture 

as [44], 

iaOs(t) = 0 
at 

(2.42) 

The operator Us,J(t, t0 ) is then the evolution operator in the Schrodinger 

picture. We could have equally well defined everything in the Heisenberg 

picture. Here all the operators now evolve in time with the same full theory 

Hamiltonian HI as the Schrodinger picture and the states instead are sta

tionary. The evolution of a state I W H ( t)) and a general operator 0 H ( t), both 

in the Heisenberg picture, is then given by, 

.aoH(t) - [O (t) H l '/,at- H ,I 

eiH 1 (t-to) 0 (to )e -iH 1(t-to) 

U}r,J(t, to)O(to)UH,t(t, to) (2.43) 
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where U H,f ( t, t0 ) is the evolution operator in the Heisenberg picture. The 

pictures are equivalent to each other at t = t 0 and any calculation of an am

plitude or expectation value performed using either picture will be equivalent 

because of the unitarity of the evolution operators. This can be seen in the 

following, 

(w s(t)IOsl'll s(t)) (w( to) I u~,f( t, to)O( to)U S,J I w( to)) 

(w (to) IUkJ ( t, to)O( to) U HJ I w (to)) 

(w HIOH(t) 1w H) (2.44) 

In both of the above pictures we must evolve either the states or the 

operators with the full Hamiltonian, which as stated at the beginning of 

Section 2.1 we do not know how to do. To avoid this problem we will instead 

define a third picture which will be part way between the previous two. 

We define this picture by performing the following transformation upon the 

states and operators, 

U (t t ) = e-iHasym(t-to) Hasym l 0 (2.45) 

in such a way as that the states now evolve only with HA,int = Hf - Hasym 

whilst the operators evolve with H asym. So we have states I W A ( t)) and general 

operators 0 A ( t), both in what is called the asymptotic interaction picture [27, 

45], given by, 

utsym ( t, to) I w s( t)) = utsym ( t, to)U S,J( t, to) I w( to)) 

U A ( t, to) I W (to)) 

0 A ( t) Utsvm ( t, to)O( to) U Hasym ( t, to) 

utsym (t, to)UH,J(t, to)OH(t)Uk,J(t, to)Uuasvm (t, to) 

UA(t, to)Ou(t)U~(t, t0 ) (2.46) 

Where we now have an asymptotic evolution operator U A (which is defined 
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in Eq.(2.49) below). If we were to take the usual choice of Hasym = H0 then, 

(2.47) 

and this becomes the normal interaction picture [42], with an evolution op

erator given by, 

(2.48) 

This is used to define the fields 'ljJ1 in Eq.(1.6). 

The asymptotic interaction picture evolution operator as defined in Eq.(2.46) 

is given by, 

(2.49) 

and must satisfy the Schrodinger equation, 

(2.50) 

where, 

(2.51) 

We can solve this differential equation along with the boundary condition 

UA(t0 , t0 ) = 1 (i.e. this picture should be equivalent to the others at time t0 ) 

to get the following perturbative form for UA(t, t0 ), 

UA(t, to) = 1 + ( -i) 1t dtlHA,int(tl) 
to 

+( -i) 2 1t dt11t
1 

dt2HA,int(tl)HA,int(t2) + ··· 
to to 

1 + ( -i) 1: dt1Ftt 1 HA,int(tl) 

+( -i) 21: dt1 1: dt2Ftt 1 Ft 1t2 HA,int(ti)HA,int(t2) 

+... (2.52) 
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where, 

(2.53) 

The evolution operators have the following useful properties, 

(2.54) 

for t ::=:: t1 ::=:: t' and also, 

(2.55) 

Now we can take the form of the M0ller operator given in Eq.(2.30) and 

rewrite it to get [42], 

lim eiHJ(t-to)e-iHasym(t-t0 ) 

t--->-00 

lim u1 ( t 1 to) 
t--->-00 

u1 ( -oo, to) (2.56) 

Therefore we can derive a time-dependent perturbative form for the M0ller 

operators in the asymptotic interaction picture from the asymptotic evolution 

operators. The M0ller operator nj+l then has the form, 

nj+) u1( -oo, to)= UA(to, -oo) 

1 + ( -i) It: dhHA,int(tl) 

+( -i? It: dt1 It~ dt2HA,int(tl)HA,int(t2) + ... 

1 + ( -i) I: dt18(to- tl)HA,int(ti) 

+( -i) 2I: dh I: dt28(to- t1)8(h - t2)HA,int(tl)HA,int(t2) 

+... (2.57) 
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Similarly we have, 

nj+)t UA( -oo, to)= U1(to, -oo) 

1 + ( +i) 1: dt18(to - ti)HA,int(ti) 

+(+i)21: dt1 1: dt28(to- t2)8(t2- ti)HA,int(ti)HA,int(t2) 

+... (2.58) 

n(-) U ( ) Hf A 00, to 

1 + ( +i) 1: dt18(to- tl)HA,int(ti) 

+( +i)21: dt1 1: dt28(t2- t1)8(t1 - to)HA,int(ti)HA,int(t2) 

+... (2.59) 

nj-)t u1(oo,to) 

1 + ( -i) 1: dt18(to- tl)HA,int(ti) 

+( -i)21: dt1 1: dt28(t1 - t2)8(t2- to)HA,int(ti)HA,int(t2) 

+... (2.60) 

These perturbative definitions for the M¢ller operators can easily be seen 

to be unitary as well as isometric. The difference between the ± M¢ller 

operators is now encapsulated in the different theta functions and the regu

larisation which would be required for the convergence of the integrals. If we 

were to perform the time integrals in these definitions we would find that we 

get the form for the time-independent M¢ller operators given in Eq.(2.38), 

as expected. The choice of the picture we choose to calculate the time de

pendence of the M¢ller operators in is then related to our choice of which 

Hamiltonian we choose for J( when we perform the perturbative expansion 

in Eq. (2.37). 
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2.1.8 The S-Matrix 

We are now in a position to calculate Eq.(2.41). Using the M0ller operators 

we have [42], 

where we have replaced the in and out labels with the states explicit eigen

value dependence in the last step. We have therefore defined, 

(2.62) 

which is known as the S operator. When the S operator is placed between 

in and out states as in Eq.(2.61) we can write, 

A= Sf3a = (¢!3(t)ISI¢a(t)) (2.63) 

where S13a is known as the S-Matrix and A is called the scattering matrix 

element or S-Matrix element. We can replace the M0ller operators in this 

definition with the evolution operators given in the last section. So we now 

have, 

(2.64) 

Therefore using Eq.(2.57) we can write a perturbative expansion of the S 

operator in a time dependant form in the asymptotic interaction picture as, 

SA = 1 + ( -i) I: dtlHA,int(tl) 

+( -i) 2 I: dt1 It~ dt2HA,int(tl)HA,int(t2) + ··· 

1 + ( -i) I: dtlHA,int(ti) 

+( -i)2 I: dt1 I: dt2B(t1 - t2)HA,int(tl)HA,int(t2) + ... (2.65) 
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Again if we were to take Hasym = H0 we would get S1 , the usual S operator 

given in the interaction picture. The different forms for the S-Matrix in the 

different time pictures are all unitarily equivalent to each other1 . 

The S operator maps the in states onto the out states and so we have, 

(2.66) 

From this and using Eq.(2.25) we can easily see that the S operator commutes 

with the Hamiltonian Hasym 1 

[S, Hasym] = 0 (2.67) 

This implies that scattering elements will conserve energy, i.e. they will be 

of the form, 

(2.68) 

where the wi are eigenvalues of Hasym· The S operator can also be shown to 

be unitary as we have, 

(2.69) 

and as the in and out states span the entire Hilbert space we therefore have, 

sts = 1 (2.70) 

2.2 Infrared divergences 

As stated in Section 2.1.4 traditionally we take Hasym = H0 , so that the in 

and out states are eigenstates of the free Hamiltonian, H 0 . The S-Matrix is 

given by S1 and is defined in the interaction picture with Hint = Hf - Ho. 

1This is only true when all the M0ller operators for the different pictures are isometric, 
in the case of Hasym = H 0 this is not usually true and so we would need to regularise any 
infrared divergences before we regain this unitarity. We will discus this further in Section 
2.3 
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In deriving the S- Matrix we have assumed that the M0ller operators were 

isometric. With the choice of H0 for the asymptotic Hamiltonian we must 

now check that this assumption is valid. This means that we must investigate 

whether the mapping of the full scattering states l'lla), onto the free states 

l¢a), given by oj±), involves any mappings onto degenerate states. Usually 

we hope that the set of quantum numbers o: is enough to remove any such 

degeneracies. This may not always be the case though. If the spectrum of 

any of the eigenvalues is degenerate when all the other eigenvalues are fixed 

then the possibility of degenerate states exists. 

We can immediately see that such a degenerate subspace of eigenvalues 

could exist. The spectrum of H 0 can contain energy degenerate subspaces 

and so different states with the same energy may exist. Such states are known 

as soft and/or collinear states. States which contain soft particles (i.e. they 

have zero energy and no mass), have the same energy as the same state 

without the soft particles. Collinear states occur when we have two collinear 

particles both of which are massless. This state will then have the same 

energy as that of just a single massless particle. Furthermore the particle 

number of these free H 0 states is not a conserved quantum number, as it is 

not an observable quantity. Therefore as there are no other good quantum 

numbers with which we can distinguish between the states which contain 

energy degenerate soft and/ or collinear particles then we have degenerate 

subspaces of states in the spectrum of H 0 . These types of states would only 

be a problem though if the M0ller operator maps full states of the theory 

onto more than one state in any set of degenerate states in the spectrum of 

Ho. 

The soft and collinear states consist of fields which are never well sepa

rated and therefore the initial state wave-packets never leave the interaction 

region. This clearly contradicts the requirement of scattering theory that the 

final state wave-packets are well separated and would be the consequence of 

the loss of isometry of the M0ller operators. Therefore we can translate the 

need for the M0ller operator to not map states in the degenerate subspaces 

to the equivalent statement that we need the interaction to aturn off'' at in

finity. Otherwise we will have initial and final states that will have energies 
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in the subspace of the energy degenerate soft and collinear states. 

If all the fields in the free Hamiltonian are massive then there will clearly 

be no degenerate states as each state will have a. different mass and therefore 

the Moller operators will be isometric. If though there are massless fields in 

H 0 then we need to investigate o}±) further. We can begin by taking the time 

dependent form for the Moller operator o}+), given in Eq.(2.57). Next we 

place the interaction Hamiltonian Hint between H 0 states. We assume here 

that Hint, just for the simplicity of the argument, contains a. single term. This 

single term corresponds to an interaction between three or more fields and 

has a coupling constant g (for example the three gluon vertex in QCD). Here 

we only want to investigate the weak convergence of the Moller operators 

and not a strong operator convergence to avoid any spurious regions of IR 

singularities [41]. The perturba.tive expansion at order gn in the coupling of 

the interaction then looks like, 

(2. 71) 

For the perturbative expansion to make sense the time integrals in Eq.(2.71) 

must converge. Now the only limits of this integral which could cause con

vergence problems are the lower -oo limit of the right most integral and the 

upper oo limit of the left most integral. All other integrals are bounded from 

above or below by either of these limits. 

Usually we would now assume that these integrals must converge and 

therefore use adiabatic switching to guarantee this. Instead we will look at 

the details of the convergence of these limits more closely. If Wout - Wa 1 = 0 

or Wa"_ 1 -Win - 0 for any values of Wout, Wa 1 , Wan- 1 or Win within the support 

of the wave-packets of the in or out states then we will have, 

and clearly the integral in Eq. (2. 71) will diverge. 
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The conditions under which W 0 ut - Wa 1 _ 0 or Wan-l -Win = 0 occurs will 

depend upon the type of interaction contained in Hint· For example in QED 

the three point interaction can give us energy factors of the type, 

which corresponds to the diagram in Figure 2.1. In the massless case of the 

Figure 2.1: Diagram showing the absorption of a photon. 

three point interaction there are two types of solution for, 

(2.74) 

The first is in the case that the photon goes soft so that wP3 --> 0 and therefore, 

(2.75) 

Secondly when the photon becomes collinear to the quark we have p3 =.-\pi, 

and so we get, 

(2.76) 

The support of the in or out state wave-packets does not exclude soft or 

collinear regions and therefore the M¢ller operator clearly maps full states 

onto the sets of energy degenerate free states. So we can say that the inter

action does not 11turn off" at infinity and the cause of this is that the M¢ller 

operator is not isometric in this case. Breaking this basic requirement then 

manifests itself in the divergences that appear when we try to perform calcu

lation using these M¢ller operators. These divergences are collectively known 

as infrared singularities as they only occur when we have initial and final state 
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energy configurations that contain soft and/or collinear states. Similar diver

gences will also appear in QCD and in many other theory involving massless 

fields. 

2.2.1 Regularised M0ller operators 

The usual solution to the problems of infrared divergences is to take the am

plitudes containing such divergences and then regulate them in some way. 

In the case of a mass regulator we can easily see from the last section that 

this removes the energy degeneracy between the states. Therefore the M0ller 

operator is rendered isometric and hence the amplitudes will be finite. Sim

ilarly dimensional regularisation alters the dimensions within the integral of 

the four-momenta such that the result is now finite. In general therefore the 

regulator makes the M0ller operators isometric and consequentially we can 

use the S-Matrix to perform calculations. 

vVhen calculating IR safe quantities, we know from Section 1.3 that all 

dependence on the regulator cancels. This cancellation occurs when we sum 

up all physically relevant amplitudes squared. This happens because all 

the H0 states which make up the real state of the full theory, that were 

mistakingly split up by the non-isometric M0ller operator, are recombined. 

So when this summing occurs in Eq.(1.7) all the necessary terms will have 

been combined such that we have made the mapping between the two spaces 

of states isometric. Hence the result will be finite and the regulator can be 

removed. An explicit example of this cancellation is given in Section 1.4. 

2.3 A better asymptotic Hamiltonian 

In Section 2.2 we saw that the traditional choice of H0 as the asymptotic 

Hamiltonian led to the derivation of M0ller operators that broke the funda

mental assumption of isometry. The problem with the H0 basis is that the 

energy of the state IP1 , p3 ) with wp3 --. 0 and/ or wp3 ---> AWpl is degenerate 

with that of the state IP1). By relating the full states of the theory to in 

and out states which are eigenstates of H0 we mistakingly map onto different 
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states the same state of the full theory. A better choice for the asymptotic 

Hamiltonian would therefore be one which does satisfy the one-to-one map

ping requirement. 

Our choice of asymptotic Hamiltonian requires only that an isometric 

mapping can be made. For practical purposes only, we would also realis

tically want the Moller operators relating the two spaces to be expandable 

perturbatively and also that we can use the eigenvalues and eigenstates of 

that Hamiltonian to perform calculations. 

The problem H 0 states occur when they contain soft and/or collinear 

particles which never fully separate. This suggests that these should be com

bined along with "bare" H0 states to get a true asymptotic state. We denote 

the Hamiltonian of which these new asymptotic states are eigenstates as the 

asymptotic Hamiltonian HA. A form for this can be derived by splitting up 

the interaction piece Hint, of the full Hamiltonian given in Eq.(2.16) into a 

soft piece and a hard piece. So we have, 

Hf Ho +Hint 

Ho + Hs(.6.) + HH(.6.) (2.77) 

and therefore the asymptotic Hamiltonian, HA is given by, 

(2.78) 

The split between the soft and hard Hamiltonians is not umque. So we 

include a parameter .6. to define where we perform this split. The only 

requirement on .6. is that Hs(.6.) includes all the true long-range interactions. 

Thus, the emission of a soft gauge boson and the splitting of a parton into 

two collinear partons has to be included. But there is a lot of freedom on how 

precisely we make the split between soft and hard interactions. Throughout 

the rest of this thesis we will call Ht, = H5 (.6.) the soft Hamiltonian, even 

though it does include all long-range interactions that potentially give rise 

to infrared singularities. In particular, the soft Hamiltonian also includes the 

splitting of a parton into two collinear partons. 

As we have included all the parts of the interaction Hamiltonian that give 
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rise to long-range interactions into H A (!:::.), then there will be no degeneracy 

in its eigenstate spectrum. This can be seen if we imagine expanding the 

H A (!:::.) states in terms of H0 states. An eigenstate of H A (!:::.) with energy 

Wa will then be a combination of the infinite sum of all possible soft and 

collinear H0 states which have the same energy Wa. We will denote such an 

eigenstate as I1>A,a)· A simple pictorial perturbative representation of such 

an HA state in terms of H0 states is shown in Figure 2.2. This lack of energy 

degenerate subspaces now means that the M0ller operators relating the space 

of full states to these asymptotic states will be isometric. This implies there 

will be no infrared divergences in the amplitudes. 

+ + ... 

Figure 2.2: Pictorial representation of a simple HA state. 

We now need to derive the form for the M0ller operators for H A (!:::.) 

and then consequentially the S-Matrix. We can do this easily by placing 

the time-dependent M0ller operators from Section 2.1.7 in the asymptotic 

interaction picture, as given in Eq.(2.57). The in and out states and the 

energies of these states are therefore eigenstates and eigenvalues respectively 

of HA(!:::.). Equally in the time-independent formalism from Section 2.1.6 we 

would use K = HA(!:::.) in the perturbative expansion relation Eq.(2.37) to 

derive Eq.(2.38) in the correct form. This gives us a new M0ller operator, 

(2.79) 

and similarly we also have, n~+)t' n~-) and n~-)t. 

We can now use these new M0ller operators to derive the S-Matrix for 

the new asymptotic states. This new S-Matrix will be denoted by SA and 

its form will be given by Eq.(2.65) where we will have, 

(2.80) 

The properties of the SA-Matrix as given in Section 2.1.8 all still hold. This 
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implies we will have, 

(2.81) 

So now the energy of the system given by HA(!:l) commutes with the asymp

totic SA-Matrix, so in the same way as for the H0 basis, energy is conserved 

at the amplitude level. 

We can check that this basis will in fact be free of infrared singularities 

by examining Eq.(2.71) using the new HA(!:l) basis of asymptotic states. We 

can immediately see that for Waut - Wa 1 = 0 we would need to have two states 

I<PA,out) and 1¢A,a1 ) with the same energy. The new asymptotic basis though 

contains no energy degenerate subspaces of states and as the energy factors 

come from either side of an interaction then I</> A,out) can never equal I</> A,a1 ). 

Therefore we will never have, 

exp( -it(waut - waJ) --+ 1 (2.82) 

This therefore means that the integral will converge at its upper limit. A 

similar argument can be used for the exp( -it(wan-l -Win)) factor. Therefore 

the M0ller operator is finite and isometric. 

If we are to perform calculations using these states then we need a form for 

the eigenstates of HA(!:l). Unfortunately as this basis contains interactions 

terms we do not know how to solve it exactly. The most straightforward 

approach is therefore is try to relate these asymptotic basis states to a set 

of states which we do know how to calculate. Of course the only states we 

can solve exactly are the free eigenstates of H0 . So we will want an operator 

which can relate the new asymptotic basis to the basis of free states. As 

we cannot diagonalise HA(!:l) this implies that this relation will have to be 

perturbative. 

The most obvious way of doing this would be to use a M0ller operator 

which relates the eigenstates of H0 to those of HA(!:l). This would be, 

(2.83) 
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If we write the Moller operator in the time-dependent general form between 

free states as, 

We see that again we will have to deal with the issue of convergence at the 

upper and lower limits of these time integrals. So these Moller operators will, 

as before, have to be made convergent. If we assume that they are convergent 

we can regulate then using adiabatic switching and then as before we find that 

we have two such basis'. A+ basis denoted by, 1¢~ o:) with the corresponding 

Moller operator nrl and a - basis 1¢:4 o:) with ,the corresponding Moller 

operator nt). Of course these integral~ are not really convergent and so 

these changes of basis suffer from the same infrared divergences that plagued 

the traditional H0 basis in Section 2.2. We would need to use some further 

form of regularisation to make these integrals convergent, which removes the 

benefit of using the correct asymptotic basis in the first place. 

Furthermore if all of the Moller operators were isometric we would have, 

S _ n(-)tn(+) 
A-HA HA 

(2.85) 

where we have taken ntltn~-lt = n}-lt and n~+lnrl- n}+l. So if we were 

to then calculate S-Matrix elements of this we would find, 

The matrix elements of SA on asymptotic states would therefore be the same 

as those of Sf on free states. So we see that if we were to regularise the 

infrared divergent n~ Moller operators to make them unitary we would be 

effectively just recalculating traditional regularised sf matrix elements in 

a more convoluted way. To sidestep the problems discussed here we will 

investigate working with eigenstates of HA (l:l) directly in the asymptotic 
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interaction picture in Chapter 4. 

2.4 Dressed states 

In Section 2.2 the basis of free H0 states contained energy degenerate sub

spaces which the M¢ller operator mapped states of the full theory into, ren

dering the transformation divergent. In Section 2.3 we looked at modifying 

the asymptotic basis we used, using eigenstates of H A (D.) instead of eigen

states of H 0 . The M¢ller operators related to this new basis of asymptotic 

states then did not lead to infrared divergences in the scattering amplitudes. 

Now instead of making this change in the basis of the asymptotic states 

used we will look at modifying the M¢ller operators independently of the 

basis they map between. If we could alter the M¢ller operators such that 

they excluded the degenerate subspaces of the H0 energy spectrum, then 

such a M¢ller operator would also be isometric and consequentially free from 

infrared divergences. 

