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Abstract 

Quantifying the facies architecture of flood volcanic provinces is important as it can be used 

to understand the physical volcanology and rock property variations throughout the igneous 

succession. This is very important to the petroleum industry exploration efforts in volcanic 

rifted margins as volcanic successions commonly mask geophysical images of sub-volcanic 

petroleum plays. This problem is known as the 'sub-basalt imaging problem' and is caused 

by factors including the geometrical heterogeneities and elastic velocity and density contrasts 

through the volcanic pile. 

The study of facies architecture is broken down into a series of orders of scale. These scales 

reflect a systematic approach to the characterisation of the facies architecture, from a 

centimetre through to kilometre-scale, and incorporates 3D modelling of a range of data types 

for constructing the 3D structure of the flood volcanic successions. 

A system for the characterisation of lava flow scale facies is presented termed the 'intrafacies 

scheme'. This may be used to assess and interpret the geological facies heterogeneities 

present on a 'micro-scale' and link the interpretations to geophysical rock properties. The 

scheme is applied to outcrop-scale case studies in the Talisker Bay area of the Skye Lava 

Field on the Isle of Skye, Scotland. 

On a lava field scale of study ('meso-scale'), the geometrical relationships of several flood 

basalt provinces are studied, focusing on the Skye Lava Field. This is studied in lD through 

to 3D, revealing that the lava field may be divided into architectural sequences based on lava 

flow facies interpretations. The facies evolve upwards through the volcanic succession from 

geometrically complex thin, olivine-basaltic compound-braided lava flow facies towards the 

base, to simple, thick basaltic-andesite tabular lava flows. The lower lavas are interpreted to 

have formed on the gently dipping flanks of a shield volcano. 

The observations and understanding of flood volcanics on a lava field scale of observation 

and the facies forming the building blocks of lava fields are used to interpret the GFA-99 2D 

seismic data from the Faeroe-Shetland Basin. The interpretation is developed into 3D and 

thicknesses of the Faeroes Lava Group are calculated. 

The complete study of facies from intrafacies through to basin-scale interpretations reveal 

that flood volcanic successions contain substantial geometrical and rock property 

heterogeneities, and that these can be characterised in the 3D modelling environment into 

geologically realistic geophysical flood basalt facies architectural models. 
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Introduction 

1. INTRODUCTION 

Flood volcanic provinces represent some of the most voluminous lavas on 

Earth and cover large areas of continental rifted margins. Associated with these lavas 

are deep seated intrusive complexes, dykes and sills. Traditionally, such lava 

successions have been termed continental flood basalts (CFBs), forming a sub-set of 

much larger volcanic systems that are often termed large igneous provinces (LIPs) 

(e.g. Mahoney & Coffin 1997). Large igneous provinces encompass CFBs, volcanic 

rifted margins and also encompass vast areas of ocean floor as oceanic plateaux. 

Continental flood basalts have historically received much research attention, 

particularly in the field of geochemical studies, and their potential connection with 

mantle plumes (e.g. White & McKenzie 1985; Scarrow & Cox 1995; Gibson et al. 

1996; Graham eta/. 1998; Takahahshi eta/. 1998; Larsen et al. 1999; Sheth 1999). 

Recently, new insights into the genesis, structure and internal architecture of 

flood volcanic successions has attracted new levels of interest; in particular from the 

petroleum industry where many new frontier basin exploration areas are associated 

with igneous rocks (Schutter 2003a&b ). Igneous rocks can provide good reservoir 

qualities, create petroleum trapping structures, stimulate hydrocarbon maturation, 

and volatile fluids can also assist hydrocarbon migration (Schutter 2003a). In areas 

affected by igneous activity, particular exploration interest lies in frontier basins that 

are blanketed by volcanic rocks on continental rifted margins (Menzies et al. 2002; 

Jolley & Bell 2002a). The blanketing effects of the volcanic successions pose new 

problems to the petroleum industry such as the 'sub-basalt imaging problem' which 

severely affects the quality of geophysical data acquired through and beneath a 

volcanic succession (Fig. l-l ). In frontier areas such as the Faeroe-Shetland Basin, or 
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V0ring Margin (Norway), major petroleum plays are considered to be present in the 

sub-volcanic stratigraphy causing the sub-basalt imaging problem to be a serious 

exploration issue. The effect of igneous activity in volcanic rifted margins is also of 

interest in understanding how dykes and sills may compartmentalise reservoir 

systems and how the activity may affect the crustal geothermal gradient. These 

factors can affect hydrocarbon migration, trapping and reservoir quality and also 

alter the maturation history of hydrocarbon source rocks. 

The poignancy of such problems poses the following questions: 

• What are the lithologies present in flood volcanic successions? 

• What are the 3D geometries present within the volcanic successions? 

• How can we characterise the external and internal facies architectures? 

• How are rock properties affecting the geophysical imaging? 

• How can an understanding of the geological evolution of the igneous 

system help to solve such issues? 

• How can an understanding of the facies architecture of flood basalts 

improve our understanding of their volcano genesis and emplacement? 

To enable a thorough investigation into the problem of sub-basalt imaging, 

well-constrained geological information on flood basalts is required; and this must 

incorporate 3D information, rock properties, geometries and facies architecture. 

This thesis aims to address the above problems using a combination of 

fieldwork, image analysis, geophysical datasets and novel use of 3D modelling 

software GoCad™. In this advanced 3D modelling environment, multiple datasets of 

multiple data-types may be combined in one interface, into true 3D. Characterisation 

and modelling techniques are applied to case-studies of CFBs in three igneous 

provinces, and concepts drawn together into full volcanic province system models. 
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The PhD research has been integrated into the European Union (EU) 5111 

Framework project 'SlMBA' as Work Package 1 (WPI): Geological Modelling. The 

SlMBA consortium has drawn together expertise from Europe through the areas of 

geophysics, geology and engineering. SlMBA comprises the industrial partners of 

Total; Norsk Hydro; ARK Geophysics and lnstitut Fran<yais du Petrole (IFP); and the 

academic institutions of University of Cambridge; Universite de Bretagne 

Occidentale (University of Brest); University College, Dublin and University of 

Durham. The PhD project was initially funded by Elf GRC, before being integrated 

into the work of SlMBA (Appendix 4). The SlMBA consortium is a research project 

which aims to solve the problems associated with sub-basalt imaging by integrating 

areas oftechnical expertise for improved sub-basalt imaging. As WPl ofthe SlMBA 

consortium research, the work associated with this PhD research provides geological 

information and interpretations for the partners of SlMBA. This geological 

information is being integrated into 1 D, 2D and 3D geophysical models of volcanic 

successions, at the time of completing this thesis. These models include a complex 

3D model of a volcanic filled basin of 50km2 area populated with geologically 

realistic geometries and rock property distributions; and an integrated 

geological/geophysical study, which integrates gravity, seismic, geological, 

magnetotelluric (MT), and borehole data into a high resolution 3D model of an 

onshore flood basalt succession. Gravity data was acquired as PhD training on behalf 

of ARK Geophysics, as a contribution to SIMBA WP4. Details of these projects are 

documented in the SIMBA final report, and in Martini et al. (2005 in press). 

3 
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1.1 BACKGROUND TO FLOOD VOJLCANIC PROVKNCE§ 

Flood basalt provinces have been at the heart of some of the earliest work in 

igneous successions. The classic works of Judd (1874); Clough and Harker (1904) 

and Bailey et a/. (1924) describe the petrology of the lavas of the Islands of Mull and 

Skye and distinguish different magma types based on their varying petrologies. 

These early works cite some classic field localities such as the Macculloch's Tree on 

the west coast of Mull and the prominent Preshal More on Skye (Chapter 4). At this 

early stage in the evolution of flood basalt research, many of the thick lava 

successions which we observe today were considered to be thick sill complexes, 

particularly in the Scottish Hebrides where many of the foundation concepts of 

igneous petrology, petrogenesis and igneous geochemistry were developed. 

During the 1970s and 1980s, great advances were made in the fields of 

elemental and isotopic geochemistry and in isotopic dating. Progress in these areas, 

particularly in geochemistry, mean that the bulk of the literature associated with 

CFBs during this period is dominated by new chemical constraints on the 

development and source regions of the lavas and intrusions, and new concepts of 

magmatic plumbing and mantle processes (e.g. Thompson et a/. 1972; Cox, 1980; 

Morrison eta/. 1985). 

Over the course of the 1990s and through to the present day, much research 

has focussed on the styles of volcanism and volcanic facies. Models for CFB 

emplacement have been developed (e.g. Hon eta/. 1994; Keszthelyi & Denlinger 

1996; Self et a/. 1997) and facies architectural studies undertaken (e.g. Jerram et a/. 

1999a; Planke et a/. 2000). These research advances have helped guide some of the 

ideas behind this thesis. 

4 
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The terms 'flood basalts' and continental flood basalts (CFBs) have become 

ingrained in the literature. However it is important to clarify that flood basalts are not 

simply a suite of basalts. They contain lavas of various compositions (e.g. basalts, 

basaltic-andesites, rhyolites), and are commonly accompanied by hypabyssal rocks 

(e.g. sills and dykes), and plutonic rocks (e.g. gabbros and granites). For example, 

the Parami-Etendeka CFB province (1.1.2) is >90% tholeiitic basalts and basaltic­

andesites (Milner et al. 1995); basalt itself forming a low percentage of the total 

volume. 

ln the following sections, the three continental flood basalt provinces studied 

in this thesis are briefly introduced. 

1.1.1 North Atlantic Igneous Province (NAIP) 

An episode of magmatic activity occurred over the North Atlantic area from 

the late Cretaceous through to the Eocene, associated with continental breakup and 

opening of the North Atlantic. As early as the 191
h Century, it had been noted that 

igneous rocks of similar affinity existed in Britain, the Faeroe Islands and in Iceland 

(Giekie 1880). During the course of continued research, the name of the volcanic 

province has evolved to its present form: 'North Atlantic Igneous Province' (NAIP) 

(Saunders et al. 1997 and references therein). The NAIP comprises a province of 

volcanics and associated intrusions covering an area of c.1.3 x 1 06 km2 (Eldholm & 

Grue 1994). The large scale ofthis system means that the province may consequently 

be divided into six main sub-provinces: the British Tertiary Igneous Province in the 

Scottish He brides/Northern Ireland (see 1.1.1.1 ); the Faeroes Islands ( 1.1.1.2); east 

Greenland; Baffin Bay/west Greenland; the Rockall Plateau; and the V 0ring Plateau 

offNW Norway (Fig. 1-2). The NAIP is considered to have been extruded rapidly in 

5 
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two phases: Phase I is observed in west Greenland, SE Greenland and the British 

Tertiary Igneous Province and occurred from 62 Ma to 58 Ma, whilst Phase II is seen 

forming the offshore seaward dipping reflector sequences (SDRS) on the continental 

margins and in east Greenland and has erupted from 56 Ma. This continues to the 

present day in the Mid-Atlantic Ridge (Saunders et a/. 1997). A summary of the 

geochronology ofthe NAIP is compiled in Fig. 1-3. 

1.1.1.1 The British Tertiary Igneous Province (BTIP) 

In the British Isles, the NALP manifests itself as the British Tertiary Igneous 

Province (BTIP), occasionally referred to as the British Palaeogene Province by 

some workers (Fig. 1-2). This sub-province stretches through the Hebrides of 

Scotland (e.g. Skye, Mull, and the Small Isles of Eigg and Rum), across the 

Ardnamurchan peninsula and southwards through the Isle of Arran, County Antrim 

in Northern Ireland, and forms intrusive complexes as far south as the Isle of Lundy 

in the Bristol Channel (Hitchen et a/. 1994). The NNW -SSE trend of eruptive 

volcanism is accompanied by the large intrusive complexes running in the same 

trend. The Rum and Skye Cuillin igneous complexes contain substantial mafic and 

ultramafic cumulate sequences (Upton 1988), whilst silicic intrusive centres also lie 

on this volcanic axis, notably in the granitic Red Hills centres of Skye, the Northern 

Arran Granite and on the Isle of Lundy. Through the axial zone of the volcanics and 

main igneous centres are dyke swarms each of which increase in intensity towards 

the axis ofthe central igneous complexes. 

On Skye and the Small Isles, the lava field covers some 1500km2 (Preston 

1983). The lava sequence on Skye is mainly dominated by the transitional to alkali­

basalts of the Skye Main Lava Series (Thompson 1982). Much study has focussed on 

6 
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the onshore areas of the BTIP, particularly in the field of geochemistry (e.g. 

Thompson et al. 1972; Preston et al. 1988; Kerr 1993), but the full extent of the 

offshore sequences to the NW of the Hebrides are still being realised. The offshore 

sector, where many Cretaceous and Palaeogene seamount volcanic complexes exist 

(Jones et al. 1974), is becoming better understood due to oil company exploration 

taking place in the Faeroe-Shetland Basin and across the Rockall Plateau and Hatton 

Bank areas (Jolley & Bell 2002a & references therein). 

1.1.1.2 The Faeroe Islands 

The Faeroe lslands lie in the North Atlantic between Iceland and Scotland 

(Fig. 1-2). They comprise onshore remnants of part of the larger NAIP known as the 

Faeroes Lava Group and extend offshore both SE into the Faeroe-Shetland Basin and 

NW towards Iceland (Ellis et al. 2002 and references therein). The large offshore 

extent of these volcanics has been a significant factor in stimulating the interest of 

the petroleum industry in characterising flood basalts successions: the Faeroe­

Shetland Basin is known to be a mature petroleum system, however the blanketing of 

the potential plays by the Faeroes Lava Group makes exploration particularly 

difficult and expensive. The Faeroes Lava Group is considered to have erupted 

during Phase II of the NAIP development and as such, may be correlated with 

volcanics in the east Greenland (Larsen et al. 1999). 

1.1.2 Parana-Etendeka 

The Parana lavas of central South America and those of the Etendeka 

Province of Namibia, together form the Parana-Etendeka LIP (Peate 1997 and 

references therein). This extensive system of flood volcanics and large igneous 

centres is linked to the opening of the South Atlantic and the main phase of 
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magmatism is thought to have occurred between 134-129Ma (Peate 1997). The total 

preserved volume amounts to over 1 x 1 06km3 dominated by the Parana lavas of South 

America (Cordani & Vandoros 1967). The Etendeka Igneous Province (see Fig. 4-1), 

which is the focus of some of the research presented in this thesis, forms a 

comparatively small outlier area of volcanics particularly concentrated in the Huab 

Basin area where the Etendeka Group has been studied in great detail due to the high 

quality of the exposure (e.g. Milner et a!. 1995; Jerram et al. 1999a; Jerram et a!. 

1999b; Jerram & Robbe 2001). 

1.1.3 Rational for case study selection 

The Isle of Skye in the BTlP was initially chosen for the focus of this 

research for several reasons: 

I. Skye contains substantial, accessible, well-exposed sections through a 

CFB sequence; including dykes, sills and a central volcanic complex. 

II. Geochronology is well constrained by field relationships and dating 

techniques (Pearson et al. 1996; Jolley 1997; Hamilton et al. 1998). 

III. The base of the lava sequence is accessible in several parts of the 

island overlying the basinal Mesozoic sedimentary sequence. 

IV. The lava sequence represents an onshore exposure of the more 

extensive offshore flood volcanics of the Faeroe-Shetland Basin, 

which is an area of interest for offshore petroleum exploration. 

During the field season of 2001, foot and mouth disease struck the UK, 

rendering the BTIP inaccessible. As result, fieldwork was moved to the Huab area of 

the Etendeka CFBs of Namibia. This area was selected due to the high quality of 

exposures in the volcanics, and because the area is stratigraphically well-constrained 

and 30 modelling work has been previously applied to the succession in the Huab 

area (e.g. Peate 1997; Jerram et al. 1999a; Jerram & Robbe 2001). 
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owned by Norwegian Petrolewn Directorate [NPD]; image courtesy of Elf Norge) (after Jerram 2002). 
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Introduction 

1.2 SUMMARY OF THESIS AIMS AND OBJECTIVES 

The main aims and objectives of this thesis are to: 

I. Better constrain the influence CFBs have on the sedimentary basins into 

which they erupt. 

II. Analyse, interpret and characterise the fine-scale rock property variability 

at an intra-lava flow scale using detailed fieldwork and image analysis. 

III. Build well-constrained 30 geological models of metre to kilometre scale 

architectures developed within an onshore lava field. 

IV. Build 3D geological models from interpretations of offshore geophysical 

datasets utilising the understanding developed from onshore studies. 

V. Suggest future work areas and targets that should be met in flood volcanic 

province research for further understanding of these igneous systems and 

to enhance a geological and geophysical collaborative effort to solving 

sub-basalts imaging problems. 

VI. Recommend future ideas for the further development of use and 

application of 3D modelling to integrated geoscience studies. 
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1.3 THESIS OUTLINE 

This thesis is organised into five major chapters, a concluding summary and 

four appendices. 

Chapter 2 provides an overview of the data available to this study and the 

methodologies that may be used to address the problems of integrating multiple data 

types. A brief outline of some of the basic functionality of the GoCad™ 3D 

geoscience modelling software has been incorporated into this chapter. 

Chapters 3 to 5 investigate the flood volcanic successions on three scales of 

observation. These have been called the micro-, meso- and macro-scales of 

observation of flood volcanic successions. The purpose of these categories is to 

provide a framework into which the successions may be investigated and presented 

as a complete hierarchical study. 

In Chapter 3, the micro-scale 'intrafacies' architecture is investigated in detail 

in the Skye Lava Field as a case study area for characterising the building blocks of a 

typical CFBP lava field. This chapter addresses centimetre to metre-scale 

heterogeneities within the lava field using small-scale field case studies and image 

analysis. 

In Chapter 4, the thesis investigates how the architectural building blocks are 

pieced together to form the meso-scale scale system of a CFB lava field succession. 

A geological case study is presented from the Talisker area of Skye in the Minginish 

District. The focus of this section is on the geometric aspects of the lava field 

architecture. 

Chapter 5 presents data at the igneous sub-province macro-scale utilising an 

offshore seismic dataset from the Faeroes-Shetland Basin, and outcrop analogue data 
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from various CFBs including the onshore Faeroe Islands succession. This chapter 

addresses how the lava field scale case studies fit into the architecture of a large 

igneous system and provides geological interpretations of geophysical data. 

The upscaling of each level of observation is ultimately combined in Chapter 

6, where the issues realised from each scale of investigation are discussed and 

developed into a complete model of a flood volcanic province. 

Conclusions are drawn together from each of the preceding chapters into a 

bullet-point list of new insights and advancements made in flood volcanic province 

studies in the light of this work. Some recommendations for future expansion of this 

field of research are also stipulated. 

The appendices contain links to important websites, location data for 

geophysical data and a simplified system for GoCad™ file storage. A CD is also 

appended containing some animations of 30 models, and a selection of presentations 

made throughout the PhD. A final copy of the publication Single & Jerram (2004) is 

included, and also the papers that are in press and submitted for 2005 and 2006. 
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Methodology & data requirements 

2. METHODOLOGY AND DATA REQUIREMENTS 

The data requirements for the 30 modelling of geological sequences fall into 

three main categories with regard to data collection, analysis and modelling. These 

categories are based on the scales at which we observe the volcanic system. The 

following chapter therefore opens with a section which acts as an introduction to 

these orders of observation. The data is subsequently discussed as it is broken down 

into each of the scales. The main aim of this chapter is to outline the data used in the 

present study and how they may be incorporated into a 3D geological Earth model. 

Because this study uses a complex 3D modelling package (GoCad™), an 

introduction to the functionality of the software is also provided, that outlines some 

of the ways in which it can aid geological and geophysical studies. 

2.1 SCALES UNDER INVESTIGATION 

In order to build a strategy for characterising the 3D facies architecture of a 

flood basalt province, it is important to outline the hierarchy of scales of 

observations. Each of these hierarchial scales are considered in detail in Chapters 3 

to 5. Hierarchical scales of observation are ever-present in geological description and 

interpretation, regardless of the particular type of geological system we are 

considering. Many geological studies have worked with the concepts of scales within 

a geological system, and orders of hierarchy mainly within the research area of 

sedimentology (e.g. Kocurek 1981; Miall 1985 & 1988). In igneous systems, the 

hierarchy of scales of observation and investigation have not been fully documented, 

and research has mainly focussed upon a particular scale or level of investigation for 

example, the basin scale (Planke et al. 2000) or the lava flow scale (e.g. Jerram 

2002). In these studies, the scales of investigation have focussed on the seismic 
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facies (Planke) and the flow facies and province architecture (Jerram). These 

important contributions address the characterisation of the geological architecture 

and facies heterogeneities in flood volcanic systems on scales ranging from metres to 

tens of kilometres. 

The detailed architectural field observations of igneous flood volcanic suites 

documented in this work provide a basis for the characterisation of heterogeneities 

on three main scales of observation: 

• 'Micro-scale'- millimetres to metres (lava flow scale) 

• 'Meso-scale' -metres to kilometres (lava field scale) (e.g. Jerram) 

• 'Macro-scale' -kilometres to tens of kilometres (sub-province scale) 

The next sections outline the architectural features under investigation at the 

scales of investigation. 

2.1.1 Micro-scale- 'Internal Facies Architecture' 

Flood volcanic successions are comprised of a large suite of igneous rocks, 

both extrusive and intrusive. The micro-scale architecture may be considered to be 

the internal heterogeneity that exists within the individual igneous units within a lava 

field at a very small scale: typically the centimetre or metre-scale for example within 

individual lava flows or intrusions (4th order heterogeneity). These may be studied 

down to the lowest scale of observation possible without the need for special 

analytical instrumentation. The 5th order of heterogeneity which is beyond the scope 

of this research may be considered to be the scale of observation which requires 

specialist equipment e.g. chemical isotope ratio variations across individual crystals 

(e.g. Tepley et al. 1999; Solovova et a/. 2002; Bishop et al. 2003). 
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In studying the 41
h order of heterogeneity, this work concentrates on the intra­

flow scale diagnostics of igneous facies. These are termed intrafacies (Single & 

Jerram 2004) and are discussed in detail in Chapter 3. Diagnostic intrafacies describe 

specific heterogeneities: e.g. distribution of vesicles within lava flows, the textures of 

crystals within a flow and the juxtaposition of certain rock unit types within the 

building blocks of the meso-scale (flow facies scale) architecture of a lava field 

successiOn. 

The micro-scale architectural building blocks of the igneous succession are 

studied in detail so as to provide not only an understanding of the metre-scale 

geometrical (short-wavelength) heterogeneity within the igneous units present, but 

also an understanding of how geophysical rock property variability is distributed 

with these geometries. Geophysical rock properties that are very important to the 

characterisation of volcanic successions for sub-investigation are those of density 

and compressional (or primary) velocity. The elastic velocity properties of the 

geology directly relate to the bulk rock densities present, so it is density which has 

the controlling affect on seismic acquisition. Density is also inherent to gravity 

modelling. Rock property variations within the igneous succession may affect each 

of these geophysical variables in particular, leading to the inaccurate geophysical 

modelling of volcanic successions. These issues are discussed in detail in Chapters 3 

and 6. 

2.1.2 Meso-scale- 'Flow Facies Architecture' 

The 3rd order of heterogeneity in the study of the architecture of large igneous 

provinces involves the study of the flow facies architectural scale, whilst 

understanding the variability that exists within the flow-facies due to micro-scale 
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heterogeneities. Meso-scale studies focus upon the vertical stacking patterns of 

igneous units on a lava field scale. At the meso-scale, it may be possible to make 

many lateral correlations throughout the lava field by the use of marker beds such as 

tuffs, tuffaceous sandstones and siltstones, and the basal contacts of prominent lava 

flows (e.g. Jerram et al. 1999a; Jerram & Widdowson 2004 in press). The meso-scale 

architecture concentrates on the geometrical heterogeneities that exist through the 

lava field succession, such as the distribution and geometries of thick lava flows, the 

development of ponded lavas and the onlapping and off-lapping relationships present 

in a lava field system (Jerram 2002). 

Meso-scale studies are important to geologists and geophysicists as these are 

at the scale which is most easily recognised in correlation exercises and seismic 

surveying; the reservoir-scale or lava field scale of interest. In this work, the onshore 

lava field in the Talisker area of the Isle of Skye is studied in detail and modelled in 

3D in order to capture the 3D geometrical heterogeneity present in a CFB lava field. 

The area is considered to be analogous in volcanic style and scale to certain 

petroleum prospected areas in the Faeroes-Shetland Basin and in the V0ring Margin 

on the eastern north-Atlantic seaboard. 

2.1.3 Macro-scale- 'Basin Scale Facies Architecture' 

The North Atlantic Igneous Province comprises the British and Faeroes sub­

provinces on the east side of the north Atlantic, and the west and east Greenland lava 

fields on the west seaboard ( 1.1.1 ). Correlations across this vast area may be possible 

by use of borehole data and field studies which lie beyond the scope of this research. 

Volcanic tuff horizons are laterally extensive and studies cite trans-Atlantic 

correlations between east Greenland and the Faeroe basalts (e.g. Larsen et al. 1999) 
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and also the Parana-Etendeka Province of South America and Namibia (Milner et al. 

1995). This Large Igneous Province (LlP) scale must be considered the largest scale 

of study, where correlations are made across both sides of a volcanic rifted margin. 

This is therefore described as being the 1st order of heterogeneity. 

In this work, the highest level scale of study within the hierarchy of flood 

volcanic sequences is the study of the external and internal facies architecture at the 

igneous sub-province level (2nd order heterogeneity): in particular, the Faeroes Lava 

Group which may be internally correlated and architecturally sub-divided over the 

tens to hundred kilometre-scale (the basin scale). 

Within this volcanic system as a whole, many facies types are present 

laterally and vertically over metres to kilometres. The facies changes over these 

distances are important for the overall understanding of the province, but the 

recognition of facies associations within the basinal architecture are more important 

at the 2nd order of observation so as to characterise the bulk structure of the sub­

province. Such facies associations may be large scale volcanic disconformities that 

may only be recognised by long distance correlation (e.g. Jerram et al. 1999a) or the 

types of facies variations which occur on the scale visible on seismic sections. 

Taking into account the wider picture and understanding what is within, for example 

the seismic scale of investigation (e.g. Planke et al. 1999; Planke et al. 2000) is very 

important to interpretations made in geophysical data (Chapter 5). 
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2.2 THE NEEIIJ> lFOR GEOLOGiCAL lFNIELIIJ>WOIRK 

ANALOGUES FOR OFJF§i-IIORE PROBLEMS 

ON§H-IIORIE 

Most geological 30 modelling is performed within the spheres of the 

petroleum and mining industries. In the petroleum industry, geological modelling is 

usually based around a Voxet of seismic data (usually 30 seismic) which is 

geologically constrained by 10 well data. The 10 well data may be utilised from 

sparse distributions across entire basins in low-resolution basinal correlation 

exercises, but may equally provide a high resolution of 10 data in close proximities 

to petroleum reservoirs. The 10 geological information is available through various 

combinations of data types: Drill cuttings and core samples, petrophysical wireline 

analysis, and possibly vertical seismic profiles (VSPs) in order to tie important 

correlations across a large scale basinal sequence or through a reservoir. The steps 

involved in moving from 1D geological analysis to 3D modelling therefore requires 

interpolation, but the interpolation is usually constrained by extensive, high 

resolution seismic surveying: Importantly, the dataset runs through the entire 

stratigraphy and allows its internal sub-division into a series of units. Lithological 

unit distributions, juxtapositions of units, their correlations, predicted internal rock 

properties and stacking patterns may all be constrained with accuracy. 

In the mining industry, boreholes provide 10 constraint in a similar way to 

well data in petroleum exploration and production. Additional information IS 

collected by mine-mapping geologists and integrated into the full dataset. 

One approach used in the petroleum industry to aid the construction of 

detailed 3D models is to use field analogues. Well exposed areas of stratigraphy are 

chosen which represent similar geological facies to those which are interpreted to 
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occur m the sub-surface. Detailed stratigraphic logs, correlation panels and rock 

property data are collected and used to construct a picture of the depositional 

environment and the characteristic geological patterns that are present. These can be 

used to aid geophysical seismic interpretations and hence the construction of the 3D 

reservoir model. A classic example of this style of approach has been used to 

characterise sequence stratigraphic stacking patterns in the shore-face deposits ofthe 

Book Cliffs in Utah (e.g. Howell et al. 2001). In a recent study, a similar approach 

was used to construct a 30 model of the Etendeka flood basalts in NW Namibia 

(Jerram & Robbe 2001). 

In the present study, the approach of using detailed onshore analogues will be 

adopted to aid the construction of 3D geological Earth models of flood basalts, with 

specific emphasis on the North Atlantic Margin. 

2.2.1 Onshore analogue for micro- to meso-scale study 

The Minginish district of SW Skye was selected as the source for well­

constrained geological information to be integrated into a 30 model of a flood basalt 

lava field on the micro- and meso-scales of observation (Fig. 2-1 ). In this area, we 

can observe eight extrusive lava groups, sedimentary intercalations and dyking in a 

complex lava field succession. This succession is also further complicated by post­

eruptive faulting which consists of an array of several large and many sub-seismic 

scale faults. The hills of Minginish district rise to over 400m above sea level. A thick 

igneous succession is therefore available for 3D modelling. Characterising the 

internal variability is essential to being able to address the geophysical modelling and 

acquisition problems being currently experienced in offshore exploration. 
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2.2.2 Offshore dataset for basin-wide macro-scale study 

The area selected for the study of macro-scale flood basalt architecture is the 

Faeroe-Shetland Basin where a large 20 seismic grid was acquired by Geco-Prakla. 

The GF A-99 dataset is introduced in section 2.5. 
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Figure 2-1 Location of the 'meso-' and 'micro- ' scales of study within the British Tertiary Igneous 
Province. On the Isle of Skye, the micro-scale study area lies in Talisker Bay, and the meso-scale study 
lies over the hills east ofTalisker Bay on the north of the Minginish Peninsula. 
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2.3 MICRO-SCALE STUDY DATA 

In this study, micro-scale data are studied in both 10 logs and in 20 cliff 

sections. The data gathered from these sections provide information about vertical 

and lateral changes in the lava sequence: Lithological, facies and rock property 

variations. The data used in this detailed study are from the field, although wireline 

studies can reveal details of the rock property distributions through boreholes in 1 D. 

Geophysical rock properties are discussed in more detail at the micro-scale in 

Chapter 3. 

2.3.1 Data available 

The following section outlines the data types at the micro-scale associated 

with the field case studies cited in Chapter 3. 

2.3.1.1 Fieldwork 

In the low lying cliffs of Talisker Bay and the surrounding area, lies a wealth 

of geological data in the west-centrallava field of the Skye Lava Field. The wave-cut 

platform on the north and south sides of Talisker Bay provide particularly interesting 

areas to study the physical relationships between different lava types, sedimentary 

horizons, and the internal organisation of both. Fieldwork data available includes: 

• A lava sequence shallowly dissected by a wave-cut platform 

• Thinly banded lavas at the base of the cliff sections 

• Tuffaceous beds and thick sedimentary units 

• Intrusive contacts 

• Centimetre-scale description of the building blocks of lava flows 
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2.3.1.2 Photographs 

The cliffs surrounding Talisker Bay form thick 20 sections through the 

extensive lava pile. These sections show a variable succession of lithotypes and 

contact relationships. The bases and tops of several sections are accessible at various 

points through the lava field. The ability to access the thick volcanic succession in 

several parts of the stratigraphy, mean that the collection of a large photographic 

dataset is an important way of constraining the lithotypes and lithofacies present. In 

addition, their lateral and vertical variability can be constrained throughout the lava 

sequence. 

