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Abstract 

Organic molecular crystals form a condensed solid phase offering a rich vein of 
physical phenomena which are open to investigation. The desire to harness these 
properties for technological and biological purposes has led to extensive experimental 
and theoretical investigations. The naturally occurring a-amino acids form molec­
ular crystals in the solid state; to date there have been very few studies of these 
systems. The work in this thesis is concerned with attempting to understand the 
relationship between the properties of the molecular crystal, and how these relate 
to the properties of the constituent molecules in isolation. To this end, density 
functional calculations of the structural and electronic properties of amino acids 
in both the crystalline and gaseous states are performed, and the results reported. 
The bonding mechanisms responsible for the crystal being stable are elucidated, 
and used to explain the zwitterionisation of the molecules upon formation of the 
solid state. In order to investigate the lattice dynamical and dielectric properties, 
the implementation of a variational density functional perturbation theory (DFPT) 
scheme within the plane wave pseudopotential formalism is described in detail. This 
scheme is fully self-consistent, and its computational cost is comparable to that of a 
single-point self-consistent total energy calculation. The long wave method is used 
to alleviate well-known problems associated with the application of homogeneous 
fields to crystal systems, viz. that such fields break the crystal symmetry, and the 
adequate treatment of electronic screening. Calculation of the first order perturbed 
wavefunctions and the second order change in the Kohn-Sham functional allows 
properties such as the polarisability, dielectric matrix, dynamical matrix and Born 
effective charge tensors to be determined. The treatment of crystalline symmetries 
is described in detail. The DFPT formalism is extended to allow IR absorption spec­
tra to be obtained. The lattice dynamical and dielectric behaviour of the isolated 
molecules and the molecular crystals are obtained; calculation of theIR spectra facil­
itates an insight into the effects of the crystalline environment and zwitterionisation 
upon the lattice dynamics. Results indicate the importance of the molecular shape 
and structure upon the intermolecular interactions, and hence the crystal structure 
formed. It is these intermolecular interactions that are found to play the major part 
in modification of the lattice dynamical and dielectric behaviour. 
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It is a capital mistake to theorise before one has data. Insensibly one begins to twist 
facts to suit theories instead of theories to suit facts. 
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Chapter 1 

Introduction 

1.1 Organic Molecular Crystals 

Molecular crystals offer a rich vein of physical phenomena considerably different 

from the optical, electronic and mechanical properties exhibited by conventional 

solids such as covalent or ionic crystals. This arises partly because of the generally 

weak intermolecular interactions such as van der Waals and dipolar interactions 

[1], and partly because of the subtle interplay that may arise between inter- and 

intra-molecular degrees of freedom. 

In recent years, molecular crystals have become the subject of intense theoretical 

and experimental research [2, 3, 4, 5, 6, 7, 8, 9, 10]. Much of this has centred around 

developing an understanding of the physics of these systems in order to harness it 

for technological applications such as molecular electronics [6, 11, 12, 13], and to 

this end, there have been concerted efforts to attempt to understand the nature 

of charge carriers in these systems. An area of equally intense activity is that of 

"crystal engineering" or super-molecular chemistry [14, 15]. This fascinating area is 

based upon the use of individual molecules in order to attempt to design functional 

molecular crystals that may be used for a variety of technological applications. The 

key behind this philosophy is that the crystal structure and packing formed by an 

array of molecules is determined to a large extent by the intermolecular interactions 

such as hydrogen bonds and van der Waals interactions; thus one can, given enough 

understanding of these interactions, manipulate them advantageously in order to 

2 
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produce materials with technologically useful properties, such as non-linear optical 

response [14]. 

Molecular crystals of organic molecules are also interesting from the biological and 

biochemical perspective. An understanding of the hydrogen bond is essential to 

comprehend many important biological processes and molecules such as proteins 

and peptides. Molecular crystals offer an ideal test-bed in which to understand the 

nature of the hydrogen bond in biochemical systems in more detail. 

It is possible to define a molecular crystal as a solid that is formed by electrically 

neutral molecules interacting via weak non-bonding interactions, primarily van der 

Waals. If the constituent molecules possess specific functional groups then the pos­

sibility also exists for the formation of hydrogen bonds and dipolar interactions that 

will also serve to stabilise the crystal. In general, there is little electronic charge over­

lap between molecules, and therefore the constituent molecules retain their identity 

to a large extent. This is in contrast to covalent or ionic solids, where the individ­

ual properties of constituent particles in the crystal are completely lost [1]. This 

has led to a number of studies in which the solid state environment is treated as 

a perturbation to a molecular calculation [9], or in which ab initio or experimental 

molecular charge densities are used in conjunction with classically derived inter­

molecular potentials in order to study the behaviour of molecular crystal systems 

[16]. 

Approaches such as these have the advantage of being relatively simple and compu­

tationally cheaper than attempting a full ab initio treatment of the molecular solid; 

however, considering that the molecular structure itself may change in response to 

the crystal environment, in addition to the actual electronic density itself, questions 

must arise over the validity of such treatments. Furthermore, such approaches are 

based upon the idea of zero overlap between molecular wavefunctions; this implicitly 

assumes that space may be partitioned into Wigner-Seitz-type cells associated with 

each molecule [9]. Such an approximation may not always be valid, and neglects 

quantum mechanical interactions such as the exchange repulsion. For these reasons, 

a full ab initio approach is more appealing: the crystal itself is dealt with quan­

tum mechanically, and no assumptions need to be made about the nature of the 
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COOH 

I 
c H 

I 
CH 3 

Figure 1.1: Structure of alanine: the carboxylic and amine groups are common to 
all amino acids. The central carbon atom is the Ca atom. 

interactions or the level of molecular overlap; rather only the cell contents need be 

specified. This is conceptually more satisfying, and aesthetically more appealing. 

The work in this thesis concerns applying density functional theory, and density 

functional perturbation theory, to amino acids in both the solid and gaseous states. 

In particular, the emphasis is on the determination of the geometric, electronic, 

dielectric and vibrational properties, and elucidating the effects of the crystal struc­

ture upon the molecular properties. The amino acids are the building blocks of 

peptides and proteins, and, given the increasing interest in the life sciences evi­

denced in projects such as the Human Genome Project [17], are candidates for ab 

initio calculations. A thorough understanding of their detailed physical and chemical 

properties as provided by ab initio calculations will allow a complete understanding 

of the biological processes that they participate in. 

1.2 Amino Acids 

The amino acids are characterised by possessing acidic and basic groups on the same 

molecule. These are a carboxylic COOH and an amine NH2 group respectively. In 

the so-called a-amino acids, both functional groups are attached to the same carbon 

atom, the Ca. A representative structure, that of alanine, is shown in figure 1.1. 

In aqueous solutions and the solid state, these molecules often form dipolar ions, 

or zwitterions, whereby the carboxylic group donates a proton to the amine group. 
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+ 
HN-3 

COO-

l 
C H 

I 

5 

Figure 1.2: Structure of alanine: the effects of zwitterionisation. The molecule now 
has two oppositely charged functional groups. 

This leads to two oppositely charged functional groups on the same molecule. This 

is shown in figure 1.2. In the gaseous phase, zwitterionisation is energetically un­

favourable, but the interactions present in solution and the solid state can act as a 

stabilising influence. 

The relevance of the amino acids lies in their biological importance; not only do 

they form the building blocks of peptides and proteins, all cellular tissue and fluid 

in living organisms contains a reservoir of free amino acids: an "amino acid pool". 

These take part in metabolic reactions, including the biosynthesis of polypeptides 

and proteins, and the synthesis of nucleotides. 

The asymmetric carbon atoms present in all amino acids except for glycine leads to 

stereoisomerism: one may obtain optically active D- and 1-amino acids, or optically 

inactive D1-amino acids. The majority of naturally occurring amino acids are of 

the 1-type, for reasons that are unclear. However, the ratio of D- to 1-type may 

alter naturally in archaeological samples via the process of racemisation; combined 

with the use of standard laboratory analytical techniques, this allows a method of 

dating samples other than cl3 dating [18]. 

Further interest can be motivated from potential technological applications of bio­

organic molecules [19] such as the proposed use of DNA for creating electronic cir­

cuits [20] and the development of light-emitting organic polymers [21]. The im­

portance of amino acids to the pharmaceutical industry and their useage in drug 

synthesis [18], coupled with the prospect of drug design from first principles, also 

provides a powerful motivation. 
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A more unexpected and perhaps quixotic motivation for examining the amino acids is 

in understanding the origins oflife, and the possibilities of extra-terrestrial life, which 

may be aided by examining cool interstellar space for signs of biomolecules [22, 23]. 

Traces of amino acids have been found on meteorites, whilst both glycine and alanine 

have been detected in lunar samples. Providing a satisfactory explanation for their 

presence requires a comprehensive knowledge of amino acid chemistry; ab initio 

techniques can serve as a useful companion to experimental approaches in such an 

endeavour. 

A complete understanding of the role of amino acids in these important processes re­

quires a thorough understanding of the underlying biochemistry, and consequently, 

a full and adequate treatment of the quantum mechanics underpinning this bio­

chemistry is required. They are thus ideal candidates for the application of ab initio 

methods. 

In light of the above, it is no surprise that a comprehensive body of ab initio work 

on amino acids already exists [22, 24, 25, 26, 27]. However, the majority of this 

work has concerned conformational analyses of a limited subset of the 20 naturally 

occurring a-amino acids, in particular alanine and glycine. Numerous works also 

exist in which ab initio methodologies have been combined with Onsager models 

[28, 29] in order to model the behaviour of amino acids in solution. Very little work 

has been carried out on determining the normal modes and dielectric behaviour. It 

is possible that this is due to the fact that the majority of work has been carried out 

using quantum chemical techniques such as restricted Hartree-Fock (RHF), methods 

which are not ideally suited to the study of large and complicated molecules. Less 

work exists concerning amino acids in the solid state, where they typically form 

molecular crystals. Indeed, this aspect has attracted surprisingly little interest from 

theorists, the only work in the literature appearing to concern the shielding tensors 

of carbon-13 [30, 31]. 
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1.3 The Hydrogen Bond in Organic Molecules 

Given the central role played by the hydrogen bond in the chemistry and biochem­

istry of amino acids it is useful at this point to consider what a hydrogen bond is, 

how they arise, and why they are so significant. The hydrogen bond is an ubiq­

uitous presence in structural chemistry and biology. Hydrogen bonds span a wide 

spectrum of energies, and lie intermediate in strength between covalent and van 

der Waals interactions. It is this that accounts for their importance in biological 

reactions, permitting hydrogen bonds to associate and dissociate rapidly at ambient 

temperatures, which is a vital prerequisite for biological reactions to take place. 

The definition of what constitutes a hydrogen bond is currently controversial [32, 33]. 

The earliest definition is that due to Pauling, in his Nature of the Chemical Bond: 

"Under certain conditions an atom of hydrogen is attracted by rather strong forces 

to two atoms instead of only one, so that it may be considered to be acting as a bond 

between them. This is called a hydrogen bond". In this view, the nature of the bond 

is largely ionic, or electrostatic. Such a definition would, however, seem to restrict 

hydrogen bonding to interactions of the form X-H A, where X and A may be any of 

the following: F, 0, Cl, N, Brand I. This therefore excludes functional groups such 

as C-H, P-H, and X-H amongst others [32]. A more open definition is that due to 

Pimentel and McClellan (1960): A hydrogen bond is said to exist when {1) there 

is evidence of a bond, and {2) there is evidence that this bond sterically involves a 

hydrogen atom already bonded to another atom. This makes no assumptions about 

the character of the the donor and acceptor groups, but is sufficiently open that it 

leaves open the possibility of any X-H group being a potential hydrogen bond donor 

[32]. Perhaps a more useful refinement is that of Steiner and Saenger [34], where 

a hydrogen bond is defined as: "any cohesive interaction X-H A where H carries 

a positive and A a negative (partial or full charge) and the charge on X is more 

negative than on H". This definition, although focusing only upon the electrostatic 

aspects of the hydrogen bond, and hence restrictive with respect to weak hydrogen 

bonds, is sufficient for the types of hydrogen bonds that will be encountered in this 

work. 
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1.3.1 Theoretical Treatment 

Although Pauling's original work envisaged the hydrogen bond as being largely ex­

plicable in terms of electronegativities and pure electrostatics, this interpretation 

is unsatisfactory for many bonds, as has been pointed out by Coulson [35]. It is 

possible to decompose the potential energy for hydrogen bonded dimers following 

the method of Morokuma [36], with contributions from electrostatics, polarisation, 

exchange-repulsion, charge-transfer, and coupling terms, which reflects the fact that 

none of the other contributions is truly independent of the others. Although such 

a decomposition is largely artificial, it is useful from a conceptual point of view. 

Strong hydrogen bonds are largely electrostatic in nature, that is, the interaction 

may be represented as multipole-multipole interactions of undisturbed charge densi­

ties; weaker interactions, on the other hand, tend to have a more quantum mechan­

ical nature. The weakest bonds consist mainly of van der Waals type interactions, 

and may be difficult to separate from this type of interaction. It should also be 

noted that the only repulsive component is the exchange component, which hence 

balances the attractive forces caused by the other contributions. 

1.3.2 Structural Definitions 

In order to discuss in more detail the nature of the hydrogen bonding present in 

molecular crystals, it is necessary to be able to characterise the common structural 

features found. A general hydrogen bond is comprised of a donor group X-H and 

an acceptor A, and is referred to as X-H A. The hydrogen bond is a long-range 

interaction, and thus the possibility exists for a donor group to be bonded to more 

than one acceptor at a time [32]. This is called a bifurcated bond. In figures 1.3 

and 1.4 an example of a bifurcated donor and a bifurcated acceptor are shown. A 

further possibility is that of a chelated bond; examples of chelated bonds are shown 

in figure 1. 5. 

Bifurcated acceptors and donors may arise in systems in which there is an excess of 

donors (acceptors) relative to the number of acceptors (donors) present. In systems 

in which weak hydrogen bonds are capable of forming, this leads to bifurcated donors 

being common [32]. 
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x----H 

... A 
1 

Figure 1.3: Bifurcated hydrogen bond: an example of a bifurcated donor. 

" y------A, 
' ' ' ' ' ' 

H------x2 

H------x1 

9 

Figure 1.4: Bifurcated hydrogen bond: an example of a bifurcated acceptor.In both 
of these diagrams, solid lines denote chemical bonds, whilst dashed lines denote a 
hydrogen bond. 
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Figure 1.5: Examples of chelated bonds. 
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1.3.3 Hydrogen Bonds as Group-Pair Interactions 

It should be stressed at this stage that the term hydrogen bond refers to the group of 

three atoms involved, X, Hand A. In most bonds, the chemical bond X-H is much 

stronger than the bond H A; however, it is not correct to term the latter as the 

hydrogen bond. This is because the two entities involved are not independent of 

each other; hydrogen bonds are group-pair interactions, not atom-pair interactions 

[32]. Similarly, in the case of bifurcated hydrogen bonds, the term hydrogen bond 

refers to X, H, A1 and A2. 

1.4 Computational Physics: Empirical versus ab initio 
Methods 

In order to investigate theoretically systems as complicated as molecular crystals, 

it is necessary to model the interactions (of which there may be a hierarchy spread 

across several energy scales) as accurately as possible, whilst ensuring that the cal­

culations remain computationally feasible. The simplest and crudest approaches to 

this problem rely upon the useage of empirical potentials; that is potentials which are 

obtained by fitting to various experimentally obtained properties, such as the lattice 

constant and bulk modulus. However, although empirical potentials can be of use, 

they are limited by the accuracy of the parametrisation, and correspondingly, their 

transferability to other environments can be poor. Further, empirical potentials op­

timised to accurately obtain quantities such as the lattice parameter accurately, may 

be inadequate for other properties such as lattice dynamical properties, for which 

they were not designed, leading to further problems of transferability. 

In order to derive an empirical potential, it is usual for some assumption to be made 

concerning the electronic structure of the system under consideration and the bond­

ing mechanisms present. Modelling interactions with no a priori knowledge of the 

bonding present requires the use of sophisticated ab initio methodologies, in which 

one attempts to solve the Schrodinger equation governing the electronic dynamics. 

The methodology of choice for such calculations is the density functional theory 

(DFT); this method is described fully in the next chapter. The ab initio approach, 
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although more computationally intensive, does possess the advantage of being com­

pletely transferable, requiring only that the atomic constituents of the system under 

consideration be specified. It is thus more intellectually appealing, but moreover, 

this ensures that it may be used to calculate the properties of systems about which 

no a priori knowledge exists. By solving the electronic structure of the system, 

a deeper understanding of the system's behaviour may be gleaned; furthermore, a 

knowledge of the electronic structure then allows a range of properties from equilib­

rium geometries to thermodynamic properties and equations of state to be obtained 

without recourse to experimental input. One may also use the output of high quality 

ab initio calculations to parametrise classical potentials allowing the computational 

restrictions associated with ab initio methods to be circumvented. It is for these 

reasons that in this work an ab initio approach is preferred to an empirical one. 

1.5 Outline of Thesis 

This thesis is concerned with the application of density functional perturbation 

theory calculations to the amino acid molecular crystals alanine, isoleucine, leucine 

and valine. In order to elucidate the connections between the behaviour of the solid 

and the constituent molecules, calculations are also carried out on isolated molecules. 

The first part of the thesis discusses the theoretical techniques used in this work, 

whilst the second part presents the results. 

The work described in this thesis is organised as follows: 

Chapter 2 

The many-body problem in quantum mechanics is introduced. Single-particle self­

consistent field methods (Hartree and Hartree-Fock) are discussed as approximations 

to the many-body Schrodinger equation. The Hohenberg-Kohn-Sham formulation 

of density functional theory is introduced, and its implementation within the plane 

wave pseudopotential formalism discussed. Practical methods of solving the result­

ing Kohn-Sham equations within the electronic structure code CASTEP are also 

discussed in detail. 
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Chapter 3 

The motivations for developing a perturbative treatment of DFT are described. A 

Green's function based method is described, before considering in detail the effects of 

applying perturbation theory within a variational framework. The resulting 2n + 1-

theorem is discussed along with its utility within DFT. The connections between 

the Green's function method and the 2n + 1-theorem are explicitly discussed. The 

treatment of lattice dynamics and electric field response is discussed in detail. The 

macroscopic electric fields set up by long-wave longitudinal phonons in polar mate­

rials are also considered, and the correct way to treat this phenomenon is discussed. 

DFPT offers a natural method for the calculation of IR spectra; accordingly, the 

basic theory is outlined. 

Chapter 4 

The implementation of the DFPT scheme outlined in the previous chapter is con­

sidered in detail. Particular regard is paid to the treatment of pseudopotentials 

and exchange and correlation. The conjugate gradients minimisation scheme used is 

discussed, and the merits of different preconditioning schemes are investigated using 

simple test systems. Sum rules are introduced as a means of checking the quality 

of a calculation. The use of symmetry with regard both to Brillouin zone sampling 

and as a means to calculate symmetry-related elements of the dynamical matrix 

and permittivity is described in detail. Finally, a series of validation tests is car­

ried out on a series of test systems in order to illustrate the efficacy of the method. 

Comparison with theoretical and experimental values in the literature shows good 

agreement. Calculations of IR spectra for a series of molecules reveals that the in­

tensities display a sensitivity to choice of basis set; however, irrespective of basis set, 

the correct IR-active modes are identified. 

Chapter 5 

In this chapter the results of calculations determining the structural and electronic 

properties of amino acids in both the gaseous and solid states are presented. The 
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similarities and differences exhibited in the geometric structures are discussed, and 

underlying explanations sought in terms of the electronic structures. It is found 

that all of the systems under consideration, with the exception of leucine, are found 

in the non-zwitterionic form in the gaseous phase. All are found as zwitterions in 

the solid state. A discussion of the reasons for this zwitterionisation in terms of 

the localisation of the molecular orbitals is presented. The nature of the hydrogen 

bonds responsible for crystal stabilisation is discussed; extremely good agreement 

with experimental structures is found, suggesting a largely electrostatic nature for 

the hydrogen bonds. The differences in geometric and electronic structure exhibited 

upon crystal formation are investigated and discussed. 

Chapter 6 

A series of density functional perturbation calculations determining the vibrational 

and dielectric properties of amino acids is presented. Calculations are carried out 

both for the solid state and isolated molecules. For the isolated molecules, the 

molecular polarisabilities, as determined by density functional perturbation theory, 

are found to be in good agreement with finite difference calculations. Examination 

of the first order density response to the applied field allows similarities between the 

different molecules to be found. This indicates that the response is largely deter­

mined by the molecular geometry rather than simply the functional groups present. 

Determination of the normal modes allows the intra-molecular hydrogen bonds to be 

investigated, and indicates that the reasons for the zwitterionisation of leucine in the 

gaseous state is due to the possibility of stabilising hydrogen bonds being formed. 

IR spectra are calculated. Clear differences, due to the different bonds, are found 

between the zwitterionic and non-zwitterionic cases. The use of dynamical effective 

charges as a population analysis tool is investigated by comparing with the results of 

a Mulliken population analysis. This reveals that the Mulliken charges are insensi­

tive to changes in the electronic structure caused by zwitterionisation, in contrast to 

the dynamical charges. Determination of the normal modes of the molecular crys­

tals reveals that the high frequency vibronic modes undergo the largest modification 

in frequency, due to the hydrogen bonding present. Low frequency vibronic modes 

are largely unaffected. The conformational freedom exhibited by molecules with 
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long sidechains ensures that the low frequency vibrons are close in frequency to the 

lattice modes. The character of the lattice modes depends upon the system under 

consideration. The Born effective charges are calculated, and found to alter appre­

ciably between the molecule and the crystal. Mode effective charge three-vectors 

are calculated in order to identify which modes are responsible for these modifica­

tions. The dielectric properties are calculated; examination of first-order electron 

charge densities allows the effects of the crystalline environment upon the molecular 

responses to be investigated. These are determined largely by molecular geometry 

and the character of the intermolecular interactions present. 

Chapter 7 

In this chapter, conclusions are presented, along with suggestions for further work 

and investigations. 



Chapter 2 

The Many Body Problem and 
Density Functional Theory 

The underlying physical laws necessary for the mathematical theory of a large part 

of physics and the whole of chemistry are thus completely known, and the difficulty 

lies only in the fact that the exact application of these laws leads to equations much 

too complicated to be soluble - P. A. M. Dirac 

In principle, the properties of a system may be obtained by solving the quantum 

mechanical wave equation governing the system dynamics. For non-relativistic sys­

tems this is simply the Schrodinger equation. As alluded to in the quotation above, 

this is in practice an impossible task; indeed, the resulting many-body problem has 

only been solved for a limited number of test systems. In this chapter we outline the 

many-body problem and why it is intractable, before considering the Hohenberg­

Kohn-Sham formulation of density functional theory (DFT) [37, 38]; this reformu­

lates quantum mechanics, using the electron density as its fundamental parameter, 

rather than the many-electron wavefunction. This takes the N-body problem and 

instead recasts it as N single-body problems, which is a dramatic simplification. 

Finally, we briefly consider the methods used to solve this problem. The interested 

reader may find fuller descriptions in the references [39, 40]. 

15 
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2.1 The Many-Body Problem 

The dynamics of a time-independent non-relativistic system are governed by the 

Schrodinger equation 

HiJ! = EiJ! (2.1) 

where iJ! is the many electron wavefunction, E is the system energy and H is the 

Hamiltonian of the system given by (in atomic units) 

(2.2) 

Here ri is the position of electron i, whilst the nuclei are clamped at positions R. 

The first term is the many-body kinetic energy operator which yields the electronic 

kinetic energies; the second term represents the interaction of the electrons with the 

bare nuclei. Electron-electron interactions are described by the final term. We have 

neglected the nuclei-nuclei interaction energy in the above, which would of course 

have to be added in order to yield the total energy of the system. However, the Born­

Oppenheimer approximation [41] allows us to decouple the nuclear and electronic 

degrees of motion; the nuclei are of order "' 103 - 105 times more massive than 

the electrons, and therefore may be considered to be stationary on the electronic 

timescale. As a result of this, it is possible to neglect the nuclear kinetic energy 

contribution to the system energy. 

Although this equation is exact within the non-relativistic regime, it is not possible, 

except for trivially simple cases, to solve it. There are two reasons for this: one mole 

of a solid contains N "' 1028 electrons; since the many-electron wavefunction con­

tains 3N degrees of freedom, this is simply intractable; further, the electron-electron 

Coulomb interaction results in the electronic motions being correlated. Consequently 

the many-body wavefunction is a complicated mathematical object that incorporates 

the effects of this correlation, preventing a separation of the electronic degrees of 

freedom into N single-body problems. Further, the interaction is too strong to be 

treated as a perturbation. Thus we must search for approximations that render the 
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Schrodinger equation tractable to numerical solution, whilst retaining as much of 

the key physics as is possible. 

2.1.1 Approximate Methods: the Hartree and Hartree-Fock Meth­
ods 

The simplest approximation is the Hartree approximation [42]. The initial ansatz is 

that we may write the many-body wavefunction as 

(2.3) 

from which it follows that the electrons are independent, and interact only via the 

mean-field Coulomb potential. This yields one-electron Schrodinger equations of the 

form 

(2.4) 

where V ( r) is the potential in which the electron moves; this includes both the 

nuclear-electron interaction 

2"" 1 Vnucleus(r) = -Ze ~ lr _ Rl (2.5) 

and the mean field arising from the N - 1 other electrons. We smear the other 

electrons out into a smooth negative charge density p( r') leading to a potential of 

the form 

Vezectron(r) = -e j dr'p(r')lr~r'l (2.6) 

where p(r) = Li l'ljl(rW. 

Although these Hartree equations are numerically tractable via the self-consistent 

field method, it is unsurprising that such a crude approximation fails to capture 

elements of the essential physics. The Pauli exclusion principle demands that the 
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many-body wavefunction be antisymmetric with respect to interchange of any two 

electron coordinates, e.g. 

(2.7) 

which clearly cannot be satisfied by a non-trivial wavefunction of the form 2.3. This 

exchange condition can be satisfied by forming a Slater determinant [43] of single­

particle orbitals 

(2.8) 

where A is an anti-symmetrising operator; i.e. it ensures that all possible anti­

symmetric combinations of orbitals are taken. Again, this decouples the electrons, 

leading to the single-particle Hartree-Fock equations [44] of the form 

1i2 2 
-

2
m \1 7/Ji(r) + Vnucleus(r)1/Ji(r) + "Velectron(r)1/Ji(r) 

-'"' j d '7/Jj(r')7/Ji(r')7j;j(r) = ·"''·( ) 
L......, r I 'I E~ '+'~ r . . r-r 

J 

(2.9) 

The last term on the left-hand side is the exchange term; this looks similar to the 

direct Coulomb term, but for the exchanged indices. It is a manifestation of the 

Pauli exclusion principle, and acts so as to separate electrons of the same spin; 

the consequent depletion of the charge density in the immediate vicinity of a given 

electron due to this effect is called the exchange hole. The exchange term adds 

considerably to the complexity of these equations. 

The Hartree-Fock equations deal with exchange exactly; however, the equations 

neglect more detailed correlations due to many-body interactions. The effects of 

electronic correlations are not negligible; indeed the failure of Hartree-Fock theory 

to successfully incorporate correlation leads to one of its most celebrated failures: 

its prediction that jellium is an insulating rather than a metallic system. The re­

quirement for a computationally practicable scheme that successfully incorporates 
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the effects of both exchange and correlation leads us to consider the conceptually 

disarmingly simple and elegant density functional theory. 

2.2 Density Functional Theory 

The density functional theory (DFT) treats the electron density as the central vari­

able rather than the many-body wavefunction. This conceptual difference leads to 

a remarkable reduction in difficulty: the density is a function of three variables, i.e. 

the three Cartesian directions, rather than 3N variables as the full many-body wave­

function is. An early density functional theory was proposed by Thomas and Fermi 

[45]. This took the kinetic energy to be a functional of the electron density, but in 

common with the Hartree and Hartree-Fock methods, only incorporated electron­

electron interactions via a mean field potential: as such it neglected both exchange 

and correlation; a subsequent proposal by Dirac [46], formulating an expression for 

the exchange energy in terms of the electron density failed to significantly improve 

the method. Here we consider the Hohenberg-Kohn-Sham formulation of DFT; this 

technique is one of the choice state-of-the-art methods routinely applied in electronic 

structure theory, and has enjoyed success in fields ranging from quantum chemistry 

and condensed matter physics to geophysics. It is based upon the following remark­

able and deceptively simple theorems: 

• Theorem 1. The external potential is a unique functional of the electron den­

sity only. Thus the Hamiltonian, and hence all ground state properties, are 

determined solely by the electron density. 

The many-body Hamiltonian H fixes the groundstate of the system under consider­

ation, i.e. it determines the groundstate many-body wavefunction W, and thus the 

above theorem ensures that this itself is also a unique functional of the groundstate 

density. Consequently, the kinetic and electron-electron interaction energies will also 

be functionals of n(r). One may therefore define the functional F[n(r)] 

F[n(r)] = (wi(T + Vee)lw) (2.10) 
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where T is the kinetic energy operator, and Vee is the electron-electron interaction 

operator. This functional F is a universal functional in the sense that it has the 

same dependence on the electron density for any system, independent of the external 

potential concerned. The exact density dependence of this functional is, however, 

unknown. 

Using this functional, one may then define, for a given external potential v(r), the 

energy functional 

E [n(r)] = j drn(r)v(r) + F [n(r)] (2.11) 

where F [n(r)] is a universal but unknown functional of the electron density. We 

can write the system energy (for a non-degenerate groundstate) in terms of the 

groundstate many-body wavefunction \II as 

E [n(r)] = (w IHI w) (2.12) 

with the Hamiltonian given by 

H=F+V (2.13) 

where V is the operator corresponding to the external potential, and F is the elec­

tronic Hamiltonian 

F=T+Vee· (2.14) 

• Proof: We proceed by reductio ad absurdum. Assume that there are two 

potentials v1 ( r) and v2 ( r) that differ by more than an additive constant and 

further that these two potentials lead to different ground state wavefunctions 

\II 1 ( r) and \II 2 ( r). Now assume that these both lead to the same ground state 

density, n(r). The variational principle then asserts that 

(\112IH2I \112) + (\112IH1- H2l \112) 

E2 + j n(r) [v1(r)- v2(r)] dr (2.15) 
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Note that this inequality applies only to the groundstate and that DFT, as 

a result, is only rigorously applicable to the groundstate. Interchanging 1 

and 2 gives a similar expression, and adding the two inequalities leads to the 

contradiction 

(2.16) 

Thus theorem 1 is proved. 

• Theorem 2. The groundstate energy may be obtained variationally: the density 

that minimises the total energy is the exact groundstate density. 

• Proof To prove this theorem we introduce the notion of "N-representability": 

i.e. a density is said to beN-representable if it may be obtained from some an­

tisymmetric wavefunction 'lj;(r1 , r2, ... , rN) for which we may define the func­

tional [47] 

F [n] = min('lj; IT+ Vee I '1/J) 
'1/J--+n 

(2.17) 

where the minimum is taken over all 'ljJ that yield the density n. Now, if we 

introduce '1/J~in ( r) for a wavefunction that minimises 2.17 such that 

then 

j Vext(r)n(r)dr + F [n] ('1/J~in IV+ T +Vee I '1/J":nin) 

> Ecs 

with equality at the minimum. Thus the second theorem is proved. 

(2.18) 

(2.19) 

Although these two theorems prove the existence of a universal functional, they do 

not give any idea as to the nature of the functional, or how to actually calculate the 
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groundstate density. In order to do so, we must discuss the Kohn-Sham formulation 

[38]. This is based upon a sleight of hand whereby we map the fully interacting 

system of N-electrons onto a fictitious auxiliary system of N non-interacting elec­

trons moving within an effective Kohn-Sham potential, vxs(r), thereby coupling the 

electrons. The single-particle Kohn-Sham orbitals are constrained to yield the same 

groundstate density as that of the fully-interacting system, so the Hohenberg-Kohn­

Sham theorems are still valid. 

Variation of the total energy functional in 2.11 with respect to the electron density, 

subject to the constraint of fixed particle number, i.e. 

j 8n(r)dr = 0 (2.20) 

yields 

8 [F [n(r)] + j Vext(r)n(r)dr- ft( j n(r)dr- N)] = 0 (2.21) 

where ft is a Lagrange multiplier associated with our constraint condition 2.20. The 

Euler-Lagrange equation associated with minimisation of this functional is then 

8F [n(r)] 
fl = c5n(r) + Vext(r). (2.22) 

The Kohn-Sham formulation allows us to write the universal functional F [n(r)] as 

F [n(r)] = T8 [n(r)] = EH [n(r)] + Exc [n(r)] (2.23) 

where the last term is the exchange-correlation energy, to which we will return 

presently, and T8 [n(r)] is the kinetic energy, which may be written in terms of the 

non-interacting single-particle orbitals as 

(2.24) 
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It is important to note that this is the kinetic energy of the auxiliary non-interacting 

system, not the kinetic energy of the actual physical system under consideration. 

EH [n(r)] is the classical Hartree energy of the electrons 

(2.25) 

which includes a self-interaction term. 

Thus the Euler-Lagrange equation 2.21 becomes 

_ 6T8 [n(r)] ( ) 
J.L- 8n(r) + VKS r (2.26) 

where VKs(r) is the effective Kohn-Sham potential 

VKs(r) = Vext(r) + VH(r) + Vxc(r). (2.27) 

The Hartree potential VH(r) is given by 

( ) 
_ 8EH [n(r)] _ j n(r') d , 

VH r - 8n(r) - ir- r'l r (2.28) 

with the exchange-correlation potential Vxc(r) 

( ) 
_ 6Exc [n(r)] 

Vxc r - 8n(r) . (2.29) 

The Euler-Lagrange equation is now of exactly the same form as that which leads to 

the Hartree equations 2.4. Therefore we are required to solve the Schrodinger-type 

equations 

(2.30) 

where the Ei correspond to the eigenvalues of the single-particle states and the charge 

density n(r) is constructed from the Kohn-Sham orbitals as 

N 

n(r) = 2::: 'l/Ji(r)'l/Ji(r). (2.31) 
i=l 
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Similarly, the many-electron wavefunction of the system may be constructed as a 

Slater determinant of the Kohn-Sham orbitals. 

The Kohn-Sham formulation thus succeeds in transforming theN-body problem into 

N single-body problems, each coupled via the Kohn-Sham effective potential. It is 

worth noting that formally there is no physical interpretation of these single-particle 

Kohn-Sham eigenvalues and orbitals: they are merely mathematical artefacts that 

facilitate the determination of the true groundstate density. The exception is the 

highest occupied state, for which it can be shown that [47] the eigenvalue corre­

sponding to the highest occupied state yields the ionisation energy of the system. 

2.3 The Exchange-Correlation Term 

The Kohn-Sham equations in 2.30 are thus far exact: no approximations have yet 

been made; we have simply mapped the fully interacting system onto an auxiliary 

non-interacting system that yields the same groundstate density. 

As mentioned earlier, the Kohn-Sham kinetic energy is not the true kinetic energy; 

we may use this to define formally the exchange-correlation energy as 

Exc [n(r)] = T [n(r)]- Ts [n(r)] + Eee [n(r)]- EH [n(r)] (2.32) 

where T8 [n(r)] and Eee [n(r)] are the exact kinetic and electron-electron interac­

tion energies respectively. Physically, this term can be interpreted as containing 

the contributions of detailed correlation and exchange to the system energy. The 

definition above is such that it ensures that the Kohn-Sham formulation is exact. 

However, the actual form of Exc is not known; thus we must introduce approximate 

functionals based upon the electron density to describe this term. There are two 

common approximations (in various forms) in use: the local density approximation 

(LDA) [47], and the generalised gradient approximation (GGA) [48]. The simplest 

approximation is the LDA: this assumes that the exchange-correlation energy at a 

point r is simply equal to the exchange-correlation energy of a uniform electron gas 



Chapter 2. The Many Body Problem and Density Functional Theory 25 

that has the same density at the point r. Thus we can write 

Exc [n(r)] = J Exc(r)n(r)dr (2.33) 

so that the exchange-correlation potential Vxc may be written 

( ) 
_ bExc [n(r)] _ 8 [n(r)Exc(r)] 

Vxc r - bn(r) - on(r) (2.34) 

with 

Exc(r) = E~~m [n(r)] (2.35) 

where in the last equation the assumption is that the exchange-correlation energy is 

purely local. The most common parametrisation in use for e~gm is that of Perdew 

and Zunger [49], which is based upon the quantum Monte Carlo calculations of 

Ceperley and Alder [50] on homogeneous electron gases at various densities; the 

parametrisations provide interpolation formulae linking these results. 

The LDA ignores corrections to the exchange-correlation energy due to inhomo­

geneities in the electron density about r. It may seem surprising that this is as 

successful as it is given the severe nature of the approximation in use; to large ex­

tent, it appears [40] that this is due to the fact that the LDA respects the sum rule, 

that is, that exactly one electron is excluded from the immediate vicinity of a given 

electron at point r. The LDA is known to overbind, particularly in molecules. It is 

for this reason that in this study we have neglected it in favour of the GGA. 

The GGA attempts to incorporate the effects of inhomogeneities by including the 

gradient of the electron density; as such it is a semi-local method. The GGA XC 

functional can be written as 

E~GA[n(r)] = j n(r)e~~[n(r)]Fxc[n(r), Vn(r)]dr (2.36) 
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where Fxc[n(r), V'n(r)] is known as the enhancement factor. Unlike the LDA, there 

is no unique form for the GGA, and indeed many possible variations are possible 

[48, 52, 53, 54], each corresponding to a different enhancement factor. The GGA 

succeeds in reducing the effects of LDA overbinding [51], and is significantly more 

successful when applied to molecules. In this work, the PW91 GGA due to Perdew 

and Wang is used [48]. 

2.4 Bloch's Theorem 

Thus far, the quantum mechanical approaches to solving the many-body problem 

have been discussed. However, the correlated nature of the electrons within a solid 

is not the only obstacle to solving the Schrodinger equation for a condensed matter 

system: for solids, one must also bear in mind the effectively infinite number of 

electrons within the solid. 

One may appeal to Bloch's theorem in order to make headway in obviating this latter 

problem. Instead of being required to consider an infinite number of electrons, it is 

only necessary to consider the number of electrons within the unit cell (or half of 

this number if the electrons are spin degenerate). 

