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Abstract 

This thesis is concerned with the simulation of particle physics processes involving strong 

interactions in modern event generators. New algorithms to reinstate colour in colour­

ordered amplitudes through colour dressing are presented and their analytical and numeri­

cal properties are discussed in detail. The colour-dressed Berends-Giele recursive relations 

are extended to the full Standard Model Lagrangian and implemented into the numeri­

cal program COMIX for large multiplicity matrix element computation. New algorithms for 

phase space integration are proposed, whereof one is capable to effectively couple colour and 

momentum sampling. Comparisons to other high-multiplicity generators are shown. QCD 

parton evolution and the CKKW algorithm to correctly include real next-to-leading order 

corrections are revisited. New types of jet measures are proposed for the merging of matrix 

elements and parton showers and their analytical and numerical properties are discussed. 

The implementation into the event generator SHERPA is presented using two different types 

of matrix element generators. Corresponding results and comparisons are shown. A further 

comparison between different types of merging algorithms is presented, including various 

numerical codes, which implement different merging approaches. Finally, the implementa­

tion of BFKL evolution in a Markovian approach is introduced and corresponding results 

from a numerical simulation are presented. Implications on event generation for current and 

future colliders are discussed throughout. 
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Introduction 

Particle physics at the high-energy frontier is nowadays largely centred around ground-based 

collider experiments. Examples for such experiments are the CDF and D~ collaborations at 

the Tevatron (Fermilab), the Zeus and Hl collaborations at Hera (DESY) and the Atlas and 

CMS collaborations at the upcoming LHC (CERN). The ultimate goal in current collider 

physics is to reveal the mechanism of electroweak symmetry breaking, the last ingredient 

missing to finally validate the Standard Model (SM) of particle physics. The Standard 

Model predicts the existence of a fundamental massive scalar particle, responsible for this 

symmetry breaking, the Higgs-particle. Bounds have been set on its potential mass by former 

experiments like LEP, but it has not directly been observed so far. Despite the tremendous 

success of the Standard Model, it is thus suggestive to speculate about potential theories 

going beyond it. Such theories would have to incorporate the Standard Model as an effective 

theory at scales where it has already been validated. From the theoretical point of view, 

the most natural extension of a theory like the Standard Model would be Supersymmetry 

(SUSY), introducing a new set of particles which carry exactly the same quantum numbers 

as their Standard Model counterparts, but differ in spin by one half. Supersymmetric 

models are particularly appealing, because they extend the Standard Model by the only 

nontrivial symmetry, which is not yet implemented. The fact that SUSY particles have not 

been observed so far, however, implies that, if Supersymmetry exists, it must be broken 

and the scale of SUSY breaking must lie beyond the energy region accessible in current 

expeiiments. Other prominent models are extra dlinensional modeis, which assume the 

existence of additional space time dimensions and can eventually incorporate the fourth 

fundamental force, gravity. 



2 Contents 

However likely or unlikely a given model might be, all potential signatures at future collid­

ers like the LHC have in common, that they will potentially be hidden by overwhelming 

Standard Model backgrounds. The large open phase space leads to emission of, in principle, 

arbitrarily many particles. In particular, the nature of quantum chromodynamics (QCD), 

turns out to be especially intriguing in this context. QCD is one of the most challenging 

theories today because the nonabelian structure of its Lagrangian and the vanishing gluon 

mass induce a running of the respective coupling, a 8 , that leads to an increasing coupling 

with decreasing scale. At scales which are to be probed in collider experiments, QCD par­

tons are free, however in the low-scale regime, where detectors operate, they form bound 

states, which carry no QCD charge. This poses two problems for LHC phenomenology. 

Firstly, the evolution properties of QCD in the transition from high to low scales must be 

determined as accurately as possible and the corresponding evolution must be modelled 

to account for potential radiation effects that would affect the measurement. Secondly, 

assumptions have to be made about the transformation of partons into hadrons and the 

hadrons' decays. 

Event generation 

To compare theoretical predictions and experimental events in a detector, there are es­

sentially two different strategies. Either the experimental signature is corrected back to 

the parton level through "running hadronisation and QCD evolution backwards", or the 

full final state is simulated by a computer program including all aspects described above. 

The former can be viewed as the "experimentalists approach" to validate a given predic­

tion, while the latter is the "phenomenologists approach". It leads to the construction of 

computer programs known as event generators. 

Event generators rely on the factorisation of an event into different stages, corresponding to 

different energy scales. This is pictorially represented by Fig. 1. In general the simulation 

starts with the hard process (dark red blob), where perturbation theory is applicable due to 

corfesporiding;li high scales. This-part of the simu.lation is handled by matrix element (ME) 

generators. QCD evolution is then run from the hard scale down to the hadronisation scale, 

which is of the order of AQcD ~ 1 GeV. This leads to emission of further QCD partons and 
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Fig. 1 Pictorial representation of a tth event as produced by an event gener­
ator. The hard interaction (big red blob) is followed by the decay of 
both top quarks and the Higgs boson (small red blobs). Additional 
hard QCD radiation is produced (red) and a secondary interaction 
takes place (purple blob) before the final state partons hadronise 
(light green blobs) and hadrons decay (dark green blobs). Photon 
radiation occurs at any stage (yellow). 

3 

is handled by shower generators. Partons are now transformed into primary hadrons (light 

green blobs) through application of a fragmentation model and afterwards decayed into 

observed particles. A particularly difficult scenario might arise in hadronic collisions, which 

is depicted by the purple blob in Fig. 1. Remnants of incoming hadrons can themselves 

undergo a hard or semihard interaction, which then spoils the nice factorisation picture. 

This effect has been observed experimentally [1] and is addressed in a number of theoretical 

models [2, 3, 4, 5]. It is commonly referred to as the hard underlying event. Unfortunately, 

however, a correct quantum mechanical treatment is, at present , out of reach. 

The most prominent examples of event generators are the well-established PYTHIA [6] and 

HERWIG [7] programs. They have been constructed over the past decades alongside with 
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experimental discoveries and most of the features visible in past and present experiments 

can be described through them. However, both the need for higher precision to meet the 

challenges of new energy scales at the LHC, and the complexity of final states at those scales 

have demanded those codes to be rewritten in a modern programming language. Object 

oriented frameworks will then allow to easily implement and test new physics models and 

potential variants of the old ones. Corresponding efforts led to the construction of the 

programs PYTHIA 8 [8] and HERWIG ++ [9]. 

Besides those rewrites, new programs have become available, which aim at a more accurate 

description of the hard perturbative regime through full next-to-leading order calculations, 

like MCFM [10]. Also, methods have been proposed for the consistent combination of fixed 

order corrections with shower programs, describing QCD evolution [11, 12]. Corresponding 

algorithms are implemented for example in Mc@NLO [13] and HERWIG++ [14]. 

In some cases, full next-to leading order calculations turn out to be quite cumbersome. 

Generally difficulties increase even more when going to next-to-next-to-leading order. On 

the other hand, the major part of real corrections stems from higher order tree-level matrix 

elements. If the aim is to correctly describe multi-jet topologies, rather than total rates, 

the preferred choice might be a tool, which takes these effects into account. As the need 

for better predictions in QCD processes with many particles in the final state has become 

clear, a substantial activity on developing corresponding techniques and tools has spurred. 

Several codes are now available that can compute corresponding cross sections and generate 

events in a fully automatic way. The most prominent examples are certainly ALPGEN [15], 

HELAC [16], MADGRAPH [17] and AMEGIC++ [18]. However, only AMEGIC++ is part of a 

fully equipped event generation framework, the SHERPA event generator. 

The event generator SHERPA 

SHERPA [19] is an acronym for Simulation of High Energy Reactions of PArticles. It stands 

for a fully equipped event generation framework, that has been constructed from scratch and 
·. . .. 

is entirely written in the modern, object oriented programming language C++. It includes 

the automatic matrix element generator AMEGIC++, the parton cascade APACIC++ [20], a 

multiple parton interaction module, a fragmentation module [21], a hadron and tau decay 
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library [22] and a program for the simulation of QED radiation [23]. Over the past years, 

many improvements have been made and many additional features have been included, for 

example a shower based on Catani-Seymour dipole factorisation [24] and a dipole shower [25]. 

However, not all of the new features are publicly available yet and in the following, the 

default configuration of SHERPA is described. 

AMEGIC++ is a tree level matrix element generator, based on Feynman diagrams, that is 

employed for hard matrix element generation throughout SHERPA. It implements a number 

of interaction models. Besides those for the Standard Model, Feynman rules are included 

for the MSSM [26], the ADD model [27], effective Higgs couplings to gluons, and others. 

The generator has been validated in a large number of processes [27, 26]. To evaluate 

single amplitudes, the helicity methods introduced in Refs. [28] are employed. Feynman 

diagrams are constructed and sorted according to their respective colour structure. A colour 

matrix for the full squared matrix element is computed using standard rules. Each single 

Feynman diagram is then decomposed into basic building blocks in the helicity formalism. 

The standard phase space integration as realised in AMEGIC++ relies on the factorisation 

techniques presented in Ref. [29], together with the multi-channel methods introduced in 

Ref. [30]. Single channels are constructed according to the pole structure of the diagrams 

leading to the full amplitude and are further refined using adaptive techniques [31]. Other 

phase space generators, according to Refs. [32, 33] are available. Recently Catani-Seymour 

dipole subtraction has been automated within AMEGIC++ [34]. 