A M¢ller operator of this form can be defined. We do this by taking the 

usual M¢ller operator n}+), relating the full theory and the free states, and 

applying the transformation nzH to it. So we now have, 

(2.87) 

We can see that this will generate a new infrared finite M¢ller operator [2(+) 

because as in Section 2.1.5 the energy eigenvalues of H 0 will also be energy 

eigenvalues of HA(D..). So n1+) takes any H0 energy degenerate state and 

relates it to a single eigenstate of HA(D..) with the same energy eigenvalue as 

the original degenerate state. We then only require that the HA(D..) eigen

state to which nzl maps the H0 states to can in turn always be related to 

a single eigenstate of H 0 . This will always be the case for the situations we 

will consider here and so the energy degenerate subspaces of states which 

n}+) maps to are always then mapped onto a single H 0 state. Hence this 

M¢ller operator is infrared finite. A more detailed investigation into the in

frared finiteness of these states is given in [34]. A pictorial representation of 
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the different degenerate H0 eigenstates being mapped to a single H0 eigen

state is shown in Figure 2.3. This result is confirmed to third order in the 

perturbative expansion of Hint in Section 3.1.5. 

Ho 
or or ... goes to 

Figure 2.3: Schematic representation of the mapping of different en
ergy degenerate H0 states on the LHS to a single Ho state on the 
RHS. 

To calculate scattering matrix elements we would then have, 

or equally well we could write, 

("" ln<->n<->t n<-H n<+>n<+>n<+H I""· ) 'Pout ~ ~ A A ~ ~ 'Pm 

(2.88) 

(¢outiSAI¢in) (2.89) 

The form in Eq.(2.89) differs from the scattering matrix elements of Eq.(2.86) 

in that we calculate SA on the H 0 states rather than on the HA states. So 

amplitudes derived from this new Moller operator will no longer be unitarily 

equivalent to the usual amplitudes. It will though give equivalent results at 

the physical observable level once we have summed over the correct in and 

out states. The states that must be summed over will be identical to those 

that are required when we calculate infrared safe observables from amplitudes 

using the usual Moller operator nj±>. We can check this using Eq.(l.l) to 

calculate a physical observable. So if we were to sum over all possible initial 

and final states we have schematically, 

L j IAI 2 x J = L j (¢outiD~,ASDI,AI¢in) (¢iniD~,Astni,AI¢out) x J 
in,out in,out 
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L j Tr [ n},Asnl,An},Asnl,A J x J 
in,out 

L j Tr [sst] x J 
in,out 

(2.90) 

This is equivalent to the result we would have for the usual scattering matrix 

elements from Section 2.2. So after we have summed up all terms contributing 

to a particular order we expect to get the same results as those achieved using 

the usual amplitudes. The key difference here is that these new amplitudes 

are infrared finite before we perform the sum over states and so can be 

calculated numerically. This potentially simplifies the calculation required 

to produce a prediction of a physical observable. 

There are now two ways that we could proceed to take to calculate the 

scattering elements. We could use the form given in Eq.(2.88), which would 

involve calculating the S-Matrix in the usual manner and then dressing the 

states with the Oz) operators. This can be written as, 

(2.91) 

The states \ { <Pa}) are then known as dressed states. When suitably regu

larised they contain divergences which cancel those in the S1 matrix. Ampli

tudes of this form will consist of the sum of pieces from the dressed states and 

from the S-Matrix. Only the sum of these pieces would be infrared finite, the 

individual pieces would not necessarily have to be. This is the form we will 

use to perform calculations in Chapter 3. This will be used there because of 

the greater clarity it gives in demonstrating the infrared finite nature of the 

amplitudes. 

Alternatively we can calculate scattering elements from Eq.(2.89). To do 

this we would need to derive a form for SA, this operator will be completely 

free of infrared singularities throughout the entire calculation. To derive SA 

we start by expressing the M0ller operators in a time dependent form. We 

can derive explicit time dependent forms for Eq.(2.87) in two different ways. 
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As, 

n(+) = n(+)n(+)t = n(+) 
H - Hf Ht:,. - HA (2.92) 

we could take D~+) in the explicit form given by Eq.(2.57) with HA,int = 
H A ( /:::;.) so that we would then be in the asymptotic interaction picture. Then 

SA would be given by Eq.(2.65) with HA,int = HA(!J.). Using this form 

would require though the use of an asymptotic basis. Alternatively we could 

combine the interaction picture forms of oj+l and D~)t together directly to 

derive a perturbative definition for D(+) in the interaction picture. We could 

then go on to derive a perturbative form for SA, this approach will be taken 

in Section 4.1. 

The disadvantage of using these M0ller operators to derive dressed state 

amplitudes is that because we are now expanding SA on a basis of H0 states 

then, 

(2.93) 

Therefore we will lose energy conservation at the amplitude level. We are 

though calculating SA perturbatively and so we will have, 

S = n(-)s n(+)t 
A -He:. [Ht:,. (2.94) 

and will hence get an energy delta function from the H0 states acting on S1 . 

So instead of having a single energy delta function multiplying the ampli

tudes, as in Eq. (2.68), there will be an energy delta function that conserves 

energy across only the S1 part of the amplitude. There will be no delta 

function coming from the dressing factors. This occurs for both forms of 

the scattering elements Eq.(2.88) and Eq.(2.89). This will lead to difficulties 

when attempting to calculate physical observables in Chapter 3. 
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2.5 Conclusion 

In this chapter we have given an overview of the subject of scattering theory. 

It has particularly highlighted the source of the infrared divergences. They 

occur when we break the isometry of the M0ller operators. This is done when 

we make the standard assumption that the asymptotic Hamiltonian is equal 

to the free field Hamiltonian and leads to divergences in the soft and collinear 

regions of the scattering amplitudes. From this knowledge we have been able 

to suggest two main solutions to this problem, the first is the asymptotic 

interaction picture and this will be investigated in Chapter 4. The second 

method is tha.t of dressed states which we will now look at in greater detail 

in the next chapter. 



Chapter 3 

Calculations Using Dressed 

States 

In the previous chapters we have shown how gauge theories with massless 

fermions are plagued by infrared singularities. Infrared singularities are re

lated to either arbitrarily soft gauge bosons or arbitrarily collinear gauge 

bosons and/ or fermions. More precisely, if we define our external states in 

the usual way by acting with creation operators on the vacuum, then higher

order S-matrix elements between such external states contain infrared diver-

gences. 

Many attempts have been made to define amplitudes that are well defined, 

i.e. do not contain such singularities. However, most attempts were restricted 

to soft singularities. In particular it has been shown that in an abelian 

gauge theory with massive fermions it is possible to define external states 

whose S-matrix elements are free from infrared singularities to all orders in 

perturbation theory [28]. 

An abelian gauge theory with massive fermions does not contain collinear 

singularities. This simplifies the situation considerably. As soon as we con

sider the non-abelian case, however, we cannot avoid the appearance of 

collinear divergences. The reason is that in the non-abelian case a mass

less gauge boson can split into two arbitrarily collinear gauge bosons. Such 

a splitting results in a collinear singularity. Thus, giving the fermions a mass 

does not protect us from collinear singularities. 

49 
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The aim of this chapter will be to investigate the possibility of defining 

infrared-finite amplitudes for a massless, non-abelian gauge theory using the 

method of dressed states as defined in the previous chapter. The application 

of these amplitudes would then, of course, be QCD. In most applications 

of perturbative QCD the quarks (at least the light flavors) are treated as 

massless. Since we will have to deal with collinear singularities anyway in a 

non-abelian theory, we might as well take the common approach and treat 

the quarks as massless. 

We will begin this chapter by giving a detailed definition of what we mean 

by dressed states and outline how we can construct amplitudes using them. 

We then discuss some of the calculational techniques we will require. Finally 

we give an explicit example demonstrating the cancellation of IR singularities 

within these amplitudes. The example given is that of the total cross section 

for e+e- -----+ 2 jets at NLO. 

3.1 Infrared=finite amplitudes using dressed 

states 

In order to obtain infrared-finite amplitudes we will use the formalism of 

dressed states as described in section 2.4, more specifically we will take the 

form oft he amplitudes given in Eq. (2.88). Measurable cross sections are then 

constructed out of these infrared-finite matrix elements using eq.(l.l). 

The dressed states are denoted as \ {cPa}) and are not eigenstates of 

H A ( /:;,.). This is because the operator generating these states is n~ )t and 

not n~), as it would need to be if it were to be an eigenstate of HA(C::,.). 

These states can only be described in a perturbative way and so we will 

never be able to describe bound states. At each order in perturbation theory 

though the states \{cPa}) will correspond to some sort of "jet-like" structure. 

In particular, these states are coloured and will have to be related to hadronic 

states using a hadronization model. This is as in the cross-section approach 

and is an issue that we do not address in this thesis. 
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From eq.(2.88) we are then led to compute matrix elements 

(3.1) 

order by order in perturbation theory and relate them to physical (infrared 

safe) cross sections. It has been argued previously that matrix elements as 

given in Eq. (3.1) are also free of soft singularities [34, 35]. In the present 

chapter we extend this to include collinear singularities (see also [27]). For 

more details on this issue we refer to Section 3.1.5. 

3.1.1 Notation and conventions 

Before we proceed let us fix our notation and conventions. Whereas part 

of the discussion so far was done in the Schrodinger picture we will now 

turn to the interaction picture. Thus all operators and states are now to be 

understood to be given in the interaction picture. 

To start with we construct the usual states of the Fock space1 

lqi(Pi) .. · iJ)(Pj) · · · 9k(Pk) ··.)=II bt(pi) II dt(pj) II at(Pk) IO) (3.2) 
j k 

where bt, dt and at denote the creation operators for fermions, anti-fermions 

and gauge bosons respectively and we suppressed the helicity labels. We will 

generically denote such states by li) and (!I· Of course, we have to keep in 

mind that the states as given in Eq. (3.2) are not normalisable and we tacitly 

assume they have been smeared with test functions. Thus, we are really 

concerned with wave packets. However, we assume they are sharply peaked 

around a certain value of the momentum such as to represent a particle beam 

with (nearly) uniform, sharp momentum. 

The creation and annihilation operators satisfy the usual (anti )commu-

1 We should note here that the notation used in Eq. (3.2) should not be confused with 
the notation of Eq.(1.3) where we used full states, here and from now on such states will 
be free fields. 
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tation relations 

3 ___,. ---f -

-(2n) 2w(ki)g>q>.2 6(k1- k2) 

(2n) 32w(ki)br1r2 b(k1- k2) 

(2n)32w(ki)br1r2 b(k1- k2) 

(3.3) 
(3.4) 
(3.5) 

with w(ki) = lkil· Note that the ordering used in Eq. (3.2) implies a certain 

phase convention. Of course, all amplitudes are only defined up to such a 

convention. 

The field operators are given by 

Wa J dk ( Ua(r, k) b(r, k) e-ikx + Va(r, k) dt(r, k) e+ikx) (3.6) 

Wa J dk (ua(r,k)bt(r,k)e+ikx+va(r,k)d(r,k)e-ikx) (3.7) 

A
11 

J dk (E
11
(A,k)a(>..,k)e-ikx +E~(.).,k)at(>,,k)e+ikx) (3.8) 

where we defined 

(3.9) 

and the sum is over the two helicities of the fermions or gauge bosons respec

tively. 

Once the interaction Hamiltonian is given we can compute the evolution 

operator as a time ordered exponential and obtain in the interaction picture 

(3.10) 

which can be shown to be the same as U1 (t, t0 ) generated from Eq.(2.48). 

The M¢ller operators are then given by nj!iz = Ur(t0 , =t=oo) in the interac

tion picture and, thus, the scattering operator S is related to the evolution 

operator 
(3.11) 

This allows us to find the S-matrix elements between some initial and final 
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state 

(JISii) = (fiT exp ( -i 1:00 

dt H1(t)) li) (3.12) 

where li) and (fl are states as defined in Eq. (3.2). Inserting the explicit 

form of HI into Eq. (3.12) allows us to compute S-matrix elements. Of 

course, in practise such a calculation is nothing but the computation of the 

corresponding Feynman diagrams. 

3.1.2 Definition of infrared-finite amplitudes 

In analogy to Eq. (3.10) we define a form for the soft evolution operator as, 

(3.13) 

where we only include the soft Hamiltonian Ht:,(t) = H8 (.6., t). Acting on 

a certain state, the soft evolution operator modifies this state by allowing 

for soft and collinear emissions. Then, the usual Feynman-Dyson scattering 

matrix Scan be decomposed as, 

(3.14) 

where we have introduced the soft M¢ller operators n~) - u t:, (to) =j=OO)) see 

also eq. (2.85). More explicitly, we have 

ntH = T exp ( -i loo dtHt:.(t)) (3.15) 

1- i loo dt Ht:.(t) + ( -i) 2100 

dt it dt' Ht:.(t)Ht:.(t') + ... 

1
oo ( -i)21oo 1oo 

1-i dtHt:.(t)+-
1
- dt dt'T{Ht:.(t)Ht:.(t')}+ ... 

0 2. 0 0 

where we set t0 = 0 here and for the rest of this chapter. Eq. (3.14) defines a 

modified scattering operator SA ( .6.). This operator has the crucial property 

that it includes at least one hard interaction and, therefore, matrix elements 

(JISA(.6.)Ii) of this operator with ordinary external initial and final states as 
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defined in Eq. (3.2) have no infrared singularities. If we define dressed initial 

and final states, I { i}) and ({/}I according to 

then 

l{i}) 

({!}I 

n~+Hii) 

(flO~) 

({!}ISI{i}) = (JISA(6.)Ii) 

(3.16) 

(3.17) 

(3.18) 

Thus, the S-matrix elements of dressed states are free of infrared singularities. 

We should stress that dressed states are not asymptotic states, i.e. they are 

not eigenstates of the asymptotic Hamiltonian. 

Let us look at a dressed final state somewhat more carefully. We obtain a 

dressed final state by acting with n~) on a final state as defined in Eq. (3.2). 

We denote this dressed state by adding curly brackets. 

Once the asymptotic Hamiltonian is fixed Eq. (3.19) is a unique relation, 

order by order in perturbation theory, between an ordinary final state (!I 
and the corresponding dressed final state ({!}I· A similar relation holds for 

dressed initial states. 

In what follows we will suppress the labels f and i but keep in mind that the 

states I { q(pi) ... q(p1) ... g(pk) ... } ) and ( { q(pi) ... q(p1) ... g(pk) ... } I are not 

conjugates of each other. Also, we would like to stress that all these states 

are states in the usual Fock space. Of course, this implicitly assumes that we 

use some kind of regularisation for the infrared singularities in intermediate 

steps. 

The soft Moller operators dress the usual non-interacting external states 

with a cloud of soft and collinear partons. Since the infrared behaviour of 

H 6:. and the full interaction Hamiltonian are the same by construction, this 
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dressing generates infrared singularities that cancel those generated by the 

full scattering operator. 

There are two main differences between the soft(/collinear) M0ller oper

ator, Eq. (3.15), and the usual scattering operator, Eq. (3.12). Firstly, nrl 
involve only the soft part H tl of the interaction Hamiltonian. Secondly, the 

time integration in the soft M¢ller operator runs only from 0 to oo rather 

than from - oo to oo. 

The fact that the time integration is restricted to t > 0 is related to the 

loss of Lorentz invariance in the amplitudes M 1i, Eq. (3.1). This is to be 

expected since SA does not commute with H0 and, therefore, M fi is generally 

not proportional to an energy conserving 8(Ei- E1 ). Instead, individual parts 

of the amplitude will have b-functions with different energy arguments (see 

Eq. (3.29)). The difference between these arguments determines the amount 

by which energy conservation can be violated in M fi and is related to the 

parameter 6. In the limit 6 -----+ 0 the amount by which energy can be violated 

tends to 0. Thus, the parameter 6 determines how much the initial wave 

packets are distorted through the evolution with the soft M¢ller operators. 

We will come back to these issues in Section 3.1. 7. 

3.1.3 Factorisation of modified S-matrix elements 

We now turn to the question on how to compute the infrared-finite amplitudes 

defined in Eq. (3.18) and how they are related to ordinary amplitudes. 

A possible approach is to start from the right hand side of Eq. (3.18). 

This would involve using the explicit form of SA, given below in Eq. (3.29) 

to compute the amplitudes. As we argue in Section 3.1.5 the structure of SA 

is such that no infrared singularities occur. This opens up the possibility of 

evaluating the amplitudes numerically. We have to keep in mind, however, 

that there are still ultraviolet singularities which will have to be removed 

by renormalisation. In order to take an entirely numerical approach the 

renormalisation procedure would have to be done at the integrand level [12]. 

We will take a somewhat different approach in that we start from the left 

hand side of Eq. (3.18). We relate the infrared finite amplitude to ordinary 
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amplitudes by inserting a complete set of states twice 

Note that in the final expression all states are ordinary Fock space states 

as defined in Eq. (3.2). In this way, the infrared finite amplitude is split 

into three pieces. First, there is an ordinary S-matrix element, (f'ISii'). 

The other two factors are dressing factors for the initial and final state. 

All these pieces are infrared divergent and only the complete amplitude 

is infrared finite, order by order in perturbation theory. The ultraviolet 

singularities appear only in (f'ISii') and are dealt with as usual by renor

malisation. The symbol ® denotes integration over all momenta and sum

mation over all helicities of the state under consideration. Thus, for say 

(!'I= (q(pl, r1)q(p2, r2)g(p3, r3)l - (qplfip29p31 we have 

If')® (!'I= L J dpldp2dP3 lqplfip29p3) (qplfip29p31 
Tj T2 T3 

(3.22) 

We should stress that Eq. (3.21) implies that the dressing is not done for 

each external part on separately. The dressing factors (!I 0.6.-1 f') do contain 

terms that factorise into separate contributions for each parton, but they 

also contain colour correlated contributions. 

3.1.4 Dressing factors 

As we have seen in Eq. (3.21) infrared-finite amplitudes are composed of 

three factors. First, there is an ordinary amplitude, (f'ISii'), computed in 

the usual way using ordinary Feynman rules. Then there are the two dressing 

factors, one for the initial and one for the final state. The calculation of 

these dressing factors is somewhat different from the calculation of ordinary 

amplitudes and it is useful to look at this in some more detail. 

For concreteness we consider the calculation of a final state dressing fac

tor. The starting point is Eq. (3.15). Let us stress again that since the time 

integration in Eq. (3.21) is from 0 to oo we break Lorentz invariance right 

from the beginning. Of course, in the final result for a physical quantity 
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Lorentz invariance will be restored. In fact, the calculation has many fea

tures of (old-fashioned) time-ordered perturbation theory. Most notably, all 

particles will be on-shell. Three-momentum will be conserved in all vertices, 

but energy will not be conserved. 

A typical term of the (asymptotic) Hamiltonian that gives rise to an 

n-point interaction has the form 

J dx J IT dki V(ki)8(Ll) eix·L,a;ic;e-itL,a;w(k;) 

t=l 
(3.23) 

where w ( k1) = I k1 I denotes the energy of the particles and the sign O"i is posi

tive (negative) for incoming (outgoing) particles. V(ki) is made up of creation 

and annihilation operators, eventually accompanied by spinors and/ or polar

isation vectors and a certain power of the coupling constant. The range of 

integration over the momenta is restricted to the singular regions. This is 

indicated in the notation by 8(Ll). The precise form of this function is not 

important at the moment. After performing the dx integration we obtain the 

momentum conserving delta function (27r)D-l£5(D-l)(l:.:: O"Ji)· However, since 

the t integration is restricted to t 2: 0 we do not obtain an energy conserving 

6 function. Rather we have to introduce the usual adiabatic factor o+ > 0 

and use 
dt e -iwt -----+ dt e -iwt e -w+ = -'/, 1= 100 . 

0 0 w- iO+ 
(3.24) 

Of course, if the t integration was restricted to t ::; 0 we would have 

dt e-iwt - dt e-iwte+ta+ = '/,. + 10 10 . 
-= -oo w + zO 

(3.25) 

and the sum of Eq. (3.24) and Eq. (3.25) indeed results in 21r6(w). 

To summarise, for ann-point vertex in the calculation of a dressing factor 

for a final state we have to use 

(3.26) 

Were it not for the 8(Ll) function and the restriction of the t-integration to 
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t ~ 0 this would lead to the standard Feynman rule. 

3.1.5 Finiteness of modified S-matrix elements 

In this subsection we substantiate our claim that matrix elements as defined 

in Eq. (3.1) or Eq. (3.18) are free from collinear and soft singularities. We 

start from the definition 

(3.27) 

and use the explicit form of the soft M0ller operator and S to express SA ( .6.) 

in terms of Ht::. and HH. Furthermore, we observe that according to Eq. (3.23) 

the time dependence of the Hamiltonian H ( tj) is given by 

(3.28) 

where Wj = 2: O"iw(ki) is the sum of the energies of the particles associated 

with the corresponding n-point vertex and hj and Sj are time independent. 

Performing the algebra and the t-integrations we obtain up to third order 

First of all we notice that all the purely soft terms s1s2 ... vanish. This holds 

to all orders and is crucial to ensure that SA is free from infrared singularities. 

Infrared singularities potentially arise if wi ---+ 0. This corresponds to either a 

soft or collinear emission at the corresponding vertex. Let us now go through 
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the terms in Eq. (3.29) and check that for none of them such a singularity 

can occur. For this to be true we have to define hi such that it vanishes for 

wi - 0. This can be achieved by choosing the 8(.6.) in Eq. (3.23) accordingly. 

We start by looking at the second order terms, given in the second line of 

Eq. (3.29). The only potential singularity in the first term is w 1 - 0. This is 

harmless since h1 = 0 in this limit. In the second term we have the potential 

singularity w2 - 0 which is not prevented by s2. However, in this limit the 

term is proportional to 6( wl) and the same argument as for the first order 

term applies. 

