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ABSTRACT 

Bottlenose (Tursiops sp.) and common dolphins (Delphinus sp.) are amongst the 

most common small cetaceans. They both have a world-wide distribution from warm 

temperate to tropical waters inhabiting pelagic and coastal waters, and they both show 

high morphological variability throughout their range, leaving the taxonomic issues in 

both species unresolved. 

This thesis provides a comparative assessment of these two species, by molecular 

analysis, especially in the context of comparing coastal and pelagic populations of each 

species. The aim is to better understand the evolutionary processes and the factors 

involved in shaping the population structure in small delphinids. The strategy I followed 

was: 1) Analyse the population structure ofthe bottlenose and common dolphins on a 

worldwide scale and compare large scale patterns in the context of known similarities 

and differences with respect to life history. 2) Analyse populations on a smaller 

geographic scale (Mediterranean Sea and South Africa) to further understand the 

relationship between habitat and population genetic structure. 

On a worldwide scale, bottlenose dolphins showed high genetic diversity and 

strong population structure, both between different and similar morphotypes, suggesting 

limited gene flow. Two populations, of the same morphotype, have diverged 

considerably to the extent that they should be considered different species. Common 

dolphins showed lower genetic diversity and weak population structure even over a large 

geographic range, suggesting higher level of gene flow. However, this species also has 

similar morphotypes that were genetically differentiated from one another. On a smaller 

geographic scale, we found a similar pattern of population structure, with the bottlenose 

dolphin showing higher population divergence than common dolphins. However, both 

species provided evidence supporting the role of habitat in defining population structure 

in these species. These findings should facilitate the development of effective 

conservation and management strategies for these species, especially for the specific 

case studies for populations in the Mediterranean Sea and off the Natal coast of South 

Africa. 
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PREFACE 

Marine mammals are one of the best examples of ability of mammals to adapt to 

different environments. Over the last 60 millions years (the estimated time since 

mammalian ancestors first re-colonised the oceans) they have totally adapted to 

aquatic life reshaping their body, reorganising their biological functions, specialising 

in different diets, and developing complex social structures and breeding strategies. 

The role of the environment in this evolutionary process and the mechanisms that 

have governed this process in the marine environment are still subject of research in 

many fields ofbiology. 

My study provides a comparative molecular analysis of two genera of small 

cetaceans: the bottlenose dolphin (Tursiops sp.) and the common dolphin (Delphinus 

sp.). Bottlenose and common dolphins are closed related and both belong to the 

family Delphinidae, subfamily Delphininae. They are relatively young taxa 

originating in the early Pliocene, around 5 million years ago (Barnes, 1990). 

I applied genetic methods to investigate the evolution of the population genetic 

structure of these two taxa. By comparing two similar taxa I aim to draw conclusions 

about general mechanisms that play a role in shaping population structure in small 

cetaceans and which may ultimately drive the evolution of delphinid species. 

Understanding these mechanisms can provide useful information for the formulation 

of effective conservation strategies. 

The strategies I have undertaken to address this question are: 

1. Analyse the population structure of the bottlenose and common dolphins on a 

worldwide scale and compare large scale patterns in the context of known 

similarities and differences with respect to life history 

2. Analyse populations on a smaller geographic scale to further understand the 

relationship between habitat and population genetic structure. This was undertaken 

m: 

* The Mediterranean Sea, where these two species coexist, and 

* The eastern coast of South Africa where a different morphotype of the 

bottlenose dolphin occurs. 
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The way in which genetic diversity is partitioned within and between 

populations from different geographical areas is the result of the history and the 

evolution of a species. To analyse the partition of genetic diversity and therefore to 

assess the population structure I used two types of molecular markers: 

a) the microsatellites, or Simple Sequence Repeat (SSR), and 

b) the sequence of the D-loop control region ofthe mitochondrial DNA (mtDNA), 

Microsatellites, are nuclear markers, bi-parentally inherited. Form the molecular 

perspective they are non-coding sequences of tandem repeat units, widely interspersed 

in the eukaryotic genome. They are highly informative markers because they have a 

high level of polymorphism and they are generally considered neutral to any selection 

pressure. 

The mitochondrial DNA is present in a single copy in every eukaryotic cell. In 

mammals, it is maternally inherited and not subject to recombination. The lack of 

recombination allows the detection of past evolutionary events such as migrations, 

bottlenecks, population isolations, by the patterns of coalescence of the different 

maternal lineages. 

The combined analysis of these markers is particularly useful in species with a 

relatively complex social behaviour. Due to their different mechanism of inheritance, 

it is possible to track both female and male lineages and therefore assess differences 

in the pattern of movements ofthe two sexes and have an insight in the social 

structure ofthe species. 

The thesis is organised in a general introduction, five main chapters, and a 

general discussion. Each main chapter is structured as an article. There is little or no 

change in the format of these articles from the version submitted for publication (as 

applicable). I believe that any little result or discovery in science should be available 

as soon as possible to the public in order to have an impact on the scientific progress. 

I hope that my work will contribute to a better understanding of the species here 

considered and to the marine life of our oceans. 
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Chapter 1 

INTRODUCTION 

The bottlenose dolphin is arguably the best known of all cetaceans and a lot of 

information is available regarding this species. On the contrary, despite its 

cosmopolitan distribution, information about the common dolphin is relatively 

scarce. 

In comparing the different species of odontocetes two principal characteristics 

highlight the species under review: their wide and diverse habitat range, and their 

extremely high morphological variability. The question that arises is what are the 

evolutionary mechanisms that determined such patterns? 

Distribution and Habitat Range 

Common and bottlenose dolphins' habitat ranges include all oceans from warm 

temperate to tropical waters and they show a high adaptability to different 

environments. The bottlenose dolphin prefers coastal waters and resident populations 

have been reported throughout its range. However pelagic populations are also 

known. Conversely, common dolphins are mainly known as pelagic species, 

although they can also occur in coastal waters. 

Morphological variability 

The taxonomy of both these species is still uncertain. The exceptional 

morphological variation in body size, coloration, cranial, and skeletal characteristics 

in both species have led in the past to the description of several different nominal 

species, later all were reconsidered local variations of the main species Tursiops 

truncatus and Delphinus delphis (Hershkovitz, 1966, Rice 1998). Recently the 

scientific community agreed the following classification, pending further revisions. 

For the bottlenose dolphin two species are currently recognised. Tursiops 

truncatus or the 'common bottlenose dolphin', distributed in most of the world's 

warm temperate to tropical seas, in coastal as well in offshore waters. Tursiops 

ad uncus or 'Indian Ocean bottlenose dolphin', limited to the coastal waters of the 

Indian Ocean and western Pacific Ocean, from eastern Africa to Taiwan, south-east 

coast of Australia. However, within T truncatus further differentiation is observed. 

In the western North Atlantic, coastal and pelagic populations have been found to be 
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morphologically and genetically differentiated (Mead & Potter, 1995; Hoelzel et al., 

1998), and recently it has been suggested that they should be considered different 

species (Kingston & Rosel, 2003). In the eastern North Pacific, the existence of 

differentiated nearshore and offshore populations has been reported based on 

morphological data, (Walker, 1981) and similar differentiation has also been 

suggested along the South African coasts (Ross, 1977). 

For the common dolphin three putative species are recognised. Delphinus 

de/phis, or short-beaked common dolphin mostly distributed in the Atlantic and 

Pacific Ocean, along the coasts and in pelagic waters. Delphinus capensis, or long­

beaked common dolphin, distributed disjunctly in coastal waters ofwest Africa, in 

the western Atlantic from Venezuela to Argentina, in the eastern Pacific from 

southern California to central Mexico and Peru, in the western Pacific around Korea, 

southern Japan and Taiwan, and in the Indian Ocean in waters offMadagascar, South 

Africa, and possibly Oman. The third species, or possible subspecies of D. capensis, 

shows even longer beak morphology, is named D. tropicalis and occurs in the north 

Indian Ocean and south eastern Asia. However, populations with intermediate 

morphological characteristics have been observed in several regions (Amaha, 1994; 

Murphy, 2004), questioning whether these morphotypes can be recognised as 

different species worldwide. Associations of common dolphins with other marine 

mammal species (Grampus griseus, Stene/la sp. and Tursiops sp.) are not uncommon 

(Jefferson et al., 1993). 

In the Black Sea both species are referred to as possible subspecies Tursiops 

truncatus ponticus and Delphinus de/phis ponticus (Tomilin, 1957; Hershkovitz, 

1966). They differ from the main morphotypes because of their smaller body size, 

different colour pattern, and different life history. 

Factors involved in population differentiation 

Investigating the reasons of such high morphological variability, several factors 

can be identified as possible causes of population differentiation. Some are more 

linked to the characteristics of the environment, others to the intrinsic characteristics 

of each species. 
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Geographic distance 

Geographic distance has largely been considered a key factor determining 

intraspecific differentiation especially for terrestrial species. Distant populations can 

progressively differentiate, because of limited gene flow. Genetic drift and natural 

selection can act on populations and leading to speciation over time. On land, 

physical boundaries frequently enhance this process. In the aquatic environment, 

with no apparent boundaries to the movement of individuals, water temperature, 

distribution of resources, depth, and current regimes may play similar roles. 

Environmental changes determining rarefaction of the habitat may favour 

isolation and this process has been observed for some cetaceans. The antitropical 

distribution of some species ( eg. Lagenorincus obliquidens and L. obscurus, Hare et 

al., 2003; Lissodelphis borealis and L. peronii, Fordyce, 2002) probably arose 

allopatrically when populations became isolated either side of the tropics through 

changing sea temperatures or current regimes. 

However, this scenario does not match the pattern observed in bottlenose and 

common dolphins where all species are widely dispersed across significant distances, 

habitats and conditions. This widespread distribution may indicate that they coped 

reasonably well with any climate change that has occurred in the past, probably 

adapting easily to the new conditions. 

Moreover, in several cases different morphotypes are observed in the same 

geographic area. For example in the area between the Chinese coasts and Taiwan, T. 

truncatus and T. aduncus occur sympatrically, but the former prefers pelagic waters, 

whereas the latter is generally found only in coastal shallow waters (Wang, 1999). 

Similarly, in the eastern North Pacific D. delphis and D. capensis live in sympatry, 

the first preferring more pelagic waters whereas the second confined in coastal 

shallow waters. Analogous situation is observed in south Japan (Amaha, 1994). 

Considering that both common and bottlenose dolphins are highly mobile species 

capable of long distance movements (Lockyer, 1978; Wells et al., 1999; Wood, 

1998), it is reasonable to assume that geographic distance is not a factor limiting 

movements of individuals across regions, at least in the aforementioned cases. 

Foraging specialization 

Specialization for local food resources is another factor suggested as possible 

cause of intraspecific population differentiation in cetaceans (Hoelzel, 1998). In the 
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killer whale specialization on different foraging behaviour was defined as the main 

factor determining the differentiation between 'resident' populations, principally 

feeding on fish, and 'transient' populations, mainly feeding on other small marine 

mammals (Bigg, 1982). Resident and transient killer whales also differ in a variety of 

morphological, behavioural and genetic aspects (Morton, 1990; Hoelzel eta/., 1998). 

Nearshore and offshore bottlenose dolphins are also known to have different diets. 

Stomach contents analysis indicated that the nearshore bottlenose dolphins feed 

mainly on coastal species offish (sciaenid) or cephalopod (Loligo sp.), whereas the 

offshore dolphins preyed principally on pelagic species of squid and fish (family 

Myctophidae) (Mead & Potter, 1995). 

Information about common dolphin feeding behaviour is scarce. Common 

dolphins appear to feed opportunistically, their diet reflecting local prey abundance. 

Prey is made up of primarily pelagic species such as small mesopelagic fish and 

squid found in the deep scattering layer and epipelagic schooling species such as 

small scombroids, clupeoids and squid (Evans, 1994; Ohizumi et al., 1998; Silva & 

Sequira, 1996; Berrow & Rogan, 1995; Boutiba, & Abdelghani, 1995; Relini, & 

Relini, 1993). No distinction between offshore and nearshore forms have been 

observed, although in some areas common dolphins can move inshore. Along the 

eastern coast of South Africa common dolphins occur inshore during winter when 

they appear to follow the movements of sardines (Sardinops ocellatus) up the coast 

(Peddemors, 1999). In the eastern Mediterranean Sea common dolphins are also 

recorded in coastal waters and resident coastal populations are also observed (Politi 

eta/., 2001). Systematic comparison ofthe stomach contents in the different 

morphotypes of in offshore and nearshore populations has not been conducted. 

Different feeding strategies often require a high degree of cooperation and 

synchrony of action of more than one individual, and therefore they indirectly 

influence numerous social factors such as group size, group composition and sex 

ratio. Observations on bottlenose dolphin coastal resident populations indicate 

extreme diversity in prey and feeding techniques (Hoese, 1971; Rigley, 1983; dos 

Santos and Lacerta, 1987; Rossback & Herzing, 1997; Smokier et al., 1997). 

Specialised foraging behaviour is often observed, and succeeding generations of 

bottlenose dolphins apparently continue to use the same innovative strategies and 

feed on the same types of food. For examples this is the case of dolphins 'strand 

feeding' on mullets that are driven onto mud banks or dolphins following working 
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shrimps boats to acquire discards (Shane, 1990). Fewer details are available for 

bottlenose dolphins inhabiting offshore waters, although among those populations 

cooperative feeding is also observed (Wiirsig & Wiirsig, 1979; Saayman et al., 1973, 

Irvine et a!., 1981, Wells eta!., 1980). 

Interactions between common dolphins and human fishing activities have been 

reported, where common dolphins feed on the fish entangled in the nets or on fish 

discarded by fishermen (Leatherwood and Reeves, 1983) suggesting that some 

groups can specialize on particular feeding activities in this species as well. 

Social structure 

The social structure of a species is generally shaped around its feeding 

behaviour, life history, mating strategies and habitat. The type of social structure 

adopted by a species aims to maximize the individual success through the success of 

the group. In the marine environment, it has been generally observed that pelagic 

populations have a bigger group size than coastal populations and this has also been 

observed in odontocetes (Wells et al., 1980). Bigger groups can be advantageous in 

finding food resources in a dispersed environment like the open oceans. Larger 

groups also offer better protection against predators. 

The social structure of coastal bottlenose dolphins has been widely studied in 

different parts of the world. Bottlenose dolphins show a complex social structure 

with different levels of aggregations (pods, groups, herds, super alliances; Connor, 

2000). They are generally observed in groups of 2-15 individuals. Group 

composition tends to be dynamic, with sex, age, reproductive conditions, familial 

relationships and affiliation histories apparently being the most important 

determining factors (Wells, 1991 ). Subgroups may be stable or repeated over periods 

of years. Basic social units include nursery groups, mixed sex groups of juveniles, 

and adult males as individuals or strongly bonded in pairs or trios (Connor et al., 

2001). 

Not much is known about common dolphin social structure. Groups of 

hundreds or thousands are generally observed in offshore waters. Evans (1994) 

suggested these schools to be composed of smaller subgroups of 20-30 individuals. 

Moreover, he suggested that segregation may be based on age and sex, but no 

systematic observations have proven so. Difference between groups in colour pattern 
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and cranial measurements suggest that groups may have temporal integrity at some 

level. 

Life history 

A life history is the set of features in an organism's life cycle, especially those 

affecting survivorship and reproduction. Body size is a good predictor of life history 

and generally bigger organisms have longer generation time and lower reproductive 

rates. Both bottlenose and common dolphins, as all cetaceans, are K-strategists 

characterised by long generation time, low reproductive rate, and long nursing 

periods. For bottlenose dolphins it has been demonstrated that females can live more 

than 50 years (Hohn et al., 1989) and some males have reached 40-45 years (Wells & 

Scott, 1999). For common dolphins lifespan has been estimated to be around 20 

years. Sexual dimorphism has been observed in some populations of common 

dolphins, with males generally slightly bigger than females. It has been suggested 

that this could be linked to different mating strategies in different populations 

(Amaha, 1994). Age at sexual maturity varies by regions and generally females 

achieve it before males. Sexual maturation for females and males in bottlenose 

dolphins is achieved at 5-13 years and 9-14 years, respectively, whereas for common 

dolphins is achieved at 6-7 years and 7-12 years. Calving interval is between 1-3 

years, although in free-ranging bottlenose dolphins this period can be prolonged up 

to 5-6 years. Generally, separation from the mother coincides with the birth of the 

next calf. 

In T aduncus sexual maturity may be reached at an older age with female 

producing their first calf at the age of 12 or older and calving interval is generally 

longer (Connor eta!., 200 I). For the Black Sea common dolphins, sexual maturation 

is reached at a younger age and the calving interval is shorter (Tomilin, 1957). 

The hypotheses 

The marine environment has had and still has an enormous influence on the 

evolution of cetaceans. On the broadest scale there are two main habitats, coastal and 

pelagic. Coastal habitats are characterised by high variability in environmental 

conditions, even across small geographic ranges, and physical boundaries can be 

frequent. Pelagic habitats are more homogeneous with no apparent boundaries 

(though relevant boundaries may in fact exist). The hypothesis is whether the habitat 
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structure may drive the population structure of a species and therefore its 

evolutionary history. 

Chapter 1 

Bottlenose and common dolphins are closely related species, evidenced by 

their still controversial taxonomic status (Le Due et al., 1999). They both belong to 

the subfamily Delphininae that rapidly radiated generating numerous different 

species. On average, they show similar geographic distribution. However, common 

dolphins are mostly pelagic, although coastal populations are observed in some areas, 

whereas bottlenose dolphins are mostly coastal, with some pelagic populations. If the 

habitat has an impact in shaping the population structure of a species, I expect to see 

greater population structure in a coastal species, such as the bottlenose dolphin, that 

in a pelagic species, such as the common dolphin. Exceptions may be seen in each 

species in the less common habitat for that species. 

Each of these species show a high degree of morphological differentiation 

across their range, in some cases leading to the classification of proposed new 

species. If local habitat differences are driving genetic and phenotypic 

differentiation, then there may not be a direct correlation between morphotype and 

genetic structure, especially for similar morphotypes in geographic isolation but 

similar habitat. In this case similar phenotypes may have diverged in allopatry while 

different phenotypes may diverge in parapatry. 
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Abstract 

Bottlenose dolphins (Tursiops truncatus) have a world-wide distribution, and 

show morphotypic variation among regions. Distinctions between coastal and 

pelagic populations have been documented, however regional patterns of 

differentiation had not been previously investigated in a wider geographic context. 

We analysed up to 9 different populations from 7 different areas of the world by 

mitochondrial DNA and microsatellite DNA markers, and found differentiation 

among all putative regional populations. Both mtDNA and microsatellite DNA data 

show significant differentiation, suggesting restricted gene flow for both males and 

females. Dolphins in coastal habitat showed less variability and were in most cases 

differentiated from a pelagic lineage, which could suggest local founder events in 

some cases. Two coastal populations recently classified as belonging to a new 

species, T aduncus, were each highly differentiated from populations of the 

truncatus morphotype, and from each other, suggesting a possible third species 

represented by the South African aduncus type. 

Keywords: bottlenose dolphins, population genetics, speciation, microsatellites, 

mtDNA, molecular ecology, phylogeography 
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!ntroduction 

The evolutionary radiation of species is directly related to the pattern of 

diversity within species, and the forces that generate those patterns. In the marine 

environment there are relatively few boundaries of the type that can lead to 

differentiation by drift in territorial species (such as rivers and mountains). For some 

species, especially highly mobile marine vertebrates such as teleost fishes, the pattern 

of genetic variation can be effective panmixia across large geographic regions (see 

review by Graves, 1996). However, marine mammals often show fine-scale 

population structure, though the extent varies among species (see review in Hoelzel 

et al., 2002). Hoelzel (1998a) has argued that this could be due to a combination of 

behavioral specializations for local resources, social structure and in some cases 

historical environmental change. In this study we investigate the pattern and forces 

leading to population structure in a highly mobile, social marine species, the 

bottlenose dolphin. 

Tursiops is a polytypic genus, which in the past has been divided into as many 

as 20 different species (Hershkovitz, 1966), though often based on very limited data. 

The more persistent classifications included T gilli and T nuuanu in the eastern 

North Pacific (Walker, 1981) and T aduncus (Ross, 1977; Ross & Cockcroft, 1990) 

in Australia, the Indian Ocean, China and South Africa. Morphotypes differ in 

colour pattern, body dimension and cranial structure, though character distributions 

typically overlap (Walker, 1981; Ross & Cockcroft, 1990). As a consequence, only 

the single species T truncatus was recognised (Ross & Cockcroft, 1990; Wilson & 

Reeder, 1993) until molecular data suppmied the separate classification ofT 

aduncus (LeDuc et al., 1999; Wang et al., 1999). This pattern is not uncommon 

among delphinid cetaceans (e.g. similar morphotypic diversity is seen in Orcin us 

orca: Evans et al., 1982, Visser & Makelainen, 2000; Stene/la longirostris; Perrin et 

al., 1991 and Delphinus de/phis; Jefferson & Van Waerebeek, 2002). However, it 

remains unclear to what extend these are polytypic species or clusters of closely 

related species (but see Hoelzel et al., 2002). 

The bottlenose dolphin has a wide distribution in both hemispheres, from cold 

temperate to tropical waters. In some parts of its range there is a clear distinction 

between populations in coastal and pelagic habitat, though this has not been fully 

explored in many locations. Parapatric coastal and pelagic populations sometimes 

differ in morphology, prey choice and parasite load (Mead & Potter, 1995; Hoelzel et 
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al., 1998a), but the distinction varies among geographic regions (Walker, 1981; 

Mead & Potter, 1995). In most parts of its range, T aduncus is found in coastal 

habitat, and is distinguished from T truncatus by a smaller overall size, spotted 

ventral and lateral pigmentation, and an elongated beak, among other characters 

(Ross, 1977). Coastal and pelagic populations described in Chinese waters around 

the Penghu Archipelago were identified as T aduncus (coastal form) and T 

truncatus (pelagic form) (Gao et al., 1995). Wang et al. (1999) compared these 

populations using 5' mitochondrial DNA (mtDNA) control region sequence and 

found a nucleotide divergence of 4.4%, 6 fixed nucleotide differences, and reciprocal 

monophyly. These data, together with the inclusion ofT aduncus in a delphinid 

phylogeny based on the entire mtDNA cytochrome b gene (LeDuc et al., 1999), 

support the reclassification of aduncus morphotypes at the species level at least. 

Coastal and pelagic populations in the western North Atlantic (from Flmida 

north to Nova Scotia) have been compared for morphology, feeding ecology, parasite 

load (Mead & Potter 1995), hemoglobin profile (Hersh & Duffield, 1990), 

microsatellite DNA, and mtDNA control region diversity (Hoelzel eta!., 1998a). In 

each case distinctions were evident. The genetic differentiation between these 

populations was less than that seen between T truncatus and T aduncus in China 

(Wang eta!., 1999). Putative populations on either side of Florida were also 

compared and found to be differentiated (based on mtDNA RFLP analysis), though it 

is not clear if all samples compared were of the same morphotype (i.e. all coastal or 

all pelagic; Dowling & Brown, 1993). 

In this study we test the hypothesis that the local fine-scale population 

structure found in the western North Atlantic for Tursiops truncatus (Hoelzel eta!., 

1998a) is characteristic of populations in this genus throughout its range. Towards 

this end we greatly extend the representation of regional populations in the Atlantic 

Ocean, and include a comparison of aduncus-type dolphins from South Africa with 

the published T aduncus sequences from China, and with data for the common 

dolphin (Delphinus de/phis). A sample ofT truncatus from the eastern North 

Pacific is also included. Our further objective is to address the question of how 

population structure may have evolved in a highly mobile marine vertebrate species, 

given the pattern of differentiation observed. We find differentiation among all 

regional populations, with the strongest differences between the South African 

aduncus-type samples and all others (including the published Chinese T aduncus 
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sequences). The pattern shows a distinction between two highly polymorphic pelagic 

populations (one in the North Atlantic and one in the North Pacific) and regional 

coastal populations that differ from pelagic populations to varying extents, and often 

show less polymorphism. The implication is that structure has evolved as a result of 

philopatry and historical founder events, and that behavioral strategy and historical 

environmental factors are likely both important. 

Materials & methods 

Sample collection and DNA extraction 

In total, 269 Tursiops sp. samples from 7 geographic regions were analysed in 

this study (see Table I and Fig. 1 ). 

Table 1. List of the populations analysed and correspondent acronyms. The number of samples for 
each population considered in this article are reported for the rnicrosatellite and the mtDNA analyses. 
Data taken from other publications are as follows: a) for these two populations data for five of the 
microsatellite loci are from Hoelzel eta/. (1998a) (see text for details). b) from Hoelzel eta!. (1998a). 
c) one sequence is from Wang eta!. ( 1999), the rest are from Hoelzel eta!. ( 1998a). d) 5 of these 
sequences are from Hoelzel et al. (1998a). e) from Wang et al. (1999). 

Population Acronym Microsatellite mtDNA 
DNA 

Mediterranean Sea MS 45 18 

Eastern North Atlantic ENA 27 9 

Western North Atlantic pelagic WNAP 27 a 25 b 

Western North Atlantic coastal WNAC 27 a 29 b 

Eastern North Pacific ENP 14 I b 

Gulf of Mexico GM 22 10 

West Africa WA 16 c 

Bahamas BAH 4b 

South Africa SA 107 38d 

Chinese truncatus-type CHt 17e 

Chinese aduncus-type CHa J9e 

Delphinus de/phis 30 15 

Samples from South Africa (SA) are from a coastal population described as T. 

aduncus, while all other samples are from individuals described as T truncatus. Most 

of the samples were obtained from stranded dolphins or dolphins caught in nets. 

Some samples from the Mediterranean Sea (MS) and SA were from biopsy sampling 

as part of long-term population studies. Samples from MS were from 7 different 

regions covering different areas of the basin (all sampled in coastal habitat). 
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~ 

Figure 1: Map of sample locations. Abbreviations are as in Table 1. 

Eastern North Atlantic (ENA) samples were from strandings (presumably coastal 

animals) from the east and west of Scotland and the south of England. Samples from 

coastal (WNAC) and pelagic (WNAP) populations in the western North Atlantic are 

from Hoelzel eta!. (1998a) and were verified as belonging to the respective coastal 

and pelagic populations as described in Hoelzel et al. (1998a). Eastern North Pacific 

(ENP) samples were from California (from strandings and probably from coastal 

habitat, but this is not known). Samples from the Gulf of Mexico (GM) are all from 

stranded animals collected between Galveston and Corpus Christi, Texas. While 

direct confirmation for these samples was not possible, they are likely to represent 

the coastal stock since morphometric studies have classified 98.5% of 205 stranded 

samples from this region as 'coastal' morpho type (Turner, 1998). 

