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Abstract 

The recent discovery of a new maximally supersymmetric background for the 

type liB superstring theory has revived the interest in light cone string field theory. 

This background is a plane wave background with the additional support of a non­

trivial self dual Ramond-Ramond 5-form field strength. It can be quantised in the 

light cone gauge and hence it naturally fits into the framework of light cone string 

field theory. 

In this thesis we re-examine the causality and locality properties of string theory 

in the fiat background and compare it with the recent results for string theory in 

this plane wave background. We formulate the causality requirement in terms of the 

commutativity of the string field, as it is usually done in point particle field theory. 

We find that the string light cone in the plane wave background shares similar 

properties with the string light cone in the fiat background. Even more interesting 

is that, unlike the fiat background theory, string interactions in the plane wave 

background do not modify the causal structure of the theory. This has interesting 

consequences for the choice of the 3-string vertex in the plane wave background, a 

topic that is still an active subject of research. 
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Chapter 1 

Introduction 

Causality means that the cause must precede the effect. Two events are causally 

related if the past event could in principle influence the future event. Since every 

physical process is at the bottom line a scattering process, we can say that two 

events are causally related if an object could travel from the past event to the future 

event. In order to determine the causal relation of two events, it is not necessary 

for such an object to actually be involved, we are not studying the details of the 

process. It is only sufficient to determined if it could exist in principle. If the answer 

to this question is "yes", then the two events are causally related, otherwise they 

are not. 

1.1 Causality in Classical Physics 

In Newtonian physics, the answer to this question is always "yes". There is ab­

solutely no reason why any physical object can not travel fast enough and thus 

starting from one event, to reach any future event. However we know that Newto­

nian physics are only an approximation. A more rigorous theory (that has past so 

far every experimental test) is special relativity1
. In special relativity, the notion of 

causality changes radically. 

1 A good book dedicated to special relativity is [3]. Alternatively, the first chapter of books 

on general relativity provide a good review of special relativity. A few that might be of interest 

are [4], [5], [6], [7]. 

1 



1.2. Causality in Quantum Physics 2 

Special Relativity places an upper bound on the speed an object can achieve. 

This is of course arithmetically equal to the speed of light in the vacuum c. Nothing 

with mass can travel faster than light and only massless particles can travel exactly 

with the speed of light. Therefore, it must be clear, even to the non expert, that now 

not all events can be causally related to each other. Two events, that their causal 

connection would require a mediator travelling at superluminal speed can not be 

causally related any more. 

Given an event (chosen arbitrarily), we can construct a hypersurface in spacetime 

that will divide spacetime clown to two regions. One will contain all the events that 

are causally related to our reference event (past and future) and a second region of 

all the events that are causally unrelated. This hypersurface has a conical shape and 

it is called the light cone. Events falling inside the light cone are the causally related 

events and we say that they are timelike separated, while events that fall outside the 

light cone are those that are causally unrelated and we say that they are spacelike 

separated. The marginal case, namely events that fall exactly on the light cone, are 

considered to be causally related, only that it requires for the mediator object to 

travel exactly at the speed of light. These events are called lightlike separated. 

1.2 Causality in Quantum Physics 

This however is not the end of our story. We know that at a very fundamental level 

the Universe is quantum mechanical. Therefore, we have to examine causality within 

the framework of quantum mechanics. Naively, we would ask whether a particle 

can propagate from one event to an other. We would expect for the amplitude of 

propagation to be zero outside the light cone, but it turns out that it is not, even 

when we are working with the relativistic energy-momentum relation. 

But we are forgetting something here. Quantum mechanical particles are not 

like classical ones, with well defined trajectories, momenta and energies. In fact, the 

Heisenberg uncertainty principle permits them to do all sorts of unnatural things, as 

long as they can go undetected. The key word here is detection (or measurement). 

Causality in a quantum theory will be preserved if measurements at spacelike sepa-
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rations are not allowed to interfere. Physical quantities that we can measure corre­

spond to (hermitian) operators. The condition that the measurements of a physical 

quantity at two different spacetime points, which are spacelike separated, will not 

interfere, translates into the requirement that the commutator of the corresponding 

operator vanishes identically. 

The marriage of special relativity and quantum mechanics has been possible 

under the roof of quantum field theory2
. It is within this formalism that we should 

examine causality. The basic object in quantum field theory is the field, a function 

over spacetime that we promote to an operator. The field can or can not be an 

observable by itself. But every observable of the theory is built up by the field 

and its derivatives. Therefore, causality in quantum field theory is formulated as 

the local commutativity of the fields. The requirement for causality translates into 

the requirement that the commutator of the field vanishes identically for spacelike 

separations. Then it can been shown that quantum field theory does indeed preserve 

causality as we know it from classical physics. 

This idea of causality is called microcausality or microscopic causality. This is 

because we require the commutator of the field to vanish for spacelike separations, no 

matter how closed they are spatially. We make this distinction because in a quantum 

theory one can examine causality using the S-matrix. The S-matrix is defined as 

the operator that gives the amplitude of transition of a system, from a known state 

in the far past to another state in the far future. In a relativistic theory, states have 

specific Lorentz transformation properties. Lorentz invariance of the theory implies 

the Lorentz transformation of the S-matrix. If we can construct such a theory, it 

would preserve causality. It turns out however, that this can be achieved if the 

theory is formulated in terms of fields, if it is a quantum field theory. Then, in order 

for the S-matrix to have the correct Lorentz transformation properties, we need the 

commutator of the fields to vanish outside the light cone and the interactions to be 

local in the fields. The later condition is the requirement of locality. 

Causality studied with S-matrix would correspond to macroscopic causality in 

2 For an introduction to quantum field theory see [8], while [9), [10] and [11] offer a more thorough 

treatment. 

------------------
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classical terms. But the conditions of locality and microcausality (formulated as 

the commutability of the fields) ensure macroscopic causality. Although one can 

go back and forth between the two formulations of causality, it is our feeling that 

microcausality, with the addition of locality, is more fundamental than macroscopic 

causality. 

1.3 String Theory 

It would be natural to ask the same questions for string theory, namely if the theory 

is causal and how. But first we have to see what is string theory. 

1.3.1 String theory in a nutshell 

As the name suggests, it is a theory studying the motion of a string. A string in 

return is an one-dimensional extended object. It can be open or closed. 

String theory3 aspires to be a unified theory of everything. As far as our knowl­

edge goes, there are four interactions in nature (electromagnetic, weak nuclear, 

strong nuclear and gravitational). The first three are described by a quantum field 

theory, to a very high accuracy. Electromagnetic and weak interactions are uni­

fied under the umbrella of electroweak theory. Gravity on the other hand seems 

to escape a consistent quantisation. Even with the inclusion of supersymmetry, a 

consistent quantum theory seems to be elusive, the problem being that the theory 

is non-renormalizable. 

String theory promises to bring all four interactions and all the elementary par­

ticles of nature under the same roof. This is done as follows. In ordinary field theory 

(like the Standard Model), every particle is perceived as a fundamentally different 

entity. It is for this reason that each particle species is assigned a different field. On 

the other hand, in string theory there can be two kinds of strings at most, open and 

closed strings. 

3String theory is well covered in the literature, with many books available. The reader may 

consult wish to consult any of [12], [13], [14], [15], [16], [17], [18], [19], [20], [21] for a review of 

string theory. 
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However, there is a major difference between strings and point particles. Point 

particles can have one kind of motion, that is, the only thing they can do is move 

around, from here to there. Strings on the other hand have two kinds of motion. 

First, they can move around as whole objects. This is no different from what point 

particles can do. But there is a second kind of motion that they can perform and 

that is that they can oscillate. This is in a sense an internal motion of the string, 

something that the point particle lacks. 

The string can not oscillate in any way it wishes, but only at specific ways, called 

modes of oscillation. These modes turn out to behave like different particles. Strings 

vibrating in a certain way behave like scalar particles, strings vibrating in a different 

way as gauge bosons and, with the inclusion of supersymmetry, we can have string 

vibrating in such a way as to be spin one-half fermions. Instead of having many 

different elementary particles as the building blocks of the Cosmos, one has only 

two, an open string and a closed string. It is because of their nature as extended 

objects and their modes of internal oscillations that we can perceive them as different 

objects. Let us give an example from everyday life . Our friend George can appear 

different from day to day because of the way he dresses. But he is always the same 

person. The same applies here. A string can appear as a different particle, but it is 

always the same object. 

String theory was first brought into physics in the late 60's4 to explain the high 

number of strongly interacting particles produced in the experiments. Although it 

was a promising theory, it suffered from two major drawbacks. One was that consis­

tency of the quantum theory demanded that spacetime had twenty six dimensions 

instead of the usual four. Even with the addition of fermions to the string model, 

the dimensions of spacetime had to be ten, six more than observed. Furthermore, 

the closed string sector had naturally a massless spin 2 particle that could not be 

identified with any particle observed. Add to that the arrival of the quark model 

and the description of strong interaction by an SU(3) Yang Mills theory and it is 

no surprise that string theory was abandoned as a theory for strong interactions. 

4It was the work of Veneziano [22] that introduced the dual models into high energy physics. 

A little bit later it became clear that these corresponded to strings. 

----------------- -
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But the spin 2 particle was to become the most prominent feature of string theory. 

It turned out that this particle had all the properties of the graviton, the hypothet­

ical particle that mediates the gravitational interaction. Closed string theory (and 

its supersymmetric extension) among other things includes gravity. Starting with a 

closed string in a Minkowski spacetime, one can get gravitational interactions with­

out imposing any additional requirements. Add to that the fact that the open string 

naturally includes a vector gauge boson (which would correspond to a Yang Mills 

theory) and the picture is almost complete. A theory built upon open and closed 

strings can in principle accommodate all the known interactions of the Standard 

Model plus gravity. For a theory that would include in the same way fermions and 

it will also be consistent and without anomalies, one has to include supersymmetry. 

Even then it turns out that there are only five acceptable theories, which are called 

Type I, Type IIA & liB, Heterotic 80(32) and Heterotic E8 x E8 . 

But this is not all in string theory. String theory is more than a theory of 

strings. It turns out that it contains other dynamical objects of higher dimensionality 

called D-branes5 . These objects were originally discovered by studying open strings 

with Dirichlet boundary conditions (hence the designation "D" ). Originally Dirichlet 

boundary conditions were disregarded because they would break spacetime Lorentz 

symmetry6 . But it turned out that they can be imposed consistently, provided 

one includes an additional object in the theory, the D-brane. These D-branes are 

solitonic solutions of string theory. 

Furthermore, it was discovered that the five superstring theories are not totally 

independent. There is a web of dualities that can turn one into the other. And 

what is even more bizarre, in a certain limit type IIA string theory turns out to be 

the limit of the 11-dimensional theory, which nobody knows the exact context. This 

theory has been named M-Theory7 and its low energy limit is the 11-dimensional 

supergravity. There are some arguments that M-Theory might be a theory of mem­

branes, but so far, to the best of our knowledge this is more a speculation than 

5 For a comprehensive review see [20] 
6 The first time that Dirichlet boundary conditions were considered in string theory was in [23]. 
7See [24], [25]. For a review on M-theory, see [26]. 
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proof. 

Although string theory has been studied in the flat Minkowski spacetime, there 

are other backgrounds that are as interesting, if not more. For string theory one 

such background is the AdS5 x 8 5 , which is a solution of the type liB supergravity. 

String theory in this background is hard to solve and in practise we have been 

unable to go beyond the supergravity limit. Nevertheless, a very interesting feature 

arose. String theory in this background is believed to be dual to a super Yang 

Mills with N = 4 supersymmetry, living on the boundary. This is the celebrated 

AdS/CFT correspondence8
. Dual theories means that we can calculate propagators 

and amplitudes of one theory using the other theory. The duality is a strong/weak 

coupling duality, which means that a calculation in one theory for coupling constant 

g corresponds to a calculation in the dual theory for coupling constant g1 
"' ljg. 

This in return gave rise to the idea of holography9 , which states that physics in 

the bulk can equally well be described by the physics on the boundary. This comes 

in touch with black hole10 thermodynamics, where the entropy of the black hole 

depends on the area of the event horizon, not on the volumen. 

String theory has been well developed as a first quantised theory. By that we 

mean that when we quantise the theory we promote to operators the position of 

the string and the conjugate momentum. Effectively, this means that we study the 

motion of a single string. This formulation of the theory has been successful, but it 

has its limitations. 

From the point particle theories, we know that a better formulation would be 

one based on fields 12 . Perturbation theory is easier to derive, symmetries to be 

incorporated and most of all, it is the natural framework for the study of non­

perturbative phenomena. The same construction in string theory has not been 

8 The correspondence originated from the Maldacena conjecture [27]. Some reviews are [28], 

[29], [30], [31], [32]. 
9 See [33], [34] and for reviews [35], [36]. 

1°For a review of black holes in string theory, see [37]. 
11 The volume of the black hole is defined as the volume enclosed by the event horizon. 
12 According to Weinberg, reconciling special relativity with quantum mechanics leads necessarily 

to quantum field theory, see [9]. 
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successful yet. We can write down a full string field theory, for open and closed 

string, both bosonic and supersymmetric in the light cone gauge13
. The advantage 

is that the theory is unitary, without ghosts and ea.<;y to quantise in a canonical way. 

The price we pay is that manifest spacetime covariance is lost and so is string gauge 

symmetry. 

For open bosonic string, we do have a covariant and gauge invariant string field 

theory by Witten [51]. But for closed string and/or superstrings, things are not very 

clear yet. In particular, the problems encountered in a closed string field theory is 

that the action seems to be non-polynomial. The extension to superstrings can, in 

principle, be accomplished in two ways. One is to base the analysis on the RNS 

formalism of the superstring, which as a first quantised theory has been quantised 

with covariant methods. For open superstrings, one can write a theory very similar 

to Witten's. The problem here is that on has to include an extra operator in the 

kinetic term, called "picture changing operator". The other way would be to base 

the construction on the GS formalism. However, the GS superstring has eluded so 

far our attempts for a covariant quantisation (although progress has been made with 

the recent work of Berkovits [52], [53], [54], we feel that there is still work to be done). 

Until this problem is solved, we can not go far with a full superstring theory ba.<;ed on 

the GS superstring model. To that, one should add the problems of quantising string 

field theory. In particular, although there is a quantisation procedure for Witten's 

theory [55] using the Batalin-Vilkovisky approach (see [56], [57] for a review), we 

feel that the question on how to incorporate closed strings has not been answered 

satisfactorily. We know that a string theory based on open string inevitably includes 

closed strings as well. Without a satisfactory closed string field theory, any open 

string field theory will be incomplete. For these reason, we will restrict ourselves to 

the light cone string field theory. 

13Light cone string field theory originated from the functional methods developed by Manclelstam 

to describe the 3-string interaction in [38) for the bosonic and in [39) for the Ramond-Neveu­

Schwarz. String field theory in the light cone gauge was further developed in [40), [41], with 

further contributions in [42), [43), [44). The extension to the superstring, based on the Green­

Schwarz model was carried out in [45), [46), [47), [48). Two very good reviews are [49), [50) 



1.3. String Theory 9 

Thus, we see that string theory is more than one would originally guess from the 

name. But the discussion has taken us far from our original subject, causality. 

1.3.2 Causality in String Theory 

Strings are extended objects, so it would be interesting (to say the least) to examine 

causality in the string sense. Again there are two ways to proceed in a quantum 

theory of strings. The first is to examine what would be microcausality, i.e. the 

commutability of the string field. The other would be to examine the string S­

matrix. Here we will present what would be microscopic causality in string theory. 

For that purpose we will use string field theory in the light cone gauge. 

The study of causality in string theory mimics the study of causality in field 

theory. One first writes down a string field theory, which for our purpose will be in 

the light cone gauge. Then we express the requirement of causality as the condition 

for the commutator of two string fields to vanish identically. The condition that will 

emerge, will give us the string light cone. The result is quite surprising and different 

from the point particle case. The string light cone is different form the particle light 

cone, the modification coming from the internal oscillating modes of the string. 

However one finds that the zero mode of the string, which corresponds to the centre 

of mass of the string, behaves like a particle. Furthermore, if one truncates the string 

field down to component fields, then one recovers the point particle light cone. For 

string theory in the fiat, Minkowski spacetime, this calculation was first done in [58], 

with further comments in [59], then extended to the superstrings in [60]. 

However, things become more interesting when one examines how interactions 

affect the string light cone. For string field theory in a fiat, Minkowski, background it 

was first found in [61] and then in [62] that amplitudes receive contributions outside 

the string light cone. Interactions do modify the string microcausality. 

In that light, it was interesting to consider how things get modified in the plane 

wave background14
. Plane waves for string theory arose as Penrose limits of AdS5 x 

S 5
. String theory (more specifically type liB superstring theory) in this background 

14This is also referred in the literature as the pp-wave background. 
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can be solved exactly in the light cone gauge. Based on that one can write a string 

field theory in the light cone gauge, with all the advantages and disadvantages of 

the same theory in the fiat background. One important property of the plane wave 

background is that the metric is dependant on a parameter J.t (with units of mass). 

When one takes the limit p, ---t 0, the plane wave background reduces smoothly to 

the fiat one. It is natural that we demand the plane wave string field theory to 

reduce to the fiat string field theory in this limit. But things turn out to be more 

interesting than this. 

Being able to study and solve string theory in a non-trivial background other 

than the fiat one is not a common thing and should not been taken lightly. We are 

really lucky to be able to do so for a string in a plane wave background and we 

should take up the opportunity to explore string theory as far as possible. 

But the importance of the plane wave does not stop here. As we said, plane 

waves originated from AdS5 x S5
. String theory in AdS5 x S5 is conjectured to be 

dual to aN= 4 Super Yang Mills. So far, as we said before, we have not been able 

to study string theory in the AdS5 x S5 beyond the supergravity level. But if we can 

study string theory in a certain limit of AdS5 x S5 , namely the plane wave, and solve 

it, then we could go ahead with the correspondence. In fact it has been proposed 

that string theory in the plane wave is dual to a certain sector of the super Yang 

Mills. This is the famous BMN limit and has attracted a lot of attention lately. 

Studying the causal structure of string theory in the plane wave is the next step. 

It has been found in [1] that for the free theory, the string light cone exhibits the 

same departure from the corresponding point particle light cone, due to the internal 

oscillating modes of the string. Furthermore, in the J.t ---t 0 limit, the plane wave 

string light cone reduces to the fiat background string light cone. 

The really interesting part is when one wants to study how interactions in the 

plane wave modify the string light cone. The surprising thing is that they do not! 

Contrary to the fiat case background, in the plane wave background the interaction 

do not modify the string light cone. This is quite surprising and suggests that at a 

deepest level string theory in the plane wave background in the limit J.t ---t 0 is not 

going smoothly to string theory in the fiat background. 
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1.4 Outline 

The structure of the thesis is as follows. 

In chapter 2 we provide an overview of light cone string field theory in the flat 

background. After some preliminaries for the nature of the string field, we formulate 

string field theory for open bosonic string, free and interacting. Emphasis is given 

in the 3-string interaction. Then we proceed with formulating the closed string field 

theory. Finally, we proceed with the supersymmetric extension. Throughout the 

chapter, we emphasize on the methodology of constructing the string field theory, 

leaving the details for the literature. Our ultimate purpose is to use string field the­

ory to study the causal structure of string theory and for that purpose we emphasize 

on those aspects that we will need later on. 

In chapter 3 we provide a brief overview of string theory in the plane wave 

background. After explaining how the plane wave came into string theory and its 

importance, we demonstrate how the theory can be solved as a first quantised one. 