The arguments for the third order terms, given in the third to sixth line 

of Eq. (3.29) are similar. The only dangerous limits in the third line term 

for example are w 1 - 0 and w 3 - 0. Both of these are prevented by the 

presence of h1 and h3 . Considering the term in the fourth line, we first note 

that 6(wl)h1 = 0. As a result there is no problem with the limit w2 - 0 and 

w 2 - -w3 . Furthermore, the singularity in the limit w 1 - 0 is prevented by 

the presence of h1 and the limit w3 - 0 is made harmless by the combination 

of 6 functions. Similarly, the terms in the fifth and sixth line are finite in the 

limit w 1 - 0 and w3 - 0. Thus we see that (up to this order) there are no 

singularities in SA as long as hi is chosen to vanish for wi - 0. 

We mention again that SA does not only contain terms proportional to 

6(w1 +w2+w3 ) but also terms with "incomplete" 6-functions. These are the 

energy violating terms mentioned above. We also remark that the absence of 

terms containing 1/(wi+w1) in SA (the corresponding term in the fourth line 

of Eq. (3.29) vanishes) justifies our initial claim that all infrared singularities 

are related to limits Wi - 0. 

3.1.6 Construction of infrared finite amplitudes 

The expression given in Eq. (3.21) is a (double) sum over all possible inter

mediate states lf')(f'l and li')(i'l· However, if we compute the amplitude 

to a certain order in the coupling constant, only a very limited number of 

intermediate states contribute. It is for example clear that at order O(g0
) 

the dressing factor (!I nt-) If') is zero, unless f = f'. From this we see that at 
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leading order in perturbation theory the amplitude ({/}I Sl { i}) is the same 

as (!ISii). 
Including higher-order corrections this identity will, of course, not hold 

any longer. At order O(g1
) the states f and f' can be different. To get a 

non-vanishing contribution they must be related either by adding a (soft or 

collinear) gluon or by exchanging a quark-antiquark pair by a gluon. 

In order to illustrate this in more detail, let us consider a concrete pro

cess. To simplify matters we consider a case with no partons in the initial 

state. What we have in mind is for example the process e+e- ---+ r ---+ jets. 

As long as we treat this process at leading order in the electromagnetic cou

pling but at higher order in the strong coupling, g, we encounter only final 

state singularities. Thus, for the purpose of understanding how the dressing 

removes the infrared singularities we can restrict ourselves to the final state 

partons and treat the initial state simply as IO). 
Before writing down Eq. (3.21) more explicitly for the process under con

sideration, let us introduce a somewhat more compact notation. We will 

denote the momenta and helicities of the partons in the intermediate state 

f' by qi and si respectively and use the notation qqi = q(ifi, si) etc. The 

momenta and helicities of the partons in the final state f on the other hand 

will be denoted by Pi and ri and we use Qpi = q(pi, ri)· The order O(gn) 

terms of the dressing factors are then denoted by 

(3.30) 

Similarly, we denote the order O(gn) terms of the amplitude by 

gn A(n)(q(ql, s1), q(fh, s2), g(fh, s3) ... ; r)- (3.31) 

(q(ql, sl)q(fh, s2)g(fh, s3) ... ISIO) I = gn A(n)(qql, fiq2, 9q3 ... ; 'Y) 
gn 

and we introduce a notation for the infrared finite amplitudes 

(3.32) 
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We always make use of the convention that the helicity associated with mo

mentum Pi is Ti whereas the helicity associated with momentum i.fi is si· 

Let us now use Eq. (3.21) to write down the infrared finite amplitude 

( { q(pb TI)q(p2,T2)} \S\0) order by order in perturbation theory. At leading 

order we have 

({q(p1,TI)q(p2,T2)}\S\O)I (3.33) 
gO 

w(o)(qpl, lJp2; qql, lJq2)@ A(O)(qql, lJq2; 'Y) 

A(O)(qpl) lJp2; 'Y) 

where in the last step we used 

(3.34) 

Eq. (3.34) is simply obtained by noting that Ot,_ = 1 at O(g0
), Eq. (3.15), 

and using the (anti)commutation relations Eqs.(3.3), (3.4) and (3.5). 

At O(g) the amplitude is zero because for every intermediate state f' 
either the dressing factor (f\Ot>-\f') or the amplitude (f'\S\0) vanishes. 

At O(g2 ) the situation is more interesting. We have 

( { q(p1, T1)q(p2, r2)} \ S\0) I 
g2 

(3.35) 

w(o) ( qpl, lJp2; qql, lJq2) ®A (2) ( qql, IJq2; 'Y) 

+ W(2l(qpl,lJp2;qql,lJq2) ®A(o)(qql,lJq2;'Y) 

+ w(ll ( qpl, ~Jp2; qql, lJq2, 9q3) ®A (l) ( qql, IJq2, 9q3; 'Y) 

The first term on the right hand side of Eq. (3.35) is nothing but the 

usual one-loop amplitude multiplied by the O(g0
) dressing factor and, using 

Eq. (3.34), can be written as 

(3.36) 
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Figure 3.1: Cut diagrams for 2-particle intermediate state. The term 
w(o) ® A(2) of Eq. (3.36) corresponds to j = 0, i = 2 and W(2) ® A(0) 

corresponds to j = 2, i = 0. 
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The second term is also a two-particle cut term, but this time it is the usual 

tree-level amplitude multiplied by the next-to-leading order dressing factor. 

These two terms are shown in Figure 3 .1. 

Figure 3.2: Cut diagram for 3-particle intermediate state. 

The third term in Eq. (3.35) is of a somewhat different nature as it is a 

three-particle cut diagram, as illustrated in Figure 3.2. The dressing factor 

W(l) ( qp1, ijp2 ; qql, ijq2 , gq3 ) is zero unless the gluon gq3 is either soft or collinear 

to the quark or antiquark. Thus, the dressing factor projects out the infrared 

singular piece of the bremsstrahlung amplitude. This is exactly the piece that 

is needed to render the full amplitude A (2) ( { qP1 , ijp2}; 1) finite. 

In the next section we will calculate this amplitude explicitly and check 

that the infrared singularities present in the three terms of Eq. (3.35) cancel 

in the sum. 

The construction of the amplitude at higher orders in g follows the same 
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pattern. For any odd power of g the amplitude vanishes for the same reason 

as it vanishes at O(g). At O(g4
) it is given by 

(3.37) 

The separate terms in Eq. (3.37) are infrared divergent but in the sum all 

these divergences cancel. This can be seen by looking at a particular Feyn

man diagram, for example the one shown in Figure 3.3, and realising that 

Eq. (3.37) is nothing but the sum over all possible cuts. Since the dressing 

factors are constructed such that in the infrared limit they correspond to the 

usual amplitudes it is clear that the infrared singularities in A(4
)( {qp1 , l]p2 }; 1) 

have to cancel in the same way as they cancel in ordinary cut diagrams. The 

first term of Eq. (3.37) corresponds to the ordinary two-loop amplitude and 

is represented by cut 1. The other two-particle cuts, the second and third 

term, are represented by cut 2 and 3. There are two three-particle cut terms, 

term 4 and 5. Finally, for the diagram under consideration, there is one four

particle cut contribution, namely term 6. For a certain Feynman diagram 

not all terms of Eq. (3.37) are present. In our case, the last term of Eq. (3.37) 

which is another four-particle cut contribution is missing. 

We should stress that our approach to construct infrared finite amplitudes 

is by no means restricted to amplitudes with final state singularities only. 

Initial state singularities are dealt with by dressing the initial state, as can 

be seen in Eq. (3.21). 

In fact, the dressing of the initial state would even be needed for processes 

as discussed above, i.e. with say only a 1 in the initial state. Above and in 
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1 6 4 2 5 3 

Figure 3.3: All possible cuts of a Feynman diagram representing the 
various terms of Eq. (3.37). 
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the rest of this paper we have excluded any QED vertices from the soft 

Hamiltonian even though there is a potential collinear singularity at this 

vertex. We do this because we treat the incoming photon as off-shell and so 

it will generate no infrared singularities. 

If we were to include such vertices in the soft Hamiltonian then we would 

generate many more diagrams with non-vanishing initial-state dressing fac

tors such as W(q(qi, s1), q(if2, s2 ), g(fh, s3 ); f'). We would find though, that all 

such extra contributes would cancel as all diagrams with purely soft vertices 

cancel as described in Section 3.1.5. 

3.1. 7 From amplitudes to cross sections 

Once the infrared finite amplitudes have been computed, they can be used 

to compute cross sections for observables related to these amplitudes. The 

procedure to obtain cross sections from amplitudes depends to some extent 

on the external states we use and deserves some further considerations. 

In the cross-section approach we usually deal with amplitudes that are 

proportional to a four-dimensional delta function. Upon taking the absolute 

value squared, this leaves us with the problem of interpreting the square of 

a delta function. Usually this is dealt with in a rather non-rigorous manner 

by putting the system in a four dimensional box of size V · T. The square of 

the delta function is then interpreted as V · T times a single delta function. 
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The factor V · T is cancelled by taking into account the normalisation of the 

states and the flux factor, which leaves us with a cross section proportional 

to a single four-dimensional delta function, expressing conservation of four 

momentum. 

The appearance of the square of the delta function is of course related to 

the fact that we usually work with non-normalisable states with a sharp value 

of momentum and energy. In a more rigorous treatment within the cross

section approach the in and out states would have to be written as wave 

packets, sharply peaked around a certain value of momentum and energy. It 

can then be shown that the spreading of the wave packet during the scattering 

process can be safely neglected [43]. As mentioned in Section 2.2.1 the precise 

definition of the measurable quantity is given in terms of a measurement 

function. This is a function of the partonic momenta. If we are dealing 

with wave packets rather than sharp-momentum states, the measurement 

function has to be defined in terms of these wave packets. However, as long 

as we deal with wave packets whose spread is well below any experimental 

resolution, we can simply use the normal measurement function with the 

partonic momentum replaced by the central value of the wave packet and we 

get the same result as in the above mentioned, less rigorous approach [43]. 

Let us now turn to the situation we encounter if we work with infrared

finite amplitudes, defined in Eq. (3.1). As mentioned before, the amplitude 

is then not proportional to an energy conserving delta function, even if we 

were to start with the usual non-normalisable states. Following the proper 

treatment with wave packets, we think of the states li) and (JI (or I<I>i) and 

(<I>11) as sharply peaked wave packets. The states l{i}) and ({!}I as defined 

in Eqs. (3.16) and (3.17) are also wave packets. Through the action of the 

M¢ller operators, their spread is larger than the spread of li) and (JI and 

depends crucially on the parameter fl. If we choose Ll small enough such 

that the spread of the wave packets related to the states I { i}) and ( { f} I 
is still smaller than any experimental resolution, we can still compute any 

measurable cross section by using the standard measurement function with 

the partonic momenta replaced by the central value of the wave packet. 

The important point is that we must be able to express any measurable 
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quantity in terms of the states I { i}) and ( {f} I· However, since the states I { i}) 

and ({!}I differ from li) and (!I only by soft and collinear interactions, this is 

nothing but the requirement that the quantity we are dealing with is infrared 

safe. Indeed, the requirement of infrared safety states that the quantity 

must not depend on whether or not a parton emits another arbitrarily soft 

or collinear parton. But in the limit 6 -----+ 0 the soft M0ller operators do 

precisely this. Thus, choosing 6 small enough ensures that the construction 

of the measurable quantity in terms of the partonic momenta is not affected 

by the soft M0ller operators. 

This solves the problem on how to obtain differential cross sections, once 

the infrared-finite amplitudes are known, in principle. In practise, the explicit 

implementation of this programme is far from trivial and requires further 

investigations. We mention for example that choosing 6 very small might 

result in numerical problems, similar to the so called binning problem in the 

standard approach. If, on the other hand, we choose 6 too large (relative to 

the experimental resolution) the infrared-finite amplitudes are too inclusive 

to allow the computation of any possible physical quantity. It has been 

advocated before that the most convenient choice of H A is the one that 

precisely corresponds to the experimental resolution [27]. While this might 

be true in principle, we think that this is not a practicable way to proceed, 

since then the asymptotic Hamiltonian would depend on the details of the 

experiment. 

3.2 An example e+ e- ---+ 2 jets at NLO 

We consider the process e+e- -----+ r(P) -----+ 2 jets. At leading order there is 

only one partonic process that contributes, e+e- -----+ qq. However, at next

to-leading order there is also the process e+e- -----+ qqg. Since the initial state 

does not interact strongly we can restrict our considerations to the process 

I*(P) -----+ 2 jets. An example of how this process is calculated in the usual 

approach is given in section 1.4. 
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3.2.1 The infrared finite amplitudes 

In terms of infrared finite amplitudes, at next-to-leading order a cross section 

is also made up of two contributions. The two amplitudes that contribute are 

those with the final states ( { qp1 Qp2} I and ( { qp1 Qp29p3 }1. However, the crucial 

point is that both these amplitudes are infrared finite. Up to the order in g 

required they are given by 

and 

A( {qpl, i/pd; I)= ({qp1Qp2}ISIO) = (3.38) 

1 dqldQ2 w<o)(qpl,Qp2;qql,Qq2) X A(O)(qql,Qq2;r(P)) 

+ 1 dqldi12lw<ol(qpl,i/p2;qql,i/q2) x A<2l(qql,Qq2;r(P)) 

+ 1 dq1di12l w<2l(qpl, i/p2; qql, i/q2) x A<0l(qql, i/q2; r(P)) 

+ 1 dq1di12dq3 g2W(ll(qpl,Qp2;qql,Qq2,9q3) 

x A<1l(qql, i/q2, 9q3; r(P)) + O(l) 

A({qpi,i/p2,9p3};!) = ({qpli/p29p3}ISIO) = (3.39) 

j dq1di12 gW<1l(qpl,i/p2,9p3;qql,i/q2) x A<0l(qql,Qq2;r(P)) 

+ J dqldq2dQ3 g w<o)(qpll Qp2> 9p3; qql, Qq2, 9q3) 

x A(ll(qql,i/q2,9q3;r(P)) + O(l) 

where a sum over the spin/helicities of the intermediate particles is under

stood to be included in J dQi, Eq. (3.9). 

3.2.2 The asymptotic Hamiltonian 

Before we can proceed with the calculation of the infrared finite amplitudes 

we have to define the asymptotic Hamiltonian Hf'1. Once we have Hb. we can 

obtain the M0ller operator, Eq. (3.15), and use it to construct the dressed 
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states, Eq. (3.19), order by order in perturbation theory. 

The only condition on Ht::.. is that it includes all long-range interactions 

from the original Hamiltonian. In order to separate these long range soft 

and collinear emission terms from the hard emission terms we need to intro

duce (at least) one parameter which we denote by .6.. The dependence of 

the asymptotic Hamiltonian on this parameter is indicated in the notation 

Ht::... Once these terms are incorporated into the asymptotic Hamiltonian we 

are free to include any other terms from the original Hamiltonian that we 

wish, as these will only produce finite .6.-dependent contributions to the two 

final amplitudes. It is clear from Eq. (3.21) that for the final result this .6. 

dependence has to cancel. 

In our case the only term of the interaction Hamiltonian we wish to 

include in Ht::.. is the quark gluon interaction vertex, 

(3.40) 

Using Eqs. (3.6,3. 7) and (3.8) we see that HI consists of eight terms 

8 

HI g Ta J dk1dk2dk3 L i;i(k1, k2, k3) (3.41) 
i=1 

x exp (-itt aiJw(kJ)) o(D-
1
) (t aiJkj) , 

]=1 J=l 

where (suppressing the helicity and colour labels) 

vl bt (kt)b(k2)a(k3) . u(kt)¢"(k3)u(k2), 

v2 bt (kt)dt (k2)a(k3). u(kt)¢"(k3)v(k2), 

v3 d(kt)b(k2)a(k3). v(kt)i(k3)u(k2), 

V4 -dt(k1 )d(k2)a(k3) · v(k2)¢"(k3)v(kt), 

v5 bt (kt)b(k2)at (k3) . u(kt)f'(k3)u(k2), 

v6 d(kt)b(k2)at(k3). v(kt)f'(k3)u(k2), 

v7 bt(kt)dt(k2)at(k3). u(kt)('(k3)v(k2), 
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(3.42) 

The sign factors (J"ij are + 1 ( -1) for incoming (outgoing) particles. 

As we only have to include terms in Ht;. that contribute in the singular 

regions we are free to exclude the Vi in Eq. (3.42) for which L (J"iw(ki) can 

never equal zero with all w(ki) 2: 0 such that not all of the w(ki) = 0. We can 

see from Eq. (3.26) that such terms will always be finite. From the remaining 

terms we choose only those that give a singularity in the physically relevant 

soft or collinear regions. This means that for our example we can exclude V2 

and V6 , as these only go singular when the two incoming or outgoing quarks 

from the vertex are collinear. We emphasise that for more general processes 

these terms have to be included in the asymptotic Hamiltonian. 

We can confine the remaining terms even further as we are free to choose 

the form of the finite part of Ht;.. We restrict the integration of the momenta 

k1 , k2 and k3 to just the potentially singular regions. This restriction is 

achieved here by including a theta function, 8(~i(k1 , k2 , k3 )) in each Vi from 

Eq. (3.42) which will appear in Ht;,. The form of ~i(k1 , k2 , k3 ) is completely 

arbitrary as long as 8 -----+ 1 in the soft and collinear limits. 

The form of the 8 function that we will take for this example is, 

8(~i(k1, k2, k3))- 8(~ -I 2:::: (J"ijw(kJ)I). 
j 

(3.43) 

This choice of ~(k1 , k2 , k3 ) is particularly appropriate because as we see in 

Eq. (3.26), Lj (J"ijw(kj) is the exact form that the singular terms take. This 

theta function therefore restricts the integral to just the regions close to these 

singular limits. 

By splitting up the covariant vertex into pieces and restricting the inte

gration to just the singular regions we are removing the manifest Lorentz and 

gauge invariance from the amplitudes. Physical observables will though be 

Lorentz and gauge invariant as we are effectively just performing a unitary 

transformation (as we have regulated the 0± operators) on a known Lorentz 

and gauge invariant result. 

To summarise, for our asymptotic Hamiltonian we take just the vertices 
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V1, 114, Vs and Vs, giving, 

Hb. g j dk1dk2dk3 . L { Vi(kl, k2, k3) exp (-itt CJijw(kj)) 
t=l,4,5,8 J=l 

c5(D-l) (t CJijkj) 8(6- I L CJijw(kj)l)}. (3.44) 
J=l J 

3.2.3 Diagrammatic rules for the asymptotic regions 

We can now take Eq. (3.44) and use it in Eq. (3.15) to form the asymptotic 

operator. We could then go on to calculate the dressed states of Eq. (3.30) 

with this operator defined between suitable in and out states by using the 

commutation relations between a, b, d, at, bt, dt and time-ordered perturba

tion theory. However it can be shown that there are a set of diagrammatic 

rules for the asymptotic region which behave in a similar way to Feynman 

diagrams in normal perturbative field theory. Using these we rules we can 

simplify the calculation. 

These diagrammatic rules consist of vertex and propagator 'like' objects, 

but unlike normal Feynman diagrams we must take all time orderings of the 

vertices into account. This is because we base the evaluation of the amplitude 

in the asymptotic region on time ordered perturbation theory. As mentioned 

before energy is not conserved at each vertex and since the range of the time 

integration in the M0ller operators is from 0 to oo there is no overall energy 

conservation. 

As there is a time ordering to the vertices we have both absorption and 

emission rules. These are defined in Figure 3.4 with time flowing from right 

to left. 

We form propagator 'like' objects from the spin sums of fermion spinors 

and an associated energy denominator. Although they are not real propa

gators in the normal field theory sense of inverted off-shell two-point Green 

functions, they do represent the transition from one vertex to another. The 

rules for these are shown in Figure 3.5, where pJ.L = (p0
, -p'). 

As with ordinary field theory we must integrate over all internal momenta 

and so for each propagator in the asymptotic region we must integrate over 
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Figure 3.4: The diagrammatic rules for vertices. 

p 

J-L --P v 
a 'V\/\1\/'v b 

ip 
---
- 2w(t!) · 

Figure 3.5: The diagrammatic rules for propagators. 

its momentum J dD- 1p/(27r)D-l in D -1 = 3- 2E dimensions. The rules for 

external particles are exactly the same as for QED or QCD and so do not 

need to be reproduced here. Finally we must include a factor of 1/n! with 

each diagram, where n represents the order in the coupling in the asymptotic 

region. 

As stated before the soft M¢ller operators are not necessarily gauge in

variant nor Lorentz invariant. Infrared singularities though will only occur in 

the region where rv = L O"iw(ki) = 0. In this limit Lorentz invariance is re

stored and so the structure of the singularities will also be Lorentz invariant. 

Given that our amplitudes will not be gauge invariant, we will perform all 

calculations including the second term of the gluon propagator which ensures 

that we sum over physical polarisations only. 

3.2.4 The amplitude A( { q(p!), q(p2 )}; !') 

Let us start with the amplitude A({qp1,qp2};!) given in Eq. (3.38). This 

amplitude consists of four terms and we will look at each of them in turn. 
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The first and second term will be dealt with in Section 3.2.4 and 3.2.4 re

spectively. For the third term of Eq. (3.38) we need the dressing factor 

W(2
) ( qpl, ijp2; qql, {jq2). There are various combinations of interaction terms of 

the asymptotic Hamiltonian that give rise to non-vanishing contributions to 

W(2
). These can be found using the diagrammatic rules of Section 3.2.3. We 

find that there are four contributing diagrams. These four diagrams can be 

split into two classes, two self-interaction terms and two one-gluon exchange 

terms. 

