
Durham E-Theses

Coherence and transitivity in coercive subtyping

Luo, Yong

How to cite:

Luo, Yong (2004) Coherence and transitivity in coercive subtyping, Durham theses, Durham University.
Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3025/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3025/
 http://etheses.dur.ac.uk/3025/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Coherence and Transitivity in

Coercive Subtyping

A copyright of this thesis rests
with the author. No quotation
from it should be published
without his prior written consent
and information derived from it
should be acknowledged.

Yong Luo

A Thesis presented for the degree of

Doctor of Philosophy

Department of Computer Science

University of Durham

September 2004

Coherence and Transitivity in Coercive

Subtyping

Yong Luo

Submitted for the degree of Doctor of Philosophy

September 2004

Abstract
The aim of this thesis is to study coherence and transitivity in coercive

subtyping. Among other things, coherence and transitivity are key

aspects for a coercive subtyping system to be consistent and for it to

be implemented in a correct way. The thesis consists of three major

parts.

First, I prove that, for the subtyping rules of some parameterised

inductive data types, coherence holds and the normal transitivity rule

is admissible.

Second, the notion of weak transitivity is introduced. The sub­

typing rules of a large class of parameterised inductive data types are

suitable for weak transitivity, but not compatible with the normal tran­

sitivity rule.

Third, I present a new formulation of coercive subtyping in order

to combine incoherent coercions for the type of dependent pairs. There

are two subtyping relations in the system and hence a further under­

standing of coherence and transitivity is needed. This thesis has the

first case study of combining incoherent coercions in a single system.

The thesis provides a clearer understanding of the su btyping rules

for parameterised inductive data types and explains why the normal

transitivity rule is not admissible for some natural subtyping rules.

It also demonstrates that coherence and transitivity at type level can

sometimes be very difficult issues in coercive subtyping. Besides provid­

ing theoretical understanding, the thesis also gives algorithms for im­

plementing the subtyping rules for parameterised inductive data types.

Acknowledgements

I learned the idea of coercive subtyping mainly from Professor Zhao­

hui Luo, my supervisor, and the work I have done in the thesis is a suc­

cess. I would like to express my deep appreciation to him, not only for

his supervision and guidance in my research, but also for his support

in applying for a studentship and his help with many personal matters.

Thanks also to all members of the Computer Assisted Reasoning

Group at Durham. They kindly answered many of my questions in the

early stage of my research.

I would like to thank Professor Sergei Soloviev who gave me helpful

suggestions and comments on my study. Thanks also to Professor

Simon Thompson, my colleagues Paul Callaghan and Edwin Brady,

and my friend Tamzin Lafford. They carefully read the thesis and gave

me many suggestions.

A special word of thanks goes to my wife and my family in China.

They love me and encourage me always.

I am deeply grateful for my friends at Durham. They love me and

help me like brothers and sisters. I have a valuable time of my life

because of them.

3

Declaration

I declare that this thesis was composed by myself, and the work re­

ported herein is my own unless explicitly declared otherwise. Some

parts of the work have already been published in [LLOl, LLS02, LL04a,

LL04b].

Copyright© 2004 by Yong Luo.

"The copyright of this thesis rests with the author. No quotations from

it should be published without the author's prior written consent and

information derived from it should be acknowledged".

4

Abstract

Acknowledgements

Declaration

Chapter 1. Introduction

1.1. Formal Verification

Contents

1.2. Type Theory for Computer Science

1.3. Coercive Subtyping for Abbreviation

1.4. Coherence in Coercive Subtyping

2

3

4

8

8

9

10

11

1.5. Transitivity and Substitution in Coercive Subtyping 12

1.6. Major Contributions 13

1.7. Structure of the thesis 15

1.8. Related work 16

1.8.1. Subtyping in programming languages

1.8.2. Coercions in type theory

Chapter 2. UTT

2.1. Logical Framework

2.1.1. The inference rules of LF

2.1.2. Specifying type theories in LF

2.1.3. Computational equality

2.2. SOL: the internal logical mechanism

2.3. Inductive data types

2.4. ST-form: a subset of inductive data types

2.5. Related work and Extensional type theory

2.5.1. Related work on UTT

2.5.2. Extensional type theory

Chapter 3. Coercive Subtyping

3.1. Basic idea

5

16

19

22

22

22

25

26

27

29

35

41

41

42

44
44

CONTENTS

3.2. A formal presentation

3.2.1. The system T[R]o

3.2.2. Coherence of the subtyping rules

3.2.3. The system of T[R]

3.3. The problems

3.4. Well-defined coercions

3.5. Subtyping rules

Chapter 4. Coherence and Transitivity

4.1. Coherence of T[R]o

4.2. Admissibility of Substitution and Transitivity

4.3. Algorithm for the coercion search

4.3.1. Algorithm Alg(f, M1 , M2) for T[R]o

4.3.2. Soundness and Completeness

4.3.3. Decidability of the Coercion Search in T[R]o

4.4. Subtyping rules for ST-form

Chapter 5. Weak Transitivity

5.1. A problem with transitivity

5.2. Weak transitivity

5.2.1. Meta-level equality requirement

5.2.2. Coercion dependency

5.3. Weak transitivity schemata

5.4. General subtyping rules for WT-schemata

6

45

46

47

47

49

50

51

57

57

61

67

67

69

69

69

73

73

75

75

77

79

82

5.5. Coherence 96

5.6. Admissibility of Substitution and Weak Transitivity 99

5.7. Extension of WT-schemata 101

5.8. Discussion: new computation rules

5.8.1. New computation rule for lists

5.8.2. New computation rules in general

102

104

105

Chapter 6. Combining Incoherent Coercions for L:-types 106

6.1. The Coherence Problem 106

6.1.1. Subtyping rules for L:-types 106

6.1.2. A counter example 107

6.1.3. Informal explanation of the solution 108

6.2. A formal presentation 108

6.2.1. A new subtyping relation 109

CONTENTS 7

6.2.2. The systems T[Rn1]0 and T[Rn1] 109

6.3. New subtyping rules for inductive types 112

6.4. Coherence of T[Rn1]0 114

6.5. Admissibility of substitution and transitivity 118

6.6. Algorithm for the coercion search in T[Rn1]0 125

6.6.1. Algorithm ALG(r, M1 , M2) for T[Rn1]0 125

6.6.2. Soundness and Completeness 127

6.6.3. Decidability of the Coercion Search in T[Rn1]0 129

6. 7. Discussions 129

6.7.1. Side conditions

6.7.2. New computation rules

6.7.3. Combining incoherent coercions in general

Chapter 7. Conclusion

7.1. Summary

7.2. Implementation

7.3. Future work

Bibliography

Index

129

130

130

131

131

132

133

135

141

CHAPTER 1

Introduction

This chapter introduces the area of interest and informally explains

the significance of the work and major contributions. It also includes

the structure of the thesis, summarising the material that the other

chapters will cover. Other work related to the thesis is at the end of

the chapter.

1.1. Formal Verification

Computers have become indispensable in our life and itself changes

everyday. We use it to perform fast computation, to communicate, to

conduct sophisticated control, and so on. Thousands of programs or

software are developed and produced everyday. However, how do we

know whether a program will behave as intended? Or, how do we check

the correctness of a program? Testing is a common method used by

every computer programmer, but has its obvious limitations because

test data can only be finite. As complexity increases, the reliability

of testing very much depends on a careful choice of input data, and it

becomes difficult to carry out the test by hand, case after case.

A complementary and more rigorous method is formal verification.

Computer scientists want to use computers to formally (mathemati­

cally) verify the correctness of programs. Formal verification can often

help to detect logical problems, missed cases because of carelessness,

and other bugs. Therefore, it can significantly increase the confidence

in the correctness of programs. Model-checking is one of the formal ver­

ification techniques. It can automatically verify finite-state concurrent

systems [CGL94]. There also are many verification tools often called in­

teractive theorem provers in which not only finite-state systems can be

verified but also infinite-state ones. Some interactive theorem provers

are based on simply-typed A-calculus [Chu40], such as HOL [GM93],

Isabelle [Pau93] and PVS [ORS92]. Some are based on type theories

and more details will be given in the next section.

8

CHAPTER 1. INTRODUCTION 9

1.2. Type Theory for Computer Science

Why is (constructive) type theory a good foundation for computer

science? We can at least give three reasons here. First, type the­

ory has dependent types and hence it has more expressive power than

simply-typed systems. For example, the type of vectors is a depen­

dent type and can be easily defined in a type theory but not in a

simply-typed system. Second, type theory is a high level (functional)

programming language. Its computation and operational semantics are

simple and clear- reducing well-typed terms to normal (or canonical)

form. Third, type theory has its internal logic and reasoning can be

carried out. The activity of proving a theorem in type theory coincides

with that of writing a program that satisfies a given typing specifica­

tion in the well-known principle of propositions-as-types. Therefore, for

computer scientists, type theory provides a framework in which both

programming and reasoning can proceed [Tho91, NPS90, Luo94].

There are various type theories with various logics such as Pure Type

Systems [Bar92], Martin-Lof's Intuitionistic Type Theory [ML84], Cal­

culus of Inductive Constructions [PM93], Extended Calculus of Con··

structions (EGG) [Luo90] and a unifying theory for dependent types

(UTT) [Luo94]. There also are various Logical Frameworks to specify

type theory, such as Martin-Lof's Logical Framework [NPS90], Edin­

burgh Logical Framework [HHP92] and PAL+ - a >.-free logical frame­

work [Luo03]. Many proof systems based on type theories have been

developed and widely used by formal reasoning communities. NuP RL

[C+86] is based on Martin-Lof's Intuitionistic Type Theory. Coq [B+oo]

is an implementation of the Calculus of Inductive Constructions. Lego

[LP92] is based on the Extended Calculus of Constructions (EGG).

Plastic [CLOl] is based on Logical Framework and UTT can be specified

in it. In the libraries of these proof systems, thousands of mathematical

theorems and computer programs have been proved and verified.

However, in many cases, proofs are very tedious and users have to

fill in every tiny detail carefully. Especially, when formal proofs be­

come very large, too much detail will cause proofs to be unreadable

for human beings and will cost a lot of time. More seriously, no one

would like to use any too-costly proof system in practice. So, a very

important task is to make proofs more readable and omit unnecessary

CHAPTER 1. INTRODUCTION 10

details. Towards this direction, subtyping has been studied as an inher­

itance or abbreviation mechanism in type theory [BF99, Luo99]. In the

next section, I will give a brief survey of the study of subtyping in lit­

erature and explain why Coercive Subtyping is a powerful abbreviation

mechanism in type theory.

1.3. Coercive Subtyping for Abbreviation

Intuitively, a type in type theory can be understood as a set con­

sisting of its canonical objects. For example, the type N of natural

numbers consists of all the natural numbers as its canonical objects.

Some inductive types have parameters. For example, List(A) (the type

of lists of objects of type A) is parameterised by type A. ~(A, B) (type

of dependent pairs) is parameterised by type A and a family of types

B, and if a is an object of A and b is an object of type B(a) then a

pair of a and b is an object of E(A, B).

Some of the subtyping systems are based on the intuition of "sub­

types as subsets". A subtype is a collection of canonical objects from

its supertype. For example, one can create a supertype by adding new

constructors in an existing inductive type [Pol97]. A similar study on

constructor subtyping is in [BF99] and [BvROO], and the basic idea is

that A is a subtype of B if the constructors in A form a subset of those

in B. However, both of the approaches would exclude very simple ex­

amples such as List(A) is a subtype of List(B) if A is a subtype of

B.

Coercive subtyping is based on a different concept of subtyping, in

which a coercion is regarded as evidence that one type is a subtype

of another. It offers a nice formulation so that subtyping can be un­

derstood naturally and uniformly in a single framework. In particular,

coercive subtyping is a simple and powerful framework to handle sub­

typing and inheritance relations between inductive data types. For

example, one can simply give subtyping rules to express that List(A)

is a subtype of List(B) if A is a subtype of B. Another example often

mentioned in literature is the component-wise subtyping rules for the

type of dependent pairs, that is, E(A,B) is a subtype ofE(A',B') if A

is a subtype of A' and B is a sub-family of B'.

CHAPTER 1. INTRODUCTION 11

Coercive subtyping is also regarded as an abbreviation mechanism

in type theory. With implicit coercions, terms will become more read­

able and their meaning clearer. Here is a sample to give a flavour of

such an abbreviation mechanism; there is no need for detailed under­

standing for now.

Example 1.3.1 Suppose that we have two inductive types in type the­

ory, Even (the type of even numbers) and N (the type of natural

numbers). Since Even is a subtype of N, List(Even) is a subtype of

List(N). For any function operator f with domain List(N) and any

object x of List(Even), f(x) is well-typed in the framework of coercive

subtyping and it is an abbreviation of a very long term1
.

This abbreviation mechanism not only make terms significantly

shorter and more readable but also captures the natural understanding

of subtyping.

A significant use of coercions as an abbreviation mechanism is in

Anthony Bailey's thesis [Bai98]. In the formalisation of the constructive

version of the fundamental theorem of Galois Theory, he employed

three kinds of coercions and extended the system Lego with coercion

synthesis (called LEGOwcs).

1.4. Coherence in Coercive Subtyping

The meaning of a term in any logical system must be clear and pre­

cise. Ambiguity is not allowed. It must be completely determined and

be understood in the same way by all human beings at any time in the

same logical system. Coercive subtyping is an abbreviation mechanism

in type theory, so we must have a coherent understanding for an abbre­

viated expression. In other words, there is a vital requirement that any

abbreviated term in coercive subtyping represents a unique expanded

term at any time. The notion of coherence in coercive subtyping guar­

antees this requirement, which essentially says that coercions between

f(x) j([List(Even, [l: List(Even)]List(N), nil(N),

[a: Even][l: List(Even)][l': List(N)]

cons(N, [Even([n: Even]N, 0,

[n: Even][rn: N]S(S(rn)), a), l'), x))

CHAPTER 1. INTRODUCTION 12

any two types must be (computationally) unique. If there are two co­

ercions c1 and c2 from type A to B (i.e. A <c1 B and A <c2 B), then c1

and c2 must be computationally equal. For any object x of type A and

function operator f with domain B, f(x) is an abbreviation of f(c1 (x))

and f (c2 (x)). Since c1 and c2 are computationally equal, f (c1 (x)) and

f(c2 (x)) are computationally equal and regarded as the same in type

theory.

In general, coherence is not decidable, especially when there are

infinitely many coercions as introduced by parameterisation. It is im­

possible to check coherence in many cases unless we can prove it. One

of the major contributions in this thesis is to study proving coherence

at type level when infinite coercions are generated by the natural sub­

typing rules of parameterised inductive data types.

Some very useful coercions cannot be put together directly because

they are incoherent. This prevents them from being used together in

a uniform framework although they are coherent separately. Another

major contribution regarding coherence in this thesis is to study how

to combine incoherent coercions for the type of dependent pairs.

1.5. Transitivity and Substitution in Coercive Subtyping

For any subtyping system, we naturally have transitivity and sub­

stitution. The meaning of transitivity is that, if A is a subtype of B

and B is a subtype of C then A must be a subtype of C. The meaning

of substitution is that, if type B(x) is a subtype of C(x) for any x

of type A, then for any concrete object a of A, B(a) is a subtype of

C(a). Because of the difficulties of implementing the transitivity rule

and substitution rule, an important issue with any subtyping system

is that of admissibility or elimination of transitivity and substitution.

For coercive subtyping, proving the admissibility of substitution is

straightforward for most of the subtyping rules considered in this thesis.

So, I will concentrate on the issue of the admissibility of transitivity.

The meaning of transitivity in coercive subtyping is that, if there is

a coercion c1 from type A to B (i.e. A <ct B) and a coercion c2

from B to C (i.e. B <c2 C) , then there is a coercion c3 from A

to C (i.e. A <q C). The normal transitivity rule also requires that

c3 = c2 o c1 (computational equality). For many subtyping rules, for

CHAPTER 1. INTRODUCTION 13

example, the component-wise subtyping rules for the type of dependent

pairs, the transitivity rule is admissible when one uses the projection

operators to define coercions. However, the requirement of c3 = c2 o c1

(computational equality) is sometimes too strong in intensional type

theories. For some parameterised inductive data types together with

their natural subtyping rules, the transitivity rule fails to be admissible

or eliminatable. So, we introduce a new concept - Weak Transitivity

that only requires that c3 and c2 o c1 are extensionally equal, without

compromising coherence (computational uniqueness). Many natural

subtyping rules, for example, the subtyping rule for lists, are suitable

for weak transitivity.

Through our investigation, we also found out that neither the nor­

mal transitivity rule nor the weak transitivity rule (i.e. no matter which

equality is chosen) can be admissible when we combine some natural

subtyping rules, for example the subtyping rules for the types of depen­

dent pairs and lists. This leads us to more fundamental research that

is important for coercive subtyping as well as for type theory itself. If

we introduce new computation rules for parameterised inductive types

and add them to the original type theory, then the normal transitivity

rule is admissible for the extended type theory in which some impor­

tant meta-properties such as Strong Normalisation and Church-Rosser

are assumed and believed to be true.

In the case that there is more than one subtyping relation, new

transitivity rules are introduced in order to capture the meaning of

transitivity, that is, if there are coercions from type A to B and from

B to C then there must be a coercion from A to C.

1.6. Major Contributions

After briefly introducing the two important issues in coercive sub­

typing, coherence and transitivity, I summarise the major contributions

of the thesis in this section. The thesis focuses on the coercions be­

tween parameterised inductive data types and shows the serious prob­

lems with these coercions concerning coherence and transitivity. New

techniques are developed to solve these problems. The main work in

this thesis can be divided into three parts.

CHAPTER 1. INTRODUCTION 14

1. In the first part, we consider the normal transitivity rule which

basically says that, if A <q B and B <c2 C where A, B, C are

types, then A <c3 C for some c3 and c3 = c2 o c1 (i.e. c3 and

c2 o c1 are computationally equal). In general, the coercions be­

tween parameterised inductive data types are inductively defined

by means of case analysis. However, the coercions defined in this

way will cause the normal transitivity rule not to be admissible and,

if adding it into the system, coherence fails to be satisfied. Fortu­

nately, for some parameterised inductive data types, coercions can

be defined in a nice way where some special function operators are

used. Coherence holds and the normal transitivity rule is admissi­

ble for these coercions. To make this clear, we choose two typical

and representative data types to demonstrate how the coercions

are defined and how the coherence and admissibility of the normal

transitivity rule are proved. One example is the type of dependent

pairs and the other is the type of dependent functions. A common

factor of these two data types is that they have only one construc­

tor and some special function operators over them can be defined.

One doesn't have to define the coercions inductively and instead,

can define them by using the special function operators. In the

end, we discuss the results more generally and demonstrate how

coercions are defined for those parameterised inductive data types

that have only one constructor.

2. The second part starts from examples to make the problems clear,

that is, for certain inductive data types such as lists, coercions

have to be defined inductively and the normal transitivity rule is

not admissible. Through a close look at key examples, we shall

get a better understanding of the coercions between parameterised

inductive data types in general. We introduce a new notion, Weak

Transitivity, which basically says that, if A <c1 B and B <c2 C

where A, B, C are types, then A <c3 C for some c3 . The meta­

level equality requirement is that c3 is extensionally equal to c2 o c1 .

This part will give a clear characterisation of different combinations

of subtyping rules by means of inductive schemata. We prove that,

for a large class of inductive data types with their subtyping rules,

coherence and weak transitivity hold.

CHAPTER 1. INTRODUCTION 15

3. In the third part, we study how to combine incoherent coercions for

the type of dependent pairs. There are at least two sets of subtyping

rules for the type of dependent pairs; one is the component-wise

subtyping rules (i.e. L:(A, B) is a subtype of L:(A', B') if A is a

subtype of A' and B is a sub-family of B') and the other is the

subtyping rule of its first projection (i.e. L:(A, B) is a subtype of

A). A counter example is given to show that these two sets of sub­

typing rules are incoherent if they are put together directly. Our

solution to this coherence problem is basically, by introducing a

new subtyping relation and giving a new formulation of coercive

subtyping, to ensure that there is only one coercion (with respect

to computational equality) between any two types (if there is a

coercion at all). This new formulation not only satisfies coherence

requirements but also enjoys other properties, particularly, the ad­

missibility of substitution and transitivity.

To summarise, the thesis provides not only the proofs concerning co­

herence and transitivity but also clearer understanding of the problems

with the subtyping rules for parameterised inductive data types. The

problems identified here have not been realised before in the literature

except in some of my publications in collaboration with Zhaohui Luo

and Sergei Soloviev. The discovery of these problems also leads us to

fundamental future work on the extension of type theory by adding

new computation rules for parameterised inductive types so that the

natural subtyping rules for all the parameterised inductive types can

be uniformly used together.

1. 7. Structure of the thesis

In Chapter 2, I give a formal and detailed presentation of Zhaohui

Luo's UTT. UTT is an intensional type theory specified by a typed

version of Martin-Lof's logical framework. It includes an internal logic

(i.e. second order logic, SOL) and a large class of inductive data types

generated by inductive schemata. We also consider a subset of in­

ductive data types that have only one constructor and give a general

definition of function operators. These operators play important roles

in the definitions of coercions later.

CHAPTER 1. INTRODUCTION 16

Chapter 3 is a formal presentation of coercive subtyping. Some

important issues in the system, such as the coherence and transitivity,

are discussed and made precise. It also carries a important concept

of Well-defined coercions (WDC). The subtyping rules for the type of

dependent pairs and dependent functions are presented. The different

choices of defining coercions and their consequences are remarked.

In Chapter 4, I study how to prove the coherence and the admis­

sibility of transitivity for the subtyping rules. An algorithm for the

coercion search is also given. We also discuss the results more gener­

ally and demonstrate how coercions are defined for those parameterised

inductive data types that have only one constructor.

In Chapter 5, I present the notion of weak transitivity and give

a general form of subtyping rules for a large class of parameterised

inductive types. Coherence and weak transitivity will be proved for

these subtyping rules. At the end of this chapter, we discuss new

computation rules for parameterised inductive types.

Chapter 6 studies how to combine the incoherent subtyping rules

for the type of dependent pairs: the component-wise rules and the rule

of its first projection. Coherence and the admissibility of transitivity

for the new formulation of coercive subtyping are proved.

Finally, conclusions are presented and some related issues such as

implementation of coercive subtyping and future work are discussed in

Chapter 7.

1.8. Related work

In this section I briefly review some of the other pieces of work that

are related to this thesis. Subtyping in computer science is not a new

concept and it is traditionally understood as the notion of subsets in

mathematics. However, it is fair to say that the notion of subtyping is

one the most important concepts in programming languages.

1.8.1. Subtyping in programming languages

Subtyping is characteristically found in object-oriented languages

and is often considered as an essential feature of the object-oriented

style. Object-oriented languages take the view that all types are sys­

tematically related in a type hierarchy. Types lower in the hierarchy are

somehow compatible with more general types higher in the hierarchy.

CHAPTER 1. INTRODUCTION 17

For example, a integer can be "converted" or "cast" to a floating-point

number.

Besides simple subtypes, there are subtyping rules used in object­

oriented languages.

• Record subtyping and Product subtyping:

s1 <: T1, ... , sk <: Tk

{a1: S1, ... ,an: Sn} <: {a1: T1, ... , ak: Tk}

s1 <: T1 s2 <: T2
s1 x s2 <: T1 x T2

where <: means "is a subtype or'.

• Function subtyping:

T1 <: S 1 S2 <: T2
s1 -+ s2 <: T1 -+ T2

for 1 :::; k :::; n

One method is a valid replacement for another if it obeys the func­

tion subtyping rule. In particular, the arguments of the subtype

method must be of more general types. Very few languages obey

both the covariant and contravariant parts of the rule. Languages

such as Java and C++ are less flexible partly due to interactions

with other rules for resolving name overloading.

Subtyping is also suggested to obtain the implicit polymorphism in

functional programming language. In [Mit91], a general framework

based on untyped A-calculus provides a simple semantic model of sub­

typing and the algorithms may be extended to allow polymorphic func­

tion declarations as in ML. Most traditional A-calculi with subtyping

include the function su btyping rule (as above), su bsum ption rule and

transitivity rule as follows.

(Subsumption rule)

(Transitivity rule)

t: U U <: T
t: T

S <: U U <: T
S <:T

The name and form of these rules may be variant, for example, the co­

erce rule in [Mit91] is another version of the subsumption rule and the

cut rule in [LMSOO] is the transitivity rule. The subsumption and tran­

sitivity rules are not immediately suitable for implementation. Their

premises mention the type U which does not appear in the conclusion.

We have to find a type U in a type checking algorithm. If there is only

CHAPTER 1. INTRODUCTION 18

a finite number of Us, that is fine. However, in many cases there is

an infinite number of Us, so it is unlikely to give an algorithm to find

a type U. This is one of the reasons that we often need to prove the

admissibility (or elimination) of the transitivity rule.

The subsumption rule has another problem when we want to reason

over inductive data types. The standard reasoning principle is that if

we can prove that a proposition P holds for every canonical object

of an inductive data type A then P holds for every object of A. If we

have the subsumption rule, the canonical objects in a subtype are also

canonical objects of its supertype and how to formulate the reasoning

principles may become very difficult when various inductive data types

are considered.

Some systems include the top type (Top) and bottom type. Every

type is a subtype of the top type and is a supertype of the bottom type.

In [Reh96], the property of strong normalisation has been proven in a

very simple subtyping system with the top type and bottom type. The

system F<= [CMMS91], an extension of the system F with subtyping,

also includes the top type that is a convenient technical device to re­

cover ordinary unbounded quantification from bounded quantification.

A unbounded quantification \:;/ X.P is just an abbreviation of bounded

quantification VX <: Top.P.

Subtyping between record types has also been studied in [BT98,

Tas97]. One can inherit from an existing record type by adding new la­

bels associated with their types and get a sub-record type. The essence

is the same as that of the record subtyping rule in object-oriented lan­

guages. In [BF99, BvROO], constructor subtyping has been introduced

in simply typed A-calculi and dependently typed systems. An inductive

type A is viewed as another inductive type B if B has more construc­

tors than A. This idea is in line with that of the subsumption rule

and the system is not well-behaved with respect to canonical objects in

inductive data types. For example, nil(Even) and nil(Nat) are both

closed normal objects of List(Nat) although they represent the same

thing, the empty list of List(Nat).

In [LMS95, LMSOO], a logic of subtyping has been studied. The

idea is that one can give a logical understanding of "a is a subtype of

r" as "a implies r", or more precisely as "a entails r" (a f- r). The

CHAPTER 1. INTRODUCTION

function subtyping rule in the system is in a different form

a' f-a T f- T
1

a-----t T f-a' -----t T'

19

and the notion of subtyping in the system is a special case of intuition­

istic implication: a proof of a f- T.

1.8.2. Coercions in type theory

The early development of the framework of coercive subtyping is

closely related to Aczel's idea in type-checking overloading methods

for classes and the work on giving coercion semantics to .\-calculi with

subtyping by Breazu-Tannen et al [BCGS91]. In [Luo99], Z. Luo for­

malised coercive subtyping, a formal extension with subtyping of de­

pendent type theories such as Martin-Lof's type theory [NPS90] and

the type theory UTT [Luo94].

The implementation of coercions

Coercion mechanisms of non-dependent coercions with certain re­

strictions have been implemented in both the proof development sys­

tems Lego [LPT89] and Coq [B+oo], by Bailey [Bai98] and Sai"bi [Sai97],

respectively.

Bailey has extended the Lego system with coercion synthesis (i.e.

LEGOwcs) [Bai98] and introduced three kinds of implicit coercions;

Standard coercions, which coerce an object a of type A into an object

c(a) of type B; Kind coercions, which coerce an object a of type A

into a kind c(a); and IT-coercions, which coerce an object a of type A

into a function c(a), where cis a coercion. Coercions in LEGOwcs are

represented by a finite graph with parameters, so it is fairly easy to

guarantee coherence and transitivity.

Sai"bi has also introduced an inheritance mechanism and implements

coercions in Coq. The use of this mechanism, with some other facilities

such as the implicit argument synthesis and infix notions, makes math­

ematical statements more readable. He has introduced two abstract

classes; SORTCLASS, which allows us to write x : A when A is not a

type, but can be seen in a certain sense as a type such as set, group

and category; and FUNCLASS, which allows us to write f(x) when f

CHAPTER 1. INTRODUCTION 20

is not a function, but can be seen in a certain sense as a function such

as bijection.

Callaghan of the Computer Assisted Reasoning Group at Durham

has implemented Plastic [Cal99, CLPOl, CLOl], a proof assistant that

supports logical framework and coercive subtyping with a mixture of

simple coercions, parameterised coercions and dependent coercions.

Theoretical study on coercive subtyping

Some important meta-theoretical aspects of coercive subtyping (for

non-dependent coercions) have been studied. In particular, the results

on conservativity and on transitivity elimination for kinds have been

proved in [JLS98, 8102]. The conservativity result says, intuitively,

that every judgement that is derivable in the theory with coercive sub­

typing and that does not contain coercive applications is derivable in

the original type theory. Furthermore, for every derivation in the the­

ory with coercive subtyping, one can always insert coercions correctly

to obtain a derivation in the original type theory.

The main result of [8102] is that coherence of basic subtyping rules

does imply conservativity, under certain conditions. (These conditions

are satisfied, for example, for the type theory UTT). The proof of the

conservativity theorem consists of the following three major parts:

1. Lemmas about general meta-theoretical properties of the theory

with coercive subtyping;

2. Transitivity elimination in the calculus with subtyping and sub­

kinding but without coercive application and definition rules;

3. The proof of the well-definedness (totality) of a coercion completion

which maps derivations of the full theory into the calculus without

coercive application and definition rules.

These results not only justify the adequacy of the theory from the

proof-theoretical consideration, but also provide the proof-theoretical

basis for implementation of coercive subtyping.

An important study on coercive subtyping is Dependent Coercions

[1899]. A dependent coercion is a function from a type to a family of

types; informally, the supertype is the union of the types in the family.

It is different from parameterised coercions. The dependent coercions

CHAPTER 1. INTRODUCTION 21

and non-dependent coercions have the same meta-theoretical results,

that is, the conservativity theorem holds.

CHAPTER 2

UTT

In this chapter, we give a formal and detailed presentation of Zhao­

hui Luo's UTT. UTT is an intensional type theory specified by a typed

version of Martin-Lof's logical framework. It includes an internal logic

(i.e. second order logic, SOL) and a large class of inductive data types

generated by inductive schemata. Related work on UTT and Exten­

sional Type Theory will be discussed at the end of this chapter.

