

Durham E-Theses

Environmental and relative sea-level reconstruction from isolation basins in NW Scotland using geochemical techniques

Mackie, Elizabeth Anne Victoria

How to cite:

Mackie, Elizabeth Anne Victoria (2004) Environmental and relative sea-level reconstruction from isolation basins in NW Scotland using geochemical techniques, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3033/

Use policy

 $The full-text\ may\ be\ used\ and/or\ reproduced,\ and\ given\ to\ third\ parties\ in\ any\ format\ or\ medium,\ without\ prior\ permission\ or\ charge,\ for\ personal\ research\ or\ study,\ educational,\ or\ not-for-profit\ purposes\ provided\ that:$

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way
- The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107 http://etheses.dur.ac.uk

ENVIRONMENTAL AND RELATIVE SEA-LEVEL RECONSTRUCTION FROM ISOLATION BASINS IN NW SCOTLAND USING GEOCHEMICAL TECHNIQUES

Volume Two:

Figures and Tables

Elizabeth Anne Victoria Mackie

A copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.

Thesis submitted for the degree of Doctor of Philosophy. University of Durham, Department of Geography 2004

2 0 APR 2005

LIST OF FIGURES- Volume two

Chapter 1

Figure 1.1: Schematic representation of an isolation basin during a RSL fall
Figure 1.2: Schematic representation of the hydrological conditions in an isolation basin during an RSL fall2
Figure 1.3: A conceptual model of the biological assemblage change during a RSL fall
Figure 1.4: Relative sea level (RSL) observations from the Arisaig area4

Chapter 2

Figure 2.1: Schematic representation of the δ^{13} C inputs into a freshwater (A),	
and the marine (B) systems	5

Chapter 3

Figure 3.1: Location map of the field study region
Figure 3.2: Map of Arisaig field area with the locations of the fossil and contemporary isolation basins analysed7
Figure 3.3: Base geology of Arisaig and the surrounding area10
Figure 3.4: Upper Alt Dail An Dubh-Asaid (UADD) - Overview of the lithostratigraphy and measurements down core
Figure 3.5: Torr a' Bheithe (arrow) looking down towards Loch Torr a' Bheithe12
Figure 3.6: Torr A' Bheithe (TB) - overview of the lithostragraphy and measurements down core
Figure 3.7a: Overview of Loch Torr a' Bheithe (arrow), looking west towards Loch nan Ceall14
Figure 3.7b: Loch Torr a' Bheithe marked by a black arrow and site of the new core being taken (red arrow)14

Figure 3.7c: Sill of Loch Torr a' Bheithe marked by an (arrow)14
Figure 3.8: Loch Torr A' Bheithe (LTB) - overview of the lithostragraphy and measurements down core
Figure 3.9a : Overview of Loch a' Mhuilinn looking towards Loch nan Ceall
Figure 3.9b: Loch a' Mhuilinn - view of the loch and the surrounding catchment
Figure 3.10: Loch A' Mhuilinn (LAM) lithostratigraphy and overview of the measurements down core
Figure 3.11: Upper Loch Nan Eala looking towards the sill (arrow)
Figure 3.12: Upper Loch Nan Eala (ULNE) - Overview of the lithostratigraphy and measurements down core
Figure 3.13: Main Loch Nan Eala and the remaining shallow loch (arrow)
Figure 3.14: Overview of lithostragraphy and measurements down core of Main Loch Nan Eala (MLNE)
Figure 3.15a: Overview of the staircase of two isolation basins (each marked with an arrow)
Figure 3.15b: Rumach VI (arrow) looking east to west
Figure 3.16a: Overview of the lithostratigraphy and measurements down core of Rumach VI Lateglacial section
Figure 3.16b: Overview of the lithostratigraphy and measurements down core from the Holocene core
Figure 3.17: Cross section of Rumach VI stratigraphy and morphology.
Figure 3.18: Rumach tidal pond site map - showing details for the site
Figure 3.19a: View of Rumach Tidal Pond sill (arrow) at low tide looking west over to Eigg

Figure 3.19b: View of Rumach Tidal Pond sill (arrow) at high tide looking north to south
Figure 3.19c: View of Loch nan Ceall looking over to Eigg, taken from Rumach Tidal Pond sill
Figure 3.19d: View of Stream 1 (arrow) entering Rumach Tidal Pond28
Figure 3.19e: View of Stream 1 (arrow) looking up stream to the surrounding catchment
Figure 3.19f: View of stream 2 (arrow) entering Rumach Tidal Pond
Figure 3.20a: Rumach Tidal Pond water column profiles at station 1 during Spring-tide HT and LT (11/8/02)
Figure 3.20b: Rumach Tidal Pond water column profiles at station 1 during mid-cycle tide tide LT and HT (7/8/02)
Figure 3.20c: Rumach Tidal Pond water column profiles at station 1 during neap-tide HT & LT (4/8/02)
Figure 3.21: Loch nan Corr, Kintail site map32
Figure 3.22a: Overview of Loch Nan Corr
Figure 3.22b: New piston core from Loch nan Corr. View of the shallow freshwater loch and the aquatic vegetation
Figure 3.23: Loch nan Corr - overview of the lithostratigraphy and measurements down core.
Figure 3.24: Craiglin site map - showing details for the site
Figure 3.25a: View of Craiglin Lagoon (arrow) showing the culvert and the sill from Loch Sween
Figure 3.25b: View of sill waters entering the culvert. Sill marked with the arrow
Figure 3.25c: View of Loch Sween (arrow) and the inlet stream to the basin at high tide

F igure tide LT	3.26a: Craiglir and HT (11/8/0	n Lagoon water (02)	column profiles	at station 2 during	3 spring- 37
F igure tide LT	3.26b: Craiglir and HT (7/10/0	n Lagoon water 02)	column profiles	at station 2 during	g spring- 38

Chapter 5

Figure 5.1: Upper Loch nan Eala (ULNE) - summary of $\delta^{13}C_{org}$ and C/N ratios data compared to the diatom palaeosalinity reconstruction40)
Figure 5.2: ⁸⁷ Sr/ ⁸⁶ Sr vs. salinity for water and foraminiferal samples from Rumach VI (Holocene core)	ŀ
Figure 5.3: Elemental /AI ratios from ULNE compared to against the diatom reconstruction	3
Figure 5.4: REE elements plotted from Upper Loch nan Eala.	7