The Born term 

The first term is 

(3.45) 

and is of order g0 . As discussed previously, Eq. (3.33), this term corresponds 

precisely to the tree-level amplitude. 

(-ie)Oij (Pl\"l~\P2) (2n)Do(D)(P- P1- P2) 

A(O)(qpl, qp2; !(P)). 

We use a notation where (Pi\ represents the spinor of a massless outgoing 

fermion with momentum Pi and similarly \p1) represents the spinor of a mass

less incoming fermion of momentum p1. Of course, these spinors depend on 

the helicity of the fermion, but we suppress this dependence in the notation. 

The delta function as usual ensures energy-momentum conservation for the 

process and the oij represents the colour flow through the diagram. 

The virtual term 

In the same way we see that the second term of Eq. (3.38) corresponds to 

the one-loop amplitude 

(3.46) 
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The infrared singularities appearing in Eq. (3.46) will be cancelled by infrared 

singularities of the third and fourth term of Eq. (3.38). We should mention 

that the finite term in Eq. (3.46) depends on the regularisation scheme used. 

The result in conventional dimensional regularisation is obtained by setting 

cR = 0 whereas in dimensional reduction we set cR = 1. 

The self-interaction terms 

The two self-interaction terms are obtained by taking the interacting terms 

V1 , V5 and 1;4, Vs of the asymptotic Hamiltonian as given in Eq. (3.42). Since 

there is a symmetry between these two contributions we only need to calculate 

one of the pair of diagrams. The self interacting term resulting from the 

vertices V1, V5 is shown in Figure 3.6 and is given by 

Note that this expression contains a D-dimensional delta function com

ing from A (o) and two ( D - 1 )-dimensional delta functions coming from 

3-momentum conservation of the vertices in the dressing factor. 

We now proceed to perform the integrals over ii and if2, removing the two 

( D - 1) dimensional delta functions. There is an important subtlety here. 

Since the delta functions are ( D - 1) dimensional, only the spatial part of 

the 4-vectors is altered. All 4-vectors in the asymptotic region though must 

be on-shell and so we are forced to modify the energy component of these 

4-vectors to preserve this property. Although these modified 4-vectors are 



CHAPTER 3. CALCULATIONS USING DRESSED STATES 74 

Figure 3.6: Cut diagram for self interaction with 2-particle interme
diate state. 

4 component objects they no longer transform as tensors. This is simply 

a manifestation of the breaking of Lorentz invariance that occurs in time

ordered perturbation theory. To denote such objects we place curly brackets 

of the type { } around them, i.e. we define 

(3.48) 

We then have 

{2,0} 
al5 = (3.49) 

where we defined 

(3.50) 

This diagram contains infrared singularities coming from the region where 

q3 is soft and/or collinear to p 1. We discuss its evaluation in Appendix A. 

Multiplying by two to take into account both of the self-interaction diagrams 
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we get the final result 

2 {2,0} -
a1s -

with 

2 j di11di12 92 wi;l(qpl, qp2; qql, qq2) x A(o)(qql, qq2; 1(P)) (3.51) 

Cp (O:s) (J12)E (- 2_- ~ + 91(.6.) + CR 
27f S E2 2E 2 

+ J dq38(.6. -lp(qj,pl- qj)I)JI(pl,P2,q3))A(o)(qpl,qp2;!(P)) 

- ~ - ~ ( ~) 2 - 71~' + [ ~ + ( ~) + ~ (~)']log ( ~) 
(3.52) 

and where !I (p1 , p2 , q3 ) is a function that is free from singularities when 

integrated over dq3 . The explicit form is given in Eq. (A.7). Note that 

we took care to sum over the physical polarisations of the gluon only and 

evaluated the diagram in the centre-of-mass frame p1 = -P2· 

The one-gluon exchange terms 

We now look at the one-gluon exchange diagrams. There are two such di

agrams, one for each time ordering of the two vertices. One diagram is 

obtained from taking the vertices V1 , Vs of Eq. (3.42), the other from taking 

the vertices V4, V5 . These diagrams are symmetric under exchange of all mo

menta and so we need only calculate one of them. The diagram shown in 

Figure 3. 7 gives us 

(3.53) 
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8(6- lw(qj_) + w(Q3)- w(pl)l) 8(6- lw(p2) + w(Q3)- w(q2)1) 
2w ( qj_ ) ( w ( qj_ ) + w ( Q3) - w (pi) ) 2w ( q2) ( w (P2) + w ( Q3) - w ( q2)) 

t)(D-l)(ql + Q3- pi) £5(D-l)(P2 + Q3- 1]2) (27r)D t)(D)(P- ql- q2)· 

We again integrate over q1 and Q3 with the delta functions and introduce 

the on-shell momenta {p1 - ifJ and {p2+ if3 } to obtain 

{2,0} 
alB = 

(3.54) 

Looking at the denominator p( Q3, p1 - Q3) p( Q3, p2) it appears that there are 

collinear singularities for q3 IIP2, q3 IIP1 and a soft singularity q3 -----+ 0. How

ever, the denominator 

vanishes in the collinear regions q3 IIP2 and q3 llp1 . Thus, this diagram has 

only a soft singularity. 

Figure 3. 7: Cut diagram for the 2-particle cut diagram with one-gluon 
exchange in the asymptotic region. 

We delegate the explicit evaluation of ai~,o} to Appendix A. Multiplying 



CHAPTER 3. CALCULATIONS USING DRESSED STATES 77 

by two to account for both one-gluon exchange diagrams we have the final 

result 

2 {2,0} 
a1s 2 j d- d- 2 w(2) ( - - ) A(o) ( -ql q2 9 18 qpl,qp2;qql,qq2 X qql,qq2;!(P))(3.56) 

CF (;;) (~
2

) £ ( ( ~ + 92(~)) A(o) (qpl, Cjp2; !(P)) 

( -ie) bij (Plb0 1P2)(27r)(D-l)b(D-l)(P- P1- P2) 

X J d(]3 8(~ -lp(q3,pl- 1]3)1)8(~ -lp(q3,p2)1)f2(pl,P2, q3)) 

where again we have not performed the finite h integral analytically and 

92 ( ~) = 2 log 2 - 2 log ( ~) . (3.57) 

The explicit form of his given in Eq. (A.9). 

3 Particle Cut Diagram 

Let us now turn to the fourth part of Eq. (3.38). For this term we need the 

dressing factor W(l)(qp 1 ,qp2;qq1 ,qq2,9q3 ). Again we use the diagrammatic 

rules of Section 3.2.3. 

Figure 3.8: Cut diagram for 3-particle intermediate state. 

There are two possible diagrams as the gluon can be absorbed either by 

the quark or antiquark line. The two diagrams are obtained by taking either 
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the vertex V1 or V4 and they are symmetric under exchange of momenta. So 

we need only calculate one of them. For the diagram shown in Figure 3.8 we 

get 

After integration over ih and ih using the delta functions we observe that 

there are collinear singularities q3 IIP1 and soft singularities q3 -----+ 0. There are, 

however, no collinear singularities q3 llp2 . This is expected since the amplitude 

A(ll(qq1, {jq2, gq3; r(P)) has only an integrable square-root singularity for q3llq2 
and the dressing factor Wi 1

)(Qp1,qp2;Qq1,{jq2,9q3) is regular for Q3llq2. 

As for the other diagrams we have to multiply by two to take into account 

both pairs of diagrams and we get the final result 

2 {1,1} -
a1 - /d

-d_d_ 2 W(1)( - - ) 2 Q1 Q2 Q3 g 1 Qp1l Qp2; Qq1, Qq2, 9q3 (3.59) 

x A(ll(qq1,iiq2,9q3;r(P)) 

CF (;;) (~
2

)E ( (~+~+g3(~)-cR) A(o)(Qp1,iip2;r(P)) 

+ ( -ie) 6iJ (P1h0 1P2)(2n)(D-1)6(D-1)(P- P1- P2) 

X J dq3 8(~- lp(q3, P1 - 1]3) l)h(P1, P2, Q3)) 

where 

g,(~) 7 + ( ~) 
2 

+ 
7;' + [-3 + 2 ( ~) - (~)']log ( ~) 
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2 log
2 

( ~) - 4log
2 

( 1 + ~) - 8 Li2 ( 2 : ~) . (3.60) 

The function h is given in Eq. (A.ll) and does not produce any infrared 

singularity upon integration over dq3 . 

An infrared-finite amplitude 

We have now calculated all terms contributing to the amplitude A( { q, q}; 1), 

Eq. (3.38), at next-to-leading order. Using Eqs. (3.46, 3.51, 3.56) and (3.59) 

to assemble the amplitude we get 

(3.61) 

1 + CF (;;) (91(~) + 92(~) + 93(~) - 4 + ~~) A(O) (qp1, qp2; !(P)) 

+( -ie) t5ij (P11raiP2) (21f) (D-1) t5(D-1) ( P- P1 - P2) 

x j dq3 (!I(P1,P2, q3)8(~ -lp(q3,pl- t13)l)t5( JS- w(zJ'I)- w(p2)) 

+ h(P1, P2, q3)8(~- IP(tJ3, P1 - 1]3) 1)8(~- IP(tJ3, P2) I) 

+ h(P1, P2, q3)8(~- lp(q3, P1 - 1]3)1)) 

up to order a 8 in the coupling. The functions 91, 92, 93 are given in Eqs. (3.52, 

3.57) and (3.60) and the functions JI, hand h are given in Eqs. (A.7, A.9) 

and (A.ll) respectively. 

We see that this result is completely free of infrared singularities. We 

are only left with some finite ~ dependent terms, 9i and some finite terms, 

fi which will in general need to be numerically integrated. Even though 

the amplitude A( { qp1 , qp2}; 1) depends on ~ this dependence will disappear 

when we combine the various amplitudes to calculate physical observables. 

We are now going to calculate the amplitude A({qp1 ,qp2 ,9p3 };1) given in 

Eq. (3.39). There are only two terms to calculate for this amplitude and 

there is no integration over the final state gluon as it is now a real final state 
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particle. 

Figure 3.9: Cut diagram for the 3-particle asymptotic region with a 
2-particle intermediate state. 

Again we calculate these terms using the diagrammatic rules from Sec

tion 3.2.3. Let us start with the diagrams where the gluon is emitted in the 

dressing factor. Figure 3.9 shows one of the two possible diagrams, the other 

is exactly the same but with all momenta interchanged. So for both diagrams 

we have 

J dqldQ2 gWi1)(qpl,qp2,9p3;qql,qq2) X A(O)(qql,qq2;!(P)) 

(-ie)gTij (27r)D5(D-l)(P- P1- P2- P3) (PII (3.62) 

( _ ip3~~1+ P~~~a 8(~ -lr11)5( JS- w(jSI)- w(fh)- w(P3) + ri) 
2w P1 + P3 T1 

+ la{r:+ p~ (PJ 8(~- lr21)5( Vs- w(pl) - w(fh) - w(p3) + 1'2)) IP2) 
2w P2 + P3 T2 

where we used the notation 

(3.63) 

with p defined in Eq. (3.50). 
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0: 

Figure 3.10: Cut diagram for 3-particle asymptotic region with a 
3-particle intermediate state. 

The second contribution is just the usual AC1l(qpl, fip2, gp3; "f(P)) ampli

tude. The three external particles of this amplitude do not interact in the 

asymptotic region and so we simply have the diagram as shown in Figure 3.10, 

this gives 

J dql dq2 g w(o)(qpll qp2, 9p3; qql, {jq2, 9q3) X A(l)(qql, {jq2, 9q3; "!(P)) 

(-ie)gTt (Pli(¢'P3(]1l+p3)'Ya _ 'Ya(F12+P3) ¢'P3)Iv2) 
J 2(PlP3) 2(P2P3) 

(2n)D8(D)(P- P1- P2- p3). (3.64) 

Vve now assemble Eq. (3.39) to find 

A({qpl,fip2,9p3};"!) = (-ie)gTt; (Pll( 

- ~3 ~~1 + P~~'Ya 8(~ -lr11)8( JS- w(pl)- w(p2)- w(p3) + r1) 
w P1 + P3 r1 

+¢'P3(]11+P3ha 8(JS -w(pl) -w(fo2) -w(p3)) 
2(PlP3) 

+ 'Ya{~:_+ P3] tP3 8(~- lr2l)8( JS- w(pl) - w(p2) - w(f.J) + r2) 
2w P2 + P3 r2 
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"(Ci(i2+ P3) ljP3 ~( r:. ( ..... ) ( ..... ) ( ..... )))I ) 
- 2(P2P3) u v s- w Pl - w P2 - w P3 P2 

(2 ) D~(D-l)(p"" ..... ..... ..... ) 
1r u - P1 - P2 - P3 · (3.65) 

This amplitude splits up into two pairs. The first (last) two terms are due 

to the gluon being emitted from the leg p1 (p2 ). Looking at the first two 

terms shows that for r 1 > .6. the contribution from the asymptotic region 

disappears. We are then left with the normal amplitude, A(qp1 , f]p2 , gp3 ; "f). 

For r 1 < .6. the term from the asymptotic region does contribute and will 

cancel any potential infrared singularities. We can see this by taking the 

limit .6. -----t 0, we have 

w(pl + fh)rl -----t (PIP3), 

{'Pl + P3} - (11 + P3), 

t5( Vs- w(pl)- w(fh)- w(P3) + r1) -----t t5( Vs- w(pl)- w(fh)- w(P3)). 

vVith these we can see that the terms from the asymptotic region approach 

those of the normal amplitude in the soft and collinear limits, but with the 

opposite sign. So the two terms will cancel in the .6. -----t 0 limit, leaving 

us with an amplitude that is infrared finite when integrated over the phase 

space. 

3.2.6 Calculation of the total cross section 

In the previous sections we computed the two infrared finite amplitudes that 

contribute to the process 'Y*(P) -----t 2 jets at next-to-leading order. In this 

section we would like to check our results by computing the total cross section, 

starting from the infrared finite amplitudes, Eqs. (3.61) and (3.65). Of course, 

we have to recover the well known result, Eq. (1.19). 

Let us stress that the idea of our approach is to compute the amplitudes 

numerically and perform the phase-space integration also numerically. It 

is for the sole purpose of checking our results and facilitating the compari

son with Eq. (1.19) that in this section we compute the total cross section 

analytically. 
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Usually a non zero value of~ would be chosen for a numerical calculation 

and we would expect all ~ dependence to cancel between the contributions 

of the two amplitudes (squared) to the cross section. Here though to simplify 

the analytical calculation we will take the limit ~ -t 0. In this limit even 

the infrared-finite amplitudes are proportional to a four-dimensional delta 

function and we can use the standard procedure to obtain the total cross 

section from the amplitudes. However, since the amplitudes are singular for 

~ -t 0 we must be careful in taking this limit and leave it until the end of the 

calculation. The fn finite terms of Eq. (3.61) which we would usually have 

to calculate numerically will all go to zero in this limit. This simplification 

occurs because the region of integration shrinks to zero as ~ -t 0 and as 

these terms are finite they can no longer give a contribution. 

We now use our infrared finite amplitudes Eq. (3.38) and Eq. (3.39) in

stead of Eq. (1.8) and Eq. (1.9) and square them in the usual way to obtain 

where 

o-{qq} = j d<I>2iA( { qpl, 7Jp2}; !') 1

2
, 

o-{qqg} = j d<I>3iA({qpl,7Jp2,9p3};1')i
2

. 

(3.66) 

(3.67) 

(3.68) 

Here we integrate Eq. (3.67) over the two particle phase space and Eq. (3.68) 

over the three particle phase space. 

First we rewrite the three-particle final state amplitude, Eq. (3.65), in a 

more convenient form 

A({qpl,iJp2,9p3};!') = (-ie)gT/j(Pli( 

(
- iPa {~1 + p'~}l'a 8(E + rl) + iPa (p'l + p'3)!'a 8(E)) 8(~ _ h J) 

2w(pl + p3)r1 2(PIP3) 

+iPa(p'l+p'3)!'a 8(E)8(Jr1J- ~) 
2(JhP3) 
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+ ('/x{P:_+ P3] iP3 cS(E + r 2) _ l'a(P2+ P3) iP3 6(E)) 8(6 _ lr21) 
2w(p2 + ]J3)r2 2(JJ2P3) 

- l'a~2(;2~:~ ip3 
6(E)8(Ir2l - 6)) IP2) 

(27r)D6(D-ll(J5- Pl- P2- P3), (3.69) 

where E = y's- w(jS1)- w(p2)- w(p3 ). Taking Eq. (3.69) we then square it 

in the usual way and sum over the gluon polarisations using 

where ]53 = (w(p3 ), -p3 ). This is because the amplitude is no longer gauge 

invariant as we are using dressed states. At this point we drop any terms 

multiplied by 8(6-lr11) or 8(6-lr21). These terms are finite and therefore 

can be shown to go to zero in the 6 --+ 0 limit after we have performed the 

three particle phase space integral in a similar way to the fn terms. 

After integrating one of the phase space integrals using the delta function 

we are left with 

(3.70) 

( 

~ 0 2 

12 d J d 2y23- Yl3 (Yl3 + Y23) 
Yl3 Y23 2 

o 1-y13 Yl3 (Yl3 + Y23) 
1-Q Q 3 2 2 

1 2 d J 2 d Y23 + Y13Y23 + 2yl3 (Y23- 1) 
- Yl3 Y23 2 

o 1-y13 Y23 (Yl3 + Y23) 

1
1-% J% ( 2- Y23 2- Yl3 4 ) ) + dyl3 dy23 2 - - + 2 

% 1-y13 Yl3 Y23 (Yl3 + Y23) 

where we defined 
- 2(JJi]Jj) 

Yij = C2 . 
l,pl 

(3.71) 

We perform the final two integrals and then prematurely take the 6 --+ 0 

limit everywhere except in the log(6) terms, as these diverge in this limit. 
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The log(6) terms will cancel later in the final result. This then leaves 

(3.72) 

where cr0 is the total Born cross section as given in Eq. (1.13). 

Now we calculate lA( {qp1 , Qp2}; 1')12
. Again we take the 6 -r 0 limit early 

except for the log(6) pieces of the 9n terms in the finite part of Eq. (3.61). 

As stated before the f n (p1 , p2 , q3 ) terms go to zero and so we have, 

IA({qpl,Qp2};'Y)I 2 = JA(O)(qpl,Qp2;')'(P))J
2 

(3.73) 

x ( 1+ C F ( ~;) (-~ + log 4 - ~ log ( ~) - log' ( ~) ) )' 

After integrating over the two particle phase space we get 

Putting Eq. (3.72) and Eq. (3.74) together gives finally 

(3.75) 

We have recovered the well known result for the total 'Y -r qq cross section 

and all the 6 dependence of the amplitudes has disappeared including the 

log(6) terms, justifying our taking of the 6 -r 0 limit early. 

3.3 Summary 

In this chapter we have presented a method on how to construct infrared 

finite amplitudes using dressed states and applied it to the case of e+e- -r 2 

jets at next-to-leading order in the strong coupling. The idea is to separate 

from the Hamiltonian a part that describes the asymptotic dynamics. This 

asymptotic Hamiltonian is then used to asymptotically evolve the usual states 

of the Fock space. In this way we construct dressed states, Eqs. (3.16) and 
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(3.17), such that the transition amplitudes between these states are free from 

infrared singularities. 

Contrary to most of the previous work done in this field we are not so 

much interested in obtaining all-order re-summed results taking into account 

soft emission of an arbitrary number of gauge bosons from external partons. 

Our aim here was to construct dressed states explicitly order-by order in 

perturbation theory and use them to do explicit calculations. In this chapter 

we have done this for a particularly simple final state up to next-to-leading 

order. 

The reason that we cannot obtain all-order results is that we include 

the collinear singularities as well. In non-abelian theories these singulari

ties cannot be avoided. The additional complications due to the collinear 

singularities make it impossible to obtain exact solutions to the asymptotic 

dynamics. 

As for the standard approach, physical cross sections obtain in general 

contributions from more than one partonic process. However, in our case 

all these contributions are separately finite. They depend on a parameter, 

,6., that determines the precise split of the Hamiltonian into an asymptotic 

Hamiltonian and the remainder. The result for any physical quantity is 

independent of this parameter as long as it is smaller than any experimental 

resolution. For any finite value of ,6. the amplitude contains a part that is 

not proportional to an energy conserving delta function which represents the 

spread of the initial wave packet due to the asymptotic evolution. 

For any physical cross section at any order in perturbation theory we will 

get the same answer using the standard cross-section method or infrared

finite amplitudes. Thus, one might wonder what has been gained using this 

approach. Apart from the conceptional benefit that the S-matrix between 

dressed states is well defined there are also practical advantages. First of 

all, the avoidance of infrared singularities facilitates the use of numerical 

methods. This might not be apparent in the approach we have taken. In 

fact, using Eq. (3.21) to split the infrared finite amplitudes into separately 

divergent factors still requires us to use an infrared regulator (dimensional 

regularisation in our case) and revert to analytical calculations. However, 
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since the final amplitude is infrared finite it is feasible to compute it directly in 

a numerical way, avoiding the split into separately divergent pieces. Once the 

amplitudes have been obtained, the integration over the phase space is trivial 

and no sophisticated method is needed. This also opens up the possibility of 

combining fixed-order calculations directly with a parton shower approach. 

Needless to say that the explicit example we considered, e+e- --. 2 jets 

has many simplifying features. To start with, the non-abelian nature of QCD 

does not really enter. Secondly, we only considered the amplitudes at next

to-leading order. Furthermore, the initial state does not interact strongly. 

