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Abstract 
This thesis is concerned with the theoretical study of one-dimensional and two-dimensional 

photonic structures. Plane-wave calculation methods have been employed to model one­

dimensional waveguides and two-dimensional photonic crystals. The one-dimensional struc­

tures considered are slab waveguide interferometer devices. A transfer matrix method is 

described which has been implemented in a biosensor technique know as dual polarisation 

interferometry. The method presented is used for the characterisation of thin biological films. 

A similar slab waveguide device is described for the wavelength locking of diode lasers and 

a novel athermal solution to the problem is proposed. 

The study of two-dimensional photonic crystals employed a standard bandstructure 

method and also proposed new approaches to complex photonic bandstructures which are 

not believed to be available elsewhere. An interface matching calculation is described which 

employs complex photonic bandstructures and is believed to be the first use of the method 

described for photonic structures. The theoretical methods are applied to consider the super­

prism effect in square and hexagonal lattice photonic crystals. Optimum superprism struc­

tures are arrived at for both lattices. Reflection results from the optimum hexagonal structure 

are also considered, combined with coupling efficiency to the superprism mode. 

As a result of the work on photonic crystals new theoretical approaches have been 

described and implemented to assist with their establishment as calculation tools for two­

dimensional photonic crystal structures. 
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JLl Photorulc§ 

The modem world is part of a technological age. It is almost entirely reliant on elec­

trical devices to provide the now fundamental services which enable our society to function 

on a daily basis. The continual need of man for advancement has demanded that electrical 

devices operate at increasingly rapid speeds in order to keep pace with the ever expanding 

number of applications for them. Increasing the speed of electrical devices normally means 

a reduction in the size of the individual features. This realisation led, in 1965, to Moore's 

law [1] which still holds today [2]. The law describes how the number of transistors per unit 

area of an integrated circuit roughly doubles every two years. 

The semiconductor industry has managed to keep pace with the demand for smaller 

components through the continual refinement of its electrical circuit manufacturing tech­

niques. The miniaturisation of components may currently be achieved to impressively small 

scales. However, the decrease in dimensions of an electrical device leads to an increase in 

the resistance experienced by the moving electrons. This creates increased power dissipation 

problems. A further restriction on the operational speed of conventional electrical circuits is 

the physical speed at which an electron can be made to move through a semiconductor. The 

use of classical electrical circuits also places some fundamental limits on the reductions in 

size possible. Currently these limitations have no solutions [3]. 

Whilst research into extracting enhanced performance from electrical devices will con­

tinue within the semiconductor fraternity [4] the time is also ripe to thoroughly examine al-
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tematives. One possibility is to consider devices which use light to perform their operations. 

The advantages offered by light over electrons has already been exploited by the telecommu­

nications industry. Optical fibre technology [5] has revolutionised the industry by enabling 

greatly increased data and voice traffic across large distances. The study of optical fibres and 

other technologies that either generate or harness light and other forms of radiant energy, 

whose quantum unit is the photon, is usually referred to as 'photonics'. 

One particular type of photonic structure may be formed by modulating the refractive 

index of a structure in one or more dimensions. The first structures considered in this thesis 

possess a refractive index which varies in just one dimension. These structures may be 

referred to as one-dimensional photonic structures. A different type of photonic structure 

may be formed by periodically modulating the refractive index in two dimensions. Structures 

which possesses a periodic refractive index modulation are often referred to as photonic 

crystals. In this work two-dimensional photonic crystals are studied for their novel refraction 

properties. This chapter provides an overview of the one-dimensional and two-dimensional 

photonic structures studied and also a description of the work presented in the subsequent 

chapters. 

1.1.1 Advantages of Light 

Whilst research into optical devices is by no means still in its infancy there is an enor­

mous, and currently only partially tapped, potential in the use of light to convey information. 

Light transmitted by the propagation of photons has two distinct advantages over electrons: 

Firstly, photons in close proximity are free from the strong interactions experienced by elec­

trons which are in near proximity [6]; secondly, the speeds at which photons can propagate 

in dielectric materials is much greater than those achievable by electrons in conventional 

wires or circuits [7]. The potential advantages of photons over electrons has led to attempts 

to create photonic devices with similar functionality to certain electronic devices. The field 

of photonics, however, is far more diverse than simply recreating the functionality of elec­

tronic devices. Photons interact with the optical properties of materials and subsequently 

may provide information on these properties. The first waveguide interferometer applica­

tion described in this work utilises photon-material interactions to produce a novel sensing 

technique. 
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1,2 One=dlimensional Photonic Strr'Uctures 

1.2.1 Waveguide Interferometry 

An optical waveguide may be defined as a dielectric structure which transports energy 

as electromagnetic radiation at wavelengths in the infrared or visible regions [8]. The term 

dielectric is used to refer to any material which may support an electric field. This is equiva­

lent to the definition of a dielectric as any material which has very low electrical conductivity. 

Dielectric waveguides are extremely familiar in the form of optical fibres [8]. Such systems, 

in the simplest case, are composed of two nearly transparent dielectric regions, a core and 

a cladding region. Optical fibres have had a tremendous influence in telecommunications 

networks due to their ability to transport information over large distances with relatively low 

losses when compared to electrical systems. 

Waveguides are designed with a low refractive index cladding region and a high refrac­

tive index core region. This produces high to low refractive index interfaces and may lead to 

the phenomenon known as total internal reflection at the interfaces [8]. When total internal 

reflection occurs the majority of the light incident at an interface is reflected back into the 

core region. This permits light to be confined to the core and enables it to be channelled in a 

desired direction. For effective total internal reflection to occur there is a need for interfaces 

which are planar on the scale of the wavelength of the incident light. 

In the expression 'total internal reflection' the word 'reflection' implies a simple change 

in direction of the incident light at the interface. 'Reflection' does not provide a full account 

of the physics at the interface; the wave nature of light needs to be considered for an accurate 

representation of the system. Light may be described through the use of electromagnetic 

fields. The adoption of such an approach may be used to show that whilst the majority of the 

field is confined to the high refractive index material, a proportion of the field intensity will 

always exist beyond the confining region. The electromagnetic fields decay spatially away 

from the confining region and are normally referred to as 'evanescent fields'. The presence 

of field intensity beyond the confining region produces interactions between the evanescent 

field and the surrounding non-confining regions. These interactions may be exploited to 

probe the optical properties of the materials outside of the confining region. This is known 

as 'waveguide sensing' [9, 10]. 
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Path 1 

Detector 
Source 

Path2 

Figure 1.1: Schematic of a slab waveguide interferometer. High refractive index 
(turquoise) and low refractive index (grey) regions are combined to create two dif­
ferent optical paths. The arrangement may be used as an interferometer to allow 
differences between the two optical paths to be investigated. 

The waveguide sensing method described in this thesis makes use of a sensing struc­

ture composed of vertically integrated two-dimensional layers, as shown in Fig. 1.1. The 

structure may be referred to as a planar or slab waveguide [11]. Fig 1.1 shows two electro­

magnetic field confinement layers. They have been combined in the configuration shown to 

produce an interferometer type arrangement. Interferometers are devices which use interfer­

ence patterns to make accurate measurements [12]. The device shown in Fig. 1.1 initially 

couples light from the source into the two different confining regions. The light is then al­

lowed to propagate along the length of the slab waveguides before being recombined to form 

an interference pattern at the detector. Differences between the two optical paths may be 

inferred through analysis of the resultant interference pattern. The study of such waveguide 

interferometers forms the foundation of the first two photonic devices studied in this work. 

1.3 1\vo-dimensional Photonic Structures 

1.3.1 Concept of Photonic Crystals 

The two-dimensional photonic structures considered in this thesis are part of a new 

breed of materials known as photonic crystals [13]. Photonic crystals are structures with a 

periodicity in their refractive index, or dielectric constant. The periodicity is designed to in­

fluence the electromagnetic fields which may exist within the materials. The original concept 

of photonic crystals was born out of an appealing analogy between the optical properties of 

periodic dielectric structures and the electrical properties of semiconductors. The original 

photonic crystal papers [14, 15] noted the success of semiconductors before considering the 
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possibility of producing photonic crystals. At the most simplistic level semiconductors [7] 

are materials where the atoms or molecules are arranged in a spatially periodic manner in 

order to produce a crystal lattice. Electrons propagating within the lattice see the crystal as 

a periodic potential and the conduction properties of the crystal are dictated by the geometry 

of the potential. The mechanism which brings about these properties may be thought of as 

Bragg-like diffraction. This produces a semiconductor structure in which electrons are for­

bidden to propagate within certain ranges of energy for given directions. The electrons are 

effectively restricted to a set of allowed energy bands. One of the fundamental concepts in 

semiconductor theory is that of the 'forbidden gap'. This is a forbidden range of electron 

energies which exists for all directions. A forbidden gap normally occurs between the va­

lence and conduction bands in a semiconductor and allows for a high degree of control over 

the conduction properties of the material. The utility of semiconductor devices is unques­

tionable; the control which they provide over the propagation of electrons has produced an 

endless array of applications. If photonic crystals can achieve anything close to the level of 

penetration into our daily lives which semiconductors have achieved then they will represent 

a major technology for the future. 

The periodic dielectric structures [ 13] of photonic crystals were a sensible extension of 

an existing optical arrangement that was already well established in the field of optics. Di­

electric stacks, or multi-layer films were established for several key applications well before 

the term 'photonic crystal' was born. These structures consist of alternating high refractive 

index and low refractive index layers, for example see Fig. 1.2. The dielectric stack ar­

rangement could now be referred to as a one-dimensional photonic crystal. The structure is 

designed to form a forbidden frequency in the electromagnetic dispersion relation for light 

propagating perpendicular to the structure. For an infinite structure there is a single fre­

quency at which the structure acts as a perfect mirror, reflecting all the incident light. The 

arrangement is used, for example, in Fabry-Perot resonators [16], Bragg reflectors and also 

distributed feedback lasers [ 17]. 

The photonic crystal proposal by Yablonovitch [14] extended the one-dimensional pe­

riodicity of a dielectric stack arrangement to three dimensions. The three-dimensional pe­

riodicity was predicted to create a forbidden band-gap in the electromagnetic dispersion re­

lation, irrespective of propagation direction, in essence forming a 'complete photonic band-
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Figure 1.2: Two materials with different refractive indices (red and green) may be 
used to form a dielectric stack, or multi-layer film. The periodicity of the layers 
restricts the propagation of electromagnetic waves perpendicular to their surface. 
The device could also be referred to as a one-dimensional photonic crystal. 

gap' structure. The utility of such an arrangement was originally discussed in relation to 

the inhibition of spontaneous emission in semiconductor lasers and other quantum electronic 

devices. For these devices substantial efficiency enhancements were anticipated through the 

use of photonic band-gaps. It was also realised that the absence of electromagnetic modes 

over a range of frequencies could be used to alter the basic properties of many atomic, molec­

ular and excitonic systems [18, 19]. Early studies of photonic crystals used a theory based 

approach or employed microwave analogies as the technology capable of producing suit­

able structures on the optical scale was not available. More recently technologies capable of 

fabricating such structures have been developed. 

1.3.2 Early Experimental Structures 

The Bragg-like diffraction [7] off the periodic structure of photonic crystals was pre­

dicted to produce an allowed band situation similar to that seen for semiconductors. The 

semiconductor electronic valence and conduction band are replaced by photonic bands com­

monly labelled the 'dielectric' and 'air' bands. The two photonic bands are separated by 

a forbidden range of energies or frequencies known as the band-gap. The labels of 'air' 

and 'dielectric' bands stem from a consideration of the electromagnetic field confinement in 

one-dimensional photonic crystals. In such structures the lowest band has the majority of 

the electric field intensity confined within the high dielectric constant layers and the second 

band contains the majority of the intensity confined to the low dielectric constant material, 

which is often air. 

Early work focused on producing a complete photonic band-gap structure with a for-
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Figure 1.3: Yablonovite. The complex fabrication method utilising three different 
drilling angles for each hole is shown. 

bidden range of frequencies in all directions for any polarisation of light, a situation normally 

referred to as an 'absolute band-gap'. The first photonic crystal structure fabricated [20,21] 

was a three-dimensional face-centered-cubic structure formed from a set of packed spheres. 

The spheres were made of Al20 3 with a refractive index of slightly over 3 and had diameters 

of the order of 6 mm. When a structure of spherical air holes in a Ah03 background was 

fabricated the arrangement appeared to produce an absolute photonic band-gap, even if a 

somewhat narrow one, in the millimeter regime. However, this was later shown not to be the 

case [22] . The first true absolute photonic band-gap structure was produced in 1991 [23], 

again in the mm regime by using chemical-beam-assisted etching to drill holes into a di­

electric wafer. The complexity of the three drill directions required to form such a structure, 

named Yablonovite after its proposer, may be seen from the schematic diagram shown in Fig. 

1.3. To operate with a particular wavelength of electromagnetic radiation a photonic crystal 

structure is required to possess periodicity of the same order as the wavelength. The natural 

period of the atomic arrangement within a semiconductor corresponds to the length scale re­

quired for influencing the propagation of electrons. Periodicity on the length scales necessary 

for the most useful photonic crystals needs to be fabricated artificially. The usual operating 

wavelength of the optoelectronics community is in the infra-red regime, somewhere in the 

region of 1.5 J.l.m. This means that the basic size of a photonic crystal unit cell needs to be of 

the order of a micron, which is 1000 times larger than that of atomic crystals; however, it is 

still of a small enough order to represent a very significant fabrication challenge. 

In the last 15 years several novel approaches have been adopted in the attempt to pro-
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duce a three-dimensional absolute photonic band-gap structure which could operate at in­

frared wavelengths. Until around 2000 such a suitable structure had proved elusive and pho­

tonic band-gap structures were really limited to other wavelength regimes [24]. However, 

since then fabrication methods have been designed which permit such structures to be built. 

The current work on synthesizing such structures falls into three main camps: those using 

colloidal self-assembly techniques to produce opal or reverse opal structures [25-27]; those 

using layer by layer techniques [28-33]; and those using pore drilling techniques [34, 35]. It 

is worth noting that holographic approaches are also being pursued and have been shown to 

produce viable three-dimensional structures [36, 37]. 

1.3.3 Two dimensional Structures 

Photonic band-gaps are not unique to three-dimensional structures [39-41]. For many 

opto-electronic applications two-dimensional structures which possess similar optical prop­

erties to their three-dimensional counterparts also offer great potential [42]. Two-dimensional 

structure fabrication methods benefit from the existence of well developed integrated circuit 

manufacturing techniques [43]. Whilst the 1.5 J.Lm scale is still a challenging regime for 

fabrication, it is more readily achievable in two dimensions than in three. The first two­

dimensional structure [44], similar to the first three-dimensional structure, was also produced 

and tested in the millimeter regime. The first two-dimensional structure consisted of alumina 

rods which were arranged to form a periodic square lattice in an air background. The struc­

ture possessed a photonic band-gap for one polarisation only. The square lattice experiments 

were soon followed by experiments based on a hexagonal, or triangular lattice [45]. This lat­

tice type was shown to be capable of producing an absolute photonic band-gap and in recent 

years structures have been produced which operate at near-infrared wavelengths [46]. 

1.3.4 Superprisms 

'Superprisms' are one of the potentially useful applications for both two and three 

dimensional photonic crystal structures [47-53]. Superprisms derive their name from the 

conventional optical devices known as prisms. Prisms are commonly used to refract light 

or separate light of similar wavelengths from a multi-wavelength beam. Glass prisms are 

often demonstrated separating white light into rainbow patterns through the wavelength de-

8 



Chapter 1. Introduction 1.4. Description of the work 

pendence of their angular deviation. Certain photonic crystal systems are referred to as 

superprisms as they demonstrate similar wavelength separation but with greater differences 

in angular deviation than is achievable by conventional uniform media. Superprisms have 

also been shown to possess an angle of refraction which is highly dependent on the inci­

dent angle. The high sensitivity to the incident angle and wavelength has led to the proposal 

of potential superprism based devices for use in a variety of beam-steering and wavelength 

separation applications. 

1.4 Description of the work 

This thesis is concerned with theoretical calculations on both one-dimensional wave­

guide interferometers and two-dimensional photonic crystals. Chapters 2 and 3 present theo­

retical studies using waveguide interferometry arrangements. The former is concerned with 

a new biosensor technique known as 'Dual Polarisation Interferometry' and the latter with a 

proposed athermal wavelength tracker for diode lasers. The following four chapters are con­

cerned with two-dimensional photonic crystals. Chapter 4 describes the theoretical methods 

which are employed for studying such structures. The methods are applied in the follow­

ing two chapters to describe the basic properties of firstly the square and then the hexago­

nal lattices. The chapters also include original work on the optimisation of bandstructure 

anisotropy and the effect this has on the refraction properties of the structures. The final 

results chapter is Chapter 7 which describes a method for calculating reflection coefficients 

at air-photonic crystal interfaces. Results are given from the application of this new method. 

Chapter 8 summaries the main results presented in the previous chapters and also draws 

conclusions on the utility of the photonic structures previously discussed. 
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Chapter 2 

Dual Polarisation Interferometry 

2.1 Introduction 

Dual Polarisation Interferometry (DPI) is a technique pioneered by Farfield Sensors 

Ltd. for the detection and investigation of the properties of thin films [54]. The technique 

uses multi-layered waveguides in an interferometry type arrangement to allow for the quanti­

tative resolution of the optogeometrical parameters of unknown layers deposited onto a well 

defined waveguide structure [8]. The structure may be considered as a one-dimensional 

photonic device and theoretically modelled using a plane-wave transfer matrix type ap­

proach [55]. This chapter presents the theoretical work which was undertaken to produce 

a model allowing both the refractive index and thickness of deposited layers to be calculated 

from the information available from the waveguide interferometer arrangement. 

Waveguide interferometers possess a high sensitivity to small optogeometrical vari­

ations which is fundamental to their ability to assist in the characterisation of thin films. 

However, the high level of sensitivity may also cause such a device to be susceptible to 

variations in the optogeometrical parameters of the individual layers which form the base 

waveguide structure. Variations of this nature will be unavoidably introduced into the struc­

ture by the fabrication process. An actual base structure will have layer optogeometrical 

properties which are only defined to within certain manufacturing tolerances. A theoreti­

cal study was undertaken to establish the influence of these manufacturing tolerances on the 

detection ability of a dual polarisation interferometer device. Results from the study are 

included in this chapter with a discussion of their implications. 

10 



Chapter 2. Dual Polarisation Interferometry 2.2. Protein Analysis 

The theoretical model presented is based on a set of assumptions, the validity of which 

cannot be ensured without the comparison of experimental results produced by dual polar­

isation interferometry with those produced by alternative methods. Dr. Graham Cross et 

al. [56] have provided results of this nature, using the theoretical model presented in this 

chapter. A discussion of their experimental results has been included to allow experimental 

verification of the dual polarisation interferometry technique to be given. 

2.2 Protein Analysis 

The ability to investigate the optical and physical properties of thin films has applica­

tions across a wide range of scientific fields. The dual polarisation interferometry technique 

has been developed specifically for the characterisation of thin biological films. The tech­

nique provides information that is believed to be of utility for the examination of the real-time 

bonding behaviour of proteins under differing conditions. 

A protein [57] is defined as any of a group of complex organic macromolecules that 

contain carbon, hydrogen, oxygen, nitrogen, and usually sulphur. All living cells are built 

from proteins including many substances such as enzymes, hormones, and antibodies, which 

are necessary for the proper functioning of an organism. Proteins are formed from one or 

more chains of a group of organic compounds known as amino acids. There are 20 different 

amino acids which combine in a variety of different configurations to form all the proteins 

present in the human body. Understanding the behaviour of these proteins in a range of 

differing environments is an essential element in the search for cures and vaccines for many 

diseases. Biosensor devices which are highly sensitive to protein changes are currently a vital 

research field. Seemingly small changes in proteins are often the key to the potential causes 

of life changing diseases and disorders. Existing techniques which offer real-time sensitivity 

to protein bonding events tend to provide only a qualitative indication of the changes occur­

ring, rather than definite quantitative data. The current techniques lack the ability to provide 

the type of unambiguous optogeometrical information that dual polarisation interferometry 

offers for the real-time investigation of biomolecular interactions. 
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Source Detector 

Sensor surface 

Figure 2.1: Surface plasmon resonance (SPR) uses a prism to couple light to a 
thin metal film. Variations in the reflected intensity are monitored to allow for the 
detection of protein bonding events at the sensing surface. 

2.3 Biosensors 

The field of biosensing is extremely diverse. It contains numerous devices which have 

been developed using a variety of different physical and chemical techniques. The field is 

also one which is expanding rapidly. Before 1985 there were just 213 scientific publications 

on biosensors. However, by mid 1996 there were over 6000 publications [58]. An overview 

of the biosensor field is available in the review article by Collings et al. [58]. The two 

dominant techniques used in untagged protein studies are surface plasmon resonance (SPR) 

[59], especially the BIAcore system [60], and resonant mirror sensing [61]. Both techniques 

are commonly deployed for the detection of protein interactions and represent the closest 

alternatives to dual polarisation interferometry. This section provides a brief description of 

these techniques to allow the advantages of a dual polarisation interferometry approach to be 

seen. 

2.3.1 Surface Plasmon Resonance 

Surface plasmon resonance (SPR) was first reported in 1959 [62]. It is a phenomenon 

that may occur when light is reflected off a thin metal film. Plasmons are delocalised electron 

excitations located within the thin metal film and may be excited by electromagnetic radia­

tion. The resonant frequency of these plasmons is dominated by a property of the material 

bonded to the back of the film which is often refen·ed to as 'mass concentration'. This prop­

erty makes the arrangement suitable for use in a sensor device [59, 63]. Mass concentration 

is a combined refractive index and thickness parameter with the two individual quantities in-
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separable from each other by the exclusive use of information available from the technique. 

Fig. 2.1 shows a schematic of the experimental arrangement. Polarised light is directed on 

to the metal film using a prism which also couples the reflected intensity back from the film. 

A charge-coupled device (CCD) is used to detect changes in the intensity of the reflected 

light producing a 'sensogram' measuring intensity variations in 'response units'. From these 

changes it is possible to detect real-time protein bonding events which occur at the material 

bonded to the back of the thin metallic film [64]. Commercial surface plasmon devices are 

available [60] and further details of the technique can be found in review articles [65] [66]. 

2.3.2 Resonant Mirror Sensors 

Resonant mirror sensors combine the highly sensitive surface plasmon resonance tech­

nique, summarised in the previous section, with waveguiding principles to create a device 

with the ability to sense events in the near vicinity of the sensing surface, as well as directly 

at the surface [67]. This is achieved by coupling light from the prism into a high refractive 

index resonant layer surrounded by two low refractive index layers, to create a waveguide. 

The arrangement is shown in Fig. 2.2. The evanescent field of the waveguide (see Section 

2.5.1) means that the resonant frequency of the plasmons is influenced by the mass concen­

tration up to a distance of the order of 100 nm from the sensing surface. Sensing events are 

measured in a method similar to the SPR technique; light is coupled back from the waveg­

uide through the prism for detection by a CCD. The articles by Edwards et al. [68], Goddard 

et al. [69] and the review article by Yeung et al. [70] provide further details of the technique 

and its uses. 

2.3.3 Dual Polarisation Interferometry 

The two aforementioned techniques are highly sensitive to protein interactions but are 

limited by the ambiguity of the information available by solely monitoring the intensity of the 

reflected light. The mass concentration parameter measured by these techniques combines 

two key physical parameters: layer thickness and layer refractive index. Methods for the 

separation of the two physical quantities are available but are heavily assumption based, 

making their reliability questionable. Dual polarisation interferometry allows unambiguous 

determination of refractive indices and thicknesses from the information available from the 
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Figure 2.2: Resonant mirror sensing couples light into a high refractive index reso­
nant layer between two low refractive index layers to produce a waveguide arrange­
ment. The evanescent field extends beyond the sensing surface, providing a device 
sensitive to changes up to approximately 100 nm from the sensing surface. 

waveguide instrument. The following sections describe the technique in detail. 

2.4 Principle of Interferometry 

Fundamentally interferometry involves the direction of electromagnetic waves along 

two differing optical paths and the interference of the emergent waves. The interference pat­

tern may then be used to infer differences between the two optical paths [5]. Probably the 

most famous use of this well established scientific technique was the 1887 ether experiment 

by Albert Michelson and Edward Morley [71]. A schematic diagram of the Michelson­

Merely arrangement (Fig. 2.3) demonstrates the principle of interferometry clearly. Light 

from a single source is separated by a beam splitter and it propagates along two different 

paths; the light is then recombined to form an interference pattern at the detector, which al­

lows the difference between the two optical paths to be detected. The appearance of a modem 

waveguide interferometer sensor differs greatly from the Michelson-Merely experiment, but 

the operating principles remain the same. 

Interferometers utilise the electromagnetic wave nature of light for the detection of 

changes of the same order of magnitude as the wavelength of the incident light. It is essential 

to the technique that any initial difference in phase between the light traversing the two 

optical paths is precisely known. A single coherent source of light, for example a laser, is 

normally used as the source for both paths. This ensures that the initial frequency (w) and 

phase of the light for both optical paths are identical. Light from such a source may be 
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Figure 2.3: Schematic representation of the original Michelson-Morley interfer­
ometer. The device illustrates the principle of interferometry: Light from a single 
source is split along two optical paths (blue and green arrows), then recombined at 
the detector. The resultant signal can be used to infer a difference between the two 
optical paths. 

represented as a plane-wave [72]. A plane-wave is simply a wave of the form: 

E(r, t) = Eoei(k·r-wt) (2.1) 

Mathematically the direction of propagation of a plane-wave in a uniform material is repre­

sented by a wavevector k, and Eo is a constant giving the magnitude, phase and polarisation 

direction. If a position, r, is considered then equation (2.2) defines the plane-wave travelling 

perpendicular to a plane with points r 0 . 

(r- r 0 ) · k = 0 (2.2) 

If the phase of the plane-wave is separated from Eo then the wave may be written in terms 

of a phase term, ei<P, and a new constant term, E~: 

(2.3) 
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Initially light from a coherent source will have a single phase, ¢. The interferometer di­

vides the plane-wave into two independent waves, the function of the beam splitter in Fig. 

2.3. Differences between the two optical paths traversed by the plane-waves will manifest 

themselves as a phase difference, 1:1¢, between the two plane-waves at the output point of the 

interferometer. Variations in the relative phase difference between the two paths will alter the 

interference pattern created at the detector. In the example of the ether experiment, motion in 

one direction relative to an immovable ether would effectively change the optical path length 

in that direction compared to the other, thus introducing a phase difference. Interference 

pattern analysis is discussed for waveguide interferometry in Section 2.5.3. 

2o5 Waveguide linte1rferometry 

Waveguide devices operate through the principle of total internal reflection which al­

lows light to be confined to a high refractive index guiding material surrounded by a low 

refractive index cladding material [8]. Total internal reflection is the process in which elec­

tromagnetic radiation incident at an interface between an initial, high refractive index (n1) 

medium, and an adjacent, lower refractive index (n2) medium, is reflected. The effect is 

shown using a simple ray model for light in Fig. 2.4a. Provided that the rays incident at each 

high-low refractive index interface are above a certain minimum, or critical, angle then the 

incident light is reflected at the interface. The critical angle [8] is given by: 

() . 1(n2) 
c = sln nl (2.4) 

The simple ray model is not sufficient to fully describe the physics present in wave­

guides. Light travels as electromagnetic waves and is not simply reflected at high-low refrac­

tive index interfaces; a proportion of the incident electromagnetic field intensity extends be­

yond the interface into the cladding region. The electromagnetic radiation inside the cladding 

region is usually referred to as the evanescent field. Fig. 2.4b shows an electric field intensity 

schematic for a simple confined field. The electric field intensity possesses a peak within the 

high refractive index region and the evanescent field extends to the cladding regions. The 
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n, 

(a) 

Figure 2.4: Total internal reflection allows the confinement of light to a waveguide. 
The effect can be considered using a simple ray model (a) and using a wave model 
(b). The wave model shows the electric field profile and it may be seen that the 
evanescent field of the confined mode extends beyond the guiding region (turquoise) 
into the cladding regions (grey). 

rapidity of the decay of the field outside of the high refractive index region is determined by 

the refractive index contrast between the two regions and the angle B; higher refractive index 

contrasts create more rapidly decaying profiles [11]. The arrangement may act as a sensor 

provided that at least one of the low refractive index regions is sufficiently thin to allow for 

a significant intensity of the evanescent field to exist outside of the structure [10, 73-78]. 

Studies exist which discuss evanescent waveguide sensing and optimise the evanescent field 

to maximise its sensitivity to a particular material under investigation [9, 79]. 

2.5.2 Operating Principles 

The propagating waves supported by waveguides are limited to a discrete number of 

allowed wavevectors. These are referred to as the allowed, or guided, modes of the given 

structure. The method of waveguide interferometry described here effectively uses two two­

dimensional slab waveguides to provide the two differing optical paths required for interfer­

ometry. Fig 2.5 shows a schematic of the arrangement. The upper high refractive index layer 

does not have an upper cladding layer; there is a low refractive index fluid region above the 

guiding layer, which provides the confinement. The evanescent field of a guided mode prop­

agating in the upper high refractive index layer will extend into the fluid region. Provided 

that both high refractive index layers are of sufficiently low thickness the total structure will 

support just two guided modes, one with a field intensity peak in the upper high refractive 

index region, referred to as the upper guide, and the other with a peak in the lower high 
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Path 1 

Detector 
Source 

Path 2 

Figure 2.5: Vertically integrated dual-slab waveguide structure. Changes above the 
upper layer will alter the phase difference between light that has propagated the 
along length of the two guide layers (turquoise). 

refractive index region: the lower guide. 

The device operates as a sensor by allowing light from a single coherent laser source 

to propagate along the two optical paths, the lower and upper guides, simultaneously. The 

allowed wavevector for each guided mode is dependent on the entire waveguide structure, 

together with the regions above and below the structure. However, provided that the lower 

guide is at a sufficient distance from the upper region, the evanescent field from the lower 

guide will have decayed to a negligible amplitude at the upper guide. The region above 

the structure will then have a negligible effect on the lower guide mode. The prescribed 

situation may be ensured by creating a structure design with a thick, low refractive index 

region between the two guides. The proximity of the upper guide to the region above the 

structure produces a second, upper guide mode, which is highly dependent on this region. If 

both the upper and lower guide modes are simultaneously excited then they will propagate 

along the length of the structure to the output end. At the output end the high level of 

dependence of the upper mode on the region above the structure will create a phase difference 

between the two modes. In this manner the structure may be used as a sensor to detect small 

changes in the sensing region above the structure. Previous work has used this sensitivity to 

detect changes in gases, which were allowed to flow over such a waveguide interferometer 
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structure [80]. 

2.5.3 Phase Detection 

After both guided modes have propagated the length of the structure the necessary 

phase difference information may be extracted from the interferometer by positioning a pho­

tosensitive detector at some distance, L, from the output edge of the structure. If Lis large in 

comparison to the separation of the upper and lower guides then the detected pattern will be a 

far-field interference pattern (5]. The large distance L makes the output from the waveguide 

structure effectively two line sources. This creates a similar situation to the classic Young's 

Fringe experiment, shown schematically in Fig. 2.6. The intensity of the interference pattern 

at any point, P, in the detection plane is proportional to the square of the sum of the contri­

butions from the two sets of cylindrical-waves corresponding to the upper and lower guide 

modes. The contribution from each of the two line sources depends on both the amplitude 

of the wave at point P and also the phase of the wave at this point. The phase of the wave 

due to the upper guide mode at P may be denoted by, ¢f, and that of the lower guide mode 

by, ¢f. Maxima will exist in the interference pattern when the light from both sources is 

in-phase. The condition for this occurrence is: 

..IY _ ..IY _ 2nd sin() _ 
2 lf'l lf'2 - - nn 

.A 
(2.5) 

d is the source separation, n is an integer or zero and () is the angle defined as in Fig. 2.6. 

As L » d, the small angle trigonometry approximations may be used and equation (2.5) 

rewritten in terms of the vertical position, x, of the maxima at the detector: 

(2.6) 

If an additional phase difference, tl¢, is introduced between the two-plane waves, due to a 

sensing event, then the vertical position of the maxima will shift by a distance tlx, given 

by [81]: 

(2.7) 
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X 

Source d 

Figure 2.6: The output interface of the waveguide structure is similar to Young's 
double slit experiment shown here. Two line sources create cylindrical wavefronts 
which interfere to produce an interference pattern at a distance L from the two 
sources. 

The use of the far-field interference pattern to examine phase information for a sensor 

device has been previously investigated [82, 83], and it was concluded that the approach 

provided both a compact and low cost solution to the phase detection problem. 

2.6 Plane-wave Approach 

This section describes the plane-wave transfer matrix method implemented for the cal­

culation of allowed waveguide modes within one-dimensional multi-layered structures. A 

transfer matrix is a matrix that allows the plane-wave amplitudes at one position to be calcu­

lated from those at some other, initial position. The transfer matrix method described here 

achieves this through matching the relevant electromagnetic field amplitudes at individual 

layer interfaces throughout the structure. The method allows the wavevectors of the guided 

modes to be found, and also the electric and magnetic field profiles across the multi-layer 

structure. The structure under consideration is referred to as one-dimensional due to refrac-

tive index variation occurring in one direction only, although the structure is assumed to be 

infinite in all three dimensions. 
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2.6.1 Optogeometrical Parameters 

The basic physical properties of the individual dielectric layers which form the waveg­

uide structure are the refractive index and thickness of the layer. In the model described here 

the thickness of the individual layers will be assumed to be uniform, hence the layers give 

rise to planar interfaces with each other. It is possible that the layer thickness will alter due 

to the thermal expansion of the structure layers. However, such effects will be negligible in 

the structures under consideration, due to the tight thermal control which will be enforced 

on the experimental structures. 

The refractive indices of the individual layers used in the model also require some 

consideration. For a non-conducting dielectric material the refractive index of a material 

may be described as the ratio of the speed of light in a vacuum (c) to the magnitude of the 

phase velocity (vph) of the light in the particular dielectric of interest [11]: 

c 
n=­

Vph 
(2.8) 

However, individual materials may not be isotropic and homogenous and may exhibit bire­

fringence: a different refractive indices in different directions. In addition the refractive 

index may depend on frequency or a variety of other thermal, non-linear and absorption re­

lated properties [11]. The existence of such effects would make it inappropriate to attribute 

a single refractive index value to an individual layer. Here the assumption is made that such 

effects are absent from the dielectrics that form the waveguide structure and also those that 

form any deposited layer. A single fixed refractive index value is attributed to each of the 

individual layers that form the structure. 

