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Chapter 1 Chapter 1 contains a discussion of the effects of the introduction of 

fluorine atoms into organic molecules. A review of electrophilic fluorination reactions 

which have been reported recently, from the viewpoint of selectivity is given. 

Chapter 2 As a new methodology for selective fluorination of unactivated C-H 

sites, geometrically directed remote fluorination of steroid derivatives was investigated. 

Steroid derivatives bearing a variety of tethers which possess an ability to interact with 

elemental fluorine were prepared. Direct fluorination of 3a-(3-cyanobenzoyloxy)-

5a-androstan-17-one showed an increased selectivity for the 9-position compared with 

the control reactions. 

Chapter 3 A feasibility study of the use of elemental fluorine for catalytic 

enantioselective fluorination reaction of 1,3-ketoesters was conducted. A range of 

metal compounds were examined in the fluorination of a 1,3-ketoester and some of 

them were applied for further investigation involving attempts at catalytic 

enantioselective direct fluorination. 

Chapter 4 The capability of the Durham-type multi-channel microreactor for direct 

fluorination of carbonyl compounds was demonstrated. Effects of various parameters 

on the conversion and the selectivity in the direct fluorination of ethyl 3-oxobutanoate 

using a 9-channel microreactor were investigated systematically and results were 

helpful for determining the conditions of fluorination of other substrates. 

Chapter 5 Some miscellaneous reactions were collected in this chapter. 

Chapter 6-9 Experimental details of the work discussed in Chapter 2-5. 
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Chapter 1. 

:U..l OrganofDuorine chemistry 

1.1.1 Introduction 

Organofluorine chemistry is one of the most fascinating fields in organic chemistry 

today. Although only 12 naturally occurring organofluorine compounds have been 

found, 1•
2 quite a few perfluorinated or partly fluorinated organic compounds are 

produced and used in our daily life throughout the world because of the remarkable 

properties derived from the introduction of fluorine atoms into organic compounds. 3 

11..1.2 Brief history 

Fluorine exists in nature mostly as fluorides in minerals, such as fluorite (CaF2), 

cryolite (Na3[AIF6]), and phosphorite (Ca5[F, Cl][P04h). The abundance of fluorine in 

the Earth's crust is 625wt/ppm, which is about five times larger than that of chlorine. 

Fluorite has traditionally been the main source of hydrofluoric acid, but now cryolite 

has gradually replaced it due to short supply. 

In the 17th century, it was known that an acid generated by exposure of fluorite to 

sulfuric acid corroded glass. This acid was used for glass etching, yet not well 

characterised. The first synthesis of an organofluorine compound is thought to be a 

synthesis of fluoromethane, prepared by heating a mixture of dimethyl sulfate and 

potassium fluoride, reported by Dumas and Peligot. 4 Isolation of fluorine was 

successfully achieved in 1886 by Moissan in France. 5 He electrolyzed anhydrous 

hydrogen fluoride in the presence of small amounts of potassium fluoride. However, 

elemental fluorine did not play an important role in organofluorine chemistry until the 

1930s because of its violent reactivity. 

Remarkable progress in the development of synthetic methods for the preparation 

of organofluorine compounds was made during the 20th century. Swarts discovered an 

important method for fluorination of organic halides which utilised antimony (III) 

fluoride.6 This reaction enabled him to synthesise a variety of fluorinated aliphatic 

compounds which included chlorofluorocarbons (CFCs). Development of CFCs 

progressed quickly afterwards due to excellent performan~e as refrigerants, the 
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injection agent of sprays, the foaming agent of polymers, washing agent of electronic 

products, and so on. Large-scale industrial production was performed with increasing 

demand in the second half of the 20th century, but it became the cause of inducing 

global environment problems in the 1980s. CFCs are now replaced with 

hydrofluorocarbons (HFCs). 

Another important finding was the Balz-Schiemann reaction. 7 Aromatic amines 

were converted into diazonium salts, followed by decomposition to the fluorinated 

aromatic compounds. This reaction was continuously improved and is still very 

important for the manufacture offluoroaromatics. 

The discovery of poly(tetrafluoroethene) (1938) made a great impact on the 

chemical industry on account of its high heat and chemical resistance. This discovery 

resulted in remarkable progress in fluorine-containing materials and chemicals, which 

are now applied in a wide variety of fields. 

One of the important applications of organofluorine compounds is in medical 

science and pharmacy. Even a single fluorine atom may bring a dramatic increase of 

biological activity, a reduction of side effects, or an improvement in stability to an 

organic molecule owing to its unique effects. Since Fried and Sabo (1953) synthesised 

a fluorinated steroid8 which showed a considerable enhancement of bioactivity, the 

introduction of fluorine into bioactive molecules has become a powerful tool in the 

development of new drugs. In the meantime, the development of new fluorinating 

agents and techniques for site selective introduction of fluorine into organic molecules 

has advanced swiftly, and contributed greatly to the present rapid progress in this field. 

In addition to the natural and stable isotope 19F, radioisotopes 17F and 18F have been 

prepared. 18F has the longest half-life (110 min) of the four common positron emitting 

isotopes (uC, 150, 13N, and 18F), and 18F labeled compounds have been utilised for 

positron emission tomography (PET), which is a medical imaging method for studying 

biochemical transformations and distribution in living human and animal bodies. 9 

11..1.3 Properties of the flluorine atom 

Although fluorine belongs to halogen group, organofluorine compounds have quite 

distinct chemical and physical properties from organochlorine or organobromine 

compounds. Properties of hydrogen, fluorine and several other elements, from an 

organic chemical point of view, are summarised in the Table 1.1. 
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TABLE 1.1 Comparison of several properties of elements 

EN IP EA rv(nm) rv(nm) CH3-X BE ofCHa-X 
Element (Pauling) (kJ/mol) (kJ/mol) (Pauling) (Bondi) (nm) (kJ/mol) 

H 2.1 1311 72 0.120 0.120 0.109 412 

I F 4.0 1680 333 0.135 0.147 0.139 440 

Cl 3.0 1255 348 0.180 0.175 0.177 328 

Br 2.8 1142 324 0.195 0.185 0.193 275 

2.5 1008 295 0.215 0.198 0.214 240 

0 (OH) 3.5 1298 141 0.140 0.150 0.143 356 

S (SH) 2.5 999 201 0.185 0.180 0.182 272 

EN: Electronegativity, IP: Ionization potential , EA: Electron affinity, r v= van der Waals 

radius, BE: Bond energy. 

The most important characteristic of fluorine is that it has the largest electronegativity 

of all elements. This fact causes significant influences on the properties of C-F bonds, 

and on the entire properties of organic molecules in tum. The C-F bond length is the 

shortest except for a C-H bond and the bond energy is greater than those of C-H or 

other carbon-halogen bonds. This fact causes some perfluorinated compounds to be 

thermally and chemically quite stable. Another important property is the small atomic 

size. Fluorine has a very compact van der Waals radius (0.135 nm, [Pauling]), that is 

not significantly different from that of hydrogen (0.120 nm), although according to 

Bondi's estimation, fluorine is closer to oxygen rather than hydrogen. 10 Therefore, it is 

possible to replace an arbitrary number of C-H bonds with C-F bonds unlike other 

halogen atoms. Fluorine's ionization potential is the largest with the exception of 

helium and neon, which means it is more difficult to form •p+• than to form 'Ct', 'Br+', 

and '1+'. 
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1.1.4 Effects of fluorine in organic compounds 

Due to its large electronegativity, fluorine has various effects on organic molecules. 

The electronic effects of a C-F bond are generally understood in terms of inductive and 

resonance effects11 (Figure 1.1 ). Fluorine bonded to sp3 -carbon induces a -Icr effect to 

reduce the electron density at the carbon of a C-F bond. When fluorine bonds to an 

sp2 -carbon, it pushes the 7t-electrons to a p carbon due to the repulsion between the 

unshared electron pairs of fluorine and the 7t-electrons (+In effect), whereas fluorine 

can resonate with the 1t-electron system ( +R effect) like other halogen atoms. As a 

specific example, a-fluorocarbocations are stabilised by resonance effects owing to the 

empty p-orbital. On the other hand, P-fluorocarbocations are difficult to generate 

because they are destabilised by -Icr effect and, besides, there is no contribution of a 

stabilizing effect due to the formation of halonium ions unlike the case of bromine and 

chlorine. In the case of anions, a-fluorocarbanions can be stabilised and destabilised 

depending on the geometry, and P-fluorocarbanions are stabilised by -Icr effect, 

although elimination of fluoride competes. In addition, fluorobenzene gives 

para-substituted products preferentially in electrophilic substitution reaction, which 

can be understood as a result of a +R effect and especially from a +In effect. 
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FIGURE 1.1 
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A perfluoroalkyl group, such as CF3, or C~s group always acts as an 

electron-withdrawing group at sp3
- and sp2 -carbon (Figure 1.2). In particular, the 

inductive effect of CF3 at sp2 -carbon may be enhanced by negative hyperconjugation. 
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F!GURE 1.2 
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It is well known that a significant difference of reactivity is observed between 

alkenes and fluoroalkenes. In hydrocarbon systems, electron rich alkenes react with 

positively charged electrophiles. In contrast, fluoroalkenes have electrophilic carbons, 

and undergo nucleophilic addition by reaction with negatively charged nucleophiles 

(Scheme 1.1). 
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Because of the electron-withdrawing effect of fluorine, organic compounds become 

more acidic upon substitution of hydrogen with fluorine. Table 1.2 shows a comparison 

of pKa of various halogenated- or non-halogenated organic compounds. 12 The pKa of 

fluorinated acetic acid decreases as the number of fluorines increase. The acidity of 

trifluoroacetic acid is stronger than trichloroacetic acid. On the other hand, 

pentafluorophenol is less acidic than pentachlorophenol. The fact is attributed to 

competing -Ia and +11t effects. 
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TABLE 1.2 Acidities of organic acids and carbon acids (pKJ 

Acid pi{.. Acid pi{.. Acid pKa 

CH3C02H 4.8 

CH2FC02H 2.6 CH2CIC02H 2.9 

CHF2C02H 1.2 CHC~C02H 1.3 

CF3C02H 0.2 CCI3C02H 0.6 

CH3S03H -1.9 

CF3S03H -5.1 

C6H50H 9.9 

C6F50H 5.5 C6CI50H 5.3 

(C~)3COH 19.0 

(Cf3)3COH 5.4 

CHF3 30.5 CHCI3 24.4 

CH3C02C2Hs 24.0 

CH2FC02C2Hs 21.0 

CHF2C02C2Hs 25.0 

CH3N02 10.21 

C~FN02 9.5 

CHF2N02 12.40 

H is the acidic proton 

Introduction of fluorine also affects the acidity of carbon acids. As shown in table 

1.2, fluoroform is less acidic than chloroform because, when the acidic proton and 

fluorine are bonded to the same carbon, the conjugate base is destabilised by +llt 

effects. For a similar reason, difluorinated ethyl acetate and nitromethane are less 

acidic than the parent compounds. 

Obviously, the effect of fluorine substitution is more remarkable in 

perfluoroorganic compounds. A C-F bond has not only a strong bond energy but also a 
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quite small polarisability, which brings a variety of unique properties such as a low 

refractive index, a low permittivity, and small intermolecular forces, which cause small 

surface tension, non-tackiness, and so on to perfluoro compounds. 

As mentioned in section 1.1.2, partially fluorinated (1-3 hydrogen atoms 

substituted with fluorine atoms) compounds are widely accepted to be very useful in 

pharmaceutical fields. 13 Because of the small atomic size, there is not a significant 

change in the geometry of molecules upon substitution of a C-H bond by a C-F bond. 

Consequently, the compound is taken in the living body in a similar way to the parent 

compound (mimic effect). Also, introduction of a fluorine atom, especially in a CF3 

group, increases lipid solubility, enhancing rates of absorption and transport of drugs in 

vivo. In addition, fluorine has an isoelectronic structure to oxygen in a hydroxy group 

and was considered to be a hydrogen bond acceptor in some cases. 14 Similarly, a 

fluoroalkene is thought to be isoelectronic to an amide moiety as shown in Figure 1.3. 

In fact, many protease inhibitors which contain such structural moieties have appeared 

recently. 15
'
16 

FIGURE 1.3 Fluorine-containing isosteres 
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As seen above, the effects of introducing of a fluorine atom into organic 

compounds covers wide chemical and life science fields and, accordingly, the 

importance of developing new methodology for regia- and stereoselective fluorination 

of organic molecules is still increasing. This thesis is concerned with the development 

of new fluorination methodology and so a brief introduction into the current progress 

for introduction of fluorine into an organic system follows below. 
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1.2 ElectrophiiRc fh.11orinatnng agents 

1.2.1 :U:ntrodudion 

As described in section 1.1.1, only a few examples of fluorine containing natural 

compounds have been found. This fact means that organofluorine chemistry is a 

wholly man-made chemistry. In other words, fluorination reactions are essential 

techniques for the preparation of fluorinated organic molecules, and many fluorinating 

agents have been developed. 17
•
18 These can be roughly divided into two categories, i.e. 

nucleophilic and electrophilic fluorinating agents. Examples of nucleophilic 

fluorinating agents that are sources of fluoride ion (V) are HF and its complexes with 

amines (HF-pyridine etc.), alkali metal fluorides (KF, CsF etc.), ammonium fluorides 

(BtLJNF etc.), SF4 and its homologues (DAST, morpholinosulfur trifluoride, etc.), and 

so on. On the other hand, the fluorination of electron-rich centres, in particular, direct 

conversion of C-H to C-F linkages, is usually not feasible with such nucleophilic 

fluorinating agents. Radical or electrophilic sources of fluorine are needed for this 

purpose. Radical fluorination reactions are not suitable for the preparation of partially 

fluorinated organic compounds. 

We have been interested in the development of a general methodology for 

production of carbon-fluorine bonds. In this thesis, we aimed at establishing new 

methodology for selective fluorination of saturated C-H bonds using elemental fluorine 

or other F+ species generated in situ. Accordingly published work involving selective 

fluorination using electrophilic fluorinating agents, which are most important or are the 

most recently published (from 2000 to the present day), particularly focused on 

fluorination of saturated systems, will be reviewed in the following sections. 

1.2.2 Elemental fluorine 

1.2.2.1. Physical properties of elemental fluorine 

Elemental fluorine is an extremely pale yellow-green diatomic gas at ambient 
c 

temperature. The boiling point is -188 oc and the melting point is -218.6 °C. The 

dissociation energy of elemental fluorine is much smaller (159 kJ/mol) than other 

diatomic gases. It makes a sharp contrast to the very strong bond energy between 

fluorine and other elements. As a result, fluorine gas readily reacts with other 

substances, even with rare gases such as xenon and krypton to give a variety of 

fluorinated compounds. Some physical properties of halogens and several other 

elements are summarised in Table 1.3. 19 
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TABLE 1.3 

Melting point Boiling point Dissociatio11"11 energy Distance of X-X 
Element (oC) (oC) (kJ/mol) (nm) 

F2 -219.6 -188.1 159 0.142 

Cl2 -101.0 -34.0 240 0.199 

Br2 -7.25 58.8 191 0.228 

12 113.6 184.4 149 0.267 

02 -218.4 -183.0 494 0.121 

N2 -209.9 -195.8 942 0.110 

H2 -259.1 -252.9 432 0.074 

1.2.2.2 Preparation of elemental fluorine 

Elemental fluorine is produced by electrolysis of a melt mixture of HF and KF, 

which is basically the same method as discovered by Moissan. In particular, a method 

termed 'medium temperature electrolysis' operating at about 90 oc has now been 

adopted for manufacturing fluorine?0 In this method, KF· 2HF (mp 70 °C) is used as 

an electrolytic mixture in order to make the vapour pressure ofHF low. 

1.2.2.3 Selective direct fluorination 

Obviously elemental fluorine is the most fundamental electrophilic fluorinating 

agent. Besides, all other electrophilic fluorinating agents are necessarily made from 

elemental fluorine. Accordingly it is ideal to utilise elemental fluorine for a wide range 

of direct fluorination reactions. Elemental fluorine is extremely reactive to organic 

compounds as shown in Scheme 1.2. 
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§CHEME 1.2 

I 
){2 

I 
-C-H -o- t> ~e-x HX 

I I 
AH 

X IF Cl Br 

.1H (kJ/mol) -439 -105 -38 

The enthalpy of formation of a C-F bond from a C-H bond is 439 kJ/mol, much higher 

than that of a C-CI, C-Br or C-I bond. It is highly exothermic and even much larger 

than the dissociation energy of a C-C bond (368 kJ/mol). It means that fluorination of 

organic compounds using elemental fluorine sometimes is not easy to control. 

However, direct fluorination can be successfully carried out using a dilute mixture with 

an inert gas like helium, or molecular nitrogen, at low temperatures sometimes in the 

presence ofF-F bond-polarising solvents or additives for trapping radical species?1
'
22 

Selective direct fluorination of saturated C-H sites has been reported. In the 

fluorination of trans-4-methylcyclohexyl p-nitrobenzoate, a specific tertiary C-H bond 

was predominantly fluorinated because the electron densities are higher than the other 

tertiary C-H bond and all secondary C-H bonds (Scheme 1.3).23 

§CHEME 1.3 

CFCI3, CHCI3 

-75°C 

60% 

The reaction was carried out in a polar solvent, such as a 1 : 1 mixture of 

fluorotrichloromethane and chloroform at very low temperature. Tertiary carbons of 

adamantanes and steroid derivatives were successfully fluorinated by the same method. 

Direct fluorination of steroid derivatives will be discussed in section 2.2.1.1. 

Fluorination of a range of hydrocarbons was reported by Chambers. The 

fluorination reactions were carried out in acetonitrile at more convenient temperature 

(Scheme 1.4).24
'
25 
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SCHEME 1.4 

0 ~Oo/o F2 / N2 OF 
CH3CN, 0 °C 

53% conv. 63% 

IIi f 

CD 10% F2 / N2 CD CH3CN, 0 °C 
IH H 

68% conv. 54% 

F 

10% F2 / N2 I!J CH3CN, 0 °C 

10% CODW. 65% 

5.3: 1 

SO% conv. 41% 

In these reactions, the reaction proceeds with full retention of configuration. A 

mechanism involving a non-classical three-centre two electron carbocation as the 

intermediate was suggested by Barton and Rozen (Scheme 1.5). The polar solvent 

(Solv-H) does not simply encourage polarization of the fluorine molecule but also acts 

as an acceptor for the fluoride ion. A result of an ab initio calculation supported this 

electrophilic mechanism. 26 

SCHEME 1.5 

\ 
-C-H + 

I 

\ H 
-c---<ffi e ~ 

I 'F-----F- -H-Solv 

\ 
-C-F + 

I 
Hf 
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Fluorinations of cis-decalin in a range of solvents were also carried out at 0 °C. 25 

The results showed that the most suitable solvent for fluorination of hydrocarbons were 

nitrites, especially acetonitrile. The effectiveness of nitrites is not solely attributed to 

the relative permittivity because nitromethane is not a suitable reaction medium. One 

possible explanation is that interaction between nitriles and fluorine is occurring and an 

electrophilic N-F species is generated in situ (Scheme 1.6). 

SCHEME 1.6 

-
+ F-F f 

Fluorination of 1, 4-disubstituted cubanes was reported by Lagodzinskaya. 27 

Dimethyl cubane-1,4-dicarboxylate was fluorinated in acetonitrile using 4% fluorine I 

nitrogen mixture at temperatures from -30 to -20 °C to give dimethyl 

2-fluorocubane-1, 4-dicarboxylate and small amounts of side products (Scheme 1. 7). 

§Ol!EME1.7 

CH3CN 
-30 to -20 °C 

40% yield 

Kobayashi reported direct fluorination of 1,3-dioxolan-2-one. It was successfully 

carried out to give 4-fluoro-1,3-dioxolan-2-one, which was used as an additive for a 

lithium ion secondary battery (Scheme 1.8)?8 The reaction was carried out without 

solvent at 50 oc to give monofluorinated product in 70% isolated yield. 
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§CHEME 1.8 

30% IF2 / N2 Fh (350 mUmin, 1.7 eq.) 

50 °C, no solvent 
ol(o 

0 

440 g 

70%yield 

F F IF F f 
30% F2 / N2 (1.5 eq.) H H Fh 

ol(o + 01(0 + 01(0 
50 °C, no solvent 

0 0 0 

bp. (°C) 129 187 134 

109 g 21 g 10 g 

59% yield 11%yield 5% yield 

The reaction could also be carried out in hydrogen fluoride at 0 oc with good 

selectivity, however, the reaction had to be performed at low temperature due to the 

low boiling point of hydrogen fluoride, and was very slow at this temperature. 

4-Fluoro-1,3-dioxolan-2-one was also further fluorinated with elemental fluorine under 

the same conditions to give three isomeric difluoro derivatives, trans-4,5-difluoro-

1 ,3-dioxolan-2-one, cis-4,5-difluoro-1 ,3-dioxolan-2-one and 4, 4-difluoro-1 ,3-dioxolan 

-2-one. Each compound was separated by distillation followed by recrystallization and 

obtained in 59, 11, and 5% yield, respectively. 

Because fluorinated carbonyl compounds have been accepted as useful building 

blocks for organofluorine compounds, many studies have focused on the direct 

fluorination of simple carbonyl compounds. 

Fluorination of pyruvic acid derivatives, which are predominantly in the enol form, 

gave a.-fluorinated products.29 On the other hand, in the case of normal ketones which 

exist almost completely as the keto form, after converting the corresponding silyl enol 

ether, fluorination was carried out to give a.-fluoroketones (Scheme 1. 9). 30 
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SCHEME 1.9 

40-70% 

R 1 = CH3, C2H& 

R2 = C6H6, p-CI-C6H4, p-N02-C6H4, n-C3H7CO 

n = 1, 2 73-78% 

Recently, it has been shown that acetonitrile and formic acid are very useful 

solvents for direct· fluorination of carbonyl compounds. 31 Chambers reported that the 

fluorinations of a range of 1,3-dicarbonyl compounds32 and enol acetates33 were 

successfully carried out at convenient temperatures (0 to 15 °C) (Scheme 1.10 to 12). 

SCHEME 1.10 

HCOOH 

10to15°C 

R1 = CH3, R2 = H, Cl, CH3 

R1
, R2 = -(CH2)4-

65-76% 7-11% 0-3% 

conversions : 85-95% 
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SCHEME 1.11 

HCOOH 

10 to 15 °C 

80-90% 

R1 = CH3, R2 = H, Cl, CH3, R3 = OC2Hs 

R1
, R2 = -(CH2)4-, R3

:.: OC2Hs 

R1
, R2

:::: ..Q(CH2h-, R3 = CHs 

SCHEME 1.12 

¢i 
n = 1, 3 

CH3CN or HCOOH 

0 to 5 °C 

75->95% conv. 

1-110% 0-1% 

conversions: 115-90% 

56-71% 

In both the cases of fluorination of 1,3-diketones and 1,3-ketoesters, a C-H bond at the 

2-position was fluorinated preferentially, although 2,4- and 2,2- (only in the case ofR2 

is H) difluoro derivatives were also obtained. In essence, these reactions are 

understood as an electrophilic addition of fluorine to the electron-rich double bond of 

the enol form of the substrate, as is the case of pyruvic acid derivatives. Consequently, 

a high enol content or a rapid rate of the enolisation is required for a high conversion 

of the substrate to the product. Fluorination of 1 ,3-diketones proceed more rapidly than 

1,3-ketoesters. The reactivity order of a range of 1,3-dicarbonyl compounds and other 

carbonyl compounds was found as shown in Figure 1.4?1 
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FIGURE 1.4 

reaciive 

cyclic 1,3-dilk:etones 

acyclic 1,3-diketones 

acyclic ~ ,3-ketoesiers 

acyclic "i1,3-ketoacetamidles 

unreactive 

In fact 1 ,3-diesters were unreactive under similar conditions to fluorination of 

1 ,3-diketones or 1 ,3-ketoesters, and required addition of a base such as sodium hydride 

to generate the enol form and react with fluorine. 34 Direct fluorination of 1,3-diesters 

catalysed by copper nitrate was also reported by Chambers (Scheme 1.13).35 

SCHEME 1.13 

110 mol% Cu(N03h·2.5H20 

10% F2 / N2 (~ .6 eq.) 

~00% conv. 18% 

This method was applicable for fluorination of other carbonyl compounds, for example 

1,3-ketoesters or 2-substituted carbonyl compounds such as 2-cyanoketones. 

Recently various modifications and improvements in direct fluorination of 

1,3-dicarbonyl compounds have been published. While Bowden reported that HF I 

H20 mixture could be used as a better solvent for fluorination of 1,3-ketoesters and 

1,3-diketones,36 Casteel described an efficient method for decreasing side products in 

fluorination 1,3-carbonyl compounds when dilute oxygen was used with fluorine as a 

radical scavenger. 37 In addition, Adachi reported that a decrease of flow rate or 

concentration of fluorine over the course of the reaction was effective to reduce the 

quantity of fluorine introduced?8 

A convenient method for radiochemical synthesis of [18F]-labeled trifluoromethyl 
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ketones was reported by Prakash. 39 In model reactions, 2,2-difluoro silyl enol ethers, 

which could be prepared by magnesium metal mediated reductive defluorination of 

trifluoroketones, were fluorinated by elemental fluorine in acetonitrile at -45 °C to 

give initial trifluoroketones (Scheme 1.14). 

SCHEME 1.14 

OSi(CH3)3 

RAYF 
F 

R = C6H5, 2-thienyl 69-78% 

1.2.3 Xenon difluoride 

Xenon difluoride is a commercially available crystalline fluorinating agent which is 

readily sublimed at room temperature (vapor pressure: 4.55 Torr at 25 °C).40 

Selective fluorination of tertiary C-H sites of hydrocarbons using XeF2 was 

reported by Zupan. The heating of adamantane with XeF2 at 105 oc gave a mixture of 

mono-, di-, and trisubstituted products (Scheme 1.15).41 

SCHEME 1.15 

105 °C 

60% 21% 15% 4% 

Highly enolisible ketones such as 1,3-diketones and enol acetates or silyl enol 

ethers were fluorinated to give a-fluoroketones42. Recently Ramsden investigated 

fluorination of silyl enol ethers with XeF2 in detail and found that the nature of the 

reaction solvent and vessel was critical to the outcome of the fluorination.43'44 On one 

hand, in glass flasks and in solvents other than acetonitrile, the reactive species appears 

to be XeF+, which reacts as an electrophile. On the other hand, In nonvitreous flasks 

(e.g., FEP) or in glass flasks using acetonitrile, the reactive species appears to be 

unionised XeF2 which reacts as a one-electron oxidizing agent. In general, the use of 

acetonitrile as a solvent and borosilicate glass vessels gave the best results (Scheme 

1.16).44 
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SCHEME 1.16 

CH3CN 
rt, 1 h 

iOOo/o 

In the case of the fluorination of TMS ether of f3-tetralone and norcamphor, significant 

amounts of parent ketones were obtained. The fact is consistent with a mechanism 

involving single electron transfer (SET) giving a radical cation as the key intermediate 

(Scheme 1.17).44 In both cases, the radical cation species are relatively stable and do 

not readily react with the fluorinating agent, consequently, intramolecular hydrogen 

transfer predominates. 

SCHEME 1.17 

SET F 

Ill 

Ramsden also reported a convenient method for preparing [18F]XeF2 using fluoride 

exchange. XeF2 was treated with [18F]fluoride in the presence of Cs + -Kryptofix 222 

(4,7, 13, 16,21,24-hexaoxa-1, 10-diazabicyclo[8.8.8]hexacosane) complex to give 

e8F]XeF2 as the predominant radioactive component.45 The [18F]XeF2 could be utilised 

for preparation of [ 18F]2-fluorocyclohexanone. 

XeF2 readily reacts with sulfides to give a.-fluorinated sulfides.46 This reaction was 

called the 'fluoro-Pummerer reaction', and utilised for preparation of fluorinated 

methionine derivatives. 47 The fluorination exclusively occurred at the methylthio 

position (Scheme 1.18). 
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SCHEME 1.18 

0 

""'s~o-R1 
HN R2 

)( 
0 

R1 = OCH3, R2 = CIF3 

R1 = OC6H4(p-N02), R2 = Cf3 

CH3CN 

-20 °C ~0 ri 

R 1 = OC6H4(p-N02), ~ = Ot..C4H9 

R1 = I\!HCH2C02C2H5, R
2 = Ot..C4H9 

0 
f'..._.-S~o-R11 

Hi\! R2 

I( 
0 

70-90% 

The mechanism involving 3-centre fluorine transfer shown in Scheme 1.19 was 

proposed for the fluorination of sulfides.46 In this mechanism initial fluorination occurs 

at the sulfur atom to give sulfur (IV) difluoride 1. Hydrogen fluoride is lost via a 

4-centre step to give intermediate ~ followed by fluorine transfer via 3-centre step to 

give a.-fluorinated sulfides~· 

SCHEME 1.19 

4-centre 

-HF 

1.2.4 0-F reageunts48 

1.2.4.1 lEIIypofluorites (ROF) 

3-centre 

F-~ransferr 

Trifluoromethyl hypofluorite (CF30F) is known as the oldest hypofluorite.49 

However, it is not easy handled because it is gaseous reagent (b.p. = -95 °C) and too 

reactive. Recent applications of CF30F or other RtOFs are mainly a straightforward 

preparation of fluoro-monomers based on the addition to alkenes. 50 On the other hand, 

acetyl hypofluorite (CH3COOF) can be easily handled and prepared from sodium 

acetate and elemental fluorine (Scheme 1.20).51 This reagent cannot be isolated 

because it thermally decomposes. 
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SCHEME 1.20 

CH3COONa I CH3COOH 
CfCI3, -78 °C 

( CH3COOF) 

The fluorinating power is milder than other hypofluorites such as CF30F or CF3CF20F. 

Particularly, fluorinations of 1,3-dicarbonyl compounds gave good results (Scheme 
1.21).52 

SCHEME 1.21 

1R 
1 = CH3, R

2 = H, R3 = OC2Hs 

R\ R2 = -(CI=I2)3-, R3 = OC2Hs 

R\ R2 = -(CH2)4-, R3 = OCH3 

CH3COOF 

CfCI3, THF 

-75°C 

IR1 = C02C2H5, R2 = H, R3 = OC2H6 

75-92% 

Rozen recently reported a synthesis of a-fluorocarboxylic esters and acids using 

acetyl hypofluorite (Scheme 1.22i3
. 

SCHEME 1.22 

R1 = Ar, Alkyl 

R2 
:;;: Ar, Alkyl, H 

CH3COOF (ca. 3 eq.) 

CHCI3, --45 °C 

70-90% 
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SCHEME 1.22 (Continued) 

_ ~OH 
A)l) A 

obuproren 

LOA 
(CH3)aSoCI _ ~OSi(CH3)a 

A)l} bso(CH3h 

CH3COOF (ca. 3 eq.) 

CHCI3, --45 °C 

. ~OH 
A.)l) 8 

60% 

The corresponding esters were converted to their ketene silyl acetals, and these enol 

derivatives reacted with acetyl hypofluorite. Direct fluorination of the ketene acetals 

gave much worse yields (around 20%). a-Fluoroibuprofen, 2-fluoro-(4-isobutylphenyl) 

propionic acid, was also obtained by the same procedure from ibuprofen itself via its 

bis(trimethylsilyl acetal). 

1.2.4.2 PerelnDoryD fluoride (CI03lF) 

Today perchloryl fluoride (Cl03F) is not widely used because it is an explosive 

gaseous reagent (b.p. = -47 °C). Reactions using this reagent with enolate anions, enol 

esters and enamines gave a-fluorocarbonyl compounds in relatively good yields5
4-

56
. 

Fluorination of ketene silyl acetals with perchloryl fluoride was reported by Takeuchi 

as shown in Scheme 1.2357
. 

SCHEME 1.23 

CI03F, t-C4H9NH2 (0.5 eq.) 

THF,ut 

83-88% 

The reaction required sub-stoichiometric amounts of base as an additive to avoid 

decomposition of the rather unstable substrate, in particular t-butylamine was the most 

effective. 

1.2.41.3 Cesium fluoroxysu.dfate (Cs§O,.F) 

Cesium fluoroxysulfate is a strong crystalline fluorinating agent which can be 
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prepared by fluorination of cesium sulfate with elemental fluorine and can be stored at 

0 oc for about 2 weeks (Scheme 1.24).58 

§CIIJEME 1.24 

The fluorinating ability of CsSO,J< is strong enough to fluorinate unactivated C-H 

sites of saturated hydrocarbons. Fluorination of adamantane resulted in 1-fluoro, 

2-fluoro, 1 ,3-difluoro substituted products. 59 

CsSOJ< easily react with cyclic enol esters to give a-fluoroketones in good 

yields.60 The fluorination of 1,3-dicarbonyl compounds gave not only monofluorinated 

products but also difluorinated systems. 61 

The use of CsSOJ< is restricted to a laboratory level because the use of large 

quantities of this reagent is dangerous since contact with a metal or mechanical 

pressure may cause a violent decomposition or an explosion. 58 

1.2.5 N-JF R"eagents 

In the last twenty years, a number of compounds which have nitrogen-fluorine 

bonds have been developed as a new class of electrophilic fluorinating agents. 17'62 

These reagents are generally safe, stable and easy to handle. They are usually prepared 

by the fluorination of the corresponding N-H compounds which are relatively 

inexpensive, using elemental fluorine. Several reagents are now commercially 

available and widely used in synthetic organic chemistry. 

1.2.5.1 Neutral compounds (R2NF) 

1.2.5.1.1 §ulfonyB derivatives 

The DesMarteau reagent, N-fluorobis[(trifluoromethyl)sulfonyl]imide 

[(CF3S02)2NF]63 is one of the most powerful N-F reagents.64 This reagent is liquid at 

ordinary temperature (m.p. = -69.8 °C) and the preparation needs a sort of intractable 

procedure, that is direct fluorination of bis(trifluoromethylsulfonyl)imide with 

non-diluted elemental fluorine in an autoclave. 63 In situ prepared lithium enolates of 

esters, amides and ketones easily react with (CF3S02)2NF at low temperature to give 

various a.-fluorocarbonyl compounds.65 

Fluorination of 1,3-dicarbonyl derivatives with (CF3S02)2NF resulted in the 
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selective formation of 2-fluoro- or 2,2-difluoro-1,3-dicarbonyl analogues, depending 

on the reaction conditions (Scheme 1.25).66 The reaction in CH2Ch gave exclusively 

2,2-difluorinated products. On the other hand, using CH2Ch/H20 (10:3) as the solvent, 

monofluorinated compounds were selectively obtained. In this case, the enolisation of 

monofluoro-compound and the subsequent fluorination to the difluoro-compound were 

greatly reduced because the strongly acidic by-product, (CF3S02)2NH was highly 

water-soluble and rapidly removed from the reaction system. 

SCHEME 1.25 

R 1 = CH3, R2 
g OC2Hs 

R1 = C6H5, W = OC2H5 

R1 = C6H6, R2 = CH3 
(CF3S02)2NF 
(1.3 to 1.5 equiv.) 
CH2CI2 I H20, rt: 

0 0 

R1VR2 
F F 

80-96% 

86-93% 

DesMarteau reported a new series of fluorinating agents of this type recently 

(Figure 1.5).67
'
68 

FIGURE 1.5 

R, = CF3, Rr' = C4F9 

R, = CF3, Rr' = C6F 13 

R1 = CF3, Rr' = C8F 17 

Rr = Rt' = C4f9 

02 F2 F2 ~ 
F3C02S-N.S'C'C.C .. c.8,N.50 CF 

F F2 F2 02 2 3 

.@ 

The fluorinating ability of N-fluorobis[(perfluoroalkyl)sulfonyl]imides !-Z were 

similar to (CF3S02)2NF. Difunctional derivatives ! and ! also exhibited parallel 
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reactivity to (CF3S02)2NF in the reaction with a 1,3-dicarbonyl compound utilizing 

both N-F functions (Scheme 1.26).68 

§Cll!JEMJE 1.26 

~ or! (0.5 equiv.) 

CH2CI2, Na2C03 

22 °C, 5 h 

90-91% yield 

Syvret reported a potentially-viable commercial route to (CF3S02)2NF.69 Direct 

fluorinations of the parent imide were carried out using 20% F2 I N2 in perfluorocarbon 

fluids in a flow system at 80-120 °C. Reaction using 5 to 22 g of (CF3S02)2NH and up 

to 6 equivalents of fluorine gave the N-F product in 63 to 81% isolated yield. 

N-Fluorobenzensulfonimide [(PhS02)2NF = NFSI] and N-fluoro-o-benzene

disulfonimide (= NFOBS) are both stable, crystalline and easy to handle N-F reagents. 

They are easily prepared by treatment of the corresponding sulfonimide with 10% 

elemental fluorine in the presence ofNaF (Scheme 1.27).70
,
71 

SCHEME 1.27 

CH3CN or CFCI3 I CHC13 

-40oC 

NFSI 

(m.p. = 114-116 °C) 

02 
~S, 
~SN-F 

02 

NFOBS 

(m.p. = 139-140 °C) 

These reagents were utilised for the diastereoselective fluorination of enolates. Highly 

diastereoselective electrophilic fluorination of lithium imide enolates could be 

achieved using Evans' oxazolidinone72 as a chiral auxiliary and NFOBS (Scheme 

1.28).73 Chiral imides were metallated with LDA at -78 oc followed by reaction with 
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NFOBS at -78 °C to room temperature. a-Fluoro compounds were obtained in good to 

excellent yields and diastereoselectivities. 

SCHEME 1.28 

0 0 

0JlN~R3 
K 

R1 R2 

R1 = C6H5, R2 = CH3 or 

R1 = H, R2 = i~H1 

1) LOA 

2) NFOBS 

THF, -78 to 0 °C 

R3 = n-C4H9, t-C4H9, C6H5, CH2CsH5 

0 0 

OJlN~ 
)--\F 

C6H5 CH3 

97%de 

0 0 

0JlNJlyR3 

1-\F 
R1 R2 

80-88% yield 

86-97% de 

HO~ 
F 

83%, >95%ee 

0 

HO~ 
F 

86%, 90%ee 

Subsequent reductive or hydrolytic removal of the chiral auxiliary gave 

2-fluoroalkanol or 2-fluoroalkanoic acid with very high ee. 

Fluorination of the a,J3-unsaturated chiral imide enolate was performed using both 

NFSI and NFOBS as fluorinating agents (Scheme 1.29). 74
'
75 The diastereoselectivities 

were better with NFSI than with NFOBS and the higher de's were attributed to the 

greater steric bulk ofNFSI compared to NFOBS. 

SCHEME 1.29 

0 0 
0 II II 1) LiN[Si(CH3)3)2 

Bn ~-N""o 
)--\ 2)NFSiorNFOBS 

H3C C6H5 THF, -78 °C 

N-F reagent 

NFOBS 

NFSI 

o/o yield 

80 

76 

o/o de 

88 

>97 
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The product was used as a key intermediate m the stereoselective synthesis of 

2-deoxy-2-fluoropentoses. 

Diastereoselective fluorination of enantiopure cx.-silylketones using NFSI was 

reported by Enders (Scheme 1.30).76 

SCHEME 1.30 

0 

TBDMS"Q 

n:: 1, 2 

~)LDA,TIHif 

2) NFSI, THF 
-78 °C tori 

8~-85% yield 
>97% de 

(n..C4H9)4Nf, HF 
NH4f, KH2P04 

99% yield! 
>95%ee 

Metalation of cx.-silylketones with LDA, followed by fluorination with 1 equivalent of 

NFSI, led to cx.-fluoro-cx.'-silylketones in good yield with high diastereoselectivities, in 

the cases of cyclic ketones particularly. cx.-Fluoroketones were obtained by the 

desilylation of cx.-fluoro-cx.'-silylketones using a mixture of fluoride sources under 

buffered conditions without racemization. In the cases of acyclic derivatives and large 

cycles, the replacement of LDA by LHMDS for enolate formation allowed access to 

the other diastereomer, which meant both enantiomers were produced from the same 

substrate. 

Coward described fluorination of enantiomerically pure 2-pyrrolidinones derived 

from L-glutamic acid using NFSI as a method for synthesis of single stereoisomers of 

4-fluorinated glutamic acids (Scheme 1.31 ). 77
•
78 
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SCHEME 1.31 

F.. 
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57% yield 

13 

42% yield 

CH3COOH 

CH3CN I H20 

E ~H2 

H02C~C02H 

F.!h 
OJ.__N~OH 

I 

H 

Reaction of the lactam enolate of 10 with NFSI resulted in a completely 

diastereoselective monofluorination to yield the trans-substituted a-fluorolactam 11. 
The second fluorination of 11 was unsuccessful. On the other hand, a bicyclic lactam 

12 was readily difluorinated using a step by step procedure to give compound 13. This 

significant difference of reactivity can be attributed to both the steric effect of the 

protecting group in the monocyclic derivative 11 and the more kinetically acidic nature 

of the bicyclic derivative resulted from the distorted structure. 

Recent other applications ofNFSI are summarised in Figure 1.6. 
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Fli:GUREL6 

18 

(vitamin D3 derivative) 

Takeushi utilised NFSI for preparation of an acetylcholine esterase inhibitor 14 which 

was effective for Alzheimer's disease.79 A potent human neutrophil elastase inhibitor 

15 prepared by fluorination of lithium enolate of the trans-lactam with NFSI was 

reported by Macdonald. 8° Fluorination of diethyl-3-triisopropylsilyl-1-

propynephosphonate using NFSI gave mono- or difluorinated product (.1! and 1Z) 

depending on the equivalent of the reagent. 81 Fluorinated derivative of vitamine D3, 18 

was synthesised via fluorination ofthe S02 adduct with NFSI. 82 

N-Fluoro N-alkylarenesulfonamides are also effective electrophilic fluorinating 

agents (Figure 1. 7). 83
-

86 
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FKGURE 1.7 

ArS02 
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N=F 
R 

~2 
N-f' 

Ar = C6H6, p-~olyl ·o 
IR = CH3, t-C,e1H19 e~c. 'i9 20 

(m.p. = 'i14-~16 °C) (m.fP. :ii: 7"1-'79 °C) 

The selective transformation of enolates into mono- and difluorinated carbonyl 

compounds could be performed in a one-pot procedure using N-fluorosaccharinsultam 

(j!) (Scheme 1.32).87 When LHMDS was used as the base, the a.-monofluorinated 

compound 2~ was predominantly obtained. On the other hand, KHMDS gave 

a.,a.-difluorinated products 22 selectively. 

1) base 

2) ~9 (1.3-3.6 equiv.) 

THIF, -'78 °C ~o rt 

R 1 = C6H6, R2 = OC2H5 

R1 = CH3, R2 = C6H6 

base 

LHIVIDS 

KHMDS 

0 RYR2 
f 

21 

21/22 

~95: 5 

5: ~95 

0 

R1YR2 

f F 

22 

yield (%) 

33-66 

53-64 

The 'chiral version' of N-fluorosaccharinsultam 20 is one of the most effective 

stoichiometric enantioselective fluorinating agents currently. 86 Enantioselective 

fluorination including compound 20 will be discussed in section 3. 1. 1. 1. 

L2.5.Jl.2 Otftner IIDeunttraB COiliiDjp)OuniiDtdls 

The structure of other neutral N-F reagents are summarised in figure 1.8.88
-

92 

30 



FIGURE 1.8 
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The N-F salfam reagent 23 reported by Cabrera, was effective for fluorination of 

sodium salts of 1,3-carbonyl compounds, conjugated enol acetate derivatives of a 

steroid, and so on. 88 Banks reported the synthesis of perfluoro-[N-fluoro-N-( 4-pyridyl) 

acetamide] (24) in 80% purity (contaminated with its N-H analogue). 89 The impure 

reagent reacted with a sodium salt of diethyl 2-phenylmalonate, 1-morpholino 

cyclohexene, etc. N-Fluoro-2-pyridone {M),90 perfluoro N-fluoropiperidine ~91 and 

N-fluoro-2,4-dinitroimidazole (J;[)92 are also known to be electrophilic fluorinating 

agents, but the reactivities are rather low compared with sulfonyl derivatives. 

1.2.5.2 Quaternary compounds (RJWF .A) 

1.2.5.2.1 N-Fluoropyridinium salts 

Fluorination of pyridine with elemental fluorine gave N-fluoropyridinium fluoride 

.n, which violently decomposed above -2 °C.93 Umemoto and co-worker reported this 

unstable compound 28 could smoothly undergo counter anion displacement reaction 

with the nonnucleophilic triflate anion to give the stable N-fluoropyridinium salt 29 

(Scheme 1.33).94 

SCHEME 1.33 

0 
N 

NaOTf 
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A senes of N-fluoropyridinium salts having electron-donating or -withdrawing 

substituents were prepared and their fluorinating abilities were evaluated (Figure 

1.9).95 The power of fluorination increased as the electron density of the positive 

nitrogen site decreased ~ < 29 < 31 < 32 < 33 < M). Some of these are now 

commercially available. Counteranion-bound salts 36 and N-fluoropyridinium pyridine 

heptafluorodiborate 37 are also on the market. 

FIGURE 1.9 
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Lewis acids accelerate the fluorination rates of active methylene compounds with 

2,4,6-trimethyl salt 30. Fluorination of 1,3-diketones with 30 in the presence of a 

catalytic amount of zinc chloride gave difluoro product in 88% yield. On the other 

hand, a stronger Lewis acid, aluminum chloride was required to difluorinate the 

malonate (Scheme 1.34). 
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§CJH!EMJE :n.34 

28 (2.0 equiv.) 

ZnCI2 (0.4 equiv.) 

CH2CICH2CI, 60 °C 

28 (2.0 equiv.) 

AICI3 (0.4 equiv.) 

CH2CICH2CI, 80 °C 

0 0 

CsHsVCsHs 
f f 

88%yieid 

16% 

N,N-Difluorobipyridinium salts were found to be more powerful fluorinating agent 

than monomeric N-fluoropyridinium salts because each of two N-fluoropyridinium 

moieties could act not only as a fluorine source but also as an electron-withdrawing 

substituent.96 2,2'-Bipyridyl salts 38 were much stronger than the 4,4'-isomers 39 

(Scheme 1.35). 

SCHEME 1.35 

0 0 0 0 

if N-fluoropyridinium salts if. CH3CN, reflux 

(1 mmol) 

N-fluoropyridinium salts {mmol) reaction time yield (%)a 

~ 

38 Q-{) (0.5) <5min 85 

F 2-0Tf 

39 F-~ (~-F (0.5) 5h 87 

2-0Tf 

29 0 (1.0) 19 h 79 
i\l 
I -on F 
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Recently a synthesis of 4,4-ditl.uorobenzoazepine-5-one (g), which is a useful 

intermediate for an anti-hypertensive medicine, was achieved by Tamura via 

difluorination reaction of a 5-alkoxybenzoazepine derivative 40 with N

fluoropyridinium salt 29 (Scheme 1.36).97 These reactions could be carried out in the 

same vessel without work up for a difluorinated hemiketal derivative 41. 

SCHEME 1.36 

C6 N 
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Ts 
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CH3COOH (1.0 equiv.) 
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41 

acetone I H20 

CH2CICH2CI 

80 °C, 40 hi 

0 F cUF 
N 
I 

Ts 

42 

65%yield 

Takeda reported a.,a.-difluorination of a.-(alkylthio)acetophenones with 

N-fluoropyridinium salts. The use of2,4,6-trimethyl analogue 30 and zinc bromide as a 

additive gave the best results (Scheme 1.37).98 

SCHEME 1.37 

28 (3.0 equiv.) 

ZnBr2 (0.5 equiv.) 

CHCI2CH2CI 

105 °C, 1 to 3 h 

60-84% yielol 

X1 = X2 = F, R = CH3, C2H5, cyclopropyl, (CH2)20Ac 

X1 = X2 = H, R g: CH3 

X1 = X2 = Cl, R = CH3 

X1 = H, X2 = OCH3, R = CH3 

X1 
g: H, X2 = Cf'3, R = CH3 
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Synthesis of fluorogypsetin and fluorobrevianamide E was described by Shibata.99 

As shown in scheme 1.38, fluorination of cyc/o-L-Trp-L-Trp 43 with 30 proceeded 

accompanied by cyclization to give fluorogypsetin 44 as a mixture of stereoisomers 

since electrophilic attack of fluorine at the 3-position of the indole ring facilitates 

internal nucleophilic attack at the 2-position. 

SCHEME 1.38 

!Q (3.0 equiv.) 
~ 

THF, 65 oc 

44 

77% yield 

syn,anti I syn,syn I anti,anti 

= 2: 1 : 1 

Mechanistic aspects of electrophilic fluorination of indole derivatives will be discussed 

in a following section. 

Adachi reported that the fluorination of 2-naphthol in liquid C02 with 

N,N-difluorobipyridinium salts proceeded cleanly without the generation of 

by-products (Scheme 1.39).38 The products of the fluorination were a mixture of 

1-fluoronaphthol and 1,1-difluoro-1H-naphthalen-2-one, all of which were converted 

into 1-fluoronaphthol through reduction by H2/Pd-C. When N,N-difluoro-2,2'

bipyridinium bis(triflate) 38 was employed, the reaction smoothly proceeded in liquid 

C02 to give 1-fluoronaphthol quantitatively. Acetonitrile as a solvent gave a 

comparatively low yield under normal pressure. On the other hand, fluorination with 

bis(tetrafluoroborate) 45 did not proceed at all owing to its quite low solubility in 

liquid C02 . The addition of catalytic amounts of sodium triflate solved this problem. 
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SCHEME 1.39 
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1.2.5.2.2 Saturated derivatives 

c6rOH • ~0 
~ 

~OH 
~ 

additive % yield after reduction 

99 

85 

no reaction 

NaOTf (0.2 eq.) 95 

Banks found N-fluoroammonium salts were highly effective electrophilic 

fluorinating agents (Figure 1.1 0). 1oo-102 One of the series of compounds, 

1-chloromethyl-4-fluoro-1, 4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) [R = 

CH2Cl, x.- = BF4- (Selectfluor™)] is now one of the most widely used electrophilic 

fluorinating agents. 103 

FIGURE 1.10 

Selectfluor reacted with 1 ,3-dicarbonyl compounds at room temperature to gtve 

corresponding mono- or difluoro products (Scheme 1.40). 104 
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SCHEME 1.40 

0 0 

R1v.R2 
R3 

R 1 = R2 = C6H6, R3 = H 

SelectfhJJor 

R1 = C6H6, R2 = N(CH3h, R3 = H 

R1 = R2 = -(CH2)aa, R3 = CH3 

Selectfluor 
(2.1-3.2 equiv) 

84-87% yield 

78-91% yield 

Chambers reported that Selectfluor has sufficient fluorinating power to fluorinate 

saturated C-H sites. Fluorination of trans-decalin proceeded in acetonitrile under reflux 

conditions to give 1- and 2-fluorodecalins (Scheme 1.41)?4
'
25 In this case, two tertiary 

positions were not fluorinated at all. The reason for the quite contrasting results to 

direct fluorination (see Scheme 1. 4) was attributed to the greater steric requirements of 

the Selectfluor reagent. 

SCHEME 1.41 

cb Selectfluor cD + 

H H 

81% conv. 23% 

Fluorination of 3-substituted indoles, including derivatives of tryptophan and 

serotonin with Selectfluor was reported by Takeuchi recently. 105 The fluorination was 

carried out in a mixture of acetonitrile and water using 3 equivalents of Selectfluor and 

gave 3-substituted 3-tluoroindoles in good to high yields (Scheme 1.42). 
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SCHEME 1.42 
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~rf-0 
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H 

6~92%yield 

Plaquevent described that this reaction could also be carried out in ionic liquids using 

methanol as a cosolvent with better yields (Scheme 1.43)106
. 

SCHEME 1.43 

Selecffiuor (3.0 eq.) 

rt 

solvent time (h) 

CH3CN I H20 (1 : 1) 

[bmim][PF&]I CH30H (1 : 1) 

[bmim][BF .ill CH30H (1 : 1) 

overnight 

3 

3 

yield(%) 

71 

99 

99 

Takeuchi proposed the reaction mechanism outlined in scheme 1.44. According to this 

proposal, Selectfluor reacts with indoles to give the unstable 3-fluoroindolenine 46, 

which undergoes loss of HF by addition of water. A subsequent 1,5-prototopic shift 

gives the enol 47. Finally, fluorination of 47 with additional Selectfluor yields 

3-fluoroindoles. Formation of the non-fluorinated oxindole as a side product is 

consistent with this mechanism. 
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SCHEME 1.44 
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In addition formation of a 2-sulfur substituted indole derivative in the presence of 

benzyl mercaptan under the similar conditions, described by Plaquevent, supported this 

mechanism (Scheme 1.45). 106 

SCHEME 1.45 

CH3 CH3 
~ _s_e_le_c_tfl_uo_r_(_3_.o_e_q_._) __ ...,... ~ '

5 
+ CsHs's-s 

~N~ CH3CN I C6H5CH2SH (1 : 1) ~N,- Lc6H5 \.._C6H5 
H 1 ,4-benzoquinone H 

48 

92%yield 

The reaction stopped at the intermediate 48 in good yield accompanied with the 

formation of benzyl disulfide, which reduced Selectfluor and prevented the subsequent 

fluorination of 48. 

Syntheses of a-fluorophosphonates using Selectfluor were reported by Wnuk 

(Scheme 1. 46). 107 Treatment of the a-carbanions generated from several a-(pyrimidin-

2-ylsulfonyl)alkylphosphonates with Selectfluor gave high yields of the corresponding 

a-fluorinated products. Following this, tin-mediated desulfonylation provided 

a-fluorophosphonates. 
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SCHEME 1.46 

KH (1.0 eq.) 

Selectfluor (1.25 eq.) 

THFIDMF 
0 °C tort, 2 h 

R1 = H, CH3, R2 = C2Hs 

R 1 = C6H5, 2-naphthyl, R2 
=-= i-C3H7 

61-80% yield 

(n-C4H9hSnCII AIBN I PMHS I KF 

toluene I H20, reflux 

82-94% yield 

Willson reported another example of a,a-difluorination of phosphonates with 

Selectfluor using dibenzyl ~-ketophosphonates. 108 

Prestwich found that Selectfluor was a good reagent for preparation of tetraethyl 

fluoromethylenebisphosphonate, which could be utilised for the syntheses of 

fluorinated analogues of lysophosphatidic acid. 109 

1-Hydroxy-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) ~ is 

another commercially available electrophilic fluorinating agent having DABCO moiety, 

first reported by Poss (Figure 1.11 ). 110 

FIGURE 1.11 

OH 
'+ 

(~) 
~+ 
F 2BF_; 

49 

This reagent shows similar fluorinating ability to Selectfluor, but sometimes gave 

better results in some reactions. Zupan reported that selective a-fluorinations of 

ketones were enabled by the use of 49 and methanol as the solvent (Scheme 1.47).lll,ll2 

A variety of ketones were regiospecifically transformed to the corresponding a-fluoro 

derivatives without prior activation in high yield even in the presence of an activated 

aromatic ring, which is also an electron-rich part of the substrates. In contrast when 
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fluorination of such aromatic ketones possessing a strongly activated aromatic ring 

with 49 was carried out in acetonitrile solvent, fluorination exclusively occurred at the 

aromatic ring. This significant difference of the course of the reactions could be 

attributed to the distinct behaviour of the keto-enol tautomerism in these solvents. 

SCHEME 1.47 

47 (1.05 eq.) 

n = 1, 2 

1.2.5.2.3 Other quaternary compounds 

0 
Meoro,F ~, 
~ )n 

75-89% yield 

MeO 
0 

~~ 
~jYJ)n 
F 

55-65% yield 

The structure of other quaternary N-F reagents are shown in figure 1.12. 

1-Fluoro-2,4,6-trisubstituted 1,3,5-triazinium salts 50 were synthesised and their 

fluorinating ability were evaluated using aromatics by Banks. 113
-

115 NF/BF4- 51 is one 

of the oldest N-F reagents. Christe reported that this reagent fluorinates 

hexafluorobenzene in HF to give 1,4-perfluorocyclohexadiene in 94% yield. 116 

Fluorination of 1,3-diketones and 1,3-ketoesters with gaseous trifluoroamine oxide 52 

in the presence of tetrabutylammonium hydroxide to give a-mono- or a,a-difluoro 

products with good selectivity and yields was described by Shreeve recently. 1l7 

FIGURE 1.12 
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1.2.5.3 Reaction mechanism 

In fluorinations with N-F reagents there are two possible reaction pathways, which 

are a single electron transfer mechanism (SET) and a direct nucleophilic addition to 

fluorine (SN2). 118 These mechanistic possibilities are illustrated schematically for the 

neutral R2NF reagents in Scheme 1.48. 

SCHEME 1.48 
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The SET mechanism involves one-electron transfer from the nucleophile to the 

fluorinating reagent to give free radical species (Nu·) followed by fluorine radical (F•) 

transfer. The fluorination of anionic and neutral substrates with N-fluoropyridinium 

salts are thought to proceed via this pathway. 95 This mechanism was supported by the 

fact of the greater reactivity of the reagents towards Grignard reagents, which are 

known to undergo SET chemistry, compared to organolithium systems. DesMarteau 

proposed a similar mechanism for the fluorination by N-fluorobis[(trifluoromethyl) 

sulfonyl]-imide. 119 Another possible pathway is the classical SN2 reaction mechanism. 

This mechanism was supported by the reaction of a citronellic ester with several N-F 

reagents. 120 The fluorination of a potential precursor to a 5-hexenyl-type radical clock 

gave exclusively open-chain a-fluorinated products. The complete absence of cyclic 

products indicated that the fluorination did not proceed via free radical intermediates. 

1.2.6 Conclusions 

Organofluorine chemistry is now an indispensable part of organic chemistry and 

fluorination reactions are fundamental and essential techniques for preparing 

organofluorine compounds. In particular electrophilic fluorinating agents are 

prerequisite tools for direct conversion of C-H to C-F linkages. Consequently, various 
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electrophilic fluorinating agents have been developed and evaluated, and in each case, 

optimum reagents have been selected and used from among them for each individual 

purpose. 

Each reagent discussed in this section has not only characteristic reactivity that is 

an advantage, but also limitations. Xenon difluoride has a significant drawback of 

being extremely expensive. Trifluoromethyl hypofluorite (CF30F) is commercially 

available but it is very expensive and as reactive as elemental fluorine and thus should 

be handled with equal care. In the case of other 0-F reagents, they are not stable 

enough to isolate or store for long time, or possess an explosive nature. Some N-F 

reagents are commercially available, and easy to handle. Above all, Selectfluor has 

become less expensive recently. However, it is still not inexpensive and it seems that 

there are not any large scale industrial applications. Comparison of effective fluorine 

contene7 and price of some of commercially available electrophilic fluorinating agents 

is shown in table 1.4. 

TABLE 1.4 Comparison of effective fluorine content and price 

CH2CI 

~ 
'+ 

(~) ,S02Ph 
structure F2 CF30F XeF2 F-N 

N+ S02Ph ~ -I -
F 2BF4 F BF4 

Selectfluor™ NFSI 

Mol.wt 38.0 104.0 169.3 354.3 315.4 227.0 

EFC8 

500 183 
(g/kg) 

112 54 60 84 

price 264b 35960c 41160d 1490d 7020d 13240d 
(£/kg) 

price/EFC 
0.53 197 368 28 117 158 

(£/g) 

a EFC: Effective Fluorine Content. b price based on 20% F2 I N2 cylinder. c price based 

on ABCR catalogue (2001-2). d price based on Aldrich catalogue (2003-4). 

Obviously elemental fluorine is the most inexpensive and effective positive fluorine 

source among all the electrophilic fluorinating agents. The use of elemental fluorine is 

still viewed by some as something extraordinary that should be avoided due to the 
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highly toxic and corrosive nature, however, direct fluorination can be safely carried out 

using appropriate apparatus and taking elementary precautions. Numerous reports 

about direct fluorination of organic molecules have emerged, but there are relatively 

few are concerned with the use of elemental fluorine for selective fluorination, thus 

new versatile methodologies are still needed. 

In this thesis we aimed at exploring and establishing new methodologies for 

selective fluorination of saturated C-H bond with elemental fluorine or other F+ species 

generated in situ using removable tether, catalysis, and microreactor technology. 
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Cllnaqptell" 2 

2.1 :n:ntrodudion 

The regio- or stereoselective electrophilic fluorination reactions described in the 

preceding chapter can be roughly divided into two categories from the standpoint of 

the substrate used (Figure 2.1 ). The first method is based on functional group 

interconversion. In this method, a specific position of the substrate is activated and 

fluorinated selectively. Fluorination of enol derivatives, such as enol silyl ethers, enol 

acetates, enamines, and enolate anions, is one of the representatives of this method. In 

other words, another functional group is exploited as a scaffold and fluorine is 

introduced into the neighbouring position. However, it is a considerable limitation of 

this method that fluorine atoms cannot be introduced into positions remote from the 

scaffold. The second method introduces fluorine atoms into specific unactivated C-H 

sites by utilizing the difference originating in the electronic character between each 

position. This very simple method is selective enough in the case of particular 

substrates, however, inevitably by-products are often formed due to fluorination at 

undesirable positions. 
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FIGURE 2.1 Access to selective electrophilic fluorination 

1. Functional Group lnterconverslon 

H H H Fluorination F 

I I I .. I FG FG FG FG FG 

H H H H 

2. Direct Method 

Fluorination H F H 

FG -----. FG I I I FG + 

H H H H F H 

3. Geometrically Directed Remote Functinalization 

Tethered Precursor Tethered Reagent 

F H 

H Fluorination H H H H F H 

FG I FG -----. FG 
) I I 

X G FG 

H H H H 

FG : functional group (A) 

Another possible and unexplored approach is geometrically directed remote 

functionalisation. In this method, a precursor of a fluorinating agent is connected with 

the substrate itself by a tether. Fluorination of the substrate with elemental fluorine 

gives a tethered fluorinating agent (A), which reacts with a remote specific position of 

the substrate in an intramolecular manner. The reaction is regulated by the tethers, and 

consequently, it has, potentially, a key advantage that different positions can be 

fluorinated by introducing various tethers having different geometrical demands. 

This approach was well investigated and described by Breslow and co-workers in a 

series of publications about selective chlorination and oxidation of steroid derivatives 

but not for fluorination. 

We were, therefore, interested in exploring new methodology for selective 

fluorination of steroids using tethers. Consequently, before the current work is 

discussed, literature concerning the fluorination of steroid derivatives and 

geometrically directed remote functionalisations using tethered reagents will be 

reviewed in the following sections. 
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2.2 FIW!orinatioun of steroids 

The sometimes considerable enhancement of biological activity of steroids by 

introducing a single fluorine atom was first reported by Fried and Sabo in 1954.8 They 

compared glucocorticoid activities of 9a.-halogeno derivatives of hydrocortisone 

acetate (Figure 2.2, 53a, X= H) and established that the order of increasing potency 

was X= I (0.1) < Br (0.28) < Cl (4) < F (11) (values relative to H = 1).8
'
121 This early 

finding prompted not only syntheses of a lot of fluorinated steroids but also 

developments of innumerable bioactive compounds including fluorine atoms. 

FIGURE2.2 

OAc 
53a:X:;;:H 

53b: X= F 

53c: X= Cl 
53d: X= Br 
53e: X= I 

2.2.1. Fluorination of steroids using electrophilic fluorinating agents 

2.2.1.1 Fluorination at W!llladivated C-H position 

As described in section 1.2.2.3, direct fluorination of saturated hydrocarbons gave 

predominant displacement at tertiary positions. Steroids are fitting substrates for this 

method because the steroid skeleton have generally four or five unactivated tertiary 

C-H sites, which have subtly different geometrical and electronic properties (Figure 

2.3). Rozen and co-workers made many important contributions to this area. 122
•
123 They 

showed that by using appropriate electron-withdrawing substituents in various 

positions, almost any tertiary hydrogen could be fluorinated relatively selectively. The 

most electron rich C-H site, which means the furthest site from electron withdrawing 

groups, was replaced as seen in the following examples. 

FIGURE2.3 

H 
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Direct fluorination of 3J3, 17J3-diacetoxy-5a-androatane @!) in the presence of 

anhydrous sodium fluoride and/or sodium trifluoroacetate as a hydrogen fluoride 

scavenger gave 3J3, 17J3-diacetoxy-9a-fluoro-5a-androstane (55) in 50% yield (Scheme 

2.1). 122 In this case, the result showed that only 9a-H, which was the remotest from the 

acetoxy groups, was replaced by fluorine. Reaction of 3J3-acetoxy-5a,6J3-

dichloropregnan-20-one ~ with elemental fluorine resulted in the deactivation at the 

9-position to give 14-a-fluoro product 57. The product was converted to 

3J3-acetoxy-14a-fluoropregn-5-en-20-one (H) without isolation. In the case of 

5a,6J3-dichloro-3J3-trifluoroacetoxycholestane ~' the 17-a-fluoro product 60 was 

obtained as the major product after reductive dechlorination, but 17a,25-difluoro 

product 61 was also obtained. 

§CHEME2.1 

CFCI3 I CHCI3 

-78°C 

10%F2 1N2 

CFCI3 I CHCI3 

-78°C 

OAc 

A cO 

50% yield 

A cO 
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SCIHEMIE 2.1 (Continued) 

60 

40% yield 

So/o F2/ N2 Zn, NH40Ac 
-----"""'"""i> 
CfCI3 I CHCI3 C2H50H, ll'efli!..!lt 

-70°C 

6"1 

20% yield 

5-Fluoro products are not common in the 3~-ol and Sa. series. 5a.-Fluoro product 

63b was obtained in the fluorination of 3a-acetoxy-5a.-androstan-17 -one (!ID together 

with 9a.-fluoro product 63a (Scheme 2.2). 123 This phenomenon was explained to be 

caused by deactivation of the 9-position to some extent. In the case of 5~-steroid §!, 

the fluorination resulted in a mixture of 5-fluoro and 14-fluoro product (65a and 65b) 

because the 9-position is blocked to some extent by ring A, which is perpendicular to 

the steroidal plane (Scheme 2.3). The only tertiary position that was never attacked was 

the ~-hydrogen at 8-position, which is effectively shielded by the two axial methyl 

groups at 10- and 13-position. 

SCHEME2.2 

AcO''. 

5% F2 / i\12, NaF 

CFCI3 I CHCI3 

-78°C 

63a (X = H, Y = IF) 40% yield 

63b (lt = f, V = H) 30% yield 
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§CHEME2.3 

AcO''. 
H 

Ill 

A cO 

5% F2 / N2, NaF 

CFCI3 I CHCI3 

-78 °C AcO''. 

65a (X;; F, Y;; H) 35% yield 

65b (X :: H, Y = F) 25% yield 

As described in the previous section, this method has a distinct disadvantage that 

undesired by-products often accompany the desired compound since it depends on the 

delicate control of the electron density of the C-H sites by the electronic character of 

the substituents present. Moreover, these reactions required the banned solvent (CFCh), 

very low reaction temperature and diluted conditions, and thus can not be practically 

performed now. 

2.2.1.2 Fluorination of alkenes 

The direct fluorination of steroidal alkenes was reported for the first time by 

Merritt in the mid-1960s. The reaction of cholest-4-en-3-one 66 with elemental 

fluorine gave cis-4,5-difluoro product 67 in 60-70% yield (Scheme 2.4). 124 
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SCHEME2.4 

67 (4,5-cis) 

60-70% yield 

In the reaction of elemental fluorine to double bonds .syn-addition is predominant in 

distinct contrast to chlorination and bromination, which prefer anti-addition via 

halonium ion intermediates. Rozen rationalised this stereoselectivity based on the 

formation of a tight ion pair as an intermediate. 125 This ion pair collapses before any 

rotation around the C-C bond takes place to give cis-adduct (Scheme 2. 5). 

SCHEME2.5 

[1-lsolwml 
On the other hand, Yamabe carried out ab initio MO calculations to determine the 

transition state structure. 126 The results suggested the addition of fluorine to ethylene 

occurred via a four-centred transition state resulting in the cis-adduct rather than three 

membered ring-halonium ion (Scheme 2.6). 

SCHEME2.6 

[ ~---~ ] ~ 
) F 

" 
Fluorination of alkenes usmg hypofluorites usually proceeded m a .syn-mode 
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suggesting a similar concerted mechanism as the case of elemental fluorine to give 

alkoxy fluorides or acetoxy fluorides. 3f3, 12f3-Diacetoxy-5a.,20a.,22a,-25D-spirost-

9(11 )-ene (§!) reacted cleanly with acetyl hypofluorite to give 3f3,9a, 12f3-triacetoxy

lla-fluoro-5a,20a,22a,-25D- spirostane (.§!) in 90% yield (Scheme 2. 7). 127 

SCHEME2.7 

A cO 

2.2.1.3 Fluorination of derivatives of carbonyl compounds 

Rg:QAc 

69 

90%yield 

a-Fluorination of carbonyl groups is the most useful method for reg~o- or 

stereoselective introduction of fluorine atom into secondary C-H sites of steroid 

derivatives. Various electrophilic fluorinating agents reacted with steroidal enol 

acetates/28
-

130 enol silyl ethers131 or enamines132 to give a-fluoro derivatives (Scheme 

2.8). 

SCHEME2.8 

A cO 

50% yield 

52 



SCHEME 2.8 (Continued) 

OAc OAc 

23% yield 

F 

90% yield (a. I p = ca. 94 : 6) 

TMSO 

77% yield (a. I p = 4: 1) 

benzene 

72% yield 

An alternative method for the introduction of fluorine atoms at the a.-position of 

carbonyl groups is fluorination of enolate anions generated by treatment with base. The 

reaction of the lithium enolate of 3f3-tetrahydropyranyloxy-androst-5-en-17-one (liD 

with perchloryl fluoride gave 16a.-fluoro product 71 in 56% yield (Scheme 2.9). 133 
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§ClHilEMlE 2.9 

i) LDA 

2) CI03f 

liHIIF I ~oill.!ene 
THPO 

i'~ 

56% yoeld 

6-Fluorosteroids, which are an entry to important anti-inflammatory agents, can be 

synthesised by y-fluorination of conjugated enol acetates. Fluorination of 3, 17(3-

diacetoxyandrost-3,5-diene (11) was carried out using several N-F reagents to give 

6-fluoro derivatives (Table 2.1 ). Fluorination of 12 with Selectfluor proceeded 

smoothly at room temperature to give a 2:3 mixture of6-fluoro products (1'3a. and 13b) 

in excellent yield. 101 N-Fluoropyridinium salts were also effective for this reaction. 

Using non-substituted N-fluoropyridinium triflate (W the reaction gave a 1:2 mixture 

of the desired 6-fluoro adducts in 72% yield. The use of the more sterically demanding 

N-fluoro-2,4,6-trimethylpyridinium triflate ~ resulted in the increase of 6f3 product 

13b.95 On the other hand, the fluorination of with N-fluoropyridinium pyridine 

heptafluorodiborate 31 in acetonitrile at elevated temperatures favored formation of the 

a.-isomer 13m. 134 The most f3-selective fluorination at the 6-position was achieved by 

N-fluoro benzensulfonimide (NFSI). 135 The reaction of 72 with NFSI gave a 1:19 ratio 

of73a. and 73b. 
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TABLE 2.1 

N-IF reagell'8~ 

0 
.0 

~ j{'f 
/'2 /'3a (lt = HI, V = f) 

/'3b (X :;: F I v = H) 

a./ fl ra~io 
N-IF rreagent solvell'11~ ~emp (°C) ~ome (h) yield (o/o) (/'3a /73b) 

Selectfh.!Oi" 1\ReCN 20 0.~5 95 2/3 

29 CHI2CI2 40 ~6 72 1/2 

30 Cl-li2Ci2 40 46 55 'i /8.5 

3/' iVleCN 40 48 96 ~I i 

3/' 1\ReCN 80 5 51 ~I 'i 

NfS~ THF 40 24 55--$0 ~I ~9 

2.2.2 lFluorinatimn of steroids using nudeophiBic filuorinall:nng agents 

Needless to say, hydrofluoric acid is the most fundamental source of fluoride ion. 

