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The strain~dependence of the critical current density 

in the high-field superconductor Nb 3Sn 

David Matthew Joseph Taylor 

Abstract: Measurements of the critical current density CJc) of Nb3Sn superconducting wires 

were performed as a function of magnetic field (B :<=:; 23 T), temperature ( 4.2 K :<=:; T :<=:; 12 K), and 

axial strain (-1.6% :<=:; &1 :<=:; 0.7%). Data are presented for wires measured on helical strain springs 

of different materials and geometries, together with results from finite element analysis (FEA) of 

these systems. It is demonstrated that the differential thermal contraction of the spring only 

affects the behaviour of the wire via a change in the parameter t:M (the applied strain at the peak), 

and that the data for different spring geometries show good agreement when the strain is 

calculated at the midpoint of the wire using FEA. Strain cycling measurement show that the 

critical current density and n-value behave reversibly for applied strains up to 0.3% (~500 

cycles), increase irreversibly for strains up to 0.6% ( ~ 1000 cycles in total), and decrease 

irreversibly at higher strains (>0.75%). Comparisons of electric field-temperature characteristics 

(as measured for the ITER model coils) with the standard electric field-current density 

characteristics show agreement to within an experimental uncertainty of ~20 mK. Comprehensive 

Jc ( B,T,t:1 ) data are presented for two ITER Nb3Sn wires, which are characterised by high 

effective upper critical fields [ B~2 ( 0)]. A new universal relation between normalised B~2 ( 0) 

and strain is reported, which shows a stronger strain-dependence than previous data for binary 

Nb3Sn. A power-law relation between B~2 ( 0, &1 ) and r; ( &1) (the effective critical temperature) 

is observed with an exponent of ~2.2, compared to the value ~ 3 for binary Nb3Sn. This is in 

agreement with microscopic theory, which predicts a power law with an exponent that is lower 

for dirtier materials, and also shows that the uniaxial strain effects are predominantly due to 

changes in the phonon properties. A new general scaling law is proposed that parameterises 

complete Jc(B,T,t:1) datasets with a typical accuracy of ~4%, and also provides reasonable 

predictions from partial datasets. 
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Chapter 1 

Introduction 

Superconductivity-when some materials lose all electrical resistance at low 

temperatures-is a fascinating area of science and the basis for many important 

technological applications. High-temperature superconductors, first discovered in 1986, 

can be cooled with relatively inexpensive liquid nitrogen (at a temperature of -196° 

Celsius) and therefore have the potential to be used in widespread applications such as 

superconducting power cables. Low-temperature superconductors require liquid helium 

(at -269° Celsius) but have properties that make them essential for various applications: 

particularly superconducting magnets. These magnets, consisting of coils of 

superconducting wire, can be used to generate stable, high magnetic fields using 

negligible electrical power. They are the main components of Magnetic Resonance 

Imaging (MRI) scanners, widely used in medicine and a multibillion-pound industry, and 

NMR spectrometers, used in scientific research. Superconducting magnets are also being 

used in high-energy particle accelerators, and in the planned International Thermonuclear 

Experimental Reactor (ITER) to heat and confine a very-high-temperature plasma for 

fusion. 

The most important parameter of a technological superconductor is the maximum 

current density that can be carried before becoming resistive, the critical current density. 

Considerable research has been directed at understanding and increasing the critical 

current density of superconductors in high magnetic fields. The discovery that the 

magnetic field and temperature dependence of the critical current density can be 
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described by scaling laws was a very important step in this process. The resulting 

developments in the low-temperature superconductors (NbTi and Nb3Sn) have been 

technologically very important, and these developments continue today. In addition to 

magnetic field and temperature, the critical current density of Nb3Sn also depends on 

strain (small deformations of the superconductor), which occurs in magnets due to the 

forces that are produced when they are cooled and energised. However, measurements of 

the strain-dependence of the critical current density present a number of experimental 

difficulties, and are not widely carried out. Various empirical strain scaling laws are 

commonly used to interpolate and extrapolate data for a particular conductor, but there is 

currently no consensus on the best approach to scaling, or the underlying physics. For 

applications such as ITER that use very large-scale magnets, accurate measurements of 

the critical current density and hence optimisation of the magnet design are extremely 

important. The aims of the work reported in this thesis were to develop the techniques 

required to obtain accurate variable-strain critical current density data for Nb3Sn wires 

and, using these data, to develop a scaling-law description of critical current density that 

properly includes the role of strain as well as magnetic field and temperature. The 

measurements also provide the important engineering data required for the research and 

development of ITER-probably the most important large-scale international scientific 

project in the coming decade. 

The thesis is structured as follows: Chapter 2 gives an introduction to the 

fundamentals of superconductivity, first describing the basic phenomena and theoretical 

ideas and then explaining the mechanisms that determine the critical current density. The 

next three chapters contain the main experimental results and analysis. In Chapter 3, the 

properties of the helical springs that are used to measure the strain-dependence of the 

critical current density are investigated. The apparatus and techniques are described, and 

experimental data and finite element analysis results are presented for different spring 
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materials and geometries. These results demonstrate the best approaches for obtaining 

accurate variable-strain data. Chapter 4 presents the results of strain-cycling 

measurements to simulate the cyclic charging of the ITER coils. In Chapter 5, 

comprehensive critical current density data are presented for two Nb3Sn wires used in the 

ITER model coils. Various consistency tests and interlaboratory comparisons are first 

described, and then the data are analysed using a general scaling law. The strain

dependence of the superconducting parameters is described, and their relationship is 

analysed using microscopic theories of superconductivity. A new scaling law is then 

proposed, and its accuracy in predicting the properties of Nb3Sn wires is investigated. 

Future work is discussed in Chapter 6. 



Chapter 2 

Fundamentals of superconductivity 

2.1 Introduction 

This chapter provides an introduction to the basic phenomena and theories of 

superconductivity, and to flux pinning and the critical current density. In Section 2.2, the 

characteristic properties of superconductors and the different groups of superconducting 

materials are described. Section 2.3 summarises the theories used to describe 

superconductivity, including the phenomenological London theory and Ginzburg

Landau theory, and the microscopic BCS theory. Finally, Section 2.4 describes various 

models of flux pinning-the mechanism that determines the critical current density of 

superconductors. 

2.2 Basic Phenomena 

2.2.1 Characteristic properties of superconductors 

Critical temperature: Superconductors undergo a phase transition from the normal 

state to the superconducting state when they are cooled below a certain critical 

temperature Tc (see Figure 2.1 on the next page). 

Perfect conductivity: One of the basic properties of the superconducting state is 

perfect conductivity (zero electrical resistivity). The observation by Onnes in 1911 of the 
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1.0 

0.0 L__----'-----------~ 
100 150 200 250 

Temperature (K) 

Figure 2.1 The resistance of Hg0.8 Tl0.2Ba2Ca2Cu30s+o as a function of temperature, showing the 

superconducting transition at 13 8 K (at the time of writing, the highest Tc at atmospheric 

pressure) [ 4]. 

sudden drop in the resistivity of mercury at a temperature of 4.2 K signified the discovery 

of superconductivity [1]. Experiments aimed at finding an upper limit for the resistivity 

have showed that persistent currents flowing around a superconducting ring decay with a 

time constant of ~150 000 years, implying an average resistivity of less than 10-23 Qm 

(fifteen orders of magnitude lower than copper) [2]. 

Meissner effect: The second basic property of the superconducting state is the 

Meissner effect or perfect diamagnetism, the complete exclusion of a small magnetic 

field (H) from the bulk of a superconductor by shielding currents that flow near the 

surface [see Figure 2.2(a)]. This behaviour was first observed by Meissner and 

Ochsenfeld in 1933 [3]. The magnetisation due to the screening currents is given by 

M = -H so that the field B =f-Lo (H + M) is zero inside the superconductor. The 

Meissner effect occurs whether the field is applied before or after the material is cooled 

below T6 the field is expelled as well as excluded. 

Type I and II superconductors, critical magnetic fields: Superconductor behave in 

one of two ways as the applied field is increased. Type I superconductors remain in the 
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(a) Meissner state (b) Mixed state 

(c) Type I (d) Type II 

M M 

H H 

(e) Type I (f) Type II 

H H 

He Normal 

Meissner 

Meissner 

Figure 2.2 Magnetic states, magnetisation curves, and phase diagrams for type I and type II 

superconductors 

Meissner state until a certain thennodynamic critical field, He (T), where the 

superconducting state collapses and the material becomes normal [see Figure 2.2(c)]. 

Type II superconductors enter a mixed state between a lower critical field, He 1 (T), and 

an upper critical field, He2 (T), and become normal at fields above the upper critical 

field. The critical fields increase as the temperature is decreased below T0 as shown in 

Figures 2.2(e) and 2.2(f), which represent the phase diagrams of type I and type II 

superconductors. 

Mixed state: In the mixed state of type II superconductors, magnetic field penetrates 

the material in the form of quantised lines of magnetic flux surrounded by vortices of 

supercurrent [see Figure 2.2(b)]. This state was predicted by Abrikosov in 1957 [5] and 
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first observed directly some years later by Tratible and Essmann [6] (see also Figure 2.4). 

The density of flux lines increases as the applied field increases, and M -----')- 0 ( B -----')- ,u0H ) 

at the upper critical field, as shown in Figure 2.2( d). 

2.2.2 Superconducting materials 

Metallic elements: More than 25 metallic elements are now known to be 

superconductors at atmospheric pressure, with critical temperatures ranging from 325 ).lK 

(rhodium) to 9.25 K (niobium) [7]. A number of others become superconducting at high 

pressures: for example, lithium has a Tc of 16 K at 80 GPa [8]. Metallic elements are 

generally type I superconductors, with some exceptions such as niobium. Table 2.1 (on 

the next page) shows the critical temperatures and critical fields of some common 

elemental superconductors, as well as for some of the other materials described below. 

Conventional superconducting alloys and compounds: Superconducting alloys and 

compounds are generally type II superconductors. An important group of 

superconductors is made up of A 15 intermetallic compounds (e.g. Nby¥, V y¥ with 

X= AI, Ga, Si, Ge, or Sn) [9]. These materials generally have the highest critical 

temperatures of conventional superconductors (e.g. Nb3Ge with Tc = 23.2 K), with the 

important exception ofMgB2-discovered in 2001 to be superconducting with Tc = 39 K 

[10]. Another important group is the Chevrel phase superconductors, such as PbMo6Ss 

with a zero-temperature upper critical field of 56 T [ 11]. The alloy Nb-Ti 

[ ).l0 H C2 ( 0) = 15 T] and the A 15 compound Nb3Sn [ ).l0H cz ( 0) = 32 T] are currently used 

in almost all superconducting magnets, due to their ability to cany large supercurrents in 

high magnetic fields (see Section 2.4) [12, 13]. 

Cuprate (high-temperature) superconductors: The first high-temperature super

conductor, La-Ba-Cu-0 with Tc = 30 K, was discovered by Bednorz and Muller in 1986 

[14]. Discoveries of superconductivity in Y-Ba-Cu-0 (Tc = 92 K) [15] and 
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Table 2.1. Typical values of critical temperature and critical field for various superconductors. 

(Type II superconductors unless otherwise stated. Thermodynamic critical fields are shown for 

type I, and upper critical fields for type II superconductors). 

Material Tc (K) 

Elements" 

AI 1.18 

Pb 7.19 

Sn 3.72 

Nb 9.25 

Conventional superconductors 

NbTib 9 

Nb3Snc 18 

Nb3Aic 18 

PbMo6Ssct 15 

MgB2e 39 

Cuprate (high-temperature) superconductor/ 

La2-xSr,Cu04 

YBa2Cu307-o 

BhSr2Ca2Cu3010-o 

" Reference [I 7]. 
b Reference [12]. 
c Reference [9]. 
d Reference [ 18]. 

39 

92 

110 

Jl0H c ( 0) (T) (type I) 

Jl0H cz ( 0) (T) (type II) 

0.010 (type I) 

0.080 (type I) 

0.030 (type I) 

0.206 

15 

32 

34 

56 

20 

45 

140 

180 

c Reference [ 19]. Typical upper critical field for bulk samples. 
r Reference [20]. Upper critical fields parallel to c-axis. 

Bi-Sr-Ca-Cu-0 (Tc = 110 K) [16] soon followed, while currently the material with the 

highest Tc = 138 K is Hgo.sTlo.2Ba2Ca2Cu30s+o (see Figure 2.1) [4]. All of the cuprate 

superconductors are characterised by a layered structure involving Cu02 planes. In 

contrast to the conventional superconductors, their properties cannot be explained using 

standard BCS theory (i.e. electron pairing via phonon exchange, see Section 2.3.3). 
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2.3 Theories of superconductivity 

2.3.1 London equations 

The London equations (F. and H. London, 1935 [21]) provide a mathematical 

description of superconductivity, relating the supercurrent J8 to the electric field E and 

the magnetic field B: 

8Js(r) E(r) 
= at flo~ 

(2.1) 

V x J (r) = - B ( r) 
s ;)2 

flo/'1.. 
(2.2) 

(2.3) 

where A.,L is the London penetration depth, me is the (free) electron mass, -e is the 

electron charge, and ns is the density of superconducting electrons, which is assumed to 

be constant throughout the superconductor. In the two-fluid model of Gorter and Casimir 

[22], ns is assumed to increase from zero at the critical temperature ton (the total electron 

density) at T = 0. 

Equation (2.1) implies perfect conductivity: a short pulse of electric field accelerates 

a supercurrent which then flows persistently. Equation (2.2) can be used to derive the 

equation V2B = B/ ~ , which implies the exponential decay of an applied magnetic field 

with distance into the superconductor and hence the Meissner effect (A.,L characterises the 

penetration depth of the magnetic field). The London equations can be derived from the 

second Ginzburg-Landau equation [Equation (2.6)] or BCS theory (see Sections 2.3.2 

and 2.3.3), and hence emerge from a description of the superconducting state by a (rigid) 

macroscopic wavefunction. 
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2.3.2 Ginzburg-Landau theory 

In Ginzburg-Landau theory (published in 1950 [23 ]), the superconducting state close 

to Tc is characterised by a position-dependent complex order parameter If/ ( r). The 

modulus squared of the order parameter gives the effective density of superelectron pairs 

( nP = n./2 = ilfi 2 
), while the phase behaves like that of an effective wavefunction (i.e. for 

gauge transformations). It is postulated that the free energy density can be expanded in 

powers of llf/ ( r t and IV If/ ( r )1 2 
(in a gauge-invariant form), together with a term to 

account for the energy density of the magnetic field B ( r) = V x A ( r) . Hence, following 

Reference [24], the Gibbs free energy density ofthe superconductor is given by: 

where gn is the Gibbs free energy density of the normal state, a ( T) = -a0 ( 1-T /I;,) , a0 

and fJ are material-dependent positive constants, and H0 is the applied field. Minimising 

the free energy density then leads to the following coupled differential equations for the 

order parameter If ( r) and the supercurrent density J s ( r) : 

(2.5) 

(2.6) 

In the absence of magnetic fields, the order parameter has the equilibrium value 

llf/"' (T)I2 
=-a (T)/ fJ [from Equation (2.5)], and is associated with a superconducting 

condensation energy [from Equation (2.4)]: 

(2.7) 
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(a) Type I SN interface 

.1(T) 
~ _______ B_ 

Superconducting Nonnal 

(b) Flux line 

-r 

Figure 2.3 (a) The variation of the order parameter llfll2 
and the magnetic field B at an interface 

between a superconducting region and a normal region for a type I superconductor with 

K = A./,; < I/ .fi. (b) The radial-dependence of the order parameter and magnetic field for an 

isolated flux line in a type II superconductor ( K >I/ .fi ). Supercurrents encircle the flux line, 

with magnitude IJ0 I oc dB) dr . 

In an applied field, the screening currents of the superconductor in the Meissner state 

raise the Gibbs free energy density of the system [the fourth term on the right-hand side 

of Equation (2.4)]. For type I superconductors, the thermodynamic critical field is 

reached when this diamagnetic energy ( 110H 2 /2) equals the superconducting 

condensation energy (~g), and hence: 

(2.8) 

For type II superconductors, entry into the mixed state at H = He 1 <He significantly 

lowers the diamagnetic energy and no transition occurs at He-

Non-uniform solutions of the Ginzburg-Landau equations involve two characteristic 

lengths: the coherence length c;, which characterises the distance over which the order 

parameter can vary: 
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(2.9) 

and the Ginzburg-Landau penetration depth A., the distance over which the magnetic 

field or supercurrent density can vary: 

(2.1 0) 

The theory usefully describes the variation of ltpf and B at an interface between a 

superconducting and a n01mal region. Since ltpf gives a negative contribution to the 

free-energy and B- !l0H0 gives a positive contribution, the surface energy depends on the 

relative sizes of A. and ~ [see Figure 2.3(a)]. Defining the Ginzburg-Landau parameter 

K =A./~, it can be shown that for K < 1/ J2, the surface energy is positive (a type I 

superconductor), whereas for K > t/ J2, the surface energy is negative (type II). 

It was recognised by Abrikosov [5] that the negative surface energy implies that type 

(a) (b) 100 nm 

Figure 2.4 The hexagonal Abrikosov lattice: (a) Contour plot of normalised I'Pf calculated 

using the Ginzburg-Landau equations (the lines also represent contours of magnetic field and 

streamlines of supercurrent) [25]. (b) Scanning-tunnelling-microscope image [26]. 
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II superconductors enter a mixed state where the magnetic field penetrates the 

superconductor in the form of normal regions each carrying a single quantum of flux. 

The quantisation of flux in a superconductor is a direct consequence of the order 

parameter having a well-defined phase and occurs in units of: 

(2.11) 

The structure of an isolated flux line is shown in Figure 2.3(b ); it has a normal core 

(radius -c;) where 1'1'1 ~ 0 and B is a maximum, surrounded by a region (radius -A.) of 

circulating supercurrents and decreasing magnetic field. Abrikosov found a periodic 

solution to the Ginzburg-Landau equations corresponding to lattice of flux lines [5] and 

it was shown that the most stable configuration is a hexagonal lattice [25], which was 

later confirmed experimentally (see Figure 2.4) [6, 26]. The nearest-neighbour separation 

in the hexagonal lattice is given by: 

(2.12) 

In Ginzburg-Landau theory, the upper critical field is given by: 

(2.13) 

which is the field where the separation of flux lines is -c; and the normal cores begin to 

Table 2.2 Typical superconducting parameters for Nb3Sn at T= 0 [27]. 

Te (K) He (T) He 1 (T) He2 (T) ~ (nm) A. (nm) K 

18 1.1 0.1 32 3.2 64 20 



Chapter 2. Fundamentals of superconductivity 14 

(a) 

(b) 

Figure 2.5 (a) The interaction of two electrons (momenta nk1 and nk2) via exchange of a phonon 

(nq). (b) In BCS theory, the interaction is attractive for electrons within an energy nw0 of the 

Fermi energy c:F ( w0 is the De bye frequency). 

strongly overlap. It can be seen that materials with short coherence lengths (high values 

of K) have high values of upper critical field [28]. Table 2.2 shows the set of 

superconducting parameters for Nb3Sn (note that the six parameters He> He" HC2, ~. A., 

and K can be calculated if any two of them are known). 

2.3.3 BCS theory 

In 1957, Bardeen, Cooper, and Schrieffer (BCS) published their microscopic theory 

of superconductivity [29], which successfully describes conventional, low-temperature 

superconductors. BCS theory requires a net attractive interaction between electrons, 

which occurs in conventional superconductors due to the exchange of phonons (lattice 

vibrations), as proposed by Frohlich [30]. This is a dynamic process in which one 

electron polarises the lattice by attracting the positive ions, and the excess ions then 

attract a second electron. BCS theory uses a simplified description of the electron

phonon-electron interaction (see Figure 2.5), with a constant, attractive interaction (-V) 
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(a) 

(b) 

Figure 2.6. (a) Excitation energies (for electrons or holes) as a function of momentum near the 

Fermi surface, shown for the superconducting (S) and nom1al (N) states. (b) Temperature

dependence ofthe energy gap in BCS theory. 

when the energy of the each electron relative to the Fermi energy ( &k and &k ) is less 
I 1 

than the typical phonon energy 1iw0 (co0 is the Debye frequency): 

Jck~J,Jck,J < liwo 
(2.14) 

otherwise 

It was shown by Cooper [31] that a weak interaction such as this would lead to the 

formation of bound electron pairs (Cooper pairs) at the Fermi surface. Hence BCS 

proposed a wavefunction in which all of the electrons at the Fermi surface form Cooper 

pairs. The pairs have a binding energy 2~(T), implying that there is a minimum energy 

~(T) required to excite an electron or hole, and hence an energy gap at the Fermi 

surface [see Figure 2.6(a)]. The gap increases as the temperature decreases below Tc [see 

Figure 2.6(b)], and has a value at T= 0 of: 

(2.15) 
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where m0 is the Debye frequency, N ( 0) is the electronic density of states (per spin 

direction) at the Fermi energy, and -Vis the matrix element for the electron-phonon-

electron interaction. The energy gap is related to the superconducting condensation 

energy and hence the thermodynamic critical field by: 

(2.16) 

The Cooper pairs have no internal orbital angular momentum and hence antiparallel 

spins, and a characteristic radius given by the BCS coherence length: 

(2.17) 

where vF is the Fermi velocity. This radius is typically of order 1o-6 m, implying that 

there is considerable overlap between the pairs. In fact, the Cooper pairs show a strong 

interdependence; the binding energy depends on the number of pairs already condensed 

and the centre-of-mass momentum of every pair is identical (zero in the ground state). 

Hence, at T = 0, supercurrents cannot decay by the normal process of scattering at the 

Fermi surface because changing the momentum of a single Cooper pair effectively 

destroys its cooperative binding energy, and cannot occur unless the kinetic energy of the 

pair is greater than 2~. (The argument is somewhat more complex at finite temperatures 

where excitations are present [32].) 

The critical temperature in BCS theory is given by: 

[ 
1 J 2~(0) 

k8 Tc = 1.14fiUJ0 exp - ( ) = . 
N 0 V 3.52 

(2.18) 
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Equation (2.18) predicts that Tc oc cv0 oc M-1/2 (where M is the mean atomic mass of the 

superconductor), in agreement with the observations of the isotope effect in a number of 

superconductors. Many other aspects of BCS theory have been confirmed experimentally 

[32]. 

The standard BCS theory assumes that the electron-phonon coupling is weak 

[ N ( 0) V is small], but this is not the case for a number of materials (e.g. Pb, Nb3Sn) and 

the theory must be modified. The equations of strong-coupling (Eliashberg) theory 

[33, 34] have been solved numerically for specific superconductors, and the results fitted 

using approximately universal functions. A number of equations for Tc have been 

proposed, an example of which (the Allen and Dynes equation) is given in Section 5.5.2 

[35, 36]. For other quantities, the calculated strong-coupling corrections to the standard 

BCS values can be expressed in terms of the ratio Tc/cv1n (where cv1n 1s an average 

phonon frequency) [37]. 

