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Abstract 
The aim of this thesis is to study coherence and transitivity in coercive 

subtyping. Among other things, coherence and transitivity are key 

aspects for a coercive subtyping system to be consistent and for it to 

be implemented in a correct way. The thesis consists of three major 

parts. 

First, I prove that, for the subtyping rules of some parameterised 

inductive data types, coherence holds and the normal transitivity rule 

is admissible. 

Second, the notion of weak transitivity is introduced. The sub­

typing rules of a large class of parameterised inductive data types are 

suitable for weak transitivity, but not compatible with the normal tran­

sitivity rule. 

Third, I present a new formulation of coercive subtyping in order 

to combine incoherent coercions for the type of dependent pairs. There 

are two subtyping relations in the system and hence a further under­

standing of coherence and transitivity is needed. This thesis has the 

first case study of combining incoherent coercions in a single system. 

The thesis provides a clearer understanding of the su btyping rules 

for parameterised inductive data types and explains why the normal 

transitivity rule is not admissible for some natural subtyping rules. 

It also demonstrates that coherence and transitivity at type level can 

sometimes be very difficult issues in coercive subtyping. Besides provid­

ing theoretical understanding, the thesis also gives algorithms for im­

plementing the subtyping rules for parameterised inductive data types. 
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CHAPTER 1 

Introduction 

This chapter introduces the area of interest and informally explains 

the significance of the work and major contributions. It also includes 

the structure of the thesis, summarising the material that the other 

chapters will cover. Other work related to the thesis is at the end of 

the chapter. 

1.1. Formal Verification 

Computers have become indispensable in our life and itself changes 

everyday. We use it to perform fast computation, to communicate, to 

conduct sophisticated control, and so on. Thousands of programs or 

software are developed and produced everyday. However, how do we 

know whether a program will behave as intended? Or, how do we check 

the correctness of a program? Testing is a common method used by 

every computer programmer, but has its obvious limitations because 

test data can only be finite. As complexity increases, the reliability 

of testing very much depends on a careful choice of input data, and it 

becomes difficult to carry out the test by hand, case after case. 

A complementary and more rigorous method is formal verification. 

Computer scientists want to use computers to formally (mathemati­

cally) verify the correctness of programs. Formal verification can often 

help to detect logical problems, missed cases because of carelessness, 

and other bugs. Therefore, it can significantly increase the confidence 

in the correctness of programs. Model-checking is one of the formal ver­

ification techniques. It can automatically verify finite-state concurrent 

systems [CGL94]. There also are many verification tools often called in­

teractive theorem provers in which not only finite-state systems can be 

verified but also infinite-state ones. Some interactive theorem provers 

are based on simply-typed A-calculus [Chu40], such as HOL [GM93], 

Isabelle [Pau93] and PVS [ORS92]. Some are based on type theories 

and more details will be given in the next section. 

8 



CHAPTER 1. INTRODUCTION 9 

1.2. Type Theory for Computer Science 

Why is (constructive) type theory a good foundation for computer 

science? We can at least give three reasons here. First, type the­

ory has dependent types and hence it has more expressive power than 

simply-typed systems. For example, the type of vectors is a depen­

dent type and can be easily defined in a type theory but not in a 

simply-typed system. Second, type theory is a high level (functional) 

programming language. Its computation and operational semantics are 

simple and clear- reducing well-typed terms to normal (or canonical) 

form. Third, type theory has its internal logic and reasoning can be 

carried out. The activity of proving a theorem in type theory coincides 

with that of writing a program that satisfies a given typing specifica­

tion in the well-known principle of propositions-as-types. Therefore, for 

computer scientists, type theory provides a framework in which both 

programming and reasoning can proceed [Tho91, NPS90, Luo94]. 

There are various type theories with various logics such as Pure Type 

Systems [Bar92], Martin-Lof's Intuitionistic Type Theory [ML84], Cal­

culus of Inductive Constructions [PM93], Extended Calculus of Con·· 

structions (EGG) [Luo90] and a unifying theory for dependent types 

(UTT) [Luo94]. There also are various Logical Frameworks to specify 

type theory, such as Martin-Lof's Logical Framework [NPS90], Edin­

burgh Logical Framework [HHP92] and PAL+ - a >.-free logical frame­

work [Luo03]. Many proof systems based on type theories have been 

developed and widely used by formal reasoning communities. NuP RL 

[C+86] is based on Martin-Lof's Intuitionistic Type Theory. Coq [B+oo] 

is an implementation of the Calculus of Inductive Constructions. Lego 

[LP92] is based on the Extended Calculus of Constructions (EGG). 

Plastic [CLOl] is based on Logical Framework and UTT can be specified 

in it. In the libraries of these proof systems, thousands of mathematical 

theorems and computer programs have been proved and verified. 

However, in many cases, proofs are very tedious and users have to 

fill in every tiny detail carefully. Especially, when formal proofs be­

come very large, too much detail will cause proofs to be unreadable 

for human beings and will cost a lot of time. More seriously, no one 

would like to use any too-costly proof system in practice. So, a very 

important task is to make proofs more readable and omit unnecessary 
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details. Towards this direction, subtyping has been studied as an inher­

itance or abbreviation mechanism in type theory [BF99, Luo99]. In the 

next section, I will give a brief survey of the study of subtyping in lit­

erature and explain why Coercive Subtyping is a powerful abbreviation 

mechanism in type theory. 

1.3. Coercive Subtyping for Abbreviation 

Intuitively, a type in type theory can be understood as a set con­

sisting of its canonical objects. For example, the type N of natural 

numbers consists of all the natural numbers as its canonical objects. 

Some inductive types have parameters. For example, List(A) (the type 

of lists of objects of type A) is parameterised by type A. ~(A, B) (type 

of dependent pairs) is parameterised by type A and a family of types 

B, and if a is an object of A and b is an object of type B(a) then a 

pair of a and b is an object of E(A, B). 

Some of the subtyping systems are based on the intuition of "sub­

types as subsets". A subtype is a collection of canonical objects from 

its supertype. For example, one can create a supertype by adding new 

constructors in an existing inductive type [Pol97]. A similar study on 

constructor subtyping is in [BF99] and [BvROO], and the basic idea is 

that A is a subtype of B if the constructors in A form a subset of those 

in B. However, both of the approaches would exclude very simple ex­

amples such as List(A) is a subtype of List(B) if A is a subtype of 

B. 

Coercive subtyping is based on a different concept of subtyping, in 

which a coercion is regarded as evidence that one type is a subtype 

of another. It offers a nice formulation so that subtyping can be un­

derstood naturally and uniformly in a single framework. In particular, 

coercive subtyping is a simple and powerful framework to handle sub­

typing and inheritance relations between inductive data types. For 

example, one can simply give subtyping rules to express that List(A) 

is a subtype of List(B) if A is a subtype of B. Another example often 

mentioned in literature is the component-wise subtyping rules for the 

type of dependent pairs, that is, E(A,B) is a subtype ofE(A',B') if A 

is a subtype of A' and B is a sub-family of B'. 



CHAPTER 1. INTRODUCTION 11 

Coercive subtyping is also regarded as an abbreviation mechanism 

in type theory. With implicit coercions, terms will become more read­

able and their meaning clearer. Here is a sample to give a flavour of 

such an abbreviation mechanism; there is no need for detailed under­

standing for now. 

Example 1.3.1 Suppose that we have two inductive types in type the­

ory, Even (the type of even numbers) and N (the type of natural 

numbers). Since Even is a subtype of N, List(Even) is a subtype of 

List(N). For any function operator f with domain List(N) and any 

object x of List(Even), f(x) is well-typed in the framework of coercive 

subtyping and it is an abbreviation of a very long term1
. 

This abbreviation mechanism not only make terms significantly 

shorter and more readable but also captures the natural understanding 

of subtyping. 

A significant use of coercions as an abbreviation mechanism is in 

Anthony Bailey's thesis [Bai98]. In the formalisation of the constructive 

version of the fundamental theorem of Galois Theory, he employed 

three kinds of coercions and extended the system Lego with coercion 

synthesis (called LEGOwcs). 

1.4. Coherence in Coercive Subtyping 

The meaning of a term in any logical system must be clear and pre­

cise. Ambiguity is not allowed. It must be completely determined and 

be understood in the same way by all human beings at any time in the 

same logical system. Coercive subtyping is an abbreviation mechanism 

in type theory, so we must have a coherent understanding for an abbre­

viated expression. In other words, there is a vital requirement that any 

abbreviated term in coercive subtyping represents a unique expanded 

term at any time. The notion of coherence in coercive subtyping guar­

antees this requirement, which essentially says that coercions between 

f(x) j([List(Even, [l: List(Even)]List(N), nil(N), 

[a: Even][l: List(Even)][l': List(N)] 

cons(N, [Even([n: Even]N, 0, 

[n: Even][rn: N]S(S(rn)), a), l'), x)) 
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any two types must be (computationally) unique. If there are two co­

ercions c1 and c2 from type A to B (i.e. A <c1 B and A <c2 B), then c1 

and c2 must be computationally equal. For any object x of type A and 

function operator f with domain B, f(x) is an abbreviation of f(c1 (x)) 

and f ( c2 ( x)). Since c1 and c2 are computationally equal, f ( c1 ( x)) and 

f(c2 (x)) are computationally equal and regarded as the same in type 

theory. 

In general, coherence is not decidable, especially when there are 

infinitely many coercions as introduced by parameterisation. It is im­

possible to check coherence in many cases unless we can prove it. One 

of the major contributions in this thesis is to study proving coherence 

at type level when infinite coercions are generated by the natural sub­

typing rules of parameterised inductive data types. 

Some very useful coercions cannot be put together directly because 

they are incoherent. This prevents them from being used together in 

a uniform framework although they are coherent separately. Another 

major contribution regarding coherence in this thesis is to study how 

to combine incoherent coercions for the type of dependent pairs. 

1.5. Transitivity and Substitution in Coercive Subtyping 

For any subtyping system, we naturally have transitivity and sub­

stitution. The meaning of transitivity is that, if A is a subtype of B 

and B is a subtype of C then A must be a subtype of C. The meaning 

of substitution is that, if type B(x) is a subtype of C(x) for any x 

of type A, then for any concrete object a of A, B(a) is a subtype of 

C(a). Because of the difficulties of implementing the transitivity rule 

and substitution rule, an important issue with any subtyping system 

is that of admissibility or elimination of transitivity and substitution. 

For coercive subtyping, proving the admissibility of substitution is 

straightforward for most of the subtyping rules considered in this thesis. 

So, I will concentrate on the issue of the admissibility of transitivity. 

The meaning of transitivity in coercive subtyping is that, if there is 

a coercion c1 from type A to B (i.e. A <ct B) and a coercion c2 

from B to C (i.e. B <c2 C) , then there is a coercion c3 from A 

to C (i.e. A <q C). The normal transitivity rule also requires that 

c3 = c2 o c1 (computational equality). For many subtyping rules, for 
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example, the component-wise subtyping rules for the type of dependent 

pairs, the transitivity rule is admissible when one uses the projection 

operators to define coercions. However, the requirement of c3 = c2 o c1 

(computational equality) is sometimes too strong in intensional type 

theories. For some parameterised inductive data types together with 

their natural subtyping rules, the transitivity rule fails to be admissible 

or eliminatable. So, we introduce a new concept - Weak Transitivity 

that only requires that c3 and c2 o c1 are extensionally equal, without 

compromising coherence (computational uniqueness). Many natural 

subtyping rules, for example, the subtyping rule for lists, are suitable 

for weak transitivity. 

Through our investigation, we also found out that neither the nor­

mal transitivity rule nor the weak transitivity rule (i.e. no matter which 

equality is chosen) can be admissible when we combine some natural 

subtyping rules, for example the subtyping rules for the types of depen­

dent pairs and lists. This leads us to more fundamental research that 

is important for coercive subtyping as well as for type theory itself. If 

we introduce new computation rules for parameterised inductive types 

and add them to the original type theory, then the normal transitivity 

rule is admissible for the extended type theory in which some impor­

tant meta-properties such as Strong Normalisation and Church-Rosser 

are assumed and believed to be true. 

In the case that there is more than one subtyping relation, new 

transitivity rules are introduced in order to capture the meaning of 

transitivity, that is, if there are coercions from type A to B and from 

B to C then there must be a coercion from A to C. 

1.6. Major Contributions 

After briefly introducing the two important issues in coercive sub­

typing, coherence and transitivity, I summarise the major contributions 

of the thesis in this section. The thesis focuses on the coercions be­

tween parameterised inductive data types and shows the serious prob­

lems with these coercions concerning coherence and transitivity. New 

techniques are developed to solve these problems. The main work in 

this thesis can be divided into three parts. 
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1. In the first part, we consider the normal transitivity rule which 

basically says that, if A <q B and B <c2 C where A, B, C are 

types, then A <c3 C for some c3 and c3 = c2 o c1 (i.e. c3 and 

c2 o c1 are computationally equal). In general, the coercions be­

tween parameterised inductive data types are inductively defined 

by means of case analysis. However, the coercions defined in this 

way will cause the normal transitivity rule not to be admissible and, 

if adding it into the system, coherence fails to be satisfied. Fortu­

nately, for some parameterised inductive data types, coercions can 

be defined in a nice way where some special function operators are 

used. Coherence holds and the normal transitivity rule is admissi­

ble for these coercions. To make this clear, we choose two typical 

and representative data types to demonstrate how the coercions 

are defined and how the coherence and admissibility of the normal 

transitivity rule are proved. One example is the type of dependent 

pairs and the other is the type of dependent functions. A common 

factor of these two data types is that they have only one construc­

tor and some special function operators over them can be defined. 

One doesn't have to define the coercions inductively and instead, 

can define them by using the special function operators. In the 

end, we discuss the results more generally and demonstrate how 

coercions are defined for those parameterised inductive data types 

that have only one constructor. 

2. The second part starts from examples to make the problems clear, 

that is, for certain inductive data types such as lists, coercions 

have to be defined inductively and the normal transitivity rule is 

not admissible. Through a close look at key examples, we shall 

get a better understanding of the coercions between parameterised 

inductive data types in general. We introduce a new notion, Weak 

Transitivity, which basically says that, if A <c1 B and B <c2 C 

where A, B, C are types, then A <c3 C for some c3 . The meta­

level equality requirement is that c3 is extensionally equal to c2 o c1 . 

This part will give a clear characterisation of different combinations 

of subtyping rules by means of inductive schemata. We prove that, 

for a large class of inductive data types with their subtyping rules, 

coherence and weak transitivity hold. 
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3. In the third part, we study how to combine incoherent coercions for 

the type of dependent pairs. There are at least two sets of subtyping 

rules for the type of dependent pairs; one is the component-wise 

subtyping rules (i.e. L:(A, B) is a subtype of L:(A', B') if A is a 

subtype of A' and B is a sub-family of B') and the other is the 

subtyping rule of its first projection (i.e. L:(A, B) is a subtype of 

A). A counter example is given to show that these two sets of sub­

typing rules are incoherent if they are put together directly. Our 

solution to this coherence problem is basically, by introducing a 

new subtyping relation and giving a new formulation of coercive 

subtyping, to ensure that there is only one coercion (with respect 

to computational equality) between any two types (if there is a 

coercion at all). This new formulation not only satisfies coherence 

requirements but also enjoys other properties, particularly, the ad­

missibility of substitution and transitivity. 

To summarise, the thesis provides not only the proofs concerning co­

herence and transitivity but also clearer understanding of the problems 

with the subtyping rules for parameterised inductive data types. The 

problems identified here have not been realised before in the literature 

except in some of my publications in collaboration with Zhaohui Luo 

and Sergei Soloviev. The discovery of these problems also leads us to 

fundamental future work on the extension of type theory by adding 

new computation rules for parameterised inductive types so that the 

natural subtyping rules for all the parameterised inductive types can 

be uniformly used together. 

1. 7. Structure of the thesis 

In Chapter 2, I give a formal and detailed presentation of Zhaohui 

Luo's UTT. UTT is an intensional type theory specified by a typed 

version of Martin-Lof's logical framework. It includes an internal logic 

(i.e. second order logic, SOL) and a large class of inductive data types 

generated by inductive schemata. We also consider a subset of in­

ductive data types that have only one constructor and give a general 

definition of function operators. These operators play important roles 

in the definitions of coercions later. 
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Chapter 3 is a formal presentation of coercive subtyping. Some 

important issues in the system, such as the coherence and transitivity, 

are discussed and made precise. It also carries a important concept 

of Well-defined coercions (WDC). The subtyping rules for the type of 

dependent pairs and dependent functions are presented. The different 

choices of defining coercions and their consequences are remarked. 

In Chapter 4, I study how to prove the coherence and the admis­

sibility of transitivity for the subtyping rules. An algorithm for the 

coercion search is also given. We also discuss the results more gener­

ally and demonstrate how coercions are defined for those parameterised 

inductive data types that have only one constructor. 

In Chapter 5, I present the notion of weak transitivity and give 

a general form of subtyping rules for a large class of parameterised 

inductive types. Coherence and weak transitivity will be proved for 

these subtyping rules. At the end of this chapter, we discuss new 

computation rules for parameterised inductive types. 

Chapter 6 studies how to combine the incoherent subtyping rules 

for the type of dependent pairs: the component-wise rules and the rule 

of its first projection. Coherence and the admissibility of transitivity 

for the new formulation of coercive subtyping are proved. 

Finally, conclusions are presented and some related issues such as 

implementation of coercive subtyping and future work are discussed in 

Chapter 7. 

1.8. Related work 

In this section I briefly review some of the other pieces of work that 

are related to this thesis. Subtyping in computer science is not a new 

concept and it is traditionally understood as the notion of subsets in 

mathematics. However, it is fair to say that the notion of subtyping is 

one the most important concepts in programming languages. 

1.8.1. Subtyping in programming languages 

Subtyping is characteristically found in object-oriented languages 

and is often considered as an essential feature of the object-oriented 

style. Object-oriented languages take the view that all types are sys­

tematically related in a type hierarchy. Types lower in the hierarchy are 

somehow compatible with more general types higher in the hierarchy. 
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For example, a integer can be "converted" or "cast" to a floating-point 

number. 

Besides simple subtypes, there are subtyping rules used in object­

oriented languages. 

• Record subtyping and Product subtyping: 

s1 <: T1, ... , sk <: Tk 

{a1: S1, ... ,an: Sn} <: {a1: T1, ... , ak: Tk} 

s1 <: T1 s2 <: T2 
s1 x s2 <: T1 x T2 

where <: means "is a subtype or'. 

• Function subtyping: 

T1 <: S 1 S2 <: T2 
s1 -+ s2 <: T1 -+ T2 

for 1 :::; k :::; n 

One method is a valid replacement for another if it obeys the func­

tion subtyping rule. In particular, the arguments of the subtype 

method must be of more general types. Very few languages obey 

both the covariant and contravariant parts of the rule. Languages 

such as Java and C++ are less flexible partly due to interactions 

with other rules for resolving name overloading. 

Subtyping is also suggested to obtain the implicit polymorphism in 

functional programming language. In [Mit91], a general framework 

based on untyped A-calculus provides a simple semantic model of sub­

typing and the algorithms may be extended to allow polymorphic func­

tion declarations as in ML. Most traditional A-calculi with subtyping 

include the function su btyping rule (as above), su bsum ption rule and 

transitivity rule as follows. 

(Subsumption rule) 

(Transitivity rule) 

t: U U <: T 
t: T 

S <: U U <: T 
S <:T 

The name and form of these rules may be variant, for example, the co­

erce rule in [Mit91] is another version of the subsumption rule and the 

cut rule in [LMSOO] is the transitivity rule. The subsumption and tran­

sitivity rules are not immediately suitable for implementation. Their 

premises mention the type U which does not appear in the conclusion. 

We have to find a type U in a type checking algorithm. If there is only 
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a finite number of Us, that is fine. However, in many cases there is 

an infinite number of Us, so it is unlikely to give an algorithm to find 

a type U. This is one of the reasons that we often need to prove the 

admissibility (or elimination) of the transitivity rule. 

The subsumption rule has another problem when we want to reason 

over inductive data types. The standard reasoning principle is that if 

we can prove that a proposition P holds for every canonical object 

of an inductive data type A then P holds for every object of A. If we 

have the subsumption rule, the canonical objects in a subtype are also 

canonical objects of its supertype and how to formulate the reasoning 

principles may become very difficult when various inductive data types 

are considered. 

Some systems include the top type (Top) and bottom type. Every 

type is a subtype of the top type and is a supertype of the bottom type. 

In [Reh96], the property of strong normalisation has been proven in a 

very simple subtyping system with the top type and bottom type. The 

system F<= [CMMS91], an extension of the system F with subtyping, 

also includes the top type that is a convenient technical device to re­

cover ordinary unbounded quantification from bounded quantification. 

A unbounded quantification \:;/ X.P is just an abbreviation of bounded 

quantification VX <: Top.P. 

Subtyping between record types has also been studied in [BT98, 

Tas97]. One can inherit from an existing record type by adding new la­

bels associated with their types and get a sub-record type. The essence 

is the same as that of the record subtyping rule in object-oriented lan­

guages. In [BF99, BvROO], constructor subtyping has been introduced 

in simply typed A-calculi and dependently typed systems. An inductive 

type A is viewed as another inductive type B if B has more construc­

tors than A. This idea is in line with that of the subsumption rule 

and the system is not well-behaved with respect to canonical objects in 

inductive data types. For example, nil(Even) and nil(Nat) are both 

closed normal objects of List(Nat) although they represent the same 

thing, the empty list of List(Nat). 

In [LMS95, LMSOO], a logic of subtyping has been studied. The 

idea is that one can give a logical understanding of "a is a subtype of 

r" as "a implies r", or more precisely as "a entails r" (a f- r). The 
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function subtyping rule in the system is in a different form 

a' f-a T f- T
1 

a-----t T f-a' -----t T' 
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and the notion of subtyping in the system is a special case of intuition­

istic implication: a proof of a f- T. 

1.8.2. Coercions in type theory 

The early development of the framework of coercive subtyping is 

closely related to Aczel's idea in type-checking overloading methods 

for classes and the work on giving coercion semantics to .\-calculi with 

subtyping by Breazu-Tannen et al [BCGS91]. In [Luo99], Z. Luo for­

malised coercive subtyping, a formal extension with subtyping of de­

pendent type theories such as Martin-Lof's type theory [NPS90] and 

the type theory UTT [Luo94]. 

The implementation of coercions 

Coercion mechanisms of non-dependent coercions with certain re­

strictions have been implemented in both the proof development sys­

tems Lego [LPT89] and Coq [B+oo], by Bailey [Bai98] and Sai"bi [Sai97], 

respectively. 

Bailey has extended the Lego system with coercion synthesis (i.e. 

LEGOwcs) [Bai98] and introduced three kinds of implicit coercions; 

Standard coercions, which coerce an object a of type A into an object 

c(a) of type B; Kind coercions, which coerce an object a of type A 

into a kind c(a); and IT-coercions, which coerce an object a of type A 

into a function c(a), where cis a coercion. Coercions in LEGOwcs are 

represented by a finite graph with parameters, so it is fairly easy to 

guarantee coherence and transitivity. 

Sai"bi has also introduced an inheritance mechanism and implements 

coercions in Coq. The use of this mechanism, with some other facilities 

such as the implicit argument synthesis and infix notions, makes math­

ematical statements more readable. He has introduced two abstract 

classes; SORTCLASS, which allows us to write x : A when A is not a 

type, but can be seen in a certain sense as a type such as set, group 

and category; and FUNCLASS, which allows us to write f(x) when f 
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is not a function, but can be seen in a certain sense as a function such 

as bijection. 

Callaghan of the Computer Assisted Reasoning Group at Durham 

has implemented Plastic [Cal99, CLPOl, CLOl], a proof assistant that 

supports logical framework and coercive subtyping with a mixture of 

simple coercions, parameterised coercions and dependent coercions. 

Theoretical study on coercive subtyping 

Some important meta-theoretical aspects of coercive subtyping (for 

non-dependent coercions) have been studied. In particular, the results 

on conservativity and on transitivity elimination for kinds have been 

proved in [JLS98, 8102]. The conservativity result says, intuitively, 

that every judgement that is derivable in the theory with coercive sub­

typing and that does not contain coercive applications is derivable in 

the original type theory. Furthermore, for every derivation in the the­

ory with coercive subtyping, one can always insert coercions correctly 

to obtain a derivation in the original type theory. 

The main result of [8102] is that coherence of basic subtyping rules 

does imply conservativity, under certain conditions. (These conditions 

are satisfied, for example, for the type theory UTT). The proof of the 

conservativity theorem consists of the following three major parts: 

1. Lemmas about general meta-theoretical properties of the theory 

with coercive subtyping; 

2. Transitivity elimination in the calculus with subtyping and sub­

kinding but without coercive application and definition rules; 

3. The proof of the well-definedness (totality) of a coercion completion 

which maps derivations of the full theory into the calculus without 

coercive application and definition rules. 

These results not only justify the adequacy of the theory from the 

proof-theoretical consideration, but also provide the proof-theoretical 

basis for implementation of coercive subtyping. 

An important study on coercive subtyping is Dependent Coercions 

[1899]. A dependent coercion is a function from a type to a family of 

types; informally, the supertype is the union of the types in the family. 

It is different from parameterised coercions. The dependent coercions 
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and non-dependent coercions have the same meta-theoretical results, 

that is, the conservativity theorem holds. 



CHAPTER 2 

UTT 

In this chapter, we give a formal and detailed presentation of Zhao­

hui Luo's UTT. UTT is an intensional type theory specified by a typed 

version of Martin-Lof's logical framework. It includes an internal logic 

(i.e. second order logic, SOL) and a large class of inductive data types 

generated by inductive schemata. Related work on UTT and Exten­

sional Type Theory will be discussed at the end of this chapter. 

2.1. Logical Framework 

Logical frameworks arise because one wants to create a single frame­

work, which is a kind of meta-logic or universal logic, which is itself 

implementable and in which the logics can be represented. The Edin­

burgh Logical Framework [HHP87] is intended to provide such a means 

of presentation. It comprises a formal system yielding a formal means 

of presentation of logical systems, and an informal method of finding 

such presentations. An important part in presenting logics is played by 

a judgements-as-types principle, which can be regarded as the meta­

theoretical analogue of the well-known propositions-as-types principles 

[CF58, dB80, How80]. Martin-Lof's logical framework [NPS90] has 

been developed by Martin-Lof to present his intensional type theory. 

In UTT [Luo94], Luo proposed a typed version of Martin-Lof's logical 

framework (LF), in which untyped functional operations of the form 

(x)k are replaced by typed [x: K]k. 

In this section, we consider the typed version of Martin-Lof's log­

ical framework, and how to use it as a meta-language to specify type 

theories. 

2.1.1. The inference rules of LF 

First, there are five forms of judgements in LF, as follows: 

• r valid, which asserts that r is a valid context; 

e r f- K kind, which asserts that K is a kind; 

22 
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• r f- k : K, which asserts that k is an object of kind K; 

• r f- k = k' : K, which asserts that k and k' are equal objects of 

kind ]{; and 

• r f- ]{ = K', which asserts that ]{ and K' are equal kinds. 

The inference rules of LF are given in Figure 2.1.1. There is a special 

kind Type in LF, each of whose objects A generates a kind El(A). 

When specifying a type theory in LF, Type corresponds to the con­

ceptual universe of types of the type theory to be specified, and for 

any type A, an object of kind Type, kind El(A) corresponds to the 

collection of objects of type A. 

Definition 2.1.1 (types, kinds and small kinds) A is called a r­
type if r f- A : Type, K is called a r -kind if r f- K kind. A r -kind is 

called small if it is either of the form El(A) or of the form (x : Kl)K2 

for some small r -kind K 1 and small (r, x : K 1 )-kind K2 . 

Notation 2.1.2 We shall use the following notational conventions: 

• When no confusion may occur, we shall often omit the El-operator 

in LF to write, for example, A for El(A), (x : A)B for 

(x: El(A))El(B), r f-a= b: A for r f-a= b: El(A) etc. 

• FV ( lvf) is the set of free variables in lvf. For a context r, if r is 

X1: Kl, ... ,X71 : Kn then FV(f) = {x1, ... ,x11 }. 

• We shall write (K)K' for (x : K)K' when x does not occur free 

in K'. For application of a functional operator, we shall write 

f(kl, ... , kn) for f(kl) ... (k2)· 
• Functional composition: for f : (K1)K2 and g : (y : K 2)K3[y], 

define go f =df [x : KI]g(J(x)) : (x : K 1)K3 [f(x)], where x does 

not occur free in f or g. 