2.6.2 Guided Modes 

The wavevectors of modes which propagate through a waveguide are limited to dis­

crete values. If an unsupported mode is coupled into a waveguide then the electromagnetic 

field amplitudes are rapidly attenuated; the electromagnetic radiation escapes to the cladding 

layers or layers surround the cladding layers. Guided modes possess peaks in the relevant 

field profiles within the high refractive index guiding layers. Either side of the structure the 
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profiles show a decay in field intensity with distance from the structure. If a wavevector 

which does not represent a guided mode of the structure is used in the transfer matrix calcu­

lation then, once calculated, the relevant field profile would display fields that increase with 

distance from the structure. In practice, the total electromagnetic field intensity is limited 

by the incident intensity. Hence, an increasing field profile in the unbounded region outside 

of the structure indicates that all of the incident intensity would be lost to the surrounding 

regions rather than propagating the length of the waveguide. 

2.6.3 Maxwell's Equations 

Maxwell's equations offer a convenient form for the macroscopic laws of electromag­

netism. They were originally formulated, by Maxwell in 1865 [84], as a set of 20 equations 

with 20 unknowns, before Heaviside and Gibbs reformulated Maxwell's equations into 4 

vector equations in 1884. These four equations describe the behaviour of both the electric 

and magnetic fields in media and provide a basis for studying the interactions between light 

and materials. They may be found in any standard physics textbook, for example [85] or [86], 

and bring together all the laws on classical electricity and magnetism into one complete the­

ory. Maxwell's equations are given in their most general form by equations (2.9) to (2.12), 

where standard SI units have been used. In these equations the following notation has been 

used: B is the magnetic induction field or magnetic flux density (in units of tesla, T); H is 

the magnetic field strength (in units of Aim); E is the electric field (in units of V/m); D is 

the electric displacement (in units of C/m2); Jl is the permeability (in units of W/mA); f is 

the permittivity (in units of F/m); p the free charge density (in units of C/m3 ) and J the free 

electric current density (in units of A/m2
). 

'V·D=p 

V'·H=O 

8B 
\7xE=-

8t 
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an 
\7xH=J+-

8t 

2.6. Phmeawave Approach 

(2.12) 

The first of Maxwell's Equations can be interpreted as implying that the electric flux through 

any surface is equal to the enclosed charge. The second is equivalent to the nonexistence of 

magnetic monopoles, hence the magnetic flux through any surface must be zero. The third 

and fourth of Maxwell's Equations correspond to Faraday's Law of Induction and Ampere's 

Law (with a displacement current) respectively. 

The concept of plane-waves was described in Section 2.4. Mathematically a plane­

wave can be expressed by the form: 

E = E~ei(k·r-wt+¢) (2.13) 

The direction of propagation is specified by the wavevector, k, and in general E~ is a constant 

complex vector giving the polarisation of the wave. In a planar waveguide of the type being 

discussed here the electromagnetic wave can exist in two different polarisations, commonly 

referred to as the transverse electric, TE, and transverse magnetic, TM, modes. The modes 

are defined with the aid of Fig. 2.5. The TE mode is defined as having a planar (y) component 

for the electric field and the TM mode is defined as having a magnetic field with a component 

in they direction only. The solution of Maxwell's Equations in less than three dimensions 

allows the two modes to be considered separately without the loss of information. The 

coordinate system which has been adopted has the z coordinate directed along the structure 

length and the x coordinate directed perpendicular to the layer interfaces. The standard right 

handed coordinate system is completed by defining they axis as existing in a direction in the 

plane of the layers. This allows the wavevector k to be written in terms of the components 

kx, ky and kz, hence: 

(2.14) 

Wave propagation in the z direction requires that the ei(k.z-wt) part of the exponen­

tial term in equation (2.14) is equivalent for all of the individual layers, for a given z and 
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t. Physically this is equivalent to the light having a fixed frequency and also wavevector 

component in the z direction. Were the z component of the wavevector not constant then the 

unphysical situation would exist with different portions of the wave travelling with different 

group velocities along the waveguide. 

Calculation of the curl of both sides of Maxwell's fourth equation allows the cross 

product term in the equation to be replaced through the use of the standard vector identity: 

\7 x \7 x A = \7(\7 · A) - \72 A, where A is any vector [87]. For non-magnetic media 

H = Bj J-to and the curl of equation (2.12) gives: 

av X E 
\7 X \7 X B = J-to \7 X J + J-toc at (2.15) 

A single homogeneous material may be considered and the electrical conductivity, a (a = 

1/ p), may be assumed to be invariant with position. The use of the vector identity, together 

with the substitution J = aE, then gives: 

a (\7 x E) 
\7 (\7 · B) - \72B = J-toa (\7 x E) + J-toc at (2.16) 

Comparison of the first term on the left-hand side with equation (2.10) allows the term to be 

set to zero. The two \7 x E terms on the right-hand side can also be simplified through the 

use of equation (2.11 ). The result is the following electromagnetic wave equation: 

(2.17) 

In general, plane-wave forms for the electric and magnetic fields will have a time depen­

dence that is proportional to e-iwt and spatial dependence proportional to ei(k,.x+kyy+k.z). 

The choice of a time dependence proportional to eiwt would also be equally valid. If the spa­

cial and temporal components have different signs then the wave is forward travelling and if 

they are of the same sign then the propagation direction is reversed. If the differential terms 

in equation (2.18) are evaluated, then the following condition may be produced: 

(2.18) 
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The condition is generally applicable for either polarisation. Any plane-wave solution of 

Maxwell's equations must have the property dictated by equation (2.18). It may be sim­

plified for the dielectric systems under consideration by employing the assumption that the 

waveguide layers are non-conducting, hence a = 0. Additionally the appearance of the ex­

pression may be simplified by use of c2 = 1/ /-loEo, together with the notation, E = EreLEo. As 

ky = 0 for the two-dimensional structures under consideration: 

2 

k2 2 k2 w k2 
x = W /-loE- z = 2Erel - z 

c 
(2.19) 

The value of kz for a particular guided mode, m, is often referred to as the propagation con­

stant of the mode and given the notation, f3m· The quantity is fixed throughout the structure 

by the angle of incidence of the original light ray on the waveguide structure. If the angle of 

incidence at the core-cladding interface is Om, then: 

(2.20) 

k0 is the magnitude of the free-space wavevector and ni is the actual core material refractive 

index. The propagation constants for guided modes may be found by scanning through valid 

kz values until a solution is found which propagates within the structure and decays outside 

of the structure. Another common method for referring to guided modes is by their effective 

refractive indices, neff· Equation (2.20) gives the relationship between effective refractive 

index and propagation constant. 

2.6.4 TM Transfer Matrix 

The use of a transfer matrix method greatly assists with the calculation of the guided 

mode propagation constants; it conveniently enables the effect of a complete structure to 

be treated as a single matrix, irrespective of the number of individual layers present. The 

matrix must contain the field components that when matched at layer interfaces will provide 

field continuity across the structure. For this reason the field components tangential to the 

plane of the layer interfaces are required. The TM mode is defined with, Hx = Hz = 0 

and accordingly Ey = 0. The first step in the transfer matrix method is the separation of the 
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electric, E, and magnetic, H, fields into two plane-wave sets, one in the +x direction and 

the other in the -x direction. These are given by equations (2.21) to (2.23). The electric 

field has two components Ex and Ez. However, only the component tangential to the layer 

interfaces, Ez, is required for the transfer matrix; both are shown for completeness. 

Hx(x, z, t) (A' e-ikxx + B' eikxx) ei(k.z-wt) (2.21) 

Ez(x, z, t) - (A"e-ikxx + B"eikxx) ei(k.z-wt) (2.22) 

Hy(x, z, t) (Ae-ikxx + Beikxx) ei(k.z-wt) (2.23) 

The number of amplitude coefficients, As and Bs, may be reduced through the use of 

Maxwell's fourth equation (equation 2.12) to relate the electric field to the magnetic field. 

The equation rearranges to give: 

(2.24) 

For the dielectric materials under consideration the free current density is taken to be zero 

(J = 0). Hence, use of the plane-wave field forms gives (for e-ikxx terms): 

(2.25) 

The coefficients A" and B", for the z component of the electric field, may now be expressed 

in terms of the magnetic field coefficients, A and B. Hence, 

Ez(x, z, t) = kx (Ae-ikxx _ Beikxx) ei(k.z-w) 
Wf 

(2.26) 

This allows both the fields required for matching to be conveniently combined in a single 

matrix. The frequency and kz dependence of the fields will be the same across all layers. 

Thus, the matrix needs to only contain Hy(x) and Ez(x): 

(2.27) 
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The matrix relates the coefficients in one layer to those in the next. Section 2.6.6 describes 

the extension of the field amplitude matching method to an arbitrary number of layers. 

2.6.5 TE Mode Analysis 

The TE mode is defined with, Ex = Ez = 0 and Hy = 0. The remaining components 

may be written in a plane-wave form. The terms in the +x and -x directions can be separated 

from each other by adopting a similar approach to that utilised for the TM polarisation. This 

allows the electric and magnetic field components to be written as: 

Ey(x, z, t) - (Ae-ik,x + Beik,x)ei(k.z-wt) (2.28) 

Ex(x, z, t) - (A' e-ikxx + B' eikxx)ei(k.z-wt) (2.29) 

Hz(x, z, t) - (A" e-ikxx + B" eikxx )ei(k.z-wt) (2.30) 

In this instance, a rearrangement of Maxwell's third equation (equation (2.11)) allows the 

number of amplitude coefficients to be reduced. If the assumption is made that the permit­

tivity, f, is independent of time, and recalling that the material is non-magnetic (H = B/ Jlo), 

allows equation (2.11) to be written in the form: 

B -i 
H=- = -\7 X E 

Jlo JloW 
(2.31) 

The field components tangential to the layer interfaces are the y component of the electric 

field and the z component of the magnetic field. The substitution of the plane-wave forms 

for the electric field into equation (2.31) gives: 

...:i. (-ik Ae-ikxx - ik Beikxx) 
{1.()"' z z 

H= 0 (2.32) 

...:i. (-ik Ae-ikxx + ik Beikxx) 
~W X X 

This may be rearranged to provide the magnetic field amplitude coefficients in the z direction 

in terms of the electric field coefficients: 
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(2.33) 

The frequency and kz components will be identical across all layers, hence, the final electric 

and magnetic field matrix may be written as: 

(2.34) 

2.6.6 Field Continuity 

This section describes the method used to ensure that the necessary electromagnetic 

field components are continuous at the individual layer interfaces. The similarity between 

equations (2.27) and (2.34) makes it convenient to adopt the same notation for both modes. 

Both equations may be written in the form: 

(2.35) 

The field component amplitudes a distance x from the initial field amplitudes bi are con­

tained in the matrix b 1. The initial amplitudes are given by: 

(2.36) 

In the TM instance the matrix M is given by: 

(2.37) 

and in the TE case by: 

(2.38) 
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x=O 

Figure 2.7: Interface matching notation at the first interface. The matrices on each 
side of each interface are labelled M and the field amplitude column vectors are 
labelled b. 

For a mode to propagate through a multi-layer waveguide the tangential components 

of both the electric and magnetic fields must match at each planar interface. To achieve 

this the structure is broken down into a series of piece-wise sublayers and the matching 

condition is applied at each layer interface through the use of transfer matrices. A reflection 

coefficient, R, may be defined at the first interface (x = 0) to represent the proportion of the 

initial electric field amplitude which is reflected at the first interface. For the TM mode the 

situation may be described by: 

( 
Hy(x = 0) ) 

Ez(x = 0) 
(2.39) 

The notation k' = -.,_:* has been introduced to simplify the appearance of the matrix. The 

expression fork' evaluated to the left of x = 0 may then simply be denoted k£. The upper 

and lower components of the field amplitude matrix, b 1, have been labelled b{l and bf re­

spectively. Further simplification has also been achieved by setting the incident amplitude 

for the magnetic field to unity. 

If the TE mode is considered and the notation: k' = ..k. used; then, with an incident 
/JOW 

electric field amplitude of unity: 
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Figure 2.8: A general interface between the jth and j + lth layers. The matrices at 
each side of each interface are labelled M and the field amplitude column vectors 
are labelled b. 

(2.40) 

Note the differing positions of the b 1 components, bf and bf. This is due to the electric field 

term appearing as the top component on the left-hand side of the equation. 

The left-hand side of the structure is considered as a semi-infinite layer, with a layer 

matrix given by the matrix M£. The field amplitudes at the interface between the semi­

infinite layer and the first layer of the structure (x = 0) are given by b£. The situation is 

shown schematically in Fig. 2.7. The matching condition for both polarisations at the first 

interface using the new notation is, 

(2.41) 

M 1,1 is the matrix for the first layer evaluated at the left hand-side of the layer and b1 contains 

the field amplitudes for the layer. The condition may be generalised to all interfaces in the 

manner shown in Fig 2.8. The general matching condition at all interfaces, using the TM 

mode as an example, is 
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( 
bf+l ) 

bf+l 
(2.42) 

The same expression could equally apply for the TE mode if theE and H terms were ex­

changed. Generalising this expression to a condition applicable for both modes at a general 

interface between the jth and (j + 1 )th layers gives: 

(2.43) 

If A -l is defined as the inverse of any matrix A, then equation (2.43) may be written in a 

manner which relates the field amplitudes for the next adjacent layer, (j + 1), to those of the 

current layer, j: 

(2.44) 

The combined matrix M~1 ,1 Mj,r is usually referred to as a transfer matrix as it relates the 

field amplitudes from one layer to the next. Between the first and second layers the matching 

condition is: 

(2.45) 

and this may be written using equation (2.44) in the form: 

(2.46) 

The process will continue in an identical manner for the entire N layer structure until the final 

(N + 1) semi-infinite right-hand side layer is reached. At this point the following matching 

condition is needed: 
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(2.47) 

The notation MR has been used to represent the matrix on the right hand-side of the structure 

and the field amplitude coefficients for this layer are given by hR. Rearrangement of equation 

(2.47) yields: 

(2.48) 

For the complete structure the final field component amplitude coefficients, b R will be related 

to the initial field component amplitude coefficients, b£, in the following manner: 

(2.49) 

(2.50) 

The interface matching method can also be used to calculate the field amplitude coefficients 

for each individual layer rather then for just for the final right hand-side layer. Equation 

(2.49) may be used but only terms up to the layer of interest included. The amplitude coeffi­

cients, combined with the appropriate matrix for the individual layers, allows field profiles to 

be plotted for each individual layer. In this manner field amplitudes or intensities at any point 

across the entire structure can be plotted and guided modes identified. If the only require­

ment is for the value of the guided mode propagation constant then it is both unnecessary and 

computationally inefficient to plot field profiles across whole structures. The following sec­

tion describes an efficient method for the calculation of guided mode propagation constants 

without the necessity of plotting field profiles. 

2.6. 7 Guided Modes 

The right-hand side electric or magnetic field coefficients may be calculated from the 

initial left-hand side field coefficients using equation (2.50). For a guided mode to exist in 

the structure the electric and magnetic fields must decay outside of the structure. This means 
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that the value of kx for the mode must be imaginary outside of the structure. A real value 

would lead to a non-decaying mode, due to the eik,x dependence of the plane-wave field 

forms, given by equations (2.21) to (2.23) and (2.28) to (2.30). With a positive imaginary kx 

the plane-wave form adopted for the fields contains two exponential terms, one increasing, 

the other decreasing with x. In order for the total field to be decaying with distance from the 

structure any exponentially increasing term must be absent; an exponentially increasing term 

would become increasingly dominant as the magnitude of x increases. If an exponentially 

increasing term is forbidden then the top coefficient of bR must be zero. In terms of the final 

matrix the requirement is for matrix element M11 to be equal to zero in equation (2.50). 

The method employed here for the calculation of guided modes examined the M11 

coefficient in equation (2.50). The value of the coefficient was calculated for the range of 

possible kz values, with their corresponding kx values. A decaying field was entered on 

the left-hand side by the use of a zero value for the top component in b£. Zero points 

were identified when the sign of matrix component M11 differed between two consecutive 

kz values in the allowed range. Each zero point indicated a decaying field on the right-hand 

side of the structure. The efficiency of locating guided modes was significantly improved 

through the use of an initial scan with relatively wide kz spacings. The initial scan allowed 

the approximate location of each guided mode propagation constant to be found without the 

need for a computationally intensive fine kz scan across a wide kz range. The required level 

of precision for the propagation constants was achieved by conducting repeated scans within 

the increasingly narrowed kz solution range. Once the width of the kz spacings was below 

some acceptable threshold value, the propagation constant was arrived at to the required level 

of accuracy. 

2. 7 Dual Polarisation Sensing 

The theoretical model described in the previous section allows the propagation con­

stants of guided modes to be calculated for well defined structures. The transfer matrix 

method is also of use for calculating the optogeometrical parameters of an additional layer 

placed above the well defined structure. Provided that both the structure and the propagation 

constant of the mode are known then a trial and error approach may be adopted to char-
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acterising a deposited layer. A variety of possible deposited layer parameters may be tried 

until they produce a guided mode with the required propagation constant. For either the TE 

or TM polarisations it is possible to find a refractive index at any reasonable thickness that 

will produce a guided mode with the required propagation constant. It is therefore possible 

to produce a curve of potential thickness and refractive index values suitable for each po­

larisation. The basis of dual polarisation interferometry is that it allows the curves for both 

polarisations to be plotted simultaneously as shown in Fig. 2.9a. The crossing point indicates 

the position at which a unique thickness and refractive index combination can be obtained. 

The results will then be consistent for both polarisations. 

Two polarisation curve plotting is both computationally expensive and also unneces­

sary for the location of a crossing point. A Monte Carlo type approach was adopted that 

allowed for the more efficient and rapid location of crossing points. If Fig 2.9b is examined 

it may be seen that to the left of the crossing point the TM mode curve is above the TE, and 

after crossing the situation is obviously reversed. The solution algorithm implemented made 

use of a repeated narrowing of the thickness range that a unique solution could exist in. A 

random thickness value was selected, within the allowed range, and the TE and TM refrac­

tive index solutions found for this thickness. The solutions were then compared to those at 

the range limits to determine whether the unique solution was at a higher or lower thickness. 

This allowed the limits to be repeatedly redefined until they differed by an amount equal to 

the required sensitivity of the final solution. 

2.8 Chip Design 

The Young's fringe method described in Section 2.5.3 allows phase differences to be 

calculated between the upper and lower guides provided that the structure supports only two 

allowed modes; one with an intensity peak in the upper guide and the other with a peak in 

the lower guide. The waveguide structure used in dual wavelength interferometry is a chip 

produced by Plasma Enhanced Chemical Vapour Deposition (PECVD) [88,89]. The method 

produces silicon oxi-nitride layers deposited on a silicon substrate to form the required multi­

layer slab waveguide structure detailed by Table 2.1. The corresponding electric field profiles 

for the two TE modes of this structure are shown in Fig. 2.10. 
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Figure 2.9: TE and TM solution curves, showing allowed deposited layer configu­
rations for a specific fixed propagation constant (a). The TE curve is shown in black 
and the TM curve in red. The lower graph (b) is a magnified section allowing the 
crossing point to be seen more clearly. 

35 



Chapter 2. Dual Polarisation Interferometry 

Layer Thickness (J-Lm) 
Lower 

1 2.0 
2 1.0 
3 3.0 
4 1.0 

Upper 

Refractive Index 
1.485 
1.485 
1.520 
1.470 
1.520 
1.333 

2.8. Chip Design 

Table 2.1: Optogeometrical parameters for the base waveguide chip structure. 

Phase changes detected by the interferometer method correspond to changes in the 

phase difference between the upper and lower modes due to a sensing event. If D.{3 is the 

difference in propagation constants for the two modes present in the waveguide structure at 

an initial time, i, and final time, f, then the phase change measured, D.¢, is given by: 

D.¢ L ( D.f3' - D.f3i) 

- L (!3~ - {3~) - L (!3{ - !3t) (2.51) 

where L is the active chip length. Fig. 2.10 demonstrates that the electric field intensity 

for the lower guide mode has decayed to a negligible value at the upper chip surface, the 

sensing surface. This means that the propagation constant for the lower mode does not 

change between the initial and final situations ({3{ = f3D. Hence, the phase change difference 

detected by the interferometer will effectively be solely dependent on the phase change of 

the upper guide mode: 

( 
I i) D.¢= L {32 - {32 (2.52) 

The TM modes are of similar appearance. 

Since the initial propagation constant can be calculated for the defined chip structure the 

detected phase change can be used to calculate the propagation constant of the upper guide 

mode after a sensing event. The propagation constants for both polarisations can then be used 

to find the unique thickness and refractive index solution for the additional layer deposited 

between the initial and final propagation constants. 
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Figure 2.10: Electric field profiles for the two TE modes in the structure described 
by Table 2.10. The red curve indicates the lower guide mode and the black curve 
the upper guide mode. 
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Figure 2.11: The 4 layer chip formed by PECVD with a fluid region above the 
structure; occupied in this instance by water. 
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Layer Thickness (J..Lm) Refractive Index 
1 ± 0.100 ± 0.005 
2 ± 0.050 ± 0.005 
3 ± 0.100 ± 0.002 
4 ± 0.025 ± 0.002 

Table 2.2: Variations in the optogeometrical parameters of the chip structure which 
are permitted by the manufacturing tolerances. 

2.9 Manufacturing Tolerances 

In the discussion thus far the only uncertainties in the calculation have lain with the 

optogeometrical parameters of the deposited layer. The layers forming the basic waveguide 

structure itself have been assumed to possess well defined optogeometrical parameters. Fluc­

tuations inherent in the fabrication process of any real structure will lead to individual layer 

thicknesses and refractive indices that contain some degree of uncertainty. The usual way 

to quantify this uncertainty is for a manufacturer to quote the layer optogeometrical param­

eters as accurate to within some tolerance. The highly sensitive nature of the waveguide 

interferometer arrangement to the refractive index and thickness of a deposited layer make it 

conceivable that variations in the base structure, due to manufacturing tolerances, will signif­

icantly reduce the effectiveness of the device for characterising thin films. The base structure 

is used in both calculating the absolute propagation constant of the upper guide mode, prior 

to the resolution of the deposited film; and for calculating the optogeometrical parameters 

of the deposited layer. This section presents the results of a theoretical study which was 

undertaken to investigate the effect of manufacturing tolerances on the ability of the device 

to resolve the properties of thin films. Discussion of the results is included with suggestions 

to alleviate the effect of manufacturing tolerances. 

2.9.1 Chip Structure 

The intended, or ideal, base waveguide structure was defined in Table 2.1. It consisted 

of 4 silicon-oxi-nitride layers with different refractive indices and thicknesses. The micro­

electronics fabrication technique of PECVD [88, 89] provides a base waveguide structure 

defined to within quoted manufacturing tolerances. These are given in Table 2.2. 
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2.9.2 Approach 

A two stage approach was adopted for investigating the effect of manufacturing toler­

ances on the the ability of the dual polarisation technique to resolve deposited layers using 

only the estimate of the base structure provided by the ideal structure. The transfer matrix 

method, implemented in Section 2.6, allows the propagation constants of guided modes to 

be calculated for any well defined one-dimensional structure. The first stage of the method 

made use of this feature; the theoretical phase changes were calculated for a particular well 

defined deposited layer on a structure that differed from the ideal structure. The second stage 

of the method calculated the refractive index and thickness of the deposited layer using the 

idealised structure, combined with the theoretical phase changes calculated in the first stage. 

By this method discrepancies between actual deposited layers and resolved deposited layers, 

due to the use of an estimate of the base structure, were investigated. 

Deposited layers within the thickness range of 1 to 100 nm, and refractive indices 

within the range of 1.34 to 1.45 were investigated. When dual polarisation interferometry 

is used for characterising thin biological films the deposited layers are expected to possess 

a refractive index of the order of 1.4 or above, and thicknesses of below 20 nm. Hence, 

the chosen optogeometrical range for investigation was expected to adequately cover such 

layers. 

Fig. 2.10 indicates that the largest proportion of the upper, sensing mode field intensity 

is contained within the upper guide, layer 4. Correspondingly the manufacturing tolerances 

for this particular layer were anticipated to be the most influential on the ability of the dual 

polarisation interferometry technique to resolve deposited layers accurately. For this reason 

layer 4 was singled out for for individual consideration, in the first instance, prior to the 

consideration of the overall structure. 

2.9.3 Results 

Layer 4 Tolerances 

Low Refractive Index Film 

The type of deposited layer anticipated to be the most sensitive to the manufacturing 

tolerances was a layer with a refractive index slightly above that of the fluid region. A high 
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Figure 2.12: Effect of layer 4 manufacturing tolerances on a low refractive index 
(n = 1.34) film with a variety of thicknesses (actual). The graphs show the resolved 
(calculated) thicknesses with red lines indicating the upper limit, green lines the 
lower limit and black lines the original structure. The left-hand column shows actual 
values and the right-hand column percentage discrepancies. The top figures (a) are 
for the thickness tolerance, the middle (b) for the refractive index tolerance and the 
lower (c) for a combined refractive index and thickness tolerance. 
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sensitivity for low refractive index layers was anticipated due to the relatively large width 

of a low refractive index layer required to significantly alter the effective refractive index of 

the upper guide mode. The results presented in this section are for deposited layers with a 

refractive index of 1.34 and a variety of thicknesses. 

The first set of results, Fig 2.12a, show the variation in the thickness of the resolved 

layer in response to variations in the thickness of the upper guide layer. The thickness of the 

deposited layer was found to be reasonably resilient to these upper guide thickness variations. 

The low thickness deposited layers (below 20 nm) varied by less than 12% from their actual 

value and the thickest (100 nm) films varied by less than 18%. The results show that an 

overestimate of the upper guide thickness results in a thicker resolved layer to compensate 

for this. The overestimate increases the proportion of the field profile in the high index 

region and increasing the thickness of the deposited layer reduces the field intensity in the 

high refractive index region to cancel the effect on the propagation constant. For the same 

reason, the underestimated upper guide thickness caused an underestimate of the deposited 

layer thickness. 

Refractive index variation in the upper guide, shown in Fig. 2.12b, was found to be 

the most significant factor affecting the accuracy of the resolved layer thickness value. The 

resolution of even low thickness films had an error of 75% and the thickest films had a 

discrepancy in the region of 250%. This has possible implications if improved fabrication 

methods are available in the future. An improved fabrication possess might allow the man­

ufacturing tolerances to be tightened. The results given here indicate that the most critical 

tolerance is the refractive index tolerance, and accordingly a reduction in the uncertainty of 

the refractive index would have the greatest influence on the accuracy of the technique at 

resolving deposited layers. In physical terms, an upper guide at the lower tolerance limit 

would reduce the resolved thickness of the deposited layer. The lower limit would mean 

an overestimate of the refractive index of the upper guide was made. This would require 

more material with an index above that of the background fluid in order to raise the average 

refractive index of the upper guide mode. 

The combination of both the thickness and refractive index tolerances are shown in 

Fig 2.12c. The maximum thickness limit and the minimum refractive index limit, and vice­

versa, have been paired to create a 'worst case' scenario for the layer 4 tolerance effects. 
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The figure demonstrates that the accuracy of the device has been greatly reduced by the 

manufacturing tolerances, particularly for the thicker deposited layers; where resolved layer 

thicknesses differed from their ideal values by the order of 1000%. The utility of the device 

was already brought into question, even without the tolerances of the remaining three layers 

being considered. The high sensitivity of the thicker films to the tolerances is due to the 

rapidity of the decay of the evanescent field. The rapid decay reduces the influence that 

material a significant distance from the sensing surface has on the propagation constant of 

the upper guided mode. 

It is of interest to further investigate the effects that tighter manufacturing tolerances 

might have on these results. Figure 2.13 shows 1 nm, 50 nm and 100 nm deposited layers re­

solved for a variety of thicknesses and refractive indices of the upper guide. The variation in 

resolved layer thickness due to upper guide thickness shows only slight curvature, indicating 

that discrepancies in resolved thicknesses are approximately proportional to fluctuations in 

the upper guide thickness. However, the upper guide refractive index graph shows noticeably 

more curvature. This highlights the problem that the thickness of resolved layers is highly 

dependent on the refractive index of the upper guide. The shape of the curve shows severe 

discrepancies occurring between the resolved layer and the actual layer due to the upper 

guide thickness being above that estimated. The 1 nm curve shows an irregular appearance 

which is attributable to the convergence of the resolving algorithm. The algorithm resolves 

thicknesses to 0.01 nm which produces the noticeable percentage variations from a smooth 

curve for very thin films. 

High Refractive Index Film 

Films of a high refractive index (n = 1.45) were expected to show greater resilience to 

the upper guide manufacturing tolerances. Small variations in the width of a high refractive 

index layer will have a greater influence on the effective refractive index of the upper guide 

mode. Structures within the upper guide thickness tolerance limits led to a deviation of the 

resolved layer thickness of less than 7% from the actual value (Fig 2.14a). The refractive 

index variations, shown in Fig 2.14b, were also much lower than for a low refractive index 

deposited layer; the largest deviations seen differed from the ideal values by less than 5%. 

The combined effect of both upper guide manufacturing tolerances, shown in Fig 2.15c, was 

seen to introduce an error of at most 12% in resolved thickness value. Such resilience to 

42 



Chapter 2. Dual Polarisation Interferometry 2.9. Manufacturing Tolerances 

20.---.---.---,---.--~---.----.---.---.---~ 

-20L---~--~--~---L--~--~----L---~--~--~ 
0.98 0.99 1 1.01 1.02 

Layer Thickness (~J.m) 

(a) 

300.---~----,----,----.----~----~--~~---, 

200 

1.519 1.52 
Refractive Index 

(b) 

1.521 1.522 

Figure 2.13: The effect of a variation in layer4 thickness (a) and refractive index (b) 
on 1 nm (green), 50 nm (blue) and 100 nm (red) deposited layers with a refractive 
index of 1.34. 
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Figure 2.14: The effect of layer 4 manufacturing tolerances on a high refractive 
index (n = 1.45) film of a variety of thicknesses. The upper tolerance limits are 
indicated by red lines and lower limits by green lines. The black lines are for the 
original structure. The left-hand column shows actual values and the right-hand 
column percentage discrepancies. The top figures (a) are for the thickness tolerance, 
the middle (b) for the refractive index tolerance and the lower (c) for a combined 
refractive index and thickness tolerance. 
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the manufacturing tolerances for high index films is particularly relevant for protein analy­

sis with typical refractive indices anticipated to be closer to the high refractive index film 

situation than the low refractive index one. 

Total Structure 

In addition to the layer 4 tolerances, the other base waveguide structure layers may also 

influence the accuracy of the resolution of deposited layers. Table 2.3 shows the effect of the 

manufacturing tolerance limits of layers 2 and 3 on a 100 nm film of n = 1.45. The influence 

of the lower layer manufacturing tolerances was anticipated to be much less significant than 

the upper guide tolerances. This was born out by the results, Layer 3 was seen to exert some 

influence on the resolved layer but layers below Layer 3 were calculated to have a negligible 

effect on the resolved layer thickness. 

Combining the tolerances of layers 3 and 4 allowed a 'worst case' structure to be found. 

This was used to investigate the discrepancies in resolved refractive indices and thicknesses 

due to the total effect of the combined manufacturing tolerances. Fig. 2.15a shows that the 

discrepancies for the resolved thickness are highly refractive index dependent. The higher 

refractive index deposited films showed a much greater resilience than the very low refractive 

index films did to the overall manufacturing tolerances. If a 50% limit was place on the 

acceptable thickness error then films with a refractive index of greater than 1.37 could be 

resolved for any thickness up to the 100 nm limit. 

Refractive Index Resolution 

The variations in resolved refractive index are surprisingly resilient to manufacturing 

tolerances, in percentage terms. The results shown in Fig. 2.15b are for the worst case 

structure. The greatest variation seen was for the thinnest films and even then it was only 

of the order of 0.4%, or 0.06 in actual terms. The convergence limit of O.Olnm creates 

some noise on the 1 nm film curve. The limit could simply have been reduced to produce a 

smoother curve. However, it was felt it was important to use the same level of convergence 

in the study as the final algorithm used. 
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Combined Layer 3 and Layer 4 

Layer 3 Layer 3 
Refractive Index Thickness Resolved Thickness (nm) 

max min 115.9 
max max 107.9 
min max 107.9 
min min 115.9 

Combined Layer 2 and Layer 3 and Layer 4 

Layer 2 Layer 2 
Refractive Index Thickness Resolved Thickness (nm) 

max min 115.9 
max max 115.9 
min max 115.9 
min min 115.9 

Table 2.3: Lower layer tolerance effects on the resolved thickness of a 100 nm 
(n = 1.45) deposited layer. 

2.9.4 Discussion 

The study showed that the effect of the manufacturing tolerances on a biological film 

with a refractive index greater than 1.4 could be resolved with an error of less than 25% on 

the thickness value and 0.4% on the refractive index value. However, this is not acceptable 

given the high level of accuracy anticipated for the dual interferometry technique. 

Whilst manufacturing tolerances are unavoidable, it is possible to reduce the effect of 

these tolerances on the calculation of the refractive index and thickness of a deposited layer. 

The transfer matrix method implemented for resolving the thickness and refractive index of 

an unknown layer uses two pieces of information, the TE and TM mode proportion constants, 

to fix the two optogeometrical parameters of the unknown layer. A similar approach can be 

used to calibrate the top guide by running the device without a deposited layer but with two 

known refractive index semi-infinite layers. The change from one known refractive index 

fluid to another above the device provides enough information to define the optogeometrical 

parameters of the upper guide. In this manner a form of calibration of the base chip structure 

can be achieved. Consequently, the dependence on chip manufacturing tolerances can be 
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alleviated to a great extent. 

2el0 Verification of technique 

The transfer matrix theory, based on Maxwell's equations, utilises assumptions that 

differ from the actual protein detection situation. Protein molecules will be of differing 

shapes and be deposited in a manner that may not provide a uniform isotropic coverage and 

planar interfaces. The validity of the relatively simple theoretical method can only be jus­

tified through the comparison of dual polarisation interferometry experimental results with 

those obtained by alternative methods for similar, on preferably identical systems. This sec­

tion compares experimental results analysed using the dual polarisation interferometry tech­

nique with those available in the literature for similar systems. The findings are taken from 

reference [56] for two protein systems: the absorption of NHS-LC-Biotin and streptavidin 

molecules and that of anti-human serum albumin (anti-HSA). 

Streptavidin [90] is a protein isolated from the bacterium streptomyces avidinii which 

is often used to detect biotin in tissue due to their high affinity to each other. Studies have 

been conducted on the streptavidinlbiotin system as it is felt if the interactions responsible for 

this tight binding could be understood it might lead to an understanding of similar systems. 

Anti-human serium albumin is an antibody. Antibodies are normally produced in im­

mune systems and seek out harmful cells, viruses and other organisms before bonding onto 

them. It will readily bond to bis(sulphosuccinimydyl) suberate, BS3 molecules. 

