W Durham
University

AR

Durham E-Theses

Software architecture visualisation

Hatch, Andrew

How to cite:

Hatch, Andrew (2004) Software architecture visualisation, Durham theses, Durham University.
Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3040/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3040/
 http://etheses.dur.ac.uk/3040/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Software Architecture Visualisation

Andrew Hatch

Department of Computer Science

University of Durham

1999 - 2004

March 2004

PhD Thesis

A copyright of this thesis rests
with the author. No quotation
from it should be published
without his prior written consent
and information derived from it
should be acknowledged.

11 JAN 200

Abstract

Tracing the history of software engineering reveals a series of abstractions. In early days, software engineers
would construct software using machine code. As time progressed, software engineers and computer
scientists developed higher levels of abstraction in order to provide tools to assist in building larger software
systems. This has resulted in high-level languages, modeiling languages, design patterns, and software
architecture. Software architecture has been recognised as an important tool for designing and building
software. Some research takes the view that the success or failure of a software development project depends

heavily on the quality of the software architecture.

For any software system, there are a number of individuals who have some interest in the architecture. These
stakeholders have differing requirements of the software architecture depending on the role that they take.
Stakeholders include the architects, designers, developers and also the sales, services and support teams and
even the customer for the software. Communication and understanding of the architecture is essential in
ensuring that each stakeholder can play their role during the design, development and deployment of that

software system.

Software visualisation has traditionally been focused on aiding the understanding of software systems by
those who perform development and maintenance tasks on that software. In supporting developers and
maintainers, software visualisation has been largely concerned with representing static and dynamic aspects
of software at the code level. Typically, a software visualisation will represent control flow, classes, objects,

import relations and other such low level abstractions of the software.

This research identifies the fundamental issues conceming software architecture visualisation. It does this by
identifying the practical use of software architecture in the real world, and considers the application of
software visualisation techniques to the visualisation of software architecture. The aim of this research is to
explore the ways in which software architecture visualisation can assist in the tasks undertaken by the

differing stakeholders in a software system and its architecture.

A prototype tool, named ArchVis, has been developed to enable the exploration of some of the fundamental
issues in software architecture visualisation. ArchVis is a new approach to software architecture visualisation
that is capable of utilising multiple sources and representations of architecture in order to generate multiple
views of software architecture. The mechanism by which views are generated means that they can be more
relevant to a wider collection of stakeholders in that architecture. During evaluation ArchVis demonstrates
the capability of utilising a number of data sources in order to produce architecture visualisations. ArchVis’
view model is capable of generating the necessary views for architecture stakeholders and those stakeholders

can navigate through the views and data in order to obtain relevant information. The results of evaluating

ArchVis using a framework and scenarios demonstrate that the majority of the objectives of this research have

been achieved.

Acknowledgements

Since starting this PhD, there have been a number of very significant events, many of which have shaped this
thesis in some way. I believe that those people who have shared some part of my life since October 1999 will
realise how they have helped in my completion of this thesis, and some will need a little encouragement to

realise it. [f you are not mentioned below, it is purely a result of my dysfunctional memory!

Lyn, my wife, has been a constant bedrock of love and support — even during the times when we could not be
together, either by my being away from home, or from being hidden behind a desk. I am enormously grateful

and thankful to her for so many things.

My family, both northern and southern, they are largely responsible for who [am. Enormous thanks to them

for allowing me to find my way and being supportive of the decisions I’ve made.

For everybody at the University of Durham who I have shared time with — both staff, colleagues and friends,
thank you for a great time of life and learning — my University years have been amongst the best experiences [
have had. In particular, a debt of thanks to Prof. Malcolm Munro, whose supervision has been exactly what I
have needed and who gave me the opportunity to research under his guidance. Thank you also to Jill Munro

for proof reading the text — your contributions were very much appreciated.

I would also like to thank friends who were not with me in Durham, but who have helped keep me on the
straight and narrow in recent times and beyond: Leon, Chris, Angela, lan, Julie, Koen, Sarah, Pete, Andy,

Tim, Stuart, Ben, Jenny, Andy and Esther. Also in memory of Lee Kuczer.

Finally, thanks go to the Engineering and Physical Sciences Research Council (EPSRC) for funding this

research.

iii

Copyright

The copyright of this thesis rests with the author. No quotation from this thesis should be published without

prior written consent. Information derived from this thesis should also be acknowledged.

Declaration

No part of the material provided has previously been submitted by the author for a higher degree in the
University of Durham or any other University. All the work presented here is the sole work of the author and

no one else.
This research has been documented, in part, within the following publication:

A. S. Hatch, M. P. Smith, C. M. B. Taylor and M. Munro, No Silver
Bullet for Software Visualisation Evaluation, Proceedings of the Workshop
on Fundamental Issues of Visualization, Proceedings of The International
Conference on Imaging Science, Systems and Technology (CISST), Las
Vegas, USA, June 2001, pp. 651-657

Contents

ADSETACT ...t ekt i
ACKNOWIEAZEIMIENIES ...ttt i
COPYTIZRL oo ettt et ettt v
DECIATALION ... e e et v
COMBRTIES ...t et e ettt ee et e 1ot ettt ettt ettt v
LASE OF FLBUIES ..o ettt ettt ettt xiil
LASt Of TADIES ..ottt xvii
Chapter 1: INEFOQUCTION ..ottt ettt 1
1.1 TREFOAUCTION ..ottt e ettt e 2
1.2 ODBJROHIVES ..ttt ettt sttt e 2
1.3 Criteria fOr SUCCESS ...ooiiii ittt 3
LA TRESIS OVEIVIEW. ..ottt ettt ettt ettt 3
Chapter 2: Software ATCRILECTUIE. ..ot e 5
2.1 INETOAUCHION ...ttt 6
2.2 DEIIMIIION e 6
2.3 ATCRItECIUTE i PIACHICEoviiiiii ittt e 7
2.3.1 IMOBIVALION ..ottt ettt st 7
232 ROIES AN USE ... e 9

2.4 Software Architecture STYIEs.........ooiiiiiiii e 13
24.1 EXAMNPIES ..ot et 14

242 Heterogeneous Software ArchiteCtureso.ococooiiiiiiii e 16

2.5 REPIESEIEALION ... ottt ettt 16
2.5.1 UNAOCUMENLEA ...t 16
252 OVEIVIEW DIAZIAMIS ..ottt e 17
253 DOCUMENTEA ... e 17
254 AL e 18
255 UM e ettt et 20
256 Source Code and Configuration Files.................ccccoiiiiii e 21

2.6 COMCIUSIONSiuiiei ekttt 22

Chapter 3: Software VISualISAtION ..ot 23

3.1 TRETOAUCLION ...ttt ettt et ettt h e 2ot e et ettt r et eh e b ee e 24

3.2 Current Uses of Software VisualiSation ... 24

3.3 History, Trends and ISSUES ... e 30
3.3.1 GIAPKIS ...ttt 30
332 2D ANA 3D L e e 31
333 Dynamic and Static Software VisualiSationccccooiviiriiiiiniioi e 32
334 ADSITACTION ...ttt et 33

3.4 Fundamental PIINCIPIESo.oiiiiiiii ittt 34

3.5 COMEIUSIONS . ..ooio oottt ettt 34

Chapter 4: Software Architecture VisualiSation ..ot 36

4.1 IITOAUCTION ...t ettt ettt 37

4.2 Existing Software Architecture VisualiSations............c.....coocoiiiiiiii i 37

vi

4.2.1 FeiJs and de JONEG ... 37

422 The Searchable Bookshelf...............ooiiiii e 38
423 SOTLATCR L. e 39
424 SOF T oo 42
425 Lo P S e e e 44
426 Enterprise ATChItECt. ...t 46
4.3 Views Of ATCRIEEOEUIEoiiii it ettt 47
431 A1 VIEW MOl ..o 48
432 TEEE 1471-2000 ..ottt ettt sttt 49
4.4 Current Trends Issues and Challengeso..ooiiiiiiie it 50
4.4.1 Definitions, Views and Models of Architecture ..ot e, 50
4.4.2 Representation and Mappil@socooiiiiii i 50
443 Roles and Stakeholdersocooovoiii e 51
444 Obtaining Architectural Data ... 51
4.5 CONCIUSIONS ..o ettt et ettt 53
Chapter 5 The ArchVis Approach ...t 54
5.1 INTOAUCHION ..ottt et 55
5.2 ArchVis Visualisation System OVETVIEWc.coiiiiiiiiioiieieee ettt 55
521 Overview of Visualisation Definition. ... 56
522 Overview of Data EXTraction... ..ottt e 56
523 Overview Of EXEOULIONooiiiiiiiii e 57
5.3 Architecture Representation ChOICEooooiiiiiiiii et 57

vil

53.1 B IO .o e e e e 57

532 ReEItOMSIIPS ... et 58
54 Data EXtraction and STOTaZec..coooi oo e 59
54.1 SEATC DALA ...t 60
542 Transient DAtA ... 66
5.5 ArchVis View Model ... 70
5.6 Render Models and ReNdererscoooiiiiiiiiii e 72
5.6.1 The Render Model...... ...t 73
562 Architectural STyl ... e, 76
563 RENAEIETS. ..o e 77
5.7 Transient Data Extraction and USE............c..cooiiiiiiiiiii e 77
5.8 ArchVIS ATCHITECIUIEooiiiiiiiio i e 79
5.9 EXAMPIE VIEWS oo e 81
591 COMPONENE VIEWS ..ottt ettt et es et 81
592 DEVEIOPET VIBWS ..o oo 85
593 Project Manager VIEWS ..ottt 87
594 Technology and Deployment VIEWSoccoiiiir oot 89
595 Sales and Marketing VIEWSco.ooiiiiiiiiiiiiie ettt 92
510 ACHVITIES ..ottt ittt ettt ettt bt et aa s et e ee ettt ebsaea e 93
S LT QUEIYINE . oottt ettt ettt 93
5102 LAYOUL Lo et e 94
5103 BIOWSIIE ..ottt 95

viii

S.104 SeArchiNg ..o 96
S.10.5 ATNOALION ..ottt ettt ettt bt et eat ettt et 96
S5.10.6 Consoldating VIEWS ..ot ettt 97
5.10.7 Context SensitiVe ACHOMNSottt ittt ettt e 97
S.TT CONCIUSIONS ...t ettt et ee e en bttt e e 99
Chapter 6: TIPLEMENTALION. ...t 100
6.1 INEOAUCEION ... et 101
6.2 Architectural Data Caplure.ccoooiiiiiii e e 101
6.2.1 ATChVISACMEPAISE ... e 102
6.22 MOAEIBUILARToooviiiii e e 103
6.23 REFIECHONMPATSET ...t e 103
6.2.4 PropertieSREAdET ..o 103
6.2.5 INTFIEREAAET ... oottt 103
6.2.6 FileSystemReader. ... 103
6.2.7 ATCRVISIDL L et 103
628 ATCRLOMZ ... et 104
6.2.9 HTTPCAPIUIE ... ettt 104
6.3 Static Data FIer LIDIary..........c..ooo oot et 104
6.4 REINAGTEIS ...ttt et e 105
6.5 ArchVis Prototype TMpIEMENtAtIONooociiiiiiiiiit ettt 106
6.6 Use of the Prototype TOOIS ... iiiiiiiiiii e e, 106
6.6.1 Static Data SerVer ... e 106

662 MOACIIET ..o e e, 107

6.63 ATCHVIS BIOWSET ...ttt 107
0.7 CONCIUSIONS .oieitiitii oo et s 109
Chapter 7: Evaluation APProach..............o.ocoioii e 110
7.1 INEOAUCTION ..o e e 111
7.2 Software Visualisation Evaluation Stratefies.................ocoviiiiioiiiiieeeeiiee et 111
7.2.1 Design GUIAEIINES ..ottt ettt 111
722 Feature-Based Evaluation Frameworks................................... 112
723 User and Empirical StUdIes ..ot 113
724 Scenarios and Walkthroughs ... 114
7.3 Chosen Evaluation Approach ... s 115
7.3.1 Evaluation Framework ..., 115
732 SCEMATIOS ..ottt 124
733 Informal Evaluation. e 124
T CONCIUSIONS .ottt ea ettt ettt s 125
Chapter 8: ArchVis Evaluation ... 126
8.1 INtroductionocccovmvviniiii e, e et 127
8.2 Application of the Framework to ArchVis ... 127
Static Representation (SR ...t 127
Dynamic Representation (DR) ... 129
VIEWS (V) 1ottt ettt e Lottt ettt e b ee et ea ettt ettt eb et ea e 130
Navigation and Interaction (INI)............coooooiiiiiiii et 131

Task SUPPOTE (TS) ..o ettt ettt 132

IMplementation (D)............coooiiiiii e e 134
VISualisation (VIN) ..ottt et es st 135
821 SUIMMATY Lo ettt ettt 137
83 SCEMATIOS ...ttt 138
83.1 Analysis of Architectures of Existing SyStems ... 138
832 Analysis of Alternative Architectures ..o 141
833 Specification of Single System Architecture ... 145
834 Communication Between Stakeholders. ... 147
835 Conformance Checking ... 149
8.3.6 Operational and Infrastructure SUPPOIt.........cocoiiiiii e 151
8.3.7 Architecture Evaluation. ... 153
8.3.8 System Development..................cooiiiiiiii e 154
8.4 Informal Evaluation...................... i, 156
8.4.1 Static Data SUPPOTT........... e, 156
8§42 Renderers and Render Model Capability....................o.ooiiii e 159
8.43 VIBWS .ottt ettt ettt 159
844 TINPLEMENEATION ...t et e 159
B.5 COMCIUSIONS ...ttt 160
Chapter 9: CONCIUSIONS ..ot 161
9.1 INETOAUCTION ...t ettt 161
9.2 Summary of ReSEarch ... e 161

xi

93 I FOT SUCCESS e e 162

93.1 Identify the current use of architecture visuatisation m practice by showing the tasks different stakeholdars perform........... 162
932 Address the visualisation issues of representing software architectine for different stakeholders. 163
933 Identify a mechanism for providing architectural information to an architecture visualisation. 163
934 Develop visual representations of software architectures that are suited to the identified tasks. 163
935 Develop a proof of concept prototype tool to demonstrate the visualisations. 164
936 Demonstrate that the visualisations can be generated avtometically with mimimal disruption to the software systemitself. ... 164
9.3.7 Create a feature based evaluation framework suitable for sofiware architecture visualisation. 164
9.4 Comparing ATCHVIS ..o et e 164
95 FULUre WOTK ..o e 165
951 Architecture RepreSentations.ociiiiiiii v 165
952 ATChItECtUral VIBWS. ... et 165
953 TIPIEIMENTALIONottt et e 166
9.6 COMCIUSION. ... e 166
RETETEIICES ... oottt ettt sttt 167

List of Figures

Figure 2-1 ArchiteCtNg PIrOCESScoov oottt 10
Figure 2-2 Sun™ ONE web server architecture ...t 12
Figure 2-3 Enterprise web application architecture......................... i 13
Figure 2-4 Instance Store API Architecture OVEIVIEWccooiiiiiiiiiiiioec e, 17
Figure 3-1 Call Sraphis... ... e 25
Figure 3-2 Data flow in the ShriMP visualisation SYStE€IM................c..ccooiiiiiiiiieoieeeeeeee e, 26
Figure 3-3 JBuilder Integrated Development ERvIironmentc.oooooiiiiiio i 27
Figure 3-4 Systems hotspot view 1N GEOCTAWIET ..o e 28
Figure 3-5 Revision TOWETs VISUAIISAtIONcccooiii it e, 28
Figure 3-6 DIVIS TUNTITIE VIEWooiiiiiiiiiiit ittt ettt ettt e et e 29
Figure 3-7 Quicksort algorithm animation in SAMBA ... e 30
Figure 3-8 Call graph in 3D ... 31
Figure 3-9 Software World class visualiSAtION...............cooiiiiiiii e 32
Figure 4-1 ArchView architecture visualiSatIon............oc.ociiioiiiiii it 37
Figure 4-2 Searchable Bookshelf ... 39
Figure 4-3 SoftArch’s visual [angUage ..ottt 40
Figure 4-4 SoftArch Gynamiic VIEW ... 42
Figure 4-5 System structure extracted from SOF1............ocoiiii e, 43
Figure 4-6 System structure redrawn by system deSIZNET...........ococooiiiiiiiii i 43
Figure 4-7 Extracted archit@Ctureocoo ittt 43

Xlii

Figure 4-8 LePUS building BIOCKS ...ttt 44

Figure 4-9 Additional LePUS symbols ... e 44
Figure 4-10 LePUS diagram of the Enterprise JavaBeans framework ... 45
Figure 4-11 Enterprise ATCRItECT.........o..oiiiii oot 47
Figure 5-1 ArchVis Visualisation System OVEervIewW ... 56
Figure 5-2 ArchVis data INterfAcescooocoiiivii it 60
Figure 5-3 ArchVis data BaEWAYcooo oot 61
Figure 5-4 ArchVis static data SETVEToi oottt 61
Figure 5-5 EntityRelationshipStore static UML diagram. ..., 62
Figure 5-6 Data EXtractors in Arch Vs 63
Figure 5-7 Acme ADL [anguage StUCIULEcoooioiiiiiiiiiiiit oo, 64
Figure 5-8 Data flow diagram of source code Parsingc.ocooieiiiriiiisiie et 64
Figure 5-9 Data flow diagram of parser database extraction...........................coo.. 65
Figure 5-10 ArchVis MOdEIIEr ... ettt 66
Figure 5-11 ArchVis transient data interface ... 66
Figure 5-12 ArchVis client-server communication for transtent data ..., 67
Figure 5-13 ArchVis and the Java debugger interface ... 68
Figure 5-14 HTTP network sniffing tool ..., 69
Figure 5-15 Consolidation PrOCESS. ... ittt 70
Figure 5-16 ArchVis view Model..............oooooiiiiiiiii e 71
Figure 5-17 ArchVis static data fIlters ..ot 71
Figure 5-18 ArchVis™ render model ... 72

X1V

Figure 5-19 Transient data XtrACHIONcoooiiiioiiiiiioii ettt ettt ettt 78

Figure 5-20 ArchVis logical archIectUIe ..o 80
Figure 5-21 Online shoppIng SYStEIM..........c.o ittt ettt 81
Figure 5-22 Layered Styl€ ... 81
Figure 5-23 Onion-sKin SEYLe.... ... e 82
Figure 5-24 Detailed view of ShOPPINg Cart SYSEIM ..ottt 82
Figure 5-25 Component and connector view with ports, roles and packagesc...cocoooviviiiiioiiiiie 84
Figure 5-26 UML static model of an architectural component ... 85
Figure 5-27 Development assignment to classes and interfaces of a component.............................. 87
Figure 5-28 A physical deployment VIEWot 90
Figure 5-29 Framework and Technology VIEW ... 91
Figure 5-30 A teChNOlOZY VIEW..........ooiiiii ittt 92
Figure 5-31 Input Selection fOr @ VIEW ...ttt 94
FIZUTE 5-32 BIOWSINEooiiiiiiiiti ittt ettt ettt ettt ettt 95
FIBUIE 5-33 BIOWSIIE ..ottt ettt et ea et b ettt 96
Figure 5-34 Context SENSIIVE ACLIOM.............oo ittt ettt eea ettt ettt ee ettt 97
Figure 6-1 Static data Server actiVity MOMIEOTcoiii ittt ettt en et 107
Figure 6-2 ArchVis modeller ... e 107
Figure 6-3 ArCh VIS BIOWSEI ... ettt 108
Figure 6-4 ArchVis browser’s visualisation profiles.....................o 108
Figure 6-5 ArchVis rendered VIEW ... 109
Figure 8-1 ArchVis VIew MOAEL ...t 130

XV

Figure 8-2 Package StUCIUIE VIEWocooiiiiiiiiiiiitiiis ettt et ettt 140

Figure 8-3 Selecting interface usage deCorationo.ociiiiiiiiiiii e 140
FIgUIe 8-4 PACKABE VIEWottt ettt e e 141
Figure 8-5 The ArchVis Acme Parser using AcmeLib ... 143
Figure 8-6 Saving a compONent-CONMECION VIEWo..iiiiiiriiiiitie e et et e 144
Figure 8-7 Loading a saved architeCtural VIEWccocooiiiiiiie i 145
Figure 8-8 Implementation XML document ... 146
Figure 8-9 DeplOYIMENTt VIEW........oooiiiiiiiiiiii ettt et 147
Figure 8-10 As designed package assignment to architectural components..............c.c.oooo oo 150
Figure 8-11 As implemented package assignment to architectural components............c.cococoee oo, 150
Figure 8-12 Real-time deployment infOrmation ..., 153
Figure 8-13 Quality SHOWI @S TUSEoooiiiii e 154
Figure 8-14 Developer task aSSIZIIMENTccooiiiiiiiiiiiiii ettt st 156

List of Tables

Table 2-1 SuMMATY O ADLSottt s 19
Table 4-1 AbStractions in SOTTATCI...........oiiiii e et 40
Table 4-2 Diagrams, entities and relationships in Enterprise Architect ..., 46
Table 5-1 Examples of entities used in architectural representations.....................cccoiiioiioics e 58
Table 5-2 Examples of relationships used in architectural representations....................ocoooee i 59
Table 5-3 Render model component-connector €lementscooviiiiiiiiii i 73
Table 5-4 Render model UML €lemMents ..o e 74
Table 5-5 Render model physical @lements................oooii 74
Table 5-6 Graphical components I ATChVIS ... e 75
Table 5-7 Graphical elements as a representation of architectural style ..., 76
Table 5-8 Graphical capabilities associated with elements of the render model.......................ol 79
Table 5-9 Key of symbols used in COMPONENt VIEWSooiiuioiioiiiiiiii ittt 83
Table 5-10 PatternFilter configuration for COMPONENt VIEWS..........coooriiiiiiiiiiii e 83
Table 5-11 Renderer configuration for COMPONeNt VIEWScoiiiiiiiiiiii i 84
Table 5-12 PatternFilter configuration for a developer VIEW ... 86
Table 5-13 Renderer configuration for developer VIEWS............c.ooiiiiiiiiiii e 86
Table 5-14 Static data filter configuration for project MaNAEr VIEWScocooviiiiiviiiii e 88
Table 5-15 Renderer configuration for a project manager VIEW..............ocooiiioiiiii it 89
Table 5-16 Static data filter configuration for physical deployment views....................o 90
Table 5-17 Renderer configuration for a physical deployment VIEw ... 91

xvil

Table 5-18 Static data filter configuration for a technology view ..., 92

Table 5-19 Renderer configuration for a technology VIEW ..o 93
Table 5-20 ConteXt SENSIEIVE ACHIOMSoiiiee ittt ettt et 98
Table 6-1 Implementations of the EntityRelationshipStore interface ... 101
Table 6-2 Level of abstraction data extraction tools 0perate at...............c.ooiiiioinic i, 102
Table 6-3 Implemented static data fIlEErs ... 104
Table 6-4 Implemented TENAETETS.ottt 105
Table 7-1 Summary of evaluation framework ... 117
Table 8-1 Responses to framework qUESTIONSocoiiiiiii i e et 127
Table 8-2 Summary of the results of the framework evaluation ... 137
Table 8-3 Stakeholder Communication VIew MAatIriX.o.ooiiiiiiiiiiii o 149
Table 8-4 System Development Stakeholder-View Matrix.................oiiiiiii e 155
Table 8-5 Entity equality problem. ... 157
Table 8-6 Solution to entity equality Problem.. ..o e 158

Xviil

Chapter 1: Introduction

1.1 Introduction

This thesis is an investigation of the application of software visualisation principles and practices to software

systems at the architecture level of abstraction.