2.3.2 Methodology 

The following sections outline some of the methods employed m the 

fieldwork and data analysis parts of this micro-scale investigation. 

2.3.2.1 Sections 

Sections in 10 and 20 form an important part of characterising the facies 

present in the volcanic succession at a centimetre to metre-scale of observation. The 

sections were constructed close to sea level in Talisker Bay. Using a combination of 

field sketches and photographic montages, detailed notes of the geometries of the 

units present were developed in 20 sections. During reconnaissance fieldwork, a 

large photographic dataset was collated for much of the field area. An emphasis was 

placed on collecting a photographic dataset which covered volcanic features of 

various scales within the micro-scale study: Centimetre to metre-scale features were 

captured as individual photographs taken at several focal lengths; whilst scales of 

metres through to tens of metres scale were captured as a dataset for cliff section 

montages for facies evaluation on a grander scale. For each photograph, the location 
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was noted with a GPS, with the orientations of the photograph centre and focal 

length. During subsequent fieldwork, copies of the photographic dataset were taken 

into the fieldwork and directly annotated with geological information. Field sketches 

enhanced the interpretations and developed the ideas from the micro-scale study. In 

addition to the 2D photographic montages and field sketches recorded, lD logs were 

constructed where possible in the base of the cliff sections. The bases of each section 

were marked with paint in order to allow easy location as the tides heavily influenced 

the timing and availability of these outcrop log sections. The aim of the small log 

sections was to develop an understanding of the vertical construction of the igneous 

sequence, whilst the 2D photographic montage sections developed the 2D data 

coverage. Wherever possible, data was collected to strengthen and develop our 

understanding of the concepts of igneous sequence development in 3D. Fig. 2-2 

highlights an example of such a photographic montage. 

2.3.2.2 Mapping 

Over the area of a small isolated wave-cut platform on the south side of 

Talisker Bay, mapping was undertaken. The mapping of this small area provides a 

3D extension to the observations of the 2D cliff sections and so ultimately improves 

the 3D understanding of the lava sequence present. A series of paint marks were 

sprayed onto the peninsula and small cairns erected each time the tide retreated. A 

base map was constructed by using a combination of the GPS, a compass, and the 

cairns. During this study, the GPS used was a hand-held Garmin model. This 

provided a location accuracy of +1-5m. All of the GPS locations used in this study 

were recorded prior the improvement in location resolution which occurred during 

the Summer of the year 2000, when the navigation scramble (Selective Availability) 

was removed by the US military. 
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2.3.2.3 Image Analysis 

The photographic dataset has allowed detailed investigations into the 

structure of the lava sequence to be performed by the use of image analysis software. 

The software primarily used in the studies of Chapter 3, is the package UTHSCSA 

Image Tool which is available on the internet via the University of Texas (Appendix 

1 ). This package was developed as a tool for use in the University of Texas hospital 

for analysing biogenic materials; however can also be used as a tool for geological 

analysis. 

In the centimetre to metre-scale of study, image analysis methodology was 

applied to photographic sections in order to constrain amygdale densities in lava 

flows. The amygdaloidal sections of igneous units give a measure of the vesicle 

population of the unit. The variations in both the vesicular and non-vesicular 

characters create lava flow heterogeneities vertically and laterally through the lava 

pile; image analysis provides a method by which the degree of vesiculation may be 

quantified. The analysis of an amygdaloidal section of olivine-phyric basalt is shown 

in Figs. 2-3 & 2-4. The technique requires a crisp photographic resolution of 150dpi 

or above, UTHSCA Image Tool and a spreadsheet application such as Microsoft 

Excel. Six steps provide a quantitative analysis of the photographic section and a 

measure of vesiculation as percentage of bulk rock area (Figs. 2-3 & 2-4). Such 

estimates of vesicle distributions are very important when considering rock property 

heterogeneities in Chapter 3. In addition to centimetre to metre-scale studies, Image 

Tool may also been used for the quantification of intrafacies present in 20 cliff 

sections. 
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I A I Section converted to greyscale 

[g Objects counted 

Figure 2-3 Object analysis in a section of vesiculated basalt- the aim is to calculate the percentage of 
vesiculation exists as% of bulk rock area. A: Photograph imported into UTHSCSA Image Tool and 
processed colour-to-greyscale; B: Vesicles are thresholded (red) by use of a threshold histogram; C:The 
thresholding creates a number of objects that can be statistically analysed. 
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Figure 2-4 Object analysis in a section of vesiculated basalt. A: Objects are analysed in order to find 
their total area in the photograph. Many other statistics are available providing information such as 
vesicle centroids and axial lengths; B: Data are transferred into Microsoft Excel; C: Percentage vesicle 
area is calculated using the object analysis and image resolution information. 

30 



Methodology & data requirements 

2.4 MESO-SCALE STUDY DATA 

2.4.1 Data available 

Field data comprise much of the dataset for meso-scale studies, but at this 

scale of investigation, more data options are available for integration into the 

research; particularly in the Minginish district which was selected for modelling due 

to the high volume of existing data. 

2.4.1.1 Digital Terrain Models (DTMs) 

Digital Terrain Models are now freely available on the internet for academic 

institutions via the Edina homepage (Appendix 1 ). The data for the case study area 

has 50m horizontal (XY plane) and 1m vertical resolution. Files are downloaded in 

* .dxf or * .ntf format and are sourced in conjunction with landscape and 

infrastructure data such as Landline data. The map tiles used in this research were 

downloaded in * .dxf format and converted to Ascii using as conversion utility 

(Appendix 1). The primary focus lies on the Minginish district tile [NG22]. 

2.4.1.2 Geological maps 

The UK is geologically extremely well surveyed. The British Geological 

Survey (BGS) has covered Great Britain in considerable detail (generally at 1: 10,000 

scale); therefore well-constrained data readily available for this project. Geological 

maps covering the whole of the UK have been constantly updated on many scales 

and much effort has been channelled into constraining relationships present within 

the British Tertiary Igneous Province (BTLP). Geological maps may also be 

combined with other data types within GoCad™. 
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2.4.1.3 Photographs 

A large photographic dataset was collected and developed for fieldwork as in 

the micro-scale study. Aerial photographs are also available for NW Scotland, but 

were not used in this study: The relevant photographs are now old and a new survey 

of Britain was expected to be available online during the project, although that is still 

being finalised. Due to the quality of the dataset, it was decided to utilise the host of 

other data which has been readily available. 

2.4.1.4 Satellite data 

LandSat-7 satellite data are available for download from the internet 

(Appendix I) and may be used in two formats: colour 25m resolution, and greyscale 

15m resolutions. These may be downloaded and geo-referenced as shape files or 

integrated into the GoCad™ interface by use ofVoxet (2.6.2.4). 

2.4.2 Methodology 

Detailed lithological sections were logged around the north of the Minginish 

district, working through the lava succession from the micro-scale study are of 

Talisker Bay (Chapter 3). Lithological logs were developed to note the main contacts 

through the lava sequence; particularly the basal contacts of sedimentary units, bole 

beds, tuffs and the bases of prominent, thick lava flows. These contacts were 

considered as essential marker horizons for kilometre-scale correlation across the 

lava field. Correlations between the marker horizons were developed into correlation 

panels that create a second dimension to the 1 D log data as a series of hypothetical 

cross sections through the faulted lava sequence (Fig. 2-5A). The log sections were 

imported into GoCad™ for integration into the 3D environment and draped onto the 

DTM data which was downloaded from the internet. Until mid-2002, all models 
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developed within GoCad™ were built around a DTM which had been constructed 

through a nine-stage process which involved the hand-tracing of a 1:25,000 

Ordnance Survey map of the field are. The accuracy has improved substantially with 

the addition of the imported satellite DTM data, which became freely available 

during the later stages of the project. 

Within GoCad™, individual data points were added to the project, and the 

BGS geological maps integrated with the DTM data. Faults were picked using the 

high resolution DTM, field data, by the use of photographs and geological maps. By 

integrating the understanding of the lava field from the field work and the 

correlations stipulated by the lithological logging, GoCad™ was used to interpolate 

between data points to give a 3D surface visualisation of interpretations of the 

interior of the lava field. Architectural sequences were consequently converted to 

volumes in GoCad™ for volume calculations. 

The steps required to move from fieldwork data collection, to building a 3D 

model of a lava sequence are summarised in Fig. 2-5. Essentially, we need to move 

from a 1 D dataset to a 3D model via 20 surface interpolations, so it is important to 

consider the errors and assumptions involved in making this dimensional leap both 

during the course of the description of methodology and whilst considering the 

results (Chapters 3 to 5). 
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2.5 MACRO-SCALE STUDY DATA 

The extrapolation of architectural studies onto a macro-scale may be best 

attained through use of multiple log sections correlated over tens of kilometres (e.g. 

J erram et a/. 1999a) or the use of photogrammetry. Long distance correlations have 

been made through use of marker horizons that link west and east Greenland (Larsen 

et a/. 1999), across the Parana-Etendeka igneous province (Milner et a/. 1995) and 

also between the Parana and the Kwanza Basin in western Angola (Marzoli et a/. 

1999). The methods employed reflect the offshore nature of the study and 

concentrate on 2D seismic and 2D gravity data. 

2.5.1 Data available 

Due to the scale of observation, different data types and procedures are 

required in order to develop realistic geological models. This study focuses on 

offshore data from the Faeroe-Shetland Basin. 

2.5.1.1 20 Seismic 

The investigation of flood basalt architecture over macro-scales made use of 

the GF A-99 2D seismic dataset which covers seven lines about 60km SE of the 

Faeroes (Fig. 2-6). Across the grid of this survey lies the FLARE line GFTL98-1 0 

which was acquired in 1998 by Schlumberger Geco-Prakla for Amerada-Hess in the 

White Zone acquisition blocks of 6005/617 and 6105/6104 (Appendix 2). The lines 

are spaced on a 20km grid. The longest line is the north-south line 201 which is 122 

km in length. 
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located on a 2D DTM of the field case study area; C: Precise locations of correlatable data points marked as Property Control Points; D: Correlatable points interpolated 
as a 2D surface - interpolation reveals eroded Java sequence material; E : Faults added to the 2D surface model; F : Complex 3D model of lava field developed 
incorporating multiple flows, correlations and faulting. Problems associated with upscaling from ID to 3D are discussed in Chapter 6. 
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Figure 2-6 Location of the GFA-99 seismic data in the context of the British Tertiary Igneous Province. 
Great thicknesses of onshore lavas occur on the Faeroe Islands and on the Isles of Skye and Mull in the 
Inner Hebrides of Scotland. The offshore lavas in the Faeroe-Shetland Basin are a continuation of the 
large onshore succession of the Faeroe sequence. 
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2.5.1.2 Potential field data (Gravity I Magnetics) 

In this study, gravity data were employed as the most useful potential field 

tool for ratifYing the various contrasts in geological facies observed within the G FA-

99 seismic offshore sequences. The data falls into two categories of 20 format: 

• Vertical plane surveys along the 20 seismic lines of GF A -99 

• Horizontal plane Sandwell satellite data (Appendix 2). 

Horizontal plane data are useful for picking out large scale structural trends in 

the basin morphology - particularly the structures present within the basement. 

Vertical plane gravity which is usually shot in conjunction with seismic surveys, 

provides a way of testing interpretations within the seismic 

2.5.2 Methodology 

All work was performed within GoCad™ software for the full integration of 

geological and geophysical data types. The GF A-99 dataset was imported into 

GoCad™ from * .jpg pictures as Voxet sections: this allowed for high quality 

visualisation combined with simple data manipulation. The 20 lines were manually 

located by using the shot point data from the survey and key horizons picked from 

the Voxets as Curves and PointSets (2.6.2). All interpretations were picked in Two­

Way-Time (TWT) and 20 Surfaces interpolated through the seismic grid. All 

interpolations were subsequently depth-converted using Voxet depth-conversion 

cubes (utilising average velocity) and built into Stratigraphic Grid volumes for 

volume calculations (2.6.2). 
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2.6 BUILDING 30 MODELS IN GOCAD™ 

GoCad™ 30 modelling software is at the forefront of the 3D modelling 

software market. The main industrial applications are petroleum systems modelling 

related and the major users of GoCad™ are Total, Chevron-Texaco, Shell and BP as 

well as a number of other industrial and academic sponsors. The stand-alone version 

used in this research provides full true 3D functionality. Plug-ins are available that 

allow more accurate, in-depth analysis of oil systems (Appendix 1 ). GIS applications 

such as ArcMap that are used in the geosciences are capable of 3D visualisation, 

however they are not capable of utilising multiple [Z] values. Therefore they are not 

true 3D; they are toolboxes for 30 visualisation of 20 surfaces. For example, 

geological maps may be draped accurately on an eroded, landscape topography in 

order to visualise the spatial character of the lithological boundaries. GoCad™ easily 

integrates multiple Z _value points for true 30 volume building. 

2.6.1 Software overview 

During the course of this research, the functionality, stability and ease of use 

of GoCad™ has improved substantially. As the package is one of the petroleum 

industry standards for 3D modelling and visualisation, it is a large package which 

hosts a multitude of features for data handling and manipulation. As such, most users 

are unlikely to use all of the object options as each type is specific for certain tasks or 

data types. An extensive menu system follows the same logic regardless of the object 

type being manipulated. The recent addition of wizards and workflows has made the 

operation more accessible to the beginner; however the work in this study uses only 

the menu system. Large file sizes are generated as output due to their simple Ascii 

format. File storage methodology is an integral part of learning the software and new 
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storage methods have been developed to both make the best use of the user interface 

and allow for easy file retrieval (Appendix 3). For maximum efficiency within 

GoCad™, file editing is best performed in both Microsoft Notepad and Excel. 

The methods by which datasets are created for use in GoCad™ have now 

changed significantly since work began. For example, the OTM used for the Talisker 

Bay case study area (4.3) was created through a nine step process, but now is 

available on the internet for immediate integration in the 30 environment. Fig. 2-7 

provides an overview of the concepts of dimensions within GoCad™ from a point in 

[X,Y,Z] space, to a volume. These concepts are important when considering the 

manipulation and modelling of data types in the 30 environment. The next section 

acts as a guide to some of the most useful data types in terms of what they are, how 

they may be used and how they are integrated into 30 visualisation models. 

2.6.2 Data types 

GoCad™ handles data as a senes of 'objects'. Objects that are being 

manipulated and accessed regularly together are grouped into a GoCad™ 'project'. 

In total there are 15 object types. These are made of 'atoms' or 'nodes' that are inter­

related by physical links or by way of their 'properties'. At its simplest level, the 

property of an atom is its [X,Y,Z] location; further properties may be added to an 

atom at that location in space. Each object is divided into 'parts' and the parts in tum, 

may be divided into object 'regions'. Operations may be performed on any 

constituent piece of an object or its borders. In this section, the main data types are 

introduced and explained in terms of their applications in 30 modelling. 
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Simple Concepts of 30 Modelling 

Point: 0-Dimensions 

Line I Curve: 1-Dimension 

Surface: 2-Dimensions 

Volume I Layer: 3-Dimensions 

z 

X 

y 
Figure 2-7 Dimensional concepts in 3D modelling. A: Several data types may lie in [X,Y,Z] space and 
may have properties attributed to locational data. Points are dimensionless but may have a property tagged 
to a location denoted by [X,Y,Z] coordinates; lines are lD, surfaces 2D and volumes 3D, but all may have 
complex morphologies in 3D space. Adding a time constraint to any of these object types adds one 
dimension; B: Axial concepts in GoCad™ objects; [U,V,W] represents a system of denoting object axial 
dimensions in [X,Y,Z] space. Property modelling can make full advantage of this versatile system, as 
[U,V,W] axes need not be orthogonal, so complex boundaries and property distributions are not 
constrained by the rigid [X,Y,Z] grid like many geophysical modelling applications. 
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2.6.2.1 PointSet I VSet 

The PointSet or VSet (Vertex Set) represents the most basic data type and is 

used for location-specific data points. Individual atoms are located in 30 space by 

their [X, Y ,Z] coordinates. PointSets may consist of groups of points that are grouped 

as a PointSet part (SubVSet). The PointSet is input by clicking on-screen, or by 

importing a data file. Data files which can be imported cover a huge range of 

software output types, but the simplest format for the import of a PointSet is a space 

delimited 3-column Ascii file. An example of a common PointSet data type is a 

DTM consisting of a grid of atoms with properties of [X,Y,Z]. Each point may be 

assigned further properties such as density, elastic velocity or porosity. PointSets are 

extremely versatile as they are the building blocks of the curve and surface object 

types - they are utilised to both create more complex object types, and are also 

created from more complex objects in order to simplify complex structures and 

borders. 

A simple example of PointSet manipulation is shown in Fig. 2-8. A PointSet 

of 25 atoms is imported as a 20 grid, regions are created within the PointSet and 

each region is assigned new [Z] values. The result is a PointSet which is has its data 

points distributed through 30 space. 

2.6.2.2 Curve I PLine 

A Curve is a polygonal line (PLine) which consists of segments that connect 

a series of atoms. Curves may be open or closed. A closed curve ends at the first 

atom, whilst an open curve has two extremities per segment. Curve files define the 

vertices and the links between the vertices. Curves are often created from the borders 

of an object, and if closed, may be used for surface creation (2.6.2.3). These are 
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functional in different ways to the simpler PointSet: PointSets can be created as a 

grid of vertices from a surface or from a Voxet (2.6.2.4), Curves cannot be created in 

this way, but they can provide boundaries to any PointSet and be used for well and 

channel construction. It is rare to apply properties to Curves - property application 

functionality is best catered for by applying and transferring properties to and 

between PointSets, Surfaces, Voxets and SGrids. 

An example of the use of a Curve is the creation of a closed Curve around the 

convex hull of a PointSet (Fig. 2-80). This may subsequently be densified to create 

atoms with specific distances between them. The strength of densifying Curves lies 

in the ability to tightly fit Curve paths to distributions of PointSet vertices, and also 

to define triangle edge length in Surface creation (2.6.3.4). 
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mapped onto the PointSet using the densified Curve to constrain the triangle border length; F: The Surface displaying the property of [Z] by property shading the object. 
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2.6.2.3 Surface I TSurf 

Surfaces consist of an arrangement of triangles (TFaces) that lie as 20 planes 

between atoms, creating a tessellated 2D surface. A border bounds a surface and 

needs to remain simple for successful modelling. Surfaces are used to create realistic 

DTMs, and to interpolate between data points in 3D space. They may be open or 

closed; completely closed surfaces that are bounded by simple borders can be 

converted into surfaces that bound layers for 3D volume creation. 

A simple Surface is created from the PointSet data and densified basal 

bounding curve as an example of the data format (Fig. 2-8E). As with all GoCad™ 

object types, the Surface may be painted with discrete properties from a property 

server or with a simple property such a Z _value (Fig. 2-8F). 

2.6.2.4 Voxet I Voxel Set 

The Voxet is a 30 data box-volume which sits in the space domain of 

[X,Y,Z], but has its axes parallel to the non-orthogonal axial system of [U,V,W]. A 

Voxet contains Voxel (volume elements) or Cells that have cell-centred nodes (Fig. 

2-9A). Voxets have the advantage of being able to deal with both volumes and 

properties associated with those volumes. A Voxet may house the property of 30 

seismic through its volume, or may be painted with one or more property sections; 

for example when importing a picture file into a project. 

2.6.2.5 Stratigraphic Grid I SGrid 

Stratigraphic Grid is a set of Voxel volume elements that may be formed 

from and manipulated into more sophisticated shapes than Voxets. The geometry of 

an SGrid has axes following the [U, V, W] system in [X,Y,Z] space as in the Voxet, 

however the Voxels in a SGrid delimited by nodes in the comers of the cells instead 
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of cell centres. This object type is ideal for making volume calculations and for 

modelling facies distributions in an Earth model (Fig. 2-9C&D). For successful 

facies population within a SGrid, strong 3D control is required for both the facies 

analysis and distribution internally with the stratigraphy. 

2.6.3 GoCad™ Tasks 

This section outlines some of the common tasks that may be performed in 

GoCad™ when working on geological and geophysical datasets. The section 

introduces data integration and manipulation, but does not delve into the details of 

menu operation. Due to the growth in information sources available, methodology 

that was employed in the early stages of this work have since been made obsolete, 

however some of the procedures undertaken are described, as they provide a good 

understanding of how the different elements of the software are used and combined 

in order to create robust geological models. 
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2.6.3.1 Import 

The import functionality in GoCad™ has grown rapidly during the course of 

this study. This is predominantly attributed to the following reasons: 

• The expansion of the internet 

• Growth in user usage of GIS software applications 

• Competition with other 3D modelling software packages 

• The requirement to integrate multiple datasets of multiple data types 

The internet has become a large source for many data types and related 

software applications. DTMs, satellite data, aerial photographs, data-conversion 

utilities, 3D viewers and image analysis packages are just a few of the ever 

increasing number of materials available online. During this study, more than ten 

separate applications have been utilised for data manipulation and conversion 

exercises; and more than 7 websites used as data sources (Appendix l details an up­

to-date list of the most useful software products). 

Most of the import functions in GoCad™ are data filters for various types of 

reservoir modelling software and for integration of seismic data, however several 

functions import DTM data such as * .dxf formatted elevation data. The failsafe 

method for importing most [X,Y,Z] datasets other than seismic, is to convert the data 

to three simple data columns in a spreadsheet and then import the data as an [X,Y,Z] 

PointSet. Although this may involve the use of several steps and conversion utilities, 

this format bypasses many of the problems associated with the GoCad™ internal 

filters. Although file sizes may seem large to import, GoCad™ objects are saved in 

Ascii format, so even relatively small * .dxf files inflate when saved as GoCad™ 

objects or as part of a GoCad™ project. 
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2.6.3.2 Input 

Data may be directly input into GoCad™ by the use of on-screen icon-driven 

digitisation, or by adding points using precise values entered into data windows 

opened from the menu system. Direct input has the advantage of seeing exactly 

where the data points lie in the 3D environment; the disadvantage is that input is very 

slow for large sets of data values. Input is most valuable for digitisation - creating 

new objects on a pre-existing dataset is a powerful tool as it provides a way of 

moving into the data: For example, interpreting fault Curves on an aerial photograph 

or tight-grid DTM creates a Curve-stick dataset. Between these Curve-sticks, we may 

be able to interpret fault Surfaces and the relationships between them. Similarly, 

within a seismic Voxet, picking marker horizons by digitising with the 'New 

PointSet Digitiser' may allow the lD picks to be developed into 3D volume models 

after Surface interpolation. 

2.6.3.3 Creating a DTM 

The Original Talisker Bay DTM: 

The first DTM which was built for the Talisker Bay area of the Minginish 

district was built before DTM data were available for download off the internet data 

sources highlighted above. The data available for the construction of the DTM was 

Ordnance Survey 1:50,000 Landranger Map 32. This was used in preference to the 

1:25,000 Pathfinder Series maps, so that the data format could be consistently metric 

in the [X,Y,Z] dimensions. The procedure for the construction of the DTM required 

scanned images of hand-tracings of the Landranger map. These were accurately 

imported and locating tracing in GoCad™ as Voxet sections. A PointSet was built 
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from the Voxet properties, followed by individual contour Curves and finally as 

Surface interpolation. 

This produced a gridded DTM with an ultimate Surface triangle border 

segment length of 50m resolution. Interpolation was constrained by the contour 

spacing in the [X,Y], and contour interval in the [Z] direction. Since 2002, the most 

standard procedure for the import of a DTM into GoCad™ has been simplified: The 

DTM is downloaded * .dxf format from Digimap. The file is pushed through the 

application Dxj2xyz and subsequently imported into GoCad™ as an [X,Y,Z] located 

and geo-referenced PointSet file. 

The imported data is a PointSet DTM containing a data resolution of 50m in 

the XY plane, and lm in the [Z] axis. A 20 Surface DTM must be created over and 

interpolated from the PointSet, if interpretations and digitisation are not to be limited 

by the spacing of the PointSet. A general procedure for the construction of a DTM is 

covered in Figs. 2-10 to 2-12. 
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2.6.3.4 Building Surfaces 

Surfaces are most commonly constructed from PointSets, Curves, from Voxets and 

combinations of the above. The method which provides the most satisfactory and 

accurate 20 Surface between data points is by using the interpolation method across 

a dataset. Several triangulation and interpolation methods exist as wizards within the 

software interface, however the finest interpolation is worked via the main command 

menu system and requires the steps covered Figs. 2-10 to 2-12. 

The Surface produced is the most accurate interpolation of the data points into 

a 20 Surface. Note that the interpolation of a 10 or 20 dataset suffers heavily from 

data scarcity, and artefacts develop in the resulting Surfaces that may not be 

geologically reasonable, given the data area. Problems associated with upscaling, 

data interpolation and artefact development during modelling are discussed in 

Chapter 6. 

2.6.3.5 Texture mapping a Surface 

Texture mapping provides the capability of painting complex objects with the 

properties of another object via vertical projection or [U,V,W] texture mapping. The 

advantage of this technique is that data may be superimposed onto, for example, one 

plane which combine valuable information. The process of texture mapping is 

described in Fig. 2-13 which displays an example of texture mapping a topographic 

map onto a OTM. 

53 



Vl 
~ 

~ Area location [[] Cut by Surfaces 

Lx ~ Property transfer 

[., 

0 
~..,..,.. 
9/.,;"tlat,~: 

.~::;-
' / , .. ~ 

~ee 

(I' 'fN ir '"'~ 
---~.,.;>~· 

{ 

1.' 

t 
' ,, 

f. . 
~

;'•' ~ ~ .'- · (. 

... .ft ·'· ...:_- ~ t't .. 
,. ~--:-- . ·'·" .,.;:o.;"-.;-<· ..2,. ·1 .... _ . 

. '[l· .. ~--" " .. "' ·- / --.. . 7~);, . -
:"" \l )!:' ·"" · ···~.=-r /-"'~ (Oblique Views) 

. ,. - . ~ ...... -.,.... J 

\.o.. ~ - ,:~;-: .,_~ ; ;_·;--

/ - \: ..,.. ·· 
~i" ~ 

\ :~·-; c 
1.~ 

.! 
-- ·/' " 

c. 

· "~-
"'?- ~-;--~ •l . . . ' r::r ~ ' -:·-- ·- ·--' 

@] Voxet property section 

<P-- .....-
--: ·~ L 

~:~ ( -·· 

.,... . ..... ~' ; 
( \.:~/ \.... 

- '~' t,,. 
fi' ' 
'" ' 

/1 
' -
·~· 

•'· .. ,. 
'· -\~ .. ~- "'-J~ -

r ""'""-..,;.· ...... 

~ 

~
~-..,_ 

--··· 
·(i --- ~-. . -,.,, ..... , •. ,. .. ·' ~-- .·:.e· 

.... t ··~:·~~~'. <,;~,}· L_:~:.:. :.~ '>.~ 
,. ' ~ · .. ; . .. ·~· · .... '. -~t~ J:: ' /- '\ 

v ~ •"--; ' f ·-...-- .. ,_ 'A.·~~ \ - . ~---: ~- .. ~ .. c· .• ' ..• ~--
~' ...... . 

_{ ... 
·~ 

tJ'I -· 

@ Locate Voxet in [X, Y, Z] 
Figure 2-13 The creation of a property texture mapped Surface. A: The area on which the property texture is to be applied is selected from the DTM. A cutting Surface is 
built as a Tube through the topography; B: The DTM is reduced to the cut area; C: A Voxet property W-axis section is imported; D: The Voxet section is located precisely 
beneath the topographic Surface; E: The property section of the Voxet is transferred by vertical projection onto the DTM. 

~ ..... 
;:s-.. 
a 
§-
g 
R<> 

~ 
B' 
~ 

-t:l 
l::: 
~-
~ 
(I) 
~ 
1;:j 



Methodology & data requirements 

2.7 SUMMARY 

GoCad™ provides us with the extensive tool-box for making geological and 

geophysical interpretations from multiple data types, integrated in one, 3D 

environment. GoCad™ is a modem way of integrating and analysing and data over 

infinite scales. Controlling and manipulating geoscience data in a Universe hosting 

the dimensions [X,Y,Z,property 1,property2 ... , ... ] means that we can develop Earth 

models which incorporate more data types than ever before, and upscale and 

downscale as necessary in order to provide the most accurate description of the sub­

surface possible. By modelling in true 3D, the aspects of volumes are fully 

considered in the models created therefore geological 'space problems' are lost and 

2D cross sections may be ratified. There are many problems associated with 3D 

modelling however for example: limited data control can cause severe interpolation 

artefact development creating over-simplified models; model over-complexity 

equally, may severely hamper the user interface and make both manipulation and 

model analysis extremely difficult. 

In Chapter 3, image analysis is applied to micro-scale studies and in Chapters 

4 and 5, the GoCad™ tool-box is used and applied to the modelling problems of 

flood volcanics. In Chapter 4, field data are integrated into 3D case studies on a 

meso-scale in the Talisker Bay area of Skye; in Chapter 5, the understanding of the 

development of flood basalt sequences onshore is applied to the offshore seismic 

data from the Faeroe-Shetland Basin. 
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3. MICRO-SCALE ARCHITECTURE - A CASE STUDY FROM 

TALISKER BAY 

Global studies of the micro-scale architecture of flood basalt provinces are 

represented onshore by geological field case studies on modem lava fields such as 

those on Hawaii (e.g. Anderson et al. 1999), the ancient successions of the Columbia 

River, Etendeka of Namibia (e.g. Hooper 1997; Jerram 2002) and the Deccan (e.g. 

Duraiswami et al. 2001 ), and in global studies of basaltic rocks from multiple 

sampling locations (e.g. Caroff et al. 2000). The huge cliff sections of Greenland 

have also enhanced our understanding of the early evolution and internal structure of 

a host of volcanic succession types present both onshore and offshore in the North 

Atlantic Igneous Province (NAIP) (e.g. Pedersen et al. 1998; Heister et al. 2001 ). 

Although the vast majority of studies concentrate on geological aspects of the 

volcanic systems, some field studies are combined with geophysical investigations in 

order to constrain rock property variability within volcanological lithofacies (e.g. 

Riisager & Abrahamsen 1999; Cafi6n-Tapia & Coe 2002). Offshore studies in areas 

such as the Voring Margin of Norway contain supplementary micro-scale data by 

core sampling and the acquisition of wireline log suites (e.g. Planke & Eldholm 

1994; Planke & Cambray 1998; BUcker et al. 1999). These provide valuable rock 

property data for studies ofthe geophysical structure of the volcanic successions. 

In this section, geological examples of the igneous succession internal 

architecture are presented, with a focus on the Talisker Bay area of SW Skye [NG 

131 830] (Fig. 3-1 ). The basaltic cliff sections in Talisker Bay reveal a superb variety 

of metre-scale lava field structural relationships and facies types for use in detailed 

studies. In much of the landscape however, these details are masked in areas of no 
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exposure as the basaltic sequence IS easily weathered, forming featureless 

topography (Fig. 3-2). 