2.10.1 Instrument Details 

The dual polarisation interferometry results were taken using an instrument known as 

the Analight Bio200, shown in Fig. 2.16. The device uses a sensor chip with a 4 layer 

structure as shown in Fig. 2.5 to create the two optical paths. The chip is clamped in a 

temperature controlled housing allowing the temperature to be set with less than lmK varia­

tions. The chip clamping system is also designed to provide the fluidic interface to the sensor 

surface allowing different fluids to be passed over the chip surface. The actual dimensions 

of the chip are of the order of 5 mm by 20 mm. Light was provided by a helium neon laser 

(632 nm) which was coupled to the chip through the use of a Powell lens. 

48 



Chapter 2. .Dual Polarisation Interferometry 2.10. Verification of technique 

The two polarisations were selected by a ferroelectric liquid crystal half-wave plate 

that oscillated at 50 Hz, controlled by a digital signal processing (DSP) chip. After travers­

ing the chip length the emergent light forms an interference pattern that was detected by a 

1024x1024 element imaging device, located 6 mm from the output face of the chip. Infor­

mation from the photo-detector was sent to the DSP to allow the relative phase position to 

be calculated every 20 ms. The relative phase changes could then be supplied to a personal 

computer where the transfer matrix method was used to resolve the refractive index and 

thickness of additional layers above the chip structure. 

2.10.2 Biotinlstreptavidin 

Before data was taken the upper guide layer was calibrated using the method described 

in section (2.9.4) as a method for alleviating the manufacturing tolerance effects. The fluid 

system was then used to pass a buffer solution over the chip to give a stable starting point for 

the experiment. Into this buffer solution 2 mg/ml of sulpho-NHS-LC-biotin was added and 

flow continued to allow bonding with the aminated sensing surface to occur. The molecule 

is known to be 2.24 nm in length but is only expected to show a surface increase of around 

0.5 nm due to the flexible manner in which the molecule bonds [56]. The phase change re­

sults using dual polarisation interferometry gave a resolved thickness of 0.46nm which was 

considered acceptable. The test part of the experiment was then to pass streptavidin at 40 

J.Lg/ml over the sulpho-NHS-biotin layer and examine the results after washing with buffer 

solution. Streptavidin is a highly rigid molecule allowing for comparison with results ob­

tained by alternative techniques. The results from dual polarisation interferometry produced 

an average layer thickness of 6.1 nm. This is comparable with literature values [91, 92] for 

solved structures placing the typical short axis of a avidin at 5.6 nm and an alternative op­

tical technique placing thickness increases in the region of 4.2-5.8 nm. Neutron data also 

exists [93] which places a streptavidin layer thickness at 4.4 nm±0.2 nm and x-ray crystal­

lography data gives it as 4.8nm [91, 92], slightly below the value seen for DPI. Cross et al. 

offered the following two possible explanations for the slightly high thicknesses seen using 

dual polarisation interferometry. Firstly, it is known that an additional water layer [94, 95] 

may form between the biotin and streptavidin layers, and secondly the layers will contain 

some flexibility giving disorder compared to the rigid highly immobilised structures used for 
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Figure 2.16: Top (a) schematic of the experimental arrangement. Bottom (b) a 
photograph of the physical embodiment of the apparatus. 
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x-ray and neutron experiments. 

This experiment laid a BS3 layer on the aminated chip surface which was calculated to 

be 0.4 nm thick, compared to literature values which give BS3 a 1.14 nm spacer [96]. This led 

Cross et al. to believe the layer lacked the regular order necessary to give molecules extended 

perpendicular to the surface. When anti-HSA was introduced it gave a layer thickness of 

5.0 nm which is low compared to literature values of 6 nm [97]. However, they also used 

the resolved refractive index to calculate that their layer had an average density of 0.366 

g/cm, implying that only half the sensor area was covered by the anti-HSA. This brings 

into question the homogeneity assumption made in section 2.6.1 for this particular system. 

However, the value is still reasonable compared to literature values, especially considering 

the flexible nature of the molecules which may have meant that the bound antibody was 

disorientated. 

2.10.4 DiscllllssimJl 

The dual polarisation interferometry technique provided results that generally appeared 

consistent with those of other techniques. Particularly good agreement was seen for the 

streptavidin experiment due to the relatively rigid nature of the protein. Dual polarisation 

interferometry was seen to be a complementary technique to x-ray and neutron methods. 

The other methods may provide molecular structures with high precision but this is without 

the laboratory based in vivo benefits that dual polarisation interferometry can provide. 

2Jll ConcRusions and Future Work 

A new biosensor technique has been presented which assists with the characterisation 

of thin biological films. The technique is based on the use of a waveguide interferometer 

with both TE and TM incident light polarisations to produce a single refractive index and 

thickness value for a deposited film. The resolution of the phase change data produced by 

the interferometer into refractive index and thickness values for a deposited film is based 

on the theoretical methods presented here. The theoretical methods are reliant on a well 
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defined base waveguide structure. Variations in the base structure due to manufacturing 

tolerances were shown to severely effect the accuracy of the method. A calibration method 

was suggested that would allow for the alleviation of such effects. Additionally, experimental 

work was discussed that compared the results of dual polarisation interferometry with results 

from other methods. 

Whilst the technique described is still in its infancy; promise has been shown for the 

dual polarisation approach to become a well established biosensor technique. The work pre­

sented here shows that the relatively simple theoretical methods outlined in this chapter allow 

the accurate characterisation of thin films. There is scope for future work to consider more 

complex theoretical techniques, perhaps for resolving birefringent layers. More complex 

techniques would require more information to be known about a deposited layer, perhaps 

through the use of dual wavelengths in addition to dual polarisations. 

52 



Chapter 3 

Diode Laser Tracking 

3.1 Introduction 

The previous chapter considered one-dimensional photonic structures and their use in 

a novel biosensor application. The application used a dual slab waveguide interferometer 

arrangement to examine modifications to the overall waveguide structure. In this chapter a 

similar slab waveguide interferometer arrangement is investigated for a telecommunications 

application. 

In addition to a sensitivity to the guiding structure, the waveguide interferometer ar­

rangement also possesses a high sensitivity to the wavelength of the incident light. Con­

sequently the arrangement may provide a means for detecting fluctuations in the incident 

wavelength. The ability to track incident wavelength deviation from some initial value has 

a potential application in the telecommunications industry. Optical telecommunication net­

works are reliant on the output of semiconductor laser diodes to transmit the light carrying 

information over the networks. In such a situation fluctuations in the output wavelength of 

the transmitters is undesirable due to the detrimental effect it may have on the faithful trans­

mission of voice or data traffic. The quantitative tracking of wavelength fluctuations in the 

output of the diode lasers could form one of the fundamental elements in a feedback system. 

Specific information on the wavelength fluctuations would allow corrections to be applied to 

the laser to compensate for any variations. Thus, the output wavelength of the laser could 

effectively be locked to its original intended value. 
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In this chapter a theoretical investigation is undertaken to determine the sensitivity of 

the slab waveguide interferometry approach to incident wavelength fluctuations. If correc­

tions are to be properly applied to the laser then other effects which may cause similar re­

sponses in the interferometer need to be considered; responses due to wavelength variations 

need to be distinguishable from those due to other effects. As an example, ambient temper­

ature fluctuations will cause variations in the optogeometrical properties of the waveguide 

structure, which may create interferometer responses indistinguishable from wavelength ef­

fects. If an interferometer design is to possess a high wavelength sensitivity then the effect 

of optogeometrical variations in the waveguide structure must either be absent, or at least 

minimised to avoid overwhelming the wavelength effects. 

The possibility of an optimised athermal waveguide structure is considered in this 

chapter. Athermal structure design represents an approach for limiting the effect which am­

bient temperature fluctuations may have on the wavelength sensitivity of the arrangement. 

The potential advantages of such an athermal approach over the basic dual slab waveguide 

approach [56] are discussed. The work presented forms part of the research currently be­

ing undertaken towards the realisation of the Picolock wavelength monitoring system under 

development by Farfield Photonics Ltd. 

3.2 Telecommunications Background 

3.2.1 Dense Wavelength Division Multiplexing 

During the last 15 years a technology known as Dense Wavelength Division Multiplex­

ing (DWDM) has been making an increasingly significant contribution to optical telecom­

munications networks [98, 99]. Optical networks use a technique known as Pulse Code 

Modulation (PCM) [100] to enable the use of light to send digital information along low 

loss optical fibres. The capacity of an optical fibre to carry information is referred to as the 

bandwidth of the fibre and is measured in terms of the number of bits of information which 

can be sent along the fibre in a specific unit of time. The International Telecommunications 

Union (ITU) has produced a set of industry-wide standards which define the bandwidths for 

standard single wavelength optical fibre systems; these are shown in Table 3.1. 

Single wavelength systems use the technique of time division multiplexing (TDM) to 
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SO NET SDH Bandwidth (Mb/s) Channels 
OC-1 51.84 672 
OC-3 STM-1 155.52 2,016 
OC-12 STM-4 622.08 8,064 
OC-48 STM-16 2,488.32 32,256 
OC-192 STM-64 9,953.28 129,024 

Table 3.1: ITU standards for single fibre bandwidths [100]. The Synchronous Op­
tical Network (SONET) and Synchronous Digital Hierarchy (SDH) codes for the 
varying standards are also shown. 

enable different information signals, or channels, to be simultaneously transmitted. Current 

communication systems tend to operate at the STM-16 level with a bandwidth of 2.5 Gb/s, 

supplying of the order of 32,000 simultaneous voice channels. The fundamental principle 

of DWDM techniques is the combination of different wavelengths of light, each carrying 

different information signals, within the same optical fibre. In this manner several virtual 

fibres may be created within the single physical fibre. The technique allows for greatly 

increased data rates within the fibre, thus reducing the number of fibres necessary to carry 

an equivalent quantity of traffic. This is highly attractive for telecommunications network 

operators as it offers significant cost savings over conventional approaches for equivalent 

quantities of traffic. Equally importantly, it also provides the flexibility and scalability to 

increase network capacity without the laying of additional fibre. DWDM is expected to 

grow into a central technology for optical networks in the near future. 

The ITU have an agreed set of wavelength transmission bands which give the oper­

ating frequencies to which specific optical systems should conform. The wavelength band 

in the most widespread use in current communications networks is the C-band, which en­

compasses the wavelength region from 1525 to 1562 nm. The C-band is 37 nm wide, which 

means that currently developed wavelength division systems, which utilise wavelengths dif­

ferentiated by 1.6 nm (200 GHz) or 0.8 nm (100 Ghz), may transmit 23 or 46 different 

simultaneous wavelength channels. Future demand for additional bandwidth capacity in the 

optical networks is likely to bring the wavelength divisions closer together, to 0.4 nm (50 

GHz) or lower. The increase in available bandwidth from the use of DWDM techniques is 

extremely significant. For example, a 0.4 nm system would be capable of transmitting 92 

different wavelengths simultaneously in a single fibre, producing bandwidths of the order of 
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200 Gb/s. 

To operate without the mixing of separate information signals, known as cross-talk, 

DWDM systems are highly reliant on the wavelength stability of the semiconductor diode 

lasers which are used to transmit the signals. Semiconductor diode lasers are essentially the 

only practical laser for optical communications networks as they uniquely provide small size, 

low cost devices which are capable of being modulated at the gigahertz speeds necessary for 

PCM [101]. 

3.2.2 Diode Lasers 

The physics of semiconductor diode lasers [101-105] is an extension of the standard p­

n junction theory. When p and n type semiconductors are brought together a p-n junction is 

created and the diffusion of electrons and holes occurs to create a charge build up. The p-side 

becomes negatively charged and the n side positively charged, thus discouraging any further 

motion of the free carriers. The recombination of the free electrons and holes occurs around 

the junction interface thereby creating a depletion region. In the depletion region bending 

of the valence and conduction bands occurs to allow the fermi level to remain constant. For 

lasing to occur population inversion is required and the number of electrons in the lower 

part of the conduction band must be greater than the number in the upper part of the valence 

band. This situation may be created by using strongly doped p-type and n-type materials 

and applying a strong enough bias that the number of holes on the p-side is large and the 

number of electrons on the n-side is also high. The depletion region would then have a lack 

of electrons in the valence band and a surplus in the conduction band, producing the required 

population inversion. To achieve this type of arrangement with a single p-n junction a large 

threshold current would usually be required. The threshold current may be greatly reduced 

through the use of the double hetrostructure design present in most modem diode lasers. 

3.2.3 Double Hetrostructures 

The double hetrostructure arrangement, shown in Fig 3.1, allows population inversion 

in the depletion region to be produced at a much lower threshold current than is possible with 

a simple p-n junction. Three materials are used to form the double hetrostructure arrange­

ment, with the middle layer forming the depletion region. The middle material possesses a 
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Figure 3.1: A double hetrostructure semiconductor laser consisting of three differ­
ent materials. The structure is shown unbiased (a) and with a forward bias (b). The 
solid black lines indicate the conduction and valence bands and the dashed line, in 
(a), the fermi level. 

reduced band-gap compared to the outer two materials, allowing it to be filled with electrons 

and holes with relative ease. This arrangement facilitates population inversion at a greatly 

reduced threshold current. Additionally, the use of a low band-gap material, between the two 

high band-gap materials, narrows the depletion region to the width of the layer by limiting 

diffusion. This increases the free carrier density in the depletion region, again assisting with 

population inversion. A further benefit of the three layer design is that the refractive index 

of the central region may be greater than that of the layers on either side. This assists with 

the confinement of light to the active region of the laser arrangement, thus increasing gain. 

It is worth noting that spikes occur in the conduction and valence bands due to the alignment 

of the fermi level across the double hetrostructure. The spikes act to slightly increase the 

energy requirement for carrier motion. However, under a forward bias the carriers will have 

sufficient energy to tunnel through the spikes and enter the central layer [106]. 

In optical communications networks the most commonly utilised alloy system for the 

active layer of a double hetrostructure is InGaAsP. This is due to the alloy system providing 

a band-gap with wavelengths which may be adjusted to fall within the absorption minimum 

of optical fibres. The exact emission wavelength is dependent on the band-gap of the active 

region. It is the recombination of electrons and holes in this region which produces the 

laser output. In addition to the alloy system the band-gap will also be influenced by external 

factors such as the operating temperature and any applied electric field. 
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(a) 

(b) 

Figure 3.2: A schematic showing (a) the distributed feedback (DFB) laser arrange­
ment normally used in DWDM systems and (b) the end reflector type approach, 
used in a distributed Bragg reflector (DBR) configuration. 

3.2.4 Distributed Feedback Lasers 

The type of lasers most frequently used for DWDM application are known as dis­

tributed feedback (DFB) lasers. Confinement to the laser cavity occurs through the periodic 

refractive index modulation distributed throughout the cavity length, as shown in Fig 3.2a. 

The periodicity acts to diffract waves propagating in the cavity, confining only those of a 

particular wavelength to the active region. Traditional laser designs use reflectors placed at 

both ends of the laser cavity, shown in Fig 3.2b, to produce confinement. The DFB laser 

arrangement is intended to provide gain for a single wavelength only. However, the tempera­

ture dependence of the refractive index contrast is responsible for a temperature dependence 

in the gain wavelength. 

Optical networks generally make use of DFB lasers designed to operate at a single 

wavelength. The use of multiple wavelengths by DWDM networks requires multiple laser 

diodes at very specific wavelengths. Such laser arrangements were heavily researched in the 

1980s but only became viable in the 1990s when InP based optoelectronic integrated circuits 

were developed [100, 107]. If a 50 GHz line spacing is enforced, the fixed laser solution 

requires a 180 laser array per fibre, due to the requirement that each of the 90 main lasers has 

a backup in case of failure. Each individual laser is required to maintain its output within the 

narrow wavelength channel spacings required for DWDM. 
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3.2.5 Stability 

Single wavelength DFB lasers are tuned to their operating wavelength at the factory 

and are required to maintain the wavelength over the expected lifetime of the system, which 

is about 30 years [108]. There are a number of possible causes for the wavelength of a diode 

laser to deviate from its intended wavelength. These include thermal effects, changes in the 

driving current and also, on a longer timescale, the possibility of ageing effects. 

Initial reports suggested that factory tuning would be sufficient for wavelength stability 

and no appreciable degradation in wavelength would occur over time [109]. However, diode 

laser devices are highly stressed in terms of the optical field strengths and current densities 

that exist in the structures. It was later recognised that ageing effects were significant and 

lead to a gradual degradation in their operating characteristics [110]. Whilst the majority of 

the individual processes responsible for this degradation with time have been identified and 

removed from the system, the possibility still remains for the output wavelength of a laser to 

vary with ageing. 

Given the possibility of wavelength deviation from the intended value there is a need 

for some external means of tracking the output wavelength of diode lasers. The tracking 

of wavelength fluctuations, irrespective of their origin, would permit electrical or thermal 

feedback to be supplied to the laser to stabilise its operating wavelength. 

3.2.6 Stabilisation Systems 

The wavelength locking of DFB lasers is deemed to be a key issue in DWDM net­

works and currently forms an active area of research. The research has generated a variety of 

different methods which potentially offer improvements in the wavelength stability of diode 

lasers. These include devices based on fibre Bragg gratings [194], arrayed waveguide grat­

ings (AWGs) [112], ring resonators and the most popular, Fabry-perot etalons [113, 114]. 

Despite the seemingly adequate range of approaches currently available, the spectrum of de­

vices may not represent the most convenient or cost effective solution possible. A waveguide 

interferometry approach would allow for the integration of the feedback device at wafer level 

when the diode laser is fabricated. The advantages of this would be both a reduction in the 

manufacturing costs and an ability to perform wafer level component testing. Wafer level 

component testing is preferential to package level testing as it allows for increased yield of 
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Waveguide Diode Laser Fibre 

Detector 

Figure 3.3: Proposed waveguide interferometer arrangement. Light is simultane­
ously coupled from the diode laser to the fibre and the interferometer. A detector 
is used to examine phase changes, attributable to wavelength fluctuations, allowing 
corrections to be applied to the laser. 

the final packaged product. 

3.3 Integrated Wavelength Interferometry 

The use of waveguide interferometry for the application of tracking the output wave­

length of diode lasers was proposed in 2002 by Cross et al. [56] . The waveguide interfer­

ometer arrangement utilised by Cross et al. made use of a dual slab waveguide structure, 

similar to that described in Chapter 2. They presented promising experimental results for 

tracking wavelength fluctuations in a 635 nm source laser. The demonstrated threshold for 

the detection of wavelength fluctuations in the laser output was 6.1 pm, well below the 0.4 

nm wavelength channel spacing required for DWDM systems. Their work demonstrated 

the viability of the waveguide interferometry technique for the application of diode laser 

wavelength tracking. However, the simple two uniform guiding layer system required tight 

temperature control , to the 10 mK level, to permit the stated wavelength sensitivity threshold 

above thermal effects. 

The proposed arrangement for the integration of the waveguide interferometer and the 

diode laser, is shown in Fig. 3.3. The arrangement makes use of the knowledge that the 

laser produces light propagating in both the forward and backward directions. The forward 
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direction is coupled to the fibre for the transmission of PCM signals and the backward di­

rected light is available for the waveguide interferometer. A CCD is positioned behind the 

output end of the waveguide structure to allow for the detection of phase changes via the in­

terference pattern method (described in Chapter 2). The arrangement allows for wafer level 

integration of the waveguide structure and the laser structure. 

3A~ DesE.gn Concep~ 

Here the viability of an athermal interferometer design is investigated to alleviate the 

reliance on tight temperature controls imposed by the dual uniform guide approach. Ather­

mal waveguide structures have been proposed in the literature for different applications. The 

proposals have tended to rely on the combination of different classes of materials [115, 116]. 

Suitable combinations may have opposing thermal optogeometrical properties allowing for 

the cancellation of the thermal effects. The athermal nature of such waveguides is achieved 

through the design of structures with temperature independent values of the individual mode 

propagation constants. Such an approach is unnecessary for waveguide interferometry, as it 

is only the relative phase difference between the two propagating modes which is detected. 

The design concept utilised here permits changes in the propagation constants of both inter­

ferometer modes to occur, provided that both propagation constants change by an identical 

amount. 

The athermal structures considered here are assumed to be fabricated by the silicon­

on-oxide fabrication method. The silicon-on-oxide method limits the materials available to 

form a structure to just silicon and silicon dioxide. The choice of fabrication method was 

due to its proposal [117] in the literature for the production of wafer scale waveguides in 

integrated optoelectronic devices. For simplicity the number of layers forming the guiding 

structure was limited to 7. 

The athermal design differs from the previously proposed dual waveguide interferom­

eter design by the inclusion of an additional low index layer within the upper guide, shown 

in Fig 3.4. The fabrication of such an arrangement has been reported in the literature using 

silicon-on-oxide techniques [118]. The additional layer allows for some degree of control 

over the propagation constant of the upper mode. Temperature variations will, in general, 
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Figure 3.4: The athermal structure is similar to the dual-slab waveguide structure. 
However, the upper guide has a thin low refractive index material (grey) in the centre 
of the high refractive index (turquoise) guide. 

alter the guided mode propagation constants for the upper and lower guided modes by a 

different amount. Control of the upper guide (layers 4-6) propagation constant allows for 

thermal changes to the upper guided mode propagation constant to be matched to those of 

the lower guided mode. Purely thermal effects will then be undetectable in the phase changes 

calculated from the interference pattern. 

3.5 Theoretical Method 

The guided mode propagation constants for a well defined structure may be calculated 

through the transfer matrix method described in Chapter 2. In general the individual layers, 

which combine to form the overall waveguide interferometer structure, will possess refrac­

tive index and thickness values which are temperature-dependent. In this section the effect 

of ambient temperature fluctuations on the refractive index and thickness of individual layers 

is examined. 

3.5.1 Linear Thermal Expansion 

Temperature may be defined as a measure of the average internal kinetic energy of the 

atoms or molecules that form a crystal lattice. Anharmonic terms in the potential energy give 

a crystal an average lattice point displacement which varies with temperature. This causes 

the crystal to expand with increasing temperature. Thermal expansion of a dimension L, 

caused by a temperature change from T toT+ 8T, is usually described by the use of a linear 

thermal expansion coefficient, a, such that: 
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L (T + oT) = L(T) +a oT L (T) (3.1) 

Values for the linear thermal expansion coefficient for specific materials are available in the 

literature. The value of the coefficients for silicon and silicon dioxide are given in Table 

3.2 [119]. 

3.5.2 Refractive Index Dispersion Relations 

The variation of the refractive index of a material with temperature, at constant pres­

sure, is called the thermo-optic coefficient and denoted dn/ dT. The effect in glasses is 

attributable to the thermal variation of electronic polarisability and the thermal expansion 

of the material. Polarisability is related to the ease of distortion of the molecular electron 

clouds to an applied electric field. An expression yielding the thermo-optic coefficient was 

derived by Johnston [120] based on the phenomological calculations of Tsay et al. [121]. 

The equation derived by Johnston may be written as: 

2 dn = K2 (-3 R ~ d>..gR2) 
ndT a+>.. dT 

g 

(3.2) 

The expression is dependent on the linear thermal expansion coefficient, a, the wavelength 

of the energy gap >..9 and a material dependent constant, K. It is also dependent on the wave­

length of interest, >.., which contributes in the form of a normalised dispersive wavelength, 

R, where, 

(3.3) 

The thermo-optic coefficient expression may be simplified to provide an expression for use 

with data interpolation: 

2n ( ~;) = G R + H R
2 (3.4) 

Values for the two constants, G and H, may be calculated from the best fit with experimental 
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Material n 
3.45 
1.44 

G (X w-6 /K) H (X w-6 /K) Ag (J-L m) a (X w-6 /K) 
-86.1087 1159.2000 0.4196 2.62 
-1.9969 25.5833 0.106 0.62 

Table 3.2: Values of the relevant Si and Si02 coefficients [119, 122]. 

values. The values used here are taken from the literature [122] and are given in Table 

3.2. When considered in the centre of the C band (1543.5 nm) equation (3.4) gives a value 

for dnjdT of silicon as 1.824 x w-3 K- 1 and, similarly, the value for silicon dioxide as 

8.271 x w-6 K- 1. 

3.5.3 Modes 

The operation of the dual slab waveguide interferometer, discussed in Chapter 2, im­

posed the stipulation that the overall dual slab waveguide structure supported just two guided 

modes. This requires that the upper and lower guides both support just one symmetric mode 

each. Consequently, both individual guiding layer thicknesses must be kept below the two 

mode cut-off thickness. The cut-off thickness (teo). above which an anti-symmetric mode 

would also be present, is given by [8]: 

(3.5) 

In this expression n 2 is the refractive index of the cladding layers and n 1 is the refractive 

index of the core guiding layer. 

In the athermal structure design the lower guide, layer 2, is uniform and equation 

(3.5) gives the cut-off thickness. The upper guide, layers 4-6, has the appearance of two 

coupled symmetrical waveguides. It is widely stated that two symmetrical waveguides have 

no second mode cut-off thickness, due to coupled systems always containing at least one 

symmetric and one anti-symmetric mode. This is, however, an over generalization of the 

situation for very low guide separations. Calculations showed that the 3 layer upper guide 

could effectively operate as a single uniform guide, with a single guided mode, provided 

that the central low index layer was of sufficiently low thickness. Fig. 3.5 shows the second 

mode cut-off frequencies calculated for a range of possible thicknesses of the low index and 
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Figure 3.5: Single guided mode region for a three layer upper guide. The guide 
consists of a low refractive index central layer sandwiched between two high re­
fractive index layers of equal thickness. 

high index regions which form the three layer upper guide. The large spatial separation of 

the upper and lower guides, together with the high refractive index contrast of the fabrication 

materials, allows the two guides to be considered as separate systems for such propagation 

mode constant calculations. 

3.6 Structure Response 

For the range of possible three layer symmetric upper guide configurations shown in 

Fig 3.5 it is possible to find a thickness of the lower guide which produces an athermal 

structure. The required lower guide thickness can be found by plotting the change in the 

difference between the upper and lower guided mode propagation constants due to a 1 K 

temperature change. The results of such a calculation are shown in Fig 3.6 for an arbitrary 

upper guide configuration. It can be seen that at a particular lower guide thickness value 

the thermal response of the structure is extinguished. This implies that the upper and lower 

guided mode propagation constants have changed by an equal amount. 

The application of such an approach across the whole of the available two parameter 

space defined by Fig 3.5 allows multiple athermal structures to be found. All of the structures 

will be resilient to thermal effects and by examining the signal response of the structures an 

optimum athermal structure may be found. The signal responses were compared by calcu-

65 



Chapter 3. Diode Laser Tracking 3.6. Structure Response 

300 

200 

a ! 100 

l 0 

-100 

-200 

55 56 57 58 60 
Lower Guide Thickness (nm) 

Figure 3.6: An example plot of the change in the difference between the upper 
and lower guided mode propagation constants due to a 1 K temperature increase. 
The upper guide structure is fixed and the lower guide thickness is given by the x 
coordinate. 
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Figure 3.7: Plot of the change in the difference between the upper and lower guided 
mode propagation constants due to a 1 nm wavelength increase. The upper guide 
configuration is given by the two axes. The lower guide thickness is the required 
value for an athermal structure when combined with the specified upper guide con­
figuration. 
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Layer Material Refractive index Thickness (nm) 
Lower Si02 1.44 00 

1 Si 3.45 94.4 
2 Si02 1.44 400 
3 Si 3.45 80 
4 Si02 1.44 90 
5 Si 3.45 80 

Upper Si02 1.44 00 

Tablle 3.3: Optimised waveguide structure. 

lating the difference in the propagation constants of the two guided modes before and after a 

1 nm wavelength increase at the mid-point of the C-hand. The results are shown in Fig. 3.7 

as a contour plot. The change in difference between the two guided modes will be referred 

to as the signal response of the structure. Signal responses of between 1 and 187 m- 1 were 

calculated. The highest signal response was seen for the structure detailed in Table 3.3. 

3.6.1 Advantages 

Whilst of clear academic interest, the athermal approach needs to show performance 

advantages over the simple dual slab waveguide structure design in order to justify its in­

creased fabrication complexity in practice. Phase changes detected by the interferometer 

arrangement are due to changes in the difference between the two guided mode propaga­

tion constants, f:l(f:l(31 - f:l(32). Whilst detected phase changes may be due to wavelength 

fluctuations, referred to as the signal response, similar changes may be seen due to tem­

perature fluctuations. The temperature fluctuations limit the ability of the arrangement to 

detect distinguishable wavelength fluctuations. Consequently phase changes due to thermal 

fluctuations will be referred to as the thermal noise of the structure. 

The athermal structure designs were calculated to possess a lower signal response than 

was achievable with the additional design freedom available from a dual uniform guide ap­

proach. Fig 3.8a shows a contour plot of the signal response of the dual uniform guide 

approach for a range of possible upper and lower guide thicknesses. Comparison of this with 

Fig 3.8b allows it to be seen that structures with the highest sensitivity to wavelength fluc­

tuations also possess the highest sensitive to thermal fluctuations. For a device to be able to 

distinguish between wavelength fluctuations and thermal fluctuations it is the signal to noise 
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Figure 3.8: Signal response (a) and thermal noise (b) for a range of dual uniform 
guide structures. Note the signal responses are positive for a 1 nm increase and 
negative for a 1 K increase. 

ratio which is crucial. Provided that the signal response is above the minimum detectable 

level then the limiting factor on wavelength sensitivity is the signal to noise ratio. Responses 

detected by the interferometer can only be assured to represent genuine wavelength fluctua­

tions if they are above those achievable by thermal fluctuations. Thus a sensitivity threshold 

exists, above which wavelength fluctuations may be distinguished from ambient temperature 

fluctuations and corrections applied to the laser. 

The overall signal to noise ratio for the complete range of dual uniform guide struc­

tures varies between 0.37 and 0.45, for a 1 nm wavelength fluctuation and a 1 K thermal 

fluctuation. For temperature control to the 1 K level the device could, at best, lock wave­

lengths to within 2.2 nm. This is well above the wavelength channel separation required for 

DWDM applications, making the device unsuitable for the intended application. Recall, that 

the experimental results from Cross et al. [56] made use of 10 mK temperature control. If 

a similar regime was imposed on a silicon/silicon dioxide dual uniform guide structure then 

the reduction in the noise level would produce a signal to noise ratio of approximately 45, 

which allows for a wavelength sensitivity threshold of around 2.2 pm. 

Performance of the optimised athetmal structure at the exact athermal point must be 

limited by a factor other than thermal noise. In this instance the limiting factor would be 

the 3 mrad experimental detection threshold achievable for detectable phase changes [123]. 
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Figure 3.9: Signal to noise ratio for a dual uniform waveguide interferometer (a) 
and for an a thermal design (b). 
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With a signal response of approximately 200 m- 1/nm a 10 mm chip would have a sensitivity 

threshold of around 0.15 pm. Unfortunately, an exact athermal structure is unlikely to be 

achievable experimentally due to the requirement of a fabrication precision at the atomic 

level. However, if 1 K temperature control was exercised and the exact athermal point was 

missed by the order of 1 nm then the athermal structure would produce results similar to a 

tightly temperature controlled dual uniform waveguide structure. Fig 3.9b shows that the 

athermal structure retains a small advantage over the dual uniform waveguide design for a 

range of lower guide thicknesses around the athermal point. 

The recommendation for future devices would be a compromise between an athermal 

structure and, say, 100 mK temperature control which is easily achievable at package level. 

This would allow structures with a lower guide proximity to the athermal point of around 10 

nm to have a wavelength sensitivity threshold of approximately 5 pm. 

A plot of the electric field profile for both the modes present in the idealized athermal 

structure is shown in Fig 3.10a. The effect of the low refractive index material in the upper 

guide may be seen as a slight reduction in the field amplitude. Fig 3.10b shows the diffraction 

pattern calculated by assuming that the output edge of the structure consisted of a range of 

circular wave producing point sources. The amplitude of the point sources is being taken 

from the electric field profile for the two modes. Maxima in the interference pattern can 

be seen to move with wavelength variation. The field pattern is unsymmetrical due to the 

different field profiles for the two guided modes. Such maxima movement would allow for 

a calibration of maxima position against wavelength drift to produce the necessary data for 

laser correction. 
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Figure 3.10: The normalized electric field profiles (a) for the two guided modes 
present in the optimised athermal guide. The different colours indicate the two dif­
ferent refractive indices. A far-field diffraction pattern is also shown in (b) for a 
1 nm wavelength increase (red) and a 1 nm wavelength decrease (blue). Maxima 
movement may be seen with the wavelength change providing a means for calibra­
tion of maxima position against wavelength. 
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An athermal waveguide interferometer has been proposed for tracking fluctuations in 

the output wavelength of diode lasers. The athermal approach was investigated as a method 

of alleviating the tight temperature control required by a standard dual uniform slab waveg­

uide approach. A silicon and silicon dioxide structure designed using the standard approach 

was calculated to need 10 mK temperature control to achieve a 5 pm sensitivity to incident 

wavelength fluctuations. The athermal approach proposed here was predicted to achieve sim­

ilar performance with just 100 mK temperature control, together with the requirement that 

the lower guide thickness was within 10 nm of the athermal point. 

Future work on wavelength locking by similar methods to those considered here should 

also consider the need for inter-vendor compatibility in ITU networks. Such a requirement 

would make it necessary for the calibration of all wavelength lockers in a network against 

known standards. There is the possibility that this could be undertaken at the factory, when 

the DFB laser is assigned its frequency. However, the exact implementation of such an 

approach requires investigation. The effect of variations in refractive index and thickness, 

introduced by manufacturing tolerances, also needs consideration. Methods for alleviating 

these through calibration may be feasible. 

In conclusion, the athermal approach has demonstrated the scope to provide the nec­

essary sensitivity to wavelength fluctuations required for providing feedback to diode lasers 

at a level comparable or superior to existing technologies. The realisation of a commercially 

viable device requires further research to assess its potential. 
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Chapter 4 

Photonic Crystal Theory 

4.1 Introduction 

4.1.1 Analogy with Semiconductors 

The theoretical techniques employed for the study ofphotonic crystals [13,124] exist in 

close analogy with those applied to the theoretical study of semiconductors. It is indisputable 

that our current depth of understanding of semiconductor properties would not have been 

achieved without the assistance of well developed theoretical techniques. Theoretical studies 

are both essential to assist with the understanding of the underlying physics responsible 

for structure properties and they also provide the useful ability to study the properties of 

proposed structures without the need for expensive structure fabrication. The strength of 

theory has been particularly evident in the field of photonic crystals where, until recently, 

the field was dominated by theorists, as experimentalists struggled to realise the structures 

proposed by their theoretical colleagues. 

The standard bandstructure calculation techniques constitute key theoretical tools for 

studying semiconductors. Whilst bandstructure techniques were originally developed to aid 

with the understanding of the electrical properties of semiconductors, similar techniques are 

equally valuable in understanding the optical properties of photonic crystals. The periodic 

dielectric contrast of photonic crystals acts in a manner analogous to the periodic poten­

tials of semiconductor structures. The periodicity of these two properties produces bands 

of allowed and forbidden electron or photon energies within the appropriate structures. For 
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semiconductors, the accurate calculation of these energies is achieved through the solution of 

the quantum mechanical Schrodinger equation (see for example [125] or [6]). For photonic 

crystals it is Maxwell's equations [86] which represent the governing physics and describe 

the optical properties of such structures. The graphical representation of allowed solutions in 

specific directions within a structure is termed a 'bandstructure'. The interpretation of band­

structures may provide useful information on both the transmission and refraction properties 

of photonic crystal structures. 