Software systems are often large, complex and difficult for developers to understand. Software visualisation
aims to assist in the comprehension of these types of software systems. There is a clear need for developers
and maintainers to understand software at the source-code level, and much of software visualisation and
program comprehension research has been focused at this abstraction. Recently, however, it is widely
accepted that software benefits from high-level consideration from its design through implementation and
post-implementation analysis. With the uptake of architecture practice, there should also be a corresponding
push to develop the techniques and tools to effectively communicate software architecture to those who have
some interest in that architecture — the stakeholders. As software visualisation has been focused on lower
level aspects of software, there is a need to examine software architecture in order to determine how to change

or tailor software visualisation practice to deal with this higher level of abstraction.
1.2 Objectives

It is useful to consider the architecture of a software system during its design, implementation and
maintenance phases for many reasons. This research deals with the application of visualisation techniques in
order to assist in the understanding of a software system’s architecture. By supporting a stakeholder in their
task of understanding a software system’s architecture, several benefits should be realised. These benefits
include reducing costs by reducing the time required for gaining an appropriate understanding, and improving

the visibility of the software architecture in order to increase the depth of understanding.

This research investigates the current practical application of software architecture during the lifecycle of a
software system. In doing so, several key activities, roles and stakeholders are identified for consideration
when constructing a software architecture visualisation strategy. Also, an investigation will be made into the
current use of software architecture visualisation highlighting the issues, challenges and merits facing existing
software architecture visualisations. It is these aspects that will form the basis for developing a new strategy

for visualising software architectures.

In order for this research to be applicable to real world software systems, the visualisation strategy must be

shown to support information extraction techniques that would be supported in practice. The visualisations

identified in this research will be represented in a proof of concept tool that will allow for the evaluation of

both the visualisation strategy itself, and the information extraction techniques that are required.

Visualisations produced by this research are intended to assist in the understanding of software architectures
by various stakeholders for different activities. Towards the end of this thesis, there is a discussion of some of

the areas of research opened up that can be tackled in the future.

1.3 Criteria for Success

This research aims to investigate the applicability of software architecture visualisation in order to assist in
the understanding of software systems by different stakeholders in that system. The success of the research

will be judged against the following criteria:

a) Identify the current use of architecture visualisation in practice by showing the tasks different

stakeholders perform.
b) Address the visualisation issues of representing software architecture for different stakeholders.
¢) Ildentify a mechanism for providing architectural information to an architecture visualisation.
d) Develop visual representations of software architectures that are suited to the identified tasks.
e) Develop a proof of concept prototype tool to demonstrate the visualisations.

f) Demonstrate that the visualisations can be generated automatically with minimal disruption to the

software system itself.
g) Create a feature based evaluation framework suitable for software architecture visualisation.

An evaluation of this research against these criteria is provided in chapter 9.

1.4 Thesis Overview

Broadly speaking, there are two main areas of research that this thesis is based on. The structure of this thesis

follows the logical progression of bringing these two areas together.

Chapter 2 provides the background to Software Architecture by identifying why software architecture is
important, and the role that it takes in present day software engineering. It also describes how architectures
are encoded and how these architecture descriptions are used. Definitions are provided for Software

Architecture that delimits the scope of this research.

Chapter 3 distinctly addresses Software Visualisation, examining its history through to its current use. This
includes descriptions of a number of existing software visualisations that broadly represent the research area.
Important areas of the psychology of sofiware visualisation are presented in order to help define what
software visualisation is aiming to achieve. By detailing these fundamental areas, a definition is presented
that the remaining thesis can be based on. Major areas of research are outlined in order to position the subject

of software architecture visualisation in the wider context.

Chapter 4 focuses on software architecture wvisualisation, detailing existing work relating to software
architecture visualisation. Existing architecture visualisation systems are selected for examination, and their
approaches critiqued — specifically, their approach to data extraction and storage, stakeholder support and
style and representation choice. This chapter concludes with a summary of some of the challenges facing

software architecture visualisation.

Chapter 5 introduces the ArchVis approach to software architecture visualisation. The ArchVis visualisation
attempts to address the issues identified in chapter 4, and describes how this is achieved. Firstly, the ArchVis
approach to extracting relevant data from software systems is described. Next, the views that ArchVis
supports are presented, including how these views are constructed. Along with the descriptions of the views,
this chapter describes the types of stakeholders that would make use of those views. Finally, issues regarding

the interaction between views are described.

Chapter 6 outlines the implementation of the ArchVis tool. Here, the design and build of the tool is presented
along with the choices of technology. This chapter also describes what types of systems ArchVis is able to
visualise without customisation, and describes how the ArchVis framework can be extended to increase its

functionality.

Chapter 7 provides an overview of evaluation strategies that can be used to evaluate this research, indicating
their relative merits. The selected evaluation approach is then described in detail, along with a justification

for the approach.

Chapter 8 uses the evaluation approach described in chapter 7 to evaluate ArchVis. This consists of the
application of a feature-based framework and a set of usage scenarios. Following this, an informal discussion

of the issues and merits of ArchVis concludes the chapter.

Chapter 9 concludes the thesis by summarising the research and identifying its contribution. The criteria for
success, as defined in chapter 1, are compared to the results of the thesis. From this, future research areas are

suggested for both ArchVis and software architecture visualisation.

Chapter 2: Software Architecture

2.1 Introduction

This chapter is concerned with defining and exploring important areas of software architecture. Current
architecture definitions are presented and out of these a working definition will be identified that defines the

scope of software architecture within this thesis.

Both the theory and practice of software is explored as this provides a basis for showing how using software
visualisation as a development tool can support reasoning about, and developing with software architecture in
the real world. For each software system, there are many stakeholders that use software architecture in
different ways. This chapter attempts to classify the roles that the stakeholders will take when utilising

aspects of software architecture.

A key part of the use of architecture is architectural style, so a significant part of this chapter identifies key
architectural styles and also how architecture 1s seen in different views. Also, this chapter identifies the forms

in which architecture takes, be it on paper, or in running software systems.

2.2 Definition

Definitions are a necessity in providing premises from which to base and formulate theories, arguments and
proofs. Firstly, existing ideas on the definition of software architecture are presented before identifying the

definition to be used in the remainder of the thesis.

Software engineering practice has produced successively higher abstractions of software with the progression
of time. Beginning with manipulation of physical switches, software has moved from machine language and
assembly language to higher-level programming languages of differing paradigms. The activities of module
writing in high level languages and the connection of these modules together were soon seen as distinct, and
software design can be seen as a further abstraction. Software architecture sits at the design level, indicating
elements from which the system is built along with descriptions of their interaction, composition and imposed
constraints [Shaw96]. Software architecture can be viewed as the highest level of abstraction that software

engineers work with today.

Two roles that architecture can take are one of prescription — describing how the software system’s
architecture should be, and description — describing how a software system’s architecture is. Part of the
usefulness of architecture analysis is to measure the discrepancy between the prescribed architecture and the

architecture that describes the software produced.

Feijs and de Jong describe software architecture as an art and science for the structuring of very large
programs [Feijs98] where architectural decisions strongly influence system attributes such as efficiency and
maintainability [Moriconi95]. However, some would argue that the discipline is not just limited to ‘very
large’ programs as all software systems have an architecture, whether the designers or developers know it or
not [Kazman99]. Frequently, architecture is applied to software systems whose size is large enough to

warrant reasoning on a higher level than the module or class level.

In the IEEE 1471-2000 standard [IEEE1471], architecture is defined as ‘the fundamental organization of a
system embodied in its components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution’. This sentiment is perhaps the most pervasive in the architecture
literature. Many writers adopt the view that architecture is concerned with the gross structure of a system,

describing high-level computational elements and their interactions [Monroe96).

Eden [Eden01] categorises architecture in a different manner by identifying concrete architectures and generic
architectures. Respectively, these refer to architectures that are concerned with a particular instantiation of an
architecture, possibly realised in an implemented system. Being concrete, these specifications consist of
constant symbols that correspond to entities in the architecture. Generic architecture specifications comprise
of variables rather than constants and are similar to architectural styles in that they distil a set of different

concrete specifications to identify fundamental aspects that describe that set.

Attempting to amalgamate the above views and ideas on software architecture yields the following definition:
‘Software architecture is a representation of a software system at its highest level of abstraction, consisting of

a set of fundamental building blocks for the software system and their interconnection’.

2.3 Architecture in Practice

In order to understand the need for Software Architecture Visualisation, it is important to understand how
architecture is currently used in practice. Firstly, the motivation of the use of architecture is considered, and
then a generic software life cycle is examined in order to identify the people and tasks that are involved, and

how software architecture plays its role.
2.3.1 Motivation

Software systems have become larger and more complex over time. Architecture becomes more important in
line with this increase in size and complexity [Batman99] as it provides a suitable level of abstraction for
reasoning about the high-level entities and relationships in that system. There are several reasons as to why

some organisations choose to use software architecture as a tool during the software development processes.

From a purely technical stance, software architecture provides the basis for design, as it is the highest level of
abstraction. Decisions that are made at the architecture level are often the first decisions made regarding a
software system, and so have a high impact to all activities that follow. Software architecture provides
support for early stage trade-off decisions that determine what functional and non-functional requirements
will be supported by the software [Barbacci98]. The architecting process produces initial designs that can be
further decomposed by lead software designers.

Communication between stakeholders in a software system is greatly improved by having documented
software architectures as it provides a common reference point for all activities. It is through the architecture
that conflicting goals and requirements are worked through and resolved. It can form the pivot point for

implementing management decisions and project management through resource allocation.

When software systems are released to customers, they enter into the maintenance phase. Each time a change
is made, the software architecture can be checked to ensure that changes made do not violate the software
architecture. Changes that impact the software in an adverse way are said to ‘erode’ the software architecture
or cause ‘drift’ [Perry92]. By keeping software architecture as a utility for impact analysis, erosion and drift

can be ameliorated.

Cost and efficiency are of high importance to commercial software production. Here, software architecture
can provide motivation for a number of areas. As identified above, software architecture can improve the
efficiency of the software development process by being a common reference point, a communication vehicle,
and by being an analysis tool for monitoring the impact of changes. On top of this, software architecture can
be a basis for cost estimation through various metrics related to the construction of the components of the
architecture. Process management can also benefit from software architecture by mapping the software
development process onto the architecture itself. Architecture reuse can prove yet another area for cost
reduction. It is suggested that the role architecture plays in software developing organisations is an important
indicator as to how successful that organisation will be in producing complex systems which meet

requirements in an efficient way [Batman99].

2.3.2 Roles and Use

The previous sections identify areas in which to describe the role that architecture plays for the various

stakeholders in a software system. The following roles have an interest in software architecture:
e Architect
o Designer
e Development manager
e Developer
o Sales and field support
e System administrator
e End-user

These roles are equivalent to the stakeholder types identified by Clements [Clements96]. This discussion is
important in order to illustrate how each of the stakeholders in the architecture of a software system might

benefit from visualisation systems.
2.3.2.1 Software Architect

An individual who has the role of software architect will require a different skill set depending on the
environment in which they are operating. In a commercial software-producing organisation, the architect will
require a great many more skills in business, management and organisational politics [Bredemeyer00]. This

section describes the role of software architect from a technical perspective only.

Principally, the software architect role is associated with the initial creation of architectures. Bredemeyer

[Bredemeyer99] outlines an architecting process shown in Figure 2-1.

tnit/Commit

Architectural
Requirements

System
Structuring

Architecture
Validation

W

Deployment

Figure 2-1 Architecting process

Here, the four steps of Architectural Requirements, System Structuring, Architecture Validation and

Deployment are important.

The Init/Commit step 1s not considered here as it relates to managerial and

sponsorship issues within an organization. During the ‘architectural requirements’ step, the architect will be

performing the following activities (abridged from [Bredemeyer99]):

Understand the system context... including technical drivers affecting the architecture.

Identify stakeholder goals and architecture scope.

Document functional requirements by translating user goals into use cases.

Document non-functional requirements, associating measurable qualities with use cases.

Model common/unique usage and infrastructure requirements across systems.

One of the outputs from these activities are architecture requirements. These requirements, along with

architectural styles and patterns are provided as input into the ‘system structuring’ step which consists of the

following activities:

Define the meta-architecture, including the style.

Define the conceptual architecture: partition the system and allocate responsibilities to components.

Define the logical architecture: model collaborations, design interfaces, complete component

specifications.

Define the execution architecture: map components to processes and threads; determine location on

physical nodes.

Specify architectural guidelines and standards, and select key technologies.

10

Architecture documents and models that result from this are inputs to the ‘architecture validation’ step:
¢ Construct prototypes or “proof of concept’ demonstrators.
e Conduct reviews of the architecture.

e Conduct architectural assessments.

This 1s then iterated in a number of passes (see original text for details), as illustrated in Figure 2-1. Finally,

the architecture reaches the ‘architecture deployment’ phase:

¢ Communicate the architecture.

e Educate and consult with developers as they apply the architecture.
¢ Review designs with respect to the architecture.

¢ [dentify needs for evolving the architecture.

Many of the principles behind this simple model of top-down software architecting are shared with other
architecting processes such as the Quality Attnbute-oriented Software Architecture QASAR design method
[Bosch00]. Bosch notes that bottom-up architectural design is not feasible as working in this fashion would

require dealing with details of the system.
2.3.2.2 Designers and Developers

Designers and developers utilise software architecture in a number of ways. Initially, software architecture
provides a set of constraints on the design of individual components within the system. As noted above,
definitions of the high level components and connectors are created during the architecting process.
Interfaces, constraints, functional requirements and non-functional requirements should form part of the
documented architecture. It is the responsibility of the designers who are involved in the detailed design of
the individual components to adhere to the prescribed architecture. In reality, the designers will work closely

with the architect in iterating the architecture further if required.

Implementers of software systems are also required to develop the software within the boundaries and
constraints made by the architecture [Clements96] and its detailed design. During the maintenance phase, any
changes made to the software system should conformn to the architecture. It is the responsibility of tester to
ensure that they are able to measure the impact of a change against the architecture in order to ensure that a

change has not eroded the architecture.

11

vocabulary of components and connectors that can be used in specific instances of that style and also provides
a set of constraints on how they can be combined [Garlan93). To illustrate, the ‘client-server’ notion of
architecture might provide a vocabulary of connectors that include ‘client’ and ‘server’ components along

with connector vocabulary such as ‘HTTP’ and ‘RPC’.

Such a style emerges through the consideration of the components and connectors of a set of similar software
systems along with their configuration. Some elements will be common to most systems and configured in
similar ways. Identifying these elements and relationships can bring about a notion of a style for that family

of systems.

Styles are useful for both analysis and design of software [Klein99). Design is supported through architecture
as the system architect can choose a style by referring to known quality attributes of architecture styles
[Klein99]. It is hoped that, in a similar way to software design patterns, there will be an architecture
handbook to assist architects in choosing a style to suit a software system. This handbook would list
architecture styles along with their known attributes such as performance and security measures. To some
extent, prediction of these attributes is possible for a particular implementation of the architectural style
[Klein99]. Garlan considers many benefits of using style in practice, which is not the consideration here.
What is important in this description of style is the applicability of style to visualisation, and on this, Garlan

states that it is usually possible to construct visualisations that are style-specific [Garlan95].

Some common architectural styles as identified by Garlan and Shaw [Garlan93] are summarised from their

text below. It is by no means a definitive list and in practice, the boundaries of these styles can overlap.
2.4.1 Examples

2411 Pipes and Filters

Filters are computational components that take as input a set of data streams and produce a set of output
streams. It is usual for the filter to incrementally read the input streams, apply a transformation to it, and
write data to the output streams. In this way, output can be produced before input is completely consumed.
Filters are connected by way of pipes that transfer data from one filter to another. Therefore, in this style,

components are termed ‘filters’ and connectors are termed ‘pipes’.

Constraints for this style state that filters are completely independent of other filters. Specifically, they must
not share state with other filters and that they must remain unaware of the identity of other filters either
upstream or downstream. Input and output specifications might restrict what data can appear as input and
make guarantees about its output, but they must be unable to identify other filters which are attached to the

ends of those pipes.

14

Variations on the pipe and filter style exist. One such variation is the ‘pipeline’ that are linear sequences of
filters, commonly found in basic compilers. Another is the batch sequential system where each filter
processes all input as a single entity before being passed on to the output. Batch sequential systems are a

degenerate case of the pipe and filter style and can be considered as distinct style.

Pipe and filter systems are commonly found on UNIX based operating systems where processes (filters) can
be connected via pipes to each other. Compilers are often pipeline systems where phases of the compilation

process are the filters converting source code into machine code, for example.
241.2 Repositories

Repository systems are comprised of two distinct component types. Firstly, there is a central data structure
that represents the current state of the system (repository). Secondly, there is a collection of one or more

independent components that access and perform functions on the central data store.

Computation can proceed in two ways. If the input to the system is such that the components modify the
central store in response to the input directly, then the repository can be thought of as a traditional database.
However, if the current state of the repository is the main trigger for components, then the repository can be a
blackboard. To clarify, in the first instance, components access and change the repository in response to

input. In the second instance, actions of components are determined by the contents of the central repository.

The blackboard model can be decomposed into three major parts. A knowledge source is where world and
domain knowledge is partitioned into separate independent computations. Interaction among knowledge
sources takes place solely through the blackboard. Blackboard data structure is problem solving state data,
organised into an application-dependent hierarchy. Knowledge sources make changes to the blackboard that
lead incrementally to a solution to the problem. Here, the blackboard is the only means by which knowledge
sources interact to yield a solution. Control is where components are driven entirely by the state of
blackboard. Knowledge sources respond opportunistically when changes in the blackboard make them
applicable. Blackboard systems are traditionally used in signal processing such as speech and pattern

recognition.
2413 Layered Systems

Layers are organised hierarchically where a layer provides a service to the layer above and is also a client to
the layer below. Constraints are imposed in some variations such that inner layers are hidden from all other
layers except for the layer immediately above it. Further to this, certain functions may be open for export as

necessary. Connectors are defined by the protocols that determine how the component layers will interact.

This style supports design based on increasing levels of abstraction reducing a complex problem into a
hierarchy of incremental abstractions. Enhancements are implemented by adding layers onto the top of the
current top layer. A good example domain is the network protocol domain such as the ISO/OSI seven layer

network model.
2.4.1.4 Data Abstraction and Object-Oriented Organisation

In this style, components are ‘objects’, also known as managers. They are responsible for the management
and integrity of a particular resource, for example, a queue. Inter-object communication is achieved through

function and procedure calls.

Two important aspects relating to this style have been identified. They are that (a) objects are responsible for

preserving the integrity of its representation and (b) this representation is hidden from other objects.

Object oriented systems have become increasingly commonplace, yielding variations on this basic
architectural style. For example, objects in some systems can be concurrent tasks, through multithreading,

and others, including Java, allow objects to adhere to multiple interfaces.
2.4.2 Heterogeneous Software Architectures

Most systems typically involve some combination of several ‘pure’ architectural styles. There are, of course,
many different ways in which architectural styles can be combined. One particular way is through hierarchy:
components in a system may be organised in one architectural style whereas the internal structure of a sub-

component may be represented in a completely different architectural style as required.

A component could also use a mixture of architectural connectors instead of using a single type of connector.
In order to interact with one set of components it may use, for example, a pipe interface. In order to

communicate with a different set of components, it may access a repository — a different type of connector.
2.5 Representation

Software architecture is represented in a multitude of ways. This section examines some of the more common

techniques of representing architecture to stakeholders in a system.
2.5.1 Undocumented

It is often stated that all software has an architecture, even if it is not explicitly stated. It is not surprising that
the architecture of a software system is often undocumented — particularly for small software systems written

by single developers. Documentation at any level is often neglected at this level of development. A high

16

The IEEE1471 standard [IEEE1471] gives six elements that should be included in an architecture description:

Architecture document identification, version and overview information.

Identification of stakeholders and concerns.

Specifications of viewpoints.

A number of architectural views.

A record of known inconsistencies.

A rationale for selection of the architecture.

At its core, this standard uses a selection of architectural views to present the software architecture. These

views can be represented using different languages, methods and models. Along with this, a inter-view

consistency analysis is presented in order to align the views together.

2.5.4 ADLs

Architecture Description Languages (ADLs) focus on the high level structure of software systems rather than

the implementation details of any specific module [Vestal93] and have been developed in response to the

following problems [Garlan97]:

The practice of architectural design is largely ad hoc, informal and idiosyncratic.

Architectural designs are often poorly understood by developers.

Architectural choices are frequently not based on solid engineering principles.

Architectural designs cannot be analysed for consistency or completeness.

Architectural constraints are not enforced during system evolution.

Virtually no tools to help architecture designers.

ADLs are considered to be important for software architecture as they provide a conceptual framework and

allow for a concrete syntax in characterising architectures. The syntax allows for the decomposition and

representation of a software system in terms of its respective high-level components and connectors. Along

with this decomposition, specifications are made as to how these elements are combined to form a

configuration [Allen97].

Fundamentally, ADLs represent architecture and are generally concerned with components, connectors,
architectural configuration and interface definitions [Medvidovic97]. However, each ADL has its own
specific concerns. A summary of a selection of ADLs are presented in Table 2-1. The comparison is taken

from Garlan et al [Garland 97] and Medvidovic et al [Medvidovic97].

ADL Specific concerns

Aesop Supports use of architectural styles. Provides capabilities for expressing

properties that permit real-time schedulability analysis.

Meta-H Specific guidance for designers of real-time avionics control software, and 1s
concerned with real-time shedulability analysis. Suitable for architectures in the

guidance, navigation and control (GN&C) domain.

C2 Architectures of highly distributed, evolvable and dynamic systems. Supports

description of user interface systems using message-based style

LePUS Aimed at specifying object-oriented software architectures. Conformance can be
verified.
Rapide Allows simulation of architectural designs and for analysing the results of those

simulations. Interactions are represented in terms of events.

SADL Provides formal basis for architectural refinement and is concerned with the

expression of stylistic invariants.

UniCon Has a high-level compiler for architectural designs that support a mixture of

heterogeneous component and connector types.

Wright Supports specification and analysis of interactions between architectural

components. Interactions are represented in terms of events.

Table 2-1 Summary of ADLs

As many ADLs arose from the uptake of interest in software architecture, Acme has emerged as both an ADL

and an ADL interchange language. An interchange language is considered necessary as many ADLs were

19

developing associated toolsets, and having a capability of translating between these languages would allow
these tools to be useful to a wider community. Other practical uses of ADLs include code generation and

simulation.

2.5.5 UML

Grady Booch, James Rumbaugh and Ivar Jacobson [Booch98] created the Unified Modelling Language
(UML) and released version 0.8 of the language in 1995, and was later adopted by the Object Management
Group (OMG) in 1997. Prior to the formation of the UML, each of its creators were independently
developing their own method to Object Oriented software design.

The UML is a language for specifying, visualising, constructing and documenting artefacts of software
systems [OMG][Abdurazik00]. It provides modellers with a visual modelling language that integrates best
practices and is independent of development processes. There are four diagrams used for modelling software
in the UML [OMG]:

e Use case diagram.

¢ Class diagram.

e Behaviour diagram.

e Implementation diagram.

By modelling software in multiple diagram types, more than one perspective of the software can be

represented.

