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Abstract 

We review quantum field theories on noncommutative Minkowski spaces 
(NCQFTs), concentrating on the mixing between ultra-violet and infra-red 
degrees of freedom in such theories. 

We use background field perturbation theory at the one-loop level to calculate 
the three and four point functions in supersymmetric NCQFT. We use the 
results of this calculation to show that the infra-red logarithmic divergences 
that arise as a result of the UV /IR mixing can be reproduced by an explicitly 
gauge-invariant low-energy effective action expressed in terms of Wilson lines. 

We present a noncommutative gauge theory that has the ordinary Stan­
dard Model as its low-energy limit. The model is based on the gauge group 
U( 4) x U(3) x U(2) and satisfies all the key constraints that are imposed by 
noncommutativity: the UV /IR mixing effects, restrictions on representations 
and charges of matter fields and the cancellation of noncommutative gauge 
anomalies. At energies well below the noncommutative mass scale our model 
flows to the commutative Standard model plus additional free U (1) degrees 
of freedom which decouple due to the UV /IR mixing. Our model also pre­
dicts the values of the hypercharges of the Standard Model fields. We find 
that in order to accomodate the matter content of the Standard Model it is 
necessary to introduce extra, as yet undetected, matter fields. 



Acknowledgements 

First and foremost I need to thank my supervisor, Valya Khoze. Without his 

help and guidance there would have been no possibility of me ever succesfully 

completing this course. I owe a similar debt to Gabriele Travaglini who had 

seemingly endless patience while I searched for minus signs as we neared the 

completion of the first paper. 

Everyone at the IPPP has been friendly and welcoming but special thanks 

must go to some of the students in my year in both the Physics and the 

Maths parts of the CPT, Pete Williams, David Howe, Anthony Owen, Adam 

Millican-Slater, Jessica Barrett (as well as Ben Schofield, Ian Vernon and Lee 

Garland). There have been many highs and lows during my time in Durham 

and I am grateful to these people for sharing the good times as well as the 

support they offered when things went wrong from time to time. 

My Mum and Dad deserve eternal gratitude for the support and encourage­

ment, even when far away. The solid base they provide is a comfort even at 

a distance. 

Last but not least, I need to thank my girlfriend Emma. Someone you can 

always talk to about anything is a wonderful blessing. I could learn a lot 

from her calm and relaxed out-look on life and she has shared with me some 

very happy memories that I will take from Durham. 

This work was supported by a PPARC studentship and an Ogden Trust 

Teaching Fellowship, both of which are gratefully acknowledged. 

11 



Declaration 

I declare that no material presented in this thesis has previously been sub­

mitted for a degree at this or any other university. 

The research described in this thesis has been carried out in collaboration 

with Dr. Valentin V. Khoze and Dr. Gabriele Travaglini and has been 

published as follows: 

• Effective Actions, Wilson Lines and the IR/UV Mixing in N oncommu­

tative Supersymmetric Quantum Field Theories, 

Jonathan Levell and Gabriele Travaglini, JHEP 0403:021,2004 

(hep-th/ 0308008) 

• Noncommutative Standard Modelling, 

Jonathan Levell and Valentin V. Khoze, JHEP 09 (2004) 019 

(hep-th/0406178) 

@The copyright of this thesis rests with the author. 

iii 



There is a theory that if anyone ever discovers exactly what the 

Universe is for and why it is here it will instantly disappear and be 

replaced by something even more bizaT'Te and inexplicable. There 

is another theory that states that this has already happened, 

Douglas Adams, "The Hitchhiker's Guide to the Galaxy" 
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Chapter 1 

Introduction 

IT'S BECAUSE OF THE UNCERTAINITY PRINCIPLE. 

'What's that?' 

I'M NOT SURE. 

Death in "The Fifth Elephant" by Terry Pratchett 

Over the last fifty years, huge strides have been made in our understanding 

of nature on sub-atomic scales. We have evolved and then tested what has 

become known as the Standard Model of particle physics and we can make 

(and test!) predictions about the interactions of particles so small that they 

appear point-like on a scale of 10-18m. 

The Standard Model is a quantum field theory defined on a commutative 

Minkowski space (a commutative quantum field theory for brevity) which 

means it assumes that, in principle, spatial positions of a particle can be 

measured to an arbitrarily high accuracy (as long as the momentum of the 

particle being measured is not also required1 
). Because the predictions of 

1 Heisenberg's uncertainty priuciple precludes knowing both position and momentum 
of a particle to an infinite accuracy. 

1 



Chapter 1: Introduction 

the Standard Model are in agreement with experiment, this is obviously not 

an unreasonable assumption, at least on the scales we access with modern 

day accelerators. What about scales smaller than we can yet measure? Is 

it reasonable to expect that positions can be measured to infinite precision 

given arbitrarily good equipment? For more than fifty years people have 

been investigating theories in which measurements of position along one axis 

necessarily affect positions with respect to other axes (an uncertainty relation 

for co-ordinates). 

In 1930 Heisenberg wrote a letter [1] discussing the idea of introducing un­

certainty relations for positions to remove the infinities in his calculation 

of the self-energy of the electron. Other physicists including Pauli [2], Op­

penheimer, Snyder [3] and C.N. Yang [4] worked on such models and then 

in 1948 Moyal introduced what is now known as the Moyal star product 

in order to discuss the mathematical structure of quantum mechanics on a 

noncommutative space-time [5]. 

However another idea, renormalisation, solved the problem of the electron 

self-energy that was Heisenberg's original motivation for introducing the idea 

of noncommutativity and research in noncommutative quantum physics died 

out for roughly forty years. 

Meanwhile, physicists have been looking for a grand unified theory; a theory 

that would have a unified description of all the forces of nature. The Standard 

Model, for all its successes has drawbacks, principal amongst these is that 

it neglects gravity. Although gravity is unmeasurably weak on a sub-atomic 

scale, a complete description of nature would include all known forces. So 

far, attempts to include gravity into a renormalisable quantum field theory 

have met with little success and some physicists have turned their attention 

2 



Chapter 1: Introduction 

to string theory which elegantly contains equations for gauge field theories 

and gravity. 

In contrast with commutative field theory, string theory is non-local. In 

particular string theory introduces a new dimensionful quantity; the funda­

mental string length ls = }at. The scale ls can be viewed as the distance 

scale below which the classical properties of space are dramatically modified. 

One famous consequence of this is the UV-finiteness of string theory and the 

quantum gravity that follows from it. Another consequence of this is that 

space can become noncommutative below a certain, string-inspired scale2
. 

Connes (and collaborators) had been using noncommutative ideas in pure 

mathematics during the 1980s [6] and when Connes, Douglas and Schwarz 

showed that noncommutative quantum field theory was a possible low energy 

limit of string theory [7] there was a revival of interest in the subject. Seiberg 

and Witten extended these ideas [8] and since then there have been more than 

a thousand papers on the subject. 

Aside from their connection with string theory there are other reasons to be 

hopeful for the prospects of noncommutative models. As we probe smaller 

and smaller structures in space-time we require a probe with an increasingly 

short wavelength, i.e. a higher-energy. Energy is a source of gravitation and 

at extremely small scales space-time will be deformed by the act of measure-

ment. Above a critical scale the space-time would collapse, forming a black 

hole and it would seem that at such energies, if not lower, a description 

of the universe would have to be non-local (i.e. not assume measurements 

can be made with infinite accuracy). Noncommutative quantum field theo-

2This scale does not have to be of the order of ls, it can be a combination of ls and 
various background fields in string-brane theory [7,8]. In particular the noncommutative 
length scale can be » ls. 

3 



Chapter 1: Introduction 1.1 Thesis Outline 

ries provide an intriguing theoretical laboratory, allowing the study of non­

local interactions in a quantum field theory context. New effects, specific to 

noncommutative theories, such as ultra-violet/infra-red mixing (where the 

physics at high-energy affects the physics at much lower energy) have been 

studied but it not yet known whether the real world is noncommutative. 

Noncommutative models incorporating the Standard Model have been con­

structed previously in the literature and in particular in [9, 10] but none of 

these models have been phenomenologically viable (because they ignore, im­

plicitly or explicitly, the important effects of ultra-violet/infra-red mixing). 

This thesis will present work that led up to the inception of a new model 

(presented in Chapter 5) that meets all the key constraints on building non­

commutative models and has the Standard Model as its low energy limit. 

1.1 Thesis Outline 

The next chapter will introduce noncommutative quantum field theories fo­

cusing on their differences from usual commutative theories. The key differ­

ence is the mixing between the high-energy and low-energy degrees of free­

dom that means that physics in the ultra-violet regime of the theory affects 

the physics in the infra-red (the so-called UV /IR mixing). In some theories 

this leads to a new class of infra-red quadratic divergences which render the 

theory unphysical but in a large class of theories (including supersymmetric 

theories) these divergences cancel leaving only logarithmic divergences. We 

review the classic calculation that showed that the effect of the UV /IR mix­

ing in these theories is to cause the trace U ( 1) part of the high-energy U ( N) 

to decouple and become unobservable, leaving an SU(N) group as found in 

4 



Chapter 1: Introduction 1.1 Thesis Outline 

the Standard Model. 

The subsequent chapter will look at low energy actions of noncommutative 

quantum theories. It will show, with explicit calculations that low energy 

actions can be written down which model the logarithmic divergences previ­

ously discussed. This serves to confirm that the U(N) gauge group has not 

been broken at the level of the action and therefore the breaking is, in fact, 

dynamical. 

Chapter 4 contains a summary of the ordinary Standard Model, outlining 

the forces and the fields that are included. It gives a brief overview of the 

Higgs mechanism and the anomaly cancellation that constrains the values of 

the hyper-charges in the model. The chapter ends with a brief discussion of 

the limitations of the model. 

In Chapter 5, a model is introduced that flows to the Standard Model at 

low energies. We discuss how the correct values of the hyper-charges arise 

naturally in the model and outline the Higgs potential and Yukawa terms 

that are necessary to make the model a phenomenologically viable candidate 

for a theory of nature. 

Chapter 6 then provides some concluding remarks for the thesis, reviewing 

what has been done and discusses possible future work. 

5 



Chapter 2 

An Overview of 

Noncommutative Quantum 

Field Theory 

((Y'know," he said, ''It's very hard to talk quantum in a language 

originally designed to tell other monkeys where the ripe fruit is." 

The Sweeper in "The Night Watch" by Terry Pratchett 

In this chapter we will briefly review some details of field theories on non­

commutative spaces. More detailed reviews exist (see for example [11, 12]) 

and have been used in compiling this summary. However, this chapter will 

provide the necessary and (hopefully) sufficient material for reading the sub­

sequent chapters. 

Although other types of noncommutative field theories have been studied in 

the literature this thesis will be restricted to field theories on space-times 

where the usual space-time co-ordinates xiL are promoted to Hermitian op-

6 



Chapter 2: NCQFT 2.1 The Star Product 

erators which obey: 

(2.1) 

where gp,v is a constant, real anti-symmetric matrix of c-numbers with dimen-

sions of length squared. Note that this explicitly breaks Lorentz invariance. 

2.1 The Star Product 

Field theories with operators for space-time co-ordinates as described are 

equivalent to theories which have normal, commuting numbers as co-ordinates 

but have the ordinary product of fields replaced with the star product, * 

(2.2) 

It can quickly be checked that the above definition of the star-product gives 

(2.1) when <h(x)-----+ xP. and ¢2 (x)-----+ xv. It can be shown [5] that *-product 

is uniquely defined given that we require associativity to all orders in B. 

The key property of the star product is that it differs from the usual product 

of two fields only by the addition of a total derivative: 

f(x) * g(x) = f(x)g(x) + op,a(x) (2.3) 

where 

This means that the Moyal commutator of two fields will be a total derivative 

7 



Chapter 2: NCQFT 2.1 The Star Product 

which will be zero if integrated over all space so therefore: 

j d4 x f(x) * g(x) = j d4x g(x) * f(x) = j d4x f(x)g(x) (2.5) 

Because of this property, terms in the Lagrangian containing only two fields 

(kinetic and mass terms) will be unaffected by using *-products and so prop-

agators will be unaffected. 

Products of more than two fields are affected by the use of the *-product and 

so the Feynman rules for vertices are altered. Although the star product is 

by definition noncommutative, under integration over all space it is possible 

to cyclically permute the fields: 

(2.6) 

so that in noncommutative theories, integration acts like a trace. 

When multiplying Fourier transforms of fields, a very useful formula is: 

(2.7) 

where we have adopted the notation that is used throughout the thesis of 

k11 = ()Jlvkv 

We can write clown the noncommutative counterpart to a commutative La-

grangian by the simple replacement of the usual product with star products. 

e.g. the Euclidean action for noncommutative, four dimensional ¢4 
theory 

is: 

8 



Chapter 2: NCQFT 2.2 Space-Space Noncommutativity 

It would then be possible to go on to derive the Feynman rules in the usual 

fashion which we will not do here as our calculations are performed in the 

background field method which is discussed in section 2.4. 

2.2 Space=Space Noncommutativity 

If e11v takes its most general form then there will be a commutation relation 

between position and time. Time has special role in quantum mechanics and 

it has been shown that having a noncommutative time causes a breakdown 

in unitary and the optical theorem no longer holds, [13-15]. 

In order to avoid this, we restrict our attention to theories with space non­

commutativity as opposed to spacetime noncommutativity, i.e. eoi = 0. In 

this case e11v can be a generic rank 3, anti-symmetric matrix. It is always 

possible to work in a co-ordinate system where: 

0 0 0 0 

0 0 e 0 
eJlV = (2.9) 

0 -e 0 0 

0 0 0 0 

2.3 Gauge Theory 

In a gauge theory, when local gauge transformations are made to the fields 

in the theory the changes are cancelled by changes in a field, the gauge field. 

We start with the Lagrangian for a gauge field A11 = A~ta . 

.C = - 2~2 Tr (F1w * F 11v) 

9 
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Chapter 2: NCQFT 2. 3 Gauge Theory 

We adopt (for this and the subsequent chapter) the convention that the 

generators of our gauge groups ta are anti-Hermitian and normalised such 

that Tr(TaTb) = o;b. Notice the overall factor of 1/ g2 , compared to the 

usual conventions where such a factor does not appear we have made the 

redefinition: gAll ----> Aw Also note that the coupling does not appear in 

either of the following: 

Fllv = 81lAv- 8vAil +[All, Av]*, 

bAll= 81la +[All, ak 

(2.11) 

In the above equation, the t5A~ refers to the change under an infinitesimal 

gauge transformation and under a finite gauge transformation the coupling 

still does not appear: 

(2.12) 

In a commutative gauge theory, a large variety of groups are used for model 

building, e.g. SU(N), SO(N), and the exceptional groups. In a noncommu­

tative setting the only allowed groups are the unitary groups (as discussed 

later). In a commutative theory the unitary symmetry groups used are ei­

ther U(1) or an SU(N) group. Commutative U(1) is a special class of theory 

called Abelian, it has a single generator, t 0
, so the commutator of two gauge 

fields, 

(2.13) 

will vanish. This significantly changes the physics of the theory; it is the com-

10 



Chapter 2: NCQFT 2.3 Gauge Theory 

mutator term in the field-strength tensor which causes the self-interactions of 

gauge bosons in non-Abelian theories. In noncommutative U(1), (2.13) will 

not vanish, although the single generator commutes with itself, the fields, 

like any functions of space, do not commute and so we have a non-abelian 

theory. 