Fried and Sabo synthesised the first fluorinated steroid by the ring-opening reaction of 

21-acetoxy-9f3, 11 f3-epoxy-17 -hydroxypregn-4-en-3 ,20-one /'4 using anhydrous HF 

(Scheme 2.10). 8 

SCHEME 2.10 

OAc 

HF 

0 

53b 

50"/oyieid 

OAc 

Tetrabutylammonium dihydrogentrifluoride (BtLtWlhF3- = TBAF(HF)2) 1s an 
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efficient and easy-to-handle hydrofluorination agent for the ring-opening reaction of 

oxiranes. The reaction of 3f3-hydroxy-5a,6a-epoxycholestane 75 with TBAF(HF)2 

gave 3f3,5a-hydroxy-6f3-fluorocholestane 76 in 47% yield (Scheme 2.11 ). 136 

SCHEME 2.11 

TBAF(HFh 

120 °C 

76 

47%yield 

Diethylaminosulfur trifluoride (DAST) is one of the most applicable reagents for the 

transformation of hydroxy group into fluoride. 137 In many cases, the displacement of 

hydroxy groups by fluorine occurs with complete inversion of configuration, thus 

pointing to an SN2 reaction. However, the 5-en-3 f3-hydroxy series of steroids reacted 

with DAST with complete retention of the configuration to give 5-en-3f3-fluoro 

steroids in high yield (Scheme 2.12). 138 

SCHEME2.12 

R1 = C8H17, R2 = H 

R1 = Ac, R2 = H 

R1 = R2 = 0 

DAST 

F 

81-95% yield 

These results were explained that the reactions involved a stable carbocation 77 as 

intermediate, leading to the 3f3-fluoro derivatives (Scheme 2.13). 
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§CHEME 2.13 

DAST 
--=El> 

-
f _;....__,13> 

77 

Fluoride ion displacement reaction of sulfonate derivatives is also an effective 

method for the nucleophilic introduction of fluorine. The reaction of 3,16a 

-bis{[(trifluoromethyl)sulfonyl]oxy }estra-1,3,5(10)-trien-17-one 78 with TBAF 

proceeded at room temperature to give 16J3-fluoro-3-{[(trifluoromethyl)sulfonyl] 

oxy}estra-1,3,5(10)-trien-17-one 79 in 82% yield (Scheme 2.14). 139 

§CHEME 2.14 

•IIOTf TBAF 

THF,rt 
TfO 

79 

82% yield 

2.3 Remote functionalisations directed by tethered reagents 

As mentioned above, the main contributor to this field is Breslow and 

co-workers. 140 The first example of this kind of reaction was photolysis of long alkyl 

esters of benzophenone-4-carboxylic acid (Scheme 2.15). 141 Photolysis of n-tetradecyl 

ester was carried out and the resulting carbinols were derived to ketones by subsequent 

dehydration and oxidation. Half of the product mixture was a compound with a keto 

group inserted at C-12 position although the functionalisations occurred over carbons 8 

to 13. Even with longer alkyl chains, significant insertions of a keto group at the same 
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position were observed. Obviously, the flexibility of the alkyl chains reduced the 

selectivity. 

SCHEME2.15 

H2 
(CH2)m=-C-(CH2)nCH3 

0 

0 

0 

0 

hv 

H 
(CH2)m-~C-(CH2)nCH3 • 

OH 

0 

0 
II 

(CH2)m--c~(CH2)nCH3 

0 

0 

0 

Steroids are rigid substrates and their selective functionalisations are practically 

interesting. Breslow applied the photochemical remote functionalisation using a 

benzophenone group to steroid systems. Photolysis of 3a-cholestanyl 

(p-benzoylphenyl)acetate (§Q) gave a single alkenic product 82 (Scheme 2.16). 142 An 

isotopic labeling study implied that the oxygen atom of benzophenone excited triplet 

state removed the hydrogen at C-14 position to give a diradical §1, and the hydrogen at 

C-15 was transferred to the diphenylmethyl radical. 143 The selectivity was induced by 

the geometry of the system, specifically the match of the C-3 oxygen to C-14 hydrogen 

distance in the steroid skeleton with the carboxyl to ketone distance in the attached 

reagent. In another study, it was found that the benzophenone group need not be 

directly attached to the substrates. 144 A hydrogen-bonded complex between 

hemisuccinate of 3a,5a-androstanol and benzophenone-4-carboxylic acid was 

irradiated to give 16-keto-3a,5a-androstanol selectively. 
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§CJHIEMIE 2.16 

hv 

A lbend!ene 
O''' 0 

o~c-Q 

:::,.... 

14 15 

o''' 
A F\o~ 
o·~¢~ 

1=1 
82 

55% yield 

Alkenes can be converted to epoxides by alkyl peroxide in the presence of catalytic 

metal compounds of molybdenum, tungsten, and so on. If the substrate olefins have an 

allylic hydroxy group, they are particularly reactive since the metal forms a complex 

not only with the peroxide but also with the hydroxy group, and delivers an oxygen 

atom to the double bond. Breslow reasoned that it might be possible to achieve remote 

epoxidation of alkenes if the substrate was attached with a tether of appropriate length, 

with a hydroxy group to bind the metal catalyst. This was proved by the regio- and 

stereoselective epoxidation of a steroidal ester carbinol 85 shown in scheme 2.17. 145 

Epoxidation of an alkenic steroid 83 with !-butyl hydroperoxide in the presence of 

catalytic amounts of Mo(C0)6 gave allylic epoxidation in 61% conversion and 100% 

yield. In contrast, treatment of the ester carbinol 85 in the same conditions led to 

remote epoxidation to give 86. A similar substrate !l, which was attached with a meta 

isomer of the tether in 85 gave no reaction. 
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SCHEME 2.17 

HO''' 

! 
O''' n 

A._. _F\ 10H 
0~ 

cat. Mo(C0)6 

t..C4H900H 

benzene, reflux 

cat. Mo(C0)6 

t..C4H900H 

benzene, reflux 

cat. Mo(C0)6 

t-C4H900H 

benzene, reflux 

HO''' 

84 

61% conv. 

100% yield 

O''' n 
~_;OH 
0~ 

86 

25% conv. 

100% yield 

no reaction 

Photolysis of the compounds bearing benzophenone were not attractive for large 

scale synthetic work. 

On the other hand, free radical chlorination is a highly practical process, commonly 

run on an enormous industrial scale. Besides, chlorine atoms can react with unactivated 

C-H bonds. Breslow directed his attention to the fact that phenyliodine dichloride can 

also be used in chlorinations by a free-radical chain mechanism (Scheme 2.18). 146
'
147 
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SCHEME2.18 

C6H61CI· + RCI 

CsH61CI • + RH C6H61 + HCI + R • 

There was another feature of this reaction which was attractive. It was known that 

PhiCl· attack on tertiary C-H sites occurs quite selectively (which is similar to direct 

fluorination). Generally, there is only one tertiary carbon along any arc generated by 

pivoting around the C-3 oxygen in 3a-hydroxy-steroid derivatives. Thus, steroid 

derivatives with a tethered chlorinating agent attached were prepared and 

geometrically directed remote chlorinations were investigated using them (Scheme 
2.19).148,149 

SCHEME2.19 

hv 

benzene 
o''' 
0~1 v 

KOH 

o''. 
0~1 v 

90 43% 

A14 isomer : 9% 

A5 isomer : 2% 

3a-Cholestanyl m-iodobenzoate (!ID was converted to iododichloride 89 by treatment 

with C}z, and then irradiated. After hydrolysis and acetylation, L\9(
11)-cholestenyl 

3a-acetate (W was obtained in 43% yield, although L\14
- and L\5 isomers were also 

61 



obtained in 9% and 2% yields, respectively. This geometrically controlled reaction 

enabled change of the selectivity by using another tether with a different length 

(Scheme 2.20). 148 Irradiation of a steroid tethered chlorinating agent 93 derived from 

3a.- cholestanyl (p-iodophenyl)acetate (W gave predominantly 14-chloro compound 

94. 

SCHEME 2.20 

KOH 

o''' 
O~ICI2 

93 

=~=-II;> I> 

l\lleOH 

53% 

A9(11) isomer: 5% 

&5 isomer :0.8% 

hv 

It was found that the tethered chlorinating reagents such as 93 did not have to be 

prepared. The reaction of 3a.-cholestanyl m-iodobenzoate (§ID with phenyliodine 

dichloride was carried out under free radical conditions to give exclusively the 9-Cl 

derivative 90 (Scheme 2.21 ). 149
'
150 The reaction process is called a radical-relay 

mechanism, that is, the :free phenyliodine dichloride is converted on photolysis to the 

PhiCl· radical, and this chlorine atom donor transfers the chlorine to the tethered 

m-iodophenyl group of 88 to generate the key intermediate 96 directly. The chlorine 

atom is delivered to the most geometrically accessible 9-position hydrogen of the 

substrate. The resulting radical 97 is chlorinated by an external reagent to give the 

product 90. It was very intriguing that the two-step sequence - intermolecular chlorine 

atom transfer, then intramolecular hydrogen abstraction - was faster than an 
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intermolecular hydrogen abstraction by the free radical in solution. 

SCHEME2.21 

o''' 
o~' u 

o''' 
o~' u 

+ PhiCI• 

C6H51CI2, hv 

CH2CI2 

... 
o''' 

O''' 

o~' u 

o~' u 
+HCI 

KOH 

o''' 
0~ 

91 

66% 

A selective formation of C-17 chlorinated system 99, which enabled the removal of 

the hydrocarbon side chain in cholesterol derivatives, was achieved by using a longer 

tether (Scheme 2.22). 149
'
151 Photolysis of 3a-cholestanyl 4' -iodo-3-biphenyl 

carboxylate (liD with phenyliodine dichloride in carbon tetrachloride gave 

~16-3a-cholestenyl acetate (100) in 41% yield after derivatization. The distance from 

C-3 oxygen to the hydrogen at C-17 was calculated to be 8.5 A, which was well 

matched up with that of the oxygen-chlorine in the intermediate radical that was 

63 



assumed 8.7 A. The product 100 could be converted to androsterone acetate (101) by 

isomerization and ozonolysis. 

SCHEME2.22 

0''' 

0~ 
100 

41% 

0''' 

0~ 

Wiedenfeld demonstrated that when the photolysis of steroids bearing an 

iodophenyl group was conducted in the presence of an excess amount of CBr4 or 

(SCN)2 the products were regioselectively brominated or thiocyanated steroid 

derivatives respectively. 152 

Further work by Breslow described pyridine-based tethers that were superior to 

those based on aryl iodides. 153 Irradiation of 3a-cholestanyl nicotinate (102) with 

phenyliodine dichloride gave quantitatively 9-chloro derivative (103), contaminated by 

small amounts of the 14-chloro compound. After derivatization steps, 

~9< 11>-3a-cholestenol (104) was obtained in 92% yield accompanied by 3% of ~ 14-

isomer (Scheme 2.23). In this system, a photochemically generated chlorine radical is 

captured by the pyridine ring, and delivered to the most geometrically accessible 

9-position hydrogen of the steroid. After the abstraction of hydrogen, the resulting 

radical is chlorinated by external reagent to give 9-chlorinated steroids. 
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SCHEME2.l3 

o''. 

O~N u 

o''' 
O~N u 

KOH 

HCI 

C6H51C12, hv 

CH2CI2 

104 

92% 

A14 isomer : 3% 

o''' 
O~N .. cl• u 

o''' 
O~N u 

2.4 Remote fluorination of steroids directed by tethered N-F reagents 

2.4.1 Introduction 

As described in the last section, tethers bearing an appropriate functional group 

could direct particular reactions toward a geometrically favourable product. When this 

strategy is applied to electrophilic fluorinations, it is quite likely that 

nitrogen-containing functional groups would give great possibilities because N-F 

reagents can be relatively easily prepared and react even with unactivated C-H sites. 

Thus, we have investigated the geometrically directed remote fluorination of steroid 

derivatives using tethered N-F reagents. The concept is illustrated in Scheme 2.24. 
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§CHJEMJE 2.24 Geometrically directed remote fluorination of steroids with tethered N-F 
reagents 

~ v 

R 

~N CN, V, 

R 

·Tethered· 

N-F fluorinating agents 

etc. 

Intramolecular 
Fluorination 

R 

Fluorination of steroid derivatives bearing tethers containing a nitrogen atom with 

elemental fluorine proceeds to give 'tethered N-F reagents' in situ. In the second step, 

'intramolecular fluorination' occurs to give regio-and stereoselectively fluorinated 

steroid systems because, potentially, the fluorine atom introduced on the nitrogen can 

fluorinate only the most geometrically accessible C-H bond. 

2.4.2 Model study 

2.41.2.1 Introduction 

In our concept, we need tethered N-F reagents, which have enough fluorinating 

power to convert saturated C-H bonds into C-F bonds. Fluorination of saturated C-H 

sites using several electrophilic N-F reagents have already been demonstrated, 154 but 

the investigation was not sufficient for our project. Firstly, we studied the fluorinating 

power of various model compounds for the fluorination of saturated hydrocarbons, 

which could be developed to tethered reagents for selective remote fluorination. 

2.4.2.2 Preparation of model compounds 

In this section, we discuss the syntheses of various precursors of N-F reagents for 

the study of the fluorinating ability. The model compounds should possess minimised 

structures for the tethered reagents attached to steroids and thus, be composed of three 

parts, namely a nitrogen-containing functional group, a linking group and a simple 

alkyl group which imitates steroid skeleton (Figure 2.4). 
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FIGURE 2.4 Structure of model compound 

nitrogen-containing 
functional group 

2.4.2.2.1 Pyridine derivatives 

linking 
group R 

Pyridine derivatives are one of the strongest candidates for this strategy because 

N-fluoropyridinium salts are well-established N-F reagents and their fluorinating 

power can be controlled by introducing appropriate substituents onto the pyridine ring. 

Methyl nicotinate (106) Methyl nicotinate (106) was prepared from 

nicotinoyl chloride hydrochloride (105) and methanol in good yield (Scheme 2.25). 

SCHEME2.25 

0 file I 
N+ -
H Cl 

105 

pyridine 

CH30H 
rt, 2.5 h 

0 filocH, 
N 

106 

90% yield 

Methyl 2,6-dichloronicotinate (108) Compound 108 could be prepared 

from 2,6-dichloronicotinic acid (107) (Scheme 2.26). 155 Although the starting material 

obtained commercially was contaminated by 1 0% of another isomer, the ester 108 

could be isolated by recrystallization from hexane/diethyl ether (2:1). 
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SCHEME2.26 

SOCI2 ~COCI CH30H t> ~COOCHI3 

CI.)LI\l~CI Di, ~ lh CI.)LI\l~CI 50 °C, 3 to 

108 

2 s~eiPS 10% yield! 

2.4.2.2.2 QuilmcRidine derivatives 

Quinuclidine derivatives are precursors of saturated-type quaternary N-F salts.97 

3-Quinuclidinol is commercially available and its hydroxy group is usable for 

connection to a steroid skeleton. 

3-Acetyloxyquinuclidine (110) 3-Acetyloxyquinuclidine (110) was 

prepared from 3-quinuclidinol (109) and acetic anhydride under reflux. 156 Since the 

desired compound was found to be unstable to silica gel from a TLC analysis, the pure 

compound was obtained by a combination of distillation and column chromatography 

on neutral aluminium oxide. Column chromatography on the neutral aluminium oxide 

using hexane and ethanol was carried out after Kuhgelrohr distillation to give 

3-acetyloxyquinuclidine (110) as a colourless oil (62% yield) (Scheme 2.27). 

SCHEME2.27 

rSJ'OH 
1\! 

109 

reflux, o4!. h 

rSJ'OAc 
N 

110 

62% yield 

2.41.2.2.3 1,4-diazabicydo[2.2.2]octane (JD)ABCO) derivatives 

1,4-Diazabicyclo[2.2.2]octane (DABCO, 111) is the precursor of Selectfluor-type 

N-F reagents. The Selectfluor reagent is one of the strongest N-F reagents, and its 

power is variable by changing the electronegativity of the quartemizing group on the 

second nitrogen. 

1 ~(2-CIInloroetlhlyl)-~-a.za-1-azoniabicycDo [2.2.2]octane tetraltluoroborall:e 

(112) This compound was prepared by a similar manner to the synthesis of the 

precursor of Selectfluor. 101 DABCO (111) was reacted with 1,2-dichloroethane in the 
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presence of sodium tetrafluoroborate in acetonitrile (Scheme 2.28) and the reaction 

proceeded slowly to give a brown oil. The crude mixture contained some oligomers 

and starting material and the amounts of oligomers seemed to be increased by heating. 

It was difficult to crystallise the product from any solvents using the oily crude mixture. 

The crude mixture was purified finally by removing the impurities as a precipitate. 

Filtration was repeated after precipitation of the impurities :from acetone and 

dichloromethane to give desired monoquartemary salt. The resulting brown oil still 

contained oligomers to some extent, but the purity was adequate to carry out the model 

study. 

SCHEME2.28 

(~) 
N 

111 

NaBF4 (1.0 eq.) 

CH2CICH2CI (1.0 eq.) 

CH3CN, rt--40 °C 

1-(2-Metboxyetbyl)-4-aza-11. -azonial!Jicyclo[2.2.2]octane tetrafluoroborate 

(113) This compound was prepared by the reaction of DABCO {jjj) with 

2-chloroethyl methyl ether in a similar method as compound 'i12 (Scheme 2.29). The 

reaction gave the desired monoquartemary salt without forming oligomers under even 

reflux conditions. 

SCHEME2.29 

NaBF4 (1.0 eq.) 

111 1.0eq. 

CocH3 
N+ 

('f) BF4-
N 

113 

88%yield 

1-(Ethoxycarbonylmethyl)-4-aza-1-azoniabicyclo [2.2.2] octane 

tetrafluoroborate (114) This compound was also prepared by a similar manner to 

other precursors 112 and 113. DABCO (111) was reacted with ethyl bromoacetate in 

the presence of sodium tetrafluoroborate in acetonitrile (Scheme 2.30). The exothermic 
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reaction proceeded instantly to give 1-( ethoxycarbonylmethy 1)-4-aza-1-azoniabicyclo 

[2.2.2]octane bromide and followed by anion-exchange reaction using sodium 

tetrafluoroborate. The desired product 112 was obtained as white crystals. In the 1H 

NMR spectrum in D20, two kinds of resonances corresponding to 3 methylene groups 

next to nitrogen were observed as triplets at 3.13 and 3.55 ppm. These chemical shifts 

were similar to those of the corresponding resonances of Selectfluor precursor, namely 

1-chloromethyl-4-aza-1-azoniabicyclo[2.2.2]octane tetrafluoroborate (3 .29 and 3. 50 

ppm). 157 The resonance derived from another methylene group at the ex. position to the 

carbonyl group was found at 4.11 ppm as a singlet. 

SCHEME2.30 

(~) 
N 

NaBF4 (1.0 eq.) 

111 

67% yield 

2.4.2.3 Evaluation of the fluorinating ability of' model compounds 

The fluorinating abilities of the N-F compounds derived from prepared model 

compounds were estimated using cis-decalin (115). Fluorinations of the model 

compounds with elemental fluorine were carried out in acetonitrile in the presence of 

equimolecular amounts ofNaBF4 at around -10 oc (Scheme 2.31). The amount ofthe 

N-F species formed was calculated by comparing the integration for the N-F resonance 

with the counter anion's resonance (BF4) by 19F NMR. The reaction mixture was 

added to cis-decalin (115) and refluxed for 1 to 19 hours. After work-up in the usual 

procedure, the crude products were analyzed by NMR, GC and GC-MS. 
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§CHEMJE 2.3ll 

~0% IF2 / N2 (3 sq.} 

NaiBIF 4 (1 eq.) [ + er:.;- l R3N 
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IR3N-f 

~.Osq. -~0 °C 

IHI 

Q) 
115 F 

H co + 
+ R3*'H Bfi 

refhJJ)( 41-19 h 

2.4.2.3.1 IP'yridine derivatives 

MetlllyD nicotinate (106) Direct fluorination of methyl nicotinate (106) 

gave the corresponding N-F compound in 74% conversion. The N-F resonance was 

observed at +50.2 ppm in I9p NMR and the relative intensity was 0.74 (BF4- = 4). 

After refluxing with cis-decalin (1'i15) for 1 hour, disappearance of the N-F resonance 

was observed. The product contained methyl 2-fluoronicotinate (141Sa) and methyl 

6-fluoronicotinate (1416b) (6:1) and unchanged cis-decalin (1415) (Scheme 2.32). 

§CJHIEME 2.32 
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4116b 

1416a /14161b = 6: 41 (19F NMR) 
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The fonnation of 2-fluoropyridines by direct fluorination of pyridine derivatives 

was reported by Puy. 158 He described that the fluorination of methyl nicotinate (106) 

with elemental fluorine in tetrachloromethane at 0 oc gave methyl 2-fluoronicotinate 

(116a) and methyl 6-fluoronicotinate (116b) in 16% and 20% yield respectively. The 

spectral data of both isomers were consistent with those which were observed in our 

product. The proposed mechanism suggested that decomposition of the 

N-fluoropyridinium fluoride, which was thought to be an intermediate, involving 

attacking of fluoride ion on the 2- or 6-position followed by loss of HF, led to the 

resulting products. In our case, the 2-position was preferentially fluorinated, which is 

more sterically hindered, but more electrophilic than the 6-position due to the presence 

of the electron withdrawing ester group at the neighbouring position (Scheme 2.33). 

SCHEME2.33 
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Methyl 2,6-dichloronicotinate (108) The fluorination of methyl 2,6-

dichloronicotinate {108) was carried out in acetonitrile in the presence ofNaBF4 at -10 

oc and -40 °C. In both cases, the reaction mixture included N-F species accompanied 

by a considerable amount of complicated fluorinated compounds. The N-F resonance 

was found at +33.4ppm in l9p NMR. This value was close to that of 

N-fluoro-2,6-dichloropyridinium salt ( + 31. 7ppm). 159 The crude mixture of the reaction 

with cis-decalin (115) was found to contain unreacted cis-decalin (115) and a complex 

mixture ofmultisubstituted pyridines (Scheme 2.34). 
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SCHEME 2.34 
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As mentioned in the preceding chapter (see section 1.2.5.2.1), fluorinating abilities 

and syntheses of N-fluoropyridinium salts were widely investigated by Umemoto and 

co-workers.95
•
160 They reported syntheses of various N-fluoropyridinium salts using 

several different procedures (Scheme 2.35). 
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SCJBIJEMJE 2.35 (Continued) 
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Method D 

R 
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>C f 

Method A is a two-step procedure via unstable N-fluoropyridinium fluoride. Method B 

is a one-step procedure using corresponding metal salts that have a counter anion of the 

desired N-fluoropyridinium salts. This procedure inevitably provided corresponding 

metal fluoride as a by-product. Method C was applied to highly substituted pyridines 

having electron withdrawing group substituents. In this Method, the starting materials 

were reacted with the corresponding protonic acids or silyl ester firstly to give 

pyridinium hydrogen salts or N-silylpridinium salts, and then fluorinated. Method D 

was fluorination of pyridine-Lewis acid complexes. In the case of N-fluoro-2,6-

dichloropyridinium salt n, Method C was reported to be superior to Method B 

(Scheme 2.36). 160 The main reason for these results was supposed to be the low 

reactivity of the nitrogen atom of the electron-deficient pyridine ring. 
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SCHEME2.36 
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Therefore, we applied method C to the synthesis of N-F species derived from 1 08 

(Scheme 2.37). The dichloronicotinate 108 was treated with triflic acid in acetonitrile 

at -10 ac for 30 minutes. The resulting mixture was fluorinated by 3 equivalents of 

elemental fluorine to give N-F species without the formation of by-products. However, 

the N-F species did not show enough ability to fluorinate saturated C-H sites of 

cis-decalin (115). 
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These results indicated the fluorinating power of N-fluoropyridinium salts was not 

sufficient to fluorinate saturated C-H bonds, and pyridine derivatives were not suited to 

be the template for remote electrophilic fluorination. 

2A.2.3.2 Qunnnnondnallfinne denivmtnve§ 

3-A.ce~lloxcy(j!unnnnundnallnfille (i~ID} The reaction of 3-acetoxyquinuclidine 

(108} with elemental fluorine in the presence of NaBF4 gave the corresponding N-F 

species quantitatively. The N-F resonance appeared at +54.3 ppm. and was comparable 

with N-fluoroquinuclidinium salts reported by Banks (+51.2 ppm). 161 Unfortunately, 

the fluorinating power was not sufficient to convert saturated C-H bonds into C-F 

bonds (Scheme 2.38). 

§CHEMIE 2.38 
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Generally, the N-fluoroquinuclidinium salts are known as less reactive fluorinating 

agents than Selectfluor-type reagents. 162 For example, Banks reported that a 'transfer 

fluorination' of quinuclidine with Selectfluor proceeded exothermically to completion 

within 10 minutes at room temperature to give N-fluoroquinuclidinium 

tetrafluoroborate (Scheme 2.39). 
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SCHEME2.39 
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The N-F compound, N-fluoro-3-acetoxyquinuclidinium tetrafluoroborate (1f7) 

could be isolated as white crystals from the crude mixture of the evaluation study. The 

X-ray structure of this compound was determined (Figure 2.5). The N-F bond length of 

1.413 A is similar to that of the N-fluoroquinuclidinium triflate (1i8) (1.407 A). 163 

JF1IG11JRJE 2.5 X-ray structure of N-fluoro-3-acetoxyquinuclidinium tetrafluoroborate (~17) 

X-ray structures ofN-F compounds are few in number. Figure 2.6 shows the X-ray 

structures of reported N-F fluorinating agents and their N-F bond lengths. 
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FIGURE 2.6 N-F fluorinating agents and their N-F bond lengths 
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Compounds 117 to 120 are N-fluoroquinuclidinium salt type fluorinating agents, and in 

particular 11S and no were derived from cinchona alkaloids as chiral fluorinating 
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agents. 163
-

165 Compounds 121 to 123 and 20 were also developed recently as 

enantioselective fluorinating agents which are all N-fluorosultam type. 16
6-

169 

Compound 124 is the 2,6-dimethyl analogue of the perfluoro N-fluoropiperidine 

derivatives reported by Banks. 170 Except for compound 118 and unsaturated N-F 

compounds 29 and 50a, the N-F bonds have very similar lengths among the same type 

of compounds (compounds 117 to "1119 and compounds 121 to 123 and w. The N-F 

bond length of the compound 124 is comparable to N-fluorosultam type. On the other 

hands, Selectfluor has a significantly shorter N-F bond length (1.37 A)157 than those of 

other electrophilic fluorinating agents (117 to 124), although it is longer than that found 

in compound 51 (1.265--1.321 A) in which four fluorine atoms are connected with the 

same nitrogen. 171 Recently Banks reported the first examples of crystal structures of 

unsaturated N-F compounds. Both the well known pyridinium salt 29 and novel 

triazinium salt 50a possess shorter N-F bond lengths (1.357 and 1.354 A) than 

saturated derivatives. 115 So far, the relation between the N-F bond length and the 

fluorinating ability is not clear. Determination of X-ray structures of various other N-F 

compounds are needed to establish if any relationship between bond length and 

fluorinating ability is present. 

2.4.2.3.3 1,4-Diazabicyclo[2.2.2]octane (DABCO) derivatives 

1-(2-ChloroethyB)-4-aza-1-azoniabicyclo[2.2.2] octane tetrafiuoroborate 

(112) 

Fluorination of compound 112 gave the corresponding N-F compound, which was 

a homologue of Selectfluor, quantitatively (Scheme 2.40). The N-F resonance was 

observed at +4 7. 8 ppm by •9p NMR, and this value was similar to that of Selectfluor 

(+47.5 ppm)!57 The reaction mixture was added to cis-decalin (115) and refluxed for 4 

hours. The fluorination of cis-decalin (115) proceeded in 35% conversion and 

monofluorinated products were selectively obtained. Interestingly the monofluorinated 

products included cis-9-fluorodecalin ( 126, 15% ), which could not be obtained in the 

case of using Selectfluor itself. 24
•
154 
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SCHEME2.40 
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-100% conv. 

+47.8 ppm (19F NMR) 

126 

85 : 15 e9F NMR) 

1-(2-Methoxyetbyl)-4-aza-1-azoniabicyclo [2.2.2]octane tetrafluoroborate 

(113) Treatment of compound 113 with elemental fluorine gave the corresponding 

N-F compound quantitatively, and it showed a similar N-F resonance to the case of 

compound 112 (Scheme 2.41). The reaction with cis-decalin (115) was carried out for 

14 hours, and the crude product included mono- and difluorinated adducts 125 and 

some amidated products. These results were consistent with the fact that fluorinated 

saturated hydrocarbons were converted into amidated compounds by prolonged reflux 

in acetonitrile. 25
'
154 

SCHEME2.41 
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1-(Ethoxycarbonylmethyl)-4-aza-1 -azoniabicycDo [2.2.2]octane 

tetratluoroborate (114) Fluorination of compound 114 gave the N-F derivative in 

57% conversion (Scheme 2.42). The N-F resonance was observed at +49.90 ppm in 19p 

NMR.. The fluorination of cis-decalin (115) proceeded in 53% conversion and the 

products were monofluorinated decalins 125 and small amounts of difluorinated 

products 127. 
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It is not straightforward to understand the fluorinating abilities between reported 

N-F reagents. The results of the fluorination of anisole reported by other workers using 

'Selectfluor type' reagents and N-fluoropyridinium salts are shown in Table 2.2.95
•
101 
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1' ABLE 2.2 Comparison of fluorinating ability between 'Selectfluor type' reagents and 
N-fluoropyridinium salts 

OCH3 

o~ ¢H' 6 fluorina~ing agen~ 

.6 

F 
1 : 1 

entry fluorinating agent solvent temp. (0 C) time (h) conv. (%) 

r::CF3 
N+ 

1 (~) 20Tf- CH3CN 40 5 72 
i}l+ 
F 

Me 
•+ 

2 (~) -
CH3CN 13 ca. 70 20Tf 40 

i}l+ 
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r:CI 

(~) -
3 20Tf CH3CN 40 6 ca. 70 

~ 
F 
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4 n 
Cl f:J: Cl 

CH2CI2 40 7 71 

F OTf 
33 

Cl ClnCI 
5 I /. CH2CI2 0.25 91 

Cl ~+ Cl 
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From these results, the fluorinating ability towards aromatic compounds of 

N-fluoro-2,6-dichloro pyridinium triflate was nearly equal to that of Selectfluor. 

Nevertheless, we found that the fluorinating ability towards saturated hydrocarbons of 

those two agents was quite different because in the case of using N-fluoropyridinium 

salts intramolecular fluorination proceeded preferentially rather than fluorination of 

saturated C-H sites of cis-decalin (115). The series of results of the model study 

indicated that 1,4-diazabicyclo[2.2.2]octane (DABCO) moiety was the only suitable 

functional group of tethered reagents for remote fluorination of saturated C-H bonds. 

2.4.3 1Preparatnon of the steroid derivatives bearing IDABCO moiety 

2.4.3.11. fultroduction 

Because of the outcome of the model study, preparation of steroid derivatives 

tethered to a 1,4-diazabicyclo[2.2.2]octane (DABCO) moiety were required. Scheme 

2.43 illustrates the synthetic plan for the preparation of steroid derivatives bearing a 

DABCO moiety. 

SCHEME 2.4!3 
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Two synthetic routes for the preparation of steroid derivatives carrying a DABCO 

moiety were planned and investigated. In compound B, however, the connection is by 

an ester linkage. These types of compounds were thought to be more easily prepared 

using acid halides and the side-chains could potentially be cleaved after fluorination. 
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2 • .:3.3.2 Synthes!s of steroids conllllede«ll to tllne DABCO moiety by an ester 

llfti!Dikage 

3(3-[( .:3-Aza-1 -a.zoi!Dnabicydo[2.2.2]oct-:B. -yll)-aceto:Jcy]-5a.-aurulhrostai!D-1 /-one 

tetratlunorobGrate (lli) 3(3-[( 4-Aza-l-azoniabicyclo[2.2.2]oct-l-yl)-acetoxy ]-5a

androstan-17-one tetrafluoroborate [131, compound B in scheme 2.43 (n = 1)] was 

synthesised by N-alkylation ofDABCO with 3f3-(bromoacetoxy)-5a.-androstan-17-one 

(~29), which was prepared from epiandrosterone (i28) and bromoacetyl bromide 

(Scheme 2.44). The esterification of epiandrosterone (~28) with bromoacetyl bromide 

was carried out in dichloromethane in the presence of pyridine and catalytic amounts 

of 4-dimethylaminopyridine at ambient temperature for 16 hours. The desired product 

was obtained as white crystals from hexane and ethyl acetate after column 

chromatography. Although the crystalline product seemingly had a narrow melting 

point (143-144 °C), it nevertheless contained 18% of chlorinated compound (130). 

This ratio was calculated by the integration of the areas of resonances of methylene 

protons connected to bromine and chlorine atoms in 1H NMR (4.00 and 3.78 ppm, 

respectively). The source of the chlorine atom in the compound 130 was assumed to be 

the solvent or impurity of the starting material, but the mechanism of the formation is 

still unclear. The presence of the strong base (DMAP) in chlorinated solvent 

conceivably caused formation of chloride ion in situ. Using the mixture of compound 

129 and 130, the following N-alkylation was carried out stepwise. In the first step, the 

N-alkylation reaction was carried out with DABCO in dichloromethane taking into 

account the solubility of the substrates. The resulting bromide was converted to desired 

product by anion exchange using sodium tetrafluoroborate in acetonitrile. Compound 

131 was obtained as a white solid from the acetonitrile solution after removal of 

sodium bromide by filtration. Recrystallization from acetone and water gave white, 

fine crystals. The structure was confirmed by several analytical methods (NMR, IR, 

and mass spectrum). The three resonances derived from three kinds of methylene 

groups next to nitrogen were observed at 3.21, 3.65, and 4.09 ppm in the 1H NMR 

spectrum in CDCh (relative intensities 3:3: 1) which were similar to those of the 

corresponding resonances of 1-( ethoxycarbonylmethyl)-4-aza-1-azoniabicyclo[2.2.2] 

octane tetrafluoroborate (~14) (3.13 3.55, and 4.11 ppm in D20, respectively). Gradual 

decomposition of the crystals was observed above 200 °C. The crystals melted at 

around 256--258 oc with colour change when rapidly heated. 
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SCHEME2.44 
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Jfi-[4-( 4-Aza-1-azoniabicyclo[2.2.2]oct-1-yD)-butyryloxy ]-5a.-androstan-1 

7-one tetrafluoroborate (133) 3J3-[(4-Aza-1-azoniabicyclo[2.2.2]oct-1-yl)-butyryl 

oxy]-Sa.-androstan-17-one tetrafluoroborate [133, compound Bin scheme 2.43 (n = 

3)] was synthesised by a similar procedure to compound 131. The esterification of 

epiandrosterone (128) with 4-bromobutyryl chloride gave 3f3-(4-bromobutyryloxy)-

5a-androstan-17-one (132) in 84% yield (Scheme 2.45). This compound contained 

13% of the corresponding chloride in analogy with compound 129. 
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SCHEME2.45 
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N-Alkylation of DABCO with compound 132 proceeded to give a precursor of 

'tethered N-F reagent' 133 (Scheme 2.46). The corresponding chloride reacted with 

DABCO very slowly, and was removed during the purification. Compound 133 was 

recrystallised from ethanol to give white crystals and the 1H NMR spectrum was 

similar to compound 131. 

SCHEME2.46 

NaBF4 

133 

34%yield 

3~-[ 5-( 4-Aza-1-azoniabicyclo[2.2.2] oct-1 -yl)ovaleryloxy ]-Sa.-androstan-17-

one tetrafluoroborate (135) 3 ~-[5-( 4-Aza-l-azoniabicyclo[2.2.2]oct-1-yl)-valeryl 

oxy]-Sa-androstan-17-one tetrafluoroborate [135, compound 8 in scheme 2.43 (n = 4)] 

was synthesised by the same procedure to 133 (Scheme 2.47). 
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§CHEME2.47 
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N-Alkylation of DABCO with compound 134 was carried out to give the desired 

product 135, which has a 4 methylene group spacer between the carbonyl group and 

DABCO moiety (Scheme 2.48). Recrystallization of compound 135 from ethanol gave 

white crystals. 

§CHEME2.48 
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3~-[ 6-( 4-Aza-1-azoniabicyclo[2.2.2]oct-1-yl)-hexanoyloxy]-5a-androstan-1 

7-one tetrafluoroborate (137) 3 ~-[6-( 4-Aza-1-azoniabicyclo[2.2.2]oct-1-yl)

hexanoyloxy ]-Sa-androstan-17 -one tetrafluoroborate [ 137, compound B in scheme 

2.43 (n = 5)] was synthesised by a similar procedure to compound 133. 

Epiandrosterone (128) was reacted with 6-bromohexanoyloxy chloride in the presence 

of pyridine to give 3~- (6-bromohexanoyloxy)-Sa-androstan-17-one (136) in 65% 

(Scheme 2.49). The crystals had a lower melting point (51-54 °C) than compound 

134, which is probably due to the greater flexibility of the longer alkyl side chain. 
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§CHEMlE2A9 
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N-Alkylation of DABCO with compound 136 was carried out in diethyl ether and 

followed by treatment with sodium tetrafluoroborate to give compound 137 in 81% 

yield (Scheme 2.50). 

§OffiMJE2.50 
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2.4.4 Remote fluorination of steroids directed by tethered N-JF reagents 

2.4.4.1 Fluorination of steroids using §electfiuorTM 

The aim of the present project is regio- and stereoselective fluorination of steroids 

utilizing tethered N-fluorinated compounds. In other words, that is 'intramolecular 

fluorination'. For the evaluation of the results of this 'intramolecular fluorination' it is 

useful to know the results of 'intermolecular fluorination' of steroids using N-F 

reagents. Thus, the fluorination of steroid derivatives with Selectfluor was investigated 

as a reference. 

3~-Acetoxy-Scx.-androstan-17-one {138) was prepared for this purpose from 

epiandrosterone (128) in the usual method. The acetylation of epiandrosterone (128) 

using acetic anhydride was carried out in dichloromethane in the presence of 

4-dimethylaminopyridine (Scheme 2. 51). The desired product ( 13Q») was obtained 
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quantitatively. The melting point was 104 to 105 °C, which is consistent with the 

reported value. 172 

§CHEMJE 2.51 

0 

)lo 

138 

99% yield 

The fluorination of 3~-acetoxy-Sa.-androstan-17-one (138) using one equivalent of 

Selectfluor was carried out in acetonitrile under reflux condition for 16 hours (Scheme 

2.52). The reaction proceeded in 28% conversion, and gave more than seven 

fluorinated products. The crude product was purified by silica gel column 

chromatography to give three main products (139a, 139b and 139c) separately (70 to 

90% purity). These products were analyzed by 1H and 13C NMR, 2-dimensional NMR 

experiments (COSY, HSQC) and DEPT to determine which C-H site was fluorinated. 

Compound 139a to 139c could be deduced to be 12a.-, 12-~- and 6a.-fluorinated 

compounds mainly by 13C NMR. 

89 



SCHEME 2.52 
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Basically the replacement of a hydrogen atom by a fluorine atom influences the 

chemical shifts at a, J3 and y positions because the high electronegativity of a fluorine 

atom introduces a considerable change of the electronic environment. C-F coupling is 

also observed at a and J3 position, and the typical value is about 170 and 20 Hz, 

respectively, in the case of saturated cyclic hydrocarbons. Table 2.3 shows the 

chemical shifts and coupling constants of the isolated fluorinated products. 
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Table 2.3 13C NMR chemical shifts (ppm) and coupling constants (Hz) of 
1flluorinated steroids 

Compound Position of the carbon relative to the fluorine atoms 

a p ygauche 
-

139a 0 C-12 90.4 C-11 26.4 C-13 51.4 C-9 48.4 
1101' +59.0 +6.0 +3.7 -5.7 

.JCF 173.7 22.0 20.1 -

139b 0 C-12 92.0 C-11 27.6 C-13 51.4 C-18 8.2 

110 +60.6 +7.6 +3.7 -5.5 

.JCF 183.3 19.2 16.1 4.2 

139c 0 - C-6 91.2 C-5 49.6 C-7 37.0 C-4 27.9 

11o +63.0 +5.1 +6.3 -5.9 

JCF 172.9 14.9 18.4 4.2 

y antlperiplanar 

C-14 43.8 Ca18 13.3 
-1.4 --0.4 

- 7.2 

C-9 52.1 C-14 48.6 

-2.0 -2.6 

9.2 5.0 

C-8 33.6 C-10 36.6 

-1.3 +1.1 

11.5 8.0 

a Tlhe carbons further away from the fluorine atom do not differ by more than 0.3 ppm from the corresponding carlbons in tlhle 
parent compound (3p-acetoxy-5a-androstan-17-one). bl1cr os defined as the difference between the chemicalshift ofthe relevant 
carbon atoms in the corresponding unfluorlnated and fluorinated steroids;+ represents a deslhielding effect and- a slhllelding 
effect, both induced by the fluorine atom. 



All a- and 13-carbons are deshielded by the fluorine atom. The differences of the 

chemical shifts compared to the parent compound were 59.0 to 63.0 ppm and 3.7 to 7.6 

ppm respectively. The y-carbons, however, are divided into two groups. The carbons 

gauche to the fluorine atom are all shielded by 5. 5 to 5. 9 ppm, whereas they-carbons 

anti to the fluorine are shielded to a lesser extent (-1.1 to 2.6 ppm). Moreover, the 

y-carbons gauche to the fluorine have a relatively small coupling constant (0 to 4.2 Hz), 

while the anti y-carbons are coupled to the fluorine by 5. 0 to 11. 5 Hz. These are 

consistent with the results of tertiary fluorinated steroids reported by Rozen. 173 

As described above, fluorination of hydrocarbons using Selectfluor exclusively 

proceeded at the CH2 sites?4·154 These results indicates that the C-H bonds at the 

12-position and the 613-position possess not only the highest electron density but also 

are the least sterically hindered sites among all the CH2 sites in compound 138. 

Compound 139b and 139c were recrystallised to give crystals. The expected structures 

were confirmed by X-ray diffraction analysis (Figure 2. 7). 

FIGURE 2.7 X-ray structure of139c 

Thus, the fluorination of the steroid derivative 138, which possesses no tethers, 

with Selectfluor was found to be non-selective giving many products fluorinated at 

secondary sites. 

Direct fluorination of this substrate 138 was already investigated in a precedent 

project of our group, and gave three monofluorinated isomers non-selectively (Scheme 

2.53).154 
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SCHEME2.53 

0 

.)lo 

10% F2 / N2 (3.0 eq.) 

CH3CN, 0 °C 

41% conv. 

76% 

139e 

+ 

139d /139e /139f = 1.4: 1.1 : 1.0 (19F NMR) 

Purification of the crude product by column chromatography, recrystallisation and 

HPLC proved unsuccessful. 

2.4.4.2 Remote fluorination of steroids directed by tethered N-F reagents 

Above we discussed reactions of 3~-acetoxy-Scx.-androstan-17-one (138) with an 

N-F reagent and elemental fluorine and now we compare these results with reaction of 

tethered fluorinating agents to determine whether a tether affects the outcome of the 

fluorination reaction. 

3~-[( 4-Aza-1-azoniabicyclo[2.2.2]oct-1-yl)-acetoxy]-5cx.-androstan-17- one 

tetrafluoroborate (ill) The fluorination of 3~-[(4-aza-1-azoniabicyclo[2.2.2] 

oct-1-yl)-acetoxy]-Scx.- androstan-17-one (131) was carried out in acetonitrile in the 

presence of equimolecular amounts of sodium tetrafluoroborate at -1 0 oc using 6 

equivalents of elemental fluorine (Scheme 2.54). 
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§CHEME2.54 

0 

O~+N'\;N 
~ 

131 

239mg 

10% F2 / N2 (6.0 equiv.) 

NaBF4 (1.0 equiv.) 

CH3CN (10 ml) 

-10°C 

more than 8 fluorinated products 

19F NMR o +50.9 ppm 

93% conv. 

The N-F resonance was observed at +50.9 ppm in •9p NMR and the conversion was 

estimated to be 93% by comparing the integration for the N-F resonance with that of 

BF4- (Figure 2.8). The chemical shift was similar to those of the resonances of the 

fluorine atom in Selectfluor or other N-fluorinated species derived from model 

compounds which have a DABCO moiety. The reaction mixture including the 

'tethered electrophilic fluorinating agent' was refluxed overnight. The N-fluorinated 

species were consumed completely (After refluxing for 4 hours, 42% of the N-F 

species still remained). Fluorination proceeded to some extent, but regie- or 

stereoselectivity was not observed. More than 8 kinds of resonances were observed 

between -199 and -169 ppm in 19F NMR.. 

94 



FIGURE 2.8 19F NMR spectrum of the reaction mixture of the fluorination of compound 

131 

100 

N-F species 

\ .. 
"' co 

1 

so 
I 

0.93 

0 
0 
0 

0 

0 -so -100 

... .. .. ... ... .. 
I 

-lSO 

a.oo 

HF 

y 
2.98 

-zoo 

The comparison of the l9p NMR spectra of the crude products between this reaction 

and the reference reaction, that is the fluorination of compound 138 with Selectfluor is 

shown in Figure 2.9. 
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FIGURE 2.9 19F NMR spectra of crude products of fluorination of 138 and 131. 

0~ 
J . 17""\ F 0.....-..._N\.-N BF -

\...:.../ 4 

-165 -170 

-us -170 

-175 

-175 

-180 -185 -190 

12a·f 

6a·f 12P·f 

-180 -185 -190 -195 PPI' 

The 3 kinds of major resonances were observed in both these spectra at ca.-181, -183 

and -187ppm. These resonances were thought to be derived from fluorines located at 

identical positions on the steroid skeleton. These results indicate that 'intermolecular 

fluorination' predominantly proceeded rather than 'intramolecular fluorination' in the 

fluorination of compound 131. 

The N-F bond derived from DABCO group was highly sterically hindered because 

of the three-dimensional structure. Therefore, it was thought that a longer alkyl chain 

which connects the steroid with DABCO group was required to have a longer length. 

Figure 2.10 shows molecular models for the consideration of the accessibility of 

DABCO moiety to steroid skeleton using Chem3D™ (Some atoms are replaced by 

other atoms for the calculations.). 
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FIGURE 2.10 3D models for the consideration of the accessibility ofDABCO moiety to 

steroid skeleton using Chem3D ™ 

calculated compounds 

n=1 n=3 n=5 

Obviously, as alkyl chain become longer, the bridgehead oxygen, which is replacement 

of fluorine of the tethered reagent, can possibly be closer to the steroid skeleton. The 

results clearly suggest longer alkyl chains are preferable for 'intramolecular 

fluorination'. 

Therefore, we decided to investigate fluorination of molecules with longer alkyl 

chains, which follows below. 
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Jf3-~ 41--( 4-Azs-1-B~ZounisbicycRo[2.2.2] ®Cll:-1-yB)-butyryRoxy ]-Sa.-smllrostsn-17 

-®nne 1tetira1filunoroboll"s1te (~33) The fluorination of 3f3-[4-(4-aza-1-azoniabicyclo 

[2.2.2]oct-1-yl)-butyryloxy ]-Sa.- androstan-17 -one tetrafluoroborate ( ~ 33) was carried 

out in the same procedure as the case of compound i3i (Scheme 2.55). The 'tethered 

N-F reagent' was formed in 86% conversion, and the N-F resonance was observed at 

+49.7 ppm, which was close to that of the N-F derivative of compound ~31. The 

second step aimed at 'intramolecular fluorination' was carried out under two different 

concentrations. The first condition was set at 45 mM in concentration, which was the 

same as the fluorination of 3(3-acetoxy-Sa.-androstan-17-one (138) using Selectfluor. 

The other reaction was carried out under highly diluted condition, which was 3 mM in 

concentration, because more diluted conditions could potentially reduce the probability 

of the 'intermolecular reaction' and thus, 'intramolecular reaction' should be favoured. 

§OH!EME2.55 

'1133 

25'11 mg 

i!Oo/o IF2 / i\12 (4.0 aquiv.) 

NaBF4 (ii.O aquiv.) 

CH3Ci\l ('iO ml) 
IBF4- -~0 oc 

CH3Ci\l (10 ml) ~0 ~i\l 
refl Ult, i 6 lhl + i\_('v 1 IS IF -0 .._,.. 4 

cruds 0.28 g 

191F NMR 8 ~~9.7' ppm 

86% conv. 
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SCHEME 2.55 (continued) 

133 

.251 mg 

CH3CN (150 ml) 

reflux, 16 h 

10% F2 / N2 (5.0 equiv.) 

NaBF4 (1.0 equiv.) 

CH3CN (10 ml) 
BF4- -10 °C 

crude 0.35 g 

86%conv . 

Figure 2.11 shows the l9p NMR spectra of the crude products of these reactions. 

Obviously, the product distributions between these reactions were quite different. In 

the case of 45 m.M, the major products were similar to those of the fluorination of 

3~-acetoxy-Sa-androstan-17-one (138) using Selectfluor. In contrast, the high dilution 

condition gave a significant decrease of 12a-fluoro product, and alternatively some 

new or increased resonances were observed. 
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FIGURE 2.11 19F NMR spectra of crude products of fluorination of 133 under different 

concentrations. 

45mM 

-us 

3mM / 

CH3CN 
reflux, 16 h 

6a-F 

1213-F 

6a-F 

12a-F 

1213-F + 

These results indicate that, under the high dilution conditions, several different 

fluorinated products were obtained from the reaction under normal concentration, and 

these may have arisen from intramolecular fluorination. However, the reaction is not 

very selective, so no highly favoured products seem to occur. 

The crude products of fluorination using tethered N-F reagent were analyzed by 

LC-MS, but this was unsuccessful. Both of these crude products and the starting 

material, compound 131 and 133, are not applicable to LC- and GC-MS because they 

are non-volatile and very polar. On the other hand, the crude mixture of fluorination of 

3~-acetoxy-5a-androstan-17-one (138) could be applicable to GC and GC-MS analysis, 

and the analytical data such as the retention times in GC, the spectral data of 1H, 13C 

and 19F NMR should be helpful. Therefore, the deprotection conditions of the acyloxy 
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groups, which contain an analytically difficult DABCO moiety, were investigated. 

Both basic and acidic conditions for the deprotection of the acyloxy groups were 

attempted. In a model reaction, the basic deprotection reaction of compound 13'11 with 

potassium carbonate in methanol proceeded to give epiandrosterone (128) (Scheme 

2.56). The crude product was treated with acetic anhydride to give 3f3-acetoxy-5a.

androstan-17-one (138). 

These conditions were used by other workers for deacetylation of 5-fluorosteroid 

derivatives without any considerable HF eliminations. 174 

§CHEME2.56 

0 

o~NCC'N BF4-
~ 

131 

3"i mg 

K2C03 (0.65 equiv.) 

CI=I30H, &1:, 4 h 

rt, 24 h 

128 

15 mg (crude) 

138 

16mg 

The deprotection reaction of compound 133 using concentrated hydrochloric acid and 

acetonitrile (1:2, v/v)175 gave epiandrosterone (128) after stirring for 30 hours at room 

temperature (Scheme 2.57). The resulting alcohol was easily converted to 0-acetylated 

compounds, and they were successfully analyzed by GC-MS. 
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SCHEME2.57 

133 

22mg 

conc.HCI/ CH3CN (1/2) 

rt, 30 h 

Ac20 

DMAP (cat.) 

rt, 43 h 

128 

24 mg (crude) 

138 

13 mg (crude) 

Using these conditions the derivatization of the crude products of the fluorination of 

compound 133 under the normal concentration (45 mM) was carried out (Scheme 2.58). 

The resulting crude products of the acetoxy derivatives were analyzed by GC, GC-MS 

and 19F NMR. These results were roughly comparable. In both cases, 13 to 18% of 

unsaturated compounds 140 were found in GC-MS analysis. These compounds are 

suggested to be formed by elimination ofHF from the fluorinated compounds. 
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SCHEME 2.58 

~\ 

crude mixture of fluorination (45 mM) 

12-a.l6-a.I12-P = 
43135122 (19F NMR) 

Ac20, pyridine 

DMAP (cat.) 

rt, 24 h 

139 

22% 

139a 1139b 1139c 

=43118138(GC) 

(+others) 

12--a. 16-a.I12-P = 
42 I 35 I 23 (19F NMR) 

unsaturated 
compounds 

140 

18o/o 60% 

conc.HCII CH3CN (1 I 2) 

rt, 16 h 

crude mixture of fluorination (45 mM) 

12-a.I12-P 16-a. = 
431 22135 (19F NMR) 

Ac20, pyridine 

DMAP (cat.) 

rt, 19 h AcO 

139 

23% 

139a 1139b 1139c 

= 44 118 I 38 (GC) 

(+others) 

12-a.I12-P 16--a. = 

50116133 (19F NMR) 

unsaturated 
compounds 

140 

i3% 

+ 

64% 
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In order to confirm that the elimination of HF to give unsaturated products did not 

occur during the derivatization processes, the deprotection of 3 f3-acetoxy steroid 

derivatives containing C-F bonds was carried out (Scheme 2.59). A mixture of 139a, 

~39c and 138 was deprotected once under acidic condition, followed by acetylation to 

return to the acetoxy derivatives again. The ratio of the compounds by GC was not 

changed at all. 

§CHEME2.59 

31 mg 

conc.HCI I CH3CN (1 I 2) 

rt, 22 h 

138 I 139a I 139c = 51 I 32 I 5 
Ac20, pyridine 

DMAP (cat.) 

rt, 18 h 

31 mg (crude) 

36 mg (crude) 

138 I 139a /139c = 51 I 32 I 5 

This result supported the thought that the elimination occurred during the either first or 

second fluorination. Further analysis of the reaction mixture after the first fluorination 

should provide the answer to the question of whether this elimination occurred during 

the first (by elemental fluorine) or second (by tethered N-F reagents) fluorination step. 

The control experiments to answer this question will be discussed later. 

The crude product of the fluorination of compound 133 under the high-dilution 

condition (3 mM) was treated with hydrochloric acid in acetonitrile to deprotect the 

ester moiety bearing the DABCO template. The resulting 3-hydroxy derivatives were 

protected again by an acetyl group and were analysed by GC-MS (Scheme 2.60). The 

products included monofluorinated compounds 139 in which the amounts and the ratio 

were considerably changed, unfluorinated 138 and the much larger amounts of HF 

eliminated compounds 140. 
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§CJBIEMJE 2.60 

i33 

2541 mg 

CH3CN ('i50 ml) 

refnun, ~61hl 

4139 

12% 

~0% f2l N2 (5.0 SClJL!BV.) 

Nali:n:4 (41.0 SClJL!DV.) 

CH3CN ('i 0 ml) 
IBIF 4- -410 °C 

QJJnsatll.Drated 
COmiPOIJJII1dS 

'140 

39% 

4139a 1139b 1139c I o~hers 

= -/11 I 35 I 53 

86%corw. 

A~O 
conc.HCI !Oil/lAP 

t:> t:> 

3(3-[ 5-( .cll-Aza-1-azonialbicyclo[l.l.l] oct-1-yB)-waDeeylloxy ]-Sa.-androstan-

17-ollle tetrafiii!Roroboll"ate (4135} The fluorination of 3f3-[5-(4-aza-l-azoniabicyclo

[2.2.2]oct-1-yl)-valeryloxy ]-5a-androstan-17 -one tetrafluoroborate ('i 35) was carried 

out in the same procedure to compound 131 and 133 (Scheme 2.61). The N-F species 

was formed in 75 to 1000/o conversion, and the resonance was observed at +49.0 ppm, 

which was close to the case of 133. The second step was carried out under two 

different concentrations, which were 45 mM and 3 mM. The crude products were 

converted to their 3-acetoxy derivatives, and analyzed by GC and GC-MS. 
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SCHEME 2.61 

135 

258mg 

10% IF2 I ~ (4.0 equuv.) 

NaBF4 (1.0 equlv.) 

CH3CN (10 ml) 

-10°C 

0 
2BF-~+ 4 

0 NV+ 
l_bN.f 

19F NMR 8 +49.0 ppm 
87o/o conv. 

conc.HCI 

CH3CN (1 0 ml) 

reflux, 16 h 

(+others) ---5> 

139 

30% 

139a 1139b 1139c I others 
--~~ 

= 33 1111 30 I 20 

unsaturated 
compounds 

140 

18% 

138 

47% 
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SCHEME 2.61 (Continued) 

135 

258mg 

CH3CN (150 ml) 

D"eflux, 16 h 

139 

10% 

110% f 2 / N2 (4.0 equiv.) 

NaBF4 (1.0 equiv.) 

CH3CN (10 ml) 

-10°C 

(~others) 

~ unsaturated 
compounds 

140 

32% 

139a /139b /139c I others 

= -/13/ 34/ 53 

7~100% conv. 

138 

53% 

Figure 2.12 shows the •9p NMR spectra of the crude products of these reactions. The 

product distributions were very similar to those of fluorination of compound 133. In 

the case of 45 mM, the major products were similar to those of the fluorination of 

3P-acetoxy-5a.-androstan-17-one (138) using Selectfluor. In contrast, the high dilution 

condition gave a significant decrease of 12a.-fluoro product, and alternatively some 

new or increased resonances were observed, which may be attributed to intramolecular 

fluorination but this is not selective. 
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FIGURE 2.12 19F NMR spectra of crude products of fluorination of135 under different 

concentrations. 

45mM 

-165 -110 -175 

3mM / 

6a-F 
12P-F 

-180 -185 

6a-F 

12P-F 

12a-F 

-190 -195 ppc 

~ 12a-F ~ 
~ 

3f3-[ 6-( 4-Aza-1-azoniabicyclo[2.2.2]oct-1-yl)-hexanoyloxy ]-Sa.-androstan-

17-one tetrafluoroborate (137) The fluorination of 3f3-[6-(4-aza-1-azoniabicyclo 

[2.2.2]oct-1-yl)-hexanoyloxy]-5a-androstan-17 -one tetrafluoroborate ( 137) was carried 

out in the same procedure to other substrates (Scheme 2.62). The N-F reagent was 

formed in 82-83% conversion, and the N-F resonance was observed at +49.5 ppm, 

which was similar to those of 133 and 135. The second step was carried out under the 

two different concentrations. 
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SCBEME2.62 

137 

268mg 

CH3CN (10 ml) 

reflux,16 h 

139 

16% 

10% f 2 1 N2 (4.0 equiv.) 

NaBF4 (1.0 equlv.) 

CH3CN (1 0 ml) 

-10 °C 

+ 

(+others) 

unsaturated 
compounds 

140 

22% 

139a I~ 1139c I others 

= 33118126124 

19F NMR a +49.6 ppm 
83% conv. 

+ 

A~O 
conc.HCI DMAP 

138 

51% 
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SCHEME 2.62 (Continued) 

137 

264mg 

CH3CN (150 ml) 

reflux, 16 h 

139 

8% 

iOo/o f 2 1 N2 (4.0 equiv.) 

NaBF4 (1.0 equiv.) 

CH3CN (1 0 ml) 

-10°C 

unsaturated 
compounds 

140 

25% 

139a 1139b 1139c I others 

:.:: -1121 36 I 52 

82%conv. 

138 

60% 

The 19F NMR spectra ofthe crude products of these reactions are shown in Figure 2.13. 

The product distributions were very similar to those of fluorination of 133 and 135. 

When the second step was carried out in normal concentration, the major products 

were the same as those of the fluorination of 3~-acetoxy-Sa.-androstan-17-one (138) 

using Selectfluor. On the other hand, a significant decrease of 12a-fluoro product was 

observed in the high dilution condition, and alternatively some new or increased 

resonances were observed. Some of those were not observed in the cases of the 

fluorination of133 and 135. 
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FIGURE 2.13 19F NMR spectra of crude products of fluorination of 137 under different 

concentrations. 

45mM 12a-F 
6a-F 

12P-F 

-115 -170 -175 -180 -185 -198 -195 PPII 

3mM 
6a-F 

12P-F 

In all cases some HF eliminated compounds were found in the crude mixture after 

derivatization to 3-acetoxy derivatives. The high dilution condition tended to give 

larger amounts of the HF eliminated compounds. 

Control reaction As described above the product distributions between 45 

mM and 3 mM in each fluorination of 133, 135, and 137 were considerably different. 

In order to make it clear in which stage each product formed, a control reaction was 

carried out. The fluorination of 3~-[ 5-( 4-aza-1-azoniabicyclo[2.2.2]oct-1-yl)-valeryl 
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oxy]-Sa.-androstan-17-one tetrafluoroborate (135) was carried out in the same method 

as described above, but the reaction mixture was quenched without heating in the 

second step (Scheme 2.63). The crude products were converted to the 3(3-acetoxy 

derivatives in the same procedure. The crude mixture obtained after quenching (Crude 

A) involved considerable amounts of compounds which were fluorinated at tertiary 

sites such as 5, 9, or 14 position (The ratio was 1.0:1.8:1.0, Figure 2.14). However, 

these compounds eliminated HF during the acidic deprotection reaction. These 

unsaturated compounds 140 involved mainly three kinds of systems, which showed 

identical retention times in GC analysis to those obtained in other experiments with the 

second fluorination step. Therefore the alkenic compounds 140 were assumed to be 1:!.
5 
-, 

11\ and 1114
- derivatives. 

SCBEME2.63 

135 

258mg 

quench 

139 

9% 

10% F2 1 N2 (4.0 equiv.) 
NaBF4 (1.0 equiv.) 

( CrudeA J 

+ 

140 

26% 

139a I 139b 1139c I others 

=-112128160 

unsaturated 
compounds 

A~O 
DMAP 

+ 

72%conv. 

138 

62% 
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Interestingly, the acetylated crude products contained some compounds fluorinated at 

secondary positions. 

JFIGURJE 2.14 19F NMR spectrum of the crude A of the fluorination of compound 135 

~ 

0.01 

-165 

0.01 

-170 -175 -180 
.____,__.., 

o.u: 

-185 -190 -195 ppo 

To understand all the above results more easily, the product distributions of all of 

the fluorination experiments using compound 133, 135, and 137 were summarised in 

Table 2.4. 
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TABLE 2.4 The Product Distribution of Remote Fluorination of Steroid Derivatives bearing 
DABCO moiety 

0 

O~CH,t,(N~N BF,-
'---1 

i'1l = 3 ~33 

n = ~ '\135 
1111 = 5 137 

IF2 

3 miVi 
or 
~ miVi HCI 

---c:> ~=--;:::>- ~ -~:::>-

concell'ilftli"aa~oon8 mono-~h.ooirOna~ed IPmdiUidS {lli) 

en~ry fl1l (mi\li) ~38 ~39a ~3910 . i139c o~hlerrs (~o~~) 'i~O 

i 3 ~ 64 5 3 7 7 (23) '\13 

2 3 3 ~ 'II ~ 5 (12) 39 

3 ~ ~ "J7 '\10 5 9 5 (30) '\18 

~ ~ 3 53 ~ 3 5 (10) 32 

5 5 ~ 51 5 3 ~ ~ (16) 22 

6 5 3 60 '\1 3 ~ (8) 25 

7 ~ 
d 52 ~ 3 5 (9) 25 

seBedovirty 

'\12-f /5-IFc 

'II. 7 : i 

~ : 2.1 

2.~: 'II 

1 : 1.~ 

1.5 : 1 

'II : 2.0 

'II : 1.2 

············------------------····-·············-------------------------------------------------
ae - 72 ~'II 5 5 7 ~28) () 3.~ : 1 

a Concentmion in whiclhl ~Ole second s~ep was camed cut. b 1De~el11lllil11led !by GC. c The 

nD~io was es~omm~eOJ toy 19f NIVIR. d Tl'nle N-IF compoMnds wms quenched wo~holB~ ~ll'ie 
second s~ep. e l"ll'la msul~ o~ ~he 171LBOii"ifl1lat~ion o~ n! wo~lhl Sele~IUIOII". 

Comparing between the yields of mono-fluorinated compounds '\139 in 3 mM and those 

of the control reaction (entry 2, 4, 6 and 7), the mono-fluorinated compounds in 3 mM 

were thought to form only in the first step, which was fluorination by elemental 
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fluorine. Therefore, the change of the product distribution between the different 

concentrations in the second step seemed to be not caused by the different fashion of 

the fluorination. On the other hand, comparison of the ratio between 12-fluoro and 

6-fluoro derivatives suggested that the fluorination of the tethered steroids were less 

selective than the fluorination of steroids without tethers using Selectfluor. However, 

considering the rather preferential formation of the 6-fluoro compound in the first step 

(entry 7), the fluorination in the second step in 45 mM may be more 12-position 

selective than they appear and involve some contribution of intramolecular pathway 

(entry I, 3 and 5). 

Under the acidic deprotection conditions, the compounds fluorinated at tertiary 

positions eliminated HF to give unsaturated compounds as described above and thus 

alternative basic conditions were attempted for the deprotection reaction (Scheme 

2.64). 
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SCHEME2.64 

+ 

133 

258mg 

quench 

138 

54% 

10% F2 1 N2 (4.0 equiv.) 

NaBF4 (1.0 equiv.) 

C~CN (10 ml) 

-10°C 

( Crude A) 

+ 

139 

6% 

~+ 2BF4-

0 ~+ 

+ 

~N-F 

72%conv. 

140 
7% 

139a 1139b 1139c I others 
=-I 40 I 221 38 

unsaturated 
compounds 

+ + 

ca. 23% 

139d 1139e /139f = 39: 35: 25 (19F NMR) 

In this case, the components fluorinated at tertiary positions did not dehydrofluorinate 

into unsaturated compounds. Three major resonances were observed in the 1~ NMR of 

the final crude product. Those had similar chemical shifts with reported 

mono-fluorinated derivatives and they could be attributed to 9-fluoro (139d), 5-fluoro 

(139e} and 14-fluoro (139f) derivative (-180.0, -162.9 and 164.5 ppm respectively). 

The total yield of those compounds was about 23%. These results mean that while the 
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fluorination on the nitrogen atom proceeding in the first step the saturated C-H sites of 

the steroid skeleton were fluorinated simultaneously to considerable extent. This is 

surprising because the basic nitrogen atom should be more nucleophilic, and therefore 

more reactive towards elemental fluorine, than the C-H bonds. 

2.41.§ CoRDdUilsiollll 

A series of steroid derivatives bearing a DABCO moiety were successfully 

fluorinated by elemental fluorine in acetonitrile to give steroids carrying an N-F 

reagent connected by an ester linkage. The steroidal tethered N-F reagents were heated 

in acetonitrile without isolation aiming at achieving intramolecular fluorination at a 

specific unactivated C-H position. Quite distinct product distributions between normal 

and highly diluted concentration were observed, however, a control reaction indicated 

that no fluorination proceeded in diluted solution in the second step. The fact that not 

only fluorination of nitrogen atom but also fluorination at unactivated C-H sites, which 

was mainly tertiary position, were occurred in the first step was also suggested by the 

control reaction. When the reaction was carried out under normal concentration the 

second fluorination using tethered N-F species were assumed to give 12-fluoro 

products preferably but the effect was not so obvious because the yields were not high 

and the products formed in the first step veil the true effects. The whole reaction 

pathway in the fluorination of compound 137 can be illustrated as shown in Scheme 

2.65. 
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In the first step, the fluorination of 137 with elemental fluorine gives the corresponding 

N-fluorinated compound. However, fluorination also occurs at both the secondary and 

tertiary C-H sites. This fact is quite intriguing because the fluorination of electron rich 

nitrogen centre is much more likely to happen than that of carbon centre. Obviously 

the possibility of over-fluorination with the excess fluorine cannot be ruled out. The 

steroid skeleton is fluorinated by the tethered N-F reagent to give 12-fluoro compounds 

preferably, but this tendency is cancelled by the products fluorinated at the secondary 

position in the first step. On the other hand, 9-, 5-, and 14-fluoro derivatives are 

decomposed by probably acidic species, such as HF or ammonium species derived 

from the N-F reagent after fluorination, into unsaturated systems under reflux 

condition in acetonitrile. Unreacted steroid derivatives bearing the N-F reagent are 

quenched and lead to 3P-acetoxy-5a-androstan-17-one (138). Consequently, this 

two-step process, involving formation of distinct tethered N-F compound, shows no 

great increase in selectivity over intermolecular process. 

2.5 Direct remote ffiluorination of steroids with tethered functional gro1lllps 

2.5.1 llimtrodUIIctiollll 

In the attempted remote fluorination reactions that were discussed in the last 

section, the tethered functional groups (= precursor) were fluorinated to N-F 

compounds in situ, and utilised for intramolecular fluorination in the second step. In 

other words, electrophilic 'F+' species were generated as stable N-F reagents. 

On the other hand, in direct fluorination reaction in nitrile solvents an N-F species 

shown in the scheme 2.66 has not been observed by 19F NMR under the ordinary 

reaction conditions. 

SCHEME2.66 

R~c:N- · -F-F 
o+ o-

+ 
R-C:N-F 

-
F 

In any event, polar functional groups which have a high dielectric constant, such as 

nitrile and carboxyl group, are thought to be able to polarise elemental fluorine and 

promote electrophilic fluorination. When the functional group is 'tethered' to the 

substrate molecule without the formation of a stable N-F intermediate, the fluorine 

activated by the functional group would react with the most accessible C-H site. 

Therefore direct remote fluorination of steroid derivatives with tethered functional 
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groups will be discussed in the following section. The concept is illustrated in Scheme 

2.67. 

SCHEME2.67 

2.5.2 Preparation of steroid derivatives with tethered functional groups 

Various steroids bearing functional groups, which potentially polarise elemental 

fluorine, were synthesised for fluorination studies and the preparations of the substrates 

are discussed below. 

2.5.2.1 Synthesis of steroids connected to nitrile group 

3a-(3-Cyanobenzoyloxy )-5a.-androstan-17-one ( 142) 3a.-(3-Cyano 

benzoyloxy)-Sa.-androstan-17-one (142) was synthesised by esterification of 

androsterone (141) with 3-cyanobenzoyl chloride (Scheme 2.68). The reaction was 

sluggish at ambient temperature due to the electron-withdrawing cyano group and 

needed reflux conditions in tetrahydrofuran to proceed. 

SCHEME2.68 
Cl 

0~CN u 
pyridine, DMAP 

THF, reflux, 30 h 

o''' 
0~CN u 

142 

83%yield 

3a.-Cyanoacetoxy-5a.-androstan-17 -one ( 143) Cyanoacetyl chloride was 

prepared by reaction of cyanoacetic acid with phosphorus pentachloride, 176 and reacted 

with androsterone (141) to give 3a.-cyanoacetoxy-5a.-androstan-17-one (143) in 56% 

yield (Scheme 2.69). 
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2.5.2.2 §ynntBnesis ®1!" steronds cmmeded ti!D m cmll"lblmcyn gll"mnjp 

'i43 

85% yieidl 

As described in chapter 1, carboxyl group is not only a possible precursor of 

electrophilic 0-F reagent and also an effective functional group to polarise elemental 

fluorine. Thus, a steroid bearing a carboxyl group was prepared for the present study. 

3a.-[(3-Catll"bmcyjprojpyH)-mcetmcy]-5a.-mnndrostmnn-17-onne {144) 3a-

[(3-Carboxypropyl)-acetoxy]-Sa-androstan-17-one (~M) was prepared by 

esterification of androsterone ('i4'i) with glutaric anhydride (Scheme 2.70). 177 The 

reaction proceeded slowly in dichloromethane at room temperature in the presence of 

catalytic amounts of 4-dimethylaminopyridine. 

SOIEME2.70 

0 0 0 u ,DMAP 

o''' 
0~COOH 

'i44 

65% yield! 

2.5.2.3 §ynntlnesns of steroids cmmeded ti!D m pyridinne groUlljp 

Pyridine moiety was ruled out in the remote fluorination with stable tethered N-F 
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reagents because of the insufficient reactivity, but was still to be investigated in this 

one step strategy. 

3a-Nicotinoyl-5a-andlrostan-ll. i -one ( 145) 3a-Nicotinoyl-5a-androstan-

17-one (4145) was prepared by esterification of epiandrosterone (128) with nicotinic 

acid under Mitsunobu conditions178 (Scheme 2.71). The reaction proceeded in THF at 

room temperature to give the inverted ester 145 with 3a stereochemistry in 51% yield. 

§CHEME2.71 

HOOC~~ v 
(C6H6)3P, DEAD 

THF, rt, 24 h 

145 

51% yield 

3a-(2,6-Did:IIBoronicotinoyl)-5a-amllrostan-ll. 7 -one ( 146) Ja-(2,6-

Dichloronicotinoyl)-Sa-androstan-17 -one ( 146) was prepared by the same method as 

3a-nicotinoyl-5a-androstan-17-one (145) (Scheme 2. 72). 

SCHEME2.72 Cl 

HOOC~N 
Vet 

(C6H6)aP, DEAD 

THF, rt, 1 h 
:~.•· 

O Cl o¥N . ll;tCI 
146 

63% yield 

2.5.3 Direct remote fluorination of steroids with tethered functional groups 

2.5.3.1 ControD reactions 

3a-Acetoxy-5a-androstan-17-one <n) which has no proper functional group for 
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activating elemental fluorine was prepared for the control reactions to evaluate the 

results of direct remote fluorinations. This compound was derived from androsterone 

(141) in the same method to 3f3-acetoxy derivative 138 (Scheme 2.73). The desired 

compound 62 was obtained in 97% yield. 

SCHEME2.73 

0 

HO''' 

AeaO, DMAP 

62 

97% yield 

The fluorination of 3a.-acetoxy-5a.-androstan-17-one (§1) with elemental fluorine 

was carried out in acetonitrile, dichloromethane and nitromethane as control reactions 

(Table 2.5). 