Bloch's theorem [55] states that the wavefunction of an electron within a perfectly 

periodic potential may be written as 

(2.37) 

where Ui ( r) is a function that possesses the periodicity of the potential, i.e. Ui ( r + 
I) = ui(r), where I is the length of the unit cell. In 2.37 i is the band index, and k is 

a wavevector confined to the first Brillouin Zone. Since ui(r) is a periodic function, 

we may expand it in terms of a Fourier series: 

uj(r) = l::Cj,GeiG·r 

G 
(2.38) 

where the G are reciprocal lattice vectors defined through G · R = 27l'm, where m 

is an integer, R is a real space lattice vector and the Ci,G are plane wave expan-
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sion coefficients. The electron wavefunctions may therefore be written as a linear 

combination of plane waves: 

7/Jj,k(r) = :L::Cj,k+Gei(k+G)·r. (2.39) 
G 

Given that each electron occupies a state of definite k, the infinite number of elec­

trons within the solid gives rise to an infinite number of k-points. At each k-point, 

only a finite number of the available energy levels will be occupied. Thus one only 

needs to consider a finite number of electrons at an infinite number of k-points. 

This may seem to be replacing one infinity (number of electrons) with another one 

(number of k-points) to little discernible advantage. However, one does not need to 

consider all of these k-points; rather, since the electron wavefunctions will be almost 

identical for values of k that are sufficiently close, one can represent the wavefunc­

tions over a region of reciprocal space by considering the wavefunction at a single 

k-point. It is therefore sufficient to consider the electronic states at a finite number 

of k-points in order to determine the groundstate density of the solid. The net effect 

of Bloch's Theorem therefore has been to change the problem of an infinite number 

of electrons to one of considering only the number of electrons in the unit cell (or 

half that number, depending on whether the states are spin-degenerate or not) at a 

finite number of k-points chosen so as to appropriately sample the Brillouin Zone; 

this problem is returned to later. 

2.5 Kohn-Sham Equations in Plane Wave Form 

Exploiting the lattice periodicity using Bloch's theorem has now led to the one­

electron wavefunctions being expressed in terms of a Fourier expansion using plane 

waves as a basis set. Although plane waves are not the only possible basis set that can 

be used, for example, one could use atomic wavefunctions as a basis set, plane waves 

are perhaps more aesthetically appealing. More importantly, a plane wave basis set 

has the advantage of being mathematically simple, and is in principle complete, that 

is, it completely spans the Hilbert space. This is in contrast to localised basis sets. 

Plane waves also possess the advantage of covering all space equally, and are thus not 

biased to any particular region. This is particularly important when one does not 
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have any a priori knowledge of the form of the electronic wavefunctions. However, 

it is a double-edged sword in that it results in regions devoid of electron density 

having equal quality of coverage as regions of high electron density. It is thus, 

in a sense, inefficient, and it is this that leads to the cubic scaling of plane wave 

DFT calculations with system size [39, 56]. Accordingly, most efforts at achieving 

methods that scale linearly with system size have concentrated upon localised basis 

sets [57, 58, 59]. 

In principle, the series in 2.39 should be infinite; in practice, the series should be 

truncated in order that it may be handled computationally. The coefficients for the 

plane waves have a kinetic energy ~ lk + Gl2
, and plane waves with high kinetic 

energy typically are less important than those of low kinetic energy. One may thus 

introduce a kinetic energy cut-off Ee1tt in order to achieve a finite basis set. The 

kinetic energy cut-off is defined through 

tt2 2 
Ecut = -lk+ Gl 

2m 
(2.40) 

and thus this fixes the highest reciprocal lattice vector G used in the plane wave 

expansion, resulting in a finite basis set. 

Expansion of the electron wave functions in terms of plane waves allows the Kahn­

Sham equations to take on the particularly simple and appealing form 

l:::G' [~ ik + Gl2 
8GG' + Vian(G- G') + Vxc(G- G') + VH(G- G')] x 

Ci,k+G' = EiCi,k+G (2.41) 

which may be readily shown by substitution of 2.39 into 2.30. One can see that the 

reciprocal space representation of the kinetic energy is diagonal, whilst the poten­

tials are described in terms of Fourier components. In principle, this secular equation 

could be solved by simply diagonalising the Hamiltonian matrix Hk+G,k+G' whose 

matrix elements are given by the terms in brackets above. However, the size of the 

matrix is determined by the choice of cut-off energy Ecut, and for systems containing 
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valence and core electrons will be intractably large. Discussion of more computa­

tionally efficient methods of solving this problem will be returned to later. 

2.6 k-point Sampling 

We have already discussed how Bloch's theorem allows one to only consider the elec­

trons within the unit cell at an infinite number of k-points within the first Brillouin 

zone. As alluded to, it is possible to use only a finite number of k-points if these are 

chosen so as to appropriately sample the reciprocal space. One can therefore write 

an integrated function f(r) over the Brillouin zone as 

(2.42) 

where F(k) is the Fourier transform of f(r), n is the cell volume and the Wj are 

weighting factors. The set of "special" k-points chosen to appropriately sample the 

Brillouin zone is obtained in this work using the Monkhorst-Pack method [60]. The 

k-points are distributed uniformly through space as 

(2.43) 

where the bi are reciprocal lattice vectors, and 

l· 
2 • 1 

Xij = -, J = , ... , nj 
nj 

(2.44) 

where the li are lengths of reciprocal lattice vectors, and nj is an integer determining 

the number of special points in the set. 

In practice, a further computational saving may be made by utilising the point group 

symmetry of the lattice. This allows one to write the sums as 

P(nj) 

f(r) = L WjF(kj) 
j=l 

(2.45) 
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where P(nj) is the symmetry-dependent number of points in the irreducible wedge 

of the Brillouin zone. The weights in this equation are in general different to those 

in equation 2.42; they are simply the ratio of the order of the point group to that 

of the group of the wavevector kj under consideration. 

2. 7 Pseudopotentials 

Although the Kahn-Sham equations have been shown to be tractable when plane 

waves are used to expand the electron wavefunctions, an all-electron calculation 

including both core and valence electrons, along with the full Coulombic potential 

of the nuclei would still be prohibitively expensive using a plane wave basis set. 

This is because the tightly bound core orbitals, and the highly oscillatory nature of 

the valence electrons, demand that a high value of Ecut and hence number of plane 

waves be used in order to accurately describe the electronic wavefunctions [40]. 

However, it is possible to partition the electrons between core and valence states; 

such a partition is possible because the majority of physical properties of solids 

depend upon the valence electrons; in contrast, the core electrons are almost envi­

ronment independent. It is for this reason that the pseudopotential approximation 

is introduced [61, 62, 63]: the core electrons and ionic potential are removed and 

replaced with a pseudopotential that acts on a set of pseudo wave functions; this is 

illustrated schematically in figure 2.1. 

The pseudopotential is constructed such that that the pseudo wave function has no 

radial nodes within the core region and that the pseudo wave functions and poten­

tial agree with the true wave function and potential outside some cut-off radius rcut· 

Further, the pseudopotential must preserve the atomic properties of the element, 

including phase shifts on scattering across the core; as these phase shifts will in gen­

eral be dependent upon the angular momentum state, in general a pseudopotential 

must be non-local, i.e. it must have projectors for the different angular momentum 

states. The most general form for a pseudopotential is thus [40] 

V'ion = L llm) Vz(lml (2.46) 
lm 
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Figure 2.1: Schematic illustration of a pseudopotential 
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where the llm) are spherical harmonics, and Vi is the pseudopotential for angular 

momentum l. 

If there are Npw plane waves in the expansion of the electron wavefunction at each 

k-point, and there are Nk plane waves, then the evaluation of 2.46 will require 

NpwNk(Npw + 1)/2 projectors of the above form to be calculated for each angular 

momentum component l. 

This can be understood as follows: the crystal potential Vcr(r) is obtained by placing 

a pseudopotential at each lattice site, with the structure factor incorporating the 

crystal symmetry, hence 

Vcr(G- G') = L S 8 (G- G')Vps(G- G') (2.47) 
s 

where the summation index is over ionic species and the species structure factor is 

given by 

(2.48) 

The total ion-electron energy is then 

Eelec-ion,lm = L ('1/J llm)Vcr(G- G')(lml '1/J) (2.49) 
GG' 

which leads to an inseparable double sum over both G and G'. This results in the 

evaluation of the ion-electron energy scaling as the square of the number of plane 

waves in the expansion. This will limit the size of any calculation. 

2. 7.1 Kleinman-Bylander Pseudopotentials 

Choosing the Kleinman-Bylander form [64] for the pseudopotential allows the double 

sum to be split into a product of two single sums. The Kleinman-Bylander form is 

Tr. _Vi ~ 1'1/JzmOVi)(oVi'l/Jzml 
v ion - loc + L.......t ( 

1
.. I ) lm '1/Jzm u Vi '1/Jzm 

(2.50) 
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where Viae is an arbitrary local potential, '1/Jzm are the pseudo-atom wavefunctions, 

and 6Vi is defined through 

6Vi = Vi,non-lacal - Viae (2.51) 

where Vi,non-lacal is the the l angular momentum component of a non-local pseu­

dopotential. Writing the pseudopotential in this form allows the calculation to scale 

linearly with the size of the basis set. 

2.7.2 Norm Conservation and Ultrasoft Potentials 

Kleinman-Bylander pseudopotentials are norm-conserving, that is, outside the core, 

the real and pseudo wavefunctions generate the same charge density. This can be 

expressed formally as 

(2.52) 

where '1/JAE(r) is the all electron wavefunction (i.e. the Kohn-Sham orbital that 

would be obtained from a calculation involving all electrons), and '1/Jps(r) is the 

pseudo wavefunction [65]. However, this condition of norm-conservation has meant, 

in certain cases, notably the 0 2p orbitals [66], that it is not possible to construct a 

pseudo wavefunction significantly smoother than the all-electron wavefunction. The 

compact valence p orbitals of electronegative first row atoms such as F [67], and the 

d-orbitals of the first row transition elements, present similar problems. Relaxation 

of the norm conservation condition leads to Vanderbilt ultrasoft potentials [66]; 

instead, a generalised eigenvalue formalism is adopted. A non-local overlap operator 

is defined through 

s = 1 + L Qij IJ3i)(,8jl 
i,j 

(2.53) 

where ,Bi are projector functions depending upon ionic positions and the Qij are the 

matrix elements 

(2.54) 
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Here, the 'ljJ are the all-electron wavefunctions, whilst the ¢ are pseudo wavefunctions. 

The norm-conservation condition is recovered when Qij = 0. Relaxing this condition 

results in the introduction of the non-local operator in 2.53. The non-local potential 

may then be written as 

Vnon-local = L(Bij + EiQij) [,Bi)(,Bj[ 
i,j 

where B is the matrix whose elements are formed from 

and x is a local wavefunction obtained from 

The ¢i are then solutions of the generalised eigenvalue problem 

subject to the orthonormality condition 

From this it is readily shown that 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

and thus the pseudo and all electron wavefunction amplitudes are the same be­

yond the cut-off radius value. Relaxation of the norm conserving condition allows 

smoother wavefunctions, and hence lower cut-off energies. This is advantageous in 

reducing the size of the plane wave basis set used, and it is for this reason that 

Vanderbilt ultra-soft pseudopotentials are amongst the most widely used in the con­

densed matter community. However, for this work we use the Kleinman-Bylander 

form instead: this is for technical reasons that will be fully explained in a later 

chapter. 
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2. 7.3 Pseudopotential Generation 

Pseudopotentials are usually generated from all-electron calculations by self-consistently 

solving the all-electron Schrodinger equation 

(2.61) 

where '1/JfE is the all-electron wavefunction with angular momentum quantum num­

ber l. The resulting valence eigenvalues are then substituted back into the Schrodinger 

equation, but with a parameterised pseudo wavefunction. Inversion of the Kahn­

Sham equations with this pseudo wavefunction then yields the pseudopotential. 

A pseudopotential is not unique: however, it must obey certain criteria: 

• 1. the pseudo wavefynction must be the same as the all-electron wavefunction 

outside a radius rcut· 

• 2. the core charge produced by both sets of wavefunctions must be the same. 

This norm conservation requirement can be relaxed though, as discussed ear­

lier. 

• 3. the pseudo wavefunctions must be continuous at the cut-off radius, as must 

be the first and second derivatives. 

• 4. the valence all-electron and pseudopotential eigenvalues must be equal. 

2.8 Energy Minimisation 

Solution of 2.41 may proceed by several methods. The most obvious is to simply di­

agonalise the Hamiltonian in that equation. However, conventional matrix diagonal­

isation procedures are ill-suited to plane wave pseudopotential calculations. This is 

because the cost of such diagonalisations is ""' Npw where Npw is the number of plane 

waves in the calculation. An alternative technique is to minimise the Kohn-Sham 

functional directly. The basic idea is to take a single-particle trial wavefunction, 

and minimise the contribution of this state to the total energy, whilst maintaining 
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orthogonality to all other states. The minimisation is achieved by varying the plane 

wave coefficients. There are various methods available to perform the minimisation 

procedure. 

2.8.1 Steepest Descents 

The simplest method to use is that of steepest descents. For a function F(x) the 

steepest-descent direction g may be obtained as 

(2.62) 

where x 1 is the point at which the function is evaluated. Once this path of steepest 

descent has been determined, one may carry out a line minimisation in order to 

determine the location of the minimum, x 2 along that line. From this point one 

repeats the procedure until the minimum of the function has been found. The 

steepest descents algorithm, although it has the advantage of being simple, does not 

guarantee convergence to a minimum in a finite number of steps [40]. Further, it 

uses information about the current sampling point only: it fails to use information 

gleaned from previous iterations in order to guide the minimisation more efficiently. 

2.8.2 Conjugate Gradients 

The conjugate gradients method [68] is a more efficient method that combines the 

information from all previous search directions such that a subsequent search direc­

tion is independent to all previous search directions, i.e. the set of search directions 

forms a linearly independent set. For an n-dimensional vector space, this guarantees 

convergence in n iterations, as each minimisation step reduces the dimensionality of 

the problem by 1; hence after n iterations, the dimensionality of the problem will 

be zero, and thus the minimum has been reached. 

If gm is the steepest descents vector associated with iteration m, then the conjugate 

gradients direction dm is given by 

(2.63) 
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where 

(2.64) 

and 1 1 = 0. 

2.8.3 Preconditioning 

The number of plane waves in a calculation is typically of the order "' 105 , and thus 

each iteration of a conjugate gradients minimiser could take a long time. In order to 

remedy this problem, a preconditioning scheme is usually employed in tandem with 

the minimiser. The Kohn-Sham Hamiltonian is ill-conditioned due to the broad 

eigenvalue spectrum associated with the basis states; this leads to poor convergence 

for quadratic functions, for reasons which may be understood as follows [69]: assume 

a nearly converged trial vector for band m 

Cm = Em + L tmEi, 
i#m 

(2.65) 

i.e. it is a sum of eigenvectors of the Kohn-Sham Hamiltonian. This sum represents 

the error in Cm. The residual vector 

with 

H · Cm- A· Cm = L Ei(Ai- Am)Ei 
i#m 

(2.66) 

(2.67) 

provides a measure of the error. Ideally, the error vector should be a simple multiple 

of the steepest descents vector; for then, in principle, one may eliminate the error 

completely by stepping an appropriately sized step along this direction. However, 

it can be seen from the above equation that it is not possible to do so, and that 

this is due to the broad spectrum of eigenvalues. Indeed, only if all the unoccupied 
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Kohn-Sham orbitals were degenerate would this be the case. Preconditioning offers a 

solution to this problem: the residual vector is multiplied by an approximate inverse 

such that a preconditioned steepest-descent vector is obtained that more accurately 

represents the error vector. The higher-energy eigenstates are dominated by the 

kinetic energy contributions; hence the energy of these states will be approximately 

equal to the kinetic energy. Multiplication by a diagonal preconditioning matrix 

that is essentially the inverse of the kinetic energy operator has the effect of approx­

imately removing the effect of the Hamiltonian upon the residual vector, that is, the 

eigenvalue spectrum is compressed, and convergence is thus improved. It is impor­

tant to note that the preconditioning matrix must be a positive definite operator; 

further, it must be a constant for the low kinetic energy contributions, for which the 

potential energy is a significant contribution to the total energy. Preconditioning is 

found to achieve excellent rates of convergence: it is common for problems involving 

"' 106 basis functions to converge in only a few tens of iterations. In this work the 

preconditioning scheme of Teter et al. is used [69]; a more detailed discussion of 

the merits and demerits of various preconditioning schemes is presented in a later 

chapter with regard to solving the second-order Kohn-Sham problem. 

2. 9 Geometry Optimisation 

Thus far only total energy calculations for a fixed set of atomic coordinates have 

been described. However, it is relatively simple to calculate the forces on an atom 

using the plane wave basis set, and hence move the atom under the influence of these 

forces. The force on an atom may be obtained through 

dE 
FJ=--. 

dRJ 
(2.68) 

As the atom moves to a new position, the electronic wavefunctions must also change: 

this will contribute to the force on the atom as can be readily seen if the total 

derivative is expanded: 

(2.69) 



Chapter 2. The Many Body Problem and Density Functional Theory 39 

However, since 

E = (w IHI w) (2.70) 

the last two terms simply yield 

(2.71) 

which is trivially zero. Thus when w is an eigenstate of the Hamiltonian, the partial 

derivative of the total energy with respect to atomic position gives the forces acting 

on that atom. 

2.10 The CASTEP code 

The calculations described in this thesis are all carried out using the electronic 

structure code CASTEP. This is a code written in FORTRAN 90 developed by 

Segall et al. [39] and utilises the techniques described in this chapter to solve the 

Kahn-Sham equations. The DFPT methods discussed in the next chapter were also 

implemented within the same package. 



Chapter 3 

Density Functional Perturbation 
Theory 

Many physical properties depend upon a system response to some form of pertur­

bation. Examples include polarisabilities, phonons, Raman intensities and infra-red 

absorption cross-sections to name but a few. Density functional perturbation the­

ory (DFPT) is a particularly powerful and flexible theoretical technique that allows 

calculation of such properties within the density functional framework, thereby facili­

tating an understanding of the microscopic quantum mechanical mechanisms behind 

such processes, as well as providing a rigorous testing ground for theoretical devel­

opments. System responses to external perturbations may be calculated using DFT 

with the addition of some perturbing potential; however, as such methods involve 

obtaining the system response through a series of single-point energy calculations 

carried out at varying strengths of the external perturbation, it can be said that 

they are somewhat crude and aesthetically unappealing. More fundamentally, such 

techniques are sometimes restricted in application: for example, they cannot readily 

be used to calculate the response of crystalline systems to electric field perturba­

tions, and cannot, without large computational effort, calculate phonon responses 

at arbitrary wavevector; points which will be expounded upon in this chapter. We 

now consider the application of perturbation theory to DFT, and use this formalism 

to derive equations allowing the calculation of phonon and electric field responses 

within crystalline materials. 

The two main formalisms of DFPT are due to Baroni [70] and Gonze [71]; although 

40 
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the two may be shown to be equivalent, there are differences in the implementation 

that may result in one method being preferable to another. The Baroni formalism 

is centred upon obtaining a series of equations that may be solved self-consistently 

using Green's function methods; the Gonze formalism is based rather upon a per­

turbative expansion of the Kohn-Sham energy functional, leading to a variational 

problem for even orders of expansion akin to the zeroth order problem. 

3.1 The Green's Function Method and Linear Response 

The basic ansatz behind DFPT is that quantities such as the wavefunction, electron 

density, or potential may be written as a perturbation series 

(3.1) 

where X(>.) is a generic physical quantity that could, for example, be the Kahn­

Sham orbitals 'lj;(>.), the Kohn-Sham energy E(>.), or the electronic density n(>.), 

and >. is a perturbing parameter, assumed to be small. The expansion coefficients 

are given by 

x(n) =~an xi . 
n! d>.n .>.=0 

(3.2) 

The variation in the Kohn-Sham orbitals may be determined by solution of the 

so-called Sternheimer equation [72] 

(3.3) 

where Hr1 is the first order Kohn-Sham potential given by 

H(l) = y(l) + v(l) (r) + e2 j n(l) (r') dr' + j c5vxc n(l) (r')dr'. 
KS ext lr - r'l c5n(r') (3.4) 

The Sternheimer equation is obtained by expanding the Kohn-Sham equations to 

first order. It is easy to see how this relates to standard perturbation theory: left 
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multiplication of 3.3 by (~~o)l and use of the orthogonality condition (~~0)1~2)) = 0 

(the so-called parallel transport gauge) leads to 

~Pl = (·'·(o) IH(l) 
1
.,,(o)) 

n 'Pn KS 'Pn · (3.5) 

The first order change in the wavefunction may be obtained by left multiplication 