Firstly, the internal facies architectural styles are discussed and classified 

according to the 'intrafacies scheme' which has been developed in this study to 

characterise the heterogeneities present within an igneous rock unit. Field outcrops 

from the Skye Lava Field are cited as examples of these intrafacies. Subsequently, 

intrafacies distributions are presented at a number of locations. These outcrops are 

interpreted in terms of their volcanological evolution and implications for 

distributions of heterogeneities. Finally a volcanological setting of the Talisker Bay 

area is presented, based on the micro-scale data, and a model for the evolution of the 

lava pile is proposed. 
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Small sea stack (3.2.2) 

Area of map (Fig. 3·13) 

Figure 3-1 A: The Ta1isker Bay area [NG 1311 8299] micro-scale case study, located on the north 
Minginish district Digital Terrain Model (DTM); B: Zoom-in to the south side ofTalisker Bay showing 
3D data incorporation on the foreshore area; C: Location of geological map (Fig. 3-13). 
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A 

Figure 3-2 Levels of field exposure in the Talisker Bay area of the Minginish district. A: Looking 
SE into Talisker Bay from the top of the northern cliffs; B: Looking north at the south-facing cliffs 
ofTalisker Bay; C: Looking east towards Arnaval at the lower level of exposure seen inland. 
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3.1 THE KEY GEOLOGICAL INTRAFACIES OF THE TALISKER BAY 

LAVA SEQUENCE 

The key geological intrafacies are now discussed on the centimetre to metre­

scale with examples taken from the good quality outcrop sections in the Talisker Bay 

cliff sections. 

3.1.1 Classification of flow heterogeneities: The lntrafacies Scheme 

The facies observed in flood basalts have been considered on a lava field 

scale by Jerram (2002) and on a seismic scale by Planke et a!. (2000). Architecture 

and sequence relationships at these scales include features such as shield volcanoes, 

volcanic disconformities over tens of kilometres, seaward dipping reflectors and lava 

deltas. lt is crucial to include architectural features and facies on these scales in 3D 

models of volcanic successions. It is of equal importance to understand what these 

kilometre-scale features comprise of, on the scale of the individual lava flow; both 

architecturally and in terms of geophysical rock properties. Below, we discuss the 

building blocks of the larger architectural features and provide a classification of the 

geological heterogeneity; the 'intrafacies scheme' which can be used to estimate 

geophysical rock property distributions in lava field successions. 

Shorthand descriptive classification schemes in sedimentary sequences are in 

common use and have been developed from studies of fluvial systems (e.g. Allen 

1983; Miall 1985 & 1988). These schemes provide a method by which a field or 

well-site geologist (who may be studying core samples/drill cuttings) can interpret 

sedimentary facies by studying how descriptive architectural elements are associated 

in a series of rock units. In the classification for fluvial systems for example, 

centimetre-scale lithofacies are described and allocated a 'lithofacies code'. 
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Subsequently, the associations of the lithofacies in the geological record are used to 

interprete the architectural elements and facies evolution of the succession (Fig. 3-3). 

In igneous sequences large textural variations, and subsequently rock 

property variations exist within the individual facies units themselves, caused by, for 

example the organisation of distributions of vesicles within lava flow units. We can 

use the term 'intrafacies' to describe these variations within individual igneous 

structures, both intrusive and extrusive. Classification schemes for igneous 

architectural facies are uncommon, although Jerram (2002) and Planke et al. (1999; 

2000) have provided systems of architectural sub-divisions on the scales of 

kilometres to tens of kilometres, respectively. Self et al. (1997) have discussed 

several internal features of lava flows such as mega-vesicles (MV); vesicle sheets 

(VS) and pipe vesicles (PV). The associations of many of the observations of Self et 

al. ( 1997) have been used to invoke lava sequence development models, but are 

limited in their ability to predict heterogeneities in the geophysical properties of 

rocks. 

The intrafacies scheme is useful as it provides a systematic shorthand 

notation for describing features in lava sequences. The work incorporates some of the 

concepts of Self et al. ( 1997), but aims to build a system which can provide a rapid 

interpretation tool for the field and well-site geologist as an aid to interpretation of 

igneous facies, which can be based solely on field or borehole observations. The 

system aspires to provide a distinct classification for rock property analysis in order 

that petrophysicists or geophysicists may improve the characterisation of igneous 

sequences in both seismic and potential field data (gravity and magnetic studies). 

Small-scale components of the classification characterises the most basic level of 
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lava sequence heterogeneity, typically at the centimetre to metre-scale. Subsequently, 

the associations of these components are discussed as the intrafacies of igneous 

successions, along with their geophysical implications for sub-volcanic investigation. 

3.1.2 Intrafacies Components of Flood Basalt Architecture 

A series of intrafacies components have been recognised from observations 

made in the case study area of Talisker Bay. The components are the most 

fundamental level of field observation and form the constituent elements of 

intrafacies and the larger scale architecture of flood basalts (Table 3-1 ). The 

emphasis lies in description of architectural styles and textures at this smallest scale 

of investigation, noting features such as vesiculation, fracturing, presence of 

palaeosol beds (boles) and an account of the shape of the features and how they are 

juxtaposed. Interpretation of the intrafacies or geophysical rock properties is not 

essential at this stage in the characterisation. An architectural intrafacies component 

is denoted by a letter within square brackets. For example, [ v] denotes vesiculation 

and [j] indicates the descriptive component of regular jointing. At any particular part 

of an outcrop, several components will be present. The combination and association 

of the components are subsequently used to help constrain the metre-scale intrafacies 

interpretation. 

Each of the intrafacies components displayed in Table 3-1 may be observed 

without the use of specialist equipment at the outcrop or field specimen scale. Our 

classification aims to maintain consistency in scale, such that these intrafacies 

components may be integrated to form larger, lava flow scale intrafacies associations 

as discussed below. 
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Micro-scale flood basalt architecture 

3.1.3 The Intrafacies of Flood Basalt Architecture 

Intrafacies may be interpreted, to a large extent, on the basis of the natural 

association of the architectural intrafacies components outlined above (Table 3-2). 

These are similar in scale to the features described as architectural elements by Miall 

( 1985), and are of the same scale as the subdivision of lava flows by Self et al. 

(1997). Although several of the intrafacies in Table 3-2 contain similar intrafacies 

components, they are usually distinguished by a combination of the components 

within the geometries observed. In the following section, field examples of flood 

basalt intrafacies are cited from Talisker Bay. 

3.1.4 lntrafacies Examples in the sequence of Talisker Bay 

In the flood basalt sequence of Talisker Bay, we can observe most of the 

intrafacies listed in Table 3-2. Heterogeneities in the distribution of rock properties 

through such igneous sequences may heavily affect the performance of geophysical 

remote sensing techniques due to the variability in their rock properties over 

centimetre to metre-scales (Planke & Cambray 1998). The key geological intrafacies 

that affect the ability of geophysical methods to image through igneous successions 

are highlighted in Table 3-2, but particular facies to note are: 

I. Boles -high attenuation (Qs & Qp) in seismic surveying 

II. Flow tops I bases -low velocity, low density zones 

Ill. Flow cores/massive sheets- high velocity, high density zones 

IV. Sills- thick high velocity zones with high bulk density 

V. Dykes- vertical high velocity, high density sheets 

It is important to recognise how the varied geological intrafacies of the 

volcanic sequence may affect remote sensing techniques, as they are volcanic 

sequence geophysical heterogeneities. These invariably cause seismic waveform 
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scattering and degeneration due to factors such as surface geometry (rugosity) and 

acoustic impedance contrasts through the lavas. These heterogeneities reduce the 

quality and resolution seismic and also affect gravity modelling. The major 

intrafacies features of the Talisker Bay rocks are now discussed, together with their 

geophysical implications. A field outcrop intrafacies summary (Fig. 3-4) is 

accompanied by some more detailed field outcrop examples. The locations of these 

are indicated on a location map (Fig. 3-5). 
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Table 3-1 The essential intrafacies components of flood basalt architecture. Scheme based 
on field data from the Skye Lava Field. 

Notation Component Diagnostics Schematic Structure Interpretations 

Very fine crystal size at 

~~~~l~:~~> [a) Aphanitic margin margins of structure, no Chilled margin 
phenocrysts, glassy 

- ,. ... ) 

Red-grey fine loamy matrix, ' ........ ,~--\ "\) 
Fossil soil material, 

[b) Bole material usually slickensided and often """' ,, . '. , ~r~ ... ,r.~,, ·, sedimentary horizon 
contains rubble \~;~\ "'~ 
Concentrically layered. often -~- Lava feeder tube, lava channel, 

[c) Concentric banding striated, ovate. signs of flow foliation banding, pillow 
thennal erosion structure, lobe breakout 

Steeply dipping foresets, ~~ Hyaloclastite breccia, 
[I] Foreset bedding 

hyaline angular clasts 
extrusion of lava into water 
body, lava delta 

Injection of lava tongues. 
Invasion of lava into sediment 

[i) Injection structure I lava, vein invasion from a 
alteration, veining 

~ 
zone of high heat flux 

Grey I reddened horizons 
[I) Loading structure below lava, 'flame' Loading of lava onto sediment 

stmctures, alteration, folding 

• I~ 
,.,._ 

Jointing pattern is heavily 
[j) Jointed (regularly) Regular joint pattern present ' 

dependent on the structures 
cooling history 

Fractured, low vesiculation 
density, holocrystalline (90- ~~V,1Ti; 

Degassed lava lobe core, lava 
[m] J\'lassive 

100"/o crystals) often low SiO, 
conduit, tabular flow, degassed 

lava 
horizons in inflated lavas 

Phaneritic phenocrysts reside ~'~~:.~~~i;~ Slower cooling of igneous 
[p) Porphyritic texture 

amongst groundmass '~,, .. ;~~'f,., ''-, body, magma mixing 
~~w::~~·,~. 

Rubble, striated angular lava ~ A'a type lava flow top surface, 
~ 1 1 -f r,=r [raJ Rubbly surface clasts, rounded cobble like 

~ 
intra-lava sedimentary 

clasts horizon, bole 

/~ Pahoehoe type lava flow top, 
[rp] Ropy surface Rope-like texture cast oflava top in sedimentary 

~ 
horizon 

~-~-~~ 
Mainly discordant: dyke; 

Inclined sheet 
lntmsive sheet, concordant or mainly concordant: sill. 

[si) 
discordant, ::>2 chilled zones 

. . . 
Simple, composite. sheeted, . . . 

~~ layered types . 
Volcaniclastic material, fine 
grained well sorted matrix to 

?L~~ poorly sorted mixed clast Explosive volcanic product, 

[t] Tuffaceous material 
size, finely laminated, clasts may be lengthened 
reddened, often fissile, parallel to bedding due to 
crushed clasts, fiamme, high ;.._, e: ---L.-- compaction 
temperature clasts e.g ~-~ 
sanidine, CPX 

Frothy vesiculated lava, often ~-~·~;6~:: <;:._!:..:-::· .. ~~-. Frothy lava flow top surface, 
product of inflation process 

[v] Vesiculated amygdaloidal, <I mm to 
~ {degassing exercise), lava flow 

>IOOmm H--==- :_!_ I -, base 'I 

Medium to coarsely Groundmass is l-5mm crystal -.r£"£J.-,.~ Towards centre of body, zone 
[xl] -- "i)!J has experienced slow cooling 

crystalline size $~~ history 
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Table 3-2 Geological intrafacies considered to be of importance to geophysical modelling 
studies of a 'basaltic' lava field. 

Geological 
Intrafacies 

Schematic Diagram of Size of Vp RHOB 
lntrafacies 

Components 
Intrafacies 

Description 
Feature (kms·') (gem·') 

Present 

Bole QVealhered 
lf{j--=- .... ~~ 

lcm-5m 2.01-
lm·a top surface) [b, i, I, m, ra, ~ v] 4.....;;o~; \Veathered soil surface 

thick 
2.2-4.3 

2.88 
~~~9~ 