TABLE 2.5 The fluorination of3-acetoxy-5 -androstan-17-one (§ID 

145 mM I 
10% F~N2 (4 eq.) 

o''. solvent, 0 °C o''. 
0~ 0~ 

62 (19f NMR) 

63a: 9-F -179.9 ppm 
63b: 5-F -161.3 ppm 
63c: 14-F -164.5 ppm 

solvent F2 (equiv.) 63a I 63b I 63c %yield 

CH3CN 4 36: 30: 34 57 

CH2CI2 8 49:36: 15 0.4 

CH3N02 4 40:34:27 40 

The yields of the fluorinated compounds were estimated by 19F NMR in the presence 

of fluorobenzene as an internal standard. Three main resonances were observed in the 
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19F NMR of the crude mixture. Two of those had identical chemical shifts with 

reported mono-fluorinated isomer, which were 9-fluoro and 5-fluoro derivative 

(-179.9 and -161.3 ppm respectively). The rest ofthe resonances (-164.5 ppm) were 

attributed to 14-fluoro derivative because the 8-position is known to be a completely 

blocked site among the tertiary carbons in the steroid skeleton. The fluorination in 

acetonitrile gave mono-fluorinated compounds in 57% yield and the 9-F/5-F/14-F ratio 

was 36:30:34. On the other hand, the reaction hardly proceeded in dichloromethane, 

although the 9-F/5-F/14-F ratio was slightly more selective towards the 9 position than 

in acetonitrile. Nitromethane, which has high relative permittivity but no contribution 

ofN-F species, also gave a fair yield with the similar 9-F/5-F/14-F ratio to the case of 

the acetonitrile reaction. 

These results contrasted with Rozen's studies described in section 2.2.1.1 (see 

scheme 2.2). 123 This difference was thought to be attributable to the higher reaction 

temperature as well as the solvent or the absence ofNaF as a HF scavenger. 

2.5.3.2 ][)inct remote fluorination of steroids with tethered functiona8 groups 

2.5.3.2.1 Direct remote fluorination of steroids with tethered :DABCO moiety 

3(3-[5-( 4-Aza-1-azoniabicydo[2.2.2]oct-1-yB)-valeryloxy ]-5ot-androstan-

17-one tetrafluoroborate (135) In the two-step remote fluorination strategy 

discussed previously, the N-F species were sufficiently stable for the second 

fluorination step in the presence of tetrafluoroborate ion in acetonitrile. A one step 

procedure was also employed for direct fluorination of compound 135. In this case, the 

reaction was carried out in the absence of sodium tetrafluoroborate. The fluorine could 

interact with the nitrogen atom of the DABCO moiety without forming a stable N-F 

species, and also react in competition with the C-H bonds of the steroid skeleton 

(Scheme 2.74). 
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The fluorination of 3 P-[ 5-( 4-aza-1-azoniabicyclo[2.2.2]oct-1-yl)-valeryloxy ]-5a

androstan-17 -one tetrafluoroborate ( 135) was carried out in acetonitrile in the absence 

of sodium tetrafluoroborate under two different concentrations (Scheme 2. 75). In the 

lower temperature, the N-F species was thought to be stable even in the absence of 

sodium salt, thus the reaction was carried out at 20 °C. 
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SCREME2.75 

--------t;> ===!> !> 

139 

6% 

139d /139e /139f 

= 41/31/28 

CH30H CH2CI2 

unsaturated 
compounds 

140 

1% 

10% F2 / N2 (4.0 equiv.) K2C03 
-------~ --=l> 

CH3CN (75 mL) CH30H 

20°C 
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140 

1% 

138 
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+ 138 
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In the both cases, small amounts (4-6%) of compounds which were mono-fluorinated 

at tertiary positions were obtained non-selectively accompanied by only 1% of HF 

eliminated products. The same reaction was carried out in dichloromethane because 

dichloromethane was thought to be much less polar than acetonitrile and suitable for 

the avoidance of intermolecular fluorination. However, the fluorination of 135 in 
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dichloromethane gave no reaction (Scheme 2. 76). 

§CHEME2.76 

A~O 

DMAP 

From these results, DABCO tethers are found to be not sufficiently reactive for this 

one-step strategy. 

2.§.3.2.2 Direct remote fluorination of steroids with tethered nitrile group 

3a.-(J..Cyanobenzoyloxy)-5a.-androstan-17-one (142) The direct 

fluorination of 3a.-(3-cyanobenzoyloxy)-5a.-androstan-17-one (142) was carried out in 

dichloromethane at 0 oc using 8 to 12 equivalents of elemental fluorine under two 

different concentrations to assess how a nitrile tether could direct the fluorination 

reaction (Scheme 2. 77). 

SCHEME2.77 

o''' 
0~CN ·u 

142 

283mg 

10% F2 / N2 (8 eq.) 

147 

2% yield 

9-F (147a) /5-F (147b) /14-F (147c) 

= 71 : 18: 11 
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SCHJEMJE 2. 77 (Continued} 

4142 

9~mg 

I~ 
'iO% F2 / i\!2 (412 aOJ.) 

CIHI2CI2 (7~ ml), 0 °C "'' 0 5 

o~cN ·u 
41~7 

'i% yie~dl 

i147a /414710 /41~7c 

g7@: 419: ilil 

The yields were determined to be very poor (1 to 2%) by measuring 19F NMR in the 

presence of fluorobenzene as a internal standard. In both concentrations, three 

resonances which can be assigned to 9-a, 5-a., and 14-a fluorinated compound 

('il47a-~ accompanied by more than 10 of other fluorinated systems were observed. 

The total integration of the area between -50 to -130 ppm was 5 times larger than 

those of the compounds fluorinated at tertiary sites. The 9-al5-al14-a. ratio was about 

70:20:10 in the both cases which means the concentration did not affect the selectivity. 

When the same reaction was carried out in nitromethane the yield was much 

improved. The fluorination of i42 with 4 equivalents of elemental fluorine in 

nitromethane gave a mixture of 'il47a-~ in 47% yield with slight less selectivity (Table 

2.6). The side products which were observed in the case of using dichloromethane 

were not obtained at all. The lower reaction temperature was slightly effective for 

improving the selectivity. I9p NMR spectra of the crude products of both of the low 

temperature reaction and the control reaction using S2 were shown in the figure 2.15. 
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1I' ABLE 2.6 

142 

283mg 

temperature (°C) yield(%) 

0 41 

-25 41 

Control reaction (flluorrination of~ 

0 

63:211:11 

66:20: 14 

ratio (9-F I 5-F /14aF) 

40:34:21 

FIGURE 2.15 19F NMR spectra ofthe crude products ofthe fluorination of compound 142 

and62 
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The mam product, 3a.-(3-cyanobenzoyloxy)-9a-fluoro-5a.-androstan-17-one (147m) 

was isolated by column chromatography, and recrystallised. The X-ray structure was 

determined as shown in figure 2.16. 

Fl!GURE 2.16 X-ray structure of147a 

3a.~Cyanoacetoxy-5a.-androstan-17 -one ( 143) The direct fluorinations of 

3~-cyanoacetoxy-Sa.-androstan-17-one (143) were also examined using both 

nitromethane and dichloromethane (Table 2. 7). The same tendency of yield to the 

benzoyloxy derivative 142 was observed with much less selectivity. 
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TABLJE 2.7 

143 

241 mg 

solvent 

145mM I 
10% F2 / N2 (4 eq.) 

solvent (~5 ml), C oc 

yield(%) 

0.4 

42 

Control reaction (fluorination of 62) 

40 

148a: 9-F 
148a: 5-F 
148a: 14-F 

ratio (148a /148b /148c) 

43:35:22 

40: 29: 31 

ratio (9-F I 5-F /14-F) 

40: 34: 27 

Direct remote fluorination of steroids bearing tethered nitrile group were found to 

show some selectivity for 9-position when 3-cyanobenzoyloxy group was employed 

for the tether to androsterone system, whilst cyanoacetyloxy group gave no 

improvement of the selectivity. 

2.5.3.2.3 Direct remote fluorination of steroids with tethered carboxyl group 

3a-[(3-Carboxypropyl)-acetoxy]-5a-androstan-17-one (144) 3a-[(3-

Carboxypropyl)-acetoxy]-5a-androstan-17-one (144) could not be dissolved in 

nitromethane. Consequently the fluorination of 144 was carried out in a mixture of 

dichloromethane and nitromethane (4:1) as shown in Scheme 2.78. 
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SCJBIEME 2. 711 

144 

273mg 

[4S_mM.J 
iO% F2 1 N2 (8 eq.} 

CH2CI2 I CIHI3N02 

(~: 1, iS ml), 0 oc 

-------

149 

0.8% yoe~d 

9-F (149a) 15-F (149b) 114-f (149c) 

=55: 31 : 15 

The crude mixture gave less than 1% of the mono-fluorinated compounds despite the 

use of 8 equivalents of elemental fluorine and so this tether was abandoned. 

2.5.3.2.41 Direct remote filuorinatimn of steroids witlht tethered jpyri«lline gmup 

3a.-NicotimoyB-5a.-androsmn-ll7-one (145) Direct fluorination of 3a-

nicotinoyl-5a-androstan-17-one (145) was carried out in nitromethane in the same 

procedure to other substrates (Scheme 2. 79). 

SCJBIEME 2. 79 

o''' 
O~N ·v 

145 

283mg 

Control reaction (fluorination of §ID 

o''. s 

O~N ·v 
150 

18% yield 

9-f (150a) 15-F (150b) 114-F (150c) 

=53: 24:23 

solvent % yield ratio (9-F I 5-f 114-F) 

40 40:34:27 
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Both selectivity and yield were less than the case of cyanobenzoyloxy derivative ~ 42 

although the 9-fluoro derivative i50a was obtained as the main product. Some 

by-products in which the C-H bonds of the pyridine ring were also fluorinated were 

also obtained as minor components. 

Ja.-(2,6-DicllnBoll'l!)lllic®tniiD®Yl)-5a.-amllro§11:aiiD-:ft. 7-ouue (146) Fluorination of 

3a.-(2,6-dichloronicotinoyl)-5a.-androstan-17-one (146) was carried out in the same 

manner to compound ~45, but the reaction gave a lot of by-products and the yields of 

the mono-fluorinated compounds could not be estimated by 19F NMR. 

The pyridine tethers did not show notable effect in the attempted direct remote 

fluorination in contrast to Breslow's remote chlorination. 

2.§.3.2.§ §wurmnary of Jre§UDll11:§ 

The series of results of direct fluorinations of the steroid derivatives with tethered 

functional groups are summarised in Table 2.8. 
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TABLE 2.8 Direct remote fluorination of steroids with tethered functional groups 

entry R 

r0N 
(CH2)s~~ 

BF_;-

2 
'OCN 

3 .0 

4 

5 CH2CN 

6 

1 (CH2)aCOOH 

8 0 .0 

solvent (45 mM) 

0°C 

solvent 

CH3CN8 

CH2CI2 

CH3N02 

CH3NOl 

CH2CI2 

CH3N02 

CH2CI2/ CH3N02 (4/1) 

CH3N02 

F2 (equiv.) 9aF I 5-f /14aF 

4 1.5/1.1/1 

8 6.7/1.7/1 

4 3.8/1.3/1 

4 4~8/1~5/1 

8 2.0/1.3/1 

4 'i.3/ 0.9/1 

8 3.8/2.1/1 

4 2.3/1.1 /1 

%yield 

6 

2 

41 

41 

0.4 

42 

0.8 

18 

--------------------------------------------------------------------------------------------------
control reactions 

9 CH3 CH3CN 4 1.1/0.9/1 51 

10 CH2CI2 8 3.2/2.4/1 0.4 

11 CH3N02 4 . 1.511.3/1 40 

8 The reaction was carried out at 20 °C. b The reaction was carried out at -25 °C. 

The control reactions using acetoxy derivatives {§l), which have no tethered functional 

group, in acetonitrile or nitromethane gave almost non-selective fluorination at tertiary 

carbons (entry 9 and 11 ). In contrast, the direct fluorination of 3-cyanobenzoyloxy 

derivative (142) gave some 9-position selectively (entry 3 and 4). When 

dichloromethane was employed as solvent, the yield was considerably decreased 
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although the selectivity was improved (entry 2). On the other hands, in the case of the 

cyanoacetoxy derivatives (1~3) no direction effect was observed (entry 6). This fact 

could imply the cyanoacetoxy group did not possess proper length and geometrical 

demand. 

As mentioned in section 2.2.2, the distance to the reaction point from the 

attachment point should be related to the length of the tether in the geometrically 

controlled reactions149
• From the determined X-ray structure of 142 the distance from 

C-3 oxygen to the hydrogen at C-9 was 4.5 A, which was much shorter than that 

between the oxygen and the nitrogen in the cyanogroup that was 6.1 to 7.1 A (Figure 

2.17). The geometry of the molecule should be changed in the transition state, 

nevertheless this inconsistency is quite disputable about the fashion of the fluorination. 

1FliGlJmE 2.13 X-ray structure of ~42 

It is difficult to evaluate the results discussed above because elemental fluorine is 

quite reactive and it is thought to be impossible to exclude the contribution of 

intermolecular fluorination in the background completely. However, we believe that 

further investigation on the direct fluorination of more variety of tethers, which have a 

cyano group or other polarising functional group with different geometrical demand, 

would make this clearer. 
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2.5.4 Conclusion 

A series of steroid derivatives bearing various functional groups which can interact 

with elemental fluorine were prepared and fluorinated. The results showed the 

combination of3a.-(3-cyanobenzoyloxy) group and nitromethane gave some 9-position 

selective fluorination compared to the control reaction using simple acetoxy derivative. 

The major fluorinated product could be isolated and the X-ray structure was 

determined. 

2.6 Chapter 2. Summary 

As a new methodology for regio- and stereoselective fluorination of complex 

molecules, geometrically directed remote fluorination of steroid derivatives was 

investigated. For coping with this complicated problem, we employed two methods, 

which were: 

1) Two step fluorination utilizing N-F reagents which prepared in situ 

2) One step fluorination with tethered functional groups which can interact with 

elemental fluorine and encourage electrophilic fluorination 

In the first method we found that DABCO moiety was a suitable functional group 

for the tethered N-F reagents, and investigated the remote fluorination of steroid 

derivatives bearing a DABCO moiety with tethers of different lengths. The results 

indicated that the tethered N-F reagents could react with some specific unactivated 

C-H sites of the steroid skeleton, although the selectivity and yields were not very 

useful. The less reactivity could be attributed to a common problem of intramolecular 

reaction with a macrocyclic transition state whilst the less selectivity may indicate little 

contribution of intramolecular fluorination. In either event, some fluorination at C-H 

sites occurred during the preparation of the tethered N-F reagents in situ caused the 

evaluation of the results to be difficult. 

In the second attempt we prepared a series of steroid derivatives carrying various 

functional groups which were thought to be promoters of electrophilic fluorination 

with elemental fluorine. Direct fluorination of 3a-(3-cyanobenzoyloxy)-5a-androstan-

17-one (142) showed fair 9-position selectivity compared with the control reactions. 

We could not conclude that this selectivity solely came from the intramolecular fashion 

of the fluorination owing to the inconsistency of the distances to the cyano group and 

the reaction point from the attachment point. 
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Geometrically directed reaction could potentially be one of the most effective 

approaches for the specific functionalisation of an unactivated C-H site in a complex 

molecule. We met many difficulties in attempting to develop this methodology for the 

electrophilic fluorination, however we believe that the project described in this chapter 

provides some important clues for the development of new methodology for selective 
fluorination. 
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<CIInapter 3 

3.1 mtrodllllction 

Chiral organofluorine compounds are becoming increasingly important with uses in 

biological and medicinal chemistry, and also in the chemistry of materials. 179 In 

particular, chiral organofluorine compounds containing a fluorine atom bonded directly 

to a stereogenic centre are useful for studies of enzyme mechanisms and as 

intermediates in asymmetric syntheses. 180
'
181 Consequently, the development of 

effective methodologies for the preparation of chiral fluorinated systems is critical to 

further advances in organofluorine chemistry. Obviously, one of the most 

straightforward and elegant methods for the preparation of fluorine-containing 

stereogenic centres should be enantioselective fluorination. Since Lang introduced 

chiral N-fluorocamphorsultam, which is the first example of a chiral N-F reagent, in 

1988,182 a number of reagent-controlled enantioselective electrophilic fluorination 

reactions have been reported, and currently the centre of interest is moving towards 

catalytic asymmetric introduction of fluorine. However, elemental fluorine has never 

been directly used for enantioselective fluorination. Therefore, we are interested in 

exploring the use of elemental fluorine for enantioselective fluorination, in a 

complementary study to directed fluorination discussed in previous chapter. 

This chapter is concerned with novel attempts at catalytic enantioselective 

fluorination reactions of 1,3-ketoesters using elemental fluorine. Prior to discussing the 

current work, literature concerning enantioselective electrophilic fluorination and 

diastereoselective fluorination using elemental fluorine will be reviewed in the 

following section. 

3.1.1 Enantioselectnve Fluorination 

3.1.1.1 Reagent-controlled reaction 

As mentioned above, the first example of enantioselective fluorination was 

reported by Lang and co-workers (Scheme 3.1 ). 182 They synthesised chiral 
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N-fluorocamphorsultam 151 and carried out fluorination of ethyl 

2-oxo-cyclopentanecarboxylate. The enantiomeric excess ofthe product was 70%. 

§CHEME3.1 

~N.H 10% Fa/ Na ~N.F CHCI3 I CFCI3 s s 
Oa -40 °C, 30 min. Oa 

151 

75% 

0 0 NaH 151 (1.5 eq.) 0 0 

~OCaH& o~OCaH& diethyl ether 
0 OC----ri 

63%yield 
70%ee 

Davis modified the N-fluorocamphorsultam 151. A 3,3-dichloro derivative 152 was 

efficient for the fluorination of 2-methyl-1-tetralone although this gave less 

enantioselectivity for ethyl 2-oxo-cyclopentanecarboxylate (Scheme 3 .2). 166
•
183 

SCHEME3.2 

NaHMDS 

THF 
-78 OC-{) °C 

s 
Oz 

Cl 
Cl 
'F 

152 (1.5 eq.) 

40%yield 

75%ee 

The conveniently accessible N-fluoro-N-tosyl derivative 153 prepared from 

(S)-1-phenylethylamine was employed for enantioselective fluorination by Takeuchi 
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(Scheme 3.3). 184 

SCHEME 3.3 
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153 (1.1 eq.) 

26% yield 
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Compound i153 was obtained from fluorination of N-tosylated (S)-1-phenylethylamine 

using perchloryl fluoride (FCl03) and sodium hydride. Compound i153 fluorinated the 

enolate of 2-benzyl-1-tetralone, although both the reactivity and enantioselectivity 

were not satisfactory. They also examined N-fluoro sultam 20 derived from saccharin, 

which gave up to 88% ee in the fluorination of the same substrate (Scheme 3.4).86 
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In 2000, two groups independently reported the use of cinchona alkaloid based N-F 

reagents (Scheme 3.5 and 3.6). 185
'
186 Selectfluor was employed as a fluorinating agent 

for the preparation of the chiral N-F reagent in both cases. Takeuchi used a mixture of 
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Selectfluor and dihydroquinine 4-chlorobenzoate (154), and achieved up to 91% ee in 

the fluorination of silyl enol ether of 2-benzyl-1-indanone. On the other hand, Cahard 

reported fluorination of silyl enol ether of 2-methyl-1-tetralone using isolated 

N-fluorocichonidinium tetrafluoroborate, which gave fluorinated product in 61% ee. 

SCHEME3.5 

Selectfluor 

SCHEME3.6 

Selectfluor 

119/ NaOH 

THF, --40 °C 

[
Quinine I Selectfluor] 

Combination 

86%yield 

91%ee 

93%yield 
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Cahard applied this type of fluorinating agent to enantioselective synthesis of 

a-fluoro-cx.-amino acid derivatives (Scheme 3. 7). 187 
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~~~ ~) LiHMDS, THF 0 

0
'J.-.i() 21154, -1aoc 

56% yield 
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They investigated the relationship between the structure of the N-fluoro cinchona 

alkaloid derivatives and enantioselectivities, and found that quinine and 

quinidine-based N-fluoro reagents were superior to the two other cinchona alkaloids, 

namely cinchonine and cinchonidine. When 0-(p-methoxybenzoyl)-N-fluoroquininium 

tetrafluoroborate (155) was employed in the fluorination of N-phthaloylphenyl 

glycinonitrile, 94% ee was achieved. The enantiomeric excess was significantly higher 

than in the case of using N-phthaloylphenylglycine ethyl ester (66% ee). This 

difference was explained by the postulated intermediates shown in scheme 3.8. 
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Deprotonation of the ester typically gives a Z/E mixture of a prochiral sp2 enolate, and 

the asymmetric step consists of an enantiofacial differentiation. On the other hand, 

nitrile anions presumably exist as lithiated ketenimines with axial chirality. The two 

isomers undergo racemization rapidly and the enantioselective fluorination results from 

a kinetic dynamic resolution of those isomers. 

Additional work by Cahard demonstrated that the enantioselective fluorination of 

silyl enol ethers could be carried out in ionic liquids. 188 The fluorination reactions 

successfully proceeded at 0 oc in [hmim][PF6] (hmim = hexylmethylimidazolium), the 

enantioselectivity was comparable or superior to those in acetonitrile at -40 °C. 

Gouverneur employed the cinchona alkaloids/Selectfluor combination for the 

enantioselective fluorodesilylation of allyl silanes (Scheme 3. 9). 189 
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Recently, enantioselective syntheses of a biological active fluorooxindole 156 using 

N-fluoro cinchona alkaloid agents were reported by Cahard and Shibata independently 

(Scheme 3.1 0). 190
'
191 
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High enantioselectivities were obtained in the fluorination of the parent oxindole using 

both the his-cinchona alkaloid 158/Selectfluor combination and isolated N-fluoro-2-

naphthoyl-quininium tetrafluoroborate (159). In both cases, simple recrystallisation 

gave enantiomerically pure (>99% ee) crystals of the product 157. 

3.1.1.2 Catalyst-controlled reaction 
The first example of catalytic enantioselective fluorination was reported by 

Togni in 2000 (Scheme 3.11 ). 192 He directed his attention to the fact that the 

fluorination of ketone systems, such as 1,3-ketoesters or 1,3-diketones, proceed via 

enol forms of the substrates, and reasoned that catalytic amounts of a Lewis acid might 

accelerate the reaction by catalyzing the enolisation process. A range of Lewis acids 

were screened for catalytic fluorination of 1,3-ketoesters using Selectfluor (Table 3.1). 
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The results indicated that titanium or aluminum compounds were the only possible 

Lewis acid catalysts which can accelerate enolisation of 1,3-ketoesters in the 

electrophilic fluorination. 

'f ABJLIE 3.1 Qualitative ordering of catalytic activity of several Lewis acids for the fluorination 
of ethyl 2-methyl-3-oxo-3-phenylpropiooate 

0 0 o-Yoc2H, 

Very fast 

(< 1 h) 

Selecifluoli' 
ca~lyst (5 molo/o) 

CH3Ci\!, rt 

fast 

(< 1 <Ol) 

CpTiCI3 

liCI2(diolato) 

Slow 

(< 2w) 

Cp21'i(OTfh 

HIIBF4 

18f3 

Verysiow 
or no li'eaci:ion 

(> 2w) 

HCI 

ZnCI2 

CpaZr(OTf)a 

Yb(OTfh 

He employed chiral titanium (IV) complexes as catalysts for the enantioselective 

fluorination of 1,3-ketoesters and found that fluorination of 2,4,6-triisopropylbenzyl 

2-methyl-3-oxopentanoate using Selectfluor in the presence of 5 mol% of 4160 gave 

2-fluoro adduct in 90% ee. 
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SCHEME3.11 
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A proposed mechanism involving a cationic titanium monochloro complex 161 as the 

catalyst is illustrated in scheme 3.12. 193
•
194 The substrate 1,3-ketoester coordinates to 

the titanium complex 160 and substitutes one of the two chlorides and one of the 

acetonitrile molecules to give the cationic species 161. After deprotonation, resulting 

neutral titanium enolato complex 162 is the reactive species and fluorinated by 

Selectfluor. Finally, in the complex 163, the fluorinated product is replaced by another 

substrate molecule to regenerate the catalyst 161 and complete the catalytic cycle. 

In additional work, Togni described that the same titanium complex 160 catalyzed a 

one-pot enantioselective heterodihalogenation of 1,3-ketoesters with Selectfluor and 

NCS to afford 2-chloro-2-fluoro-1,3-ketoesters in moderate and good yield with up to 

65% ee. 195 
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SCHEME3.12 
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Kim did not utilise a cinchona alkaloid derivative as a chiral N-F reagent, but as a 

phase-transfer catalyst for enantioselective fluorination of 1 ,3-ketoesters (Scheme 
3.13).196 
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The fluorination of methyl 1-oxoindan-2-carboxylate usmg 10 mol% of 

cinchonine-derived quaternary ammonium salt ~ 64, which has a bulky 

{3,5-di-tert-butyl-4-methoxy)benzyl group at the bridgehead nitrogen, proceeded 

rapidly to give 2-fluoro product in 69% ee. In this system, the reaction was carried out 

using NFSI as the fluorinating agent in non-polar toluene in the presence of a solid 

base, such as K2C03 and Cs2C03, at room temperature. 

On the other hand, Sodeoka developed an efficient catalytic fluorination of 

1,3-ketoesters using chiral palladium complexes (Scheme 3.14). 197 
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They found that the palladium hydroxo complexes 165, which were effective for a 

enantioselective Michael reaction of 1,3-dicarbonyl compounds, 198 showed a catalytic 

activity in the fluorination of 1,3-ketoesters using NFSI. The fluorination of cyclic 

1 ,3-ketoesters, which had a tert-butyl ester group, in alcoholic solvents gave 92 to 94% 

ee. 197 Even in the case of acyclic 1 ,3-ketoesters, which were generally difficult to 

fluorinate with high enantioselectivity, 87 to 91% ee were obtained. The mechanism of 

the generation of the palladium enolate was proposed as shown in scheme 3. 15. 198 
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SCHEME 3.!5 
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They anticipated that the palladium complexes 165 and 161' are in equilibrium with the 

monomeric palladium hydroxo complex 166, which would act in two distinct roles, 

Lewis acid and Bnlmsted base. Palladium complex 166 was thought to react with 

carbonyl compounds to give a chiral enolate, through a favorable six-membered 

transition state. Sodeoka demonstrated that the products obtained in this reaction 

system could be utilised for the syntheses of a.-fluoro ~-hydroxy and ~-amino esters 

(Scheme 3.16). 
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>95/5); ii) (C6H6)3SiH (3.0 eq.), TfA, 11, 3 hl, 75% (dr = >95/5); iii) (C6H6)3P (1.5 eq.), 

DEAD (1.5 eq.), DPPA (1.2 eq.), THF, rt, 2 h, 79% from syn-169, 73% from am/-169; 

iv) Pdi/C, H2, (Boc)aO, CH30H, 1 lh, 80% for snti-110, 57% for syn-f10. 
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The methyl ester 1168, which was derived from the corresponding tert-butyl ester for 

the determination of the absolute configuration, was converted to both diastereomers of 

the a.-fluoro P-hydroxy ester 169 in a highly diastereoselective manner by simply 

changing the reducing conditions. These compounds were subjected to azidation with 

inversion of configuration. Reduction of the azide group, followed by protection of the 

amino group, afforded the a.-fluoro 13-amino ester 4170 in good yields. 

Further work by Sodeoka described that the palladium catalysts could be 

immobilised in ionic liquids and reused (Scheme 3 .17). 199 
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The fluorination reaction of tert-butyl 2-methyl-3-oxo-3-phenylpropionate (171) was 

successfully carried out using the same catalyst dissolved in the IL to give 1172 no less 

than 9 times without loss of yield and enantioselectivity. 

So far all of the enantioselective fluorinations have adopted N-F reagents as the 

fluorinating agent. Thus, we were interested in the direct use of elemental fluorine for 

enantioselective fluorination because it is the most inexpensive source of electrophilic 

fluorine. 

3.11..2 Diastereoselective JFhnorination using enementan fliUlonine 

In general, the steric bulk of fluorinating agents could affect the stereo selectivity in 

fluorination reactions as described in section 1.2.5. Elemental fluorine is thought to be 

not an advantageous fluorinating agent from this point of view, but Kaneko reported 

enantioselective preparation of 2afluoro-1,3-ketoesters using elemental fluorine 
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(Scheme 3.18)?00 Direct fluorination of a 1,3-dioxin-4-one U4a having (-)-menthone 

as the chiral auxiliary at the 2-position which was derived from the corresponding 

1 ,3-ketoacid 1'13 and following treatment with potassium carbonate gave 

2-fluoro-1,3-ketoester 115 in excellent enantioselectivity. The elemental fluorine 

exclusively attacked from the less hindered isopropyl-side (Figure 3.1) 
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FIGURE3.1 

On the other hand, the Durham group found hydrated copper nitrate effectively 

catalysed direct fluorination of 2-substituted carbonyl compounds as described in 
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section 1.2.2.3 (see Scheme 1.13).35 We reasoned that direct use of elemental fluorine 

for catalytic enantioselective fluorination could be possible if we establish a 

'fluorine-tolerant' catalyst system which possesses an appropriate asymmetric 

environment. 

To achieve this quite challenging goal, we conducted further screening of Lewis 

acid catalysts for direct fluorination of 1,3-ketoesters to find 'fluorine-tolerant' catalyst 

systems. Then, the effect of auxiliaries or ligands was examined for which catalytic 

activity was shown in the catalyst survey, to explore the feasibility of catalytic 

enantioselective fluorination with elemental fluorine. 

3.2 Titanium catalyzed direct fluorination of 1,3-lk.etoesters 

3.2.1 Screening of catalysts (1) 

For the beginning of our investigation, we assessed whether the titanium catalyst 

system reported by Togni could be applied to direct fluorination of 1,3-ketoesters. We 

employed ethyl 2-methyl-3-oxobutanoate {176) as a model compound for the 

preliminary investigation. Direct fluorinations of 176 were carried out in the presence 

or absence of catalyst {Table 3 .2). 

TABLE 3.2 Screening of catalyst for direct fluorination of ethyl2-methyl-3-<lxo-butanoate (176) (1) 

0 0 0 0 0 0 0 0 

~OC2Hs .. ~OC2Hs + (XU'oc2Hs + ~OC2H5 
F F Cl 

176 177 178 179 

i) 10% F2/ N2, catalyst (0.1 eq.), CH3CN, 0 °C 

yield (GC, %) 

entry catalyst F2 (equiv.) conv. (GC, %) 177 178 179 

1 none 2.0 6 35 

2 TiCI4 2.0 49 13 7 77 

3 TiCI48 1.0 63 4 96 

4 TiCI2(0Rhb 1.2 32 5 78 

a 0.2 eq. of catalyst was used. b (ORh = transa ;oX) 
'0 
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Reactions were carried out in acetonitrile at 0 °C, because it was preferable not to 

proceed in the absence of catalyst. In the case of using formic acid as the solvent, this 

reaction proceeded in 25% conversion at 10 to 15 °C.32 As expected, fluorination of 

H'6 in the absence of catalyst in acetonitrile gave a very low conversion (entry 1). 

TiC14, which is an effective catalyst of fluorination of 1 ,3-ketoesters using 

Selectfluor, gave interesting results (entry 2, 3). The reactions proceeded to give the 

chlorinated derivative H9 as the major product. Titanium (trans-cyclohexane-

1,2-diolato) dichloride also mediated the chlorination ofii'6 (entry 4). It was, therefore, 

very important to modify this catalyst system for enantioselective fluorination. In 

addition, the reaction mixture showed red colour in the beginning of reaction, and the 

colour disappeared in the course of the reaction. The red colour was thought to be 

derived from titanium enolate species. A possible mechanism of the reaction can be 

supposed as shown in scheme 3.19. 
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The chlorination is assumed to proceed via titanium enolate species (180). The 

chlorinating agent is supposed to be chlorine fluoride (Cl-F) generated by the reaction 

between chloride ion or chlorine on the titanium species and elemental fluorine. 

Titanium (IV) chloride was thought to finally be changed into titanium (IV) fluoride, 

which is inactive in enolisation process as Togni reported (see table 3.1 ). 192 
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3.2.2 Screening of additives 

As described above, the change of colour of the reaction mixture indicated that 

titanium compounds were deactivated in the course of the reaction. This deactivation 

was thought to be caused by the formation of HF or fluoride ion, which possesses a 

strong affinity for titanium (IV) species. In order to prevent the deactivation of the 

catalyst, effects of various additives which were thought to be able to trap hydrogen 

fluoride or fluoride ion were investigated in the direct fluorination of 176 with titanium 

(IV) compounds (Table 3.3). 

TABLE 3.3 Screening of additive 

0 0 

~oc;Hs 
177 

i) 10% F2 / N2 (1.2 eq.), TiCI4 (0.1 eq.), additive (1.5 eq.), CH3CN, 0 °C 

yield (GC, %) 

entry additive conv. (GC, %) 177 178 179 

1 Naf 30 92 

2 NaHC~ 9 20 61 

38 DABCO, NaBF4 5 37 

4b NaBF4 45 9 4 63 

5 BF3·0(~Hsh 54 38 13 28 

6 (C~)3SiCI 86 100 

8 The reaction was canied out at 0 °C to rt. b Titanium (trans-cyclohexyane-1,2-

diolato) dichloride was used as the catalyst. 

Sodium fluoride, which was thought to be able to react with hydrogen fluoride to give 

sodium hydrogen difluoride, did not act as a trapping agent (entry I). Sodium 

hydrogen carbonate was added to neutralise with hydrogen fluoride, but the reaction 

did not proceed (entry 2). DABCO and sodium tetrafluoroborate, thought to form N-F 

species with elemental fluorine in situ, caused significant decrease of the conversion 

(entry 3). On the other hand, sodium tetrafluoroborate alone slightly improved the 
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conversion and selectivity (entry 4, see also table 3.2 entry 4). In the case of boron 

trifluoride, the reaction proceeded in 54% conversion and gave fluorinated derivatives 

as major products but accompanied by chlorinated compound (entry 5). Trimethylsilyl 

chloride successfully extended the life time of the catalyst. The reaction proceeded in 

86% conversion, and gave chlorinated system 'i7S exclusively (entry 6). Trimethylsilyl 

chloride is supposed to react with fluoride ion to give volatile trimethylsilyl fluoride 

and chloride ion, which may be used as the chlorinating agent. A proposed catalyst 

cycle is shown in scheme 3.20. 
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In addition, fluoride ions are formed also by the reaction between chloride ion and 

elemental fluorine as shown in scheme 3 .19. Consequently, introduction of elemental 

fluorine in the presence oftrimethylsilyl chloride can be efficient system for generating 

Cl-F, which is an electrophilic chlorinating agent (Scheme 3.21)?01 
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3.2.3 Efl!'ed of aiiDcmary UigaiiD«ll of titaDllimm complex 

Generation of chloride ion in situ was found to lead to formation of Cl-F and an 

introduction of chlorine atom into the substrate rather than fluorine in the reaction 

using tetravalent titanium and elemental fluorine. Thus, ancillary ligands other than 

chloride were investigated. 

Titanium (trans-cyclohexane-1,2-diolato) bis(trifluoromethanesulfonate) ~8~ and 

titanium (trans-cyclohexane-1,2-diolato) bis(trifluoroacetate) 182 were prepared as 

shown in Scheme 3.22?02 
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Using these titanium complexes fluorinations ofHS were carried out (Table 3.4). 

'f AlB !LIE 3.41 Titanium catalysed direct fluorination of ethyl2-methyl-3-oxopropionate (176) 

10% f"2/ i\12 (1.2 SOJ.) 

entry 

2 

3 

5 

6 

1 

8 

9 

10 

14 

i81 

181 

181 

181 

TfOH 

181 

181 

182 

182 

catalys~ (0. i eq.) 

additive (i.5 eq.) 
0 0 

~oc,H5 
'i11 

yield (GC, o/o) 

additive conv. (GC, o/o) 177 

(CH3hSiOTf 

(CH3hSiOCOCF3 

(CH3)3Si0Ac 

(CH3hSiCF3 

32 

70 

58 

60 

46 

47 

(CH3hSiOTf, proton sponge 8 .22 

(CH3hSiOCOCF 3 

(CH3hSiOCOCF 3 

(CH3hSiOCOCF 3 

(CH3)3SiCIF3 

53 

1 

55 

51 

67 

.26 

5 

58 25 

21 

59 25 

55 26 

55 28 

58 32 

19 

60 24 

100 

48 23 

40 19 

46 23 

68 32 

100 

46 

a proton sponge:.: 1,8-lblos(dimethylamino)naphthalene. b PMP = 1,.2,.2,6,6-peng

methylpiperidine. c 20 mol o/o of the catalyst was used. d 2.4 eq. of fliJiorine was 

u$ed. 8 Tlhe ii'®aid:ion Wal$ ca~m<!lldl O>M~ a~ 25 °C. 
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The reaction of 176 with elemental fluorine using 10 mol % of 18~ proceeded to give 

fluorinated products in 32% conversion (entry 1). The catalyst seemed to become 

deactivated during the reaction, similar to when titanium chloride was used. A series of 

the compounds which have timethylsilyl group were effective to lengthen the life time 

of the catalyst (entry 2-5). The order of the efficiency was TMSOTf > TMSOAc ~ 

TMSOCOCF3 > TMSCF3, which was supposed to be concerned with acidity of the 

corresponding acids of the counter parts. However, the reaction was found to be also 

accelerated by catalytic amounts of triflic acid (entry 6). When the ancillary ligand is 

triflate, inevitably catalytic amounts oftriflic acid are formed in situ. Coe reported that 

triflic acid was an effective solvent for direct fluorination of aromatic compounds. 203 

Consequently, triflic acid was thought to be able to mediate not only the enolisation 

process but also the fluorination process due to its extremely acidic nature. The 

existence of a non-catalytic process is not preferable to further application to 

asymmetric catalysis. 

In entry 7 and 8, the reactions were carried out in the presence of weak 

nucleophilic bases, which were thought to act as a trapping agent for triflic acid. In the 

case of using 1,8-bis(dimethylamino)naphthalene, the reaction was interrupted (entry 

7). On the other hand, 1,2,2,6,6-pentamethylpiperidine gave comparable results to the 

case without base (entry 8). 

The reaction using 182 as the catalyst in the absence of additive gave only 7% 

conversion (entry 9). Trimethylsilyl trifluoroacetate was also effective in this system 

(entry 1 0), however, the increase of the catalyst did not lead to improvement of the 

conversion (entry 11 ). On the other hand, excess amounts of fluorine slightly improved 

the conversion (entry 12). Trimethylsilyl trifluoromethane was less effective than 

trimethylsilyl trifluoroacetate at even room temperature, which was thought to be 

preferable to evaporating trimethylsilyl fluoride and in tum to removing fluoride ion 

(entry 13). Trimethylsilyl trifluoroacetate and trifluoroacetic acid did not show any 

catalytic activity separately (entry 14 and 15). 

From these results, the reactions using 182 and trimethylsilyl trifluoroacetate 

seemed to proceed via titanium enolate. A possible catalytic cycle, which is similar to 

that of the chlorination described in the previous section, is shown in scheme 3.23. 
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Currently, the efficiency of the catalyst system was not sufficient to complete the 

reaction. This was thought to be caused by the nature of the ancillary ligand, 

trifluoroacetate, which was not so good leaving group, and therefore the replacement 

of the ligand for substrate in the catalytic cycle was not rapid enough. 

3.2.4 Effect of intermittent introductiol!ll of fluorine 

In this reaction, removal of fluoride by removal of trimethylsilyl fluoride by 

distillation could be crucial to maintain the catalytic cycle. Consequently, the 

fluorination of 176 was carried out using 182 and trimethylsilyl trifluoroacetate with an 

intermittent introduction of fluorine to improve the conversion because such a 

procedure was thought to be effective to keep or regenerate the active species (Scheme 

3.24). 

SCHEME 3.241 
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during the fluorination. In this reaction, nitrogen purge was carried out for 20 minutes 

at room temperature, which gave reappearance of the colour. Further fluorination 

proceeded with another 1.2 equivalents of fluorine to give a colourless solution which 

could not be regenerated by further nitrogen purge. The conversion reached to 76% 

which was better than the normal condition (Graph 3.1). The nitrogen purge at room 

temperature is assumed to be slightly effective for removing HF or trimethylsilyl 

fluoride formed in the reaction mixture to regenerate active titanium species. 
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The titanium catalyst system, which was successfully utilised for enantioselective 

fluorination of 1,3-ketoesters using Selectfluor, was not found to be applicable to direct 

fluorination of ethyl 2-methyl-3-oxobutanoate (176). However, the change of the 

ancillary ligands and additives, which had a trimethylsilyl group, allowed catalytic 
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direct fluorination to proceed. Currently, the efficiency of the catalyst is not sufficient 

to apply the catalyst to enantioselective fluorination with elemental fluorine. Further 

improvement of the capability of the catalyst system is required. 

3.3 Nickel catalyzed direct fluorination of 193-ketoesters 

3.3.1 Screening of catalyst (2) 

As described in the preceding section, Togni screened a range of Lewis acids for 

catalytic fluorination of 1 ,3-ketoesters using Selectfluor, which indicated that titanium 

or aluminium compounds were the only possible Lewis acid catalysts which can 

accelerate enolisation of 1,3-ketoesters in the electrophilic fluorination. 192 However, it 

is thought that the catalyst may still be improved by adopting other unexplored metal 

compounds. Thus further screening of catalysts for direct fluorinations of 176 were 

conducted (Table 3.5). 
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TABLE 3.5 Screening of catalysts for direct fluorination of ethyl2-methyl-3-oxo-butanoate (176) (2) 

+ 

i) 10% IF2 / N2 (1.2 eq.), catalyst (0.1 eq.), CH3CN, 0 °C 

yield (GC, %) 

entry catalyst conv. (GC, %) 

1 6 

25 trace trace -100 

3 

5 

6 

7 

9 

10 

11 

12 

Sc(OTfh 

la(OTfh 

Cu(N03)a·2.5H20 

Cu(acac)a b, c 

Cu(OTfh 

Ni(N03)a·6H20 

Pd(N03)2·xH20 

AgOTf 

ln(N03)a-5H20 

Bi(N03)3-SH20 

53 

44 

51 

59 

32 

3 

<1 

3 

4 

58 32 

58 32 

53 

16 9 

68 

-100 trace 

trace 

-100 

27 

a 2.0 eq. of fluorine was used. b 1.0 eq. of fluorine was used. c 0.05 eq. of 

catalyst was used. 

HfC14, which is in the same group as titanium, gave a similar result to the cases of 

titanium complexes but with lower conversion (entry 2). 

Lanthanide triflates accelerate the fluorination to some extent. Both scandium 

triflate and lanthanum triflate gave about 40 to 500/o conversion. The main product was 

the 2-fluorinated adduct 177, but considerable amounts of the 2,4-difluorinated system 

178 was also obtained (entry 3, 4). In addition, it should be noticed that triflic acid 

could mediate the fluorination as described in the previous section because the quite 
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strong acid could be generated in situ during the reaction. 

Hydrated copper nitrate and nickel nitrate are known to be good catalysts for 

fluorination of diethyl malonate.35 Interestingly, in both these cases, 2,4-difluoro 

adduct 178 was not obtained at all (entry 5, 8). On the other hand, 5 mol% of copper 

(II) acetoacetate did not show any acceleration of the reaction (entry 6). Copper (I) 

triflate gave substantial amount ofby products (entry 7). 

While palladium (IT) complexes were found to be excellent catalysts for 

enantioselective fluorination of 1,3-ketoester using NFSI, 197 palladium (II) nitrate 

showed almost no catalytic activity for the present system (entry 9). 

Silver triflate, indium (ill) nitrate and bismuth (III) nitrate204 did not show catalytic 

activity either (entry 10-12). 

3.3.2 Effect of au:~Imaries and Higavuds 

In order to assess the applicability to enantioselective fluorination, the effect of 

racemic auxiliaries or ligands as substitutes for expensive enantiomerically pure ones 

was examined for which catalytic activity was shown in table 3.5, namely scandium, 

copper and nickel compounds (Table 3.6). 
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TAJSLE 3.6 Effect of auxiliaries and ligands 

0 0 0 0 0 0 

~OCal-lls 
0 

~OC21H6 ~OC2H6 ---{> '¢-

IF IF 
f16 11'7 1'78 

o) ~0% F2 / i\!2 (i.2 S«lJ.), ca~alysi (0.~ sq.), CIHI3Ci\l, 0 °C 

yiald (GC, %) 

entry ca~alyst COil1lV. (GC, %) ~n ~'78 

1a Sc(01"1f)3, ~li\IOl, l?iVll?b <~ ~race ~race 

2 Cu(i\103)a·2.SH20, 2(C6H6)aP 3~ 2S ~race 

3 Cu(i\103)a·2.SH20, rac-811\!A~ ~ 8 1trace 

4 Cuf2, rac-Bii\!AP <1 ~race ~race 

5 i\lo(i\103)2·SH20, 2(C6H5)3P 15 -~00 1trace 

s No(N03)a·&H2o, D"Bic-B I NAP 36 -100 1trace 

'7 l\li(i\103)a·6H20, DIPHOSC 20 -100 trace 

ad i\li(i\103)2·GH20, rac-Bii\IAP '73 97' 3 

a CIH3CI\l/ CH2CI2 = 9 : 1 was used as a solven~. b PiVll? = ~ ,2,2,S,S-pell1l~me1thyl
pipericlline c DII?IHOS = 1 ,2-lbis(diphenylphosphono)althane d IFhnoll"ine: 5.0 eq. 

Scandium triflate, 1,1 '-bi-2-naphthol (BINOL) and a tertiary amine system was quite 

effective in the enantioselective Diels-Alder reactions of acyl-1,3-oxazolidin-2-ones 

with dienes. 205 However, this catalyst system was not effective in the fluorination of 

176 (entry 1). 

For copper and nickel nitrate, phosphine ligands were chosen because a number of 

enantioselective reactions using copper or nickel complexes containing chiral 

phosphine ligands have been reported. 206
"
208 Copper nitrate and phosphine ligand 

system gave much less desired compound than using only copper nitrate as a catalyst 

(entry 2, 3). This was thought to be partially caused by reduction of copper (IT) species 

accompanied by oxidation of the phosphine ligands. 209 Alternatively, copper (II) 

fluoride and racemic BINAP [ = 2,2' -bis( diphenylphosphino )-1, 1 '-binaphthyl]210 was 

employed in entry 4, which did not show any catalytic activity. In contrast, nickel 

nitrate and phosphine ligand system was quite effective for selective fluorination of 
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116. Nickel nitrate/triphenylphosphine (1 :2) system gave almost 100% selectivity, 

although the conversion was 15% (entry 5). In the case of using racemic BINAP and 

nickel nitrate, the conversion was improved to 36% (entry 6). Another bidentate achiral 

ligand, 1,2-bis(diphenylphosphino)ethane (DIPHOS) improved the conversion to less 

extent compared with BINAP (entry 7). When 5 equivalents of fluorine was used for 

the reaction, nickel nitrate - BINAP system achieved 73% conversion and 97% 

selectivity (entry 8). This highly selective reaction system looks promising for 

application to catalytic enantioselective fluorination. 

3.3.3 Effect of intermittent introduction of fluorine 

In the case of using only nickel nitrate as a catalyst, the reaction mixture showed a 

blue colour in the beginning that disappeared during the fluorination, however, the 

colour reappeared after nitrogen purge (Figure 3.2). 

FIGURE3.2 

Ni(N03)a·6H20 

{j u u 0 0 10%F2/N2 N2 

~OC2H5 0°C, 54 min. 0 °C, 30 min. 
I CH3CN 

blue colourless blue 
solution solution solution 

This observation was thought to imply that nitrogen purge was effective to regenerate 

the active catalyst species similar to the case of the titanium system. Consequently, the 

fluorination of 176 using nickel nitrate :-BINAP system was carried out with 

intermittent introduction of fluorine. In this reaction, nitrogen was passed through the 

reaction mixture at intervals during the introduction of fluorine (Scheme 3.25). 
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SCHEME3.25 

F2 F2 
0.4eq. 0.8 eq. 

10% F2 I N2 (6.0 eq.) 

Ni(N03h·6H20 (0.1 eq.) 

racoBINAP (0.1 eq.) 

F2 F2 
1.2 eq. 1.2eq. 

IIIIIIIIHIIIIIII~IIIIIIIIIIIIll 111111111111111 

N2 N2 N2 N2 
30 min. 30 min. 1 h 1 h 

lllllllllllllll 
N2 
1 h 

,Yoc2H, 
f 

177 

80% conv., 97% y. 

F2 F2 
1.2 eq. 1.2 eq. 

1 m .......... 1 
N2 

lummi 
N2 

1 h 30min. 

A small amount of the reaction mixture was taken from the reactor at the same 

intervals after introduction of fluorine and analyzed by NMR and GC. Graph 3.2 

shows the relation between the conversion and equivalents of fluorine. No obvious 

effect of nitrogen purge was observed. 
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3.3.4 Preparation of cyclic 1 ,3-ketoesters 
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• normal condition 
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8 

In asymmetric catalysis, the steric demand of the substrate is one of the most 

critical factors for enantioselection. The nature of the ester group clearly influenced the 

enantioselectivity in the titanium catalyzed fluorination reported by Togni. They 

obtained the best result by using 2,4,6-triisopropylbenzyl group as an ester group 

(Scheme 3.11 ). 192 On the other hand Sodeoka demonstrated that t-butyl ester had a 

high enough level of steric demand for enantioselection in the palladium catalyzed 

fluorinations (Scheme 3.14).197 Therefore, two cyclic 1,3-ketoesters bearing t-butyl 

groups, which gave quite high enantioselectivities in palladium catalysed fluorination 

system, were prepared for investigation of catalytic enantioselective direct fluorination 

using nickel nitrate- BINAP system. 

t-Butyl 2-oxocyclopentanecarboxylate (185) t-Butyl 2-oxocyclopentane 

carboxylate (185) was prepared by Dieckmann condensation of symmetrical diester 
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184 which was available from esterification of adipoyl chloride (183) by t-butanol as 

described in the literature211
•
212 (Scheme 3.26). Adipoyl chloride (183) was treated with 

t-butanol in the presence of .N,N-dimethylaniline in ether at room temperature to give 

di-t-butyl adipate (184) in 75% yield. The diester 184 was refluxed with sodium 

hydride in toluene to yield the desired 1,3-ketoester (185) in 79%. 

§CHEME3.26 
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t-ButyR 2-oxocyclohexanecarboxylate (188) t-Butyl 2-oxocyclohexane 

carboxylate (188) was prepared by the same procedure to 185. (Scheme 3.27). 

Pimeloyl chloride (186) was reacted with t-butanol to give diester 187 in 72% yield. 

The 1,3-ketoester 188 was obtained by Dieckmann condensation of187 in 70% yield. 

SCHEME3.27 
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3.3.§ CmttaDyttnc dlnll"ed tlunori~rnmttnonn olf 1,3-ketoestl:ell's using a racemic cattalystt 

The catalyst system consisting of nickel nitrate and racemic BINAP was applied to 

cyclic 1,3-ketoesters to determine the fluorination conditions before using the 

corresponding chiral ligands and also to obtain racemic samples of the fluorinated 

products for determination of enantiomeric excess (Table 3. 7). 

1I'AJIB1LlE 3.7 Nickel catalysed direct fluorination of cyclic 1,3-ketoesters 

0 0 

Q:'oR UOR 
n n 

'1189 (n = 1, IR = C2H6) '1191 (n = '11, R = C2H6) 

1185 (n = 1, IR ~ t-C4H9) '1192 (n = '11, R = t-C4H9) 

190 (n = 2, IR = C2Hs) 193 (n = 2, R = C2Hs) 

188 (n = 2, R = t-C4H9) 194 (n = 2, R = t-C4H9) 

entiiY ll1l IR conv. (GC, %) GC yield(%) osolated yield(%) 

11 '11 C21Hls '1100 '1100 81 

2 '11 t-C41H19 100 '1100 88 

3 2 C2Hs 100 86 60 

4 2 t-C4H9 100 89 67 

58 1 C2Hs 1i' 

68 2 C2Hs 87 

8 The reaction was carried oui wlihoui caialysi. 

Fluorination of all of the substrates, ethyl 2-oxo-cyclopentanecarboxylate ( i 89), t-butyl 

2-oxo-cyclopentanecarboxylate (185), ethyl 2-oxo-cyclohexanecarboxylate (190) and 

t-butyl 2-oxo-cyclohexanecarboxylate (188), proceeded smoothly, and 100% 

conversions were achieved using BINAP/Ni catalyst system (entry 1-4). Each product 

was isolated by silica gel column chromatography. In the case of using no catalyst, 189 

and 190 showed dramatically different reactivity (entry 5, 6). On the one hand, 189 

gave only 17% conversion, but on the other hand fluorination of 190 proceeded in 87% 

conversion even in the absence of the catalyst. This contrasting difference is probably 

caused by the difference of enol content at equilibrium of these substrates. Thus, enol 
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contents of 1,3-ketoesters in acetonitrile-d3 were estimated by 1H NMR (Table 3.8). 

Table 3.8 Enol contents of 1,3-ketoesters in acetonitrile-d3 

<if----

1,3-keto ester 

<30 min. 

1 month 

<30 min. 

1 month 

<30 min. 

1 month 

(;oc,H, <30min. 

1 month 
190 

<30min. 

1 month 

keto-form 

92 (3.37) 

93 

91 (2.95) 

88 

92 (2.81) 

93 

20 (3.22) 

39 

28 (3.08) 

31d (1.24) 

67 

2 (12.50) 

71 (12.04) 

50 

64 (12.13) 

69d (1.28) 

25 

lit. (enol, %) 

11.5 6.3 

85 59 

8 The sample solution were allowed to equilibrate for the time at room temperature 

before the measurement. b Based on integrated values of resonance of c vs (a + a'). 

c Based on integrated values of resonance of e vs (a+ a1. d Based on integrated 

values of resonance of a vs (a + a1. 

As expected, ethyl 2-rnethyl-3-oxobutanoate (176}, ethyl 2-oxocyclopentane 
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carboxylate (189), and t-butyl 2-oxocyclopentanecarboxylate (185) have a very low 

enol content. On the other hand, ethyl2-oxo-cyclohexanecarboxylate (1190) and t-butyl 

2-oxocyclohexanecarboxylate (188) showed higher enol contents, although the 

equilibria shifted to the keto-forms after 1 month. From these results 1,3-ketoesters of 

five-membered ring, i85 and 189 were thought to be preferable substrates for catalytic 

reaction because these compounds possess very low enol contents and slow enolisation 

rates, and thus, the fluorination of them should not proceed to large extent without 

catalyst. In Sodeoka's system, the reaction proceeded quite slowly (18-72 h)197 and this 

fact should be related to the high enantioselectivity even in the fluorination of 188 

which has a high enol content. 

3.3.6 Attempted catalytic enantioselective direct fluorination of 1,3-ketoesters 

Now that conditions and the best substrate have been determined, fluorination of 

185 and 189 using nickel nitrate and enantiomerically pure BINAP were carried out 

(Table 3. 9). 
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TABJL.E 3.9 Attempted nickel catalysed enantioselective direct fluorination of cyclic 
1,3-ketoesters 

189 (R g C2HI5) 

185 (R = t-C4H9) 

10 0 

c){ oR 

19"i (IR = ~H5) 
192 (R = t..C4H9) 

i) 10% f 2 / N2 (5.0 aq.), Ni(N03h·6H20 (0.1 aq.), (R}BINAI? (0.1 aq.), CH3CN, 0 °C 

GC analysis 

entry R procach.ara8 o/o conv. % yield isolated yield(%) %aab 

1 Et A 100 100 82 <1 

2 Et B 99 100 19 <1 

3 t-Bu A 100 100 13 (<1)c 

4 t-Bu IS 100 100 69 (1)c 

8 Procedure A: The catalyst was simply mixed and sonicated in situ. Procedure B: 

The catalyst was treated with elemental fluorine before adding the substrates. 

b Enantiomeric excess determined by 1H NMR shift experiments using Eu(hfc)a. 

c Two enantiomeric resonances could not lbe separated completely. 

Two procedures were used for the preparation of the catalyst. Procedure A was an 

ordinary preparation method which involved simple mixing of the nickel nitrate and 

BINAP in situ. In this procedure, the reaction mixture contained a precipitate to the 

middle of the reaction, and then became a clear solution eventually. Then, in the 

procedure B, substrate was added after passing fluorine to the solution only including 

the catalyst first, which resulted in a clear solution. The enantiomeric excess of the 

products were determined by a chiral shift reagent. Figure 3.3 shows 1H NMR 

experiments using increasing amounts of europium tris[3-heptafluoropropylhydroxy

methylene]-(+)-camphorate] [Eu(hfc)3] 166
•
183 with racemic ethyl 1-fluoro-2-oxo 

cyclopentane carboxylate (191). In all cases the reactions gave 99 to 1000/o conversion 

and 69 to 82% isolated yield, however, no obvious enantioselection was observed. 
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FIGURE 3.3 A chiral shift reagent 1H NMR experiments using increasing amounts 

ofEu(hfc)3 
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The fluorination of 189 using the same catalyst in a mixture of dichloromethane/ 
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acetonitrile (1: 1) as a solvent gave a homogeneous reaction system, and exclusively 

chlorinated product 195 (Scheme 3.28). 

§CHEME3.28 
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Only a trace amounts of fluorinated product 191 was found in GC-MS analysis. The 

reaction mixture showed a dark purple colour in the course of the fluorination, which is 

thought to imply a generation of a radical species. The mechanism of this anomalous 

chlorination is unclear although it is indisputable that the solvent is the only source of 

the chlorine atom and chlorine radical may be concerned in this reaction. 

This reaction system using nickel nitrate - BINAP system should be applied to 

different solvent systems such as nitromethane, 2,2,2-trifluoroethanol, etc. because 

acetonitrile is one of powerful coordination solvents, which would compete against 

BINAP. Another possible reason for the non-enantioselectivity would be more intrinsic. 

In general, phosphines are less basic but more nucleophilic than corresponding amines. 

Thus, fluorination of the phosphorus centre may compete with the reactive enolate 

species?15 In addition, the less stereo demanding nature of elemental fluorine than N-F 

reagents can not also be ruled out for the reason of the results. 

3.4 Conclusions 

The feasibility of catalytic enantioselective fluorination of 1,3-ketoesters with 

elemental fluorine has been assessed. A series of metal compounds were examined in 

the fluorination of the model compound 176, and some of them showed an acceleration 

of the enolisation process. 

In the titanium-catalyst system, the product could be changed depending on the 

ancillary ligand. When the ancillary ligand was chloride, chlorination reaction 

proceeded efficiently in the presence of trimethylsilyl chloride. On the other hand, 

catalytic fluorination was accomplished by using a combination of titanium 
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trifluoroacetate derivatives and trimethylsilyl trifluoroacetate. In this case, the 

intermittent introduction of elemental fluorine was effective for a slight improvement 

of the conversion. 

The catalyst system using nickel nitrate and BINAP provided a very clean 

fluorination of 1,3-ketoesters at 2-position. This system enabled to exclude the 

formation of2,4-difluoro derivative, which could be regarded as a serious side product 

as mentioned in the next chapter. A significant difference of the reactivity in the 

fluorination without catalyst between cyclic 1,3-ketoesters was found and is caused by 

the distinct enol contents. 

Attempts at enantioselective fluorination of 1,3-ketoesters using elemental fluorine 

have currently been unsuccessful, but there is still some possibility for getting 

enantioselection in those systems. 
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Cllnapter .:3 

4.1 futrodUIIdimm 

New methodologies for selective fluorination have been explored using removable 

tethers and catalysis in the preceding chapters. In this chapter, a solution to the 

problem of control and scaling up fluorination reaction will be described by utilizing 

an efficient microreactor device. 

As mentioned in section 1.2.2.3, direct fluorination reactions are highly exothermic 

processes. Therefore, direct fluorinations are usually carried out by batch-wise 

procedures involving passage of diluted fluorine through a rapidly stirred solution of a 

substrate at low temperatures where the reaction between fluorine and the organic 

species occurs mainly at the gas-liquid interface, i.e. in a heterogeneous manner?16 

This can produce local overheating which leads to side reactions and degradation of 

the substrate. From these viewpoints, a more selective fluorination would be possible if 

a more efficient interfacial reaction and heat exchange are attained. 

Interest in the application of microreactor technology for synthetic organic 

chemistry has been increasingly developing in the last few years,217 because of the 

great potential of very small reactors for providing substantial effects to the chemical 

reaction itself. 

Microreactor technology218 has attractive features for application to direct 

fluorination, as follows: 

(i) A small linear dimension - In general, microreactor devices contain 

microchannels with widths between 0.05 mm to 0.5 mm. The small linear 

dimension allows laminar flow conditions and a significant decrease of mixing 

time which can lead to a higher conversion. 

(ii) A large surface-to-volume ratio - As a result of the decrease in fluid layer 

thickness, the surface-to-volume ratio is dramatically increased. This fact brings 

several benefits, namely high efficiency for interfacial reaction and excellent heat 

transfer which means less substrate degradation and increased reaction selectivity 
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can be expected. 

(iii) A small reactor volume - The small inventory of reagents in the reaction zone 

enables the hazardous reaction to be carried out more safely. 

(iv) 'Scale-out' - Numbering-up theory makes the conventional laborious scale-up 

process much easier by simply increasing the number of the microreactors 

optimised for each reaction. 

This chapter is concerned with the investigation into the potential of microreactor 

technology as a useful device for selective direct fluorination of organic compounds. 

Prior to discussing the current work, literature concerning reactions performed in 

microreactors, especially focused on gas-liquid two-phase reactions will be reviewed 

in the next section. 

4.1.1 Gas-liquid two~phase reactions using microreactor technology 

General microreactor technology has been reviewed recently,217
-

220 and hence 

types of microreactors and reactions other than those reviewed in this section can be 

found in that literature and the references cited therein. 

4.1.1.1 Direct fluorination using microreactors 

The majority of the examples of gas-liquid two-phase reactions using microreactors 

are direct fluorinations due to the substantial advantages described in the preceding 

section. 

Chambers described a microreactor for direct fluorination, which consisted of a 

single channel 500 J..lffi wide and 500 J..lm deep in a nickel block, as shown in figure 
4.1.221 
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FIGURE 4.1 Single channel microreactor 
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The channel was sealed by a piece of transparent PTFCE plate which is held by a 

stainless steel base plate and a number of screw fittings. The substrate solution was 

delivered into one end of the reaction chamber via a syringe using a syringe pump and 

fluorine was introduced from a cylinder by an accurate mass-flow controller. When the 

liquid-gas mixture flowed along the microchannel, a ' pipe flow' (similar term to 

' annular flow') occurred, where the surface-to-volume ratio and, in turn, the efficiency 

of the contact between the liquid and the gas were maximised. Products were trapped 

out in a FEP tube, which was cooled with either a salt/ice bath (0 °C) or an 

acetone/ C02 bath ( -78 °C). 

The direct fluorination of 1 ,3-ketoesters using this device proceeded quite 

efficiently (Scheme 4.1). Ethyl 3-oxobutanoate (196) dissolved in formic acid was 

fluorinated in 99% conversion to give ethyl 2-fluoro-3-oxobutanoate (197). On the 

other hand, less reactive ethyl 2-chloro-3-oxobutanoate (200) was also fluorinated with 

a lower flow rate in 90% conversion, yielding ethyl 2-chloro-2-fluoro-3- oxobutanoate 

(201). 
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Importantly, the bulk fluorination of 200 gave only a low conversion to 20~, 32 

exemplifying the high efficiency of this system. It was also pointed out that a catalytic 

effect by the fluorinated metal surface could be occuring. 

Using the same reactor system, sulfur pentafluoride derivatives were successfully 

prepared (Scheme 4.2). 

§CHEME4.2 

¢' 
Fa s .. s t> 

¢ batch 
condition 

N02 

205 

10% F2 / N2 (10 ml min-1) 

CH3CN, 111: 

microreactor 

Q 10% F2/ N2 (10 mL min-1) 

CH3CN, rt 

N02 microreactor 

206 

5 mllhl-1 

?SF6 

N02 

204 

75% 

Q 
N02 

207 

M% 
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1-(Pentafluorosulfer)-3-nitrobenzene (204) was obtained from direct fluorination of 

3-nitrophenyl disulfide (203) in 75% yield whilst p-nitro system 207 was prepared by a 

two step fluorination, that is, the combination of fluorination using the microreactor 

and conventional batch conditions, via the sulfur trifluoride derivative 206 due to the 

low solubility of disulfide 205 in acetonitrile. 

Chambers also demonstrated that this device could be used for perfluorination 

(Scheme 4.3).221 In this case, an additional heated stage was needed to complete the 

reaction and this was simply connected to the outlet of the reactor. 

SCHEME4.3 

Rt:H 0 Rw=H 

208 

0.5 ml h-1 

i, ii 

microreactorr 

52% recovery 

209 

91% 

i) 50% f 2 / N2 (15 ml mio"'-1), rt; ii) 50% f 2 / N2 (15 ml min-1), rrt, 
then 280 °C 

The fluorination of the tetrahydrofuran derivative 208 using 50% fluorine with an 

additional heating step at 280 oc gave the perfluorinated compound 209 in 91% yield. 

Chambers demonstrated that 'scale-out' could be achieved by simple replication of 

the single channel device described above. 222 A three channel microreactor was 

constructed (Figure 4.2) by a similar process to the single channel reactor and 

fluorinations of several 1,3-dicarbonyl compounds and aromatic substrates were 

carried out (Table 4.1, Scheme 4.4). 
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FIGURE 4.2 Three channel microreactor 
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1,3-Ketoesters 176, 196 and 200 and 1,3-diketone 210 were successfully fluorinated 

using this device to give the corresponding 2-fluoro derivatives although rather lower 

conversions than the single channel reactor were observed in the case of 196 and 200 

(Table 4.1). Ethyl 2-methyl-3-oxobutanoate 176 gave a higher conversion compared 

with the conventional bulk fluorination. 
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'fABLE 4.1 

0 0 

R1V.Ra 
R2 

substrate 

196 

176 

200 

210 

10% F2 / N2 (10 ml min"1ch"1
) 

HCOOH, 5°C 

3ch-microreactor 

0 0 

R1VR3 
F R2 

mono-F 

0 0 

+ R1~f 
F R2 

di-F 

%yield (GC) 

R1 R2 R3 % conv. mono-F di-F 

OC2Hs H CH3 59 82 (197) 7 (198) 

OC2H5 CH, CH3 47 38 (177) -(178) 

OCaHs Cl CH3 59 74 (201) ~(202) 

-(CH2)4- CH3 53 75 (211) 9 (212) 

An attempt to fluorinate 1-methyl-4-nitrobenzene in formic acid using the 

microreactor led to blockage of the microreactor due to the low solubility of this 

substrate in formic acid. Consequently, fluorination of 1-methyl-4-nitrobenzene was 

carried out efficiently and selectively in a mixture of acetonitrile and formic acid [3 :2 

(v/v)] to give 2-fluoro-1-methyl-4-nitrobenzene in 66% yield (Scheme 4.4). 

SCHEME4.4 

¢' 
N02 

0.5 ml h"1ch"1 

qNo, 
N02 

0.5 ml h"1clf1 

10% F2/ N2 (10 ml min"1ch"1
) 

CH3CN I HCOOH (3: 2), 0 °C 

3ch-microreactor 

77% conv. 

10% F2/ N2 (10 ml min"1ch"1
) 

CH3CN I HCOOH (3: 2), 5 °C 

3ch-microreactor 

40% conv. 

66% 

10% 
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The less reactive 1-methyl-2,4-dinitrobenzene was also fluorinated in 40% conversion 

under the similar conditions to give 2-fluoro-1-methyl-4,6-dinitrobenzene in 70% 

yield. 

Direct fluorination of toluene using microreactor technology was investigated by 

two groups independently?23
'
224 Jahnisch and Hessel build two microreaction systems 

for direct fluorination, namely a micro bubble column (MBC) and a falling film 

microreactor (FFMR.). 223 

The micro bubble column consisted of a mixing and a reaction unit. The mixer was 

equipped with 20 IJ.m deep gas and liquid feeding channels 7 and 20 IJ.m wide, 

respectively. The reaction unit comprised an array of parallel microchannels with two 

different sizes, namely 50 IJ.m by 50 IJ.m or 300 1J.ffi by 100 IJ.m channel cross-section. 

This device generated a continuous stream of small bubbles in a flow of liquid. 

The falling film microreactor included a platelet comprising a large number of 

microchannels of 100 IJ.m by 300 IJ.m cross-section which enabled the generation of a 

thin falling film of several 10 IJ.m thickness to flow by means of gravity forces. 

Direct fluorination of toluene using these microreaction systems was investigated 

under a range of reaction parameters and the results were compared with those of a 

laboratory bubble column (LBC) as a benchmark. Both the falling film microreactor 

and the micro bubble column were by far superior to the laboratory bubble column, 

and the best result was obtained using the falling film microreactor with 50% fluorine 

in nitrogen (Scheme 4.5). The authors also found that the para-fluoro toluene was 

predominantly obtained when using 50% fluorine, whilst 10% fluorine typically gave 

ortho-!meta-/para- ratio of 5:1:3. 

SCHEME4.5 

substrate : CH3CN 

(molar rratio) = 1 : 10 

19.S ml lhl"1 

50% f 2 / N2 (2.0 eq.) 

CH3CN, -16 °C 

FFMR 

76% conv. 

+ 

28% 9% 

Jensen also reported direct fluorination of toluene in a microreactor fabricated from 

silicon wafer, onto which a thin nickel layer was deposited. 224 The reactor consisted of 

two parallel reaction channels with a triangular cross-section, 435 1-1m wide, 305 IJ.m 
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deep, and 2 em long, which were capped with Pyrex metallised with nickel using 

anodic bonding. Direct fluorination of toluene using this microreactor was investigated 

at room temperature. Using 2.5 equivalents of fluorine and acetonitrile as the solvent, 

toluene was fluorinated in 58% conversion to give mono-fluorinated toluenes in 24% 

yield (Scheme 4.6). 

SCHEME4.6 

2.5% F2 I N2 (2.5 eq.) 

CH3CN (0.1 M), rt 

micro reactor 

58% conv. 

3.8: i.O: 2.1 

24% 

Direct fluorination of 4-benzylpyridine in a microreactor was reported by 

Schuppich. 225 The microreactor was made of Monel Metal and included a so-called 

fluid guidance plate (5 em in length and 7 em in width and 0.2 mm in thickness) which 

comprised a number of microchannels of 100 f.lm wide by 50 f.lm depth. Fluorination 

of 4-benzyl pyridine in CFC113 at -25 oc gave 2-fluoro derivative in 50% yield 

(Scheme 4.7). 

SCHEME4.7 

microreactor 

50% 

4.1.1.2 Other gas/liquid reactions using microreactors 

Schuppich and Wehle applied the microreactor described in the last section 

(Scheme 4.7) to a reduction and a chlorination (Scheme 4.8, 4.9)?25
'
226 The design of 

the microreactor allowed many reactors to be used simultaneously by inserting middle 

plates between the cover plate and the bottom plate (Figure 4.3). 
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FIGURE4.3 

bottom plate 

cover plate fluid guidance plate middle plate 

single plate microreactor multi plates microreactor 

The reduction of ethyl [N-(4-nitro phenyl)-hydrazino]-oxo-acetate (213) with 

hydrogen using the microreactor which included 10 fluid guidance plates gave ethyl 

[N-(4-aminophenyl)-hydrazino]-oxo-acetate (214) quantitatively (Scheme 4.8)?25 In 

this case, the bottom plate, cover plate and middle plates were made of graphite and 

the fluid guidance plates were made of graphite containing palladium. 

SCHEME4.8 

02N~ H- 1 ==H=2-=====Jto-

~~-N1f -oc2Hs CH30H I THF (3: 1) 

0 50°C 

microreactor with fluid guidance 
plate (graphite-palladium) quant 

Chlorination of acetic acid was carried out in the presence of acetyl chloride at 180 

oc using similar microreacter including 5 fluid guidance plates which was made of 

tantalum to give chloroacetic acid in an excellent selectivity (Scheme 4.9)?25
•
226 
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SCHEME4.9 

0 

)lOH 15 mol% AcCI, ~80 °C 

microreactor with fluid 
guidance plate {tantal) 

85% conv. 

0 

CIJOH 

>99% 

Chambers reported the oxidation of alcohols and Baeyer-Villiger oxidation of 

ketones using fluorine in the single channel microreactor (Scheme 4.1 0)?27 

SCHEME~.10 

CH3CN, rt 

microreactor 

HCOOH (5% H20), rt 

microreactor 

4.2 Device used to perform direct fluorination 

84% conv. 

74% yield 

60% conv. 

88% yield 

Direct fluorination reactions were carried out using a new multi-channel 

microreactor (V-21) which was developed in Durham most recently (Figure 4.4, 

4.5)?28 This new microreactor provides a versatile and practical multi-channel 

micro reaction system for gas/liquid two-phase reactions by virtue of the unique design 

features. The channels are created by three plates, namely a bottom plate, a channel 

plate and a PTFCE plate, which are sandwiched between a base block and a steel top 

plate. (Figure 4.6). The channel plate, which is made of a stainless steel sheet of 500 

J..lffi in thickness, possesses nine slits of 500 J..lm wide (Figure 4. 7). The base block is 

equipped with gas and substrate reservoirs which enable fluorine and substrate delivery 

into each microchannel from one source at a regulated temperature. These features 
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allow simple maintenance and great versatility for replacing the channel plate with 

another which has a different number of channels. 