The last point simply results in the fact that there is no need to dress 

the initial state. While this is a simplification concerning the amount of 

computations to be performed, there is no conceptual problem associated 

with more complicated initial states. If the initial state contains hadrons a 

physical cross section is obtained by folding the partonic cross section with 

parton densities. In the conventional approach these parton densities are 

associated with the probability of finding a certain partonic state within a 

hadron. In our case, we would have to use modified parton densities that are 

related to the probability of finding a certain dressed state within a hadron. 

Thus the global analyses of extracting the parton densities would have to be 

modified and repeated. 

The fact that the non-abelian nature of QCD does not really show up in 

the explicit example we considered results in a particularly simple asymp

totic Hamiltonian. In fact, the asymptotic Hamiltonian we use involves only 

quark-gluon interactions and is basically the same that was used many times 

previously [27]. Again, this results in a technical simplification of the com

putation and facilitates the explicit construction of the asymptotic Hamil

tonian. In more complicated examples the full non-abelian structure of the 

asymptotic Hamiltonian will enter the problem and its construction will be 

much more involved. However, the only crucial feature is that the asymp

totic Hamiltonian reproduces the full asymptotic dynamics, i.e. it has to 

reproduce the soft and collinear behaviour of the full theory. There are no 

further requirements and the construction of dressed states presented in this 

paper can be taken over directly. However, it is clear that the construe-
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tion used so far is rather cumbersome. In order to exploit the advantage 

of the infrared finiteness a systematic numerical approach would need to be 

developed. This will become particularly important if this method is to be 

extended beyond next-to-leading order. Therefore in the next chapter we 

will attempt to streamline and extend the methods described here. 



Chapter 4 

A Covariant Approach 

In the previous chapter we demonstrated a practical application of the use of 

dressed states and showed that amplitudes constructed using them were in

frared finite. The formalism suffered from two distinct problems though. The 

first is that the amplitudes were constructed from separate pieces which were 

themselves infrared divergent. So although the final amplitude was infrared 

finite the intermediate steps were not necessarily so, this would mean that a 

purely numerical approach would be difficult to implement. The second prob

lem was that the pieces once combined were not all multiplied by the same 

energy delta function. Instead separate pieces of the amplitude were mul

tiplied by different energy delta functions which differed by a soft/collinear 

energy difference. This means that the calculation of physical observables 

from these amplitudes becomes difficult due to the need to "square" the 

different delta functions in the amplitude. 

The aim of this chapter is to surmount these problems. We will begin 

to do this by investigating the techniques required to produce amplitudes 

which are infrared finite throughout the calculational procedure. This will 

follow on from the discussions in Sections 2.3 and 2.4. The amplitudes pro

duced in this way will be described using time ordered perturbation theory. 

The problem with this is that at order n in the perturbation series we will 

have n! different time ordered diagrams to calculate for what would be each 

Feynman diagram in covariant perturbation theory. For complex diagrams 

therefore the amount of computation required will quickly become too dif-

89 
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ficult to manage. Furthermore we will see that the number of diagrams 

required will actually be even greater than this, making the situation even 

more difficult. 

To avoid this problem we will therefore attempt to combine these time 

ordered diagrams to produce a completely covariant amplitude. In the pro

cess of this we should massively reduce the number of diagrams which need 

to be calculated. We will outline the difficulties involved in doing this. 

After this there is the second problem of the different delta functions 

within each amplitude. The root cause of this problem is that dressed states 

involve the use of the SA operator on the basis of free states I<Pa)· The SA 

operator does not commute with the free field Hamiltonian H0 , and so does 

not conserve the energy as given by the free Hamiltonian. The obvious solu

tion to this is therefore to attempt to expand SA on the basis of eigenstates 

of the asymptotic Hamiltonian H~::. used to derive SA. 

As stated in Section 2.3 we do not know how to exactly solve for the 

eigenstates of the asymptotic basis and so we must relate them to the basis 

of free states in some way. To do this previously we have used the Moller 

operator n~)' relating the basis of free states to the basis of asymptotic 

states, for example in Eq.(2.83). The problem with this operator though 

is that it contains infrared divergences and therefore is not isometric unless 

regulated. Unfortunately it can be shown that this Moller operator is the only 

way of perturbatively relating the asymptotic states to the free states and so 

proceeding in this way just returns the original infrared singularities. This 

difficulty will lead us to abandoning the use of the interaction picture entirely 

and to instead investigate the use of the asymptotic interaction picture. 

The asymptotic interaction picture will therefore be the focus of the re

mainder of the chapter. VIe will only be able to give a general flavour of how 

calculations should proceed in this picture, with a more rigorous investigation 

postponed for future work. Field theory calculations are usually performed 

in the interaction picture with the evolution of the fields being governed by 

the free Hamiltonian. Our aim here is to use an asymptotic Hamiltonian 

instead to describe the evolution of the fields. Feynman diagrams generated 

in this picture should then be free of infrared singularities. Instead the eli-
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vergent soft regions are shifted into the propagators. No infrared divergences 

should appear because the vertices in the Feynman diagram will restrict the 

momentum flowing through the propagators such that no soft or collinear 

momentum flows through the propagators. 

The first crucial part of working in this picture is being able to define 

a covariant splitting of the hard from the soft regions. We will then show 

that any Feynman diagram constructed in the asymptotic interaction picture 

will be infrared finite. After this we will discuss briefly what we mean by 

asymptotic states and then give an outline of a derivation of a modified LSZ 

reduction formula. This relates correlation functions to SA matrix elements 

calculated using the SA operator on the asymptotic states. Finally we show 

how we can construct the asymptotic field propagators in a perturbative way 

and derive the form of the fermion propagator in QED. 

4.1 The SA operator in the interaction pic

ture 

The form of the M¢ller operators used for the dressed states in the previous 

chapter arises from Eq.(2.91). Using this we found that we had to split up 

the amplitude into infrared divergent pieces, the divergences only cancelled 

when we summed all the pieces together, e.g. Eq.(3.37). In this section we 

will instead derive M¢ller operators from the form for the amplitudes given 

in Eq.(2.92), which is, 

n(+) = n(+)n(+)t = n(+) 
H - Hf H/:i - HA (4.1) 

Once we have derived forms for n~+) and n~lt we can then construct the SA 

operator. 
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4.1.1 The time-independent form 

Initially we want to derive the operator n~+ J in a time independent way. 

From Eq.(2.35) we have, 

( 4.2) 

where h = H1 - H~::,.- H0 and J3a(E)) is an eigenstate of H~::,.. Here Hf is the 

Hamiltonian of the full theory. In the interaction picture the particles evolve 

with the free Hamiltonian H0 . The denominators of Eq.(2.35) give rise to 

this evolution. Therefore we must expand 1/(Ea- Hf + iE) using Eq.(2.37) 

and K = H0 . This gives, 

( 1 + 1 
h 

Ea- Ho + iE 
1 1 

+ Hint h 
Ea - Ho + iE Ea - Ho + iE 

+. .. ) J3a(E)) ( 4.3) 

where Hint = H1- H0 . From this we then associate D~+) in the interaction 

picture with the term multiplying the state J3a(E)). 

We know that in the usual interaction picture the M0ller operator on the 

basis of free states l4>a) is given by, 

D(+) J¢n) = ( 1 + Ea _ ~f + iE Hint) J¢n) 

( 1 + E ~ . Hint 
a- 0 + ZE 

1 1 ) + E H . Hint E H . Hint+... l4>a) 
a - 0 + ZE a - 0 + '/,E 

( 4.4) 

Our result from Eq.(4.3) can be checked using the following relation between 

these two M¢ller operators, 
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( 
1 1 1 

1 + h + Hint h 
Eo:- Ho + iE Eo:- H0 + iE Eo:- H0 +it 

+ ... ) X (1 + 
1 . Hb. 

Eo:- H0 + 'lE 

1 1 ) + E H . Hb. E H · Hb. + ... lci>o:) o: - 0 + 'lE o: - 0 + 'lE 

( 1 + E ~ . Hint o:- 0 + 'lE 

1 1 ) + E H + · Hint E H + . Hint + · ·. I cPa:) o: - 0 'lE o: - 0 'lE 
(4.5) 

Thus confirming our result in Eq.( 4.3). Here we have used the standard 

M¢ller operator form of n~l which is given by Eq.(2.38) with H1 = Hb. +Ho 

and Hasym = H0 . We can construct n~lt in a similar fashion to Eq.( 4.3). 

4.1.2 The time-dependent form 

Now that we have time independent forms for n~+) and n~-lt we will want 

to derive time dependent forms as these will be easier to work with later on. 

We begin by deriving a form for n~+l starting with, 

n(+) n(+ln(+)t 
A b. 

( 1 + ... + ( -i)m j dtl ... dtmBmB12 .. J}(m-l)mHl ... Hm) 

x (1 + ... + (+i)P j dt1 ... dtpBopBp(p-l) ... e21sl ... sP) (4.6) 

where eij = e(ti - tj) and Hi = Hint(ti), Si = Hb.(ti) and hi = Hint(ti) -

H b. ( tJ The time evolution of these Hamiltonians is given in the interaction 

picture by, 

(4.7) 

We now need to multiply the two time ordered operators together, doing this 

requires great care. When multiplying two time ordered operators together 

the time of the Hamiltonians in each operator must be time ordered. So that 

the time of all Hamiltonians in the operator to the left must be after the 
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times of the Hamiltonians in the operator to the right, if the Hamiltonians 

involved are different. If the Hamiltonians are the same then we just have a 

direct product of the two operators. So for example we would have, 

This can be seen more clearly when we have blocks of soft and hard vertices, 

for example, 

So when we expand out the operator in eq. ( 4.6) we should get for a term at 

order n, 

A similar result for n~- lt at order n can also be derived, 

(4.11) 

If we were now to perform the time integrals of Eq.(4.10) and Eq.(4.11) we 

will get the same result as in Eq.(4.3), after we have inserted complete sets 

of free Hamiltonian eigenstates between all the Hamiltonians. This then 

confirms these time dependent forms for the Moller operator. 

This result differs from the result given in [34] for the same operator. Our 

result here does not contain any s terms after the last hard vertex. If we 

perform the time integrals of the form of the Moller operator given in [34] 

we will get, 

n~+) l2n) = ( 1 + ( -i) 1: dtlhl + ( -i)21: dtldt2el2 (hlh2 + [sl, h2]) 

+. .. )isn) 
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( 
1 1 1 

1 + . h + Hint h 
Ea- Ho + ZE Ea- Ho + iE Ea- Ho + iE 

1 1 ) - E H . hE H . H t. + . . . I Sa) 
a - 0 + 'lE a - 0 + 'lE 

( 4.12) 

To check this form of the M¢ller operator we will repeat the calculation of 

Eq.(4.5), using this form of n~+l and attempt to get f2(+) given in Eq.(4.4). 

So we have, 

n~+ln~+l I<Pa) 

( 
1 1 1 

1 + h + Hint h 
Ea- Ho + iE Ea- Ho + iE Ea- Ho + iE 

1 1 ) ( 1 - h Ht,... X 1 + Ht, 
Ea- Ho + iE Ea- Ho + iE Ea- Ho + iE 

1 1 ) 
+ E H + . Ht, E H + . Ht, + ... l¢a) 

a- 0 'lE a- 0 'lE 

( 
1 1 1 

1 + Hint + Hint h 
Ea - Ho + iE Ea - Ho + iE Eo: - Ho + iE 

1 1 ) 
+ E H + . Ht, E H + . Ht, + ... l¢a) 

a- 0 'lE a- 0 'lE 
( 4.13) 

The expected result is not returned suggesting that this form of the M¢ller 

operator n~+) from [34] is incorrect. 

4.1.3 The SA operator 

Now that we have a time dependent form for the M¢ller operators n~+l and 

[2~ )t in the interaction picture then we can construct the SA operator in the 

interaction picture. We do this using Eq.(2.62), a general term of the SA 

operator is then given at order n by, 

n(-ltn(+ll 
A A 

n 

(-it J dtl ... dtn(el2···e(n-l)nenohl(h + s)2. .. (h + s)n 

+el2···e(n-2)(n-l)e(n-l)oeonhl (h + s)2. .. (h + s)n-lhn 

+el2···e(n-3)(n-2)e(n-2)oeo(n-l)e(n-1)nh1(h + s)2. .. (l~o + s)n-lhn 

+ ... 
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+BwBo2B23 ... e(n-I)nh1(h + s)2. .. (h + s)n-lhn 

+BmB23 ... B(n-1)n(h + s)I (h + s)2. .. (l1, + s)n-lhn) 

( -i)n J dt1 ... dtn (e12(}23 ... e(n-1)nh1(h + s)2 ... (h + s)n-lhn 

+B12 ... B(n-l)nBnoh1(h + s)2 ... (h + s)n-lSn 

+BmB12 ... e(n-l)nS1(h + s)2. .. (h + s)n-lhn) (4.14) 

As each operator is time ordered entirely above t 0 or below t 0 then we can 

just multiply these operators together directly. If we were then to perform 

the time integrals of this result we get, 

where ri is either si or hi. We see from this that we have terms which are 

not multiplied by any delta function at all, a worrying result. 

4.1.4 The unitarity of n~+) in the interaction picture 

The result for the SA operator in the previous subsection did not appear to 

be unitary. This is clearly a problem and so we need to check the unitary 

of our form of the n~+) operator. We can do this in the standard way by 

performing the following calculation, 

n(+Hn(+) 
A A 

( 1 + (i) 1: dt1Bmh1 + (i) 21: dt1dt2Bo2B21h1(h + sh + ... ) 

X ( 1 + ( -i) 1: dt1(}01h1 + ( -i? 1: dt1dt2(}01(}12h1 (h + s)2 + ... ) 

1 + ( -i)21: dt1dt2(Bo2B21 + BmB12- BmBo2)h1h2 
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+( -i)21: dt1dt2Bo2e21h1s2 + (i) 21: dt1dt2e01e12s1h2 + ... 

1 + ( -i)21: dt1dt2 (Bo2B21h1s2 + B01B12s1h2) + ... (4.16) 

We see that not all the terms proportional to g cancel. So apparently some 

extra non-unitary terms appear when we try to calculate this result in the 

interaction picture. 

Initially we started with a unitary operator Eq.( 4.2) and we only devel

oped problems after perturbatively expanding the energy denominators. So 

from this we can quickly deduce that the operator, 

( 4.17) 

where HA = He:,.+ H0 , is not well defined. The dependence upon g in the 

energy eigenvalues Ea of the energy denominators of Eq.(4.3) has not been 

correctly taken into account. These energy eigenvalues are eigenstates of He::. 

and not H0 , because the Moller operators are always related to a particular 

basis of states, in this case the true asymptotic states are n~+) l2a). So we 

encounter problems when relating this to n~+) 1 ¢a). 

We can see how this occurs by comparing the perturbative expansion of, 

1 h 
Ea- H + iE 

(4.18) 

for both the asymptotic interaction picture and the interaction picture. The 

asymptotic interaction picture is derived by using ]{ = He::. in Eq.(2.37), 

this is a formalism we will investigate in greater detail in Section 4.3. The 

interaction picture is defined as usual. In the asymptotic interaction picture 

we have, 

1 h 1 1 ----- + h h+ ... 
Ea- HA + iE Ea- HA + iE Ea- HA + iE 

(4.19) 
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and in the interaction picture, 

1 1 1 
E h+ Hmt h+ ... 
a- Ho + iE Ea- Ho + iE Ea - HA + iE 

( 4.20) 

We see that the extra terms at second order are, 

1 H 1 h 
Ea - Ho + iE ll Ea - HA + iE 

( 4.21) 

which corresponds to expanding to first order, 

1 1 1 1 
-----h= h+ Hll h+ ... 
Ea- HA + iE Ea- Ho + iE Ea- Ho + iE Ea- Ho + iE 

( 1+ 
1 

Hfl+ ... ) 
1 

h (4.22) 
Ea - Ho + iE Ea - Ho + iE 

So the asymptotic interaction picture re-sums all these soft terms and the 

M¢ller operator in this picture is well defined. These extra terms though are 

not re-summed in the interaction picture and appear as the extra terms in 

Eq. ( 4.16) after the time integrals have been performed. 

4.2 Producing covariant amplitudes 

Ignoring the difficulty of expanding SA in the interaction picture for now we 

would want to calculate scattering amplitudes using the SA operator on the 

free states, 

( 4.23) 

Such amplitudes are then free of infrared singularities at all stages of the 

calculation. 

The problem we have now is that the SA operator is defined in time 

ordered perturbation theory. This means that at order n in the perturbative 

expansion we will have n! different time ordered diagrams to consider for each 

different topology. We have also split the interaction Hamiltonian Hint, into 

two pieces si and hi. This means that we must also consider all the different 
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permutations of these si and hi vertices in the amplitude, except for the first 

and last vertices which are always hi's. This leads to an extra 2n-2 diagrams 

for each time ordered diagram. So using this method we would have 2n- 2n! 

diagrams to compute. As we increase the complexity of the processes we wish 

to calculate, by going to higher orders in perturbation theory, we quickly get 

to a point where there are too many diagrams to realistically calculate. 

We therefore need to reduce the large number of diagrams generated. We 

know from the standard field theory approach in the interaction picture that 

we can combine the n! different time ordered diagrams into a single time 

independent Feynman diagram. Clearly a similar approach is required here. 

4.2.1 The asymptotic Hamiltonian 

In Chapter 3 we split up the interaction vertex into eight pieces, see Section 

3.2.2. Then using a theta function we divided up each of these eight terms 

into a soft and hard piece depending on whether it contributed infrared sin

gularities to the amplitude. Each term had a different theta function which 

depended only on the energy and the direction of the particles entering the 

vertex. The advantage of this form of the asymptotic Hamiltonian was that 

as we were only calculating the dressing factors in time ordered perturba

tion theory we were minimising the number of dressing factor diagrams to 

calculate by reducing the number of possible vertices. 

If we are now to relate the time ordered diagrams generated in Eq.(4.15) 

to a covariant diagram we will need a covariant division between the soft 

and hard parts of the interaction Hamiltonian. As stated in Section 3.2.2 

the soft Hamiltonian must include all the infrared divergent regions but can 

contain as much of the hard part as we want 1 . The hard Hamiltonian will 

then contain everything else. 

We will define the arbitrary function which performs this split for the 

1 We should note that strictly the asymptotic Hamiltonian is given by Hasym = 

limt->±oo Hf, our Ht>. will only differ from this by a finite amount, unlike in the usual 
case with Ho. 
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three point vertex as !s(JY1 ,p2,p3; ~). We place this in the interaction vertex, 

( 4.24) 

as follows, 

H J d3 d
3
Pl d

3
P3 (- (--+ )bt -ip!X - (--+ )d ipjX) 

b. = X (27r )32wpl ... (27r )32wp3 Ua Pl Pl e + Va PI Pl e 

X"(JL ( Ua(f53)bpaeipax + Va(f53)d~3e-ipax) 

X (ElL (fi2)ap-
2
e-ip2 x + E~ (P2)a}

2 
eip2 x) fs(Pl, P2, f53; ~) ( 4.25) 

So the momenta 'f1i are associated with the legs of the vertex and the pa

rameter ~ controls how much of the hard region we include in Hb.. We now 

require that this function fs satisfies the following requirements so that it 

correctly encapsulates the soft region. First we require that no leg of the 

vertex is "special" so, 

Next we need to separate the infrared region from the hard region correctly, 

!s(O, fJ2, p3; ~) 

!s(PI, >.pl,p3; ~) 

fs(PI, 0, P3; ~) = fs(PI, P2, 0; ~) = 1 

!s(Pl, A7Y3,p3; ~) = !s(PI,P2, >.p1; ~) 

fs(J)l,P2, Ap2; ~) = fs(Ap2,P2,P3; ~) 

!s(>.f53, fJ2, p3; ~) = 1 (4.27) 

Finally we require the UV regions to be in the hard Hamiltonian so we have, 

Now that we have defined fs it is simple to define the function that gives the 

hard region as, 

( 4.29) 
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These splitting functions for the hard and soft regions still depend upon 

the momentum three-vector 'ffi. They will therefore not be covariant in their 

current form. 

4.2.2 Removing the time order dependence 

If we are going to produce covariant diagrams from the time ordered diagrams 

we will need to replace the explicit dependence of the time ordered diagrams 

on the time ordering theta functions e( ti - tj). We would also like to remove 

the three-momentum dependence of the soft-hard splitting functions fs/h 

and replace it with a covariant four-momentum dependence. In the standard 

field theory approach there are multiple methods for taking the time ordered 

diagrams and removing the time ordering dependence. 

To explore how these would work in our situation we will consider the 

simplest type of diagram. We will attempt to combine the two time ordered 

diagrams shown in Figure 4.1 into a single covariant diagram. These diagrams 

q(p3) q(pi) 

q(p3) 
X2 

q(p2) 
q(p4) q(p4) 

Figure 4.1: The two time ordered diagrams for a single propagator. 

contain a single propagator and by attempting to derive a covariant infrared 

finite amplitude from them we will be able to highlight all the issues involved 

in "covariantising" the amplitudes. The vertices labelled Xi can be either 

hard or soft, we will initially consider both vertices as being hard. This 

corresponds to calculating the first line of Eq.(4.15). 