Chapter 6

Figure 6.1a: C/N vs. $\delta^{13}C_{org}$ plot of the contemporary samples from NW Scotland4	9
Figure 6.1a: C/N vs. $\delta^{13}C_{org}$ plot of the contemporary data from this study and values from the published literature	19
Figure 6.2: Upper Loch nan Eala - profiles of TOC, C/N ratios and $\delta^{13}C_{org}$ 5	52
Figure 6.3: Upper Loch nan Eala C/N vs. $\delta^{13}C_{org}$	53
Figure 6.4: Main Loch nan Eala - profiles of TOC, C/N ratios and $\delta^{13}C_{org}$ compared to the diatom summary.	54
Figure 6.5: Main Loch nan Eala C/N vs. $\delta^{13}C_{org}$	5
Figure 6.6a: Rumach VI - Lateglacial core- Profiles of TOC, C/N ratios and $\delta^{13}C_{org}$ compared to the diatom summary	6
Figure 6.6b: Rumach VI (Holocene section) Summary of TOC, C/N and $\delta^{13}C_o$ against the foraminiferal salinity reconstruction	^{rg} 57

Figure 6.7: Rumach VI C/N vs. δ^{13} C _{org}
Figure 6.8: Loch nan Corr - profiles of TOC, C/N ratios and $\delta^{13}C_{org}$ compared to the foraminifera summary
Figure 6.9 : Loch nan Corr C/N vs. $\delta^{13}C_{org}$ 60
Figure 6.10: Upper Allt Dail An Dubh-Asaid - profiles of TOC, C/N ratios and $\delta^{13}C_{org}$
Figure 6.11: Upper Allt Dail Dubh-Asaid - C/N vs. $\delta^{13}C_{org}$
Figure 6.12: Torr a' Bheithe -profiles of TOC, C/N ratios and $\delta^{13}C_{org}$ against the diatom palaeosalinity reconstruction
Figure 6.13: Torr a' Bheithe C/N vs. $\delta^{13}C_{org}$ 64
Figure 6.14: Loch Torr a' Bheithe -profiles of TOC, C/N ratios and $\delta^{13}C_{org}$ against the diatom summary
Figure 6.15: Loch Torr a' Bheithe C/N vs. $\delta^{13}C_{org}$
Figure 6.16: Loch a' Mulihinn - profiles of TOC, C/N ratios and $\delta^{13}C_{org}$ against the diatom palaeosalinity reconstruction
Figure 6.17: Loch a' Mhuilinn C/N vs. $\delta^{13}C_{org}$
Figure 6.18: Regional RSL curve showing altitude of Rumach VI, MLNE and Upper Loch Nan Eala
Figure 6.19: Biplot of $\delta^{13}C_{org}$ vs. C/N ratio from Holocene marine samples from Upper Loch Nan Eala, Main Loch Nan Eala and Rumach VI

Chapter 7

Figure 7.1a: Relationship between contemporary $\delta^{18}O_w$ vs. salinity for all samples taken from RTP, Craiglin Lagoon and Loch Nan Corr.	71
Figure 7.1b: Relationship between contemporary $\delta^{13}C_{\text{TDIC}}$ vs. salinity for all samples taken from RTP, Craiglin Lagoon and Loch Nan Corr.	71

Figure 7.2a : Relationship between contemporary $\delta^{18}O_w$ vs. temperature for all samples taken from RTP, Craiglin Lagoon and Loch Nan
Corr
Figure 7.2b: Relationship between contemporary $\delta^{13}C_w$ vs. temperature for all samples taken from RTP, Craiglin Lagoon and Loch Nan Corr
Figure 7.3a: Relationship between contemporary Rumach Tidal Pond $\delta^{18}O_w$ vs. salinity for basin, sill and stream waters
Figure 7.3b: Relationship between contemporary Rumach Tidal Pond $\delta^{18}O_w$ vs. temperature for basin, sill and stream waters
Figure 7.4a: Relationship between contemporary Rumach Tidal Pond $\delta^{13}C_{TDIC}$ vs. salinity for basin, sill and stream waters
Figure 7.4b: Relationship between contemporary Rumach Tidal Pond $\delta^{13}C_{TDIC}$ vs. temperature for basin, sill and stream waters
Figure 7.5a : Relationship between contemporary Craiglin Lagoon $\delta^{18}O_w$ vs. salinity for basin, stream and sill water samples
Figure 7.5b: Relationship between contemporary Craiglin Lagoon $\delta^{18}O_w$ vs. temperature for basin, stream and sill samples
Figure 7.6a: Relationship between contemporary Craiglin Lagoon $\delta^{13}C_{TDIC}$ vs. salinity for basin, stream and sill water samples
Figure 7.6b: Relationship between contemporary Craiglin Lagoon $\delta^{13}C_{TDIC}$ vs. temperature for basin, stream and sill samples73
Figure 7.7: Loch nan Corr profiles of TOC, $\delta^{13}C_{org}$, $\delta^{18}O_{foram}$, $\delta^{13}C_{foram}$ results against foraminiferal summary
Figure 7.8: Relationship between $\delta^{13}C_{foram}$ and $\delta^{18}O_{foram}$ from sediment core Loch Nan Corr
Figure 7.9: Relationship between $\delta^{13}C_{org}$ and $\delta^{13}C_{foram}$ from the sediment core Loch Nan Corr

Chapter 8

Figure 8.1a: Brackish water diatoms separated using an STP density of 2.2gcm ³ .	.76
Figure 8.1b: Marine diatoms diatoms separated using an STP density of 2.2gcm ³	.76
Figure 8.1c: Marine diatoms separated using an STP density of 2.3gcm ³	.76
Figure 8.2: Ranges of end-member values defined from the published results	.78
Figure 8.3: Summary of $\delta^{13}C_{org}$ and $\delta^{18}O_{diatom}$ data compared to the diatom salinity reconstruction	.79
Figure 8.4: The $\delta^{18}O_{diatom}$ results from Upper Loch Nan Eala compared to the end-member ranges identified from the published literature	e .80