FIGURE 4.4 Top-view of the V-21 base block 
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F][GlJRE 4.6 Plate arrangement ofthe V-21 

L ~ 
c=, ==========::::::t•~ ~ =========== Steel top plate 

~~:::~~~~~~~~~~~7 PTFCE plate ~ y Channel plate 

. =========== Bottom plate 

/ _/ ~ / PTFE gasket 

C::::=:::::::=•~===~=====:ij ~~~19_cq --· 
Gas reservoir Substrate reservoir 

FIGURE 4.7 The 9-ch microreactor channel plate 

3 x 3 0.5 mm Slots 
Separated By 3. 5 mm 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 

0 

0 

0 

0 0 

0 0 

0 0 

0 0 

Product outlet 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

Further details of design of this microreactor were described in the doctoral thesis 

of Darren Holling?28 

The microreactor is operated in a vertical position, unlike the single and three 

channel microreactors developed earlier in Durham (Figure 4.8, 4.9). 
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FIGURE 4.8 Schematic diagram of apparatus used for direct fluorination reactions 
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A mixture of substrate and solvent is introduced into the substrate reservoir at a 

continuous rate, typically 4.5 mLh-1 (= 0.5 mLh- 1ch- 1
), to distribute the solution to 

each channel whilst fluorine, as a 10% mixture in nitrogen, is introduced 

simultaneously into the channels via the gas reservoir, typically 90 mL min- 1 (= 10 mL 

min- 1 ch- 1
), using a mass flow controller. During the fluorination, all of the solution 

and fluorine mixing proceeds by 'pipe flow' (i.e. the liquid forms an outer 'pipe' 

coating the surface of the reaction channel with the gas flowing through the centre, 

Figure 4.10, 4.11) rather than slug flow (i.e. alternate slugs of liquid and gas, Figure 

4.1 0). Products were collected in a FEP bottle, which was cooled on ice bath and the 

more volatile components were trapped in another FEP bottle cooled with dry ice. 

FIGURE 4.10 

liquid 

~Flow direction 

Pipe flow Slug flow 
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FIGURE4.11 A close up view of the end of the channels in operation 

4.3 Direct fluorination of carbonyl compounds using microreactor technology 

4.3.1 Fluorination of 1,3-ketoesters using multi-channel microreactor 

Direct fluorination of 1,3-ketoesters using the multi-channel microreactor (V-21) 

have already been tested preliminarily.228 However, the effects of changing various 

parameters on the conversion or the selectivity have not been investigated 

systematically. There are many parameters that can affect conversion and yield in 

operation of microreactor, i.e. as follows: 

· Substrate concentration 

· Reaction temperature 

· Flow rate of substrate 

· Flow rate of fluorine 

·Solvent 

·Use of catalysts 

· Alignment of reactor 

According to previous experiments by the Durham group, direct fluorination of 

ethyl 3-oxobutanoate (196) under batch conditions gave not only ethyl 

2-fluoro-3-oxobutanoate (197) but also two difluoro derivatives, namely ethyl 
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2,4-difluoro-3-oxobutanoate (198) and ethyl 2,2-difluoro-3-oxobutanoate (199), m 

10% and about 1% yield respectively (Scheme 4.11).32 

SCHEME4.11 

196 

3.25 g 

0 

I batch conditions I 
10% F2 / N2 (2.0 eq.) 

HCOOH (50 ml) 
10 to 15 °C 

60% conv. 

0 0 0 

~OC2H5 + l/oc2H, + .Voc2H5 
f F F F F 

197 198 199 

80% 10% ca. 1% 

On the other hand, direct fluorination of 196 using the single channel microreactor 

gave rather less selectivity (197: 71%, 198: 12%, 199: 3% yield) although the 

fluorination proceeded in a quite high conversion (98% ). 221 Thus we have been 

interested in the effects of changing various parameters on the conversion or the 

selectivity of this reaction in the multi-channel microreactor and thought that the 

results would be helpful to choose appropriate conditions for fluorinations of other 

substrates. Consequently, direct fluorination of ethyl 3-oxobutanoate (196) was 

investigated using 9-channel microreactor (V-21-9) under various conditions, and 

thereafter fluorination of other systems using these results would be carried out. 

4.3.1.1 Fluorination of ethyl 3-oxobutanoate using multi-channel microreactor 

- A systematic study 

Using 9-channel microreactor (V-21-9), direct fluorination of ethyl 3-oxobutanoate 

(196) was carried out (Table 4.2). 
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1I'ABLJE. 4.2 Fluorination of ethyl3-oxobutanoate (196) using microreactor 

0 0 

)l_)lOC2Hs 

~96 

0.5 ml h"1ctf1 

(41.8 mmollh"1cRf1) 

substrate : IHICOOIHI 
:: 1 : 4 (molarr ratio) 

110% IF2 / i\!2 (41.4 eq.) 

(2.6 mmol hl"1ctu"1) 

HCOOH 
8 io 10 °C, ~8 h 

9ch-microrreactor 
(Va2~·9) 0 0 

+ rYoc,H, + 

GC 

0 0 

Vo~Hs 
F F 

199 

NIViR 

run % conv. %yield % conv. IJ"atio (i97/198/ 199) 

1 reaction mbrturre (before work up) 82 15 3 

crude 62 92 3 

2 reaction mixture (llle1ore work up) 83 14 3 

60 88 57 3 

Substrate solution was prepared by mixing ethyl 3-oxobutanoate (196) and 4 

equivalents of formic acid. The solution was passed through the microreactor at a rate 

of 4.5 mLh-1 in total (0.5 mLh-1ch-1
, 1.8 mmolh-1ch-1

) while fluorine was passed 

through the microreactor at a rate of90 mLmin-1 (10 mLmin-1ch-1
, 2.6 mmolh-1ch-1

). 

The conversions and yields calculated by GC analyses were thought not to be always 

precise because the peak corresponding to ethyl 3-oxobutanoate (196) is very broad 

and unresolved from that of the monofluorinated product (197). Hence, the conversions 

were also estimated by comparing the integration between the resonances of the methyl 

groups of ethyl ester and methylene group of the remaining starting material in 1H 

NMR. From the same reason, the ratios of the products were calculated by 19F NMR. 

In both experiments, the conversions were around 60%. Importantly, the reaction 

mixtures were analyzed by 19F NMR before work-up, and found to contain much more 

ethyl 2,4-difluoro-3-oxobutanoate (198). This fact implied that the side product 198 

was removed into the aqueous phase during the work up. Consequently, in the 

following experiments, the selectivity were evaluated by measuring 19F NMR of the 
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reaction mixtures before work up. 

41.3.1.1.1 

The concentration of the substrate solution was thought to be related to conversion 

and selectivity. Direct fluorination of ethyl 3-oxobutanoate (196) using the 

microreactor (V-21-9) was carried out using substrate solutions with different substrate 

concentration (Table 4.3). In each case, the same flow rate of the substrate solution was 

used. 

TABJLE 4.3 The fluorination ofethyl3-oxobutanoate (196) under different concentrations 

0 0 10% F2/N2 (10 ml min"1ch"1 = 2.6 mmol h"1ch"1) 

,)l_Jlot;Hs 
HCOOH, 7 to iO °C, 18 to '19 h 

196 
l9ch-microreactor (V-21-9) I 

0.5 ml h"1ch"1 

0 0 0 0 0 0 

Yo~Hs + Hoc2H5 
+ ~OC2H6 

F IF F F F 

197 '198 199 

substrate : HCOOH : F2 GC NMR 

entry (molar ratio) % conv. %yield % conv. ratio8 (197 I 198/ 199) 

1 1 2 1.2 36 91 40 74.8 : 22.1 3.1 

2b 1 4 1.4 62 86 60 82.6 : 14.7 2.8 

3 1 8 2.4 82 87 70 85.0 : 12.1 2.8 

4 1 16 4.1 74 88 76 86.9: 9.7 3.4 

5 1 32 7.4 66 90 69 88.2 : 9.5 2.3 

8 Evaluated from analyses of the reaction mixtures. b The conversions, yields, and ratios are 

averaged from several experiments. 

Results in table 4.3 show that as we used a more diluted solution of substrate the 

conversion tended to increase. However, a more important fact was that the selectivity 

was also improved with less concentrated solution, in spite of using a large excess of 

fluorine. 
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4.3.1.1.2 Effect of reaction temperature 

In general, reaction temperature is one of the crucial factors for selectivity in 

chemical reactions. Lower temperatures often give better selectivity. The effect of 

reaction temperature on the fluorination process was assessed and summarised in Table 

4.4. 

TABLE4.4 The fluorination of ethyl3-oxobutanoate (196) at different temperatures 

0 0 10% F2/ N2 (10 ml min"1ch"1 = 2.6 mmol h"1ch"1) 

,A_JlO~H6 
HCOOH, 18 to 19 h 

196 
l9ch-microreactor (V-21-9) I 

0.5 ml h"1ch"1 

0 0 0 0 0 0 

Yoc2Hs + Ho~Hs + ~OC2Hs 
F F F F F 

197 198 199 

substrate : HCOOH temperature GC NMR 

entry : F2 (molar ratio) (DC) % conv. %yield %conv. ratio8 (197/198/ _ln) 

1 1 2 1.2 7---8 36 91 40 74.8 : 22.1 3.1 

2 1 2 1.2 20 32 91 36 73.1 : 23.4 3.5 

3 1 4 1.4 1--3 59 83 56 80.4 : 16.2 3.4 

4b 1 4 1.4 8-10 62 86 60 82.6 : 14.7 2.8 

5 1 8 2.7 2--3 81 84 70 85.2 : 11.9 2.8 

6 1 8 2.7 8 82 87 70 85.0 : 12.1 2.8 

7 1 8 2.7 15-16 79 91 77 85.7 : 11.4 2.9 

8 1 16 3.7 8-9 74 88 76 86.9 : 9.7 3.4 

9 1 16 3.7 20 94 91 84 87.4: 8.6 4.0 

10 1 32 7.0 8---9 66 90 69 88.2 : 9.5 2.3 

11 1 32 7.0 20 85 92 83 88.2 : 8.5 3.3 

• Evaluated from analyses ofthe reaction mixtures. b The conversions, yields, and ratios are 

averaged from plural experiments. 
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A sharp difference of selectivity was not observed between 1 to 20 °C. More strictly, 

compared between entry 3 and 4, a lower temperature seemed to give slightly poorer 

selectivity. In the case of 1:8 (substrate/formic acid) solution, the selectivity was 

essentially the same ranging from 2 to 16 oc (entry 5, 6 and 7). The faint decrease of 

compound 198 was observed at higher temperature in diluted conditions comparing 

entry 8 with 9, and entry 10 with 11. In addition, the improvement of conversion was 

observed at higher temperature under diluted conditions (entry 7, 9 and 11). This 

tendency was not observed in concentrated solution (entry 1 and 2). These results were 

quite meaningful because a low reaction temperature was not necessarily required in 

order to obtain high selectivity. 

4.3.1.1.3 Effect of the flow rate of the substrate solution 

The number of equivalents of fluorine to substrate is one of the possible factors for 

changing selectivity. There are two ways to vary the equivalents of fluorine using a 

fixed concentration of substrate solution. One is changing flow rate of substrate, and 

another is that of fluorine. Table 4.5 shows the influence of changing the flow rate of 

substrate whilst keeping the flow rate of fluorine constant. 

TABLE 4.5 Effect of the flow rate of the substrate solution (1) 

HCOOH, 8 to 10 °C, 18 h 

l9ch-microreactor (V-21-9) I 
substrate: HCOOH 

(molar ratio) = 1 : 1 

flow rate of substrate GC 

1 1.0 0.42 (2.5) 55 

0.29 (1.7) 83 

72 

77 

NMR 

52 74.5 : 20.5 5.0 

77 70.5 : 23.5 6.0 

8 Evaluated from analyses ofthe reaction mixtures. b The conversions, yields, and ratios are 

averaged from jplural experiments. 
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The fluorination was carried out using a concentrated solution. The increase of the 

number of equivalents of fluorine by decreasing the flow rate of substrate was effective 

to lead to higher conversion but the selectivity became worse. 

A change of the flow rate of the substrate solution is thought to be also related to 

the flow regime. In general, the flow regime depends on the relative rates of liquid and 

gas flow, and pipe flow requires a fast flow rate of gas relative to that of liquid. 

Consequently, the increase of the flow rate of substrate could lead to change of the 

flow regime due to the decrease of the relative flow rate of fluorine. 

From this point of view, the effect of more drastic changes of the flow rate was 

investigated using a diluted solution (Table 4.6). 

TABLE 4.6 Effect of the flow mte of the substrate solution (2) 

HCOOH, 20 °C, 2.5 to 5 h 

substrate : HCOOH 
jech-microreactor (V-21-9) I 

(molar ratio)= 1 : 36 

flow rate of substrate GC NMR 
entry [ml h"1ch"1 (mmol h"1ch"1)] F2 (eq.) % conv. %yield % conv. ratio• (197 /198/199) 

1 0.49 (0.32) 8.1 84 87 84 87.1 : 9.7 3.2 

2 1.0 (0.64) 4.1 54 87 54 88.8: 8.7 2.5 

3 1.9 (1.3) 2.0 27 90 27 89.2 : 8.6 2..2 

4 3.9 (2.6) 1.0 15 90 15 90.2 : 7.8 2.0 

• Evaluated from analyses of the reaction mixtures. 

The fluorinations were carried out using various flow rates ranging 0.5 to 4 mLh-1ch-1
. 

Pipe flow could be observed even in the very fast flow rate. Although the influence on 

the selectivity was rather small, the conversion decreased sharply as the flow rate 
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increased probably due to decreased residence time in the reactor. 

4.3.ll..ll.41 Effect of the flow rate of fluorine 

Table 4. 7 shows the influence of the decrease of number of equivalents of fluorine 

by decreasing flow rate of fluorine. 

TABLE 4.7 Effect of the flow rate of fluorine 

HCOOH, 8 to 10 °C, 18 to 27 h 

l9ch-microreactor (V-21-9) I 
substrate : HCOOH 

(molar ratio)= 1 : 4 

flow rate of fluorine 

0 0 

rro~H& + 
f F 

198 

GC 

entry [ml min"1ch"1 (mmol h"1ch"1)] F2 (eq.) %conv. %yield 0.4 conv. 

1b 10 (2.6) 1.4 62 86 60 

2b 7 (1.8) 1.0 53 88 52 

NMR 
ratio8 (197 /198/199) 

82.6: 14.7 2.8 

80.7: 16.1 3.2 

8 Evaluated from analyses of the reaction mixtures. b The conversions, yields, and ratios are 

averaged from plural experiments. 

Interestingly, slightly less selectivity was obtained by the decrease of the flow rate of 

fluorine in spite of the decrease of the number of equivalents of fluorine. These results 

were in contrast to those shown in Table 4.5 and 4.6. 

4.3.1.1.4 Effect of the solvent 

The effect of solvents other than formic acid was evaluated and the results are 

summarised in table 4.8. 
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TABLE 4.8 Solvent effect in the fluorination of ethyl3~xobutanoate (196) 

0 0 10% f 2 / N2 (10 ml min"1ch"1 = 2.6 mmol h"1ch"1) 

~ OC2H5 
HCOOH, 7 to 9 °C, 5 to 19 h 

196 
jsch-microreactor (V-21-9) I 

0.3--0.6 ml h"1ch"1 

0 0 0 0 0 0 

Voc2Hs + Ho~Hs + ~OC2H5 
F F IF F F 

197 198 199 

substrate I solvent GC NMR 

entry solvent I F2 (molar ratio) % conv. % yield % conv. ratio8 (197 /198/199) 

1b HCOOH 1 4 1.4 62 86 60 82.6: 14.7 : 2.8 

2 CH3CN 1 4 1.5 27 76 36 62.0: 32.9 : 5.1 

3 HCOOH I CH3CNc 1 4 1.6 51 91 57 71.4: 25.5 : 3.1 

4d t-C4HgOH 1 4 2.4 36 67 
e 70.0: 24.5: 5.5 

5 CF3CH20H 1 4 2.4 66 69 79 62.6: 34.4: 3.0 

6 1 0 1.0 52 75 49 68.5: 25.3 : 6.2 

8 Evaluated from analyses of the reaction mixtures. b The conversions, yields, and ratios are 

averaged from plural experiments. c 1 : 1 mixture (mol/ mol). d The reaction was carried out 

at 20 °C. e The conversion could not be estimated due to the solvenfs resonaces. 

Acetonitrile 

In the direct fluorination of I,3-dicarbonyl compounds, acetonitrile is generally 

inferior to formic acid32
'
35 because the substrate can be enolised to a less extent in 

acetonitrile. As expected the fluorination of ethyl 3-oxobutanoate in acetonitrile using 

microreactor gave much less conversion compared with the case in formic acid (entry 

I and 2). In respect of the selectivity, the product contained substantial amounts of 

2,4-difluoro derivative 198. A I to I mixture of acetonitrile and formic acid was a 

better solvent system than acetonitrile alone, but the selectivity could not be improved 

sufficiently. 
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t-ButanoB 

As a rule, alcoholic solvents are unacceptable solvents for direct fluorination 

reaction because the hydroxyl group may Teact with elemental fluorine to give 

hypofluorite species, followed by decomposition to an aldehyde leading to the 

formation of complex by-products. However, tertiary alcohols can be applied to the 

direct fluorination because they can not be oxidised by elimination of HF. The 

fluorination using /-butanol in microreactor was carried out at 20 oc due to its 

relatively high freezing point (entry 4). Conversion was much less than the case of 

using only formic acid, even when using 2.4 equivalents of fluorine. 

2,2,2-Trifluoroetbanol 

2,2,2-Trifluoroethanol was also thought to be applicable to direct fluorination 

because it should not be oxidised, owing to the electron withdrawing effect of the CF3 

group. The fluorination in 2,2,2-trifluoroethanol gave a comparable conversion to the 

reaction in formic acid (entry 5). However, significant amounts of2,4-difluoro product 

(198) were obtained. 

No solvent 

As mentioned m the preceding sections, one of the striking features of the 

microreactor is the excellent heat removing ability. This benefit could enable the 

reaction to be carried out under quite concentrated conditions. In particular, the 

fluorination of liquid substrates without solvent in a microreactor is thought to be 

beneficial from the viewpoint of both industrial application and 'green chemistry'. The 

fluorination of ethyl 3-oxobutanoate (196) was carried out in the absence of solvent 

(entry 6). Around 50% conversion was achieved using only equimolar amounts of 

fluorine for this reaction although relatively less selectivity was observed. 

Ethy12-fluoro-3-oxobutanoate (197) 

The product itself can be utilised as a solvent if the product is stable enough 

towards further fluorination. The fluorination was carried out using a mixture of ethyl 

3-oxobutanoate (196) and the fluorinated products (197/198/199 = 97.1/1.1/1.8 in 19F 

NMR) (Scheme 4.12). 
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SCHEME 4.12 The fluorination of ethyl 3-oxobutanoate (1 96) using fluorinated products 
as a solvent 

~ ~O~H5 ~ JtJo~H5 
F F f f 

196 1!98 199 

34% (1H 1\!MIR) 197/198/199 = 97."i : i:V : 1.8 (19f NIVIR) 

0.5 ml ll1"1ctn"1 
:iii 1.2 mmo~ h"1cll11"1 

10% f2/ N2 

0 0 

)l_JlO~Hs 

196 

14% (1H NMR) 

0 0 

Yo~Hs 
F 

197 

(10 ml min"1ch"1 = 2.6 mmol h"1ch"1) 

8 °C, 18 h 

jsch-microreactor (Va21-9)j 

197' /198/199 = 90.7 : 5.7 : 3.6 (19F NMR) 

reaction mixiure 84.2 : 11.3 : 4.5 

After fluorination in microreactor, 14% of ethyl 3-oxobutanoate (196) still remained in 

the crude product. The 197/198/199 ratio changed to 90.7:5.7:3.6, although the reaction 

mixture, before work up, contained larger amounts of 2,4-difluoro product 198 (the 

197/198/199 ratio was 84.2:11.3:4.5). Assuming that no further fluorination of197 to 

198 or 199 occurred during the course of the reaction, the net conversion was 59%, and 

the selectivity was found to be 41.5/45.0/13.5 as a 197/198/199 ratio. The formation of 

large amounts of 198 suggested that the pathway from 197 to 198 could not be rejected. 

In order to prove the existence of this reaction pathway (197 ~ 198) the fluorination of 

pure 197 was carried out (Scheme 4.13). 
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SCHEME 4.13 The fluorination of ethyl 2-fluoro-3-oxobutanoate ( 197) 

21% conv. (GC) 

10% IF2/ N2 
(10 mL min-1ch-1 = 2.6 mmoi h-1ch"1) 

7°C,5 h 

JtJo~H5 
f f 

199 

J/oc~cH2f ~ 
IF 

215 

-225.6 ppm (m) 

J;OCHFCM, 
IF 

216 

-123.3 ppm (m) 

As expected, the reaction mixture of the fluorination of pure 197 using the 

microreactor included difluorinated products, and the 197/198/199 ratio was 

91.5:5.8:2.6. However, other difluoro systems, which could be recognised as 

compounds fluorinated at the ethyl group, 215 and 216, were preferentially obtained in 

this reaction. On the other hand, fluorination of the mixture of ethyl 3-oxobutanoate 

(196) and the fluorinated products described above gave less amounts of 215 and 216 

(197/198/199/215/216 = 75.5:9.6:4.1 :7.2:3.6). This difference of the product 

distributions were thought to be attributed to the existence of the much more reactive 

non-fluorinated system. The direct fluorination of 197 was also carried out under batch 

condition in order to confirm whether the product distribution was peculiar to the 

fluorination using the microreactor or not (Table 4.9). 
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TABLE 4.9 The fluorination of ethyl2-fluoro-3-oxobutanoate (197') under batch condition 

0 0 

~OC2Hs 
F 

197 

10% F2 / N2 (10 ml min-1) 

Ho8°C, 15 h 

I batch cond ltions I 

0 0 

Hoc2Hs 
F F 

'i98 

+ 

0 0 

.-JY-oc2Hs 
F F 

'i99 

entry 

substrate : HCOOH 

: f2 (molar ratio) conv. (GC, %) 

1.0 0 1.0 20 69.2 5.1 2.2 15.5 8.0 

1.0 0.1 1.0 10 71.3 5.'i 2.1 '15.7. 5.8 

8 Evaluated from analyses of the reaction mixtures. 

The direct fluorination of ~ 97 under batch condition without solvent gave a quite 

similar result to that in the microreactor (entry 1 ). The fluorination was thought to 

partially proceed via a radical process because catalytic amounts of formic acid, which 

should encourage electrophilic process, decreased the conversion (entry 2). 

4.3.1.11..4 Effect of tille catalyst 

As mentioned repeatedly in the preceding chapters, in batch conditions, late 

transition metal nitrates (copper, nickel, etc.) are effective catalysts for the fluorination 

of 1,3-dicarbonyl compounds?5 Therefore, fluorination of ethyl 3-oxobutanoate using 

nickel nitrate as a catalyst under batch conditions were attempted before applying this 

fluorination reaction to the microreactor (Table 4.10). In the absence of catalyst, the 

reaction gave only 44% conversion. 10 mol % Nickel nitrate accelerated the reaction to 

give 75% conversion. And so, this catalyst was employed for the fluorination of ethyl 

3-oxobutanoate using the microreactor (Table 4.11). The fluorination was carried out 

using 0.5 mol% and 4 mol% of nickel nitrate (entry 2 and 4). In both cases, the 

conversion and selectivity were not obviously improved (compared with entry 1 and 3). 

These results were probably caused by a relatively short residence time of the substrate 

compared with the time scale of the catalytic cycle. Copper nitrate could not be 

employed for this system owing to the formation of precipitates which blocked the 

micro reactor. 
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TABLE 4.10 Fluorination of ethyl3-oxobutanoate (196) under batch conditions 

196 

347mg 

entry 

1 

2 

10% F2/ N2 (2.0 eq.), catalyst (0.1 eq.) 

HCOOH (10 ml), 2 h 

I batch conditions I 

GC 

catalyst temperature (DC) %conv. 

16 

8-9 75 

• Evaluated from analyses of the reaction mixtures. 

0 0 

Voc2Hs 
f' f' 

199 

NMR 

% conv. ratio8 (197 /198/199) 

45 90.8 : 7.9 : 1.3 

73 87.8 : 6.3 : 5.9 

TABJLE 4.11 Catalyst effects in the fluorination of ethy13-oxobutanoate (196) using microreactor 

196 

0.5 ml h"1ch"1 

HCOOH, 8 to 10 °C, 19 h 

l9ch-microreactor (V-21-9ij 

+ 

substrate : solvent : F2 GC 

entry catalyst :catalyst (molar ratio) % conv. 

1 1 4 : 1.4: 0 62 

2 Ni(N03)2·6H20 1 4 : 1.5: 0.005 60 

3 1 : 32: 7.4: 0 66 

4 N I(N03l2·6H20 1 : 32 : 7.6 : 0.04 60 

8 Evaluated from analyses of the reaction mixtures. 

NMR 

%yield % conv. ratio• (197 /198 /199) 

86 60 82.6 : 14.7 : 2.8 

95 64 78.2 : 18.7 : 3.1 

90 69 88.2: 9.5: 2.3 

95 64 89.3 : 7.6: 3.1 
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4.3.1.11.§ Effect of the reactor aDRgnment 

In the fluorination using V-21 type microreactor, the horizontal alignment of the 

reactor is quite important, which means the channels should be precisely orthogonal to 

the horizontal plane because it is thought that the substrate solution needs to divide and 

flow equally between each channel. However, the importance of the vertical angle of 

the reactor had not been made clear. Therefore, the effect of the vertical angle of the 

reactor was investigated (Table 4.12). 

TABLE 4.12 The effect of the vertical angle of the reactor 

0 0 10% F2/ N2 (10 mL min"1ch"1 = 2.6 mmol h"1ch"1) 
)l_)l 

OC2Hs 
HCOOH, 8 to 10 °C, 19 h 

196 
19ch-microreactor (V-21-9)1 

0.5 ml h"1ch"1 

0 0 0 0 0 0 
substrate I solvent I F2 Vo~Hs + Hoc2Hs + ~OC2H5 
(molar ratio) = 1 : 4 : 1.5 f F f f F 

m 198 199 

GC NMR 
entry (} % conv. %yield % conv. ratio8 (197 /198/199) 

1 oo 57 92 60 77.9: 19.6 : 2.6 

2 so 37 93 41 78.9 : 18.6 : 2.4 

3 20 49 94 53 78.6: 18.8 : 2.6 

4 10 56 93 59 78.5: 19.0: 2.5 

5 oo 56 94 59 79.7: 17.7: 2.6 

6 -10 59 92 63 78.4: 19.0 : 2.6 

8 Evaluated from analyses ofthe reaction mixtures. 

The fluorination of ethyl 3-oxobutanoate (196) was carried out with different Bangles, 

which is shown above, between -1° and 5°. When IB I was 0 or 1, no obvious 

difference of conversion was observed (run 1, 4, 5 and 6). However, B more than 2° 

caused lower conversion (run 2 and 3), although the 197/198/199 ratio were almost 
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same in all cases. From these results IB I should be less than 2° to obtain the best result 

using this type of microreactor. 

4.3.1.1.6 Effect of cleaning the ll'eactor 

The microreactor should be cleaned occasionally because the channels gradually 

accumulate some scaling which disturbs the reagent flow. The fluorination of ethyl 

3-oxobutanoate (196) was carried out after cleaning to assess the effect on conversion 

and selectivity (Table 4.13). In this case, the cleaning involved disassembling the 

reactor and washing with acetone and water (see Appendix for the procedure). 

TABLE 4.13 The effect of cleaning the microreactor 

196 

0.5 ml h"1ch"1 

HCOOH, 8 to 10 °C, 19 h 

l9ch-microreactor (V-21-9) I 
substrate : F2 : catalyst 

(molar rratio) "' 1 : 4 : 1.5 

Before cleaning 

After cleaning 

entry 

1 

2 

3 

GC 

% conv. % yield 

56 94 

73 89 

14 93 

a Evaluated from analyses of the reaction mixtures. 

NMR 

% conv. ratio8 (197 /198/199) 

59 79.7 : 17.7 : 2.6 

75 77.0 : 20.2 : 2.8 

74 78.2 : 19.1 : 2.7 

Obviously, the conversion increased after cleaning although the selectivity slightly 

declined. The reactivity was thought to be closely connected to the condition of the 

surface of the reactor made by nickel as well as the reagent flow?21 Therefore, the 

increase of the conversion can be construed as a result partially derived from activation 

of the surface of the reactor. 
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41.3.li..Jl.7 lEffed of woll"lk UD.JPl 

As mentioned in section 4.3.1.1, ethyl 2,4-difluoro-3-oxobutanoate ('i98) was 

found to be removed into the aqueous phase to a considerable extent during the course 

of the work up. Thus, the ratio of products in each extraction during work up were 

analyzed by 19F NMR, and summarised in Figure 4.12. 

lFigure 4l.ll2 Work up procedure of fluorination of ethyl3-oxo-butanoate (196) 

reaction mixture I ratio = 197 I 1981 1991 
{substrate} I HCOOH 

products 

ca. 25g /63 g 
water 85: 12:3 : 
300ml 

I DCM 
extract 1 

200ml..J 94:4:2 21.9g 

I DCM extract2 
1.7 g 

100 mt.f 76:20:4 

I DCM extract 3 
0.5g 

100 mt.f 31:64:4 

aqueous 
phase 

organic 

[NaHC~J--
phase 24.1 g 

ca.120g 91:7:2 

r sat NaHC~aq. 
ca. 200 ml 

aqueous organic crude 
phase phase 23.2g 

pH= ca. 7 94:3:2 
24.3g 

93:5:2 

I DCM extract4 =-·- - . 

100 mL.f 32:68:0 
0.5g 

I DCM 
extract 5 

0.3g 
100m4 19:81:0 

I DCM extractS 
0.3g -

100 m_l..j 0:100:0 

aqueous 
phase 
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The ratio of compound 197, 198, and 199 was dramatically changed during the course 

of the work up. The initial ratio of products was 85/12/3, whilst the ftrst extract 

contained the mixture of products in the ratio of 94/4/2 and the proportion of 

compound 198 sharply increased in the latter extractions. Moreover, the compound 198 

was also found to be removed to some extent by washing with saturated sodium 

hydrogencarbonate solution. The ftnal ratio of the crude mixture obtained from the six 

extracts was 93/5/2. The effect of acidity or basicity of the solution used for the 

washing on the ratio of products was examined as shown in Figure 4.13. 

lFigure 4.11.3 I ratio = 197 I 198/ 1991 - - -
[ ] 

crude I H20 

88.3:7.3:4.4 1.. 92.4_: 3.7 : 3.9 ~ 
. 

[ sat NaCI ] 
t 89.3 : 6.3 : ~.4 ~ 

[ sat. NaHC03 ] 

192.7 : 3.5 : 3.8 ij 

[ sat NH4CI ] 

1 91.3 = 4.2 = 4.iJ 

( 10% KzC03] ( H20 J 
·196.4: 0.~: 3~~J 

[ 1N HCI J ( H20 J 
t 93.5_: 2.4:4.1 ~ 
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1 g of crude product was used for each test. The crude product was dissolved in 10 mL 

of dichloromethane and washed with 10 mL of various solutions ranging in pH from ca. 

1 to 12. 1 mL of samples were withdrawn from the resulting organic phase, evaporated 

and analyzed by 19p NMR. All aqueous solutions showed some effect for removing 

compound 198, and, particularly, basic solutions were effective to reduce the by

product. Thus, purification of 9 g of crude product using saturated aqueous sodium 

hydrogencarbonate and 1 0% potassium carbonate was demonstrated (Figure 4.14). 

FIGURE4.14 I ratio = lli I ru I .1!! I 
crude 9.0 g crude 9.0 g 

88.3:7.3:4.4 88.3:7.3:4.4 

DCM DCM 

100 ml 100ml 

sat NaHC03 
10% K~03 

50 ml x3 50ml 

sat NaCI 

50ml 

8.0 g 

92.8 : 2.9 : 4.3 7.6 g 

94.7: 1.7: 3.6 

Each crude product was dissolved in 100 mL of dichloromethane, washed with 

saturated sodium hydrogencarbonate or 10% potassium carbonate, dried over 

magnesium sulfate, and evaporated. In the case of 10% potassium carbonate, the 

organic phase was also washed with saturated sodium chloride to neutralise. In both 

cases, compound 198 was significantly reduced. Washing with 10% potassium 

carbonate was more effective to remove compound 198 rather than washing with 3 

portions of saturated sodium hydrogencarbonate. 

The fact that 2, 4-difluoro derivative 198 can be removed by washing with aqueous 

solution obviously suggests that it can be dissolved in aqueous media relatively easily 

compared with other fluorinated products. Although it is not easy to rationalise, a 

comparison of dipole moments of these compounds may be helpful to understand this 

phenomenon (Table 4.14). In general, dipole moment is closely related with 

211 



octanoVwater partition coefficient (log Pow), which is an index for lipophilicity (or 

hydrophilicity) of organic compounds and widely used in pharmacological and 

environmental research. 229 

1' AJ8lLE 4.141 Comparison of dipole moment of the fluorinated products 

0 0 0 0 0 0 

Voc2Hs (lyAoc2H5 ~OC2Hs 
f F f f F 

197 198 199 

dipole moment (debye)8 0.780 2.842 1.344 

8 Calculated from a structure optimized by a semiemplrlcal method [MOPAC (PM3)]. 

The dipole moments were calculated from structures which were optimised by a 

semiempirical method [MOPAC (PM3)]. The dipole moment of 2,4-difluoro system 

198 was found to be much larger than the others, which implied the more hydrophilic 

nature of this compound. 

~.3.1.] .. 8 Summary of results 

A summary of the effects of various parameters on the conversion and the 

selectivity in the direct fluorination of ethyl 3-oxobutanoate (196) using 9-channel 

microreactor which are discussed above is shown in table 4.15. The results showed that 

the intrinsic selectivity can be improved only by diluted conditions, which is not 

necessarily favourable for the efficiency of the production. Considering that washing 

by basic aqueous solution was quite effective for removing 2, 4-difluoro system which 

is a major by-product, the conversion should precede the selectivity in this reaction. In 

addition, it should be pointed out that the starting material is much more awkward to 

separate the desired product from the crude mixture because they possess very close 

boiling points. In concentrated conditions, the fluorine can be utilised more efficiently 

and a slow flow rate of substrate solution was effective to improve the conversion. Use 

of more concentrated fluorine gas should also be effective to increase the conversion 

without decrease of the hourly production, which has already demonstrated using the 

9-channel microreactor?28 It is also notable that the fluorination under neat conditions 

was successfully demonstrated. 
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TABLE 4.15 Effects ofthe various parameters in the fluorination ofethyl3-oxobutanoate (196) 

l9ch-microreactor (V-21-9) I 

parameter 

1 substrate concentration 

2 temperature 

3 flow rate (substrate) 

4 flow rate (fluorine) 

5 solvent 

6 catalyst 

1 vertical angle 

8 cleaning 

9 work up 

effects 

diluted concentration leads high conversion and 
improved selectivity 

higher temperature under diluted conditions gave 
better conversion and selectivity 

slow flow rate was effective to improve conversion 

decrease of flow rate caused less conversion and 
selectivity 

formic acid was the best solvent 
no solvent was also accessible 

no obvious effect 

101 < r was required for the best result 

increase of conversion 

washing by basic aqueous solution was effective 
for removal of 2,4-difluoro product 

4.3.1.2 Fluorination of other 1,3-ketoesters using multi-channel microreactor 

The direct fluorination using the 9-channel microreactor was applied to other 

1 ,3-ketoesters. 

Ethyl 2-oxocyclohexanecarboxylate ( 190) 

As described in the last chapter ethyl 2-oxocyclohexanecarboxylate (190) has 

large enol content and, hence, it was expected to be fluorinated more easily in the 

microreactor. The direct fluorination of ethyl 2-oxocyclohexanecarboxylate (190) was 

carried out using standard microreactor conditions (Scheme 4.14). 
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§CHEMJE 4.141 

0 0 

~OC,H5 
10% IF2/ N2 
(10 ml min"1ch"1 = 2.6 mmollh"1ch"1) 

HCOOH , 8--9 °C, ~ 9 h 

l9ch..microreactor (V21-9) I 

substrate: solvent: F2 (molar ratio)= 1.0:4.0: 1.7 

90% conv. 

82% GC yield 

Substrate solution was prepared by mixing ethyl 2-oxocyclohexanecarboxylate (190) 

and 4 equivalents of formic acid. The substrate solution and fluorine was passed 

through the microreactor at a standard rate, which is 0.5 mLh-1ch-1
, 10 mLmin-1ch-1 

respectively. The substrate/fluorine ratio was 1.0:1.7, and 90% conversion and 82% 

yield was achieved. 

Ethyl 2-clliloi"o-3-oxobutanoate (200) 

Ethyl 2-chloro-3-oxobutanoate (200) is much less reactive than ethyl 

3-oxobutanoate (196).32 The direct fluorination of 200 was carried out using a I to 4 

mixture (molar ratio) of substrate and formic acid and a rather slow flow rate (Scheme 

4.15) 

SCHEME4.15 

Voc.H, 
Cl 

10%F2 /N2 

(10 ml min"1ch"1 = 2.6 mmol h"1ch"1) 

HCOOH , 8 °C, 5 h 

200 

0.28 ml h"1ch"1 

I 9ch-microreactor (V21-9) j 

sllJbstrate : solvent : F2 (molar ratio) = 1.0 : 4.0 : 2.8 

36% conv. 

65% GC yield 

The conversion was estimated to be 36%, which was much lower than the case of 

using the single channel microreactor. This could be attributed to the material of the 

groove. The channels of multi-channel microreactor (V-21) is composed of one nickel 
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base, two stainless walls and one PTFCE top, whilst the channel of the single channel 

microreactor consists of three nickel walls and one PTFCE top. Considering that nickel 

was thought to accelerate the enolisation process, it was relevant that the number of 

nickel walls affected the conversion. 

4.3.2 Fhnorination o1l' 1,3-dnestell"S using mullitd-cllumneB micro reactor 

As described in chapter 1, the direct fluorination of 1,3-diesters is more demanding 

to achieve under conventional batch conditions because of the lower reactivity than 

1,3-ketoesters?1 Indeed, usually sodium salts of parent diesters or transition metal 

catalysts are required for the reactions with elemental fluorine. 34
•
35 Therefore, the direct 

fluorination of malo nates was investigated using the microreactor. 

4.3.2.1 Dietlllyl malonate (217) 

The fluorination of diethyl malonate (21'1) was carried out using formic acid as a 

solvent (Table 4.16). 

TABLE 4.16 The fluorination of ethyl malonate (217) using microreactor 

u C2H60 OC2Jis 
217 

0.5 ml h"1ch"1 

HCOOH,19 h 
r-19_c_h_-m-ic-ro-re_a_ct_o_r_(V_2_1_-9--,) I 

substrate: solvent: F2 (molar ratio)= 1.0: 16: 4.3 

0 0 

C2H5oVoc2H5 + 
F 

218 

entry Temperature (°C) 

1 8-9 

2 20 

% conv. (GC) 

24 

20 

2 59 : 39 

2 62 : 37 

Although the reactions were carried out at two different temperatures, only about 20% 

conversion was obtained in both cases. The desired diethyl2-fluoromalonate (218) was 

obtained as a minor product. Two major fluorinated products could be assigned to the 
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compounds fluorinated on the ethyl group, namely 2-fluoroethyl ethyl malonate (219) 

and 1-fluoroethyl ethyl malonate (220), from the chemical shifts in 19F NMR (-225.2 

and -123.8 ppm, respectively). The low reactivity ofthis substrate could be ascribed to 

the low enol content. However, the predominant formation of the by-products, 2~9 and 

220, could not be elucidated easily by only considering the electron densities of the 

hydrogen atoms in each position because a calculation by semiempirical method 

[MOPAC (PM3)] indicated that the hydrogens in 2-position possessed higher electron 

densities (+0.18) than the others in the ester group (CH2: +0.13, CH3: +0.12). 

Next, the effect of catalyst was investigated in this system. The substrate solution 

were prepared as a diluted solution by mixing substrate, copper nitrate and acetonitrile, 

and the solution was passed through the microreactor at a 4 times faster flow-rate than 

the previous experiment (Scheme 4.16). 

§OIEME4.16 

0 0 

C2H50Jl__)l.OC2H5 

ill 

2.0 ml h'1ch"1 

2 mol% Cu(i\I03)2·2.5H20 

10% F2/ i\12 (10 ml min"1ch"1 = 2.6 mmol h"1ch"1) 

CH3CN, 5 °C, 5 h 
.-I -9c-h--m-ic-ro-re_a_ct_o_r_(V_2_1--9.....,) I 

substrate: solvent: F2 (molar ratio)= 1.0:64:4.6 

0 0 

C2H5oVoc2Hs + 
f 

218 

19% conv. (GC) ratio (218/219/220) = 38 : 2: 59 (19F i\IMR) 

In this case, 2-fluorinated compound was obtained as a main product, although large 

amounts of compound 220 still accompanied the desired product. The conversion was 

1 ~/o, which was same as that of previous experiment in absence of catalyst using 

formic acid. The same catalyst could not be employed for the fluorination of 21'7 using 

formic acid as a solvent owing to formation of considerable amounts of precipitates. 

The significant increase of the 2-fluoro derivative 2~ 8 is obviously owed to the 

acceleration of the enolisation process by the catalyst. The emerged difference of the 

reactivity between the two positions in ethyl group may be caused by the change of the 

electron density by the coordination to the copper species. 35 
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---- ---------------------

~.3.2.2 DimetiiDyH maBorrnall:e (221) 

Dimethyl malonate (221) was also employed as a substrate because decreased 

amounts of side products could be expected owing to reduced number of C-H sites in 

the ester groups. Firstly the reaction was carried out using formic acid as a solvent 

(Scheme 4.17). 

§CJHIEME <8.1 i The fluorination of dimethyl malonate (221) using rnicroreactor 

0 0 
HaCOJl__)lOCH3 

221 

0.5 ml h"1ch"1 

HCOOH, 8-9 °C, 19 h 

l9ch-microreactor (V21-9) I 
substrate: solvent: F2 (molar ratio)= 1.0: 16:4.0 

+ 

4% conv. (GC) ratio (222/223) = 9 : 91 (19F I\IMR) 

A quite low conversion was obtained, and the main product was thought to be 

fluoromethyl methyl malonate 223 from the analysis of chemical shifts in 19F NMR. 

The fluorination of dimethyl malonate (221) was also carried out using acetonitrile in 

the presence and absence of catalyst (Table 4.17). 
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TABLE 4.1 i The fluorination of dimethyl malonate (221) using microreactor 

2 mol% catalyst 

u 10% F2 / N2 (10 ml min'1ch'1 = 2.6 mmol h'1ch'1) 

H3CO OCH3 
CH3CN, 5-6 °C, 5 h 

221 

2.0 ml h'1ch'1 
I 9ch-microreactor (V21-9) I 

substrate : solvent : F2 (molar ratio) = 1.0 : 64 : 4.6 

0 0 

H3coVocH3 + 
F 

222 

entry catalyst 

1 

2 

3 

% conv. (GC) 

2 

9 

13 

0 0 

+ H3coVocH3 
F F 
224 

42:50 7 

80: 12 7 

81 : 13 6 

The fluorination in acetonitrile without catalyst gave only 2% conversion (entry 1 ). In 

the case of using catalyst, 80% of selectivity was observed (entry 2, 3), although low 

conversions were still obtained. Copper nitrate gave a slightly better result than nickel 

nitrate. 

4.3.2.3 2,2-Dimethyl-1,3-dioxane-4,6-dione (Meldrum's acid) 

2,2-Dimethyl-1,3-dioxane-4,6-dione (Meldrum's acid, 225) is a well-known cyclic 

malonate which has a highly acidic proton, and is easily enolised. Therefore, we hoped 

that the substrate would be more reactive towards elemental fluorine than acyclic 

malonates. The fluorination of 2,2-dimethyl-1,3-dioxane-4,6-dione (225) using formic 

acid failed due to decomposition of the substrate. Therefore, acetonitrile was employed 

as the solvent for the fluorination, and gave 15% conversion (Scheme 4.18). 
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SCHEME4.18 

CH3CN, 6-8 °C, 19 h 

225 I 9ch-microreactor (V21-9) 

0.5 ml h"1ch"1 

substrate: solvent: F2 (molar ratio)= 1.0: 16: 5.3 

+ ?'X.? 
0~0 

F F 

226 227 

15% conv. (GC) ratio (226/227) = 99: 1 (19F NMR) 

(reaction mixture 226/227 = 82 : 18) 

The products were monofluorinated and difluorinated compound (226 and 227), and 

the ratio was 99: 1. However, the reaction mixture involved much larger amounts of 

difluorinated adduct. This was thought to be caused by decomposition of the products 

into the free carboxylic acid derivatives during the work up. The same reaction was 

carried out in the presence of 2 mol% of nickel nitrate (Scheme 4 .19). Some 

precipitates formed in the substrate solution, but 4 or 5 channels were blocked by 

precipitates during the reaction. 
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------------------- - - - -

§CI8LEME ~.19 

2 mol% Ni(N03)2·6H20 

'iO% F2 / N2 (10 ml min"1ch"1 = 2.6 mmol h"1ch"1) 

CH3CN, 3--4 °C, 19 h 

225 I 9ch-microreactor (V2'i -9) 

0.5 ml h"1ch"1 

substrate :solvent: F2 (molar ratio)= 1.0 : 'i6 : 5.3 

work up B 

reaction mixture 
rt, 3 days 

+ 

50% conv. (1H NMR) ratio (226/227) = 98 : 2 (19F NMR) 

(reaction mixture 226 I 227 = 68 : 32) 

+ 

0 0 

H3coVocH3 
F F 
224 

66% conv. (GC) ratio (222/224) = 69 : 31 (19F NMR) 

71% yield (GC) 

In this case, the reaction mixture was divided into two parts. One half was treated with 

water as usual to give the crude product, and the ratio .2.26/227 was 98:2. The other half 

was mixed with· methyl alcohol and stirred for 3 days. The reaction mixture gave a 

mixture of fluorinated dimethyl malonates after aqueous work up. The conversion was 

estimated to be 66%, and the ratio 222/224 was 69:31, which was consistent with the 

ratio 226/227 of the reaction mixture before the treatment. The transformation of cyclic 

malonate to dimethyl malonate can easily be achieved by treatment with methyl 

alcohol and catalytic amounts of sulfuric acid under reflux condition230 (Table 4 .18). 
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TABLJE 4.18 The fluorination of2,2-dimethyl-1,3-dioxane-4,6-dione (225) using microreactor 

o'X.o 
0~0 

m 
2.0 ml h"1ch"1 

work up A 

reaction mhdu re 

work up B 

reaction mixture 

2 mol% catalyst 

10% F2 /N2 (10 ml min"1ch"1 = 2.6 mmol h"1ch"1) 

CH3CI\!, ~ °C, 5 h 

I 9ch-microreactor (V21-9) 

substrate: solvent: F2 (molar ratio)= 1.0 : 6&8: ~:1 

1) CH30H, cat.H~04 
reflux, 2 h 

2) H20, l\laHC03 

+ 

0 0 

HscoVocH3 + 
f 

222 

0 0 

HscoVocHs 
F F 

224 

work up A work up B 

entry catalyst % conv.8 ratio (226/227)b % conv.c %yield (222)c ratio (222/224)b 

6 100:0 26 79 83:17 

94:6 50 74 72:28 

8 Estimated by 1H I\! MR. b Estimated by 19F I\! MR. c !Estimated by GC. 

The fluorination was carried out using a diluted solution and fast flow (2.0 mL h-1 

ch-1
). This condition was effective to reduce the formation of precipitates and blockage. 

When the new work up method was employed (work up B), 26% conversion was 

observed even in no presence of the catalyst (entry 1 ). In the case of using 2 mol% of 

catalyst, the conversion increased to 50%. This acceleration was not observed in the 

fluorination of ethyl 3-oxobutanoate (196). Therefore, the rate constant of the 

enolisation of 2,2-dimethyl-1,3-dioxane-4,6-dione (225) in the presence of nickel 

nitrate is thought to be larger than that of ethyl3-oxobutanoate (~96). 

To the best of our knowledge, the direct fluorination of Meldrum's acid has only 

been achieved by using the hydroxymethylenated derivative at very low 

temperature?31 In addition, this is one of few examples of a homogeneous catalytic 

reaction in a microreactor, 232 although further optimisation was required to resolve the 
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problem ofthe precipitation. 

41.3.3 Fluorination off other carbonyl compm.mds using multi channel 

micm react01r 

a-Fluorination of a simple ketone in the microreactor was also investigated using 

1-cyclohexen-1-yl acetate (228) as the substrate. 

41.3.3.1 1-Cydobexen-1-yll acetate (228) 

The direct fluorination of 1-cyclohexen-1-yl acetate (228) was carried out using 

both acetonitrile and formic acid (Table 4.19). 

TABLE 41.19 The fluorination of 1-Cyclohexen-1-yl acetate (228) using the microreactor 

0 

0~ 

6 
10% F2 / N2 

(10 mlmln'1ch"1 = 2.6 mmol h"1ch"1) 

6---9 °C, 5 h 

228 9ch-microreactor (V21-9) 

0.5 mlh"1ch"1 

solvent substrate : solvent : F2 (molar ratio) 

1 6 : 2.6 

HCOOH 1 12 : 3.2 

cf. (batch cond itlon )33 

CH3CN 1 48 : 2.5 

HCOOH 1 66 : 3.2 

% conv. % yield (GC) 

98 67 

100 65 

>95 56 

75 71 

The reactions of 1-cyclohexen-1-yl acetate (228) with the same equivalents of fluorine 

in the microreactor gave comparable conversions and yields to those of batch 

conditions. 33 

4.4 Conclusions 

In summary, the capacity of the Durham multi channel microreactor (V-21) for the 

direct fluorination of carbonyl compounds has been demonstrated. 

Effects of various parameters on the conversion and the selectivity in the direct 
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fluorination of ethyl 3-oxobutanoate (196) using a 9-channel microreactor were 

investigated systematically. The results showed dilute concentrations of the substrate 

solution and higher temperatures were effective for improving both conversion and 

selectivity. Decrease of flow rate of the substrate was found to also be effective to 

increase conversion. Other 1,3-ketoesters were successfully fluorinated using 

conditions carefully chosen on account of the reactivity of the substrate. 

The fluorination of the acyclic malonates was found to be difficult, whereas a 

cyclic malonate derivative (225) could be fluorinated by using nickel nitrate as a 

catalyst. Fluorinated dimethyl malonate (222) was obtained by simple treatment of the 

reaction mixture with methanol in the presence of catalytic amounts of sulfuric acid. 

The direct fluorination of 1-cyclohexen-1-yl acetate (228) was demonstrated by 

using both acetonitrile and formic acid to give a-fluorinated cyclohexanone (229) in 

comparable conversions and yields to the batch conditions. 
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ChapterS 

Miscellaneous Reactions 

5.1 Introduction 

Miscellaneous reactions which are not included in other chapters and preliminary 

experiments are collected in this chapter in order to be kept as a record. 

5.2 Direct fluorination in ionic liquids 

5.2.1 Introduction 

Recently, the use of ionic liquids, which are organic salts with a low melting point, 

as alternative solvents has attracted growing interest to meet the need for 

environmentally friendly and cost-effective processes. 233 In particular, ionic liquids 

have intrinsically negligible vapour pressure and provide good solubility for a wide 

range of organic, inorganic, and organometallic compounds. Moreover, immobilisation 

of transition metal catalysts in ionic liquids allows not only recovery and reuse of 

catalysts but also simple work-up procedures and straightforward isolation protocols 

for products. 234 

As mentioned in the preceding chapters, some electrophilic fluorination reactions 

have already performed in ionic liquids/06
'
188

•
199 however, all reactions utilised N-F 

reagents and elemental fluorine have never been used in ionic liquids. We have been 

interested in the use of elemental fluorine in ionic liquids because ionic liquids with 

noncoordinating anions represent highly polar organic solvents that may be good 

solvents for direct fluorination. This section is concerned with direct fluorination using 

ionic liquids as replacements for conventional organic solvents. 

5.2.2 Preparation of ionic liquids 

Several ionic liquids which have a bis[(trifluoromethyl)sulfonyl]amide as the 

counter anion were prepared because: 

(i) These types of ionic liquids generally possess a highly hydrophobic nature (water 

washable to remove HF), low melting points ( <0 °C), and small viscosities. 235 
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(ii) Bis[(trifluoromethyl)sulfonyl]amide ion can potentially react with elemental 

fluorine to form N-F species, 69 which may enable fluorination to proceed more 

selectively (Scheme 5.1 ). 

§Cll[EME5.1 

F2 + ----t> ~N f- + f-N(S02CF3)2 

ionic liquid ? 

Methyltrioctylammonium bis[ ( trifluoromethyl)sulfonyl] amide 

([OcJNMe][N'ffz], 230) Methyltrioctylammonium bis[(trifluoromethyl)sulfonyl] 

amide (230) was prepared from Aliquat® 336 and lithium bis[(trifluoromethyl) 

sulfonyl] amide (Scheme 5.2)_236 

§CHEME5.2 

230 

93%yield 

acetone 
rt, 24 h 

+ liCI • 

Aliquat® 336 (methyltrioctylammonium chloride) was treated with lithium 

bis[(trifluoromethyl)sulfonyl]amide in acetone to give [Oc3NMe][NTf2] (230) in 93% 

yield after filtrations to remove the precipitate Oithium chloride) and drying under 

reduced pressure. An orange viscous oil was obtained. 

1-Butyl-3-metBnylimidazoliunn bis [ ( trifluoromethyl)sulfonyl] amide 

([Bmim][N'ff2], 231) 1-Butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] 

amide (231) was prepared by a similar procedure to [Oc3NMe][NTf2] (230) (Scheme 

5.3)_235 
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§CJHIEME 5.3 

23i 

98% yield 

The amon exchange reaction was carried out in water using 1-butyl-3-methyl 

imidazolium bromide and lithium bis[(trifluoromethyl)sulfonyl]amide. The desired 

ionic liquid [Bmim][NTf2] (231) was obtained as a less viscous yellow oil than 230 in 

98% yield. 

n.-Buntyll-4-meltllnyllpyrndiniunm ll>is [ ( trifluorom etllnyll)sulllfmnyD] amide 

([Bmp] [NTf2], 232) 1-Butyl-4-methylpyridinium bis[ (trifluoromethyl)sulfonyl] 

amide (232) was prepared using a similar method to [Oc3NMe][NTf2] (230) and 

[Bmim][NTf2] (231) (Scheme 5.4).237 

SCHEME SA 

CH3CN 
111:,4 d 

232 

87% yield! 

The reaction of 1-butyl-4-methylpyridinium chloride with lithium bis[(trifluoromethyl) 

sulfonyl]amide in acetonitrile afforded the desired ionic liquid [Bmim][NTf2] (231) in 

87% yield. 
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5.2.3 Direct fluorination of carbony! compounds in ionic liquids 

Methyltrioctylammonium bis[ ( trifluoromethyl)sulfonyl] amide 

([Oc3NMe] [NTf2], 230) Methyltrioctylammonium his[ ( trifluoromethyl)sulfonyl] 

amide (230) seemed to be too viscous to carry out direct fluorination. Thus, 

alternatively, direct fluorination of this ionic liquid in acetonitrile was carried out to see 

whether an N-F species was formed in situ (Scheme 5.5). Treatment with equimolar 

amounts of elemental fluorine gave no obvious N-F species by analysis of the 19F 

NMR spectrum of the reaction mixture (reaction mixture A). Ethyl 3-oxobutanoate 

(196) was added to the reaction mixture, and fluorinated with elemental fluorine to 

give a mixture of fluorinated products. 

SCHEME5.5 

+ 
(n-C8H17 )3NCH3 

N(S02Cf3h 

230 

0.5 g (0.8 mmol) 

196 (2.8 mmol) 

10% F2 I N2 (0.8 mmol) 

CH3CN (10 ml), 0 °C 

reaction mixture B 

( reaction mixture A J 
no N~F species detected 

by 19F NMR 

10% F2 I N2 (5.3 mmol) 0 0 

~OC2H6 + 
F 

0 0 

~OC2H6 + 

0 0 

~OC2H5 
F F 

CH3CN, 0°C 

197 

7%yield 

F F 

198 

3%yield 

(estimated by 19F NMR) 

199 

1%yield 

N~ species (-32.9 ppm) was observed in 19F NMR 

The yield was calculated by 19F NMR., comparing the integration with the resonance of 

the counter anion of the ionic liquid (NTi). The low yield may be attributed to the 

diluted conditions with mainly acetonitrile as the solvent. A resonance which could be 

assigned as the N-F species was observed at -32.9 ppm (lit.69
, -33.5 ppm) in 19F NMR. 

of the reaction mixture B, although selective formation of 2,2-difluoro derivatives was 

not observed unlike fluorinations of 1,3-dicarbonyl compounds with excess amounts of 

(CF3S02)2NF as mentioned in section 1.2.5.1.1 (See scheme 1.25). 
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ll-Butyi~J~methylhnidazoDhnm bis[(trifluornmethyB)sudfoDllyD]amidle 

([Bmim][NTf2], 2311) The direct fluorination of 1-cyclohexen-1-yl acetate (228) 

was carried out using 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] 

amide (23"1) as a solvent (Scheme 5.6). 

§CHJEME5.6 

228 

4mmol 

'N(fj'N~ (231, 10 ml) 
e./ 

-N(S02CF3)2 

229 

65%yield 

(
19F NMR, reaction mix.) 

The substrate could be dissolved in the ionic liquid and the fluorination could be 

conducted at low temperature (1 to 2 °C). The reaction mixture contained desired 

2-fluoro-cyclohexanone (229), but work up which involved extractions with five 

portions of hexane and vacuum transfer was unsuccessful. The yield was estimated to 

be 65% by comparing the integration for the product's resonance (-188.7 ppm) with 

the resonance of the counter anion of the ionic liquid (NTf2 -) in the 19F NMR spectrum 

of the reaction mixture. The residual ionic liquid became a dark brown colour after 

heating, and still contained some fluorinated products. The discolouration of the ionic 

liquid can be attributed to a decomposition which was described in a recent report of 

our research group238 as illustrated in scheme 5. 7. 

SCHEME5.7 
-

F 

===)!!> + F~t 

An improved work up procedure involving an appropriate method for isolating the 

product and removal of HF was thought to be required. Moreover, using imidazolium 

as the cation part of the ionic liquid may be a problem because one of the nitrogen 

atoms can still be quarternised. Thus, fluorine can potentially react with the nitrogen 

rather than substrate to give a diammonium salt as shown in scheme 5.8, although such 
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species may act as an electrophilic fluorinating agent. Actually, some unidentified 

resonances which could be ascribed to such species were observed between +25 and 

+52 ppm in 19F NMR of the reaction mixture. 

SCHEME5.8 

'N§'N~ 
\::::J 

N(SO:zCF3h 

231 

f 

or 

1-Butyl-4-methylpyridinium bis[(trifluoromethyl)sulfonyl]amide 

([Bmp][NTfz], 232) The direct fluorination of ethyl 2-oxocyclohexanecarboxylate 

(190) in 1-butyl-4-methylpyridinium bis[(trifluoromethyl)sulfonyl]amide (232) was 

carried out at 0 oc (Scheme 5.9). 

SCHEME5.9 

0 0 

~OEt 
190 

1 mmol 

cf. 

0 0 

~OEt 
190 

2mmol 

10% F2 / N2 (3 eq.) 

~+ (232, 10 ml) 
~r\1~ ooc 

N(S02CF3):z 

83% conv. 

10% F2 / N2 (3 eq.) 

87% conv. 

0 0 

l:J}oet 
193 

88% 

0 0 

l:J}oa 
193 

73% 

The substrate was soluble in the ionic liquid 232. The reaction mixture was diluted 

with dichloromethane and washed with deionised water five times to remove HF. The 

resulting solution was heated at 200 oc under reduced pressure (0.6 mbar) and volatile 

components were condensed in a cold trap which was cooled with liquid nitrogen 
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( -196 °C). A crude product was obtained from the cold trap and the conversion and 

yield were determined by GC analysis to be 83% and 88% respectively, which was 

comparable to that using acetonitrile as the solvent. The residual ionic liquid coloured 

dark brown to similar extent compared with the case of the previous experiment but no 

change was observed in 1H and 19F NMR analyses. 

5.2.4 Conclusion 

Several ionic liquids which possess a bis[(trifluoromethyl)sulfonyl]amide as anion 

part were prepared and evaluated as alternative solvents for direct fluorination of 

carbonyl compounds. Methyltrioctylammonium bis[(trifluoromethyl)sulfonyl] amide 

(230) did not show enough fluidity to be used for direct fluorination, which is a 

gas/liquid interfacial reaction. On the other hand, 1-butyl-3-methylimidazolium bis 

[(trifluoromethyl)sulfonyl]amide (231) and 1-butyl-4-methylpyridinium bis[(trifluoro 

methyl)sulfonyl]amide (232) were successfully used as alternative solvents for direct 

fluorination of carbonyl compounds. However, the current work up procedure is not 

practically convenient and requires improvement. 

The use of ionic liquids as reaction media for direct fluorination reaction can 

potentially enable some unique fluorination systems. For instance, immobilisation of 

precursors of N-F reagents in ionic liquids can provide reusable N-F reagents (Figure 

5.1). 

FIGURES.! 

ionic liquid · 

N·F 
precursor 

.. 
(CH3)3~ift 

~t 
F 

N~F r4ulgent 

recycle 

An immobilised precursor is fluorinated with elemental fluorine to give an N-F reagent, 

which fluorinates a substrate added to the system. After an isolation step, the ionic 

liquid phase involving the precursor can be reused for the next reaction cycle. 

The use of trimethylsilyl enol ether as a substrate would be particularly advantageous 
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because formation of the troublesome HF can probably be avoided. Moreover, a 

reusable enantioselective fluorination reaction system can also potentially be realised 

when using cinchona alkaloids as the precursors. This system can be superior to the 

reported system188 as mentioned in section 3.1.1.1 because no accumulation of the side 

product derived from another N-F reagent (i.e. Selectfluor or NFSI). 

5.3 ID>ired 111hlROII"illlla\ltDoiiTl oll' tllnioaiiD.isoie usillll.g llllllicroll'eatetoJr tetellniiD.oHogy 

5.3.1 llimtroduu:tiollll 

Trifluoromethylation is quite an important technique in organic chemistry as well 

as fluorination.239 A number of methods for the introduction of the trifluoromethyl 

group into organic molecules have been reported, in particular, (trifluoromethyl) 

trimethylsilane (TMS-CF3) ts one of the most versatile nucleophilic 

trifluoromethylating agents. 240 

Since TMS-CF3 was first prepared by Ruppert241 in 1984, several other preparation 

methods of this agent, involving both chemical and electrochemical methods, have 

been developed, however, all of these methods are not practically satisfactory. 

Quite recently, Prakash reported a new efficient method for the preparation of 

TMS-CF3 (Scheme 5.8). 242 

SCHEME5.8 

or 

0 

O=S-CF 
II 3 
0 

237 

+ 
DMF 

0°Ctort 
81-83% yield 

The reaction of sulfoxide 233 or sulfone 237 with trimethylsilane was mediated by 

magnesium metal in DMF to give TMS-CF3 in good isolated yield. Moreover, this 

method allows the preparation of (difluoromethyl)trimethylsilane, which enables 

access to relatively less explored difluoromethylated compounds. Phenyl 

trifluoromethyl sulfoxide (233) or sulfone (237) are commercially available but very 

expensive. They can be prepared by several methods using less expensive starting 

material, 243-245 however, they are all multi-step syntheses. 
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On the other hand, Kaneko reported direct fluorination of methyl phenyl sulfoxide 

(234) (Scheme 5.9).246 

§ClHIEMJE 5.9 

0 5% f 2/ N2 (2.5 eq.) 
o-s-CH3 

CH3Ci\l, -20 °C 
234 

0 0 0 0 
o-§-cH2F {- O=*~CHf2 {- Q=§-cF3 ? Q=s-CH II 3 

0 0 0 0 

235 236 237 238 

21% yield 12% yield! 8% yield 23% yield 

The fluorination reaction of methyl phenyl sulfoxide (234) with 2.5 equivalents of 

elemental fluorine gave a mixture of fluorinated and non-fluorinated sulfones including 

phenyl trifluoromethyl sulfone 237. A mechanism of the formation of these products 

was proposed as scheme 5.10. 

SCHEME 5.10 

0 
Q=s-CH3 

234 

Fz 0 Qs-CHF I> 
' • 2 

f F 

! H20 

0 Q=s-CH F II 2 
0 

235 

==Ill!> 
----!!l> 

-Hf 

0 0 
Qs-CHf ~ Qs-CF ' • 2 ~ ' • 3 

f F f F 

! H20 ! H20 

0 0 
Q=s-CHF Q=s-cf II 2 II 3 

0 - 0 

236 237 

232 



This mechanism involves oxidative fluorination of the sulfur centre, 

dehydrofluorination, and addition of fluorine to unsaturated intermediates. Repetition 

of the similar reaction sequence gives each precursor of the sulfones. 

Kaneko also examined direct fluorination of thioanisole (239) (Scheme 5.11 ). 246 

Reaction of thioanisole (239) with 1 equivalent of elemental fluorine gave fluorinated 

and non-fluorinated sulfoxides and mono-fluorinated sulfone, although 34% starting 

material was recovered. 

SCHEME5.11 

5% F2 / N2 (1.0 eq.) 

0 

~S-CHF + 
II 2 
0 

0 
+ ~S-CHF2 + 

240 241 

6% 2% 

0 
~S-CH2F 

240 

15% 

0 
~S-CH3 + 

242 

21% 

239 

34% recovery 

The trifluorinated product (233) was not obtained in this reaction, which was probably 

attributed to the small equivalents of fluorine used. 

We reasoned that direct fluorination of thioanisole (239) or methyl phenyl 

sulfoxide (234) using an excess amounts of fluorine could potentially be an efficient 

method for preparation of trifluorinated sulfoxide 233 or sulfone 237. In particular, 

thioanisole (239) was thought to be suitable raw material because it is much less 

expensive than methyl phenyl sulfoxide (234). Consequently, direct fluorination of 

thioanisole (239) was carried out as described in a following section. 

5.3.2 Direct fluorination of thioanisole (239) using micro reactor 

Direct fluorination of thioanisole (239) was investigated using the microreactor 

(V-21) because formation of the desired trifluorinated product should require a highly 

efficient multi-fluorination process. Fluorination of 239 was carried out using a 1 to 20 

mixture (molar ratio) of substrate and acetonitrile and a rather slow flow rate because 

an excess amounts of fluorine was thought to be needed (Scheme 5.12). 
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§CHEME5.12 

~S-CH3 
239 

0.3 mlh"1ch"1 

10%F2/N2 

(10 mLmin"1ch"1 = 2.6 mmol h"1ch"1) 

CH3CN, 4 to 5 °C, 5 h 

9ch-microreactor (V21-9) 

100% conv. 

substrate : solvent: F2 (molar ratio)= 1 : 20 : 9.3 

0 0 0 
~S-CH2F + ~S-CHF2 + Q-s-CF3 

? ? ? 

240 241 233 
3% 2% 2% 

-182.2 ppm (t) -91.9 ppm (d) -75.0 ppm (s) 

+ ? 

7% 

-120.1 ppm (dd) 

The crude mixture contained 4 major products in 19F NMR, and one of them could be 

assigned to trifluorinated compound 233245 but the yield estimated by adding an 

internal standard was very low. GC analysis indicated that no starting material 

remained in the crude mixture, but there were significant amounts of tar, thus further 

analysis by GC-MS was abandoned. 

Direct fluorination of 239 using formic acid as the solvent was also carried out. In 

this reaction, acetonitrile was used as a co-solvent owing to the poor solubility of the 

substrate in formic acid (Scheme 5.13). 

SCHEME5.13 

239 

0.5 mlh"1ch"1 

10% F2/N2 

(10 mlmin"1ch"1 = 2.6 mmol h"1ch"1) 

HCOOH I CH3CN (5: 1), 5 to 6 °C, 5 h 

9ch-microreactor (V21-9) 

substrate : solvent : F2 (molar ratio) ~ 1 : 24 : 5.9 

49% 

100% conv. 

Fluorination of 239 was carried out using about 6 equivalents of fluorine. In this case, 

GC and GC-MS analysis indicated that methyl phenyl sulfone (238) was obtained as 
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the main product. On the other hand, trace amounts of trifluoromethylated compounds 

were observed by 19F NMR although some resonances which could not be assigned 

were also seen. These results showed the use of formic acid leads predominantly 

oxidation reaction probably by HOF derived from the reaction between water which is 

contained in the formic acid and fluorine rather than fluorination. 227
•
247 Interestingly, 

Kaneko observed a contrastive results using a mixture of acetonitrile and water (10: 1) 

where fluorination was still preferentially occurred over oxidation by HOF. 246 On the 

other hand, Rozen reported oxidation reactions of sulfides to sulfones using HOF· 

CH3CN complex248
. In addition, our group already demonstrated that reaction of 

fluorine with water in the presence of acids provides more effective oxidants247
. This 

one step oxidation reaction could potentially be an efficient synthetic method for 

sulfones from sulfide. 

5.3.3 Conclusion 

A preliminary investigation of direct preparation of phenyl trifluoromethyl 

sulfoxide 233 by fluorination of thioanisole (239) with elemental fluorine was 

conducted using the multi-channel microreactor. Acetonitrile solvent and a large excess 

of fluorine gave considerable amounts of tar although small amounts of fluorinated 

products were observed by 19F NMR. Less amounts of fluorine could give a better 

result. Formic acids was found to be not a suitable solvent due to the predominance of 

oxidation reaction over fluorination. Further investigation was required for concluding 

the feasibility of this reaction for the effective synthesis ofTMS-CFJ. 
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Chapter6 

6.1 llimstll'umentation 

R.eagents, Materials, and Solvents 

All chemicals were used as received from the suppliers unless otherwise stated. 

Solvents were dried according to literature methods. Column chromatography was 

performed using silica gel supplied by Fluorochem. 

Gas Liquid Chromatography 

Chromatographic analyses were performed on a Hewlett Packard 5890 Series II gas 

liquid chromatograph equipped with a 25m cross-lined methyl silicone or 5% phenyl 

methyl silicone capillary column with a flame ionisation detector. 

Elemental Analysis 

Elemental analyses were carried out on an Exeter Analytical CE-440 Elemental 

Analyser. 

NMR Spectroscopy 

NMR. spectra were recorded in deuteriochloroform, deuterium oxide or acetonitrile-d3 

on either a Varian Mercury 200, a Varian Unity 300, a Broker AVANCE 400, a Varian 

Mercury 400 or a Unity Inova 500 NMR spectrometer using tetramethylsilane, 

trichlorofluoromethane and chloroform as internal references. Coupling constants are 

rounded to the nearest 0. 5 Hz and in all NMR spectra, the shifts are reported using the 

"high frequency is positive" convention. 

Mass Spectroscopy 

Mass spectra were recorded on a Fisons VG Trio 1000 mass spectrometer coupled with 

a Hewlett Packard 5890 series II gas chromatograph (for CI) or Micromass LCT (for 

ES+). Mass spectra were also obtained from a Thermo Finnigan Trace MS mass 

spectrometer (for El+). Accurate mass measurements were determined on a Micromass 

Autospec Mass Spectrometer and at the EPSRC national mass spectrometry centre, 
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Swansea. 

m. Spectra 

IR spectra were recorded on a Perkin-Elmer 1600 FT-IR spectrometer using thin films 

between K.Br plates or KBr discs. 

X-ray Analysis 

Diffraction data were obtained on a Broker Smart 1K CCD diffractometer or a Broker 

Smart 6K CCD diffractometer. The Structures were solved by direct methods and 

refined by least-squares (non-H atoms anisotropic, all H refined isotropic) against F of 

all data using SHELX-97 software (G M. Sheldrick, University of Gottingen, Germany, 

1997). 

Melting Point Analysis 

Melting points were obtained from a Gallenkamp melting point apparatus and are not 

corrected. 

6.2 The use of elemental fluorine in the laboratory 

Elemental fluorine is extremely reactive and very toxic. Consequently, it is necessary 

to use apparatus which has been designed specifically to conduct reactions using 

elemental fluorine in a safe and controllable manner (Figure 6.1 ). 
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FIGURE 6.1 
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Elemental fluorine is purchased as a 50% or 20% mixture with nitrogen m 

high-pressure cylinders (ca. 50 L). The fluorine is regulated from the primary cylinder 

pressure to 4 bar. 