Based on that, we proceed with the formulation of a string field theory. Again, our 

purpose is to give an overview, emphasizing on the key points of the theory that we 

will need later on, leaving the details for the literature. 

In chapter t1 we study (micro)causality in string theory. We start with a more 

detailed discussion of the light cone in classical physics and causality in quantum 

field theory, only to proceed and discuss the string light cone in both the flat and the 

plane wave background for a free string. The construction of the string light cone, 

as we will see, mimics the construction of the light cone of a point particle using 

field theory methods. We conclude this chapter with a few important remarks. 

Then in chapter 5 we examine how string interactions affect the causal structure 

of sting theory. There we will see how the string light cone gets modified by inter­

action in a flat background, while it does not acquire any additional contributions 

in the plane wave background. 

Finally, in chapter 6 we collect the main results of chapters t1 and 5 for a more 

detailed discussion. In addition we discuss about how one could go beyond light 

cone string field theory and study causality. We conclude with open questions that 

we feel should be addressed sooner or later. 
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In the appendices we have included material that although useful, somehow 

fall outside the main line of argument. In order not to disrupt the reasoning, we 

preferred to included them as appendices. Appendix A provides a brief review of the 

first quantised string in the light cone gauge. Appendix B deals with applications 

of the causality condition (formulated as the local commutability of the fields) in 

point particle field theory. Appendix C presents the study of a certain amplitude in 

both the flat and the plane wave background. 



Chapter 2 

Light Cone String Field Theory 

In this chapter we will provide a brief introduction to the field theory of strings. 

There is no intention to present a full account of string field theory, that would be 

impossible in the limited space we have. Rather, we will restrict ourselves on string 

field theory in the light cone gauge, since this theory will be sufficient for our further 

discussion. 

After a few important preliminaries, we will formulate a string field theory for the 

open bosonic strings propagating in a flat Minkowski spacetime. In developing the 

theory we will follow the analogy with developing a field theory for point particles. 

Then we present the closed strings theory. Finally we proceed with the formulation 

of the supersymmetric string field theory, still in the light cone gauge. 

Throughout this chapter we assume that the reader is familiar with the first 

quantised theory of strings. The subject is well covered in the literature, see [12], 

[13], [14], [15], [16], [17], [18], [19], [20], [21]. The light cone gauge was first introduced 

for strings in [63]. Bosonic string field theory in the light cone gauge for a string 

propagating in a Minkowski spacetime is discussed in [40], [41], [44]. The 3-string 

vertex is further analyzed in [38], [43], [42]. Superstring field theory was developed 

in [45], [46], [48]. There are also two very good reviews of superstring field theory, 

[50], [49]. 

We work in units where n = c = 1, but we keep a' arbitrary. We leave the 

dimensionality of spacetime, D, arbitrary with the understanding that D = 26 for 

bosonic strings and D = 10 for superstrings. 

13 
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2.1 Towards a Field Theory of Strings 

A point particle field mathematically is a map from the points of a manifold (usually 

this is the Minkowski spacetime), to a set of numbers. Take for example the simplest 

case, the real Klein-Gordon field. It is just a function ¢(x1L). With that on hand, one 

seeks an action, written as the integral of a Lagrangian. The equations of motion 

then, i.e. the differential equations that the field obeys, are easy to derive from the 

requirement JS = 0. By solving them, one knows how the field behaves in a given 

situation. Quantizing, means that the function ¢(x1") is promoted to an operator. 

Then, one expands in a set of complete eigenstates. For the free theory it turns 

out that these states describe a finite and discrete sets of particles. Of course this 

can be generalized to define fields that give complex values or define vector, tensor, 

spinor fields. 

We would like to do the same with strings. The reason is that in the case of 

point particles this turns out to be the natural framework to describe interactions 

and systems of many particles (especially when their numbers vary). Furthermore, 

although mathematical difficulty forces us sometimes to have only perturbative solu­

tions, this is the appropriate framework for studying non-perturbative phenomena, 

like solitons and symmetry breaking. Even perturbation theory comes out more 

naturally from a field theory. So far, for strings we have a so called "first quantised 

theory", i.e. a theory where we are concerned with and study the motion of only 

one string. It is only natural to try to formulate a field theory for strings. 

A string is an one-dimensional extended object, either open (like a piece of rope) 

or closed (like a loop). Mathematically this is described as a curve. Generalizing 

the concept of a point particle field, we claim that the string field will be a map 

from curves of the spacetime manifold to real numbers. Recall that a curve in a 

manifold can be parameterized with a parameter, say 0'. Then every point along 

the curve is determined by its coordinates, XJL(O'), functions of the parameter 0'. 

However the concept of the curve is more fundamental than its parametrization. 

After all, for the same curve (the same geometrical object) we can use many different 

parameterizations. But the object itself remains the same. Therefore, this map from 

curves to numbers has to be a functional that we will denote by I}>[X(O')] for open 
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strings and w[X(a)] for closed strings. There is no explicit dependance on a. Each 

curve (string) is mapped to a number and this is independent of the parametrization 

we chose for the curve. 

In the framework of point particle physics, we treat every elementary particle 

species as a fundamentally different entity and therefore we assign a different field to 

each of them. An electron is different from a photon and they are both different from 

the Higgs particle. Their properties dictate that the electron should be described 

by a spinorial field, the photon by a vector field and the Higgs by a scalar. This is 

the reason that so many different fields are required in the Standard Model. 

On the other hand, this picture changes completely with strings. Particles are 

not completely different. Rather, now they are perceived as different manifestations 

of the same object, the string. The fundamental object is the string and we have 

only two kinds of strings, open and closed. Therefore, all we need is a string field for 

open strings and another one for closed strings. A string field theory should contain 

at most just two fields. This is a major difference from point particle field theories. 

2.2 Open Bosonic String Field Theory 

2.2.1 The free theory 

Let us start by formulating the simplest possible string field theory, that for open 

bosonic strings, living in a flat Minkowski spacetime, in the light cone gauge. We 

follow [40]. Let us denote the string field as <P[X(a)], a functional of the open string 

coordinates X(a). We take the range of a to be in the interval [0, 1r]. 

The reason we choose the light cone gauge is the following. Suppose that £ is 

the Lagrangian of the full theory. The conjugate momentum would be 

5£ 
II[X, a] = (~). 

fJ 8XO 
(2.1) 

X 0
( a) represents the infinity of "times" along the string and this is the reason that II 

has an explicit a dependance. However, this prevents an one to one correspondence 
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between the string field and its momentum. By choosing the light cone gauge1
, we 

solve this problem. 

The first step is to make a change in the coordinate system, going to light cone 

coordinates 

x± = ~ (xo±xD-1). (2.2) 

We will denote the rest of the coordinates as Xi or X and we will refer to them a.s 

the transverse coordinates. The second step is to impose the gauge condition 

(2.3) 

This effectively fixes a common time along the string. No more infinite times to 

choose from in (2.1). Using the Virasoro constraints, 

(2.4) 

we can determine x-, up to an integration constant, in terms of p+ and Xi. There­

fore the only degrees of freedom left are Xi, x0 (or equivalently p+) and x+ - x+. 

Furthermore, these are the only physical degrees of freedom. 

The physical meaning of the field is that it is the wavefunction of the object 

under consideration. So, the string field is the wavefunction of a string and in the 

light cone gauge, it is required to obey a Schrodinger type equation, 

a 
H<I>[XJ = i ax+ <I>[XJ. (2.5) 

The Hamiltonian of a single string is 

(2.6) 

and it generates translations in T. The Hamiltonian that generates translations in 

x+ is HT/(2a'p+) and it is this Hamiltonian that enters (2.5). We write 

1f r ( ~2 1 ~ ,2 ) 
H = 2p+ lo da P + (21ra')2X . . (2.7) 

1The light cone gauge was first introduced in string theory in [63]. 
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As is usual in quantum mechanics, in the position representation, the position 

X is a multiplicative operator, while the momentum P is a differential operator, in 

our ca.se, 
~ c5 
P= -i------::;. 

8X 
(2.8) 

Equation (2.5) is a functional differential equation. We can convert this into an 

usual partial differential equation with infinite variables. 

For an open string, the mode expansion2 is 

00 

X(O') = x 0 + J2L Xn cos nO". (2.9) 
n=l 

Utilizing this mode expansion (2.9), we can write for H, 

H= 2\ {Ho+ fHn}, 
p n=1 

(2.10) 

where 

(2.11) 

and 

(2.12) 

Notice that each term Hn of the Hamiltonian is the Hamiltonian of a simple harmonic 

oscillator (except for the zero mode, H 0 , which is of course the Hamiltonian of a 

freely propagating particle). 

The equation of motion (2.5) reads in terms of the modes 

2~+ {-a:~, t t. [-a~' + (2::)' (x~)']} q, ~ i!:; 
and can be solved by separating variables. The solution is 

where we have defined 

1 dp 100 

dp+ ei(iJo·xo-x+p--x0p+) 
(27r )D-2 0 27r 

LA (p+,po, {nn) i{nn(xD + h.c., 
{ni} 

00 

f{n!}(xt) =II 'Pl,{nf}(xt) 
1=1 

2See also Appendix A for more details. 

(2.13) 

(2.14) 

(2.15) 
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and 

. ( i) _ vii-
2 

c ({ i}) H . ( /l i) -tcxiJ 2 /(4a'J 
'Pl,{ni} xl - i=l a nl {ni} V 2c;fxl e t • 

Hn(x) are Hermite polynomials and 

Jl/(2o:') 
2ni(n}!)y0f 
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(2.16) 

(2.17) 

is the usual normalization for the eigenftmctions of the harmonic oscillator. The 

fact that the string field is a superposition of simple harmonic oscillators should not 

be a surprise. For the energy we have 

- 1 { ~ 2 1 "'"' ( i 1) } 
p = 2p+ Po + o:' ~ l nl + 2 . (2.18) 

At this point, an explanation about our notation is in order. The index i enu­

merates the transverse directions and its range is i = 1, ... , D - 2. The index l 

enumerates the excitation levels and its range is l = 1, ... , oo. The integer n/ is the 

occupation number in the i-th direction at the l-th level. The notation { nt} stands 

for all possible n}s, in other words, { nt} should be read as nL n§, ... , ni, n§, ... In 

that sense, there is no free i and l index from { nt}. We have introduced this nota­

tion so that we can make the mode expansion for the string field more transparent 

and easier to read. If however, the reader is still confused, we write here the mode 

expansion for the string field without residing on intermediate quantities. It is 

[ + ~ ( )] J dji 100 

dp+ ei(po·xo-x+p- -x0 p+) <P x , x0, X () = 
(27r )D-2 0 27r 

oo D-2 

LA (p+,fio, {n;}) II II 
{nj} 1=1 i=l 

C, ({n;}) H{nll ( {J;x;) e-l(x/)'11<•') + h.c., (2.19) 

where of course Co are given by (2.17). However, we will make frequent use of this 

notation throughout the thesis, as we believe that it is conceptually clear and easier 

to handle. 

From the first quantised theory of strings, we know that the string can manifest 

itself as a massive scalar (with negative mass, the tachyon), a massless gauge boson, 
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a massive spin 2 particle and so on. Within the string field theory framework, the 

corresponding fields for these particle states of the string are obtained by multiplying 

the string field with suitable eigenfunctions i{nl} (x;) and integrating over {xi}. In 

other words, the component fields are 

= D-2 

c{ni}(x+,x(),xo) =]II II (dxUnt(xD) <P[x+,x(),X(a)]. 
l=l i=l 

(2.20) 

We can quantise the theory canonically, by promoting the string field to an 

operator and imposing suitable commutation relations. The equal time commutation 

relations are 

[<P[x+,x0,X(a)],<P[x+,y0 , Y(a)J] = 8(x-- y-) II 8 [x(a)- Y(a)J. (2.21) 
(I 

Equivalently, this means that 

Clearly, A, At are annihilation and creation operators. Their function is to destroy 

(or create) an entire string in the appropriate modes. They must not be confused 

with the creation/annihilation operators of the first quantised theory that create 

(destroy) oscillating modes in one single string. In fact, we make the identification 

A(p+,pn,{nt})JO) <--->II (ait)nl Jp+,pn) (2.23) 
l,i 

between the 1-string states of the field theory Hilbert space and the states of the 

first quantised string Hilbert space. 

The calculation of the free propagator is straight forward to perform. Using the 

identity 

(2.24) 

for the Hermite polynomials, the result is 

(2.25) 



2.2. Open Bosonic String Field Theory 20 

Figure 2.1: Schematic representation of the three string interaction for open strings. 

where 

cbosonic(X· Y) 
open ' l oo d + ( · + ) (D-2)/2 ( . A ~ 2 +) p ~p ZL.l.Xo p _.,.. - + -- - exp e ...... x P 

0 27r 27r ~x+ 2~x+ 

fill yQ; 
1=1 i=l 

1 

2 . · ll'.x+ 
Z Sin 2a'p+ 

(2.26) 

{ 
l / (2a') ( i i ( i 2 i 2) l~x+ ) } exp .. ll'. + 2x1y1 - (x1) + (y1) cos -

2 
, + . 

2z sm 2a,~+ a p 

In the above we have abbreviated ~x+ = x+ - y+, ~x- = x0 - y0, ~x0 = x0 - iJo. 

Notice that this is an infinite product of simple harmonic oscillator propagators, 

corresponding to the internal oscillations of the string, times the propagator of a 

freely moving particle, corresponding to the centre of mass of the string. This is 

something expected from the form of the string field, (2.14). 

2.2.2 The 3-string interaction 

The simplest way strings can interact is by splitting and joining at their endpoints. 

This process involves three strings, hence the name 3-string interaction. Figure (2.1) 

shows a single string propagating and then splitting into two strings, if we take the 

(light cone) time running from left to right. The reverse process is the merging of 

two strings into one (time now in figure (2.1) is running from right to left). The 

worlclsheet for such a process looks like figure (2.2). 
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~ (J2 

(J3 

(JI 

Figure 2.2: The worldsheet for the open 3-string vertex. Strings 1 and 2 merge to 

form string 3. The arrows indicate the way we have parameterized each string. 

Let r = 1, 2, 3 enumerate the three strings3 . Strings 1 and 2 are incoming and 

string 3 is outgoing. We have taken the parametrization of the third string to run 

in the opposite way than that of strings 1 and 2. This means that 

(2.27) 

with a 1, a2 > 0 and a 3 < 0. We ha.ve also defined O:(r) = 2pt) and we introduce a 

common a for the entire strip. It is then 

It will be convenient to take the mode expansion of each string to be 

where 

8(1) = '!9(7r0:] -a), 

8(2) = '!9(a- 1ra1), 

8(3) = 8(1) + 8(2) = 1. 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

30ur presentation is based on [45] and we refer the reader there for the details. For the 3-string 

vertex see also [38], [39], [43], [42], [44]. 
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{) is the unit step function. Then, assuming that the interaction takes place at time 

x+ = 0, the 3-string interaction term of the string field Hamiltonian reads 

3 

H?'n = g jiT(darVX(r)cf>(anX(r)(a)))b(a1+a2+a3) 
r=l 

{J [x(l)(a) + x(2)(a)- x(3)(a)] J-L(a1, a2, a3)· (2.35) 

g is the string coupling constant and 11 is an integration measure. This interaction 

is the simplest we could have and all that it demands is that the worldsheet remains 

continuous as the strings break and merge. Notice that it is a generalization of the 

q} interaction of point-particle field theory. 

Alternatively (and by a simple Fourier transformation), we can write Hin in 

momentum space, 

3 

g J IT ( darDP(r)fi>(ar, P(r))) J(a1 + a2 + a3) 
r=1 

[J [ t. Pr,1 (a)] JL(", a 2 , a 3). (2.36) 

We can also replace the single delta functional with the product of two, 

(2.37) 

The two choices are equivalent. 

The delta functionals are defined as infinite products over the Fourier modes of 

their arguments. Specifically, for the momentum delta functional we have that 

D-2 

IT {J (P(1),o + P(2),o + P(3),o) 
i=1 
00 00 

IT ( . " ( (1) . (2) . ) 
{J P(3),rn + ~ Arn;,p(l),n + Arn;,p(2),n (2.38) 

m=1 n=1 
(1) i (2) i ) + Brn P(l),o + Ern P(2),o · 

The As and the Bs are determined by taking Fourier components of the identity 

3 

LP(r)(a) = 0 (2.39) 
r=1 
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in the interval 0::; r7::; 1r(a1 + a 2). The expansion of the momenta in terms of their 

modes is 

· 1 ( · ~ · nr7 r) 
Ptr) (r7) = 1rlarl P(r),o + 2 ~ P(r),n cos D'r 8r. 

Defining (3 to be 

we have that 

A(I) = -~ r::;::::(- )m+nf3sin(m1rf3) 
mn v mn 1 2 2(32 ' 1r n -rn 

A(2) = -~ r::;::::(- )m ((3 + 1) sin(m1r(J) 
mn Y mn 1 2 2((3 )2 ' 1r n-m +1 

B (l)- B 
m - -0'2 71!> 

B (2)- B 
m - 0'1 1n' 

where we have defined 

2 0'3 -3/2( )m · ( ) Bm = ----m -1 sm m1rf3. 
1f O'J0'2 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

It will be very convenient to have the interaction written in the oscillator basis 

representation. For that purpose, we start with the string field in the momentum 

representation. We obtain it by Fourier transforming (2.14) and it is 

(2.47) 

'l/Jn(P) is the n-th oscillator wavefunction in the momentum representation (see also 

(2.16)). Inserting this expansion into (2.36) we have that, suppressing integrations, 

H open _ 
3 - A(1)A(2)A(3)C({n(1),1}, {n(2J,1}, {nhJ,1}) + ... , (2.48) 

where 

C({ni } {ni } {ni } = 11. J IT dpi dpi "'' ; •1• ; "'' ; (1),1 ' (2),1 ' (3),1 ,_. (1),1 (2),1'P{n(l),l}'P{n(2 ),l}'P{n(:l),l}· 
l,i 

(2.49) 

We have performed all the Ph),o' p(3J,n integrations by means of the delta functions 

(2.39). The dots in (2.48) stand for terms of the form AAAt, e.t.c. 
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Now recall that the momentum eigenfunction of the harmonic oscillator is 

7/Jn(P) =(nip), (2.50) 

where of course (nl is a number basis state and IP) is a momentum eigenstate. a, at 

are of course the ladder operators of the harmonic oscillator. Given that 

(2.51) 

we can write for C 

(2.52) 

It is 

IH) _ jrrd i d i ["' ( 1 ( i )2 i it 1 it it )]lo) 
3 - 1-l l,i P(l),l P(2),l exp ;;; -4 P(r),l + P(r),la(r),l - 2a(r),la(r),l , 

(2.53) 

where all the p(3 ),n have been integrated out using the delta functions. 