Chapter 9

Figure 9.1: Loch Nan Corr -Profiles of Foraminiferal summary, particle size, TOC, BSiO ₂ 8 ²	1
Figure 9.2: Profiles of C/N ratios, TOC, BSiO ₂ compared to the GRIP δ^{18} O and diatom summary diagram82	 2
Figure 9.3 : TOC, BSiO ₂ , and Age/depth model for the new core from Loch Nar Corr and the GRIP temperature record	ו 5

Chapter 10

Figure 10.1: Environmental synthesis for Upper Loch nan Eala (ULNE) -	
comparing all geochemical proxies as palaeosalinity indicators against the	
published diatom summary	86

Tables – Volume two

Table 3.1: Summary data for contemporary basins
Table 3.2: Summary data for fossil basins9
Table 3.3: Summary of geochemical and isotope proxies tested at each field site
Table 5.1: Summary table of the abundance of H.germanica foraminifera inULNE, Rumach VI and LNC41
Table 5.2: Summary table of the abundance of diatoms in Upper Loch Nan Eala42
Table 5.3: Summary table of the abundance of diatoms in Main Loch Nan Eala
Table 5.4: Summary table of the abundance of diatoms from Rumach VI(Holocene core)
Table 5.5: Summary of contemporary water samples from Rumach Tidal Pond and foraminifera43
Table 6.1: Values of contemporary $\delta^{13}C_{org}$ and C/N ratios collected from NWScotland48
Table 6.2: Published contemporary $\delta^{13}C_{org}$ and C/N ratios from a range ofsedimentary and aquatic environments
Table 8.1: Summary table of published $\delta^{18}O_{diatom}$ values from around the world77
Table 9.1: A summary of climate events across Europe recorded in peat, lake, speleothem and marine records. 83-84
Table 11.1: Summary of palaeosalinity proxies

Stage 2 - Beginning of relative sea-level fall

Stage3 - Relative sea-level fall

Stage 4 - Lowstands

 Isolation contact Brackish to variable salinity conditions
Marine to

nearshore shelf conditions

Figure 1.3: A conceptual model of the biological assemblage change during a RSL fall. The left column presents typical sediment types deposited during an isolation process. The right column relates to stages on the isolation process in Figures 1.1 and 1.2. (Diagram adapted from Laidler 2002)

A Freshwater environment

B Marine environment

Figure 2.1: Schematic presentation of the δ^{13} C inputs into a freshwater (A), and the marine (B) systems. Equilibrium with atmospheric CO₂ only usually occurs in closed lakes. Note the 5‰ difference between the two systems (adapted from Boutton (1991) and Leng and Marshall (2004).

Figure 3.1: Location map of the field study region. Insets show locations of the study areas with the individual sites indicated (see Tables 3.1 and 3.2).

Figure 3.2: Map of Arisaig field area with the locations of the fossil and contemporary isolation basins analysed.

Table 3.1: Summary data for contemporary basins

Basin	Position (Latitude, Longitude)	OS Coordinate	Type of environment	Sill Altitude (m OD)	MHWST	НАТ	Approximate Area (ha)		Max depth at high	Theoretical stage of
							Mean Iow water	Mean high water	tide (m) (MHST)	isolation (Figure 1.1)
Arisaig										
Rumach tidal pond (RTP)	56°89'84N, 5°89'56W	NM6280 8530	Marine	0.27	2.38	2.96	0.2	1.2	1.9	2
Knapdale										
Craiglin Lagoon	56°03'15N, 5°57'09W	NR7754 8781	Brackish	1.417	1.29	1.64	6.8	6.9	1.6	3
Kintail										
Loch nan Corr	57°23'39N, 5°40'94₩	NG9425 2103	Fresh water loch	2.7	2.62	3.24	1.7	1.7	0.6	4

-1

Basin	Position (Latitude, Longitude)	OS Coordinate	Microfossil	Sill Altitude (m OD)	Relative Sea Level History	Reference for RSL history and previous analyses
Arisaig Upper Allt Dail An Dubh-Asaid	Back of Keppock	Site destroyed	Diatoms	61.88	Above marine limit	Shennan <i>et al.</i> (in prep)
Loch a' Mhuilinn	56°53'37N, 5°52'11W	NM644 846	Diatoms	15.5	Late Lateglacial RSL fall	Shennan et al. (2000)
Loch Torr a' Bheithe	56°53'21N, 5°51'51W	NM647 842	Diatoms	24.0	Late Lateglacial RSL fall	Shennan et al. (2000)
Torr a' Bheithe	56°88'90N, 5°86'34W	NM6470 8415	Diatoms	35.2	Late Lateglacial RSL fall	Shennan <i>et al.</i> (2000)
Upper Loch nan Eala	56°54'00N, 5°50'27W	NM662 853	Diatoms	6.27	Late Lateglacial RSL fall and through to Holocene RSL fall and rise	Shennan <i>et al.</i> (1994, 2000)
Main basin Loch nan Eala	56°90'63N, 5°83'14W	NM6676 8596	Diatoms	5.20	Late Lateglacial RSL fall and through to Holocene RSL fall and rise	Shennan <i>et al.</i> (1994,2000)
Rumach VI	56°53'63N, 5°53'14W	NM633853	Diatoms foraminifera dinoflagellate cysts	4.80	Late Lateglacial RSL fall and through to Holocene RSL fall and rise	Shennan <i>et al.</i> (1994,2000)
Kintai] Loch nan Corr	57°23'39N, 5°40'94W	NG9425 2103	Foraminifera	2.70	Holocene RSL fall	Lloyd (2001)

Figure 3.3: Base geology of Arisaig and the surrounding area. (adapted from 2004)

Oct

Figure 3.4: Upper Alt Dail An Dubh-Asaid (UADD) - Overview of the lithostratigraphy and measurements down core made. Key: Organic limus L Clay, silt some sand. Data from Shennan *pers. com.* Date calibrated using Calib 4.3 (Stuvier *et al.*, 1998) radiocarbon date.