• Substitution: as usual, [N/x]M stands for the expression obtained 

from M and substituting N for the free occurrences of variables x 

in lvf, defined as usual with possible changes of bound variables; 

informally, we sometimes use .M[x] to indicate that variable x may 

occur free in M and subsequently write iVI[N] for [N/x]iVI, when 

no confusion may occur. 

If M is a sequence < iVh, ... , iVI11 >, we often write [N /x].l\1 for the 

sequence < [N /x]A11 , ... , [N/x]Nin > 
We also write [N /x].M for [N1/x 1 , ... , N11 /x 11 ]111 where Nand x are 
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Contexts and assumptions: 

r 1- K kind x ~ FV(r) r, X: K, r' valid 
r,x: K,f' 1- X: J( <> valid f, X : /( valid 

General equality rules: 

r 1- J( kind 

fi-K=K 

fl-k:K 
fl-k=k:K 

r 1- K = K' 
r 1- K' = K 

r 1- k = k': K 

r 1- k' = k: K 

Equality typing rules: 

r 1- K = K' r 1- K' = K" 
r 1- K = K" 

r 1- k = k' : K r 1- k' = k" : K 

r 1- k = k": K 

r 1- k : K r 1- K = K' r 1- k = k' : K r 1- K = K' 
r 1- k : K' r 1- k = k' : K' 

Substitution rules: 

r,x: K,f' valid r 1- k: K 
r, [k/x]f' valid 

r, x : K, r' 1- K' kind r 1- k : K 
r, [k/x]f' 1- [kjx]K' kind 

r, x : K, r 1- K' kind r 1- k = k' : K 
r, [kjx]f' 1- [kjx]K' = [k' jx]K' 

r, x : K, r' 1- k' : K' r 1- k : K 
r, [k/x]f' 1- [kjx]k': [kjx]K' 

r, x : K, r' 1- k' : K' r 1- k1 = k2 : K 
r, [kl/x]f' 1- [kl/x]k' = [k2 /x]k': [kl/x]K' 

r, x : K, r' 1- K' = K" r 1- k : K 
r, [k/x]f' 1- [kjx]K' = [kjx]K" 

r, x: K, r' 1- k' = k" : K' r 1- k: K 
r, [kjx]f' 1- [kjx]k' = [kjx]k": [kjx]K' 

The kind Type: 

r valid 
r 1- Type kind 

r 1- A: Type 

r 1- El(A) kind 
r 1- A = B : Type 

r 1- El(A) = El(B) 

Dependent product kinds: 

f 1- /( kind f, X:/( 1- J(' kind 

r 1- (x : K)K' kind 
r 1- K1 = K2 r,x: K1 1- Kr = K~ 

r 1- (x : Kl)Kr = (x : K2)K~ 

r, x: K 1- k: K' 
r 1- [x : K]k : (x : K)K' 

r 1- J : (x : K)K' r 1- k : K 

r 1- j(k): [kjx]K' 

r 1- K1 = K2 r, x : K1 1- k1 = k2 : K 
r 1- [x : KI]k1 = [x : K 2]k2 : (x : K1 )K 

r 1- J = J' : (x : K)K' r 1- k1 = k2 : K 
r 1- j(k1) = j'(k2): [kl/x]K' 

24 

(!3) r,x: K 1- k': K' r 1- k: K (rJ) r 1- f: (x: K)K' x ~ FV(f) 
r 1- ([x: K]k')(k) = [kjx]k': [kjx]I<' r 1- [x: K]j(x) = j: (x: K)K' 

FIGURE 2.1.1. The inference rules of LF 
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sequences < N1 , ... , Nn > and < XI, ... , Xn > which have the same 

length n (nEw) . 
• Context equality: for r Xl : Kl, ... , Xn : Kn and 

r' XI : K~' ... ' Xn : K~' we shall write f- r = r' for the sequence 

of judgements f- K1 = K~, ... , X1 : K1, ... , Xn-1 : Kn-1 f- Kn = K~. 

2.1.2. Specifying type theories in LF 

In general, a specification of a type theory in LF consists of a collec­

tion of declarations of new constants and a collection of computation 

rules. Formally, we declare a new constant k of kind K by writing 

k:K 

which represents that we add a new inference rule 

r valid 

rf-k:K 

into the type theory (specified by means of LF). For a kind K which 

is either Type or of the form El(A), we assert a computation rule by 

writing 

which represents that we add a new inference rule which is of the form 

prem~ses 

r f- k = k': K 

into the type theory. 

Example 2.1.3 We can introduce the type of natural numbers by declar­

ing the following constants: 

N Type 

0 N 

S (N)N 

EN (C: (N)Type)(c: C(O)) 

(J : (n : N) ( C(n) )C(S(n))) 

(n: N)(C(n)) 



CHAPTER 2. UTT 

and asserting the following two computation rules: 

£N(C, c, j, 0) 

£N(C, c, j, S(n)) 

c: C(O) 

f(n, £N(C, c, j, n)) : C(S(n)) 
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which represent that we add the following six new inference rule (Figure 

2.1.2} into type theory. 

Introduction rules: 

r valid 
r I-N: Type 

Elimination rule: 

r valid 
fi--O:N 

r valid 

r valid 

r I-S: (N)N 

r I- EN : (C: (N)Type)(c: C(O))(f: (n: N)(C(n))C(S(n)))(n: N)(C(n)) 

Computation rules: 

rI-C: (N)Type r 1-- c: C(O) r 1-- J: (n: N)(C(n))C(S(n)) 
r 1-- [N(C,c,j,O) = c: C(O) 

r 1-- C: (N)Type r 1-- c: C(O) r 1-- j: (n: N)(C(n))C(S(n)) r 1-- n: N 
r 1-- [N(C, c, j, S(n)) = f(n, [N(C, c, j, n)) : C(S(n)) 

FIGURE 2.1.2. The inference rules for natural numbers 

2.1.3. Computational equality 

We shall say that two objects k and k' of the same kind K in the 

type theory UTT are computationally equal if for some valid context 

r, the judgement r f- k = k' : K is derivable in UTT. 

Note 2.1.4 In the intensional type theory UTT, every well-typed term 

has a unique normal form. If r f- k = k' : K is derivable, k and k' 

can be computed to a same normal form (or weak head normal form). 

Therefore, we can say that k and k' are computationally equal if they 

are well-typed and have the same normal form. 

If two objects of same kind are ,Bry-convertible, we say that they 

are definitionally equal. Since computation consists of not only ,Bry­
reduction but also reduction rules introduced by asserting computation 

rules for inductive data types, if two objects are definitionally equal, 

they are of course computationally equal. 
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Notation 2.1.5 We shall often write M _ N to indicate that !vi and 

N are syntactically equal with respect to a-conversion. 

We shall say that k is not computationally equal to k' if for any r 
and K, the judgement r f- k = k' : K is not derivable in the type 

theory UTT, in other words, k and k' cannot be computed to the same 

normal form. 

2.2. SOL: the internal logical mechanism 

The internal logic in UTT consists of a universe Prop of logical 

propositions and their proof types. They are introduced by declaring 

the following constants: 

Prop Type 

Pr f (Prop)Type 

V (A: Type)((A)Prop)Prop 

A (A: Type)(P: (A)Prop)((x: A)Pr J(P(x)))Pr f(V(A, P)) 

Ev (A: Type)(P: (A)Prop)(R: (Pr j(V(A, P)))Prop) 

((g: (x: A)Pr j(P(x)))Pr j(R(A(A, P, g)))) 

(z: Pr j(V(A, P)))Pr j(R(z)) 

and asserting the following computation rule: 

Ev(A, P, R, j, A(A, P, g))= J(g) : Pr j(R(A(A, P, g))) 

The logical universe Prop is impredicative since universal quantifica­

tion V(A, P) can be formed for any type A and predicate P over A. In 

particular, A can be Prop itself or more complex. 

The usual application operator can be defined as 

App =df [A: Type][P: (A)Prop][F: Pr j(V(A, P))][a: A] 

Ev(A, P, [G: Pr j(V(A, P))]P(a), 

[g: (x: A)Prf(P(x))Jg(a), F) 

which satisfies the equality (the ,B-rule for A and App ): 

App(A, P, A(A, P, g), a)= g(a) : Prj(P(a)) 
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Notation 2.2.1 For universal quantification, when no confusion may 

occur, we shall often write 't/x : A.P for 't/(A, [x : A]P) and App(F, a) 

for App(A, P, F, a). 

The usual logical operators can also be defined as follows ( P 1 and 

P2 are propositions, A is a type and P3 is of kind (A)Prop): 

pl ~ p2 =df 't/x : Pr f(Pl).P2 

true =df 't/ P : Prop.P ~ P 

false =df 't/ P : Prop.P 

P1&P2 =df 't/P: Prop.(P1 ~ P2 ~ P) ~ P 

pl v p2 =df 't/P: Prop.(P1 ~ P) ~ (P2 ~ P) ~ P 

--,pl =df P1 ~false 

:::Jx: A.P3 (x) =df 't/P: Prop.('t/x: A.(P3 (x) ~ P)) ~ P 

Propositional equality 

Now, we introduce a new equality relation Eq of kind 

(A: Type)(x: A)(y: A)Prop by declaring the following new constants 

in SOL. 

Eq (A : Type)(x : A)(y : A)Prop 

eq (A: Type)(x: A)Pr f(Eq(A, x, x)) 

£Eq (A: Type)(x: A)(y: A)(P: (A)Prop) 

(Pr f(Eq(A, x, y))) (Pr f(P(x)) )Pr f(P(y)) 

Remark 2.2.2 We have the following remarks: 

• There are two ways to introduce the equality Eq. One way is to 

declare new constants in SOL as above. The other is to use the 

definable Leibniz equality. Detailed discussion on different choices 

of ·introducing the equality Eq and the elimination operator £Eq can 

be found in [Luo94]. 

e In Martin-Lijf's type theory, the equality I(A, a, b) (where A is a 

type and, a and b are objects of A) is introduced as a type rather 

than a proposition. Any two objects p and q of the type I(A, a, b) 
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are equal (i.e. p = q : I(A, a, b)}; this is called proof irrelevancy. 

The introduction and elimination rules can be found in [ML84]. 

Definition 2.2.3 

• We say that a proposition P is provable in a context r 
if r f- p: Pr f(P) for some p, and such a p is a proof of P. 

• We say that the objects a and b of type A are propositionally 

equal if the proposition Eq(A, a, b) is provable in the empty context 

in the intensional type theory UTT. 

2.3. Inductive data types 

In this section, we shall introduce inductive data types based on the 

notion of inductive schemata, which is very similar to [Luo94], with 

the difference that we give recursive definitions of elimination rules 

and computation rules in this thesis. Inductive data types have been 

studied by, for example, Gentzen [Gen35] and Prawitz [Pra73, Pra74], 

for traditional logical systems, and by Martin-Lof [ML84], Backhouse 

[Bac88], Dybjer [Dyb91], and Coquand and Mohring [CPM90] for type 

theories. To understand an inductive type, we must understand both 

its introduction rules and its elimination/computation rules. 

Definition 2.3.1 (Inductive schemata) Let r be a valid context, 

S1 , ... , Sk {k E w} be kinds in r, i.e. judgement r f- Si Kind is derivable 

(i = 1, ... , k}, X be a placeholder of kind (s1 : S 1 ) ... (sk : Sk)Type such 

that X tJ_ FV (r). 

• A strictly positive operator in r with respect to X is of one of 

the following forms: 

1. <[> X(sl, ... , sk), where r f- Si: si (i = 1, ... , k}, or 

2. <I> _ (x : K)<l> 0 , where K is a small r -kind, and <l>0 is a strictly 

positive operator in r) X : K with respect to X. 

• An inductive schema 8 with respect to X is of one of the fol­

lowing forms: 

1. 8 = X(sl, ... , sk), where r f- Si: si (i = 1, ... , k},or 

2. 8 = (x : K)80 , where K is a small r -kind, and 8 0 zs an 

inductive schema in r, .1: : K with respect to X, or 
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3. 8 (X : <l>) 8o, where <l> is a strictly positive operator in f 

with respect to X, 8 0 is an inductive schema in r with respect 

to X , and x rf_ FV(80 ). 

0 

A strictly positive operator <I> with respect to X is of the form 

where every Kj is a small kind. An inductive schema 8 with respect 

to X is of the form (x 1 : 1\!ft) ... (xt: Mt)X(s1 , .•. , sk), where every J\!Ij is 

either a small kind or a strictly positive operator. When we introduce 

inductive data types into type theory, the smallness condition of kinds 

occurring in inductive schemata is important. For example, neither 

(Type)X nor ((A)Type)X is an inductive schema because Type is not 

a small kind. Otherwise such schema may lead to logical paradoxes. 

Notation 2.3.2 We often writes for s 1 , ... , sk, A for A 1, ... ,An, <I>[AJ 

for [A/ X] <I> and 8[A] for [A/ X]8. 

Definition 2.3.3 Let 8 be an inductive schema. Then, for 

A (s1 : SI) ... (sk : Sk)Type 

C (s 1 : SI) ... (sk : Sk)(x: A(s))Type 

f (s1 : SI) ... (sk : Sk)(x: A(s))C(s, x) 

z 8[AJ 

y <I>[AJ 

define kind <I>* [C, y J recursively as follows: 

(X(s))*[C, y] 

((x: K)<I>0)*[C, y] 

C(s, y) 

(x: K)<I>~[C, y(x)] 

define <I>Q[f, y] of kind <I>*[C, y] as follows: 

(X(s))Q[f, y] 

((x: K)<I>o)Q[f, y] 

f(s,y) 

[x: K]<I>~[f, y(x)] 
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and define kind eo[A, C, z] recursively as follows: 

(X(s)t[A, C, z] 

((x: K)80 t[A, C, z] 

((x: <I>)8ot[A, C, z] 

C(s, z) 

(x : K)8~[A, C, z(x)] 

(x: <I>[A])(x' : <I>*[C, x])8~[A, C, z(x)] 
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With the above notations, we can now introduce the inductive data 

types. 

Consider (parameterised) inductive data types generated by the 

following form: 

where every 7i (i = 1, ... , n) is a kind in r, A 1 : T1, ... , Ai-l : Ti-1, 

8 -< 81, ... , 8m > (mEw) is a finite sequence of inductive schemata 

in r, A 1 : T1, ... , An : Tn. 

Note 2.3.4 None of the parameters occur free in r (i.e. A rf_ FV(f)) 
and there might be no parameter (i.e. n = 0). 

Then we declare the following constant expressions: 

T (A1 : Tl) ... (An : Tn)(sl : SI) ... (sk : Sk)Type 

l1 (A1 : TI) ... (An : Tn)81[T(A)] (j = 1, ... , m) 

£T (A1 : TI) ... (An : Tn) 

(C: (s1 : SI) ... (sk : Sk)(T(A, s))Type) 

(h : 8~[T(A), C, h (A)]) ... 

Um : e~[T(A), C, lm(A)]) 

(s1 : S1) ... (sk: Sk)(z: T(A, s))C(s, z) 

In order to assert computation rules, we introduce the following nota­

tional definitions. 

Definition 2.3.5 Assume that 8 be of the form 

and x 1 , ... , Xt are fresh variables. Then 

o ev =< X1, ... , Xt >, 
• elast = s 

' • e~ as sequences of arguments: 
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1. if8 X then 8~ =< > 
2. if 8 (xr : K)8o then 8~ =< Xr, 8~ > (r = 1, ... , t) 

3. if 8 (xr : <l>)8o then 8~ =< Xr, <J>Q[£T(A, C, f), Xr], 8~ > 
(r = 1, ... , t) 

Remark 2.3.6 8v could be recursively defined as follows: 

1. if 8 = X then ev =< > 
2. if 8 = (xr : K)8o then ev =< Xn 8;) > (r = 1, ... , t) 

3. if 8 = (xr : <l>)8o then 8v =< Xn 8;) > (r = 1, ... , t) 

Finally, with above notational definition, we assert the following 

computation rules (j = 1, ... , m): 

Example 2.3. 7 We give five examples of inductive data types which 

will be used later. 

1. The type of natural numbers: N =df M[X, (X)X] 
There is no parameter for the type N and the placeholder X is of 

kind Type. The declaration of constants and computation rule has 

already been given in Example 2.1. 3. The functions for predecessor, 

addition, subtraction and multiplication can be defined as: 

pred =df EN([n: N]N, 0, [x: N][y: N]x) 

plus =df [m: N]£N([n: N]N, m, [x: N][y: N]S(y)) 

mznus =df [m: N]EN([n: N]N, m, [x: N][y: N]pred(y)) 

times =df [m: N]£N([n: N]N, 0, [x: N][y: N](m + y)) 

2. Lists: List =df [A: Type]M[X, (A)(X)XJ 
There is one parameter A : Type and the placeholder X is of kind 

Type. 
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Declare the following constants: 

List (A: Type)Type 

nil (A: Type)List(A) 

cons (A: Type)(a: A)(l: List(A))List(A) 

£List (A: Type)(C: (List(A))Type)(C(nil(A))) 

((a: A)(l: List(A))(C(l))C(cons(A, a, l))) 

(z: List(A))C(z) 

and assert the following computation rules: 

£List(A, C, c, f, nil(A)) - c: C(nil(A)) 

£List(A, C, c, f, cons(A, a, l)) - f(a, l, £List(A, C, c, f, l)) 

: C(cons(A, a, l)) 

The function mapList is defined as 

mapList =df [A : Type][B : Type][c: (A)B] 

£List(A, [l : List(A)]List(B), nil(B), 

[a: A][l: List(A)][l': List(B)]cons(B, c(a), l')) 

such that 

mapList(A, B, c, nil(A)) - nil(B) 

mapList(A, B, c, cons(A, a, l)) - cons(B, c(a), dList(l)) 

3. Function types: (---+) =df [A: Type][B: Type]M[((A)B)X] 
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There are two parameters A : Type and B : Type, and the place­

holder X is of kind Type. 

Declare the following constants: 

(---+) (A: Type)(B: Type)Type 

lam (A: Type)(B: Type)((A)B)(A---+ B) 

£(-->) (A: Type)(B: Type)(C: (A---+ B)Type) 

((g: (A)B)C(lam(A, B, g)))(z: A---+ B)C(z) 

and assert the following computation rule: 

Ec__,l(A,B,C,f,lam(A,B,g)) = f(g): C(lam(A,B,g)) 
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4. Binary trees: BTree =df [A: Type]M[X, (A)(X)(X)X] 
There is one parameter A : Type and the placeholder X is of kind 

Type. 

Declare the following constants: 

BTree 

empty 

mk 

Esrree 

(A: Type)Type 

(A : Type)BTree(A) 

(A : Type) (a: A) 

(t1 : BTree(A))(t2 : BTree(A))BTree(A) 

(A: Type)(C: (BTree(A))Type)(C(empty(A))) 

((a: A)(t1 : BTree(A))(C(t1)) 

(t2 : ETree(A))(C(t2))C(mk(A, a, t 1 , t 2 ))) 

(t: BTree(A))C(t) 

and assert the following computation rules: 

Esrree(A, C, c, f, empty(A)) - c: C(empty(A)) 

Esrree(A, C, c, j, mk(A, a, t1, t2)) - f(a, t1, Esrree(A, C, c, f, t1), 

t2, Esrree(A, C, e, f, t2)) 

: C(mk(A, a, t 1 , t2 )) 

5. Vectors: Vee =df [A: Type]M[X, (n: N)(A)(X(n))X(S(n))] 

There is one parameter A : Type and the placeholder X is of kind 

(N)Type. 

Declare the following constants: 

Vee (A : Type)(n : N)Type 

vnil (A:Type)Vee(A,O) 

veons (A: Type)(n: N)(a: A)(l : Vee(A, n))Vee(A, S(n)) 

Evec (A: Type)(C: (n: N)(Vec(A, n))Type) 

(C(O, vnil(A))) 

((n: N)(a: A)(l : Vee(A, n)) 

(C(n, l))C(S(n), veons(A, n, a, l))) 

(n: N)(l: Vee( A, n))C(n, l) 
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and assert the following computation rules: 

c: C(O, vnil(A)) Evec(A, C, c, j, 0, vnil(A)) 

Evec(A, C, c, j, S(n), vcons(A, n, a, l)) f(n, a, l, Evec(A, C, c, j, n, l)) 

: C(S(n), vcons(A, n, a, l)) 

Remark 2.3.8 Traditionally, the declaration of the elimination oper­

ator for binary trees is the following: 

£Brree : (A: Type)(C: (BTree(A))Type)(C(empty(A))) 

((a: A)(t1 : BTree(A))(t2 : BTree(A)) 

(C(t1))(C(t2))C(mk(A, a, t 1 , t2 ))) 

(t: BTree(A))C(t) 

During the time of my study of coercive subtyping rules for inductive 

data types, I discovered that the elimination operators and computation 

rules for inductive data types can be declared in a different way. The 

meaning of these new declarations is the same as before but the order 

of the arguements is different. The new order is generated by reC1.lrsive 

functions over inductive schemata and it makes the implementation of 

inductive data types easier, especially, if one uses functional program­

ming languages such as Haskell and ML. With these new declarations, 

it is also easier to give a general definition of coercions for the subtyping 

rules of parameterised inductive data types. 

2.4. ST-form: a subset of inductive data types 

In this section, we consider a subset of inductive data types that 

have only one constructor. We shall define some important function 

operators which will be used in later chapters. 

Consider (parameterised) inductive data types generated by the 

following form (under a valid context r) 1 
: 

(ST- joTm) 

where 8 is an inductive schema in r, Al : TI, ... ,An : Tn and has the 

form (x 1 : KI) ... (xt : Kt)X, every KJ (j = 1, ... , t) is a small kind, 

X rf. KJ, and Ti (i = 1, ... , n) is a kind. 

1ST stands for Strong Transitivity and is in contrast to WT that stands for Weak 
Transitivity. 
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Note 8s that have the form (xi : KI) ... (xt : Kt)X is just a subset of 

inductive schemata in r, AI : TI, ... ,An : Tn with respect to the place­

holder X of Type, and type T(A) generated by ST -form has only one 

constructor. However, vV -type2 is not included in ST -form although it 

has only one constructor. 

One can also recursively define this subset of inductive schemata, 

which is called ST-schema later. An ST-schema 8 in r with respect 

to a placeholder X of Type is of one of the following forms: 

1. 8 (x: K)X, where K is a small kind in r, or 

2. 8 (x : K)80 , where K is a small kind in r and, 8 0 is a ST-

schema in r, X: K. 

Then, we declare the following constant expressions: 

T (AI : TI) ... (An : Tn)Type 

(AI : TI) ... (An : Tn)8[T(A)] 

ET (A1 : TI) ... (An : Tn) 

(C: (T(A))Type) 

(! : eo[T(A), C, l(A)]) 

(z: T(A))C(z) 

and assert the following computation rule: 

where the definitions of eo, ev and 8~ are the same as in Section 2.3. 

In order to define the function operators, we first introduce some 

notational definitions. 

Definition 2.4.1 Assume that small kind K has the form 

(xi : I<r) ... (x1 : I<1)El(A) and xi, ... , x1 are fresh variables. Then 

• J{r =A, 

e J{V =<XI, ... , Xt >, 
• Let z be a fresh variable of any kind K'. Define KP[z] of kind 

(x 1 : Kr) ... (x 1 : Kt)K' as follows. 

J(P[z] = [xi : KJ] ... [xt : Kt]z 

2W =df [A: Type](B: (A)Type]M[(x: A)((B(x))X)X] 
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Note For any f : K, we have that f(Kv) : El(IC). 

Definition 2.4.2 Assume that 8 is a ST-schema of the form 

(xi : KI) ... (xt : Kt)X and XI, ... , Xt are fresh variables and, let z be an 

fresh variable of any kind]{'. Then, define 8P[z] of kind 

(xi : KI) ... (xt : Kt)K' as follows. 

·with the above notations, we can now define function operators 

over inductive data types generated by the ST-form: 

where 8 is a ST-schema of form (xi : KI) ... (xt : Kt)X, and every ]{j 

(j = 1, ... , t) is a small kind. 

Opj =df [AI : TI] ... [An : Tn][z: T(A)] 

[opi(A, z)/xi, ... , OPj-I(A, z)/xj-I] 

Kf[£T(A, [G: T(A)]Kj, GP[xj(Kj)], z)] 

Now, we give some examples to demonstrate how to define function 

operators3 over inductive data types with only one constructor. 

Example 2.4.3 The first example is the type of dependent function 

spaces; the second is the type of dependent pairs; the third is the type of 

non-dependent trio; the fourth example is the type of pairs in which the 

first component is functions and the second is objects of a type. These 

four types will be used in the later chapters. 

1. The type of dependent function spaces: 

IT =df [A: Type][B: (A)Type]M[((x: A)B(x))X] 

Declare the following constants: 

IT (A : Type)(B : (A)Type)Type 

A (A: Type)(B: (A)Type)((x: A)B(x))IT(A, B) 

En (A: Type)(B: (A)Type)(C: (IT(A, B)Type) 

(!: (g: (x: A)B(x))C(A(A, B, g))) 

(z : IT(A, B) )C(z) 

30ne may regard these function operators as generalised projections. 
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and assert the following computation rule: 

Err(A, B, C, f, >.(A, B, g))= f(g) : C(>.(A, B, g)) 

Then, the usual application operator can be defined as 

app =df [A: Type][B: (A)Type] 

[F: IT(A, B)J[a: A] 

Err(A, B, [G: IT(A, B)]B(a), 

[g: (x: A)B(x)]g(a), F) 

which satisfies the equality (the (3-rule for).. and app ): 

app(A, B, >.(A, B, g), a)= g(a) : B(a) 

However, the ry-rule does not hold: 

>.(A, B, app(A, B, F))#- F 

when F : IT( A, B) is a variable. 

2. The type of dependent pairs: 

I; =df [A: Type][B: (A)Type]M[(x: A)(B(x))X] 

Declare the following constants: 

I; (A: Type)(B: (A)Type)Type 

pmr (A: Type)(B: (A)Type)(x: A)(B(x))I;(A, B) 

£r, (A: Type)(B: (A)Type)(C: (I;(A, B))Type) 

(f: (x: A)(y: B(x))C(pair(A, B, x, y))) 

(z: I;(A, B))C(z) 

and assert the following computation rule: 

£'E(A, B, C, f,pair(A, B, x, y)) = f(x, y): C(pair(A, B, x, y)) 

38 
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Then the projection operators can be defined as: 

n, =df [A: Type][B : (A)Type][z: I;(A, B)] 

£dA, B, [z: I;(A, B)]A, [x: A][y: B(x)]x, z) 

n2 =df [A : Type][B : (A)Type][z : I;(A, B)] 

£dA, B, [z: I;( A, B)]B(n1 (A, B, z)), 

[x: A][y: B(x)]y, z) 

which satisfy the equalities: 

n1(A,B,pair(A,B,x.y)) - x: A 

n 2 (A, B,pair(A, B, x, y)) - y: B(x) 

3. Non-dependent Trio: 

Trio =df [A: Type][B: Type][C: Type]M[(A)(B)(C)X] 

Declare the following constants: 

Trio (A: Type)(B: Type)(C: Type)Type 

trio (A: Type)(B: Type)(C: Type) 

(A)(B) (C) Trio( A, B, C) 

Errio (A: Type)(B: Type)(C: Type) 

(D: (Trio(A, B, C))Type) 

(f: (a: A)(b: B)(c: C)D(trio(A,B,C,a,b,c))) 

(z: Trio(A, B, C))D(z) 

and assert the following computation rule: 

Errio(A, B, C, D, f, trio(A, B, C, a, b, c)) 
= f(a, b, c) : D(trio(A, B, C, a, b, c)) 

Then the projection operators can be defined as 

1fTrioi =df [A : Type][B : Type][C : Type] 

[z : Trio(A, B, C)] 

Erria(A, B, C, [G: Tr-·io(A, B, C)]A, 

[a: A][b: B][c: C]a, z) 

39 
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7rrrio2 =df [A : Type][B : Type][C : Type] 

[z : Trio(A, B, C)] 

Erria(A, B, C, [G: Trio(A, B, C)]B, 

[a : A][b: B][c: C]b, z) 

7rTrio3 =df [A : Type][B : Type][C : Type] 

[z : Trio(A, B, C)] 

Erria(A, B, C, [G: Trio(A, B, C)]C, 

[a: A][b : B][c: C]c, z) 

which satisfy the following equations: 

7rTriol(A, B, C, trio(A, B, C, a, b, c)) 

7rTrio2(A, B, C, trio(A, B, C, a, b, c)) 

7rTrio3(A, B, C, trio(A, B, C, a, b, c)) 

-

-

-

a A 

b B 

c c 
4. SPL =df [A: Type][B: Type][C: Type]M[((A)B)(C)X] 

Declare the following constants: 

SPL (A: Type)(B: Type)(C: Type)Type 

spl (A: Type)(B: Type)(C: Type) 

((A)B)(C)SPL(A, B, C) 

EsPL (A: Type)(B: Type)(C: Type) 

(D: (SP L(A, B, C))Type) 

(! : (g: (A)B)(c: C)D(spl(A, B, C, g, c))) 

(z: SPL(A, B, C))D(z) 

and assert the following computation rule: 

EsPL(A, B, C, D, j, spl(A, B, C, g, c)) 
= f(g, c) : D(spl(A, B, C, g, c)) 

40 
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Then the function operators can be defined as 

KsPLl =dt [A : Type][B : Type][C: Type] 

[z: SPL(A,B,C)][a: A] 

EsPL(A, B, C, [G: SPL(A, B, C)]B, 

[g : (A)B][c: C]g(a), z) 

1rsPL2 =dt [A : Type][B : Type][C :Type] 

[z : SP L(A, B, C)] 

EsPL(A, B, C, [G: SP L(A, B, C)]C, 

[g : (A)B][c: C]c, z) 

which satisfy the equalities: 

KsPLl (A, B, C, spl(A, B, C, g, c)) 

7rsPL2(A, B, C, spr(A, B, C, g, c)) 

g: (A)B 

c: c 

2.5. Related work and Extensional type theory 

2.5.1. Related work on UTT 
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It has been proved that, in Goguen's thesis [Gog94], UTT has nice 

meta-theoretical properties such as Church-Rosser, Subject Reduction, 

Strong Normalisation and the property of context replacement by equal 

kinds. We only give the following three properties in detail because they 

will be used later. 