This is just an infinite product of Gaussian integrals, that results to 

(2.54) 

where 
3 

W i _ "'A it 1 ( i B(l) i B(2)) 
- L...., (r)a(1·) + 2 P(l) + P(2) ' 

r=l 

(2.55) 

(2.56) 
r=l 

A(3)-" 
rnn- Umn· (2.57) 

The 3-string vertex can be rewritten as 

1 3 00 

IH3) = J-L(det r)-(D-
2
)/

2 exp [2 L L a(r),-mR;;na(s),-n 
r,s=lrn,n=l 

3 00 

+ L L JV~a(r),-m!P' + KIP'2] IO), (2.58) 
r=l m=l 

where 

(2.59) 
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and 

1 
K =--ErE 

4 

This can be further simplified. It can been shown (see [45]) that 

Furthermore, we define 

1 r(mx) 
¢m(x) = m! f(mx +1-m)' 

3 

To= L a,.ln Ia,. I. 
r=l 

With their aiel it can been shown that 

and that 

K=- To 
2a1a 2a 3 

Then, the 3-string vertex can be written as 

For this, it is necessary to choose the measure JL to be 

25 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

(2.64) 

(2.65) 

(2.66) 

(2.67) 

(2.68) 

(2. 70) 

so that the determinants cancel. This in turn is required for the vertex to be Lorentz 

invariant. 
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Figure 2.3: Schematic representation of four open strings interacting at an internal 

point (points B, E are the interaction points). 

2.2.3 The 4-string interaction 

Another way for open strings to interact is by joining and splitting at some interior 

point. Two strings propagate freely until they come in contact with each other. 

Then two new strings can emerge. Figure (2.3) shows the process. 

We take the parametrization of each string to be 0 ::; CTr ::; 1rlarl· Their param­

eters are related as follows 

The interaction term in the Hamiltonian of the theory is 

4 4 

H:pen = ~g2 J IT ( darVX(r)<I>(an X(r)(a))) 8(L ar) 
r=l r=l 

(2.71) 

(2.72) 

(2.73) 

(2.74) 

l nlcql [ ] 
dao IT 8 x(l)(ai)- x(3)(a3)-o(al - ao)- x(4)(a4)-o(ao- a1) 

n(a1-a3) <TJ 

IT 8 [ x(2)(a2)- x(3)(a3)-o(ao- a1)- x(4)(a4)-o(al - ao)] . (2.75) 
<72 
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We can write the vertex in the oscillator basis, in a similar way as for the 3-string 

vertex. We will not pursue this any further here. Instead, we refer the interested 

reader to the literature, [40]. 

2.3 Closed Bosonic String Field Theory 

2.3.1 The free theory 

The construction of a string field theory for closed strings4 is similar to the one for 

open strings. The light cone gauge condition now is 

(2.76) 

The closed string field, which we will denote by \]i, is required to obey the same 

equation of motion with the open string field, (2.5), with the Hamiltonian 

w ~ -n 127r ( 1 ) 
H = p+ o dO" p + (2wa')2 X . . (2. 77) 

The solution proceeds as in the open string case and the string field expansion reads 

J dp 1= dp+ ei(P"o·xo-x+p--x0p+) 

2w 0 2w 

L A (p+,fJo, {n;}, {n}}) f{n!}(xf}f{n!}(i;} + h.c. (2.78) 

where we have used the same abbreviation for i{np as for the open string field, 

(2.15), and now 

D-2 i ( {T i) ( l(xD2) 
rpl,{nt} = D Cc(nl)H{n!} y -;;_;x1 exp -~ . (2. 79) 

The tilded expressions are exactly the same. The normalization constant is 

(2.80) 

For the energy we have now 

- 1 {- 2 2 ~ [l ( i -i 1)]} p = 2 + Po + a' L..... nl + nl + . 
p l" ,. (2.81) 

4 We follow [41] in this section. 
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Notice that the now we have double the oscillating modes compared with the open 

string case. 

The theory can be quantised in a similar manner to the open string theory. The 

equal time commutation relations for the closed string field are the same with the 

open string field, (2.21). In terms of the string creation/ annihhilation operators, 

they are 

(j{ i} { j } (j{- i} { - j}. n 1 , mk n 1 , ·mk 
(2.82) 

The calculation of the propagator proceeds in exactly the same way with the 

open string case and it should be no surprise that it turns out to be 

(2.83) 

where now 

Gbosonic(X· Y) 
closed ' 100 d + ( · + ) (D-2)/2 ( . A ~ 2 +) p zp ZL . ..l.XQ p -il'.x-p+ --- - exp e 

0 27!' 27!' ~x+ 2~x+ 

oo D-2 ( l ) 1 

IT IT 1T'Cl 2i sin ~ 
l=l t=l 2a'p+ 

{ l/a' ( ·· ( ·2 · 2) l~x+)} exp . . ll'. + 2xiyJ - (xi) + (y;) cos --+-
2zsm _x_ a'p 

a'p+ 

{ l /a' ( · · ( · 2 · 2) l~x+) } exp . . tl'l + 2x;t)J- (xi) + (i;:) cos-- (2.84) 
2z sm _x_ a'p+ 

a'p+ 

For the a parametrization, we have chosen arbitrarily a point to be the origin, 

a = 0. But obviously, any point along the string can serve this role. This means 

that the theory should be invariant under rigid a translations a ----> a+ a0 , where 

a0 an arbitrary number. For the string field, that means that it should obey the 

constraint 

w[X(a)] = w[X(a + a0)]. (2.85) 

These translations are generated by the operator 

J da (iX'(a) · i\a)) . (2.86) 
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Figure 2.4: Schematic representation of a 3-string interaction for closed strings. 

In terms of the modes, this is just 

(2.87) 

where 
00 

N = La~na!,, (2.88) 
n=l 

00 

N = L:a~na~. (2.89) 
n=l 

N, N are the number operators of the first quantised string. In other words, the 

operator (2.85) imposes the usual level matching condition for the closed string. 

2.3.2 Interactions 

There is only one way to have strictly closed strings interaction and that is when 

one string breaks down to two, or two closed strings merge to form a single one. 

Figure (2.4) shows the 3-string interactions for the case of closed strings. 

The interaction term for the 3 closed string interaction is similar to the open 

case. The interacting term is 

Hclosed 
3 

3 3 

~/II darVYrr)W(ar,Yrr))O(Lar) 
r=l r=l 

0 ["fr3)- Yr1)- Yr2)] p,(a1, a2, a3), (2.90) 
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Figure 2.5: Schematic representation of a closed string breaking and forming an 

open string (and the reverse process). 

Figure 2.6: Schematic representation of an open string forming a closed string and 

another open string (and the reverse process). 

similar to the open string case. The vertex can be analyzed in terms of the modes, 

the result is similar to the open string case. In fact, it is two copies of the open 

string vertex. For further details we refer the reader to the literature [41], [13]. 

In a theory combining both open and closed strings, we can have interactions 

involving both kinds of strings. One case is when a closed string breaks at an interior 

point and becomes an open string (or reversely, the end points of an open string 

join themselves and a closed string is formed). This is shown schematically in figure 

(2.5) and it is described by the interaction 

(2.91) 

The other case is when two interior points of an open string touch each other 

and a pair of a closed and an open string is formed. Figure (2.6) shows this process. 
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The interaction that describes it is 

H~pen-closed = ~g2 1 VX(1)VX(2)Y da1da2da38(at + a2 + a3) 

«<>(at, X(l))<I>(a2, X(2))ll!(a3, Y) (2.92) 

1
7r(nt-n3) 

0 
dao8 [x(l)(a1)- X(2)(a2)'!9(a0 - at) 

-X(2)(a2)'0(ai- ao- 7m3)- Y(a3)'0(-ao + a1)0(-a1 + ao +7m3)]. 

In all ca.<Jes, we can write the interaction in the oscillator basis with a suitable 

interaction vertex. The result is similar to the open 3-string vertex, (2.58) or (2.69) 

and we will not repeat it here. We refer the interested reader to the literature. 

One question that we have not answered is whether these are the only interactions 

that a full (open+ closed) string theory can admit. The answer to this question is 

yes, but for the details we refer the read to the literature, see [18], [40]. 

2.4 Superstring Field Theory 

Although bosonic string theory has many nice features that make it worthy studying, 

it has a great disadvantage. There are no fermions, which means that bosonic strings 

can not describe our world. We need to extend the theory by including fermions, if 

we are to have a more realistic theory. 

There are two ways to introduce fermions in string theory. One is by introducing 

worldsheet spinors and imposing worldsheet supersymmetry. Then, it turns out that 

some of the excitations of the string behave as bosons and some others as fermions. 

From the spacetime point of view there is no supersymmetry, but with a suitable 

projection one can get it. This is the Ramond-Neuveu-Schwarz model, sometimes 

referred as the spinning string. As a first quantised theory it can be worked out either 

in the light cone gauge, or one can proceed with covariant methods of quantisation. 

A different approach is to replace the Minkowski space with a flat superspace. 

That means that in addition to the usual (commuting) coordinates xll-, one has 

anti commuting coordinates ()A. A string living in such a space has both bosonic and 

fermionic excitations naturally and further more, there is spacetime supersymmetry 

from the beginning (no projection required). This is the Green-Schwarz model. Its 
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disadvantage is that quantisation in a covariant way is prohibitively difficult and 

has not been fully achieved yet5
. However, the theory simplifies remarkably in the 

light cone gauge and it can be shown that it is equivalent to the RNS model. 

For our purpose, we will base our analysis on the GS superstring model. In 

this model, the position of the string is given by the usual coordinates X~'(a) and 

two anticommuting coordinates O(a), ii(a). It turns out that there are only five 

consistent superstring theories. These are: 

1. Type I superstrings. They involve both open and closed strings that are non­

orientable. The theory must have an 80(32) gauge group symmetry, which 

is implemented by adding Chan-Paton factors at the end points of the open 

strings. There is only one spacetime supersymmetry. 

2. Type II superstrings. They involve only orientable closed strings (no gauge 

group). They have two spacetime supersymmetries. If (j has the same chirality 

with 0, the theory is called liB, if 0, 0 are of opposite chirality, the theory is 

called IIA. 

3. Heterotic strings. They involve only closed strings. The left moving sector 

is the only supersymmetric one, the right moving is purely bosonic. The 16 

extra dimensions of the bosonic sector (compared to the supersymmetric) are 

compactified and give a gauge group to the theory. The only consistent choices 

turn out to be 80(32) and E 8 x E 8 . 

Rather than exploring all five possibilities separately, we will discuss the open 

superstring in detail. The closed string case will be similar (just as the bosonic 

closed string was similar to the bosonic open string, remember the doubling of the 

modes) and will not be discussed in any detail. Heterotic strings are a bit more 

complicated but not significantly different. 

5 Although significant progress has been made recently with the work of Berkovits, see [52], [53], 

[54]. 
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2.4.1 The free theory 

The light cone gauge in the superstrings is imposed by setting 

(2.93) 

r+e = o = r+e. (2.94) 

Here f~' are the Dirac matrices for a ten dimensional spacetime. The choice of 

light cone gauge leaves a theory with a manifest 50(8) spacetime symmetry, the 

rotations in the transverse directions. Although one can formulate the theory as 

such, it turns out to be more convenient to break this symmetry further, by treating 

two of the transverse directions separately from the other six. The rea.c;on is that 

the spinors 8, 8 are Majorana-Weyl and as such they are both coordinates and 

conjugate momenta. We need to have distinct coordinates and momenta and this is 

accomplished by 50(8)----+ 50(6) x 50(2) "'"'5U(4) x U(l). In return, this implies 

that for the transverse vectors we have the decomposition 

(2.95) 

for a transverse vector, where I = 1, 2, ... , 6 and 

(2.96) 

The spinors 8, () are decomposed as 

(2.97) 

with A= 1, 2, 3, 4 being a spinorial index for the 4 representation of 5U(4) and sim­

ilarly for A for the 4 representation. -\,.\are conjugate momenta of e, e respectively. 

From the physical point of view this treatment is not as absurd as it seems, since 

eventually, for a physical string theory we will require six dimensions to compactify. 

The string field now is a functional, <P[X(cr), B(cr), O(cr)] for the open string case, 

with a similar expression for the closed string W. Often, we will use Z(cr) to stand 

for all the coordinates, collectively, Z ( cr) = {X ( cr), 8( cr), O(cr)}. In addition the open 

string field will carry group theory indices, q,ab, appropriate for the 50(32) group. 

In practice we will often suppress them. Products then of open string fields are 
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understood to involve a trace over the gauge group indices. The non-orientability 

condition is expressed as 

(2.98) 

Finally, <I> is required to be TC P-self conjugate, which means that 

(2.99) 

The hat means the Fourier transform with respect to the Grassmann variables only, 

<i>[x, >., .\] = J VOVBexp [17rQ da ( >.A(a)OA(a) + _\A(a)BA(a))] <I>[X, e, B]. 

(2.100) 

The equal time commutation relations for the open string field are 

(2.101) 

where 

(2.102) 

The string field is again required to obey the Schrodinger type equation of motion 

(2.5), only that now the Hamiltonian is 

H = - da -- + x - -- e- - e -7r 17r [ cF 1 ~ ,2 i ( , c5 -, c5 ) ] 
2p+ 0 JX2 (2m:.t')2 27r2a' 80 50 · (2.103) 

With the mode decomposition 

()() 

Xi( a)= x~ + J2L x~ cosna, (2.104) 
n=l 

00 

eA(a) = L e~ exp (ina), (2.105) 
n=-oo 

00 

eA(a) = L e~ exp (-ina), (2.106) 
n=-oo 

we can convert the functional differential equation of motion into a differential equa­

tion with partial derivatives, just as we did in the bosonic case. Now, it is 
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Notice that the bosonic part is the same with the pure bosonic case. 

From that, we can calculate the propagator for the string field. It is 

-1 

csupersh·ing(Zl;Z2) = cbosanic(Xl;X2). II (e(2),m- e-i\m\~x+j(47ra1p+)e(l),m) 
m=-cx::> 

00 

II (e eim~x+ /(47ra1p+) - e ) 
(2),m (l),m · (2.108) 

m=O 

As before, we have abbreviated ~x+ = x+ - y+. For the commutator of two string 

fields at different times, it is of course 

(2.109) 

2.4.2 The 3-string interaction 

Interactions can be incorporated in a similar fashion as in the bosonic case. For 

the interaction of three open superstrings, we can define the 3-string vertex in a 

similar way with the bosonic case. The difference now is that the vertex is required 

to be continuous in both the bosonic and the Grassmann coordinates (although it 

will turn out that this is not enough). Or, if we decide to work in the momentum 

representation, it is required to conserve P(a), A( a), ~(a). For a process such as that 

in figure (2.2), this is achieved by means of the delta functionals 

8[0(3)(a)- e(2)(a)- e(l)(a)], 

8[0(3)(a)- e(2)(a)- e(l)(a)]. 

(2.110) 

(2.111) 

(2.112) 

The 3-string vertex can be written in the oscillator basis and it takes the form 

(2.113) 

where 

3 3 3 
wn = 8(L P(r),o)8(L are~),o)8(L aT) exp (EB + EF) IO) (2.114) 

T=} r=l r=I 
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and h is the prefactor. EB is the exponent of the bosonic vertex, see (2.58), while 

Ep is the fermionic part. It is reasonable to assume that it will have a form 

(X) 3 (X) 3 

Ep = ~ L L O(r),-mx;;n()(s),-n +§a L Ly~)()(r),-m· 
m,n=I r,s=I m=l r=l 

(2.115) 

X and Y are matrices to be determined, while §a is 

~a - ea ea 
Ul = o:1 (2),o - o:2 (I),o· (2.116) 

It will be convenient to take the mode expansion 

(X) 

()a _ 1 '""' ea ina 1 Oir 8 
(r) - 7rlo:rl ~ (r),ne r, 

n=-= 

(2.117) 

(X) 

()-a - 1 '""' ea -ina/Dire 
(r) - 7rlo:rl ~ (r),ne r· 

n=-= 

(2.118) 

Notice that O(CJ) = 0( -CJ). Rather than using both, we can extend the range of CJ 

to be -1rlo:1 + o:2l ::::; CJ::::; 1rlo:1 + o:2l and use only O(CJ). 

The continuity condition for the vertex reads 

3 

L (O(r)(CJ)) IV;)= 0 (2.119) 
r=I 

and by taking Fourier components we have that 

3 

L (O(r),o) IV;) = 0 (2.120) 
r=I 

for the zero modes, and 

(2.121) 

for the rest (non-zero) modes. The matrices E(I), E(2) are 

E(l) = (-1)m+nsin(m7r,8) 
mn 7r(m,8- n) ' 

(2.122) 

E(2) = (-1)msin(m1r,8) 
mn 7r (m(,B + 1) + n) 

(2.123) 

and it is also convenient to define 

E (3) - ~ 
mn- Umn· (2.124) 
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fJ is given by (2.41). 

A lengthy calculation, involving identities relating the E matrices to the A and 

B matrices (see [45] for the details) determines X and Y to be 

(2.125) 

and 

Y~ =- m f/;n. 
Or 

(2.126) 

The vertex (2.115) is written with the S0(8) symmetry. Equivalently, it can be 

shown (see [48], [13]) that in the SU(4) x U(1) formalism, it takes the form 

3 00 3 00 

EF = L L u:;;:!Rr__rnAR=-~ + L L V~R-rnAeA, 
where 

and we have defined 

r,s=l m,n=l r=l m=l 

Urs m j\frs 
1nn ==- rnn' 

Or 

A 1 ( A A ) 8 = a3 O(l),o- 0(2),o . 

(2.127) 

(2.128) 

(2.129) 

(2.130) 

The prefactor h comes from the fact that the vertex is required to obey the 

supersymrnetry algebra at first order in the string coupling constant and at the same 

time not to spoil the continuity conditions. The exponential part is not sufficient by 

itself. In determining the form of the prefactor, it turns out that there is a problem 

with divergences at the interaction point 1ra1 for certain operators. Careful analysis 

determines the prefactor to be 

(2.131) 

where 

. 1 (· "m-. ) z~ = ~ IP'~ - a L.....t -N:na(rJ -m , 
y2lal Or ' r,m 

(2.132) 

A ~ ( A {1" m -r A ) 
Y = V 21al § + V 2 ~ OrNmR(r),-m . (2.133) 

This result for the flat background is unique. The physical meaning of the prefactor 

is that the 3-string interaction in the full superstring field theory has a (functional) 
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derivative coupling. This is a direct generalisation of the derivative coupling of the 

Yang-Mills theory. 

The extension for the closed strings as well for the other string interactions is 

straight forward. We will not present them here, rather we will point the interested 

reader to the literature, [46] [48] [64], [50], see also [13]. 

2.5 Summary 

In this chapter we have presented a brief introduction to the field theory of strings 

and superstrings in the light cone gauge. After establishing the necessity of a field 

theory for strings and arguing why the light cone gauge is the easiest way to proceed, 

we examined the field theory of the bosonic string. We showed that the field can be 

decomposed into an infinite set of harmonic oscillator, and what is more important, 

it can be quantised canonically. Then we examined the 3-string interaction for the 

open strings, establishing the 3-string vertex and writing it in the oscillator basis. 

The case of the closed strings turns out to be similar, practically two copies of the 

open string theory. Finally, we proceeded to discuss the supersymmetric extension. 

This is not a full account of string field theory. What we have tried to do here 

is give an overview of the subject, emphasizing on the key results that we will need 

in subsequent chapters, leaving the detailed calculation for the literature. 



Chapter 3 

String Theory in the Plane Wave 

Background 

In this chapter we will present a short introduction on string theory in the plane 

wave background, emphasising on the formulation of a string field theory. 

The outline is to give first a motivation and sketch the origins of the plane wave 

background, along with its significance for string theory. Then we will present the 

first quantised string in the background. Based on that, we will present the field 

theory of strings in this background, which is the main topic of this chapter. We 

conclude the chapter with a summary. 

Some very good review for strings in the plane wave background are [65], [66], 

[67]. 