of 3.3 by (~~)\leading to 

~~~1)) = L c~~~~~l) (3.6) 
m=f-n 

where the expansion coefficient c~~ is given by 

(3.7) 

These are of course the well-known results from standard perturbation theory, with 

an additional two terms in the first order perturbed Hamiltonian that reflect the 

coupling of the electrons to each other via the requirement of self-consistency. These 

equations form a set of self-consistent equations that must be solved in order to 

determine the behaviour of the perturbed system. For an N-electron system, the 

linear dependence of the first order Kohn-Sham Hamiltonian upon the first order 

density, and hence via this the first order Kohn-Sham orbitals, leads to a coupling of 

the N equations. Thus the set of l~(l)) 's is the solution of a problem of dimension 

(NM/2 x NM/2), where M is the size of the basis set used. 

From equations 3.6 and 3.7, and neglecting spin, the first order electron density may 

be written as 

N 

L ~~o)*(r)~~l)(r) + ~~l)*(r)~~o)(r) 
n=l 

(3.8) 
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from which it may be readily seen that the contributions due to products of occupied 

states cancel; as it is natural within a density functional framework to identify the 

label n as attaching to valence band states, this ensures that the index m attaches 

itself only to conduction band states; for this reason the labels v and c, for valence 

and conduction band states respectively, will be used from now on. This result is 

equivalent to stating that the electron density only responds to perturbations that 

couple the valence and conduction manifolds [73]. 

In order to calculate the projection of the first order wavefunction onto the con­

duction band manifold the projection operator Pc is introduced, which leads to the 

Sternheimer equations taking the form 

(3.9) 

where the contribution due to the eigenvalue c1°) vanishes due to the projection of 

the Kohn-Sham orbitals onto the conduction manifold. The projection operator here 

takes the form 

(3.10) 
v c 

and this allows the first order wavefunction to be written as 

(3.11) 

where Gv is the Green's function operator projected onto the conduction band 

(3.12) 

Solution of the linear problem defined by the Sternheimer equation requires only 

knowledge of the occupied states in order to determine the first order correction to 

the Kohn-Sham orbitals; this is a marked advantage over explicit evaluation using 

equations 3.6 and 3. 7 which require knowledge of the full eigenvalue spectrum. The 

computational cost of solving this system of linear equations is comparable to that 
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required to solve the zeroth order Kohn-Sham equations. It should of course be 

noted that these results have assumed the existence of a finite energy gap, and are 

hence only applicable to insulators; metallic systems, for which the density of states 

is non-vanishing at the Fermi energy, may experience a change in occupation number 

upon application of a perturbation [73]; formulae for metallic systems have been 

derived by de Gironcoli [74], and such applications are discussed in some detail 

by Baroni et al [70]. It will suffice to note that as the main concern of this work 

is developing and implementing a DFPT algorithm to calculate electric field and 

phonon responses, and as the response to an electric field is not defined for metallic 

systems, only insulating systems will be discussed: the interested reader is referred 

to the references for details of the application of DFPT to metallic systems. 

3.2 The (2n + 1) Theorem 

The existence of a "(2n + 1) theorem" in quantum mechanics has been known since 

the work of Hylleras on two-electron systems in 1930 [75]; simply put, the theorem 

states that the (2n + 1 )th derivative of the eigenenergy of a Hamiltonian may be 

determined with only a knowledge of the change in the eigenfunctions up to order n. 

Further, Hylleras noted that the second order energy obeyed a minimisation principle 

with respect to variations in the first order wavefunction. It was not until the work 

of Dalgarno and Stewart in 1956 [76] that an iterative procedure was proposed 

that built the (2n + 1)th derivative of the eigenenergy from only the knowledge of 

the change in the eigenfunctions up to order n. This work was then generalised by 

Dupont-Bourdelet, Tillieu and Guy [77] to Hamiltonians with a dependence upon 

a small parameter. 

Such theorems are not limited to quantum mechanics: Sinanoglu [78] showed that 

any variational principle, when combined with a perturbation expansion will yield 

even-order variational principles. Although such theorems were known within quan­

tum chemistry, they had generally been calculated on a case-by-case business. The 

first introduction of these perturbative expansions of the Kohn-Sham energy func­

tional was by Gonze and Vigneron [79] in 1989; it was not until the seminal work 

of Gonze [71] in 1995 that a unified theoretical approach was achieved that proved 
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both the existence of even-order variational principles for constrained functionals 

and provided explicit expressions for these terms. 

"Variational" here is meant in the sense of a lower variational bound, that is, the 

value of the functional for a wave function slightly different from the true wavefunc­

tion is higher than the minimal value Eo for the true wavefunction <I>o. It is thus 

possible to say that 

if <I>, 0 :S E [<I>] - E [<I>o] :S KII<I> - <I>o 11
2 (3.13) 

where K is some positive number, under sufficient conditions of differentiability, 

which are always met in practice. In the following discussion E denotes the func­

tional under discussion, and E is the value that it can take. 

3.2.1 The Variational Principle and Perturbation Theory 

If the functional E depends upon a parameter A, then for A close to zero, it is 

possible to define a fixed number K such that 

(3.14) 

It may then be shown that [71] 

(3.15) 

and 

(3.16) 

where b<I>t is the trial wavefunction. Equation 3.15 is the 2n + 1 theorem, namely 

that the variation in the energy to order 2n+ 1 only, whilst equation 3.16 illustrates 

the variational property of the even order terms in the perturbation expansion. 
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Setting m equal to 2n + 1 or 2n, it is possible to write 

(3.17) 

and a Taylor expansion of this yields 

(3.18) 

This result has been derived for a functional without constraint; of course, in DFT 

calculations, the constraint of fixed particle number is imposed. It is therefore 

necessary to consider how the above expressions are altered when constraints are 

introduced. 

In order to minimise E[cf>t] under constraint, consider 

(3.19) 

where C[cf>t] is the functional that places a constraint on the domain of variation of 

cf>t: 

(3.20) 

A is a Lagrange multiplier chosen such that the solution that minimises the functional 

3.19 satisfies the constraint condition equation 3.20. It can then be shown [71] that 

there exists some n such that for all possible cf> the variational principle takes the 

form 

(3.21) 
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In general, the constraint may also depend upon the variational parameter>.. Taking 

this into account, then the above equation may be rewritten as 

The expression for the 2n + 1 theorem is then 

(3.23) 

with the even-order variational property 

(3.24) 

Although these expressions illustrate that the energy at order 2n + 1 only requires 

knowledge of the wavefunction up to order n and that even orders of expansion 

obey a stationary principle, it is not yet apparent how these relate to DFT. It is 

therefore necessary to now start to consider the expansion of the Kahn-Sham energy 

functional. 

3.3 Perturbative Treatment of the Kohn-Sham Func­
tional 

The Kahn-Sham energy functional may be written as 

N N 

E[<I>a] = L (<I>aiT + Vexti<I>a) + EHxc[n]- L A.sa[(<I>ai<I>.a)- <5a.s] (3.25) 
a=l 

where EHxc is the electron-electron interaction energy, i.e. the sum of the Hartree 

and xc energies, and Aa.s is a Lagrange multiplier, introduced to ensure the orthonor­

mality of the Kahn-Sham orbitals. It is easy to see what this Lagrange multiplier 
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is given by: consider the Euler-Lagrange equations associated with minimisation of 

the above functional 

N 

H\<I>a) = L Aj3a\<I>f3) 
/3=1 

with the Hamiltonian 

H = T + Vext + VHxc = T + VKS· 

Taking the scalar product 

(3.26) 

(3.27) 

(3.28) 

yields the result that the Lagrange multipliers are given by matrix elements of the 

Hamiltonian. It is worth stressing at this point that these matrix elements are not 

identical to the Kohn-Sham eigenvalues, as a gauge freedom exists: at this point, 

the orbitals <I>a have not been chosen to solve the Kohn-Sham equations, but rather 

solve the "generalised" Kohn-Sham equations 3.26. 

It is now useful to begin considering the expansion of the above equations. The 

density may be expanded as 

i N 
n(i)(r) = L L <I>~)*(r)<I>~-j)(r) (3.29) 

j=O a=l 

with the orthogonality condition becoming 

i 

2:.: (<I>~) \<I>~-j)) = o. (3.30) 
j=O 

The generalised Kohn-Sham equations become 

i i N 

L H(j) \<I>~-j)) = L L A~ll<I>~-j)) (3.31) 
j=O j=0/3=0 
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where the Hamiltonian expanded at order i is 

H(i) = y(i) + v}2s (3.32) 

and the Lagrange multipliers at order i become 

i i 

A~~= L L(<I>~)IH(i-j-k)I<I>~)). (3.33) 
j=Ok=O 

Using these then, the variational energy may be written, form= 2n, or m = 2n + 1 

as 

N n m n 

E(m) L L L L8(m- j- k -l)(<I>Y)I(T + v)(k)I<I>~)) 
a=l j=O k=O l=O 

+ ~ d:EHxc[t (:t).J<I>~)*(r))(:t,\k<l>~k)(r))JI 
m d,\ a=l j=O k=O >.=O 

N n m n 

L L L L8(m- j- k -l)A~~(<I>~)I<I>~)) 
a,,B=l j=O k=O l=O 

N 

+ L A~:)8a,B 
a,,B=l 

(3.34) 

which only requires wavefunctions up to order n, and is fully variational for even 

orders of expansion. 

3.4 Gauge Freedom 

In the previous section, it was implied that a gauge freedom exists with regard to the 

zeroth order occupied orbitals. In order to clarify this issue, consider the generalised 

Kahn-Sham equations, equation 3.26. These differ from the Kahn-Sham equations 

as usually presented 

(3.35) 
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Defining a (N x N) unitary matrix such that 

U -1 ut 
a/3 = a/3 

50 

(3.36) 

then if another set of occupied orbitals is defined through a unitary transformation 

N 

I<I>~) = L u,ai<I>,) (3.37) 
1=1 

it is clear that both total electronic energies and densities remain the same, whilst 

the orthonormality condition is still satisfied. This is the result of a U(N) gauge 

freedom. If one takes the occupied orbitals to be the solution of the Kohn-Sham 

equations, as will be done for the purposes of this work, then this is equivalent to 

stating that 

(3.38) 

and 

(3.39) 

However, this only applies to the zeroth order wavefunctions. It is necessary to 

consider the issue of gauge freedom with regard to the higher order wavefunctions. 

It is most convenient to consider the orthonormalisation condition, which may be 

written as 

i 

L (<I>~) I<I>~-j)) = 0 (3.40) 
j=O 

which implies, to first order, i = 1 

(3.41) 
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This though only fixes the real part of the above scalar product; the imaginary part 

is not fixed, and thus one may impose the stronger condition that 

(3.42) 

This defines the parallel transport gauge, and for the first order wavefunctions yields 

(3.43) 

which determines the projection of the first order wavefunction on the valence man­

ifold. As can be seen, the parallel transport gauge ensures that the first order 

wavefunction is completely orthogonal to the valence manifold. It should be noted 

that this is not the only gauge possible; it is sometimes useful, if one is interested in 

obtaining derivatives of the Kohn-Sham eigenenergies, to demand that the Lagrange 

multiplier matrix is diagonal at all orders. This is the "diagonal" gauge [71], but it 

is only mentioned in passing here. 

3.5 Connection to the Green's Function Method 

Having outlined the theoretical framework of the variational DFPT, it is now useful 

to actually identify the connections with the Green's function method outlined earlier 

in section 3.1. It is also instructive to consider the relationship between the DFPT 

and conventional perturbation theory. In order to do so, consider the first order 

change in the electronic energy, obtained using the 2n + 1 theorem: 

(3.44) 

The last term will be zero unless the Hartree and XC energies explicitly depend upon 

the perturbing parameter, .A. The XC energy, for example, will depend explicitly 

upon the perturbation when non-linear core corrections are introduced. If the kinetic 

energy is not dependent upon the perturbation explicitly, which is usually the case, 
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then 

N 

E(l) = L (<P~o) iv~;~I<P~l) (3.45) 
a=l 

which is nothing but the familiar Hellmann-Feynman theorem [80] derived explicitly 

within a DFT framework. So it can be seen that the well-known results of pertur­

bation theory are recovered, as one would expect. Indeed, equation 3.44 represents 

a generalised Hellmann-Feynman theorem. 

Appealing to the 2n + 1-theorem, the second order energy may be obtained from 

the following expression: 

N 

E(2) L[(<P~1)j(T + Vext)(l)I<P~0)) + (<P~1)j(H- Ea)(O)I<P~1 )) 
a=l 

(3.46) 

which may be minimised with respect to variation in the first order wavefunctions. 

The Euler-Lagrange equations applied to this functional yield [71] 

(3.47) 

which is, of course, the Sternheimer equation. Thus equivalence with the Green's 

function method has been demonstrated. It should be noted that the projection 

operators ensure that the parallel transport gauge is imposed. 

3.6 Non-variational Expressions and Mixed Derivatives 

So far, variational expressions for the second order energy have been considered. It 

is possible, though, to obtain non-variational expressions. If one is at the minimum 
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of the second order functional, then the first order wavefunctions satisfy the Stern­

heimer equation, and one may use this to re-write the first order wavefunctions in 

terms of the zeroth order wavefunctions. It is therefore possible to arrive at the 

following expressions [81]: 

N 

E(2) = 2: [ ( <I>~1 ) I (T + Vext) (1) I<I>~0)) + (<I>~O) I (T + Vext) (2) I<I>~0))], (3.48) 
a=1 

N 

E(2
) = 2: [ ( <I>~O) I (T + Vext) (1) I<I>~1 )) + (<I>~) I (T + Vext) (2) I<I>~0))] (3.49) 

a=1 

and 

N 

E(2
) = 2: ~[(<I>~1 )I(T + Vext)( 1 )I<I>~0)) + (<I>~0)I(T + Vext)( 1)I<I>~1 )) + 

a=1 

2(<I>~0)I(T + Vext)(2)I<I>~0))]. (3.50) 

These expressions have the advantage of simplicity compared to the variational ex­

pressions, but are unfortunately not variational. They are, however, of use when one 

considers mixed perturbations, such as arise when one is determining the off-diagonal 

elements of the dynamical matrix for example. 

The formalism already developed can be readily extended to dealing with two or 

more simultaneous perturbations. Consider the following expansion of the external 

potential 

( \) - (0) + "' \ Jl + "' \ \ . id2 Vext /\ - Vext L... A ]I Vext L... A)! /\)2 'lfext + · · · (3.51) 

where j1 and i2 label the different perturbations, which are Hermitian. Then the 

mixed derivative of the electronic energy 

(3.52) 
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is given by 

(3.53) 

Here, E~Jh is given by [81] 

(3.54) 

Defining a non-variational term, so called because it does not depend upon perturbed 

wavefunctions 

Eilh = ""(<I>(o) lvJd21<f>(o)) non-var ~ a ext a (3.55) 
a 

the non-stationary expressions may be written as 

Ehh ~ ""((<f>J2idl I<I>(o)) + (<I>(o)lvJI I<I>h)) + Ehj2 el 2 ~ a ext a a ext a non-var 
a 

= L(<I>{; ~~~ti<I>~0)) + E~~-var 

(3.56) 

These have been obtained under the assumption that <1>~1 is known; of course, there 

is no reason to stipulate this, and one may equally take it that <I>{; is known exactly 

instead, in which case one would obtain analogous expressions, but involving <I>!; 

instead. 

It can seen further that these non-variational expressions provide a generalisation of 

Dalgarno's interchange theorem [82] to DFT, as 

(3.57) 
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which follows trivially from equation 3.56. 

3. 7 Lattice Dynamics via DFPT 

It is now time to begin considering the application of the theoretical framework 

discussed in the previous sections to the specific problem of determining the lattice 

dynamics of crystalline systems. It is convenient to express the energy of the crystal 

as 

(3.58) 

where the E~~f term has been ignored, as this term yields the force acting on the 

atom, which is, of course equal to zero at the minimum. Here .6.~a is the displacement 

of atom K, from its equilibrium position T"' in the cell labelled a (with lattice vector 

Ra) in the Cartesian direction a. In the harmonic approximation, this expansion is 

truncated after the second term. The force on a given atom is then 

F~~ =- L C"'a,"''{3(a, b).6.T~'f3 (3.59) 
"'' ,{3 

where the matrix of force constants is defined through 

(3.60) 

The Fourier transform of this is then 

C- ( ) _ 1 "'C ( b) -iq·(Ra-Rb) "'a•"'' {3 q - N L.....- "'a,"'' {3 a, e 
ab 

(3.61) 

where N is the number of periodic cells in the crystal, and q is the wavevector of 

the phonon perturbation. This is connected to the dynamical matrix D"'a,"''{3(q) 

through 

(3.62) 
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which can be demonstrated by substituting wave-like solutions of the form 

(3.63) 

into equation 3.61. This is a Hermitian matrix, as one would expect from Newton's 

second law, and its eigenvalues yield the phonon frequencies 

L DM,K'{3(q)emq(;;,', {3) = W~qemq(;;,a) (3.64) 
K' ,{3 

where Wmq is the phonon frequency associated with modem, and emq(;;,a) is the 

phonon eigenvector for the same mode. It is easy to see that the connection between 

the dynamical matrix and the second order energy is then 

(3.65) 

where we have adopted the notation 

(3.66) 

The subscript q labels the phonon wavevector at which the second order energy has 

been calculated. 

3. 7.1 Incommensurate Perturbations 

It should perhaps be realised that one does not have to rely upon DFPT in order 

to calculate lattice dynamics as outlined in the previous section: it is possible to 

do so by finite differences. In this technique, each atom is displaced by some small 

displacement in each of the Cartesian directions. The force on the atom may be 

calculated using the Hellmann-Feynman theorem, and then it is straightforward to 

evaluate the force constant matrix using equation 3.61. One introduces supercells 

in order to handle perturbations of different q-vectors. 

The principal disadvantage of the finite difference approach is that it is not possible 

to calculate the phonon eigenvectors and eigenvalues at arbitrary q-vectors. Instead, 
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one is limited to q-vectors that are commensurate with the underlying crystal peri­

odicity. One of the major advantages of DFPT is that it is able to calculate responses 

at arbitrary q-vector. This can be seen by considering the following argument: the 

Sternheimer equation, written in terms of Bloch states is 

P (H )P. i(k+q)·r[ (1) ) _ p H(l) ikr[ (0)) 
c,k+q KS- Evk c,k+qe Uvk,q -- c,k+q KSe Uvk (3.67) 

and defining, for a generic operator 6, 

OA -ik-roA ik'·r' 
kk' = e e (3.68) 

the Sternheimer equation may be written in terms of lattice periodic functions as 

(3.69) 

The first order Hamiltonian is given by 

H(l) =v(l) +] 8
2
EHxc I n,(l)(r')e-iq·(r-r')dr' 

k+q,k ext,k+q,k 8n(r)8n(r') n<DJ q 
(3.70) 

with 

(3.71) 

The advantage of equation 3.69 compared to finite difference methods is that only 

lattice periodic functions are required. Thus the response to any q-vector may be 

computed by solving this equation, then simply multiplying the resulting first order 

periodic function u~~,q(r) by a phase factor incorporating the relevant q-vector. 

A further useful property of equation 3.69 is that the responses to perturbations at 

differing wave vectors q decouple, allowing one to compute the response to each wave 

vector separately. Thus the workload involved in determining the lattice dynamics 

is essentially independent of the phonon wavelength [73]. 

It is worth noting in passing here that non-commensurate potentials lead, in general, 

to non-Hermitian first order potentials [83]; however, it is still possible to show that 
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the second order energy is real, as expected, and that one may still use the theoretical 

machinery developed above. 

3. 7.2 Electronic and Ionic Contributions 

The dynamical matrix is directly related to the second order variation in the Kahn­

Sham energy; of course, this has an electronic and ionic contribution. Correspond­

ingly, it is possible to split the dynamical matrix: 

(3.72) 

where the second term is that due to the ionic contribution. 

Thus far, only a very general form of the second order contribution to the electronic 

energy has been discussed. It is now necessary to begin to examine how the formulae 

obtained earlier can be tailored to the specific case of a phonon perturbation. 

3.7.3 The Electronic Contribution 

Given the discussion above, it is possible to write the electronic contribution to the 

variational second order energy as [83] 

E(2) {u(o). u(l)} 
el,-q,q ' 

where Vsep refers to the non-local (separable) part of the pseudopotential, and Vtoc 
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refers to the local part. Note that in the Hartree contribution, the G = 0 term is 

included; as q has been taken to be non-zero, there is no divergence. In the case 

where q = 0, then the singularities arising from the vanishing denominator of the 

Hartree term may be dealt with as an homogeneous electric field associated with 

the atomic displacements. Working at the level of linear response, the response to a 

linear combination of perturbations is equal to a linear combination of the response 

of the system to each perturbation. It is therefore possible to calculate the response 

of the system to a phonon perturbation at q = 0 neglecting the singularities arising 

from the G = 0 terms, and then to combine this with the system response to an 

homogeneous field, calculated separately. The treatment of electric fields within 

DFPT and the method of combining this with a phonon perturbation is elaborated 

upon in a later section. 

3.7.4 The Ionic Contribution 

The ionic contribution to the dynamical matrix may be obtained by using the Ewald 

summation [81, 84, 85]. This is based upon a splitting of the real-space Coulomb 

summation in real space into two infinite summations, one over reciprocal lattice 

vectors, and one over real-space lattice vectors: 

(3.74) 

where 1 are lattice vectors, and 77 is a parameter that may be adjusted. The motiva­

tion for this splitting is that the long-range of the Coulomb interaction ensures that 

any direct summation (in real or reciprocal space) will be slowly convergent. The 

identity in equation 3. 7 4 holds true for any positive value of 77, and the value of this 

can be chosen appropriately such that rapid convergence of the two summations is 

achieved, typically for only a few reciprocal and real-space lattice vectors. 

Using this, and correctly taking into account the exact cancellation that takes place 

for the G = 0 contributions yields an ion-ion interaction energy 
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+ 
4 G2 ) 1f - :<::2" 1f L OIGI2 e 4p cos[(Rl - R2) . G] - 20 . 

G#O ry 
(3.75) 

The contribution of the ionic energy to the dynamical matrix may then be obtained 

using 

Cion,~~:a,~~:1 ,B(q) = Cion,~~:a,~~:',B(q)- 0~~:,~~:' L Cion,~~:a,~~:',B(q = 0) (3.76) 
~~:' 

where 

(3.77) 

with da,~~:~~:' = Ra + T~~:' - T~~:, and a a summation index over real-space lattice vectors, 

and 

XaX,B[3 2 x2(3 )] -- -erfc(x) + -e- - + 2 
x2 x3 V'IT x2 

r (erfc(x) ~ e-x
2

) 
Ua,B 3 + ;;;; 2 . 

X y1f X 
(3.78) 

3.8 Electric Field Response 

It is now time to begin considering how to calculate the response of a crystalline sys­

tem to an homogeneous electric field. The response of insulators and semiconductors 

to applied electric fields is of interest as it determines their dielectric, piezoelectric 
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and ferroelectric behaviour. A full understanding of the lattice dynamics of ionic 

systems requires that the long-range electric fields associated with long wavelength 

longitudinal phonons be treated adequately. Further, understanding the electrody­

namics of insulators and semiconductors allows the optical properties to be calcu­

lated from, and understood in terms of, the electronic structure. 

Homogeneous fields present significant difficulties when using Born-von Karmann 

boundary conditions. In order to understand why this is the case, consider the 

potential 

Vscr(r) = L E:mac,ara 
a 

(3.79) 

where E:mac,a is the macroscopic field in Cartesian direction a, and V8cr(r) is the 

resulting screened potential. This is unbounded from below in an infinite solid, so 

has no well-defined ground state. There is also an issue of stability of the crystalline 

band structure when such an external perturbing potential is applied: for large 

values of E: the possibility exists for valence band electrons to Zener tunnel into the 

conduction band [86, 88]. The perturbation is, as discussed in some detail by Nenciu 

[86], non-analytic; upon application of an external field, the discrete band structure 

of the insulator changes to a continuum of eigenvalues spanning the whole energy 

axis [87]. This is true even for fields of infinitesimal strength. 

The position operator also suffers in that it is ill-defined in a periodic crystal. The 

lattice periodicity ensures that one is dealing with a periodic Hilbert space; thus 

for an operator to be well-defined in this Hilbert space, the result of acting upon 

an eigenstate of the system must be a function that still resides in this periodic 

Hilbert space. The position operator's incompatibility with the underlying lattice 

periodicity ensures that this condition can not be satisfied, and it is hence not a true 

operator in periodic systems. 

One must therefore attempt to surmount these theoretical difficulties. The first is­

sue to confront is the absence of a groundstate; as discussed by Souza et al. [88] 

this can lead to "runaway" solutions, i.e. that the energy may always be lowered 

by transferring charge from the valence bands in one region to conduction bands 
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in a distant region. One approach, followed by Gonze and Nunes [89] and Nunes 

and Vanderbilt [90], is to introduce a finite electric field; for sufficiently small val­

ues, Zener tunnelling may be neglected. This preserves the insulating state of the 

unperturbed crystal, including the band structure and the periodicity of the charge 

density. One then considers the energy functional 

(3.80) 

where n is the unit cell volume, {we:} are real space Wannier functions 1 , and P 

is the polarisation, which may be obtained using Berry phase methods [91, 92, 93, 

94]. Note that the position operator is no longer required. The state underlying 

this expression is a resonance [89], and as such the energy functional is only well 

defined for Wannier functions with a finite cut-off distance. An understanding of 

the resonant nature of the solution of equation 3.80 can be provided as follows: the 

solution will be that which is generated from the zero field case when the field is 

adiabatically switched on, whilst retaining the periodicity of the electron density. 

If the field dependent response of the crystal is measured experimentally, then to 

measure "static" properties, the field must be switched on on a time scale slow 

compared to usual electronic processes, but fast compared to the tunnelling rate at 

the maximum applied field. Thus in reality, the object of experimental study is a 

long-lived resonance of the finite field Hamiltonian, rather than a true ground state. 

This corresponds to what equation 3.80 can be physically interpreted as [90]. 

An alternative is the approach proposed by Souza et al. [88], based upon a reciprocal 

space implementation of the above functional. In this scheme, discretisation of a 

uniform k-point mesh of N1 x N2 x N3 k-points within periodic boundary conditions 

imposes a toroidal topology over a supercell of dimensions Li = Niai (i = 1, 2, 

1 A note on the use of Wannier functions in this functional: because the energy functional in 3.80 
represents a resonance rather than a true groundstate, wavefunctions with a finite range must be 
used to ensure that the problem is well-defined and to prevent Zener tunnelling from conduction 
band to valence band. Wannier functions, with their exponential decay (in insulators), are ideal 
for this. Although one could argue that it should be possible to use any set of localised orbitals, in 
the modern theory of polarisation (MTP) the Berry phase expression used to calculate P takes a 
particularly transparent and physically appealing form, as the polarisation is then expressed as the 
polarisation of the centres of charge of the Wannier functions. In practical applications polarised 
Bloch orbitals may be used rather than Wannier functions; then a reciprocal space discretisation 
is required to prevent Zener tunnelling. This is the reciprocal space equivalent of the real-space 
cut-off required for Wannier functions. 
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3). In order for a minimum of the energy functional to exist, then the value of € 

must be sufficiently small that Zener tunnelling is suppressed. Provided that the 

distance across which electrons must travel to lower their energy is larger than the 

ring perimeter, Li = Niai then this will be true. This can be seen by imagining 

that the field causes the energy bands of the insulator to spatially tilt; to prevent 

tunnelling, then lc · ai I ::; Icc· ai I where elcc ·~I :::::; Egap/ Ni and Egap is the bandgap. 

These methods are naturally suited to calculating non-linear responses to electric 

fields, and indeed, Gonze and Nunes [89] have obtained expressions to arbitrary or­

der. However, in this work it is sufficient to examine the linear response of condensed 

matter systems to external fields in zero field conditions. By working in zero field 

conditions, the issues discussed above with respect to band structure stability, and 

the non-analyticity of the perturbing potential, may be alleviated, with the result 

that the problem being considered is theoretically well-defined. The sole remaining 

conceptual difficulty to be overcome is the position operator. 

It is possible to obtain a bounded potential that is commensurate with the lattice 

periodicity by introducing a sinusoidal perturbation and taking the long wavelength 

limit 

( ) 
_ 

1
. , 2 sin q · r 

v r - 1m" I I q--->0 q 
(3.81) 

which gives a linear potential. Since q is in the direction of the applied field, this 

corresponds to a longitudinal field. 

3.8.1 Treatment of Electronic Screening 

It should be noted that the external potential due to the applied field should be a 

screened potential, that is, one should incorporate the fact that the electrons will 

be polarised by the bare applied field resulting in an internal change of field. As is 

discussed in detail in the appendix, the long-wave method can adequately treat the 

screening, but at the cost of needing to introduce the derivative of the groundstate 
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wavefunctions with respect to their wave vector, i.e. 

(3.82) 

Heuristically, this can be understood as the operator d/ dka is proportional to the 

position operator in reciprocal space. 

3.8.2 Variational Second Order Energy 

Substituting the derivative of the ground state wavefunctions with respect to k­

vector, as in equation 3.82, for the position operator, a variational expression for 

the second order energy may now be constructed: 

(3.83) 

where 

(3.84) 

subject to the constraints 

( (0) I CQ) - 0 
umk unk - · (3.85) 

To understand the connection between this variational energy and the polarisability, 

consider the following molecular Hamiltonian 

H' = H- f.L. E (3.86) 
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where H is the unperturbed molecular Hamiltonian, and J.L is the molecular dipole 

moment. Expanding this as 

3 

J.La(Ea) = /-LO,a + L O'.af3Ef3 + · · · 
{3=1 

(3.87) 

where J.Lo,a is the dipole moment in direction a in the absence of an external field, 

and O'.af3 is the linear polarisability, then it can easily be seen that 

which can be written as 

a2E 
O'.af3 = - 8caEf3 • 

(3.88) 

(3.89) 

Thus the variational second order energy is directly related to the polarisability. 

Although this argument has been pursued using a molecular Hamiltonian, there is no 

reason why the same definition may not be used to calculate the bulk polarisability 

of a crystalline system. 

3.8.3 The Dielectric Permittivity 

The dielectric permittivity tensor is defined, in the linear regime, using 

Vmac,a = L Eaf3Emac,{3 

f3 

which, using simple electrostatics, may be written as 

Vmac,a = Emac,a + 47r L Eaf3Pmac,{3 

f3 

(3.90) 

(3.91) 

where Vmac,a is the macroscopic displacement field and Emac,f3 is the screened macro­

scopic electric field in directions a and {3, respectively, and Pmac,f3 is the macroscopic 

polarisation. Physically, therefore, the dielectric permittivity tensor can be seen to 
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incorporate the effect of screening within the solid, as it is the coefficient of propor­

tionality between the external bare field (the displacement field) and the screened 

field within the crystal itself. Of course, in general the displacement field and the 

polarisation will include ionic contributions. These will be neglected for now, and 

considered in a later section. Using equation 3.91, the electronic contribution to the 

dielectric permittivity tensor, E00 may be written 

oo J: 4 OPmac,a 
Ea{3 = UafJ + 7r 8 

Emac,{3 

which can be connected to the variational second order energy via 

where 

(3.92) 

(3.93) 

(3.94) 

3.9 Phonon-Electric Field Coupling: Born Effective Charges 

In polar crystals, long range macroscopic electric fields arise that are associated 

with long wave longitudinal optical phonons. These electric fields are a result of the 

long range character of the Coulomb interaction [73], and are responsible for the 

well-known phenomenon of 10-TO splitting, that is, the shift in frequency between 

longitudinal optical and transverse optical phonons at the Brillouin zone centre. 

The origin of this splitting can be understood most readily if one considers an 

argument due to Yu and Cardona [95]. Consider a long wave TO phonon propagating 

along the [111] direction in a zinc-blende polar crystal. The positive and negative 

ions lie on separate planes perpendicular to the direction of propagation. Under 

excitation of a TO mode, these planes slide past each other, which is analogous 

to the oppositely charged plates of a capacitor moving past each other whilst their 

separation is fixed. Now consider the situation when the ions are excited by a 

10 mode. In this case, the planes move apart, as can be seen in figure 3.1. In the 
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Figure 3.1: Illustration of the displacements of atoms within an ionic crystal during 
a long-wave longitudinal optical phonon. F is the restoring force due to the displace­
ments of the charges shown. It is this that leads to the LO-TO splitting. Note the 
similarity to the situation in a parallel-plate capacitor. 

capacitor, this increase in separation of the charged plates will be accompanied by an 

extra force due to the electric field between the plates. Similarly, in the crystal, the 

LO mode is accompanied by an extra restoring force due to the Coulomb interaction. 

This additional force then leads to the frequency change. 

This coupling between optical phonons and electric fields is quantified by the Born 

effective charge, which is defined through 

Z* O aP mac,f3 
K.,{3a = 0 OT K.a ( q = 0) ' (3.95) 

i.e. the Born effective charge is the coefficient of proportionality between a change 

in macroscopic polarisation in direction {3 caused by an atomic displacement in 

direction a under conditions of zero external field. 

If one considers the electric enthalpy, defined through 

E[unkicJ = EKs- Oo LPmac,afa (3.96) 
a 
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it can be readily seen that 

1 oE 
Pmac,a = -n--;::;----­

~'0 uEa 

allowing the effective charge to be written as 

2 -
Z* - - a E oFf<(, a I 

K-,a{3 - OE ~T = & 
f3U K-,a {3 T~<"'=O 
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(3.97) 

(3.98) 

and thus an equivalent definition is as the coefficient of proportionality relating a 

change in the force in direction o: due to an homogeneous electric field applied in 

direction f3 with nuclei clamped in place. 

The effective charge may be decomposed into ionic and electronic contributions: 

(3.99) 

where the first term is simply the ionic charge. In the following, discussion will 

centre around how to calculate the electronic contribution to the effective charge. 

The three definitions of the effective charge are formally equivalent, but lead to 

different approaches to the calculation of the effective charge, which will now be 

considered. 

3.9.1 Berry Phase Approach 

Taking the effective charge as defined in equation 3.95, then it is possible to calculate 

it using the King-Smith and Vanderbilt expression [96] for the polarisation 

(3.100) 

This is a Berry phase [91, 92], and such objects are discussed in depth in refer­

ences [92, 93, 94]. Essentially the Berry phase is a geometrical phase that arises in 

systems in which there is a continuous parameter space through which the system 

state may travel in a closed path. In crystalline solids, this parameter space is the 
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reciprocal space bandstructure [92]. The Berry phase is a well-defined gauge invari­

ant quantity [97, 93, 94, 92], even though the individual matrix elements comprising 

this equation are not well-defined. This is because, although working with Bloch's 

theorem, the phase of wavefunctions at neighbouring points in the Brillouin zone is 

arbitrary, and will depend upon the diagonalisation routine used. Thus, the phases 

of wavefunctions at neighbouring k-points are essentially unrelated. 

Substituting the King-Smith and Vanderbilt expression for the polarisability into the 

definition of the effective charge in equation 3.95, and carrying out some algebraic 

manipulations allows one to write 

(3.101) 

Thus it is possible to obtain the Born charge from a knowledge of the first-order 

wavefunctions with respect to a phonon perturbation, and the derivative of the 

groundstate Kohn-Sham orbitals with respect to their wavevector. 

3.9.2 Mixed Second Derivative of the Electric Enthalpy 

Calculating the effective charge as the mixed second derivative of the electric en­

thalpy allows the following stationary expression to be obtained: 

Z el 
K.,Ot/3 

(3.102) 

which will yield the electronic contribution to the effective charge at the minimum. 
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3.9.3 Derivative of the Atomic Force 

Expressing the effective charge as the derivative of the atomic force, as in equation 

3.98, allows one to utilise the Hellmann-Feynman theorem, yielding 

(3.103) 

which requires only a knowledge of the first-order wavefunctions with respect to 

an electric field perturbation and the first-order pseudopotential with respect to a 

phonon perturbation. 

3.9.4 Equivalence of Methods 

These three expressions are formally equivalent, and it is instructive to demonstrate 

this. From the variational expression, equation 3.102, one has the freedom to assume 

that either uca. or ur,.,a. are known, that is, that the appropriate Sternheimer equa­

tions are satisfied. Substituting in these Sternheimer equations allows one to then 

obtain the non-stationary expressions. The non-stationary expressions, although 

more sensitive to wavefunction convergence, do share the useful property that they 

are more convenient to work with. Indeed, they allow the effective charge to be 

determined in a 'post-process' calculation, immediately following an electric field or 

phonon linear response calculation. 

3.10 Low-Frequency Dielectric Permittivity 

Of course, in general, the dielectric permittivity will also have a contribution from 

the ions. This is because the applied field will cause the ions to move, and hence 

a polarisation will be induced. This polarisation is directly connected to the Born 

effective charge. The low-frequency permittivity is then the sum of the electronic 
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response and the ionic response and may be written [81, 98] 

( ) _ = 411" """' Bm,a{3 Ea(3 W - Ea{3 + n L.._; 2 2 
HQ m Wm- W 

(3.104) 

where Bm,a{3 is the mode oscillator strength, which is defined through [81] 

Bm,a{3 = ( L z~,aa'u;;q=o("'a')) 
K,O<' 

x (I: z~',f3!3'u;;q=o("'' !3')). 
K-'{3' 

(3.105) 

It is thus relatively easy to calculate as part of a post-process step once the normal 

modes and the response to an external field have been determined. 

3.11 LO-TO Splitting 

As alluded to earlier, the long range electric fields associated with long-wave longi­

tudinal phonons are responsible for the phenomenon of 10-TO splitting, that is, the 

removal of degeneracy between the 10 and TO phonons at the Brillouin zone centre. 

In order to deal with this, one must first consider the behaviour of the dynamical 

matrix as q --+ 0. It should be noted that the 10-TO splitting depends upon the 

direction in which one approaches the r-point, and this anisotropy is accessible to 

experiment. In a later chapter this direction dependence of the 10-TO splitting will 

be calculated for a-quartz. In the q--+ 0 limit, the dynamical matrix may be split 

[81, 98] into an analytic and non-analytic contribution: 

(3.106) 

where the non-analytic term is given by 

(3.107) 
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which can be seen to correspond to 1jr3 behaviour in real space, corresponding to 

dipole-dipole interactions [81]. These dipoles are created when the ions within an 

ionic semiconducting or insulating crystal are displaced in a long-wave longitudinal 

phonon. It should perhaps be noted that it is possible for the Born effective charge 

to vanish by symmetry, and non-analytic contributions to the dynamical matrix still 

exist. This is because, although symmetry may forbid a dipole being formed by an 

atomic displacement, it does not forbid higher order moments, such as quadrupoles 

and octupoles being set up. However, these contributions shall not be considered in 

this work. 

In order to simplify the analysis, it will be assumed that the LO eigendisplacements 

of 6 ( q --+ 0) are the same as those of 6 ( q = 0), even if the corresponding frequencies 

are not identical. This allows the following relationship to be obtained: 

(3.108) 

which directly connects the LO-TO splitting to the Born effective charge, as promised. 

It is worth noting that the above analysis could be extended in order to obtain the 

Lyddane-Sachs-Teller relationship [81]. However, in this work, consideration will be 

restricted to the case of the Coulomb gauge, that is, the retardation of the Coulomb 

interaction will be neglected, and the above analysis of coupling between lattice 

degrees of freedom and electrical degrees of freedom will suffice. 

3.12 Infra-red Spectroscopy 

Infra-red (IR) spectroscopy represents a powerful and flexible experimental technique 

that may be used to characterise materials. It provides direct information about the 

potential energy surface in the vicinity of the equilibrium position, and thus provides 

a probe of the structural and bonding characteristics. 

In particular, the energy of most molecular vibrational modes corresponds to that of 

theIR part of the electromagnetic spectrum [99], that is, between around 650 cm-1 

and 4000 cm-1. IR spectroscopy is therefore a natural tool for the investigation of 
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molecular structure and bonding. However, in practice, the analysis and assignment 

of spectral features is difficult [102], and correspondingly, attention is focused in­

stead upon characteristic functional groups and the associated familiar bands . This 

though, neglects a great deal of the information contained within the IR spectrum. 

Ab initio methods provide a solution to this problem: by accurately determining the 

vibrational spectrum of a system, then it is possible to assign unambiguously the 

spectral features to actual normal mode oscillations, allowing a deeper understanding 

of the vibrational spectrum and the bonding and chemical properties of the system 

under consideration to be gleaned. As it is now possible to routinely carry out high 

quality ab initio calculations on systems of up to 100 atoms on desktop PCs, this 

potentially allows experimentalists to rapidly analyse experimental spectra. 

A wealth of work exists in which ab initio methods have been applied very success­

fully to this problem [100], [101, 102, 103, 104, 105]. Density functional perturbation 

theory offers a natural route to the accurate determination of the IR spectra, and 

in this section, the underlying theory used to obtain IR spectra will be discussed. 

3.12.1 Basic Theory 

The simplest treatment of IR absorption in molecular systems is a semi-classical 

treatment. Essentially, classical electromagnetism requires that, if a system is to 

absorb radiation, that it do so by virtue of periodic changes in its electric dipole mo­

ment [106]. The frequency of the dipole oscillations must be equal to the frequency 

of the incident radiation for absorption to occur. 

The dipole moment is a vector quantity, thus, absorption may occur provided that at 

least one component of the dipole moment can oscillate at the incident frequency v. 

Of course, as a molecule vibrates, the dipole moment will oscillate at the frequency 

of the molecular oscillations, as the dipole moment is a function of the nuclear coor­