The theorem of Church-Rosser: If the judgement 

r f-- k1 = k2 : K is derivable in UTT then there is a term k3 such that 

both k1 and k2 can be reduced to it. 

The theorem of strong normalisation: Every well-typed term 

in UTT is strongly normalisable. That is, every computation sequence 

starting from a well-typed term in UTT is finite. 

The property of context replacement by equal kinds: For 

any derivable judgement r f-- J in UTT, iff-- r = f' then f' f-- J is also 

derivable in UTT. 

Implemented in the Lego proof development system, UTT has been 

applied to verification of functional programs [BM92, Bur93], impera­

tive programs [Sch97], and concurrent programs [YL97], specification 
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and data refinement [Luo93] and formalisation of mathematics [Pol94]. 

UTT has also been implemented in Plastic, a proof development sys­

tem, which contains the implementation of Martin-Lof's logical frame­

work, inductive types, universes, and coercive subtyping [CLOl, CL99]. 

I also implemented the logical framework and UTT can be specified in 

it. I used mutually recursive types to represent the terms and kinds 

in the logical framework so that as many as possible ill-typed terms 

are not representable. Another major difference is that I use recursive 

definitions of elimination rules and computation rules to implement 

inductive data types (see Section 2.3 for more details). 

UTT also includes the predicative universes Typei ( i E w), which 

are types whose objects are names of types. Universes in UTT are spec­

ified in the Tarski style, using the explicit lifting operators to represent 

cumulativity in universes. We omit the details here because universes 

are irrelevant in the sense that the results in the thesis fit well into a 

type theory with or without universes. 

2.5.2. Extensional type theory 

In the intensional type theory UTT, if we add the following rule, 

the type theory then becomes an extensional type theory. 

fi-A:Type fl-a:A fl-b:A fl-q:Prf(Eq(A,a,b)) 

fl-a=b:A 

where Eq is the propositional equality, defined in Section 2.2, and = is 

the judgemental equality. Note that the above rule makes the resulting 

type theory undecidable and it loses the property of strong normalisa­

tion. 

Remark 2.5.1 One may change the last premise of the above rule to 

r I- q : I(A, a, b) where I(A, a, b) is a type as introduced in Martin­

Lof's type theory [ML84] because the informal semantics of Eq(A, a, b) 

and I(A, a, b) are the same for extensional type theories. 

Definition 2.5.2 {Extensional equality) We say that k1 and k2 of 

kind J( (under context r) are extensionally equal if the judgement 

r I- kl = k2 : J( is derivable in the extensional type theory. 
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Consistency 

The internal logic in any type theory must be consistent, namely 

there is at least one formula in the system which cannot be proved. 

The consistency of a type theory cannot be established in itself; if the 

type theory is inconsistent, it proves everything, even its own consis­

tency. So, in order to avoid circularity, model theory attempts to give 

semantics to explain a type theory using the notions outside the the­

ory itself. In the literature, there are many models for Martin-Lof's 

intuitionistic type theory. For example, such models can be found in 

[Bee85, Smi84, Set93, Set04]. The existence of these (non-trivial) mod­

els implies the consistency of the extensional type theory. 
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Coercive Subtyping 

In order to make large scale formal reasoning easier, we need subtyp­

ing technology for abbreviation, reuse and inheritance. In this chapter, 

we first give a brief introduction to coercive subtyping, and summarise 

some results related to coercive subtyping. Then, we lay down the 

necessary formal details, and explain the notion of coherence and its 

importance. 

3.1. Basic idea 

An inductive type in type theory can be understood as a set con­

sisting of its canonical objects. If we say type A is a subtype of type 

B, we mean that every object of type A is (regarded as) an object of 

type B. 

The traditional approaches based on direct overloading do not gen­

eralise to inductive types. A natural consideration might be to form 

a subtype A of type B by selecting some (canonical) objects from B, 

which are regarded as the (canonical) objects of A. However, in such a 

setting, type-checking is difficult (and in general undecidable). It is not 

clear how one may introduce suitable restrictions on subtype formation 

to ensure decidable type-checking. One suggestion that has been made 

in the literature is to specify a subtype by declaring its constructors to 

be a subset of the constructors of an existing supertype [Coq92], but 

this would exclude some interesting applications of subtyping such as 

inheritance between mathematical theories represented as E-types. 

As studied in [Luo99], coercive subtyping represents an approach 

to subtyping and inheritance in type theory. The basic idea of coercive 

subtyping is that A is a subtype of B if there is a (unique) coercion c 

from A to B, and therefore, any object of type A may be regarded as 

object of type B via c, where c is a functional operation from A to B 

in the type theory. In the theoretical framework of coercive subtyping, 

the role of c is represented by the coercive definition rule which says 

44 
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that, iff is a functional operation with domain K, k0 is an object of 

K 0 , and cis a coercion from K 0 to K, then f(ko) is (well-typed and) 

definitionally equal to f(c(k0 )). The following rule is the basic coercive 

definition rule which shows the idea. 

f : (x : K)K' ko : Ko Ko <c K 
f(ko) = f(c(ko)) : [c(ko)/x]K' 

The above simple idea, when formulated in a typed logical frame­

work [Luo94], becomes very powerful. Z. Luo has developed the frame­

work that covers subtyping relations represented by the following kinds 

of coercions: 

• Simple coercions: representing subtyping between two types. For 

example, coercions between basic inductive types: Even is a sub­

type of Nat. 

• Parameterised coercions: representing (point-wise) subtyping (or 

subfamily relation) between two families of types indexed by ob­

jects of the same type. A coercion can be parameterised over free 

variables occurring in it and (possibly) its domain or range types. 

As a special of case, for example, each vector type Vec(A, n) can 

be taken as a subtype of that of lists List(A), parameterised by the 

index n, where the coercion would map the vector < a1 , ... , an > to 

the list [al, ... ,an]· 

• Coercions between parameterised inductive types: we have general 

schematic rules that represent natural propagation of the basic co­

ercions to other structured (or parameterised) inductive types. For 

example, L:(A, B) is a subtype of L:(A', B') if A is a subtype of A' 

and B is a subfamily of B'. 

Coercive subtyping has applications in many areas such as large proof 

development, inductive reasoning, representing implicit syntax (e.g. 

overloading), etc. 

3.2. A formal presentation 

In this section, we give a formal presentation of the framework of 

coercive subtyping which is also the basis of our development latter. 

A system with coercive subtyping, T[R], is an extension of any type 

theory T specified in LF, with two new judgement forms: 
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e r f- A <c B : Type asserts that type A is a subtyping of type B 

with c. 

• r f- I< <c I<' asserts that kind I< is subkind of kind I<' with c. 

The coercive subtyping system can be presented in two stages: first 

we consider the system T[R]o with subtyping judgements of the form 

r f- A <c B : Type, then the system T[R] with subkinding judgements 

of the form r f- J{ <c I<'. 

Remark 3.2.1 A type theory specified in LF, for example, Martin­

Lof 's intensional type theory or Luo 's UTT, has nice meta-theoretical 

properties such as Church-Rosser, Subject Reduction and Strong Nor­

malisation. 

3.2.1. The system T[R]o 

T[R]o is an extension of type theory T with the subtyping judge­

. ment form r f- A <c B : Type, by adding the following rules: 

o A set n of subtyping rules whose conclusions are subtyping judge­

ments of the form r f-A <c B: Type. 

• The following congruence rule for subtyping judgements 

r f- A <c B : Type 

(Gong) 
r f- A = A' : Type r f- B = B' : Type r f- c = c' : (A) B 

r f- A' <c' B' : Type 

In the presentation of coercive subtyping in [Luo99], T[R]o also has the 

following substitution and transitivity rules: 

(Subst) 

(Trans) 

r, X: I<, r' f-A <c B: Type r f- k : J{ 

r, [k/x]f' f- [kjx]A <[k/x]c [kjx]B: Type 

r f- A <c B : Type r f- B <c' C : Type 

r f-A <c'oc C: Type 
Since we will prove that the substitution and transitivity rules are 

admissible, we do not include them as basic rules. 

Remark 3.2.2 We have the following remarks: 

• T[R]o is obviously a conservative extension of the original type 

theory T, since the subtyping judgements do not contribute to any 

derivation of a judgement of any other form. 

• The set of subtyping rules is supposed to be coherent; we shall give 

a definition and discussions of coherence in the next subsection. 
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e The substitution rule (Subst) and transitivity rule (Trans) cannot 

be directly implemented. For this reason, among others, proving 

the admissibility (or elimination) of such rules is always an impor­

tant task for any subtyping system. 

3.2.2. Coherence of the subtyping rules 

The most basic requirement for such subtyping rules is that of co­

herence, given in the following definition, which essentially says that 

coercions between any two types must be unique. 

Notation 3.2.3 We often use the notation r 17 J which means the 

judgement r f- J is not derivable in the current system. 

Definition 3.2.4 (Coherence condition of T[R]o) We say that the 

subtyping rules are coherent if T[R]o has the following coherence prop­

erties: 

1. If r f- A <c B : Type, then r f- A : Type, r f- B Type, and 

ff-c: (A)B. 

2. r l7 A <c A: Type for any r, A and c. 

3. If r f- A <c B : Type and r f- A <c' B : Type, then 

r f- c = c': (A)B. 

Remark 3.2.5 This notion of coherence is slightly different from the 

one given in [Luo99], since there the rules (Subst)(Trans) are included 

in T[R]o. However, we will prove that these two rules are admissible 

in T[R]o. In general, when parameterised coercions and substitutions 

are present, coherence is undecidable. This is one of the reasons one 

needs to consider proofs of coherence in general. 

3.2.3. The system of T[R] 

Let R be a set of coherent subtyping rules. The system T[R], an 

extension of type theory T with coercive subtyping with respect to R, 

is obtained from T[R]0 by adding the inference rules in Figure 3.2.1 

and in Figure 3.2.2. 

Remark 3.2.6 The inference rules in Figure 3.2.1 and in Figure 3.2.2 

are deliberately separated. In the system we are presenting at the mo­

ment, all the rules are included. In the system with weak transitivity, 
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Basic subkinding rule: 

r f- A <c B : Type 

r f- El(A) <c El(B) 

Subkinding rule for dependent kinds: 

r f- (x : KI)K2 <[j:(x:K!)Kz)[x:Kl]c(f(x)) (x : Kl)K~ 

Congruence rule for subkinding: 

r f- K1 <c K2 
r f- K1 = K~ r f- K2 = K~ r f- c = c' : (K1)K2 

r f- K~ <c' K~ 

Substitution rule for subkinding: 

r, X: K, r' f- Kl <c K2 r f- k : K 
r, [k/x]r' f- [kjx]K1 <[k/x]c [kjx]K2 

Coercive application rules: 

r f- f : (x : K)K' r f- k0 : Ko r f- K0 <c K 
r f- f(ko) : [c(ko)/x]K' 

r f- f = f" : (x : K)K' r f- ko = kb : Ko r f- Ko <c K 
r f- f(ko) = f"(kb) : [c(ko)/x]K' 

Coercive definition rule: 

(CD) 
r f- f : (x : K)K' r f- k0 : K 0 r f- K 0 <c K 

r f- f(ko) = f(c(ko)) : [c(ko)/x]K' 

FIGURE 3.2.1. Inference rules in T[R] 
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which we will present later, only the rules in Figure 3. 2.1 will be in­

cluded. (see Section 5.8 for more details). 

The coherence of the subtyping rules is a necessary condition to 

preserve that the coercive subtyping system T[R] is a conservative 

extension of the original type theory T. In fact, as pointed out by 

Sergei Soloviev, we show that, by the coercive definition rule (CD) 

and ,Bry-equality rules, if r f- K <c K' and r f- K <c' K', 
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Subkinding rule for dependent kinds: 

r f- K~ <c K1 r, x: K1 f- K2 kind r, x': K~ f- [c(x')/x]K2 = K~ 

r f- (x : KI)K2 <[f:(x:Ki)K2][x':K;Jf(c(x')) (x : KDK~ 

r f- K~ <q K1 r,x: K1 f- K2kind f,x': K~ f- [c1(x')/x]K2 <c2 K~ 

r f- (x : KI)K2 <[!:(x:Kt)K2][x':K;]c2(f(q(x'))) (x : KDK~ 

Transitivity rule for subkinding: 

r f- K <c K' r f- K' <c' K" 

r f- K <c'oc K" 

FIGURE 3.2.2. Inference rules in T[R] 

then r f- c = c' : (K)K'. The proof is the following: 

=cD 

=cD 

[x: K]([y: K']y)(c(x)) 

[x: K]([y: K']y)(x) 

[x: K]([y: K']y)(c'(x)) 

c' 

3.3. The problems 

As we mentioned above, a vital requirement for coercive subtyp­

ing system is that of coherence of the subtyping rules - computational 

uniqueness of coercions between any two types. When we implement 

coercive subtyping, a problem is how to decide whether subtyping rules 

are coherent. Unless coercions can be represented as a finite graph, this 

problem is in general undecidable with possibly infinitely many coer­

cions (e.g. introduced by parameterised coercions). So, how to prove 

coherence of the subtyping rules which can probably generate infinite 

many coercions needs to be studied; this is one of the contributions of 

this thesis. 

Another problem related to implementation of coercive subtyping 

is that substitution rules and transitivity rules cannot be directly im­

plemented. For this reason, among others, proving the admissibility 

(or elimination) of such rules is always an important task for any sub­

typing system. Some results on transitivity elimination for subkinding 
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have been presented in [JLS98, SL02]. However, how to prove the ad­

missibility of transitivity and substitution at type level (Trans, Subst) 

has not been studied; this is another subject of this thesis. 

It is worth mentioning now that, for certain subtyping rules (e.g. 

rules in Figure 3.5.1 and 3.5.2), the transitivity rule (Trans) is ad­

missible. However, for many very natural subtyping rules (e.g. the 

subtyping rule for lists), the transitivity rule (Trans) cannot be ad­

missible. This problem inspires us to introduce in Chapter 5 a new 

notion called 'Weak Transitivity', and to prove that weak transitivity 

is admissible. The essence is that we are more concerned about the 

existence of coercions between two types, and this new notion has a 

wider application. 

3.4. Well-defined coercions 

In this section, we shall give a definition of well-defined coercions. 

After new subtyping rules are added into R, we need to prove that 

the system T[R]o is still coherent and that the transitivity rule and 

substitution rule are admissible. A general strategy we adopt is to 

consider such proofs in a stepwise way. That is, we first suppose that 

some existing coercions (possibly generated by some existing rules) are 

coherent and have good admissibility properties; then prove that all 

the good properties are kept after new subtyping rules are added. This 

leads us to define the following concept of well-defined coercions. 

Definition 3.4.1 (Well-defined coercions) If C is a set of subtyp­

ing judgements of the form r f- M <d 111' : Type which satisfies the 

following conditions, we say that C is a well-defined set of judgements 

for coercions, briefly called Well-Defined Coercions (WDC). 

1. (Coherence) 

(a) r f- A <c B : Type E C implies r f- A : Type, r f- B : Type 

and r f- c: (A)B. 

(b) r f-A <c A: Type ~ C for any r, A, and c. 

(c) r f- A <c1 B : Type E C and r f- A <c2 B : Type E C imply 

r f- c1 = c2 : (A) B. 

2. (Congruence) r f- A <c B : Type E C, r f- A = A' : Type, 

r f- B = B': Type and r f- c = c': (A)B imply r f-A' <c' B' E C. 
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3. (Transitivity) r f-- A <c1 B : Type E C and r f-- B <c2 C : Type 

E C imply f f-- A <c2oq C : Type E C. 
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4. (Substitution) r, X : K, r' f-- A <c B : Type E c implies for any k 

such that r f-- k: K, r, [k/x]f' f-- [k/x]A <[k/xJc [k/x]B: Type E C. 
5. (Weakening) r f-- A <c B : Type E C, r ~ f' and f' is valid imply 

f' f-- A <c B : Type E C. 

By the definition of WDC, we have the following properties. 

Lemma 3.4.2 Let C be a WDC. 

1. If r f-- A <q B : Type E C, r f-- B' <c2 C : Type E C and 

r f-- B = B' : Type then r f-- A <c2DC! c : Type E c. 
2. Iff,x: K,r' f--A <c B: Type E C and r f-- K = K' then 

r,x: K',f' f--A <c B: Type E C. 

3. If r f-- A <c B : Type E C and f-- r = f' then f' f-- A <c B : Type 

E C. 

4. If r ~- A <c B : Type E C, f' f-- A' <c' B' : Type E C, f-- r = f', 

r f--A= A': Type and r f-- B = B': Type then r f-- c = c': (A)B. 

We shall consider the system of coercive subtyping in which the set 

(R) of the subtyping rules includes the following rule, 

r f-- A <c B : Type E C 
(WDCrule) r f-- A <c B : Type 

where C is a WDC. 

3.5. Subtyping rules 

The set R of subtyping rules is open in the sense that we can always 

introduce new subtyping rules in R, so long as the good properties 

such as coherence are kept. For example, at this moment, we introduce 

subtyping rules for IT-types and ~-types into R (Figure 3.5.1 and Figure 

3.5.2; details of IT-types and ~-types are on Page 37 and Page 38). More 

subtyping rules will be introduced in later chapters. 

Remark 3.5.1 We have the following remarks: 

• The basic understanding of the subtyping rules for IT-types is that 

II(A, B) is a subtype of II(A', B') if A' is a subtype of A and B 

is a sub-family of B' (we omit other cases such as: II(A, B) is a 

subtype of II (A, B') if B is a sub-family of B'). 
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r f--A' <c A : Type r f-- B : (A)Type 

r f-- IT(A, B) <d1 IT(A', B o c) :Type 

d1 = [f : II(A, B)].A(A', B o c, app(A, B, f) o c) 

Codomain rule: 
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r f-- B: (A)Type r f-- B' : (A)Type r, x: A f-- B(x) <e[x] B'(x) :Type 

r f-- IT( A, B) <d2 IT(A, B') : Type 

where 

d2 = [f: II(A, B)].A(A, B', [x: A]e[x](app(A, B, f, x))) 

Domain-Codomain rule: 

r f--A' <c A :Type r f-- B : (A)Type r f-- B' : (A')Type 
r, x': A' f-- B(c(x')) <e[x'] B'(x') :Type 

r f-- IT(A, B) <d3 IT(A', B') :Type 

where 

d3 = [f: II(A, B)].A(A', B', [x': A']e[x'](app(A, B, f, c(x')))) 

FIGURE 3.5.1. Subtyping rules for IT-types 

• We use the application operator app to define the coercions in Fig­

ure 3. 5.1 and have the following equations: 

d1(-X(A,B,g)) 

d2(-X(A, B, g)) 

d3 (.X (A, B, g)) 

.A (A', B o c, g o c) 

.A(A, B', [x: A]e[x](g(x))) 

.A(A', B', [x': A']e[x'](g(c(x')))) 

• The basic understanding of the subtyping rules for ~-types is that 

~(A, B) is a subtype of ~(A', B') if A is a subtype of A' and B is a 

sub-family of B' (we omit other cases such as: ~(A, B) is a subtype 

of ~(A, B') if B is a sub-family of B'). 
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First Component rule: 

where 

r f-A <c A' :Type r f- B : (A')Type 
r f- L:(A, B o c) <d1 L:(A', B): Type 

d1 = [z: L:(A, B o c)]pair(A', B, 

c(1r1(A, B o c, z)), 1r2 (A, B o c, z)) 

Second Component rule: 
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r f- B: (A)Type r f- B': (A)Type r, x: A f- B(x) <e[xJ B'(x) :Type 
r f- L:(A, B) <d2 L:(A, B') :Type 

where 

d2 [z: L:(A, B)]pair(A, B', 

1r1(A, B, z), e[1r1(A, B, z)](1r2 (A, B, z))) 

First-Second Component rule: 

r f-A <c A' : Type r f- B : (A)Type r f- B' : (A')Type 
f, x: A f- B(x) <e[x] B'(c(x)) :Type 

r f- L:(A, B) <d3 L:(A', B') :Type 
where 

d3 [z: L:(A, B)]pair(A', B', 

c(1r1(A, B, z)), e[1r1(A, B, z)](1r2(A, B, z))) 

FIGURE 3.5.2. Subtyping rules for L:-types 

et We use the projection operators 1r1 and 1r2 to define the coercions 

in Figure 3. 5. 2 and have the following equations: 

d1 (pair(A, B o c, x, y) 

d2(pair(A, B, x, y) 

d3 (pair(A, B, x, y) 

pair(A', B, c(x), y) 

pair(A, B', x, e[x](y)) 

pair(A', B', c(x), e[x](y)) 

We now give two examples to show that the definitions of coercions 

in Figure 3.5.1 and in Figure 3.5.2 are suitable to the admissibility of 

the transitivity rule (Trans), but the inductively defined coercions are 

not. 
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Example 3.5.2 Assume that r f- B : (A)Type, r f- B' : (A)Type, 

r f- B": (A)Type and r, X: A f- B(x) <e![x] B'(x), 

r, X : A f- B'(x) <e2[x] B"(x) and r, X : A f- B(x) <e2[x]oel[x] B"(x). 
Then by the Codomain rule, we have 

where 

r f- II( A, B) <d1 II(A, B') 

r f- II(A, B') <d2 II(A, B") 

r f- II( A, B) <d II(A, B") 

d1 - [f: II(A, B)],X(A, B', [x: A]e![y](app(A, B, j, x))) 

d2 - [g: II(A, B')],X(A, B", [x: A]e2[x](app(A, B', g, x))) 

d - [f: II(A, B)],X(A, B", [x: A]e2[x](ei[x](app(A, B, j, x)))) 

TI(A,B') 

y ~ 
TI(A,B) d TI(A, B") 

Figure for example 3.5.2 

d2 o d1 =df [f: II(A, B)]d2(d1(f)) 

- [f : II( A, B)] 

,\(A, B", [x: A]e2[x](app(A, B', d1 (f), x))) 

- [f: II(A, B)],X(A, B", [x: A]e2[x](app(A, B', 

,\(A, B', [y: A]e![y](app(A, B, j, y))), x))) 

- [! : II(A, B)],\(A, B", 

[x: A]e2 [x](([y: A]ei[y](app(A, B, f, y)))(x))) 

= [! : II(A, B)] 

,\(A, B", [x: A]e2[x](ei[x](app(A, B, f, x)))) 

= d 



CHAPTER 3. COERCIVE SUBTYPING 55 

However, if we choose the inductively defined coercions as the following: 

d1 = t'rr(A, B, [! : II(A, B)]IT(A, B'), 

[h: (x: A)B(x)].\(A, B', [x: A]el[x](h(x)))) 

d2 t'rr(A, B', [g: II(A, B')]IT(A, B"), 

[h: (x: A)B'(x)].\(A, B", [x: A]e2[x](h(x)))) 

d - t'rr(A, B, [f : II(A, B)]IT(A, B"), 

[h: (x: A)B(x)].\(A, B", [x: A]e2[x](e1 [x](h(x))))) 

then d and d2 o d1 are not computationally equal in an intensional type 

theory. This causes the transitivity rule (Trans) not to be admissible, 

although d and d2 od1 are extensionally equal. In fact, for any canonical 

object .\(A, B, h) of type IT(A, B), we have 

d(.\(A, B, h)) .\(A, B", [x: A]e2[x](el[x](h(x)))) 

d2(d1(.\(A, B, h))) 

Example 3.5.3 Assume that r f- B : (A)Type, r f- B' : (A)Type, 

r f- B": (A)Type and r, x: A f- B(x) <e![x] B'(x), 

r, X : A f- B'(x) <e2[x] B"(x) and r, X : A f- B(x) <e2[x]oet[x] B"(x). 
Then by the Second Component rule, we have 

where 

r f- I:( A, B) <d1 I:( A, B') 

r f- I:(A, B') <d2 I:( A, B") 

r f- I:(A, B) <d L:(A, B") 

d1 [z: I:(A, B)]pair(A, B', 1r1 (A, B, z), 

ei[1r1(A, B, z)](1r2(A, B, z))) 

d2 [z': I:( A, B')]pair(A, B", 1r1 (A, B', z'), 

e2[1r1(A, B', z')](1r2(A, B', z'))) 

d [z: I:(A,B)]pair(A,B",7r1(A,B,z), 

e2[1r1 (A, B, z)]( e1 [1r1 (A, B, z )] (1r2(A, B, z)))) 
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~(A, B) d 

Figure for example 3.5.3 

d2 o d1 =df [z: E(A, B)]d2(d1(z)) 

[z: E(A, B)]pair(A, B", n1(A, B', d1(z)), 

e2[n1(A, B', d1(z))](n2(A, B', d1(z)))) 

[z: E(A, B)]pair(A, B", n1(A, B, z), 

e2[n1(A, B, z)](ei[n1(A, B, z)](n2(A, B, z)))) 

d 

56 

However, if we choose the inductively defined coercions as the following: 

d1 = EdA, B, [z: E(A, B)]E(A, B'), 

[x: A][y: B(x)]pair(A,B',x,ei[x](y))) 

d2 EdA, B', [z': E(A, B')]E(A, B"), 

[x: A][y: B'(x)]pair(A, B", x, e2 [x](y))) 

d EdA, B, [z : E(A, B)]E(A, B"), 

[x: A][y: B(x)]pair(A, B", x, e2 [x](ei[x](y)))) 

then d and d2 o d1 are not computationally equal in an intensional type 

theory. This causes the transitivity rule (Trans) not to be admissible, 

although d and d2od1 are extensionally equal. In fact, for any canonical 

object pair(A, B, x, y) of type E(A, B), we have 

d(pair(A, B, x, y)) pair(A, B", x, e2 [x]( ei[x](y))) 

d2(d1 (pair(A, B, x, y))) 
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Coherence and 'fransitivity 

In this chapter, we shall use the subtyping rules for IT and E-types 

as examples to demonstrate how coherence can be proved. We shall 

also prove the admissibility of the substitution rule (Subst) and the 

transitivity rule (Trans). Let's make clear that the set R of subtyping 

rules now consists of the rule W DCrule where C in the rule is a set of 

well-defined coercions (WDC) and the subtyping rule for IT and E-types 

in Figure 3.5.1 and Figure 3.5.2 and, the system T[R]o also includes 

the congruence rule (Gong). Furthermore, we assume that for any 

judgement r f- A <c B : Type E C, neither A nor B is computationally 

equal to a IT-type or a E-type. vVe also assume that the original type 

theory T has good properties, in particular the Church-Rosser property 

and the property of context replacement by equal kinds. 