Magma feeder 

Conduit /Lava 
conduit. Open and 

2m-< 10m 1.86-
Feeder Tube 

[c, m. i,j, v, xi] covered 'pipe' types. 
diameter 

3.3-5.3 
2.92 

Striated margins, often 
picriric lithology 

Mainly discordant 

D1>ke/ ---:;::::;<' 
inclined sheets. 2+ 
chilled margins. Form 10cm-50m 2.79-

Compound [a, i,j, p, si] ~~- sheeted complexes in wide 
4.5-5.8 

3.02 
Dvking 

proximity to central 
volcanic complexes 

Vesiculated often 
-::;.··:·.· · .. ·.~~-. piped, may be rubbly, 

Flow Base [a, i, I, ra, v] 
·.~--~~- -~··.0j>~ ·. show magma injection 

<2m thick 2.7-4.4 
2.56-

.;... • • • .. - ' & - .~ • .. - • -

structures & evidence 2.72 
of sediment loading & 
induration 

~~ Tongue I finger like 
30cm-Om 
wide, 1.86-

Flow Breakout [a, c, i, I, m, v] projections from lava 
20cm-lm 

3.3-5.3 
2.92 

flow lobe 
thick 

~~~' Massive region at flow 
1m-10m 

Flow Core [i,j, m, p, xi] 
lobe core, fractured, 

wide, lm- 45-5.8 
2.72-

may be injected, often 2.84 
medium grained 

5m thick 

Flow Top 
Frothy and 

2.56-
(umt·eathered) 

[a, ra, rp, v] ~--:".";:-.--~·~ vesiculated. may be <lOrn thick 2.7-4.4 
2.72 

rubbly 

Foreset-bedded, 

.~~Tfftzf~)MJ~~l~li~~;0s! 
contains sharp angular 

Hraloclastile 
[a, b,f,ra] 

glass fragments and !Ocm-
2.6-4.7 

2.03-
Breccia small volcanic clasts, >10m 2.87 

may contain organic 
matter 

.:·.::; .:·~·:, .•: • . ., 
Sheet flows that show 

lnllated Sheet alternating horizons of IDem- 1.86-
Flow 

[a, i,j, I, m, v] .:.-:~:-::.~~/:? higb and low 30cm thick 
3.3-5.3 

2.92 

<·_:; ... ~:~ vesiculation densities 

~-.JlP,1.ii::i\1i€ 
Fractured, structure >lOrn 

2.79-Massive Sheet [a,j, m. p, xi] less with low wide, lm- 45-5.8 
3.02 

vesiculation densities Sm thick 

~ Bulbous pillow-like 
~~·::: <1m 1.86-

Pillow Lava [a, c, i, m, v] vesiculated structures, 
diameter 

3.3-5.3 
2.92 ! ( ',1 ;_:J concentrically banded 

'-_./ 

..--- Mainly concordant 
1m-100m 2.79-

Sill [a, i, j, p, si. xi] 
.. - . -

sheet, 2+ chilled 45-5.8 
~ margins 

thick 3.02 

.---:=.:-:----~ 

.~:~·@--~ Broken volcanic 
~ ~ ?'" 0,.--!' <A debris, fine ash, I em-3m 2.01-

Volcaniclastic [b, i, I, p, I] -=:;.~:tt~-..·---: flattened clasts, thick 
2.2-4.3 

2.88 ;J{·~~~' organic debris __;.-

The geological intrafacies which have the most important implications for geophysics are 
underlined and in italics. Examples of the relationship between geological intrafacies and 
geophysical properties are also presented: columns 6 and 7 show the range of compressional 
wave velocity (Vp) and density (RHOB) predicted for each of the geological intrafacies. Note 
that sedimentary horizons (denoted as boles) and vesiculated zones will dramatically reduce the 
overall Vp and RHOB through a volcanic succession. Sample rock property data collated from 
the SIMBA rock property database and from Planke (1994) & Planke eta/. (1999 & 2000). 
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em 201 

Figure 3-4 Field examples of intrafacies from the British Tertiary Igneous Province (BTIP). [ntrafacies 
components are described and denoted in square brackets. A: Composite dyke; B: Rubbly weathered 
lava top; C: Pahoehoe texture developed on top of an olivine-phyric basalt; D: Magma injection 
structures through a bole; E: Massive core and vesiculated top of pi critic lava lobe; F: Thick 
sedimentary horizon or bole; G: Lava lobe breakout; H: Massive picritic feeder tube in pahoehoe lava 
sequence. 
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Key Localities: 
@ Talisker Bay cliff sections 

~Lava feeder tubes 

Micro-scale flood basalt architecture 

Talisker 
Bay 

@ Basaltic lobes @ Bole loading 

§ Break-outs ~Interpreted sections 

Figure 3-5 Localities of importance in Talisker Bay [NG 131 830]. Numbers correspond to those of 
figures associated with this chapter. A: The Talisker Bay grid squares showing the complete bay area. 
Map B lies within the blue box marked on the south side of the bay; B: Individual localities located 
accurately on the south side ofTalisker Bay. 
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3.1.4.1 Dykes and Sills 

Although Talisker Bay is 8-9km SW of the axis of the most intense dyking 

seen in the Skye swarm of the British Tertiary Igneous Province (BTIP), several 

dykes are exposed in the sea cliffs and the surrounding hillsides (Fig. 3-4A). The 

dykes assume the common BTIP strike ofNW-SE and cut through the entire igneous 

succession. A compound dyke cuts the north-facing cliff section containing evidence 

of multiple injection episodes. The walls are columnar jointed and aphanitic and 

internally the massive core is texturally zoned. The geophysical rock properties of 

the dyke are interpreted to be similar to that of a massive degassed sheet flow or sill; 

however the steeply dipping orientation of dykes severely affects acquisition of 

seismic data. 

Sills form an important geological facies of flood basalt igneous successions 

such as the Trottemish sill complex of NE Skye (Gibson 1990) and the huge Huab 

sill complex of the Etendeka flood basalts of Namibia (Jerram 2002) however these 

are introduced in Chapters 4 and 5 due to the large scale of these particular features. 

3.1.4.2 Rubbly Lava Flow Tops 

Rubbly lava flow tops are uncommon in the lower parts of the succession in 

Talisker Bay; however, a very angular, poorly sorted a' a flow top sits on the toe of a 

massive sheet flow close to sea-level. In the rubbly top, is a very fine-grained, 

slickensided, clay-rich matrix (Fig. 3-4B). The presence of the angular a' a lava flow 

top suggests a rapid eruption rate in this particular flow of >20m3s-1 (Walker 1993). 

Geophysically, such flow tops are noted as attenuated low velocity zones on wireline 

logs due to the clast-supported nature of the intrafacies and, often as in this case, the 

presence of low density bole material (Planke & Cambray 1998). This rugose, clast-
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ridden intrafacies will also cause reduction of seismic bandwidth due to scattering of 

the high frequencies. 

3.1.4.3 Inflated Pahoehoe 

Alternating sheeted bands of vesicular and non-vesicular material (O.l-0.2m 

thick) are observed in the pahoehoes at the base of the succession. The vesicles are 

often piped (' PV' notation of Self et a/. 1997) and their orientation indicates the 

lavas flowed towards the west (e.g. 3°/278°). This is consistent with the flow 

indications in the ropy lava tops (Figs. 3-4C & 3-9C). The pipe vesicles are 

developed in the basal zones of pahoehoe flow lobe units, but most of the dense 

vesiculation in the succession is represented by sub-parallel vesiculation bands. 

These are inferred to have formed by reducing the internal pressure and degassing 

the inflating pahoehoes. This may occur when breakouts escape from the semi-solid 

flow carapace (Hon et al. 1994; Self et al. 1998). Within these thinner lavas at the 

base of the exposed igneous succession, massive and vesiculated zones are always 

present and this alternating banding supports the notion of passive flow inflation. 

3.1.4.4 Injection and Loading Structures 

The injection and loading observed in this part of the lava system provides 

direct evidence of pahoehoe inflation from beneath, and also for country rock 

assimilation processes on a centimetre-scale (Fig. 3-4D): several flow base zones sit 

directly on reddened vesicular bole material developed on the frothy top of the 

subjacent lava. The bole hosts complex structures where the upper basaltic lobe has 

loaded and contorted the bole layer. Several zones of detached bole have also been 

amalgamated into the basaltic lava lobe. These have been detached into rafts by 
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magma injection from below. Reaction rims are noted at the contacts between the 

boles and the basalts (Fig. 3-7). 

3.1.4.5 Massive Lobes Cores I Frothy Lava Flow Tops 

High compressional wave velocity (primary velocity), high density lava flow 

core regions occur on two scales: As laterally impersistent core zones in pahoehoe 

flows (0.5-2m thick), or as laterally persistent zones in thicker tabular-type flows 

(>5m thick). On the north side of Talisker Bay is an example of an inflated pahoehoe 

core region beneath a heavily vesiculated flow top (Fig. 3-4E). The massive core 

region has been injected by a subsequent batch of magma, which adds to the 

complexity of its inflation; however, the core is essentially geophysically isotropic 

(Fig. 3-6). Flow core zones in the Talisker Bay olivine-phyric lavas are a maximum 

of 2.5m in thickness, but the mean thickness is less than 1m. The massive core zones 

display more regular jointing than the heavily fractured lava flow lobe bases and 

tops. During the pahoehoe inflation process described by Hon et al. (1994), the core 

zones may develop into tubes that transport molten basalt to small pahoehoe lobes at 

the toe of the advancing lava field (Keszthelyi & Denlinger 1996). Massive core 

zones grade upwards into a zone of more profuse vesiculation ( <25%) with an 

overall large vesicle size (mean of c.5mm). As lobe tops are approached, the density 

of vesiculation increases and the size of the vesicles reduces as a common 

observation. As the top is reached, a zone of vesicles generally <0.1 m thick is often 

noted where the vesiculation density may be as high as 80%. This zone is usually 

capped by an aphanitic, glassy top which represents the quenched flow top. Both the 

vesiculated zones and the lobe cores are laterally discontinuous (Fig. 3-6). 
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Lobe 1 

Figure 3-6 Olivine-basalts ofTalisker Bay. A: A well-defined flow lobe core revealed in the south­
facing cliffs [NG 13135 83060]. The walking stick is extended to l m in the centre of the figure. 
Above the core is a thick, highly amygdaloidal rubbly zone up to 1.5m thick. The lobe core is 
injected by basalt which contains a rounded cobble of foreign amygdaloidal basalt; B: A stack of 
pahoehoe lobes at the base of An Stac [NG 13113 82997]. Lobe numbers correspond to the 
stacking order of the units, flow 1 being the oldest. Thin boles lie on parts of the lower lobes. Sub­
parallel amygdaloidal bands run across the basalt lobe sections, indicating the flows to be inflated. 
(a= aphanitic margin; i = injection structure; j =jointing; m = massive; rp =pahoehoe surface; v = 
vesiculated). 
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3.1.4.6 Boles and sedimentary beds 

Boles indicate prolonged periods of sub-aerial exposure and are often 

associated with volcaniclastic material such as tuffaceous beds from explosive silic 

eruption events (Bell et al. 1996; Widdowson et al. 1997; Bryan et al. 2002) and 

deltaic and laccustrine sedimentary units such as conglomerates, sandstones, 

mudstones and coals. Sedimentary beds and weathered zones in igneous successions 

of the BTIP are generally <5m thick (Figs. 3-4F & 3-7). In other parts of the NAIP 

however, some beds are much thicker. For example on the Faeroe Islands and in the 

offshore Faeroes Lava Group, a 10-20m thick coal-bearing sequence caps the Lower 

Lava Formation (Chapter 5; Ellis et al. 2002) and in Antrim, parts of the Interbasaltic 

Formation are up to 28m in thickness where acid volcanics have been heavily 

weathered to laterite or bauxite (Preston 2001 ). Many such beds are high quality, 

laterally persistent 'marker horizons' for lava sequence correlation, and are used to 

divide the lava succession and for dating (e.g. Anderson & Dunham 1966; 

Williamson & Bell 1994; Milner et al. 1995; Bell & Jolley 1997; Bell & Williamson 

2002). The rock property characteristics of these beds attenuate propagation of high 

seismic frequencies, reduce bandwidth, and reduce the density of the overall lava 

succession. In the upper tabular-type architectural sequence of lavas in the Talisker 

Bay area, boles form up to 15% of the succession: major lava flows of 8-15m thick 

are capped by boles of up to 3m thickness. This has the effect of substantially 

reducing the specific gravity of the overall sequence which is an important 

consideration for gravity models being built in areas that contain such lava sequence 

types. 
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Figure 3-7 Sections through bole on the south side ofTalisker Bay [NG 13122 82995]. A: A 
rubbly, vesiculated olivine-basalt surface is weathered and bole material is resident between 
the degenerated basaltic cobbles; B: A complex bole I basalt contact. Close-ups show the 
bole contact to be heavily altered by the low grade thermal metamorphic effects of the basalt 
enveloping the soft sediment. Vesicles radiate around the flame structure in the basalt due to 
micro-scale phreatic interactions. (a= aphanitic; b =bole; ra = rubbly surface; v = 
vesiculated). 
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Figure 3-8 Pahoehoe lava lobe breakouts. A: A series of breakouts filling a depression in the lava 
sequence. The small breakouts are shown in elevation section and consist of a series of 
concentrically banded lobes which have alternating internal amygdaloidal and structureless bands 
[NG 13134 82998]; 8: Large pahoehoe breakout on the west side of An Stac which plunges gently 
towards the SW [NG 13110 82996]. (b =bole; c =concentric banding; m =massive; ra = rubbly 
surface; v =vesiculation). 
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3.1.4.7 Breakouts 

Lava flow breakouts are interpreted to occur at the toe of advancing lavas 

when basalts escape the cooled carapace. Breakouts are externally characterised by 

finger-like or lobe-like geometries. Internally, these are observed to be highly 

vesicular in slim sub-parallel zones and have aphyric margins. In vertical sections, 

breakouts may represent independent pillow-like features that have concentrically 

banded structure (Figs. 3-4G & 3-8). Breakouts are an essential part of the pahoehoe 

inflation system; and are considered to be geophysically similar to inflated 

pahoehoes or pillow lavas. Thin alternating massive and vesicular zones typify each 

of these intrafacies types, as noted by their intrafacies components. Breakouts m 

Talisker Bay pahoehoe flows are observed to verge to the SW (Fig. 3-8). 

3.1.4.8 Lava feeder tubes and pipes 

Typical, rhythmically banded and inflated basalts are cross-cut, and intruded 

by large, concentrically banded lava structures in several parts of the bay area [NG 

13125 82998]. These are interpreted to be lava flow feeder tubes that sub­

horizontally fed lava to the developing lava field from within (Fig. 3-4H). To the 

south of Loch Eynort, structures similar to those described below are also observed 

in cliff sections. Systems of such feeders exist in present-day persistently volcanic 

environments such as on Hawaii (Fig. 3-10; Halliday 2003; Kempe et al. 2003) and 

also in more sporadically volcanic areas such as those of Mount St. Helens in the 

Cascades volcanoes of west U.S.A. and in Japan (Miyamoto eta/. 2003). They are 

also documented to a limited extent, in ancient flood basalt provinces such as the 

huge system seen in the Deccan Traps where lava tubes and channels have been 

indentified in over two hundred localities in a study area of c.120,000km2 (Misra 

2002). 
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A s 

Inflated sheets 

Figure 3-9 Structures in inflated pahoehoe near An Stac [NG 13117 82997]. A: The small sea stack 
from the west. The interpretation of the lavas in this stack reveal inflated pahoehoes invaded by lava 
feeders both in the stack, and in the distant cliff section; B: A structureless picritic lava feeder 
tube/conduit cuts across the base of the small stack and contorts the surrounding lavas. This indicates 
that the lavas surrounding the feeder were hot enough to be plastically deformed by the structure; C: 
Pahoehoe surfaces at the foot of the stack plunge gently towards the SW. (b = bole; c = concentric 
banding; j = jointing; m = massive; ra = rubbly surface; rp = pahoehoe surface; v = vesicular). 
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Four distinct lava tubes are observed in the intrafacies of the Talisker Bay 

section. These are divided into two simple categories: 

ct Passively-emplaced type 

o Channel-like (erosive) type (Fig. 3-11). 

3.1.4.8.1 Passive-type lava feeder tubes/pipes 

Several such structures sit passively within the inflated basalts (Fig. 3-9 & 3-

llA). They are olivine-rich, laterally impersistent; forming a low percentage of the 

bulk rock volume and are interpreted to be high heat flux lava pipes or tubes feeding 

the toe of the lava field. At the west end ofthe north-facing cliffs, a pipe-like feeder 

consists of concentric layers of holocrystalline, olivine-basalt. The massive core 

region is c.l.5x2.2m and the body plunges gently towards the SW. Inflated pahoehoe 

sheet flows are passively intruded and folded around this pipe-like feature. This 

suggests that the sheet flows into which the structure was intruding were still hot and 

able to deform plastically. The feeders plunge shallowly towards the SW which is 

consistent with flow directions indicated by pahoehoe textures, lava breakouts and 

flow overlap directions. 

3.1.4.8.2 Channel-like erosive lava feeder tubes 

The most prominent channel-like lava feeder tube (Fig. 3-11 B) lies in the sea 

stack section [NG 13119 82997]. The body truncates the surrounding lavas and 

invades them with basaltic veins. Strong striations on the tube walls plunge at the 

same attitude as the tube indicating these to be a product of the magma movement 

(Fig. 3-12). Concentric banding also contains vesicles that are sheared in the 

direction of striation plunge. 
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The presence of a large number of tube-like lava feeders suggests that there 

was a well established, high heat t1ux plumbing system active at the base and within 

the lava fields' int1ating basaltic sheet t1ows. The dimensions of the feeders imply 

that the Talisker Bay section may be quite proximal to a magma source which was 

erupting relatively small volumes from the direction of Loch Harport. The volcanic 

system may be considered to be analogous to those of modem day Hawaii or Iceland, 

where the slow eruption rates (<20m3s-1
) and volumes allow good preservation of 

detailed lava field features (Walker 1993). The Hawaiian lava field near the Kilauea 

vent displays extremely similar features to those seen in the Talisker Bay area of 

Skye: well-preserved int1ated pahoehoe basalts are fed at the present day, by a well 

established plumbing system of lava feeder tubes - this configuration of volcanic 

system is common to both locations (Fig. 3-1 0). 
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Basaltic lava field development 

Figure 3-10 The development of a basaltic lava field in a typical shield volcanic setting. 
These photographic examples are from the Kilauea volcano on Hawaii. A: Finger-like 
basaltic lava flows erupt from fissures on the flanks of the shield volcano. The sheet flows 
inflate and thicken from beneath underneath a cooling carapace. The flows advance as lava 
breaks through the carapace; B: The inflating lavas build into a lava field and breakouts are 
more limited to the toes of the lava flows due to the thickening carapace. Lava feeding the toe 
of the advancing lava field concentrates into sub-terrainian lava feeder tubes and pipes that 
are thermally-insulated, high heat flux lava pathways. These facilitate the movement of lava 
over great distances (1 Os km). 
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Figure 3-11 Contrasting types of olivine-basalt lava feeder tubes. A: Pipe-like lava tube passively intruding and gently folding the 
surrounding inflated pahoehoes [NG 13122 82998]; B: Large concentrically banded lava tube cross-cutting the surrounding rythmically 
banded inflated pahoehoe strata [NG 13125 82998]. ( c = concentric banding; m = massive, ra = rubbly surface; v= vesiculation). 
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Micro-scale flood basalt architecture 

Figure 3-12 The lava feeder tube revealed on the foreshore near An Stac [NG 13119 82997]. A: 
Linear, discordant lava tube in inflated pahoehoe crosses the entire peninsula. Both photographs are 
taken from same location looking along the feature in two directions; B: Striations are revealed on 
the walls of the structure. The striations plunge gently towards the SW; C: Intense basaltic veining 
invades the surrounding pahoehoe flows. This is coincident with a joint system. ( c = concentric 
banding; m = massive; v = vesiculated). 
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In the previous sub-sections, examples of the facies and intrafacies present in 

the Talisker Bay area of the Skye Lava Field have been documented. These micro­

scale (cm-m) variations in lithology are potentially very important when considering 

the lava field in terms of its geophysical characteristics. In the following sub­

sections, a series of case studies which document some of the centimetre to metre­

scale variations in the lavas around Talisker are presented which incorporate the 

main intrafacies types introduced above. These case studies highlight the complexity 

of heterogeneity at the centimetre to metre-scale. 
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3.2 INTERPRETING FACIES AND INTRAF ACIES IN T ALISKER BAY: 

CASE STUDIES 

The main geological intrafacies types have been discussed as field examples 

from Talisker Bay. This section studies how the intrafacies co-exist in the field 

outcrop sections of the bay area, and what these can tell us about the heterogeneity of 

the lava field on the whole. Firstly, centimetre-scale variations are studied in log 

sections. ln tum, these are discussed in terms of the metre-scale of investigation at 

the same outcrop, subsequently, the concepts presented are applied to a full outcrop 

section. 

3.2.1 Talisker Bay Wave-cut Platform sections 

The area of lavas near the small sea stack section is shown and the facies 

summarised in Fig. 3-13. When we look closely at a these lavas, the variations in 

volume and distribution of vesicles, combined with the massive crystalline zones in 

both vertical and lateral directions gives a complex system characterisation. ln 

vertical sections, quantification of vesicle densities produces saw-tooth patterns 

through the successions in each sample section (Figs. 3-14 & 3-15). The magnitude 

and amplitude of the limits of the vesicle density change substantially from totally 

massive, vesicle-free character, to up to 45% vesiculation. Where a high percentage 

of vesiculation exists, the mean vesicle diameter is small (c.2mm) and these are 

observed to be present towards the actual ropy pahoehoe tops of individual flow lobe 

tops where the lava is frothiest. Where the vesicle densities are lower;· the vesicles 

are larger, but the basalt is not massive in character, we are usually observing vesicle 

bands that have formed due to depressurisation of the inflating flow due to lobe 

breakout occurrence. 
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Key features of the wave cut platform 

A: Massive lava feeder pipe plunging from wall of sea 
stack at 4 o /241. Vesiculated horizons contorted 
beneath massive, unvesiculated core zone. 

B: Pahoehoe surface texture on sheet flows indicate 
lava flow direction towards 2°/269. 

C: Olivine-phyric basalt interacting with bole. 
Reaction rims of <7cm present in contact zone. 
Amygdales in the basalt are sub-parallel to the contact 
with the bole. 

D: Lava feeder tube exposed 
East of small sea stack. The 
plunge of this striated, 
concentrically-banded 
structure is c.2°/237. Looking 
up plunge (see left), the lava 
feeder is observed to be 
heavily orthogonally jointed 
parallel and perpendicular to 
the plunge direction. Much of 
the jointing is exploited by 
basaltic veining. 

Bole horizons and thick, tabular basaltic lava flows are 
continuous in cliff sections up to 280m high South of 
Talisker Bay. 

Figure 3-13 Map of geological intrafacies in the area of the An Stac (small sea stack) and the surrounding wave-cut platform. Key features in the area are annotated. The wave-cut platform provides a section through a shallowly dipping succession of 
basalts and reveals the relationships between these lavas, their magma feeders and the sediments onto which they were erupted. Elastic velocity range estimates for geological intrafacies types are inferred from rock property data collated from the 
SIMBA rock property database and from Planke (1994) & Planke eta/. (1999 & 2000). These inferred velocity ranges are tabulated in Table 3-2. 
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Figure 3-14 Sections through inflated pahoehoe olivine-basalts in Talisker Bay. Banded variations in the 
massive and vesiculated character of the basalts are indicative of a succession of inflated pahoehoe flows. 
Vesiculation density decreases up through the section. Note that most of the highest vesicle density zones are 
composed vesicles of a smaller mean diameter than zones where vesicles are present, but character is more 
massive. Schematic estimated geophysical heterogeneity through this section is also represented by density 
and elastic velocity variations. These vary strongly as the intrafacies characters in the log sections vary. 
Schematic geophysical wireline log responses after Planke & Flovenz (1996). 
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Figure 3-15 Sections through inflated pahoehoe olivine-basalts in Talisker Bay. Banded variations in the 
massive and vesiculated character of the inflated pahoehoe indicated by the saw-tooth pattern of the plot 
of vesiculation density through the lavas. Note again that % vesiculation is inversely related to primarily 
elastic velocity and density in terms of the geophysical characteristics ofthis section. Schematic 
geophysical wireline log responses after Planke & Flovenz (1996). 
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Within the confines of these small sections of study around the small sea 

stack of the bay area, it is possible to observe a whole host of geological variability. 

Even the variability on this sub-seismic scale affects geophysical data acquisition. 

Although the features discussed are dimensionally minor, their surface geometries 

are likely to be damaging to seismic data quality for example, as the complex 

geometries cause scattering and dispersion of seismic wave-fronts. These concepts 

are discussed in Chapter 6. 

Having observed some of the features in the lava field on a centimetre to 

metre-scale, the next section builds these observations into the small outcrop scale to 

understand how the intrafacies discussed may co-exist in the volcanic succession. 

3.2.2 Talisker Bay Small Sea Stack Section 

This area essentially consists of a series of alternating bands of high (up to 

45%) and low vesiculation densities (<5%) and represent a series of pahoehoe sheet 

flows. The section shows simple onlapping relationships between basaltic flow lobes 

and a massive passively emplaced lava feeder. Distinct core regions (<50cm thick) 

are observed amongst highly vesicular sheets. The vesiculated zones often merge 

around the flanks of the massive core regions. The facies distribution (Fig. 3-16) 

indicates there to be a balance between highly vesicular flow facies and massive flow 

cores across the entire section in a ratio of about 5:4. 
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Figure 3-16 An Stac small sea stack section [NG 13117 82997] (Fig. 3-1 B&C) showing lava feeders resident within the olivine-basalt succession. Lower in the outcrop it is possible to distinguish the individual 
massive and vesiculated zones which constitute the inflated pahoehoe. Higher up the section where the alternating zones are less obvious, they have been grouped under the inflated pahoehoe facies 
interpretation. Elastic velocity range estimates for geological intrafacies types are inferred from rock property data collated from the SIMBA rock property database and from Planke ( 1994) & Planke eta/. ( 1999 & 
2000). These inferred velocity ranges are tabulated in Table 3-2. 
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3.2.3 Talisker Bay Large Sea Stack (An Stac) 

The lavas observed around the An Stac sea stack section provide a detailed 

study area of high exposure of parts of the volcanic succession which is otherwise 

only revealed in stream sections inland in the Minginish district. This is due to the 

steady westward dip of the succession in the area. Where the lavas are revealed in 

inland stream sections, they are discussed in terms of their stacking patterns and 

vertical relationships in Chapter 4. 

Above the inflated pahoehoe succession of lavas are a series of thick bole 

beds. These are 1-2m in thickness and may be traced for over lkm in the cliffs to the 

south of Talisker Bay, and located in log sections inland. They are excellent marker 

beds for large-scale correlation exercises (Larsen et al. 1999; Bell & Williamson 

2002). Between the boles and pahoehoe are several more massive flow units. These 

are degassed cores of large basalt flows. Vesiculation is extremely sparse in these 

zones. 

3.2.4 Talisker Bay north-facing cliff section 

This section explains how a cliff outcrop may be divided into zones of 

varying geological intrafacies, and how this geological heterogeneity relates to the 

geophysical properties of the flood basalt sequence. This case study outcrop section 

lies on the south side of Talisker Bay [NG 3122 2995] at the base of the north-facing 

cliffs (Fig. 3-17). It was selected for the high quality of exposure present, making it 

an ideal place to observe the juxtaposition of intrafacies. The sequence is 

geologically complex and the variety of intrafacies present in this small section has 

major implications for geophysical studies. Studying the intrafacies components 

present in parts of the geological architecture, enables prediction of the possible 
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geophysical variability present in the outcrop section (Fig. 3-17). In order to quantify 

the geophysical variability in the geological architecture, we must link the intrafacies 

present with geophysical rock properties (Table 3-2). Below, this case study is 

presented using intrafacies as a system for predicting geophysical heterogeneity from 

the geology. 

The cliff section case study is divided into zones of geological intrafacies. 

Each geological intrafacies is represented by a range of rock property values (Table 

3-2). The geological interpretation is schematically represented in terms of a primary 

velocity structure in order to highlight the geophysical heterogeneity (Fig. 3-17). 

Quantification of the image into pixel locations and numbers allows calculation of 

the areas each intrafacies by thresholding the quantified pixels. The statistical 

variability in the geophysical rock properties can therefore be quantified for any cliff 

section using a combination of the image analysis and rock property data such as that 

presented in Table 3-2. The most localised and most profound lateral geological 

intrafacies changes are those of the dyke and lava feeder. Although the rock 

properties of the dyke are very similar to those of other massive zones (e.g. sills), 

dykes are considered as geophysically distinct in such sections as they are vertical 

structures. High velocity vertical structures affect the propagation of seismic waves 

differently, as only part of the wavefronts accelerate through the massive zone. The 

seismic waves either side of the dyke structure are relatively attenuated in the 

surrounding medium resulting in broken wavefronts. 

The cliff section is dominated by inflated, compound-braided type olivine­

phyric basalts containing highly vesicular basal and flow top zones and massive core 

zones up to 1.5m thick. Seismically, vesiculated zones exhibit low compressional 
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wave velocities of 3.0-5.4kms-1 (Planke & Cambray 1998) and low bulk densities of 

2.56-2.72gcm-3
. In contrast, the cores have <5% vesiculation and are high velocity 

zones of 5.0-5.8kms-1 (Planke et a/. 1999) with high densities of 2.79-3.02gcm-3
• 

When the distribution of vesiculated and massive zones from all the olivine-phyric 

basalts studied is compiled into a frequency distribution plot, these lavas tend to be 

dominated by the more massive flow components (Fig. 3-18). Both the vesiculated 

zones and the massive lobe cores are laterally discontinuous, resulting in complex 

geological and geophysical heterogeneity (Fig. 3-19A&C). 

The internal complexities of these earlier flows are distributed both vertically 

and laterally: however the younger, thicker flows seen higher in the lava field 

succession only show significant changes in vertical profile (Fig. 3-198). These 

thicker flows will be discussed in more detail in Chapters 4 and 5. 

The development of thin boles on lava flow tops suggests that there were 

many minor extrusion hiatuses during the eruption of the flows in this sequence. 

Although thin (<20cm), their top surface geometries are particularly rugose, which 

implies that they represent an effective waveform scattering surface. In addition, they 

contribute to minor density changes which reduce the bulk density of the lower 

architectural sequence. 

The igneous succession in the Talisker area encapsulates much of the internal 

facies variability which is used in the following chapters for making interpretations 

of lava flow internal structure and rock property composition. The observations on 

this micro-scale study are incorporated into the larger scale studies as the building 

blocks of the lava sequences. 
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Figure 3-17 The south side ofTalisker Bay north-facing cliff section [NG 13125 82998]. A: The cliff outcrop 
photographic montage; B: Geological interpretation showing the spatial distribution of the main intrafacies 
present and their constituent intrafacies components; C: The outcrop section schematically represented in 
terms of ranges of compressional wave velocity (km/s) stipulated for each intra facies ( cf. Table 3-2). Elastic 
velocity range estimates for geological intrafacies types are inferred from rock property data collated from 
the SIMBA rock property database and from Planke ( 1994) & Planke eta!. (1999 & 2000). 
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Frequency Distribution of Vesiculation density through typical olivine-basalts 
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Figure 3-18 Vesicle density as percentage of bulk rock volume through sections of 
olivine-basalts in the Skye Lava Field. 
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Figure 3-19 The directional properties of geophysical facies heterogeneity in two 
different types of Java flow architecture. A: Compound-braided lavas typical of low 
viscosity pahoehoe eruptions have complex internal and external anisotropy. Facies 
and rock properties vary considerably in theY and Z-directions and to a Jesser 
extent in the X-direction (anisotropy indicated by arrows); B: Massive, tabular-type 
flows exhibit their strongest anisotropy in the Z-direction. Geophysically, the XY 
plane will exhibit rugosity in both architectural styles; however, the wavelength of 
the rugosity is shorter in compound lavas; C: Outcrop schematically illustrating the 
variability in compressional wave velocity (Vp) through a more detailed section of 
the lower architectural sequence lavas. Note the simplified variability in velocity 
profiles both vertically and laterally across the outcrop. 
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3.3 IMPLICATIONS FOR THE VOLCANOLOGICAL SETTING OF 

TALISKER BAY 

The lavas and the internal organisation of the succession in Talisker Bay 

suggest that the lava field developed as a slow, passively effusive series of basalts. 

This conclusion is reached from the indications of flow breakouts and inflation 

within the basalts, the well-preserved pahoehoe textures, limited soil development 

and the presence of a well-developed lava feeder system. The high level of 

preservation of these features within the study area suggests that the volumes and 

rates of effusion were relatively low in this part of the Skye Lava Field when 

compared to those predicted for some flows in flood basalt provinces such as the 

Columbia River flood basalts where the Roza member is considered to have effused 

at a rate of c.4000m3s- 1 (Self et al. 1997). The lava feeder tubes are developed on a 

much smaller scale than those seen in flood basalts such as the Deccan, which is 

consistent with the low volume, low effusion rate of volcanism interpreted to be 

present in the Talisker area. The Skye Lava Field in the Minginish district contains 

many of the architectural facies that are seen in the modern day systems of Hawaii 

and Iceland. Pahoehoe textures suggest that the lavas were erupted on a shallow 

slope, possibly on the flanks of a shield volcano (Walker 1993). Breakouts at the toe 

of the lava flows are indicative of an inflating flow system, with a proximal magma 

source. The lava feeder system and dimensions of the tubes present supports this 

concept. A schematic model for the lavas observed in this micro-scale study is 

presented (Fig. 3-20). 
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3.4 SUMMARY 

The micro-scale observations and interpretations reveal the heterogeneities 

present within the lava field scale and basin-scale studies of Chapters 4 and 5. When 

we consider interpretations at larger scales of observation, it is essential to 

understand these building blocks of lava fields and the effects on the geophysical 

character of the lava successions. The geology of the intrafacies building blocks has 

been discussed in this chapter, along with some geophysical concepts (Fig. 3-21 ). 

Geophysical implications of these heterogeneities will be developed further in the 

next two chapters, but specifically discussed in Chapter 6. In the next part of the 

thesis, Chapter 4, the geometric geological modelling on a lava field scale is 

discussed and what implications shape and structure can have on our understanding 

of lava field development and problems with sub-volcanic investigation. 
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Summary of the Micro-Scale 
Facies Architecture of Flood 

Volcanic Successions 

lntrafacies Components (1) 
& Component Associations (2) 
(Single & Jerram 2004 in Press) 
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Vesiculation 
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Frothy vesiculated lava, often 
amygdaloidal. Vesicles 

typically <1mm to >100mm 

Flow Top (Weathe.ed) ~ 
[a, b, ra, v] 

Frothy and vesiculated, 
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Figure 3-21 Summary of the micro-scale observations and facies interpretations in a CFB igneous 
succession. All observations are made at the 4th order of heterogeneity which can be studied in the 
field. This scale contains the geological intrafacies and their constituent components (Single & Jerram 
2004 in press). 
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4. MESO-SCALE ARCHITECTURE- STUDIES OF LAVA FIELD 

HETEROGENEITY 

In this chapter, the scale of observation is increased by an order of magnitude 

to that discussed in Chapter 3 and the lava field scale structure and architecture of 