QCD parton evolution is accounted for in SHERPA by the program APACIC++. APACIC++ 

is a standard parton cascade, ordered in virtuality, which implements initial and final state 

evolution and includes QED radiation effects. QCD coherence is included approximately 

by imposing an explicit angular veto in subsequent branchings. A particular feature of 

APACIC++ is that it has been set up for the merging with real next-to-leading order matrix 

elements, as delivered by AMEGIC++, through the Catani-Krauss-Kuhn-Webber (CKKW) 

algorithm [35, 36]. This approach allows to consistently combine matrix elements of different 

final state multiplicities with parton showers, while the apparent problem of double counting 

large logaiithiriic ·e,nliand~n1ehts is avoided. Tliis has been ·realised witlii.ri 'S:H:Eil:PA~iri' a fully 
general way, i.e. no intervention by the user is needed and it can be applied to any QCD 

associated process. 
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Underlying events are, in the framework of SHERPA, simulated by the AMISIC++ pro­

gram [37], which implements a model for multiple parton scatterings [2]. This model es­

sentially assumes that the underlying event in hard processes is generated by a sequence of 

independent hard scatterings, ordered in transverse momentum, which are connected only 

by the incoming hadrons and common hadronisation of final states. Care must be taken 

that, when employed in conjunction with the CKKW algorithm, the scale set by the hard 

process is respected and that it is chosen independent of the final state multiplicity. A cor­

responding algorithm is implemented into AMISIC++ in full generality. The original model 

withing PYTHIA has been extended in a similar way at the same time [3] and a model for 

PDF effects beyond naive rescaling has been incorporated [38]. 

For the last step of simulation, namely the fragmentation of partons into hadrons and the 

subsequent hadron decays, SHERPA has long been relying on the Lund string model [39] in 

the implementation of PYTHIA [40] and the respective decay routines. However, a new type 

of cluster fragmentation [41] has recently been developed and is now available in the code. 

It is essentially based on the continuation of a dipole shower model into the nonperturbative 

region, where the strong coupling is parametrised and can be tuned to better fit the data. 

The kinematics of cluster splittings into other clusters or hadrons are chosen according to 

Lorentz invariant evolution parameters. A hadron decay module has recently been com­

pleted, which includes a tau decay library and the simulation of all types of mixing effects 

for neutral mesons. 

SHERPA itself is the framework, which puts together all the above and arranges the various 

phases of event generation. It contains common tool sets and implements the initialisation 

of the generator as well as the interaction with external software packages through standard 

interfaces. SHERPA has successfully been employed in experimental analyses [42] and is one 

of the most advanced new generation simulation programs today. 

Motivation for this work 

Compared to previous experiments; the LHC as next generation collider will pose completely 

new challenges to both the experimental and the theoretical community. It operates at the 

highest centre-of-mass energies and provides enormous luminosity. On the experimental 
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side, data acquisition, storage and processing therefore require the creation of a world-wide 

network for computing needs, the so-called Grid [43]. On the theoretical side, demands for 

higher precision to correctly model signals and backgrounds of new physics necessitate the 

construction of modern event generators. 

As mentioned above, a great challenge in this respect is to correctly simulate production and 

evolution of QCD partons once they are generated in conjunction with a hard interaction. 

The correct quantum mechanical treatment of colour has significant impact on the respective 

results. A proper algorithm for merging matrix elements and parton showers including colour 

correlations must be incorporated in the simulation. Better shower models are nowadays 

available, yet it remains to establish the numerical programs for combining them with hard 

matrix elements. Perturbative QCD computations for large multiplicities need to be carried 

out in an automated way at tree- and loop-level, which necessitates the refinement of old 

and construction of new methods for numerics. Corresponding codes must be easy to deploy 

on the Grid. 

Modern event generators are not only required to simulate hard QCD processes, however. 

For example the underlying event might contain semihard or even soft interactions, which 

are poorly described by perturbative QCD. A related issue is the reggeisation of the gluon 

and the respective link to the Pomeron, which governs the rise of the total cross section with 

increasing centre-of-mass energy. Corresponding questions can eventually be addressed at 

the LHC, leading to new insight about the behaviour of QCD at low scales. Hadronisation 

and hadron decay models will potentially be refined in the future due to better measurement 

of related parameters. Better simulation in this area can have significant impact on the 

understanding of physics at much higher energy scales. 

In general, modern and flexible event generators are indispensable tools for data analy­

sis. In the near future new and improved simulation programs will therefore replace the 

well-established traditional ones, allowing a wider range of applicability and more modular 

frameworks. The key idea is to offer phenomenologists an interface to hadron level events, 

where new ideas and better theoretical models can easily be implemented such that they 

can quid:dy be probed in experiments. At the same time the descfiption ofStandard Model 

backgrounds shall be improved. The construction, validation and extension of event gener­

ators is therefore one of the principal tasks of particle physics phenomenology today. This 
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thesis aims at contributing to this field through improving methods for perturbative QCD 

simulation within the framework of the event generator SHERPA. 

Out~one of thus thesis 

This thesis is divided into two parts. The first part is concerned with the computation of hard 

perturbative matrix elements and the efficient sampling of the corresponding phase space. 

As outlined above, this is one of the key ingredients for any physics simulation through 

an event generator. The basic formalism for matrix element computation is introduced and 

recent progress in the field is briefly outlined. A new approach for the recursive computation 

of QCD and QCD-associated amplitudes is then presented. New methods for phase space 

sampling are introduced, which allow the simulation of previously inaccessible signatures. 

A fully general numerical implementation of the corresponding algorithms into the program 

COMIX [44], within the framework of the SHERPA event generator is presented and results 

are compared to other high-multiplicity matrix element generators, such as AMEGIC++ and 

ALPGEN. 

The second part of the thesis deals with the simulation of DG LAP and BFKL evolution 

as well as multi-jet-merging procedures. The basic concepts of parton shower generation 

are presented and the parton cascade APACIC++ is introduced. The CKKW algorithm as a 

method to systematically include real next-to-leading order corrections through appropriate 

matrix elements and merging with the parton shower is presented as an example for multi­

jet merging. Improvements and extensions of the original algorithm are discussed, such as 

a method to incorporate colour information from colour sampled matrix elements. Using 

different matrix element generators, a comparison is performed for e+ e- -annihilation into 

hadrons and Drell-Yan lepton pair production. Other merging prescriptions are briefly 

introduced and a comparison between the results from SHERPA and other generators is 

presented. Finally a new strategy for the generation of BFKL evolution in a Markovian 

approach is introduced. 

The two parts of the thesis are separately summarised. Implications of new or improved 

techniques of event generation for phenomenology and experiment are outlined and the 

impact on future event generators is discussed. 



Part I 

Computation of matrix elements 



1 Fixed order perturbative QCD 

The aim of this section is to introduce techniques for the computation of perturbative QCD 

tree-level matrix elements at fixed order. The motivation to develop methods beyond the 

traditional Feynman diagram approach are twofold. Firstly, it turns out that often the 

final formulae for QCD amplitudes have a much simpler structure than anticipated during 

intermediate steps of the computation. It might happen that there is even a convenient 

interpretation of the result, for example in terms of QCD antenna functions [45]. The 

traditional diagrammatic approach might hide such simplifications or analogies through an 

unnecessary complicated structure of intermediate terms. It is worthwhile to circumvent 

these complications, if possible. For example it turns out that many analytical perturbative 

QCD computations are greatly alleviated using novel techniques like the Britto-Cachazo­

Feng (BCF) on-shell recursion discussed below. Secondly, one might gain additional insight 

into the underlying structure of perturbative QCD through techniques which yield results 

that are simple and easy to interpret. For example soft and collinear factorisation properties 

of QCD tree amplitudes can be understood in a very convenient way through the CSW 

technique [46, 47]. 

On the other hand it turns out that many of the newly emerging methods are very suited 

to solve a particular physical problem only, like for example the computation of a scattering 

amplitude in a certain helicity assignment of external particles. They can of course be 

invoked to yield results for the full theory, but in practice "old fashioned" methods are 

oftmrmuch ·more suited for the task and more generally applicable. 

Which technique to compute QCD scattering amplitudes is employed, thus depends very 

much on the purpose of the computation itself. Whenever an analytical result is desired, 
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one would rather focus on methods that yield the most compact analytical expressions and 

not care about their numerical evaluation. A popular example for this is the colour-dressed 

BCF recursion relation, presented in Ref. [48], which has a stunningly simple form. On the 

other hand, it leads to a factorial proliferation of terms, once a result must be computed 

numerically. Therefore, whenever the aim is the numerical evaluation of amplitudes and thus 

the computation of physical cross sections, the focus will be on the simplest implementation 

in terms of computer algebra and the best algorithmic choice to save computation time. 

At this point it is mostly found that traditional recursive methods to compute scattering 

amplitudes are the better alternatives [49, 48, 50]. 

The outline of this chapter is as follows. Firstly various methods to separate the amplitude 

computation into colour factors and the computation of planar diagrams are introduced. 

This point is crucial for both the basic CSW and the basic BCF relations. In Chapter 2, 

it will be shown how to reinstate colour information in the computation. Secondly, the 

Weyl-van der Waerden formalism to compute helicity amplitudes is reviewed, since it is one 

of the basic ingredients for the discussions in the following chapters. It is outlined how the 

analytical computation of tree-level amplitudes is performed in this method. Maximally 

helicity violating (MHV) amplitudes, which will be essential for the discussion of the CSW 

and the BCF relations, are derived. The Berends-Giele (BG), CSW and BCF relations are 

presented. 

1.1 Colour Decompositions 

In this section the method of colour decomposition is briefly outlined and the available 

results for tree-level QCD amplitudes with n gluons are presented as an example. Emphasis 

is given to those aspects which will play an important role in the following chapters. 