DNA was extracted from tissue samples preserved in salt saturated 20%DMSO 

by a standard phenol/chloroform extraction method (Hoelzel, 1998b ). 

Previously published mtDNA sequences were included for comparison of some 

populations including pelagic T. truncatus from waters around Taiwan and Hong 

Kong (CHt), coastal T. aduncus from Taiwan, Indonesia, and Beihai (CHa) in 

southern China (Wang et al., 1999), and western Africa from Namibia to Mauritania 

(WA; Hoelzel et al., 1998a, Wang et al., 1999). Most ofthe latter samples were 

from strandings and the source populations unknown, though a few were known to 

be from pelagic populations. Sequences from coastal animals from the Bahamas 

(BAH) were also used (Hoelzel et al., 1998). 
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Microsatellite analysis 

Nine published microsatellite loci were analysed for all 269 samples, with the 

exception of the WNAC and WNAP populations where data for 5 of the 9 

microsatellites (KWM1b, KWM2a, KWM2b, KWM9b, KWM12a) were taken from 

Hoelzel eta!. (1998a). All other samples are analysed here for the first time 

(Table.1 ). 

Primers KWM1b, KWM2a, KWM2b, KWM9b, KWM12a were derived from 

Orcinus orca (Hoelzel eta!., 1998b), EV37Mn from Megaptera novaeangliae 

(Valsecchi & Amos 1996), TexVet5, TexVet7 and D08 from Tursiops truncatus 

(Rooney et al., 1999; Shinohara et al., 1997). Amplified DNA was analysed for 

length variation on 6% polyacrylamide denaturing gels using fluorescent imagining 

on an automated ABI PRISM 377 DNA sequencer (Applied Biosystem, 

Warrington, UK), after incorporation of 1/10 fluorescent labelled primer (PCR 

reaction conditions: 100)-tM dNTPs, 0.75-1.5 mM MgCb, 10 mM Tris-HCl pH 8.4, 

50 mM KCl, 200nM of each primer, 0.02 U/).!L Taq polymerase. PCR cycling 

profile: 5 min at 95°C; then 35 cycles of 40 sec at 94°C, 1min at the T0 ann, 1 min at 

72°C; then 10 min at 72°C). The annealing temperatures (T0 ann) were as follows: 

KWMlb: 45°C; KWM2a: 43°C; KWM2b: 44°C; KWM9b: 55°C; KWM12a: 46°C; 

EV37Mn: 57°C; TexVet5: 54°C; TexVet7 and D08: 57°C. An internal standard 

marker (Genescan-500 ROX, Applied Biosystems, Warrington,UK) was used to 

detennine the allele sizes. 

A closely related species, Delphinus de/phis, was analysed to better clarify the 

relationship between the two aduncus-type and the truncatus-type populations. The 

same nine microsatellite loci were used to screen 30 D. de/phis samples from 

different geographical areas (MS, ENA and ENP). This sample set was compared 

against all T truncatus populations grouped together (162 samples), and the SA 

population (1 07samples). 

For microsatellite loci, the level of polymorphism was estimated as the number 

of alleles per locus, observed heterozygosity (H0 ), expected heterozygosity (He), and 

allelic richness. Allelic richness controls for variation in sample size by a rarefaction 

method, and was calculated using the program FSTAT 2.9.3 (Goudet, 2001 ). 

Evaluation of possible deviations from the expected Hardy Weinberg genotypic 

frequencies (overall deviation, heterozygote deficiency and heterozygote excess) and 

linkage disequilibrium were performed using Fisher's exact test and the Markov 

17 



Chapter 2 

chain method (dememorization number, number ofbatches, iteration per batch set at 

1 ,000, Bonferroni correction applied). These analyses were performed using 

GENEPOP 3.1 d (Raymond & Rousset, 1995a,b ). Genetic differentiation among 

populations was assessed based on both the infinite allele model (lAM) using FsT, 

and the stepwise mutation model (SMM) using RhosT· The level of differentiation 

between population pairs was estimated as F ST (Weir & Cockerham, 1984) using the 

program FSTAT 2.9.3 and RhosT using the program RstCalc (Goodman, 1997). The 

significance of the difference ofF sT and RhosT values from zero was tested by 

permutation analysis, and the Sequential Bonferroni correction (Holm, 1979) was 

applied using the program Multiplicity (Brown & Russel, 1996). A permutation test 

to assess differentiation for allele size was performed comparing F sT and RhosT using 

the program SP AGeDi (Hardy and Vekemans, 2002). Genetic distances between 

populations were estimated using Nei's Da genetic distance (Nei, 1987). Calculations 

were performed using GenDist 

(http://www.biology.ualberta.ca/jbrzusto/GeneDist.html). The distance matrix was 

used to reconstruct un-rooted Neighbor Joining trees as implemented in PHYLIP 

version 3.56 (Felsenstein, 1993). 

mtDNA analysis 

The first 297bps at the 5' end of the mtDNA control region were sequenced in 

a total of 70 samples, while further sequences were obtained from the published 

databases. In total186 sequences of Tursiops sp. were available (see Table.l). 

The mitochondrial DNA control region was amplified with universal primers 

MTCRf(5'-TTC CCC GGT GTA AAC C) and MTCRr (5'-ATT TTC AGT GTC 

TTG CTT T) after Hoelzel (1998b). The PCR reaction conditions were as follows: 

lOO~M dNTPs, 1.5 mM MgClz, 10 mM Tris-HCl pH 8.4, 50 mM KCl, 200nM of 

each primer, 0.02 U/~L Taq polymerase. The PCR cycling profile was 4 min at 

95°C, 35 cycles of 45 sec at 94°C, 1.5 min at 50°C, and 1.5 min at 72°C, followed by 

8 min at 72°C. PCR products were purified with QIAgen PCR purification columns 

(QIAGEN, GmbH, Germany) and sequenced directly using the ABI dye-terminator 

method. Five samples were sequenced in both directions, and no ambiguities were 

found. A total of 15 D. de/phis haplotypes including 2 from MS, 5 from ENA 

(sequenced for this study) and 8 from ENP (from Rosel et al., 1994) were also 
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included. Sequence alignment was performed using SEQUENCHER 3.0 (Gene Code 

Corp.). 

The degree of differentiation (FsT and <I>sT) and Tajima's D were estimated 

using ARLEQUIN 2.0 (Schneider et al., 1999). Estimates of<I>sT used the Tamura-Nei 

genetic distance model (Tamura & Nei, 1993) with a gamma correction of a= 0.4 7 

(as estimated for the 5' hypervariable segment of the human control region by 

Wakeley, 1993). Genetic distance (Da) was estimated using Tamura-Nei with the 

SENDBS programme, written by N. Takezaki (National Institute of Genetics, 

Mishima, Shizuoka, Japan; http://oat.bio.indiana.edu:7580/documents/public/molbio/ 

tools/Sendbs/). SENDBS was also used to estimate the nucleotide diversity (n) in each 

population. Populations were compared using Da by neighbour joining in PHYLIP 

(un-rooted trees), as for the microsatellite DNA data, and the two consensus trees 

compared for congruence using the quartet method and the program QUARTET 

(Estabrook, 1992). 

Individual haplotypes were compared phylogenetically by the neighbour­

joining method using PAUP* 4.0b10 (Swofford, 1997) and rooted with homologous 

sequence from the killer whale (Orcinus orca). Majority-rule consensus trees were 

constructed from 1,000 bootstrap replications and a 50% criterion for the retention of 

nodes was applied. Distances were based on Tamura-Nei as above. The ti/tv ratio 

was set at 6:1, based on observed values. A maximum parsimony phylogenetic 

reconstruction was based on 1 ,000 bootstrap replications, retaining branches with 

50% support or greater. 

A median-joining network was generated to infer phylogenetic relationships 

among the Atlantic and Mediterranean mtDNA haplotypes (ENA, MS, W A, WNAC, 

WNAP and GM), using the program NETWORK 2.0 (Bandelt et al., 1999; 

www.fluxus-engineering.com). 

Results 

Microsatellite results 

Each pair of loci was tested for linkage disequilibrium and genotypic 

independence was confirmed. Expected (He) and observed (Ho) heterozygosity 

values for each locus are reported in Table.2. Hardy-Weinberg equilibrium was 

tested for each population at each locus. Only the Mediterranean population deviated 
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significantly from the HW genotypic proportions (X2 = 96.5, d.f. = 18, p=O.OOO) and 

a significant heterozygote deficiency was found for two loci (Table 2). Omission of 

these loci did not significantly change the pattern of differentiation between MS and 

other populations, so they were retained for the results presented below. No 

significant heterozygote excess was observed at any locus in any population. 

Table 2. Number of alleles (number of private alleles in parentheses, allelic richness in square 
brackets), expected (He) and observed (Ho) heterozygosities for each population at each microsatellite 
locus. The asterisks indicate those loci with a p-value < 0.00079 (Bonferroni correction applied) when 
tested for heterozygote deficiency. Abbreviations are as in Table 1. 

Loci 

KWMib 

KWM2a 

KWM2b 

KWM9b 

WofAIIeles 

Ho 

He 

N° of Alleles 

Ho 

He 

N° of Alleles 

Ho 

He 

WofAlleles 

Ho 

He 

MS 

N=45 

4 (2) [2.8] 

0.067* 

0.248 

10 (2) [6.1] 

0.704 

0.761 

7 (I) [3.3] 

0.267 

0.318 

6 [4.3] 

0.439 

0.597 

KWMJ2a Wof Alleles 12 (1)[7.3] 

Ho 0.710 

He 0.798 

EV37Mn W of Alleles 24 (3) [12.8] 

TexVet5 

TexVet7 

008 

Average 

(± s.d.) 

Ho 

He 

N° of Alleles 

Ho 

He 

N° of Alleles 

Ho 

He 

N° of Alleles 

Ho 

He 

WofAIIeles 

Ho 

He 

0.923 

0.947 

5 [4.4] 

0.567 

0.681 

9(1) [4.8] 

0.364* 

0.570 

II (2) [6.4] 

0.698 

0.785 

9.8 ± 6.0 
[5.8 ± 3.0] 

0.527 ± 
0.266 

0.633 ± 
0.228 

Populations 

trnncatus 

ENA 

N=27 

2 [1.9] 

0.080 

0.187 

4 [3.7] 

0.704 

0.658 

3 [2.9] 

0.4 

0.473 

5 [3.1] 

0.538 

0.581 

WNAP 

N=27 

3 [1.8] 

0.083 

0.122 

7 [6.5] 

0.708 

0.837 

5 [3.5] 

0.348 

0.346 

6 [5.7] 

0.8 

0.818 

9 [6.2] lO (1)[7.5] 

0.6% 0.667 

0.75 0.807 

12[8.6] 17(1)[11.9] 

0.917 

0.926 

9 [7.6] 

0.833 

0.871 

ENP 

N=l4 

3 (I) [2.8] 

0.250 

0.308 

5 [4.7] 

0.615 

0.732 

3 [2.9] 

0.461 

0.480 

4 [3.7] 

0.583 

0.616 

4 [3.9] 

0.545 

0.515 

4 [6.4] 

0.692 

0.769 

6 (I) [6.3] 

0.643 

0.754 

0615 

0.848 

5 [4.0] 

0.611 

0.571 

4 [32] 

0.593 

0.543 

4 [3.7] 

0.461 

0.495 

8 (I) [6.4] 5 (I) [4.4] 

5.3 ± 3.2 
[4.2 ± 2.0] 

0.522 ± 
0.193 

0.567 ± 
0.187 

0.731 

0.812 

II (I) [7.7] 

0.808 

0.869 

8.4 ± 4.1 
[6.5 ± 2.8] 

0.655 ± 
0.268 

0.712 ± 
0.279 

0.571 

0.593 

4 [3.7] 

0.461 

0.548 

4.2 ± 1.0 
[4.3 ± 1.3] 

0.536 ± 
0.132 

0.591 ± 
0.150 

WNAC 

N=27 

2 [2.0] 

0.348 

0.329 

4 [3.8] 

0.680 

0.607 

2 [1.7] 

0.087 

0.127 

5 [4.0] 

0.538 

0.667 

5 [4.4] 

0.667 

0.72 

13 [8.2] 

0.778 

0.815 

6 [4.6] 

0.63 

0.699 

6 [41] 

0.63 

0.66 

7 [4.4] 

0.667 

0.6 

5.6 ± 3.3 
[4.1 ± 1.8] 

0.558 ± 
0.213 

0.580 ± 
0.216 

GM 

N=22 

2 [20] 

0.227 

0.312 

5 [4.3] 

0.762 

0.669 

3 [26] 

0.176 

0.315 

3 [2.7] 

0.333 

0.426 

4 [3.9] 

0.368 

0.654 

14[10.6] 

0.954 

0.921 

4 [4.0] 

0.4 

0.6 

5 [4.3] 

0.762 

0.711 

4 [3.9] 

0.667 

0.679 

4.9 ±3.6 
[4.3 ± 2.5] 

0.517 ± 
0.275 

0.587 ± 
0.201 

aduncus 

SA 

N=l07 

4 (2) [2.4] 

0.505 

0.524 

4 (I) [3.0] 

0.364 

0.465 

2 [1.9] 

0.215 

0.201 

6 (3) [4.3] 

0.757 

0.708 

II [6.3] 

0 755 

0.770 

15 [6.3] 

0.743 

0.811 

6 (1)[4.8] 

0.711 

0.696 

4 [2.3] 

0.449 

0.506 

4 [1.7] 

0.075 

0.082 

6.2 ±4.1 
[3.7 ± 1.8] 

0.508 ± 
0.254 

0.529 ± 
0.252 
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Comparisons among populations showed higher average allelic diversity and 

heterozygosity in WNAP and MS than any of the other populations (Table 2). In the 

North Atlantic, allelic richness was significantly greater in the pelagic WNAP 

sample than in the coastal WNAC, GM & ENA samples combined (Mann-Whitney 

U-test, Z=-2.14, p=0.032), but WNAP was not significantly different from MS (nor 

were WNAC, GM or ENA significantly different from each other). A similar pattem 

is seen for heterozygosity where average H0 is significantly higher for WNAP than 

WNAC, GM & ENA combined (Mann-Whitney U-test, Z=-1.96, p=0.05), and 

WNAP was not significantly different from MS. 

Genetic differentiation among pairwise populations was estimated using F sT 

and RhosT· The results obtained with the two methods both show significant 

differentiation for all pairwise comparisons (Table 3), including the comparison 

between coastal samples from either side of Florida (WNAC v GM). 

Table 3. Genetic differentiation among pairwise populations using rnicrosatellite data. Fsr values are 
reported below the diagonal while Rhosr values are reported above the diagonal. All the Fsr and 
Rhosr values are significantly different from zero (p<0.05, or* for p<0.0001). 

N MS ENA WNAP ENP WNAC GM SA 

MS 45 0.048 0.034 0.353* 0.196* 0.161 * 0.345* 

ENA 27 0.098 0.161 * 0.460* 0.367* 0.314* 0.540* 

WNAP 27 0.064 0.116 0.272* 0.236* 0.251 * 0.392* 

ENP 14 0.283 0.288 0.219 0.511 * 0.555* 0.710* 

WNAC 27 0.221 0.282 0.205 0.270 0.060 0.576* 

GM 22 0.224 0.282 0.199 0.281 0.060 0.526* 

SA 107 0.293 0.273 0.260 0.364 0.345 0.317 

The smallest values, though still significant, were seen between WNAP and 

MS. The SA population showed the highest differentiation compared to all the other 

populations. The data suggest relative similarity between two clusters of putative 

populations, MS, ENA and WNAP for one, and WNAC and GM for the other. A 

comparison between FsT and RhosT to assess the role of allele size in population 

differentiation (after Hardy eta!., 2003) indicated no significant role for allele size. 

The phylogeny comparing populations based on Da distances and a neighbour 

joining analysis was also consistent with the grouping indicated by the FsT and RhosT 

analyses (Fig. 2). 
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MED ENA 

ENA WNAP 

WNAP MED 

WNAC 

WNAC GM 

GM 

SA SA 

0.1 0.01 

Figure 2: Neighbor Joining trees based on Da distances for microsatellite data (right) and mtDNA 
data (left). The names of the populations correspond to those given in Table 1. 

MtDNA sequence analysis 

Mitochondrial DNA control region sequences were compared among the 70 

samples sequenced for this study (see Table 1) and in comparison with database 

sequences representing western Africa (WA) (Wang et al., 1999; Hoelzel et al., 

1998a), the Bahamas (BAH) (Hoelzel et al., 1998a) and China, where two 

populations had been described, one as aduncus-type (CHa) and the other as 

truncatus-type (CHt) (Wang et al., 1999). 

Sixty six haplotypes were identified showing 56 polymorphic sites (Fig. 3). 

Shared haplotypes between putative populations were uncommon, observed for three 

haplotypes among the WNAP, MS, ENA and WA populations, and for one haplotype 

among GM and BAH. The alignment showed fixed differences distinguishing the SA 

aduncus-type, Chinese aduncus-type and truncatus-type haplotypes (Fig. 3). 

Average gene and nucleotide diversities were estimated for each population. 

Diversities were relatively high forMS (gene and nucleotide diversities, respectively: 

0.94; 0.023), WNAP (0.88; 0.022), Chinese pelagic truncatus-type (0.92; 0.024) and 

WA (0.73; 0.023) populations, and relatively low for the coastal ENA (0.42; 0.016), 

WNAC (0.43; 0.018), SA (0.29; 0.008), GM (0.72, 0.013) and CHa (0.88, 0.015). 

Tajima's D was large and negative for three of the populations (ENA: -0.97; WNAC: 

-1.22; SA: -1.57), suggesting possible population expansion, although it was only 

significant at the 0.05 level (Beta distribution approximation) for the SA population. 
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Figure 3: Polymorphic sites among 66 haplotypes are shown (left). Position 1 corresponds to the 
position 15,906 of the Balaenoptera musculus mtDNA sequence (Amason eta!., 1993). Haplotypes 
were identified by an abbreviation for their geographic region (in capital letters- see text). Further 
small letters and numbers identify the name of the same sequence as published in previous 
publications. Dots indicate identity with the reference sequence. Straight-line vertical boxes indicated 
fixed mutations or deletions between sequences from truncatus-type and aduncus-type animals. 
Dashed-line ve11ical boxes indicated fixed mutations within the aduncus-type. Haplotype frequencies 
(right) were reported for each haplotype in each putative population. Horizontal dashed-line boxes 
indicated shared haplotypes among populations. 

Genetic differentiation among pairwise populations was estimated using F sT 

and <DsT (Table 4). All pairwise comparisons showed significant differentiation, 

consistent with the pattern obtained with the microsatellite data. We also found a 
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significant correlation between the Fsr and <l>sr matrices applying the Mantel test 

(d.f.=8, p=0.02). Significant correlation was also found between the mtDNA and 

microsatellite DNA Fsr matrices (Mantel test, d.f.= 4, p=0.002). 

Table 4. Genetic differentiation among pairwise populations using mtDNA data. Fsr values are 

reported below the diagonal while ctlsr values are repm1ed above the diagonal. All the values are 
significantly different from zero (p<O.OS, or* = p<O.OO 1, **= p<O.OOO 1 ). 

N MS ENA WNAP WA CHt WNAC GM SA 

MS 18 0.171 0.089 0.089 0.320** 0.644** 0.555** 0.784** 

ENA 9 0.189* 0.322 0.341 0.574** 0.796** 0.724** 0.904** 

WNAP 25 0.089** 0.286** 0.138 0.215** 0.647** 0.569** 0.778** 

WA 16 0.072 0.334** 0.190** 0.423** 0.737** 0.668** 0.857** 

CHt 17 0.073** 0.297** 0.102** 0.177** 0.746** 0.618** 0.852** 

WNAC 29 0.345** 0.577** 0.355** 0.447** 0.355** 0.702** 0.852** 

GM 14 0.103** 0.339** 0.132** 0.210** 0.111 ** 0.394** 0.857** 

SA 38 0.446** 0.676** 0.447** 0.546** 0.458** 0.648** 0.501 ** 

CHa 19 0.091 ** 0.312** 0.120** 0.194** 0.099** 0.366** 0.129** 0.465** 

CHa 

0.726** 

0.805** 

0.731 ** 

0.772** 

0. 763** 

0.840** 

0.739** 

0.867** 

Nucleotide divergence (Da; Nei 1987) between populations was computed and 

used to reconstruct a Neighbor-Joining tree comparing the populations that were 

analysed by both microsatellite DNA and mtDNA markers (Fig. 2). The mtDNA and 

microsatellite DNA trees were broadly congruent with 12 out of 15 quartets of the 

same type resolved in both trees, with the remaining three quartets resolved in both 

trees, but of different types (after Estabrook, 1992). In a separate analysis of distance 

measures comparing all T. truncatus with T. aduncus and D. de/phis, the SA 

aduncus-type population was at least as differentiated from the Chinese aduncus­

type population (Da=0.035) as from the truncatus-type populations (Da=0.019), and 

was least differentiated from D. de/phis (Da=0.013). A parallel assessment using the 

microsatellite data (see above) gave aDa of 0.438 between T. truncatus and T. 

aduncus (SA), 0.267 between T. truncatus and D. de/phis, and 0.541 between T. 

aduncus (SA) and D. de/phis. 

The spanning network (Fig. 4) reflects the diverse genotypes found among the 

WNAP and MS samples, and suggests a relatively stable population structure for 

these regions, given the occurrence of these population genotypes in multiple 

clusters. The clusters representing GM, WNAC and BAH, on the other hand, reflect 

the reduced variation seen in those populations and suggest local demographic 
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expansions. The three haplotypes found in the ENA sample (MSl, ENAl & ENA2) 

all fall within the central cluster, but are not closely related to each other. 

WAs 

WNAP 
MS9 

':-:: MS2 MSlO 

) MSl 
--:,--··/ 

MSll1 

WNAPw () 

Figure 4: Minimum spanning network of the Atlantic and Mediterranean T truncatus haplotypes 

only. Names of the haplotypes are the same as in Fig. 3. Black circles indicate ancestral extinct 

haplotypes. 

Rooted (Orcinus orca) neighbour-joining and maximum parsimony trees 

were reconstructed using all 66 different mtDNA haplotypes (Fig. 5). 
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a) b) 

-0.005 ---5 

Figure 5: Neighbor-Joining (a) and Maximum parsimony (b) trees illustrating the phylogenetic 
relationships among 66 mtDNA haplotypes (names correspond to those given in Fig. 2, and the 
abbreviations in bold refer to the geographic source of the sample). Bootstrap values greater than 50% 
are indicated. Aduncus type haplotypes are represented by SA (South African aduncus-type) and CHa 
(Chinese aduncus-type). Chinese truncatus-type samples are represented by CHt. 

26 



Chapter 2 

Both aduncus-type populations (SA and CHa) were differentiated from the 

truncatus-type samples, but the two aduncus-type populations also strongly diverged 

from each other. Haplotypes from WNAC, GM and BAH form three well-supported 

lineages within the broader truncatus-type lineage, which is otherwise dominated by 

the pelagic samples. Both WNAC and GM populations each have one relatively 

common haplotype (WNACc and GM3, respectively; see Fig. 3 & 4), and several 

other less common haplotypes that differ by one or two base pairs from the common 

haplotype. Average genetic distance between these lineages was 2.91% (± 0.67%; 

one s.d.), compared to 0.55% (± 0.28%) within lineages. The exceptions are 

WNACi, which clusters closely with the GM haplotypes, and WNACb, which 

clusters with the BAH haplotypes. Another lineage, relatively poorly supported 

(55%) within the broader truncatus-type lineage (but only for the neighbour joining 

tree; Fig. 5) included a mixture ofhaplotypes from several regions including many of 

the Chinese truncatus-type haplotypes. 

Discussion 

Throughout the geographic regions included in this study, the genus Tursiops 

shows considerable genetic diversity and differentiation among populations. In fact, 

all putative populations defined by geographic region or habitat use (such as coastal 

and pelagic populations in the western North Atlantic), showed private alleles and 

significant differentiation from all other putative populations at both mtDNA and 

microsatellite DNA loci (Fig. 3 & Table 2). Marine mammal species are highly 

mobile and capable of long-range dispersion (see review in Stevick eta/., 2002). 

Often population structure is more evident for mtDNA markers than for nuclear 

DNA for marine mammals (see review in Hoelzel et al., 2002), and in some cases 

this is likely due to greater dispersal by males (e.g. for the southern elephant seal: 

Slade eta/., 1998, Fabiani et al., 2003). However, for the bottlenose dolphin, gene 

flow seems to be reduced among populations for both sexes. The large values for 

FsT based on microsatellite data, and the strong correlation between FsT values based 

on microsatellite and mtDNA data supports this interpretation. Bottlenose dolphin 

social groups are relatively fluid, however there is also some indication from 

observational data that neither males nor females disperse far from their natal groups 

(Scott et al., 1990). 
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Phylogenetic reconstructions support earlier suggestions for the classification 

of the Chinese aduncus morphotype as an ESU (Wang et al., 1999), but also suggest 

that the South African coastal population of 'aduncus-type' dolphins represents an 

independent lineage from both the truncatus-type populations and 'T aduncus' from 

China. The high distance values for microsatellite DNA markers also indicate 

substantial differentiation between the South African aduncus-type and all other 

populations. Since the initial description ofthe 'aduncus' form was based on the 

South African population (Ross 1977), we propose (given that further data continue 

to support the interpretation of isolation and differentiation among these populations) 

that this 'species' retains the name T aduncus, while the Chinese population could be 

re-classified as a third species. However, the inclusion of Delphinus de/phis in our 

distance comparisons, and the closeness of especially the South African aduncus 

forn1 to this species, raises the issue of generic classification as well (as earlier 

indicated in LeDuc et al., 1999). We have not, however, attempted any further 

resolution of the generic status of these species in this study. Both the neighbor 

joining and the maximum parsimony phylogenetic reconstructions supported the 

same lineage structure for the T truncatus populations, with the exception of a 

lineage with 55% bootstrap support in the neighbor-joining tree, not supported in the 

maximum parsimony tree. This lineage was dominated by pelagic samples. 

Lineages representing coastal populations (WNAC, GM and BAH) were well 

supported in both reconstructions. 

The lack of significant differentiation in microsatellite DNA allele size among 

populations suggests that genetic drift is important and that the rate of gene flow may 

be high relative to the mutation rate. For the mtDNA data, FsT and <DsT were similar 

for comparisons among populations from the eastern North Atlantic, pelagic western 

North Atlantic, West Africa and the Mediterranean, but <DsT values were much larger 

for some other comparisons (Table 4). This was especially true for comparisons 

between the aduncus-type populations and the rest, and for the coastal populations in 

the western North Atlantic in comparison with the eastem North Atlantic and pelagic 

populations. The implication is that there has been greater time for sequence 

divergence among these populations. 