We denote by eM the set of the derivable subtyping judgements of 

the form r f- M <d .A1' : Type in T[R]0 ; that is, r f- M <d Jvf' : Type 

E CM if and only if r f- M <d M' : Type is derivable in T[R]0 . In this 

chapter, we shall show that CM is a WDC. 

It is obvious that eM is a superset of c (i.e. eM 2 C) because the 

rule vV DCrule is included in the system T[R]0 . 

4.1. Coherence of T[R]o 

We give a proof of coherence of the system T[R]o in this section. 

Notation 4.1.1 Since we are not much concerned with the subkinding 

judgements and are mainly concerned with the subtyping judgements, 

we shall simply write r f- A <c B for r f- A <c B : Type, where no 

confusion may occur. Sometimes, we shall also write r f- k1 = k2 for 

r f- k1 = k2 : J( when we have no concern for the kind J(. 

Lemma 4.1.2 Iff f- .Af1 <c~ lvf2 :Type E CM, then one of the follow­

ing holds: 

• r f- M 1 <d Jvh: Type E C; or 
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e Both M 1 and M 2 are computationally equal to IT-types; or 

G Both M 1 and M 2 are computationally equal to 'E-types. 

Proof. By induction on derivations. 
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If r f-- M1 <d M 2 ¢: e, its derivation must end with a IT-subtyping 

rule, or a I:-subtyping rule, or the congruence rule. If it is one of the 

IT or I:-subtyping rules, then we know both M 1 and !Vh are IT-types or 

I:- types. If the last rule is the congruence rule ( C ong), 

r f-- .M{ <d' M~ 

r f-- M1 = M{ r f-- M2 = M~ r f-- d' = d: (M{)M~ 

r f-- 1vf1 <d M2 

then by the induction hypothesis, the lemma holds for r f-- M{ <d' Jvf~. 

If both M{ and M~ are computationally equal to IT-types or I:-types, 

so are M 1 and M 2 . If r f-- M{ <d' M~ E C, then r f-- M 1 <d .M2 E C 

because C is a WDC, which is closed under congruence. 0 

Lemma 4.1.3 We have the following lemmas. 

1. If r f-- IT(A, B) <d IT(A', B') :Type E eM then r f--A= A' :Type 

or f f--A' <c A: Type E eM for some c. 

2. If r f-- L:(A, B) <d 'E(A', B') :Type E eM then r f--A= A': Type 

or f f--A <c A': Type E eM for some c. 

3. If r f-- IT(A, B) <d IT(A', B') :Type E eM and r f--A= A' : Type 

then f,x: A f-- B(x) <e[x] B'(x): Type E eM for some e. 

4. If r f-- L:(A, B) <d 'E(A', B') : Type E eM and r f--A= A' : Type 

then r, X: A f-- B(x) <e[x] B'(x) :Type E eM for some e. 

5. If r f-- IT(A, B) <d IT(A', B') :Type E eM and r f--A' <c A: Type 

E eM then r, X: A' f-- B(c(x)) = B'(x) :Type or 

r, X: A' f-- B(c(x)) <e[x] B'(x) :Type E eM for some e. 

6. Iff f-- L:(A, B) <d L:(A', B') : Type E eM and r f-- A <c A' : Type 

E eM then r, X: A f-- B(x) = B'(c(x)) :Type or 

r, X: A f-- B(x) <e[x] B'(c(x)) :Type E eM for some e. 

Proof. By induction on derivations. 

We consider only the first statement here; the proofs of the others 

are similar. For the first, any derivation of the judgement 

r f-- IT(A, B) <d IT(A', B') must contain a sub-derivation whose last rule 

is one of the subtyping rules for IT-types followed by a finite number of 
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applications of the congruence rule . 

... (Congruence rule) ... 

r f- IT(A, B) <d IT(A', B') 

where r f- IT(A1 , BI) = IT(A, B), r f- IT(A2 , B2 ) = IT(A', B'), and 

r f- d' = d respectively. Hence, by the Church-Rosser theorem of the 

original type theory T and conservativity of T[R]o over T, we have 

r f- A1 =A, r f- B1 = B, r f- A2 =A' and r f- B2 = B'. 

Since r f- IT(A1 , B1) <d' IT(A2 , B2 ) is derived by one of the three 

subtyping rules for IT-types, if it is the Codomain rule, we have 

r f- A1 = A2 ; if it is the Domain rule or the Domain-Codomain rule, 

we have r f- A' <c A for some c. So r f- A = A' or r f- A' <c A for 

some c by the congruence rule. D 

Lemma 4.1.4 Iff f- M1 <d M2 :Type E CM, then 

r If M1 = M2: Type. 

Proof. By induction on derivations and the definition of WDC, par­

ticularly, the coherence requirement l(b) in the Definition 3.4.1. D 

Theorem 4.1.5 {Coherence) If r f- M 1 <d M 2 :Type E CM, 

f' f- M{ <d' M~ : Type E CM, f- f = f', f f- M1 = M{ : Type, and 

r f- M2 = M~ :Type then r f- d = d' : (M1)M2. 

Proof. By induction on derivations. 

By Lemma 4.1.2, we have to consider only the following three cases. 

• r f- M1 <d M2 E C. Then, none of M1 and M2 is computationally 

equal to a IT-type or L::-type by the assumption; and nor is M{ or 

M~ because r f- M1 = M{ and r f- M2 = M~. So, by Lemma 4.1.2, 

we have r f- M{ <d' M~ E C. Now, by Lemma 3.4.2(4), we have 

r f- d = d' : (M1)M2. 

• Both lvh and M2 are computationally equal to IT-types. Then any 

derivation of r f- l\11 <d lv/2 contains a sub-derivation whose last 
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rule is one of the subtyping rules for IT-types followed by a finite 

number of applications of the congruence rule. We consider only 

the case where the IT-subtyping rule concerned is the third rule in 

Figure 3.5.1; i.e, the derivation is of the form 

r f- A2 <c AI r, X: A2 f- BI(c(x)) <e[x] B2(x) 

f f- IT(A1, BI) <d1 IT(A2, B2) 

... (Congruence rule) ... 

r f- M1 <d M2 

where r f- IT(AI, BI) = MI, r f- IT(A2, B2) = M2, r f- dl = d and 

d1 = [!: IT(A1, BI)]>.(A2, B2, [x: A2]e[x](app(A1, B1, f, c(x)))) 

Now, it must be the case that any derivation off' f- M{ <d' M~ 

must contain a sub-derivation whose last rule is also the same sub­

typing rule for IT-types as above, followed by a finite number of 

applications of the congruence rule; i.e, it must be of the form 

f' f-A; <c' A~ f', x: A; f- B~ (c'(x)) <e'[xJ B~(x) 

r' f- IT(A~, BD <d'
1 

IT(A;, B~) 

... (Congruence rule) ... 

f' f- lVI{ <d' M~ 

where r' f- IT(A~' BD = lVI{' r' f- IT(A;, B~) = M~, r' f- d' = d~ 

and 

d~ = [f: IT(A~,B~)]>.(A;,B;,[x: A;]e'[x](app(A~,B~,j,c'(x)))) 

To see this is the case, by Lemma 4.1.3, we have to show only that 

1. f'IJA;=A~,and 
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2. r', X: A; 17 B~ (c'(x)) = B~(x). 

For the first case, since r f- M1 = M{ and r f- M2 = M~, we 

haver f- IT(A1 , B 1) = IT(A~, BD and r f- IT(A2, B2) = IT(A;, B~). 
Hence, by Church-Rosser in T and conservativity of T[R.] 0 overT, 

we haver f- A1 =A~, r f- B1 = B~, r f- A2 =A; andf f- B2 = B~. 
As r f- A2 <c A1 , we have by Lemma 4.1.4, r 17 A2 = A1 . So 

f' 17 A;= A~. 
For the second case, we need to use the induction hypothesis first. 

Since we already know that the derivations of r f- A2 <c A1 and 

f' f- A; <c' A~ are sub-derivations of r f- M1 <d M2 and 

f' f- M{ <d' M~, by the induction hypothesis we have r f- c = c'. 

Using this result, a similar argument as in the first case suffices to 

prove that r',x: A; 17 B~(c'(x)) = B~(x). 

Now, since the derivations must be of the above forms, by the 

induction hypothesis again, we have r, X : A2 f- e[x] = e'[x]. Hence 

f f- d = d' : (M1)M2. 

• Both J\111 and M2 are computationally equal to I:-types. The proof 

of this case is similar to the case that both M1 and M2 are compu­

tationally equal to IT-types. 

D 

4.2. Admissibility of Substitution and Transitivity 

In the presentation of coercive subtyping in [Luo99], substitution 

and transitivity are two of the basic rules in the theoretical frame­

work. However, in an implementation of coercive subtyping, if there 

are infinitely many coercions, these rules usually cannot be directly 

implemented. For this reason, among others, proving the admissibility 

of such rules (or their elimination) is always an important task for any 

subtyping systems. 

In our system, we do not take substitution and transitivity as basic 

rules, but we prove that they are admissible when we extend a WDC 

by the IT and I:-subtyping rules. 

Theorem 4.2.1 (Substitution) If r, X : K, r' f- 1111 <d 1112 : Type 

E C;VJ and r f- k : K, then r, [k/:r]f' f- [k/x]1111 <[k/xJd [kjx]iVJ2 : Type 

E CM· 
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Proof. By induction on derivations. 

We consider only the case of the congruence rule (Gong) as an 

example of showing the proof, that is, the last rule of the derivation of 

r' X : K, r' f-- Ml <d M2 is the following: 

r,x: K,r' f-- M{ <d' M~ 
r,x: K,r' f-- M{ = M1 r,x: K,r' f-- M~ = M2 

r, x: K, r' f-- d' = d: (.1\!I{)M~ 

r, x : K, f' f-- M1 <d M2 

By the induction hypothesis, we have 

r, [k/x]r' f-- [k/x]M{ <[k/xJd' [k/x]M~ 

By the property of conservativity of T[R]o over T and the substitution 

rules in T, we have r, [k/x)r' f-- [k/x]M{ = [k/x]M1, 
r, [k/x)r' f-- [kjx]M~ = [k/x]M2 and r, [k/x)r' f-- [k/x]d' = [k/x]d. 
Therefore, by the congruence rule, we have 

r, [k/x]r' f-- [kjx]M1 <[k/xJd [kjx]M2 

0 

Now let's consider the theorem of the admissibility of transitivity. 

In order to prove this theorem, we also need to prove the theorem of 

weakening. 

Theorem 4.2.2 {Weakening) If r f-- M1 <d M2 : Type E eM, 
r ~ f' and f' is valid then f' f-- M1 <d M2 : Type E eM. 

Proof. By induction on derivations. 

The theorem of weakening in type theory T and the property of 

conservativity of T[R]o over T are also needed in this proof. 0 

To prove the admissibility of transitivity, the usual measures (e.g. 

the size of types concerned) do not seem to work (or even to be defin­

able), since types essentially involve computations. We use a measure 

developed by Aspinall, Companoni and Chen !Che98], which considers 

only subtyping judgements in a derivation, defined as follows. 

Definition 4.2.3 (depth} Let D be a derivation of a subtyping judge­

ment of the form r f-- A <c B : Type. 
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D: 
S1 ... Sn T1 ... Tm 

r 1- A <c B : Type 
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where S 1, ... ,Sn are derivations of subtyping judgements of the form 

r 1- M1 <d M2 :Type and, T1, ... , Tm are derivations of other forms of 

judgements. Then we define 

depth(D) =df 1 + max{depth(SI), ... , depth(Sn)} 

Specially, if n = 0 then depth( D) =df 1. 

The following lemmas show that, from a derivation D of a subtyp­

ing judgement J one can always get a derivation D' of the judgement 

obtained from J by context replacement such that D and D' have the 

same depth. 

Lemma 4.2.4 If 1- r = r', r 1- M1 <d lvf2 : Type E eM, and D is a 

derivation of r 1- M 1 <d M 2 : Type, then 

1. r' 1- M1 <d .!11!2 :Type E eM, and 

2. there is a derivation D' of r' 1- M1 <d M2 :Type such that 

depth(D) = depth(D'). 

Proof. By induction on derivations. 

• The derivation D is 

r 1- M1 <d M2 : Type E e 
r 1- M1 <d M2 : Type 

By Lemma 3.4.2, we have r' 1- M1 <d M2 : Type E e and let D' be 

r' 1- M1 <d .Af2 : Type E e 
f' 1- M1 <d M2 : Type 

Then depth(D) = depth(D') = 1. 

• The last rule of derivation D is 

r 1- Jvf{ <d' M~ 

r 1- Jvf{ = 1111 r 1- 111~ = M2 r 1- d' = d: (M{)M~ 

r 1- M1 <d lvh 

Then, depth(D) = depth(DI) + 1 where D 1 is the derivation of 

judgement r 1- M{ <d' Af~ in D. 

By the induction hypothesis, we have 

1. r' 1- J\!f{ <d' JVJ~ E eM, and 
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2. there is a derivation D 2 of f' f-- M{ <d' M~ such that 

depth(D1) = depth(D2). 

By the theorem of context replacement by equal kinds in T and 

conservativity of T[R]o overT, we have f' f-- M{ = M 1 , 

f' f-- NI~ = M 2 and f' f-- d' = d : (M{)M~. Therefore, using the 

congruence rule, we have a derivation D' 

f' f-- M{ <d' M~ 
f' f-- M{ = M1 f' f-- M~ = M2 f' f-- d' = d: (M{)M~ 

f' f-- M1 <d M2 

and depth(D') = depth(D2) + 1. So, depth(D) = depth(D'). 

• For other cases, similar arguments are sufficient. 

Lemma 4.2.5 Iff, x : K, f' f-- M1 <c1 M2 : Type E e and 

r f-- c2 : (K')K then 

D 

f, y: K', [c2(y)jx)f' f-- [c2(y)jx]M1 <[c2 (y)/x]q [c2(y)jx]M2 :Type E e 

Proof. By weakening and substitution in the definition of WDC. D 

Lemma 4.2.6 If r, X: K, r' f-- Ml <q M2: Type E eM, 
r f-- c2 : (K')K, and D is a derivation of 

r, X: K, r' f-- Ml <q M2: Type, then 

1. f, y : K', [c2(Y)/x)f' f-- [c2(y)jx]M1 <[c2 (y)/x]q [c2(y)jx)M2 : Type 

E eM, and 

2. there is a derivation D' of 

f, y: K', [c2(Y)/x)f' f-- [c2(y)jx]M1 <[c2 (y)/x]c1 [c2(y)jx]M2: Type 

such that depth(D) = depth(D'). 

Proof. By induction on derivations and Lemma 4.2.5. The theorem 

of weakening and substitution in type theory T and the property of 

conservativity of T[R]o over T are also needed in this proof. D 

Now, we prove the admissibility of the transitivity rule. 

Theorem 4.2.7 (Transitivity) Iff f-- M1 <d1 M2 : Type E eM, 
f f-- l\11~ <d2 Nh :Type E eM and f f-- Nh = NI~ :Type, then 

f f-- M1 <d2od1 N£3 : Type E eM. 
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Proof. By induction on depth(D) + depth(D'), where D and D' are 

derivations of r f- M1 <d1 Nh and r f- M~ <d2 M3, respectively. 

In the base case i.e. depth(D) = depth(D') = 1, we have that the 

judgements r f- M1 <d1 M2 and r f- M~ <d2 N/3 are both in C. By 

Lemma 3.4.2, we have r f- M1 <d2 od1 M3 E C. 

In the step case, if r f- M1 <d1 N/2 and r f- l\1!~ <d2 M3 are both 

in C, then a similar argument as the base case suffices. Otherwise, 

we have that either r f- M1 <d1 M2 or r f- A1~ <d2 M3 is not in C. 

Therefore, by Lemma 4.1.2 and the assumption of r f- M2 = M~, all of 

M1, M2, M~ and M3 are computationally equal to IT-types or L:-types. 

We consider only the case that they are equal to IT-types. Suppose that 

the derivation D and D' be of the following forms (we consider only the 

more difficult example among the combinations of IT-subtyping rules): 

r f- A2 <c1 A1 f,x: A2 f- B1(c1(x)) <edxl B2(x) 

f f- IT(A1, BI) <d~ IT(A2, B2) 

... (Congruence rule) ... 

r f- M1 <d1 M2 

where r f- IT(A1, BI) = M1, r f- IT(A2, B2) = M2, r f- d~ = d1 and 

d~ = [f: IT(A1, B1)]A(A2, B2, [x: A2]e1[x](app(A1, B1, j, c1(x)))) 

and 

D' 1 D' 2 

r f- A3 <c2 A; r, X: A3 f- B~(c2(x)) <e2[x] B3(x) 

r f- IT(A;, B~) <d; IT(A3, B3) 

... (Congruence rule) ... 
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d~ = [f: IT(A~, B~)]>.(A3 , B3 , [x: A3]e2 [x](app(A~, B~, J, c2 (x)))) 

We obviously have depth(DI) < depth( D) and depth(D2 ) < depth(D) 

because D 1 and D 2 are sub-derivations of D; depth(DD < depth(D') 

and depth(D;) < depth(D') because D~ and n; are sub-derivations of 

D'. 

Now, since r 1-M2 = M~, we have by Church-Rosser theorem ofT 

and conservativity of T[R] 0 over T, r 1- A2 = A~ and r 1- B2 = B;. 

Since r 1- A3 <c2 A~ we have r 1- c2 : (A3 )A~ and r 1- c2 : (A3)A2. 
Since r,x: A2 1- B1(c1(x)) <e![xJ B 2 (x), by Lemma 4.2.6, we have 

r,x: A3 1- B1(c1(c2(x))) <e1 [c2 (x)J B2(c2(x)) and there is a derivation 

D3 of the judgement r, X: A3 1- Bl(cl(c2(x))) <ei[c2(x)] B2(c2(x)) such 

that depth(D3 ) = depth(D2 ). 

Now, we have 

depth(D1 ) + depth(DD < depth(D) + depth(D') 

depth(D3 ) + depth(D~) < depth(D) + depth(D') 

By the induction hypothesis, we have that f 1- A3 <qoc2 A1 E eM. 
Since r 1- B2 = B; : (A2 )Type and r 1- c2 : (A3)A2, we have 

r, X: A3 1- B2(c2(x)) = B;(c2(x)). By the induction hypothesis again, 

we have 

f,x: A3 1- B1(c1(c2(x))) <e2[x)oei[c2(x)] B3(x) E eM 

So by the Domain-Codomain rule (the third rule in Figure 3.5.1), we 

have f 1- IT(A1, B1) <d3 IT(A3, B3) E eM, where 

d3 =dt [f: IT(A1, BI)]>.(A3, B3, 

[x : A3]e2[x]( el[c2(x )](app(A1, B1, f, c1 ( c2(x)))))) 
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[!: II(A1, BI)]d2(d1(f)) 

[!: II(Al, BI)]d;(d~(f)) 

[f : II(A1, BI)].X(A3, B3, 

[x : A3 ]e2 [x](app(A;, B~, d~ (!), c2 (x)))) 

[! : II(Al, BI)].X(A3, B3, 

[x: A3]e2[x](edc2(x)](app(A1, B1, f, c1(c2(x)))))) 

d3 
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Finally, by the congruence rule, we have f f- M1 <d2 od1 M3 E CM. 0 

Corollary 4.2.8 CM is a WDC. 

Proof. By Lemma 4.1.4 and Theorems 4.1.5, 4.2.1, 4.2.2 and 4.2.7. 0 

4.3. Algorithm for the coercion search 

We have proved the coherence and admissibility of substitution and 

transitivity for the subtyping rules of IT-types and I:-types. We can be 

sure that the coercion search is decidable for CM if it is decidable in C. 

We shall in this section give a sound and complete algorithm to do so. 

4.3.1. Algorithm Alg(f, M1 , M2 ) for T[R]o 

If it is decidable to check whether there is a judgement r f- A <c B 

E C when arbitrary r, A and Bare given, then we say that the Coercion 

Search is decidable in C. 

Supposing the coercion search is decidable in C, we give an algo­

rithm Alg(f, M1, M2 ) for CM to check whether there is a judgement 

r f- M1 <d M2 E CM when arbitrary f, M1 and M2 are given. 

If so, Alg(f, M1, M2 ) ·- d' for some d' and r f- d = d', otherwise 

Alg(f, M1, M2) :=l_. 

1. If r is a valid context, M1 and lvh are well-typed type then go to 

2. Otherwise Alg(f, .M1 , AI2 ) :=l_. 

2. If there is a judgement f f- M1 <d lv'f2 E C 

then Alg(f, !vft, A12 ) :=d. Otherwise, go to 3. 
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3. Compute M 1 and M 2 to weak normal form wnj(lv11 ) and wnf(M2). 

If both wnf(lvh) and wnf(M2) are IT-types or L;-types then go to 

4. Otherwise Alg(f, MI, M 2) :=j_. 

4. If wnf(MI) IT(AI, BI) and wnj(lvf2) TI(A2, B2) then go to 5. 

Otherwise wnf(MI) - L;(AI, BI) and wnf(M2) = L;(A2, B 2) go to 

6. 

5. If r ~ A1 = A2 and Alg((r, x: A2), BI(x), B2(x)) := e[x] 

(x rt FV(f)), then 

Alg(f, lvh, M2) := [!: IT(AI, BI)]>.(A2, B2, 

[x: A1]e[x] o app(AI, BI, j, x)) 

If Alg(f, A2, AI):= c and r, X: A2 ~ Bl(c(x)) = B2(x), then 

Alg(f, MI, lv12) := [f: TI(AI, BI)]>.(A2, B 2 o c, 

app(A1 , BI, f) o c) 

If Alg(f, A2, AI):= c and Alg((r, x: A2), BI(c(x)), B2(.1:)) := e[x], 

then 

Alg(f, M1, Af2) := [f: IT(A1, BI)]>.(A2, B2, 

[x: A2]e[x](app(AI, BI, j, c(x)))) 

Otherwise Alg(f, .MI, 1\12) :=j_. 

6. If r ~AI = A2 and Alg((f, x: A2), BI (x), B2(x)) := e[x], then 

Alg(f, M1, 1\12) := [x: L;(AI, B1)]pair(A2, B2, 

1r1(AI, BI, x), 

e[7ri(AI, B1, x)](1r2(AI, BI, x))) 

If Alg(f, AI, A2) := c and r, X: AI~ BI(x) = B2(c(x)), then 

Alg(f, A1I, 1\12) := [x: L;(AI, BI)]pair(A2, B 2, 

c(7ri (AI, BI, x)), 

1r2(AI, BI, x)) 
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If Alg(f,A1,A2) := c and Alg((r,x: AI),B1(x),B2(c(x))) := e[x], 

then 

Alg(f, !Vf1, M2) ·- [x: ~(A1, B1)]pair(A2, B2, 

c(1r1(At, B1, x)), 

e[1r1(A1, B1, x)](1r2(A1, B1, x))) 

Otherwise Alg(f, M 1 , M 2 ) :=.L 

4.3.2. Soundness and Completeness 

Theorem 4.3.1 (Soundness) If Alg(f, M1 , M2 ) =.1. then there isn't 

any judgement r f- M1 <d M2 : Type E eM· If Alg(f, M1, M2) := d 

then there is a judgement r f- Ml <d M2 : Type E eM. 

Proof. For the first part, we proceed by contradiction and prove that if 

r f- M1 <d M2 :Type E eM then Alg(f, M1, M2) ::f=.l.. For the second 

part, we follow the algorithm step by step and construct a derivation 

of r f- M1 <d M2 : Type. 0 

Theorem 4.3.2 (Completeness) For any judgement 

r f- M1 <d M2 :Type E eM, there is ad' such that Alg(f, M1, M2) = d' 

and r f- d = d' : (1111)M2· 

Proof. By induction on derivations and Lemma 4.1.2, 4.1.3 and 4.1.4. 

0 

4.3.3. Decidability of the Coercion Search in T[R]o 

Theorem 4.3.3 If the coercion search is decidable in e, so is in eM, 
i.e. it is decidable whether there is a judgement r f- M1 <d M2 : Type 

E eM for arbitrary r' Ml and M2. 

Proof. By Theorem 4.3.1 and Theorem 4.3.2. 0 

4.4. Subtyping rules for ST-form 

In the section 4.1 and 4.2, we have proved the coherence and admis­

sibility of the transitivity rule for the subtyping rules of IT-types and 

~-types. The question now is: do we have suitable subtyping rules for 

other parameterised inductive types, the system extended by which also 

keeps the good properties, such as coherence and admissibility of the 

transitivity rule (Trans)? The answer is yes. In this section, we shall 
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give two more examples to demonstrate how coercions are defined in 

the subtyping rules for those parameterised inductive types generated 

by ST-form. 

r f-- A <CJ A' : Type r f-- B <c2 B' : Type r f-- C <c3 C' : Type 

r f-- Trio(A, B, C) <d1 Trio(A', B', C') :Type 

where 

d1 [z: Trio(A, B, C)]trio(A', B', C', cl(7rrriol(A, B, C, z)), 

c2(7rrrio2(A, B, C, z)), c3(1fTrio3(A, B, C, z))) 

r f-- A <CJ A' : Type r f-- B = B' : Type r f-- C = C' : Type 

r f-- Trio(A, B, C) <d2 Trio(A', B', C') :Type 

where the definition of d2 is similar to that of d1 , just replacing c2 

and c3 with identity functions. We shall omit the definitions of the 
coercions in the following rules. 

r f-- A = A' : Type r f-- B <c2 B' : Type r f-- C = C' : Type 

r f-- Trio(A, B, C) <d3 Trio(A', B', C') :Type 

r f-- A = A' : Type r f-- B = B' : Type r f-- C <c3 C' : Type 

r f-- Trio(A, B, C) <d4 Trio(A', B', C') :Type 

r f-- A <CJ A' : Type r f-- B <c2 B' : Type r f-- C = C' : Type 

r f-- Trio(A, B, C) <ds Trio(A', B', C') :Type 

r f-- A <c1 A' : Type r f-- B = B' : Type r f-- C <c3 C' : Type 

r f-- Trio(A, B, C) <d6 Trio(A', B', C') :Type 

r f-- A = A' : Type r f-- B <c2 B' : Type r f-- C <c3 C' : Type 

r f-- Trio(A, B, C) <d7 Trio(A', B', C') :Type 

FIGURE 4.4.1. Subtyping rules for non-dependent trio 

Example 4.4.1 On page 39, we defined the projection operators (7rrriol, 

1fTrio2 and 1frrio3) for- the type of non-dependent tr-io (Tr-io). Now we 

use these pr-ojection opemtor-s to define coer-cions for- the sv.btyping r-ules 
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as in Figure 4.4.1. As we proved for IT-types and L.-types, the coherence 

holds and the normal transitivity rule is admissible if we add the sub­

typing rules for Trio-types into the system T[R.] 0 . We omit the proof 

here. 

Remark 4.4.2 One may choose inductively defined coercions, for ex­

ample, re-define d1 as 

d~ =df t'rrio(A, B, C, [z: Trio(A, B, C)]Trio(A', B', C'), 

[a: A][b: B][c: C]trio(A', B', C', c1(a), c2(b), c3(c))) 

However, the transitivity rule (Trans) fails to be admissible and the 

reason is the same as that for IT-types and L.-types in Example 3.5.2 

and 3.5.3. 

Notation 4.4.3 We shall write r f-- A ::;c B : Type to indicate that 

both r f-- A <c B : Type and r f-- A _.:.._ B : Type may happen. 

Iff f--A= B: Type then c =idA =df [x: A]x. 

Note that r f-- A ::;c B : Type itself is not a judgement. 