Figure 3.5: Torr a' Bheithe (arrow) looking down towards Loch Torr a' Bheithe

100 80 60 40 20 (%)

Figure 3.6: Torr A' Bheithe (TB) - overview of the lithostratigraphy and measurements down core. Published data from Shennan *et al.* (2000). Key: Organic limus L Clay, silt, some sand. Diatom classes polyhalobian, Meshohalobian is oilohalobian –halophile oilohalobian – halophile oilohalobian –

Figure 3.7a: Overview of Loch Torr a' Bheithe (arrow), looking west towards Loch nan Ceall

Figure 3.7b: Loch Torr a' Bheithe marked by a black arrow and site of the new core being taken (red arrow)

Figure 3.7c: Sill of Loch Torr a' Bheithe marked by an (arrow)

Figure 3.8: Loch Torr a' Bheithe (LTB) - overview of the lithostratigraphy and measurements down core. Published data from Shennan et al. (2000). Key as before.

Figure 3.9a: Overview of Loch a' Mhuilinn looking towards Loch nan Ceall

Figure 3.9b: Loch a' Mhuilinn - view of the loch and the surrounding catchment

Figure 3.10: Loch a' Mhuilinn (LAM) lithostratigraphy and overview of the measurements down core. Published data from Shennan et al. (2000). Key: as before.

Figure 3.11: Upper Loch Nan Eala looking towards the sill (arrow)

Published data

This study

Figure 3.12: Upper Loch Nan Eala (ULNE) - Overview of the lithostratigraphy and measurements down core. Published data from Shennan et al. (1994, 2000). Key as before.

Figure 3.13: Main Loch Nan Eala and the remaining shallow loch (arrow)

Figure 3.14: Overview of lithostratigraphy and measurements down core of Main Loch Nan Eala (MLNE). Published data from Shennna et al. (1994, 2000). Key as before.

Figure 3.15a: Overview of the staircase of two isolation basins (each marked with an arrow). Rumach VI is in the foreground. The picture is taken looking westwards towards Loch nan Ceall

Figure 3.15b: Rumach VI (arrow) looking east to west

Figure 3.16a: Overview of the lithostratigraphy and measurements down core of Rumach VI Lateglacial section. Key: Figure 3.6

Figure 3.16b: Overview of the lithostratigraphy and measurements down core from the Holocene core. Publish data and radiocarbon dates from Lloyd and Evans (2002). Key: Lithology- Figure 3.7. Foraminifera summary: Marine Brackish lagoon Saltmarsh

Figure 3.17: Cross section of Rumach VI stratigraphy and morphology. The west end of the basin is shallower than the eastern end. The arrow marks the section of the basin were the Holocene and Lateglacial core were taken. The open circles present the location of boreholes taken to construct the stratigraphy of the site. (Diagram adapted from Shennan *et al.*, 1999).

Figure 3.18: Rumach tidal pond site map - showing details for the site. Sampling stations (1-8) and type of sample or data obtained at each station is indicated. The locations of MHW, MLW and the two freshwater stream inputs are also illustrated.

Figure 3.19a: View of Rumach Tidal Pond sill (arrow) at low tide looking west over to Eigg

Figure 3.19b: View of Rumach Tidal Pond sill (arrow) at high tide looking north to south

Figure 3.19c: View of Loch nan Ceall looking over to Eigg, taken from Rumach Tidal Pond sill

Figure 3.19d: View of Stream 1 (arrow) entering Rumach Tidal Pond

Figure 3.19e: View of Stream 1 (arrow) looking up stream to the surrounding catchment

Figure 3.19f: View of stream 2 (arrow) entering Rumach Tidal Pond

0.3

1.8[」]

Figure 3.20b: Rumach Tidal Pond water column profiles at station 1 during mid-cycle tide tide LT and HT (7/8/02).

Figure 3.20c: Rumach Tidal Pond water column profiles at station 1 during neap-tide HT and LT (4/8/02).

Figure 3.21: Loch nan Corr, Kintail site map - showing details of Loch nan Core site, including surface sediment sampling location (diamond) and core location (circle).

Figure 3.22a: Overview of Loch Nan Corr, the remaining shallow is marked with a arrow

Figure 3.22b: New piston core from Loch nan Corr. View of the shallow freshwater loch and the aquatic vegetation (arrow)

Figure 3.24: Craiglin site map - showing details for the site. Sampling stations (1-8) and type of sample or data obtained at each station is indicated. The locations of MHW, MLW and a freshwater spring input is also illustrated.

Figure 3.25a: View of Craiglin Lagoon (arrow) showing the culvert and the sill from Loch Sween

Figure 3.25b: View of sill waters entering the culvert. Sill marked with the arrow

Figure 3.25c: View of Loch Sween (arrow) and the inlet stream to the basin at high tide

Figure 3.26b: Craiglin Lagoon water column profiles at station 2 during spring-tide LT and HT (7/10/02). Note the weaker haoline at 0.8m compared to Figure 3.25a.

Proxy Basin	тос	C/N ratio	$\delta^{13}C_{org}$	$\delta^{18}O_{\text{foram}}\\ \delta^{13}C_{\text{foram}}$	$\delta^{13}C_{diatom}$	⁸⁷ Sr/ ⁸⁶ Sr	BSiO ₂	Tephra
Arisaig								
Upper Loch Nan Eala Main Loch Nan Eala Rumach VI Upper Allt Dail An Dubh-Asaid Torr a' Bheithe Loch Torr a' Bheithe Loch a' Mhuilinn Rumach Tidal Pond	********	********	*******	******	× × × × × × × × × ×	*****	*****	**********
Kintail								
Loch NanCorr sediment core Loch Nan Corr freshwater loch	1	4	1	4	×	x x	×	× ×
Knapdale								
Craiglin Lagoon	1	1	1	1	1	x	×	X

Table 3.3: Summary of geochemical and isotope proxies tested at each field site

Figure 5.1: Upper Locha nan Eala (ULNE) - summary of $\delta^{13}C_{org}$ and C/N ratios data compared to the diatom palaeosalinity reconstruction by Shennan et al. (1994). Key for diatom summary and sediment litholohy see as on Figure 3.6. Analysis conducted on a Russian core, the Holocene freshwater zone was not sampled in this core.