Genetic diversity was highest for the population samples known to be from 

pelagic sources (WNAP for both mtDNA and microsatellite markers, and CHt based 

on published data for mtDNA diversity). The coastal populations mostly showed 
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lower genetic variation, including significantly lower allelic richness and 

heterozygosity (which were also very consistent among the coastal populations; 

Table 2). This could reflect independent historical founder events, with pelagic 

populations representing the source. For example, WNAP may represent a source 

population for founders establishing GM, BAH and WNAC populations in the 

western North Atlantic, though this would suggest that the founder genotypes were 

rare in the source population, and either unsampled or extinct in the current pelagic 

population (for further discussion see Hoelzel et al., 1998a). The South African 

aduncus population may also have been founded from an unidentified source 

population, though as suggested above, the taxonomic issue has yet to be resolved. 

Historical bottlenecks in coastal populations, or demographic cycles could also 

account for reduced diversity. 

While the spanning network (Fig. 4) reinforces the interpretation of founder 

origins for WNAC, GM and BAH, for ENA shows a more complex structure. This 

could suggest multiple founder events or a source population not well represented in 

our sample. Although coastal, the MS population shows nearly as much diversity as 

WNAP, but is also the least differentiated from WNAP, suggesting recent or 

continuing gene flow. The samples from MS may also be somewhat heterogeneous, 

as several geographic areas within the Mediterranean basin are represented. The 

significant deficiency (compared to H-W expectations) of heterozygotes at two 

microsatellite DNA loci in MS may therefore reflect some population structure 

within this sample (Wahlund effect). 

Differential social structure in the coastal and pelagic populations is a possible 

alternative explanation for the difference in diversity, but there are no data to support 

this, and the observed pattern of diversity in at least some of the coastal populations 

is more consistent with founder events. One possible mechanism for the 

establishment of coastal founder populations would be the release of suitable habitat 

during interglacial periods. A recent study on harbor porpoise (Phocoena phocoena) 

phytogeography in the North Atlantic suggested an influence of the last glacial epoch 

on their distribution and population genetic structure (Tolley et al., 2001). 

The pattern of mtDNA variation among samples from the Gulf of Mexico, the 

Bahamas and the WNA coastal region suggest demographic events that left one 

dominant matriline at each location. In the WNA coastal population however, two 

haplotypes (represented by three individuals) stand out as highly differentiated 
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compared to other samples from that region. One of these haplotypes falls clearly 

into the GM lineage, and the other into the BAH lineage (Fig. 4). These could 

represent female dispersal events from GM and BAH populations into the WNAC 

population. 

The high level of differentiation among regional populations suggests a high 

potential for speciation in this genus. Several ofthe T truncatus populations show 

reduced variation and a pattern of variation consistent with population expansion. A 

possible scenario to explain this pattern could be that peripheral populations might 

have formed as founders at different times in the past from relatively large and 

diverse pelagic populations. While we have not fully characterized the putative 

pelagic populations, relatively low diversity, evidence for expansion in Tajima's D, 

and the structure of the spanning network reconstruction support this interpretation 

for at least some coastal populations. 

Population structure in marine vertebrates can range from relative panmixia 

(e.g. the European eel, Anguilla anguilla, Daemen eta!., 2001) to highly structured 

populations for species with limited dispersal range (e.g. Acanthochromis 

polycanthus, Planes et al., 2001). Atlantic and Pacific populations of striped mullet 

(Mugil cephalus) were highly differentiated (Rossi et al., 1998) while several tuna 

species are not differentiated among oceans (Graves, 1996). Differences among 

species may in some cases be due to life history characteristics. For example, the 

relatively sedentary common sole (Solea vulgaris) shows population structure in the 

Mediterranean Sea (Guarniero et al., 2002), while the highly mobile swordfish 

(Xiphias gladius) apparently does not (Pujolar et al., 2002). At the same time, 

closely related species with similar life histories may show very different patterns of 

population structure (e.g. comparing Dicentrarchus labrax and D. punctatus, 

Bonhomme et al., 2002). It seems most likely that there will typically be multiple 

factors involved. For example, Riginos and Nachman (2001) found extensive 

population structure for a small subtidal reef fish (Axoclinus nigricaudus) in 

California, and concluded that this structure was due to a combination of 

biogeography, geographical distance and the availability of suitable habitat. 1n our 

study on bottlenose dolphins we found a high degree of population structure among 

geographic regions, including differentiation between parapatric populations that 

share the same coastal habitat (WNAC and GM), and differentiation between three 

apparent ESUs, T truncatus and the two aduncus-types in South Africa and China. 
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The data suggest a combination of factors leading to population structure, including 

the utilization of different local habitats, and possibly historical factors leading to the 

founding of new populations. 
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Abstract 

Bottlenose dolphins (Tursiops truncatus) are widely distributed and a high 

degree of differentiation has been found among both allopatric and parapatric 

populations. We analysed 145 samples from the Black Sea, Mediterranean Sea and 

eastern North Atlantic for mitochondrial and nuclear genetic diversity, and found 

fine-scale population structure with boundaries that coincided with transitions 

between habitat regions. These regions were defined by bottom topography, and 

oceanographic features such as surface salinity and temperature. At the extremes of 

this range there was evidence for the directional emigration of females from marginal 

habitat. Bi-parentally inherited markers did not show this directional bias in 

migration, suggesting a different dispersal strategy for males and females at range 

margins. However, comparative assessment based on mtDNA and nuclear markers 

suggested that neither sex showed greater dispersal on average. These data suggest a 

mechanism for the evolutionary structuring of populations based on local habitat 

dependence for both males and females of this species. 

Keywords: bottlenose dolphin, population genetics, Mediterranean Sea, Black Sea, 

sex-biased dispersal. 
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Introduction 

The Mediterranean Sea and the Black Sea represent a unique marine 

ecosystem. Geographically they consist of a sequence of contiguous basins, 

separated from the Atlantic Ocean by a narrow strait at Gibraltar. Both the Strait of 

Gibraltar and the straits that connect the Mediterranean and Black Sea basins (the 

Turkish Strait System) have been suggested to represent a barrier to gene flow for 

some species (e.g. Merluccius merluccius, Roldan et al., 1998; Sardinella aurita, 

Chikhi et al., 1997; Sepia officinalis, Perez-Losada et al., 2002; Balaenoptera 

physalus, Berube et al., 1998; Stenella cereuoalba, Garcia-Martinez et al., 1999). 

For some species investigated on a finer geographic scale, the most likely boundary 

was identified as not the Strait of Gibraltar, but an oceanic front some 350km to the 

east: the Almeria-Oran oceanic front, where the Atlantic oceanic waters encounter 

the warmer and denser Mediterranean waters (e.g. Dicentrarchus labrax, Naciri et 

al., 1999; Mytilus galloprovincialis, Quesada et al., 1995). However, any structuring 

across these putative boundaries would have to have been recent, as the shape and 

connectivity of these basins has changed considerably over the course of the 

Holocene, and as recently as 7,900 years ago (e.g. Ryan et al., 1997). 

The Mediterranean Sea and Black Sea offer a wide variety of different 

oceanographic environments, ranging from very shallow waters and sandy floors in 

the Adriatic Sea, to very deep abyssal areas in the Ionian Sea, and oceanographic 

discontinuities can be identified throughout the whole range. The Mediterranean Sea 

is generally characterised by higher salinity and higher water temperature compared 

to the Atlantic Ocean. On the other hand, the Black Sea is characterised both by low 

salinity, due to high outflow of fresh water from rivers, and low water temperature, 

especially during the winter season when the water usually freezes in the northeast 

(e.g. in the Azov Sea). 

Bottlenose dolphins are observed throughout the geographic range of our study 

from Scotland to the Black Sea. In both inland seas they commonly inhabit coastal 

areas (Notarbartolo di Sciara et al., 1993), although occasional sightings offshore and 

long-distance movements have been reported (Morozova, 1981; Derhmain et a!., 

1999). The Black Sea bottlenose dolphin is considered an endemic subspecies 

named Tursiops truncatus ponticus, based on morphological data that show a 

significant reduction of body size when compared to bottlenose dolphins from other 

areas (Tomilin, 1957; Hershkovitz, 1966). The same situation has been observed for 
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the other two cetacean species inhabiting the Black Sea: the common dolphin and the 

harbour porpoise, and they too are considered different subspecies (Delphinus 

de/phis ponticus and Phocoena phocoena relicta; Tomilin, 1957; Hershkovitz, 1966). 

The bottlenose dolphin shows strong population genetic structure across its 

worldwide range (Chapter 2), not always correlated to geographic distance. For a 

highly mobile species such as the bottlenose dolphin, able to migrate for long 

distances (Wells et al., 1999, Wood 1998), such extensive structuring of populations 

was not expected. Our hypothesis is that the capacity to adapt to local environments 

combined with a dependence on social behaviour for resource exploitation has led to 

the fine-scale population structure seen in coastal populations of this species, and that 

this may also explain the evolution of population structure in similar species. Here 

we compare contiguous populations across a geographic range that represents clear 

habitat structure, and assess the strength and position of population genetic structure, 

and patterns of gene flow in this context. 

Materials and Methods 

Sample collection and DNA extraction 

Samples were collected from stranded animals, by biopsy sampling or scrub 

sampling (sloughing skin collected on plastic scrub pads). DNA was extracted from 

tissue samples preserved in salt saturated 20%DMSO by a standard 

phenol/chloroform extraction method (Hoelzel, 1998). 

A total of 145 samples were included (Fig. 1 ). Of these, 81 samples were 

analysed in this study for the first time (16 from the Black Sea & Crimea, 2 from the 

Ionian Sea, 3 from the eastern north Adriatic, 26 from Spain, 5 from the Balearic 

Islands, 11 from Portugal, and 18 from Galicia), and they were compared with 

previously analysed samples (3 from Israel, 7 from the Ionian sea, 8 from eastern 

north Adriatic, 9 from the western Adriatic Sea, 10 from the Tyrrenian Sea, 1 from 

Algeria, 6 from South England and 20 from Scotland; from Chapter 2) for the same 

loci. 
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a) 

b) 

c) 

Figure l. a) Map ofthe sample locations. Abbreviations are as follows : eastMed = eastern 
Mediterranean, westMed = western Mediterranean, eastNA = eastern North Atlantic, Sco = Scotland. 
b) A map showing the depth profile and c) the current pattern in the Mediterranean Sea are also 
reported . 

41 



Chapter 3 

Sex determination 

Individuals whose gender was unknown were sexed by amplifying portions of 

the genes ZFX and ZFY as described in Berube and Palsb0ll (1996). 

Microsatellite analysis 

Samples were genotyped at 9 microsatellites loci: KWM1 b, KWM2a, 

KWM2b, KWM9b, KWM12a derived from Orcinus orca (Hoelzel et al., 1998b), 

EV37Mn from Megaptera novaeangliae (Valsecchi & Amos, 1996), TexVet5, 

TexVet7 and DOS from Tursiops truncatus (Rooney et al., 1999, Shinohara et al., 

1997). PCR conditions were as reported in Chapter 2. Amplified DNA was analysed 

for length variation on 6% polyacrylammide denaturing gels using fluorescent 

imagining on an automated ABI PRISM 377 DNA sequencer, after incorporation of 

1110 fluorescent labelled primer. An internal standard marker (Genescan-500 ROX, 

Applied Biosystems) was used to determine the allele sizes. 

The level of genetic diversity was estimated as observed heterozygosity (H0 ), 

expected heterozygosity (He), and allelic richness. Allelic richness controls for 

variation in sample size by a rarefaction method, and was calculated using the 

program FSTAT 2.9.3 (Gaudet, 2001). Evaluation ofpossible deviations from Hardy 

Weinberg (overall deviation, heterozygote deficiency and heterozygote excess) was 

performed using Fisher's exact test and the Markov chain method (dememorization 

number, number of batches, iteration per batch set at 1 ,000, Bonferroni correction 

applied) using GENEPOP 3.1d (Raymond & Rousset, 1995a,b). 

The most probable number of putative populations (K) that best explains the 

pattern of genetic variability was estimated using the program STRUCTURE 1.0 

(Pritchard et al., 2000). We assumed the admixture model and performed the analysis 

considering both the independent and the correlated allele frequency model. Bum in 

length and length of simulation were set at 1,000,000 repetitions. To test the 

convergence of the priors and the appropriateness of the chosen bum in length and 

simulation length, we ran a series of independent runs for each value of K (for 

1 <K>8) as suggested by Pritchard et al. (2000). We tested whether any particular 

individual was an immigrant or had an immigrant ancestor by using the model with 

prior population information, subdividing the individuals into K populations, 

according to the results of the previous analysis. We assumed v (migration rate)= 

0.05 and 0.1, and testing for O<number of generations (G)>l. 
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An asymmetric estimate of the migration rate (M=4Nem) between pairwise 

populations, based on microsatellite and mtDNA data, was calculated using 

MIGRATE 1. 7.3 (Beerli, 2002). The lengths of the runs were optimised for both 

markers (acceptance-rejection> 2%, R<l.2). Initial runs were set estimating 8 and M 

with FsT and allowing M to be asymmetric. Reruns were set using the parameter 

estimated found with the first run and lengthening the MCMC chains. In order to 

verify the result a final run was set using longer chains. For comparison the 

migration rate was also calculated from FsT according to Fsr=li(4Nm+ 1). 

Genetic distances between populations and between individuals were estimated 

using Nei's Da genetic distance (Nei eta/., 1983). Calculations were performed 

using the programme MicroSatellite Analyser (MSA) (Dieringer and Schlotterer, 

2002). 

Multidimensional scaling analysis was performed using the programme XL­

Stat Pro 6.0 based on a matrix of pairwise Da distances among individuals. 

The level of differentiation among populations was estimated as F sT (Weir & 

Cockerham, 1984) using the program ARLEQUIN 2.0 (Schneider eta/., 1999). 

Sex-biased dispersal was tested using the program FsTAT 2.9.3 (Goudet, 2001). 

Only adult individuals (a total of 131: 61 females and 70 males) were considered for 

this analysis. 

Evidence of a bottleneck was tested using the programme BOTTLENECK 1.2.02 

(Cornuet and Luikart, 1996). The Two-phase model of mutation (TPM) was 

considered as suggested by the authors (variance for TPM as set equal to 30, 

proportion ofSMM in the TPM was set equal to 70%, 1000 iterations). 

mtDNA analysis 

A total of99 samples were sequenced for 630 bps at the 5' end ofthe mtDNA 

control region (15 from Black sea, 18 from eastern Mediterranean, 31 from western 

Mediterranean, 35 from the eastern North Atlantic) and compared with 24 sequences 

already published (1 from Black Sea, 10 from eastern Mediterranean, 4 from western 

Mediterranean, 9 from Scotland, Chapter 2). 

The mitochondrial DNA control region was amplified with universal primers 

MTCRf(5'-TTC CCC GGT GTA AAC C) and MTCRr (5'-ATT TTC AGT GTC 

TTG CTT T) after Hoelzel (1998). The PCR reaction conditions and PCR cycling 

profile were as reported in Chapter 2. PCR products were purified with QIAgen PCR 
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purification columns and sequenced directly using the ABI dye-terminator method. 

Sequence alignment was perfonned using SEQUENCHER 3.0 (Gene Code Corp.). 

The degree of differentiation (FsT), the nucleotide diversity (n), Tajima's D and 

Fu's Fs were estimated using ARLEQUIN 2.0 (Schneider et al., 1999). The Mantel test 

to estimate the level of correlation between matrices was also performed using 

ARLEQUIN 2.0. A median-joining network was generated to infer phylogenetic 

relationships among the mtDNA haplotypes, using the program NETWORK 2.0 

(Bandelt et al., 1999; www.fluxus-engineering.com). 

Results 

Measures of diversity 

Heterozygosity and allelic diversity for all nine microsatellite DNA loci are 

shown in Table 1. Deviation from HW equilibrium for p<0.05 was detected at one 

locus in the western Mediterranean population and at 4 loci in the eastern North 

Atlantic population. IfBonferroni correction is applied (new p= 0.0011), no 

significant deviation was observed. Average allelic richness was lowest for the Black 

Sea population (3.639) and highest for the East North Atlantic population (6.207). 

Private alleles where found in all populations except the Black Sea. 
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Table 1. Genetic variation at each locus for each population. The number of individuals analysed for 
each population is indicated below the population name. The number of different alleles, number of 
private alleles (in parenthesis) and allelic richness (All. Rich.), heterozygosity observed (Ho), and 
heterozygosity expected (He) are reported. The respective averages (standard deviation in 
parenthesis) are reported in the last rows. The asterisk indicates the loci that showed significant 
deviation from the HW equilibrium (p<0.05). Abbreviations are as in Fig. 1. 

Po ulations 

Black Sea eastMed westMed eastNA Scotland 

Microsatellites N=l6 N=32 N=42 N=35 N=20 

KWM1b All. Rich. 22 3 (1) 1.988 2 1.998 2 1.822 2 1.943 

Ho 0.375 0.031* 0.286 0.114 0.05 

He 0.314 0.122 0.331 0.136 0.189 

KWM2a All. Rich. 33 5 4.914 64.646 6 5.582 43.593 

Ho 0.563 0.75 0.524 0.571* 0.75* 

He 0.675 0.756 0.605 0.674 0.639 

KWM2b All. Rich. 21.75 42.601 43.166 5 4.471 3 2.943 

Ho 0.063 0.156 0.341 0.371* 0.45 

He 0.123 0.179 0.406 0.581 0.522 

KWM9b All. Rich. 3 2.965 4 3.341 5 (1) 4.064 43.933 4 (1) 3.2 

Ho 0.4 0.419 0.525* 0.618 0.45 

He 0.402 0.48 0.68 0.667 0.582 

KWM12a All. Rich. 5 4.737 7 (1) 5.807 11 8.212 11(1) 9.083 7 5.399 

Ho 0.56 0.69 0.895 0.853 0.65 

He 0.677 0.734 0.863 0.896 0.68 

EV37Mn All. Rich. 77 15 (2) 11.781 23 (3) 13.241 19 (1) 12.834 9 7.22 

Ho 0.5 1 0.949 0.906 0.6 

He 0.562 0.928 0.929 0.926 0.778 

TexVet5 All. Rich. 4 3.444 5 4.662 8 5.617 9 6.86 5 4.303 

Ho 0.25 0.533 0.568 0.552 0.722 

He 0.236 0.664 0.651 0.739 0.619 

TexVet7 All. Rich. 43.887 4 3.242 7 (1) 4.375 6 (1) 5.089 43.2 

Ho 0.652 0.194* 0.595 0.543* 0.65 

He 0.53 0.341 0.592 0.68 0.53 

:008 All. Rich. 43.965 65.448 6 5.742 8 (2) 6.192 4 3.833 

Ho 0.6 0.688 0.829 0.647* 0.5 

He 0.66 0.737 0.786 0.73 0.489 

Average All. Rich. 3.639 (1.574) 4.865 (2.904) 5.673 (3.333) 6.207 (3.195) 3.959 (1.550) 

(SD) Ho 0.464 (0.205) 0.549 (0.282) 0.649 (0.197) 0.670 (0.228) 0.557 (0.164) 
He 0.438 (0.186) 0.496 (0.321) 0.612 (0.234) 0.575 (0.237) 0.536 (0.213) 

For the 630bp mtDNA control region sequence, forty-four polymorphic sites 

(7%) were observed identifying a total of 41 different haplotypes. Forty-two 

transitions, four transversions, and two indels were observed. The total average 

nucleotide diversity was 0.016. Average gene and nucleotide diversity was 

calculated for all populations. The Black Sea population showed the lowest gene 

diversity, whereas the Scottish population showed the lowest nucleotide diversity 

(Table 2). 
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Table 2. Genetic diversity (Gene Div.), nucleotide diversity (Nucl. Div.), and the values of tests for 
neutrality Tajirna'D and Fu's Fs are reported for each population. Abbreviations are as in Fig. 1. 

Po Gene Div. Nucl. Div. 

Black Sea 0.675 0.012 

eastMed 0.88 0.015 
westMed 0.939 0.013 
eastNA 0.914 0.014 
Scotland 0.694 0.006 

Inferring population structure 

D 
1.54 
0.16 
-0.45 

0.92 
-0.38 

Fs 
3.28 

0.14 
-1.68 

0.5 
1.82 

In order to test the presence of population structure among our samples, we 

used STRUCTURE (Pritchard et al., 2001) to estimate the number of populations (K) 

that best explained the observed genetic variability. Consistency among different 

runs was observed for the estimate of P(X!K) and the prior a, indicating that the bum 

in length and the length of the runs were appropriate. 

K=5 was found to be associated with the highest probability ofP(X!K) 

considering either independent allele frequency or correlated allele frequency models 

suggesting subdivision into five populations (Fig. 2). The clustering identified three 

clear populations: a Black Sea population, an eastern Mediterranean population 

including samples from Israel, Ionian Sea, Adriatic Sea, and a Scottish population 

(Fig. 2). Two other putative populations: the western Mediterranean (Tyrrenian Sea, 

Spain, Algeria) and the contiguous eastern North Atlantic were less clearly defined 

(Fig. 2). In fact, the two clusters that explained most of the variability of the samples 

from these two regions (the third, q3, and the fourth, q4,- shown in Fig. 2 in yellow 

and green respectively) showed low allele frequency divergence (0.03). Therefore, in 

order to further assess possible population structure between the western 

Mediterranean Sea and the eastern North Atlantic, the number of populations (K) 

was estimated considering only the individuals from these regions, as suggested by 

Pritchard et al. (2000). However, no population structure was detected (the most 

probable number of populations found was for K=l). We then assessed this again 

using multidimensional scaling analysis, based on aD A distance matrix among pairs 

of individuals. Clustering was observed consistent with subdivision between the 

individuals from the western Mediterranean and the eastern North Atlantic (Fig. 3). 
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Figure 3. Multidimesional scaling analysis based on Da distance between pairwise individuals. Axes 
x and y represented dimension 1 and 2 respectively. 

Returning to this region in the analysis in STRUCTURE where K=5, for each 

individual the admixture coefficients relative to the third and the fourth group were 

summed (q3+q4). The difference between the average of the individual sums (q3+q4) 

for the western Mediterranean individuals and eastern North Atlantic individuals was 

found to be significant (Mann-Whitney U-test, Z=1.962, p=0.024) indicating that the 

proportion of the ancestry coefficients (q3+q4) is different in the two groups of 

individuals considered. 

Deviation from the Hardy-Weinberg equilibrium was tested for the pooled 

western Mediterranean/eastern North Atlantic group and significant deviation 

(p<0.05) was observed at 4 loci (one locus ifBonferroni correction was applied 

(p<0.0014)). 

Differentiation among the five putative populations (Black Sea, eastern 

Mediterranean, western Mediterranean, eastern North Atlantic, and Scotland) at the 

microsatellite DNA loci was estimated as FsT (Table 3). All populations were 

differentiated (p<O.OOl). The Black Sea population showed the highest level of 

differentiation when compared with all other populations. The western 

Mediterranean population was also differentiated from the eastern North Atlantic 

population, supporting the population subdivision suggested above. 
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Table 3. Pairwise population differentiation values expressed as Fsr based on microsatellite data 
(below diagonal) and mtDNA haplotype frequencies (above diagonal). Sample size for the 
microsatellites for each population is reported in the second coloumn. Sample size for the mtDNA 
data is reported in the second row. Statistic significance is reported as follows : * = p<0.05 , ** = 
p<O.Ol, *** = p<O.OOI. Abbreviations are as in Fig. I. 

N. BlackSea eastMed westMed eastNA Scotland 

N. haplo 16 27 35 35 9 

BlackSea 16 - 0.041 0.093** * 0.140*** 0.317*** 

eastMed 32 0.120*** - 0.032** 0.058*** 0.186*** 

westMed 42 0.102*** 0.045* ** - 0.040* * 0.153** * 

eastNA 35 0.139*** 0.081** * 0.026*** - 0.076* 

Scotland 20 0 .211*** 0.152** * 0.097*** 0.068 *** -

For the mtDNA sequences, population differentiation was estimated as Fsr 

(Table 3). All pairwise population comparisons showed significant differentiation 

except for the Black Sea population compared to the eastern Mediterranean 

population (p=0.058). Significant correlation was found between the mtDNA and 

microsatellite DNA Fsr matrices (Mantel test, d.f.=4, p=0.02). 

A median-joining network was drawn among the different mtDNA haplotypes to 

visualise the phylogenetic relationship (Fig. 4 ). 

BlackSea • EastMed • WestMed 

EastNA • Scotland • 
TIAL5 

Figure 4. Median-joining network among haplotypes. The size of the circles is proportional to the 
total number of haplotypes observed. Sectors are proportional to the number of each haplotype 
observed in each population. Populations are identified as follows: Black Sea population in blue, 
EastMed population in red , WestMed population in yellow, EastNA in green and Scotland in light 
blue. White circ les indicate ancestral extinct haplotypes. 
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Most of the highly represented haplotypes diverged consistently one from 

another identifying three main clusters. The Black Sea population is represented only 

in two clusters and all its unique haplotypes differ by one mutation step from the 

haplotype shared with the other populations. A similar situation is observed for the 

eastern Mediterranean population although it is represented in all three clusters. 

No indication of recent bottleneck was observed for the Black Sea population 

(probability considering two tails for H excess or deficiency was 0.25). 

A Mantel test showed a significant correlation between geographic and genetic 

distance for both mtDNA (p=0.007) and microsatellite DNA loci (p=0.007) (Fig. 5). 

a) 

b) 

0,3.----------------------------------. 

0,2 

0,1 

Bs-scoe 

EMED-SCO. 

BS-ENA. 

BS-EMED. 
BS-WMED. WMED-SCO. 

ENA-SCO. 

EMED-WMEDI 
WMED-ENA. 

EMED-ENA. 

0+--------,--------~--------r--------1 

7 7,5 8 8,5 9 

0,5 
BS-SCO. 

0,4 

0,3 

0,2 
EMED-SCO. 

WMED-SCO •• BS-ENA 

BS-EMED BS-'.VMED 
0,1 ENA-SCO. ~ WMED-,NA • EMED-ENA 

EMED-WMED. • • 0 
7 7,5 8 8,5 9 

Figure 5. Geographic distance versus Fst/( 1-Fst) for pairwise populations based on a) microsatellite 
data, and b) mtDNA data. Geographic pairs are labelled (BS-Black Sea, EMED-eastern 
Mediterranean, WMED-western Mediterranean, EN A-eastern North Atlantic, SCO-Scotland). 