2.1. Logical Framework

Logical frameworks arise because one wants to create a single frame­

work, which is a kind of meta-logic or universal logic, which is itself

implementable and in which the logics can be represented. The Edin­

burgh Logical Framework [HHP87] is intended to provide such a means

of presentation. It comprises a formal system yielding a formal means

of presentation of logical systems, and an informal method of finding

such presentations. An important part in presenting logics is played by

a judgements-as-types principle, which can be regarded as the meta­

theoretical analogue of the well-known propositions-as-types principles

[CF58, dB80, How80]. Martin-Lof's logical framework [NPS90] has

been developed by Martin-Lof to present his intensional type theory.

In UTT [Luo94], Luo proposed a typed version of Martin-Lof's logical

framework (LF), in which untyped functional operations of the form

(x)k are replaced by typed [x: K]k.

In this section, we consider the typed version of Martin-Lof's log­

ical framework, and how to use it as a meta-language to specify type

theories.

2.1.1. The inference rules of LF

First, there are five forms of judgements in LF, as follows:

• r valid, which asserts that r is a valid context;

e r f- K kind, which asserts that K is a kind;

22

CHAPTER2. UTT 23

• r f- k : K, which asserts that k is an object of kind K;

• r f- k = k' : K, which asserts that k and k' are equal objects of

kind]{; and

• r f-]{ = K', which asserts that]{ and K' are equal kinds.

The inference rules of LF are given in Figure 2.1.1. There is a special

kind Type in LF, each of whose objects A generates a kind El(A).

When specifying a type theory in LF, Type corresponds to the con­

ceptual universe of types of the type theory to be specified, and for

any type A, an object of kind Type, kind El(A) corresponds to the

collection of objects of type A.

Definition 2.1.1 (types, kinds and small kinds) A is called a r­
type if r f- A : Type, K is called a r -kind if r f- K kind. A r -kind is

called small if it is either of the form El(A) or of the form (x : Kl)K2

for some small r -kind K 1 and small (r, x : K 1)-kind K2 .

Notation 2.1.2 We shall use the following notational conventions:

• When no confusion may occur, we shall often omit the El-operator

in LF to write, for example, A for El(A), (x : A)B for

(x: El(A))El(B), r f-a= b: A for r f-a= b: El(A) etc.

• FV (lvf) is the set of free variables in lvf. For a context r, if r is

X1: Kl, ... ,X71 : Kn then FV(f) = {x1, ... ,x11 }.

• We shall write (K)K' for (x : K)K' when x does not occur free

in K'. For application of a functional operator, we shall write

f(kl, ... , kn) for f(kl) ... (k2)·
• Functional composition: for f : (K1)K2 and g : (y : K 2)K3[y],

define go f =df [x : KI]g(J(x)) : (x : K 1)K3 [f(x)], where x does

not occur free in f or g.

• Substitution: as usual, [N/x]M stands for the expression obtained

from M and substituting N for the free occurrences of variables x

in lvf, defined as usual with possible changes of bound variables;

informally, we sometimes use .M[x] to indicate that variable x may

occur free in M and subsequently write iVI[N] for [N/x]iVI, when

no confusion may occur.

If M is a sequence < iVh, ... , iVI11 >, we often write [N /x].l\1 for the

sequence < [N /x]A11 , ... , [N/x]Nin >
We also write [N /x].M for [N1/x 1 , ... , N11 /x 11]111 where Nand x are

CHAPTER2. UTT

Contexts and assumptions:

r 1- K kind x ~ FV(r) r, X: K, r' valid
r,x: K,f' 1- X: J(<> valid f, X : /(valid

General equality rules:

r 1- J(kind

fi-K=K

fl-k:K
fl-k=k:K

r 1- K = K'
r 1- K' = K

r 1- k = k': K

r 1- k' = k: K

Equality typing rules:

r 1- K = K' r 1- K' = K"
r 1- K = K"

r 1- k = k' : K r 1- k' = k" : K

r 1- k = k": K

r 1- k : K r 1- K = K' r 1- k = k' : K r 1- K = K'
r 1- k : K' r 1- k = k' : K'

Substitution rules:

r,x: K,f' valid r 1- k: K
r, [k/x]f' valid

r, x : K, r' 1- K' kind r 1- k : K
r, [k/x]f' 1- [kjx]K' kind

r, x : K, r 1- K' kind r 1- k = k' : K
r, [kjx]f' 1- [kjx]K' = [k' jx]K'

r, x : K, r' 1- k' : K' r 1- k : K
r, [k/x]f' 1- [kjx]k': [kjx]K'

r, x : K, r' 1- k' : K' r 1- k1 = k2 : K
r, [kl/x]f' 1- [kl/x]k' = [k2 /x]k': [kl/x]K'

r, x : K, r' 1- K' = K" r 1- k : K
r, [k/x]f' 1- [kjx]K' = [kjx]K"

r, x: K, r' 1- k' = k" : K' r 1- k: K
r, [kjx]f' 1- [kjx]k' = [kjx]k": [kjx]K'

The kind Type:

r valid
r 1- Type kind

r 1- A: Type

r 1- El(A) kind
r 1- A = B : Type

r 1- El(A) = El(B)

Dependent product kinds:

f 1- /(kind f, X:/(1- J(' kind

r 1- (x : K)K' kind
r 1- K1 = K2 r,x: K1 1- Kr = K~

r 1- (x : Kl)Kr = (x : K2)K~

r, x: K 1- k: K'
r 1- [x : K]k : (x : K)K'

r 1- J : (x : K)K' r 1- k : K

r 1- j(k): [kjx]K'

r 1- K1 = K2 r, x : K1 1- k1 = k2 : K
r 1- [x : KI]k1 = [x : K 2]k2 : (x : K1)K

r 1- J = J' : (x : K)K' r 1- k1 = k2 : K
r 1- j(k1) = j'(k2): [kl/x]K'

24

(!3) r,x: K 1- k': K' r 1- k: K (rJ) r 1- f: (x: K)K' x ~ FV(f)
r 1- ([x: K]k')(k) = [kjx]k': [kjx]I<' r 1- [x: K]j(x) = j: (x: K)K'

FIGURE 2.1.1. The inference rules of LF

CHAPTER2. UTT 25

sequences < N1 , ... , Nn > and < XI, ... , Xn > which have the same

length n (nEw) .
• Context equality: for r Xl : Kl, ... , Xn : Kn and

r' XI : K~' ... ' Xn : K~' we shall write f- r = r' for the sequence

of judgements f- K1 = K~, ... , X1 : K1, ... , Xn-1 : Kn-1 f- Kn = K~.

2.1.2. Specifying type theories in LF

In general, a specification of a type theory in LF consists of a collec­

tion of declarations of new constants and a collection of computation

rules. Formally, we declare a new constant k of kind K by writing

k:K

which represents that we add a new inference rule

r valid

rf-k:K

into the type theory (specified by means of LF). For a kind K which

is either Type or of the form El(A), we assert a computation rule by

writing

which represents that we add a new inference rule which is of the form

prem~ses

r f- k = k': K

into the type theory.

Example 2.1.3 We can introduce the type of natural numbers by declar­

ing the following constants:

N Type

0 N

S (N)N

EN (C: (N)Type)(c: C(O))

(J : (n : N) (C(n))C(S(n)))

(n: N)(C(n))

CHAPTER 2. UTT

and asserting the following two computation rules:

£N(C, c, j, 0)

£N(C, c, j, S(n))

c: C(O)

f(n, £N(C, c, j, n)) : C(S(n))

26

which represent that we add the following six new inference rule (Figure

2.1.2} into type theory.

Introduction rules:

r valid
r I-N: Type

Elimination rule:

r valid
fi--O:N

r valid

r valid

r I-S: (N)N

r I- EN : (C: (N)Type)(c: C(O))(f: (n: N)(C(n))C(S(n)))(n: N)(C(n))

Computation rules:

rI-C: (N)Type r 1-- c: C(O) r 1-- J: (n: N)(C(n))C(S(n))
r 1-- [N(C,c,j,O) = c: C(O)

r 1-- C: (N)Type r 1-- c: C(O) r 1-- j: (n: N)(C(n))C(S(n)) r 1-- n: N
r 1-- [N(C, c, j, S(n)) = f(n, [N(C, c, j, n)) : C(S(n))

FIGURE 2.1.2. The inference rules for natural numbers

2.1.3. Computational equality

We shall say that two objects k and k' of the same kind K in the

type theory UTT are computationally equal if for some valid context

r, the judgement r f- k = k' : K is derivable in UTT.

Note 2.1.4 In the intensional type theory UTT, every well-typed term

has a unique normal form. If r f- k = k' : K is derivable, k and k'

can be computed to a same normal form (or weak head normal form).

Therefore, we can say that k and k' are computationally equal if they

are well-typed and have the same normal form.

If two objects of same kind are ,Bry-convertible, we say that they

are definitionally equal. Since computation consists of not only ,Bry­
reduction but also reduction rules introduced by asserting computation

rules for inductive data types, if two objects are definitionally equal,

they are of course computationally equal.

CHAPTER2. UTT 27

Notation 2.1.5 We shall often write M _ N to indicate that !vi and

N are syntactically equal with respect to a-conversion.

We shall say that k is not computationally equal to k' if for any r
and K, the judgement r f- k = k' : K is not derivable in the type

theory UTT, in other words, k and k' cannot be computed to the same

normal form.

2.2. SOL: the internal logical mechanism

The internal logic in UTT consists of a universe Prop of logical

propositions and their proof types. They are introduced by declaring

the following constants:

Prop Type

Pr f (Prop)Type

V (A: Type)((A)Prop)Prop

A (A: Type)(P: (A)Prop)((x: A)Pr J(P(x)))Pr f(V(A, P))

Ev (A: Type)(P: (A)Prop)(R: (Pr j(V(A, P)))Prop)

((g: (x: A)Pr j(P(x)))Pr j(R(A(A, P, g))))

(z: Pr j(V(A, P)))Pr j(R(z))

and asserting the following computation rule:

Ev(A, P, R, j, A(A, P, g))= J(g) : Pr j(R(A(A, P, g)))

The logical universe Prop is impredicative since universal quantifica­

tion V(A, P) can be formed for any type A and predicate P over A. In

particular, A can be Prop itself or more complex.

The usual application operator can be defined as

App =df [A: Type][P: (A)Prop][F: Pr j(V(A, P))][a: A]

Ev(A, P, [G: Pr j(V(A, P))]P(a),

[g: (x: A)Prf(P(x))Jg(a), F)

which satisfies the equality (the ,B-rule for A and App):

App(A, P, A(A, P, g), a)= g(a) : Prj(P(a))

CHAPTER2. UTT 28

Notation 2.2.1 For universal quantification, when no confusion may

occur, we shall often write 't/x : A.P for 't/(A, [x : A]P) and App(F, a)

for App(A, P, F, a).

The usual logical operators can also be defined as follows (P 1 and

P2 are propositions, A is a type and P3 is of kind (A)Prop):

pl ~ p2 =df 't/x : Pr f(Pl).P2

true =df 't/ P : Prop.P ~ P

false =df 't/ P : Prop.P

P1&P2 =df 't/P: Prop.(P1 ~ P2 ~ P) ~ P

pl v p2 =df 't/P: Prop.(P1 ~ P) ~ (P2 ~ P) ~ P

--,pl =df P1 ~false

:::Jx: A.P3 (x) =df 't/P: Prop.('t/x: A.(P3 (x) ~ P)) ~ P

Propositional equality

Now, we introduce a new equality relation Eq of kind

(A: Type)(x: A)(y: A)Prop by declaring the following new constants

in SOL.

Eq (A : Type)(x : A)(y : A)Prop

eq (A: Type)(x: A)Pr f(Eq(A, x, x))

£Eq (A: Type)(x: A)(y: A)(P: (A)Prop)

(Pr f(Eq(A, x, y))) (Pr f(P(x)))Pr f(P(y))

Remark 2.2.2 We have the following remarks:

• There are two ways to introduce the equality Eq. One way is to

declare new constants in SOL as above. The other is to use the

definable Leibniz equality. Detailed discussion on different choices

of ·introducing the equality Eq and the elimination operator £Eq can

be found in [Luo94].

e In Martin-Lijf's type theory, the equality I(A, a, b) (where A is a

type and, a and b are objects of A) is introduced as a type rather

than a proposition. Any two objects p and q of the type I(A, a, b)

CHAPTER2. UTT 29

are equal (i.e. p = q : I(A, a, b)}; this is called proof irrelevancy.

The introduction and elimination rules can be found in [ML84].

Definition 2.2.3

• We say that a proposition P is provable in a context r
if r f- p: Pr f(P) for some p, and such a p is a proof of P.

• We say that the objects a and b of type A are propositionally

equal if the proposition Eq(A, a, b) is provable in the empty context

in the intensional type theory UTT.

2.3. Inductive data types

In this section, we shall introduce inductive data types based on the

notion of inductive schemata, which is very similar to [Luo94], with

the difference that we give recursive definitions of elimination rules

and computation rules in this thesis. Inductive data types have been

studied by, for example, Gentzen [Gen35] and Prawitz [Pra73, Pra74],

for traditional logical systems, and by Martin-Lof [ML84], Backhouse

[Bac88], Dybjer [Dyb91], and Coquand and Mohring [CPM90] for type

theories. To understand an inductive type, we must understand both

its introduction rules and its elimination/computation rules.

Definition 2.3.1 (Inductive schemata) Let r be a valid context,

S1 , ... , Sk {k E w} be kinds in r, i.e. judgement r f- Si Kind is derivable

(i = 1, ... , k}, X be a placeholder of kind (s1 : S 1) ... (sk : Sk)Type such

that X tJ_ FV (r).

• A strictly positive operator in r with respect to X is of one of

the following forms:

1. <[> X(sl, ... , sk), where r f- Si: si (i = 1, ... , k}, or

2. <I> _ (x : K)<l> 0 , where K is a small r -kind, and <l>0 is a strictly

positive operator in r) X : K with respect to X.

• An inductive schema 8 with respect to X is of one of the fol­

lowing forms:

1. 8 = X(sl, ... , sk), where r f- Si: si (i = 1, ... , k},or

2. 8 = (x : K)80 , where K is a small r -kind, and 8 0 zs an

inductive schema in r, .1: : K with respect to X, or

CHAPTER2. UTT 30

3. 8 (X : <l>) 8o, where <l> is a strictly positive operator in f

with respect to X, 8 0 is an inductive schema in r with respect

to X , and x rf_ FV(80).

0

A strictly positive operator <I> with respect to X is of the form

where every Kj is a small kind. An inductive schema 8 with respect

to X is of the form (x 1 : 1\!ft) ... (xt: Mt)X(s1 , .•. , sk), where every J\!Ij is

either a small kind or a strictly positive operator. When we introduce

inductive data types into type theory, the smallness condition of kinds

occurring in inductive schemata is important. For example, neither

(Type)X nor ((A)Type)X is an inductive schema because Type is not

a small kind. Otherwise such schema may lead to logical paradoxes.

Notation 2.3.2 We often writes for s 1 , ... , sk, A for A 1, ... ,An, <I>[AJ

for [A/ X] <I> and 8[A] for [A/ X]8.

Definition 2.3.3 Let 8 be an inductive schema. Then, for

A (s1 : SI) ... (sk : Sk)Type

C (s 1 : SI) ... (sk : Sk)(x: A(s))Type

f (s1 : SI) ... (sk : Sk)(x: A(s))C(s, x)

z 8[AJ

y <I>[AJ

define kind <I>* [C, y J recursively as follows:

(X(s))*[C, y]

((x: K)<I>0)*[C, y]

C(s, y)

(x: K)<I>~[C, y(x)]

define <I>Q[f, y] of kind <I>*[C, y] as follows:

(X(s))Q[f, y]

((x: K)<I>o)Q[f, y]

f(s,y)

[x: K]<I>~[f, y(x)]

CHAPTER2. UTT

and define kind eo[A, C, z] recursively as follows:

(X(s)t[A, C, z]

((x: K)80 t[A, C, z]

((x: <I>)8ot[A, C, z]

C(s, z)

(x : K)8~[A, C, z(x)]

(x: <I>[A])(x' : <I>*[C, x])8~[A, C, z(x)]

31

With the above notations, we can now introduce the inductive data

types.

Consider (parameterised) inductive data types generated by the

following form:

where every 7i (i = 1, ... , n) is a kind in r, A 1 : T1, ... , Ai-l : Ti-1,

8 -< 81, ... , 8m > (mEw) is a finite sequence of inductive schemata

in r, A 1 : T1, ... , An : Tn.

Note 2.3.4 None of the parameters occur free in r (i.e. A rf_ FV(f))
and there might be no parameter (i.e. n = 0).

Then we declare the following constant expressions:

T (A1 : Tl) ... (An : Tn)(sl : SI) ... (sk : Sk)Type

l1 (A1 : TI) ... (An : Tn)81[T(A)] (j = 1, ... , m)

£T (A1 : TI) ... (An : Tn)

(C: (s1 : SI) ... (sk : Sk)(T(A, s))Type)

(h : 8~[T(A), C, h (A)]) ...

Um : e~[T(A), C, lm(A)])

(s1 : S1) ... (sk: Sk)(z: T(A, s))C(s, z)

In order to assert computation rules, we introduce the following nota­

tional definitions.

Definition 2.3.5 Assume that 8 be of the form

and x 1 , ... , Xt are fresh variables. Then

o ev =< X1, ... , Xt >,
• elast = s

' • e~ as sequences of arguments:

CHAPTER2. UTT 32

1. if8 X then 8~ =< >
2. if 8 (xr : K)8o then 8~ =< Xr, 8~ > (r = 1, ... , t)

3. if 8 (xr : <l>)8o then 8~ =< Xr, <J>Q[£T(A, C, f), Xr], 8~ >
(r = 1, ... , t)

Remark 2.3.6 8v could be recursively defined as follows:

1. if 8 = X then ev =< >
2. if 8 = (xr : K)8o then ev =< Xn 8;) > (r = 1, ... , t)

3. if 8 = (xr : <l>)8o then 8v =< Xn 8;) > (r = 1, ... , t)

Finally, with above notational definition, we assert the following

computation rules (j = 1, ... , m):

Example 2.3. 7 We give five examples of inductive data types which

will be used later.

1. The type of natural numbers: N =df M[X, (X)X]
There is no parameter for the type N and the placeholder X is of

kind Type. The declaration of constants and computation rule has

already been given in Example 2.1. 3. The functions for predecessor,

addition, subtraction and multiplication can be defined as:

pred =df EN([n: N]N, 0, [x: N][y: N]x)

plus =df [m: N]£N([n: N]N, m, [x: N][y: N]S(y))

mznus =df [m: N]EN([n: N]N, m, [x: N][y: N]pred(y))

times =df [m: N]£N([n: N]N, 0, [x: N][y: N](m + y))

2. Lists: List =df [A: Type]M[X, (A)(X)XJ
There is one parameter A : Type and the placeholder X is of kind

Type.

CHAPTER2. UTT

Declare the following constants:

List (A: Type)Type

nil (A: Type)List(A)

cons (A: Type)(a: A)(l: List(A))List(A)

£List (A: Type)(C: (List(A))Type)(C(nil(A)))

((a: A)(l: List(A))(C(l))C(cons(A, a, l)))

(z: List(A))C(z)

and assert the following computation rules:

£List(A, C, c, f, nil(A)) - c: C(nil(A))

£List(A, C, c, f, cons(A, a, l)) - f(a, l, £List(A, C, c, f, l))

: C(cons(A, a, l))

The function mapList is defined as

mapList =df [A : Type][B : Type][c: (A)B]

£List(A, [l : List(A)]List(B), nil(B),

[a: A][l: List(A)][l': List(B)]cons(B, c(a), l'))

such that

mapList(A, B, c, nil(A)) - nil(B)

mapList(A, B, c, cons(A, a, l)) - cons(B, c(a), dList(l))

3. Function types: (---+) =df [A: Type][B: Type]M[((A)B)X]

33

There are two parameters A : Type and B : Type, and the place­

holder X is of kind Type.

Declare the following constants:

(---+) (A: Type)(B: Type)Type

lam (A: Type)(B: Type)((A)B)(A---+ B)

£(-->) (A: Type)(B: Type)(C: (A---+ B)Type)

((g: (A)B)C(lam(A, B, g)))(z: A---+ B)C(z)

and assert the following computation rule:

Ec__,l(A,B,C,f,lam(A,B,g)) = f(g): C(lam(A,B,g))

CHAPTER2. UTT 34

4. Binary trees: BTree =df [A: Type]M[X, (A)(X)(X)X]
There is one parameter A : Type and the placeholder X is of kind

Type.

Declare the following constants:

BTree

empty

mk

Esrree

(A: Type)Type

(A : Type)BTree(A)

(A : Type) (a: A)

(t1 : BTree(A))(t2 : BTree(A))BTree(A)

(A: Type)(C: (BTree(A))Type)(C(empty(A)))

((a: A)(t1 : BTree(A))(C(t1))

(t2 : ETree(A))(C(t2))C(mk(A, a, t 1 , t 2)))

(t: BTree(A))C(t)

and assert the following computation rules:

Esrree(A, C, c, f, empty(A)) - c: C(empty(A))

Esrree(A, C, c, j, mk(A, a, t1, t2)) - f(a, t1, Esrree(A, C, c, f, t1),

t2, Esrree(A, C, e, f, t2))

: C(mk(A, a, t 1 , t2))

5. Vectors: Vee =df [A: Type]M[X, (n: N)(A)(X(n))X(S(n))]

There is one parameter A : Type and the placeholder X is of kind

(N)Type.

Declare the following constants:

Vee (A : Type)(n : N)Type

vnil (A:Type)Vee(A,O)

veons (A: Type)(n: N)(a: A)(l : Vee(A, n))Vee(A, S(n))

Evec (A: Type)(C: (n: N)(Vec(A, n))Type)

(C(O, vnil(A)))

((n: N)(a: A)(l : Vee(A, n))

(C(n, l))C(S(n), veons(A, n, a, l)))

(n: N)(l: Vee(A, n))C(n, l)

CHAPTER2. UTT 35

and assert the following computation rules:

c: C(O, vnil(A)) Evec(A, C, c, j, 0, vnil(A))

Evec(A, C, c, j, S(n), vcons(A, n, a, l)) f(n, a, l, Evec(A, C, c, j, n, l))

: C(S(n), vcons(A, n, a, l))

Remark 2.3.8 Traditionally, the declaration of the elimination oper­

ator for binary trees is the following:

£Brree : (A: Type)(C: (BTree(A))Type)(C(empty(A)))

((a: A)(t1 : BTree(A))(t2 : BTree(A))

(C(t1))(C(t2))C(mk(A, a, t 1 , t2)))

(t: BTree(A))C(t)

During the time of my study of coercive subtyping rules for inductive

data types, I discovered that the elimination operators and computation

rules for inductive data types can be declared in a different way. The

meaning of these new declarations is the same as before but the order

of the arguements is different. The new order is generated by reC1.lrsive

functions over inductive schemata and it makes the implementation of

inductive data types easier, especially, if one uses functional program­

ming languages such as Haskell and ML. With these new declarations,

it is also easier to give a general definition of coercions for the subtyping

rules of parameterised inductive data types.

2.4. ST-form: a subset of inductive data types

In this section, we consider a subset of inductive data types that

have only one constructor. We shall define some important function

operators which will be used in later chapters.

Consider (parameterised) inductive data types generated by the

following form (under a valid context r) 1
:

(ST- joTm)

where 8 is an inductive schema in r, Al : TI, ... ,An : Tn and has the

form (x 1 : KI) ... (xt : Kt)X, every KJ (j = 1, ... , t) is a small kind,

X rf. KJ, and Ti (i = 1, ... , n) is a kind.

1ST stands for Strong Transitivity and is in contrast to WT that stands for Weak
Transitivity.

CHAPTER2. UTT 36

Note 8s that have the form (xi : KI) ... (xt : Kt)X is just a subset of

inductive schemata in r, AI : TI, ... ,An : Tn with respect to the place­

holder X of Type, and type T(A) generated by ST -form has only one

constructor. However, vV -type2 is not included in ST -form although it

has only one constructor.

One can also recursively define this subset of inductive schemata,

which is called ST-schema later. An ST-schema 8 in r with respect

to a placeholder X of Type is of one of the following forms:

1. 8 (x: K)X, where K is a small kind in r, or

2. 8 (x : K)80 , where K is a small kind in r and, 8 0 is a ST-

schema in r, X: K.

Then, we declare the following constant expressions:

T (AI : TI) ... (An : Tn)Type

(AI : TI) ... (An : Tn)8[T(A)]

ET (A1 : TI) ... (An : Tn)

(C: (T(A))Type)

(! : eo[T(A), C, l(A)])

(z: T(A))C(z)

and assert the following computation rule:

where the definitions of eo, ev and 8~ are the same as in Section 2.3.

In order to define the function operators, we first introduce some

notational definitions.

Definition 2.4.1 Assume that small kind K has the form

(xi : I<r) ... (x1 : I<1)El(A) and xi, ... , x1 are fresh variables. Then

• J{r =A,

e J{V =<XI, ... , Xt >,
• Let z be a fresh variable of any kind K'. Define KP[z] of kind

(x 1 : Kr) ... (x 1 : Kt)K' as follows.

J(P[z] = [xi : KJ] ... [xt : Kt]z

2W =df [A: Type](B: (A)Type]M[(x: A)((B(x))X)X]

CHAPTER2. UTT 37

Note For any f : K, we have that f(Kv) : El(IC).

Definition 2.4.2 Assume that 8 is a ST-schema of the form

(xi : KI) ... (xt : Kt)X and XI, ... , Xt are fresh variables and, let z be an

fresh variable of any kind]{'. Then, define 8P[z] of kind

(xi : KI) ... (xt : Kt)K' as follows.

·with the above notations, we can now define function operators

over inductive data types generated by the ST-form:

where 8 is a ST-schema of form (xi : KI) ... (xt : Kt)X, and every]{j

(j = 1, ... , t) is a small kind.

Opj =df [AI : TI] ... [An : Tn][z: T(A)]

[opi(A, z)/xi, ... , OPj-I(A, z)/xj-I]

Kf[£T(A, [G: T(A)]Kj, GP[xj(Kj)], z)]

Now, we give some examples to demonstrate how to define function

operators3 over inductive data types with only one constructor.

Example 2.4.3 The first example is the type of dependent function

spaces; the second is the type of dependent pairs; the third is the type of

non-dependent trio; the fourth example is the type of pairs in which the

first component is functions and the second is objects of a type. These

four types will be used in the later chapters.

1. The type of dependent function spaces:

IT =df [A: Type][B: (A)Type]M[((x: A)B(x))X]

Declare the following constants:

IT (A : Type)(B : (A)Type)Type

A (A: Type)(B: (A)Type)((x: A)B(x))IT(A, B)

En (A: Type)(B: (A)Type)(C: (IT(A, B)Type)

(!: (g: (x: A)B(x))C(A(A, B, g)))

(z : IT(A, B))C(z)

30ne may regard these function operators as generalised projections.

CHAPTER2. UTT

and assert the following computation rule:

Err(A, B, C, f, >.(A, B, g))= f(g) : C(>.(A, B, g))

Then, the usual application operator can be defined as

app =df [A: Type][B: (A)Type]

[F: IT(A, B)J[a: A]

Err(A, B, [G: IT(A, B)]B(a),

[g: (x: A)B(x)]g(a), F)

which satisfies the equality (the (3-rule for).. and app):

app(A, B, >.(A, B, g), a)= g(a) : B(a)

However, the ry-rule does not hold:

>.(A, B, app(A, B, F))#- F

when F : IT(A, B) is a variable.

2. The type of dependent pairs:

I; =df [A: Type][B: (A)Type]M[(x: A)(B(x))X]

Declare the following constants:

I; (A: Type)(B: (A)Type)Type

pmr (A: Type)(B: (A)Type)(x: A)(B(x))I;(A, B)

£r, (A: Type)(B: (A)Type)(C: (I;(A, B))Type)

(f: (x: A)(y: B(x))C(pair(A, B, x, y)))

(z: I;(A, B))C(z)

and assert the following computation rule:

£'E(A, B, C, f,pair(A, B, x, y)) = f(x, y): C(pair(A, B, x, y))

38

CHAPTER2. UTT

Then the projection operators can be defined as:

n, =df [A: Type][B : (A)Type][z: I;(A, B)]

£dA, B, [z: I;(A, B)]A, [x: A][y: B(x)]x, z)

n2 =df [A : Type][B : (A)Type][z : I;(A, B)]

£dA, B, [z: I;(A, B)]B(n1 (A, B, z)),

[x: A][y: B(x)]y, z)

which satisfy the equalities:

n1(A,B,pair(A,B,x.y)) - x: A

n 2 (A, B,pair(A, B, x, y)) - y: B(x)

3. Non-dependent Trio:

Trio =df [A: Type][B: Type][C: Type]M[(A)(B)(C)X]

Declare the following constants:

Trio (A: Type)(B: Type)(C: Type)Type

trio (A: Type)(B: Type)(C: Type)

(A)(B) (C) Trio(A, B, C)

Errio (A: Type)(B: Type)(C: Type)

(D: (Trio(A, B, C))Type)

(f: (a: A)(b: B)(c: C)D(trio(A,B,C,a,b,c)))

(z: Trio(A, B, C))D(z)

and assert the following computation rule:

Errio(A, B, C, D, f, trio(A, B, C, a, b, c))
= f(a, b, c) : D(trio(A, B, C, a, b, c))

Then the projection operators can be defined as

1fTrioi =df [A : Type][B : Type][C : Type]

[z : Trio(A, B, C)]

Erria(A, B, C, [G: Tr-·io(A, B, C)]A,

[a: A][b: B][c: C]a, z)

39

CHAPTER2. UTT

7rrrio2 =df [A : Type][B : Type][C : Type]

[z : Trio(A, B, C)]

Erria(A, B, C, [G: Trio(A, B, C)]B,

[a : A][b: B][c: C]b, z)

7rTrio3 =df [A : Type][B : Type][C : Type]

[z : Trio(A, B, C)]

Erria(A, B, C, [G: Trio(A, B, C)]C,

[a: A][b : B][c: C]c, z)

which satisfy the following equations:

7rTriol(A, B, C, trio(A, B, C, a, b, c))

7rTrio2(A, B, C, trio(A, B, C, a, b, c))

7rTrio3(A, B, C, trio(A, B, C, a, b, c))

-

-

-

a A

b B

c c
4. SPL =df [A: Type][B: Type][C: Type]M[((A)B)(C)X]

Declare the following constants:

SPL (A: Type)(B: Type)(C: Type)Type

spl (A: Type)(B: Type)(C: Type)

((A)B)(C)SPL(A, B, C)

EsPL (A: Type)(B: Type)(C: Type)

(D: (SP L(A, B, C))Type)

(! : (g: (A)B)(c: C)D(spl(A, B, C, g, c)))

(z: SPL(A, B, C))D(z)

and assert the following computation rule:

EsPL(A, B, C, D, j, spl(A, B, C, g, c))
= f(g, c) : D(spl(A, B, C, g, c))

40

CHAPTER2. UTT

Then the function operators can be defined as

KsPLl =dt [A : Type][B : Type][C: Type]

[z: SPL(A,B,C)][a: A]

EsPL(A, B, C, [G: SPL(A, B, C)]B,

[g : (A)B][c: C]g(a), z)

1rsPL2 =dt [A : Type][B : Type][C :Type]

[z : SP L(A, B, C)]

EsPL(A, B, C, [G: SP L(A, B, C)]C,

[g : (A)B][c: C]c, z)

which satisfy the equalities:

KsPLl (A, B, C, spl(A, B, C, g, c))

7rsPL2(A, B, C, spr(A, B, C, g, c))

g: (A)B

c: c

2.5. Related work and Extensional type theory

2.5.1. Related work on UTT

41

It has been proved that, in Goguen's thesis [Gog94], UTT has nice

meta-theoretical properties such as Church-Rosser, Subject Reduction,

Strong Normalisation and the property of context replacement by equal

kinds. We only give the following three properties in detail because they

will be used later.