flood volcanics is introduced as the meso-scale architecture. Here, the vertical lava 

flow stacking patterns, and geometrical heterogeneity found in flood basalts is 

presented using parts of the North Atlantic Igneous Province (NAIP) and the 

Etendeka flood basalts of Namibia (Fig. 4-1). Finally, the area of Talisker in the 

Minginish district of the Skye Lava Field is used as a detailed case study model [NG 

132 830]. 

In the following section, the flow facies architecture of flood basalts are 

introduced: what they are, how they are recognised and their associations in the 

architecture of flood basalt succession. The flow facies classification scheme of 

Jerram (2002) is also introduced and this scheme is applied to examples from lava 

field sections in the study areas selected. 

In section 4.2 the architecture of the Talisker lavas of Skye is presented as a 

specific case study, and the flow facies architectures and stacking patterns present are 

developed into a kilometre-scale 3D lava field model in section 4.3. 
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Figure 4-1 Location maps for data sources in the meso-scale architectural study. A: The Isle of Skye showing the Minginish district case study area, Scotland (after Emeleus & Gyopari 1992); 8: The islands of Eysturoy, Streymoy and Vagar in the 
Faeroe Islands (after Ellis eta/. 2002); C: The Huab Outliers area of the Namib Desert, Namibia (after Milner eta/. 1995) (inset of location in Namibia). Approximate locations of field studies and geologically important areas are indicated. Each 
map is drawn to the same scale so that lava field scale comparisons may be made. 
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4.1 CLASSIFICATION OF THE FACIES ARCHITECTURE AND 

PHYSICAL VOLCANOLOGY OF THE FLOOD BASALT SUCCESSION 

Classifying the physical volcanology of flood basalts on a lava field scale 

requires an understanding of the internal facies architectural building blocks studied 

in Chapter 3, and a recognition of how these are pieced together to form the lava 

field system. Observations and interpretations made on the lava field scale help us to 

understand the larger, basin-scale architecture discussed in datasets such as the 

offshore seismic and gravity data of Chapter 5 and to answer questions like: 

• What types of lavas exist in certain characteristic reflector sequences? 

• Why do some parts of the seismic contain persistent, near-parallel reflectors, 

yet other parts are dispersed? 

• Why is the observed gravity lower than calculated in parts of the lava field? 

• What are good marker horizons and how persistent are they likely to be? 

• What are the characteristic stacking patterns of a developing lava field? 

A classification of the facies architecture of flood basalts has been developed 

from field studies on a lava flow scale, and in tum, by studying the succession on a 

kilometre scale in order to understand how the igneous unit fit together in a basin 

setting (e.g. Jerram et al. 1999a; Jerram & Robbe 2001). The classification 

developed by Jerram (2002), builds on the concepts of studies on the stacking of 

facies in volcanic units which is used to build an understanding of the volcanology 

(Cas & Wright 1996; Self et al. 1997). The classification is broken down into two 

tables of characteristic facies types (Table 4-1 ), and their characteristic associations 

in the larger scale lava field stratigraphy (Table 4-2) (Jerrarn 2002). 
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In the next two sections, field examples of several of the facies types of Table 

4-1, and facies associations (Table 4-2) are drawn together from field locations from 

the three different CFB provinces described above. Illustrating both the work of 

Jerram (2002) and further architectural facies types studied in this work. 

Subsequently, the facies architecture of the lava field in the Talisker area of Skye is 

studied both in 1D logs, 2D correlations and 3D models in order to understand the 

3D architecture developed in the volcanological system. Facies associations are 

interpreted; however their scale determines that these are generally more applicable 

to the basin-scale architectural studies introduced in Chapter 5 where the vertical and 

lateral juxtapositions of facies types are observed with examples from the Faeroes 

Lava Group successions. 
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Table 4-l Facies types found in continental flood basalts (after Jerram 2002). 

Facies type 

Tabular-Classic Flow Facies 

• Tabular laterally extensive thick flows (c.50m) several 
kms to lOs ofkm in lateral extent with some examples 
traveling lOOs ofkms. The flows, where erupted in wet 
environments, have classic well developed columnar 
jointing patterns (Lyle 2000). In arid environments e.g. 
Etendeka, columnar joints are poorly developed. 

• Examples- Columbia River Basalts, where flows were 
erupted into arid environments the columnar joints are 
not very well developed or absent. Examples- Karoo, 
Parana-Etendeka. 

Compound-Braided Flow Facies 

• Thin anastamosing pahoehoe flow sheets and lobes up 
to several m's in thickness. Often associated with early 
low volume, low viscosity eruptions early in the 
formation of CFBs. 

• Examples- British Tertiary (NAIP), Etendeka, 
Greenland (NAIP), Columbia River Basalts. 

Dipping Hyaloclastites 

• Dipping prograding foresets, several ms to I Os of ms 
thick, of volcaniclastic hyaloclastites. These signify 
eruption into lakes and sea water. 

• Examples- commonly found in Greenland (NAIP) 
(e.g. Pedersen et al. 1998) and some in the BTlP. 

Ponded Flows 

• Ponded units are quite common in CFBs where 
eruptions fill pre-existing topography. Units can be 
>lOOm thick, and may internally differentiate during 
cooling and crystalization. 

• Examples include; Etendeka, British Tertiary (e.g. 
Preshal More, Skye (Williamson et al. 1994)). 

Sill Facies 

• Large sills and sill complexes tend to intrude around 
the base of CFB where the lava pile is in contact with 
the sediments it erupted onto. Sills often have a classic 
step like geometry (Francis 1982) on a large scale 
making them 'bowl' like in 3D. 

• Examples are found in the Parana-Etendeka, Karoo­
Ferrar, Greenland(NAIP) -British Tertiary (NAIP). 

Sheeted Dykes 

• Often associated with igneous centers in CFBs. 
Concentrations of thin dykes cutting up through pre­
existing lava stratigraphy. 

• Examples - Karoo, Parana-Etendeka, British Tertiary 
(NAIP), Greenland (NAIP). 

Schematic appearance 

Tabular-Classic Facies 

Compound-Braided Facies 

Hyaloclastites 

Ponded Flows 

Sill Facies 

Sheeted Dyke 

Others? Early volcaniclastic/flood lahars from the basal Karoo (Skilling 2001) 

104 



Meso-scale flood basalt architecture 

Table 4-2 Facies associations found in continental flood basalts (after Jerram 2002). 

Facies association 

Low angle down/apltoplap 

• Packages of lavas from different eruption 
sites, possibly along fissure. Each stacking 
pattern building up from a different direction. 
These may highlight significant eruption 
events 

• Examples- Ethiopian traps, Deccan Traps, 
NAIP. 

Volcanic Disconformity 

• Onlapping relationships between batches of 
Tabular-classic flow facies resulting in 
disconformable relationships. These represent 
flows from different eruptive centers 
onlapping previous flows that have been 
eroded. Often very difficult to map out, as the 
scale of the disconformities can be >50 km, 
and the two flow type facies are identical. 

• Example - Etendeka (Jerram et al. 1999b). ln 
many cases on a broader scale these 
disconformities must exist based on the 
distribution of different geochemical magma 
types e.g. Parana-Etendeka ( Peate 1997), 
Yemen ( Menzies et a/. 1997), Karoo (Marsh 
et al. 1997). 

Onlap/Burial- Disconformity 

• Onlapping relationships between batches of 
Tabular-classic flow facies and compound­
braided flow facies, representing shield 
volcanoes, resulting in disconformable 
relationships. 

• Examples - Etendeka, Greenland (NAIP). 

Shield Volcanoes 

• Usually associated with compound-braided 
flow facies, representing shield volcanoes 
preserved in the CFB. These tend to be 
restricted towards the base and the tops of the 
CFB as the flood volcanism starts up and 
shuts down. 

• Examples- Etendeka, Greenland (NAIP), 
Ethiopian Traps. 

Sediment Inter/ayers 

• Sediments interbedded with volcanics. These 
are found mainly towards the base of the CFB 
system where there is some overlap between 
the active volcanic and active sedimentary 
systems. 

• Examples - Etendeka, Greenland (NAIP), 
Ethiopian Traps Deccan Traps. 

Schematic appearance 

Volcanic Disconformity 

Onlap/burial -Disconformity 

Shield Volcano 

Sediment lnterlayer 

Others? Syn-volcanic rifting folded/faulted disconformities - Etendeka, Ethiopia 
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4. L 1 Architectural !Facies Types 

In this section, examples of some of the facies types present on the meso­

scale are introduced: e.g. tabular-type lava flows; compound-braided type lavas; sills 

and dykes; ponded lava flows and additional field examples of vent facies and a 

central volcanic complex. 

4.1.1.1 Tabular-Type Lava Flows 

Tabular-type sub-aerial lava flow systems form from more siliceous and 

consequently more viscous flood basalt lava types such as basaltic-andesites (Fig. 4-

2). The higher viscosity results in a high degree of order in the internal and external 

organisation of the lava flows produced. Tabular lava flow facies have simple 

internal geometries, and individual flows may be traced laterally over several 

kilometres. Thick sedimentary units or weathered and reddened bole beds are 

common on the top surfaces of individual tabular lava flows suggesting that their 

frequency of eruption may be low, with long periods of extrusive hiatus after each 

large-volume eruptive event. Tabular-type lavas may develop well-established joint 

systems, particularly if they form in wet environments (Lyle 2000). This may often 

be seen to be divided into two main zones: A colonnade and an entablature (Figs. 4-3 

& 4-4A). The colonnade is recognised through its well developed columnar joint 

sets. Slow cooling from the base of the flow allows their development, whilst the 

entablature contains more disorganised jointing due to the rapid cooling effect of 

water circulation in fractures in the top of the flow (Lyle 2000). The classic multi­

tired flows of the Isle of Staffa (Fig. 4-4A) in the Scottish Hebrides are in contrast to 

thick tabular flows of similar chemistry seen in the Etendeka CFBs where the lava 
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flows are simpler and host less organised joint sets, due to the dry environment into 

which the lavas were erupted (Fig. 4-48). 

4.1.1.2 Compound-Braided Lava Flow Systems 

The main building blocks of compound-braided lava types are the inflating 

pahoehoe (3.1.4.3) and small scale lava lobes (3.1.4.5) intrafacies types. ln a 

compound-braided system (Fig. 4-2), low viscosity basalts effuse and fill localised 

accommodation spaces in the lava field (Self et al. 1998; Jerram 2002). It is this 

activity which produces the braided internal and external structure of such a lava 

succession. The internal organisation of compound-braided lavas is complex, 

producing a lava succession which contains a multitude of seismic scattering 

directions, and internal density and velocity contrasts. ln ancient volcanic systems, 

correlation of individual flows is difficult over more than tens of metres due to the 

complexity of the systems combined with exposure issues. Sedimentary units and 

boles are sparse in compound-braided lavas due to their postulated constant and 

steady effusion (Self et al. 1997). Regular jointing is uncommon in compound lavas; 

a heavily-fractured habit is most often more prevalent which reduces their resistance 

to weathering and erosion leading to low angle slopes and their common cover of 

vegetation. 

Studies in 3.1.4 also indicated that lava feeder tubes and pipes only seem to 

be present in these low-silica, lower viscosity lavas studied. No evidence of lava field 

toe-feeding pipes has been found in any of the more siliceous lavas studied in this 

work, or documented in the literature. Their absence suggests that low viscosity, high 

heat flux systems may be required for such tubes to penetrate and feed the lava field 

in its distal parts. However, in examples where high volumes of magma are erupted 
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continuously, the inflation mechanism is thought to be a mechanism by which large 

tabular-type sheet flows may be produced (Self et al. 1997). These must be fed 

internally, implying that internal magma feeders should exist in the geological 

record. 
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Tabular and Compound-type lavas 

Figure 4-2 Meso-scale lava facies in cliff exposures. A: Massive, thick, tabular-type lavas shown 
dipping Eastwards on Streymoy (Faeroes). Note the lateral extent of these tabular-type lavas. Inset 
shows flows in the Amaval Member (Gleann Oraid Fm.) on Amaval in Skye. Note the flow lobes are 
thicker than the individual lobes in the compound system (B). The relationships between lobes in the 
tabular-type lavas may only be observed over large distances, typically over lkm; B: Compound 
lavas developed where lower viscosity lavas form lobes in an anastomosing, braided type of 
architecture. Cliff section shown from the MLF volcanics of Eysturoy in the Faeores. The 
relationships between individual lava lobes may be understood over metres to tens of metres within 
this flow facies type. Inset shows a small outcrop of flow break-outs in compound lavas on Vagar. 
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Muti-tiered tabular-type lava flows 

Entablature 

~ 

Figure 4-3 Meso-scale lava facies in cliff exposures. A multi-tiered tabular-type lava flow at the 
top of the Lower Lava Formation (LLF) of the Faeroes Lava Group. The base of the colonnade is 
obscurred by sea-level, but the section visible is c.Sm thick which means that the total flow 
thickness is in excess of 15m. This photograph looks at cliffs near Akranessker, on the north shore 
ofSl'Jrvagsfjl'Jdur, west Vagar (Faeroes). Yellow dashes indicate the stark variation in joint 
orientations between the colonnade and entablature sections. 
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Figure 4-4 Tabular-type lava flows from different eruptive envirnoments. A: The Isle of Staffa in the Scottish Hebrides (NAIP) exhibits a classic 
wet-environment colonnade and entablature multi-tiered lava flow structure; B&C: Close-ups of the multi-tiered flow from above and below. The 
colonnade is c. 12m thick and the entablature c.lOm; D: Contrasting tabular-type lavas of the Etendeka province ofNamibia where tabular-type 
lavas contain little internal structural zonation due to the warm and dry climate into which they were erupted (desert aeolian sandstonesin the 
foreground- a sand erg choked by the onset of flood volcanism: cf. Jerram eta!. 1999b ). 
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4.1.1.3 Sills and Dykes 

Sills form substantial bodies with dish-shaped geometries, usually towards 

the base of flood basalt provinces. Examples of flood basalt province sills are seen in 

the Trottemish sill complex of NE Skye (Gibson 1990; Thomson 2003) and in the 

Huab sills of the Namib desert, Namibia Duncan et a/. 1989) (Fig. 4-5). In the sub­

surface, mapping of sills has been performed in 20 seismic (Chapter 5) and in 3D 

seismic by workers such as Smallwood & Maresh (2002) and Trude eta/. 2003. Sills 

that sit towards the bases of flood basalt provinces are often tens of metres thick, 

several kilometres in length, and often exhibit well-developed columnar joint 

systems (Fig. 4-6). 

Dykes are considered to be feeder conduit systems for feeding lavas being 

extruded at the top of the lava field, and also for feeding magma within the volcanic 

succession. ln Carsaig Bay, south Isle of Mull, a dyke may be observed to intrude up 

through the Jurassic sands underlying the lava field, form a thin sill c.1 OOm up the 

cliff section, then proceed up the cliffs through the lava succession present (Fig. 4-6). 

If a dyke has acted as a feeder for an extended period of time, this may be recognised 

by an increased width of metamorphic aureole on each side of the dyke highlighting 

the increased and prolonged heat flux. The volume significance of dykes is only a 

localised issue closer to dyke axes where dyke swarms may be present. 
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Figure 4-5 Sills and dykes flow facies architectures in the flood basalt volcanic succession of the Faeroes Islands. A: Looking SE from 
near Kvivik at a large, bowl-shaped sill south of Skaelingur on the SW coast of Streymoy. The location of photographs Band Care 
marked; B: Standing on the top surface ofthe inclined sill looking north where the segmented (piggy-back style intrusion) sill is seen 
to intrude the tabular Upper Lava Formation (ULF) and get intruded by a dyke; C: Looking SW from the sill to Vagar at dykes 
trending SW-NE. 
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Thick sill complexes and feeder dykes 

Crudely columnar­
jointed sill 

Figure 4-6 Sills and feeder dykes . A: A thick sill in the Etendeka flood basalts, Namibia. 
These picritic sills lie at the base of the Etendeka CFB stratigraphy and severely bake the 
aeolian and fluvial sandstones beneath; B: Feeder dykes in the cliffs ofCarsaig Bay, Isle of 
Mull in the British Tertiary Igneous Province (BTIP). Metamorphic aereoles are evident 
where the Jurassic sands have been baked by the regular use of the conduits. Also note that 
the intruding sheets also intrude concordantly into the Jurassic sands as thin (<5m thick) sills. 
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4.1.1.4 Lava !Flow Ponding 

Ponding of lava flows may be facilitated by topographic lows, where lava 

flows fill a pre-existing valley system (Fig. 4-7 A), where lava lakes form in volcanic 

caldera settings (e.g. present day Kileuea crater, Hawaii), or where a physical barrier 

prevents extruded lavas from spreading out as a normal, unconfined series of lava 

lobes (Jerram et a/. 1999a). Ponded flows filling pre-existing eroded topographic 

lows may sit directly on eroded sedimentary or volcaniclastic material as in the cases 

of Preshal More and Preshal Beg, Isle of Skye (Williamson 1979; Williamson & Bell 

1994). 

4.1.1.5 Central Volcanic Complexes 

Central volcanic complexes form substantial, coarsely crystalline bodies in 

the crust, and often cut though flood volcanic sequences. They may be commonly 

recognised by their anomalously high bouguer gravity signatures. On the Isle of 

Skye, the Cuillins are formed by large intrusive bodies of the Black Cuillins gabbroic 

centre, and the Red Cuillins granitic complexes. The gabbroic centre is considered to 

have fed the Preshal More type lavas of west-central Skye (Williamson & Bell 

1994), prior to its intrusion through the entire sedimentary and volcanic succession 

(Hamilton et al. 1998). Fig. 4-7B shows the relationship of the huge Black Cuillins 

central volcanic complex in relation to the lavas around the Talisker Bay area of 

Skye. 

4.1.1.6 Vents 

A vent facies is observed in the Faeroe Islands where good cliff exposure is 

present at the base of the Middle Lava Formation (MLF) volcanics. Dykes and 

reddened brecciated material may be seen above the Lower Lava Formation (LLF) 
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lavas on the south coast of Vagar. The example vent is a zone of highly contorted, 

reddened, jointed and veined intrusions through pre-existing lavas, and the Coal 

Bearing Formation which lies above the LLF (Fig. 4-7C). Close study of this facies 

has not been possible due to access restrictions. 

4.1.2 Architectural Facies Associations 

4.1.2.1 Lava flow Pinch-outs, Onlap and Disconformities 

Thickening and thinning of individual lava flows may be observed on the tens 

of metres scale through to kilometres scale. Subtle onlap and pinch-out relationships 

are often only revealed by detailed field mapping interpretation, however, if exposure 

-is exceptional over long distances, it may be possible to trace the pinching out of a 

flow at its toe (Fig. 4-8). Pinch-outs are best observed as subtle onlapping 

relationships between the flows of a tabular-type lava system, where the distal ends 

of individual lava lobes come to a termination. Subtle onlapping and wedging out of 

lava flows may also reveal tectonic changes that may have occurred in the lava 

hosting area and also larger scale disconformities between volcanic systems (Fig. 4-

8). Disconformities within the volcanic succession may be revealed in areas of high 

quality exposure (e.g. Fig. 4-8A) where subtle stratigraphic dip variations are noted, 

or as major disconformities between lavas of the same or different geochemical types 

(e.g. Jerram et a/. 1999a). The timing of the development of several lava fields 

within one CFB province also leads to the assumption that volcanic disconformities 

are common in the geological record, for example in the BTlP, the timing of the 

Skye and Mull lavas suggests that these are likely to have subtly disconformable 

relationships (see Fig. 1-3 for geochronology and Jerram & Widdowson 2004 in 

Press). 
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Lava ponding, central volcanic complexes and vents 
A 

Ponded lava flow 

Figure 4-7 Meso-scale lava facies in cliff exposures. A: Thick basaltic-andesite flow ponded 
behind a sand dune in the Huab area of the Etendeka, Namibia; B: The Cuillin Igneous Complex 
lies SE of the foreground Skye Lava Field volcanics viewed from Beinn nan Dubh-lochan. The 
ponded Preshal More flow is considered to have effused from the Cuillins source; C: A melange of 
dykes, complex joint sets, unorthodox complex dips, oxidized zones and breccias are interpreted to 
form vent facies in a cliff section at Akranessker, on the north shore of S0rvagsfjadur, west Vagar 
(Faeroe Islands). 
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Lava flow pinch-out, disconformity and overlap 

Flow lobe overlap 
Lobe thickening 

Figure 4-8 Meso-scale lava facies in cliff exposures. A: Large-scale lava flow pinch-outs in the 
Middle Lava Formation (MLF) volcanics looking east from Lj6sagjogy on the 622 road round the 
south shore of the Funningsfj0rdur (N. Eysturoy) in the Faeroe Islands. A subtle angular 
disconformity is illustrated where the lavas lying above the clear pinch-out close to sea-level are 
assuming a more horizontal attitude relative to the underlying succession; B: A flow overlap occurs 
where a later flow fills accommodation space created by the topography of previous extrusive 
events. At the base of the rugged part ofPreshal More, a basaltic-andesite is observed to overlap an 
earlier flow as it propagates towards the west. 
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4.1.3 Facies Architectural Classification Summary 

The classifying of architectural facies in the volcanostratigraphy, provides us 

with a simple tool for the description and interpretation of the lava flow scale (meso­

scale) features of the physical volcanology. The understanding of how these facies 

architectural types may juxtapose forming facies associations on the lava field scale 

is important in developing models of the lava system on the whole. In the following 

section, the vertical stacking patterns of the architectural facies (Table 4-1) in the 

Talisker area of the Isle of Skye are discussed and their lateral variability developed 

in correlations through the lava field. These, in tum are brought together in the form 

ofthe 3D geometrical model of the lava field which is discussed in section 4.3. 

119 



Meso-scale flood basalt architecture 

41.2 THE FACiES ARCHITECTURE OIF THE TALl§KER RAY CASE 

STU]J)Y ARJEA 

Thus far, this chapter has introduced the facies architecture of flood basalts 

highlighting heterogeneities on the metre-scale up to the kilometre scale. This section 

illustrates how 1 D field logging data has been analysed and incorporated into the 

architectural study to provide a kilometre-scale heterogeneity study of the facies 

architecture present in the Talisker area of Skye. On this longer wavelength scale, it 

is important to remember and consider the building blocks of the lava field: from the 

flow facies described above, down the level of the intrafacies and rock property 

distributions studied in Chapter 3. 

Log section data covers much of the north of the Minginish district (Fig. 4-9). 

Twenty log sections (marked in black) have been recorded up the hillsides around 

Talisker, plus numerous lateral log contact traverses. The log sections have been tied 

into correlation panels in order to constrain the structure of the lava field on the 

whole. The correlation panels illustrate the direct correlations of basal contacts and 

prominent bole or sedimentary units throughout the lava sequence, and therefore 

provide a basis for breaking down the lava sequence into flow facies on the hundreds 

of metres to kilometres-scale. Cliff sections exhibit extensive bole beds particularly 

clearly; however inland, these tend to be obscured by scree and vegetation. A key to 

successful inland lava sequence correlation lies in developing an understanding of 

the thickest, more extensive tabular-type lava flows and their stacking patterns, and 

the presence of thick ferrallitised bole beds. Whereas boles and other extensive 

marker beds (e.g. tuffs) may be unseen on the Skye landscape, prominent stacked 

tabular-type lava flows of basaltic-andesitic compositions may be traced for 

hundreds of metres to kilometres in the CFB lava field succession. 
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The lava stratigraphy in the Talisker area of the Minginish district of Skye, 

has been developed by the extensive work of Williamson and Bell (Williamson 

1979; Williamson & Bell 1994; Bell & Williamson 2002) (Table 4-3 ). 

Table 4-3 The lava formations and members of the Skye Lava Field in west-central Skye (after 
Williamson & Bell1994). 

Fommtion 

Talisker (8) 

Gleann Oraid (7) 

Loch Dubh (6) 

Fiskavaig (5) 

Glen Caladale (4) 

Cmachan (3) 

Bualintur (2) 

Rubh'an Dunain (I) 

Member 

Preshal Beg Conglomerate 

Cnoc Scarall 

Sleadale 

Amaval 

Eynort Mudstone 

Rubha nan Clach 

McFarlane's Rock 

Skridan 

Sgurr Buidhe 

Stac a'Mheadais 

Tusdale 

Glen Brittle 

An Crocan 

Creag Mhor 

Meacnaish 

An Leac 

Their sub-division of the lava field is based on the field-mapping and logging 

of boles and sedimentary units within the lava field and to some extent on 

chemostratigraphy. 

In the following section, log sections are introduced (Fig. 4-9), and correlated 

through the lava field stratigraphy into a series of 20 correlation panels in 

conjunction with field examples of flow facies architecture. A generalised facies 

architecture-based stratigraphy of the area is then proposed as a summary of the 

architectural stacking arrangement of the lava succession. This is important as this 

scale of heterogeneity will govern the interpretation of offshore datasets through 

flood lava sequences. 
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Figure 4-9 Log section data across the north of the Minginish district. A: Log section locations (black 
lines) on a map of the area; 8: Sections on Leithad Beithe (Fig. 4-lOA); C: Sections on Beinn nan 
Dubh-lochan, east side (Fig. 4-12A); D: Beinn nan Dubh-lochan, west sections (Fig. 4-12B); E: 
Sections on Preshal More, Northwest side (Fig. 4- 1 OB); F: Amaval mountain sections (Fig. 4-13). 
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41.2.1 Log section insights into Flow Facies Architecture 

In this section, the lithological log data collected in the hills around Talisker 

are studied. The vertical log data provides an understanding of how the volcanic 

succession and flow facies architecture developed over the course of time, and the 

correlations and lateral logs allow the geometry of the lava field on the whole to be 

constrained. Each correlation panel of log sections is studied individually starting 

with the log sections which are located closest the Talisker Bay case study area of 

Chapter 3. By working away from the micro-scale case study area, it is easier to 

understand how the intrafacies building blocks discussed in Chapter 3 combine to 

form the flow facies architectural types discussed in 4.1. 

4.2.1.1 The Leathad Beithe area (Sections 1-4) 

The great thickness of volcanics logged up the hillside of Leathad Beithe to 

the south of Talisker Bay show a large variety of different lithologies and this variety 

reflects variations in the volcanological styles of the succession on the whole (Fig. 4-

1 OA). Towards the base of the logs, the volcanics are dominated by olivine-basalts 

that are highly fractured and rubbly. These olivine-basalts are only visible in stream 

sections however these lavas may be correlated with the lava flows used in the 

micro-scale intrafacies studies (3 .1.4) at the south side of Talisker Bay. 

The correlations of thin tuff beds are possible in the two most westerly 

sections 3 & 4. The upper of these tuffaceous beds is considered to be correlateable 

with the upper tuff seen in the south of Talisker Bay in the micro-scale intrafacies 

study. In this high cliff section (Fig. 3-13}, the tuff appears to be laterally persistent 

for> 1km in the cliff section to the south ofTalisker Bay. 

123 



Meso-scale flood basalt architecture 

Higher up the Leathad Beithe section, the thickness of massive lava core 

zones increases until a definite change is noted in the volcanology of the system. The 

thin olivine-basalts containing highly fractured and vesiculated units in compound­

braided style lava succession are superseded by thicker, more resistant and laterally 

extensive tabular-type lavas. These are fine-grained and in many cases, plagioclase­

phyric. Individual flows are >8m thick and form craggy scarps over the landscape for 

hundreds of metres. Many exhibit crude columnar-jointing patterns consistent with 

eruption into a wet environment where cooling is assisted by the action of water flow 

through fracture systems in the upper parts of the lava flows (Lyle 2000). A 

photographic montaged section of volcanics of Leathe Beithe is shown in Fig. 4-

llA. 

4.2.1.2 The Preshal More area (Sections 5-8) 

The volcanics of the Preshal More area (Fig. 4-1 OB) form a similar 

successton to that of Leathad Beithe, however, thickening and pinch-out 

relationships are more obvious in this part of the lava field; particularly in the mid­

section thick basaltic-andesite flows. The top of the Preshal More logs is capped by 

the huge tholeiitic, ponded lava flow of the Talisker Formation (Table 4-3). This sits 

on an eroded basaltic-andesite lava flow surface (Williamson 1979) and forms a 

striking columnar-jointed outlier (Fig. 4-11 B). 
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Figure 4-10 A: The correlation made through the Leathad Beithe I Beinn nan Cuithean section 
through the hills south ofTalisker Bay; B: Correlation round the base ofPreshal More through 
volcanics of mixed facies architecture and origin. 
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Figure 4-1 1 A: The hillside of Leathad Beithe, south ofTalisker Bay. The lava sequence shows highly 
vegetated olivine-phyric lavas of the lower architectural sequence towards the base, and more massive, 
tabular-type lava flows of the upper architectural sequence higher up the succession; B: Preshal More 
sections 7 & 8 imposed on the field stratigraphy with interpretation of facies architecture beneath. 
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4.2.1.3 The Beinn nan Dub-lochan area (Sections 9-15) 

ln the log sections of Beinn nan Dubh-lochan, north of Talisker Bay, a 

succession of basaltic-andesites dominate the upper parts of the exposed lava field 

succession (Fig. 4-12). These belong to the Loch Dubh Lava Formation (Table 4-3) 

that overlie and interleave with the Amaval Member of the Gleann Oraid Formation 

to the north ofTalisker Bay. The flows are characteristically tabular and <8m thick. 

4.2.1.4 The Arnaval area (Sections 16-20) 

Amaval itself offers one of the best exposures through much of the lava 

succession in this part of Skye (Fig. 4-13). As in the previously described logs and 

correlation panels, the Amaval mountain succession displays characteristic olivine­

basalts in it lower reaches. These are considered to be part of the Rubha nan Clach 

Member of the Fiskavaig Lava Formation on the northern side of Talisker Bay 

(Table 4-3) (Williamson & Bell 1994). To the south of Talisker Bay, similar olivine­

basalts are seen to be present as the Skridan Formation of the Glen Caladale Lava 

Formation suggesting that these olivine-basalts being erupted at a similar time, but 

possibly from different volcanic sources. 

Few tabular-type lava flows exist in the lower reaches of the Amaval log 

sections, however in the upper parts, flows exist in excess of 1Om thick. These are 

particularly prevalent in the Na Huranan cliff section which faces south over the 

minor road leading from Talisker to Eynort. This section exhibits a multitude of flow 

facies architectural styles within the basaltic-andesites present (Fig. 4-14 ). 

At the base of the crags is a plagioclase-phyric basaltic-andesite flow about 

8m thick. The top surface reveals no signs of brecciation, however it is immediately 

capped by a 30cm zone of holocrystalline, finely columnar jointed basalt which 
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marks the chilled base of the next, columnar jointed flow. This flow is observed to 

pond in the topography of the lower lava (Fig. 4-14) and also pinch-out toward the 

west. The top is marked by a thin vesiculated zone no more than lm thick. Another 

thick tabular flow lies above this; however this is crudely columnar and much thicker 

than either of the underlying flows described ( c.20m). In all exposed parts, the basal 

contact sits on a highly weathered top surface of the flow beneath in the west of the 

outcrop. The field relationships shown in Fig. 4-14 however, also reveals that the 

ponded lava flow was effectively dammed by the topography on the lower flow 

surface, causing the overlying flow to onlap and wedge-out whilst the ponding 

prevented the development of a weathered top surface in the east. The irregular joint 

patterns observed in the top flow are attributed to water circulation in fractures in the 

upper portions of the flow. The flow correlates across the Talisker Graben, however 

its thickness across the graben in the west is much thinner which may indicate a 

magma source from the east (c. 10m). 

128 



Meso-scale flood basalt architecture 

Beinn nan Dubh-lochan East 

@ 

SE----~•• 1 s ., 
Beinn nan Dubh-lochan West 

@ @ 

ITilliilil Preshal More Tholeiite 

D Basaltic-andesite (Mugearite) 

- Basaltic-andesite (Hawaiite) 

- Olivine-phyric Basalt 

sw 5 

@ 

@ 

., E-'"""'1••, 

(m) 
200 

100 

(m) 

200 

100 

0 

Figure 4-12 A: The correlation section made through the east flanks ofBeinn nan Dub-lochan 
through the hills north ofTalisker Bay; B: Correlation through volcanics of the west section of 
Beinn nan Dubh-lochan. 
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Figure 4-14 Interpretation of the south-Arnaval cliff section of Na Huranan. The section reveals two major flows. The lower flow is the upper portion of a fine grained 
basaltic-andesite flow (hawaiite). This contains crude and well formed columnar joint sets. The upper basaltic-andesite flow (mugearite) is heavily flow foliated above an a 
holocrystalline base of c.30cm thickness where the flow is chilled against the lower unit. Above this zone is a well developed entablature (E) and colonnade (C) sub-division 
of the flow structure. 
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4.2.2 Summary of Log Section Observations 

The 1 D log sections detail the vertical stacking patterns observed in the lava 

field in the Talisker area whilst their lateral counterparts and correlations provide 

information about the geometries present in the lava field and the spatial variability 

of the flood basalt facies architecture. 

Some ofthe main points are summarised as follows: 

• The lavas towards the base of the lava field are olivine-rich thin (<3m) 

and correlation is difficult over distances >1Om 

• The lavas high in the lava field stratigraphy are more siliceous, thick 

>c.8m and they are laterally extensive 

• The bole beds are extensive markers for correlation and are particularly 

well-developed in the stratigraphically higher lavas 

e Lava ponding is fairly common in a developing lava field resulting in 

an overall reduction in topographic variation up-succession 

• There is no evidence for lava feeder tubes in the more evolved lavas 

From the observations of the stacking patterns and facies architecture made in 

the log sections, it is possible to divide the lava field into a facies-based architectural 

lava succession independently of the lava formations sub-division of Williamson 

(1979) (Table 4-3). The next section describes this architectural succession. 

4.2.3 Architectural sub-division of the Talisker Bay area lavas 

The lava field of west-central Skye may be divided into three mam 

architectural sequences based on observations made in this study: ( 1) lower 

compound-braided lavas, (2) transitional lavas and (3) upper tabular-type lavas. 
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Fig. 4-15 summarises the characteristic architectural sequence detailed below. 

The stacking patterns throughout the lava sequence across the northern part of the 

Minginish district are essentially characterised by an up-sequence increase in flow 

thickness, areal extent and individual flow volume. 

Schematic Stratigraphy Architectural 
Sequence 

Upper 

Massive, 
tabular-type 

Transitional 

Lower 

Compound­
braided 

Characteristics 
of Stratigraphy 

,. Thick flows >8m 
,. Geometric simplicity: massive, 

tabular flows 
,. Vertical heterogeneity, but little 

lateral heterogeneity 
,. Large areal extent of individual 

flows 
,. High aspect ratio flows 
,. High volume per flow 
,. Chemically more evolved lavas 
,. Lower frequency of eruption 

,. Appearance of architecturally 
simpler, more extensive 
evolved basalts within the 
compound braided sequence 

,. Thin flows <2.5m 
,. Complex architecture 

compound-braided flows 
,. Laterally and vertically highly 

heterogeneous 
,. Low aspect ratio flows 
,. Low volume per flow 
,. Chemically less evolved lava 

,. Persistent eruption 

Figure 4-15 Schematic section through the three maio architectural sequences of the Skye Lava 
Field in the Talisker Bay area of Skye. The simplified three-fold breakdown is based purely on 
the field observations of the architecture within the succession and is compiled. The lower 
compound-braided architectural sequence is represented by mainly the Skridan Member (Glen 
Caladale Fm.) and the McFarlane's Rock Member (Fiskavaig Fm.) in the south of the area, and 
by the Rubba nan Clacb Member (Fiskavaig Fm.) towards the north (Table 4-3). The 
transitional lavas include the of the upper parts of the Rubba nan Clacb and the McFarlane's 
Rock Members (Fiskavaig Fm.) The upper tabular-type lavas are primarily represented the 