Estimating migrants and sex-biased dispersal 

We analysed whether individuals were possible immigrants or descendants of 

recent immigrants. Because no estimation ofthe coefficient of migration for the 

bottlenose dolphin was available in the literature, the analysis was performed three 
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times setting v to 0.001, 0.05 and 0.1 (as suggested in Pritchard eta/., 2000), and 

considering 4 populations. Five possible immigrant individuals were identified (four 

males and one female). All individuals were confirmed migrants at the values of 

v=O.l and v=0.05, but none when v was set to 0.001. All individuals had higher 

probabilities to be immigrants rather than having immigrant ancestry. The Black Sea 

population did not show any immigrant individual from other areas, while one 

individual from the western Mediterranean was found to be a possible immigrant 

from the Black Sea population. In the eastern Mediterranean population the only 

immigrant individual detected was one of the three samples from Israel. In the 

western Mediterranean population two possible immigrants from the eastern 

Mediterranean population were found. Among the Scottish samples one individual 

was found to be a possible migrant from the western Mediterranean or eastern North 

Atlantic populations. 

We estimated the migration rate (M) between contiguous populations using 

two different methods and the results are reported in Table 4. 

Table 4. Estimate of the migration rate (M) between contiguous populations, based on the 
microsatellite and mtDNA data. Nm columns refer to the values calculated according 
F sT= 1/( 4Nem+ 1 ). The other columns refer to the asymmetrical migration rate calculated using a 
maximum likelihood method (MIGRATE): 1,2 stands for: migration from population 1 to population 
two; 2,1 stands for: migration from population 2 to population 1. The interval confidence (95% c.i.) is 
also reported. Abbreviations are as in Fig. 1. 

microsatellites (bi-parental) mtDNA (maternally inherited) 

Population Nm 1,2 2,1 95% c.i. Nm 1,2 2,1 95%c.i. 

1 BlackSea 
1.830 -- 3.490 3.065-3.986 

11.690 -- 0.046 0.04-0.415 
2east Med 3.076 -- 2.714-3.47 13.304 -- 3.986-53.572 

1 east Med 
5.306 -- 7.813 7.331-8.326 

15.125 
0.558 0.495-2.322 

2west Med 12.857 -- 11.935-13.837 10.074 -- 4. 711-20.845 

1 west Med 
9.365 -- 13.610 12.87-14.382 

12.000 
-- 4.560 4.524-12.608 

2 east NA 16.630 -- 15.691-17.652 5.349 -- 1.092-5.816 

1 east NA 
3.426 -- 6.791 6.17-7.45 

6.079 
-- 20.373 13.719-26.546 

2 Scotland 4.892 -- 4.427-5.376 3.036 -- 2.010-4.253 

Sex-biased dispersal was tested and there was no indication of sex biased 

dispersal. In fact no significant heterozygosity deficiency or positive F1s were 

observed for either sex (F1s for females was 0.079, F1s for males was 0.028, p=0.18), 

and the assignment index was not significant (p=O. 73, assignment index variance: p 

=0.54). 
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Discussion 

We find clear population structure over a small geographic range for 

contiguous populations of the bottlenose dolphin. The putative population 

boundaries were identified on the basis of comparing individual genotypes in the 

context of equilibrium expectations with respect to Hardy-Weinberg and linkage (see 

Pritchard et al., 2000). The result was the assignment of population boundaries that 

correspond to physical boundaries in the environment, but none of these are likely to 

actually restrict the movement ofbottlenose dolphins. Instead, they seem to define 

different habitat regions. Three of the boundaries are relatively strong, suggesting 

low gene flow, while a fourth is much less well defined. 

To take them in tum, the first boundary separates a population in Scotland from 

samples further south in the North Atlantic. The estimated level of gene flow is 

relatively low between these two populations, and the mtDNA data suggest a higher 

rate of emigration than immigration for the Scottish population. One factor could be 

geographic distance, as the sample sites are separated by approximately 1200km. 

However, Scotland is at the extreme range limit of this species and this is likely to 

define the habitat for this population with respect to prey resource and related 

factors. Being at the range limit may also mean that this habitat is marginal with 

respect to its capacity to support the population. This would be consistent with the 

suggested history of emigration based on the mtDNA coalescent data. Photo­

identification studies have reported a relatively high degree of residency among the 

bottlenose dolphins inhabiting this part of Scotland (Wilson et al., 1999), and the 

level of genetic diversity is comparatively low. 

The next boundary divides the North Atlantic samples (collected from Galicia 

and Portugal) from the western Mediterranean Sea. This is the weakest of the four 

boundaries, suggesting continuing gene flow or a very recent division. The strait of 

Gibraltar provides a physical boundary, but not one that is likely to restrict the 

movement of dolphins or their prey. However, the oceanographic feature at the 

eastern end of the Alboran Sea, the Almeria-Gran front, may serve as a barrier to the 

movement of some prey species, and perhaps in this way define local populations of 

their predators. For example, cuttlefish (Sepia officina/is; Perez-Losada et al., 2002) 

and sea bass (Dicentrachus labrax; Naciri et al., 1999) both show differentiation 

either side of this front. If this is the case, it may be recent or a weak mechanism for 

the isolation ofbottlenose dolphin populations, as the data suggest relatively high, bi-
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directional rates of gene flow across this boundary. Of the five samples collected 

nearest to the Almeria-Gran frontal region, four were near a boundary region in the 

MDS plot (Fig. 3). 

The next boundary is again stronger, representing the western and eastern 

basins of the Mediterranean Sea, separated by the Italian peninsula. Differentiation 

between the eastern and the western Mediterranean has also been observed in other 

marine species like the common sole (Solea vulgaris; Guarniero et al., 2002) and the 

sea bass (Dicentrarchus labrax; Bahri-Sfar et al., 2000). In those studies the authors 

suggested that differences in hydrographic characteristics defined the different 

habitats in these two basins, and promoted the differentiation of intraspecific 

populations. While the western Mediterranean is more influenced by the Atlantic 

Ocean, the eastern Mediterranean is characterised by water circulation limited to the 

Libico-Tunisian Gulf, and by low activity in the rest of the basin (the Adriatic and 

Aegean Seas), which is under the influence of cool and low salinity waters (Pinardi 

eta!., 1997). Again, differences in the distribution of prey, reflecting differences in 

habitat, may be defining the geographic range and patterns of association in local 

populations of the bottlenose dolphin. 

The final boundary is perhaps the strongest, separating the Mediterranean and 

Black Seas. Oceanographic conditions change quite dramatically across this 

boundary, with surface salinity and temperature both very different in the two seas. 

However, there are also potential historical factors, suggesting a possible founder 

event when the Strait opened, approximately 7,800 years ago. Consistent with this is 

the comparatively low level of diversity found in the Black Sea sample, and the lack 

of private alleles. However, various tests for evidence of a bottleneck showed no 

indication of one. This could be due to low power as a consequence of the small 

sample size, or may instead indicate that the diversity is low because the effective 

size of the Black Sea population is relatively small. Data from Migrate showed the 

strongest directional effect for gene flow in this population, again suggesting the 

emigration of females from peripheral (possibly marginal) habitat. 

Taken together these data suggest that local populations of bottlenose dolphins 

are habitat dependent in a way that defines patterns of movement. A comparative 

assessment of estimates of gene flow for mtDNA and bi-parental markers, together 

with the very similar pattern ofF sT values for the two marker types, indicate that this 

pattern of movement is true for both sexes (with the exception of differential female 
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movement at range margins). The most likely mechanism seems to be social 

facilitation of foraging strategies within local communities of dolphins, tending to 

keep both males and females near their natal site. Transferable knowledge over 

generations could be advantageous to assure feeding success, however it implies 

complex social structure and long-term individual associations across generations 

(see Whitehead, 1998). This could lead to fine-scale structure at the intra-specific 

level, and could possibly lead to relatively frequent speciation within the genus (see 

Chapter 2). However, as indicated by the mtDNA spanning network data, structuring 

across the study range is likely quite recent, as there is no indication of lineage 

sorting. Furthermore, coastal habitat can be ephemeral, and so the population 

structure may change with environmental change in future. 
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Abstract 

The state of the bottlenose dolphin (Tursiops aduncus) population inhabiting 

the waters ofKwaZulu-Natal (South Africa) is an increasing cause for concern. 

Shark nets placed along the coast to protect bathers from shark attacks result in an 

incidental by-catch of dolphins twice as high as that suggested as the maximum 

sustainable capture rate of a cetacean population. Observational data reported the 

presence of two populations, a coastal population and a seasonal migratory 

population moving into the KwaZulu-Natal area following the movement of sardines. 

We analysed nine microsatellite loci and 599bps ofthe mitochondrial control 

region from 142 samples of entrapped and free ranging individuals, and found small 

but significant differentiation between the northern and southern coastal populations. 

However, no differentiation was found between the southern coastal and putative 

migratory population. Genetic diversity was low for both marker types, and the 

pattern of mtDNA variation was consistent with a founder event. These results are 

discussed in the context of conservation and management. 

Keywords: South Africa, bottlenose dolphin, Tursiops aduncus, population genetics, 

conservation. 
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introduction 

The continued by-catch ofbottlenose dolphins (Tursiops aduncus) in the shark 

nets placed along the KwaZulu-Natal coast (KZN) of South Africa is a cause for 

concern (Peddemors et al., 2002). Survey studies estimated the maximum size of the 

bottlenose dolphin population inhabiting this area to be around 870 individuals 

(Cockcroft et al., 1991; Cockcroft eta!., 1992), and a comparison of sighting rates 

collected over 14 years, reported a drastic decline of the monthly sightings of this 

species (Cockcroft eta!., 1990). Continuous by-catches in the shark nets could be 

one of the main factors that have lead to the decline of the population. Based on an 

eight year survey (1980-1988) (Cockcroft, 1990) the average number of incidentals 

catches observed reached 4% of the total estimated population, twice as high as the 

2% considered a maximum sustainable capture rate for cetacean populations by the 

International Whaling Commission (Anon., 1991). Furthermore, a predominance of 

incidental catches of calves and mature females has been observed suggesting that 

the recovery of the population might be even more difficult (Cockcroft, 1990). 

A recent worldwide phytogeographic and phylogenetic study on the bottlenose 

dolphin reported high isolation and differentiation of the South African population 

and proposed its classification as a different species. Furthermore, low genetic 

diversity at both nuclear and mitochondrial markers was detected, suggesting that 

this population may have gone through a recent bottleneck (Chapter 2). 

The major biotic event that dominates the marine life of the area is the annual 

winter migration of sardines Sardinops ocellatus (June through October) from the 

southern Cape into KZN waters, known locally as the 'sardine run'. The movement 

of these large shoals of fish is followed by thousands of predators including 

bottlenose dolphins. An investigation of the incidental capture of dolphins in the 

shark nets shows a seasonal pattern with increased catches during the 'sardine run 

period' (SRP), and for the bottlenose dolphin this is true especially along the South 

coast ofKZN (Cockcroft, 1990). 

The bottlenose dolphins occur in KZN waters all year round. Survey studies 

suggested the existence oftwo populations ofbottlenose dolphins converging in the 

area: a 'resident' population occurring in the area all year round and a 'migratory' 

population occurring in the area only during the winter months, and coinciding with 

the movement of the sardines. The population recognised as 'resident' fmms mainly 

small groups and is found in the coastal waters (within 10 km from the shore). 
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Estimates of the size of this population stand at 520 (160-970, 95% confidence limit) 

individuals for the North KZN coast (Cockcroft et al., 1992), and a maximum of 350 

for the South KZN coast (Cockcroft et al., 1991). By comparison the 'migratory' 

population occurs in the KZN waters only seasonally. It is characterised by large 

schools of hundreds of individuals coming from at least as far south as Plettenburg 

Bay (South Eastern Cape) and moving north into the KZN waters in pursuit of the 

fish. These groups are not observed further north than lfafa (Fig.1) and the size of 

this population is estimated to be over 2000 individuals (Peddemors, unpublished 

data). The seasonal occurrence of the migratory population during winter and the 

predominant summer-breeding period of this species suggest that these two 

populations might not interbreed. 
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Figure 1. KwaZulu-Natal coast. All the shark nets stations are reported. In brackets the number of 
samples analysed from each stations are reported. 
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Analysis ofthe coastal distribution patterns suggested the subdivision ofthe 

resident population into small groups each inhabiting 'preferred' home range areas 

along the coast characterised by a higher dolphin frequency (Cockcroft et al., 1990). 

Different studies have been carried out to shed light on this population structure. 

Analysis of organochlorine levels in individuals incidentally caught in the shark nets 

along the Natal coasts showed a regional variation of the pollutant burden, with a 

decline from north to south suggesting discreteness of the different groups 

(Cockcroft et al., 1989). However, little variation was observed between dolphins 

captured during and outside the sardine run period. A preliminary genetic study 

based on 3 allozyme loci and 40 samples of dolphins caught in the nets in different 

preferred areas, also suggested possible genetic differentiation among subgroups 

inhabiting the north and south coasts ofKZN. However, no significant differentiation 

was found when comparing North versus South (Goodwin et al., 1996). 

In both these studies the weak structure observed (between dolphins caught 

during and outside the SRP, and between the North and the South coast) could have 

been as a result of the presence in the South coast sample of individuals from both 

the resident and migratory populations. 

A morphological character, the degree of ventral spotting observed in the by­

caught individuals, was considered as possible method to distinguish between 

populations. However, no clear trend of this character was observed between 

individuals caught along the North and the South coasts, or between dolphins caught 

during the SRP and outside the SRP (Peddemors, unpublished data). 

From all the data available, two different hypotheses of population structure 

along the KZN coasts seem plausible. In the first hypothesis a resident coastal 

population from north to south along the coast (possibly subdivided into discrete sub­

populations) would be distinct from the seasonal migratory population. The coastal 

and migratory populations would overlap their habitat range along only the South 

coast and only for the period during the 'sardine run', but without effective 

interbreeding taking place. Alternatively a North coastal resident stock could be 

differentiated from a South coast resident-migratory stock. Genetic exchange would 

happen between the South coast resident population and the seasonal migratory 

population but less so with the northernmost resident population. In the first case the 

gene flow would be limited by a temporal factor, whereas in the second case the gene 

flow would be limited by a geographic factor. 
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In this study our objective is to assess the population structure of the bottlenose 

dolphins along the KZN coast in order to test these hypotheses and provide useful 

information for the implementation of effective conservation measures. 

Materials and Methods 

Samples origins 

A total of 142 samples were used for this study. One hundred and seven 

samples were already genotyped for a previous study (Chapter 2), though the 

previous study made no attempt to analyse population structure within the South 

African sample. Thirty-five new samples (by-catches 1999-2000) were analysed for 

the first time in this study. Samples were from two different sources: 

a) Samples from the shark nets. Eighty-six skin samples were collected from 

animals captured incidentally between 1994 and 2000 in shark nets along the KZN 

coast, South Africa (Fig. I). To test the geographic versus the temporal population 

structure hypotheses, based on the data and the information available regarding the 

population dynamic in the area, these samples were further subdivided into two main 

groups: 

-samples from the North coast (from Richard Bay to Ifafa, 39 samples) 

representative of the resident population. 

-samples from the South coast (south oflfafa, 47 samples) expected to be from 

both the resident and the migratory population at least during the 'sardine run 

period' (SRP). Therefore, these samples were further subdivided into: -samples 

caught outside the SRP (representative ofthe putative resident population, 12 

samples); -samples caught during the SRP (mixed, 35 samples). 

b) Biopsy samples: 56 biopsy dart samples were taken from bottlenose dolphins 

moving north in large groups in excess of 500 dolphins along the Wild Coast (20km 

south or more of the KZN-Eastem Cape border). Samples were taken during the 

period June-October 1995 (during the SRP). Based on the area of sampling, the 

characteristics of the groups and the period of sampling, these samples were 

considered to be from the migratory stock. 

Morphological analysis 

Data regarding the degree of ventral spotting were available for 22 individuals 

caught in the shark nets (11 from the North Coast and 11 from the South Coast). 
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Ventral spotting was classified as heavy, medium, light and absent. Samples were 

divided in two classes: heavy-medium (3 form the North Coast and 5 from the South 

Coast); light-absent (8 from the North Coast and 6 from the South Coast). 

Multidimensional scaling analysis based on pairwise genetic distances among 

individuals and FsT (see below) were used to test any differentiation between these 

two classes. 

Microsatellite and mtDNA analyses 

Samples were stored in salt saturated 20%DMSO. DNA was extracted by a 

standard phenol/chloroform extraction method (Hoelzel, 1998). 

Samples were genotyped at 9 microsatellite loci: KWMlb, KWM2a, KWM2b, 

KWM9b, KWM12a derived from Orcinus orca (Hoelzel eta/., 1998), EV37Mn from 

Megaptera novaeangliae (Valsecchi & Amos 1996), TexVet5, TexVet7 and D08 

from Tursiops truncatus (Rooney et al., 1999, Shinohara et al., 1997). PCR 

conditions were as reported in Chapter 2. Amplified DNA was analysed for length 

variation on 6% polyacrylammide denaturing gels using fluorescent imagining on an 

automated ABI PRISM 377 DNA sequencer, after incorporation of 1110 

concentration fluorescent labelled primer An internal standard marker (Genescan-

500 ROX, Applied Biosystems) was used to determine the allele sizes. 

The mitochondrial DNA control region was amplified with universal primers 

MTCRf(5'-TTC CCC GGT GTA AAC C) and MTCRr (5'-ATT TTC AGT GTC 

TTG CTT T) after Hoelzel (1998). Twenty-seven samples were sequenced for the 

first 599 bps at the 5' end ofthe mtDNA control region. Thirty-three samples were 

already sequenced for the same region (Chapter 2). In total 50 sequences were used. 

The PCR reaction conditions and PCR cycling profile were as reported in Chapter 2. 

PCR products were purified with QIAgen PCR purification columns and sequenced 

directly using the ABI dye-terminator method. Sequence alignment was performed 

using SEQUENCHER 3.0 (Gene Code Corp.). 

Data Analysis 

For the microsatellite data, observed (H0 ) and expected (He) heterozygosities 

were calculated using the program ARLEQUIN 2.0 (Schneider et al., 1999). Allelic 

richness was calculated using the program FSTAT 2.9.3 (Goudet, 2001). Deviation 

from the Hardy Weinberg equilibrium was tested using Fisher's exact test and the 
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Markov chain method (dememorization number, number ofbatches, iteration per 

batch set at 1 ,000, Bonferroni correction applied). 

Population differentiation both for microsatellite and mtDNA data was 

estimated as F sT (Weir & Cockerham, 1984; Michalakis & Excoffier, 1996) using the 

program ARLEQUTN 2.0 (Schneider eta!., 1999). Gene and nucleotide diversities for 

the mtDNA data were estimated using the same programme. 

The most probable number of putative populations (K) that best explains the 

pattern of genetic variability was estimated using the program STRUCTURE 1.0 

(Pritchard eta!., 2000). We assumed the admixture model and performed the analysis 

considering the correlated allele frequency model (bum in length and length of 

simulation set at 1,000,000 repetitions). To test the convergence of the priors and the 

appropriateness ofthe chosen bum in length and simulation length, we ran a series of 

independent runs for each value ofK (for 1 <K>4) as suggested by Pritchard eta!., 

(2000). 

An assignment test based on the Bayesian method was performed using the 

programme GENECLASS 1.0.02 (Comuet eta/., 1999) available at the site 

http://www.ensam.inra.fr/CBGP. Settings: number of simulated individuals per 

population 10000, rejected if probability p<O.OOl. 

Multidimensional scaling analysis was performed using the programme XL-Stat 

Pro 6.0. The analysis was conducted using two different genetic distances: the 

coefficient of kinship (Cavalli-Sforza and Bodmer, 1971) and the proportion of 

shared alleles (Bowcock et a!., 1994 ), and analysed for 6 dimensions. The pairwise 

individual matrixes were calculated using the programme MSA (MicroSatellite 

Analyser) (Dieringer & SchlOtterer, 2002). For comparative purposes only, a line 

was drawn through the center of the MDS distributions, bisecting each to maximize 

the apparent difference between the two halves. 

Spatial autocorrelation analysis was performed using the programme SGS 

(Degen eta/., 2001). The geographic coordinates of the shark nets were used and a 

correlogram using the Moran's index was produced. Different analyses were run 

using different number of classes of distance (from 3 to 1 0). The analyses were 

performed setting 500 permutations and considering a confidence interval of 95%. 

A median-joining network was generated to infer phylogenetic relationships 

among the mtDNA haplotypes using the program Network 2.0 (Bandelt et al., 1999; 

www.fluxus-engineering.com). 
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Results 

Microsatellite genetic diversity 

A relatively low level of polymorphism (compared to other populations, see 

Chapter 2) was detected across the nine microsatellite loci analysed (Table 1). 

Table 1. Summary of microsatellite data: number of alleles detected in each group of samples and for 
each locus. Allelic richness (All Rich), observed (Ho) and expected (He) heterozygosities for each 
population for each locus and the average are also reported. Significance levels were applied using the 
Bonferroni correction. *, significant at the 5% level. 

Alleles All Rich Ho He 
I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 

K\\Mlb 
Nlrtl:Coast I I 46 26 3.84 0.46 0.52 
Soutl:Coast 0 2 42 50 2.93 0.60 0.52 
Biop;ies 0 I 65 46 2.61 0.46 0.52 
KWM2a 

Nlrti-Coast 21 47 3 3 4.00 0.38 0.54 
So uti-Coast 12 74 2 6 3.93 0.28 0.38 
Biopsies 21 82 8 3.61 0.39 0.44 
KWM2b 
Nlrtl:Coast 2 70 4 2.99 0.11 0.15 
So uti-Coast 0 83 II 2.00 023 023 
Bio~es 0 100 12 2.00 0.21 0.21 
KWM!b 
Nlrti-Coast 12 0 0 31 18 10 4.00 0.71 0.71 
So uti-Coast 9 0 34 41 7 4.74 0.65 0.67 
Bi2ies 17 0 4 47 31 13 4.98 0.71 0.72 
K\\1\112a 
Nlrti-Coast 0 7 20 2 2 8 3 26 0 0 8.00 0.62 0.76 
So uti-Coast 0 10 13 5 0 5 4 6 47 3 I 8.70 0.77 0.72 
Biopsies I 22 16 4 15 9 41 2 0 8.65 0.84 0.79 
EV37Mn 
Nlrtl:Coast 0 0 9 18 21 12 0 9 1 I 0 2 0 0 0 7.94 0.74 0.81 
So uti-Coast 0 6 33 16 14 15 2 0 0 3 1052 0.81 0.80 
Bio~ies 0 16 29 29 21 12 0 0 0 0 0 7.47 0.71 0.80 
TexVetS 
Nlrti-Coast 2 20 31 2 II 8 5.99 0.84 0.73 
Soutl:Coast 0 12 51 6 10 11 5.00 0.69 0.64 
Bi2!es 2 26 48 4 17 12 5.82 0.69 0.71 
TexVet7 
Nlrti"Coast* 28 42 3 5.68 0.58 0.57 
Soutl:Coast 0 2 49 43 0 0 2.93 0.49 0.54 
13iop>ies 0 I 74 37 0 0 2.61 0.41 0.48 
JX)8 

Nlrtl:Coast 0 75 2 0 2.86 0.08 0.10 
So uti-Coast 87 3 0 3.46 0.11 0.13 

Bio~es 3 0 107 3.16 0.09 0.09 
Average±sd 
Nlrtl:Coast 5.03± 1.97 0.5±0.27 0.52 ±0.26 
Souti-Coast 4.91 ±2.86 0.51 ±025 0.51 ±0.23 
Biopsies 4.54 ± 2.34 0.5 ± 0.25 0.53±0.25 

The number of alleles per locus ranged from 3 to 15. Allelic richness ranged 

from 2 to 1 0.52, and the average values for each group were similar. Thirteen private 

alleles were detected: 5 for the North Coast, 5 for the South Coast and 3 for the 

biopsies. Heterozygosities were similar for all groups analysed. Deviation from the 
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Hardy-Weinberg equilibrium was observed only at the locus TexVet7 for the North 

Coast group due to heterozygote deficiency. F1s values were calculated for each 

group (Nmih Coast= 0.06, South Coast= -0.019, biopsy samples= 0.035). 

Morphological differentiation 

No differentiation was observed for the classification based on ventral spotting. 

The multidimensional analysis based on both the kinship coefficient and the 

proportion of shared alleles did not show any clustering between the two categories 

analysed (heavy-medium/light-absent; data not shown). Fsr was calculated between 

these categories and did not show any significant genetic differentiation (-0.003, 

p>0.5). 

Population differentiation: resident versus migratory 

The multidimensional scaling analysis showed a relatively strong difference in 

the proportion of North Coast and the biopsy samples either side of an arbitrary line 

supporting the visual pattern indicating distinct clusters (Fig. 2). 
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Figure 2. Scatter plot of multidimensional scaling analysis of genetic distances (proportion of shared 
alleles) between individuals from North Coast ( + ), from the South Coast ( ..... ) and from the biopsies 
(D). Dimension I represents 6.1% and dimension 2, 3.6% of the total variance. 

This was also true for the comparison of the North Coast and the South Coast 

samples. In contrast, the South coast samples compared to the biopsy samples 

showed little evidence for assorting in different clusters. Given the arbitrary 
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placement of the line, these comparisons say nothing about the significance of 

differentiation, but serve to support the observed pattern of clustering. 

The estimation of the number of populations (K) that best explain the observed 

genetic variability did not show any significant clustering (most probable number of 

populations was K = 1 ). 

FsT analyses showed low but significant genetic differentiation between all 

pairwise comparisons of putative populations, including the comparison between the 

biopsy samples (putative migratory group) and the mixed South Coast group (Table 

2). 

Table 2. Pairwise Fsr values calculate with microsatellite data (matrix below) and mtDNA data 
(matrix above). Significance level ofthe p-values is reported: ns, not significant;*, significant at the 
5% level, **, significant at the I% level; *** significant at the 0.1% level. 

North Coast South Coast Biopsies 
N 18 15 17 

North Coast 39 0.037 ns -0.024 ns 

South Coast 47 0.022*** -0.001 ns 

Biopsies 56 0.009* 0.012** 

Structure of the coastal resident population 

The MDS analysis showed no clear differentiation between the South Coast 

and the biopsy samples (Fig.2). However, any difference may be obscured by the fact 

that the South Coast sample will include a mixture of putative coastal and migratory 

populations. In order to test for the presence of a South Coast resident population 

differentiated from the migratory population, we performed a multidimensional 

scaling analysis considering only the South Coast samples. No detectable pattern was 

found between the individuals caught during the SRP and those caught outside the 

SRP. Subsequent comparison ofthese two groups with the biopsy group did not 

show any detectable pattern (in both cases dimensions 1 and 2 represented similar 

proportions ofthe total variability: 5.9% and 3.5%; 5.6% and 3.2%). This provided 

no support for differentiation between the migratory population and the putative 

resident population inhabiting the South Coast on the basis of this type of analysis. 