The fluorine cylinder is placed in a vented gas cabinet and is connected to a 

manifold system via a metal-metal connection (Figure 6.2). It should be pointed out 

that organic materials, such as PTFE, are not used in this connection because elemental 

fluorine may react with such materials due to the relatively high pressure and 

concentration of fluorine at this point. The manifold system is equipped with a 

pneumatic shut-off valve which can be operated remotely. Fluorine is supplied to two 

rigs, namely the microreactor rig and the right-hand rig. 

The right-hand rig (Figure 6.1) is constructed from 1/4" stainless tubing, Monel® 

or stainless steel Swagelok® valves and stainless steel fittings and is housed in a 

stainless steel fumehood. Using the right hand rig, it is possible to fill secondary 

cylinders (3.7 L) up to a maximum pressure of 5 bar. These portable cylinders can be 

detached and installed into other fumehoods which house small fluorination rigs 

(Figure 6.3). 
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FIGURE 6.2 
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The small fluorination rig is constructed from stainless steel pipe work and is fitted 

with Monel Swagelok® valves similar to the right-hand rig. 

All valves, tubings, fittings, and cylinders which are used to handle elemental 

fluorine are passivated using fluorine before they are used to perform fluorination 

reactions. 

Except for microreactor reactions, all reactions which are described in this thesis 

were carried out using the small fluorination rig. To perform fluorinations using the rig 

shown in figure 6.3, the fluorine is run from the secondary cylinder(s) into a PTFE 

reaction vessel (Figure 6.4). The flow rate of the fluorine is controlled by a mass flow 
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controller (Brooks 5850S). 30 mL and 100 mL of PTFE reaction vessels were used for 

direct fluorination reaction under batch conditions. They are equipped with a PTFE dip 

pipe, which nearly reaches to the bottom of the reactor, a gas outlet that connects with 

a scrubber tower, and a magnetic stirrer bar. 

FIGURE 6.4 

PTFE dip pipe 

The microreactor rig (Figure 6.5) is also constructed from stainless steel pipe work 

and is fitted with Monel Swagelok® valves. The storage cylinders are constructed from 

stainless steel (5 L) and mild steel (9 L). The mass flow controller is a Brooks 5850S 

and controlled by a DDE computer program obtained from Flotech Solutions® linked 
to a PC operating in Microsoft® Excel. 
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FIGURE 6.5 
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The operation of the microreactor will be described in Appendix in detail. 

6.3 Preparation of model compounds 

Methyl nicotinate (106) 

Nicotinoyl chloride hydrochloride (105) (5.00 g, 28.1 mmol) was added to a stirred 

mixture of methanol (5.00 g) and pyridine (5.33 g, 67.4 mmol) at room temperature. 

2.5 hours later, the resulting mixture was poured into water, and extracted with 

dichloromethane (2 x 20 mL). The combined organic extracts were washed with water 

and brine, dried over MgS04 and evaporated to give methyl nicotinate (106) (3.45 g, 

90%) as a white solid; m.p. 39 °C; (Found: C, 61.12; H, 5.17; N, 10.17%. C1H1N02 

requires C, 61.31; H, 5.14; N, 10.21%); 1H NMR (400 MHz, CDCh) 8 3.93 (s, 3H, 

CH3}, 7.36 (ddd, J= 1.0, 5.0 and 8.0 Hz, 1H, 5-H}, 8.26 (m, 1H, 4-H}, 8.74 (dd,J= 2.0 

and 9.0 Hz, 1H, 6-H}, 9.19 (m, 1H, 2-H); 13C NMR (100 MHz) 8 52.4 (s, CH3), 123.3 

(s, 5-C), 126.0 (s, 3-C), 137.0 (s, 4-C), 150.9 (s, 2-C), 153.4 (s, 6-C), 165.7 (s, C=O); 

IR (KBr) 1727, 1589, 1446, 1425, 1292, 742, 702 cm-1
. (As compared to literature 

data.24~ 

Metbyl2,6-dichloronicotinate (108) 

A solution of 2,6-dichloronicotinic acid (107') ( 4.00 g, 20.8 mmol) in thionyl chloride 
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(19.8 g, 167 mmol) was stirred at 50 oc for 3 hours, and the solvent was evaporated. 

Toluene (3 x 10 mL) was added to the residue and azeotropically distilled under 

reduced pressure. Methyl alcohol (16 mL) and triethylamine (2.90 mL, 20.8 mmol) 

was added to the resulting crude acid chloride and stirred at room temperature for 1 

hour. The reaction mixture was poured into water and extracted with dichloromethane. 

The extracts were washed by water and brine, dried over anhydrous magnesium sulfate 

and evaporated to give crude product (3. 99 g). The crude product was recrystallised 

from hexane and diethyl ether (2:1) to give methyl2,6-dichloronicotinate (108) (3.01 g, 

70%) as cream-coloured columns; m.p. 57-58 °C (Found: C, 40.83; H, 2.47; N, 

6.89%. C1HsChN02 requires C, 40.81; H, 2.45; N, 6.80%); 1H NMR. (400 MHz, 

CDCh) 8 3.91 (s, 3H, CH3), 7.32 (d, J = 8.0 Hz, 1H, 5-H), 8.12 (d, J = 8.0 Hz, 1H, 

4-H); Be NMR (101 MHz, CDCh) 8 52.9 (s, OCH3), 122.8 (s, 5-C), 125.1 (s, 3-C), 

142.5 (s, 4-C), 149.7 (s, 2-C), 152.9 (s, 6-C), 163.9 (s, C=O); IR (KBr) 3096, 3079, 

2957, 1741, 1734, 1572, 1543, 1417, 1272, 1152, 1133, 1054 cm-1
. (As compared to 

literature data. 251) 

J..AcetyloxyquinUllcHidni!Be (11 0) 

A solution of 3-quinuclidinol (109) (1.00 g, 7.86 mmol) in acetic anhydride (10 mL) 

was refluxed for 4 hours. The solution was concentrated under reduced pressure, 

neutralised with a saturated NaHC03 solution and extracted with chloroform (10 x 10 

mL). The extracts were dried over anhydrous magnesium sulfate and evaporated to 

give crude product (2. 78 g). The crude product was distilled under reduced pressure 

using Kugelrohr apparatus to give colourless oil (1.38 g). The oil was 

chromatographed over neutral aluminium oxide [hexane/ethyl alcohol (9:1)] to give 

3-acetyloxyquinuclidine (110) (819 mg, 62%) as a pale yellow oil; 1H NMR (400 MHz, 

CDCh) 8 1.27-1.80 (m, 4H, 5-H and 6-H), 1.91 (m, 1H, 4-H), 2.00 (s, 3H, CH3), 

2.57-2.62 (m, 1H, one of8-H), 2.64-2.86 (m, 4H, 7-H and 9-H), 3.16 (ddd, J= 2.0, 

8.5, 14.5 Hz, 1H, one of 8-H), 4.70 (m, 1H, 3-H); Be NMR (101 MHz) 8 19.3 (s, 5-C 

or 6-C), 21.1 (s, C113), 24.4 (s, 5-C or 6-C), 25.0 (s, 4-C), 46.3 (s, 7-C or 9-C), 47.2 (s, 

7-C or 9-C), 55.3 (s, 8-C), 71.2 (s, 3-H), 170.7 (s, C=O); IR (neat) 2942, 2870, 1739, 

1248, 1029 cm-1
; mass spectrum, rnlz (Er) 170 ([M+Ht, 15%), 169 ~. 54), 126 

([M-CH3cor, 100). (As compared to literature data. 156
) 
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1-(2-ChloroethyD)-4-aza- :n. -azoniabicydo[2.2.2]octane tetrafluoroborate (112) 

A mixture of 1,4-diazabicyclo[2.2.2]octane (111) (4.33 g, 38.6 mmol), 

1,2-dichloroethane (3.04 mL, 38.6 mmol), NaBF4 (4.33 g, 39.4 mmol) and acetonitrile 

(85 mL) was stirred at room temperature for 100 hours. The reaction temperature was 

raised to 40 oc for 16 hours. The precipitate was removed by filtration and the filtrate 

was evaporated to give crude product as a brown oil (8.30 g). The crude mixture was 

dissolved in acetone (20 mL) and dichloromethane (40 mL) was added to the solution. 

White precipitate was filtered off and the filtrate was evaporated. This operation was 

repeated one more time to give the title compound 112 (5.63 g). The oligomers still 

remained in the product. Further purification was not carried out~ 1H NMR (500 MHz, 

D20) o 3.11 (m, 6H, NCH2), 3.40 (m, 6H, WCH2CH2N), 3.61 (t, J = 6.5 Hz, 2H, 

NCH2CH2Cl), 3.92 (t, J= 6.5 Hz, 2H, CH2Cl)~ 19p NMR (188 MHz, D20) o -150.56 

(s); 13C NMR (126 MHz, D20) o 44.3 (s, NCH2CHiW), 51.4 (s, CH2Cl), 52.9 (s, 

WCH2CH2N), 64.7 (s, NCH2CH2Cl). 

1-(2-Methoxyetbyl)-4-aza-1-azoniabicyclo[2.2.2)octane tetrafluoroborate (113) 

A mixture of 1,4-diazabicyclo[2.2.2]octane (11.1) (3.77 g, 33.6 mmol), 2-chloroethyl 

methyl ether (3.18 g, 33.6 mmol), NaBF4 (3.69 g, 33.6 mmol) and acetonitrile (75 mL) 

was stirred at room temperature for 71 hours. The reaction temperature was raised to 

50 oc for 92 hours and then 80 oc for 65 hours. White precipitate was removed by 

filtration and the filtrate was evaporated to give crude product as a cream-coloured 

solid (7.96 g). The solid was broken up, and suspended in diethyl ether (30 mL). The 

suspension was refluxed for 1 hour, and the precipitate was filtered off, washed with 

diethyl ether, and dried in vacuo to give the title compound ill (7.60 g, 88% yield) as 

a cream-coloured amorphous solid; 1H NMR (400 MHz, D20) o 3.08 (m, 6H, NCH2), 

3.27 (s, 3H, OCH3), 3.35-3.40 (m, 8H, WCH2), 3.79 (m, 2H, OCH2); 19F NMR (188 

MHz, D20) o -149.17 (s); 13C NMR (101 MHz, D20)o44.3 (s, NCH2), 53.1 (s, 

WCH2CH2N), 58.2 (s, OCH3), 63.7 (s, NCH2CH20), 64.9 (s, NCH2CH20); IR (KBr) 

2950, 2891, 1459, 1084, 1058 cm-1
; m/z (ES} 429 ([2M-BF4t, 10%), 172 

([M+H-BF4t, 14), 171 ([M-BF4t, 100). 
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11-(JE.tlln mxycall'lh>mxymeltDnyB)-4-atlZat-11-umnnmlbncycBo [~.~-~] ocltatiiDe teltll'atlfilnno ro lblo ralte 

('ii4) 

Ethyl bromoacetate (4.47 g, 33.6 mmol) was added to a stirred solution of 

1,4-diazabicyclo[2.2.2]octane (ill) (3.00 g, 26.7 mmol) in acetonitrile (60 mL). The 

reaction was exothemic. After stirring for 1 hour, NaBF4 (2.94 g, 26.7 mmol) was 

added to the solution and the mixture was stirred at room temperature for 5 days. 

White precipitate was removed by filtration and the filtrate was evaporated to give 

crude product as a white solid (6.88 g). The solid was recrystallised from ethanol and 

washed with diethyl ether to give the title compound 114 (5.16 g, 67%) as white 

crystals; m.p. 142-144 oc (Found: C, 41.86; H, 6.73; N, 9.68%. C10HI9BF~202 

requires C, 41.98; H, 6.69; N, 9.79%); IH NMR (400 MHz, D20) 8 1.17 (dt, J = 1.0, 

7.0 Hz, 3H, CH3), 3.13 (t, J= 7.5 Hz, 6H, NCH2), 3.55 (t, J= 7.5 Hz, 6H, WCH2CH2), 

4.11 (s, 2H, WCH2CO), 4.18 (dq, J = 1.0, 7.0 Hz, 2H, OCH2); I~ NMR (188 MHz, 

D20) 8-150.38 (s); 13C NMR (101 MHz, D20) 8 13.3 (s, CH3), 44.2 (s, NCH2), 53.0 

(s, WCH2CH2N), 61.8 (s, NCH2CO), 63.6 (s, OCH2), 164.9 (s, C=O); IR (KBr) 2967, 

1743, 1219, 1123, 1057, 1028 cm-I; m/z (ESl 485 ([2M-BF4t, 9%), 200 

([M+H-BF4t, 40), 199 ([M-BF4]+, 100). 

6.4 EvallualtioiiD of ltDne 1111UDoll'iKnmltniiD.g albliUey of mod ell compomndls 

GereraB procedure 

A mixture containing a model compound (2.60 mmol), sodium tetrafluoroborate (285 

mg, 2.60 mmol), and freshly distilled anhydrous acetonitrile (20 mL) was placed in a 

small PTFE reactor. The mixture was purged with N2 and immersed in a cooling bath 

of -10 °C. Elemental fluorine as a 10% (v/v) mixture with nitrogen was introduced at a 

flow rate of 20 mL/min into the rapidly stirred mixture via PTFE tubing. The reaction 

mixture was purged with N2 for 30 minutes. The conversions of the model compounds 

into N-F species were determined by analyzing the reaction mixture using I~ NMR 

spectroscopy. The amount of the N-F species formed was calculated by comparing the 

integration with the counter anion's resonances (BF4- or OTI). The reaction mixture 

was allowed to warm to room temperature and added to cis-decalin (115) (300 mg) in a 

three neck round bottomed flask. The reaction mixture was refluxed with stirring under 

an argon atmosphere. The resulting mixture was poured into water (20 mL ), 

neutralised by NaHC03, and extracted with dichloromethane (3 x 20 mL). The 

combined organic extracts were dried over anhydrous MgS04 and evaporated to give a 

crude product. The crude mixture was analyzed by I9F NMR spectroscopy, GC, and 

GC-MS to determine the amount of fluorinated decalin. 
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Meltlhlyn llllico11:fimn11:e (~OS) 

Methyl nicotinate (106) (300 mg, 2.19 mmol), sodium tetrafluoroborate (240 mg, 2.19 

mmol), elemental fluorine (6.61 mmol) and anhydrous acetonitrile (20 mL) gave the 

corresponding N-F derivatives in 74% conversion (+50.2ppm in CDCh/CH3CN). The 

reaction mixture was added to the cis-decalin (1"i5) (303 mg, 2.19 mmol), and refluxed 

for 1 hour to give a crude product (0.61 g). The cis-decalin (115) was found to be 

unchanged by GC-MS analysis. The crude mixture was chromatographed over silica 

gel to give methyl 2-fluoro nicotinate (34 mg, 10%) as a colorless liquid; 1H NMR 

(200 MHz, CDCh) B 3.95 (s, 3H, CH3), 7.27 (m, 1H, 5-H), 8.35 (m, 2H, 4-H and 6-H); 
19F NMR (188 MHz) B -62.3 (m); m/z (E:t) 156 ([M+Ht, 7%), 155 ~, 77), 154 

([M-Ht, 73), 125 ([M-CH20t, 18), 124 ([M-CH30t, 100) and methyl 6-fluoro 

nicotinate (ca. 20 mg, estimate 6%); 1H NMR (200 MHz, CDCh) B 3.89 (s, 3H, CH3), 

6.95 (m, 1H, 5-H), 8.35 (m, 1H, 4-H), 8.82 (m, 1H, 2-H); 19F NMR (188 MHz) B -61.7 

(m); m/z (E:t) 155 (M\ 21%), 154 ([M-Ht, 20), 125 ([M-CHzOt, 5), 124 

([M-CH3or, 100). (As compared to literature data. 158) 

Metlhlyn 2,6-dichlloli"oiJUico11:imll11:e (108) 

(Using general procedure) 

Methyl 2,6-dichloronicotinate (108) (536 mg, 2.60 mmol), sodium tetrafluoroborate 

(285 mg, 2.60 mmol), elemental fluorine (7.80 mmol), and anhydrous acetonitrile (20 

mL) gave the corresponding N-F species in 40% (33.43 ppm in CDCh/CH3CN). The 

reaction mixture and cis-decalin (115) (300 mg, 2.17 mmol) was refluxed for 19 hours 

to give a crude product (0.51 g) which contained cis-decalin (115) (41%); m/z (EI+) 

138 ~' 43%), 108 (22 %); m/z (Ell 209 ~ (C7Hs37ChNOz), 5%), 207 ~ 
(C7Hs37Ce5ClNOz), 34%) 205 ~ (C1Hl5ChN02), 54%), methyl 

acetylamino-chloro-fluoronicotinate and methyl acetylamino-difluoronicotinate (11 %); 

mlz (Er) 248 ~ (C9Hs37ClFNz03), 1 %], 246 ~ (C9Hs35ClFNzOJ), 3%] and 230 

~ (C9HsFzNzOJ), 41%], another methyl acetylamino-difluoronicotinate (3%); m/z 

(Ell 230 ~ (C9HsFzNz03), 10%], 171 ([M-COOCH3t, 50), methyl 

trichloronicotinate (3%); m/z (EI+) 245 ~ (C7HrChNOz), 1%], 243 [M+ 

(C7R.37Cll5ClNOz), 9%], 241 ~ (C7R.37Cl35ChN02), 29%], 239 ~ 
(C7JL.35ChN02), 30%] and unidentified products (20 %). 

(The first fluorination was carried out at -40 °C) 

Methyl 2,6-dichloronicotinate (108) (536 mg, 2.60 mmol), sodium tetrafluoroborate 
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(285 mg, 2.60 mmol), elemental fluorine (7.80 mmol), and anhydrous acetonitrile (20 

mL) gave the corresponding N-F species (40%). The reaction mixture and cis-decalin 

(115) (300 mg, 2.17 mmol) was refluxed for 13 hours to give a crude product (0.69 g) 

which contained cis-decalin (115) (49%)~ m/z (Ell 138 {M'", 42%), methyl 

acetylamino-chloro-fluoronicotinate and methyl acetylamino-difluoronicotinate (15%)~ 

m/z (EJl 248 ~ (C9Hs37ClFN203), 1%], 246 ~ (C9Hs35CIFN203), 4%] and 230 

~ (C9HsF'2N203), 51%], 108 (4%)~ m/z (Et) 209 ~ (C1Hl7ChN02), 3%], 207 ~ 
(C7Hs37Ce5ClN02), 14%] 205 [~ (C1Hs35ChN02), 21%], methyl trichloronicotinate 

(2%)~ m/z (Ell 245 ~ (C1~37ChN02), 1%], 243 ~ (C7H.37Ch35CIN02), 5%], 

241 ~ (C7Rt37Cl 35ChN02), 16%], 239 ~ (C1~35ChN02), 17%] and unidentified 

products (24%). 

[The first fluorination was carried out using Method C 

(See section 2.4.2.3.1, scheme 2.35)] 

A mixture containing methyl 2,6-dichloronicotinate (108) (536 mg, 2.60 mmol), 

sodium tetrafluoroborate (285 mg, 2.60 mmol), and freshly distilled anhydrous 

acetonitrile ( 17 mL) was placed in the small PTFE reactor. The mixture was purged 

with N2 and immersed in a cooling bath of -10 °C. A solution of triflic acid (390 mg, 

2.60 mmol) in acetonitrile (3 mL) was added to the mixture. The resulting mixture was 

stirred for 30 minutes. 10% F:JN2 gas was introduced at a flow rate of20 mL/min into 

the rapidly stirred mixture using PTFE tubing. The reaction mixture was purged with 

N2 for 30 minutes. N-F species was formed in 46%. The reaction mixture was allowed 

to warm to room temperature and added to cis-decalin (115) (300 mg) in a three neck 

round bottomed flask. The resulting mixture was stirred at 40 °C for 1 hour, and at 60 

oc for 1 hour. The reaction mixture was refluxed with stirring for 13 hours. The same 

work up was carried out as described above. Crude product contained cis-decalin (115) 

(69%); m/z (Ell 138 (M\ 79%), 108 (21%) ~ m/z (EI} 209 [~ (C1Hl7ChN02), 

18%], 207 ~ (C7Hl7Ce5ClN02), 60%] 205 ~ (C1Hl5ChN02), 68%], methyl 

trichloronicotinate (2%); m/z (EI} 245 ~ (C1H.l7ChN02), 1%], 243 ~ 
(C1~37Ch35ClN02), 12%], 241 ~ (C1~37Ce5ChN02), 35%], 239 ~ 
(C1H.l5ChN02), 34%], methyl acetylamino-chloro-fluoronicotinate and methyl 

acetylamino-difluoronicotinate (1%)~ m/z (Et) 246 ~ (C9Hs35ClFN203), 1%] and 

230 ~ (C9HsF2N203), 7%] and unidentified products (7%). 

3-Acetyloxyquinuclidine (110) 

3-Acetoxyquinuclidine (1110) (440 mg, 2.60 mmol), sodium tetrafluoroborate (285 mg, 
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2.60 mmol), elemental fluorine (7.80 mmol), and anhydrous acetonitrile (20 mL) gave 

the corresponding N-F species quantitatively (55.15 ppm in CDCh/CH3CN). 'fhe 

reaction mixture and cis-decalin (115) (300 mg, 2.17 mmol) was refluxed for 16 hours 

to give a crude product (0.30 g) which contained only cis-decalin ('1115) (100%); m/z 

(E1)138 ~. 92%). 

The crude mixture was recrystallised from dichloromethane to give N-fluoro 

3-acetoxyquinuclidinium tetrafluoroborate ('11'111) (107 mg, 15%) as white crystals; m.p. 

105-107 oc (Found: C, 39.52; H, 5.56; N, 4.95%. C9H1sBFsN02 requires C, 39.30; 

H, 5.50; N, 5.09%); 1H NMR (500 MHz, 0 20) 8 2.01 (s, 3H, 1-H), 2.15-2.53 (m, SH, 

5-H, 6-H and 7-H), 3.98-4.18 (m, 5H, one of 4-H, 8-H and 9-H), 4.50 (m, lH, one of 

4-H), 5.24 (m, IH, 3-H); 13C NMR (126 MHz, 020) 8 20.2 (s, 1-C), 22.4 (d, 3JcF = 4.0 

Hz, 6-C or 7-C), 22.9 (d, 3JcF = 5.0 Hz, 6-C or 7-C), 23.6 (d, 4JcF = 4.5 Hz, 5-C), 60.2 

(d, 2JcF = 9.5 Hz, 8-C or 9-C), 60.9 (d, 2 JcF = 9.5 Hz, 8-C or 9-C), 66.8 (d, 2 JcF = 10.5 

Hz, 4-C), 70.3 (d, 3JcF = 5.5 Hz, 3-C), 173.1 (s, 2-C); l9p NMR (188 MHz, D20) 

8 -150.8 (s, 4F, BF4-},54.3 (s, IF, N-F); IR. (KBr) 3043,2992, 1744, 1245, 1083, 1035 

cm-1. 

Crystal data for '1117: C9H1sBFsN02, M = 275.03, monoclinic, P2tlc (No. 14), a = 

10.016(1) A, b = 9.508(1) A, c = 12.388(1) A, a.= 90°, 13 = 103.68(1)0
, y = 90°, v = 

1146.3(2) A3, F(OOO) = 568, Z = 4, De= 1.594 g/cm3, f.l = 0.161 mm-1 (Mo Ka, i\ = 

0.71073 A), T= 120(2) K, crystal size 0.34 x 0.18 x 0.08 mm3. 

1-(2-Chloroetbyl)-4-aza-1-azoniabicyclo[2.2.2]odane tetrafluoroborate (112) 

1-(2-Chloroethyl)-4-fluoro-1 ,4-diazoniabicyclo[2.2.2]octane tetrafluoroborate ( 112) 

(740 mg, 2.82 mmol), sodium tetrafluoroborate (310 mg, 2.82 mmol), elemental 

fluorine (8.46 mmol), and anhydrous acetonitrile (20 mL) gave the corresponding N-F 

species quantitatively (47.79 ppm in 020/CH3CN). The reaction mixture and 

cis-decalin (115) (300 mg, 2.17 mmol) was refluxed for 4 hours to give a crude product 

(0.16 g) which contained cis-decalin (115) (65%); m/z (Ell 138 ~. 86%), 

fluorodecalins [4 peaks, 32%, including cis-9-fluorodecalin (126)]; peak A: (7%); m/z 

(E1)156 (M\ 100%), 136 ([M-HFt, 77), peak B: (3%); m/z (E:t) 156 (M\ 20%), 

136 ([M-HFt, 57), peak C: (11%); rnlz (E:t) 156 ~. 26%), 136 ([M-HFt, 100), 

peak 0: (10%); rnlz (EI+) 156 ~. 6%), 136 ([M-HFt, 100) and unidentified 

products (3%); 19F NMR (188 MHz, COCh) 8 -140.2 (m, 15%), -177.2 (m, 47%), 

-179.0 (m, 38%). 

cis-9-Fiuorodecalin (126) (not isolated) 
19F NMR (188 MHz) 8 -140.2 (m) (As compared to literature data.24

• 
154). 
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ll. -(2-MethoxyethyU)-4-fiuoro-ll.~4-diazmniabicyclo[2.2.2) octane tetraflu:ooroborate 

(113) 

1-(2-Methoxyethyl)-4-fluoro-1 ,4-diazoniabicyclo[2.2.2]octane tetrafluoroborate (113) 

(671 mg, 2.60 mmol), sodium tetrafluoroborate (285 mg, 2.60 mmol), elemental 

fluorine (15.60 mmol), and anhydrous acetonitrile (20 mL) gave the corresponding 

N-F species quantitatively [48.14 ppm in D20/CH3CN(48.90 ppm in CDCh/CH3CN)]. 

The reaction mixture and cis-decalin (115) (300 mg, 2.17 mmol) was refluxed for 14 

hours to give a crude product (0.37 g) which contained cis-decalin (115) (31%); m/z 

(Ell 138 (Ml, fluorodecalins (125) (2 peaks, 38%); rnlz (Ef) 156 {Ml, 
difluorodecalin (127) (3 peaks, 5%); m/z (ED 174 (~). N-(fluorodecalyl)acetamide 

(2 peaks, 10%); peak A: rnlz (E:t) 213 ~. 3%), 193 ([M-HFt, 8), 154 

([M-C2HsNDt, 18), 134 ([M-HF-C2HsNOt, 90), peak B: m/z (E:t) 213 ~. 5%), 

193 ([M-HFt, 28), 134 ([M-HF-C2HsNOt, 100), N-decalylacetamide (3%); m/z 

(ED 195 ~. 29%), 136 ([M-C2HsNOt, 96) and unidentified products (17%). 

ll. -(EthoxycarboxymethyB)-4-aza-ll. -azoniabicyclo[2.2.2]octane tetrafluoroborate 

(114) 

l-(Ethoxycarboxymethyl)-4-aza-1-azoniabicyclo[2.2.2]octane tetrafluoroborate ( 114) 

(743 mg, 2.60 mmol), sodium tetrafluoroborate (285 mg, 2.60 mmol), elemental 

fluorine (7.80 mmol), and anhydrous acetonitrile (20 mL) gave the corresponding N-F 

species in 57% conversion (49.90 ppm in CDCh/CH3CN). The reaction mixture and 

cis-decalin (115) (300 mg, 2.17 mmol) was refluxed for 14 hours to give a crude 

product (0.90 g) which contained cis-decalin (115) (47%); m/z (E:t) 138 ~. 49%), 

fluorodecalins (125) (4 peaks, 35 %) ; mlz (E1)156 ~), difluorodecalins (127) (2 

peaks, 3%); mlz (ED 174 ~)and unidentified products (15%). 

6.5 Preparation of the steroid derivatives bearing DABCO moiety 

3P-(Bromoacetoxy)-5a.-androstan-17-one (129) 

A solution of bromoacetyl bromide (913 mg, 4.52 mmol) in dichloromethane (6 mL) 

was added dropwise to a mixture of epiandrosterone (128) (1.30 g, 4.48 mmol), 

pyridine (885 mg, 11.2 mmol), 4-dimethylaminopyridine (10 mg, 0.082 mmol) and 

dichloromethane (20 mL) at 0 °C. The resulting mixture was stirred at ambient 

temperature for 16 hours. IN HCI was added to the mixture, and the organic layer was 

extracted with dichloromethane (twice), washed with water and saturated aqueous 

NaCI, dried over anhydrous MgS04 and evaporated to give crude product (2.30 g). The 

crude mixture was chromatographed over silica gel [silica gel: 50 g, eluent: 
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hexane/ethyl acetate (5: 1)] to give white crystals (670 mg). The recrystallization from 

hexane/ethyl acetate (1:1) gave white plates (582 mg). The crystals consisted of 

3 ~-(bromoacetoxy )-5a.-androstan-1 7 -one ( 129) and 3 ~-( chloroacetoxy )-5a.-androstan-

17-one ('i30) (129/1130 = 82:18); m.p. 143-144 °C; 1H NMR. (500 MHz, eDeh) 

o 0.70 (m, 1H, 9-H), 0.83 (s, 6H, 18-H, 19-H), 0.9-1.1 (m, 2H, one of 1-H, one of 

7-H), 1.2-1.6 (m, 10H, one of 2-H, one of 4-H, 5-H, 6-H, 8-H, one of 11-H, one of 

12-H, 14-H, one of 15-H), 1.63 (m, one of 4-H, one of 11-H), 1.7-1.9 (m, 5H, one of 

1-H, one of 2-H, one of 7-H, one of 12-H, one of 15-H), 2.04 (m, 1H, one of 16-H), 

2.41 (m, 1H, one of 16-H), 4.00 (s, 2H, 21-H), 4.76 (m, 1H, 3-H); 13e NMR (101 

MHz) o 12.1 (s, 18-e or 19-e), 13.7 (s, 18-C or 19-e), 20.4 (s, 11-C), 21.6 (s, 15-e), 

27.1 (s, 2-e), 28.1 (s, 6-e), 30.7 (s, 7-e), 31.4 (s, 12-e), 33.6 (s, 4-e), 34.9 (s, 8-e), 

35.5 (s, 10-e), 35.7 (s, 16-C), 36.5 (s, 1-e), 41.1(s, 21-C), 44.5 (s, 5-e), 47.7 (s, 13-C), 

51.2 (s, 14-e), 54.1 (s, 9-C), 75.6 (s, 3-e), 166.7 (s, 20-e), 221.1 (s, 17-e); IR (KBr) 

2935, 2848, 1743 (C=O), 1412, 1308, 1191 (e-O) cm-1; mass spectrum, m/z (EI+) 412 

~ (e2tH3t 81Br03), 15%], 410 [M'" (e21H3t79Br03), 15]. 

3~-(ehloroacetoxy)-5a.-androstan-17-one (130) 
1H NMR (500 MHz, CDeh) o 0.70 (m, 1H, 9-H), 0.83 (s, 6H, 18-H, 19-H), 0.9-1.1 

(m, 2H, one of 1-H, one of 7-H), 1.2-1.6 (m, 10H, one of 2-H, one of 4-H, 5-H, 6-H, 

8-H, one of 11-H, one of 12-H, 14-H, one of 15-H), 1.63 (m, one of 4-H, one of 11-H), 

1.7-1.9 (m, 5H, one of 1-H, one of 2-H, one of 7-H, one of 12-H, one of 15-H), 2.04 

(m, 1H, one of 16-H), 2.41 (m, 1H, one of 16-H), 3.78 (s, 2H, 21-H), 4.76 (m, 1H, 

3-H); 13e NMR (101 MHz) o 12.1 (s, 18-C or 19-C), 13.7 (s, 18-e or 19-e), 20.4 (s, 

11-e), 21.6 (s, 15-e), 26.3 (s, 21-e), 27.0 (s, 2-e), 28.1 (s, 6-e), 30.7 (s, 7-e), 31.4 (s, 

12-e), 33.5 (s, 4-e), 34.9 (s, 8-e), 35.5 (s, 10-C), 35.7 (s, 16-e), 36.5 (s, 1-e), 44.5 (s, 

5-e), 47.7 (s, 13-C), 51.2 (s, 14-e), 54.1 (s, 9-e), 75.6 (s, 3-e), 166.7 (s, 20-C), 221.1 

(s, 17-e); mass spectrum, m/z (EI) 368 [M'" (e21H31
37Cl03), 39%], 366 [M'" 

(e2tH3t35el03), 100]. 

129: X= Br 
130: X= Cl 
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3(3-[( 4-Aza-:Jl-azonuabicydo[2.2.2]oc1l:- :n. -yB)-acetoxy]-Sat-amudlro§tan- :n. i -mne 

tetraflu.norolborate (131) 

A solution of a mixture of 3f3-(bromoacetoxy)-5a.-androstan-17-one (4129) and 

3f3-(chloroacetoxy)-5a.-androstan-17-one (130) (4129/130 = 82:18) (452 mg, 1.12 

mmol) in dichloromethane (5 mL) was added to a stirred solution of 1,4-diazabicyclo 

[2.2.2]octane (jjj) (124 mg, 1.11 mmol) in dichloromethane (5 mL) at room 

temperature. The resulting solution was stirred for 17 hours, and evaporated to give a 

white amorphous solid. Dry acetonitrile (20 mL) and NaBF4 (121 mg, 1.10 mmol) was 

added to the amorphous solid and the mixture was stirred at room temperature for 5 

days. Additional 1,4-diazabicyclo[2.2.2]octane (jjj) (25 mg, 0.22 mmol) and NaBF4 

(24 mg, 0.22 mmol) was added to the reaction mixture, and the resulting mixture was 

refluxed for 2 hours. The reaction mixture was cooled to room temperature, and stirred 

for 6 days. White precipitate was removed by filtration and the filtrate was evaporated 

to give a crude product as a white solid (629 mg). The solid was dissolved in 

chloroform, and the precipitate that formed was removed by filtration. The filtrate was 

evaporated, and the resulting amorphous solid was treated with diethyl ether. The 

mixture was evaporated to give a white solid. The solid was washed by diethyl ether, 

and recrystallised from acetone/water and washed with water to give 3J3-[(4-Aza-1-

azoniabicyclo[2.2.2]oct-1-yl)-acetoxy ]-5a.-androstan-17 -one tetrafluoroborate ( 130) 

(505 mg, 85%) as white crystals; m.p. 256-258 oc (decomposed); 1H NMR. (400 

MHz, CDCh) B 0.68 (m, 1H, 9-H), 0.82 (s, 3H, 18-H or 19-H), 0.83 (s, 3H, 18-H or 

19-H), 0.9-1.0 (m, 2H, one of 1-H, one of7-H), 1.1-1.3 (m, 6H, 5-H, 6-H, one of 

11-H, one of 12-H, 14-H), 1.4-1.6 (m, 6H, one of2-H, 4-H, 8-H, one of 11-H, one of 

15-H), 1.7-1.8 (m, 4H, one of 1-H, one of2-H, one of7-H, one of 12-H), 1.89 (m, 1H, 

one of 15-H), 2.04 (m, 1H, one of 16-H), 2.41 (dd, 1H, J = 9.0, 19.0 Hz, one of 16-H), 

3.21 (m, 6H, NCH2), 3.65 (m, 6H, WCH2CH2), 4.09 (s, 2H, 21-H), 4.76 (m, 1H, 3-H); 
13C NMR (101 MHz) B 12.1 (s, 18-C or 19-C), 13.7 (s, 18-C or 19-C), 20.4 (s, 11-C), 

21.6 (s, 15-C), 27.0 (s, 2-C), 28.1 (s, 6-C), 30.6 (s, 7-C), 31.4 (s, 12-C), 33.4 (s, 4-C), 

34.8 (s, 8-C), 35.5 (s, 10-C), 35.7 (s, 16-C), 36.4 (s, 1-C), 44.5 (s, 5-C), 45.0 (s, NCH2), 

47.7 (s, 13-C), 51.2 (s, 14-C), 52.5 (s, WGI2), 54.1 (s, 9-C), 60.9 (s, 21-C), 76.8 (s, 

3-C), 163.5 (s, 20-C), 221.1 (s, 17-C); 1R (KBr) 2941, 2855, 1741 (C=O), 1467, 1221, 

1083, 1057 cm-1
; mass spectrum, rnlz (ES+) 444 ([M+H-BF4t, 16%), 443 ([M-BF4t, 

100%), (Found: [M-BF4t 443.3282. C21~3N203 requires 443.3274). 

3(3-( ~ Bromobutycyloxy )-Sa.-~m.drostan-1 i -one ( 132) 

A solution of 4-bromobutyryl bromide (1.40 g, 6.20 mmol) in dichloromethane (8 mL) 
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was added dropwise to a mixture of epiandrosterone (128) (1.80 g, 6.20 mmol), 

pyridine (0.99 g, 12.5 mmol), 4-dimethylaminopyridine (40 mg, 0.33 mmol) and 

dichloromethane (10 mL) at 0 °C. The resulting mixture was stirred at ambient 

temperature for 18 hours. The mixture was added into water (35 mL), extracted with 

dichloromethane (3 x 25 mL ), dried over anhydrous MgS04 and evaporated to give 

crude product (3.62 g). The crude mixture was chromatographed over silica gel [silica 

gel: 20 g, eluent: hexane/ethyl acetate (4:1)] to give white crystals (3.10 g). The 

recrystallization from hexane/ethyl acetate (9: I) gave 3f3-( 4-bromobutyryloxy)-

5a.-androstan-17-one (132) (2.28 g, 84%) as white plates; m.p. 89-90 °C; 1H NMR 

(400 MHz, CDCh) o 0.68 (m, IH, 9-H), 0.81 (s, 3H, 18-H or 19-H), 0.82 (s, 3H, 18-H 

or 19-H), 0.9-1.0 (m, 2H, one of 1-H, one of 7-H), 1.1-1.8 (m, 16H, one of 1-H, 

2-H, 4-H, 5-H, 6-H, one of7-H, 8-H, 11-H, 12-H, 14-H, one of 15-H), 1.88 (m, one of 

15-H), 2.0--2.2 (m, 3H, one of 16-H, 22-H), 2.39 (dd, IH, J = 8.0, 18.0 Hz, one of 

16-H), 2.42 (t, 2H, J = 7.0 Hz, 21-H), 3.42 (t, 2H, J = 6.0 Hz, 23-H), 4.67 (m, 1H, 

3-H); 13C NMR (101 MHz) o 12.1 (s, 19-C), 13.7 (s, 18-C), 20.3 (s, 11-C), 21.6 (s, 

15-C), 27.3 (s, 2-C), 27.7 (s, 22-C), 28.1 (s, 6-C), 30.7 (s, 7-C), 31.4 (s, 12-C), 32.7 (s, 

21-C, 23-C), 33.8 (s, 4-C), 34.9 (s, 8-C), 35.5 (s, 10-C), 35.7 (s, 16-C), 36.5 (s, 1-C), 

44.5 (s, 5-C), 47.6 (s, 13-C), 51.2 (s, 14-C), 54.1 (s, 9-C), 73.6 (s, 3-C), 171.9 (s, 20-C), 

221.1 (s, 17-C); IR (KBr) 2941, 2855, 1734 (C=O), 1193 (C-0) cm-1
; mass spectrum, 

mlz (EY) 440 ~ (CnH3s81Br03), 4%], 438 ~ (CnH3/~r03), 4], 272 

([M-Br(CH2)3C02t, 100). 

3f3-[4-( 4~Aza-1-azoniabicyclo[2.2.2]oct-1 ~yl)~butyryloxy]-5a.-androstan-17-one 

tetrafluoroborate (133) 

A solution of a mixture of 3 f3-(bromoacetoxy)-5a.-androstan-17 -one (132) (2.20 g, 5. 00 

mmol) in dichloromethane (10 mL) was added to a stirred solution of 1,4-diazabicyclo 

[2.2.2]octane (111) (562 mg, 5.01 mmol) in dichloromethane (15 mL) at room 

temperature. The resulting solution was stirred for 65 hours. Additional 
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1,4-diazabicyclo[2.2.2]octane (111) was added to the reaction mixture after 19 hours 

and 50 hours (175 mg and 121 mg, respectively, 2.64 mmol). The resulting mixture 

evaporated to give a white amorphous solid. Dry acetonitrile (30 mL) and NaBF4 (840 

mg, 7. 65 mmol) was added to the amorphous solid and the mixture was refluxed for 3 

hours. The reaction mixture was cooled to room temperature, and stirred for 90 hours. 

White precipitate was removed by filtration and the filtrate was evaporated to give a 

crude product as a white solid (4.15 g). The solid was dissolved in chloroform, and the 

precipitate that formed was removed by filtration. The filtrate was evaporated to give a 

amorphous solid. Diethyl ether was added to the amorphous solid and refluxed for 3 

hours. The resulting white solid was washed by diethyl ether, and recrystallised from 

ethanol to give 3 13-[ 4-( 4-aza-1-azoniabicycl[2.2.2]oct-1-yl)-butyryloxy ]-Sa.

androstan-17 -one tetrafluoroborate ( 'i 33) ( 1. 03 g, 34%) as white crystals~ m. p. 

226-229 oc (decomposed)~ 1H NMR (400 MHz, CDCh) o 0.69 (m, 1H, 9-H), 0.82 (s, 

3H, 18-H or 19-H), 0.83 (s, 3H, 18-H or 19-H), 0.9-1.0 (m, 2H, one of 1-H, one of 

7-H), 1.1-1.7 (m, 12H, one of2-H, 4-H, 5-H, 6-H, 8-H, 11-H, one of 12-H, 14-H, one 

of15-H), 1.7-1.8 (m, 4H, one of 1-H, one of2-H, one of7-H, one of 12-H), 1.91 (m, 

1H, one of 15-H), 2.01 (m, 2H, 22-H), 2.04 (m, 1H, one of 16-H), 2.38 (t, 1H, J = 7.0 

Hz, 21-H), 2.41 (dd, 1H, J = 8.0, 19.0 Hz, one of 16-H), 3.20 (m, 6H, NCH2), 3.27 (m, 

2H, 23-H), 3.35 (m, 6H, WCH2), 4.64 (m, 1H, 3-H)~ 19F NMR. (188 MHz, CDCh) 8 

-151.37 (s)~ 13C NMR. (101 MHz) 8 12.1 (s, 19-C), 13.7 (s, 18-C), 17.1 (s, 22-C), 20.4 

(s, 11-C), 21.7 (s, 15-C), 27.3 (s, 2-C), 28.2 (s, 6-C), 30.3 (s, 21-C), 30.7 (s, 7-C), 31.4 

(s, 12-C), 33.8 (s, 4-C), 34.9 (s, 8-C), 35.5 (s, 10-C), 35.8 (s, 16-C), 36.6 (s, 1-C), 44.6 

(s, 5-C), 45.1 (s, NCH2), 47.7 (s, 13-C), 51.2 (s, 14-C), 52.4 (s, WCH2), 54.2 (s, 9-C), 

63.4 (s, 23-C), 74.2 (s, 3-C), 171.4 (s, 20-C), 221.3 (s, 17-C); IR (KBr) 2939, 2843, 

1734 (C=O), 1083, 1058 cm-1 ~ mass spectrum, mfz (ES+) (Found: [M-BF4t 471.3603. 

C29RnN203 requires 471.3587). 

3f3-( §... BromovafteryHoxy )-Sa.-amllrostaun-17 -oune ('i M) 

A solution of 5-bromovaleryl chloride (1.65 g, 8.27 mmol) was added dropwise to a 

mixture of epiandrosterone (128) (1.60 g, 5.51 mmol), pyridine (2.18 g, 27.6 mmol), 

and dichloromethane (32 mL) at 0 °C. The resulting mixture was stirred at 0 oc for 30 

minutes and at ambient temperature for 15 minutes. The mixture was added into water 

and extracted with dichloromethane (3 times). The combined organic layer was washed 

by 1 N HCl and water (twice), dried over anhydrous MgS04 and evaporated to give 

crude product (3.15 g). The crude mixture was chromatographed over silica gel [silica 

gel: 60 g, eluent: hexane/ethyl acetate (5:1 to 4:1)] to give white crystals (2.60 g). The 
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recrystallization from hexane/ethyl acetate gave 3j3-(5-bromovaleryloxy)-

5c:x.-androstan-17-one (134) (2.11 g, 85%) as white plates~ m.p. 87--89 oc~ 1H NMR 

(400 MHz, CDCh) o 0.69 (m, 1H, 9-H), 0.82 {s, 3H, 18-H or 19-H), 0.83 (s, 3H, 18-H 

or 19-H), 0.90-1.05 (m, 2H, one of 1-H, one of7-H), 1.12-1.65 (m, 12H, one of2-H, 

4-H, 5-H, 6-H, 8-H, 11-H, one of 12-H, 14-H, one of 15-H), 1.68-1.94 (m, 9H, one of 

1-H, one of2-H, one of7-H, one of 12-H, one of 15-H, one of 16-H, 22-H, 23-H), 2.04 

(dt, IH, J= 9.0, 19.0 Hz, one of 16-H ), 2.28 (t, 2H, J= 7.0 Hz, 21-H), 2.40 (dd, 1H, J 

= 9.0, 19.0 Hz, one of 16-H), 3.42 {t, 2H, J = 7.0 Hz, 24-H), 4.67 {m, IH, 3-H)~ 13C 

NMR(101MHz)o12.1(s, 19-C), 13.7{s, 18-C),20.4{s, 11-C),21.7(s, 15-C),23.5{s, 

22-C), 27.3 {s, 2-C), 28.2 {s, 6-C), 30.7 {s, 7-C), 31.4 (s, 12-C), 31.9 {s, 23-C), 33.0 {s, 

24-C), 33.6 (s, 21-C), 33.9 (s, 4-C), 34.9 (s, 8-C), 35.5 (s, 10-C), 35.7 (s, 16-C), 36.6 

(s, 1-C), 44.5 (s, 5-C), 47.7 (s, 13-C), 51.2 (s, 14-C), 54.1 (s, 9-C), 73.4 (s, 3-C), 172.6 

(s, 20-C), 221.2 {s, 17-C)~ IR. (KBr) 2945, 2854, 1732 (C=O), 1274, 1179 cm-1 ~ mass 

spectrum, rnlz (EY) 454 ~ (C2Ji3781BrOJ), 3%], 452 ~ (C2JIJ/~r03), 3], 272 

([M-Br(CH2)3C02t, 100). 

3j3-[5-( 4-Aza-1-azoniabicyclo[2.2.2]oct-1-yl)-valeryloxy]-5a.-androstan-17-one 

tetratluoi'oborate (135) 

A solution of a mixture of3j3-(5-bromovaleryloxy)-5c:x.-androstan-17-one (134) (1.90 g, 

4.19 mmol) in dichloromethane (11 mL) was added to a stirred solution of 

1,4-diazabicyclo[2.2.2]octane (111) (475 mg, 4.23 mmol) in dichloromethane (10 mL) 

at room temperature. The resulting solution was stirred for 20 hours. Additional 

1,4-diazabicyclo[2.2.2]octane (ll1) was added to the reaction mixture after 15 hours 

(105 mg, 0.94 mmol). The resulting mixture was evaporated to give a white amorphous 

solid. Dry acetonitrile (25 mL) and NaBF4 (570 mg, 5.19 mmol) was added to the 

amorphous solid and the mixture was stirred for 69 hours. Additional 1,4-diazabicyclo 

[2.2.2]octane (111) (122 mg, 1.09 mmol) and NaBF4 (115 mg, 1.05 mmol) was added 

to the reaction mixture after 44 hours. The reaction mixture was refluxed for 1 hours. 

White precipitate was removed by filtration and the filtrate was evaporated to give a 
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crude product as a white solid (3.08 g). The solid was dissolved in chloroform, and the 

precipitate that formed was removed by filtration. The filtrate was evaporated to give a 

amorphous solid. Diethyl ether was added to the amorphous solid and refluxed for 2 

hours. The resulting white solid was washed by diethyl ether, and recrystallised from 

ethanol to give 3 P-[5-( 4-aza-1-azoniabicyclo[2.2.2]oct-1-yl)-valeryloxy ]-5a.

androstan-17-one tetrafluoroborate (~35) (1.84 g, 77%) as white crystals; m.p. 225 oc 
(decomposed); 1H NMR (400 MHz, CDCh) cS 0.69 (m, 1H, 9-H), 0.83 (s, 3H, 18-H or 

19-H), 0.84 (s, 3H, 18-H or 19-H), 0.90-1.05 (m, 2H, one of 1-H, one of 7-H), 

1.12-1.98 (m, 21H, one of 1-H, 2-H, 4-H, 5-H, 6-H, one of 7-H, 8-H, 11-H, 12-H, 

14-H, 15-H, 22-H, 23-H), 2.04 (dt, 1H, J = 9.0, 19.0 Hz, one of 16-H), 2.34 (t, 2H, J = 

7.0 Hz, 21-H), 2.41 (dd, IH, J = 8.5, 19.0 Hz, one of 16-H), 3.19 (m, 6H, NCH2), 3.24 

(m, 2H, 24-H), 3.33 (m, 6H, WCH2), 4.64 (m, 1H, 3-H); 1~ NMR (188 MHz, CDCh) 

cS -151.4 (s); 13C NMR (101 MHz) cS 12.1 (s, 19-C), 13.8 (s, 18-C), 20.4 (s, 11-C), 21.1 

(s, 22-C), 21.6 (s, 23-C), 21.7 (s, 15-C), 27.3 (s, 2-C), 28.2 (s, 6-C), 30.7 (s, 7-C), 31.4 

(s, 12-C), 33.4 (s, 21-C), 33.8 (s, 4-C), 34.9 (s, 8-C), 35.6 (s, 10-C), 35.8 (s, 16-C), 

36.6 (s, 1-C), 44.6 (s, 5-C), 45.1 (s, NCH2), 47.7 (s, 13-C), 51.3 (s, 14-C), 52.4 (s, 

WCH2), 54.2 (s, 9-C), 64.1 (s, 24-C), 73.7 (s, 3-C), 172.3 (s, 20-C), 221.3 (s, 17-C); IR 

(KBr) 2937, 1732 (C=O), 1059 cm-1
; mass spectrum, m/z (ES) 486 ([M+H-BF4t, 

49), 485 ([M-BF4t, 100%), (Found: [M-BF4t 485.3790. C3o&9N203 requires 

485.3743). 

3f3-(6-Bromohexanoyloxy)-5a.-androstan-17-one ('i 36) 

A solution of 6-bromohexanoyl bromide (1.77 g, 8.27 mmol) was added dropwise to a 

mixture of epiandrosterone (128) (1.60 g, 5.51 mmol), pyridine (2.18 g, 27.6 mmol), 

and dichloromethane (32 mL) at 0 °C. The resulting mixture was stirred at 0 oc for 30 

minutes and at ambient temperature for 15 minutes. The mixture was added into water 

and extracted with dichloromethane (3 times). The combined organic layer was washed 

by 1 N HCl and water (twice), dried over anhydrous MgS04 and evaporated to give 

crude product (3.50 g). The crude mixture was chromatographed over silica gel [silica 

gel: 60 g, eluent: hexane/ethyl acetate (5:1 to 4:1)] to give white crystals (2.65 g). The 

recrystallization from hexane/ethyl acetate gave 3f3-(6-bromohexanoyloxy)-

5a.-androstan-17-one (136) (1.67 g, 65%) as white plates; m.p. 51-54 oc; 1H NMR 

(400 :MHz, CDCh) cS 0.70 (m, IH, 9-H), 0.83 (s, 3H, 18-H or 19-H), 0.84 (s, 3H, 18-H 

or 19-H), 0.90-1.06 (m, 2H, one of 1-H, one of7-H), 1.14-1.95 (m, 23H, one of 1-H, 

2-H, 4-H, 5-H, 6-H, one of 7-H, 8-H, 11-H, 12-H, 14-H, 15-H, 22-H, 23-H, 24-H), 

2.05 (dt, 1H, J = 9.0, 19.0 Hz, one of 16-H ), 2.27 (t, 2H, J = 7.0 Hz, 21-H), 2.42 (dd, 
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1H, J = 8.5, 19.0 Hz, one of 16-H), 3.39 (t, 2H, J = 7.0 Hz, 25-H), 4.68 (m, 1H, 3-H)~ 
13C NMR (101 MHz) o 12.2 (s, 19-C), 13.8 (s, 18-C), 20.4 (s, 11-C), 21.7 (s, 15-C), 

24.1 (s, 22-C), 27.4 (s, 2-C), 27.5 (s, 23-C), 28.2 (s, 6-C), 30.7 (s, 7-C), 31.4 (s, 12-C), 

32.3 (s, 24-C), 33.5 (s, 25-C), 33.9 (s, 4-C), 34.4 (s, 21-C), 34.9 (s, 8-C), 35.6 (s, 10-C), 

35.8 (s, 16-C), 36.6 (s, 1-C), 44.6 (s, 5-C), 47.7 (s, 13-C), 51.3 (s, 14-C), 54.2 (s, 9-C), 

73.3 (s, 3-C), 173.0 (s, 20-C), 221.3 (s, 17-C)~ IR (KBr) 2939, 1736 (C=O), 1197, 1174 

cm-1 ~ mass spectrum, m/z (EI)468 ~ (C2sH3981Br03), 2%], 466 ~ (C2sH3/9Br03), 

2], 272 ([M-Br(CH2)3C02t, 100). 

3J3-[6-( 4-Aza-11. -azolllliabicyclo[:2.:2.2]oct-11. -yD)-hexanoyDoxy]-5a.-androstan-17-one 

tetrafBuoroborate (137) 

A solution of 3J3-(6-bromohexanoyloxy)-5a-androstan-17-one (136) (1.50 g, 3.21 

mmol) in diethyl ether (10 mL) was added to a stirred solution of 1,4-diazabicyclo 

[2.2.2]octane (111) (366 mg, 3.26 mmol) in diethyl ether (10 mL) at room temperature. 

The resulting solution was stirred for 84 hours. The resulting mixture was evaporated 

to give a white amorphous solid. Dry acetonitrile (23 mL) and NaBF4 (360 mg, 3.28 

mmol) was added to the amorphous solid and the mixture was stirred for 39 hours. 

White precipitate was removed by filtration and the filtrate was evaporated to give a 

crude product as a white solid (2.00 g). The solid was dissolved in chloroform, and the 

precipitate that formed was removed by filtration. The filtrate was evaporated to give a 

amorphous solid. Diethyl ether was added to the amorphous solid and refluxed for 2 

hours. The resulting white solid could not be filtered and dissolved in chloroform and 

evaporated to give a amorphous solid again. The solid was dissolved in ethanol and 

evaporated to give 3 P-[ 6-( 4-aza-1-azoniabicyclo[2.2.2]oct-1-yl)-hexanoyloxy ]-5a

androstan-17-one tetrafluoroborate (13'1) (1.52 g, 81%) as a mixture of white crystals 

and solid~ 1H NMR (400 MHz, CDCh) o 0.68 (m, 1H, 9-H), 0.82 (s, 3H, 18-H or 

19-H), 0.83 (s, 3H, 18-H or 19-H), 0.90-1.04 (m, 2H, one of 1-H, one of 7-H), 

1.1-1.8 (m, 22H, one of 1-H, 2-H, 4-H, 5-H, 6-H, one of7-H, 8-H, 11-H, 12-H, 14-H, 
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one of 15-H, 22-H, 23-H, 24-H), 1.90 (m, lH, one of ISH), 2.03 (dt, lH, J= 9.0, 19.0 

Hz, one of 16-H), 2.25 (t, 2H, J= 7.0 Hz, 21-H), 2.40 (dd, lH, J= 9.0, 19.0 Hz, one of 

16-H), 3.21 (m, 6H, NCH2), 3.30 (m, 2H, 25-H), 3.44 (m, 6H, WCH2), 4.63 (m, lH, 

3-H); 19FNMR(188MHz, CDCh)o-151.5 (s); 13CNMR(101 MHz)o 12.1 (s, 19-C), 

13.7 (s, 18-C), 20.4 (s, ll-C), 21.6 (s, 15-C or 24-C), 21.7 (s, 15-C or 24-C), 24.2 (s, 

22-C), 25.7 (s, 23-C), 27.3 (s, 2-C), 28.2 (s, 6-C), 30.7 (s, 7-C), 31.4 (s, 12-C), 33.9 (s, 

4-C), 34.0 (s, 21-C), 34.9 (s, 8-C), 35.5 (s, 10-C), 35.8 (s, 16-C), 36.6 (s, 1-C), 44.6 (s, 

5-C), 45.2 (s, NCH2), 47.7 (s, 13-C), 51.2 (s, 14-C), 52.4 (s, WCH2), 54.2 (s, 9-C), 

64.3 (s, 25-C), 73.5 (s, 3-C), 172.7 (s, 20-C), 221.3 (s, 17-C); IR (KBr) 2935, 2859, 

1733 (C=O) cm-1
; mass spectrum, m/z (ES) 500 ([M+H-BF4t, 46), 499 ([M-BF4t, 

100%), (Found: [M-BF4r 499.3878. C31HstN2~ requires 499.3900). 

6.6 Fh.uorinati011n of steroids using SelectfluorTM 

3f3-Acetoxy-5a.-androstan-17-one (138) 

A mixture of epiandrosterone (128) (0.60 g, 2.07 mmol), acetic anhydride (0.42 g, 4.11 

mmol), 4-dimethylaminopyridine (84 mg, 0.69 mmol) and dichloromethane (50 mL) 

was stirred at ambient temperature for 6 hours. The reaction mixture was poured into 

water, neutralised by NaHC03, and extracted with dichloromethane (3 x 20 mL). The 

combined organic extracts were dried over anhydrous MgS04 and evaporated to give a 

crude product (1.20 g). The crude mixture was chromatographed over silica gel [silica 

gel: 10 g, eluent: hexane/ethyl acetate (4:1)] to give 3f3-Acetoxy-5a.-androstan- 17-one 

(138) (681 mg, 99%) as white crystals; m.p. 104-105 °C (lit. 172 103-104 °C) 

(Found: C, 75.88; H, 9.75. C21H3203 requires C, 75.86; H, 9.70%); 1HNMR (400 MHz, 

CDCh) o 0.68 (m, 1H, 9-H), 0.82 (2 x s, 6H, 18-H and 19-H), 0.9--1.0 (m, 2H, one of 

1-H, one of 7-H), 1.1-1.4 (m, 7H, one of 4-H, 5-H, 6-H, one of 11-H, one of 12-H, 

14-H), 1.4-1.5 (m, 3H, one of2-H, 8-H, one of 15-H), 1.5-1.6 (m, 2H, one of 4-H, 

one of 11-H), 1.7-1.8 (m, 4H, one of 1-H, one of 2-H, one of 7-H, one of 12-H), 1.90 

(m, 1H, one of 15-H), 1.99 (s, 3H, 21-H), 2.03 (m, 1H, one of 16-H), 2.40 (dd, 1H, J = 

9.0, 19.5 Hz, one of 16-H), 4.65 (m, 1H, 3-H); 13C NMR (126 MHz) o 12.1 (s, 19-C), 

13.7 (s, 18-C), 20.4 (s, ll-C), 21.4 (s, 21-C), 21.7 (s, 15-C), 27.3 (s, 2-C), 28.2 (s, 6-C), 

30.7 (s, 7-C), 31.4 (s, 12-C), 33.8 (s, 4-C), 34.9 (s, 8-C), 35.5 (s, 10-C), 35.7 (s, 16-C), 

36.6 (s, 1-C), 44.5 (s, 5-C), 47.7 (s, 13-C), 51.2 (s, 14-C), 54.2 (s, 9-C), 73.4 (s, 3-C), 

170.6 (s, 20-C), 221.1 (s, 17-C); IR (KBr) 2920, 2855, 1735 (C=O), 1241, 1020 cm-1; 

mass spectrum, m/z (EI)332 (M\ 21%), 272 ([M-C2~o2r, 100). [As compared to 

literature data (13C NMR).251] 
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lFIIIBorinatiollU ®If 3J3-aceto:Ky-5a.-amllrostsurn-17-one (138) witlln §ellecdllllllor™ 

A mixture of 3f3-acetoxy-5cx.-androstan-17-one (138) (300 mg, 0.905 mmol) and 

freshly distilled anhydrous acetonitrile (20 mL) was placed in a round bottomed flask. 

Selectfluor™ (321 mg, 0.906 mmol) was added to the mixture, and the mixture was 

refluxed with stirring for 16 hours. The mixture was poured into water {30 mL), 

neutralised by NaHC03 and extracted with dichloromethane (3 x 20 mL). The 

combined organic extracts were dried over anhydrous MgS04 and evaporated to give a 

crude product (341 mg) which contained 3 (3-acetoxy-Sa.-androstan-17 -one ( 138) 

(72%); m/z (E:t) 332 ~. 13%), 272 ([M-C2~o2r, 100), 3f3-acetoxy-12cx.-fluoro-

5cx.-androstan-17-one {139a) (11%); mlz (Eil350 ~. 3%), 290 ([M-C2~o2t, 72), 

3(3-acetoxy-12(3-fluoro-Scx.-androstan-17-one (139b) (5%) ; m/z (E() 350 ~. 5%), 

290 ([M-C2~02t, 75), 3f3-acetoxy-6cx.-fluoro-5cx.-androstan-17-one (139c) (5%); m/z 

(EI) 350 ~. 8%), 290 ([M-C2Rt02t, 60), other isomers of monofluorinated 

acetoxyandrostanone (3 peaks, 7%) ; m/z (Ell 3 50 (Ml and unidentified products 

(1%). The crude mixture was chromatographed over silica gel [eluent: hexane/ethyl 

acetate (6:1)] to give three major isomers: 3f3-acetoxy-12cx.- fluoro-5cx.-androstan-17-

one (139a) (19 mg, 6%), 3f3-acetoxy-12(3-fluoro-5cx.-androstan -17-one (139b) (13 mg, 

4%), 3f3-acetoxy-6a-fluoro-5a-androstan-17-one (139c) (15 mg, 5%). 

3f3-Aceto:KY·12a-t111Boro-5a-andhrostan~17-one (139a) 
1H NMR (400 MHz, CDCh) 8 0.81 {s, 3H, 18-H), 0.83 {s, 3H, 19-H), 1.0-2.0 (m, 

18H, 1-H, 2-H, 4-H, 5-H, 6-H, 7-H, 8-H, 9-H, 11-H, 14-H, 15-H), 2.01 (s, 3H, 21-H), 

2.12 (dd, 1H, J = 9.5, 19.5 Hz, one of 16-H), 2.41 (dd, 1H, J = 8.0, 19.5 Hz, one of 

16-H), 4.68 (m, 1H, 3-H), 4.9o (d, 1H, 2JHF = 49.5 Hz, 12-H); 13C NMR (126 MHz) 8 

11.9 {s, 19-C), 13.3 (d, 3JcF = 7.0 Hz, 18-C), 21.0 {s, 15-C), 21.4 {s, 21-C), 26.4 (d, 
2JcF = 22.0 Hz, 11-C), 27.2 (s, 2-C), 28.1 (s, 6-C), 30.5 (s, 7-C), 33.8 {s, 4-C), 34.4 {s, 

8-C), 35.2 (s, 10-C), 36.3 (s, 1-C or 16-C), 36.3 (s, 1-C or 16-C), 43.8 (s, 14-C), 44.5 {s, 

5-C), 48.4 (s, 9-C), 51.4 {d, 2JcF = 20.0 Hz, 13-C), 73.3 (s, 3-C), 90.4 (d, 1JcF = 173.5 

Hz, 12-C), 170.6 (s, 20-C), 216.7 (s, 17-C); 19p NMR (188 MHz, CDCh) 8 -187.0 (t, 
2JHF = 49.5 Hz); mass spectrum, m/z (Eil350 (M\ 3%), 290 ([M-C2~o2t, 97). 

3J3-Acetoxy-12f3-flum·o-5a-androstan-17-one (139b) 
1H NMR (400 MHz, CDCh) 8 0.8-2.2 (m, 19H, 1-H, 2-H, 4-H, 5-H, 6-H, 7-H, 8-H, 

9-H, 11-H, 14-H, 15-H, one of 16-H), 0.86 (s, 3H, 19-H), 0.99 (d, 3H, 4JHF = 1.0 Hz, 

18-H), 2.02 (s, 3H, 21-H), 2.47 (m, 1H, one of 16-H), 4.57 (ddd, 1H, 2JHF = 50.0 Hz, 
3
JHH = 11.0, 5.0 Hz, 12-H), 4.68 (m, 1H, 3-H); 13C NMR (101 MHz) 8 8.2 (d, 3JcF = 

4.0 Hz, 18-C), 12.0 (s, 19-C), 21.2 (d, 4JcF = 2.0 Hz, 15-C), 21.4 (s, 21-C), 27.2 {s, 

2-C), 27.6 (d, 2JcF = 19.0 Hz, 11-C), 28.0 (s, 6-C), 29.7 (s, 7-C), 33.7 (s, 4-C and 8-C), 
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35.4 {s, 16-C), 35.5 {s, 10-C), 36.6 {s, 1-C), 44.4 {s, 5-C), 48.6 (d, 3 lcF = 5.0 Hz, 14-C), 

51.4 (d, 2lcF = 16.0 Hz, 13-C), 52.1 {d, 3 lcF = g_Q Hz, g-C), 73.2 {s, 3-C), g2.0 (d, 1lcF 

= 183.0 Hz, 12-C), 170.7 {s, 20-C), 217.5 {s, 17-C) ; 19p NMR (188 MHz, CDCh) 

cS -183.5 (d, 2JHF = 50.0 Hz); mass spectrum, m/z (EI+) 350 (M\ 8%), 2go 

([M-C2R.o2r, 1oo). 

3(3~Acetoxy-6a-fluoro-5a.-androstan-ll7-one (~ 39c) 
1H NMR (400 MHz, CDCh) cS 0.7-0.8 (m, 1H, g-H), 0.86 {s, 3H, 18-H or 1g-H), 0.86 

{s, 3H, 18-H or 1g-H), U~-2.3 {m, 18H, 1-H, 2-H, 4-H, 5-H, 7-H, 8-H, g-H, 11-H, 

12-H, 14-H, 15-H, one of 16-H), 2.03 {s, 3H, 21-H), 2.44 (m, 1H, one of 16-H), 4.31 

(m, 1H, 2 lHF = 50.0 Hz, 6-H), 4.68 (m, 1H, 3-H); 13C NMR {101 MHz) cS 13.2 {s, 18-C 

or 1g-C), 13.8 {s, 18-C or 1g-C), 20.2 {s, ll-C), 21.4 {s, 21-C), 21.7 {s, 15-C), 27.0 {s, 

2-C), 27.g {d, 3lcF = 4.0 Hz, 4-C), 31.2 (s, 12-C), 33.6 (d, 3lcF = 11.5 Hz, 8-C), 35.7 {s, 

16-C), 36.6 {d, 3 lcF = 8.0 Hz, 10-C), 36.g {s, 1-C), 37.0 {d, 2lcF = 18.5 Hz, 7-C), 47.7 

{s, 13-C), 4g_6 {d, 2lcF = 15.0 Hz, 5-C), 51.0 {s, 14-C), 53.5 {d, 4lcF = 1.5 Hz, g-C), 

72.7 {s, 3-C), g1.2 {d, 1JcF = 173.0 Hz, 6-C), 170.5 (s, 20-C), 220.4 {s, 17-C); l9p NMR 

(188 MHz, CDCh) cS -181.4 (d, 2JHF = 4g_5 Hz); mass spectrum, m/z (Et)350 ~' 
16%), 2go ([M-C2R.o2r, 1oo). 

Crystal data for 139c: C21H3tF03, M = 350.62, monoclinic, n 1 (No.4), a= g_ggg(1) ~ 

b = 8.082(2) A, c = 11.783(2) A, a= goo, /3= go.60(1)0
, r = goo, v = g52.2(3) A3, 

F(OOO) = 380, Z = 4, De= 1.222 gjcm3, J.L = 0.086 mm-1 (Mo Ka, A.= 0.71073 A), T= 

120(2) K, crystal size 0.55 x 0.5 x 0.3 mm3. 

6. 7 Remote fluorination of steroids directed by tethered N-F reagents 

General procedure 

A mixture containing the substrate, sodium tetrafluoroborate, and freshly distilled 

anhydrous acetonitrile was placed in the small PTFE reactor. The mixture was purged 

with N2 and immersed in a cooling bath of -10 °C. Elemental fluorine as a 10% (v/v) 

mixture with nitrogen was introduced at a flow rate of 10 mL/min into the rapidly 

stirred mixture via PTFE tubing. The reaction mixture was purged with N2 for 30 

minutes. The conversion of the substrate into N-F species was determined by analyzing 

the reaction mixture using 19F NMR spectroscopy. The amount of the formed N-F 

species was calculated by comparing the integration with the BF4- resonance. The 

reaction mixture was allowed to warm to room temperature, moved to a three neck 

round bottomed flask and refluxed with stirring for 16 hours. The resulting mixture 

was poured into water, neutralised by NaHC03, and extracted with chloroform (three 

times). The combined organic extracts were dried over· anhydrous MgS04 and 
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evaporated to give a crude product. The crude product was analysed by 19F NMR 

spectroscopy. 

Fiumrinatim:n of 3f3~[( 4!-aza-ll. -azonnabicydo[2.2.2]od-ll. -yH)-acetoxy]-5a.-alllldrostallll 

-Jli-mne (131) 

3P-[( 4-Aza-1-azoniabicyclo[2.2.2]oct-1-yl)-acetoxy ]-5a-androstan-17-one 

tetrafluoroborate (131) (239 mg, 0.451 mmol), sodium tetrafluoroborate (50 mg, 0.46 

mmol), acetonitrile (10 mL), and elemental fluorine (2.70 mmol) gave an N-F species 

in 93%. After the heating process, a crude product (171 mg) was obtained. More than 8 

kinds of fluorinated compounds were observed at -199 to -169 ppm in 19p NMR (See 
19F NMR analysis in figure 2.9.). 

Fluorination of 3f3-[4-( 4-aza-ll. -azoniabicydo[2.2.2]oct- :U. -yll)-llnntyryloxy]-5a-

androstan-17-olllle tetrafluoroborate (133) 

(Reaction concentration: 45mM) 

3 P-[ 4-( 4-Aza-1-azoniabicyclo[2.2.2]oct-1-yl)-butyryloxy ]-5a-androstan-17-one 

tetrafluoroborate (133) (251 mg, 0.45 mmol), sodium tetrafluoroborate (49 mg, 0.45, 

mmol), acetonitrile (10 mL), and elemental fluorine (1.80 mmol) gave the;" 

corresponding N-F derivative (86%). The reaction mixture was refluxed with stirring 

to give crude product (0.28 g); 19F NMR (188 MHz, CDCh) 8 -169:05 (d, 2
JHF = 48 

Hz, 4%), -180.85 (d, 2JuF =50 Hz, 22%), -183.22 (d, 2JHF =48Hz, 13%), -184.07 (tn; 

8%), -184.74 (m, 10%), -186.13 (m, 8%), -186.83 (m, 25%), -188.04 (d, 21HF = 39 

Hz, 3%), -192.97 (m, 4%), -198.82 (m, 3%) (See l9p NMR analysis in Figure 2.11.). 

(See derivatization and GC-MS analysis below.) 

(Reaction concentration: 3mM) 

3 P-[ 4-( 4-Aza-1-azoniabicyclo[2.2.2]oct-1-yl)-butyryloxy ]-5a-androstan-17 -one 

tetrafluoroborate (133) (251 mg, 0.45 mmol), sodium tetrafluoroborate (49 mg, 0.45 

mmol), acetonitrile (10 mL), and elemental fluorine (2.26 mmol) gave the 

corresponding N-F derivative (86%). The reaction mixture was diluted with anhydrous 

acetonitrile (140 mL), refluxed with stirring to give crude product (0.35 g); l9p NMR 

(188 MHz, CDCh) 8-169.02 (d, 21uF =52 Hz, 18%), -176.63 (m, 10%), -180.71 (m, 

20%), -183.21 (m, 8%), -186.08 (m, 12%), -196.55 (m, 16%), -198.68 (m, 16%) (See 
19F NMR analysis in Figure 2.11.). (See derivatization and GC-MS analysis below.) 
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ID>eprotednonn of (~-aza-1-mzoniaii>D.cydo[2.2.2]oct-1-yl)-acetoxy group from 3J3-

[( 4-aza-1-azonnnablicycBo[2.2.2]oct-1-yll)-aceto:xy]-5a.-amllrostann-17-onne (ill) unsinng 

potassillllm call'll>onate 

A mixture containing 3 J3-[ ( 4-aza-1-azoniabicyclo[2.2.2]oct-1-yl)-acetoxy ]-5a.

androstan-17-one tetrafluoroborate (131) (31 mg, 0.058 mmol), potassium carbonate 

(5.5 mg, 0.040 mmol), and methanol (3 mL) was stirred for 4 hours. The mixture was 

added to water, extracted with dichloromethane (3 times), dried over anhydrous 

MgS04 and evaporated to give epiandrosterone (128) (15 mg); 1H Nl\.1R (500 MHz, 

CDCh) o 0.68 (m, 1H, 9-H), 0.82 (s, 3H, 19-H), 0.85 (s, 3H, 18-H), 0.9-1.0 (m, 2H, 

one of 1-H, one of7-H), 1.12 (m, 1H, 5-H), 1.2-1.4 (m, 6H, one of4-H, 6-H, one of 

11-H, one of 12-H, 14-H), 1.40 (m, 1H, one of2-H), 1.5-1.6 (m, 3H, one of 4-H, 8-H, 

one of 15-H), 1.65 (m, 1H, one of 11-H), 1.71 (dt, 1H, J = 3.5, 13.5 Hz, one of 1-H), 

1.78 (m, 3H, one of2-H, one of7-H, one of 12-H), 1.92 (m, 1H, one of 15-H), 2.05 (dt, 

1H, J= 9.0, 19.5 Hz, one of 16-H), 2.43 (m, 1H, one of 16-H), 3.59 (m, 1H, 3-H); 13C 

NMR (126 MHz) o 12.3 (s, 19-C), 13.8 (s, 18-C), 20.5 (s, 11-C), 21.7 (s, 15-C), 28.4 (s, 

6-C), 30.9 (s, 7-C), 31.4 (s, 12-C), 31.5 (s, 2-C), 35.0 (s, 8-C), 35.6 (s, 10-C), 35.8 (s, 

16-C), 36.9 (s, 1-C), 38.0 (s, 4-C), 44.8 (s, 5-C), 47.8 (s, 13-C), 51.4 (s, 14-C), 54.4 (s, 

9-C), 71.1 (s, 3-C), 221.4 (s, 17-C). 