It was shown by Gor'kov [38] that BCS theory can be used to derive the Ginzburg-

Landau equations, and hence relate the adjustable parameters in Ginzburg-Landau theory 

to the various microscopic parameters of the superconductor: N ( 0), vF, ~ ( 0), and l (the 

electron mean free path). For example, (using the interpolation formula of Goodman 

[39]) the expression for the Ginzburg-Landau parameter is: 

K = 0.957 ~ (O) (1 + 0.752 ~o), 
~0 l 

(2.19) 

where ~ ( 0) is the zero-temperature London penetration depth given by Equation (2.3) 

with ns = n [where n =1meN(O)v: for a Fermi sphere of free electrons]. This 

combination of microscopic and phenomenological theories-Ginzburg-Landau-

Abrikosov--Gor'kov (GLAG) theory-provides a very useful framework for describing 

the properties of type II superconductors. GLAG theory has also been extended to 



Chapter 2. Fundamentals of superconductivity 18 

temperatures below T0 to describe, for example, the complete temperature-dependence 

of the critical fields and hence the Ginzburg-Landau parameter [39-43]. The equation for 

the upper critical field that appears in Section 5.5 .2 is an example of this approach (it also 

includes strong-coupling effects, and the effects of a non-spherical Fermi surface). 

2.4 Fliux pllimurning and the cr.itican current ((fiensity 

2.4.1 :U:ntrod.lll!ctio:n 

For type II superconductors in the mixed state, the interaction between a transport 

current density J and the flux lines leads to an effective Lorentz force per unit volume on 

the flux lines given by J x lB [ 44]. If the flux lines move as a result of this force, then an 

electric field is induced and energy is dissipated via the normal electrons in the cores 

[ 45]. In order for the material to carry a transport current without dissipation, the flux 

lines must be "pinned" to prevent them from moving. Pinning occurs due to 

inhomogeneities in the material such as dislocations or grain boundaries, which cause 

local variations in the superconducting properties. Hence the free energy of the system 

can change depending on the spatial distribution of flux lines. It is generally energetically 

-F 

Gl--uv-vv-
Figure 2.7. Flux lines in a type II superconductor subject to the Lorentz force due to a transport 

current, but pinned by inhomogeneities in the material that cause local variations in the free 

energy. 
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favourable for the flux line to occupy the region of the inhomogeneity (see Figure 2.7). 

The pinning sites are characterised by their dimensions and spacing in relation to the 

characteristic lengths of the superconductor (A-, ;, a0), and their superconducting 

parameters (for example, the pinning sites may be non-superconducting or have different 

values of Tc or K to the bulk) [46]. The Lorentz force on the flux lines increases as the 

transport current density increases, and the flux lines begin to move at a certain critical 

current density, JC' Hence the volume pinning force can be defined as [ 44]: 

forB l_ J. (2.20) 

The magnetic field and temperature dependence of Fp in a number of super

conducting materials can be described by an empirical scaling law first observed by Fietz 

and Webb [47]: 

FP =C(T)f(b), (2.21) 

wherefis a function of the reduced magnetic field b = Bj BC2 (T) and generally takes the 

form f (b)= bP ( 1-bY , where p and q are constants for a particular material (e.g. p = 1 

and q = 1 for NbTi, p = 1/2 and q = 2 for Nb3Sn [ 48]). 

In the following sections, some simple models of flux pinning are described that are 

particularly applicable to low-temperature, strong-pinning superconductors (e.g. 

technological NbTi and Nb3Sn). It must be noted that these models are not definitive, but 

they do usefully illustrate the types of mechanisms that determine the volume pinning 

force (i.e. vortex-pin and vortex-vortex interactions). A number of other theoretical 

models have been developed, including collective pinning [ 49] (which is important for 
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weak-pinning materials) and collective flux creep [50-52] (important at high-

temperatures or at fields close to BC2). 

2.4.2 Pin breaking 

If the vortex-pin interactions are sufficiently strong, then the hexagonal structure of 

the flux-line lattice can be completely disrupted. In this case, all of the flux lines are in 

pinning sites and the volume pinning force can be obtained from a direct summation of 

the elementary pinning forces [48]. 

The pinning site can interact with the magnetic field of the flux line (magnetic 

pinning) or the normal core (core pinning). The strength of these interactions depends, 

respectively, on the gradients of B ( -1/ A) and llfll2 
( -1/;) in the flux lines. Hence, in 

high-field (short-coherent-length) superconductors, core pinning generally dominates 

[48, 53]. When an isolated flux-line occupies a non-superconducting region, the 

approximate reduction in the free energy per unit length of flux line is given by the 

product of the condensation energy density ( 1 ~0H~) and the volume of the core per unit 

length ( ;r;2 
): 

s: - I H2 ;:2 
u g - 2 ~o clr~ · (2.22) 

In a flux-line lattice, the average condensation energy (and hence 5g) is reduced by a 

factor (1-b) [44]. The elementary pinning force per unit length is then obtained by 

dividing 5g by the distance over which the order parameter changes. If the size of the 

pinning site (in the direction of the Lorentz force) is small, then this distance is 

determined by the variation of I'Pf in the flux-line lattice and is given by a0 /;r [44]. 

Hence the elementary pinning force per unit length of flux line is given by [using 

Equation (2.13)]: 
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Figure 2.8 (a) Reduced field dependence of the volume pinning force for (i) p = 1/2 and q = 2 

(e.g. Nb3Sn), (ii) c66 (flux-line shear model), and (iii) p = 1 and q = 1 (pin breaking model, NbTi). 

(b) Pin breaking (grey areas: pinning sites) and (c) Flux-line shear (grey areas: strong-pinning 

channels, white area: weak-pinning channel). 

(2.23) 

For pinning by planar boundaries (e.g. grain boundaries), the total length of pinned flux 

line per unit volume is L = Sv / a0 , where Sv is approximately given by the total area of 

boundary per unit volume orientated perpendicular to the Lorentz force [ 46, 48]. Direct 

summation ( FP = LfP) then gives the following expression for the volume pinning force 

[using Equation (2.12)] [48]: 

(2.24) 

In the case of pinning due to normal metallic regions (of smallest dimension t) in which 

superconductivity is induced due to the proximity effect, this expression must be 
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multiplied by a factor (t/~Bcs)2 
(typically of order 10-2) [54]. For pinning due to local 

variations in the Ginzburg-Landau parameter (~K), the expression is multiplied by 

~K/ K [ 48]. A number of alternative methods for calculating the pinning energy have 

also been described [44, 46, 53-55]. The model outlined here shows reasonable 

agreement with experimental data for NbTi although not for Nb3Sn [12, 13, 46] (see 

Figure 2.8). It has been suggested [ 48] that the morphology of the grains makes flux-line 

shear the dominant mechanism in Nb3Sn, as described in the next section. 

2.4.3 Flux-line shear 

If the material contains particular configurations of weak-pinning regiOns and 

strong-pinning regions, then the volume pinning force can be determined by the shearing 

of the flux-line lattice (FLL) around the strongly-pinned regions [53, 56-58]. 

Models of flux-line shear generally assume that there is a channel of weak pinning 

surrounded by channels of strong pinning, orientated parallel to the Lorentz force (see 

Figure 2.8) [53, 56]. The flux lines in the weak-pinning channel are prevented from 

moving mainly by the rigidity of the flux-line lattice and the neighbouring strongly-

pinned flux lines. This causes a shear stress on the FLL that increases as the Lorentz 

force is increased until it exceeds the shear strength of the lattice, r max' and the flux lines 

in the weak-pinning channel begin to move. Hence the volume pinning force is given by: 

F. _ 2rmax 
p- , (2.25) 

w 

where w is the effective width of the weak-pinning channel [53, 56]. The shear strength 

can be related to the elastic shear modulus of the FLL, c66, by: 

rmax = Ac66, (2.26) 
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where 1/2Tr::::; A::::; 1/30 [56, 57]. For large values of K, the shear modulus is given by: 

(2.27) 

where K 1 (T) and K 2 (T) are Maki parameters (equal to the Ginzburg-Landau parameter 

at T = Tc) [59]. Combining Equations (2.25), (2.26), and (2.27) gives an expression for 

the volume pinning force that is proportional to c66, with the reduced-field dependence 

shown in Figure 2.8. 

The predictions of the flux-line shear model show good agreement with experimental 

data for artificially-structured, two-dimensional systems [56, 57], but not for bulk 

materials such as Nb3Sn (see Figure 2.8). In some cases, the effective width of the weak

pinning channel can depend on a0 rx B-1/2 
, leading to different field-dependences for Fr 

[ 48, 53, 58]. In Nb3Sn, flux-line shear is expected to occur at grain boundaries, where K 

is increased [due to a reduced electron mean free path, see Equation (2 .19)] and hence c66 

is decreased [Equation (2.27)]. Different models have treated either the grain boundary as 

the weak-pinning channel (in which case w = a0) or the grain itself (in which case w = D 

or w = D- a0, where Dis the diameter of the grain) [ 48, 58, 60]. The second case leads to 

a better agreement with the experimentally observed field-dependence of Fr for Nb3Sn, 

although the grains do not form a percolative path through the material (i.e. the moving 

flux lines must also cross grain boundaries) [ 48]. As yet, there is no definitive theory of 

flux-line shear for polycrystalline superconductors. 



Chapter 3 

Properties of helical springs used to measure the 

effect of axial strain on the critical current density 

of superconducting wires 

3.1 Introduction 

Measurements of the axial strain dependence of the critical current density in high 

magnetic fields provide important information on technological superconducting wires 

and tapes. The brittle superconductor Nb3Sn has been studied most extensively [61-75], 

due to its importance in superconducting magnet technology and large sensitivity to the 

strains that occur in magnets due to differential thermal contraction and Lorentz forces. 

For future large-scale and high-field applications of Nb3Sn (fusion, NMR), quantifying 

the effect of axial strain (B) on the critical current density CJc) is particularly important 

[74, 76]. Axial strain effects have also been investigated in a number of other materials 

including NbTi [77], Nb3Al [78-81], PbMo6S8 [82, 83], MgB2 [64, 84, 85], Bi-2223 

[64, 65, 86-90] and YBCO [91]. In these measurements, the techniques used to apply the 

strain generally fall into one of two categories: "axial-pull" or "bending spring". In the 

axial-pull technique [61, 73, 92], strain is applied to a short straight sample via end-grips 

which also serve as the current leads. In the bending-spring technique, the conductor is 

attached to a thick spring which is then deformed to apply the strain to the sample. 

Various different spring geometries are used, including the helical ("Walters") spring 
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[65, 66, 93], which is investigated in this chapter and is used for the measurements in this 

thesis, the U-shaped spring [62, 64, 85], and the arc-shaped ("Pacman") spring [64, 94]. 

In standard Jc measurements, the conductor is perpendicular to the applied magnetic 

field (or to within ~6°) [95, 96]. For axial-pull apparatus used in standard solenoid 

magnets, the sample length is therefore limited to the diameter of the cold bore: typically 

40 mm [61]. U-shaped bending springs generally have a similar sample length [64]. In 

these short-sample measurements, the current-transfer regions near the current contacts 

can overlap with the region between the voltage taps, resulting in a current-transfer 

voltage being measured, which must be corrected for in order to obtain the intrinsic 

voltage-current characteristics [97, 98]. The electric field criteria used to define Jc are 

therefore relatively high: typically 200-500 11Ym-1 [61, 62, 97]. Axial-pull apparatus can 

be used with split-pair magnets in order to increase the sample length to typically 

180 mm, although the maximum fields of these magnets are generally lower than 

solenoid magnets (~15 T) [73, 92]. A recent variation of the U-shaped bending spring, 

the Pacman, uses an initially curved beam to increase the sample length to ~120 mm (the 

circumference of the magnet bore) [64, 94]. The Walters spring has a helical sample 

geometry similar to that used m (internationally-agreed) standard Jc measurement 

techniques [66, 99, 100]. This geometry accommodates ~800 mm long samples 

[65, 66, 93], enabling critical current density measurements to be routinely performed 

with a sensitivity of 10 11Vm-1 and, with care, at electric fields below 1 11Vm-1 [101]. 

Axial-pull measurements are limited to tensile applied strains, as samples generally 

buckle in compression. However, differential thermal expansion of the component parts 

of the conductor often leads to a compressive prestrain on the superconducting material, 

which makes measurements possible over a limited range of compressive intrinsic strain 

[68, 72, 90]. The prestrain can in principle be increased by cladding the conductor in a 

stainless-steel jacket [102, 103] or using specially-prepared wires [72]. In contrast, 
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bending-spring measurements enable both compressive and tensile axial strains to be 

applied to a sample that is attached to the spring. These measurements are particularly 

important for predicting conductor performance in systems where the structural materials 

cause a large thermal precompression, such as the cable-in-conduit conductors with 

stainless-steel jackets used for fusion applications (see Chapter 5) [ 1 04]. In bending-

spring measurements, differential thermal contraction of the spring and attached sample 

results in thermal stresses on the sample at cryogenic temperatures (in contrast to axial-

pull measurements, in which the sample is free-standing). For measurements on wires, it 

is generally assumed that the effect of the differential thermal contraction is simply to 

produce an additional axial strain on the conductor that can be subtracted in order to 

obtain the intrinsic strain behaviour. Methods for estimating the thermal strain due to the 

sample holder have been described [65]. In addition, when strain is applied using a 

bending spring, there is both a transverse strain gradient across the width of the 

conductor (which depends on the cross-section ofthe turns of the spring [66, 105]) and a 

(a) (b) "Tee-shaped" 

3.5 5.0 11.0 
~1~1 ~I 

~~I~ 
t~ 
~1 1.9 <0 

~ 
(c) "Rectangular" 

Figure 3.1. (a) Photograph of a superconducting wire mounted on a tee-shaped spring; (b) and 

(c) sections through turns of the tee-shaped and rectangular springs showing radial and axial 

dimensions in mm. 
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longitudinal strain variation along the length of the conductor (see Section 3.4.3). 

Bending springs avoid the possibility of stress concentrations at weak points in the 

conductor, but the elasticity of the spring is also an issue. It is clear that the properties of 

the spring are important factors that must be understood in order to perform accurate 

variable-strain measurements on conductors. Detailed tests are therefore required of the 

effects of spring material and geometry, as well as comparisons between the different 

measurement techniques. Some such results have been presented for other types of 

bending springs [72, 94, 103], but results for helical springs are very limited. 

In this chapter (and associated paper [106]), we will present Jc versus axial strain 

data for Nb3Sn wires measured on helical springs of different materials and geometries, 

together with results from finite element analysis (FEA) of these systems. The influence 

of thermal prestrain, elasticity of the spring, and the transverse and longitudinal strain 

uniformity will be investigated in detail. We will evaluate the extent to which the 

intrinsic properties of conductors can be accurately measured (and hence to what degree 

the different measurement techniques are, in principle, equivalent [72, 1 03]). Based on 

our experimental and FEA results, we will also make a number of recommendations 

Table 3.1. Range and uncertainty of the experimental parameters for the J c ( B, T, & ) 

measurements. 

Parameter 

Voltage 
(Electric field) 

Current 

Magnetic field 

Temperature 

Applied Strain 

Range 

::;so J..tV 
(2500 J..lvm- 1

) 

::;400 A (liquid He) 
::;200 A (>4.2 K) 

::;28 T (Grenoble) 
::; 15 T (Durham) 

4.2 to 20 K 

+0. 7% to -1.5% 
-103 cycles 

Uncertainty 

5 n V noise (Durham) 
(0.25 J..tVm- 1

) 

10 rnA(::; 120 A) 
2 A (::;500 A) 

0.5% 

20mK 

3% 
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Figure 3.2. Schematic diagrams of the top and bottom parts of the J c ( B ,T, s) probe 

(reproduced from Cheggour et al. [93]). 



Chapter 3. Properties of helical strain springs 29 

about the design of helical springs, supplementing previous work by Walters et al. [66]. 

The chapter is organised as follows: Section 3.2 consists of a description of the apparatus 

and techniques, and the samples investigated; the results of the variable-strain critical 

current density measurements are presented in Section 3.3; in Section 3.4, the FEA 

results are presented and comparisons are made with the experimental data; finally, some 

recommendations on spring design are made in Section 3.5. 

3.2 Experimental 

3.2.1 Apparatus and techniques 

J c ( B, T, & ) measurements were performed on superconducting wires attached to 

helical springs [see Figure 3.1(a)] in which the strain is generated by rotating one end of 

the spring with respect to the other [66]. The probe (see Figure 3.2) [78, 93] uses two 

concentric shafts to apply the torque to the spring: the inner shaft connects a worm-wheel 

system at the top of the probe to the top of the spring, and the outer shaft is connected to 

the bottom of the spring via an outer can. For measurements at 4.2 K, the outer can 

contains a number of holes to admit liquid helium from the surrounding bath, whereas for 

variable-temperature measurements, the outer can fom1s a vacuum space around the 

sample with a copper gasket and knife edge seal between the can and the outer shaft. The 

current leads sit in liquid or gaseous helium for the length of the probe, and enter the 

vacuum space around the sample via high-current lead-throughs [ 1 07]. At particular 

values of magnetic field, temperature, and strain, measurements are made of the voltage 

( V) across sections of the wire as a function of the current (I), which is increased at a 

constant slow rate. 
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Figure 3.3. Log-log plot of electric field versus engineering current density (and voltage versus 

current) for the EM-LMI wire at a temperature of 4.2 K, zero intrinsic strain, and integer 

magnetic fields between 10 and 15 T. 

A number of modifications to the apparatus have been carried out to increase the 

range and accuracy of the various experimental parameters (see Table 3.1): 

Voltage: In order to reduce thermal emfs, the copper voltage leads are continuous 

from the sample to the voltage amplifiers (except for a set of soldered joints close to the 

sample, where the temperature is approximately uniform). Measurements are performed 

using a nanovolt amplifier (EM-Electronics A10), the accuracy of which was checked 

against a nanovoltmeter (Keithley 182). The amplifier has a voltage noise equivalent to 

the Johnson noise of a 20 n resistor at room temperature. For a bandwidth of~ 1.5 Hz, 

the expected noise is therefore ~2 nV (half the peak-to-peak value), or ~0.1 IJ.Vm- 1 for 

the typical voltage-tap separation of 20 mm [108]. Figure 3.3 shows a representative set 

of V-I (or E-J: electric field-current density) characteristics, where a thermal offset 

voltage that is a linear function of current (time) has been subtracted from the measured 

data (typically 1 nV per 100 A). It can be seen that the noise floor is within a factor of ~2 

of the amplifier noise. Voltages (electric fields) up to a maximum of ~50 IJ.V 
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(2500 1-lvm-1
) are generally measured, and up to three sections of the w1re can be 

measured simultaneously. 

Current: The total cross-sectional area of copper wire has been increased 

considerably in the vacuum space at the bottom of the probe (factor ~ 1 0) to reduce the 

ohmic heating in this region. In addition, the copper plating on the top and bottom parts 

of the spring (i.e. in the current transfer regions) is made particularly thick (up to 

~ 1 mm), and the electrical contact between the current leads and the superconducting 

wire are made using this electroplated copper (the solder is applied subsequently). The 

maximum current that can be applied without heating of the sample is ~400A for 

Table 3.2. Properties of the different spring materials and of a typical Nb3Sn wire. 

Thermal Young's Poisson's 

Material 
expansion modulus at ratio at 
293-4 K 4 K [293 K] 4 K [293 K] 
(%) (GPa) 

Titanium 
-0.174" 130b [110] [0.3l]b 

-4A1-6V 

Copper-
be1yllium -0.317" 132 [119]" [0.27]b 
(TH04) 

Brass -0.370e [I 05]r [0.34]f 
(C27200) 

Stainless 
-0.300" 208" [l93f] 0.28 [0.29]g 

steel 316L 

Nb3Sn wire -0.28g,h 25-lOOg,i 

Copper -0.334g 137 [l28]g [0.31 ]f 

Nb3Sn -0.1 (ji 100 [l35]g 0.4j 

a Reference [ l 09]. Stainless steel data is for type 316. 
b Reference [110]. Cryogenic data for Ti-6AI-4V at 20 K. 
c Reference [66]. 
d Reference [93]. 
e Reference [ lll]. 70/30 Brass (C26000). 
rReference [112]. 
g Reference [ 113]. Stainless steel data is for type 316LN. 
"Reference [114]. Vacuumschmelze bronze-route wire. 

Elastic 
limit at 
4 K [293 K] 
(%) 

l.3c [ l.O]ct 

1.0 [0.9]" 

[0.4]f 

[O.l]r 

-0 [-O]g 

0.04 [0.02]g 

; Reference [115]. A range of tangent modulus values are shown for the 
Nb3Sn wire (which behaves plastically). Similar at 293 and 7 K. 
i Reference [70]. 
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measurements at 4.2 K, and ~200 A above 4.2 K. The uncertainty m the current IS 

estimated to be 10 rnA for our 120 A power supply, and 2 A for our 500 A supply. 

Magnetic Field: Measurements in Durham are performed using our superconducting 

magnet in fields up to 15 T. An extended vacuum can and inner shaft ( ~600 mm long) 

also enable the probe to be used in a tail-dewar with a 38 mm diameter bore in magnetic 

fields up to 28 T using the resistive magnets at the European high-field laboratory 

(Grenoble). The field variation over the turns of the spring in both configurations is 

always less than 0.5%. 

Temperature: Measurements above 4.2 K are carried out (in a low-pressure helium 

gas environment) using three independent temperature controllers with Cernox 

thermometers and constantan wire heaters distributed to produce a uniform temperature 

profile along the turns of the spring. The thermometers were calibrated commercially in 

zero magnetic field, and corrected for the small in-field changes to the calibration (more 

details are given in Section 5.2). The results of various consistency tests show that the 

uncertainty in the temperature of the wire is ~20 mK (see Section 5.3.2) [67, 78]. 

Strain: A computer-controlled stepper-motor enables experiments involving ~ 103 

strain cycles to be carried out, with cycles having a typical frequency of90 s (see Chapter 

4) [116]. The uncertainty in the applied strain is estimated to be ~3% from a 

consideration of uncertainties in the calibration factors obtained from strain-gauge 

measurements, the correction factors used to calculate the strain at the middle of the wire, 

and the longitudinal strain variations. These factors are discussed below. 

3.2.2 Samples 

Measurements were made on two types of ITER-candidate 00.81 mm Nb3Sn wire: 

the EM-LMI internal tin wire and the Vacuumschmelze (Vac) bronze-route wire. The 

wires were heat-treated in an argon atmosphere on oxidised stainless-steel mandrels 
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usmg a three-zone furnace (large isothermal zone), with an additional thermocouple 

positioned next to the samples in order to monitor the temperature. The heat-treatment 

schedules were as follows: for the EM-LMI wire, 210°C for 100 h, 340°C for 24 h, 450°C 

for 18 h, and 650°C for 200 h (ramp rate: 50°C per hour throughout); for the Vac wire, 

570°C for 220 h, and 650°C for 175 h (ramp rates: 100°C per hour, 80°C per hour, 100°C 

per hour). The wires were then etched in hydrochloric acid to remove the chromium 

plating, transferred to the springs, and attached by copper-plating and soldering (the 

Ti-6Al-4V spring was nickel-plated prior to attaching the wire). Two different 

geometries of spring were used for the measurements, details of which are given in 

Figure 3.1: the first (an older design) has turns with a rectangular cross-section, while the 

second uses a tee-shaped cross-section (based on the design of Walters et al. [66]). 