20

The UML is often used to describe and document software architectures. Researchers in the field of software
architecture differ in their views on whether the UML is a suitable language to represent software
architecture. However, what cannot be avoided is that the UML is often used to represent software systems,
and some of these representations are labelled as software architecture. Abdurazik [Abdurazik00] notes that

the following UML constructs can be used in the description of software architecture:
e Class
¢ Classifier
e Package
e Interface
¢ Component
e Subsystem

Model

Also, the UML can be used to specify heterogeneous architecture as subsystems can be used as components.
Some researchers have suggested various mechanisms by which the UML’s capability for extensibility can be
exploited in order to provide better facility for modelling architecture [Medvidovic97]. Others research has
sought to bring UML together with other languages to provide a language with direct capabilities for

expressing architectural concerns [Robbins97].
2.5.6 Source Code and Configuration Files

Whilst higher levels of representation may afford a much more amenable way of using software architecture,
every software system that is implemented realises a software architecture, whether it be the intended
architecture or not. Source code, configuration files, data sources and all other collateral that form the

software system will represent the software architecture.

One example of how configuration can contain architectural information is that of a web application built
using the Jakarta Struts framework [Struts]. This framework provides a controller component that utilises an
XML configuration file that determines page flow within the web application. Page flow is a useful

representation of architecture both in terms of both data flow and user flow throughout the application.

21

2.6 Conclusions

Software architecture is important for software engineering, and its recognition is becoming more widespread
in all aspects of software engineering. This chapter has discussed the various views and definmitions on what
architecture is and presented a definition to be used in the remainder of this thesis. Also, this chapter has
looked at the motivation behind using software architecture — that is to determine why software architecture is
being used within software development organisations. In light of this, the way in which particular roles in a
software development project were examined with respect to the way those roles might incorporate the use of
software architecture. By examining these roles, it is possible to determine how architecture visualisation

may be suited to those roles.

When considering the use of software architecture in practical software development, the environment in
which the software is to be deployed in plays a significant role in shaping it, by defining boundaries and
interfaces, and enforcing both functional and non-functional constraints. Other factors that influence
architecture include technological and political issues. For ‘green field” development, where environmental
constraints are few, software architecture can be designed with relative freedom. Even for highly constrained
environments where a component must fit into an existing architecture, the new component itself may warrant

reasoning at an architecture level of design.

As architectural style constitutes a significant part of software architecture research, this chapter has described
a selection of the more prolific architecture styles, and how software systems can be composed of many
different architectures using many different styles. Styles are important in the context of this thesis as they

strong associations with graphical representation.

Finally, the chapter discussed a number of ways in which software architecture is represented. Architecture
representation will be key to visualisation, as a visualisation system will require some means by which it can
obtain architectural information of a software system. Architecture description languages are one form of
representation of a software system’s architecture. The intention of ADLs is clear, but the practical uptake in
modern day software development is limited. The value of architecture description languages for architecture
visualisation is obvious — they can be parsed easily in order to derive visual representations. One principle
reason why ADLs in the traditional sense have not been used for practical software development may be due
to the uptake of UML as an architectural design aid. Whilst opinion in the research community is divided on

the use of UML to describe architectures, it has become a de facto standard that cannot be ignored.

22

Chapter 3: Software Visualisation

23

3.1 Introduction

Presenting information visually is highly beneficial to the perceiver, and this benefit has become widely
accepted. Software visualisation attempts to retrieve and present information about a software system to a
user in a visual format. By doing so, the user is often able to understand the information presented in a
shorter period of time, or to a greater depth. Time 1s important in the production of software, so the benefits
afforded by software visualisation are obvious: it can help reduce costs through saving time, improve the
understanding of the software system by developers and other team members, reduce incorrect knowledge

about a software system and ensure a common view of the software.

Visualisation, the process, can refer to the activity that people undertake when building an internal picture
about real world or abstract entities. A visualisation is a graphical or pictorial representation of real world or
abstract entities. Visualisations can range from box and line drawings on paper through to graphs through to
interactive 3D environments. Visualisation can also refer to the process of determining the mappings between
abstract or real world objects and their graphical representation. This process also includes decisions on

metaphors, environment and interactivity.

The term software visualisation in this document describes the process of mapping entities in the software
domain to graphical representations. Motivation for visualising software, as stated earlier, s to reduce the
cost of software development. Software visualisation can support the software development process by
helping stakeholders to understand the software at various levels and at different points of the software

lifecycle.
3.2 Current Uses of Software Visualisation

During the lifecycle of a software system there are many occasions where designers, developers or
maintainers will need to learn or re-learn some aspects of the software’s structure. It may be that they wish to
learn some of the higher-level structures, or wish to understand the operation at a line-by-line basis. Software

visualisation is intended to assist in the understanding of the software.

A key motivator in the development of the software visualisation field is the issue of software maintenance.
Some have identified as much as 90 percent of the time required performing a maintenance activity can be
attributed to the maintainer attempting to understand the software [Standish84]. By reducing the time

required to understand software, costs can be reduced as efficiency is improved.

24

Several taxonomies exist that classify software visualisation system. Myers’ classification [Myers90] is

useful as it identifies broad areas of software, and two temporal frames. It involves the following categories:
e Static code visualisation
¢ Dynamic code visualisation
o Static data visualisation
e Dynamic data visualisation
e Static algorithm visualisation
o Dynamic algorithm visualisation.

Static aspects of software are those that are features of software in a non-running state, whereas dynamic
aspects are those of the software during its execution. The code, data and algorithm categories are generally
representative of software visualisation systems at the time, but do not include all levels of software

abstraction.

Call graphs are usually static code visualisation systems. The CodeViz visualisation [CodeViz] generates call

graphs.

try_to_free_pages_zone

hu_cache_del

Figure 3-1 Call graphs

Figure 3-1 shows two call graphs. The leftimost call graph is of the alloc pages() [unction in the Linux kernel.

The rightmost image is an image produced by the Visualisation of Compiler Graphs (VCG) system

25

3.3.4 Abstraction

The history of computer science and software engineering has included a repeated succession in the level of
abstraction that software design is engaged at. Shaw [Shaw96] describes this sequence by examining a

selected history of computer science.

Initially in the 1950s software was written entirely in machine language. It was quickly realised that memory
layout and update of references could be automated; so symbolic names were used for operation codes and
memory locations. Symbolic assemblers were the result, followed up with macro processors that allowed a
single symbol to represent a commonly used sequence of instructions. Software visualisation has typically
ignored this level of abstraction, perhaps because this is the lowest level at which software is written, and it is
not common practice to write software at this level. When assembly language is used, it is primarily for
performance reasons. Games designers work in higher-level languages such as C and intersperse assembly

language where required.

Some elements of software were realised to be useful across many different software systems, and they could
be automatically created from a mathematical-style language. What resulted were early high-level languages.
The way in which data was represented and manipulated became of primary importance, leading to the notion
of abstract data types. Object oriented languages were to follow procedural high-level languages, focussing
on providing well-defined interfaces to software modules. The field of software visualisation has placed a
high degree of attention on high-level languages. Static analysis and representation of software written in

high-level languages has dominated much of the research.

Module Interconnection Languages (MILs) arrived after the realisation that describing modules and
describing how they are glued together are separate concerns and best served by different notations. Software

Visualisation has not yet investigated visualisation of MILs.

Architecture has been alluded to at various points in history, but is only recently become an area for serious

interest. Software visualisation has only begun to examine software at this high level of abstraction.

33

3.4 Fundamental Principles

This section outlines the fundamental principles that are thought to govern software visualisation today. It is
widely recognised that the key area of study is cognitive psychology. A broad definition of cognitive
psychology is that it is the study of those mental processes and activities that are used in perceiving,
remembering and thinking. Card, Mackinlay and Shneiderman [Card99] suggest six ways in which

visualisations can be used to enhance these cognitive processes:
e Visualisations can increase external memory and processing resources available to a user.

e Visualisations can reduce the need to search for information as the information is placed within

reach.
e Visualisations can enhance the user’s ability to detect patterns in data or events.

e Visualisations can facilitate the drawing of some inferences through direct perception of the

information rather than through more complex cognitive processing.
e Visualisations can facilitate the monitoring of change in large numbers of events.
e Visualisations can encode information in a medium that is suitable for manipulation.

Sometimes visualisations are of real world entities, but they can also be about representing entities and
relationships that do not have any direct physicality {Hewett99]. The challenge of the visualisation designer
is to produce a visualisation that maps in a relatively natural way to the cognitive structures of the end user

[Hewett99].
3.5 Conclusions

Software visualisation has its roots in program comprehension, and has used visual and cognitive psychology
in order to make software more accessible to those who need to understand it. Software visualisation work
has been primarily concerned with one level of abstraction — that of the high-level languages used to
implement software. There are other levels of abstraction that software visualisation has not considered

adequately, and software architecture is one of those.

A criticism levelled at software visualisation is that they are not extensively used during the development of
sofiware in industry today. However, recent Integrated Development Environments (IDEs) are beginning to

incorporate visual representations of various aspects of software. These visualisations range from simple tree-

34

structured class hierarchies to UML diagrams to more innovative visualisations such as page flow. Cognitive
psychology has demonstrated the value of imagery in cognitive processes, and scientific visualisation is
widely accepted as a means for representing large amounts of data in an understandable form. However,
some visualisation presented in research is explorative of the field rather than concentrating on the practical
impact of the work. This type of research is essential for developing the field and should have the ultimate

goal of moving towards practical instances.

35

Chapter 4: Software Architecture Visualisation

36

Figure 4-1 shows the 3D representation generated from import relations of a software system. Once this 3D
representation has been created in VRML, users can ‘walk around’ the representation using VRML viewing
software. Feijs et al. illustrate how viewing these relations can lead to the discovery of architectural design
flaws. They argue that even informal reasoning about software architecture reproduced pictorially in 3D can
result in the discovery of properties affecting relations among multiple modules, and suggest that system

designers should view the architecture in this way during the construction of the architecture.

Feijs and de Jong represent a single view of software architecture — that of the use relation between modules.
As such, the visualisation can only ever meet the needs of a limited number of stakeholders. This single view
is rendered in three dimensions and allows for the user to move the camera to see this view from different
locations in 3D space. As noted in chapter 3, some researchers take the stance that 3D can provide many
benefits over 2D, however this visualisation retains a node and arc basis. Interaction in this visualisation is
limited to moving the camera in 3D space, it does not allow the user to search or query the data directly. This
visualisation only considers a single aspect of static data on the software system, it does not consider data

associated with the runtime of the software, and also does not support dynamically changing architectures.

4.2.2 The Searchable Bookshelf

When developers or maintainers undertake a software comprehension, they can approach the task in two
ways: browsing or searching. During a browsing activity, the developers or maintainers will be formulating
their understanding of the software by following concepts, whilst searching is essential for fact finding and

hypothesis testing.

Sim et al state that software architecture visualisation tools have tended to support the browsing of software,
but often do not support searching [Sim99] and have produced the Searchable Bookshelf architecture

visualisation to address this issue.

38

system and SoftArch’s implementation of dynamic visualisation is that of annotating and animating static

visual forms.

SoftArch defines a meta-model of available architecture component types from which software systems can
be modeled. The main abstractions of this model are shown in Table 4-1 along with example elements of

those types.

Component Type Examples

Architecture components Server, machine, store

Associations Local area network, wide area network, connection
Annotations SQL commands

Table 4-1 Abstractions in SoftArch

Each of these elements may have typed properties associated with it. An example of SoftArch’s basic

notational elements in the architecture modeling visual language is shown in Figure 4-3.

Cooee)

\ Comes D>
bsoc \ $
S~ o

hodz bus

event fow @/

caching

Figure 4-3 SoftArch’s visual language

40

The visual language has the following graphical element mappings (Figure 4-3):

Oval = architecture component types

Horizontal bars = inter-component association types

Labelled vertical arrows = association and component annotation types

Dashed arrowed lines between types = indicate refinement

Solid arrowed lines = association relationships

Developers can then specify multiple architecture views allowing the system to be visualised from a number

of perspectives, revealing different aspects of the system from high level abstractions to detailed views.

SoftArch will then export a completed architecture model into the JComposer CASE tool [Grundy98].
Developers can then implement the system, creating Java classes in accordance with the components
produced in JComposer. When the system is run, JComposer components are created and will communicate
between themselves both locally and remotely. The JVisualise dynamic visualisation tool can then inspect the
running system, retrieving component information and listening to inter-component communication. During
this inspection and monitoring process, JVisualise sends events to SoftArch so that it can show components

being created, and calls between components (Figure 4-4).

41

4.2.6 Enterprise Architect

Enterprise Architect (EA) is a UML CASE tool that allows software architects, designers and analysts to
design software from several viewpoints [EA]. Much of the software lifecycle is catered for, from

requirements capture, to UML modelling to testing and project management.

EA utilises a graphical user interface that sits above an entity-relationship style repository. The primary
mechanism for modelling software systems in EA is to use diagrams. Several diagram types are supported,
some of which are listed in the table below. Entities are then dragged onto the diagram area, causing a new
entity to be created. These entities (some of which are listed in the table below) can be edited using the
graphical user interface. Links can be formed between diagram entities by means of relationships, some of

which are listed in Table 4-2. These links cause relationships to be formed between entities in the underlying

model.
Diagrams Entities Relationships
Analysis Diagram Associate
Use case Package Aggregate
Class Class Inherit
State Interface Association
Activity Object Dependency
Collaboration Actor Realise
Sequence Database Table Trace
Component Boundary Nesting
Deployment Use Case Association
Custom Requirement Object Flow

46

Table 4-2 Diagrams, entities and relationships in Enterprise Architect

4.3.1 4+1 View Model

Ad-hoc, poorly defined, and over-ambitious diagrams are the motivation for Kruchten’s 4+1 view model of
software architecture [Kruchten95]. When many aspects of architecture are combined into a single diagram,
it can become unclear as to what graphical components are attempting to represent. Kruchten describes
model composed of five views, or perspectives. They are the logical, process, physical and development
views along with selected use cases or scenarios. Each view is described in terms of its elements, form and
rationale/constraints, a decomposition identified by Perry and Wolf [Perry92]. Each view can have its own

architectural style and has its own notation.

The ‘Logical Architecture’ or ‘logical view’ is an object-oriented decomposition that closely maps to the
functional requirements of the system. Simplified class diagrams and class templates are used to represent
this view. The style for the logical view is an object-oriented style with one guideline to keep a single object

model across the entire system.

The ‘Process Architecture’ or ‘process decomposition’ addresses issues such as concurrency and distribution,
showing where independently executing units, called processes, are to be deployed across hardware, networks
and other platforms. Individual processes can be manipulated at an architectural level with operations such as
start-up, reconfigure, shutdown and so on. This level of description takes into account non-functional
requirements such as performance, availability and fault-tolerance. Several architectural styles fit this

particular view, including client-server, pipes and filters, and so on.

The “Development Architecture’ or ‘subsystem decomposition’ describes the division of the software into
units named ‘subsystems’ such as namespaces, packages, modules, libraries, classes and so on. Each of these
units can be assigned to a group of developers as each subsystem is given a well defined interface through
which the subsystem can communicate with other layers. The development architecture view is represented
by module and subsystem diagrams that illustrate import and export relations. This particular view is largely
internal in its relevance. It helps in project management, task assignment and so on, allowing for cost
evaluation and planning, monitoring, reuse and analysis of portability and security. As mentioned previously,
the recommended style for this view is the layered style as upper layers only depend on subsystems that are in

the same layer or layers below it allowing for simple release strategies by layer.

The ‘Physical Architecture’ shows the mapping of software to hardware. Identified elements such as
networks, processes, tasks and objects are all to be assigned processing nodes. During the life-cycle of the
software system, it is possible that many hardware configurations will be used, in development, testing and

deployment, so the elements should require the minimum of change for each configuration.

48

Finally, scenarios bind the four views together in instances of more general use cases. Scenarios are

redundant, hence the “+1°.
4.3.2 IEEE 1471-2000

The purpose of IEEE standard 1471-2000 (IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems) is to facilitate the expression and communication of architecture of software-

intensive systems [[EEE1471].

According to the IEEE 1471-2000 standard, every system has an architecture that can be documented by an
architectural description. In this model, the architecture i1s a conceptual entity whereas architectural
descriptions are concrete entities that exist in order to describe the conceptual architecture. Architectural
descriptions are comprised of architectural views, each of which addresses one or more concerns of the
system’s stakeholders. Each stakeholder, therefore, has a set of concerns — interests that they have with

respect to the system’s development and operation.

Viewpoints exist to define the conventions by which a view is depicted. It determines the languages,
notations and models that are used to describe that view. A view is an expression of the system’s architecture

with respect to a particular viewpoint.

The standard requires that an architectural description identify the stakeholders and concerns of the software.

As a minimum, this should include:
o Users
e Acquirers
e Developers
e Maintainers

A set of viewpoints are defined, each of which address the concerns of particular stakeholders. A number of

architectural views are then defined, each including:
e An identifier for the view (e.g. functional view, operational view)

e Representation of the system (constructed with the languages and models defined in the associated

viewpoint)

e Configuration information.

49

Each view may contain more than one architectural model. Additionally, the architectural description

includes the rationale for the architectural concepts selected.
4.4 Current Trends Issues and Challenges

A large number of existing software visualisations are aimed at developers and maintainers of software
systems. Whilst this may represent a significant proportion of the stakeholders in a software system, there are
other areas of the software life-cycle that can be addressed by software visualisation, and therefore apply to a
larger number of stakeholders. Software architects and designers are often less involved in the detail of
software such as method variables, message passing and class properties. Instead, they are more involved
with components, connectors, APIs and deployment objects such as machines, clusters and networks. By
focussing on high levels of detail, existing visualisations often exclude software architecture as a view of
software in its own right. Several architecture visualisations have attempted to address the issues posed. This
section describes the trends and issues associated with current architecture visualisations and identifies the

challenges raised.
4.4.1 Definitions, Views and Models of Architecture

Several definitions of architecture exist. This may be a reflection on the fact that there are a large number of
views on what software architectures are, what they are used for, who uses them, and what they are comprised
of. It is clear from the research background that some research has clearly drawn a line around what entities
comprise software architecture. For example, ADLs clearly define these entities as they are formal language
with defined structure and semantics. In other cases, class structure is referred to as the architecture of a
software system, without any formal architectural named entities such as ‘component’ or ‘connector’.
Similarly, views of architecture can be formally defined in some research, but in other cases it is very much

left to the designer to formulate what views exist within the architecture.

It is beyond the scope of this thesis to determine which of these extremes are correct, but it is important to

recognise that there are extremes when considering the design of an architecture visualisation.
4.4.2 Representation and Mappings

Related to the issue of models and views, there is a wide variety of what graphical components can be used to
describe an architecture. The increasing use of UML in modern software engineering is evident in current
software architecture visualisations. However, this is not common across all architecture visualisations, and

therefore there are directly conflicting mappings.

50

It is impossible to reconcile these mappings, so the design of an architecture visualisation should cater for

these differences in representation.
4.4.3 Roles and Stakeholders

Many of the software architecture visualisations that have been considered in this chapter say very little of
stakeholders in a software system other than architects and developers. It is obvious that the focus of the

software architecture visualisations is very much towards these two roles.

4.4.4 Obtaining Architectural Data

4441 Static Capture

Static processing is perhaps the most often used strategy for recovering the information needed for
visualisation. Typically for detailed visualisations, a language parser is coupled to a data store and operates
over the source repository for the target system. The parser is built or configured such that the data store is
populated with entities that are deemed important for the visualisation. This data store is then used by the

visualisation system to construct visual elements for display and navigation.

The data store of an architecture visualisation may contain large amounts of highly detailed information
regarding the target system — it is the responsibility of the visualisation to present only that information that is

required. For example, some views of architecture do not require method and variable level information.
4442 Dynamic Capture

Static representations of software are often very different to the dynamic runtime reality of that software.

Dynamic capture attempts to retrieve information regarding a running software system.

Augmentation of software is an invasive procedure that allows the addition of code to the source of a software
system that will cause logging events, or update a visualisation display. Augmentation can be a manual
process, where a developer or system expert adds the required code to the appropriate places. Augmentation
can also be an automatic process where a precompiler tool inserts appropriate code into the source before
compilation occurs. This code performs the appropriate function according to the visualisation, such as
updating a repository, sending events to another system or updating a display. Another method for
augmentation can be found used with the Java language, where classloaders are used to load classes into a
running virtual machine. Custom classloaders can be used to automatically augment software without the
need for recompiling the source code. The Java Virtual Machine also offers a debugging interface that allows

external software to access all runtime information generated by the virtual machine.

51

44.43 Online and Offline

The visualisation process can occur in one of two temporal frames: online or offline. When a visualisation is
carried out online, the visualisation is running alongside the system being visualised, and the display is
updated as soon as possible after the event that caused it is triggered. If a visualisation is offline, the trigger
events cause updates to a store such as a log file or database. After the system execution has completed, or

the process terminated, the store can then be used by the visualisation in order to render the necessary views.

Both approaches offer relative merits and disadvantages. For online visualisation, the events can be viewed in
real-time. This lends itself to situations where responses to such information are required in a live
environment. For example, identifying a component that has failed in real-time is useful for contingency
procedures to be executed. Online visualisation is necessary for situations where the choice of view depends
on the current state of the system. For example, the user may only choose a particular view of component X
if component Y has failed. Conversely, online approaches have their problems. Firstly, given the large
volumes of visualisation information that can be provided by a system can overwhelm the rendering

capability of the visualisation system, causing it to lag behind the data.

Offline visualisation can help with the problem of data volume. If the visualisation system cannot cope with

the data volume, filters can be deployed to reduce the data flow into the visualisation system.
4444 Storage

A typical visualisation system will comprise of the following data-sets:
e System data retrieved from static processing and description capture
e System data retrieved from dynamic processing
e Representations and mappings for the visualisation.
e Internal representation of the visualisation

¢ External representation of the visualisation

The choice of storage system for each of these areas will depend on the structural support and performance of
that system. Typical choices include:

¢ Relational Database

¢ Flat-file (for example, a log file)

o XML Document

¢ Object/data-structure persistence

e Objects/data-structures in memory

52

Relational databases are well understood and provide for query languages, analysis tools and a variety of
connectivity methods. Performance can be achieved with careful structuring of the data store, and by
adjusting database management system parameters (DBMS) parameters. Flat-files are typically used where
data processing requirement are to be kept to a minimum. Usually the only operation carried out on a log file
during data capture is to append a line to the file. The log file can then be used with the visualisation system
by replaying events back to the visualisation system, or more typically the log file is parsed and processed,

and the resulting information stored in a database for access by a visualisation system.

A recent trend for software in general is to make use of the XML language. XML is often used for storing
structured information, and here lends itself to many areas where validation and querying is required. For
example, XML 1s useful for storing mappings, representations and metaphors. One of the advantages of XML
over databases for structured information is that the XML data is human readable. Another is that XML

documents can conform to and therefore be validated against XML schemas.

Whilst a visualisation system is running, visual objects, system objects, configuration information and data
structures are all held in memory. This is the fastest store for visualisation information in comparison to the
other methods described here. Visualisation system can use object serialisation to persist the state of the
visualisation to a long-term store to be utilised at a later time. In this way, visualisation state can be saved,

replicated and reverted to.

4.5 Conclusions

By examining a selection of existing software architecture visualisation systems, a number of trends, issues
and challenges that face this area of research have been identified. Firstly, the definition and scope of what
software architecture actually is does vary considerably from one organisation to another, and from one
software system to another. The representation of such software architecture also varies, and is dependent on
many factors including organisational policy, and individual preference. There are a number of roles and
stakeholders in a software system, but existing software architecture visualisations often fail to address all of
those stakeholders. Finally, this chapter considered the process of obtaining architectural information, and

identified the types of data that are relevant to software architecture.