From a naive point of view, SU(N) is not a valid gauge group in noncom-

mutative theories, the commutator in the field strength becomes: 

(2.14) 

And we have: 

(2.15) 

and so a component of the field strength tensor will in general, be along the 

identity. In order to resolve this problem, it is usual to work with U(N) 

groups rather than SU(N), where there is a generator proportional to the 

identity and this is not a problem [16, 17]. 

Some authors [18, 19] have defined noncommutative gauge theories in groups 

other than U (N) but such constructions generally involve perturbatively ex-

paneling in the noncommutativity parameter ww. As we shall see in section 

2.5, doing such an expansion misses some of the crucial physics of noncom-

mutative theories and we restrict ourselves to U(N) groups. 

Because the noncommutative U(1) is non-Abelian, it differs m important 

respects from its commutative counterpart. Critically, as in commutative 

non-abelian theories, the charge of a particle is determined entirely by its 

representation. The only noncommutatively-allowed representations are fun-

damental, anti-fundamental, hi-fundamental and adjoint. Other representa-

11 



Chapter 2: NCQFT 2.3 Gauge Theory 

tions can be formed by attaching semi-infinite lines to the particles [20, 21] 

but this seems unnatural and will be avoided in this thesis. 

If U = eaa(x)ta E U(N) then a fundamental field,¢ transforming as: ¢ ~ U*¢ 

will have charge + 1. An anti-fundamental field transforms as ¢ ~ ¢ * u-1 

and will have charge -1. An adjoint field has a charge of 0 and transforms 

as¢~U*¢*u-1 . 

To see this, consider, for example, a Dirac fermion. The action is: 

(2.16) 

In order to keep this gauge invariant, the covariant derivative needs to be: 

D£und * 1/J(x) = ott'lj;(x) + Att * 1/J(x) 

D~nti * 1/J(x) = Ott'l/J(x)- 'l/J(x) * A11 

D~dj * 1/J(x) = 81/l/J(x) + [Att, 1/J(x)]* 

which forces the representations to have the charges stated [22]. 

(2.17) 

More complex representations are not allowed because, in a noncommutative 

theory [23-25], the gauge rotations does not commute. For example, consider 

a rank-2 tensor representation, tij of U(N) 

t ij ~ ui * uj * ti'j' 
t' J' . (2.18) 

Because of the noncommutativity, this breaks the closure property, ( tu) v = 

tu*v. The only way we can add an extra gauge index to a field already trans-

forming in the fundamental representation is if the new gauge rotations act 

on the right, hence hi-fundamental (and adjoint) representations are allowed. 

12 



Chapter 2: NCQFT 2.4 The Background Field Method 

2.4 The Background Field Method 

In this section we will discuss the background field method which is used 

in all the subsequent calculations in this chapter and the subsequent one. 

The background field method is useful as it allows the high-energy degrees 

of freedom to be integrated out while still preserving gauge invariance. The 

commutative case is reviewed in [26] and our treatment closely follows that 

text and [27] which developed the method in a noncommutative setting. 

Following the treatment of [27] we perform our calculations in Euclidean 

space. 

We split the gauge field into a classical, slowly varying (but still noncommu­

tative) background field B1" and a fluctuating quantum field Np,: 

(2.19) 

We are now going to integrate out the fluctuating field leaving an effective 

action for the background field, schematically: 

exp ( -Seff) = J VNexp ( -SYJt,~J) (2.20) 

The Lagrangian (equation (2.10)) can be rewritten respecting this decom­

position of the gauge field. Writing the covariant derivative with respect to 

the background field on an adjoint field, ¢as: D(B)p, * ¢- 81-l¢ + [B~ta, ¢k 

Then: 

(2.21) 

where 

(2.22) 

13 



Chapter 2: NCQFT 2.4 The Background Field Method 

When the background field is considered fixed then the Langrangian has a 

local gauge symmetry for our fluctuating field NJ.L : 

(2.23) 

Following [27] we introduce as our gauge-fixing term: 

(2.24) 

and corresponding ghost term: 

(2.25) 

Rewriting the gauge, gauge-fixing and ghost terms, keeping terms which 

either do not depend on the fluctuating field or are quadratic in it, we find: 

114 B B 1!4 [ ]) SYM + ScF + Sghost =- - 2 d x'li(F~w * ~uJ- 2 d x'li(N~t * lviJ.lv' Nv * 
2g g 

- 2 j d4 x TI·(c * D2 (B) *c) (2.26) 

where 

(2.27) 

We also add terms for fermions 1 and scalars to the action, 

(2.28) 

Where the covariant derivative for the adjoint and fundamental fields are 

1 Although we use Dirac fermions here we will split them into 'Veyl fermions later 

14 



Chapter 2: N CQFT 2.4 The Background Field Method 

respectively: 

D£und(B) * ¢ = all¢+ Ell* ¢ 

D~dJ (B) * ¢ = all¢+ [Ell,¢]* 

We want to write these terms in a form similar to (2.26) so: 

(I} )2 = lllf Dll * Dv 

1 
= 2 ( {Til> Tv} + [Til> /v])Dil * Dv 

= D2(B)Il- 2iSilv Dll * Dv 

(2.29) 

(2.30) 

where Sll 11 is the generator of the Euclidean Lorentz group for spinors. We 

can then summarise all these terms into an action functional that describes 

a spin-j field in the background of B ll 

where a and b are gauge-indices,m and n are spin-indices and 

with pab _ 2:'.:A FAt~b and the J generators for the various spins are: 

1=0 

J = '!___ [all 11 ]aJ3 
2 

J = i(bllbll - 611 bll) 
p a p a 

for scalars 

for vVeyl fermions 

for vectors 

(2.31) 

(2.32) 

(2.33) 

In order to integrate out the fluctuating fields we start with the partition 

15 



Chapter 2: NCQFT 2.4 The Background Field Method 

function for a microscopic scalar field ¢: 

Z = N J V¢e-S[¢] (2.34) 

where N is a normalisation constant. We the expand the action in terms 

of the slowly-varying background field, C(x) (So ¢(x) = C(x) + 5¢). We 

assume that these fluctuations to not extend out to infinity, so as lxl -----+ oo 

then ¢ -----+ C and 5¢ -----+ 0. We can then write: 

(2.35) 

We can ignore the second term on the right-hand side of (2.35), as it con­

tributes only to tadpole diagrams [26, 27]. The third term will become a 

functional determinant. Higher order terms are ignored as we will work to 

one-loop order. 

Using the above equation we can write: 

(2.36) 

We then introduce a complete, ortho-normal set of basis states for ¢(x): { ¢n} 

such that: 

(2.37) 

Because of the completeness of this set of states we can then write: 

and (2.38) 

n 

16 



Chapter 2: NCQFT 2.4 The Background Field Method 

We can then write the partition function as: 

(2.39) 

because 

n m 

(2.40) 
n 

due to the orthonormality of the set { ¢n}· 

We can then use the result: 

1
00 den l>. c2 1 

-oo V2ife2 n -n = A (2.41) 

Because det L}. = ITn An we can arrive at: 

(2.42) 

Had we used a spinor field rather than a scalar we would have arrived at 

an answer of the same form except that the determinant would have had a 

different power [26]. 

When we take all fields into consideration, including the term that describes 

the background field itself, once we integrate out the fluctuations our action 

becomes, at one-loop: 

1 J 4 B B ~ SeJJ[B] = -
292 

d xTrF!w * FJ.Lv- Lto:JlogdetL}. (2.43) 

17 



Chapter 2: NCQFT 2. 4 The Background Field Method 

Here the sum extends over all the fields in the theory and the possible values 

for Cl'j are listed in table 2.1: 

ghost real scalar Weyl fermion gauge field 

aj 1 _.!_ .! _.!_ 
2 2 2 

d(j) 1 1 2 4 

C(j) 0 0 1 2 
2 

Table 2.1: Constants for the various fields in the theory 

We then define a new function K as the d'Alembertian (from equation (2.32)) 

with the derivative piece removed, i.e. .6. = -82 + K and we can then write: 

log det6 =log det( -82 + K) 

=log det( -82
) +log det(1 + ( -82

)-
1 K) 

=log det( -82
) + tr log(1 + ( -82

)-
1K). (2.44) 

The first term in the above equation corresponds only to vacuum bubbles 

and is ignored. The second term has an expansion in terms of Feynman 

diagrams that will be used throughout the first half of this thesis. 

In the next chapter we will perform calculations using a U ( 1) gauge group 

as well as U(N) so the Feynman rules for both are included here. Because 

of the relative simplicity we start with the rules for U(1). 

We concentrate on fields in the adjoint representation because it is only this 

representation that is involved in the ultra-violet/infra-red mixing effects 

that we are working towards examining [22, 27]. 
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2.4.1 Feynman rules for a U(l) group 

To begin with, we will look at a generic field, ¢, in the adjoint representation, 

using 2.32 and the covariant derivative from equation (2.29) we can write 6 

acting on ¢ as: 

6*¢ = -82
- [(8~-tE~-t), ¢]*- 2[E~-t8~-t, ¢]*- [E11 , [E11, ¢]*]* +2i (~J~-tv[F!, ¢]*) 

(2.45) 

Aside from the first term, each term on the right hand side of the above 

equation will contribute to a vertex in our expansion of the logarithm in our 

action (equation (2.43)). Note that if we were working in a commutative 

U(1) then each commutator in equation (2.45) would vanish and we have 

no vertices, this is expected, in such a theory the adjoint representation is 

completely equivalent to the singlet representation. 

We now proceed to calculate these vertices, starting with the second and 

third terms on the right-hand side of the above equation: 

Using (2.7) we find that the ¢- E- ¢vertex is: 

. 
ki-t lq 
~ . 

p\, 

(2.46) 

Vertex factors containing complex exponentials of momenta are a generic 

feature of noncommutative quantum field theories but in the case of the 

adjoint representation of U ( 1), they are arranged into sin functions and, as 

expected, in the commutative limit, e~-tv -+ 0 then p -+ 0 and the vertex 
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disappears. 

The other vertices follow in a similar fashion. The fourth term on the right­

hand side of equation (2.45) gives: 

.P2 
klp. • 

~ 
: k2.., 

P1 • . . . 
So far we have derived the standard vertices for an adjoint scalar coupled 

to noncommutative U(l) theory but there are still two more vertices coming 

from the last term in (2.45). These extra vertices are not present just because 

it is a nonconunutative theory, instead they are due to the background field 

method ( c.f. [26]). The first vertex comes from the part of the field strength 

tensor (equation ( 2. 22)) proportional to a single power of the background 

field: 

The final vertex comes from the commutator part of the field strength tensor. 

2.4.2 The Feynman Rules for U(N) 

Because noncommutative U(l) is nonabelian, the structure of the vertices is 

very similar. The main difference is that now, for two adjoint fields, (h and 
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(2.4 7) 

where jABC (dABC) is completely antisymmetric (symmetric) in its indices. 

If we let A= (0, a) where a= l...N2 -1label the SU(N) generators then rbc, 

dabc are the same as in SU(N), and jDbc = 0, d08c = y2JFi 88 c, d00a = 0, 

dooo = y21Fi. 

We also have t0 = ( )2JV) ].N and: 

(2.48) 

Using this, we can calculate the Feynman rules as before [28] and they are 

shown in figure 2.1 

We should note that the 4-point J-vertex (the fourth vertex in 2.1) will play 

no part in our calculation of the two point function, where k1 +k2 = P1 +P2 = 

0 

2.5 UV /IR Mixing 

Now that the background field method formalism has been introduced we 

turn our attention to the focal point for this work; the ultra-violet/infra-red 

mixing [29, 30]. 

As we have seen, the vertices in the theory at hand contain factors of the 

form: eikp where p is a loop momentum and k is an external momentum. 

When we calculate the divergences (for example in the next section we will 

look at the polarisation tensor for gauge bosons), we find two types of in-
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!p A 
k B: 

2
' 11', • 

~ 
:k c i 2v 1 

Pl,Df . . . 

ip2,A 
k1~'' B : 
,...,~ ..... 

• k2v,C 
PI,D! . . . 

2.5 UV /IR Mixing 

- -
'jJW( dBCE · (k1k2) + jBCE (k1k2)) -z - sm -- · cos --

2 2 

(dEDA · (pifj2) + jED A (pifj2)) · sm -- cos --
2 2 

Figure 2.1: Feynman rules for U(N). The wavy lines represent the background 
fields, the dotted lines the high-virtuality fields. 

tegral contribute. Firstly in some terms these vertex factors cancel, leaving 

no dependence on the noncommutativity factor ()J.w. This first type of in-

tegrals are referred to as planar because in the double-line formulation of 

the Feynman rules (not used in this thesis) they arise from planar diagrams. 

These planar integrals are identical to their commutative counter-parts and 

introduce ultra-violet divergences that have to be renormalised in the same 

manner as in a commutative theory. In the second type of integral, referred 

to as non-planar, these vertex factors do not cancel. At high-energies, rapid 

oscillations of these phase factors will cause the integral to converge mean-

ing it no longer causes an ultra-violet divergence but at low energies, where 

k ---> 0 then the phase-factor becomes irrelevant and the divergence reappears 
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Chapter 2: NCQFT 2.5 one-loop calculation 

but now as an infra-red divergence. 

The new infrared divergences have a profound effect on the theory, for large 

classes of theories, new quadratic divergences will violently change the struc-

ture of the theory, altering the dispersion relation for the photon dramatically 

and ensuring the theory is unphysical. In certain types of theory (in particu­

lar supersymmetric theories2
) these quadratic divergences cancel leaving only 

logarithmic divergences. These logarithmic divergences affect the running of 

the couplings and can cause a dynamical breaking of gauge symmetry by 

causing U(l) factors of the gauge group to decouple [27, 28]. 

We now go on to demonstrate this with explicit calculation; the one-loop 

correction to the polarisation tensor of the gauge boson in a U(N) group. 

2.5.1 One-loop calculation of the effective action 

We define the Wilsonian polarization tensor, II~! (k) so that the term in our 

effective action that is quadratic in the background field is: 

(2.49) 

This tensor will have the structure: 

(2.50) 

In a commutative theory, the second term would not exist and the first term 

contains the only suitable transverse tensor. In a noncommutative theory 

the second term appears and leads to a power-like singularity in the infrared. 

2indeed only fields in the adjoint representation need to have partners 
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Chapter 2: NCQFT 2.5 one-loop calculation 

As we shall see in a large class of theories, including supersymmetric theories 

this second term will be absent. 

Once we have performed this calculation we will be able to determine the 

running of the various couplings in theory: 

2 1 = ~AB + 4II~B(k) [ l
AB 

9ejf(k) 9micro 

2o5o2 Feynman diagrams 

0 

p 

0 

• 0 ..... 

... ~. 
0 

~0 
00 .......... 

p 

(b) 

Figure 2.2: 1-loop corrections to the polarisation tensor 

(2.51) 

The only Feynman diagrams that contribute are shown in figure 2.2. Using 

the U(N) Feynman rules from the previous section, the first diagram (2.2a) 
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gives: 

-~ J d4
k BA(k)BB(-k) J ddp Tr -(2p + k)1_t{2p + k)vfvfA

8
(k,p) 

2 (27r)4 J.L v (27r)d (p2+m2)[(p+k)2+m2] 
(2.52) 

where we define 

MAB(k,p) = ( -dALMsink: + JALMcos~) (dBMLsink: + JBMLcoskf) 

(2.53) 

Notice that the integral over the loop momentum in equation (2.52) is done 

over d-dimensional space rather than 4 dimensions as might naively be ex-

pected. The integrals involved will turn out to diverge, by performing the 

integral in d dimensions and then setting d = 4 - E where E is infinitesimally 

small will isolate the infinities into ~ poles which we can remove with renor­

malisation. This method of regulating the integrals preserves both gauge and 

Lorentz symmetry. 