Measurements were performed on springs made from a number of different materials: 

Ti-6Al-4V, copper-beryllium (TH04 temper), brass, and stainless steel (SS) 316L. Table 

3.2 shows some of the properties of these materials. Four EM-LMI samples were 

measured on rectangular springs made from the different materials, and a fifth EM-LMI 

sample was measured on a tee-shaped spring made from Cu-Be. In addition, Vac samples 

were measured on a brass rectangular spring and on a Cu-Be tee-shaped spring. Variable

strain Jc measurements were carried out at 4.2 K in magnetic fields up to 23 T in 

Grenoble (except for the EM-LMI sample on the Cu-Be tee-shaped spring, which was 

measured in magnetic fields up to 15 T in our superconducting magnet). In all of the 

measurements, tensile strains were first applied to the sample and then compressive 

strains. This was to ensure that both tensile and compressive data were obtained before 

applying the large compressive strains that cause strong plastic deformation of some 

components of the wire. Jc at zero applied strain was generally found to be reversible 

after the tensile strain cycle to within ~ 1%, in agreement with previous strain cycling 

results (e.g. Chapter 4) [116, 117]. 
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Figure 3.4. Engineering critical current density (and critical current) as a function of applied 

strain at 4.2 K and integer magnetic fields between 10 and 15 T. Data are shown for EM-LMI 

wires on Cu-Be springs with rectangular and tee-shaped cross-sections. The lines are a guide to 

the eye. 
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3.3 Critical current versus strain results 

3.3.1 Results for different spring geometries 

Figures 3.4 and 3.5 show variable-strain engineering critical current density and n-

value data for EM-LMI wires mounted on Cu-Be springs with rectangular and tee-shaped 

cross-sections. Jc is defined at an electric field criterion of 10 1-l Vm - 1
, calculated by 

dividing the critical current by the total cross-sectional area of the wire, and corrected for 

the normal shunt current (typically 50 rnA) [96]. Then-value is calculated using E oc J" 

for electric fields between 10 and 100 !J.Vm-1
• The applied strains are calculated using 

calibration data from strain gauges mounted on the surface of the spring that are 

corrected using finite element analysis (FEA) to give the strain at the midpoint of the 

wires as described in Section 3.4.1. Relatively good agreement is found between the 
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function of applied strain for EM-LMI wires on rectangular springs made from four different 

materials. The lines are a guide to the eye. 
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results for the two different spring geometries: the Jc data superimpose to within ±2%, 

and then-value data to within ±10%. These results therefore validate the methods used to 

obtain the characteristic strain for the wire (see Section 3.4.1 ). 

3.3.2 Results for different spring materials 

Figure 3.6 shows the engineering critical current density as a function of applied 

strain (&A) for EM-LMI wires on rectangular springs made from four different materials. 
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Figure 3.8. Kramer plots at different applied strains at 4.2 K for EM-LMI wires on rectangular 
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Figure 3.9. Effective upper critical field at 4.2 K as a function of intrinsic strain for Vac wires on 

springs of different materials and cross-sections. The line is a guide to the eye. 
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The spring material clearly affects the relationship between Jc and applied strain, and in 

particular the position of the peaks in J c ( & A). Intrinsic strain ( &1) is defined relative to 

the applied strain where Jc is a maximum (sM) by: 

(3.1) 

It is found by plotting Jc as a function of intrinsic strain, that the data for the four 

different spring materials approximately superimpose, typically to within ±5% [see 

Figure 3.7(a)]. Similar agreement is also found for the n-value [Figure 3.7(b)] and the 

effective upper critical field [Figure 3.7(c)]. The values of effective upper critical field 

[ B~2 ( 4.2 K)] were obtained from Kramer plots ( J~2 Bl/4 versus B), examples of which 

are shown in Figure 3.8 [58]. The level of agreement between the different samples is 

typically ± 1% for the B~2 ( 4.2 K) data as a function of intrinsic strain. The largest 

deviations from the universal curves are observed for the stainless steel spring. This can 

be attributed to plastic yielding of the steel, which has an elastic limit of ~0.1 %, and 

difficulty bonding the wire to the spring. The different values of &M are related to the 

additional thermal strains due to the sample holder, which vary according to the thermal 

expansion of the material used (see Table 3.2). The universal intrinsic strain dependences 

show that these additional strains are similar in nature to the applied (mechanical) strains, 

so that the same strain-state in the wire is obtained from different combinations of 

applied (mechanical) strain and thermal strain. In Section 3.4.2, the measured values of 

&M will be compared with predictions from FEA. 

Figure 3.9 shows the values of effective upper critical field at 4.2 K obtained from 

measurements on Vac wires mounted on springs of different materials and geometries (a 

brass rectangular spring and a Cu-Be tee-shaped spring). These data also lie on a 

universal curve as a function of intrinsic strain to within ± 1%. 
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3.3.3 Jc homogeneity along the wire's length 

Figure 3.10 shows the strain-dependence of Jc for different sections of Vac and 

EM-LMI samples on Cu-Be tee-shaped springs. Each section was ~20 mm long and 

separated by approximately one tum. The Jc data agree to within ±2% for both samples, 

which is typical of the samples that we have investigated, although on one occasion (one 

in fifteen samples) significantly different behaviour is observed for one of the sections of 

the wire [93]. 

3.4 Modelling results and comparisons with experimental data 

3.4.1 Results for different spring geometries 

3.4.1.1 Analytic equations Walters et a!. gives the following expressiOn for the 

circumferential strain &66 in a helical bending spring as a function of the radial distance r 

[66]: 

(3.2) 

where K is a factor that depends on the applied angular displacement (), the number of 

turns of the spring N, and the pitch angle a: 

K = ( ()j2TrN)cosa. (3.3) 
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The position of the neutral radius rn can be calculated using the condition that there is no 

net force perpendicular to the cross-section of the spring, i.e.: 

fw(r )E(r )£99 (r )dr = 0, (3.4) 

where w is the width of the section (in the axial direction) and E is the Young's modulus 

(both of these quantities can vary with position to allow for complex spring geometries 

and the presence of the wire-the integral can generally be calculated analytically). 

Equations (3.2)-(3.4) can be used to predict the strain-state in springs and attached wires, 

although the treatment does not consider the effects of the complex distortions that occur 

when the spring is twisted [66]. These "loaded beam" equations will be compared with 

results obtained from finite element analysis in the next section. 
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Figure 3.11. (a) FEA model of a tee-shaped spring with attached wire. (b) The circumferential 

strain on a plane through the centre of the spring at an angular displacement of+ 15°. 
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Figure 3.12. The circumferential strain as a function of the radial distance at different angular 

displacements for (a) rectangular and (b) tee-shaped springs with attached 00.81 mm wires. The 

symbols show the FEA results at the centre of the cross-section (shown by the dashed lines), 

while the solid lines show fits made using Equation (3.2). The variation in strain in the axial 

direction is negligible (see Figure 3.11 ). 

3.4. 1.2 Finite element analysis Finite element analysis was carried out usmg the 

software package Strand? (G+D Computing, Australia). A typical finite element model 

consisting of -20 000 8-node brick elements is shown in Figure 3.11(a). The results were 

found to change by less than 1% for further increases in mesh density. The models used 

elastic-plastic material properties with stress-strain curves defined via a modified power-

law fit to the following parameters: Young's modulus, yield stress, ultimate stress, and 

elongation at ultimate stress [ 113]. Figure 3.11 (b) shows the circumferential strain due a 

+ 15° ( anticlockwise) rotation of one end of the spring. The strain is approximately 

independent of axial position throughout the cross-section of a tum of the spring. The 

variation of circumferential strain with radial distance (along the centre of the cross-

section) is shown in Figure 3.12 for the Cu-Be rectangular and tee-shaped springs used in 

the Jc vs. & measurements. The FEA results can be fitted quite accurately using Equation 
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(3.2) with r" and K as free parameters (lines in Figure 3.12). The values of r" obtained 

from the FEA (8.52±0.0 1 mm for the rectangular spring and 4.24±0.03 mm for the tee-

shaped) agree well with those calculated using Equation (3.4) (8.54 and 4.24 mm). The 

two methods therefore give approximately the same radial-dependence for the strain in 

the turns, although not the same absolute values of strain (discussed below). 

For the spring in the elastic regime, a linear relation between strain and angle is 

Table 3.3. Calibration factors (% applied strain per degree angular displacement) for the Cu-Be 

rectangular and tee-shaped springs. Factors obtained from finite element analysis and the loaded

beam equations are shown for springs with and without attached wires (00.81 mm, 

E = 30 GPa ), giving the strain at the outer surface of the spring, at the active part of a strain 

gauge (i.e. 45 11m above the surface of the spring) and at the middle of the wire. The corrected 

calibration factors (for the middle of the attached wire) are calculated from the measured values 

(for strain gauges on springs without attached wires) using the FEA results. 

Cu-Be 
Calibration factor(% per degree) 

spring Position Measured FEA Loaded- Corrected 

geometry beam eqs. 

with shafts no shafts no shafts with shafts 

Rectangular 

Outside 
0.0143 0.0156 No of spring 

attached 
wire Strain 

0.0139 0.0145 0.0158 
gauge 

Outside 
0.0141 0.0155 

Attached of spring 
wire Middle 0.0159 0.0174 0.0152 

of wire (+9.3%) (+10.1%) 

Tee-shaped 

Outside 
0.0269 0.0380 No of spring 

attached 
wire Strain 

0.0221 0.0269 0.0381 
gauge 

Outside 
0.0267 0.0379 

Attached of spring 
wire Middle 0.0275 0.0388 0.0226 

of wire (+2.0%) (+1.7%) 
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observed experimentally in strain-gauge calibrations, obtained from the finite element 

analysis (to within ~0.5%), and predicted by Equation (3.3). Table 3.3 shows calibration 

factors defined as the strain per unit angular displacement at various radial positions: the 

outer surface of the spring, the active part of a strain gauge (total height above the surface 

of the spring: 45 ~-tm [118]), and the midpoint of a 00.81 mm wire. Calibration factors 

are presented for strain-gauge measurements on springs without attached wires in the 

strain-probe (helical strain), finite element analysis (helical strain, averaged over the 

central turns of the spring, see Section 3.4.3), and the loaded-beam equations 

(circumferential strain). Helical strain is defined as the strain parallel to the helical path at 

a particular radius (e.g. the axis of the wire), and differs from the circumferential strain 

by typically 1% on the outer surface of the spring. The measured calibration factors are 

the lowest of the three factors, primarily because of the shafts and connectors twisting in 

the probe. (The rotation of the top of the spring is measured directly, but, in standard 

operation, the rotation of the bottom of the spring is measured via the shafts and 

connectors that carry the torque.) For the rectangular springs, there is reasonable 

agreement between the measured calibration factor and the value from FEA. The larger 

differences observed for the tee-shaped spring are consistent with the prediction that the 

torque required per unit angular displacement is a factor of ~4 larger for this spring (see 

Tables 3.3 and 3.4). The calibration factors from the loaded-beam equations are 

considerably larger than the FEA values, which can be attributed to the effects of the 

radial compression and the distortion of the envelope of the turns that occur when the 

spring is twisted. These effects are not included in the loaded-beam equations and are 

expected to reduce the strains relative to the calculated values [66]. Strain-gauge 

measurements show that the calibration factors are independent to within ~2% of both 

spring material and temperature (293-4 K), consistent with FEA and the loaded-beam 

equations for springs with and without attached wires. 
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Table 3.4. Design parameters for the Cu-Be rectangular and tee-shaped springs, obtained both 

from FEA and the loaded-beam equations. 

Cu-Be 
spnng 
geometry 

Rectangular 

Tee-shaped 

Strain gradient 
across 00.81mm 
wire(%) 

Torque per% 
applied strain 
(Nm) 

FEA [loaded-beam eqs.] 

±9.9 [±10.5] 27 [22] 

±2.9 [±2.1] 67 [63] 

Ratio of strain at 
inside of spring to 
strain at outside of 
spring 

-1.47 [-1.44] 

-2.16 [-1.97] 

The FEA results have been used to relate the measured calibration factors (for 

which the strain gauge is attached to the surface of a spring without an attached wire) to 

the strain at the midpoint of a 00.81 mm wire attached to the spring. For these wires, 

there is negligible difference between the calculated strain at the midpoint and the mean 

strain on the filaments. As shown in Table 3.3, the effect of attaching a wire 

(E = 30 GPa) to the spring decreases the calibration factor, whereas the radial-

dependence of the strain and the different radial positions of the strain gauge and the 

midpoint of the wire cause the calibration factor to increase (see Figure 3.12). For the 

experimental data presented in this thesis, the strain values are always quoted for the 

midpoint of the wire using the corrected calibration factors. The FEA corrections are 

~2% for the tee-shaped spring and ~9% for the rectangular spring, the magnitudes of 

which are confirmed by the loaded-beam equations. The good agreement between the 

results for different spring geometries demonstrates that this approach is valid (Figures 

3.4, 3.5, and 3.9). 

The transverse strain gradient across the wire differs considerably between the two 

spring geometries. The variations are approximately ± 10% for the rectangular spring and 

±3% for the tee-shaped spring (see Table 3.4), although these values are somewhat 

smaller over the central region of the wire occupied by the superconducting filaments 
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(approximately 00.7 mm for the EM-LMI wire and 00.5 mm for the Vac wire [119]). 

For the EM-LMI wire on the rectangular spring, the variation in strain corresponds to a 

variation in B~2 ( 4.2 K) of ±0.5 T at an applied strain of -0.5%, while for the tee-shaped 

spring the variation is ±0.1 T. The agreement in the n-values for the different spring 

geometries, as shown in Figure 3.5, is to be expected if the intrinsic variations in the 

superconducting properties-due to composition gradients, for example-are larger than 

those due to the strain gradient [ 13, 120]. 

The data in Table 3.3 are valid for the elastic regime of the spring material, where 

critical current versus strain measurements are generally carried out. Table 3.4 shows the 

ratio of the circumferential strain at the inside of the spring to the circumferential strain at 

the outside of the spring for the two different geometries (see Figure 3.12). The 

magnitude of the strain is higher at the inner surface, and so the spring will yield first in 

this region. We note that finite element analysis shows that at the inner surface of the 

spring, the circumferential strain is significantly different from the helical strain but has a 

similar magnitude to the von Mises equivalent strain [ 121] that is appropriate for 

considering plastic yielding. For a spring made of Cu-Be (with an elastic limit of 1 %), 

yielding occurs when the strain on the outer surface is ~0.5% for the tee-shaped cross

section and ~0.7% for the rectangular cross-section. Since some of the data presented in 

Section 3.3 were obtained at high compressive strains where parts of the spring are in the 

plastic regime, the possible effects of plasticity also need to be considered. In strain

gauge measurements performed at room temperature on the Cu-Be rectangular spring 

(and a Ti-6Al-4V tee-shaped spring), deviations from the linear relation between strain 

and angle observed for the elastic regime became significant (equal to +2%) at an applied 

strain of -1.5% ( -0.9% for the Ti-6Al-4V tee-shaped spring). These results are consistent 

with FEA that includes the role of plasticity and confirms that yielding at the inner 

surface does not have a very large effect on the average strain at the outer surface, 
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primarily because most of the spring remains elastic. At the highest strains where the 

strain-angle relationship is nonlinear, measurements can still be performed accurately if 

the strain-gauge calibrations and the measurements are performed using the same 

sequence of applied strains. 

Finite element analysis provides useful information about the changes in the spring's 

dimensions when a torque is applied. At angular displacements corresponding to ±1% 

applied strain, the predicted change in the spring's height (from 75 mm) is ±0.5 mm for 

the rectangular spring and ± 1 mm for the tee-shaped spring. Our strain probe has a 

sliding keyway in the inner shaft to accommodate this change. If the spring is constrained 

so that the ends cannot move vertically, the calibration factor is predicted to be somewhat 

larger (~0.5%) for the rectangular spring and considerably larger (~5%) for tee-shaped 

spring. In addition, the outer diameter increases at compressive applied strains; the 

maximum increases are 1.5 mm (rectangular) and 0.5 mm (tee-shaped) at -1% strain. 

(Similar decreases occur for the inner diameter at tensile applied strains.) 

3.4.2 Results for different spring materials 

It is well known that at cryogenic temperatures the filaments in a Nb3Sn wire are 

under compressive strain due to differential thermal contraction. It is generally assumed 

that the peak in the critical current density occurs when the applied axial strain cancels 

the axial component of this thermal strain (i.e. a one dimensional model is correct to first-

order) [68-70]. Hence we can write down the following formula for the applied axial 

strain at the peak (EM) for our particular measurement procedure: 

_ (( M )923-293 K (!!.I )293-4 K ( M )923-4 K ) 
£ -- - +- -- . 

M I Isolated wire I Wire on spring I Nb3Sn compound 
(3.5) 
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Table 3.5. Calculated change in length between 293 and 4 K of the EM-LMI Nb3Sn wire 

(00.81 mm, E = 30 GPa ) on rectangular springs of different materials, and predicted and 

measured values of &M. 

Length change of wire &., (%) 
Spring 293-4 K (%) 
material 

FEA Predicted Measured 
[force-balance eq.] (FEA) 

Titanium-
-0.184 [-0.174] 0.12 

0.10 
4Al-6V ±0.02 

Copper-
-0.315 [-0.316] 0.255 

0.28 
beryllium ±0.02 

Brass -0.364 [-0.369] 0.30 
0.31 
±0.02 

Stainless 
-0.300 [-0.300] 0.24 

(0.27 
steel 316L ±0.02) 

The first term on the right-hand side ofthe equation is the relative change in length of the 

isolated wire on cooling from the reaction temperature (923 K) to room temperature 

(293 K), which has been calculated using finite element modelling to be -0.63% for the 

EM-LMI wire [113]. The second term is the relative change in length of the wire that has 

been firmly attached to the spring at room temperature (by copper plating) and then 

cooled to 4 K (the thermal cycle due to soldering does not affect the strain state of the 

wire). A simple 1D "force balance" equation [90] gives values for the relative change in 

length of the wire between 293 and 4 K that are within ~ 1% of the thermal expansion of 

the spring material (compare Tables 3.2 and 3.5), due to the small cross-sectional area of 

the wire in relation to the spring. Similar values are obtained from FEA, although there 

are somewhat larger differences for the Ti-6Al-4V tee-shaped spring, where the average 

contraction of the wire is 5% higher than the thermal contraction ofTi-6Al-4V (see Table 

3.5). The third term on the right-hand side of Equation (3.5) is the intrinsic thermal 

expansion of Nb3Sn between 923 and 4 K, for which a value of -0.69% has been used 

(923-293 K: -0.53%, 293-4 K: -0.16%) [70]. Table 3.5 shows the values of &M 
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calculated using Equation (3.5), which show good agreement with the experimentally 

measured values for the different spring materials. 

Various studies have been carried out of the three-dimensional strain-state of the 

filaments in Nb3Sn wires [ 122-127]. Given the uncertainties in some of the parameters 

used in Equation (3.5), our results are consistent with models in which the peak in the 

superconducting properties occurs when the deviatoric strain or the axial strain in the 

filaments is a minimum (zero). In any case, the FEA confirms that after cool-down, the 

3D strain-state of the (EM-LMI) wire attached to the spring is, to a good approximation, 

equal to the strain-state of an isolated wire that is first cooled down and then subject to an 

axial strain. This equivalence between the thermal strains and the applied (mechanical) 

strains provides an explanation for the universal behaviour of the wires as a function of 

intrinsic strain (see Section 3.3.2). This is due to the line-like contact between the wire 

and the spring. Note that this is not the case for tape conductors, where the differential 

thennal contraction also leads to an in-plane transverse strain on the tape [ 128] (or for a 

wire attached to the spring with large amounts of copper-plating or solder). 
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as a function of helical distance: (a) results from strain-gauge measurements (the symbols show 

the measured data while the dashed lines are a guide to the eye); (b) FEA results 
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Table 3.6. The amplitude of the longitudinal strain oscillations for springs of different materials 

and geometries. 

Spring material and 
geometry 

Rectangular (N = 4) 

Cu-Be (meas.) 

Cu-Be (FEA) 

Brass (FEA) 

Tee-shaped (FEA) 

Cu-Be (N = 4.5) 

Cu-Be (N = 2, 3, 4, 5, 6) 

Amplitude of oscillations (%) 

-1.0% strain +0.5% strain 

5 

1.3 2.5 

3.9 3.6 

1.4 0.7 

2.6, 0.1' 0.25, 0.3, 0.35 

3.4.3 Strain uniformity along the wire's length 

In order to investigate the uniformity of the strain along the length of the wire, 

measurements were carried out using 16 strain gauges placed around the outer surface of 

a Cu-Be rectangular spring. A sinusoidal variation of strain with helical distance was 

observed, as shown in Figure 3.13(a). The results obtained from the finite element 

analysis are shown in Figure 3.13(b). The measured "oscillations" have a similar 

wavelength to the FEA results (equal to one tum) but are both considerably larger and 

off-set spatially. At a mean applied strain of -1%, the measured value for the amplitude 

is -5% of the mean, compared to the FEA value of 1.3% (see Table 3.6). 

Finite element analysis was used to investigate the strain variations for various types 

of spring over extended strain ranges. The size of the oscillations generally increases 

non-linearly with increasing strain, and for the Cu-Be rectangular spring is considerably 

larger at tensile strains than equivalent compressive strains, as shown in Figure 3 .13(b ). 

For the Cu-Be tee-shaped spring with four-and-a-half turns (used for the critical current 

measurements), the oscillations have a similar size to the rectangular spring in 

compression but are smaller in tension (see Table 3.6). At a mean applied strain of 
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+0.5%, the predicted amplitude of the strain oscillations corresponds to a maximum 

variation in the critical current of approximately ±0.6 A for the EM-LMI and Vac wires 

at 4.2 K and 12 T (see Figure 3.10). Tee-shaped springs with integer number of turns 

(N = 4, 5 or 6) have considerably smaller oscillations, by a factor of ~5 at -1% strain, 

than the (N = 4) rectangular spring and the half-integer (N = 4.5) tee-shaped spring. 

Finite element analysis shows that the strain oscillations are related to the distortion 

of the envelope of the turns that occurs when the spring is twisted. For springs with 

integer numbers of turns, a correlation is observed between strain magnitude and radial 

displacement as a function of helical distance [see Figures 3.14(a) and (c)], although for 

springs with half-integer number of turns, there is no simple correlation [Figures 3.14(b) 

and (d)]. The behaviour is clearly quite complex, and, to our knowledge, an analytic 

description is not yet available. The smaller oscillations for the tee-shaped springs can be 

attributed to the greater torsional rigidity of the cross-section and hence smaller 

distortions. Figure 3.15 shows how the oscillation amplitude varies as a function of the 

total number ofturns in the Cu-Be tee-shaped spring at +0.5% and -1.0% strain. It can be 

seen that for this type of spring an integer number of turns ( 4 or 5) is indeed the optimum 

number for minimising the oscillations. 

It was also found that the longitudinal oscillations are considerably larger when the 

spring material is in the plastic regime (presumably because the spring yields first at the 

peaks of the oscillations which therefore increase disproportionally). For example, a 

finite element model of a (brass) spring with an elastic limit of 0.4% (rather than 1.0% 

for Cu-Be) has oscillations that are larger by a factor of ~3 at -1% applied strain (see 

Table 3.6). Hence the difference between the experimental results and the FEA in Figure 

3.13 may be partly due to the copper-beryllium used for the spring having a lower elastic 

limit than the typical value at room temperature (0.9%). 
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3.5 Discu.ssioJID of spring desigllll. 