Depth (cm)	ULNE	Rumach VI	LNC
200	-	-	•
250	-	-	-
300	-	-	-
350	-	-	-
400	-	*	-
450	-	-	
500	-	-	*
550	-	-	*
600	-	-	*
650	-	-	*
700		-	*
750		*	
800		-	
850		-	
900		*	
950			
1000			

Table 5.1: Summary table of the abundance of *H.germanica* foraminiferal inULNE, Rumach VI and LNC. The * = H.germanica, - = no foraminiferal present atthe depth in the core

i.

Depth	No. diatoms per slide
(cm)	
100	>2000
200	>2000
300	>2000
400	>2000
500	>2000
600	>2000
700	>2000

Table 5.2: Summary table of the abundanceof diatoms in ULNE (>2000 = so many diatomsthe slide could not be properly counted

Depth	No. diatoms per slide			
(cm)				
380	669			
476	130			
572	158			
668	783			
764	775			
860	18			

Table 5.3: Summary table of the abundance of diatoms in MLNE

Depth	No. diatoms per slide
(cm)	
160	1093
170	1283
200	1338
250	1492
300	728
370	2529
390	>2000
410	4505
425	175
460	2223
480	135

Table 5.4: Summary table of the abundance of Rumach VI (Holocene core)

Sample	Salinity	⁸⁷ Sr/ ⁸⁶ Sr	δ ⁸⁷ Sr
10/	(psu)		
waters			
Stream 1	0	0.713602948	335.4
Stream 2	0	0.714570933	432.2
HT basin	33	0.709191016	-105.7
HT sill	33	0.709172017	-107.6
LT basin	32.7	0.709175017	-107.3
LT sill	33	0.709163017	-108.5
Foraminifera			
412	-	0.709223	-102.5
764	-	0.709181	-106.7
892	-	0.709156	-109.2
Seawater standard		0.709171	
		0.709155	
		0.709164	
Dilute seawater std			
mean		0.709180	

 Table 5.5: Summary of contemporary water samples from RTP and foraminifera

 from Rumach VI. HT = High tide, LT = Low tide. LT sill = water collected seaward of the sill at low tide.

Figure 5.2: ⁸⁷Sr/⁸⁶Sr vs. salinity for water and foraminiferal samples from Rumach VI (Holocene core). Blue diatoms = water samples. Pink square = sample 412 cm, Orange triangle = 764 cm Blue cross = sample 892 cm). Sample 412 cm has a predicted salinity of 32.5 psu, while samples 764 and 892 cm have a predicted salinity of 33 psu. Insert graph is an enlargement of the predicted salinity of the three foraminiferal samples.

Figure 5.3: Elemental /AI ratios from ULNE compared to against the diatom reconstruction (Shennan et al., 1994). For lithological and diatom key see Figure 3.6. Anaylsis was conducted upon a test Russian core from ULNE

Figure 5.3 continued: Elemental/ AI ratios compared against the diatom reconstruction (Shennan et al., 1994). For lithological and diatom key see Figure 3.6.

Table 6.1: Values of contemporary da	ata collected from	NW Scotland
Terrestrial plants	δ ¹³ C (‰)	C/N ratio
Juncus sp.	-27.6	29.4
Cratageus monogyna	-30.2	22.6
Acer pseudoplatanus	-30.2	15.5
Quercus sp.	-29.0	15.7
Larix eurolepis Henry	-27.7	53.4
Pteridium aquilinum	-25.1	10.2
Iris pseudacorus	-27.3	17.7
Juncus sp.	-27.9	27.0
Juncus sp.	-28.2	30.3
Equisetum	-25.7	10.7
Caltha palustris	-29.3	13.3
Sphagnum sp.	-29.6	57.3
Alnus glutinosa	-28.1	17.1
Polytrichium commune	-25.6	97.2
Epilobium palustra	-29.9	16.0
Poteuntilla reptaus	-26.4	11.5
Juncus sp.	-28.2	25.4
Calluna vulgaris	-29.4	51.0
Sphagnum sp.	-26.7	24.8
Blechum spicant	-29.9	28.9
Myrica gale	-27.6	16.0
Primula veris	-29.2	15.3
Acer pseudoplatanus	-29.0	12.2
Caltha palustris	-30.2	11.4
Iris pseudacorus	-27.9	17.1
Pteridium aquilinum	-25.5	12.0
Gramineae	-28.6	34.9
Endyminion non-scripta	-28.5	19.6
Freshwater aquatics		
Equisetum fluviatile	-24.9	14.1
Nymphea alba	-26.4	17.8
Ranunculus repens	-26.8	13.9
Phragmites australis	-25.0	12.1
Potamogeton sp.	-32.5	16.1
Marine plants		
Ulva lactuca	-18.3	23.2
Fucus sp.	-20.0	25.7
Dictota dichotoma	-17.3	40.5
Cladoptom rupestris	-21.7	8.2
Fucus vesiculosus	-19.0	27.0
Surface sediment samples		
LNC basin sediment (freshwater)	-28.4	14.6
RTP stream sediment (freshwater)	-29.3	14.4
Craiglin Lagoon stream sediment	-29.4	16.6
RTP basin sediment (marine)	-20.8	7.7
Craiglin Lagoon (marine /brackish)	-18.5	9.3

Figure 6.1b: C/N vs. $\delta^{13}C_{org}$ plot of contemporary data from this study (Table 6.1) and values from the published literature (Table 6.2). The contemporary data is in grey. Marine, brackish, terrestrial and freshwater aquatic fields are based on contemporary data from this study and published literature. These fields will be used in all subsequent C/N vs. $\delta^{13}C_{org}$ plots from sediment cores.