The contour integral approach 

Our first approach will be that of using contour integration to remove the de

pendence on the time order. When combined, the two time ordered diagrams 
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from Figure 4.1 will give us, 

where p = (wp, f)) with wP = I.P1, i.e. all four-momenta are on-shell and we 

also have x? = ti. We now want to use the following identities which come 

from contour integration, to simplify Eq. ( 4.30), 

(4.31) 

For these relations to hold we require that F(k0 ) be analytic in k0 and also 

that F(k0 ) vanishes sufficiently quickly as k0 ~ oo in the complex plane. If 

these conditions are satisfied then the second terms on the left hand sides 

of Eq.(4.31) will vanish when we apply Jordan's Lemma with the eiko(t1 -t2 ) 

term. These terms correspond to the semicircle in either the upper or lower 

half of the complex plane used to close the contour of integration. 

The key now would be to find forms of fs/h which satisfied these re

quirements on F(k0 ) as well as those of Section 4.2.1. Unfortunately we can 

quickly see that the only function that satisfies the requirements on F(k0 ) is 

a constant and this does not separate the soft and hard regions. Therefore 

we cannot use this formalism to produce covariant amplitudes. 

The e function replacement procedure 

In the previous subsection we saw that we could not find an fs function such 

that the semi-circle used to close the contour in the complex plane would 
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vanish. So we will now consider an alternative approach. 

Again we start from Eq.(4.30), but we now replace the theta functions 

with, 

e(t) = lim 100 dw eiwt 
E---++0 27ri W - iE -oo 

( 4.32) 

So Eq.(4.30) becomes, 

If we then shift w ~ wp-Po and p ~pin the first term above and w ~ wp+ko 

and p ~ -pin the second term then we get, 

where pis now an off-shell four-vector p = (p0 ,P'J. Now we require a form of 

fh(ql, fh, 1]3) such that, 

( 4.35) 

If this is the case then we get, 

( 4.36) 



CHAPTER 4. A COVARIANT APPROACH 104 

We have removed the time ordering dependence from the amplitude but this 

result is not covariant because it depends upon the three-vectors 'Pi in h~· 

If we do not have a form for fs that satisfies the requirement Eq. ( 4.35) 

then we must define the propagator as, 

( -i) d4Xl d4X
2 

: elXIPielXIP2e-tX2P3e-lX2P4 
2 

. 1
00 100 100 d4 . . . . e-ip(XI-X2) 

-oo -oo -oo (27r) 2wp p + u. 

x ((wp- ic)(!h(P,pl,P2; .6.)fh(fJ,iJJ,iJ4; .6.) 

+ !h( -fJ, fJ1, fJ2; .6.)hz( -fJ, fJJ, iJ4; .6.)) 

+Po ( !h (fJ, P1, P2; .6.) fh(zY, P3, 1~; .6.) 

- !h( -fJ, fJ1, fJ2; .6.)fh( -fJ, P3, iJ4; .6.))) (q(pl)q(p2) lhhlq(p3)q(p4)) ( 4.37) 

Although complicated this also contains no dependence upon the time order 

of the vertices. 

VIe can therefore remove the time dependence from the propagator terms 

but not in a covariant way. So although we have reduced the number of 

diagrams to be calculated we are still in a frame dependant formalism. Fur

thermore the requirements that fs/h are independent of the direction of the 

momentum entering the vertices means that we will alter the UV region of 

the theory as we will be forced to include anti-collinear regions entirely in 

the infrared region when they should be in the hard region. 

4.3 The asymptotic interaction picture 

In the preceding part of this chapter we have seen all the difficulties of calcu

lating infrared finite scattering amplitudes in the usual interaction picture. 

All of these difficulties suggest that a better approach would be to drop the 

use of the interaction picture entirely. The most obvious choice then would 

be to work directly in the asymptotic interaction picture. For similar rea

sons as before we would also like to work in a covariant formalism. We have 

previously used the Hamiltonian as the foundation of our approach because 
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it most clearly shows up the causes and potential solutions to the infrared 

singularity problem. For the rest of this chapter though we will pursue a dif

ferent direction for the basis of our formalism. It will be an approach closer 

to the usual field theory methods described in Chapter 1. 

The n-point correlations functions will now be the starting point of our 

calculations. These will be related to physical SA-Matrix elements which 

come from the SA operator acting upon a basis of asymptotic states and not 

a basis of free fields states as before. We will then give a heuristic derivation 

of a modified form of the LSZ theorem which can perform this relation. The 

correlation functions will then be related to fields in the asymptotic interac

tion picture using evolution operators. Modifications to the usual Feynman 

rules for the propagators and vertices in this new picture will be given. We 

will also prove that amplitudes defined in this asymptotic interaction picture 

will be entirely free of infrared singularities. We should note that the discus

sion of these topics in the remainder of this chapter gives just an overview 

of this area and is only intended as a guide of how such calculations could 

proceed. 

4.3.1 Calculations in the asymptotic interaction pic

ture 

We begin from a Lagrangian describing any theory with a three-point inter

action. We split this Lagrangian into two parts, 

( 4.38) 

£ 0 is the usual free field Lagrangian and .C 1 R contains the parts of the interac

tion that give rise to soft or collinear momenta flowing through a three-point 

vertex. Together these two Lagrangian's form the asymptotic Lagrangian, 

which describes the asymptotic evolution of the fields of the theory. .Chard 

then contains the remainder of the interaction terms and any renormalisation 

counter-terms in a renormalised theory. 

The fields contained in the Lagrangian, for example Eq.(1.2), can then 
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be used in the calculation of time ordered correlation functions of the form, 

(DIT { 1/J( X1) ... ~J(Xn)} I D) ( 4.39) 

These are then related to physicalS-Matrix elements using the LSZ theorem. 

The usual approach is to take the fields that are a solution to £ 0 as the 

asymptotic fields. Instead we will want to relate the correlation functions 

to SA-Matrix elements calculated on asymptotic fields and so we will choose 

fields that are a solution to Lasym as our asymptotic fields. This will require 

us to modify the usual LSZ derivation which will be discussed in Section 

4.3.4. 

The calculation of these correlation functions in the usual interaction 

picture approach leads to infrared singularities as described in Chapter 1. 

The asymptotic interaction picture avoids this problem and is derived in the 

following way. Evolution operators for the asymptotic interaction picture are 

generated using Eq.(2.52) where Hasym is now the asymptotic Hamiltonian 

derived from the Lagrangian Lasym· These evolution operators can be written 

as, 

( 4.40) 

where HA,int = Hf - Hasym· The correlation functions are then placed in 

the asymptotic interaction picture in the same way as we would place it in 

the interaction picture, by relating the full fields 1/J to the asymptotic fields 

::::using, 

1/J(t, x) = U1(t, to):=:(t, x)UA(t, to) (4.41) 

The correlation functions then become, 

(D IT {'1/J( X1) .. . '1/J( Xn)} I D) 

(DIT{U1(xl, to):=:(xl)UA(xl, to) ... U1(xn, to):=:(xn)UA(xn, to)}ID) 
(D'IT{U A(T, xl):=:(xl)UA(Xl, x2) ... UA(Xn-l, Xn):=:(xn)UA(Xn, -T)}ID') 

(D'IT{UA(T, to)U1( -T, to)}ID') 
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(n'[T{S(xl) ... S(xn)UA(T, -T)} [n') 
(n'[T{UA(T, -T)}[n') 
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( 4.42) 

where [n) and [D') are the vacuums of the full and asymptotic fields respec

tively. If we now take T ------> oo then we get, 

( 4.43) 

The fields in .Chard are now all asymptotic fields 3. The amplitudes generated 

from this will consist entirely of hard vertices, the infrared pieces of .C are 

now contained entirely in the propagators of the 3 fields. 

Before we can proceed further we will need to define a completely covari

ant split between the hard and the soft momentum regions of the theory. 

We can then define forms for .Chard and .C 1 R· To do this we will need to 

pinpoint the locations of all possible infrared singularities that can appear in 

a covariant perturbation theory amplitude. 

4.3.2 Infrared divergences in covariant perturbation 

theory 

The Landau equations 

We wish to examine the general structure of infrared singularities of massless 

scattering amplitudes. This can be done by considering the general form of 

the massless Greens function G( {Pe}) with external momenta {Pe} given after 

Feynman parameterisation has been used to combine the propagators into a 

single denominator, 

( 4.44) 
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where there are i lines in the diagram and k loops. F ( ai, kn Pe) contains all 

the numerator factors of the diagram and, 

( 4.45) 
n n 

where band care just c-numbers and are zero whenever kn is not contained 

in the propagator denoted by lj. 
We now concern ourselves with the type of singularities this general am

plitude can have. We want to analytically continue the arguments of G( {Pe}) 

onto the complex plane so that the integrals involved become contour inte

grals in the complex plane. This would then allow us to avoid any poles 

along the real axis. In doing this though we find that there are two possible 

classes of singularity in the complex plane where this cannot be done and 

hence the integral contour cannot be deformed. 

We will first examine the possible singularities in the single variable case 

and then extend this discussion to the multi-variable case. The first class 

of singularity is the end-point singularity, these occur when the integrand 

contains a pole at one of the fixed end points of the integration contour. 

The contour can then not be deformed around this singular point and it is 

therefore a real singularity of the amplitude. The second class of singularity is 

the pinch singularity. Such a singularity is a result of the integration contour 

being trapped between two poles, the contour is then pinched between these 

two poles and the singularity cannot be avoided, see Figure 4.2. In the multi-

! 
~ 

l 
Figure 4.2: A pinch singularity where the contour C is trapped be
tween the two poles indicated by arrows in the complex plane. 

variable case these pinch points become surfaces in the space of the complex 
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variables { ki, t:Xj}, if at each possible pinch point of a particular variable in 

{ki, aj} the variable is trapped whilst we keep the remaining variables fixed. 

These are known as pinch surfaces. 

Here we will only be interested in pinch surfaces as the momentum in

tegrals before Feynman parametrisation were unbounded and so we have no 

end-point singularities. It is only when the internal variables {ki, aj}, of 

G( {Pe}) are on a pinch surfaces that an infrared singularity can appear. To 

find all the possible pinch surfaces and hence all the possible regions of in

frared singularities we will need to use the Landau equations [1, 44). We can 

derive these as follows. Singularities appear when, 

L.. t:XjlJ(p, k) +it= 0 
j 

( 4.46) 

This is quadratic in kJ.L and so we expect there to be two solutions to this 

equation. These will give a pinch singularity only when the derivative of this 

equation is zero at these solutions. This would mean that, 

(4.47) 

Values of {ki, aJ} that satisfy Eq.(4.46) and Eq.(4.47) are then our required 

pinch surfaces. The possible solutions are then given by either, 

( 4.48) 

for every loop j that includes the line i, or by, 

( 4.49) 

A pinch surface solution to the Landau equations does not guarantee an 

infrared singularity but it is a necessary condition for the existence of one. 

To determine whether infrared singularities exist on these surfaces we must 

investigate the behaviour of the amplitude further at these points. 



CHAPTER 4. A COVARIANT APPROACH 110 

Reduced diagrams 

To investigate the singularity structure closer we will use a diagrammatic 

method to visualise the pinch surface solutions to the Landau equations. 

These diagrams are known as reduced diagrams [44, 46] and are constructed 

in the following way. We start from the normal Feynman diagram for the 

amplitude we wish to calculate. Next we take any off-shell line and reduce 

it to a point connecting the vertices on either end together to produce a 

composite vertex. This occurs because the only way for off-shell lines to 

satisfy the Landau equations is for a = 0 which corresponds to a vanishing 

contribution to the denominator of Eq. ( 4.44). Any on-shell lines are kept as 

these satisfy the Landau equations for any a. 

The reduced diagrams produced in this way are not necessarily all pinch 

surfaces. As well as satisfying the Landau equations the diagrams must also 

satisfy the constraints on the momenta given by four-momentum conserva

tion at each vertex of the diagram and also any restrictions on the external 

momenta. 

We will only be considering nonexceptional reduced diagrams. These are 

diagrams such that for every proper subset Q of the set of external momenta 

{Pi} of a reduced diagram G( {Pi}) we have, 

( 4.50) 

This then removes any reduced diagrams where the external momentum be

come collinear or soft. In the strictest sense it also means that all of the 

external momenta are off-shell. So we will relax this requirement slightly 

and allow the external lines to be on-shell. 

To demonstrate how this works we will consider the following example 

for the vertex correction diagram given in Figure 1.1. If every line is on

shell then the corresponding reduced diagram is given in Figure 4.3. This 

corresponds to a pinch surface when l~ is soft and leads to a soft singularity. 

If we now take l2 off-shell then we get Figure 4.4 which corresponds to a pinch 

surface giving a collinear singularity. Finally consider taking the propagator 



CHAPTER 4. A COVARIANT APPROACH 

Figure 4.3: The vertex correction reduced diagram with all propaga
tors on-shell. 

Figure 4.4: The vertex correction reduced diagram where l~ =1- 0 and 
all other propagators are on-shell. 
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l3 off-shell this would give the reduced diagram in Figure 4.5 this does not 

correspond to a pinch surface as this would then require zr and l~ to be 

collinear to each other. 

The massless limit 

For massless theories such as those being discussed here there are only two 

possible ways for an internal line of a diagram to be on-shell, it must be 

collinear to some light like momentum, or it must be soft. We can classify 

these two types of solution in the following way. A jet is defined to be a 

set of connected massless on-shell lines i, with momentum {qn, which are 

all collinear to each other and to a light like momentum p11 • Similarly a soft 
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PI 

"" ll 
........... 

P3 

--h 

P2 
/, 

Figure 4.5: The vertex correction reduced diagram where l§ i- 0 and 
all other propagators are on-shell. 
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line is one whose momentum q11 = 0. A set of such lines is known as a soft 

sub-diagram, such sub-diagrams do not have to be self-connected. 

Infrared power counting 

Not all pinch surfaces give rise to infrared singularities, to investigate whether 

a particular type of pinch surface is infrared divergent we need to use power 

counting techniques. To do this we must first consider how the pinch surfaces 

of a diagram G({pe}) given by Eq.(4.44) behaves depending upon the mo

menta {ki, o:1} internal toG( {Pe} ). The pinch surfaces of G arise whenever 

the momenta of a line goes on-shell and is therefore either soft or collinear. 

This set of requirements upon the momenta of G that lead to pinch surfaces 

therefore forms a surface CJ, in the space of all the momenta variables. We can 

then split the momenta on this surface into two groups. In the first group we 

have momenta variables that when arbitrarily altered keep G on the pinch 

surface. These are therefore internal variables to the momentum surface CJ. 

The second group of momenta variables are those that when altered by even 

small amounts take G away from the pinch surface. These variables are 

therefore normal to the momentum variable surface CJ. By examining how 

the pinch surface of G behaves when we alter the normal variables of CJ close 

to it we can examine the behaviour of the diagram near the pinch surface. 

This can be done by calculating the superficial degree of infrared divergence 
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of the Homogeneous integral [44, 46]. 

To define the Homogeneous integral we start with the general form of an 

amplitude G, given in Eq.(4.44). We can rewrite this as, 

G( {Pe}) = J II dlj 1 II dkJa(ki, lj, Pe) 
J t 

(4.51) 

The li are the internal variables of CJ and the ki are the normal variables 

of CJ. The 0 on the integral of ki is to indicate we are investigating the ki 

variables close to their mass-shell limit and hence to the pinch surface of G. 

The term Ia contains numerators and denominators which are polynomials 

in the normal variables ki· The Homogeneous integral la is given as the limit 

of Ia as the ki go on-shell. So for example in the case of a soft limit we would 

take the internal loop momenta ki as our normal variables. We would then 

construct the Homogeneous integral by keeping only the lowest order terms 

of ki in the denominator and set powers of ki in the numerator to zero. So a 

numerator factor such as (p + k )i-t would become pi-t and a denominator factor 

such as (p + k) 2 would become p2 + 2(pk). 

We can then examine how G approaches its pinch surfaces by examining 

how the Homogeneous integral behaves when we scale ki. So we rewrite the 

Homogeneous integral as [44], 

G({pe}) = ]II dlj jrr dkJa(ki,lj,Pe) 
J 0 t 

J IT dlj 100 

d>-
21 IT dkio (>-2 

- L lkil 2
) I a(ki, lj, Pe) 

J t t 

2 J IT dlj 100 

d).).~-t(a)-l 1 IT dk~o (1- L lk~l 2) la(k~, lj,Pe) 
J t t 

(4.52) 

Where p,( CJ) is known as the superficial degree of infrared divergence and 

k~ = kd >.. If p,(CJ) > 0 then we expect the amplitude to be infrared finite. 

The form of ~t( CJ) can be derived using power-counting techniques similar to 

those used for UV divergences [44]. For a diagram to be infrared finite we 
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then assume that we need only show that at each possible pinch surface the 

superficial degree of divergence calculated using powercounting techniques is 

greater than zero. 

4.3.3 The asymptotic :Lagrangian 

The soft-hard splitting requirements 

Before we go further we need to define how we split the soft and hard regions 

up between .CIR and .Chard· To do this we will use the knowledge derived in 

the last section from the use of the Landau equations to examine the soft and 

collinear regions in covariant diagrams. We will want to define two functions 

is ({Pi}; 6) and !h ({Pi}; 6) connected via, 

(4.53) 

where {Pi} are the momenta of the legs attached to the vertex. The require

ments we will want are the same as those given in Section 4.2.1 except that 

all the three-momenta in the is/h are replaced with four-momenta so that 

they are completely covariant. Again we will also only consider three-point 

vertices. 

Defining the form of is and ih 

The simplest form for is that satisfies all the above requirements is given by, 

(4.54) 

this is defined with all the four-momenta Pi in Euclidean space. 

We now proceed to confirm that this form for is successfully satisfies all 

the requirements of Section 4.2.1. Firstly it is symmetric and even in all of 

its arguments. We can only get soft or collinear singularities when all the 

lines entering a vertex are on-shell (see the next subsection). Immediately 

we can see from the definition in Eq. ( 4.54) that when all of the Pi go on-shell 

that is gives one, as expected. 
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Now we need only check the UV limits. Taking the limit p1 ---+ ±oo we 

get, 

0 X exp (- ~ (p~ + PD) ( 4.55) 

and immediately see that is vanishes. This form for is therefore correctly 

satisfactorily separates the soft and hard regions. 

Checking the infrared finiteness of the completely hard amplitude 

From the definitions of ih and is above we can now define a hard vertex 

to be a vertex such that at least one of its attached legs is off-shell. A soft 

vertex is then defined to be a vertex where all the attached legs are on-shell. 

In the asymptotic interaction picture, amplitudes will be calculated from 

Feynman diagrams which consist entirely of hard vertices, Eq.( 4.43). With 

our definitions of hard vertices we want to guarantee that such a diagram 

is in fact free of any infrared singularities. We can prove this is true in the 

following way. 

We will consider any field theory which contains scalar, boson or fermion 

lines and also contains a three-point vertex, for example (p scalar theory or 

QCD. We will only consider the possible infrared divergences coming from 

the three-point vertex, it should be possible to treat four-point vertices in 

the same way. Each hard vertex consists of a normal vertex factor from the 

interaction Lagrangian multiplied by an ih factor as defined in Eq.(4.53). 

We will begin by consider an arbitrary graph with n vertices and we will 

place all of its internal lines on-shell. Such a diagram can only give infrared 

singularities if it corresponds to a pinch surface. If it is a pinch surface 

the amplitude will still be finite because each vertex is a hard vertex and 

therefore the properties of ih mean that such a diagram will be zero. We 

will now consider taking the lines of this diagram off-shell one by one. We 

are therefore considering all the possible reduced diagrams of the original 

Feynman diagram. 

Any hard vertex factors multiplying the vertices attached to an off-shell 

line can no longer set the graph to zero as they contain an off-shell mo-
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menta. If this reduced diagram corresponds to a pinch surface then there 

is a possibility that this diagram is infrared divergent. All the remaining 

hard three-point vertices factors in the reduced diagram though will still be 

enough to keep the resulting reduced diagram infrared finite. We now pro

ceed to take one line connected to each hard vertex off-shell. The resulting 

reduced diagram no longer contains any hard vertices and so if it corresponds 

to a pinch surface it could be infrared divergent as there are no fh factors 

to set it to zero. This should represent the worst case for the appearance of 

infrared divergences. If we were to take any further lines off-shell we should 

be reducing the possible infra-red divergences. 

When we take a line off-shell we combine two vertices together in the 

corresponding reduced diagram. Each vertex started off with a hard vertex 

factor attached which will now have been removed. In this reduced diagram 

therefore we have contracted one of the lines connected to each vertex so 

that we are left with just four-point and higher vertices. This also means 

that those vertices which were originally connected to an external line can 

now be connected to two or more external lines. At each vertex we have 

four-momentum conservation. Therefore when we have l external momenta 

Pi attached to the vertex and m internal momenta k1 attached to the vertex 

we will have, 

£5(
4

) (z= Pi + L kj) ::::} L Pi + L kj = 0 
l J l J 

(4.56) 

The internal lines of reduced diagrams can only be on-shell and therefore 

must be either jets or soft subdiagrams. 

In the case when all the internal lines connected to the vertex are soft 

then '2::::1 k1 = 0, and so we will require '2:::i Pi = 0 at the vertex. Now none 

of the external lines are soft and so this could only be true for i 2: 2 but we 

are only considering nonexceptional diagrams so we have, 

(4.57) 
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Therefore we cannot conserve four-momentum at this vertex and hence any 

such diagram will not be a pinch surface. The only exception to this is in 

the case when all the external lines are connected to a single vertex in the 

reduced diagram. In this case 2..:1 p1 = 0 is true and the reduced diagram 

will be a pinch surface. If all the four-momenta are Euclidean then this will 

be the only pinch surface we need to consider. The general form of such 

a reduced diagram is shown in Figure 4.6. The proof that such a general 

Figure 4.6: The general reduced diagram when we have Euclidean 
four-momenta after all the hard vertex factors have been removed. 
We are left with only a soft subdiagram S connected by the soft kj 
lines to the external lines at a single vertex. 

reduced diagram is infrared finite is the same as that given in [44] for the 

specific case of four-point and higher vertices only. 