53

Chapter 5: The ArchVis Approach

54

5.1 Introduction

This chapter describes the ArchVis approach to software architecture visualisation. [t examines the nature of
the ArchVis visualisation concept, its aims, and presents the mechanisms by which it achieves those aims. A
standard set of terminology is outlined to provide consistency in describing ArchVis, which is followed by a
description of the elements used to describe software architecture. Then, an overview of the ArchVis
approach is given in order to provide context for the rest of the chapter. Next, the mechanisms for the
extraction of architectural data are examined. Following this, the system for creating a visualisation of the
data is presented when render models and renderers are considered. This then provides a basis for looking at
the ArchVis view model, looking at how views are defined and constructed. A number of views are
developed and illustrated: component views, developer views, project manager views, technology and
deployment views, and sales and marketing views. From here, the topic of interaction is discussed by looking

at context sensitive actions and describing the activities that ArchVis supports.
5.2 ArchVis Visualisation System Overview

ArchVis is an approach to software architecture visualisation that is seated in current software visualisation

techniques. The approach addresses key concerns identified in previous chapters:

e ArchVis supports multiple representations of software architecture — it is not limited to

source code representations.

e ArchVis supports multiple stakeholders of software architecture — it supports stakeholders

other than developers and maintainers.
e ArchVis supports both static data and transient data.

e ArchVis utilises a flexible data model allow for the capture of a wide spectrum of

architecture.
e ArchVis utilises a flexible render pipeline for defining any number of different views.

e ArchVis utilises a flexible render model that allows for the creation of many graphical

components for use in rendering a view.

In order to visualise the architecture of a software system, a number of actions need to be performed in the

following order Visualisation Definition, Data Extraction and Visualisation (Figure 5-1).

55

Visualisation 7 . ‘ o
{ Definition Data Extraction ——— Visualisation ‘

Figure 5-1 ArchVis Visualisation System Overview

The first two are performed before the visualisation occurs, and the last item is the running of the visualisation

itself. Each is discussed in more detail below.

5.2.1 Overview of Visualisation Definition

ArchVis is controlled by configuration, called the visualisation profile, and this configuration determines the
behaviour of ArchVis during visualisation. The two main aspects of the visualisation profile reflect the two
types of data: static and transient. Static data conforms to the data model described later in this chapter, and

transient data is comprised of events.

For static data, a number of views are defined. These views determine what elements of the available data are
useful, and how that data is to be retrieved. The view specifies how data is to be filtered in order to produce a
data set that is suitable for rendering. Finally, the view defines how a render model is constructed from the

filtered data by using a renderer.

For transient data, the visualisation profile determines how events are mapped into actions on the render

model. These actions will change elements in the render model in an appropriate manner.

This thesis describes five sets of views (component views, developer views, project manager views,
technology and deployment views, and sales and marketing views) but an essential capability in this
visualisation is that views can be added and removed both before the visualisation begins, and during the

visualisation process.

5.2.2 Overview of Data Extraction

Data extraction here refers to the extraction of static data, and the extraction of transient data. Static data is
data that is generated before the visualisation process, and transient data is data that is generated during the
visualisation process and concerns the execution of the software architecture being visualised. Typically,
static data is recorded in some long-term store such as a database or file store, and transient data is received as
a sequence of events. Transient data pertains to the visualisation at the time of execution and its lifetime does

not extend beyond a particular execution of the system.

A number of extraction methods are defined by which architectural data is retrieved and passed to the

visualisation.

56

5.2.3 Overview of Execution

Execution of the visualisation means taking the visualisation profile and the static data and creating the

defined views. It also encompasses all elements of interactivity and the use of transient data.

As the visualisation begins execution, it will create the relevant views. These views define how data is to be
fiitered before being passed to the renderer that has been set for that view. Once the render model has been
constructed and displayed, transient data events can cause changes to elements in that model. Also, the user

can interact with the visualisation in a number of ways.

5.3 Architecture Representation Choice

Programming languages are structured entities; they are well-defined constructs that can be parsed easily.
Software architecture, however, is interpreted in many different ways with its constituent entities and
relationships selected from different domains. For example, in the enterprise software domain, platforms and
machines may represent architecture whereas in the compiler domain, architecture may be represented by data
structures and their relationships. Some software systems have their architecture explicitly recorded, whereas
others do not. Within ArchVis, the choice of a data model that gives greatest flexibility ameliorates many of

these problems.

In simple terms, software architecture in ArchVis is represented as a set of entities and a set of relationships
between those entities. Both entities and relationships also have properties. This ER model has historically

proven useful for describing and modelling aspects of software architecture [Soni95].
5.3.1 Entities

Entities comprise of three elements:
e Name
e Type
e Properties

One entity is considered to be equal to another entity if both the names of both entities are equal, and the
types of both entities are equal. The third element, the entity’s properties, is a convenience for associating a
set of key-value pairs with an entity. Properties are typically used when the property may not have further
entities associated with it. For example, an entity ‘rectangle’ that has a relationship to another entity ‘red’

may be more suited to having ‘red’ as a property rather than an explicit entity and relationship.

57

Table 5-1 gives a number of examples of the types of entities that are commonly used in architectural

representations.
Categories

Computation Connector Physical Platform os
Module Protocol Server Web Server Log

S

§ Class Transport Machine App Server File

s

R

-§. Bean Interconnect Net Device DB Server File-system

3 .

L:J(EJB Location Framework Kemel
Package

Table 5-1 Examples of entities used in architectural representations

The collection of entities associated with an architecture depends on the domain of the software, amongst

other aspects. An enterprise software system will have very different entities compared to, for example, a

compiler’s architecture.

5.3.2 Relationships

Relationships consist of the following elements:

Name

Type

Source

Destination

Direction

Properties

58

Here, the source and destination elements are references to entities. The direction indicates whether the
refationship 1s forwards, backwards or bi-directional. For two relationships to be equal, the names, types,

sources and destinations have to be identical.

Table 5-2 lists examples of the types of relationships that are commonly used in architectural representations.

Categories

Computation Connector Physical Platform os Generic
g Contains Protocol Deployed on | Interfacesto | Writtento | Isa
5
& Has type Connects over | Situated at Built on Read from | Uses
]
g Imports Stored on
=
&Y

Table 5-2 Examples of relationships used in architectural representations

The categories used in Table 5-2 are for ease of description rather than being a prescriptive taxonomy.
Relationship names, types and properties also depend on the domain of the software and also the data source.
Relationships found in static UML diagrams will differ to relationships found in sequence diagrams, for

example.
5.4 Data Extraction and Storage

Architectures are represented in a great number of different ways. In order to be successful in a real-world
application, the ArchVis approach has to be able to support a potentially large number of sources of data, and
also support large volumes of data. It is possible to recover architectural information from data at lower

levels of abstraction, and so the ArchVis approach should be capable of exploiting this fact.

In the visualisation process, the first step is to obtain the data from various locations by various means. From
a temporal perspective, data input into ArchVis is either static data or transient data. ArchVis has two

interfaces: one for static data and the other for transient data (Figure 5-2)

59

ArchVis

r Visualisation System |
uses uses
Y
Static Data Interface Transient Data Infedace
A
Data read Events sent
Event
Static Data Source

Figure 5-2 ArchVis data interfaces

The basic function of components that implement the static data interface and the transient data interface is to

map real world entities to (entity, type) tuples, that is f : W — E where W is the set of real world entities

and F'is the set of all (entity, type) tuples. These components also extract the relationships and properties

that are associated with these real world objects.
5.4.1 Static Data

Static data 1s placed into a repository that ArchVis can then use. The data model for ArchVis is an entity-
relationship (ER) model along with properties associated with both entities and relationships. ArchVis
provides an interface by which different storage mechanisms can be implemented, allowing for two distinct

advantages.

Firstly, ArchVis can directly use existing data sources as part of its data set in an online fashion, without an
explicit extraction and store process. A component can simply act as a gateway between ArchVis and the
data source by translating the source data structures into a set of entities and relationships ‘on the fly’ (see

Figure 5-3). In this approach, the design of the component will determine the resulting ER data set.

60

In order to allow for a wide array of input sources to be used, the mechanism used for extracting and
retrieving data utilises a client-server architecture. The server (Figure 5-4) is responsible for listening for
connections from clients and receiving data sent by those clients. A simple rolling graph indicates an
impression of the activity of the server in terms of numbers of entities and relationships and properties added.
Once received, the data is stored using the selected ER Store, which can be one of a number of

implementations (Figure 5-5).

Server

1

«interfaces
EntityRelationshipStore

TTT

EntityRelationshipStoreMySQL EntityRelationshipStoreMemory EntityRelationshipStoreSerialisation

Figure 5-5 EntityRelationshipStore static UML diagram

Utilising a common client with a well-defined interface, many different extractors can interface to the server.
Figure 5-6 shows how this is achieved. Each extractor is linked to an implementation of the ‘Client’
interface. This client exposes a simple interface for adding entities, relationships and properties, and it

handles all communication with the server.

62

System

Component Connector Attachment

Port Rolo Port-Role Binding

Figure 5-7 Acme ADL language structure

Figure 5-7 shows the main parts of the structure of the Acme ADL. The ArchVis Acme parser produces

entities and relationships that follow this model.
5.4.1.2 Source Code

Perhaps the most well understood methods of extracting information about software systems come from
traditional program comprehension and software visualisation research. Here, the source code for a software
system is used as the input to the visualisation. In ArchVis, a source code parser can be used to parse a set of
source files in order to populate the ER store. ArchVis and the source code parser are very loosely coupled,
so the source code parser can be implemented in a number of ways. An obvious solution is for a custom
parser to process the source files directly and populate the ER store accordingly. Figure 5-8 is a data-flow

diagram of such a strategy.

Java Sources
Source fites

Java Parser

Static structure

ERClient Entm i;ﬁ?r’s —b- Eniities & Relations —#= Static Stare

Figure 5-8 Data flow diagram of source code parsing

64

In another solution, an existing parser may have already created a database of information for which a
separate tool can use that existing database as its input in order to populate the ER store. This is illustrated in

the data flow diagram in Figure 5-9.

Parser
Database

Static Structure

ERClient

5.4.1.3 Configurations

Entities & Refations i . .
over network Entities & Redations —= Static Slore

Figure 5-9 Data flow diagram of parser database extraction

Another increasingly important source of persistent data is the configuration file. Two common examples of
configuration files are key-value configuration files and extensible mark-up language (XML) documents. For
the purposes of this thesis, key-value configuration files refer to properties files, initialisation files and system
registry information. ArchVis makes use of a configuration file reader and XML document parser that can
extract information from configuration files and place them in the ER store. XML use for defining the control
structure of a software system is prevalent in enterprise environments such as in deployments of J2EE (Java 2
Enterprise Edition) applications. In particular, those applications that utilise the Struts framework where

XML configurations define the flow of pages and also of intermediate actions.
54.1.4 Documents

Another type of information source is the document. Documents are widely used to describe many aspects of
software systems in a multitude of ways. It is these documents that are invaluable to many stakeholders in a
software system during all phases of the software lifecycle. Ideally, ArchVis would support the automatic
parsing of natural language documents. Instead a tool can be used to help a stakeholder add information to
the ER store. This tool is implemented such that any entity, relationship or property can be added to the store,

and can therefore be used to capture document-based data.

Event information comprises of a set of key-values. This event information is then utilised within ArchVis in

order to perform the following actions:
e (Create a new entity or relationship
e Delete an existing entity or relationship.
e Change the properties of an entity or relationship.

An important aspect to mention here is that these operations are not performed over the original data in the
ER store; they are operations over a temporary ER store used to generate views. This issue will become clear

when views are discussed later in the chapter.
To facilitate re-running of a scenario, events can also be stored in a log to allow for playback.
5.4.21 Runtime Information

Some areas of program comprehension have used data gathered from a software system at runtime. The
structure of software at runtime is very different to the static representation of that software in source code.
There are two broad methods of extracting this information. The first is 'instrumentation’ which involves
changing the software itself to include statements that will record information about the running system. This
is a directly intrusive approach. Some variants of this approach allow for pre-processing of source files in
order to make the process less complex, but the resulting software is still modified. ArchVis supports this

method of collection through the ArchVis Instrumentation interface (Figure 5-12).

TCP/IP Network
java.net java.net
ArchEvantClient ArchEventServer
[-sendEvent(ln event, in type, in data) +procassEvent(in event, In type, in data)

Figure 5-12 ArchVis client-server communication for transient data

67

ERData —»

I

I

I

I Has an assaciated
i vocabulary V,
|

I

I

Transposas
/ vocabulary V, to V,
Static Data Static Data
Source A Interface A Renamer
I v
l Data
|
Static Data Static Data
Source B Interface B

[

| Has an associated
[vocabulary V,
|

Figure 5-15 Consolidation process

A vocabulary, associated with a static data provider, is a subset of entities: /' C £ . A renaming function r

will translate an entity € € E to another entity ¢’ € E. The intention of a renamer component, which
implements a renaming function, is to map entities of one static data provider to another static data provider
such that their vocabularies match. That is to say for all real world objects, w, a renamer function r should

translate a vocabulary function v such that the resulting entities are the same as using another vocabulary

function on the same real world object: r(v(w))=v'(w).

5.5 ArchVis View Model

So far, the data extraction process has been discussed. Once all the static data is available in an ER store, it is
ready to be visualised. The ArchVis view model describes how this data is used to provide views on the

architecture.

In a similar manner to IEEE 1471, ArchVis allows the definition of a multitude of architectural views.
Frequently, research into software architecture identifies the need for more than one view of the software
architecture. A model for how views are used in ArchVis is required, and is called a ‘view model’. The view
model utilised by ArchVis allows the definition of a vocabulary, model and graphical representation of

architectures. Figure 5-16 is a class diagram of the view model. It shows that a visualisation profile has

70

exactly one ER store, but defines a number of views. Each of these views can have a number of data filters

associated with it, and exactly one renderer.

VisualisationProfile EvanlM:{fa;ei
1 1
|
1 1
' .
ERStore View 'IniputSelector
-name
-definition
1 1

1 1
M 1

DataFilter Renderer

Figure 5-16 ArchVis view model

A visualisation profile consists of a number of views, and an entity relation store. The ER store is common
across all views as each view is a representation of that underlying data. Each view has its own set of data
filters and a render component. Data filters are defined to be an ordered list of filter components that take an
entity-relation store as input, and output an ER store. In this way, the filters can be concatenated to achieve
various functions. Also, each view has an associated definition in accordance with IEEE1471 [IEEE1471].
This definition will typically be a textual definition, or link to a document that contains the definition. Other

aspects of the view model shown in Figure 5-16 are described elsewhere in the thesis.

Filter A

Filtered Data (A}

ERStore —Input Data

Filter B

i

Filtered Data (B)

Filter C Flltered Dala (C)—#~{ Renderer

Oy

Figure 5-17 ArchVis static data filters

71

Figure 5-17 illustrates a view that consists of three filters. Data is retrieved from the ER store defined for the
visualisation profile, and is passed to the first filter in the list. This filter then outputs an entity-relation store
which is received by the next filter, B, and then again through to C. Finally, the entity-relation store that is
output from C is passed directly to the renderer. For example, Filter A may remove entities of a certain type,
Filter B may consolidate some related entities, and Filter C may factor some relationships into properties of

entities.

A renderer takes an entity-relation store as input, and generates a render model. This render model is of a

different structure to an entity-relation store, and is suitable for drawing.

RenderModelManager
HdrawModel()
1
ainterface»
Drawable
drawi)
DrawableNode Line
SimpleBox | |Labelledicon Straightline

Figure 5-18 ArchVis’ render model

The render model, shown in Figure 5-18, is controlled by a render model manager. It is the responsibility of
the render component to take an entity-relation store and construct an appropriate render model. A key

capability of this model is that it will support any number of filter configurations and renderers.

This approach to views means that any number of views can be created, catering for different view models

found in research, such as the 4+1 view model described in chapter 2.
5.6 Render Models and Renderers
As shown earlier in this chapter, a view utilises a renderer in order to generate a visual representation of

architecture. This renderer creates a render model, which is comprised of a set of graphical components along

with a mechanism for organising those components.

72

5.6.1 The Render Model

The organisation of a render model is undertaken by the ‘ModelManager’, which is responsible for keeping a

collection of ‘Drawable’ graphical components, and preparing them ready for rendering to a display.

The key to the power and flexibility of the visualisation lies in the graphical components that can be utilised
by renderers. By having a large library of graphical components, more sophisticated visualisations can be
achieved using the right renderer implementation. The following sections give core graphical elements that

can be used in architecture visualisation.
5.6.1.1 Components and Connectors

Many ADLs use components, connectors, ports and roles as the entities that represent software architecture.
The render model includes two graphical elements that represent these entities. Components are represented
by large boxes and have smaller port boxes associated with them. Connectors are represented as vertical

boxes, and have horizontal role boxes associated with them.

Example Description

An architectural component with three ports.

HTTP An architectural connector with three roles.

Table 5-3 Render model component-connector elements
Table 5-3 gives an example of a component and connector with a number of ports and roles.
5.6.1.2 UML

The Unified Modelling Language (UML) is a de-facto standard for the design of software architecture, so the

render model includes graphical elements to represent varicus aspects of the UML.

73

Heterogeneous styles (2.4.1) can be represented through a graphical element allowing other graphical
elements to become part of it. A good example is the layered style. Each of the layers may be implemented
using a different architectural style, and thus the layer could be represented using a graphical item that follows

a different style also.
5.6.3 Renderers

A renderer is a component whose function is to create a render model and populate it with instances of
graphical elements. It does this by creating a render model manager, and then by creating the appropriate

graphical elements to add to it, depending on the input to the renderer. Input to a renderer takes two forms.

The first and primary input is the ER store that the renderer is to act over, and the renderer recomposes
entities, relationships and properties that it finds in the ER store, and recomposes them back into composite

structures that are then represented by graphical elements.

The second input 1s an entity, or set of entities, that can be used to drive the renderer. For example, the user
of the visualisation may be viewing a ‘package view’ that displays the contents of a chosen package. In order
for this view to display the appropriate information, the user is required to select a package. The package that
is selected is an entity that is input to the renderer, and causes the appropriate view to be rendered. This

feature is described in more detail in section 5.10.1.

A renderer can also add associations with graphical elements. An association is a mechanism by which a
graphical entity can be temporarily associated with another graphical entity. This temporary association is
useful in situations where the user wishes to know some information about an entity, but then can hide that

information later. The removal of associations can occur as a result of user action, or by the passing of time.

Examples of renderers are given in ‘Example Views’ below.

5.7 Transient Data Extraction and Use

Along with the visualisation of static data, ArchVis can also use transient data as input to the visualisation.
Transient data can be important and useful for visualisation as it allows a stakeholder to visualise the activity

of a system during its execution.

In a similar manner to the input of static data, the ArchVis approach allows a multitude of transient data
sources to be used. Event Client components capture the dynamic data in the form of discrete events. These
events are passed to the Event Server. The interface between client and server is network-based, so the
transient data sources can be located on remote machines. Figure 5-19 illustrates the use of transient data in
ArchVis,

77

Capability Effects

Label Allows an element to have a label. This label is a string and is positioned
over the top of the underlying element.

Transparency Allows an element to have its transparency set from 0 percent to 100
percent. [t also allows for effects over time such as fading out or fading
in.

Flag Allows an image to be overlayed in some position over the element. The
image can be displayed for a fixed period of time if the flag is temporary.

Rotate Allows the element to be rotated around its centre. This rotation can be
to a fixed angle, or the element can be set to spin at a particular speed.
Spinning can be limited to a fixed period of time.

Resize Allows an element to be resized.

Brightness Allows an element to have its brightness multiplied by a fixed amount.

Border Allows an element to have a border set around its edges. The border
width and colour are parameters to this capability.

Graphical elements will have differing capabilities, so a particular visualisation should ensure that

implementations of the EventMapping interface result in the correct requests to graphical elements in the

RenderModel.

Table 5-8 Graphical capabilities associated with elements of the render model

5.8 ArchVis Architecture

ArchVis, like all software has an architecture, and this has been described in this chapter.

presents an overview of the logical view of the architecture.

components in the software and how they are connected 1o each other.

79

This section

In this view, the focus is on the major

Note that the “*’ indicates ‘all’, so this filter will include all relationships in its output. The Renderer takes

the resulting data and draws the view, with the configuration shown in Table 5-11.

Object Entity Type | Graphical Component | Configuration

Entity Component | SimpleRectangle Fill=yellow; label=Entity Name
Entity Entity Bean | SimpleRectangle Fill=red; label=Entity Name
Entity Bean Capsule Fill=green; label=Entity Name
Entity JSp Document Fill=blue; label=Entity Name
Relationship | * SimpleLine <none>

Table 5-11 Renderer configuration for component views

The renderer will also evaluate, for each component, the boundary of all entities it is related to in order to

draw a dashed boundary rectangle.

Components can be represented with their ports, and connectors represented with their roles (). Connecting

lines between ports and roles indicate bindings between the two.

mainmsgsrv.push

1
mainmsgsrv.push.parf

lingu Relay Consumer _—

mainmagssv.pull

finpun Notification Consume

-

mainmsgsev.puil.rmi

Figure 5-25 Component and connector view with ports, roles and packages

In Figure 5-25 the component and connector view shows package assignment to components.

84

In order to generate the view in Figure 5-26, the ‘PatternFilter’ data filter is configured as shown in Table

5-12.
Rule Object Match on Value
Include Entity Entity type Component
Include Entity Entity type Bean
Include Entity Entity type Interface
Include Entity Entity type Class
Include Entity Entity type Package
Include Relation * *

Table 5-12 PatternFilter configuration for a developer view

To achieve a hgher depth of information, the filter could add rules to include method and variable

information. A renderer used in developer views may have the configuration shown in Table 5-13.

Object Entity Type | Graphical Component | Configuration

Entity Component | SimpleRectangle Fill=yellow; label=Entity Name
Entity Bean Capsule Fill=green; label=Entity Name
Entity JSP Document Fill=blue; label=Entity Name
Entity Interface UMLInterface Label=Entity Name

Entity Class UMLClass Label=Entity Name

Entity Package UMLPackage Label=Package Name
Relationship | Implements | SimpleLine DstArrowHead=Unfilled
Relationship | * SimpleLine <none>

Table 5-13 Renderer configuration for developer views

86

Figure 5-27 depicts a project manager view, showing a bean within an architectural component along with
respective completion statistics and closeness to deadline for individual classes, interfaces, and the bean

component itself.

Rule Object Match on Value
Include Entity Entity type Component
Include Entity Entity type Bean
Include Entity Entity type Interface
Include Entity Entity type Class
Include Entity Entity type Person
Include Relation * *

Table 5-14 Static data filter configuration for project manager views

Table 5-14 shows the rules that the static data filter is configured with in order to make the correct data

available for these views.

88

Object Entity Type | Graphical Component | Configuration

Entity Component | SimpleRectangle Fill=yellow; label=Entity Name

Entity Bean CapsulePM Fill=green; label=Entity Name;
Tag=Entity. property.complete;
Bar=Entity.property.start +
Entity.property.end + Today

Entity Interface UMLInterfacePM Label=Entity Name;
Tag=Entity.property.complete

Entity Class UMLClassPM Label=Entity Name,
Tag=Entity property.complete

Entity Person LabelledPhoto Photo=namedphoto; Label=Entity Name +
Entity.property. Team
Relationship | * SimpleLine <none>

Table 5-15 Renderer configuration for a project manager view

Table 5-15 shows the configuration for the renderer. This utilises graphical elements that have specific
capability for project management (note the use of PM in their name). These elements can take property

values as input in order to generate the appropriate graphical output. In this case, this is percentage complete.
5.9.4 Technology and Deployment Views

The aim of technology and deployment views is to indicate the types of technologies that are used to construct

the system. Stakeholders in this view would include:

System administrators

Purchasing department

e Customers

Network engineers

89

Object Entity Type | Graphical Component | Configuration

Entity Platform SimpleRectangle Fill=white; label=Entity Name

Entity Machine LabelledIcon Label=Entity Name,
Icon=Entity.property.processorarch

Entity Network Labelledlcon Label=Entity.property.iprange + Entity Type;
Icon=Entity.property manufacturer

Relationship | * SimpleLine <none>

Table 5-17 Renderer configuration for a physical deployment view

Table 5-17 shows the renderer is configured for a physical deployment view.