A mixture of the crude product, acetic anhydride (64 mg, 0.63 mmol), 

4-dimethylaminopyridine (11 mg, 0.14 mmol) and dichloromethane (1.5 mL) was 

stirred at ambient temperature for 24 hours. The reaction mixture was poured into 

water, neutralised by NaHC03, and extracted with dichloromethane (3 times). The 

combined organic extracts were dried over anhydrous MgS04 and evaporated to give a 

crude product (25 mg). The crude mixture was chromatographed over silica gel [silica 

gel: 0.15 g, eluent: hexane/ethyl acetate (1:1)] to give 3J3-acetoxy-5a.-androstan-

17-one (138) (16 mg) as a white solid; GC (97 %); mass spectrum, rn/z (EI)332 (M\ 

9%), 272 ([M-C2H402t, 75). (As compared to an authentic sample.) 

Deprotection of 4-( ~-aza-1-azoniabicydo[2.2.2]oct-1-yl)-lbutyryRoxy gll'oup from 

3J3-[ 4-o( 4-sza-1-azoniabicyclo[2.2.2]oC1l-1-yl)-llmtyryDoxy]-5a.-aKlldlrostan-11.7-ollle 

tetrafluoll'oborate (133) UIISing IIDydrodnBoric acid! i1rn acetonitriDe 

A mixture containing 3 J3-[ 4-( 4-aza-1-azoniabicyclo[2.2.2]oct-1-yl)-butyryloxy ]-5a.

androstan-17-one tetrafluoroborate (133) (22 mg, 0.039 mmol), concentrated 

hydrochloric acid (0.2 mL), and acetonitrile (0.4 mL) was stirred for 30 hours. The 

reaction mixture was poured into water, neutralised by NaHC03, and extracted with 
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dichloromethane (3 times). The combined organic extracts were dried over anhydrous 

MgS04 and evaporated to give a crude product (24 mg). The crude mixture, acetic 

anhydride (47 mg, 0.46 mmol), 4-dimethylaminopyridine (7 mg, 0.06 mmol) and 

dichloromethane (3.5 mL) gave 3f3-acetoxy-5a.-androstan-17-one (138) (13 mg) as a 

white solid; GC (98%); mass spectrum, rn/z (Ell 332 (M'"). 

DerivaltizantioHII amll a1111aDysis of ttllne cnll(lle prod!Ullct of 1flhll!oll'nDllatnoD11 of coD1lllpOUliDlld 133 

under the normal coDDcentration 

The deprotections and following acetylations were carried out as described above. 

(Deprotected by basic condition) 

The crude product of the fluorination of compound 133 under the normal concentration 

(45 mM) (176 mg), potassium carbonate (25 mg, 0.18 mmol) and methanol (15 mL) 

gave crude product (74 mg). The impure product reacted with acetic anhydride (93 mg, 

0.91 mmol) in the presence of 4-dimethylaminopyridine (7 mg, 0.06 mmol) in 

dichloromethane (7 mL) to give crude mixture (81 mg) which contained 3 f3-acetoxy-

5a.-androstan-17-one (138} (60%); rnlz (Eil332 ~, 20%), 272 ([M-C2~o2r, 45), 

3f3-acetoxy-6a.-fluoro-5a.-androstan-17-one (139c) (7%); rn/z (Eil350 (M\ 9%), 290 

([M-C2&02t, 73), 3f3-acetoxy-12a.-fluoro-5a.-androstan-17-one (139a) (6%); rnlz 

(Ell 350 ~' 2%}, 290 ([M-C2~02t, 84}, 3f3-acetoxy-12f3-fluoro-5a.-androstan-

17-one (139b) (3%); rn/z (Ell 350 ~' 5%), 290 ([M-C2~o2r, 66), other isomers of 

mono fluorinated 3 f3-acetoxy-5a.-androstan-17 -one (2 peaks, 6% ); rn/z (E:t) 3 50 ~), 

HF eliminated compounds (140) (3 peaks, 18%); rn/z (E:t) 330 ~). 

(Deprotected by acidic condition) 

The crude product of the fluorination of compound 133 under the normal concentration 

(45 mM) (120 mg}, concentrated hydrochloric acid (0.5 mL) and acetonitrile (1 mL) 

gave crude product (55 mg). The impure product reacted with acetic anhydride (92 mg, 

0.90 mmol) in the presence of 4-dimethylaminopyridine (6 mg, 0.05 mmol) in 

dichloromethane (5.5 mL) to give crude mixture (66 mg) which contained 3f3-acetoxy-

5a.-androstan-17-one (138) (64%); rn/z (Eil332 (M\ 28%), 272 ([M-C2~o2r, 75), 

3f3-acetoxy-6a.-fluoro-5a.-androstan-17-one (139c) (7%); rn/z (E.t) 350 ~' 9%), 290 

([M-C2&02t, 75), 3f3-acetoxy-12a.-fluoro-5a.-androstan-17-one (139a) (6%); rn/z 

(Ell 350 (M\ 3%), 290 ([M-C2~02]+, 99}, 3f3-acetoxy-12f3-fluoro-5a.-androstan-

17-one (139b) (3%); rn/z (Ell 350 ~. 5%}, 290 ([M-C2IL02t, 64), other isomers of 

mono fluorinated 3 f3-acetoxy-5a.-androstan-17 -one ( 4 peaks, 6% ); rn/z (E:t) 3 50 (M}, 
HF eliminated compounds (140) (3 peaks, 13%); rn/z (Ell 330 ~). 
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Deprotection and reprotection of acetoxy group from a mixture containing 

3J3-acetoxy-ll.la.-fltnoro-5a.-androstan-ll.7-one (139a) 

A mixture of 139a, 139c and 138 [37:5:52, which also contained another 

monofluorinated 3J3-acetoxy-5a.-androstan-17-one (5%)] was treated with concentrated 

hydrochloric acid (0.5 mL) and acetonitrile (1 mL) gave crude product (37 mg). The 

impure product reacted with acetic anhydride (92 mg, 0.90 mmol) in the presence of 

4-dimethylaminopyridine (3 mg, 0.02 mmol) in dichloromethane (4 mL) to give crude 

mixture (36 mg) which contained 3J3-acetoxy-5a.-androstan-17-one (138) (52%); m/z 

(Ell 332 (M\ 18%), 272 ([M-C2I402t, 45), 3J3-acetoxy-12a.-fluoro-5a.-androstan-

17-one (139a) (37%); m/z (Ell 350 ~. 4%), 290 ([M-C2I402t, 92), 3J3-acetoxy-

6a.-fluoro-5a.-androstan-17-one (139c) (5%); m/z (Er) 350 ~. 34%), 290 

([M-c2H.02t, 18), another isomer of monofluorinated 3J3-acetoxy-5a.-androstan-17-

one (5%); m/z (Er) 350 ~). 

Derivatization and analysis of the crude product of fluorination of compound 133 

under high-dilution conditions 

The deprotections and following acetylations were carried out as described above. 

The crude product of the fluorination of compound 133 under high-dilution condition 

(3 mM) (350 mg), concentrated hydrochloric acid (1.5 mL) and acetonitrile (3 mL) 

gave crude product (130 mg). The impure product reacted with acetic anhydride (220 

mg, 2.2 mmol) in the presence of 4-dimethylaminopyridine (13 mg, 0.11 mmol) in 

dichloromethane (14 mL) to give crude mixture (156 mg) which contained 3J3-acetoxy-

5a.-androstan-17-one (138) (45%); mlz (ED 332 ~. 23%), 272 ([M-C2Rt02t, 63), 

3J3-acetoxy-6a.-fluoro-5a.-androstan-17-one (139c) (4%); m/z (ED 350 ~. 5%), 290 

([M-C2R.02t, 38), 3J3-acetoxy-12J3-fluoro-5a.-androstan- 17-one (139b) (1%), other 

isomers of monofluorinated 3 13-acetoxy-Sa.-androstan-17- one (3 peaks, 6% ); rnlz (El+) 

350 ~), HF eliminated compounds (140) (3 peaks, 39%); m/z (Er) 330 ~). 

Fluorination of 3J3-[5-( 4-aza-1-azoniabicyclo[2.2.2]oct-1-yl)-valeryloxy]-5a.-

androstan-17-one tetrafluoroborate (135) 

(Reaction concentration: 45 mM) 

3 P-[ 5-( 4-Aza-1-azoniabicyclo[2.2.2]oct-1-yl)-valeryloxy ]-5a.-androstan-17 -one 

tetrafluoroborate (135) (258 mg, 0.450 mmol), sodium tetrafluoroborate (49 mg, 0.45 

mmol), acetonitrile (10 mL), and elemental fluorine (1.79 mmol) gave N-F species 

(87%). The reaction mixture was refluxed with stirring to give a crude product (257 

mg); 19F NMR (188 MHz, CDCh) o -169.0 (d, 2
JuF = 50.0 Hz, 4%), -181.0 (d, 2

JuF = 
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55.5 Hz, 21%), -183.2 (d, 2JHF = 50.0 Hz, 16%), -184.1 (m, 4%), -184.8 (m, 10%), 

-186.1 (m, 10%), -186.8 (m, 35%), -193.0 (m, 3%), -198.8 (m, 2%) (See I
9F NMR 

analysis in figure 2.12.). 

(Derivatization and analysis) 

The crude product (257 mg), concentrated hydrochloric acid (1 mL), and acetonitrile (2 

mL) gave a crude product (105 mg). The crude product (105 mg) was reacted with 

acetic anhydride (230 mg, 2.3 mmol), 4-dimethylaminopyridine (7 mg, 0.06 mmol) in 

dichloromethane (5 mL) to give a crude mixture (122 mg) which contained 

3~-acetoxy-5a-androstan-17-one (138) (47%); m/z (Er) 332 ~. 32%), 272 

([M-C2~o2r, 76), 3~-acetoxy-6a-fluoro-5a-androstan-17-one (139c) (9%); mlz 

(ED 350 ~. 12%), 290 ([M-C2~o2r, 92), 3~-acetoxy-12a-fluoro-5a-androstan-

17-one (139a) (10%); m/z (EI) 350 ~. 5%), 290 ([M-C2~o2r, 92), 3~-acetoxy-

12~-fluoro-5a-androstan-17-one (139b) (5%); m/z (EI+) 350 ~. 5%), 290 

([M-C2~o2r, 82), other isomers of monofluorinated 3~-acetoxy-5a.-androstan-17-

one (2 peaks, 6%); m/z (ED 350 (M), HF eliminated compounds (140) (3 peaks, 

18%); rn/z (ED 330 (M). 

(Reaction concentration: 3 mM) 

3 ~-[ 5-( 4-Aza-1-azoniabicyclo[2.2.2]oct-1-yl)-valeryloxy ]-Sa-androstan-17 -one 

tetrafluoroborate (135) (258 mg, 0.450 mmol), sodium tetrafluoroborate (49 mg, 0.45 

mmol), acetonitrile (10 mL), and elemental fluorine (1.79 mmol) gave the N-F species 

in 75-100% conversion. The reaction mixture was diluted with acetonitrile (140 mL) 

and refluxed with stirring to give a crude product (275 mg); I~ NMR (188 MHz, 

CDCh) o -169.0 (d, 2 JuF = 48.5 Hz, 18%), -169.7 (m, 4%), -176.7 (m, 7%), -181.0 (d, 
2JuF = 51.0 Hz, 19%), -183.2 (d, 2JHF = 46.0 Hz, 7%), -186.1 (m, 9%), -186.8 (m, 

7%), -193.0 (m, 2%), -196.4 (m, 15%), -198.8 (m, 12%) (See I~ NMR analysis in 

figure 2.12.). 

(Derivatization and analysis) 

The crude product (275 mg), concentrated hydrochloric acid (1 mL), and acetonitrile (2 

mL) gave a crude product (132 mg). The crude product (132 mg), acetic anhydride 

(230 mg, 2.3 mmol), 4-dimethylaminopyridine (6 mg, 0.05 mmol) and 

dichloromethane (7.5 mL) gave a crude mixture (152 mg) which contained 

3~-acetoxy-Sa-androstan-17-one (138) (53%); m/z (ED 332 ~. 36%), 272 

([M-C2~o2r. 81), 3~-acetoxy-6a-fluoro-5a-androstan-17-one (139c) (3%); rn/z 

(ED 350 ~. 6%), 290 ([M-C2~o2r, 47), 3~-acetoxy-12~-fluoro-Sa-androstan-

17-one ('i39b) (I %); rn/z (EI+) 350 ~. 1%), 290 ([M-C2~o2r. 14), other isomers 
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of monofluorinated 3~-acetoxy-Sa-androstan-17-one (3 peaks, 5 %); rnlz (EI+) 350 

(~), HF eliminated compounds (140} (3 peaks, 32%); m/z (Ell330 ~). 

1Fhnorinnatn01m olf 3J3-[6-( 4-aza-ll. -azonnabucydo[2.2.2]oct-:ll-yB)-I!u~ll:anoyHmcy]-5a.-

amllrostann-ll. 7 -one tetraJfhnoR'oborate ( 137) 

(Readnon conncentration: 45 mM) 

3 ~-[ 6-( 4-Aza-1-azoniabicyclo[2.2.2]oct-1-yl)-hexanoyloxy ]-Sa-androstan-17 -one 

tetrafluoroborate (131} (268 mg, 0.457 mmol), sodium tetrafluoroborate (50 mg, 0.46 

mmol), acetonitrile (10 mL), and elemental fluorine (1.79 mmol) gave the 

corresponding N-F species (83%). The reaction mixture was refluxed with stirring to 

give a crude product (328 mg); 19F NMR (188 fvtl-lz, CDCh) o -169.1 (d, 2
JuF = 53.0 

Hz, 10%), -169.8 (m, 5%), -181.0 (d, 2
JuF = 51.0 Hz, 24%), -183.3 (d, 2

JHF = 46.5 Hz, 

14%), -184.1 (m, 3%), -184.9 (m, 9%), -186.2 (m, 5%), -186.9 (rn, 26%), -198.8 (rn, 

4%) (See 19p NMR analysis in figure 2.13.). 

(Derivatization and analysis) 

The crude product (328 mg), concentrated hydrochloric acid (1 mL), and acetonitrile (2 

mL) gave a crude product (113 mg). The crude product (113 mg), acetic anhydride 

(230 mg, 2.3 mmol), 4-dimethylaminopyridine (6 rng, 0.05 mmol) and 

dichloromethane ( 6 mL) gave a crude mixture (71 mg) which contained 3 ~-acetoxy

Sa-androstan-17 -one (138) (51%), 3J3-acetoxy-6a-fluoro-5a.-androstan-17 -one (139c) 

( 5% ), 3 ~-acetoxy-12a-fluoro-Sa-androstan-17 -one ( 139a) ( 4% ), 3 ~-acetoxy-12J3-

fluoro-5a-androstan-17-one (139b) (3%), other isomers of monofluorinated 3J3-

acetoxy-5a-androstan-17-one (2 peaks, 4%), HF eliminated compounds (140) (3 peaks, 

22%). 

(Reaction concentration: 3 mM) 

3 J3-[ 6-( 4-Aza-1-azoniabicyclo[2.2.2]oct-1-yl)-hexanoyloxy ]-Sa-androstan-17 -one 

tetrafluoroborate (137) (264 rng, 0.450 mmol), sodium tetrafluoroborate (49 mg, 0.45 

mmol), acetonitrile (10 mL), and elemental fluorine (1.79 mmol) gave the 

corresponding N-F species (82%). The reaction mixture was diluted with acetonitrile 

(140 mL), and refluxed with stirring to give a crude product (260 mg); 19p NMR (188 

MHz, CDCh) o -161.0 (rn, 4%), -162.5 (m, 100/o),-169.1 (d, 2
JHF = 47.5 Hz, 15%), 

-169.7 (rn, 4%), -176.7 (m, 6%), -180.9 (d, 2
JuF = 55.0 Hz, 22%), -183.2 (d, 2

JHF = 
51.0 Hz, 7%), -186.2 (m, 7%), -186.9 (m, 2%), -196.5 (rn, 13%), -198.9 (m, 10%) 

(See 19F NMR analysis in figure 2.13. ). 

(Derivatization and analysis) 

264 



The crude product (260 mg), concentrated hydrochloric acid (1 mL), and acetonitrile (2 

mL) gave a crude product (115 mg). The crude product (115 mg), acetic anhydride 

(230 mg, 2.3 mmol), 4-dimethylaminopyridine (6 mg, 0.05 mmol) and dichloro 

methane (6 mL) gave a crude mixture (141 mg) which contained 3J3-acetoxy-5a.

androstan-17 -one ( i 38) ( 60% ), 3 J3-acetoxy-6a-fluoro-5a-androstan-1 7 -one ( 139c) 

(3%), 3J3-acetoxy-12J3-fluoro-5a-androstan-17-one (139b) (1%), other isomers of 

monofluorinated 3J3-acetoxy-5a-androstan-17-one (3 peaks, 4%), HF eliminated 

compounds (140) (3 peaks, 25%). 

Control reaction 

The reactions were carried out in a similar manner described above. 

3 J3-[ 5-( 4-Aza-1-azoniabicyclo[2.2.2]oct-1-yl)-valeryloxy ]-5a-androstan-17 -one 

tetrafluoroborate (135) (258 mg, 0.450 mmol), sodium tetrafluoroborate (49 mg, 0.45 

mmol), acetonitrile (10 mL), and elemental fluorine (1.79 mmol) gave the 

corresponding N-F species (72%). The reaction mixture was poured into water (20 mL), 

neutralised by NaHC03, and extracted with chloroform (3 x 20 mL). The combined 

organic extracts were dried over anhydrous MgS04 and evaporated to give a crude 

product (280 mg); 19F NMR. (188 MHz, CDCh) o -162.7 (m, 22%), -164.6 (m, 22%), 

-169.3 (d, 2JHF = 47.5 Hz, 4%), -177.0 (m, 2%), -180.2 (m, 38%), -181.2 (d, 2JHF = 

49.0 Hz, 3%), -183.6 (d, 2JHF = 53.0 Hz, 1%), -186.5 (m, 1%), -187.1 (m, 2%), 

-196.8 (m, 3%), -199.1 (m, 2%). 

(Derivatization and analysis) 

(Deprotected by basic condition) 

The crude product of fluorination (140 mg), concentrated hydrochloric acid (1 mL), 

and acetonitrile (2 mL) gave a crude product (67 mg). The crude product (67 mg), 

acetic anhydride (119 mg, 1.2 mmol), 4-dimethylaminopyridine (3 mg, 0.02 mmol) 

and dichloromethane (7 mL) gave a crude mixture (77 mg) which contained 

3J3-acetoxy-5a.-androstan-17-one (138) (62%); m/z (Er) 332 ~' 39%), 272 

((M-C2H402t, 86), 3J3-acetoxy-6a-fluoro-5a-androstan-17-one (139c) (3%); m/z 

(Ell 350 (M\ 10%), 290 ([M-C2H402t, 87), 3J3-acetoxy-12J3-fluoro-5a.-androstan-

17-one (139b) (1%); m/z (Eil350 ~' 4%), 290 ([M-C2H402t, 58), other isomers of 

monofluorinated 3J3-acetoxy-5a.-androstan-17-one (3 peaks, 6%); m/z (Ef) 350 ~), 

HF eliminated compounds (140) (4 peaks, 26%); m/z (EI+) 330 ~). 

(Deprotected by acidic condition) 

The crude product (154 mg), potassium carbonate (23 mg, 0.17 mmol), and methanol 

(15 mL) was stirred for 3 hours. The mixture was added to water, extracted with 
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dichloromethane (3 times), dried over anhydrous MgS04 and evaporated to give a 

crude product (60 mg). The crude product (23 mg), acetic anhydride (74 mg, 0.72 

mmol), 4-dimethylaminopyridine (1 mg, 0.008 mmol) and dichloromethane (3 mL) 

gave a crude mixture (24 mg) which contained 3J3-acetoxy-5a.-androstan-17-one (138) 

(54%); m/z (Er) 332 ~. 27%), 272 ([M-C2~o2r. 89), 3J3-acetoxy-9a.-fluoro-5a.

androstan-17-one (139d), 3f3-acetoxy-Sa.-fluoro-Sa.- androstan-17-one (139e) and 3J3-

acetoxy-14a.-fluoro-5a.-androstan-17-one (139f) in the ratio of 39:35:25 e9F NMR; 

-180.0, -162.9, and -164.5 ppm, respectively) (2 peaks, 23%); m/z (Eil350 ~), 

3f3-acetoxy-6a.-fluoro-Sa.-androstan-17-one (139c) (2%), 3f3-acetoxy-12J3-fluoro-5a.

androstan-17-one (139b) (1%), other isomers of monofluorinated 3f3-acetoxy-Sa.

androstan-17-one (2 peaks, 2%); m/z (Ell 332 (M\ HF eliminated compounds (140) 

(3 peaks, 7%); m/z (Ell 330 (Ml. 

6.8 Preparation of the steroid derivatives with tethered functional groups 

3a.-(3-Cyanobenzoyloxy )-5a.-androstan-17 -one ( 142) 

A mixture of androsterone (141) (2.29 g, 7.88 mmol), 3-cyanobenzoyl chloride (1.88 g, 

11.4 mmol), 4-dimethylaminopyridine (77 mg, 0.63 mmol), pyridine (5.00 g, 63.2 

mmol) and tetrahydrofuran (50 mL) was refluxed for 30 hours. The reaction mixture 

was poured into water, and extracted with dichloromethane (3 x 100 mL). The 

combined organic extracts were dried over anhydrous MgS04 and evaporated to give a 

crude product (4.85 g). The crude mixture was chromatographed over silica gel [silica 

gel: ISO g, eluent: hexane/ethyl acetate (3:1)] to give white solid (4.05 g). 

Recrystallization from hexane/ethyl acetate gave 3a.-(3-cyanobenzoyloxy)-Sa.

androstan-17-one (142) (2.75 g, 83%) as white crystals; m.p. 159--161 °C; (Found: C, 

77.32; H, 7.95; N, 3.13. C21H33N03 requires C, 77.29; H, 7.93; N, 3.34%); 1H NMR 

(400 MHz, CDCh) 8 0.84----0.92 (m, 1H, 9-H), 0.87 (s, 6H, 18-H, 19-H), 1.01-1.11 

(m, 1H, one of7-H), 1.20--1.38 (m, 6H, one of 1-H or 4-H, 6-H, one of 11-H, one of 

12-H, 14-H), 1.45--1.97 (m, 12H, three of 1-H and 4-H, 2-H, 5-H, one of 7-H, 8-H, 

one of 11-H, one of 12-H, 15-H), 2.07 (dt, 1H, J = 9.0, 19.0 Hz one of 16-H), 2.43 (dd, 

1H, J = 8.0, 19.0 Hz, one of 16-H), 5.30 (m, 1H, 3-H), 7.59 (m, 1H, 25-H), 7.83 (m, 

1H, 24-H), 8.27 (m, 1H, 26-H), 8.30 (m, 1H, 22-H); 13C NMR (101 MHz) 8 11.3 (s, 

19-C), 13.8 (s, 18-C), 20.0 (s, 11-C), 21.7 (s, 15-C), 26.1 (s, 2-C), 28.0 (s, 6-C), 30.6 (s, 

7-C), 31.4 (s, 12-C), 32.8 (s, 1-C or 4-C), 33.0 (s, 1-C or 4-C), 34.9 (s, 8-C), 35.8 (s, 

16-C), 36.0 (s, 10-C), 40.4 (s, 5-C), 47.7 (s, 13-C), 51.3 (s, 14-C), 54.2 (s, 9-C), 71.7 (s, 

3-C), 112.8 (s, 23-C), 118.0 (s, CN), 129.4 (s, 25-C), 132.2 (s, 21-C), 133.1 (s, 22-C or 

26-C), 133.7 (s, 22-C or 26-C), 135.8 (s, 24-C), 163.9 (s, COCH3), 221.3 (s, 17-C); IR 
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(KBr) 3067 (Ar-H), 2934, 2858 (C-H), 2233 (CN), 1734, 1710 (C=O), 1291, 1189, 758 

cm-1
; rn/z (ES} 861 ([2M+Nat, 8%), 442 ([M+Nat, 100). 

Crystal data for 4142: C21H33N03,M= 419.54, monoclinic, P21 (No.4), a= 10.872(1) A, 
b = 10.635(1) A, c = 20.160(2) A, a= 90°, P= 95.11(1)0

, r= 90°, V= 2321.8(4) A3, 

F(OOO) = 904, Z = 4, De= 1.200 g/cm3, f.i = 0.077 mm-1 (Mo Ka., A.= 0.71073 A), T= 

120(2) K, crystal size 0.22 x 0.14 x 0.10 mm3. 

3a.-Cyanoacetoxt.y-5ot-aumdrostallll-11. 7-one (4143) 

Phosphorus pentachloride (1.23 g, 5.91 mmol) was added to a solution of cyanoacetic 

acid (0.51 g, 6.0 mmol) in dry dichloromethane (40 m.L) and the reaction mixture was 

stirred at ambient temperature for 1 hour. The dichloromethane and most of the 

phosphorus oxychloride were removed under reduced pressure. The oily residue was 

dissolved in dry dichloromethane (20 m.L), and androsterone (141) (1.15 g, 3.96 mmol) 

was added to the solution. Pyridine (0.94 g, 12 mmol) was added dropwise to the 

mixture, and then 4-dimethylaminopyridine (77 mg, 0.63 mmol) was added in one 

portion to the mixture. The resulting mixture was stirred at room temperature for 2 

hours. The reaction mixture was poured into water, and extracted with 

dichloromethane (3 times). The combined organic extracts were dried over anhydrous 

MgS04 and evaporated to give a crude product (1.66 g). The crude mixture was 

chromatographed over silica gel [silica gel: 40 g, eluent: hexane/ethyl acetate (2: 1)] to 

give white solid (1.23 g). Recrystallization from hexane/ethyl acetate gave 

3a.-cyanoacetoxy-5a.-androstan-17-one (143) (1.21 g, 85%) as white crystals; m.p. 

149--150 oc; (Found: C, 74.11; H, 8.84; N, 3.92. C22H31N03 requires C, 73.92; H, 

8.74; N, 3.92%); 1H NMR (400 MHz, CDCh) 8 0.77--0.83 (m, 1H, 9-H), 0.81 (s, 3H, 

19-H), 0.84 (s, 3H, 18-H), 1.00 (dq, 1H, J= 5.0, 12.0 Hz, one of7-H), 1.19--1.33 (m, 

6H, one of 1-H or 4-H, 6-H, one of 11-H, one of 12-H, 14-H), 1.43-1.82 (m, 11H, 

three of 1-H and 4-H, 2-H, 5-H, one of 7-H, 8-H, one of 11-H, one of 12-H, one of 

15-H), 1.92 (m, 1H, one of 15-H), 2.01-2.10 (m, 1H, one of 16-H), 2.42 (dd, 1H, J = 
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8.5, 1g.o Hz, one of 16-H), 3.45 (s, 2H., CH2CN), 5.12 (m, 1H, 3-H); Be NMR (101 

MHz) 8 11.2 (s, 1g-C), 13.7 (s, 18-C), 20.0 (s, 11-C), 21.6 (s, 15-C), 25.1 (s, CthCN), 

25.8 (s, 2-C), 27.8 (s, 6-C), 30.6 (s, 7-C), 31.4 (s, 12-C), 32.5 (s, 1-C or 4-C), 32.5 (s, 

1-C or 4-C), 34.g (s, 8-C), 35.8 (s, 16-C), 35.8 (s, 10-C), 3g_g (s, 5-C), 47.7 (s, 13-C), 

51.3 (s, 14-C), 54.0 (s, g-C), 73.5 (s, 3-C), 113.2 (s, CN), 162.3 (s, OCOCH2), 221.3 (s, 

17-C); IR (KBr) 2928, 2914,2855 (C-H), 2265 (CN), 1744 (C=O), 1331, 1219, 1198, 

1160, g97 cm-1; rnfz (Et) 357 ([Mt, 100%). 

Crystal data for 143: C22H31N03, M = 357.48, monoclinic, P21 (No. 4), a= g_ 7072(g) A, 
b = 7.7406(7) A, c = 13.601g(14) A, a= goo,/)= 105.238(4)0

, y= goo, V = g86.11(16) 

A3, F(OOO) = 388, Z = 2, De= 1.204 glcm3, J.l = o.o7g mm-1 (Mo Ka, A.= 0.71073 A), 
T = 170(2) K, crystal size 0.55 x 0.45 x 0.22 mm3. 

3a=[ (3=Carboxypropyl)-acetoxy]-5a=androstan-17 -one ( 144) 

4-Dimethylaminopyridine (105 mg, 0.85g mmol) was added to a solution of 

androsterone (141) (1.67 g, 5.75 mmol) and glutaric anhydride (78g mg, 6.g1 mmol) in 

dichloromethane ( 15 mL) at 0 °C. The reaction mixture was stirred at room 

temperature for 7 days. Additional glutaric acid (525 mg, 4.60 mmol) was added 

during the reaction to allow the reaction to completion. The reaction mixture was 

poured into water, and extracted with dichloromethane (3 times). The combined 

organic extracts were washed with 0.1 M aqueous NaHC03, dried over anhydrous 

MgS04 and evaporated to give a crude product (2. 7g g). The crude mixture was 

chromatographed over silica gel [silica gel: 100 g, eluent: hexane/ethyl acetate (2: 1) 

and dichloromethane/ethyl acetate (2: 1)] to give white solid (2.37 g). Recrystallization 

from hexane/ethyl acetate gave 3a.-[ (3-carboxypropyl)-acetoxy ]-5a-androstan-17 -one 

(144) (1.50 g, 65%) as white crystals; m.p. 173-175 oc; (Found: C, 71.16; H, g_o2. 

C2~360s requires C, 71.26; H, 8.g7%); 1H NMR (500 MHz, CDCb) 8 0.77-D.82 (m, 

IH, 9-H), 0.80 (s, 3H, 1g-H), 0.85 (s, 3H, 18-H), 0.96--1.04 (m, 1H, one of 7-H), 

1.15--1.31 (m, 6H, one of 1-H or 4-H, 6-H, one of 11-H, one of 12-H, 14-H), 

1.42-1.82 (m, 11H, three of 1-H and 4-H, 2-H, 5-H, one of 7-H, 8-H, one of 11-H, 

one of 12-H, one of 15-H), 1.g0-1.g8 (m, 3H, one of 15-H, 22-H), 2.02-2.10 (m, 1H, 

one of 16-H), 2.37-2.46 (m, 5H, one of 16-H, 21-H, 23-H), 5.03 (m, 1H, 3-H); Be 
NMR (101 MHz) 8 12.3 (s, 1g-C), 13.8 (s, 18-C), 1g_g (s, 11-C or 22-C), 20.0 (s, 11-C 

or 22-C), 21.7 (s, 15-C), 26.0 (s, 2-C), 28.0 (s, 6-C), 30.7 (s, 7-C), 31.4 (s, 12-C), 32.8 

(s, 1-C or 4-C), 32.8 (s, 1-C or 4-C), 32.g (s, 21-C or 23-C), 33.6 (s, 21-C or 23-C), 

34.g (s, 8-C), 35.8 (s, 16-C), 35.g (s, 10-C), 40.0 (s, 5-C), 47.8 (s, 13-C), 51.4 (s, 14-C), 

54.2 (s, g-c), 70.0 (s, 3-C), 172.3 (s, 20-C), 178.8 (s, 24-C), 221.7 (s, 17-C); IR (KBr) 
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3022 (COO-H), 2930 (C-H), 1743, 1715 (C=O), 1245, 1181, 1001 cm-1
; rn/z (ES+) 427 

([M+Nat, 77%). 

Crystal data for 144: C2Jl3t>F'Os, M = 404.53, monoclinic, P21 (No. 4), a= 11.231(2) A, 
b = 7.250(1) A, c = 13.360(2) A, a= goo, /3= 103_gg(1)0

, y= goo, V= 1055.6(3) A3, 

F(OOO) = 440, Z = 2, De= 1.273 p)cm3, p = 0.087 mm-1 (Mo Kcx, A.= 0.71073 A), T= 

120(2) K, crystal size 0.40 x 0.08 x 0.04 mm3. 

3cx-Nicotinoyl-5cx-androstan-ll 7 -one ( 145) 

Diethyl azodicarboxylate (2.40 g, 13.8 mmol) was added to a mixture of 

epiandrosterone (128) (2.00 g, 6.8g mmol), triphenylphosphine (3.61 g, 13.8 mmol), 

nicotinic acid (1.70 g, 13.8 mmol), and tetrahydrofuran (100 mL) at room temperature. 

The resulting mixture was stirred for 24 hours. The reaction mixture was poured into 

water, and extracted with diethylether (3 x 100 mL). The combined organic extracts 

were dried over anhydrous MgS04 and evaporated to give a crude product (10.1 g). 

The crude mixture was chromatographed over silica gel [silica gel: 130 g, eluent: 

hexane/ethyl acetate (1:1)] to give a white solid (3.02 g), which contained 

1,2-dicarbethoxyhydrazine as a by-product. The solid was dissolved in hexane/ethyl 

acetate (1:1), washed with IN HCl (several times), saturated aqueous NaHC03, and 

water. The solution was dried over MgS04 and evaporated to give white amorphous 

(1. 79 g). Recrystallization from hexane/ethyl acetate gave 3cx-nicotinoyl-Scx

androstan-17-one (145) (1.38 g, 51%) as white crystals; m.p. 129--130 oc; (Found: C, 

75.66; H, 8.43; N, 3.50. C25H33N03 requires C, 75.g2; H, 8.41; N, 3.54%); 1H NMR 

(500 MHz, CDCh) o 0.83 (m, IH, g-H), 0.85 (s, 6H, 18-H, 1g-H), O.g?-1.05 (m, IH, 

one of 7-H), 1.19--1.38 (m, 6H, one of 1-H or 4-H, 6-H, one of 11-H, one of 12-H, 

14-H), 1.44-1.95 (m, 12H, three of 1-H and 4-H, 2-H, 5-H, one of 7-H, 8-H, one of 

11-H, one of 12-H, 15-H), 2.06 (dt, IH, J= }g_o, g_5 Hz one of 16-H), 2.42 (dd, IH, J 

= }g_o, g_o Hz, one of 16-H), 5.30 (m, lH, 3-H), 7.3g (dd, lH, J = 8.0, 5.0 Hz, 24-H), 

8.28 (m, IH, 25-H), 8.75 (m, 1H, 23-H), g_23 (m, lH, 22-H); 13C NMR (126 MHz) o 
11.3 (s, }g-C), 13.8 (s, 18-C), 20.0 (s, ll-C), 21.7 (s, 15-C), 26.1 (s, 2-C), 28.0 (s, 6-C), 
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30.7 (s, 7-C), 31.4 (s, 12-C), 32.8 (s, 1-C or 4-C), 33.0 (s, 1-C or 4-C), 34.9 (s, 8-C), 

35.8 (s, 16-C), 36.0 (s, 10-C), 40.4 (s, 5-C), 47.7 (s, 13-C), 51.3 (s, 14-C), 54.3 (s, 9-C), 

71.2 (s, 3-C), 123.3 (s, 24-C), 126.8 (s, 21-C), 137.0 (s, 25-C), 150.8 (s, 22-C), 153.2 (s, 

23-C), 164.5 (s, 20-C), 221.3 (s, 17-C); IR (KBr) 2910 (C-H), 1735, 1714 (C=O), 1281, 

745, 702 cm-1; m/z (ES+) 396 ([M+Ht, 100%). 

Crystal data for 145: C2sH33N03, M = 395.52, monoclinic, P21 (No. 4), a= 11.366(2) A, 
b = 6.4174(8) A, c = 14.540(2) A, a= 90°, P= 102.76(1)0

, r= 90°, V= 1034.4(3) A3, 

F(OOO) = 428, Z= 2, De= 1.270 g/cm3, 11= 0.082 mm-1 (Mo Ka., A.= 0.71073 A), T= 

120(2) K, crystal size 0.28 x 0.22 x 0.08 mm3. 

Ja.-(2,6-DiclhtRoroiiRicotnlllloyn)-5a.-anulhrostallll-17 -olllle ( 146) 

Using a similar procedure to the preparation of 3a.-nicotinoyl-5a.-androstan-17-one 

(145), diethyl azodicarboxylate (1.30 g, 7.44 mmol), epiandrosterone (1.08 g, 3.72 

mmol), triphenylphosphine (1.95 g, 7.44 mmol), 2,6-dichloronicotinic acid (1.43 g, 

7.44 mmol), and tetrahydrofuran (50 mL) gave a crude product ( 6.10 g). The crude 

mixture was chromatographed over silica gel [silica gel: 100 g, eluent: hexane/ethyl 

acetate (3: 1 )] to give a white amorphous solid (1.37 g). Recrystallization from ethyl 

acetate gave 3a.-(2,6-dichloronicotinoyl)-5a.- androstan-17-one (146) (1.10 g, 63%) as 

white crystals; m.p. 169-170 oc; (Found: C, 64.47; H, 6.74; N, 2.98. C25H31ChN03 

requires C, 64.65; H, 6.73; N, 3.02%); 1H NMR (400 MHz, CDCh) 8 0.76-0.82 (m, 

1H, 9-H), 0.85 (2s, 6H, 18-H, 19-H), 0.94--1.05 (m, 1H, one of7-H), 1.18-1.36 (m, 

6H, one of 1-H or 4-H, 6-H, one of 11-H, one of 12-H, 14-H), 1.44-1.95 (m, 12H, 

three of 1-H and 4-H, 2-H, 5-H, one of 7-H, 8-H, one of 11-H, one of 12-H, 15-H), 

2.05 (dt, 1H, J = 19.0, 9.0 Hz one of 16-H), 2.42 (dd, 1H, J = 19.0, 8.0 Hz, one of 

16-H), 5.32 (m, 1H, 3-H), 7.36 (d, 1H, J = 8.5 Hz, 24-H), 8.14 (d, 1H, J = 8.0 Hz, 

25-H); 13C NMR (101 MHz) 8 11.4 (s, 19-C), 13.8 (s, 18-C), 20.0 (s, 11-C), 21.7 (s, 

15-C), 26.0 (s, 2-C), 27.9 (s, 6-C), 30.7 (s, 7-C), 31.4 (s, 12-C), 32.7 (s, 1-C or 4-C), 

33.0 (s, 1-C or 4-C), 34.9 (s, 8-C), 35.8 (s, 16-C), 35.9 (s, 10-C), 40.3 (s, 5-C), 47.7 (s, 
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13-C), 51.3 (s, 14-C), 54.3 (s, 9-C), 72.9 (s, 3-C), 122.9 (s, 24-C), 126.1 (s, 21-C), 

142.6 (s, 25-C), 149.4 (s, 22-C), 152.6 (s, 23-C), 163.3 (s, 20-C), 221.3 (s, 17-C); IR 

(KBr) 2952, 2906 (C-H), 1739, 1709 (C=O), 1571, 1353, 1281, 1159, 778 cm-1; rnlz 

(ESl 467 ~ (C2sH3137ChN03), 13%], 465 ~ (C2sH3135Ce7ClN03), 68], 463 ~ 
(C2sH3135ChN03), 100]. 

6.9 IDlired ll"eBn011:e 1flii!DOrii!D.a11:DOIIR Of sll:eronds WB11:1hl11:e11:1liell"e«JJ1!'1!DIIRdHOIID.aJl gll'OUli!PIS 

GeneraB procedi!Dre 

A mixture containing the substrate and a solvent was placed in the small PTFE reactor. 

The mixture was purged with N2 and immersed in a cooling bath of 0 °C. Elemental 

fluorine as a 10% (v/v) mixture with nitrogen was introduced at a flow rate of 10 

mL/min into the rapidly stirred mixture via PTFE tubing. The reaction mixture was 

purged with N2 for 30 minutes. The resulting mixture was poured into water, 

neutralised by NaHC03, and extracted with chloroform (three times). The combined 

organic extracts were dried over anhydrous MgS04 and evaporated to give a crude 

product. The crude product was analysed by 1~ NMR spectroscopy where known 

amounts of tluorobenzene was used as an internal standard apart from the case of 

3 P-[ 5-( 4-aza-1-azoniabicyclo[2.2.2]oct-1-yl)-valeryloxy ]-5a.-androstan-17 -one 

tetrafluoroborate (~35). 

CollltroD reac11:imns 

Preparall:ion of 3a.-ace11:oxy-5a.-andros11:an-ll. i -mne (g) 

A mixture of androsterone (141) (400 mg, 1.38 mmol), acetic anhydride (336 mg, 3.29 

mmol), 4-dimethylaminopyridine (56 mg, 0.46 mmol) and dichloromethane (35 mL) 

was stirred at ambient temperature for 9 days. The reaction mixture was poured into 

water, and extracted with dichloromethane (3 x 20 mL). The combined organic extracts 

were dried over anhydrous MgS04 and evaporated to give a crude product (700 mg). 

The crude mixture was chromatographed over silica gel [silica gel: 10 g, eluent: 

hexane/ethyl acetate (4:1)] to give 3a.-acetoxy-5a.-androstan-17-one (§1) (445 mg, 

97%) as white crystals; m.p. 163-165 oc (lit.252 164--165 °C) (Found: C, 75.57; H, 

9.70. C21H320 3 requires C, 75.86; H, 9.70%); 1H NMR (500 MHz, CDCh) 

B 0.78---0.83 (m, 1H, 9-H), 0.81 (s, 3H, 19-H), 0.85 (s, 3H, 18-H), 1.00 (dq, 1H, J = 

5.0, 12.5 Hz, one of 7-H), 1.16-1.32 (m, 6H, one of 1-H or 4-H, 6-H, one of 11-H, 

one of 12-H, 14-H), 1.43-1.83 (m, 11H, three of 1-H and 4-H, 2-H, 5-H, one of7-H, 

8-H, one of 11-H, one of 12-H, one of 15-H), 1.93 (m, 1H, one of 15-H), 1.99 (s, 3H, 

21-H), 2.02-2.09 (m, 1H, one of 16-H), 2.04 (s, 3H, COCH3), 2.43 (dd, 1H, J = 9.0, 

271 



19.S Hz, one of 16-H), S.OO (m, IH, 3-H); 13C NMR (126 MHz) 8 11.3 (s, 19-C), 13.8 

(s, 18-C), 20.0 (s, 11-C), 21.5 (s, COCHJ), 21.7 (s, IS-C), 26.0 (s, 2-C), 28.0 (s, 6-C), 

30.7 (s, 7-C), 31.S (s, 12-C), 32.8 (2 of s, 1-C and 4-C), 34.9 (s, 8-C), 3S.8 (s, 16-C), 

3S.9 (s, 10-C), 40.0 (s, S-C), 47.8 (s, 13-C), S1.4 (s, 14-C), S4.2 (s, 9-C), 69.9 (s, 3-C), 

170.7 (s, COCH3), 221.4 (s, 17-C); 1R (KBr) 2936, 2855 (C-H), 1735, 1726 (C=O), 

1240, lOIS cm-1 (lit. 252 1736 cm-1
). 

Fluoll'imntimm olf 3a-acetoxy-5a-~umdlmstaum- Jl. 7-one (g) 

(In acetonitrile) 

3a-Acetoxy-Sa-androstan-17-one ~ (224 mg, 0.675 mmol), acetonitrile (IS mL) 

and elemental fluorine (2.67 mmol) gave a crude product (266 mg). Fluorobenzene 

(3S.4 mg, 0.368 mmol) was added to the crude product; 19F NMR (188 MHz, CDCh) 8 

-161.3 (m, 5a-F, 17%), -164.5 (m, 14a-F, 19%), -179.9 (m, 9a-F, 20%) [lit. 123 5a-F: 

-161.0 (m), 9a-F: -180.0 (m)], more than 1S of other resonances were observed 

between -ISO and -200 ppm (28% in total). 

(lUn <lliclnBommetlluane) 

3a-Acetoxy-Sa-androstan-17-one (§ID (ISO mg, 0.4SO mmol), dichloromethane (10 

mL) and elemental fluorine (3.62 mmol) gave a crude product (163 mg). 

Fluorobenzene (11.4 mg, 0.119 mmol) was added to the crude product; 19F NMR (188 

MHz, CDCh) 8-161.3 (m, 5a-F, 0.15%), -164.5 (m, 14a-F, 0.06%), -179.9 (m, 9a-F, 

0.21%), more than 6 traces of other resonances were observed between -150 and -200 

ppm. 

(:U:n nitromethane) 

3a-Acetoxy-5a-androstan-17-one (W (224 mg, 0.675 mmol), nitromethane (15 mL) 

and elemental fluorine (2.68 mmol) gave a crude product (335 mg) as a yellow oil. 

Fluorobenzene (33.7 mg, 0.351 mmol) was added to the crude product; 19F NMR (188 

MHz, CDCh) 8-161.2 (m, 5a-F, 13.5%), -164.4 (m, 14a-F, 10.7%), -179.9 (m, 9a-F, 

16.0%). 

JFhnoll'ination olf 3f3-[5-( 41-aza- Jl. -azoniabicycRo[2.2.2]od-Jl. -yD)-vaBeryBoxy]-5a-

androstan-17-olllle tetra1filuoroborate (135) 

(:n:n acetonitrine: 415 mM) 

The reaction was carried out at 20 °C. 

3 ~-[ 5-( 4-Aza-1-azoniabicyclo[2.2.2]oct-l-yl)-valeryloxy ]-Sa-androstan-17 -one 
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tetrafluoroborate (135) (258 mg, 0.450 mmol), acetonitrile (10 mL), and elemental 

fluorine (1.79 mmol) gave a crude product (309 mg); 19F NMR (188 MHz, CDCh) cS 

-162.1 (m, 1%), -162.5 (m, 3%), -164.4 (m, 6%), -168.5 (m, 6%), -169.0 (m, 1%), 

-179.9 (m, 6%). 

(Derivatization and analysis) 

The reactions were carried out in the same manner described in section 6.8. 

The crude product of fluorination of135 (300 mg), potassium carbonate (40 mg, 0.29 

mmol), and methanol (30 mL) gave a crude product (117 mg). The crude product (117 

mg), acetic anhydride (200 mg, 2.0 mmol), 4-dimethylaminopyridine (6 mg, 0.05 

mmol) and dichloromethane (12 mL) gave a crude mixture (136 mg) which contained 

3~-acetoxy-5a-androstan-17-one (138) (92%); rn/z (EI+) 332 ~, 13%), 272 

([M-C2R.02]+, 100), 3~-acetoxy-9a-fluoro-5a-androstan-17-one (139d), 3~-acetoxy

Sa-fluoro-5a-androstan-17 -one ( 139e) and 3 ~-acetoxy-14a-fluoro-5a-androstan-17-

one (139f) in the ratio of 41:30:29 e9F NMR.; -180.1, -163.0, and -164.5 ppm, 

respectively) (2 peaks, 6%), 3~-acetoxy-6a-fluoro-5a-androstan-17-one (139c) (1 %), 

an HF eliminated compound (140) (1 %). 

(In acetonitrile: 3 mM) 

The reactions were carried out in a similar manner described above. The reaction was 

carried out at 20 °C. 

3 ~-[ 5-( 4-Aza-1-azoniabicyclo[2.2.2]oct-1-yl)-valeryloxy ]-Sa-androstan-17 -one 

tetrafluoroborate (135) (129 mg, 0.225 mmol), acetonitrile (75 mL), and elemental 

fluorine (0.89 mmol) gave a crude product (139 mg); 19F NMR (188 MHz, CDCh) cS 

-162.1 (m, 2%), -162.5 (m, 1%), -164.4 (m, 3%), -168.8 (m, 3%), -179.9 (m, 3%). 

(Derivatization and analysis) 

The reactions were carried out in the same manner described in section 6.8. 

The crude product of fluorination of 135 ( 13 7 mg), potassium carbonate (20 mg, 0. 14 

mmol), and methanol (14 mL) gave a crude product (64 mg). The crude product (64 

mg), acetic anhydride (100 mg, 1.0 mmol), 4-dimethylaminopyridine (3 mg, 0.02 

mmol) and dichloromethane (6 mL) gave a crude mixture (77 mg) which contained 

3~-acetoxy-5a-androstan-17-one (138) (93%); rn/z (Et) 332 ~. 19%), 272 

([M-C2R.02t, 92), 3~-acetoxy-9a-fluoro-5a-androstan-17-one (139d) , 3~-acetoxy-

5a-fluoro-5a-androstan-17 -one (139e) and 3 ~-acetoxy-14a-fluoro-5a-androstan-17-

one (139f) in the ratio of 44:30:26 C9F NMR; -180.1, -163.0, and -164.6 ppm, 

respectively) (2 peaks, 4%), an HF eliminated compound (140) (1%); rn/z (Ell 330 

~). 
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(In dicllDHoromethane) 

The reaction was carried out at 20 °C. 

3 J3-[ 5-( 4-Aza-1-azoniabicyclo[2.2.2]oct-1-yl)-valeryloxy ]-5a-androstan-17 -one 

tetrafluoroborate (135) (129 mg, 0.225 mmol), anhydrous dichloromethane (75 mL) 

and elemental fluorine (2.67 mmol) gave a crude product (131 mg)~ No resonances 

were observed in 1~ NMR (188 MHz, CDCh) except for the tetrafluoroborate ion (8 

-151.3 ppm). 

(Derivatization and analysis) 

The reactions were carried out in the same manner described in section 6.8. 

The crude product of fluorination of135 (131 mg), potassium carbonate (20 mg, 0.14 

mmol), and methanol (15 mL) gave a crude product (91 mg). The crude product (91 

mg), acetic anhydride (100 mg, 1.0 mmol), 4-dimethylaminopyridine (3 mg, 0.02 

mmol) and dichloromethane (9 mL) gave a crude mixture (120 mg) which contained 

3J3-acetoxy-5a-androstan-17-one (138) (100%). 

Fluorination of 3a-(3-cyanobenzoyloxy)-5a-androstan-17-one (142) 

(In dich.lorometlllane: 45 mM) 

3a-(3-Cyanobenzoyloxy)-5a-androstan-17-one (142) (283 mg, 0.675 mmol), 

dichloromethane (15 mL), and elemental fluorine (5.40 mmol) gave a crude product 

(328 mg). Fluorobenzene (13.5 mg, 0.140 mmol) was added to the crude product~ 19F 

NMR (188 MHz, CDCh) 8 -161.0 {m, 5a-F, 0.34%), -164.3 (m, 14a-F, 0.20%), 

-179.7 (m, 9a-F, 1.33%), more than 15 resonances were observed between -47 and 

-132 ppm (11% in total). 

(In dicbloromethane: 3 mM) 

3a-(3-Cyanobenzoyloxy)-5a-androstan-17-one (142) (94 mg, 0.225 mmol), 

dichloromethane (75 mL), and elemental fluorine (2. 70 mmol) gave a crude product 

(118 mg). Fluorobenzene (9.1 mg, 0.095 mmol) was added to the crude product~ 19F 

NMR (188 MHz, CDCh) 8 -161.1 (m, 5a-F, 0.18%), -164.3 (m, 14a-F, 0.10%), 

-179.7 (m, 9a-F, 0.65%), more than 10 resonances were observed between -47 and 

-132 ppm (5% in total). 

(In nitrometbane, 0 °C) 

3a-(3-Cyanobenzoyloxy)-5a-androstan-17-one (142) (283 mg, 0.675 mmol), 

nitromethane (15 mL), and elemental fluorine (2.68 mmol) gave a crude product (364 

mg) as an orange amorphous solid. Fluorobenzene (19.7 mg, 0.205 mmol) was added 
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to the crude product; 19F NMR (188 MHz, CDCh) 8-161.0 (m, 5a.-F, 9.8%), -164.2 

(m, 14a.-F, 7.8%), -179.7 (m, 9a.-F, 29.4%). 

(In nitromethane, -25 °C) 

The reaction was carried out at -25 °C. 

3a.-(3-Cyanobenzoyloxy)-5a.-androstan-17-one (142) (283 mg, 0.675 mmol), 

nitromethane (15 mL), and elemental fluorine (2.68 mmol) gave a crude product (422 

mg) as a yellow amorphous solid. Fluorobenzene (29.5 mg, 0.307 mmol) was added to 

the crude product; I9p NMR (188 :MHz, CDCh) 8 -161.0 (m, 5a.-F, 9.6%), -164.1 (m, 

14a.-F, 6.6%), -179.7 (m, 9a.-F, 31.3%). The crude product was chromatographed over 

silica gel [eluent: hexane/ethyl acetate (6:1)] to give a white amorphous solid (38 mg, 

13%). Recrystallization from diethylether gave 3a.-(3-cyanobenzoyloxy)-9-fluoro-5a.

androstan-17-one {147a) (19 mg, 6%) as white crystals; m.p. 157-159 oc; (Found: C, 

73.71; H, 7.34; N, 3.17. C21H3~03 requires C, 74.12; H, 7.37; N, 3.200/o); 1H NMR 

(500 :MHz, CDCh) 8 0.88 (s, 3H, 18-H), 0.98 {s, 3H, 19-H), 1.2-2.0 (m, ISH, 1-H, 

2-H, 4-H, 6-H, 7-H, 8-H, 11-H, 12-H, 14-H, 15-H), 2.08-2.16 (m, 1H, one of 16-H), 

2.22-2.27 (m, 1H, 5-H), 2.45 (dd, 1H, J = 19.5, 8.5 Hz, one of 16-H), 5.27 (m, 1H, 

3-H), 7.58 (m, 1H, 25-H), 7.83 (m, 1H, 24-H), 8.27 (m, 1H, 26-H), 8.32 (m, 1H, 

22-H); 13C NMR (126 :MHz) 8 12.7 {d, 5JcF = 1.5 Hz, 18-C), 13.5 (d, 3JcF = 6.0 Hz, 

19-C), 21.5 {s, 15-C), 24.5 (d, 2JcF = 25.0 Hz, 11-C), 24.8 {s, 7-C or 12-C), 25.9 {s, 

2-C), 26.2 {d, 3 JcF = 3.5 Hz, 7-C or 12-C), 27.3 {s, 1-C or 6-C), 27.3 {s, 1-C or 6-C), 

32.2 (d, 3JcF = 3.5 Hz, 5-C), 32.7 {s, 4-C), 35.8 (s, 16-C), 37.1 (d, 2JcF = 21.0 Hz, 8-C), 

40.2 {d, 2JcF = 19.0 Hz, 10-C), 44.6 (d, 3JcF = 2.0 Hz, 14-C), 47.1 {s, 13-C), 71.2 {s, 

3-C), 99.3 {d, 1JcF = 180.0 Hz, 9-C), 112.9 {s, 23-C), 118.0 (s, CN), 129.4 {s, 25-C), 

132.2 (s, 21-C), 133.2 {s, 22-C), 133.6 {s, 26-C), 135.8 (s, 24-C), 163.9 (s, 20-C), 

220.2 {s, 17-C); 19F NMR (188 MHz, CDCh) 8 -179.8 (m); 1R (KBr) 3067 (Ar-H), 

2927, 2864 (C-H), 2234 (CN), 1741, 1715 (C=O), 1287, 759 cm-1
; m/z (ES) 897 

([2M+Nat, 10%), 460 ([M+Nat, 1oo). 

Crystal data for 147a: Cs.Ji6~2N206, M = 875.07, monoclinic, P21 (No. 4), a = 

10.847(1) A, b = 10.565(1) A, c = 20.323(2) A, a= 90°, P= 97.57(1)0
, r = 90°, v = 

2308.7(4) A3, F(OOO) = 936, Z = 2, De= 1.259 g/cm3, J-l = 0.086 mm-1 (Mo Ka., A.= 
0.71073 A), T= 120(2) K, crystal size 0.32 x 0.24 x 0.08 mm3. 

Fluorination of 3a.-cyanoacetoxy-5a.-androstan-17-one (143) 

(In dichloromethane) 

3a-Cyanoacetoxy-5a.-androstan-17-one {143) (241 mg, 0.674 mmol), dichloromethane 
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(15 mL), and elemental fluorine (5.24 mmol) gave a crude product (264 mg) as a white 

amorphous solid. Fluorobenzene (21.9 mg, 0.228 mmol) was added to the crude 

product; 19F NMR. (188 MHz, CDCh) 8-161.1 (m, 5a-F, 0.13%), -164.4 (m, 14a-F, 

0.082%), -179.8 (m, 9a-F, 0.16%). 

(In nitrometlllane) 

3a-Cyanoacetoxy-5a-androstan-17-one (~43) (241 mg, 0.674 mmol), anhydrous 

nitromethane (15 mL), and elemental fluorine (2.69 mmol) gave a crude product (322 

mg) as an orange amorphous solid. Fluorobenzene (23.0 mg, 0.239 mmol) was added 

to the crude product; •9p NMR. (188 MHz, CDCh) 8 -161.1 (m, 5a-F, 12.1%), -164.3 

(m, 14a-F, 13.0%), -179.8 (m, 9a-F, 16.6%). 

Fluorination of 3a-[(3-carbox.ypropyB)-acetoxy]-5a-androstan-:B. 7-one (144) 

[In dichloromethane/nitromethane ( 4: :D..)] 

3a-[(3-Carboxypropyl)-acetoxy]-5a-androstan-17-one (144) (273 mg, 0.675 mmol), 

dichloromethane (12 mL), nitromethane (3 mL), and elemental fluorine (5.24 mmol) 

gave a crude product (275 mg) as a white amorphous solid. Fluorobenzene (22.9 mg, 

0.238 mmol) was added to the crude product; 19F NMR. (188 MHz, CDCh) 8 -161.1 

(m, 5a-F, 0.24%), -164.5 (m, 14a-F, 0.11%), -180.0 (m, 9a-F, 0.42%). 

Fluorination of 3a-nicotinoyl-5a-androstan-17 -one (145) 

(In nitromethane) 

3a-Nicotinoyl-5a-androstan-17-one (145) (267 mg, 0.675 mmol), nitromethane (15 

mL), and elemental fluorine (2.68 mmol) gave a crude product (0.47 g) as a brown oil. 

Fluorobenzene (34.9 mg, 0.363 mmol) was added to the crude product; •9p NMR (188 

MHz, CDCh) o -160.9 (m, 5a-F, 4.4%), -164.2 (m, 14a-F, 4.1%), -179.7 (m, 9a-F, 

9.4%). 

Fluorination of 3a-(2,6-dicll:lloronicotinoyl)-5a-androstan-17-one (146) 

(In nitrometbane) 

3a-(2,6-Dichloronicotinoyl)-5a-androstan-17-one (146) (313 mg, 0.675 mmol), 

nitromethane (25 mL), and elemental fluorine (2.68 mmol) gave a crude product (0.45 

g) as a yellow amorphous solid. The yield could not be determined by 19F NMR due to 

many by-products. 
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CD:B.apter7 

7.1 1I'itmnhnm cmtmnyzed direct ft'illllloll"inmttitorrn oft" 1,3-lk.e¢oesters 

Gerrnermn procedllllre 

The reactions below follow the procedure described, unless otherwise stated. A mixture 

containing ethyl 2-methyl-3-oxobutanoate (H6), catalyst, additive, and freshly distilled 

anhydrous acetonitrile was placed in the small PTFE reactor. The mixture was purged 

with N2 and immersed in a cooling bath of 0 °C. Elemental fluorine as a 10% (v/v) 

mixture with nitrogen was introduced at a flow rate of 10 mL/min into the rapidly 

stirred mixture via PTFE tubing. The reaction mixture was purged with N2 for 30 

minutes. The reaction mixture was poured into water (20 mL), neutralised by NaHC03, 

and extracted with chloroform (3 x 20 mL). The combined organic extracts were dried 

over anhydrous MgS04 and evaporated to give a crude product. 

§c!l"eenmg oft" cmttmnys¢s (1) 

Table 3 .2, entry 1 

No catalyst and additive were added. Ethyl 2-methyl-3-oxobutanoate (US) (299 mg, 

2.07 mmol), acetonitrile (20 mL), and elemental fluorine (4.15 mmol) gave a 

colourless oil (321 mg); conversion was found to be 6%, which consisted of, 35% ethyl 

2-fluoro-2-methyl-3-oxobutanoate (Hi') (GC). (As compared to literature data.32
) 

Table 3 .2, entry 2 

No additive was added. Ethyl 2-methyl-3-oxobutanoate (1176) (303 mg, 2.10 mmol), 

titanium (N) chloride (36 mg, 0.19 mmol), acetonitrile (20 mL), and elemental 

fluorine ( 4.20 mmol) gave a colourless oil (303 mg); conversion was found to be 49%, 

which consisted of, 13% ethyl 2-fluoro-2-methyl-3-oxobutanoate ("'ii'i'), 7% ethyl 2,4-

difluoro-2-methyl-3-oxobutanoate (n8), and 77% ethyl 2-chloro-2-methyl-3-

oxobutanoate (117~); rnlz (C:t, NH3) 198 ([M+N~t (C7H15
37ClN03), 3%), 196 

([M+~t (C7H1s
35CINOJ), 8), 145 (100). Spectral data for ethyl 2-chloro-2-methyl-

3-oxobutanoate ("'ii'S) are also shown below (See the experimental part for table 3.3, 

entry 6). 
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Table 3 .2, entry 3 

No additive was added. Ethyl 2-methyl-3-oxobutanoate (176) (289 mg, 2.00 mmol), 

titanium (IV) chloride (76 mg, 0.40 mmol), acetonitrile (20 mL), and elemental 

fluorine (2.00 mmol) gave a colourless oil (301 mg)~ conversion was found to be 63%, 

which consisted of, 4% ethyl 2-fluoro-2-methyl-3-oxobutanoate (177), and 96% ethyl 

2-chloro-2-methyl-3-oxobutanoate {119) (GC). 

Table 3.2, entry 4 

Titanium (trans-cyclohexanediolato) dichloride was prepared by the following 

procedure. 

trans-1,2-Cyclohxanediol (116 mg, 1.00 mmol) was added to a mixture of titanium 

(IV) chloride (190 mg, 1.00 mmol) and anhydrous acetonitrile (5 mL). The resulting 

mixture was evaporated once, and dissolved in anhydrous acetonitrile ( 5 mL) and used 

directly in the following experiment. 

No additive was added. Ethyl 2-methyl-3-oxobutanoate (176) (289 mg, 2.00 mmol), 

titanium (trans-cyclohexane-1,2-diolato) dichloride acetonitrile solution (0.2 M, 1 mL, 

0.2 mmol), acetonitrile (19 mL), and elemental fluorine (2.41 mmol) gave a colourless 

oil (355 mg); conversion was found to be 32%, which consisted of, 5% ethyl 

2-fluoro-2-methyl-3-oxobutanoate {177), and 78% ethyl 2-chloro-2-methyl-3-

oxobutanoate {179) (GC). 

Screening of additives 

Table 3.3, entry 1 

Ethyl 2-methyl-3-oxobutanoate {176) (280 mg, 1.94 mmol), titanium (IV) chloride (38 

mg, 0.20 mmol), sodium fluoride (128 mg, 3.05 mmol), acetonitrile (20 mL), and 

elemental fluorine (2.32 mmol) gave a colourless oil (306 mg)~ conversion was found 

to be 30%, which consisted of, 92% ethyl 2-chloro-2-methyl-3-oxobutanoate (179) 

(GC). 

Table 3.3, entry 2 

Ethyl 2-methyl-3-oxobutanoate (176) (288 mg, 2.00 mmol), titanium (IV) chloride (38 

mg, 0.20 mmol), sodium hydrogen carbonate (252 mg, 3.00 mmol), acetonitrile (20 

mL), and elemental fluorine (2.41 mmol) gave a colourless oil (314 mg)~ conversion 

was found to be 9%, which consisted of, 20% ethyl 2-fluoro-2-methyl-3-oxobutanoate 

(177), and 61% ethyl2-chloro-2-methyl-3-oxobutanoate {179) (GC). 

Table 3.3, entry 3 

Ethyl 2-methyl-3-oxobutanoate (116) (288 mg, 2.00 mmol), titanium (IV) chloride (38 

mg, 0.20 mmol), DABCO (337 mg, 3.00 mmol), sodium tetrafluoroborate (329 mg, 
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3.00 mmol), and acetonitrile (20 mL), elemental fluorine (4.20 mmol) gave a 

colourless oil (252 mg); conversion was found to be 5%, which consisted of, 37% ethyl 

2-fluoro-2-methyl-3-oxobutanoate (171) (GC). 

Table 3.3, entry 4 

Ethyl 2-methyl-3-oxobutanoate (116) (289 mg, 2.00 mmol), titanium (trans-cyclo 

hexane-1,2-diolato) dichloride acetonitrile solution (0.2 M, 1 mL, 0.2 mmol), sodium 

tetrafluoroborate (329 mg, 3.00 mmol), acetonitrile (19 mL), and elemental fluorine 

(2.41 mmol) gave a colourless oil (634 mg); conversion was found to be 45%, which 

consisted of, 9% ethyl 2-fluoro-2-methyl-3-oxobutanoate (117), 4% ethyl 

2,4-difluoro-2-methyl-3-oxobutanoate (178), and 63% ethyl 2-chloro-2- methyl-3-oxo 

butanoate (119) (GC). 

Table 3.3, entry 5 

Ethyl 2-methyl-3-oxobutanoate (176) (288 mg, 2.00 mmol), titanium (IV) chloride (38 

mg, 0.20 mmol), boron trifluoride diethyl etherate (0.38 mL, 3.0 mmol), acetonitrile 

(20 mL), and elemental fluorine (2.40 mmol) gave a colourless oil (335 mg); 

conversion was found to be 54%, which consisted of, 38% ethyl 2-fluoro-2-methyl-3-

oxobutanoate (177), 13% ethyl 2,4-difluoro-2-methyl- 3-oxobutanoate (178), and 28% 

ethyl2-chloro-2-methyl-3-oxobutanoate (179) (GC). 

Table 3.3 entry 6 

Ethyl 2-methyl-3-oxobutanoate (176) (288 mg, 2.00 mmol), titanium (IV) chloride (38 

mg, 0.20 mmol), trimethylsilyl chloride (0.38 mL, 3.0 mmol), acetonitrile (20 mL), and 

elemental fluorine (2.40 mmol) gave a colourless oil (319 mg); conversion was found 

to be 86%, which consisted of, 100% ethyl 2-chloro-2-methyl-3-oxobutanoate (119) 

(GC). 

Purification by flash chromatography [silica gel: 20 g, eluent: hexane/ethyl acetate 

(20: 1)] provided ethyl 2-chloro-2-methyl-3-oxobutanoate (179), (174 mg, 49%) as a 

colourless oil. 

Ethyl 2Dchloro-2-methyl-3-oxobutanoate (1 79) 
1H NMR (400 MHz, CDCh) 8 1.28 (t, J = 7.0 Hz, 3H, CH2CH3), 1.80 (s, 3H, CClCH3), 

2.35 (s, 3H, CH3C=O), 4.26 (q, J= 7.0 Hz, 2H, CH2); 13C NMR (101 MHz) 8 13.8 (s, 

CH2CH3), 24.2 (s, CClCH3 or CH3C=O), 25.2 (s, CClCH3 or CH3C=O), 63.0 (s, 

OCH2), 70.7 (s, CCI), 168.0 (s, CCICOO), 198.7 (s, CH3COCC1); IR (neat) 2986, 1733, 

1255, 1124 cm-1
; mass spectrum, m/z (EI)179 ([M+Ht (C7Ht235Cl03), 1 %), 138 

([M-C2H20t (CsHl7Cl02), 53), 136 ([M-C2H20t (CsHl5Cl02), 89), 110 (63), 108 

(86). 
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Effect of ancillary ligand of titanium complex: 

'fntallllium (trans-cyclohex:ane-1,2-dioBato) bis(trifluoromethanesuEfonate) (1§1) 

Anhydrous acetonitrile (10 mL) was added to titanium(IV) chloride (0.36 g, 1.9 mmol) 

at -78 °C, and the mixture was allowed to warm up to room temperature. 

trans-1,2-Cyclohxanediol (220 mg, 1.9 mmol) was added to the resulting yellow 

solution, and stirred for 30 minutes. The solution was evaporated to give a slightly 

green solid. The solid was dissolved in a mixture of anhydrous toluene (10 mL) and 

anhydrous acetonitrile (1 mL). Silver trifluoromethanesulfonate (976 mg, 3.80 mmol) 

was added to the solution, and stirred for 1 hour at room temperature. The resulting 

precipitate was removed by filtration, and the filtrate was evaporated once, and 

dissolved in anhydrous acetonitrile (1 0 mL) to give 0.19M acetonitrile solution of the 

title compound. 

Titanium (trans-cyclohexane-1,2-diolato) bis(trifluoroacetate) (182) 

Titanium (trans-cyclohexane-1,2-diolato) bis(trifluoroacetate) (182) was prepared 

using the same method to 181 described above. 

Titanium(IV) chloride (0 .40 g, 2.1 mmol), trans-1 ,2-cyclohxanediol (244 mg, 2.1 

mmol), and silver trifluoroacetate (979 mg, 4.43 mmol) gave 0.21M acetonitrile 

solution of the title compound. 

Table 3.4, entry 1 

No additive was added. Ethyl 2-methyl-3-oxobutanoate (116) (279 mg, 1.94 mmol), 

titanium ( trans-cyclohexane-1 ,2-diolato) his( trifluoromethanesulfonate) ( 181) 

acetonitrile solution (0.19 M, 1 mL, 0.19 mmol), acetonitrile (19 mL), and elemental 

fluorine (2.28 mmol) gave a colourless oil (374 mg); conversion was found to be 32%, 

which consisted of, 58% ethyl 2-fluoro-2-methyl-3-oxobutanoate (177), 25% ethyl 

2,4-difluoro-2-methyl- 3-oxobutanoate (178) (GC). 

Table 3.4, entry 2 

The additive was added to the reaction mixture at -15 °C. Ethyl 2-methyl-3-

oxobutanoate (176) (280 mg, 1.94 mmol), titanium (trans-cyclohexane-1,2-diolato) 

bis(trifluoromethanesulfonate) (181) acetonitrile solution (0.19 M, 1 mL, 0.19 mmol), 

acetonitrile (19 mL), trimethylsilyl trifluoromethanesulfonate (0.52 mL, 2.85 mmol), 

and elemental fluorine (2.28 mmol) gave a colourless oil (500 mg); conversion was 

found to be 70%, which consisted of, 47% ethyl 2-fluoro-2-methyl-3-oxobutanoate 

(177), 21% ethyl2,4-difluoro-2-methyl-3-oxobutanoate (178) (GC). 

Table 3.4, entry 3 

Ethyl 2-methyl-3-oxobutanoate (176) (279 mg, 1.94 mmol), titanium (trans

cyclohexane-1 ,2-diolato) his( trifluoromethanesulfonate) ( 181) acetonitrile solution 
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(0.19 M, 1 mL, 0.19 mmol), acetonitrile (19 mL), trimethylsilyl trifluoroacetate (0.49 

mL, 2.84 mmol), and elemental fluorine (2.32 mmol) gave a colourless oil (432 mg); 

conversion was found to be 58%, which consisted of, 59% ethyl 2-fluoro-2-methyl-3-

oxobutanoate (177), 25% ethyl2,4-difluoro-2-methyl-3-oxobutanoate (178) (GC). 

Table 3.4, entry 4 

Ethyl 2-methyl-3-oxobutanoate (116) (280 mg, 1.94 mmol), titanium (trans

cyclohexane-1 ,2-diolato) bis(trifluoromethanesulfonate) (181) acetonitrile solution 

(0.19 M, 1 mL, 0.19 mmol), acetonitrile (19 mL), trimethylsilyl acetate (0.43 mL, 2.87 

mmol), and elemental fluorine (2.32 mmol) gave a colourless oil (0.4 g); conversion 

was found to be 60%, which consisted of, 55% ethyl 2-fluoro-2-methyl-3-

oxobutanoate (177), 26% ethyl2,4-difluoro-2-methyl-3-oxobutanoate (178) (GC). 