The second diagram (2.2b) gives: 

(2.54) 

and the final diagram (2.2c) gives: 

(2.55) 

The traces in equations (2.52), (2.54) and (2.55) are over spin indices and we 

can evaluate them given that (using the constants in table 2.1): 

TrJlj = d(j) (2.56) 
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and 

(2.57) 

We can then extract the polarisation tensor: 

We can also use the equations [31]: 

(2.59) 

where CA =boA and dA = 2- CA. This allows equation (2.53) to be rewritten 

as: 

(2.60) 

Loop integrals involving the first term in equation (2.60) give rise to the 

planar contribution and are analogous to their commutative counterparts. 

Integrals involving the second term in equation (2.60) give the non-planar 

contribution and cause the UV /IR mixing. Equation (2.60) already shows 

that it is exclusively degrees of freedom associated with the generator t 0 ex :Jl 

that will exhibit the UV /IR mixing. 

In order to proceed further we need to evaluate some integrals and we pause 

our discussion while the techniques to do this are introduced. 
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2.5.3 Loop Integrals 

The first integral we require is: 

(2.61) 

In order to simplify this we use Schwinger parameteri to combine the prop­

agators. This is the observation that for any propagator, A: 

1 1oo d -xA - = xe 
A o 

(2.62) 

So we can rewrite equation (2.61) as: 

(2.63) 

where in the second line a= a 1 + a 2 , l = p + C:: k. We then change variables 

of integration again, integrating over a d-dimensional sphere, nd: 

where (2.64) 

We proceed by using the formula 

(2.65) 

to perform the integration over momenta. We also introduce a new variable 

A, by adding b (A - a) to our equation and then integrating A from 0 to 

3It would have been possible to do the integral in other ways, for example using Feyn­
man parameters but when we turn to more complicated integrals with factors like eikp in 
the numerator the method described here will prove to be simpler 
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infinity. We arrive at: 

1 100 11 1 d 2 2 --<~ d).. d~1d6>.. -2exp( ->..[m + 66P ])6(1- 6- 6) 
( 47r) 2 0 0 

(2.66) 

where ~i = ~; we then use 

(2.67) 

which gives: 

1 11 
( d) d 2 --d dxr 2 - - 6 2-

(47r)2 0 2 
(2.68) 

where 6 = m 2 +x(1-x)p2 . At this point we make use of the fact that we have 

been using integrals over d-dimensions rather than doing the calculations 

direct in d = 4. We write d as 4- E where E is infinitesimally small. Some care 

has to be taken because we will sometimes be working with supersymmetric 

theories, we do not want to break supersymmetry with our regularisation 

and this is an issue because the supersymmetric multiplets have different 

contents in different dimensions. However such problems can be avoided by 

employing the DR scheme [32].We can then Taylor expand in E: 

(2.69) 

and 

(2.70) 

where /E is the Euler-Mascheroni constant and we finally arrive at, 
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Chapter 2: NCQFT 2.5 one-loop calculation 

This integral then requires renormalisation to remove the l pole. It has been 
E 

shown that noncommutative gauge theories ,~.rith a U(N) gauge group can 

be renormalised in an equivalent way to commutative theories [31]. The pole 

can be removed by reparameterising the couplings and fields involved. For 

instance we rewrite the background field that appeared in the Lagrangian 

and we have been working with as: 

1 

B J-L _ 2BP· 
- 2 3 phys (2. 72) 

Where B~hys will be the physical background field and z3 is an infinite con­

stant. The reparameterisation will add counter-terms which can be used to 

cancel the infinity in this integral. However it does introduce an arbitrary 

scale called the renormalisation scale, JL. So our finite answer is eventually: 

--- dxln --1 11 

( ~ ) 
(47r)2 0 41f{L2 

(2. 73) 

The other integrals we require can now be calculated using a similar method. 

The non-planar equivalent of this first integral, has a factor of eikfi in the 

numerator. Because we used Schwinger parameters the extra exponential 

does not pose a problem and instead of equation (2.66) we have instead: 

and we can use the integral: 

(2.75) 
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where Kn(x) are the modified Bessel functions of the second kind. We find: 

(2. 76) 

Comparing equations (2.76) and (2.73) already demonstrates the crux of 

the UV /IR mixing. The oscillations of the exponential in the numera-

tor means that the integral requires no regularisation or renormalisation to 

make it finite. On the other hand the small argument expansion of K 0 (z): 

K 0(z) = -ln(~) .... means that, in the low-energy limit where p --> 0 we 

have a logarithmic divergence in the infra-red that would not occur in the 

equivalent commutative theory. 

The other integrals required have the momentum in the numerator, using 

the same techniques discussed with the extra formulae (remembering that 

we are using Euclidean space): 

(2. 77) 
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Chapter 2: NCQFT 2.5 The Polarisation Tensor 

2.5.4 The Polarisation Tensor 

We can now use the results of our integration, developed in the last section 

and insert them into equation (2.58) to write down the polarisation tensor: 

where L}. = m 2 + x(l- x)k2 Using the constants shown in table (2.1) we can 

rewrite this as: 

Comparing (2.79) with (2.50), we have just removed the gauge structure from 

IIt 8 (k) and IIt8 (k) to give scalar functions: 

and 

II 1b(k) = N )211 

dx ((4- (1- 2x?)I<o( ~lkl)- (1- (1- 2x) 2
) 2:: I<o( v'Kflkl) 

2(47r 0 f 

-~(1- 2x)2 ~ Ko( ~lki)) (2.81) 
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and 

II,"(k) = 8(:)' [ dx [ L'l"K,( ~lkl)- 21 L'lfK,( fo/lkl) 

+~ ;;= L'l,K,( ~lkl)l (2.82) 

The indices v, f and s are used to distinguish between contributions from 

the gauge bosons (and ghosts), fermions and scalars respectively. The mass 

appearing in .6-v will be zero but the masses appearing in the sums over 

fermions and scalars are general, for example there is no requirement that 

all the fermions have the same mass. The sum for the scalars is in terms of 

real scalars, for each complex scalar in the theory there will be two terms in 

the sum. 

2.5.5 The Running of the Coupling 

Using the expression that we have arrived at for the polarisation tensor, we 

can calculate the running of the coupling using equation (2.51) which we 

reproduce below: 

[ l
AB AB 

1 <) AB 

2 
= - 2- + 4II1 (k) 

9ejf(k) 9rnicro 
(2.83) 

In a commutative theory the polarisation tensor would contain only II1a(k) 

(equation (2.80)). and indeed in noncommutative theories, at high energy 

scales (compared to the energy scale of noncommutativity 1\1 NC "' j"i) 
the coupling runs in an equivalent fashion to a commutative theory. At 

low energies, rrlb(k) (equation (2.81)) dominates, however it only affects the 
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l 
k2 g 

U(N) 

SU(N) 

m ln(k)-

Figure 2.3: The running of the couplings in a softly-broken N=l theory with one 
chiral multiplet 

U(l) degrees of freedom (see equation (2.79)). IT 1b(k) encapsulates the new 

logarithmic divergences (K0 (z) = -ln(~) .... ) and it causes the affected gauge 

bosons to decouple [27, 28]. 

Figure (2.3) shows how the coupling varies in a softly-broken N = 1 theory 

with one chiral multiplet, where m denotes a typical mass for the adjoint 

matter. As can be seen from the graph, in the infrared regime of the theory, 

the gauge bosons associated with the U(l) have decoupled. This a central 

point of this calculation and the rest of this thesis relies upon it; logarithmic 

divergences caused by UV /IR mixing cause a dynamical breaking of the U ( N) 

gauge invariance, down to SU(N). It will aid us in model building, allowing 

the Standard Model gauge group to arise naturally from our noncommutative 
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models. This is the extremely useful effect of the logarithmic divergences 

but we continue our investigation, examining the quadratic divergences that 

might spoil this elegant picture. 

Note that although the running of the SU(N) coupling is not shown inter­

cepting the x-axis in the infra-red regime of figure 2.3, in a generic theory 

it will do. Having the coupling go to infinity like this does not signal that 

the theory is unphysical, it indicates a region of strong coupling where our 

perturbative calculations fail. In some theories, for instance the electroweak 

theory in the Standard Model, the gauge bosons acquire a mass (via the Higgs 

mechanism described in chapter 4) at an energy above the strong coupling 

regime and the coupling freezes out at this scale. 

2.5.6 Quadratic Divergences 

The quadratic divergences are encapsulated in II2a(k) (equation (2.82)) and 

in order to study their effects we use our expression for the vacuum polar­

isation tensor which corresponds to the sum of all lPI insertions into the 

propagator to calculate the full propagator for the gauge bosons which will 

be the infinite sum over all possible numbers of insertions of the vacuum 

polarisation function. This section has not been written anywhere in the 

literature for the U(N) case, however it is a trivial extension of the case of 

U(l) theories, described in [33,34]. 
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If we introduce the following projectors: 

pAB = 5AB(6 _ PttPv) 
{LV pv p2 

QAB = 5A05B0(6 _ P~tPv) 
pv {LV p2 

RAE = 5Ao5so(P~tPv) 
{LV p2 

(2.84) 

then with a slight abuse of matrix notation we can write: 

Pn = pAEpBC pGHpHI =pAl= p 
o:{3 {3"( . . . AIL {LV O:V 

(2.85) 

and similarly, 

PR = RP = QR = RQ = R and PQ = QP = Q . 

(2.86) 

Using these projectors we can write (2.79) as: 

and thus: 

IT(k)n = (k2111a(k))n P + (k2 t[(I1Ia(k) + ITlb(k)t- IT1b(k)n]Q 

+ [(k2I11a(k) + k2IT1b(k) + 112a(k)t- (k2111a(k) + k2111b(k)t] R · (2.88) 
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The full propagator is: 

. 2 [ 2 2 2 lAB G~,;'(k} ~ '~~ 1+ ~;"n(k} + ( -:,o) II(k)
2 

... "" (2.89) 

So, summing the series we find: 

The pole conditions that arise from this propagator are dependent on whether 

we are considering the U ( 1) degrees of freedom (which correspond to G~~). 

For such gauge bosons the pole conditions are: 

k' Cz + rr,"(k} + rr,,(k}) ~ o and k' Cz + rr,o(k} + rrl,(k}) +ll,"(k} ~ o 

(2.91) 

which are (allowing for the change in notation) the same conditions that were 

found for the gauge boson in a U(1) theory [33,34]. 

However the other N 2 - 1 degrees of freedom have a simpler condition: 

(2.92) 

We see from equation (2.92) that the gauge bosons which interact at low 

energies are massless however the gauge boson associated with U ( 1) has 

acquired a mass. In order to determine whether the mass is tachyonic, we 

use the small argument expansion, K 2 (z) = 2z-2
- ~ + .... and we can write 
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II2a(k) as: 

The dispersion relations for physical particles are obtained by rotating into 

Minkowski space. We are considering only space-space noncommutativity so 

that then we can write: 

0 0 0 0 

0 0 () 0 
()Jlll = (2.94) 

0 -{} 0 0 

0 0 0 0 

and rotation into Minkowski space then requires: 

and (2.95) 

In theories with supersymmetry or softly broken supersymmetry then -1 + 

n1 - ~ns = 0 which eliminates the infra-red quadratic divergences and in 

order to avoid tachyons we find that the masses must satisfy the following 

condition4
: 

(2.96) 

As long as equation (2.96) is satisfied then we find, as already outlined that 

our microscopic, noncommutative U (N) looks, in the infrared, like a com-

mutative SU(N) theory, the gauge boson degrees of freedom associated with 

4 When we consider broken gauge groups the tree level masses of the gauge bosons will 
contribute with the same sign as the masses of the scalars 
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the U(1) have become massive but they have clecoupled from the rest of the 

theory and are unobservable. 

2.5. 7 More General Theories 

Our calculation has been performed in a theory with only adjoint matter, 

in order to consider more realistic theories, it is necessary to generalise the 

results and we present a summary of the consequences here. 

First, one can include Nf flavours of matter fields transforming in the fun­

damental representation5 of the gauge group, and, second, the gauge group 

U ( N) can be spontaneously broken to U ( n) at a scale m, so that some of the 

gauge bosons and matter fields become massive. 

In the UV region, the theory is a noncommutative U(N) and there is a single 

coupling constant, 

(41f)2 bU(N)Nj 1 k2 
--+ o og , ' 

g~(N)(k) 
(2.97) 

Here b~(Nl N 1 is the 1-loop coefficient of the beta function of the microscopic 

U(N) theory with Nf fundamental flavours. 6 In the IR region, two things 

happen: the trace U ( 1) factor decouples below the noncommutative mass, 

and also, all the massive degrees of freedom freeze at momentum scales below 

5 We recall that the only representations allowed in a noncommutative gauge theory are 
adjoint, (anti- )fundamental and hi-fundamental ones. As we have already included adjoint 
representations, and since bi- and anti-fundamental representations are essentially the 
same as fundamental ones, to cover the general case it is sufficient to add just fundamental 
representations. 

6 b~<Nl NJ takes the same value as in the corresponding commutative SU(N) theory. 

38 



Chapter 2: NCQFT 

their masses, 

where 

(47r)2 

9~u(n)(k) 
( 47r )2 

g~(l)(k) 

2.5 Quadratic Divergences 

(2.98) 

(2.99) 

as k2 ---> 0 .(2.100) 

The UV /IR mixing affects only the U(l) coupling and, hence, the first equa-

tion (2.99) takes the standard commutative and recognisable form. However, 

the U ( 1) coupling is affected by the UV /IR mixing and leads to the slope in 

theIR given by -2b~CNJ NJ=o +b~CNJ NJ as follows from (2.100). This expression 

for the slope follows the fact that the B-dependent phase factors cancel in 

Feynman diagrams involving fundamental fields propagating in the loop [22] 

and do not cancel for adjoint fields in the loop. 

Running couplings 92~k) of noncommutative U ( 1) ( supersymmetric) theories 

were first derived and plotted over the full range of the momentum scale k 

in [27]. Our expressions in (2.97),(2.100) are in agreement with those results 

in the asymptotic regions k2 ---> oo and k2 ---> 0. It should be noted that 

expressions such as (2.100) are valid in the extreme infrared, at finite values 

of k2 comparable to various mass scales in the theory, the coupling changes 

slope. 

Adding fundamental matter to the model will not affect the conclusions con­

cerning non-logarithmic UV /IR mixing effects which are controlled by matter 

in the adjoint representation. These effects are rendered harmless as long as 
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two conditions are met. Firstly, for each fermion in the adjoint represen-

tation, there is a gauge field or complex scalar that is also in the adjoint 

representation (and vice-versa). This condition removes quadratic IR diver­

gences from the U ( 1) polarisation tensor. Secondly the sum of the mass 

squared for the adjoint fermions must be less than or equal to the sum of the 

mass squared for the complex scalars and the gauge bosons. If this condition 

is satisfied, there are no tachyons in the decoupled U(1) gauge sector. 

2.5.8 Origins of UV /IR mixing 

Following [29] we consider whether there is an intuitive reason that the intro­

duction of noncommutativity should cause low-energy physics to be affected 

by high energy degrees of freedom. In order to make the calculations simpler 

we will temporarily abandon gauge theories and turn instead to the simpler 

case of q} theory (and discuss the implication for gauge theories afterwards). 

Our Euclidean action is then: 

(2.101) 

The root cause of the mixing is that the star product causes high energy, 

localised wave packets to interact with each other even when well separated, 

i.e. they have long distance effects. 