Our experimental and FEA results allow us to make some recommendations about 

optimum spring designs. The universal relations between superconducting properties and 

intrinsic strain for wires on different spring materials demonstrate that the thermal 

expansion of the spring only affects the behaviour of wires through a change in the 

parameter &M. However, it is important to use a spring material with a high elastic limit

such as Cu-Be (TH04 temper) or Ti-6Al-4V-given the requirement for a reversible 

(unique) relationship between angular displacement and strain, the deviations observed 

for the Jc measurements on the stainless-steel spring, and the increase in the size of the 

longitudinal strain variations predicted by the FEA for springs in the plastic regime. We 

now prefer to use the titanium alloy, as it is routinely used for sample-holders in standard 

Jc measurements [105, 129] and it has the highest elastic limit at 4.2 K of any 

engineering alloy (we have also used copper-beryllium, but the sensitivity to heat

treatment conditions and the toxicity of the beryllium means that some care is required 

when handling). Although Ti-6Al-4V cannot easily be soldered to or copper-plated 

directly, we have used a well-established technique for nickel plating the spring [130] 

prior to transferring and attaching the wire using copper-plating and soldering. 

The Jc data demonstrate that it is necessary to use finite element analysis (or the 

loaded-beam equations) to relate the strain-gauge calibration data to the strain at the 

midpoint of the conductor. After applying the correction to obtain the strain at the middle 

of the wire, second-order effects due to the different strain gradients for the two spring 

geometries are not observed for our results. The magnitude of the strain gradient may be 

important for larger or different types of conductor, and can be reduced by using a spring 

with a radially thicker, tee-shaped cross-section (our optimised tee-shaped springs have 

strain gradients and correction factors of <3%). As the radial thickness of the spring is 

increased, the ratio of the strain at the inside of the spring to the strain at the outside 
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increases in magnitude, reducing the strain range over which the spring remains elastic. 

Walters et al. suggested maximising the elastic strain range by setting this ratio to be 

equal to -1 [66]. We have used an alternative approach in which the value of the 

inner/outer strain ratio is specified by the strain range over which measurements are 

required, and then the tee shape is optimised to minimise the strain gradient across the 

conductor. Our specific requirements are for detailed measurements to ±0.5% applied 

strain and hence for a spring material with an elastic limit of~ 1% we use an inner/outer 

strain ratio of -2. To optimise the properties of the spring, the loaded-beam equations 

given by Walters et al. can be used (see Section 3.4.1.1), as these predict a radial

dependence for the strain in the turns that agrees well with the FEA [ 66]. The first stage 

of the process is the same as that described by Walters et al. and involves maximising the 

outer radius of the spring (given the available space), minimising the width at the outside 

of the tee (given the width of the conductor), and maximising the width at the inside of 

the tee (given the maximum pitch-angle for the wire of ~5° [95] and hence the tum pitch) 

[66]. The two parameters to be calculated are then the inner radius and the position of the 

ramped step (see Figure 3.1). For any given value of inner radius there is an optimum 

step position that minimises the neutral radius [calculated using Equation (3.4)] and 

hence minimises both the strain gradient across the conductor and the size of the 

inner/outer strain ratio [Equation (3.2)]. The optimum step position can be calculated at 

discrete values of inner radius using a spreadsheet solver/optimiser. Hence the optimum 

inner radius and ramped step position are uniquely determined once the inner/outer strain 

ratio is specified by the required elastic strain range. 

The geometry of the tee-shaped spring used in our measurements [see Figure 3.1(b)] 

was obtained using the method described above with an inner/outer strain ratio of -2. For 

this spring, the loaded-beam equations predict a strain gradient across a 00.81 mm wire 

of ±2.1% (FEA: ±2.9%) compared to the value of approximately ±6% that would be 
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obtained using the approach of Walters et al. The reversibility of the critical current 

density and strain-gauge calibration data also imply that measurements can generally be 

carried out on a single cycle to a value of compressive strain beyond the predicted elastic 

regime (by a factor of ~2). In general, the availability of a larger bore diameter enables 

both a larger strain range and a smaller strain gradient across the conductor. 

The design should also consider the torque required to twist the spring, which can 

also be calculated using the loaded-beam equations, so that higher-strength shafts are 

used for springs with radially thicker turns [66, 93]. The FEA results for the tee-shaped 

spring also show that the calibration factor is quite strongly dependent (~5%) on whether 

the height of the spring is able to change. Our probe is designed with a sliding keyway so 

that the change in height can occur freely (or, at least, reproducibly). 

Finite element analysis shows that the uniformity of the strain along the length of the 

wire varies quite considerably with spring material and geometry. These longitudinal 

strain variations can be large, but our FEA results show that they can be reduced to 

<0.5% by using a spring with an optimum integer number of turns (4 or 5). 

3.6 Conclusions 

Variable-strain critical current density data and finite element analysis results are 

presented for Nb3Sn wires on helical (Walters) springs of different materials and 

geometries. The strains produced by these springs can in principle be much more 

complex than those produced by axial pull techniques. For wires measured on different 

spring materials (Cu-Be, Ti-6Al-4V, brass, SS 316L), the critical current density, n

value, and effective upper critical field are universal functions of intrinsic strain

deviations are observed for the stainless-steel spring which are attributed to plasticity. 

The experimental and modelling results demonstrate that the thermal strains due to the 
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spring are predominantly axial in nature, so that the only effect on the behaviour of the 

wire is a change in the parameter C:w which depends systematically on the thermal 

expansion of the spring material. The variable-strain data obtained on different spring 

geometries show good agreement when the applied strain is calculated at the midpoint of 

the wire using strain-gauge calibration data corrected to account for the strain gradient 

across the wire (and the presence of the wire on the spring). The agreement is observed 

even though the transverse strain gradient for the rectangular-shaped spring used in our 

measurements is considerably larger than for the tee-shaped spring. The correction 

factors can be obtained from FEA or analytical calculations. Experimental results show 

that the critical current density is uniform along the length of the wire typically to within 

±2%. Finite element analysis shows that the variations in strain along the length of the 

wire vary considerably with spring material and geometry, but are generally less than 

±2% for our measurements. The universal strain dependences observed for different 

types of helical spring provide good evidence that the intrinsic properties of the 

conductor can be accurately measured-the capacity for very high-field and high

sensitivity measurements is also demonstrated. Supplementing previous work by Walters 

eta!., springs made with highly elastic materials (e.g. Ti-6Al-4V), optimised tee-shaped 

cross-sections, and optimum integer numbers of turns (e.g. 4 or 5) are shown to give the 

best performance in relation to the transverse and longitudinal strain uniformity in the 

w1re. 



Chapter 4 

Effect of axial strain cycling on the critical current 

density and n=value of ITER niobium=tin wires 

4.1 Introduction 

Strain has a very large effect on the superconducting properties of Nb3Sn. In 

superconducting magnets, strain arises from the differential thermal contraction that 

occurs on cooling to cryogenic temperatures, and the Lorentz-forces that occur during 

high-field operation. The International Thermonuclear Experimental Reactor (ITER) will 

use magnets made from cable-in-conduit conductors (CICC's) with Nb3Sn strands 

(wires) [76]. For these large-scale high-field magnets, knowledge of the effects of strain 

is extremely important. In addition, the ITER magnets will undergo many charging 

cycles (up to 50 000), and so the effects of cyclic strain and fatigue also need to be 

considered. 

The axial strain dependence of the critical current density [ 61, 62, 131] (and n-value 

[101]) oftechnical Nb3Sn wires has been measured extensively. The effects are generally 

found to be reversible, to first order, for small numbers of cycles over quite large ranges 

of strain, while at higher strains damage occurs to the superconducting filaments. 

However, the effects of large numbers of strain cycles within the so-called reversible 

regime has not been widely investigated. A study of bronze-route Nb3Sn wires stress 

cycled at room-temperature did not observe fatigue effects [132], nor did a study of 

CICC's subject to axial strain cycles at cryogenic temperatures [73]. In contrast, 
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Figure 4.1. The top end of the strain probe, with the computer-controlled stepper motor (on the 

left). 

investigations of transverse stress cycling of CICC's [133] and cyclic charging of ITER 

model coils [76] have found some evidence of fatigue effects and in order to understand 

these results, accurate data for the component wires are required. The work presented in 

this chapter (and associated paper [ 116]) is the first reported investigation of the effects 

of axial strain cycling (involving > 1000 cycles) at cryogenic temperatures on the critical 

current density and n-value of technical Nb3Sn wires. 

4.2 Experimental 

Measurements were made on two different 00.81 mm ITER-candidate Nb3Sn wires: 

an internal-tin wire made by Europa Metalli-LMI (EM-LMI) and a bronze-route wire 

made by Vacuumschmelze (Vac). The heat-treatment schedules and mounting 

procedures were as described in Chapter 3. The springs were made of copper-beryllium, 

with tee-shaped cross-sections designed to minimise the strain gradient across the wire. 

The strains values quoted are for the midpoint of the wire, calculated from the strain

gauge calibration data using finite element analysis (see Chapter 3). 
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Figure 4.2. The strain cycling procedure. The labels I and II refer to the measurements at zero 

applied strain at the beginning and the end of each test cycle respectively. Inset: spring sample 

holder with tee-shaped cross-section. 

The experiments were carried out usmg our strain probe [93] with an added 

computer-controlled stepper motor (see Figure 4.1). This enables strains (and strain 

cycles) to be applied automatically, with a resolution of -1 o-6 % strain per step. Standard 

voltage-current (V-I) measurements were made on three different sections of the wire, 

which was immersed in a liquid-helium bath at 4.2 K (see Chapter 3). The experiments 

consisted of single strain-cycles during which V-1 measurements were made (test 

cycles), alternated with sets of 100 strain cycles (see Figure 4.2). The maximum applied 

strain was increased for each successive set of 100 cycles in increments of 0.062% until 

the wire was damaged. The test cycles were first carried out to 0.31% applied strain and 

after the set of 100 cycles to 0.31% had been completed, they were then carried out to 

0.62%. V-1 measurements were made at magnetic fields between 9 and 15 T at zero 

applied strain at the beginning of the test cycle, at 10 and 12 T during the first half of the 

cycle and then at 10 and 12 T at zero applied strain at the end of the cycle. No test cycles 

were carried out after sets of cycles to applied strains above 0.62%, but measurements 
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were made at 10 and 12 T during the 1001
h cycle, at the maximum applied strain and at 

zero applied strain. The strain was changed at a constant maximum speed of 0.01% s- 1 

(e.g. cycles to 0.31% took -90 s ). In addition, the temperature of the wire was kept below 

-20 K for the entire experiment (the Vac wire was subjected to a thermal cycle to room 

temperature after strain cycling to 0.61 %, but this had no significant effect). 

4.3 Results 

Figure 4.3 shows the electric field-engineering current density (E-J) characteristics 

for the three different sections of the EM-LMI wire (A, B, and C) at zero applied strain 

before any cycling. E and J were calculated from the voltage and current by dividing by 

the voltage-tap separation (typically -20 mm) and the cross-sectional area of the wire 

(5.15 x 10-7 m2
). The data are typical of both wires, which were homogeneous in terms 

of their E-J characteristics to within 5% (until damage occurred). This chapter will 

consider engineering critical current densities (Jc) defined at an electric-field criterion of 
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Figure 4.3. Electric field versus engineering current density (and voltage versus current) on a 

log-log scale for three different sections of the EM-LMI wire at zero applied strain (before any 

cycling) and integer magnetic fields between 10 and 15 T. 



Chapter 4. Effect of axial strain cycling 61 

160 

of' 3.00 
(a) 

25 
(b) 

E 
<( 

"'o (i) 24 
:::.. 2.75 

140 ~ 
en 

~ 
Q) 

c 'iii c 0 c: 'iii 23 Q) ~ c: 0 
2.50 s Q) 

+" Max applied strain for E Max applied strain for c: () 

~ previous 100 cycles (%) 
120 ~ 

'6 previous 1 00 cycles (%) 
:::J ---&--- No cycles -v- 0.37 

-; 22 
I!] No cycles v 0.37 () :::J 

2.25 --e--- 0.06 ----"i[J----0.43 
·;:::: 

(ij --e--- 0.06 ----"i[J--- 0.43 
~ 

() 
--G-0.12 ---+--- 0.49 > e 0.12 ¢ 0.49 

E --e--- 0.19 --+-- 0.56 
I!: 21 --G-0.19 --+-- 0.56 .... 

() --A-0.25 --+--0.62 A 0.25 <I 0.62 
c» 2.00 --8-0.31 --8-0.31 
c: 

100 20 w 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6 

Applied Strain(%) Applied Strain(%) 

Figure 4.4. (a) Engineering critical current density (and critical current) and (b) n-value as a 

function of applied strain for section A of the EM-LMI wire at a magnetic field of 12 T, 

measured after each set of 100 strain cycles. The engineering critical current density was defined 

at 10 !J.Vm-1
, and then-value was calculated for the electric field range 10-100 !J.Vm-1

• 

2.60 134 o·· EM-LMI Wire LJ""' EM-LMI Wire 
N 

Section 25 + I Section E 2 100 B A 20 <> II B A <( 26 
"'o e B 132 15 e B 
:::.. 2.55 1 50 A c en 10 CA: 0% A c (/) 

~ ~ Ql 5 B = 12 T c 
(/) 0 0 b. D c 0 0 c: 0.000.250.500.751.00 b. if B 130 'iii 24 0.000.250.500.751.00 Ql m 

II ~ 0 ~ c 0 u ll Ql 0 0 
0 0 0 

.:. • 0 0 :::J E 0 II c " 8 0 II ll 0 8 0 
2.50 0 !l g ll !! Ql 0 

~ 8 Iii 0 0 

t: (ij a " D 
:::J 0 

£A: Q% 128 ~ Ql 0 D " .. 
0 b. b. :::J 22 

b. 
!! 

D B = 12 T u ~ A (ij 0 ll .II " b. A A ! (.) 
0 ~ 8 I!: b. b. b. b 8 0 0 Data ~ b. ~ 

2.45 (a) ~) ... A ... 
~ I 126 b. 

c, <> II 20 
... 

c 
w 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6 

Max. applied strain for previous 100 cycles (%) Max. applied strain for previous 100 cycles (%) 
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10 )..I.Vm-1 and n-values calculated usmg E oc J" for the electric-field range 

10-100 )..1. Vm - 1
• Jc and n clearly depend on the choice of criterion (e.g. n typically varies 

by 50% in the experimentally accessible electric-field range 1-1000 )..I.Vm-1
, decreasing 

with increasing E), but the trends described below do not depend on this choice. 

4.3.1 EM-LMI wire 

Figure 4.4 shows the engineering critical current density and n-value for the 

EM-LMI wire as a function of applied strain (&A), measured after each set of 100 strain 

cycles. Data are shown for one section of the wire (A) at a magnetic field of 12 T, but the 

same trends were observed for the other sections and at 10 T. Figure 4.5 shows the Jc and 

n data at zero applied strain and 12 T, measured after each set of 100 strain cycles before 

and after each test cycle. The first test-cycle to 0.31% applied strain caused a 1% 

decrease in Jc at &A= 0% for all three sections of the wire (for n, the experimental errors 

are too large to observe changes of this magnitude). For subsequent cycles to applied 

strains up to and including 0.31% ( -500 cycles in total), the data were reversible to 

within the experimental error. In this regime, Jc and n are a maximum at & A = &M = 0.28% 

with values of 2.95 x 108 Am-2 (152 A) and 24.5 respectively. The first test-cycle to 

&A= 0.61% caused Jc at zero applied strain to increase by -2%. At low applied strains 

(:::;0.25%) Jc (and n) were then unaffected by the subsequent -500 cycles to applied 

strains between 0.37% and 0.62%. However, at high applied strains (:2::0.25%) these 

multiple cycles caused Jc and n to increase after each successive set of cycles 

(approximately monotonically), resulting in a final increase inJc at &A= &M of5% as well 

as a small increase in &M itself to 0.32%. The increases were proportionally larger at 

higher applied strains (-14% at &A= 0.61%). Cycling to &A= 0.74% caused Jc at zero 

applied strain to increase by a further 2.5% (no test cycle was carried out). Finally, 
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maximum applied strain for the previous 100 cycles. Data are shown at the beginning (I) and at 

the end (II) of the single test-cycles. Insets: data (I) for all applied strains. 
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Figure 4.8. A limited dataset for a jellyroll Nb3Sn wire. Engineering critical current 

density (and critical current) as a function of applied strain at 4.2 K: (a) at a magnetic 

field of 15 T as the strain is cycled to successively higher peak values, and (b) at 

matrnetic fields between 11 T and 15 T at the oeak strain of each cvcle. 
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cycling to &A= 0.86% caused lc and n at zero applied strain to reduce by 15% and 50% 

respectively, indicating damage to the wire. Further damage occurred after cycling to 

&A= 0.99%. 

4.3.2 Vac wire 

Equivalent data for the Vac wire are shown in Figures 4.6 and 4.7. The scatter on the 

data is generally larger, but Jc and n are again reversible to within the experimental error 

for cycles to applied strains up to 0.31% (no irreversible effect due to the first cycle was 

observed for this wire). In this case lc = 2.5 x 108 Am-2 (128 A) and n = 35 at 

&A= &M = 0.29% and 12 T. Jc and n again increased after each successive set of cycles to 

applied strains between 0.37% and 0.62%, with Jc at &A= &M and 12 T increasing by 7% 

in total. This was similar to the EM-LMI wire, except that at low applied strains 

(:s;0.12%) larger increases occurred CJc increased by 6% in total at zero applied strain) 

and there was no indication of a change in &M. Evidence of damage from the lc data was 

first observed after cycling to & A = 0.86%, although n also decreased considerably (by 

25%) after cycling to &A= 0.80%. 

4.3.3 A limited dataset for a jellyroll Nb3Sn wire 

Some critical current density and n-value measurements were also carried out on a 

jellyroll Nb3Sn wire as a function of magnetic field and tensile strain at 4.2 K [13, 117]. 

This experiment was addressed primarily at finding the strain at which filament breakage 

occurs, and involved cycling the strain to successively higher peak values. The 

measurements were found to be reversible to within 5% for cycles up to 0.73% applied 

strain (0.52% intrinsic strain), while the wire was irreversibly damaged at higher strains 

(see Figure 4.8). 
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4.4 Discussion 

For engineering purposes, it may be sufficient to know that there were no decreases 

in the critical current density or n-value for either wire during the > 1000 strain cycles to 

applied strains up to 0. 74%. Nevertheless, significant increases in the critical current 

density and n-value did occur as a result of strain cycling to applied strains between 

0.37% and 0.74%. In fact, the increases in Jc are associated with increases in the 

effective upper critical field (Kramer plots not shown), while increases in n are broadly 

related to increases in JC' The brittle Nb3Sn filaments behave elastically until damage 

(cracking) occurs at values of intrinsic strain in the range 0.3%-0.6% for most wires 

(compared to -0.45% in this work), where intrinsic strain is, by convention, taken to be 

zero where Jc is a maximum [134]. The changes in Jc and n are therefore likely to be 

caused by changes in the strain-state of the Nb3Sn filaments. The copper and bronze 

matrix materials have elastic limits of -0.1% and -0.2% respectively (and are in thermal 

pretension at zero applied strain), and so will be plastically deformed during strain 

cycling [ 134]. 

In general, loading-unloading treatments on wires can be carried out to reduce the 

axial thermal prestrain on the filaments [ 132]. In our experiment, however, the axial 

strain is directly controlled and therefore the changes in Jc and n observed during cycling 

can only be explained by also considering the non-axial strains. The effects of tensorial 

strains on Nb3Sn are not fully understood, although the consensus is that increases in 

either deviatoric or hydrostatic strain cause the superconducting parameters to decrease, 

with the deviatoric strain (related to the change in shape) having the larger effect 

[62, 123]. This suggests that the increases in Jc and n are due to a decrease in one or both 

of these quantities, although in simple models of wires, if deviatoric strain alone is 

considered then this is always zero at &M (and Jc at &M is always the same). Detailed 

knowledge of the complex effects associated with plastic deformation and work 
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hardening of the components of the matrix requires finite element analysis modelling, 

which is in progress. 

4.§ Conchnsions 

The results of our measurements of the effect of axial strain cycling on two ITER 

candidate Nb3Sn wires (EM-LMI and Vac) can be summarised as follows: 

1. Both wires were unaffected by the ~500 strain cycles to applied strains up to 0.31% 

(apart from a 1% decrease in the critical current density caused by the first test-cycle for 

the EM-LMI wire). 

2. The first test-cycle to 0.62% caused a 1-2% increase in the critical current density at 

zero applied strain (for the EM-LMI wire, this was the only increase in the zero applied 

strain data during the first~ 1000 cycles). 

3. The ~500 strain cycles to applied strains between 0.37% and 0.62% caused the 

critical current density and n-value to incrementally increase at all applied strains; the 

final increases were proportionally larger at higher strains and varied from 2% to 14% 

(EM-LMI wire) and 6% to 11% (Vac wire). 

4. Cycling to applied strains above 0.74% (~0.45% intrinsic strain) caused large 

irreversible decreases in the critical current density and n-value. 
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The §calitng law for the !itraitn=depetndetnce of the 

critical C!JIJrretnt detn!iity itn N/h3Sn !i!JIJpercotnd!JIJctitng 

wire§ 

Nb3Sn superconducting wires, which are used in almost all high-field 

superconducting magnets operating above 12 T [13], have a critical current density (Jc) 

that depends on the magnetic field (B), the temperature (1), and the strain-state(&) ofthe 

superconductor [62, 75]. The importance of magnetic field and temperature in the 

performance of small magnets is well established. Understanding the effect of strain

which occurs due to thermal contraction and magnetic forces-is becoming increasingly 

important, motivated by the International Thermonuclear Experimental Reactor (ITER) 

project in which very large-scale superconducting magnets will be used to inductively 

heat and confine a plasma for fusion [ 135]. As part of the research and development for 

ITER, two model coils have been built using Nb3Sn cable-in-conduit conductors 

(CICC's) and tested at elevated temperatures (> 4.2 K). These are the Toroidal Field 

Model Coil (TFMC), with EM-LMI internal-tin Nb3Sn wires in a stainless-steel jacketed 

cable, and the Central Solenoid Model Coil (CSMC), with Vacuumschmelze bronze

route Nb3Sn wires in an Incoloy-908 jacketed cable [76]. In these magnets, the 

differential thermal contraction during cool-down causes intrinsic axial strains on the 

Nb3Sn filaments of approximately -0.65% (compression) for the TFMC [104] and -0.3% 
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for the CSMC [136], while the magnetic (operating) strains are ~0.1% (tension) [76]. 

J c( B) measurements on the EM-LMI and Vac wires have been performed at a 

temperature of 4.2 K and zero applied strain [137, 138], as a function of temperature at 

zero applied strain [105, 129], as a function of axial strain at 4.2 K [73, 116, 139], and as 

a function of axial strain and temperature [62, 105, 140]. In this chapter (and associated 

paper [67]), we present the results of comprehensive, high-sensitivity (10 ~vm- 1 ) 

measurements of J c ( B, T, & ) for both of the wires used in the model coil tests. These 

results are being used to assess the extent to which the model coils reached their short

sample specification [76, 136, 141]. 

lc(B,T,&)data are parameterised using scaling laws, which allow the interpolation 

and extrapolation of the measured data for interlaboratory comparisons and magnet 

design. A number of different empirical scaling laws have been proposed to describe the 

magnetic field, temperature, and axial strain-dependence of lc in Nb3Sn wires. These 

scaling laws generally incorporate aspects of the temperature scaling law of Fietz and 

Webb [47] (with subsequent refinements [142]) and the strain scaling law of Ekin [61]. 