Arnaval Member (Gieaon Oraid Fm.), the Loeb Dubh Fm. and the Talisker Fm seen on Presbal 
More and Presbal Beg. 
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4.2.3.1 lLower compound-braided! lava sequence 

The lower lavas are characterised by thin, highly fractured and vesicular 

olivine-phyric basalts. In most of the landscape, these form areas of relatively 

featureless topography as they are easily eroded. In stream sections, lava flow bases 

<0.4m thick may be distinguished by presence of pipe vesicles, in conjunction with a 

vesicle density of <40%, and possibly thin, glassy basal margins. Above these basal 

zones, massive flow cores with low vesicle densities form <2.5m thick zones 

displaying regular jointing. Massive core zones grade upwards into more profuse 

vesiculation (<25%). As the flow top is approached the vesicle density increases and 

the size of the vesicles reduces. At the flow top, a zone of vesicles generally <O.lm 

thick is noted where the vesicle density may be as high as 80%. 

In the lower lavas, lateral correlation is generally impossible over scales of 

>30m. Architecturally, the sequence appears to form part of a compound-braided 

lava system (e.g. Jerram 2002). Individual flows are usually <3m thick, have low 

aspect ratios, and evidence in cliff sections indicates that younger lava flows fill 

accommodation space developed between older lobes. The lavas are commonly 

picritic suggesting a high temperature and low viscosity of extrusion. The volumes 

and style of volcanism suggest that the lower sequence may have formed on the 

flanks of a low-angle shield volcano: a similar setting to present day Hawaii (Kent 

1998). 

4.2.3.2 Transitional mixed sequence 

This sequence marks a transitional eruptive phase between the low-viscosity 

compound-braided olivine-phyric basalts and architecturally more simple, tabular­

type basalts observed in the upper sequence described below. The transitional mixed 
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sequence contains olivine-phyric lavas with occasional thin, more evolved flows of 

basaltic-andesites <6-7m thick. 

4.2.3.3 Upper tabular-type lava sequence 

The upper lavas of the west-central lava field are dominated by the Amaval 

Member of the Gleann Oraid Formation (Williamson & Bell 1994; BGS Scotland 

Sheet 70). The lavas are characterised by thicker flows (>8m thick). Six main flows 

form much of this sequence in the Preshal More-Amaval area. The summits of both 

Amaval and Stockval are capped by mugearite flows >12m thick in each instance. 

Flow bases are often recognised by zones of brecciation <0.5m thick lying above the 

vesiculated tops of earlier flows. Above the breccia zones, the flows grade into 

massive core zones that are commonly flow-foliated due to the alignment of 

phenocrystal plagioclase. Many flow core zones in the upper lavas display superb 

columnar jointing colonnades, indicating that many of the flows were erupted into 

wet environments (Lyle 2000). The crystal size reduces through the upper parts of 

the core zones and vesiculation again increases. Many flow tops terminate in highly 

vesicular (>50%), 'frothy' zones that may be up to 3m thick. Many of these flow tops 

are reddened, suggesting that the frequency of eruption in these upper lavas was 

reduced, allowing time for the development of thick boles or palaeosols during 

hiatuses in the eruptive cycle. 

Lavas in the top of the upper sequence stratigraphy are commonly laterally 

extensive over the kilometre-scale; however, several substantial flows lower in the 

upper sequence and in the transitional zone are not correlatable over such distances, 

probably due to ponding of the flows in the pre-existing topography: the distribution 
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of these flows is controlled by the filling of accommodation space in small, possibly 

fault bounded basins developed in the underlying strata. 

The lavas of this upper sequence are of tabular-type facies architecture 

(Jerram 2002), having high aspect ratios and simple forms with little lateral 

variability in their compositional, textural or structural characteristics. Individual 

flows cover larger areas than those of the lower and transitional sequences and are 

substantially thicker. This is attributed to the more evolved composition of the lavas, 

the pre-existing topography being filled, and their simple architecture. Although 

these flows are the largest seen in the Skye Lava Field, they are not comparable in 

thickness or extent to some flows seen in other provinces: for example the Rosa 

Member Basalt in the Colombia River Basalts has an estimated volume of 1300km3 

(Self et al. 1997) in a province where flows commonly exceed 1 OOkm from source to 

toe. 

Now that the 10 log sections/traverses and 20 sections have been used to 

develop an understanding of the vertical stacking patterns and lateral facies 

variations in the lava field, in the next section, this data is integrated into a 30, field­

constrained model of the Talisker lava field. 
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4.3 THE T ALISKER AREA 3D GEOMETRICAL MODEL 

Now the 3D geometrical model of the lava field in the Talisker area is 

introduced and described in detail: how the model was built; the geometries and 

stacking patterns present within the 3D model and analysis of the volumes of lavas 

erupted in the architectural sequences described above. 

4.3.1 Building the 3D model 

The precisely located 1D vertical log sections and traverses define the basal 

contacts of prominent weathered beds, tuffaceous horizons and massive lava flows 

through the volcanostratigraphy. The accurately located field data points were 

imported into the GoCad™ 3D modelling environment and georeferenced to the 

Talisker area Digital Ten·ain Model (DTM). If variations in altitude existed in the log 

section data relative to the DTM, the data points were mapped onto the DTM 

surface. The basic procedure for incorporating data and building models in GoCad™ 

can be referred to in Chapter 2.6 and is again summarised in Fig. 4-16. 

Log-section locations that have known correlations across the lava field were 

linked by use of correlation curves (Fig. 4-16A-C), and surfaces interpolated through 

the lava field using the log-section data locations as property control points (Fig. 4-

16C&D). This procedure results in a meso-scale 3D model constructed of a series of 

lava base and top surfaces that are known correlations through the lava field 

succession, and develops the lava field model on the kilometre-scale from metre­

scale logging and facies analysis. Interpolation of these surfaces by GoCad™ 

provides indications of the likely locations of the main faults in the area, of the 

general structural dip, and of the stratigraphy that is missing the valleys due to 

erosion (Figs. 4-16E&F & 4-17). 
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Figure 4-16 Building a 3D model of a volcanic sequence. A: lD Jog section data are collected through the lava field and correlated in 2D panels; B: Log section data (lD) 
located on a 2D DTM of the field case study area; C: Precise locations of correlatable data points marked as Property Control Points; D: Correlatable points interpolated 
as a 2D surface - interpolation reveals eroded lava sequence material; E: Faults added to the 2D surface model; F: Complex 3D model of lava field developed 
incorporating multiple flows, correlations and faulting. 
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These models are extremely valuable to the geologist, as volumes may be 

calculated between the 30 model surfaces; converting the model to a true 30 

volume. They are also excellent for geophysical studies into lava field surface 

rugosity as they highlight geometries present within the lava field; with and without 

the complications of actual fault-planes (fault plane interpolations are inherent to a 

well-constrained model). 

The interpolated models may be further enhanced by the incorporation of 

fault surfaces in order to make complex structural models; these require cutting of 

surfaces by fault planes, fixing of sets of property control points and re-interpolation 

for accurate results. Creating closed volumes for volume calculations in such models 

is fraught with problems, as GoCad™ is designed for petroleum reservoir modelling, 

where a high level of true 30 control exists within the dataset being modelled (30 

seismic data). In the complex model built in Talisker, the post-volcanic normal 

faulting is assumed to be vertical, so that the computing errors are reduced to a 

minimum, yet the lava field may still be compartmentalised. This assumption is 

made on examination of the known faulting in the area, which reveals most of the 

faults to be near-vertical structures. 

The following section looks at the distribution of lavas, the geometries 

present in the lava field succession and considers some of the volume estimates 

calculated from the three architectural sequences described in 4.2.3. 
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the succession in the model are the basal contacts of Amaval Member flows that may be correlated across the west-centrallava field. Insets show views of 
the Mingin ish district with the base McFarlane's Rock Member contact cutting through the topography (transparent red). 
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4.3.1.1 Lava Distributions and Geometries 

30 models built over the meso-scale provide a wealth of geometric 

information for geological and geophysical studies, with a focus on shape 

heterogeneities: i.e. geometrical information, structure and contact topography or 

rugosity. The distributions of the lavas may also be determined and modelled both 

within the present day topography, and in eroded parts of the stratigraphy. Thus 

reconstructing the lava field succession prior to erosion. 

The lava field in the Talisker area gently dips towards the west (Fig. 4-18). ln 

combination with this gentle tilting, are a series of post-volcanic normal faults that 

cross-cut the entire exposed succession (Fig. 4-19). The throws of the faulting in the 

area are relatively small and of the order of just a few metres. The maximum throw 

interpreted is in the Talisker Graben where the Talikser Fm. observed on Preshal 

More is downthrown by the order of c.1 OOm. the combination of structural dip and 

the normal faulting means that the greatest thickness of volcanics lies in the Amaval 

and Stockval areas in the east of the Minginish district. 

The most accurately constrained part of the 30 model lies in the Amaval 

Member, where the thick tabular-type lava flows of the upper architectural sequence 

(4.2.3.3) sit on thick sedimentary beds and boles across the lava field. These are 

correlated and the stacking patterns confirmed. The transitional lava sequence is 

taken to lie between the base of the McFarlane's Rock Member and the base of the 

Amaval Member (Table 4-3). The McFarlane's Rock Member is mainly represented 

by a thick basaltic-andesite flow which is exposed on the north shore of Talisker 

Bay, the hills of Leathad Beithe, and also to the east of Amaval and Stockval 

(Williamson & Bell 1994). The thick tabular-type basaltic-andesite flow thickens 

towards Talisker Bay to a maximum exposed thickness of c. 12m (Fig. 4-17). 
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Volcanological and Structural dip 

Correlation curves 

Talisker 
500 

Figure 4-18 The general dip of the lava field in the Talisker area, Skye. A: Looking north across 
the Minginish district at the Digital Terrain Model (DTM) showing the log sections, traverses and 
correlation curves through the model; B: Looking into Talisker Bay from the SWat correlations 
through the architectural sequences of the lava succession. The gentle dip towards the west may be 
attributed to several factors: post-glacial neotectonic tilting; subsidence; tilting induced by the 
intrusion of the Cuillins igneous complex; primary volcanological dip (e.g. dip on the flanks of a 
shield volcano). 
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Meso-scale flood basalt architecture 

The distribution of lavas in the Talisker area is modelled geospatially in 30. 

This provides us with another means for determining their potential source regions. 

Flow indicators such as flow foliations in the Amaval basaltic-andesites and vesicles 

within the olivine-phyric lavas of the lower and transition sequences suggest that 

several magma sources were active contemporaneously in the Talisker area through 

time. This may represent different vent sources and/or along-fissure variations during 

the build up of the lava sequence. By modelling the volcanic succession in 3D, the 

relationships between some of the formations may be determined and their 

volcanological relationships interpreted. Fig. 4-20 shows the relationships developed 

between the Loch Dubh Fm. and the Amaval lavas. ln 3D, the Loch Oubh lavas 

build out onto the surface of the extruded Amaval lavas from the north in the area of 

Beinn nan Oubh-lochan. As the eruption reached a climax, the volumes being 

erupted and the rate at which they were being erupted were considerable enough to 

smother the contemporaneously erupting Amaval basaltic-andesites before the 

source waned and the Amaval Fm. over-stepped the Loch Oubh Formation. 

The geometries revealed within and at the bases of the successions in Talisker 

also prove to be heterogeneous. The simple stacking arrangements that are assumed 

to be present within a steady erupting lava field are proven to be infrequent in most 

parts of the lava field: the simplest stacking patterns being hosted by the more 

evolved, simpler flow types higher in the succession. 

From the field and model evidence, it has been shown that the chemically 

more evolved lavas higher in the succession are thicker and geometrically more 

simple. ln the next section, the volumes of each of the lava types is analysed in a 30 

layer model (true 3D). 
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Meso-scale flood basalt architecture 

4.3.1.2 Lava Volumes 

The lavas which dominate the stratigraphy in the Talisker area are those of 

the lower architectural sequence: i.e. the compound-braided type olivine-phyric 

lavas. The upper architectural sequence dominates hill and cliff outcrop sections, but 

much has been lost to erosion. 

ln order to be able to compare the volumes present in the different 

architectural sequences in the Talisker area, the 30 lava field model needs to be 

moved into true 3D: i.e. a series of layers reconstructing the lava sequence in areas of 

erosion. The lower, transitional and upper sequences have been built into layers 

through the volcanic succession, and their volumes calculated in order to gain an 

improved understanding of the physical volcanology in the area. Instead of making 

field estimates from an eroded succession, it is possible now to ask: for the given 30 

model volume, which eruptive sequence is ofthe highest volume and why? 

The simple 3D lava field structure model covers an area of c.85km2 (Fig. 4-

21). This is broken down into representative regions and layers between the 

bounding contacts of the architectural sequences. The McFarlane's Rock Member 

represents the top ofthe lower sequence volcanics; the base of the Amaval Fm marks 

the base of the upper sequence volcanics. 

ln the model area, the volume estimates for each of the architectural 

sequences are as follows: 

• Upper sequence volcanics c.l7.0km3 of tabular-type lavas 

• Transitional sequence lavas c.7.4.km3
. 

• Lower sequence lavas comprise c.l2.7 km3 of compound-braided lavas. 
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Meso-scale flood basalt architecture 

From studies in the field, the lower architectural sequence appears to 

dominate the lava field succession, however, when the missing stratigraphy of the 

lavas is taken into account, the upper architectural sequence is the higher volume 

sequence for the given volume, assuming that the top of the upper succession lava 

marks the top of the 30 model. These results are discussed in the next section. 

4.3.2 The Volcanology of the Talisker Area 

The metre to kilometre-scale structure of the Skye Lava Field in west-central 

Skye provides information about the lateral continuity, geometry and stacking 

patterns present in the architecture of the volcanics. In this study, lava field scale 

observations suggest that we can divide the lavas into three main facies types, each 

with characteristic architectural sequences. The variations in the facies sequences 

have been established from vertical section logging through the lava field. The styles 

of volcanism have directly affected the architectures present throughout the 

sequence. The vertical change in architecture can be related to the evolution of the 

lava field: more primitive, olivine-rich flows assume complex architectures of the 

compound-braided system, effused passively, but constantly, with only minor 

hiatuses. Increasingly evolved lava flows are more vertically and laterally 

homogeneous, yet these flows are more laterally extensive and thicker. This 

observation is important as it suggests both an effusion rate and compositional link to 

the style of volcanic facies present. 

Volcanologically, it is realistic to assume that the missing stratigraphy in the 

lava field of Talisker, is indeed of tabular-type basaltic-andesite flows, as studies 

from CFB lava successions in several provinces observe the gradual system shift 

from passive olivine-rich basaltic lavas through to more evolved basatic-andesites of 
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tabular-type architectures as the magma sources evolve with time (Milner et al. 1995; 

Peate et al. 1997; Jerram et al. 1999; Jolley & Bell2002a; Single & Jerram 2004 in 

press). 

In the lower architectural sequence of the lava field, the simple 3D lava 

structure volume has a calculated approximate volume of 12.7km3 of compound 

braided lavas. Within the cliff sections and in the log section data, these are 

interpreted to form a compounded stack of over 12 lobe units based on the number of 

massive core zones deemed to be present in the sections seen above sea-level. The 

thicknesses of the pahoehoe lobes seen in the Talisker area are consistent with the 

observations of Self et al. (1997) in the Hawaiian inflated pahoehoe sequences, and 

form a substantial part of the Talisker succession. 

In the upper architectural sequence which is dominated by the Amaval 

Member, the volume estimate calculated from the simple 3D model for the area 

including eroded stratigraphy is for a sequence of about 17.0km3 of lavas. This 

sequence consists of over 8 major massive, tabular-type flows in the eroded 

stratigraphy, all over 8m thick. These form a stack of lavas containing prominent 

core zones and weathered tops resembling a series of lavas akin to those observed by 

Planke (1994) in the Upper Series lavas of the V0ring volcanic margin. The 

individual flows form very similar thicknesses to those in that area of the North 

Atlantic Igneous Province, but are thinner than those of the high level stratigraphy in 

the Parami-Etendeka Flood Basalts (Milner et al. 1995; Jerram et al. 1999b). 
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If the lava volumes present in the model area of the upper architectural sequence are 

considered to be just present in the model area part of the Minginish district, then 

c.l7km3 may be considered to be a reasonable estimate of the low-side lava volumes 

for this sequence with a mean individual flow volume of2.1km3 over the model area. 

On the Duirinish Peninsula, about 15km NW of the Talisker area modelled, thick 

tabular-type lavas may be seen to constitute a thick section of the stratigraphy 

forming the large summits of the Macleod's Tables. If these flows are correlatable 

with those of the upper architectural sequence modelled in Minginish, this could add 

c.27km3 of erupted lavas to the upper sequence with individual flows hosting 

volumes of c.3.5km3 (Fig. 4-22). However, even if this volume is added to the 

volume of the upper lava sequence flows in Talisker, the scale of volcanism 

represented in the Skye Lava Field per flow is an order of magnitude smaller than the 

volumes seen in the Columbia River Flood basalts (Hooper 1997). 
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Duirinish Peninsula from Minginish Peninsula 

Figure 4-22 The peninsulas of Minginish and Durin ish on the west coast of Skye showing the Skye 
Lava Field and estimates of potential lava volumes. 
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4.4 SUMMARY 

Field investigations have revealed a variety of flow facies architectures 

hosted within the volcano-stratigraphy of flood basalt provinces (Fig. 4-23). The use 

of true digital 30 as a modelling tool, allows the quantitative analysis of field data 

and the ability to visualise volcanic successions by methods not possible by analogue 

means. 

The field studies presented provide valuable analogue material for seismic 

scale studies over tens of kilometres and their implications will be considered in 

Chapter 5 when the observations and interpretations are upscaled into basin-scale 

geological models of flood basalt successions (the macro-scale). 
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Summary of the Meso-scale 
Facies Architecture of Flood 

Volcanic Successions 

Compound-Braided 
Facies 

Thin anastomosing pahoehoe 
flows upto several metres in 

thickness 

Ponded Flows 

Eruption fills pre­
existing topography 

Sheeted Dykes 

High density dyke 
swarms cross-cutting 

CFB stratigraphy 

lc Dlsconfo•mlty + 
Onlap relationship between 
flows from different eruptive 

sources. May be >SOkm 
scale. 

Onlap Disconformity 

Onlap relationship between 
different lava types or pre­

existing structure 

Shield Volcano 

Shield volcanic centre 
usually composed of 

compound-braided facies 
pahoehoe flows 

Figure 4-23 Summary of igneous architecture in flood volcanics at the lava field scale (meso-scale). 
Meso-scale CFB architectural studies are considered over metres to kilometre-scale and are considered 
to be 3ro order heterogeneities. Chapter 4 has studied the lava field structure and architecture by looking 
at various data types, including fieldwork and 3D modelling and also using the ideas developed in 
Chapter 3 of the intrafacies of this next order ofheterogeneity. The meso-scale facies architecture (i.e. 
building blocks of lava fields) leads into the next order of heterogeneity analysed in this thesis: the 
basin-scale (macro-scale) architecture of flood volcanics. Top and bottom photographs are from 
Kilauea on Hawaii and are courtesy ofD.A. Jerram. 
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5. MACRO-SCALE ARCHITECTURE: A CASE STUDY FROM 

THE FAEROES LAVA GROUP 

The case studies presented in Chapters 3 and 4 have developed an 

understanding of the internal geometric variability and facies characterisation within 

lava fields typical of flood volcanic successions. Chapter 4 has concentrated on the 

geometries, stacking patterns and facies present at a meso or lava field-scale, whilst 

Chapter 3 has studied the internal variability within these facies at a micro or lava 

flow-scale. In the following chapter, the macro or basin-scale architecture and facies 

are studied in offshore seismic data, utilising the understanding of flood volcanism 

established in the previous onshore case studies. Table 5-1 provides an overview of 

the characterisation of seismic-scale volcanic facies which has been developed by the 

work of Planke et al. (2000). The next section introduces the characteristics of the 

Faeores Lava Group succession from its' onshore exposure on the Faeroes Islands. 

Subsequently, interpretations of geophysical data are presented, and developed into 

3D geometric and conceptual facies models. 
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Table 5-l Dominant Characteristics of the Main Volcanic Extrusive Seismic Facies Units on 
Rifted Volcanic Margins (after Planke et al. 2000 and references therein). 

Seismic 
Reflection Characteristics Selected References* 

Facies Unit 

Shape Boundaries Internal 

Top: high-amplitude, smooth or 
Divergent-arcute or-

Outer SDR Wedge 
with pseudoescarpments. 

planar. Disrupted, non-
Skogseid & Eldholm 

Overlying: on lap or concordant. 
systematic truncations. 

1987; White eta/. 1987 
Base: seldom defined 

Top: high-amplitude, disrupted or 
Outer High Mound planated. Overlying: distinct Chaotic Roberts eta/. 1984 

onlap. No base. 

Hinz 1981; Mutter eta/. 
1982; Talwani eta/. 
1984; Larsen & 

Top: high-amplitude, smooth or 
Divergent-arcute. 

Jokobsdottir 1988; Keen 

Inner SDR Wedge 
with pseudoescarpments. 

Disrupted, nonsystematic 
& Potier 1995; Barton & 

Overlying: on lap or concordant. 
truncations. 

White 1997; Lizarralde 
Base: seldom defined & Holbrook 1997; 

Talwani eta/. 1983; 
Boldreel & Andersen 
1993 

Landward 
Top: high-amplitude, smooth. Parallel to subparallel. Talwani eta/. 1983; 

Flows 
Sheet Overlying: confom1 or overlap. High-amplitude, Boldreel & Andersen 

Base: low-an1plitude, disrupted. disrupted. 1993 

Top: high-amplitude or reflection 
Prograding clinofonn. 

Wood eta/. 1988; 
Lava Delta Bank truncation. Base: reflection Boldreel & Andersen 

truncation. 
Disrupted. 

1993 

Top: high amplitude, disrupted. 
Talwani el a/. 1983; 
Wood et al. 1988; 

Inner Flows Sheet 
Overlying: conform or overlap. Chaotic or disrupted, 

Skogseid eta/. 1992; 
Base: negative polarity, but often subparallel. 

Boldreel & Andersen 
obscured. 

1993 

Outer SDR Inner SDR Landward flows 

References* are to publications with original seismic profile reproduced. Interpretation of seismic facies units may differ from 
those in the publications. Outer and Inner SDR indicate zones of Seaward Dipping Reflectors . 
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5.1 THE GEOLOGY OF THE FAEROES LAVA GROUP 

The interpretation and modelling of the facies of the Faeroes Lava Group has 

been concentrated across the area of the GF A-99 seismic data which lies 

approximately 60km SE of the Faeroe Islands in the Faeroe-Shetland Basin (Fig. 5-

1). Much interest has been shown in this basin by petroleum companies who consider 

the sub-volcanic plays to be mature and worthy of exploration (Waagstein 1988; 

Laier eta/. 1997). The GFA-99 data was acquired by Schlumberger Geco-Prakla for 

petroleum companies wishing to explore and prospect in these deep waters. The 

interest shown in the basin and sub-volcanic plays has been stimulated by many 

industry-sponsored conferences (e.g. "The Hydrocarbon Habitat of Volcanic Rifted 

Passive Margins", Stavanger Hedberg 2002) that have focussed on volcanic passive 

margins, with particular onus on the Faeroes, Rockall and V0ring areas. Regular 

meetings of the Geological Society (London) Petroleum Group have hosted 

presentations of the latest collaborative research between academia and industry into 

the structure, distribution and characterisation of sub-surface volcanic successions 

(e.g. Hobbs & Martini 2002; MacGregor 2002; Fliedner and White 2003; White et 

a/. 2003). 

Geological interpretation of the GF A-99 2-D seismic dataset has covered 

several iterations of interpretation in Two-Way-Time (TWT) with accompanying 

gravity data being modelled in ARK Geophysics prior to the final seismic 

interpretation. The seismic interpretation concentrated on the geometry and 

stratigraphy of the igneous succession and also on the internal structure of the 

Faeroe-Shetland sequence. An overview of basin structure prior to the eruption of the 

Palaeogene is presented in Fig. 5-1. In the next section, the onshore exposure of the 
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Faeroes Lava Group is introduced, after which the offshore data interpretation is 

studied in detail. 

5.2 THE ONSHORE SUCCESSION 

The igneous succession in the Faeroes was erupted during the Palaeogene 

prior to the opening of the NE Atlantic. The lavas are all geochemicaly tholeiitic 

which suggests that their eruption was coincident with a high degree of partial 

melting of the mantle (Waagstein 1988). The group consists of three main formations 

that overlie a sequence of more than lOOOm thickness of basaltic volcaniclastics: 

• Upper Lava Formation (ULF) 

• Middle Lava Formation (MLF) 

• Lower Lava Formation (LLF) 

The complete thickness is thought to be 6500m-7000m in total of which 

3000m are observed above sea-level (Ellis et al. 2002). Their onshore distribution is 

shown in Fig. 5-2. The Faeroes Lava Group is considered to have erupted between 

c.60.56-57.5Ma (Ellis et al. 2002) however the dating is poorly constrained above 

the LLF. The top of the LLF is marked by coal-bearing sediments; the Coal-Bearing 

Formation which is constrained to 57.5Ma (Ellis et al. 2002). However, volcanism 

continued after this hiatus in the MLF and ULFs early in Chron 24r (>55Ma). 

In this study, the offshore succession was interpreted using the characters and 

geometries of the seismic reflectors, combined with the understanding of facies 

architectures of flood volcanics developed from the British Tertiary Igneous 

Province (BTIP) and the Etendeka province of Namibia. The opportunity to observe 

the actual Faeroes Lava Group in onshore exposures on the Faeroe Islands 

succession arose close to the end of the research project. Photographs of typical field 

examples of the Faeroes Lava Group are shown in Figs. 5-3 & 5-4. 
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Figure 5-2 The distribution of the Faeroes Lava Group on the Faeroes Islands and the stratigraphy compiled from 
onshore data and the Lopra-1 ,lA (1981) well drilled on the island ofSuduroy. The wells ofVesmanna-1 (1980) 
and Glyvursnes-1 (2003) are also located (after Ellis eta/. 2002). 
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The Lower Lava Formation (LLF) is the oldest formation of lavas in the 

Faeroe-Rockall Plateau and has a thickness of over 900m onshore the Faeroe Islands 

of Mykines, Suduroy and Vagar where the lavas are easily accessed at their contact 

with the Middle Lava Formation c.4km west of Bl<'mr on the SW coast (Fig 5-3A). On 

Suduroy the Lopra-1/lA borehole failed to reach the base of the succession at a 

drilling depth of 3565m (Hald & Waagstein 1984). 

On the Faeroes, and in the Lopra-1 borehole, a thick weathered zone caps the 

LLF: the Coal-bearing Formation. This hiatus in the eruptive activity is represented 

by the deposition of laccustrine sediments and the development of a thick coal 

sequence which has been mined. This zone is approximately 10m in thickness, but 

has been noted to be locally up to 20m thick. The formation has been 

geochronologically constrained by the use of combined palynological and isotopic 

dating to the age range c.60.56 to 57.5Ma by Jolley et al. (2002) and some of the 

deepest lavas drilled in Lopra-1/lA have been constrained by Waagstein et al. (2002) 

at c.58.8+/-0.5Ma(la) by Ar/Ar whole rock dating. 

The Middle Lava Formation (MLF) volcanics are considered to have a 

thickness of c.l400m estimated from onshore outcrop on the Faeroe Islands (Ellis et 

al. 2002). The complete succession may be seen from its base on the island of Vagar 

in the west, to Eysturoy and other islands in the east and is dominated by olivine­

phyric compound-lavas (Figs. 5-38 & 5-4A). 

The Upper Lava Formation (ULF) Faeroe lavas form a substantial thickness 

of volcanics both on the Faeroe Islands and offshore in the western parts of the 

Faeroe-Shetland Basin. Over 900m of ULF volcanics exist on the Faeroes, mainly 

consisting of simple, tabular-type lavas (Ellis et al. 2002) (Fig. 5-4). The ULF is 
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considered to have erupted during magnetic chron C24R (Waagstein 1988), which 

places this activity into a cycle of eruptive activity which occurred prior to the 

opening of the NE Atlantic Ocean. 

A schematic summary of the Faeroes Lava Group is shown in Fig. 5-5 from 

the water-borne volcaniclastics observed deep in the Lopra-1/1A borehole to the 

ULF observed onshore on Streymoy and Eysturoy; the two largest islands of the 

Faeroes chain. 
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Figure 5-3 Field examples of the Faeroes Lava Group. A: The entablature-jointed top surface of a 
LLF tabular-type flow near Akranessker, on the north shore of S0rvagsfj0dur, west V agar; B: Cliffs 
near Akranessker where a thick LLF flow dominates the foreground. The coal-bearing formation is 
visible underlying the MLF in the background cliff section; C: Looking south from Saksun towards 
the rubbly outcrops of olivine-phyric MLF lavas forming the mountain ofN6ni5 in the NW of 
Streymoy. Note the dark, fractured appearance of these typical MLF lavas and the inability to 
correlate lava lobes over more than a few metres laterally. 
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Individual, thin olivine­
phyric lava lobes visible 

Figure 5-4 Field examples of the Faeroes Lava Group. A: Individual olivine-phyric basaltic lava 
Jobes are seen protruding from the highly vegetated a rubbly scarp in the MLF seen looking NE 
from Bmrr on the south coast ofVagar; B: The contrasting volcanostratigraphic field characteristics 
of the MLF & ULF seen from Soyradalur, west ofTorshaven on the SW coast ofStreymoy; C: 
Looking south towards Stallur summit on Streymoy (6°57'W 62°05 'N) at a succession of thick 
tabular lavas of the ULF sitting on vegetated MLF lavas that form the more gentle slope and the 
lower parts of the hill. 
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Thick tabular-type lava flows c. 10m thick. Boles are common 
on the top surfaces of these thick flows of basaltic-andesites. 
Flows are parallel bedded and gentle dip towards the East. 

Transitional zone of mixed eruptive facies - tabular-type flows 
sitting amongst dominantly compound-braided basalts. 

Thin basaltic flows of dominantly compound­
braided architecture sit directly upon the Coal­
Bearing Fm. The MLF marks a return to volcanism 
after a period of quiescence. Sills may be seen to 
intrude through both the MLF and ULF on 
Streymoy and Eysturoy. 
On the south coast ofVagar, a vent is observed 
which penetrates the Coal-Bearing Fm. and may 
feed magma to the MLF succession. 

Tabular-type lavas with well-

ULF 
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developed columnar joints c.20m __ __,_-1 

thick mark the top of the LLF. 
>900m of these lavas lie upon a 
succession interpreted to be 
water-borne 
volcaniclastics/hyaloclastites. 

A thick sill complex is 
interpreted to be present at 
the base of these 

LLF 
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Figure 5-5 Schematic diagram of the onshore Faeroes succession constructed using field exposures of 
the Faeroes Lava Group, and information/interpretation from the Lopra-1/lA borehole. A: The Upper 
Lava Fm (ULF) is represented by >900m thickness of dominantly thick tabular-type lavas; B: The 
Middle Lava Fm. (MLF) is c.l400m of thinner, compounded lavas lying below a transitional zone of 
mixed facies; C: The Lower Lava Fm. (LLF) is considered to be thick succession of tabular-type flows 
overlying water-born volcaniclastics. >900m is exposed onshore, and Lopra-111 A continued to drill 
volcaniclastic material at a total depth of 3565m below sea-level. 
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5.3 THIE GIEOILOGnCAIL nNTIERPRIETAT[ON OF THIE GFA-99 2-D §IEl§M[C 

DATASET 

The sections that follow describe the offshore succession seen in the GF A-99 

seismic data. The interpretations made in this 2D seismic data survey have been 

constructed based on the understanding of the building blocks of flood volcanic 

successions that have been developed from the field work and modelling studies of 

Chapters 3 &4. The intrafacies concepts developed on an intraflow-scale, and the 

organisation of vertical and lateral stacking patterns on a lavafield-scale, are the 

backbone behind the ideas the GF A-99 offshore seismic interpretations. These new 

offshore succession interpretations presented in this thesis have been constructed and 

interpolated in GoCad™ as a component of SIMBA Work Package l. A workflow 

describing the application of these interpretations as part of SIMBA is described and 

discussed in Martini et al. (2005 in press). The succession is discussed in reverse 

time order, from the high-resolution near-surface data to a gravity interpretation of 

the deep structure. The sedimentary succession is briefly introduced, followed by a 

discussion of the lava sequences, the postulated underlying basin structure and sub­

volcanic section. The geological history developed from the interpretation is then 

discussed with facies architectural models. 

The most complete published geological interpretation across the Faeroe­

Shetland Basin incorporates seismic and industrial borehole data across the basin. 

Borehole data was unavailable to this project however the proposed interpretation of 

Ellis et al. 2002 is shown in Fig. 5-6. The interpretation ofthe volcanic succession in 

this study started with I ine 105, as this line is considered to contain the highest 

seismic resolution data. After the interpretation of line 105, the subsequent six lines 

were interpreted and tied into line 105 in order to achieve a best interpretation fit. 
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Macro-scale flood basalt architecture 

5.4 SEDIMENTARY SUCCESSION 

The sedimentary succession is broadly divided into two main sequences; the 

Upper and Lower sediments. Only a brief account of the post-volcanic sedimentary 

succession is described, as these sediments are relatively homogeneous compared to 

the volcanic sequences and have not been identified as one of the prime causes for 

poor sub-basalt imaging. Though the sea-bed is identified as a major cause for 

multiple reverberations on the seismic data, when combined with the scattering 

characteristics of the basalt, this poses a non-trivial processing problem. 

5.4.1 Horizon Interpretations and Distribution 

The top of the upper sediments depositional system is marked by the strong 

sea bed reflector. The upper sediments (post-Oligocene) cover most of the data area, 

but thin dramatically in the north of where volcanics are interpreted to be close to the 

sea bed (Fig. 5-7 A). The top of the lower sediments (Eocene and Oligocene) is 

represented by a strong, laterally persistent reflector that sits proportional and 

parallel to the stronger top volcanics pick beneath. Downlapping interpretations are 

common in the top 500ms (TWT) of the upper sediments (Figs. 5-7C & 5-8), whilst 

erosional truncations and onlapping relationships dominate below this upper veneer. 

The top surface of the lower sediments is populated by small-throw normal faults. 

This creates a heavily broken top lower sediments horizon pick which lies above a 

sequence of sediments that have little internal structure and broadly parallel 

reflectors. 
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5.4.2 Thickness 

The upper sediments form a sequence with a maximum thickness of c.950ms 

(c.800m). The lower sediments fonn a sequence up to c.l650m thick in the eastern 

part of the data towards the Corona Basin area. The lower sediments thicken to a 

maximum where the underlying lava field forms a steep scarp (possibly due to 