Another important aspect of the architecture is the technology used to develop the system. Most of today’s

software is built on top of application frameworks, application programming interfaces (APIs), platforms and

technologies.

l Beans

Stateless
JSPs Session
Beans
Struts Me§sage
Framework Driven
Beans

91

Entity

Figure 5-29 Framework and Technology View

Table 5-18 shows the data filter configuration required to build this view.

Object Entity Type | Graphical Component | Configuration
Entity Platform LabelledIcon Label=Entity Name;
Icon=Entity. property.vendor
Entity Machine LabelledIcon Label=Entity Name;
Icon=Entity property.processorarch
Relationship | * SimpleLine <none>

Table 5-19 shows how the renderer is configured for this view.

5.10 Activities

Table 5-19 Renderer configuration for a technology view

In order to facilitate comprehension of software architecture, a number of activities are supported. Here,

some of the more fundamental activities are described.

5.10.1 Querying

ArchVis query support is provided by two mechanisms. The first is by setting the input to a view, a feature

mentioned briefly in section 5.6.3. This mechanism relies on an input selection component that is associated

with a view (Figure 5-31).

93

VisualisationProfile Ev;ﬁiiﬂ;pper

1 1
.]
9 1
1
ERStore View]nputSelectot
Lname
-definition
1 1
1 1
v 1
DataFilter Rendarer

Figure 5-31 Input selection for a view

The input selection component allows users to set the input to a view. The input selector component
determines, by configuration, what entities can be selected to be input to a view. For example, if the view is
to display the contents of a package, the input selector will allow the user to select a package from the ER
store. The act of selecting a package will then cause the view to be re-drawn with that particular package as

input.

The second mechanism by which querying is supported is the use of an explicit query view. A query view is
a very similar concept to input selection, but results in a new view being generated. A typical action that
would cause a query view to be created would be that a user identifies an entity of interest, and requests the
creation of a query view on it. This would then add a new view to ArchVis, showing the results of that query.

Query views a particularly useful for showing all entities that are related to a particular entity.
5.10.2 Layout

Layout is an operation that operates over graphical elements in the render model of a view, and can be
activated or deactivated by the user. Any available graph layout algorithms can be applied to the render
model, and it is the responsibility of the layout component to determine whether it can operate over the render
model given to it. Graphical elements in the render model have a type associated with them that determines 1f
they correspond to entities or relationships. This information is used by a graph layout component in order to

position those elements.

94

S
OO
NG o

Figure 5-33 Browsing

Figure 5-33 illustrates this clearly in that entity J may not be visible in the current view, but is related to A via

relationship 10.

When an entity is selected as the focus, the ArchVis visualisation system permits a number of useful browsing
aids. All relationships that contain the currently selected entity can be calculated and presented for the user to
examine. These relationships can be restricted to only those that appear in the current view, but can also

include all relationships — even from other views.
5.10.4 Searching

Searching is complementary to browsing, and is considered very important by some visualisation researchers
[Sim99]. The search capabilities offered by the ArchVis visualisation are extensive. Simple searches can be
performed that are based on regular expressions on entity name, entity types, relationship names and
relationship types. As ArchVis uses the entity-relationship model, more complex searches can also be

performed by matching entities and relationships on their properties.
5.10.5 Annotation

Annotating a view is important when recording hypothesis about understanding. ArchVis separates
annotations from the underlying data model. This is important, as the data model should remain independent
of any visualisations that utilise it in order to allow multiple visualisations of the same data. Therefore,
annotations are stored separately, but are related to the original data source by pointers. When the
visualisation is resumed, annotations are retrieved from a separate data store. When entities, relationships and

properties are selected, the appropriate annotation can be displayed and made available for editing.

96

Figure 5-34 shows the selection of an entity. The ‘Text Viewer’ action is associated with the property

‘sourcefile’, and so shows in the list of actions available. Selecting this would execute the “Text Viewer’

CSA that opens the file using an operating system defined text editor.

Each CSA can be associated with names, types and properties.

The format for this configuration is

(name,value) pairs. This list of pairs can be extended prior to running the visualisation. This list is parsed in

order to determine whether an entity or relationship is associated with the CSA or not. If it is, then the CSA is

added into the menu hierarchy as appropnate, otherwise it is not.

CSA Class Typically Associated With | Description
TextViewer Property: sourcefile Launches an external text editor that is
set for the operating system using the
Property: textfile value of the sourcefile property.
Property: configfile
XML Viewer Property: xml Launches an external XML viewer,
with the value as the input file.
Type: xml
ImageViewer Property: icon Opens a window, showing the image
along with basic information regarding
Property: image size, colour depth and file type.
Directory Viewer Property: directory Launches a file explorer, showing the
location of the file or directory.
Type: file
NetworkTools Type: network Launches a set of tools that can operate
on the ipaddress property if it exists.

Table 5-20 Context Sensitive Actions

Table 5-20 shows a set of CSAs that may be associated with entities and relationships in an architecture.

Each context sensitive action inherits from an abstract base class such that further implementations are

possible.

98

5.11 Conclusions

ArchVis’ approach to software architecture visualisation can be delineated into phases. The first phase is the
extraction of appropriate architectural information. At the beginning of this chapter, the data model was
identified and an approach to data extraction was described. The next phase concerns the filtering of data
ready for a renderer. The final phase is for the renderer to produce a render model based on the filtered data
and for that render model to be drawn. This chapter also describes the ArchVis view model, indicating the
way in which multiple views are defined in a visualisation profile that then determines the behaviour of the
visualisation as a whole. Finally, this chapter describes the operation of ArchVis at runtime, indicating how a
stakeholder may use the system; how the user can perform essential activities and actions; and how runtime

information can be represented in the views.

99

Chapter 6: Implementation

100

6.1 Introduction

This chapter deals with the construction of a set of prototype tools that implement the ArchVis visualisation

system.
6.2 Architectural Data Capture

Several tools were implemented 1n order to obtain data that relates to software architecture. These tools were
selected to cover those data sources that are commonly used to encode architectural information as well as
providing an impression as the flexibility of the data model. As described earlier, the data model is
represented by the EntityRelationshipStore interface, of which three implementations were created. Table 6-1

identifies the purpose of each of the implementations of the EntityRelationshipStore interface.

Class Purpose

EntityRelationshipStoreMySQL Provides a persistent store of architectural
information.

EntityRelationshipStoreMemory Provides a high performance non-persistent store

of architectural information. Primarily used as

output to the application of data filters.

EntityRelationshipStoreManager Provides a wrapper to a persistent store, acting as a

cache and improving performance.

Table 6-1 Implementations of the EntityRelationshipStore interface

Many techniques already exist to recover architectural information from data found at lower level of
abstraction. Table 6-2 below shows the level of abstraction that the impiemented data capture tools operate

at.

101

200 SN
LA

Class Abstraction Static/Transient
ArchVisAcmeParser Architecture Description Static
ModelBuilder Design Static
ReflectionParser Implementation Language Static
PropertiesReader Software Configuration Static
INIFileReader Software Configuration Static
FileSystemReader Filesystem Static

ArchLog Instrumentation Transient
HTTPCapture Network Transient
ArchVisJDI Class/Method/Variable (VM) | Transient

Table 6-2 Level of abstraction data extraction tools operate at

All of the static capture tools communicate in a client-server mode of operation, where the server is connected
to an implementation of the EntityRelationshipStore, typically the EntityRelationshipStoreMySQL class.
When the ArchVis system is to be used in an environment where it is to receive transient data, the ArchVis

visualisation system opens a server ready for external tool connections.

6.2.1 ArchVisAcmeParser

Architectures described in the Acme language are parsed using the ArchVisAcmeParser tool. It utilises the
AcmeLib, a Java library for the Acme language developed by the ABLE Group at Camegie Mellon
University (http://www.cs.cmu.edu/~acme). Its operation involves reading an Acme specification, parsing it,
and then traversing the object model and retrieving entities and relationships between Systems, Components,

Connectors, Ports, Roles and Attachments.

102

6.2.2 ModelBuilder

When a modeller of an architecture wishes to add entities, relationships and their properties to the ER store,
and no other tool will allow them to add them automatically, then they may use the ModelBuilder. This tool
allows the user to graphically define entities, relationships and properties, and then commit them to the ER

store. This tool was developed in Java using the Swing libraries for the graphical user interface.
6.2.3 ReflectionParser

If source files are not available, then the ReflectionParser tool can be used. This allows classes to be loaded
into the Java virtual machine and inspected using Java’s standard reflection package. This package allows the
recovery of information about a class’s modifiers, fields, methods, constructors and super-class. It also allows

an interface’s constants and method declarations to be recovered, amongst other information.
6.2.4 PropertiesReader

Properties files are frequently used in Java applications for the storage of configuration information, and other
useful runtime variables. Properties files are human-readable ASCII documents that can be read using Java’s
Properties class. The PropertiesReader class simply adds key-value pairs to the ER store, relative to the

property file location.
6.2.5 INIFileReader

The INI file is a Microsoft Windows configuration file that is used in many Windows based applications, and
consists of categorised key-value pairs. The operation of this tool is to parse these files in much the same way

as the PropertiesReader utility, but also retains the categories used.
6.2.6 FileSystemReader

When information regarding the location of files is required, the FileSystemReader can be configured to
locate files that conform to a specific filter. For example, the absolute path of all files that end in java can be

added to the ER store and then be associated with entities that are derived from it.
6.2.7 ArchVisJDI

ArchVisIDI provides the capability of analysing any Java program during its execution. It is able to do this

by utilising the JDI packages provided as part of the Java language (com.sun.jdi). The tool can be configured

103

to monitor for class loading, method entry and exit, and also for variable changes. When these events occur,

they are passed over the network to the ArchVis visualisation system for processing.
6.2.8 ArchLog

ArchVisJDI represents a relatively non-invasive approach to recovering runtime information. ArchLog,
however, uses an ‘instrumentation’ approach to recovering information from software. This requires the
addition of static calls to the sendEvent() method of the ArchLog class. The benefit of this approach is that
arbitrary events can be sent at any stage of the program’s execution. For example, when several objects that
represent a component have been constructed, a ‘component constructed’ event can be sent. This overcomes

ArchVisJDI’s limitation of sending only predefined types of events.
6.2.9 HTTPCapture

When the visualisation requires information regarding hits on a website, the HTTPCapture tool can be used.
This tool utilises a Jpcap java library developed by Keita Fujii (http://netresearch.ics.uci.edwkfujii/jpcap/doc/)
that allows Java access to a packet capture native library. The tool will listen on the network for HTTP

requests, and can filter and send these back to ArchVis for processing in the visualisation,
6.3 Static Data Filter Library

Static data filters, as described earlier, are components that take EntityRelationshipStore objects as their input,
perform some processing, and then output a new EntityRelationsihpStore object. The output is then either
used as input to another static data filter, or used as input to a renderer. Filters are defined by the classes that

extend the StaticStoreFilter class. Those implemented are listed in Table 6-3.

Class Description

CopyFilter Directly copies all entities, relationships and properties from the

source to the destination.

PatternFilter Excludes or includes entities and relationships depending on input
rules. The ruleset defines the global directive to either include as
default or exclude as default. The remaining rules are exceptions to

the global rule.

Table 6-3 Implemented static data filters

104

A discussion on the limitations of these filters is described in a later section.

6.4 Renderers

Renderers take an EntityRelationshipStore as its input, and generates a model suitable for rendering, as

managed by the RenderModelManager class. Table 6-4 lists those renderers that have been implemented.

Class View Category Description
AcmeRenderer Component and Generates components and connectors
Connector with connecting lines for attachment
bindings.

PackageRenderer Developer Generates the contents of a package using
UML style graphical elements.

UMLRenderer Developer Generates packages, classes and
interfaces with variables and methods as
required.

TaskAssignmentRenderer | Project Manager Generates a view of the assignment of
people to UML entities with progress
statistics.

SimpleFilter Generic Generates an icon for each entity, and
draws lines for all relationships.

IconAssigner Sales and Marketing, | Generates a suitable icon for each entity,

Technology and depending on rules given in its
Deployment configuration. It generates lines for all
relationships.

Table 6-4 Implemented renderers

Two layout algorithms were implemented: a random layout, and a force-directed layout algorithm. No

emphasis was placed on layout algorithms.

105

6.5 ArchVis Prototype Implementation

The prototype tool was written in Java, utilising features of the Java Standard Developers Kit version 1.4.

ArchVis is entirely written in Java and is comprised of eight implementation areas:
e Entity-relationship and properties storage system.
e Client-server system for static data extraction.
¢ Client-server system for transient data events.
e Visualisation profile and view creation.
e Static data extractors
e Static data filters
e Renderers
¢ Supporting Ul framework.

Much of the basic user interface was implemented using the Java Swing libraries, but the visualisations were

created using graphics primitives such as Bufferedimage and Graphics2D on JPanel objects.
6.6 Use of the Prototype Tools

There are several tools associated with this visualisation system. This section briefly describes how to use

each of the tools.
6.6.1 Static Data Server

The static data server is very simple to operate, it simply takes as arguments the location and authentication

information for the mysql database to be populated, for example:

java net.andrewhatch.archvis.qui.staticserver.StaticDataServer jdbc:mysql://localhost:3306/archvis root mysql

This launches the server with an activity monitor graph. (Figure 6-1).

106

Chapter 7: Evaluation Approach

110

7.1 Introduction

In order to successfully evaluate this thesis, an approach to evaluation is required. As this research is strongly
related to software visualisation, this chapter describes some of the strategies that are used in software
visualisation. Following this, the chosen evaluation strategy is given. The evaluation strategy chosen in this

chapter is then applied in chapter 8.
7.2 Software Visualisation Evaluation Strategies

There are several strategies adopted when evaluating software visualisations. This section identifies five

strategies, giving an overview of how they can be used [HatchO1].
7.2.1 Design Guidelines

When a visualisation approach is evaluated, a set of design guidelines may sometimes be produced. These
guidelines indicate important issues that the visualisation has uncovered. Guidelines are typically informal
statements about aspects of a field of visualisation that are intended to assist further research. Formal feature-

based evaluation frameworks also have a tendency to be used as design guidelines.

These informal statements promote reasoning about aspects of the visualisation in order to quickly determine
their value in a new visualisation system. For example, guidelines can identify the relative merit of cognitive
issues that the visualisation raises, navigation support, performance requirements and so on. This early stage
evaluation that guidelines support helps to filter out the development of bad ideas early on in their inception

and can therefore lead to more efficient development of visualisation ideas.

A mis-use of design guidelines is to use them as an evaluation framework in the analysis of a visualisation.
The primary use of design guidelines is to help in early stage evaluation, not for complete evaluation of the
fully developed visualisation. Application of guidelines as an evaluation framework may lead to self-
measurement in that the system is being designed against the evaluation, rather than the original requirements.
Guidelines are often open-ended and are designed to be applicable in a broad sense, and evaluating against
them can lead to problems. Consider Shneiderman’s relate property [Shneiderman98] that states that the
visualisation should be able to "view relationships among items". This statement can be taken in a very broad
sense and applied to any number of visualisation functions. Further, by taking guidelines out of context and

applying them in areas to which they are unsuited an evaluation can also be erroneous. Whilst there 1s not a

111

problem in demonstrating that a visualisation adheres to good guidelines, it should not be presented as an

evaluation, especially in the cases where the guidelines are generic and open to differing interpretations.

Identifying areas in which guidelines are used as evaluations can help in identifying where there is a lack of
evaluation frameworks. It is important that the research community develops new guidelines to address this
deficiency, especially where new branches of software visualisation are emerging. Guidelines do exist for

information visualisation as a whole, but it is useful to have specific task-related guidelines.
7.2.2 Feature-Based Evaluation Frameworks

Feature-based evaluations frameworks are popular evaluation strategies. Perhaps a key driver for their
success is the ease by which they can be applied. Feature-based frameworks often take on the form of
multiple-choice questions which can be answered comparatively quickly. The application of an evaluation
framework imposes no prerequisites on infrastructure or target system [Kitchenham96] and allow for
evaluation of a system at multiple levels of detail. Frameworks therefore facilitate an evaluation capability

with low overhead and investment.

Despite the simplicity of applying a feature-based framework, there are problems inherent in this style of
evaluation. Here, the style of question used is of critical importance. Framework questions that result in
simple ‘yes’ or ‘no’ answers may be too open ended. For example, Storey et al. [Storey99] suggests that a
visualisation should ‘indicate maintainer's current focus’. It is easy to argue that the current focus could
always be the object at the centre of the screen, despite this not being the original intention of the question.
Further, a question to be answered on a sliding scale may then become too subjective. This can introduce
subtle problem in some aspects of evaluation. What may happen is that the answer to the question can depend
very much on the experience that the user has had with similar visualisations. For example, the answer to a
question asking whether a three-dimensional visualisation was easy to navigate would depend greatly on the
previous experience that the user had working within such environments. Finally, some questions are simply
too vague to be answered accurately. An illustration of this is where Wiss and Carr [Wiss98] asked users
whether a visualisation was simply 'good' and 'easy to use' where the required response was on a defined

sliding scale.

Current frameworks also fail to consider 'negative features' - unwanted features within the visualisation that
have a detrimental effect overall, such as those considered by Globus and Uselton [Globus95]. Gestalt effects
are significant, and can distort the mental view that the user has of the visuaiised data. Similar distortions may
arise through the use of amimation, colour, size and many other features. Failure to consider such features
when evaluating using a framework can lead some visualisations to be considered acceptable, when they are
fundamentally flawed in practice. Other important features currently not covered by most frameworks include

issues of scalability and accuracy. Many current frameworks do not consider aspects highlighted by Tufte

112

[Tufte92], such as complexity, density and beauty. If these properties are important to the visualisation then

other methods of evaluation such as guidelines or user study should be used.
7.2.3 User and Empirical Studies

Empirical studies are often sought after by researchers in the software engineering community in order to
provide hard evidence to support hypotheses. The strength of empirical studies is the resulting statistical
analysis of data collected during the study. There are instances of the successful application of empirical
studies to information visualisation, but there are comparatively few good attempts at their use for evaluation
of software visualisation. Where empirical studies have strength is in situations where time-based
measurements are important. Statements such as ‘the use of the visualisation enables the task to be completed
in one third of the time taken to complete the task without the visualisation’. Statements like these lend
themselves to statistical analysis rather than statements that describe properties of a visualisation such as ‘it

allows the user to maintain focus and context’.

User studies can be carried out independently or as part of an empirical study. By using questionnaires and
user observations, user studies record individual and collective user-experience, as applied by Storey et al.
[Storey99] for example. These kinds of studies are useful in contrast to empirical studies with users as they
highlight individual issues that might be overlooked when combining results of a number of users.

Nevertheless care must be taken in generalising individual user-experience.

User studies and empirical studies reduce the bias of self-evaluation at the expense of overheads such as user
training. Lack of training for participants in the evaluation can produce results that are confounded. Other
influences cause confounding in results of which user experience is significant. Differences in the knowledge
of a domain, familiarity with the task at hand, and environmental knowledge have significant effects on
experimental results. Users often bring bias to visualisations, especially when they are based on 3D interfaces
where the ability to learn, openness to new interfaces and spatial awareness can all make some impact on
results. Common sources of error lie with the type and scale of tasks being set, and also subject selection
problems. For example, students are frequently used in studies rather than experienced programmers for the
SV domain. A critical mistake is to then generalise the results of the study beyond the experimental
conditions. Applying results from student-based studies to professional programmers and applying results
from academic environment-based studies to industrial organisations is not an appropriate step. In order to
counteract the problems highlighted here and conduct a successful study, considerable investment in time and
organisation is required. This can make such studies unattractive for some situations, particularly small or

short-term projects.

A pre-requisite of the application of user studies and empirical studies is a partial or full implementation of

the visualisation system — evaluation of a concept is difficult for these evaluation strategies.

113

7.2.4 Scenarios and Walkthroughs

Scenarios and walkthroughs provide a showcase for the demonstration of features of a visualisation and are
becoming a useful tool in evaluation [Chi98] [Knight00] [Smith02]. A walkthrough takes the reader through
a particular aspect of the visualisation, and leaves the evaluation of the system to the reader. By doing this, it
evaluation 1s conducted in terms of the reader’s own experiences and requirements. Results of this reader-
centric type of evaluation cannot be generalised. For this reason other methods of evaluation are presented.
For example, work by Knight [Knight00] shows how information on determining the impact of a change to
the type of a class variable can be found in the Software World visualisation, alongside a feature-based

evaluation framework.

As with any evaluation strategy, scenarios and walkthroughs have their relative merits along with problems.
They do offer a more concrete example of how a visualisation system is used for a particular task and does so
in a more natural way than describing a visualisation in terms of its mappings, metaphors and representations.
They often include many screenshots as evidence, giving the reader an overview of the visualisation’s user-
interface, technology and visual quality. As noted previously, results of this evaluation technique are
applicable only to the individual readers. This individual evaluation cannot be propagated back to the wider

research community.

Scenarios and walkthrough’s visual presentation is primarily a storyboard of images that can provide the user
with a visual impression of the system, but it is still very difficult for the reader to gain a feel for issues such
as navigation. This is especially true in 3D visualisations. Scenarios and walkthroughs can illustrate aspects
of the visualisation in more detail than frameworks, however, the features demonstrated will often only show

the visualisation in a positive light, highlighting well supported tasks with favourable data and conditions.

Scenarios and walkthroughs should not be the primary focus of an evaluation, due to the large possibility of
bias by the researcher, and the limited subset of the visualisation demonstrated. However, they are relatively
easy to produce and can offer a way to check the visualisation, from the initial idea to the final visualisation,

against support for required tasks.

Future effort could be invested in increasing the use of specific tasks by basing task selection on research into
information requirements for specific activities, such as those on program comprehension by Mayrhauser and
Vans [Mayrhauser98]. These requirements can then be verified more appropriately than by using a
framework, as scenarios and walkthroughs show the process by which the information can be found, which

can be just as important as showing that it is actually present.

114

7.3 Chosen Evaluation Approach

Earlier in the chapter, four evaluation strategies were described. Design guidelines are not intended for post-
development evaluation, but for use during the visualisation design process. User and empirical studies are
difficult to perform with limited time and resource and are more suited to numerical measurement of various

aspects of a visualisation. For these reasons, an empirical approach has not been taken here.

Therefore, the evaluation of this thesis will be divided into three approaches. Firstly, there will be a feature
based evaluation framework that extends existing evaluation frameworks that are more applicable to lower
level software visualisation. Secondly, there are to be a set of scenarios that are applicable to the domain.

Lastly, there is an informal discussion of the benefits and disadvantages of the ArchVis visualisation.
7.3.1 Evaluation Framework

7.3.1.1 Justification for the Evaluation Framework

As software architecture visualisation is in its infancy, specific reference to it in existing software
visualisation literature is scarce. Evaluation of visualisations from the viewpoint of program comprehension
cannot suffice for higher-level representations of software where the task to be supported is radically

different. For these reasons, this chapter has several goals.