The star product (2.2) of two functions of position, z can be rewritten as [35]: 

(2.102) 
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where 

1 2'( )1'(}-1( )" K(zl, z2, z) = e t z-z1 ''" z-z2 
clet (e) 

(2.103) 

I K ( z1 , z2 , z) I does not depend on z1 , z2 or z, if oscillations of the phase of 

K did not clamp the integral the *-product would be infinitely non-local. In 

order to investigate further, we use two dimensions, zt.L = (x, y) so [x, y] = ie. 

If we assume that cPi is slowly varying over a region of size ~x; x ~y; then 

the integral over x 1 will be proportional to: 

(2.104) 

and will therefore be suppressed if 

(2.105) 

1.e. the x 1 integral will be non-zero at points at a distance, by2 less than or 

equal to l!.e away from the non-zero region of ¢2 in the y-direction. For all 
"'1 

the integrals to be non-zero we therefore require that: 

(2.106) 

Figure 2.4 shows two localised fields, ¢1 and ¢2 which do not overlap, the 

star product of these fields is non-zero in a region between the two fields. 

In the case where ¢ 1 = ¢2 = ¢ and ¢ has widths ~x' ~Y the widths Ox and 

by of ¢ * ¢ are: 

bx ~ max ( ~x, ~Y) and by ~ max ( ~Y, ~x) (2.107) 
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Figure 2.4: The hatched region shows where <P1 * <P2 is non-zero if the fields are 
non-zero in the shaded regions 

So that if ¢ is nonzero in a region much smaller than the noncommutative 

scale, v'e then ¢ * ¢ will be nonzero over a much bigger region, larger than 

the noncommutative scale. 

The classical equation of motion for ¢3 theory is: 

(2 .108) 

and the perturbative solution is: 

¢(x) = ¢o(x)- ~ J ddyG(x- y)(¢o * ¢o)(y) + .... (2.109) 

where ¢0 (x) is the solution for the free field and G(x) is a Green's function. 

So that when a wave packet which was confined to a very small region of size 

6 <t: f) interacts it is spread over a region of size ~ » fJ. 

If we now consider particles running in virtual loops, a particle of energy 
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E » Je (size ~ « v'e) spreads to a size e E (energy eb). Therefore if we 

add a UV cut-off, removing particles with E > A then we will have implicitly 

created an infra-red cut-off AIR = 8~. 

This is a useful intuitive picture but the generalisations to gauge theory is not 

straight-forward. Firstly the regions that our fields are non-zero in will alter 

under gauge transformation although this can be circumvented by choosing a 

particular gauge and performing the calculation in that. It is also impossible 

to construct local operators as we will see in the next section (although 

creating operators spread over a small region will be possible). Also our 

theory may become strongly coupled in the infra-red and therefore we would 

need to consider different degrees of freedom. Despite these complications 

the "thumb-nail" sketch we have drawn in this section provides an intuitive 

way of viewing UV /IR mixing, the core idea of which translates into gauge 

theories. 

2.6 Local Operators and Wilson lines 

As might be expected in a noncommutative theory, writing down local opera­

tors is not possible. In commutative theories, local gauge invariant operators 

can be constructed by taking the trace of a gauge covariant object, but in 

a noncommutative theory, the cyclic property of a trace is not applicable 

unless the fields are integrated over all space.For example, 

(2.110) 

would no longer be gauge invariant without the space time integral. 
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In order to circumvent this problem it is possible to use Wilson lines [37, 

39]. Wilson lines are comparators, they can be used to compare fields at 

different points by cancelling out the difference in gauge rotations between 

the two points. In a commutative theory, only closed Wilson loops are gauge-

invariant. In a noncommutative theory the picture is somewhat different. 

The formula for a straight, open Wilson line that runs from x to x +pis: 

(2.111) 

where the P* denotes path-ordering so that 

Under a gauge transformation, the Wilson line transforms as: 

(2.113) 

If we Fourier transform this operator: 

lV(p) = J d4xTrW(p) * eipx (2.114) 

then under a gauge transformation we have: 

W(p) -----> J d4x U(x) * lV(x) * U(x + p)t * eipx (2.115) 

We can now use the rather surprising result that in noncommutative theories, 
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eipx is a translation operator, i.e.: 

eipx * J(x) = J(x + j5) * eipx (2.116) 

Although equation (2.116) might seems surprising, we can prove it for an 

arbitrary plane wave, eikx directly from (2. 7). This result means that in non­

commutative quantum field theories, spacetime translations are a subgroup 

of the gauge transformation and it has also been shown that rotations are a 

subgroup of gauge transformations as well [38]. 

Using (2.116) gives: 

1¥(k) ---+ j d4x U(x) * W(x) * eipx * U(x + j5- P)t = 1¥(k) (2.117) 

and we see that a straight, open Wilson line of length j5 is, in fact, a gauge 

invariant object. If we had not constrained the shape of the Wilson lines we 

would have found that any shaped Wilson line with its end points separated 

by a distance j5 would have be gauge invariant. In the commutative limit, 

e ---+ 0 the separations between the end-points goes to zero and we would have 

found that there are no gauge invariant Wilson lines except Wilson loops. 

We can now build "semi-local" operators by attaching them to one end of a 

straight Wilson line of length j5. It was pointed out in [39] that the set of all 

local operators attached to all shapes of Wilson lines is an over-complete set 

and that, for straight Wilson lines we get the same operator irrespective of 

where on the line the operator is attached. 
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2.7 Summary of the chapter 

We have now completed our brief overview of noncommutative field theories 

and have seen that they display many novel properties which we summarise 

here for easy reference. 

• Firstly, in noncommutative quantum field theories, we can not work 

with SU(N) groups, in order for the group to close we need to add an 

extra generator and have instead, U(N). 

• We have also seen that there are restrictions on the allowed repre­

sentations and charges of the fields. The only allowed representations 

are fundamental, anti-fundamental, hi-fundamental and adjoint. Fields 

transforming under a noncommutative U(l) group cannot have arbi­

trary charges. Only 0 and ±1 are allowed. 

• Although the propagators in a noncommutative theory are the same 

as their commutative counter parts, the vertices acquire extra factors 

of the form eikfi where k is an external momenta and p is a loop mo­

mentum. These extra factors cause a mixing between the physics at 

high-energies and the physics at low energies (UV /IR) that is unique 

to noncommutative theories. 

• The UV /IR mixing effects can cause a new class of quadratic diver­

gences in the infra-red, these can be avoided if there are the same 

number of fermionic and bosonic degrees of freedom in the adjoint 

representation. For example, supersymmetric noncommutative gauge 

theories do not have these divergences. Tachyonic masses can also arise 
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but these can be avoided if the masses of fields in the adjoint represen­

tation satisfy an inequality (specified in equation (2.96)) 

0 The UV /IR mixing also causes logarithmic divergences to arise in the 

infra-red of noncommutative theories. These divergences arise even in 

theories where the quadratic divergences cancel. If the gauge group of 

a noncommutative theory is U ( 1), these new divergences will cause the 

theory to decouple in the infra-red. If the gauge group is U(N) then at 

low energies the group will be broken to SU(N) and a decoupled U(l). 

• "Whilst local operators can not be written down, we have shown that op­

erators do not have to extend over all space, if open Wilson lines (with 

a length depending on the momentum of the operator) are attached, 

then "semi-local" operators can be constructed. 

In the next chapter these open Wilson lines will be employed, as we turn our 

attention to effective actions and write clown an explicitly gauge invariant 

action which models the logarithmic divergences that we have seen arise as 

a result of the UV /IR mixing. 
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Effective Actions 

He didn't meddle with the fabric of time and space, and they kept 

out of his greenhouses. The way (Modo} saw it, it was a partner­

ship. 

"The Hog Father" by Terry Pratchett 

3.1 Introduction 

In the previous chapter we discussed the ultra-violet/infra-red mixing and 

saw that in U(N) theories where the induced quadratic divergences were not 

present the effect of the logarithmic divergences was to alter the running of 

the coupling of the trace U(l) so that it decouples in the infra-red (see figure 

2.3). 

In the infra-red, the leading order terms in the derivative expansion of the 

Wilsonian effective action are: 

48 



Chapter 3: Effective Actions 3.1 Introduction 

In this chapter we will show that low energy actions can be constructed that 

contains these terms dressed with higher-order terms so that the full U(N) 

gauge invariance is present. 

Given that the couplings for the SU(N) and the U(l) pieces run so differently, 

allowing the gauge bosons to be easily distinguished in experiment, it might 

be considered surprising that a fully U(N) gauge invariant noncommutative 

action can be written down as we will show. Surprising as it is, such an 

action can be written down. Instead of the symmetry being broken at the 

level of the action there is a dynamical breaking of symmetry. Prior to the 

calculation outlined in this chapter there was already a growing body of 

evidence that this is the case. 

In the special case of N = 4 supersymmetry it was shown [40] (see also [41-

43]) that one-loop effective actions were gauge invariant. The large number 

of symmetries in the theory make the calculations more tractable but the 

essential feature, UV /IR mixing is still present. 

The authors of refs. [44, 45] showed that the quadratic divergences that arise 

in noncommutative quantum theories with a generic particle content could 

be reproduced in an effective action using terms that contained open Wilson 

lines. In particular, section (3.1) of [45] introduced an interesting and simple 

method of evaluating the quadratically divergent contributions of generic n­

point functions in a U(l) non-supersymmetric theory but it seems difficult 

to extend such methods to the logarithmic divergences. 

It is the logarithmic divergences that will interest us; any phenomenologically 

acceptable model needs to be arranged such that the quadratic divergences 

are cancelled. It was conjectured in [45] that the logarithmic divergences can 
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be reproduced by the following U(N) gauge invariant term: 

(3.2) 

where the gauge-invariant operator 0 1w is defined by 

and P* stands for integration along the open Wilson line together with path 

ordering with respect to the star-product [46]. The matching of (3.2) with 

the analytic results [27] for the U(l) effective coupling constant 1/ gr(k) of 

(3.5) determines the function T(p) and the numerical constant C appearing 

in (3.2). One easily finds that 

2 t 
T(p) = (47r)2 lo dx Ko( vx(l- x) IPIIfil) ' (3.4) 

where K 0 is a Bessel function, with K 0 (z) ---> -log(z/2) as z---> 0. Moreover, 

C = 2a0 / N, where a 0 is defined by the asymptotic behaviour of the running 

of the U(l): 

(3.5) 

where the plus (minus) sign corresponds to k2 ---> oo (k2 ---> 0). 

In this chapter we would like confirm the interesting conjecture of [45] with an 

explicit field theory calculation. We restrict our attention to supersymmetric 

theories to simplify the calculations. This simplification will not prevent our 

conclusions from applying to any physical noncommutative quantum field 

theory. As we saw in the second chapter, for each fermionic degree of freedom 

relevant to UV /IR mixing (i.e. in the adjoint representation) there must be 
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an equivalent bosonic degree of freedom or the theory becomes unphysical. 

To start probing the presence of the Wilson line operator in (3.3) we need to 

calculate an n-point function of gauge fields with n ~ 3; for this reason, we 

will concentrate on the cases of three- and four-point functions of background 

fields. Our formalism is, however, general, and allows in principle to calculate 

generic n-point correlators. We will focus our attention on a generic N = 1 

supersymmetric field theory with Nf adjoint chiral multiplets and make use 

of the background field method. The case Nf = 0 corresponds to pure N = 1 

super Yang-Mills, whereas for Nf = 1, 3 we have the N = 2 and N = 4 

theories, respectively. The results of our computations confirm the presence 

of the term (3.2) in the effective action. However, our results also show that 

we need to include another term S~~ in the effective action, which can be 

written as 

(3.6) 

where 

and W'(p) denotes the open Wilson line operator W(p) with the O(A0
) term 

subtracted, where, in our conventions 

(3.8) 

So that W' (p) is: 
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S~~ is manifestly gauge invariant, and again contains open Wilson lines. 

The appearance of the term S~~ in (3.6) is not entirely unexpected. Indeed, 

similar extra contributions were predicted for the quadratic divergence in [47], 

where a Wilsonian calculation of the effective action was performed using the 

matrix model approach to noncommutative gauge theories. 

Similar results were also obtained in [48] using the bosonic world-line ap­

proach. It would be interesting to apply the bosonic worldline approach, used 

in [48] for non-supersymmetric theories, to the case of supersymmetric theo-

ries considered here, and see if that formalism would lead to more tractable 

expressions than those obtained using conventional background perturbation 

theory. 

In the first version of the paper [49] that this chapter is based upon, the 

four-point calculation had not yet been performed and we proposed to use 

the following expression, instead of (3.6): 

where 

Q(p, q) = Tr J d4x L* (Filv(x)FI-Lv(x)efoldafWAI,(x+pa) * eipx) sin(~:/2) 

(3.11) 

The interaction term in (3.10), though manifestly gauge invariant, is not 

satisfactory as it stands, since f)J.LV appears in (3.10) not only inside the Wilson 

lines but also explicitly. This, in turn, would render its interpretation from 

the D-brane perspective very difficult. It is easy to check that, once we 

expand the Wilson line in (3.6) up to O(A), this term contributes to the 

52 



Chapter 3: Effective Actions 3.2 Three-Point Function 

three-point function in the same way as the term in (3.10) does. Indeed, 

we will show that (3.6) and (3.10) both produce a contribution to the three-

point function which is in precise agreement with the direct calculation in 

the microscopic theory. Of course, at the level of four-point functions (3.6) 

and (3.10) start producing contributions which are different. By comparing 

the perturbative result for a four-point function to the corresponding result 

derived from the effective action, we will be able in the next sections to 

confirm that (3.6) is the correct expression to be incorporated in the effective 

action (rather than (3.10)), as also suggested by D-brane physics [47]. 

The plan of the rest of this chapter is as follows. In the next section we 

will obtain the contributions to the three- and four-point functions of gauge 

fields from the terms S~~ and S~~ in the effective action, Eqs. (3.2) and 

(3.6), respectively. Using the background field method, we will then go on 

to calculate the three- and four-point functions of background fields. We 

wll then finally compare the perturbative results we derived to the result 

obtained from the effective action, finding agreement. 

3.2 Three- and four-point functions from an 

effective action with Wilson lines 

3.2.1 The three-point function 

We begin by calculating the contribution from the effective interaction in 

(3.2) to the three-point function 

3 

r~~c(k1 ,k2 ,k3 ) ·- jfi d1xi ei"Lt=!k;x; (A~(xl)A~(x2)A~(x3)). (3.12) 
i=l 
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In order to calculate the contribution from (3.2) we need only to expand the 

expression for 0 1w(P) in (3.3) up to order A2
. We then Fourier transform 

and use (2.47) and (2.2), to get: 

where 

Using (3.13), we get the following contribution to the three-point function 

from the effective action s~~ of (3.2): 

where we have defined 

· { T(ki) £5AO!)BC [klvP;~ + k1pP;~ + (k2k3) Q~t,vp] 

+T(k2) i5
30

5CA [k2J-LP;~ + k2pp;~ + (k2k3) Qe,pJ-L] 

+T(k3) i5C
0

i5AB [k31tP;~ + k3vp;~ + (k2k3) Q!,J-Lv]} , 

(3.16) 
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In a similar way we can calculate the contribution to the three-point function 

from the term s~~) in (3.6), obtaining: 

3.2.2 The four-point function 

In this section we compute the contributions to the four-point function ob­

tained from the effective actions~~ and s~~ given in (3.2), (3.6), respectively. 