3.1 Origin of the plane wave background 

The plane wave background, or pp-wave as it is also known in the literature, was 

first discovered as a solution of the type liB supergravity, [68], [69], [70] . It has the 

property that it is maximally supersymmetric and that superstring theory can be 

solved exactly in the light cone gauge. One can do a first quantisation of the string, or 

proceed with a string field theory formulation. Hence its major significance. Study 

of string theory in a different background than the flat Minkowski is a highly non 

trivial matter and worthy to pursue for its own merit. It comes therefore without 

39 
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surprise then that it has attracted so much interest over the last years. 

But the plane wave background has another important property, with far reach­

ing consequences. Starting with an AdS5 x S5 spacetime, a certain Penrose limit 

gives the plane wave background. Now the AdS5 x S5 background, whose metric 

can be written as 

2 d 2 
2 r ( 2 2 2 2) 2 r 2 2 ds = 2 -dx0 + dx 1 + dx2 + dx3 + R -

2 
+ R d05 , 

R r 
(3.1) 

together with a 5-form field strength 

F5 = 4R4 (cosh p sinh3 pdt A dp A d03 +cos() sin3 ()d7jJ Ad(} A dO~) , (3.2) 

where R4 = 47rga'2 N, constitutes a solution of type liB supergravity and it is 

maximally supersymmetric. String theory in this background is conjectured to be 

dual to aN= 4 Super Yang Mills living on the boundary of the spacetime (which 

is 4-dimensional). This is the AdS/CFT correspondence, see [27], [28], [29], [30], 

[31], [32]. The duality is a strong/weak coupling duality. By that we mean that 

properties of one theory in the strong coupling limit can be computed by the dual 

theory in the weak coupling limit. Unfortunately, so far, we have been unsuccessful 

to prove the conjecture and even more, we have been restricted to the supergravity 

limit on string theory side of the correspondence1 . This is not surprising, since the 

superstring action in AdS5 x S5
, constructed in [73], [7 4], [75], is highly complicated. 

But if a certain limit of the AdS5 x S5 string theory results in a solvable theory, 

then we can proceed in the correspondence beyond the supergravity limit. One open 

and very interesting question is what section of the Super Yang Mills is dual to the 

string theory in the plane wave background. This is the BMN correspondence, 

first proposed by [76], see also [77] (the letters BMN stand for the names of the 

authors). Therefore, the plane wave provides a framework where we can study a 

string theory/field theory duality from both sides2
. What is even more interesting is 

that unlike the AdS/CFT correspondence that is strictly strong/weak, for the BMN 

correspondence there is a limit where both sides are at weak coupling and hence 

trackable simultaneously. 

1See however [71], [72]. 
2 For a review see [78], [67]. 
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Let us start with the metric of the AdS5 x S 5
, written as 

ds2 

R
2 

= (-de cosh2 p + dl + sinh2 pdOD + (d'lj} cos2 
(} + d(}2 + sin2 (}d0~2 ). (3.3) 

The first part corresponds to the AdS and the second part to the S 5
. (} E [ -1r, 1r] 

and is the latitude of the sphere, 'ljJ is periodic (with period 21r) and runs along 

an equator of the sphere. This form is the same with (3.1). Now let us make the 

following change of coordinates, 

(3.4) 

r y 
p=R,e=R. (3.5) 

Taking the limit R --> oo, the metric takes the form 

The last two terms are just the metric of IR4 x IR4
, or IR8

. Therefore, we can simplify 

the metric and write it as 

(3.7) 

where a.c; before i = 1, 2, ... , 8, enumerating the transverse directions. This limit 

means that we are focusing our attention on a particle sitting in the centre of AdS 

(that would be p = 0), moving very fast (close to the speed of light) along an equator 

of the S 5 (described by 'ljJ). ( 3. 7) is the geometry that this particle effectively sees. 

For the 5-form field strength, we have that in this limit 

The metric (3.7) along with the field (3.8) constitutes the plane wave background 

that we will be working on. Although it seems that this background has a S0(8) 

transverse symmetry, in fact this is broken down to S0(4) x S0(4) x Z2 , because of 

the non trivial 5-form field. The first S0(4) is a rotation symmetry among the first 

four transverse directions, i = 1, 2, 3, 4, the second S0(4) is a rotation symmetry 

among the last four transverse directions, i = 5, 6, 7, 8 and z2 interchanges the two 

groups. This in return will have consequences later on, when we will consider the 

3-string vertex. 
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3.2 String theory in the plane wave background 

Let us start with the study of a single closed string in the plane wave background. 

Our presentation will be based on [79], [80]. Although the GS superstring action is 

very complicated, we can impose the light cone gauge condition on it and then sur­

prisingly, we have an action that is quadratic. The light cone gauge fixing conditions 

are 

(3.9) 

(3.10) 

8, 1J are complex Weyl spinors. We can replace them with two real spinors, 81 , 82 , 

with the substitution 

(3.11) 

Our conventions for the r matrices are the same with [79]. For completeness we 

repeat them here. P' are the 32 x 32 Dirac gamma matrices and 'Y'' are the Dirac 

16 x 16 gamma matrices, taken to be real and symmetric. 

(3.12) 

(3.13) 

They are required to obey the algebra 

(3.14) 

We also define 

(3.15) 

For a closed string the action is 

(3.16) 

L_ __________________________ _ 
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where 

The equations of motion that follow from this action are 

( [)T + Oa )01 
- rnii02 = 0, 

(aT - a a )02 + rniT01 = 0. 

We impose periodic boundary condition, appropriate for the closed string. 

They can be solved and we have that 

cos(rnT)e6 + sin(rnT)IIB6 + L Cn { e~e-i(WnT-na) + 
n#O 

i ( Wn;;: n) e-i(wnT+na)ITO~} , 

cos(rnT)e6- sin(rnT)IIB6 + L Cn { e~e-i(WnT+na) 
n#O 

i ( Wn;;: n) e-i(wnT-nalrre:,} , 

In the above, we have defined 

n > 0, 

n<O 

and 
1 
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(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

It should be obvious now, that we can quantise the theory without any difficulty, 

simply by promoting coordinates and momenta to operators and imposing the usual 

commutation relations. In terms of the modes, these are 

(3.26) 
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{() la ()lb} 1 ( +)ab"' {02a ()2b} 
n ' m = 4 l Un+m,O = n ' m ' (3.27) 

the rest being identically zero. 

Notice that all the above formulas have the important property that in the limit 

11 --. 0 they fall back to the fiat case. This is something expected, since the plane 

wave metric (3. 7) in that limit reduces to the Minkowski metric. 

The open string case is similar, practically just (say) the left moving sector of 

the closed string. For the details as well as for extensions towards D-brane physics, 

see [81], [82], [83]. 

3.3 String Field Theory in the plane wave back-

ground 

Since string theory in the plane wave background can be solved in the light cone 

gauge, we should be able to formulate a string field theory. The procedure is the 

same as in the fiat background. The string field is a functional of the coordinates 

(both bosonic and fermionic), \li[X, ()1
, 02

]. Following the same procedure with the 

fiat background case, we can use the mode expansion for X, ()1 , ()2 to write the string 

field as a function of the modes. 

3.3.1 The free theory 

For simplicity, let us analyze the free string field for open strings, suppressing for 

the moment the fermionic part. The string field is again required to obey the same 

Schrodinger type equation of motion as in the fiat background case, equation (2.5), 

with H now being of course 

H = _!!...__ da P + X'2 + m j(2 . 17[ [ 1 2 ] 

2p+ 0 (27ra') 2 (27ra') 2 
(3.28) 

The equation of motion is 

. 811> 
= zax+' (3.29) 
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taking 

(3.30) 

It is a functional differential equation, but nevertheless, we can solve it, as we did 

for the flat background theory. 

The mode expansion for an open string (at T = 0) is 

00 

Xi(a) = xb + J22.:xfcosla. (3.31) 
1=1 

Then, as we did for the string field in the flat background, we can write for H, 

00 

(3.32) 

where now 

1 ( EP 1 2 i2) 
Hl = 2p+ -a;;p + (2a')2wl xl . (3.33) 

For the open string it is w1 = J[2 + m 2 , with m = 2a' p,p+. Notice that now the 

zero mode of the string does not correspond to a freely propagating particle. It is 

also an oscillating mode. 

The equation of motion for the string field takes the form 

00 a<I> 
LHl<I> = i~ + ux 
l=O 

(3.34) 

and can be solved by separating variables. The solution is, as for the flat case, a 

superposition of an infinite tower of harmonic oscillators, 

where we have defined 

and 

roo dp+ e~i(x+p~+x()p+) 
Jo 21T 

LA (p+, {nH) hnn(xl) + h.c., 
{nf} 

00 

f{nl}(xi) =IT CfJL,{nl}(xi) 
l=O 

'l'l,(n!J ( x;) ~ J1 Co ( { ni}) H(n!J (/fix;) e- w,{xll' /(1n') 

Hn(x) are of course Hermite polynomials and 

JwL/(2a') 
2ni(np)JK 

(3.35) 

(3.36) 

(3.37) 

(3.38) 
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is the usual normalization for the eigenfunctions of the harmonic oscillator. For the 

energy, we have that 

1 00 8 

( . 1) p- = -- ""' ""'wl ni + - . 
2a'p+ ~~ 2 

l=O t=l 

(3.39) 

Notice that the zero mode in no longer freely propagating, but is included in the 

oscillators. This is the reason that we do not have an integration over Po now. This 

fact stems from the form of the Hamiltonian in the plane wave, which in turn is due 

to the extra f-l- term in the plane wave metric. 

The theory can be canonically quantised by imposing the equal time commutator 

relations 

(3.40) 

for the string field. This in turn implies that 

(3.41) 

As in the flat background case, the role of the A, At is to destroy/ create entire 

strings with the appropriate modes. 

The calculation of the propagator is not hard to perform and we get 

where 

(;bosonic 
open 

(3.42) 

100 d + 
00 

8 f?j; 
_l!_e-itl.xr;p+ IT IT ~ 

o 21!" 21l"a' 2i sin wltl.x+ 
l=O i=l 2a'p+ 

1 

{ wtf(2a') [ · · ( · 2 · 2 ) (flx+wl)]} exp . . ( + ) 2xiy[ - (xi) + (y;) cos 1 + 3.43) 
2z sm L'l.x wl 2a p 

2a1p+ 

As before, we have abbreviated Llx- = x0 - y0, flx+ = x+ - y+. 

The extension to the case of closed strings and the inclusion of fermions is straight 

forward. Notice that the construction resembles remarkably the construction of the 

string field theory in the flat background. The important difference is that now the 

zero mode is no longer freely propagating but oscillating. This is due to the extra 

term in the metric (3.7). 
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Figure 3.1: The worldsheet for the closed 3-string vertex. Strings 1 and 2 merge 

to form string 3. The arrows indicate the way we have parameterized each string. 

Identifications are implied, appropriate for closed strings. 

3.3.2 Interactions 

The next step, is to include interactions in the theory. As was the case in the fiat 

background, the simplest interaction is the 3-string interaction. We will analyse 

the case for the closed strings and obtain the vertex in the oscillator basis. The 

interaction schematically is as in figure (2.4), a closed string splitting to two other 

closed strings, or the reverse process where two closed strings merge to form one. 

Figure (3.1) shows the worldsheet for the interaction. 

The procedure is the same with the fiat background case. The interaction is 

required to be continuous in the coordinates, which is secured by means of the 

functionals 

8 [x(3)(a)- x(l)(a)- .x(2)(a)] ' 

8 [B(3)(a)- B(1)(a)- Bb(a)] , 

8 [B(3)(a)- B(l)(a)- B(2)(a)J . 

(3.44) 

(3.45) 

(3.46) 

Alternatively, the interaction is required to conserve the momentum. We write the 

interacting part of the field Hamiltonian as 

(3.47) 
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where 

(3.48) 

and h3 is the prefactor. 

Passing to the oscillator basis follows the same procedure as in the flat case. One 

then can define the 3-string vertex operator, 

(3.49) 

IV) takes the form 

IV) oc IE,)IEJ)IO)O (ta,). (3.50) 

I Eb) is the bosonic part of the vertex and IE f) is the fermionic part. h3 is the 

prefactor. The meaning of each factor and the methodology of obtaining them is 

essentially the same as in the flat background case, although these are not enough 

to determine the vertex uniquely. 

The bosonic part 

Let us first discuss the bosonic part of the vertex. To that end, it will be convenient 

to take the range of parametrization for each string to be -7rlarl ~ r5r ~ 1rlarl, 

where T = 1, 2, 3 enumerates the strings and ar:::::: a'p:. We will take strings 1 and 

2 to be the incoming (hence a 1, a 2 > 0) and string 3 to be the outgoing (hence 

a3 < 0). Introducing a common r5 for the entire worldsheet in figure (3.1), we have 

{

rJ- 1ra1, 
(52= 

r5 + 7ral, 
(3.51) 

It will also be convenient to take the mode expansion for the coordinates and 

the momenta to be 

. . . nrJ . nrJ 

[ 
00 ( )] X(r)(r5) = x(r),O + J2~ x(r),n COS larl + x(r),-nsin larl 8r (3.52) 
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and 

. 1 [ . ~ "'"' ( . na . na ) l Ptr)(a) = 21rlarl P(r),o+ v2 ~ P(r),ncos io:rl +P(r),-nsin io:rl 8n (3.53) 

respectively. 8r are 

with f) the unit step function. 

81 = fJ(1ro:1 - ial), 

82 = fJ(ial - 1ra1), 

(3.54) 

(3.55) 

(3.56) 

Also, the momentum delta functional in (3.48) can be reexpressed as an infinite 

product of delta functions of the Fourier modes, by taking Fourier components of 

the identity ? 1 + P2 + P3 = 0. To that end, we need the integrals (for n, m > 0 and 

with f3 = o:If o:3) 

_1_1rrGt ma , na _ (- )n 2mf3 sin( m1r /3) = X- (1) 
da cos COS - 1 2/32 2 - mn• 

1r0:1 -rr0r1 0:3 0:1 7r m - n 
(3.57) 

1 lrrat ma na n -
- da sin- sin-= -X(l) 

f3 ntn' 1r0:1 -rr0r 1 0:3 0:1 rn 
(3.58) 

_2_1rr(Gt+a2
) ma n(a- 1ro:r) _ 2m(f3 + 1) sin(m1r/3) =X-(2) 
dacos cos - 2 )2 2 - mn• 

1r0:2 rra1 0:3 0:2 7r m (/3 + 1 - n 

2 1rr(at+a2 ) ma n(a- 71"0: ) n -
-- da sin- sin 

1 
= - x.~~-

71"0:2 rra 1 0:3 o:2 m(/3 + 1) 
Then, we can write the delta functional as 

where we have defined 

The matrices xt;~ in (3.61) for all m, n are 

X (r) = 
mn-

m,n > 0 

m,n <0 

1 xtr) 
y'2 mO' m > O,r E {1,2} 

1, rn=O=n 

0 , otherwise 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

(3.63) 
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These matrices are related to the As and BS, (2.42), (2.43), (2.46), as follows 

A(1,2) = (c-1/2 x<1,2)cl/2) 
mn ntn (3.64) 

and 

(3.65) 

The string field in the momentum representation is 

8 

W = L A(p+, {nl}) II II <p(P~t) + h.c. (3.66) 
{ni} IEZ i=l 

Inserting this expansion into the interacting Hamiltonian (3.48), using the relation 

between momentum eigenstates lp1) and the oscillator basis, 

(3.67) 

the decomposition of the delta functional (3.61) and performing the resulting Gaus­

sian integrals, we have at the end 

where 
3 

Eplane wave = ~ ~ ~ ait frs ait 
B 2 L..t L..t (r),m mn (s),n' 

r,s=l m,n 

where we have defined the Neumann matrices (for n, m > 0) to be 

and 

N-rs . 12 st N-r {1 2} 
rnO = - V f..LC¥sW(r)mE C¥t m' S E 1 ' 

N~~ = (1- 4J.LaK) (srs + ~) , r, s E {1, 2}, 

R~g =- ~' r,s E {1,2}. v --;;; 
3 

r = L A(r)u(r)A(r)T 

r=l 

(3.68) 

(3.69) 

(3.70) 

(3.71) 

(3.72) 

(3.73) 

(3.74) 

(3.75) 



3.3. String Field Theory in the plane wave background 51 

(3.76) 

The Neumann matrices with negative indices are 

(3. 77) 

in terms of the Neumann matrices with positive indices. The identity (2.63), com­

bined with the explicit results (2.67), (2.68) solved the vertex completely in the 

fiat background. Here the determination of the Neumann matrices is much more 

difficult, however is has been achieved, see [84], [85]. 

The fermionic part 

Similarly, for the fermionic part of the vertex3 we use the mode decomposition 

(3.78) 

and 

for (} and its conjugate momentum A respectively. 

The matrix II in the action (3.16) breaks the transverse 50(8) symmetry down 

to 50(4) x 50(4). For that purpose it is convenient to define a new set offermionic 

operators 

ll _ C(r),n [ ( II) ( ) ( ) ( ) t ] O(r),n - ~ 1 + P(r),n b(r),n + sgn Or sgn n 1 - P(r),nii b(r),n (3.80) 

that explicitly break the 50(8) symmetry. In the above, we have defined 

W(r),n -lnl 
P(r),n = P(r),-n = , 

f.lOr 
(3.81) 

1 
(3.82) C(r),n = C(r),-n = ----r=== v1 + P(r),n 

3This section and the next are based on [86], [87], [88]. 
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The vacuum is defined to be annihilated by all a's and b's, that is 

a(r),nlv)(r) = 0, h(r),nlv)(r) = 0, V n E Z. (3.83) 

Following the same procedure with the bosonic part of the vertex, we find for 

the fermionic part that 

(3.84) 

where 

E~"~ "'""'" I ~ II [,t n~l b/,),-m Q;";:,.b),),n - .,f(] At f., Q;,.b/,),-m l 
+ I ~II [etht b/,),mQ;,;,.bi,),-n . R0 t t, Q;.b/e),m l 

(3.85) 

with 

(3.86) 

and 
1 e = -;:: ( e(l),o - e(2),o) . 

<-<3 
(3.87) 

The Qs are 

(3.88) 

(3.89) 

The prefactor 

Like the flat background case, the necessity of the prefactor comes from the require­

ment that the supersymmetric algebra closes at first order in the string coupling 

constant. 

Without going deep into the details, we will just present the result. The prefactor 

is 

a-:' [ 1 2 ~2 1 +II 1 - II ] 
h3 = --(1- 4f.Lo-:K) -(K + K) + --WAYA + --WeYe . 

a-: 4 2 2 
(3.90) 
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In the above, it is K = -(1/4) BI'- 1 B and 

K = K0 + K+ - K_ . (3.91) 

Also, for the fermions, it is 

(3.92) 

(3.93) 

'/, a 1/2 r t . 3 
00 [1 ] 

- N 1- 4ttaK ~ ~ ar (CC(r) N )n a-n(r). 
(3.94) 

In addition, it is 

1 + IT A _ ~ ~ e( ar) (r) (r) n bt 
[ 

3 (C1/2c1/2u-1/2Nr) l 
2 v7} ~ ~ 1 - 4J.taK n(r) 

1 (3.95) 

Ye 1- IT !:..e + ~ ~ e(ar) (r) (r) n bt 
[ 

3 (C1/2c1/2u-1/2 Nr) l 
2 a' .J(2 ~ ~ 1- 4J.LaK -n(r) 

and 

1 + IT a ~ 1 (r) (r) n bt 
[ 

3 (C1/2c3/2u-1/2 Nr) l 
--2- v7} ~ ~ 1 - 4J.LaK -n(r) 

(3.96) 

We 
1 - IT __!:..__ ~ 1 (r) (r) n bt 

[ 

3 (C1/2c3/2u-1/2Nr) l 
2 .J(2 ~ ~ 1 - 4J.LaK n(r) 

Uniqueness of the vertex 

The vertex we have presented is based on the true vacuum of the theory (see [86], 

[87], [88]). The state IO) upon which the vertex is built is the state of minimum 

energy (zero). This construction has the advantage that it realises the symmetries 

of the background explicitly. It has the disadvantage that it does not roll to the fiat 

case for IL ---+ 0. 