The basic idea of a colour decomposition is to factorise the information on the gauge struc­

ture from the kinematics. Results are mostly formulated for an arbitrary number of colours 

Nc. This allows, for example in the context of a parton shower picture, cf. Part II, Chap­

fer 1, to interpret results in the large Nc lirrilt. In this context; quarks may thus carry a 

fundamental colour index i = 1, ... , Nc, antiquarks carry a fundamental "anticolour" index 

J = 1, ... , Nc and gluons usually carry an adjoint colour index a = 1, ... , N(; - 1. The 
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fundamental interaction between quarks and gluons is mediated by a term proportional ~J' 

T being the generators of SU(N) in the fundamental representation. Gluons couple through 

rbc, with f the being the structure constants of SU(N). In the notation employed here, 

T's are normalised according to 

(1.1) 

which allows some simplification in further computations. Structure constants are defined 

through 

(1.2) 

This definition immediately yields the relation 

rbcTr (Tc, [Td1, [Td2, ... [Tdn-!, Tdn J ... J J) 

_ iTr (Ta, [Tb, [Td1, ... [Tdn-\ Tdn J ... J J) , 
(1.3) 

which can be employed to rewrite a string of structure constants in terms of fundamental 

representation matrices. As an example, consider the amplitude A for n gluons of colours 

a 1 , a2 , ... , an. Using Eq. (1.3) one can prove that, at tree level, such an amplitude can be 

decomposed as [51] 

A(l, ... , n) L Tr [Ta1Tau2 ... raun J A(l, cr2, ... 'CTn) ' (1.4) 
uESn-! 

where the sum is over all (n - 1)! permutations of (2, ... , n). Each trace corresponds 

to a particular colour structure. The factor associated with each colour structure, A, is 

called a colour-ordered amplitude. It is also referred to as a dual amplitude or partial 

amplitude. It depends on the four-momenta Pi and polarisation vectors Ei of the n gluons, 

represented simply by the particle index in its argument. The colour-ordered amplitudes 

are far simpler to calculate than the full amplitude A, since they contain only planar graphs 

and'thus a much srrialle'r nuhiber of Feynman diagran1s contribute to them. They also have 

remarkable theoretical properties. Among those, a special role is played by the Kleiss-Kuijf 

relations [52]. These are linear relations amongst the amplitudes directly inherited from 
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the gauge structure, i.e., from colour, which in the case of n-gluon amplitudes reduce the 

number of linearly-independent amplitudes to (n- 2)!. It is then clear that the number 

of terms in Eq. (1.4) cannot be minimal. This decomposition is, however neither unique 

nor special and other colour decompositions might be more suited for a particular problem. 

Eq. (1.4) is universally used to illustrate the idea of colour decompositions and to define 

the full amplitude A in terms of colour-ordered amplitudes A. It can be shown, however, 

that the above definition of colour-ordered amplitudes does not depend on the actual colour 

basis. 

Recently, another decomposition has been introduced, which is based on colour flows [16,53]. 

This decomposition arises when treating the SU(N) gluon field as an Nc x Nc matrix (A11 )iJ 

(i,J = 1, ... , Nc), rather than as a one-index field A~. To understand why this might be 

helpful, consider the term ~}T:1, corresponding to the sum of all gluons propagating between 

two quark lines, i.e. the gluon propagator. This term can be decomposed as 

I ___ k 

l 

1 

Nc 

J k 
)········(_ (1.5) 

'l l 

Regarding these two terms, it becomes apparent why the basis for this decomposition is 

called the colour-flow basis. Both terms correspond to connecting indices of fundamental 

SU(N) objects. Their sum gives a projection which exactly yields the N6 -1 degrees of free­

dom of the gluon field. Correspondingly, the elementary quark-gluon vertex is proportional 

to delta functions connecting the gluon and quark lines and quark lines are simple delta 

functions. Gauge couplings have a more complicated structure, which will be explained in 

detail in Chapter 2. The major advantage of this decomposition is that any colour factor can 

be decomposed into a product of delta functions. This allows a straightforward implemen­

tation into computer programs, since no matrix multiplications of complex valued matrices 

have to be performed, but only integer comparisons. Corresponding codes are therefore 

often much faster, even if the natural colour basis is not the colemr~flow basis and therefore 

the number of terms in the sum over permutations is not minimal. This will be discussed 

in more detail in Chapter 2. 
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Within the colour-flow basis, the n-gluon amplitude may be decomposed as 

A(1, ... , n) (1.6) 

where the sum is over all (n- 1)! permutations of (2, ... , n). The partial amplitudes that 

appear in this decomposition are the same as in the decomposition in the fundamental 

representation. As can be seen here, another nice feature of the colour-flow decomposition 

is that the colour factors in front of each amplitude are either zero or one. A similar 

decomposition exists for all tree-level parton amplitudes including any number of quark 

pairs, gluons and colour singlet objects. 

A third decomposition of the multi-gluon amplitude exists, which is based on the adjoint 

representation of SU(N) rather than the fundamental representation [54]. It can be inferred 

from Eq. (1.3) using 

(1.7) 

where (Fa)~ = -irbc are the adjoint-representation matrices of SU(N). The n-gluon 

amplitude in this decomposition may be written as 

A(1, ... , n) L (Fa" 2 Fa"3 ••• pa"n-! )alan A(1, 0"2, ... l O"n-ll n) l 

uESn-2 

(1.8) 

where the sum is over all (n- 2)! permutations of (2, ... , n- 1). The indices corresponding 

to the first and the last gluon are taken as "references" and are not included in the per­

mutations. The partial amplitudes that appear in this decomposition are the same as in 

the other decomposition, but only (n- 2)! linearly-independent amplitudes are needed. In 

this respect this formulation is "minimal" as there is no redundancy and the Kleiss-Kuijf 

. relations -are'emboclled in tlie colour Iactors .. As will be elabon1ted -upon. ill. Chapter 2, there 

exists a remarkable formal similarity with the BCF recursive relations, where two gluons 

are also taken as a reference to build up the full amplitude. 
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1.2 The Weyl-van der Waerden spinor formalism 

In this section a brief introduction to the spinor formalism employed in the computation 

of helicity amplitudes is presented. The discussion closely follows Refs. [55, 56], where the 

algorithm was introduced in great detail. The focus will be on massless fermions and gauge 

particles, however masses can be introduced, for example in the formalism presented in 

Ref. [57]. This will be discussed in Chapter 3. 

Although solutions to the Dirac and Maxwell equations are in principle known, the actual 

implementation in a given computation can be quite cumbersome. If an inconvenient spinor 

basis or unsuitable polarisation vectors are chosen, the computation can be unnecessarily 

complicated. A convenient way to define spinors is to employ the Weyl-van der Waerden 

formalism [58]. 

The basic formalism 

Spinors in the D(~, 0) and D(O, ~) representation of the Lorentz group are called right­

and left-handed Weyl spinors, respectively. They are defined through dotted and undotted 

spinor indices, such that 1/Ja is a covariant (right-handed) and 1/Ja is a contravariant (left­

handed) spinor. Complex conjugation amounts to dotting and undotting indices, according 

to 

(1.9) 

Spinor indices are lowered and raised using the spinor metric, given in terms of the c tensor 

cab -- cab - c c '- '- '-ab = '-ab (1.10) 

To compute polarisation vectors and to describe the fundamental interactions between vec­

tors and fermions, the matrices aJ.L are defined. They allow to decompose a four-vector, which 
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is an object of the D(~, ~) representation of the Lorentz group in terms of two spinors. 

ll - ( 0 --+) 
(Jab - (J ' -(J ' (1.11) 

where CJ 0 = I is the 2 x 2 unit matrix and iJ are the Pauli matrices. Using these definitions, 

an arbitrary real four vector kll can be rewritten as a 2 x 2 matrix 

where (1.12) 

For massless vectors, one has ki k+k- and therefore a spinor ~(k) can be determined 

such that kab = ~a~b· 

~a(k) ~b(k) , where (1.13) 

Employing the definition of CJil, Eq. (1.11) again, conversely one obtains 2kll = CJ~b~a~b· Note 

that the above definition of ~ is not unique. Firstly, an arbitrary phase can be multiplied 

without changing the result. Secondly, Eq. (1.12) is ambiguous itself, because the x-, y- and 

z-direction along which k1_ and k± are defined can be changed through a rotation of the 

Pauli matrices. This can be referred to as the spinor gauge and the actual definition of the 

Pauli matrices as the preferred basis amounts to a gauge fixing. 

In order to obtain the decomposition of a massive vector in terms of the above defined Weyl 

spinors, it is customary to employ the following decomposition of a massive four vector into 

massless ones 

lJI1 - ""all , where (1.14) 

In this respect, all is an arbitrary light-like four-vector. Selecting a certain all amounts to a 
~ 

gauge choice for the decomposition. According to the above formulae, one obtains 

(1.15) 
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It is convenient to define the inner products in spinor space through 

(1.16) 

which immediately yields the relation [~17] = (~17)*. Due to the spinor metric f, the inner 

product is antisymmetric in its arguments and the Schouten identity holds 

0. (1.17) 

For further computations, a shorthand notation is introduced which denotes the spinor 

~a(ki) determined from a massless four vector ki through Eq. (1.13) as lki) or li) and the 

corresponding ~a(ki) as lki] or li]. In full analogy [ilaMij) = a~tab~a(ki)~b(kJ)· The invariant 

mass of a pair of massless particles described by the four vectors ki and kj is then given by 

(1.18) 

Thus it can be seen that the spinor products are, up to a phase, square roots of Lorentz 

invariants. It is known that the final result for the squared amplitude will be directly 

expressible in terms of Lorentz invariants. Therefore all unphysical phases occurring due to 

gauge choices in the spinor products must cancel, which can be employed as a consistency 

check of the calculation. 

Wave functions for helicity eigenstates 

In this subsection, explicit Dirac spinors and polarisation vectors will be constructed employ­

ing the Weyl-van der Waerden formalism. A Dirac spinor belongs to the D(~, 0) EB D(O, !) 
representation of the Lorentz group and can be represented in terms of Weyl spinors as 

w~ (::). (1.19) 
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The corresponding Dirac matrices read 

:. ) (1.20) 

Covariant and contravariant spinors 1/Ja and cpa can be singled out using the projectors 

(1.21) 

The Dirac equation for a particle of mass m and four-momentum pJ.L can be solved by 

employing the plane wave solutions W = exp { ±ikx} w± ( k), which leads to the following 

Eigenspinor problem 

-m 0 p -p~ 

0 -m -pj_ p+ 
O=(pJ.L"(J.L-m)u= u. (1.22) 

p+ p~ -m 0 

pj_ p 0 -m 

Eigenvalues are A= m ± y!Pi. Defining the variables p = sgn (p0 ) JP'J and p = (p,p ), a 

possible set of Eigenspinors is given by [57] 

( ) 
_ 1 ( )Po - P X+ (p) ) u+ p m - -~-

' VIP vPo + P X+(P) ' 
( ) 

= _1_ ( -)Po-P X+(P) ) 
v_ p, m . f"')i'; , 

v 2 P VPo + P X+(P) 

( ) 
~ = _1_ ( )Po + P X- (p) ) u_ p, m f"')i'; , 

v 2P VPo- P X-(fi) 
( ) _ 1 ( )Po+ P X-(fi) ) 

v+p,m -~ 
VIP -vPo- P x-(fi) 

(1.23) 

The above definition has the apparent advantage, that massless spinors have two nonzero 

components only. This, together with Eqs. (1.20) greatly simplifies the computation for 
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massless theories. The Weyl spinors X± (p) read 

( A) - 1 ( p+ ) - ( yp+ ) X+ p --A- -

yp+ pj_ Jp-ei<f>f! 