For the sake of simplicity we will restrict ourselves to the case of noncommu-

tative U(1) gauge group, and compute the four-point function 

4 

f 1wpa(kl, k2, k3, k4) ·- jrr d4xi e i L:i= 1 k;x; ( A11 (xl) Av(x2) Ap(x3) Aa(x4)) . 
i=l 

(3.18) 

The result for r 11vpa ( k1 , k2, k3, k4) is better expressed in terms of the quantities 

where 

sin k1k2 
2 

(kJ +k2)k3 k1 (h+k3) 
2 2 

+ 

(3.19) 

sin kd;;3 sin k2(k1 +k3) 

----=--2 ----:_::----_:::--=:2 _:--- . ( 3. 20) 
(ki +k2)k3 k2 (kJ +k3) 

2 2 

context of noncommutative effective action for the one-loop F4 term inN = 4 

super Yang-Mills. 

In the same way as it was done for the three-point function, one finds that 
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the contribution to the four-point function generated by the term (3.2) is 

given by the following expression: 

+ permutations } . 

Notice the appearance of the function J3 ( k1, k2 , k3 ) in the previous expression 

(3.21). 

We now compute the contribution to the four-point function derived from 

the term (3.6). After some straightforward calculations, one gets: 
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3.3 Perturbative calculations in the micro~ 

scopic theory 

We now move on to the background field method computation of Green's 

functions in the microscopic theory. For convenience, we present the three-

point function and four-point function calculations separately. 

3.3.1 The three-point function of background fields 

We start with the calculation of the three-point function of background gauge 

fields r~~c ( k1 , k2 , k3 ) defined in ( 3.12). To this end, we will need to expand 

the logarithm in (2.43) up to three powers of the background field. The 

resulting Feynman diagrams are shown in figures 3.1-3.4 (where we do not 

draw permutations of the diagrams). 

The Feynman diagrams can be conveniently classified according to the num-

ber of ]-vertices they contain. Diagrams with no ]-vertices, represented in 

figure 3.1, give a vanishing contribution to the correlator. This is because 

each of these diagrams gets a factor of Tr nj = d(j) from the trace over spin 
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. . 

p+ kl ....... 

...... 
p 

(a) 

3.3 Perturbation Calculations 

(b) 

Figure 3.1: Feynman diagrams with no J -vertices. 

indices, where d(j) is the number of spin components of the field, d(j) = 1 

for scalars, 2 for Weyl fermions and 4 for gauge fields, respectively. We focus 

only on supersymmetric theories, where the cancellation between fermionic 

and bosonic degrees of freedom implies that 

(3.23) 

Therefore, each diagram which contains no ]-vertices vanishes separately 

when it is summed over all the fields in the theory. Similarly, diagrams with 

exactly one insertion of the ]-vertices (figure 3.2) vanish, since the trace over 

spin indices gives Tr J 11v = 0. 

With these simplifications, we are left with the diagrams of figures 3.3 and 

3.4, which we now compute. We will calculate these diagrams in a low-energy 

approximation where the background fields have a much smaller momentum 

than the cut-off for the fluctuating fields, so that kikj -> 0, while we keep 

kJ~,1 finite [40,42,43]. This low-energy approximation has the great advantage 

that all of the integrals over the loop momentum can be performed explicitly 

[41, 42] (see also the discussion after (3.33)). 

58 



Chapter 3: Effective Actions 3.3 Perturbation Calculations 

p+ kl p + kl 
............ . ........ . 

~ ~~ 

klJ-L • •• klJ-L 

....... ........ 
p p 

(a) (b) 

kiv 
p + kl _. ... 

....... . . . 

(c) 

Figure 3.2: Feynman diagrams with a single insertion of J -vertices {denoted by 
a triangle and a star). 

We first consider diagrams with two ]-vertices, represented in figure 3.3. The 

contribution to the correlator r~~?(k1 , k2, k3) from diagram (3.3a) is: 

- -

[-dEAD sin ( k~p) + jEAD COS ( k~p)] [ -dCBH sin ( k2;3) + jCBH COS ( k2;3)] 

[dHcFsin((p+2ki)P) +!HcFcosCp+2ki)P(p+ki)z3)], (3.24) 

where the sum is over all the fields in the theory. We can simplify the products 

of d's and f's in (3.24) by using the relations derived in (2.8)-(2.11) of [31]. 

In addition, the product of J's can be rewritten using 

(3.25) 
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where 

C(j) = 

~ 
kljt • •• 

··.""i'i···· 
]J 

(a) 

p+ k, ... k,", 
.. ~ ~ . 

~ yv+k1+kz 
klJl • 

~· .. ·"\ 
k3p\ 

(b) 

Figure 3.3: Feynman diagrams with two J -vertices. 

0 for scalars, 
1 

for Weyl fermions, 2 for vectors. -
2 

(3.26) 

The remaining integrals can then be evaluated by first writing the sines and 

cosines in terms of exponentials, and then using 

(3.27) 

where A = x(l - x) and the function T is the same as in (3.4). In this 

way, the contribution to the three-point function from diagram (3.3a) (and 

its permutations) becomes: 

4i c~=o:i C(j)) J2N (2·nf6(4l(k1 + k2 + k3) sin(k
2

2
k

3
) (3.28) 

j 
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Diagram (3.3b) contributes to the correlator r:~c(k1 , k2 , k3 ) as: 

(3.29) 

First, we rewrite sines and cosines in terms of exponentials in the same way 

as for diagram (3.3a). We will then need to evaluate integrals of the form 

(3.30) 

In the background field method, we integrate out highly fluctuating mo-

menta; here, it will be extremely convenient to integrate momenta above an 

infrared scale M· Effectively, this amounts to introducing a small mass term 

J.1,2 in each propagator, so that (3.30) is turned into 

(3.31) 

Introducing Schwinger parameters, we can recast this integral as 

L (CJ, (3, !') 

where a = a 1 + a 2 + a 3 and l = p + ~ [(3a2 + a 3 ((3 + !')]. Following [42], 
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we change variables to (i = ad a and add a new integration variable >. 

with a delta function, c5 (>.- ~i ai)· After performing the loop momentum 

integration, we obtain: 

In the low-energy approximation we are considering, where kikj ----> 0 while 

kJcj is kept finite, the integration becomes feasible [41, 42], and the results 

for the required cases are: 

(3.34) 

(3.35) 

and the case where CJ -/= ,6 -/= 1 but CJ + f3 + 1 = 0: 

(3.36) 

where we have defined 

(3.37) 

We also need a variant of the L integral with an extra power of PJ-L in the 
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numerator. We calculate this by noting that 

After some algebra, the contributions of diagram (3.3b) and its permutations 

to the three-point function becomes, in the low-energy approximation we are 

considering: 

8iv'2N (L aj C(j)) sin(~2~3 / 2 ) (27r)48(4)(k1 + k2 + k3) (3.39) 
j k2k3 

{ P;: ( A1J.l(~tlkll) oAooBc + A1J.l(plk21) o808Ac + AiiJ.l(plk31) ocooAE) 

p;; (A1v(~tlkll) oAOoBC + Mv(Pik21) 8808AC + A1v(Pik31) Oc08AB) 

P;; (Aiip(Pikll) oAooBc + A1p(~tlk21) oBooAc + Aiip(plk31) ocooAE)} , 

where MJ.L(z) := (dNI/dzM)(z). Since 1\JJ.L(z) = (zJ.L/2) S(z), where 

S(z) 
2 

(41r)2 K 0 (z), (3.40) 

we can finally recast (3.39) as 

[r:~c(k1, k2, k3)]4b = 4iv'2N (LaJ C(j)) sin(k2~3 / 2 ) (21r)48(4)(k1 + k2 + k3) (3.41) 
j k2k3 

{P;: (k:lj.LS(plkll) oAooBc + k211S(plk2l) 8808Ac + k:3j.LS(plk31) ocooAB) 

p;l: (k:lvS(plkll) oAOoBC + k2vS(~tlk21) 0800AC + k3vS(plk31) Oc08AB) 

P;~ (k:1pS(plk1l) oAoosc + k2pS(~tlk2l) 880oAc + k:3pS(plk31) ocooAB)} . 

The last diagram to compute is shown in figure 3.4. It is easily seen from 

the Feynman rule of the "triangle" ]-vertex that this diagram gives a sub-
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k2v/ 
p+k~~···<f . . 

Figure 3.4: This diagram contains three insertions of the triangle J -vertex. 

leading contribution in the low-energy approximation kikj --+ 0 and kikj 

finite, when compared to the diagrams (3.3a), (3.3b) computed so far, hence 

we will discard its contribution. Summarising, the full three-point function 

is obtained by adding up the results (3.28) and (3.41). 

3.3.2 The four-point function of background fields 

In this section we present the calculation of the four-point function of back-

ground fields in the microscopic theory. The computation proceeds in much 

the same way as that of the three-point function presented in the previous 

section. The calculations are of course more lengthy, each diagram contains 

a product of four factors of the form (see the Feynman rules in section 2.4.2): 

(3.42) 

Therefore there are sixteen terms, each a product of four trigonometric func-

tions, each such term corresponds to sixteen integrals and each integral con-

tributes a number of terms to the answer. Such a calculation would be best 

performed with a computer but to avoid such a step, we will limit ourselves 

to the case of gauge group U(l) (the Feynman rules are given in section 
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2.4.1). 

As in the three-point function case, only diagrams with at least two inser-

tions of ]-vertices give a non-vanishing contribution (in the supersymmetric 

theories we are interested in). Furthermore, terms in the effective action 

•• •lit=- •• 

• • ...:1!1• •• 

p 

(a) 

Figure 3.5: This diagram contains two insertions of the star J -vertex. 

k3p/ 

.~····' . . . . 

' 

Figure 3.6: Feynman diagram containing a single insertion of the star and of the 
triangle J -vertex. 

expressions without the functions P or Q (defined in (3.16)) must arise from 

diagrams containing no powers of external momenta in their vertices. The 

only such candidates are therefore the diagram shown in figure 3.5 and its 
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permutations. The expression for this diagram is proportional to: 

(3.43) 

We now consider the Feynman diagram in figure 3.6 (and its permutations). 

This diagram gives a contribution to the correlator r J.Lvpa(k1 , k2 , k3 , k4) which 

is proportional to: 

(3.44) 

+Q!,vJ.Lsin (~k1k2) h(k3, k4)Mp(JLik41) + Q~,vJ.Lsin ( ~k1k2) J2(k3, k4)Ma(JLik41) 

+Q~,pJ.Lsin ( ~k1k3) J2( k2, k4)J\1a (JLik41) + Qi1 ,pvsin ( ~k2k3) J2( k1, k4)Nia (JLik41) . 

Finally, the remaining diagrams give rise to terms which are proportional to 

the functions pi1 defined in (3.16). In order to calculate these contributions, 

we need the expressions for a few new integrals. Firstly, we need to consider 

the integral L(cr, {3, 1), defined in (3.33), for the case where cr # {3 # 1 but 

cr + {3 + 1 # 0. We find that: 

(3.45) 

It is also necessary to calculate several integrals containing four insertions of 

propagators. These integrals can be evaluated in a similar way to that used 

in the the calculation of the integrals appearing in the three-point function 
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calculation. For example, one needs to evaluate, for (J + f3 + 'Y + 6 = 0, 

k;~o N(a) [1- e-ia(i3+rl ( 1 1 ) 1 1- e-ia/3] 

a-(!+ b) ia(/3 + 'Y) a-6 + a'Y - ab - i(a"!)(a/3) ' 

(3.46) 

where 

N(a) = -- d)..).. e->..11 -~>. 1 100 
2 -2 

167f2 0 ) 
(3.47) 

and in the last line we have used the low-energy approximation kikj --+ 0. 

Using such integrals, one sees the emergence of terms proportional to the J 2-

k }3p 
2v 

.~···· . . . . 

(b) 

Figure 3. 7: This diagram contains two insertions of the triangle J -vertex. 

and J 3-functions defined in (3.19) and (3.20), respectively. We skip the details 

of the calculation, which is rather lengthy but, for example, the diagram 

shown in figure 3.7 produces a term containing M(k4 ) and which turns out 
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to be proportional to the expressions 

~ [cos(~(k1k4- k2k3)) -_ cos(!(k1k3- k2k4)) + cos{!(k1k3 + k2k4)) -_ cos(!(k1k3- k2k4))] 

klk4 k3k4 k2k4 
(3.48) 

The previous expression (3.48) is precisely equal to J3 (k 1 , k2 , k3 ) defined in 

(3.20) after imposing k4 = -(k1 + k2 + k3 ). 

3.4 Comparison to the result from the effec= 

tive action 

We are now ready to compare our perturbative results with the expressions 

for the three- and four-point functions obtained from the effective action 

Setr = S~~ +S~~, where S~~ and S~~ are given in (3.2) and (3.6), respectively. 

We begin by considering the three-point function of background gauge fields. 

In this case, the full perturbative result is obtained by summing up (3.28) 

with (3.41). We elaborate further these expressions by first performing the 

sum over the spin j. For definiteness, we consider an N = 1 supersymmetric 

theory with Nr adjoint chiral superfields, for which 

1 
--(3- Nr) . 

4 
(3.49) 

The case Nr = 0 corresponds to pure N = 1 super Yang-Mills; for Nr = 1, 3 

we have the N = 2 and N = 4 theories, respectively. Notice that, in the 

latter case, the contribution to the three-point function vanishes. Secondly, 

we observe that (3.41) was derived in the low-energy approximation kikJ -+ 0, 

with kikJ fixed and finite. We also introduced a small infrared regulating mass 
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f-l· In order to compute the corresponding limit of (3.28), we note that this 

amounts to perform the following modification on the function T of (3.27): 

where the first arrow stands for equality after introducing the regulator f-l in 

the expression forT, and the second means equality in the limit k2 -+ 0 (at 

fixed I kllkl). 

Taking these observations into account, the one-loop perturbative expression 

for the three-point function, in the low-energy regime kikj -+ 0 and kikj 

finite, is given by: 

(3.51) 

{ 8A0880 S(f-llkll) [klfLP}; + klvP;~ + klpp:~ + (k2k3) Q~,vp] 

+8808°AS(f-lik21) [k21LP}; + k2vP;~ + k2pP:~ + (k2k3) Q~,PIL] 

+8°08AB S(f-llk31) [k3fLP}; + k3vP;~ + k3pp:~ + (k2k3) Q~,fLV] 

This perturbative result (3.51) should be contrasted with the result (3.15) 

(with C = 2a0 / N) obtained from the original expression (3.2) for the effective 

action, where, from the results of [27, 28], it follows that 

a 0 = -4(L ajCj )N = (3- Nr)N, (3.52) 

J 

the sum over j being extended only to fields in the adjoint. The expressions 

(3.51) and (3.2) differ in two respect. First, (3.2) contains the function T, 

whereas the perturbative result (3.51) contains the functionS. This is easily 
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explained by remembering (3.50), i.e. that at low energy T ---t S. Second, and 

more importantly, the perturbative expression (3.51) contains, in addition to 

the terms in (3.15), also a contribution proportional to 

(3.53) 

This new contribution does not arise from the originally conjectured action 

S~~ in (3.2). However, as we have discussed in the introduction, this term 

(3.53) is precisely reproduced by adding the contribution s~~) in (3.6) to the 

original effective action term in (3.2). 