dinates. In the harmonic approximation used throughout this work, any molecular 

vibration may be expressed as a sum over normal modes; thus, the dipole moment 

may only oscillate at these normal mode frequencies, and radiation may only be 

absorbed at these normal mode frequencies. However, selection rules may ensure 
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that certain normal modes are so-called "silent" modes, ~.e. they do not absorb 

radiation. 

Since the molecular dipole moment is a function of the nuclear coordinates, it is 

possible to expand it as a Taylor series for small displacements: 

J-.la =/--lOa+ L (:QJ-.la) Qm +higher order terms 
am m 0 

(3.109) 

where a is the Cartesian component under consideration, the subscript 0 denotes 

quantities that are evaluated at the equilibrium configuration, and the Qm is the 

normal coordinate associated with the mth mode. This is related to the atomic 

displacements via 

(3.110) 

where XJ;; is the displacement of atom "' in direction a under the action of mode 

m. Given the following relationship 

(3.111) 

where A is a generic physical quantity, then it is possible to obtain derivatives 

with respect to the normal coordinates in terms of derivatives with respect to the 

Cartesian coordinates [103]. TheIR intensity for modem is then given by [103] 

(3.112) 

which, using the definition of the Born effective charge, allows the intensity to be 

re-written as [100] 

IfnR oc L I Z::::z~,af3em("'J))I
2 

a K-,/3 

(3.113) 

i.e. it is proportional to the oscillator strength. 
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It is easy to see from this how DFPT may be used to obtain the IR spectrum: 

given the Born effective charge and the normal mode eigenvectors, both of which 

are naturally obtained from a calculation of the lattice dynamics, it is a trivial task 

to calculate the oscillator strength. 

Selection rules are then obtained from the condition that the oscillator strength does 

not vanish. Whether the oscillator strength is non-zero or not depends upon the 

symmetry of the molecule and mode under consideration. For example, consider a 

simple linear molecule of the form X-Y-X, where the chemical bonds are identical. 

Carbon dioxide would be a representative molecule. If a normal mode is symmetric, 

i.e. the initial symmetry of the molecule is unchanged, then no change in the 

dipole moment occurs, and thus the oscillator strength will be vanishing, and the 

mode will be IR silent. However, if the mode is a non-symmetric mode such that 

the equilibrium symmetry of the molecule is not preserved, then there is a change 

in the dipole mode and consequently the oscillator strength is non-vanishing. An 

important feature to note here is that although the molecule has no dipole moment 

in its equilibrium geometry, provided that a transition dipole moment is induced by 

the normal mode oscillations, IR absorption will occur. This is a general feature of 

IR absorption that applies to more complicated molecules too. 

It should be noted that this is a restricted selection rule [106]; that is, it depends 

upon two assumptions: one, that the molecular vibrations are harmonic, allowing a 

separation of normal modes; and two, that higher order terms in the initial expansion 

of the dipole moment are negligible. More general selection rules may be derived 

independent of these approximations by considering the molecular symmetry; these 

are mentioned in passing for completeness, and will not be discussed in any detail 

here. The interested reader may find a fuller description in references [106, 107]. 

3.13 Summary 

In this chapter the theoretical framework of DFPT has been expounded in detail. 

The basic concepts have been introduced through the Green's function-based for­

malism, where the central issue is to solve a linear problem defined by the Stern-
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heimer equation. The existence of a 2n + 1-theorem in DFT has been discussed; 

this leads to a variational formalism of DFPT in which one may minimise a second 

order energy functional. Equivalence to the Green's function-based method has been 

demonstrated by showing that minimisation of the second order energy functional 

is equivalent to solving the Sternheimer equation. 

The treatment of lattice dynamics within DFPT has been discussed in depth, with 

the advantages of DFPT versus finite difference methods, viz. the ability to calcu­

late phonon response at arbitrary non-commensurate wavevectors with a workload 

independent of the perturbation, explicitly discussed. Conceptual problems with 

electric field perturbations in periodic boundary conditions have been examined, 

and methods of obviating these within DFPT have been presented. A formalism 

has been presented that allows the response to homogeneous fields to be calculated; 

this may be combined with the phonon response to long wavelength perturbations 

( q -+ 0) in order to calculate the well-known LO-TO splitting in ionic materials 

arising due to macroscopic fields associated with the atomic displacements. 

Finally, application of DFPT to determining IR spectra has been considered. Peaks 

in the IR spectrum of a material occur at normal mode frequencies possessing a non­

zero oscillator strength. The oscillator strength is composed of the Born effective 

charges and the phonon eigenvectors; thus it is a natural quantity to calculate as a 

post-process step following a DFPT calculation at little extra computational effort. 

The theoretical formalism presented in this chapter provides a framework whereby 

the response of many-electron systems to phonon and electric field perturbations may 

be calculated from first principles. However, it has concentrated upon developing the 

theory at an abstract level, with little discussion of the practicalities of implementing 

such a formalism. In the next chapter, the detailed implementation and testing of the 

methodology derived in this chapter within a plane wave pseudopotential framework 

will be presented. 



Chapter 4 

Implementation of DFPT 
Algorithm 

Thus far, discussion has centred around DFPT at an abstract level, with little as to 

how the relevant equations are implemented and solved. A major part of the work 

in this thesis has been concerned with the implementation of this DFPT formalism 

within a plane wave pseudopotential framework, and in this chapter, this is discussed 

in depth, along with efficient techniques for the solution of the second order problem. 

Although standard minimisation techniques are used that are similar to those used 

in the solution of the zeroth order Kohn-Sham equations, certain differences arise, 

particularly with regard to the use of symmetry operations in speeding up calcula­

tions, and the choice of k-points. These are discussed in some detail. Finally, a series 

of test results is presented: by examining the response of a series of test systems 

to electric field and phonon perturbations, the accuracy of the technique may be 

illustrated using existing results and finite difference calculations as a comparison. 

4.1 Plane Wave Implementation 

Plane waves provide a natural basis for DFPT calculations. In addition to the advan­

tages they possess described earlier, it should be noted that as the basis set is fully 

delocalised over all space, rather than being centred upon individual atoms, pertur­

bations leave the basis set unaltered. This is particularly beneficial as it ensures 

that one does not need to calculate Pulay-type corrections [108]. The combination 

77 
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of plane waves with the use of fast Fourier transforms (FFTs) allows one to rapidly 

change from real to reciprocal space, in order to carry out elements of the calcula­

tion in the space most readily suited, for example, the XC term is best dealt with in 

real space, as it is diagonal in this space; conversely, the kinetic energy is diagonal 

in reciprocal space, and it is thus most appropriate to deal with it in this space. 

The DFPT equations take a relatively simple form when expressed in terms of plane 

waves, and implementing them is a straightforward extension of the method used 

for the Kohn-Sham equations. 

4.1.1 First- and Second-Order Potential Operators 

Consider displacements of atoms in the sublattice "' in direction a such that the 

atomic position changes from T~,a + Ra,a to T~,a + Ra,a + )..eiq·Ra where).. is infinites­

imal. The first order change in the potential operator is 

(1) ( ') _ """ iq·Ra 8 ( R I R ) vext,qr,r -L....,;e ~v~r-T~- a,r -T~- a. 
a ~.a 

(4.1) 

The local contribution, in reciprocal space, may be written as 

(4.2) 

where the phase-factorised potential is defined through 

-(1) ( ) -iq·r (1) 
vloc,q r = e vloc,q(r). (4.3) 

Note that this includes the G = 0 term since q has been taken to be non-zero. The 

case of q ---+ 0 requires, in ionic systems, particular care due to macroscopic electric 

fields induced by the atomic displacements, as discussed in the previous chapter. 

This will be considered later. 

The first order non-local contribution is given by 

1 8 
oL:eJ.L~~x 
~GO J.l. UT~a 
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[ ( L e-i(k+q+G)·T,.(~-',,Jk + q +G)) x 
G 

( ~ ei(k+G')·T,.(;~(k + G'))] 

79 

(4.4) 

where the (are short-ranged projectors, i.e. the spherical harmonics, and eJ.£~ is the 

strength of the angular momentum channel J-L for atom "'· 

The second order contribution to the local potential is given by 

(4.5) 

where the prime denotes the G = 0 term has been set to zero. This is to avoid the 

divergences associated with this term. 

The second order non-local contribution is given by 

v;;~,k,k(G, G') 
1 {)2 
nLe~-'~82" x 

0 J.' T~a 

[(L::e-i(k+G)·T,.(J.'~(k+G)) X 
G 

( ~ ei(k+G')·T,.(;~(k + G'))]. 

4.1.2 Ultra-soft Pseudopotentials 

(4.6) 

The above analysis is dependent only upon the pseudopotential being non-local. No 

restriction has been placed upon the form of the non-local pseudopotential, save that 

the pseudopotential may not be ultra-soft. In DFT calculations, ultra-soft non-local 

pseudopotentials are amongst the most widely used [66]. This is because the orbitals 

in the core region are allowed to be as "soft" as possible, allowing a low kinetic energy 

cut-off to be used, although this is at the expense of losing the orthonormality 

requirements of the atomic orbitals, and the condition of norm conservation. As 

discussed in chapter 2, the first problem may be solved by considering a generalised 
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eigenvalue problem, with a generalised orthogonality constraint expressed in terms 

of an overlap operator S. The second problem may be remedied by the addition 

of an augmentation charge localised within the core regions to the system's charge 

[66, 73]: 

!V/2 !V/2 

n(r) 2 L 11/Jn(rW + 2 L L L Q{j(1/!nlf3{) (f3jl1/!n) 
n=l n=l I ij 

!V/2 

2 L (1/JniA(r)I1/Jn)· (4.7) 
n=l 

where the symbols have their usual meanings, as discussed in the previous chapter. 

It is because of the existence of this augmentation charge, and the overlap operator 

S, that care must be exercised when implementing DFPT using ultra-soft pseudopo­

tentials. For example, the orthonormality condition now depends upon the atomic 

positions through the projectors (31 . Thus, if one applies the Hellmann-Feynman 

theorem to the generalised eigenvalue problem, one obtains [73]: 

(4.8) 

i.e. the changing orthogonality constraint exerts forces. This is similar to the 

Pulay-type corrections that arise when the Hellmann-Feynman theorem is applied 

to localised basis sets [108, 109, 110]. Further, the derivative of the Kohn-Sham 

Hamiltonian itself will acquire extra contributions due to the presence of the aug­

mentation charge. 

An ultra-soft implementation of DFPT has been presented by Dal Corso [111, 112] 

in the context of lattice dynamics, whilst an application to dielectric tensors has 

been presented by Tobik and Dal Corso and independently by Umari et al [114]. 

The result is that the Sternheimer equation is generalised to 

(4.9) 
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where the projector onto the conduction band manifold is defined through 

P: = 1 - 2:::: SJ1/Jn) ( 1/Jn J. (4.10) 
n 

It is the presence of these extra terms that ensures that the implementation of 

DFPT presented in this thesis cannot use ultra-soft potentials. Further, the extra 

complications involved in actually implementing the additional terms in a sense 

removes one of the major advantages of ultra-soft pseudopotentials: the gain in 

efficiency obtained by using a lower kinetic energy cut-off is mitigated to an extent 

by the necessity of calculating more terms. It is therefore not a major disadvantage 

to be restricted to norm-conserving pseudopotentials in this study. 

4.1.3 The Hartree Contribution 

The equations in the previous chapter express the Hartree contribution in the recip­

rocal space. The Hartree term is diagonal in the reciprocal space, and thus it is more 

natural to calculate it using this formulation. However, in this work, a real space 

formulation is used instead. This may seem less efficient in light of the above com­

ments, but the motivation for this can be seen as follows: the local pseudopotential, 

Hartree and XC contributions can be written down as 

~ r [v(l) (r) + v(l) (r) + v(l) (r)Jn (l) (r)dr 
2 Jno xc,q H,q loc q · (4.11) 

The advantage of this equation is two-fold: firstly, it can be applied to GGA XC 

functionals; this is in contrast to the equations in the previous chapter, which were 

only applicable to the LDA. Secondly, by summing all of the local potentials as above, 

only a single integral of a first-order local potential multiplied by a first-order density 

is required. This leads to an overall increase in computational efficiency [115]. 

4.1.4 Exchange and Correlation 

Most implementations of DFPT have been within the LDA [81, 111, 112, 116, 117, 

118, 119, 120, 121, 122, 123]. The LDA has the advantage that it is computationally 
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easy to deal with, as simple analytic expressions for the derivatives of the LDA XC 

potential may be constructed. However, given the known limitations of the LDA 

when applied to molecular systems, as mentioned earlier, and also in references 

[51, 47], in this work the DFPT has been extended to include the GGA. 

In determining the second order energy, the second functional derivative of the XC 

energy is required; as has been discussed by Putrino et al. [124], evaluation of this 

for GGAs is analytically complex and numerically unstable. This is because the 

derivatives lead to large inverse powers of the electronic density, and one requires a 

prohibitively fine grid to evaluate these terms accurately and avoid numerical noise. 

Although in principle a finite difference approach could be adopted, this is not 

possible for incommensurate perturbations, for which v~~) is not a simple derivative. 

The starting point for the implementation of GGAs within DFPT is the work of 

White and Bird [125], who noted that the analytic XC potential has Fourier compo­

nents not representable on the minimum FFT grid (i.e. the smallest grid on which 

the charge density may be unambiguously represented). Rather, one can define a 

discrete approximation 

( ) 8fxc ~ 8fxc d'Vn(R1
) 

Vxc R = 8n(R) + ~ 8\i'n(R1). dn(R) (4.12) 

where the R are points on the real space lattice. Here, fxc(n, 'Vn) is the GGA 

functional being used. One may Taylor expand the above equation, treating n(R) 

and Vn(R) as independent variables. This yields 

82 fxc ( 82 fxc 
8n(R)8n(R) on R) + 8\i'n(R)8n(R) . o'Vn(R) 

~ { 82 fxc d\i'n(R1
) 1 

+ ~ 8n(R1)8\i'n(R1) • dn(R) . on(R) 

82 fxc d\i'n(R1
) 1 } 

+ 8Vn(R1)8\i'n(R1) • dn(R) . o'Vn(R) (4.13) 

which can be written as 
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EP f XC ( 8
2 f XC 0 ( ) 

8n(R)8n(R) on R) + 8\i'n(R)an(R) . \i'n R 

1 "" ·c iG·(r-R) { 8
2 
fxc , (R') 

- N ~ ~ 2 e 8n(R')8\7n(R') . un 

+ 8\i'n(~;;~n(R') . o\i'n(R') }· (4.14) 

In a DFPT calculation, one uses the phase factorised first-order density n,(l)(R) 

rather than on(R), resulting in a discrete approximation for Vxc(R). These are both 

complex periodic quantities. In the case of incommensurate perturbations, however, 

one should use the incommensurate first-order charge density n(1)(R). This is not 

a cell-periodic quantity, and thus it cannot be implemented upon the FFT grid. 

Writing the density in terms of n,(l) as 

(4.15) 

and applying the chain rule of differentiation to this yields 

(4.16) 

and thus one may use the substitution 

(4.17) 

This is cell-periodic and commensurate and it may thus be evaluated on the FFT 

grid. However, the GGA depends upon IY'n(R)I rather than V'n(R), and thus one 

needs to recast equation 4.14 in terms of this using 

8fxc 
8\i'n(R) 

Y'n(R) 8fxc 
IY'n(R)I 8IY'n(R)I 

Y'n(R) 82 fxc 
8\7n(R)8n(R) IY'n(R)I 8IY'n(R)I8n(R) 

(4.18) 

(4.19) 
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and 

EP fxc ( 1 VTn(R)VTn(R)) 8fxc 
8VTn(R)8VTn(R) = IVTn(R)I - IVTn(R)I3 BIVTn(R)I 

VTn(R)VTn(R) 82 fxc 
+ IVTn(R)I 2 8IVTn(R)I8IVTn(R)I. 

( 4.20) 

It is straightforward to evaluate these derivatives by numerically differentiating the 

GGA XC expressions. Of course, for the electric field response, which corresponds 

to the q = 0 case, equation 4.17 simply reduces to b"VTn(R) = VTn(l) (R), and thus 

one can simply take a numerical derivative of the XC potential. 

4.2 Calculation of uk 

The treatment of electric field responses within the long-wave method requires, as 

discussed in the previous chapter, that the quantity uk be calculated. One obvious 

way to do this is using numerical derivatives; however, this is aesthetically unappeal­

ing, and its accuracy is limited by the choice of finite step. Indeed, the optimum step 

would be system dependent, as it would depend upon the topology of the Brillouin 

zone of the crystal under consideration. A more fundamental difficulty is related 

to the fact that a naive approach whereby one simply taking numerical derivatives 

with respect to k-vector encounters problems due to non gauge-invariance. This 

is because the phase between wavefunctions at neighbouring k-points is random, 

and the choice of a periodic gauge does nothing to constrain this. Thus the answer 

obtained will vary from run to run, depending on the phases chosen as a result of 

the diagonalisation routine. This issue is returned to in more detail in section 4.9. 

A more elegant method, and one that evades these difficulties, is to appeal to the 

2n + 1 theorem, and formulate the following variational expression 

E ketket - ( ket IH(O) (0) I ket ) + ( ket IT.k"' + ket I (0) ) + 
mk - umk k,k - Emk umk umk k,k V sep,k,k umk 

( (0) IT.kn + ket I kn ) 
umk k,k V sep,k,k umk (4.21) 
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where the first order wavefunction is to be obtained subject to the constraints 

( 4.22) 

and the first order kinetic energy operator is given by 

(4.23) 

The terms involving the first order kinetic and potential energy operators may be 

recast into the following convenient form, following Pickard and Payne [126]: 

(4.24) 

where, for a non-local potential 

(4.25) 

which is known as the velocity operator. 

In order to evaluate the commutator, it is necessary to evaluate matrix elements of 

the form CBiral7fmk), where the (3 are the projectors used in the separable part of 

the pseudopotential. It is most convenient to consider these in reciprocal space. If 

one takes the matrix element (f31eiq·rl7fmk), then for small q 

(4.26) 

and setting q = (q, 0, 0), then 

( 4.27) 

The advantage of this method for evaluating the matrix elements is that the CASTEP 

code already has routines for evaluating ((317/Jm,k) and therefore evaluating (f31eiq·r 17/Jmk) 

only requires small shifts in the reciprocal space grid on which lf3) is calculated. The 

size of q is chosen such that higher order terms ( 0 ( q3 ) and higher) become negligible, 

whilst avoiding errors due to precision limitations. 
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4.3 Solution of second order equations 

As mentioned in the previous chapter, the Gonze formalism of DFPT is a variational 

method. As such it relies upon the solution of a set of Euler-Lagrange equations 

arising from minimisation of the second order energy functional (see equation 3.34) 

E~zl. The equations may either be solved using standard linear algebra methods, 

or alternatively, by minimising E(2) directly; both methods provide the same solu­

tion. For reasons similar to the motivation for solving the Kohn-Sham by direct 

minimisation, the method adopted here is that of direct minimisation of the second 

order functional. One important feature is that the expression for E~zl is an exact 

quadratic in the space of the first-order wavefunctions; this is in contrast to the 

Kohn-Sham functional, and makes it easier to implement a minimisation algorithm. 

The prerequisite for a DFPT calculation is a set of accurate zeroth order wavefunc­

tions at k and k + q. The approach of Gonze [83] is to utilise the groundstate 

self-consistent wavefunctions which are available on the Monkhorst-Pack grid. This 

however, has the disadvantage that it limits the phonon wavevector q to the differ­

ence between any pair of Monkhorst-Pack points. To remedy this, in this work, a 

non-self-consistent bandstructure calculation is used to obtain a set of { u~~+q} at 

any required q-point. This allows the response at any wavevector q to be calculated. 

4.3.1 Direct Minimisation: Conjugate Gradients Algorithm 

The minimisation algorithm used is similar to that used for the solution of the Kahn­

Sham equations. An initial trial vector is used; in practice, since it is assumed that 

the perturbation being dealt with is small, this is taken to be the null vector. This 

obviously satisfies the constraint conditions. Specifying the trial wavefunction at 

iteration m by 7./;":), where a is the band index, a steepest descents vector can be 

determined from 

(4.28) 

which is obtained by taking the gradient of the energy functional with regard to 

changes in 7j;":}(l) projected onto the conduction bands. The preconditioned steepest-
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descents vector is then 

(4.29) 

where K is the preconditioning operator. This depends upon the choice of precon­

ditioning scheme, and will be returned to later, in section 4.3.3 

The conjugate gradient direction is then given by 

( 4.30) 

with 

(4.31) 

and~~= 0. 

The improved first order wavefunction is then given by 

( 4.32) 

where() is a parameter determined by the minimisation requirement. The optimum 

value of() may be determined using a two-point minimisation algorithm. Given the 

quadratic form of the second order energy functional in 'ljJ~1 ), one can evaluate the 

second order energy and gradient vector for some given '1/J;:(l), and again for some 
-m(l) '1/Ja where 

( 4.33) 

Here c is some arbitrary, but small, step-size. Given three pieces of information, 

that is, the value of the second order energy at the original point and the new point, 

and the gradient at the original point, it is possible to fit a quadratic form. The 

optimum step size is then given by 

(4.34) 
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This is notably simpler than the ground state minimisation algorithm, because the 

ground state functional is not a simple quadratic form. 

The above algorithm is not a true band-by-band minimisation scheme in the spirit 

of Gonze [83]. That is, one does not decompose E~Z) and the first order Hamiltonian 

on a band-by-band basis, and then optimise each orbital individually. In principle, 

one would expect a band-by-band minimiser to be superior, but it would require 

a separate evaluation of the first-order Hamiltonian for each band considered. The 

method outlined above optimises the orbitals simultaneously, and thus the first-order 

Hamiltonian need only be evaluated twice for each iteration; since the evaluation 

of the first-order Hamiltonian is the most time-consuming step, this is a major 

computational saving, and save around 20% of the CPU time [115]. Furthermore, 

as all first order orbitals are being altered simultaneously, there is no requirement 

for a supplementary self-consistency loop, in contrast to the band-by-band scheme. 

In practice, it is found that convergence is rapid (within 10-20 iterations) in most 

cases, and thus it seems justified in using the all-bands minimiser. 

It is worth noting here that the same general algorithm may be used for the de­

termination of uka., although in this case, the algorithm is simplified as there is no 

requirement for self-consistency requirement. Thus it is possible to modify the above 

algorithm and implement it on a band-by-band, k-point-by-k-point basis. 

4.3.2 Conjugate Gradients vs Steepest Descents 

In figure 4.1 the performance of a steepest descents minimiser is compared to that 

of a conjugate gradients minimiser when applied to the determination of E~T for 

a-quartz. The convergence criterion is that the minimum is taken to be found 

when the difference between the values of E~z for two subsequent iterations is less 

than 10-4 internal units. Although this is not a particularly tight tolerance, it 

suffices for the purpose of demonstrating the relative rates of minimisation of the 

two algorithms. The increased efficiency of the conjugate gradients minimiser is 

immediately apparent, taking around 45 iterations to find the minimum, in contrast 

to the steepest descents minimiser, which takes over 100 iterations (although these 

are not shown on the graph). The steepest descents minimiser's performance is 
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Figure 4.1: Performance of steepest descents minimiser compared to a conjugate 
gradients minimiser for a-quartz. The units of the second order energy are internal 
atomic units. No preconditioning has been applied. 

initially almost identical to that of the conjugate gradients minimiser, but as the 

minimum of the energy landscape under consideration is approached, its performance 

degrades massively. Essentially, this is because as the minimum is approached, the 

steepest descents minimiser takes no previous steps into account, in contrast to 

the conjugate gradients method. Thus it fails to "home in" efficiently upon the 

minimum, and instead oscillates around the environs of it. It is this by-passing of the 

minimum that accounts for the extraordinarily long time that it takes to converge. 

The logarithmic plot shown in figure 4.2 illustrates very clearly this difference in 

performance. In section 4.3.7, the merits of various preconditioners are discussed; 

the results for a-quartz are presented in figure 4.3. These indicate that although 

preconditioning improves the performance of the SD scheme such that it reaches 

the minimum in around 40 iterations compared to 110 without preconditioning, this 

is still poorer than the CG scheme with the same preconditioning scheme applied, 

which reaches the minimum in around 20 iterations. It is therefore easy to see 

that, as is true for the solution of the zeroth order problem, a conjugate gradients 

algorithm is superior and thus preferable than a simple steepest descents minimiser. 
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Figure 4.2: Performance of steepest descents minimiser compared to a conjugate 
gradients minimiser for a-quartz. Logarithmic plot of the difference in the second 
order energy at each iteration from the final converged value. No preconditioning 
has been applied. 

- CG-none 

10 
- SD-none 
- CG-TPA 
- SD-TPA 

.. 
~~ 0.1 

.E 

0.01 

0.001 

0
·
0001o 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 

Iteration 

Figure 4.3: Performance of steepest descents minimiser compared to a conjugate 
gradients minimiser for a-quartz. Performance with and without preconditioning. 
Logarithmic plot of the difference in the second order energy at each iteration from 
the final converged value. 
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4.3.3 Comparison of Preconditioning Methods 

As in minimising the Kohn-Sham energy functional, effective preconditioning schemes 

are essential for efficient solution of the second-order problem. Although the basic 

concepts behind preconditioning have been outlined in a previous chapter, here a 

more detailed discussion of the various approaches is presented, and their perfor­

mances compared. 

4.3.4 The TPA Scheme 

A standard scheme is that proposed by Teter et al. [127]. Here, a preconditioning 

operator is introduced that is an approximate inverse kinetic energy. The justifica­

tion for this is quite simple: the high G components that lead to the minimisation 

problem being ill-conditioned are approximately diagonal in the kinetic term. This 

approximation obviously breaks down for the low G components, but as these do 

not need to be preconditioned, the preconditioning operator is chosen to be approx­

imately constant for small G-vectors. Accordingly, the form of the preconditioning 

operator is 

K 
1 

_ 

6 1 
27 + 18x + 12x2 + 8x3 

G,G - G,G 27 + 18x + 12x2 + 8x3 + 16x4 (4.35) 

where 

X= (4.36) 

and here Tt is the kinetic energy of state m at iteration i. As is easily verified, the 

matrix elements Kc,GI approach unity as x approaches zero, with vanishing first, 

second and third derivatives. Thus the small wave-vector components of the trial 

vector remain unaltered. Above x = 1, the matrix elements approach 1/[2(x- 1)] 

asymptotically. Thus this factor causes all of the large wave-vector components to 

converge at nearly the same rate. 

In figure 4.4, the effect of preconditioning upon the eigenvalue spectrum is shown; 

as is clearly seen, the application of the preconditioning matrix K ensures that 
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Figure 4.4: Effect of preconditioning upon eigenvalue spectrum. Here 8¢ is the error 
in the wavefunction, (is the gradient of the wavefunction, and rJ is the preconditioned 
gradient vector. 

all the high kinetic energy contributions converge at approximately the same rate 

as the low kinetic energy components. This conditioning of the problem ensures 

that the preconditioned gradient vector is now a simple multiple of the error in the 

wavefunction gradient, leading to much improved convergence properties. 

4.3.5 The RTPA Scheme 

The modified TPA scheme (RTPA) has been proposed by Kresse and Furthmiiller 

[128], and is essentially very similar to the TPA scheme in spirit. The only modifi­

cation is in the form of the preconditioning matrix, which in this scheme takes the 

form 

K 
1 

_ 

8 1 
2 27 + 18x + 12x2 + 8x3 

G,G - G,G 3/2Tim 27 + 18x + 12x2 + 8x3 + 16x4 (4.37) 

with 

( 4.38) 

It is not clear that the slightly different definition of x leads to improved efficiency 

compared to TPA when applied to minimisation of the Kahn-Sham functional for 

most materials. 
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4.3.6 The PSP Scheme 

An alternative scheme, and one that is intended specifically for DFPT problems, is 

that of Putrino, Sebastiani and Parrinello [129]. Here, one wishes to improve the 

conditioning by finding an inverse of 

(4.39) 

This expression may be simplified by replacing the last term with the trace of the 

Hamiltonian, and further, by noting that for high G the dominant contributions 

come from the kinetic energy, and that this term is diagonal in reciprocal space. 

Thus one may approximate the previous equation by 

(4.40) 

This may be easily inverted to provide the preconditioning matrix; however, it may 

almost vanish for certain G-vectors. In order to prevent this, one instead transforms 

to 

(4.41) 

where ry is some small value. The final preconditioner is then simply 

(4.42) 

4.3. 7 Evaluation of Preconditioning Schemes 

In figure 4.5 the performance of the three preconditioning schemes is illustrated for 

NaCl. As can be seen, the PSP method is slightly better than the TPA and RTPA 

methods, which have almost identical performances. This performance differential 

is not significant, and it is likely that the best preconditioning scheme will depend 

upon the system under consideration. As an example of this, in figure 4.6, the 

performance of the three schemes is shown for a-quartz. The relative performances 
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Figure 4.5: Comparison of preconditioning schemes for NaCl 

may be seen more clearly in the logarithmic plot presented in figure 4.7. In this case, 

the TPA and RTPA schemes appear to be most effective, whilst the PSP scheme is 

least effective. For the remainder of this work, the TPA scheme is used . There are 

two main reasons for this: at least in some systems, the TPA scheme is superior to 

the PSP scheme; further, the PSP scheme, although designed specifically for DFPT, 

requires the potential for every G-vector to be stored, which is more expensive than 

both the TPA and RTPA schemes, for which the kinetic terms only are required. 

Taken in connection with the first factor, this would seem to justify the use of TPA. 

4.4 Off-diagonal Terms and Mixed Perturbations 

Thus far, all discussion has centred upon the determination of the diagonal terms 

of the dynamical matrix and the permittivity tensors by direct minimisation of the 

second order energy. However, one must also determine the off-diagonal components 
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of these quantities. One could utilise the 2n + 1 theorem to obtain variational 

mixed perturbation expressions that could be minimised in the same way as has 

been outlined for the diagonal terms. However, these expressions would have two 

unknown quantities: the first-order wavefunctions with respect to the two different 

perturbations in question. A more sensible strategy is instead to obtain the diagonal 

terms, and hence the set of 7/J(l)s, and then to combine these first order wavefunctions 

to construct non-variational expressions in the manner described in the previous 

chapter. The non-variational expressions consist of simple matrix elements, and are 

thus relatively inexpensive to calculate; the increase in computational efficiency is 

worth the decrease in accuracy due to a non-stationary expression being used. Of 

course, provided that the minimisers used to obtain the first-order wavefunctions 

are allowed to converge to a sufficiently tight tolerance, then the resulting matrix 

products can be determined to a sufficient level of accuracy. 

4.5 Sum Rules 

In addition to the minimisation constraints discussed in the previous sections, sum 

rules also exist that are imposed by the translational invariance and charge neutrality 

of the system under consideration. Although in principle these should be exactly 

satisfied, in practice, they will be broken. This is because of the finite number of 

plane waves used, the quality of the reciprocal space sampling and the discretisation 

of the real space integrals used for the XC potential. Thus the extent to which 

the sum rules are violated provides a measure of the quality of convergence of a 

calculation with regard to these parameters. 

4.5.1 The Acoustic Sum Rule 

It is immediately apparent that due to translational invariance, the zone centre 

dynamical matrix should allow a rigid translation of the solid as an eigenvector with 

zero eigenfrequency. This leads to the sum rule: 

L C"'a,r.1{3(q = 0) = 0. (4.43) 
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Use of this sum rule allows one to determine the self-interaction terms of the dynam­

ical matrix, i.e. the diagonal terms, r;, = r;,1, as is easily shown using the previous 

equation: 

CKa,K./3 = - L Cr;,a,r;,1{3 

;;,' f=r;, 

4.5.2 The Charge Neutrality Condition 

(4.44) 

In a charge neutral system, the requirement that the acoustic mode frequencies 

vanish for q = 0 demands that 

z::=z~,a/3 = 0 ( 4.45) 
K, 

which can be seen by comparing the acoustic sum rule with equations 3.106 and 

3.107. Although in phenomenological approaches this is imposed as an auxiliary 

condition, it is possible to show, from a microscopic approach, that this is a conse­

quence of charge neutrality [130]. 

4.6 Dynamical Matrix Symmetry 

In the absence of symmetry (other than the Hermitian character of the dynamical 

matrix), construction of the dynamical matrix requires 3N perturbations and varia­

tional minimisations in order to determine the diagonal elements, and 3N/2(3N -1) 

calculations to determine the off-diagonal elements. This may be reduced by ex­

ploiting the symmetry of the dynamical matrix consequent upon the space group 

symmetry of the crystal and the phonon wavevector q. The theory of the symmetry 

properties of the normal modes and dynamical matrix has been discussed in detail 

by Maradudin and Vasko [131] and Warren [132] using the irreducible multiplier 

representations of the space group. A multiplier representation is one in which the 

following relationship is satisfied between any two members of a set of matrices 

{T(R)} in one-to--one correspondence with the elements {R} of a group 

(4.46) 
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In the context of lattice dynamics, the group elements denoted by {R} are the purely 

rotational elements of the group of the wavevector q, Gq. This is the subgroup of 

operations of the full crystal space group under which the wavevector q is invariant. 

The matrices {T(R)} form a 3N-dimensional unitary representation of the subgroup 

Gq and are given by 

( 4.47) 

where Fo(K'; R) is defined through 

(4.48) 

which expresses the fact that the index K uniquely labels the atom K that is brought 

into position K by the symmetry operation {Riv(S)+x(m}, where x(m) is a crystal 

lattice vector. 

The multiplier ¢(q, Ri, Rj) is given by 

(4.49) 

where the reciprocal lattice vector b(q, Ri1
) is defined through 

( 4.50) 

If the wavevector q lies within the first Brillouin Zone, then b is identically zero, and 

the multiplier equals unity. Alternatively, if one is dealing with a symmorphic space 

group such that all v(R) are equal to zero, then the multiplier will also be equal 

to unity. In these cases, the multiplier representation will simply be an ordinary 

representation of Gq. 

The dynamical matrix transforms under the operations of Gq as 

(4.51) 
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which may be used to determine the non-zero independent elements of the dynamical 

matrix. Further conditions may be imposed upon the form of the dynamical matrix 

if the point group operations include an operationS_ such that S_q = -q, i.e. -k 

is in the star of k. Then it can be shown that, for values of q for which this is true, 

that 

{ e-iq·x(~) D~~' (q)eiq·x(~')}* = L)S- )JLae-iq·x(~~;) D~fi' (q) X 

a/3 

(4.52) 

where K, and R,' are the labels of the atoms into which "' and "'' are sent by the 

operation S_. One should note that this operation is not limited to the case of a 

simple inversion. In this particular case, the above simplifies to 

(4.53) 

If every ion is at a centre of inversion, such that K, = "' and F\,
1 = "'', then the matrix 

(4.54) 

is a real symmetric matrix, and accordingly, its eigenvectors may be chosen to be 

real. It is easy to show from equation 4.53 that elements of the dynamical matrix 

diagonal in "' and K, are complex conjugates of one another. 

One wishes to utilise the symmetry operations of Gq in order to determine the 

minimal subset of the elements of D~fi' ( q) and the relationships between elements 

in order to reconstruct the whole matrix. The algorithm used is as follows: a 

maximally random dynamical matrix D~fi;rand( q) of the same dimension as the 

dynamical matrix is constructed that satisfies all of the invariances of the form of 

equation 4.51. This is achieved by generating an initial Hermitian matrix D~~;~~~ 

and then generating D~fi';rand(q) using 

g(q) 
D/\;11;' ( ) - "'T-1( . R)D~~;,~~;';initT( . R) a/3;rand q - L.., q, a{3;rand q, · (4.55) 

j=l 
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A similar procedure is subsequently applied to D~~~;rand( q) to ensure that it satisfies 

the inversion and time-reversal symmmetries. 

The resulting D~~~;rand(q) satisfies all of the symmetries of the subgroup Gq, but 

is otherwise random. One may then determine the relationships between elements 

of the dynamical matrix by analysing the form of D~~:rand( q). The relationships 

between the elements of this matrix may take the form of elements equal to zero, 

elements which are equal in magnitude and complex phase, elements which are equal 

in magnitude but of opposite phase, and elements which are equal in magnitude but 

rotated or counter-rotated in phase. These conditions are satisfied to a large degree 

of numerical precision. In order to ensure that accidental values of zero are not 

produced, the initial random elements of D~~;~~iJ are biased away from zero. 

The symmetries present may ensure that certain elements of the dynamical matrix 

have a fixed phase; this may be either an absolute or q-dependent value. Symmetry­

related phases may be determined by generating a new D~~;~~~ using an indepen­

dent sequence of pseudo-random numbers and repeating the above analysis. Phases 

and phase relationships which are in common are marked as being symmetry deter­

mined. 

The symmetry information may be used within a calculation of D~~~ ( q) to set all 

elements identically zero to this value immediately. All elements which have equal 

magnitude are assigned at the first calculation of one of them; the symmetry-related 

phase information is used to correctly set the phases of these related elements. Upon 

an element being assigned, a flag is set to "already computed", and subsequent 

iterations of the atom or direction loops omit any calculations if this flag is set for 

a particular element. 

4. 7 Born Effective Charge and Permittivity Tensor Sym­
metry 

The Born effective charge tensors resemble the leading 3 x 3 block diagonal of the 

dynamical matrix corresponding to a particular atom with no requirement for Her­

miticity. An analysis similar to that described above is therefore possible, although, 



Chapter 4. Implementation of DFPT Algorithm 101 

since the effective charges require the calculation of the system response to an atomic 

displacement u;;;,kq, the loops over ions and directions used for the dynamical ma­

trix calculation may only be omitted when both the dynamical matrix and effective 

charge symmetries permit. 

A similar algorithm and analysis may be performed for the symmetry of the permit­

tivity tensor. However, in this case there are some simplifications, as the permittivity 

is simply a symmetric tensor, rather than being Hermitian. Further, one may sim­

ply use the symmetry operations of the full crystal point group rather than those of 

the group of the wavevector Gq. It should also be noted that one does not need to 

consider phase relations between elements, as the permittivity tensor elements must 

be real. 

4.8 Brillouin Zone Sampling 

The choice of k-points used in a DFPT calculation deserves careful consideration. 

In a single-point calculation, the space group symmetry is used to determine an 

irreducible set from a Monkhorst-Pack grid of k-points [60]. However, in a DFPT 

calculation, the perturbations applied break crystalline symmetries, and thus one 

must instead use a subgroup {S} of the space group that leaves the perturbation 

invariant. For a perturbation applied in direction o:, one must therefore unfold 

the symmetry irreducible set of k-points determined from the crystal space group 

up to the full Monkhorst-Pack grid. This is not symmetry-reduced, and thus in 

most cases this will be larger than the 'standard' symmetry-reduced grid used. The 

operations of the subgroup are then determined by application of the space group 

symmetry operations and retention of those that leave the perturbation invariant. 

These operations are then used to construct a new irreducible set of k-points. Of 

course, as one alters the direction of perturbation (and for phonon calculations in 

some cases, the atom being perturbed) it will be necessary to determine a new 

symmetry irreducible set using the above algorithm. In general, these irreducible 

sets of k-points will be larger than for the SCF calculation, which is expected due to 

the lower symmetry. An additional consideration is that unless 2q is zero or equal 

to a reciprocal lattice vector of the crystal time reversal symmetry is broken, and 
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thus one requires both k and -kin the set of k-points. 

Given the above discussion, the symmetrised first-order density is constructed ac­

cording to 

Ns Nk occ 

n~1)(r) = L S L Wk L u~:~(r)u;;:;k,q(r) (4.56) 
S=l k=l m 

where S are symmetry operations of the subgroup, and the Wk are the weights 

associated with each k-point in the irreducible set. The ground state wavefunctions 

here may be determined by a non-self-consistent bandstructure calculation at the k­

points required. Of course, one may reduce the number of calculations required here 

by utilising the full space group symmetry. The wavefunction coefficients transform 

in reciprocal space according to 

(4.57) 

under the action of {Sivs}, where vs is a translation vector smaller than any prim­

itive lattice translation vector of the crystal. 

Further complications arise for terms that involve mixed perturbations. This is be­

cause both perturbations will, in general, possess different symmetries. For example, 

in determining the off-diagonal elements of the dynamical matrix, terms such as the 

following arise: 

( 4.58) 

where each wavefunction, and the perturbing potential itself, will have been evalu­

ated over different irreducible k-point sets. Given the transformation law in equation 

4.57, it can easily be shown that 

where K is a symmetry-related atom. The sum on the right-hand side here is taken 

over the same irreducible set used for the diagonal term. 
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Figure 4.8: Effect of Brillouin zone sampling upon convergence of E~ in silicon. 

4.8.1 Effect of Brillouin Zone Sampling Upon Convergence 

The quality of the DFPT calculation will depend upon the sampling of the reciprocal 

space. It would be reasonable to expect that, since the accuracy with which the 

first-order wavefunctions is obtained is sensitive to the accuracy with which the 

ground state of the system is determined, and further, that because one is obtaining 