4.1.2 Physical Origin of Bandstructures 

The allowed solutions which may be displayed as bandstructures are the result of scat­

tering events occurring within the photonic crystal structures. The structures contain multiple 

interfaces between materials of different refractive indices which create multiple reflections 

of the incident light. In photonic crystals the pattern of the refractive index contrast is en­

gineered to be spatially periodic, making the diffraction Bragg-like [126] in nature. This 

produces the required regions of allowed and forbidden frequencies similar to those that 

exist for electron energies in semiconductors. Accurate theoretical calculations of these al­

lowed frequencies is essential when studying the properties of photonic crystals. In this 

chapter a standard method for performing calculations of this nature is presented. Addi­

tionally, a variation on the standard bandstructure calculation method known as a 'complex 

photonic bandstructure' method is introduced. The complex bandstructure method facilitates 

the production of equi-frequency, or dispersion, surfaces [127] which are also presented in 

this chapter. The type of structures considered here are all two-dimensional photonic crystal 

structures. 

4.2 Computational Approaches 

The development of the theoretical techniques currently associated with photonic crys­

tals began soon after the realisation that periodic dielectric contrasts could permit the same 

degree of restriction over the propagation of photons that periodic potentials can provide for 

electrons. Yablonovitch [14] and John [15] introduced the idea of using photonic crystals to 

control optical properties to the physics community in 1987. Since then a variety of theoreti-
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cal techniques have been, and are continuing to be, developed for the eigen-decomposition of 

electromagnetic systems. The different methods provide a range of sophisticated approaches 

for modelling and predicting the behaviour of dielectric systems. Each of the individual 

approaches are suited to different types of systems or different types of problems [128, 129]. 

The theoretical techniques employed for the study of photonic crystals fall into four 

main broad styles of approach. The merits of the individual approaches are introduced in 

this section. A broad outline of each general approach has been provided, but within each 

approach there exists a wide range of variations in the actual implementation. Detailed 

discussion of all the variations is impossible, but references have been included to some of 

the more common implementations. 

4.2.1 Scalar Wave Approximation 

Early theoretical studies attempted to reformulate the Korringa, Kohn and Rostoker 

(KKR) method [6] of electronic structure calculation for photonic crystals. The method was 

modified for the calculation of photonic bandstructures through the use of a scalar wave ap­

proximation [130-132]. Later work [133-135] showed that such an approach could produce 

qualitatively incorrect results. The scalar wave approximation neglected the vector nature of 

electromagnetic fields. This led to the absence of important symmetry information from the 

method and consequently the calculations were found to be inadequate. Light propagates as 

electromagnetic waves and possesses a vector nature which requires full consideration for an 

accurate understanding of the physical phenomena witnessed in photonic crystals. 

4.2.2 Frequency Domain Approach 

The first approach to be developed utilising the full vector nature of electromagnetic 

waves expanded the electromagnetic fields into definite frequency states to form a complete 

basis set [133-136]. The complete set was then truncated to create a linear eigenvalue prob­

lem solvable by standard matrix methods. Such approaches are referred to as frequency 

domain methods and are akin to the nearly free electron model for semiconductors. The 

photonic crystal method is superior in its accuracy to the nearly free electron method, due to 

the absence of the electron-electron interactions which exist for electronic systems. When 

dealing with photonic crystals a larger number of states is usually included, enabling a more 
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accurate representation of the electromagnetic fields to be achieved. There are a large num­

ber of variations of frequency domain photonic crystal calculation methods in the litera­

ture [129, 130, 133, 137-147]. The main drawback of the method is that the computational 

time scales as the cube of the number of states included in the electromagnetic field expan­

sions [137]. This can make the method impractical for complex systems, although to some 

extent this can be alleviated through the use of a smoothed effective dielectric tensor [148] 

or effective medium theory [149]. 

4.2.3 Time Domain Approach 

The second approach utilising the full vector nature of electromagnetic waves was 

developed in analogy with the tight binding models for semiconductors and is referred to as 

the time domain approach. The method utilises the direct simulation of Maxwell's Equations 

over a discrete grid by finite difference time domain (FDTD) algorithms. These methods 

compute Fourier transforms of the time-varying response of the system and then analyse 

the spectrum peaks to locate the eigenvalues. Full descriptions of variations of these time 

domain methods exist in the literature [150-155]. The methods allow for the production 

of computational algorithms where the computational time scales linearly with the number 

of real space points. The high level of efficiency of these methods make them the most 

appropriate choice when performing calculations based on complex systems. 

4.2.4 Transfer Matrix Approach 

The fourth type of approach is referred to as the transfer matrix method [ 17, 156-162]. 

The method is not an eigen-decomposition technique but is of great utility for calculating 

the transmission through photonic crystal structures. The method computes a transfer matrix 

which relates the relevant electromagnetic field amplitudes at either end of a unit cell at 

a constant frequency. The derivation of an individual transfer matrix may be achieved by 

the application of finite difference, analytical or other methods. The resulting matrix is 

repeatedly applied to calculate the transmission through structures in a stepwise manner. The 

photonic crystal method makes use of a similar methodology to that applied in the previous 

two chapters for the study of multi-layer waveguides. 
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The comparative merits of the different theoretical techniques available are dependent 

on the type of problem being attempted: frequency-domain methods are often used for sim­

ple systems due to their computational efficiency and their relative simplicity of implemen­

tation; time-domain methods are more efficient for complex structures or the consideration 

of time dependent problems; whilst transfer matrix methods are appropriate to frequency de­

pendent dielectrics and situations where the structures are divisible into simple components. 

The choice of method used here is a frequency domain approach utilising a plane-wave 

expansion form for the electric and magnetic fields. The method is presented in detail in the 

following sections therefore only the justification for the method is given here. The main 

advantages of the plane-wave method are that it forms a stable and reliable algorithm for the 

calculation of allowed photonic crystal frequencies, and its simplicity and transparency with 

regard to the underlying physics make it an intuitive method. 

The appropriateness of the plane-wave method for this study was also due to its anal­

ogy with an electronic structure method which has been extended to the production of com­

plex bandstructure [163]. For the simple systems under consideration the disadvantages of 

the plane-wave method were not significant enough to outweigh the advantages. The three 

main disadvantages of standard plane-wave methods are: convergence problems for com­

plex structures; a difficulty dealing with frequency dependent dielectric constants; and the 

lack of reflection coefficients. These were not anticipated to present significant disadvan­

tages for this study as problems in convergence of the method were not expected due to the 

simple form of the structures under consideration. The dielectric constants to be dealt with 

could be assumed to be independent of frequency and the complex plane-wave bandstructure 

calculation would enable the calculation of the reflection coefficients. 

4.3.1 Coordinate System 

A consistent cartesian coordinate system is utilised for all the calculations presented 

in this chapter and throughout the remainder of the thesis. The coordinate system is defined 

in relation to the two-dimensional photonic crystals for study by the manner demonstrated 

in Fig. 4.1. The x axis is defined as the direction parallel to the direction in which there 
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X 

z 

y 

Figure 4.1: The coordinate system is defined with the x axis parallel to the direction 
of the dielectric rods and the y and z directions in the plane of the two-dimensional 
dielectric constant modulation. 

is no variation in dielectric constant, and consequently the y and z axis are defined in the 

plane of the two-dimensional dielectric constant modulation to form a standard right-handed 

coordinate system. Vectors residing in the y-z plane may be referred to as existing in an in­

plane direction. To aid with notation simplification it is convenient to define a two component 

in-plane position vector, p, as: 

P = p(y, z) (4.1) 

4.4 Maxwell's Equations 

The behaviour of photons in media can be described in full vector form by Maxwell's 

macroscopic equations of electromagnetism [86]. Maxwell's equations were introduced in 

Section 2.6.3, where they were given in their most general form by equations (2.9) to (2.12). 

The generally applicable equations may be applied to specific systems through the use of as­

sumptions based on the type of media under consideration. The system-dependent functions 

in the equations are the permittivity, c, the free charge density, p, and the conductivity, a. 

An understanding of how these terms are related to the materials of interest allows equations 

(2.9) to (2.12) to be written in a form of greater utility for the photonic crystals of interest. 
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4.4.1 Electrical Properties 

In general the permittivity involves vector and tensor terms to relate the electric dis­

placement field to the macroscopic electric field. If the permittivity is assumed to be time 

invariant then the relationship is of the form [13]: 

D = L EjEj + L XjkEjEk + O(E3
) (4.2) 

j jk 

The field strengths dealt with in this work are assumed to be of low magnitude and con­

sequently a linear regime is applicable. Furthermore, the media being dealt with are both 

macroscopic and isotropic within each individual region within the structure. The permit­

tivity may also be assumed to be a local function only; non-locality generally results from 

atomic scale processes that are below the scale of the processes of interest for photonic crys­

tals. This allows the dielectric constant to be taken as scalar and a function of only frequency 

and position: 

D(r, w) = E(r, w)E(r, w) (4.3) 

The assumption may also be made that a single frequency is appropriate to the system un­

der investigation. The permittivity of each individual material may therefore be assigned 

a constant value appropriate to the specific frequency of interest. This enables additional 

simplification through the lifting of any frequency dependence complications. For metallic 

materials the dielectric constant will be strongly dependent on frequency. For most insula­

tors though any frequency dependence is negligible across selected ranges of frequencies, 

for example the optical frequency range of interest. It should be noted that this may not be 

applicable for other frequency regimes, for example the microwave or infra-red regions may 

possess frequency dependences. 

The final assumption regarding the dielectric properties of the materials under consid­

eration is that they are low loss dielectrics. The dielectric constant will then be a purely 

real quantity with no imaginary component. The final system specific form for the dielectric 

constant is dependent on position only. It may be separated into a relative permittivity term, 

Er, and a permittivity of free space term, Eo, such that: 
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D(r) = t:(r)E(r) = t:ot:r(r)E(r) (4.4) 

The photonic crystal structures under consideration will be composed of non-conducting 

media. This means that both the electric current density, J, and the free charge density, p, 

are zero. Hence, 

4.4.2 Magnetic Properties 

p - 0 

J - 0 

(4.5) 

(4.6) 

Knowledge of the magnetic properties of the dielectric materials being considered al­

lows for similar simplification of the permeability term, fl· The term relates the magnetic flux 

density, B, to the magnetic field strength, H. Permeability may be described as the degree 

of magnetisation of a material in response to an applied magnetic field. In a linear regime it 

may be written that: 

B(r) = flrfloH(r) (4.7) 

In this expression the permeability term has been separated into a relative permeability term, 

flr, and a permeability of free space term, flo. The relative permeability for all of the materials 

under consideration will be taken as unity. This is equivalent to the assumption that all the 

materials are non-magnetic. In this situation the permeability of each individual material is 

simply that of free space, fl = flo and it may be written that H = B/ flo· 

4.4.3 Maxwell's Equations for Photonic Crystals 

The assumptions concerning both the electrical and magnetic nature of the media being 

considered allows the general form of Maxwell's equations to be written in a simplified 

form. Equations (4.8) to (4.11) show the revised form of Maxwell's equations specific to the 

photonic crystals under consideration. 
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V'·H=O 

V'·D=O 

8E 
V' X H- f- = 0 at 

4.5. Plane-wave Expansion 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

The solutions of these equations will be electromagnetic waves propagating with specific 

frequencies in specific directions. A wavevector, usually referred to as the 'photon wavevec­

tor', may be used to describe the propagation direction of a specific solution. In general 

the photon wavevector, K, at a particular frequency, may possess x, y and z components. 

For two dimensional structures it is appropriate to define a two-dimensional in-plane photon 

wavevector, k: 

kw = kw(y, z) (4.12) 

4.5 Plane-wave Expansion 

In general, the electric and magnetic field solutions of Maxwell's equations will be 

functions of both position and time. The linearity of Maxwell's equations allows the time 

dependence to be factored from the field representations. It may be written as a separate 

term involving time and frequency. In the previous section the permittivity was assumed 

to be appropriate for a single specific frequency of interest. The use of a single frequency 

approach for the solution of Maxwell's equations assists with simplification of the calcula­

tion. Using such an approach means that the electromagnetic fields are represented as single 

frequency functions, normally referred to as harmonic modes. The electromagnetic fields 

present within a photonic crystal may contain multiple frequencies and it is important to 

note that the physical fields are not restricted in any manner by adopting this representation 

for the fields. Any required solution may be assembled as a Fourier series through the use 
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of the appropriate set of single frequency harmonic modes. Here the field solutions will 

be restricted to solutions which vary harmonically with time. This is equivalent to a laser 

source which is commonly used to provided incident light. The concept of plane-waves was 

introduced in Section 2.6 and gives the following relationships, 

H and E ex e-iwt 

(4.13) 

The specific photonic crystal lattice for study is introduced solely through the permit­

tivity term in Maxwell's equations. The use of a plane-wave representation for the electric 

and magnetic fields makes it appropriate to express the permittivity as a Fourier series also. 

This allows for simplification later in the calculation due to the common complex exponen­

tial terms. 

4.5.1 Permittivity 

Bloch's theorem is a vital theorem for electronic structure calculations [125]. The 

theorem exploits the periodicity of a system to allow for the simplification of mathematical 

functions. It is applicable to any system possessing discrete translational symmetry in the 

direction of interest. The periodic dielectric modulation present in photonic crystals allows 

Bloch's theorem to be applied. The periodicity of photonic crystals allows it to be written 

that: 

E(p) =t(p+R) (4.14) 

The vector R is any linear combination of the real space primitive lattice vectors that describe 

the periodicity of the crystal lattice. The primitive lattice vectors will differ for each individ­

ual crystal lattice and the method of their calculation is shown in the appropriate following 

chapters for both the square and hexagonal lattice types. 

The final eigenvalue equation produced by the standard bandstructure method makes 

use of the quantity 1/ E(p ). This makes it appropriate to adopt a Fourier form of 1/ E(p) rather 

than E{p). It should be noted that the notation c 1 will be used to refer to 1/E, rather than 
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the matrix inverse of c written in matrix form. Clarification of the notation is required as 

alternative methods have shown that the use of the inverse matrix of c in the final eigenvalue 

equation may improve the efficiency of the standard plane-wave method [164-166]. The 

Fourier series for c 1 is composed of a summation over two-dimensional reciprocal lattice 

vectors, g: 

-1 - 1 - "'"' -1 ig·p 
c - c(p) - ~ <=g e 

g 

(4.15) 

Reciprocal lattice vectors are defined mathematically by equation (4.16), where the 

vector R is any vector connecting any two equivalent lattice points. A lattice point may be 

taken to be the centre of one of the dielectric rods in the y-z plane. For example, the centre 

of each of the circular dielectric rods shown in Fig. 4.1 could represent a lattice point. 

(4.16) 

4.6 Standard Bandstructure Method 

Before continuing it is necessary to define the two important polarisations of light 

relative to the photonic crystal coordinate system. In the literature some variation concerning 

the labelling of the transverse magnetic (TE) and transverse magnetic (TM) polarisations 

exists. In this work, the TE polarisation is defined as the polarisation in which the magnetic 

field has a component only in the direction parallel to the direction of the dielectric rods (x 

direction), see Fig 4.2. Correspondingly, TM polarisation is defined as having an electric 

field component in the x direction only. In two-dimensional systems, with in-plane incident 

light, the two polarisations may be dealt with separately, as mixing of the two polarisations 

only occurs above two dimensions. 

4.6.1 TE Modes 

If the notation Hi is used to represent the component of H in the i direction then it may 

be written that: 
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Figure 4.2: The electric and magnetic field directions for the transverse electric 
(TE) polarisation, shown using a single plane-wave. The propagation direction of 
the electromagnetic wave is the z direction and the magnetic field has a component 
in the x direction only. 

(4.17) 

Bloch's theorem [125] states that, since the dielectric constant is periodic in the y-z plane, the 

solutions to Maxwell's equations may be represented as the product of a plane-wave term and 

a function possessing the same underlying periodicity as the dielectric constant. This may 

be achieved through writing the remaining magnetic field component as a summation over 

reciprocal lattice vectors: 

4.6.2 Brillouin Zone 

Hx(P) = L Hgei(k+g)·p 

g 

(4.18) 

The use of Bloch's theorem means that allowed frequency solutions for a structure only 

need to be considered for solutions which lie within a region of reciprocal space known as 

the first Brillouin Zone (BZ), [7]. The frequency solutions to Maxwell's equations will be 

dependent on the direction which is under consideration. The direction of interest is normally 

described in reciprocal space by the photonic wavevector, k. The Brillouin Zone is defined 

as the region in reciprocal space in which these wavevector values are unique solutions to 

Maxwell's equations. A unique solution is one which is not related to any other solution 

within the Brillouin Zone by a linear sum of reciprocal lattice vectors. If it were possible to 
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include an infinite number of reciprocal lattice vectors in the bandstructure calculation then 

the periodic nature of the structure would mean that the majority of k solutions produced 

by the calculation were equivalent to solutions which existed within the first Brillouin Zone. 

Hence, it is usual practice to produce bandstructure plots which cover only specific directions 

within the first Brillouin zone. The plots usually consider the directions of the high symmetry 

points within the lattice. The labelling of these high symmetry points for the square and 

hexagonal lattices may be found within the appropriate chapters. 

4.6.3 Eigenvalue Equation 

The standard eigenvalue equation produces eigenvalues which correspond to the al­

lowed frequency solutions dictated by Maxwell's equations. The equation only needs to 

contain magnetic field terms as the corresponding electric field solutions may be found by 

substituting the magnetic field back into the original Maxwell's equations. Alternatively, an 

eigenvalue equation containing only electric field terms could be derived. However, such an 

approach produces a generalised eigenvalue equation. The generalised eigenvalue equation 

is numerically a more difficult problem to solve than the simple eigenvalue problem produced 

by considering the magnetic field. It is possible to produce a simple eigenvalue equation us­

ing the electric field however then the operator is non-Hermitian. Proof of the non-Hermitian 

nature of the electric field eigenvalue operator is reasonably straightforward and available in 

the literature [13]. In this work an electric field eigenvalue equation is derived in Section 

4.11.2 where it forms an aside to the main complex bandstructure calculation. 

If the two plane-wave electromagnetic field representations are written with their fre­

quency dependence factored then they are of the form: 

Hx(Y, z, t) 

E(y, z, t) 

Hx(Y, z)e-iwt 

E(y, z)e-iwt 

(4.19) 

(4.20) 

For any solution to be physically valid it must satisfy all four of Maxwell's equations. The 

two divergence equations, 

(4.21) 
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may be satisfied by the choice of plane-wave field forms which are transverse. Transverse 

fields have a direction of propagation which is perpendicular to the plane of oscillation. For 

example, if the magnetic field is given by: 

(4.22) 

it will form a transverse wave if, 

a·k=O (4.23) 

Thus satisfying equation ( 4.21 ). 

The two remaining Maxwell's equations, (4.10) and (4.11), can be satisfied by deriving 

the standard plane-wave eigenvalue equation. Equation (4.11) may first be divided by c(p) 

and then the curl of both sides of the equation taken. From the resultant equation the electric 

field terms may be removed by the substitution of equation ( 4.10). The partial derivative 

with respect to time may be evaluated at this stage due to the time dependence of the H field 

being entirely attributable to the e-iwt factor. The result of these manipulations is the general 

eigenvalue equation [13]: 

(4.24) 

The eigenvalue equation is applicable to both the TE and TM modes by the substitution of 

the appropriate field forms into the equation. 

4.6.4 Scaling Law 

If equation (4.24) is the eigenvalue equation for a structure fully described by c(p) 

then the solution of a different problem, where the structure is of the same form but has all 

its length scales expanded by a factor a, may be easily deduced. If the substitution: 

p' = ~ 
a 
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is made in equation (4.24) then it yields: 

(4.26) 

This provides a scaling law as it may be seen that if length scales are expanded by a fac­

tor a then the frequency solutions are reduced from their original values by the same factor 

a. The law is valid provided that in the regime of interest the permittivity of the materi­

als forming the structure are independent of frequency. The scaling law is of great utility 

and assisted with the validation of the principle of photonic crystals. The intended regime 

of interest for photonic crystals may have always been the optical or infrared length scales. 

However, experimental investigations at microwave length scales enabled experimental con­

firmation of the photonic crystal operating principles, whilst lower length scales were still 

not experimentally viable. 

4.6.5 Matrix Methods 

Solution of the eigenvalue equation ( 4.24) may be undertaken by the use of the plane­

wave representation adopted for the magnetic field and the Fourier series form adopted for 

the permittivity. When adopting this approach it is of use to consider the curl of the magnetic 

field first: 

V'xH 

8 L: H ei{k+g)·P 
8x g g 

8 X 0 8y 

8 0 8z 

0 

i L:g[k + g]zHgei{k+g)·P 

-i L:g[k + g]yHgei{k+g)·P 

e-iwt 

(4.27) 

A substitution may now be made for V' x H into the eigenvalue equation (4.24). Combining 
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this substitution with the Fourier form for c 1 given by equation (4.15) produces: 

gg' 

2 
w LH i(g")·p =- g"e 
c2 

g" 

(4.28) 

Simplification of the mathematical expression has been achieved through the cancellation 

of the common eik·p and eiwt terms. Coefficients of the exponentials in the equation may be 

equated to allow the final eigenvalue equation to be expressed as a summation of just two sets 

of reciprocal lattice vectors. Equating the coefficients leads to g + g' = g" or g' = g" - g. 

Therefore, for a single g" value, it may be written that: 

L c;LgHg [[k + g]y[k + g"]y + [k + g]z[k + g"]z] (4.29) 
g 

Further simplification may be made by noting that the y and z component terms can be 

replaced by the dot product (k + g) · (k + g"); this could equally be written in terms of the 

three dimensional wavevector, K, as kx = 0. The simplified form of equation (4.29) is: 

(4.30) 

The standard way to approach the solution of such an eigenvalue equation is to rewrite the 

equation in a matrix form. Standard matrix diagonalisation algorithms may then be employed 

to solve the equation numerically. The individual g" terms given by equation (4.30) combine 

to form the final eigenvalue matrix equation which may be written as: 

w2 
M (Hg") = - (Hg") 

c2 
(4.31) 

The matrix elements of M are defined by: 

Mgg" = c;Lg(k +g)· (k + g") (4.32) 
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Figure 4.3: The electric and magnetic field directions for a single plane-wave of 
a transverse magnetic (TM) polarisation. The propagation direction of the electro­
magnetic wave is the z direction and the electric field has a component in the x 
direction only. 

Equation (4.31) is applicable to any two-dimensional photonic crystal structure. Solution of 

the equation requires the specific system of interest to be defined. This is required for the 

permittivity, c 1, and the reciprocal lattice vectors, gs, to be evaluated. Further consideration 

of the permittivity term may be found in Section 4.8. The reciprocal lattice vectors for the 

square and hexagonal lattice types may be found in the appropriate following chapters. 

4.6.6 TM modes 

The eigenvalue equation for the TM modes follows from Maxwell's equations in a 

similar manner to the TE polarisation eigenvalue equation. The TM polarisation is defined 

with an electric field directed parallel to the dielectric rods and a magnetic field directed in 

the in-plane direction. The situation is demonstrated using a single plane-wave in Fig. 4.3. 

Hence, 

(4.33) 

The magnetic field may be represented by a plane-wave basis and in this instance the field 

will possess two field components, Hy and Hz. Writing these as a summation over reciprocal 

lattice vectors gives: 

Hg(p) = L Hgei(k+g) ·peiwt 

g 

(4.34) 

The conditions imposed by Maxwell's first and second equations, given in equation 
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(4.21), may be adhered to through the use of transverse plane-waves forms for the fields. 

The magnetic field must be polarised in a direction perpendicular to the direction of the 

electric field (the x direction) and also perpendicular to its own direction of propagation, the 

(k + g) direction. The definition of i as a unit vector in the x direction allows the magnetic 

field direction to be found by evaluating the cross product: 

(k +g) X f = 

0 

[k + glz 
- [k + g]y 

(4.35) 

It is convenient to define a unit vector eg in the direction of the magnetic field. This may be 

written as, 

0 

eg = ey (g) 

ez (g) 

where the components of eg are given by: 

ey (g) = [k+gJ. 1 
[(k+g)·(k+g)J 2 

(4.36) 

( ) 
- -[k+g]y 

ez g - 1 
[(k+g)·(k+g)J 2 

The definition of the unit vector allows for notation simplification when evaluating the cross 

product in the eigenvalue equation (4.24). The curl of the plane-wave magnetic field form is 

given by, 

\7xH LHg 
g 

- LHg 
g 

& 0 &x 

& X ey (g)ei(k+g)·p e-iwt 
&y 

& ez(g)ei(k+g)·p 
&z 

e2 (g)i [k + g]y - ey(g)i [k + g]z 

0 

0 
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The result may be related back to the original x, y and z coordinates by the use of the 

substitution for the unit vector eg given by equation (4.36): 

The eigenvalue equation (4.24) also makes use of the curl of (1/E(p)\7 x H). Considering 

this expression with the Fourier form fort:, given in equation (4.15), yields: 

2 
~ "' H i(k+g")·p 

2 ~ g"e c 
g" 

a 
ax 
a 
ay 
a 
az 

X 

-i" €-1 H lk + gl ei(k+g+g')·P 
L.....gg' g' g 

0 

0 

0 

I:gg' €;/ Hg [k + g + g'lz lk + gl ei(k+g+g')·p (4.39) 

- I:gg' ~:;/ Hg [k + g + g']y lk + gl ei(k+g+g')·p 

The common eik·p factors may be cancelled and the coefficients of the remaining exponential 

terms equated. Equating the coefficients gives g + g' = g", or g' = g" - g, allowing the 

equation to be written as a summation over just two sets of reciprocal lattice vectors. The y 

component of equation (4.39) allows each individual g" equation to be written as: 

"' -1 H [k "] lk I ig"·p = w2 H "(k + g"lz ig"·p 
~ €g"-g g + g z + g e c2 g lk + g"l e 

g 

(4.40) 

This may be rearranged to give a set of equations for an individual g" value: 
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(4.41) 

This is equivalent to equation (4.30) for the TE mode. The TE mode eigenvalue equation 

was written in matrix form to aid with the computation of the eigenvalues. Adopting the 

same approach for the TM mode produces: 

(4.42) 

This is of an identical form to the eigenvalue matrix equation for the TE polarisation. How­

ever, the individual matrix elements differ from those given for the TE polarisation in equa­

tion (4.32). The equivalent matrix elements for the TM polarisation are given by: 

(4.43) 

The discussion thus far has been concerned with light propagating in the in-plane di­

rection. In Section 4.3.1 the coordinate system was defined for the structures under consid­

eration. Although the dielectric modulation occurs in only two dimensions the structure may 

be assumed to be infinite in all three dimensions. For this study it is sensible to restrict elec­

tromagnetic propagation to the in-plane direction as this will provide the necessary physical 

effects for investigation without the complication of a three-dimensional wavevector. How­

ever, this study would not be complete without acknowledging the possibility of an out of 

plane, or off-plane, component for the three-dimensional photonic wavevector K. 

Investigations have shown that both the plane-wave method [167, 168] and the finite 

difference time domain methods [169] can both still be satisfactorily applied if an out of 

plane wavevector component exists. However, the calculations become computationally 

much more expensive. This is particularly true for the plane-wave method where an out 

of plane component doubles the eigenvalue matrix size [169]. 
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The homogeneity of two-dimensional structures in the out of plane direction means 

they lack the regions of different dielectric constant which are responsible for the multiple 

scatterings present in the in-plane direction. Results from other authors have shown that, as 

the kx component of the wavevector is increased, the bands present in the photonic band­

structure tend to become increasingly flattened [13]. A flattening of the photonic bands may 

be detrimental to the effects under consideration here (see Section 4.12.2). A choice of 

kx = 0 was made for this reason and also due to the increased computational expense, and 

increased complexity of the equations if kx =I 0. 

4.8 Permittivity 

The solution of the matrix eigenvalue equation (4.31), or equation (4.42), provides 

the allowed frequencies for the propagation of electromagnetic modes through a photonic 

crystal structure. The permittivity term in the equation, together with the set of reciprocal 

lattice vectors, provides all the information on the type of photonic crystal structure being 

examined. In this section a method for calculating the dielectric constant pattern created by 

circular rods running through a uniform background dielectric material is given. 

4.8.1 Circular Rods 

Whilst complex rod designs utilising sharp edges may be used in theoretical studies, 

the most common rod profile used for experimental structures is circular. The primary rea­

son for this is that sharp edges tend to be smoothed when realised experimentally due to the 

extreme difficulty in producing perfect straight edges on the length scales appropriate to opti­

cal photonic crystals [170]. This relative ease of fabrication combined with the demonstrated 

large absolute photonic band-gap, for certain lattice types, explains why the vast majority of, 

although not all, photonic crystals make use of circular rods [170]. 

The previous sections introduced the concept of representing the inverse permittivity, 

c 1, as a Fourier series. In the general case any regular structure may be represented as a 

Fourier series by the inclusion of sufficient terms to represent the structure with the required 

level of accuracy. The general approach for calculating individual terms is a fine grid ap­

proach. By imposing a fine grid of points on a real space unit cell the necessary terms for 
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G 
Figure 4.4: An arbitrarily shaped unit cell containing a circular dielectric rod of a 
different refractive index to the homogenous background dielectric. The different 
colours indicate the different dielectric materials. 

the Fourier series may be evaluated by examining the value of the dielectric constant at dis­

crete sampling points. For a structure consisting of circular rods a more accurate analytical 

method exists for evaluating the Fourier components. The analytical method may be applied 

to any arbitrarily shaped unit cell provided there is no overlap between the rods. 

Consider an arbitrarily shaped unit cell which may be divided into two distinct regions, 

as shown in Fig. 4.4. The first region, R1, encompasses the circular rod, and second region, 

R2 , consists of a uniform background dielectric which forms the remainder of the unit cell. 

The dielectric constants of regions R 1 and R2 are c1 and c2 . The notation may be simplified 

by the use of the notation 1/ c1 = 1 1 and similarly 1/ c2 = 1 2 . The two combined regions 

may be written as a Fourier series summed over the reciprocal lattice vectors, g. The series 

will consist of a set of individual Fourier coefficients, which may be denoted 1 g · The total 

Fourier series, which describes the permittivity across the unit cell, may be written as: 

1(p) = 2::1geig·p 
g 

(4.44) 

The value of an individual coefficient, 1 a for example, may be found by multiplying equa­

tion (4.44) by e-iG·p and integrating over the entire unit cell: 

j dp 1(p)e-iG·p = 2::1 g j dp ei(g- G)·p 

unit g unit 

(4.45) 

cell cell 
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The integral on the right-hand side is non-zero only if G = g. This is due to the periodic 

nature of the system which means that under any other situation the exponential term will 

cause a zero value to be calculated when integration occurs over the whole unit cell [45]. 

If G = g then the integral will always give the area of the unit cell, A. An individual T G 

coefficient may therefore be calculated via: 

T G - ~ j dp T(p)e-iG·p 

unit 
cell 

1 'Y' J d -iG·p 1 ('Y' 'Y' ) J d -iG·p - A l2 pe +A .q- .l2 pe 

unit rod 
cell 

(4.46) 

Further simplification may be undertaken as the integral over the unit cell will be zero if 

G ::J 0 and if G = 0 then integral is simply the unit cell area, A. It is of use to define Arod 

as the area of R1 and also f as the rod area fraction, or photonic crystal fill factor. f is given 

by: 

J = Arod 
A 

The fill factor may be used to simplify equation (4.46), allowing it to be rewritten as: 

1 Arod ( ) 
l(G=O) - A T2A +A ll- l2 

If G ::J 0 then, 

(4.47) 

(4.48) 

(4.49) 

The previous Fourier expressions are applicable for any arbitrary rod shape. For the circular 

rod shape under consideration equation (4.49) may be written as [45]: 
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Figure 4.5: An arbitrarily shaped unit cell containing a circular dielectric rod, with 
a coating of a different refractive index, set in a homogenous background dielectric. 
Different colours indicate different dielectric materials. 

(4.50) 

11 is a Bessel function, R is the circular rod radius and G is the magnitude of the reciprocal 

lattice vector G. 

A similar method would also be applicable if the unit cell contained features additional 

to the circular rod. The unit cell could simply be subdivided into additional regions and 

each considered in tum. The following section discusses such a situation; a unit cell which 

contains a circular rod with some uniform coating. 

4.8.2 Coated rods 

An extension to the simple circular rod structure occurs when the fabrication technique 

creates circular rods which are coated in a uniform thickness oxide layer. This is considered 

as compruisons may then be made with experimental results to verify the computational 

implementation of our theoretical methods. 

The unit cell now has three separate regions corresponding to the three different dielec­

tric constants present in the material. It was previously shown that these may be represented 

by an overall permittivity function 1(= 1/E). The function 1 will now combine the func­

tions 1 1, 1 2 and 1 3 representing the three individual regions R 1, R2 and R3 , as indicated 
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in Fig. 4.5. In a similar approach to the simple rod situation, the Fourier series form of Y 

may be written as in equation (4.44) and individual G terms calculated from equation (4.45). 

Integration over the unit cell, of area A, may be performed by considering the three regions 

separately. If the area of the inner rod is denoted by A1 and the outer rod by A2 then 

Ya= ~Y3 J dpe-iG·p+ ~(Y2-Y3) J dpe-iG·p+ ~(Y1 -Y2) J dpe-iG·p (4.51) 

unit rod rod 
cell 

This means that for G = 0, 

(4.52) 

The fraction of the unit cell area covered by region R 1 is denoted fi. h is the fraction 

covered by region R2 and f is the fraction covered by region R3. The remaining Fourier 

series terms, when G =f 0, are given by: 

Y _ A2 (Y1- Y2) Jd -iG·p A2 (Y2- Y3) Jd -iG·p 
(GfO) - A p e + A p e (4.53) 

rod rod 

The Bessel function result given in Section 4.8.1 may again be used to provide an analytical 

evaluation of the integrals, yielding: 

(4.54) 

4.9 Complex Bandstructure 

The standard plane-wave bandstructure calculation method, presented in Section 4.6, 

provides a method for calculating the allowed electromagnetic frequencies within photonic 

crystal structures. The method requires that the wavevector of interest is well defined for 
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0.2 
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Figure 4.6: An example of a complex bandstructure. The example is for the TE 
polarisation in the r - M direction using a hexagonal lattice. Purely real (black), 
purely imaginary (purple) and general complex (green) solutions are shown. 

the frequencies to be computed. Occasions exist when it is of greater utility to be able to 

fix the incident frequency and calculate the allowed wavevectors for the given frequency. 