A ei1r ( -fj*j_ ) (. Jp-e-i<f>f! ) 
X-(P) =-A = 

yp+ p+ -# 

(1.24) 

They are orthogonal and normalised to 2 lfJol· The Eigenspinors U± and V± are thus or­

thogonal and normalised to 2m and -2m, respectively. In the following, the notation of 

Ref. [55] is adopted and massless Dirac spinors are also denoted using 

(1.25) 

Polarisation vectors for external vector bosons are constructed according to Ref. [56]. For 

massless gauge bosons the wave function Vtt satisfies Maxwell's equations and the Ansatz 

Vtt = exp { -ikx} c:~ ( k) can be made. One possible set of polarisation vectors is then given 

by 

c:~ (p, k) (1.26) 

In this context, k is an arbitrary light-like gauge vector, which must not be parallel to the 

momentum p. The above definition yields the polarisation sum of a light-like axial gauge 

~ c:\(k,p)c:~*(k,p) (1.27) 
>.=± 

For massive vector bosons the wave function must satisfy Proca's equation and one obtains 

one additional polarisation 

where, as introduced above, b = p- ~k and ~ = p2 /2pk. Again k is an arbitrary light-like 
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gauge vector. The polarisation sum is however independent of k and reads 

L c~(k,p)c~*(k,p) 
>.=±,0 

J1. v 
-gJ.l.V + p; • 

p 

21 

(1.29) 

Note that the computation of terms like in Eq. (1.28) can be simplified by using the identities 

(k+I'YJJ.Ip+) = [kiaJ.l.iP) , 

(k-I'YJ.l.lp-) = (kjaJJ.jp] , 

(k-jp+) = (kp) , 

(k+jp-) = [kp] . 
(1.30) 

Equation (1.30) implies that for massless QCD, the two component Weyl-van der Waerden 

spinors are sufficient to compute any given scattering amplitude. 

Connection to the helicity formalism 

Another formalism to compute helicity amplitudes, based only on Lorentz invariants has 

been presented in Refs. [28]. It is the basis for many modern matrix element generators, 

like for example AMEGIC++ and MADGRAPH. The Weyl-van der Waerden formalism can 

easily be translated into this helicity formalism, since only the redundant phase information 

encoded in the spinor products must be eliminated. 

Within the Weyl-van der Waerden formalism, the following relations hold 

(1.31) 

This is, however exactly the relation which defines the basic spinors within the helicity 

formalism, cf. Refs. [28] and therefore the connection is immediately established. Another, 

more convenient way to understand the relation between the two methods was presented in 

Ref. [55]. A brief summary of the arguments discussed ibidem is given in the following. 

Within the full scattering amplitude, any spinor string must terminate, since otherwise the 

dependence on unphysical phases introduced by the gauge choices described above cannot 
~-,. __ , -;.- : ~ ·:::--,---.=··:_ ·--:_.-:-_.'~ ~ ~ _ ; ':.~""!_ • •• ""' ~ ., -~-- _. _ ,. --~- -.: ~._ .,_-.:~ '>-, ;:-. ~·..,.i_. -',-," :·.-.·. --~ ·,~ - ..,. ~ ·~ _·_::- ·_,.-__ ;;::; .,;• >.-i -·- .-·< ~<-'- -> _ "·" ,, ,;,•;_··: • • -~.,. ·.;-:_ •• ·:; ·.: •-·· ~,..,~----• ._.,;_,_-· ', f'.--. •;?· . ~ ,r.. ""- · o....z--,~~,_,:: · ,y~..,.:::; "._; ::-. 

be eliminated. Such a string has the form 

(1.32) 
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The question is, whether there is a general method to reduce the string to minimal pieces 

and what these pieces look like. A solution to the problem is obtained if one realises that 

1 = (ij) [ji] /2 kikj. Multiple insertions of this relation will yield strings of maximum length 

four, which can easily be evaluated. If its length is two, the string will simply be a scalar 

product. If its length is four, with the help of Eq. (1.31) and the Fierz rearrangement 

-2 (ik) [jl] ' (1.33) 

one obtains 

(1.34) 

Up to a normalisation factor and with a proper choice of vectors, this is exactly the S­

function of the helicity formalism, as defined in Ref. [28]. If k0 and k1 are the gauge vectors 

with k0k1 = 0, and p1 and p2 the vectors of Dirac particles, the corresponding S-functions 

in terms of Weyl-van der Waerden spinors read 

(P1P2) [p2ko] (kokl) [k1P1J 
..j4p1ko P2ko 

[p1P2J (p2ko) [kokl] (klPI) 
..j4plko P2ko 

(1.35) 

Equation (1.34) can be employed to transform results obtained with the the two different 

methods into each other. 

1.3 The Berends-Giele recursive relations 

In Ref. [59], Berends and Giele introduced the colour-ordered n-point gluon off-shell current 

~c < ---Jii~-wliiCI{caif hi{Hefiiieaa:s-th~-S'umof all =colouf~6rdered' Feyiim~il'd!agr-ams :w{th n exfer~af'~~---- ,,~~~ " -
on-shell legs and a single off-shell leg with polarisation JL. The colour-ordered off-shell 

currents can then be constructed using the Berends-Giele recursive relations 
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2 
n-1 

=I: 
i=2 

n-1 
n 

1 2 

i-1 
n-2 

+I: 
"""-71\ i+ 1 i=2 

i+2 j>i 

1 2 i-1 i 

i+1 

i+2 

j-1 

j 

n n-1 n n-1 j+2 j+1 

Fig. 1.1 Pictorial representation of the Berends-Giele recursive relations, Eq. (1.36) 

J1-L(1, 2,". 'n) = ;i {~ v:vp (g,k, pk+1,n) Jv(1, ... , k)Jp(k + 1, ... , n) 
1,n k=1 

n-2 n-1 } + 2:: 2:: v:vpa Jv(1, ... , j)Jp(j + 1, ... , k)Ja(k + 1, ... , n) , 
j=1 k=j+1 

where the momentum sum Pi,j is defined through 

j-1 

p.. 
t,] LPk, 

k=i 
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(1.36) 

(1.37) 

and where V:fvp (P1,k, Pk+1,n) and Vfvpa are the colour-ordered three and four-gluon vertices 

defined in Ref. [55]. 

Vtvp(P, Q) = i ~ ( gVP(p- Q)I-L + 2gPI-LQv- 2gi-Lv pP) , 

2 
v:vpa = i g; ( 2gi-LPgVa _ gi-LV gpa _gi-La 9vp) 

(1.38) 

The algorithm is schematically depicted in Fig. 1.1. A full n + 1-gluon amplitude is obtained 

by amputating the off-shell propagator and contracting the remaining quantity with the 

external polarisation of gluon n + 1. 

(1.39) 
. ~· ., 

Similar recursions exists for the off-shell quark currents [59]. For some exceptional cases 

Eq. (1.36) can be solved in closed form [59, 60]. In particular one obtains the n-gluon 
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off-shell current with like-sign helicity gluons 

n-2 (k- lf11fl,nlk+) 
gs J2(k1) (12) ... (n-1 n) (nk). 

(1.40) 

It can be used to prove the form of maximally helicity violating (MHV) or Parke-Taylor 

tree amplitudes, which was first conjectured by Parke and Taylor in Ref. [61] and proved by 

Berends and Giele in Ref. [59]. Such amplitudes correspond to the "mostly plus" ("mostly 

minus") helicity assignment, where only two of n gluons have negative (positive) helicity. 

They are given by the simple formulae 

A(1+ ·- ·- +) , ... ,'l , ... ,J , ... ,n 
( . ')4 · n-2 'lJ 

='lg 8 (12) ... (n-1 n) (n1) ' 

[. ']4 · n-2 'lJ 
='lg 8 [12] ... [n-1 n] [n1] 

(1.41) 

A(1 - + ·+ -) , ... ,'l , ... ,J , ... ,n 

The applicability of Berends-Giele type recursive relations in analytical calculations is some­

what limited due to the explicit occurrence of four-vectors and polarisations. For this reason, 

however they allow a straightforward implementation into computer programs and are hence 

particularly suited for numerical analysis. In Chapter 3, the concept of Berends-Giele type 

recursive relations will therefore be extended to the full Standard Model. 

1.4 The CSW vertex rules 

The aim of this section is to introduce the CSW vertex rules, which are one of the major 

theoretical improvements in the understanding of perturbative QCD in recent years. In 

this respect, unexpected progress has come from twistor-inspired methods [62], which have 

provided new techniques to compute analytic results for gauge amplitudes both at tree and 

one-loop level [63]. These new methods go back to a correspondence between a weakly 

coupled N = 4 Super Yang-Mills theory and a certain type of string theory. The key point 

in this correspondence is that all tree-level colour-ordered amplitudes are related to algebraic 

curves in twistor space. In Ref. [64] it was shown that this leads to the CSW vertex rules. 

~' · ~"The·se··rules'staUtthat· it is tmssibh~··wlJUiTd""aYIJitrai'y'Colour-Ofdered'aifipli'tudesfron{'MHV -

amplitudes, which, in this context will also be referred to as MHV vertices [62,63,64]. These 

"elementary" vertices are connected by scalar propagators, thus eventually building up a full 
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Fig. 1.2 The six MHV graphs for the computation of the 6-gluon non-MHV ampli­
tude A(-,-,-,+,+,+) in the CSW formalism. Gluons are represented by 
straight lines, while grey blobs denote MHV amplitudes. 
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n-gluon amplitude with n - l like-sign helicity gluons through l - 1 MHV amplitudes. Each 

off-shell leg with momentum P then corresponds to a spinor Paar"l", using some arbitrary 

contravariant reference spin or T/a. 