The theorem of Church-Rosser: If the judgement

r f-- k1 = k2 : K is derivable in UTT then there is a term k3 such that

both k1 and k2 can be reduced to it.

The theorem of strong normalisation: Every well-typed term

in UTT is strongly normalisable. That is, every computation sequence

starting from a well-typed term in UTT is finite.

The property of context replacement by equal kinds: For

any derivable judgement r f-- J in UTT, iff-- r = f' then f' f-- J is also

derivable in UTT.

Implemented in the Lego proof development system, UTT has been

applied to verification of functional programs [BM92, Bur93], impera­

tive programs [Sch97], and concurrent programs [YL97], specification

CHAPTER2. UTT 42

and data refinement [Luo93] and formalisation of mathematics [Pol94].

UTT has also been implemented in Plastic, a proof development sys­

tem, which contains the implementation of Martin-Lof's logical frame­

work, inductive types, universes, and coercive subtyping [CLOl, CL99].

I also implemented the logical framework and UTT can be specified in

it. I used mutually recursive types to represent the terms and kinds

in the logical framework so that as many as possible ill-typed terms

are not representable. Another major difference is that I use recursive

definitions of elimination rules and computation rules to implement

inductive data types (see Section 2.3 for more details).

UTT also includes the predicative universes Typei (i E w), which

are types whose objects are names of types. Universes in UTT are spec­

ified in the Tarski style, using the explicit lifting operators to represent

cumulativity in universes. We omit the details here because universes

are irrelevant in the sense that the results in the thesis fit well into a

type theory with or without universes.

2.5.2. Extensional type theory

In the intensional type theory UTT, if we add the following rule,

the type theory then becomes an extensional type theory.

fi-A:Type fl-a:A fl-b:A fl-q:Prf(Eq(A,a,b))

fl-a=b:A

where Eq is the propositional equality, defined in Section 2.2, and = is

the judgemental equality. Note that the above rule makes the resulting

type theory undecidable and it loses the property of strong normalisa­

tion.

Remark 2.5.1 One may change the last premise of the above rule to

r I- q : I(A, a, b) where I(A, a, b) is a type as introduced in Martin­

Lof's type theory [ML84] because the informal semantics of Eq(A, a, b)

and I(A, a, b) are the same for extensional type theories.

Definition 2.5.2 {Extensional equality) We say that k1 and k2 of

kind J((under context r) are extensionally equal if the judgement

r I- kl = k2 : J(is derivable in the extensional type theory.

CHAPTER2. UTT 43

Consistency

The internal logic in any type theory must be consistent, namely

there is at least one formula in the system which cannot be proved.

The consistency of a type theory cannot be established in itself; if the

type theory is inconsistent, it proves everything, even its own consis­

tency. So, in order to avoid circularity, model theory attempts to give

semantics to explain a type theory using the notions outside the the­

ory itself. In the literature, there are many models for Martin-Lof's

intuitionistic type theory. For example, such models can be found in

[Bee85, Smi84, Set93, Set04]. The existence of these (non-trivial) mod­

els implies the consistency of the extensional type theory.

CHAPTER 3

Coercive Subtyping

In order to make large scale formal reasoning easier, we need subtyp­

ing technology for abbreviation, reuse and inheritance. In this chapter,

we first give a brief introduction to coercive subtyping, and summarise

some results related to coercive subtyping. Then, we lay down the

necessary formal details, and explain the notion of coherence and its

importance.

3.1. Basic idea

An inductive type in type theory can be understood as a set con­

sisting of its canonical objects. If we say type A is a subtype of type

B, we mean that every object of type A is (regarded as) an object of

type B.

The traditional approaches based on direct overloading do not gen­

eralise to inductive types. A natural consideration might be to form

a subtype A of type B by selecting some (canonical) objects from B,

which are regarded as the (canonical) objects of A. However, in such a

setting, type-checking is difficult (and in general undecidable). It is not

clear how one may introduce suitable restrictions on subtype formation

to ensure decidable type-checking. One suggestion that has been made

in the literature is to specify a subtype by declaring its constructors to

be a subset of the constructors of an existing supertype [Coq92], but

this would exclude some interesting applications of subtyping such as

inheritance between mathematical theories represented as E-types.

As studied in [Luo99], coercive subtyping represents an approach

to subtyping and inheritance in type theory. The basic idea of coercive

subtyping is that A is a subtype of B if there is a (unique) coercion c

from A to B, and therefore, any object of type A may be regarded as

object of type B via c, where c is a functional operation from A to B

in the type theory. In the theoretical framework of coercive subtyping,

the role of c is represented by the coercive definition rule which says

44

CHAPTER 3. COERCIVE SUBTYPING 45

that, iff is a functional operation with domain K, k0 is an object of

K 0 , and cis a coercion from K 0 to K, then f(ko) is (well-typed and)

definitionally equal to f(c(k0)). The following rule is the basic coercive

definition rule which shows the idea.

f : (x : K)K' ko : Ko Ko <c K
f(ko) = f(c(ko)) : [c(ko)/x]K'

The above simple idea, when formulated in a typed logical frame­

work [Luo94], becomes very powerful. Z. Luo has developed the frame­

work that covers subtyping relations represented by the following kinds

of coercions:

• Simple coercions: representing subtyping between two types. For

example, coercions between basic inductive types: Even is a sub­

type of Nat.

• Parameterised coercions: representing (point-wise) subtyping (or

subfamily relation) between two families of types indexed by ob­

jects of the same type. A coercion can be parameterised over free

variables occurring in it and (possibly) its domain or range types.

As a special of case, for example, each vector type Vec(A, n) can

be taken as a subtype of that of lists List(A), parameterised by the

index n, where the coercion would map the vector < a1 , ... , an > to

the list [al, ... ,an]·

• Coercions between parameterised inductive types: we have general

schematic rules that represent natural propagation of the basic co­

ercions to other structured (or parameterised) inductive types. For

example, L:(A, B) is a subtype of L:(A', B') if A is a subtype of A'

and B is a subfamily of B'.

Coercive subtyping has applications in many areas such as large proof

development, inductive reasoning, representing implicit syntax (e.g.

overloading), etc.

3.2. A formal presentation

In this section, we give a formal presentation of the framework of

coercive subtyping which is also the basis of our development latter.

A system with coercive subtyping, T[R], is an extension of any type

theory T specified in LF, with two new judgement forms:

CHAPTER 3. COERCIVE SUBTYPING 46

e r f- A <c B : Type asserts that type A is a subtyping of type B

with c.

• r f- I< <c I<' asserts that kind I< is subkind of kind I<' with c.

The coercive subtyping system can be presented in two stages: first

we consider the system T[R]o with subtyping judgements of the form

r f- A <c B : Type, then the system T[R] with subkinding judgements

of the form r f- J{ <c I<'.

Remark 3.2.1 A type theory specified in LF, for example, Martin­

Lof 's intensional type theory or Luo 's UTT, has nice meta-theoretical

properties such as Church-Rosser, Subject Reduction and Strong Nor­

malisation.

3.2.1. The system T[R]o

T[R]o is an extension of type theory T with the subtyping judge­

. ment form r f- A <c B : Type, by adding the following rules:

o A set n of subtyping rules whose conclusions are subtyping judge­

ments of the form r f-A <c B: Type.

• The following congruence rule for subtyping judgements

r f- A <c B : Type

(Gong)
r f- A = A' : Type r f- B = B' : Type r f- c = c' : (A) B

r f- A' <c' B' : Type

In the presentation of coercive subtyping in [Luo99], T[R]o also has the

following substitution and transitivity rules:

(Subst)

(Trans)

r, X: I<, r' f-A <c B: Type r f- k : J{

r, [k/x]f' f- [kjx]A <[k/x]c [kjx]B: Type

r f- A <c B : Type r f- B <c' C : Type

r f-A <c'oc C: Type
Since we will prove that the substitution and transitivity rules are

admissible, we do not include them as basic rules.

Remark 3.2.2 We have the following remarks:

• T[R]o is obviously a conservative extension of the original type

theory T, since the subtyping judgements do not contribute to any

derivation of a judgement of any other form.

• The set of subtyping rules is supposed to be coherent; we shall give

a definition and discussions of coherence in the next subsection.

CHAPTER 3. COERCIVE SUBTYPING 47

e The substitution rule (Subst) and transitivity rule (Trans) cannot

be directly implemented. For this reason, among others, proving

the admissibility (or elimination) of such rules is always an impor­

tant task for any subtyping system.

3.2.2. Coherence of the subtyping rules

The most basic requirement for such subtyping rules is that of co­

herence, given in the following definition, which essentially says that

coercions between any two types must be unique.

Notation 3.2.3 We often use the notation r 17 J which means the

judgement r f- J is not derivable in the current system.

Definition 3.2.4 (Coherence condition of T[R]o) We say that the

subtyping rules are coherent if T[R]o has the following coherence prop­

erties:

1. If r f- A <c B : Type, then r f- A : Type, r f- B Type, and

ff-c: (A)B.

2. r l7 A <c A: Type for any r, A and c.

3. If r f- A <c B : Type and r f- A <c' B : Type, then

r f- c = c': (A)B.

Remark 3.2.5 This notion of coherence is slightly different from the

one given in [Luo99], since there the rules (Subst)(Trans) are included

in T[R]o. However, we will prove that these two rules are admissible

in T[R]o. In general, when parameterised coercions and substitutions

are present, coherence is undecidable. This is one of the reasons one

needs to consider proofs of coherence in general.

3.2.3. The system of T[R]

Let R be a set of coherent subtyping rules. The system T[R], an

extension of type theory T with coercive subtyping with respect to R,

is obtained from T[R]0 by adding the inference rules in Figure 3.2.1

and in Figure 3.2.2.

Remark 3.2.6 The inference rules in Figure 3.2.1 and in Figure 3.2.2

are deliberately separated. In the system we are presenting at the mo­

ment, all the rules are included. In the system with weak transitivity,

CHAPTER 3. COERCIVE SUBTYPING

Basic subkinding rule:

r f- A <c B : Type

r f- El(A) <c El(B)

Subkinding rule for dependent kinds:

r f- (x : KI)K2 <[j:(x:K!)Kz)[x:Kl]c(f(x)) (x : Kl)K~

Congruence rule for subkinding:

r f- K1 <c K2
r f- K1 = K~ r f- K2 = K~ r f- c = c' : (K1)K2

r f- K~ <c' K~

Substitution rule for subkinding:

r, X: K, r' f- Kl <c K2 r f- k : K
r, [k/x]r' f- [kjx]K1 <[k/x]c [kjx]K2

Coercive application rules:

r f- f : (x : K)K' r f- k0 : Ko r f- K0 <c K
r f- f(ko) : [c(ko)/x]K'

r f- f = f" : (x : K)K' r f- ko = kb : Ko r f- Ko <c K
r f- f(ko) = f"(kb) : [c(ko)/x]K'

Coercive definition rule:

(CD)
r f- f : (x : K)K' r f- k0 : K 0 r f- K 0 <c K

r f- f(ko) = f(c(ko)) : [c(ko)/x]K'

FIGURE 3.2.1. Inference rules in T[R]

48

which we will present later, only the rules in Figure 3. 2.1 will be in­

cluded. (see Section 5.8 for more details).

The coherence of the subtyping rules is a necessary condition to

preserve that the coercive subtyping system T[R] is a conservative

extension of the original type theory T. In fact, as pointed out by

Sergei Soloviev, we show that, by the coercive definition rule (CD)

and ,Bry-equality rules, if r f- K <c K' and r f- K <c' K',

CHAPTER 3. COERCIVE SUBTYPING 49

Subkinding rule for dependent kinds:

r f- K~ <c K1 r, x: K1 f- K2 kind r, x': K~ f- [c(x')/x]K2 = K~

r f- (x : KI)K2 <[f:(x:Ki)K2][x':K;Jf(c(x')) (x : KDK~

r f- K~ <q K1 r,x: K1 f- K2kind f,x': K~ f- [c1(x')/x]K2 <c2 K~

r f- (x : KI)K2 <[!:(x:Kt)K2][x':K;]c2(f(q(x'))) (x : KDK~

Transitivity rule for subkinding:

r f- K <c K' r f- K' <c' K"

r f- K <c'oc K"

FIGURE 3.2.2. Inference rules in T[R]

then r f- c = c' : (K)K'. The proof is the following:

=cD

=cD

[x: K]([y: K']y)(c(x))

[x: K]([y: K']y)(x)

[x: K]([y: K']y)(c'(x))

c'

3.3. The problems

As we mentioned above, a vital requirement for coercive subtyp­

ing system is that of coherence of the subtyping rules - computational

uniqueness of coercions between any two types. When we implement

coercive subtyping, a problem is how to decide whether subtyping rules

are coherent. Unless coercions can be represented as a finite graph, this

problem is in general undecidable with possibly infinitely many coer­

cions (e.g. introduced by parameterised coercions). So, how to prove

coherence of the subtyping rules which can probably generate infinite

many coercions needs to be studied; this is one of the contributions of

this thesis.

Another problem related to implementation of coercive subtyping

is that substitution rules and transitivity rules cannot be directly im­

plemented. For this reason, among others, proving the admissibility

(or elimination) of such rules is always an important task for any sub­

typing system. Some results on transitivity elimination for subkinding

CHAPTER 3. COERCIVE SUBTYPING 50

have been presented in [JLS98, SL02]. However, how to prove the ad­

missibility of transitivity and substitution at type level (Trans, Subst)

has not been studied; this is another subject of this thesis.

It is worth mentioning now that, for certain subtyping rules (e.g.

rules in Figure 3.5.1 and 3.5.2), the transitivity rule (Trans) is ad­

missible. However, for many very natural subtyping rules (e.g. the

subtyping rule for lists), the transitivity rule (Trans) cannot be ad­

missible. This problem inspires us to introduce in Chapter 5 a new

notion called 'Weak Transitivity', and to prove that weak transitivity

is admissible. The essence is that we are more concerned about the

existence of coercions between two types, and this new notion has a

wider application.

3.4. Well-defined coercions

In this section, we shall give a definition of well-defined coercions.

After new subtyping rules are added into R, we need to prove that

the system T[R]o is still coherent and that the transitivity rule and

substitution rule are admissible. A general strategy we adopt is to

consider such proofs in a stepwise way. That is, we first suppose that

some existing coercions (possibly generated by some existing rules) are

coherent and have good admissibility properties; then prove that all

the good properties are kept after new subtyping rules are added. This

leads us to define the following concept of well-defined coercions.

Definition 3.4.1 (Well-defined coercions) If C is a set of subtyp­

ing judgements of the form r f- M <d 111' : Type which satisfies the

following conditions, we say that C is a well-defined set of judgements

for coercions, briefly called Well-Defined Coercions (WDC).

1. (Coherence)

(a) r f- A <c B : Type E C implies r f- A : Type, r f- B : Type

and r f- c: (A)B.

(b) r f-A <c A: Type ~ C for any r, A, and c.

(c) r f- A <c1 B : Type E C and r f- A <c2 B : Type E C imply

r f- c1 = c2 : (A) B.

2. (Congruence) r f- A <c B : Type E C, r f- A = A' : Type,

r f- B = B': Type and r f- c = c': (A)B imply r f-A' <c' B' E C.

CHAPTER 3. COERCIVE SUBTYPING

3. (Transitivity) r f-- A <c1 B : Type E C and r f-- B <c2 C : Type

E C imply f f-- A <c2oq C : Type E C.

51

4. (Substitution) r, X : K, r' f-- A <c B : Type E c implies for any k

such that r f-- k: K, r, [k/x]f' f-- [k/x]A <[k/xJc [k/x]B: Type E C.
5. (Weakening) r f-- A <c B : Type E C, r ~ f' and f' is valid imply

f' f-- A <c B : Type E C.

By the definition of WDC, we have the following properties.

Lemma 3.4.2 Let C be a WDC.

1. If r f-- A <q B : Type E C, r f-- B' <c2 C : Type E C and

r f-- B = B' : Type then r f-- A <c2DC! c : Type E c.
2. Iff,x: K,r' f--A <c B: Type E C and r f-- K = K' then

r,x: K',f' f--A <c B: Type E C.

3. If r f-- A <c B : Type E C and f-- r = f' then f' f-- A <c B : Type

E C.

4. If r ~- A <c B : Type E C, f' f-- A' <c' B' : Type E C, f-- r = f',

r f--A= A': Type and r f-- B = B': Type then r f-- c = c': (A)B.

We shall consider the system of coercive subtyping in which the set

(R) of the subtyping rules includes the following rule,

r f-- A <c B : Type E C
(WDCrule) r f-- A <c B : Type

where C is a WDC.

3.5. Subtyping rules

The set R of subtyping rules is open in the sense that we can always

introduce new subtyping rules in R, so long as the good properties

such as coherence are kept. For example, at this moment, we introduce

subtyping rules for IT-types and ~-types into R (Figure 3.5.1 and Figure

3.5.2; details of IT-types and ~-types are on Page 37 and Page 38). More

subtyping rules will be introduced in later chapters.

Remark 3.5.1 We have the following remarks:

• The basic understanding of the subtyping rules for IT-types is that

II(A, B) is a subtype of II(A', B') if A' is a subtype of A and B

is a sub-family of B' (we omit other cases such as: II(A, B) is a

subtype of II (A, B') if B is a sub-family of B').

Domain rule:

where

CHAPTER 3. COERCIVE SUBTYPING

r f--A' <c A : Type r f-- B : (A)Type

r f-- IT(A, B) <d1 IT(A', B o c) :Type

d1 = [f : II(A, B)].A(A', B o c, app(A, B, f) o c)

Codomain rule:

52

r f-- B: (A)Type r f-- B' : (A)Type r, x: A f-- B(x) <e[x] B'(x) :Type

r f-- IT(A, B) <d2 IT(A, B') : Type

where

d2 = [f: II(A, B)].A(A, B', [x: A]e[x](app(A, B, f, x)))

Domain-Codomain rule:

r f--A' <c A :Type r f-- B : (A)Type r f-- B' : (A')Type
r, x': A' f-- B(c(x')) <e[x'] B'(x') :Type

r f-- IT(A, B) <d3 IT(A', B') :Type

where

d3 = [f: II(A, B)].A(A', B', [x': A']e[x'](app(A, B, f, c(x'))))

FIGURE 3.5.1. Subtyping rules for IT-types

• We use the application operator app to define the coercions in Fig­

ure 3. 5.1 and have the following equations:

d1(-X(A,B,g))

d2(-X(A, B, g))

d3 (.X (A, B, g))

.A (A', B o c, g o c)

.A(A, B', [x: A]e[x](g(x)))

.A(A', B', [x': A']e[x'](g(c(x'))))

• The basic understanding of the subtyping rules for ~-types is that

~(A, B) is a subtype of ~(A', B') if A is a subtype of A' and B is a

sub-family of B' (we omit other cases such as: ~(A, B) is a subtype

of ~(A, B') if B is a sub-family of B').

CHAPTER 3. COERCIVE SUBTYPING

First Component rule:

where

r f-A <c A' :Type r f- B : (A')Type
r f- L:(A, B o c) <d1 L:(A', B): Type

d1 = [z: L:(A, B o c)]pair(A', B,

c(1r1(A, B o c, z)), 1r2 (A, B o c, z))

Second Component rule:

53

r f- B: (A)Type r f- B': (A)Type r, x: A f- B(x) <e[xJ B'(x) :Type
r f- L:(A, B) <d2 L:(A, B') :Type

where

d2 [z: L:(A, B)]pair(A, B',

1r1(A, B, z), e[1r1(A, B, z)](1r2 (A, B, z)))

First-Second Component rule:

r f-A <c A' : Type r f- B : (A)Type r f- B' : (A')Type
f, x: A f- B(x) <e[x] B'(c(x)) :Type

r f- L:(A, B) <d3 L:(A', B') :Type
where

d3 [z: L:(A, B)]pair(A', B',

c(1r1(A, B, z)), e[1r1(A, B, z)](1r2(A, B, z)))

FIGURE 3.5.2. Subtyping rules for L:-types

et We use the projection operators 1r1 and 1r2 to define the coercions

in Figure 3. 5. 2 and have the following equations:

d1 (pair(A, B o c, x, y)

d2(pair(A, B, x, y)

d3 (pair(A, B, x, y)

pair(A', B, c(x), y)

pair(A, B', x, e[x](y))

pair(A', B', c(x), e[x](y))

We now give two examples to show that the definitions of coercions

in Figure 3.5.1 and in Figure 3.5.2 are suitable to the admissibility of

the transitivity rule (Trans), but the inductively defined coercions are

not.

CHAPTER 3. COERCIVE SUBTYPING 54

Example 3.5.2 Assume that r f- B : (A)Type, r f- B' : (A)Type,

r f- B": (A)Type and r, X: A f- B(x) <e![x] B'(x),

r, X : A f- B'(x) <e2[x] B"(x) and r, X : A f- B(x) <e2[x]oel[x] B"(x).
Then by the Codomain rule, we have

where

r f- II(A, B) <d1 II(A, B')

r f- II(A, B') <d2 II(A, B")

r f- II(A, B) <d II(A, B")

d1 - [f: II(A, B)],X(A, B', [x: A]e![y](app(A, B, j, x)))

d2 - [g: II(A, B')],X(A, B", [x: A]e2[x](app(A, B', g, x)))

d - [f: II(A, B)],X(A, B", [x: A]e2[x](ei[x](app(A, B, j, x))))

TI(A,B')

y ~
TI(A,B) d TI(A, B")

Figure for example 3.5.2

d2 o d1 =df [f: II(A, B)]d2(d1(f))

- [f : II(A, B)]

,\(A, B", [x: A]e2[x](app(A, B', d1 (f), x)))

- [f: II(A, B)],X(A, B", [x: A]e2[x](app(A, B',

,\(A, B', [y: A]e![y](app(A, B, j, y))), x)))

- [! : II(A, B)],\(A, B",

[x: A]e2 [x](([y: A]ei[y](app(A, B, f, y)))(x)))

= [! : II(A, B)]

,\(A, B", [x: A]e2[x](ei[x](app(A, B, f, x))))

= d

CHAPTER 3. COERCIVE SUBTYPING 55

However, if we choose the inductively defined coercions as the following:

d1 = t'rr(A, B, [! : II(A, B)]IT(A, B'),

[h: (x: A)B(x)].\(A, B', [x: A]el[x](h(x))))

d2 t'rr(A, B', [g: II(A, B')]IT(A, B"),

[h: (x: A)B'(x)].\(A, B", [x: A]e2[x](h(x))))

d - t'rr(A, B, [f : II(A, B)]IT(A, B"),

[h: (x: A)B(x)].\(A, B", [x: A]e2[x](e1 [x](h(x)))))

then d and d2 o d1 are not computationally equal in an intensional type

theory. This causes the transitivity rule (Trans) not to be admissible,

although d and d2 od1 are extensionally equal. In fact, for any canonical

object .\(A, B, h) of type IT(A, B), we have

d(.\(A, B, h)) .\(A, B", [x: A]e2[x](el[x](h(x))))

d2(d1(.\(A, B, h)))

Example 3.5.3 Assume that r f- B : (A)Type, r f- B' : (A)Type,

r f- B": (A)Type and r, x: A f- B(x) <e![x] B'(x),

r, X : A f- B'(x) <e2[x] B"(x) and r, X : A f- B(x) <e2[x]oet[x] B"(x).
Then by the Second Component rule, we have

where

r f- I:(A, B) <d1 I:(A, B')

r f- I:(A, B') <d2 I:(A, B")

r f- I:(A, B) <d L:(A, B")

d1 [z: I:(A, B)]pair(A, B', 1r1 (A, B, z),

ei[1r1(A, B, z)](1r2(A, B, z)))

d2 [z': I:(A, B')]pair(A, B", 1r1 (A, B', z'),

e2[1r1(A, B', z')](1r2(A, B', z')))

d [z: I:(A,B)]pair(A,B",7r1(A,B,z),

e2[1r1 (A, B, z)](e1 [1r1 (A, B, z)] (1r2(A, B, z))))

CHAPTER 3. COERCIVE SUBTYPING

~(A, B) d

Figure for example 3.5.3

d2 o d1 =df [z: E(A, B)]d2(d1(z))

[z: E(A, B)]pair(A, B", n1(A, B', d1(z)),

e2[n1(A, B', d1(z))](n2(A, B', d1(z))))

[z: E(A, B)]pair(A, B", n1(A, B, z),

e2[n1(A, B, z)](ei[n1(A, B, z)](n2(A, B, z))))

d

56

However, if we choose the inductively defined coercions as the following:

d1 = EdA, B, [z: E(A, B)]E(A, B'),

[x: A][y: B(x)]pair(A,B',x,ei[x](y)))

d2 EdA, B', [z': E(A, B')]E(A, B"),

[x: A][y: B'(x)]pair(A, B", x, e2 [x](y)))

d EdA, B, [z : E(A, B)]E(A, B"),

[x: A][y: B(x)]pair(A, B", x, e2 [x](ei[x](y))))

then d and d2 o d1 are not computationally equal in an intensional type

theory. This causes the transitivity rule (Trans) not to be admissible,

although d and d2od1 are extensionally equal. In fact, for any canonical

object pair(A, B, x, y) of type E(A, B), we have

d(pair(A, B, x, y)) pair(A, B", x, e2 [x](ei[x](y)))

d2(d1 (pair(A, B, x, y)))

CHAPTER 4

Coherence and 'fransitivity

In this chapter, we shall use the subtyping rules for IT and E-types

as examples to demonstrate how coherence can be proved. We shall

also prove the admissibility of the substitution rule (Subst) and the

transitivity rule (Trans). Let's make clear that the set R of subtyping

rules now consists of the rule W DCrule where C in the rule is a set of

well-defined coercions (WDC) and the subtyping rule for IT and E-types

in Figure 3.5.1 and Figure 3.5.2 and, the system T[R]o also includes

the congruence rule (Gong). Furthermore, we assume that for any

judgement r f- A <c B : Type E C, neither A nor B is computationally

equal to a IT-type or a E-type. vVe also assume that the original type

theory T has good properties, in particular the Church-Rosser property

and the property of context replacement by equal kinds.

We denote by eM the set of the derivable subtyping judgements of

the form r f- M <d .A1' : Type in T[R]0 ; that is, r f- M <d Jvf' : Type

E CM if and only if r f- M <d M' : Type is derivable in T[R]0 . In this

chapter, we shall show that CM is a WDC.

It is obvious that eM is a superset of c (i.e. eM 2 C) because the

rule vV DCrule is included in the system T[R]0 .

4.1. Coherence of T[R]o

We give a proof of coherence of the system T[R]o in this section.

Notation 4.1.1 Since we are not much concerned with the subkinding

judgements and are mainly concerned with the subtyping judgements,

we shall simply write r f- A <c B for r f- A <c B : Type, where no

confusion may occur. Sometimes, we shall also write r f- k1 = k2 for

r f- k1 = k2 : J(when we have no concern for the kind J(.

Lemma 4.1.2 Iff f- .Af1 <c~ lvf2 :Type E CM, then one of the follow­

ing holds:

• r f- M 1 <d Jvh: Type E C; or

57

CHAPTER 4. COHERENCE AND TRANSITIVITY

e Both M 1 and M 2 are computationally equal to IT-types; or

G Both M 1 and M 2 are computationally equal to 'E-types.

Proof. By induction on derivations.

58

If r f-- M1 <d M 2 ¢: e, its derivation must end with a IT-subtyping

rule, or a I:-subtyping rule, or the congruence rule. If it is one of the

IT or I:-subtyping rules, then we know both M 1 and !Vh are IT-types or

I:- types. If the last rule is the congruence rule (C ong),

r f-- .M{ <d' M~

r f-- M1 = M{ r f-- M2 = M~ r f-- d' = d: (M{)M~

r f-- 1vf1 <d M2

then by the induction hypothesis, the lemma holds for r f-- M{ <d' Jvf~.

If both M{ and M~ are computationally equal to IT-types or I:-types,

so are M 1 and M 2 . If r f-- M{ <d' M~ E C, then r f-- M 1 <d .M2 E C

because C is a WDC, which is closed under congruence. 0

Lemma 4.1.3 We have the following lemmas.

1. If r f-- IT(A, B) <d IT(A', B') :Type E eM then r f--A= A' :Type

or f f--A' <c A: Type E eM for some c.

2. If r f-- L:(A, B) <d 'E(A', B') :Type E eM then r f--A= A': Type

or f f--A <c A': Type E eM for some c.

3. If r f-- IT(A, B) <d IT(A', B') :Type E eM and r f--A= A' : Type

then f,x: A f-- B(x) <e[x] B'(x): Type E eM for some e.

4. If r f-- L:(A, B) <d 'E(A', B') : Type E eM and r f--A= A' : Type

then r, X: A f-- B(x) <e[x] B'(x) :Type E eM for some e.

5. If r f-- IT(A, B) <d IT(A', B') :Type E eM and r f--A' <c A: Type

E eM then r, X: A' f-- B(c(x)) = B'(x) :Type or

r, X: A' f-- B(c(x)) <e[x] B'(x) :Type E eM for some e.

6. Iff f-- L:(A, B) <d L:(A', B') : Type E eM and r f-- A <c A' : Type

E eM then r, X: A f-- B(x) = B'(c(x)) :Type or

r, X: A f-- B(x) <e[x] B'(c(x)) :Type E eM for some e.

Proof. By induction on derivations.