This is equivalent, for example, to a laser source which has a fixed frequency and a beam 

propagation direction which may be varied. 

Methods which allow for the calculation of how a particular frequency varies with 

wavevector are often referred to as w(k) methods. In this section a plane-wave approach to 

the fixed frequency problem is described. Two different approaches are presented. The first 

is derived from an analogy with a semiconductor method available in the literature [163] and 

the second is based on a method suggested by Prof. M. C. Burt. It is believed that neither 

of the two approaches have been generally presented in the published literature. Complex 

bandstructures can be produced by other methods though, for example through the FTDT 

methods proposed by Pendry [157]. 

The fixed frequency plane-wave approach has the additional benefit that it allows com­

plex wavevector solutions to be generated in addition to the conventional real solutions. It 

is for this reason that the methods described are referred to as complex bandstructure calcu­

lation methods. Furthermore, the complex solutions are required for the interface matching 

calculation which is undertaken in Chapter 7. 
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4.9.1 Complex Wavevector 

Photonic bandstructures are usually graphical representations of the set of allowed real 

frequencies for specified real wavevectors within the first Brillouin Zone. A complex band­

structure may be defined as the set of real, imaginary and complex wavevectors which exist 

within the first Brillouin Zone for specified real frequencies. For an example see Fig. 4.6. 

The definition of wavevectors which are not purely real as existing within the first Brillouin 

Zone requires an explanation; a general complex wavevector with an imaginary and real part 

is defined as existing within the first Brillouin Zone provided that the real component of 

the wavevector exists within the zone boundaries. The reason for this is that it remains true 

for complex solutions that wavevectors with a real component outside of the first Brillouin 

Zone are repeats of solutions within the Zone. The physical interpretation of wavevectors 

with imaginary components may be inferred from the plane-wave form of the electromag­

netic fields. The fields contain an eik·p dependence and if an imaginary component of k 

exists then the solution will represent either an increasing or an evanescent solution. The 

implications of this are considered further in Chapter 7. 

4.10 Electronic Structure Analogy 

Complex bandstructures are a tool originally developed for assisting with electronic 

structure studies. One of the now standard electronic structure approaches for such a calcu­

lation is to separate the Schrodinger equation into individual directional components. The 

components may then be rearranged to form an eigenvalue equation with eigenvalues which 

are one of the wavevector components [163]. An equivalent approach is employed in this sec­

tion for complex photonic bandstructures. The eigenvalue equation (4.31) or (4.42) derived 

from Maxwell's equations may be split into a directional component form and rearranged to 

produce the required new eigenvalue equation. 

4.10.1 TE Mode 

The standard photonic crystal eigenvalue equation (4.31) may be rewritten in the fol­

lowing manner, 
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(4.55) 

The notation I has been used for the identity matrix and 0 for the null matrix. The matrix 

elements for the TE mode remain those given in equation (4.32): 

Mg,g' = t:~'~g (k + g) · (k + g') (4.56) 

To assist with the expansion of the the matrix into component form it is convenient to write 

the matrix elements explicitly in terms of their cartesian components: 

(4.57) 

The function is quadratic in terms of either ky or kz. One of these components must be fixed 

to allow the other to be calculated. If kz is selected as the known component then equation 

(4.55) needs to be separated into terms involving kz and k;. The kz dependence may then be 

factored to produce the following form for equation (4.55): 

(4.58) 

This may be written as a matrix eigenvalue equation with eigenvalues ky: 

(4.59) 
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The individual matrix elements are given by: 

M~,g' (4.60) 

The numerical solution of equation (4.59) may be achieved using standard matrix algorithms. 

The solutions will be real, imaginary and general complex eigenvalues for ky. together with 

the associated eigenvectors for the predefined frequency and kz component. It is possible to 

produce bandstructure diagrams corresponding to those produced by the standard bandstruc­

ture method by scanning through w and kz values to find the allowed real solutions within 

the first Brillouin Zone. It should be noted that the matrix eigenvalue equation is twice the 

dimension of the standard eigenvalue equation leading to at least a factor of eight increase in 

the computational cost. The computational time is also increased by the non-Hermitian na­

ture of the matrix and by the need to calculate the matrix inverse of the permittivity matrix, 

denoted I NV[c_;,~9]. This arises from the rearrangement of equation (4.55) into the form 

required for equation (4.58). 

4.10.2 Directional Bandstructures 

In order to solve equation (4.59) a value needs to be fixed for kz. This value will be 

dependent on the defined coordinate system. It is possible for situations to exist when the al­

lowed wavevectors in a specific direction are required, rather than the allowed solutions at a 

specific kz value. The necessity of defining kz prohibits such a calculation from being carried 

out efficiently. An example of such a situation is dispersion surfaces; a dispersion surfaces 

is an equi-frequency contour plot of allowed solutions for the entire Brillouin Zone. The 

most efficient method for producing such a diagram is to vary the direction of the wavevec­

tor and calculate the magnitude of the vector. This section describes a method which allows 

the coordinate system imposed restriction on the TE complex bandstructure method to be re- · 

moved. The approach provides a method for calculating wavevector solutions in any general 

direction. 
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General Direction 

A general direction vector may be defined as the direction from the origin to some 

arbitrary point (a, b), where a and bare the x andy components respectively. The general 

vector may be used to produce a unit vector (p, q) in the direction of the point. The unit 

vector will be given by: 

(4.61) 

A new set of axes may now be defined in the unit vector direction, (p, q), and the 

direction perpendicular to this, ( -q, p). Any arbitrary wavevector k, with standard x andy 

components, may be defined relative to this new set of axes. The new definition for k will 

have two components k and kj_ where: 

k = k(p, q) + kj_( -q,p) (4.62) 

Similarly to Section 4.10.1 one of the wavevector components, k or kj_, needs to be defined 

in order to carry out the complex bandstructure calculation. If kj_ is chosen as the known 

component then the eigenvalue matrix equation (equation (4.61)) becomes: 

(4.63) 

with elements that are dependent on the general direction defined by (p, q): 

M~,g' - (p2 ! q2) [p(gy + g~) + q(gz + gzt) - ~:I NV [ c;,~9] l 
M~,g' (p2! q2) [kj_ (p(gz + g~)- q(gy + g~)) 

+ ( k_l) 
2 

( q2 + P2
) + (gyg~ + 9z9~)] 
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Equation (4.63) is of great utility as it allows the wavevector solutions to be found for any 

general direction. This is achieved by setting kl.. = 0 and choosing values for p and q which 

give the required direction of interest. 

4.10.3 TM mode 

The electronic structure analogy method for producing complex bandstructures was 

reliant on the eigenvalue operator existing as a simple algebraic expression in terms of the 

wavevector and reciprocal lattice vectors. The simple algebraic form for the eigenvalue equa­

tion allowed the necessary rearrangements to be made. The eigenvalue matrix components 

for the TM mode were given in equation (4.43) by: 

(4.64) 

The moduli signs in the matrix element prohibit the rearrangement of the element into a form 

suitable for applying the complex bandstructure approach described in Section 4.10.1. This 

made an alternative approach necessary for the TM polarisation. The alternative approach is 

given in Section 4.11. 

The approach described in Section 4.10.2 for the TE polarisation was deemed to be the 

preferred complex bandstructure method, and was employed whenever TE complex band­

structures were required. The preference for this method was due to its exact agreement with 

the real solutions generated by the standard bandstructure method. Such agreement allowed 

the correct implementation of the complex bandstructure method to be confirmed without 

any convergence issues. 

4.11 Dual Field Approach 

The complex bandstructure approach described in this section combines Maxwell's 

equations in a manner which produces a final eigenvalue equation which solves both the 

electric and magnetic fields simultaneously. The eigenvalues of the final equation are the 

allowed wavevector components at a specific frequency. The corresponding eigenvectors are 

related to the electric and magnetic fields. The approach was suggested by Prof. M.C. Burt, 

103 



Chapter 4. Photonic Crystal Theory 4.11. Dual Field Approach 

although it is not believed to have been previously published in the literature. The method is 

general enough to be applicable for all systems for which the standard plane-wave method is 

appropriate. For completeness, the dual field complex bandstructure approach described in 

this section has been been applied to both the TE and TM polarisations. 

4.11.1 Eigenvalue Equation 

Section 4.4 made assumptions based on the nature of the dielectrics under consider­

ation. The assumptions allowed Maxwell's equations to be written in the form given by 

equations (4.8) to (4.11). These equations formed the basis of the standard bandstructure 

method and also form the starting point for the dual field complex bandstructure method. 

Maxwell's two divergence equations (equations (4.8) and (4.9)), may be satisfied by the use 

of transverse plane-wave forms for the electromagnetic fields. This is identical to the manner 

described for the standard bandstructure method. 

The time dependence of the electromagnetic fields is entirely proportional to e-iwt. 

This allows the derivatives with respect to time in Maxwell's third and fourth equations, 

(4.10) and (4.11), to be trivially evaluated: 

VxE 

VxH 

iwp.oH 

-iwt:E 

(4.65) 

(4.66) 

In a similar manner to the original two-dimensional plane-wave method, the complex band­

structure calculation may be pursued by separating the TM and TE polarisations without the 

loss of information. 
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4.11.2 TM Mode 

The TM mode was defined with Ey = Ez = 0 and accordingly Hx = 0. If equations 

(4.65) and (4.66) are separated into component form they may be expressed as: 

0 0 

V xE - 8Ex - iWJ.toHy 8z (4.67) 

_8Ex iWj.toHz 8y 

8Hz _ 8Hy Ex 8y 8z 
VxH - 0 = -ZWE 0 (4.68) 

0 0 

At a later stage in the calculation a relationship between the field components of H and the 

second derivative of the Ex field components will be required. This can be evaluated at this 

point by differentiating they and z components of equation (4.67), with respect to z andy 

respectively. Separating the two components allows the following relationships to be written: 

82Ex . 8Hy 
8z2 ZWJ.to 8z (4.69) 

82Ex 8Hz 
8y2 - -ZWj.J,o--

8y 
(4.70) 

The curl of the magnetic field (equation (4.68)) contains a single x component. This may be 

multiplied by -iwJ.to to provide an equation in which the left-hand side consists of differen­

tials which form the right-hand side of equations (4.69) and (4.70): 

. (8Hz 8Hy) 2 -ZWJ.to -- - -- = -w j.J,otEx 
8y 8z 

(4.71) 

Previous discussions in Section 4.6.3 explained that whilst it was preferential to use 

the magnetic field for the standard eigenvalue equation, it was also possible to produce an 

electric field eigenvalue equation. This can be shown here by the exchange of the differentials 

on the left hand-side of equation (4.71) with the electric field terms in equations (4.69) and 

(4.70). This gives: 
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(4.72) 

The electric field eigenvalue equation is usually rearranged into the following form (using 

c2 = 1/ J.Loco: 

(4.73) 

The appearance is similar to the magnetic field eigenvalue equation. However, the relative 

permittivity term (cr) on the right-hand side makes the equation a generalised eigenvalue 

equation. Generalised eigenvalue equations are numerically more intensive to solve. This 

explains the preference for the use of a magnetic field eigenvalue equation in the standard 

method. This is an aside to the main complex bandstructure calculation. 

A rearrangement of the x andy components of equation (4.67) yields: 

i 8Ex 
----

WJ.Lo 8z 
(4.74) 

i 8Ex 
---
WJ.Lo 8y 

(4.75) 

The dual field complex bandstructure method relies on the simultaneous solution of two sets 

of equations containing both the electric and magnetic fields. New notation will be intro­

duced for the plane-wave field forms in order to simplify the appearance of the expressions. 

The plane-wave forms for the field will be written as, 

E -; _ ""E i(k+g)·p -iwt-; _ E -iwt-; 
x1 - L ge e 1 - g,xe 1 

g 

Hzl{ = L H~ei(k+g)·pe-iwt k = Hg,ze-iwt k 
g 

(4.76) 

(4.77) 

The notation Eg,x has been used for the x component of the electric field as reminder that 

it is a sum over reciprocal lattice vectors. Similar notation has been used for the magnetic 
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field. The first of the set of simultaneous equations which contribute to the final eigenvalue 

equation may be directly found by substituting the plane-wave field forms into equation 

(4.75). This yields: 

H -iwt (k )E -iwt f-LoW g,ze = - y + 9y g,xe (4.78) 

Cancelling the common time dependence, this can be rearranged to give: 

(4.79) 

The second set of simultaneous equations comes from equation (4.72). Substituting for 

82Ej8y2 , using equation (4.70), gives, 

(4.80) 

Use of the plane-wave field forms then yields, 

1 2 
(ky + 9y) Hg,z - Wf-Lo (kz + 9z) Eg',x = -wEEg,x (4.81) 

Adopting the Fourier form for the permittivity given by equation (4.15) and using the full 

field form notation produces 

= -WEo L L f.g"Eg,xei(k+g'+g")·p (4.82) 
g' g" 

It can be seen that the exponential terms may be equated to give g = g' + g". This allows 

the summation on the right-hand side to be written as a single summation. If a single g is 

considered then: 

107 



Chapter 4. f'lllotonic Crystal Tllleory 4l.11. Dual lFfieldl Approaclh 

(4.83) 

The second set of simultaneous equations comes from the following rearranged form of 

equation (4.83): 

(kz + 9z)2E """"' E Hz k Hz 
g - WEo L-t Eg-g/ g - 9y g = y g 

Wf.lo gl 
(4.84) 

The two sets of simultaneous equations (4.79) and (4.84) combine to form the matrix eigen­

value equation: 

-gy6g,gl - f.loW6g,g' Eg Eg 

= ky 

(kz+9z)
2 6 

WJ.lO g,g' - WEQEg-g/ -gy6g,gl Hz 
g 

Hz 
g 

It is convenient to write this in the simplified form, given by equation (4.85), to assist with 

the numerical solution: 

(4.85) 

The individual terms in the simplified form are given by: 

Hn 
g,g' - -gy6g,gl 

H12 
g,g' - - f.loW6g,g' 

H21 
g,g' 

(kz + 9z)
2 

6 W f.lo g,g' - WEoEg-g' 

H22 
g,g' -gy6g,gl 

'1/Jg Eg 

</>g Hz 
g 
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The method described in this section represents our only available plane-wave complex 

bandstructure method for the TM polarisation and has been used to provide the TM results 

given in the following chapters. 

4.11.3 TE Polarisation 

The derivation of an eigenvalue equation to allow the ky components for the TE polari­

sation to be calculated follows in a similar manner to that employed for the TM polarisation. 

Two sets of eigenvalue value equations are required, which allow Maxwell's equations to be 

simultaneously solved for both the electric and magnetic fields. 

The TE mode is defined as having a magnetic field in the x direction only and electric 

field components in the y and z directions. The e-iwt time dependence of plane-waves al­

lows Maxwell's third and fourth equations (Equations (4.10) and (4.11)) to be written in the 

following manner, 

VxH= 

VxE= 

0 

8Hx 
az 

_8Hx 
8y 

0 

= 'lWJ-to 0 

0 

(4.86) 

(4.87) 

A rearrangement of the y component of equation (4.86) permits the y component of the 

electric field to be written in terms of the magnetic field, 

E = _.!:__ 8Hx 
y Wt 8z 

(4.88) 

Correspondingly, for the z component, 

E _ _ _.!:__ 8Hx 
z- Wt 8y (4.89) 

If equation (4.88) is substituted into the x component of equation (4.87) the resultant equa-

tion is: 
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which is equivalent to, 

-i 8Ez _ .!_ i_ (~ 8Hx) = Wf-LoHx 
8y w8z t 8z 

The plane-wave field forms for the TE polarisation are 

EJ( = L E~ei(k+g)·pe-iwt k = Eg,ze-iwt k 
g 

H ~ _ ""H i(k+g)·p -iwt ~ _ H -iwt-; 
x1 - L._; ge e 1 - g,xe 1 

g 

(4.90) 

(4.91) 

(4.92) 

(4.93) 

Use of the plane-wave field forms in equation (4.91), together with equating the exponential 

coefficients, provides the following expression for an individual g: 

(ky + 9y) E~ + ~ (kz + 9z) L E~~g' (kz + g~) Hg = f-LoWHg 
g' 

(4.94) 

Since c2 = 1/ f-Loto equation (4.94) may be rearranged to form the first of the two sets of 

simultaneous electric and magnetic eigenvalue equations. For a single g: 

W~o =- -t-LoHg 
c to 

(4.95) 

The second set of simultaneous equations comes directly from the use of the plane­

wave field forms in equation (4.89). If the coefficients of the exponentials are equated then, 

for a single g: 
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(4.96) 

To produce the required form of the eigenvalue equation the y wavevector component must 

be separated from the other terms and relocated to the right hand side: 

(4.97) 

The first set of equations, given by equation ( 4.95), must also be written in a similar form with 

the y component of the wavevector on the right hand side. Undertaking this rearrangement 

yields 

(4.98) 

Equations (4.97) and (4.98) may be combined to form the TE matrix eigenvalue equation, 

w 
~Eg-g/ 

r;;;_H V f.O g 

= ky 

This may be written in a more convenient form for numerical solution as: 
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r;;;_H v fO g 
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With matrix elements which are given by: 

Hll 
g,g' -gybg,gl 

w bg,g/- _2_1 (kz + 9z) c;~gl (kz + g~) 
c w c 

(4.101) H 12 
g,g' 

w 
- ~fg-g'bg,g/ H 21 

g,g' 

H 22 
g,g' 

(4.102) 

4.11.4 Directional Bandstructure 

The dual field complex bandstructure method requires that the wavevector component 

kz is fixed. The only specific direction which may be considered using this approach is the 

y direction, by setting kz = 0. There are two possible approaches which would allow for 

a more general method, where arbitrary directions could be considered. The first, and pre­

ferred method, would be a change of coordinate system, similar to that adopted for electronic 

structure analogy method in section 4.10.2. The alternative approach would be to rotate the 

permittivity Fourier components and the reciprocal lattice vectors. This would effectively 

leave the equations alone but rotate the structure being examined. The y and z axes would 

remain in their original directions and the structure would be rotated so that the required 

direction of interest lay in the same direction as the y axis. The rotated coordinate system 

needs to be used in both the calculation of the Fourier components and the reciprocal lat­

tice vectors. If the coordinate system is rotated by an angle () to the x axis, then the new 

coordinates (y', z') may be calculated from the original coordinates by use of the rotation 

matrix: 

( 
y' ) ( cos(()) -sin(()) ) ( y ) 

z' - sin(()) cos(()) z 
(4.103) 

The reciprocal lattice vectors and Fourier component rotation method was implemented for 

the dual field complex bandstructure method as no appropriate coordinate transformation 

method was found. 

112 



Chapter 4. lPhotmnic Crystal 'fheory 4.12. Refraction lLaw 

When light passes from one medium to another the light is refracted due to the different 

phase velocities of electromagnetic waves propagating in the different materials. This sec­

tion considers the refraction of an incoming plane-wave travelling in air and incident on an 

interface with a photonic crystal structure. The method described utilises dispersion surfaces 

which may be calculated using the w(k) methods described in the previous sections. The 

refraction of light at an interface between two uniform materials is considered prior to the 

consideration of an interface with a photonic crystal interface. The uniform materials may 

be thought of as special cases of photonic crystals with negligible radius rods. The uniform 

material case is considered as it allows a possibly unfamiliar approach to the refraction of 

light to be presented in comparison to the relatively intuitive uniform material case. Photonic 

crystals are then dealt with using an identical method with relative ease. 

4.12.1 Uniform Media 

Consider a plane-wave prorogating in a uniform material with an isotropic refractive 

index n 1. The wave is incident on another uniform material, with isotropic refractive index 

n 2 . This is shown schematically in Fig. 4.7. The incident plane-wave has a frequency wand 

strikes the interface at an angle 01 to the normal. If the wavelength of the wave is A1, prior 

to the interface, the altered wavelength within the second material, A2 , is given by: 

(4.104) 

The law of refraction for an interface between two uniform media is the familiar Snell's Law. 

The law is the condition for the phase velocity tangential to the interface to remain the same 

for the both the incident and refracted waves. Its usual form is 

(4.105) 

The absence of a single constant refractive index in photonic crystals makes it appro­

priate to reformulate the refraction law as a conservation of momentum problem. The de 
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Figure 4.7: Conservation of phase at the interface between two uniform materials. 
Equi-phase lines are shown for the propagating light within both materials. 

Broglie equation [ 171] means that the conservation of photon momentum for any situation 

is equivalent to the conservation of the photon wavevector. The two uniform material system 

possesses translational symmetry in the direction parallel to the interface, hence the photon 

wavevector must be conserved in this direction. If the incident plane-wave wavevector is 

denoted as k1, the reflected wavevector as k~ and the refracted wavevector as k2, then the 

wavevector magnitudes are given by: 

(4.106) 

(4.107) 

The conservation of momentum means that the tangential wavevector components of all 

three wavevectors must be equal, therefore 

(4.108) 

If the common w / c term is cancelled then the equation is equivalent to the familiar form of 

Snell's Law, which was given by equation (4.105). Fig. 4.8 shows a graphical interpretation 

of the conservation of wavevector approach. A construction line has been added to aid with 
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4.12. Refraction Law 

: Construction V LIDe 

Figure 4.8: Refraction at an interface between two uniform materials. The equi­
frequency curve within the second material is indicated. A construction line is in­
cluded to assist with conserving the wavevector component parallel to the interface. 

the conservation of the wavevector component parallel to the interface. The figure shows 

the range of possible refracted wavevectors through the use of a semi-circle with a radius 

which is the magnitude of the allowed refracted wavevector at the incident frequency. The 

required actual refracted wavevector may be calculated by simply tracing a line from the 

incident point to the intersection of the conservation of wavevector construction line and the 

equi-frequency curve. 

The direction of propagation of the refracted light is not, by necessity, in an identi­

cal direction to the refracted wavevector direction. The directions are identical for uniform 

materials, due to the refracted wavevector direction coinciding with the direction of propa­

gation of the radial energy. The direction of propagation of the energy velocity dictates the 

direction of propagation of the refracted wave. This may be shown to be equivalent to the 

group velocity of the refracted wave. The rigorous proof of this is lengthy and can be found 

reproduced in the literature by Sakoda [172]. The group velocity for a general refracted wave 

may be calculated from 

(4.109) 
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The expression for the group velocity gives a direction which is equivalent to the normal of 

the equi-frequency curve. The circular nature of the equi-frequency surface for the uniform 

material shown in Fig. 4.8 gives a group velocity in the same direction as the refracted 

wavevector, v~ = c/n2k2. 

4.12.2 Superprisms 

The wavevector conservation approach, adopted in Section 4.13.1 for the calculation of 

the refraction properties of uniform materials is equally applicable to photonic crystals. Con­

sider a plane-wave travelling in any uniform dielectric, for example air, with a wavevector 

k 1 and a frequency w. The wave may then be incident on an interface between the uniform 

material and a photonic crystal, shown in Fig. 4.9. The angle of incidence of the plane-wave 

is denoted B1• In a similar manner to the approach utilised for two uniform materials, the 

incident wavevector component parallel to the interface must be conserved. This is depicted 

with a construction line on the diagram. The refracted wavevector may then be calculated by 

examining the intersection of this construction line and the equi-frequency line forming the 

dispersion surface, at the appropriate frequency, w. 

The dispersion surface at a particular w may be produced by plotting the bandstructure 

of the photonic crystal using an w(k) method. In this work one of the complex bandstructure 

methods previously described in this chapter will be used for this purpose. In an identical 

manner to that previously considered for the uniform media case; the direction of the group 

velocity of the transmitted wave will be given by the normal to the equi-frequency curve. In 

this instance the dispersion surface of a photonic crystal may be highly anisotropic. Such 

anisotropy may produce wide variations in the angle of refraction for small changes in the 

incident wavevector direction. This is the origin of the superprism behaviour under investi­

gation in the following chapters, 

116 



Chapter 4. Photonic Crystal Theory 4.12. Refraction Law 

: Construction 
I VLffie 

Figure 4.9: Photonic crystal refraction law. The allowed k vectors in the photonic 
crystal are given by the equi-frequency contour line (red), with the propagation 
direction given by the group velocity of the wave (blue), which is normal to the 
contour. 
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4.13 Summary 

The standard plane-wave method is a well established approach for the calculation of 

photonic crystal bandstructures. The method permits the calculation of the allowed frequen­

cies of electromagnetic waves within a photonic crystal for a fixed photonic wavevector, k. 

In this chapter similar plane-wave methods were employed for the calculation of another 

type of bandstructure, known as a complex bandstructure. The complex bandstructure meth­

ods described provides the ability to calculate allowed wavevector solutions at a constant 

frequency. The method was reformulated to allow for any general direction within the pho­

tonic crystal to be considered. This ability is essential for the production of equi-frequency, 

or dispersion, surfaces. Dispersion surfaces are fundamental to the calculation of the angles 

of refraction for light incident on photonic crystals. A method for the calculation of photonic 

crystal refraction angles was also introduced in this chapter. The complex bandstructure 

methods shown are not available in the literature, as the work presented here represents their 

first implementation. They may be used in both the calculation of refraction angles and the 

calculation of transmission through photonic crystal interfaces. These two applications are 

discussed in the appropriate following chapters. 
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Square Lattice Calculations 

5.1 Introduction 

In this chapter photonic structures which make use of an underlying square lattice 

are investigated. The square lattice is the simplest dielectric constant pattern which may 

be employed to form a two-dimensional photonic crystal. The photonic structures studied 

here differ from those previously considered, in Chapters 2 and 3, in two main respects: 

firstly, the dielectric constant modulation occurs in two-dimensions, compared to the previ­

ous single dimension and secondly, the modulation is now periodic, thus forming a regular 

two-dimensional lattice. The square lattice is a natural starting point for studies on photonic 

crystals due to its simplicity. In this work the square lattice system is used as an initial sim­

ple example, prior to the application of the theoretical methods to the hexagonal lattice. The 

square lattice is also considered due to its ease of incorporation into the interface matching 

calculation described in Chapter 7. 

Theoretical and experimental studies which examine photonic crystals based on the 

square lattice type are available in the literature [169, 173-186]. Comparisons may be made 

with these studies to confirm that the previously described theoretical methods have been 

implemented correctly. 

The square lattice is introduced in this chapter with its standard bandstructures and 

electric field profiles. These graphical representations of the solutions to Maxwell's equa­

tions allow for a discussion of the physical origin of the photonic band-gaps often associated 

with photonic crystals. The majority of the results presented are for a systematic study 
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conducted on the anisotropy of square lattice bandstructures. The study aims to optimise 

anisotropy with respect to refractive index contrast, rod radius and frequency. Bandstructure 

anisotropy is responsible for differences between the refraction properties of photonic crys­

tals and those of uniform media. Finally, conclusions are reached regarding the suitability of 

the square lattice for refraction applications. 

A square lattice may be produced by the alignment of parallel dielectric rods, equally 

spaced in both they and z directions, within some background dielectric. There are two main 

methods of fabrication for such structures; either high refractive index rods may be inserted 

into a low refractive index background, or low refractive index rods may be etched into a 

high refractive index background. Fig. 5.1 schematically shows a two-dimensional square 

lattice constructed using the former approach. 

To carry out a bandstructure calculation the complete set of reciprocal lattice vectors 

for the lattice of interest must be known. For any lattice type these may be constructed 

from the primitive reciprocal lattice vectors of the given lattice. The primitive reciprocal 

lattice vectors are the smallest possible vectors pointing from one lattice point to another in 

reciprocal space. It is also possible to define a primitive unit cell as the smallest periodically 

repeating unit which can form the complete lattice. 

The coordinate system was defined in the previous chapter. If i, ] and k are unit 

vectors in the x, y and z directions then a general real-space lattice consisting of two­

dimensional square lattice planes separated by some arbitrary distance, c, may be defined 

in three-dimensions by the vectors a, b and c. The defining vectors are of the form: 

a Cl 

b aj 

c - ak (5.1) 

The lattice constant a is the same in both the y and z directions. In real space the in-plane 

lattice vectors, R, may be used to describe the two-dimensional square lattice. The lattice 
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0 0 0 

0 

0 
Figure 5.1: The two-dimensional square lattice type with lattice constant a and rods 
of radius pa. Four unit cells are shown each consisting of four shared lattice points. 
The section shown forms part of an infinite repeating lattice in both directions. 

2n/a 

( ) 
2n/a 

Figure 5.2: Reciprocal space showing the Brillouin Zone (light green) for the 
square lattice type with lattice constant a. Construction lines are shown (as de­
scribed in the text) with reciprocal lattice vectors shown in green and their bisectors 
indicated by the dashed orange lines. 
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vectors are given by: 

(5.2) 

The use of two infinite integer sets, ny and nz, allows the entire lattice to be described by 

equation (5.2). In reciprocal space the corresponding reciprocal lattice vectors, g, may be 

written as 

(5.3) 

with n~ and n~ as integers. Equation (4.16) gave an expression which assists with the defini­

tion of reciprocal lattice vectors. It may be seen that equations (5.2) and (5.3) are consistent 

with this since 

(5.4) 

where n is clearly an integer. 

The square lattice has a single circular rod per unit cell, with radius pa, and the square 

lattice fill factor may be written as, 

f = rod area = np
2
a

2 
= 7rp2 

unit cell area a 2 
(5.5) 

5.2.1 Brillouin Zone 

The discrete translational symmetry possessed by photonic crystals led to the intro­

duction of the Brillouin Zone concept in Section 4.6.2. A graphical method for defining the 

square lattice Brillouin Zone is shown in Fig. 5.2. The Brillouin Zone has been constructed 

by drawing perpendicular bisectors to all reciprocal lattice vectors which begin at the origin. 

The resultant enclosed region containing the lattice point at the origin is the Brillouin Zone. 

The zone is indicated by the shaded region in Fig. 5.2 which extends from -n I a to 1r I a in 

both the y and z directions. 

The allowed frequency solutions for a photonic crystal are often represented graph-
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ically as bandstructures. In such a diagram it is usual to eliminate redundancy by only 

showing solutions which occur within the Brillouin Zone. Solutions are usually shown in 

the directions of the high symmetry points f- X, f- M and X- M, these are indicated 

in Fig. 5.2. The coordinates of the points are given by: 

r 211"(0,0) 
a 

X 
211" 
-(0.5,0) 
a 

211" 
M - -(0.5, 0.5) 

a 

5.3 Convergence 

In Section 4.5.1 it was stated that the dielectric constant was expanded as a Fourier se­

ries, also referred to as an expansion in plane-waves. The nature of most Fourier expansions 

means that they have an infinite number of terms. In practice for computational methods the 

Fourier series requires truncation so that the calculation is possible using a finite number of 

plane-waves. The higher the number of terms present the more accurately the series repre­

sents the original function. The smaller the number of terms included the less computational 

time is required for a solution to be calculated. The computational time required to diago­

nalise the operator matrix varies with the cube of the matrix size and thus significant savings 

in computational time are achievable by choosing the lowest number of plane-waves that is 

acceptable. 

The convergence of the first six frequency bands was considered for an alumina rod in 

air system. The particular choice of system was made to allow for comparison with corre­

sponding values available in the literature. This may be found in Section 5.4. Convergence 

was investigated by considering the percentage difference between a frequency solution at 

a specific number of plane-waves and the same frequency solution considered for a large 

number (1389) of plane-waves. Fig 5.3 shows convergence for both TE (Fig. 5.3a) and TM 

(Fig. 5.3b) modes at the r point (r = 0.2a). The figure also shows the convergence at all 

the high symmetry points (Fig. 5.3c) and for a range of fill factors (Fig. 5.3d). The results 

indicate that a choice of 793 plane-waves is sufficient for the calculation of numerical values. 

At this level, convergence is to within approximately 1% of the 1389 plane-wave solution. 
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Figure 5.3: Convergence for an alumina rod square lattice as a function of band for 
the TE modes (a) and TM modes (b) at the r point (r = 0.2a). The effect of position 
within the Brillouin Zone is also shown (c) for both polarisations using the slowest 
to converge band. Convergence for the slowest to converge point is considered as 
a function of rod radius in (d). The dashed line indicates the 1% convergence level 
(relative to the 1389 plane-wave result). 
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Although the 1389 plane-wave solution is not absolutely converged it does provide a satis­

factory standard for comparison. Only the sixth band at one particular rod radius (r = O.la) 

was slightly in excess of 1%. The inclusion of additional plane-waves would have little effect 

on the accuracy of the solutions but would be computationally more expensive. 

Unfortunately, given the computational power available it was not possible to perform 

the anisotropy optimisation calculations with such a large number of plane-waves. A choice 

of 301 plane-waves was made to allow for an acceptable computational time. From Figure 

5.3 it may be seen that the choice corresponds to convergence to within approximately 2.5% 

of the large number of plane-waves solution, for all but the one of the situations examined. 

§A, Bandstructuures 

Bandstructures for the square lattice type have undergone prior theoretical and exper­

imental investigation by a number of workers. In this section a comparison is made with 

published results to ensure the validity of the computational implementation employed here. 

In addition to frequency solutions the standard bandstructure calculation also allows the elec­

tric and magnetic fields to be computed. Field profiles are fundamental to photonic crystals 

as they allow the solutions of Maxwell's equations to be visualised within a structure. 

5.4.1 Standard Bandstructures 

The first two-dimensional photonic structure to undergo experimental examination was 

created by Robertson et al. [173]. The structure consisted of alumina (t = 8.9) rods with a 

rod radius of r = 0.2a arranged in air. A comparison may be made to these results to confirm 

that the theory has been correctly implemented. Fig 5.4 shows bandstructures calculated 

for alumina rods in air for a TE polarisation. The equivalent bandstructures for the TM 

polarisation are given in Fig. 5.5. Results are shown for a range of increasing rod radii. This 

is useful as it demonstrates the progression from uniform media to photonic crystal. 
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Figure 5.4: TE Square lattice bandstructures for alumina rods in air with rod radii 
of a) r ~ 0, b) r = O.la, c) r = 0.2a, d) r = 0.3a, e) r = 0.4a, f) r = 0.5a. 
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Figure 5.5: TM Square lattice bandstructures for alumina rods in air with rod radii 
of a) r :::::; 0, b) r = O.la, c) r = 0.2a, d) r = 0.3a, e) r = 0.4a, f) r = 0.5a. 
Band-gaps have been highlighted in green. 
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If the rod radius of 0.2a is considered, then both the TE and TM bandstructures show 

agreement with the published results of Robertson et al. 