The latter followed from the well-known measurements [61] of lc for a number of 

technological Nb3Sn wires as a function of magnetic field and axial strain at 4.2 K 

(previous variable-strain measurements were also reported by a number of authors 

[ 68, 71, 143-14 7]). Both scaling laws relate changes in lc to changes in the upper critical 

field (Bc2), although a fundamental inconsistency implies that an additional strain

dependent parameter is required in order to unify the two laws [63, 71]. Summers et al. 

[148] subsequently proposed such a unified scaling law, which also includes Ekin's 

universal relation for the normalised values of BC2 ( 4.2 K,&) for binary Nb3Sn wires, and 

a power-law relationship between BC2 ( 4.2 K,&) and Tc ( & ) (the critical temperature) 

[61]. The Summers Scaling Law parameterised the data available at the time quite 

accurately (although detailed variable-temperature-and-strain lc data had not yet been 
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reported) and was subsequently adopted as the standard formulae for large-scale magnet 

design [149]. Although the strains in magnets are three-dimensional in nature, there is 

now reasonable consensus (despite some conflicting results in the literature on the effect 

of transverse stress) that in the reversible strain regime, uniaxial ( deviatoric) strain

whether applied in the axial or transverse direction-is the most important strain 

component; its effects in Nb3Sn are approximately an order-of-magnitude larger than 

hydrostatic strain [122, 123, 150-153]. 

More recently a number of laboratories have succeeded in obtaining Jc ( B,T,&) 

data, and various alternative scaling laws have been proposed [62, 63, 75, 78, 105, 122]. 

In Durham, a general scaling law for Jc(B,T,&), the Interpolative Scaling Law (ISL), 

has been shown to allow very accurate parameterisations of comprehensive data for 

Nb3Al and Nb3Sn wires [75, 78]. The Interpolative Scaling Law uses general polynomial 

functions for the strain-dependent parameters, in contrast to the Summers Scaling Law. It 

therefore contains a relatively large number of free parameters and cannot generally be 

used to extrapolate beyond the measured regions of parameter space (e.g. the measured 

strain range). It is desirable, particularly for engineering purposes, to develop a scaling 

law with fewer free parameters that can be determined from a smaller J c ( B, T, & ) 

dataset, allowing accurate predictions for Jc to be made in other regions of parameter 

space. In this chapter, we develop such a scaling law based on a theoretical analysis of 

the effect of strain using microscopic theory and a review of the extensive experimental 

data now available. In particular, we use microscopic theory [27, 35-37,41,80, 123] to 

analyse the relationship between Bc2 ( 0, & ) and Tc ( & ) (and the other strain-dependent 

parameters) and to help motivate the introduction of modified versions of the empirical 

power-law relations currently used [62, 148]. A comparison of our theoretical and 

experimental results also allow us to address the important question of whether the 

variations of the superconducting properties of Nb3Sn with uniaxial strain are 
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predominantly due to changes in the electronic or the phononic properties of the material 

[80, 123]. 

The chapter is structured as follows. In Section 5 .2, the experimental techniques are 

briefly summarised. Sections 5.3 and 5.4 contain the main experimental results. Section 

5.3 describes consistency tests and interlaboratory comparisons, and hence addresses 

how general and accurate are the data. Section 5.4 presents the J c ( B, T, & ) data for the 

EM-LMI and Vac wires. These data are parameterised using the Interpolative Scaling 

Law and comparisons are made with alternative scaling laws. In Section 5.5, the 

observed relationships between Bc2 ( 0) and Tc are examined using microscopic theory. 

Finally, in Section 5.6, a new simplified Interpolative Scaling Law is presented and its 

accuracy in parameterising complete datasets and extrapolating from partial datasets is 

examined. 

5.2 Experime~mta.H techniques 

Measurements were made on two types of ITER-candidate 00.81 mm Nb3Sn wire: 

two samples of the Europa Metalli-LMI internal-tin wire (billet 285-17) and three 

samples of the Vacuumschmelze bronze-route wire (billet 21 ). The wires were subject to 

standard heat treatments (see Section 3.2.2), and then etched in hydrochloric acid to 

remove the chromium plating, transferred to copper-beryllium spring sample-holders, 

and attached by copper-plating and soldering. The strain values quoted characterise the 

average strain in the wire. They are calculated using data from strain-gauge calibrations, 

with correction factors obtained from finite element analysis (and confirmed using 

analytical calculations) to account primarily for the strain gradient across the wire (see 

Chapter 3). The corrections depend on the spring geometry and, for the ITER-candidate 

wires, vary from -2% (tee-shaped springs) to- 9% (rectangular springs). The voltage (V) 
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across a section of the wire (typical length: -20 mm) was measured using a nanovolt 

amplifier and a digital voltmeter, with most of the measurements being made at constant 

temperature with a slowly-increasing current (!), although some additional measurements 

on the first EM-LMI sample were made at constant current with a slowly-increasing 

temperature. 

Measurements at 4.2 K were made with the sample directly immersed in a liquid

helium bath, and at temperatures above 4.2 K with the sample located in a vacuum 

chamber containing a small quantity of helium gas. Above 4.2 K, the temperature was 

controlled using three independent controllers with Cernox thermometers and constantan 

wire heaters. For the EM-LMI wire, the central thermometer was placed directly on top 

of the wire and the other two thermometers placed on the sample holder next to the wire 

at both ends of the turns of the spring; for the Vac wire, all three thermometers were 

placed on the sample holder. The thermometers were calibrated commercially in zero 

magnetic field, while the central thermometer was also calibrated in-house in magnetic 

fields up to 15 T [78] and the small (-50 mK) corrections obtained from this were used 

for all three thermometers [154]. The heaters were situated, correspondingly, on both 

ends of the sample holder (between the turns of the wire), and around the central turns of 

the spring on the outside of an OFHC copper tube. Variable-temperature data obtained 

previously using our probe were found to agree well with data from another group 

[78, 155]. We note that in our experimental set-up, temperature control is more difficult 

when the temperature is being swept (V-T measurements), although fairly smooth 

temperature sweeps were generally achieved. 

Voltage-current and additional voltage-temperature measurements were made on 

the first EM-LMI sample, with particular emphasis given to obtaining data near the 

operating conditions for the TFMC. The experimental procedure was as follows: V-I 

measurements were first made at 4.2 K at applied strains from 0.49% tension to -0.48% 
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compression and at integer values of magnetic field up to 15 T. The applied strain was 

then set to zero and the probe was warmed to room temperature so that thermometry, 

heaters, and a vacuum can could be fitted. The probe was then cooled back to 4.2 K and 

the applied strain was changed to -0.48% ( -0.76% intrinsic strain) where V-I and V-T 

measurements were carried out. V-I measurements were made at 1 K increments 

between 5 and 13 K and at half-integer fields up to a maximum of 15 T. Additional V-I 

characteristics were also obtained at 0.1 K increments at various fields. V-T 

measurements were made with the current fixed at 111 A, 50 A, and 25 A at half-integer 

values of magnetic field, and also with a current of 0.5 A at 0, 3, 6, 9, and 12 T. V-I 

measurements were then made at a magnetic field of 12 T and 0.5 K temperature 

increments at applied strains from -0.48% to 0.61% and then from 0.61% to -0.81% 

(with some additional data obtained at 15 T). The second EM-LMI sample was measured 

in magnetic fields up to 23 T in a resistive magnet at the European high-field laboratory 

in Grenoble, where V-I data were obtained at a temperature of 4.2 K at applied strains 

between +0.49% and -0.48%. For the Vac wire, V-I measurements were carried out at 

4.2 Kin fields up to 15 T (sample 1), at 8 K and 12 Kin fields up to 15 T (sample 2), and 

at 4.2 K in fields up to 23 T in Grenoble (sample 3). There were no significant 

differences between the results for different samples of the same wire; for example, 

equivalent lc data at fields ~ 15 T obtained in Durham and Grenoble agree to within 

~2%. 

The chapter provides engineering critical current density CJc) data calculated by 

dividing the critical current Uc) by the total cross-sectional area of the wire 

(5.153 x 10-7 m2
) and defined at an electric-field criterion of 10 )..I.Vm-1

• lc was 

calculated using the value of current in the superconducting material alone, obtained by 

subtracting the current in the normal shunt from the total current (for example, the typical 
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shunt resistance is ~5 !ln at 6 T corresponding to a shunt current of 40 rnA at 10 !JVm-1
) 

[78]. For the particular case of comparing the E-T and E-J characteristics, however, we 

will refer to the total current as this is constant during the E-T measurements (see 

Section 5.3.2). Approximately 250 Jc ( B, T,£) data points were used in the analysis for 

the EM-LMI wire and ~800 data points were used for the Vac wire. 
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Figure 5.1. Interlaboratory comparisons for the EM-LMI wire: (a) Engineering critical current 

density (and critical current) at 10 J.Nm-1 as a function of magnetic field at 4.2 K and zero 

applied strain. (b) Engineering critical current density as a function of applied strain at 4.2 K, and 

13 and 15 T. The data were obtained in Durham on Cu-Be and Ti-6Al-4V springs and in other 

laboratories on Ti-6Al-4V and Inconel-600 sample holders [129, 138, 140]. 
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5.3 Consistency tests and intedabmratory comparisons 

We will begin by presenting the results of various consistency tests and 

interlaboratory comparisons. These are vital given the complexities involved in making 

such measurements and the importance of the data for the ITER project, and enable the 

accuracy of the data to be addressed prior to comparison with theory. 

5.3.1 Comparison with other Jc data for as-prepared EM-LMI wires 

Figure 5.1(a) shows the results of various measurements of the engineering critical 

current density of as-prepared EM-LMI wires as a function of magnetic field at 4.2 K 

[129, 138, 140]. In these (zero applied strain) measurements, the strain-state of the wire 

is determined primarily by the thermal expansion of the sample holder. It can be seen that 

the data from all of the laboratories agree to within ±2.5% for measurements on the same 

titanium alloy sample holder (as well as for an Inconel 600 sample holder) and hence 

show similar variations to those observed in the V AMAS international round-robin 

measurements [ 156]. Figure 5.1 (b) shows our Jc data measured as a function of applied 

strain (c:A) at 4.2 K for EM-LMI wires mounted on a Cu-Be spring (used in this 

experiment) and a Ti-6Al-4V spring. These data superimpose to within ~5% if plotted as 

a function of intrinsic strain (c:1), where intrinsic strain is defined relative to the applied 

strain where Jc is a maximum (c:M): 

(5.1) 

The values of c:M are ~0.28% for the Cu-Be spring and ~0.10% for the Ti-6Al-4V spring, 

which are consistent with the thermal strain on the filaments due to the cool-down from 

293 K (where the wire is copper-plated to the spring) to 4.2 K being determined by the 
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thermal expansion of the spring material: -0.32% for Cu-Be and -0.17% for Ti-6Al-4V 

[ 157]. Therefore, as long as both the applied strains and the thermal strains are properly 

considered, the Jc datasets obtained on springs of different materials and geometry are 

consistent (see Chapter 3). 

5.3.2 Comparison of E-T and E-J characteristics 

In the ITER model coil tests, the electric field is measured as a function of 

temperature (E-1) while keeping the current density fixed, and the temperature where 

dissipation begins-the current-sharing temperature Tcs-is determined as a function of 

current density and magnetic field. This method is used because E-T measurements are 

easier to perform on the model coils than standard E-J measurements (electric field as a 

function of current density), while at elevated temperatures the coils can be fully tested 

(driven resistive) at values of current that do not generate strains outside the coil 

operating range. For the TFMC (which uses EM-LMI wires), E-T measurements were 
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Figure 5.2. Log-log plot of electric field versus engineering current density (and voltage versus 

current) for the EM-LMI wire at 9 T and at 0.1 K increments between 6.6 and 7.2 K. (The dashed 

line is used for comparison with the E-T data, see Figure 5.3.) 
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performed with currents up to 80 kA (111 A per wire), magnetic fields up to ~9.5 T, and 

temperatures between ~6 K and ~10 K [141, 158]. The Tcs data are then compared with 

measurements of lc for the component wires and the performance of the model coils 

assessed [76, 104, 136, 141, 158). The underlying assumption in these comparisons is 

that although lc is not a thermodynamic property, the E-T and E-J characteristics of the 

wires are completely equivalent-this assumption is addressed in this section. 

Figure 5.2 shows the electric field-engineering current density (E-J) characteristics 

for the EM-LMI wire at -0.48% applied strain (-0.76% intrinsic strain), at a magnetic 
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Figure 5.3. Log-log plot of electric field (and voltage) versus temperature: (a) for a constant total 

current of 50 A at 9 and 9.5 T, and (b) for a current of 111 A at half-integer magnetic fields 

between 5.5 and 7 T. The open symbols show the E-T characteristics, while the closed symbols 

show points extracted from the E-J characteristics (e.g. on the dashed line in Figure 5.2). 
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field of 9 T, and at 0.1 K temperature increments. The data can be parameterised by the 

standard power-law expression: 

(5.2) 

where the n-value for the EM-LMI wire is approximately constant over one order of 

magnitude of electric field (at constant B, T, and &), but decreases slowly with increasing 

electric field. Figure 5.3 shows the electric field-temperature (E-1) characteristics for a 

total current of 50 A and magnetic fields of 9 and 9.5 T, and a total current of 111 A and 

magnetic fields between 5.5 and 7 T. In order to compare the data obtained from the two 

different types of measurement, E ( J, B, T, & ) data points have been taken from the E-J 

characteristics at a particular value of total current (dashed line in Figure 5.2) and plotted 

together with the E-T characteristics: it can be seen that the data superimpose, with a 

typical uncertainty of ~20 mK. In addition, Figure 5.4 shows the engineering critical 

current density as a function of temperature, where Jc has been calculated in the standard 

way from the E-J characteristics at an electric-field criterion of 1 0 ll V m _,, and Tcs has 

been calculated from the E-T characteristics at the same criterion. The data from the two 

different types of measurement lie on a single curve at a particular magnetic field to 

within ~20 mK. 

As shown in Figure 5.3, the electric field-temperature characteristics can also be 

described by a power law, where the exponent is again approximately constant over one 

order of magnitude of electric field (we note, however, that an exponential dependence 

gives a similarly accurate parameterisation [51]). The power-law exponent of the E-T 

characteristics (a logE I a log T) can be related to the n-value using the following 

expression (note that the partial derivatives mean that J, B, and & are constant): 
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ologE ( ologE ologJC J Tcs 8Jc I 
ologT T=1: = ologJC ologT - = -n Jc oT T=1: 

a ~~ a 

(5.3) 

This expression has been used to calculate values of n from the exponents of the E-T 

characteristics (between 10 and 100 JlVm-1
), the values of Tcs and Jc (at 10 JlVm-1

), and 

the partial temperature derivatives of Jc (calculated at Tcs using spline fits to the standard 

Jc data). These calculated values of n are plotted as a function of temperature in Figure 

5.5 together with n-values calculated in the standard way from the E-J characteristics 

(also for electric fields between 10 and 100 JlVm-1
). Then-values obtained using the two 

different methods lie on a single curve at a particular magnetic field to within the 
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Figure 5.6. The n-value for electric fields between 10 and 100 j.!Vm-1 as a function of applied 

strain for the EM-LMI wire: (a) at 4.2 K and at integer magnetic fields between 11 and 15 T; (b) 

at 12 T and at 0.5 K increments between 6.5 and 10 K. The lines are a guide to the eye. 
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Figure 5.7. The n-va1ue for electric fields between 10 and 100 ~-tVm- 1 as a function of applied 

strain for the Vac wire at 12 K and at integer magnetic fields between 3 and 12 T. The lines are a 

guide to the eye. 

accuracy of our measurements. In this case, the error corresponds to an uncertainty in 

temperature of~ 100 mK, or, more probably, systematic changes in temperature during 

the transition (10-100 !J.Vm-1
) of ~10 mK. 

The data presented show E ( J, B, T, & ) [and J c ( B, T, & ) ] to be path-independent, 

single-valued functions for our particular measurement procedures. Unpublished data for 

a number of ITER-candidate wires show that, in high magnetic fields, Jc is also a non-

hysteretic function of applied magnetic field and temperature, consistent with other data 

in the literature on similar wires [ 159]. Such hysteretic effects are generally only 

observed in high-temperature superconductors and other inhomogeneous or granular 

materials [ 160-162]. We suggest that the equivalence between the E-T and E-J data 

observed in this work will be observed for all wires where Jc is non-hysteretic. 

The n-va1ue [defined in Equation (5.2)] was measured as a function of magnetic 

field, temperature, and strain. Figure 5.6 shows the n-value for electric fields between 
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Figure 5.8. Interlaboratory comparisons of the normalised critical current as a function of 

intrinsic strain at 4.2 K and 13 T for (a) EM-LMI, (b) Vac and (c) Furukawa ITER Nb3Sn wires. 

Critical currents were measured at 10 ).l.Vm- 1 or calculated at 10 ).l.Vm- 1 from measurements 

performed at higher electric-field criteria using n-values measured in Durham (the error bars 

show the effect of these calculations on the normalised values). The legends show the spring 

material (or the CICC jacket material), the value of applied strain where the critical current is a 

maximum (EM), and the value of the critical current at this maximum UcM). Inset (c): comparison 

of Durham and Twente Pacman data at 12 T (same axes and symbols as main graph) 

[65, 73, 105, 139, 140, 163]. 
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10 and 100 ~-tVm- 1 as a function of applied strain for the EM-LMI wire. Figure 5.7 shows 

similar data for the Vac wire (additional data were presented in a previous publication 

[10 1 ]). The variation of n ( B, T, & ) is qualitatively similar to that of J0 decreasing with 

increasing B, Tor !&11. However, assuming that n is a unique function of Jc leads to 

unacceptable errors of typically 25% as n systematically decreases with increasing Tor 

1&1 I at constant Jc- As yet, we have no simple and accurate parameterisation of the n

value. 

5.3.3 Comparisons of valriabne-strain Jc dlata for tlb.e EM-LMI, Vac, and! 

Furukawa ITER wires 

Interlaboratory compansons of variable-strain Jc data for the EM-LMI and Vac 

ITER wires and cables are shown in Figure 5.8, where the normalised critical current at 

4.2 K and 13 T is plotted as a function of intrinsic strain. Data are also shown for a 

Furukawa ITER Nb3Sn wire [139]. The measurements in other laboratories were 

performed on individual wires at the University of Twente using different types of 

"bending spring" [105], at the University of Geneva using a helical spring [65], and on 

cable-in-conduit conductors at Forschungszentrum Karlsruhe (FZK) using an "axial pull" 

system [73]. Note that as Jc was measured at higher electric-field criteria at Twente 

(500 ~-tVm- 1 ) and FZK (100 ~-tVm- 1 ), we have calculated Jc at 10 ~-tVm- 1 from these data 

using n-values measured in Durham-n decreases by a factor of ~2 from 0% to -0.7% 

intrinsic strain (see Section 5.3 .2) so that the strain-dependence of the normalised critical 

current is larger at lower electric-field criteria. It can be seen that the agreement between 

the normalised critical current data from different laboratories is generally good. The 

biggest deviations occur for the cable-in-conduit conductors at &1 « 0, where the CICC 

data are less strain-sensitive. The normalised critical current data for measurements on 

wires agree to within ±6% for the EM-LMI wire ( &1 = -0.7% ), ±8% for the Vac wire 
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( &1 = -0.7% ), and ±2.5% for the Furukawa wire ( &1 = +0.35% ). We have particular 

confidence in our EM-LMI data because six different samples on springs of various 

materials and geometries all show a similar intrinsic strain-dependence for Jc to within 

±5% (see Chapters 3 and 4), and the reversibility of Jc over a number of strain cycles 

(described below) demonstrates that the samples were not damaged. For all of the wires, 

there are variations of approximately ± 7% between different laboratories for the value of 

the critical current at &1 = 0, although some of these variations may be due to the different 

billets measured. 

In general, obtaining reliable variable-strain Jc data presents a difficult experimental 

challenge. In addition to the standard good practice required for critical current 

measurements [96, 156], there are a number of issues to be considered: damage to any 

part of the wire during mounting may have a considerable effect on the strain

dependence of J6 the experimental set-up should preferably involve relatively long 

lengths of wire in a homogeneous strain-state beyond the measurement regions, in order 

to avoid current-transfer voltages [61, 64]; and the sample holder (if used) should not be 

strained beyond its elastic limit. Plasticity of the component parts of the superconducting 

wires can also play a significant role in interlaboratory comparisons. In Chapter 4, 

measurements on EM-LMI and Vac wires demonstrated that extensive strain cycling can 

cause Jc to increase by up to ~ 7% at 4.2 K, 12 T, and &1 = 0, without damaging the 

superconducting filaments [116]. These changes in Jc were attributed to changes in the 

radial stress on the filaments due to the plastic deformation of the matrix. In the present 

measurements, Jc for the EM-LMI wire (sample 1) at zero applied strain increased by 

~3% after the cycle 0% ~ 0.49%- -0.48% ~ 0%, and Jc at -0.48% applied strain 

decreased by ~4% after the cycle -0.48% ~ 0.61% ~ -0.48%. Hence additional 

variations in the strain-dependence of Jc of the order of a few percent are to be expected 

when measurements at different laboratories involve multiple strain cycles (thermal or 
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mechanical) that strain the wire beyond the elastic limit of the component materials 

( ~0.1% ). From a comparison of the variable-strain datasets available, we conclude that 

variations of typically ±5% in the strain-dependence of the normalised Jc can in principle 

be achieved between different laboratories. 

5.4 Jc(B,T,e) scaling laws 

5.4.1 Interpolative Scaling Law for Jc(B,T,e) 

The Jc ( B,T,e) data can be parameterised using the Interpolative Scaling Law 

(ISL) [75] in which the volume pinning force (Fp = JcB) is given by [46]: 

[ . ]" A' E B T E 
F. = ( ) C2 ( ' ) bP (1- b)q' 

p [ • ( )]111 Kl T,& 
(5.4) 

where b=B/B~2 (T,e) and B~2 (T,e) IS the effective upper critical field which is 

parameterised by: 

B~2 (T,e) = B~2 (0,& )(l-tv). (5.5) 

Here, t = T I r; (E) and r; (E) is the effective critical temperature. K; ( T' E) is the 

Ginzburg-Landau parameter given by [75]: 

(5.6) 
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Figure 5.9. Engineering critical current density (and critical current) of the EM-LMI wire as a 

function of applied strain at 12 T and at 4.2 K and 0.5 K increments between 5 and 10 K. The 

symbols show the measured data, the solid lines the Interpolative Scaling Law, and the dotted 

line the Summers Scaling Law [obtained by fitting the Jc ( B,T,&) data for lc,l < 0.22%]. 
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The symbols show the measured data, and the lines the Interpolative Scaling Law. 
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BCS value of the ratio f.10yT~ /[Be ( 0) J ( m,n is an average phonon frequency) and r ( & ) 

is the electronic specific heat coefficient [29, 37, 75]. Combining Equations (5.4) and 

(5.6), and incorporating A' ( & ) , 17 ( & ) , and r ( & ) into a single strain-dependent parameter 

A ( & ) results in the following expression for J c ( B, T, & ) : 

lc (B,T,&) =A( & )[r; ( & )(1-t2 )]"' [ B~2 (T,& )J-m-l bp-I (l-b r. (5.7) 

The scaling law therefore involves the exponents m, n, p, q, and v, and the 

parameters A ( & ) , r; ( & ) , and B~2 ( 0, & ) . These strain-dependent parameters are 

constrained to be fourth-order polynomial functions of applied strain with a stationary 
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Figure 5.11. Engineering critical current density (and critical current) of the Vac wire as a 

function of applied strain at integer magnetic fields between 5 and 23 T and at 4.2, 8, and 12 K. 