Table 3.4, entry 5 

Ethyl 2-methyl-3-oxobutanoate (176) (280 mg, 1.94 mmol), titanium (trans

cyclohexane-1 ,2-diolato) bis(trifluoromethanesulfonate) (181) acetonitrile solution 

(0.19 M, 1 mL, 0.19 mmol), acetonitrile (19 mL), trimethylsilyl trifluoromethane (0.42 

mL, 2.84 mmol), and elemental fluorine (2.32 mmol) gave a colourless oil (372 mg); 

conversion was found to be 46%, which consisted of, 55% ethyl 2-fluoro-2-methyl-3-

oxobutanoate (117), 28% ethyl2,4-difluoro-2-methyl-3-oxobutanoate (n8) (GC). 

Table 3.4, entry 6 

No additive was added. Ethyl 2-methyl-3-oxobutanoate (176) (332 mg, 2.30 mmol), 

trifluoromethanesulfonic acid (35 mg, 0.23 mmol), acetonitrile (20 mL), and elemental 

fluorine (2.77 mmol) gave a colourless oil (394 mg); conversion was found to be 47%, 

which consisted of, 58% ethyl 2-fluoro-2-methyl-3-oxobutanoate (177), 32% ethyl 

2,4-difluoro-2-methyl-3-oxobutanoate (178) (GC). 

Table3.4, entry 7 

Ethyl 2-methyl-3-oxobutanoate (176) (279 mg, 1.94 mmol), 1,8-bis(dimethylamino) 

naphthalene (611 mg, 2.85 mmol), titanium (trans-cyclohexane-1,2-diolato) 

bis(trifluoromethanesulfonate) (181) acetonitrile solution (0.19 M, 1 mL, 0.19 mmol), 

acetonitrile (19 mL), trimethylsilyl trifluoromethanesulfonate (0.52 mL, 2.85 mmol), 

and elemental fluorine (2.28 mmol) gave a dark brown solid (1.31 g); conversion was 

found to be 22%, which consisted of, 19% ethyl 2-fluoro-2-methyl-3-oxobutanoate 

(117) (GC). 

Table 3.4, entry 8 

Ethyl 2-methyl-3-oxobutanoate (176) (279 mg, 1.94 mmol), 1,2,2,6,6-

pentamethylpiperidine (443 mg, 2.85 mmol), titanium (trans-cyclohexane-1,2-diolato) 

bis(trifluoromethanesulfonate) (~81) acetonitrile solution (0.19 M, 1 mL, 0.19 mmol), 
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acetonitrile (19 mL), trimethylsilyl trifluoromethanesulfonate (0.52 m.L, 2.85 mmol), 

and elemental fluorine (2.28 mmol) gave a dark brown solid (1.39 g); conversion was 

found to be 53%, which consisted of, 60% ethyl 2-fluoro- 2-methyl-3-oxobutanoate 

(1'11), 24% ethyl 2,4-difluoro-2-methyl-3-oxobutanoate (178) (GC). 

Table 3.4, entry 9 

No additive was added. Ethyl 2-methyl-3-oxobutanoate (176) (303 mg, 2.10 mmol), 

titanium (trans-cyclohexane-1 ,2-diolato) his( trifluoroacetate) ( ~ 82) acetonitrile 

solution (0.21 M, 1 m.L, 0.21 mmol), acetonitrile (19 mL), and elemental fluorine (2.50 

mmol) gave a colourless oil (0.53 g); conversion was found to be 7%, which consisted 

of, 100% ethyl2-fluoro-2-methyl-3-oxobutanoate (117) (GC). 

Table 3.4, entry 10 

Ethyl 2-methyl-3-oxobutanoate (116) (303 mg, 2.10 mmol), titanium 

(trans-cyclohexane-1,2-diolato) bis(trifluoroacetate) (182) acetonitrile solution (0.21 

M, 1 mL, 0.21 mmol), trimethylsilyl trifluoroacetate (0.54 mL, 3.1 mmol), acetonitrile 

(19 mL), and elemental fluorine (2.50 mmol) gave a colourless oil (439 mg); 

conversion was found to be 55%, which consisted of, 48% ethyl 2-fluoro-2-methyl-3-

oxobutanoate (177), 23% ethyl2,4-difluoro-2-methyl-3-oxobutanoate (178) (GC). 

Table 3.4, entry 11 

Ethyl 2-methyl-3-oxobutanoate (176) (303 mg, 2.10 mmol), titanium 

(trans-cyclohexane-1,2-diolato) bis(trifluoroacetate) ('i82) acetonitrile solution (0.21 

M, 2 mL, 0.42 mmol), trimethylsilyl trifluoroacetate (0.54 mL, 3.1 mmol), acetonitrile 

(18 mL), and elemental fluorine (2.50 mmol) gave a colourless oil (412 mg); 

conversion was found to be 51%, which consisted of, 40% ethyl 2-fluoro-2-methyl-3-

oxobutanoate (117), 19% ethyl2,4-difluoro-2-methyl-3-oxobutanoate (178) (GC). 

Table 3.4, entry 12 

Ethyl 2-methyl-3-oxobutanoate (176) (303 mg, 2.10 mmol), titanium 

(trans-cyclohexane-1,2-diolato) bis(trifluoroacetate) (182) acetonitrile solution (0.21 

M, 1 mL, 0.21 mmol), trimethylsilyl trifluoroacetate (0.54 mL, 3.1 mmol), acetonitrile 

(19 mL), and elemental fluorine (5.03 mmol) gave a colourless oil (439 mg); 

conversion was found to be 67%, which consisted of, 46% ethyl 2-fluoro-2-methyl-3-

oxobutanoate (ii'7), 23% ethyl2,4-difluoro-2-methyl-3-oxobutanoate (118) (GC). 

Table 3.4, entry 13 

Elemental fluorine [10% (v/v) mixture with nitrogen] was passed through the reaction 

mixture at 25 oc at a flow rate of 5 mL/min. Ethyl 2-methyl-3-oxobutanoate (i76) (303 

mg, 2.10 mmol), titanium (trans-cyclohexane-1,2-diolato) bis(trifluoroacetate) (182) 

acetonitrile solution (0.21 M, 1 mL, 0.21 mmol), trimethylsilyl trifluoromethane (0.47 
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mL, 3.2 mmol), acetonitrile (19 mL), and elemental fluorine (2.50 mmol) gave a 

colourless oil (375 mg); conversion was found to be 26%, which consisted of, 68% 

ethyl 2-fluoro-2-methyl-3-oxobutanoate (177), 32% ethyl 2,4-difluoro-2-methyl-3-

oxobutanoate (178) (GC). 

Table 3.4, entry 14 

No catalyst was added. Ethyl 2-methyl-3-oxobutanoate (176) (303 mg, 2.10 mmol), 

trimethylsilyl trifluoroacetate (0.54 mL, 3.1 mmol), acetonitrile (20 mL ), and 

elemental fluorine (2.50 mmol) gave a colourless oil (354 mg); conversion was found 

to be 4%, which consisted of, 100% ethyl 2-fluoro-2-methyl-3-oxobutanoate (177) 

(GC). 

Table 3.4, entry 15 

No additive was added. Ethyl 2-methyl-3-oxobutanoate (176) (303 mg, 2.10 mmol), 

trifluoroacetic acid (24 mg, 0.21 mmol), acetonitrile (20 mL), and elemental fluorine 

(2.50 mmol) gave a colourless oil (387 mg); conversion was found to be 5%, which 

consisted of, 46% ethyl2-fluoro-2-methyl-3-oxobutanoate (177) (GC). 

Effect of intermittent introduction of fluorine 

A mixture containing titanium (trans-cyclohexane-1 ,2-diolato) bis(trifluoroacetate) 

(182) acetonitrile solution (0.21 M, 1 mL, 0.21 mmol), ethyl2-methyl-3-oxobutanoate 

(176) (303 mg, 2.10 mmol), trimethylsilyl trifluoroacetate (0.54 mL, 3.1 mmol) and 

acetonitrile ( 19 mL) was placed in the PTFE reactor. The mixture was immersed in a 

cooling bath ofO °C and purged with N2 for 30 minutes. Elemental fluorine [10% (v/v) 

mixture with nitrogen] was introduced at a flow rate of 10 mL/min into the mixture for 

56 minutes. The reaction mixture was purged with N2 for 20 minutes at room 

temperature and further 40 minutes at 0 °C. Further fluorine was introduced into the 

mixture for 56 minutes and the reaction mixture was purged with N2 for 40 minutes at 

room temperature (total 2.4 equivalents of fluorine was passed through the mixture). 

Ordinary work-up gave a yellowish oil (450 mg); conversion was found to be 76%, 

which consisted of, 48% ethyl 2-fluoro-2-methyl-3-oxobutanoate (177), 22% ethyl 

2,4-difluoro-2-methyl-3-oxobutanoate (178) (GC). 

7.2 Nickel catalyzed direct fluorination of 1,3-ketoesters 

General procedure 

The reactions below follow the procedure described, unless otherwise stated. A mixture 

containing ethyl 2-methyl-3-oxobutanoate (176), catalyst, and freshly distilled 

anhydrous acetonitrile was placed in the small PTFE reactor. The mixture was purged 
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with N2 and immersed in a cooling bath of 0 °C. Elemental fluorine as a 10% (v/v) 

mixture with nitrogen was introduced at a flow rate of 10 mL/min into the rapidly 

stirred mixture via PTFE tubing. The reaction mixture was purged with N2 for 30 

minutes. The reaction mixture was poured into water (20 mL), neutralised by NaHC03, 

and extracted with chloroform (3 x 20 mL). The combined organic extracts were dried 

over anhydrous MgS04 and evaporated to give a crude product. 

§creelllling of cataBy§t (2) 

Table 3.5, entry 1 

No catalyst were added. Ethyl 2-methyl-3-oxobutanoate (116) (299 mg, 2.07 mmol), 

acetonitrile (20 mL), and elemental fluorine (4.15 mmol) gave a colourless oil (321 

mg); conversion was found to be 6%, which consisted of, 35% ethyl 

2-fluoro-2-methyl-3-oxobutanoate ('i77) (GC). 

Table 3.5, entry 2 

Ethyl 2-methyl-3-oxobutanoate (176) (289 mg, 2.00 mmol), hafnium (IV) chloride (65 

mg, 0.20 mmol), acetonitrile (20 mL), and elemental fluorine (2.40 mmol) gave a 

slightly yellowish oil ( 400 mg); conversion was found to be 25%, which consisted of, 

100% ethyl2-chloro-2-methyl-3-oxobutanoate (179) (GC). 

Table 3.5, entry 3 

Ethyl 2-methyl-3-oxobutanoate (176) (289 mg, 2.00 mmol), scandium (ill) triflate (99 

mg, 0.20 mmol), acetonitrile (20 mL), and elemental fluorine (2.40 mmol) gave a 

slightly yellowish oil (517 mg); conversion was found to be 53%, which consisted of, 

58% ethyl 2-fluoro-2-methyl-3-oxobutanoate (177), 32% ethyl 2,4-difluoro-2-methyl-

3-oxobutanoate {178) (GC). 

Table 3.5, entry 4 

Ethyl 2-methyl-3-oxobutanoate (176) (295 mg, 2.05 mmol), lanthanum (ill) triflate 

(117 mg, 0.205 mmol), acetonitrile (20 mL), and elemental fluorine (2.40 mmol) gave 

a slightly yellowish oil (34 7 mg); conversion was found to be 44%, which consisted of, 

58% ethyl 2-fluoro-2-methyl-3-oxobutanoate (177), 32% ethyl 2,4-difluoro-2-

methyl-3-oxobutanoate (178) (GC). 

Table 3.5, entry 5 

Ethyl 2-methyl-3-oxobutanoate (176) (288 mg, 2.00 mmol), copper (II) nitrate 

hemipentahydrate (47 mg, 0.20 mmol), acetonitrile (20 mL), and elemental fluorine 

(2.40 mmol) gave a slightly bluish oil (272 mg); conversion was found to be 51%, 

which consisted of, 53% ethyl2-fluoro-2-methyl-3-oxobutanoate (117) (GC). 

Table 3.5, entry 6 
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Ethyl2-methyl-3-oxobutanoate (176) (306 mg, 2.12 mmol), copper (II) acetylacetonate 

(28 mg, 0.11 mmol), acetonitrile (20 mL), and elemental fluorine (2.14 mmol) gave a 

colourless oil (360 mg)~ conversion was found to be 4% (GC). 

Table 3.5, entry 7 

Ethyl 2-methyl-3-oxobutanoate (~76) (288 mg, 2.00 mmol), copper (II) triflate (72 mg, 

0.20 mmol), acetonitrile (20 mL), and elemental fluorine (2.40 mmol) gave a slightly 

bluish oil (389 mg)~ conversion was found to be 59%, which consisted of, I6% ethyl 

2-fluoro-2-methyl-3-oxobutanoate (177), 91'/o ethyl 2,4-difluoro-2-methyl-3-

oxobutanoate (!) (GC). 

Table 3.5, entry 8 

Ethyl 2-methyl-3-oxobutanoate (176) (288 mg, 2.00 mmol), nickel (II) nitrate 

hexahydrate (58 mg, 0.20 mmol), acetonitrile (20 mL), and elemental fluorine (2.40 

mmol) gave a colourless oil (298 mg)~ conversion was found to be 32%, which 

consisted of, 68% ethyl2-fluoro-2-methyl-3-oxobutanoate (177) (GC). 

Table 3.5, entry 9 

Ethyl 2-methyl-3-oxobutanoate (US) (288 mg, 2.00 mmol), palladium (II) nitrate 

hydrate (53 mg, 0.20 mmol), acetonitrile (20 mL), and elemental fluorine (2.40 mmol) 

gave a slightly yellowish oil (317 mg); conversion was found to be 3%, which 

consisted of, 100% ethyl2-fluoro-2-methyl-3-oxobutanoate (177) (GC). 

Table 3.5, entry IO 

Ethyl 2-methyl-3-oxobutanoate (1'16) (288 mg, 2.00 mmol), silver (I) triflate (52 mg, 

0.20 mmol), acetonitrile (20 mL), and elemental fluorine (2.40 mmol) gave a slightly 

yellowish oil (356 mg)~ conversion was found to be less than I% (GC). 

Table 3.5, entry 11 

Ethyl 2-methyl-3-oxobutanoate (1'16) (288 mg, 2.00 mmol), indium (III) nitrate 

pentahydrate (78 mg, 0.20 mmol), acetonitrile (20 mL), and elemental fluorine (2.40 

mmol) gave a slightly red oil (252 mg)~ conversion was found to be 3%, which 

consisted of, 100% ethyl2-fluoro-2-methyl-3-oxobutanoate (1'17) (GC). 

Table 3.5, entry I2 

Ethyl 2-methyl-3-oxobutanoate (176) (288 mg, 2.00 mmol), bismuth (III) nitrate 

pentahydrate (97 mg, 0.20 mmol), acetonitrile (20 mL), and elemental fluorine (2.40 

mmol) gave a colourless oil (295 mg)~ conversion was found to be 4%, which 

consisted of, 27% ethyl2-fluoro-2-methyl-3-oxobutanoate (17'1) (GC). 

Effect of auxiliaries mnd ligmllllds 

Table 3.6, entry I 
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A mixture containing scandium (ill) triflate (98 mg, 0.20 mmol), BINOL (69 mg, 0.24 

mmol), 1,2,2,6,6-pentamethylpiperidine (75 mg, 0.48 mmol), and dichloromethane (2 

mL) was placed in the PTFE reactor at 0 oc. The mixture was stirred for 30 minutes at 

this temperature, and ethyl 2-methyl-3-oxobutanoate (i176) (288 mg, 2.00 mmol) and 

acetonitrile (20 mL) were added. Fluorination of this mixture was carried out using 

elemental fluorine (2.40 mmol) in the same manner as above, and gave a brown oil 

(544 mg); conversion was found to be less than 1% (GC). 

Table 3.6, entry 2 

Ethyl 2-methyl-3-oxobutanoate (176) (290 mg, 2.00 mmol), copper (IT) nitrate 

hemipentahydrate (48 mg, 0.21 mmol), triphenylphosphine (107 mg, 0.41 mmol) 

acetonitrile (20 mL), and elemental fluorine (2.40 mmol) gave a pale brown oil (461 

mg); conversion was found to be 34%, which consisted of, 29% ethyl 2-fluoro-2-

methyl-3-oxobutanoate (177) (GC). 

Table 3.6, entry 3 

A mixture containing copper (II) nitrate hemipentahydrate (47 mg, 0.20 mmol), 

racemic-BINAP (124 mg, 0.20 mmol), and acetonitrile (15 mL) was placed in the 

PTFE reactor. The mixture was stirred for 30 minutes, and ethyl 2-methyl-3-

oxobutanoate (116) (288 mg, 2.00 mmol) and acetonitrile (5 mL) was added. 

Fluorination of this mixture was carried out using elemental fluorine (2.40 mmol) in 

the same manner as above, and gave a brown oil ( 512 mg); conversion was found to be 

45%, which consisted of, 8% ethyl2-fluoro-2-methyl-3-oxobutanoate (177) (GC). 

Table 3.6, entry 4 

A mixture containing copper (II) fluoride (21 mg, 0.21 mmol), racemic-BINAP (127 

mg, 0.20 mmol), and acetonitrile (15 mL) was placed in the PTFE reactor. The mixture 

was sonicated for 5 minutes, and stirred for 30 minutes. Ethyl 2-methyl-3-

oxobutanoate (176) (288 mg, 2.00 mmol) and acetonitrile (5 mL) was added to the 

mixture. Fluorination of this mixture was carried out using elemental fluorine (2.40 

mmol) in the same manner as above, and gave a brown oil (512 mg); conversion was 

found to be less than 1% (GC). 

Table 3.6, entry 5 

A mixture containing nickel (II) nitrate hexahydrate (57 mg, 0.20 mmol), 

triphenylphosphine (106 mg, 0.40 mmol), and acetonitrile (15 mL) was placed in the 

PTFE reactor. The mixture was sonicated for 5 minutes, and stirred for 30 minutes. 

Ethyl 2-methyl-3-oxobutanoate (176) (288 mg, 2.00 mmol) and acetonitrile (5 mL) 

was added to the mixture. Fluorination of this mixture was carried out using elemental 

fluorine (2.40 mmol) in the same manner as above, and gave a yellowish oil (531 mg); 
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conversion was found to be 15%, which consisted of, 100% ethyl2-fluoro-2-methyl-3-

oxobutanoate (117) (GC). 

Table 3.6, entry 6 

A mixture containing nickel (II) nitrate hexahydrate (58 mg, 0.20 mmol), 

racemic-BINAP (126 mg, 0.20 mmol), and acetonitrile (15 mL) was placed in the 

PTFE reactor. The mixture was sonicated for 5 minutes, and stirred for 30 minutes. 

Ethyl 2-methyl-3-oxobutanoate (116) (288 mg, 2.00 mmol) and acetonitrile (5 mL) 

was added to the mixture. Fluorination of this mixture was carried out using elemental 

fluorine (2.40 mmol) in the same manner as above, and gave a yellowish oil ( 489 mg); 

conversion was found to be 36%, which consisted of, 100% ethyl2-fluoro-2-methyl-3-

oxobutanoate (177) (GC). 

Table 3.6, entry 7 

A mixture containing nickel (II) nitrate hexahydrate (58 mg, 0.20 mmol), 

1,2-diphenylphosphinoethane (80 mg, 0.20 mmol), and acetonitrile (15 mL) was 

placed in the PTFE reactor. The mixture was stirred for 30 minutes, and ethyl 

2-methyl-3-oxobutanoate (176) (288 mg, 2.00 mmol) and acetonitrile (5 mL) was 

added. Fluorination of this mixture was carried out using elemental fluorine (2.40 

mmol) in the same manner as above, and gave a slightly yellowish oil (385 mg); 

conversion was found to be 20%, which consisted of, 100% ethyl 2-fluoro-2-methyl-

3-oxobutanoate (177) (GC). 

Table 3.6, entry 8 

A mixture containing nickel (IT) nitrate hexahydrate (58 mg, 0.20 mmol), 

racemic-BINAP (126 mg, 0.20 mmol), and acetonitrile (15 mL) was placed in the 

PTFE reactor. The mixture was sonicated for 5 minutes, and stirred for 30 minutes. 

Ethyl 2-methyl-3-oxobutanoate (176) (288 mg, 2.00 mmol) and acetonitrile (5 mL) 

was added to the mixture. Fluorination of this mixture was carried out using elemental 

fluorine (10.0 mmol) in the similar manner as above, and gave a yellowish oil (550 

mg); conversion was found to be 73%, which consisted of, 97% ethyl 2-fluoro-2-

methyl-3-oxobutanoate (177), 3% ethyl 2,4-difluoro-2-methyl-3-oxobutanoate (118) 

(GC). 

Purification by flash chromatography [silica gel: 20 g, eluent: hexane/ethyl acetate 

(8: 1 )] provided ethyl 2-fluoro-2-methyl-3-oxobutanoate (177), (72 mg, 22%) as a 

colourless oil. 

Ethyl2-fluoro-2-methyB-3-oxobutanoate (177) 
1H NMR (400 :MHz, CDCh) 6 1.29 (t, J= 7.0 Hz, 3H, CH2CH3), 1.66 (d, 3JHF = 22.0 

Hz, 3H, CFCH3), 2.31 (d, J = 4.5 Hz, 3H, CH3C=O), 4.26 (q, J = 7.0 Hz, 2H, CH2); 
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13C NMR (101 MHz) o 13.9 (s, CH£H3), 19.7 (d, 2JcF = 23.0 Hz, CFCH3), 24.9 (s, 

CH3C=O), 62.6 (s, CH2), 97.6 (d, 1JcF = 193.0 Hz, CF), 166.8 (d, 2 JcF = 25.0 Hz, 

CFCOO), 202.3 (d, 2JcF = 28.5 Hz, CH3COCF); IR (neat) 2987, 1756, 1736, 1374, 

1361, 1280, 1141, 1108, 1019 cm-1
; mass spectrum, m/z (E:t) 163 ([M+Ht, 1%), 120 

([M-C2H20t, 98), 92 (100), (Found:~ 162.0686. C1HuF03 requires 162.0687). (As 

compared to the literature data. 32) 

Effect of intermittent introduction of fluorine 

A mixture containing nickel (II) nitrate hexahydrate (58 mg, 0.20 mmol), 

racemic-BINAP (126 mg, 0.20 mmol), and acetonitrile (15 mL) was placed in the 

PTFE reactor. The mixture was sonicated for 5 minutes, and stirred for 30 minutes. 

Ethyl 2-methyl-3-oxobutanoate (176) (288 mg, 2.00 mmol) and acetonitrile (5 mL) 

was added to the mixture. The mixture was immersed in a cooling bath of 0 oc and 

purged with N2 for 30 minutes. Elemental fluorine [10% (v/v) mixture with nitrogen] 

was introduced at a flow rate of I 0 mL/min into the mixture for I8 minutes. The 

reaction mixture was purged with N2 for 30 minutes. Further fluorine was introduced 

into the mixture for 36 minutes and the reaction mixture was purged with N2 for 60 

minutes. Further fluorine was introduced into the mixture for 50 minutes and the 

reaction mixture was purged with N2 for 60 minutes. Further fluorine was introduced 

into the mixture for 49 minutes and the reaction mixture was purged with N2 for 60 

minutes. Further fluorine was introduced into the mixture for 4 7 minutes and the 

reaction mixture was purged with N2 for 60 minutes. Further fluorine was introduced 

into the mixture for 46 minutes and the reaction mixture was purged with N2 for 30 

minutes (total 6.0 equivalents of fluorine was passed through the mixture). Ordinary 

work-up gave a yellowish oil (588 mg); conversion was found to be 80%, which 

consisted of, 97% ethyl 2-fluoro-2-methyl-3-oxobutanoate (177), 3% ethyl 

2,4-difluoro-2-methyl-3-oxobutanoate (178) (GC). 0.3 mL of the reaction mixture was 

taken from the reactor at the same intervals after introduction of fluorine. The reaction 

mixture was poured into water, neutralised by NaHC03, extracted with 

dichloromethane, dried over MgS04, and evaporated to give about I 0 mg of crude 

product; conversions were found to be 12% (0.4 equiv.), 26% (1.2 equiv.), 42% (2.4 

equiv.), 61% (3.6 equiv.) and 69% (4.8 equiv.). 

Preparation of cyclic 1 ,3-ketoesters 

Di-t-butyl adipate (184) 

A solution of adipoyl chloride (183) (11.9 g, 65.2 mmol) in dry ether (10 mL) was 
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added dropwise to a stirred mixture of t-butanol (20 mL, 209 mmol), 

N,N-dimethylaniline (26 mL, 205 mmol), and dry ether (10 mL) at room temperature. 

This mixture was stirred vigorously for 17 hours, after which it was diluted with 10% 

aqueous sodium chloride (200 mL) and extracted with ether (200 mL and 100 mL). 

The organic layer was washed with 3: I (v/v) 2 M aqueous hydrochloric acid/saturated 

brine (3 x 200 mL), 3:1 (v/v) 1M aqueous sodium hydroxide/saturated brine (2 x 200 

mL), and saturated brine (200 mL). The resulted organic extracts were dried over 

MgS04, and evaporated to give crude product (16.1 g). The product was purified by 

distillation under reduced pressure [b.p. 90-92 oc (0.~.8 mmHg)] to afford 

di-t-butyl adipate (184) (12.71 g, 75%) as a low-melting solid; 1H NMR (400 MHz, 

CDCh) o 1.41 (m, ISH, 2 C(CH3)3), 1.57 (m, 4H, 2 CH2CH2C=O), 2.19 (m, 4H, 2 

CH2C=O); 13C NMR (101 MHz) o 24.5 (s, 2 Cfh), 28.0 (s, 6 CH3), 35.2 (s, 2 

CH2C=O), 80.0 (s, 2 C(CH3)3), 172.8 (s, 2 C=O). (As compared to the literature 

data?11
) 

t-Butyl 2-oxocydopentanecarboxyRall:e ( 185) 

Sodium hydride (60% in oil, 4.0 g, 100 mmol) was washed with dry hexane (3 x 10 

mL) under argon atmosphere in the usual method to remove the oil. Dry toluene (40 

mL) was added and the suspension was stirred under argon and di-t-butyl adipate (184) 

(0.5 g, 2 mmol) and t-butanol (0.2 mL) were added in one portion. The mixture was 

then refluxed with vigorous stirring for 30 minutes. A second portion of di-t-butyl 

adipate (12.0 g, 46.4 mmol) in dry toluene (20 mL) was added dropwise to the boiling 

mixture over 20 minutes and the mixture was refluxed with vigorous stirring for 

further 4.5 hours. The resulting thick suspension was cooled to 0 and neutralised by 

10% aqueous acetic acid (90 mL). The mixture was poured into. water (100 mL), 

extracted with ether (2 x 1 00 mL) and the combined extracts were washed with 

saturated aqueous sodium hydrogencarbonate and water, dried over magnesium sulfate, 

and evaporated to give crude product (9.34 g). The product was purified by distillation 

under reduced pressure [b.p. 86 oc (3 mmHg)] to afford t-butyl 2-oxocyclopentane 

carboxylate (185) (7.00 g, 7go/o) as a colourless liquid; (Found: C, 65.14; H, 8.85. 

C10Ht603 requires C, 65.19; H, 8.75%); 1H NMR (400 MHz, CDCh) o 1.46(s, 9H, 

C(CH3)3), 1.78-1.89 (m, IH), 2.06-2.15 (m, IH), 2.21-2.31 (m, 4H), 3.04 (t, J = 

9.0 Hz, IH, 1-H); 13C NMR {101 MHz) o 20.8 (s, 4-C), 27.3 {s, 5-C), 27.9 (s, 8-C), 

38.0 (s, 3-C), 55.6 (s, 1-C), 81.5 {s, 7-C), 168.6 {s, 6-C), 212.8 (s, 2-C); IR (neat) 2976, 

1753, 1720, 1369, 1257, 1157, 1109, 844 cm-1
; mass spectrum, rnlz (Er) 184 ~' 

2%), 128 ([M-C.Jist, 44), Ill (100). (As compared to the literature data.212) 
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--------------

JDiat-IDutyi pimelate (187) 

Di-t-butyl pimelate (187) was prepared by the same procedure to di-t-butyl adipate 

(184). Pimeloyl chloride (186) (10.0 g, 50.7 mmol), t-butanol (15.8 mL, 165 mmol), 

N,N-dimethylaniline (19.3 g, 159 mmol) gave crude product (12.9 g). The product was 

purified by distillation under reduced pressure [b.p. 120 oc (5 mmHg)] to afford 9.94 g 

(72%) of di-t-butyl pimelate (187) as a colourless liquid; 1H :mAR (400 MHz, CDCh) 

8 1.27-1.38 (m, 2H), 1.43(s, 18H, 2 C(CH3)3), 1.59 (quint, J = 7.5 Hz, 4H, 2 

CH2CH2C=O), 2.20 (t, J= 7.5 Hz, 4H, 2 CH2C=O); Be NMR (101 MHz) 8 24.7 (s, 2 

CH2CH2C=O), 28.1 (s, 6 CHJ), 28.5 (s, CH2CH2CH2C=O), 35.4 (s, 2 CH2C=O), 79.9 

(s, 2 C(CH3)3), 173.0 (s, 2 C=O). 

t-Butyl 2-oxocyclohexanecarboxylate ( i 88) 

t-Butyl 2-oxocyclohexanecarboxylate (188) was prepared by the same procedure to 

t-butyl 2-oxocyclopentanecarboxylate (185). Sodium hydride (60% in oil, 3.02 g, 75.4 

mmol), di-t-butyl pimelate (187) (9.93 g, 36.5 mmol) and t-butanol (0.15 mL) gave 

crude product (8. 79 g). The product was purified by distillation under reduced pressure 

[b.p. 80----S2 oc (0.7-D.8 mmHg)] to afford 5.03 g (70%) of t-butyl 

2-oxocyclohexanecarboxylate (188) as a colourless liquid; (Found: C, 66.70; H, 9.21. 

CuH180 3 requires C, 66.64; H, 9.15%); 1H NMR (400 MHz, CDCh) keto-enol 

(36%-64%) 8 1.45-1.48 (m, 9H, C(CH3)3), 1.53-2.51 (m, 8H), 2.06-2.15 (m, 1H), 

2.21-2.31 (m, 4H), 3.24 (m, 0.36H), 12.38 (s, 0.64H, OR-enol); Be NMR (101 MHz) 

8 22.0 (s, 4-C or 5-C or 6-C-enol), 22.5 (s, 4-C or 5-C or 6-C-enol), 22.8 (s, 4-C or 5-C 

or 6-C-enol), 23.1 (s, 4-C or 6-C-keto), 27.1 (s, 4-C or 6-C-keto), 28.0 (s, 9-C-keto), 

28.3 (s, 9-C-enol), 29.1 (3-C-enol), 29.9 (5-C-keto), 41.5 (s, 3-C-keto), 57.8 (s, 

1-C-keto), 80.6 (s, 8-C-enol), 81.5 (s, 8-C-keto), 98.9 (s, 1-C-enol), 169.2 (s, 7-C-keto), 

171.2 (s, 2-C-enol), 172.6 (s, 7-C-enol), 206.8 (s, 2-C-keto); IR (neat) 2936, 1737, 

1717, 1654, 1393, 1367, 1309, 1266, 1223, 1161, 1081, 843 cm-1
; mass spectrum, rn/z 

(EI} 198 ~. 3%), 142 ([M-CJist, 51), 124 (100). 
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Catalytic direct fl'ihmrinatiorm oil' cycnic ll,3-ketoesten 

General Procedure 

The reactions below follow the procedure described, unless otherwise stated. 

(Procedure A) 

A mixture containing nickel (II) nitrate hexahydrate (58 mg, 0.20 mmol), BINAP (126 

mg, 0.20 mmol), and anhydrous acetonitrile (15 mL) was placed in the PTFE reactor. 

The mixture was sonicated for 5 minutes, and stirred for 30 minutes. The substrate 

(2.00 mmol) and anhydrous acetonitrile (5 mL) was added to the mixture. The mixture 

was immersed in a cooling bath of 0 °C and purged with N2 for 30 minutes. Elemental 

fluorine [10% (v/v) mixture with nitrogen] was introduced at a flow rate of 10 mL/min 

into the mixture for required time. The reaction mixture was purged with N2 for 30 

minutes. The reaction mixture was poured into water (20 mL), neutralised by NaHC03, 

and extracted with dichloromethane (3 x 20 mL). The combined organic extracts were 

dried over anhydrous MgS04 and evaporated to give a crude product. 

(Procedure B) 

A mixture containing nickel (II) nitrate hexahydrate (58 mg, 0.20 mmol), BINAP (126 

mg, 0.20 mmol), and anhydrous acetonitrile (15 mL) was placed in the PTFE reactor. 

The mixture was immersed in a cooling bath of 0 oc and purged with N2 for 30 

minutes. Elemental fluorine [10% (v/v) mixture with nitrogen] was introduced at a 

flow rate of 10 mL/min into the mixture for 45 minutes. The substrate (2.00 mmol) and 

anhydrous acetonitrile (5 mL) was added to the mixture after being purged with N2 for 

30 minutes. The mixture was purged with N2 for 30 minutes at 0 oc and elemental 

fluorine [10% (v/v) mixture with nitrogen] was introduced at a flow rate of 10 mL/min 

into the mixture for required time. The reaction mixture was purged with N2 for 30 

minutes. The remaining work up was same as procedure A. 

Catalytic direct fluorination of cyclic 1,3-ketoesters using a racemic catalyst 

Table 3. 7 entry 1 

The reaction was carried out using procedure A. 

Ethyl 2-oxocyclopentanecarboxylate (~8~) (312 mg, 2.00 mmol), nickel (II) nitrate 
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hexahydrate (58 mg, 0.20 mmol), racemic-BINAP (126 mg, 0.20 mmol), and 

elemental fluorine (6.00 mmol) gave a yellowish oil (549 mg); conversion was found 

to be 100%, which consisted of 100% ethyl 1-fluoro-2-oxocyclopentanecarboxylate 

(191) (GC); m/z (EI+) 174 (~, 16%), 146 ([M-C2Rtt, 25), 101 (96). 

Purification by flash chromatography [silica gel: 20 g, eluent: hexane/ethyl acetate 

(8:1)] provided ethyl 1-fluoro-2-oxocyclopentanecarboxylate (191), (280 mg, 81%) as 

a colourless oil. 

lEdnyH 11. -flluoro-2-ol\ocycDopellllll:allllecarlbmcyHall:e (1 91) 
1H NMR (400 MHz, CDCh) o 1.28 (t, J = 7.0 Hz, 3H, CH3), 2.07-2.15 (m, 2H), 

2.23-2.34 (m, 1H), 2.44--2.58 (m, 3H), 4.26 (q, J = 7.0 Hz, 2H, OCH2); 13C NMR 

(101 MHz) o 13.9 (s, CH3), 17.9 (d, 3JcF = 3.5 Hz), 33.8 (d, 2JcF = 21.0 Hz, CH2CF), 

35.6 (s), 94.5 (d, 1JcF = 200.0 Hz, CF), 167.3 (d, 2JcF = 27.0 Hz, CFCOO), 207.5 (d, 
2JcF = 17.0 Hz, CH2COCF); 19F NMR. (188 MHz, CDCh) o -164.5 (m); IR (neat) 

2984, 1771, 1752, 1729, 1294, 1165, 1022 cm-1
; mass spectrum, m/z (Er) 174 ~. 

21%), 146 ([M-C2~r. 27), 111 (71), 91 (100), (ES} (Found: [M+~r 192.1032. 

CsH1sFN03 requires 192.1030). (As compared to the literature data. 52
) 

Table 3. 7 entry 2 

The reaction was carried out using procedure A. 

t-Butyl 2-oxocyclopentanecarboxylate (185) (368 mg, 2.00 mmol), nickel (II) nitrate 

hexahydrate (58 mg, 0.20 mmol), racemic-BINAP (126 mg, 0.20 mmol), and 

elemental fluorine (6.00 mmol) gave a yellowish oil (360 mg); conversion was found 

to be 100%, which consisted of 100% t-butyl 1-fluoro-2-oxocyclopentanecarboxylate 

(192) (GC); m/z (EI} 202 ~. 13%), 187 ([M-CH3]\ 53), 146 ([M-CJist, 65), 129 

([M-CJI9or, 59), 101 ([M-CJI9ocor, s5). 

Purification by flash chromatography [silica gel: 20 g, eluent: hexane/ethyl acetate 

(8: 1)] provided t-butyl 1-fluoro-2-oxocyclopentanecarboxylate (192), (357 mg, 88%) 

as a colourless oil. 

t-JBull:yH 1-fluoro-2-ol\ocydopetmll:anecaurboxylate (192) 
1H NMR (400 MHz, CDCh) o 1.47 (s, 9H, C(CH3)3), 2.09 (quint, J = 7.5 Hz, 2H), 

2.18-2.31 (m, 1H), 2.44 (t, J= 7.5 Hz, 2H), 2.4--2.5 (m, 1H); 13C NMR (101 MHz) 

o 18.0 (d, 3
JcF = 3.5 Hz, CH2CH2CF), 27.8 (s, C(CH3)3), 33.8 (d, 2JcF = 21.0 Hz, 

CH2CF), 35.7 (s, CH2CO), 83.9 (s, C(CH3)3), 94.3 (d, 1JcF = 200.0 Hz, CF), 166.3 (d, 
2JcF = 28.0 Hz, CFCOO), 208.1 (d, 2JcF = 18.0 Hz, CH2COCF); 19F NMR (188 MHz, 

CDCh) o -163.3 (m); IR (neat) 2979, 1768, 1751, 1719, 1371, 1151, 1127, 842 cm-1
; 

mass spectrum, m/z (EI) 202 ~' 5%), 187 ([M-CHJ]+, 25), 146 ([M-CJist, 82), 
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(Found: [Mt 202.1010. C10H1sF03 requires 202.1005). (As compared to the literature 

data: supporting information of ref 197) 

Table 3. 7 entry 3 

The reaction was carried out using procedure A. 

Ethyl 2-oxocyclohexanecarboxylate (190) (340 mg, 2.00 mmol), nickel (II) nitrate 

hexahydrate (58 mg, 0.20 mmol), racemic-BINAP (126 mg, 0.20 mmol), and 

elemental fluorine (6.00 mmol) gave a yellowish oil (579 mg); conversion was found 

to be 100%, which consisted of 86% ethyl 1-fluoro-2-oxocyclohexanecarboxylate 

(193) (GC); rnlz (E.t) 188 ~. 21%), 115 ([M-C2Hsocor. 66). 

Purification by flash chromatography [silica gel: 20 g, eluent: hexane/ethyl acetate 

(8:1)] provided ethyl 1-fluoro-2-oxocyclohexanecarboxylate (193), (227 mg, 60%) as a 

colourless oil. 

Ethyll-fluoro-2-oxocyclohexanecarboxylate (193) 
1H NMR (400 MHz, CDCh) o 1.31 {t, J = 7.0 Hz, 3H, CH3), 1.78--1.97 (m, 4H), 

2.08--2.18 (m, 1H), 2.40--2.52 (m, 1H), 2.56-2.63 (m, 1H), 2.67-2.76 (m, 1H), 

4.29 {q, J= 7.0 Hz, 2H, OCH2); 13C NMR (101 MHz) o 13.9 {s, CH3), 20.9 (d, 3JcF = 

6.0 Hz), 26.5 (s, ClhCH2C=O), 35.9 {d, 2JcF = 21.0 Hz, CH2CF), 39.5 {s), 96.3 {d, 1JcF 

= 197.0 Hz, CF), 166.8 (d, 2
JcF = 25.0 Hz, CFCOO), 201.8 (d, 2

JcF = 19.5 Hz, 

CH2COCF); 19F NMR (188 MHz, CDCh) o -161.3 (m); IR (neat) 2949, 1752, 1734, 

1289, 1095 cm-1; mass spectrum, m/z (E.t) 188 ~. 13%), 140 (86), (Found: M" 
188.0853. C9H13F03 requires 188.0849). {As compared to the literature data.32) 

Table 3. 7 entry 4 

The reaction was carried out using procedure A. 

t-Butyl 2-oxocyclohexanecarboxylate (188) (397 mg, 2.00 mmol), nickel (II) nitrate 

hexahydrate (58 mg, 0.20 mmol), racemic-BINAP (126 mg, 0.20 mmol), and 

elemental fluorine (6.00 mmol) gave a yellow oil (0.63 g); conversion was found to be 

100%, which consisted of 89% t-butyl 1-fluoro-2-oxocyclohexanecarboxylate (194) 

(GC); m/z (E.t) 216 ~. 26%), 160 ([M-C.Jist, 79). 

Purification by flash chromatography [silica gel: 20 g, eluent: hexane/ethyl acetate 

(8:1)] provided t-butyl1-fluoro-2-oxocyclohexanecarboxylate {194), (288 mg, 67%) as 

a colourless oil. 

t-Butyllafluoro-2-oxocyclobexanecarboxylate (194) 
1H NMR (500 MHz, CDCh) o 1.48 (s, 9H, CH3), 1.76-1.97 (m, 4H), 1.99--2.07 (m, 

IH, one of CFCH2), 2.39--2.47 (m, IH, one of CFCH2), 2.53-2.59 (m, IH, one of 
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COCH2), 2.63-2.69 (m, 1H, one ofCOCH2); 13C NMR (126 MHz) 8 21.2 (d, 3JcF = 

6.5 Hz CFCH2CH2), 26.4 (s, COCH2CH2), 27.8 (s, CH3), 36.0 (d, 2JcF = 21.5 Hz, 

CFCH2), 39.8 (s, COCH2), 83.8 (s, CCH3), 96.3 (d, 1JcF = 196.5 Hz, CF), 165.7 (d, 
2JcF = 24.5 Hz, CFCOO), 202.2 (d, 2JcF = 19.0 Hz, CH2COCF); 19F NMR (188 MHz, 

CDCh) 8 -159.7 (m); IR (neat) 2978,2946, 1752, 1735, 1371, 1147, 1097, 839 cm-1; 

mass spectrum, rnlz (Et) 216 (M\ 11%), 201 ([M-CH3t, 16), 160 ([M-CJist, 62), 

(Found: ~ 216.1157. CnH17F03 requires 216.1156). (As compared to the literature 

data: supporting information of ref 197) 

Table 3. 7 entry 5 

No catalyst was added. A mixture containing ethyl 2-oxocyclopentanecarboxylate 

(189) (312 mg, 2.00 mmol), and acetonitrile (20 mL) was placed in the PTFE reactor. 

The mixture was purged with N2 for 30 minutes at 0 oc and elemental fluorine [10% 

(v/v) mixture with nitrogen] was introduced at a flow rate of 10 mL/min into the 

mixture (6.00 mmol). The reaction mixture was purged with N2 for 30 minutes. The 

remaining work up was same as procedure A, which gave a colourless oil (375 mg); 

conversion was found to be 17%. 

Table 3.7 entry 6 

No catalyst was added. A mixture containing ethyl 2-oxocyclohexanecarboxylate (i190) 

(340 mg, 2.00 mmol), and acetonitrile (20 mL) was placed in the PTFE reactor. The 

mixture was purged with N2 for 30 minutes at 0 oc and elemental fluorine [10% (v/v) 

mixture with nitrogen] was introduced at a flow rate of 10 mL/min into the mixture 

(6.00 mmol). The reaction mixture was purged with N2 for 30 minutes. The remaining 

work up was same as procedure A, which gave a colourless oil ( 410 mg); conversion 

was found to be 87%. 

JEstimall:ion of enoB contents of f3-lke11:o estern 

The each compound was dissolved in acetonitrile-d3 in 0.1 M, and 1H NMR spectra 

were recorded within 30 minutes and 1 month later to determine the equilibrium 

concentration. 

Ethyl2-methyl-3-oxobutanoate (176) 

(within 30 minutes) 
1H NMR (400 MHz, CD3CN) 8 1.02 (t, J = 7.0 Hz, 3H, OCH2CH3), 1.04 (d, J = 7.0 Hz, 

3H, CHCH3), 1.98 (s, CH3CO), 3.37 (q, J= 7.0 Hz, 0.92H, keto-CHCH3), 3.81-4.01 

(m, enol-OCH2CH3), 3.94 (q, J = 7.0 Hz, keto-OCH2CH3), 12.50 (s, 0.02H, enol-OH). 

(1 month later) 
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1H NMR (400 MHz, CD3CN) o 1.02 (t, J = 7.0 Hz, 3H, OCH2CH3), 1.04 {d, J = 7.0 Hz, 

3H, CHCH3), 1.98 {s, CH3CO), 3.37 (q, J= 7.0 Hz, 0.93H, keto-CHCHJ), 3.81-4.01 

{m, enol-OCH2CH3), 3.94 {q, J= 7.0 Hz, OCH2CH3). 

Ethyl 2-oxocyclopentanecarboxylate ( 189) 

(within 30 minutes) 
1H NMR (400 MHz, CD3CN) o 1.02 (t, J = 7.0 Hz, 3H, OCH2CH3), 1.59---2.32 (m, 

6H), 2.95 (t, J = 9.0 Hz, 0.91H, keto-CH), 3.85-4.00 (m, enol-OCH2CH3), 3.92 {q, J 

= 7.0 Hz, keto-OCH2CH3). 

(1 month later) 
1H NMR (400 MHz, CD3CN) o 1.02 (t, J = 7.0 Hz, 3H, OCH2CH3), 1.59---2.32 (m, 

6H), 2.95 (t, J = 9.0 Hz, 0.88H, keto-CH), 3.85-4.00 {m, enol-OCH2CH3), 3.92 (q, J 

= 7.0 Hz, keto-OCH2CH3). 

t-Butyl2-oxocyclopentanecarboxylate (185) 

(within 3 0 minutes) 
1H NMR (400 MHz, CD3CN) o 1.22 {s, 9H, C(CH3)3), 1.57-2.31 (m, 6H), 2.81 {t, J = 
9.0 Hz, 0.92H, keto-CH). 

( 1 month later) 
1H NMR (400 MHz, CD3CN) o 1.22 {s, 9H, C(CH3)3), 1.57-2.31 (m, 6H), 2.81 (t, J= 

9.0 Hz, 0.93H, keto-CH). 

Ethyl2-oxocyclohexanecarboxylate (190) 

(within 30 minutes) 
1H NMR (400 J\1Hz, CD3CN) o 1.02 (t, J = 7.0 Hz, keto-OCH2CH3), 1.04 {t, J = 7.0 

Hz, enol-OCH2CH3), 1.37-2.25 (m, 8H), 3.22 (ddd, J = 11.0, 5.5, 1.0 Hz, 0.20H, 

keto-CH), 3.94 (dq, J = 7.0, 2.5 Hz, keto-OCH2CH3), 3.99 (q, J = 7.0 Hz, 

enol-OCH2CH3), 12.04 (s, 0.71H, enol-OR). 

( 1 month later) 
1H NMR (400 MHz, CD3CN) o 1.02 (t, J = 7.0 Hz, keto-OCH2CH3), 1.04 {t, J = 7.0 

Hz, enol-OCH2CH3), 1.37-2.25 (m, 8H), 3.22 (ddd, J = 11.0, 5.5, 1.0 Hz, 0.39H, 

keto-CH), 3.94 (dq, J = 7.0, 2.5 Hz, keto-OCH2CH3), 3.99 (q, J = 7.0 Hz, 

enol-OCH2CH3), 12.04 (s, 0.50H, enol-OR). 

t-Butyl 2-oxocyclohexanecarboxylate ( 188) 

(within 3 0 minutes) 
1H NMR ( 400 MHz, CD3CN) o 1.24 (s, 2. 79H, keto-C(CH3)3), 1.28 (s, 6.21H, 

keto-C(CH3)J), 1.33-2.16 (m, 8H), 3.08 (dd, J = 9.5, 6.5 Hz, 0.28H, keto-CH), 12.13 

(s, 0.64H, enol-OR). 

(1 month later) 

295 



1H NMR (400 MHz, CD3CN) 8 1.24 (s, 6.48H, keto-C(CH3) 3), 1.28 (s, 2.52H, 

keto-C(CH3)3), 1.33-2.16 (m, 8H), 3.08 (dd, J = 9.5, 6.5 Hz, 0.67H, keto-CH), 12.13 

(s, 0.25H, enol-OH). 

Attempted catalytic enantio§eBective direct fluorination of :ll.,3-ketoe§teli"§ 

Table 3.9 entry 1 

The reaction was carried out using procedure A. 

Ethyl 2-oxocyclopentanecarboxylate (189) (312 mg, 2.00 mmol), nickel {IT) nitrate 

hexahydrate (58 mg, 0.20 mmol), (R)-BINAP (126 mg, 0.20 mmol), and elemental 

fluorine (10.0 mmol) gave a yellowish oil (580 mg); conversion was found to be 100%, 

which consisted of, 100% ethyll-fluoro-2-oxocyclopentanecarboxylate (191) (GC). 

Purification by flash chromatography [silica gel: 20 g, eluent: hexane/ethyl acetate 

(8:1)] provided ethyl 1-fluoro-2-oxocyclopentanecarboxylate (191), (286 mg, 82%) as 

a colourless oil (<1% ee). 

Table 3. 9 entry 2 

The reaction was carried out using procedure B. 

Ethyl 2-oxocyclopentanecarboxylate (189) (312 mg, 2.00 mmol), nickel (IT) nitrate 

hexahydrate (58 mg, 0.20 mmol), (R)-BINAP (126 mg, 0.20 mmol), and elemental 

fluorine (10.0 mmol) gave a yellowish oil (651 mg); conversion was found to be 99%, 

which consisted of, 100% ethyl1-fluoro-2-oxocyclopentanecarboxylate (191) (GC). 

Purification by flash chromatography [silica gel: 20 g, eluent: hexane/ethyl acetate 

(8:1)] provided ethyl 1-fluoro-2-oxocyclopentanecarboxylate {191), (276 mg, 79%) as 

a colourless oil (<I% ee). 

Table 3.9 entry 3 

The reaction was carried out using procedure A. 

t-Butyl 2-oxocyclopentanecarboxylate (185) (368 mg, 2.00 mmol), nickel (IT) nitrate 

hexahydrate (58 mg, 0.20 mmol), (R)-BINAP (126 mg, 0.20 mmol), and elemental 

fluorine (10.0 mmol) gave a yellowish oil (683 mg); conversion was found to be 100%, 

which consisted of, 100% t-butyl 1-fluoro-2-oxocyclopentanecarboxylate (192) (GC). 

Purification by flash chromatography [silica gel: 20 g, eluent: hexane/ethyl acetate 

(8:1)] provided t-butyl 1-fluoro-2-oxocyclopentanecarboxylate (192), (293 mg, 73%) 

as a colourless oil (<1% ee). 

Table 3. 9 entry 4 

The reaction was carried out using procedure B. 

t-Butyl 2-oxocyclopentanecarboxylate (185) (368 mg, 2.00 mmol), nickel (II) nitrate 

hexahydrate (58 mg, 0.20 mmol), (R)-BINAP (126 mg, 0.20 mrnol), and elemental 
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fluorine (10.0 mmol) gave a yellowish oil (730 mg); conversion was found to be 100%, 

which consisted of, 100% t-butyl 1-fluoro-2-oxocyclopentanecarboxylate (192) (GC). 

Purification by flash chromatography [silica gel: 20 g, eluent: hexane/ethyl acetate 

(8:1)] provided t-butyl 1-fluoro-2-oxocyclopentanecarboxylate (~92), (279 mg, 69%) 

as a colourless oil (<1% ee). 

Deten-mnnmtfion of enm1111tiomeric JPlUD.rity of tllne 111unorinmtedlprodiUD.ct§ 

The enantiomeric purity of the both of ethyl 1-fluoro-2-oxocyclopentanecarboxylate 

(191) and t-butyl 1-fluoro-2-oxocyclopentanecarboxylate (192) were determined by 

chiral shift reagent experiments using increasing amounts of Europium 

tris[3-heptafluoropropylhydroxymethylene ]-(+)-camphorate] [Eu(hfc )3] 
166

•
183 (See 

Figure 3.3). As the amounts of Eu(hfc)3 increase, the enantiotopic protons of methyl 

group split in 1H NMR. In the case oft-butyl 1-fluoro-2-oxocyclopentanecarboxylate 

(192), the enantiotopic protons could not completely be separated. 

JFDuorimntion of etllnyD 2-oxocydopenntmnecan-boxyHate (189) illll a mixture of 

dicllnloi'ometllnalllle/acetmnitrile [:B.: 1 (v/v)] 

A mixture containing nickel (II) nitrate hexahydrate (58 mg, 0.20 mmol), BINAP (126 

mg, 0.20 mmol), anhydrous dichloromethane (8 mL), and anhydrous acetonitrile (8 

mL) was placed in the PTFE reactor. The mixture was stirred for 30 minutes. Ethyl 

2-oxocyclopentanecarboxylate (189) (312 mg, 2.00 mmol), anhydrous 

dichloromethane (2 mL), and anhydrous acetonitrile (2 mL) was added to the mixture. 

The mixture was immersed in a cooling bath of 0 oc and purged with N2 for 30 

minutes. Elemental fluorine [10% (v/v) mixture with nitrogen] was introduced at a 

flow rate of 10 mL/min into the mixture (10 mmol). The reaction mixture was purged 

with N2 for 30 minutes. The remaining work up was same as procedure A, which gave 

a orange oil (610 mg); conversion was found to be 92%, which consisted of93% ethyl 

1-chloro-2-oxocyclopentanecarboxylate (195) (GC); rnlz (E() 192 ~ (CsHu37Cl03), 

1%], 190 ~ (CsHu35ClOJ), 3]. 

Purification by flash chromatography [silica gel: 20 g, eluent: hexane/ethyl acetate 

(8: I)] provided ethyl 1-chloro-2-oxocyclopentanecarboxylate (195), (197 mg, 52%) as 

a colourless oil. 

JEthyl 1-cbloro-2-oxocydopentanecai'boxynate ( 195) 
1H NMR (400 MHz, CDCh) o 1.30 (t, J = 7.5 Hz, 3H, CH3), 2.08-2.19 (m, 2H), 

2.34--2.44 (m, 2H), 2.52-2.60 (m, 1H), 2.71-2.78 (m, 1H), 4.28 (q, J= 7.5 Hz, 2H, 

OCH2); 
13C NMR (101 MHz) o 13.9 (s, CH3), 18.9 (s, CH2CH2CO), 35.2 (s, CfhCCl), 
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38.3 (s CH2CO), 63.0 (s, CCI), 167.1 (s, CCICOO), 206.1 (s, CH2COCCI); 1R (neat) 

2983, 1767, 1751, 1721, 1248, 1151, 1020 cm-1
; mass spectrum, m/z (EI} 190 ~ 

(CJiu35Cl03), 1%], 164 ([M-C2H.t (CJ!l7CIOJ), 21%), 162 ([M-C2H.t 

(CJil5ClOJ), 64%), 107 (100). 
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Clluaptl:er 8 

8.]. IFhnorillllation of etlhlyll 3-mx.obudanomte usillllg mmullti-cllnmllllllllell rrnicmreactl:mr 

For a description of the microreactor and operation, see section 4.2 and Appendix. 

GeneJrall procedure 

The reactions below follow the procedure described, unless otherwise stated. 

Microreactor was cooled to reaction temperature (8-10 °C) by an external cryostat. 

Fluorine was passed through the microreactor (V-21-9) at a rate of 90 mLmin-1 I 23.4 

mmolh-1 in total (10 mLmin-1ch-1
, 2.6 mmolh-1ch-1

). Substrate solution was passed 

through the microreactor at a rate of about 4.5 mL in total (0.5 mLh-1ch-1
). 

Approximately 0.5 mL of sample was withdrawn from the reaction mixture before 

work-up, added to CDCh, and analyzed by l9p NMR. Reaction mixture was poured 

onto water, extracted with 3 portions of dichloromethane, and these were combined 

and washed with saturated sodium hydrogen carbonate. The remaining acidic aqueous 

phase was neutralized by solid sodium hydrogen carbonate, extracted by 3 portions of 

dichloromethane. All extracts were combined, dried over magnesium sulfate, and 

evaporated to give crude product which was analysed by GC (GC-MS) and NMR (19F, 
1 H) and compared with authentic samples. 

FDuorimdiol!ll of ethyl 3-oxobutalllloate (196) using muBti-channeH microreactor 

(Substrate/fom~~.ic acid= 1:4l) 

Substrate solution was prepared; the solution consisted of ethyl 3-oxo-butanoate (196) 

(270.0 g, 2.08 mol) and formic acid (380.0 g, 8.26 mol). 

Table 4.2, run 1 

Substrate solution was passed through the microreactor at a rate of 4.5 mLh-1 in total 

[0.50 mLh-1ch-1
, = 1.8 mmolh-1ch-1 (d = 1.108)]. Reaction duration 18 hrs. Gave a 

colourless oil (97.2 g); conversion was found to be 64%, which consisted of, 84% ethyl 

2-fluoro-3-oxobutanoate (197), 6% ethyl 2,4-difluoro-3-oxobutanoate ('i98), and 1% 

ethyl 2,2-difluoro-3-oxobutanoate (199) (GC); 62% conversion [1H NMR; estimated 

by comparison of the integration area between CH3 of the ester group (both of the 

substrate and products, o 1.1-1.2 ppm), CH2 of the substrate (3 .4 ppm), and CH3 in 
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position 4 of the substrate (enol form, 1.9 ppm)]~ 197/198/199 = 91.8:5.5:2.7 e9p 
NMR) (As compared to literature data.32). 

Analysis of reaction mixture~ 197/198/199 = 82.0:15.3:2.7 C9F NMR). 

Ethyi 2-fftUiloro-3-mmllmtall1loate (197) (1111ot i!loRat:ed) 
1H NMR (200 MHz, CDCh) o 1.28 (t, J= 7.0 Hz, 3H, CH2CH3), 2.30 {d, 4JHF = 3.5 Hz, 

3H, CH3CO), 4.27 (q, J= 7.0 Hz, 2H, CH2), 5.17 {d, 2JHF = 49.5 Hz, 1H, CHF)~ 19F 

NMR. {282 MHz) o -193.6 (dq, 2
JHF = 49.5 Hz, 4JHF = 4.5 Hz)~ m/z {CI+, NH3) 166 

([M+NR.t, 100%), 148 ~. 21). 

Ethyl2,4-difluoro-3-oxobutanoate (198) (not isolated) 
1H NMR (400 MHz, CDCh) o 1.33 (t, J= 7.2 Hz, 3H, CH3), 4.33 (q, J= 7.2Hz, 2H, 

OCH2), 5.21 {d, 2
JHF = 46.8 Hz, 2H, CH2F), 5.45 (d, 2JHF = 48.0 Hz, 1H, CHF)~ 13C 

NMR (101 MHz) o 13.9 {s, CHJ), 63.2 (s, OCH2), 83.2 (dd, 1JcF = 184.8 Hz, 3JcF = 2.9 

(3.6) Hz, 2-C), 89.7 {d, 1JcF = 194.7 Hz, 4-C), 163.1 {d, 2JcF = 22.7 Hz, 1-C), 195.2 (dd, 
2JcF(2) = 22.7 Hz, 2JcF(4) = 17.5 Hz, 3-C)~ 19F NMR. (188 MHz, CDCh) 0 -203.9 {d, 
2JHF = 48.5 Hz, 2-F), -236.2 (t, 2JHF = 46.5 Hz, 4-F); m/z {Cr, NH3) 166 ([M+NR.t, 
33%), 166 ~. 67), 148 (100). 

Ethyll,l-difluoro-3-oxollmtanoate (199) (not isolated) 
19pNMR. (188 MHz, CDCh) o -114.2 (s). 

Table 4.2, run 2 

Reaction duration 18 hrs. Gave a colourless oil (73. 4 g)~ conversion was found to be 

60%, which consisted of, 88% ethyl 2-fluoro-3-oxobutanoate (197), 7% ethyl 

2,4-difluoro-3-oxobutanoate (198), and 1% ethyl 2,2-difluoro-3-oxobutanoate (199) 

(GC)~ 57% conversion CH NMR)~ 197/198/199 = 91.4:5.4:3.2 C9F NMR). 

Analysis of reaction mixture; 197/198/199 = 83.2:14.0:2.9 C9p NMR). 

Effect of the concentration of the substrate !lolution 

Substrate/formic acid= 1:2 (Table 4.3, entry 1) 

Substrate solution was prepared; the solution consisted of ethyl 3-oxo-butanoate (196) 

(182.2 g, 1.40 mol) and formic acid (128.9 g, 2.80 mol). 

Substrate solution was passed through the microreactor at a rate of 4.1 mLh-1 in total 

[0.45 mLh-1ch-1
, = 2.2 mmolh-1ch-1 (d = 1.087)]. Reaction duration 18 hrs. Gave a 

colourless oil (92 g)~ conversion was found to be 36%, which consisted of, 91% ethyl 

2-fluoro-3-oxobutanoate (197), and 9% ethyl 2,4-difluoro-3-oxobutanoate {198) (GC)~ 

40% conversion CH NMR)~ 197/198/199 = 90.0:6.4:3.6 C9F NMR). 

Analysis of reaction mixture~ 1197/4198/199 = 74.8:22.1:3.1 C~ NMR). 
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§uiDsltrate/fornnic acid = 1:4 (Table 4.3, entry 2) 

See the experimental part for table 4.2. 

§ubsltralte/Jl'oll'mic acid = 1:8 (Table 4.3, entry 3) 

Substrate solution was prepared; the solution consisted of ethyl 3-oxo-butanoate (196) 

(117.1 g, 0.900 mol) and formic acid (331.5 g, 7.20 mol). 

Substrate solution was passed through the microreactor at a rate of 4.3 mLh-1 in total 

[0.47 mLh-1ch-1
, = 1.1 mmolh-1ch-1 (d = 1.141)]. Reaction duration 18 hrs. Gave a 

colourless oil (45.8 g); conversion was found to be 82%, which consisted of, 87% ethyl 

2-fluoro-3-oxobutanoate (197), 5% ethyl 2,4-difluoro-3-oxobutanoate (198), and 3% 

ethyl 2,2-difluoro-3-oxobutanoate (199) (GC); 700/o conversion eH NMR); 197/198/ 

199 = 92.6:5.2:2.2 e9F NMR). 

Analysis of reaction mixture; 197/198/199 = 85.0:12.1:2.8 e~ NMR). 

§u.niDsttralte/formic acid= li.:Hi (Table 4.3, entry 4) 

Substrate solution was prepared; the solution consisted of ethyl 3-oxo-butanoate (196) 

(45.55 g, 0.350 mol) and formic acid (257.8 g, 5.60 mol). 

Substrate solution was passed through the microreactor at a rate of 4.2 mLh-1 in total 

[0.47 mLh-1ch-1
, = 0.63 mmolh-1ch-1 (d = 1.164)]. Reaction duration 18 hrs. Gave a 

colourless oil (20.2 g); conversion was found to be 74%, which consisted of, 88% ethyl 

2-fluoro-3-oxobutanoate (197), 4% ethyl 2,4-difluoro-3-oxobutanoate (198), and 4% 

ethyl 2,2-difluoro-3-oxobutanoate (199) (GC); 76% conversion eH NMR); 

197/198/199 = 93.5:4.0:2.5 e9F NMR). 

Analysis of reaction mixture; 197/198/199 = 86.9:9.7:3.4 e9F NMR). 

Substrate/formic acid= 1:32 (Table 4.3, entry 5) 

Substrate solution was prepared; the solution consisted of ethyl 3-oxo-butanoate (196) 

(32.5 g, 0.250 mol) and formic acid (368.2 g, 8.00 mol). 

Substrate solution was passed through the microreactor at a rate of 4.3 mLh-1 in total 

[0.47 mLh-1ch-1
, = 0.35 mmolh-1ch-1 (d = 1.189)]. Reaction duration 19 hrs. Gave a 

colourless oil (8.99 g); conversion was found to be 66%, which consisted of, 90% ethyl 

2-fluoro-3-oxobutanoate (197), and 4% ethyl 2,4-difluoro-3-oxobutanoate (198) (GC); 

69% conversion CH NMR); 197/198/199 = 92.5:5.6:1.9 C9F NMR). 

Analysis of reaction mixture; 197/198/199 = 88.2:9.5:2.3 e 9F NMR). 
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Effect of reaction temperature 

(Substrate/formic acid= 1:2) 

Substrate solution was prepared; the solution consisted of ethyl 3-oxo-butanoate (196) 

(182.2 g, 1.40 mol) and formic acid (128.9 g, 2.80 mol). 

Reaction temperature: 7-8 oc (Table 4.4, entry I) 

See the experimental part for table 4.3, entry 1. 

Reaction temperature: 20 oc (Table 4.4, entry 2) 

Reaction was carried out at 20 °C. Reaction duration 18 hrs. Gave a colourless oil (61 

g); conversion was found to be 32%, which consisted of, 91% ethyl 

2-fluoro-3-oxobutanoate (197), and 9% ethyl 2,4-difluoro-3-oxobutanoate (198) (GC); 

36% conversion ctH NMR); 197/198/199 = 89.7:6.7:3.6 ct9p NMR). 

Analysis of reaction mixture; 197/198/199 = 73.1:23.4:3.5 ct9F NMR). 

(Substrate/formic acid= 1:4) 

Substrate solution was prepared; the solution consisted of ethyl 3-oxo-butanoate (196) 

(195.2 g, 1.50 mol) and formic acid (276.2 g, 6.00 mol). 

Reaction temperature: 1-3 oc (Table 4.4, entry 3) 

Reaction was carried out at 1-3 °C. Reaction duration 18 hrs. Gave a colourless oil 

(37.0 g); conversion was found to be 59%, which consisted of, 83% ethyl 

2-fluoro-3-oxobutanoate (197), 8% ethyl 2,4-difluoro-3-oxobutanoate (198), and 3% 

ethyl 2,2-difluoro-3-oxobutanoate (199) (GC); 56% conversion ctH NMR); 

197/198/199 = 88.9:8.0:3.1 ct9F NMR). 

Analysis ofreaction mixture; 197/198/199 = 80.4:16.2:3.4 e9F NMR). 

Reaction temperature: 8--10 oc (Table 4.4, entry 4) 

See the experimental part for table 4.2. 

(Substrate/formic acid= 1:8) 

Substrate solution was prepared; the solution consisted of ethyl 3-oxo-butanoate (196) 

(117.1 g, 0.900 mol) and formic acid (331.5 g, 7.20 mol). 

Reaction temperature: 2-3 oc (Table 4.4, entry 5) 

Reaction was carried out at 2-3 °C. Reaction duration 18 hrs. Gave a colourless oil 

(25.9 g); conversion was found to be 81%, which consisted of, 84% ethyl 

2-fluoro-3-oxobutanoate (197), 3% ethyl 2,4-difluoro-3-oxobutanoate (198), and 3% 

ethyl 2,2-difluoro-3-oxobutanoate (199) (GC); 70% conversion CH NMR); 

197/198/199 = 92.3:5.2:2.5 ct9F NMR). 

Analysis of reaction mixture; 1e7/198/"i99 = 85.2:11.9:2.8 e9F NMR). 
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Reatctfiollll temperatillJIII"e: ~ oc (Table 4.4, entry 6) 

See the experimental part for table 4.3, entry 3. 

ReatdioRll temperattuR: :0.5--16 °<C (Table 4.4, entry 7) 

Reaction was carried out at 15-16 °C. Reaction duration 18 hrs. Gave a colourless oil 

(27.4 g); conversion was found to be 79%, which consisted of, 91% ethyl 

2-fluoro-3-oxobutanoate (~97), 4% ethyl 2,4-difluoro-3-oxobutanoate (198), and 2% 

ethyl 2,2-difluoro-3-oxobutanoate (199) (GC); 77% conversion eH NMR); 

197/198/199 = 92.8:4.8:2.4 e9F NMR). 

Analysis ofreaction mixture; 197/198/199 = 85.7:11.4:2.9 e9F NMR). 

(§ubstratte/formic add!= :U.::U.6) 

Substrate solution was prepared; the solution consisted of ethyl 3-oxo-butanoate (196) 

(45.55 g, 0.350 mol) and formic acid (257.8 g, 5.60 mol). 

ReactioRll temperature: ~9 oc (Table 4.4, entry 8) 

See the experimental part for table 4.3, entry 4. 

Reactiollll temperatture: 20 oc (Table 4.4, entry 9) 

Reaction was carried out at 20 °C. Reaction duration 18 hrs. Gave a colourless oil 

(15.2 g); conversion was found to be 94%, which consisted of, 91% ethyl 

2-fluoro-3-oxobutanoate (197), 3% ethyl 2,4-difluoro-3-oxobutanoate (198), and 2% 

ethyl 2,2-difluoro-3-oxobutanoate (199) (GC); 84% conversion eH NMR); 

197/198/199 = 93.7:3.6:2.7 e9p NMR). 

Analysis of reaction mixture; 197/198/199 = 87.4:8.6:4.0 e9F N1\1R). 

(Substrate/formic acid= 1:32) 

Substrate solution was prepared; the solution consisted of ethyl 3-oxo-butanoate (196) 

(32.5 g, 0.250 mol) and formic acid (368.2 g, 8.00 mol). 

Reactiollll temperature: 8---9 oc (Table 4.4, entry 10) 

See the experimental part for table 4.3, entry 5. 

Reactiolll temperature: 20 oc (Table 4.4, entry 11) 

Reaction was carried out at 20 °C. Reaction duration 19 hrs. Gave a colourless oil 

(8.85 g); conversion was found to be 85%, which consisted of, 92% ethyl 

2-fluoro-3-oxobutanoate (197), 3% ethyl 2,4-difluoro-3-oxobutanoate (198), and 2% 

ethyl 2,2-difluoro-3-oxobutanoate (199) (GC); 83% conv. eH N1\1R); 197/198/199 = 

93.1:4.4:2.5 e9FNMR). 

Analysis of reaction mixture; 197/198/199 = 88.2:8.5:3.3 e 9F NMR). 

303 



IEffed of the 1!1low rate of the substrate solludftoDII 

(Substrate/formic acid!= ll.:1) 

Substrate solution was prepared; the solution consisted of ethyl 3-oxo-butanoate (196) 

(130.1 g, 1.00 mol) and formic acid (46.03 g, 1.00 mol). 

1Fllow ll'ate ofll:llne substll'ate soluticm: OA2 lllllLlln-1clln-1 (Table 4.5, entry 1) 

Substrate solution was passed through the microreactor at a rate of 3.8 mLh-1 in total 

[0.42 mLh-1ch-1
, = 2.5 mmolh-1ch-1 (d = 1.050)]. Reaction duration 18 hrs. Gave a 

colourless oil (55.8 g); conversion was found to be 55%, which consisted of, 72% ethyl 

2-fluoro-3-oxobutanoate (197), 10% ethyl 2,4-difluoro-3-oxobutanoate (198), and 2% 

ethyl 2,2-difluoro-3- oxobutanoate (199) (GC); 52% conversion eH NMR); 

197/198/199 = 84.5:10.4:5.1 e9p NMR). 

Analysis of reaction mixture; 197/198/199 = 74.5:20.5:5.0 e 9F NMR). 

Flow rate of the substrate solution: 0.29 mLh-1ch-1 (Table 4.5, entry 2) 

The results of the following two experiments were averaged. 

(Experiment 1) 

Substrate solution was passed through the microreactor at a rate of 2.6 mLh-1 in total 

(0.29 mLh-1ch-1
, = 1.7 mmolh-1ch-1

). Reaction duration 18 hrs. Gave a colourless oil 

(44.8 g); conversion was found to be 85%, which consisted of, 78% ethyl 

2-fluoro-3-oxobutanoate (197), 11% ethyl 2,4-difluoro-3-oxobutanoate (198), and 3% 

ethyl 2,2-difluoro-3-oxobutanoate (199) (GC); 77% conversion eH NMR); 

197/198/199 = 83.2:10.4:6.4 e 9FNMR). 

(Experiment 2) 

Substrate solution was passed through the microreactor at a rate of 2.6 mLh-1 in total 

(0.29 mLh-1ch-1
). Reaction duration 18 hrs. Gave a colourless oil (52.0 g); conversion 

was found to be 80%, which consisted of, 76% ethyl 2-fluoro-3-oxobutanoate (197), 

12% ethyl 2,4-difluoro-3-oxobutanoate (198), and 3% ethyl 2,2-difluoro-3-oxo 

butanoate (199) (GC); 76% conversion eH NMR); 197/198/199 = 82.9:11.5:5.6 e 9F 

NMR). 

Analysis of reaction mixture; 197/198/199 = 70.5:23.5:6.0 e9p NMR). 

(§UIIbstrate/formic acid = 11. :36) 

Substrate solution was prepared; the solution consisted of ethyl 3-oxo-butanoate (196) 

(32.54 g, 0.250 mol) and formic acid (414.3 g, 9.00 mol). 