We consider only the first statement here; the proofs of the others

are similar. For the first, any derivation of the judgement

r f-- IT(A, B) <d IT(A', B') must contain a sub-derivation whose last rule

is one of the subtyping rules for IT-types followed by a finite number of

CHAPTER 4. COHERENCE AND TRANSITIVITY 59

applications of the congruence rule .

... (Congruence rule) ...

r f- IT(A, B) <d IT(A', B')

where r f- IT(A1 , BI) = IT(A, B), r f- IT(A2 , B2) = IT(A', B'), and

r f- d' = d respectively. Hence, by the Church-Rosser theorem of the

original type theory T and conservativity of T[R]o over T, we have

r f- A1 =A, r f- B1 = B, r f- A2 =A' and r f- B2 = B'.

Since r f- IT(A1 , B1) <d' IT(A2 , B2) is derived by one of the three

subtyping rules for IT-types, if it is the Codomain rule, we have

r f- A1 = A2 ; if it is the Domain rule or the Domain-Codomain rule,

we have r f- A' <c A for some c. So r f- A = A' or r f- A' <c A for

some c by the congruence rule. D

Lemma 4.1.4 Iff f- M1 <d M2 :Type E CM, then

r If M1 = M2: Type.

Proof. By induction on derivations and the definition of WDC, par­

ticularly, the coherence requirement l(b) in the Definition 3.4.1. D

Theorem 4.1.5 {Coherence) If r f- M 1 <d M 2 :Type E CM,

f' f- M{ <d' M~ : Type E CM, f- f = f', f f- M1 = M{ : Type, and

r f- M2 = M~ :Type then r f- d = d' : (M1)M2.

Proof. By induction on derivations.

By Lemma 4.1.2, we have to consider only the following three cases.

• r f- M1 <d M2 E C. Then, none of M1 and M2 is computationally

equal to a IT-type or L::-type by the assumption; and nor is M{ or

M~ because r f- M1 = M{ and r f- M2 = M~. So, by Lemma 4.1.2,

we have r f- M{ <d' M~ E C. Now, by Lemma 3.4.2(4), we have

r f- d = d' : (M1)M2.

• Both lvh and M2 are computationally equal to IT-types. Then any

derivation of r f- l\11 <d lv/2 contains a sub-derivation whose last

CHAPTER 4. COHERENCE AND TRANSITIVITY 60

rule is one of the subtyping rules for IT-types followed by a finite

number of applications of the congruence rule. We consider only

the case where the IT-subtyping rule concerned is the third rule in

Figure 3.5.1; i.e, the derivation is of the form

r f- A2 <c AI r, X: A2 f- BI(c(x)) <e[x] B2(x)

f f- IT(A1, BI) <d1 IT(A2, B2)

... (Congruence rule) ...

r f- M1 <d M2

where r f- IT(AI, BI) = MI, r f- IT(A2, B2) = M2, r f- dl = d and

d1 = [!: IT(A1, BI)]>.(A2, B2, [x: A2]e[x](app(A1, B1, f, c(x))))

Now, it must be the case that any derivation off' f- M{ <d' M~

must contain a sub-derivation whose last rule is also the same sub­

typing rule for IT-types as above, followed by a finite number of

applications of the congruence rule; i.e, it must be of the form

f' f-A; <c' A~ f', x: A; f- B~ (c'(x)) <e'[xJ B~(x)

r' f- IT(A~, BD <d'
1

IT(A;, B~)

... (Congruence rule) ...

f' f- lVI{ <d' M~

where r' f- IT(A~' BD = lVI{' r' f- IT(A;, B~) = M~, r' f- d' = d~

and

d~ = [f: IT(A~,B~)]>.(A;,B;,[x: A;]e'[x](app(A~,B~,j,c'(x))))

To see this is the case, by Lemma 4.1.3, we have to show only that

1. f'IJA;=A~,and

CHAPTER 4. COHERENCE AND TRANSITIVITY 61

2. r', X: A; 17 B~ (c'(x)) = B~(x).

For the first case, since r f- M1 = M{ and r f- M2 = M~, we

haver f- IT(A1 , B 1) = IT(A~, BD and r f- IT(A2, B2) = IT(A;, B~).
Hence, by Church-Rosser in T and conservativity of T[R.] 0 overT,

we haver f- A1 =A~, r f- B1 = B~, r f- A2 =A; andf f- B2 = B~.
As r f- A2 <c A1 , we have by Lemma 4.1.4, r 17 A2 = A1 . So

f' 17 A;= A~.
For the second case, we need to use the induction hypothesis first.

Since we already know that the derivations of r f- A2 <c A1 and

f' f- A; <c' A~ are sub-derivations of r f- M1 <d M2 and

f' f- M{ <d' M~, by the induction hypothesis we have r f- c = c'.

Using this result, a similar argument as in the first case suffices to

prove that r',x: A; 17 B~(c'(x)) = B~(x).

Now, since the derivations must be of the above forms, by the

induction hypothesis again, we have r, X : A2 f- e[x] = e'[x]. Hence

f f- d = d' : (M1)M2.

• Both J\111 and M2 are computationally equal to I:-types. The proof

of this case is similar to the case that both M1 and M2 are compu­

tationally equal to IT-types.

D

4.2. Admissibility of Substitution and Transitivity

In the presentation of coercive subtyping in [Luo99], substitution

and transitivity are two of the basic rules in the theoretical frame­

work. However, in an implementation of coercive subtyping, if there

are infinitely many coercions, these rules usually cannot be directly

implemented. For this reason, among others, proving the admissibility

of such rules (or their elimination) is always an important task for any

subtyping systems.

In our system, we do not take substitution and transitivity as basic

rules, but we prove that they are admissible when we extend a WDC

by the IT and I:-subtyping rules.

Theorem 4.2.1 (Substitution) If r, X : K, r' f- 1111 <d 1112 : Type

E C;VJ and r f- k : K, then r, [k/:r]f' f- [k/x]1111 <[k/xJd [kjx]iVJ2 : Type

E CM·

CHAPTER 4. COHERENCE AND TRANSITIVITY 62

Proof. By induction on derivations.

We consider only the case of the congruence rule (Gong) as an

example of showing the proof, that is, the last rule of the derivation of

r' X : K, r' f-- Ml <d M2 is the following:

r,x: K,r' f-- M{ <d' M~
r,x: K,r' f-- M{ = M1 r,x: K,r' f-- M~ = M2

r, x: K, r' f-- d' = d: (.1\!I{)M~

r, x : K, f' f-- M1 <d M2

By the induction hypothesis, we have

r, [k/x]r' f-- [k/x]M{ <[k/xJd' [k/x]M~

By the property of conservativity of T[R]o over T and the substitution

rules in T, we have r, [k/x)r' f-- [k/x]M{ = [k/x]M1,
r, [k/x)r' f-- [kjx]M~ = [k/x]M2 and r, [k/x)r' f-- [k/x]d' = [k/x]d.
Therefore, by the congruence rule, we have

r, [k/x]r' f-- [kjx]M1 <[k/xJd [kjx]M2

0

Now let's consider the theorem of the admissibility of transitivity.

In order to prove this theorem, we also need to prove the theorem of

weakening.

Theorem 4.2.2 {Weakening) If r f-- M1 <d M2 : Type E eM,
r ~ f' and f' is valid then f' f-- M1 <d M2 : Type E eM.

Proof. By induction on derivations.

The theorem of weakening in type theory T and the property of

conservativity of T[R]o over T are also needed in this proof. 0

To prove the admissibility of transitivity, the usual measures (e.g.

the size of types concerned) do not seem to work (or even to be defin­

able), since types essentially involve computations. We use a measure

developed by Aspinall, Companoni and Chen !Che98], which considers

only subtyping judgements in a derivation, defined as follows.

Definition 4.2.3 (depth} Let D be a derivation of a subtyping judge­

ment of the form r f-- A <c B : Type.

CHAPTER 4. COHERENCE AND TRANSITIVITY

D:
S1 ... Sn T1 ... Tm

r 1- A <c B : Type

63

where S 1, ... ,Sn are derivations of subtyping judgements of the form

r 1- M1 <d M2 :Type and, T1, ... , Tm are derivations of other forms of

judgements. Then we define

depth(D) =df 1 + max{depth(SI), ... , depth(Sn)}

Specially, if n = 0 then depth(D) =df 1.

The following lemmas show that, from a derivation D of a subtyp­

ing judgement J one can always get a derivation D' of the judgement

obtained from J by context replacement such that D and D' have the

same depth.

Lemma 4.2.4 If 1- r = r', r 1- M1 <d lvf2 : Type E eM, and D is a

derivation of r 1- M 1 <d M 2 : Type, then

1. r' 1- M1 <d .!11!2 :Type E eM, and

2. there is a derivation D' of r' 1- M1 <d M2 :Type such that

depth(D) = depth(D').

Proof. By induction on derivations.

• The derivation D is

r 1- M1 <d M2 : Type E e
r 1- M1 <d M2 : Type

By Lemma 3.4.2, we have r' 1- M1 <d M2 : Type E e and let D' be

r' 1- M1 <d .Af2 : Type E e
f' 1- M1 <d M2 : Type

Then depth(D) = depth(D') = 1.

• The last rule of derivation D is

r 1- Jvf{ <d' M~

r 1- Jvf{ = 1111 r 1- 111~ = M2 r 1- d' = d: (M{)M~

r 1- M1 <d lvh

Then, depth(D) = depth(DI) + 1 where D 1 is the derivation of

judgement r 1- M{ <d' Af~ in D.

By the induction hypothesis, we have

1. r' 1- J\!f{ <d' JVJ~ E eM, and

CHAPTER 4. COHERENCE AND TRANSITIVITY 64

2. there is a derivation D 2 of f' f-- M{ <d' M~ such that

depth(D1) = depth(D2).

By the theorem of context replacement by equal kinds in T and

conservativity of T[R]o overT, we have f' f-- M{ = M 1 ,

f' f-- NI~ = M 2 and f' f-- d' = d : (M{)M~. Therefore, using the

congruence rule, we have a derivation D'

f' f-- M{ <d' M~
f' f-- M{ = M1 f' f-- M~ = M2 f' f-- d' = d: (M{)M~

f' f-- M1 <d M2

and depth(D') = depth(D2) + 1. So, depth(D) = depth(D').

• For other cases, similar arguments are sufficient.

Lemma 4.2.5 Iff, x : K, f' f-- M1 <c1 M2 : Type E e and

r f-- c2 : (K')K then

D

f, y: K', [c2(y)jx)f' f-- [c2(y)jx]M1 <[c2 (y)/x]q [c2(y)jx]M2 :Type E e

Proof. By weakening and substitution in the definition of WDC. D

Lemma 4.2.6 If r, X: K, r' f-- Ml <q M2: Type E eM,
r f-- c2 : (K')K, and D is a derivation of

r, X: K, r' f-- Ml <q M2: Type, then

1. f, y : K', [c2(Y)/x)f' f-- [c2(y)jx]M1 <[c2 (y)/x]q [c2(y)jx)M2 : Type

E eM, and

2. there is a derivation D' of

f, y: K', [c2(Y)/x)f' f-- [c2(y)jx]M1 <[c2 (y)/x]c1 [c2(y)jx]M2: Type

such that depth(D) = depth(D').

Proof. By induction on derivations and Lemma 4.2.5. The theorem

of weakening and substitution in type theory T and the property of

conservativity of T[R]o over T are also needed in this proof. D

Now, we prove the admissibility of the transitivity rule.

Theorem 4.2.7 (Transitivity) Iff f-- M1 <d1 M2 : Type E eM,
f f-- l\11~ <d2 Nh :Type E eM and f f-- Nh = NI~ :Type, then

f f-- M1 <d2od1 N£3 : Type E eM.

CHAPTER 4. COHERENCE AND TRANSITIVITY 65

Proof. By induction on depth(D) + depth(D'), where D and D' are

derivations of r f- M1 <d1 Nh and r f- M~ <d2 M3, respectively.

In the base case i.e. depth(D) = depth(D') = 1, we have that the

judgements r f- M1 <d1 M2 and r f- M~ <d2 N/3 are both in C. By

Lemma 3.4.2, we have r f- M1 <d2 od1 M3 E C.

In the step case, if r f- M1 <d1 N/2 and r f- l\1!~ <d2 M3 are both

in C, then a similar argument as the base case suffices. Otherwise,

we have that either r f- M1 <d1 M2 or r f- A1~ <d2 M3 is not in C.

Therefore, by Lemma 4.1.2 and the assumption of r f- M2 = M~, all of

M1, M2, M~ and M3 are computationally equal to IT-types or L:-types.

We consider only the case that they are equal to IT-types. Suppose that

the derivation D and D' be of the following forms (we consider only the

more difficult example among the combinations of IT-subtyping rules):

r f- A2 <c1 A1 f,x: A2 f- B1(c1(x)) <edxl B2(x)

f f- IT(A1, BI) <d~ IT(A2, B2)

... (Congruence rule) ...

r f- M1 <d1 M2

where r f- IT(A1, BI) = M1, r f- IT(A2, B2) = M2, r f- d~ = d1 and

d~ = [f: IT(A1, B1)]A(A2, B2, [x: A2]e1[x](app(A1, B1, j, c1(x))))

and

D' 1 D' 2

r f- A3 <c2 A; r, X: A3 f- B~(c2(x)) <e2[x] B3(x)

r f- IT(A;, B~) <d; IT(A3, B3)

... (Congruence rule) ...

CHAPTER 4. COHERENCE AND TRANSITIVITY 66

d~ = [f: IT(A~, B~)]>.(A3 , B3 , [x: A3]e2 [x](app(A~, B~, J, c2 (x))))

We obviously have depth(DI) < depth(D) and depth(D2) < depth(D)

because D 1 and D 2 are sub-derivations of D; depth(DD < depth(D')

and depth(D;) < depth(D') because D~ and n; are sub-derivations of

D'.

Now, since r 1-M2 = M~, we have by Church-Rosser theorem ofT

and conservativity of T[R] 0 over T, r 1- A2 = A~ and r 1- B2 = B;.

Since r 1- A3 <c2 A~ we have r 1- c2 : (A3)A~ and r 1- c2 : (A3)A2.
Since r,x: A2 1- B1(c1(x)) <e![xJ B 2 (x), by Lemma 4.2.6, we have

r,x: A3 1- B1(c1(c2(x))) <e1 [c2 (x)J B2(c2(x)) and there is a derivation

D3 of the judgement r, X: A3 1- Bl(cl(c2(x))) <ei[c2(x)] B2(c2(x)) such

that depth(D3) = depth(D2).

Now, we have

depth(D1) + depth(DD < depth(D) + depth(D')

depth(D3) + depth(D~) < depth(D) + depth(D')

By the induction hypothesis, we have that f 1- A3 <qoc2 A1 E eM.
Since r 1- B2 = B; : (A2)Type and r 1- c2 : (A3)A2, we have

r, X: A3 1- B2(c2(x)) = B;(c2(x)). By the induction hypothesis again,

we have

f,x: A3 1- B1(c1(c2(x))) <e2[x)oei[c2(x)] B3(x) E eM

So by the Domain-Codomain rule (the third rule in Figure 3.5.1), we

have f 1- IT(A1, B1) <d3 IT(A3, B3) E eM, where

d3 =dt [f: IT(A1, BI)]>.(A3, B3,

[x : A3]e2[x](el[c2(x)](app(A1, B1, f, c1 (c2(x))))))

Then

CHAPTER 4. COHERENCE AND TRANSITIVITY

[!: II(A1, BI)]d2(d1(f))

[!: II(Al, BI)]d;(d~(f))

[f : II(A1, BI)].X(A3, B3,

[x : A3]e2 [x](app(A;, B~, d~ (!), c2 (x))))

[! : II(Al, BI)].X(A3, B3,

[x: A3]e2[x](edc2(x)](app(A1, B1, f, c1(c2(x))))))

d3

67

Finally, by the congruence rule, we have f f- M1 <d2 od1 M3 E CM. 0

Corollary 4.2.8 CM is a WDC.

Proof. By Lemma 4.1.4 and Theorems 4.1.5, 4.2.1, 4.2.2 and 4.2.7. 0

4.3. Algorithm for the coercion search

We have proved the coherence and admissibility of substitution and

transitivity for the subtyping rules of IT-types and I:-types. We can be

sure that the coercion search is decidable for CM if it is decidable in C.

We shall in this section give a sound and complete algorithm to do so.

4.3.1. Algorithm Alg(f, M1 , M2) for T[R]o

If it is decidable to check whether there is a judgement r f- A <c B

E C when arbitrary r, A and Bare given, then we say that the Coercion

Search is decidable in C.

Supposing the coercion search is decidable in C, we give an algo­

rithm Alg(f, M1, M2) for CM to check whether there is a judgement

r f- M1 <d M2 E CM when arbitrary f, M1 and M2 are given.

If so, Alg(f, M1, M2) ·- d' for some d' and r f- d = d', otherwise

Alg(f, M1, M2) :=l_.

1. If r is a valid context, M1 and lvh are well-typed type then go to

2. Otherwise Alg(f, .M1 , AI2) :=l_.

2. If there is a judgement f f- M1 <d lv'f2 E C

then Alg(f, !vft, A12) :=d. Otherwise, go to 3.

CHAPTER 4. COHERENCE AND TRANSITIVITY 68

3. Compute M 1 and M 2 to weak normal form wnj(lv11) and wnf(M2).

If both wnf(lvh) and wnf(M2) are IT-types or L;-types then go to

4. Otherwise Alg(f, MI, M 2) :=j_.

4. If wnf(MI) IT(AI, BI) and wnj(lvf2) TI(A2, B2) then go to 5.

Otherwise wnf(MI) - L;(AI, BI) and wnf(M2) = L;(A2, B 2) go to

6.

5. If r ~ A1 = A2 and Alg((r, x: A2), BI(x), B2(x)) := e[x]

(x rt FV(f)), then

Alg(f, lvh, M2) := [!: IT(AI, BI)]>.(A2, B2,

[x: A1]e[x] o app(AI, BI, j, x))

If Alg(f, A2, AI):= c and r, X: A2 ~ Bl(c(x)) = B2(x), then

Alg(f, MI, lv12) := [f: TI(AI, BI)]>.(A2, B 2 o c,

app(A1 , BI, f) o c)

If Alg(f, A2, AI):= c and Alg((r, x: A2), BI(c(x)), B2(.1:)) := e[x],

then

Alg(f, M1, Af2) := [f: IT(A1, BI)]>.(A2, B2,

[x: A2]e[x](app(AI, BI, j, c(x))))

Otherwise Alg(f, .MI, 1\12) :=j_.

6. If r ~AI = A2 and Alg((f, x: A2), BI (x), B2(x)) := e[x], then

Alg(f, M1, 1\12) := [x: L;(AI, B1)]pair(A2, B2,

1r1(AI, BI, x),

e[7ri(AI, B1, x)](1r2(AI, BI, x)))

If Alg(f, AI, A2) := c and r, X: AI~ BI(x) = B2(c(x)), then

Alg(f, A1I, 1\12) := [x: L;(AI, BI)]pair(A2, B 2,

c(7ri (AI, BI, x)),

1r2(AI, BI, x))

CHAPTER 4. COHERENCE AND TRANSITIVITY 69

If Alg(f,A1,A2) := c and Alg((r,x: AI),B1(x),B2(c(x))) := e[x],

then

Alg(f, !Vf1, M2) ·- [x: ~(A1, B1)]pair(A2, B2,

c(1r1(At, B1, x)),

e[1r1(A1, B1, x)](1r2(A1, B1, x)))

Otherwise Alg(f, M 1 , M 2) :=.L

4.3.2. Soundness and Completeness

Theorem 4.3.1 (Soundness) If Alg(f, M1 , M2) =.1. then there isn't

any judgement r f- M1 <d M2 : Type E eM· If Alg(f, M1, M2) := d

then there is a judgement r f- Ml <d M2 : Type E eM.

Proof. For the first part, we proceed by contradiction and prove that if

r f- M1 <d M2 :Type E eM then Alg(f, M1, M2) ::f=.l.. For the second

part, we follow the algorithm step by step and construct a derivation

of r f- M1 <d M2 : Type. 0

Theorem 4.3.2 (Completeness) For any judgement

r f- M1 <d M2 :Type E eM, there is ad' such that Alg(f, M1, M2) = d'

and r f- d = d' : (1111)M2·

Proof. By induction on derivations and Lemma 4.1.2, 4.1.3 and 4.1.4.

0

4.3.3. Decidability of the Coercion Search in T[R]o

Theorem 4.3.3 If the coercion search is decidable in e, so is in eM,
i.e. it is decidable whether there is a judgement r f- M1 <d M2 : Type

E eM for arbitrary r' Ml and M2.

Proof. By Theorem 4.3.1 and Theorem 4.3.2. 0

4.4. Subtyping rules for ST-form

In the section 4.1 and 4.2, we have proved the coherence and admis­

sibility of the transitivity rule for the subtyping rules of IT-types and

~-types. The question now is: do we have suitable subtyping rules for

other parameterised inductive types, the system extended by which also

keeps the good properties, such as coherence and admissibility of the

transitivity rule (Trans)? The answer is yes. In this section, we shall

CHAPTER 4. COHERENCE AND TRANSITIVITY 70

give two more examples to demonstrate how coercions are defined in

the subtyping rules for those parameterised inductive types generated

by ST-form.

r f-- A <CJ A' : Type r f-- B <c2 B' : Type r f-- C <c3 C' : Type

r f-- Trio(A, B, C) <d1 Trio(A', B', C') :Type

where

d1 [z: Trio(A, B, C)]trio(A', B', C', cl(7rrriol(A, B, C, z)),

c2(7rrrio2(A, B, C, z)), c3(1fTrio3(A, B, C, z)))

r f-- A <CJ A' : Type r f-- B = B' : Type r f-- C = C' : Type

r f-- Trio(A, B, C) <d2 Trio(A', B', C') :Type

where the definition of d2 is similar to that of d1 , just replacing c2

and c3 with identity functions. We shall omit the definitions of the
coercions in the following rules.

r f-- A = A' : Type r f-- B <c2 B' : Type r f-- C = C' : Type

r f-- Trio(A, B, C) <d3 Trio(A', B', C') :Type

r f-- A = A' : Type r f-- B = B' : Type r f-- C <c3 C' : Type

r f-- Trio(A, B, C) <d4 Trio(A', B', C') :Type

r f-- A <CJ A' : Type r f-- B <c2 B' : Type r f-- C = C' : Type

r f-- Trio(A, B, C) <ds Trio(A', B', C') :Type

r f-- A <c1 A' : Type r f-- B = B' : Type r f-- C <c3 C' : Type

r f-- Trio(A, B, C) <d6 Trio(A', B', C') :Type

r f-- A = A' : Type r f-- B <c2 B' : Type r f-- C <c3 C' : Type

r f-- Trio(A, B, C) <d7 Trio(A', B', C') :Type

FIGURE 4.4.1. Subtyping rules for non-dependent trio

Example 4.4.1 On page 39, we defined the projection operators (7rrriol,

1fTrio2 and 1frrio3) for- the type of non-dependent tr-io (Tr-io). Now we

use these pr-ojection opemtor-s to define coer-cions for- the sv.btyping r-ules

CHAPTER 4. COHERENCE AND TRANSITIVITY 71

as in Figure 4.4.1. As we proved for IT-types and L.-types, the coherence

holds and the normal transitivity rule is admissible if we add the sub­

typing rules for Trio-types into the system T[R.] 0 . We omit the proof

here.

Remark 4.4.2 One may choose inductively defined coercions, for ex­

ample, re-define d1 as

d~ =df t'rrio(A, B, C, [z: Trio(A, B, C)]Trio(A', B', C'),

[a: A][b: B][c: C]trio(A', B', C', c1(a), c2(b), c3(c)))

However, the transitivity rule (Trans) fails to be admissible and the

reason is the same as that for IT-types and L.-types in Example 3.5.2

and 3.5.3.

Notation 4.4.3 We shall write r f-- A ::;c B : Type to indicate that

both r f-- A <c B : Type and r f-- A _.:.._ B : Type may happen.

Iff f--A= B: Type then c =idA =df [x: A]x.

Note that r f-- A ::;c B : Type itself is not a judgement.

With the above notation, we can simply use the following form to

represent all seven rules in Figure 4.4.1.

f f-- A ::;Cj A' : Type f f-- B ::;c2 B' : Type r f-- C ::;c3 C' : Type

r f-- Trio(A, B, C) <drrio Trio(A', B', C') :Type

where ci (i = 1, 2, 3) is a coercion or an identity function, and at least

one ci is a coercion, and

drrio = [z: NT(A, B, C)]trio(A', B', C', cl(Krriol(A, B, C, z)),

c2(1rTrio2(A, B, C, z)), cg(7l'Trio3(A, B, C, z)))

satisfying the following equation:

drrio(trio(A, B, C, a, b, c)) =trio(A', B', C', c1 (a), c2(b), c3 (c))

Example 4.4.4 On page 40, we defined the function operators {7rsPLl

and 7rsPL2) for- the type of pair-s in which the fir-st component are func­

tions and the second are objects of a type. Now we use these function

operators to define coercions for the subtyping rules as follows.

f f-- A' ::;CJ A : Type f f-- B ::;c2 B' : Type r f-- C ::;c3 C' : Type

r f-- SP L(A, B, C) <dsp£. SP L(A', B', C') :Type

CHAPTER 4. COHERENCE AND TRANSITIVITY 72

where ci (i = 1, 2, 3) is a coercion or an identity function, and at least

one ci is a coercion, and

dsPL = [z: SPL(A,B,C)]spl(A',B',C',

[x: A']c2(7rsp£I(A, B, C, z, c1(x))), c3(1rSPL2(A, B, C, z,)))

satisfying the following equation:

dsPL(spl(A, B, C, g, c))= spl(A', B', C', c2 o go c1, c3(c))

Remark 4.4.5 From these examples, we may see that the function

operators play a very important role in the definitions of coercions. The

transitivity rule is admissible for the subtyping rules in these examples,

and the proof method is the same as that in section 4.2.

In general, we have the following conjecture:

• For the parameterised inductive types generated by ST-form, which

have only one constructor, if the coercions of the su btyping rules are

defined by using their function operators, then the coherence of the

system T[R]o holds and the normal transitivity rule is admissible.

Although it is complex to give a general form of subtyping rules for

parameterised inductive types generated by ST-form, we can clearly

see why the normal transitivity rule is admissible. If a coercion d is

defined by using function operators then for a variable x, we can

compute d(x) to a canonical object. For example,

drrio(x) = trio(A', B', C', c1(1rTriol (A, B, C, x)),

c2(7rTrio2(A, B, C, x)), c3(7rrrio3(A, B, C, x)))

Because of this property, the normal transitivity rule is admissible.

Contrarily, if dis defined inductively, d(x) cannot be computed further

if x is a variable. This is also the reason why the normal transitivity

rule is not admissible.

CHAPTER 5

Weak Transitivity

In this chapter, we study the notion of Weak Transitivity, consider

suitable subtyping rules for certain parameterised inductive types and

prove its coherence and the admissibility of substitution and weak tran­

sitivity.

In Chapter 4, we studied the property of the subtyping rules for

IT-types and I:-types. A common factor of these two data types is that

they have only one constructor and some special function operators over

them can be defined, n1 and n2 for I:-types and app for IT-types. We

don't have to define the coercions inductively and instead, define them

by using the special function operators. Hence the normal transitivity

rule (Trans) is admissible.

Now, a question is: is the transitivity rule still admissible for those

inductive types that consist of more than one constructor? We will

give an example1 in the following section to answer this question.

5.1. A problem with transitivity

The normal transitivity rule

r f- A <c B : Type r f- B <c' C : Type
(Trans) r f-A <c'oc C: Type

as presented in Chapter 3 basically says that the composition of two

coercions is also the coercion corresponding to transitivity.

However, the above transitivity rule is sometimes too strong (in in­

tensional type theories). For some parameterised inductive data types

together with their natural subtyping rules, especially when an induc­

tive type has more than one constructor, the above rule fails to be

admissible or eliminatable. We give the following example to show the

problem.

1There are three key examples in this chapter. Understanding these examples is a
good way to understand this chapter concerning weak transitivity.

73

CHAPTER 5. WEAK TRANSITIVITY 74

Example 5.1.1 This is the first key example to show the problem with

transitivity. If we introduce the subtyping rule for lists then the transi­

tivity rule (Trans) fails to be admissible and, if we add Trans into the

system, the coherence requirement fails to be satisfied.

We introduce the following subtyping rule for the inductive data type

of lists List(A) parameterised by its element type A.

r f-- A <c B : Type

f f-- List(A) <dList List(B) : Type

where dList = mapList(A, B, c) (the detailed definitions of List and

mapList is on page 32) such that

dList(nil(A)) = nil(B)

dList(cons(A, a, l)) = cons(B, c(a), dList(l))

Then the transitivity rule (Trans) fails to be admissible and, if we add

it into the system, the coherence requirement fails to be satisfied.

To see this, suppose we have r f-- F <q E : Type and

r f-- E <c2 N : Type, and by the transitivity rule (Trans), we also have

r f-- F <c2oC1 N : Type.

By the above subtyping rule for lists, we have respectively

where

r f-- List(F) <d1 List(E) : Type

r f-- List(E) <d2 List(N) : Type

r f-- List(F) <d3 List(N) : Type

d1 mapList(F, E, c1)

d2 mapList(E, N, c2)

d3 mapList(F, N, c2 o cl)

By the transitivity rule (Trans), we also have

r f-- List(F) <d2 ad1 List(N) : Type

Now, the problem is that, in an intensional type theory, d3 and d2 o d1

are not computationally equal i.e.

r l;f d3 = d2 o d1 : (List(F))List(N)

CHAPTER 5. WEAK TRANSITIVITY 75

This means that we have two coercions (d3 and d2 o d1) between List(F)

and List (N), but they are not computationally equal (and hence coher­

ence fails), although we know that they are propositionally equal in the

sense that the following proposition is provable in an intensional type

theory:

Vl: List(F).Eq(List(N), d3 (l), d2 (d1 (l)))

5.2. Weak transitivity

Rather than the (strong) transitivity rule (Trans), we introduce a

new concept, Weak Transitivity, which can informally be represented

by the following rule:

(WTrans)
r f- A <c B : Type r f- B <c' C : Type

r f- A <c" C : Type

This rule says that, if A <c B and B <c' C, then A <c" C for some

coercion c". The essential difference compared with the (strong) tran­

sitivity rule (Trans) is that we are only more concerned about the

existence of c" and such weak transitivity should be better suited to a

wider application; that is, many natural subtyping rules (for example,

the subtyping rule for lists) are suitable for weak transitivity (WTrans)

but not for the (strong) transitivity rule (Trans).