The symbols show the measured data and the solid lines the Interpolative Scaling Law. 
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point (e.g. maximum) at a common value, BM' Similarly to previous work, the exponent 

m is set to 2, implying the relation J c oc I/ ( K; r [78, 142]. The Interpolative Scaling 

Law enables extremely accurate parameterisations of the Jc data over the large ranges of 

magnetic field, temperature, and strain that were investigated, with RMS differences 

between the measured and calculated values of 2.72 x 106 Am-2 (1.40 A) for the 

EM-LMI wire and 3.98 x 106 Am-2 (2.05 A) for the Vac wire. The parameterisations are 

compared graphically with the measured Jc (B,T,B) in Figures 5.9-5.11. 

For the EM-LMI wire, the optimum values ofp (0.474) and q (1.95) are close to the 

commonly-used "Kramer values" (p = 1/2 and q = 2) [ 46, 58, 142]. Figure 5.12 shows 

Kramer plots ( Jt B 114 versus B) for the EM-LMI wire at -0.48% applied strain: the good 

straight-line fits also demonstrate that the magnetic field dependence of Jc can be 

parameterised with p = 1/2 and q = 2 (at least for Ic > 1 A). For the Vac wire, however, 

the optimum values of p (0.468) and q (1.48) are further from the Kramer values, and 

setting p = 1/2 and q = 2 results in a ~25% increase in the RMS error for the best fit 

(from 2.05 A to 2.60 A) and unphysically high values for the effective upper critical 

field, with B~2 (0,&1 = 0) ~ 35 T. 

Figure 5.13 shows the upper critical field as a function of temperature for the 

EM-LMI wire at -0.48% applied strain. It can be seen that Equation (5.5) provides a 

good fit to the B~2 (T,B) data obtained from the Kramer plots in Figure 5.12 (with 

v~ 1.5 in this case). Two other fits to these data are also shown: the Maki-de Gennes 

relation for a dirty superconductor with no Pauli paramagnetic limiting [ 40, 41, 43], 

which fits the data well, and the Summers Scaling Law relation [Equation (5.9)], which is 

somewhat less accurate. Also shown in Figure 5.13 are the values of upper critical field 

[ B~2 ( T, B)] determined from the E-T characteristics for a current of 0.5 A and an 

electric-field criterion of 10 J..I.Vm- 1 (5-20% of the transition height). Note that the 
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Figure 5.14. (a) The normalised effective upper critical field at T= 0 and (b) normalised 

effective critical temperature as a function of intrinsic strain for different Nb3Sn wires. In (a), the 

symbols show data for wires measured in Durham and the solid line shows a universal fit to these 

data, while the dotted line is for previous measurements on low- B~2 ( 0) wires [ 61] and the 

dashed line for high- B~2 ( 0) wires [80]. For the Furukawa data and the dashed and dotted lines, 

B~2 (0) was calculated from the B~2 (4.2K) data using Equations (5.5) and (5.11). In (b), the 

solid line is calculated using the universal fit to the normalised B~2 ( O) data and the power-law 

relation with w = 2.2, while the dotted line shows T(! ( &1) data obtained from resistivity 

measurements for the OST wire. 
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equivalence between the E-T and E-J data demonstrated in Section 5.3.2 means that 

these values of B~2 (T,&) are also the values of B where Ic at 10 ~-tVm- 1 is 0.5 A. These 

low-current-density values are ~0.4 K higher for B ~ 4 T and ~0.8 K higher for B = 0 

than the values obtained from the Kramer plots [and Equation (5.5)). At this value of 

strain, the measured Jc goes to zero less rapidly than the Kramer lines, with a "tail" that 

is usually associated with the distribution of Tc and Bc2 in technological wires [75, 120]. 

Determining Tc from measurements at very low current densities ( B :::::: 0 ) provides a 

method for assessing the strain-state of the model coils at cryogenic temperatures, 

although it must be noted that the measured value of Tt (B = 0) = 15.5 K at -0.76% 

intrinsic strain differs quite considerably from the scaling-law parameter r; (= 14.6 K). 

Self-field effects may also be important in such measurements. 

Figure 5.14(a) shows normalised values of B~2 (0,&1 ) for the EM-LMI and Vac 

wires, as well as additional data for the Furukawa wire [139] and an OST wire [75]. It 

can be seen that B~2 ( 0, &1 ) for these Nb3Sn wires follows an approximately universal 

relation, which is also largely independent of the choice of p and q [ 61]. Hence the higher 

strain-sensitivity of Jc for the EM-LMI wire in relation to the other wires (see Figure 5.8) 

is due to lower absolute values of B~2 (0)and r; at zero intrinsic strain. Figure 5.14(a) 

also includes two different datasets obtained from the literature, represented by best-fit 

lines [ 61, 80]. These values were calculated from the B~2 ( 4.2 K, &1 ) data using 

Equations (5.5) and (5.11), although the differences between the normalised values of 

B~2 at T = 0 and 4.2 K are not large (the Furukawa values were also calculated in this 

way) [148]. The less strain-sensitive line taken from Ekin's well-known work represents 

relatively clean Nb3Sn with low values of B~2 (0,&1 = 0) of ~24 T [61], while the more 

strain-sensitive line is for Nb3Sn wires with Ta additions and higher values of 

B~2 ( 0, &1 = 0) [80]. The ITER-candidate wires and other recently-developed Nb3Sn wires 

have ternary additions of Ti (EM-LMI) or Ta (Vac) and relatively high values of 
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B~2 ( 0,£1 = 0): typically 28-30 T. Hence the better agreement with the previous ternary 

data rather than the binary data correlates with the higher values of B~2 ( 0, c:1 = 0). The 

differences between binary and ternary Nb3Sn are also predicted by microscopic theory 

(see Section 5.5), but have been somewhat neglected in the past [148]. 

Figure 5.14(b) shows normalised values of r; ( c:1 ) for the EM-LMI, Vac, and OST 

wires. It can be seen that there is more variation between the different wires, although for 

the two ITER-candidate wires the differences are only --4%. Also shown in Figure 

5.14(b) are Tcf ( £1) data obtained from resistivity measurements for the OST wire, which 

can be seen to be less strain-sensitive than the scaling-law values. This behaviour is 

observed for the B~2 ( T, c:) and Tcf ( c:,) data for all of the wires we have investigated, 

and can be related to strain (and temperature) variations in the low-current-density tails 

discussed above. A reasonable interpretation of the difference is that the scaling law 

values of B~2 (and r;) are characteristic values for the bulk of the material, while the 

resistivity values give the maxima of the distributions in BC2 (and Tc) [61, 75, 164]. 

5.4.2 Comparison with Summers Scaling Law 

The Summers Scaling Law for J c ( B, T, c:) involves the following relations 

[61, 148, 149]: 

(5.8) 

B~2 (T,c:) = B~2 (O,c: )(1-t2 
)[ 1- 0.31t2 (1-1.77lnt) J (5.9) 

(5.10) 
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with a= 1250 for &I> 0 and a= 900 for &I< 0. The scaling law is commonly used for 

ITER-candidate conductors [104, 129, 136, 149], but we have found that it predicts a 

weaker strain-dependence for Jc than is observed and hence cannot parameterise ternary 

Nb3Sn data accurately-typical RMS differences are ~ 10 A. Figure 5.9 explicitly shows 

a comparison between the measured data for the EM-LMI wire and the values for 

Jc (12 T,4.2 K,&I) calculated using the Summers Scaling Law with the free parameters 

obtained by fitting the data for lei I < 0.22%; similar disagreement is also observed for 

the Vac wire [104, 136]. 

We can improve the accuracy of the Summers fits over a limited strain range 

(&I :2: -0.8%) by leaving a as a free parameter; for the EM-LMI wire, the best-fit is 

obtained with a = 1840 (&I > 0) and 1160 (&I < 0) and has an RMS error of 2.4 A, while 

for the Vac wire, values of a= 1900 and 1160, and an RMS error of 2.4 A are obtained. 

These values of a are comparable with previous values for high- B~2 ( 0) Nb3Sn [a = 1690 

for &I> 0 and 1210 for &I< 0, see Figure 5.14(a)] [80]. However, Figure 5.14(a) shows 

that, even for optimum values of a, Equation (5.10) begins to deviate significantly from 

the measured BC2 ( 0, &I ) at a compressive strain of &I ~ -0.7% (close to the strain at 

which the TFMC operates). Note, however, that Equation (5.10) is based upon 

measurements that were only performed at tensile applied strains corresponding to 

&I :2: -0.5% [61]. The data in this chapter have second-derivatives (with respect to &I) of 

both Bc2 (0,&I) [Figure 5.14(a)] and Jc(12 T,4.2K,&I) (Figures 5.9 and 5.11) that 

change sign at &I~ -0.7%, behaviour which cannot be reproduced by Equation (5.10). 

Hence we will set aside this function for the strain-dependence as polynomial functions 

seem preferable-especially if large strain ranges are being investigated. 
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5.5 Relation§h.ip between strain=dependent supercmnductnng 

parameters 
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In this section, we will consider the relationship between BC2 ( 0, &1 ) and Tc ( &1) , 

presenting our experimental data for a number of wires and analysing the relationship 

using microscopic theory. For the analysis we adopt a similar approach to Welch [123], 

using Eliashberg theory (the Allen and Dynes equation [35, 36]) and Ginzburg-Landau-

0 Sum Nb
3
AI 2.3 ± 0.2 

E 32 v Low-Be, Nb
3
Sn 3.6 

o o Vac 1.9 ± 0.3 
II 28 6. OST 2.5 ± 0.3 

i :: /:/ 
() 
..... 
Q) 
c. 

::3- 16 (a) 

j_ 

Resistivity 
measurements 
(except v) 

L---~----------~--~------~ 
12 14 16 18 20 

Critical Temperature (K) 

E 
0 0 Sum Nb

3
AI 1.8 ± 0.6 

11 32 o EM-LMI 2.0 ± 0.5 
1--- o Vac 2.2 ± 0.1 
ro 28 6. OST 2.6 ± 0.1 
'0 
Q) 
u:: 
~ 24 
:;:::: 

8 
..... 20 
Q) 
c. 
c. 0 

=> Interpolative 
g? 16 Q Scaling Law 

~ L(_b) __ ~----------~--~------~ 
w 12 14 16 18 20 

Effective Critical Temperature (K) 

Figure 5.15. A log-log plot of upper critical field at T= 0 versus critical temperature for 

different AI5 wires: (a) data from resistivity and other measurements; (b) effective values 

obtained by fitting the Jc data using the Interpolative Scaling Law. The solid lines show the best 

power-law fits and the legend shows the values of the exponent w. Except for the Vac wire, the 

data have been shifted horizontally for clarity (the vertical dashed lines show Tc = 16 K for each 

wire). 
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Abrikosov-Gor'kov theory [27, 3 7, 41] to provide a better understanding of the empirical 

scaling-law relations, and the microscopic mechanisms responsible for the strain effects 

in A 15 (Nb3Sn and Nb3Al) superconducting wires. 

5.5.1 Power-law relationship and experimental data 

A power-law relationship between Bc2 ( 0, &1 ) and Tc ( &1) was first proposed by Ekin 

(although originally in terms of the upper critical field at 4.2 K) [ 61]: 

(5.11) 

The exponent w ::::; 3 was estimated using B~2 ( 4.2 K, &1) data obtained from lc 

measurements on binary Nb3Sn wires [61] and Tcx ( &1 ) data from susceptibility 

measurements on a different set of binary Nb3Sn wires [68]. The power-law with w = 3 is 

currently used in a number of scaling laws for lc (B,T,&) [62, 148]. The original (low

B~2) data are shown on a log-log plot in Figure 5.15(a), with B~2 ( 0,&1 ) calculated from 

the B~2 ( 4.2 K, &1 ) and Tcx ( &1 ) data using the Maki-de Gennes relation. The best fit 

gives w = 3.6 (the value is 3.8 if the upper critical field data at 4.2 K are used directly). 

However, assuming that Tc{ ( &1) and T(! ( &1 ) behave similarly, the different strain-

dependences observed for our scaling-law and resistivity data imply that artificially high 

values of w may be obtained from combining B~2 and Tc{ data. Also shown in Figure 

5.15(a) are values obtained from low-current-density measurements of B~2 (T,&,) for the 

Vac Nb3Sn wire (I= 0.5 A), the OST Nb3Sn wire (30 rnA) [75], and a Sumitomo Nb3Al 

wire (30 rnA) [78], where Equation (5.5) was used to extrapolate to T = 0 and Tc- It can 

be seen that for these A 15 wires, the values of w are all between ~ 1.9 and ~2.5. In 

addition, Figure 5 .15(b) shows the values of B~2 ( 0, &1 ) and r; ( &1 ) obtained using the 

Interpolative Scaling Law from the comprehensive J c ( B, T, & ) datasets available for 

------- -- --- --
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four different A 15 wires. These are also consistent with the power law and give similar 

values of w. For Nb3Sn wires characterised by high values of B~2 (0,&1 = 0) 

(approximately 28-30 T), the values of w :::;; 2.5 are therefore similar for both resistivity 

and scaling-law data, despite the different strain-dependences observed, and are 

significantly lower than the values (w ~ 3) obtained for binary, low- B~2 ( ~24 T) Nb3Sn 

wires. 

5.5.2 Analysis using microscopic theory 

The Allen and Dynes equation gives the critical temperature of strongly-coupled 

superconductors in terms ofvarious microscopic parameters [35, 36]: 

k T = fJ/zOJin ex (- 1.04(1 +A) J 
B c 1.20 p A-;./ - 0.62Af-/ ' 

(5.12) 

where m1" is a weighted logarithmically-averaged phonon frequency, A is the electron

phonon coupling parameter, ;./ is the effective Coulomb-repulsion parameter, and_t; and 

}; are correction factors of order unity [35]. The electron-phonon coupling parameter is 

Table 5.1. Microscopic parameters determined from tunnelling measurements on Nb3Sn [165] 

and Nb3Al (23 at.% AI) [166]. Also shown are the values of Tc calculated using Equation (5.12), 

and the values of 1./ required for Equation (5.12) to give the measured values of Tc (shown in 

brackets). 

Nb3Sn Nb3Al 

m," (meV) 10.8 9.5 

m, (meV) 15.0 13.5 

A, 1.8±0.15 1.7 ± 0.05 

j.J 0.16 ± 0.03 (0.14) 0.15 ± 0.02 (0.10) 

Tc (K) calc. (meas.) 16.2 (17.5) 13.9 (16.4) 
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related to the bare electronic density of states at the Fermi energy N ( 0) and a weighted 

RMS phonon frequency m2 by [36]: 

(5.13) 

where ( / 2
) is the average over the Fermi surface of the electron-phonon matrix element 

squared and M is the average ionic mass. The electronic specific heat coefficient r 1s 

related to N ( 0) and A by [36]: 

(5.14) 

The parameters win' w2, A, and 1-1• determined from tunnelling measurements on 

Nb3Sn [165] and off-stoichiometric Nb3Al [166] are shown in Table 5.1. In the analysis 

1.2 
Nb,Sn 

1.1 N(O)const.: 
(/) .... 0 w,,(e,)Jm,,(O) 2 
Q) "' J{c

1
)/J{O) 

E 1.0 
~ w,, cons!.: 
ro 0 N(O,c,)JN(O,O) a.. 
'0 0.9 • J{c

1
)/;{0) 

Q) 

.!!1 
ro 
E 0.8 
0 z 

0.7 

0.75 0.80 0.85 0.90 0.95 1.00 

Normalised Critical Temperature 

Figure 5.16. Calculated microscopic parameters for Nb3Sn as a function of critical temperature, 

with all quantities normalised to their values at zero intrinsic strain. Square symbols: min and I' 

calculated assuming constant N ( 0) ; round symbols: N ( 0) and r calculated assuming constant 

min' The maximum reduction in critical temperature (23%)corresponds to the measured reduction 

for the Vac wire at -1.55% intrinsic strain. 
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described below, we will use ;./ as a free parameter to fit the measured zero-intrinsic-

strain values of T0 which can generally be achieved with relatively small changes in Jl• 

(see Table 5.1) [37]. We will make the assumption that the variations of Jl• or (!2
) with 

strain are considerably less important than the other parameters, and hence they can be 

considered as constants. We will also assume that the strain-dependence of the 

normalised average phonon frequencies (m1n and m2) is the same [153]. 

The variation of Tc with uniaxial strain can be related to variations in the average 

phonon frequencies and/or variations in the bare electronic density of states at the Fermi 

energy. Due to a lack of detailed information in the literature about the uniaxial strain-

dependence of these parameters, we will begin by considering the two extreme cases: 

firstly that the strain-dependence of Tc is entirely due to the strain-dependence of the 

average phonon frequencies, and secondly that strain only affects electronic properties 

[i.e. N(O)]. For Nb3Sn, Figure 5.16 shows how the various parameters depend on Tc in 

these two cases: in the first case, m1n increases approximately linearly with decreasing Tc 

and, in the second case, N ( 0) decreases approximately linearly with decreasing Tc In 

both cases, the magnitude of the change is ~20% for a decrease in Tc of 23%, 

corresponding to &1 = -1.55% for the Vac wire. The data shown in Figure 5.16 are 

calculated for Nb3Sn with Tc ( &1 = 0) = 17.5 K (Vac wire), but the relationships between 

the reduced parameters and the reduced critical temperature are insensitive (to within 

~ 1%) to quite large variations in Tc ( &1 = 0) ( ~ 1 K). These relationships are also similar 

(to within ~ 1 %) for Nb3Al, although the critical temperature of Nb3Al is a factor of ~3 

less sensitive to uniaxial strain [78]. 

The upper critical field at T = 0 can be calculated using the following expression 

[27, 37, 41]: 

Bc2 (0) = 0.973Jit2
1] 8d 0)K• (O,A-tr )[ R(A-tr )T' 

x[7.30xl0
37 (rTc/S)

2 
+2.78xl06 yTcPn], 

(5.15) 
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where 17 BG(o) IS a strong-coupling correction of order unity [37], K• is the 

reduced temperature-dependent Ginzburg-Landau parameter [ K • ( 0, 0) = 1.26 and 

K*(o,oo) = 1.20], R(A.1,)(1+A.1,t IS the Gor'kov function [R(O) = 1 and 

R ( oo) = 1.17], A1, is the reduced mean collision frequency given by [27]: 

. I -32 2 /( ) Atr = 0.882 ~BCS ltr = 3.81 X 10 s Pn rTc ' (5.16) 

~~cs is the renormalised BCS coherence length, 11, is the electron mean free path, S is the 

Fermi surface area, and Pn is the low-temperature normal-state resistivity. 

Both S and Pn are expected to be largely independent of uniaxial strain, and are 

considered as constants with S = (1. 7 ± 0. 7) x 1021 m2 for Nb3Sn [27] and 

(1.8 ± 0.7) x 1021 m2 for Nb3Al [167]. For A1, « 1 (the "clean limit"), the first term in the 

square brackets in Equation (5.15) dominates and Bc2 ( 0) oc (rTc )
2 

whereas for A1, » 1 

(the "dirty limit"), the second term dominates and Bc2 ( 0) oc rTc. For intermediate values 

of A.1,, BC2 ( 0) is approximately proportional to (rTc r, where the exponent v depends 

only on A
1
, and has a value between ~ 1 and ~2. Analysis of data for monofilamentary 

bronze-route Nb3Sn wires [ 168] shows that A1, ( £1 ~ 0) = 3 ± 2.5 for materials with 

tertiary additions (Ti, Ta) and optimal upper critical fields, which are similar to the 

technological wires that we have measured (the uncertainty in A1, given here is calculated 

from the uncertainty in S). By setting A1, ( £ 1 = 0) = 3, the variation of BC2 ( 0) can be 

calculated using Equations ( 5 .15) and ( 5 .16), with y ( £1 = 0) and p n calculated from the 

measured value of Bc2 (0) at zero intrinsic strain [for the Vac wire with 

BC2 (0,£1 = 0) = 27.6 T, we get values consistent with the literature [27], 

Pn = (41 ± 17) 11ncm and y( £1 = 0) = 860± 350 Jm-3K-2
, although the conclusions given 

below are independent of the value of BC2 ( 0, 0)]. 
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Figure 5.17. Log-log plot of the calculated upper critical field at T = 0 versus critical 

temperature for Nb3Sn, with both quantities normalised to their values at zero intrinsic strain. 

Two cases are considered: (a) N(O) is constant, and w1n and w2 vary with uniaxial strain, and (b) 

w1n and w2 are constant, and N ( 0) varies with strain. The symbols are for Air ( &1 = 0) = 3, the 

error bars for Air ( &1 = 0) = 5.5 and 1 at their extrema, and the dotted and dashed lines for 

A1r ( &1 = 0) = oo (extreme dirty limit). The maximum reduction in critical temperature (23%) 

corresponds to the measured reduction for the Vac wire at -1.55% intrinsic strain. 

Figure 5.17 shows a normalised log-log plot of the calculated values of Bc2 ( 0, &1) 

as a function of Tc ( &1) for Nb3Sn. It can be seen that the relationship between BC2 ( 0) 

and Tc is quite accurately described by a power law [Equation (5.11)] with, for 

A1r ( &1 = 0) = 3, the exponent w = 2.4 for the case where only w1n varies with uniaxial 

strain, and w = 3.0 for the case where only N ( 0) varies with strain. These values are for 

fits over the range 0. 77 ~ Tc ( &1 )/Tc ( 0) ~ 1, which is relevant for comparison with our 

experimental data in Figure 5.15 although w can vary depending on the exact temperature 

range chosen by about ±0.1. The deviations from the power law are such that w is larger 

(by~ 0.6) closer to Tc ( &1 )/Tc ( 0) = 1. We have investigated alternative functional forms 

that describe the theoretical data in Figure 5.17 rather better, but have not used them in 

this chapter because the power law is reasonably accurate for both clean and dirty 
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superconductors and the improvement in Jc parameterisation was not sufficiently large. 

Given the large uncertainties in A1r, we have also shown in Figure 5.17 the results and 

values of w for A,tr ( £1 = 0) = 5.5 and 1 [1 is considered as the lower bound for Nb3Sn 

with Bc2 ( 0,£1 = 0) :2: 27 T ], as well as for the extreme dirty limit (A-1r = oo). It can be seen 

that w increases as A1r ( £1 = 0) decreases or the relative contribution of variations in 

N ( 0) increases. Measurements on Nb3Al thin films [ 167] imply that A1r::::: 7, 

corresponding to w::::: 2.5 (variations only in m1n) and w::::: 2.9 [variations only in N ( 0)] 

for the range Tc ( £1 )/Tc ( 0) :2:0.92 (£1 = -1.4% for the Nb3Al Sumitomo wire). 