With the above notation, we can simply use the following form to 

represent all seven rules in Figure 4.4.1. 

f f-- A ::;Cj A' : Type f f-- B ::;c2 B' : Type r f-- C ::;c3 C' : Type 

r f-- Trio(A, B, C) <drrio Trio(A', B', C') :Type 

where ci (i = 1, 2, 3) is a coercion or an identity function, and at least 

one ci is a coercion, and 

drrio = [z: NT(A, B, C)]trio(A', B', C', cl(Krriol(A, B, C, z)), 

c2(1rTrio2(A, B, C, z)), cg(7l'Trio3(A, B, C, z))) 

satisfying the following equation: 

drrio(trio(A, B, C, a, b, c)) =trio( A', B', C', c1 (a), c2(b), c3 (c)) 

Example 4.4.4 On page 40, we defined the function operators {7rsPLl 

and 7rsPL2) for- the type of pair-s in which the fir-st component are func­

tions and the second are objects of a type. Now we use these function 

operators to define coercions for the subtyping rules as follows. 

f f-- A' ::;CJ A : Type f f-- B ::;c2 B' : Type r f-- C ::;c3 C' : Type 

r f-- SP L(A, B, C) <dsp£. SP L(A', B', C') :Type 
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where ci (i = 1, 2, 3) is a coercion or an identity function, and at least 

one ci is a coercion, and 

dsPL = [z: SPL(A,B,C)]spl(A',B',C', 

[x: A']c2(7rsp£I(A, B, C, z, c1(x))), c3(1rSPL2(A, B, C, z, ))) 

satisfying the following equation: 

dsPL(spl(A, B, C, g, c))= spl(A', B', C', c2 o go c1, c3(c)) 

Remark 4.4.5 From these examples, we may see that the function 

operators play a very important role in the definitions of coercions. The 

transitivity rule is admissible for the subtyping rules in these examples, 

and the proof method is the same as that in section 4.2. 

In general, we have the following conjecture: 

• For the parameterised inductive types generated by ST-form, which 

have only one constructor, if the coercions of the su btyping rules are 

defined by using their function operators, then the coherence of the 

system T[R]o holds and the normal transitivity rule is admissible. 

Although it is complex to give a general form of subtyping rules for 

parameterised inductive types generated by ST-form, we can clearly 

see why the normal transitivity rule is admissible. If a coercion d is 

defined by using function operators then for a variable x, we can 

compute d(x) to a canonical object. For example, 

drrio(x) = trio( A', B', C', c1(1rTriol (A, B, C, x)), 

c2(7rTrio2(A, B, C, x)), c3(7rrrio3(A, B, C, x))) 

Because of this property, the normal transitivity rule is admissible. 

Contrarily, if dis defined inductively, d(x) cannot be computed further 

if x is a variable. This is also the reason why the normal transitivity 

rule is not admissible. 



CHAPTER 5 

Weak Transitivity 

In this chapter, we study the notion of Weak Transitivity, consider 

suitable subtyping rules for certain parameterised inductive types and 

prove its coherence and the admissibility of substitution and weak tran­

sitivity. 

In Chapter 4, we studied the property of the subtyping rules for 

IT-types and I:-types. A common factor of these two data types is that 

they have only one constructor and some special function operators over 

them can be defined, n1 and n2 for I:-types and app for IT-types. We 

don't have to define the coercions inductively and instead, define them 

by using the special function operators. Hence the normal transitivity 

rule (Trans) is admissible. 

Now, a question is: is the transitivity rule still admissible for those 

inductive types that consist of more than one constructor? We will 

give an example1 in the following section to answer this question. 

5.1. A problem with transitivity 

The normal transitivity rule 

r f- A <c B : Type r f- B <c' C : Type 
(Trans) r f-A <c'oc C: Type 

as presented in Chapter 3 basically says that the composition of two 

coercions is also the coercion corresponding to transitivity. 

However, the above transitivity rule is sometimes too strong (in in­

tensional type theories). For some parameterised inductive data types 

together with their natural subtyping rules, especially when an induc­

tive type has more than one constructor, the above rule fails to be 

admissible or eliminatable. We give the following example to show the 

problem. 

1There are three key examples in this chapter. Understanding these examples is a 
good way to understand this chapter concerning weak transitivity. 

73 
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Example 5.1.1 This is the first key example to show the problem with 

transitivity. If we introduce the subtyping rule for lists then the transi­

tivity rule (Trans) fails to be admissible and, if we add Trans into the 

system, the coherence requirement fails to be satisfied. 

We introduce the following subtyping rule for the inductive data type 

of lists List(A) parameterised by its element type A. 

r f-- A <c B : Type 

f f-- List(A) <dList List(B) : Type 

where dList = mapList(A, B, c) (the detailed definitions of List and 

mapList is on page 32) such that 

dList(nil(A)) = nil(B) 

dList(cons(A, a, l)) = cons(B, c(a), dList(l)) 

Then the transitivity rule (Trans) fails to be admissible and, if we add 

it into the system, the coherence requirement fails to be satisfied. 

To see this, suppose we have r f-- F <q E : Type and 

r f-- E <c2 N : Type, and by the transitivity rule (Trans), we also have 

r f-- F <c2oC1 N : Type. 

By the above subtyping rule for lists, we have respectively 

where 

r f-- List(F) <d1 List(E) : Type 

r f-- List(E) <d2 List(N) : Type 

r f-- List(F) <d3 List(N) : Type 

d1 mapList(F, E, c1) 

d2 mapList(E, N, c2) 

d3 mapList(F, N, c2 o cl) 

By the transitivity rule (Trans), we also have 

r f-- List(F) <d2 ad1 List(N) : Type 

Now, the problem is that, in an intensional type theory, d3 and d2 o d1 

are not computationally equal i.e. 

r l;f d3 = d2 o d1 : (List(F))List(N) 
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This means that we have two coercions ( d3 and d2 o d1) between List( F) 

and List ( N), but they are not computationally equal (and hence coher­

ence fails), although we know that they are propositionally equal in the 

sense that the following proposition is provable in an intensional type 

theory: 

Vl: List(F).Eq(List(N), d3 (l), d2 (d1 (l))) 

5.2. Weak transitivity 

Rather than the (strong) transitivity rule (Trans), we introduce a 

new concept, Weak Transitivity, which can informally be represented 

by the following rule: 

(WTrans) 
r f- A <c B : Type r f- B <c' C : Type 

r f- A <c" C : Type 

This rule says that, if A <c B and B <c' C, then A <c" C for some 

coercion c". The essential difference compared with the (strong) tran­

sitivity rule (Trans) is that we are only more concerned about the 

existence of c" and such weak transitivity should be better suited to a 

wider application; that is, many natural subtyping rules (for example, 

the subtyping rule for lists) are suitable for weak transitivity (WTrans) 

but not for the (strong) transitivity rule (Trans). 

5.2.1. Meta-level equality requirement 

We don't want the coercion c" in the weak transitivity rule (WTrans) 

to be an arbitrary one. Otherwise, this coercion could be very bizarre 

and lose the general meaning. In the strong transitivity rule (Trans), 

c" is the composition of c' and c ( c' o c). In the weak transitivity rule 

(WTrans), we require that c" must somehow be equal to c' o c. There 

are two choices: one is propositional equality in the sense that the 

proposition Vx : A.Eq(C, c"(x), c'(c(x))) is provable in an intensional 

type theory; another is extensional equality in the sense that c" and c' oc 

are judgementally equal in an extensional type theory. Of course, if the 

proposition Vx : A.Eq(C, c"(x), c'(c(x))) is provable in an intensional 

type theory, c" and c' o care judgementally equal in an extensional type 

theory. However, for some inductive data types with their subtyping 

rules, c" and c' o c are not propositionally equal. We give the following 

example to explain why we regard the extensional equality of c" and 
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c' o c in the weak transitivity rule (WTrans) as a meta-level equality 

requirement. 

Example 5.2.1 This is the second key example concerning the meta­

level equality requirement. Consider the following derivations regarding 

the subtype relation between function types (A --+ B) parameterised by 

type A and B. These derivations basically say that if B is a subtype 

of B' then A --+ B is subtype of A --+ B'. (The constructor, eliminator 

and computation rule for the function types (--+) can be found on page 

33} 
r 1- B <c1 B' : Type 

r 1- A --+ B <d1 A --+ B' : Type 

r 1- B' <c2 B" : Type 

r 1- A --+ B' <d2 A --+ B" : Type 

r 1- B <c3 B" : Type 

r 1- A --+ B <d3 A --+ B" : Type 

where d1, d2 and d3 satisfy the following equations: 

d1 (lam(A, B, g))= lam(A, B', [x: A]c1 (g(x))) 

d2 (lam(A, B', h))= lam(A, B", [x: A]c2 (h(x))) 

d3 (lam(A, B, g)) = lam(A, B", [x: A]c3 (g(x))) 

Then we have 

d2 (d 1 (lam(A, B, g)))= lam(A, B", [x: A]c2 (c1(g(x)))) 

Now, let's compare d3 and d2 o d1 and, the terms in the right hand 

side lam(A, B", [x : A]c3 (g(x))) and lam(A, B", [x : A]c2 (c1 (g(x)))). 
Even if we assume that c3 and c2 o c1 are propositionally equal i.e. we 

have a proof ofVx : A.Eq(B", c3 (x), c2 (c1 (x))), it is impossible to prove 

that lam(A, B", [x: A]c3 (g(x))) and lam(A, B", [x: A]c2 (c1 (g(x)))) are 

equal. Hence it is impossible to prove the proposition 

Vf: A--+ B.Eq(A--+ B", d3 (j), d2(d1 (j))), i.e. d3 and d2 o d1 are not 

propositionally equal. 

Remark 5.2.2 It is worth remarking that, in the above example, if we 

consider extensional equality and assume that c3 is extensionally equal 

to c2 o c1 , then d3 and d2 o d1 are extensionally equal. 
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5.2.2. Coercion dependency 

Through my investigation, I also found out that weak transitivity 

does not hold for all combinations of the subtyping rules for parame­

terised inductive types. For example, it's admissibility fails for subtyp­

ing rules of L.:-types. There are three subtyping rules for L.:-types as in 

Figure 3.5.2. We list two of them here; one is 

r f-A <c A' :Type r, x: A f- B(x) <e[x] B'(c(x)) :Type 

r f- L.:(A, B) <d L.:(A', B') : Type 

and another is 

r f-A <c A' :Type r, X: A f- B(x) = B'(c(x)) :Type 

r f- L.:(A, B) <d L.:(A', B') :Type 

which is equivalent to the First-Component rule in Figure 3.5.2. From 

the above two rules, we can see that the coercion c in the first premise 

occurs in the second premise. We call this Coercion Dependency. 

The weak transitivity cannot be proved. For instance, in order to 

prove that L.:(A1, B1) < L.:(A2, B2) and L.:(A2, B2) < L.:(A3, B3) imply 

I:(A1, BI) < L.:(A3, B3) (coercions and some other details are omitted 

here), we would proceed by induction on derivations. One of the cases 

is that the last steps of the derivations of I:(A1, B1) < I:(A2, B2) and 

I:(A2, B2) < L.:(A3, B 3) use the second rule above: 

and 

A1 <c1 A2 x: A1 f- B1(x) = B2(c1(x)) 

L.:(A1, BI) < L.:(A2, B2) 

A2 <c2 A3 y: A2 f- B2(y) = B3(c2(y)) 

L.:(A2, B2) < L.:(A3, B3) 
By induction hypothesis, A1 <q A3 is derivable for some c3, but c3 is 

not (necessarily) computationally equal to c2 o c1. 

Since x: A1 f- c1(x): A2 andy: A2 f- B2(y) = B3(c2(y)) 

we have x: A1 f- B2(c1(x)) = B3 (c2(c1(x))) and hence 

x: A1 f- B 1 (x) = B3 (c2(c1(x))) is derivable. 

However, x: A1 f- B 1(x) = B3 (c3 (x)) is not necessarily derivable and 

how to derive L.:(A1, BI) < I:(A3 , B 3 ) becomes a problem of the proof. 

In fact, the following counter example shows that weak transitivity 

fails when we combine the subtyping rules for L.:-types and lists. 

Example 5.2.3 This is the third key example regarding weak tmnsi­

tivity. If we combine the subtyping T'1J,les for lists and L.:-types then weak 
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transitivity fails, i.e. even if M1 <e1 Jvh and M2 <e2 M 3 are derivable, 

but M1 <e3 M 3 is not derivable for any e3 . 

Assume that we have some type constants A 1 , A 2 , A 3 and a constant 

B 3 of kind (List(A3))Type in an empty context. 

A 1 Type 

A 2 Type 

A 3 Type 

B3 (List(A3))Type 

We also assume that we have the following three coercions in the 

empty context. A WDC C is generated by these coercions and the con­

gruence rule (Gong). 

f-- A2 <c2 A3 : Type 

f-- A1 <c2 oc1 A3 : Type 

By the subtyping rule for lists, we have: 

1- List(A1 ) <d1 List(A2) : Type 

1- List(A2) <d2 List(A3) : Type 

1- List(A1) <d3 List(A3) :Type 

where d1 , d2 and d3 aTe defined as the same as in Example 5.1.1. Nate 

that 1- d3 =/:- d2 o d1 : (List(A1))List(A3) i.e. d3 and d2 o d1 aTe NOT 

computationally equal. 

Since B 3 o d2 : (List(A2) )Type, by the First-Component Tule joT 

~-types, we have: 

1- ~(List(AI), B3 o d2 o d1) <e 1 ~(List(A2), B3 o d2) :Type 

1- ~(List(A2), B3 o d2) <e2 ~(List(A3), B3) :Type 

HeTe, we omit the definition of e1 and e2 . 

Now, the question is: is the following judgement derivable for some 

e3 because the above two aTe deTivable? 
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The answer is NO. We prove the answer by contradiction. If it is 

derivable, then the derivations must have the following form: 

f-A <c A': Type f- B: (A')Type 

f- E(A, B o c) <e4 E(A', B) :Type 

... (Congruence rules) ... 

f- E(List(AI), B3 o d2 o di) <e3 E(List(A3), B3) :Type 

where f- E(List(AI), B 3od2odi) = E(A, Boc) and f- E(List(A3), B 3 ) = 
E(A', B). 

By the properties of Church-Rosser of the original type theory, we 

have f- List(A1 ) =A, f- B 3od2od1 = Boc: (A)Type, f- List(A3) =A' 

and f- B 3 = B : (A')Type. Since B 3 is a constant, the normal form 

of B is B 3 . Hence f- c = d2 o d1 : (A)A' (computationally). Since 

the coherence of the system can be proved by induction on derivations 

as in Section 4.1, we have f- c = d3 : (A)A'. Therefore, we have 

f- d3 = d2 o d1 : (A) A'. This is a contradiction. D 

The fact that weak transitivity fails because of coercion dependency 

leads us to consider the subtyping rules for some restricted forms of 

schemata which disallow that a coercion in one premise occurs in an­

other premise. 

5.3. Weak transitivity schemata 

Now we give a definition of WT-schema. Consider parameterised 

inductive types generated by the following form (under a valid context 

r): 

where P1 is a kind in r, P2 is a kind in r, Y1 : P1 and so on, and Pn 

is a kind in r, yl : H, ... , Yn-l : Pn-1; 8 =< 81, ... , 8m > (m E w) is 

a finite sequence of WT-schemata in r, Y1 : P 1 , ... , Yn: Pn with respect 

to a placeholder X of Type. In order to define WT-schema, we first 

define WT small kind and WT strictly positive operator. 
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Notation 5.3.1 We shall write Y E FV(M) and Y tt FV(M) to 

mean that 'some of the parameters occur free in M' and 'none of the 

parameters occurs free in M ', respectively. 

Definition 5.3.2 (WT small kind} A WT small kind K in r, with 

respect to the parameters Yi, ... , Yn, is one of the following form: 

1. K El(A), 

2. K (y : KI)K2 where 

(a) if y tt FV(K2 ) then K 1 and K 2 are WT small kinds in r. 
(b) if y E FV ( K 2 ) then none of the parameters occur free in K 1 

(i.e. Y tt FV(K1)) and K 2 is a WT small kind in f,y: K 1 . 

Definition 5.3.3 (WT strictly positive operator) A WT strictly 

positive operator in r, with respect to the placeholder X of Type and 

the parameters Y1, ... , Yn, is of one of the following forms: 

1. <I> X, or 

2. <I> - (x : K)<I>0 , where K is a WT small kind in r and <I> 0 is a WT 

strictly positive operator in r, x: K; and if x E FV(<I>0 ) then none 

of the parameters occur free in K i.e. Y tt FV ( K). 

Definition 5.3.4 (WT-schema} A WT-schema 8 in r, with respect 

to the placeholder X of Type and the parameters Y1 , ... , Yn, is of one 

of the following forms: 

1. 8 =X, or 

2. 8 = (x : K)80 , where K is a WT small kind in rand 8 0 is a WT­

schema in r, x : K; and if x E FV ( 8 0 ) then none of the parameters 

occurs free in K i.e. Y tt FV ( K). 

3. 8 _ (x : <I>)80 , where x tt FV(80 ), <I> is a WT strictly positive 

operator in r and 8 0 is an WT-schema in r. 

Remark 5.3.5 We have the following property for a WT-schema 8. 

If (x : MI)M2 is a subterm of 8 and x occurs free in M 2 , then M 1 

does not contain any of the parameters. 

The above notion of WT-schema covers a large class of parameterised 

inductive data types such as lists, (non-dependent) function types, bi­

nary trees in Example 2.3.7. We give two examples here, Maybe and 

Either types, which are frequently found in functional programming 

languages such as Haskell [Tho99]. 
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Example 5.3.6 With the general methods given in Section 2. 3, con­

stants and computation rules for NI aybe and Eithe-r-types are declared 

as follows. 

1. Maybe types: Maybe =df [A : Type]M[X, (A)X] 
Declare the following constants: 

Maybe 

nothing 

just 

C!vfaybe 

(A : Type)Type 

(A: Type)Maybe(A) 

(A: Type)(A)Maybe(A) 

(A: Type)(C: (Maybe(A))Type) 

(C(nothing(A)))((a: A)C(just(A, a))) 

(z: Maybe(A))C(z) 

and assert the following computation rules: 

eMaybe(A, C, c, f, nothing(A)) - c: C(nothing(A)) 

eMaybe(A, C, c, f, just( A, a)) - f(a) : C(just(A, a)) 

2. Disjoint union: Either =df [A: Type][B: Type]M[(A)X, (B)X] 

Declare the following constants: 

Either 

left 

right 

[Either 

(A: Type)(B: Type)Type 

(A: Type)(B: Type)(A)Either(A, B) 

(A: Type)(B: Type)(B)Either(A, B) 

(A: Type)(B: Type) 

(C: (Either(A, B))Type) 

((a: A)C(left(A, B, a))) 

((b: B)C(right(A, B, b))) 

(z: Either(A, B))C(z) 

and assert the following computation rules: 

eEither(A, B, C, JI, f2, left(A, B, a)) 

= f1(a): C(left(A, B, a)) 

eEither(A, B, C, JI, h, right(A, B, b)) 

= h(b) : C(right(A, B, b)) 
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Remark 5.3. 7 WT-schema excludes those parameterised inductive data 

types such as 2:,-types and IT-types because their subtyping rules have co­

ercion dependency. 

5.4. General subtyping rules for WT-schemata 

In this section, we consider how to define subtyping rules and the 

associated coercions for any parameterised types generated by the form: 

where 8 < 8 1 , ... , 8m >(mEw) is a finite sequence ofWT-schemata 

defined in last section. 

Before we give a general form of subtyping rules we give the follow­

ing examples to demonstrate what the subtyping rules and associated 

coerciOns are. 

Example 5.4.1 In this example, we give subtyping rules and associ­

ated coercions for lists, Maybe types, binary trees, Either types and 

Function types. Their constructors, eliminators and computation rules 

can be found in Example 2. 3. 7 and Example 5. 3. 6. 

1. As given in Section 5.1, the subtyping rule for lists is: 

r f- A <c B : Type 

f f- List(A) <dList List(B) : Type 

where 

dList =df map(A, B, c) 

=df EList(A, [l : List(A)]List(B), nil(B), 

[a : AJ[l : List(A)J[l' : List(B)Jcons(B, c(a), l')) 

such that 

dList(nil(A)) 

dList(cons(A, a, l)) 

2. Subtyping rule for 1\t! aybe types: 

nil(B) 

cons(B, c(a), dList(l)) 

r f- A <c B : Type 

r f- NI aybe(A) <dMaybe M aybe(B) :Type 
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dMaybe =df EMaybe(A, [z : M aybe(A)]M aybe(B), 

nothing(B), [a: A]just(B, c(a))) 

such that 

dMaybe(nothing(A)) 

dMaybe(just(A, a)) 

nothing(B) 

just(B, c(a)) 

3. Subtyping rule for Binary trees: 

r f-- A <c B : Type 

r f-- BTree(A) <dBTree BTree(B) :Type 

where 

dBTree =df £BTree(A, [z : BTree(A)]BTree(B), 

empty(B), [a: A][t1 : BTree(A)][t~ : BTree(B)] 

[t2 : BTree(A)][t; : BTree(B)]mk(B, c(a), t~, t;)) 

such that 

dnrree(empty(A)) 

dBTree(mk(A, a, t1, tz)) 

empty(B) 

mk(B, c(a), dnrree(h), dnrree(tz)) 

4. Subtyping rules for Either types: 

where 

r f--A <q A' : Type r f-- B = B' :Type 

r f-- Either(A, B) <dEitherl Either(A', B') :Type 

r f-- A = A' : Type r f-- B <c2 B' : Type 

f f-- Either(A, B) <dEither2 Either(A', B') : Type 
r f-- A <C] A' : Type r f-- B <c2 B' : Type 

r f-- Either(A, B) <dEither3 Either(A', B') : Type 

dEither3 =df £Either(A, B, [z: Either(A, B)]Either(A', B'), 

[a: A]left(A', B', c1 (a)), [b: B]right(A', B', c2 (b))) 

such that 

dEither3(left(A, B, a)) 

dEither3(right(A, B, b)) 

left(A', B', c1(a)) 

right(A', B', c2 (b)) 
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The definitions of dEitherl and dEither2 are similar to dEither3. 

5. Subtyping rules for function types: 

where 

r f- A' <Cj A : Type r f- B = B' : Type 

r f-A --1- B <d(....,)J A' --1- B' : Type 

r f-A= A': Type r f- B <c2 B': Type 

f f-A --1- B <d<_,)2 A' --1- B' :Type 

r f- A' <Cj A : Type r f- B <c2 B' : Type 

r f- A --1- B <d<_,) 3 A' --1- B' : Type 

d(-+)3 =df £(-+)(A, B, [z: A --1- B](A' --1- B'), 

[g: (A)B]lam(A', B', c2 o go c1)) 

such that 

d(-+)3(lam(A, B, g)) =lam( A', B', c2 o go ct) 

84 

The definitions of d(-+)l and d(-+)2 are similar to d(-+)3. D 

From these examples, we can see that some of the parameters are 

covariant while some are contravariant. Formal definitions of covari­

ance and contravariance are given as follows. 

Definition 5.4.2 (Covariance and Contravariance) Let A be a 

type, K a WT small kind, <I> a WT strictly positive operator, 8 a WT­

schema and 8 a finite sequence of inductive WT-schemata. 

• Kc (A) and Kct (A) are to verify whether A is covariant or con­

travariant inK. Kc(A) =True means that A is covariant inK, 

and Kct (A) = True means that A is contravariant in K. 

1. If K = El(B) and 

(a) if A"¥:- B then 

Kc(A) =True Kct(A) =True 

(b) if A = B then 

Kc(A) =True Kct(A) =False 

2. If K = (x : Kt)K2 then 

Kft(A) 1\ KHA) 

Kf(A) 1\ K~t(A) 
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where 1\ is the common logical operator 'and'. 

Gl <I>c(A) and <I>ct(A) are to verify whether A is covariant or con­

travariant in <I>. <I>c(A) = True means that A is covariant in <I>, 

and <I>ct(A) =True means that A is contravariant in <I>. 

1. If <I> = X then 

<I>c(A) =True <I>ct(A) =True 

2. If <I> = (x : K)<I> 0 then 

Kc(A) 1\ <I>~(A) 

Kct(A) 1\ <I>~t(A) 

® ec(A) and ect(A) are to verify whether A is covariant or con­

travariant in e. ec(A) = True means that A is covariant in 8, 
and ect(A) =True means that A is contravariant in 8. 

1. Ife =X then 

ec(A) =True ect(A) =True 

2. If e = (x: K)eo then 

ec(A) 

ect(A) 

3. Ife = (<I>)eo then 

ec(A) 

ect(A) 

Kc(A) 1\ 8~(A) 

Kct(A) 1\ e~t(A) 

<I>ct(A) 1\ 8~(A) 

<I>c(A) 1\ e~t(A) 

e ec(A) and ec\A) are to verify whether Type A is covariant or 

contravariant in e. ec(A) = True means that A is covariant in 
- -ct -e, and 8 (A) =True means that A is contr·avariant in e. 

8~(A) 1\ ... 1\ 8~JA) 

e~t(A) A ... A e~(A) 

We say a type A in 8 is covariant if 8c(A) = Tnte and ect(A) = 

False; and we say a type A in e is contravariant if ect(A) =True 

and ec(A) =False. 0 
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Now, we give a general definition of subtyping rules and its associ­

ated coercions. The general form of subtyping rules for Tis 

premzses 
(vVT RuleF arm) 

f f- T(A) <d7 T(B) :Type 

where A= A1 , ... ,An and B = B1 , ... , Bn are fresh and distinct schematic 

letters. Intuitively, we associate T with subtyping rules whose conclu­

sion is of the form r f- T(A) <h T(B) : Type. The coercion d7 

is defined by induction on T(A) and maps the canonical objects of 

T(A) to the corresponding canonical objects of T(B). For example, 

dList = mapList(A, B, c) in the subtyping rule for lists. 

In order to find out the premises, we first give a notational defini­

tion, premise set, as follows. 

Notation 5.4.3 We shall often write D[A] for [AI/Y1 , ... , An/Yn]D. 

Definition 5.4.4 (premise set) 

• For any small kind K in r, we define premr(K) as follows: 

1. K _ El(D) 

(a) if Y tf_ FV(D) then premr(K) = 0 
(b) ifY E FV(D) thenpremr(K) = {(f,D[A],D[B])} 

2. K - (y: K1)K2 

(a) ify tf_ FV(K2) thenpremr(K) = premr(K1 )Upremr(K2), 

where 

premr(KI) =dt {(r, B, A) I (r, A, B) E premr(KI)} 

(b) if y E FV(K2) then premr(K) = premr,y:K1 (K2 ). Note 

that in this case, if K is in a WT-schema, Y tf_ FV(KI). 

• For any WT-schema 8 in r, we define premr(8) as follows: 

1. 8 =X, then premr(8) = 0 
2. 8 = (x : K)80 

(a) if x tf_ FV(80 ) then premr(8) = premr(K)Upremr(80 ) 

(b) if x E FV(8o) then premr(8) = premr,x:K(80 ). Note 

that in this case, since 8 is in a WT-schema, Y tf_ 

FV(K). 

3. 8 = (x: <I>)8o, then premr(8) = premr(<I>) U premr(8o) 
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® For any sequence of WT-schemata in r, 8 -< 8 1 , ... , 8m >, we 

define 

Now, suppose there are v elements premr(8) and we give an order 

to the elements: 

(f1, C1, D1), ... , (fv, Cv, Dv) 

Then the sequence of the premises in the form WT RuleForm is: 

where c1 , ... , Cv are fresh and distinct schematic letters. 

Having defined the general forms of the premises, we now define 

a general form of the coercion dr. We first introduce the following 

notational definitions. 

Definition 5.4.5 For small kinds K1 and K2, Func[K1, K2] is defined 

as follows. 

• K 1 _ El(C) and K2 _ El(D) 

1. If r f- C :s;c D : Type is in the sequence of premises, then 

Func[K1, K2] =c. 

2. If C D, then Func[K1, K2] =ide= [x: K 1]x. 
3. Otherwise, Func[K1, K 2] is undefined. 

• K1 = (y: Ku)KI2 and K2 (y: K2I)K22· If both Func[K21, Ku] 
and Func[K12 , K 22] are defined and let 

k1 Func[K21, Ku] 

k2 Func[K12, Kd 

then 

Func[K1,K2] = [g: Kl][y: K21]k2(g(k1(y))) 

• Otherwise, Func[K1, K2] is undefined. 

Remark 5.4.6 In general, when c in the form r f- C :s;c D : Type is 

of kind (C)D, Func[K1 , K2] is of kind (KI)K2 if it is definable. 

Notation 5.4.7 Let Y1 , ... , Yn be the parameters and \J! either a WT 

strictly positive operator or a WT-schema. We shall write \J![A] for 

[AI/Y1, ... , An/Yn]w, \J![B] for [BI/Yi, ... , Bn/Yn]\J!, and \J![B][T(B)] 
for [BI/Yi, ... , Bn/~1 , T(B)/ X]\J!. 
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Definition 5.4.8 Let ci> be WT strictly positive operator) 8 a WT­

schema. 