Reading literature that introduces new visualisations for software, frequently the choice is either for empirical
evaluation involving participants, or the invention of a new framework against which the visualisation is
evaluated. A new framework is required when considering the evaluation of visualisations that explicitly
address software at an architectural level. As identified previously, most software visualisation has occurred
at a lower level and as an obvious result the evaluation frameworks available reflect this. Many of the major
frameworks that have been used to evaluate software visualisations were not directly applicable to software
architecture visualisation as they address different problems. They do, however, capture several aspects of

visualisation that are directly applicable to software architecture visualisation.

Whilst the framework described here is new, it is not without a strong basis, as software architecture
visualisation evaluation 1s rooted in disciplines with a history of evaluation frameworks, some of which draw
on earlier work on related work in software visualisation, psychology, aesthetics and usability. Where
applicable, the framework identifies previous work that has contributed to the respective component of the

framework.

By breaking down an evaluation framework into the structure proposed below gives benefits and

disadvantages. A modular structure allows individual concerns to be addressed in comparative isolation, and

115

so the application of the framework need not be performed in its entirety. Guidelines are presented which
direct the use of the framework and oversee the selection of framework components. A downside to this
structure is that such a rigid division causes areas to be strictly divided when they might otherwise not be. As

far as possible, these are identified in the description of the evaluation components themselves.

Some instances of evaluation in software visnalisation literature make no attempt to evaluate the
implementation of a visualisation, but focus on the visualisation itself. On the surface, it appears that this
approach results in the ability to reason about a visualisation without binding that visualisation to a particular
implementation which might not fully support all the concepts, ideas and features identified in the
visualisation concept. Clearly this has some benefit, but here the framework also considers implementation.
One reason for this is that some properties of a visualisation can be better reasoned about in terms of its
implementation. Secondly, the line that divides a visualisation from its impiementation often becomes blurry,

even in evaluations that attempt to keep the division distinct.
7.3.1.2 Description of the Evaluation Framework

The proposed framework is divided into seven sections: static representation, dynamic representation, data-
space navigation, interaction, task support, implementation and visualisation. In this way, the framework

segments distinct concerns.

116

Reference

o |Fra"w'f0rk Feature

Static Representation (SR)

SR1 Multiple software architectures

SR2 Types of software architecture

SR3 Recovery of software architecture information
SR4 Accommodate large volumes of information

Dynamic Representation (DR)

DR1 Support dynamic data
DR2 Associate events with architectural elements
DR3 Non invasive approaches
DR4 Live collection

DRS Replay data

Views (V)

Vi Multiple views

V2 Representation of viewpoint definition
Navigation and Interaction (NI)

NI1 Browsing

NI2 Searching

NI3 Query building

NI4 Inter-view navigation
NIS View navigation

Task Support (TS)

TSI Represent anomalies
TS2 Comprehension

TS3 Annotation

TS4 Communication

TS5 Show evolution

TS6 Construction

TS7 Planning and execution
TS8 Evaluation

TS9 Comparison

TS10 Show rationale

Implementation (I)

I

Automatic generation

12 Platform dependence

13 Multiple users

Visualisation (VN)

VN1 High fidelity and completeness
VN2 Dynamically changing architecture

Table 7-1 Summary of evaluation framework

117

Table 7-1 presents a summary of the evaluation framework. Each section of the framework is presented
below, showing the questions that they are composed of along with further information regarding the

semantics of the question.
Static Representation (SR)
SR1: Does the visualisation support a multitude of software architectures?

It is possible that a visualisation system will be restricted to a small number of possible architectures. For
example, the architecture visualisation may be designed explicitly for a particular subclass or domain of
software architectures. It is important to recognise that a visualisation need not support a multitude of
software architectures if that is not the intention of the visualisation. This question merely qualifies the intent.

This question relates directly to Price et af [Price93] and the discussion on ‘generality’.
SR2: Does the visualisation support the appropriate types of static software architecture data sources?

In some cases, the software architecture is clearly defined, and a single data source exists from which the

visualisation can take its input. The visualisation should be capable of accessing the data source.

Sometimes architectural data often does not reside in a single location. Instead, architectural information can
be extracted from a multitude of sources. An architecture visualisation would benefit from the ability to
support the recovery of data from a number of disparate sources. More importantly, if multiple data sources
can be used, then there should be a mechanism for ensuring that this disparate data can be consolidated into a

meaningful model for the visualisation.

SR3: Does the visualisation support the recovery of architectural information from sources that are not

directly architectural?

In some cases, architectural information is not available directly, but is recovered from sources that are non-
architectural. For example, file-systems may not be directly architecturally related, but they can contain
important information that relates to architecture. Even more so, packages, classes, methods and variables
can all contribute to a view of the software architecture, and so a visualisation system may be able to support

these data types.
SR4: Can the visualisation accommodate large amounts of architectural data?

Depending on the size and level of detail of a software system, there is a potential for large volumes of
architectural data. If architectural data is to be retrieved from non-architectural data (see later), there is a
potential for the data repository to contain large amounts of data from lower levels of abstraction.

Architectural information is sometimes recovered from method and variable information. If this is the

118

strategy employed by the visualisation, then the visualisation should be able to deal with large volumes of
information. Price et al [Price93] discusses this in their section on ‘scalability’. Visualisation systems should
be able to cope with large volumes of data and have the appropriate mechanisms to be able to present this in a

suitable manner.
Dynamic Representation (DR)
DRI: Does the visualisation support an appropriate set of dynamic data sources?

The realisation of software architecture i1s at runtime, and runtime information can indicate a number of
aspects of the software architecture. Visualisations may support the collection of runtime information from
dynamic data sources in order to relay runtime information. Typically, for smaller software systems, this
runtime information will only be available from one source, but for larger distributed software systems, the
visualisation may need the capability of recovering data from a number of different sources. These data
sources may not reside on the same machine as the visualisation system, so the ability to use remote dynamic
data sources is useful. Some sources may produce data of one type, where another source produces different

data. In this case, the visualisation should provide a mechanism by which this data is made coherent.

DR2: Does the visualisation support association of dynamic events with elements of the software

architecture during the execution of the software?

When dynamic events occur, the visualisation should be able to display these events appropriately, and within
the context of the architecture. The visualisation must therefore be able to associate incoming events with

architectural entities.

DR3: Does the visualisation support relatively non-invasive approaches to refrieving dynamic data

sources?

Any method of recovering dynamic information from a software system will affect that software system in
some way. This thesis has identified a number of mechanisms for recovering this data. At one extreme, there
is the directly invasive approach of adding lines to the software source code. At the other extreme is by
retrieving information from the virtual machine. The visualisation system should support a suitable approach
to recovery of dynamic architecture data in the least-invasive way as Price et al [Price93] state that disruptive

behaviour is not desirable.
DRA4: Does the visualisation allow the live collection of dynamic data?

By visualising the dynamic data as it is generated, there may be an ability to affect the software being

visualised in order to see the generated data live. This is a popular method of visualising dynamic data.

119

DRS35: Does the visualisation allow the collection of dynamic data for replay at a later time?

Sometimes called ‘post mortem style’ visualisation [Price93], this approach has the benefit of knowing the
period of time over which the visualisation occurs. This is useful to a visualisation in that it can render a

display for a particular instance in time whilst knowing what will occur next.
Views (V)
V1: Does the visualisation allow for multiple views of the software architecture?

Research in software architecture indicates a general consensus that software architecture is represented in a
number of ways. These are called views of the architecture. Kruchten [Kruchten95] identifies four specific
views of software architecture, whereas the IEEE 1471 [IEEE1471] standard allows for the definition of an
arbitrary number of views. A visualisation may support the creation of a number of views of the software

architecture, and may wish to allow simultaneous access to these views.

V2: Does the visualisation display a representation of the viewpoint definition?

In the IEEE 1471 standard [IEEE1471], architectural views have viewpoints associated with them. A
viewpoint defines a number of important aspects about that view including the stakeholders and concerns that
are addressed by that viewpoint, along with the language, modelling techniques and analytical methods used
in constructing the view based on that viewpoint. A visualisation may choose to make this information

available to the user in order to assist in their understanding of the view they are using.
Navigation and Interaction (NI)
NI1: Can users browse through the visualisation by following concepts?

An important part of the comprehension process if the formulation of relationships between concepts. Having
the ability to follow these relationships is fundamental. Storey es al [Storey99] indicate that a software
visualisation system should provide directional navigation, and describe this as supporting the traversing of
software structure in hierarchical abstractions and by allowing the user to follow links in the software. The
visualisation should support the user being able to follow concepts in order to gain an understanding of the

software architecture.
NI2: Can users search for arbitrary information relating to the architecture?

Another mechanism in the comprehension process is the arbitrary location of information. Searching is the
data-space navigation process that allows the user to locate information with respect to a set of criteria.

Storey et al label this as arbitrary navigation — being able to move to a location that is not necessarily

120

reachable by direct links. Sim er al [Sim99] identifies the need for searching architectures for information, so

the visualisation should support this searching for arbitrary information.
NI3: Can the user build queries in order to locate information they need?

Query building is a hybrid combination of browsing and searching. It allows a user to find a set of
information, and then continually expand on a search in a particular direction by repeated searching from a

related result. Visualisations may also support this style of data-space navigation.
NI4: Can users navigate between views easily?

Architecture is often comprised of a number of views. Moving between views is essential in order to
understand an architecture from different viewpoints. Context should also be maintained when switching

between views so as to reduce disorientation.
NI3: Can users navigate through a view in an appropriate manner?

Along with data-space navigation, the movement within a view is also important. Shneiderman’s mantra for
visualisation is overview first, zoom and filter, and then show details on demand [Shneiderman98]. A
visualisation system should support this strategy for visualising information. Also, the visualisation should
allow the user to move around so as to focus on and see the information they are looking for. Typical
navigational support would be pan and zoom. Whilst allowing the user to navigate, the visualisation should

provide orientation clues in order to reduce disorientation [Storey99].
Task Support (TS)
TS1: Does the visualisation support the representation of anomalies?

This question relates to whether the visualisation be used to identify areas in which the architecture has been
broken or misused. The visualisation should be able to cope with data anomalies that are unexpected and may
cause unwanted behaviour. Also, the visualisation may wish to report these anomalies to the user if they can

be detected.

TS2: Does the visualisation support the comprehension of the software architecture in the appropriate

manner?

Comprehension strategies are task dependent. For example, top-down comprehension might be associated
with a design change task, whereas a bottom-up comprehension task is associated with gaining an

understanding of unfamiliar components before making a change. Architecture visualisations may support

121

either of these two strategies, or a combination of the two, depending on the tasks for which the visualisation

1s intended.
TS3: Can users annotate the visualisation?

The ability to tag graphical elements in a visualisation is important for various activities. Adding notes to a
graphical element is called ‘annotation’. Annotation can allow users to tag entities with information during

the formulation of a hypothesis.

T84: Does the visualisation support the communication of the architecture to the appropriate

stakeholders?

Software systems have a number of associated stakeholders [IEEE1471]. Visualisations can support any
number of these stakeholders. In order to facilitate the communication of the architecture to a stakeholder, the
visualisation must represent the architecture in a suitable manner. Stakeholders may require very different

views from other stakeholders.
TS5: Does the visualisation show the evolution of the software architecture?

Software architecture can evolve over time. Subsystems may be redesigned; components replaced, new
components added, new connectors added and so on. An architecture visualisation may provide a facility to
show the evolution. This support may be basic, showing architectural snapshots, or the support may be more

advanced by illustration using animation.
TS6: Does the visualisation support the construction of software architecture?

Visualisations may offer the capability for the users to create, edit and delete objects in the visualisation.
When the visual editing is supported, the visualisation can be called a ‘visual editor’. In order to be able to
fully support the construction of software architecture, the visualisation must be able to allow the user to
create objects in the domain of the supported viewpoint. Of course, the visualisation should also then support

the editing and deleting of those objects.
TS87: Can the visualisation support planning and then executing the development of a software system?

Architectural descriptions can be used for the planning, managing and execution of software development
[IEEE1471]. In order for the visualisation to support this task, it should provide rudimentary functionality of

a project management tool — or have the ability to communicate with an existing project management tool.

122

TS8: Does the visualisation support evaluation of the architecture?

Software architecture evaluation allows the architects and designers to determine the quality of the software
architecture and to predict the quality of the software that conforms to the architecture description
[IEEE1471]. To support this, a visualisation should have some mechanism by which quality descriptions can

be associated with components of the software being visualised.
T89: Does the visualisation support the comparison of software architectures?

A typical use of software visualisation is in the comparison of as-implemented with as-designed architecture.
The visualisation should be able to support the display of these two architectures and allow users to make
meaningful comparisons between them. Software built from a software product line is a typical scenario

where comparison of architectures 1s particularly useful.
TS810: Does the visualisation allow for rationale to be shown?

Rationale for the selection of architecture, and the selection of the individual architectures of the components
of that architecture, are included in architectural descriptions. Rationale can also be associated with each
viewpoint of an architecture. By showing rationale for elements of the architecture, and the architecture as a
whole, a visualisation will allow a user to have an insight into the decision making process. This detail will

be useful for some tasks.
Implementation (1)
I1: Can the visualisation be generated automatically?

Some visualisations are demonstrable theoretically, but are pragmatically infeasible. Visualisations, in order

to find use, need to be able to be generated automatically.
12: Can the visualisation be run on appropriate platforms?

Price et al [Price93] include a ‘generality’ section in their taxonomy. Here, they identify several issues
regarding the platform on which a visualisation can execute on, and the types of software that it will be able to
operate over. A visualisation should be able to execute on a platform suitable for the types of software it is
intended to visualise. For example, a visualisation that is implemented for a particular platform is unsuitable

for visualising programs written for another platform.

123

I3: Does the visualisation support multiple users?

As there are many stakeholder roles in a software system, there may also be a one-to-one mapping of role to
physical users. Therefore the visualisation may support multiple users. It may support multiple users

concurrently, or asynchronously.
Visualisation (VN)
VN1: Does the visualisation achieve high fidelity and completeness?

Eisenstadt et al [Eisenstadt90] ask the question as to whether the visualisation uses visual metaphors that
represent true and complete behaviour. For software architecture visualisation, the visualisation must present

the architecture accurately, and represent all of that architecture if the visualisation purports to do so.
VN2: Does the visualisation support the representation of dynamically changing software architecture?

During its execution, software may change its configuration in such a way that its architecture has changed.
Software that changes its architecture in such a way is labelled as software that has a dynamic architecture. If
the visualisation is able to support architectural views of the software at runtime, then it may be capable of
showing the dynamic aspects of the architecture. In order to do so, the visualisation may either support

snapshot views of the progression, or animate the changes.

7.3.2 Scenarios

A set of scenarios is identified that represents a broad range of activities in which software architecture
descriptions are used. For each scenario, tasks are identified that stakeholders will be undertaking, along with
a description of the information that they would require in order to successfully complete the task. Then, the

capability of the ArchVis visualisation to assist in those tasks is described.

These scenarios are intended to show both the strengths and weaknesses of the ArchVis visualisation, and will
provide a benchmark for other Architecture Visualisations. These scenarios will be chosen from existing

literature, and from architecture in practice today.

7.3.3 Informal Evaluation

In order to give further detail on the design and implementation of the visualisation, there will be an informal
evaluation. This informal evaluation will highlight some of the features of the visualisation that are not well
represented in the chosen scenarios. It will also identify some of the issues that are associated with the

visualisation.

124

7.4 Conclusions

Software visualisation evaluation is a relatively small area of visualisation research, and the first half of this
chapter has presented some of the current approaches to software visualisation evaluation. The latter half of
the chapter identifies the fact that there is very little published research that deals with the specifics of
software architecture visualisation evaluation, and proposes one method by which software architecture
visualisations might be evaluated. This method is divided into three elements. The first is a feature-based

framnework; the second is evaluation by scenarios; and the third is an informal discussion.

125

Chapter 8: ArchVis Evaluation

126

8.1 Introduction

An evaluation strategy has been chosen in chapter 7. This chapter applies the evaluation strategy to the
ArchVis approach. Firstly, the software architecture visualisation feature based framework is applied to
ArchVis. A number of scenarios are then identified and applied. Finally, and informal evaluation is used to

expand on some areas of the approach that are not covered by the first two evaluation sections.
8.2 Application of the Framework to ArchVis

Applying the framework identified in chapter 7 requires responding to each of its questions. The response

structure used in Smith [Smith00] is applied here also. Smith defines the following responses:

Response Meaning

Yes The feature is fully supported.

Yes? The feature is mainly supported.
No? The feature is mainly not supported.
No The feature is not supported at all.
NA The feature is not applicable.

Table 8-1 Responses to framework questions

The response to each question is accompanied by a discussion of the reasons for the value of the response

given.
Static Representation (SR)

SR1: Does the visualisation support a multitude of software architectures?

Yes.

127

Evidence for the support of a multitude of software architectures can be seen in several areas of the design of
ArchVis. Firstly, the data model is an entity-relationship (ER) model along with properties. ER models are
flexible, and allows for the modeling of a very broad range of software architectures. Secondly, ArchVis is
capable of extracting architecture information from a multitude of sources. A number of static and transient
data extraction tools exist that pass information to the ArchVis visualisation. Finally, the ArchVis render
model is extensible, allowing for new graphical primitives to be added. Components that create render

models can also be added in order to provide support for a number of different architectures.

SR2: Does the visualisation support the appropriate types of static software architecture

data sources?

Yes.

As an ER model is used within ArchVis, a large number of software architecture data sources can be
supported. ArchVis utilises a single data repository that is populated by a number of extraction tools. These
extraction tools operate in a client-server mode allowing for the data sources to be remote from the data

repository and visualisation.

SR3: Does the visualisation support the recovery of architectural information from sources
that are not directly architectural?

Yes.

ArchVis uses a number of data extraction tools, and provides a number of these tools as default. ArchVis can
also be extended to use new tools. Examples of ArchVis’ extraction tools that extract data from non-
architectural sources include its packet smffer, and file-system extraction utility. ArchVis can then display
non-architectural information alongside architectural information as required. For example, the location of

source code files can be shown for an architectural component.

SR4: Can the visualisation accommodate large amounts of architectural data?

Yes

Each view in ArchVis uses a set of data filters to pass data over to the render model. These filters can
perform various transformations on the data, including removal and aggregation. By using these data filters,
each view can have only relevant information presented to it, avoiding the need to process irrelevant

information.

Navigational capability of pan and zoom also means that each view can accommodate large volumes of

information.

128

Dynamic Representation (DR)

DR1: Does the visualisation support an appropriate set of dynamic data sources?
Yes?

Dynamic data is retrieved by ArchVis in the form of Events. These events are represented by a 4-tuple:
(event, entity name, entity type, user data). ArchVis is able to map an event of a particular entity type to an
action within ArchVis. Support in ArchVis is limited to operations over the render model. This means that
events can cause elements of the render model to change, but it does not support the addition, removal and

alteration of elements.

DR2: Does the visualisation support association of dynamic events with elements of the
software architecture during the execution of the software?

Yes.

As noted above, dynamic events are mapped onto actions that operate over the render model. This is an

association between the events and the software architecture.

DR3: Does the visualisation support relatively non-invasive approaches to retrieving
dynamic data sources?

Yes.

ArchVis supports both invasive and non-invasive approaches to retrieving data from dynamic sources. The
primary non-invasive approach utilises the Java debugger interface. This allows retrieval of information from

the virtual machine of software that is executing on it.

The JDI interface is suitable only for systems implemented in the Java language, however, ArchVis can be
extended to utilise other technologies for different languages and platforms. This can be achieved if the

dynamic data can be encoded in the 4-tuple of (event, entity name, entity type, user data).
DR4: Does the visualisation allow the live collection of dynamic data?
Yes.

When the ArchVis visualisation begins execution, it creates the ArchEventServer data server that awaits for
the connection of clients. Clients can connect to this server, and events sent are pushed through to each view

currently open in ArchVis.

129

DRS: Does the visualisation allow the collection of dynamic data for replay at a later time?
Yes.

As ArchVis uses an event model for capturing transient data, each discrete event can be recorded. These

events can then be played back to ArchVis at any time in order to recreate the sequence of events.
Views (V)
V1: Does the visualisation allow for multiple views of the software architecture?

Yes.

The ArchVis model of views is shown in Figure 8-1.

VisualisationProfile EventMapper |
|
1 { !
i
1 1
1

ERStore Viow InputSelector’
Lname —

Ldatiniticn
1 t ‘

1 1
-]
DataFiilter Ronderer

Figure 8-1 ArchVis view model

This shows that the VisualisationProfile that defines a visualisation contains a number of named views with

associated defimition. Each of these views contains data filters and a renderer.
V2: Does the visualisation disptay a representation of the viewpoint definition?
Yes?

Architectural representations should have a viewpoint definition associated with every view [I[EEE1471].
ArchVis is able to associate a textual representation of the viewpoint definition, but does not cater for a

visualisation of that definition.

130

Navigation and Interaction (NI)

NI1: Can users browse through the visualisation by following concepts?

Yes.

Browsing in ArchVis is achieved through the relationships that link elements of the architecture. Browsing is
achieved both by the relationships visually represented within a view and also by following relationships into

other views that contain the same element.
NI2: Can users search for arbitrary information relating to the architecture?
Yes.

Entities can be searched by both name and type, and can be restricted to any number of the open views.

Searching also extends to external text-based sources such as source code, configuration files and logs.
NI3: Can the user build queries in order to locate information they need?
Yes.

Queries are supported in two ways within ArchVis. Every view in ArchVis, along with the filtered data, can
have a set of inputs. This set of inputs can drive the resulting view rendered. The second manner in which
queries can be built is that each graphical element in the render model can be selected to create a query view
from. Query views then operate in the same manner as an ordinary view, except that the input ER store is

affected by which graphical element was chosen.
Ni4: Can users navigate between views easily?
Yes?

ArchVis presents all defined views to the user, allowing them to switch between them with ease. However,
ArchVis may not always be able to retain current focus when switching between views. ‘Current focus’ is the
element in the view that the user is currently interested in, and may be represented by a highlight, or other
graphical distinguisher. When the user switches to another view, the current focus may not exist in that view,

so focus is lost.
NI5: Can users navigate through a view in an appropriate manner?

Yes.

131

Navigation within a view consists of panning across the display, zooming in to view detail and zooming out to
show more elements. It also consists of selection, examination and graph layout. ArchVis supports all of

these navigational mechanisms at the render-model level.
Task Support (TS)

TS1: Does the visualisation support the representation of anomalies?
No?

ArchVis is not able to automatically identify anomalies in the architecture. ArchVis has no ‘intelligence’ or
engine by which elements in the architecture can be identified as anomalies. However, ArchVis will

faithfully represent any entity or relationship in accordance with the renderer.

TS2: Does the visualisation support the comprehension of the software architecture in the
appropriate manner?

Yes.

Support of this is largely attributed to ArchVis’ support of multiple views. These views are intended to
satisfy the comprehension requirements of particular stakeholders. The design of individual views will
determine what comprehension approach is most suited to the data it shows — either bottom-up, top-down or
both. ArchVis supports top-down comprehension of the architecture through high-level views such as
component and technology views. Bottom-up comprehension is supported through developer views. Users

can switch between views, so ArchVis can simultaneously support both approaches.
TS3: Can users annotate the visualisation?
Yes?

ArchVis supports the addition of notes to graphical elements in the visualisation, but it does not support the

addition of these notes to the underlying data source.

TS4: Does the visualisation support the communication of the architecture to the
appropriate stakeholders?

Yes.

ArchVis facilitates the use of multiple views. By supporting multiple views, the visualisation is able to cater

for the informational requirements of different stakeholders in the system.

132

TS5: Does the visualisation show the evolution of the software architecture?
No.