More generally we can consider four-vectors in Minkowski space, we will 

then have reduced diagrams with internal jets. Taking this into account we 

will now consider what type of vertices we can have external lines connected 

to. If all the external lines are connected to the same vertex then we can 

clearly have no internal jets as the only lines that could be connected to this 

vertex and make it a pinch surface would be a soft loop subdiagram, which 

we have already considered above. Next we have vertices with more than one 

external line but not all external lines connected to them. There must be at 

least two internal jets connected to each such vertex because four-momentum 



CHAPTER 4. A COVARIANT APPROACH 118 

conservation means that Lj kj = - Li Pi but in this case, 

( 4.58) 

therefore, 

( 4.59) 

and so we cannot have a single jet. We can also have as many soft lines 

connected to these vertices as we want but there must always be at least two 

internal jets. The only other case is when only a single external line connects 

to the vertex. Here we must have at least one jet attached to the vertex and 

we can have as many soft lines as we want. 

In general therefore we will get reduced diagrams in which every internal 

vertex must be connected to at least two jets. We will get soft loops formed 

whenever a loop exists in the diagram with at least one soft line. Finally 

different jets can only be connected to each other by vertices that have at 

least three jets connected and we can have no disconnected internal jets. 

Powercounting including jets 

We will be considering a theory that contains no numerator factors as this 

would increase the superficial degree of divergence of the reduced diagram. 

Therefore we are considering the worst possible case for the appearance of in

frared singularities. The contributions to the superficial degree of divergence 

of the general reduced diagram will come from the Li soft loops which will 

contribute +4, the Lj collinear loops which will contribute +2, the Ii inter

nal soft lines which contribute -2 and the Ij collinear lines in each jet loop 

which contribute -1. Soft loops contribute +4 to the superficial degree of 

divergence because all four components of each loop momentum are normal 

coordinates to the pinch surface. For the case of collinear loops though only 

two of the loop momenta are normal coordinates to the pinch surface and so 
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only contribute +2 to the superficial degree of divergence. We will consider 

the general reduced diagrams generated by contracting all the hard vertices, 

these are not necessarily pinch surfaces but we need only prove that all such 

reduced diagrams have a positive degree of superficial divergence. 

Initially we will consider the case where we have a reduced diagram made 

up of only four-point composite vertices as this should represent the worst 

case we will encounter. In general we could also have five-point and higher 

vertices in the reduced diagram. When we take more than one line attached 

to each hard vertex off-shell there will also be the possibility of three-point 

vertices. In these cases though we would have needed to take further lines off

shell from a reduced diagram which already consists of four-point or higher 

composite vertices and so diagrams containing such vertices should contain 

fewer infrared divergences. With this restriction we see that vertices con

nected to three external lines cannot exist. We must have two jets attached 

to any vertex connected to two external lines, as shown in Figure 4.7(a). Ver

tices connected to only a single external line must have either one internal 

jet or three internal jets attached to the vertex. This is because we require, 

(4.60) 

If k1 is a soft momenta then this becomes k2 k3 = 0 and so one of the other 

momenta must be soft or the two must be collinear. In either case we are 

left with just a single jet. The four different types of vertex coming from this 

are shown in Figure 4.7(b)-(e). 

We will now consider the different types of vertices that can appear inside 

the reduced diagrams. These consist of three groups, the first are vertices 

where every line attached is part of a separate jet or is soft, these will have the 

same form as the external vertices in Figure 4.7(a),(c) and (e). The second 

type is when two of the lines form a jet and the other two lines either form 

a second jet or one of the remaining lines is soft and the other is a jet, this 

has the same form as Figure 4. 7(b). Finally the third kind of vertex is when 

three lines form a jet, the remaining line must then also be a jet, this has 

the same form as Figure 4.7(d). This third kind of vertex will only appear 
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X -e 
(a) (b) (c) 

E (;( (d) 

Figure 4. 7: The different types of external vertex, the external lines 
are on the LHS of the vertex and the internal lines of the RHS. The 
internal lines of (b) and (d) form a single jet whilst the three internal 
lines of (e) form three separate jets. 

inside jets whereas the first two kinds can form soft loops as well. 
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For reduced diagrams of this type we have the following powercounting, 

( 4.61) 

where Nj is the number of internal lines inside collinear loops and Ni is the 

number of internal collinear lines that are part of soft loops. We can separate 

the contribution of the soft subdiagram from the collinear loops and calculate 

its powercounting separately. 

We have Li = Ii + Ni - (V1 + V2 - 1), where V1 is the number of vertices 

inside the soft subdiagram and V2 is the number of vertices connected to 

both soft and collinear lines. Using this gives, 

(4.62) 

Now the number of vertices internal to the soft subdiagram is given by 4V1 = 
2I + bi, where I is the number of soft lines internal to the soft subdiagram, 

bi is the number of soft lines connecting the soft subdiagram to the jets and 

I + bi = h So this then leads to, 

(4.63) 
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Here L2 = Ni - (V2 - 1) = 0 as there are no collinear loops in the soft 

subdiagram. 

The total powercounting for the reduced diagram now becomes, 

( 4.64) 

where IJ is the total number of collinear lines inside loops in the diagram. 

Now again Lj = IJ + N- (V- 1), where N is the number of internal collinear 

lines that were not part of any soft or collinear loops and V is the number 

of vertices in the remainder of the diagram once we have removed the soft 

subdiagram. This then gives us, 

J-L = 2 + IJ + 2N - 2V + bi ( 4.65) 

The number of vertices in the diagram is related to the number of lines via 

4nV = 2Ij + 2N + e + bi, where e is the number of external lines attached to 

the reduced diagram and n = 1 in the case of just four-point vertices. Using 

this we now have, 

{L 2 + (1 - .!_) I + (2 - .!_) N + (1 - _.!__) bi - !3._ 
n J n 2n 2n 

b e 
2 + N + ~ - - ( 4.66) 

2 2 

Here we have set n = 1 in the last step. 

For this to be less than or equal to zero we will need N = 0 and ( e/2) ;:::: 

(bi/2) + 2. Now there are only five different types of vertex that are connected 

to external lines, these are shown in Figure 4. 7. Of these (b) and (c) will 

always have at least as many soft lines attached as external lines and so 

bi ;:::: eb + ec, where the ei are the number of external lines attached to vertices 

oftype (i). 

For the vertex (a) to be part of a divergent reduced diagram it must 

be attached to some internal loops. Therefore both internal legs must be 

connected to either an internal vertex which is attached to collinear loops 

only or to vertices which have soft lines attached. If the vertices which have 
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soft lines attached in the second case are internal vertices then we will have 

bi 2: ea. If instead they are both external vertices then the worst case is when 

both of these external vertices are of type (b). For this to be the case though 

we must have at least two other internal vertices which are connected to soft 

lines and therefore in this case bi 2: ea also. 

If the internal lines of vertex (a) are attached to collinear loops then we 

see that this means that the only internal vertex it can attach to without a 

soft line being present is when we have three collinear lines coming out of the 

internal vertex in either a single jet or as three separate jets. In the case of 

a single jet though we cannot form any soft loops and so the line connecting 

vertex (a) to this internal vertex must contribute + 1 as N = 1. Therefore 

J-L > 0 in this case also. If we get three separate jets then at least two of these 

must connect to internal vertices as we have no external vertex connected 

to three external lines. Therefore these must either connect to vertices with 

soft lines attached in which case we will get bi 2: ea or they only attach to 

collinear vertices in which case there are no soft loops and N 2: 1. So again 

J-L > 0. 

If we have external vertices of type (e) then the discussion above again 

applies. Except in this case there is only a single external line attached, 

therefore it is quicker to see that diagrams containing it will have 2N + bi 2: e. 

Finally if we have external vertices of type (d) then we see that jets formed 

from these vertices can only be attached to other jets via a single line. So if 

no soft vertices are emitted the last vertex in the jet must have three lines 

collinear to each other entering the vertex and one line exiting. Otherwise 

we must attach soft lines to the jet in which case bi 2: ed. If no soft lines are 

attached then we can see that we will get a diagram of the form shown in 

Figure 4.8. Now the only way to produce such a reduced diagram is if the 

original diagram was not an amputated diagram. We are only interested in 

amputated diagrams so we can never get such a reduced diagram. 

From this discussion we see that we will always have 2N + bi 2: e and 

therefore any pinch surfaces coming from these reduced diagrams will be 

infrared finite. Initially we only consider the case with four-point composite 

vertices. In general though we will have five and higher point vertices. In 
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Figure 4.8: A non-amputated reduced diagram, where R represents 
the reduced diagram and J represents the collinear loops inside the 
non-amputated jet. 
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this case n in Eq.(4.66) will be greater than one and so Eq.(4.66) will be 

more positive as we get a 1- (1/n) contribution from each internal line and 

hence 11o > 0 for any number of external lines. 

We only have the general reduced diagrams of the types discussed here to 

consider and so we have proved that 11o > 0 for all the possible pinch surfaces 

of the reduced diagrams generated from taking propagators off-shell in the 

amplitudes given by Eq.(4.53). As these were the only reduced diagrams 

which could give pinch surfaces we have therefore proved that Feynman di

agrams of any quantum field theory with a three point vertex and made up 

entirely of hard vertices as defined by fh in Eq.(4.53) are always infrared 

finite. 

4.3.4 The asymptotic fields 

We will now consider the calculation of the physical SA-Matrix elements on 

the asymptotic fields. To do this we will produce a heuristic derivation of a 

modified LSZ reduction formula. For simplicity we will do this for a scalar 

theory but the extension to fermions and vectors should proceed as in the 

usual derivation. 

The asymptotic condition 

The adiabatic assumption asserts that as t -+ ±oo we have the following 

weak operator limit result, 

( 4.67) 
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where z~t;m relates the fields of the full theory 'l/J to the asymptotic fields 

cPasym(x), defined by Lasym· Now it is usual to take the asymptotic field 

cPasym to be the free field cj;( x), when this is done though we will usually get 

infrared divergences in the associated renormalisation factor z~12 . We also 

known that amplitudes calculated on the asymptotic states in the asymptotic 

interaction picture should be free of such divergences and are also equivalent 

(after we have regularised the IR divergences) to amplitudes calculated on 

the free fields in the interaction picture. We therefore assume that we can 

relate the free fields cjJ to our asymptotic fields 3 in a weak limit at asymptotic 

times via a factor Y, 

"''(x) -+ zl/2 "'(x) = zl/2 '='(x) = zl/2 yl/2"-(x) '+' 0 '+' - asym ~ - asym '+' ( 4.68) 

Hence we assume that at asymptotic times, 

3(x) - Y 112¢(x) ( 4.69) 

This factor Y must contain all the dependence on the infrared region of the 

theory and therefore any potential IR divergences making it ill-defined. 

Defining the asymptotic fields 

First we must define the asymptotic field operator, this is given in general 

by, 

3(t, x) 

(4.70) 

where, 

(4.71) 
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The conjugate momentum is then given by, 

n3 (t, x) = 80'2(t, x) 

The field operator Eq.(4.70) and Eq.(4.72) satisfy the usual equal time com

mutation relations, 

[S(t, x), n3 (t, Y)] = i8(x- i/) ( 4.73) 

Next we define al(t, k) and aa(t, k) as asymptotic creation and destruction 

operators respectively and Ek as the asymptotic field energy. The destruction 

operators are defined such that they give zero when acting on the vacuum at 

asymptotic times, 

lim (O'Ia1(t, k) = 0 and lim aa(t, k)IO') = 0 
t--.oo t--.-oo 

( 4.74) 

where 10') is the asymptotic vacuum. Also when the creation operator acts 

on the vacuum at asymptotic times it creates a "one-particle" asymptotic 

state, 

lim al(t, k)IO') = lim IS(t, k)) = ISin(k)) 
t---+-00 t---+-00 

They satisfy the following equal time commutation relations, 

[aa(t, k), al(t, k')] = 2Ek(2n)38(k- k') 

[aa(t,k),aa(t,k')] = 0, [a1(t,k),a1(t,k')] = 0 

( 4.75) 

( 4.76) 

We can also construct in the asymptotic limit an operator H~ from these 

creation and destruction operators. This is defined as, 

( 4.77) 
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This has the same form as the free Hamiltonian constructed from a and at 

operators and correspond to the Hamiltonian of the asymptotic field when 

t -----+ ±oo2
. So we have, 

(4.78) 

Using the asymptotic limit Eq.(4.69) then the t -----+ ±oo limit of the 

asymptotic creation and destruction operators becomes, 

( 4.79) 

Therefore Eq. ( 4. 70) can be written at asymptotic times as, 

(4.80) 

where Ek = y-Iwk and aa(t, k) = y-I12a(t, k), we will justify both of these 

statements in the next subsection. The conjugate momenta for the field in 

Eq.(4.80) at asymptotic times is given by, 

where we assume HA -----+ H~ in the asymptotic limit. These solutions of the 

field operator Eq.(4.80) and conjugate momenta Eq.(4.81) satisfy the usual 

equal time commutation relations, 

[3(t, i), 1f:=;(t, Y)] = i8(i- Y) (4.82) 

2Vve assume here that the solution of the asymptotic field 3 means that we can treat 
any interaction terms as vanishing safely at asymptotic times without introducing any 

infrared singularities 
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From Eq.( 4.80) and Eq.( 4.81) we can then derive in the asymptotic limit, 

The asymptotic states 

J d3xe-ikx(Ek'2(t, x) + in=:(t, x)) 

J d3 xeikx(Ek'2(t, x)- in=.(t, x)) ( 4.83) 

Using the asymptotic weak operator limit Eq. ( 4.69) we will now investigate 

the structure of the asymptotic states in the asymptotic limit in more detail. 

Eq. ( 4.80) in this limit is related to the free field as, 

therefore, 

( 4.85) 

Using this we can then investigate the four-momenta of the asymptotic state. 

We take the operator [1], 

( 4.86) 

which measures the four-momentum of an asymptotic state in the asymptotic 

limit. We require that, 

PtiP) = P~iP) ( 4.87) 

if we now use Eq.( 4.86) and Eq.( 4.85) in this we get, 
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E 
p~L_.E.Yip) 

aw 
p 
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(4.88) 

where we have p~ = (Ep,P'J· We can relate this result to Eq.(4.87) to get, 

E 
PIL = p~L_Ey =? E = w y- 1 

a a p p 
Wp 

( 4.89) 

So we get the usual free field energy multiplied by a factor. From this we see 

that the operator H~ is related to the Hamiltonian of the free fields by, 

( 4.90) 

For the three momentum we have, 

(4.91) 

where Pj is the free field three-momentum operator. So at asymptotic times 

the three momentum remains the same as in the free case. Finally we can 

use these results to simplify Eq.(4.85), 

(4.92) 

We will see in Section 4.3.5 that Y is related to the propagator of the asymp

totic fields. 

From this discussion we can interpret this result as telling us that an 

asymptotic state is one in which the three-momentum of the state remains the 

same as a free state whilst the energy of the state is altered from the usual free 

field result by a factor depending upon the soft and collinear contributions to 

the asymptotic propagator. The factorY is a c-number and so the asymptotic 

states behave in the same way as free states apart from this extra factor. We 

should therefore be able to interpret such states in a similar way to the free 

states, this includes importantly a modified LSZ formalism. 
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As stated in Section 4. 2.1 our split of the hard and soft regions of the 

Lagrangian does not give us the actual asymptotic Lagrangian of the fields 

of the system. The true asymptotic Lagrangian comes from taking explicitly 

the limit t _. ±oo of the full Lagrangian. Our asymptotic Lagrangian differs 

by a finite amount from the real asymptotic Lagrangian. The asymptotic 

states defined above come form our Lasym and therefore the parameter .6. 

contained in our asymptotic Lagrangian will become part of the definition 

of our asymptotic states. This dependence appears in the factor Y in the 

relations above. The question now is how are such states related to the states 

measured in an experimental situation. 

We suspect that the amplitudes themselves may be independent of .6.. 

We can see this by investigating the matrix elements in the asymptotic in

teraction picture. Now we have, 

( 4.93) 

where we have written the explicit dependence on .6. of all the quantities. We 

are free though to pick any .6. and so we could equally as well have written, 

(3{3(.6.) IS1~- )t n~-) sA ( .6.)S1~- )t n~-) I Sa( .6.)) 

(3!3(.6.)ISA(.6.)I3a(.6.)) (4.94) 

where n~-l is a unitary operator relating the two pictures. We know n~-l is 

a unitary operator because the two different pictures should only differ by 

a finite amount. From this we see that the two results are the same, this 

suggests that the amplitudes are therefore independent of our choice of .6.. 

In explicit calculations though this .6. independence may not hold because as 

we will see in Section 4.3.5, we cannot calculate the asymptotic propagators 

to all orders and instead we can only define them perturbatively. This may 

produce a dependence on .6. in the amplitudes which is related to the order 

in the perturbation series to which we calculated to. 

The use of these states instead of the usual free states also suggests that 

the physical observable definitions, such as those in Eq.(1.1), may also have 

to be altered to match how these states behave. Of course the usual choice of 
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H0 states asymptotically is also not the same as the true asymptotic states 

and so this problem is not unique to the asymptotic interaction picture. The 

form of any such alterations and a deeper understanding of the form of these 

states is left to future work. 

The modified LSZ reduction formula 

Now that we have some understanding of the asymptotic states let us give 

the outline for a modified LSZ reduction formula, this will allow us to relate 

the time ordered correlation functions of Eq.(4.39) to SA-Matrix elements 

calculated on the asymptotic states. As in the standard case we start by 

extracting an asymptotic creation operator from the initial state, 

A out(P1, ... ,pnlq1, ... , qm)in 

lim out(P1, ... ,Pnia!n(ql)lq2, ... , qm)in 
q~---->-00 

( 4.95) 

where a!n is an asymptotic creation operator al. Now we rewrite the creation 

operator as an asymptotic in field in the usual way using Eq.(4.83), 

lim out (P1, .. ·, Pn ia!n ( q1) lq2, .. ·, qm)in 
q~---+-00 

lim J d3xeiifd(P1, ... , Pn1Eq1 2in(t, x) - i1r=.(t, x) lq2, ... , qm) 
t---+-00 

(4.96) 

where we have dropped the in and out labels from the in and out states. At 

t ---+ -oo we have, 

:::;'. _ z-1/2"'' ,.~-. _ z-1/2"'' 
~m - asym '+'' '+' - 0 '+' (4.97) 

Also in the asymptotic limit the real asymptotic Hamiltonian approaches the 

operator H~ which in turn is related to the free Hamiltonian by Eq. ( 4. 90), 

(4.98) 
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Using this we can rewrite the Heisenberg picture operators ~(t, x) and1r;=.(t, i) 

in the asymptotic limit as, 

lim ~(t,i) ---+ j d
3

k Y 112 (a(O,k)eikx+at(o,k)e-ikx) 
t-.-oo (27r )32wk 

yl/2¢(t, i) 

lim 1r.=(t, x) ---+ -i J d
3 

k y-112w. (a(O k)eikx - at (0 k)e-ikx) 
t--->-oo - (27r )32wk k ' • ' 

y-l/27rq,(t, i) ( 4.99) 

Then in the asymptotic limit we have, 

( 4.100) 

So Eq. ( 4.96) becomes, 

Now as usual we add and subtract the following term, 

( 4.102) 

So that we can write Eq.(4.101) as, 

after we have used, 

(
lim - lim ) J d3xF(x, t) = lim jtf dt ~ J d3xF(x, t) ( 4.104) 
t-.oo t--->-oo t1 -.oo,t;->-oo t; ut 
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We have dropped any terms that correspond to disconnected pieces and hence 

give no contribution to the scattering. Next we rewrite Eq.(4.103) as, 

·z-I/2y-I j d4 ; 1 -iq1x (a2"'·(t -)) (a2 -iq1x) "'·(t -)I ) 't asym X \PI, ... l Pn e 0 'fl l X - 0 e 'fl l X Q2, ... l Qm 

(4.105) 

Now we know that, 

( 4.106) 

So this then leads to, 

·z-1/2y-I j d4 1 I (n -iq1x) "'·(t -) 't asym X \PI, ... l Pn - v e 'fl l X 

+e-iq1x (8J'l/J(t, i)) lq2, ... , Qm) ( 4.107) 

After we have use integration by parts to swap the space integrals in the first 

term this becomes, 

·z-II2y-Ijd4 -iq1x; ID"'·(t -)1 ) 'l asym xe \PI,···,Pn x'fl ,x Q2, ... ,qm (4.108) 

with QI = (wq
1

, iji). We can then go on as in the usual LSZ reduction formula 

to extract all the in and out states to get, 

I I ) (. Y2)_n+m Jd4 d4 d4 d4 
out \Pl, · · ., Pn Q1, · · · 1 Qm in = 2Zasym 2 X1. · · Xn Yl· · · Ym 

e i'2.:Pi·Yie-iLqi.xi x 0 0 0 0 
Yl · • • Yn Xl • · • Xrn 

X (OIT { '1/J(YI) .. . '1/J(Yn)'l/J(xi) ... '1/J(xm)} IO) 

( 4.109) 

From this we can see that the SA-Matrix elements are given by the residue 

of the pole when all the external legs go on-shell as in the free field case. We 

have though as well as just the usual inverse free field propagator an extra 

factor Y for each external leg, which we will see cancels a similar factor in 

the external leg propagators exactly. This result can be extended to include 
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spinor and vector fields in the usual way. So we can relate the correlation 

functions of Eq.(4.39) to SA-Matrix elements calculated on the asymptotic 

states. 