derivatives of the Kohn-Sham energy, that the DFPT calculation may actually be 

more sensitive to the quality of the Brillouin Zone sampling. As a result, one would 

perhaps expect that a finer k-point mesh would be required. In figure 4.8 the effect 

of the sampling is shown for silicon. As can be seen, the permittivity is converged 

at around 10 k-points. This is no worse than is required for an accurate single-point 

calculation. One can therefore use the same k-point set for both the single-point and 

DFPT calculations, provided that it is sufficiently dense to obtain well-converged 

groundstate properties. 
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4.9 Phase Issues 

In many cases, one needs to run successive minimisers, e.g. in order to determine 

polarisabilities and dielectric permittivites, first uk is determined via a minimisation, 

before this is then used to obtain E!/10
"' via another minimiser. Alternatively, if one 

requires the Born effective charges from a phonon calculation, then it is necessary 

to perform a subsequent electric field calculation. It is possible to recalculate, via a 

bandstructure calculation, a new set of { u~o)} each time in order to avoid the storage 

and passing of large arrays of wavefunction coefficients from subroutine to subrou­

tine. However, this is found to give inconsistent results. In order to understand this, 

consider that each time one diagonalises the Kohn-Sham Hamiltonian, a random 

phase will be chosen for the eigenstates. This is because, as is shown in figure 4.9, 

the plane wave coefficients possess a U ( N) gauge freedom; that is, their orientation 

in the complex plane is not fixed by the orthonormality condition. However, once 

a single plane wave phase is fixed for a given k-point, the phases of all of the other 

plane wave coefficients are fixed relative to this plane wave. 

Any first-order wavefunctions obtained must be orthogonalised to a set of Kahn­

Sham eigenstates. Thus, at each point in the Brillouin Zone, the phase of the first­

order wavefunctions is determined relative to the zeroth-order eigenstates. Now, 

if two different sets of first order wavefunctions, say {u10
} and {uk}, are obtained 

relative to different sets of the Kohn-Sham orbitals, then there will, in general, be a 

non-trivial random phase between them, which will manifest itself in scalar products 

and matrix elements of the form 

( 4.60) 

where ¢rand is the random phase angle. In DFPT calculations, one is often interested 

in the sum of matrix elements and their Hermitian conjugates, i.e. 

(u~k(r) [u~k(r) )ei¢rand + (u~k (r) [u~k (r) )e-i¢rand 

= 2(u~k(r)[u~k(r)) cos¢ (4.61) 
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Figure 4.9: Argand plot showing the origin of indeterminacy of phase for the Kahn­
Sham eigenstates. Although the magnitude of the plane wave coefficient c is fixed, 
its orientation, and hence phase, ¢, is not. 
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and it is clear that if this phase angle alters from calculation to calculation then 

inconsistencies will occur. If however, one determines all first-order wavefunctions 

relative to the same set of Kohn-Sham eigenstates, then the phase in equation 4.60 

trivially cancels, and the inconsistencies are removed. The Kohn-Sham orbitals at 

neighbouring k-points will also have a random phase angle between them, and this 

phase indeterminacy is one of the reasons for determining uk by the analytic method 

described above, as attempting to do so numerically leads to gauge invariance prob­

lems similar to those discussed above. 

4.10 Scissors Operator 

The bandgap problem in DFT associated with LDA is well-known [47], and this has 

been argued [81] to be the underlying reason why agreement between experimental 

and LDA-obtained values of the dielectric permittivity tensor is often unsatisfactory. 

This point is returned to in a later section with regard to silicon. A possible, although 

slightly unsatisfactory, method to alleviate this problem is to introduce a scissors 

operator, as done by Levine and Allan [133] and as discussed by Gonze and Lee [81]. 

The implementation of this is simple. Assuming that the energy band gap must be 

increased from EfDA to EfDA + .6., the expression for the second-order variational 

energy becomes 

This may of course be solved by the methods outlined in this chapter. The term 

involving .6. is positive-definite; thus if .6. is positive, the dielectric permittivity along 

( 4.62) 
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any direction will always be smaller in the LDA and scissors approximation than in 

LDA. 

In section 4.12.1, the effects of the scissors operator upon the dielectric permittivity 

tensor, polarisabilities and effective charges are investigated. 

4.11 Parallel Implementation 

Thus far, it has been assumed that the code has been implemented in series. In 

practice, DFPT calculations can be computationally intensive and thus in order to 

examine large systems, it is necessary to be able to use the code on parallel com­

puters. CASTEP allows two possible parallelisation strategies: parallelisation over 

either plane wave coefficients or k-points. In the former, the plane wave coefficients 

ci,k+G are distributed over parallel processors. The bands and k-points, the number 

of which is small in comparison to the number of plane wave coefficients, are then 

operated on in series. The Achilles heel of all massively parallel implementations 

is the inter-processor communication; in this scheme, this only occurs when sum­

ming over G-vectors when orthogonalising wavefunctions, performing FFTs on the 

charge density, and in packing/unpacking the wavefunction coefficients in order to 

construct the charge density. The second possible scheme involves distributing the 

k-points over the parallel processors; the plane wave coefficients and the electronic 

bands are then operated upon in serial. In this case, inter-processor communication 

occurs when performing summations over the Brillouin zone. 

The modular design of the CASTEP code in which the DFPT code was implemented, 

making extensive use of data encapsulation and structured types, ensured that the 

code was easy to implement for massively parallel execution. For example, the code 

required for distributing wavefunction coefficients was entirely contained within low­

level subroutines; thus the code was G-vector parallel by default. Parallelisation over 

k-point was similarly easy, although some extra calls to low-level subroutines were 

required in order to perform summations over the Brillouin zone. 

Some care is required when implementing the use of symmetry in conjunction with 

a massively parallel implementation. This can be understood with reference to 
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equation 4.57, where knowledge of distributed wavefunctions is required. In the serial 

or k-point parallel case, the FFT grid is mapped onto a 3-dimensional array, and 

this equation is straightforward to implement. In the case of G-vector parallel, more 

care needs to be exercised, as, in general, the coefficients on either side of equation 

4.57 will reside on different processors. Thus one must gather all coefficients onto 

the master node to reconstruct the FFT grid. One can then carry out the symmetry 

transformation before distributing the coefficients back to new nodes. In order to 

limit the additional storage of a full grid on a single processor, this is done on a 

band-by-band basis. 

4.12 Test Results 

In order to validate the accuracy of the algorithms and methodologies described in 

this chapter, a number of calculations on test systems have been carried out. These 

include crystalline and molecular systems. 

4.12.1 Crystalline Systems: silicon 

One of the simplest crystalline systems that one may use as a testing ground for the 

applicability of DFPT methods is cubic silicon. This is the prototypical covalently 

bonded semiconductor, with the bonding due to sp3-hybridisation. Further, a wealth 

of ab initio [121, 134, 133, 135, 136] and experimental [137, 138] data exist for 

silicon, making it easy to compare the results of calculation with existing work. The 

calculations in this section are carried out using norm-conserving pseudopotentials 

with cut-off energies of 300 eV, and a 4 x 4 x 4 symmetry-reduced Monkhorst-Pack 

grid [60] giving 10 k-points in the Brillouin Zone. Exchange and correlation are 

treated within the GGA, using the parametrisation of Perdew and Wang [48]. The 

existing ab initio work of Giannozzi et al. [134, 136] and the experimental results 

therein are used for the purposes of comparison. In table 4.1 the results of these 

calculations are summarised. 

The agreement between the theoretical values of the Born effective charge is marked, 

both returning an effectively zero value; this is expected, as the effective charge is a 
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This work Giannozzi et al. Experimental 
a 10.20 10.20 10.26 
Z* 7 x w-2 7 X 10-2 (a) 0 
Eoo 13.9 13.6 11.7 

Table 4.1: Equilibrium lattice parameter [a, (a.u.)], Born effective charges (Z*) and 
static dielectric constants (Eoo) for silicon. Comparison of calculations using DFPT 
as implemented in this thesis, the calculations of Giannozzi et al. and experimental 
results. (a) denotes a result from reference [136]. The experimental results are as in 
reference [134]. 

measure of how ionic a crystal is. The agreement between the values of Eoo obtained 

is also good. The differences are probably due to details in the implementation, such 

as pseudopotentials used, and the choice of XC functionals: the work of Giannozzi 

et al. uses the LDA as opposed to the GGA used in this work. This result also 

suggests that GGAs cannot be expected to improve upon the accuracy of DFPT 

calculations when applied to elemental semiconducting systems such as silicon. It is 

interesting to note the discrepancy between the ab initio values of the permittivity 

tensor and the experimental value. This has previously been attributed to short­

comings in the LDA [121, 139], but these results would seem to suggest that it is a 

failure related to semi-local functionals in general, rather than just the LDA in par­

ticular. There are two possible explanations for this failure: accurate determination 

of the permittivity is dependent upon accurate first-order wavefunctions. These are 

implicitly (and may indeed be explicitly) expressed as a sum over conduction band 

zeroth-order eigenstates. One could perhaps therefore expect that the well-known 

bandgap problem could lead to errors in the conduction band eigenstates, leading 

to errors in the permittivity tensor. This has been discussed by Gonze [81], and 

one suggestion for curing this problem is the use of a so-called scissors operator, as 

outlined in an earlier section, in order to shift the eigenvalues by a fixed amount 

such that the experimental bandgap is reproduced. However, given that the conduc­

tion band states provide a complete basis set with which to expand the first-order 

wavefunctions, this is unlikely to be the major reason for the discrepancy. 

In order to examine the effects of the scissors operator, calculations have been carried 

out in order to determine how the inclusion and choice of the scissors operator affects 

the dielectric permittivity tensor of silicon. In table 4.2, the values of the dielectric 
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~ (eV) too Z~v (eV) 
0.3 12.2 0.150 
0.4 11.96 0.216 
0.5 11.7 0.278 
0.6 11.5 0.339 

Table 4.2: Variation in dielectric permittivity and Born effective charge tensors in 
silicon with scissors operator. 

permittivity tensor and the Born effective charges are presented for different values 

of~' the scissors operator. 

The LDA bandgap of silicon is 0.56 eV, with the true experimental bandgap being 

1.17 eV; thus it would seem that ~ = 0.6 eV is the most appropriate choice for ~­

However, as can be seen in table 4.2, this gives a value of t 00 = 11.5, in contrast to 

the experimental value of 11.7; it seems therefore that the optimum value of~ is 0.5 

e V. This suggests that the scissors operator does correct the overestimation of the 

dielectric permittivity. However, in all cases, the value of the Born effective charge is 

incorrect; experimentally, silicon should not have non-zero effective charge tensors. 

Clearly, this is unsatisfactory. Further, one would expect that if the bandgap is 

the fundamental problem, then introducing the scissors operator to "fix" this prob­

lem should not then lead to previously well-described aspects of the physics going 

awry. It therefore seems that the scissors operator is an unsatisfactory "patch-up"; 

moreover, this suggests that the fundamental reason for the overestimation of the 

dielectric permittivity tensor within LDA is not due to the bandgap problem, in line 

with previous discussion. 

A more likely explanation is that provided by Gonze et al. [140, 141, 142] who 

argued that, in the presence of an infinitesimal change in external applied field, the 

XC functional should possess a dependence upon the macroscopic polarisation of 

the sample. A proof of this has been provided by Ortiz et al [143]. In addition, the 

work of Aulbur et al. [144] and van Gisbergen et al. [145] lends credence to this 

interpretation, as they showed specifically that the polarisation dependence of the 

XC functional leads to extra terms in the Kohn-Sham equations that are absent in 

the LDA and GGA, which depend only upon the bulk periodic density. 
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Figure 4.10: First-order change in electron density in silicon in response to an electric 
field perturbation; the blue represents an augmentation of charge, whilst yellow 
represents a charge density depletion. 

Studying the first-order density may also provide physical insight into the response of 

a system to an external perturbation. By investigating whether the density response 

is physically reasonable, it is possible to use this as a further test of the validity and 

accuracy of a calculation. In figure 4.10, the first order change in the electron density 

of silicon is shown in response to an electric field perturbing in the y-axis. The blue 

represents a depletion in charge, whilst the yellow represents an augmentation of 

the charge. It is clear that this looks physically reasonable: one can see the covalent 

bonds being polarised strongly, as one would expect . 
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Figure 4.11: Geometric structure of a-quartz. 

4.12.2 a-quartz 

a-quartz is the simplest tetrahedrally bonded silica (Si02). In figures 4.11 and 

4.12, its geometric structure is illustrated. Although such silica systems are of 

technological importance, for example, for the fabrication of optical waveguides, the 

appeal of studying this system for this work is the existence of both high quality ab 

initio DFPT results [146, 123] and experimental results [147] with which to compare. 

The strong anisotropy of the Born effective charge and the dielectric permittivity 

lead to rich behaviour, whilst soft phonon modes are important in the structural 

phase transitions exhibited [148] . The richness of the physics of quartz makes it an 

excellent test case for DFPT methods. 

The calculations have been carried out using the PBE GGA [149] exchange-correlation 

functional. Norm-conserving pseudopotentials with a kinetic energy cut-off of 600 
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Figure 4.12: a-quartz supercell. 

a 

c 

This work 
4.811 
5.306 

Gonze et al. 
4.731 
5.230 

Experimental 
4.831 
5.3118 

113 

Table 4.3: Equilibrium lattice parameters [a, c (A)] for quartz. Comparison of 
calculations using PBE as implemented in this thesis, the calculations of Gonze et 
al. [146] and experimental results. The experimental results are as in reference [146]. 

eV are used, while a 4 x 4x 4 Monkhorst-Pack grid is used to integrate over the Bril­

louin zone. The equilibrium geometric structure is determined using the Hellmann­

Feynman theorem. In table 4.3, the equilibrium lattice constants are shown and 

compared with the results of Gonze et al. and with experimental values. 

The agreement with the experimental values is extremely satisfying; the disagree­

ment between the values reported in this thesis and those of Gonze et al. [146] are 

probably due to their use of the LDA in treating exchange and correlation, and their 

use of only one special k-point. 

In table 4.4 the normal mode frequencies are presented. In order to allow a di­

rect comparison with the work of Gonze et al. [146] and Umari et al. [123], the 

Brillouin zone integration is carried out using one k-point at (1/3, 0, 1/4); this is 

sufficient for obtaining residual forces less than 0.01 e V /A, which can be considered 

to be converged. The normal modes require some discussion. The eigenmodes of the 

analytical part of the dynamical matrix transform according to the irreducible repre-
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sentations of the symmetry group D 3 : the A1 and A2 are non-degenerate, whilst the 

E are doubly degenerate. The assignment of whether a mode is transverse optical 

or longitudinal optical is achieved using the method outlined in Umari et al. [123]: 

a three-component mode effective charge vector may be defined as 

z~ = L z~,af3U~f3 (4.63) 
"'a 

where the symbols have their usual meanings, u is a dynamical matrix eigenvector, 

and n is the mode under consideration. If q . zn = 0 then the eigenmode of the 

analytical part of the dynamical matrix is also an eigenmode of the full dynamical 

matrix with the same frequency, and is hence identified as a TO mode. The LO 

modes may be identified by taking q II z for every zn. 

The A1 modes are independent of the direction of q, as zn = 0 for these modes. zn 
is parallel to the optical axis ( z-axis) for the A2 modes, and hence LO-TO splitting 

occurs for these modes; the A2L modes are, accordingly, obtained by diagonalising 

the full dynamical matrix with q parallel to the optical axis, whilst the A2r modes 

are obtained by diagonalising with q orthogonal to the optical axis. The E modes 

are characterised by the zn spanning the xy plane. Consequently, for q orthogonal 

to the optical axis, a LO-TO splitting occurs, whilst the modes remain degenerate 

at the Er frequencies for q parallel to the optical axis. 

Table 4.4 presents the normal mode frequencies calculated in this work, and com­

pares them with results from two other density functional calculations [146, 123] and 

with two sets of experimental data [147, 150]. The first set of data corresponds to 

extrapolations to OK, whilst the second set was obtained at room temperature. The 

agreement between the experimental and theoretical results is generally good, as is 

the agreement with the other theoretical values. The differences between theoretical 

values should probably be attributed to differing lattice constants used, and different 

XC functionals. 

In figure 4.13, the full dispersion curve as calculated by DFPT is presented. The 

agreement with experimental results is good, and this is an excellent validation of 

the DFPT technique, as it illustrates that is it possible to obtain highly accurate ab 

initio lattice dynamical and dielectric properties of complex crystalline systems. 
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Theory Experiment 
Present Work Umari et al. Gonze et al. Ref. [147] Ref. [150] 

A1 
191.0 193.7 238.9 219 207 
341.1 355.0 339.3 358 356 
449.2 460.1 461.7 469 464 
1094.9 1123.3 1061.0 1082 1085 

A2r 
353.6 366.4 341.4 361.3 
475.8 489.3 493.4 499 
774.1 792.2 762.4 778 

1078.4 1115.4 1056.5 1072 
A2L 

376.3 391.4 365.7 385 
530.7 533.8 540.5 553 
786.3 815.0 784.7 791 
1248.3 1272.6 1218 1230 

Er 
115.7 120.9 133.3 133 128 
252.0 257.3 261.3 269 265 
378.4 390.0 377.6 393.5 394 
431.8 448.0 443.8 452.5 450 
689.0 703.3 690.8 698 697 
791.4 809.6 791.7 799 795 
1078.6 1108.7 1045.0 1066 1072 
1164.9 1190.8 1128.1 1158 1162 

EL 
117.4 121.0 133.4 133 128 
252.9 258.5 263.2 269 265 
379.4 398.6 389.2 402 401 
434.9 500.2 498.6 512 509 
689.1 708.7 694.5 701 697 
792.1 824.0 803.9 811.5 807 
1087.1 1185.7 1123.9 1155 1162 
1164.9 1270.6 1209.5 1227 1235 

Table 4.4: f-point vibrational frequencies for o:-quartz; all values are in cm- 1 . 

4.12.3 NaCl 

Thus far, the tests have been on a prototypical covalent semiconductor (silicon) and 

an insulator that has significant ionic character (quartz). It is useful to also examine 

the efficacy of DFPT when applied to a prototypical ionic system. For that reason, 

the response of sodium chloride (NaCl) to phonon and electric field perturbations 
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Figure 4.13: Phonon dispersion curve for a-quartz: ab initio results via DFPT (solid 
lines) vs. experimental results. 

has been examined. The crystalline structure of NaCl is cubic, and is shown in 

figure 4.14. The calculations use the LDA XC functional, with norm-conserving 

pseudopotentials requiring a kinetic energy cut-off value of 500 eV. Brillouin zone 

integrations are calculated using a mesh of 10 k-points in the irreducible wedge. 

In table 4.5 the r-point normal mode frequencies are shown. These are compared 

with the Hartree-Fock results of Prencipe et al. [151] using a linear combination of 

atomic orbitals (LCAO) basis set, and the density functional results of Froyen and 

Cohen [152]. It can be seen that the results obtained in the present work are in very 

good agreement with the experimentally determined values. The shortcomings in the 

results of Prencipe et al. can be attributed to the failure of Hartree-Fock methods to 

incorporate electronic correlation effects. The work ofFroyen and Cohen uses a plane 

wave pseudopotential implementation of DFT in the local density approximation. 

As with the present work, Brillouin zone integrations use 10 k-points. Froyen and 

Cohen, in common with Prencipe et al. use a finite difference method in order to 

obtain the normal mode frequencies; the error associated with this is estimated to be 

11 cm-1 , which suggests that this is responsible for the disagreement. It therefore 

seems that DFPT can accurately determine the lattice dynamics of ionic systems. 
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Figure 4.14: Geometric structure of NaCl: unit primitive cell. 

Present Work 
175.2 

Prencipe et al. [151] 
156.7 

w(cm) 
Froyen [152] 

163.9 
Expt. [153] 

176.7 

Table 4.5: r-point normal modes for NaCl. 

Expt. [154] 
172.4 
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This work Experimental Shukla [155] 

a (A ) 55.44 
Eoo 2.68 
Eo 6.15 6.121 

Z* (e) Na 1.06 1 0.985 
Z* (e) Cl -1.06 -1 -0.985 

Table 4.6: Dielectric properties of NaCl. 1 denotes a value of E(w) for w = 104s-1. 
Value taken from [156] 

The cubic structure of NaClleads to the permittivity, polarisability and Born effec­

tive charges take the form of diagonal tensors, with all elements the same magnitude. 

For this reason, only one element of each tensor needs to be quoted. In table 4.6 

these quantities are given, along with experimental values, where available. The val­

ues of the effective charges are also compared with the work of Shukla [155], where a 

Wannier function basis set is used in conjunction with Hartree-Fock theory to obtain 

ab initio values. 

The agreement demonstrated for the permittivity tensors and the effective charges 

is pleasing. The result for the effective charges is particularly noteworthy, for not 

only does it demonstrate that the sum rule is satisfied exactly, but also that the 

value of the effective charge is equal, within numerical noise, to the nominal ionic 

charges. This indicates that NaCl is perfectly ionic, and is a satisfying confirmation 

of the ionic model of solids and simple chemistry. Note that the results of Shukla 

suggest that one needs to incorporate the effects of electronic correlation in order to 

obtain accurate values of the Born effective charges. 

4.12.4 Molecular Systems 

As the ultimate purpose of implementing the DFPT methods described in this chap­

ter is to investigate the dielectric and lattice dynamical properties of molecular crys­

tals, it is necessary to investigate the applicability of DFPT to problems in molecular 

physics. For this reason, in table 4. 7 the harmonic normal mode frequencies are pre­

sented for a range of small molecules, as obtained experimentally, and via a range 

of quantum chemical techniques. The methods compared to are: density functional 

methods, using a range of XC functionals (BLYP, B3LYP, EDF1, and EDF2). The 
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Expt Present BLYP EDF1 B3LYP EDF2 HF MP2 CCSD(T) 
H2 4401 3932 4347 4375 4420 4403 4587 4526 4409 
HF 4138 3932 4018 4090 4105 4482 4195 4177 
C02 2397 2440 2328 2379 2416 2439 2564 2439 2395 

1354 1343 1306 1329 1372 1380 1511 1343 1346 
673 715 633 643 671 672 773 661 660 

H20 3943 3883 3755 3836 3901 3919 4227 3993 3945 
3832 3773 3656 3737 3801 3817 4127 3872 3840 
1649 1598 1611 1624 1639 1631 1743 1651 1668 

NH3 3577 3532 3459 3524 3578 3597 3807 3676 3597 
3506 3401 3348 3404 3462 3476 3685 3537 3471 
1691 1627 1645 1653 1678 1671 1795 1692 1688 
1022 979 1068 1076 1068 1053 1127 1077 1109 

HN3 3336 3444 3368 3481 3733 3576 
2140 2174 2170 2279 2511 2385 
1274 1271 1247 1299 1436 1263 
1150 1133 1134 1180 1254 1129 
537 593 514 533 677 574 
522 567 575 603 574 548 

CH3 3158 3112 3061 3110 3134 3147 3246 3218 3153 
3026 3109 2963 2994 3029 3035 3148 3009 3034 
1567 1529 1531 1535 1564 1555 1666 1600 1571 
1357 1306 1314 1311 1344 1336 1454 1183 1343 

Table 4. 7: Harmonic frequencies (em -l) for some small molecules: a comparison of 
DFPT results with commonly used quantum chemical techniques and experimental 
values. Data on HN3 is from [157]; all other data come from [102]. 

last two named functionals are empirically obtained functionals, optimised for ther­

mochemistry and harmonic frequencies, respectively [102]; and wavefunction-based 

methods, namely Hartree-Fock, MP2, and coupled cluster theory (CCSD(T)). The 

data come from references [102, 158, 157]. The results presented in [102] use the 

Dunning cc-p VTZ basis set [159], whilst those in [158, 157] use the 6-31G** basis 

set. 

Hartree-Fock methods consistently overestimate the harmonic frequencies, often by 

up to 200 wavenumbers; such poor performance is unsurprising, and reflects the fact 

that Hartree-Fock methods fail to include any correlation effects. It can be seen 

that in the majority of cases, the DFPT results are in good agreement with the 

experimental values, and are often in better agreement than more expensive wave­

function methods such as MP2. It must be born in mind though, when comparing 

with other ab initio results of this form, that it is necessary to take into account 



Chapter 4. Implementation of DFPT Algorithm 120 

the effects of basis set error. To illustrate this point, consider the EDF2 functional; 

upon alteration of the basis set used from 6-31+G* to 6-311G**, the error in the 

normal modes determined for HF can change from -187 cm-1 to -5 em-\ thus the 

accuracy of the results will to a large extent depend upon the choice of basis set, 

and what basis set the functional has been optimised for use with. This is a perhaps 

less than satisfactory state of affairs. Further, one should also consider the fact that 

localised basis sets of the form used in references [102, 157, 158] cannot, by their very 

nature, span the entire Hilbert space; this becomes problematical when one requires 

properties that depend upon derivatives of the groundstate energy. For example, 

a basis set may be optimised to obtain accurate groundstate geometries, however, 

upon taking a derivative of the groundstate energy, a localised basis set will suffer 

the problem that the derivative of the basis set will not be included within the basis 

set being used. This is in contrast to a plane wave basis set such as that used in the 

calculations presented in this thesis, for which the derivatives of the basis function 

still reside within the same Hilbert space. 

4.12.5 Molecular Polarisabilities 

In table 4.8 the response of a series of test molecules to electric fields is given. In each 

case, only the trace of the polarisability tensor is quoted. This is because to quote a 

polarisability tensor in full requires that a frame of reference be defined and specified. 

The trace, however, is invariant under unitary transformation, and is therefore frame 

independent. Further, experiments only access the trace, and thus it represents the 

most natural quantity to quote. The values taken from [160] are carried out using 

DFPT within the LDA, using ultra-soft pseudopotentials. The present calculations 

were carried out using the PW91 GGA, and norm-conserving pseudopotentials; this 

necessitated kinetic energy cut-offs of 600 eV for carbon-containing molecules, 700 

eV for ammonia and 400 eV for the hydrogen molecule. In all cases, the equilibrium 

geometry was obtained via a BFGS relaxation. The agreement between the present 

values and the experimental values of the polarisability tensors is extremely good, 

in many cases being better than the values given in [160]. Such agreement is en­

couraging, and suggests that the DFPT methodology is capable of highly accurate 

results. 
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Molecule Present Work Ref. [160] Experiment 
H20 1.55 1.62 1.43 [160] 
CH4 2.59 2.70 2.59 [160] 
NH3 2.31 2.37 2.21 [160] 
H2 0.89 0.80 [156] 
C2H6 4.43 4.47 [156] 
Benzene 10.73 10.74 [156] 
C6o 89.2 83 [100] 84.9 [100] 

Table 4.8: Molecular polarisabilties. All values are given in A 3. 

w (em ) 
Mode 1T2 2T2 
Present Work 1306 3112 
Porezag and Pederson [103] 1283 3090 
Experiment [103] 1357 3158 

I 
Mode 1T2 2T2 
Present Work 1 0.69 
Porezag and Pederson [103] 0.70 1 
Experiment [103] 0.57 1 

Table 4.9: IR intensities for methane. The values given are relative intensities, with 
the most intense assigned the value '1'. 

4.13 IR Spectroscopy 

Thus far, the calculations have indicated that DFPT can reliably and accurately 

determine the normal mode frequencies and dielectric properties of crystalline and 

molecular systems. However, if one is to use it to obtain IR spectra, then the 

accuracy and reliability of the method must be investigated. To this end, in this 

section, the spectra of a series of representative molecules is obtained and compared 

to previous calculations and measurements. 

TheIR spectrum for methane is shown in figure 4.15. In table 4.9, the normal mode 

frequencies and the corresponding relative IR intensities are presented. 

The normal modes are in better agreement with experiment than the results of 

Porezag and Pederson [103], using a Gaussian basis set. The ratio of intensities 

between the two theoretical results shows good agreement, and these are in reason-
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Figure 4.15: IR spectrum of methane as obtained using DFPT. A Gaussian broad­
ening has been applied, as in all the subsequent spectra presented. 

able agreement with the experimental values. One noteworthy feature is that the 

calculations presented in this work disagree over the ordering of the IR intensities 

for the two IR-active modes. Porezag and Pederson attribute this to a systematic 

error in the LDA; however, their results are obtained within the GGA using lo­

calised basis sets. This makes this contention difficult to support, and suggests that 

instead, it may be related to the basis set used, and some fortuitous cancellation of 

errors. Such a contention is supported by the work of Yamaguchi et al. [161] who 

have demonstrated that within Hartree-Fock theory, the ordering of the peaks may 

alter: for example, the minimal ST0-3G basis set predicts that the ratio of intensi­

ties between the 1T2 and 2T2 peaks is 0.0699:1; the 6-311 + + G(3d,3p) basis set, 

conversely, predicts a reversal of the ordering, with the intensity ratio being 1:0.249. 

it can therefore be seen that the inclusion of polarisation effects in the basis set can 

radically alter the intensities and ordering, even within the same ab initio method. 

In table 4.10 the normal modes and relative IR intensities of ethane are presented. 

The agreement can be seen to be mixed; although the normal mode frequencies are, 

on the whole, determined accurately, the relative intensities are not. All the values 

agree that the 3Eu mode is the most intense, although in some cases the intensities 
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Mode w (em I 
Present Ref. [103] Experiment CASTEP Ref. [103] Experiment 

lA1u 309 297 303 0.0 0.0 
lEu 821 800 822 0.195 0.074 0.050 
lA19 1003 998 1016 0.0 0.0 
1E9 1197 1177 1246 0.0 0.0 
lA2u 1384 1354 1438 0.002 0.012 0.020 
2A19 1390 1361 1449 0.0 0.0 
2Eu 1472 1456 1526 0.016 0.166 0.125 
2E9 1475 1457 1552 0.0 0.0 
2A2u 2988 2973 3061 0.271 0.518 0.411 
3Al9 2985 2969 3043 0.0 0.0 
3E9 3043 3022 3175 0.0 0.0 
3Eu 3067 3055 3140 1.000 1.000 1.000 

Table 4.10: Wavenumbers of IR-active modes and relative intensities for ethane. 
The values given are relative intensities, with the most intense assigned the value 
'1'. 

calculated in this work disagree by an order of magnitude. The full spectrum is 

shown in figure 4.16. 

In table 4.11, the relative IR intensities of water are presented. The full spectrum is 

given in figure 4.17. Examining the relative intensities, it is apparent that, except 

for the HF /ST0-3G results, the ab initio methods agree with the experimental 

ordering of the peaks. This reinforces the point made with regard to methane 

concerning the effects of the basis set: the failure to have a sufficiently large basis 

set may cause incorrect ordering and/or intensities, irrespective of the methods 

employed. The results also suggest that the effects of correlation are not significant 

upon determining the relative intensities, at least for water. An important feature 

to note is that the different methods do not predict that the peaks occur at the same 

frequencies; the values for the frequencies in table 4.11 are those obtained in this 

work. Note that in all cases the theoretical methods (save HF /ST0-3G) display a 

tendency to overestimate the intensities of the IR peaks. 

In table 4.12 the relative IR intensities of ammonia are presented. The full spectrum 

is shown in figure 4.18. Again, Hartree-Fock theory with the ST0-3G basis set 

fails to predict the correct ordering, in addition to predicting inaccurate relative 

intensities. The DFPT results obtained in this work are in broad agreement with 
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Figure 4.16: IR spectrum of ethane as obtained using DFPT. 

1/ Relative Intensities 
(cm-1) Present HF HF MP2 Expt. 

ST0-3G 6-311++G(3d,3p) 6-31+G(d) 
1598 1 0.163 1 1 1 
3773 0.103 1 0.159 0.110 0.0371-0.0506 
3883 0.904 0.677 0.945 0.664 0.860-0.891 

Table 4.11: IR intensities for water. The values given are relative intensities, with 
the most intense assigned the value '1'. Theoretical and experimental values are 
from Yamaguchi et al. [161]. Frequencies are as obtained in this work. 
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Figure 4.17: IR spectrum of water as obtained using DFPT. 

the experimental spectrum, save for a slight overestimation of the intensity of the 

peak at 1627 cm-1, and a large overestimation occurring at 3532 cm- 1. It does 

however, in common with the HF /6-311++G(3d,3p) and MP2/6-31+G(d) results 

calculate that this peak should be larger than the peak at 3401 cm- 1 by an order 

of magnitude; this is in contrast to the experimental results, which suggest that the 

ordering of these two peaks should be reversed, with comparable intensities. 

In table 4.13 the relative intensities of theIR peaks of hydrazoic acid are presented. 

The full spectrum is presented in figure 4.19. The calculations of Sherr and Durig 

lJ Relative Intensities 
(cm-1) Present HF HF MP2 Expt. 

ST0-3G 6-311 ++G(3d,3p) 6-31+G(d) 
979 1 1 1 1 1 
1627 0.262 0.041 0.203 0.263 0.088-0.232 
3401 0.031 0.099 0.008 0.003 0.028-0.034 
3532 0.124 0.124 0.062 0.057 0.018-0.022 

Table 4.12: IR intensities for ammonia. The values given are relative intensities, 
with the most intense assigned the value '1 '. Theoretical and experimental values 
are from Yamaguchi et al. [161]. Frequencies are as obtained in this work. 
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Figure 4.18: IR spectrum of ammonia as obtained using DFPT. 

[162] at the MP2/6-31G* level of theory disagree with the other calculations pre­

sented as to the ordering of the IR peaks; these authors introduce a scaling factor 

in order to compensate and restore the "correct" ordering. Again, these results il­

lustrate the importance of choice of basis set. The present work displays a tendency 

to underestimate the intensities of the peaks compared to the other methods used. 

The B3LYP results are of interest, as these are obtained within a density functional 

framework; the intensity of the the NH3 stretch observed at 3444 cm-1 in this work 

is grossly underestimated, whilst, in contrast, the intensities of the other peaks are 

overestimated in comparison with the results in this work. This is a further indica­

tion of the effects of choice of basis set upon IR intensities. 

A more complicated system is benzene. In table 4.14 the normal modes of benzene 

are presented. Good agreement with experiment and other theoretical calculations 

is observed for most frequencies, although larger discrepancies of around 100 cm- 1 

with regard to the experimental frequencies are observed for the higher frequency 

modes. It is noteworthy that the results of Clarke et al. [163] share this shortcoming, 

in contrast to those of Pulay et al. [164]. This warrants some comment. The 

values due to Pulay et al. [164] are Hartree-Fock results using a 4-21 basis set; 
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1/ Relative Intensities 
(cm-1) Present MP2/6-31G* MP2/6-311+G** B3LYP /6-31G* 
3444 0.210 0.301 0.292 0.072 
2174 1 0.891 1 1 
1133 0.529 1 0.765 0.676 
567 0.022 0.125 0.102 0.048 

Table 4.13: IR intensities for hydrazoic acid. The values given are relative intensities, 
with the most intense assigned the value '1'. Theoretical and experimental values 
are from Shen and Durig [162]. The MP2/6-31G* results quoted from this work are 
the unsealed values. Frequencies are as obtained in this work. 
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Figure 4.19: IR spectrum of hydrazoic acid as obtained using DFPT. 
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Assignment PFB set 1 [164] Clarke et al.[163] Experiment [165] Present 
op 402 398 402 

607 606 606 612 
op 667 673 681 
op 701 707 722 
op 843 846 849 
op 969 967 980 
op 996 990 996 

983 993 993 986 
997 1009 1010 1014 
1036 1033 1037 1046 
1162 1140 1146 1175 
1183 1179 1178 1187 
1297 1305 1309 1331 
1365 1479 1350 1372 
1482 1479 1482 1491 
1607 1602 1599 1598 
3051 3135 3057 3127 
3061 3145 3056 3135 
3080 3163 3064 3150 
3095 3178 3073 3159 

Table 4.14: Benzene normal mode frequencies ( cm-1) and assignments: op denotes 
out of plane modes. 

although this basis set is adequate for calculations of total energies, it systematically 

overestimates the force constants in benzene, an effect that is due to the neglect of 

electron correlation inherent in Hartree-Fock methods, and the truncated basis set 

used. To remedy this, Pulay et al. introduce empirical scaling factors that reproduce 

the high frequency modes accurately; thus it is slightly misleading to consider these 

results to be truly ab initio. The results of Clarke et al. are obtained via a classical 

trajectory study. This takes as its potential energy surface the force constants of 

Pulay et al. [164], with the CH stretch diagonal terms discarded, and the addition of 

a Morse potential. Interestingly, discarding these terms appears to lead to the same 

level of discrepancy between the calculated and experimental high frequency modes 

as is found with DFPT. This, coupled with the fact that the modes in question are 

C-H stretches, suggests that the issue here is anharmonicity, which is not dealt with 

at all in the DFPT scheme implemented in this work, based as it is upon a harmonic 

approximation. 
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Figure 4.20: IR spectrum of benzene as obtained using DFPT. 

In figure 4.20 the calculated IR spectrum of benzene is illustrated. This is in good 

agreement with the experimental spectrum, with the maximum intensity peak oc­

curring at around 680 cm-1 . This is due to an out-of-plane wagging motion of all 

the C-H bonds. A peak at 1500 cm-1 is correctly predicted, although its relative 

intensity with respect to the peak at 3200 cm-1 is slightly wrong; the peak at 1500 

cm- 1 should be slightly more intense than that at 3200 cm- 1, in contrast to what 

is predicted. The peak at 1500 cm- 1 is due to stretching of the C-C bonds in the 

aromatic ring. However, the spectrum does not include the smaller intensity peaks 

that should occur between 1500 and 200 em - 1 . 

The calculations of IR spectra presented here seem to suggest that although DFPT 

can be used to obtain IR spectra, the results should be treated with caution. Cer­

tainly, it correctly predicts which modes are silent or IR-active, and in general 

predicts relative intensities in good agreement with other high level methods. There 

are, however, a minority of cases in which it does however, give inconsistent results 

as to the relative intensities, sometimes failing to predict these (as in ethane) , or at 

other times correctly obtaining the intensities, but getting the ordering of the peaks 

wrong (as in methane). 
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The results presented, in particular theIR spectra of water, methane and hydrazoic 

acid, indicate that the relative intensities are extremely sensitive to the choice of 

basis set; indeed, even when using the same method in two calculations, a different 

basis set may lead to vastly different values of the intensities and/or the ordering 

of the peaks altering. It is therefore possible that the problems encountered with 

regard to methane and, to a lesser extent, ethane, could be due to problems with 

the basis set used, rather than to any inherent problem with the theoretical method 

used. One could perhaps expect such problems with localised basis sets, especially 

using sets that are too small to include polarisation effects; it seems more surprising 

that such problems could occur using plane waves. It is, of course, possible to 

suggest that the problems could arise, at least in part, from failures of the harmonic 

approximation inherent in determining the molecular normal modes. However, the 

evidence would appear to refute this; for example, in the case of methane, the normal 

mode frequencies obtained in this work are in closer agreement with experimental 

values than those of Porezag and Pederson [103] and yet the ordering of theIR peaks 

is not correct. This therefore suggests, in conjunction with Porezag and Pederson's 

use of the PW GGA [103, 48] and a localised Gaussian basis set, that it is indeed a 

basis set problem. Furthermore, it also implies that one may have a basis set that 

is well converged with respect to groundstate properties and normal modes, and 

yet not be appropriate for accurate determination of IR spectra. This can probably 

be attributed to the fact that one is dealing with a derivative of the groundstate 

dipole moment. Calculations have also been carried out to verify that the size of 

the supercell chosen does not affect the IR spectra, provided that the supercell is 

sufficiently large that calculations may be converged with regard to groundstate and 

structural properties (i.e. forces are smaller than 0.01 eV/A). 

The question of whether a mode is IR-active or not is largely down to the symmetry 

of the effective charge tensor and the dynamical matrix eigenvectors; as this is in­

dependent of the quality of the calculation, it is not surprising that this is correctly 

predicted. It would therefore seem that while the DFPT spectra can be used to cor­

rectly indicate where IR peaks will occur, that conclusions based upon the predicted 

intensities should be treated with caution. 
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4.14 Summary and Conclusions 

In this chapter, the detailed implementation of density functional perturbation the­

ory within a plane wave pseudopotential formalism has been described. The treat­

ment of the first order potentials has been discussed, as has the treatment of ex­

change and correlation within the GGA using a numerical derivative. The use of 

this numerical derivative is numerically more stable than an analytical derivative, 

and allows the use of non-local XC functionals without modification. 

The appropriate choice of minimisation scheme and preconditioner has been exam­

ined; it is found that conjugate gradients minimisation techniques offer the best 

convergence properties. The optimum preconditioner depends upon the system in 

question; in a-quartz, the TPA scheme is most effective, whilst in NaCl, the PSP 

scheme is the best performing. However, even when the PSP scheme performs best, 

the TPA performance is not significantly worse, with the difference being only 1-2 

iterations; conversely, when TPA is the most effective, the performance of the PSP 

scheme is significantly worse. Thus the optimum choice, neglecting a detailed and 

impractical investigation of the optimum preconditioner for each system under con­

sideration, is the TPA scheme, even though this is a groundstate preconditioning 

scheme, and is not optimised for DFPT calculations. 

The use of symmetry to reduce the computational workload has been discussed 

in detail. Utilising the reduced symmetry of the perturbing wavevector allows a 

symmetry-reduced set of k-points to be determined; this will, in general, be larger 

than the unperturbed minimal set. Symmetry may also be used to determine the 

symmetry-related elements of the dynamical matrix, and therefore reduce the num­

ber of calculations required. The algorithm used has been presented, and a simplified 

version, applicable for the determination of the symmetry-related elements in the 

dielectric permittivity and polarisability tensors, has been described as well. 

A series of test calculations on a range of representative systems (ionic, covalent, and 

molecular) in order to determine the accuracy of DFPT compared to other theoret­