Originally, the first vertex to appear in the literature ( [89], [90], [91], [92] see 

also [93], [94]) was built on a different state, IO)', defined to be 

(3.97) 

,8~10)' = 0, n # 0, (3.98) 
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BolO)'= 0. (3.99) 

This vertex has the advantage of rolling back to the flat case for J-t ----> 0, but it does 

not realise the full symmetry of the background. In fact it is invariant under the 

full S0(8) symmetry. What is more, the state IO)' is not the vacuum of the theory, 

since it has energy 4J-t. 

The choice of the ground state upon which we will built the 3-string vertex affects 

only the fermionic part and the prefactor. In both cases, the bosonic part remains 

the same. 

It seems that we have two choices for building the vertex. Either we go for an 

explicit realisation of the symmetries at the price of smooth flat limit, or we impose 

the smooth limit condition, but we loose explicit realisation of the symmetries. 

What is more, it has been recently argued recently [95], [96] that the correct 

choice is neither. Instead, the 3-string vertex should be the average of the these two 

choices. Later, we will argue against the continuous J-t ----> 0 vertex. 

In any case, the quest for the 3-string vertex in the plane wave background is 

still open. The reader might want also to consult [97], [98], [99], [100], [101]. 

3.4 Summary 

The significance of the plane wave for string theory is twofold. First, it is a back­

ground where string theory can be solved and quantised. Furthermore one can 

proceed and write a string field theory, despite the fact that everything is limited 

in the light cone gauge. Thus it is worthy studying for its own sake. Secondly, the 

plane wave arose as a certain Penrose limit of the AdS5 x S5 background and there­

fore, studying string theory in it can shed light in the AdS/CFT correspondence. 

In fact, there is a conjectured duality proposed already, the BMN correspondence, 

connecting string theory in the plane wave with a certain sector of N = 4 Super 

Yang Mills. 

What we have done in this chapter is to give a short overview of string theory in 

the plane wave background, emphasizing on those aspects of the theory that we will 

need in the subsequent chapters. We demonstrated that string theory can be solved 
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and quantised in the light cone gauge. Based on that fact, we gave an outline of 

string field theory in the light cone gauge. We demonstrated how one can develop 

the free theory and we presented a discussion about the simplest vertex one could 

construct, the 3-string vertex for closed strings. The open string case is similar, 

practically one sector (either the left or the right moving) of the closed string. 



Chapter 4 

Causality in Field Theory and 

String Theory 

The main topic of this chapter is the issue of causality in (free) string theory. How­

ever, in order to understand it better, we start with classical physics and the Special 

Theory of Relativity. Then we proceed with point particle quantum field theory and 

examine the issue of causality in that context. Finally, we ask the same questions 

for strings. 

For a review of special relativity, we refer the reader to [3]. In addition every 

book on general relativity starts with a presentation of special relativity, see for 

example [4], [5], [6], [7]. Causality in quantum field theory is discussed in [102], 

[8], [103], [9]. The string light cone for a flat spacetime using light cone string 

field theory was first obtained in [58], with further discussion in [59]. Later it was 

studied and extended to the superstring in [61]. An interesting presentation can also 

be found in [104], [105], [106]. The discussion for the string light cone in the plane 

wave background was first presented in [1], where in addition the light cone for a 

particle in the plane wave was presented, using field theory methods. Independently, 

in [107], the particle light cone was obtained using geometrical methods. 

56 
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4.1 Causality in Classical Physics 

Causality means that the cause precedes the effect. To use an example, first we pull 

the trigger of a gun and then the gun fires. If things happened in the reverse order, 

something really spooky would be going on! In more abstract terms, suppose that 

we have two events A and B. Event means something that happens at a certain 

place, at a specific time. Given a coordinate system, let us have for the spacetime 

coordinates of the events, A= (th xi) and B = (t2 , x 2). Without loss of generality, 

we can assume that t 2 > t 1 , that is even A precedes event B (we leave aside for the 

moment the case that they are simultaneous, t 1 = t 2 ). 

If the outcome of event A can in principle influence the event B, then we say 

that the two events are causally related, otherwise they are causally unrelated. 

For example, suppose that event A is an explosion of a bomb. Fragments of the 

bomb leave the explosion point x 1 and suppose that a certain piece reaches point 

x 2 at t 2 , where little John is about to buy his new computer game. The fragment 

knocks him down and John does not buy the game. This means that event A (bomb 

explosion) influenced event B, the two events are causally related. However, it could 

be that no fragment reached John (lucky him!) or that he was inside a big building, 

well protected (so the fragment was blocked). The events are still causally related, 

because what is important is whether or not there could be an influence in principle. 

Whether there really was or not, is not the question here. 

Based on the above example, we can alter the question and ask whether or not 

there could be a physical object that could propagate from (h, xi) to (t2 , x 2 ). If 

the answer is yes, then equivalently we can claim that the two events are causally 

related, otherwise, they are not. 

In Newtonian physics, the answer to that question is always yes. There is ab­

solutely no reason why any object could not travel fast enough and (starting from 

event A) reach event B. However, Newtonian physics is an approximation. We know 

that there is an upper bound on the possible speed any object can acquire and thus 

the answer to our question is "it depends". If the events A and B are such that it 

would require an superluminal speed for our hypothetical object, then there is no 

way that one event could influence the other. They are causally unrelated. On the 
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other hand, if the required speed is less than or equal to the speed of light, then 

they are causally related. The marginal case, where the required speed is exactly 

the speed of light can be achieved provided that the travelling object is massless. 

Given an event, this defines a hypersurface in spacetime that separates the 

causally related from the causally unrelated events. This surface has the shape 

of the cone and thus it is call the light cone. We see therefore, that the concept of 

causality changes dramatically in Special Relativity. Given an event, the spacetime 

is divided into two regions, one consisting of events that are causally related and 

another consisting of causally unrelated events. 

Special Relativity is based on two axioms: 

• The laws of physics are the same in every inertial frame of reference. 

• The speed of light traveling in the vacuum c is the same is every inertial frame 

of reference. 

This in turn implies that, there is an upper bound on the speed an object can 

achieve. This upper bound is of course the speed of light c. Nothing can travel 

faster than light. And if something can travel as fast as light, then it has to be 

massless. 

As a consequence, when we are going from one inertial frame of reference to 

another, the spatial distance between two points, or the time interval between two 

events are not invariant. Two inertial observers in relative motion will disagree for 

the lengths and times. They will not disagree for the spacetime distance 

(4.1) 

Let us study the motion of a photon. Its velocity is 

dx 
v=-

dt 
(4.2) 

and we have for its speed that 

(4.3) 

Combining (4.1), (4.2) and (4.3), we can show that for the photon it is always 

(4.4) 
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y 

Figure 4.1: The light cone of an event E. The green dots represent events that are 

causally related to E. The red dots represent causally unrelated events. The blue 

dots represent the marginal case (they lie on the light cone). 

For another particle that is moving slower than light, it is 

(4.5) 

while for a (hypothetical) particle that would move faster than a photon it is 

(4.6) 

We see therefore that given an event, E, the light cone that corresponds to it is 

given by the condition 

(4.7) 

Events with negative ds2 fall inside the light cone and are causally related to E. 

Events with positive ds2 are outside the light cone and are causally unrelated to 

E. Schematically, and suppressing some of the spacial dimension, this is shown in 

figure (4.1). 

For finite intervals, the condition for the light cone is 

(4.8) 

Therefore, in classical physics, given two events, in order to determine if they are 
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causally related or not, all we have to do is examine /).s2
, 

> 0, spacelike- causally unrelated, 

/).s
2 

= = 0, lightlike- causally related (marginally), (4.9) 

< 0, timelike - causally related. 

This condition must hold for arbitrary close points (infinitesimal separations), and 

for that reason it is also known as micmcausality. Evidently, if microcausality holds, 

causality in the greater scheme of things follows. 

In anticipation of the same discussion for strings, we write it in light cone coor­

dinates 

(4.10) 

4.2 Causality in Quantum Mechanics 

If the basic laws of nature were classical, then we would be clone with causality. 

However, at the basic and fundamental level, physical laws are quantum mechanical. 

We have therefore to ask the same questions about causality in the framework of 

quantum theory. 

Naively, we would examine whether a particle can propagate from event A to 

event B. The amplitude is 

(4.11) 

For a freely propagating nonrelativistic particle, it 1s H 

amplitude ( 4.11) can be computed and it is 

p 2 /(2m). Then the 

U(t) = ( rn. )
312 

eim(x2-x1?/2t. 
21r'lt 

( 4.12) 

This result is non zero everywhere, which means that the nonrelativistic particle 

can propagate between any two events. Of course this is in disagreement with the 

classical result, but should be expected since we are doing nonrelativistic quantum 

mechanics. 

Using instead H = yfp2 + m 2 as the Hamiltonian in (4.11), we get 

1 100 . ~ U(t) = I I dp e-ttyp-+m- sin(plx2 - x 1l)p. 
27r X2- X1 0 

(4.13) 
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The integral can be calculated in terms of Bessel functions. What is important is 

that this amplitude is small outside the light cone, but still nonzero, which means 

that causality is violated. Or is it? 

We know that relativistic quantum mechanics is plagued with problems of neg­

ative probabilities and negative energy states, problems that render the theory un­

acceptable. The true and consistent merging of quantum mechanics and special 

relativity comes under the roof of quantum field theory. It is within this framework 

that we should examine the issue of causality. 

In quantum field theory, the basic object is the field itself. So, we should examine 

under which conditions a particle is allowed to propagate from A to B. But ... 

wait a minute. Quantum mechanical particles behave quite differently than small 

pellets. They can do all sorts of strange and unphysical things, as long as they can 

go undetected. It is the uncertainty principle that allows them to do so. So the 

question in terms of particle propagation is not the right one. Causality will not be 

violated if a particle travels faster than the speed of light undetected. Causality will 

be violated if measurements at spacelike separated points A and B are allowed to 

interfere. 

For the two measurements of a physical quantity, corresponding to the operator 

0( x), not to interfere, we must have 

(4.14) 

for (x1 - x2)2 > 0. Every observable of the theory is built by the field and its 

derivatives. Without loss of generality, we can restrict ourselves to the real Klein­

Gordon field. The question whether the theory is causal or not translates into when 

the commutator [4>(x1), ¢(x2 )] is zero identically. 

The Klein-Gordon field is the first field studied in every book of quantum field 

theory. The commutator under question is 

where we have defined the integral 

~ (') - ;· dp 1 ip·X + x = -( )3 -o e . 27r 2p 

(4.15) 

(4.16) 
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For spacelike separated events, we can go to a frame of reference where x 0 = 0 and 

lxl =H. Then (4.16) becomes 

m 1= udu r-;:; ~+(x) = H - 2-- sin(mv x2u), 
47r2 x2 0 u + 1 

( 4.17) 

where we also have performed a change in the integration variable, u = pjm. This 

can be evaluated in terms of the Hankel function and it is 

(4.18) 

Notice now that (4.18) for x2 > 0 is even, so the two terms in (4.15) cancel each 

other. Thus, for spacelike separated events the commutator is zero. Otherwise 

such cancelation could not occur (for x2 timelike, the Lorentz transformation we 

performed above can not be done) and the result is nonzero. 

The generalisation to other fields (like the Dirac or the electromagnetic) is 

straight forward, with the understanding that for fermionic fields we should ex­

amine the anticommutator. If fact, demanding causality in accordance with special 

relativity in a quantum field theory forces us to quantise integral spin fields with 

commutators and half integral spin fields with anticommutators. Causality and 

relativity in quantum theory are behind the spin-statistics theorem. 

In quantum mechanics one could use a different approach and discuss causality in 

the context of S-matrix. More specifically, the question would be which conditions 

are needed to ensure that the S-matrix is Lorentz invariant. This would correspond 

to macroscopic causality in classical physics. One can show ( [9]) that microscopic 

causality and locality of the theory imply macroscopic causality. This holds the 

other way around as well. But we believe that microscopic causality is more funda­

mental than macroscopic. After all, there are situations where an S-matrix is not 

well defined because asymptotic states are not well defined, yet one can still define 

interaction vertices and, most important for our discussion, microcausality can still 

be defined as above. 

It will be interesting to use this method to obtain the light cone for in a different 

background1
. In anticipation of the same calculation for string theory, we will obtain 

1The following calculation is based on [1]. 
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the particle light cone in the plane wave (3.7). For simplicity, we will use a real scalar 

field ¢(x), of mass M. The equation of motion for the massive Klein-Gordon field 

is, 

vkr811 ( Jf9Tg11v8v) ¢- M 2¢ = 0 => 

-28+8_¢ + t-L2(xi)28:.¢ + 8i8i¢- M2¢ = o. 

By Fourier transforming x-, 

we have 

where 

H = _1_ (-___!!___ + M2 + m2(xi)2) . 
2p+ 8xi2 

We have defined m = 1-LP+. It is easy to see that the solution for the field is 

Hn are Hermite polynomials, C(ni) is their normalisation, 

For the energy we have that 

1 [ D-

2 

( . 1) l p- = E = 
2

p+ M 2 + 2m~ nt + 2 . 

(4.19) 

( 4.20) 

(4.21) 

( 4.22) 

(4.24) 

(4.25) 

We can quantise the field by promoting it to an operator and imposing the equal 

time commutation relation 

D-2 

[¢(x+, x-, x), ¢(x+, y-, y)J = rS(x-- y-) II rS(xi- yi) ( 4.26) 
i=l 

which in terms of the field modes a., at reads 

( 4.27) 

Clearly, a, a.t are annihilation and creation operators, respectively. 
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The calculation of the commutator of two fields is straight forward to perform 

and one finds that 

[¢(x), ¢(y)] = !h- !h, ( 4.28) 

where 

(4.29) 

As usual, we have abbreviated ~x+ = x+ - y+. 112 is obtained form !h by inter­

changing x withy. 

Notice that in the limit J1 -----> 0, ( 4.29) has a good limit and in fact reduces to 

the propagator of the free particle. This is something we should expect, since (4.29) 

is essentially, the Green function of the simple harmonic oscillator with J1 being 

the frequency and the Green function for the harmonic oscillator for zero frequency 

becomes the Green function of the free particle. On the other hand, for J1 -----> 0, the 

plane wave metric reduces to the flat metric and it is (at least conceptually) clear 

that in that case we would essentially be solving for the Green function of the freely 

propagating particle. It is nice to see how different things fit together. 

In order to find the light cone, we seek the condition under which the commutator 

(4.28) vanishes identically. For that purpose, we perform an analytic continuation 

on fh, 

( 4.30) 

and we have that 

9t -----+ 9 

For the second term in the right hand side of (4.28), we perform the analytic con­

tinuation p+ -----+ -ip+ and we find that g2 -----+ g. 

If the integral g converges, the two terms cancel and the commutator is zero. g 

is a well behaving integral for p+ -----> 0, but problems of converges arise for p+ -----> oo. 
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The integral will converge only if 

(4.32) 

in which case the commutator ( 4.28) will be zero identically. We conclude therefore 

that the light cone for a particle in the plane wave (3. 7) is 

D-2 

L.C.particle = -~x- + fL "'"""' [((xi)2 + (yi)2) cos(ft~:r+) _ 2xiyi] = O. 
planewave 2 sin (ft~x+) '{;;{ 

The condition for causally related/unrelated particles in the plane wave is 

L C particle _ 
· ·ptanewave -

> 0, causally unrelated, 

= 0, causally related, marginal case, 

< 0, causally related. 

( 4.33) 

(4.34) 

This agrees with the result of [107], where the light cone for a particle in the 

plane wave was obtained using geometrical methods. For further discussion of the 

light cone and causality in the plane wave metric we refer the reader to [108], [109]. 

Notice that the light cone exhibits a periodicity in the light cone time x+, 

(4.35) 

What is not obvious is the following. There exists a coordinate transformation 

that makes the plane wave metric (3.7) conformally flat [110]. Specifically, first we 

pass the spherical polar coordinates for the transverse part of the plane wave metric 

and then we change coordinates 

( 4.36) 

x = x' cos(ftx+), ( 4.37) 

I 1 2 
X-= X --[LUX 

2 
( 4.38) 

Then, the plane wave metric becomes the flat metric, times an overall conformal 

factor. It is remarkable that under this coordinate transformation, the light cone 

( 4.33) becomes the flat, Minkowski light cone. 
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4.3 Causality in String Theory 

We come now to investigate causality in string theory. And we run immediately 

into the first difficulty. Strings are extended objects, so what is the meaning of the 

light cone? Do we take as such the light cone of the centre of mass, the middle 

point (which can not even be defined for closed strings), some other combination? 

Puzzling. 

To overcome this difficulty, we are going to examine causality in the same way we 

did for point particle field theory. Observables in string theory should be built from 

the string field and its derivatives. Again, because the theory is a quantum one, the 

real question is when separate observations are allowed to interfere. As in the point 

particle case, this reduces to when the commutator of two string fields is allowed 

to vanish. Unlike point particles, we lack a full, covariant and gauge invariant field 

theory for strings. However, as we saw in previous chapters, we can write down a 

string field theory in the light cone gauge. This is the reason that we study string 

causality using light cone string field theory. 

4.3.1 Causality in the flat background 

We want to find the condition under which the commutator of two string fields, cor­

responding to strings { x+, x0, X ( (})} and {y+, y0 , Y ( (})} vanishes identically. Con­

sider for simplicity the case of two open bosonic strings. We have computed the 

commutator of their fields in chapter 2, equations (2.25), (2.27), which we repeat 

here for convenience. 

cbosonic(X. Y) 
open ' 1oo d + ( · + ) (D-2)/2 ( . A ~ 2 +) p zp zuxo p -it.x-p+ --- - exp e 

0 27r 27r ~x+ 2~x+ 

ftff{;f 
l=l i=l 

1 
2i sin lt.x+ 

2a'p+ 

( 4.39) 

( 4.40) 

{ l / (2a') ( · · ( · 2 · 2 ) l~x+) } exp 2x'y' - (x') + (y') cos --
2 . . lt.x+ l l l l 2a' + ' 

Z Sin 2a'p+ P 

"t} tl bb . t" A + + + A - - - A ~ ~ ~ w1 1 1e a rev1a Ions ux = x - y , ux = x 0 - y0 , uxo = Xo - Yo. 
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Let us focus on the first term in the right hand side of ( 4.39) assuming without 

loss of generality that .6.x+ > 0. We will perform a contour deformation, by sending 

( 4.41) 

Then it is 

G 1oo dp+. ( p+ )(D-2)/2 [( .6.i02 -) +] 
-~ exp --- + .6.x p 

0 27r 27r .6.x+ 2.6.x+ 

oo D-2 ~ 1 
II II v ~ 2 . h l~x+ 
1=1 i=l Sln 2o:'p+ 

( 4.42) 

exp { l/t ) [2xtyf- ((xt}
2 + (yf?) cosh ~.6.'x:]}. 