Organic matter source	Location	C/N ratio	δ ¹³ C (‰)	Reference
C3 Vascular plants				<u> </u>
Peat	Shores of southern Baltic Sea.	16	-29.2	Müller & Voss, 1999
woody peat oak/hazel	Humber Estuary	17-23	-28	Andrews <i>et al.</i> , 2000
		>10 10 00		Rendovekiv 1065
	Nussia Dobob Boy Masinghton	>12	n/a	Bordovskiy, 1905
	Catchmont of Croifswaldor	10 to 95	n/a	Müller & Methoeine 1000
	Boddon, southern Baltic son	20 to 200		Hodgos of al 1096
	Amazon basin	2010200	28 to 20	Emoreon & Hodges, 1088
		n/a	-20 10 -29	Emerson & Heuges, 1966
Lake plankton				
Mixed plankton	Lake Baikal, Russia,	9	-30,9	Prokopenko <i>et al.,</i> 1993
	Lake Michigan, Ammmerica	7	-26.8	Meyers, 1994
	Pyramid Lake, Nevada.	6	28.3	Meyers, 1994
	Lake Biwa, Japan	7	27.5	Nakai & Koyama 1987
	Walker Lake, Nevada	8	-28.8	Meyers, 1994
	America	n/a	-30 to20	Galimov, 1985
Lake surface sediment				
	Loch Tay, Scotland	16	-26.6	Thornton & McManus 1994
	Loch Tummel, Scotland	13	-27.9	Thornton & McManus 1994
	Lake Baikat, Russia	11	-29.9	Qiu et al. 1993
Marine algae				
Mixed plankton	Rhode Island, U.S.A	na	-20.3	Gearing et al. 1984
Nanoplankton	Rhode Island, U.S.A	n/a	-22.2	Gearing et al. 1984
Mixed plankton	Dabob Bay, Washington	5	-22.4	Prahl <i>et al.</i> 1980
Mixed plankton		n/a		Galimov, 1985
marine surface sediment				
	Gironde system, France	n/a	-19 to -22	Fontugne & Joanneau, 1987
	Washington continental shelf	15	n/a	Ertel & Hedges, 1985
	Russia	8 to 12	n/a	Bordovskiy, 1965
	Offshore Baltic Sea	na	-23	Voss & Sruck, 1997
	Gulf of St. Lawrence	n/a	-22.4	l'an & Strain, 1979
	Rhode Island, U.S.A	n/a		Gearing et al. 1984
Intermediate group				
Estuary surface sediment (salinity unknown)				
Intermediate Mud Flat	Humber Estuary.	15.25	-24.49	Andrews unpublished
Lower Salt Marsh	Humber Estuary.	14.35	24.82	Andrews unpublished
Salt Marsh	Humber Estuary.	14.02	-24.9	Andrews unpublished
	Tay Estuary	13	-26.2	Thornton & McManus 1994
		10.5	-26.2	Thornton & McManus 1994

Organic matter source	Location	C/N ratio	δ ¹³ C (‰)	Reference
		9.3	-25.7	Thornton & McManus 1994
		9.9	-26.4	Thornton & McManus 1994
		12.6	-25.4	Thornton & McManus 1994
		15.1	-25.6	Thornton & McManus 1994
		10.2	-25.5	Thornton & McManus 1994
		9.1	-25.3	Thornton & McManus 1994
		13.5	-26.1	Thornton & McManus 1994
		15.7	-24.5	Thornton & McManus 1994
		10	-24.2	Thornton & McManus 1994
		9	-24.5	Thornton & McManus 1994
		10.1	-23.3	Thornton & McManus 1994
		11.3	-23.2	Thornton & McManus 1994
	Forth Estuary, Scotland	20.8	-24	Graham <i>et al.</i> , 2001
		27.1	-23.8	Graham <i>et al.</i> , 2001
		25.9	-24.2	Graham <i>et al</i> ., 2001
		19.6	-24.1	Graham <i>et al.</i> , 2001
		17.7	-24.4	Graham <i>et al.</i> , 2001
		24.4	-24	Graham <i>et al.</i> , 2001
		17.3	-24	Graham <i>et al.</i> , 2001
		20.7	-23.6	Graham <i>et al.</i> , 2001
		20.5	-23.6	Graham <i>et al.</i> , 2001
Coastal lagoons	Politic Son, Croifquialdor			
salinity <12 psu	Bodden	6 to 44	n/a	Müller & Mathesius, 1999
Plankton	Oder Estuary, Baltic Sea	5	-24.4	Müller & Voss 1999
Plankton	Greifswalder, Bodden	6	-25.1	Müller & Voss, 1999
Baltic sea sub basins	Mecklenbura Bight	n/a	-22.5	Emeis <i>et al.</i> 2003
Surface sediment salinity	Arkona Basin	n/a	-22.7	Emeis <i>et al.</i> , 2003
between 12 to 3.6psu	Bornholm Basin	n/a	-22.5	Emeis <i>et al.</i> , 2003
	Gotland Deep	n/a	-23.8	Emeis <i>et al.</i> , 2003
	Pomeranian Bight	n/a	-24.5	Emeis et al., 2003
	North Gotland Basin	n/a	-23.6	Emeis <i>et al.</i> , 2003
	Bothnian Sea	n/a	-24.3	Emeis <i>et al.</i> , 2003
	Bothnian Bay	n/a	-25.7	Emeis <i>et al.</i> , 2003
	-		1	1

Table 6.2: Published contemporary $\delta^{13}C_{org}$ and C/N ratios from a range of sedimentary and aquatic environments. Only where the reference gives pairs of $\delta^{13}C_{org}$ and C/N ratio are they plotted on Figure 6.1b.

Figure 6.2: Upper Loch nan Eala - profiles of TOC, C/N ratios and $\delta^{13}C_{org}$ against the biological salinity reconstruction. Published data from Shennan *et al.* (1994). Lithological and diatom key as on Figure 3.6.

Figure 6.3: Upper Loch nan Eala C/N vs. δ13Corg

Figure 6.4: Main Loch nan Eala - profiles of TOC, C/N ratios and δ¹³C_{org} compared to the diatom summary. Published data Shennan *et al.* (1994). Lithology and diatoms key as on Figure 3.6

Figure 6.5: Main Loch nan Eala C/N vs. $\delta^{13}C_{\text{org}}$

Figure 6.6a: Rumach VI - Lateglacial core- Profiles of TOC, C/N ratios and $\delta^{13}C_{org}$ compared to the diatom summary (Shennnan *et al.*, 1999). Lithology and diatoms key as on Figure 3.6.