Uniform Media 

In both Fig. 5.4 and Fig. 5.5 the first structure considered is formed from rods with 

a radius of ~ 0, indicating that the material is almost a uniform dielectric media. Note 

that an arbitrary periodicity must be imposed to enable Bloch's theorem to be applied and 

for bandstructure plots comparable to the non-zero rod radius case to be calculated. Light 

travelling in uniform medium possesses a propagation speed which is the free space speed 

divided by the refractive index of the medium. This, gives the simple dispersion relation 

w(k) = ck 
Fr 

(5.6) 

Both Fig. 5.5a and 5.4a demonstrate uniform material behaviour at low frequencies, 

below 0.5c/ a. The figures show a linear relationship between w and k, with a gradient equal 

to unity. This corresponds to the dispersion relation of the background air. To present the 

bandstructure plots k values from outside the imposed Brillouin Zone have been folded back 

into the zone. The wavevector, k, contains two components ky and kz. When the original 

wavevector is directed along the primitive reciprocal lattice vectors a linear relationship may 

be seen in the dispersion diagram. If more than one component exists in k then the dispersion 

relation shows an effect known as the anomalous group velocity [172]. The group velocity 

of a radiation mode is simply given by the slope of the dispersion curve since 

aw 
Vg = Bk (5.7) 

An example of the anomalous group velocity may be seen by examining the second band 

in the r-M direction in Fig. 5.5a. Whilst not of direct relevance to this work, the group­

velocity anomaly is of use for certain applications due to the much reduced group velocity. 

The reduced group velocity is equivalent to a reduced energy velocity within the photonic 

crystal [172]. This allows for an enhanced interaction time between radiation modes and 

matter and is useful, for example, in increasing stimulated emission or absorption. 
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Refraction Considerations 

Examination of the square lattice bandstructures shown in Fig. 5.4 and 5.5 allows the 

identification of several features of interest. The appearance of a photonic band-gap was the 

feature which initially received the main focus of attention in the examination of photonic 

crystal dispersion characteristics. A complete photonic band-gap is a range of frequencies 

over which light propagation is forbidden for all directions for a single polarisation. Note 

this differs from the term 'absolute' band-gap which is reserved for those occasions when a 

range of forbidden frequencies exists for both polarisations. Complete band-gaps have been 

highlighted for the TM polarisation in Fig 5.5. The sequential figures show that as the radius 

of the alumina rods is increased the band-gap becomes larger until an optimum examined 

configuration is reached, around r = 0.2a. If the rod radius is further increased then the 

gap begins to close again. A physical explanation of this effect is considered in Section 

5.4.2, which examines the electric field profiles for the same lattice. The TE polarisation 

does not possess a band-gap in all directions. In terms of the refraction properties of the 

structure a band-gap is significant as it will prevent refraction from occurring for a range of 

frequencies. Even partial band-gaps will be influential through the effect they have on the 

dispersion surfaces of a structure. Bands must begin and end at Brillouin Zone boundaries, so 

whether a band-gap exists, or not, will have an influence on the complete dispersion surface 

at a particular frequency. 

Another noteworthy feature is the compression of bands which occurs with increasing 

fill factor. Increasing the area fill factor increases the average refractive index of the struc­

ture, reducing the frequency of individual bands. For example, consider the first band in 

the X -r direction; the band may be seen to compress with fill factor. Examination of the 

bandstructures shown in both Fig. 5.4 and Fig. 5.5 allows it to be clearly seen that fill factor 

is an influential factor in bandstructure anisotropy. 

Finally, anisotropy is clearly highly frequency dependent. Consider, for example, Fig. 

5.5b at a frequency below 0.4 cja. In the f-X and f-M directions, at any specified fre­

quency, the magnitude of the wavevector appears very similar. Thus, circular dispersion sur­

faces with refraction properties similar to uniform structures would be expected. At higher 

frequencies anisotropies are clearly evident. Small frequency changes can have a large effect 

on bandstructure anisotropy so it is important when optimising anisotropy (Section 5.7) to 
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use narrow frequency spacings. Frequency spacings of bw = O.Olc/ a are used in this work. 

5.4.2 Field Profiles 

The physics of photonic crystals together with the physical origin of photonic band­

gaps may be explained by the examination of the field profiles for the electromagnetic modes 

within the structures. The square structure is of particular interest because the system pos­

sesses a complete photonic band-gap for one polarisation but there is no corresponding band­

gap for the other polarisation. This is an important consideration when designing photonic 

crystals for refraction applications. Fig. 5.5 shows that the square lattice (r = 0.2a) con­

tains a large band-gap for the TM polarisation at the M point. The electric field may be 

considered at this point by evaluating the field amplitude across a range of y and z positions. 

Bilinear interpolation may then be used to produce either a three-dimensional profile or a 

two-dimensional contour plot of the field amplitude. Fig. 5.6 shows the manner in which the 

three-dimensional profiles are related to the two-dimensional contour plots. The figure gives 

the electric field at the M point for the first and second bands with a TM polarisation. The 

second band is degenerate at the M point and one of the two degenerate Bloch Waves has 

been plotted. 

The speed of light travelling in a uniform dielectric material is lower than when prop­

agating in air; electromagnetic waves have a shorter wavelength in media than they do in a 

vacuum. An understanding of the physical origin of photonic band-gaps could come from 

the notion that the higher the proportion of the electric field which exists inside the higher 

dielectric constant material, the lower the frequency of the solution for the same wavevector. 

A lower order band is therefore expected to have a larger confinement in the dielectric rods 

than a higher order band. A higher order band would be expected to possess an increased 

proportion of the electric field in the air surrounding the rods. This is exactly the situation 

seen by examining the M point field profiles. The first band shows strong peaks in the rod 

regions and field nodes outside of the rods. The second order band still possesses peaks in 

the high dielectric constant rods. However, it is less localised within the rods and a signifi­

cant proportion of the field exists outside of the rods. This difference in the location of the 

field intensity may therefore be used to explain the existence of a reasonably large band-gap 

at this point. 
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Figure 5.6: Electric field profiles for the first (a) and second (b) bands of the TM 
polarisation at the M point. 
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The field confinement principle may be confirmed by examining the standing waves at 

the other high symmetry points. These are shown in Figures 5.7 and 5.8. It can be clearly 

seen that the first band has electric fields which are largely confined to the high refractive 

index rods and the second band possesses more diverse field patterns. The corresponding TE 

polarisation bandstructures do not have a complete band-gap. Examination of the magnetic 

field profiles has been used for the TE mode as these are entirely in the x direction. The 

electric field will be largest in the nodal planes of the magnetic field hence this is where the 

energy is concentrated. It can be seen that the fields contain only slightly different propor­

tions of their amplitude in the dielectric rods for the lowest two bands. A more rigorous way 

of showing this is to examine the displacement energy confinement. For this purpose it is of 

use to define a factor, fe, indicating the proportion of the electric field energy located inside 

the dielectric rods. This approach was suggested by Meade et al. [187]. 

J.odE*(r) · D(r)d3r t - ~r~~~~~~-
e- f E*(r) · D(r)d3r 

(5.8) 

Equation (5.8) may be written in more convenient form for computational use by the sub­

stitution of the plane-wave field forms into the equation. The magnetic field, H, has been 

used due to the magnetic field coefficients being more readily accessible from the standard 

bandstructure method. Cancelling the common factors produces the following result for the 

TEmodes: 

froct ~ L:g,g' H~Hg' (k +g) (k + g') d2
p 

fe = f f)P) L:g,gl H~Hg' (k +g) (k + g') d2p 

and correspondingly, for TM modes: 

(5.9) 

(5.10) 

Integration was carried out over a single unit cell using a simple trapezium rule. A suffi­

ciently large number of divisions were made to allow for convergence to the stated values. 

The results are shown in Table 5.1. The results agree with those available in the litera­

ture [13, 187]. The numerical results confirm the previous observation: at both symmetry 
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Figure 5.7: TM electric field profiles for the first (left column) and second (right 
column) bands at the high symmetry points shown in (a). For key see Fig 5.6. 
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see Fig 5.6. 
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Point 1st Band 2nd Band 1st Band 
(X point) (X point) (M point) 

TM mode II 0.8 0.3 I 0.9 
TE mode 0.1 0.2 0.9 

§.§. Refraction lProperties 

2nd Band 
(M point) 

0.6 
0.1 

Table 5.1: Electric field factors for TM and TE modes at the high symmetry X and 
M points. 

points the TM mode has a substantial difference in the confinement region for the two lowest 

order bands. Corresponding large differences are not seen for the TE modes. It should be 

noted that that whilst suggestive of a band-gap a high difference in energy confinement for 

two consecutive bands does not guarantee a band-gap and also band-gaps may exist without 

a significant difference in energy confinement [187]. 

Another manner for visualising why a TM complete band-gap exists is to consider the 

field forms for the two polarisations. A TE mode has an electric field which is in the in­

plane direction. Accordingly all TE modes will have a significant proportion of their electric 

field amplitude in both the dielectric rods and the background dielectric. A TM mode has an 

electric field which exists in the x direction only. This makes it possible for the field to have 

peaks inside the rods and nodes outside or vice-vera. The large refractive index difference 

between the two dielectrics may then be used to explain the production of wide band-gaps. 

5.5 Refraction Properties 

In the previous chapter (Section 4.12) a method was presented which enabled the re­

fraction angles to be calculated for plane-waves incident at an interface between a uniform 

material and a photonic crystal. The method utilised photonic dispersion surfaces to calcu­

late the propagation direction of a refracted wave. The higher the level of anisotropy present 

in the dispersion surface the greater the refraction properties of a photonic crystal will dif­

fer from those of a uniform material. In this section the previously described method is 

applied to the square lattice. The refraction properties are discussed in general prior to an 

optimisation study on bandstructure anisotropy. 

135 



Chapter 5. Square Lattice Calculatioi!1S 5.5. Refraction Properties 

5.5.1 Multiple Solutions 

The refraction properties of photonic crystals arise from interactions which occur be­

tween the incident light and the photonic bandstructure at a given frequency. It is evident 

from examining photonic bandstructures, for example those given in Fig 5.4 and 5.5, that it is 

possible for a structure to possess more than one wavevector solution in a specific direction at 

a given single frequency. For example, the T = 0.5a bandstructure in Fig. 5.5f clearly shows 

multiple solutions in the r - M direction at frequencies of around w = 0.6cj a. The num­

ber of solutions at a given frequency is an important consideration when designing photonic 

crystal structures for refraction applications. If, at the particular frequency of interest, mul­

tiple refraction angles exist then one of the main advantages of photonic crystals is negated. 

Photonic crystals are often considered for applications because of their low losses. The ex­

istence of multiple refraction angles may divide the intensity of the incident light between 

the refraction 'channels'. This section looks at dispersion surfaces in detail to calculate the 

frequencies at which a specific structure will exhibit a maximum of one refraction angle for 

the range of possible angles of incidence. 

Physical Solutions 

Consider the dispersion surface shown in Fig. 5.9a. The surface is for a square lattice 

consisting of alumina rods in air with a rod radius of r = 0.2a; it is for a low frequency 

(w = 0.3c/a) and the TE polarisation. In Section 4.13 it was explained that when a plane­

wave is incident on a photonic crystal structure the wavevector component parallel to the 

interface must be conserved. For Fig 5.9a if an incident wave has a wavevector which is 

directed in the positive ky, then it is the kz wavevector component which must be conserved. 

The wavevector component may be conserved by the use of a construction line of constant kz, 

shown for some arbitrary kz value in the figure. The construction line crosses the dispersion 

surface at two points which have been labelled A and B. The two crossing points create the 

possibility of two propagating solutions within the photonic crystal for a given kz value. If 

the incident wave coupled to the photonic crystal modes propagates from the lower left to 

the upper right direction then only solution B is a valid solution for the system. Point B is 

the only point possessing a positive slope (8w/8ky). indicating propagation in the positive ky 

direction. The positive slope gives a physically viable solution propagating to the right. Point 
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Figure 5.9: Equi-frequency curves for square lattice of alumina rods r = 0.2a at 
frequencies of a) w = 0.3c/a and b) w = 0.6c/a (TE modes) 
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A implies a propagating wave in the negative ky direction; which is physically forbidden 

given the incident wave propagation direction. The dispersion surface shown in Fig. 5.9a 

will consequently produce a single refracted wave from the incident wave. 

Negative Refraction 

It should be noted that the need for a physical solution does not negate the possibility 

of refraction angles which propagate in a direction opposed to those seen in conventional 

materials. This effect is often referred to as negative refraction, as a negative refractive index 

would be required to produce such an occurrence in a uniform material [188]. Such an effect 

is potentially of use for creating perfect lenses [191]. Consider Fig. 5.9b; the dispersion 

surface is for the same structure as described in the previous section for Fig. 5.9a. However, 

the system is now operating at a slightly higher frequency (w = 0.6c/a). In this instance 

a constant kz construction line has again been included, crossing the dispersion surface at 

points C and D. The physically valid solution propagating to the right is solution D. On 

this occasion the refracted wave possesses a propagation direction which is positive. Luo 

et al. [192] recently showed that rotation of a square lattice arrangement similar to that 

shown in Fig. 5.9b can provide a situation in which negative refraction occurs. Such effects 

using photonic crystals have been reported in the literature for an un-rotated hexagonal two­

dimensional lattice [193] and more recently for three dimensional structures [189, 190]. 

Single Solutions 

In general two or more physically acceptable refracted waves may exist for a single 

incident plane-wave. This is true in most situations apart from special cases such as the 

low frequencies considered previously. To identify structures which possess, at most, one 

refraction angle for all possible angles of incidence is a computationally intensive task. The 

only known rigorous method is an all inclusive scan through structure refractive index, rod 

radius, frequency and kz values. Given the limited computational resources available such 

an approach is impracticable. This remains true even if it is acknowledged that the plane­

wave requirements for the calculation may be relaxed due to the requirement, not for exact 

solutions, but merely for knowledge of another solution at the same kz value. 

Due to the impractical nature of the rigorous method a compromise method was re-
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quired. One possible approach would be to restrict the study to the examination of the two 

high symmetry directions, r-X and r-M. It is not sufficient to simply examine the num­

ber of solutions in either direction and reject those structures with two or more solutions in 

either direction. Such an approach would lead to situations similar to those shown in Fig 

5.9b to be rejected. The dispersion surface has two solutions in the r-M direction, however, 

if a constant kz line is imagined then it is evident that only a single refraction angle exists 

for each individual angle of incidence (each specific kz). The method which was adopted 

examined the r-X and f-M directions only, but also carried out a bandstructure calculation 

for each of the kz solutions in these directions. This allowed for confirmation that more than 

one refraction angle existed at this frequency and the configuration should be disregarded. 

The results of such an approach are shown in Fig. 5.10 for the TM polarisation. The 

results may be of interest for structure design and have been included in Appendix A for the 

TE polarisation. The results broadly indicate that for rods in air (for example Fig. 5.10) the 

lower the rod radii the larger the range of acceptable frequencies. This is attributable to the 

band compression effect discussed in Section 5.4.1; more solutions are likely to exist at a 

given frequency, and Brillouin Zone direction, as the bands compress. 

5.6 Bandstructure Anisotropy 

In the previous section results were provided for occasions when it was believed that 

there was a single allowed refraction angle across the entire Brillouin Zone. When looking 

for superprism behaviour such an approach is unnecessarily restrictive. The single refraction 

angle condition may be relaxed and in general multiple solutions will be permitted, provided 

that at the kz value of interest only one solution exists. 

Reference Directions 

One of the aims of this chapter was stated as optimising the anisotropy present in 

photonic bandstructures for structures based on the square lattice type. To optimise the 

anisotropy of a bandstructure requires a method for quantifying anisotropy. The simplest 

approach to adopt is to consider two Brillouin Zone directions and calculate the magnitude 

of the allowed wavevector in these directions at a particular frequency. Anisotropic band-
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Figure 5.10: Frequencies which exhibit single refraction angles, shown by the 
coloured shading, for the TM polarisation and a square lattice structure consist­
ing of dielectric rods in air. The results show a range of rod radii (indicated by 
different colours) and refractive index values of 2 (a), 3(b), 4(c), 5(d) and 6(e). 
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structures may then be described as existing when a large difference in the magnitude of 

the wavevector exists in the two directions. Whilst the approach is not a rigorous indication 

of anisotropy throughout the entire Brillouin Zone; it does offer the potential of identifying 

likely anisotropic candidates worthy of further investigation. It is possible to consider more 

than two directions. However, given the large range of possible structures and frequencies 

for consideration, it is sensible to restrict the choice of directions to the minimum number 

possible to gather the desired information. 

The method employed here for identifying bandstructure anisotropy makes use of the 

r-X and r-M directions. The choice of these two directions was the result of the experience 

gained from considering multiple dispersion surfaces. The method may be justified by the 

use of the example bandstructure given in Fig. 5.lla. At low frequencies it may be seen that 

the wavevectors in the two reference directions are of similar magnitude. An example low 

frequency dispersion surface has been plotted for a specific frequency in Fig. 5.1lb. The 

surface has a circular appearance indicating an isotropic bandstructure and uniform material 

type behaviour. The mid frequency indicated in Fig 5.11a produces the dispersion surface 

shown in Fig. 5.llc. It may be seen from the bandstructure diagram that the magnitude of 

the k solutions in the r-X and r-M directions differ slightly. The slight anisotropy creates 

a dispersion surface with refraction properties which differ from those of uniform materials. 

At the highest frequency indicated on the bandstructure (Fig. 5.11a) it may be seen that the 

k magnitude in the r-M direction differs by a significant amount from the magnitude in the 

r -X direction. The entire dispersion surface has been calculated and is shown as Fig. 5.lld. 

It possesses an anisotropic appearance with potentially interesting refraction properties. The 

two reference direction method would, in this instance, have allowed the two anisotropic 

dispersion surfaces to be successfully distinguished from the isotropic surface. 

Quantitative Results 

To assist with identification of anisotropic bandstructures it is of use to define an 

anisotropy ratio I: 

I(w) = lkr-M(w)l 
lkr-x(w)l 
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Figure 5.11: An example bandstructure (a) for a r = O.la system and aTE po­
larisation. Dispersion surfaces have been plotted for three different frequencies. 
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Quantity II Minimum I Maximum I Interval 

Rod radius 0.1a 0.5a 0.1a 
Index contrast 2 6 1 

Frequency 0.01 1.00 0.01 

Table §.2: Rod radii, refractive index contrast and frequency used for the anisotropy 
optimisation study. 

The isotropy ratio is extremely useful as it allows us to quantify the anisotropy level of 

a bandstructure in a computationally relatively cheap manner. To simplify the approach 

only dispersion surfaces with a single solution in both the two reference directions were 

considered. A value of approximately unity for the ratio indicates a roughly circular type of 

dispersion curve, for example Fig. 5.11b. A value of greater than 1 indicates that a degree of 

anisotropy exists in the bandstructure and consequently also in the dispersion surface. Using 

the examples in Fig. 5.11, 'c' has a value for the ratio of"" 1.5 and 'd' has a value of"" 2. 

It should be noted that in the following chapter a different method is used for identifying 

anisotropic dispersion surfaces as experience with the lattice type considered in Chapter 6 

indicated a more suitable method for the different lattice type. 

The range for the refractive index contrasts and rod widths considered in the study is 

given in Table 5.2. The refractive index contrast goes slightly beyond those available using 

current fabrication materials. Previously it was stated that the choice of the number of plane­

waves for the calculations dictated the convergence of the solution. When considering the 

large range of frequencies and structures utilised here it is evident that convergence to the 

1% level could not be achieved for all structures. For this reason, although higher refractive 

indices are considered, they are done so with the intention of qualitatively demonstrating if 

higher refractive indices and frequencies possess additional benefits. 

5.6.1 Results 

TE modes 

If the lowest refractive index (n = 2) and lowest rod radius (r = 0.1) are considered 

then the isotropy ratio {I) may be plotted as a function of frequency for the structure. Fig. 

5.12a shows a plot with three positions indicated. At low frequencies the ratio takes the value 

of approximately unity. 
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Figure 5.12: The anisotropy ratio plotted as a function of frequency for r 
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The corresponding dispersion surfaces are isotropic; for example the circular dispersion sur­

face shown in Fig 5.12b. The value of the ratio increases as the frequency approaches that of 

the shaded frequency range. The shaded frequencies represent a range of frequencies over 

which it is not possible to find a single solution in both the reference directions, a require­

ment for the calculation of the isotropy ratio. Such a situation may arise due to either a 

band-gap existing for either or both directions, or due to one or both of the directions pos­

sessing multiple solutions at the chosen frequency. The highest value of the ratio before the 

gap is approximately 2. 

The dispersion surface at point 'c' has been plotted in Fig. 5.12c. The surface is clearly 

a circular dispersion curve folded back into the Brillouin Zone. Such a dispersion surface 

possesses a point of interest around the M point. Around this point the high curvature of 

the dispersion surface implies that superprism behaviour may occur. However, there are two 

possible propagating refraction angles for each kz value around the point. Whilst it could be 

considered for refraction applications this will not be done here due to the potential division 

of incident power between the two refraction angles. 

The dispersion surface of most interest occurs at point 'd'. The point corresponds to 

the maximum ratio value in Fig. 5.12a. The dispersion surface at this frequency is shown 

by Fig. 5.12d. A single refraction angle will exist for a narrow range of kz values about the 

zero position. The dispersion surface is also highly anisotropic in this region indicating that 

the structure is an ideal candidate for further study of its refraction properties. The refraction 

properties are considered in Section 5.7. 

Rod Radius and Refractive Index 

Varying the rod radius, with the refractive index maintained at n = 2, will cause 

the bandstructures and their associated anisotropies to vary. The rod radius was varied in 

accordance with Table 5.2 and the resulting ratios, as a function of frequency, are given in 

Fig. 5.13. The results show several peaks, with ratio values of around 2. These would be 

expected to demonstrate similar behaviour to that shown in Fig. 5.12c. The most noteworthy 

value still remains the r = O.la value discussed in the previous section. 

The effect of varying the refractive index between the limits given in Table 5.2 was 

also investigated. Fig 5.14 shows the rod radii which gave the most significant values of 
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n II r I w (c/a) I I 

2 0.1a 0.97 4.1 
3 0.3a 0.97 3.8 
4 0.4a 0.87 2.8 
5 0.3a 0.96 5.1 
6 0.2a 0.64 1.9 

Table §.3: Highest anisotropy ratios for each refractive index value (TE polarisa­
tion). 

the anisotropy ratio at each refractive index. The results are summarised in Table 5.3. The 

results showed no great improvement in the anisotropy ratio with increased refractive index. 

The only structure to possess a similarly interesting value occurred for the structure with 

n = 5 and r = 0.3a. The dispersion surface was discarded due to the lack of advantages 

over the n = 2, r = O.la surface combined with a currently untenable refractive index 

and the previously discussed convergence issue. Thus, it was concluded that the optimum 

TE structure is the low refractive index, low rod radius structure described in the previous 

section. 

'fMModes 

Similar results to those of the TE polarisation were seen when the TM polarisation was 

studied. These are shown in Fig. 5.15 and Fig. 5.16. and summarised in Table 5.4. Note 

that the weakness of the simple ratio approach may be seen in Fig 5.16b. The ratio value is 

high but the surface is not continuous and consists of two isotropic curves. Whilst this is a 

possible failing of the ratio approach if any other high ratio values had existed for the same 

refractive index these would also have been considered. In this instance this was unnecessary 

as the other ratio values did not differ significantly from unity. The TM results also show no 

significant benefit from the use of high refractive indices and high rod radii. 
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Figure 5.15: TM anisotropy ratios for the rod radii with the highest peak values. 
The ratios have been plotted as a function of frequency (a, c, e) and the peak value 
dispersion surfaces are shown (b, d, f). 
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Figure 5.16: TM anisotropy ratios for the rod radii with the highest peak values. 
The ratios have been plotted as a function of frequency (a, c) and the peak value 
dispersion surfaces are shown (b, d). 

n II r I w (c/a) I I 
2 0.4a 0.55 2.8 
3 0.2a 0.94 2.1 
4 0.2a 0.73 1.7 
5 0.3a 0.83 1.8 
6 0.2a 0.87 2.2 

Table 5.4: Highest anisotropy ratios for each refractive index value (TM polarisa­
tion). 
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The previous section presented results for an optimisation study on bandstructure anis­

otropy for the square lattice type. The optimum system was selected as a structure with rods 

of refractive index n = 2 and radius r = O.la operating at a frequency of w = 0.97cja with 

TE polarised light. This section considers the refraction properties of such a structure using 

the method described in Section 4.12. 

5. 7. 11. ArrngRe §ell1lSiitiiviity 

Anisotropic bandstructures are likely to give a photonic crystal refraction properties 

which differ greatly from those of a uniform material. The dispersion surface for the op­

timum structure is shown in Fig. 5.17a. There is a limited range of kz values for which a 

single refraction angle exists. These are shaded on the diagram and limit the lkzl to less than 

0.1(27r/a). This is equivalent to limiting the angle of incidence to approximately 3 degrees. 

It is of interest to make a comparison between the photonic crystal refraction properties and 

those of a uniform material with the same average refractive index (n = 1.03). The simple 

application of Snell's Law, equation (4.105), produces the result that the angle of refraction 

for the uniform material would be less than 3 degrees. Fig. 5.17b shows the dispersion prop­

erties of the photonic crystal structure. Angles of refraction of up to 62 degrees are achieved 

for the narrow range of incident values. Such performance is comparable to the superprism 

effects reported for the more complex hexagonal lattice in the literature. For example Kokaka 

et al. [47] and also Park et al. [194] have reported values of the order of 70 degrees for a 7 

degree angle of incidence variation. Here a simple square lattice has been shown to produce 

comparable performance. 

5.7.2 Wave[ell1lgtlbt §eJnSiitiiviity 

In addition to a sensitivity to initial angle of incidence the anisotropic equi-frequency 

lines may be highly wavelength dependent. One of the possible applications suggested for 

superprisms is the separation of different wavelengths of light. This may be of use in wave­

length division multiplexing devices. Fig. 5.18 shows the dispersion properties for a 1% 

increase and 1% decrease in the incident frequency. It is immediately evident that the 1% 
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Figure 5.17: Dispersion surlace for an optimum structure (a). The refraction prop­
erties are also shown for changes in angle of incidence (b). In (c) the dispersion sur­
face for the optimum structure is shown with the black line indicating the original 
frequency, the green a 1% frequency increase and the red a 1% frequency decrease. 
The refraction properties are also shown (d). Note there is no 1% decrease line in 
(d) due to the existence of multiple refraction angles for a given angle of incidence. 
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decrease in frequency produces multiple refraction angles. For a 1% frequency increase the 

structure still possesses a single refraction angle. The dispersion properties for the 1% in­

crease have been plotted in Fig 5.18b. There is up to a 10 degree difference between the 

two curves in the figure indicating that the structure may be of use for wavelength separation 

applications. 

5.8 Conclusions 

Two-dimensional photonic crystals with a square lattice have been considered. Ini­

tially bandstructures were produced directly comparable to data available in the literature to 

ensure the theoretical methods described in Chapter 4 had been correctly implemented. The 

original work presented was a discussion of the refraction properties of photonic crystals 

and particularly the square lattice. Optimisation calculations were presented which showed 

a dramatic variation in the angle of refraction was achievable compared to a uniform medium 

with the same average refractive index. For a 3 degree variation in incident angle (± 1.5 de­

grees) a 120 degree variation(± 60 degrees) in refracted angle was predicted. However, the 

maximum angle of incidence was only 3 degrees before multiple refraction angles were seen. 

This makes the device only of use for very small angles of incidence. Wavelength variation 

effects were also seen with a 1% increase in wavelength causing up to a 10 degree variation 

in the angle of refraction. 
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Chapter 6 

Hexagonal Lattice Calculations 

6ol Introduction 

The hexagonal, or triangular, lattice type is the most commonly implemented for the 

fabrication of two-dimensional photonic crystal structures. The popularity of the lattice type 

is due to the advantages which it offers, compared to the square lattice, for band-gap applica­

tions. It is believed that structures which present the most spherical (for three-dimensional) 

or circular (for two-dimensional) Brillouin Zones offer the greatest potential for large abso­

lute photonic band-gaps [195, 197]. In the previous chapter it was stated that the presence of 

complete band-gaps was not a necessity for the existence of enhanced dispersion character­

istics. This was further confirmed by the identification of an optimum structure which did 

not possess a complete band-gap. However, the higher order of symmetry of the hexagonal 

lattice Brillouin Zone may provide the potential for the lattice type to also display improved 

dispersion characteristics. 

Superprism behaviour is attributable to the sharp features of anisotropic dispersion sur­

faces. In the previous chapter bandstructure anisotropy was considered through the exami­

nation of the difference in wavevector magnitude for equi-frequency surfaces in the direction 

of the high symmetry points, r- X and r- M. A large difference implied high curvature 

between the two points. The hexagonal lattice also possesses two high symmetry points. 

However, the complete hexagonal unit cell contains 12 such symmetry points compared to 

8 for the square unit cell. The additional unit cell symmetry is expected to produce a higher 

number of sharp features per unit cell. More importantly, if the difference between the max-
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Figure 6.1: The hexagonal lattice type with a lattice constant a and rods of diameter 
2pa. The lattice consists of dielectric rods with a different refractive index to the 
background medium. A hexagonal unit cell is outlined in black demonstrating the 
repeating unit from which the entire crystal is assembled. 

imum and minimum wavevector magnitudes is similar, then the surface curvature must be 

greater to allow for the increased number of maximum and minimum values in the Brillouin 

Zone. In this chapter the refraction properties of the hexagonal lattice type are considered. 

A number of superprism studies involving the hexagonal lattice type are available in 

the literature [47,48, 194, 196]. Existing studies have tended to focus on testing fabricated 

structures to determine their dispersion characteristics. In this work an alternative, less re­

strictive theoretical method of study is adopted. The study was undertaken with the aim 

of optimising the dispersion characteristics for the hexagonal lattice type. In this chapter a 

general discussion of electromagnetic fields of the hexagonal structure precedes the main re­

fraction study. Dispersion characteristics are discussed and a systematic range of structures 

is considered allowing the superprism effect to be optimised with respect to refractive index, 

rod radius and frequency. 

6.2 The Hexagonal Lattice 

A two-dimensional hexagonal lattice is shown in Fig. 6.1. The lattice is also often 

referred to as a triangular lattice. The simplest spatially repeating unit which may be used 

to construct the entire lattice is a hexagon. Accordingly, throughout this work the lattice is 

referred to as the hexagonal lattice. 
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a + b : ~(0.2) 

• 
a-b : ~ ~JJ.o) 

Figure 6.2: The hexagonal unit cell (grey) contains a single uniquely owned lattice 
point and six other lattice points each shared with three other unit cells. The figure 
shows the lattice points with their coordinates and additionally the single lattice 
point Wigner-Seitz unit cell (pink). 

Figure 6.3: Brillouin Zone (light green) for hexagonal lattice type with lattice con­
stant a. Construction lines are shown with reciprocal lattice vectors in green and 
their bisectors indicated by dashed orange lines. 
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6.2.1 Primitive Lattice Vectors 

The two-dimensional hexagonal lattice of interest may be constructed from primitive 

lattice vectors in a manner similar to that previously applied to the square lattice. It is useful 

to define the full three-dimensional primitive lattice vectors as these may be used to derive 

the reciprocal lattice vectors. The primitive lattice vectors are given in equation (6.1), with 
A A A 

i, j and k unit vectors in the x, y and z directions respectively. The two in-plane vectors, 

a and b have also been indicated on Fig. 6.2 along with the lattice constant a. In addition 

Fig. 6.2 shows the Wigner-Seitz primitive unit cell. This is a representation of the unit cell 

with a single lattice point per unit cell. The Wigner-Seitz unit cell is particularly useful as 

it also gives the first Brillouin Zone when the lattice is converted into reciprocal space. In 

a general three-dimensional hexagonal lattice the two-dimensional hexagonal planes would 

be separated by some arbitrary distance, c. Hence, 

a - J3 (~) 3 + (~) k 

b - -J3 (~) 3 + (~) k 

c - ci (6.1) 

The two-dimensional lattice vectors, R, give all the possible in plane lattice points 

within the structure through the linear combination of the appropriate primitive vectors. The 

entire crystal lattice, consisting of multiple unit cells, can be calculated through the use of a 

range of positive and negative values for the integers na and nb in equation (6.2). 

(6.2) 

6.2.2 Reciprocal Lattice Vectors 

The plane-wave bandstructure calculation utilises a summation over reciprocal lattice 

vectors making it necessary to construct the primitive reciprocal lattice vectors. These may 

be calculated from the definition of a reciprocal lattice vector, together with the requirement 

that g · R = 2mr (from equation 4.16). Equation (6.3) shows this condition for the system 
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under consideration. A, B and C are the primitive reciprocal lattice vectors. 

R · g (naa + nbb +nee) 

· (n~A + n~B + n~C) = 2mr (6.3) 

Equation 6.3 is assured through the choice of primitive reciprocal lattice vectors of the 

form given in equation (6.4). The well known property of the cross product, x · (x x y) = 0, 

for any two vectors x and y has been applied [87]. 

A 2 b x c 2rr [ 1 ~ :k] 
7r a · b x c = --;; J3J + 

B c x a 2rr [ -1 ~ A l 
27r =- --J +k 

a·bxc a J3 
27rA c - -i (6.4) 
c 

For the bandstructure calculation the complete set of two-dimensional reciprocal lattice 

vectors are required. These are given by equation (6.5), where nA and n 8 are integers which 

differ from the real space integers: 

(6.5) 

6.2.3 Brillouin Zone 

The reciprocal lattice vectors are shown in Fig. 6.3 together with the Brillouin Zone 

for the hexagonal structure. For a description of the construction of Brillouin Zones from re­

ciprocal lattice vectors see Section 5.2. The Brillouin Zone possesses three symmetry points 

of interest; the r, M and K positions which are (0,0), 2rr/a(1J3,o) and 2rr/a(1J3, 1/3) 

respectively. The symmetry of the Brillouin Zone significantly reduces the range ofwavevec­

tors over which bandstructure calculations must be performed. The reflection and rotation 

of a r-X-M segment allows the complete Brillouin Zone to be described using calculations 

performed over the irreducible segment, one twelfth of the size of the complete Brillouin 

Zone. This leads to large computational savings. 
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6.3 Results 

6.3.1 Convergence 

In Section 5.3 the number of terms required in the Fourier expansion of the dielectric 

constant was considered for the square lattice. In this section convergence is considered for 

a hexagonal structure consisting of air holes (n = 1, r = 0.2728a) with an oxide coating 

(n = 1.5, r = 0.3443a) in a background material of GaAs (n = 3.42). The structure was 

chosen to coincide with an experimental structure fabricated by Krauss et al. [46) which is 

used in the following section as an example of a bandstructure calculation of a hexagonal 

lattice. 