ical methods and experimental measurements has been presented. The agreement 

is, in the most part very good. There are known discrepancies, particularly with 
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regard to dielectric properties, but the reasons for this are understood to arise from 

an inadequacy in the treatment of of macroscopic fields within LDA and GGA XC 

functionals. The satisfying agreement indicates that DFPT is capable of obtaining 

high quality results for the dielectric and lattice dynamical properties of a range of 

different, and in some cases, complex systems. 

The test calculations of IR spectra indicate that whilst DFPT can successfully pre­

dict the IR silent and active modes, the ordering and intensities of these peaks may 

not always be correct. Therefore it seems that although calculating theIR spectrum 

can help yield insight into a system on the basis of identifying the active modes, that 

one should exercise caution when attempting to draw conclusions based upon the 

actual intensities. 

The work in this chapter therefore represents a good basis for investigating the lattice 

dynamical and dielectric properties of amino acid molecular crystals, for which no 

experimental values seem to exist; given the accuracy demonstrated in this work, 

one can be confident about using DFPT as a predictive tool in its own right rather 

than merely using it to confirm experimental results. 



Chapter 5 

Structural and Electronic 
Properties of Amino Acids 

Any attempt to understand the relationship between the molecular crystal and its 

constituent molecules must begin with an understanding of the geometric and elec­

tronic structures of the two different cases. This may then serve as a foundation for 

more advanced investigations. In this chapter, therefore, the results of calculations 

determining the groundstate geometries and electronic structures of the amino acids 

under consideration in both the gaseous and solid state are presented. The aim is 

then to understand how and why the geometric and electronic structures are altered 

upon modification of the molecular environment. To this end, the intermolecular 

interactions responsible for stabilisation of the molecular crystals are identified, and 

their effects upon the molecular electronic structure analysed. 

This is, to the best of the author's knowledge, the first time such a study has been 

carried out on the amino acids. As noted earlier in chapter 1, most ab initio work 

concerning amino acids has comprised of conformational studies on a limited number 

of small molecules. Even less exists on the molecular crystals: only the shielding 

tensors of carbon-13 in amino acid molecular crystals [30, 31] have been investigated 

using ab initio methods. A thorough investigation of the structural and electronic 

properties of these systems is therefore long overdue. 

Within the Born-Oppenheimer approximation, the equilibrium geometries may be 

obtained using the Hellmann-Feynman theorem as outlined in chapter 2. All inter-

133 
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nal degrees of freedom are optimised using a BFGS algorithm, taking experimentally 

determined structures to determine the initial atomic positions. The single-particle 

Kohn-Sham equations are then solved at a series of reciprocal space points of high 

symmetry in order to determine the crystal eigenvalue spectrum, i.e. the band­

structure. Population analyses are performed on both the molecular crystals and 

isolated crystals. The electron-ion interactions are described using non-local norm­

conserving pseudopotentials of the Kleinman-Bylander form [64]. This is necessary 

because later work will involve subjecting these systems to DFPT calculations; there­

fore, in the interests of consistency, ultrasoft pseudopotentials are not used. Coupled 

with the presence of oxygen atoms, this does though necessitate that the the valence 

electron wavefunctions be expanded up to a kinetic energy cut-off of 1000 eV. This 

ensures convergence of total energy properties to better than lmeV /atom. Recip­

rocal space integrations are carried out over varying numbers of symmetry-reduced 

k-points, with the same energy convergence tolerance as used for the plane-wave 

cut-off. Exchange and correlation effects are treated using the GGA due to Perdew 

and Wang [48]; this is known to perform significantly better for hydrogen-bonded 

molecular systems than the LDA [101, 47]. The calculations on isolated molecules 

use the same parameters, except a supercell of 10 x 10 x lOA is used in order to 

impose false periodicity; this is found to be sufficient to ensure that the molecular 

energy levels are dispersionless to within 1 meV, and hence only the f-point need 

be used in integrating over the Brillouin zone. 

In order to investigate the structural parameters in more detail, it is useful here to 

discuss the labelling conventions used in assigning labels to atoms. In figure 5.1 the 

(zwitterionic) structure of valine is illustrated, along with the numbering convention 

used throughout. In all cases, the numbering of the carbon atoms labels that in the 

car boxy group as '1 ', then proceeds along the sidechain in sequence. 

5.1 Structural Relaxation 

The object of a structural relaxation is to obtain the groundstate relaxed geometry 

of the system under consideration. This may include the equilibrium lattice con­

stants. For a given ionic configuration, a self-consistent single-point calculation is 
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Figure 5.1: Valine: t he numbering convention used in this study. 

carried out , and from this, the forces obtained. If these forces are greater than some 

minimum tolerance, then the ions are moved in the direction of the forces. This 

procedure is repeated until an equilibrium structure, with vanishing forces (within 

the numerical tolerance) is obtained. T he lattice constants may also be varied by de­

termining the stresses acting, and obtaining an equilibrium structure with vanishing 

stresses. 

5.2 Population Analysis 

A useful tool in studying the electronic structure is population analysis. In this 

chapter, extensive use will be made of this method; it is therefore useful at this 

juncture to discuss at some length the basic theory underpinning this technique. 

Population analysis is based upon a decomposition of the electronic density into 

atomic contributions, such that nominal charges may be assigned to each atom. 

The absolute values of these charges are not physically meaningful, being extremely 

sensitive to the choice of basis set used in the calculation [166, 167, 168, 169, 170], 

in addition to which, no unique single decomposition exists. However, the trends 

revealed by population analysis are useful. 
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Plane wave basis sets do not naturally lend themselves to such localised atom-based 

decompositions due to the extended nature of the basis states. Instead, one must 

project the Kohn-Sham eigenstates obtained from a PW calculation onto a localised 

basis set. In this work, the choice of localised basis sets is that of atomic pseudo­

orbitals generated from the pseudopotential. The projection technique of Sanchez­

Portal et al. [169, 170] is used in conjunction with the implementation of Segall et 

al. [166, 167, 168]. 

An overlap matrix S(k) may be defined through 

(5.1) 

where the I¢JL(k)) is a localised orbital. Such an overlap is calculated in reciprocal 

space; the application of a phase factor suffices to allow overlaps between orbitals 

on different atomic sites to be evaluated. 

The quality of the localised basis set used is quantified by the spilling parameter 

(5.2) 

where Na is the number of plane wave eigenstates, wk is the weight associated with 

each k-point in the Brillouin zone integration, and fi(k) is the projection operator 

into the subspace of Bloch orbitals, '1/Ja(k), at wavevector k generated by the atomic 

basis: 

p(k) = L I¢JL(k))(¢1L(k)l. (5.3) 
JL 

Here, the I¢JL(k)) are the duals of the atomic basis set such that 

(5.4) 

and 

(5.5) 
!I 
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The projector is defined in this way because the atomic orbitals used are non­

orthogonal; although these are more cumbersome to handle, as the above equa­

tions indicate, they do possess the advantage of being more transferable and less 

environment-dependent [169], with a shorter range of interactions. 

The spilling parameter may vary in value between 1, denoting complete orthogonality 

between the localised basis set and the plane wave eigenstates, and 0, meaning that 

the localised basis set perfectly reproduces the plane wave states. 

A density operator may be defined through 

ace 

p(k) = L nalxa(k))(xa(k)l (5.6) 
Q 

where the na are the occupancies of the plane wave states and lxa(k)) are the 

projected eigenstates p(k)l'l/'a(k)). This allows the density matrix for the atomic 

basis set to be written 

Pttv(k) = (<pt"(k)I,O(k)I</F(k)) (5.7) 

from which the Mulliken charge [171] for atom A is given by 

on A 

QM(A) = L Wk L L Pttv(k)Svtt(k) (5.8) 
k tL v 

and the overlap charge between atoms A and B is 

onAonB 

nM(AB) = L Wk L L 2Pttv(k)Svtt(k) (5.9) 
k J.t v 

By examining the atomic Mulliken charges, it is possible to analyse in more detail the 

effects of zwitterionisation upon the molecular structure, and hence to understand 

the underlying reasons for this. Further, examination of the overlap charge between 

atoms allows one to investigate the nature of the bonding. A positive value of 

the overlap population indicates that the atoms are bonded; a negative value is 

indicative that the atoms are in an antibonding state. Of course, the values also 
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Crystal symmetry z 
L-alanine P212121 4 
L-leucine P21 4 
L-isoleucine P21 4 
L-valine P21 4 

Table 5.1: Crystal symmetries and numbers of molecules per unit cell (Z) for the 
molecular crystals L-alanine, L-isoleucine, L-leucine and L-valine as determined ex­
perimentally in references [173, 17 4, 175, 176]. 

a b c 
Theory Experiment Theory Experiment Theory Experiment 

L-alanine 6.18 6.03 12.29 12.34 5.83 5.78 
L-leucine 14.72 14.67 5.29 5.32 9.60 9.61 
L-isoleucine 10.20 9.68 5.31 5.30 14.48 13.96 
L-valine 9.71 9.68 5.23 5.25 12.51 11.93 

Table 5.2: Structural parameters of the molecular crystals L-alanine, L-isoleucine, 
L-leucine, and L-valine; experimental (cited above) versus theoretical (this study) 
results. All lattice parameters are quoted in angstrom. 

yield information on the strengths of the bonds present. This allows a quantitative 

investigation of the bonding mechanisms present within the molecular crystal, both 

inter- and intra-molecular. 

5.3 Crystalline Systems 

The determination of the structure of molecular crystal systems is a formidable 

problem, as has been discussed by Gdanitz [172]: although one may optimise the 

intramolecular structure relatively easily, the intermolecular structure represents 

a more challenging task due to the nature of the intermolecular forces and the 

large number of degrees of freedom typically present. Indeed, no method currently 

exists that can reliably determine molecular crystal structures from the constituent 

molecules' structures. In order to bypass this problem, experimentally determined 

structures [173, 174, 175, 176] are employed to provide initial atomic positions 

and crystal symmetries, after which one may then minimise the atomic forces to 

determine an equilibrium geometry consistent with the system symmetry. 

The symmetries and numbers of molecules per unit cell are given in table 5.1. 
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X y z 
Experiment Theory Experiment Theory Experiment Theory 

H(1) -0.301 -0.285 0.064 0.064 -0.806 -0.797 
H(2) -0.231 -0.214 0.179 0.198 -0.777 -0.780 
H(3) -0.401 -0.404 0.150 0.156 -0.957 -0.971 
H(4) -0.558 -0.559 0.239 0.248 -0.654 -0.646 
H(5) -0.778 -0.772 0.108 0.109 -0.856 -0.852 
H(6) -0.847 -0.833 0.103 0.103 -0.590 -0.558 
H(7) -0.685 -0.660 0.014 0.005 -0.694 -0.681 
C(1) -0.439 -0.428 0.142 0.141 -0.398 -0.390 
C(2) -0.523 -0.513 0.161 0.162 -0.644 -0.632 
C(3) -0.725 -0.706 0.091 0.091 -0.698 -0.684 
N -0.344 -0.341 0.138 0.143 -0.814 -0.805 
0(1) -0.271 -0.270 0.084 0.080 -0.372 -0.368 
0(2) -0.550 -0.528 0.185 0.188 -0.239 -0.230 

Table 5.3: Theoretically determined atomic positions for L-alanine compared to the 
experimentally determined positions [173]. 

In figure 5.2 the structure of L-valine is shown. One can observe that the molecules 

have formed zwitterions; that is, the amino and carboxy functional groups ionise, 

forming oppositely charged functional groups, via the donation of a proton from the 

carboxy group to the amino group; the resulting amino group is now NH3, whilst the 

carboxy group is C02. This is expected, as it is well-known that these zwitterions 

are stabilised in the solid state by electrostatic, polarisation and hydrogen bonding 

interactions with the crystalline environment [177]. This is in contrast to the gaseous 

phase, as can be seen by examining figure 5.2(b) illustrating the structure of an 

isolated valine molecule. In the crystal one can see that the molecules have arranged 

themselves such that the negatively ionised amine functional groups are in close 

proximity to the positively ionised carboxy groups of neighbouring molecules. This 

is readily understood via classical electrostatics: a bond between molecules may be 

formed via these charged functional groups. The molecules may also be bound by 

hydrogen bonding between the carboxy groups and the amine groups. Such bonding 

is well-known to take place in these molecular systems [32, 33]. It can be seen in 

figure 5.2 that the crystal structure allows oxygen atoms in the carboxy groups 

to participate in multiple hydrogen bonds; this is common in such structures [32]. 

However, such bonds are not generally of the same strength, and this is reflected in 

different bond lengths. For example, the 0-H bonds between neighbouring molecules 
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X y z 
Experiment Theory Experiment Theory Experiment Theory 

H(1) 0.625 0.623 0.528 0.503 0.959 0.956 
H(2) 0.507 0.507 0.246 0.213 0.870 0.859 
H(3) 0.579 0.578 0.061 0.085 0.984 0.990 
H(4) 0.587 0.589 0.039 0.008 0.802 0.820 
H(5) 0.747 0.744 0.162 0.136 0.810 0.813 
H(6) 0.743 0.740 0.175 0.168 0.993 0.994 
H(7) 0.800 0.800 0.609 0.584 0.816 0.806 
H(8) 0.744 0.741 0.750 0.739 1.033 1.029 
H(9) 0.863 0.859 0.780 0.788 1.026 1.025 
H(10) 0.817 0.819 0.534 0.537 1.122 1.123 
H(ll) 0.941 0.956 0.517 0.480 0.898 0.904 
H(12) 0.914 0.907 0.230 0.213 0.817 0.818 
H(13) 0.930 0.914 0.244 0.232 1.000 1.002 
C(1) 0.618 0.615 0.512 0.495 0.738 0.731 
C(2) 0.636 0.636 0.389 0.370 0.880 0.874 
C(3) 0.736 0.734 0.283 0.273 0.898 0.895 
C(4) 0.810 0.809 0.485 0.470 0.905 0.901 
C(5) 0.807 0.807 0.649 0.644 1.030 1.026 
C(6) 0.903 0.902 0.345 0.341 0.908 0.906 
N 0.575 0.574 0.164 0.153 0.887 0.886 
0(1) 0.587 0.582 0.382 0.358 0.639 0.634 
0(2) 0.636 0.635 0.743 0.723 0.731 0.719 

Table 5.4: Theoretically determined atomic positions for L-leucine compared to 
experimentally determined positions [17 4]. 

in the a-axis, where the H atom forms part of a donor group common to both bonds, 

and both oxygen atoms are in the same carboxy group, range from 1. 71 to 1.82 A. 

This though does not address why it is energetically favourable for the molecules to 

form zwitterions: valine has a non-zero dipole moment; therefore the possibility of 

forming bonds with neighbouring molecules must exist via dipole-dipole interactions. 

However, to form a zwitterion must involve some energetic penalty: therefore, why 

is it energetically favourable to zwitterionise? This is a point that is returned to 

later on, when discussing the electronic structure of 1-valine. One consequence of 

the molecular arrangement, as shown in figure 5.2, is the formation of "layers" in 

the z-axis, which one would expect to be weakly bonded to each other, in contrast 

to the dipolar interactions and hydrogen bonding of the intra-layer arrangement. 

One may contrast this structure with that of 1-alanine, shown in figure 5.3. Again, 
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(a) 

(b) 

Figure 5.2: . The structure 1-valine: supercell used in this study in (a); isolated 
molecule in (b). Note the "layer" formation in (b). Oxygen atoms are shown as red, 
carbon as grey, hydrogen as white, and nitrogen as blue. This colour convention is 
used throughout. 



Chapter 5. Structural and Electronic Properties of Amino Acids 142 

X y z 
Experiment Theory Experiment Theory Experiment Theory 

H(1) 0.303 0.288 -0.348 -0.336 0.396 0.383 
H(2) 0.452 0.451 -0.286 -0.255 0.415 0.391 
H(3) 0.359 0.349 -0.197 -0.182 0.480 0.477 
H(4) 0.419 0.408 0.133 0.173 0.394 0.385 
H(5) 0.438 0.425 -0.142 -0.113 0.254 0.247 
H(6) 0.337 0.304 0.357 0.401 0.223 0.214 
H(7) 0.493 0.468 0.287 0.339 0.252 0.248 
H(8) 0.466 0.449 0.380 0.413 0.088 0.080 
H(9) 0.343 0.331 0.177 0.175 0.070 0.065 
H(10) 0.499 0.494 0.085 0.098 0.100 0.100 
H(11) 0.198 0.189 -0.261 -0.263 0.239 0.243 
H(12) 0.250 0.238 -0.186 -0.152 0.144 0.136 
H(13) 0.163 0.140 -0.003 0.038 0.196 0.204 
C(1) 0.206 0.198 0.131 0.157 0.384 0.385 
C(2) 0.347 0.330 0.018 0.047 0.367 0.359 
C(3) 0.363 0.343 -0.019 0.018 0.259 0.254 
C(4) 0.408 0.383 0.231 0.264 0.216 0.209 
C(5) 0.431 0.416 0.217 0.236 0.109 0.108 
C(6) 0.230 0.221 -0.128 -0.096 0.204 0.207 
N 0.366 0.354 -0.228 -0.199 0.420 0.405 
0(1) 0.116 0.119 -0.017 0.019 0.413 0.424 
0(2) 0.185 0.176 0.360 0.382 0.364 0.362 

Table 5.5: Theoretically determined atomic positions for 1-isoleucine compared to 
experimentally determined positions [175]. 

the molecules form zwitterions but the molecular arrangement differs from that 

of 1-valine. Examining a 2 x 2 x 2 supercell, looking along the a-axis reveals a 

pattern of interlocking "layers", each two molecules "thick" of oppositely aligned 

molecules. This arrangement allows the interaction energy between the oppositely 

ionised functional groups of neighbouring molecules to be minimised, hence making 

this arrangement energetically favourable. It is worth noting that in contrast to 1-

valine, no weakly bonded layers appear in the structure. This is significant, as it may 

explain why, for example, the agreement between experiment and theory (shown in 

table (5.2)) is so much better for 1-alanine as opposed to that exhibited for 1-valine. 

This can be understood as follows: charge localisation means that it is unlikely that 

the inter-layer bonding in 1-valine is due to any form of charge overlap. Further, the 

"interfaces" of each layer are composed of CH3 groups, so dipolar interactions are 

unlikely to be significant. Thus one could reasonably assume that non-local van der 
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X y z 
Experiment Theory Experiment Theory Experiment Theory 

H(1) 0.678 0.690 0.439 0.461 0.385 0.387 
H(2) 0.541 0.520 0.379 0.384 0.409 0.408 
H(3) 0.643 0.649 0.302 0.281 0.486 0.492 
H(4) 0.569 0.559 -0.021 -0.052 0.379 0.381 
H(5) 0.523 0.517 0.255 0.268 0.226 0.231 
H(6) 0.514 0.507 -0.078 -0.070 0.091 0.095 
H(7) 0.612 0.622 -0.243 -0.259 0.167 0.174 
H(8) 0.467 0.457 -0.181 -0.190 0.210 0.220 
H(9) 0.690 0.683 0.290 0.290 0.081 0.090 
H(10) 0.760 0.762 0.380 0.405 0.195 0.210 
H(ll) 0.792 0.800 0.128 0.096 0.152 0.164 
C(1) 0.779 0.779 -0.031 -0.040 0.363 0.371 
C(2) 0.634 0.636 0.083 0.078 0.347 0.351 
C(3) 0.597 0.599 0.132 0.126 0.222 0.232 
C(4) 0.543 0.543 -0.111 -0.113 0.167 0.177 
C(5) 0.719 0.718 0.242 0.237 0.157 0.171 
N 0.624 0.624 0.326 0.318 0.412 0.413 
0(1) 0.873 0.871 0.112 0.105 0.400 0.409 
0(2) 0.794 0.795 -0.262 -0.265 0.335 0.345 

Table 5.6: Theoretically determined atomic positions for L-valine compared to the 
experimentally determined positions [176]. 

Waals-type interactions are responsible for the inter-layer bonding. Semi-local XC 

functionals such as the GGA are poor at describing such non-local interactions, and 

thus one could expect some inaccuracy to be present. Contrariwise, in L-alanine, 

no such layers exist; the inter-molecular and inter-layer interactions appear to be 

primarily dipolar and hydrogen bond-like, which are accurately described by GGAs. 

One would therefore expect to find the agreement that is indeed found. This is also 

the most likely explanation for the fact that in some circumstances, the theoreti­

cal lattice constants (shown in table 5.1) have been found to be greater than the 

experimental lattice constants; for in principle, one would expect the exact reverse: 

that the experimentally determined lattice constants, which implicitly incorporate 

thermal effects, should be greater than the theoretically determined ones. In con­

nection with this though, it should be noted that GGAs are occasionally responsible 

for underbinding in solids, resulting in lattice constants that are slightly too long 

[51]. 
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z 
L v 

Figure 5.3: Structure of alanine supercell. Note the percolating network of hydrogen 
bonds. 

Examination of the atomic positions as determined experimentally and theoretically 

in tables 5.3, 5.4, 5.5 and 5.6 lends credence to this view, as in all cases individual 

intra-molecular degrees of freedom can be dealt with satisfactorily; evidence for this 

is the good agreement found for the atomic positions of an individual molecule of 

the crystal. Rather, this suggests that, in accordance with the above discussion, it 

is the inter-molecular interactions that can be problematic. 

1-isoleucine appears structurally to be similar to L-valine, as shown in figure 5.4. 

One may immediately note the interesting manner in which the functional groups on 

one molecule "lock horns", so to speak, with their oppositely charged counterparts 

on the neighbouring molecule. Thus individual molecules within the unit cell are 

bound by two hydrogen bonds. Again, like 1-valine, examining a supercell shows 

the same layer formation. One may postulate the following explanation for such 

formations occurring: 1-alanine possesses a short sidechain; therefore it is possible 

for the molecules to "interlock" to a greater extent than is possible if the functional 

groups are attached to a long sidechain. It should also be noted that this interlocking 

manifests itself in the percolating network of hydrogen bonds that can be observed in 

figure 5.3. Thus it appears to be an issue of packing: the shorter the side chain, the 

closer the molecules can be packed, and therefore the greater the number of bonds 

that can be made between functional groups on neighbouring molecules. Considering 



Chapter 5. Structural and Electronic Properties of Amino Acids 145 

z 

lx 
Figure 5.4: Structure of isoleucine supercell. 

an example where one has a large sidechain, then one can see that the packing 

arrangements are limited to the case where the functional groups can "lock horns" 

with a molecule opposite, and perhaps form a bond to a molecule lying parallel 

to itself, resulting in " layer formation". Perhaps unsurprisingly, L-leucine appears 

to be largely similar, and one may make the same observations for this structure 

as have been made for the previous ones. In this case though, one gets hydrogen 

bonded layers forming in both the a and c axes, which account for the discrepancies 

observed between the experimental and theoretically determined lattice constants. 

Current methods of carrying out calculations on molecular crystals [16] frequently 

use free molecule structures and parameters, such as charge densities, in order to 

simulate the crystal, i.e. a free molecule is placed in the field due to the other 

molecules within the unit cell and then a calculation is carried out: the above raises 

serious issues about the validity of such an approach, for clearly it is inappropriate 

to assume that the molecule does not relax its internal degrees of freedom in the 

solid state. 
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5.4 Electronic Structure 

In figure 5.5 the band structure for 1-valine is presented. Despite the existence of 

the well-known bandgap problem [47] (1DA and GGA XC functionals commonly 

underestimate bandgaps), the qualitative topology of DFT-obtained bandstructures 

is generally considered to be correct, and it is therefore justified to use this concept 

to understand the electronic structure. Certain features are immediately apparent, 

namely the wide bandgap of 5.27 eV. It may also be noted that the occupied states 

display little dispersion, and therefore are likely to correspond closely to the molec­

ular orbitals, i.e. to be localised to individual molecules within the unit cell, as 

one would expect for a molecular crystal. It implies that the inter-molecular at­

traction, and hence the geometric structure, is not primarily dictated by electronic 

bonding, differing from that of the isolated molecules, but is rather due to either 

van der Waals forces, hydrogen bonding or dipole-dipole interactions. The non-zero 

dipole moment of valine, coupled with the polar nature of the functional groups 

involved, and their known tendency to form hydrogen bonds, strongly suggests that 

dipole-dipole and hydrogen bonding interactions may be expected to dominate. This 

provides an explanation of the point alluded to in the previous section concerning 

the zwitterionisation of 1-valine in the solid state: namely that the only way in 

which a stable crystal may form is by increasing the dipole-dipole interaction by 

zwitterionisation: this is because of the localisation of the electron charge distri­

bution to individual molecules. Further, zwitterionisation has implications for the 

nature of the hydrogen bond between the amino and carboxyl groups. In principle, 

it would seem that a hydrogen bond could form between these groups irrespective 

of whether the functional groups are ionised or not; however, the hydrogen bond 

that forms is stronger if the zwitterionisation occurs. This can be understood if one 

examines the geometry of the molecules involved: donation of a proton to the amino 

group from the carboxyl group allows a relatively straight hydrogen bond to form: 

this is characteristic of a strong bond, whereas such a straight and hence strong 

bond could not form if the zwitterionisation did not occur. 

A Mulliken population analysis allows this argument to be placed upon a more 

quantitative basis: the nitrogen atoms have a negative overall charge of -0.78e, as 
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opposed to a charge of -0.68e on the oxygen atoms. Such a result is indicative of 

the nitrogen atom being more electronegative than the oxygen atom, and suggests 

that the proton bonded to the nitrogen atom will be deshielded more than it would 

be if it were covalently bonded to the oxygen atom in the carboxyl group. This 

deshielding then can account for the formation of a stronger hydrogen bond. It is 

further interesting to note that by zwitterionisation, the possibility occurs for the 

carboxyl group to take part in more hydrogen bonds than would otherwise be the 

case, as can be seen in figure 5.2. This in itself will act as a further stabilising 

influence. 

Examination of the electron charge density of L-valine is supportive of the above 

conclusions. Figure 5.6(a) shows a constant density isosurface, and as expected, it 

displays a marked localisation on individual molecules. It may also be noted that 

some level of charge overlap does occur between the amide and carboxy functional 

groups of neighbouring molecules. This is suggestive of a hydrogen bond forming 

between these molecules, via these oppositely ionised functional groups, and is con­

sistent with the discussion above on the reasons for zwitterionisation occurring in 

the solid state. 

A bond population analysis of the 0-H bonds strengthens the above analysis. The 

shortest bonds have a length of 1.69-1.71 A; if one guardedly uses as a criterion for 

hydrogen bonding the requirement that the sum of the van der Waals radii of the 

atoms involved must be greater than the separation of the atoms, then this indeed 

does qualify as a hydrogen bond. The bond contains a population of O.l-0.13e. 

In figure 5.6(b) we show the density corresponding to the highest occupied orbital of 

the system. It can be seen that this appears to be "p-like" in nature and is primarily 

localised on the oxygen atoms. These are the are lone pair electrons on the oxygen 

atoms that take place in hydrogen bonding, in line with the discussion above on 

hydrogen bond formation. 

The partial density of states is a useful construct to introduce at this point; it 
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decomposes the total density of states, defined through 

N(E) = L 6(E- Ej), 
j 

148 

(5.10) 

into contributions due to different angular momentum components (i.e. whether the 

levels are s-like, p-like etc.). It may be defined through 

Nil= 2:::: l(xjli<PJ) I26(E- EJ) 
j 

(5.11) 

where xJl is the angular momentum component concerned and <PJ is a Kahn-Sham 

orbital, with Ej the corresponding Kahn-Sham eigenvalue. In practice, the delta 

functions in equations (5.10) and (5.11) are evaluated using a Gaussian function 

as an approximation with an appropriately chosen smearing width. In this work, 

a width of 0.2 eV is found to be sufficient. Although examination of orbitals is 

useful, and provides insight, the partial density of states provides a more rigorous 

identification of the nature of the orbitals. Figure 5.7 shows the the partial density 

of states for valine; the highest occupied orbitals are primarily p-like in character, 

which is consistent with the analysis based upon the orbitals. 

It is mentioned here in passing that the band structures for isoleucine (figure 5.8) 

and leucine (figure 5.9) are largely similar to that of valine. Band gaps are 4.68 eV 

and 5.05 eV, respectively. The electron densities and orbitals also appear to exhibit 

the same behaviour, as can be deduced by examination of the partial densities of 

states shown in figures 5.10 and 5.11; for this reason, these are not presented. Given 

the similarity between these molecules in terms of their geometric structures and in 

terms of the functional groups present, these similarities are not surprising. 

1-alanine (figure 5.12) deserves more detailed attention, as its band structure is 

markedly different. It possesses a wide bandgap, of 5.07 eV, as do the other three 

systems examined. The band structure appears shows more dispersion in both the 

valence and conduction band manifolds possibly because of the closer packing that 

alanine takes part in. Examining the density in figure 5.13 does not show a notice­

able degree of delocalisation, which one would expect in order to produce dispersion; 

rather, the density is largely localised to individual molecules, with electron overlap 
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Figure 5.5: The electronic band structure of L-valine. 

confined to the region of the inter-molecular hydrogen bonds. The density of states 

reinforces this conclusion, as does the partial density of states in figure 5.14. The 

carbon-oxygen bonds are slightly asymmetric, having lengths of 1.24 and 1.26 A; 

suggesting that the two hydrogen bonds are not of the same strength. Population 

analysis suggests that the closest distance oxygen-carbon bonds are of length 1. 7 4 

A, a characteristic hydrogen bond length, and that these bonds have net positive 

populations of 0.12e. It is worth noting here that this compares to hydrogen bond 

distances of around 1. 7 A for L-valine: this suggests that the strength of the hy­

drogen bonds is approximately constant from system to system. Examination of 

the orbitals reveals that they are similar to those of the other systems, with the 

highest orbitals being primarily oxygen p-type orbitals; this is again consistent with 

hydrogen bonding, and means that the electronic structure of L-alanine is broadly 

similar to those of the other systems considered. 

5.5 Comparison with Isolated Molecules 

The most obvious point when comparing the properties of the molecular crystal with 

the isolated molecules is that, except for leucine, the isolated molecules are found in 
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(a) 

(b) 

(c) 

Figure 5.6: The ground state density of valine (a), highest occupied orbital (b), and 
lowest occupied orbital (c). 
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L-valine: Partial density of states 
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Figure 5.7: The partial density of states for L-valine. A Gaussian smearing of 0.2 
e V has been applied. 
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Figure 5.8: The electronic band structure of L-isoleucine. 
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Figure 5.9: The electronic band structure of L-leucine. 
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Figure 5.10: Partial density of states for L-isoleucine 
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Figure 5.11: Partial density of states of 1-leucine. 
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Figure 5.12: The electronic band structure of 1-alanine. 
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Figure 5.13: The ground state density of alanine. Note the localised nature of the 
density, with significant overlap only occurring in the vicinity of the amino and 
carboxy groups involved in hydrogen bonding. 



Chapter 5. Structural and Electronic Properties of Amino Acids 

L-alanine: partial density of states 

30.-,----.---.----.----,---.----.----.----n 

c1 = o1 
C1- Oz 
Cz -N1 
C1-C2 
Cz-C3 

5 

" '' 0 / \ 
·20 

'' ' ' ' ' ' ' ' ' . ' 

Energy (eV) 

Figure 5.14: Partial density of states of alanine. 

Free molecule Crystal 
Length (A) Population (e) Length (A) Population (e) 

1.19 1.07 1.26 0.88 
1.32 0.66 1.24 0.95 
1.47 0.61 1.48 0.54 
1.54 0.76 1.53 0.75 
1.51 0.68 1.51 0.69 
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Table 5.7: Variation in bond lengths and populations in alanine: comparison between 
the free molecule and the solid state. 

the non-zwitterionic state. This immediately suggests that one could expect there to 

be both major differences in the geometric and electronic structures between the two 

cases considered. In order to investigate this, it is useful to examine the geometric 

parameters such as bond lengths, and their variation between the free molecule and 

the molecule in the solid state. It is also useful to examine the Mulliken charges 

in order to investigate the effect of the solid state environment upon the molecular 

properties. In tables 5.7, 5.8, 5.9 and 5.10, the lengths and populations of certain 

bonds are presented. The notation labelling the atoms is that illustrated in figure 

5.1. 
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Free molecule Crystal 
Length (A) Population (e) Length (A) Population (e) 

c1 = o1 1.21 1.05 1.24 0.93 
C1-02 1.33 0.67 1.26 0.89 
c2 -N1 1.47 0.62 1.48 0.55 
c3 -C4 1.52 0.69 1.52 0.75 
C4 -Cs 1.51 0.67 1.52 0.68 
c3 -c6 1.52 0.69 1.52 0.72 
c2 -c3 1.54 0.76 1.54 0.74 
c1- c2 1.55 0.77 1.53 0.76 

Table 5.8: Variation in bond lengths and populations in isoleucine: comparison 
between the free molecule and the solid state. 

Free molecule Crystal 
Length (A) Population (e) Length (A) Population (e) 

c1 = o1 1.21 1.06 1.24 0.93 
C1-02 1.33 0.66 1.25 0.90 
c2 -N1 1.47 0.62 1.49 0.55 
c3 -c4 1.52 0.69 1.52 0.71 
C3 -Cs 1.52 0.70 1.52 0.72 
c2 -C3 1.53 0.75 1.54 0.74 
C1-C2 1.54 0.77 1.53 0.76 

Table 5.9: Variation in bond lengths and populations in valine: comparison between 
the free molecule and the solid state. 
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It is immediately apparent that the geometrical parameters are similar for all the 

non-zwitterionic systems considered. This is not entirely surprising. More impor­

tantly, it is noticeable that the C-C bonds do not alter significantly upon zwitterioni­

sation. This suggests that the molecular structure remains largely unaltered between 

the free molecule and the molecular solid cases. The only significant changes occur in 

the carboxy functional group. Here, one can clearly see that in the free molecule, the 

C=O bond is significantly shorter than the C-0 bond, and has a greater population, 

reflecting the double nature of the bond. Upon zwitterionisation, the bond lengths 

"equalise", resulting in two bonds that are of approximately the same length with 

similar populations. Given that the deprotonated oxygen now has a free unbound 

electron, such a contraction in the C-0 bond is not surprising. The accompanying 

population increase in the bond is unsurprising. A more unexpected result is the 

alteration in the C=O bond length and population. This is explicable if one con­

siders that this oxygen atom may also participate in hydrogen bonding; thus one 

could expect an accompanying depletion of charge in the region of the C=O bond, 

and instead a charge accumulation in the region between the carbon atom and the 

hydrogen involved in the hydrogen bond. The charge densities shown earlier support 

such an argument. 

Examining leucine in table 5.10, which is zwitterionic as a free molecule, one sees, 

as in the non-zwitterionic case, very little change in the carbon "backbone" of the 

molecule. This is unsurprising in light of the previous discussion and the zwitterionic 

nature of the molecule. The bonds between the carbon and oxygen atoms remain 

unaltered; again, this is unsurprising. A slight alteration in the population of the 

cl - 02 bond occurs, from 0.94e to 0.91e; given that the bond length remains 

constant, it is likely that this is simply a numerical artefact and not physically 

significant. 

In tables 5.11, 5.12 and 5.13 the Mulliken charges are presented for the alanine, 

isoleucine and valine. The effective charges of the carbon atoms comprising the 

backbones of the molecules alter only slightly upon formation of the molecular solid. 

More significant are those changes that arise due to zwitterionisation. The 0 1 atom, 

i.e. the atom double bonded to the Co: atom, undergoes a significant change in its 

Mulliken charge, changing from -0.57 e to -0.67 e; such an accumulation of charge 
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c1 = o1 
C1- 02 
C2-N1 
c3 -c4 
C4-C5 
c4 -c6 
C1-C2 

Free molecule 
Length (A) Population (e) 

1.25 0.93 
1.25 0.94 
1.51 0.48 
1.53 0.73 
1.52 0.70 
1.52 0.70 
1.57 0.67 

Crystal 
Length (A) Population (e) 

1.25 0.92 
1.25 
1.49 
1.52 
1.52 
1.52 
1.53 

0.91 
0.55 
0.75 
0.70 
0.72 
0.75 
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Table 5.10: Variation in bond lengths and populations in leucine: <;omparison be­
tween the free molecule and the solid state. 

is consistent with the reduction in the bond population noted earlier. It is also 

consistent with the possibility existing for these double-bonded oxygen atoms to 

participate in hydrogen bonding. Interestingly, the deprotonated 0 atom undergoes 

no change at all in its Mulliken charge. This is perhaps surprising; one would expect 

the removal of a covalent bond to be accompanied by a change in the electronic 

structure of the atom involved, rather than simply an alteration in bond lengths 

and populations, as happens. The formation of the NHt upon crystallisation is 

accompanied by an alteration in the Mulliken charge of the N atoms from around 

-0.9e to around -0.79e; this can be easily understood as occurring because of the 

formation of an extra covalent bond between the N atom and the extra H atom now 

present. 

In table 5.14 the Mulliken charges are presented for leucine in the molecular and solid 

states. Since this molecule is already zwitterionised, one observes little change in 

the values of the charges present in the carboxy group. It is interesting to note that 

theN atom undergoes a change in charge from -0.85e to -0.78e; this is is probably 

associated with the slight alteration in the C-N bond, and the corresponding bond 

population alteration from 0.48e in the molecular case to 0.55e in the crystalline case. 

More surprisingly, the values of the C5 and C6 atoms present change greatly, from 

-0.80e to -0.70e; there appears to be little explanation for such a large alteration, 

which is not observed for any other carbon atoms present. Further, there is no 

molecular distortion occurring that would account for such a large alteration in the 

Mulliken charge. 



Chapter 5. Structural and Electronic Properties of Amino Acids 159 

Mulliken charge (e) 
Free molecule Crystal 

c1 0.68 0.65 
Cz -0.22 -0.18 
c3 -0.82 -0.74 
N -0.94 -0.78 
01 -0.57 -0.67 
Oz -0.67 -0.67 

Table 5.11: Variation in Mulliken charges in alanine: comparison between the free 
molecule and the solid state. 

These results are of interest as they clearly show that the major changes in the 

molecular structure of amino acids when they crystallise are not due to the effects of 

the crystalline environment, but are due instead to the zwitterionisation process that 

allows the crystal to be stabilised. Correspondingly, these changes are manifested in 

the functional groups involved in zwitterionisation. The changes are both structural 

and electronic, and would seem to indicate that, at least for those molecules that are 

found to be non-zwitterionic in the gaseous phase, free molecule properties would 

be inappropriate in order to attempt to simulate the solid. 

The case of leucine is more intriguing. It could be expected, in light of the above 

discussion, that, since GGA calculations predict that leucine is a zwitterion as an 

isolated molecule, that perhaps one would be justified in assuming very little change 

upon crystallisation. However, despite the fact that the geometric structure appears 

to change very little upon crystallisation, the Mulliken charges suggest that the 

electronic structure undergoes significant alteration and this consequently implies 

that any treatment of the crystalline structure should fully account for these changes. 

5.6 Summary 

In conclusion, this chapter has investigated the geometric and electronic structures 

of the four amino acids alanine, valine, leucine and isoleucine in both the solid 

state and as isolated molecules with a view to understanding how these depend 

upon the molecular environment. Although amino acids in both forms have been 

extensively studied by a variety of experimental techniques, such as X-ray diffraction 
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Mulliken charge (e) 
Free molecule Crystal 

c1 0.67 0.64 
c2 -0.21 -0.19 
c3 -0.24 -0.21 
c4 -0.49 -0.46 
c5 -0.79 -0.75 
c6 -0.79 -0.72 
N -0.90 -0.79 
01 -0.57 -0.69 
02 -0.66 -0.66 

Table 5.12: Variation in Mulliken charges in isoleucine: comparison between the free 
molecule and the solid state. 

Mulliken charge (e) 
Free molecule Crystal 

c1 0.67 0.64 
c2 -0.21 -0.17 
c3 -0.24 -0.20 
c4 -0.79 -0.73 
c5 -0.79 -0.74 
N -0.91 -0.78 
01 -0.57 -0.68 
02 -0.66 -0.66 

Table 5.13: Variation in Mulliken charges in valine: comparison between the free 
molecule and the solid state. 

Mulliken charge (e) 
Free molecule Crystal 

c1 0.64 0.64 
c2 -0.21 -0.17 
c3 -0.53 -0.47 
c4 -0.25 -0.22 
c5 -0.80 -0.70 
c6 -0.80 -0.71 
N -0.85 -0.78 
01 -0.69 -0.68 
02 -0.70 -0.66 

Table 5.14: Variation in Mulliken charges in leucine: comparison between the free 
molecule and the solid state. 
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[173, 174, 175, 176], little work appears to have been carried out on investigating 

the relationship between the properties of the molecular crystal, and those of the 

constituent molecules. 

The molecular crystals are broadly understood to be zwitterionic and stabilised 

largely by hydrogen bonding between the amino and carboxy functional groups, 

although little theoretical work has been carried out to verify the validity of this 

picture. In this chapter, the geometric and electronic structures of these four crys­

tals have been calculated using first principles methods. In general, the geometric 

structures have been found to be in good agreement with the experimentally deter­

mined structures allowing for finite temperature effects and van der Waals bonding. 

It is found that the inter-molecular interactions that stabilise the crystals must be 

primarily electrostatic in nature, for it is well-known that DFT accounts well for 

such interactions: this has implications too for the hydrogen bonding, suggesting a 

primarily electrostatic nature, which is consistent with the current understanding of 

the nature of the typical bonds that predominate in these crystals, i.e. C=O-H-N 

[32]. The cases where agreement is poor between theoretical and experimentally 

determined lattice constants are most likely due to van der Waals forces being re­

sponsible for binding: these cases almost always involve interactions between widely 

separated CH3 groups, for which other forms of interaction are unlikely to occur. 

The gross features of the electronic structure appear to be largely the same from 

system to system; this is perhaps not entirely surprising, given that they all share 

the same functional groups; rather the only differences appear to stem mainly from 

the differing side chains. As an example, the band structures, densities of states, 

both complete and partial, and electronic orbitals appear broadly similar. However, 

the differences manifest themselves in how these molecules pack together to form 

crystals; alanine is notably different, in main because its much shorter side chain 

allows a greater degree of close packing than is possible in the other three systems, 

all of which possess much longer side chains. However, in all cases the bonding 

mechanisms appear to be the same. It is interesting to note that the structures of 

individual molecules within the crystal structure are so different from the gas phase 

conformers; this is largely due to the zwitterionisation that occurs; however, it does 

have implications for how calculations are carried out on these systems: it is clearly 
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not appropriate to use the isolated gas phase molecular conformers and subject 

these to the crystal field of the surrounding molecules, for this completely neglects 

the structural and electronic changes that take place upon zwitterionisation. 

Comparison with the structures of isolated molecules reveals that the molecular 

structures alter due to zwitterionisation upon crystallisation (save for leucine), and 

that these changes are confined to the functional groups that are directly involved 