0 for any f : ci>[A][T(B)], define <I>k(J) of kind ci>[B][T(B)] as follows: 

1. if ci> X' then <I>~ (f) = f 

2. if ci> (x : K)<I>o then 

ci>k(f) = [x: K[B]]<I>~(f(Func[K[B], K[A]](x))) 

e~ for any g: 8[B][T(B)], define e>-(g) as follows : 

1. if 8- X then e>-(g) = g 
2. if 8 (x : K)80 then 

e>-(g) = [x: K[A]]8~(g(Func[K[A], K[B]](x))) 

3. if8 (x: 1>)80 then 

e>-(g) = [x: <I>[A][T(A)]][x' : <I>[A][T(B)]] 

e~ (g ( <I>k [ x'])) 

0 

Then, using the above notational definitions, we define the coercion 

d7 in the form WT RuleF arm. 

dT =df ET(A, C, 8~(h(B)), ... , 8~(lm(B))) 

where C = [z : T(A)]T(B) and, lj (j = 1, ... , m) and £7 are the 

introduction operators and the elimination operator ofT, respectively 

(see Section 2.3 for details). 

Now, we are ready to specify the subtyping rules from the form 

WT RuleForm. Let the sequence of the premises be: 

Then we will generate 2v - 1 subtyping rules for the parameterised 

inductive data types, each of which has v premises. The premises for 

each rule are obtained by changing ::;c; into either = or <c;. Different 

combinations give different sequences of premises, and hence different 

rules, except that there must be at least one premise that has the form 

r f- C <c D : Type. For example, without losing generality, if ::;c; in 

the first r premises are changed into =, and the left into <c;, then a 
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subtyping rule will be 

f1 f-- C1 = D1 :Type, ... , fr f-- Cr =Dr :Type 

rr+l f-- Cr+l :Scr+l Dr+I: Type, ... , fv f-- Cv :Scv Dv: Type 

r f-- T(A) <e T(B) :Type 

where e [idc)ci, ... , idcr/cr]dT. 

Remark 5.4.9 Some types in WT-schemata are neither covariant nor 

contravariant. This causes that some rules may have contradictory 

premises. For example, for the inductive type T(Y) =df M[((Y)Y)X] 
parameterised by type variable Y, let 8 = ((Y)Y)X, we have 

ec(Y) =False and ect(Y) =False. One of the subtyping rules is 

r f-- A <q B : Type r f-- B <c2 A : Type 

r f-- T(A) <dr T(B) :Type 

Since the premises in such rules are contradictory (and never satis­

fied), they can never be applied. So, we assume that all the types that 

contain parameters in WT-schemata used later are either covariant or 

contravariant. 

Justification of the coercion dT 

The coercion dT as defined in the form WT RuleForm sends the 

canonical objects of T(A) to the corresponding canonical objects in 

T(B). For example, the coercion dList in the subtyping rule for List 

satisfies that 

dList(nil(A)) 

dList(cons(A, a, l)) 

nil(B) 

cons(B, c(a), dList(l)) 

In the following lemma, we prove this is in general the case. We first 

give a definition of eu(A, B). 

Definition 5.4.10 Let 8 be a WT-schema and assume that 8 be of the 

form (xl : MI) ... (Xt : Mt)X and XI, ... , Xt are fresh variables. eu(A, B) 

is a sequence of arguments: 

1. if 8 =X then eu(A, B) =< > 
2. if 8 - (xr : K)80 (r = 1, ... , t), then 

eu(A, B) =< Func[K[A], K[B]] (xr ), 8~(A, B) > 
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3. if 8 = (xr : 1>)8o (r = 1, ... , t) then 

8u(A, B) =< <I>k[(<I>[A])Q[dT, Xr]J, 8~(A, B) > 

Lemma 5.4.11 dT(lj(A, 8j)) = lj(B, 8j(A, B)), where 8j as defined 

in Section 2. 3. 

Proof. By the definition of dT and the computation rules for T, we 

have 

dT(lj(A, 8j)) 

ET(A, C, 8~(l1 (B)), ... , 8~(lm(B)), lj(A, 8j)) 

8](lj (B)) ( ( 8j [A])U) 

We need to prove only that 

>. - - ~ - u--
8j (lj(B))((8j[A]) ) = lj(B, 8j (A, B)) 

Note that lj(B) : 8j[B][T(B)] where 

8j[B][T(B)] =df [BdY1, ... , Bn/Yn, T(B)/ X]8j 

Now, we generalise the problem; prove that for any WT-schema 8 and 

g: 8[B][T(B)], we have 

8>-(g)((8[A])~) = g(8u(A, B)) 

Assume that 8 be of the form (x1 : 1\!I1 ) ... (xt : Mt)X and x1 , ... , Xt are 

fresh variables. Do induction on the structures of WT-schema. 

1. If 8 = X then by the definition of 8>., 8U and 8u we have 

8>-(g) - g 

(8[A])~ - <> 

8u(A, B) - <> 

Obviously, 8>-(g)((8[A])ct) = g(8u(A, B))= g. 

2. If 8 = (xr : K)8o (r = 1, ... , t), then 

8>-(g) - [xr: K[A]]8~(g(K;(xr))) 

(8[A])U - < Xr, (8o[A])ct > 

8u(A, B) - < K;(Xr ), 8~(A, B) > 
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where /'\, = Func[K[A], K[B]] 

So, 8"(g)((8[A])~) = 8G(g(/'\,(xr)))((8o[A])~). 

Since g(K,(Xr)): [K,(Xr)/xr]8o[B][T(B)], by the induction hypothe­

sis, we have 8G(g(K,(Xr)))((8o[A])~) = g(K,(Xr), 8 0(A, B)). 
Therefore, 8"(g)((8[A])~) = g(8u(A, B)). 

3. if 8 (xr : <I>)8o (r = 1, ... , t), then 

e"(g) - [xr : <I>[A][T(A)]][x' : <I>[A][T(B)]] 

e~ (g ( <I>k ( x'))) 

(8[A])~ - < Xr, (<I>[A])Q[dr, Xr], (8o[A])~ > 

eu(A, B) - < <I>k((<I>[A])Q[dr, Xr]), 8 0(A, B) > 

So, 

e" (g)( ( 8[A])~) = e~(g( <I>k ( ( <I>[A])Q [dr' Xr]))) ( ( 8o[A])~) 

Lett= <I>k((<I>[A])Q[dr, Xr]). Then g(t) : [t/xr]8o[B][T(B)], by the 

induction hypothesis, we have 

8G(g(<I>k[A, B, (<I>[A])Q[dr, x]]))((8o[A])~) 

= g(<I>k[A, B, (<I>[A])Q[d7 , x]], 8 0(A, B)) 

Therefore, 8"(g)((8[A])~) = g(8u(A, B)). 

D 

Now, let's consider another property of the definition of the coer­

cion dr in the rule WT RuleForm. It satisfies the extensional equal­

ity requirement, for example, mapList(A, C, g) and mapList(B, C, e) o 

mapList(A, B, c) are extensionally equal if g and eo care extensionally 

equal. The following lemma will show that this is in general the case. 

Lemma 5.4.12 By the form WT RuleForm, suppose we have the fol-

lowing: 
premzses1 

r f-- T(A1, ... , An) <d1 T(B1, ... , En) :Type 
premzses2 

r f-- T(B1, ... , En) <d2 T(C1, ... , Cn) :Type 
premzses3 
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where d1 , d2 and d3 are defined according to the definition of dT in the 

form WT RuleForm with respect to their premises respectively, and the 

premises are described as follows: 

1. If the i-th premise in the form WT RuleForm is covariant, i.e. it is 

obtained from a covariant type D by substituting parameters, then 

ri f- D[A] ~c; D[B] : Type is in premises1 , 

ri f- D[B] ~e; D[C] :Type is in premises2 and 

ri f- D[A] ~g; D[C] : Type is in premises3 for some Ci, ei and gi; 

and gi and ei o ci are extensionally equal. 

2. If the i-th premise in the form WT RuleForm is contravariant, 

i.e. it is obtained from a contravariant type D by substituting 

parameters, then fi f- D[B] ~c; D[A] : Type is in premises1 , 

ri f- D[C] ~e; D[B] :Type is in premises2 and 

ri f- D[C] ~g; D[A] : Type is in premises3 for some Ci, ei and gi; 

and gi and ci o ei are extensionally equal. 

Then, d3 and d2 o d1 are extensionally equal. 

Proof. First, by induction on constructors of type T(A 1 , .•• ,An)· 

For any canonical object lj(A, 8j) of type T(A), by Lemma 5.4.11, 

we have 

d2 (lj(B, 8j(A, B))) 

lj(C, [8j(A, B)/8j]8j(B, C)) 

and 

d3(lj(A, 8j)) = lj(C, 8j(A, C)) 

Now, we need to prove that lj(C, [8j(A, B)/8j]8j(B, C)) and 

lj(C, 8j(A, C)) are extensionally equal. To prove this, we prove that 

for any WT-schema 8, every element in [8u(A, B)j8v]eu(B, C) is ex­

tensionally equal to the corresponding element in eu(A, C). 

Assume that e be of the form (xl : MI) ... (Xt : 111t)X and xl, ... , Xt 

are fresh variables. Do induction on the structures of WT-schema. 

1. If 8 = X then eu(A, B) = eu(B, C) = eu(A, C) =< >. Ob­

viously, every element in [8u(A, B)jev]eu(B, C) is extensionally 

equal to the corresponding element in eu(A, C) because they are 

empty sequences. 
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2. If 8 = (xr : K)80 (r = 1, ... , t) and let r,;1 = Func[K[AJ, K[B]J, 
r,;2 = Func[K[B], K[C]] and r,;3 = Func[K[A], K[C]], then 

Therefore, 

eu(A, B) 

eu(B, C) 

eu(A, C) 

< Kl(xr), e~(A, B)> 

< K2(xr), e~(B, C)> 

< K3(xr ), 8~(A, C) > 

[eu(A, B)/8v]eu(B, C) = 

< r,;2(r,;l(xr)), [80(A, B)/80]80(A, B)> 

By the induction hypothesis of the structures of WT -schema, every 

element in [80(A, B)/80]80(B, C) is extensionally equal to the 

corresponding element in 8 0(A, C). If we can prove that r,;3 is 

extensionally equal to r,;2 o r,;1 , then we know that every element in 

[eu(A, B)/8v]eu(B, C) is extensionally equal to the corresponding 

element in eu(A, C). 

Now, let's prove that r,;3 is extensionally equal to r,;2or,; 1 by induction 

on structures of WT small kind K. 

(a) If K El(M) and 

(i) if M doesn't contain any parameter i.e. Y rj. FV(M) 

then K[A] = K[B] - K[C] - K and hence r,;1 = r,;2 = 

r,;3 = idK = [x : K]x. So, r,;3 is extensionally equal to 

K2 0 K1. 

(ii) M contains any parameters i.e. Y E FV(M). 

If ri f- M[A] :Sc; M[B] : Type is in premises1 , 

C f- M[B] :Se; M[C] : Type is in premises2 and 

C f- M[A] :S9; M[C] :Type is in premises3 then 

K1 = ci, K2 = ei and r,;3 = gi and by the assumption, r,;3 

is extensionally equal to r,;2 o r,;1 . 

If ri f- M[B] :Sc; M[A] : Type is in premises1 , 

ri f- M[C] :Se; M[B] :Type is in premises2 and 

ri f- M[C] :S 9; M[A] : Type is in premises3 then 

K1 = ei, K2 = ci and r,;3 = gi and by the assumption, r,;3 

is extensionally equal to r,;2 o r,; 1 . 
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(b) If I<- (y: KI)K2 then let 11;11 = Func[K1 [B], KI[A]], 

11;12 = Func[KI[C], KI[B]], 11;13 = Func[K1[C], KI[A]], and 

11;21 = Func[K2 [A], K2[B]], 11;22 = Func[K2 [B], K2[C]] and 

11;23 = Func[K2 [A], K2[C]] and we have 

11;1 [f: K[A]][y: KI[B]]/1;21(J(/1;11(Y))) 

11;2 [g: K[B]][x: KI[C]]/1;22(9(11;12(x))) 

11;3 [f: K[A]][x: Kl[C]]/1;23(!(11;13(x))) 

Therefore, we have 

By the induction hypothesis, we have that 11;23 is extensionally 

equal to 11;22 o 11;21 and 11;13 is extensionally equal to 11;11 o 11;12 . 

So, 11;3 is extensionally equal to 11;2 o 11;1. 

3. If e (xr: <P)8o (r = 1, ... , t) then 

eu(A, B) 

eu(B, C) 

eu(A, C) 

< Xn 8~ > 
k - q u--

< <I> ((<P[AJ) [d1,xr]),80 (A,B) > 
k - q --

<<I> ((<P[B]) [d2, Xr]), e~(B, C) > 

< <Pk((<P[A])q[d3, Xr]), e~(A, C) > 

Therefore, 

[eu(A, B)jev]eu(B, C) = 

< <J>k((<P[B])q[d2, <J>k((<P[A])q[d1, Xr])]), 

[80(A, B)/80]80(B, C) > 

By the induction hypothesis of the structures of WT-schema, we 

have that every element in [80(A, B)/80]80(B, C) is extensionally 

equal to the corresponding element in 8 0(A, C). If we can prove 

that 

and 

are extensionally equal, then we know that every element in 

[eu(A, B)/8v]eu(B, C) is extensionally equal to the corresponding 

element in eu(A, C). 
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Now, let's prove that, for any x andy, if x andy are extensionally 

equal, then 

and 

are extensionally equal, by induction on the structures of the WT 

strictly positive operator. 

(a) If <I> _X then we have 

So, 

and 

(<I>[A])Q[d1, y] - d1(y) 

( <I>[A])Q [d3, x] - d3 (x) 

<I>k((<I>[B])Q[d2, <I>k((<I>[A])Q[d1, y])]) 

= d2(dl(y)) 

By the induction hypothesis of constructors of type T(A 1 , ... , An), 

we have that d3(x) is extensionally equal to d2(d1(y)). 

(b) if <I> (x: K)ci>0 then let 11:1 = Func[K[B], K[A]], 

11:2 = Func[K[C], K[B]] and 11:3 = Func[K[C], K[A]], and we 

have 

So, 

and 

(ci>[A])Q[d1, y] - [a: K[A]](ci>0 [A])Q[d1, y(a)] 

(<I>[A])Q[d3, x] - [a: K[A]](<I>0 [A]) 0[d3, x(a)] 

cJ>k ( ( ci> [A l) Q [ d3' X l) 
= [z: K[C]]ci>~((ci>o[A]) 0 [d3, x(11:3(z))]) 

<I>k((<I>[B])U[d2, <I>k((<I>[A])U[dl, y])]) 

= cJ>k((ci>[BJ)U[d2, [b: K[B]]ci>~((ci>0 [A]) 0 [d1, y(11:1(b))])]) 

= <I>k([b: K[B]](<I>0 [B])0[d2, <I>~((ci>0 [A]) 0 [d1, y(11:1(b))])]) 

= [z: K[C]]ci>~((<I>o[B]) 0 [d2, <I>~((ci>o[A]) 0 [dl, y(11:1(11:2(z)))])]) 

As proved before, we have that 11:3 and 11:1 o 11:2 are extensionally 

equal. So, x(11:3(z)) and y(11:1(11:2(z))) are extensionally equal. 

Now, by the induction hypothesis of the structures of the WT 
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strictly positive operator, we have that 

and 

are extensionally equal. Therefore, we have that 

and 

are extensionally equal. 

So, for any canonical object l1(A, 8j) of type T(A), we have d3(l1(A, 8j)) 
and d2 ( d1 ( 11 (A, 8j))) are extensionally equal. Therefore, d3 and d2 o d1 

are extensionally equal. D 

5.5. Coherence 

In this section, we show that the coherence of subtyping rules holds 

for the inductive types generated by WT -schemata. Some related prop­

erties are also proved. 

Note that the set R of subtyping rules consists of the rule (W DCrule) 

and the subtyping rules for parameterised inductive types generated 

by WT-schemata and, the system T[R]o also includes the congru­

ence rule (Gong). Furthermore, we assume that for any judgement 

r f- A <c B : Type E C, neither A nor B is computationally equal to 

any 7j-type, where 7j is a type constructor such as List, Either and 

Maybe, and Ti 1:- 7j if i =/= j (for example, Tl List, 72 Either 

and T3 - Maybe). We also assume that the original type theory T 

has good properties, in particular the Church-Rosser property and the 

property of context replacement by equal kinds. 

We also denote by eM the set of the derivable subtyping judgements 

of the form r f- M <d A1' :Type in T[R]0 ; that is, r f- M <d M' :Type 

E eM if and only if r f- M <d M' :Type is derivable in T[R]0 . 

Lemma 5.5.1 If r f- M 1 <d M2 : Type E CM then both M 1 and lvf2 

are computationally equal to 7j-type (i.e. the normal forms of M1 and 

lvh have same type constructor) or r f- lvft <d M 2 : Type E e. 
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Proof. By induction on derivations. 

If the last rule is one of the 7j-subtyping rules, then we know that 

both M1 and lvi2 are 7j-type. 

Now, suppose that the last rule is the congruence rule, that is 

r f-- M{ <d' M~ : Type 

r f-- M1 = M{ :Type r f-- M2 = M~ :Type r f-- d = d': (M1)M2 
r f-- M1 <d M2 : Type 

By the induction hypothesis, both .!vi{ and M~ are computationally 

equal to 7j-type orr f-- M{ <d' M~ : Type E C. 

If both M{ and M~ are computationally equal to 7j-type, then both 

M1 and M2 are computationally equal to 7j-type. 

If r f-- M{ <d' M~ : Type E C, then r f-- M1 <d M2 E C since C is a 

WDC. D 

Theorem 5.5.2 Iff f-- M1 <d M2 :Type E CM then 

r If M1 = M2: Type. 

Proof. By induction on derivations. D 

Lemma 5.5.3 (Context equality) If r f-- M1 <d M2 : Type E CM 

and f-- f = f' then f' f-- M1 <d M2 :Type E CM· 

Proof. By induction on derivations. D 

Theorem 5.5.4 (Weakening) Iff f-- M1 <d M2 :Type E CM, r <:;;; f' 

and f' is valid then f' f-- M1 <d M2 :Type E CM. 

Proof. By induction on derivations. 

Theorem 5.5.5 (Coherence) Iff f-- M1 <d M2 : Type E CM, 

f f-- M{ <d' M~ :Type E CM, r f-- M1 = M{ :Type and 

r f-- M2 = M~ :Type then r f-- d = d' : (MI)M2. 

Proof. By induction on derivations. 

By Lemma 5.5.1, we need to consider only two cases: 

• f f-- M1 <d M2 E C. 

D 

Since r f-- M1 = M{, r f-- M2 = M~ and C is a vVDC, we have 

r f- M{ <d' .!vi~ E C. Therefore, r f-- d = d' by Lemma 3.4.2. 

• Both M1 and M2 are computationally equal to 7j-type. 

Since r f- M1 = M{ and r f-- M2 = !11~, both !11{ and .!vi~ are 
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computationally equal to 7j-type. 

The derivations of r f- M1 <d M2 and r f- M{ <d' M~ must have 

the following forms: 

prem'lsesl 

... (Congruence rule) ... 

r f- M1 <d M2 

where f f- 7j(A1, ... ,An) = M1, f f- 7j(B1, ... ,En) 
r f- d = dl; and 

prem'lses2 

... (Congruence rule) ... 

r f- Mf <d' M~ 

where r f- 7j(A~, ... , A~) = M{, r f- 7j(B~, ... , B~) 
r f- d' = d2. 

Now we prove that the subtyping rules used to derive 

and 

r f-7j(A~, ... , A~) <d2 7j(B~, ... , B~) 

must be the same. That is, 

M~ and 

. If ri f- Ei = Fi is in premises! then ri f- EI = Ff is m 

premises2 and, 

. If c f- Ei <c; Fi is in premises! then ri f- EI <c' Ff IS m 
l 

premises2 for some EI, Ff and c~. 

Since r f- M 1 = !VI{ and r f- M2 = M~, we have 
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and 

f f- Tj(B1, ... ,En) = Tj(B~, ... , B~) 

Since T[R]o is a conservative extension ofT and T has the Church­

Rosser property, we have r f- Ai = A~ and r f- Bi = B;. Since Ei 

and E: are obtained form a typeD by substituting parameters, we 

have ri f- Ei = EI and similarly ri f- Fi = Ff. By Theorem 5.5.2, 

if C f- Ei <c; Fi is in premises1, then C If Ei = Fi and hence 

C liE: = Ff. So, ri f- E: <c' Ff is in premises2 for some c~. 
1 

Now, by the induction hypothesis, we have r f- ci = c~ in cases 

that C f- Ei <c; Fi is in premises1 and C f- E: <c' Ff is in 
1 

premzses2. 

Therefore, since d1 and d2 are given by the same rule, we have 

r f- dl = d2 and hence r f- d = d'. 

0 

5.6. Admissibility of Substitution and Weak Transitivity 

In this section, we show that the substitution and weak transitiv­

ity rules are admissible for the subtyping rules of the inductive types 

generated by WT -schemata. 

Theorem 5.6.1 (Substitution} If r, X : K, r' f- Ml <d },1]2 : Type 

E CM and f f- k : K then f, [k/x]f' f- [kjx]M1 <[k/xJd [kjx]Nh : Type 

E CM. 

Proof. By induction on derivations. 0 

Theorem 5.6.2 (Weak Transitivity) If r f- M1 <d1 M2 : Type 

E CM, f f- NJ~ <d2 M3 : Type E CM and f f- l\;f2 = M~ : Type then 

f f- M1 <d3 M3 :Type E CM for some d3 and d3 is extensionally equal 

to d2 o d1. 

Proof. By induction on derivations. 

By Lemma 5.5.1, we need to consider only two cases: 

o f f- .M1 <d M2 E C. 

Then both Nh and Nh are not computationally equal to Tj-type. 

Since f f- M2 = NI~, we have f f- NI{ <d' JV!~ E C by Lemma 

5.5.1. Therefore, f f- 1\11 <d3 l\if3 E C for some d3. Therefore, 

r f- M1 <d3 Nh E C for some d3 and d3 is computationally equal 

to d2 o d1 by Lemma 3.4.2. 
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• Both lvf1 and M2 are computationally equal to 7i-type. 

The derivation of r f-- M1 <d M2 must have the following form: 

... (Congruence rule) ... 

r f-- M1 <d1 M2 

where r f-- 7j(An, ... , Aln) = M1, r f-- 7j(A21, ... , A2n) = M2 and 

r f-- d1 = d~. 
Since r f-- M2 = M~ and M2 is computationally equal to 7i-type, 

both M~ and M 3 are computationally equal to 7i-type. Therefore, 

the derivation of r f-- M~ <d2 M 3 : Type must be of the form: 

... (Congruence rule) ... 

r f-- M~ <d2 M3 

where r f--1j(A~ 1 , ..• ,A~n) = M~, r f--7j(A31,···,A3n) = M3 and 

r f-- d1 = d~. 
Since r f-- M2 = M~, we haver f-- 7j(A21, ... , A2n) = 7j(A~1 , ... , A~n)· 

Since T[R] 0 is a conservative extension ofT and T has the Church­

Rosser property, we have r f-- A2i = A~i. 
Now, let us consider the i-th premise in premises1 and premises2 

and analyse one difficult case that ri f-- Ei <c; Fi is in premises1 

and ri f-- Gi <ei Hi in premises2 . 

1. If the i-th premise in the form WT RuleForm is obtained from 

a covariant type D, then Fi = D[A2] and Gi = D[A~]. Since 

r f-- A2i = A~i for every i, we have C f-- Fi = Gi. By inductive 
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hypothesis, we have ri f-- Ei <9; Hi for some 9i and, gi and 

ei o ci are extensionally equal. 

2. If the i-th premise in the form WT RuleForm is obtained from 

a contravariant type D, then Ei - D[A2] and Hi - D[A~]. 

Since r f-- A2i = A~i for every i, we have C f-- Ei = Hi· By 

induction hypothesis, we have ri f-- Gi <9; Fi for some 9i and, 

gi and ci o ei are extensionally equal. 

By one of the subtyping rules for 'Tj, we have 

r f-- 'Tj(Au, ... , Aln) <d3 'Tj(A31, ... , A3n) and by Lemma 5.4.12, we 

have d3 is extensionally equal to d~ o d~. 

By the congruence rule, we have r f-- M1 <d3 M 3 and d3 is 

extensionally equal to d2 o d1 . 

0 

Corollary 5.6.3 (Extensional equality requirement) 

If r f-- M1 <d1 M2 : Type E eM, r f-- M2 <d2 M3 : Type E CM and 

r f-- ll11 <d3 M3 : Type E eM then d3 and d2 0 dl are extensionally 

equal. 

Proof. By Theorem 5.6.2 and Theorem 5.5.5. 0 

5.7. Extension of WT-schemata 

One may extend WT-schemata so that some families of inductive 

types can also be covered. For example, the type of vectors is defined 

as follows: 

Vee =df [A: Type]M[X(O), (n: N)(A)(X(n))X(S(n))] 

where X is a placeholder of kind (N)Type, N is the type of natural 

numbers, 0 and S are constructors for zero and the successor respec­

tively. A common subtyping rule for vectors is the following: 

where 

r f-- n : N r f-- A <c B : Type 
r f-- Vec(A, n) <d(n) Vec(B, n) :Type 

d(O, vnil(A)) 

d(S(m), vcons(A, m, a, l)) 

vnil(B) 

vcons(B, m, c(a), d(m, l)) 
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and vnil and vcons are the constructors of vectors introduced as usual 

(see Example 2.3.7 for details). 

Adding this subtyping rule into n , all the good properties are 

kept, i.e., n is still coherent, the substitution rule is admissible, weak 

transitivity holds and the equality requirement is satisfied. 

Now, we give a formal definition of extended WT-schemata. 

Definition 5.7.1 (Extended WT strictly positive operator and 

WT-schema} Let r be a valid context, 5 1 , ... , Sk {k E w) be kinds 

in r, i.e. judgement r f- Si Kind is derivable (i = 1, ... , k), X be a 

placeholder of kind (s1 : SI) ... (sk : Sk)Type. 

• A WT strictly positive operator in r, with respect to X and the 

parameters Y1, ... , Yn, is of one of the following forms: 

1. <I>= X(sl, ... , sk), where r f- Si : si (i = 1, ... , k), or 

2. <I> (x : K)<I>0 , where K is a WT small kind in r and <1> 0 is a 

WT strictly positive operator in r' X : K' and if X E FV (<Po) 
then none of the parameters occur free inK i.e. Y rf. FV(K). 

• A WT-schema 8 in r, with respect to X and the parameters Y1, ... , }~, 

is of one of the following forms: 

1. 8 = X(sl, ... , sk), where r f- Si : si (i = 1, ... , k), or 

2. 8 = (x: K)80 , where K is a WT small kind in r and 8 0 is a 

WT-schema in r, X: K, and if X E FV(8o) then none of the 

parameters occur free inK i.e. Y rf. FV(K). 

3. 8 (x: <1>)80 , where x rf. FV(80 ), <I> is a WT strictly positive 

operator in r and 8 0 is an WT-schema in r. 

Remark 5.7.2 As mentioned in Section 5.2.2, WT-schemata avoid 

coercion dependency between premises such as the subtyping rules for 

L,-types to make sur-e that there is no coercion in one premise that 

occurs in another premise. The above definition also captures this idea, 

for example, there is no coercion dependency in the subtyping rule for­

the type of vectors. 

5.8. Discussion: new computation rules 

The normal transitivity rule in coercive subtyping has been proved 

to be admissible for the subtyping rules of some parameterised induc­

tive types such as 2:,-types. The main reason that it can be proved is 
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because such inductive types have only one constructor and some im­

portant function operators such as 1r1 and 1r2 can be defined, and one 

can use these operators to define nice coercions. However, for many 

inductive types that have more than one constructor, the transitivity 

rule fails to be admissible. Weak transitivity is introduced and it is 

admissible for a large class of parameterised inductive types such as 

lists. Weak transitivity holds because it requires only the existence of 

coercion and extensional equality. 