The CSW rules for constructing an arbitrary n-gluon colour-ordered amplitude are 

1. For n - l like-sign helicity gluons, draw all possible graphs connecting l - 1 MHV 

vertices. In this context the 3-gluon MHV vertex must be included, since intermediate 

particles are off-shell and therefore the 3-gluon MHV amplitude does not vanish. 

2. While maintaining their cyclic ordering, match the n external indices onto the above 

defined graphs, respecting the helicity assignment of the gluons. Typically this will 

eliminate a number of possible graphs. 

This procedure is exemplified in Fig. 1.2, where all MHV graphs contributing to the 6-gluon 

amplitude A(-,-,-,+,+,+) are shown. The algorithm can be reformulated such that only 

·--skelet6ii' .. gr"aplisEonbiiiiing the'externar'legs' wiiJ( opp~~fle's{gn'h~fi~i(yh~~~- to-be ci;~~~~·", ~~ --~'- ~:· 

while the like-sign helicity legs are distributed along the vertices as needed. In this context, 

only a single skeleton graph contributes to any non-MHV six-gluon amplitude. 
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Fig. 1.3 Pictorial representation of the BCF recursive relations, Eq. (1.42). 

n 

The CSW rules imply that an n-point colour-ordered amplitude may have contributions 

from MHV vertices involving up to n particles. The number of different vertices is thus 

growing steadily with the number of particles, which makes it impossible to put for example 

Berends-Giele recursive relations and the CSW rules on the same footing. This problem has 

also been addressed in Ref. [65] and will be dealt with in Chapter 2, where it is shown how 

the CSW vertex rules can be rewritten in a truly recursive fashion. 

1..5 The BCF recursive relations 

In this section, the BCF recursive relations, presented in Refs. [66] shall be introduced. 

Like the CSW vertex rules presented above, they are an outcome of major theoretical 

improvements in the calculation of higher order QCD corrections. They state that any tree­

level colour-ordered amplitude can be constructed from products of two on-shell amplitudes 

of fewer particles, multiplied by a simple scalar propagator. These new calculational tools 

have allowed to derive expressions for multi-parton amplitudes [67], which have simple and 

compact analytic forms. 

Assuming an n-gluon amplitude with 1 and n being opposite sign helicity gluons, the BCF 

.>,, .. ,recursive relations"read· · 

~ (~ ~-h) 1 ( ~ h ~) An(1, 2, ... , n) = L...J Ak+l 1, 2, ... , k, -P1,k p 2 An-k+l P1,k, k + 1, ... , n , 
k=2 l,k 

(1.42) 
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where a sum over the helicities h of the intermediate gluon is implicit, and 

P1,k = H k + ZAnAl, , 

Pl = Pl + ZAnAl, (1.43) 

Pn = Pn- ZAnAl. 

In this context Ai and .\i are the co- and contravariant spinor components of the light-like 

momenta Pib = .\f ).~. The shift parameter z is defined through 

z (1.44) 

The last two lines of Eq. (1.43) correspond to shifting the co- and contravariant components 

of PI and Pn, respectively. It is easily seen that fh and Pn still have a factorised form 

and are therefore complex valued light-like vectors. This is in contrast to the CSW vertex 

rules, where intermediate gluon lines are off-shell. The subamplitudes in the BCF recursion 

are, however still not gauge invariant objects. Namely, the choice of reference opposite 

sign helicity gluons corresponds to a gauge choice, which enters the subamplitudes through 

dependence on the shift parameter z. Similar recursive relations exist for amplitudes with 

quarks and for QED processes. Equation (1.42) is schematically depicted in Fig. 1.3. 
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for QCD 

So far, many extensions of the twistor-inspired methods introduced in Chapter 1 have been 

constructed, in particular generalisations to include scalars [68], fermions [69] and pho­

tons [70]. In this chapter another new extension of the CSW and BCF techniques is pre­

sented. It is shown that it is possible to reformulate the twistor-inspired recursive relations 

for the colour-ordered amplitudes in terms of full amplitudes. The motivations are twofold. 

The first is mostly theoretical and stems from the observation of an interesting similarity 

between the colour decomposition Eq. (1.8), based on the adjoint representation, and the 

BCF recursive relations which suggested the existence of a formulation that embodies both. 

The second is more pragmatic and aims at establishing whether the new twistor-inspired 

recursive relations are an improvement also at the numerical level. In order to make a consis­

tent comparison with the most efficient algorithms available [15, 71], a recursive formulation 

which includes colour is necessary. In the standard approach where the colour-ordered am­

plitudes are calculated analytically (or numerically), one has to sum over the permutations 

of the colour orderings to obtain the full amplitude. This algorithm has an intrinsic factorial 

growth and cannot compete with the available numerical methods which only grow expo­

nentially. In this chapter a general method to reinstate colour into the recursive relations 

for colour-ordered amplitudes is derived and applied to the BCF and to a modified version 

-~ .. , .. ,_of,the .. CSW.,relations. ··----- -·-~:·:.•c-"w"'~'------- · .-.~-------f~·,,~,., ... , --·-~=·"'·-,-~--,. _,,,;'"'~--~~:-.-

This chapter is organised as follows. In Sec. 2.1 a simple derivation of the colour-dressed 

counterpart of the Berends-Giele recursive relations is presented, which serves as an illus-
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tration of the method that will be applied later. In Section (2.2) the CSW vertex rules 

are reformulated in terms of simple new three-point effective vertices and the corresponding 

colour-dressed version is derived. In Sec. 2.3 one of the main results is proved, which is the 

colour-dressed version of the BCF relations, Eq. (2.43). Its most important features are dis­

cussed. Section 2.4 contains numerical results on the evaluation of multi-gluon amplitudes 

obtained using the different colour-dressed recursive relations, focusing on the comparison 

with known techniques. 

2.1 Colour dressed Berends-Giele relations 

Upon inspecting Eq. (1.36) it is easy to see that the four-gluon vertex appearing in the 

Berends-Giele recursive relations introduces a larger number of possible combinations of 

subcurrents than the three-gluon vertex. It is however possible to simplify the recursion by 

decomposing all four-gluon vertices into three-vertices including a tensor particle. This is 

schematically depicted in Fig. 2.1. Using this decomposition, the Berends-Giele recursive 

relations can be rewritten such that only three-point vertices are present 

Jil(1, 2, ... , n) = ;i ~ {vtvp (Pl,k, Pk+I,n) 111 (1, ... , k)Jp(k + 1, ... , n) 
l,n k=l 

+ v;""~ 1.(1, ... , k )la~(k + 1, ... , n) + V.f""p Ja.B(1, ... , k )J.(k + 1, ... , n)} , 
(2.1) 

where laf3 is a tensor off-shell current, and Vj:'vaf3 is the tensor-gluon vertex, defined as 

v;Jl!l pu - 'l g ( liP vu JlU v p) 
T -- g g -g g . 

2 
(2.2) 

As there exists no one-point tensor off-shell current, all such currents appearing in Eq. (2.1) 

are defined as zero. The tensor off-shell currents can be easily constructed recursively from 

>cgluon- off-shelLcurrents . _ . -

n-1 

JJl!l(1, 2, ... 'n) = iDJlva(3 v;pa(3 L Jp(1, ... 'k)Ju(k + 1, ... 'n), (2.3) 
k=l 
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X=>-< + 

Fig. 2.1 Diagrammatic representation of the de­
composition of the colour-ordered four­
gluon vertex. 

where iD11vaf3 is the colour-ordered tensor "propagator", defined as 

. ~ 
~D - __ (g11Pgva _ gllagvp) JLVpa -

2 
· 
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(2.4) 

A systematic method to dress colour-ordered recursive relations with colour is now presented 

in order to obtain recursive relations for the colour-dressed off-shell currents. In the colour-

flow decomposition, a colour-dressed gluon off-shell current can be written as 

..7{1(1, 2, ... , n) = L <5l
1 
<5~:; ... <Sj"n 1 11 ( CJ1, CJ2, ... , an), (2.5) 

aESn 

where (I, J) is the colour of the off-shell leg. A colour-dressed tensor off-shell current can 

be obtained similarly. During the colour dressing of the Berends-Giele recursive relations, 

Eq. (2.1), the pure gluon vertices and the tensor-gluon vertices can be dealt with separately. 

After inserting Eq. (2.1), into the colour-flow decomposition, Eq. (2.5), the three-gluon 

vertex part reads 

. n-l 
;~ L L <Sl! <5J:; ... <Sj"n v;wp (Pa!,ak' Pak+J,an) lv(al, ... ) ak)Jp(ak+l, ... 'CJn), (2.6) 

l,n aESn k=l 

where 

(2.7) 
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Fig. 2.2 Diagrammatic representation of the decomposition Eq. (2.8) of 
the colour factor of the three-gluon vertex part. 

The colour factor appearing in Eq. (2.6) can be written as ( cf. Fig. 2.2) 

(2.8) 

where 

- b!;bf is the colour structure of the propagator appearing in the Berends-Giele recursive 

relations. 

- bt
1 

••. b~k is the colour structure of the subcurrent lv(a1 , ... , ak), where the off-shell 

leg v has colour (K, L). 

- bf ... tStn is the colour structure of the subcurrent Jp(ak+ 1 , ... , an), where the off-
uk+l 

shell leg p has colour ( M, N). 

- bf b~ b{f is part of the colour structure of a three-gluon vertex to which the off-shell 

legs J-l, v, p with colours (G, fl), (K, L), (M, N) are attached. 

An ordered partition of a set E into two independent parts is now defined as a pair (n1 , n2 ) 

'' ~ :· of subset8''0(.E su~h 'tl1ar··; ;''4-;;· ::-·E ,: ~h1cl; -~~ails' (;;, ;;r;£ (n;, ;r I) .'"c·fu;ther~;;~, ~~~·· .. "'' ~---.· ·.- -'"~--

(unordered) partition of a set E into two independent parts is a set { n 1 , n2 } of subsets of E 

such that n 1 E9 n2 = E and { n 1 , n2 } = { n2 , nl}. These definitions can easily be extended to 
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partitions of a set E into n > 2 independent parts, for both the ordered and the unordered 

case. 