FsT values were then calculated dividing the South Coast samples into: a) 

samples caught outside the SRP (presumed to be from the resident population; 

N=l2), and b) the samples caught during the SRP (presumed to be from both the 
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resident and migratory populations; N=35). The South Coast samples caught outside 

the SRP did not show significant differentiation when compared with any of the 

other groups tested, although small sample size will affect the reliability of these 

results. On the other hand, significant differentiation was observed between the 

South Coast samples caught during the SRP and the North Coast population 

(Fs-r=0.025, p<O.Ol), and the biopsy samples (Fsr =0.012, p<O.Ol ). 

To test whether the putative South Coast resident population was the same as 

that inhabiting the North Coast, an assignment test was performed as an independent 

test using the North Coast and the biopsy groups as reference populations. The 

hypothesis tested was: ifthere was one single resident North-South coastal 

population differentiated from the migratory population, the individuals caught in the 

nets outside the SRP along the South Coast should be assigned to the North Coast 

group. Out of 12 individuals entrapped in the nets along the South coast outside the 

SRP, only 6 were assigned to the North Coast group, suggesting some level of 

differentiation. 

The multidimensional scaling analysis supported a hypothesis of divergence 

between the North and the South Coast samples, showing signs of separate clustering 

between the North Coast and the South Coast samples caught outside the SRP similar 

to that described above (Fig. 3). 
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Figure 3. Scatter plot of multidimensional scaling analysis of genetic distances (proportion of shared 
alleles) between individuals from North Coast(+), from the South Coast (outside SRP) ( .~ ). 
Dimension I represents 5.8% and dimension 2, 2.9% of the total variance. 
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In an attempt to identify which of the samples from the mixed South Coast 

sample were most likely to be from a coastal resident population we focussed on the 

South Coast samples caught during the SRP. An assignment test was performed to 

identify which individuals from the South Coast samples caught during the SRP, 

were from the putative South Coast resident population, and which were from the 

migratory population. The South Coast samples caught outside the SRP and the 

biopsy samples were used as reference groups. Sixteen samples out of 3 5 were 

classified belonging to the resident group, while 19 were assigned to the biopsy 

group. We defined a 'New' South Coast group of samples (12 plus 16 individuals) 

representing the putative South Coast resident population to better assess the pattern 

of variation along the coast. The 'New' South Coast group showed significant FsT 

values when compared with the North Coast group (FsT = 0.027, p<0.001) but no 

significant differentiation when compared with the biopsy samples (FsT = 0.003, 

p>0.05). 

The multidimensional scaling analysis performed on all of the samples from the 

nets (omitting the biopsy samples) and labelling the South Coast samples as 

migratory or resident according to the results of the assignment test (Fig.4) was 

consistent with this result. 
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Figure 4. Scatter plot of multidimensional scaling analysis of genetic distances (proportion of shared 
alleles) between individuals from North Coast (+),from the South Coast caught out of the SRP plus 
assigned individuals to this group ( ... )and individuals assigned to the biopsy group (0). Dimension I 
represents 5.9% and dimension 2, 3.6% of the total variance . 
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Together these results suggested differentiation between the North Coast and 

the South Coast resident populations, and some differentiation between a South 

Coast resident population and the migratory population, though the latter is much 

harder to assess. 

Population differentiation and geographic distance 

The spatial pattern of genetic differentiation observed along the KZN coast was 

analysed considering the North Coast and the 'New' South Coast samples. The latter 

was chosen to provide a conservative representation of a putative 'coastal resident' 

South Coast population. All the distance classes tested showed the same trend and 

the best correlogram is reported in Fig.5a. The expected value for no autocorrelation 

was -0.012. Positive correlation between the northernmost (Richards Bay) and the 

southernmost regions was observed, whereas negative correlation with the North 

Coast was observed. The same analysis was run excluding the samples from the 

northernmost station (N = 2) and the positive autocorrelation was observed for 

distances shorter than 108 Km (Fig.5b ). 
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Figure 5. a) Correlogram based on Moran's index (D) calculated on the geographic distance from 
Richard Bay (0 Km) to Port Edward. The grey lines indicate the confidence intervals at 95%. The line 
parallel to the abscissa indicates the reference level of absence of spatial correlation. b) the same 
correlogram is calculated excluding the northernmost station of Richard Bay. 

Mitochondrial DNA analysis 

Mitochondrial DNA analysis was conducted on a total of 50 samples from the 

three groups (Table 3). 
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Table 3. Polymorphic sites observed among 6 haplotypes. Dots indicate identity with the reference 
sequence. Haplotype frequencies (right) were reported for each haplotype in each group of samples. 
The total number of sequences analysed for each group is reported at the bottom of the table. The 
asterisks indicate the central conserved domain of the control region. 

Ha~on:~s Poll:mOr(!hic loci Po(!ulations 

* * * * * * * 
3 3 3 3 3 4 4 4 4 5 5 5 

5 I I 2 3 4 5 5 5 9 4 4 6 

6 0 8 6 2 7 3 4 5 7 5 8 9 North South Bio 
- - --- - - -

Hapl ol TACT T G T G G TAT T 10 7 10 

Haplo2 c 3 7 4 

Haplo3 T A A C G C C 4 

Haplo4 T C A A C GCC 0 0 

HaploS A 0 0 I 

Haplo6 G c 0 C A 0 0 

Tot Ha(!loty~s 18 15 17 

Thirteen sites (2.2%) were polymorphic, identifying 6 haplotypes. All the 

polymorphic sites were transition substitutions. Most of the variability was observed 

among three haplotypes: haplotype 1, 3 and 6, while the others differ from these only 

for 1 base. Seven polymorphic sites (54%) were observed in the conservative region 

of the mitochondrial D-loop and they explained most of the difference between 

haplotypes 3 and 4 and the others haplotypes. The overall gene diversity was 0.627 

while the nucleotide diversity was 0.0039. A median-joining network shows the 

phylogenetic relationship among the different haplotypes (Fig.6). 

HAPL05 \ 

HAPL02 o--0 ---~~ 
1-IAPL01 

Figure 6. Median-joining network among haplotypes. Names of the haplotypes are the same as 
reported in Table 3. Black circles indicate ancestral extinct haplotypes. 

Differentiation among the different groups considered for the microsatellite 

analysis was tested using the mtDNA data. Despite the occurrence of unique 

haplotypes in the North Coast and biopsies groups (Table 3), there were no 

significant FsT differences between putative populations (Table 2). However, the 
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overall FsTwas also low (0.003, p>0.05, microsatellite overall FsT=0.014, p<O.Ol), as 

was the nucleotide diversity, which means there would be little power for detecting 

differences using mtDNA for these populations. Tajima's D and Fu's Fs were 

respectively -0.56 (p=0.31) and 1. 76 (p=0.8). 

Discussnol!ll 

Assessing population structure 

Observational data reported two populations, resident and migratory, 

converging in the KZN coastal area at least for a limited period of the year (during 

the SRP). These populations were defined based on their different behavioural 

pattern: the coastal population is present along the coasts all year round, 

characterised by small groups, the migratory population occurs during the SRP and is 

characterised by larger groups pursuing the migrating fish stocks. The genetic data 

suggested a more complex pattern where there may be some differentiation between 

migratory and coastal stocks, but the clearer pattern seemed to be differentiation 

between northern and southern stocks along the coastal range. 

Variation in ventral spotting has been observed, especially in the animals from 

the shark net bycatch along the southern coast. We used a small sample of extreme 

morphotypes (heavy-medium vs. light-absent spotted) in a preliminary attempt to test 

an association between genetic and morphological differences, and found none. This 

may be due to the small sample available. 

Our result identified a North Coast population genetically differentiated from 

the South Coast and migratory populations. The FsT and the multidimensional 

scaling analysis were consistent, both indicating small but significant differentiation 

for the North Coast samples (Table 2 and Fig.2). 

From the observational data, during the SRP the migratory population moves 

only into the South Coast area ofKZN (not further north than Ifafa). Therefore, we 

could not necessarily consider the South Coast samples as representative of one 

single population but possibly consisting of individuals from both a putative coastal 

and migratory populations. Based on this assumption, the South Coast samples 

caught outside the SRP were considered as representative of the putative South Coast 

population, and the South Coast samples caught during the SRP were considered 

mixed. 
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The multidimensional scaling analysis (Fig.3) and the assignment test (see 

results) indicated differentiation between the North Coast population and the South 

Coast samples caught outside the SRP (i.e. the South Coast population). However, 

the F sT pairwise comparisons showed no significant differentiation between the 

South Coast samples caught outside the SRP and any of the other groups. However, 

the small sample size of this group (12 individuals) is likely to have affected the 

statistical reliability of this result. 

The assignment test performed on the South Coast samples caught during the 

SRP allowed us to assess which individuals had higher probability of being from a 

South Coast population (identified by the South Coast individuals caught outside the 

SRP) as opposed to the migratory population. We then redefined the South Coast 

population (New South Coast) and the migratory population and we tested their 

genetic differentiation. Both the multidimensional scaling analysis and the FsT 

analysis reconfim1ed the genetic differentiation between South Coast and North 

Coast, but did not support genetic differentiation between the South Coast and the 

migratory population (Fig.4). Even so, FsT comparisons between either the North 

Coast or the full South Coast (including samples both during and outside the SRP) 

and the biopsy samples (representing the putative migratory population) showed 

significant differentiation. Given our sample, we cannot therefore rule out 

differentiation between a migratory and coastal stock in the south, but our stronger 

data is for differentiation along the coast between the north and south. 

To further quantify this, and to assess where a boundary may lie, we used 

spatial autocorrelation analysis. A positive correlation was found within the North 

Coast, while a negative correlation was found between northernmost station 

(Richards Bay) and both the North Coast and the South Coast. Although represented 

by just two samples, the Richards Bay genotypes were quite different. The 

suggestion is that there may be further subdivision of coastal populations fmiher 

north, but an assessment of this would require further samples and analyses. 

Richards Bay shows different ecological characteristics compared to the rest of the 

coast mainly due to the presence of an estuary at the Tugela River (one of the biggest 

rivers of the area). The presence ofbottlenose dolphins in the Tugela River estuary 

is lower in comparison to the rest of the North Coast, and further research is merited 

to determine if this may represent a population boundary for dolphins in this region, 

as has been suggested (Cockcroft, 1990). 
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The spatial autocorrelation analysis that omitted the two Richards Bay samples 

from the analysis suggested Umkomaas as a possible division point between the 

North and South Coast populations (Fig 5b ). Umkomaas is about 15 Km northern 

lfafa and it lies on the estuary of the Umkomaas River. There is also a significant 

reef system at Umkomaas called the Aliwal Shoal. Although this river is not 

amongst the biggest rivers of the areas, the river together with the shoal may 

influence the surrounding marine environment. Our result strengthens the conclusion 

of previous studies based on observational data that identified Ifafa as possible 

border between different coastal bottlenose dolphin populations (Cockcroft et al., 

1990). 

Population history 

The overall variability observed for the mtDNA locus was very low: in the 

Chinese aduncus-type population Wang et al. (1999) reported gene and nucleotide 

diversities of0.93 and 0.016 respectively, whereas in our population these values are 

0.627 and 0.0039. The median-joining network identified four primary haplotypes 

highly divergent form one another (Fig.6), and two other haplotypes that differ from 

the main types by just one base pair (Table 3). This pattern suggests a stochastic 

event that depleted the original haplotype diversity, leaving several remnant 

haplotypes and some diversity acquired since then. The distribution of the variable 

sites also reinforces this hypothesis, as most of the nucleotide variation is found in 

the central 'conserved' domain of the control region (Table 3). While the 

phylogenetic pattern is consistent with this founder- expansion scenario, there were 

no significant results from tests for possible expansion using tests for neutrality 

(Tajima's D and Fu's Fs). However, a relatively low level of variation at 

microsatellite DNA loci (Chapter 2) is consistent with a founder scenario. 

If a founder model is correct, there may have been little time for differentiation 

among local populations. In this case low levels of divergence would reflect a short 

duration of separation as opposed to high levels of gene flow. There is some 

indication that the putative populations described here are separated by habitat 

boundaries, which would be consistent with the stronger evidence of divergence seen 

for populations over a similar geographic range in the Mediterranean Sea (Chapter 

3). The populations in the Mediterranean may be older. 
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Conservation implications 

In KZN it has been demonstrated that the presence of shark nets is having a 

strong impact on the depletion of this species, due to the high number of incidental 

by-catches. Our study clarifies the bottlenose dolphin population structure along the 

KZN Coasts. Small but significant differentiation was found among all putative 

populations. The South Coast population shows admixture with the migratory 

population that occurs in the area during the SRP. The geographic border between 

the two coastal populations was suggested by the spatial autocorrelation analysis to 

be around Umkomaas, north of Ifafa, consistent with previous studies. Therefore, the 

relevance of the number of by-catches in the shark nets has to be considered in this 

scenario. Along the North Coast the impact of the shark net might be relevant for the 

local population due to its tendency to be geographical isolated. On the other hand, 

along the south coast the high number of catches during the SRP could have a 

negative impact on population growth. 

In general the state of the South African bottlenose dolphin population, as a 

whole, should be a cause for concern. In a worldwide phylogenetic study on the 

bottlenose dolphin, the South African population showed high genetic isolation, to 

the degree that it could be considered as a different species (Chapter 2). The low 

genetic variability detected in this study combined with these previous results 

enhances the risk of further genetic depletion ofthis population and therefore 

immediate conservation measures should be taken. 
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Abstract 

The common dolphin is worldwide distributed and shows a high degree of 

morphological variation. Two distinct morphotypes, long-beaked and short-beaked, 

have been considered different species named D. capensis and D. delphis, 

respectively. However, genetic differentiation between these two forms has only 

been proved in the Pacific. We analysed samples from eight different areas, 

including two morphologically defined long-beaked form populations, and we 

compared them with the eastern North Pacific populations. Both mitochondrial DNA 

and microsatellite markers showed the same pattern of differentiation suggesting 

similar movements of females and males. We found high differentiation among the 

populations described as long-beaked and no monophyly suggesting that these 

populations may have evolved from independent events converging to the same 

morphotype. We observed low genetic differentiation among the short-beaked 

populations, suggesting that gene flow even among distant geographic areas is 

considerable or in some cases that population divergence is recent. 

Keywords: common dolphin, population genetic, microsatellites, mtDNA, molecular 

ecology, phylogeography 
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Introduction 

The common dolphin is widely distributed in all oceans, from temperate to 

tropical waters and shows high mobility across its habitat. It shows such a high 

degree of geographic variation in morphology that more that 20 different species 

were described in the past, although they have all subsequently been considered local 

variations of one single species Delphinus de/phis (Hershkovitz, 1966). The present 

classification within this genus is still uncertain, although two different species are 

generally accepted: a long-beaked form (Delphinus capensis) and a short-beaked 

form (Delphinus de/phis). 

The separation between these two forms is based on both external 

morphological characters, such as the colour pattern and overall body size, and 

skeletal morphological characters, including the length of the rostrum, the tooth and 

the vertebra counts (Heyning & Perrin, 1994). Specific status for these two forms 

was based largely on the morphological and genetic analysis of two sympatric 

populations occurring along the coast of California. In this area, the bigger long­

beaked form prefers coastal shallow waters, whereas the smaller short-beaked fonn 

occurs mainly in deeper oceanic waters. From the analysis of the mtDNA control 

region sequences, Rosel eta/. (1994) found reciprocal monophyly, genetic 

divergence of 1.11 %, and fixed differences. Comparison between short-beaked 

individuals from southern California and short-beaked individuals from other oceans 

(eastern tropical Pacific and Black sea) differed by only 0.02 % (Rosel eta/. 1994 ). 

A similar pattern has been observed in other species. Recently, in the genus 

Stene/la different species have also been recognised based on morphological 

differences (Stene/la clymene versus Stene/la longirostris (Perrin et al., 1981) and 

morphological differences have been reported between offshore and nearshore 

populations of spotted dolphins (Stene/la attenuata) (Douglas et al., 1984). 

The bottlenose dolphin (genus Tursiops) shows a high degree of morphological 

variation and despite its capacity for long distance dispersion and its flexible social 

structure, strong differentiation has been reported even between sympatric 

populations (Mead & Potter, 1995, Hoelzel et al., 1998). Different species have 

recently been recognised within this genus: the coastal aduncus form in Chinese 

waters (Wang eta/., 1999) and the South African aduncus form (Chapter 2). Some 

authors (Hoelzel et al. 1998, Chapter 2) suggest that specialisation for local resources 

by the consolidation of different feeding strategies among groups might favours the 
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residency of the individuals belonging to a population, and lead to the progressive 

divergence of the groups. 

However, for the common dolphin the classification delphislcapensis remains 

controversial. Exceptions to this subdivision have frequently been found in several 

areas. In southern Australia a recent study showed the existence of two ecotypes 

inhabiting shallower and deeper waters. However, morphological data suggest one 

single population that exhibits high morphological variability: the rostral length­

zygomatic width ratio was found spanning the range of both species found in the 

eastern North Pacific. Conversely to the situation observed in the eastern North 

Pacific, the bigger form was observed mainly in deeper colder waters whereas the 

smaller in warmer coastal waters (Bell et al., 2002). Preliminary genetic analysis 

suggested no differentiation between the two ecotypes and classified both as 

Delphinus de/phis (White, 1999). 

High variability of the rostral length-zygomatic width ratio is also observed in 

the eastern North Atlantic where the species is known to be the short-beaked form. 

Recent morphological analysis found that the rostral length-zygomatic width ratio, 

the condylobasallength, and the body size overlapped the range of both the short and 

long-beaked forms described in the eastern North Pacific. However, based on 

coloration patterns, tooth count, and length of the rostrum, this population was 

described as a large-form ofthe short-beaked form (Murphy, 2004). 

Morphological differences have also been reported within the long-beaked 

form. The South African long-beaked, although very similar to the Pacific long­

beaked form in coloration, rostral length, and tooth count, differs for the average 

total vertebra count (Heying & Perrin, 1994). In the Indo-Pacific (form Middle East 

to China) an extremely long-beaked form has been observed with evidence of clinal 

variation in the size as one moves east or west from India. This form has been named 

Delphinus de/phis tropicalis Van Bree 1971 and suggested as possible subspecies of 

the capensis (Jefferson & Van Waerebeek, 2002). Possible paraphyly of the Indian 

and Pacific long-beaked form has also been suggested by Le Due et al. (1999) and 

reinforced by Jefferson & Waerebeek (2003) that suggested differentiation between 

the eastern Pacific long beaked common dolphin and the Indo-Pacific D. capensis. 

Data in literature suggests different geographic distribution for the two forms 

and few areas where they overlap their range (Perrin, 2002). The short-beaked 

common dolphin shows a continuous distribution north-south along both the eastern 
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and the western coasts of the Atlantic Ocean, and the eastern coast ofthe Pacific 

Ocean. It is also present from central Japan to Taiwan, around New Caledonia, New 

Zealand and Tasmania in the western Pacific, and in the Mediterranean and Black 

Seas. Conversely the long-beaked form occurs disjunctly along the western coast of 

Africa, South Africa and Madagascar, along the eastern coast of South America 

(from Venezuela to Argentina), from southern California to central Mexico in the 

eastern Pacific, around Korea, southern Japan and Taiwan in the western Pacific. The 

form D. tropicalis is observed only in the northern Indian Ocean and Southern Asia 

(Perrin, 2002). In general the short-beaked form occurs mainly offshore, although 

coastal resident populations have been described in the Mediterranean Sea (Greece) 

and eastern North Atlantic. 

Little is known about the social structure of either of these species. Delphinus 

delphis is generally identified as a pelagic species living in groups of 500-1000 

individuals. It has been suggested that large groups might be structured in smaller 

subgroups of 20-30 individuals, possibly including kin (although there is no evidence 

to support this; Evans, 1994) and that subgroups might be based on age or sex 

(Perrin, 2001 ). A photoidentification study on a small coastal population of short­

beaked common dolphins inhabiting the waters around Kalamos (Greece) suggested 

a fission-fusion type of society, similar to the structure found in the bottlenose 

dolphin (Bruno, 2001). 

In this work we analysed populations from eight different regions across the 

Atlantic and Indian oceans and compared these with the published data of the two 

populations ofthe eastern Nmih Pacific Ocean. We test whether the long-beaked 

form can be considered a single species worldwide. One possibility is that the long 

beaked form originated from one single event in one area and subsequently spread in 

different regions. In this case we expect to find monophyly among the long-beaked 

populations compared to the short-beaked populations and strong differentiation 

between long-beaked and short-beaked populations. A second possibility is that the 

long-beaked form originated independently in different regions. The selection of this 

morphotype may be the result of adaptation to local environments. Moreover, we 

address the question of how population structure may have evolved in a highly 

mobile marine species, given the pattern of differentiation observed. Considering the 

behavioural ecology of the common dolphin we expect low population 

differentiation even on a world wide scale. 
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Materials & methods 

Sample collection and DNA extraction 

In total, 200 Delphinus sp. samples from 8 geographic regions were analysed in 

this study (Fig. 1 ). 

Samples from the eastern North Atlantic (Galicia, Celtic Sea, and Scotland), 

the eastern central Atlantic (A9ores, Canary Islands and Madeira) and western North 

Atlantic were described as short-beaked form (Delphinus de/phis). Samples from 

South Africa were described as long-beaked form (Delphinus capensis). Samples 

from Mauritania were described as long-beaked form, although the comparison of 

the skull measurements with the published data in Heying and Perrin (1994) 

classified the individuals as follows: MAUl, very likely short-beaked; MAU2 clearly 

short-beaked; MAU3 and MAU4, likely long-beaked; MAU5, clearly long-beaked, 

MAU6, unclear; MAU7 uncommon very short-beak (Aguilar, unpublished data). 

Samples from Argentina were labelled D. de/phis, although the actual form was not 

determined (Table 1 ). Samples were obtained from stranded dolphins or dolphins 

accidentally caught in nets. Samples from Mauritania and two samples from the 

A9ores were bone specimens. 

Table 1. List of the populations analysed and correspondent acronyms. The number of samples for 
each population considered in this article are reported for the microsatellite and the mtDNA analyses. 
Data taken from other publications are as follows: a) from Chapter 6, b) four sequences from At;:ores 
were from Matzen Silva eta!. (submitted), c) from Rosel eta!. (1995). 

Population Acronym Microsatellite mtDNA 

Galicia, Gulf of Biscay GAL 39. 36. 

Celtic CEL 41 29 

Scotland sco 26 21 

Eastern Central Atlantic ECA 13 14b 

Western North Atlantic WNA 13 11 

Mauritania MAU 7 

Argentina ARG 18 15 

Short-beaked Pacific sbPA 13c 

Long-beaked Pacific lbPA 11 c 

Long-beaked South Africa lbSA 43 20 
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.... 

sbPA . MA~:;--. 

Figure 1. Map of sample locations. Abbreviations are as in Table 1. 

DNA was extracted from tissue samples preserved in salt saturated 20% 

DMSO by a standard phenol/chloroform extraction method (Hoelzel, 1998). DNA 

was extracted from bone samples using QIAgen PCR purification columns after 

grinding 1 OOmg of bone and digesting it at 37°C for 48 hours in 1ml of digestion 

buffer (0.01M TRIS, 0.01M NaCl, 1% SDS, 2mg/ml proteinase K, 0.01 PTB). The 

extraction and the analysis of the bone specimens were conducted in a different 

laboratory where no cetacean DNA had ever been manipulated before, to avoid 

contamination. An extraction including everything but tissue was carried through all 

the analyses as negative control. 

Sex determination 

Individuals whose gender was unknown were sexed amplifying portions of the 

genes ZFX and ZFY as described in Berube and Palsb0ll (1996). 

Microsatellite analysis 

Nine published microsatellite loci were analysed. Primers KWM1b, KWM2a, 

KWM2b, KWM9b, KWM12a were derived from Orcinus orca (Hoelzel et al., 

1998), EV37Mn from Megaptera novaeangliae (Valsecchi & Amos 1996), TexVet5, 

TexVet7 and D08 from Tursiops truncatus (Rooney et al., 1999, Shinohara et al., 
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1997). Microsatellites were not successfully amplified on the Mauritania samples, 

due to the highly degraded status of the DNA extracted from these samples and the 

relatively large size of most of the microsatellite markers. Amplified DNA was 

analysed for length variation on 6% polyacrylamide denaturing gels using 

fluorescent imagining on an automated ABI PRISM 377 DNA sequencer, after 

incorporation of 1110 fluorescent labelled primer (PCR reaction conditions: 100~-tM 

dNTPs, 0.75-1.5 mM MgC}z, 10 mM Tris-HCl pH 8.4, 50 mM KCl, 200nM of each 

primer, 0.02 U/~-tL Taq polymerase. PCR cycling profile: 5 min at 95°C; then 35 

cycles of 40 sec at 94°C, 1min at the T0 ann, 1 min at 72°C; then 10 min at 72°C). 

The annealing temperatures (T0 ann) were as follows: KWM1 b: 48°C; KWM2a: 

48°C; KWM2b: 44°C; KWM9b: 62°C; KWM12a: 56°C; EV37Mn: 52°C; TexVet5: 

49°C; TexVet7: 49°C; D08: 57°C. An internal standard marker (Genescan-500 ROX, 

Applied Biosystems) was used to determine the allele sizes. 

For microsatellite loci, the level of polymorphism was estimated as the number 

of alleles per locus, observed heterozygosity (H0 ), expected heterozygosity (He), and 

allelic richness. Allelic richness controls for variation in sample size by a rarefaction 

method, and was calculated using the program FSTAT 2.9.3 (Goudet 2001). 

Evaluation of possible deviations from the expected Hardy-Weinberg (HW) 

equilibrium (overall deviation, heterozygote deficiency and heterozygote excess) 

were performed using Fisher's exact test and the Markov chain method 

( dememorization number, number of batches, iteration per batch set at 1 ,000, 

Bonferroni correction applied). 

Genetic differentiation among populations was assessed based on both the 

infinite allele model (lAM) using Fsr, and the stepwise mutation model (SMM) using 

Rhosr. The level of differentiation between population pairs was estimated as Fsr 

(Weir & Cockerham, 1984) using the program ARLEQUIN 2.0 (Schneider eta!., 1999) 

and Rhosr using the program RstCalc (Goodman, 1997). The significance ofthe 

difference ofFsr and Rhosr values from zero was tested by pernmtation analysis. A 

permutation test to assess differentiation for allele size was performed for F sr and 

Rhosr using the program SPAGeDi (Hardy eta!., 2002). 