5.2.1. Meta-level equality requirement

We don't want the coercion c" in the weak transitivity rule (WTrans)

to be an arbitrary one. Otherwise, this coercion could be very bizarre

and lose the general meaning. In the strong transitivity rule (Trans),

c" is the composition of c' and c (c' o c). In the weak transitivity rule

(WTrans), we require that c" must somehow be equal to c' o c. There

are two choices: one is propositional equality in the sense that the

proposition Vx : A.Eq(C, c"(x), c'(c(x))) is provable in an intensional

type theory; another is extensional equality in the sense that c" and c' oc

are judgementally equal in an extensional type theory. Of course, if the

proposition Vx : A.Eq(C, c"(x), c'(c(x))) is provable in an intensional

type theory, c" and c' o care judgementally equal in an extensional type

theory. However, for some inductive data types with their subtyping

rules, c" and c' o c are not propositionally equal. We give the following

example to explain why we regard the extensional equality of c" and

CHAPTER 5. WEAK TRANSITIVITY 76

c' o c in the weak transitivity rule (WTrans) as a meta-level equality

requirement.

Example 5.2.1 This is the second key example concerning the meta­

level equality requirement. Consider the following derivations regarding

the subtype relation between function types (A --+ B) parameterised by

type A and B. These derivations basically say that if B is a subtype

of B' then A --+ B is subtype of A --+ B'. (The constructor, eliminator

and computation rule for the function types (--+) can be found on page

33}
r 1- B <c1 B' : Type

r 1- A --+ B <d1 A --+ B' : Type

r 1- B' <c2 B" : Type

r 1- A --+ B' <d2 A --+ B" : Type

r 1- B <c3 B" : Type

r 1- A --+ B <d3 A --+ B" : Type

where d1, d2 and d3 satisfy the following equations:

d1 (lam(A, B, g))= lam(A, B', [x: A]c1 (g(x)))

d2 (lam(A, B', h))= lam(A, B", [x: A]c2 (h(x)))

d3 (lam(A, B, g)) = lam(A, B", [x: A]c3 (g(x)))

Then we have

d2 (d 1 (lam(A, B, g)))= lam(A, B", [x: A]c2 (c1(g(x))))

Now, let's compare d3 and d2 o d1 and, the terms in the right hand

side lam(A, B", [x : A]c3 (g(x))) and lam(A, B", [x : A]c2 (c1 (g(x)))).
Even if we assume that c3 and c2 o c1 are propositionally equal i.e. we

have a proof ofVx : A.Eq(B", c3 (x), c2 (c1 (x))), it is impossible to prove

that lam(A, B", [x: A]c3 (g(x))) and lam(A, B", [x: A]c2 (c1 (g(x)))) are

equal. Hence it is impossible to prove the proposition

Vf: A--+ B.Eq(A--+ B", d3 (j), d2(d1 (j))), i.e. d3 and d2 o d1 are not

propositionally equal.

Remark 5.2.2 It is worth remarking that, in the above example, if we

consider extensional equality and assume that c3 is extensionally equal

to c2 o c1 , then d3 and d2 o d1 are extensionally equal.

CHAPTER 5. WEAK TRANSITIVITY 77

5.2.2. Coercion dependency

Through my investigation, I also found out that weak transitivity

does not hold for all combinations of the subtyping rules for parame­

terised inductive types. For example, it's admissibility fails for subtyp­

ing rules of L.:-types. There are three subtyping rules for L.:-types as in

Figure 3.5.2. We list two of them here; one is

r f-A <c A' :Type r, x: A f- B(x) <e[x] B'(c(x)) :Type

r f- L.:(A, B) <d L.:(A', B') : Type

and another is

r f-A <c A' :Type r, X: A f- B(x) = B'(c(x)) :Type

r f- L.:(A, B) <d L.:(A', B') :Type

which is equivalent to the First-Component rule in Figure 3.5.2. From

the above two rules, we can see that the coercion c in the first premise

occurs in the second premise. We call this Coercion Dependency.

The weak transitivity cannot be proved. For instance, in order to

prove that L.:(A1, B1) < L.:(A2, B2) and L.:(A2, B2) < L.:(A3, B3) imply

I:(A1, BI) < L.:(A3, B3) (coercions and some other details are omitted

here), we would proceed by induction on derivations. One of the cases

is that the last steps of the derivations of I:(A1, B1) < I:(A2, B2) and

I:(A2, B2) < L.:(A3, B 3) use the second rule above:

and

A1 <c1 A2 x: A1 f- B1(x) = B2(c1(x))

L.:(A1, BI) < L.:(A2, B2)

A2 <c2 A3 y: A2 f- B2(y) = B3(c2(y))

L.:(A2, B2) < L.:(A3, B3)
By induction hypothesis, A1 <q A3 is derivable for some c3, but c3 is

not (necessarily) computationally equal to c2 o c1.

Since x: A1 f- c1(x): A2 andy: A2 f- B2(y) = B3(c2(y))

we have x: A1 f- B2(c1(x)) = B3 (c2(c1(x))) and hence

x: A1 f- B 1 (x) = B3 (c2(c1(x))) is derivable.

However, x: A1 f- B 1(x) = B3 (c3 (x)) is not necessarily derivable and

how to derive L.:(A1, BI) < I:(A3 , B 3) becomes a problem of the proof.

In fact, the following counter example shows that weak transitivity

fails when we combine the subtyping rules for L.:-types and lists.

Example 5.2.3 This is the third key example regarding weak tmnsi­

tivity. If we combine the subtyping T'1J,les for lists and L.:-types then weak

CHAPTER 5. WEAK TRANSITIVITY 78

transitivity fails, i.e. even if M1 <e1 Jvh and M2 <e2 M 3 are derivable,

but M1 <e3 M 3 is not derivable for any e3 .

Assume that we have some type constants A 1 , A 2 , A 3 and a constant

B 3 of kind (List(A3))Type in an empty context.

A 1 Type

A 2 Type

A 3 Type

B3 (List(A3))Type

We also assume that we have the following three coercions in the

empty context. A WDC C is generated by these coercions and the con­

gruence rule (Gong).

f-- A2 <c2 A3 : Type

f-- A1 <c2 oc1 A3 : Type

By the subtyping rule for lists, we have:

1- List(A1) <d1 List(A2) : Type

1- List(A2) <d2 List(A3) : Type

1- List(A1) <d3 List(A3) :Type

where d1 , d2 and d3 aTe defined as the same as in Example 5.1.1. Nate

that 1- d3 =/:- d2 o d1 : (List(A1))List(A3) i.e. d3 and d2 o d1 aTe NOT

computationally equal.

Since B 3 o d2 : (List(A2))Type, by the First-Component Tule joT

~-types, we have:

1- ~(List(AI), B3 o d2 o d1) <e 1 ~(List(A2), B3 o d2) :Type

1- ~(List(A2), B3 o d2) <e2 ~(List(A3), B3) :Type

HeTe, we omit the definition of e1 and e2 .

Now, the question is: is the following judgement derivable for some

e3 because the above two aTe deTivable?

CHAPTER 5. WEAK TRANSITIVITY 79

The answer is NO. We prove the answer by contradiction. If it is

derivable, then the derivations must have the following form:

f-A <c A': Type f- B: (A')Type

f- E(A, B o c) <e4 E(A', B) :Type

... (Congruence rules) ...

f- E(List(AI), B3 o d2 o di) <e3 E(List(A3), B3) :Type

where f- E(List(AI), B 3od2odi) = E(A, Boc) and f- E(List(A3), B 3) =
E(A', B).

By the properties of Church-Rosser of the original type theory, we

have f- List(A1) =A, f- B 3od2od1 = Boc: (A)Type, f- List(A3) =A'

and f- B 3 = B : (A')Type. Since B 3 is a constant, the normal form

of B is B 3 . Hence f- c = d2 o d1 : (A)A' (computationally). Since

the coherence of the system can be proved by induction on derivations

as in Section 4.1, we have f- c = d3 : (A)A'. Therefore, we have

f- d3 = d2 o d1 : (A) A'. This is a contradiction. D

The fact that weak transitivity fails because of coercion dependency

leads us to consider the subtyping rules for some restricted forms of

schemata which disallow that a coercion in one premise occurs in an­

other premise.

5.3. Weak transitivity schemata

Now we give a definition of WT-schema. Consider parameterised

inductive types generated by the following form (under a valid context

r):

where P1 is a kind in r, P2 is a kind in r, Y1 : P1 and so on, and Pn

is a kind in r, yl : H, ... , Yn-l : Pn-1; 8 =< 81, ... , 8m > (m E w) is

a finite sequence of WT-schemata in r, Y1 : P 1 , ... , Yn: Pn with respect

to a placeholder X of Type. In order to define WT-schema, we first

define WT small kind and WT strictly positive operator.

CHAPTER 5. WEAK TRANSITIVITY 80

Notation 5.3.1 We shall write Y E FV(M) and Y tt FV(M) to

mean that 'some of the parameters occur free in M' and 'none of the

parameters occurs free in M ', respectively.

Definition 5.3.2 (WT small kind} A WT small kind K in r, with

respect to the parameters Yi, ... , Yn, is one of the following form:

1. K El(A),

2. K (y : KI)K2 where

(a) if y tt FV(K2) then K 1 and K 2 are WT small kinds in r.
(b) if y E FV (K 2) then none of the parameters occur free in K 1

(i.e. Y tt FV(K1)) and K 2 is a WT small kind in f,y: K 1 .

Definition 5.3.3 (WT strictly positive operator) A WT strictly

positive operator in r, with respect to the placeholder X of Type and

the parameters Y1, ... , Yn, is of one of the following forms:

1. <I> X, or

2. <I> - (x : K)<I>0 , where K is a WT small kind in r and <I> 0 is a WT

strictly positive operator in r, x: K; and if x E FV(<I>0) then none

of the parameters occur free in K i.e. Y tt FV (K).

Definition 5.3.4 (WT-schema} A WT-schema 8 in r, with respect

to the placeholder X of Type and the parameters Y1 , ... , Yn, is of one

of the following forms:

1. 8 =X, or

2. 8 = (x : K)80 , where K is a WT small kind in rand 8 0 is a WT­

schema in r, x : K; and if x E FV (8 0) then none of the parameters

occurs free in K i.e. Y tt FV (K).

3. 8 _ (x : <I>)80 , where x tt FV(80), <I> is a WT strictly positive

operator in r and 8 0 is an WT-schema in r.

Remark 5.3.5 We have the following property for a WT-schema 8.

If (x : MI)M2 is a subterm of 8 and x occurs free in M 2 , then M 1

does not contain any of the parameters.

The above notion of WT-schema covers a large class of parameterised

inductive data types such as lists, (non-dependent) function types, bi­

nary trees in Example 2.3.7. We give two examples here, Maybe and

Either types, which are frequently found in functional programming

languages such as Haskell [Tho99].

CHAPTER 5. WEAK TRANSITIVITY 81

Example 5.3.6 With the general methods given in Section 2. 3, con­

stants and computation rules for NI aybe and Eithe-r-types are declared

as follows.

1. Maybe types: Maybe =df [A : Type]M[X, (A)X]
Declare the following constants:

Maybe

nothing

just

C!vfaybe

(A : Type)Type

(A: Type)Maybe(A)

(A: Type)(A)Maybe(A)

(A: Type)(C: (Maybe(A))Type)

(C(nothing(A)))((a: A)C(just(A, a)))

(z: Maybe(A))C(z)

and assert the following computation rules:

eMaybe(A, C, c, f, nothing(A)) - c: C(nothing(A))

eMaybe(A, C, c, f, just(A, a)) - f(a) : C(just(A, a))

2. Disjoint union: Either =df [A: Type][B: Type]M[(A)X, (B)X]

Declare the following constants:

Either

left

right

[Either

(A: Type)(B: Type)Type

(A: Type)(B: Type)(A)Either(A, B)

(A: Type)(B: Type)(B)Either(A, B)

(A: Type)(B: Type)

(C: (Either(A, B))Type)

((a: A)C(left(A, B, a)))

((b: B)C(right(A, B, b)))

(z: Either(A, B))C(z)

and assert the following computation rules:

eEither(A, B, C, JI, f2, left(A, B, a))

= f1(a): C(left(A, B, a))

eEither(A, B, C, JI, h, right(A, B, b))

= h(b) : C(right(A, B, b))

CHAPTER 5. WEAK TRANSITIVITY 82

Remark 5.3. 7 WT-schema excludes those parameterised inductive data

types such as 2:,-types and IT-types because their subtyping rules have co­

ercion dependency.

5.4. General subtyping rules for WT-schemata

In this section, we consider how to define subtyping rules and the

associated coercions for any parameterised types generated by the form:

where 8 < 8 1 , ... , 8m >(mEw) is a finite sequence ofWT-schemata

defined in last section.

Before we give a general form of subtyping rules we give the follow­

ing examples to demonstrate what the subtyping rules and associated

coerciOns are.

Example 5.4.1 In this example, we give subtyping rules and associ­

ated coercions for lists, Maybe types, binary trees, Either types and

Function types. Their constructors, eliminators and computation rules

can be found in Example 2. 3. 7 and Example 5. 3. 6.

1. As given in Section 5.1, the subtyping rule for lists is:

r f- A <c B : Type

f f- List(A) <dList List(B) : Type

where

dList =df map(A, B, c)

=df EList(A, [l : List(A)]List(B), nil(B),

[a : AJ[l : List(A)J[l' : List(B)Jcons(B, c(a), l'))

such that

dList(nil(A))

dList(cons(A, a, l))

2. Subtyping rule for 1\t! aybe types:

nil(B)

cons(B, c(a), dList(l))

r f- A <c B : Type

r f- NI aybe(A) <dMaybe M aybe(B) :Type

where

CHAPTER 5. WEAK TRANSITIVITY

dMaybe =df EMaybe(A, [z : M aybe(A)]M aybe(B),

nothing(B), [a: A]just(B, c(a)))

such that

dMaybe(nothing(A))

dMaybe(just(A, a))

nothing(B)

just(B, c(a))

3. Subtyping rule for Binary trees:

r f-- A <c B : Type

r f-- BTree(A) <dBTree BTree(B) :Type

where

dBTree =df £BTree(A, [z : BTree(A)]BTree(B),

empty(B), [a: A][t1 : BTree(A)][t~ : BTree(B)]

[t2 : BTree(A)][t; : BTree(B)]mk(B, c(a), t~, t;))

such that

dnrree(empty(A))

dBTree(mk(A, a, t1, tz))

empty(B)

mk(B, c(a), dnrree(h), dnrree(tz))

4. Subtyping rules for Either types:

where

r f--A <q A' : Type r f-- B = B' :Type

r f-- Either(A, B) <dEitherl Either(A', B') :Type

r f-- A = A' : Type r f-- B <c2 B' : Type

f f-- Either(A, B) <dEither2 Either(A', B') : Type
r f-- A <C] A' : Type r f-- B <c2 B' : Type

r f-- Either(A, B) <dEither3 Either(A', B') : Type

dEither3 =df £Either(A, B, [z: Either(A, B)]Either(A', B'),

[a: A]left(A', B', c1 (a)), [b: B]right(A', B', c2 (b)))

such that

dEither3(left(A, B, a))

dEither3(right(A, B, b))

left(A', B', c1(a))

right(A', B', c2 (b))

83

CHAPTER 5. WEAK TRANSITIVITY

The definitions of dEitherl and dEither2 are similar to dEither3.

5. Subtyping rules for function types:

where

r f- A' <Cj A : Type r f- B = B' : Type

r f-A --1- B <d(....,)J A' --1- B' : Type

r f-A= A': Type r f- B <c2 B': Type

f f-A --1- B <d<_,)2 A' --1- B' :Type

r f- A' <Cj A : Type r f- B <c2 B' : Type

r f- A --1- B <d<_,) 3 A' --1- B' : Type

d(-+)3 =df £(-+)(A, B, [z: A --1- B](A' --1- B'),

[g: (A)B]lam(A', B', c2 o go c1))

such that

d(-+)3(lam(A, B, g)) =lam(A', B', c2 o go ct)

84

The definitions of d(-+)l and d(-+)2 are similar to d(-+)3. D

From these examples, we can see that some of the parameters are

covariant while some are contravariant. Formal definitions of covari­

ance and contravariance are given as follows.

Definition 5.4.2 (Covariance and Contravariance) Let A be a

type, K a WT small kind, <I> a WT strictly positive operator, 8 a WT­

schema and 8 a finite sequence of inductive WT-schemata.

• Kc (A) and Kct (A) are to verify whether A is covariant or con­

travariant inK. Kc(A) =True means that A is covariant inK,

and Kct (A) = True means that A is contravariant in K.

1. If K = El(B) and

(a) if A"¥:- B then

Kc(A) =True Kct(A) =True

(b) if A = B then

Kc(A) =True Kct(A) =False

2. If K = (x : Kt)K2 then

Kft(A) 1\ KHA)

Kf(A) 1\ K~t(A)

CHAPTER 5. WEAK TRANSITIVITY 85

where 1\ is the common logical operator 'and'.

Gl <I>c(A) and <I>ct(A) are to verify whether A is covariant or con­

travariant in <I>. <I>c(A) = True means that A is covariant in <I>,

and <I>ct(A) =True means that A is contravariant in <I>.

1. If <I> = X then

<I>c(A) =True <I>ct(A) =True

2. If <I> = (x : K)<I> 0 then

Kc(A) 1\ <I>~(A)

Kct(A) 1\ <I>~t(A)

® ec(A) and ect(A) are to verify whether A is covariant or con­

travariant in e. ec(A) = True means that A is covariant in 8,
and ect(A) =True means that A is contravariant in 8.

1. Ife =X then

ec(A) =True ect(A) =True

2. If e = (x: K)eo then

ec(A)

ect(A)

3. Ife = (<I>)eo then

ec(A)

ect(A)

Kc(A) 1\ 8~(A)

Kct(A) 1\ e~t(A)

<I>ct(A) 1\ 8~(A)

<I>c(A) 1\ e~t(A)

e ec(A) and ec\A) are to verify whether Type A is covariant or

contravariant in e. ec(A) = True means that A is covariant in
- -ct -e, and 8 (A) =True means that A is contr·avariant in e.

8~(A) 1\ ... 1\ 8~JA)

e~t(A) A ... A e~(A)

We say a type A in 8 is covariant if 8c(A) = Tnte and ect(A) =

False; and we say a type A in e is contravariant if ect(A) =True

and ec(A) =False. 0

CHAPTER 5. WEAK TRANSITIVITY 86

Now, we give a general definition of subtyping rules and its associ­

ated coercions. The general form of subtyping rules for Tis

premzses
(vVT RuleF arm)

f f- T(A) <d7 T(B) :Type

where A= A1 , ... ,An and B = B1 , ... , Bn are fresh and distinct schematic

letters. Intuitively, we associate T with subtyping rules whose conclu­

sion is of the form r f- T(A) <h T(B) : Type. The coercion d7

is defined by induction on T(A) and maps the canonical objects of

T(A) to the corresponding canonical objects of T(B). For example,

dList = mapList(A, B, c) in the subtyping rule for lists.

In order to find out the premises, we first give a notational defini­

tion, premise set, as follows.

Notation 5.4.3 We shall often write D[A] for [AI/Y1 , ... , An/Yn]D.

Definition 5.4.4 (premise set)

• For any small kind K in r, we define premr(K) as follows:

1. K _ El(D)

(a) if Y tf_ FV(D) then premr(K) = 0
(b) ifY E FV(D) thenpremr(K) = {(f,D[A],D[B])}

2. K - (y: K1)K2

(a) ify tf_ FV(K2) thenpremr(K) = premr(K1)Upremr(K2),

where

premr(KI) =dt {(r, B, A) I (r, A, B) E premr(KI)}

(b) if y E FV(K2) then premr(K) = premr,y:K1 (K2). Note

that in this case, if K is in a WT-schema, Y tf_ FV(KI).

• For any WT-schema 8 in r, we define premr(8) as follows:

1. 8 =X, then premr(8) = 0
2. 8 = (x : K)80

(a) if x tf_ FV(80) then premr(8) = premr(K)Upremr(80)

(b) if x E FV(8o) then premr(8) = premr,x:K(80). Note

that in this case, since 8 is in a WT-schema, Y tf_

FV(K).

3. 8 = (x: <I>)8o, then premr(8) = premr(<I>) U premr(8o)

CHAPTER 5. WEAK TRANSITIVITY 87

® For any sequence of WT-schemata in r, 8 -< 8 1 , ... , 8m >, we

define

Now, suppose there are v elements premr(8) and we give an order

to the elements:

(f1, C1, D1), ... , (fv, Cv, Dv)

Then the sequence of the premises in the form WT RuleForm is:

where c1 , ... , Cv are fresh and distinct schematic letters.

Having defined the general forms of the premises, we now define

a general form of the coercion dr. We first introduce the following

notational definitions.

Definition 5.4.5 For small kinds K1 and K2, Func[K1, K2] is defined

as follows.

• K 1 _ El(C) and K2 _ El(D)

1. If r f- C :s;c D : Type is in the sequence of premises, then

Func[K1, K2] =c.

2. If C D, then Func[K1, K2] =ide= [x: K 1]x.
3. Otherwise, Func[K1, K 2] is undefined.

• K1 = (y: Ku)KI2 and K2 (y: K2I)K22· If both Func[K21, Ku]
and Func[K12 , K 22] are defined and let

k1 Func[K21, Ku]

k2 Func[K12, Kd

then

Func[K1,K2] = [g: Kl][y: K21]k2(g(k1(y)))

• Otherwise, Func[K1, K2] is undefined.

Remark 5.4.6 In general, when c in the form r f- C :s;c D : Type is

of kind (C)D, Func[K1 , K2] is of kind (KI)K2 if it is definable.

Notation 5.4.7 Let Y1 , ... , Yn be the parameters and \J! either a WT

strictly positive operator or a WT-schema. We shall write \J![A] for

[AI/Y1, ... , An/Yn]w, \J![B] for [BI/Yi, ... , Bn/Yn]\J!, and \J![B][T(B)]
for [BI/Yi, ... , Bn/~1 , T(B)/ X]\J!.

CHAPTER 5. WEAK TRANSITIVITY 88

Definition 5.4.8 Let ci> be WT strictly positive operator) 8 a WT­

schema.

0 for any f : ci>[A][T(B)], define <I>k(J) of kind ci>[B][T(B)] as follows:

1. if ci> X' then <I>~ (f) = f

2. if ci> (x : K)<I>o then

ci>k(f) = [x: K[B]]<I>~(f(Func[K[B], K[A]](x)))

e~ for any g: 8[B][T(B)], define e>-(g) as follows :

1. if 8- X then e>-(g) = g
2. if 8 (x : K)80 then

e>-(g) = [x: K[A]]8~(g(Func[K[A], K[B]](x)))

3. if8 (x: 1>)80 then

e>-(g) = [x: <I>[A][T(A)]][x' : <I>[A][T(B)]]

e~ (g (<I>k [x']))

0

Then, using the above notational definitions, we define the coercion

d7 in the form WT RuleF arm.

dT =df ET(A, C, 8~(h(B)), ... , 8~(lm(B)))

where C = [z : T(A)]T(B) and, lj (j = 1, ... , m) and £7 are the

introduction operators and the elimination operator ofT, respectively

(see Section 2.3 for details).

Now, we are ready to specify the subtyping rules from the form

WT RuleForm. Let the sequence of the premises be:

Then we will generate 2v - 1 subtyping rules for the parameterised

inductive data types, each of which has v premises. The premises for

each rule are obtained by changing ::;c; into either = or <c;. Different

combinations give different sequences of premises, and hence different

rules, except that there must be at least one premise that has the form

r f- C <c D : Type. For example, without losing generality, if ::;c; in

the first r premises are changed into =, and the left into <c;, then a

CHAPTER 5. WEAK TRANSITIVITY 89

subtyping rule will be

f1 f-- C1 = D1 :Type, ... , fr f-- Cr =Dr :Type

rr+l f-- Cr+l :Scr+l Dr+I: Type, ... , fv f-- Cv :Scv Dv: Type

r f-- T(A) <e T(B) :Type

where e [idc)ci, ... , idcr/cr]dT.

Remark 5.4.9 Some types in WT-schemata are neither covariant nor

contravariant. This causes that some rules may have contradictory

premises. For example, for the inductive type T(Y) =df M[((Y)Y)X]
parameterised by type variable Y, let 8 = ((Y)Y)X, we have

ec(Y) =False and ect(Y) =False. One of the subtyping rules is

r f-- A <q B : Type r f-- B <c2 A : Type

r f-- T(A) <dr T(B) :Type

Since the premises in such rules are contradictory (and never satis­

fied), they can never be applied. So, we assume that all the types that

contain parameters in WT-schemata used later are either covariant or

contravariant.

Justification of the coercion dT

The coercion dT as defined in the form WT RuleForm sends the

canonical objects of T(A) to the corresponding canonical objects in

T(B). For example, the coercion dList in the subtyping rule for List

satisfies that

dList(nil(A))

dList(cons(A, a, l))

nil(B)

cons(B, c(a), dList(l))

In the following lemma, we prove this is in general the case. We first

give a definition of eu(A, B).

Definition 5.4.10 Let 8 be a WT-schema and assume that 8 be of the

form (xl : MI) ... (Xt : Mt)X and XI, ... , Xt are fresh variables. eu(A, B)

is a sequence of arguments:

1. if 8 =X then eu(A, B) =< >
2. if 8 - (xr : K)80 (r = 1, ... , t), then

eu(A, B) =< Func[K[A], K[B]] (xr), 8~(A, B) >

CHAPTER 5. WEAK TRANSITIVITY 90

3. if 8 = (xr : 1>)8o (r = 1, ... , t) then

8u(A, B) =< <I>k[(<I>[A])Q[dT, Xr]J, 8~(A, B) >

Lemma 5.4.11 dT(lj(A, 8j)) = lj(B, 8j(A, B)), where 8j as defined

in Section 2. 3.

Proof. By the definition of dT and the computation rules for T, we

have

dT(lj(A, 8j))

ET(A, C, 8~(l1 (B)), ... , 8~(lm(B)), lj(A, 8j))

8](lj (B)) ((8j [A])U)

We need to prove only that

>. - - ~ - u--
8j (lj(B))((8j[A])) = lj(B, 8j (A, B))

Note that lj(B) : 8j[B][T(B)] where

8j[B][T(B)] =df [BdY1, ... , Bn/Yn, T(B)/ X]8j

Now, we generalise the problem; prove that for any WT-schema 8 and

g: 8[B][T(B)], we have

8>-(g)((8[A])~) = g(8u(A, B))

Assume that 8 be of the form (x1 : 1\!I1) ... (xt : Mt)X and x1 , ... , Xt are

fresh variables. Do induction on the structures of WT-schema.

1. If 8 = X then by the definition of 8>., 8U and 8u we have

8>-(g) - g

(8[A])~ - <>

8u(A, B) - <>

Obviously, 8>-(g)((8[A])ct) = g(8u(A, B))= g.

2. If 8 = (xr : K)8o (r = 1, ... , t), then

8>-(g) - [xr: K[A]]8~(g(K;(xr)))

(8[A])U - < Xr, (8o[A])ct >

8u(A, B) - < K;(Xr), 8~(A, B) >

CHAPTER 5. WEAK TRANSITIVITY 91

where /'\, = Func[K[A], K[B]]

So, 8"(g)((8[A])~) = 8G(g(/'\,(xr)))((8o[A])~).

Since g(K,(Xr)): [K,(Xr)/xr]8o[B][T(B)], by the induction hypothe­

sis, we have 8G(g(K,(Xr)))((8o[A])~) = g(K,(Xr), 8 0(A, B)).
Therefore, 8"(g)((8[A])~) = g(8u(A, B)).

3. if 8 (xr : <I>)8o (r = 1, ... , t), then

e"(g) - [xr : <I>[A][T(A)]][x' : <I>[A][T(B)]]

e~ (g (<I>k (x')))

(8[A])~ - < Xr, (<I>[A])Q[dr, Xr], (8o[A])~ >

eu(A, B) - < <I>k((<I>[A])Q[dr, Xr]), 8 0(A, B) >

So,

e" (g)((8[A])~) = e~(g(<I>k ((<I>[A])Q [dr' Xr]))) ((8o[A])~)

Lett= <I>k((<I>[A])Q[dr, Xr]). Then g(t) : [t/xr]8o[B][T(B)], by the

induction hypothesis, we have

8G(g(<I>k[A, B, (<I>[A])Q[dr, x]]))((8o[A])~)

= g(<I>k[A, B, (<I>[A])Q[d7 , x]], 8 0(A, B))

Therefore, 8"(g)((8[A])~) = g(8u(A, B)).

D

Now, let's consider another property of the definition of the coer­

cion dr in the rule WT RuleForm. It satisfies the extensional equal­

ity requirement, for example, mapList(A, C, g) and mapList(B, C, e) o

mapList(A, B, c) are extensionally equal if g and eo care extensionally

equal. The following lemma will show that this is in general the case.

Lemma 5.4.12 By the form WT RuleForm, suppose we have the fol-

lowing:
premzses1

r f-- T(A1, ... , An) <d1 T(B1, ... , En) :Type
premzses2

r f-- T(B1, ... , En) <d2 T(C1, ... , Cn) :Type
premzses3

CHAPTER 5. WEAK TRANSITIVITY 92

where d1 , d2 and d3 are defined according to the definition of dT in the

form WT RuleForm with respect to their premises respectively, and the

premises are described as follows:

1. If the i-th premise in the form WT RuleForm is covariant, i.e. it is

obtained from a covariant type D by substituting parameters, then

ri f- D[A] ~c; D[B] : Type is in premises1 ,

ri f- D[B] ~e; D[C] :Type is in premises2 and

ri f- D[A] ~g; D[C] : Type is in premises3 for some Ci, ei and gi;

and gi and ei o ci are extensionally equal.

2. If the i-th premise in the form WT RuleForm is contravariant,

i.e. it is obtained from a contravariant type D by substituting

parameters, then fi f- D[B] ~c; D[A] : Type is in premises1 ,

ri f- D[C] ~e; D[B] :Type is in premises2 and

ri f- D[C] ~g; D[A] : Type is in premises3 for some Ci, ei and gi;

and gi and ci o ei are extensionally equal.

Then, d3 and d2 o d1 are extensionally equal.