in the zwitterionisation. Corresponding changes in the electronic structure are con­

fined to these functional groups. Leucine is found to be zwitterionic as an isolated 

molecule; accordingly the geometric structure changes little upon crystallisation. 

The electronic structure does show significant changes though. 

This work has produced results that are broadly consistent with interpretative mod­

els. It is to be hoped that such first principles techniques will find wider application 

to these important systems, and help to place our understanding of them and the 

interactions responsible for their formation on a much firmer theoretical footing. 

It is to this end that this work is intended to serve as a foundation for further 

investigations such as the vibrational and dielectric properties of these important 

crystals. 



Chapter 6 

Dielectric and Vibrational 
Properties of Amino Acids 

Although a complete understanding of the physical properties of a system depends 

upon accurate determination of the groundstate electronic structure, a wide vari­

ety of phenomena in crystalline systems depends upon the lattice dynamical and 

dielectric behaviour. Examples include: IR, Raman and neutron-diffraction spec­

tra, specific heats, thermal expansion and heat conduction; phenomena involving 

electron-phonon coupling such as superconductivity, the resistivity of metals, trans­

port properties, and the temperature dependence of optical spectra [73]. Further­

more, the central quantity of interest in a lattice dynamical calculation, viz. the dy­

namical matrix, is intimately related to the nature of the chemical bonding present. 

Investigating the lattice dynamical behaviour can, therefore, yield insights into the 

bonding mechanisms prevalent in molecular crystalline systems. 

The first step in developing a thorough understanding of these phenomena in amino 

acids in the solid state is therefore an accurate determination of these properties 

and their relation with those of the constituent molecules. To this end, this chapter 

presents the results of such calculations. The normal modes and polarisabilities of 

the isolated molecules are determined initially, and then compared to the results of 

calculations on the crystals themselves. 
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6.1 Molecular Properties 

6.1.1 Computational Approach 

The molecular calculations fall into three distinct stages: firstly, the geometrical 

structures at equilibrium are obtained by minimising all internal degrees of freedom 

using the Hellmann-Feynman theorem. The polarisabilities are then obtained using 

DFPT, before the molecular normal modes and effective charges are determined. 

The interactions between the valence electrons and the atomic nuclei are treated 

using norm-conserving pseudopotentials with cut-off energies of 1000 eV. This adds 

considerably to the computational effort required, but as explained earlier, the use 

of ultra-soft pseudopotentials within DFPT is problematical, with several technical 

issues needing to be addressed. Artificial periodicity is imposed through the use 

of cubic supercells of 10 x 10 x lOA; this is found to be sufficiently large so as to 

ensure that the molecular energy levels are non-dispersive. Consequently, one only 

has to consider the r-point when carrying out integrations over the Brillouin zone. 

Exchange and correlation are treated within the GGA of Perdew and Wang [48]. 

6.1.2 Polarisabilities 

In order to validate the accuracy and efficacy of DFPT when applied to molecular 

problems, the polarisability tensor has been calculated by two independent methods: 

by DFPT itself, and by finite differences. The finite difference method is based upon 

the following expansion of the molecular dipole moment 

/-La (c) = /-LOa + :l::>~a/JC 1J + · · · 
/1 

(6.1) 

where a and f3 run over the Cartesian axes, and /loa is the zero field molecular dipole 

moment. 

As can be seen in table 6.1, good agreement between the two methods is found not 

only for the average of the trace but also for individual diagonal components; such 

agreement is edifying, and demonstrates convincingly that DFPT can obtain molec­

ular polarisabilities. It is likely that errors originate mainly in the finite difference 
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Molecule oPFPT(A3) a~FPT(A3) aFD(A3) af:vD(A3) 
9.30 -0.12 -0.86 8.67 9.62 -0.1 -0.87 9.14 

Alanine -0.12 9.50 0.29 -0.16 10.28 0.33 
-0.86 0.29 7.23 -0.89 0.25 7.53 
18.50 -0.21 -0.12 15.37 17.95 -0.1 -0.19 15.49 

Leucine -0.21 13.03 0.63 -0.19 13.77 0.61 
-0.12 0.63 14.57 -0.22 0.64 14.75 
17.19 -0.61 0.01 14.73 18.02 -0.57 0.11 15.33 

Isoleucine -0.61 13.71 1.72 -0.59 14.19 1.77 
0.01 1.72 13.29 0.1 1.80 13.77 
14.34 0.05 -0.55 12.72 14.27 0.04 -0.52 13.03 

Valine 0.05 13.18 1.36 0.26 13.75 1.40 
-0.53 1.36 10.64 -0.55 1.45 11.06 

Table 6.1: Amino acid polarisability components: finite differences (FD) versus 
DFPT; all values are in A 3 . 

treatment, as one is effectively taking a numerical derivative; the quality of such 

a result will depend upon the number of points used to evaluate the polarisability. 

It can also be seen that the agreement is at times much less satisfactory for the 

off-diagonal elements. This is because the off-diagonal elements, in contrast to the 

diagonal elements, are obtained via a non-variational calculation. As such, they will 

be extremely sensitive to the quality and convergence of the calculation. It should 

be noted that the DFPT off-diagonal elements are constrained by symmetry, i.e. 

element a/3 is the same as f3a. The finite difference calculations do not have such 

a constraint, and thus, although in general one finds that it is satisfied to within 

the second decimal place, it is not always. In this case, one can consider the DFPT 

result to be the more reliable value. In figure 6.1 we show typical curves displaying 

dipole moment as a function of applied field for alanine. 

The first-order electronic density gives the linear variation in the electronic density 

caused by the external perturbing field. In figures 6.2-6.5 and 6.6-6.9, the molecular 

structure and first order densities obtained by DFPT calculations for alanine and 

valine are shown. These are presented as being representative of the types of be­

haviour found. The contributions of the carboxy and amino functional groups may 

be clearly seen; what is equally clear is that these functional groups are not equally 

polarisable in different molecular environments; these contributions shall now be 

discussed in more detail, and an attempt to elucidate possible connections between 
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Figure 6.1: The variation in the dipole moment J.L(x) as a function of applied field 
in the x-axis for alanine.The fit used is a linear fit. 
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molecules in terms of shared geometric and structural factors will be made. 

Figure 6.2: Molecular geometry of alanine. 

Figure 6.3: Alanine: first order electron density. Response to a perturbation in the 
x axis. Blue represents where charge is being displaced to, whilst yellow represents 
a depletion of charge caused by the applied field. 

6.1.3 Relation to Geometric Structure 

The most noteworthy structural difference between the molecules under considera­

tion is that leucine forms a zwitterion in the gaseous state, in contrast to the other 
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y 

<X 

Figure 6.4: Alanine: response to perturbation in y-axis. Colours as before. 

three molecules. The reason for this is connected to intra-molecular hydrogen bonds. 

In the neutral molecules, there is a hydrogen bond that forms between the hydro­

gen atom of the carboxy group and the nitrogen of the amine group. The bond 

lengths, and populations as obtained from a Mulliken population analysis, can be 

seen in table 6.2. These suggest that the three bonds are of approximately the same 

strength, which is perhaps not unexpected. These intramolecular bonds will act so 

as to stabilise this conformer. However, the position of the amine group with respect 

to the carboxy group in leucine is such that it is not possible to form a hydrogen 

bond between these two groups of the same strength; this is essentially because 

the amine group does not lie in the same plane as the carboxy group. Instead, by 

zwitterionising, it is possible for the amine group to form two hydrogen bonds, each 

bond involving different oxygen atoms in the carboxy group. It is thus energetically 

favourable for zwitterionisation to occur. As can be seen in table 6.2, in leucine 



Chapter 6. Dielectric and Vibrational Properties of Amino Acids 169 

y 

Figure 6.5: Alanine: first order electron density. Response to perturbation z-axis. 
Colours as before. 

these hydrogen bonds are longer, suggesting that they are weaker, a conclusion that 

is reinforced by the substantially smaller populations of these bonds. 

Length (X) Population (e) 
alanine 1.81 0.12 

leucine (1) 2.49 0.03 
leucine (2) 2.71 0.01 
isoleucine 1.72 0.14 

valine 1.74 0.13 

Table 6.2: Hydrogen bond lengths and populations. Bond 1 refers to the bond 
between the deprotonated oxygen atom and its nearest neighbour hydrogen; simi­
larly, bond 2 refers to the bond between the remaining oxygen atom and its nearest 
neighbour hydrogen. 

In support of such a hypothesis, note that for the neutral molecules alanine and 
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Figure 6.6: Molecular structure of valine. 

Figure 6.7: Valine: first order density, response to perturbation in x-axis. Colours 
as before. 
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(, 

Figure 6.8: Valine: response to perturbation in y-axis. Colours as before. 

y 

Figure 6.9: Valine: response to perturbation in z-axis, respectively. The colours 
have the same significance as in the previous diagrams. 
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valine, a depletion/ augmentation of charge may be seen in the region between the 

amino and carboxy groups (figures 6.3 and 6.7), suggesting the existence of a hy­

drogen bond between these two functional groups. A similar feature is observed for 

leucine. 

For valine, leucine and isoleucine, the behaviour of the electron density appears to 

be broadly similar in each case, which considering the zwitterionisation of leucine, 

is an interesting point. Given the geometric similarities between valine, leucine 

and isoleucine, this is perhaps expected, but it does suggest that the geometric 

structure plays a part in helping to determine the electronic response to external 

fields. Reinforcing this belief is the observation that in alanine, although neutral, 

as are isoleucine and valine, the electron density response is rather different. This 

is significant, and suggests that assuming that the polarisability will be determined 

by the functional groups present in a molecule is mistaken. 

6.1.4 Vibrational Properties 

In table 6.3, the normal mode frequencies and assignments as calculated using DFPT 

are presented. The normal modes may be used to investigate the nature of the intra­

molecular hydrogen bonds present in these systems. It is interesting to note that in 

the alanine and isoleucine, there are modes in the range 380-465 cm-1 that corre­

spond to oscillations of the hydrogen bond existing between the amine and carboxy 

groups. The fact that these oscillations occur in the same frequency range for both 

molecules suggests that this particular hydrogen bond is of around the same strength 

in both of these molecules. This is is agreement with the population analysis and 

bond lengths described in the previous section. In valine the same oscillatory motions 

are observed in the frequency range 350-450 cm-1. Examining table 6.3 indicates 

that in leucine, oscillations in this frequency range do not correspond to hydrogen 

bond distortions, rather they consist of oscillations of the carbon sidechain, although 

some of these oscillations suggest the existence of a weak hydrogen bond between 

the hydrogens on the Cf3 atom and the carboxy group. In leucine one can observe os­

cillations of the three-centre hydrogen bond between the amine and carboxy groups 

in the frequency range 198-266 cm- 1; this suggests a weaker hydrogen bond than in 
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3500 

Figure 6.10: IR spectrum of isoleucine; a Gaussian broadening corresponding to 
300K has been applied. 

the neutral molecules, in agreement with the previous discussion. The identification 

of these hydrogen bonds is consistent with the discussion in the previous section 

regarding the reasons for the zwitterionisation of leucine. 

Knowledge of the normal modes and the effective charges for the molecules under 

consideration allows theIR absorption spectra to be calculated. In figures 6.10 and 

6.11 the spectra of isoleucine and leucine, respectively, are presented. TheIR-active 

modes are obtained using the oscillator strengths calculated according to equation 

3.113. A Gaussian thermal broadening using a Boltzmann factor is then be applied 

in order to produce a full spectrum. 

The spectrum for isoleucine is representative of that of the non-zwitterionic molecules, 

and therefore only this one is presented, in order to discuss its features with regard 

to those exhibited in the zwitterionic case. It is interesting to note the contrast 

between this and the spectrum calculated for leucine, which is zwitterionic. Exami­

nation of the phonon eigenvectors for the individual peaks allows one to assign peaks 

to actual atomic motions. The peak at around 3000 cm-1 corresponds to oscillation 

of the 0-H bond. As expected, no such peak appears for the zwitterion leucine. 
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Alanine Isoleucine Leucine Valine 
Freq Assign eq Assign eq Assign eq Assign 
188 TCOOH 100 sidechain rocking 2 sidechain twist 110 sidechain rocking 
264 TCH3 127 sidechain 140 sidechain rocking 159 "breathing" mode 

"breathing" 
mode 

278 oCCC 144 TCOOH 146 sidechain rocking sidechain flexing 
385 oCOH;oCNN 193 sidechain flexing 199 sidechain flexing sidechain flexing 
433 pNH2 32 sidechain flexing 54 pCH3; pNH3 oCHCHCOOH 
438 oCCN 86 oCCH3 tw CH3; oCN sidechain flexing 
529 oCCO 12 sidechain flexing tw CH3 oC-O;oCHCH3 
581 oCN;oCOH 26 pCH3 10 tw CH3 oCH-NH2; 

oc-o 
747 wCOO 65 sidechain rocking; 29 pCH as above 

pCOOH 
804 vCCOOH 83 oCNH2 50 pCH2 pNH2 
879 oCN 33 vNCOOH 88 CH3CHCH3 sidechain twisting 
939 oCN 64 pNH2 twNH3 oC=O 
995 oOH 95 sidechain flexing 08 CH3CHCH2 pCOOH 
1018 oCCC 55 oCCOOH oCHCH2 oCOOH 
1077 vCH3CH 28 oCOH pCNH3 v8 CH3CHCH3; 

vC- C 
1128 vCN 29 oCOOHs vCNH3 oCCOOH 
1180 vCOH 65 OasCH2 pCH2; oCCOO V8 C H3C H C H3; 

oCN 
1220 oCH3CH 27 sidechain stretch 19 v8 CH; vCCOO vCHCH 

ing 
1285 oOH 57 sidechain rocking V8 CH3CHCH3 Va 8 CH3CHCH3 
1362 TCN 81 PasCH2CHCHN TCCOO vCCCC 

vCNH2 
1386 vCCH3 50 sidechain l/asCHCH2- 1033 oOH 

oCNH2 
-CHNH3 

1423 vC- O;pOH 76 vasCHCHN- Va 8 CH3CHCH2 1053 vCN 
-COOH 

1463 OasCH3 1001 vCHCH3; vCHCH3 1093 vCHCH 
oCH2CH3 

1471 OasCH3 1040 oOH 1000 vCH2CHNH3 1129 Va8 CHCH3; 
oCCCOOH 

1635 oNH2 1053 pCHNH3 1048 vCH2CHNH3 1160 V8 CCC 
1723 vC = 0 1073 vCH2CH3 1084 vCH2CHNH3 1189 Va 8 CCC 
2969 V8 CH3 1104 vCN 1121 vCHCH3 1202 oCHCH 
2976 V8 CH3 1136 pCH2CHCHN 1175 v8 CHCH2- 1255 pCH 

-CHNH3 
3042 VasCH3 1146 vCOH; sidechai vCHCH2 1319 pCH 

rocking 
3069 l/asCH3; vOH 1163 vCOH; sidechai 1218 pCH 1340 oCH 

rocking 
3075 VasCH3; vOH 1201 TCCOOH 1257 wCH2; pCH 1353 oCH 
3315 Va8 NH2 1235 pCHCHCH2 1266 vCCOO 1383 08 CH3 
3400 Va 8 NH2 1277 oCHCHCH2 1307 oCHNH3 1407 08 CH3 
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Isoleucine Leucine Valine 
Freq Assign Freq Assign Freq Assign 
1318 vCHCH 1331 pCH 1431 vO-H;oOH 
1327 vCHCH3oC-H 1350 pCH 1458 OasCH3 
1354 sidechain stretch- 1368 vCHNCH2; 1461 OasCH3 

ing vCH3CHCH3 
1358 rCHNH2 1377 sidechain flexing 1476 OasCH3 
1388 vCCH3; 1401 vCH3CH 1490 OasCH3 

vCH2CH3 
1399 vCCH3; 1412 OsNH3 1630 oNH2 

vCCH2CH3 
1436 vOH;pOH 1439 08 CH2 1709 vC=O 
1455 oCH2 1462 08 CH3 2911 vCH 
1469 08 CH3 1467 OasCH3 2947 vCH 
1471 08 CH3 1484 OasCH3 2963 V8 CH3 
1480 OasCH3oCH2 1505 OasCH3 2967 V8 CH3 
1496 OasCH3 1578 vC-0 2988 vO-H 
1630 oNH2 1626 oNH3 3025 Va8 CH3 
1705 vC=O 1633 vC=O 3031 Va8 CH3 
2910 vCH 2927 VsCH3 3048 Va 8 CH3 
2933 V8 NH2;vCH 2935 vCH 3091 Va8 CH3 
2954 vCH 2951 V8 CH2 3319 v8 NH2 
2960 vOH 2962 V8 CH3 3413 Va 8 NH2 
2963 V8 CH3 2995 Va8 CH3 
2969 V8 CH3 3007 Va8 CH2 
2984 Va8 CH2 3023 VasCH3 
3031 VasCH3 3025 vCH 
3036 VasCH3 3028 Va 8 CH3 
3050 VasCH3 3042 VasCH3 
3081 Va8 CH3 3160 v8 NH3 
3319 V8 NH2 3241 VasNH3 
3409 VasNH2 3282 Va8 NH3 

Table 6.3: (Continued table from previous page) Amino acid normal modes; all 
frequencies are in cm-1 . The notation for the various motions of atoms within the 
normal modes is defined as follows: v, stretching; o, bending; w, wagging; p, rocking; 
T, torsion; s, symmetric; as, asymmetric. 
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Figure 6.11: IR spectrum of leucine; Gaussian broadening corresponding to 300K 
applied. 

The large peak present at around 1600 cm- 1 is due to stretching of the C=O bond. 

This peak does occur for leucine, but it is striking that in this case, a doublet forms, 

with a slightly smaller, but closely separated peak present. This doublet is due to 

the oscillation of the bond between the carbon atom and the deprotonated oxygen 

atom and the C=O bond, and it is thus not surprising that they are almost equally 

intense. Correspondingly, one would expect that this peak is absent from the spec­

tra of the neutral molecules, and instead, one observes a peak at around 1400 cm- 1 

due to the stretching of the C-0 bond and "rocking" of the 0-H bond. This peak 

is around half as intense as that of the C=O bond stretching. In the zwitterionic 

case, one observes another strong peak at 1266 cm-1; this is due to simultaneous 

excitation of the Ca - C bond and the carbon-oxygen bonds within the carboxylic 

acid group. In the non-zwitterionic case, a peak around half as small is observed at 

around 1150 cm-1 corresponding to oscillations of the carbon sidechain, including 

stretching of the C - 0 bond. 
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6.1.5 Effective and Mulliken Charges 

In table 6.4, the effective charges for the nitrogen and oxygen atoms in each molecule 

are presented. It is immediately noticeable that all four molecules possess effective 

charges that display marked off-diagonal components. It is noteworthy that in all 

cases except leucine, the average effective charges are approximately the same. The 

off-diagonal components depend upon the orientation of the molecule concerned with 

respect to the Cartesian axes. This is not constant from molecule to molecule, and 

therefore it is only possible to compare the traces meaningfully. It is not entirely 

surprising, in light of the discussion above regarding the zwitterionisation of leucine 

in the gaseous phase, that leucine displays markedly different effective charges, and 

that this is particularly true for the nitrogen atom. It is easy to understand this: 

the effective charge is directly related to the vibrational properties of the molecule, 

and quantifies how the electronic structure changes under atomic displacement; it is 

therefore related directly to the chemical bonds present, and in leucine, the nitrogen 

atom bonds to three hydrogen atoms, rather than two, as is true for the other three 

molecules. The oxygen atoms also possess effective charges that are closer in value 

to each other than is the case in the other molecules. Again, this can be explained 

with reference to the zwitterionisation of the molecule, which results in both oxygen 

atoms forming double bonds with theCa atom, rather than just one as in the neutral 

case. These bonds will be identical and thus one would expect to see similar, if not 

identical, effective charges. In support of this, it should perhaps be noted that in 

leucine, the nominal charges as calculated by population analysis for both oxygen 

atoms are almost identical (-0.69e versus -0.70e); no such agreement is found for the 

other three neutral molecules. 

It is also interesting to note that the nominal atomic charges determined by Mul­

liken population analysis [171] display a constancy from molecule to molecule. This 

is suggestive that the electronic structures of each molecule are similar. This is in­

teresting, as it implies that the geometric structure and the sidechain of the amino 

acid under consideration have minimal impact upon the electronic structure of the 

molecule, and that further, that this is dictated in main by the functional groups 

present. 
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Molecule ZK-,{3a( e) Zav(e) Znom (e) 
-0.61 -0.03 0.15 -0.49 -0.92 

N 0.03 -0.58 -0.69 
0.21 -0.06 -0.27 
-1.09 0.15 0.39 -0.78 -0.66 

Alanine 0(1) -0.25 -0.77 0.075 
0.39 -0.06 -0.49 
-0.80 0.25 0.20 -0.74 -0.57 

0(2) 0.37 -0.94 -0.19 
0.20 -0.11 -0.46 

-0.67 0.10 -0.01 -0.52 -0.90 
N 0.15 -0.49 -0.27 

0.02 -0.26 -0.40 
-0.92 0.37 0.14 -0.83 -0.66 

Isoleucine 0(1) 0.12 -0.94 0.48 
-0.19 -0.35 -0.63 
-0.88 -0.17 -0.29 -0.77 -0.57 

0(2) -0.06 -0.70 -0.33 
0.23 -0.39 -0.75 

-0.35 -0.02 -0.05 -0.18 -0.85 
N -0.12 -0.13 0.08 

0.04 0.12 -0.30 
-0.89 -0.08 -0.13 -0.90 -0.70 

Leucine 0(1) 0.11 -1.06 -0.46 
-0.02 -0.42 -0.76 
-1.34 0.45 0.22 -0.94 -0.69 

0(2) 0.39 -0.84 -0.27 
0.21 -0.30 -0.63 

-0.63 0.01 0.10 -0.50 -0.91 
N 0.05 -0.61 -0.22 

0.12 -0.18 -0.27 
-1.00 0.37 0.24 -0.83 -0.66 

Valine 0(1) 0.04 -1.04 -0.30 
0.02 -0.34 -0.44 
-0.77 -0.29 -0.09 -0.75 -0.57 

0(2) -0.14 -1.01 -0.29 
-0.04 -0.29 -0.47 

Table 6.4: Effective charges and nominal atomic charges from population analysis 
for the molecules considered in this work. By average effective charge, we mean the 
average of the trace. 0(1) is the oxygen atom bonded to a hydrogen; 0(2) is double­
bonded to the carbon chain. For the zwitterionic leucine, 0(1) is the deprotonated 
oxygen. 
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It also suggests that zwitterionisation does not substantially alter the population 

of the nitrogen atom involved, but rather only alters the population of the oxygen 

atom that donates a proton, as discussed above. 

Discrepancies exist between the effective charges and the nominal charges. It is 

instructive to consider these discrepancies and to attempt to understand their ori­

gin. The discrepancies are most marked in dealing with the nitrogen atoms, as the 

effective charge is almost always around half of the value of the nominal charge; for 

leucine the disagreement is even more marked. Further, the nominal charges show, 

in all cases, that the nitrogen has more negative charge than the oxygen atoms. 

This is in agreement with nitrogen being more electronegative than oxygen. It is 

noticeable though that this trend is not followed by the effective charges, which in 

all cases show the reverse, that the nitrogen effective charge is less than that of the 

oxygen atoms. Of course, it should be understood that such discrepancies may arise 

from the fact that the effective charge and the nominal charge encapsulate comple­

mentary, but different, aspects of the physics involved: the nominal charge is based 

upon a decomposition of the Kohn-Sham eigenstates into localised atomic orbitals, 

and as such yields information on the electronic density; the effective charge, on the 

other hand, yields information on the vibrational properties, and hence chemical 

bonding of the molecule concerned. The two are not therefore directly comparable, 

but rather, are more usefully used as complementary techniques. It can therefore be 

said that the fact that the effective charges for nitrogen are consistently less negative 

than those of the oxygen atoms present is due to the differences in chemical bonding. 

The discrepancies occurring between the nominal charges and the effective charges do 

raise some interesting questions: often in molecular mechanics simulations, atomic 

charges obtained from Mulliken population analysis are used. This though relies 

upon an arbitrary partitioning of charge; other partitioning techniques are equally 

valid. More importantly, perhaps, the results discussed, particularly leucine, seem 

to indicate that Mulliken population analysis does not always reflect the physics in 

the system under consideration: examining the nominal charges alone, one would 

not be able to identify leucine as being zwitterionic, but this does appear to be 

reflected in the effective charges calculated. Further, the effective charge is obtained 

from the dynamics of the system: in a simulation where atoms are subjected to 
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external fields, it would perhaps be more appropriate to use effective charges rather 

than charges obtained from population analyses. This is an interesting point and 

deserves further investigation. 

6.2 Molecular Crystals 

Having determined the normal mode behaviour for the case of isolated molecules, it 

is now time to examine the lattice dynamical properties of the molecular crystal in 

detail, and attempt to understand how the two relate. One would expect that there 

will be two major factors in determining this relationship: the zwitterionisation of 

the constituent molecules in the solid state leading to alterations in the molecular 

electronic and geometric structure; and secondly, the influence of the inter-molecular 

interactions responsible for binding the solid upon the vibrational spectrum. 

Generally, in most molecular crystals, the intra-molecular forces will be greater than 

the inter-molecular forces by an order of magnitude [179]. Consequently, internal 

molecular modes will have higher frequencies of oscillation than the intra-molecular 

lattice modes. It is therefore often a justifiable approximation to treat the motions 

as separable, and hence to assume that the molecule moves under the influence of the 

lattice modes as a rigid body. These rigid motions may take two forms: translational 

motions, analogous to phonons in a conventional crystal, and orientational, or libra­

tiona! motions in which the molecular centre-of-mass is stationary. This approach is 

very much in the spirit of molecular physics, i.e. one treats individual molecules as 

being perturbed by the crystalline environment. However, dealing with librational 

motions using such a scheme is cumbersome, as one must explicitly include such 

terms in the Hamiltonian. Similarly, if coupling arises between internal and lattice 

modes, or between internal modes on neighbouring molecules, this again must be 

included explicitly in the Hamiltonian. 

Such a treatment has been outlined in detail by Venkatarman and Sahni [178] and 

Schnepp and Jacobi [179], and has had numerous successes. However, it is appar­

ent that in situations where the molecules possess a large degree of conformational 

flexibility (indicating that the separation of the normal modes approximation breaks 
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down) that this approach is inadequate. An accurate treatment of the low-frequency 

lattice modes, which are sensitive to intermolecular interactions, demands that a full 

treatment of the crystal be provided, rather than simply treating it as a molecule 

perturbed by the effects of the crystal field [180]. 

Amino acids are able to undergo many conformational changes, as mentioned pre­

viously, and as such, an accurate treatment of the lattice dynamics requires a full 

ab initio treatment of the crystal. DFPT is a natural candidate for this work. 

DFPT possesses further advantages over the molecule-centred approach: because 

the normal modes are obtained by examining the system response to a perturba­

tion of every atom in each Cartesian direction, the lattice and internal modes are 

treated on exactly the same footing, and any couplings between them are implicitly 

incorporated. Similarly, librational motions and any possible couplings with the 

translational degrees of freedom are implicitly incorporated. This approach is very 

much in keeping with the traditional solid state physics approach whereby lattice 

dynamics are discussed in terms of cooperative vibrations of all atoms within the 

crystal. In principle, it suffers the disadvantage that the conceptually simple pic­

ture of a molecule undergoing librational and translational motions is lost, but this 

picture can be constructed retrospectively by examining the system eigenvectors. 

6.2.1 Computational Approach 

The response of each molecular crystal to electric field and atomic displacement 

perturbations is obtained using the same DFPT techniques as discussed earlier. 

The theoretically determined structures of the previous chapter are used. How­

ever, DFPT calculations on such large systems (of the order of 200 electrons) are 

extremely computationally demanding; thus it has only been possible to calculate 

the normal modes at the r-point, rather than being able to obtain a full phonon 

dispersion curve. Computational restrictions have also meant that, in all cases ex­

cept L-alanine, only the r-point has been used in determining the self-consistent 

Kohn-Sham groundstate via a single-point energy calculation. The first restriction 

is disappointing, as it would be interesting to be able to examine the full vibrational 

spectrum, as this has not, to the best of the author's knowledge, been investigated by 
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Figure 6.12: IR spectrum of L-alanine. 
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ab initio methods. However, the zone centre phonons are still extremely useful phys­

ically, as a knowledge of them is vital for investigating the IR and Raman spectra. 

The second restriction is more problematic, and slightly unsatisfying, as it means 

that the groundstate density will be less well determined, leading to an inherent 

error when the response of the system to a perturbation is considered. However, it 

is possible to estimate the resulting error in the predicted normal mode frequencies 

by using L-alanine, which is fully converged, as a benchmark. 

6.2.2 Lattice Dynamics 

Given that L-alanine represents the most converged calculation carried out, it makes 

sense to analyse this one initially. It is useful to examine the validity of the rigid 

molecule approximation, and whether the internal normal modes are separable from 

the external lattice modes. In order to attempt to illustrate this discussion, rather 

than simply providing a rather dry table of normal mode frequencies (which would 

be prohibitively long!), in figure 6.12 theIR spectrum of L-alanine is presented. 

This is noticeably different from the IR spectrum of a free molecule presented ear-
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lier. This is not surprising, given that the molecule in the solid state is found as a 

zwitterion. The presence of three peaks at around 3000 cm-1 is noticeable, in con­

trast to the one peak in the molecular case. These are due to stretching of the N-H 

bonds present. These oscillations are, unsurprisingly, decoupled from motions of the 

lattice, and constitute pure vibronic (internal) modes. The doublet that occurs in 

the spectrum at 1610-1683 cm- 1 is common to zwitterionised amino acids; a similar 

feature was observed in the spectrum of isolated (zwitterionic) leucine. This is due 

to oscillations of the C-0 bond and the bond between the deprotonated oxygen and 

the Ca atom. Correspondingly, it is not surprising that these peaks are of almost 

equal intensity. A further doublet occurs at 1364-1420 cm-1 . These correspond to 

oscillations of the C-C bonds that form the sidechain of the molecules. These modes 

can legitimately be termed internal modes. However, for the lower-lying modes, 

the distinction between vibronic and lattice modes is less clear. For example, the 

peak at 272 cm- 1 originates from a motion that in the plane of the carboxy group 

looks like a rocking of the carboxy group fixed about the Ca atom, that is due to 

bending of the C-C bonds forming the sidechain. This causes stretching of the 0 

N-H hydrogen bonds present, and thus it can be seen that this corresponds to an 

admixture of inter and intramolecular motion. This is a direct consequence of the 

flexibility of the carbon sidechain. 

The lowest lying modes occur at frequencies of less than 100 cm-1 ; these can be 

identified in the main as lattice modes, although a mode occurs at 79 cm-1 that 

appears to arise largely from CH3-Ca bond rocking. A translational mode occurs at 

89 cm-1 in which pairs of molecules oscillate anti-phase with the neighbouring pair in 

the direction of the a-axis. The highest frequency lattice mode occurs at 142 cm-1 ; 

this is a pure translation mode in which neighbouring molecules oscillate anti-phase 

in the a-axis. Given that the lowest normal mode of the isolated alanine molecule 

has a frequency of 188 cm-1 , this suggests that a degree of coupling may be expected 

between external and internal modes. Indeed, modes such as that occurring at 107 

cm-1 and 124 cm-1 appear to be an admixture of librational motions and Ca-C bond 

bending and rocking. This is consistent with the conformational flexibility of amino 

acid molecules. A further manifestation of this flexibility is found with the presence 

of several low-lying soft phonons. This opens up the possibility of phonon-mediated 
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phase transitions occurring between phases in which the constituent molecules adopt 

different conformations. 

The presence of soft phonon modes in molecular crystals is not surprising. However, 

unambiguously identifying soft phonon modes is problematical because it is the low­

lying lattice modes that are likely to be soft, and these very modes are the most 

difficult to accurately describe. This is because these modes have small frequencies 

- of the order of less than 100 em - 1 - and therefore the error on the calculated 

frequencies is, in some cases, of the order of the frequency itself. An illustration of 

this can be provided by examining the lowest lying modes of L-alanine. Imposition 

of the sum rule drastically changes the frequencies of the lowest 11 modes; in fact 

from mode 7 to 11, there is actually a sign change: this suggests that significant error 

is present. Therefore, in order to ascertain whether modes are genuinely soft, or the 

negative frequencies obtained in the calculation are a numerical artifact, atoms have 

been displaced from their equilibrium positions by a small amount in the direction of 

the phonon eigenvectors of the modes in question. Single-point energy calculations 

are then carried out for these new geometries, and the resulting system energy 

compared to that obtained at the relaxed geometry. Of course, if the mode is not 

soft, and the negative frequency is merely an indication of a poorly converged result, 

then the system energy will be greater for the displaced structures. However, if the 

mode is a genuine soft mode, then the reverse will be true, and the energy should 

decrease upon atomic displacement under the action of these modes. 

These calculations have verified the existence of two soft phonon modes amongst 

these low-lying lattice modes: that occurring at 79 cm- 1 and that at 107 cm-1 . 

These both refer to the frequencies without the acoustic sum rule explicitly imposed. 

These modes correspond to rigid unit rotations of the molecules involved around the 

axis defined by the C1 - C2 bond. The presence of these soft modes opens up 

the possibility of phonon-mediated phase transitions occurring: this is an intriguing 

prospect, and deserving of further investigation. 

In order to attempt to understand whether the majority of the changes in the vibra­

tional behaviour arise from, i.e. from the crystalline environment, the zwitterionisa­

tion of the molecules, or some combination, it is useful to examine the behaviour of 
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L-leucine in detail. This is zwitterionic as an isolated molecule, thus allowing one to 

probe the effects of the crystalline environment alone on the vibrational properties. 

In figure 6.13 the IR spectrum of L-leucine in the solid state is shown. This shows 

some similarities with that of the isolated molecule, but there are some noticeable 

differences present. For example, the modes at around 3000 cm-1 have larger IR 

peaks than in the case of the isolated molecule. The peak at 3176 cm-1 arises due 

to asymmetric stretching of the N-H bonds present; a symmetric stretching mode 

of the same bonds occurs at 3126 cm-1 . This compares to values of 3241 and 3282 

cm- 1 for the asymmetric mode and 3028 cm-1 for the symmetric mode. This is a 

significant change in the frequencies, and it is also noteworthy that in the solid state, 

the difference in frequencies between the asymmetric and symmetric modes is less. 

This suggests that the crystalline environment has a noticeable effect on these high 

frequency vibronic modes; this is not surprising, as the H atoms involved in these 

oscillations are also responsible for hydrogen-bonding with neighbouring molecules. 

Thus one could expect there to be an observable alteration in frequency due to 

the presence of the hydrogen bonds. That these oscillations occur at frequencies 

very similar to those in L-alanine suggests two important things: firstly, that the 

strength of the hydrogen bonds is approximately constant between systems, which 

is consistent with the discussion in the preceding chapter based upon population 

analysis of the bonds; and secondly, even though only the r-point has been used for 

sampling of the Brillouin zone, that this is sufficient to describe the vibronic modes 

adequately. The modes that are most sensitive to the convergence of the groundstate 

calculation are the low-lying lattice modes, which is unsurprising. A remedy to this 

problem may be provided by imposing the acoustic sum rule artificially as a post­

process step. This has the effect of constraining the low frequency modes, thereby 

improving the vibrational spectrum. A further N-H stretching mode may be seen 

at 2707 cm-1. 

The characteristic doublet that occurs at around 1500 cm-1 in zwitterionic systems 

is present, but slightly more complicated in structure in L-leucine. The peak at 

1595 cm-1 arises from asymmetric oscillations of the C-0 bonds present, with a 

symmetric oscillation of the same bonds present at 1415 cm-1 . Again, this differs 

from the frequencies of 1578 and 1633 cm-1 observed in the isolated molecule, and 
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Figure 6.13: IR spectrum of L-leucine. 

one can invoke the hydrogen bonds to help explain this discrepancy. It is likely that 

the hydrogen bonds and the crystal field are also responsible for the large difference 

in the relative intensities of these peaks in contrast to L-alanine, where the peaks 

are of similar intensity. However, an interesting feature not observed in the isolated 

molecule is the small peak at 1530 cm- 1 due to wagging of the N-H bonds present. 

Again, this will involve the hydrogen bonds, although this will act more to bend 

them than to stretch them. 

The low-lying modes appear to be largely librational motions, with no translational 

modes present. Interestingly, these modes appear to have little in the way of mixed 

internal/external mode character, being almost entirely purely external in charac­

ter. Given that the lowest lying molecular modes occur at 92 cm- 1 , this appears 

unexpected. However, modes occur at 101 and 148 cm-1 that appear to exhibit the 

same behaviour as those occurring at 92, 140 and 146 cm-1 in the isolated molecule. 

This suggests that the intermolecular interactions are not significant in perturbing 

the low lying internal modes. This is not entirely surprising, given that these modes 

consist of flexing and rocking motions of the sidechains, and that the atoms involved 

in these motions are not involved in the bonding mechanisms prevalent in these crys-
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tals. The high frequency vibrons, conversely, involve atoms intimately connected to 

the bonding mechanisms present; thus one would expect that these modes show 

the greatest variation. This acts as a further confirmation that hydrogen bonds 

are dominant in determining the molecular structure, as deduced by examining the 

electronic structure in the previous chapter. 

It is now possible to understand the relative contributions of zwitterionisation and 

intermolecular interactions to the modification of the free molecule normal modes. 

It is clear from examining the spectrum of L-alanine that modifications do occur 

due to zwitterionisation; for example, the doublet occurring at around 1600 cm-1. 

However, there are also features present such as the peaks occurring in the vicinity of 

3000 cm-1 , that do not occur for a zwitterionic isolated molecule. This is indicative 

of the effects of the crystalline environment and intermolecular interactions. 

The spectrum of L-leucine also shows modification of the normal modes relative to 

those of the isolated molecule, for example, the more complicated structure of the 

carboxy doublet at around 1500 cm-1 compared to that of the isolated molecule, 

and the peaks occurring at 3000 cm-1, indicate the influence of intermolecular, in 

particular hydrogen bonding, interactions. 

It therefore appears that the effects of the crystalline environment may be decoupled 

from those of zwitterionisation: the former is responsible for modification of the 

highest frequency vibronic modes, and results in extra structural features being 

observable in theIR spectrum at around 1500 cm-1; the latter is responsible for the 

appearance of this doublet. 

One can now examine the spectra and vibrational behaviour of L-valine and L­

isoleucine in order to verify that this general trend is true. In figure 6.14 the IR 

spectrum of L-valine is presented. It is immediately apparent that the spectrum 

is similar to that of L-leucine, with a similar form of doublet structure arising at 

around 1600 cm-1• This is interesting, as it illustrates the effect of the crystalline 

environment in line with the discussion above. The general vibrational behaviour is 

very similar to that of L-leucine, with the exception that the low lying lattice modes 

include translational modes at 96.2 cm- 1, and a coupled translational-librational 

mode at 42 cm-1, in contrast to L-leucine, where the low-lying modes are libronic. 
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Figure 6.14: IR spectrum of L-valine. 

The lowest vibronic modes are little affected by the crystalline environment: the 

sidechain rocking mode occurring at llO cm-1 in the isolated molecule occurs at 

ll8 cm-1 in the crystal. One would expect such behaviour for the same reasons as 

in L-leucine. 

The spectrum of L-isoleucine, presented in figure 6.15, is slightly different to those 

of L-leucine and L-valine. The most noticeable difference is the structure of the 

peaks at around 1500 cm-1. As in the other cases, the higher frequency peak is 

due to antisymmetric oscillations of the oxygen atoms in the carboxy group, whilst 

the lower frequency peak arises from a symmetric oscillation of the same bonds. 

However, it is noticeable that these form two distinct peaks, in contrast to the other 

cases. The intensity of the lower frequency peak is also only around half that of the 

more intense peak; a major contrast to the situation arising in both L-leucine and L­

valine. One also finds that in all cases, the antisymmetric oscillation is accompanied 

by "wagging" of the N-H bonds. However, in L-isoleucine, unlike the other three 

systems, the symmetric oscillation is accompanied by excitation of the C-C bonds 

between the end atoms of the sidechain. It therefore appears that in L-isoleucine, 

this motion is more of a superposition of vibronic modes, rather than a pure vibron, 
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Figure 6.15: IR spectrum of L-isoleucine. 
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as it is in the other systems. This mixed character may account for the discrepancy 

observed. 

The high frequency vibrons occurring in the vicinity of 3000 cm-1 behave slightly 

differently also. Each of the major peaks, at 3147 cm-1 , 2974 cm-1 and 2756 cm-1 

consists of a single N-H stretch, in contrast to L-leucine, for example, where one 

observes an IR-active antisymmetric stretch of these modes. An IR-silent symmetric 

stretch does occur at 2867 cm-1 , in contrast to 2933 cm- 1 in the isolated molecule. 

The highest frequency vibrons, occurring at 3162 cm-1 , are single N-H stretching 

modes. This is in contrast to the isolated molecule, where the highest frequency 

modes occur at 3319 and 3409 cm-1 , and are symmetric and antisymmetric N-H 

stretching modes respectively. Thus the effect of the crystal is to change both the 

frequency and the fundamental character of the highest frequency vibrons. The 

reasons for this can be understood in terms of the fact that every H bonded to 

the N atom in the crystal may participate in a hydrogen bond with a neighbouring 

molecule. 

The low frequency lattice modes are libronic; no translational modes appear to exist. 

It is noticeable that a libronic mode occurs at 103 cm-1 ; thus the lattice modes and 
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Molecule Z~~:,,l)a (e) Zav(e) Znom (e) 
-0.70 -0.15 -0.12 -0.45 -0.92 

N -0.09 -0.65 0.01 
-0.03 -0.04 0.01 
-1.54 0.70 0.09 -1.31 -0.66 

L-alanine 0(1) 0.77 -1.44 -0.01 
-0.19 0.13 -0.95 
-1.21 0.59 0.16 -1.43 -0.57 

0(2) 0.63 -1.14 -0.23 
0.50 -0.60 -1.95 

Table 6.5: Born effective charges in the L-alanine crystal. The nominal charge refers 
to that obtained via Mulliken population analysis. 

the lowest lying vibronic modes almost overlap. This is a natural and expected 

consequence of the conformational flexibility inherent in a long carbon sidechain. 

From 110 cm- 1 one obtains vibronic modes, in this case, sidechain rocking motions, 

compared to the same occurring at 100 cm- 1 in the isolated molecule. Similarly a 

vigorous twisting of the carboxy group is observed at 145 cm-1 compared to 144 

cm-1 for the isolated molecule. Thus, as expected, the low-lying vibrons are largely 

unaffected by the crystalline environment. 

6.3 Born Effective Charges 

Having analysed in detail the effects of the crystalline environment upon the normal 