Figure 6.6b: Rumch VI (Holocene section) Summary of TOC, C/N and $\delta^{13}C_{org}$ against the foraminiferal salinity reconstruction (Lloyd and Evans, 2002). The foraminiferal reconstruction and the isotope data have beeb taken from the same core. Lithology and foraminiferal key as on Figure 3.21.

Figure 6.7: Rumach VI C/N $~\rm vs.~\delta^{13}C_{\rm org}$

Figure 6.8: Loch nan Corr - profiles of TOC, C/N ratios and $\delta^{13}C_{org}$ compared to the foraminifera summary. Published data from Lloyd (2000). Key Figure 3.23

Figure 6.9: Loch nan Corr C/N vs. $\delta^{13}C_{org}$

Figure 6.10: Upper Allt Dail An Dubh-Asaid - profiles of TOC, C/N ratios and $\delta^{13}C_{\text{org}}$

Figure 6.11: Upper Allt Dail Dubh-Asaid - C/N $\,$ vs. $\delta^{13}C_{\text{org}}$

Figure 6.12: Torr a' Bheithe -profiles of TOC, C/N ratios and $\delta^{13}C_{org}$ against the diatom palaeosalinity reconstruction. Published data from Shennan *et al.*, 2000. Lithology and diatom key as on Figure 3.6.

Figure 6.13: Torr a' Bheithe C/N vs. $\delta^{13}C_{org}$

ტ 5

Figure 6.14: Loch Torr a' Bheithe -profiles of TOC, C/N raitos and $\delta^{13}C_{org}$ against the diatom summary. Published data from Shennan *et al.* (2000). Lithology and diatom key as on Figure 3.6.

Figure 6.15: Loch Torr a' Bheithe C/N vs. $\delta^{13}C_{org}$

Figure 6.16: Loch a' Mulihinn - profiles of TOC, C/N ratios and $\delta^{13}C_{org}$ against the diatom palaeosalinity reconstruction. Published data from Shennan *et al.* (2000). Lithology and diatoms key as on Figure 3.6.

Figure 6.17: Loch a' Mhuilinn C/N vs. $\delta^{13}C_{org}$

Figure 6.18: Regional RSL curve (adapted from Shennan *et al.*, 2000) showing altitude of Rumach VI, MLNE and ULNE. For a given marine interval Rumach VI will have deeper water (indicated by arrows) and will be marine for longer (indicated by green bar) than MLNE or ULNE

•

Figure 6.19: Biplot of $\delta^{13}C_{\text{org}}$ vs. C/N ratio from Holocene marine samples from ULNE, MLNE and Rumach VI

Figure 7.1a: Relationship between contemporary $\delta^{18}O_w$ vs. salinity for all samples taken from RTP, Craiglin Lagoon and LNC. Errors are within (0.2(‰) within the size of the symbol in all cases

Figure 7.1b: Relationship between contemporary $\delta^{13}C_{\text{TDIC}}$ vs. salinity for all samples taken from RTP, Craiglin Lagoon and LNC

Figure 7.2a: Relationship between contemporary $\delta^{18}O_w$ vs. temperature for all samples taken from RTP, Craiglin Lagoon and LNC

Figure 7.2b: Relationship between contemporary $\delta^{13}C_{\text{TDIC}}$ vs. temperature for all samples taken from RTP, Craiglin Lagoon and LNC

.

L

Figure 7.5b: Relationship between contemporary Craiglin Lagoon $\delta^{18}O_w$ vs. temperature for basin, stream and sill samples

Figure 7.6a: Relationship between contemporary Craiglin Lagoon $\delta^{13}C_{\text{TDIC}}$ vs. salinity for basin, stream and sill water

Figure 7.6b: Relationship between contemporary Craiglin Lagoon $\delta^{13}C_{\text{TDIC}}$ vs. temperature for basin, stream and sill samples

Figure 7.7: Loch nan Corr Profiles of TOC, $\delta^{13}C_{org}$, $\delta^{18}O_{foram}$, $\delta^{13}C_{foram}$ results against foraminiferal summary (Lloyd, 2000). Dotted lines incidate the correlation between the two cores. Sedimentology key and forainifera classes are found in Figure 3.23

Figure 7.8: Relationship between $\delta^{13}C_{\text{foram}}$ and $\delta^{18}O_{\text{foram}}$ from sediment core LNC

Figure 7.9: Relationship between $\delta^{13}C_{\text{org}}$ and $\delta^{13}C_{\text{foram}}$ from sediment core LNC

Figure 8.1a: Brackish water diatoms separated using an STP density of 2.2gcm³. Not the difference in species type between slides