Finally, we consider now the matching of the four-point function obtained 

from the effective action, Eqs. (3.21) and (3.22), against the perturbative cal-

culation presented in the previous section. We will find that the perturbative 

calculation is precisely reproduced by the effective action Seff = S~~ + S~~, 

where s~~ and s~~ are the expressions in (3.2) and (3.6). 1 

Feynman diagrams in figure 3.5 (and its permutations) generate the contri­

bution (3.43), which precisely matches the terms in our expression (3.21) 

which contains Sf-lpSva and no insertions of P and Q functions. Similarly, the 

first three terms in (3.44) precisely reproduce the terms generated by s~~ 

containing both the T(k4 ) and Q functions. The remaining terms in (3.44) 

correspond to terms produced by S~~ (see (3.22)), when we consider the low­

energy limit cos(!kJ;j) ---t 1 and sin(!k)~:j) ---t !kJ;;j· Finally, as anticipated 

in the previous section, combinations of the remaining Feynman diagrams 

reproduce those terms in Seff that contain the P function. 

Summarising, we have a complete agreement between the low-energy limit 

1In particular, the four-point function calculation discriminates between the terms (3.6) 
and (3.10). 
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of the perturbative calculation of three- and four-point functions in the mi-

croscopic theory, and the corresponding result obtained from the low-energy 

ff · · s s(l) s(2) e ectiVe actiOn eff = efT + eff . 
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Chapter 4 

The Standard Model 

The universe, they said, depended for its operation on the bal­

ance of four forces which they identified as charm, persuasion, 

uncertainty and bloody-mindedness. 

"The Light Fantastic" by Terry Pratchett 

The Standard Model is a mundane name for a beautiful theory of nature. 

Although it is not perfect it is an outstanding achievement, describing the 

interaction of particles on sub-atomic scales. This chapter will outline the 

Standard Model in enough detail that the reader will be able to follow the 

following chapter where a version of the Standard Model based on noncom­

mutative spaces will be introduced. Many more thorough reviews exist and 

many books have been devoted to the subject, for much more detail and an 

extensive list of references see [26, 50]. 

The Standard Model is a gauge theory that describes the interactions of 

sub-atomic particles known as quarks and leptons. Our experiments have 

probed scales as small as 10-18m and as far as we can determine both quarks 
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and leptons are elementary, i.e. they are not composed of smaller particles. 

All matter is composed of these tiny particles1
. These quarks and leptons 

feel four forces, the strong force (QCD), the electro-weak force, hyper-charge 

and gravity. The Standard Model describes only the first three; gravity is 

unmeasurably weak on the sub-atomic scale and particle physicists often 

neglect it (also consistent, renormalisable quantum theories of gravity have 

proved hard to formulate). At low energies, the electro-weak and hyper-

charge forces are spontaneously-broken to electromagnetism by the Higgs 

mechanism. 

The nuclei of each atom is composed of protons and neutrons and each of 

these is composed of 3 valence quarks2
. 

Each valence quark in a proton or neutron is one of two "flavours" of quark; 

an up quark with electric charge +~ (on a scale where the electric charge 

of the proton is + 1) and a down quark with charge - ~. A proton contains 

two up valence quarks and a down valence quark and a neutron contains two 

down valence quarks and an up valence quark. 

As well as up and down quarks, there are two other pairs of quark, charm 

and strange and top and bottom. Each pair of quarks is more massive than 

the preceding pair but aside from that, they interact with all the forces 

identically. Each pair of quarks is called a generation or family and only the 

first generation (up and down) is required to make all the matter that we 

observe in nature. 

Like quarks, leptons come in three generations, the first family consists of 

1Cosmologists predict a more exotic type of matter called dark matter which may or 
may not consist of the super-partners to the particles outlined in this chapter 

2other quarks and anti-quarks can spontaneously appear out of the vacuum (sea quarks) 
and the actual fraction of the momentum of a proton that is carried by particular species 
of quark are given by complicated parton distribution functions 
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the electron, e- (charge -1) and a (so far) unmeasurably light particle called 

an electron neutrino Ve which is electrically neutral. The other families con­

sist of the muon with the muon neutrino and the tau with its associated 

neutrino. Aside from the Higgs Boson (discussed later) these are the only 

matter particles in the Standard Model. We now turn our attention to the 

forces (and the gauge bosons that mediate them). 

We will proceed by introducing the strong force in section 4.1, before cover­

ing the electro-weak force (section 4.2). We will then introduce the Higgs' 

mechanism and summarise the particle content before discussing anomaly 

cancellation and briefly mentioning some of the problems of the model. 

4.1 The Strong Force 

The only elementary matter particles that feel this force more properly called 

Quantum Chromo-Dynamics (QCD) are quarks. Each quark can be one of 

three "colours" and there is a local symmetry between these colours. The 

gauge bosons that mediate this force (called gluons) also carry colour charge 

and can interact with other gluons. The gauge group that describes this force 

is SU(3). 

In order to write down the Lagrangian we first introduce 1/J, a triplet of Dirac 

fermions (each corresponding to a colour of quark): 

qR(x) 

'1/J(x) = q0 (x) 

qB(x) 
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which transforms in the fundamental representation: 

1/J(x)-+ U(x)?jJ(x) where 
ta 

U(x) = exp(ioP(x) 2 ) E SU(3) (4.2) 

Theta are the generators of SU(3) and the aa(x) are arbitrary functions of 

x. Note that we have changed conventions from the anti-Hermitian gener-

ators used in the first part of this thesis to Hermitian generators which are 

more usually used when discussing the Standard Model. We will use these 

Hermitian generators throughout the remainder of this thesis. 

We also introduce the covariant derivative associated with the local SU(3) 

symmetry: 

( 4.3) 

Vve will write IJ = "YJ.L D J.L and G~ ... s ( x) are the gluon fields. We introduce a 

kinetic term for the gluons using the field-strength tensor,F:v: 

(4.4) 

So we have, writing the generators explicitly, 

(4.5) 

The Lagrangian is: 

(4.6) 

where 1j; = 1/Jt "Yo i.e. the Hermitian conjugate multiplied by the first of the 

Dirac gamma matrices (which we will denote by "( through-out this chapter). 

Note that there is no mass term for the quarks m1/;1/J, in the above equation. 
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It would be gauge-invariant in QCD but as we shall see shortly such a term 

will be forbidden in a chiral theory. 

4.2 The Weinberg-Salam Model 

As well as QCD, the Standard Model Lagrangian contains terms that describe 

both weak isospin and weak hypercharge. The gauge group of the former is 

SU(2) and the latter is U(l). 

The gauge group for weak isospin is usually denoted SU(2)L where the sub­

script L denotes the fact that only left-handed particles feel this force. The 

left-handed component of a Dirac fermion is projected out by: 

(4.7) 

We arrange the left-handed particles into doublets, whereas the right-handed 

particles remain singlets. For example: 

(4.8) 

We can then add to the Lagrangian terms describing the electroweak inter-

action for each generation. For the first generation we add, 
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where the covariant derivative in the above equation is: 

(4.10) 

In equation ( 4.10) the ta are the generators of the SU(2)L group. For the 

left-handed doublets these are usually taken to beta = ~era and era (a= 1..3) 

are the Pauli matrices. For the right handed singlets this term will disappear. 

The Y in ( 4.10) is the hyper-charge of the particle (listed in table 4.1) and 

at this stage could be completely arbitrary although the electric charges of 

the particles will depend on the assignments and so the observed electric 

charges will fix these numbers. In section 4.4 we'll see that cancellation 

of gauge anomalies puts constraints on the possible hypercharges. In the 

N oncommutative Model introduced in the next section these charges will be 

a prediction of the theory and their agreement with the observed electric 

charges is an elegant coup for the model. 

We also need to add to the Lagrangian kinetic terms for the gauge bosons, 

of the groups. The term for the SU(2) bosons, denoted by w: is -i(W:11 )
2

, 

where 

(4.11) 

The field-strength tensor for the U(1) gauge boson is slightly different, BJ-tll = 

8J.LB11 - 011 BJ.L there is no term containing the commutator of two gauge fields 

because U(1) has only a single generator (which was not written explicitly) 

and so, in a commutative theory, two gauge fields will commute. The com-

mutator term causes the self-interaction of the gauge bosons and a theory 

with no such interactions is called Abelian (More properly an Abelian theory 

is a theory where the gauge rotations commute, there are no Abelian non-
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commutative theories because the functions of space as well as the generators 

do not commute). 

4.2.1 Symmetry Breaking 

At low energies the SU(2) x U(1) symmetry is spontaneously broken to 

the U(1) symmetry of electromagnetism. We do this by introducing a new 

doublet of complex scalar fields with hypercharge Y = 1 and adding corre-

sponding terms to the Lagrangian: 

( 4.12) 

where p,2 < 0, A > 0 and the covariant derivative is defined by equation 

(4.10). In the vacuum we expect the field ¢to minimise the potential, and 

we pick for our vacuum expectation value, 

with (4.13) 

Expanding around the vacuum requires only a single, real scalar field called 

the Higgs' field, h(x): 

{1( 0 ) ¢(x)=y2 
v+h(x) 

(4.14) 

We can gauge away the other 3 real degrees of freedom using an SU(2) 

rotation. The choice of vacuum has broken the gauge group, but although it 

has non-zero quantum numbers; T = ~' T 3 = -~ andY= 1, the generator, 
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Q = T 3 + ~ leaves the vacuum invariant, i.e. 

( 4.15) 

As we will see in the next section, our Higgs field has given masses to all the 

gauge bosons except the photon and the gauge group has been broken from 

SU(2) x U(1) to a gauge group with single generator Q which is the U(1) of 

electromagnetism. 

4.2.2 Masses for the gauge bosons 

To calculate the masses for the gauge bosons, we insert the vacuum expecta-

tion value (v.e.v.) for the Higgs field into the IDJ..t¢1 2 term in the Lagrangian 

where we use the notation lxl 2 = (x)t(x) and each SU(2) generator is ~x a 

Pauli matrix: 

We have three mass terms, corresponding to three massive gauge bosons. 

( 4.17) 

where the W bosons both have the same mass,Mw and the Z boson has a 

mass of Mz where 

Mw = g2v and 
2 

( 4.18) 
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The key point is that the field orthogonal to Mz has not acquired a mass, 

and this field, which we denote by Att: 

(4.19) 

is associated with the unbroken generator Q = T 3 + ~ and is the photon of 

electromagnetism. 

4.2.3 Weak Mixing angle 

In the literature, it is usual to specify the relationship between the gauge 

bosons in the before symmetry breaking and after symmetry breaking basis 

in terms of an angle. As we will use this device in the next chapter we 

introduce it here. 

We define the weak mixing angle such that, 

(4.20) 

Looking at the mass terms involving ~~ and BtL which we can read off from 

the second term on the right-hand side of ( 4.16): 

( 4.21) 

The eigen-vectors are: 

m~s!ess (::) massive : ( 
92 

) 
-gl 

(4.22) 
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So we find: 

e 92 tan w =-
91 

( 4.23) 

Comparing this result with equation ( 4.18) we find 

( 4.24) 

and when this result is compared to experiment a good agreement is found, 

supporting the model. 

4.2.4 Yukawa terms 

When discussing the QCD lagrangian it would have been possible (although 

we refrained) to add a mass term for the quarks. In a chiral theory, such 

as the Weinberg-Glashow model, such mass terms would not be possible. 

Attempting to write clown a mass for the electron for example: 

(4.25) 

( 4.26) 

This problem can be circumvented using the versatile Higgs field. We can 

add to the Lagrangian, terms involving the Higgs that will lead to mass terms 

for the electron and for the down quark: 

(4.27) 
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When we insert the vacuum expectation value for the Higgs into the above 

equation we will get masses: 

and ( 4.28) 

Notice that if the couplings (which are free parameters) were of order unity 

then we would expect masses of order the electroweak scale, that the electron 

is so light is something of a mystery. 

These mass terms are gauge invariant under both SU(2) and U(l) gauge 

groups as they have to be to preserve the gauge invariance but this require-

ment makes it harder to write down a mass term for the up quarks. It is 

however possible. Writing the SU(2) indices explicitly (where we have pre-

viously been suppressing them) we can write: 

( 4.29) 

This will give a mass term to the up-quark but there is a catch, the anti-

symmetric tensor with two indices, Eab is only invariant under the group 

SU(2), if we had a larger symmetry group (as we will do in the next chapter) 

such a term would not be possible. 

4.3 Summary of Particles 

We have introduced the gauge-groups (and therefore the forces) at the heart 

of the model but as of yet the spectrum of matter, the quarks and leptons 

has been alluded to rather than outlined and we rectify that in this section. 

The matter in the Standard Model is divided into three groups called gen-
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erations, the fields in the first generation are shown in 4.1 3 . The second and 

third generations have an equivalent particle content to the first except that 

the masses of the particles are much heavier. Particles in the heavier gener-

ations decay (via the weak interaction) into particles of lighter generations 

so all the known stable matter in the universe consists of particles in the 

lightest generation. 

Field SU(3)c SU(2)L U(l)y Hypercharge 

eR D -2 

VR 0 

lL = (vL eL) D D -1 

UR D D +! 
3 

dR D D -~ 
3 

qL = (uL dL) D D D +!. 
3 

-

GJ.L oo 0 

-

lVJ.L DO 0 

BJ.L DO 0 

¢ D D 1 

Table 4.1: Representations for various fields in the theory 

4.4 Anomaly Cancellation 

So far we have managed to write a Lagrangian in which the right and left 

handed particles transform. in different representations of the gauge group 

(a chiml theory). It is not entirely straight-forward however, loop diagrams 

can cause symmetries which are conserved classically, to be broken at the 

3the table also includes the Higgs fields and gauge bosons which are not part of a 
generation; there is only a single copy of each 
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,\ c 

J-L a 

1/ b 

Figure 4.1: A loop diagram that can cause currents to be non-consetved 

quantum level. 

In chiral theories, diagrams such as the one shown in figure 4.1 can cause a 

current to diverge (i.e. it is no longer conserved). The dotted vertex in the 

diagram corresponds to the gauge symmetry current, which in a theory with 

a left handed fermion, 1/J would be: 

( 4.30) 

The two external lines correspond to gauge bosons, A~tb and A~tc. Such 

diagrams lead to a contribution to the divergence proportional to: 

(4.31) 

If the gauge currents are not conserved, the Ward identity no longer holds, 

unphysical states in the theory are not necessarily cancelled and unitary is 

no longer conserved. 

In order for the Standard Model to be consistent, all contributions of the 

form of (4.31) must vanish, and indeed they do. Because the gauge bosons 

couple to the chiral current we can equivalently consider diagrams where 

a third gauge boson is coupled to the dotted vertex and the diagram is a 
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one-loop correction to the three-gauge boson vertex. 

When the bosons are all in SU(3), we have a non-chiral theory (QCD) and 

contributions from left and right handed particles have opposite signs and 

cancel out. If the generators are all SU(2) (i.e. the Pauli matrices) then 

because {a-a, o-b} = 2oab the contribution will vanish. Similarly because the 

trace of a. single generator of either SU(2) or SU(3) is zero, if only one 

boson is from either group there will be zero contribution. The only possible 

remaining anomalies are therefore: 

Two SU(3) bosons, 1 U(1) boson: This is proportional to tr[tatbY], i.e. 

the sum of the hypercha.rges for all the fermions charged under both 

SU(3) and U(1); the left and right handed quark (different chira.lities 

contributing with opposite signs). We have, using the hypercha.rges 

from table 4.1: 
4 2 1 

+---- 2 X-= 0 
3 3 3 

( 4.32) 

Two SU(2) bosons, 1 U(1) boson: Similarly to the last case, the contri-

bution is proportional to the hypercha.rge of the particles involved, this 

time, the left-handed fermions and we have 

1 1 
(-1) + (-1) + 3 X-+ 3 X-= 0 

3 3 
(4.33) 

(the factor of three is because both the up quark and down quarks 

come in three colours). 