In the case encountered here E = { 1, 2, ... , n}. The set of all ordered partitions of E 

into two independent parts will be denoted by OP(n, 2), while the set of all (unordered) 

partitions of E into two independent parts is denoted by P(n, 2). Using these definitions, 

the sum over permutations appearing in Eq. (2.6) can be decomposed as follows: For a given 

value of k, 

- Choose an ordered partition 1r = (1r1 , 1r2 ) in OP(n, 2) such that #1r1 = k, where #1r1 

is the number of elements in the set 1r1 . 

- Fix the first k elements of the permutation to be in the subset 1r1 . 

- Sum over all permutations of the first k elements and over all permutations of the last 

n- k elements. 

- Sum over all possible choices for the ordered partition 1r = (1r1 , 1r2 ). 

This is equivalent to the replacement 

n-1 

(2.9) 

The three-gluon vertex part now reads 

(2.10) 

h _ { 1 2 k} d _ { k+l k+2 n} w ere 1r1 - 1r , 1r ... , 1r an 1r2 - 1r , 1r , ... , 1r . 

Clearly, P(TTf 1 ,lTTfk and P<k+
1 
,lT~n only depend on the choice of the ordered partition 1r 

(1r1 , 1r2 ), but not on the order of the elements in 1r1 and 1r2 . Therefore one can define 

(2.11) 
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It is now possible to identify several subcurrents in this expression, namely 

:fvKL(ni) = Lot 1 ••• o;"k lv(a1rl' ... 'CJ1rk ), 
CTESk 7T 

JPMR (n2) = L 
(2.12) 

CT1ESn-k 

such that the three-gluon vertex part reads 

J;]J;H -1, ~ J;GJ;KJ;M TT!lVP(P p ) KL( ) MN( ) 
UGUI p2 L......J ULUNUH V3 7rll 1r2 :fv 1f1 Jp 1r2 · 

l,n 1rEOP(n,2) 

(2.13) 

In Ref. [53] it was shown that the (colour-dressed) three-gluon vertex can be expressed in 

the colour-flow decomposition as 

(2.14) 

where for brevity, the colour indices of the vertex are not written explicitly. So, finally the 

three-gluon vertex part can be written as 

d J;H -1, ~ VJlVP (P p ) 'TKL( ) 'TMN( ) ucui p2 L......t 3 7rll 7r2 vv 1fl Jp 1f2 . 

l,n 7rEP(n,2) 

(2.15) 

Now the tensor-gluon part in the Berends-Giele recursive relations, Eq. (2.1) is addressed. 

From Fig. 2.3 it can be seen that for the s-channel appearing in the decomposition of the 

four-gluon vertex, each tensor-gluon vertex has the same colour-flow structure as a three­

gluon vertex. The t-channel contribution is similar. Therefore the tensor-gluon vertex can 

be written in the colour-flow decomposition as 

(2.16) 

where (I, J) is the colour of the tensor particle. The colour dressing of the te!J-SOr-gluonpar:_~_ 

in Eq. (2.1) is hence exactly the same as for the pure gluon part, leading to 

L ofo~off { v;{la(3 :rtL(ni)Ja~N(n2) + v,;va(3 :la~L(nl)JVMN(n2)}. (2.17) 
1rEOP(n,2) 
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Fig. 2.3 Colour-flow structure of the s-channel contribution to the 
four gluon vertex. 
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As the sum runs over all elements in OP(n, 2), one can exchange 1r1 and 1r2 as well as the 

colour indices (K, L) and (M, N) in the last term. Using Eq. (2.16) the tensor part now 

becomes 

'"""' V1.wa(3 qKL( ) qMN( ) 
~ T oJv 1f1 oJa(3 1f2 · (2.18) 

7TEOP(n,2) 

Hence the colour-dressed recursive relations with all four-gluon vertices replaced by tensor 

particles read 

.1:1 (1, ... , n) = D11v (Pl,n) [ L V?a (Prr1 , P7T2 ) JPKL(1r1)J:1N (1r2) 
7TEP(n,2) 

+ L Vjpa(3 JPKL(1fl) Jt!JN (7r2)]. 
7TEOP(n,2) 

(2.19) 

To complete the colour dressing of the Berends-Giele recursive relations, one has to apply the 

colour-dressing method introduced above to the recursive relations for the off-shell tensor­

currents, Eq. (2.3). Both the colour-dressed vertex and the colour-dressed off-shell tensor­

current have the same form as in the pure gluon case and the recursive relations for the 

tensor particle, Eq. (2.3), have the same structure as for the three-gluon vertex part in the 

previous section. Therefore, one can immediately write down the colour-dressed recursive 

relations for the off-shell tensor-current 

:~·,-c:.·'J}!tt;2,~:.~,fi)'"__:_-zD~~~/3·V~paf3,,""'2::/. 'JPKL(7i{JJ~MN(1r2) .. 
7TEP(n,2) 

The two recursive relations, Eq. (2.19) and Eq. (2.20), can be solved simultaneously to 
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construct colour-dressed gluon off-shell currents for arbitrary n. The full colour-dressed 

scattering amplitude is then recovered be putting the off-shell leg on-shell. This result is 

equivalent to the Dyson-Schwinger algorithm presented in Ref. [72]. It should be noticed 

that the colour-dressed recursive relations have the same form as the colour-ordered Berends-

Giele recursive relations, Eq. (2.1) and Eq. (2.3). The only difference between the colour­

ordered and the colour-dressed case is that in the latter one sums over unordered objects 

and no permutations need to be taken into account. This is a general feature which will 

turn out to be common to all colour-dressed recursive relations. 

2.2 Colour dressed CSW vertex rules 

In this section the colour-dressing of the CSW vertex rules introduced in Chapter 1 is 

presented. As noted in Sec. 1.4, the original version of the CSW rules is not a truly recursive 

relation in the sense of the Berends-Giele or BCF recursion. Hence firstly a new method 

to decompose an MHV vertex into three-point vertices involving an auxiliary particle is 

introduced and recursive relations for both the auxiliary particle and the scalar propagators 

are presented. Once these relations have been obtained, the corresponding colour dressing 

is performed. 

In analogy to the Berends-Giele recursive relations one defines an n-point scalar off-shell 

current Jh(l, ... , n) as the sum of all MHV diagrams with n external on-shell legs, and one 

off-shell leg with helicity h. Note that in the context of the CSW rules, it makes sense to 

talk about the helicity of an off-shell particle. As the off-shell continuation of the spinors 

involves an arbitrary reference spinor T/a, the scalar off-shell currents are not gauge invariant 

objects. However, the T/a dependence drops out in the end [64]. This scalar off-shell current 

can be easily constructed employing the CSW rules: 

n-2 n-1 

+E CE~A'4{~Pf~;-Pth,~P/!;l,j;-P}~1,~) Jii1{1,--.<'>;-i} ~~,'(2::21}·-
i=l j=i+l 

Jh,(i+l, ... ,j)J,.,(j+l, ... ,n)+ ... ], 
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where the dots indicate terms with higher order MHV vertices. A sum over helicities 

(h, h 1 , h2 , ... ) with -h + h 1 + h2 + ... = n- 4 is implicit. According to the CSW rules, the 

vertices An correspond to off-shell continued n-point MHV amplitudes. 

However, as mentioned in Sec. 1.4 in this form the CSW relations imply a factorial growth 

in the colour-dressed case, because of possibly large numbers of legs at single MHV vertices 

and the associated permutations of these legs. In order to tame this growth, the CSW 

relations are rewritten in a form similar to the Berends-Giele recursion with a tensor particle, 

where the terms in Tab. 2.1 serve as basic building blocks. First auxiliary double-lines are 

introduced, carrying threefold information: 

- The total momentum P flowing in the double-line. 

- A pair ( kz, kr), describing the momenta flowing in each of the two lines separately. 

Notice that in general kz + kr =1- P. 

- A pair (a, b), describing the momenta of the negative helicity legs in the corresponding 

MHV amplitude contained in the off-shell current. If no negative helicity gluon is 

attached to the double-line, then a = b = 0, and if only one negative helicity gluon is 

attached, then b = 0. 

In order to build recursive relations where all n-point MHV vertices for n 2: 4 are decom­

posed into three-point vertices, one defines n-point (off-shell) double-line currents ]~~(1, ... , n), 

where 1 ::; u ::; v < n, as the sum of all diagrams with n external on-shell legs and an (off­

shell) auxiliary double-line. This line carries the information (k1, kr) = (P1,u, Pv+l,n) and 

(a, b), a and b being the momenta of the negative helicity gluons attached to it. It is easy to 

see that all other assignments for (kz, kr) do not contribute in the colour-ordered case. Fur­

thermore, in the colour-ordered case, a must be of the form a = ~,j with ( i, j) constrained 

to one of the following possibilities 

1 ::; i ::; j ::; u, 

u + 1 ::; i::; j ::; v, (2.22) 

v + 1 ::; i ::; j ::; _n 
:·-~-~-·~~ .-+-'·.o-.::':""•. -i". ;':'. :·· :_ ~ ·-:·· ·;,... ·-::. "'. - __ ,-;::_-,-;:::o •. v< ~ 

and equivalently for b. Notice that according to the definition there are no one-point double­

line currents. For later convenience one defines one-point double-line currents as zero. All 
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Right-handed Vertices 

i j 
vh;,hj,hk(i . k)- (af3)

4 

Y. GG 'J, - (ij) (jk) (ki) 

i j 

vh;,hj,akbk (' ') - 1 b b (h h b ) Y. AG 'l, J - (ij) k1i kr] f i' j' ak k 

i j 
va;b;,hj,akbk (. . ') - 1 b b ( b h b ) Y. AAR Zl,Zr,) - n k1i1 krj f ai i' j,ak k 

'lr) 

i j 

va;b;,hj,hkc . ')- (af3)4 ( b h h ) Y. GAR 'll,ZnJ - (irj)(jk)(kil) f ai i, j, k 

Tab. 2.1 Right-handed basic building blocks in the MHV decom­
position of colour-ordered amplitudes in the CSW ap­
proach. Details are given in the text. 

other double-line currents can be built recursively employing the vertices given in Tab. 2.1, 

yielding 

v-1 
~ a'b',h,ab a'b' + (1- buv) ~ VAAR (Pl,u, Pw+l,vPv+l,n) Juw (1, ... , v) Jh(v + 1, ... 'n) ' 

(2.23) 

w=u 

where sums over repeated indices are always understood. 