modes of the molecules, it is useful now to turn attention to the Born effective 

charges and to investigate how these are affected. In table 6.5, the effective charge 

tensors of the N and 0 atoms in L-alanine are presented. 

These values show some marked differences from those obtained for the isolated 

molecule. Given the effects of zwitterionisation, and the presence of the crystalline 

environment, such variations are expected. Interestingly, the average of the effective 

charge for nitrogen, -0.45e, is close to that obtained for the isolated molecule, -0.49e. 

This is unexpected, especially given that the nitrogen atom gains a chemical bond 

with an extra hydrogen atom in the crystal. However, the hydrogen atoms bonded to 

this atom are involved in the hydrogen bonds responsible for binding the crystal; as 

discussed above, these hydrogen bonds lead to a modification of the normal modes of 
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the constituent molecules. Given that the effective charge is intimately related to the 

normal modes of the system under consideration, it is possible that the changes due 

to the extra chemical bond present are cancelled to some degree by the modification 

of the vibronic modes that arises because of the hydrogen bonds. 

In common with the free molecule, it is again found that the effective charges of 

the oxygen atoms are more negative than those of the nitrogen atoms. This is in 

contrast to what one would expect on the basis of electronegativites. As in the case 

of the free molecule, the Mulliken charges follow the trend of electronegativities. 

In order to investigate the effects of the crystalline environment on the Born charges, 

and attempt to understand which modes contribute to it, it is useful to calculate 

the mode effective charge vector, defined through [114] 

z;: = L z~,a,{3Um,q=O(K,f3) (6.2) 
K{3 

where m is the mode under consideration, Um,q=O is the corresponding phonon 

eigenvector, a, /3 label Cartesian directions and K, labels atoms. Calculation of this 

quantity is equivalent to projecting the Born effective charge onto the space of dy­

namical matrix eigenvectors, and allows the actual change in polarisation due to 

each mode to be obtained. It therefore amounts to decomposing the Born effective 

charge into contributions from each normal mode. Such a decomposition is useful as 

it yields valuable information on the character of the modes present. For example, 

vibronic modes are very often associated with excitations of intramolecular chemical 

bonds, and therefore determination of the mode effective charge vector provides in­

sights into the nature of the chemical bonds, such as the level of ionicity or covalency 

present. 

In table 6.6 the mode effective charge vectors of some of the normal modes present 

in L-alanine are given. Of interest is the behaviour of the highest frequency vibrons; 

those that are associated with the stretching of the N-H bonds. It can be seen that 

those at 3148 and 3117 cm-1 have IZml values of 0.53 eA and 1.87 eA, respectively. 

This indicates that these modes contribute significantly to the Born effective charges, 

and further, that these modes possess a significant ionic character. Given that the 
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w (cm-1) Character zm 
3148 LO -0.53 0.00 0.00 
3117 TO 0.00 -1.87 0.00 
1663 LO -4.89 0.00 0.00 
1607 TO 0.00 4.59 0.00 
1412 TO 0.00 -0.03 0.00 
1358 TO 0.00 -0.26 0.00 
1357 LO 0.21 0.00 0.00 
270 LO 0.89 0.00 0.00 
206 LO 1.18 0.00 0.00 
106 LO -0.06 0.00 0.00 

Table 6.6: Mode effective charge vectors in L-alanine. The character of the mode 
can be established by noting that q ----> 0 along the x-axis. 

hydrogen and nitrogen atoms are involved in hydrogen bonding, one would expect 

that there should be an accumulation of charge on the nitrogen atom; thus a level 

of ionicity is expected in these bonds. 

Similarly, the modes arising due to stretching of the carbon-oxygen bonds, namely 

those occurring at 1663 and 1607 cm- 1 possess large mode effective charge vectors; 

the magnitudes being 4.89 eA and 4.59 eA, respectively. This is unsurprising, given 

the above discussion, as the oxygen atoms involved in these oscillations are also 

involved in hydrogen bonds. The large values of these three-vectors suggest that 

the major changes occurring in the Born effective charges are due to the hydrogen 

bonds that form in the molecular crystal. Of course, implicit in this is the effect of 

zwitterionisation, for it is this that allows the hydrogen bonds to form, as discussed 

in the previous chapter. 

One would perhaps expect that in this case the effective charges due to the atoms 

in the sidechain are largely unaffected by the crystal environment. In table 6. 7 this 

is clearly not the case; the C(1) atom can be seen to undergo a significant change, 

in line with the preceding discussion. The C(2), i.e. the Co:, atom undergoes some 

change, with the average of the effective charge being modified from 0.18 e to 0.23 

e. The C(3) atom also undergoes modification, with the values changing from -0.01 

e to -0.06 e. These changes can be understood in terms of the lattice modes present; 

the long-range fields associated with these modes will lead to modifications of the 

free molecule Born charges, which are only associated with internal modes. In line 
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Free Molecule Crystal 
Z K-,/3o: (e) Zav(e) Z K-,/3a: (e) Zav(e) 

1.41 -0.34 -0.60 1.04 1.61 -1.10 -0.26 1.52 
C(1) -0.09 1.20 0.01 -1.08 1.07 0.40 

-0.61 0.06 0.50 -0.20 0.54 1.87 
0.39 -0.10 -0.05 0.18 0.39 0.10 -0.52 0.23 

C(2) -0.21 -0.06 0.18 0.03 0.16 0.04 
-0.10 0.22 0.22 -0.41 0.02 0.15 
-0.13 0.06 0.05 -0.01 -0.08 -0.02 0.13 -0.06 

C(3) -0.01 0.03 -0.04 -0.02 0.003 0.05 
0.03 -0.04 0.06 0.002 0.02 -0.10 

Table 6.7: Born effective charges of the carbon atoms in alanine; comparison between 
values in the crystal and free molecule. 

with this, it can be seen in table 6.6 that the lattice modes may possess values of 

zm as large as those of the vibronic modes. 

The discussion above suggests that the formation of hydrogen bonds is responsible 

for the modifications to the Born effective charges in L-alanine; however, the ability 

to form these hydrogen bonds is due to the fact that the molecules zwitterionise. 

Therefore the changes are due to both effects, and it is difficult to separate and 

decouple the two effects. Thrning to L-leucine, any changes are due solely to the 

formation of the intermolecular hydrogen bonds. It is therefore an interesting case, 

as it allows one to investigate the effects of the crystal environment unadulterated 

by the effects of zwitterionisation. 

In table 6.8, the effective charges in L-leucine are given. Again, large changes to 

the effective charge tensors occur. It can be expected that these changes are due to 

the intermolecular hydrogen bonds. It is interesting that in L-leucine, the value of 

the effective charge tensor of nitrogen is not close to that of the same atom in the 

isolated molecule. This is in contrast to the situation in L-alanine, as mentioned 

previously. The values of the effective charge tensors for the oxygen atoms are -1.43e 

and -1.39e, which is similar to the values in L-alanine; this suggests that the effects 

of the hydrogen bonds upon the effective charges are similar in the two cases. 

Again, an examination of the mode effective charge vectors given in table 6.9 indi­

cates that the major changes in polarisation are associated with the high frequency 
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Molecule ZK,,/3a(e) Zav(e) Znom (e) 
-0.631 0.124 0.012 -0.755 -0.85 

N -0.004 -0.672 0.222 
-0.077 0.136 -0.962 
-1.281 -0.441 -0.268 -1.43 -0.69 

L-leucine 0(1) -0.408 -1.464 -0.295 
-0.560 -0.580 -1.541 
-0.645 -0.164 -0.120 -1.39 -0.70 

0(2) -0.385 -2.333 -0.143 
-0.106 0.295 -1.192 

Table 6.8: Born effective charges in the L-leucine crystal. The nominal charge refers 
to that obtained via Mulliken population analysis. 

w (em I) IIZmll 
3172 1.63 
3126 0.63 
2707 2.32 
1596 5.07 
1415 0.40 
148 0.58 
101 0.22 

Table 6.9: Mode effective charge vectors in L-leucine. 

vibrons corresponding to oscillations of the N-H and carbon-oxygen bonds. This is 

similar to the findings in L-alanine, and similarly, imply that these bonds possess a 

level of ionicity consistent with hydrogen bonding. 

In table 6.10 the averages of the effective charge tensors are presented for the atoms 

in the molecular sidechain. The C(1) atom, that is, the carbon atom in the car­

boxy group, undergoes the largest change; in light of the discussion so far, this is 

unsurprising, as this atom is bonded to atoms involved in hydrogen bonding. It is 

noteworthy as well that the effective charges of the atoms further along the sidechain, 

i.e. further away from the Ca atom, display less variation. This can be understood 

if one considers that these atoms are not involved in intermolecular interactions, and 

therefore the properties possessed by these atoms in the free molecule undergo little 

modification. It does, however, seem to imply that the lattice modes contribute little 

to the Born charges. This can be understood by recalling that the lattice modes in 

L-leucine were found to be libronic in nature; such modes will not contribute to long 
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Atom z:v cr stal z:v molecule 

C(1) 1.544 1.182 
C(2) 0.203 0.139 
C(3) 0.067 0.019 
C(4) 0.164 0.128 
C(5) 0.018 0.019 
C(6) 0.023 0.020 

Table 6.10: Averages of the Born effective charge tensors for the carbon atoms in 
leucine: comparison between values for the isolated molecule and the crystal. 

range electric fields set up in the crystal. 

Finally, having analysed L-alanine and L-leucine in detail, attention can be focused 

upon the remaining two systems, L-isoleucine and L-valine. Examining L-isoleucine, 

the effective charge tensors are given in table 6.11. The changes can be explained 

within the same framework used for the other systems. The average of the effective 

charges of the carbon atoms are given in table 6.12; it can be seen that these are 

very close to those in L-leucine. This is unsurprising, given the similarities between 

these molecules, and suggests that the effects of the crystalline structure upon the 

long range non-analytic contribution to the dynamical matrix will be similar in each 

case. It can be seen though that there is a greater variation in the effective charges 

moving from the free molecule to the crystalline case in L-isoleucine than is true in 

L-leucine. If one bears in mind though that leucine was found to be zwitterionic as 

a free molecule, largely due to the different inter-molecular hydrogen bonds present, 

then one would expect this to be reflected in the molecular effective charges; thus 

the differences can be attributed to the differences in the molecular state, rather 

than differences in the crystal. 

In table 6.13 the Born effective charges of the nitrogen and oxygen atoms in L-valine 

are given. The values are broadly similar to those in the other systems under consid­

eration; this suggests that the same mechanism is behind the modifications, i.e. the 

intermolecular hydrogen bonds. This implies that the hydrogen bond strengths are 

approximately constant between the systems. This is unsurprising, given that the 

functional groups responsible for these bonds are the same in all cases, and is con­

sistent with the findings in the previous chapter, which were based upon an analysis 
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Molecule ZK.,/3a( e) Zav(e) Znom (e) 
-0.973 0.135 0.147 -0.847 -0.79 

N 0.185 -0.643 0.045 
0.104 -0.129 -0.925 
-1.189 -0.456 0.709 -1.334 -0.69 

1-isoleucine 0(1) -0.145 -1.362 0.541 
0.340 0.606 -1.451 
-1.411 0.487 0.056 -1.527 -0.66 

0(2) 0.180 -2.410 0.511 
0.097 0.175 0.761 

Table 6.11: Born effective charges in the 1-isoleucine crystal. The nominal charge 
refers to that obtained via Mulliken population analysis. 

Atom z~v cr stal z~v molecule 

C(1) 1.53 1.072 
C(2) 0.204 0.180 
C(3) 0.168 0.078 
C(4) 0.135 0.077 
C(5) 0.002 0.033 
C(6) 0.018 0.029 

Table 6.12: Averages of the Born effective charge tensors for the carbon atoms in 
isoleucine: comparison between values for the isolated molecule and the crystal. 
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Molecule ZK,{3a( e) Zav(e) Znom (e) 
-0.970 0.012 -0.078 -0.734 -0.78 

N 0.133 -0.707 -0.059 
0.006 0.064 -0.526 
-1.424 -0.568 -0.599 -1.360 -0.68 

1-valine 0(1) -0.254 -1.425 -0.417 
-0.273 -0.475 -1.232 
-1.267 0.349 -0.027 -1.458 -0.66 

0(2) -0.090 -2.414 -0.448 
-0.060 -0.228 -0.693 

Table 6.13: Born effective charges in the 1-valine crystal. The nominal charge refers 
to that obtained via Mulliken population analysis. 

Atom z~v cr stal z~v molecule 

C(1) 1.553 1.059 
C(2) 0.203 0.174 
C(3) 0.191 0.106 
C(4) 0.053 -0.010 
C(5) 0.024 0.002 

Table 6.14: Averages of the Born effective charge tensors for the carbon atoms in 
valine: comparison between values for the isolated molecule and the crystal. 

of bond lengths and populations. Looking at the averages of the effective charges for 

the carbon atoms, presented in table 6.14, it can be seen that the effective charges 

of the carbon atoms in the sidechain undergo greater changes than is the case for 

1-leucine and 1-isoleucine; this can be attributed to the presence of translational 

lattice modes, which will cause long-range electric fields to be induced. The effect 

of these will be to modify the sidechain effective charges. 

6.4 Response to Electric Fields 

Finally, attention will now be turned to examining the dielectric properties of the 

crystals under consideration by calculating their response to homogeneous electric 

fields. Given the difficulties discussed in chapter 3 with regard to the handling of 

electric field effects within crystalline solids, the calculations are carried out using 

DFPT, and there are no finite difference calculations to compare with. However, 

given that DFPT has been shown to be able to accurately determine the electric field 
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a (A) CYav (A ) f.oo f.~ c(w --> 0) f.av(w --t 0) 
46.52 0.00 0.00 46.27 2.32 0.00 0.00 2.31 2.41 0.00 0.00 
0.00 43.26 0.00 0.00 2.23 0.00 0.00 2.30 0.00 
0.00 0.00 49.03 0.00 0.00 2.39 0.00 0.00 2.47 

Table 6.15: Dielectric properties of L-alanine. 

response of the isolated molecules, and given the results on test systems presented 

in chapter 4, it is possible to be confident in the accuracy of the results presented 

here. 

Examination of the crystal response to an electric field, and in particular, visualisa­

tion of the corresponding first order change in the electronic density, facilitates an 

understanding of the origin of the dielectric properties exhibited by the crystal. As 

has been discussed, understanding these properties is essential if one is to correctly 

describe the long wave lattice dynamics. In molecular crystals, investigation of the 

first-order densities allows one to examine how the response of the crystal as a whole 

is related to that of the constituent molecules. This facilitates an insight into the 

effects of the crystalline environment upon the response of the constituent molecules. 

In table 6.15 the polarisability and dielectric permittivity tensors of L-alanine are 

presented. The first obvious difference between the isolated molecule and the crystal 

is that the tensors for the crystalline system are diagonal; this is a consequence of 

the unit cell symmetry. The average of the polarisability tensor is, at 46.27 A 3 , 

greater than that of the isolated molecule at 8.67 A 3 . This is unsurprising, given 

that there are four molecules per unit cell, and that the molecules have formed 

zwitterions. Furthermore, a simplistic calculation of the crystal polarisability using 

the molecular value yields a value of 34.68 A 3 ; this implies that the zwitterionic form 

is more polarisable, and illustrates the problems inherent in attempting to calculate 

crystalline properties using molecular properties. It can also be seen that the ionic 

(low-frequency) contribution to the dielectric permittivity is of the same order as the 

electronic contribution; given the effective charges discussed in the previous section, 

this is not surprising. 

In figures 6.16, 6.17 and 6.18, the first-order change in the electronic density in 

response to electric field perturbations in the x-, y- and z-axes respectively, are 

2.39 
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Figure 6.16: L-alanine: response of the electronic density to an electric field in the 
x-direction. Blue denotes regions in which the density is augmented; conversely 
yellow denotes those regions where depletion of the electronic density occurs. 

illustrated. It can be seen that the density response is primarily localised to each 

molecule; further the polarisation of individual functional groups present can be 

seen. Comparing these figures to the first-order density isosurfaces of the isolated 

alanine molecule presented in figures 6.3-6.5, it is apparent that their are signifi­

cant differences in the electric field response. This can be attributed to the effects 

of zwitterionisation and the crystalline environment. The results presented for the 

isolated molecules suggested that the zwitterionisation of a molecule is less signif­

icant in determining its polarisability than the actual geometric structure of the 

molecule. Given that the actual structure of the alanine molecules changes little 

upon zwitterionisation, this then implies that the majority of the changes must be 

due to the effects of inter-molecular interactions. Indeed, in figures 6.16, 6.17 and 

6.18 significant polarisation can seen occurring between carboxy and amino groups 

involved in hydrogen bonding. This is effectively polarisation of the hydrogen bonds 

in the system, and is supportive of the above conclusions. 

In table 6.16 the dielectric properties of L-isoleucine are presented. The first order 

densities are presented in figures 6.19, 6.20 and 6.21. As in the case of L-alanine, 
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Figure 6.17: 1 -alanine: response of the electronic density to an electric field in the 
y-direction. Colour convention as in the previous diagram. 

Figure 6.18: 1-alanine: response of the electronic density to an electric field in the 
z-direction. Colour convention as before. 
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a (A) Oav (A ) Eoo E~ E(w---> 0) 
77.55 0.00 -4.95 74.39 2.24 0.00 -0.08 2.19 3.11 0.00 -0.11 
0.00 70.18 0.00 0.00 2.13 0.00 0.00 3.09 0.00 
-4.95 0.00 75.44 -0.08 0.00 2.21 -0.11 0.00 2.80 

Table 6.16: Dielectric properties of L-isoleucine. 

significant polarisation of the hydrogen bonds present can be deduced. In figure 

6.21, it appears that the response of the electronic density to a field applied along 

the axis of the molecule is similar in both the crystalline and isolated molecule 

cases. This is probably because the only parts of the molecule that are involved in 

bonding, and can hence be expected to have a different response, are the amino and 

carboxy functional groups; the rest of the molecule, that is the sidechain, can be 

expected to have the same response in each environment as these are not involved 

in intermolecular interactions. Note that the calculations involving L-isoleucine, 

L-leucine and L-valine have only used the f-point to sample the Brillouin zone; 

this is for the same reasons of computational effort as was the case for the phonon 

calculations. However, the first-order density isosurfaces presented indicate that the 

calculations are at least qualitatively correct; therefore the results presented are still 

useful in gaining an understanding of the dielectric properties of these crystals. 

In order to better determine the effects of intermolecular interactions upon the 

density response to electric fields, it is useful to examine L-leucine in detail, as this 

is zwitterionic as both an isolated molecule, and in the crystal. In table 6.17, the 

dielectric properties of this crystal are presented. It is difficult though to gain much 

insight by simply examining numbers in a table; to this end, it is more fruitful to 

examine the first-order density isosurfaces, which are shown in figures 6.22, 6.23 

and 6.24. Again, the response along the axis of the molecules, i.e. the x-axis, 

is similar to that of the isolated molecule, with some differences occurring in the 

region of the hydrogen bonds. Interestingly, the first-order densities presented are 

very similar to those of L-leucine; given the discussions on the relationship between 

the polarisability and the molecular shape, this is not surprising. It further implies 

that the effects of the intermolecular interactions are similar in these cases, and are 

certainly more important than the zwitterionisation of the molecules. Note as well 

that, as with the isolated molecules, L-leucine is more polarisable than either L-

Eav(w -t 0) 
3.00 
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Figure 6.19: L-isoleucine: response of the electronic density to an electric field in 
the x-direction. Blue denotes regions in which the density is augmented; conversely 
yellow denotes those regions where depletion of the electronic density occurs . 

..._ z 

Figure 6.20: L-isoleucine: response of the electronic density to an electric field in 
the y-direction. Colour convention as in the previous diagram. 
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z 

Figure 6.21: 1-isoleucine: response of the electronic density to an electric field in 
the z-direction. Colour convention as before. 

a (A ) aav (A ) coo E~ c.(w --+ 0) Eav(w--+ 0) 
73.44 0.00 4.44 76.27 2.24 0.00 0.07 2.29 2.73 0.00 0.09 
0.00 79.19 0.00 0.00 2.34 0.00 0.00 3.74 0.00 
4.44 0.00 76.18 0.07 0.00 2.29 0.09 0.00 3.12 

Table 6.17: Dielectric properties of L-leucine. 

isoleucine or 1-alanine, a fact that is related to the larger volume of the 1-isoleucine 

crystal. 

Finally, in table 6.18, attention is focused upon 1-valine. The first-order density 

isosurfaces are shown in figures 6.25, 6.26 and 6.27. Again, the behaviour is broadly 

similar to that exhibited in L-leucine and 1-isoleucine. Note that in figure 6.27, the 

centre of the figure not only shows clear polarisation in the region of the carboxy and 

amino groups, but in the x-axis an overlap between neighbouring molecules can be 

seen (i.e. the first-order density appears to be shared between two molecules); this is 

clear evidence of the influence of the intermolecular interaction upon the density re­

sponse. Indeed this suggests that the major modifications to the molecular response 

due to the crystal environment occur in the functional groups that participate in 

these intermolecular interactions. In the amino acids, these will be the amino and 

3.20 
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Figure 6.22: 1-leucine: response of the electronic density to an electric field in the 
x-direction. Blue denotes regions in which the density is augmented; conversely 
yellow denotes those regions where depletion of the electronic density occurs.Grey 
denotes the interior surface of an isosurface. 

z 

Figure 6.23: 1-leucine: response of the electronic density to an electric field in the 
y-direction. Colour convention as in the previous diagram. 
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r z 

Figure 6.24: L-leucine: response of the electronic density to an electric field in the 
z-direction. Colour convention as before. 

a (A ) aav (A ) €00 €~ E(w -t 0) Eav(w -t 0) 
66.97 0.00 4.35 66.12 2.33 0.00 0.09 2.27 2.42 0.00 0.08 
0.00 69.22 0.00 0.00 2.37 0.00 0.00 5.45 0.00 
4.35 0.00 62.17 0.09 0.00 2.23 0.08 0.00 2.19 

Table 6.18: Dielectric properties of L-valine. 

carboxy groups; the carbon sidechains can be expected to behave similarly in both 

environments, as these are not involved in intermolecular interactions. 

6.5 Conclusions 

We have calculated the dielectric and vibrational properties of the amino acid 

molecules alanine, valine, leucine and isoleucine using density functional pertur­

bation theory. We find that the polarisability tensors show good agreement with 

values determined by finite difference calculations, whilst analysis of the first order 

densities indicates that the contributions of the various functional groups to the 

polarisability are influenced by the geometrical structure of the molecule. It would 

thus seem that the polarisabilities of each functional group are not transferable, 

3.35 
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z ....... 

Figure 6.25: L-valine: response of the electronic density to an electric field in the x­
direction. Blue denotes regions in which the density is augmented; conversely yellow 
denotes those regions where depletion of the electronic density occurs.Grey denotes 
the interior surface of an isosurface. 

Figure 6.26: L-valine: response of the electronic density to an electric field in the 
y-direction. Colour convention as in the previous diagram. 
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Figure 6.27: L-valine: response of the electronic density to an electric field in the 
z-direction. Colour convention as before. 

rendering an additive approach to molecular polarisabilties difficult to justify. 

The normal modes are broadly similar for the non-zwitterionic molecules, and differ 

significantly from the behaviour observed in the zwitterionic case. This is most 

clearly seen when one examines the IR spectra for the two distinct cases. In contrast 

to the dielectric properties, it seems that the most important factor in determining 

the vibrational behaviour is whether the molecule in question is zwitterionic or not; 

the different chemical bonds present and the resultant differences in the nature of 

the hydrogen bonding between the two cases result in very different spectra. Given 

that the normal modes are a direct reflection of the nature of the chemical bonding 

present, this is not surprising. The differences in the hydrogen bonding explain the 

zwitterionisation of leucine. 

We have also considered the use of the effective charge as a measure of the charge 

possessed by the constituent atoms of each molecule, and compared this to charges 

derived from Mulliken population analysis. We have found that the Mulliken charges 

are approximately constant from molecule to molecule, independent of zwitterioni­

sation; thus it seems to fail to reflect changes in electronic structure upon zwitteri-
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onisation that one would perhaps expect. The effective charges do show a marked 

change upon zwitterionisation, which reflects the different chemical bonds formed. 

It seems that agreement between the two is not always obtained, probably because 

each is obtained from different physical properties. 

The normal modes of the molecular crystal forms of the same amino acids have 

been determined using DFPT. The high frequency vibronic modes are found to 

be modified by the crystalline environment; this can be explained in terms of the 

intermolecular hydrogen bonds present between the carboxy and amine functional 

groups. In 1-alanine, the low-lying modes are found to be an admixture of internal 

and external motions; this is explained by the flexibility of the carbon sidechain, 

and that these atoms are nearest neighbours to atoms involved in intermolecular 

interactions. The lowest lattice modes are translational in nature, with some libra­

tiona! modes occurring. The presence of soft phonon modes has been confirmed 

in 1-alanine, raising the possibility of phonon-mediated phase transitions; as men­

tioned earlier, this is deserving of further detailed investigation. It is likely that such 

modes occur in the other systems under consideration; however, these have not been 

pursued due to the limitations imposed upon the accuracy of the lattice dynamical 

calculations by computational issues. 

The other three systems that have been considered display high frequency vibronic 

modes that have been modified by the hydrogen bonds present. These vibronic 

modes are associated with stretching of N-H and carbon-oxygen bonds, and always 

occur at around 3000 cm-1, implying that the hydrogen bonds in all cases are of 

approximately the same strength. In molecules with a long sidechain, it appears 

that the low-lying vibronic modes do not couple with the external modes; further 

the low frequency vibrons do not alter significantly between the crystalline and 

molecular cases. This is because these vibronic modes are associated with oscillations 

of the atoms comprising the sidechain, and therefore do not involve intermolecular 

interactions. The lattice modes are found to be largely libronic in character. The 

convergence criteria of the calculations with respect to Brillouin zone integration are 

less than ideal because of computational limitations. The lattice modes are therefore 

described poorly in comparison to the vibronic modes; it is found that the acoustic 

sum rule must be imposed explicitly in order to adequately describe these modes. It 
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would seem therefore that whilst these modes are described adequately qualitatively, 

that the quantitative description, that is, the actual values of the frequencies, may 

be inaccurate, and therefore little weight should be put on these numbers. 

Examining the IR spectra of the crystals allows the effects of the crystalline envi­

ronment to be decoupled from those of zwitterionisation. The latter is responsible 

for peaks occurring in theIR spectra at around 1500 cm- 1 that do not occur in the 

non-zwitterionic molecular species; the former, on the other hand, is responsible for 

the IR-active vibrons at around 3000 cm- 1 . The crystalline environment is also re­

sponsible for fine structure occurring between the major peaks at around 1500 cm-1 

in L-leucine and L-isoleucine; these can be attributed to wagging of N-H bonds. 

The Born effective charges change considerably between the free molecule and the 

crystal. Determination of the mode effective charge vector suggests that the modi­

fication of the high frequency vibrons due to hydrogen bonds is responsible for the 

changes exhibited by the atoms in the carboxy and amine functional groups. The 

carbon atoms comprising the sidechain are not involved in intermolecular interac­

tions; thus modifications occurring to these atoms indicate the effect of long-range 

electric fields arising from the lattice modes upon the effective charges. In L-alanine 

and L-valine, these indicate that the lattice modes contribute to modifying the long­

range fields induced in the crystal. In L-leucine and L-isoleucine, the lattice modes 

are libronic in character; these do not contribute to the long-range fields set up, 

and therefore these two crystals have similar values for the effective charges of the 

sidechain carbon atoms. 

The dielectric properties of the molecular crystals have been calculated, and first­

order electron densities have been examined in order to investigate the relationship 

between the response of the constituent molecules in the crystal to an electric field, 

and that of the isolated molecules. This indicates that, with the exception of L­

alanine, the responses appear to be similar. However, modifications occur in the 

responses of the amino and carboxy functional groups. It would seem that the reason 

for the differences in the response of alanine molecules in the crystal versus those of 

isolated molecules is due to the geometrical arrangement of the molecules within the 

crystal. The molecules are not aligned along one axis of the crystal, in contrast to 
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the situation prevalent in the other three systems under consideration. Furthermore, 

the sidechain in 1-alanine is short; this allows the molecules to arrange themselves 

in a three--dimensional percolating network of hydrogen bonds, as discussed in the 

previous chapter. The close-packing resulting from this means that the sidechain 

atoms in neighbouring molecules are in close proximity to each other; the result is 

that the molecular response is perturbed by the intermolecular interactions. In the 

other systems under consideration, the existence of long sidechains prevents such 

close packing, ensuring that only the amino and carboxy functional groups can be 

significantly perturbed. These geometrical arguments are in line with those advanced 

previously in this chapter concerning the polarisabilities of isolated molecules: the 

dominant feature appears to be the geometrical structure of the molecule. This 

implies furthermore that the zwitterionisation of the molecules that occurs upon 

formation of the crystal plays little part in altering the molecular response. Rather, 

the governing features appear to be the geometrical arrangement and structure of 

the molecules in the crystal and the nature of the intermolecular interactions. 



Conclusions and Future Work 

The aim of this thesis was to implement an efficient density functional perturbation 

theory algorithm in order to investigate the dielectric and lattice dynamical prop­

erties of amino acid molecular crystals and to elucidate the connections between 

the behaviour of the crystal as a whole and that of the constituent molecules. The 

amino acids have, to a large degree, been neglected, and relatively few ab initio 

calculation have been carried out on them. Certainly, no work appears to exist on 

their crystalline forms. Therefore, there was a need to examine using high level 

theoretical techniques the behaviour of these systems. However, as was outlined in 

chapter 3, in order to investigate the lattice dynamics and dielectric behaviours of 

solid state systems requires the use of sophisticated density functional perturbation 

theory techniques, rather than crude finite difference methods. 

The implementation of such a perturbation theory scheme was discussed in depth in 

chapter 4; it was shown that it is relatively easy to implement such a scheme within 

the plane wave pseudopotential framework when working within a structured code 

such as CASTEP. The structure of the DFPT code is such that it is relatively easy 

to extend; for example, various XC functionals, aside from LDA and GGA could 

be implemented with only a little effort. Potentially, this allows the inclusion of 

exact exchange or WDA functionals; such work has not been carried out before, and 

it would be interesting to investigate how this affects notable shortcomings of the 

DFPT formalism, such as the overestimation of dielectric permittivity tensors, a fail­

ing which is often attributed to shortcomings in the present widely used functionals 

such as GGAs and LDA. The test results presented provide convincing evidence that 

DFPT is able to obtain the lattice dynamical and dielectric behaviours of a range 

of systems, from covalently bonded semiconductors, to molecular systems. Further, 
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it allows access to quantities that are otherwise difficult to obtain, such as bulk 

polarisabilities in solids. 

A simple extension to DFPT has been presented in order to calculate IR absorption 

spectra; this allows unambiguous assignment of IR-active modes, and yields insights 

into the normal modes of the system under consideration. It appears that the IR­

active modes and their frequencies are predicted reliably; unfortunately, intensities 

are sensitive to choice of basis set, and although they are satisfactory for the major­

ity of test systems considered in this work, problem cases, such as methane, do exist. 

However, DFPT also lends itself naturally to the calculation of Raman spectra. The 

theory underlying this is slightly more involved, requiring extension of DFPT to 

cover third-order responses; a methodology for this involving density matrices has 

been proposed [181]. Obtaining Raman spectra would provide a complementary 

picture to that provided by IR spectra of the lattice dynamics. Further extensions 

allowing a richer understanding of the behaviour of condensed matter systems are 

also conceivable: for example, by extending DFPT to the third order, the effects 

of anharmonicities and finite phonon lifetimes could be investigated; other exten­

sions involve extending the formalism to include phonon-electron coupling terms. 

Unfortunately, time constraints have meant that such extensions have been left un­

explored; however, they represent potentially fruitful future avenues of research. 

In chapters 5 and 6, the structural, electronic, lattice dynamical and dielectric prop­

erties of the amino acids in both the solid state and as isolated molecules were ob­

tained. Accurate calculations of the equilibrium geometry adopted by the molecular 

crystals indicated that the primary intermolecular interaction was hydrogen bonding 

of a primarily electrostatic nature; furthermore, it is the ability of the molecule to 

form such bonds that dictates the geometrical structure of the molecule. Formation 

of these bonds is responsible for the zwitterionisation of the molecules upon forming 

the crystal. In turn, the structure of these bonds is dictated by the shape of the 

molecule under consideration. 

The presence of these hydrogen bonds is responsible for modifications observed in 

the high frequency vibronic modes; indeed the low-lying vibronic modes appear to 

be largely unaffected in the molecular environment. The effects of zwitterionisation 
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are manifested in the appearance of IR-active modes absent in spectra from non­

zwitterionic species; the crystal environment leads to fine structure around these 

peaks. The character of the lattice modes alters from system to system. The re­

sponse of the molecules to electric fields is primarily determined by the geometrical 

structure of the molecule; zwitterionisation is a less significant feature. Correspond­

ingly, the response of the molecular crystal is modified by the presence of hydrogen 

bonds rather than zwitterionisation, and by the geometrical arrangement and struc­

ture of the molecules within the unit cell. 

In conclusion, the modifications arising in physical properties between isolated molecules 

and molecular crystals appear to arise mainly because of intermolecular hydrogen 

bonds, and the geometrical structure of the molecules themselves. The latter is 

dominant in determining the response to electric fields; but on a deeper level, it is 

responsible for the network of intermolecular hydrogen bonds possible, and hence 

for the arrangement of the molecules within the unit cell. 

The work presented in this thesis is by no means an exhaustive investigation into the 

lattice dynamical and dielectric properties of amino acid molecular crystals. How­

ever, it is to be hoped that it represents a firm foundation for deeper and more 

advanced investigations into these systems. For example, determination of the full 

phonon dispersion curve is desirable, but unfortunately has been beyond the scope 

of this study due to computational limitations. Further information on the vibra­

tional behaviour of the systems under consideration could be obtained by theoretical 

predictions of the Raman spectra; this though requires further developmental work 

of the DFPT. A knowledge of the full vibrational spectrum would also allow the 

interplay between the electronic and lattice degrees of freedom, i.e. electron-phonon 

interactions, to be investigated, whilst inclusion of anharmonicities would allow ac­

cess to finite lifetime phonon phenomena; such anharmonic contributions could be 

expected to yield useful information on the nature of the hydrogen bonds in these 

systems. Further fruitful investigations could include a thorough examination of the 

potential surfaces associated with the lowest phonon modes in order to systemati­

cally identify soft phonon modes in these crystals; further, by combining this with 

similar studies of different phases of the crystals concerned, it may be possible to 

identify possible phonon-assisted phase transitions and the underlying mechanisms 
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responsible. 



Appendix A 

Proof of the 2n + 1-theorem 

Consider the expansion of the exact wavefunction 

00 

<I>o(>..) = L >..i<I>g) (A.1) 
i=O 

and the trial wavefunction 

n 
<I>t L >..i<I>g) + >..n+lo<I>t 

i=O 

<I>o(>..) - >..n+l ( f >,i-n-l<I>g) - O<l>t). 
i=n+l 

(A.2) 

The last equation is exact up to order n. Substituting this last equation into equation 

3.14 and using equation A.1 yields 

0 < E>. [ t >..i<I>g) + >..n+lo<I>t] - E0 (>..) 
t=O 

< K2n+211. f >..i-n-l<I>g)- o<I>tW 
t=n+l 

(A.3) 

which is valid for all O<I>t. Choosing O<I>t to be zero in particular yields 
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0 < E>. [ ta >,i<I>~i) J -Eo(>.) 

< K2n+211. f= >,i-n-l<l>g) W (A.4) 
t=n+l 

and thus knowledge of the perturbation series of <I>o(.A) up to an including order n 

leads to an error in the evaluation of the exact energy of the order >.2n+2 . Further, 

if one considers only terms up to order 2n + 1, then the quantity between the 

inequality signs is equal identically to zero, and thus one obtains equation ?? , which 

is the familiar 2n + 1-theorem. 

If one considers equation A.2 at order 2n + 2, then one obtains 

0 < { E(>.) [ t >,i<I>~i) + >,n+lb<l>t]} (2n+2) - E~2n+2) 
t=O 

< KII<I>~n+l)- 6<1>tll 2 (A.5) 

which is a variational bound for the (2n + 2)-order derivative of the energy when 

the wavefunction is known up to order n. Since n is a dummy argument, one can 

shift to n - 1, leading to 

0 < { E(>.) [I: >,(i)<l>g) + >.n6<1>t] r2n)- E~2n) 
t=O 

< KII<I>~n)- 6<1>tll2 (A.6) 

which can be reworked to give equation 3.16. Thus the 2n + 1-theorem and the 

variational nature of the perturbation expansion of the Kohn-Sham energy functional 

have been demonstrated. 



Appendix B 

Treatment of Electronic 
Screening within the Long-Wave 
Method 

In order to deal with the long-wave limit of an incommensurate perturbation cor­

rectly, and deal formally with the issue of screening, the first order potential is 

written 

v(1
) (r r') = eiq·r J(r - r') 

ext,q ' (B.1) 

which corresponds to the phase factorised local potential 

-(1) 1 
Vzoc,q = · (B.2) 

Noting that one may write 

(B.3) 

the variational second order energy can be written 

n ace 
(2) { (0), (1)} __ H_O_ { "' ( (1) (0) _ (0) (1) ) 

Eel,-q,q u ,u - (27r)3 Jsz~s umk,qJHk+q,k+q Emklumk,q dk 

+ ~0 [n~( 1l(G = o) +n~1l(G = O)] 
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The first order Hamiltonian is then 

- (1) (G) 
fiC 1) (G) = OG o + 47r nq + vC 1) (G) 

q , IG+ql2 xc,q 
(B.5) 

which in the limit q---. 0, for G = 0, can be written as 

-C 1)(G- 0) 
fiC 1)(G = 0) = 1 + 47r nq -

q lql2 ' (B.6) 

i.e. in this limit the Hamiltonian consists of the bare potential and the screening 

due to the Hartree term. Note that the xc term may be neglected, as this term is 

well-behaved in the small q limit. 

The divergence in the Hartree term may be treated as follows. One may define an 

auxiliary second order energy functional E~~~q,q which is equal to equation B.4, 

save for the exclusion of the G = 0 terms. The first order wavefunctions for this 

functional will be denoted u~:k,q· This functional may be minimised subject to the 

orthonormality constraints 

( 
(0) -(1) ) -

um,k+q iun,k,q - 0 (B.7) 

where m and n run over occupied states. 

The first order Hamiltonian in the long-wave limit is given by 

- (1) (G) 
4 nq -(1) (G) 

7r IG + ql2 + vxc,q when G # 0 

1 when G = 0 (B.8) 
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where 

2 occ 
-(1)( ) - 1 ""' *(0) -(1) ( ) nq r - -( ) 3 ~sumk umkq r dk. 

2~ BZ m ' 
(B.9) 

It can thus be seen that for G = 0 the screening due to the Hartree term is removed. 

At the minimum of both energy functionals, the Sherman-Morrison formula allows 

one to write: 

(2) - -(2) ( 4~ -(1) - ) 
Eel,-q,q- Eel,-q,q 1 + q2 nq (G- 0) (B.lO) 

which demonstrates that the rate of change of E~~~q,q with respect to the long wave 

part of fJ~1)(G = 0) (i.e. to an electric field), is the same as that of E~~~q,q to a 

bare applied field. This allows one to connect the auxiliary problem to the actual 

physical problem under consideration. 

If one now takes the limit that q ---> 0, then the zeroth-order and first-order wave­

functions may be expanded as 

(0) 
(0) _ (0) dumk 0( 2) 

umk+q - umk + q dka + q (B.ll) 

and 

d-(1) 
-(1) _ -(1) + umk,O + O( 2) 
umk,q - umk,O q dqa q (B.12) 

To lowest order in q, the auxiliary functional can be satisfied by taking 

-(1) 0 
umk,O = (B.13) 

and thus expansions of n~1), v1~q and ii~1 ) only begin with the term linear in q. 

To first order in q, the orthonormality constraint can be expressed as 

(B.14) 
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which ensures that the expansion of iiP)(G = 0) only begins at the second order. It 

also ensures that the expansion of E~Z?-q,q 

- - I dE(2) I 1 d2 jj;(2) I E(2) = E(2) + el,-q,q + _ 2 el,-q,q 
el,-q,q el,-q,q q dq 2 q dq2 

q---.0 a q---.0 a q---.0 
(B.15) 

only begins at second order 

2 - (2) 
jj;(2) _ ~ 2 d Eel,-q,q I 

el,q,q - 2 q dq2 a· 
a q-> 

(B.l6) 

Given the second order expansion of the orthonormality constraint 

d2 -(1) -(0) d-(1) 

\
u(O) I unk,O) + \ dumk I unk,O) = 0 

mk dq2 dk dq a a a 
(B.l7) 

along with its complex conjugate, the following variational expression can be ob­

tained 

and the connection with the equations presented in section 3.8.2 can be made by 

identifying 

(B.19) 



Appendix C 

Publications 

Much of the work submitted in this thesis has been published, or submitted for 

publication. The references are listed here: 

Keith Refson, Paul Tulip and Stewart J. Clark, Implementation of DFPT within the 

CASTEP electronic structure code, to be submitted. 

P. R. Tulip and S. J. Clark, Geometric and Electronic Properties of L-amina Acids, 

submitted, Phys. Rev. B. 

P. R. Tulip and S. J. Clark, Dielectric and Vibrational properties of Amino Acids, 

J. Chern. Phys. 121, 5201 (2004). 

Work not included in this thesis, but submitted for publication has been included 

in the following: 

Guang Zheng, S. J. Clark, P.R. Tulip, S. Brand and R. A. Abram, Lattice Dynamics 

of Poly-para-Phenylene Vinylene: an ab initio study, submitted. 

James A. Chisholm, P.R. Tulip, Simon Parsons and Stewart J. Clark, An ab initio 

Study of Observed and Hypothetical Polymorphs of Glycine, submitted. 
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