Three U(1) bosons: Each generator involved is theY of hypercharge so 

we sum the hypercha.rge cubed for each particle (left and right handed 
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with opposite signs) that has nonzero hypercharge: 

( 4.34) 

(the factors of 2 and 3 are for number of flavour and colour respec-

tively). 

The gravitational anomaly: This anomaly is slightly different, and only 

applies if gravity is considered. If the Standard Model was to be coupled 

to gravity, it was shown in [51] that we would require the sum of the 

hypercharges in each generation to be zero, and indeed it is. 

These anomaly cancellation conditions constrain the allowed hypercharges for 

the particles in the model; it seems almost miraculous that the hypercharges 

required to get the correct electric charges fit these very tight constraints. 

In the model introduced in the next chapter, anomalies are much more of 

a problem and treated differently but the hypercharges will arise naturally 

with their correct values 

4.5 Problems of the Model 

The Standard Model of Particle Physics has been dramatically successful, and 

there is no major experimental data (with the partial exception of neutrino 

oscillations, discussed below) that contradicts the model. However it is not 

perfect and outlined here are some of the open issues. 

• Recent experiments show that neutrinos oscillate between species. Such 

behaviour requires the neutrinos to have different masses. A right-

handed neutrino, singlet under all the gauge groups needs to be added 
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to the Model. The extremely light-scale of the masses seems unnatural, 

although the see-saw mechanism [52] can be used to explain this. 

• Precision measurements of electroweak observables indicate that the 

mass of the Higgs boson is of the order of the mass of the W boson, 

however loop corrections to the Higgs boson mass cause quadratic di­

vergences. If we assume that the Standard Model is valid up to large 

energies then in order to keep the Higgs mass light, either the parame­

ters in the Lagrangian must be fine tuned or the quadratic divergences 

must cancel. The spin of the particle running in the loop determines 

the sign of the contribution; fermions and bosons give and opposite con­

tribution. In a supersymmetric theory, where for each fermion there is 

an equivalent boson and vice-versa, the divergences cancel. This is a 

good argument for TeV scale supersymmetry but the jury will remain 

out until the Large Hadron Collider. 

• The tiny, non-zero scale of the cosmological constant presents another 

problem. The cosmological constant corresponds to the energy density 

of the vacuum. In a completely supersymmetric model, this would be 

zero. In a non-supersymmetric model, the prediction would be of order 

of a typical energy scale of the theory to the power of 4. The energy 

scale of QCD, AQcD would lead to an estimate out by tens of orders of 

magnitude. 

• The Standard Model includes no description of gravity. On the quan­

tum scale gravity is negligibly weak but a complete theory of the laws 

of nature would include such a description. String theory includes a 

quantum description of gravity but has yet to find experiment verifica­

tion (and such a test seems a long way off). 
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e The gauge couplings are not the only quantities that run in the Stan­

dard Model, the Yukawa couplings and, A, the quartic self-coupling of 

the Higgs also run. These couplings are not asymptotically free; at 

some large energy scale they will become infinite and so, even neglect­

ing gravity, the Standard Model can not be a truly microscopic theory 

of our universe. 

e The Standard Model lends itself to more speculative questions; why are 

there three generations? why is the gauge group SU(3) x SU(2) x U(l)? 

Why do we have the particular spectrum of masses (especially when 

most of the particles have masses well below the electro-weak scale)? 

Such questions are beyond the scope of the model itself. 

Listing the shortcomings of the model as we have above, does not detract from 

the fact that that this model, outlined in a few pages fits our experiments at 

high-energies with incredible accuracy. The model that will be introduced 

in the next chapter does not claim to solve these problems, it is an attempt 

to include the essential features of this successful model, the forces and its 

particle spectrum into a noncommutative context. 
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Chapter 5 

The N oncommutative Standard 

Model 

The goal was the Theory of Everything) but Ponder would settle 

for the Theory of Something) and) late at night) when Hex ap­

peared to be sulking) he despaired of even a Theory of Anything. 

"The Last Continent" by Terry Pratchett 

5.1 Introduction 

We have now completed our survey of the ordinary Standard Model and it 

is now time to marry that with the noncommutative field theories discussed 

earlier and try to write down a Noncommutative Standard Model (NCSM). 

The motivations for trying to write down such a theory are manifold. An 

explosion of research in the field was triggered when Seiberg and Witten 

showed that the type of theories considered in this thesis could be obtained 
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from open string field theories with constant B-field [8]. If it could be shown 

that the Standard Model could not be embedded into a noncommutative 

theory it would provide us with new information about string theory. Aside 

from string theory, noncommutative theories have new and novel features and 

an NCSM might provide us with new solutions to problems in the Standard 

Model and beyond. Finally, noncommutative field theories provide many 

constraints on model building that provide an interesting technical challenge. 

The constraints that are imposed on the noncommutative model builder are: 

1. UV /IR mixing can cause quadratic divergences (see section 2.5.6) and 

decoupling of U(l) degrees of freedom (section 2.5.5); 

2. the gauge groups are restricted to U(N) groups (section 2.3); 

3. fields can transform only in (anti- )fundamental, hi-fundamental and 

adjoint representations of the gauge groups (section 2.3); 

4. the charges of matter fields are restricted to 0 and ±1, and this makes 

it difficult to get fractional electric charges for quarks (section 2.3) 

5. gauge anomalies cannot be cancelled in a chiral noncommutative the­

ory, hence the anomaly-free theory must be vector-like (compare section 

5.2.3 with section 4.4). 

Prior to the work presented in this thesis, many authors published models 

which have satisfied one or more of the above constraints. A large body of 

work has consisted of examining models where the exponential factors in the 

vertices ( eikf'i where k is an external momenta and p is a loop momenta) are 

Taylor expanded. Such models neglect the UV /IR effects caused by such 

factors. 

90 



Chapter 5: NCSM 5.1 Introduction 

The authors of Ref. [9] made an important step in noncommutative model 

building by proposing a noncommutative model which satisfies criteria 2, 3 

and 4. Their model has the noncommutative gauge group U(3) x U(2) x U(l) 

with matter fields transforming only in (bi- )fundamental representations, and 

remarkably, it predicts the hypercharges of the Standard Model. In many 

respects their model is similar to the bottom-up approach of [53] to the 

string embedding of the Standard Model in purely commutative settings. 

Unfortunately, the noncommutative U(3) x U(2) x U(l) model of [9] is affected 

by the UV /IR mixing which causes the U(l) hypercharge sector to decouple. 

In this version of an NCSM, UV /IR effects are again explicitly ignored and a 

new type of particle called the 'Higgsac' was introduced with turned out to 

break noncommutative gauge invariance, causing effects like a violation [54] 

of unitarity1 . The plan for this chapter is to construct a noncommutative 

embedding of the Standard Model which satisfies all the requirements listed 

above. The model is based on the gauge group U(4) x U(3) x U(2) with 

matter fields transforming in noncommutatively allowed representations. In 

the infrared the gauge group is spontaneously broken to the Standard Model 

group by a Higgs mechanism. VVe need a larger gauge group than the authors 

of [9] in order to incorporate the UV /IR mixing effects, yet remarkably we still 

find the correct values of the hypercharges for all the fields of the Standard 

Model, we avoid the introduction of Higgsac field but will find ourselves 

forced to introduce extra matter fields. 

The conclusion one can draw from this is that it is conceivable to embed 

a commutative SU(N) theory, such as e.g. QCD or the weak sector of the 

Standard Model into a supersymmetric noncommutative theory in the UV, 

1 Very recently a second version of this model [55] has been proposed by the authors, 
in this updated version the Higgsac is dressed with semi-infinite Wilson lines. 
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but some extra care should be taken with the QED U(l) sector. It is, in 

fact, pretty clear that the UV /IR mixing makes it impossible to interpret a 

noncommutative U(l) theory as an ultraviolet embedding of ordinary QED. 

The low-energy theory emerging from the noncommutative U(l) theory will 

become free in the IR (rather than just weakly coupled, it will not freeze 

out at any mass scale) and in addition will have other pathologies. When 

supersymmetric theories are softly-broken down to N = 0 non-logarithmic 

IR divergences can re-appear. Models with the U(l) gauge group have been 

analysed [33,34,56] and tachyons can only be avoided if the model has N = 4 

supersymmetry; even in this case the tachyons are avoided at the expense of 

giving a mass to the photon and fine tuning is required to keep this below ex­

perimental limits. The prospects for phenomenologically acceptable versions 

of such models looks bleak. 

It is becoming pretty clear that the only realistic way to embed QED into 

noncommutative settings is to recover the electromagnetic U(l) from a tmce­

less diagonal generator of some higher U(N) gauge theory. The trace-U(l) 

part of this theory will decouple in the IR due to IR/UV mixing effects, and a 

traceless diagonal generator can give U(l) as well as some non-Abelian U(n) 

factors in favourable settings. So it seems that in order to embed QED into a 

noncommutative theory one should learn how to embed the whole Standard 

Model. 

In the following section we will show how the UV /IR mixing leads to the 

decoupling of the overall U(l) factors from the gauge groups. In section 3 we 

will introduce the model, calculate the hypercharges, and discuss the gauge-, 

the fermion- and the Riggs-sectors. We will also outline how to cancel all 

the gauge anomalies by extending the model. 
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The model presented in this chapter is one example of how the Standard 

Model can be embedded into a microscopic noncommutative gauge theory. 

One particularly interesting future direction would be to find a realistic super­

symmetric version which would exhibit a dynamical supersymmetry break­

ing. This is motivated by the UV /IR-decoupled U(l) degrees of freedom 

which provide a natural candidate for the hidden sector of dynamical super­

symmetry breaking, as explained in [57]. 

In the model that we outline in the next section, we can satisfy both these 

conditions hence the only consequence of the UV /IR mixing is that the 

U(l) degrees of freedom decouple and become unobservable at low-energies. 

Due to this fact, in much of what will follow the overall U(l) factors of all 

three U ( N) gauge groups considered below can be safely dropped at energies 

much below the noncommutative scale relevant to the commutative Standard 

Model. 

5.2 The Noncommutative Standard Model 

As was mentioned earlier, all fields in a Noncommutative Gauge Theory must 

transform in the adjoint, fundamental, anti-fundamental or bi-fundamental 

representations. We assign the fields to the representations shown in table 

(5.1), note that, unlike in the Standard Model, no field is charged under more 

than two groups. All the matter fermion fields come in three generations 

(which is not indicated explicitly in the table), and furthermore, the table 

will be extended in section 5.2.3. 

As can been seen from the table we have introduced three more Higgs fields, 

¢Ac, ¢ctJ, ¢sA and ¢8 compared to the Standard Model's single Higgs. The 
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Field Uc(4) Us(3) UA(2) Hypercharge 

eR D -2 

IJR 0 

-

[L = (vL eL) D D -1 
-

UR D D +i 
3 

dR D -~ 
3 

-

QL = (uL dL) D D +-!_ 
3 

-

el-L DO 0 

-

Bi-L DO 0 

-

Ai-L oo 0 

cps D 1 
-

¢cs D D +l 
3 

-

¢sA. D D +l 
3 

-

¢Ac D D 

Table 5.1: Representations for various fields in the theory 

scalar potential (discussed in section 5.2.5) will induce the following VEV 

structure: 

0 0 0 
v 0 

(: :) 
0 

0 0 0 0 0 
(¢ca) = (¢sA.)= 0 0 (¢Ac) = (¢s) = v 

0 0 0 0 0 
0 b 0 

0 0 a 
(5.1) 

The scalar potential will mean that the VEV s a, b c are much larger that v 

and v which will turn out to be the electroweak breaking scale. 

The gauge bosons for the groups Uc(4), Uc(3) and Uc(2) are respectively: 
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CP (p = 0 .. 15), Bq (q = 0 .. 8) and Ar (r = 0 .. 3). So, for example, ¢ 8 which 

transforms as 

rPB ---t U * rPB U E Us(3) (5.2) 

will have a covariant derivative: 

(5.3) 

and its Hermitian conjugate which transforms in the anti-fundamental, i.e. 

U E Us(3) (5.4) 

will have a covariant derivative: 

(5.5) 

In the following discussion we will neglect the generator of the trace U ( 1) of 

each group ( C 0 , B 0 and A0 ) for simplicity. These generators will decouple 

at low-energies and would merely complicate the analysis, the results ii1 the 

infra-red region of the theory are unchanged. 

5. 2.1 The Gauge Sector 

The vacuum expectation value for ¢cs will partially break the gauge group. 

The covariant derivative is: 

where the SU(4) generators Tl... 15 are listed in Appendix Band the SU(3) 

95 



Chapter 5: NCSM 5.2 The Noncommutative Standard Model 

generators >.1...8 are taken to be the Cell-Mann matrices. The (DJ.! (¢cs)) t (DJ.! (¢cs)) 

term in the Lagrangian will contain diagonal mass-terms: 

and non-diagonal mass-terms: 

If we rotate to a new basis: 

(NI~) (cos 808 sin 808
) (C~5) 

111,: - -sin Bc8 cos Bcs B~ 
(5.9) 

where 

(5.10) 

Then M~ will be massless but NI~ will acquire a mass so, out of the U(4) x 

U(3) that we start with, the following gauge bosons are still massless: C1~··
8 

(which we will identify with the SU(3)c of the Standard Model, B~ .. 3 (which 

will will identify with SU(2)L) and !11~. 

The covariant derivative for ¢sA. will lead to a term involving its vacuum 

expectation value. Because v < < b (in equation (5.1)) we will temporarily 

set v ---+ 0 

(5.11) 
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where the SU(2) generators ar are the usual Paul matrices. However, B~ = 

sin Bc8 A1~ +cos Bc8 i\1; so ignoring the massive gauge bosons we have: 

DJL (¢s;.) = 8JL (¢s;.) + ~gsB~rq * (¢s;.) + ~goNI~r8 * (¢s;.)- ~9A (¢ctJ) *A:,\r 

(5.12) 

where 9o = gssin Bcs and now q, r = 1..3. 

The resulting diagonal mass-terms will be: 

(5.13) 

and the remaining mass-terms are: 

(5.14) 

We can diagonalise these by writing: 

(5.15) 

where 

(5.16) 

The field labelled YJL is the gauge boson for a massless U(1) and will be 

identified with the hypercharge whilst the A12 field has acquired a mass. 

If we now calculate which gauge degrees of freedom are given a mass by ¢ AC 

it will turn out that no massless degrees of freedom acquire a mass; the gauge 

group is broken no further. In particular the YJL field remains unchanged. 
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To summarise, the microscopic group Uc( 4) has been broken to SU(3) x U(1), 

U8 (3) has been broken to SU(2)L x U(1) and UA(2) has been broken to U(1), 

Only one linear combination of the three U(1) factors remains massless. 

5.2.2 Hypercharges 

The hypercharge for each particle is determined by the representation of 

the particle under the microscopic gauge groups. The ideas in this section 

follow [9, 53] but because of our unusual gauge-group (U( 4) x U(3) x U(2)) 

the details differ. 

The coupling of the right handed electron ( c.f table 5.1) to the hypercharge 

is determined by: 

. . 
'l 'l 

eR{11 DJleR =eR{11 8,leR + 2gleR{11eRA!a
3 + 2gleR{11 [eR, A!Ja3 

=eR{11 811 eR + ~gleR{11eRsin 0sAY11 a
3 (5.17) 

We have ignored the [eR, A~] term as we are considering scales well below the 

noncommutative scale. The coupling between Y11 and the particle in the first 

row of the U(2) doublet is therefore 9ASin eBA· This should be proportional 

to the hyper-charge, -2g1 where we define g' ~gAsin OBA to be the COUpling 

to the hypercharge. With this definition, the hyper-charge of all the other 

particles in the model is now fixed. 