The indices a and (3 in Tab. 2.1 refer to the two particles with negative helicity within one 

MHV amplitude. TheE functions appearing in the vertices involving an auxiliary double-line 

keep track of the negative helicity gluons attached to them, 

E _ { 1, if #negative helicity gluons ::; 2 

0, if #negative helicity gluons > 2 
(2.24) 

A vertex vanishes if the number of negative helicity gluons attached to a double-line is 

greater than two, since this situation corresponds to a non-MHV amplitude, that has to 

'" --·-be~aecompdsea- furtfief 1J:Y''means"o(the' cSW "rell1t:it"n8C:·" No"·p'eirl{lif3,tio~ ~f th~ ch'lc~l'ni-;g'- ·•· ·''" ··"' "" 

legs is allowed, since it would lead to double-counting. The respective rules in the MHV 

decomposition are obtained from the above by swapping helicities and replacing angular by 
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square brackets. In analogy to the double-line current, one can write the recursive relation 

for the scalar off-shell current in terms of double-line and scalar off-shell currents 

(2.25) 

Notice that the second term vanishes fork= 1 due to the vanishing of all one-point double-

line currents. 

The vertices given in Tab. 2.1 correspond to the situation where all gluons are attached 

on one side of the double-line. These vertices will be referred to as the right-handed ver­

tices. Right-handed vertices are sufficient to construct all MHV amplitudes. However, it 

is convenient for the subsequent colour dressing of the CSW rules to recast Eq. (2.25) into 

a symmetric form. To do so, first one defines left-handed vertices where all the gluons are 

attached to the opposite side of the double-line. These vertices are shown in Tab. 2.2. 1 In 

the left-handed decomposition, the recursive relations Eq. (2.23) and Eq. (2.25) read 

v 

+ (1- buv) L v;:/·ab(Pl,u, Pu+l,w, Pv+l,n) Jh(1, ... 'u) J~'i' (u + 1, ... 'n) ' 
(2.26) 

w=u+l 

(2.27) 

Combining the right- and left-handed decompositions, it is possible to write the recursive 

1 As Vee and VAc are the same in both the right and left-handed decompositions, they are not listed 
again in Tab. 2.2. 
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Left-handed Vertices 

i j 
vh;,ajbj,akbk (' . . ) - 1 b b (h b b ) Y. AAL 1., Jt, )r - n k1i krir E i> aj j> ak k 

'l)l 

i j 
vh;,ajbj,ltk (' . . ) - (a(3)

4 
(h b h ) Y. GAL 'l,Jt,Jr - (jrk)(ki)(ijl) E i,aj j, k 

Tab. 2.2 Left-handed basic building blocks in the MHV decom­
position of colour-ordered amplitudes in the CSW ap­
proach. 

relations in a symmetric form involving both right-handed and left-handed vertices 

v-1 
1 ""\""" a'b',h,ab a'b' + (1- buv)2 ~ VAAR (PI,u, Pw+I,v, Pv+I,n) Juw (1, ... , v) Jh(v + 1, ... , n) 

w=u 
v 

1 ""\""" h,a'b' ,ab a'b' + (1- buv)2 ~ VAAL (PI,u, Pu+I,w, Pv+I,n) Jh(1, ... ) u) Jwv (u + 1, ... ) n) 
w=u+1 

Jh(1, ... , n) = p~ I: [ V!Jj/ 2 'h(P1,k, Pk+l,n) Jh 1 (1, ... , k) Jh2 (k + 1, ... , n) 
1,n k=1 

1 k-1 k-1 . 

+ 2 L L V/!;~~1 ,h(H,u, Pv+l,b Pk+1,n) J~t(l, · · ·, k) Jh 1 (k + 1, · .. , n) 
U=] V=U 

(2.28) 

(2.29) 

These recursive relations, equivalent to the CSW vertex rules, can be solved simultaneously 

to construct the scalar off-shell current. The difference to the pure CSW approach without 

decomposition of the MHV vertices lies in the fact that the number of different vertices 

in Eqs. (2.28) and (2.29) is fixed and does not grow with the number of particles. The 

approach thereby differs from the one presented in Ref. [65]. Furthermore, as the number 

of different vertices is fixed and as only three-point vertices are present, these new recursive 

· telations ·ar~e well sliitedlo hft'corri'parea·to 'th-e Bh~nas::cTele· retlirsive' reia:Hons:·: , .... -- ... 
One can now turn to the colour dressing of the new CSW-like recursive relations. As they 

only contain three-point vertices, one expects the colour-dressed vertices to be of the same 

_,, .... ·- . -s -:=::::..-'·.~;·> -
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form as in Eq. (2.14), 

(2.30) 

In the colour-flow basis, the scalar off-shell currents are defined in the usual way 

Jl1 (1, ... 'n) = L 8ful 8{:; ... 8~"n Jh(CJI, (J2 ... 'CTn)· (2.31) 
a-ESn 

The colour-dressed n-point double-line currents are defined by 

(2.32) 

where 7rz and 7rr are two proper subsets of {1, 2, ... , n} referring to the momenta flowing in 

each line separately, (kz, kr) = (P7rp P7rJ, and 7rm is defined by 7rz EB 7rm EB 7rr = {1, 2, ... , n} 

(Notice that 7rm may be empty). On the right-hand side of Eq. (2.32), the indices (u, v) of 

the colour-ordered currents are defined by ( u, v) = ( #1rz, n - #1r r) and 

{ 1 2 u} 
7rz = 7rz , 7rz ' · · · ' 7rz ' 

(2.33) 

Finally, the symbols CJi,J are defined by CJi,J = CJ(1r1). Notice that due to the second term 

appearing in Eq. (2.32), a colour-dressed n-point double-line current is symmetric in (1r1, 7rr)· 

The colour dressing is similar to the Berends-Giele case, but it contains some technical 

subtleties, which are explained in detail in Appendix A of Ref. [48]. They arise because the 

contributions from u = v and u -=f. v in Eq. (2.32) have to be treated separately and because 
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the colour dressed double line current is defined in a symmetric way. The result is 

:Jf1 (1, · · ·, n) = p~ [ L V~bh2 ,h(P1r,, P1r2):Jh~L( 1r1):Jh"; R (n2) 

l,n 1rEP(n,2) 

1 + 2 L v~~h,,h(P'lrl) p7r2l P1rJ:J:,b~~L(7rl, 7r2):Jl''[N (n3) (2.34) 
7rEOP(n,3) 

+ ~ 2.: v~~h,~h(P'lr,, P1r3' P7r4).:J;:,b~~1 (7ri, n2, 1r3):Jl'[R (1r4)] 

7rEOP(n,4) 

+ Va'b',h,ab(P p p ) rra'b',KL( ) rrMN( ) 
AA 7rp 1r2, 7rr '-'1rc1r2 7rz,7ri,7r2 '-'h 1rr 

(2.35) 

where in Eq. (2.35) OP(nm, 2) is the set of all ordered partitions of 7rm into two independent 

parts. 

Apart from a few subtleties, the procedure of the colour dressing is now similar to the 

Berends-Giele case. Again, a detailed discussion is given in Appendix A of Ref. [48]. The 

main differences are the following: 

- As the colour-dressed vertices, Eq. (2.30), have both right and left-handed contri­

butions, the symmetric form of the colour-ordered recursive relations, Eq. (2.28) 

and (2.29) is employed. 

- The contributions coming from the u = v and u =/= v terms in Eq. (2.28) and Eq. (2.29) 

are treated separately. For example, the u = v and u =/= v contributions in Eq. (2.29) 

give rise to the OP(n, 3) and OP(n, 4) terms in Eq. (2.34), respectively. 

'·.C ""'}\ parf ·from thes~' ··the hew . CSW~like~ rechrsive'. felafi'onS' ret~ii(the<~ame 'for~ c~~ <the ~~~~ ""''·~-~---·"''c;c· 

responding colour-ordered relations with the difference that in the colour-dressed case the 

sum goes over unordered objects. Furthermore, as in the colour-ordered case, the number 
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of different vertices is fixed and only three-point vertices appear in the recursive relations. 

Therefore one may compare them to the colour-dressed Berends-Giele recursive relation 

presented in Sec. 2.1. 

2.3 Colour dressed BCF relations 

In this section, the method employed to construct the colour-dressed Berends-Giele recursive 

relations is applied to the BCF recursive relations, presented in Ref. [66], cf. Chapter 1. 

Assuming that gluons 1 and n have opposite-sign helicities, the BCF recursive relations are 

given by Eq. (1.42). 

As in Eq. (1.42) we have to choose two reference gluons, 1 and n, the colour-flow decompo­

sition and the colour decomposition in the fundamental representation are not well suited 

to dress the BCF recursive relations with colour, because they allow to fix only one of the 

two reference gluons. The most natural colour decomposition which fixes both reference 

gluons is the colour decomposition in the adjoint representation, Eq. (1.8). Inserting the 

colour-ordered BCF relations, Eq. (1.42), into Eq. (1.8), one finds 

n-2 

An (1, ... , n) L L (Fa"2 ... Fa"n-1 )alan Ak+l (i, 0"2, ... 'O"k, -Fl~:k) 
k=2 aESn-2 (2.36) 

p; An-k+l ( p~ak, O"k+l, ... , O"n-1, n) , 
l,ak 

where 

(2.37) 

For a given value of k, the sum over permutations appearing in Eq. (2.36) can be decomposed 

in a similar way as for the three-gluon vertex part in the Berends-Giele recursive relations. 

The procedure is as follows 

- Choose an ordered partition 7r = ( n1 , n2 ) of {2, 3, ... , n-2, n-1} such that #n1 = k-1. 
- •. ,, !.• ._ • ··-;; ~~~-, ,, __ t::·_. ••.- >· ., ·•'.". , ~,...- _I~X"-- , ,~~~ ~ '~'"'~ .~ .. -~.-..o·'·' _. • ~ __:: :- !-, ,,:. ,- .. ..,. c 

- Fix the first k - 1 elements of the permutation to be in the subset n 1 . 