4.3.5 Calculating amplitudes 

Wicks theorem 

We now wish to calculate the amplitudes generated by Eq.(4.43). These con

sist of time ordered products of asymptotic fields multiplied by hard vertex 

factors, 

We can use the following identity [1], 

T { exp (-i J d4x:=:(x).j(x))} =: exp ( -i J d4x:=:(x).j(x)) 

x exp ( -~ J J d4xd4y(OIT{:=:(x).j(x):=:(y).j(y)}IO)) (4.111) 

to derive Wicks theorem for the asymptotic fields. We expand the exponen

tials in this identity and identify the coefficients of j ( x) to generate identities 

order by order. If we then calculate the vacuum expectation of these identi

ties we get the following [1], 

(OIT {:=:(xl) ... :=:(xn)} IO) 

~ { ~P (0\T { E:(xt)E:( x,)} \0) ... (0\T { E:( Xn .,)E:( Xn)} \0) 

:odd n 

: even n 

(4.112) 

where P is a sum over all permutations of the Xi such that we only count 

(OIT{:=:(xi):=:(x2)}IO) and (OIT{:=:(x2):=:(xi)}IO) as a single contributing term. 

So we see that we get the sum over all possible contractions of the asymptotic 

fields in the same way as for the usual free field case except we must multiply 

by these by the hard factors from each vertex. So to derive the amplitude 
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we need only the propagator of the asymptotic fields 

The fermion propagator 

Unlike in the standard case we cannot solve the propagator exactly. In

stead we will have to calculate it perturbatively. To do this we take the full 

Heisenberg picture of the asymptotic fields :::: fields and make the usual trans

formation into the interaction picture using the following evolution operator 

also in the interaction picture, 

UD.(t, t') = T { exp (-i 1t dt"H1R(t"))} ( 4.113) 

The fields in HIR are now in the interaction picture. The propagator is given 

by the two point correlation function of the asymptotic fields. In the case of 

a fermionic propagator this gives, 

(OIT {::::(xl)::::(x2)} IO) 

(OIT { ¢(xl)(/J(x2) exp ( -i I: d4
x£IR(x))} IO) 

(4.114) 

The first order of Eq. ( 4.114) that contributes is at zero order in the coupling, 

(4.115) 

which is the usual free field propagator. Higher order terms will then ap

ply corrections to this. We split up all the higher order terms into the 1PI 

diagrams ~::::. To get the "complete" solution we would then sum the per

turbation series to all orders, 

(4.116) 

Which gives, 

S:::: S::::,o (1 + ~=: (S::::,o + S::::,o~=:S=:,o + ... )) 
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( 4.117) 

This can be rewritten as, 

( 4.118) 

To derive an explicit form for this we need to calculate I:2 . We will do this 

perturbatively order by order in the coupling. 

We will consider the case of the fermion propagator in QED. This will 

contain a single three point fermion-antifermion-photon vertex. We calculate 

I::::: using standard field theory techniques. From Eq. ( 4.114) we see that there 

is no first order term and so the first contribution to I::::: will be at second 

order and is given by, 

where k and p are both off-shell. IR divergences will only appear in this 

integral when p goes on-shell and our fs functions will cut off the higher 

energy regions of the integrals. Therefore we can perform this integral in 

D = 4 dimensional space without any UV or IR regulators. We will see 

later that the possible IR divergence coming from this diagram when p goes 

on-shell will not be a problem. 

We can perform the majority of the integrals of Eq.(4.119) analytically, 

this gives the result, 
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where, 

- 'l 2 2·1iz Erfi(z) = ../if 
0 

dte-t (4.121) 

We see that this result only depends upon the single scale p2 I 6. The re

maining integral would have to be clone numerically. 

Checking the limits 

We will now investigate this result by checking that we get the expected 

results when we take the 6 -----+ 0 and p2 -----+ 0 limits. We know from Eq. ( 4.120) 

that the integral only depends upon the ratio of p2 and 6 and therefore 

we must always take these limits simultaneously. We will assume that we 

can swap the order of the integration and these limits, although this is not 

entirely rigorous. Taking p2 fixed to be finite and non-zero then the 6 -----+ 0 

limit gives, 

r:::c dx lim 7r
512 

exp (- (3 + X) p:) Erfi (x 
} 0 ~_,o J(1 + x)3(p2 I 6) u 

-----+0 

(p2 I 6)) 
1+x 

( 4.122) 

Which is the expected result as the asymptotic propagator should become 

the free propagator as we shrink the soft region down to zero. Therefore all 

the correction terms need to vanish. 

For the limit p2 -----+ 0 we take 6 fixed to be finite and non-zero and get, 

100 7r5/2 ( p2) ( dx lim exp - ( 3 + x) A Erfi x 
0 p 2 ->0 j(1 + x)3(P216) u 

1oo 27r2X 
-----+ dx ( )2 -----+ oo 

o 1 +X 
( 4.123) 

Now this integral diverges and so we have found the expected return of the 

infrared divergences when the propagator goes on-shell. 
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The fermion propagator 

Now that we have calculated the one-loop 1PI term we can give the form 

for the asymptotic fermion propagator in QED at one-loop. We start from 

Eq. ( 4.117), 

We can then rearrange this to get, 

( 4.125) 

This one-loop propagator is all we need to calculate the one-loop amplitudes 

from Eq.(4.43). This can be seen by expanding the propagator in terms of 

e, we see that two-loop contributions will only appear at order e4
. The only 

order below one-loop, is lower in order by e2 at the most. Therefore this 

propagator will give the correct answer perturbatively only up to one-loop. 

For two-loop results we would need to include two loop contributions to the 

propagator Eq.(4.125). 

We can also investigate the behaviour of this propagator as it goes on

shell. We see that, 

(4.126) 

and therefore the propagator will approach zero and not diverge as it goes 

on-shell, unlike in the normal case. Therefore we avoid any possible IR 

divergences coming from the propagator. This occurs because we have re

summed all the one-loop lPI diagrams into the propagator. 

The SA-Matrix elements 

Once we have calculated an amplitude from Eq.(4.43) we need to relate this 

to an SKMatrix element. This can be done using the modified LSZ reduction 
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formula from Section 4.3.4. The external legs from the amplitudes generated 

by Eq.(4.43) will all have propagators of the type given in Eq.(4.125) attached 

to them. 

We know that in the asymptotic limit 3---> Y 112¢ and so we expect, 

( 4.127) 

If we compare this with Eq.(4.125) then we see that we can associate in the 

asymptotic limit, 

(4.128) 

Now Eq.(4.109) contains a factor y-l for each external line. Therefore in the 

same way as the usual case the LSZ reduction formula removes any external 

leg propagators. The SA-Matrix elements are then just the residue of the 

multi-particle pole when the external legs go on-shell as in the standard 

case. From these SA-Matrix elements we should then be able to go on and 

calculate physical observables. 

4.4 Conclusion 

In this chapter we have demonstrated the difficulties associated with the 

use of dressed states in the interaction picture. We started by defining the 

M¢ller operators n~l in the interaction picture. Then when we derived 

the SA operator from these M¢ller operators we ran into inconsistencies in 

the interaction picture. The amplitudes were all derived in time ordered 

perturbative theory, which produces many diagrams. To reduce the number 

of diagrams we then attempted to combine these time ordered diagrams into 

reduced numbers of covariant diagrams. We saw that this was impossible 

though we could combine them into an almost covariant form. This required 

the choice of a suitable asymptotic Hamiltonian, the form of which would 

unfortunately mix the soft and hard regions together. 

The problem with the overall delta function factors is more difficult to 
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solve. Attempting to use the true asymptotic basis of states when performing 

interaction picture calculations would force us to relate the asymptotic states 

to the free states. The only operator which can do this though is infrared 

divergent itself and so is of little practical benefit. 

These difficulties when working in the interaction picture then motivated 

us to instead suggest the use of the asymptotic interaction picture. We 

then gave a brief overview of how we can modify the usual covariant field 

theory techniques to produce covariant Feynman diagrams from correlation 

functions of asymptotic fields in the asymptotic interaction picture. We were 

then able to prove that such amplitudes are infrared finite. To work in the 

asymptotic interaction picture we needed a solution for the asymptotic field 

propagator. We were able to outline how this could be done perturbatively 

and then derived a form for a fermion propagator in QED. Also we gave a 

heuristic derivation of a modified LSZ reduction formula which would take 

these correlation functions and relate them to SA matrix elements calculated 

on the asymptotic states. This lead on to a discussion of the asymptotic 

states and their dependence upon .6.. These discussions on the asymptotic 

interaction picture did not attempt to be completely rigorous and instead 

gave an outline of how calculations in the asymptotic interaction picture 

could proceed. 



Chapter 5 

Conclusions and Outlook 

In this thesis we have discussed various different methods of producing scat

tering amplitudes for massless quantum field theories which are entirely free 

of infrared divergences. The motivation for deriving a formalism to produce 

such amplitudes was outlined in Chapter 1. Currently general techniques ex

ist to calculate physical observables at the NLO level using amplitudes that 

contain infrared divergences. One of the main difficulties with proceeding 

to calculate physical observables at NNLO is the proliferation of infrared 

divergences in higher order amplitudes. General techniques do not exist for 

calculating such amplitudes and therefore amplitudes without infrared diver

gences in would be of great benefit. 

In chapter 2 we gave an overview of the scattering theory that we would 

use throughout the rest of this thesis. Starting from the overlap of the initial 

and final states of the process being calculated we showed how amplitudes 

could be derived in time ordered perturbation theory instead of the usual 

covariant perturbation theory. During this derivation the fundamental source 

of infrared singularities became apparent. In the usual field theory approach 

the standard assumption that the asymptotic Hamiltonian is equivalent to 

the free field Hamiltonian leads to M0ller operators which are not isometric. 

This is one of the fundamental requirements of a M0ller operator and this 

broken requirement manifests itself as the infrared singularities that appear 

in the usual scattering amplitudes. 

From this we were able to suggest two different directions to take to 
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produce amplitudes which were free of infrared singularities. The method 

we looked at first and in the greatest detail was that of dressed states. In 

Chapter 3 we showed how such amplitudes can be constructed by separating 

the interaction Hamiltonian into two parts. One part contained all the hard 

interactions of the theory and the other part, which we called the asymp

totic interaction, contained all the soft and collinear parts of the interaction. 

Using this asymptotic Hamiltonian we derived an operator which "dressed" 

the initial and final states of the usual S-Matrix to produce new scattering 

amplitudes. In doing this we removed any infrared singularities from the 

amplitudes. We then went on to give an example calculation using these 

amplitudes to produce the total cross section for e+ e- -r 2 jets at NLO. 

This demonstrated the complete cancellation of the infrared singularities at 

the amplitude level with the final answer the same as that produced using 

standard techniques. Thus showing that these dressed amplitudes gave the 

same results as the standard methods. 

The construction used in Chapter 3 to produce the dressed state am

plitudes was rather cumbersome. In order to exploit the advantage of the 

infrared finiteness in higher order calculations we would need a more stream

lined approach. So in Chapter 4 we focused on fixing the two distinct prob

lems that the formalism suffered from. The first was that the amplitudes were 

constructed from separate pieces which were themselves infrared divergent. 

So although the final amplitude was infrared finite the intermediate steps 

were not necessarily so, this would mean that a purely numerical approach 

would be difficult to implement. The second problem was that the pieces 

once combined were not all multiplied by the same energy delta function. 

Instead separate pieces of the amplitude were multiplied by different energy 

delta functions which differed by a soft/collinear energy difference. This 

means that the calculation of physical observables from these amplitudes be

comes difficult due to the need to "square" the different delta functions in 

the amplitude. 

To solve the first of these problems we looked at calculating all the sepa

rate infrared finite pieces of the amplitude together using a new S operator, 

the asymptotic SA operator. The amplitudes would then be infrared finite 
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at every step of the calculation. The difficulty with this was that such am

plitudes were described in terms of time ordered perturbation theory. This 

meant that we would generate large numbers of diagrams even for simple 

processes. To avoid this problem we then attempted to combine the time 

ordered diagrams into a reduced number of completely covariant amplitudes. 

The difficulties with this were related to the way in which we split the hard 

from the soft region in the Hamiltonian. We found that it was impossible 

to choose a splitting such that we could produce a covariant amplitude. It 

was though possible to reduce the time ordered diagrams down to a reduced 

number of almost covariant diagrams. 

After this there was the second problem of the different delta functions 

within each amplitude. The root cause of which was that the SA operator 

does not commute with H0 which defines the basis offree states I <Po:) which we 

calculated on. Solving this problem would require the use of the eigenstates 

of the asymptotic Hamiltonian as our basis of states. Unfortunately it can 

be shown that the only way of perturbatively relating the asymptotic states 

to the free states in the interaction picture is itself infrared divergent and 

therefore of no practical benefit. 

These difficulties lead us to abandoning the use of the interaction pic

ture entirely and to instead investigate the use of the asymptotic interaction 

picture. The remainder of the thesis then focused on giving an indication 

of how such a formalism could be constructed. We defined the asymptotic 

interaction picture and presented an overview of how calculations could be 

performed. We showed how we could construct correlation functions from 

asymptotic fields rather than the usual free fields. We showed that we could 

use Wicks theorem to reduce these correlation functions to products of two 

point correlations functions. We then derived a perturbative form for the 

asymptotic fermion propagator in QED to the one-loop level. We then 

showed that this was infrared finite in the limit that the propagator mo

mentum goes on-shell. 

In order to relate the asymptotic field correlation functions to SA-Matrix 

elements calculated using the SA operator on the asymptotic states we needed 

a modified LSZ reduction formalism, for which we gave a brief overview of a 



CHAPTER 5. CONCLUSIONS AND OUTLOOK 143 

derivation. The exact form of these asymptotic states was discussed briefly. 

The asymptotic Hamiltonian that we use throughout this thesis depends 

upon a parameter 6 that defines the splitting of the hard from the soft 

region. The real asymptotic Hamiltonian of the theory contains no such 

parameter, so an important question is how do our asymptotic states relate 

to the detected states in an experiment. We would expect any physical 

process to not depend upon any internal parameter. On closer examination 

it appears that the amplitudes should be independent of 6. This dependence 

though may return because we cannot calculate the asymptotic propagators 

to all orders. The amplitudes may then depend on to which perturbative 

order we calculated the propagators to. As well as this we also suspect that 

the definitions of measurement functions for physical observables may differ 

from those used in the asymptotic free field case. Defining these though 

should not present any fundamental difficulties as the usual choice of the 

free external states does not match the true asymptotic Hamiltonian either. 

In conclusion therefore the meaning of these states remains an open question 

at the moment and requires much further work. 

The aim of future work will, as well as focusing on the definition of these 

states and their consequences to the calculation of physical observables, also 

look at producing the amplitudes themselves in the asymptotic interaction 

picture. This will require a rigorous derivation of a modified LSZ reduction 

formula along with a much deeper understanding of the asymptotic states 

themselves. We will need to derive forms for the propagators initially at the 

one-loop level but for further work at the two-loop level. The amplitudes 

themselves will have to be numerically integrated due to the difficulty of an

alytically performing the loop integrals in the amplitudes. Although there 

would appear to be no fundamental difficulties in doing this we would have 

to set up the numerical cancellation of UV divergences as in [12]. Most im

portantly of all, explicit checks on the results produced by these amplitudes 

are required. Initially this would involve the calculation in this formalism of 

the total cross section for e+e- --+ 2 jets at NLO. Afterwards more challeng

ing process and observables would need to be investigated. Until we have 

compared such results against known data this whole technique must remain 
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as only a possible solution to the infrared problem. 
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Appendix A 

A Dressed State Example 

Calculation 

In this Appendix we give some details concerning the evaluation of the dia

grams mentioned in Section 3.2.4. 

We consider first with the self-interaction term ai;·o} of Section 3.2.4. We 

start from Eq. (3.49), substitute J\- yj3+ f for {PI- yj3 }, where r = (roJ5) 

with r 0 = p(fh, PI - fh) and then expand the numerator to obtain 

{2,0} -
ai5 - ( -i:) 92 ~tT:j (2n)Do(D)(P- PI- P2) J dq3 8(.6.-lrol) 

(
(D _ 2)((piq3) _ (pir)) _ 4(piq3~Pich) _ 2ro(p~q3)(~2q3)) 

(q3q3) w(pi)(q3q3) 

(PI I "'a IP2) (A.1) 

This expression contains infrared singularities coming from the region where 

q3 is soft and/or collinear to PI· In order to evaluate the expression, Eq. (A.1) 

we choose to parameterize the momenta in the center-of-mass frame. The 

momenta are all on-shell and are defined as 

p )8(1, 0, 0), 

~Pl (1 0 1) 2 , , , 
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P2 ~p1 (1 0 -1) 
2 ' ' ' 

~;1 z (1, )1- y 2 er, y), 

~; 1 
( )1- 2zy + z 2 , -zJ1- y 2 er, 1- zy), (A.2) 

where 0 is the null vector in a (2-2E)-dimensional space, er is a unit vector in 

the (2-2E)-dimensional transverse momentum space and we have 0 :::; z :::; oo, 

-1 :::; y :::; 1. The singular limits are then given by the limits z -----t 0 for soft 

singularities, y -----t 1 for q3 IIP1 singularities andy -----t -1 for q3 IIP2 singularities. 

As the asymptotic region does not conserve energy we find that the upper 

limit of z goes to oo. This would suggest the possibility of UV singularities in 

the asymptotic regions. However we will see that the 8 function will restrict 

this upper limit to a finite value, removing the need to renormalize these 

regions. The integral measure is given by 

J dq3 8(~- ro) -----t 

(~2) E 2(27r~3-2E ~~1 zl-2E(1 - y)-E (1 + y)-E dy dz dfJ(2-2E) (A.3) 

where we have three separate integration regions for the z and y integrals, 

0 < z < .0. -----'--( 2-+_.0.-'---) -
- - 2 (1- y + ~) 

2- ~2 
with -1 < y < ---- - 2 

0:::; z:::; 1 with 
2- ~2 

2 :::; y:::; 1, 

1 < z < .0. (2 + .0.) with 
- - 2 (1- y + ~) 

2- ~2 
2 :::; y:::; 1. 

The infrared singularities are in the first two regions whereas the last region 

will give a finite contribution. The remaining angular integral is given by 

(A.4) 

We now turn back to Eq. ( A.1) and notice that the infrared singularities q3 
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soft and/ or collinear to p1 come from the region z = 0 and y = 1 but not 

y = -1. We use the subtraction method to isolate these singularities and 

evaluate them analytically. Writing the integrand schematically as a function 

F(z, y) we write 

F(z, y) (F(O, y) + F(z, 1)- F(O, 1)) 

+ (F(z, y)- F(O, y)- F(z, 1) + F(O, 1)). (A.5) 

The first term contains all the divergent pieces whereas the second term will 

give a finite contribution upon integration over dq3 . Applying this method 

to Eq. (A.1) we obtain 

{2,0} 
al5 = 

where 

Integrating the singular terms and expanding around t: = 0 we obtain Eq. (3.51). 

Note that the D in the first term of Eq. (A.6) arises from the 1-matrix al

gebra. Thus we write it as D = 4 - 2t: + cR2t: to obtain the expressions in 

conventional dimensional regularization ( cR = 0) and in dimensional reduc

tion (cR = 1). 

Let us now turn to the evaluation of a~~,o} needed in Section 3.2.4. We 

start with the expression Eq. (3.54) and proceed in the same way as for ai;,o}. 
We introduce the on-shell momenta {p1 - fi3 } =p1 - fi3+ f and {.P2 + fi3 } = 
p2+ rj3 - f', where r' = (rb,(5) with rb = p(i!J,P2) = w(ih)+w(p2) -w(p2+i!J). 
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In order to proceed we subtract the soft singularity in Eq. (3.54) and add it 

back to produce an integrand that results in a non-singular term. In the soft 

limit the D-dimensional delta function becomes the usual J(D) (P- p1 - p2) 

which can be pulled out from the integral. 

We use the same momentum parametrization as for the self-interacting 

case, but because of the extra 8 function the integration ranges change to 

0 < z < 6. ___:_( 2-+_6.....:....)
- - 2 (1 - y + 6.) 

0 < z < -6. (2 - 6.) 
- - 2 (1 + y- 6.) 

with 

with 

6. 
-1 < y <-- - 2' 

6. 
- < y < 1 2- -

The remaining angular integral is as given in Eq. (A.4). 

Using this momentum parametrization and expanding around the soft 

region gives 

{2,0} 
a1s = 

with 
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Upon performing the integration of the singular terms explicitly and ex

panding in E we get Eq. (3.56). In this case the expression is the same in 

conventional dimensional regularization and dimensional reduction. 

Finally we turn to the evaluation of aP' 1
} needed in Section 3.2.4, pro

ceeding as in the previous cases. We subtract the soft and collinear singular 

parts and integrate them analytically. In both limits the D-climensional delta 

function takes its usual form b(D) ( P- p1 - p2). Thus, the delta function is in

dependent of the integration variables and can be taken outside the integral, 

as in the one-gluon exchange terms. 

We can use the same momentum parametrization and integration regions 

as the self-interacting case as we have the same 8 function in both cases. 

Taking the z ---+ 0 and y ---+ 1 limits of the above terms we obtain 

{1,1} -
al -

where 
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Integrating the singular terms with D = 4- 2E + cR2E and expanding around 

E = 0 we obtain Eq. (3.59). 
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