In order to show the evolution of software architecture, a visualisation must be able to at least be able to show
snapshots of that architecture at points in time. ArchVis is capable of representing the architecture of a
system at a particular point in time, but would have to treat an architecture at a different point in time as a
completely different architecture. As ArchVis is not able to show the architecture of more than one system

simultaneously, it is not capable of directly showing the evolution of a software architecture.
TS6: Does the visualisation support the construction of software architecture?
No?

As ArchVis has the clearly distinct phases of a visualisation pipeline of data extraction, data filtering and
rendering, the implementation of this pipeline is important when considering construction support. It is fair to
say that the data model supports the construction of software architecture in that the ER store does not
preclude an editor from contributing data to this store. However, this kind of process is divorced from the

main visualisation process.

Considering this in terms of a model view controller architecture, ArchVis is implemented in a uni-directional
manner. When the visualisation is constructed, data flows strictly from the model to the view. Any control

over the data cannot be updated in the view in sufficient time as to make the process worthwhile.

TS7: Can the visualisation support planning and then executing the development of a

software system?
Yes?

ArchVis provides direct support for planning in its Project Management view, and for development in
developer views. ArchVis only provides support for visualising aspects of planning and execution, but does
not support some of the basic functions that would be found in other CASE tools, naturally. In order to
provide greater support planning and execution, ArchVis would have to have a mechanism by which the

visualisation can be integrated with such CASE tools. 1t currently does not have this integration mechanism.
TS8: Does the visualisation support evaluation of the architecture?

Yes?

133

In order to be able to support the evaluation of software architecture the visualisation should have some
means by which quality descriptions can be associated with components of the software being visualised.
ArchVis can support this due to the entity-relationship data model, and the flexibility of the renderer
framework. Typically these quality descriptions will be textual, and basic visualisation would be to represent
these as text. More advanced representation can be achieved where the quality is described in a more formal

manner such as clearly defined categories with scores.

The use of associations in the render model means that graphical elements can be tagged with other graphical
elements. These elements can be drawn from the same library, and so can be as flexible and detailed as the

library supports.
TS9: Does the visualisation support the comparison of software architectures?
No.

As noted earlier, ArchVis does not support the visualisation of more than one software architecture at any one

time. This is a key pre-requisite for supporting comparison.
TS10: Does the visualisation allow for rationale to be shown?
Yes?

ArchVis supports the display of rationale information, but does not require this information to be included in
the visualisation. The support for visualisation of rationale is limited to displaying the text of notes or

diagrams that describe the rationale behind an element of the architecture.
Implementation (l)

11: Can the visualisation be generated automatically?
Yes

ArchVis is capable of visualising the architecture of a variety of software systems automatically, and can do
so without any additional extension of its capabilities. However, one of the key features of ArchVis is its
extensibility. As software architecture is encoded in many sources, and can be represented in many different

ways, ArchVis has been designed to explicitly allow customisation and extension.

Data extraction of Acme, Java source code and file systems, amongst other sources, means that ArchVis can
generate visualisations of software architectures of software systems written in Java, or described in an Acme

compatible ADL.

134

12: Can the visualisation be run on appropriate platforms?
Yes.

Implemented in Java, ArchVis can run on any hardware/operating system platform that has the appropriate
Java Virtual Machine (JVM) and display capability. The proliferation of JVMs to date means that there are
few platforms that do not support a JVM.

Further, the visualisation is broken down into components that can execute on different platforms. Data

extractors of both static and transient data can reside on remote machines to the visualisation system.
13: Does the visualisation support multiple users?
Yes?

Views and viewpoints relate directly to different stakeholders. ArchVis supports a theoretically infinite
number of views that is limited only by the practicality of implementation. This support is limited in that only

one physical user can access the ArchVis visualisation tool at any one time,

One simple means by which ArchVis can support multiple simultaneous users is by implementing a variation
of the data access interface EntityRelationshipStore such that the store can be located remotely, and accessed
by more than one ArchVis implementation. This would mean that multiple instances of ArchVis can operate
over the same data-set. This is possible as the repository is effectively read-only after the data extractors have

populated it.
Visualisation (VN)

VN1: Does the visualisation achieve high fidelity and completeness?
Yes?

ArchVis has the capability of representing true and complete behaviour, but is not required to. It is the design
of the static filters and renderer that determine whether the visualisation will be high-fidelity and complete.

Also, there is no mechanism by which the stakeholder can be informed if the view is intended to be complete.

VN2: Does the visualisation support the representation of dynamically changing software

architecture?

No?

135

Support for dynamism in ArchVis is encapsulated in its utilisation of transient data events. In its
implementation, ArchVis maps events to changes in the render model, not the underlying data store. This
means that if components, connectors and other such architectural elements are added, changed, removed or
reconfigured, these can only be represented by changing the render model. Support for dynamically changing
architecture will therefore be limited to very simple changes and does not currently include the addition of

new graphical elements.

136

Colouring the results in Table 8-2 gives a visual impression as to which areas of ArchVis score well, and
which areas do not. Data representation is strong in ArchVis, with both static and dynamic representation
showing highly positive results. ArchVis also scores well in views, navigation and interaction. It 1s in the
category of task support that ArchVis shows weakness in four of the ten features. This, and the results in the
visualisation category show the ArchVis is weakest in the area of representing evolution and change. Whilst
ArchVis strongly supports wide and varied data sources as the informational input to ArchVis, the
configuration of data filters and the view model means that showing fundamental changes to an architecture

presents a challenge.

A point of note is that no responses were ‘NA’. The reason for this is that the framework supports the
evaluation of software architecture visualisation, and does so in such a way as to maximise the scope by
which visualisations can be evaluated. For example, 3D architecture visualisations can be evaluated against

the framework in much the same way as 2D architecture visualisations.

8.3 Scenarios

ArchVis is evaluated against a number of scenarios. Each scenario is described along with how ArchVis

supports the task involved in the scenario.
8.3.1 Analysis of Architectures of Existing Systems

Scenario

Sometimes, system development takes place without an architectural description. The implemented system
will have an architecture, but will not have an architectural description associated with it [[EEE1471]. As
every implemented system has an architecture, whether known or not, an architectural representation can be
recovered. Once recovered, this architectural representation can be used in the development of a new system

based on the old one, or for maintenance or evolution of the existing system.

In this scenario, an architect has a piece of open-source software that is very poorly documented. This
software is a stand-alone application but contains a set of functionality that they wish to incorporate into a
larger piece of software. In order to determine feasibility the architect wants to analyse its architecture and

therefore make a decision regarding its suitability.

138

Application

The first phase of the visualisation process is to extract information about the software system. As this

software is written in Java, the ArchVis JavaParser can be used to extract the following static information:

e Packages

o Classes

e Methods

e (Class Variables

o Method call and usage

e Import relations

The ArchVis JavaParser tool will then copy over relevant information to the ER store. This process can

involve a further step of filtering, but the architect in this case copies all information available.

In order to preserve directory structure information, the architect uses ArchVis’ directory parser in order to
relate files on the file system to file entries related to the java source files. During this process, a number of

other filename entries are also added to the ER store — a set of properties files and a number of images.

The architect then uses the ArchVis PropertiesParser to add the properties file into the ER store. In order to
determine which parts of the software use the various properties and image files, the architect uses a text

scanner that relates the java source file with the filename of the properties files and image files.

Now the architect has the relevant information, they can define a number of views that they wish to have on
the architecture. For this, they edit a visualisation profile configuration file and a number of associated

configurations. The views that the architect decides on are:

e Package View

e UML View

e Import relations

e (Call Graph

139

The stakeholder can then use the Package View in order to see the contents of a particular package.
Decorations can be added to the view by selecting the appropriate option. In this case, the stakeholder may
wish to see how tightly coupled a class is by measuring the number of non class variables used as class

variables, and as parameters to methods (Figure 8-3).

—
|com.espressl.cipberuuile

SSL_RSA_WITH_RC4_128_MDS5 SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA SSL_RSA_EXPORT_WITH_RC4_40_MD3
+dpher_wrile : Ciphar +apher_write : Ciphar +dpher_wrila : Cipher
+aphar_read : Cipher +dphar_read : Ciphar ~cipher_tead : Cighar
+S5L_RSA WITH_RC4_128_MD5(} : nuil +SSL_DHE_DSS_WITH_IDES_EDE_CBC_SHA{) : null +S5L_RSA_EXPORT_WITH_RC4_40_MO5() : nui!
+anginelsSupponad() : baalean +enginalsSupported]) : boalean +anginelsSupporiad() : boutean
+anginalnitiaiize() : void +anginalnitistize() : void +anginelnitiatize() : void
+engineGeIMACLangth(} : int +enginaGelMACLengtht) : int +engineGetMACLangth|} . inl
+angineGelKeylLangthi) : inl +enginaGelKayl.ength() : in{ +angineGetKaylangth() : inl
+angineGellVLangth() . int +anginaGetlvieagiht) : iml +engineGellVLangth() : inl
+angineEncrypt() : byta[] -engineEnorypl() : tyte]] +engineEncrypil) : byle(]
+engineDearypl() : bytef] +engingDecrypt() : byte(l +angineDecrypl() : byte(]
80% 83% 78%
SSL_NULL_WITH_NULL_NULL
SSL RSA WITH RC4 128 SHA SSL_OHE_RSA_WITH_3DES_EDE_CBC_SHA = = = =
= == = - ~apher_wnite : Giohor +SSL_NULL_WITH_NULL_NULL() : aull
+aphar_wrila : Ciphar +ciphat_raad : Cipher f»sr_xpunams() : boalean

+ciphaer_raad : Cipher
TSSL_RSA_WITH RCA 123 SHAnmun +SSL_DHE_RSA_W/ITH_3DES_EDE_CBC_SHA(} : null
+enginetsSupportad() : boolean +enginalsSupportedi) : bostean

anginainilializa() : void sangineinitialize() : void +anginaGeMACLength() : int
tengineGetMACLengthl) : int enginaGalMACLangth(} . inl sengineGelKeyLenglh() : it
+enginaGetKeylLangthi) : int +engineGelkeyLangthl) : int ~engineGetVLangth() : int
+engineGetivLengihi) : int -engineGeliVLangihi} : inf sangineEncrypt() : byte[]
ranginaEncrypt{} : byle{] —eng.meEncrym[) byterd] “engineDecrypt() : bytaj]
rengineDecrypt() : bytef] ~enginaDecrypl() : bytef] sencrypl{) : SSLCipheriext

) : Slring

+enginalsSupparied() : bootean
+~angineinitializal) : void

Figure 8-4 Package view

The resulting view (Figure 8-4), along with the other views describe previously, can allow the architect to

determine from the software’s structure whether the software is suitable for further investigation.
8.3.2 Analysis of Alternative Architectures
Scenario

When building a new software system, an architect may consider the architecture of previous systems in a
similar domain. There are several advantages to be gained by looking at existing architectures. Firstly, they
provide a useful reference for construction of new architectures, and they may also have an associated set of

metrics concerned with the implementation of software systems that use that architecture.

141

The primary task associated with this scenario is the systematic comparison of software architectures against a
set of criteria. An architect will look at a number of architectures, and perform a comparison against a
number of criteria. For example, they may look at the selection and configuration of the major components,
and focus on the performance metrics of each. If customisability is a key criterion for the architecture, then

the architect will consider the architectures against this non-functional requirement.

In order to successfully make comparisons of different architectures, the architect will need to gain a level of
understanding of those architectures. That level of understanding can vary from a high-level component
view, down to a low-level understanding of the architectures of individual components with some

implementation-specific information.

One mechanism by which an architect can make high-level comparisons between architectures is to show a
visualisation of those architectures side-by-side. The architect should be able to view similar sets of
information regarding common elements of those architectures, if that information is available. If required,
detailed information should be available regarding the architectures of individual components of the

architecture, along with implementation information should that be required by the architect.

For this scenario, an architect has three systems to compare before deciding on which architecture to use
when building a new system. The first system has a well-documented architecture that includes a description
of that architecture in the Acme architecture description language. The second system is well documented,
but is in hard copy and not in a format that is directly parseable. The third system does not have an

architectural description at all, but the source code is available.
Application

In order to compare these architectures, the architect wishes to have views of those architectures directly
available side-by-side. ArchVis does not have direct support for multiple systems in one instance of ArchVis,
but it does have the capability of persistently storing a render model. This means that once a view of a system
has been created and rendered, the render model can be saved to disk and loaded at a later stage. Data stored
includes position information, so once an appropriate layout has been achieved, the view can be stored with
positional information intact. Also, when a view is loaded, layout algorithms can again be applied to the
view. The disadvantage for ArchVis is that whilst views from different systems can be loaded from a
persistent store, there may be a danger that the view becomes mentally associated with the current system.

ArchVis does not currently have a mechanism by which to adequately distinguish views from other systems.

In order to compare the architectures, the architect decides that a comparison across a component-connector

view is appropriate, and so begins a process of obtaining such a view from each system.

142

Application

As the developers are the primary stakeholders in this scenario, the architect decides on the following views:
e Component and connector view
o UML developer view

e Deployment view with technology choices

In the construction of the architecture description, the architect uses an XML editor to produce two sets of
XML documents. The first set of XML documents describes the system in terms of packages, classes and
interfaces and even includes a number of methods and variables that are required. The second set of XML
documents describe the major components and connectors of the architecture along with information that

links these elements to the underlying implementation defined by packages, classes and so on (Figure 8-8).

<?xml version="1.0" encoding="UTF-8"2>
<architecture>
<systenc
<pame>Shopping Cartd/name>
<camponent>
<name>Web Server</name>
<implementation>
<resource>wjserv.server</resource>
<type>package</type>
<path></path>
< fimplementation>
</{component >
<camponent>
<name>Data Store</name>
<implementation>
<resource>3torageNanager</resource>
<typex>class</type>
<path»w3serv.3storage</path>
<fimplementation>
<fcomponent>
<fsystem>
<farchitecture>

Figure 8-8 Implementation XML document

Finally, the documents describe deployment information. This maps the high-level components and

connectors onto physical devices and geographic locations (Figure 8-9).

146

in-depth knowledge (for example, that required by developers). Finally, these architectural representations
should provide for inter-view cohesion such that stakeholders have a common reference with which they can
communicate with each other. One typical situation where this becomes obvious is when the language used
to describe the system is different when the organisation communicates internally from when it communicates

externally.

In this scenario, a company has an enterprise-class software product that they are selling to other companies.
This product has been built as a J2EE compliant application, using EJB and JSP technology. As such, the
application can be deployed in a number of ways, and this has helped the product to gain market advantage.
This organisation intends to sell this application as a full product, but also extol the product’s capability to be
customised to suit the individual needs of the client. The company has a number of stakeholders in the

architecture:
o The architect
¢ Developers
e Sales and Marketing
o Support

Professional Services

The visualisation should cater for these stakeholders.
Application

ArchVis can support any number of views. The following matrix (Table 8-3) identifies the views to be used

in ArchVis against the stakeholders that might use those views.

148

Views
Product Component Static Physical Technology
Component and UML Deployment
Connector
Architect v v v v v
@
qs; Developers x v v x x
=
=
-q=a Sales & Marketing v x x v v
=
]
~ad
2 Support v x x v x
Professional Services v v v v v

Table 8-3 Stakeholder Communication View matrix

ArchVis is then configured for each of the five views identified. By using ArchVis, the stakeholders have a
single reference point for the architecture, and this reference will allow each stakeholder to gain an

appreciation of other stakeholders’ views.
8.3.5 Conformance Checking

Scenario

Once a system has been implemented, the as-implemented architecture of the system is checked against the
as-designed architecture of that system to determine if the implementation is faithful. For this conformance
checking to be feasible, an automatic or semi-automatic process is required by which the as-implemented
architecture can be extracted. Once extracted, this extracted architecture is represented in some way such that
comparison can be made to the representation of the as-designed architecture. Once these representations can
be compared, checks are made between them to see if the implementation is true to the design. If there are

discrepancies, then these can be further investigated.
Application

In this scenario, a company prescribed a software system’s architecture in the Acme architecture description

language, and began development. Development of this software is in the Java language, and so is comprised

149

The architect is able to compare the two views together, and can see that in this example the package
mainmsgsrv.pull.mt is incorrectly being used in the Producer component. From this information, the

architect 1s able to determine why the architecture has not conformed to the specification.
8.3.6 Operational and Infrastructure Support

Scenario

At some point during the life cycle of a system, it will be deployed. Depending on the scale of the system,
this may occur during development, but is more typically deployed onto a testing platform during testing

phases. Eventually, the system will be released and deployed in its target environment.

Operational, infrastructure and support stakeholders use architectural representations to ensure that the

appropriate operational infrastructure is in place. Information that they require include:
¢ Computing hardware platforms
e Operating systems
e Software platforms
e Network infrastructure
¢ Telecommunications

Human infrastructure

Architectural representations should contain information pertaining to the above. This can then be used to
make acquisition decisions and to provide the appropriate environment for deployment. Those who are
responsible for this aspect of deployment can use architectural representations in order to communicate with

other stakeholders, including the architect in order to feed information back into the design process.

151

A typical scenario 1s when a large system is comprised of a number of components, and these components are
distributed across a number of physical platforms and geographic areas. One such system is a company’s

intranet portal. Portals consist of a number of components, listed below:

Portal home system

e Customer database.

e Contact database.

o Customer support system

e [T helpdesk

* Enterprise Resource Planning application

e Web-based e-mail access

The components are distributed across an internal network.

Application

ArchVis requires information about each component, and about the network infrastructure of the company.
From diagrams of the network topology, a stakeholder can input network topology information into the
ArchVis ER store. From the architectural descriptions, the physical deployment characteristics of each of the
components can be determined and input into the ER store. Along with the above information, human
resource data can also be added that indicates which groups are responsible for the operation, maintenance

and support of each of the components.

Once this information is available, ArchVis can show a number of views:

e Network topology of the portal

* Physical location of components of the portal

e Support responsibility

In order to show real-time information regarding the operation of the portal, several transient data capture
components can be deployed to various sub-components of the portal. For example, the ArchVis HTTP

sniffer can be deployed at the portal home system and web-based e-mail access system (Figure 8-12).

152

Application

ArchVis” support of a number of views over a single data store means that it can visualise a wide range of

aspects of the development process. For this scenario, the following stakeholder-view matrix is applicable.

Views
Component and Static UML Project Testing
Connector Management
Architect v v v v
Designer v v v x
@n
—
)
% Developer v x x v
=
=2
= Maintainer v x x v
~=
N
Tester v v v v
Project Manager x x v x

Table 8-4 System Development Stakeholder-View Matrix

The information gathering process required to supply ArchVis with the appropriate information will need to
be performed regularly. An appropriate time in which to populate the ER store with development-specific
information would be during each system build, which can occur nightly in some instances. Project
management and tester-specific information would need to be populated at the same frequency, but this
information would be encoded in machine parseable documents, rather than encoded in the software source

code.

155

during later stages requires a re-composition process. This means that the visualisation has to work in order

to be able to use a higher-level data structure for visualisation.

Data expansion is also necessary as a result of the definition of equality of two entities. Two entities are equal
if and only if both their names and types are of equal value. Properties are not considered in this equality
check. One scenario in which problems can arise is when two entities of a particular type may have the same
name, but not be equal. One obvious example of this scenario is in the decomposition of classes in separate
packages. Consider a package com.company that contains class A and class B, and both classes have a
method do() that has the same signature in each class. One way to encode this would be to have the following

entities shown (Table 8-5).

Entity name Entity type
com.company package

A Class

do() Method

B Class

do() Method

Table 8-5 Entity equality problem

The obvious problem is that there are two entities that are now equal when they should not. In order to
overcome this problem, ArchVis uses a fully qualified path approach, meaning that the encoding would in

fact be as shown in Table 8-6.

157

Entity name Entity type
com.company package
com.company.A Class
com.company.A.do() Method
com.company.B Class
com.company.B.do() Method

Table 8-6 Solution to entity equality problem

This solution to the entity equality problem means that there is a considerable amount of data expansion due

to the pre-pending of ‘path’ information.

Another feature of the ArchVis approach to data is that before the renderer begins its rendering process over
an ER store, a number of data filters can be applied. These data filters can be used to perform a variety of
functions, and the data filter’s simple function is easily implemented. As described previously, the static data
filter takes an ER store as input, and outputs a new ER store. The static data interface allows all static data
filters to be configured using a properties file. During implementation, a number of static data filters were
implemented very quickly and incorporated into the ArchVis visualisation by merely editing a number of
configuration property files. It 1s this loose coupling that means that ArchVis can be extended and
reconfigured very easily and very quickly. In order for changes to the configuration files to become effective,
ArchVis requires reloading of the visualisation profile. One way in which ArchVis can be extended is to
allow a visualisation profile to change dynamically as these configurations are changed, and therefore not

require reprocessing of the entire data pipeline.

ArchVis is able to use several implementations of ER stores. Presently ArchVis has limited capability for the
selection and initialisation of new ER stores. This process is a step that currently requires running a separate
set of tools. If a user begins to populate an ER store with information, there are no checks that ensure that the

user 1s populating the correct store for the system they are processing.

158

8.4.2 Renderers and Render Model Capability

ArchVis clearly separates out the elements that make up a visual rendering, and the renderer that produces it.
This separation allows for many different implementations of the renderer interface, and each renderer can

use any of the graphical elements defined in the render model.

The render model uses a number of interfaces by which two classes of graphical element can be built. They
are DrawableNode and DrawableRelationship. From these interfaces, any number of implementations can be
derived. Again, this provides a mechanism by which ArchVis can easily be extended, and implementations of

new graphical elements are easily achieved.

Renderers are reliant on having the appropriate data presented to them. The configuration of a view in the
visualisation profile should be designed with the renderer in mind. The choice of data filters is crucial in
order to present the correct data to the renderer. ArchVis’ render pipeline does not provide a mechanism by

which a renderer can publish its data requirements to the static data providers that supply it.
8.4.3 Views

Views are designed with a number of stakeholders in mind. ArchVis does not enumerate which stakeholders
are to be associated with a particular view. Stakeholders therefore do not have an easy means by which they

can determine which views are appropriate for them to use.

Further to this, views that may be related are not shown to be related — there is no means by which those
views can be shown as associated. As an example, consider a system that has its architecture defined in a

number of views modelled in the UML. It would be useful to relate these views together.

When a view is asked to perform a render to generate a render model, ArchVis passes the source data to the
first data filter, and then each filter in turn receives the output ER store from the previous data filter.
Relational information is not kept from one ER store to the next such that an entity in one ER store does not
have a direct and formal relationship to the same entity in a previous ER store. This information is
particularly useful when linking views together. If an element is selected in one view, and it is composed of a
number of elements in another view, this should be shown. However, as the relationship between the

composed element and its constituents ts lost, this cannot easily be shown.
8.4.4 Implementation

The ArchVis prototype tool is successful in demonstrating a system by which architectural information can be

successfully extracted from a variety of sources, and be consolidated into a repository that can then be used to

159

visualise the system. Much of the focus of this tool has been to demonstrate a great degree of flexibility in
this approach to visualising software architecture. As such, much of the implementation has been on the data

extraction and view creation mechanisms rather than generating refined views of software architecture.

Several implementations of static data filters and renderers were given in order to demonstrate how these
components could be built in order to generate more refined and complete visualisations. Given further work,

the full potential of this visualisation system could be realized.

8.5 Conclusions

This chapter has evaluated the research presented in the thesis, and has taken the evaluation approach
described in section 7.3 and applied it to ArchVis. There are three distinct areas of evaluation. Firstly,
software architecture visualisation evaluation framework was applied to ArchVis. Secondly, a number of
scenarios were used in order to identify how ArchVis supports various tasks in the life cycle of a software
system. Finally, ArchVis is described and evaluated informally. This informal evaluation explores some

areas of ArchVis that are not uncovered in the first two evaluation methods.