2 sinh l~x+ ~o: P 
2o:'p+ 

We can manipulate the second term on the right hand side of (4.39), in a similar 

manner, sending p+ ---+ -ip+. The result is equal to G. If the integral converges, 

the two terms cancel each other and the commutator is zero. 

The integral G is converging for p+ -> 0. For p+ -> oo, it will converge only if 

00 

L C' open string = _ 2 A +A .- + A --:2 + ~ A -.2 > 0 
. "flat - ux uXo uXo ~ uxl . 

l=l 

( 4.43) 

If this condition is not satisfied, the integrals do not converge, we are not permitted 

to do the analytic continuation and of course the commutator is not zero. The 

condition therefore that determines when two strings are causally related or not is 

L C open string _ 
· "flat -

> 0, causally unrelated, 

= 0, causally related, marginally, 

< 0, causally related. 

(4.44) 

The string light cone for open strings is defined to be the hypersurface in space­

time that satisfies 
00 

-2.6.x+ .6.x0 + .6.i0
2 + L .6.xr = o. 

1=1 

For closed strings, the calculation is exactly the same and the answer is 

00 00 

-2.6.x+ .6.x0 + .6.i0
2 + L L ((.6.x1)2 + (.6.x1) 2

) = 0. 
l=l i=l 

(4.45) 

(4.46) 
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Analysing the propagator (2.108) in the same way, the condition that one recovers 

IS 

L C closed string _ 
· "flat -

> 0, causally unrelated, 

= 0, causally related, marginally, , 

< 0, causally related. 

where of course now we have that 

00 00 

L.C.jll:~ed string = -2L1x+ L1x() + L1xo2 + L L ( (L1xf)2 + (L1xt)2) . 
1=1 i=l 

(4.47) 

(4.48) 

We see immediately that the string light cone is different than the point parti­

cle light cone. This is something we should expect, since the string is a spatially 

extended object. Another thing to notice is that the modification to the light cone 

as we know it from point particles comes exclusively from the internal oscillating 

modes of the string. In addition, the zero mode of the string, which corresponds 

to the centre of mass behaves exactly like a point particle. The string light cone 

( 4.45) truncated to the zero mode is the same with the point particle light cone 

( 4.8). Finally, the string light cone, like the point particle light cone respects the 

symmetries of the background, in this case emphasis on the translational invariance. 

We will comment further on this at chapter 6. 

4.3.2 Causality in the plane wave background 

We saw that the string light cone for strings propagating in a flat background is quite 

different than the point particle light cone. It is only natural to want to examine 

the situation for the plane wave background. As before, we will carry the analysis 

for the open string, focusing on the bosonic part. 

The propagator is, as we found in (3.43), 

(;bosonic = 
open 100 d + 

00 
8 [if _l!_e-i~x()p+ 1111 __!:!.!_ 

o 27f 27ra' 2i sin w1 ~x+ 
l=O i=l 2a1p+ 

1 

{ 
wz/(2a') [ · · ( · 2 · 2 ) (L1x+wl)]} exp ( . ) 2x/yi - (xD + (yl) cos + 4.49) 

2 . • ~X~Wl 2a1p 
~Sill 2a'p+ 
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Without loss of generality we can take 6-x+ > 0 and perform the analytic continu-

ation 

Then, the propagator takes the form 

100 dp. tlx-p+ rroo rr8 {lj;-l 1 
-'te o -- -
271" 27!"a' 2 sinh tlx+wl 

0 l=O i=l ' 2a'p+ 

{ 
wtf2a' 

exp 2 . h tlx+wl 
Sill 2a'p+ 

( 
· · · 2 · 2 6-x+wz) } 2x~y; - ((xi) + (yl) ) cos 

2
a'p+ . 

( 4.50) 

(4.51) 

Remember that there is an implicit p+ dependence through w1• After the analytic 

continuation we have 

( 4.52) 

For p+ --+ 0, the integral converges. For p+ --+ oo, the integral converges only if 

( 4.53) 

In obtaining this result, one should be careful with w, since, for each fixed l in 

the p+ --+ oo it becomes imaginary, Wz --+ 2ia'p+ 1-L· The second term in the right 

hand side of the string field commutator can be shown to be equal to the first, if 

one make the analytic continuation p+ -----+ -ip+. Then, if ( 4.53) holds, the two 

integrals cancel and the commutator is zero. Otherwise, we can not cancel them 

and the commutator of course has a non-zero value. 

We conclude that the condition for the string light cone in the plane wave back­

ground is 

L C open string = 
· ·ptanewave 

where we have defined 

> 0, causally unrelated, 

= 0, causally related, marginally, (4.54) 

< 0, causally related, 

00 8 

L C open string _ A - /-L ~ ~ [(( i)2 ( i)2) (A + ) 2 i i] 
. "planewave = -uXo + 2 sin(6.x+ 1-L) ~ f;:: Xt + Yt cos Ll.X 1-L - XzYt . 

(4.55) 
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We define the string light cone in the plane wave background to be the hypersurface 

that obeys 

( 4.56) 

We see immediately that the string light cone is different than the underlying 

point particle one. The modification again comes exclusively form the internal 

oscillating modes of the string. In fact, if we truncate (4.56) to the zero modes, 

we recover the point particle light cone for the plane wave background, (4.33). In 

accordance with the plane wave metric, (3.7), translational invariance is lost now. 

Finally, we experience the same periodicity in x+, as we did with ( 4.56), despite 

the fact that we have not imposed any such condition. We interpret this result as a 

requirement for the consistency of the theory. We will say more on this at chapter 

6. 

4.4 Summary 

In this chapter we have discussed the issue of microscopic causality in string theory. 

We started by explaining what causality is and how it works in classical physics, 

introducing the notion of the light cone. Then we examined it in the context of 

point particle field theory, where we found out that the point particle light cone 

remains the same as in the classical physics. Based on this knowledge, we examined 

causality in string theory, deploying the machinery of light cone string field theory. 

There we found that the string light cone is quite different from the point particle 

one. The internal oscillating modes of the string modify its shape, although the 

zero mode of the string (which corresponds to the centre of mass) behaves exactly 

as a point particle. Carrying over the analysis to the plane wave background, we 

found that the same stringy feature of the sting light cone remain. Even more, we 

discovered that the plane wave background has to have a periodicity in x+, to make 

the theory consistent. 



Chapter 5 

Causality Revisited - Interactions 

In ordinary quantum field theory, interaction do not modify the causal structure of 

the theory. This is achieved by the requirement of locality, that is that interactions 

should be local in the fields and their derivatives. For example, for the real Klein­

Gordon field, the simplest interaction we could have is a q} interaction. This is 

implemented in the Hamiltonian of the theory by the term 

(5.1) 

Notice that all three fields in the interaction are taken at the same spacetime point 

x. This is the requirement of locality. 

We will examine now what happens in string theory. 

5.1 The flat background case 

The first indication that string interactions modify the string light cone came in [61]. 

There the authors calculated a certain amplitude, namely 

The dot in (5.2) stands for the time derivative and all fields are taken to be at 

x+ = 0. <I> can be replaced by the Heisenberg equation of motion, 

<i> = i [H, <I>]. (5.3) 

71 
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The full Hamiltonian of the theory is 

(5.4) 

where H free is of course the Hamiltonian of the free theory and H 3 is the interacting 

part of the Hamiltonian for a 3 string interactions (see (2.35)). Clearly, the only 

modification (if any) will come from the interacting term. Therefore the calculation 

reduces to finding the amplitude 

It was found that the amplitude does not vanish outside the string light cone. 

This means that the causal structure of the theory is modified by the interactions. 

Based on that result, the authors of [62] proceeded to argue that the apparent 

violation of string causality is more general and might have implications for black 

hole physics. Let us repeat their calculation here, stating that same calculation for 

the Klein-Gordon field with a ¢3 interaction gives zero outside the particle light 

cone. Also, the amplitude (5.2) in the plane wave background, vanishes outside the 

string light cone, as shown in appendix . 

Consider the amplitude 

(5.6) 

of two string fields, denoted by 1 and 2, with a 3rd spectator state. The spectator 

state is necessary for a possible non-zero contribution at first order in the string 

coupling constant g. The subscript H means that everything is in the Heisenberg 

picture. Passing to the interaction picture, we have 

(5.7) 

where U1(xi, xt) is the time evolution operator in the interaction picture. In the 

leading order of string coupling, it is 

(5.8) 

Hence up to first order in g we have 

(5.9) 
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where the zeroth order amplitude 

is a matrix element of the commutator of the two string fields, and 

M(1
) = iglxt dx+(OI<I>I(1)H3(x+)<I>I(2) 

xi 
+<I>I(2)H3(x+)<I>I(1)- <I>J(1)<I>I(2)H3(x+)l3). 
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(5.10) 

(5.11) 

For strings outside the string light cone (4.45), we see immediately that M(o) = 0. 

Any possible causality violations will come from a non-zero M(l). 

Now, since H 3 is of the form <I>3 and the string field of the form <I> ,....., A + At, we 

can break the interaction vertex down to terms with equal number of creation and 

annihilation operators, H3 = H3aaa + H3aac + H3acc + H3ccc· It is easy to see that 

unless the spectator state is a single string state of the form 13) = At (pj, { rh,l}) IO), 

M(l) will be identically zero. With this choice for the spectator state, we have 

+ 

M(l) = ig 1x2 

dx+ (OI<I>a(1)H3aac(x+)<I>c(2) 
xi 

+<I>a(2)H3aac( x+)<I>c ( 1) - <I> a (1 )<I>a(2)H3acc(x+) 13) · (5.12) 

<I>a is the part of the string field containing the annihilation operator A, <I>c the part 

with the creation operator At. 

A lengthy computation can show that 

The function F( o:1, o:2) is 

(5.14) 

V is the 3-string vertex in the momentum representation and in the oscillator basis. 
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To make things more transparent, it will be sufficient to specialize to the case of 

a tachyon component field and a tachyon spectator state. Then, the 3-string vertex 

is simply 

V(l, 2,3) ~ cxp ( ~ t,p;), (5.15) 

where of course the p; are given by (2.18). In retrospect, the amplitude simplifies 

to 

(5.16) 

If the vertex (5.15) was polynomial in aT) we could show that the amplitude 

(5.16) vanishes for x 1 - x2 spacelike by the usual contour deformation argument. 

However this is not the case and we see that the amplitude receives contribution 

even for spacelike separations. 

The reader might be worried here that this is something we should expect since 

we decided to work with the tachyon. Tachyons are notorious for causing all sorts of 

causality problems, after all. But this is not the case here. The tachyon is treated 

as a massive scalar particle, its (negative) mass-squared does not interfere with 

the calculation. The same phenomenon would appear if its mass was positive (an 

ordinary massive scalar particle) or zero. In fact, the same conclusion holds for the 

superstring as well, where the ground state of the string has zero mass. 

5.2 The plane wave case 

It is only natural to repeat the calculation for the plane wave string theory, to see 

what are the similarities and differences between the fiat and the plane wave theory. 

Surprisingly, we find that in the plane wave there is no modification to the causal 

structure of the theory due to interactions. 
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The first indication came through the computation of the amplitude (5.2). It 

was found that unlike the free case, by deploying the usual analytic continuation 

argument, the amplitude vanishes for string configurations outside the string light 

cone. But of course the real test comes form examining the amplitude (5.6), which 

after all is more general. 

In repeating the calculation for the plane wave, notice that the steps that lead 

of (5.13) are the same. We have therefore that 

(5.17) 

L (hnl,d (xl,L)f{n:
2
,l} (x2,1) V(1, 2, 3) e-iT I:~=l v; eii:;=l v;xt +vtx;) 

{iil,l},{ii2,d 

The function F(a1 , a 2 ) is the same as before, (5.14). Now of course Vis the 3-string 

vertex in the momentum representation and in the oscillator basis for the plane 

wave. 

It will be convenient to take the kinematical situation to be a 1 , a 3 > 0 and 

a 2 < 0. Then the interaction term in the Hamiltonian is 

3 

H3 = g J IT da/DP(r)(a)h(ar, P(r)(a))<I>[x+, an P(r)(a)], 
r=l 

where h is the measure and is 

h(an P,,)(a)) ~ 0 (~a,) ttl V'?r.')(a)e' f d.•v,,,C•') P,,,C•'l 

o [f<2)(a)- Y{3)(a)- Y{l)(a)J. 

(5.18) 

(5.19) 

By inserting the expansion of the string field in terms of creation/ annihilation op­

erators into (5.18), we obtain 

(5.20) 

where the ... are terms of the form AAAt, AAtAt, AtAtAt. For our case of interest, 

only the AAA term is relevant. V is 

(5.21) 
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where 

hn<rJ,d(P(r),t) = J :fi: e-i'L-~oilrPz !{n<rJ,z}(x(r),t) 
l=O 

(5.22) 

are the harmonic oscillator eigenfunctions in the momentum space (see also (3.36)). 

After this brief digression, back to the calculation of (5.18). The explicit expres­

sion of V(1, 2, 3), is (5.21). Using the sum rule for the Hermite polynomials (2.24), 

we can easily calculate the sum in the second line of (5.18) and obtain 

·f _ (y- )e-iTP3 e-ipt x;; e-ip[ 6.x-
{ n3,l} ' 3,1 · (5.23) 

Here we have introduced the shorthand notation 

(
Wr t/2ci 1 ) (d-

2
)/

2 

Ir,l(an Xr,l, Yr,l) = ' /I I (5.24) 
1f 1 _ e-iTrWr,l C¥r 

{ 
Wr,t/2a' [ _ _ ( -2 -12 ) (TrWr,l)] } · exp ( ) 2xr,l · Yr,l - xr 1 + Yr 1 cos -

1

--

1 2i sin Tr·Wr,l ' ' O:r 
larl 

and as before .6-x- = x2- x;- . The T-dependence enters through Tr = T- x~. For 

the kinematic situation we are considering here, the delta-functional is 

The matrices X are for r = 1, 3 

x(r) = 
mn 

where form> O,n 2 0, 

_X(r) 
mn, 

1 _X(r) 
y'2 mO' 

m>O,n>O 

m>O 

1, m = 0 = n, 

(5.25) 

(5.26) 

_k(l) = (- )n2mf3 sinm1r,6 
rnn 1 2(32 2 ' 1r m - n 

_k(3) = 2m(f3 + 1) sin m1r/3 
mn 7r m2(f3 + 1)2 _ n2' 

(5.27) 

and f3 = ada2, f3 + 1 

F(a1, a2) = 1. 

------------------ --

8mn. Also for our case 
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To proceed further, one may write M(l) in the form 

M(l) = 1: da1K(ai) e-io. 16.x- fa', 

where 

00 
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(5.28) 

·IT J1,t(a1, i\t, ih,t)J2,t(a2, x2,1, iht) · !{ih,l}(ih,t)e-iTP3 e-ipjx;- .(5.29) 
1=0 

Now let us focus our attention on the a 1 integral. As was done in [58], [1], we 

can write M(l) as 

100 

da1K(a1)e-ia 16.x-;o.' + 100 

da1K(-a1)eio.1 6.x-/o.'. (5.30) 

Rotate the first integral by sending a 1 --. ia1 and the second term by sending 

M(l) = i 100 

da1K(iai)ea 16.x- /o.' - i 100 

da1K(iai)ea 16.x- fa'. (5.31) 

If each individual integral converges, the two terms cancel each other and hence 

]\,f(l) = 0. For that, we must examine the large a 1 behavior of K(ia1). It was at 

this point that the calculation for the flat background failed to vanish. 

The above analysis was carried out for the general case with arbitrary string 

fields. It will be illuminating to consider a simplified situation where the 1st and 2nd 

string fields are taken to be the lowest component fields with: 

{

0, 
ih l = ii2t = 

' ' arbitrary, 

when l 2 1, 
(5.32) 

when l = 0. 

The component field is obtained by integrating the string field with f1: 1 dx1 (/7~nz} (it). 

This gives 

J dp+ """ + •( + -+ - +) 0 T( T, X-' x) = 27T ~ a(p 'iio)e-· X p X p (/J{no} (x) + h.c.' (5.33) 
no 

where we have defined a(p+, ii0 ) = A (p+, ii0 , {'i1121 = 0}) and in the following we 

often denote the zero mode x0 by x for simplicity. Furthermore, we restrict the 3rd 

string to be the following spectator state: 

13) = A(pt,{n3,t})IO), with ii3,t = 0, for alll. (5.34) 
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We note that P3 = 0. 

Following the same procedures as above, it is easy to obtain (5.28) with K(a1) 

now taking the form 

00 

·Jt,o(at, Xt,o, f/I,o)J2,o(a2, i'2,o, Y2,o) IT 4?~o}(Yt,t)4?~o}(Y2,t) · i{o}(Y3,t)· (5.35) 
1=1 

We note that, compared with (5.29), the product IJ;:1 J 1,1(·)J2,t(·) in the second line 

there is replaced by IJ;:1 4?~o} (Yt,t)4?~o} (Y2,t) above due to the condition (5.32). Now 

we perform the contour rotation and focus on the integrals of the ff's. Let us first 

integrate dy2,1, l 2 1 using the nonzero mode delta functions. The resulting integral 

of Yt,l and y3,t, l 2 1 is independent of the zero modes y1,0 and ih,o in the large a 1 

limit and so can be calculated easily. Next we integrate out dfh,o using the zero 

mode delta function. Therefore in the large a 1 limit, 

ip+x-K(iat) 14 J __ A A [ W3o (!a2 ,_ la1 1_) 2
] 

e 3 2 ig ,...., xi dT dy1dY2 J1,oJ2,0 exp + 4~, a
3 

Y2- a
3 

Yt 

(5.36) 

up to an unimportant a 1-dependent proportional factor which is sub-dominant in 

large a 1 limit. Here we have denoted Yr,o by Yr for simplicity. Also we have used 

the hat A to denote the corresponding quantities with the substitution a 1 ---+ ia1. 

For example, w1,1 = Jzz - J.L2ar in J1,0 . After the contour rotation and taking the 

large a 1 limit, we have 

Now Jr,o takes the form 

with 

A = J.Lnt/(2a') 
r 2 tan(J.LITr I)' 

Br = J.Lnt/(2a') 
2 sin(J.LITr I) 

(5.37) 

(5.38) 

(5.39) 

and thus the Yt, Y2 integral takes the form J dy1 dy2 exp(- I.:r,s NrsYr · Ys + I.:r Sr · Yr) 

and can be easily carried out. We obtain for the y1 , y2 integral in (5.36), 

[ 
J.Lnt/(2a') ( _2 + _2 ) + J.Lat/(2a') _ _] 

exp - x 1 x2 Xt · x2 
2 tan(J.L~x+) sin(J.L~x+) 

(5.40) 
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in the leading large a 1 limit. It is remarkable that the various coefficients of Nrs, Sr 

combine to make the result (5.40) T independent. Hence the T integral in (5.36) can 

be calculated trivially. Finally we obtain for (5.31) 

The exponent of the integrand is precisely the tree level string light cone ( 4.56) 

restricted to the zero modes. Thus we have shown that, unlike the flat case, the 

matrix element (5.6) does not receive contribution from region outside the free string 

light cone. 