Figure 8.1b: Marine diatoms diatoms separated using an STP density of 2.2gcm³

Figure 8.1c: Marine diatoms separated using an STP density of 2.3gcm³

Environment	Location	Type of material	δ ¹⁸ O _{diatom} (‰)	Reference
Contemporary marine diatom				
Southern Ocean	51°59'S04°31'E	surface sediment	43	Juilett-Leclerc and Labeyrie, 1987
Antarctic Ocean	S59°53'W43°05'	surface sediment	40 to 43	Schmidt et al., 2001
<i>living marine</i> Norwegian- Greenland sea	N53°32'W20°17' – N74°58'E14°44'	phytoplankton	29 to 35	Schmidt <i>et al.</i> , 2001
Antarctic Ocean	S56°40'W25°20'	phytoplankton	31	Schmidt <i>et al.</i> , 2001
Weddell sea	S54°20'W03°22'	sediment trap	34 to 38	Schmidt et al., 2001
Fossil marine diatoms				
Equatorial Pacific	01°08'N;109°15'6"W	20 ka to present	45 to 46.5	Mikkelsen <i>et al.</i> , 1978
Southern Ocean	51°59'S04°31'E	80 ka to present	40 to 41	Shemesh <i>et al.</i> , 1992
Sponges(spicules)				
Indian Ocean	Kerguelen	surface sediment	40	Leclerc 1974
Mediterranean Sea	Banyuls	surface sediment	39	Leclerc 1974
Atlantic Ocean	37°48'N 25°53'W	surface sediment	39	Leclerc 1974
Atlantic Ocean	36°48'N 33°13'W	surface sediment	40	Leclerc 1974
Bahamas	-	surface sediment	36	Leclerc 1974
English Channel	Roscoff	surface sediment	38	Leclerc 1974
Contemporary lacustrine samples				
Freshwater diatoms	Gulf of California	Top core samples	30	Juilett-Leclerc andLabeyrie, 1987
Lake Pavin	France	contemporary	32	Leclerc 1974
Lake Myvatn	Iceland	contemporary	32	Leclerc 1974
Fossil lacustrine				
Simba Tarn	Mt. Kenya	8.3 to 1.2 ka BP	19 to 33	Barker et al., 2001
Grandfather Lake	SW Alaska	13.5 to 7.5 ka BP	19 to 24	Hu and Shemesh 2003
Linsley Pond	Connecticut	Younger Dryas	25 to 33	Shemesh and Peteet, 1998
Chuna Lake	Kola Peninsula,	last 9000 yrs BP	19 to 27	Jones <i>et al.</i> , 2004
	South Georgia	7 0 to ca. 15 7 ka BP	28 to 32	Rosquist et al 1999
l ake Pinarbasi	Konya Basin, Turkey	58 to ca. 27 ka BP	16 to 32	
	Abisko,Lapland,	50 10 Ca. 27 Ka Dr	1010 32	Leng et al., 2001
Lake 850	Sweden	Holocene	25 to 29	Shemesh et al., 2001
Vuolep Allakasjaure	Abisko,Lapland, Sweden	last 5000 years	25 to 29	Rosqvist <i>et al.</i> , 2004

Table 8.1: Summary table of published $\delta^{18}O_{\text{diatom}}$ values from around the world

-

,

Figure 8.3: Summary of $\delta^{13}C_{org}$ and $\delta^{18}O_{diatom}$ data compared to the diatom salinity recontruction from Shennan *et al.* (1994). Green box = typically range of freshwater $\delta^{18}O_{diatom}$ values, blue box = $\delta^{18}O_{daitom}$ values for marine samples. Ranges from Table 8.1. Key for lithology and diatom Figure 3.6.

Figure 8.4: The $\delta^{\rm 18}O_{\rm diatom}$ results from ULNE compared to the end-member ranges identified from the published literature (see Table 8.1 and Figure 8.2)

Figure 9.1: LNC- profiles of foraminiferal summary (Lloyd, 2000), particle size, TOC, BSiO₂, Key: foraminfera taxa Figure 3.23. Particle size: diamond = clay, square = silt, triangle = sand

Figure 9.2: ULNE- Profiles of C/N ratios, TOC, BSiO₂ compared to the GRIP δ^{18} O and diatom summary diagram (Shennan *et al.*, 1994). Key: as on Figure 3.6. δ^{18} O data from www.ngdc.noaa.gov/paleo/icecore/greenland/summit/grip/isotopes/gripd18o.txt Johnsen *et al.*, 1997).

Environment	Location	Event	Date (ka cal BP)	Reference
Peat bog	Bolton Fell Moss, UK	wet/cold	$\begin{array}{c} 0.62\\ 0.72\\ 1.4\\ 2.2\\ 2.35\\ 2.44\\ 2.58\\ 2.9\\ 3.02\\ 3.2\\ 3.6\\ 3.75\\ 4.02\\ 4.28\\ 4.42\\ 4.62\\ 5.25\\ 5.42\\ 5.7\\ 6.2\\ 7.5\\ 7.8\end{array}$	Barber <i>et al.,</i> 2003
	Mongon Bog, UK	wet/cold	0.45 0.6 0.85 1.6 1.8 2.25 2.35 2.45 2.75 3.2	Barber <i>et al.,</i> 2003
	Abbeyknockmoy, UK	wet/cold	0.7 1.05 1.4 2.22 2.75 3.15 4 4.25	Barber <i>et al.,</i> 2003
	Walton Moss, UK	wet/cold	0.1 1.45 1.75 2.32-2.04 3.17 - 2.86 3.5 4.41-4.0 5.3 7.8	Hughes <i>et al.,</i> 2000
	Talla Moss, UK	wet/cold	0.54	Chambers <i>et al.</i> , 1997

Environment	Location	Event	Date (ka cal BP) 1.7 1.93 2.27 2.6 2.6	Reference
	Kentra Moss, UK		0.325 0.6 1.15 1.4 2.15 2.55 3250	Ellis and Tallis, 2000
	Border mires, UK		0.55 0.85 1.03 1.4 1.74 1.98 2.13 2.54	Mauquoy and Barber 1999a,b
Lake sediment	Lake Holzmaar Germany	climate deterioration	varve yrs BP 900 1700 2700 5500 9600	Lüke <i>et al.,</i> 2003
	Lakes in Netherlands	climate deterioration	2750-2500	van Geel <i>et al.,</i> 1996
Speleothem	Ireland		1.4 2.8 4.2 5.9 8.1	McDermott <i>et al.,</i> 1999
Marine cores	North Atlantic	IRD events	1.4 2.8 4.2 5.9 8.1	Bond <i>et al.,</i> 1997

Table 9.1: A summary of climate events across Europe recorded in peat, lake, speleothem and marine records. Peat data modified from Barber *et al.* (2003).

- - -

Figure 9.3: TOC, BSiO₂, and Age/depth model for the new core from LNC and the GRIP temperature record (after Dahl-Jensen et al., 1998). LIA = Little Ice Age, MWP = Mediveal War Period. Arrows on the BSiO₂ indicate possible climate events (ka cal BP) related to Table 9.1.

Figure 10.1: Environmental synthesis for Upper Loch nan Eala (ULNE) - comparing all geochemical proxies as palaeosalinity indicators against the published diatom summary (Shennan *et al.*, 1994). Proxies that correspond with the diatom palaeosalinity reconstruction are highlighted in bold.

Figure 10.2: Environmental synthesis from Loch nan Corr (LNC) - comparing all geochemical proxies as palaeosalinity indicators. Proxies that correspond with the diatom palaeosalinity reconstruction are highlighted in bold. Open red circles = $\delta^{13}C_{foram}$ solid red circle = $\delta^{18}O_{foram}$