The most probable number of putative populations (K) that best explains the 

pattern of genetic variability was estimated using the program STRUCTURE 2.1 

(Pritchard eta!., 2000). We assumed the admixture model and we performed the 

analysis considering both the independent and the correlated allele frequency model. 
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Burning length and length of simulation was set at 100000 and 1,000,000 repetitions, 

respectively. To test the convergence of the priors and the appropriateness of the 

chosen bum in length and simulation length, we ran a series of independent runs for 

each value ofK (for 1 <K>7) as suggested by Pritchard eta!. (2000). We tested 

whether any particular individual was an immigrant or had an immigrant ancestor, by 

using the model with prior population information, subdividing the individuals into 

K populations, according to the results of the previous analysis. We assumed v 

(migration rate)= 0.05 and 0.1, and testing for O<number of generations (G)>2. 

Sex-biased dispersal was tested using the program FSTAT 2.9.3 (Goudet, 2001). 

Only adult individuals (a total of 187: 73 females and 114 males) were considered 

for this analysis. 

An asymmetric estimate of the migration rate (M=4Nem) between pairwise 

populations, based on microsatellite and mtDNA data, was calculated using MIGRATE 

(Beerli, 1997-2002). The length of the runs was optimised for both markers 

(acceptance-rejection> 2%, R<1.2). Initial runs were set estimating e and M with 

F sT and allowing M to be asymmetric. Reruns were set using the parameter estimated 

found with the first run and lengthening the MCMC chains. In order to verify the 

result a final run was set using longer chains. For comparison the migration rate was 

also calculated by hand according to FsT=l/(4Nm+ 1). 

mtDNA analysis 

The first 369 bps at the 5' end ofthe mtDNA control region were sequenced in 

a total of 150 samples, while other sequences were obtained from the published 

databases (Table 1 ). In total 178 sequences of Delphinus sp. were available. 

The mitochondrial DNA control region was amplified either with universal 

primers MTCRf(5'-TTC CCC GGT GTA AAC C) and MTCRr (5'-ATT TTC AGT 

GTC TTG CTT T) after Hoelzel (1998), or with the primers 5'-ACA CCA GTC 

TTG T AA ACC-3' and 5 '-T AC CAA A TG TAT GAA ACC TCA G-3' after Rosel 

et a!. (1994 ). 

The PCR reaction conditions were as follows: 1 OOJ.lM dNTPs, 1.5 mM MgCh, 

10 mM Tris-HCl pH 8.4, 50 mM KCl, 200nM of each primer, 0.02 U/~-tL Taq 

polymerase. The PCR cycling profile was 4 min. at 95°C, 35 cycles of 45 sec. at 

94°C, 1.5 min. at 50°C, and 1.5 min. at 72°C, followed by 8 min. at 72°C. PCR 
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products were purified with QIAgen PCR purification columns and sequenced 

directly using the ABI dye-terminator method. 

Mitochondrial DNA from the Mauritania samples was amplified using two sets 

of primers designed in order to amplify two overlapping portions of the control 

region of approximately 200bps each (Dmtcrf: 5 '-TT A GTC TCT CCT TGT AAA 

T-3' and Dmtcrr: 5'-GGT GAT TAA GCT CGT GAT-3'; MTCRfand mtancr: 5'­

AAA ATA AAT GAA TGC ACA ATA-3'). The PCR reaction conditions were as 

follows: 1001-!M dNTPs, 2.5 mM MgCh, 10 mM Tris-HCl pH 8.4, 50 mM KCl, 

200nM of each primer, 0.4 flg/fll BSA, 0.02 U/flL Taq polymerase. The PCR 

cycling profile was 15 min at 95°C, 45 cycles of 45 sec at 94°C, 1.5 min at 47°C, and 

1.5 min at 72°C, followed by 8 min at 72°C. 

Sequences were compared with 25 published sequences oftwo populations of 

common dolphins from the Pacific Ocean described as short-beaked and long-beaked 

form, respectively (Rosel eta/., 1994). Other four published sequences from A9ores 

were included in the analysis (Matzen Silva eta/., 2002). 

Sequence alignment was performed using ClustalX (Thompson eta/., 1997). 

The degree of differentiation (FsT and <DsT) and Tajima's D were estimated using 

ARLEQUIN 2.0 (Schneider eta/., 1999). Estimates of<DsT used the Tamura-Nei 

genetic distance model (Tamura & Nei 1993). 

Genetic distance (Da) was estimated using Tamura-Nei with the SENDBS 

programme, written by N. Takezaki (National Institute of Genetics, Mishima, 

Shizuoka, Japan; http://oat.bio.indiana.edu:7580/documents/public/molbio/ 

tools/Sendbs/). SENDBS was also used to estimate 1t. 

Individual haplotypes were compared phylogenetically by the neighbour­

joining method using PAVP* 4.0b10 (Swofford, 1997) and rooted with homologous 

sequence from Stene/la attenuata. Majority-rule consensus trees were constructed 

from 1,000 bootstrap replications and a 50% criterion for the retention of nodes was 

applied. Distances were based on Tamura-Nei as above. The ti/tv ratio was set at 

6.5, based on observed values. A maximum parsimony phylogenetic reconstruction 

was based on 1,000 bootstrap replications, retaining branches with 50% support or 

greater. A median-joining network was generated to infer phylogenetic relationships 

among the mtDNA haplotypes using the program NETWORK 4001 (Bandelt eta/., 

1999; www .fluxus-engineering.com). 
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Results 

Microsatellite analysis 

Population differentiation and diversity 

Expected (He) and observed (Ho) heterozygosities were calculated for each 

population at each locus (Table 2). 

Table 2. Number of alleles (number of private alleles in parentheses, allelic richness in square 
brackets), expected (He) and observed (Ho) heterozygosities for each population at each microsatellite 
locus. Allelic richness was calculated on a minimum number of samples of 12 individuals. One 
asterisk indicates those loci with a p-value < 0.05 when tested for heterozygote deficiency. Two 
asterisks indicate those loci still significant after Bonferroni correction (p-value <0.00079). 
Abbreviations are as in the caption of Table 1. 

Po[!ulations 

GAL CEL sco ECA WNA ARG lbSA 

39 41 26 13 13 18 43 

KWM1b N. Alleles 4 4 [2.6] 3 [2.66] 3 [2.18] 4 [3.92] 2 [2] 2 [1.94] I [ 1] 

Ho 0.21 0.219 0.115 0.308 0* 0.125 0 

He 0.271 0.246 0.149 0.508 0.221 0.179 0 

KWM2a N. Alleles 18 13 [I 0.43] 13 [8.57] 12 (I) [9.58] 11 [10.54] 8 [7.92] II [9.76] 9 [7.81] 

Ho 0.846 0.878 0.76 0.769 0.615* 0.889 0.93 

He 0.901 0.844 0.893 0.895 0.895 0.913 0.851 

KWM2b N. Alleles 8 7 [6.43] 6 [5.85] 6 [5.92] 6 [5.99] 6 [6] 5 [4.94] 5 [ 4.2] 

Ho 0.795 0.878 0.808 0.769 0.667 0.667 0.619 

He 0.825 0.824 0.827 0.84 0.837 0.756 0.61 

KWM9b N. Alleles 16 13 (I) [9.59] II [8.8] 9 [7.96] I 0 [9.76] 10 (1)[10] 12 [10.65] 8 [6.1] 

Ho 0.897 0.927 0.769 0.923 0.917 0.937 0.805 

He 0.892 0.869 0.874 0.917 0.888 0.897 0.78 

KWM12a N. Alleles 14 9 [7.47] 10 [7.31] 9 [7.16] 8 (1)[7.77] II (1)[10.61] 8 [6.96] 8 [6.57] 

Ho 0.795 0.78 0.808 0.692 0.923 0.722 0.683 

He 0.791 0.805 0.771 0.831 0.905 0.825 0.815 

EV37Mn N. Alleles 31 20[11.84] 18 [11.54] 19 (2) 12.94]14 (I) [13.3] 12[11.6] II [9.65] 12 (I) [7.11] 

Ho 0.949 0.805 0.885* 0.846 0.923 0.823 0.721 

He 0.918 0.903 0.912 0.898 0.914 0.895 0.814 

TexVet5 N. Alleles 14 10 (I) [7.63] 9 [7.07] 10 [9.14] 9 [9] 8 [8] 10 (1)[8.8] 8 [6.83] 

Ho 0.553** 0.575* 0.461 ** 0.583* 0.667 0.667 0.762* 

He 0.846 0.803 0.903 0.931 0.851 0.88 0.84 

TexVet7 N. Alleles 8 5 [ 4.83] 6 [ 4.49] 5 [4.57] 5 [4.85] 7 (1)[6.92] 7 [6.29] 4 [3.86] 

Ho 0.667 0.8 0.538 0.538 0.692 0.571 0.69 

He 0.746 0.708 0.744 0.68 0.828 0.698 0.654 

D08 N. Alleles 21 16 (2) [9.74] II [7.45] II [8.61] 8 [8] 12 (I) [I 1.5] 13[11.05] 8 (1)[6.04] 

Ho 0.667** 0.78 0.8 0.75 0.846 0.778 0.658 

He 0.863 0.808 0.856 0.855 0.889 0.913 0.716 

Average N. Alleles I 0.78 (5.2) 9.7 (4.4) 9.3 (4.7) 8.3 (3.1) 8.4 (3.2) 8.8 (3.6) 7 (3.2) 

(SD) [7.84 (2.9)] [7.08 (2.6)] [7.56 (3.1)] [8.13 (2.9)] [8.28 (3.1 )] [7.78 (3)] [5.5 (2.1 )] 

Ho 0.71 (0.22) 0.74 (0.22) 0.66 (0.25) 0.69 (0.18) 0.69 (0.29) 0.69 (0.24) 0.65 (0.26) 

He 0.78 (0.2) 0.76 (0.2) 0.77 {0.24) 0.82 {0.14} 0.80 (0.22) 0.77 (0.23) 0.68 (0.27) 
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Loci that significantly deviated from the HW equilibrium were found in all 

populations except in the ARG population. In all cases deviation from HW 

equilibrium was due to significant heterozygosity deficiency (p-values<0.05). The 

locus TexVet5 significantly deviated from the HW equilibrium in all populations 

except in the ARG and the WNA populations. Omission of this locus did not change 

the pattern of differentiation among populations and therefore was retained in the 

subsequent analyses. The locus KWMl b was monomorphic in the lbSA population. 

The lbSA population showed the lowest average observed and expected 

heterozygosities and the lowest allelic diversity. The other populations showed 

similar values for both the average heterozygosities and allelic diversity parameters. 

Genetic differentiation among pairwise population was estimated using Fs1 and 

Rhos1 (Table 3). The pattern shown by the two methods was similar, although in 

some cases the values for the same pairwise comparison differed. The lbSA 

population (long-beaked form) showed the highest differentiation compared to all the 

other populations, with both Fs1 and Rhos1 analyses. The ARG population was also 

significantly differentiated from all the other populations, although Rhos1 values 

suggested no differentiation when compared to the WNA and the ECA populations. 

The eastern Atlantic populations (GAL, CEL, SCO, and ECA) clustered together 

showing low or no genetic differentiation. Rhos1 values showed a similar trend. The 

WNA population significantly differentiated from all the populations except SCO, 

although the Rhos1 analysis indicated significant values only between the WNA and 

CEL population and WNA and lbSA population. 

Table 3. Genetic differentiation among pairwise populations using microsatellite data. FsT values are 
reported below the diagonal, while RhosT values are reported above the diagonal. Statistical 
significance of the p-values is reported as follows: *for p<0.05, ** for p<0.01, ***for p<0.001. 

N GAL CEL sco ECA WNA ARG lbSA 

GAL 39 0.008 0.03** 0.008 0.02 0.049** 0.164*** 

CEL 41 0.005 0.011 0.004 0.028* 0.088*** 0.201 *** 

sco 26 0.012* 0.011 ** 0.028 0.025 0.061 ** 0.171*** 

ECA 13 -0.002 0.001 0.01 -0.019 0.032 0.12*** 

WNA 13 0.014* 0.023*** 0.012 0.021 * -0.002 0.095*** 

ARG 18 0.037*** 0.045*** 0.034*** 0.041 *** 0.037*** 0.1 *** 

lbSA 43 0.1 *** 0.105*** 0.103*** 0.099*** 0.087*** 0.076*** 
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We tested the role of allele size in determining population differentiation 

comparing the F ST and RhosT values. The test suggested that allele size does not 

contribute to the differentiation of the populations we analysed (p-value=0.7), and 

therefore FsT should be preferred to RhosT-

Bayesian analysis was used as alternative approach to test for population 

structure. The number of populations (K) that best explained the genetic variability 

observed across our samples was found to be three . Consistency among different 

runs was observed for the estimate of P(X/K) and the prior a., indicating that the 

burn-in length and the length of the runs were appropriate. The same result was 

found using both correlated allele frequency and independent allele frequency 

models. The Bayesian analysis identified three main clusters of populations (Fig. 2). 

The lbSA population highly differentiated from all the others, a western Atlantic 

cluster (including WNA and ARG), and an eastern Atlantic cluster (including GAL, 

CEL, SCO, ECA). 

Figure 2. Estimated proportion of the coefficient of admixture of each individual' s genome that 
originated from population k, for K=3 (below the graph ic). Each individual is represented by a 
column. Geographic origin of the samp les is reported above the graphic. The asterisks indicate the 
individuals identified as migrants. 

Migrants and sex-biased dispersal 

We analysed whether individuals were possible immigrants or descendants of 

recent immigrants considering the three populations identified by the Bayesian 

analysis. Three possible immigrant individuals were identified. All individuals were 

migrants from the second cluster (WNA, ARG) to the first cluster (GAL, CEL, 

SCO). Two individuals were from GAL and they were identified as possible 

immigrants at both the values ofv=O.Ol and v=0.05. One individual was from SCO 

and it was identified as immigrant only for v=0.05. All individuals had higher 

probabilities to be immigrants rather than having immigrant ancestry. 
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Although the Bayesian analysis clustered the WNA and the ARG populations in 

the same group, the FST values indicated significant differentiation between these 

two populations. Therefore, we calculated the migration rate (M) considering four 

main populations: the EA (eastern Atlantic) population (including GAL, CEL, SCO 

and ECA), the WNA population, the ARG population, and the lbSA population. The 

results are reported in Table 4. 

Table 4. Estimate of the migration rate (M) between populations based on the microsatellite and 
mtDNA data. Nm columns refer to the values calculated according to Fsr=11(4Nm+ 1). The other 
columns refer to the asymmetrical migration rate calculated using a maximum likelihood method 
(MIGRATE): 1,2 stands for: migration from population 1 to population two; 2,1 stands for: migration 
from population 2 to population 1. The confidence interval (95% c.i.) is also reported. Abbreviations 
for the populations are as in Table 1 except for EA that stands for eastern Atlantic populations (GAL, 
CEL, SCO, ECA). 

microsatellites (bi-parental) mtDNA (maternally inherited) 

Population Nm 1,2 2,1 95% c.i. Nm 1,2 2,1 95%c.i. 

lEA 
17.080 -- 5.210 4.83-5.62 

10.040 -- 20.820 9.37-35.63 
2WNA 9.360 -- 8.68-10.09 1.510 -- 0.26-4.0 

lEA 6.900 -- 7.090 6.64-7.56 
14.030 -- 5.640 3.11-13.36 

2ARG 10.690 -- 9.99-11.44 0.000 -- 4.8e-ll-0.56 
lEA 

2.410 -- 4.230 3.88-4.6 
5.290 -- 5.694 3.276-11.063 

2SA 3.900 -- 3.54-4.25 0.316 -- 0.24-1.09 
1WNA 

6.560 -- 13.400 12.46-14.41 
8.020 

-- 0.044 0.03-0.82 
2ARG 12.940 -- 12.11-13.8 9.180 -- 3.34-30.29 
1WNA 

2.620 
-- 6.190 5.48-6.88 

3.620 -- 0.000 1.89e-ll-0.395 
2SA 2.530 -- 2.26-2.82 1.600 -- 0.672-3.034 
1 Arg 

3.030 
-- 6.840 6.14-7.63 

5.070 
-- 43.897 22.698-70.85 2 

2SA 2.710 -- 2.42-3.11 0.740 -- 0.665-2.698 

Sex-biased dispersal among regions was tested. No significant heterozygote 

deficiency or positive F1s were observed for either sex (F1s for females was 0.054, F1s 

for males was 0.076, p=0.41 ), and the assignment index was insignificant (p=0.63, 

assignment index variance: p =0.52) indicating no significant sex biased dispersal 

among regwns. 

Mitochondrial DNA analysis 

Population differentiation 

Mitochondrial control region sequences from the seven populations analysed 

above were compared with sequences from Mauritania (MAU) and with published 

sequences from two population in the Pacific Ocean identified as long-beaked form 

(lbPA) and short-beaked form (sbPA). 
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Among the 178 sequences analysed, 96 haplotypes were identified, showing 76 

polymorphic sites (Fig.3). 
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Figure 3. Polymorphic sites among 96 haplotypes (left). Dots indicate identity with the reference 
sequence. Haplotype frequencies (right) were reported for each haplotype in each putative population. 
Population abbreviations are as reported in Table 1. The total number of individuals sequenced for 
each population is also reported below the population name. 

Shared haplotypes were common among the eastern Atlantic populations 

(GAL, CEL, SCO, ECA) and the WNA population. MAU, ARG and the Pacific 
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Ocean populations (lbP A, sbP A) did not show any shared haplotype. The lbSA 

population shared one haplotype with the GAL population. Five sites exhibited 

differences in nucleotide substitution frequency between the lbP A population and the 

other populations (Fig. 3). 

Average gene and nucleotide diversities were estimated for each population 

(Table 5). Diversities were relatively high for all the populations analysed. The lbSA 

population showed the lowest gene diversity, whereas the lbP A population showed 

the lowest nucleotide diversity. Neutrality tests were performed. Although Tajima's 

D values were not statistically significant, Fu's Fs values were large, negative and 

significant for the GAL, ECA, lbP A and sbP A populations, suggesting possible 

population expansion (Table 5). 

Table 5. Gene diversity, nucleotide diversity, Tajima's D and Fu's Fs values are reported for each 
population. Asterisks indicated statistically significant values (* =p-value<0.05, ** =p-value<O.O 1, 
*** =p-value<0.001). 

Pop N. seq gene div. nucl. div. D Fs 
GAL 36 0.967 0.017 -0.825 -13.4*** 

CEL 29 0.958 0.018 -0.446 -5.6* 

sco 21 0.943 0.015 -0.697 -3.03 

ECA 14 0.989 0.018 -0.533 -6.4** 

WNA 11 0.909 0.013 -0.434 -0.717 

MAU 7 0.952 0.019 -0.249 -0.7 

ARG 15 0.971 0.019 -0.434 -3.53* 

sbPA 13 1 0.021 -1.183 -8.27*** 

lbPA 11 0.982 0.012 -0.719 -5.15** 
lbSA 20 0.853 0.0169 -0.124 1.1 

Genetic differentiation among pairwise populations was estimated using Fsr and 

<l>sr (Table 6). The Fsr values confirmed the population structure suggested by the 

nuclear markers (Mantel test, d.f.=6, p=0.008). Populations from the eastern Atlantic 

(GAL, CEL SCO and ECA) showed low or no significant differentiation, whereas 

the WNA, ARG and lbSA populations were significantly differentiated from the 

others and one another. The MAU population was not significantly differentiated 

from the ECA, ARG populations and either the lbP A or sbP A populations (long­

beaked and short-beaked form), although this may be a result of the limited number 

of samples available from the MAU population. Neither the lbPA nor the sbPA 

populations showed significant differentiation from the ARG population. 
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Interestingly, the lbSA and lbPA populations, both classified as the long-beaked 

form, were significantly differentiated. 

Table 6. Genetic differentiation among pairwise populations using mtDNA data. Fsr values are 
reported below the diagonal while <llsr values are reported above the diagonal. Statistic significance is 
reported (p<0.05, or*= p<O.OOl, **= p<O.OOOl). 

N GAL CEL sco ECA WNA MAU ARG sbPA lbPA lbSA 

GAL 36 0.005 0.0001 0.077** 0.059* 0.172*** 0.132*** 0.051 ** 0.465*** 0.099** 

CEL 29 0.003 -0.009 0.044* O.Ql5 0.144** 0.099** 0.032 0.443*** 0.058* 

sco 21 -0.011 0.007 0.012 0.037 0.219*** 0.124*** 0.053* 0.481 *** 0.083** 

ECA 14 -0.003 -0.01 -0.006 0.078* 0.265*** 0.127*** 0.1 03*** 0.466*** 0.1 04** 

WNA II 0.045** 0.05** 0.053* 0.044* 0.231 *** 0.029 0.045* 0.54*** 0.065 

MAU 7 0.04* 0.044* 0.053* 0.028 0.071* 0.25*** 0.116** 0.518*** 0.204* 

ARG 15 0.031 ** 0.036*** 0.043*** 0.02* 0.059*** 0.03 7 0.105*** 0.506*** 0.026 

sbPA 14 0.018* 0.022* 0.029* 0.006*** 0.044*** 0.022 0.014 0.412*** 0.1 07** 

lbPA II 0.026* 0.031 * 0.039* 0.015* 0.055*** 0.032 0.024 0.009*** 0.521 *** 

IbSA 20 0.083*** 0.093*** 0.102*** 0.082*** 0.121 ** 0.105** 0.09*** 0.076** 0.087** 

No significant correlation was found between the FsT and <DsT matrices (Mantel 

test, d.f.=9, p=0.38). The <DsT values suggested a different scenario indicating no 

significant differentiation between the WNA population and two eastern Atlantic 

populations (ECA and SCO), or the ARG population. Conversely, the MAU 

population was highly differentiated from all the populations including the two long­

beaked populations (lbPA and lbSA). No significant differentiation was observed 

between the sbP A and the CEL populations. The lbSA did not show significant 

differentiation when compared with the WNA and ARG populations, while it was 

highly differentiated from the lbP A population. 

The migration rate (M) based on the mtDNA sequences was calculated for the 

same four populations considered for the microsatellite analysis. The results are 

reported in Table 4. 

Da genetic distance among population was calculated and an unrooted 

Neighbour-Joining tree was produced (Fig. 4). A separate branch identified the lbPA 

population. The lbSA population clustered with the MAU population, within the 

lineage of populations described as the short-beaked form. 
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WNA 

L___--ARG 

,-------------GAL 

'-------------------------lbPA 

Figure 4. Umooted Neighbor Joining trees based on Da distances among populations calculated with 
the mtDNA data. The names of the populations correspond to those given in Table I. 

Rooted (Stenella attenuata) Neighbour-Joining and Bayesian trees were 

reconstructed using all 96 haplotypes (Fig.5). Both methods produced the same 

phylogeny. The lbP A population diverged from the other haplotypes, but the lbSA 

population was not monophyletic. Highly supported lineages were observed among 

other haplotypes, but they did not reflect any geographic clustering. 

The spanning network among haplotypes suggested the same pattern (Fig.6a). A 

high degree of complexity and inter-relatedness among haplotypes was observed 

when all haplotypes were included in the analysis. No clusters reflected the 

geographic origin of the haplotypes except for the lbP A population. When only the 

haplotypes from the eastern Atlantic and WNA populations were considered the 

structure observed was simpler, but still without reflecting any geographic partition 

(Fig.6b ). The network produced using just the haplotypes from the other populations 

(ARG, lbSA, MAU sbP A, lbP A) still showed a considerable degree of complexity. 

Most of the haplotypes were unique. Again, no geographic partitioning was 

observed, with the exception of the lbP A population. 
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Figure 5. Neighbor-Joining (a) and Bayesian (b) trees illustrating the phylogenetic relationships 
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Figure 6. Spanning network among haplotype. a) considering all haplotypes. b) considering only 
haplotypes from the eastern Atlantic (GAL, CEL, SCO, ECA) and WNA. c) considering only 
haplotypes from the Pacific Ocean, lbSA, MAU , ARG . MAU = pink, ARG = green, sbPA = light 
blue, lbPA = blue, lbSA = red , all the other populations in yellow. 

Discussion 

Our results showed significant genetic differentiation among populations 

inhabiting different oceans (Indian versus Atlantic), and different sides of the same 

ocean (eastern Atlantic versus western Atlantic) but no or little differentiation among 

populations inhabiting the same side of an ocean basin (Table 3 and Table 6). The 
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Bayesian analysis, based on the individual genotypes and with no assumption on the 

population structure, suggested similar population partitioning identifying three main 

clusters corresponding to the lbSA population (Indian Ocean), the WNA/ ARG 

population (western Atlantic Ocean) and the other populations (eastern Atlantic 

Ocean) (Fig.2). The lbSA population was the most differentiated reflecting the 

difference in morphology between the long-beaked and short-beaked form. 

However, the mtDNA analysis did not support the hypothesis of one single 

long-beaked lineage worldwide. No shared haplotypes or fixed mutations were 

observed between the populations described as long-beaked (lbSA, lbP A and MAU) 

(Fig.3). Fsr and <Dsr values between lbPA and lbSA suggested high divergence 

between these populations, higher than between the lbSA and the short-beaked 

populations (Table 6) and suggested that the lbP A and lbSA populations may have 

originated independently in different oceans by different evolutionary events. The 

lbPA population showed higher <Dsr than Fsr values for all pairwise comparisons. A 

similar trend is observed for the MAU population (putatively long-beaked form), 

although we cannot exclude the possibility that the limited number of samples may 

have affected the significance of these values. Higher <Dsr than Fsr values are 

expected when similar haplotypes are associated geographically and the mutation 

process has been more important relative to other causes of genetic differentiation. 

Conversely, the lbSA population showed similar <Dsr and Fsr suggesting recent 

population divergence. Recent divergence of the lbSA population is also supported 

by the microsatellite analysis. The lack of significance for the microsatellite allele 

size in determining population differentiation suggests that genetic drift is important 

and the rate of gene flow may be higher relative to the mutation rate. 

Differences between the two long-beaked populations were also observed in 

the genetic diversity. The lbSA population showed reduced gene diversity at both the 

nuclear and mtDNA level. The lbP A population instead showed high mtDNA gene 

diversity and significant Fu's Fs values suggesting possible population expansion 

(Table 5). 