To be fully supersymmetric, the bosonic vertex has to be completed with the 

fermionic vertex and a prefactor which is needed for the preservation of the super­

symmetries. Also the bosonic string field has to be replaced by the light cone string 

superfield [45,46] so that we commute the matrix element of the commutator of two 

string superfields. Now the Grassmannian factor makes sub-dominant contributions 

to the contour-deformed integral in the limit p+ ---+ oo and does not affect the con­

vergence of the contour-deformed integral. This is also the case for the prefactor as 

it is a polynomial in p+. Therefore we conclude that the commutator of the string 

fields is unaffected by the plane wave string interaction. 

This result is surprising. In the flat background case, the string field commutator 

was found to receive additional non vanishing contribution ( [61], [62] and above) 

from the interaction even if the two strings were outside the free theory string light 

cone. Since the plane wave background and the bosonic part of the vertex are 

both continuous in the f.t ---+ 0 limit, one may naively thought that the plane wave 

string field commutator should also receive additional contributions, at least in a 

neighborhood of f.t = 0. Our result shows that this is not the case and the matrix 

element (5.6) is discontinuous at f.t = 0. Technically the reason for the discontinuity 

is because the f.t ---+ 0 limit does not commute with the procedure of summing up 

the contributions from the infinite tower of string states. 

Since the plane wave light cone string field theory is not continuously connected 

with the flat space string theory, there is no compelling reason to require that 
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the 3-string vertex to be continuous at J.L = 0. What about the Z2 symmetry? 

Without additional input, one cannot fix the form of the light cone vertex in the 

plane wave background uniquely from the supersymmetries alone. Imposing the 

Z2 symmetry is enough to fix the vertex. However there is a possibility that the 

symmetry is spontaneously broken. Since the plane wave background is obtained 

from the AdS background by performing a Penrose limit, a reasonable possibility 

that may help to understand better the plane wave string interaction is to try 

perform this limit carefully on the dynamics on the AdS side. This interesting idea 

has been pursued recently by Dobashi and Yoneya [95], with further work by Lee and 

Russo [96]. They propose that the plane wave string vertex that is relevant for the 

holographic plane wave/SYM correspondence is given by the equal weighted sum of 

the ZTinvariant vertex and the J.L-continuous vertex. It turns out that this particular 

combination coincides with the vertex proposed previously in [111]. These authors 

also provide some intuitive understanding of the role of each parts of the vertex: the 

ZTinvariant vertex describes the "bare" interaction, while the J.L-continuous vertex 

describes the mixing of the BMN operators. Thus according to this proposal, not 

only the continuity of J.L is not maintained, also the Z2 symmetry is broken due to the 

mixing effects. The breaking of the Z2 symmetry has also been revealed in previous 

field theory calculations [112], [113]. In principle, one can fix the form of the light 

cone vertex by starting from the covariant Witten string field theory and performing 

the light cone gauge fixing. To confirm this breaking from a more fundamental point 

of view will be very exciting. 

5.3 Summary 

In this chapter we investigated whether and how string interactions affect the string 

light cone. In point particle quantum field theories, this is not the case, as long as the 

interactions are local. The requirement of locality (and Lorentz covariance of course) 

for the interacting terms ensures that the theory respects the causal structure. 

The case for the strings, as we saw is more interesting. By studying certain 

amplitudes, we saw that the string light cone in the fiat background gets modified 
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by interactions. This might be a gauge fixing artifact, since we performed the 

analysis using a gauge fixed theory, might be purely because the string is not local 

(as an extended object) or something more fundamental. 

On the other hand, the exactly same analysis for the string in the plane wave 

background suggests that there is no modification due to the interactions. This is 

quite interesting and shows that the theory is not continuously connected to the flat 

background one. It also sheds some light into the choice of the 3-string vertex. 



Chapter 6 

Conclusions 

In this final chapter, we conclude the thesis. After a brief summary of what we have 

discussed so far, we comment further on the string light cone and the impact that 

string interactions have on it. Finally we present possible extensions. 

6.1 In summary 

To summarise what we have clone so far. We asked the question of causality in clas­

sical physics and we saw that the upper bound for the speed of any physical object 

places severe restrictions on the causal structure of any theory. This is summarised 

in the notion of the light cone. Then, we saw that in quantum theory (in quantum 

field theory to be precise), the demand of causality translates into the local commu­

tativity of the field. To investigate causality in string theory, we mimicked quantum 

field theory. Specifically we formulated the condition for the string light cone to be 

the vanishing of the commutator of the string field. 

String field theory, in contrast to point particle field theory is not a fully de­

veloped subject yet. There are many aspects of the theory that we do not fully 

understand and we do not know how to formulate them. Even though we lack a full 

covariant and gauge invariant string field theory, we saw that we can write one in 

the light cone gauge. The advantage of the light cone gauge is that we have a theory 

involving only the physical degrees of freedom, is manifestly unitary and trackable. 

As we saw in chapter 2, we can quantise the theory in a canonical formalism, re-
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minding the Klein-Gordon field. This is one reason we restricted our analysis for 

the string in the light cone gauge. 

The second reason is that we wanted to perform the same analysis in the plane 

wave background. As we saw in chapter 3, string theory in the plane wave back­

ground so far is trackable only in the light cone gauge. This is the second reason 

that we have to confine our analysis in the light cone gauge. 

6.2 The String Light Cone 

In order to study causality in string theory, we mimicked quantum field theory. We 

formulated the condition for causality as the vanishing of the commutator of two 

string fields, something that we described as microcausality. For strings propagating 

in a flat background, we found that the condition to determine whether two strings 

are causally related or not is ( 4.44) for open strings, with a similar expression for 

closed strings. 

The first striking feature is that the string light cone does not match with the 

point particle light cone. At first glance this can be thought as alarming for the 

consistency of the theory, but we have to be careful, since strings are extended 

objects. Consider the case where we want to determine the causal relation of two 

strings and imagine that one of them is so small, that it shrinks to a point. Then, 

with respect to that string, we can define the light cone and it has the same shape 

as that of a point particle. The second string can be half inside, half outside this 

light cone and the string can still be causally related. Or it can be half inside, 

half outside and not causally related. By pure intuition, we can not resolve the 

situation. Equation ( 4.44) resolves this for us. Instead of considering it as a violation 

of causality, we should interpret it as what we mean by causality for extended 

objects. The naive application of the point particle light cone to strings (or any 

other extended object) does not apply. Are we going to use the light cone of the 

middle point, the end point, some other combination? And what about closed 

strings, where there is no way to single out a point? ( 4.44) and its counterpart for 

closed strings answer that question. 



6.2. The String Light Cone 84 

In support of that argument, notice that the modification of the light cone comes 

exclusively from the internal oscillating modes of the string. In the case that the 

string shrinks to a point, or equivalently one studies the centre of mass (with is 

described by the zero mode), one recovers the causality condition for point particles. 

If this was not the case, if the string light cone did modify the point particle light 

cone, then we should be worried. 

In addition, recall that the first quantised theory of strings can be thought of as 

a two-dimensional quantum field theory1 and its supersymmetric extension. This 

means that along the world sheet we have the causal structure of field theory as we 

know it and signals do not propagate faster than the speed of light. This fact adds 

further support to our claim that the string light cone does not really undermine 

the notion of light cone from point particles. 

This characteristic carries over to the plane wave background analysis. Once 

more, the string light cone in the plane wave, is a generalisation of the point particle 

light cone (of the same background of course!), with the additional terms coming 

exclusively from the internal oscillating modes of the string. 

Furthermore, notice that the string light cone in both cases respects the symme­

tries of the background. Minkowski space is translational invariant and this reflects 

to both the point particle light cone and the string light cone. On the other hand, 

for the plane wave translational invariance is lost, due to the extra J.L term in the 

metric (3.7). Accordingly, the light cone exhibits the same lack of invariance. 

Finally, notice that the light cone in the plane wave exhibits a periodicity in 

light cone time x+, with period 27r / f-L· This is a striking feature, since we have not 

imposed any periodicity condition. In formulating the theory, we started with the 

metric (3.7), without any further assumptions or comments about its origin. As far 

as we are concerned, we could just claim that we are smart enough (or lucky enough) 

to find that string theory is solvable in that particular background in the light cone 

gauge. Then, we formulate a string field theory and we calculate the string light 

cone. Lo and behold a periodicity appears! The only explanation for this is that the 

1 Actually it is a conformal field theory. 
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consistency of the theory requires such a periodicity. Of course, viewing the plane 

wave as the Penrose limit of AdS5 x 5 5 , this periodicity comes naturally into play. 

6.3 Interactions 

In quantum field theory, interactions that are local do not modify the causal struc­

ture of the theory. Actually, one goes the other way around. Causality should be 

respected from the full theory, not just the free part. The only way to ensure this 

is by adding the requirement of locality, especially for the interacting terms. This 

means that the fields (and their derivatives) that build up the interacting part of 

the Lagrangian of the theory, should all depend on the same point x. For example, 

for a real Klein-Gordon field, an interaction of the form ¢n ( x) is permissible, an 

interaction of the form ¢n(x)¢(y) is not. 

Extended this to interaction terms in string theory is not straightforward. For 

one, locality is an ill-defined concept in a theory that can not be local because its 

fundamental object is extended in nature. The best we can do is to demand, that 

as the string breaks, the coordinates of the worldsheet change continuously. This is 

how we built up the interaction terms for string field theory. 

Even so, we found out that for string in a flat background, interactions do not 

preserve the causal structure of the theory. Specifically, we saw via explicit calcu­

lation of certain amplitudes, that they receive contributions outside the string light 

cone. This can be really alarming. 

Remember however, that we are working in a gauge fixed theory. Imposing the 

light cone gauge has rendered the theory manifestly unitary and free of ghosts, but 

this came at a price. String gauge symmetry has been lost completely and even 

worse, we do not know what it was originally. By string gauge symmetry we mean 

of course a transformation o<I> that will leave the action S[<I>, ... ] of the full string 

field theory invariant. It could be then that this "violation of causality" is merely 

an artifact of the gauge fixing. 

Think for a moment about QED. The theory is covariant and ha.':l a gauge sym­

metry. However, one can pass to the Coulomb gauge, where quantisation is straight 
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forward and manifestly unitary. But there one discovers that he has action at a 

distance. This does not mean that the theory violates the laws of relativity, it is 

just an artifact of the gauge that we have to live with it. Similarly here, this might 

be a gauge artifact. But without the full theory, we can not tell for sure. 

What perplexes things more is that the plane wave theory does not exhibit the 

same behavior. There we found that interactions respect the causal structure of the 

theory. Of course this calculation was carried out in a light cone (i.e. gauge fixed) 

string field theory. Which in return means that one gauge fixed version of the full 

string field theory results in an apparent causality violation, while another gauge 

fixed version does not. At this stage it would be impossible, and hence pointless, 

to carry arguing along that line, when we luck a full string field theory for the flat 

background, and things are at an even more primitive stage at the plane wave side. 

This discontinuity between the flat and the plane wave theory has further con­

sequences for the 3-string vertex in the plane wave background. Recall that our 

presentation in chapter 3 was for a vertex that respected the Z2 symmetry explic­

itly. We argued that there could be a different vertex (as far as the fermionic part 

and the prefactor are concerned) by demanding that it rolls continuously to the flat 

vertex in the limit f-L-+ 0. Given the background (metric plus the field strength) and 

the free theory, the continuity for f.t -+ 0, sounds like a reasonable requirement. But 

not any more. The causal structure of the full theory in the plane wave background 

does not reduce to the flat case one. Therefore, there is no reason to demand smooth 

f-L -+ 0 limit any more. 

Is this result really in favour of the explicit Z2 symmetry? It certainly looks like 

so. But there is a possibility that the symmetry is spontaneously broken. Since 

the plane wave background is obtained from the AdS background by performing 

a Penrose limit, a reasonable possibility, that may help to understand better the 

plane wave string interaction, is to try perform this limit carefully on the dynamics 

on the AdS side. This interesting idea has been pursued recently by Dobashi and 

Yoneya in [95], with additional work by Lee and Russo in [96]. They propose that 

the plane wave string vertex that is relevant for the holographic plane wave/SYM 

correspondence is given by the equal weighted sum of the Z2-invariant vertex and 
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the J.L-continuous vertex. It turns out that this particular combination coincides 

with the vertex proposed previously in [111]. There, the authors also provide some 

intuitive understanding of the role of each parts of the vertex. The Z2-invariant 

vertex describes the "bare" interaction, while the J.L-continuous vertex describes the 

mixing of the BMN operators. Thus according to this proposal, not only the con­

tinuity of J.L is not maintained, also the Z2 symmetry is broken due to the mixing 

effects. The breaking of the Z2 symmetry has also been revealed in previous field 

theory calculations [112], [113]. 

6.4 Extensions 

How could we study string causality beyond the light cone gauge? The authors 

of [114] calculated the propagator of the string field in Siegel's string field theory2
, 

in a similar fashion as we did in the light cone gauge. Then they imposed the same 

causality condition as we did, that is they demanded the vanishing of the string field 

commutator. They found the same condition as in the light cone theory. 

This is a good indication that the string light cone that has been obtained from 

light cone string field theory is actually the correct one, that can also be obtained 

from the full string field theory. Siegel's string field theory incorporates only open 

bosonic strings. Therefore, the result of [114] is in the right direction, but we feel 

that it would be interesting to get the string light cone from Witten's string field 

theory. 

This is not any easy task as it might sound. Witten's string field theory has been 

quantised using the Batalin-Vilkovisky method [56], [57], see for example [55], but 

we feel that this is still incomplete. Any string theory involving open strings must 

also include closed strings. Even if one refuses to include them, they nevertheless 

make their appearance at one-loop calculations. With out the equivalent of Witten's 

theory for closed strings, the picture is incomplete. 

2 Siegel's string field theory stands somewhere between the light cone string field theory and 

Witten's. It is manifestly covariant, but lacks a string gauge symmetry. See [115], [116], [117] for 

the original formulation and [118], [119] for reviews. 
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Furthermore, the more interesting question is to examine within Witten's theory 

if and how interactions modify the causal structure of the theory. This will answer 

the question whether the modification of the string light cone found in [61], [62] is 

indeed a gauge fixing artifact or of more fundamental nature. 

6.5 String causality and the S-matrix 

Causality can also be formulated in terms of the S-matrix, specifically in terms of 

certain analyticity properties. For point particles, in the framework of quantum field 

theory it turns out that this is equivalent to the local requirement of vanishing of 

the commutator. In fact, one can derive the former from the later and vice versa. 

In string theory, things are still at a very primitive stage. One problem is that the 

connection between the string field and the stringS-matrix is not as straightforward 

as in point particle theory. Even more, the S-matrix requires asymptotic states for 

its definition. Although this can be done in the Minkowski spacetime, problems arise 

in the plane wave background. The periodicity in time, x+ "" x+ + 27r j f-L, makes the 

definition of asymptotic states at least problematic. Formulating causality it terms 

of the S-matrix in the plane wave background has pathologies. On the other hand, 

as we saw in previous chapters, there is no problem with formulating causality in 

terms of the local commutativity of the field. 

This does not mean that S-matrix causality is less important. On the contrary, 

it has much to say for the theory. In a recent publication, [120], the authors used a 

canonical quantisation scheme for Witten's theory, reviving an earlier work [121] to 

show that the theory is local in time and furthermore, causal. 

6.6 Future directions 

The different shape of the string light cone, compared to the point particle one, can 

have direct consequences for black hole physics. The event horizon of a black hole 

is in direct connection with the causal structure of spacetime. If this structure is 

modified by passing from point particle to strings, it will be very interesting to see 
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how the notion of the event horizon changes. In other words, an object that is a 

black hole in the point particle sense, is also a black hole in string sense? This is a 

question that ultimately will have to be answered, although we do not know how to 

address it with the current technology. 

Connected to that is the information loss paradox for the black holes. The au­

thors of [62] used the apparent violation of string causality in the fiat background 

in order to propose a solution. But under the recent light, that there is no such vio­

lation for string theory in the plane wave background, this needs to be reexamined. 

Even more, before we determine whether this is a real violation, or a gauge fixing 

artifact, there is not much that we can say. 

In addition, one might wonder how this carries on for objects of higher dimension­

ality. We know that string theory contains D(p )-branes and M-theory is speculated 

to be a theory of M2 and M5 branes. Take the case of a membrane for simplicity. 

The head-on attack would be to formulate a field theory of membranes. If we are 

lucky enough to be able to quantise it canonically, then we can have the propagator 

and examine when the commutator of two membrane fields vanishes identically. If 

only things were so simple! Membrane theories are far more complicated than string 

theories. For the bosonic membrane, there exists a gauge (also called light cone) 

where the Hamiltonian is quadratic and the equations of motion are simple wave 

equations, see [122]. The problem is that the gauge fixing conditions are so compli­

cated that we have been unable to manipulate them the way we did for the string. 

Remember that for the string, in the light cone gauge the degrees of freedom were 

the transverse Xi, x+ and x0. We used the constraints of the theory to determine 

x- (a) in terms of the transverse coordinates and the light cone time. Restoring 

the x0 dependance was a simple matter of Fourier transforming. For membranes, 

it turns out that we can make a gauge fixing that eliminates x- and X 0 - 2 , up to 

integrations constants. The restoration of x0 is again a simple matter of Fourier 

transformation. On the other hand, X D-2 is constrained by a highly non-linear 

second order differential equation, which we have been unable to solve. 
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6. 7 Epilogue 

At this point it would be wise to pause. Examining causality in string theory, as 

the local commutativity of the string field has revealed many interesting features of 

the theory. Nevertheless, this is not the end as open questions remain and other 

await. We only hope that with this work, we have contributed a small part to the 

understanding of string theory and, more generally, to the understanding of Nature. 



Appendix A 

String Theory in the Light Cone 

Gauge 

In this appendix, we present light cone string theory. The intention is to fix the 

notation and provide a brief review of the first quantised string for the reader that 

does not wish to visit the literature. However, we strongly encourage the reader 

who does not feel familiar with the subject to consult the literature. 

A.l Open Bosonic Strings 

Our starting point is the Polyakov action 

(A.l.l) 

For a string moving in a flat background, 

(A.1.2) 

We take the metric to be with signature ( -, +, ... , + ). The symmetries of the action 

(in particular, worldsheet reparametrization invariance and Weyl rescaling) imply 

constraints. 

First we choose the conformal gauge, 

(A.1.3) 
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Then we change into light cone coordinates, 

(A.1.4) 

with the rest denoted as Xi (i = 1, 2, ... , D- 2) or X and referred as the transverse 

coordinates. Finally we impose the light cone gauge 

(A.1.5) 

This choice of gauge simplifies the action considerably at the end we are left with 

(A.1.6) 

The equations of motion resulting are simply wave equations, 

(A.1.7) 

supplemented by the (Neumann) boundary conditions 

oaXil = 0. 
a=O,n 

(A.1.8) 

The constraints, 

(A.1.9) 

can be used to solve for x- in terms of x+ and xi, up to an integration constant 

Xo· 

The solution to the equation of motion (A.l. 7) are simple to solve. The solution 

is 

Xi(T, (}) = x~ + 2a'p~T + i.J2ciL ~a~e-im cosn(}. (A.l.lO) 
n 

n#O 

The canonical momentum of the string can be found from action (A.1.6) and it 

IS 

(A.l.ll) 

The Hamiltonian is then 

(A.l.l2) 

Quantisation is achieved by imposing the canonical commutation relations 

(A.1.13) 
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the rest vanishing. In terms of the modes, they read 

(A.1.14) 

(A.1.15) 

with the rest vanishing. For n > 0, an is an annihilation operator, while a_n in a 

creation operator. Their role is to create/destroy oscillating modes in the string. To 

see this better, define the rescalled operators 

(A.1.16) 

(A.1.17) 

They satisfy the commutation relations 

(A.1.18) 

For T = 0, we can write the mode expansion of the coordinates as 

00 

Xi( a)= x~ + J2L x~cosna, (A.1.19) 
n=l 

where we have defined 

(A.1.20) 

A.2 Closed Strings 

The case of the bosonic closed string is similar. We take the range of a to be 

o S: a S: 21f. The gauge fixing condition is now 

(A.2.21) 

The string is required to obey the same wave equation of motion (A.1.7), supple­

mented now by the periodicity condition 

a rv a+ 21f, (A.2.22) 

suitable for the closed string. 
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The solution to the equation of motion reads now 

(A.2.23) 

Notice that the closed string has double the number of modes of the open string, 

except of the zero mode. 