Proof. First, by induction on constructors of type T(A 1 , .•• ,An)·

For any canonical object lj(A, 8j) of type T(A), by Lemma 5.4.11,

we have

d2 (lj(B, 8j(A, B)))

lj(C, [8j(A, B)/8j]8j(B, C))

and

d3(lj(A, 8j)) = lj(C, 8j(A, C))

Now, we need to prove that lj(C, [8j(A, B)/8j]8j(B, C)) and

lj(C, 8j(A, C)) are extensionally equal. To prove this, we prove that

for any WT-schema 8, every element in [8u(A, B)j8v]eu(B, C) is ex­

tensionally equal to the corresponding element in eu(A, C).

Assume that e be of the form (xl : MI) ... (Xt : 111t)X and xl, ... , Xt

are fresh variables. Do induction on the structures of WT-schema.

1. If 8 = X then eu(A, B) = eu(B, C) = eu(A, C) =< >. Ob­

viously, every element in [8u(A, B)jev]eu(B, C) is extensionally

equal to the corresponding element in eu(A, C) because they are

empty sequences.

CHAPTER 5. WEAK TRANSITIVITY 93

2. If 8 = (xr : K)80 (r = 1, ... , t) and let r,;1 = Func[K[AJ, K[B]J,
r,;2 = Func[K[B], K[C]] and r,;3 = Func[K[A], K[C]], then

Therefore,

eu(A, B)

eu(B, C)

eu(A, C)

< Kl(xr), e~(A, B)>

< K2(xr), e~(B, C)>

< K3(xr), 8~(A, C) >

[eu(A, B)/8v]eu(B, C) =

< r,;2(r,;l(xr)), [80(A, B)/80]80(A, B)>

By the induction hypothesis of the structures of WT -schema, every

element in [80(A, B)/80]80(B, C) is extensionally equal to the

corresponding element in 8 0(A, C). If we can prove that r,;3 is

extensionally equal to r,;2 o r,;1 , then we know that every element in

[eu(A, B)/8v]eu(B, C) is extensionally equal to the corresponding

element in eu(A, C).

Now, let's prove that r,;3 is extensionally equal to r,;2or,; 1 by induction

on structures of WT small kind K.

(a) If K El(M) and

(i) if M doesn't contain any parameter i.e. Y rj. FV(M)

then K[A] = K[B] - K[C] - K and hence r,;1 = r,;2 =

r,;3 = idK = [x : K]x. So, r,;3 is extensionally equal to

K2 0 K1.

(ii) M contains any parameters i.e. Y E FV(M).

If ri f- M[A] :Sc; M[B] : Type is in premises1 ,

C f- M[B] :Se; M[C] : Type is in premises2 and

C f- M[A] :S9; M[C] :Type is in premises3 then

K1 = ci, K2 = ei and r,;3 = gi and by the assumption, r,;3

is extensionally equal to r,;2 o r,;1 .

If ri f- M[B] :Sc; M[A] : Type is in premises1 ,

ri f- M[C] :Se; M[B] :Type is in premises2 and

ri f- M[C] :S 9; M[A] : Type is in premises3 then

K1 = ei, K2 = ci and r,;3 = gi and by the assumption, r,;3

is extensionally equal to r,;2 o r,; 1 .

CHAPTER 5. WEAK TRANSITIVITY 94

(b) If I<- (y: KI)K2 then let 11;11 = Func[K1 [B], KI[A]],

11;12 = Func[KI[C], KI[B]], 11;13 = Func[K1[C], KI[A]], and

11;21 = Func[K2 [A], K2[B]], 11;22 = Func[K2 [B], K2[C]] and

11;23 = Func[K2 [A], K2[C]] and we have

11;1 [f: K[A]][y: KI[B]]/1;21(J(/1;11(Y)))

11;2 [g: K[B]][x: KI[C]]/1;22(9(11;12(x)))

11;3 [f: K[A]][x: Kl[C]]/1;23(!(11;13(x)))

Therefore, we have

By the induction hypothesis, we have that 11;23 is extensionally

equal to 11;22 o 11;21 and 11;13 is extensionally equal to 11;11 o 11;12 .

So, 11;3 is extensionally equal to 11;2 o 11;1.

3. If e (xr: <P)8o (r = 1, ... , t) then

eu(A, B)

eu(B, C)

eu(A, C)

< Xn 8~ >
k - q u--

< <I> ((<P[AJ) [d1,xr]),80 (A,B) >
k - q --

<<I> ((<P[B]) [d2, Xr]), e~(B, C) >

< <Pk((<P[A])q[d3, Xr]), e~(A, C) >

Therefore,

[eu(A, B)jev]eu(B, C) =

< <J>k((<P[B])q[d2, <J>k((<P[A])q[d1, Xr])]),

[80(A, B)/80]80(B, C) >

By the induction hypothesis of the structures of WT-schema, we

have that every element in [80(A, B)/80]80(B, C) is extensionally

equal to the corresponding element in 8 0(A, C). If we can prove

that

and

are extensionally equal, then we know that every element in

[eu(A, B)/8v]eu(B, C) is extensionally equal to the corresponding

element in eu(A, C).

CHAPTER 5. WEAK TRANSITIVITY 95

Now, let's prove that, for any x andy, if x andy are extensionally

equal, then

and

are extensionally equal, by induction on the structures of the WT

strictly positive operator.

(a) If <I> _X then we have

So,

and

(<I>[A])Q[d1, y] - d1(y)

(<I>[A])Q [d3, x] - d3 (x)

<I>k((<I>[B])Q[d2, <I>k((<I>[A])Q[d1, y])])

= d2(dl(y))

By the induction hypothesis of constructors of type T(A 1 , ... , An),

we have that d3(x) is extensionally equal to d2(d1(y)).

(b) if <I> (x: K)ci>0 then let 11:1 = Func[K[B], K[A]],

11:2 = Func[K[C], K[B]] and 11:3 = Func[K[C], K[A]], and we

have

So,

and

(ci>[A])Q[d1, y] - [a: K[A]](ci>0 [A])Q[d1, y(a)]

(<I>[A])Q[d3, x] - [a: K[A]](<I>0 [A]) 0[d3, x(a)]

cJ>k ((ci> [A l) Q [d3' X l)
= [z: K[C]]ci>~((ci>o[A]) 0 [d3, x(11:3(z))])

<I>k((<I>[B])U[d2, <I>k((<I>[A])U[dl, y])])

= cJ>k((ci>[BJ)U[d2, [b: K[B]]ci>~((ci>0 [A]) 0 [d1, y(11:1(b))])])

= <I>k([b: K[B]](<I>0 [B])0[d2, <I>~((ci>0 [A]) 0 [d1, y(11:1(b))])])

= [z: K[C]]ci>~((<I>o[B]) 0 [d2, <I>~((ci>o[A]) 0 [dl, y(11:1(11:2(z)))])])

As proved before, we have that 11:3 and 11:1 o 11:2 are extensionally

equal. So, x(11:3(z)) and y(11:1(11:2(z))) are extensionally equal.

Now, by the induction hypothesis of the structures of the WT

CHAPTER 5. WEAK TRANSITIVITY 96

strictly positive operator, we have that

and

are extensionally equal. Therefore, we have that

and

are extensionally equal.

So, for any canonical object l1(A, 8j) of type T(A), we have d3(l1(A, 8j))
and d2 (d1 (11 (A, 8j))) are extensionally equal. Therefore, d3 and d2 o d1

are extensionally equal. D

5.5. Coherence

In this section, we show that the coherence of subtyping rules holds

for the inductive types generated by WT -schemata. Some related prop­

erties are also proved.

Note that the set R of subtyping rules consists of the rule (W DCrule)

and the subtyping rules for parameterised inductive types generated

by WT-schemata and, the system T[R]o also includes the congru­

ence rule (Gong). Furthermore, we assume that for any judgement

r f- A <c B : Type E C, neither A nor B is computationally equal to

any 7j-type, where 7j is a type constructor such as List, Either and

Maybe, and Ti 1:- 7j if i =/= j (for example, Tl List, 72 Either

and T3 - Maybe). We also assume that the original type theory T

has good properties, in particular the Church-Rosser property and the

property of context replacement by equal kinds.

We also denote by eM the set of the derivable subtyping judgements

of the form r f- M <d A1' :Type in T[R]0 ; that is, r f- M <d M' :Type

E eM if and only if r f- M <d M' :Type is derivable in T[R]0 .

Lemma 5.5.1 If r f- M 1 <d M2 : Type E CM then both M 1 and lvf2

are computationally equal to 7j-type (i.e. the normal forms of M1 and

lvh have same type constructor) or r f- lvft <d M 2 : Type E e.

CHAPTER 5. WEAK TRANSITIVITY 97

Proof. By induction on derivations.

If the last rule is one of the 7j-subtyping rules, then we know that

both M1 and lvi2 are 7j-type.

Now, suppose that the last rule is the congruence rule, that is

r f-- M{ <d' M~ : Type

r f-- M1 = M{ :Type r f-- M2 = M~ :Type r f-- d = d': (M1)M2
r f-- M1 <d M2 : Type

By the induction hypothesis, both .!vi{ and M~ are computationally

equal to 7j-type orr f-- M{ <d' M~ : Type E C.

If both M{ and M~ are computationally equal to 7j-type, then both

M1 and M2 are computationally equal to 7j-type.

If r f-- M{ <d' M~ : Type E C, then r f-- M1 <d M2 E C since C is a

WDC. D

Theorem 5.5.2 Iff f-- M1 <d M2 :Type E CM then

r If M1 = M2: Type.

Proof. By induction on derivations. D

Lemma 5.5.3 (Context equality) If r f-- M1 <d M2 : Type E CM

and f-- f = f' then f' f-- M1 <d M2 :Type E CM·

Proof. By induction on derivations. D

Theorem 5.5.4 (Weakening) Iff f-- M1 <d M2 :Type E CM, r <:;;; f'

and f' is valid then f' f-- M1 <d M2 :Type E CM.

Proof. By induction on derivations.

Theorem 5.5.5 (Coherence) Iff f-- M1 <d M2 : Type E CM,

f f-- M{ <d' M~ :Type E CM, r f-- M1 = M{ :Type and

r f-- M2 = M~ :Type then r f-- d = d' : (MI)M2.

Proof. By induction on derivations.

By Lemma 5.5.1, we need to consider only two cases:

• f f-- M1 <d M2 E C.

D

Since r f-- M1 = M{, r f-- M2 = M~ and C is a vVDC, we have

r f- M{ <d' .!vi~ E C. Therefore, r f-- d = d' by Lemma 3.4.2.

• Both M1 and M2 are computationally equal to 7j-type.

Since r f- M1 = M{ and r f-- M2 = !11~, both !11{ and .!vi~ are

CHAPTER 5. WEAK TRANSITIVITY 98

computationally equal to 7j-type.

The derivations of r f- M1 <d M2 and r f- M{ <d' M~ must have

the following forms:

prem'lsesl

... (Congruence rule) ...

r f- M1 <d M2

where f f- 7j(A1, ... ,An) = M1, f f- 7j(B1, ... ,En)
r f- d = dl; and

prem'lses2

... (Congruence rule) ...

r f- Mf <d' M~

where r f- 7j(A~, ... , A~) = M{, r f- 7j(B~, ... , B~)
r f- d' = d2.

Now we prove that the subtyping rules used to derive

and

r f-7j(A~, ... , A~) <d2 7j(B~, ... , B~)

must be the same. That is,

M~ and

. If ri f- Ei = Fi is in premises! then ri f- EI = Ff is m

premises2 and,

. If c f- Ei <c; Fi is in premises! then ri f- EI <c' Ff IS m
l

premises2 for some EI, Ff and c~.

Since r f- M 1 = !VI{ and r f- M2 = M~, we have

CHAPTER 5. WEAK TRANSITIVITY 99

and

f f- Tj(B1, ... ,En) = Tj(B~, ... , B~)

Since T[R]o is a conservative extension ofT and T has the Church­

Rosser property, we have r f- Ai = A~ and r f- Bi = B;. Since Ei

and E: are obtained form a typeD by substituting parameters, we

have ri f- Ei = EI and similarly ri f- Fi = Ff. By Theorem 5.5.2,

if C f- Ei <c; Fi is in premises1, then C If Ei = Fi and hence

C liE: = Ff. So, ri f- E: <c' Ff is in premises2 for some c~.
1

Now, by the induction hypothesis, we have r f- ci = c~ in cases

that C f- Ei <c; Fi is in premises1 and C f- E: <c' Ff is in
1

premzses2.

Therefore, since d1 and d2 are given by the same rule, we have

r f- dl = d2 and hence r f- d = d'.

0

5.6. Admissibility of Substitution and Weak Transitivity

In this section, we show that the substitution and weak transitiv­

ity rules are admissible for the subtyping rules of the inductive types

generated by WT -schemata.

Theorem 5.6.1 (Substitution} If r, X : K, r' f- Ml <d },1]2 : Type

E CM and f f- k : K then f, [k/x]f' f- [kjx]M1 <[k/xJd [kjx]Nh : Type

E CM.

Proof. By induction on derivations. 0

Theorem 5.6.2 (Weak Transitivity) If r f- M1 <d1 M2 : Type

E CM, f f- NJ~ <d2 M3 : Type E CM and f f- l\;f2 = M~ : Type then

f f- M1 <d3 M3 :Type E CM for some d3 and d3 is extensionally equal

to d2 o d1.

Proof. By induction on derivations.

By Lemma 5.5.1, we need to consider only two cases:

o f f- .M1 <d M2 E C.

Then both Nh and Nh are not computationally equal to Tj-type.

Since f f- M2 = NI~, we have f f- NI{ <d' JV!~ E C by Lemma

5.5.1. Therefore, f f- 1\11 <d3 l\if3 E C for some d3. Therefore,

r f- M1 <d3 Nh E C for some d3 and d3 is computationally equal

to d2 o d1 by Lemma 3.4.2.

CHAPTER 5. WEAK TRANSITIVITY 100

• Both lvf1 and M2 are computationally equal to 7i-type.

The derivation of r f-- M1 <d M2 must have the following form:

... (Congruence rule) ...

r f-- M1 <d1 M2

where r f-- 7j(An, ... , Aln) = M1, r f-- 7j(A21, ... , A2n) = M2 and

r f-- d1 = d~.
Since r f-- M2 = M~ and M2 is computationally equal to 7i-type,

both M~ and M 3 are computationally equal to 7i-type. Therefore,

the derivation of r f-- M~ <d2 M 3 : Type must be of the form:

... (Congruence rule) ...

r f-- M~ <d2 M3

where r f--1j(A~ 1 , ..• ,A~n) = M~, r f--7j(A31,···,A3n) = M3 and

r f-- d1 = d~.
Since r f-- M2 = M~, we haver f-- 7j(A21, ... , A2n) = 7j(A~1 , ... , A~n)·

Since T[R] 0 is a conservative extension ofT and T has the Church­

Rosser property, we have r f-- A2i = A~i.
Now, let us consider the i-th premise in premises1 and premises2

and analyse one difficult case that ri f-- Ei <c; Fi is in premises1

and ri f-- Gi <ei Hi in premises2 .

1. If the i-th premise in the form WT RuleForm is obtained from

a covariant type D, then Fi = D[A2] and Gi = D[A~]. Since

r f-- A2i = A~i for every i, we have C f-- Fi = Gi. By inductive

CHAPTER 5. WEAK TRANSITIVITY 101

hypothesis, we have ri f-- Ei <9; Hi for some 9i and, gi and

ei o ci are extensionally equal.

2. If the i-th premise in the form WT RuleForm is obtained from

a contravariant type D, then Ei - D[A2] and Hi - D[A~].

Since r f-- A2i = A~i for every i, we have C f-- Ei = Hi· By

induction hypothesis, we have ri f-- Gi <9; Fi for some 9i and,

gi and ci o ei are extensionally equal.

By one of the subtyping rules for 'Tj, we have

r f-- 'Tj(Au, ... , Aln) <d3 'Tj(A31, ... , A3n) and by Lemma 5.4.12, we

have d3 is extensionally equal to d~ o d~.

By the congruence rule, we have r f-- M1 <d3 M 3 and d3 is

extensionally equal to d2 o d1 .

0

Corollary 5.6.3 (Extensional equality requirement)

If r f-- M1 <d1 M2 : Type E eM, r f-- M2 <d2 M3 : Type E CM and

r f-- ll11 <d3 M3 : Type E eM then d3 and d2 0 dl are extensionally

equal.

Proof. By Theorem 5.6.2 and Theorem 5.5.5. 0

5.7. Extension of WT-schemata

One may extend WT-schemata so that some families of inductive

types can also be covered. For example, the type of vectors is defined

as follows:

Vee =df [A: Type]M[X(O), (n: N)(A)(X(n))X(S(n))]

where X is a placeholder of kind (N)Type, N is the type of natural

numbers, 0 and S are constructors for zero and the successor respec­

tively. A common subtyping rule for vectors is the following:

where

r f-- n : N r f-- A <c B : Type
r f-- Vec(A, n) <d(n) Vec(B, n) :Type

d(O, vnil(A))

d(S(m), vcons(A, m, a, l))

vnil(B)

vcons(B, m, c(a), d(m, l))

CHAPTER 5. WEAK TRANSITIVITY 102

and vnil and vcons are the constructors of vectors introduced as usual

(see Example 2.3.7 for details).

Adding this subtyping rule into n , all the good properties are

kept, i.e., n is still coherent, the substitution rule is admissible, weak

transitivity holds and the equality requirement is satisfied.

Now, we give a formal definition of extended WT-schemata.

Definition 5.7.1 (Extended WT strictly positive operator and

WT-schema} Let r be a valid context, 5 1 , ... , Sk {k E w) be kinds

in r, i.e. judgement r f- Si Kind is derivable (i = 1, ... , k), X be a

placeholder of kind (s1 : SI) ... (sk : Sk)Type.

• A WT strictly positive operator in r, with respect to X and the

parameters Y1, ... , Yn, is of one of the following forms:

1. <I>= X(sl, ... , sk), where r f- Si : si (i = 1, ... , k), or

2. <I> (x : K)<I>0 , where K is a WT small kind in r and <1> 0 is a

WT strictly positive operator in r' X : K' and if X E FV (<Po)
then none of the parameters occur free inK i.e. Y rf. FV(K).

• A WT-schema 8 in r, with respect to X and the parameters Y1, ... , }~,

is of one of the following forms:

1. 8 = X(sl, ... , sk), where r f- Si : si (i = 1, ... , k), or

2. 8 = (x: K)80 , where K is a WT small kind in r and 8 0 is a

WT-schema in r, X: K, and if X E FV(8o) then none of the

parameters occur free inK i.e. Y rf. FV(K).

3. 8 (x: <1>)80 , where x rf. FV(80), <I> is a WT strictly positive

operator in r and 8 0 is an WT-schema in r.

Remark 5.7.2 As mentioned in Section 5.2.2, WT-schemata avoid

coercion dependency between premises such as the subtyping rules for

L,-types to make sur-e that there is no coercion in one premise that

occurs in another premise. The above definition also captures this idea,

for example, there is no coercion dependency in the subtyping rule for­

the type of vectors.

5.8. Discussion: new computation rules

The normal transitivity rule in coercive subtyping has been proved

to be admissible for the subtyping rules of some parameterised induc­

tive types such as 2:,-types. The main reason that it can be proved is

CHAPTER 5. WEAK TRANSITIVITY 103

because such inductive types have only one constructor and some im­

portant function operators such as 1r1 and 1r2 can be defined, and one

can use these operators to define nice coercions. However, for many

inductive types that have more than one constructor, the transitivity

rule fails to be admissible. Weak transitivity is introduced and it is

admissible for a large class of parameterised inductive types such as

lists. Weak transitivity holds because it requires only the existence of

coercion and extensional equality.

However, there are two problems. One regards sub kin ding rules. In

the coercive subtyping system with strong (or normal) transitivity, the

subkinding rules in Figure 3.2.2 are included. However, the coercive

subtyping system with weak transitivity includes only the subkinding

rules in Figure 3.2.1, and the subkinding rules in Figure 3.2.2 are ex­

cluded. One of the reasons is that, for example, in the subkinding

rule
r f-- K~ <c1 K1 r, x': K~ f-- [c1(x')jx]K2 <c2 K~

r f-- (x : KI)K2 <[t:(x:Kl)K2][x':K~]c2(J(q(x'))) (x : Ki)K~
the coercion c1 in the first premise occurs in the second premise. Hence

the weak transitivity rule (WT K) for subkinding

(WTK)
r f-- K <c K' r f-- K' <c' K"

r f-- K <c" K'

fails to be admissible. In fact, one can construct a counter example as

we did in Example 5.2.3.

Another problem regards the combination of the subtyping rules

for inductive data types. As we showed in Example 5.2.3, neither the

strong (or normal) transitivity rule nor the weak transitivity rule can be

admissible when we combine some natural subtyping rules, for example

the subtyping rules for I:-types and lists.

In this section, we discuss the new computation rules for parame­

terised inductive types. If these new computation rules are added to the

original type theory, the above two problems will be solved and the ex­

tended type theory is expected to keep some important meta-properties

such as Strong Normalisation and Church-Rosser. This leads us to fun­

damental future research that is important for coercive subtyping as

well as for type theory itself.

CHAPTER 5. WEAK TRANSITIVITY 104

5.8.1. New computation rule for lists

In this sub-section, we give a new computation rule for lists as an

example and discuss some important meta-properties for the extended

type theory.

In Example 5.1.1, we have seen that the normal transitivity rule

(Trans) is not admissible for the subtyping rule of lists because

mapList(B, C, c2) o mapList(A, B, c1) and mapList(A, C, c2 o c1) are not

computationally equal although they are extensionally equal. Now, if

we add a new equation rule for lists

in the original type theory, the normal transitivity rule (Trans) is

admissible for the subtyping rules of lists and 2:-types. To prove this,

we need the definition of depth in Definition 4.2.3 and the proof method

is the same as that of Theorem 4.2.7.

According to the new equation rule, we also introduce a new com­

putation (or reduction) rule for lists.

EList(B, [l': List(B)]List(C), nil(C),

[b: B][l': List(B)][l": List(C)]cons(C, t 2 , l"),

EList(A, [l: List(A)]List(B), nil(B),

[a: A][l: List(A)][l' : List(B)]cons(B, t 1 , l'), x 0))

=? EList(A, [l: List(A)]List(C), nil(C),

[a: A][l: List(A)][l": List(C)]cons(C, [tdb]t2 , l"), x 0)

Notice that if t1 c1(a) and t 2 = c2(b), then [ti/b]t2 - c2(c1(a)).

Remark 5.8.1 We have the following remarks:

• It is better not to regard the new equation rule for lists as a computa­

tion (or reduction) rule. Otherwise, the property of Church-Rosser

may fail. For instance, let's consider a term M that is the left hand

side of the new computation rule by replacing A, B, C by N and

t 1 by ([x : N]O)(a) and t 2 by ([x: N]O)(b) (i.e. A B = C = N

and t 1 = ([x : N]O)(a), t2 ([x : N]O)(b)). If we regard the new

equation rule for lists as a computation (or reduction) rule, there

CHAPTER 5. WEAK TRANSITIVITY 105

are at least two ways to reduce M. One way is to reduce t 1 and t2 to

0, then we get a normal form M 1 . Another way is to use the new

rule and reduce M to a normal form M 2 . Since M 1 and M 2 are

different normal forms of M, the property of Church-Rosser fails.

o A computation (or reduction) rule is also an equation rule.

® We have proved that mapList(B, C, c2) o mapList(A, B, c1) and

mapList(A, C, c2 o ci) are extensionally equal. Adding the equation

rule for lists will not violate the logical consistency of the extended

type theory.

• For the new computation rule for lists, we must require that vari­

ables l and l" don't occur free in t 1 and, variables l' and l" don't

occur free in t2 to guarantee the left hand side is really extensionally

equal to the right hand side.

• We believe that some important meta-properties such as Strong

Normalisation and Church-Rosser still hold after adding the new

computation rule. Proving such meta-properties is out of the scope

of this thesis.

5.8.2. New computation rules in general

Consider a general form of parameterised inductive types:

where p =/:. 0 and 8 < 8 1 , ... , 8 8 > (s E w) a finite sequence of

inductive schemata and Pi (i = 1, ... ,p) kinds (not necessarily small).

We may introduce a new computation rule for T and add it into the

original type theory as we did for lists. Details are omitted here.

Conjecture After adding new computation rules for parameterised in­

ductive data types, the extended type theory has all the properties which

the original type theory has, such as the properties of Strong Normali­

sation, Church-Rosser, Subject Reduction, etc.

CHAPTER 6

Combining Incoherent Coercions for ~-types

In this chapter, we will consider a very useful coercion, n 1 , the first

projection of 2:-types. With this coercion, it is very easy to express

some mathematical properties. For example, it is used significantly in

Bailey's PhD thesis [Bai98] for formalisation of mathematics.

In Chapter 4, coherence was proved for the component-wise subtyp­

ing rule of I:-types. However, when these subtyping rules are combined

with the subtyping rule for the first projection, coherence fails to hold.

A counter example will be given in the next section to illustrate this

problem and explain the solution. We shall introduce a new subtyping

relation and give a new formulation of coercive subtyping, to ensure

that there is only one coercion (with respect to computational equality)

between any two types (if there is one at all). This new formulation not

only satisfies the coherence requirements but also enjoys other proper­

ties, particularly the admissibility of substitution and transitivity be­

cause such properties are important for an implementation of coercive

subtyping.

6.1. The Coherence Problem

In this section, we give an example to illustrate the coherence prob­

lem of the component-wise subtyping rules for I:-types and the subtyp­

ing rule of its first projection. Because of the coherence problem, we

cannot uniformly use these two sets of subtyping relations in a single

system.

6.1.1. Subtyping rules for :E-types

As studied in Section 3.5, there are three component-wise subtyping

rules for :E-types. One of these rules is the following.

r f---A <c A' :Type r f--- B : (A')Type
(First Component rule) r f--- :E(A, B o c) <d1 E(A', B) :Type

where d1 = [z: I.:(A,Boc)]pair(A',B,c(n1(A,Boc,z)),n2 (A,Boc,z)).

106

CHAPTER 6. COMBINING INCOHERENT COERCIONS FOR L;-TYPES 107

The coercion of the first projection is very useful for formalisation

of mathematics [Bai98]. Formally, the subtyping rule is the following:

r f-A :Type r f- B : (A)Type

r f- ~(A, B) <rrt(A,B) A: Type

With this coercion, it is very easy to express some mathematical prop­

erties. For example, the type of collection of groups is a subtype of the

type of semi-groups (i.e. a group is also a semi-group). Any functional

operator with the domain of semi-groups can be applied to any group

with a coercion.

6.1.2. A counter example

If the subtyping rule (1r1rule) and the component-wise subtyping

rules for ~-types are combined together, we have the following two

derivations.

The first derivation is

r f-A :Type r f- B : (A)Type r f- B : (A)Type

r f- ~(A, B) :Type r f- B o 1r1 (A, B): (~(A, B))Type

r f- ~(~(A, B), B o 1r1 (A, B)) <d1 ~(A, B) :Type

where the rule (1r1 rule) is used in the last step.

The second derivation is

r f-A: Type r f- B: (A)Type
(1r1rule) r f- B: (A)Type

f f- ~(A, B) <rr 1 (A,B) A: Type

f f- ~(~(A, B), B o 1r1 (A, B)) <d2 ~(A, B): Type

where the rule (1r1rule) is used in the first step and the First Component

rule is used in the last step.

There are two coercions d1 and d2 from type ~(~(A, B), Bo1r1 (A, B))

to type ~(A, B) 1 and we have the following equations (some details are

omitted here)

d1(pair(pair(a, bt), b2))

d2 (pair(pair(a, bt), b2))

pair(a, bt)

pair(a, b2)

1There are two different coercions from (Ax B) x B to Ax B if A and B are types,
where A x B is for I:(A, [x : A]B) and x rf. FV(B).

CHAPTER 6. COMBINING INCOHERENT COERCIONS FOR ~-TYPES 108

We can see that d1 and d2 are neither computationally nor exten­

sionally equal. Hence, the vital requirement of a coercive subtyping

system, coherence, fails.

6.1.3. Informal explanation of the solution

From the above counter example, we see that the existence of the

two derivations makes the system incoherent. To make it coherent, a

natural way is to block one of the derivations. The first one cannot be

blocked, otherwise we lose the meaning that the first projection (n1) is

regarded as coercion. Hence we can only block the second derivation.

More precisely, we must not allow r f--- A <c A' : Type to be used as the

first premise of the component-wise subtyping rules if it is (directly)

derived from the n1rule. In other words, a condition of the component­

wise subtyping rules is that the first premise is not (directly) derived

from the n1rule. There are several attempts to satisfy this condition,

one of which is to consider a notion of size as a side-condition because A

is a sub-term of L:(A, B) in the conclusion of n 1rule, and their sizes are

intuitively different. However, the well-definedness of size is problem­

atic when we present the whole subtyping system (see the discussion

section for more details).

In the next section, rather than thinking of any side-conditions, we

introduce a new subtyping relation (-<) to represent coercion n1. This

new subtyping relation will never appear in the first premises of the

component-wise subtyping rules and hence the unwanted derivations

such as the second one in the counter example are blocked.

To make the subtyping system coherent is one thing; to make it

also enjoy the property of the admissibility of transitivity is another.

During our investigation, we experienced that some formulations satisfy

the property of coherence, but not the admissibility of transitivity. The

formulation in the next section will enjoy all these properties.

6.2. A formal presentation

In this section, we shall give a formal presentation of a new subtyp­

ing relation and related subtyping rules. The coherence condition will

also be redefined.

CHAPTER 6. COMBINING INCOHERENT COERCIONS FOR I;-TYPES 109

6.2.1. A new subtyping relation

We have seen the problem with the combination of the component­

wise subtyping rules and the subtyping rule of the first projection.

Now, we introduce a new relation to solve this problem, and consider

a new system T[R1r1], which is an extension of coercive subtyping with

the judgement form:

• r f-A -<c B :Type asserts that type A is a subtype of type B with

a coercion c.

As we will see later, subtyping relation < and -< are different.

-< represents the idea that 1r1 is regarded as a coercion, but < does not.

The coercive definition rules

The main idea of coercive subtyping can informally be represented

by the following coercive definition rule (contexts are omitted):

K <c K' k : K f : (x : K')K"
f(k) = f(c(k)) : [c(k)/x]K"

The same idea is followed for the new subtyping relation. A new basic

subkinding rule for -< is the following:

A -<c B: Type

El(A) <c El(B)

By the coercive definition rule, we have the following derivable rule:

A -<c B: Type k: El(A) f: (x: El(B))K

f(k) = f(c(k)) : [c(k)/x]K

which says that if A -<c B, any functional operator f with domain B

can be applied to any object x of A and, f(x) = f(c(x)).

We present the new subtyping system in two stages: first an inter­

mediate system T[R1ri] 0 and the definition of coherence, and then the

system T[R1r1].