normal faulting) in the east of the data area. 

5.4.3 Facies Interpretations 

The upper sediments are considered to be an erosional turbiditic sequence of 

muds and sands that have several unconformable contacts with the underlying lower 

sediments. Though much of the sequence is apparently conformable, anticlinal 

structures that developed in the lower sediments during the Miocene inversion 

episode (Boldreel & Andersen 1993) have been eroded in lines 105, 203, 205 and 

207 (Fig. 5-8). Towards the base of the upper sediments, incised valley fills may be 

interpreted (Fig. 5-7C). These incised valleys are considered to have developed 

during the Miocene inversion as the sediments were uplifted and exposed to sub­

aerial erosion. 

The sub-parallel reflector sequence that is represented through the lower 

sediments suggests that these are likely to a series of suspension-fed muddy deposits 

laid in relatively deep, quiescent water far from any source of eroded detritus. The 

top horizon-pick is heavily affected by minor normal faults. The intensity of the 

faulting suggests that these may be part of a mud-based polygonal system (Stuevold 

et al. 2003). The subsequent Miocene inversion uplifted parts of the basin providing 

sediment for the deposition and resedimentation which led to the formation of the 

more turbiditic upper sedimentary succession. 
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Figure 5-7 Post-volcanic sedimentary succession in the GFA-99 seismic dataset; A: The areal extent of 
the upper Sediments interpolated through the 20 data (green). Note the sub-crop is not sediments in 
the north ofthe image. Depth of Line 201 TWT section is 8 seconds; B: Close-up section of line 201; 
C: Interpretation of the upper and lower sediments in the same portion of line 20 I. Faults in the 
sedimentary sequence are marked in red. Vertical scale is in ms ofTWT. Approximate scale in km is 
also stipulated. 
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Figure 5-8 Post-volcanic sedimentary succession facies in the GFA-99 seismic dataset. A: Section of 
line 107 showing dipping reflectors in upper sediments and sub-parallel bedding in the lower 
sediments; B: Interpretation ofthe same section of line 107; C: Section of line 105 showing the 
relationships between the upper and lower sediments; D: Interpretation of the upper and lower 
sediment contacts and facies in the same portion of line 105. Faults are marked in red. Vertical scale in 
ms TWT specified with approximate vertical scale in km. 
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5.5 UPPER LAVA FORMATION VOLCANICS 

The following section studies the offshore interpretation of the Upper Lava 

Formation (ULF) volcanics through the GF A-99 dataset: How the sequence is 

recognised in the seismic, the facies interpretations and the estimated thicknesses 

present within this part of the NAlP flood basalts. 

5.5.1 Horizon Interpretation and Distribution 

The ULF is recognised by a laterally extensive reflector. This reflector starts 

at about 15 80ms in the west of line 105 and at a similar depth in each of the other W­

E seismic lines of l 07 and 109. The reflector is characterised by being the strongest 

amplitude reflector below that of the sea bed, and by the rugose nature of its top 

surface. The top ULF pick is heavily affected by the Eocene to Miocene 

compressional phases associated with changes in the spreading dynamics of the NE 

Atlantic (Andersen & Boldreel1995). The top pick is faulted in much ofthe GFA-99 

area, but a characteristic feature of the top ULF is the presence of thrusts that pierce 

the pick, and the presence of associated thrust-tip folds (Fig. 5-10). The new 

interpretation and models of the Faeroe-Shetland Basin built in this research have 

been made possible by the use of the GoCad™ 30 environment. Thrust faults have 

been interpreted on individual 20 seismic lines, and their planes interpolated 

between lines, resulting in this new structural interpretation ofthe GFA-99 area. 

The gently dipping ULF volcanics cover over 9.4x103km2 of the dataset area 

and follow the general structural dip towards the SE into the Corona Basin where 

they pinch out (Fig. 5-9C). The Faeroes Lava Group is at its shallowest in the north 

ofthe GFA-99 area where the ULF is interpreted to be close to the sea floor. 
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5.5.2 Thickness 

The ULF successiOn maintains a reasonably constant thickness of about 

500ms TWT across most of the study area, apart from where the formation feathers 

out towards the south and east. The maximum thickness of c.950ms TWT is 

represented in the NW parts of the dataset towards their source on the Faeroes. The 

thickness is mainly comprised of parallel, laterally persistent reflectors, except for in 

the SW, where a divergent reflector sequence is observed to dip down into the region 

of the Corona Basin. In the north and west of the lines, the parallel, persistent 

reflectors form the entire thickness present. Towards the SE, many of these reflectors 

pinch out and appear to shallowly downlap as the lavas thin above dipping, divergent 

sequences. This thinning provides an indication of the maximum extent of the ULF 

distal to the Faeroe Islands. The character of the sequence suggests that the lavas 

pinch out close to the east end of G FA -99. This notion is supported by the 

observations of Ellis et al. (2002). 

An approximation of the thicknesses of volcanics in the Faeroe Lava Group 

has been made using the following relationship: 

173 



Macro-scale flood basalt architecture 

11Z = Vi1 * ((1/2000) * T1-To) 

Where: !1Z =Thickness (m) 

Vi 1 = Interval velocity of seismic unit (ms-1
) 

T1 = TWT to base of seismic unit (ms) 

T2 = TWT to top of seismic unit (ms) 

This may be written as the following property script in GoCad™: 

{thickness= Vi* ((1/2000) * TWT _thickness) ; } 

Where: thickness= The property of the client Surface (m) 

1/2000 =Conversion for TWT to One-Way-Time (m) 

TWT_thickness = The host Surface property of TWT 

thickness (ms) Vi = A specific Interval Velocity (ms-1
): 

This must be substituted with a numerical value in the 

property script 

From the geological interpretation of the seismic, this GoCad™ property 

script is able to provide an estimate of the thicknesses of the various volcanics using 

an assumed interval velocity and the TWT thickness maps calculated in Figs. 5-11 & 

5-12. The calculated thickness of the ULF shows considerable thickness variations 

across GFA-99 (Fig. 5-16). The formation is at its thickest in the north and the west 

which is more proximal to the source region for the volcanic sequences where 

c.1400m are calculated to be present where the interpretation of the GFA-99 data is 

reliable and multiples are at a minimum. As stated, the preserved onshore thickness 

is c.900m, with the top of the formation missing due to erosion. Therefore up to 

c.500m of lavas may be missing from the onshore exposures of the ULF on the 

Faeroes. 
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Figure 5-10 Late Palaeocene to Miocene compression has created a series of inversion structw·es in the Faeroes Lava Group; some also having an expression in the 
overlying Eocene-Oligocene sediments within the lower sedimentary succession described in the body text. A: A 30 view of the main faults cutting through the GFA-99 
seismic data. Note the high dip angles of some parts of the reverse faults and compressional features. These are attributed to transpressional inversion; B to D: Detail of 
compressional structures and zones of compressional deformation in GFA-99 lines 109, I 07 and 105. 
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5.5.3 Facies [nterpretation 

5.5.3.1 Tabular Lavas 

Macro-scale flood basalt architecture 

The seismic reflectors in the NW and upper parts of the ULF interpretation 

have strong amplitudes and are laterally persistent. Individual high amplitude 

reflectors may be picked over tens of kilometres. This simple character and the 

lateral extent of the reflectors suggest that the volcanics in these parts of the ULF 

may be of tabular-type facies (Jerram 2002). From onshore studies, the ULF 

volcanics have been shown to be composed of simple type flows of about 1Om mean 

thickness (Ellis et a/. 2002). Between many of the flows, sedimentary horizons are 

developed similar in character and thickness to those seen in the Skye Lava Field 

successions on the lsle of Skye. The Upper Fm. lavas are dominated by plagioclase­

phyric flows in the central Faeroes (Ellis et al. 2002), studies on Skye have shown 

that more evolved lava types such as the hawaiites and mugearites (basaltic­

andesites) tend to develop more simplistic internal and external morphologies due to 

their increased erupted viscosities and inflated modal silica contents. Much of the 

ULF may therefore be considered to be akin to the lavas seen in the Amaval Member 

of more evolved flow types in west-central Skye. The field analogues for the ULF 

are taken from the basaltic-andesites of the Arnaval Member of the Talisker Bay area 

of the Skye Lava Field, from the Etendeka flood basalts of Namibia and the Faeroe 

lslands (Figs. 5-17 to 5-19). 
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5.5.3.2 Lava Delta Fans 

In the south and east of the GFA-99 area, beyond N-S line 201, the tabular­

type lavas of the western parts of the formation are noted to spill into a series of 

basinward dipping reflectors (Fig. 5-14). These are interpreted to form a hyaloclastite 

fan or apron in the Corona Basin region and dip down towards the ESE. The reflector 

sequences in this part of the ULF are of the highest resolution in the lines 105 and 

107. Although the divergent nature of the reflectors is clear, the boundaries of any 

particular sequence are less clearly defined. The hyaloclastites show complex 

internal morphology in comparison to the more simple lava types interpreted in the 

bulk of the ULF. The complexity of the internal morphologies of the lavas means 

that the distinction between the ULF and the underlying MLF is difficult to interpret, 

especially through the hyaloclastite zones. The interpretation of the presence of an 

ULF hyaloclastite apron has been made by detailed picking of the volcanic internal 

reflectors, paying particular attention to onlap, downlaps and pinch-out relationships 

within the formations apparent. The presence of a hyaloclastite apron in the ULF 

indicates that the Faeroes Lava Group was filling a water-filled basin in the east of 

the GF A-99 area; lavas moving into this accommodation space from their source 

near the Faeroes. A more distinct boundary between the ULF and the MLF is 

observed in the north and west of the data area, where the interpreted hyaloclastites 

are not deemed to be present. Fig. 5-13 displays a basic interpretation of the GF A-99 

line 105, showing some of the more prominent tabular-type picks in the data, and 

also some of the downlapping features present in the hyaloclastite deltaic succession. 

More detailed interpretations of the volcanic sequence are illustrated in Figs. 5-14 

and 5-15. Hyaloclastites are also found in the MLF and their formation and 

significance will be discussed in detail in the following description of the MLF. 
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Figure 5-13 Geological interpretation of the GFA-99 line 105 (red on inset location map). The strong reflectors at the base of the succession are interpreted to be 
thick sill complexes. In the west of the section, LLF volcanics fonn a thick hyaloclastite delta which reaches as far as the East Faeroe High. The MLF is 
interpreted to consist of compound braided pahoehoe type lavas that fed off the Faeroes area to form a hyaloclastite apron in a substantial water-body. Sub-aerial 
tabular type lavas form the bulk of the ULF, except in the most distal part of the basin, where hyaloclastites extend the MLF apron system. 
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Figure 5-14 Geological interpretation ofthe GFA-99line 107 (red on inset location map). Succession base marked by a series of sill­
type reflectors. In the west, dipping reflectors of the LLF are interpreted to form a wedge of hyaloclastites beneath compound lava 
types of the overlying MLF. The ULF contains laterally persistent strong reflector characteristics interpreted to be representative of a 
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Figure 5-15 Geological interpretation of the GFA-99line I 09 (red on inset location map). The complete volcanic succession thins 
towards the east. A geological interpretation of the possible extent of the LLF volcanics is suggested in the west of the section. This is 
considered to be represented by sub-horizontal tabular-type flows overlain by a sequence of dipping hyaloclastites of a massive 
thickness of c.l400ms. The LLF volcanics apparently terminate near the axis of the East Faeroe High. 
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5.6 MIDDLE LAVA FORMATION VOLCANICS 

The MLF volcanics are now discussed in detail. The interpretation in this part 

of the Faeroes Lava Group is more difficult than the ULF due to a loss in seismic 

resolution. This is caused by the greater depth of the MLF, the dispersive and high 

acoustic impedance properties of the overlying ULF volcanics, and also the different 

internal facies architecture of the MLF noted from the onshore exposures on the 

Faeroe Islands. 

5.6.1 Horizon Interpretation and Distribution 

Whereas the top of the ULF is a distinct, high amplitude reflector beneath the 

lower sediments (due to the high acoustic impedance contrast over the sediment/lava 

interface), the intra-volcanic contrasts are minor, unless seismically significant facies 

changes occur within the succession. In much of the ULF/MLF interface offshore, 

there is no obvious seismic boundary and arbitrary boundaries are interpreted. The 

two formations are usually referred to together in most of the literature due to the 

arbitrary nature of the boundary interpreted in seismic. In this interpretation, the top 

of the MLF is taken as the highest amplitude pick which sits approximately 600-

1 OOOms beneath the top ULF pick. 
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On the basis of the geometries of the reflector sequences present, and the 

amplitude of key reflectors within the volcanics, the MLF is divided into three main 

sequences (Figs. 5-17 to 5-22): 

il Compound-braided sequence 

Broken, indistinct seismic reflectors 

c.1300m thickness of olivine-rich pahoehoe type lavas 

• Hyaloclastite Deltaic sequence 

. Down/top-lapping foresets of divergent & convergent reflectors 

c.400m thickness of fore sets 

• Mixed Transitional sequences 

. Mixed broken & persistent reflectors 

In the SE of the GF A-99 area, the base of the MLF is interpreted to be the 

series of high amplitude broken reflectors deep in the volcanic succession. These are 

interpreted to be sill complexes at the base of the volcanic succession (5.8) and form 

zones of over 1000ms TWT of strong, lozenge-like reflectors. The convergence of 

downlapping reflectors is also taken as a base-succession marker in this part of the 

data. The MLF is present across the entire GF A-99 area, but thins to a minimum in 

the eastern extremity ofthe dataset, as in the case ofthe ULF. This is due to the large 

distance from the eruptive source near the Faeroe Islands(> 1 OOkm). 
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Tabular lavas -Onshore analogue 

Tabular-type lava flows 

Figure 5-17 An onshore analogue for the lavas seen in the ULF and in mixed zones of the MLF 
which are interpreted to be tabular-type lavas. The tabular lavas form laterally extensive thick 
flows ( c.l Om thick) that may be correlated over kilometres in the seismic signature, and also in the 
field. Onlapping and off-lapping relationships are not immediately obvious in the field and need to 
be discovered by large-scale field mapping. A: A section of GFA-99 line 205 showing the 
characteristics of this architectural facies type; B: Looking south over Talisker Bay at the mountain 
Be inn nan Cuithean in the Skye Lava Field on the Isle of Skye. Note the thick character of these 
flow and their structure which often contains a colonnade and entablature organisation. 
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5.6.2 'fillickness 

Thickness of the MLF varies considerably through the 20 seismic. The 

maximum thickness of the fonnation is c.930ms (c.1870m) and the lavas pinch-out 

entirely in the SE. Errors associated with these values may be mainly attributed to the 

difficulties of interpretation of the MLF base, and to a lesser extent the MLF top, as 

discussed above. The thickest part of the volcanics lies through the centre of the 

dataset where a N-S swathe of volcanics have a mean thickness of c.1300m. This 

agrees well with the preserved onshore thickness of c.1400m (5.2). 

Fig. 5-16 shows a thickness map for the interpreted hyaloclastite volcanics 

that are considered to be present in both the MLF and the ULF. This body has a 

maximum thickness of c.700ms TWT or c.700m (using Vi=2000ms-1
), with most 

data points in the body clustering around the 400-600m thick range (Fig. 5-16). This 

represents a massive thickness of fragmental volcaniclastics that are interpreted to 

have been erupting into a substantial water body. The calculations of Ellis et al. 

(2002) suggest the hyaloclastites form foresets between 150-500m in thickness. The 

present study confirms a similar calculated-scale of hyaloclastite foresets. 

5.6.3 Facies Interpretation 

The facies present within the MLF fall into three main caterogies: 

" Compound-braided lavas 

~ Hyaloclastite apron 

~ Mixed transitional lavas 
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5.6.3.1 Compound-braided Lavas 

Much of the western part of the dataset contains broken, dispersed reflectors 

that are not correlateable over the large distances (kilometres) possible in the tabular­

type lavas interpreted to be present in the ULF. This is attributed to the lavas being 

formed of mainly olivine-rich compounded lavas sequences such as those seen 

towards the base of the succession studied in the Talisker Bay case study area. The 

stacking patterns are complex in the vertical section, but also laterally as the eruptive 

style of these more olivine-rich lavas tend to form compound-braided systems (Fig. 

5-20). 

5.6.3.2 Hyaloclastite Apron 

Hyaloclastites are interpreted to form a large thickness of the MLF. The 

dipping reflectors are observed to dip steeply towards the ESE and form a body 

which runs NNE-SSW through the study area. The spacing ofthe seismic lines is too 

great (20km) to understand whether the hyaloclastites form individual deltas, but 

their widespread occurrence in the MLF in lines 105, 107, 109 and 201 suggest the 

body to be more like an apron than individual deltas. The thickness of the 

hyaloclastites in the MLF indicate the presence of a deep water body proximal to the 

sites of eruption near the Faeroe Islands; the hyaloclastites prograding basinward 

towards the Corona area and appear to be on a similar scale to hyaloclastite dipping 

successions in west Greenland (Figs. 5-21 & 5-22). The possibility of there being a 

thick sequence of hyaloclastites in the MLF/ULF successions has important 

implications for the observed bouguer gravity of the area. Hyaloclastites are low 

density volcanics, and also have low elastic velocities when compared to plagioclase­

phyric tabular lavas for example. Therefore, they are an important consideration to 

both seismic and gravity geophysical modelling. Figure 5-23 shows the seismic 
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velocity spectrum for the interpreted hyaloclastite zone. In the interpreted 

hyaloclastites, the estimated primary velocity is considerably lower (2300-3900ms- 1
) 

than for 'typical basalt' surrounding the hyaloclastite volume (5000-5900ms-1
). The 

implications for the gravity modelling of lavas are highlighted in Figs. 5-24 & 5-25. 

in the first of these figures, a simple gravity model is constructed assuming that the 

basalts host homogeneous internal densities. The calculated gravity response based 

on such an assumption is proved to be invalid as a reduction of density is required in 

the central portion of the line 107 modelled. By altering the density of the zones 

demarked as potentially hyaloclastite bodies in the ULF/MLF & LLF to reduced 

values, brings the calculated density closer to the observed bouguer gravity (see 

5.7.3). 
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Tabular lavas - Onshore analogue 

Figure 5-18 An onshore analogue for the seismic zones which are interpreted to be tabular-type 
lavas. The tabular lavas form laterally extensive thick flows ( c.1 Om thick average) that may be 
correlated over hundreds of metres to several kilometres. A: A section ofGFA-99line 105 showing 
the characteristics of this architectural facies type; B: The mountain Awahab in the Etendeka flood 
basalts ofNamibia showing such volcanic facies in the field. Note the sub-parallel nature of the 
contacts between these flows and their persistence through the entire mountain section. The flows 
schematically marked by red bases are correlable for tens of kilometres throughout the Huab area 
of Namibia. The top flow (the Goboboseb Quartz-Latite) may be traced into the Parana sector of 
the Parana-Etendeka flood basalt province. 
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Tabular lavas - Onshore analogue 

ULF steep 
hillside, large 

outcrops 
.._.....,..,~ 

6 

Figure 5-19 An onshore analogue from the Faeroe Islands onshore succession for the seismic zones 
which are interpreted to be tabular-type lavas. The tabular lavas form laterally extensive thick flows 
( c.l Om thick average) that may be correlated over hundreds of metres to several kilometres. A: A 
section ofGFA-99line 207 showing the characteristics of this architectural facies type; B: Cliff 
section looking NE down the Kollafj0rour on the east coast of Streymoy at c.300m thickness of ULF 
tabular-type lava flows. Six obvious ULF lava flow basal contacts have been indicated on this 
particular mountain side section. Note the poor exposure of the MLF in comparison with the ULF. 
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Compound Braided lavas - Onshore analogue 

Figure 5-20 An onshore analogue for the lavas seen in the western parts of the MLF. A: A section 
of line GFA-99 line 203 showing both tabular-type lavas, and the contrasting seismic signatures 
between these and the compound-braided lava types of the underlying MLF; B: The cliff section of 
Waterstein Head on the Duirinish Peninsula ofNW Skye. This cliff section is 296m in total height. 
Over 200m of this height is comprised of compound-braided basalts that are internally complex, 
and are stacked into a complex stacking arrangement both vertically and laterally. The outlines of 
several basaltic lobes are marked with red stipple. 
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Foresetted Hyaloclastites - Onshore analogue 

Figure 5-21 Dipping hyaloclastites facies type. A: Portion of GFA-99 line 107 showing prominent 
dipping reflector sequences in the MLF. These are interpreted to represent a succession of lava 
delta volcanics similar to those seen in the Nausuaq area of west Greenland; B: Cliff section in the 
Nausuaq area shows hyaloclastites dipping and prograding east onto Jurassic sediments. Above the 
thick pile ofhyaloclastites are compound-braided, then subsequently tabular-type lavas stacked 
sub-horizontally. The compound and tabular-type lavas are sub-aerial lavas so the section shows a 
water-filled basin-fill, and subsequent overlying landward flows (Planke 2002). Image courtesy of 
D.G. Pearson. 
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Foresetted Hyaloclastites - Onshore analogue 

Figure 5-22 Dipping hyaloclastites facies from west Greenland. A: Hyaloclastite breccia (OB) 
deposited in the Naajat lake. The foresets are 200m high. Arrows indicate single foresets. The 
breccias overlie lava flows of the Tunoqqu Member (TuL); B: Hyaloclastite infill of the Naajat lake 
(after Pedersen eta/. 1993). Water depths of up to 450m may be estimated from the heights of the 
foresets. Note that the subaerial lavas were flooded by the rise of the lake level (2b) to (3). The 
breccias downlap onto the subaqueous crater; C: The east section ofGFA-99line 109 where thick 
hyaloclastites are developed in both the ULF & MLFs on a similar scale to those ofNaajat lake. 
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ULF/MLF picks in the central part ofline I 07 in the 3D environment. 
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5.6.3.3 Mixed Transitional Lavas 

Mixed transitional lavas are interpreted to be present in all of the GFA-99 

lines where more prominent, laterally extensive reflector zones are seen amongst 

broken reflector zones. Although it is possible that sedimentary horizons may also 

cause the large acoustic impedance contrasts, this is not considered a plausible 

explanation due to the lack of any thicknesses of sedimentary rocks in compound­

braided type lava sequences. Mixed facies of compound-braided and tabular units 

exist at the MLF/ULF transition on the Faeroe Islands (pers. comm. Passay 2003, 

University of Glasgow). Evidence for similar mixed zones exist in the Skye Lava 

Field of Talisker Bay (5.2) where the style of volcanism is seen to evolve with time, 

up through the succession as the lavas are effused from progressively more evolved 

sources. 
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5. 7 LOWER LAVA FORMATION VOLCANICS 

The depth at which the top LLF volcanics exists m the data makes it 

extremely difficult to interpret. Its presence and structure is therefore ratified by the 

use of gravity data. An interpretation is now presented based on a combination of the 

seismic reflector characteristics and gravity models. Gravity models were built in 

ARK Geophysics prior to both the collection of Faeroes field data and before the 

seismic interpretations were finalised. 

5.7.1 Horizon Interpretation and Distribution 

It is not possible to accurately interpret the boundaries of the succession, or if 

the LLF exists at all in more than just the three W-E lines of 105, 107 and 109. The 

LLF must be also present inN-S line 207, but its interpretation is difficult to justify 

to the east of this particular line. The easterly extent of the formation is interpreted to 

be coincident with the East Faeroe High. Base LLF picks are represented in Figs. 5-

13 to 5-15 by a pick based on the interpretation of sills at the base of the succession 

as strong, bright seismic reflectors, and the downlap of dipping reflectors. 

5. 7.2 Thickness 

The Lopra-1 well indicates the succession to be extremely thick beneath the 

Faeroe Islands. The seismic data alone predicts a thickness of up to 1630ms TWT 

maximum (Fig. 5-12C), but this holds only with an absence of data reliability over 

the major part of the data area. The most reasonable estimate of LLF thickness is 

made by combining gravity data into a gravity model along the profile of line 107. It 

is not possible to accurately interpret the thickness of the LLF from the seismic, 

however the modelling of the seismic in combination with the bouguer gravity data 

stipulate a base-case model thickness in excess of 2700m (Fig. 5-26). This is 
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consistent with the observation from seismic alone, of a maximum thickness of 

c.3530m. This highlights the need for a multi-disciplinary approach to help solve 

basalt cover and sub-basalt imaging problems. 

5.7.3 Facies [nterpretation 

The facies interpretation is based on observations of the geometries present 

within the possible LLF succession, and by creating gravity models along the seismic 

W-E lines. A basic interpretation of line 107 is shown in Fig. 5-24. This gravity 

model is based on the seismic picks alone, and studies the effect of hyaloclastite piles 

on unfiltered gravity profiles. The LLF is missing entirely in the model, and there is 

no sub-volcanic density contrast. Fig. 5-24 provides an unsatisfactory interpretation 

of the data; several aspects of the interpretation need strong improvements. 

Improvements are made to this poor-case gravity model in the subsequent sections 

and associated figures (Figs. 5-25 to 5-27). 

5. 7 .3.1 Water-borne Volcaniclastics 

An improved gravity model of line 107 is shown in Fig. 5-25. The reduction 

in density of the central portion has improved the calculated gravity response by 

adding sediment to the sub-volcanic part of the succession. Again, by using gravity, 

we can identify the possible locations of sediment underneath the volcanics. This will 

be discussed in the next section. 1n the west of the line, a seismic interpretation of the 

LLF is added in geometry only. The succession is considered to hold no density 

contrast with the overlying ULF or MLFs. The observed bouguer gravity does not 

support this notion. The mass of the entire west side of the line is too high. ln line 

107 in particular, dipping reflectors are observed in the interpreted LLF succession. 

This suggests that the LLF may be represented by hyaloclastites and volcaniclastics 
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similar to those seen more distal and basinward in the MLF and ULF. By reducing 

the density of the interpretation of the LLF in this model of line 107 to potentially 

that of a hyaloclastite, a strong fit between the observed and calculated gravity is 

achieved (Fig. 5-26). The LLF is known to form thick tabular-type lavas in the 

Lopra-l/1A section; beneath these, the drilling was terminated in a thick pile of sub­

aqueously deposited volcaniclastics/hyaloclastites. ln the area of GF A-99, these are 

considered to be represented by the basinal progradational lava delta hyaloclastites 

suggested by gravity interpretation. 
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gravity anomaly along line 107 requires a significant volume oflow density material to be present in the central portion of the line at a sub-volcanic 
level. The observed gravity profile strengthens the argument for a significant succession ofLLF hyaloclastite at the west end of the section where the 
density of the LLF geological interpretation needs to be reduced at that level in the stratigraphy. The gravity profile interpretation is filtered to 45km 
low-pass wavelength: At this wavelength, the gravity calculated from the model has a maxirnwn deviation of 0. 7mgal from the observed bouguer data. 

~ 
~ 

C5 
I c., 
~ 
t;:) 

~ 

~ 
0 
t;:)... 

<::l-' 

~ 
t;:) 
:::;-
t;:) 

~ 
;:s-
~: 
~ 

~ 
~ 



N 
0 
w 

ro 
CJ) 

.s 
;:;-
·;; 
~ 
Cl 
Q; 
:;;, 
CJ) 
:;;, 
0 

a:l 

I 
I 
.<:: 
a_ 

"' 0 

4<.0 -:· 
C)~-= 
c~-: 

no-: 
<~~ -:: 

39~-: 

39 .0-:: 

GFA-99 Line 203 Gravity Model 

~----~-~m~~---~-~m~m~~---m-mm~---~---~ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

obs • • + + • 
cOc -­
AlJ:oOffset:521.74 

10"W 

82"N 

O"W O"W 

,_""' 
' 

e•w O"W 

•ow 2"W o· 

~ 
82"N 

- ~·-= 
<"W 2"W o· 

37.0-

39~-

o-
UIO-

2000-

:1000-

"Ill ULFI s?= ?j]fus ' ~ ~w·i··•- Uppe•Sed;ments 
--=-----!:~oo ---~ 
MLF -· voo _ - Lower Sediments 

m-: 
Slnl-: 
6000-

~ ~~~ 
aooo -: 
9000--
mo-: 

1 :~ 
13000--lWJ-: 
15000-: 
16000-: 
11000-: 
11000-

19000-

20000-

1 21XIO ~ 
22000-

. 

---------------~------

2.700 
600WOO 

'Basement' 

-~ -

Regional Gravity Gradient 

Upper Lava Fm. 

Middle Lava Fm. 

Sill Complex 

• 'Basement' 

Figure 5-27 Geological interpretation and model of the GFA-99 line 203 (red on inset location map) incorporating bouguer gravity data. The observed 
gravity anomaly along line 203 requires the modelling of a more complex, faulted basement topography. A significant body of sediment is interpreted 
to lie beneath the volcanics, but the hyaloclastites of both the ULF/MLF and LLF are absent in this line. Sill complexes are likely to affect the gravity 
profile at the base-volcanics, top pre-volcanic sediment zones in the stratigraphy. The data is low-pass filtered to 35km. At this wavelength, the line 
207 model is geologically and geophysically reasonable within 0.8mgal, and further enhancements in the model will only be made by adjusting the 
post-volcanic sedimentary succession interpretation. 

~ 
(') 

d 
I c., 

2 
~ 

~ 
a 
~ 
\:)-' 

~ 
!::) 

::::. 
!::) 

~ 
~ 

~-
(') 

f2' 
~ 



Macro-scale flood basalt architecture 

5.8 THE SUB-VOLCANiC SECTION 

The sub-volcanic zone is the part of the dataset which has interested the 

petroleum industry enough to acquire seismic datasets such as GF A-99. The sub­

volcanic section is considered to be a mature petroleum play. The top of the sub­

volcanics is marked by interpreted sill complexes. 

5.8.1 Sills 

Sill complexes are observed at the base of the lava sequences of Skye, in 

great thicknesses on the northern Trottemish Peninsula in particular where over 50m 

of sills sit beneath the base of the lava succession. Similarly, in the Etendeka flood 

basalts of Namibia, the substantial Huab Sills complex again fills a large volume of 

dense material at the base of the province lava sequences (Duncan et al. 1989). In the 

GF A-99 data, high amplitude reflectors fill what is considered the basal zone of the 

lava field. Although individual reflectors are rarely over 5km long, they are 

interpreted to represent a series of sills in the Faeroe-Shetland Sill Complex 

(Smallwood & Maresh 2002) seated at the base of the succession across most of the 

GF A data. The sills are at their most prominent at the interpreted base of the MLF 

beneath the hyaloclastite zones, and landward, beneath the interpreted compound 

lava types (Figs. 5-13 to 5-15). 

5.8.2 Sediments and Basement 

The presence of sub-volcanic sediments and the shape of the basement 

surface have been interpreted by the use of gravity data. Figs. 5-26 & 5-27 present 

2D gravity models of the GFA lines 107 and 203. These contain the greatest amount 

of vertical and lateral facies variability in the entire dataset. A simple, normally 

faulted basement is interpreted from bouguer gravity data filtered to wavelengths 
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longer than 350km. On top of the basement a large thickness of sediment is modelled 

for a gravity data fit ratified to the 45km high cut filter level: i.e. the calculated 

bouguer gravity interpretation hold true with the observed gravity as deep in the 

section as the top of the volcanics. The sediment maximum thickness on top of this 

basement is 6000m. 
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5.9 SUMMARY 

The succession of volcanics in the GF A-99 data area, potentially has a 

maximum thickness in excess of 6830m which is calculated in this study. Down to 

the top of the sub-volcanic sediments, or top LLF, where present, the succession has 

a thickness of c.2700 across much of the area. A further 2700m or more of LLF may 

exist beneath this ULF-MLF total thickness as estimated from the combined gravity 

and seismic modelling. These thicknesses compares well with the estimates of Ellis 

et al. (2002) who suggest the complete thickness of the volcanics discussed to be 

c.5550m combining data from the Faeroe Islands and offshore data. 

In summary, the extrusive activity began c.60.56Ma (Ellis et al. 2002) with 

the eruption of volcaniclastics into a substantial water-body which lay in the environs 

of the present day Faeroes. Their presence may be interpreted offshore to the SE of 

the islands. During the LLF, the volcanics filled this former water-filled basin and 

erupted into the sub-aerial environment. Thick tabular-type lavas (flows c.20m thick) 

formed a lava succession >900m thick in the Faeroes area and this eruptive phase 

waned c.56.4+/-0.5Ma (Ar/Ar) in the beginning ofChron24r (Waagstein et al. 2002). 

A thick sedimentary sequence c.l Om thick developed on top of the LLF. This 

eruptive hiatus terminated c.55Ma, early in Chron24r and the MLF blanketed the 

Faeroes platform with thin, olivine-rich flows of dominantly compound-braided 

facies architecture. These are similar to those seen towards the base of the Skye Lava 

Field studied in Chapters 3 and 4 (Fig. 5-28). Offshore, these formed water-borne 

prograding hyaloclastite fans that grew into a slope-apron of low density, foreset­

bedded volcaniclastic material architecturally similar to the volcanics seen in west 

Greenland (Pedersen et al. 1993) (Fig. 5-29). The convergence of the foreset-beds 

marks the base of the volcanic succession in the offshore data. 
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Macro-scale flood basalt architecture 

The boundary between the MLF and the overlying ULF is gradational 

onshore: a transitional phase of volcanism represented by mixed volcanic facies. 

Olivine-rich thin compound-braided lavas are interspersed with minor, relatively thin 

(c.5m) tabular-type flows. The ULF base is marked by the first thick, laterally­

extensive tabular-type lava c.l Om thick of basaltic-andesitic composition. 

The sub-division of the volcanics into facies zones is made possible by taking 

into consideration a combination of data types, including the field geology facies 

studies of Chapters 3 & 4, geological interpretations of seismic, and its integration 

with regional and profiled gravity data. Combining gravity interpretations into the 

geological interpretation of seismic data has also provided a tool for ratifying both 

the geological interpretation of the horizon picks and also the facies units within the 

data. The facies architectural studies presented in the CFB system basin or macro­

scale are summarised in Fig. 5-30. 

In Chapter 6, the integrated, micro to macro-scale architectural studies of 

CFB sequences are discussed: the implications for the physical volcanology of flood 

basalts, and how these facies architectural studies may improve the geophysical 

characterisation of flood volcanic successions. 
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Summary of the Macro-scale 
Facies Architecture of Flood 

Volcanic Successions 

Seismic Facies 
(After Planke eta/. 2000) 

Outer SDR Outer High Inner SDR 

Volcanic margin seismic section across the 
V0ring Margin from Inner Seaward Dipping 

Reflectors (SDR) to the Outer SDR. These two 
seismic facies are divided by the Outer High 

Outer SDR Inner SDR 

Schematic volcanic margin transect showing 
seismic-scale volcanic extrusive sequence as 

four shaded seismic facies units from Landward 
Flows to the Oceanic Crust 

Figure 5-30 Summary of igneous architecture in flood volcanics. Seismic or basin-scale macro-facies 
cover architectural scales of tens of kilometres and are considered to be 2"d order heterogeneities. Note 
that 1" order heterogeneity is the analysis of flood basalt architecture on the Large Igneous Province 
(LIP)-scale (2.1 ), whilst 5th order observations are at the microscopic level. Chapter 5 has studied the 
sub-province CFB architecture by looking at various data types, including using the data developed in 
Chapter 4 of the building blocks of this basin-scale CFB architecture. In this chapter, the sub-province 
(macro-scale) facies architecture (e.g. juxtaposition of lava field facies) of CFBs completes the 
assessment of the orders ofheterogeneity studied in this thesis. 
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6o DISCUSSJION ANID> IMPLiCATIONS 