Neither did phylogenetic reconstructions support monophyly of the short­

beaked and the long-beaked forms worldwide. The Neighbour-Joining tree based on 

Da distances among populations clustered the lbSA population with the MAU 

population within the short-beaked lineage, whereas the lbPA population represented 

103 



Chapter 5 

a separated lineage (Fig.4). Both the Bayesian and Neighbour-Joining phylogenetic 

analyses identified several well-supported clusters but no one reflecting geographic 

origin, except for the lbP A population that identifies an independent lineage 

(bootstrap >50%). The network confirmed this scenario showing no lineage sorting 

except for the lbPA population. In both networks (Fig.6a and 6c) the lbPA 

haplotypes all originated from a single ancestral haplotype suggesting that the lbP A 

population originated from a single founder event. 

Among the short-beaked form populations, the Bayesian analysis identified 

two clusters dividing the eastern Atlantic populations (GAL, CEL, SCO, ECA) from 

the western Atlantic populations (WNA, ARG). 

In the eastern Atlantic, nuclear and mtDNA data indicate high gene flow 

among populations. The low or non-significant FsT values (Table 3 and Table 6) and 

the high number of shared haplotypes suggest high movements of individuals among 

these regions. Gene flow also occurs across the Atlantic Ocean, as indicated by the 

presence of shared haplotypes between the eastern Atlantic and the WNA 

populations and the relatively low FsT values between the WNA and the eastern 

Atlantic populations. 

The Bayesian analysis clustered the WNA and the ARG populations together. 

However, significant FsT values and the lack of shared haplotype for the ARG 

population suggested differentiation between these two populations. A similar degree 

of genetic differentiation is also observed between the Atlantic populations and the 

sbP A population (Table 6), indicating that the worldwide population differentiation 

within the short-beaked form is relatively low, and may be explained by recent 

population divergence. 

Analysis of population dispersal suggested considerable gene flow among the 

Atlantic populations. Three migrant individuals were identified by the Bayesian 

analysis and were all apparently migrating from the western Atlantic populations 

(WNN ARG) to the eastern Atlantic populations, and included both males and 

females (Fig.2). Both bi-parental and maternally inherited markers gave similar 

estimates of migration rates, and for some populations suggested higher movements 

of females (Table 4). In marine mammals, population structure is generally more 

evident for mtDNA than nuclear markers, in part due to the different effective 

population size represented by the two genomes, but likely also due to the more 

frequent dispersal of males (e.g. Hoelzel et al., 2002). In this case, we found a strong 
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correlation between nuclear and mtDNA FsT values (Mantel test p=0.008), and 

observed numerous shared haplotypes among populations (especially among Atlantic 

populations) suggesting a similar level of dispersal for the two sexes. 

Estimates of the migration rates between the lbSA population and other 

populations were relatively low reflecting higher population isolation. However, 

higher movement of females towards other areas is also observed for the lbSA 

population. 

In conclusion, we did not find evidence for considering the long-beaked 

morphotype a single species worldwide. Our data better match the hypothesis of 

long-beaked populations originated independently in different areas at different 

times, possibly reflecting adaptation to a particular habitat or specialization for 

foraging resources. The different pattern observed for different long beaked 

populations suggest that different evolutionary processes might have been involved 

in the structuring of different populations. The high morphological variability, often 

overlapping the long-beaked range, observed in several short-beaked populations 

(Murphy, 2004, Bell et al., 2002) and our results provide evidence that these may be 

source populations for the long-beaked populations. 

The short-beaked morphotype shows low genetic differentiation across oceans 

suggesting high gene flow, or in some cases recent population divergence. Dispersal 

patterns suggest that female phylopatry is not a strategy adopted by the common 

dolphins, but that both sexes move together. 
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Abstract 

The common dolphin Mediterranean population has recently been listed as 

'endangered' in the IUCN Red list. This is due to the population's drastic decline 

since the middle of the twentieth century, especially in the central region of the 

basin. However, little is know about the structure and identity ofthis population. We 

analysed 118 samples from the Black Sea, Mediterranean Sea and eastern North 

Atlantic using nuclear and mtDNA markers. We found population differentiation 

across the basin between the eastern and the western Mediterranean, and could not 

exclude further population structure in the central area of the basin. Such structure 

matched the different distribution pattern and the different habitat use exhibited in 

the eastern and the western part of the Mediterranean Sea. These regions are defined 

by different oceanographic characteristics. Moreover, nuclear and mtDNA data 

suggested similar dispersal for males and females. However, evidence for directional 

migration of females was observed from the easternmost marginal populations 

towards the Atlantic populations. These data suggest that adaptation to different 

habitat may have shaped the population structure observed. 

Keywords: common dolphin, population genetics, Mediterranean Sea, sex-biased 

dispersal, conservation. 
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Introduction 

The status ofthe common dolphin (Delphinus de/phis) population in the 

Mediterranean Sea has been a concern for many years. In 2003 the Mediterranean 

common dolphin 'subpopulation' was listed as endangered in the IUCN Red List of 

Threatened Animals, based on criterion A2, which refers to a "50% decline in 

abundance over the last three generations". It is also listed in Appendix II of the 

Washington Convention (1973), in Appendix II of the Bonn Convention (1983), in 

Appendix II of the Bern Convention (1986), in and in Annex IV of the European 

Union Habitats Directive (1992). According to ACCOBAMS (Agreement for the 

Conservation of Cetaceans in the Black Sea, Mediterranean Sea and Atlantic 

contiguous waters) this species should be considered endangered. 

The common dolphin shows an extremely wide distribution in all oceans, from 

warm temperate to tropical waters. However, in the Mediterranean Sea it is 

disappearing from most of its historical habitat range, principally in the central 

region of the basin (Ligurian Sea, Gulf of Lion, Tyrrenian and Adriatic Sea), 

although isolated populations are still monitored in the Alboran Sea, northern 

Sardinia, south Tyrrhenian Sea, Malta, and Ionian Sea (Bearzi et al., 2003). 

Literature references, photographic documentation and osteological collections 

indicate large common dolphin populations in these regions until the middle of the 

201
h century (Duguy & Cyrus, 1973; Casinos & Vericad, 1976; Poggi, 1986; 

Cagnolaro, 1994; Bearzi et al., 2004). The causes of this sudden decline are not fully 

understood and this may be an ongoing trend (Bearzi et al., 2003). 

The Mediterranean Sea is an enclosed basin where the intensity of human 

activities has significantly impacted on the marine environment especially along the 

coastal areas. The most probable factors implicated in the decline of this species have 

been identified as global environmental changes, prey depletion, xenobiotic 

contamination and direct takes and bycatch (for a detailed review of these factors, 

see Bearzi et al., 2003). 

The distribution pattern of the common dolphin differs between the western 

and the eastern Mediterranean Sea. In the western area (Alboran Sea, Algeria and 

Balearic Sea), the species is recorded at all depths, but is mainly oceanic, inhabiting 

primarily waters beyond the continental shelf(> 150 m depth) (Viale & Frontier, 

1994; Forcada & Hammond, 1998; Gannier, 1995; Cafiadas et al., 2002; Cafiadas et 
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al., submitted). In this region it frequently forms mixed groups with striped dolphins 

(Cafiadas et al., 2002). Conversely, in the Adriatic Sea and Ionian Sea it has been 

observed primarily in neritic areas where it often occurs sympatrically with the 

bottlenose dolphin (Bearzi, 2003; Politi et al., 1992; Frantzis, Pers. com.). In the 

Aegean Sea, it is also observed mainly in coastal shallow waters over the continental 

shelf(Frantzis et al. 2003). In the enclosed and deep GulfofKorianthiakos (Greece) 

this species is oceanic, but it has always been recorded in mixed groups with striped 

and Risso's dolphins and never on its own (Frantzis & Herzing 2002). 

The density of common dolphins also seems to vary widely across the 

Mediterranean Sea. In the Alboran Sea, the species is abundant, estimated at 14,736 

individuals, (95% CI = 6,923-31 ,366) according to Forcada and Hammond ( 1998). 

On the other hand, although no abundance estimates exist for the rest of the 

Mediterranean, the data available indicate that only a few hundred animals inhabit 

Greek waters (Ionian and Aegean Seas), and some coastal areas of the Thyrrenian 

Sea (Bearzi eta/., 2003; Frantzis eta/., 2003). In the Adriatic Sea and Israel, 

common dolphins are very rare (Bearzi et al., 2004, Kerem, Pers. com.). Increasing 

concern has arisen from a closely monitored population that used to inhabit the 

waters surrounding the island ofKalamos (Ionian Sea). This population has gone 

through a very rapid decline during the last 7- 8 years (Bearzi, 2003). The 

demographic trend of this population mirrors the situation in the central 

Mediterranean, and suggests that the causes of the decline in the common dolphin 

population in the Mediterranean Sea may still be active. 

Given the pace of this decline, it is fundamental to determine the population 

identity of this species in this area, as baseline information required for the 

development of an adequate, and urgent, conservation plan, as recommended by 

ACCOBAMS. For this purpose, in this study we analysed samples from the 

Mediterranean Sea and we compared them with samples from the Eastern North 

Atlantic and from the Black Sea. Our aim is to identify the population boundaries 

across this range and within the Mediterranean Sea, assessing (1) whether the 

Mediterranean common dolphin is a homogeneous population, (2) the relationship 

with the contiguous Eastern North Atlantic populations, and (3) the level of gene 

flow between Mediterranean and Atlantic populations. We also attempt to infer the 

identity of the putative population in the Central Mediterranean by assigning samples 

collected at different stages in the population decline. 
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Materials and Methods 

Sample collection and DNA extraction 

A total of 118 samples were analysed. Samples were from stranded animals or 

biopsy sampling. Samples were from the Black Sea (5), the Ionian Sea (22- these 

samples were mainly from a resident coastal population inhabiting the waters around 

the island of Kalamos, Greece), from the Alboran Sea (34 ), from Portugal ( 16) and 

from Galicia (31 ). Additionally, samples from different areas of the Mediterranean 

Sea were analysed: one sample from the Aegean Sea, one sample from Sicily, one 

sample from Tyrrenian Sea (western coast of Italy), two samples from the eastern 

coast of France, two samples from Valencia, and three samples from Algeria (eastern 

Oran) (Fig.1 ). One sample from France was a museum specimen from the beginning 

of the twentieth century. 

Western Mediterranean 

Figure 1. Map of the Mediterranean and Black Sea. Red dots indicate the samples from the central 
Mediterranean Sea and Aegean Sea. Green circles indicate the Ionian and Alboran Sea populations. 

DNA was extracted from tissue samples preserved in salt saturated 20%DMSO 

by a standard phenol/chloroform extraction method (Hoelzel, 1998). DNA was 

extracted from bone samples using QIAgen PCR purification columns after grinding 

1 OOmg of bone and digesting it at 3 7°C for 48 hours in 1 ml of digestion buffer 

(0.01M TRIS, 0.01M NaCl, 1% SDS, 2mg/ml proteinase K, 0.01 PTB). To avoid 

contamination the extraction and the analysis of the bone specimens were conducted 

in a different laboratory where no cetacean DNA had ever been manipulated before. 

An extraction including everything but tissue was undertaken for all analyses as a 

negative control. 
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Sex determination 

Individuals whose gender was unknown were sexed by amplifying portions of 

the genes ZFX and ZFY as described in Berube and Palsb0ll ( 1996). 

Microsatellite analysis 

Samples were genotyped at 9 microsatellites loci: KWM1 b, KWM2a, 

KWM2b, KWM9b, KWM12a were derived from Orcinus orca (Hoelzel et al., 

1998), EV37Mn from Megaptera novaeangliae (Valsecchi & Amos, 1996), 

TexVet5, TexVet7 and DOS from Tursiops truncatus (Rooney et al. 1999, Shinohara 

et a/.1997). PCR conditions were after Natoli et al. (Chapter 5). Amplified DNA was 

analysed for length variation on 6% polyacrylammide denaturing gels using 

fluorescent imagining on an automated ABI PRISM 377 DNA sequencer, after 

incorporation of 1/10 fluorescent labelled primer. An internal standard marker 

(Genescan-500 ROX, Applied Biosystems) was used to determine the allele sizes. 

The level of genetic diversity was estimated as observed heterozygosity (H0 ), 

expected heterozygosity (He), and allelic richness. Allelic richness controls for 

variation in sample size by a rarefaction method, and was calculated using the 

program FSTAT 2.9.3 (Gaudet, 2001). Evaluation of possible deviations from Hardy 

Weinberg (overall deviation, heterozygote deficiency and heterozygote excess) was 

performed using Fisher's exact test and the Markov chain method (dememorization 

number, number of batches, iteration per batch set at 1,000, Bonferroni correction 

applied). The level ofintrapopulation differentiation was estimated as F1s. These 

analyses were performed using GENEPOP 3.1d (Raymond & Rousset, 1995a,b). 

The level of differentiation among populations was estimated as FsT (Weir & 

Cockerham 1984) using the program ARLEQUIN 2.0 (Schneider et al., 1999). 

The most probable number of putative populations (K) that best explains the 

pattern of genetic variability was estimated using the program STRUCTURE 2.1 

(Pritchard eta!., 2000). We assumed the admixture model and we performed the 

analysis considering the correlated allele frequency model. Burning length and length 

of simulation was set at 100,000 and 1,000,000 repetitions, respectively. To test the 

convergence of the priors and the appropriateness of the chosen bum in length and 

simulation length, we ran a series of independent runs for each value ofK (for 

1 <K>4) as suggested by Pritchard eta!. (2000). We tested whether any particular 

individual was an immigrant or had an immigrant ancestor, by using the model with 
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prior population information, subdividing the individuals into K populations, 

according to the results of the previous analysis. We assumed v (migration rate)= 

0. 0 5 and 0.1, and testing for O<number of generations (G)> 2. 

An asymmetric estimate of the migration rate (M=4Nem) between pairwise 

populations, based on microsatellite and mtDNA data, was calculated using 

MIGRATE 1. 7.3 (Beerli, 2002). The length of the runs was optimised for both markers 

(acceptance-rejection> 2%, R<1.2). Initial runs were set estimating 8 and M with 

FsT and allowing M to be asymmetric. Reruns were set using the parameter estimated 

with the first run and lengthening the MCMC chains. In order to verify the result a 

final nm was set using longer chains. For comparison the migration rate was also 

calculated by hand according to Fsr1/(4Nm+ 1). 

Possible first generation migrants were assessed using GENECLASS 2.0b (Piry S, 

et al., submitted). The program was set on the Rannala and Mountain criterion 

(1997), and on the simulation algorithm described in Paetkau et al. (2003) (10,000 

repetitions). The threshold was set at 0.01. Three populations (Black Sea, Ionian, 

Alboran-Atlantic populations) were considered. 

GENECLASS 2.0b was also used to assign individuals from unknown populations 

(Aegean, Tyrrenian, Valencia and Algeria). The Ionian and Alboran Sea were used 

as reference populations. The Bayesian method (Rannala and Mountain, 1997) was 

used as criteria of computation. The individual's scores were calculated as the 

likelihood of an individual to belong to a population divided by the sum of the 

likelihoods of that individual for all populations. The assignment threshold was set to 

0.01. The computation of probability was performed using the MCMC resampling 

method (number of simulated individuals set to 10,000; a set to 0.01) (Paetkau, 

2003). 

Genetic distances between individuals were estimated using Nei's Da genetic 

distance (Nei et al., 1983). Calculations were performed using the programme 

MicroSatellite Analyser (MSA) (Dieringer and Schlotterer, 2002). 

Multidimensional scaling analysis was performed using the program XL-Stat 

Pro 6.0 based on a matrix ofDa distances among pairwise individuals. 

Sex-biased dispersal was tested using the program FSTAT 2.9.3 (Goudet, 

2001 ). Only adult individuals (a total of: 42 females and 55 males) were considered 

for this analysis. 
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mtDNA analysis 

A total of 114 samples were sequenced for 428 bps at the 5' end of the mtDNA 

control region and compared with 4 sequences already published (from the Black 

Sea, Rosel et a!., 1994 ). In total 118 sequences were considered for the data analysis. 

The mitochondrial DNA control region was amplified either with universal 

primers MTCRf(5'-TTC CCC GGT GTA AAC C) and MTCRr (5'-ATT TTC AGT 

GTC TTG CTT T) after Hoelzel (1998), or with the primers 5'-ACA CCA GTC 

TTG T AA ACC-3' and 5 '-TAC CAA A TG TAT GAA ACC TCA G-3' after Rosel 

eta!. (1994). The PCR reaction conditions and PCR cycling profile were as reported 

in Chapter 5. PCR products were purified with QIAgen PCR purification columns 

and sequenced directly using the ABI dye-terminator method. 

Mitochondrial DNA from the French coast bone samples was amplified using 

two sets of primers designed in order to amplify two overlapping portions of the 

control region of approximately 200bps each (Dmtcrf: 5 '-TTA GTC TCT CCT TGT 

AAA T-3' and Dmtcrr: 5'-GGT GAT TAA GCT CGT GAT-3' (Nichols, 2004); 

MTCRfand mtancr: 5'-AAA ATA AAT GAA TGC ACA ATA-3'). The PCR 

reaction conditions and PCR cycling profile were as reported in Chapter 5. A total of 

357 bps were amplified. Sequence alignment was performed using ClustalX 

(Thompson eta!., 1997). 

The degree of differentiation (Fsr), the nucleotide diversity (n), Tajima's D and 

Fu's Fs were estimated using ARLEQUIN 2.0 (Schneider eta!., 1999). 

A median-joining network was generated to infer phylogenetic relationships 

among the mtDNA haplotypes, using the program NETWORK 2.0 (Bandelt eta/. 1999; 

www.fluxus-engineering.com). 

Results 

Assessing genetic variation and population differentiation 

Samples were divided in five populations based on their geographic origins. 

Considering the microsatellite data, the populations were tested for deviation from 

the HW equilibrium. Observed and expected heterozygosities were calculated at each 

locus for each population (Table 1 ). 
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Table 1. Genetic variation at each locus for each population. The number of individuals analysed for 
each population is indicated below the population name. BS stands for Black Sea population. The 
number of different alleles, number of private alleles (in parenthesis) and allelic richness (in squared 
brackets), heterozygosity observed (Ho), and heterozygosity expected (He) are reported. The 
respective averages (standard deviation in parenthesis) are reported in the last rows. One asterisk 
indicates the loci that showed significant deviation from the HW equilibrium (p<0.05); two asterisks 
indicate those loci still significant after Bonferroni correction (p<O.OOl ). 

Pouulations 
BS Ionian Alboran Portugal Galicia 

N=5 N=22 N=34 N=l6 N=31 

KWMlb N. Alleles 4 2 [1.98] 2 [ 1.59] 4[ 1.55] 3 [2.04] 3 [ 1.82] 

Ho 0.5 0.191 0.147 0.186 0.226 

He 0.53 0.219 0.142 0.375 0.257 

KWM2a N. Alleles 16 4 (I )[3.58] 6 [4.14] 14 (2) [5.59] 10 [5.13] 12 (1)[5.6] 

Ho 0.667 0.818 0.882 0.688 0.839 

He 0.636 0.801 0.887 0.871 0.887 

KWM2b N. Alleles 8 5 [4.56] 6 [3. 77] 8 (1)[4.85] 6 [4.61] 7 [4.62] 

Ho I 0.773 0.882 0.813 0.774 

He 0.788 0.744 0.849 0.829 0.83 

KWM9b N. Alleles 12 4 [3.78] 8 [4.35] 9 [4.87] 7 [4.43] 12 [5.52] 

Ho 0.333* 0.864 0.879 0.875 0.936 

He 0.788 0.784 0.846 0.815 0.886 

KWM12a N. Alleles 1 0 4 [3.6] 5 [3.98] 9 (1)[4.75] 7 [4.69] 9 (I )[4.68] 

Ho 0.667 0.772 0.765 0.625* 0.871 

He 0.682 0.760 0.823 0.823 0.796 

EV37Mn N. Alleles 24 6 [5.36] II [4.87] 15 (I) [5.75] 14 [6.0] 19(3)[6.1] 

Ho 0.5 0.818 0.941 I 0.968 

He 0.924 0.825 0.899 0.913 0.918 

TexYet5 N. Alleles 11 2 [2] 7 [ 4.59] 10[4.98] 8 [4.64] 10[4.93] 

Ho 0.2 0.682 0.656** 0.786 0.5** 

He 0.467 0.832 0.855 0.841 0.854 

TexVet7 N. Alleles 7 2 [ 1.8] 3 [2.3] 5 (1)[3.52] 5 (I )[3.89] 5 (1)[3.7] 

Ho 0.333 0.364 0.879 0.688 0.677 

He 0.439 0.503 0.725 0.788 0.742 

D08 N. Alleles 13 3 [2.6] 7 [ 4.16] 10 [5.05] 10[5.16] 12 (3) [5.04] 

Ho 0.5 0.682 0.735 0.875 0.645** 

He 0.561 0.793 0.872 0.875 0.845 

Average N. Alleles 3.6 (1.4) 6.1 (2.7) 9.33 (3.6) 7.8 (3.2) 9.89 (4.7) 

(SD) [3.25 (1.24)] [3.75 (1.09)] [4.55 (1.29)] [4.51 (1.09)] [4.67 (1.27)] 

Ho 0.52 (0.24) 0.66 (0.23) 0.75 (0.24) 0.73 (0.23) 0.72 (0.23) 

He 0.65 (0.16) 0.7 (0.2) 0.77 (0.24) 0.79 (0.16) 0.78 (0.21) 

The Alboran and the Galician population deviated significantly from the HW 

equilibrium at one and two loci respectively (p<O.OOl, Bonferroni correction 

applied). Average allelic riclmess, observed and expected heterozygosities were 

lowest for the Black Sea and the Ionian populations. However, the limited number of 

samples for the Black Sea population should be taken into account when considering 

these results. 

The Ionian population showed lower allelic richness and expected 

heterozygosity when compared with the Alboran and the Atlantic populations, 
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whereas the Alboran population showed similar values to those of the Atlantic 

populations. 

For mtDNA, forty-five different haplotypes were observed based on 42 

variable sites (Fig. 2). 
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Figure 2. Polymorphic sites among 45 haplotypes are shown (left). Haplotype frequencies (right) 
were reported for each haplotype in each population. BS=Black Sea, Ion= Ionian, Tyr=Tyrrenian 
Alb=Alboran, Port=Portugal, Gal=Galicia. The total number of haplotype analysed for each 
population is reported below the population code. 

Two common haplotypes were shared among all populations. Overall gene and 

nucleotide diversities were high at 0.943 and 0.015, respectively. The Alboran 

population showed the lowest gene diversity, whereas the Black Sea population 

showed the lowest nucleotide diversity (Table 2). Fu' s Fs test of selective neutrality 

was found highly significant for the Galician population (Fs=-11.88, p<0.02), 
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suggesting possible demographic population expansion. However, Tajima's D test 

was negative but not significant (p=0.28 Beta distribution approximation). 

Table 2. Genetic diversity (Gene Div.), nucleotide diversity (Nucl. Div.), and the values of tests for 
neutrality Tajirna'D and Fu's Fs are reported for each population. 

N Gene Div. Nucl. Div. Ta"ima' D Fu'Fs 
Black Sea 9 0.917 0.009 0.494 -2.0 
Ionian 22 0.84 0.015 1.08 4.19 
Alboran 34 0.832 0.012 -0.138 -1.29 
Portugal 17 0.971 0.014 -0.447 -4.157* 
Galicia 30 0.977 0.016 -0.653 -11.88*** 

Genetic differentiation among pairwise populations was estimated using F sr 

(Table 3). Based on the microsatellite data, the Black Sea and Ionian populations 

were significantly differentiated from one another and from all other populations. 

Conversely, no genetic significant differentiation was detected among Alboran, 

Gibraltar and the Atlantic populations. The mtDNA analysis confirmed the 

differentiation observed between the Ionian and Alboran populations, but also 

indicated significant differentiation between the Alboran population and the Atlantic 

populations (Galicia and Portugal). Instead, the Black Sea population was 

significantly differentiated only from the Alboran population. Again, the limited 

number of samples for this population should be taken into account when 

considering these results. 

Table 3. Pairwise population differentiation values expressed as FsT based on rnicrosatellite data 
(below diagonal) and mtDNA haplotype frequencies (above diagonal). Sample size for the 
rnicrosatellites for each population is reported in the third colournn. Sample size for the mtDNA data 
is reported in the third row. Statistic significance is reported as follows: * = p<0.05, ** = p<0.01, *** 
= p<O.OOl. 

mitochondrial DNA 
Pop Black Sea Ionian Alboran Portugal Galicia 

N 9 22 34 17 30 

Black Sea 5 0.053 0.086* 0.003 0.021 

Ionian 22 0.099*** 0.09** 0.05* 0.063*** 

Alboran 34 0.102*** 0.053*** 0.065* 0.074*** 

Portugal 16 0.096*** 0.056*** -0.002 -0.009 

Galicia 31 0.097*** 0.052*** -0.001 -0.003 

The Bayesian analysis, based on the microsatellite data, was used as an 

alternative approach to test the population structure suggested by the Fsr values. The 

number of populations (K) that best explained the genetic variability observed across 
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our samples was 2, supporting the differentiation between the eastern and the western 

Mediterranean populations suggested by the FsT analysis (Fig. 3). Consistency 

among different runs was observed for the estimate of P(X!K) and the prior a, 

indicating that the bum-in length and the length of the runs were appropriate. 

Figure 3. Estimated proportion of the coefficient of admixture of each individual's genome that 
originated from population k, for K=2. Each individual is represented by a column. The asterisk 
indicated the individual identified as migrant by Structure and Geneclass. The $ indicated the 
individuals identified as migrants by Geneclass. 

The spanning network was drawn including the haplotypes of the nine 

individuals from different areas of the Mediterranean Sea. No cluster reflected 

geographic origin (Fig. 4). 

AlAl• 

PI•F 
Al816 . • BS 

00:10:1 • -· AUI-4 
P22F . • • Tyneno 

OlJ~ . Pta,: • GJM . 
......,.., 

• f'<lrugOI 
BSVI 

Al.811 - • ruiiF -.Len e 0201' . o•-
• ...._.., 

Pill 
OZlf . 

P2•1 • • Al.81 

. 11$006 

88011 . • ... :~a 
Gill' . 

851)1)0 

• ... ll 

G32F. 
OIIF. ,, t c, 

P2()l' • G2eF . • EOIOf PUF 
Al.825 eot.e • 

010f . 

AI.B3 . PIIF . 

onz • 

• BOMZ 012. 
AU117 . 