6.2.2. The systems T[R1ri] 0 and T[R1r1]

Formally, T[R1ri] 0 is an extension of type theory T (only) with the

following rules:

• A set R of basic subtyping rules whose conclusions are subtyping

judgements of the form r f- A <c B :Type.

CHAPTER 6. COMBINING INCOHERENT COERCIONS FOR 2::-TYPES 110

(j The following congruence rule for subtyping judgements

r f- A <c B : Type

(Gong)
r f-A= A': Type r f- B = B': Type r f- c = c': (A)B

r f- A' <c' B' : Type

• The new subtyping rules for the first projection in Figure 6.2.1,

whose conclusions are of the form r f- A -<c B : Type.

Notation 6.2.1 we shall user f-A CXc B :Type to represent

r f- A <c B : Type or r f- A -<c B : Type. For example,

r f- A CXc B : Type

J

actually represents two rules

r f- A <c B : Type

J
and

r f- A -<c B : Type

J

and
r f- A CXc B : Type r' f- A' CXc' B' : Type

J
actually represents four rules.

We shall also say that A is a subtype of B or there is a coercion c

from A to B if r f-A CXc B :Type.

New sub typing rule for the first projection:

r f-A :Type r f- B : (A)Type

f f- E(A, B) -< 1q(A,B) A :Type

r f-A CXc A' : Type r f- B : (A)Type

f f- E(A, B) -<co1q (A,B) A' : Type

New congruence rule:

r f- A -<c B : Type
r f-A= A' :Type r f- B = B' : Type r f- c = c' : (A)B

r f- A' -<c' B' : Type

FIGURE 6.2.1. New subtyping rules for the first projection

Remark 6.2.2 We have the following remarks:

CHAPTER 6. COMBINING INCOHERENT COERCIONS FORE-TYPES 111

" The basic understanding of the new subtyping rules for the first

projection is that I:(A, B) is a subtype of A' if A = A' or A is a

subtype of A'.

• The two subtyping relations < and --< are considered simultaneously

and they contribute to each other.

• New substitution and transitivity rules for subtyping relations < and

--< will be given later and, we will prove that they are admissible.

We do not include them in T[R1r1) 0 .

In T[R1r1]0 , the subtyping judgements do not contribute to any deriva­

tion of a judgement of any other forms in the original type theory T.

Therefore, we have the following lemma.

Lemma 6.2.3 T[R1r1]0 is a conservative extension ofT.

Now, we define the coherence requirement for the new coercive sub­

typing system in the following.

Definition 6.2.4 (Coherence condition of T[R1r1]0) We say that

T[R1r1]0 is coherent if it has the following properties.

1. r f- A cxc B : Type implies r f- A : Type, r f- B : Type, and

r f- c: (A)B.

2. r f-A cxc B :Type implies r li A= B : Type.

3. r f- A <c B : Type and r f- A <c' B : Type imply

r f- c= c': (A)B.

4. r f- A --<c B : Type and r f- A --<c' B : Type imply

r f- c = c': (A)B.

5. (Disjointedness) r f- A <c B : Type implies r 1i A --<c' B : Type

for any c', and vice versa, r f- A --<c B : Type implies

r 1i A <c' B: Type for any c'.

Remark 6.2.5 One may consider a more general coherence condition

such as, if r f- A cxc B : Type and r f- A cxc' B : Type then

r f- c = c': (A)B. This will include the case in which both

r f-A <c B: Type and r f-A --<c B: Type may happen. However, one

of the reasons we need the new subtyping relation (--<) is deliberately to

make sure that r f- A <c B : Type and r f- A --<c B : Type may never

hold at the same time for any A and B. Disjointedness is regarded as

part of the coherence condition.

CHAPTER 6. COMBINING INCOHERENT COERCIONS FOR ~>TYPES 112

The system T[R1r1]

The system T[R1r1] is obtained from T[R1r1]0 by adding the infer­

ence rules in Figure 3.2.1 and in Figure 3.2.2 and the following new

basic subkinding rule.

r f- A -<c B : Type

r f- El(A) <c El(B)
(New Basic Subkinding Rule)

There is only one subkinding judgement form r f- K <c K', although

there are two subtyping judgement forms r f- A <c B : Type and

r f- A -<c B : Type. At the kind level, we are more concerned with the

existence of a coercion no matter from which form it is derived at the

type level.

Remark 6.2.6 The main result of [SL02] is essentially that coherence

of subtyping rules does imply conservativity. In Section 6.4, we shall

also prove the coherence of T[R1r1]0 . So, T[R1r1] is also expected to be

a conservative extension ofT.

6.3. New subtyping rules for inductive types

Now, we give the component-wise subtyping rules for I:-types and

the rules for IT-types in Figure 6.3.1 and Figure 6.3.2 to demonstrate

what the subtyping rules should be for the new subtyping relation.

Remark 6.3.1 We have the following remarks:

• In Figure 6.3.1 and Figure 6.3.2, the conclusions of the rules are

always of the form r f- A <c B : Type, no matter whether the

premises are of the form r f- A <c B : Type orr f- A -<c B : Type.

• The essence of the new subtyping relation is that, the judgement

form r f- A -<c B : Type is never used in the premises of the first

component of the component-wise subtyping rules in Figure 6. 3.1.

Hence the second derivation of the counter example in section 6.1

is blocked.

e The basic understanding of the new subtyping rules for IT-types is

that IT(A, B) is a subtype of IT(A', B') if A' is a subtype of A and

B is a sub-family of B' (we omit other cases such as: IT(A, B) is a

subtype ofiT(A,B') if B is a sub-family of B').

• For the new component-wise subtyping rules for I:-types, because

of the incoherence when 1r1 is aLso regarded as a coercion, we need

CHAPTER 6. COMBINING INCOHERENT COERCIONS FOR 2;-TYPES 113

First Component rule:

where

r f-A <c A' :Type r f- B : (A')Type
r f- L:(A, B o c) <d1 L:(A', B) :Type

d1 = [z : L:(A, B o c)]pair(A', B, c(1r1 (A, B o c, z)), 1r2(A, B o c, z))

Second Component rule:

r f- B: (A)Type r f- B': (A)Type r, x: A f- B(x) CXe[xJ B'(x) :Type
r f- L:(A, B) <d2 I:(A, B') :Type

where

d2 = [z: L:(A, B)]pair(A, B', 1r1(A, B, z), e[1r1(A, B, z)](1r2(A, B, z)))

First-Second Component rule:

where

r f-A <c A' :Type r f- B : (A)Type r f- B' : (A')Type
r, X: A f- B(x) CXe[x] B'(c(x)) :Type

r f- L:(A, B) <d3 L:(A', B') :Type

d3 = [z: L:(A,B)]pair(A',B',c(K1 (A,B,z)),e[K1 (A,B,z)](1r2(A,B,z)))

FIGURE 6.3.1. New component-wise subtyping rules for
I:- types

to have a stricter understanding, that is, I:(A, B) is a subtype of

L:(A', B') if A is a subtype of A' and B is a sub-family of B' and

the sizes of A and A' are the same (size is defined in Definition

6.4.3). In the following section, we will prove that the sizes of A

and B are the same if r f- A <c B : Type and, the size of A is

bigger than the size of B if r f- A -<c B : Type.

The subtyping system we present here covers all the coercions de­

rived from the component-wise subtyping rules and the subtyping rule

for the first projection when they are used separately. Actually, it has

more coercions. For example, if A, B and C are different types, we

can have a coercion from A x (B x C) to A x B because there is a

coercion from B x C to B. However, we can never derive a coercion

from Ax (B x C) to A x B by the component-wise subtyping rules or

CHAPTER 6. COMBINING INCOHERENT COERCIONS FOR I:-TYPES 114

Domain rule:

where

r f-A' cx:c A: Type r f- B : (A)Type
r f- IT(A, B) <d1 IT(A', B o c) :Type

d1 = [f: IT(A, B)].A(A', B o c, app(A, B, f) o c)

Codomain rule:

r f- B : (A)Type f f- B' : (A)Type f, x : A f- B(x) CX:e[xJ B'(x) :Type
r f- IT(A, B) <d2 IT(A, B') :Type

where

d2 = [!: IT(A, B)].A(A, B', [x: A]e[x](app(A, B, j, x)))

Domain-Codomain rule:

where

r f-A' cx:c A : Type r f- B : (A)Type r f- B' : (A')Type
r, x': A' f- B(c(x')) CX:e[x'J B'(x') :Type

r f- IT(A, B) <d3 IT(A', B') :Type

d3 = [f: IT(A, B)].A(A', B', [x': A']e[x'](app(A, B, j, c(x'))))

FIGURE 6.3.2. New subtyping rules for IT-types

the subtyping rule for the first projection separately. What we have

excluded are those coercions that need component-wise subtyping rules

for I:-types but the sizes of their first components are different. For

example, we don't have a coercion from (Ax B) x C to Ax C because

the sizes of A x B and A are different although there is a coercion from

Ax B to A.

6.4. Coherence of T[R1r1]o

Now, we prove the coherence ofT[R1r1] 0 , which essentially says that

coercions between any two types must be unique. The set R of basic

subtyping consists of the rule (W DCrule) where C in the rule is a set of

well-defined coercions (WDC) and the new subtyping rules for I:-types

and IT-types (in Figure 6.3.1 and Figure 6.3.2) and, the system T[R1ri] 0

CHAPTER 6. COMBINING INCOHERENT COERCIONS FOR I:-TYPES 115

also includes the congruence rule (Gong) and the new subtyping rules

in Figure 6.2.1. Furthermore, we assume that for any judgement

r 1- A <c B : Type E C, neither A nor B is computationally equal

to a L.:-type or IT-type. We also assume that the original type theory

T has good properties, in particular the properties of Church-Rosser

and Strong Normalisation and the property of context replacement by

equal kinds.

We give a definition of size(A) that only counts how many times

1r1 can be applied for an object of type A. In order to define size, we

define presize first.

Definition 6.4.1 (presize} Let r 1- M : Type be a derivable judge­

ment in T[R1r1]0 and M a normal form {i.e. M = nf(M)),

1. if M is not a L.:-type then presize(M) =df 0,

2. if M L.:(A, B) then presize(M) =df presize(A) + 1.

Remark 6.4.2 For the second case, because lvf is a normal form, so

is A. Therefore presize is well-defined.

Definition 6.4.3 (size} The definition of size in T[R1r1]0 :

Let r 1- M : Type be a derivable judgement in T[R1rr] 0 ,

size(M) =df presize(nf(M))

where nf(M) means the normal form of M.

Remark 6.4.4 T[R1rr] 0 is a conservative extension ofT. Therefore,

every well-typed term in T has its unique normal form. So, the value

of size(M) is unique and size is well-defined.

Lemma 6.4.5 In T[R1r1]0 , iff 1- lVh = A12 : Type is derivable then

size(Mr) = size(M2).

Proof. T[R1rdo is a conservative extension ofT and T has properties

of Church-Rosser and strong normalisation, therefore, A11 and M2 have

the same normal form, i.e. nf(Jvfr) = nf(M2). D

Lemma 6.4.6 Let r 1- A1 : Type be a derivable judgement in T[R1ri) 0 .

• if lvf is not computationally equal to a L.:-type then size(M) = 0

and,

CHAPTER 6. COMBINING INCOHERENT COERCIONS FOR I::-TYPES 116

• if r f- !11 = E(A, B) : Type is derivable in T[R1r1]0 then

size(M) = size(A) + 1

Proof. By the definition of size and Lemma 6.4.5. 0

Lemma 6.4. 7 In T['R1r1]0 , if r f- j\111 <d M2 : Type is derivable then

size(Mt) = size(M2).

Proof. By induction on derivations and using Lemma 6.4.5 and Lemma

6.4.6. Note that size(MI) = size(M2) = 0 if the last rule of the deriva­

tion of r f- M1 <d M2 : Type is one of the rules for IT-types. 0

Lemma 6.4.8 In T[R1r1]o, if r f- M1 -<c M2 : Type is derivable then

size(MI) > size(M2).

Proof. By induction on derivations and Lemma 6.4.5, Lemma 6.4.6

and Lemma 6.4.7. 0

The following theorems prove the coherence of T[R1ri] 0 .

Theorem 6.4.9

e If r f- M1 cxc M2 : Type then r f- M1 : Type, r f- M2 : Type and

r f- c: (MI)M2 :Type .

• If r f- lvh CXc M2 : Type then r If Ml = M2 : Type.

• (Disjointedness) If r f- M1 -<c M2 : Type then

r If 1111 <d M2 : Type for any d; and vice versa,

if r f- !111 <c M2 : Type, then r If M1 -<d M2 :Type for any d.

Proof. By induction on derivations, the definition of WDC, Lemma

6.4.7 and Lemma 6.4.8. 0

Notation 6.4.10 We shall simply write r f- J when it is a derivable

judgement in T['R7rl]o 0 Sometimes, we shall also write r f- A CXc B for

r f- A CXc B : Type, and r f- kl = k2 for r f- kl = k2 : K, when no

confusion may occur.

Theorem 6.4.11 Iff-- r = f', r f- lvf1 = lvf{ :Type,

r f- M 2 = M~: Type, and

1. r f- .flih <d M 2 :Type and f' f- M~ <d' !11~ : Type, or

2. r f- 1111 -<d .flif2 : Type and f' f- !11{ -<d' .flif~ : Type

then r f- d = d' : (!111)!112.

CHAPTER 6. COMBINING INCOHERENT COERCIONS FORE-TYPES 117

Proof. By induction on derivations. A most important argument in

this proof is that any derivations of r f- M1 <d M2 and r' f- M{ <d M~,
or r f- M1 -<d M2 and r' f- M{ -<d' M~ must contain sub-derivations

whose last rules are the same rule, followed by a finite number of ap­

plications of the congruence rules. In the following, we choose one case

to demonstrate how the proof proceeds. The proofs of other cases are

similar.

Suppose the derivation of r f- M1 -<d M2 is of the following form. It

contains a sub-derivation whose last rule is one of the subtyping rules

for the first projection followed by a finite number of applications of

the new congruence rule in Figure 6.2.1.

r f- A1 <c A2 r f- B1 : (AI)Type

r f- I:(A1, B1) -<d1 A2

... (New congruence rule) ...

r f- M1 -<d Jvi2

where r f- I:(A1, B1) = M1, r f- A2 = M2, r f- d1 = d and

dl = C07rl(Al,Bl)

Now, it must be the case that any derivation of r' f- M{ -<d' M~ is of

the form:

r' f-A~ <c' A; r' f- B~ : (ADType

r' f- L:(A~, ED -<d; A;

... (New congruence rule) ...

f' f- M{ -<d' A1~
where r' f- L:(A;,BD = M{, r' f-A;= !VI~, r' f- d' = d~ and

CHAPTER 6. COMBINING INCOHERENT COERCIONS FOR ~-TYPES 118

In other words, any derivation of f' f- M{ -<d' M~ must contain a

sub-derivation whose last rule is also the same subtyping rule as that

in the derivation of r f- M1 -<d M2 . To see this is the case, because

f' f- E(A~, BD -<di A~ must be derived from one of the subtyping rules

for the first projection 6.2.1, we have to show only that r' II A~ = A~

and f' II A~ -<e A~ for any e. Since r f- M1 = NI{ and r f- M2 = M~, we

haver f- II(A1 ,BI) = II(A~,BD and r f- A2 =A~. Hence, by Church­

Rosser in T and conservativity ofT[R]o overT, we haver f- A1 =A~ as

well. As r f- A1 <c A2 , we have r II A1 = A2 and size(AI) = size(A2)

by Theorem 6.4.9 and Lemma 6.4.7. So r' II A~ =A~ because

r f- A1 =A~ and r f- A2 =A~, and r' II A~ -<e A~ for any e by Lemma

6.4.8.

Now, since the derivations must be of the above forms, by the in­

duction hypothesis, we have r f- c = c'. So, r f- d1 = d~ and hence

r f- d = d'. o

6.5. Admissibility of substitution and transitivity

Now, we give the subtyping rules of substitution and transitivity

and prove that these rules are admissible. In an implementation of

coercive subtyping, these rules are ignored simply because they cannot

be directly implemented. For this reason, among others, proving the

admissibility of such rules (or their elimination) is always an important

task for any subtyping system.

Admissible substitution rules

The substitution rules are as follows, which are what we expect

normally.

r' X : K, r' f- A <c B : Type r f- k : K

r, [k/x]f' f- [kjx]A <[k/xJc [kjx]B :Type

r, X: K, r' f-A -<c B: Type r f- k: K

r, [k/x]f' f- [kjx]A -<[k/xJc [kjx]B: Type

Admissible transitivity rules

We give the following four transitivity rules that are basically saying

that if there arc coercions c and c' from type A to B and from type B

CHAPTER 6. COMBINING INCOHERENT COERCIONS FOR I:-TYPES 119

to C, then c' o c is a coercion from type A to C.

r f--- A <Cj B : Type r f--- B <c2 C : Type

r f--- A <c2oq C : Type

r f--- A -<q B : Type r f--- B -<c2 C : Type

r f--- A -<c2oq C : Type

r f--- A <Cj B : Type r f--- B -<c2 C : Type

r 1- A -<c20Cj c : Type

r f---A -<Cj B: Type r f--- B <c2 C: Type

r 1- A -<c2oq C : Type

Remark 6.5.1 The above transitivity rules are sufficient and correct,

in the sense that, first, they capture the meaning of transitivity, and

second, they enjoy the properties in Lemma 6.4. 7 and Lemma 6.4.8.

Other rules of different combinations such as the rule

r f--- A <q B : Type r f--- B <c2 C : Type

r f--- A -<c20Cj c : Type

are not correct and are contradictory to the above properties. (Accord­

ing to the premises in the above rule, size(A) = size(B) = size(C),

but according to the conclusion, size (A) > size (C).)

Theorem 6.5.2 (Substitution in T[R1r1]0} If r f--- k : K and

1. if r, X: K, r' f--- Ml <c M2: Type, then

r, [k/x]r' f--- [kjx]M1 <[k/xJc [kjx]M2 :Type, and

2. if r, X : K, r' f--- Ml -<c M2 :Type, then

r, [k/x]f' f--- [k/x]M1 -<[kfxJc [kjx]M2 :Type.

Proof. By induction on derivations. 0

In order to prove the admissibility of the transitivity rules, we also

need to prove the theorem regarding weakening.

Theorem 6.5.3 {Weakening in T[R1rt] 0) If r <;;;; f', f' is valid and

1. if r f--- M1 <c 1\112 : Type then f' f--- l\111 <c A12 : Type, and

2. if r f--- l\1!1 -<c M2 : Type then f' f--- M 1 -<c J\!h : Type.

Proof. By induction on derivations. 0

CHAPTER 6. COMBINING INCOHERENT COERCIONS FOR I;-TYPES 120

To prove the admissibility of the transitivity rules, the usual meth­

ods (e.g. by induction on derivations) do not seem to work. We develop

a new measure (Depth) that is an adoption of the measure (depth) de­

veloped by Chen, Aspinall and Companoni [Che98]. In the measure

Depth, the subtyping judgements (< and -<) only count.

Definition 6.5.4 {Depth} Let D be a derivation of a subtyping judge­

ment of the form r f-A <c B: Type orr f-A -<c B :Type.

D:
S1 ... Sn T1 ... Tm

r f- A cx:c B : Type
where r f- A cx:c B : Type represents r f- A <c B : Type or

r f- A -<c B : Type, S 1 , ... ,Sn are derivations of subtyping judgements

of the form r f- M1 <d M2: Type orr f- M1 -<d M2 :Type and, T1, ... ,

T m are derivations of other forms of judgements,

Depth(D) =dt 1 + max{Depth(SI), ... , Depth(Sn)}

Specially, if n = 0 then Depth(D) =dt 1.

The following lemmas show that, from a derivation D of a subtyping

judgement J, one can always get a derivation D' of the judgement

obtained from J by context replacement such that D and D' have the

same depth.

Lemma 6.5.5 Iff- r = f' and

1. if D is a derivation of r f- M 1 <d M 2 : Type, then there is a

derivation D' off' f- M1 <d M 2 : Type such that

Depth(D) = Depth(D'), or

2. if D is a derivation of r f- M1 -<d M 2 : Type, then there is a

derivation D' off' f- M1 -<d M 2 : Type such that

Depth(D) = Depth(D').

Proof. By induction on derivations. 0

Lemma 6.5.6 If r f- c2 : (K')K and,

1. if D is a derivation of r, X : K, r' f- Ml <q M2 : Type, then there

is a derivation D' of

f, y: K', [c2(y)jx]f' f- [c2(y)jx]M1 <[c2 (y)/x]q [c2(y)jx]M2 :Type

such that Depth(D) = Depth(D'), or

CHAPTER 6. COMBINING INCOHERENT COERCIONS FOR E-TYPES 121

2. if D is a derivation of r, X : K, r' 1- /vfl --<Cj M2 : Type, then there

is a derivation D' of

f, y: K', [c2(y)jx]f' 1- [c2(Y)/x]1111 --<[c2(y)/x]q [c2(y)jx]M2 :Type

such that Depth(D) = Depth(D').

Proof. By induction on derivations and Lemma 4.2.5. The theorem

of weakening and substitution in type theory T and the property of

conservativity of T['R:rr1]0 over T are also needed in this proof. In the

following, we choose one case to demonstrate how the proof proceeds.

Suppose that the last rule of the derivation D of

r, X : K, r' 1- Ml --<cl M2 is

r, X: K, r' 1- A <c 1\1[2 r, X: K, r' 1- B: (A)Type
r, X : K, f' 1- I:(A, B) --<cl M2

where M1 I:(A, B) and c1 = corr1 (A, B). If we denote the derivation

of r, X : K, f' 1- A <c lVh as Do, then we have

Depth(D) = Depth(D0) + 1 by the definition of Depth.

By the induction hypothesis, there is a derivation D 1 of

f, y: K', [c2(y)jx]f' 1- [c2(y)jx]A <[c2(y)/x]c [c2(y)jx]M2

such that Depth(D0) = Depth(D1).

Since r 1- c2 : (K')K, we know r, y: K' is a valid context and

r, y : K' 1- c2 (y) : K provided y is fresh. By the property of conserva­

tivity of T[R1r1]0 over T and the theorem of weakening in T, we have

r, y: K'' X: K, r' 1- B : (A)Type. Then by the theorem of substitution

in T, we have

f, y: K', [c2(y)jx]f' 1- [c2(y)jx]B: ([c2(y)jx]A)Type

Using the above subtyping rule, we have a derivation D' of

and

Depth(D') = Depth(DI) + 1 = Depth(D0) + 1 = Depth(D)

0

Now, we prove the admissibility of the transitivity rules.

CHAPTER 6. COMBINING INCOHERENT COERCIONS FOR I:-TYPES 122

Theorem 6.5. 7 (Transitivity in T[R1r1]0 } If r I- M2 = Jvf~ : Type

and

1. if r I- lvf1 <d1 lvf2 : Type and r I- M~ <d2 M3 : Type, then

r I- M1 <d2 ad1 M3 : Type, and

2 .. if r I- M1 -<d1 M2 : Type and r I- M~ -<d2 M3 : Type, then

r I- M1 -<d2 ad1 M3 :Type.

3. if r I- M1 <d1 M2 :Type and rI-M~ -<d2 M3 :Type, then

r I- lv,h -<d2 ad1 M3 : Type, and

4. if r I- M1 -<d1 lvf2 :Type and rI-M~ <d2 M3 :Type, then

f I- M1 -<d2 od1 M3 : Type, and

Proof. By induction on Depth(D) + Depth(D'), where Dis a deriva­

tion of r I- M1 <d1 M2 : Type or r I- M1 -<d1 M2 : Type, D' is a

derivation of r I- M~ <d2 M3 : Type or r I- M~ -<d2 M3 : Type.

GJ In the base case i.e. Depth(D) = Depth(D') = 1, we consider the

following four sub-cases:

1. The derivations D and D' are:

f I- M1 <d1 M2 E C

r 1-- 1111 <d1 M2

f I- M~ <d2 M3 E C
rI-M~ <d2 M3

For this case, by Lemma 3.4.2, we have

f I- M1 <d2 od1 lvf3 E C.
2. The derivations D and D' are:

f I- M1 <d1 M2 E C
r I- M1 <d1 M2

r I- M3 :Type rI-B: (M3)Type

r I- I:(M3, B) -<d2 M3

where M~ = I:(M3, B).

Since r I- M1 <d
1

M2 E C , by the requirement of C, M2 is

not computationally equal to a I:-type. Since r I- lvf2 = M~,

M~ cannot be a I:-type. Therefore, this is an impossible case.

3. The derivations D and D' are:

r I- lvh : Type r I- B : (1112)Type

r 1-- L:(Jvh, B) -<.,q(fvhB) M2

f I- 1\!I~ <d2 M3 E C
r 1-- 111~ <d2 1113

CHAPTER 6. COMBINING INCOHERENT COERCIONS FOR I;-TYPES 123

where .M1 ~(M2 ,B) and d1 _1f1 (M2 ,B).

Since f 1- l\11~ <d2 Nh E C and f 1- .l\1!2 = M~, we have

f 1- folf2 <d2 Nh E C. Therefore we have the following deriva­

tion:

f 1- M2 <d2 Nh E C

f 1- Nh <d2 M3

r 1- ~(M2, B) -<d20'IT"jcl\I2,s) M3

4. The derivations D and D' are:

f 1-M2 :Type f 1- B : (M2)Type

r 1- ~(M2, B) -<n1(M2,B) M2

r 1-M3 :Type r 1- B': (M3)Type

r 1- ~(M3, B') -<n1(M3,B') M3
where M1 ~(M2 , B), M~ := ~(M3 , B'), d1 _ 1r1 (M2, B) and

d2- 1r1 (M3, B').

Since r 1- Jo.12 = M~, M~ = L.(M3 , B') and

r 1- L.(.M3, B') -<n1(M3,B') M3, by the new congruence rule, we

have f 1- Nh -<n1(1\IJ,B') M3. Therefore, we have the following

derivation:

f 1-M2 -<n1(M3,B') M3 f 1- B : (M2)Type

r 1- ~(M2, B) -<n1(M3,B')on1(M2,B) M3

• In the step case, we choose one case to demonstrate how the proof

proceeds. Suppose that the derivation D and D' be of the following

forms:

f 1- A2 -<CJ A1 f,x: A2 1- B1(c1(x)) -<ei[xJ B2(x)

f 1- IT(A1, BI) <d; IT(A2, B2)

... (Congruence rule) ...

r 1- M1 <d1 M2

where f 1- IT(A 1, BI) = M1 , f 1- IT(A2, B2) = M2, f 1- d; = d1 and

d'1 = [f: IT(A1, B1)],\(A2, B2, [x: A2]ei[x](app(A1, B1, j, c1 (x))))

CHAPTER 6. COMBINING INCOHERENT COERCIONS FOR ~:>TYPES 124

and

D' 1 D' 2

f f- A3 <c2 A~ f, x: A3 f- B;(c2(x)) <e2[xJ B3(x)

r f- IT(A~, B;) <d~ IT(A3, B3)

... (Congruence rule) ...

r f- M~ <d2 M3

where r f- IT(A~, B~) = M~, r f- IT(A3, B3) = M3, r f- d~ = d2 and

We obviously have Depth(D1) < Depth(D) and

Depth(D2) < Depth(D) because D1 and D2 are sub-derivations of

D; Depth(DD < Depth(D') and Depth(D;) < Depth(D') because

D~ and n; are sub-derivations of D'.

Now, since r f- M2 = M~, we have by the Church-Rosser theorem

ofT and conservativity of T[R.]o overT, r f- A2 =A; and

r f- B2 = B;. Since r f- A3 <c2 A~ we have r f- c2 : (A3)A~ and

r f- c2 : (A3)A2. Since r,x : A2 f- B1(c1(x)) -<e![xJ B 2 (x), by

Lemma 6.5.6, we haver, X: A3 f- Bl(ci(c2(x))) -<el[c2(x)) B2(c2(x))

and there is a derivation D3 of the judgement

r,x: A3 f- B1(ci(c2(x))) -<e![c2(x)J B2(c2(x))
such that Depth(D3) = Depth(D2).

Now, we have

Depth(DI) + Depth(D~) < Depth(D) + Depth(D')

Depth(D3) + Depth(D;) < Depth(D) + Depth(D')

By the induction hypothesis, we have that r f- A3 -<Cj OC2 Al. Since

r f- B2 = B; : (A2)Type and r f- c2 : (A3)A2, we have

r, X : A3 f- B2(c2(x)) = B;(c2(x)). By the induction hypothesis

again, we have

CHAPTER 6. COMBINING INCOHERENT COERCIONS FORE-TYPES 125

So by the third rule in Figure 6.3.2, we have

where

d3 =df [f : IT(A1, BI)]-\(A3, B3,

Then

[x: A3]e2[x](ei[c2(x)](app(A1, B1, f, c1(c2(x))))))

[f: IT(A1, B1)]d2(dl(f))

[f: IT(A1, BI)]d;(d~ (!))

[f: IT(A1, B1)]-\(A3, B3,

[x: A3]e2[x](app(A;, B~, d~ (!), c2 (x))))

[f : IT(A1, BI)]-\(A3, B3,

[x: A3]e2[x](el[c2(x)](app(A1, B1, f, c1(c2(x))))))

d3

Finally, by the congruence rule, we have r f- M1 <d2 od1 M3.

6.6. Algorithm for the coercion search in T[R1r1] 0

D

Since we have proved the coherence and admissibility of substitu­

tion and transitivity for the system T[R1r1]0 , we can give a sound and

complete algorithm for the coercion search. If the Coercion Search is

decidable inC, it will also be decidable in T[R1r1]0 .

6.6.1. Algorithm ALG(r, M1, M2) for T[R1rt] 0

Supposing the coercion search is decidable in C, we give an algo­

rithm ALG(f, .fv11 , 1112) to check whether there is a judgement r f­

M1 <d M2 : Type or r f- 1111 -<d M 2 : Type when arbitrary r,
M1 and M 2 are given. If so, ALG(f, M1, M2) := d' for some d' and

r f- d = d': (MI)M2, otherwise ALG(f, M1, M2) :=_l.

The algorithm ALG(r, M1 , M2) will be mutually given with two

other algorithms Alg1(f, M1, !V12) and Alg2 (f, M1 , M2). The algorithm

Alg1 (f,1111 ,M2) will check if r f- .!111 -<d M2 : Type is derivable for

CHAPTER 6. COMBINING INCOHERENT COERCIONS FOR 2::-TYPES 126

some d, while the algorithm Alg2(f, M 1 , lvf2) will check if

r I- Mt <d M2 :Type is derivable for some d.