However, there are two problems. One regards sub kin ding rules. In 

the coercive subtyping system with strong (or normal) transitivity, the 

subkinding rules in Figure 3.2.2 are included. However, the coercive 

subtyping system with weak transitivity includes only the subkinding 

rules in Figure 3.2.1, and the subkinding rules in Figure 3.2.2 are ex­

cluded. One of the reasons is that, for example, in the subkinding 

rule 
r f-- K~ <c1 K1 r, x': K~ f-- [c1(x')jx]K2 <c2 K~ 

r f-- (x : KI)K2 <[t:(x:Kl)K2][x':K~]c2(J(q(x'))) (x : Ki)K~ 
the coercion c1 in the first premise occurs in the second premise. Hence 

the weak transitivity rule (WT K) for subkinding 

(WTK) 
r f-- K <c K' r f-- K' <c' K" 

r f-- K <c" K' 

fails to be admissible. In fact, one can construct a counter example as 

we did in Example 5.2.3. 

Another problem regards the combination of the subtyping rules 

for inductive data types. As we showed in Example 5.2.3, neither the 

strong (or normal) transitivity rule nor the weak transitivity rule can be 

admissible when we combine some natural subtyping rules, for example 

the subtyping rules for I:-types and lists. 

In this section, we discuss the new computation rules for parame­

terised inductive types. If these new computation rules are added to the 

original type theory, the above two problems will be solved and the ex­

tended type theory is expected to keep some important meta-properties 

such as Strong Normalisation and Church-Rosser. This leads us to fun­

damental future research that is important for coercive subtyping as 

well as for type theory itself. 
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5.8.1. New computation rule for lists 

In this sub-section, we give a new computation rule for lists as an 

example and discuss some important meta-properties for the extended 

type theory. 

In Example 5.1.1, we have seen that the normal transitivity rule 

(Trans) is not admissible for the subtyping rule of lists because 

mapList(B, C, c2) o mapList(A, B, c1) and mapList(A, C, c2 o c1) are not 

computationally equal although they are extensionally equal. Now, if 

we add a new equation rule for lists 

in the original type theory, the normal transitivity rule (Trans) is 

admissible for the subtyping rules of lists and 2:-types. To prove this, 

we need the definition of depth in Definition 4.2.3 and the proof method 

is the same as that of Theorem 4.2.7. 

According to the new equation rule, we also introduce a new com­

putation (or reduction) rule for lists. 

EList(B, [l': List(B)]List(C), nil( C), 

[b: B][l': List(B)][l": List(C)]cons(C, t 2 , l"), 

EList(A, [l: List(A)]List(B), nil(B), 

[a: A][l: List(A)][l' : List(B)]cons(B, t 1 , l'), x 0 )) 

=? EList(A, [l: List(A)]List(C), nil( C), 

[a: A][l: List(A)][l": List(C)]cons(C, [tdb]t2 , l"), x 0 ) 

Notice that if t1 c1(a) and t 2 = c2(b), then [ti/b]t2 - c2(c1(a)). 

Remark 5.8.1 We have the following remarks: 

• It is better not to regard the new equation rule for lists as a computa­

tion (or reduction) rule. Otherwise, the property of Church-Rosser 

may fail. For instance, let's consider a term M that is the left hand 

side of the new computation rule by replacing A, B, C by N and 

t 1 by ([x : N]O)(a) and t 2 by ([x: N]O)(b) (i.e. A B = C = N 

and t 1 = ([x : N]O)(a), t2 ([x : N]O)(b)). If we regard the new 

equation rule for lists as a computation (or reduction) rule, there 
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are at least two ways to reduce M. One way is to reduce t 1 and t2 to 

0, then we get a normal form M 1 . Another way is to use the new 

rule and reduce M to a normal form M 2 . Since M 1 and M 2 are 

different normal forms of M, the property of Church-Rosser fails. 

o A computation (or reduction) rule is also an equation rule. 

® We have proved that mapList(B, C, c2 ) o mapList(A, B, c1 ) and 

mapList(A, C, c2 o ci) are extensionally equal. Adding the equation 

rule for lists will not violate the logical consistency of the extended 

type theory. 

• For the new computation rule for lists, we must require that vari­

ables l and l" don't occur free in t 1 and, variables l' and l" don't 

occur free in t2 to guarantee the left hand side is really extensionally 

equal to the right hand side. 

• We believe that some important meta-properties such as Strong 

Normalisation and Church-Rosser still hold after adding the new 

computation rule. Proving such meta-properties is out of the scope 

of this thesis. 

5.8.2. New computation rules in general 

Consider a general form of parameterised inductive types: 

where p =/:. 0 and 8 < 8 1 , ... , 8 8 > (s E w) a finite sequence of 

inductive schemata and Pi (i = 1, ... ,p) kinds (not necessarily small). 

We may introduce a new computation rule for T and add it into the 

original type theory as we did for lists. Details are omitted here. 

Conjecture After adding new computation rules for parameterised in­

ductive data types, the extended type theory has all the properties which 

the original type theory has, such as the properties of Strong Normali­

sation, Church-Rosser, Subject Reduction, etc. 



CHAPTER 6 

Combining Incoherent Coercions for ~-types 

In this chapter, we will consider a very useful coercion, n 1 , the first 

projection of 2:-types. With this coercion, it is very easy to express 

some mathematical properties. For example, it is used significantly in 

Bailey's PhD thesis [Bai98] for formalisation of mathematics. 

In Chapter 4, coherence was proved for the component-wise subtyp­

ing rule of I:-types. However, when these subtyping rules are combined 

with the subtyping rule for the first projection, coherence fails to hold. 

A counter example will be given in the next section to illustrate this 

problem and explain the solution. We shall introduce a new subtyping 

relation and give a new formulation of coercive subtyping, to ensure 

that there is only one coercion (with respect to computational equality) 

between any two types (if there is one at all). This new formulation not 

only satisfies the coherence requirements but also enjoys other proper­

ties, particularly the admissibility of substitution and transitivity be­

cause such properties are important for an implementation of coercive 

subtyping. 

6.1. The Coherence Problem 

In this section, we give an example to illustrate the coherence prob­

lem of the component-wise subtyping rules for I:-types and the subtyp­

ing rule of its first projection. Because of the coherence problem, we 

cannot uniformly use these two sets of subtyping relations in a single 

system. 

6.1.1. Subtyping rules for :E-types 

As studied in Section 3.5, there are three component-wise subtyping 

rules for :E-types. One of these rules is the following. 

r f---A <c A' :Type r f--- B : (A')Type 
(First Component rule) r f--- :E(A, B o c) <d1 E(A', B) :Type 

where d1 = [z: I.:(A,Boc)]pair(A',B,c(n1(A,Boc,z)),n2 (A,Boc,z)). 

106 
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The coercion of the first projection is very useful for formalisation 

of mathematics [Bai98]. Formally, the subtyping rule is the following: 

r f-A :Type r f- B : (A)Type 

r f- ~(A, B) <rrt(A,B) A: Type 

With this coercion, it is very easy to express some mathematical prop­

erties. For example, the type of collection of groups is a subtype of the 

type of semi-groups (i.e. a group is also a semi-group). Any functional 

operator with the domain of semi-groups can be applied to any group 

with a coercion. 

6.1.2. A counter example 

If the subtyping rule (1r1rule) and the component-wise subtyping 

rules for ~-types are combined together, we have the following two 

derivations. 

The first derivation is 

r f-A :Type r f- B : (A)Type r f- B : (A)Type 

r f- ~(A, B) :Type r f- B o 1r1 (A, B): (~(A, B))Type 

r f- ~(~(A, B), B o 1r1 (A, B)) <d1 ~(A, B) :Type 

where the rule ( 1r1 rule) is used in the last step. 

The second derivation is 

r f-A: Type r f- B: (A)Type 
(1r1rule) r f- B: (A)Type 

f f- ~(A, B) <rr 1 (A,B) A: Type 

f f- ~(~(A, B), B o 1r1 (A, B)) <d2 ~(A, B): Type 

where the rule (1r1rule) is used in the first step and the First Component 

rule is used in the last step. 

There are two coercions d1 and d2 from type ~(~(A, B), Bo1r1 (A, B)) 

to type ~(A, B) 1 and we have the following equations (some details are 

omitted here) 

d1(pair(pair(a, bt), b2 )) 

d2 (pair(pair(a, bt), b2 )) 

pair( a, bt) 

pair( a, b2) 

1There are two different coercions from (Ax B) x B to Ax B if A and B are types, 
where A x B is for I:(A, [x : A]B) and x rf. FV(B). 
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We can see that d1 and d2 are neither computationally nor exten­

sionally equal. Hence, the vital requirement of a coercive subtyping 

system, coherence, fails. 

6.1.3. Informal explanation of the solution 

From the above counter example, we see that the existence of the 

two derivations makes the system incoherent. To make it coherent, a 

natural way is to block one of the derivations. The first one cannot be 

blocked, otherwise we lose the meaning that the first projection ( n1 ) is 

regarded as coercion. Hence we can only block the second derivation. 

More precisely, we must not allow r f--- A <c A' : Type to be used as the 

first premise of the component-wise subtyping rules if it is (directly) 

derived from the n1rule. In other words, a condition of the component­

wise subtyping rules is that the first premise is not (directly) derived 

from the n1rule. There are several attempts to satisfy this condition, 

one of which is to consider a notion of size as a side-condition because A 

is a sub-term of L:(A, B) in the conclusion of n 1rule, and their sizes are 

intuitively different. However, the well-definedness of size is problem­

atic when we present the whole subtyping system (see the discussion 

section for more details). 

In the next section, rather than thinking of any side-conditions, we 

introduce a new subtyping relation ( -<) to represent coercion n1. This 

new subtyping relation will never appear in the first premises of the 

component-wise subtyping rules and hence the unwanted derivations 

such as the second one in the counter example are blocked. 

To make the subtyping system coherent is one thing; to make it 

also enjoy the property of the admissibility of transitivity is another. 

During our investigation, we experienced that some formulations satisfy 

the property of coherence, but not the admissibility of transitivity. The 

formulation in the next section will enjoy all these properties. 

6.2. A formal presentation 

In this section, we shall give a formal presentation of a new subtyp­

ing relation and related subtyping rules. The coherence condition will 

also be redefined. 
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6.2.1. A new subtyping relation 

We have seen the problem with the combination of the component­

wise subtyping rules and the subtyping rule of the first projection. 

Now, we introduce a new relation to solve this problem, and consider 

a new system T[R1r1], which is an extension of coercive subtyping with 

the judgement form: 

• r f-A -<c B :Type asserts that type A is a subtype of type B with 

a coercion c. 

As we will see later, subtyping relation < and -< are different. 

-< represents the idea that 1r1 is regarded as a coercion, but < does not. 

The coercive definition rules 

The main idea of coercive subtyping can informally be represented 

by the following coercive definition rule (contexts are omitted): 

K <c K' k : K f : (x : K')K" 
f(k) = f(c(k)) : [c(k)/x]K" 

The same idea is followed for the new subtyping relation. A new basic 

subkinding rule for -< is the following: 

A -<c B: Type 

El(A) <c El(B) 

By the coercive definition rule, we have the following derivable rule: 

A -<c B: Type k: El(A) f: (x: El(B))K 

f(k) = f(c(k)) : [c(k)/x]K 

which says that if A -<c B, any functional operator f with domain B 

can be applied to any object x of A and, f(x) = f(c(x)). 

We present the new subtyping system in two stages: first an inter­

mediate system T[R1ri] 0 and the definition of coherence, and then the 

system T[R1r1]. 

6.2.2. The systems T[R1ri] 0 and T[R1r1] 

Formally, T[R1ri] 0 is an extension of type theory T (only) with the 

following rules: 

• A set R of basic subtyping rules whose conclusions are subtyping 

judgements of the form r f- A <c B :Type. 
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(j The following congruence rule for subtyping judgements 

r f- A <c B : Type 

(Gong) 
r f-A= A': Type r f- B = B': Type r f- c = c': (A)B 

r f- A' <c' B' : Type 

• The new subtyping rules for the first projection in Figure 6.2.1, 

whose conclusions are of the form r f- A -<c B : Type. 

Notation 6.2.1 we shall user f-A CXc B :Type to represent 

r f- A <c B : Type or r f- A -<c B : Type. For example, 

r f- A CXc B : Type 

J 

actually represents two rules 

r f- A <c B : Type 

J 
and 

r f- A -<c B : Type 

J 

and 
r f- A CXc B : Type r' f- A' CXc' B' : Type 

J 
actually represents four rules. 

We shall also say that A is a subtype of B or there is a coercion c 

from A to B if r f-A CXc B :Type. 

New sub typing rule for the first projection: 

r f-A :Type r f- B : (A)Type 

f f- E(A, B) -< 1q(A,B) A :Type 

r f-A CXc A' : Type r f- B : (A)Type 

f f- E(A, B) -<co1q (A,B) A' : Type 

New congruence rule: 

r f- A -<c B : Type 
r f-A= A' :Type r f- B = B' : Type r f- c = c' : (A)B 

r f- A' -<c' B' : Type 

FIGURE 6.2.1. New subtyping rules for the first projection 

Remark 6.2.2 We have the following remarks: 
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" The basic understanding of the new subtyping rules for the first 

projection is that I:( A, B) is a subtype of A' if A = A' or A is a 

subtype of A'. 

• The two subtyping relations < and --< are considered simultaneously 

and they contribute to each other. 

• New substitution and transitivity rules for subtyping relations < and 

--< will be given later and, we will prove that they are admissible. 

We do not include them in T[R1r1) 0 . 

In T[R1r1 ]0 , the subtyping judgements do not contribute to any deriva­

tion of a judgement of any other forms in the original type theory T. 

Therefore, we have the following lemma. 

Lemma 6.2.3 T[R1r1]0 is a conservative extension ofT. 

Now, we define the coherence requirement for the new coercive sub­

typing system in the following. 

Definition 6.2.4 (Coherence condition of T[R1r1]0 ) We say that 

T[R1r1]0 is coherent if it has the following properties. 

1. r f- A cxc B : Type implies r f- A : Type, r f- B : Type, and 

r f- c: (A)B. 

2. r f-A cxc B :Type implies r li A= B : Type. 

3. r f- A <c B : Type and r f- A <c' B : Type imply 

r f- c= c': (A)B. 

4. r f- A --<c B : Type and r f- A --<c' B : Type imply 

r f- c = c': (A)B. 

5. (Disjointedness) r f- A <c B : Type implies r 1i A --<c' B : Type 

for any c', and vice versa, r f- A --<c B : Type implies 

r 1i A <c' B: Type for any c'. 

Remark 6.2.5 One may consider a more general coherence condition 

such as, if r f- A cxc B : Type and r f- A cxc' B : Type then 

r f- c = c': (A)B. This will include the case in which both 

r f-A <c B: Type and r f-A --<c B: Type may happen. However, one 

of the reasons we need the new subtyping relation ( --<) is deliberately to 

make sure that r f- A <c B : Type and r f- A --<c B : Type may never 

hold at the same time for any A and B. Disjointedness is regarded as 

part of the coherence condition. 
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The system T[R1r1] 

The system T[R1r1] is obtained from T[R1r1]0 by adding the infer­

ence rules in Figure 3.2.1 and in Figure 3.2.2 and the following new 

basic subkinding rule. 

r f- A -<c B : Type 

r f- El(A) <c El(B) 
(New Basic Subkinding Rule) 

There is only one subkinding judgement form r f- K <c K', although 

there are two subtyping judgement forms r f- A <c B : Type and 

r f- A -<c B : Type. At the kind level, we are more concerned with the 

existence of a coercion no matter from which form it is derived at the 

type level. 

Remark 6.2.6 The main result of [SL02] is essentially that coherence 

of subtyping rules does imply conservativity. In Section 6.4, we shall 

also prove the coherence of T[R1r1]0 . So, T[R1r1] is also expected to be 

a conservative extension ofT. 

6.3. New subtyping rules for inductive types 

Now, we give the component-wise subtyping rules for I:-types and 

the rules for IT-types in Figure 6.3.1 and Figure 6.3.2 to demonstrate 

what the subtyping rules should be for the new subtyping relation. 

Remark 6.3.1 We have the following remarks: 

• In Figure 6.3.1 and Figure 6.3.2, the conclusions of the rules are 

always of the form r f- A <c B : Type, no matter whether the 

premises are of the form r f- A <c B : Type orr f- A -<c B : Type. 

• The essence of the new subtyping relation is that, the judgement 

form r f- A -<c B : Type is never used in the premises of the first 

component of the component-wise subtyping rules in Figure 6. 3.1. 

Hence the second derivation of the counter example in section 6.1 

is blocked. 

e The basic understanding of the new subtyping rules for IT-types is 

that IT(A, B) is a subtype of IT(A', B') if A' is a subtype of A and 

B is a sub-family of B' (we omit other cases such as: IT( A, B) is a 

subtype ofiT(A,B') if B is a sub-family of B'). 

• For the new component-wise subtyping rules for I:-types, because 

of the incoherence when 1r1 is aLso regarded as a coercion, we need 
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First Component rule: 

where 

r f-A <c A' :Type r f- B : (A')Type 
r f- L:(A, B o c) <d1 L:(A', B) :Type 

d1 = [z : L:(A, B o c)]pair(A', B, c(1r1 (A, B o c, z)), 1r2(A, B o c, z)) 

Second Component rule: 

r f- B: (A)Type r f- B': (A)Type r, x: A f- B(x) CXe[xJ B'(x) :Type 
r f- L:(A, B) <d2 I:( A, B') :Type 

where 

d2 = [z: L:(A, B)]pair(A, B', 1r1(A, B, z), e[1r1(A, B, z)](1r2(A, B, z))) 

First-Second Component rule: 

where 

r f-A <c A' :Type r f- B : (A)Type r f- B' : (A')Type 
r, X: A f- B(x) CXe[x] B'(c(x)) :Type 

r f- L:(A, B) <d3 L:(A', B') :Type 

d3 = [z: L:(A,B)]pair(A',B',c(K1 (A,B,z)),e[K1 (A,B,z)](1r2(A,B,z))) 

FIGURE 6.3.1. New component-wise subtyping rules for 
I:- types 

to have a stricter understanding, that is, I:( A, B) is a subtype of 

L:(A', B') if A is a subtype of A' and B is a sub-family of B' and 

the sizes of A and A' are the same (size is defined in Definition 

6.4.3). In the following section, we will prove that the sizes of A 

and B are the same if r f- A <c B : Type and, the size of A is 

bigger than the size of B if r f- A -<c B : Type. 

The subtyping system we present here covers all the coercions de­

rived from the component-wise subtyping rules and the subtyping rule 

for the first projection when they are used separately. Actually, it has 

more coercions. For example, if A, B and C are different types, we 

can have a coercion from A x ( B x C) to A x B because there is a 

coercion from B x C to B. However, we can never derive a coercion 

from Ax (B x C) to A x B by the component-wise subtyping rules or 
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Domain rule: 

where 

r f-A' cx:c A: Type r f- B : (A)Type 
r f- IT(A, B) <d1 IT(A', B o c) :Type 

d1 = [f: IT(A, B)].A(A', B o c, app(A, B, f) o c) 

Codomain rule: 

r f- B : (A)Type f f- B' : (A)Type f, x : A f- B(x) CX:e[xJ B'(x) :Type 
r f- IT(A, B) <d2 IT(A, B') :Type 

where 

d2 = [!: IT(A, B)].A(A, B', [x: A]e[x](app(A, B, j, x))) 

Domain-Codomain rule: 

where 

r f-A' cx:c A : Type r f- B : (A)Type r f- B' : (A')Type 
r, x': A' f- B(c(x')) CX:e[x'J B'(x') :Type 

r f- IT(A, B) <d3 IT(A', B') :Type 

d3 = [f: IT(A, B)].A(A', B', [x': A']e[x'](app(A, B, j, c(x')))) 

FIGURE 6.3.2. New subtyping rules for IT-types 

the subtyping rule for the first projection separately. What we have 

excluded are those coercions that need component-wise subtyping rules 

for I:-types but the sizes of their first components are different. For 

example, we don't have a coercion from (Ax B) x C to Ax C because 

the sizes of A x B and A are different although there is a coercion from 

Ax B to A. 

6.4. Coherence of T[R1r1]o 

Now, we prove the coherence ofT[R1r1] 0 , which essentially says that 

coercions between any two types must be unique. The set R of basic 

subtyping consists of the rule (W DCrule) where C in the rule is a set of 

well-defined coercions (WDC) and the new subtyping rules for I:-types 

and IT-types (in Figure 6.3.1 and Figure 6.3.2) and, the system T[R1ri] 0 
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also includes the congruence rule (Gong) and the new subtyping rules 

in Figure 6.2.1. Furthermore, we assume that for any judgement 

r 1- A <c B : Type E C, neither A nor B is computationally equal 

to a L.:-type or IT-type. We also assume that the original type theory 

T has good properties, in particular the properties of Church-Rosser 

and Strong Normalisation and the property of context replacement by 

equal kinds. 

We give a definition of size(A) that only counts how many times 

1r1 can be applied for an object of type A. In order to define size, we 

define presize first. 

Definition 6.4.1 (presize} Let r 1- M : Type be a derivable judge­

ment in T[R1r1]0 and M a normal form {i.e. M = nf(M)), 

1. if M is not a L.:-type then presize(M) =df 0, 

2. if M L.:(A, B) then presize(M) =df presize(A) + 1. 

Remark 6.4.2 For the second case, because lvf is a normal form, so 

is A. Therefore presize is well-defined. 

Definition 6.4.3 (size} The definition of size in T[R1r1]0 : 

Let r 1- M : Type be a derivable judgement in T[R1rr] 0 , 

size(M) =df presize(nf(M)) 

where nf(M) means the normal form of M. 

Remark 6.4.4 T[R1rr] 0 is a conservative extension ofT. Therefore, 

every well-typed term in T has its unique normal form. So, the value 

of size(M) is unique and size is well-defined. 

Lemma 6.4.5 In T[R1r1]0 , iff 1- lVh = A12 : Type is derivable then 

size(Mr) = size(M2 ). 

Proof. T[R1rdo is a conservative extension ofT and T has properties 

of Church-Rosser and strong normalisation, therefore, A11 and M2 have 

the same normal form, i.e. nf(Jvfr) = nf(M2 ). D 

Lemma 6.4.6 Let r 1- A1 : Type be a derivable judgement in T[R1ri) 0 . 

• if lvf is not computationally equal to a L.:-type then size(M) = 0 

and, 
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• if r f- !11 = E(A, B) : Type is derivable in T[R1r1]0 then 

size(M) = size(A) + 1 

Proof. By the definition of size and Lemma 6.4.5. 0 

Lemma 6.4. 7 In T['R1r1]0 , if r f- j\111 <d M2 : Type is derivable then 

size(Mt) = size(M2). 

Proof. By induction on derivations and using Lemma 6.4.5 and Lemma 

6.4.6. Note that size(MI) = size(M2) = 0 if the last rule of the deriva­

tion of r f- M1 <d M2 : Type is one of the rules for IT-types. 0 

Lemma 6.4.8 In T[R1r1]o, if r f- M1 -<c M2 : Type is derivable then 

size(MI) > size(M2). 

Proof. By induction on derivations and Lemma 6.4.5, Lemma 6.4.6 

and Lemma 6.4.7. 0 

The following theorems prove the coherence of T[R1ri] 0 . 

Theorem 6.4.9 

e If r f- M1 cxc M2 : Type then r f- M1 : Type, r f- M2 : Type and 

r f- c: (MI)M2 :Type . 

• If r f- lvh CXc M2 : Type then r If Ml = M2 : Type. 

• (Disjointedness) If r f- M1 -<c M2 : Type then 

r If 1111 <d M2 : Type for any d; and vice versa, 

if r f- !111 <c M2 : Type, then r If M1 -<d M2 :Type for any d. 

Proof. By induction on derivations, the definition of WDC, Lemma 

6.4.7 and Lemma 6.4.8. 0 

Notation 6.4.10 We shall simply write r f- J when it is a derivable 

judgement in T['R7rl]o 0 Sometimes, we shall also write r f- A CXc B for 

r f- A CXc B : Type, and r f- kl = k2 for r f- kl = k2 : K, when no 

confusion may occur. 

Theorem 6.4.11 Iff-- r = f', r f- lvf1 = lvf{ :Type, 

r f- M 2 = M~: Type, and 

1. r f- .flih <d M 2 :Type and f' f- M~ <d' !11~ : Type, or 

2. r f- 1111 -<d .flif2 : Type and f' f- !11{ -<d' .flif~ : Type 

then r f- d = d' : (!111)!112. 
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Proof. By induction on derivations. A most important argument in 

this proof is that any derivations of r f- M1 <d M2 and r' f- M{ <d M~, 
or r f- M1 -<d M2 and r' f- M{ -<d' M~ must contain sub-derivations 

whose last rules are the same rule, followed by a finite number of ap­

plications of the congruence rules. In the following, we choose one case 

to demonstrate how the proof proceeds. The proofs of other cases are 

similar. 

Suppose the derivation of r f- M1 -<d M2 is of the following form. It 

contains a sub-derivation whose last rule is one of the subtyping rules 

for the first projection followed by a finite number of applications of 

the new congruence rule in Figure 6.2.1. 

r f- A1 <c A2 r f- B1 : (AI)Type 

r f- I:(A1, B1) -<d1 A2 

... (New congruence rule) ... 

r f- M1 -<d Jvi2 

where r f- I:(A1, B1) = M1, r f- A2 = M2, r f- d1 = d and 

dl = C07rl(Al,Bl) 

Now, it must be the case that any derivation of r' f- M{ -<d' M~ is of 

the form: 

r' f-A~ <c' A; r' f- B~ : (ADType 

r' f- L:(A~, ED -<d; A; 

... (New congruence rule) ... 

f' f- M{ -<d' A1~ 
where r' f- L:(A;,BD = M{, r' f-A;= !VI~, r' f- d' = d~ and 
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In other words, any derivation of f' f- M{ -<d' M~ must contain a 

sub-derivation whose last rule is also the same subtyping rule as that 

in the derivation of r f- M1 -<d M2 . To see this is the case, because 

f' f- E(A~, BD -<di A~ must be derived from one of the subtyping rules 

for the first projection 6.2.1, we have to show only that r' II A~ = A~ 

and f' II A~ -<e A~ for any e. Since r f- M1 = NI{ and r f- M2 = M~, we 

haver f- II(A1 ,BI) = II(A~,BD and r f- A2 =A~. Hence, by Church­

Rosser in T and conservativity ofT[R]o overT, we haver f- A1 =A~ as 

well. As r f- A1 <c A2 , we have r II A1 = A2 and size(AI) = size(A2 ) 

by Theorem 6.4.9 and Lemma 6.4.7. So r' II A~ =A~ because 

r f- A1 =A~ and r f- A2 =A~, and r' II A~ -<e A~ for any e by Lemma 

6.4.8. 

Now, since the derivations must be of the above forms, by the in­

duction hypothesis, we have r f- c = c'. So, r f- d1 = d~ and hence 

r f- d = d'. o 

6.5. Admissibility of substitution and transitivity 

Now, we give the subtyping rules of substitution and transitivity 

and prove that these rules are admissible. In an implementation of 

coercive subtyping, these rules are ignored simply because they cannot 

be directly implemented. For this reason, among others, proving the 

admissibility of such rules (or their elimination) is always an important 

task for any subtyping system. 

Admissible substitution rules 

The substitution rules are as follows, which are what we expect 

normally. 

r' X : K, r' f- A <c B : Type r f- k : K 

r, [k/x]f' f- [kjx]A <[k/xJc [kjx]B :Type 

r, X: K, r' f-A -<c B: Type r f- k: K 

r, [k/x]f' f- [kjx]A -<[k/xJc [kjx]B: Type 

Admissible transitivity rules 

We give the following four transitivity rules that are basically saying 

that if there arc coercions c and c' from type A to B and from type B 
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to C, then c' o c is a coercion from type A to C. 

r f--- A <Cj B : Type r f--- B <c2 C : Type 

r f--- A <c2oq C : Type 

r f--- A -<q B : Type r f--- B -<c2 C : Type 

r f--- A -<c2oq C : Type 

r f--- A <Cj B : Type r f--- B -<c2 C : Type 

r 1- A -<c20Cj c : Type 

r f---A -<Cj B: Type r f--- B <c2 C: Type 

r 1- A -<c2oq C : Type 

Remark 6.5.1 The above transitivity rules are sufficient and correct, 

in the sense that, first, they capture the meaning of transitivity, and 

second, they enjoy the properties in Lemma 6.4. 7 and Lemma 6.4.8. 

Other rules of different combinations such as the rule 

r f--- A <q B : Type r f--- B <c2 C : Type 

r f--- A -<c20Cj c : Type 

are not correct and are contradictory to the above properties. (Accord­

ing to the premises in the above rule, size(A) = size(B) = size(C), 

but according to the conclusion, size (A) > size (C).) 