Initially convergence was considered for the first six bands at the r point and for both 

the TE (Fig. 6.4a) and TM (Fig. 6.4b) modes. The results indicate that the sixth frequency 

band required the highest number of plane-waves for convergence to be achieved for the TM 

polarisation and the fourth band for the TE polarisation. Concentrating on the sixth band for 

the TM and fourth for the TE, Fig 6.4b shows the convergence at the three high symmetry 

points within the Brillouin Zone. The point identified as the slowest to converge was the r 
point for the TM polarisation. The final plot in Fig 6.4e examines the effect of the rod radius 

(with no oxide layer) at this point to aid the choice of a suitable number of plane-waves to 

produce the required level of accuracy. The choice of 805 plane-waves for the hexagonal 

lattice will give convergence to approximately 1% of the 1945 plane-wave solution for all 

rod radii. Although 805 plane-waves were used in Section 6.2, as previously (Section 5.3), 

the optimisation study made use of fewer plane-waves (337) due to the limitations imposed 

by the available computational resources. 
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Figure 6.4: Convergence for a hexagonal lattice type (relative to 1945 plane-wave 
solution) as a function of band for the TM modes (a) and TE modes (b). The ef­
fect of position within the Brillouin zone on convergence is also shown (c) and the 
slowest to converge point has its convergence considered as a function of rod radius 
(d). 
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Figure 6.5: Bandstructure calculations for the structure consisting of 27% air (n=1), 
16% oxide (n=l.5) and 57% semiconductor (n=3.42). Both the TE (a) and TM 
(b) bandstructures are shown and demonstrate exact agreement with the literature 
values to the number of significant figures quoted. 

6.4 Bandstructures 

A comparison may be made with literature values for standard bandstructures to enable 

the validation of the basic bandstructure routines used in this study. In this section a structure 

fabricated by Krauss et al. [46] was selected from the literature to serve as an example 

structure. The particular example was selected due to the bandstructures being presented 

with numerical values at various bandstructure points. Figure 6.5 shows agreement, to at 

least the published number of significant figures, between the code used here and the results 

published in the reference. The following sections make use of similar algorithms to those 

used for the standard bandstructure calculation. The agreement with literature values for the 

standard bandstructures allows for confidence with the implemented algorithms. 

6.4.1 Field Profiles 

Field profiles help in understanding the advantages of the hexagonal lattice over the 

square lattice for band-gap applications. In Section 5.4 the square lattice was seen to possess 

a band-gap for the TM polarisation. This was explained by the concentration of the electric 

field in either the rods or the background material for the first two bands. If the bandstructure 

diagrams in Fig. 6.5 are examined then it may be seen that the TE mode for this particular 

hexagonal structure possess a complete band-gap. TE band-gaps are known to be favoured 

by structures which contain connected veins rather than holes or rods [187]. Consider the TE 
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TE 

K point 
M point 

TM 

K point 
M point 

Band 1 
0.04 
0.05 

Band 1 
0.02 
0.02 

6.4. Bandstructures 

Band 2 Band 3 
0.73 0.32 
0.56 0.53 

Band2 Band 3 
0.02 0.02 
0.02 0.01 

Table 6.1: The fraction of the electric field energy found in the holes forTE and 
TM modes at the high symmetry X and M points. The structure is taken from [46]. 

field profiles shown for the first two bands of the hexagonal lattice in Fig. 6.6. It may be seen 

that the system acts as a veined structure with veins which are the regions between two holes. 

For example, the region around (0.58a,O) in Fig 6.6d or the region around ( -0.2a,l.2a) in 

Fig. 6.6f. The first band has the majority of the field intensity in the holes and the second 

band in these veins. To aid with the comparison the proportion of the electric field intensity 

present in the rods (including coating) has been calculated from equation (5.8). These are 

shown in Table 6.1. A significant fill factor difference may be seen between the first and 

second TE bands. 

If the TM mode is considered, see Fig. 6.7, then the structure is seen to be acting as a 

series of 'spots' or rods. The spots are the regions where three holes meet. For example the 

region around (0.5a, 2a) in Fig. 6.7d, or the region around (0.9a,0.6a) in Fig. 6.7f. Although 

there is no complete band-gap for this particular hexagonal structure the spot like behaviour 

of the lattice does suggest there may be for different structures based on the same lattice 

type. This is discussed further in the following section. 

6.4.2 Complete Band Gap 

It has been explained that the hexagonal lattice is of particular interest for photonic 

band-gap applications as it can possess a large absolute photonic band-gap. The hexagonal 

lattice considered in the previous section did not possess an absolute band-gap. However, if 

a uniform high refractive index background is considered with air holes then it is possible to 

achieve an absolute band-gap. Fig. 6.8 shows the frequency width of the absolute band-gaps 

against hole radii for a range of refractive index backgrounds. Provided that the refractive 
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Figure 6.6: TE magnetic field profiles for the first (left column) and second (right 
column) bands at the high symmetry points indicated. For the second band at the 
K point one of two degenerate solutions has been plotted. Note that (a) shows the 
dielectric pattern of the structure plotted from the Fourier coefficients. For key see 
Fig 5.6. 
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Figure 6.7: TM electric field profiles for the second (left column) and third (right 
column) bands at the high symmetry points indicated. For the second band at the K 
point one of two degenerate solutions has been plotted. For key see Fig 5.6. 
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Figure 6.8: Width of absolute band-gaps for a variety of refractive indices and rod 
radii. 

index contrast and hole radii are of suitable values then the figure shows absolute band-gaps 

exist. As previously stated this is due to the hexagonal lattice acting as connected veins for 

the TE polarisation and isolated spots for the TM polarisation. 

If the bandstructure for the optimum structure is considered (Fig 6.4) with a back­

ground index of 5 and a rod radius of r = 0.46a, then the complete gap can be seen. The 

gap opens up above the first and second TE modes, and second and third TM modes, thus 

allowing a gap in both frequencies for a range of values. The interest from the point of 

view of refraction studies on the hexagonal lattice is the effect of this band-gap on the band 

anisotropy around it. The TE and TM bands for the optimum structure are shown below. 

These can be compared to the earlier bandstructures for the hexagonal lattice which do not 

show a complete band-gap. The presence of the band-gap seems to compress the bandstruc­

ture either side of it leading to there being less chance of single refraction angle conditions. 

However, the effect on bandstmcture anisotropy is not clear without further investigation, 

M 
W.vc-.·cc1or WI\'C''tt\:lor 

(a) (b1 

Figure 6.9: The TE (a) and TM (b) bandstmctures for the optimum absolute band­
gap structure. The range of frequencies forming the absolute band-gap are shaded. 
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although just above the TM band gap there appears an area of high potential for anisotropic 

bandstructures. 

6oS Refraction Properties 

6.5.1 lBanullstrlllldumre Anisot!l'opy 

The enhanced refraction properties of photonic crystals arise due to the sharp features 

in equi-frequency dispersion surfaces. In the previous chapter an anisotropy ratio was used 

as a suitable indicator for the existence of highly anisotropic dispersion surfaces. When the 

hexagonal lattice was considered it was evident that the sharp features of interest tended 

to occur in either the r- M orr- K directions. Rather than considering anisotropy in 

terms of the wavevector magnitude in two reference directions, a more direct indicator of 

refraction properties was used. The interesting refraction properties of photonic crystals 

arise due to 'peaks' in the dispersion surface. The sharper an individual peak, the greater the 

angular deviation for wavevectors which interact either side of it. The two natural reference 

directions were used, r- M and r- K. However, rather than simply considering the level 

of anisotropy of a dispersion surface, the additional computational expense was undertaken 

to calculate the sharpness of the dispersion surface in the two reference directions. 

6.5.2 Gradient Method 

To demonstrate the approach employed consider the previously shown TM bandstruc­

ture for the Krauss et al. experimental structure, shown again as Fig. 6.10a. The standard 

bandstructure plot has three frequencies of interest indicated. The dispersion surface for the 

lowest frequency (w = 0.15c/ a) indicated is shown in Fig. 6.10b. The dispersion surface is 

an uninteresting circular pattern. If the gradient of the surface was calculated in the r - M 

direction it would be a large number. To assist with identifying interesting structures it was 

decided to examine the inverse gradient, dkz/dky. The quantity was evaluated using a point 

on the dispersion surface in the r- M and a point on the surface with a wavevector direction 

which differed by 1 degree. A small number for the quantity would therefore correspond to 

approximately circular type behaviour and, easily identifiable, large numbers to interesting 
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Figure 6.10: A bandstructure is shown (a) with three frequencies indicated for 
further consideration. The lowest frequency indicated produces a circular dispersion 
surface (b), the middle frequency a slightly anisotropic surface (c) and the highest 
frequency a highly anisotropic surface (d). 
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features. 

For the r - K reference direction, rather than directly considering this direction the 

equivalent r - K' direction was used. This allows for easier comparison between the two 

reference directions through the use of the gradient and inverse gradient. If the gradient 

(dky/ dkz) is considered at the dispersion surface in the r - K' direction then a low number 

is also equivalent to circular behaviour. 

To see how this worked in practice consider the frequency of w = 0.26cja, in Fig. 

6.10c. The dispersion surface has some increased curvature around the r - K' direction, 

which will produce a slightly larger gradient in this direction. The r - M direction in this 

instance shows little curvature and accordingly a low inverse gradient. The final frequency 

indicated for discussion is at w = 0.35c/ a and produces a star type pattern. In the r - K' 

direction the gradient is low but the inverse gradient is large in the r - M direction. The 

gradient method provides a more direct method to examine the potential of a structure for 

superprism behaviour. 

6s6 Optimisation Results 

The strategy selected for finding the optimum hexagonal structure and frequency was 

similar to the approach adopted in Section 5.6 for the square lattice. The same range of 

refractive indices, rod radii and frequencies were considered (see Table 5.2). However, in 

this instance the structures considered consisted of circular air holes in a higher refractive 

index background material. The choice was believed to correspond with the most convenient 

arrangement for structure fabrication. 

The inverse gradients for the r- M direction were calculated using the complex band­

structure methods to find the real solutions in the directions with angles of() = oo and() = 1° 

to the y-axis. Similarly in the r - K direction gradients were found by conducting complex 

bandstructure calculations at angles of() = 89° and() = 90°. The entire range of values was 

considered and the largest magnitude gradients (or inverse gradients) were found for each 

polarisation at each refractive index value. The results are given in Table 6.2 for the r - M 

direction, and in Table 6.3 for the r - K direction. Only instances when a single curve 

existed in the direction of interest were considered. 
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Whilst no significant trends were identified from the table it is possible to identify the 

extreme values; both large positive and negative values were found. The difference between 

a positive and negative gradient may be seen by considering Fig. 6.11. The figure shows 

the TEn = 4, r = 0.41a, w = 0.41c/ a dispersion surface, which has a positive gradient in 

the r - M direction. It may be seen that a positive gradient, or inverse gradient, indicates 

a surface where the wavevector in the direction of interest is at a minimum, rather than the 

usual maximum value on the surface. 

From the results four main points were identified for further consideration, the sharpest 

features for both the TE and TM polarisations at both the M and K points. The correspond­

ing dispersion surfaces are shown in Fig. 6.12. The surfaces show that peaks may be pro­

duced in either the r - M or r - K directions. The optimum structure structure is clearly 

the TM polarisation dispersion surface with n = 2, r = 0.4a and w = 0.65c/ a. The low 

refractive index is beneficial as it means that convergence is to a higher level than would be 

seen for the higher refractive index contrast structures. 

ky (2rcla) 

Figure 6.11: An example of a positive gradient in the r- M direction. The disper­
sion surface is for n = 2, r = 0.4a and w = 0.65c/ a. 
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TE 
Refractive Index Rod Radius Frequency 1/Gradient 

2 0.3 0.63 -0.1 
3 0.4 0.58 -0.5 
4 0.1 0.41 0.3 
5 0.1 0.33 0.2 
6 0.3 0.74 0.1 

TM 
Refractive Index Rod Radius frequency 1/Gradient 

2 0.4 0.65 -1.4 
3 0.5 0.71 -0.3 
4 0.5 0.64 -0.2 
5 0.5 0.57 -0.3 
6 0.5 0.51 -0.2 

Table 6.2: Extreme inverse gradient values for the r - M direction. 

TE 
Refractive Index Rod Radius Frequency Gradient 

2 0.3 0.78 -0.4 
3 0.3 0.55 -0.2 
4 0.2 0.63 0.2 
5 0.3 0.61 -0.2 
6 0.3 0.51 -0.1 

TM 
Refractive Index Rod Radius Frequency Gradient 

2 0.1 0.34 -0.6 
3 0.1 0.23 0.2 
4 0.1 0.17 -0.5 
5 0.3 0.58 -0.2 
6 0.5 0.75 0.4 

Table 6.3: Extreme gradient values for the r - K direction. 
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Figure 6.12: The sharpest dispersion sutfaces identified for features in both the 
f- M and r - K directions. a) TEn= 3, r = 0.4a, w = 0.58cfa b) TM n = 2, 
r = 0.4a, w = 0.65cja c) TEn= 2, r = 0.3a, w = 0.78 d) TM n = 2, r = O.la 
w = 0.34cfa. 
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6o 7 Dispersion Characteristics 

The previous section identified the optimum hexagonal structure and frequency for en­

hanced dispersion characteristics. In this section the refraction characteristics of the structure 

are calculated using the method given in Section 4.12. The light is incident in the positive y 

direction, hence the wavevector component parallel to the interface is the kz component and 

this must be conserved at the interface. The optimum structure is shown in Fig. 6.13a with 

the single refraction angle kz range indicated by the shaded region. The dispersion charac­

teristics are shown (Fig. 6.13b) for situations when there is only one refraction angle. This 

limits the angle of incidence to ± 25 degrees which is much larger than the range found for 

the optimum square lattice in the previous chapter. 

6.7.1 Angular Deviation 

Fig 6.13b shows how the angle of refraction varies as the angle of incident is increased. 

The plot shows a peak at 2 degrees which produces an angle of refraction of 74 degrees. A 4 

degree change in the angle of incidence is able to produce a deviation of 148 degrees in the 

refracted wave. The performance is superior to that calculated for the square lattice and that 

published by Kosaka et al. [47] for their experimental hexagonal structure. Their complex 

structure produced angular deviations approximately 10 times the incident angle deviations. 

The results shown here demonstrate a refracted angle deviation 37 times the incident angle 

deviation. It is also interesting to note the negative refraction angles. These occur for angles 

of incidence above 20 degrees, or kz values above 0.2a-1• 

6. 7.2 Frequency Deviation 

One of the potential applications suggested for superprism devices is for the separation 

of a multiple frequency beam into its individual component frequencies. The frequency 

sensitivity of the optimum structure was considered by calculating the effect of a 1% increase 

or 1% decrease in incident frequency. The effect on the dispersion surface may be seen in 

Fig 6.13c. 
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Figure 6.13: The optimum structure (a) is shown with the single refraction angle 
kz range shaded. The corresponding refraction characteristics are shown in (b) . The 
effect of a 1% increase (green) and 1% decrease (red) in frequency are also shown 
for both the dispersion surface (c) and the refraction characteristics (d). 
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The increase in frequency caused the dispersion surface to collapse maintaining the star 

shape but slightly reducing the range of available kz values. The decrease in frequency 

caused a gap to occur in the r - M direction which corresponds to a gap in the refraction 

properties of the structure between approximately ± 4 degrees. The effect of the 1% increase 

in frequency on the refraction characteristics may be seen in Fig. 6.13d. For a 2 degree 

angle of incidence the refraction angle is 62 degrees, a change of 12 degrees on the original 

frequency. Fig. 6.13c shows that a 1% decrease in the incident frequency is responsible 

for extinguishing the refracted wave at the 2 degree angle of incidence. This is due to the 

absence of a real wavevector solution at this frequency in the direction of interest. 

In this chapter two-dimensional photonic crystals formed using a hexagonal lattice 

were studied. The aim was to optimise the refraction characteristics of such a structure with 

respect to hole radius, background refractive index and frequency. The strategy for finding 

the optimum structure calculated the gradient of dispersion surfaces in the direction of the 

two high symmetry points, r- M and r- K. A range of refractive indices, rod radii and 

frequencies were considered and the optimum situation was found as a background refractive 

index of n = 2 with air holes of radius r = 0.4a, operating at a frequency of w = 0.65c/ a for 

TM polarised light. The structure was calculated to produce a 148 degree angular variation 

in the refracted beam direction for just a 4 degree change in the angle of incidence. This 

behaviour is believed to be superior to those published in the literature. Such a structure 

could form the basis of a beam steering and focusing device. The results presented show 

that considerable scope still exists for the fabrication of superprism structures beyond those 

currently employed. The structure also demonstrated a sensitivity to incident frequency with 

a 1% change in incident frequency producing a 12 degree change in the angle of refraction. 

The optimisation study was limited by the consideration of only occasions where a 

single angle of refraction exists. The multiple refraction angle problem is considered in the 

following chapter. 
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Interface Matching 

7ol Introduction 

In this chapter an interface matching calculation is presented which allows the physics 

present when an electromagnetic wave impinges on an air/photonic crystal interface to be 

examined. The method allows the amplitudes of the individual Bloch waves propagating 

within the photonic crystal structure to be calculated. This is useful for determining the 

suitability of a particular configuration for superprism applications. A crucial factor for 

actual devices is the proportion of the incident intensity which couples to the superprism 

refraction 'channel' and the matching method presented enables this to be calculated. 

The enhanced refraction properties of the hexagonal lattice were studied in the previous 

chapter with a restriction placed on the allowed kz values. It was stated that the optimisation 

study would be limited to occasions when only a single angle of refraction existed for a 

single angle of incidence. This effectively limited the study to a small range of possible 

structures and frequencies. In general more than one band will exist in a bandstructure at a 

given frequency and accordingly multiple angles of refraction will exist. This is particularly 

true as higher frequencies are considered. Superprism work in the literature has not fully 

investigated the effects of moving to higher order bands. When multiple refraction angles 

exist the interface matching method described in this chapter may be used to determine 

whether an arrangement would channel significant power into the Bloch waves required for 

superprism behaviour to occur. The interface matching calculation makes use of the complex 

bandstructure calculation method which was described in Chapter 4. In this chapter complex 
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bandstructures are explained in greater detail together with the theory required for their use in 

interface matching. The results of such interface matching calculations are then presented for 

two optimum hexagonal lattice configurations, the single refraction angle optimum structure 

and a multiple refraction angle optimum structure. 

7 o2 Compiex Bandstructuures 

Bandstructures were initially introduced as the set of allowed real frequencies for all 

real wavevectors within a range of values inside a full Brillouin Zone. Complex bandstruc­

tures are the full set of real, imaginary and complex wavevectors (within the Brillouin Zone) 

over a range of frequency values. The nature of complex bandstructures is considered in 

more depth here prior to their use for interface matching. To our knowledge complex band­

structures for photonic crystals have not been considered in depth in the literature. However, 

their properties are analogous to those of electronic complex bandstructures [198] and this 

section draws from that analogy. 

7.2.1 Bloch States 

Bloch's theorem gave the form of the magnetic field in a photonic crystal as a summa­

tion of individual Bloch waves corresponding to the different solutions of the bandstructure 

calculation. If the TE polarisation is considered as an example, the solution for a particular 

frequency and wavevector, k, may be labelled ¢k (p) and written in the form: 

(7.1) 
g g 

The Bloch wave is itself formed from a product of a non-cell periodic term eik·p and a sum of 

terms, Hgeig·p, with the same periodicity as the underlying lattice. If the photon wavevector 

k has an imaginary component, i.e. k = kreal + i~mag• then the Bloch states for this 

particular wavevector will each have a real exponential coefficient. The Bloch wave may 

therefore be written in the form: 
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¢k(P) = e±k;mag'Peikreal"P 2: Hgeig·p 

g 

(7.2) 

The Bloch wave has the same form as before except that it now possesses a factor that expo­

nentially increases or decreases with distance. Both the increasing and decreasing solutions 

are perfectly valid mathematical solutions and may be included in complex bandstructure 

plots. These states may or may not have any real physical significance and this depends on 

the context. 

7 .2.2 Bandstructure Plots 

At a particular frequency the total magnetic field in a photonic crystal will be a sum of 

Bloch waves with differing wavevectors. The complex bandstructure calculation calculates 

these when one of the wavevector components is fixed. The number of plane-waves chosen 

for the calculation, once again, gives the total number of solutions computed by the band­

structure calculation. In the original bandstructure method an increased number of plane­

waves gave rise to an increased number of higher order frequency bands. In the complex 

bandstructure calculation an increased number of plane-waves corresponds to an increased 

number of k vectors at a given frequency. Since the number of real solutions is finite these 

additional solutions must be imaginary or general complex. The higher magnitude imaginary 

terms are associated with more rapidly decaying, or increasing, states. 

Fig. 7.1 shows a complex bandstructure for the optimum hexagonal lattice identified 

in the previous chapter. Complex bandstructures involve four distinctly different types of nu­

merical solutions; purely real (shown in black), purely imaginary (blue), general in-Brillouin 

zone (dashed orange) and general at-the-Brillouin zone edge (green). Purely real solutions 

are equivalent to those produced by the original bandstructure calculation. Purely imaginary 

solutions and those at the Brillouin Zone edges are decaying, or increasing, solutions with 

different rates of decrease or increase. The general in-zone solutions occur between maxima 

and minima in a bandstructure to conserve the number of solutions. This number is dictated 

by the fixed number of reciprocal lattice vectors included in the plane-wave expansion. The 

need for conservation of the number of solutions follows the 'rule' proposed by Heine [199] 

for electronic complex bandstructures. 
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Figure 7.1: TM complex bandstruture for a hexagonal (n = 2, r = 0.4a) structure. 
Purely imaginary (blue), purely real (black), general at Brillouin Zone edge (green) 
and general in-zone (dashed orange) solutions are shown. 
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Each general solution containing a real and imaginary part exists in a set of 4 with 4 different 

ks corresponding to ±kreal and ±kimag; a pair of solutions exists at +kreal and at -kreal• 

giving the 4 solutions in total. At any frequency in the bandstructure the total number of 

solutions must be constant. This conservation of solution number provides a useful checking 

mechanism for identifying unique and repeated solutions. A further checking mechanism for 

the consistency of the computed bandstructure may be achieved by inputting the computed 

k values back into the standard bandstructure calculation and comparing the results. 

7 .2.3 Complex Bandstructure Convergence 

Convergence tests were performed on the original bandstructure calculations. However 

this is no guarantee of convergence of the complex features of the bandstructure, particularly 

as the TM method makes use of a different approach to that used for the calculation of real 

bandstructures. Convergence tests are normally performed on a significant feature in the 

bandstructure, which is examined for a different number of plane-waves. The application 

being considered for complex bandstructures is interface matching; the most influential fea­

ture in the imaginary plane for this application is the lowest magnitude imaginary solution. 

This is due to this feature containing the exponential term which decays the least rapidly. 

For this reason convergence tests were performed on the first solution in the imaginary plane 

for both the TE and TM polarisations with a medium index contrast (n = 4) and a medium 

rod radius (r = 0.3a). The results are shown in Fig. 7.2. Rapid convergence exists for both 

polarisations. The TE polarisation was already converged to 1% (relative to 1945 plane-wave 

solution) with the lowest number of plane-waves tested (27). Similar convergence was seen 

for the TM polarisation for a choice of 69 plane-waves. The choice of 337 plane-waves made 

in the previous chapter for the optimisation study would appear to be sufficient to give rea­

sonable convergence for the complex features, especially the most significant low magnitude 

features. 

7.3 Interface Matching 

The matching calculation follows as a progression from the complex bandstructure 

calculations presented in Chapter 4. The arrangement under consideration is an air/photonic 
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~ 
~ 

Figure 7.2: Convergence tests for imaginary solutions. The lowest magnitude 
imaginary solution is considered at a mid frequency at the r point. 

crystal interface, as shown in Fig. 7.3. The main propagation direction is they direction as 

this allows access to the feature of interest in the dispersion surface of the optimum single 

refraction angle hexagonal structure (Fig. 6.13a). For the electromagnetic fields to be con­

tinuous across the interface the tangential electric field and tangential magnetic field must be 

matched on either side at the interface. This will be sufficient for the matching calculation 

although it should be remembered that the remaining field components must also be contin­

uous across the interface. The matching calculation involves all states at a given frequency. 

This explains the need for the complex bandstructure calculation previously described. The 

imaginary and general complex solutions produced by the calculation contain both increas­

ing and decaying solutions. For the application under consideration the region to the right 

of the interface is unbounded, and any solutions which increase with distance from the in­

terface will represent unphysical solutions in this instance. The increasing magnitude of the 

solutions implies increased total energy, making the solutions inconsistent with conservation 

of energy. For the interface matching calculation only attenuated solutions have a physical 

significance. 
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Figure 7.3: Matching was carried out for an interface consisting of air on the left 
and photonic crystal on the right. The planar interface is at y = a. 

7 .3.1 TE polarisation 

Photonic Crystal (RHS) 

The planar interface is assumed to exist at some arbitrary position y = a with a pho­

tonic crystal structure lying in the region y > a and air in the region y < a. For the TE 

polarisation H is entirely in the x direction and the general solution for H in the photonic 

crystal is constructed from some linear combination of the allowed Bloch waves within the 

photonic crystal. The notation Hn may be introduced to denote each individual solution at a 

specific frequency. If bn is used as the coefficient for each Bloch wave then it may be written 

that: 

(7.3) 
n 

If the label g is used to corresponding to one of the set of reciprocal lattice vectors then each 

of the allowed Bloch waves, Hn, will consist of a sum of Bloch states with coefficients H;: 

Hn (y, z) = ~ H;ei(k+g) ·p 

g 

(7.4) 

The allowed Bloch waves are the solutions to the complex bandstructure calculation pre­

sented in the photonic crystal theory chapter. The calculation produces eigenvalues which 
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give the k; wavevector components (of kn) and eigenvectors which provide the H; coeffi­

cients for each Bloch state. 

The symmetry of the system demands that kz is the same on both sides of the interface 

or matching cannot occur. On the right-hand side (RHS) of the interface the valid ky solu­

tions are a subset of the ky values produced by the complex bandstructure calculation. The 

solutions for inclusion are those which allow the magnetic field to either propagate, or to 

decay, to the right of the interface. All other solutions will represent un-physical situations 

for the given arrangement. 

At the interface y = a and a Bloch wave within the photonic crystal can be expanded 

in the form: 

Hn (y =a, z) = L H;ei(k;+uy)aei(k~+g.)z 
g 

(7.5) 

It is possible to simplify the appearance of the expression by grouping together terms with 

the same 9z value. These may be included in a new term, say P~, to leave a summation over 

9z values only: 

Hn (y =a, z) = L P;:ei(k~+g.)z 
9z 

P~ contains Bloch states with the same 9z values and is given by: 

pn = ~ Hnei(k;I+uy)a 
9z L..; g 

same 
9z 

(7.6) 

(7.7) 

For the case under consideration further simplification may be made by choosing the position 

of the air/photonic crystal interface as the special case where a = 0. Each P~ is then simply: 

p;: = L H; = L H;,<Sg. ,g~ (7.8) 
same g/ 
9z 

A second set of reciprocal lattice vectors, g's, has been introduced to simplify the notation. 

The set will be of the same form as the original set describing the photonic structure period-
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icity. 

Air (LHS) 

A uniform material was chosen for the left-hand side (LHS) of the interface, although 

the calculation could in principle have been for another photonic crystal structure. The 

uniform refractive index was taken as nr(w), and it was assumed that the approximation 

nr(w) = nr, could be made for the material. Uniform media, like photonic crystals, may 

also be considered as possessing a variety of allowed ky solutions, for a given frequency. If 

the notation k is reserved for an incoming wave then the notation k' may be used for some 

general LHS wavevector solution. Maxwell's equations govern the allowed solutions and, 

assuming a nonconducting uniform dielectric, lead to the following condition (from equation 

(2.18)) 

(7.9) 

The light incident at the interface forms an incoming wave; this will be assumed to be of 

a plane-wave form with unit amplitude. Accordingly, the magnetic field component of the 

incoming wave, HfHS, may be written as: 

(7.10) 

Clearly the result of the impingement of the initial plane-wave on the periodic structure can 

be expected to give rise to a series of reflected plane-waves and hence the total magnetic 

field will include all of these. This means a range of discrete k~ solutions will exist on the 

LHS for any fixed k~ and w combination. These can be calculated from equation (7.9) and 

ask~= 0: 

(7.11) 

On the air side k~ is not constrained to lie within a Brillouin Zone as none exists. However, 

it may be written in the form k~ = kz + 9z with a solution which exists within the Brillouin 
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Figure 7.4: Allowed solutions on the air side of the interface (LHS). 

Zone (kz), as it is defined on the RHS, and a reciprocal lattice vector term, 9z· The solutions 

on the LHS will then match the periodicity in z present on the RHS . 

When 9z = 0 the solution of equation (7.11) will be equivalent to the k = (ky , kz ) 

solution which is the incident incoming wave. The set of reciprocal lattice vectors also 

produces a variety of other, mainly purely imaginary ky solutions for any fixed kz. For clarity 

the solution for a particular 9z value will be labelled k9• , with components k~· and kf• . As 

the magnitude of 9z increases these solutions will correspond to increasingly more rapidly 

decaying or increasing waves. The increasing solutions are un-physical solutions and only 

solutions which represent reflected, propagating or decaying waves to the left of the interface 

are valid. This is half the total number of solutions produced by equation (7.11). 

For field continuity across the interface the tangential components of the electric and 

magnetic fields must match at the interface. For the magnetic field this is the entire field as 

Hy = H z = 0. The frequency w and wavevector component kz are dictated by the direction 

and frequency of the incoming wave and the general solution on the LHS is: 

HLHS(y , z )e- iwt = eikyy+kzze- iwt + L ag.eik~' y ei(k. +g. ) z e-iwt 

g. 

(7.12) 

The first term on the right is the incoming wave of unit amplitude and the second term is a 
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general combination of the allowed reflected waves with coefficients (a9.) to be calculated 

by the matching calculation. The situation is shown diagrammatically in Fig. 7.4. At the 

interface y =a, hence 

HLHS(y =a, z)e-iwt = eikya+k.ze-iwt + L ag.eik~·aei(k.+g.)ze-iwt 
9z 

(7.13) 

For simplicity, the special case under consideration has a= 0 and equation (7.13) reduces to 

the final LHS magnetic field equation: 

Matching 

HLHS(y = 0, z)e-iwt = eik.ze-iwt + L ag.ei(k.+g.)ze-iwt 

9z 

(7.14) 

At the interface the tangential magnetic field on the LHS, given by equation (7.3), 

must be equal to that on the RHS, given by equation (7.14). Equating these two equations 

and cancelling the common eik.z and e-iwt factors gives: 

(7.15) 

This forms a series of equations connecting a9• and bn. The equation for a particular gz, say 

Gz, may be found by multiplying both sides of the equation by e-iG.z and integrating over 

all z: 

(7.16) 

In practice the exponentials are all periodic in z and consequently integration only needs to 

be carried out over a single period, or unit cell, L say. If 9z =1- 0 then J: eig,zdz = 0 and if 

9z = 0 then J0L eiu.zdz = L. This means that, for Gz = 0, equation (7.16) gives: 
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(7.17) 
n 

which may be written in more suitable form for matching by rearranging and dividing 

through by L, to give: 

(7.18) 
n 

The remaining terms from equation (7 .16), for G z # 0, are of the form: 

(7.19) 

This is due to only terms for which 9z = Gz contributing from the integration. A more 

convenient form of equation (7 .19) for matching is: 

(7.20) 

Equations (7.18) and (7.20) do not provide enough information to solve the simultaneous 

equations and find the 2N matching coefficients. For a particular set of two-dimensional 

reciprocal lattice vectors there are N distinctly different 9z values, where N is some odd in­

teger. The corresponding number of ky solutions, computed from the complex bandstructure 

calculation, will be 2N. However, only half of these will propagate or decay to the right, and 

hence correspond to allowed basis functions on the RHS of the interface. If the relationships 

are written in matrix form then the lack of sufficient information is evident. The a and b 

coefficients may be moved to a separate matrix and the RHS of equations (7.18) and (7.20) 

written as: 

p,l 
0 

p,2 
0 

p,3 
0 -1 0 0 bo 

PJ.=l P8.=1 P~.=l 0 -1 0 bl 
(7.21) 

PJ.=2 P8.=2 P~.=2 0 0 -1 b2 
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The vertical dimension of the matrix will beN and the horizontal dimension 2N. To solve 

for the matching coefficients twice as many simultaneous equations are required. The second 

set of equations is obtained by also matching the tangential components of the electric field 

at the interface. 

Electric Field 

The tangential component of the electric field may be found by considering Maxwell's 

fourth equation (previously equation 4.11). The previously stated assumptions, J.1 = J.lo, 

a = 0 and E ex e-iwt, allow us to write: 

(7.22) 

The Fourier form for the permittivity, introduced in Section 4.5.1 will be again used. In this 

instance the reciprocal lattice vectors will be labelled g' to allow for the continued use of 

g to represent the terms in the reciprocal lattice vector set used for the magnetic field. The 

electric field may then be written as: 

(7.23) 

The RHS magnetic field, given by equation (7.3), may be substituted into this equation to 

give the electric field. If the tangential, z, component is considered then, using c2 = 1/ J.lofo, 

(7.24) 

As previously the interface is at y = a = 0, which gives the field at the interface as: 

2 

E~HS(y = 0, z)e-iwt = /1~ L bn L c;,l H; (k; + gy) ei(k.+g.+g~)ze-iwt 
11 g,g' 

(7.25) 
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At the interface the RHS tangential electric field must match the LHS tangential electric 

field. It is sensible to consider the curl of the LHS magnetic field first, as it may then be used 

in equation (7.22) to give the LHS electric field: 

0 

ik eik·p + i" a (k + g ) eikYz.p e-iwt 
Z L..Jgz 9z Z Z 

(7.26) 

_ 'k ik·p _ · " k9z ikYz ·p 
'l ye z L--g. a9• Y e 

The LHS electric field may then be found by the substitution of this into equation (7 .22). 