Quantising the theory is similar to the open string case. In terms of the modes, 

the canonical commutation relations read 

(A.2.24) 

(A.2.25) 

(A.2.26) 

with the rest vanishing. 

For T = 0, we can write the mode expansion for the coordinates as 

00 

xi ( 0') = xt + J2 L ( x:, cos nO' + X~ sin nO') . (A.2.27) 
n=l 

To do that, first we define (suppressing spacetime indices) 

I 1 ( - ) an= V2 anan ' (A.2.28) 

(A.2.29) 

Then we rescale them, 

a 1
• 

11 = 'na1
• II n > 0 n y·lt n ' ' (A.2.30) 

a'· II = 'nar, nt n > 0 n VJt n ' (A.2.31) 

and finally we define 
I 

_ ·a ( I It) Xn - '/,- a _n - an , 
2n 

(A.2.32) 

a' x =--(an+ ant) 
n 2n n n · (A.2.33) 
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A.3 Superstrings 

In analogy with the bosonic string, we consider a string propagating in a flat su­

perspace, with bosonic coordinates x~', J.L = 0, 1, ... , 9 and fermionic coordinates ()A, 

A = 1, 2. The generalisation of the Polyakov action is 

s -
4
:

0
, j d20"{ VhH"fJITo: · rrfJ- 2iEo:f3EJo:X~' (fJlr 11-afJe1 

- 1Pr,Laf3rP) 

+ 2Eo:f3(j1 f~'8a0 1 iJ2r 11 8{302
}, (A.3.34) 

where 

(A.3.35) 

In order for this action to posses global spacetime supersymmetry, the fermions are 

required to be Majorana-Weyl (for spacetime dimensionality D = 10). 

Notice that the bosonic part is the same as before, so we will not discuss it 

further. The light cone gauge for the fermionic coordinates is fixed by imposing the 

condition 

(A.3.36) 

Then, the action simplifies dramatically and we have (a = 1, 2, ... , 8 is a spinor 

index) 

(A.3.37) 

where we have defined the new spinors 

(A.3.38) 

(A.3.39) 

and we have combined them into a two component Majorana spinor, 

(A.3.40) 

The matrices p0 are 

(A.3.41) 

-------------------
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The equations of motion that follow are 

(A.3.42) 

(A.3.43) 

(A.3.44) 

These are accompanied by suitable boundary conditions, periodicity in IJ for closed 

strings and the requirement S(O, T) = S(1r, T), S(O, T) = S(1r, T) for open strings. 

Solving then the equation of motion results in 

00 

sa= .2_ ~ sae-in(T-a) 
.j2L. n ' 

n=-oo 

(A.3.45) 

(A.3.46) 

for open strings. Reality is imposed by the requirement S':_n = (S~) t. For the closed 

strings we have 
00 

sae-in(T-a) 
n ' 

(A.3.47) 
n=-oo 

00 

sa = L S~e-in(T+a). (A.3.48) 
n=-oo 

To quantise the theory, we impose the equal time anticommutation relations 

(A.3.49) 

(A.3.50) 

In terms of the modes we have that 

(A.3.51) 

Evidently, S is both a coordinate and its conjugate momentum. 

We need distinct coordinates and momenta for a Hamiltonian formulation. In 

general, this can not be done unless we break the S0(8) transverse invariance. This 

is accomplished as follows, S0(8) --+ S0(6) x S0(2) "' SU(4) x U(l). Then, we 

have for the first spinor 

(A.3.52) 
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sA(cr)- iSA+4(cr) = AA(cr) = 50:(cr). (A.3.53) 

Here A= 1, 2, 3, 4labels the 4 of SU(4). Similar relations hold for the second spinor 

s. 
The quantisation conditions now read 

(A.3.54) 

(A.3.55) 

with similar expressions for iJA, ).A· The mode expansions for open strings at T = 0 

are 
00 00 

0Ae-inu 
m ' 

(A.3.56) 
n=-oo n=-oo 

00 00 

A ( ) ~ 1 f) inu ). ( ) ~ 1 f) -inu 
A 0" = ~ 27r fJOA e ' A 0" = ~ 27r fJOA e . 

n=-oo -n n=-OJ -n 

(A.3.57) 

For closed strings, they are 

00 00 

jjA e-inu 
m ' 

(A.3.58) 
n=-oo n=-oo 

(A.3.59) 

The fermionic part of the Hamiltonian that generates translations in T can be 

obtained from (A.3.37)and it is 

HF = 1ra dcr -- 0-- 0-= . 1 J { i ( 1 5 -1 5 ) } 
27r2a 1 50 50 

(A.3.60) 

To study the interactions, it will be convenient to take the range of cr to be 

0 ~ cr ~ 1ra (for open strings, double that for closed). Then it is more convenient 

to rescale the modes for 0( cr), iJ( cr) as 

with a similar expression for iJ~1 • 

A 1 A 
Om= In Rm, 

v2a 
(A.3.61) 



Appendix B 

Implications of Microcausality in 

Quantum Field Theory 

In this appendix we provide a very short presentation on how causality, formulated as 

the local commutativity of fields, affects the S-matrix. We also sketch the derivation 

of some interesting results. Our presentation is based on [9], but the interested reader 

might also want to consult [123]. 

B.l S-matrix and causality 

The S-matrix incorporates all the information one needs in order to find any scatter­

ing amplitude. Scattering experiments are done as follows. A collection of particles, 

that are quite far separated, are allowed to interact briefly in a small area and then 

they fly apart and far away. Ideally, this means that in the far past (t --+ -oo), 

the wavepackets that describe them are quite well localised in space and there is 

no overlap among them. Then, they are allowed to come in contact (overlap) and 

the interaction takes place. Finally, the particles that emerge from the interaction 

are allowed to fly away, so that in the far future ( t --+ oo) their wavepackets are 

well localised in space without any overlap between them. Causality is fulfilled if 

first the incoming wavepackets reach the scattering region and then the outgoing 

wavepackets leave. 

In perturbation theory, for a theory with the interaction term in the Hamiltonian 
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being 

(B.1.1) 

(1-l being a Lorentz scalar), the S-matrix is 

S = 1 + f J d4x1 · · · d4 xnT {1-l(xl) · · ·1-l(xn)}. 
n=l 

(B.1.2) 

The time ordering is a Lorentz invariant for spacelike separations. Therefore we 

have not introduced a special Lorentz frame if 

[7-l(x), 7-l(x')] = 0, for (x- x')2 2 0. (B.1.3) 

Clearly, for an interaction built up as a local function of fields (and their derivatives, 

which in a sense are other fields), equation (B.1.3) is automatically satisfied. For 

example, in the simple case of the real Klein-Gordon field, a local interaction of the 

form 

1-l(x) = (¢(x)t (B.1.4) 

fulfills this requirement. 

B.2 Dispersion Relations 

The requirement for causality, implies certain analytic behaviour for the S-matrix 

in point particle field theory. This is also known as the optical theorem. 

Consider the scattering of a massless particle by an arbitrary target a, of mass 

met > 0 and momentum Pet = 0. Let k be its initial momentum, k' its final. The 

S-matrix element is 

s = 
1 . 

------===-- hm 
(27r)3~1NI2 :~-:~ 

J d4x J d4yeik·x-ik'·y (iDx) (iDy) (a IT {At (y)A(x)} Ia). (B.2.5) 

Here it is w = k0
, w' = k'0 . The operators A ( x) can be any Heisenberg picture 

operators with non vanishing matrix element (OIA(x)lk) = (27r)-312(2w)-112Neik·x, 
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between the vacuum and one-particle states. N is a constant. By letting the differ­

ential operators act on the As and denoting DxA(x) = J(x), we have that 

s = 
-1 

-----===--- lim 
(27r)3v'4ww'INI 2 ;,:.~ 

J d4x J d4yeik·x-ik'·Y(aiT { Jt(y)J(x)} Ia) +ETC. (B.2.6) 

ETC stands for terms that are the Fourier transforms of Equal Time Commutators, 

arising by the action of the differential operators acting on the step functions of the 

time ordered product. The equal time cmmnutator of the operators A( x), At (y) 

vanishes unless x - y is zero. Thus, ETC are the Fourier transform of a differential 

operator acting on 5(x- y), with means that it is a polynomial of the momentum. 

For the analyticity properties of the S-matrix, its details are irrelevant. 

Using the translation invariance, the matrix element is 

where 

and 

S = -27ri5(k'- k)M(w), 

-~ 

M(w) = I I2 F(w), 
2wN 

(B.2.7) 

(B.2.8) 

(B.2.9) 

where we have written kin terms of a fixed light like four-momentum q, kll = wq1', 

with q2 = 0 and q0 = 1. 

The time ordered product can be written in two ways, 

t 
{ 

'19( -x0
) [It (0), J(x) J + J(x )Jt (0), 

T { J (O)J(x)} = 
-'19(x0

) [Jt(o), J(x)] + Jt(O)J(x). 
(B.2.10) 

It follows that we can write for F(w), 

F(w) = FA(w) + F+(w) = Fn(w) + F_(w), (B.2.11) 

where 

(B.2.12) 
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Fn(w) =-J d4xd(x0 )(ai [Jt(o), J(x)] ia)eiwq·x +ETC, 

F+(w) = J d4 x(aiJ(x)Jt(O)ia)eiwq·x, 

F_(w) = J d4x(a1Jt(o)J(x)ia)eiwq·x. 
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(B.2.13) 

(B.2.14) 

(B.2.15) 

Causality, formulated as the requirement for the local commutator of the fields 

to vanish, implies that the integrals (B.2.12) and (B.2.13) vanish, unless xi-Lis inside 

the light cone. Then, the step function require that xi-L is in the past light cone for 

(B.2.12) so that q · x > 0 and in the future light cone for (B.2.13), so that q · x < 0. 

FA(w) is analytic for Im(w) > 0 and Fn(w) is analytic for Im(w) < 0. We can define 

the function 

{

FA(w), Im(w) > 0, 
:F(w) = 

Fn(w), Im(w) < 0 

(B.2.16) 

which is analytic in the whole w-complex plane, except from a cut in the real axis. 

The discontinuity of F along the real axis is 

:F(E + iE)- :F(E- ·iE) = FA(E)- Fn(E) = F+(E)- F_(E). (B.2.17) 

In the function :F(w)jwn vanishes for w---+ oo, by dividing with a polynomial P(w) 

we obtain a function that also vanishes in the limit w ---+ oo and is analytic, except 

for the cut along the real axis and poles at the zeros Wv of the polynomial P(w). By 

the calculus of residues, we have that 

F(w) + 2:: :F(wv) = _1 J :F(z) P(z)dz 
P(w) (wn- w)P'(wv) 27fi Jc (z- w) ' 

v 

(B.2.18) 

where w is any point along the real axis and Cis a contour consisting of two segments: 

one running just above the real axis, from -oo + iE to oo + iE, and then around a 

large semicircle back to -oo + iE and a second running just below the real axis, from 

oo- iE to -oo- iE and then along a large semicircle back to oo- iE. Thus we have 

:F(w) = Q(w) + P(w) loo dEF_(E)- F+(E) 
27fi -oo (E- w)P(E) ' 

(B.2.19) 

where Q is the ( n - 1 )-order polynomial 

_ ""' F(wv) 
Q(w) = -P(w) L (wv- w)P'(wn) · 

v 

(B.2.20) 
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Equation (B.2.19) is the dispersion relation. The usefulness becomes more trans­

parent, when one expresses the functions F+, F_ in terms of measurable cross sec-

tions. 

Bo3 The Kallen-Lehmann Representation 

Here we present another application of microscopic causality in field theory. 

Consider a complex scalar field in the Heisenberg picture. Consider the vacuum 

expectation value 

(B.3.21) 

It is 

(B.3.22) 
n 

Choosing the states In) to be momentum eigenstates, we have that 

(B.3.23) 

(B.3.24) 

and thus 

(B.3.25) 
n 

Now, the sum 

L <5(p- Pn) I (OI¢(0) In) 12 (B.3.26) 
n 

is a scalar function of the momentum pi' and therefore can depend only on p2 and 

'13(p0
) for p2 :S 0. Actually, the intermediate states have p2 :S 0 and p0 > 0, so this 

sum can be written as 

(B.3.27) 
n 

with p( -p2
) = 0 for p2 > 0. The function p is call spectral function and it is real 

and positive. Then, we have 

(27r)-3 J d4peip·(x-y)'l'J(po)p( -p2) 

(27r)-3 J d4p 1oo dt}eip·(x-y)'l3(po)p(J1?)<5(p2 + ,'L2).(B.3.28) 
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Interchanging the order of p and J-L2 integrations, we have that 

(B.3.29) 

~+is the integral (4.16). 

Similarly, we can show that 

(B.3.30) 

with p defined similarly to p, 

(B.3.31) 
n 

The requirement of causality demands that the commutator [¢(x), ¢t (y)] vanishes 

for spacelike separations. On the other hand, the commutator is 

(B.3.32) 

For spacelike separated x, y, the integral ~+ does not vanish but it is even. Thus, 

the only way for the commutator (B.3.32) to vanish is to have 

(B.3.33) 

This is special case of the CPT theorem, proved here without resorting to pertur­

bation theory. 



Appendix C 

Calculation of Amplitude A 

In this chapter we will calculate the amplitude (5.2), namely 

A= (Oici>[pj' x(3)(o-)] [ <i>[x0),0' x(l)(o-)], cl>[x(;),O' x(2)(o-)J] IO), (C.O.l) 

in both the fiat background and the plane wave background. We will show that it 

does not vanish outside the string light cone (for the flat background), while in the 

plane wave it is identically zero. 

The dot stands for a time derivative and all fields are taken at the same time, 

namely x+ = 0. 

C .1 The flat background calculation 

Let us present first the calculation for the fiat backgrouncl1 . For <i>, we can use the 

Heisenberg equation of motion, 

<i> = i [H, ci>]. (C.1.2) 

Since we are interesting in potential deviations from the string light cone of the free 

theory, it will be sufficient to calculate 

(C.1.3) 

where H 3 is of course the 3-string interaction (2.35). 

1This section is based on [61]. 
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C.l. The flat background calculation 

After some lengthy algebra, we have that 

A ig j IT ( d/Jr'DY(r)(a)) j dptdpt [ 8(2, 3)8(3, 2)8(1, 1) 
r=l 

+ 8(1, 1)8(2, 2)8(3, 3) + 8(1, 3)8(2, 1)8(3, 2) 

+ 8(1, 2)8(2, 1)8(3, 3) + 8(1, 3)8(2, 2)8(3, 1) 

+ 8(1, 2)8(2, 3)8(3, 1)] 1 

where we have defined 

8(r, s) = 0 [x\r)(a)- Y(s)(a)] o(p~- fJ(s)/2). 

Performing the integrals over /Jr and Y{r) and defining the vertex to be 

we have for the amplitude that 

A 2ig j dptdpte-ix1pt-ix;-pt[v(2pt,x(1);2pt,x(2);-2pt,x(3)) 

+ ~. +~. + ~ + V(2p1 , -Xu), 2p2 , X(2), -2p3 , -X(3)) 
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(C.1.4) 

(C.1.5) 

(C.1.6) 

+ v(2pt, -x(l); 2pt, -x(2); -2pt, x(3))]. (C.1.7) 

To make things more transparent, it will be sufficient to restrict ourselves to the 

zero modes of the vertex. It is then 

V (2pt, x(l); 2pi, x(2); - 2pj, x(3)) ~ ,\ ( t, a,) ,\ ( t, a,£(>),0) ( a~;32;,3 yD-2

)/

2 

cxp [ 
70;'~ t, ~. + 2~0 t, a,X(,1,0] , (C.1.8) 

With out loss of generality, we may assume that X(3) is between X(1) and X(2), in 

which case only the first term in ( C .1. 7) survives (the other terms correspond to the 

two other kinematical situations). Then, the amplitude is 

A oc 1: da' da2e -•<x' "' +•> "' l/2 ( "~;::,' r- 'I /2 .I ( t. a,) 

[ 
2 3 3 l (3 ) Tom0 L 1 1 L ~2 ..- L ~ exp -- - + - CKrX(r) 0 u CK3X(r) 0 . 

2 CKr 2To ' ' 
r=l r=l r=l 

(C.1.9) 

Notice that we have two delta functions, so we can perform both integrations 

and the result is clearly no zero. 
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C.2 The plane wave calculation 

Let us now repeat the same calculation in the plane wave background2
. Notice that 

until we reach (C.1.7), the calculation is independent of whether we are working in 

the fiat or the plane wave background. Let us again restrict our analysis in the zero 

modes only, using this time the plane wave vertex. In the momentum representation, 

it is 

V ~ 8 (~a,) 6 (~p(,),o) exp [ ~ '~' a/,j,oN~a/,),o]· 
For the Neumann matrices, we have that 

N~g = (1- 4J1aK) (ors + ~) , r, s = 1, 2, 
a3 

Then we can write the vertex as 

where we have defined 

A = fJCKr 1 
r=1,2 2 1 4 K' m0 - f.LCK 

A3 = 11ia31 1 
m6 1 + 4J1aK 

Fourier transforming to position space results to 

V ~ 0 (~) (41r)'~'-2)/2 (-A,A,A,j!D-2)/2 

exp [ 4(A
1 

+ ~2 + A
3

) ( A1A3(x(l),o- X(3),o)
2 

+A2A3(x(2),o- x(3),o)
2 

+ A1A2(x(1),o- x(2),o)
2
)]. 

(C.2.10) 

(C.2.11) 

(C.2.12) 

(C.2.13) 

(C.2.14) 

(C.2.15) 

(C.2.16) 

(C.2.17) 

Considering again, without loss of generality, the kinematical situation where 

x-(3) is between x(l) and x-(2), we have for the amplitude that 

(C.2.18) 

2This section is based on unpublished joined work by C-S. Chu and K. Kyritsis. 
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where we have performed the a 2 integration using the delta function and we have 

abbreviated 

with the understanding that a2 = -a3 - a 1. 

Consider the integral 

(C.2.20) 

Break it down to two parts, 

(C.2.21) 

where 

(C.2.22) 

and 

]2 = f: dalei(x:; ~x!)cq/2 J(ai)· (C.2.23) 

Without loss of generality, we may assume that x;;- x} > 0. Then we can apply the 

contour deformation argument. Rotate ] 1 by sending a 1 -----t ia1 and h by sending 

a 1 -----t -ia1. Then ] 1 = - ] 2 and J = 0. That in return implies that the amplitude 

A is zero, contrary to the flat case! 

Of course the validity of the argument depends of the convergence properties of 

the integrals. It can be shown that they are both well behaving and the argument 

holds indeed. This is the first indication that unlike the flat background theory, in 

string field theory in the plane wave background amplitudes do not receive extra 

contribution outside the string light cone. 
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