The feature-based evaluation framework applied to ArchVis yields interesting results, indicating both positive
and negative aspects of the visualisation approach. The scenarios were most suited to showing how ArchVis
performs in supporting various tasks that stakeholders in software architecture perform during the life cycle of
that software system. The results of these scenarios show that ArchVis does perform well in certain areas of
architecture visualisation, but is less suited to situations where architectures change dynamically, or when

multiple software architectures are to be shown.

An empirical study would be useful in order to demonstrate how useful ArchVis is to real stakeholders in real

software systems where factors that are not able to be recreated in scenarios come in to play.

160

Chapter 9: Conclusions

9.1 Introduction

Software architecture is increasingly being recognised as of fundamental importance to the success of
software engineering projects. Computer science has a history of abstraction, from machine code, to high-
level languages, to design methods and design patterns. Software architecture forms part of this move in
abstraction, and is a high-level abstraction of software design. For a software system, there are a number of
stakeholders in the software architecture. The stakeholders reflect all aspects of the life cycle of that software,

from its inception by the architect to the purchase by the customer and deployment by technicians.

Software visualisation has very much concentrated its efforts on supporting developers and maintainers. This
is a feature of the fact that software visualisation has its roots in program comprehension. Software
architecture brings more stakeholders, and many existing software visualisations are not currently capable of
dealing with this. Many of the software architecture visualisation does not explicitly cater for stakeholders

other than architects and developers.

Architecture visualisations often have a limited capability to retrieve architectural information from the array
of sources that contain such data. Source code is the typical means by which architectural information is

retrieved, but in modern applications architectural information can be found more readily in other places.
9.2 Summary of Research

This research presents a new approach to software architecture visualisation that addresses issues and
challenges raised through the analysis of software visualisation research and the current use of software

architecture.

Taking a practical approach to software architecture, this thesis identifies key ways in which architecture is
used, why it is used and who uses it. It is important to consider these pragmatic issues in software
architecture in order to ensure that the research would yield results that can be applicable to real world
software engineering problems. This philosophy also extended to consideration of how software architecture
is represented. Present day enterprise software has architectural information specified in places other than the
software source code, and recovery of this information is vital in being able visualise the architecture of these

classes of software systems.

This result of this research is an approach to software architecture visualisation that enables a number of

stakeholders to access the visualisation, and to see views of the software architecture that are relevant and

161

comprehensible by them. In this way, inter-stakeholder communication can be improved. In order to support
multiple stakeholders, the approach was designed to support a number of different representations of the
software architecture. This meant that the render pipeline had to be flexible and customisable at the

appropriate stages of data recover, filtering and render model construction.

A prototype tool has been developed to demonstrate the applicability of the visualisation approach. This tool
demonstrates a significant proportion of the concepts and strategies associated with the ArchVis approach.
Development of the tool facilitated the application of the visualisation approach to real world software

systems and enabled an evaluation process.

To successfully evaluate the ArchVis approach to software architecture visualisation, a new feature-based
evaluation framework had to be developed. Whilst software visualisation research has a number of evaluation
frameworks, none were particularly well suited to software architecture visualisation. This research presented
a new framework that inherits many characteristics from previous visualisation frameworks, and added

features that are particular to software architecture.

Evaluation of the visualisation approach took on three forms. The software architecture visualisation
evaluation framework was applied to the ArchVis visualisation approach. This results in a rating for each
feature. In order to explore how ArchVis might be used in real world situations, a number of scenarios were
used and the way in which ArchVis would support these tasks was described. Finally, an informal evaluation

described some aspects of ArchVis that the framework and scenarios did not uncover.
9.3 Criteria for Success

At the beginning of this thesis, a set of criteria was given by which this research can be judged in terms of its

success. This section examines each criterion and discusses the degree to which it has been achieved.

9.3.1 Identify the current use of architecture visualisation in practice

by showing the tasks different stakeholders perform.

In chapter 2, the motivation and use of software architecture was introduced, including a discussion on the
stakeholders in a system’s architecture. Chapter 3 discusses the current research in software architecture
visualisation and discusses how these might be applied to real world systems. One key finding in this thesis is
that architecture visualisations are generally not suited for the broad range of stakeholders in an architecture.

Typically, visualisations are suited to architects and developers only.

9.3.2 Address the visualisation issues of representing software

architecture for different stakeholders.

Chapter 2 identifies several classes of stakeholder in software architecture. Chapter 4 introduces the concept
of views of software architecture as much of software architecture literature discusses the necessity of having
different views. The IEEE standard for architectural descriptions [[EEE1471] makes a strong link between
views of software architecture and the stakeholders in that architecture and describes a model for maintaining
an explicit connection between the two. The ArchVis approach, discussed in chapter 5, defines a view model
by which multiple views can be represented in a visualisation of an architecture. In this way, different
stakeholders can see the architecture from a viewpoint suited for them. Under evaluation, in section 8.2,
ArchVis is partially successful in supporting multiple users simultaneously, but does score well in supporting

the communication of software architecture to a large number of stakeholders in that architecture.

9.3.3 Identify a mechanism for providing architectural information to

an architecture visualisation.

Architectural information can be found amongst a variety of collateral related to a software system, including
software source code and configuration information. Some of these representations are identified in chapter
2, and ArchVis provides a mechanism by which many of these sources can be used for architectural
visualisation. This mechanism is described in detail in chapter S. The application of the evaluation

framework in chapter 8 indicates that ArchVis rates well in terms of retrieving both static and dynamic data.

9.3.4 Develop visual representations of software architectures that are
suited to the identified tasks.

Chapter 2 identifies the uses of software architecture in practice. Chapter 5 identifies five sets of views that
will support those tasks (component views, developer views, project manager views, technology and
deployment views, sales and marketing views). These views are developed within the ArchVis framework,
showing how the relevant data is captured, filtered and how a render model is generated from this to produce
the view. The evaluation of ArchVis (chapter 8) shows that whilst ArchVis provides good support for a

number of different views to support tasks, there are some tasks that are not directly supported.

163

9.3.5 Develop a proof of concept prototype tool to demonstrate the

visualisations.

The ArchVis proof of concept tool was developed in the Java language and demonstrates many of the key
areas of the ArchVis approach as identified in chapter 5. Implementation specific detail is reviewed in

chapter 6 for those features that were implemented.

9.3.6 Demonstrate that the visualisations can be generated
automatically with minimal disruption to the software system

itself.

The methods of static data extraction that ArchVis supports vary from invasive techniques such as
instrumentation through to non-invasive techniques such as parsing the source using a language parser. Static
data collection again varies from invasive approaches such as instrumentation through to the use of a virtual

machine interface such as the Java debugger interface.

9.3.7 Create a feature based evaluation framework suitable for

software architecture visualisation.

As research in software architecture visualisation has had little work carried out in evaluation, the only
available frameworks are for software visualisation, and these have problems in application to software
architecture visualisation. Chapter 7 introduces a new evaluation framework suited to software architecture
that is based on the principles of software visualisation and cognitive psychology. This framework 1s then

used in Chapter 8 in the evaluation of ArchVis.
9.4 Comparing ArchVis

Comparing ArchVis to the six other architecture visualisations identified in section 4.2, a number of

observations can be made.

The areas in which ArchVis performs well, with respect to the evaluation framework described in section
7.3.1, are in its capability of supporting both static and transient data, views and navigation. Comparing these
to existing architecture visualisations, no other performed as well in static data and transient data support.
The closest tool to ArchVis in terms of views and navigation is Enterprise Architect, the system that also
performed better in task support. Enterprise Architect, however, lacks in its support of static and transient

data.

164

9.5 Future Work

Architecture visualisation is a relatively unexplored research territory. This thesis identifies several areas of

future work.
9.5.1 Architecture Representations

For software engineering outside of a research lab, there are many non-ideal scenarios. When software
architecture is considered, the use of ADLs in software projects is very much limited to a few documented
cases. In order for architecture visualisation to be of significant use to software engineers, mechanisms must
exist for retrieving architectural information from a multitude of sources and consolidate that into a repository
of architectural information ready for visualisation. This thesis has presented an approach to this process, but

can be improved in a number of ways.

Firstly, the mechanism presented requires decomposition followed by re-composition by individual views.
This is computationally expensive, and could potentially be avoided. Secondly, the re-composition process
uses individual filters that do not maintain context or history information from one filter to the next. This

means that tracing a render element back to the original data source is difficult.
9.5.2 Architectural Views

Perhaps one of the easiest ways to take this research forward with respect to the views described, is to provide
more implementations of renderers and to provide extensions to the library of graphical elements that can be
used by those renderers. There are many views that are not developed through ArchVis that are frequently

used by developers — particularly collaboration views in UML.

Another area of research would be to examine how viewpoint definitions can be better represented in the
visualisation, and to explicitly map stakeholders and their concerns to the views that address those concerns.

These issues are not currently addressed adequately in ArchVis.

In order to more effectively support some tasks such as choosing from alternative architectures, and
evaluating as-implemented architectures against as-prescribed architectures, a visualisation should be able to
support the visualisation of multiple architectures concurrently. ArchVis supports the concurrent visualisation
of the render model produced by each architecture, but this is fundamentally different to having the full

architecture on hand to retrieve information from.

Views presented here all rely on two-dimensional graphics in order to produce displays. As noted in chapter

3, some research in software visualisation has examined the use of three dimensions in order to convey new

165

perspectives on software, and to alleviate some of the problems posed by two-dimensional displays. This is

an avenue that can equally be explored for software architecture visualisation.
9.5.3 Implementation

In terms of the implementation of ArchVis, there are two ways in which the work can be carried forward.
The first is to examine a possible mechanism by which multiple stakeholders can use the visualisation
concurrently. This would improve on the current support which is multiple stakeholders, but one at a time.
The second direction would be to examine the transient data support in ArchVis. This is currently very
limited to the model described in chapter 5 — which does not allow for the visualisation of changing

architectures; it simply allows transient events to be associated with elements in the render model.
9.6 Conclusion

This thesis has examined the fundamental principles of software architecture visualisation by looking at
software architecture, and software visualisation, and reported on the current state of research in these fields.
It has also examined the state of research in software architecture visualisation to date. From this, this
research then identifies the issues and challenges that face software architecture visualisation, and proposes a
new approach. This approach, called ArchVis, 1s described in detail along with details on how a prototype
tool was developed to demonstrate the principle concepts of the ArchVis approach. ArchVis demonstrates
how architectural information that is relevant to a number of stakeholders can be retrieved and input into a
view model in such a way as to present views that are appropriate to the stakeholders. An evaluation of
ArchVis identified its relative merits, and the future work describes ways in which the work of this thesis can

be carried forward.

166

References

[Abdurazik00]

[Allen97)

[Batman99]

[Barbaccio8]

[Booch98]

[Bosch00]

[Bredemeyer99]

[Bredemeyer00]

A. Abdurazik, Suitability of the UML as an Architecture Description
Language with Applications to Testing, technical report ISE-TR-00-01,

Information and Software Engineering, George Mason University, 2000.

R. Allen and D. Garlan, A Formal Basis for Architectural Connection,
ACM Transactions on Software Engineering and Methodology, Vol. 6, No.
3, July 1997.

J. Batman, Characteristics of an Organization with Mature Architecture
Practices, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, 1999.

M. R. Barbacci, S. J. Carriere, P. H. Feiler, R. Kazman, M. H. Klein,
H. F. Lipson, T. A. Longstaff and C. B. Weinstock, Steps in an
Architecture Tradeoff Analysis Method: Quality Attribute Models and
Analysis, technical report CMU/SEI-97-TR-029, Software Engineering
Institude, Carnegie Mellon University.

G. Booch, J. Rumbaugh, and 1. Jacobson, The Unified Modeling
Language User Guide, Addison Wesley, 1998.

J. Bosch, Design and Use of Software Architctures: Adopting and Evolving
a Product-line Approach, ACM Press/Addison-Wesley, New York, 2000.

Architecting Process, Architecture Action Guide, Bredemeyer Consulting,

http://www bredemeyer.com/pdf_files/ProcessGuide. PDF

D. Bredemeyer and R. Malan, The Role of the Architect. Bredemeyer
Consluting, http://www.bredemeyer.com/pdf files/role. pdf

167

[Breud7]

[Card99]

[Carmichael95]

[Chi98]

[Clements96]

[CodeViz]

[DiBattista88]

[EA]

[Eden01]

[Eden02]

R. Breu, U. Hinkel, C. Hofmann, C. Klein, B. Paech, B. Rumpe and V.
Thurner, Towards a Formalization of the Unified Modeling Language,
technical report TUM-19726, Institut fiir Informatik, Technische Universitiit
Miinchen, 1997.

S. K. Card, J. D. Mackinlay and B. Shneiderman (Eds.), Information
Visualization: Using Vision to Think, Morgan Kaufmann, San Francisco,

1999

I. Carmichael, V. Tzerpos, and R. C. Holt, Design Maintenance:
Unexpected Architectural Interactions, IEEE International Conference on

Software Maintenance, 1995.

E.H. Chi, J. Pitkow, J. Mackinlay, P, Pirolli, R, Gossweiler, and S.K.
Card. Visualizing the Evolution of Web Ecologies. Proc. ACM CHI 98
Conference on Human Factors in Computing Systems, ACM Press, Los
Angeles, California, 1998. pp. 400-407

P. Clements and L. Northrop, Software Architecture: An Executive
Overview, technical report CMU/SEI-96-TR-003, ESC-TR-96-003,
Software Engineering Institute, Carnegie Mellon, 1996,

M. Gorman, CodeViz Project, http://www.skynet.ie/~mel/projects/codeviz/

G. DiBattista, R. Tamassia and C. Batini, Automatic Graph Drawing and
Readability of Diagrams, IEEE Transactions on Systems, Man and
Cybernetics, Volume 18, Issue I, 1988, pp. 61-79.

Enterprise Architect, Sparx Systems (http://www.sparxsystems.com.auw/)

A.H. Eden, Visualization of Object Oriented Architecture, Proc. 23" Int’l
Conf. Software Engineering. (ICSE 2001), Toronto, Ontario, Canada, 2001,
pp. 5-10.

A. H. Eden, LePUS: A Visual Formalism for Object-Oriented
Architectures, 6" World Conference on Integrated Design and Process

Technology, Pasadena, California, Jun. 2002.

168

[Eisenstadt90]

[Feijs88]

[Fe1js98]

[Fowler00]

[Garlan93]

[Garlan95]

[Garlan97]

[Globus93]

[Grundy98]

[Grundy00]

[HatchO1]

M. Eisenstadt and M. Brayshaw, 4 Knowledge Engineering Toolkit, part
I, BYTE: The Small Systems Journal 10 (10), 1990, pp. 268-282.

L. Feijs, R. Krikhaar, and R. A. Van Ommering, 4 relational approach
to support software architecture analysis. Soft. Prac. Exp. 28, Apr. 1988,
pp. 371-400.

L.M.G. Feijs and R. de Jong, 3D Visualization of Software Architectures,
Communications of the ACM, vol. 41, no. 12, Dec. 1998, pp. 72-78.

M. Fowler and K. Scott, UML Distilled, ond ed., Addison-Wesley, 2000.

D. Garlan and M. Shaw, An [ntroduction to Software Architecture,
Advances in Software Engineering and Knowledge Engineering, V.
Ambriola,, ed., G. Tortora, ed., vol. 1. World Scientific Publishing

Company, 1993, pp. 1-40.

D. Garlan, What is Style?, Proc. of Dagshtul Workshop on Software
Architecture, Saarbruecken, Germany, Feb. 1995.

D. Garlan, R. Monroe, D. Wile, Acme: An Architcture Description
Interchange Language, Proceedings of CASCON’97, Nov. 1997,

A. Globus, and S. Uselton, Evaluation of Visualization Sofiware, Report NAS-
95-005, Computer Science Corporation, NASA Ames Research Center, 1995

J. Grundy, R. Mugridge and J. Hosking, Visual Specification of Multi-
View Visual Environments, IEEE Symposium on Visual Languages,

Halifax, Nova Scotia, Canada, Sep. 1998, IEEE CS Press

J.C Grundy and J.G. Hosking, High-level Static and Dynamic
Visualisation of Software Architectures, Proc. IEEE Symposium on Visual

Languages, (VL’00), Seattle, Washington, Sept. 2000.

A. S. Hatch, M. P. Smith, C. M. B, Taylor and M. Munro, No Silver
Bullet for Software Visualisation Evaluation, Proceedings of the Workshop
on Fundamental [ssues of Visualization, Proceedings of The International
Conference on Imaging Science, Systems and Technology (CISST), Las
Vegas, USA, June 2001, pp. 651-657.

169

[Hewett99]

[IEEE1471]

[Instance Store]

[Kazman99]

[Kehoe99]

[Kitchenham96]

[Klein99]

[Knight00]

[Kruchten95]

[Lanza02]

[Leintz80]

T. T. Hewett, Human-Computer Interaction and Cognitive Psychology in
Visualization Education, Proceedings of Graphics and Visualization

Education Workshop, SIGGRAPH, Portugal, July 1999.

IEEE Std. 1471-2000, IEEE Recommended Practice for Architectural
Description of Software Intensive Systems, IEEE, Picstataway, N. J., 2000.

Instance Store, Information Management Group, University of Manchester,

http://instancestore.man.ac.uk

R. Kazman and S.J. Carriére, Playing Detective: Reconstructing
Software Architecture from Available Evidence, Journal of Automated

Software Engineering, vol. 6, no. 2, Apr. 1999, pp. 107-138.

C. Kehoe, J. Stasko and A. Taylor, Rethinking the Evaluation of
Algorithm Animations as Learning Aids: An Observational Study, technical
report GIT-GVU-9910, Graphics, Visualization and Usability Center,
College of Computing, Georgia Institute of Technology, 1999.

B. Kitchenham and L. Jones, Evaluating Sofnware Engineering Methods
and Tools. Part 1: The Evaluation Contexi and Evaluation Methods,

Software Engineering Notes, Vol. 21, No. 1, Jan. 1996. pp. 12-15.

M.H. Klein and R. Kazman, Attribute-Based Architectural Styles,
technical report CMU/SEI-99-TR-022, ESC-TR-99-022, Software
Engineering Institute, Carnegie Mellon, 1999.

C. Knight, Virtual Software in Reality, PhD Thesis, Department of

Computer Science, University of Durham, June 2000.

P. Kruchten, The “4+1" View Model of Sofnware Architecture, IEEE
Software, vol. 12, no. 6, Nov. 1995, pp. 42-50.

M. Lanza, CodeCrawler — A Lighweight Software Visualization Tool,
Software Composition Group, University of Bern, Switzerland, 2002.

B. P. Lientz and E.F. Swanson, Sofhware Maintenance Management: 4
Study of the Maintenance of Computer Application Sofiware in 487 Data
Processing Organizations, Addison-Wesley Reading, MA ., 1980.

170

[Mayrhauser98]

[Medvidovic97]

[Monroe96]

[Moriconi95]

[UML]

[Perry92]

[Price93]

[Robbins97]

[Sander95]

[Shneiderman96]

A. von Mayrhauser, and A.M. Vans, Program Understanding Behaviour During
Adaption of Large Scale Software, 6th International Workshop on Program
Comprehension, IEEE Computer Society, Ischia, Italy, 1998, pp.164-172

N. Medvidovic and D. S. Rosenblum, Domains of Concern in Sofhware
Architectures and Architecture Description Languages, Proc. Of USENIX

Conference on Domain-Specific Languages, 1997.

R. T. Monroe, A. Kompanek, R. Melton, and D. Garlan, Stylized
Architecture, Design Patterns, and Objects”, IEEE Software, Jan 1996, pp.
43-52.

M. Moriconi, X. Qian, and R. A. Riemenshneider, Correct Architecture
Refinement, IEEE Transactions on Software Engineering, vol. 21, no. 4,
Apr. 1995, pp. 270-283.

OMG Unified Modeling Language Specification, Object Management

Group, www.omg.org

D.E. Perry and A.L. Wolf. Foundations for the Study of Sofhware
Architecture, Proc. ACM SIGSOFT. (SIGSOFT 92), Software
Engineering Notes, vol. 17, no. 4, Oct. 1992, pp. 40-52.

B. A, Price, R. M Baecker and 1. S. Small, 4 Principled Taxonomy of
Software Visualization, Journal of Visual Languages and Computing, Vol.
4, No. 3, pp. 211-266, 1993.

J. E. Robbins, D. F. Redmiles and D. S. Rosenblum, /ntegrating C2 with
the Unified Modeling Language, Proc. California Software Symposium,
Irvine, CA, Nov. 1997.

G. Sander, VCG: Visualization of Compiler Graphs, technical report A01-
95, Universitit des Saarlandes, FB 14 Informatik, 1995.

B. Shneiderman, The Eyes Have It: A Task by Data Type Taxonomy For

Information Visualizations, Proceedings for IEEE Symposium on Visual

Languages, IEEE Service Center, Sep 3-6, 1996, pp. 336-343.

[Shneiderman98]

[Shaw96]

[Sim99]

[Soni9s]

[Smith02]

[Standish84]

[Storey99]

[Storey02]

[Struts]

[Taylor02]

[Tufte92]

B. Shneiderman, Designing the User Interface: Strategies for Effective
Human-Computer Interaction, (3rd ed. ed.). Addison-Wesley, 1998.

M. Shaw and D. Garlan, Software Architecture: Perspectives on an

Emerging Discipline, Prentice Hall, New Jersey, 1996

S. E. Sim, C. L. A. Clarke, R. C. Holt and A. M. Cox, Browsing and
Searching Software Architectures, Proc. International Conference on

Software Maintenance, Oxford, England, Sep. 1999, pp. 381-390

D. Soni, R. Nord, and C. Hofmeister, Software Architecture in Industrial

Applications, International Conference on Software Engineering

M. Smith and M. Munre, Runtime Visualisation of Object Oriented
Software, Proceedings of the IEEE 1* International Workshop on
Visualizing Software for Understanding and Analysis, Paris, pages 81-89,
June 2002.

T. A. Standish, An essay on software reuse, IEEE Transactions on

Software Engineering, Vol. 10, No. 5, pages 494-497, 1984.

M.-A.D. Storey, F.D. Fracchia, and H.A. Miiller, Cognitive Design
Llements to Support the Construction of a Mental Model during Sofhware
Exploration, Journal of Software Systems, Vol 44, 1999. pp. 171-185.

M. A. Storey, C. Best, J. Michaud, D. Rayside, M. Litoiu and M.
Musen, ShriMP Views: An Interactive Environment for Information
Visualization and Navigation, Computer-Human Interaction Conference

2002.
Jakarta Struts, Apache Jakarta Project (http:/jakarta.apache.org)

C. Taylor and M. Munro, Revision Towers, Proceedings of the IEEE 1st
International Workshop on Visualizing Software for Understanding and

Analysis, Paris, pages 43-50, June 2002.

E. R. Tufte, The Visual Display of Quantitative Information, Graphics
Press, February 1992 reprint.

[Vestal93]

[Wiss98]

[Young97]

S. Vestal, 4 Cursory Overview and Comparison of Four Architecture
Description Languages, technical report, Honeywell, Technology Center,
1993.

U. Wiss, D. Carr, and H. Jonsson, Evaluating 3-Dimensional Information
Visualization Designs: a Case Study, Proc. IEEE Conference on Information
Visualization, London, England, July 29-31, 1998, pp. 137-144.

P. Young, 4 New View of Call Graphs for Visualising Code Structures,
technical report, Research Institute in Software Evolution, University of
Durham, 1997.