Flow !l'ate of the sUIIbstrate solution: 0.49 mlLh-1cll-1 (Table 4.6, entry 1) 

Substrate solution was passed through the microreactor at a rate of 4. 4 mLh - 1 in total 

[0.49 mLh-1ch-1
, = 0.32 mmolh-1ch-1 (d = 1.184)]. Reaction was carried out at 20 °C. 
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Reaction duration 5 hrs. Gave a colourless oil (2.24 g); conversion was found to be 

84%, which consisted of, 87% ethyl 2-fluoro-3-oxobutanoate (i191), 4% ethyl 

2,4-difluoro-3-oxobutanoate (198), and 3% ethyl 2,2-difluoro-3-oxobutanoate (199) 

(GC); 84% conversion ctH NMR); i191/il98/199 = 91.6:5.2:3.2 ct9F NMR). 

Analysis of reaction mixture; i197/il98/il99 = 87.1:9.0:3.9 ct9F NMR.). 

lFllow rate o1itllne ~mnlblstrate sonuntitoun: 0.96 unnLllD-1cllD-1 (Table 4.6, entry 2) 

Substrate solution was passed through the microreactor at a rate of 8. 7 mLh-1 in total 

(0.96 mLh-1ch-1
, = 0.64 mmolh-1ch-1

). Reaction was carried out at 20 °C. Reaction 

duration 5 hrs. Gave a colourless oil (4.75 g); conversion was found to be 84%, which 

consisted of, 87% ethyl 2-fluoro-3-oxobutanoate (197), 4% ethyl 

2,4-difluoro-3-oxobutanoate (198), and 3% ethyl 2,2-difluoro-3-oxobutanoate (1199) 

(GC); 55% conversion ctH NMR); i197'/il98/199 = 92.4:5.6:2.0). 

Analysis ofreaction mixture; 'i97'/il98/'i99 = 88.8:8.7:2.5 ct9p NMR). 

lFllow rate o1f"11:llne sunlblstrall:e soDunll:it«m: 11..941 nnnLllD-ncllD-1 (Table 4.6, entry 3) 

Substrate solution was passed through the microreactor at a rate of 17.5 mLh-1 in total 

(1.94 mLh-1ch-1
, = 1.3 mmolh-1ch-1

). Reaction was carried out at 20 °C. Reaction 

duration 5 hrs. Gave a colourless oil (8.67 g); conversion was found to be 84%, which 

consisted of, 87% ethyl 2-fluoro-3-oxobutanoate (i97), 4% ethyl 

2,4-difluoro-3-oxobutanoate (i198), and 3% ethyl 2,2-difluoro-3-oxobutanoate (i199) 

(GC); 27% conversion ctH NMR); i197'/198/i199 = 93.2:4.9:1.9). 

Analysis of reaction mixture; 197/il98/il99 = 89.2:8.6:2.2 ct9F NMR). 

lFllow rate olf"tRne sunbsll:rate soiunll:noHll: 3.92 nnnLllD-1cllD-1 (Table 4.6, entry 4) 

Substrate solution was passed through the microreactor at a rate of35.2 mLh-1 in total 

(3.92 mLh-1ch-1
, = 2.6 mmolh-1ch-1

). Reaction was carried out at 20 °C. Reaction 

duration 2.5 hrs. Gave a colourless oil (8.67 g); conversion was found to be 84%, 

which consisted of, 87% ethyl 2-fluoro-3-oxobutanoate (i197), 4% ethyl 

2,4-difluoro-3-oxobutanoate (i198), and 3% ethyl 2,2-difluoro-3-oxobutanoate (i199) 

(GC); 15% conversion ctHNMR); i191/198/199 = 92.5:5.7:1.8). 

Analysis of reaction mixture; i197/198/i199 = 90.2:7.8:2.0 ct9F NMR). 

JEffed of tilDe @ow rate of ll'ihuornune 

(§unbs11:rate/1f"orl!llllnc add!= 11.:41) 

Substrate solution was prepared; the solution consisted of ethyl 3-oxo-butanoate (196) 

(195.2 g, 1.50 mol) and formic acid (276.2 g, 6.00 mol). 

IFDow rate o1i1flunoriHlle: 11.0 mmLnnnnun-1cRn-1 (Table 4.7, entry I) 

See the experimental part for table 4.2. 
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Flow rate offluoni1111e: i mLmin-1clhl-1 (Table 4.7, entry 2) 

The results of the following two experiments were averaged. 

(Experiment 1) 

Fluorine was passed through the microreactor at a rate of 63 mLmin-1 I 16.4 mmolh-1 

in total (7 mLmin-1ch-1
, 1.8 mmolh-1ch-1

). Reaction duration 18 hrs. Gave a colourless 

oil (81 g); conversion was found to be 53%, which consisted of, 89% ethyl 

2-fluoro-3-oxobutanoate (197) and 7% ethyl 2,4-difluoro-3-oxobutanoate (198) (GC); 

50% conversion eHNMR); 197/198/199 = 89.9:6.9:3.2 e 9F NMR). 

Analysis of reaction mixture; 197/198/199 = 80.7:16.1:3.2 e9F NMR). 

(Experiment 2) 

Fluorine was passed through the microreactor at a rate of 63 mLmin-1 I 16.4 mmolh-1 

in total (7 mLmin-1ch-1
, 1.8 mmolh-1ch-1

). Reaction duration 18 hrs. Gave a colourless 

oil (39.5 g); conversion was found to be 52%, which consisted of, 86% ethyl 

2-fluoro-3-oxobutanoate (197), 7% ethyl 2,4-difluoro-3-oxobutanoate (198), and 2% 

ethyl 2,2-difluoro-3-oxobutanoate {199) (GC); 54% conversion eH NMR); 

197/198/199 = 90.2:6.2:3.6 e9F NMR). 

Analysis of reaction mixture; 197/198/199 = 80.7:16.0:3.3 e9p NMR). 

Effect of the solvent 

Fonnic acid (Table 4.8, entry 1) 

See the experimental part for table 4.2. 

Acetonitrile (Table 4.8, entry 2) 

Substrate solution was prepared; the solution consisted of ethyl 3-oxo-butanoate (196) 

(52.1 g, 0.400 mol), and anhydrous acetonitrile (65. 7 g, 1.60 mol). 

Substrate solution was passed through the microreactor at a rate of 5.2 mLh-1 in total 

[0.58 mLh-1ch-1
, = 1.7 mmolh-1ch-1 (d = 0.866)]. Reaction duration 5 hrs. Gave a 

colourless oil (13.3 g); conversion was found to be 27%, which consisted of, 76% ethyl 

2-fluoro-3-oxobutanoate (197), 190/o ethyl 2,4-difluoro-3-oxobutanoate (198) and 5% 

ethyl 2,2-difluoro-3-oxobutanoate (199) (GC); 36% conversion eH NMR); 

197/198/199 = 73.3:21.2:5.4 e9F Nl\1R). Analysis of reaction mixture; 197/198/199 = 
62.0:32.9:5.1 e9p Nl\1R). 

Acetonitrile/formic acid! (1:1) (Table 4.8, entry 3) 

Substrate solution was prepared; the solution consisted of ethyl 3-oxo-butanoate (196) 

(84.6 g, 0.650 mol), anhydrous acetonitrile (53.4 g, 1.30 mol), and formic acid (59.8 g, 
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1.30 mol). 

Substrate solution was passed through the microreactor at a rate of 4.6 mLh-1 in total 

[0.51 m.Lh-1ch-\ = 1.6 mmolh-1ch-1 (d = 0.974)]. Reaction duration 19 hrs. Gave a 

colourless oil (45.6 g); conversion was found to be 57%, which consisted of, 91% ethyl 

2-fluoro-3-oxobutanoate (197), and 9% ethyl 2,4-difluoro-3-oxobutanoate (~98) (GC); 

60% conversion CH NMR); 197/198/199 = 85.3:11.6:3.1 C9F NMR). 

Analysis of reaction mixture; 197/1198/199 = 71.4:25.5:3.1 C9F NMR). 

t-Butanol (Table 4.8, entry 4) 

Substrate solution was prepared; the solution consisted of ethyl 3-oxo-butanoate (196) 

(56.3 g, 0.432 mol), and dry t-butanol (128.2 g, 1.73 mol). 

Substrate solution was passed through the microreactor at a rate of 5.2 mLh-1 in total 

[0.58 m.Lh-1ch-1
, = 1.1 mmolh-1ch-1 (d = 0.832)]. Reaction was carried out at 20 °C. 

Reaction duration 19 hrs. Gave a colourless oil (29.3 g); conversion was found to be 

36%, which consisted of, 67% ethyl 2-fluoro-3-oxobutanoate (19'1), 19% ethyl 

2,4-difluoro-3-oxobutanoate (198) and 4% ethyl 2,2-difluoro-3-oxobutanoate (199) 

(GC); 197/198/199 = 76.3:18.9:4.8 C9F NMR). 

Analysis of reaction mixture; 197/198/199 = 70.0:24.5:5.5 C9F NMR). 

2,2,2-Trifluoroetlbanon (Table 4.8, entry 5) 

Substrate solution was prepared; the solution consisted of ethyl 3-oxo-butanoate (196) 

(58.5 g, 0.450 mol), and 2,2,2-trifluoroethanol (180.0 g, 1.80 mol). 

Substrate solution was passed through the microreactor at a rate of 4.4 mLh-1 in total 

[0.49 m.Lh-1ch-1
, = 1.1 mmolh-1ch-1 (d = 1.238)]. Reaction duration 19 hrs. Gave a 

colourless oil (27.0 g); conversion was found to be 69%, which consisted of, 79% ethyl 

2-fluoro-3-oxobutanoate (197), and 12% ethyl 2,4-difluoro-3-oxobutanoate (198) 

(GC); 197/198/199 = 77.8:18.3:3.9 C9p NMR). Analysis of reaction mixture; 

197/198/199 = 62.6:34.4:3.0 C9F NMR). 

No solvent (Table 4. 8, entry 6) 

No solvent was used. Ethyl 3-oxobutanoate was directly passed through the 

microreactor at a rate of 2.9 mLh-1 in total [0.32 m.Lh-1ch-\ = 2.5 mmolh-1ch-1 (d = 

1.021)]. Reaction duration 18 hrs. Gave a colourless oil (70.2 g); conversion was found 

to be 52%, which consisted of, 75% ethyl 2-fluoro-3-oxobutanoate (197), 12% ethyl 

2,4-difluoro-3-oxobutanoate (198), and 4% ethyl 2,2-difluoro-3-oxobutanoate (199) 

(GC); 49% conversion CH NMR); 1®7/198/199 = 82.5:10.9:6.6 C9F NMR). Analysis 
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of reaction mixture; 197/198/199 = 68.5:25.3:6.2 e9F NMR). 

1Etillyl2-filucllro-3-oxobu.tanoate (197) (Scheme 4.12) 

A mixture of ethyl 3-oxobutanoate (196) and ethyl 2-fluoro-3-oxobutanoate (197) 

[33% and 67%, respectively (GC)] contaminated with ethyl 2,4-difluoro-3-oxo 

butanoate (198), and ethyl 2,2-difluoro-3-oxobutanoate (199) [34% ethyl 

3-oxobutanoate (196) ctH NMR), 197/198/199 = 97.1:1.1:1.8 ct9p NMR)] was passed 

through the microreactor at a rate of 4.1 mLh-1 in total [0.46 mLh-1ch-1 
, = 1.2 

mmolh-1ch-1 (d = 1.100)]. Reaction duration 18 hrs. Gave a colourless oil (110.5 g); 

which consisted ot: 11% ethyl 3-oxobutanoate (196), 76% ethyl 2-fluoro-3-oxo 

butanoate (197), 3% ethyl 2,4-difluoro-3-oxobutanoate (198), and 4% ethyl 2,2-

difluoro-3-oxobutanoate (199) (GC); 14% ethyl 3-oxobutanoate (196) eH NMR), 

197/198/199 = 90.7:3.6:5.7 e9F NMR). 

Analysis of reaction mixture; 197/198/199 = 84.2:11.3:4.5 e9F NMR). 

Control reaction 

Fluorination of etllly12-fluoro-3-oxobutallloate (197) 

Using microreactor (Scheme 4.13) 

No solvent was used. Ethyl2-fluoro-3-oxobutanoate (197) was directly passed through 

the microreactor at a rate of2.8 mLh-1 in total [0.31 mLh-1ch-1
, = 2.5 mmolh-1ch-1 (d 

= 1.181)]. Reaction duration 5 hrs. Gave a colourless oil (15.9 g) which contained ethyl 

2-fluoro-3-oxobutanoate (197) (7gc>/o); m/z (E1)148 ~. 8%), 120 ([M-C2Rtt, 8), 

106 ([M-C2H20t, 58), 78 (70), 43 (100), ethyl 2,4-difluoro-3-oxobutanoate (198) 

(2%); mlz (EI)166 {M'", 3%), 138 ([M-C2Rtt. 15), 121 ([M-C2Hsor, 21), 61 (24), 

28 (100), ethyl 2,2-difluoro-3-oxobutanoate (199) (1 %); m/z (EI)121 ([M-C2HsOt, 

3), 96 (11), 43 (100), 2-fluoroethyl 2-fluoro-3-oxobutanoate (215) (gc>/o); m/z (E:t) 166 

~. 2%), 103 ([M-C2RtFOt, 48), 43 (100), 1-fluoroethyl 2-fluoro-3-oxobutanoate 

(216) (6%); m/z (EI+) 166 ~. 1%), 103 ([M-C2RtFOt, 14), 43 (100); 

197/198/199/215/216 = 72.7:2.4:1.9:15.6:7.4 e9F NMR). 

Analysis of reaction mixture; 197/198/199/215/216 = 69.1:4.4:2.0:16.7:7.9 e9F NMR). 

2-FnuoroetlnyR 2-fluoro-3-oxobutanoate (215) (not isolated) 
19F NMR (188 MHz, CDCh) 8 -225.6 (m); m/z (EI+) 166 (~, 2%), 103 

([M-C2RtFOt, 48), 43 (100). 

1-lFluoroethy12-fluoro-3-oxobutanoate (216) (not isolated) 
19F NMR (188 MHz, CDCh) 8 -123.3 (m); m/z (EI) 166 ~. 1%), 103 

([M-C2lhl'Ot, 14), 43 (100). 
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Batch conditions (Table 4.8, entry 1) 

Ethyl 2-fluoro-3-oxobutanoate (197) (5.91 g, 39.9 mmol) was placed in the small 

PTFE reactor. The mixture was purged with N2 and immersed in a cooling bath of 7-8 

°C. Elemental fluorine as a 10% (v/v) mixture with nitrogen was introduced at a flow 

rate of 10 mL/min into the rapidly stirred mixture via PTFE tubing for 15 hours. The 

reaction mixture was purged with N2 for 30 minutes. The work up procedure was 

similar to microreactor reactions. Gave a colourless oil (7.62 g) which contained ethyl 

2-fluoro-3-oxobutanoate (197) (80%), ethyl 2,4-difluoro-3-oxobutanoate (198) (2%), 

ethyl 2,2-difluoro-3-oxobutanoate (199) (1%), 2-fluoroethyl 2-fluoro-3-oxobutanoate 

(215) (10%), 1-fluoroethyl 2-fluoro-3- oxobutanoate (216) (6%); 197/198/199/215/216 

= 72.0:3.4:2.1:15.5:7.0 e9p NMR). 

Analysis of reaction mixture; 197/198/199/215/216 = 69.2:5.1:2.2:15.5:8.0 e9F NMR). 

Batch conditions, in the presence of formic acid! (Table 4.9, entry 2) 

The reaction was carried out in same manner described above. A mixture of ethy I 

2-fluoro-3-oxobutanoate (5.92 g, 40.0 mmol) and formic acid (185 mg, 4.02 mmol) 

gave a colourless oil (8.55 g) which contained ethyl 2-fluoro-3-oxobutanoate (197) 

(80%), ethyl 2,4-difluoro-3-oxobutanoate (198) (2%), ethyl 2,2-difluoro-3-

oxobutanoate (199) (1%), 2-fluoroethyl 2-fluoro-3-oxobutanoate (215) (10%), 

1-fluoroethyl 2-fluoro-3-oxobutanoate (216) (6%); 197/198/199/215/216 = 73.3 : 3.8 : 

2.0: 14.0: 1.0 e9p NMR). 

Analysis of reaction mixture; 197/198/199/215/216 = 71.3:5.1:2.1:15.7: 5.8 e9p NMR). 

Effect of the catalyst 

General Procedure (batch condition) 

The reactions below follow the procedure described, unless otherwise stated. A mixture 

containing ethyl 3-oxobutanoate (347 mg, 2.67 mmol), catalyst, and formic acid (10 

mL, 265 mmol) was placed in the small PTFE reactor. The mixture was purged with N2 

and immersed in a cooling bath of8-9 °C. Elemental fluorine as a 10% (v/v) mixture 

with nitrogen was introduced at a flow rate of 10 mL/min into the rapidly stirred 

mixture via PTFE tubing. The reaction mixture was purged with N2 for 30 minutes. 

The reaction mixture was poured into water (20 mL ), neutralized by N aHC03, and 

extracted with chloroform (3 x 20 mL ). The combined organic extracts were dried over 

anhydrous MgS04 and evaporated to give a crude product. 

No cataUyslt (batch cmul!Rtion) (Table 4.10, entry 1) 
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No catalyst was added. The reaction was carried out at 16 °C. Ethyl 3-oxobutanoate 

(196) (347 mg, 2.67 mmol), and elemental fluorine (5.34 mmol) gave a colourless oil 

(305 mg); conversion was found to be 44%, which consisted of, 100% ethyl 

2-fluoro-3-oxobutanoate (~97) (GC); 45% conversion eH NMR.); 197/198/199 = 

95.6:3.4:1.0 e9F NMR). 

Analysis ofreaction mixture; 197/198/199 = 90.8:7.9:1.3 e9F NMR). 

10 moD %NickeD (D) nitrate hexahydrate (batch condition) (Table 4.10, entry 2) 

Ethyl 3-oxobutanoate (196) (347 mg, 2.67 mmol), nickel (II) nitrate hexahydrate (78 

mg, 0.268 mmol) and elemental fluorine (5.34 mmol) gave a colourless oil (400 mg); 

conversion was found to be 75%, which consisted of, 93% ethyl 

2-fluoro-3-oxobutanoate (197), 3% ethyl 2,4-difluoro-3-oxobutanoate (198), and 4% 

ethyl 2,2-difluoro-3-oxobutanoate (199) (GC); 73% conversion eH NMR); 

197/198/199 = 91.5:3.4:5.1 e9F NMR). 

Analysis of reaction mixture; 197/198/199 = 87.8:6.3:5.9 e9F NMR). 

(Substrate/formic acid= 1:4) 

No catalyst (Table 4.11, entry 1) 

See the experimental part for table 4.2. 

0.5 mol % Nickel (ll) nitrate hexahydrate (Table 4.11, entry 2) 

Substrate solution was prepared; the solution consisted of ethyl 3-oxo-butanoate (196) 

(92.4 g, 0.710 mol), nickel (II) nitrate hexahydrate (1.03 g, 3.55 mmol) and formic acid 

(130.7 g, 2.84 mol). 

Substrate solution was passed through the microreactor at a rate of 4.3 mLh-1 in total 

[0.48 mLh-1ch-1
, = 1.7 mmolh-1ch-1 (d = 1.108)]. Reaction duration 19 hrs. Gave a 

colourless oil (55.6 g); conversion was found to be 60%, which consisted of, 95% ethyl 

2-fluoro-3-oxobutanoate (197), and 5% ethyl 2,4-difluoro-3-oxobutanoate (198) (GC); 

64% conversion eH NMR); 197/198/199 = 88.9:8.1:2.9 e9F NMR). 

Analysis of reaction mixture; 197/198/199 = 78.2:18.7:3.1 e9F NMR). 

(Substrate/formic acid = 1 :32) 

No catalyst (Table 4.11, entry 3) 

See the experimental part for table 4.3, entry 5. 
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<3 moD %NickeR (liJ!) uniltrate hexahydrate (Table 4.11, entry 4) 

Substrate solution was prepared; the solution consisted of ethyl 3-oxo-butanoate (196) 

(19.5 g, 0.150 mol), nickel (IT) nitrate hexahydrate (1. 74 g, 5.98 mmol) and formic acid 

(220.9 g, 4.80 mol). 

Substrate solution was passed through the microreactor at a rate of 4.2 mLh-1 in total 

[0.46 mLh-1ch-1
, = 0.34 mmolh-1ch-1 (d = 1.189)]. Reaction duration 19 hrs. Gave a 

colourless oil (7.94 g); conversion was found to be 60%, which consisted of, 95% ethyl 

2-fluoro-3-oxobutanoate (197), 2% ethyl 2,4-difluoro-3-oxobutanoate (198), and 2% 

ethyl 2,2-difluoro-3-oxobutanoate (199) (GC); 64% conversion eH NMR); 

197/198/199 = 93.4:4.1:2.5 e~ NMR). Analysis of reaction mixture; 197/198/199 = 
89.3:7.6:3.1 e~ NMR). 

Effect of the vertica.B orientation of the reactor 

(Substrate/formic acid= 1:4) 

Substrate solution was prepared; the solution consisted of ethyl 3-oxo-butanoate (196) 

(206.1 g, 1.58 mol) and formic acid (291.6 g, 6.34 mol). 

B= 0° (Table 4.12, entry 1) 

Substrate solution was passed through the microreactor at a rate of 4.4 mLh-1 in total 

[0.49 mLh-1ch-1
, = 1.7 mmolh-1ch-1 (d = 1.108)]. The reactor was fixed so that Bwas 

0°. Reaction duration 19 hrs. Gave a colourless oil (49.0 g); conversion was found to 

be 57%, which consisted of, 92% ethyl 2-fluoro-3-oxobutanoate (197), and 8% ethyl 

2,4-difluoro-3-oxobutanoate (198) (GC); 60% conversion eH NMR); 197/198/199 = 

88.9:8.6:2.5 e~ NMR). 

Analysis ofreaction mixture; 197/198/199 = 77.9:19.5:2.6 e9F NMR.). 

B= 5° (Table 4.12, entry 2) 

The reactor was fixed so that Bwas 5°. Reaction duration 19 hrs. Gave a colourless oil 

(47.7 g); conversion was found to be 37%, which consisted of, 93% ethyl 

2-fluoro-3-oxobutanoate (197), and 7% ethyl 2,4-difluoro-3-oxobutanoate (198) (GC); 

41% conversion eH NMR); 197/198/199 = 91.2:6.3:2.4 e9F NMR). 

Analysis ofreaction mixture; 197/198/199 = 78.9:18.6:2.4 e~ NMR). 

B= 2° (Table 4.12, entry 3) 

The reactor was fixed so that B was 2°. Reaction duration 19 hrs. Gave a colourless oil 

(52.7 g); conversion was found to be 49%, which consisted of, 94% ethyl 

2-fluoro-3-oxobutanoate (197), and 6% ethyl 2,4-difluoro-3-oxobutanoate (198) (GC); 

53% conversion eH NMR.); 197/198/199 = 91.9:5.8:2.4 e9F NMR). 

Analysis ofreaction mixture; 197/"!98/199 = 78.6:18.8:2.6 e9F NMR). 
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()= JtO (Table 4.12, entry 4) 

The reactor was fixed so that ()was 1 o. Reaction duration 19 hrs. Gave a colourless oil 

(41.2 g); conversion was found to be 56%, which consisted of, 93% ethyl 

2-fluoro-3-oxobutanoate (~97), and 7% ethyl 2,4-difluoro-3-oxobutanoate (~98) (GC); 

59% conversion eH NMR); 197/"i98/199 = 88.9:8.8:2.3 e9F NMR). 

Analysis of reaction mixture; i97/il98/199 = 78.5:19.0:2.5 c~ NMR.). 

()= 0° (Table 4.12, entry 5) 

The reactor was fixed so that ()was 0°. Reaction duration 19 hrs. Gave a colourless oil 

(54.5 g); conversion was found to be 56%, which consisted of, 94% ethyl 

2-fluoro-3-oxobutanoate (~97), and 6% ethyl 2,4-difluoro-3-oxobutanoate ("i98) (GC); 

59% conversion CB NMR.); ~97/i198/i199 = 93.1:4.4:2.5 e9F NMR). 

Analysis of reaction mixture; i97/i98/i99 = 79.7:17.7:2.6 C"T NMR). 

()= -ll. 0 (Table 4.12, entry 6) 

The reactor was fixed so that () was -1 o. Reaction duration 19 hrs. Gave a colourless 

oil (40.6 g); conversion was found to be 59%, which consisted of, 98% ethyl 

2-fluoro-3-oxobutanoate ("i97), and 6% ethyl 2,4-difluoro-3-oxobutanoate (198) (GC); 

60% conversion CH NMR); "i97/"i98/"i99 = 88.5:8.3:3.3 e"T NMR). 

Analysis of reaction mixture; '1197/198/199 = 78.4:19.0:2.6 C9F NMR). 

Effect of deaunung the reactor 

(§ubstrate/formmnc acid! = ll.:4) 

Substrate solution was prepared; the solution consisted of ethyl 3-oxo-butanoate (iSS) 

(130.1 g, 1.00 mol) and formic acid (184.1 g, 4.00 mol). 

Before deamiung (Table 4.13, entry 1) 

See the experimental part for table 4.12, entry 5. 

Aftell" deaDnfiJmg (Table 4.13, entry 2) 

Substrate solution was passed through the microreactor at a rate of 4.3 mLh-1 in total 

[0.48 rn.Lh-1ch-1
, = 1.7 mmolh-1ch-1 (d = 1.108)]. Reaction duration 19 hrs. Gave a 

colourless oil (46.6 g); conversion was found to be 73%, which consisted of, 89% ethyl 

2-fluoro-3-oxobutanoate (191), 7% ethyl 2,4-difluoro-3-oxobutanoate ("i98), and 2% 

ethyl 2,2-difluoro-3-oxobutanoate (~99) (GC); 75% conversion CH NMR); 

19'1/i98/~99 = 88.6:8.7:2.7 C9F NMR). 

Analysis of reaction mixture; 197/198/~99 = 77.0:20.2:2.8 C9p NMR). 

Aftell" deanillilg (2) (Table 4.13, entry 3) 

Reaction duration 19 hrs. Gave a colourless oil ( 49.1 g); conversion was found to be 

74%, which consisted of, 93% ethyl 2-fluoro-3-oxobutanoate {il~7), and 7% ethyl 
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2,4-difluoro-3-oxobutanoate (~98) (GC)~ 74% conversion eH NMR)~ ~97/~98/199 = 

90.6:6.9:2.5 e9p NMR). 

Analysis of reaction mixture~ ~97'/~98/199 = 78.2:19.1:2.7 e9p NMR). 

Effect of worlk unp 

Investngatiollll of the change of product distrillnntnow illll worlk-unp 

The ratios of products were analyzed by 19F NMR in each extraction during work up of 

an experiment (Table 4.4, entry 6). 1 mL of samples were withdrawn from each 

extraction or organic phase, evaporated and analyzed. 

reaction mixture: ~97'/198/~99 = 85:12:3 

extract 1 (224 mL, 98 mg was recovered from 1 mL): ~97'/198/~99 = 94:4:2 

extract 2 (102 mL, 17 mg was recovered from 1 mL): 197'/198/199 = 76:20:4 

extract 3 (101 mL, 5 mg was recovered from 1 mL): 197'/198/199 = 31:64:4 

extract 1-3 (before washing, 446 mL, 54 mg was recovered from 1 mL): 197'/198/199 = 

91:7:2 

extract 1-3 (after washing, 52 mg was recovered from 1 mL): 197'/198/199 = 94:3:2 

extract 4 (110 mL, 5 mg was recovered from 1 mL): 197'/198/199 = 32:68:0 

extract 5 (112 mL, 3 mg was recovered from 1 mL): ~97'/198/199 = 19:81:0 

extract 6 (100 mL, 3 mg was recovered from 1 mL): 197'/~98/199 = 0:100:0 

crude: 197'/198/199 = 93:5:2 

Investigation of the change of prodltnd distrillndiollll by washing with various 

aqueous solutions 

General procedure 

The experiments below follow the procedure described, unless otherwise stated. 1 g of 

crude product (~97'/198/199 = 88.3:7.3:4.4) was dissolved in 10 mL of 

dichloromethane and washed with 10 mL of various aqueous solutions. 1 mL samples 

were withdrawn from the resulting organic phase, evaporated and analyzed by 19F 

NMR. 

Experiment 1 washing with water: 

85 mg of crude product was recovered~ 197'/198/199 = 92.4:3.7:3.9 

Experiment 2 washing with saturated NaCl aqueous solution: 

91 mg of crude product was recovered~ 197'/'i98/199 = 89.3:6.3:4.4 

Experiment 3 washing with saturated NaHC03 aqueous solution: 

91 mg of crude product was recovered~ 11®7/~~8/~g® = 92.7:3.5:3.8 
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Experiment 4 washing with saturated NfuCl aqueous solution: 

87 mg of crude product was recovered; 197/198/199 = 91.3:4.2:4.5 

Experiment 5 washing with 10% K2C03 aqueous solution; The organic phase was 

washed with water additionally. 

61 mg of crude product was recovered; 197/198/199 = 96.4:0.5:3.1 

Experiment 6 washing with IN HCl; The organic phase was washed with water 

additionally. 

82 mg of crude product was recovered; 197/198/199 = 93.5:2.4:4.1 

Demonstration of purification by washing with basic aqueous solution 

Experiment 7 washing with saturated NaHC03 aqueous solution: 

9.0 g of crude product (197/198/199 = 88.3:7.3:4.4) was dissolved in 100 mL of 

dichloromethane and washed with 3 portions of saturated sodium hydrogencarbonate 

(in total 150 mL), dried over magnesium sulfate, and evaporated to recover a 

colourless oil (8.0 g, 89%); 197/198/199 = 92.8:2.9:4.3 e9F NMR). 

Experiment 8 washing with 10% K2C03 aqueous solution: 

9.0 g of crude product (197/198/199 = 88.3:7.3:4.4) was dissolved in 100 mL of 

dichloromethane and washed with 10% potassium carbonate (50 mL) and saturated 

sodium chloride (50 mL ), dried over magnesium sulfate, and evaporated to recover a 

colourless oil (7.6 g, 84%); 197/198/199 = 94.7:1.7:3.6 e9F NMR). 

8.2 Fluorination of other 1,3-ketoesters using multi-channel microreactor 

General procedure 

The reactions below follow the procedure described, unless otherwise stated. 

Microreactor was cooled to reaction temperature (8--10 °C) by an external cryostat. 

Fluorine was passed through the microreactor (V-21-9) at a rate of 90 mLmin-1 I 23.4 

mmolh-1 in total (10 mLmin-1ch-1
, 2.6 mmolh-1ch-1

). Substrate solution was passed 

through the microreactor at an appropriate rate. Reaction mixture was poured onto 

water, extracted with 3 portions of dichloromethane, and these were combined and 

washed with saturated sodium hydrogen carbonate. The remaining acidic aqueous 

phase was neutralized by solid sodium hydrogen carbonate, extracted by 3 portions of 

dichloromethane. All extracts were combined, dried over magnesium sulfate, and 

evaporated to give crude product which was analysed by GC (GC-MS) and NMR e9F, 
1 H) and compared with authentic samples. 
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Direct fluorination of ethyl2-oxocydohexanecali'boxylate (190) 

Substrate solution was prepared; the solution consisted of ethyl 2-oxo-cyclohexane 

carboxyrate (190) (100.9 g, 0.593 mol) and formic acid (109.1 g, 2.37 mol). 

Substrate solution was passed through the microreactor at a rate of 4.4 mLh-1 in total 

[0.49 mLh-1ch-1
, = 1.54 mmolh-1ch-1 (d = 1.114)]. Reaction duration 19 hrs. Gave a 

colourless oil ( 48.0 g); conversion was found to be 90%, which consisted of, 82% ethyl 

1-fluoro-2-oxo-cyclohexanecarboxyrate (193) (GC). (As compared to literature data.32
) 

Direct fluorination of ethyl 2-chloro-3-oxobutanoate (200) 

Substrate solution was prepared; the solution consisted of ethyl 2-chloro-3-oxo 

butanoate (200) (50.0 g, 0.304 mol) and formic acid (56.0 g, 1.22 mol). 

Substrate solution was passed through the microreactor at a rate of 2.5 mLh-1 in total 

[0.28 mLh-1ch-1
, = 0.93 mmolh-1ch-1 (d = 1.164)]. Reaction duration 5 hrs. Gave a 

colourless oil (1 0.1 g); conversion was found to be 36%, which consisted of, 65% ethyl 

2-chloro-2-fluoro-3-oxobutanoate (201) and 14% ethyl 2-chloro-2,4-difluoro-3-oxo 

butanoate (202) (GC). (As compared to literature data.32
•
35) 

Ethyl 2-chloro-2-tluoro-3-oxobutanoate (201) (not isolated) 
19F NMR (188 MHz, CDCh) B -123.5 (s); m/z (Ef) 183 ([M+Ht (CJ1s35ClFOJ), 

1 %), 142 ([M-C2H20t (C4H637ClF02), 10), 140 ([M-C2H20t (C~35ClF02), 29), 112 

(73), 43 (1 00). 

Ethyl 2-chloro-2,4-difluoro-3-oxobutanoate (202) (not isolated) 
19F NMR (188 MHz, CDCh) B -127.5 (s), -234.6 (t, 2

JHF = 46.5 Hz); m/z (Ef) 200 

[~ (CJ1l5ClF203), 1%], 174 ([M-C2~t (C4Hl7ClF203), 4), 140 ([M-C2~t 
(C4Hl5ClF203), 14), 61 (100). 

8.3 Fluorination of 1,3-diesters using multi-channel microreactor 

General procedure 

The reactions were carried out as previously described for the last section. 

Direct fluorination of diethyl malonate (217) 

Substrate solution was prepared; the solution consisted of diethyl malonate (217) 

(64.07 g, 0.400 mol) and formic acid (294.6 g, 6.40 mol). 

Formic acid, reaction temperature: 8--9 °C (Table 4.16, entry 1) 

Substrate solution was passed through the microreactor at a rate of 4.6 mLh-1 in total 

[0.51 mLh-1ch-1
, = 0.65 mmolh-1ch-1 (d = 1.144)]. Reaction duration 19 hrs. Gave a 

colourless oil (23.5 g); conversion was found to be 24% (GC); 218/219/220 = 2:59:39 
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e9F NMR). (As compared to literature data. 35
) 

IDnetBnyB l-1flluoll"omallonnate (218) (111lot »solatedl): 1~ NJ\1R (188 l\1Hz, CDCh) 

0 -195.6 (d, 2
JHF = 48.5 Hz). 

2-JFRuoroetD:lyll etBnyll mmaRonnmte (210) (111lot nsollatedl): 19F NMR (188 MHz, CDCh) 

o -225.2 (m). 

1-FluoroetD:lyD ethyD mallonnate (220) (not isoDatedl): 19F NMR (188 MHz, CDCh) 

o -123.8 (m). 

Fonnic add, reaction temperatllllre: 20 oc (Table 4.16, entry 2) 

Reaction was carried out at 20 °C. Substrate solution was passed through the 

microreactor at a rate of 4.6 mLh-1 in total (0.51 mLh-1ch-\ = 0.65 mmolh-1ch-1
). 

Reaction duration 19 hrs. Gave a colourless oil (17.8 g); conversion was found to be 

20% (GC); 218/219/220 = 2:62:37 e9F NMR). 

Acetoll1litrile, 2 mol% copper (III) nitrate lllle:JK:ahydrate (Scheme 4.16) 

Substrate solution was prepared; the solution consisted of diethyl malonate (217) (8.32 

g, 51.9 mmol), copper nitrate hemipentahydrate (242 mg, 1.04 mmol), and anhydrous 

acetonitrile (136.6 g, 3.33 mol). 

Substrate solution was passed through the microreactor at a rate of 18 mLh-1 in total 

[2.0 mLh-1ch-1
, = 0.56 mmolh-1ch-1 (d = 0.778)]. Reaction was carried out at 5 °C. 

Reaction duration 5 hrs. Gave a colourless oil (6.32 g); conversion was found to be 

19% (GC); 218/219/220 = 38:2:59 e9F NMR). 

Direct fluorination of dimetBnyR malonate (221) 

Formic acid (Scheme 4.17) 

Substrate solution was prepared; the solution consisted of dimethyl malonate (221) 

(33.03 g, 0.250 mol) and formic acid (184.1 g, 4.00 mol). 

Substrate solution was passed through the microreactor at a rate of 4.4 mLh-1 in total 

[0.49 mLh-1ch-1
, = 0.67 mmolh-1ch-1 (d = 1.180)]. Reaction duration 19 hrs. Gave a 

colourless oil (21.1 g); conversion was found to be 4% (GC); 222/223 = 9:91 e9F 

NMR) (As compared to literature data. 52
). 

IDnmetllnyR 2-fluoromaDonate (222) (nnoll: isolated!): 19F NMR (188 MHz, CDCh) 

o -195.7 (d, 2
JHF = 48.5 Hz). Spectral data for dimethyl 2-fluoromalonate (222) are 

also shown below (See the experimental part for scheme 4.19). 

FlluoJrometlllyR methyll mallomnte (223) (noll: nsollattedl): 19F NMR (188 MHz, CDCh) 

0 -158.8 (t, 2
JHF = 50.0 Hz). 
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Acetonitll"'iDe, no catalyst (Table 4.17, entry 1) 

Substrate solution was prepared; the solution consisted of dimethyl malonate (221) 

(6.87 g, 52.0 mmol), and anhydrous acetonitrile (136.6 g, 3.328 mol). 

Substrate solution was passed through the microreactor at a rate of 18 mLh-1 in total 

[2.0 mLh-1ch-1
, = 0.57 mmolh-1ch-1 (d = 0.780)]. Reaction was carried out at 5--{:i °C. 

Reaction duration 5 hrs. Gave a colourless oil (7.35 g); conversion was found to be 2% 

(GC); 222/223/224 = 42:50:7 e9F NMR). 

Jl)imethyl 2,2-difluoromalonate (224) (not isolated): 19F NMR (188 MHz, CDCh) 

8 -112.2 (s). Spectral data for dimethyl 2,2-difluoromalonate (224) are also shown 

below (See the experimental part for scheme 4.19). 

Acetonitrile, 2 mol %nickel (II) nitrate hexahydrate (Table 4.17, entry 2) 

Substrate solution was prepared; the solution consisted of dimethyl malonate (221) 

(6.87 g, 52.0 mmol), nickel (II) nitrate hexahydrate (303 mg, 1.04 mmol), and 

anhydrous acetonitrile (136.6 g, 3.328 mol). 

Substrate solution was passed through the microreactor at a rate of 18 mLh-1 in total 

(2.0 mLh-1ch-1
, = 0.57 mmolh-1ch-1

). Reaction was carried out at 5-6 °C. Reaction 

duration 5 hrs. Gave a colourless oil (5.84 g); conversion was found to be 9% (GC); 

222/223/224 = 80:12:7 e9p NMR). 

Acetonitrile, 2 mol% copper (II) nitrate hemipentahydrate (Table 4.17, entry 3) 

Substrate solution was prepared; the solution consisted of dimethyl malonate (221) 

(6.87 g, 52.0 mmol), copper (II) nitrate hemipentahydrate (242 mg, 1.04 mmol), and 

anhydrous acetonitrile (136.6 g, 3.328 mol). 

Substrate solution was passed through the microreactor at a rate of 18 mLh-1 in total 

(2.0 mLh-1ch-1
, = 0.57 mmolh-1ch-1

). Reaction was carried out at 5 °C. Reaction 

duration 5 hrs. Gave a colourless oil (6.94 g); conversion was found to be 13% (GC); 

222/223/224 = 81:13:6 e9p NMR.). 

Direct fluorination of 2,2-Dimethyl-1,3-dioxane-4,6-dione (Meldrum's acid, 225) 

Substrate/Acetonitrile= 1:16, no catalyst (Scheme 4.18) 

Substrate solution was prepared; the solution consisted of Meldrum's acid (225) (30.00 

g, 0.208 mol), and anhydrous acetonitrile (136.7 g, 3.33 mol). 

Substrate solution was passed through the microreactor at a rate of 4.4 mLh-1 in total 

[0.49 mLh-1ch-1
, = 0.51 mmolh-1ch-1 (d = 0.830)]. Reaction was carried out at 6-8 

°C. Reaction duration 19 hrs. Gave a pale yellow oil (12.4 g); conversion was found to 
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be 15% (GC); 226/227 = 99:1 e9F NMR). (As compared to literature data.231
) 

5-lFhnoro-2,2-dimetlllyi-].,3-dlnoxaHlle-4,6-dione (226) (B1lo11: nsoBatedl): 1H NMR ( 400 

MHz, CDCh) o 1.83 and 1.86 (2 x s, 6H, CH3), 5.67 (d, 2
JHF = 44.5 Hz, 1H, CHF); 19F 

NMR. (188 MHz, CDCh) 0 -206.1 (d, 2JuF = 44.5 Hz). 

5,5-l!)Dflunoro-2,2-di.metll!yB-].,3-dnoxaJIDe-4,6-dlioHlle (221) (nolt nsohntedl): 19F NMR (188 

MHz, CDCh) o -108.5 (s). 

Sunbstra1te/Acetonn1tll"liRe = n.:Hi, 2 moD % niclkel (]]I) I!D.ntralte llnexahydlratte (Scheme 

4.19) 

Substrate solution was prepared; the solution consisted of Meldrum's acid (225) (30.00 

g, 0.208 mol), nickel (II) nitrate hexahydrate (1.21 g, 4.16 mmol), and anhydrous 

acetonitrile (136.7 g, 3.33 mol). 

Substrate solution was passed through the microreactor at a rate of 4.4 mLh-1 in total 

(0.49 mLh-1ch-1
, = 0.51 mmolh-1ch-1

). Reaction was carried out at 3--4 °C. Reaction 

duration 19 hrs. 

(work up A) 

Reaction mixture ( 44.1 g) was poured onto water (ca. 200 mL ), extracted with 3 

portions of dichloromethane ( 400 mL in total), and these were combined and washed 

with water (three times) and saturated aqueous sodium chloride. The organic phase was 

dried over magnesium sulfate, and evaporated to give a pale yellow amorphous (6.28 

g); conversion was found to be 50% eH NMR; estimated by comparison of the 

integration area between CHF of compound 226 and CH2 in position 5 of the 

substrate); 226/227 = 99:1 e9F NMR). 

(work up B) 

Reaction mixture (22.9 g) was added into anhydrous methyl alcohol (20 mL), and 

stirred for 3 days at room temperature. The resulting mixture was poured onto water 

(ca. 100 mL), extracted with 3 portions of dichloromethane (200 mL in total), and 

these were combined and washed with saturated aqueous sodium hydrogen carbonate. 

The remaining acidic aqueous phase was neutralized by solid sodium hydrogen 

carbonate, extracted by 3 portions of dichloromethane (in total 150 mL). All extracts 

were combined, dried over magnesium sulfate, and evaporated to give a pale yellow oil 

(4.49 g); conversion was found to be 66%; which consisted of, 71% dimethyl 

2-fluoromalonate (222); m/z (CI+, NH3) 168 ([M+NHtt, 100%), and 27% dimethyl 

2,2-difluoromalonate (224); m/z (CI+, NH3) 186 ([M+NHtt, 100%) (GC); .222/224 = 

69:31 e9F NMR). 

1 g of the crude product was purified by flash chromatography [silica gel: 30 g, eluent: 
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hexane/ethyl acetate (8: I)] to provide dimethyl 2-fluoromalonate (222) (269 mg) and 

dimethyl 2,2-difluoromalonate (224) (72 mg) as colourless oils. 

ID>nmmetllnyB 2-ffllu.norommanonnate (222) 
1H NMR (400 MHz, CDCh) o 3.85 (s, 6H, CH3), 5.31 (d, 2

JHF = 47.5 Hz, IH, CHF); 
13C NMR (101 MHz) o 53.3 (s, CH3), 85.1 (d, 1

JcF = 197.0 Hz, CHF), 164.2 (d, 2
JcF 

= 24.0 Hz, C=O); IR (neat) 1775, 1757, 1439, 1295, 1255, 1019 cm-1
; mass spectrum, 

mlz (Ct, NH3) 168 ([M+NJL.t, 100%), (ES+) (Found: [M+~t 168.0664. 

CsHuFN04 requires 168.0667). (As compared to literature data. 52
) 

DimetllnyR 2,2-«llfiflunomnnaBonnall:e (224) 
1H NMR (400 MHz, CDCh) o 3.94 (s, 6H, CH3); 13C NMR (101 MHz) o 54.1 (s, CH3), 

106.0 (t, 1
JcF = 261.5 Hz, CF2), 161.1 (t, 2JcF = 31.0 Hz, C=O); IR (neat) 1785, 1442, 

1336, 1283, 1153, 1071, 798 cm-1
; mass spectrum, m/z (CI+, NH3) 186 ([M+NRtt, 

100%) (Found: [M+NRtt 186.0577. CsH10F2N04 requires 186.0572). 

Sunbsll:rate/Acell:mnnll:riBe = 1:641, nno call:aHysll: (Table 4.18, entry 1) 

Substrate solution was prepared; the solution consisted of Meldrum's acid (225) (7.50 

g, 52.0 mmol), and anhydrous acetonitrile (136. 7 g, 3.33 mol). 

Substrate solution was passed through the microreactor at a rate of 18 mLh-1 in total 

[2.0 mLh-1ch-1
, = 0.57 mmolh-1ch-1 (d = 0.787)]. Reaction was carried out at 5 °C. 

Reaction duration 5 hrs. 

(workup A) 

Reaction mixture (22 g) was poured onto water (ca. 100 mL), extracted with 3 portions 

of dichloromethane (150 mL in total), and these were combined and washed with 2% 

aqueous sodium hydrogen carbonate. The organic phase was dried over magnesium 

sulfate, and evaporated to give a pale yellow amorphous (4.94 g); conversion was 

found to be 6% eH NMR); 226/227 = 100:0 e9p NMR). 

(work up B) 

Reaction mixture (22 g) was added into anhydrous methyl alcohol (25 mL). Sulfuric 

acid (0.5 mL) was added to the mixture, and the resulting mixture was stirred for 2 

hours under reflux condition. The reaction mixture was poured onto 

water/dichloromethane [1: 1 mixture (v/v) (200 mL), neutralized by solid sodium 

hydrogen carbonate, extracted with 2 portions of dichloromethane ( 1 00 mL in total), 

and these were combined and dried over magnesium sulfate, and evaporated to give a 

pale yellow oil (3 .31 g); conversion was found to be 26%; which consisted of, 79% 

dimethyl 2-fluoromalonate (222), and 14% dimethyl 2,2-difluoromalonate (224) (GC); 

222/224 = 83: 17 e9F NMR). 
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Substrate/Acetonitrile= 1:64, 2 mol % nickel (II) nitrate hexahydrate (Table 4.18, 

entry 2) 

Substrate solution was prepared; the solution consisted of Meldrum's acid (225) (7.50 

g, 52.0 mmol), nickel (IT) nitrate hexahydrate (303 mg, 1.04 mmol), and anhydrous 

acetonitrile (136.7 g, 3.33 mol). 

Substrate solution was passed through the microreactor at a rate of 18 mLh-1 in total 

(2.0 mLh-1ch-1
, = 0.57 mmolh-1ch-1

). Reaction was carried out at~ °C. Reaction 

duration 5 hrs. 

Work up A (see above) gave a pale yellow amorphous (2.17 g); conversion was found 

to be 42% eH NMR); 226/227 = 94:6 e 9F NMR). 

Work up B (see above) gave a pale yellow oil (3.39 g); conversion was found to be 

50%; which consisted of, 74% dimethyl 2-fluoromalonate (222), and 23% dimethyl 

2,2-difluoromalonate (224) (GC); 222/224 = 72:28 e9p NMR). 

8.4 Fluorination of 1-Cyclohexen-1-yl acetate (228) using multi-channel 

micro reactor 

General procedure 

The reactions below follow the procedure described, unless otherwise stated. 

Microreactor was cooled to reaction temperature by an external cryostat. Fluorine was 

passed through the microreactor (V-21-9) at a rate of 90 mLmin-1 I 23.4 mmolh-1 in 

total (10 mLmin-1ch-1
, 2.6 mmolh-1ch-1

). Substrate solution was passed through the 

microreactor at an appropriate rate. Reaction mixture was poured onto water, extracted 

with 3 portions of dichloromethane, dried over magnesium sulfate, and evaporated to 

give crude product which was analysed by GC, GC-MS and NMR e9F, 1H) and 

compared with authentic samples. 

In acetonitrile (Table 4.19, entry 1) 

Substrate solution was prepared; the solution consisted of 1-cyclohexen-1-yl acetate 

(228) (30.0 g, 0.214 mol) and anhydrous acetonitrile (52.7 g, 1.28 mol). 

Substrate solution was passed through the microreactor at a rate of 4.1 mLh-1 in total 

[0.46 mLh-1ch-1
, = 0.99 mmolh-1ch-1 (d = 0.841)]. Reaction was carried out at 6-7 

°C. Reaction duration 5 hrs. Gave a brown oil (13.0 g); conversion was found to be 

98%, which consisted of, 67% 2-fluorocyclohexanone (229) (GC) (As compared to 

literature data.33
). 

2-Fluorocyclohexanone (229) (not isolated) 
19F NMR (188 MHz, CDCh) o -188.6 (d, 2

JHF = 49.5 Hz); rnlz (E:t) 116 ~. 88%), 
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55 (100). 

In formic add (Table 4.19, entry 2) 

Substrate solution was prepared~ the solution consisted of 1-cyclohexen-1-yl acetate 

(228) (25.3 g, 0.180 mol) and formic acid (99.8 g, 2.17 mol). 

Substrate solution was passed through the microreactor at a rate of 4.4 mLh-1 in total 

[0.49 mLh-1ch-1
, = 0.80 mmolh-1ch-1 (d = 1.137)]. Reaction was carried out at 8--9 

oc. Reaction duration 8 hrs. Gave a brown oil (8.36 g); conversion was found to be 

100%, which consisted of, 65% 2-fluorocyclohexanone (229) (GC). 
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Chapter 9 

Experimental to Chapter 5 

9.1 Preparation of ionic liquids 

Methyltrioctylammonium bis(trifluoromethyl)sulfonylamide 

[Oc3NMe] [NTf2] (230) 

Aliquat® 336 (14.08 g, 34.83 mmol) and lithium bis(trifluoromethyl)sulfonylamide 

(10.00 g, 34.83 mmol) were dissolved in acetone (150 mL) at room temperature. After 

stirring the mixture for 24 hours, the reaction mixture was filtered through a plug of 

Celite®. The filtrate was evaporated and dissolved in dichloromethane. The resulting 

mixture was filtrated again through a plug of Celite®. The solution was evaporated and 

dried under reduced pressure at 70 °C for 24 hours to give the title compound (230) 

(20.92 g, 93%) as an orange clear oil; 1H NMR (400 MHz, acetone-d6) 8 0.91 (t, 3H, J 

= 6.5 Hz, CH3), 1.3-1.5 (m, 36H, remaining CH2), 1.93 (m, 6H, NCH2CH2), 3.28 (s, 

3H, NCH3), 3.53 (m, 6H, NCH2); 13C NMR (101 MHz, acetone-d6) 8 14.3, 14.4, 22.8, 

23.2, 23.3, 27.0, 29.7, 30.0, 30.1, 30.2, 32.4, 32.6, 48.8, 62.5, 121.0 (q, 1JcF = 321.5 Hz, 

CF3); 19F NMR (188 MHz, CDCh) 8-79.5 (s); IR (neat) 2923,2858, 1351, 1197, 1138, 

1059, 619 cm-1
; mass spectrum, ni/z (ES) 424 ((M-(CF3S02)2N+(CH2)4t, 33%), 396 

((M-(CF3S02)2N+(CH2)2t, 100%), 368 ([M-(CF3S02)2Nt, 83%), (ES-) 280 

([M-C2sHs4Nr 100%). (As compared to the literature data?36) 

1-Butyl-3-methylimidazolium bis(trifluoromethyl)sulfonylamide 

[Bmim][NTf2] (231) 

1-Butyl-3-methylimidazolium bromide (15.27 g, 69.69 mmol) and lithium 

bis(trifluoromethyl)sulfonylamide (20.00 g, 69.67 mmol) were dissolved in deionised 

water (80 mL) at room temperature. After stirring the mixture at 70 °C for 2 hours, the 

reaction mixture was extracted with dichloromethane and the extract was washed with 

deionised water (2 x 50 mL) to remove lithium bromide (The aqueous phase was tested 

negative for Br- by AgNOJ). The solution was evaporated and dried under reduced 

pressure to give the title compound (231) (28.51 g, 98%) as a yellow clear liquid; 

Found: C, 28.44; H, 3.62; N, 9.98. C10H 15F6N304S2 requires C, 28.64; H, 3.61; N, 

10.02%; 1H NMR (400 MHz, CDCh) 8 0.95 (t, 3H, J = 7.5 Hz, 9-H), 1.36 (m, 2H, 
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8-H), 1.84 (m, 2H, 7-H), 3.93 (s, 3H, 10-H), 4.16 (t, 2H, J = 7.5 Hz, 6-H), 7.30 (m, 2H, 

4-H and 5-H), 8.72 (m, 2H, 2-H)~ 13e NMR (101 MHz) o 13.2 (s, 9-e), 19.3 (s, 8-e), 

31.9 (s, 10-e), 36.3 (s, 7-e), 49.9 (s, 6-e), 119.8 (q, 1JcF = 321.5 Hz, CF3), 122.2 (s, 

4-C or 5-e), 123.6 (s, 4-e or 5-C), 136.0 (s, 2-e)~ 19F NMR (188 MHz, eneb) 

o -79.6 (s); IR (neat) 1353, 1197, 1140, 1057, 616, 571, 514 cm-1 ~ mass spectrum, m/z 

(ES} 139 ([M-(CF3S02)2N]+ 63%), (ES-) 280 ([M-esH1sN2r 100%). (As compared 

to the literature data?35) 

10 2 6 8 
'~N~ 
-~ 7 9 
4 5 

:n.-Butyl-4-methylpyridiniaam bis( trifluorometlllyl)sulfonynamide 

[Bmp][NTfz] (232) 

1-Butyl-4-methylpyridinium chloride (12.94 g, 69.67 mmol) and lithium 

bis(trifluoromethyl)sulfonylamide (20.00 g, 69.67 mmol) were dissolved in dry 

acetonitrile (300 mL) at room temperature. After stirring the mixture for 4 days, the 

reaction mixture was filtered to remove lithium chloride. The filtrate was evaporated, 

and the residue was dissolved in dichloromethane. The solution was filtered again to 

remove the newly formed lithium chloride. The filtrate was washed with deionised 

water (3 times) to remove residual lithium chloride. The solvent was evaporated and 

dried under reduced pressure to give the title compound (232) (26.12 g, 87%) as a red 

clear liquid; Found: e, 33.25~ H, 3.74~ N, 6.41. e12H1~6N204S2 requires e, 33.49~ H, 

3.75; N, 6.51%~ 1H NMR (500 MHz, eDeb) o 0.94 (t, 3H, J= 7.5 Hz, 10-H), 1.36 (m, 

2H, 9-H), 1.93 (m, 2H, 8-H), 2.65 (s, 3H, 11-H), 4.48 (t, 2H, J = 7.5 Hz, 7-H), 7.79 (d, 

2H, J = 6.5 Hz, 3-H and 5-H), 8.60 (d, 2H, J = 6.5 Hz, 2-H and 6-H)~ 13e NMR (126 

1\.fHz) o 13.1 (s, 10-e), 19.1 (s, 9-e), 22.0 (s, 11-e), 33.2 (s, 8-e), 61.3 (s, 7-e), 119.7 

(q, 1JcF = 321.5 Hz, CF3), 129.0 (s, 3-e and 5-C), 143.3 (s, 2-C and 6-C), 159.5 (s, 

4-C); IR (neat) 1644, 1352, 1194, 1138, 1057, 617, 571, 514 cm-1 ~ mass spectrum, m/z 

(ES} 150 ([M-(eF3S02)2N]+, 100%), (ES-) 280 ([M-e10H16N]- 100%). 
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11:02 4 I N 8 10 
5..-:~ 

6 + 7 9 

9.2 Din-ed lfilunmrination of carli>onyD compounml!§ nn ionic Biqunii!ll§ 

Direct Jfiuorimntim:u of etllnyD 3-oxolbutanoate (196) hn the pn-esence of methyKtriodyD 

ammoniunm bis[(trifluorometllllyD)sunlfonyB] amide (230) (Scheme 5.5) 

A mixture containing methyltrioctylammonium bis[(trifluoromethyl)sulfonyl] amide 

(230) (500 mg, 0.77 mmol), and anhydrous acetonitrile (10 mL) was placed in the 

small PTFE reactor. The mixture was purged with N2 and immersed in a cooling bath 

of 0 °C. Elemental fluorine as a 10% (v/v) mixture with nitrogen was introduced at a 

flow rate of 10 mL/min into the rapidly stirred mixture via PTFE tubing (0.75 mmol). 

The reaction mixture was purged with N2 for 30 minutes. No obvious N-F species was 

observed in •9p NMR of the reaction mixture. Ethyl 3-oxobutanoate (196) (358 mg, 

2.75 mol) was added to the reaction mixture and purged with N2. 100/o F2/N2 was 

introduced again at a fl9w rate of 10 mL/min into the stirred mixture at 0 oc (5.33 

mmol). The reaction mixture was purged with N2 for 30 minutes. The reaction mixture 

was analysed by •9p NMR and the yields of the products were calculated by using the 

resonance of bis[(trifluoromethyl)sulfonyl] amide anion (NT!, -79.3 ppm) as an 

internal standard; 191 (7%), 198 (3%), 199 (1%) (191/198/199 = 62.2:28.6:9.2). 

Direct fluorination of 1 ~cyclohexen-1-yl acetate (228) in 1-ButyD-3-methyl 

imidazolium ll>is[(trifUuoromethyl)sulfonyl]amide (231) (Scheme 5.6) 

A mixture containing 1-cyclohexen-1-yl acetate (228) (564 mg, 4.02 mmol), and 

1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] amide (231) (10 mL) was 

placed in the small PTFE reactor. The mixture was purged with N2 and immersed in a 

cooling bath of 1 to 2 °C. Elemental fluorine as a 10% (v/v) mixture with nitrogen was 

introduced at a flow rate of 10 mL/min into the stirred mixture via PTFE tubing ( 10.1 

mmol). The reaction mixture was purged with N2 for 30 minutes. The reaction mixture 

was analysed by 19F NMR and the yields of the products were calculated by using the 

resonance of bis[(trifluoromethyl)sulfonyl] amide anion (NT!, -79.6 ppm) as an 

internal standard; 2-fluorocyclohexanone (229) (65%). (As compared to literature 

data.33
) (See also the spectral data for 229 in section 8.3) 
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Direct fluorination of etlllyi 2-oxocyclobexanecarboxylate (190) in 1-butyi-4-

metlllylpyridinium bis [ ( trifluorometbyl)su[fonyi] amide (232) 

A mixture containing ethyl 2-oxocyclohexanecarboxylate (190) (170 mg, 1.00 mmol), 

and 1-butyl-4-methylpyridinium bis[(trifluoromethyl)sulfonyl]amide (232) (10 mL) 

was placed in the small PTFE reactor. The mixture was purged with N2 and immersed 

in a cooling bath of 0 °C. Elemental fluorine as a 10% (v/v) mixture with nitrogen was 

introduced at a flow rate of 10 mL/min into the stirred mixture via PTFE tubing (2.98 

mmol). The reaction mixture was purged with N2 for 30 minutes. The reaction mixture 

was diluted with dichloromethane and washed with water (5 x 30 mL). The resulting 

solution was heated at 200 °C under reduced pressure (0.6 mbar) and volatile 

components were condensed in a cold trap which was cooled with liquid nitrogen. A 

crude product was obtained from the cold trap as a yellow oil (163 mg); conversion 

was found to be 83%, which consisted of, 88% ethyl 1-fluoro-2-oxo-cyclohexane 

carboxyrate (193) (GC). (As compared to literature data.32
) (See also the spectral data 

for 229 in section 7.2) 

9.3 Direct fluorination of thioanisole (239) using micro reactor technology 

General procedure 

The reactions below follow this procedure, unless otherwise stated. A microreactor was 

cooled to reaction temperature by an external cryostat. Fluorine was passed through the 

microreactor (V-21-9) at a rate of90 mLmin-1 I 23.4 mmolh-1 in total (10 mLmin-1ch-1
, 

2.6 mmolh-1ch-1
). Substrate solution was passed through the microreactor at an 

appropriate rate. Reaction mixture was poured onto water, neutralized by solid sodium 

hydrogen carbonate, extracted by 3 portions of dichloromethane. The extracts were 

combined, dried over magnesium sulfate, and evaporated to give crude product. 

In acetonitrile (Scheme 5.12) 

Substrate solution were prepared; the solution consisted of thioanisole (239) (9.00 g, 

0.0725 mol) and anhydrous acetonitrile (59.5 g, 1.45 mol). 

Substrate solution was passed through the microreactor at a rate of 3.0 mLh-1 in total 

[0.33 mLh-1ch-1
, = 0.28 mmolh-1ch-1 (d = 0.798)]. Reaction was carried out at 4-5 °C 

for 5 hrs and gave a brown oil (3.73 g); conversion was found to be 100% (GC). The 

crude mixture was analysed by 19F NMR (188 MHz, CDCh) in the presence of 

fluorobenzene (16.4 mg, 0.171 mmol) as an internal standard; cS -75.0 (s) (23.6%), 

-91.9 (d, J= 57.0 Hz) (17.9 %), -113.7 (s) [100%, (fluorobenzene)], -182.2 {t, J= 

53.0 Hz) (12.2 %). [literature data for phenyl trifluoromethyl sulfoxide (233): cS -75.0 
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(s) 245]. 

.U:n formic acid/acetonitrile= 5:1 (Scheme 5.13) 

Substrate solution were prepared; the solution consisted of thioanisole (.239) (14.0 g, 

0.113 mol), formic acid (1 03.8 g, 2.25 mol) and anhydrous acetonitrile ( 18.6 g, 1.45 

mol). 

Substrate solution was passed through the microreactor at a rate of 4.4 mLh-
1 

in total 

[0.49 mLh-1ch-1, = 0.44 mmolh-1ch-1 (d = 1.093)]. Reaction was carried out at 5-6 °C. 

Reaction duration 5 hrs. Gave a brown oil (4.81 g); conversion was found to be 100%; 

which consisted of, 49% methyl phenylsulfone (238); m/z (Er) 156 ([Mt, 71%), 141 

(71), 94 (75), 77 (100) (GC). 

MethyR phenylsulfone (238) (not isolated) 
1H NMR (200 MHz, CDCh) o 2.99 (s, 3H, CH3), 7.5-8.0 (m, SH, Ar). (As compared 

to literature data. 253
) 
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Appendix 

Operation Manual of Multi-channel 

Micro reactor (V-21) 
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'JI'IIne Microreactor .Fluorine Gas Handling Apparatus 

C2 

H To s..la Lime Scrubber Tower 

Fig A 

Apparatus Construction 

The apparatus is constructed from stainless steel pipe work and is fitted with Monel 

swagelok® valves (valves C to J: Integral bonnet needle valves, Valves A and B: Severe 

service union bonnet valves). The storage cylinders are constructed from stainless steel 

(SL) and mild steel (9L). The mass flow controller is a Brooks 5850S and is controlled by 

a DDE computer program obtained from Flotech Solutions® linked to a PC operating in 

Microsoft® Excel. 

Microreactor Storage Cylinder Filling Procedure (See Fig A) 

1) Ensure all valves are closed 

2) The primary fluorine cylinder is turned on following usual procedure 

3) Ensure storage tanks are empty (Open Cl, C2, C, and D; then when empty close C1, 

C2, C, and D) 

4) Open valve B 

5) Open valve C I. Open valve C and slowly fill tank with required amount of Fluorine 

6) Close valve C and then valve C 1 
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7) Open valve C2 and then valve C, Slowly fill tank with the required amount of 

Fluorine 

8) Close valve C, close valve C2 

9) Close valve B. Isolate primary fluorine cylinder following usual procedure 

lO)Open valveD and then Close ValveD 

11) Open valve A, open valve F 

12) Repeat steps 5 to 8 with Nitrogen 

13) Close valve F and valve A 

Operation of Micro reactor Rig Fluorination Procedure 

1) Ensure all valves are closed 

2) Open valves A, G, H, and J 

3) Set flow at desired level using mass flow, purge with nitrogen for 15 minutes 

4) Close valves A and G 

5) Open valves C 1, C2, C and then valve E, allow fluorine to flow for 5 minutes, before 

starting flow of liquid substrate through microreactor 

6) Termination of the experiment, involves closing valves C1, C2, C and then E 

7) Open valves A and G and purge for 15 minutes; close all valves 
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1. Operation for Fluorination 

Fig 1 Microreactor (panoramic view) 

1.1 Start of Fluorination 

1) Turn on the cooler and set temperature required for the reaction beforehand (usually 

3 or 4 hours before the start of the reaction) (Fig 2) 

2) Check the temperature of the reactor (Fig 3) 

Fig2 Fig 3 
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3) Prepare substrate solution (Fig 4) 

4) If necessary, measure the weight of known 

quantity of the solution for calculation of the 

density. 

Fig 5 

Fig4 
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5) Cool the trap by dry ice (Fig 6-1 0) 

N.B.; Do not fill dry ice above the top of the trap not to choke the pipe with solid (Fig 9) 

Fig 6 Fig 7 (cover the trap by a polystyrene box) 

Fig 8 (fill the box with dry ice) Fig 9 

Fig 10 (b lock the hole with cotton) 

6) Cool the receiver with ice (Fig 11-14) 
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Fig 11 

Fig 13 

7) Pour the substrate solution into a beaker 

(Fig 15) 

8) Take 45 mL of the substrate solution into 

a syringe (Fig 16) 

N.B. ; The air should be removed (Fig 17, 18) 

Fig 12 

Fig 14 

Fig 15 

Fig 16 
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Fig 17 Fig 18 

9) Change the syringe of one end of the line for another syringe filled with the solution 

(Fig 19, 20) 

Fig 19 Fig 20 

10) Feed 45 mL ofthe substrate solution to the reactor (Fig 21 , 22) 

Fig 21 

11) Take 2 x 55 mL ofthe substrate 

solution into two syringes and set to both 

of the syringe drives (Fig 23-28) 

Fig22 

Fig 23 
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N.B.; When changing the syringes, keep them being above the upper level of the 

reservoir of the reactor to prevent the solution running back (Fig 24, 25) 

Fig 24 

Fig 26 

Fig28 

12) Set the flow rate of the syringe drive 

(Fig 29) 

Fig 25 

Fig 27 

Fig 29 
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[set the three-digit dials to the number 

calculated by the guideline (Fig 30)] 

Fig 31 (valves) 

Fig 30 

N.B.; The reactor was usually purged through by nitrogen at 30 mL/min (valves A, G, H, 

and J are opened). 

13) Close valve G 

14) Set the flow rate of nitrogen at 99% (99 mL/min) on the CRT display (to eject the 

remaining nitrogen quickly). (Fig 32, 33) 
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Fig 32 Fig 33 

15) Set the flow rate for fluorine gas as required (e.g. 90% means 90 mL/min = 10 

mL/min/ch for 9 ch template) 

16) Open valve E 

17) Gradually open valve C (the flow rate and the pressure gauge should be checked; the 

flow rate and the pressure should rise once, and then drop) 

N.B.; Rapid change of the pressure may cause problems for the mass flow controller 

18) Gradually open valve C 1 (the flow rate and the pressure should rise again) 

19) Open C2 

20) Turn on the syringe drives (Fig 34) 

21) Turn the knob clockwise to feed more of 

the substrate solution to the reactor 

manually until the solution starts flowing 

in the channel (Fig 35) 

N.B.; approximately 14 mL should be feed 

(7 mL each) 

Fig 34 (syringe 1) 

Fig 35 (syringe 2) 
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Fig 36 (the bottom of the channels under annular flow) 

1.2 Termination of the Fluorination 

l) Turn off the syringe drives .. 
. j 2) Pull one of the syringes back by l 0 mL to 

stop providing the substrate to the channels 

(Fig 37) "~,~-.. · .. ,._.'_' ,?' .-:< 
'~"•;t. 

~·f-~ ; ~ 

-' -~ - -------· · 
Fig 37 

3) Close valve C (wait until the flow rate drops to 0%) 

4) Close valve E 

5) Close valve C 1 and C2 

6) Set the flow rate at 50% 
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7) Gradually open valve G 

8) Set the flow rate at 99% for purging 

9) After 5 minutes, set the flow rate at 30% 

I 0) Take the receiver and the trap off, and 

allow to room temperature (Fig 38) 

11) Put the liquid in the trap back to the receiver 

12) Work up the reaction mixture 

1.3 Cleaning of the micro reactor (daily) 

Fig 38 

N.B.; If the next reaction needs same substrate solution, following cleaning is not 

necessary. 

1) Pull the syringes back to remove the rest of the solution in the reservoir (Fig 39, 40) 

Fig 39 Fig 40 

2) Take sample inlet off (Fig 41, 42) 

Fig41 Fig42 
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3) Remove the rest of the substrate solution 

in the reservoir by a syringe (Fig 43) 

4) Put the in let back (Fig 44) 

Fig 43 

Fig 44 

5) Take acetonitrile into both syringes (50 mL each) (Fig 45-48) 

Fig 45 Fig 46 

Fig47 Fig48 
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6) Feed all ofthe acetonitrile to the reactor 

to wash the channels (Fig 49) 

N.B.; Do not feed so fast to avoid the 

acetonitrile going into the gas reservoir. 

Fig 49 

7) Pull the syringes back to remove the rest of the solution in the reservoir 

8) Take the sample inlet off (Fig 50) 

Fig 50 

9) Remove the rest of the acetonitrile in the reservoir by a syringe 

1 0) If different substrate is to be used in the next reaction, 

repeat the operations 4)-9) 

11) Open the reservoir (Fig 51, 52) 

Fig 51 Fig 52 

12) Wipe inside of the reservoir using blue roll (Fig 53-56) 
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Fig 53 

Fig 55 

13) Close the reservoir and put the sample inlet back 

14) Check the vertical alignment of the reactor 

(Fig 57) 

15) Dry the reactor overnight 

1.4 Cleaning of the microreactor (every 2 or 3 months) 

Fig 54 

Fig 56 

Fig 57 

1) Disconnect the coolant inlet (A), the coolant outlet (B), the sample inlet (C), the 

volatile material outlet (D) and the fluorine gas inlet (E) (Fig 58-63) 
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Fig 58 

Fig 59 (A) Fig 60 (B) 

Fig61 (C) 
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Fig 62 (D) 

2) Looser the side bar by an Allen wrench (Fig 64-66) 

Fig64 

Fig66 

3) Take the microreactor off the stand and 

place it on an appropriate work space 

(Fig 67) 

Fig 63 (E) 

Fig 65 

Fig 67 
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4) Using an Allen wrench and an electric screwdriver, take all of the screw fittings off 

from the microreactor (Fig 68, 69) 

Fig68 Fig 69 

NB: If some screw fittings could not be taken off due to corrosion, saw a notch on the top 

of the fitting and take it off by screwdriver (Fig 70-73) 

Fig70 Fig 71 

Fig 72 Fig 73 

5) Disassemble all of the plates (Fig 7 4-78) 
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Fig 74 Fig 75 

Fig 76 Fig77 

Fig 78 

6) Wash the plates by water and acetone if needed (Fig 79, 80) 

Fig79 Fig 80 
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7) Shave the edge of the plates to remove extra PTFE which cover on the side faces (Fig 

81-83) 

Fig 81 Fig 82 

Fig 83 

8) Cut a piece ofPTFE seat for the gasket by using a template (Fig 84-86) 

Fig 84 Fig 85 

Fig 86 
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9) Cut three slits for the gas and substrate inlet and product outlet (Fig 87 -90) 

Fig 87 Fig 88 

Fig 89 Fig 90 

I 0) Cut "X" shapes on each position for screw fittings (Fig 91-94) 

Fig 91 Fig 92 

Fig 93 Fig 94 
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11) Reassemble the microreactor with each plate in order (Fig 95-101) 

Fig 95 (base block) Fig 96 (PTFE gasket) 

Fig 97 Fig 98 (bottom plate) 

Fig 99 (channel plate) Fig 1 00 ( PTFCE plate) 

Fig 101 (steel top plate) 
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12) Put all screw fittings loosely at first (Fig 1 02-106), and then tighten in the order as 

shown in Fig 107 

Fig 102 Fig 103 

Fig 104 Fig 105 

Fig 106 
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Fig 107 

13) Mask the windows and spray PTFE on the side of the microreactor in order to ensure 

a gas-tight seal (Fig 108, 1 09) 

Fig 108 Fig 109 

14) Dry the reactor overnight 

15) Spray PTFE again 

16) Dry the reactor 
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