The tangential, z, component of the field is required for matching and considering this: 

(7.27) 

At the interface, y = a = 0, and the electric field component is: 

(7.28) 

Equating equation (7 .25), for the RHS, and equation (7 .28), for the LHS and cancelling the 

common eik.z and e-iwt factors gives 

(7.29) 
9z n g,g' 

Provided that grazing incidence is not considered then ky "I 0 and equation (7 .29) may be 

written as: 

(7.30) 

A specific 9z value, say, Gz may be found by multiplying by e-iGzz and integrating over all 

space. This equivalent to a unit cell, or period L, in the z direction due to the periodicity of 
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the system: 

(7.31) 

For Gz = 0, only those terms for which g~ = -gz contribute. Hence, 

(7.32) 

As kc.=o represents the real reflected wave kr;·=0 / ky = -1. If Gz f. 0, only those terms for 

which g~ = Gz- 9z contribute. Hence, 

(7.33) 

To solve the simultaneous equations using matrix methods equations (7.32) and (7.33) must 

be rewritten in a more convenient form. The Gz = 0 equation may be written as: 

(7.34) 
n 

and correspondingly for Gz f. 0: 

(7.35) 

The notation has been simplified by grouping together the terms which multiply the bn re­

flection coefficients: 

(7.36) 
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This completes the information required for finding the TE matching coefficients at the inter­

face. Equations (7.34), (7.35), (7.18) and (7.20) may be combined to give the final matching 

matrix equation as: 

PJ ?,2 
0 p~ -1 0 0 bo 1 

P6.=1 PJ.=l P~.=l 0 -1 0 bl 0 

P6.=2 PJ.=2 P~.=2 0 0 -1 b2 0 

-
Q6 Q5 Q~ 1 0 0 ao 1 

Q~.=l Q~.=l Qb.=l 0 
-kGz=l 

0 0 I! al ky 

Q~.=2 Q~.=2 Qb.=2 
kGz=2 

0 0 - y 
a2 0 

ky 

(7.37) 

To compute the matching coefficients, as and bs, the coefficients have also been combined 

into a column vector which may be labelled C. If the top 2N by N component of the matrix 

is denoted as P and the bottom 2N by N matrix as Q, then the final matrix equation is of the 

form: 

1 

p 0 

c 
(7.38) 

1 

Q 0 

The solution can be found by multiplying both sides by the inverse of the first matrix on the 

LHS to yield the matching coefficients. Standard computational algorithms can be employed 

to calculate the inverse matrix. 
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i .3.2 ']['M Polarisation 

Photonic CrystaR (RHS) 

In principle, matching for the TM polarisation is identical to the TE method described 

in the previous section. However, the tangential field components are different and the al­

gebraic differences this creates make it necessary to outline the calculation. The interface 

situation remains that shown in Fig. 7 .3, with a photonic structure assumed to lie in a region 

y > a on the RHS of a planar interface with a uniform material. As previously the frequency, 

w, and wavevector component, kz, must be the same on both sides of the interface. The TM 

mode possesses an electric field which is entirely in the x direction. The field will consist of 

a sum of the allowed photonic crystal Bloch states, En: 

(7.39) 
n 

Each of the allowed Bloch waves on the RHS has a coefficient bn associated with them. 

The coefficients are to be determined by the matching calculation. The Bloch waves are 

themselves also formed from a sum of plane-waves. At the interface, y = a and an individual 

Bloch wave may be written as: 

En(Y =a, z) = L E;ei(k~+gy)aei(k.+g.)z 
g 

(7.40) 

The individual plane-wave coefficients, E~, come from the complex bandstructure calcu­

lation and the summation over reciprocal lattice vectors produces the allowed RHS Bloch 

waves. The label n refers to the different allowed ky solutions produced by the complex 

bandstructure calculation. The allowed RHS ky solutions produced by the calculation are 

those which have physical meaning; solutions that either propagate or decay to the right of 

the interface. This means the surviving ky values are either real or have a positive imaginary 

component. Simplification of equation (7 .40) may be achieved by grouping together terms 

with the same 9z value to give: 

E~HS(y =a, z)e-iwt = L P!:.ei(k,+g.)ze-iwt (7.41) 
9z 
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with P;: values which are given by: 

pn = ~ Enei(k~+gy)a 
g. L...J g 

same 
9• 

For simplicity once again the interface was set at y = a = 0. Hence, 

pg~ = L E; = L E;t5g.,gi 
same g/ 

9z 

(7.42) 

(7.43) 

A second set of reciprocal lattice vectors g' has been introduced to simplify the notation. It 

will be of the same form as the original reciprocal lattice vector set. 

Air (LHS) 

To the left of the interface an air region exists. This region contains the incoming wave, 

which will be assumed to be a plane-wave of unit amplitude: 

(7.44) 

In addition, the use of the same set of reciprocal lattice vectors on both sides of the 

interface produces a set of solutions, k~·, dictated by equation (7.11). The new allowed 

solutions represent the real reflected wave and those solutions which decay to the left of the 

interface. The total LHS solution electric field solution is therefore: 

ELHS(y, z)e-iwt = eik·p + L ag,eik~·yei(k.+g.)ze-iwt (7.45) 
9z 

The first term on the RHS of the equation is the incoming wave and the second term is a 

general combination of all the allowed reflected wave solutions with matching coefficients 

a9., which are to be determined by the matching calculation. At the interface y = a and this 

becomes: 
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ELHS(y =a, z)e-iwt = ei(kya+kzz)e-iwt + L ag.eik~·aei(k.+g.)ze-iwt 
9z 

(7.46) 

If the simplifying case of an interlace at y = a = 0 is considered then the electric field at the 

interlace reduces to: 

Matching 

ELHS(y = 0, z)e-iwt = eikzze-iwt + L ag.ei(k.+g.)ze-iwt 

9z 

(7.47) 

Matching the LHS (equation (7.47)) and RHS (equation (7.41)) tangential electric fields at 

the interlace and dividing out the common eik.z and e-iwt terms yields: 

(7.48) 
9z n g. 

This is identical in appearance to equation (7.15) which was derived for the TE polarisation. 

This means the two final matching equations follow through in an equivalent manner to 

equations (7.16) to (7.20). The equation for Gz = 0 is therefore: 

(7.49) 

and for G z =!= 0, 

(7.50) 
n 

It should be recalled that Pa. is of the form given in equation (7 .43); which is different from 

the form required for matching with the TE polarisation. 
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Magnetic Field 

To provide enough simultaneous equations to solve for the matching coefficients the 

tangential (z) component of the magnetic field must also be considered. If Maxwell's third 

equation (from equation (4.10)) is examined for plane-waves it dictates that: 

\7 x E = iWJ.LoH (7.51) 

To find the RHS magnetic field it is useful to consider the curl the plane-wave field form for 

the electric field: 

\7 X ERHS = 

0 

i L:n bn L:g (kz + 9z) E~ei(k»+g)·p 

-i L:n bn L:g (k; + gy) E~ei(k»+g)·p 

(7.52) 

This may be substituted into equation (7.51) to find the tangential z component of the mag­

netic field which is required for matching: 

(7.53) 

The interface remains the simplify case with y = a = 0. Hence, at the interface: 

(7.54) 

Air (LHS) 

On the LHS of the interface the tangential component of the magnetic field also needs to be 

calculated. This may be achieved through the use of the electric field form which was given 

by equation (7 .45). The curl of the LHS electric field is: 
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0 

(7.55) 

Therefore the z component of the magnetic field maybe calculated by the substitution of 

equation (7.55) into equation (7.53): 

(7.56) 

The interface is at y = a = 0 and hence the magnetic field field at the interface is given by: 

(7.57) 

To match the z component of the magnetic field the RHS field equation (7 .54) and LHS field 

equation (7 .57) are equated. If the common e-iwt term is cancelled then: 

(7.58) 
Yz n g 

The common eikzz terms may also be cancelled and provided that grazing incidence is not 

considered (so ky =J 0) the equation may be divided through by ky to yield: 

(7.59) 

An individual gz, labelled Gz, can be selected if both sides are multiplied by e-iGzz and 

integration is carried out over all z direction. Due to the periodicity of the system this is 

equivalent to a period Lin the z direction. 
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As previously stated, if 9z =I= 0 then J0L eigzzdz = 0 and if 9z = 0 then J
0
L eigzzdz = L. 

Hence, if Gz = 0: 

(7.61) 

and if Gz =/= 0: 

(7.62) 

It is convenient to write the magnetic field simultaneous equations in the same form as equa­

tions (7.34) and (7.35) for the TE polarisation. This gives, for Gz = 0, 

(7.63) 
n 

and for G z =I= 0: 

(7.64) 

The form for Qcz differs from the TE form and is given by: 

(7.65) 

Combining the magnetic and electric field matching conditions gives the final TM matching 

matrix equation in the form: 
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p 

c 

Q 

1 

0 

1 

0 

i A. FJreSneB EquatiollllS 

(7.66) 

This is of an identical form to the TE equation and completes the set of matching equations 

to allow both modes to be matched at an air/photonic crystal interface. 

7 e4 Fresnel Equations 

One of the basic requirements when performing calculations to describe photonic crys­

tals is that in the zero rod radius limit, or equivalently the uniform dielectric constant regime, 

the photonic crystal effectively becomes a uniform material and must reproduce the well doc­

umented behaviour of uniform media. We can use these standard results to test the correct 

implementation of our complex bandstructure matching scheme. The phenomenon of reflec­

tion and refraction at a boundary between two uniform media, shown in Fig. 7.5, is one such 

well documented case. The application of the relevant boundary conditions to Maxwell's 

equations lead to the Fresnel equations for the reflection and transmission coefficients at an 

interface between two uniform materials [171]. If the incident wave is assumed to be of unit 

amplitude then the amplitude of the reflected wave for the TE polarisation is given by: 

(7.67) 

and correspondingly for the TM polarisation: 

(7.68) 

Snell's law can be used to remove the dependence of the Fresnel equations on the angle of 

refraction. Snell's law (equation 4.105) may be rearranged to give: 
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Figure 7.5: Reflection at an interface between two materials of uniform refractive 
index, n 1 and n2. 

(7.69) 

which can be substituted into equations (7.69) and (7.70) to give a more convenient form 

for the coefficients. For the situation under consideration the material on the LHS of the 

interface is air; hence n 1 = 1, and the two reflections coefficients, as functions of angle of 

incidence only, are given by: 

(7.70) 

and 

n2 cos(fh)- cos (sin- 1 (sin (01) /2)) 
r - ----------~~~--------~ 
TM- cos (OI) +cos (sin- 1 (sin (OI) /2)) 

(7.71) 

The intensities of the reflected waves may be calculated as the square of the reflection coef­

ficients. 

Brewster Angle 

The Fresnel equations may also be used to derive a special angle known as the Brewster 

angle. This is a particular angle of incidence (On), at which the reflected intensity from a 

uniform material is zero. The effect exists for the TM polarisation only and the Brewster 
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angle is given by [12]: 

() = t _1 ((n2)) 
B an (n

1
) 

(7.72) 

Whilst this does not provide any additional checking mechanisms for our implementation 

of the interface matching calculation it is an interesting feature which will be seen when 

uniform materials are considered. 

7o5 Resullts 

7.5.1 Uniform Materials 

The simple uniform media case greatly assists with ensuring the interface matching 

calculation is correct. Consider how the calculation progresses for a uniform block of mate­

rial with a refractive index of nr. A single incident plane-wave, with an angle of 81 degrees, 

and a frequency of w is incident on the material. On the air side of the structure there are 

two plane-wave solutions. The first is simply the incident plane-wave with wavevector com­

ponents given by: 

w 
ky - -cos( ()I) 

c 

kz - ::'. sin( 81) 
c 

(7.73) 

(7.74) 

The second is the reflected wave with wavevector ( -ky. kz). On the RHS of the interface w 

and kz are used in the complex bandstructure calculation to produce the same number of ky 

solutions as there are plane-waves. There is a single real solution and enough imaginary and 

general solutions to equal the number of different 9z values in the reciprocal lattice vector 

set that has been used. The real solution will be the one that propagates with the same angle 

of refraction as dictated by Snell's law. If the eigenvectors associated with the propagating 

solution are examined they will show a single plane-wave, corresponding to 9z = 0, with 

some coefficient H';_=o• or E;z=O• assuming the frequency is low enough. 

Matching may be achieved relatively simply as there are just two plane-waves on the 

LHS which will match to the single plane-wave on the RHS. The coefficient for the reflected 

wave on the LHS will also be the amplitude of the wave. On the RHS there will be a 
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Figure 7.6: Fresnel Equations plotted for the TM (a) and TE (b) polarisations. 
The black curve represents values calculated from the Fresnel equations and the 
circles, red for TM and blue forTE, the results generated by the interface matching 
calculations. Exact agreement may be seen for the reflection at the interface with 
uniform block (n = 2). 

matching coefficient, bo, which when multiplied by H;_=o (or E;.=o) will give the amplitude 

of the plane-wave. As it is the only solution on the RHS its amplitude must equal the sum of 

both the LHS amplitudes. 

Fig. 7.6 shows the reflection coefficients plotted as a function of angle of incidence 

for a uniform structure. The curves were calculated using the Fresnel equations and the data 

points were then calculated by the interface matching calculation. The 'square' and then the 

'hexagonal' uniform structures were used and produced the same results. The results for 

the matching calculation were identical to those calculated from the Fresnel equations. This 

provides a high level of confidence in the correct implementation of the interface matching 

calculation. The Brewster Angle may also be seen for the TE polarisation. Further checks 

were carried out using a range of frequencies and refractive index values and it was confirmed 

that both the reflection coefficients and angles of refraction corresponded to those expected 

for uniform materials. 

Propagating solutions 

Continuing with the uniform material example, it is also of use to calculate the pro­

portion the original incident intensity which has been transferred to a particular propagating 

solution on the RHS. This will be calculated as the square of the amplitude of propagating 
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solution divided by the sum of all the real amplitudes on the RHS squared, multiplied by 

the proportion of the intensity that was not reflected on the LHS. Evanescent solutions are 

not included in the calculation as for an unbounded RHS only the real solutions may carry 

energy. For this simple case (TE): 

P = (1- R) * g,=O n = 1- R ( 
Hn * b )2 

I: all real RHS amplitudes ( ) 
(7.75) 

Since, for a uniform system, there is only one plane-wave on the RHS. R is the square 

of the reflection coefficient, and P is the proportion of the original intensity in the propagat­

ing solution on the RHS. When considering photonic crystals there will be a range of Bloch 

waves and the value of P for each Bloch wave will be the coupling efficiency for the par­

ticular wave. Once satisfaction was achieved that the interface matching calculation could 

reproduce the results of uniform materials, photonic crystal structures were considered. 

i .5.2 l?hotonic Crystals 

In Sec. 7.3 it was stated that only half the ky solutions produced by the complex 

bandstructure calculation, for a fixed kz and w, are valid physical solutions. This meant a 

sorting algorithm was required to select the required set of solutions produced by the complex 

bandstructure calculation for use in the matching calculation. The algorithm is outlined in 

Fig. 7.7. The solutions are split into three categories: purely real, purely imaginary and 

general complex. The purely imaginary and general solutions are the most straightforward 

to sort. They must be unique solutions, not related to another by a linear combination of 

reciprocal lattice vectors, and must also decay to the right of the interface. The real solutions 

must also be unique solutions within the Brillouin Zone, but they also have the additional 

requirement that they must propagate in a physical manner. In Section 4.12 it was explained 

that for an incident plane-wave to couple to a Bloch wave it must have a physical propagation 

direction; it must have a positive group velocity in the y direction, [v9]y: 

(7.76) 

To ensure that this condition was met the group velocity in the y direction was calculated for 
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each real solution computed by the complex bandstructure calculation. 

The most problematic issue of the interface matching calculation for photonic crystals 

was the need to carefully consider the integration across z which was briefly mentioned in 

Sec. 7.3. The integration has the effect of equating the sum of all the coefficients which 

project onto the one-dimensional interface. Integration occurs for a period or number of 

periods in the z direction at the interface. The calculation presented was for some general 

period L but this requires further consideration for each arrangement being considered. Ap­

pendix B contains further details which are of use for implementing the calculation using 

different interface arrangements. 

7 .5.3 Optimisation 

The previous chapter considered the optimum superprism configuration using the hexag­

onal lattice type with the limitation that only a single refraction angle existed for a single 

incident plane-wave. The optimum configuration identified was n = 2, r = 0.4a, w = cj a 

and a TM polarisation. The aim of this section is to evaluate any additional benefits which 

may exist by considering superprisms which allow multiple refraction angles. 

An optimisation study was carried out using the hexagonal lattice and a range of rod 

radii, refractive indices and frequencies. The range of structures remained the same as in the 

previous chapter (see Table 5.2). The method for identifying optimum structures was also 

the same as in the previous chapter: the gradient, or inverse gradient of the dispersion sur­

face was calculated in the f-K and f-M directions. The appropriate complex bandstructure 

methods described in Chapter 4 were used to calculate the required wavevector magnitudes. 

The existence of multiple refraction angles in the study did introduce some additional com­

plexity due to the existence of multiple equi-frequency curves in the reference directions. 

This was dealt with by the use of a sorting routine to ensure the that only wavevector values 

forming a continuous equi-frequency curve were used in the gradient calculations. 

The extreme gradient, or inverse gradient, values for each of the background refractive 

index values were identified for both the f-K and f-M directions, and both the TE and TM 

polarisations. The results are presented in Table 7.1 for the r-K direction and Table 7.2 for 

the r-M direction. Previously, when only a single refraction angle was permitted, no trends 

were identified in the results. For the multiple refraction angle case there seems to be a trend 
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Complex Bandstructure Calculation 

Examine solutions 

Increasing Decaying Decaying Increasing Outside BZ Inside BZ 

Dis(:ard solution Keep solution Discard solution 

[v,], positive (v,J,negative 

Keep solution Dlaard aolutioa 

Matching Calculation 

Figure 7.7: Outline of interface matching calculation. Note BZ is the first Brillouin 
Zone and v9 is the group velocity. 
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to the lowest rod radius. 20 extreme values were calculated and 14 of these occurred at the 

rod radius of r = O.la. This suggests that there are benefits to keeping the rod radius low 

when considering the dispersion characteristics of the hexagonal lattice. 

The gradient for the optimum structure in the previous chapter had a value of -1.3. 

If the values given in Tables 7.1 and 7.2 are examined then it is evident that benefits may 

exist from considering multiple refraction angles. The lowest magnitude seen in the results 

was 1.7 (for n = 2, r = O.la and a TM polarisation in r- K direction) and the highest 

magnitude seen was -9.1 (for n = 5, r = O.la and aTE polarisation in r- M direction). The 

dispersion surfaces for most extreme values in the two reference directions were calculated 

for both polarisations. The results are shown in Fig. 7.8. The calculated dispersion surfaces 

are obviously more complex than the single refraction angle curves as they possess multiple 

equi-frequency curves. The sharp features are clearly visible and the feature corresponding 

to the most extreme inverse gradient value calculated may be seen figure 7.9c. 

For the use in superprism applications though the utility of these structures is highly 

questionable. The features of interest have become so sharp that they exist for only a very 

narrow ranged on kz values. Hence, whilst potentially offering superprism properties it is 

only for a very limited range of angles of incidence. This is especially evident when the 

dispersion surface for the optimum configuration (n = 5, r = O.la, w = 0.81c/ a and aTE 

polarisation) shown in Fig. 9c is examined. In the direction of interest the surface may also 

be seen to possess three different wavevector magnitudes. Two of these values possess a level 

of curvature which would seem to make them of interest from a superprism perspective. The 

existence of multiple refraction angles introduces the need to perform an interface matching 

calculation to determine the coupling to the three different possible refraction channels. This 

is considered in the following section. 
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TE 
Refractive Index Rod Radius Frequency Gradient 

2 0.3 0.97 -2.1 
3 0.1 0.99 2.1 
4 0.1 0.81 2.8 
5 0.4 0.90 5.9 
6 0.1 0.30 -1.9 

TM 
Refractive Index Rod Radius Frequency Gradient 

2 0.1 0.52 1.7 
3 0.1 0.68 -5.1 
4 0.1 0.52 -4.3 
5 0.1 0.83 -2.9 
6 0.1 0.34 -2.9 

erne values in the r - K direction. Table 7.1: Extr 

TE 
Refractive Index Rod Radius Frequency 1/Gradient 

2 0.4 0.73 -6.7 
3 0.1 0.70 -5.8 
4 0.1 0.52 3.2 
5 0.1 0.81 -9.1 
6 0.1 0.35 -7.3 

TM 
Refractive Index Rod Radius Frequency 1/Gradient 

2 0.2 0.90 -2.3 
3 0.1 0.93 3.9 
4 0.3 0.85 -1.9 
5 0.1 0.94 -2.2 
6 0.2 0.97 -2.5 

Table 7.2: Ext reme values in the r- M direction. 
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Figure 7.8: Optimum dispersion surfaces for the TE and TM polarisations in the 
directions r- K and r- M. a) TEn= 5, w = 0.9cja, r = 0.4a. b) TM n = 3, 
w = 0.68cja, r = O.la. c) TEn = 5, w = 0.8lcja, r = O.la. d) TM n = 3, 
w = 0.93, r = O.la. 

206 



Chapter 7. linterface Matching 

.~ 0) u . 
IS 
g 
u 

a:: 0.2 
0 

'J:l 
~ 

<::: 
~ 01 

7 .§. Results 

Angle of incidence (degrees) 

Figure 7.9: Reflection from the optimum single angle of refraction structure. 

7.5.4 Matching 

The matching calculation was used to investigate the optimum single refraction angle 

structure identified in the previous chapter and the optimum multiple refraction angle struc­

ture identified in this chapter. The structures will only be of use though if they demonstrate 

a significant coupling of the incident electromagnetic fields into the refraction channels of 

interest. The optimum single refraction angle structure (n = 2, r = 0.4a, w = 0.65c/ a and a 

TM polarisation) was considered first and reflection from the structure plotted as a function 

of angle of incidence. The results are shown in Fig. 7.9. The figure shows that reflection at 

the first interface is relatively low, of the order of less than 36%, for the useful superprism 

range of the device. This could have been anticipated due to the low background refractive 

index combined with the low reflectance seen for interfaces between uniform structures with 

low refractive index contrasts. There is only one real wavevector solution in this instance 

and, as only real solutions may carry energy, at the peak value for superprism behaviour (3 

degrees) 64% of the light which is incident on the structure couples to the superprism chan­

nel. This gives an overall coupling efficiency for the structure of P = 0.64 and makes the 

structure potentially useful for superprism applications. 

The interface matching calculation was also performed for the optimum multiple re­

fraction angle structure identified in this chapter (n = 5, r = O.la, w = 0.81c/ a and aTE 

polarisation). Reflection at the initial interface was found to be of the order of 58%. Reflec­

tion at the first interface would be expected to be higher due to the higher average refractive 

index of the structure. When the coefficients for each individual Bloch wave were considered 

it was found that a negligible quantity of the incident intensity was calculated to couple to 

207 



Chapter 7. interface Matching 7 .6. Conclusimus 

the required superprism refraction channel. This would make the configuration unsuitable 

for superprism applications. 

The interface matching results strengthen the case for the single refraction angle struc­

ture to be identified as the optimum superprism structure and strongly suggests that the more 

complex, multiple refraction angle structure is of little utility for the proposed application. 

In this chapter the physics present at an air/photonic crystal interface was investigated. 

The method used was a new method based on matching the tangential field components of an 

incident plane-wave to the Bloch waves in the photonic crystal, calculated using a complex 

photonic bandstructure method. The results of the calculation are the coefficients for both 

the Bloch waves in the photonic structure and the individual plane-waves on the air side. 

The ability to consider the coupling to individual Bloch waves the hexagonal lattice 

superprism effect motivated a reconsideration of the hexagonal lattice superprism effect. An 

optimisation study was conducted, similar to the study undertaken in the previous chapter. 

However, without the single refraction angle restriction. The study showed that whilst it was 

possible to produce much sharper feature dispersion surfaces the utility of such extremely 

anisotropic surfaces was highly questionable for two reasons. Firstly, the optimum structures 

would only operate for a tiny range of incident angles; and secondly the coupling to the 

required Bloch wave in the optimum structure was negligible. The reflection coefficient 

for the optimum structure was calculated as 0.58 which allows just 42% of the incident 

light to couple to the photonic structure. This may be thought of as being at least partially 

attributable to the high average refractive index contrast. The coupling was predominantly 

to a propagating solution which did not provide the required superprism refraction channel. 

The superprism channel was calculated to channel a negligible fraction of the incident power. 

The matching method was applied to the optimum single refraction angle hexagonal 

structure with much more promising results. Reflection at the first interface, for the super­

prism range of incident angles, was less that 36%. As only a single propagating solution 

existed the coupling efficiency to the superprism mode was therefore 0.64, indicating that 

the structure was predicted to be suitable for superprism applications. 
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Chapter 7. Interface Matching 7 .6. Conclusions 

The interface matching calculation described has been applied to two particular ex­

amples but the method is presented as a general approach suitable for further work. The 

approach could be applied to situations other than the superprism application considered 

here and there is also potential future work in the development of a calculation for other in­

terface planes and also for matching across additional layers. The general method presented 

could form the basis of a range of further research projects. 
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Chapter 8 

Conclusions and Suggestions for Future 

Work 

8.0.1 Conclusions 

This thesis has presented original theoretical work on one-dimensional and two-dimensional 

photonic structures. Plane-wave methods were used to consider two different dielectric sys­

tems: one-dimensional slab waveguide structures and two-dimensional photonic crystals. 

OneaDimensional Structures 

In Chapter 2 a theoretical model which is fundamental to a new biosensor technol­

ogy was presented. The technology is currently being exploited internationally by Farfield 

Sensors Ltd. The technique provides a method for the real-time characterisation of thin films 

deposited on a waveguide structure. The model was applied to conduct a theoretical study on 

the effects of the structure manufacturing tolerances on the reliability of the characterisation 

of thin films. The study concluded that the resolution of the device was highly dependent 

on a well defined waveguide structure. To alleviate this concern a method of calibration was 

described which has been implemented to allow the high sensitivity of the device to be pre­

served. Experimental results of Cross et al. [80] analysed using the described model were 

also discussed, to allow the technique to verified experimentally. 

A vertically integrated dual-optical path slab waveguide arrangement, similar to the 

biosensor arrangement, formed the basis of Chapter 3. An athermal waveguide interferom-
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eter device for the wavelength tracking of semiconductor diode lasers was proposed. It was 

shown that an athermal device design could be achieved by matching the thermal variations 

in the two guided mode propagation constants. The proposed athermal approach was opti­

mised to maximise the sensitivity of the structure to wavelength fluctuations. The optimum 

structure was shown to be capable of tracking wavelength fluctuations to the level required 

for the wavelength locking diode lasers for DWDM applications. 

Two~ JDnmensionan Structures 

Initially a standard plane-wave eigenvalue method was described which can be used to 

calculate the allowed frequencies in photonic structures for a given wavevector. The method 

was then reformulated into a new TE complex bandstructure method. The complex band­

structure method enables the calculation of all allowed photonic crystal wavevectors, real, 

imaginary and general complex, at a fixed frequency. A second complex bandstructure ap­

proach was also presented. This allowed TM polarisation complex bandstructures to be 

calculated. It is believed that the results presented in this thesis using the described complex 

bandstructure approaches are the first of their kind. The complex bandstructure methods 

were also used as a component in the interface matching calculations described in Chapter 

7. The refractive properties of an air/photonic crystal interface were also considered and a 

law of refraction for photonic crystal structures discussed. 

The presented theoretical methods were applied first to square lattice photonic crystals, 

then also to hexagonal lattices. The main concern was with the refraction properties of the 

structures and their potential for producing enhanced refraction properties as a result of the 

appropriate "engineering" of their anisotropic bandstructures. In chapter 5 bandstructure 

anisotropy was optimised for the square lattice type. The results of the study showed that it 

was possible for the lattice type to provide refraction angles which were extremely sensitive 

to the incident angle, albeit only for a narrow range of incident angles. A large sensitivity to 

incident wavelength was also witnessed. 

The hexagonal lattice was then studied and rather than optimising bandstructure aniso­

tropy, a gradient method was used to optimise the refractive properties of the lattice. The 

gradient method was a more direct indicator of enhanced refractive properties. An optimum 

structure was found with a high sensitivity of the angle of refraction to the angle of incidence. 
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The configurations considered were initially restricted to situations in which a single angle 

of incidence produced a single refraction 'channel'. The optimum hexagonal structure was 

able to produce superprism effects for a much larger range of possible incident angles than 

the square lattice. The refraction characteristics of the optimum structure were compared to 

experimental results in the literature and found to be superior. Negative refraction effects 

were also noted for the optimum structure. 

Finally, the physics at an air/photonic crystal interface was considered. The approach 

employed complex bandstructures to allow the reflection coefficients at an interface to be 

calculated. The method also allowed the proportion of the incident light which coupled 

to individual Bloch waves in the photonic structure to be obtained. Whilst reflection may 

be considered by other methods this is believed to be the first occasion that the particular 

approach described has been used for such interfaces involving photonic structures. The 

results of the calculation confirmed the choice of the optimum superprism structure as a 

single refraction angle configuration, even when multiple refraction angles were permitted. 

8.0.2 Suggestions for Future Work 

The biosensor technology presented in chapter two has a wide range of potential for 

use in a variety of future work. Farfield Sensors has conducted and will continue to con­

duct research projects on a variety of biological systems. The diode wavelength tracker has 

potential but requires more research before it will be possible to develop a commercially 

viable device for inclusion in optical networks. A new company called Farfield Photonics 

is continuing to research the device with the aim of producing a commercially viable sys­

tem. Experimental results are required and the design of a low cost compact device with 

inter-vendor compatibility needs to be addressed. 

The photonic crystal work is, perhaps, of rather less immediate commercial applica­

bility. Further work of interest in this area could involve confirming some of the predicted 

dispersion characteristics experimentally. The complex bandstructure matching method em­

ployed was used to calculate the fraction of the incident light reflected at an interface with a 

photonic crystal structure. This is an area which is beginning to be examined more seriously 

by experimentalists with possible 'taper' regions being suggested to improve coupling. 

The use of a superprism for beam steering is also of interest. Research in this area could 
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investigate the possibility of designing optimised structures in which it would be possible to 

alter the direction of a refracted beam in response to some external factor, for example an 

applied electric field. This could form the foundation of some kind of optical switching 

device. 

The interface matching approach could straightforwardly be extended to deal with fi­

nite layered systems; such analogous complex bandstructure work has already been per­

formed for electronic structures. The first obvious candidate for such a calculation is a finite 

photonic crystal layer sandwiched between two semi-infinite bounding regions, although 

more complicated multilayered structures are also possible. It is conceded, of course, that 

such work can also be carried out using other methods. 

Additionally the interface matching calculation could be applied to differing interface 

planes. The work presented included the simplest case with an interface in the z direction 

however other interface orientations may also be considered. This could potentially have an 

influence on not just reflectance at the interface but also on which refraction channels are 

accessed. 

The new theoretical methods presented for photonic crystals could potentially be used 

for calculations on a wide range of photonic structures and offer useful tools for future re­

search. 
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Figure A-1: Frequencies which exhibit single refraction angles for the TE polari­
sation and a square lattice structure consisting of dielectric rods in air. The results 
show a range of rod radii (indicated by different colours) and refractive index values 
of 2 (a), 3(b), 4(c), 5(d) and 6(e). 
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APPENDIXB 

Interface Periodicity 

The interface matching calculation in the main thesis is presented using an interface 

lying in the same direction as the z axis. Matching is carried out at the interface using 

the electric and magnetic field components which are tangential to the interface. If the TE 

polarisation is considered first then the field components for matching are calculated from 

the general magnetic field expression which was presented as equation (7.3): 

(A-1) 
n 

The field is formed from a summation of individual Bloch waves which are of the form: 

Hn (y, z) = L H;ei(k+g)·p 

g 

(A-2) 

The expression is for a general magnetic field which possess a periodicity which is defined 

by the two-dimensional reciprocal lattice vectors (gs). To match the magnetic field on either 

side of the interface the general expression given by equation (A-2) must be evaluated at 

the interface plane for the particular structure under consideration. Consider first a photonic 

crystal based on the square lattice type: 

Square Lattice 

In reciprocal space the square lattice is of the form shown in Fig. A-2. The defining set of 

reciprocal lattice vectors has individual vectors of the form: 

(A-3) 

Where: 

27r 
(A-4) 9y -n a Y 

27r 
(A-5) 9z - -nz 

a 
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Figure A-2: Square lattice in reciprocal space. 

In general an interface may be defined by a unit vector which is normal to the interface. The 

interface under consideration lies in the same direction as the z axis and a unit vector q may 

be defined perpendicular to the interface. This is shown in Fig. A-2. The reciprocal lattice 

vectors describe the periodicity of the magnetic field in general rather than at the interface. 

At the interface the magnetic field Hn will still be periodic but this is not by necessity the 

same as the z periodicity of the reciprocal lattice vectors. The periodicity at the interface will 

be defined by the reciprocal lattice vectors which lie in the interface plane g'. The required 

reciprocal lattice vectors are therefore of the form: 

q·g' = 0 (A-6) 

For the case of an interface in the z axial direction the defining vector q is of the form (1 , 0). 

The valid reciprocal lattice vectors must accordingly satisfy: 

27r 
- (lny + Onz) = 0 
a 

(A-7) 

For this simple case this means that ny = 0 and the new set of reciprocal lattice vectors for 

use in the interface plane are of the form: 
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(A-8) 

In fact this is superfluous for the square lattice case as when the interface is at y = 0 the gy 

dependence of the calculation is removed. The periodicity at the interface is the same as the 

reciprocal lattice vectors in the g direction (gzs) and the calculation proceeds as in the main 

thesis. 

Hexagonal lattice 

B A 
X 

X 

X 

X X )( 

Figure A-3: Hexagonal lattice in reciprocal space. 

Equation (A-1) may again be used to describe the magnetic field within the photonic 

crystal. The hexagonal lattice is shown in reciprocal space by Fig. A-3. The reciprocal 

lattice vectors were constructed from vectors in the A and B directions: 

A 2n [ 1 ~ ~ l - -J+k 
a J3 

(A-9) 

B 2n [ -1 ~ ~ l (A-10) - - -J+k 
a J3 
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These have been indicated on the figure and it may be seen that their periodicity differs from 

that of the structure in the y and z directions. This makes calculating the periodicity at the 

interface less trivial than for the square lattice. The choice of directions A and B was made 

to allow integer steps in the two directions to define the whole lattice: 

L=4rtla 
z 

).c . . . . 

Interface plane 
X )( X 

X X )( 

X 

X X X 

X X X 

Figure A-4: Hexagonal lattice with an interface in the z direction. 

(A-ll) 

Fig. A-4 shows the situation when an interface is introduced along the z direction. The 

normal to the interface, q, has again been indicated. The set of reciprocal lattice vectors in 

the interface plane must still be defined by equation (A-6). In this instance: 

(A-12) 

By inspection it may be seen that the requirement is for ns = nA. Hence, the z component 

of the valid reciprocal lattice vectors at the interface (g~) are given by: 
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I 27r ( ) g =- 2nA 
z a (A-13) 

This is important as even for the simplifying case of an interface at y = 0 the required 

reciprocal lattice vectors are not the complete set of the original gz values, as in the simple 

square lattice case. The magnetic field at the interface will in this instance be of the form: 

H"(y = 0, z) = L s;ei(k';+g~)z (A-14) 
g' 

The calculation will now proceed along the same lines as in the main thesis but with the set 

of reciprocal lattice vectors, g', appropriate for the periodicity in the interface concerned. In 

addition it should be remembered that this set of reciprocal lattice vectors must also be used 

on the air side of the interface, where they dictate the allowed ky solutions through equation 

(7.11). 

TM polarisation 

The situation for the TM polarisation is equivalent to the TE polarisation. The match­

ing calculation made use of an electric field which was of the form given by equation (7.39): 

With En of the form: 

n 

En(Y, z) = L E;ei(k;+gy)Yei(k.+g.)z 
g 

(A-15) 

(A-16) 

In this instance the new set of reciprocal lattice vectors, defined for TE polarisation, will 

again be required. The calculation may then proceed as in the main thesis. 
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