Theorem 6.5.2 (Substitution in T[R1r1]0} If r f--- k : K and 

1. if r, X: K, r' f--- Ml <c M2: Type, then 

r, [k/x]r' f--- [kjx]M1 <[k/xJc [kjx]M2 :Type, and 

2. if r, X : K, r' f--- Ml -<c M2 :Type, then 

r, [k/x]f' f--- [k/x]M1 -<[kfxJc [kjx]M2 :Type. 

Proof. By induction on derivations. 0 

In order to prove the admissibility of the transitivity rules, we also 

need to prove the theorem regarding weakening. 

Theorem 6.5.3 {Weakening in T[R1rt] 0 ) If r <;;;; f', f' is valid and 

1. if r f--- M1 <c 1\112 : Type then f' f--- l\111 <c A12 : Type, and 

2. if r f--- l\1!1 -<c M2 : Type then f' f--- M 1 -<c J\!h : Type. 

Proof. By induction on derivations. 0 
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To prove the admissibility of the transitivity rules, the usual meth­

ods (e.g. by induction on derivations) do not seem to work. We develop 

a new measure (Depth) that is an adoption of the measure (depth) de­

veloped by Chen, Aspinall and Companoni [Che98]. In the measure 

Depth, the subtyping judgements ( < and -<) only count. 

Definition 6.5.4 {Depth} Let D be a derivation of a subtyping judge­

ment of the form r f-A <c B: Type orr f-A -<c B :Type. 

D: 
S1 ... Sn T1 ... Tm 

r f- A cx:c B : Type 
where r f- A cx:c B : Type represents r f- A <c B : Type or 

r f- A -<c B : Type, S 1 , ... ,Sn are derivations of subtyping judgements 

of the form r f- M1 <d M2: Type orr f- M1 -<d M2 :Type and, T1, ... , 

T m are derivations of other forms of judgements, 

Depth(D) =dt 1 + max{Depth(SI), ... , Depth(Sn)} 

Specially, if n = 0 then Depth( D) =dt 1. 

The following lemmas show that, from a derivation D of a subtyping 

judgement J, one can always get a derivation D' of the judgement 

obtained from J by context replacement such that D and D' have the 

same depth. 

Lemma 6.5.5 Iff- r = f' and 

1. if D is a derivation of r f- M 1 <d M 2 : Type, then there is a 

derivation D' off' f- M1 <d M 2 : Type such that 

Depth(D) = Depth(D'), or 

2. if D is a derivation of r f- M1 -<d M 2 : Type, then there is a 

derivation D' off' f- M1 -<d M 2 : Type such that 

Depth(D) = Depth(D'). 

Proof. By induction on derivations. 0 

Lemma 6.5.6 If r f- c2 : (K')K and, 

1. if D is a derivation of r, X : K, r' f- Ml <q M2 : Type, then there 

is a derivation D' of 

f, y: K', [c2(y)jx]f' f- [c2(y)jx]M1 <[c2 (y)/x]q [c2(y)jx]M2 :Type 

such that Depth(D) = Depth(D'), or 
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2. if D is a derivation of r, X : K, r' 1- /vfl --<Cj M2 : Type, then there 

is a derivation D' of 

f, y: K', [c2(y)jx]f' 1- [c2(Y)/x]1111 --<[c2(y)/x]q [c2(y)jx]M2 :Type 

such that Depth(D) = Depth(D'). 

Proof. By induction on derivations and Lemma 4.2.5. The theorem 

of weakening and substitution in type theory T and the property of 

conservativity of T['R:rr1]0 over T are also needed in this proof. In the 

following, we choose one case to demonstrate how the proof proceeds. 

Suppose that the last rule of the derivation D of 

r, X : K, r' 1- Ml --<cl M2 is 

r, X: K, r' 1- A <c 1\1[2 r, X: K, r' 1- B: (A)Type 
r, X : K, f' 1- I:(A, B) --<cl M2 

where M1 I:(A, B) and c1 = corr1 (A, B). If we denote the derivation 

of r, X : K, f' 1- A <c lVh as Do, then we have 

Depth(D) = Depth(D0 ) + 1 by the definition of Depth. 

By the induction hypothesis, there is a derivation D 1 of 

f, y: K', [c2(y)jx]f' 1- [c2(y)jx]A <[c2(y)/x]c [c2(y)jx]M2 

such that Depth(D0 ) = Depth(D1 ). 

Since r 1- c2 : (K')K, we know r, y: K' is a valid context and 

r, y : K' 1- c2 (y) : K provided y is fresh. By the property of conserva­

tivity of T[R1r1]0 over T and the theorem of weakening in T, we have 

r, y: K'' X: K, r' 1- B : (A)Type. Then by the theorem of substitution 

in T, we have 

f, y: K', [c2(y)jx]f' 1- [c2(y)jx]B: ([c2(y)jx]A)Type 

Using the above subtyping rule, we have a derivation D' of 

and 

Depth(D') = Depth(DI) + 1 = Depth(D0 ) + 1 = Depth(D) 

0 

Now, we prove the admissibility of the transitivity rules. 
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Theorem 6.5. 7 (Transitivity in T[R1r1]0 } If r I- M2 = Jvf~ : Type 

and 

1. if r I- lvf1 <d1 lvf2 : Type and r I- M~ <d2 M3 : Type, then 

r I- M1 <d2 ad1 M3 : Type, and 

2 .. if r I- M1 -<d1 M2 : Type and r I- M~ -<d2 M3 : Type, then 

r I- M1 -<d2 ad1 M3 :Type. 

3. if r I- M1 <d1 M2 :Type and rI-M~ -<d2 M3 :Type, then 

r I- lv,h -<d2 ad1 M3 : Type, and 

4. if r I- M1 -<d1 lvf2 :Type and rI-M~ <d2 M3 :Type, then 

f I- M1 -<d2 od1 M3 : Type, and 

Proof. By induction on Depth(D) + Depth(D'), where Dis a deriva­

tion of r I- M1 <d1 M2 : Type or r I- M1 -<d1 M2 : Type, D' is a 

derivation of r I- M~ <d2 M3 : Type or r I- M~ -<d2 M3 : Type. 

GJ In the base case i.e. Depth(D) = Depth(D') = 1, we consider the 

following four sub-cases: 

1. The derivations D and D' are: 

f I- M1 <d1 M2 E C 

r 1-- 1111 <d1 M2 

f I- M~ <d2 M3 E C 
rI-M~ <d2 M3 

For this case, by Lemma 3.4.2, we have 

f I- M1 <d2 od1 lvf3 E C. 
2. The derivations D and D' are: 

f I- M1 <d1 M2 E C 
r I- M1 <d1 M2 

r I- M3 :Type rI-B: (M3 )Type 

r I- I:(M3, B) -<d2 M3 

where M~ = I:(M3, B). 

Since r I- M1 <d
1 

M2 E C , by the requirement of C, M2 is 

not computationally equal to a I:-type. Since r I- lvf2 = M~, 

M~ cannot be a I:-type. Therefore, this is an impossible case. 

3. The derivations D and D' are: 

r I- lvh : Type r I- B : (1112)Type 

r 1-- L:(Jvh, B) -<.,q(fvhB) M2 

f I- 1\!I~ <d2 M3 E C 
r 1-- 111~ <d2 1113 
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where .M1 ~(M2 ,B) and d1 _1f1 (M2 ,B). 

Since f 1- l\11~ <d2 Nh E C and f 1- .l\1!2 = M~, we have 

f 1- folf2 <d2 Nh E C. Therefore we have the following deriva­

tion: 

f 1- M2 <d2 Nh E C 

f 1- Nh <d2 M3 

r 1- ~(M2, B) -<d20'IT"jcl\I2,s) M3 

4. The derivations D and D' are: 

f 1-M2 :Type f 1- B : (M2)Type 

r 1- ~(M2, B) -<n1(M2,B) M2 

r 1-M3 :Type r 1- B': (M3 )Type 

r 1- ~(M3, B') -<n1(M3,B') M3 
where M1 ~(M2 , B), M~ := ~(M3 , B'), d1 _ 1r1 (M2, B) and 

d2- 1r1 (M3, B'). 

Since r 1- Jo.12 = M~, M~ = L.(M3 , B') and 

r 1- L.(.M3, B') -<n1(M3,B') M3, by the new congruence rule, we 

have f 1- Nh -<n1(1\IJ,B') M3. Therefore, we have the following 

derivation: 

f 1-M2 -<n1(M3,B') M3 f 1- B : (M2)Type 

r 1- ~(M2, B) -<n1(M3,B')on1(M2,B) M3 

• In the step case, we choose one case to demonstrate how the proof 

proceeds. Suppose that the derivation D and D' be of the following 

forms: 

f 1- A2 -<CJ A1 f,x: A2 1- B1(c1(x)) -<ei[xJ B2(x) 

f 1- IT(A1, BI) <d; IT(A2, B2) 

... (Congruence rule) ... 

r 1- M1 <d1 M2 

where f 1- IT(A 1, BI) = M1 , f 1- IT(A2, B2) = M2, f 1- d; = d1 and 

d'1 = [f: IT(A1, B1)],\(A2, B2, [x: A2]ei[x](app(A1, B1, j, c1 (x)))) 
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and 

D' 1 D' 2 

f f- A3 <c2 A~ f, x: A3 f- B;(c2(x)) <e2[xJ B3(x) 

r f- IT(A~, B;) <d~ IT(A3, B3) 

... (Congruence rule) ... 

r f- M~ <d2 M3 

where r f- IT(A~, B~) = M~, r f- IT(A3, B3) = M3, r f- d~ = d2 and 

We obviously have Depth(D1 ) < Depth(D) and 

Depth(D2 ) < Depth(D) because D1 and D2 are sub-derivations of 

D; Depth(DD < Depth(D') and Depth(D;) < Depth(D') because 

D~ and n; are sub-derivations of D'. 

Now, since r f- M2 = M~, we have by the Church-Rosser theorem 

ofT and conservativity of T[R.]o overT, r f- A2 =A; and 

r f- B2 = B;. Since r f- A3 <c2 A~ we have r f- c2 : (A3 )A~ and 

r f- c2 : (A3)A2. Since r,x : A2 f- B1(c1(x)) -<e![xJ B 2 (x), by 

Lemma 6.5.6, we haver, X: A3 f- Bl(ci(c2(x))) -<el[c2(x)) B2(c2(x)) 

and there is a derivation D3 of the judgement 

r,x: A3 f- B1(ci(c2(x))) -<e![c2(x)J B2(c2(x)) 
such that Depth(D3 ) = Depth(D2 ). 

Now, we have 

Depth(DI) + Depth(D~) < Depth(D) + Depth(D') 

Depth(D3 ) + Depth(D;) < Depth(D) + Depth(D') 

By the induction hypothesis, we have that r f- A3 -<Cj OC2 Al. Since 

r f- B2 = B; : (A2)Type and r f- c2 : (A3)A2, we have 

r, X : A3 f- B2(c2(x)) = B;(c2(x)). By the induction hypothesis 

again, we have 
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So by the third rule in Figure 6.3.2, we have 

where 

d3 =df [f : IT(A1, BI)]-\(A3, B3, 

Then 

[x: A3]e2[x](ei[c2(x)](app(A1, B1, f, c1(c2(x)))))) 

[f: IT(A1, B1)]d2(dl(f)) 

[f: IT(A1, BI)]d;(d~ (!)) 

[f: IT(A1, B1)]-\(A3, B3, 

[x: A3]e2[x](app(A;, B~, d~ (!), c2 (x)))) 

[f : IT(A1, BI)]-\(A3, B3, 

[x: A3]e2[x](el[c2(x)](app(A1, B1, f, c1(c2(x)))))) 

d3 

Finally, by the congruence rule, we have r f- M1 <d2 od1 M3. 

6.6. Algorithm for the coercion search in T[R1r1] 0 

D 

Since we have proved the coherence and admissibility of substitu­

tion and transitivity for the system T[R1r1]0 , we can give a sound and 

complete algorithm for the coercion search. If the Coercion Search is 

decidable inC, it will also be decidable in T[R1r1]0 . 

6.6.1. Algorithm ALG(r, M1, M2) for T[R1rt] 0 

Supposing the coercion search is decidable in C, we give an algo­

rithm ALG(f, .fv11 , 1112 ) to check whether there is a judgement r f­

M1 <d M2 : Type or r f- 1111 -<d M 2 : Type when arbitrary r, 
M1 and M 2 are given. If so, ALG(f, M1, M2) := d' for some d' and 

r f- d = d': (MI)M2, otherwise ALG(f, M1, M2) :=_l. 

The algorithm ALG(r, M1 , M2 ) will be mutually given with two 

other algorithms Alg1(f, M1, !V12 ) and Alg2 (f, M1 , M2). The algorithm 

Alg1 (f,1111 ,M2) will check if r f- .!111 -<d M2 : Type is derivable for 
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some d, while the algorithm Alg2(f, M 1 , lvf2) will check if 

r I- Mt <d M2 :Type is derivable for some d. 

• The algorithm ALG(r, Mt, M2): 

1. If r is valid context, Mt and M2 are well-typed then go to 2. 

Otherwise ALG(r, Mt, M2) :=.l. 

2. If Algt(f, Mt, 1112) := d or Alg2(f, Mt, M2) := d then 

ALG(f, Mt, M2) :=d. Otherwise ALG(r, lvft, M2) :=.l. 

• The algorithm Alg1(f, M1 , lv/2 ): 

1. Compute Mt and M 2 to weak normal form wnf(Mt) and 

wnf(M2). If wnf(Mt) is a ~-type, then go to 2. Otherwise, 

Algt(f, Mt, lvf2) :=.l. 

2. Suppose wnf(Mt) ~(A, B). If rI-A= M2 , then 

Algt(f,Mt,lvf2) := nt(A,B). If ALG(f,A,M2) ·- c then 

Algt(f,Mt,M2) := C07rt(A,B). 

Otherwise, Alg1(f, Mt, M2) :=.l. 

• The algorithm Alg2(f, Mt, M2): 

1. If there is a judgement f I- Mt <d M2 E C then 

Alg2(f, Mt, lvf2) :=d. Otherwise, go to 2. 

2. Compute Mt and lvf2 to weak normal form wnf(Mt) and 

wnf(M2). If both wnf(lvft) and wnf(M2) are IT-type or ~­

type then go to 3. Otherwise Alg2(f, Mt, M2) :=.l. 

3. If wnf(Mt) - II(At, Bt) and wnf(M2) = II(A2, B2) then go 

to 4. Otherwise wnf(Mt) ~(At, Bt) and 

wnj(M2) ~(A2, B2) go to 5. 

4. Iff I- At = A2 and ALG((f, x : A2), Bt(x), B2(x)) := e[x] 

(x ~ FV(f)), then 

Alg2(f, Mt, M2) := [!: II(At, Bt)].\(A2, B2, 

[x: A1]e[x] o app(At, B1, f, x)) 

If ALG(f, A2, At):= c and f, x: A2 I- B 1(c(x)) = B2(x), then 

Alg2(f, 111t, f..ih) := [!: II(At, Bt)].\(A2, B2 o c, 

app(At, Bt, f) o c) 

If ALG(f, A2, AI) := c and 

ALG((r, x: A2 ), B 1(c(x)), B2(x)) := e[x], then 
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Alg2(f, NI1, M2) ·- [f: II(A1, B1)].A(A2, B2, 

[x: A2]e[x](app(A1, B1, f, c(x)))) 

Otherwise Alg2(r, M1, M2) :=.L 

5. If r f- A1 = A2 and ALG((r, x : A2), B1(x), B2(x)) := e[x], 
then 

Alg2(f, M1, M2) ·- [x: I:(A1, B1)]pair(A2, B2, 

nl(Al,B1,x), 

e[n1(A1, B1, x)](n2(A1, B1, x))) 

If Alg2(f,A1,A2) := c and r,x: A1 f- B 1(x) = B2(c(x)), then 

Alg2(f, M1, M2) := [x: I:(A1, Bl)]pair(A2, B2, 

c(n1(A1, B1, x)), n2(A1, B1, x)) 

If Alg2(r,A1,A2) := c and 

ALG((r, x: Al), B1 (x), B2(c(x))) := e[x], then 

Alg2(f, M1, M2) := [x: I:(A1, B1)]pair(A2, B2, 

c(n1(A1, B1, x)), 

e[n1 (A1, B1, x)]('rr2(A1, B1, x))) 

6.6.2. Soundness and Completeness 

In order to prove the soundness and completeness of the above 

algorithm, we first need to prove some lemmas. 

Lemma 6.6.1 

e If r f- M1 --<d NI2 : Type is derivable in T[Rn1]0 , then NI1 is 

computationally equal to a L:-type. 

e If r f- L:(A, B) --<d A' : Type is derivable in T[Rni]0 , then one of 

the following judgements is derivable in T[Rn1]0 : 

. r f-A= A': Type; or 

· r f- A <c A' : Type for some c; or 

· r f- A --<c A' : Type for some c. 

Proof. By induction on derivations. 0 



CHAPTER 6. COMBINING INCOHERENT COERCIONS FORE-TYPES 128 

Lemma 6.6.2 If r f- NI1 <d M2 : Type is derivable in T[R1r1]0 , then 

one of the following holds: 

• f f- M1 <d M2 : Type E C; or 

• Both M 1 and M 2 are computationally equal to IT-types; or 

o Both M 1 and M 2 are computationally equal to '£,-types. 

Proof. By induction on derivations. 

Lemma 6.6.3 

D 

• If r f- IT(A, B) <d IT(A', B') : Type is derivable in T[R1r1]0 , then 

one of the following holds in T[R1r1]o: 

. r f-A= A' :Type and r, X :A f- B(x) <Xe[x] B'(x) :Type for 

some e; or 

· r f- A' <Xc A : Type for some c and 

r, X: A' f- B(c(x)) = B'(x) :Type; or 

· r f- A' <Xc A : Type for some c and 

r, X: A' f- B(c(x)) <Xe[x] B'(x) :Type for some e. 

• If r f- 'i:,(A, B) <d 'i:,(A', B') : Type is derivable in T[R1r1]0 , then 

one of the following holds in T[R1r1]o: 

. r f-A= A' :Type and r, X : A f- B(x) <Xe[x] B'(x) :Type for 

some e; or 

· r f- A <c A' : Type for some c and 

f, x: A f- B(x) = B'(c(x)) :Type; or 

· r f- A <c A' : Type for some c and 

r, X: A f- B(x) <Xe[x] B'(c(x)) :Type for some e. 

Proof. By induction on derivations. D 

Theorem 6.6.4 {Soundness} If ALG(f, M1 , M2 ) :=l_ then neither 

f f- M1 <d M2 : Type nor r f- M1 -<d M2 : Type is derivable in 

T[R1rdo for any d. If ALG(r, M 1 , M 2 ) := d then either 

r f- M1 <d M2 : Type orr f- lvl1 -<d M2 : Type is derivable in T[R1ri] 0 . 

Proof. By Lemma 6.6.2 and 6.6.3. D 

Theorem 6.6.5 {Completeness) If r f- M1 <d M2 : Type orr f­

M1 -<d M2 : Type is derivable in T[R1ri] 0 , then there is a d' such that 

ALG(f, .M1, M2) := d' and r f- d = d': (MI).M2. 

Proof. By Lemma 6.6.2 and 6.6.3. D 
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6.6.3. Decidability of the Coercion Search in T[Rn1]0 

Theorem 6.6.6 If the coercion search is decidable in C, it is also 

decidable in T[Rn1]0 , i.e. it is decidable whether there is a judgement 

r f-- M 1 <d 1112 : Type or r f-- M 1 -<d M2 : Type is derivable in T[Rn1]0 

for arbitrary r, M 1 and l\112 . 

Proof. By Theorem 6.6.4 and Theorem 6.6.5. D 

6. 7. Discussions 

6. 7.1. Side conditions 

In order to block the unwanted derivations, one may still try to 

keep the rule n 1rule in section 6.1 and use side conditions for the First 

Component rule, without introducing any new subtyping relation. For 

instance, one of such side conditions for the First Component rule is 

the following. 

or 

r f--A <c A' :Type r f-- B : (A')Type 

r f-- ~(A, B o c) <d1 ~(A', B) :Type 

r f--A <c A' :Type r f-- B : (A')Type 

r f-- ~(A, B o c) <d1 ~(A', B) :Type 

(size(A) = size(A')) 

(size(A) 'f size(A')) 

In T[Rn1]0 , size is well-defined. Similarly, size can be defined in T[R]o 

and one can prove its well-definedness (see Section 3.2 for more details 

of T[R]o and T[R]. Here, R includes one of the above rules). It is 

obvious that T[Rn1]0 and T[R]o are equivalent in terms of the following 

lemma. 

Lemma 6.7.1 If r f-- A cx:c B : Type is derivable in T[Rn1]0 then 

r f-- A <c B : Type is derivable in T[R]o and vice versa. 

However, since the system T[R] includes the coercive definition rule 

and the coercive application rules in Figure 3.2.1, A and A' in the side­

condition may not be well-typed in the original type theory any more. 

The way to compute such terms is to insert coercions first and then 

do the usual computation in the original type theory. So the property 

that inserting coercion is decidable in T[R] must be proved first in 

order to argue the well-clefinedness of size. There is a circularity, that 

is, a property of T[R] is needed in order to present T[R] itself. 
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6.7.2. New computation rules 

In Section 6.3, we have given new subtyping rules for E-types and 

IT-types which have only one constructor. Since the coercions can be 

defined by using the function operators 1r1 and 1r2 and app, we are 

able to prove the admissibility of transitivity. However, we need to 

be careful to introduce the subtyping rules for other inductive types. 

For example, if we want to introduce new subtyping rules for lists as 

follows. r f- A OCc B : Type 

r f- List(A) <d List(B) :Type 

where d = mapList(A, B, c), we also need to add the new computation 

rule for lists into the system T[R1r1]0 (see the new computation rule 

in Section 5.8.1). The reason for doing this is the same as studied in 

Section 5.1 and Section 5.8. After adding new computation rules, we 

are able to combine the natural subtyping rules for the parameterised 

inductive data types, E-types and lists, and the normal transitivity rule 

for subtyping is admissible. 

6.7.3. Combining incoherent coercions in general 

We have studied in this chapter a special case of incoherent coer­

cions. However, when we consider combining incoherent coercions in 

general, we must be sensible, that is, we don't try to combine any ar­

bitrary incoherent coercions. For example, suppose that there are two 

different coercions c1 and c2 from type A to B. A sensible thing to do 

is to use only one at a time; if we want to use c1 as a coercion, then c2 

must be switched off, and vice versa. 
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Conclusion 

7 .1. Summary 

This thesis is the first study of the issue of coherence and transi­

tivity at type level in coercive subtyping. We focus on the coercions 

between parameterised inductive data types. A number of examples 

are given in this thesis to identify the serious problems with these co­

ercions concerning coherence and transitivity. The thesis provides not 

only the proofs but also clearer understanding of the subtyping rules 

for parameterised inductive data types. 

We choose two examples, ~-types and IT-types, as representatives of 

the parameterised inductive data types that have only one constructor 

(i.e. ST-form) to demonstrate that coercions for such types can be 

defined by using their special function operators. Since coercions are 

defined in this way, we proved the coherence and the admissibility of 

the normal transitivity rule. 

Through a close examination of some key examples we get a better 

understanding of the coercions between parameterised inductive data 

types in general. For many parameterised inductive data types such as 

lists, coercions have to be defined inductively and the normal transi­

tivity rule is not admissible. However, a large class of inductive data 

types with their subtyping rules is suitable for weak transitivity. In 

every such subtyping rule, there is no coercion dependency that may 

occur; that is, the coercion in one premise doesn't appear in another 

premise. We also prove that the meta-level equality requirement is sat­

isfied. If A <q B, B <c2 C and A <c3 C then c3 is extensionally equal 

to c2 o c1 . 

A counter example shows that the component-wise subtyping rules 

for ~-types and the subtyping rule of its first projection are incoherent 

if they are put together directly. We introduce a new subtyping rela­

tion and give a new formulation of coercive subtyping. In particular, 
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coherence and transitivity are redefined. This new formulation satisfies 

the new coherence requirements and enjoys the admissibility of the new 

transitivity rules. 

7.2. Implementation 

As we mentioned in Section 1.8, coercion mechanisms of non-dependent 

coercions with certain restrictions have been implemented in both the 

proof development systems Lego and Coq, by Bailey and Sa1bi, respec­

tively. A mixture of simple coercions, parameterised coercions, coer­

cion rules and dependent coercions has been implemented in Plastic by 

Callaghan. 

I also implemented logical framework and inductive data types. As 

mentioned in Remark 2.3.8, the elimination operators and computation 

rules are implemented differently. For logical framework, Terms and 

Kinds are represented by mutually recursive data types so that as many 

as possible ill-typed terms are not representable, In Haskell, they look 

like the following. 

data Term 

date Kind 

Var String 

Lam String Kind Term 

App Term Term 

Type 

El Term 

Prod String Kind Kind 

Chapter 6 is the first study on how to combine the component-wise 

subtyping rules for 2:-types and the subtyping rule of its first projection. 

A sound and complete algorithm for the coercion search is also given 

in Section 6.6. Based on my implementation of logical framework and 

inductive data types, I also implemented coercive subtyping, especially 

the component-wise subtyping rules for 2:-types and the subtyping rule 

of its first projection. These two sets of subtyping rules can be used in 

a single system. The algorithm is on page 125. 
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7.3. Future work 

As we discussed in Section 5.8, there are problems concerning coher­

ence and transitivity for the subtyping rules of parameterised inductive 

data types. In particular, the problem regards the combination of these 

subtyping rules. As we showed in Example 5.2.3, neither the strong (or 

normal) transitivity rule nor the weak transitivity rule can be admis­

sible when we combine the subtyping rules for I:-types and lists. This 

leads us to fundamental future work on the extension of type theory. By 

adding new computation rules for parameterised inductive data types 

so the natural subtyping rules for all the parameterised inductive data 

types can be uniformly used together. 

The meta-properties of these new computation rules such as Strong 

Normalisation and Church-Rosser need further study. Although such 

meta-properties should intuitively be true, proving them is not easy and 

likely to be a huge task as proving them in UTT [Gog94]. Even the weak 

normalisation (i.e. There is a finite computation sequence for every 

well-typed term) is hard to prove, mainly because new redexes may be 

created after applying the new computation rules. In the following, I 

give an example to illustrate the increasing of redexes. 

Example 7.3.1 Consider the terms d2od1 [lo: List(List(N))]d2 (d1(l0 )) 

and d3 o d2 [l0 : List(List(N))]d3 (d2 (l 0 )) where 

d1 mapList(List(N), List(N), c1) 

c1 [l : List(N)]nil(N) 

d2 mapList(List(N), List(N), c2) 

c2 mapList(N, N, [n: N]n) 

d3 mapList(List(N), List(N), c3) 

C3 mapList(N, N, [n : N]O) 

and List(N) (the type of the lists of natural numbers) and mapList can 

be found on page 32. Note that d1, d2 and d3 are normal forms. 

Now, by the new computation rule for lists on page 104, we compute 

d2 o d1 and d3 o d2 as follows: 

d2 o d1 =? mapList(List(N), List(N), c2 o cl) 

ch o d2 =? mapL·ist(List(N), List(N), c3 o c2 ) 



where 
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[l: List(N)]mapList(N, N, [n: N]n, nil(N)) 

mapList(N, N, [n : N]O) o mapList(N, N, [n: N]n) 

134 

According to the first computation rule for lists, c2 o c1 has a new redex 

and can be reduced to [l : List(N)]nil(N) and; according to the new 

reduction rule for lists, c3 o c2 has a new redex and can be reduced to 

mapList(N, N, [n: N]O). 
So, new redexes may be created after applying the new computation 

rules for parameterised inductive data types. 

Another interesting area for future work is to consider coercive sub­

typing in the framework of extensional type theories. Although type 

checking in extensional type theories is undecidable, studying coer­

cive subtyping and its related issues in an extensional framework may 

provide further theoretical insights. Some fundamental difficulties in 

extensional type theories need to be overcome first in order to study 

coercive subtyping. For example, in an extensional type theory, can 

we prove that List(A) = List(B) implies A = B? One promising 

suggestion is to consider elimination rule for universes. Yet how such 

direction affects the formulation of coercive subtyping is still open. 
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