• The algorithm ALG(r, Mt, M2):

1. If r is valid context, Mt and M2 are well-typed then go to 2.

Otherwise ALG(r, Mt, M2) :=.l.

2. If Algt(f, Mt, 1112) := d or Alg2(f, Mt, M2) := d then

ALG(f, Mt, M2) :=d. Otherwise ALG(r, lvft, M2) :=.l.

• The algorithm Alg1(f, M1 , lv/2):

1. Compute Mt and M 2 to weak normal form wnf(Mt) and

wnf(M2). If wnf(Mt) is a ~-type, then go to 2. Otherwise,

Algt(f, Mt, lvf2) :=.l.

2. Suppose wnf(Mt) ~(A, B). If rI-A= M2 , then

Algt(f,Mt,lvf2) := nt(A,B). If ALG(f,A,M2) ·- c then

Algt(f,Mt,M2) := C07rt(A,B).

Otherwise, Alg1(f, Mt, M2) :=.l.

• The algorithm Alg2(f, Mt, M2):

1. If there is a judgement f I- Mt <d M2 E C then

Alg2(f, Mt, lvf2) :=d. Otherwise, go to 2.

2. Compute Mt and lvf2 to weak normal form wnf(Mt) and

wnf(M2). If both wnf(lvft) and wnf(M2) are IT-type or ~­

type then go to 3. Otherwise Alg2(f, Mt, M2) :=.l.

3. If wnf(Mt) - II(At, Bt) and wnf(M2) = II(A2, B2) then go

to 4. Otherwise wnf(Mt) ~(At, Bt) and

wnj(M2) ~(A2, B2) go to 5.

4. Iff I- At = A2 and ALG((f, x : A2), Bt(x), B2(x)) := e[x]

(x ~ FV(f)), then

Alg2(f, Mt, M2) := [!: II(At, Bt)].\(A2, B2,

[x: A1]e[x] o app(At, B1, f, x))

If ALG(f, A2, At):= c and f, x: A2 I- B 1(c(x)) = B2(x), then

Alg2(f, 111t, f..ih) := [!: II(At, Bt)].\(A2, B2 o c,

app(At, Bt, f) o c)

If ALG(f, A2, AI) := c and

ALG((r, x: A2), B 1(c(x)), B2(x)) := e[x], then

CHAPTER 6. COMBINING INCOHERENT COERCIONS FORE-TYPES 127

Alg2(f, NI1, M2) ·- [f: II(A1, B1)].A(A2, B2,

[x: A2]e[x](app(A1, B1, f, c(x))))

Otherwise Alg2(r, M1, M2) :=.L

5. If r f- A1 = A2 and ALG((r, x : A2), B1(x), B2(x)) := e[x],
then

Alg2(f, M1, M2) ·- [x: I:(A1, B1)]pair(A2, B2,

nl(Al,B1,x),

e[n1(A1, B1, x)](n2(A1, B1, x)))

If Alg2(f,A1,A2) := c and r,x: A1 f- B 1(x) = B2(c(x)), then

Alg2(f, M1, M2) := [x: I:(A1, Bl)]pair(A2, B2,

c(n1(A1, B1, x)), n2(A1, B1, x))

If Alg2(r,A1,A2) := c and

ALG((r, x: Al), B1 (x), B2(c(x))) := e[x], then

Alg2(f, M1, M2) := [x: I:(A1, B1)]pair(A2, B2,

c(n1(A1, B1, x)),

e[n1 (A1, B1, x)]('rr2(A1, B1, x)))

6.6.2. Soundness and Completeness

In order to prove the soundness and completeness of the above

algorithm, we first need to prove some lemmas.

Lemma 6.6.1

e If r f- M1 --<d NI2 : Type is derivable in T[Rn1]0 , then NI1 is

computationally equal to a L:-type.

e If r f- L:(A, B) --<d A' : Type is derivable in T[Rni]0 , then one of

the following judgements is derivable in T[Rn1]0 :

. r f-A= A': Type; or

· r f- A <c A' : Type for some c; or

· r f- A --<c A' : Type for some c.

Proof. By induction on derivations. 0

CHAPTER 6. COMBINING INCOHERENT COERCIONS FORE-TYPES 128

Lemma 6.6.2 If r f- NI1 <d M2 : Type is derivable in T[R1r1]0 , then

one of the following holds:

• f f- M1 <d M2 : Type E C; or

• Both M 1 and M 2 are computationally equal to IT-types; or

o Both M 1 and M 2 are computationally equal to '£,-types.

Proof. By induction on derivations.

Lemma 6.6.3

D

• If r f- IT(A, B) <d IT(A', B') : Type is derivable in T[R1r1]0 , then

one of the following holds in T[R1r1]o:

. r f-A= A' :Type and r, X :A f- B(x) <Xe[x] B'(x) :Type for

some e; or

· r f- A' <Xc A : Type for some c and

r, X: A' f- B(c(x)) = B'(x) :Type; or

· r f- A' <Xc A : Type for some c and

r, X: A' f- B(c(x)) <Xe[x] B'(x) :Type for some e.

• If r f- 'i:,(A, B) <d 'i:,(A', B') : Type is derivable in T[R1r1]0 , then

one of the following holds in T[R1r1]o:

. r f-A= A' :Type and r, X : A f- B(x) <Xe[x] B'(x) :Type for

some e; or

· r f- A <c A' : Type for some c and

f, x: A f- B(x) = B'(c(x)) :Type; or

· r f- A <c A' : Type for some c and

r, X: A f- B(x) <Xe[x] B'(c(x)) :Type for some e.

Proof. By induction on derivations. D

Theorem 6.6.4 {Soundness} If ALG(f, M1 , M2) :=l_ then neither

f f- M1 <d M2 : Type nor r f- M1 -<d M2 : Type is derivable in

T[R1rdo for any d. If ALG(r, M 1 , M 2) := d then either

r f- M1 <d M2 : Type orr f- lvl1 -<d M2 : Type is derivable in T[R1ri] 0 .

Proof. By Lemma 6.6.2 and 6.6.3. D

Theorem 6.6.5 {Completeness) If r f- M1 <d M2 : Type orr f­

M1 -<d M2 : Type is derivable in T[R1ri] 0 , then there is a d' such that

ALG(f, .M1, M2) := d' and r f- d = d': (MI).M2.

Proof. By Lemma 6.6.2 and 6.6.3. D

CHAPTER 6. COMBINING INCOHERENT COERCIONS FOR E-TYPES 129

6.6.3. Decidability of the Coercion Search in T[Rn1]0

Theorem 6.6.6 If the coercion search is decidable in C, it is also

decidable in T[Rn1]0 , i.e. it is decidable whether there is a judgement

r f-- M 1 <d 1112 : Type or r f-- M 1 -<d M2 : Type is derivable in T[Rn1]0

for arbitrary r, M 1 and l\112 .

Proof. By Theorem 6.6.4 and Theorem 6.6.5. D

6. 7. Discussions

6. 7.1. Side conditions

In order to block the unwanted derivations, one may still try to

keep the rule n 1rule in section 6.1 and use side conditions for the First

Component rule, without introducing any new subtyping relation. For

instance, one of such side conditions for the First Component rule is

the following.

or

r f--A <c A' :Type r f-- B : (A')Type

r f-- ~(A, B o c) <d1 ~(A', B) :Type

r f--A <c A' :Type r f-- B : (A')Type

r f-- ~(A, B o c) <d1 ~(A', B) :Type

(size(A) = size(A'))

(size(A) 'f size(A'))

In T[Rn1]0 , size is well-defined. Similarly, size can be defined in T[R]o

and one can prove its well-definedness (see Section 3.2 for more details

of T[R]o and T[R]. Here, R includes one of the above rules). It is

obvious that T[Rn1]0 and T[R]o are equivalent in terms of the following

lemma.

Lemma 6.7.1 If r f-- A cx:c B : Type is derivable in T[Rn1]0 then

r f-- A <c B : Type is derivable in T[R]o and vice versa.

However, since the system T[R] includes the coercive definition rule

and the coercive application rules in Figure 3.2.1, A and A' in the side­

condition may not be well-typed in the original type theory any more.

The way to compute such terms is to insert coercions first and then

do the usual computation in the original type theory. So the property

that inserting coercion is decidable in T[R] must be proved first in

order to argue the well-clefinedness of size. There is a circularity, that

is, a property of T[R] is needed in order to present T[R] itself.

CHAPTER 6. COMBINING INCOHERENT COERCIONS FOR I:-TYPES 130

6.7.2. New computation rules

In Section 6.3, we have given new subtyping rules for E-types and

IT-types which have only one constructor. Since the coercions can be

defined by using the function operators 1r1 and 1r2 and app, we are

able to prove the admissibility of transitivity. However, we need to

be careful to introduce the subtyping rules for other inductive types.

For example, if we want to introduce new subtyping rules for lists as

follows. r f- A OCc B : Type

r f- List(A) <d List(B) :Type

where d = mapList(A, B, c), we also need to add the new computation

rule for lists into the system T[R1r1]0 (see the new computation rule

in Section 5.8.1). The reason for doing this is the same as studied in

Section 5.1 and Section 5.8. After adding new computation rules, we

are able to combine the natural subtyping rules for the parameterised

inductive data types, E-types and lists, and the normal transitivity rule

for subtyping is admissible.

6.7.3. Combining incoherent coercions in general

We have studied in this chapter a special case of incoherent coer­

cions. However, when we consider combining incoherent coercions in

general, we must be sensible, that is, we don't try to combine any ar­

bitrary incoherent coercions. For example, suppose that there are two

different coercions c1 and c2 from type A to B. A sensible thing to do

is to use only one at a time; if we want to use c1 as a coercion, then c2

must be switched off, and vice versa.

CHAPTER 7

Conclusion

7 .1. Summary

This thesis is the first study of the issue of coherence and transi­

tivity at type level in coercive subtyping. We focus on the coercions

between parameterised inductive data types. A number of examples

are given in this thesis to identify the serious problems with these co­

ercions concerning coherence and transitivity. The thesis provides not

only the proofs but also clearer understanding of the subtyping rules

for parameterised inductive data types.

We choose two examples, ~-types and IT-types, as representatives of

the parameterised inductive data types that have only one constructor

(i.e. ST-form) to demonstrate that coercions for such types can be

defined by using their special function operators. Since coercions are

defined in this way, we proved the coherence and the admissibility of

the normal transitivity rule.

Through a close examination of some key examples we get a better

understanding of the coercions between parameterised inductive data

types in general. For many parameterised inductive data types such as

lists, coercions have to be defined inductively and the normal transi­

tivity rule is not admissible. However, a large class of inductive data

types with their subtyping rules is suitable for weak transitivity. In

every such subtyping rule, there is no coercion dependency that may

occur; that is, the coercion in one premise doesn't appear in another

premise. We also prove that the meta-level equality requirement is sat­

isfied. If A <q B, B <c2 C and A <c3 C then c3 is extensionally equal

to c2 o c1 .

A counter example shows that the component-wise subtyping rules

for ~-types and the subtyping rule of its first projection are incoherent

if they are put together directly. We introduce a new subtyping rela­

tion and give a new formulation of coercive subtyping. In particular,

131

CHAPTER 7. CONCLUSION 132

coherence and transitivity are redefined. This new formulation satisfies

the new coherence requirements and enjoys the admissibility of the new

transitivity rules.

7.2. Implementation

As we mentioned in Section 1.8, coercion mechanisms of non-dependent

coercions with certain restrictions have been implemented in both the

proof development systems Lego and Coq, by Bailey and Sa1bi, respec­

tively. A mixture of simple coercions, parameterised coercions, coer­

cion rules and dependent coercions has been implemented in Plastic by

Callaghan.

I also implemented logical framework and inductive data types. As

mentioned in Remark 2.3.8, the elimination operators and computation

rules are implemented differently. For logical framework, Terms and

Kinds are represented by mutually recursive data types so that as many

as possible ill-typed terms are not representable, In Haskell, they look

like the following.

data Term

date Kind

Var String

Lam String Kind Term

App Term Term

Type

El Term

Prod String Kind Kind

Chapter 6 is the first study on how to combine the component-wise

subtyping rules for 2:-types and the subtyping rule of its first projection.

A sound and complete algorithm for the coercion search is also given

in Section 6.6. Based on my implementation of logical framework and

inductive data types, I also implemented coercive subtyping, especially

the component-wise subtyping rules for 2:-types and the subtyping rule

of its first projection. These two sets of subtyping rules can be used in

a single system. The algorithm is on page 125.

CHAPTER 7. CONCLUSION 133

7.3. Future work

As we discussed in Section 5.8, there are problems concerning coher­

ence and transitivity for the subtyping rules of parameterised inductive

data types. In particular, the problem regards the combination of these

subtyping rules. As we showed in Example 5.2.3, neither the strong (or

normal) transitivity rule nor the weak transitivity rule can be admis­

sible when we combine the subtyping rules for I:-types and lists. This

leads us to fundamental future work on the extension of type theory. By

adding new computation rules for parameterised inductive data types

so the natural subtyping rules for all the parameterised inductive data

types can be uniformly used together.

The meta-properties of these new computation rules such as Strong

Normalisation and Church-Rosser need further study. Although such

meta-properties should intuitively be true, proving them is not easy and

likely to be a huge task as proving them in UTT [Gog94]. Even the weak

normalisation (i.e. There is a finite computation sequence for every

well-typed term) is hard to prove, mainly because new redexes may be

created after applying the new computation rules. In the following, I

give an example to illustrate the increasing of redexes.

Example 7.3.1 Consider the terms d2od1 [lo: List(List(N))]d2 (d1(l0))

and d3 o d2 [l0 : List(List(N))]d3 (d2 (l 0)) where

d1 mapList(List(N), List(N), c1)

c1 [l : List(N)]nil(N)

d2 mapList(List(N), List(N), c2)

c2 mapList(N, N, [n: N]n)

d3 mapList(List(N), List(N), c3)

C3 mapList(N, N, [n : N]O)

and List(N) (the type of the lists of natural numbers) and mapList can

be found on page 32. Note that d1, d2 and d3 are normal forms.

Now, by the new computation rule for lists on page 104, we compute

d2 o d1 and d3 o d2 as follows:

d2 o d1 =? mapList(List(N), List(N), c2 o cl)

ch o d2 =? mapL·ist(List(N), List(N), c3 o c2)

where

CHAPTER 7. CONCLUSION

[l: List(N)]mapList(N, N, [n: N]n, nil(N))

mapList(N, N, [n : N]O) o mapList(N, N, [n: N]n)

134

According to the first computation rule for lists, c2 o c1 has a new redex

and can be reduced to [l : List(N)]nil(N) and; according to the new

reduction rule for lists, c3 o c2 has a new redex and can be reduced to

mapList(N, N, [n: N]O).
So, new redexes may be created after applying the new computation

rules for parameterised inductive data types.

Another interesting area for future work is to consider coercive sub­

typing in the framework of extensional type theories. Although type

checking in extensional type theories is undecidable, studying coer­

cive subtyping and its related issues in an extensional framework may

provide further theoretical insights. Some fundamental difficulties in

extensional type theories need to be overcome first in order to study

coercive subtyping. For example, in an extensional type theory, can

we prove that List(A) = List(B) implies A = B? One promising

suggestion is to consider elimination rule for universes. Yet how such

direction affects the formulation of coercive subtyping is still open.

[Bac88]

[Bai98]

[Bar92]

Bibliography

B. Barras et al. The Coq Proof Assistant Reference Manual

(Version 6.3.1}. INRIA-Rocquencourt, 2000.

R. Backhouse. On the meaning and construction of the

rules in Martin-Lof's theory of types. In A. Avron et al,

editor, Workshop on General Logic. LFCS Report Series,

ECS-LFCS-88-52, Dept. of Computer Science, University

of Edinburgh, 1988.

A. Bailey. The Machine-checked Literate Formalisation of

Algebra in Type Theory. PhD thesis; University of Manch­

ester, 1998.

H. P. Barendregt. Lambda calculi with types. In S. Abram­

sky, D. Gabbay, and T. Maibaum, editors, Handbook of

Logic in Computer Science, volume 2. Clarendon Press,

1992.

[BCGS91] V. Breazu-Tannen, T. Coquand, C. Gunter, and A. Sce­

drov. Inheritance and explicit coercion. Information and

Computation, 93, 1991.

[Bee85]

[BF99]

[BM92]

[BT98]

M. J. Beeson. Foundations of Constructive Mathematics.

Springer-Verlag, 1985.

G. Barthe and M. J. Frade. Constructor subtyping. Pro­

ceedings of ESOP'99, LNCS 1576, 1999.

R. Burstall and J. McKinna. Deliverables: a categorical

approach to program development in type theory. LFCS

report ECS-LFCS-92-242, Dept of Computer Science, Uni-

versity of Edinburgh, 1992.

G. Betarte and A. Tasistro. Extension of Martin-Lof's type

theory with record types and subtyping. In G. Sambin and

J. Smith, editors, Twenty-Five Years of Constructive Type

Theory, pages 21-39. Oxford Science Publications, 1998.

135

[Bur93]

[BvROO]

[C+86]

[Cal99]

BIBLIOGRAPHY 136

R. Burstall. Extended Calculus of Constructions as a speci­

fication language. In R. Bird and C. Morgan, editors, Math­

ematics of Program Construction, 1993. Invited talk.

G. Barthe and F. van Raamsdonk. Constructor subtyping

in the calculus of inductive constructions. Proceedings of

FOSSACS'OO, LNCS 1784, 2000.

R. L. Constable et al. Implementing Mathematics with the

NuPRL Proof Development System. Pretice-Hall, 1986.

P. C. Callaghan. An implementation of typed LF with co­

ercions. The Annual Meeting of TYPES, 1999.

[CF58] H. B. Curry and R. Feys. Combinatory Logic, volume 1.

North Holland Publishing Company, 1958.

[CGL94] E. Clarke, 0. Grumberg, and D. Long. Verification

tools for finite-state concurrent systems. In A Decade of

Concurrency-Reflections and Perspectives, volume 803 of

Lecture Notes in Computer Science. Springer-Verlag, 1994.

[Che98]

[Chu40]

[CL99]

[CL01]

[CLP01]

G. Chen. Subtyping, Type Conversion and Transitivity

Elimination. PhD thesis, University of Paris VII, 1998.

A. Church. A formulation of the simple theory of types. J.

Symbolic Logic, 5(1), 1940.

P. Callaghan and Z. Luo. Implementation techniques for

inductive types. Proceedings of TYPES'99, 1999.

P. Callaghan and Z. Luo. An implementation of LF with co­

ercive subtyping and universes. Journal of Automated Rea­

soning, 27(1):3-27, 2001.

P. C. Callaghan, Z. Luo, and J. Pang. Object languages

in a type-theoretic meta-framework. Workshop of Proof

Transformation and Presentation and Proof Complexities

(PTP'01), 2001.

[CMMS91] Luca Cardelli, John C. Mitchell, Simone Martini, and An­

dre Scedrov. An extension of system F with subtyping. In

Takayasu Ito and Albert R. Meyer, editors, Proc. of 1st Int.

Symp. on Theor. Aspects of Computer Software, TACS'91,

Sendai, Japan, 24-27 Sept 1991, volume 526, pages 750-

770. Springer-Verlag, Berlin, 1991.

BIBLIOGRAPHY 137

[Coq92] Th. Coquand. Pattern matching with dependent types.

Talk given at the BRA workshop on Proofs and Types,

Bastad, 1992.

[CPM90] Th. Coquand and Ch. Paulin-Mohring. Inductively defined

types. Lecture Notes in Computer Science, 417, 1990.

[dB80] N. G. de Bruijn. A survey of the project AUTOMATH. In

J. Hindley and J. Seldin, editors, To H. B. Curry: Essays

on Combinatory Logic, Lambda Calculus and Formalism.

Academic Press, 1980.

[Dyb91]

[Gen35]

[GM93)

[Gog94]

P. Dybjer. Inductive sets and families in Martin-Lof's type

theory and their set-theoretic semantics. In G. H uet and

G. Plotkin, editors, Logical Frameworks. Cambridge Uni-

versity Press, 1991.

G. Gentzen. Untersuchungen tiber das logische schliessen.

Mathematische Zeitschrijt, 39, 1935.

M. Gordon and T. Melham. Introduction to HOL: a theo­

rem proving environment for higher~ order logic. Cambridge

University Press, 1993.

H. Goguen. A Typed Operational Semantics for Type The­

ory. PhD thesis, University of Edinburgh, 1994.

[HHP87] R. Harper, F. Hansell, and G. Plotkin. A framework for

defining logics. Proc. 2nd Ann. Symp. on Logic in Com­

puter Science. IEEE, 1987.

[HHP92] R. Harper, F. Hansell, and G. Plotkin. A framework for

defining logics. Journal of ACM, 40(1):143-184, 1992.

[How80] W. A. Howard. The formulae-as-types notion of construc­

tion. In J. Hindley and J. Seldin, editors, To H. B. Curry:

[JLS98]

[1101]

Essays on Combinatory Logic. Academic Press, 1980.

A. Jones, Z. Luo, and S. Soloviev. Some proof-theoretic and

algorithmic aspects of coercive subtyping. Types for proofs

and programs (eds, E. Gimenez and C. Paulin-Mohring),

Proc. of the Inter. Con]. TYPES'96, LNCS 1512, 1998.

Y. Luo and Z. Luo. Coherence and transitivity in coercive

subtyping. In R. Nieuwenhuis and A. Voronkov, editors, 8th

International Conference on Logic for Programming, Arti­

ficial Intelligence, and Reasoning, volume 2250 of Lecture

[LL04a]

[LL04b]

[LLS02]

BIBLIOGRAPHY 138

Notes in Artificial Intelligence, pages 249-265. Springer­

Verlag, 2001.

Y. Luo and Z. Luo. Combining incoherent coercions for L:­

types. In Proceedings of TYPES 2003, volume 3085. Lec­

ture Notes in Computer Science, 2004.

Z. Luo and Y. Luo. Transitivity in coercive subtyping.

Journal of Information and Computation, 2004. To appear.

Y. Luo, Z. Luo, and S. Soloviev. Weak transitivity in

coercive subtyping. In H. Geuvers and F. Wiedijk, edi­

tors, Types for Proofs and Programs, volume 2646 of Lec­

ture Notes in Computer Science, pages 220-239. Springer­

Verlag, 2002.

[LMS95] G. Longo, K. Milsted, and S. Soloviev. A logic of subtyping.

In Proc. of LICS'95, 1995.

[LMSOO] G. Longo, K. Milsted, and S. Soloviev. Coherence and tran­

sitivity of subtyping as entailment. Journal of Logic and

Computation, 10:493-526, 2000.

[LP92] Z. Luo and R. Pollack. LEGO Proof Development System:

User's Manual. LFCS Report ECS-LFCS-92-211, Depart­

ment of Computer Science, University of Edinburgh, 1992.

[LPT89] Z. Luo, R. Pollack, and P. Taylor. How to Use LEGO: a

preliminary user's manual. LFCS Technical Notes LFCS­

TN-27, Dept. of Computer Science, Edinburgh University,

1989.

[LS99]

[Luo90]

[Luo93]

Z. Luo and S. Soloviev. Dependent coercions. The 8th

Inter. Conf. on Category Theory and Computer Science

(CTCS'99), Edinburgh, Scotland. Electronic Notes in The­

oretical Computer Science, 29, 1999.

Z. Luo. An Extended Calculus of Constructions. PhD the­

sis, University of Edinburgh, 1990. Also as Report CST-65-

90/ECS-LFCS-90-118, Department of Computer Science,

University of Edinburgh.

Z. Luo. Program specification and data refinement in type

theory. Mathematical Structures in Computer Science, 3(3),

1993.

BIBLIOGRAPHY 139

[Luo94] Z. Luo. Computation and Reasoning: A Type Theory for

Computer Science. Oxford University Press, 1994.

[Luo99] Z. Luo. Coercive subtyping. Journal of Logic and Compu­

tation, 9(1):105-130, 1999.

[Luo03] Z. Luo. PAL+: a lambda-free logical framework. Journal of

Functional Programming, 13(2):317-338, 2003.

[Mit91] J. C. Mitchell. Type inference with simple subtypes. Jour­

nal of Functional Programming, 1(2):245-285, 1991.

[ML84] P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis,

1984.

[NPS90] B. Nordstrom, K. Petersson, and J. Smith. Programming in

Martin-Lof's Type Theory: An Introduction. Oxford Uni­

versity Press, 1990.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: a prototype

verification system. In Dee par Kapur, editor, 11th Inter­

national Conference on Automted Deduction (CADE), vol­

ume 607 of Lecture Notes in Artificial Intelligence, pages

[Pau93]

[PM93]

[Pol94]

[Pol97]

[Pra73]

748-752. Springer-Verlag, 1992.

L. Paulson. Introduction to Isabelle. Technical Report 280,

Computer Laboratory, Cambridge University, 1993.

C. Paulin-Mohring. Inductive definitions in the system

Coq: rules and properties. Proceedings of the Inter. Conf.

on Typed Lambda Calculi and Applications (TLCA '93),

LNCS 664, 1993.

R. Pollack. The Theory of LEGO: a proof checker for

the Extended Calculus of Constructions. PhD thesis, Ed-

inburgh University, 1994.

Erik Poll. Subtyping and inheritance for inductive types

(extended abstract). In Electronic Proceedings TYPES WG

Workshop on Subtyping, Inheritance and Modular Develop­

ment of Proofs, Durham, UK, 30 Aug- 1 Sept 1997. Dept.

of Computer Science, Univ. of Durham, 1997.

D. Prawitz. Towards a foundation of a general proof the­

ory. In P. Suppes et al, editor, Logic, Methodology, and

Phylosophy of Science IV, 1973.

[Pra74]

[Reh96]

[Sai97]

[Sch97]

[Set93]

[Set04]

[SL02]

[Smi84]

[Tas97]

[Tho91]

[Tho99]

[YL97]

BIBLIOGRAPHY 140

D. Prawitz. On the idea of a general proof theory. Synthese,

27, 1974.

Jakob Rehof. Strong normalization for non-structural sub­

typing via saturated sets. Information Processing Letters,

58(4):157-162, 1996.

A. Saibi. Typing algorithm in type theory with inheritance.

Proc of POPL'97, 1997.

Thomas Schreiber. Auxiliary variables and recursive pro­

cedures. TAPSOFT'97: Theory and Practice of Software

Development, LNCS 1214, 1997.

A. Setzer. Proof theoretical strength of Martin-Lof's type

theory with W-type and one universe. PhD thesis, Univer­

siUit Miinchen, 1993.

Anton Setzer. Proof theory of Martin-Lof type theory- an

overview. Mathematiques et Sciences Humaines, 42 annee,

n°165:59- 99, 2004.

S. Soloviev and Z. Luo. Coercion completion and conser­

vativity in coercive subtyping. Annals of Pure and Applied

Logic, 2002.

Jan M. Smith. An interpretation of Martin-LOf's type the­

ory in a type-free theory of proposition. Journal of Symbolic

Logic, 49, 1984.

A. Tasistro. Substitution, record types and subtyping in type

theory. PhD thesis, Chalmers University of Technology,

1997.

S. Thompson. Type Theory and Functional Programming.

Addison-Wesley, 1991.

Simon Thompson. Haskell : the craft of functional pro­

gramming. Harlow : Addison Wesley, 2nd edition, 1999.

S. Yu and Z. Luo. Implementing a model checker for Lego.

Proc. of the 4th Inter Symp. of Formal Methods Europe,

FME'97: Industrial Applications and Strengthened Foun­

dations of Formal Methods, Graz, Austria. LNCS 1313,

1997.

Index

<, 45

App, 27

Eq, 28

Prop, 27

T[Rn1], 112

T[Rn1]o, 109

T[R], 47

T[R]0 , 46

1!"1' 39

1r2, 39

--<, 109

app, 38

mapList, 33

minus, 32

plus, 32

pred, 32

times, 32

addition, 32

Admissibility of substitution, 61,

99, 118

Admissibility of transitivity, 61,

118

Admissibility of weak transitiv­

ity, 99

Algorithm for the coercion search,

67, 125

Church-Rosser, 41

141

Coercion dependency, 77

Coercive definition rule, 45, 109

Coercive subtyping, 44

Coherence, 47, 57, 96, 111

Computational equality, 26

Congruence rule, 46

Consistency, 43

Context equality, 25

Covariance and Contravariance,

84

Decidability, 69, 129

Definitional equality, 26

Depth, 120

depth, 62

Extended WT-schema, 102

Extensional equality, 42

Extensional equality requirement,

101

Extensional type theory, 42

Formal verification, 8

Function subtyping, 17

Inductive data types, 29

!YI aybe types, 81

IT-types, 37

E-types, 38

Binary trees, 34

Disjoint union Either, 81

Function types, 33

Lists, 32

Natural numbers, 25, 32

INDEX

type of dependent function spaces,

37

type of dependent pairs, 38

type of non-dependent trio, 39

Vectors, 34

Inductive schemata, 29

Inference rules in T[R], 47

Inference rules of LF, 24

Judgements in LF, 22

Kinds, 23

Logical Framework, 22

Logical operators

&, 28

:3, 28

--,, 28

:=:>, 28

v, 28

false, 28

true, 28

Meta-level equality requirement,

75

Model-checking, 8

multiplication, 32

New computation rules, 102

for lists, 104

New substitution rules, 118

New subtyping relation, 109

New subtyping rules

for IT-types, 112

for ~-types, 112

for lists, 130

142

for the first projection, 110

New transitivity rules, 118

Parameterised inductive data types,

31

predecessor, 32

Product subtyping, 17

Projection operators, 39

Proof, 29

Proof of coherence, 59, 97, 116

Proof of transitivity, 64, 122

Proof of Weak transitivity, 99

Propositional equality, 28

Provable, 29

Record subtyping, 17

size, 115

Small kinds, 23

SOL, 27

Soundness and Completeness, 69,

127

Specify type theories, 25

ST-form, 35

Strictly positive operator, 29

Strong Normalisation, 41

Substitution rule, 46

subsumption rule, 17

subtraction, 32

Subtyping rules

for IT-types, 51

for ~-types, 51

for Either types, 83

for 111 aybe types, 82

for Binary trees, 83

for function types, 84

for lists, 7 4, 82

forST-form, 69

for vectors, 101

for WT-schemata, 82

WDC rule, 51

Syntactical equality, 27

Transitivity rule, 46

Types, 23

Universes, 42

UTT, 22

WDC, 50

WDC rule, 51

Weak transitivity, 73, 75

INDEX

Weak transitivity rule (WTrans),

75

Weak transitivity schemata, 79

Weakening, 62, 119

Well-defined coercions, 50

WT small kind, 80

WT strictly positive operator, 80

WT -schema, 80

143