5.5.3 Comparison of theoretical and experimental results 

Comparing the theoretical values for w (Figure 5.1 7) with the experimental data 

(Figure 5 .15), it can be seen that the agreement is considerably better if the strain-

dependence of the average phonon frequencies is the dominant factor. Assuming 

A1r ( £1 = 0) = 3, microscopic theory gives w = 2.4 if N ( 0) is constant and higher values 

if N ( 0) varies, compared to the typical experimental values for high- B~2 ( 0) wires 

between ~2 and ~2.5. Our results are therefore in agreement with the implications of 

Testardi's work [169-171], who related the strain-dependence of Tc to the large phonon 

anharmonicity effects in A 15 superconductors [172, 173]. Alternatively, various 

properties of A 15 compounds have been related to peaks in the electronic density of 

states near the Fermi energy [174, 175]. However, it has been noted that tertiary additions 

would broaden these peaks and therefore cause a reduction in the strain-sensitivity of Tc 

if the variations in N ( 0) were indeed the dominant factor, whereas the opposite effect is 

observed experimentally [see Figure 5.14(a)] [80]. Band-structure calculations [176-178] 

also show that there is only a relatively small decrease in N(O) (< 3%) for the transition 

from the cubic to the tetragonal phases of Nb3Sn. Here, the distortion of the unit cell in 

the tetragonal phase [ 171] can be considered as equivalent to a macroscopic strain of 
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&1 ~ -0.44% (calculated by equating the deviatoric strain components [122]). The lower 

values of Tc (-1 Kin otherwise equivalent materials) [179] and BC2(0) (-3 T) [180] 

observed for the tetragonal phase are indeed broadly consistent with our strain results 

(see Figure 5.14). 

Some other results m the literature can be used to assess the validity of the 

assumptions made in the analysis and the conclusions about the microscopic mechanism. 

Due to a lack of information about uniaxial strain effects, it is necessary to discuss 

measurements of microscopic properties as a function of various other adjustable 

parameters. In measurements on Nb3Sn under hydrostatic pressure [153], changes in both 

N ( 0) and m1n were observed, and the parameter ( / 2
) increased slightly as N ( 0) 

decreased (in contrast to our assumption of ( / 2
) = constant). The large differences 

between the effect of non-hydrostatic (uniaxial) strains and hydrostatic strains on the 

superconducting properties (Tc) [123] may indicate that there is a different mechanism 

operating in each case (indeed, the dependences are of opposite sign in V3Si [80, 181]). 

N everthe1ess, such a correlation between N ( 0) and ( / 2
) [ 182] would tend to increase 

the calculated value of w and therefore, from the comparison with the experimental data, 

further strengthen the case for phononic changes being the dominant factor. We also note 

that experimental [183] and computational [184] data show that (12
) is approximately 

constant for series of different niobium-based superconductors. Tunnelling measurements 

[185] on Nb-Sn samples with varying stoichiometry show that Jl• is approximately 

constant for variations in Tc of -7 K, consistent with our assumption for the case of 

uniaxial strain. In these measurements, the largest changes in a2 F ( m) occurred at lower 

frequencies and therefore m1n varied more than m2 (by -50% for variations in Tc of 

-3 K): this effect would also tend to increase the calculated value of w (and further 

emphasise the role of phononic changes). 



Chapter 5. Scaling law for the strain-dependence of Jc 103 

Comparison between our experimental data and theory provides strong evidence that 

m high- B~2 Nb3Sn, uniaxial strain predominantly changes the average phonon 

frequencies rather than the electronic density of states at the Fermi energy. The theory-

in which w decreases with increasing impurity scattering rate-also provides a 

straightforward explanation for low values of w (~ 2.5) for ternary Nb3Sn compared to 

the binary materials (~3.6) [61, 68]. Estimating A
1
r ~ 1 for the binary Nb3Sn wires [168], 

and considering values of Tc ( &1 )/Tc ( 0) ~ 0.94, gives w ~ 3.3 for the case where 

phononic changes dominate and w ~ 3.9 for the case where the electronic changes 

dominate. 

5.6 Simplified interpolative scaling law for Jc(B,T,e) 

In this section, a simplified version of the Interpolative Scaling Law involving fewer 

free parameters is presented, and the typical accuracy that can be expected when using 

this scaling law to extrapolate from partial J c ( B, T, & ) datasets is quantified [ 61, 148]. 

Table 5.2. RMS errors for fits to the comprehensive J c ( B, T, £) data using various scaling laws. 

Scaling Law RMS error (mean Ic) (A) 

EM-LMI Vac OST 

(42.5) (61.4) (35.7) 

ISL 1.40 2.05 1.35 

Simplified ISL (u free) 1.40 2.50 1.68 

Simplified ISL (u = 0) 1.40 2.50 1.81 

Simplified ISL (u = 1.25) 1.55 3.20 2.33 

Simplified ISL [free: 2.10 6.60 5.71 

A(O), T~ (0), B~2 (0,0), eM] 
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Table 5.3. Simplified Interpolative Scaling Law parameters for (a) the EM-LMI wire, (b) the Vac 

wire, and (c) the OST wire. Note that for the values given in the table intrinsic strain is in units of 

percent and the calculated Jc is the engineering critical current density in units of Am-2
. 

(a) EM-LMI Wire 

p q n v w u £M (o/o) 

0.4741 1.953 2.338 1.446 1.936 -0.056 0.2786 

A(O) r; (o) B~2 (0,0) c2 cJ c4 
(J\rn-21'3-n}(-2) (IC) (ll) 

2.446 X 107 16.89 28.54 -0.7697 -0.4913 -0.0538 

(b) Vac Wire 

p q n v w u £M (o/o) 

0.4625 1.452 2.457 1.225 2.216 0.051 0.3404 

A(O) r; (o) B~2 (o,o) c2 cJ c4 
( J\rn -21'3-n}(-2) (IC) (ll) 

9.460 X 106 17.58 29.59 -0.6602 -0.4656 -0.1075 

(c) OSll Wire 

p q n v w u £M (%) 

0.4763 2.150 3.069 1.240 2.545 -0.912 0.2421 

A(O) r; (o) B~2 (0,0) c2 cJ c4 
(J\rn-21'3-n}(-2) (IC) (ll) 

6.417 X 106 18.00 29.17 -0.6457 -0.4514 -0.1009 

5.6.1 Parameterisations of complete Jc(B,T,e) datasets 

Firstly, we assume that the power-law relation between Bc2 ( 0, &1) and Tc ( &1) given 

by Equation ( 5.11) is valid, which was shown to be the case for the experimental and 

theoretical results presented in Section 5.5. Secondly, we note that the optimum 

polynomial functions for A ( &1) are generally quite complex (> 1 turning point), but have 
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large associated uncertainties (for example, are sensitive to the fitting procedure) and 

vary considerably between different wires. Hence for simplicity (and without much loss 

of accuracy, as shown below), it will be assumed that A(&,) can also be constrained as a 

power-law function of Tc ( £ 1) [ 148]. The simplified Interpolative Scaling Law therefore 

involves the following relations (the exponent m has been set to 2): 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

which we take to be valid for different electron-phonon coupling strengths and impurity 

scattering rates. Using this simplified scaling law to fit the complete Jc ( B, T,&) datasets 

for the Vac, EM-LMI and OST [75] Nb3Sn wires gives RMS errors of ~1.5-2.5 A, as 

shown in Table 5.2. The simplified Interpolative Scaling Law involves 13 free 

parameters (compared to 17 for the ISL), the optimum values of which are shown in 

Table 5.3. Table 5.2 also shows errors for the simplified ISL with fixed values for u [the 

power-law exponent for A ( &1), discussed below] and with the set of universal values 

proposed in the next section for the parameterisations of partial datasets [in this case, 

there are 4 free parameters: A ( 0), B~2 ( 0, 0), T~ ( 0), and &M]. 

Using Equations (5.4), (5.6), and (5.7), the prefactor A(&,) can be written as: 

(5.21) 
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The results from microscopic theory presented in Section 5.5.2 allow the term 

y(&1)/7J(&I) m Equation (5.21) to be related to r;(&I). Assuming that 

A' (&I)= constant, an approximate power-law relationship between A (&I) and r; (&I) is 

then obtained with exponent u = 1.25 (variations only in a>1n) or u = 1.65 [variations only 

in N ( 0)]. As shown in Table 5 .2, however, the fits to the complete datasets using the 

simplified Interpolative Scaling Law with u = 1.25 have RMS errors that are ~30% 

higher than the fits with u as a free parameter. The optimum values for u are 

approximately zero for the EM-LMI and Vac wires and approximately -1 for the OST 

wire, although the latter value has a large associated uncertainty, as shown by the small 

increase in the error that is observed when u is fixed at zero (see Table 5.2). Hence the 

large uncertainties (and our assumption about the value of the exponent m) prevent any 

definite physical interpretation of A' (&I ) at this stage [ 46, 71]. 

The optimum values of u in the simplified Interpolative Scaling Law can also be 

compared with the Summers Scaling Law, in which the variation of the prefactor was 

fixed so that FPM ( O,&I) oc [ B~2 ( 0, &I) r with n' = 1' in approximate agreement with 

Ekin's Strain Scaling Law [FPM (O,&I) is the maximum volume pinning force at T= 0] 

[ 61, 148]. In the simplified Interpolative Scaling Law, n' = w -I [ u + 2 + w( n- 2) J and has 

values of~l.1 (EM-LMI) and~1.2 (Vac). 

5.6.2 Parameterisations of partial Jc(B,T,e) datasets 

An important practical issue in relation to scaling laws for Jc(B,T,&) relates to the 

accuracy achieved when extrapolating parameterisations of partial datasets. Given the 

considerable resources involved in obtaining comprehensive Jc ( B,T,&) data, it is 

important to understand the minimum datasets and the types of scaling law that are 

required for sufficiently accurate predictions to be made. We will investigate this issue 

by using the simplified Interpolative Scaling Law to fit subsets of the complete 
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Table 5.4. Approximate universal values for parameters in the simplified Interpolative Scaling 

Law used for fitting partial lc (B,T,&) datasets (the letters in brackets show the partial datasets 

for which the universal values are required: see Table 5.5). 

p q n v w T~ (0) (K) 

0.5(abc) 2.5(abc) l.5(abc) 2.2(abc) 17 .5(b) 

u c, c, c, c, 

o(c) -0.75ic) -0.419(c) 0.06ll(c) 0.0619(c) 

Table 5.5. RMS errors for extrapolations made from partial datasets usmg the simplified 

Interpolative Scaling Law. The extrapolations and fits are limited to 4.2 K::; T::; 8 K and 

1&1 I ::; 1.1% . Also shown are the mean values of Ic in the extrapolation regions. 

Partial dataset fitted RMS error for extrapolation (mean Ic) (A) 

EM-LMI wire Vac wire OSTwire 

(a) 
lc(B,T,&A =O)and 

2.6 (38.0) 3.2 (43.0) 3.0 (27.5) 
lc ( B,4.2 K,&A) 

(b) lc (B,4.2 K,sA) 3.7 (38.5) 3.7 (43.0) 7.2 (27.5) 

(c) lc (B,T,&A = 0) 2.6 (47.5) 5.7 (83.0) 7.0 (50.5) 

J c( B, T, & ) datasets, and then comparing the extrapolations with the measured data in 

regions of parameter space not included in the fit. Three types of partial dataset will be 

considered: (a) Jc(B,4.2K,&) and Jc(B,T,&=constant) data (i.e. variable-strain 

measurements at 4.2 K combined with variable-temperature measurements at zero 

applied strain); (b) only Jc ( B,4.2 K, & ) data; (c) only Jc ( B,T,& =constant) data. 

In all three cases, it is necessary to use an appropriate fixed value for the exponent w. 

Based on our comprehensive data for a number of technological wires (EM-LMI, Vac, 

OST), and consistent with microscopic theory, we propose that w = 2.2 is the best 

"universal" value to take for Nb3Sn wires characterised by high values of B~2 ( 0, 0). 
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Variations in w of approximately ±20% are observed (and are expected due to variations 

in the dirtiness of the Nb3Sn), but it will be shown that this universal value is adequate 

for the extrapolations carried out below. Although the values of some or all of the 

exponents p, q, n, and v can in principle be determined from each of the partial datasets, 

we have found that more accurate predictions are generally obtained if these exponents 

are fixed at the universal values shown in Table 5.4. These universal values include the 

Kramer values of p = 1/2 and q = 2 [46, 58], a value of v= 3/2 that approximately 

describes (to within ~2%) the Maki-de Gennes relation for BC2 (T) [40, 41, 43], and a 

half-integral value of n = 5/2 observed for a number ofNb3Sn wires [75, 142]. It can be 

seen by comparing Tables 5.3 and 5.4 that there are some differences between the 

optimum and universal values for these exponents, particularly for the Vac wire. 

Nevertheless we have found that the universal values are generally closer to the optimum 

global values required for accurate extrapolations than the values obtained from partial 

datasets. 

In case (a), constraining 5 parameters (p, q, n, v, w) to the universal values described 

above results in optimum extrapolations, while case (b) also requires a fixed value of 

r;(£1 =0), for which we propose 17.5 K as the best universal value [75, 105]. In case 

(c) where no variable-strain data are available, universal relations for the strain

dependent parameters are necessary. Figure 5.14 shows evidence of a universal relation 

for the normalised values of B~2 ( 0,£1) in Nb3Sn wires characterised by high values of 

upper critical field. This relation can be described by a fifth-order polynomial with values 

for the coefficients as shown in Table 5.4. Given the accuracy of the fits shown in Table 

5.2, we suggest setting u = 0, which (together with w = 2.2) then gives approximate 

universal relations for the normalised values of A ( £ 1 ) = const and r; ( £ 1) • In case (c), 

an estimate of the equivalent intrinsic strain (i.e. the parameter £M) is also required, 
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which can in principle be calculated [ 186, 187] but represents a potentially large 

additional source of error. 

With the appropriate parameters fixed (see Table 5.4), the remaining free parameters 

can be obtained by fitting the partial datasets. Table 5.5 shows the accuracy of the 

resulting extrapolations for three different Nb3Sn wires, where the extrapolations (and the 

fits) are constrained to the region of parameter space defined by 4.2 K :S T :S 8 K and 

I&, I :S 1.1%. It can be seen that for case (a) the RMS differences between the calculated 

and measured values in the extrapolation region are typically ~8% of the mean critical 

current. The errors are somewhat larger for case (b), particularly for the OST wire where 

the RMS error is ~25%. Note also that in case (c) it has been assumed that &M has been 

accurately calculated to be the optimum value, although it is found that errors of± 10% in 

&M cause the RMS errors for the extrapolations to increase by ~50%. If the extrapolations 

are extended to the whole range of parameter space (i.e. 4.2 K :S T :S 12 K and 

I&, I :S 1.6%) the errors increase further, typically by a factor of ~2. 

In conclusion, we propose the simplified Interpolative Scaling Law for 

parameterising J c ( B, T, & ) data. For complete datasets, it allows interpolations to be 

made with an accuracy of ~4% and, with fewer and more easily-determinable free 

parameters (in relation to the ISL), it facilitates interlaboratory and intersample 

comparisons. For partial datasets, the simplified Interpolative Scaling Law with 

appropriate fixed parameters allows extrapolations to be made that are reasonably 

accurate and extensive: if variable-temperature and variable-strain datasets are available, 

accuracies of ~8% can be achieved over limited ranges, whereas if only variable

temperature or only variable-strain data are available, the errors increase. 
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5. 7 Conclusions 

Comprehensive Jc ( B,T,c) data are presented for the EM-LMI and Vac Nb3Sn 

superconducting wires used in the two ITER model coils. Various consistency tests 

demonstrate good interlaboratory agreement and that Jc is a single-valued function of B, 

T, and £. For high-upper-critical-field (28-30 T) Nb3Sn wires, we report an 

approximately universal relationship between normalised B~2 ( 0) and intrinsic strain, and 

a power-law relationship between B~2 ( 0,£1 ) and T~ ( &1 ) with a typical value of ~2.2 for 

the exponent. Both results differ from those obtained previously for binary, low-upper

critical-field ( ~24 T) Nb3Sn wires in which B~2 ( 0) and T~ are less strain-dependent and 

the power-law exponent is larger (~ 3). The standard Summers Scaling Law therefore 

predicts a weaker strain-dependence for Jc and does not accurately fit the J c ( B, T, c) 

data for either the EM-LMI or Vac wires. Analysis of the relationship between 

B~2 ( 0,£1) and T~ ( &1) using microscopic theory shows that the calculated value for the 

power-law exponent decreases with increasing impurity scattering rate in agreement with 

the experimental data, and that the uniaxial strain effects are predominantly due to 

changes in the average phonon frequencies rather than the electronic density of states at 

the Fermi energy. We propose a simplified Interpolative Scaling Law to describe 

Jc ( B,T,c) in technological Nb3Sn wires with high values of upper critical field, 

motivated by microscopic theory and scaling considerations. The scaling law 

incorporates a polynomial function for normalised B~2 ( 0, &1) and modified power-law 

relations between the strain-dependent variables. It allows accurate (~4%) 

parameterisations to be made of complete Jc ( B, T, c) datasets and, with appropriate 

universal values for some of the parameters, reasonably accurate and extensive 

predictions to be made from partial datasets. 



Chapter 6 

Fatdure wor/k 

In this final chapter, we will consider the possible future directions of the work 

reported in this thesis. 

The apparatus and techniques that have been developed make it possible to perform 

variable-strain measurements on most superconducting wires or tapes (with appropriate 

spring designs). Data for Nb3Sn will continue to be required in the future, as new wires 

are developed and mass-produced for ITER, and as applications such as NMR move to 

even higher magnetic fields (where Jc is more strain-sensitive). Various other groups 

have carried out investigations of the high-temperature superconductor 

(Bi,Pb )2Sr2Ca2Cu30x and magnesium diboride-the recently-discovered superconductor 

with Tc = 39 K. However, the strain effects in these materials are found to be largely due 

to cracking in the filaments, in contrast to the reversible, intrinsic changes in Nb3Sn. We 

have recently obtained Jc(B,T,&) data for an advanced ITER Nb3Sn wire, and a 

Chevrel phase PbMo6S8 superconducting wire, which shows large reversible strain 

effects but a breakdown of scaling (discussed below). The Nb3Sn wire has a much higher 

critical current than the wires measured previously, typically by a factor of 2, and is 

approaching the operating limits of the strain probe. In the future, a new probe may be 

required that is capable of measuring currents up to ~ 1 000 A, which can be achieved 

with careful design of the current leads. 

The new scaling law presented in Chapter 5 is, we believe, the best approach to 

parameterising J c ( B, T, & ) data for technological Nb3Sn wires. This will be tested as 
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data for new wires become available. Some parts of the scaling-law framework can be 

developed in the future. The empirical function for the strain-dependence of B~2 ( 0) (or 

r;) could eventually be replaced with an alternative function motivated by a theoretical 

model but still remaining sufficiently accurate for engineering purposes. This is an active 

but complex area of research, requiring calculations of the three-dimensional strain-state 

of the Nb3Sn filaments (e.g. by FEA) and the strain dependence of the microscopic and 

hence superconducting parameters of Nb3Sn. It is also possible to further investigate the 

scaling law exponents (p, q, m, n, u) and their connection with flux-pinning models. 

However, we believe that progress in this area may require a (non-scaling) model that 

explicitly includes distributions in the superconducting parameters. The Nb3Sn data do 

indeed show small systematic deviations from the scaling law, while such an approach 

may also allow us to develop a framework for parameterising the n-value, which is 

presently unavailable. Our recent data for the Chevrel Phase wire show a much larger 

breakdown of scaling, and it is clear that a new model is required in this case. It is our 

belief that comprehensive critical current density measurements as a function of magnetic 

field, temperature, and strain are a promising way of investigating flux pinning in both 

low- and high-temperature superconductors. 



113 

References 

[ l] H. K. Onnes, Communications from the Physical Laboratory of the University of Lei den 

124C, 21 (1911). 

[2] J. File and R. G. Mills, Phys. Rev. Lett. 10, 93 (1963). 

[3] W. Meissner and R. Ochsenfeld, Naturwissenschaften 21, 787 (1933). 

[4] P. Dai, B. C. Chakoumakos, G. F. Sun, K. W. Wong, Y. Xin, and D. F. Lu, Physica C 

243, 201 (1995). 

[5] A. A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957). 

[6] H. Trauble and U. Essmann, J. Appl. Phys. 39,4052 (1968). 

[7] E. J. Eck, http://www.superconductors.org, 2004. 

[8] V. V. Struzhkin, M. I. Eremets, W. Gan, H. K. Mao, and R. J. Hemley, Science 298, 

1213 (2002). 

[9] R. Flukiger, in Handbook of Superconducting Materials, edited by D. Cardwell and D. 

Ginley (lOP Publishing, Bristol, 2003), Vol. 1, p. 391. 

[10] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 

(2001). 

[11] D.P. Hampshire, in Handbook ofSuperconducting Materials, edited by D. Cardwell and 

D. Ginley (lOP, Bristol, 2002), Vol. 2, p. 1903. 

[12] L. D. Cooley, P. Lee, and D. C. Larbalestier, in Handbook ofSuperconducting Materials, 

edited by D. Cardwell and D. Ginley (lOP Publishing, Bristol, 2002), Vol. l, p. 603. 

[13] T. Miyazaki, T. Hase, and T. Miyatake, in HandbookofSuperconducting Materials, 

edited by D. Cardwell and D. Ginley (lOP Publishing, Bristol, 2003), Vol. 2, p. 639. 

[14] J. G. Bednarz and K. A. MUller, Z. Phys. B 64, 189 (1986). 

[15] M. K. Wu, J. R. Ashburn, C. J. Tomg, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. 
Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987). 

[16] H. Maeda, Y. Tanaka, M. Fukutomi, and T. Asano, Jap. J. Appl. Phys. 27, L209 (1988). 

[17] R. C. Weast, M. J. Astle, and W. H. Beyet, Handbook of Chemistry and Physics (CRC 

Press, Boca Raton, FL, 1989). 

[18] D. N. Zheng, H. D. Ramsbottom, and D.P. Hampshire, Phys. Rev. B 52, 12931 (1995). 

[19] C. Buzea and T. Yamashita, Supercond. Sci. Tech. 14, R115 (2001). 

[20] D. R. Harshman and A. P. Mills Jr., Phys. Rev. B 45, 10684 (1992). 

[21] F. London and H. London, Proc Roy Soc (London) A149, 71 (1935). 



References 

[22] C. J. Gorter and H. B. G. Casimir, Phys. Z. 35, 963 (1934). 

[23] V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950). 

[24] D. R. Tilley and J. Tilley, Superjluidity and Superconductivity (lOP publishing Ltd., 

Bristol, 1990). 

[25] W. H. Kleiner, L. M. Roth, and S. H. Autler, Phys. Rev. 133, A1226 (1964). 

114 

[26] H. F. Hess, R. B. Robinson, R. C. Dynes, J. M. Valles Jr, and J. V. Waszczak, Phys. Rev. 

Lett. 62, 214 ( 1989). 

[27] T. P. Orlando, E. J. McNiff, S. Foner, and M. R. Beasley, Phys. Rev. B 19, 4545 (1979). 

[28] H. J. Niu and D.P.Hampshire, Phys. Rev. Lett. 91, 027002 (2003). 

[29] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957). 

[30] H. Frohlich, Phys. Rev. 79, 845 (1950). 

[31] L. N. Cooper, Phys. Rev. 104, 1189 (1956). 

[32] J. R. Waldram, Superconductivity of Metals and Cuprates (lOP Publishing Ltd., London, 

1996). 

[33] G. M. Eliashberg, Sov. Phys. JETP 11, 696 (1960). 

[34] D. J. Scalapino, J. R. Schrieffer, and J. W. Wilkins, Phys. Rev. 148, 263 (1966). 

[35] P. B. Allen and R. C. Dynes, Phys. Rev. B 12, 905 (1975). 

[36] W. L. McMillan, Phys. Rev. 167, 331 (1968). 

[37] J.P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990). 