The right-handed clown quark transforms in the fundamental of Uc(4): 

(5.18) 
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Writing C1~5 =cos BcsM~ -sin Bcslvf~ and then .M1~ =cos BsAY11 -sin BsAN~ 

then the term that will determine the coupling is: 

(5.19) 

So the coupling for the right-handed down quark (for all except the fourth 

particle in the multiplet) is: 

(5.20) 

Using equations (5.10) and (5.16) we find Y;f = -;2 i.e. the Standard Model 

value. 

We can calculate the hypercharges of the other particles in an analogous 

fashion. For example the multiplet of left-handed leptons has a term which 

can be written (ignoring massive fields): 

't -l l ( 3 3 8 8) 
= 2'~h"YJ.t'l/JL 9AO' A 11 - gsB11 A 

= '!_;pL "'(11 '1/J~(9A0'3 sin BsAY11 - gs>.8sin BcslVI~) 
2 

= '!_ijJ~ "'(11 '1/Ji(gA0"3tan BsAcos BsA - gs>.8sin Bcscos BsA)Y11 
2 

So the hypercharge of the left-handed leptons will be: 

yl/Jl 
L 

g' 

(gAtanBsA- ~sinBcs) cosBsA 

~gAcos BsAtan BsA 

= -1 
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The hypercharges of the other fields is listed in table (5.1) and each agrees 

with its Standard Model value. 

5.2.3 Anomalies and Extra Fields 

Anomalies have been thoroughly studied in a noncommutative context [22, 

23, 58, 59]. Unlike the commutative anomaly cancellation conditions (section 

4.4) noncommutative theories have a much more stringent condition. The 

contribution from a chiral fermion is proportional to: 

(5.23) 

where right and left handed fermions give a contribution of opposite sign. 

Notice that the first term on the right-hand side of equation (5.23) looks like 

the commutative piece but the second term is new. The generally accepted 

conclusion is that in order for a noncommutative theory to be free of chiral 

anomalies, the theory must be vector-like. 

The matter content introduced so far is chiral, as it must be in order to match 

the Standard Model matter content at low energies; we have left-handed (but 

no right-handed) fermions under the U8 (3) gauge group that will become the 

SU(2)L group in the low-energy limit of the theory. To fix the problem we 

introduce three extra heavy generations, one for each observed generation. 

Each particle in these heavy generations must have the opposite chirality to 

their Standard Model counterpart. 

Although these extra generations circumvent the problems with anomalies, 

this might also be possible by adding fewer fields to the theory. However, in 

the next section we will see that these extra heavy generations are essential 
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when writing down the necessary Yukawa terms for the theory. 

We must also add three more fields to the model. As discussed earlier there 

are two conditions that need to be met in order to prevent the IR/UV effects 

rendering the theory unphysical. The first condition 2 eliminates quadratic 

divergences which in the polarisation tensor of the decoupled U(1) gauge 

bosons; for each fermion in the adjoint representation of a gauge group, there 

is a gauge field or complex scalar that is also in the adjoint representation 

(and vice-versa). We have adjoint gauge fields but no adjoint matter so we 

add massive adjoint fermion fields, one per microscopic gauge group; >,A, >,B 

and >. c and note that a supersymmetric theory, the role of these fields would 

neatly be filled by the gaugino. Table 5.2 summarises the extra matter we 

have needed to add to the theory. 

Field Uc(4) UB(3) UA(2) Hypercharge 

EL D -2 

NL 0 

LR = (NR ER) D D -1 

-

UL D D +:!. 
3 

DL D _!': 
3 

-

QR = (UR DR) D D +1. 
3 

->,C DO 0 

-
>,B DO 0 

-
>,A DO 0 

Table 5.2: Representations for the "extra" fields added to the theory 

2the second condition prevents tachyons and puts a constraint on the spectrum of 
masses for the adjoint particles (equation (2.96)) but no further matter needs to be intro­
duced 

101 



Chapter 5: NCSM 5.2 The Noncommutative Standard Model 

5.2.4 Yukawa Couplings 

Unlike the Standard Model, multiple Higgs fields are required in order give 

mass to all the particles. The Yukawa terms can be arranged into two cate-

gories. Firstly, there are terms that involve fields from the same generation. 

Secondly, because we have generations with opposite chirality, we have novel 

terms involving fields from different generations. Additionally, as in the Stan-

dard Model, there can be the usual mixing between the generations but we 

neglect these here for simplicity. 

Yukawa terms of the first type are (for one light generation): 

(5.24) 

and for a heavy generation: 

(5.25) 

These terms on their own are not sufficient to give large masses to all those 

particles which are not observed at low energies, for example there is a fourth 

"colour" of quark that would not interact with the strong force, as the gauge 

group has been broken from SU(4) to SU(3) but would still interact electro-

magnetically. 

The extra three generations in which each particle has the opposite chirality 

to its Standard Model equivalent (as introduced in section 5.2.3 to cure the 

problems with anomalies) also cures the problem here. The possible terms 

that mix a light generation with a heavy generation are: 
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Et _,.~.. -dR + Lt _,.~.. _ L _ Nt ,.~.. _ R zL ,.~..t ut L ,.~..t NL h 
LA 'PAC C RBA'PACqCB + L'PAC1LcA + AB'PB(; LCA + qCB'Ps(; + .C. 

(5.26) 

Notice that in the above generation-mixing terms (which violate baryon and 

lepton number) neither of the Higgs with an electroweak scale vacuum ex-

pectation appear, so leptoquark would only occur at a high energy scale, 

characterised by the a, b and c vacuum expectation values. 

When all possible such Yukawa terms are included, the particle content of the 

model at low energies agrees with the observed spectrum of particles. More-

over the form of the coupling gives a natural explanation for the extremely 

small mass of the left-handed neutrino in the three light generations, the 

see-saw effect will naturally suppress their masses to be of order v2 j a al-

though there are enough parameters to keep the neutrinos in the three extra 

generations above the experimental bounds. 

5.2.5 The Higgs Potential 

The pattern of symmetry breaking and mass splittings in the preceding sec­

tions was dependent on a particular pattern (5.1) of vacuum expectation 

values for the Higgs fields. We now will construct a simple example of the 

scalar potential which generates the vev structure in Eq. (5.1). 

First, using gauge transformations SU8 (3), we put r/Js in the canonical form: 

0 

(¢s) = v 

0 
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Next, we require that (¢k¢8 ;..) = 0 and further use the SUA(2) and SU8 (2) 

transformations3 to diagonalise ¢ BA: 

v 0 

(¢s;..) = 0 0 

0 b 

(5.28) 

Next we turn to ¢cl3 and require that (¢cl3¢B) = 0. We also use SUe( 4) to 

simplify ¢cl3 further, such that: 

0 0 0 

0 0 0 
(¢cl3) = (5.29) 

0 0 f 

9 0 a 

At this stage to achieve relatively simple expressions in (5.27),(5.28),(5.29), 

we have used all the available gauge symmetry and the orthogonality condi-

tions which follow from the potential: 

(5.30) 

This essentially leaves the third bi-fundamental Higgs unrestricted at this 

stage, 

(5.31) 

Before imposing restrictions on ¢ AC' we would like to first further simplify 

the expressions (5.27),(5.28),(5.29). 

3 SUB(2) is the subgroup of SUB(3) which leaves (5.27) invariant. 
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We introduce another term in the scalar potential, 

(5.32) 

where V 8 s is a bilinear combination of Higgs fields: 

(5.33) 

On the right hand side of (5.33) the indices A, A and C, Care summed over, 

but not the indices B, B which are left free, so that V 8 s transforms in the 

adjoint of SU8 (3). The scalar potential (5.32) contains a trace over gauge 

indices, hence B, B are finally summed over, and the Higgs potential (5.32) 

is a gauge singlet. 

At the minimum of the potential (5.32) we have, 

liW -191 2 o 
0 lvl2 

-gat 0 

-gta 

0 

lbl2- lal2- 1!12 

and the vacuum solution is: 

(5.34) 

(5.35) 

We continue reducing the number of free parameters in the vev structure in 

a similar way to the considerations above and introduce another term in the 

scalar potential: 

(5.36) 
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where Ecc is defined as 

0 0 0 0 

¢cl3¢kc 
0 0 0 0 

Ecc (5.37) 
0 0 1112 fat 

0 0 jta lal2 

The potential (5.36) is minimal at 

a= /-l2 ' f = 0' (5.38) 

which complements the configuration (5.35). 

We now return to the so far unconstrained Higgs field (5.31) and write down 

new terms in the scalar potential 

(5.39) 

where 

r. _ ~ ~t + ~t ~ K _ - ~ _ ~t ~t ~ _ 
~AA = -'f'AC'f'cA 'f' AfJ'f'BA ' CC = 'f'CB'f'a(;- 'f'cJi'f'AC · (5.40) 

The minimum of (5.39) is 
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The combined vacuum configuration gives 

5.3 Summary of the Chapter 

The model that has been introduced in this chapter is constructed to ful­

fil the constraints placed on a noncommutative model as explained in the 

introduction to this chapter. 

In order to meet these requirements we have been forced to introduce new 

matter fields. Because of the UV /IR mixing we have used the gauge group 

U ( 4) x U ( 3) x U ( 2). In order for this group to be broken to the Standard 

Model it has been necessary to introduced three new Higgs fields in addition 

to the Standard Model Higgs. Because the matter fields are charged under 

larger groups they have extra "flavours" (e.g. U ( 4) rather than SU ( 3) of 

colour). These extra fields will naturally become heavy if Yukawa couplings 

are introduced which mix the three observed light generations of matter with 

three heavy generations each field having the opposite chirality to its light 

generation equivalent. These extra heavy generations also cure the problems 

of noncommutative gauge anomalies which require the theory to be vector­

like. Lastly, in order to cause the quadratic divergences to cancel we have 

introduced three heavy, adjoint fermions, one charged under each U(N) gauge 
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group. 

Although we have been forced to introduce many new fields, it seems that 

this is the minimum number if the world is indeed noncommutative. As 

the introduction to this thesis argued, noncommutative theories are well 

motivated. Firstly they are a possible low-energy limit of string theory and 

more generally we would expect any quantum theory of gravity to include a 

ultra-violet cut-off which prevents positions of particles from being measured 

with an arbitrarily high accuracy. 

More work will be needed (as set out in the next chapter) before we can tell 

whether the world is really noncommutative or not. 
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Conclusions 

"At least I know I'm bewildered about the really fundamental and 

important facts of the universe. " Treatle nodded. "I hadn't looked 

at it like that," he said, "But you're absolutely right. He's really 

pushed back the boundaries of ignorance. " 

Discworld Scientists in "Equal Rites" by Terry Pratchett 

As the earlier chapters have shown, in some respects noncommutative quan­

tum field theories are very different to their commutative counter-parts. 

What is, perhaps, more surprising is that in many ways they are very similar. 

Given the radical change to the core principles of the theory caused by the 

introduction of non-locality it might have been expected that constructing 

models which, at least at low energies, resemble our commutative Standard 

Model would prove insurmountable. 

Our review of noncommutative quantum field theories, carried out in chapter 

2, introduced many ways in which such theories are novel. We have seen that 

U(N) groups (rather than the SU(N) groups used in the Standard Model) 
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are the natural choice to create renormalisable, noncommutative quantum 

field theories with. We saw that the the allowed representations were the 

fundamental, anti-fundamental, hi-fundamental and adjoint groups. A U(l) 

group is non-abelian in noncommutative theories, and as such the charge of 

particles is fixed to be 0 or ±1. Critically, the ultra-violet/infra-red mixing 

causes the coupling of a U(l) gauge group to go to zero in the infra-red. This 

decoupling also applies to the trace U(l) of a U(N) gauge group, causing it to 

be dynamically broken into SU(N) (and the decoupled U(l)). Quadratic di­

vergences were also considered. In order to remove the quadratic divergences 

it was found that there needed to be the same number of fermionic and 

bosonic degrees of freedom in the adjoint representation. Ultra-violet/infra­

red mixing effects could still generate a tachyonic mass for the decoupled 

trace U(l) gauge boson however tachyonic masses could be avoided if the 

masses of fields in the adjoint representation fulfilled a certain requirement 

(see (2.96)). 

We saw in chapter 3 that the logarithmic divergences which cause the decou­

pling can be modelled with effective actions that contain open Wilson lines. 

These actions are explicitly U(N) gauge invariant but they are dressed with 

higher-derivative operators that become irrelevant in the infra-red. 

Chapter 5 introduced the Noncommutative Standard Model. The model 

meets all the key constraints imposed by noncommutativity. In particular 

the model was based on U( 4) x U(3) x U(2) rather than SU(3) x SU(2) x U(l). 

The gauge-group is broken to the Standard Model at low energies but the 

larger gauge group is necessary in order to prevent the ultra-violet/infra-red 

effects decoupling the U ( 1) of hypercharge. These effects have been ignored 

in earlier models, making them unviable as models of the real world. It 
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was found that in order to replicate the field content of the Standard Model 

new fields have to be introduced. Firstly a fermionic "partner" needs to be 

introduced for each gauge boson in order to ensure the model contains no 

quadratic divergences. In addition it was necessary to add three generations 

of right-handed matter. These extra generations made it possible for the 

model to be free of noncommutative anomalies which require that the matter 

content be vector not chiral. These extra generations also allow Yukawa 

terms which cause the extra flavours (caused by the larger gauge group) to 

be given a large mass. 

Now such a model has been constructed, the obvious question is: what di­

rection should future related research take? There seem to be two related 

avenues of research, both of which would be highly interesting. Firstly, the 

decoupled U ( 1) degrees of freedom provide the possibility of creating a dy­

namically broken supersymmetric version of the model presented in this the­

sis [57]. If realistic mass spectrums could be generated by adding Fayet­

Illiopoulos terms to the decoupled U ( 1 )s, eliminating the need for "soft" 

supersymmetry breaking terms it would be a massive step forward. 

It would also be interesting to study the phenomenology of the model pre­

sented here. It might naively be expected that because of the UV /IR mixing, 

low energy experiment should be able to set very stringent limits on noncom­

mutativity, even at very high energies. However because the actual effects 

cause the affected degrees of freedom to become unobservable, it is not so 

straight-forward. However a detailed study has not been performed. It may 

be possible to set tight limits or even rule out the model. 

In conclusion, the model presented here may be just the beginning and will 

hopefully generate significant engaging new research in the future. Being ex-
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tremely optimistic, the new matter predicted by the model may be discovered 

by the LHC and therefore we look forward to the future with interest. 
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Appendix A 

Generators of SU(4) 

In the last chapter of this thesis we take the generators of S U ( 4) to be ta = ~ Ta 

where a= 1..15 and the ra are: 

0 1 0 0 0 -i 0 0 1 0 0 0 

1 0 0 0 '/, 0 0 0 0 -1 0 0 
Tl= 

0 
T2 = 

0 0 0 0 
T3 = 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 -'/, 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 
T4 = 

0 
Ts = 

0 0 0 
TG = 

0 1 0 0 1 0 0 '/, 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 1 

0 0 -'/, 0 1 0 1 0 0 0 0 0 0 
T7 = Ts=- Tg = 

0 '/, 0 0 y3 0 0 -2 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 1, 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 '/, 

TlO = Tu = 
0 0 0 

T12 = 
0 0 0 0 0 0 0 0 0 

-i 0 0 0 0 1 0 0 0 -'/, 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 1 0 1 0 0 
T13 = T14 = T1s =-

0 0 0 1 0 0 0 '/, y'6 0 0 1 0 

0 0 1 0 0 0 -'/, 0 0 0 0 -3 
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