In Chapter 6, it is time to look at the wider picture: how has this work 

improved understanding of the flood volcanic system, and what are the implications 

of the research? The chapter is broken down into four main sections. These 

synthesise the volcanological aspects of the research, and also show how 

understanding the geological heterogeneity in flood volcanics may help us approach 

solving sub-basalt imaging problems for petroleum exploration. 

6.1 THE STRUCTURE AND ARCIDTECTURE OF FLOOD VOLCANICS 

The organisation of this thesis has been designed to systematically approach 

the study of the structure and facies architecture of flood basalts. By characterising 

their constituent building blocks on a centimetre to metre-scale (micro-scale; Chapter 

3), and modelling the internal structure of CFB lava fields (meso-scale; Chapter 4), it 

has been possible to make geological interpretations of the structure and facies 

architecture of offshore geophysical data (macro-scale; Chapter 5). Facies 

architectural studies from each scale of heterogeneity have been summarised at the 

end of each chapter. If the architectural orders of scale are drawn together, it is 

possible to understand how each of the orders ofheterogeneity piece together to form 

the complete flood volcanic system (Fig. 6-1 ). The upscaling of architectural 

interpretations is now discussed. 

On the micro-scale, the intrafacies scheme has been introduced as a method 

by which we can characterise the internal facies present within individual igneous 

units. The characterisation of the intrafacies of the Skye Lava Field provides a 

geological assessment of the physical volcanology of the CFBs, and a way by which 

the igneous succession may be characterised in terms of geophysical properties (6.3). 
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For example, micro-scale observations have been used to interpret large-scale lava 

field features: e.g. vesicles orientations and pahoehoe textures have been used to 

identify magma sources directions and these, in combination with lava feeder tubes, 

interpret a gentle-slope shield volcanic setting. The micro-scale observations have 

also highlighted the links between the physical volcanology, facies architecture and 

the rock property distributions within the types of igneous facies'(6.3). 

Using interpretations of the intrafacies architecture made at the micro-scale, 

2D and 3D models on the lava field scale of observation have been broken down into 

architecturally distinct facies sequences. These contain both quantitative geometrical 

data which describes the shape of the contacts and the igneous units in the lava field, 

and also defme estimates of the volumes of the various lava facies types present and 

eroded from the modelling area. The geometries of the lava flow relationships within 

the lava field are characterised by their constituent architectural flow facies (e.g. 

tabular-type lavas) and the associations of these flow facies (e.g. onlapping 

relationships). 

By studying an onshore CFB lava field at both the micro and meso-scales, an 

understanding of the internal structure has been assembled, from the individual 

igneous units, through to the way by which they are juxtaposed, thus forming a lava 

field. The value of understanding the CFB architecture from the smallest scale 

possible in onshore lava fields, through to interpreting seismic data is a theme 

fundamental to this research. The timing of the research work performed, and the 

various data interpretations made and assembled into this thesis underlines the value 

of geological fieldwork in making interpretations of geophysical data: initial 

interpretations of the GFA-99 dataset were performed during June 2001, when 

fieldwork in the Skye Lava Field was not possible due to the outbreak of foot and 
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mouth disease. Studies of the building blocks of the Talisker area of the Skye Lava 

Field in Summer 2000 however, provided invaluable prior understanding of lava 

field structure, facies architecture and likely geophysical character of facies types for 

seismic interpretation and facies analysis. 

In summary, the successful building of geologically realistic models of 

igneous successions in CFBs, on volcanic rifted margins and in Large Igneous 

Provinces in general, is dependent on an understanding of the constituent elements of 

architecture that construct the succession from the intrafacies level through to the 

seismic facies level (summarised in Fig. 6-1 ). 

6.2 'flHDE EVOll...mi10N OlF lFLOO}[)) VOLCANIC §UCCE§§JION§ 

The evolutions of the flood volcanic successions studied in this thesis have 

many characteristics in common with other CFB provinces globally. The successions 

also contain evidence for a series of differences in the way by which they developed. 

These common and disparate characteristics are now summarised in Table 6-1. 

Essentially, the common parts of the evolution of each of the provincial 

volcanic successions sees a gradual change in style of the volcanism, reflected in a 

change in characteristic chemistry of the lavas being erupted. At the onset of the 

flood volcanism, each province characteristically erupted olivine-rich basalts which 

reflect high degrees of mantle partial melting, most likely related to mantle plume 

impingement on the base of the lithosphere during the early stages of continental 

break-up (Cox 1980; Courtillot et al. 1999; Menzies et al. 2002). Over the course of 

CFB succession development, the types of lavas being erupted is observed to become 

more siliceous and be dominated by tabular-type basaltic-andesites. These lava types 

often form some of the best preserved parts of the lava fields. Variations from this 
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gradual change in volcanic facies architecture may reflect changes in the plumbing of 

the volcanic system, and palaeogeographical and palaeoenvironmental changes that 

may have lead to different facies developing (e.g. volcaniclastics developing on the 

flanks of a shield volcano due to alterations in base-level). 

Table 6-1 Tbe evolution of tbe Skye Lava Field, Faeroe-Shetland and Etendeka flood volcanic 
successions. 

Event Stages 

Waning Volcanism 

6 

5 

4 

3 

2 

Onset 

Skye 

Eastern Red Hills 
Centre intrusions 

(Granitic) 

Western Red Hills 
granites 

Cuillins Igneous 
Complex Intrusion 

·(Gabbro) 

Preshal More lava 
(Ponded tholeiite) 

Skye Lavas- Tabular 
basaltic-andesites 
(Plateau lavas?) 

Skye Lavas­
Transitional-type 
basaltic-andesites 

Skye Lavas - Thin. 
compound-braided 

olivine-basalts 
(Shield volcanic lavas?) 

Explosive eruption of 
tuffs 

Faeroes 

ULF- Tabular-type lavas 
c. lOrn thick 

Transitional zone of 
mixed facies lavas 

MLF- Thin (<4m) 
compound-braided 

olivine-basalts 
(Shield volcanic lavas?) 

Hiatus and development 
of c. I Om thick sediments 

LLF - Emergence to sub­
aerial environment Thick 

(c.20m) tabular-type 
basaltic-andesites 

Eruption of basaltic 
volcaniclastics into water­

filled basin? 

Etendeka 

Continued eruption of 
tabular flows of basaltic­

andesites and quartz-latites 

Thick tabular flow of 
Springbok quartz-latite 

(Bryan eta/. 2002) 

Continued eruption of 
basaltic-andesites 

Goboboseb quart?:-latite 
(rhyolites) marks first 

silicic flows 
(Bryan et al. 2002) 

Large flows of tabular 
basaltic-andesites (Jerram 

eta/. 1999a) 

Continued eruption of 
olivine-basalts of thin 

• (c.3m) compounded lobes 

Passive eruption of 
olivine-basalts choking 
sand-sea (Jerrarn et al. 

1999b) 

In terms of flow volumes, the eruptive facies observed suggest that in the 

early phases of flood basaltic effusion, the volcanic succession builds slowly and 

passively; erupting relatively small volumes oflava at relatively low rates (<20m3s-1) 

(Walker 1993). During the evolution of the successions, the shift in facies 

architectural styles and lava types is paralleled by a reduction of the frequency of 

eruption events (thick boles commonly marking hiatuses on thick tabular lava tops) 

and an increase in individual flow areas and volumes. 
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6.] ITMPIT...ICA1I'll0N§ lFOR §00-BA§AL'li' JIMAG:n:NG 

The systematic study and characterisation of the evolution of flood volcanic 

successions and their internal and external facies architectures is crucial to the 

geophysical characterisation of such sequences, and provides constraint to 

geophysical models of the stratigraphy present in volcanic rifted margins being 

investigated by petroleum exploration companies. 

In this section, the inter-relationships of rock properties are briefly discussed 

(Fig. 6-2) and a summary strategy presented which outlines the integration of 

geological information into geophysical models of flood basalts (Fig. 6-3). 

6.3.1 Roek Property Heterogeneity 

The geological facies variations present in flood volcanic successions, both 

geometrically and in their rock property characteristics, directly affect the quality of 

geophysical data acquired in areas affected by the presence of a blanket of volcanics 

(Fig.l-1 ). In order to build better-constrained, more accurate geophysical models it is 

important to understand how the geology relates to geophysical properties. A rock 

property map (Fig. 6-2) schematically develops the idea of a link between geological 

and geophysical characteristics of CFBs. 

Central to the prediction of geological facies architecture is an understanding 

of the magma type. The rock property map shows that the chemistry of the magma 

affects much of the geological system and architecture, and hence, the rock property 

distributions and actual quantification of rock properties present in an igneous 

system. For example, olivine-basalts are silica-poor with relation to basaltic-andesitic 

lava compositions: the links in the rock property map and the understanding of the 

architecture of the different lava types gained in Chapters 3 and 4 mean that in each 
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of these different geochemical lava types we can expect a host of architectural and 

rock property characteristics to be different. These include the lava viscosity (affects 

flow architecture and geometry}, density of the stratigraphy (affects gravity 

modelling), elastic velocities (affects seismic processing) and resistivity of the 

succession (affects magnetotellurics (MT) studies). The rock property map 

summarises the links between geology and geophysics in a qualitative manner: the 

intrafacies scheme however, provides a simple qualitative way ot identifying igneous 

facies but must be considered as a quantitative tool for the characterisation of rock 

properties as it provides a link between many of the facets of the rock property map. 
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Figure 6-2 The links between lava types and rock properties. The rock property map schematically represents the dynamic system 
behind rock property heterogeneities in flood basalts. Essentially, much of the facies architecture discussed is, to a large extent 
dependent on the geochemistry of the magma. As the facies architecture is linked to the magma chemistry, the distributions of rock 
property heterogeneities in the igneous succession may also be considered to also be attributed to some extent by the host 
chemistry. 

~ 
;:::: 
;;;:. 
Bi 
c:;;· 



Synthesis 

6.3.2 Geomemcan Heterogeneity 

The geometrical heterogeneities present m the lava successions studied 

consist of the shapes of contacts within the igneous system. Geometrical 

heterogeneities have shown to be particularly well developed both in the onshore 

lava field studies in the architecturally complex and faulted Skye Lava Field, and 

also in the offshore GF A-99 data which contains complex facies juxtapositions. 

Geometrical heterogeneities are important considerations for geophysical modelling 

of flood basalts as surface shape affects the propagation of seismic wavefronts and 

can cause heavy scattering problems if rugose interfaces are present even on a micro­

scale in a lava field. Geophysical models for flood volcanic successions have been 

historically over-simplified and considered to be relatively homogeneous bodies in 

terms of both shape and internal rock property characteri_stics. An improved 

geophysical characterisation of flood basalts in outlined in the next section. 

6.3.3 Geoscience Information Integration 

Through the creation of the SIMBA research project (Appendix 4) the field 

studies, 3D models and seismic interpretations researched in this thesis have been 

incorporated into improved geophysical models of flood basalt successions. These 

models have been built as deliverables of the several Work Packages that form the 

basis of the collaborative research goals. Project SIMBA continues beyond the date 

of completion of this PhD research and thesis, and the complete documentation of 

the integrated geological and geophysical approach towards solving sub-basalt 

imaging problems, from all SIMBA partners will be available in 2006. The fmal 

report will be appended to this thesis on CD, when the full report has been collated. 
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A strategy implemented by SIMBA for improving geophysical models of 

flood volcanics is now sununarised (Fig. 6-3). The details of this strategy are 

documented in Martini et al. (2005 in press) (cf. Appendix 5 & appended CD). 

A schematic geological 2D profile through a sequence of flood basalts was 

created using the field study information from the BTIP, Namibia and the Faeroes 

successions (Fig. 6-3A). The profile incorporates realistic geological architecture, 

vertical stacking patterns and vertical and lateral facies changes that directly relate to 

the observations of field relationships and seismic interpretations in Chapter 3, 4 & 5. 

The dominant features to note in this schematic 2D profile are the filling of basin 

topography at the base of the lava sequence, and also the transition up through the 

lava sequence from olivine-phyric compound flows to geochemically more-evolved 

tabular-type flows towards the top. 

Seismic data was built into a geological geometrical interpretation in the area 

of maximum data control using the GF A-99 dataset from the Faeroe-Shetland Basin. 

The maximum data control area lies at the cross-over of seismic lines 107 and 203 

( cf. Chapter 5). Across this area, 500m gridded surfaces were interpolated through 

the TWT seismic interpretations of the volcanic succession and _overlying sediments, 

depth converted (Fig. 6-3B) and exported to the Geophysics Group at University 

College, Dublin (Martini eta/. 2005 in press). The geometrical horizon data was 

gridded and converted into a block model which statistically incorporates the lava 

succession heterogeneities present in the 2D geological profile (Fig. 6-3C to E). The 

resulting velocity model is a more realistic geophysical representation of the geology 

present in a flood volcanic succession. 
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volcanic succession using typical facies information from the micro and meso-scale architectural studies; B: Geological interpretation of seismic dataset modelled and 
interpolated in GoCad™ in 3D and subsequently depth converted; C: Geological 3D model gridded; D: Surfaces imported as [X,Y,Z] into grid; E: Rock property 
heterogeity populated into the layers using rock property statistics and field 2D model from (A); F: Improved geophysical modelling leads to improved imaging and 
geological interpretations. Geophysical modelling performed by Francesca Martini (University College, Dublin), and Richard Hobbs (University of Durham: ex­
Cambridge SIMBA partner ). 

~ 
;:s 
;;. 
~ 
r;;· 



Synthesis 

6.4l GEOSJPATIAL GEOJLOGJICAJL MODEJLJLJING 

Geospatial geological modelling has been used as a tool for creating 

geometric models of flood volcanics in 3D during the course of the PhD research. It 

is very important to note that the very subject area of geospatial modelling has 

changed extremely rapidly during the course of the PhD project. At the beginning of 

the research, Geographic Information Systems (GIS) technologies were in their 

infancy, and as such, so were the means for producing results that we now expect so 

quickly from more advanced computer software run on technologically rapidly 

developing computers. For example, in 2001, the process of creating a digital terrain 

model (DTM) was extremely laborious, involving tracing contours by hand off paper 

maps onto transparencies, scanning the transparencies into * .jpg files before 

importing them as a property onto Voxets in GoCad™. Each contour required 

converting to a PointSet and was in turn built manually into a s€ries of Curves. Each 

Curve altitude subsequently needed to be individually shifted from Z=O to their 

correct elevations, prior to building the surface for the D1M models. By the end of 

the research however, the quality of software, availability of work utilities, digital 

imaging and image processing, modelling techniques and availability of data has 

completely changed. Data such as DTM models have become freely available for 

internet download, in conjunction with a whole host of satellite information, for 

example, and the wealth of data resources has grown at an exponential rate. This in 

turn means that future work is able to use a huge variety of information, and apply 

excellent, rapidly improving intuitive analysis modelling tools to problems with 

greater ease and reliability than ever before. Integration of data-will only improve in 

the future, and the cost of implementation of new tools (e.g. 3D outcrop data 

acquisition laser rangers and differential GPS) is also rapidly reducing. The 
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tremendous rate of technological development therefore means that the whole scope 

of future work in geospatial modelling has completely changed, come the end of the 

research project. Improvements and present problems with geospatial geological 

modelling are now briefly discussed. 

6.41.1 Improvements in our GeologicaH Understanding 

Application of advanced computer modelling techniques to our geological 

information has many advantages over traditional evaluation techniques. A major 

advantage lies in the true 3D visualisation of information: _working in true 3D 

reduces problems of mentally visualising 3D relationships that exist geospatially. 

Data may be interpolated in 3D space therefore providing volume information more 

easily than traditional manual techniques. This powerful visualisation is further 

enhanced by the ability to assign numerical values of properties to any data location, 

allowing us to work in [X, Y .Z,property] space. Calculation of volumes within 3D 

geospatially accurate models is fast and superior in accuracy to traditional 2D based 

methods, as volumes are constrained to the exact 3D Voxet cell distributions within a 

given data-driven 3D model. 

The 3D modelling environment allows us to integrate a multitude of data 

types in one space. Therefore we can visualise and analyse geological data in 

conjunction with property information and remote sensing data of many types. 

Creating a property (e.g. density) at any point in 3D space, and constructing models 

from geological data points, combined with seismic, gravity, satellite and well data 

all in one 3D space, provides a complete multi-disciplinary data integration, analysis 

and interpretation tool combined with powerful visualisation. In this environment, 
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both geologists and geophysicists can work together to interpret information in a 

non-exclusive, fully integrated manner. 

6.4.2 Problems with Geospatial Modelling 

Although geospatial geological modelling improves our-understanding of the 

structure, stratigraphy and geological architecture of the subsurface and also allows 

us to quantify our interpretations, problems and uncertainties exist and these must be 

considered when undertaking any geospatial modelling project. 

The largest areas of uncertainty in geospatial modelling of geological field 

data are the errors introduced whilst upscaling the information through several 

dimensions. Geological field data is inherently 1 D or 2D information: i.e. geological 

log sections and geological cross-sections or correlations. The interpolation of 

surface contact information from outcrops through topography introduces error, 

particularly in faulted successions. In order to limit this error, it is essential that 3D 

models are only built from well constrained geological contacts, and it is essential 

that workers understand the modelling error introduced by a lack of 3D data 

constraint in field outcrops. 

The second largest geospatial modelling problem area is the production of 

data artefacts. Artefacts in models predominantly develop during the modelling of 

geological surfaces, where the modelling software makes a mathematical 

interpolation of surface location in 3D space without regard for geological realism. 

This occurs when correlating, interpolating and upscaling through several 

dimensions, for example: interpolating a correlable surface through a series of 

contact data points. Artefacts may form features such as step-ftke surfaces between 

data points of varying Z-value or such errors as surfaces intertwining and cross-

224 



Synthesis 

cutting in geologically unfeasible ways within a geological model. The complexity of 

the artefacts developed is increased if faulting is present, and surfaces may require 

laborious manual fine-tuning: copying, cutting and forcing surfaces into geological 

realistic geometries within correlable stratigraphic successions. 
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6.5 SUMMARY OF SYNTHESIS 

This study has applied a systematic approach to the study of flood volcanic 

facies heterogeneities over a range of scales, incorporating a range of data types and 

techniques. 

' 

A brief summary of the main conclusions of this thesis are now presented; 

upscaling from the micro to macro-scales of observation: 

I. Assessment of centimetre to metre-scale (micro-scale) geological intrafacies 

by use of descriptive intrafacies components is a useful qualitative way by 

which the internal facies architecture of igneous units may be classified. 

II. Intrafacies may be used as a quantitative tool for the geophysical 

characterisation of rock property heterogeneity present at an intra-flow scale. 

III. Particularly pertinent rock property heterogeneities are caused by the 

presence of sedimentary/bole beds, massive lava flow cores, vesiculated 

zones and dykes. 

IV. On a meso-scale, understanding the volcanostratigraphy and vertical stacking 

patterns of igneous units is central to the characterisation of the lava field in 

3-Dimensions. 

V. Lava fields show architectural evolution trends that link to the geochemistry 

of the lavas being erupted. Thin olivine-basalts of compound-braided flow 

facies architectural habits are gradually replaced with thicker tabular-type 

basaltic-andesites, and more silic lavas as a CFB province evolves through 

time. 
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VI. Lavas erupted during the onset of volcanism fill pre-existing topography as 

sub-aerial valley fills,_and sub-aqueous volcaniclastics. Early lavas may build 

gently-sloping shield volcanic features e.g. the lower lavas of the Skye Lava 

Field and Huab area of the Etendeka. 

VII. Individual lava. flow thicknesses increase up-stratigraphy. 1bis increase is 

coupled with an increase in flow aspect ratio, volume, geochemical evolution 

(also viscosity) and lateral extent; and a decrease in architectural complexity, 

lateral heterogeneity and eruption frequency. 

VITI. On a macro-scale, the juxtapositions of flood volcanic lava field-scale facies 

must be considered and an understanding of the suo-macro scale facies 

architectures applied to geophysical interpretations. 

IX. Combining geophysical data types with geologically analogous concepts 

helps us to build more robust, better constrained seismic interpretations. 

X. The successful building of geologically realistic models of flood volcanic 

successions is dependent on an understanding of the fundamental building 

blocks from the intrafacies level through to the seismic facies level. 

XI. These building blocks must be characterised in terms of their facies, 

geometrical and rock property heterogeneities in order to better constrain and 

improve geophysical models of flood volcanic successim1s. 

XII. Geologically more realistic geophysical models of CFBs that integrate 

multiple geoscience data types will help improve our chances of solving sub­

basalt imaging problems for petroleum exploration. 
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6.6 FUTURE WORK 

The research work performed for this thesis has highlighted areas which are 

of interest for future study in order to improve the understanding of flood volcanic 

successions and combine geoscience resources for improved sub-basalt imaging. 

Some recommendations for future work include: 

ct Use of the 3D modelling environment for the further integration of 

geoscience data types. The first integration case study will incorporate 

geological, seismic, gravity, MT and well data over the north Skye SIMBA 

acquisition and case-study area (Appendix 5). 

• Performing detailed geophysical field laboratory experiments to determine 

actual rock properties present in outcrop sections studied using the intrafacies 

scheme. 

Col Quantification of the links between individual rock . property types and 

geological facies architecture in the rock property map. 

• Use of 3D seismic data for the detailed modelling meso-scale lava field 

structure and geometrical heterogeneity. 

• The use of the field-based 3D lava field models for backward-modelling 

pseudo-seismic experiments using the new seismic processing methods 

developed by SIMBA. 
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Computer Software and Data Sources 

Many pieces of software, conversion utilities and data sources were used 

during the research. Appendix 1 provides internet links to sources of information for 

these packages and for data downloads sites. 

Licensed Software 

Software Name Internet Website URL 

GoCad™ 3D 
modelling software 

http://gocad.org/ 

ER Mapper http://www.globalmapping.uk.com/acatalog/copy of ERMapper Software.html 

Shareware/Freeware Software 

Software Name 

4D Vista 

Dxf2xyz 

NIH Image 

Nimamuse 

Panorama Factory 

QuickStitch 

Scion Image 

UTHSCSA Image Tool 
(Developed at the University 
of Texas Health Centre at 
San Antonio, Texas 

Internet Website URL 

http://www.mve.com/Home/Software/4DVista 

http://www.guthcad.com.au/freestuff.htm 

http://rsb. info. nih. gov/nih-image/Default.html 

http://earth-info.nga.mil/geospatial/SW TOOLS/NIMAMUSE/ 

http://www .panoramafactory.corn/ 

http://www.panoguide.com/software/reviews/quickstitch360 v lO.html 

http://www.enrouteimaging.com/ 

http://www.scioncorp.com/ 

http://ddsdx.uthscsa.edu/dig/itdesc.html 

ftp://maxrad6.uthscsa.edu (for download) 
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Internet Data Sources and Information 

Data Site Name 

3D-MATIC Links Page 

The Data Depot 

Digital Globe 

Edina - Digimap 

Geoscience Data Index (GSI) 

GIS Cafe 

Landsat 

Landsat Data Reseources 

Lynx 

Macaulay Land Use Research 
Institute 

NASA 

Terrainmap.com 

UKOGL 

USGS Hawiian DTM Index 

US Department of Commerce 
NOAA National Geophysical 
Data Center 

Geochemistry course, Cornell 
University 

Interactive Periodic Table of 
the Elements 

Internet Website URL 

http://www. faraday.gla.ac .uk/1 inks.htm 

http://data.geocomm.com/ 

http://www.digitalglobe.com/ 

http://edina.ac.uk/digimap/ 

http://www.bgs.ac.uk/geoindex/index.htm 

http://www.giscafe.com/ 

http://www.landmap.ac.uk/download/choose selection mthd.htm 

http://landsat.gsfc.nasa.gov/main/data.html 

http://www .lynxinfo.co. uk/ 

http://www.mluri.sari.ac.uk/ 

http://www.nasa.gov/home/ 

http://www.terrainmap.com/ 

http://www.ukogl.org.uk/ 

http:/ /wrgis. wr. usgs. gov/dds/dds-55/pacmaps/hw index. htm 

http://www.ngdc.noaa.gov/ngdc.html 

http://www.geo.cornell.edu/geology/classes/geo455/Chapters.HTML 

http://site.ifrance.com/okapi/periodic3.htm 
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Geophysical Data Detains 

lLocatiolll of GJF A~99 Seismic 

UTM Coordinates of the Westem-Geco GFA-99 Seismic Data, Faeroe-
Shetland Basin 

Line# S.P. X y 

Line 201 3653 448427 6815506 
13454 430694 6936685 

Line 203 3653 417280 6902059 
10954 430219 6811749 

Line 205 12254 401220 6873980 
5853 413307 6794695 

Line 207 1153 382651 6866522 
7754 393962 6784810 

Line 105 1953 377318 6814258 
10454 482397 6829829 

Linel07 2453 484720 6850753 
11254 375909 6834787 

Line109 2453 380384 6854931 
11054 486672 6870852 

Sandwell Bouguer Gravity 

The properties of the San dwell Bouguer Gravity data used in the Gravity 

modelling work are as follows: 

1) Data Input: 

Sandwell v7.2 satellite gravity data supplied by the 
National Oceanographic 
Atmospheric Agency, U.S.A. 
The following data is included in the v7.2: 

All ERS-1 GM data (two 176-day cycles Ocean Product) 
All GEOSAT/GM data 
Stack of 62 repeat cycles of GEOSAT/ERM 
Stack of 16 repeat cycles of ERS-1 35 day repeat. 
Data point spacing is 2 minutes. 
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2) Bouguer gravity: 

Bouguer correction derived from ETOPOS bathymetry data 
using a density of 2.2gm/cc. 
Formula used for Bouguer correction is: 

be= 0.04188*rho mgal/m. 

Bouguer gravity calculated by summing free air gravity 
and Bouguer correction. 

3) Gridding 

Data gridded at a pitch of 2000 metres with a proprietary 
gridding program, using a multi-pass method of spline 
fitted curves. 
The grid was then sampled down to 1000 metres for 
smoothing purposes. 
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GoCad™ projects contain many objects and these should be saved separately in combination with whole project saves. Good data management practise is essential to the 
efficient use of the software. The table below is a recommended hierarchical file storage system for the control of data in this package. 

Recommended folder and file storage system for GoCad 3D Modelling Software 

Folder Names GOCAD 

Folder Names Project Areas Utilities 

~~. ~ e.g. Dxf2xyz.exe ..... etc. 
Example Folders "GFA-99" "Skye" 

~ 
Projects 

• 
Objects Projects • Objects 

Example Files "gfa_99_v1.prj" "talisker_v1.prj" 

File Folder I Pointsets Curves Surfaces Voxets Strat Grids Groups Wells Solids 
Example Files "fieldlogs_vs.vs" _pl. pi - ts.ts - vo.vo _sg.sg _gp.gp - wl.wl - so.so 

X-Sections Channels Modei3Ds 20 Grids Block Phase Simulation Structural Model 

- XS.XS _gs.gs - ml.ml _grs.grs _bp.bp - si.si - st.st 

Folder hierarchy starts at the GoCad folder level. From this level, the folder tree divides into a series of simple folders for projects and the objects associated with those projects. 

Folders and files that lie on the same table row lie at the same level of hierarchy in the system. Bold names represent folders, files are in normal type. 
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The SIMBA Research Project 

The SIMBA EU 5th Framework research project comprises industrial and 

academic partners for an integrated approach to tackling sub-basalt imaging 

problems. The members of the consortium and their areas of research are tabulated 

below. Partners combined research into a series of Work Packages (WPs). 

Geological modelling comprises WPl. 

SIMBA Partners 

Partner 
Primary Research 

Interest 

Total GRC 
lD seismic 
processing 

Norsk Hydro Rock properties 

Potential field data 
ARK acquisition and 
Geophysics modelling 

(Gravity/Magnetics) 

IFP 
lD pseudo-seismic 
modelling 

University of Magneto tell urics 
Brest (MT) 

University of 2D seismic 
Cambridge processing 

University Surface rugosity and 
College, seismic diffraction 
Dublin modelling 

University of 
Geological fieldwork 

Durham 
and 3D geological 
modelling 

Website URL 

http://www.total.com 

http://www.hydro.com 

http://www.arkgeo.com 

http://www.ifp.fr/IFP/en/aa.htm 

http://www.univ-brest.fr/ 

http://www.esc.cam.ac. uklnew/v 1 0/i ndex about people.html 

http:/ I geophysics. ucd. ie/fmartini.shtml 

http://geophysics.ucd.ie/cbean.shtml 

http://www.dur.ac.uk 

As part of this PhD, a gravity survey was acquired for ARK Geophysics and a 

shallow seismic survey was performed with Cambridge University over north Skye 

on the Watemish Peninsula. The University of Brest acquired an onshore MT survey 

over the same area of north Skye, and an offshore survey over the GFA-99 seismic 

data area of the Faeroe-Shetland Basin. 
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Papers published in support of thesis 

Three papers are available in conjunction with this thesis at time of writing. 

The titles, abstracts and keywords are contains in Appendix 5, and full manuscripts 

are stored in *.pdf format on the appended CD. 

Papers due for publication in 2005 and 2006, contain details of some of 

SIMBA's integrated geological-geophysical research in improving sub-basalt 

imaging, details of which will be documented in the SIMBA Final Report. A copy of 

this final report will be appended to this thesis on CD, when it becomes available in 

late 2005 or early 2006. 
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Single, R.T. & Jerram, D.A. 2004. "The 3D facies architecture of flood basalt 

provinces and their internal heterogeneity: examples from the Palaeogene Skye Lava 

Field". Journal ofthe Geological Society, London, 161,911-926. 

Below is a copy of the abstract and keywords; however full version of the 

manuscript is appended to this thesis on CD in *.pdf format. 

"The 3D facies architecture of flood basalt provinces and their internal 

heterogeneity: examples from the Palaeogene Skye Lava Field" 

RichardT. Single & Dougal A. Jerram 

ABSTRACT 

Quantifying the facies architecture of flood basalt provinces is important as it 

can be used to understand the physical volcanology and rock property variations 

throughout the lava sequence. The 3D facies architecture and internal heterogeneity 

of the Skye Lava Field, for example, provides important insights into the evolution of 

the British Tertiary Igneous Province, and valuable information to aid in the 

exploration of potential offshore reservoirs underlying significant flood lavas along 

the North Atlantic Margin. The volcanic stratigraphy of the Talisker Bay area of the 

Isle of Skye, Scotland, comprises (1) lower compound-braided lavas (flow lobes <3m 

thick), (2) transitional lavas (flows <8m thick), (3) upper tabular-type lavas (flows 

<20m thick), representing a relative increase in eruptive volume. A 3D model of the 

lava sequence was reconstructed using detailed digital geological mapping, revealing 

estimated volumes of: the lower sequence, 12.7km3
; the transitional sequence, 

7.4km3
; and the upper sequence, 17.0km3

. The lower sequence lavas formed on the 

flanks of a shield volcano and were sourced from the NE. Volcanological features 

such as lava feeder tubes, pahoehoe textures and lobes indicate a scale of volcanism 

similar to present day Hawaii. The within-flow heterogeneity of the basalts is 

characterised using an 'Intrafacies Scheme', allowing comparison of variations in 

lithofacies with characteristic (geophysical) rock properties of compressional wave 

velocity and density. 

Keywords: Flood basalts, 3D architecture, sub-basalt imaging, rock properties, 
structure, Skye Lava Field, density, velocity. 
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Martini, F., Hobbs, R.W., Bean., C.J. & Single, R. 2005. "A complex 3-D 

volume for sub-basalt imaging". First Break, (in press). 

Below is a copy of the abstract and keywords; however full version of the 

manuscript is appended to this thesis on CD in *.pdf format. 

"A complex 3-D volume for sub-basalt imaging" 

F. Martini, R.W. Hobbs, C.J. Bean & R. Single 

ABSTRACT 

Thick successions of basalt and basaltic-andesite lavas flows were extruded 

during continental break-up and they cover pre-existing sedimentary basins often of 

interest for hydrocarbon exploration. With conventional seismic acquisition and 

processing methods, it is difficult to image both the internal architecture of the 

volcanic succession as well as the underlying sub-basalt structure. The use of 

synthetic data can help us to understand the poor sub basalt imaging quality and to 

develop effective acquisition and processing approaches useful for real data. 

Moreover, non seismic methods have been successful in improving understanding of 

overall geometries of sub-basalt targets. Therefore, integration of seismic and non 

seismic data seems to yield promising results and needs to be explored further. 

From all these considerations, the necessity of a realistic 3-D basalt model 

that would allow simulating realistic seismic and non seismic data, on one hand to 

test seismic acquisition and processing techniques, and on the other to develop 

strategies for geophysical data integration into a common methodology to overcome 

the sub-basalt imaging problem. 

A complex 3D model was built adapting all the information available from 

interpretation of seismic data, log data, gravity data and geological observation. 

Seismic and non-seismic synthetic data have been produced on the model. 

In this paper we present the methodology to develop the 3-D model as well as 

the initial results from data simulations. The model and the data are available to the 

public, through the authors of the present paper. 

Keywords: 3-D, Modelling, Imaging, sub-basalt, Integrated Geophysics, seismic, 
magnetics, gravity, magneto-telluric. 
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Hautot, S., Single, R., Watson, J., Harrop, N., Jerram, D., Tarits, P. & 

Whaler, K. 2005. "3-D magnetotelluric inversion and model validation with gravity 

data for the investigation of large volcanic provinces". Geophys. J. Int., (submitted). 

Below is a copy of the abstract and keywords; however full version of the 

manuscript is appended to this thesis on CD in *.pdf format. 

"3-D magnetotelluric inversion and model validation with gravity data for the 

investigation of large volcanic provinces" 

S. Hautot, R. Single, J. Watson, N. Harrop, D. Jerram, P. Tarits & K. Whaler 

ABSTRACT 

20 magnetotelluric (MT) soundings were carried out on the Isle of Skye, 

Scotland into the framework of a project on joint interpretation of gravity, seismic, 

geological and MT data to provide a high-resolution 3-D model in volcanic province 

context. The full 3-D inversion of the MT data jointly interpreted with gravity 

reveals the upper crust's structure. The Lewisian basement, 13 km depth, is 

controlled by the NNE trending Precambrian rift. The basement is overlaid by a 4.5 

km thick sequence of Torridonian sandstones. The Mesozoic sediments above have 

small scale depocentres and are covered by a few hundred meters of Tertiary lava 

flows. The interpretation of the resistivity model shows that three-dimensional 

magnetotelluric inversion is an appropriate tool for the imaging of sedimentary 

structures beneath extrusive basalt units. 
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