Figure 4. Minimum spanning network among haplotypes. The size of the circles is proportional to the 
total number of haplotypes observed. Sectors are proportional to the number of each haplotype 
observed in each population. Populations are identified as follows: Black Sea population in blue, 
Ionian population in red, Alboran population in yellow, Portugal in green and Galicia in light blue. 
Orange indicates the haplotypes from the Tyrrenian Sea and pink the haplotype from the Aegean Sea. 
White circles indicate ancestral extinct haplotypes. Haplotypes names are the same as in Fig.2. 
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Migration rate, migrants and sex biased dispersal 

We used two different programmes to detect possible migrants: STRUCTURE 2.1 

and GENECLASS 2.0b. STRUCTURE identified one possible first generation immigrant 

from the eastern Mediterranean population to the Alboran population at both the 

values of v=O.l and v=0.05. GENECLASS suggested four possible first generation 

immigrants including the individual identified by STRUCTURE 2.1 (Fig. 1 ). 

Classic FsT based migration rates and asymmetric migration rates were 

calculated for each pair of contiguous populations with both nuclear and mtDNA 

markers (Table 4). Values based on the microsatellite markers did not show any 

directional movement, while those based on the mtDNA markers suggested 

directional migration from east to west for all neighbouring pairs of populations. 

Table 4. Estimate of the migration rate (M) between contiguous populations, based on the 
microsatellite and mtDNA data. Nm columns refer to the values calculated according FsT=l/(4Nm+ 1). 
The other columns refer to the asymmetrical migration rate calculated using a maximum likelihood 
method (MIGRATE): 1,2 stands for: migration from population 1 to population two; 2,1 stands for: 
migration from population 2 to population 1. The interval confidence (95% c.i.) is also reported. 

microsatellites (bi-oarental) mtDNA (maternallv inherited) 

Pooulation Nm I 2 2 I 95%c.i. Nm I 2 2 I 95%c.i. 

I BlackSea -- 10.960 9.93-12.06 -- 0.911 0.797-3.282 
2.280 8.930 

2 Ionian 4.530 -- 4.13-4.97 6.074 -- 2.436-1 0.34 
I Ionian 

4.467 -- 7.534 6.9-8.57 
5.060 -- 2.570 1.81-3.46 

2 Alboran 8.538 -- 7.95-9.15 34.598 -- 27.21-43.37 
I Alboran 

inf 
-- 13.512 12.65-14.41 -- 6.070 3.21-7.41 

2 Portugal 16.718 
7.190 

87.230 25.65-105.86 -- 15.75-17-70 --

I Portugal -- 9.58 8.77-10.32 -- 0.158 0.138-0.795 
inf inf 

2 Galicia 13.46 -- 12.58-14.39 93.145 -- 70.89-171.85 

Sex-biased dispersal was tested among populations. Although F1s was 

significantly lower in females than in males, the other parameters analysed 

(relatedness index, mean assignment test, Ho, and He) did not show any significant 

difference between males and females (Table 5). 

Table 5. Different tests to assess sex-biased dispersal and respective p-values are reported (calculated 
after 1000 randomizations). Relat =coefficient of relatedness, Hs =within group gene diversity, 
MeanAss = mean assignment test, VarAss = variance of the Assignment test. 

N Fis Fst Relat Mean.Ass. Var.ass. Ho Hs 
F 42 0.013 0.057 0.107 -0.186 8.495 0.738 0.747 
M 56 0.084 0.049 0.086 0.139 11.285 0.682 0.745 
ow rail 0.05 0.062 0.111 0.706 0.743 
p-value 0.032 0.57 0.45 0.58 0.39 0.074 0.923 
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Population assignment of individuals 

We attempted to assess the most probable source populations for the nine 

unassigned samples collected from Algeria, the Tyrrenian Sea, and the Aegean Sea). 

An assignment test was performed using the Ionian and Alboran Seas as 

reference populations. One sample from Oran and one from France were assigned to 

the Ionian population, according to the likelihood values and the associated 

probability values. According to the likelihood values, the other samples were 

assigned to the Alboran population. However, not all the assignments were supported 

by the associated probability values. For the samples from the Aegean and Tuscany, 

one sample from Valencia and one from Oran the probability of belonging to any of 

the populations were equal to zero (Table 6). 

Table 6. Assignment test for individuals from the central Mediterranean using GENECLASS 2.01. 
Popl =Ionian population, Pop2 =Alboran population. The likelihood scores (score%) and likelihood 
values to both populations are reported. The associated probabilities for each population calculated 
using a Montecarlo Chain Method (10,000 replications) are reported on the right of the table. The 
number of loci used to assign each individual is reported. The 'code' refers to the same individuals in 
Fig.5. The asterisk indicates a pre-decline sample. 

Aeg<::an. Alboran 99.994 ; Ionian 0,()()6 ."l7"'41Jj" 2:3,! 9J ... ·~ 0.000 o .. QQ9 9 
2 Tus«::a!l\' AJI;!(JJ:liJl LQM()O, Ionian 0,000 27.059 21.726 0.000 0.000 9 
3 Sici1v A1\)oran 99.979 Ionjan ().021 45.455 21)82 0.14.4 . ().183 8 
4 France* Ionian 99.943 Alboran 0.057 13.501 16.745 0.493 0.047 5 
Sa Valencia All:!oran 99.983 Ionian 0.017 23.619 19.839 0.000 0.002 9 
Sb Valencia All:>oran 100.000 Ionian 0.000 19.967 12.987 0.000 0.285 9 
6a Oran Alboran 100.000 Ionian 0.000 17.964 11.498 0.080 0.555 5 
6b Oran Alboran 100.000 Ionian 0.000 28.181 22.639 0.000 0.000 9 
6c Oran Ionian 93.469 Alboran 6.531 11.255 12.411 0.638 0.418 5 

Multidimensional scaling analysis was used as an alternative method to assign 

the aforementioned individuals. It supported the differentiation between the Ionian 

population and Alboran population and clustered the nine unassigned samples as 

shown in Fig. 5. 
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Figure 5. Multidimesional scaling analysis based on Da distance between pairwise individuals. Axes 
x and y represented dimension I and 2 respectively. Individuals from the Ionian population are in 
black. Individuals from the Alboran population are in open squares. Numbers indicate the individuals 
assigned and correspond to those reported in Table 6. The asterisk indicates the sample from the pre­
decline period. 

Discussion 

Our first objective was to test for evidence of subpopulation structure in 

Mediterranean Sea. The Bayesian analysis, based on individual genotypes 

(STRUCTURE), suggested differentiation within the Mediterranean between the Ionian 

and Alboran populations. Both nuclear and mtDNA FsT analyses supported this 

result showing clear differentiation between the Ionian and Alboran populations 

(Table 2). Significant differentiation was also detected at the nuclear level for the 

Black Sea population, but not confirmed by the Bayesian analysis or the mtDNA 

data, although this may be a result of the limited number of samples available from 

the Black Sea population. 

Considering the relative proximity of the Ionian and Alboran populations, such 

marked differentiation was unexpected. The common dolphin is a highly mobile 

species capable of long distance dispersion, confirmed by the high level of panmixia 

(lack of strong population structure) observed world-wide (see Chapter 5). Therefore, 

it is reasonable that the geographic distance is probably not responsible for the 

limited gene flow observed within the Mediterranean Sea. Moreover, if considered in 

a worldwide contest, the FsT values observed between the two Mediterranean 

populations are considerably high. Common dolphin populations from different sides 

of the Atlantic Ocean show similar or even lower genetic differentiation (FsT values 
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based on microsatellites were between 0.012 and 0.045; FsT values based on mtDNA 

were between 0.028 and 0.059). 

Differentiation between western and eastern Mediterranean populations has 

been observed in other marine species such as the common sole (Solea vulgaris; 

Guarniero et al., 2002) and the sea bass (Dicentrarchus labrax; Bahri-Sfar eta!., 

2000). A strong population boundary has also been observed in the bottlenose 

dolphin (Tursiops truncatus) between the western and the eastern Mediterranean 

populations (Chapter 3). Adaptation to different habitats through specialisation in 

different foraging behaviours was suggested as a possible factor for the 

differentiation ofthe populations in this region (Chapter 3). The fact that the 

common dolphin shows a different distribution preferring deep oceanic waters in the 

western Mediterranean and neritic waters in the eastern Mediterranean suggest 

adaptation to the exploitation of different resources and is consistent with this 

hypothesis. 

Our second objective was to assess the relationship between the Mediterranean 

and the Atlantic populations. The Alboran population was not differentiated at 

nuclear markers from the Atlantic populations, though mtDNA analysis showed 

significant differentiation. 

Despite the presence of the Strait of Gibraltar, the oceanographic 

characteristics of the Alboran Sea are similar to those of the eastern North Atlantic 

Ocean. The Almeria-Oran front situated 350 km within the Mediterranean Sea 

represents the actual shift between oceanic and Mediterranean waters. Common 

dolphins in both these areas are generally observed in open waters off the continental 

shelf (Cafiadas et al., 2003, Lopez et al., 2004). It is reasonable that common 

dolphins in these areas may have adapted to similar habitats, which may facilitate 

movement of individuals between these two populations. 

The contrasting pattern between the nuclear and mtDNA results suggests 

possible female philopatry for the Alboran population. Female philopatry is not 

unusual in marine mammals and often population structure is more evident at the 

mtDNA level because of the larger dispersal of males (Hoelzel, et al., 2002). 

However, on a worldwide scale the common dolphin does not show female 

philopatry (see Chapter 5). Moreover, our results did not show any significant sex­

biased dispersal among the populations analysed, reinforcing the pattern observed 

worldwide. The analysis of the gene flow, based on a coalescent method using both 
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nuclear and mtDNA markers, may provide an alternative explanation. The 

microsatellites suggested similar gene flow among pairwise populations (Table 4). 

However, the mtDNA analysis suggested marked directionality of gene flow from 

eastern to western populations, indicating directional movements of females towards 

the eastern North Atlantic populations. Directional female gene flow would not 

imply population homogenisation but it would rather drain diversity from the 'donor' 

population. 

The spanning network did not identify any clear lineage sorting (Fig.4). 

However, both the Ionian and Alboran populations were characterised by lower gene 

diversity and few highly represented haplotypes different from one another and not 

frequent among the other populations. Moreover they showed unique haplotypes, 

suggesting population discreteness. Two of the most common haplotypes among the 

Mediterranean populations are at the centre of a star-like structure, characteristic of a 

post-bottleneck expansion. Interestingly, all the Black Sea haplotypes are also within 

a star-like structure or among the commonest haplotypes, and moreover this 

population shows the lowest nucleotide diversity. The Atlantic populations show a 

different pattern with no dominance of one haplotype and significant Fu's Fs values. 

We attempted to assign the samples from the central Mediterranean (and one 

sample from the Aegean Sea) in order to investigate the nature of the common 

dolphin population that underwent the recent drastic decline. 

We used two different methods and the results were in some cases ambiguous. 

According to the probability values, some individuals were not assigned to either 

population, suggesting that they might come from an unsampled population. The 

three samples from the central Mediterranean show inconsistency in the results 

reinforcing this hypothesis. In fact, the samples from Tuscany, France (pre-decline) 

and Sicily were plotted at the border of the area defined by the reference populations 

in the MDS analysis, and for two of them the associated probabilities were 

ambiguous. 

Defining population boundaries is fundamental to the formulation of effective 

conservation plans. Our results show a clear population boundary between the 

western and the eastern Mediterranean indicating the presence of discrete population 

in these two areas. Moreover, our results do not exclude a possible third population 

inhabiting the central Mediterranean Sea, as some of the samples from this area 

could not be clearly assigned to either population. We suggest that the population 
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differentiation observed in the Mediterranean Sea may have arisen from adaptation to 

different habitats. We suggest that the Mediterranean common dolphin population 

catmot be considered as a single homogeneous population and that different areas of 

the Mediterranean Sea should be considered independently for further actions 

towards the conservation of this species. 
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DISCUSSION 

It is clear that bottlenose and common dolphins are well adapted to a wide 

variety of habitats: they are found in the cool waters of Scotland and Iceland and in 

the tropical waters ofMexico, in both coastal and pelagic waters. Their wide 

distribution and adaptability is reflected in their high morphological variability. The 

similarity in the distribution and pattern of morphological variability suggests that 

these species underwent similar evolutionary processes that shaped their populations. 

They also show close relationship in molecular phylogenies (Le Due et al., 1999). 

However, in other respects, such as life history, habitat use, social structure, and 

feeding ecology they are different. A key difference is that common dolphins are 

mainly pelagic while bottlenose dolphins are mainly coastal. This thesis provides a 

comparative assessment of these two species, especially in the context of comparing 

coastal and pelagic populations of each species, towards a better understanding of the 

evolutionary processes leading to population structure. 

Morphotypic versus genetic differentiation 

Genetic differentiation was not always correlated with morphological 

differences in either species. For both species different morphotypes showed 

generally higher genetic differentiation, but not always more than populations of the 

same morphotype. In fact, in the bottlenose dolphin, the two populations described as 

T aduncus based on morphology, were highly divergent and may be different 

species. Similarly in the common dolphin, the two populations described as D. 

capensis showed the highest pairwise genetic differentiation and were not 

monophyletic. 

In the bottlenose dolphin, reciprocal monophyly was observed between 

different morphotypes (aduncus versus truncatus) and also between populations of 

the same morphotypes (in truncatus: coastal versus pelagic populations; in aduncus 

the South African versus the Chinese population). Conversely, in the common 

dolphin lineage sorting was not observed even between different morphotypes. The 

eastern North Atlantic population of D. capensis formed a different lineage, but the 

South African D. capensis population clustered with D. delphis (Chapter 4). 
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This is consistent with the pattern seen for some other species of small 

cetaceans. In Dall's porpoises (Phocoenoides dalli) two morphologically distinct 

forms (P. d. dalli and P. d. truei) showed genetic differentiation at the same level as 

seen for comparisons of populations of the same form. Moreover they did not show 

reciprocal monophyly, as twelve haplotypes were shared between the truei and dalli 

form, and therefore they were recognised as two forms of same species (Escorza­

Trevino et al., 2004). 

The classification of cetacean species remains controversial. From a cladistic 

point of view, essentially all of the species within the Delphinidae are classified on 

the basis of superficial phenotypic similarities, and not on the basis of accepted 

synapomorphies (see Heyning & Lento 2002). In this context molecular studies are 

being used to help clarify differences among morphotypes. My data suggests that T 

aduncus and D. capensis should not be considered single species on a world wide 

scale, as proposed by some authors (Rosel et al., 1994; Wang et al., 1999). Based on 

a phylogenetic approach (Chapter 2) the South African and Chinese populations ofT 

aduncus should probably be considered as two different species, while the status of a 

single D. capensis species is questionable (Chapter 4). 

As stressed by some authors (Curry et al., 1997; Le Due et al., 1999) my result 

reinforce the need for a more comprehensive investigation of the worldwide 

population genetics and morphotypic variation of these species, in order to better 

define their taxonomy. 

Evolution of population structure 

For the bottlenose dolphin, we suggested that independent founder events may 

have originated local coastal populations, possibly as consequence of the releasing of 

suitable habitats during interglacial periods, as it has been proposed for harbour 

porpoises (Tolley et al., 2001). This was contrasted with an alternative explanation 

based on the differential social structure in the coastal and pelagic populations. 

The comparison between common and bottlenose dolphins supports the 

hypothesis that habitat structure may influence population structure in these species. 

The bottlenose dolphin, primarily a coastal species, shows strong population 

structure. Conversely, the common dolphin, principally a pelagic species, shows less 

population structure and relatively low genetic differentiation even between different 

morphotypes. Moreover, in both species most of the genetic variability is partitioned 
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among the coastal populations. The two aduncus populations are coastal populations 

(Wang et al., 1999; Cockcroft eta!., 1990) as are the T. truncatus western North 

Atlantic and Gulf of Mexico populations. In the common dolphin the eastern North 

Atlantic population of D. capensis is generally found in more coastal and shallower 

waters (Perrin, 2002). 

Social structure may also be an important factor. Social structure is influenced 

by the feeding ecology (type and availability of prey) and ultimately by the habitat. 

Coastal populations ofbottlenose dolphins are characterised by a complex social 

structure based on strong and defined relationships among the individuals of the 

group (fission-fusion society) and despite their capability, individuals do not 

generally move across long distances (Scott et al., 1990; Connor eta!., 2000). 

Common dolphins on the other hand show a more fluid social structure based on 

aggregations ofhundreds individuals (Evans, 1994). 

There is evidence from the behavioural data that social structure may be a 

consequence of adaptation to a specific habitat. Large, fluid social groups are 

common for pelagic delphinid species. Striped dolphins (Stenella coeruleoalba), 

Fraser's dolphins (Lagenodelphis hosei) and spotted dolphins (Stene/la attenuata) are 

all pelagic species that generally form large aggregations of hundreds or thousand 

individuals. Despite the limited information available, pelagic populations of 

common dolphins resemble the characteristics of other pelagic species, while 

common dolphins in coastal habitat seem to show social structure more like that of 

bottlenose dolphins (Bruno, 2001). 

Pelagic habitats are more homogeneous, with environmental characteristics 

changing more gradually on a geographic scale. Open oceans offer few options for 

hiding from predators, and finding food in a disperse environment may be difficult. 

Therefore aggregating in big groups is likely to be advantageous, to the extent that 

often interspecific associations are observed among pelagic delphinids (Wtirsig, 

2002). They often migrate following the seasonal movement of prey species. 

Conversely, coastal habitats are generally heterogeneous. Physical boundaries 

may be present between one area and another, and topographic, oceanographic and 

biological features can vary consistently even across small geographic ranges. Small 

communities, specialised on the local food resources would be more advantageous. 

Specialisation in foraging strategies would provide advantage iftransferable 

between individuals and between generations. However transferable knowledge 
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implies complex social structure and long-term association between individuals 

(Whitehead, 1998). Gregarious, long-lived animals, such as gorillas (Gorilla gorilla), 

deer (Cervus elaphus), elephants (Loxodonta africanus) rely on information transfer 

to exploit their habitat (Conradt & Roper, 2003). Bottlenose dolphins fit in this 

category showing complex social structure in which the transmission of infom1ation 

plays an important role (Lusseau, 2003; Janik, 2000). This may explain the higher 

site fidelity of individuals and therefore the reduced gene flow in coastal populations. 

Further evidence of a correlation between habitat structure and population 

structure is provided by the analysis of the population structure on a smaller 

geographic scale. The Mediterranean Sea represents an ideal range to test our 

hypothesis, as it offers a wide variety of different oceanographic environments and 

oceanographic discontinuities throughout the whole range. 

The population structure observed in bottlenose and common dolphins in the 

Mediterranean Sea reflected the pattern observed on a worldwide scale: the 

bottlenose dolphin showed strong population differentiation, whereas the common 

dolphin showed less differentiation (Chapter 3 and Chapter 6). The interesting result 

was that for the bottlenose dolphin the population boundaries identified by the 

genetic analysis alone corresponded to borders between different habitat regions. The 

strongest boundary was identified between the Black Sea and the eastern 

Mediterranean Sea. Not enough samples from the Black Sea were available to test 

the strength of this boundary in common dolphins. However, morphological data for 

both species show differences in body size, life history and nursing time for both 

species and each Black sea population has been proposed as a different subspecies of 

T truncatus or D. de/phis. Moreover, it has been argued that such differences may be 

the result of adaptation to a specific environment (Arnaha, 1994). 

A second strong boundary, between the eastern and western Mediterranean, 

was identified in both species, despite its general lack in population structure for the 

common dolphin. It reflects the different preferred habitat of common dolphins in 

the two basins: mainly coastal in the eastern Mediterranean, and mainly pelagic in 

the western Mediterranean. Population differentiation between the eastern and 

western Mediterranean populations has also been observed in other species (Solea 

vulgaris, Guarniero et al., 2002; Dicentrarchus labrax, Bahri-Sfar et al., 2000). In 

these studies the authors proposed that differences in hydrographic characteristics 

defined the different habitats in these two areas, and promoted the differentiation of 
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intraspecific populations. A strong boundary was also identified for the bottlenose 

dolphin between Scotland and the eastern North Atlantic. This boundary was not 

observed in the common dolphin, as the Scottish population did not show any 

significant differentiation from the other eastern north Atlantic populations. This can 

be explained again by difference in the habitat. In Scotland the bottlenose dolphin is 

mainly coastal and resident populations are well documented in the area (Wilson, 

sometime), whereas the common dolphin occurs only seasonally and in mainly 

pelagic waters (Evans eta!., 2003). 

Along the coast ofKwaZulu-Natal (eastern Southern Africa), T aduncus is 

among the most common species in the coastal waters. Observational data on the 

coastal populations suggested small group size, high site fidelity and restricted 

habitat ranges for these populations, with little movement from one area to another 

(Cockcroft eta!., 1990). Furthermore, the seasonal occurrence of a transient 'pelagic' 

population is documented. This population is characterised by groups of hundreds 

individuals following the movement along the coast of the sardine stocks in the 

winter season. Despite the low genetic variability that characterised this population, 

incipient population differentiation between the seasonal pelagic population and the 

resident coastal population has been observed, and may represent a further example 

of population differentiation correlated to habitat differences. 

Implications for conservation 

Understanding the population structure of a species across its habitat range 

and the mechanisms that lead to this population structure provides fundamental 

information for the formulation of conservation programmes. Conservation genetics 

applies genetics analysis to define units of population to conserve or Management 

Units (MUs). Moritz (1994) defined a MU as" ... populations with significant 

divergence in allele frequencies at nuclear or mitochondrial loci, regardless of 

phylogenetic distinctiveness of alleles". 

With this study I largely increase the knowledge about population structure 

bottlenose and common dolphins and this information can be used as a basis for 

further studies focusing on a more detailed assessment of their population structure 

to identify MUs. 

For the bottlenose dolphin I identified a possible new species, the South 

African population defined as T aduncus (Chapter 2). Moreover, I found strong 
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population differentiation even across small geographic ranges and, considering the 

possible mechanisms that may lead to this pattern (Chapter 3), further population 

structure cannot be excluded on a smaller local scale. Therefore, for the conservation 

management of this species detailed analysis of the local populations is highly 

recommended in order to identify which units are most important to conserve. 

For the common dolphin I detected less strong population structure compared 

to the bottlenose dolphin (Chapter 5). For example in the eastern North Atlantic I did 

not find significant population differentiation suggesting that these populations may 

represent a single stock. However, further analysis, including samples from other 

areas of this region, is recommended. In fact, well-defined local populations were 

identified in this species (e.g. in the eastern North Pacific, in the eastern 

Mediterranean Sea) suggesting that despite the wide distribution, a broader study that 

surveys the population structure on a more local scale would be required to define 

units to conserve. 

In this study I considered three main cases on a small geographic range that 

require immediate conservation effort: the Mediterranean bottlenose dolphin, the 

Mediterranean common dolphin and the South African bottlenose dolphin population 

T aduncus. In these cases I managed to identify possible MUs that should be 

considered priorities in the formulation of conservation management strategies. A 

summary is provided in Table 1. 

In the Mediterranean and Black Seas, threats to cetacean survival arising from 

human activities can be particularly severe, due to the enclosed and semi enclosed 

nature of such basins, and to the human density and intensity of activities, 

particularly in the coastal zone where habitat loss and degradation is a major 

concern. 
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Table 1. Summary of the managements units identified in this study and suggested conservation 
recommendations. 

Population Identified Mana2ement Units Conservation recommendations 
Mediterranean & - Black Sea, eastem - Further investigation covering 
Black Sea bottlenose Mediterranean, westem contiguous local population is 
dolphin (T. truncatus) Mediterranean, eastem North recommended 

Atlantic and Scottish - High conservation measures should be 
populations taken for those populations inhabiting 

marginal habitats. 
South African - A North coastal population - Focus on limiting the number of by-
bottlenose dolphin ( T. - A South coastal/migratory catch along the North Coast. 
ad uncus) population - Promote further investigation to better 

assess the identity of the South coastal 
population versus the migratory 
population. 

Mediterranean - Western and eastern - Higher priority for the conservation of 
common dolphin (D. Mediterranean populations those coastal areas where this species 
de/phis) - Possible third different still occurs i.e. eastem Mediterranean 

population in the central and some areas in the central 
Mediterranean Mediterranean (Ischia, Malta, 

Sardinia). 
- Promote further investigation covering 

those areas where insufficient data are 
available. 

In the Mediterranean and Black Seas the bottlenose dolphin shows a 

fragmented distribution along the coastal areas and it is likely to be heavily impacted. 

My results showed fine-scale population structure with boundaries that coincided 

with transitions between habitat regions. These results suggest that further 

subdivision could be found considering contiguous geographic areas. Therefore in 

order to define Managements Units a detailed population analysis should be 

conducted on a small geographic scale. 

The Mediterranean common dolphin has recently undergone to a drastic 

decline that resulted in its disappearance from most of its historical habitat range, 

especially in the central Mediterranean (Bearzi et al., 2003). My results provide the 

first insight into the population structure of this species in the Mediterranean Sea, 

identifying at least one population boundary: between the eastern and the western 

Mediterranean Sea. Moreover, they did not exclude the existence of a possible third 

different population inhabiting the central area of the Mediterranean Sea. Coastal 

habitats require local adaptation in order to permit full exploitation of their resources. 

However, quick changes in environmental conditions, possibly detern1ined by 

anthropogenic factors, may not be followed by a fast adaptive response, therefore 

leading to the disappearance of populations. The common dolphin is primarily a 
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pelagic species, however in the eastern Mediterranean Sea it seems to have adapted 

to a coastal habitat, shaping its social structure. This may have happened in a period 

when these coastal habitats provided a favourable environment. The fact that this 

species is more typically pelagic may limit the rate of re-colonisation of these coastal 

areas and therefore facilitate the permanent disappearance of this species once the 

local habitat is no more suitable. 

In South Africa, along the coast of KwaZulu-Natal the anthropogenic factor 

is the presence of shark-nets to protect bathers from shark attacks. Dolphins often get 

entangled and this results in a substantial by-catch, twice as high as the maximum 

sustainable capture rate considered for cetacean populations by the International 

Whaling Commission (Anon., 1991). The concern is about the impact on local 

populations. In this case boundaries among putative populations were identified and 

the populations redefined in order to estimate the actual impact on each population. 

This helps identify the areas that require the greatest conservation effort. The North 

Coast should be considered a priority and conservation plans should aim to reduce 

the rate of by-catches under the maximum sustainable capture rate calculated on the 

population estimates on this area. 

In both the bottlenose and the common dolphins the most vulnerable 

populations are identified as those inhabiting coastal habitats and that appear to be 

specialised in exploiting the local resources. Coastal habitats are indeed the most 

heavily impacted by human activity and special effort should be concentrated on 

preserving those areas. However, in both species pelagic populations are also 

observed, but little or no data are available on these populations and their 

environment. A joint effort by the scientific community aiming to explore this 

environment is highly recommended to gain a holistic view of the populations that 

require the greatest conservation effort. 
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