[38] L. P. Gor'kov, Sov. Phys. JETP 9, 1364 (1959). 

[39] B. B. Goodman, Rep. Prog. Phys. 29, 445 (1966). 

[40] K. Maki, Physics 1, 21 (1964). 

[41] E. Helfand and N. R. Werthamer, Phys. Rev. 147,288 (1966). 

[42] N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966). 

[43] P. G. De Gennes, Phys. Kondens. Mater. 3, 79 (1964). 

[44] A.M. Campbell and J. E. Evetts, Adv. Phys. 21, 395 (1972). 

[45] J. Bardeen and M. J. Stephen, Phys. Rev. 140, 1197 (1965). 

[46] D. Dew-Hughes, Philos. Mag. 30, 293 (1974). 

[47] W. A. Fietz and W. W. Webb, Phys. Rev. 178,657 (1969). 

[48] D. Dew-Hughes, Philos. Mag. B 55,459 (1987). 

[49] A. I. Larkin andY. N. Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979). 



References 115 

[50] M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Phys. Rev. Lett. 

63, 2303 ( 1989). 

[51] P. W. Anderson andY. B. Kim, Rev. Mod. Phys. 36,39 (1964). 

[52] P. W. Anderson, Phys. Rev. Lett. 9, 309-311 (1962). 

[53] R. Wordenweber, Rep. Prog. Phys. 62, 187 (1999). 

[54] E. J. Kramer and H. C. Freyhardt, J. Appl. Phys. 51,4930 (1980). 

[55] E. V. Thuneberg, Cryogenics 29, 236 (1989). 

[56] A. Pruymboom, P. H. Kes, E. van der Drift, and S. Radelaar, Phys. Rev. Lett. 60, 1430 

(1988). 

[57] A. Pruymboon, P. H. Kes, E. Drift, and S. Radelaar, Appl. Phys. Lett. 52, 662 (1988). 

[58] E. J. Kramer, J. Appl. Phys. 44, 1360 ( 1973). 

[59] E. H. Brandt, Phys. Stat. Solid. B 77,551 (1976). 

[60] J. E. Evetts and C. J. G. Plummer, in International Symposium on Flux Pinning and 

Electromagnetic Properties of Superconductors, Fukuoka, 1985, edited by T. Matsushita, 

K. Yamafuji, and F. Irie (Matsukuma, Fukuoka, 1985), p. 146. 

[61) J. W. Ekin, Cryogenics 20, 611 (1980). 

[62] B. ten Haken, A. Godeke, and H. H. J. ten Kate, J. Appl. Phys. 85,3247 (1999). 

[63] N. Cheggour and D.P. Hampshire, J. Appl. Phys. 86, 552 (1999). 

[64] H. J. N. van Eck, D. C. van der Laan, M. Dhalle, B. tenHaken, and H. H. J. ten Kate, 

Supercond. Sci. Tech. 16, 1026 (2003). 

[65] D. Uglietti, B. Seeber, V. Abacherli, A. Pollini, D. Eckert, and R. Flukiger, Supercond. 

Sci. Tech. 16, 1000 (2003). 

[66] C. R. Walters, I. M. Davidson, and G. E. Tuck, Cryogenics 26, 406 (1986). 

[67] D. M. J. Taylor and D.P. Hampshire, (in progress). 

[68] T. Luhman, M. Suenaga, and C. J. Klamut, Adv. Cryo. Eng. 24, 325 (1978). 

[ 69] G. Rupp, IEEE Trans. Appl. Supercond. 13, 1565 ( 1977). 

[70] B. ten Haken, Ph.D. thesis, University ofTwente, 1994. 

[71] D. M. Kroeger, D. S. Easton, A. DasGupta, C. C. Koch, and J. 0. Scarbrough, J. Appl. 

Phys. 51,2184 (1980). 

[72] J. W. Ekin and S. L. Bray, Adv. Cryo. Eng. 42, 1407 (1996). 

[73] W. Specking, J. L. Duchateau, and P. Decool, in Proceedings of the 15th International 

Conference on Magnet Technology, edited by L. Liangzhen, S. Guoliao, and Y. Luguang 

(Science Press, Beijing, 1998), p. 1210. 



References 116 

[74] S. T. Wang, R. Wahrer, C. J. Chen, T. S. Tenforde, R. M. Scanlan, J. W. Ekin, and S. 

Bray, IEEE Trans. Magn. 30, 2344 (1994). 

[75] S. A. Keys and D.P. Hampshire, Supercond. Sci. Tech. 16, 1097 (2003). 

[76] N. Mitchell, Fusion Eng. Des. 66-8, 971 (2003). 

[77] J. W. Ekin, F. R. Fickett, and A. F. Clark, Adv. Cryo. Eng. 22, 449 (1975). 

[78] S. A. Keys, N. Koizumi, and D. P. Hampshire, Supercond. Sci. Tech. 15, 991 (2002). 

[79] T. Takeuchi, Y. Iijima, K. Inoue, H. Wada, B. ten Haken, H. H. J. ten Kate, K. Fukuda, 

G. Iwaki, S. Sakai, and H. Moriai, Appl. Phys. Lett. 71, 122 (1997). 

[80] J. W. Ekin, Adv. Cryo. Eng. 30, 823 (1984). 

[81] T. Kuroda, H. Wada, Y. Iijima, and K. Inoue, J. Appl. Phys. 65, 4445 (1989). 

[82] W. Goldacker, W. Specking, F. Weiss, G. Rimikis, and R. Flukiger, Cryogenics 29, 955 

(1989). 

[83] J. W. Ekin, T. Yamashita, and K. Hamasaki, IEEE Trans. Magn. 21, 474 (1985). 

[84] W. Goldacker and S. I. Schlachter, Physica C 378-381, 889 (2002). 

[85] H. Kitaguchi, A. Matsumoto, H. Hatakeyama, and H. Kumakura, Supercond. Sci. Tech. 

16, 976 (2003). 

[86] J. W. Ekin, D. K. Finnemore, Q. Li, J. Tenbrink, and W. Carter, Appl. Phys. Lett. 61, 858 

(1992). 

[87] W. Goldacker, J. Kessler, B. Ullmann, E. Mossang, and M. Rikel, IEEE Trans. Appl. 

Supercond. 5, 1834 (1995). 

[88] H. Kitaguchi, K.ltoh, H. Kumakura, T. Takeuchi, K. Togano, and H. Wada, IEEE Trans. 

Appl. Supercond. 11, 3058 (2001). 

[89] M. Suenaga, Y. Fukumoto, P. Haldar, T. R. Thurston, and U. Wildgruber, Appl. Phys. 

Lett. 67, 3025 (1995). 

[90] R. Passerini, M. Dhalle, E. Giannini, G. Witz, B. Seeber, and R. Flukiger, Physica C 371, 

173 (2002). 

[91] N. Cheggour, J. W. Ekin, C. C. Clickner, D. T. Verebelyi, C. L. H. Thieme, R. Feenstra, 

and A. Goyal, Appl. Phys. Lett. 83, 4223 (2003). 

[92] W. Goldacker, in Handbook ofSuperconducting Materials, edited by D. Cardwell and D. 

S. Ginley (lOP, Bristol, 2003), Vol. 2, p. 1527. 

[93] N. Cheggour and D.P. Hampshire, Rev. Sci. Instrum. 71,4521 (2000). 

[94] A. Godeke, M. Dhalle, A. Morelli, L. Stobbelaar, H. van Weeren, H. J. N. van Eck, W. 

Abbas, A. Nijhuis, A. den Ouden, and B. ten Haken, Rev. Sci. Instrum. 75, 5112 (2004). 

[95] L. F. Goodrich and F. R. Fickett, Cryogenics 22, 225 (1982). 



References 117 

[96) S. A. Keys and D.P. Hampshire, in Handbook ofSuperconducting Materials, edited by 

D. Cardwell and D. Ginley (lOP Publishing, Bristol, 2003), Vol. 2, p. 1297. 

[97] J. W. Ekin, J. Appl. Phys. 49, 3406 (1978). 

[98] M. Polak, W. Zhang, J. Parrell, X. Y. Cai, A. Polyanskii, E. E. Hellstrom, D. C. 

Larbalestier, and M. Majoros, Supercond. Sci. Tech. 10, 769 (1997). 

[99] International Electrotechnical Commission Report No. 61788-2 (First edition), 1999. 

[100) H. Wada, L. F. Goodrich, C. Walters, and K. Tachikawa, Cryogenics 35, S105 (1995). 

[101] D. M. J. Taylor, S. A. Keys, and D.P. Hampshire, Physica C 372, 1291 (2002). 

[102] A. Vostner (private communication). 

[103] B. ten Haken, A. Godeke, H. H. J. ten Kate, and W. Specking, IEEE Trans. Magn. 32, 

2739 (1996). 

[104] R. Zanino and L. Savoldi-Richard, Cryogenics 43, 91 (2003). 

[105] A. Godeke and H. G. Knoopers, University ofTwente Report No. UT-NET 98-5, 1998. 

[106) D. M. J. Taylor and D.P. Hampshire, Supercond. Sci. Tech. 18, 356 (2005). 

[107) F. Mathu and H. C. Meijer, Cryogenics 22,428 (1982). 

[108] J. Yeager and M.A. Hrusch-Tupta, Fifth Edition, Low Level Measurements (Keithley 

Instruments, Inc., Cleveland, OH, 2000). 

[109] NIST, http://cryogenics.nist.gov/, 2004. 

[110] R. C. Rice, J. L. Jackson, J. Bakuckas, and S. Thompson, U.S. Department of 

Transportation, Federal Aviation Administration Report No. DOT/FAA/AR-MMPDS-

01, 2003. 

[Ill] A. F. Clark, in Materials at Low Temperatures, edited by R. P. Reed and A. F. Clark 

(American Society for Metals, Metals Park, OH, 1983), p. 75. 

[112] MatWeb, www.matweb.com, 2004. 

[113) N. Mitchell, ITER JCT Report No. 01/06/04, 2004. 

[114] A. Nyilas, in Advances in Cryogenic Engineering: Transactions of the International 

Cryogenic Materials Conference 2003, edited by U. B. Balachandran (Springer-Verlag, 

New York, 2004 ), Vol. 50, p. 151. 

[115] A. Nyilas, K. Osamura, and M. Sugano, Supercond. Sci. Tech. 16, 1036 (2003). 

[116] D. M. J. Taylor and D.P. Hampshire, Physica C 401, 40 (2003). 

[117] D. M. J. Taylor, S. A. Keys, and D.P. Hampshire, Cryogenics 42, 109 (2002). 

[118] Anonymous, Vishay Measurements Group Report No. TN-504 (Appendix), 2004. 

[119] J. L. Duchateau, M. Spadoni, E. Salpietro, D. Ciazynski, M. Ricci, P. Libeyre, and A. 

della Corte, Supercond. Sci. Tech. 15, R17 (2002). 



References 118 

[120] P. J. Lee and D. C. Larbalestier, IEEE Trans. Appl. Supercond. 11, 3671 (2001 ). 

[121] H. Ford, Advanced Mechanics of Materials (Longmans Green and Co, London, 1963). 

[122] A. Godeke, B. ten Haken, and H. H. J. ten Kate, Physica C 372-376, 1295 (2002). 

[123] D. 0. Welch, Adv. Cryo. Eng. 26, 48 (1980). 

[124] B. ten Haken, A. Godeke, and H. H. J. ten Kate, IEEE Trans. Magn. 30, 1867 (1994). 

[125] S. Murase, H. Okamoto, T. Wakasa, T. Tsukii, and S. Shimamoto, IEEE Trans. Appl. 

Supercond. 13, 3386 (2003). 

(126] W. Goldacker and R. Flukiger, IEEE Trans. Magn. 21, 807 (1985). 

(127] W. D. Markiewicz, Cryogenics 44, 767 (2004). 

(128] B. ten Haken, A. Godeke, and H. H. J. ten Kate, IEEE Trans. Appl. Supercond. 5, 1909 

(1995). 

[129] A. Martinez and J. L. Duchateau, Cryogenics 37, 865 (1997). 

(130] W. Turner, Patent No. US4416739 (22 November 1983). 

[131] N. Cheggour and D. P. Hampshire, Cryogenics 42 (2002). 

[132] S. Ochiai and K. Osamura, Cryogenics 32, 584 (1992). 

[133] P. Bruzzone, A.M. Fuchs, B. Stepanov, and G. Vecsey, IEEE T. Appl. Supercon. 12, 

516 (2002). 

[134] G. Rupp, in Filamentary A15 Superconductors, edited by M. Suenaga and A. F. Clark 

(Plenum Press, New York, 1980), p. 155. 

[135] R. Aymar, Fusion Eng. Des. 55, 107 (2001). 

(136] R. Zanino, N. Mitchell, and L. Savoldi-Richard, Cryogenics 43, 179 (2003). 

[137] M. Takayasu, R. A. Childs, R.N. Randall, R. J. Jayakumar, and J. V. Minervini, IEEE 

Trans. Appl. Supercond. 9, 644 (1999). 

(138] M. Spadoni (private communication). 

[139] D.P. Hampshire, D. M. J. Taylor, P. Foley, and S. A. Keys, University of Durham 

Report No. DurSC060 1, 2001. 

[140] A. Godeke and H. J. G. Krooshoop, University ofTwente Report No. UT-NET/EFDA 

2000-5, 2000. 

[141] R. Zanino, M. Bagnasco, G. Dittrich, W. H. Fietz, H. Fillunger, D.P. Hampshire, R. 

Heller, P. Komarek, 0. Langhans, R. Maix, V. Marchese, N. Martovetsky, N. Mitchell, 

A. Nijhuis, S. Raff, M. Ricci, M. Suesser, E. Salpietro, L. Savoldi Richard, D. M. J. 

Taylor, A. Ulbricht, A. Vostner, F. Wuechner, and G. Zahn, IEEE Trans. Appl. 

Supercond. 14, 1519 (2004). 

[142] D.P. Hampshire, H. Jones, and E. W. J. Mitchell, IEEE Trans. Magn. 21, 289 (1984). 



References 

[143] D. S. Easton and R. E. Schwall, Appl. Phys. Lett. 29,319 (1976). 

[144] E. Buehler and H. 1. Levinstein, J. Appl. Phys. 36, 3856 (1965). 

[ 145] 1. W. Ekin, Appl. Phys. Lett. 29, 216 ( 1976). 

[146] I. L. McDougall, IEEE Trans. Magn. 11, 1467 (1975). 

[147] G. Rupp, IEEE Trans. Magn. 15, 189 (1979). 

[148] L. T. Summers, M. W. Guinan, J. R. Miller, and P. A. Hahn, IEEE Trans. Magn. 27, 

2041 (1991). 

[149] ITER, Design Requirements and Guidelines Levell (Annex), 2002. 

[150] 1. W. Ekin, J. Appl. Phys. 62,4829 (1987). 

[151] K. Katagiri, T. Kuroda, H. Wada, H. S. Shin, K. Watanabe, K. Noto, Y. Shoji, and H. 

Seto, IEEE Trans. Appl. Supercond. 5, 1900 (1995). 

119 

[152] B. ten Haken, A. Godeke, and H. H. 1. ten Kate, in Proceedings of EUCAS I995, the 2nd 

European Conference on Applied Superconductivity, edited by D. Dew-Hughes (lOP 

Publishing, Bristol, 1995), p. 85. 

[153] K. C. Lim, J.D. Thompson, and G. W. Webb, Phys. Rev. B 27, 2781 (1983). 

[154] B. L. Brandt, D. W. Liu, and L. G. Rubin, Rev. Sci. Instrum. 70, 104 (1999). 

[155] Y. Takahashi, N. Koizumi, Y. Nunoya, Y. Takaya, and H. Tsuji, IEEE Trans. Appl. 

Supercond. 12, 1799 (2002). 

[156] H. Wada, L. F. Goodrich, C. Walters, and K. Tachikawa, Cryogenics 35, S65 (1995). 

[157] E. D. Marquandt, 1. P. Lee, and R. Radebaugh, in Cryocooler II, edited by R. G. Ross Jr. 

(Kluwer Academic/Plenum Publishers, New York, 2001), p. 681. 

[158] R. Zanino and L. Savoldi-Richard, Cryogenics 43, 79 (2003). 

[159] L. F. Goodrich, L. T. Medina, and T. C. Stauffer, Adv. Cryo. Eng. 44, 873 (1998). 

[160] H. Kupfer and W. Gey, Philos. Mag. 36, 859 (1977). 

[161] A. B. Sneary, C. M. Friend, J. C. Vallier, and D.P. Hampshire, IEEE Trans. Appl. 

Supercond. 9, 25 85 (1999). 

[162] L. F. Goodrich and T. C. Stauffer, IEEE Trans. Appl. Supercond. 11, 3234 (2001). 

[163] A. Nijhuis, presented at ITER meeting, Naka, Japan, 2003 (unpublished). 

[164] A. Godeke, M. C. Jewell, A. A. Golubov, B. Ten Haken, and D. C. Larbalestier, 

Supercond. Sci. Tech. 16, 1019 (2003). 

[165] E. L. Wolf, 1. Zasadzinski, G. B. Arnold, D. F. Moore, J. M. Rowell, and M. R. Beasley, 

Phys. Rev. B 22, 1214 (1980). 

[166] 1. Kwo and T. H. Geballe, Phys. Rev. B 23, 3230 (1981). 

[167] 1. Kwo, T. P. Orlando, and M. R. Beasley, Phys. Rev. B 24,2506 (1981). 



References 120 

[168] M. Suenaga, D. 0. Welch, R. L. Sabatini, 0. F. Kammerer, and S. Okuda, J. Appl. Phys. 

59, 840 (1986). 

[169] L. R. Testardi, Rev. Mod. Phys. 47, 637 (1975). 

[ 170] L. R. Testardi, Phys. Rev. B 5, 4342 ( 1972). 

[ 171] L. R. Testardi, in Physical Acoustics, edited by W. P. Mason and R. N. Thurston 

(Academic, New York, 1973), Vol. 10, p. 193. 

[172] J. R. Patel and B. W. Battennan, Phys. Rev. 148, 662 (1966). 

[ 173] M. Poirier, F. Laroche, M. Martin, and J. F. Bussiere, Appl. Phys. Lett. 47, 92 ( 1985). 

[174] M. Weger and I. B. Goldberg, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, 

and D. Turnbull (Academic, New York, 1973), Vol. 28, p. 1. 

[175] B. M. Klein, L. L. Boyer, D. A. Papaconstantopoulos, and L. F. Mattheiss, Phys. Rev. B 

18, 6411 (1979). 

[176] W. Weber and L. F. Mattheiss, Phys. Rev. B 25, 2270 (1982). 

[177] B. Sadigh and V. Ozolins, Phys. Rev. B 57, 2793 (1998). 

[178] L. F. Mattheiss and W. Weber, Phys. Rev. B 25,2248 (1982). 

[179] L. J. Vieland and A. W. Wicklund, Phys. Lett. 34A, 43 ( 1971 ). 

[180] S. Foner and J. McNiff, E.J., Solid State Commun. 39, 959 (1981). 

[181] C. W. Chu and V. Diatschenko, Phys. Rev. Lett. 41,572 (1978). 

[182] J. J. Hopfield, Phys. Rev. 186, 443 (1969). 

[183] A. Junod, T. Jarlborg, and J. Muller, Phys. Rev. B 27, 1568 (1983). 

[184] B. M. Klein, L. L. Boyer, and D. A. Papaconstantopoulos, Phys. Rev. Lett. 42, 530 

(1979). 

[185] D. A. Rudman and M. R. Beasley, Phys. Rev. B 30, 2590 (1984). 

[186] S. Ochiai, K. Osamura, and K. Watanabe, J. Appl. Phys. 74, 440 (1993). 

[187] D. S. Easton, D. M. Kroeger, W. Specking, and C. C. Koch, J. Appl. Phys. 51, 2748 

(1980). 



Appendix 1: Publications 

1. The scaling law for the strain-dependence of the critical current density in Nb3Sn 

superconducting wires 

D. M. J. Taylor and D. P. Hampshire, in progress (2005). 

121 

2. Properties of helical springs used to measure the effect of axial strain on the critical 

current density of superconducting wires 

D. M. J. Taylor and D. P. Hampshire, Supercond. Sci. Tech., 18, 356 (2005). 

3. Tcs tests and performance assessment of the ITER Toroidal Field Model Coil 

(Phase II) 

R. Zanino, ... , D. M. J. Taylor, et al., IEEE Trans. Appl. Supercond. 14, 1519 (2004). 

4. Effect of axial strain cycling on the critical current density and n-value of ITER 

niobium-tin wires 

D. M. J. Taylor and D.P. Hampshire, Physica C 401, 40 (2004). 

5. E-J characteristics and n-values of a niobium-tin superconducting wire as a function 

of magnetic field, temperature and strain 

D. M. J. Taylor, S. A. Keys, and D.P. Hampshire, Physica C 372-376, 1291 (2002). 

6. Reversible and irreversible effects of strain on the critical current density of a 

niobium-tin superconducting wire 

D. M. J. Taylor, S. A. Keys, and D.P. Hampshire, Cryogenics 42, 109 (2002). 



Appendix 2: Conferences~ courses9 and placements 

Conference presentations: 

Talks: 

1. International Cryogenics Material Conference: Topical Conference, University of 

Twente, Netherlands, May 2003 (Invited talk). 
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2. Condensed Matter and Material Physics Conference (CMMP), Belfast, April2003. 

Posters: 

1. CMMP, University ofWarwick, April2004. 

2. SET for Britain, House of Commons, London, March 2004. 

3. lOP Superconductivity Group Annual Conference, University of Cambridge, 

January 2003 (Best Student Poster Prize). 

4. CMMP, Brighton, April2002. 

5. Superconductivity Group Conference, University of Cambridge, January 2002. 

6. 51
h European Conference on Applied Superconductivity, Copenhagen, August 2001. 

7. Superconductivity Group Conference, University of Birmingham, April 2001. 

Courses and placements: 

1. EPSRC/IOP Theory ofCondensed Matter Summer School, Ambleside, August

September 2003. 

2. Industrial CASE Placement, Oxford Instruments Superconductivity, Eynsham, April

July 2002. 

3. Superconductivity Winter School, University of Cambridge, January 2002. 

4. lOP Low Temperature Techniques Course, Birmingham, November 2000. 
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Appendix 3: Computer Programs 

1. JC(B,T,eps)_G.vi 

LabVIEW program to run lc(B,T,&) measurements in Grenoble. Controls the in-

house magnet console, three Lakeshore temperature controllers, McLeill1an stepper-

motor controller (optional), Oxford Instruments power supply (for the sample 

current), and three Keithley 2000 voltmeters (for reading the sample current and 

voltages from two sets oftaps). 

2. JC(B,T,eps)_D.vi 

Lab VIEW program to run J c ( B, T, & ) measurements in Durham. As above, but 

controls an Oxford Instruments magnet power supply. 

3. Strain_ Cycling. vi 

Lab VIEW program to perform multiple strain cycles using the stepper motor and 

controller. 

4. Blank VI.xls 

A Microsoft Excel spreadsheet with a number of Visual Basic Macros to analyse the 

V-I data and calculate values for the critical current density and n-value. 

5. Rect_2.st7, Tee_2.st7 

Strand? FEA models of the rectangular and tee-shaped springs with attached wires. 

6. Rect_2.inp, Tee_2.inp 

ANSYS input files for building FEA models of rectangular and tee-shaped springs 

with attached wires. 