- Sum over all permutations of the first k - 1 elements and over all permutations of the 

.. 
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last n - k - 1 elements. 

- Sum over all possible choices for the ordered partition 1r = (1r1 , 1r2 ). 

This is equivalent to the replacement 

n-2 

I: L: ~ (2.38) 
k=2 crESn-2 7rEOP(n-2,2) crESk-1 u'ESn-k-1 

where by OP(n- 2, 2) we denote the set of all ordered partitions of {2, 3, ... , n- 1}. 

Furthermore, for a fixed value of k, the colour factor can be written as 

(2.39) 

where a sum over x = 1, ... , 8 is understood. 

Finally, the propagator clearly only depends on the choice of the ordered partition 1r 

( 1r1 , 1r2) and not on the order of the elements in 1r1 and 1r2 . If 1r1 = { 1r2 , 1r3 , ... , 1rk}, one 

defines 

(2.40) 

At this point it is possible to identify subamplitudes in the expression for An, namely 

L (Fa"rr2 ... Fa"rrk)a
1
xAk+l (i,a7r2, ... ,0"7rk,-P1~/:1 ) 

crESk-1 

where x is the colour of the intermediate gluon. 

(2.41) 
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2 n-1 1f 

2:2: 
1f h=± 

1 n 
1 n 

Fig. 2.4 Diagrammatic representation of the colour-dressed BCF recursive relations. 

Collecting all the pieces, the colour-dressed BCF recursive relations read 

(2.43) 

We emphasise that although the proof of these new recursive relations relies on the adjoint 

colour basis, the final result, Eq. (2.43), is independent of the choice of the basis. Further­

more, as in the case of the Berends-Giele recursive relations, we see that the form of the 

colour-dressed BCF recursive relations stays the same as in the colour-ordered case, with 

the only difference that in Eq. (2.43) the sum goes over all partitions of {2, 3, ... , n -1 }, i.e. 

over unordered objects. This implies that the new colour-dressed BCF recursive relations 

have the same properties as in the colour-ordered case, namely 

1. The definition of the off-shell shifts, Eqs. (1.43), is independent of the colour. 

2. As in the colour-ordered BCF recursive relations, the pole structure of the scattering 

amplitude is manifest in Eq. (2.43). 

3. Similar to the colour-ordered case, the subamplitudes in Eq. (2.43) are not indepen­

dent, but they are linked via the off-shell shifts. 

The result, Eq. (2.43) obtained for amplitudes containing only gluons can be easily extended 

to include a single pair of massless quarks. For amplitudes containing a single qq pair, the 

,.,,c,,<;:olmrr.dec01npo~it!911 reads~[~5] .. ~ 

A (1 2 n 1 n ) ~ (Ta"2 ... Ta"n-1 )/ A (1 CJ CJ n ) n q, , · · ·, - , ij = ~ . n q, 2, · · ·, n-1, ij · (2.44) 
aESn-2 
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The BCF recursive relations for colour-ordered amplitudes still hold when a quark pair is 

included, where either a quark or a gluon can be chosen as the intermediate particle [69]. If 

a quark is chosen for the internal line, no sum over helicities has to be carried out, because 

helicity is conserved all along the fermion line. The BCF recursive relations then read 

h -h ~ (~h ~-h) An(1q, 2, ... , nii ) = ~ Ak+l 1q, 2, ... , k, -Pq,lk 
k=2 

1 ( ~ h ~-h) p2An-k+l Pq,lk' k + 1, ... , n- 1, nq , 
q,lk 

(2.45) 

where h is the helicity of the quark. Both the recursive relations and the colour decomposi­

tion have the same form as in the case of a pure gluon amplitude, with the only difference 

that instead of working in the adjoint representation one now has to work in the funda­

mental representation of SU(3). So the recursive relations derived in the case of pure gluon 

amplitudes can be easily extended to include a single qij pair 

(2.46) 

The formula is exactly the same as in the pure gluon case, up to two small differences: 

- no helicity sum has to be carried out for the internal line 

- x is a colour index in the fundamental representation. 

It is possible to extend this relation to include photons, by simply performing the substitu­

tion 

(2.47) 

Fror:n this it follows that a QED amplitude containing a single qij pair and n - 2 photons 

c • _,can, be writ-ten in~tercms ofcolour~orderedampHtudes'as --

A~ED(1q, 2, ... , n- 1, nq) = L An(1q, o-2, ... , O'n-1, nq)· 
aESn-2 

(2.48) 
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Thus the above recursive relations, Eq. (2.45) still hold for QED amplitudes. This particular 

result has already been pointed out by Stirling and Ozeren in Ref. [70]. However, as shown 

there, for QED processes it is more efficient to take one of the fermions and one photon 

as reference particles. In fact, as there is no photon-photon vertex, all the terms in the 

recursive relations where both fermions are in the same subamplitude vanish, simplifying 

the calculation. 

2.4 Numerical results 

All relations for calculating multi-gluon amplitudes presented in the previous sections have 

been implemented into C++ Monte Carlo programs using the tools set ATOOLS and the 

integration package PHASIC [19]. A comparison of calculation times for helicity summed 

colour-ordered amplitudes versus the results obtained in Ref. [49] has been performed. The 

implementations yield exactly the same growth in computation time, except for the CSW 

rules, where one gains considerably due to rewriting the CSW vertex rules in terms of 

recursive relations for internal lines. Furthermore it was checked, employing the colour­

flow basis, that the colour-dressed relations yield the same results as calculations employing 

colour-ordered amplitudes along with the colour-flow decomposition presented in Ref. [53]. 

Using the adjoint representation, it was checked that the colour-dressed BCF relations yield 

the same result as the colour-ordered ones along with a decomposition of the total amplitude 

in the adjoint basis. 

A comparison of the computation times for the various approaches using the colour-flow 

basis can be found in Tab. 2.3. The colour-dressed Berends-Giele relations are the fastest 

method for more than five final state gluons. For less than six outgoing gluons the colour-flow 

decomposition using colour-ordered amplitudes calculated according to the BCF recursion 

performs better. In this case only few valid colour flows exist [53] and primarily (or only) 

MHV vertices contribute. For those the computation time increases only linearly with the 

number of outgoing particles in the colour-ordered BCF relations. 

"•"····-rt'is'apparent'"tnaf"tlie compiitatiofttimes'~1n~-the"''~-oiour~d~~ssed'''i3'cF'·~~r;.a h~'~the-~cof~~r: ... · 

dressed CSW case grow very fast. In the case of the CSW relations the reason is the 

number of types of internal lines, which is larger than in the Berends-Giele and in the BCF 
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Final BG BCF csw 
State co CD co CD co CD 

2g 0.24 0.28 0.28 0.33 0.31 0.26 
3g 0.45 0.48 0.42 0.51 0.57 0.55 
4g 1.20 1.04 0.84 1.32 1.63 1.75 
5g 3.78 2.69 2.59 7.26 5.95 5.96 
6g 14.2 7.19 11.9 59.1 27.8 30.6 
7g 58.5 23.7 73.6 646 146 195 
8g 276 82.1 597 8690 919 1890 
9g 1450 270 5900 127000 6310 29700 
lOg 7960 864 64000 - 48900 -

Tab. 2.3 Computation time (s) of the 2--+ n gluon amplitudes for 104 phase space 
points, sampled over helicity and colour. Results are given for the colour­
ordered (CO) and the colour-dressed (CD) Berends-Giele (BG), Britto­
Cachazo-Feng (BCF) and Cachazo-Svrcek-Witten ( CSW) relations. N um­
bers were generated on a 2.66 GHz Xeon ™ CPU. 

'approach. In this respect it is important to note that each double line may eventually carry 

zero, one or two indices of attached negative helicity gluons. Additionally, in most cases 

two vertices exist for either of these lines ( cf. Tab. 2.1), yielding a large amount of lines 

that finally have to be computed. However, the growth one encounters by employing this 

method is still not factorial but exponential. Nevertheless the factor in the exponent is still 

too large for the method to be competitive with the Berends-Giele approach. This fact is 

illustrated in Tab. 2.4, where the average number of nonzero internal lines counted either 

by value or by origination vertex is listed. The former corresponds to the average number 

of nonzero currents in the Berends-Giele approach. 

Employing the colour-dressed BCF relations, a factorial growth of computation time 1s 

encountered. Three main reasons are identified: 

- The subamplitudes are linked by the spinor shifts. 

- The natural colour basis is the adjoint basis. 

- The amplitudes are decomposed down to three-point vertices. 

_c.--- . Tlie~e··'points ·a:re· aadress~d--Tn' ori:fef':-· '_,__ -- "'~---- _, __ ~ C- _, '"'----­

In the colour-dressed as well as in the colour-ordered BCF relations, Eqs. (2.43) and (1.42), 

the subamplitudes of a given decomposition are linked via the shifts Eqs. (1.43). Thus 
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Final Currents Internal lines ( CSW) by MHV vertices (BCF) by 

State (BG) vertex value vertex value 
2g 7.04 3.48 7.56 1.98 1.98 
3g 19.50 8.56. 27.45 4.43 4.57 
4g 44.67 18.58 109.0 14.13 18.17 
5g 95.74 38.63 407.4 63.88 126.3 
6g 198.8 78.25 1648 297.2 1026 
7g 405.8 157.8 6773 1395 10330 
8g 850.3 325.8 31340 6073 124600 

Tab. 2.4 Average number of nonzero currents in the colour-dressed Berends-Giele 
relations, average number of internal lines in the CSW approach and aver­
age number of nonzero MHV vertices in the colour-dressed BCF relations 
using the colour-flow decomposition. MHV vertices in BCF are counted 
either by distinct value or by distinct assignment of unshifted external mo­
menta. Internal lines in CSW are counted either by vertex or by distinct 
value. 
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the BCF relations need a recursive calculation of subamplitudes in the sense that the total 

amplitude is to be decomposed successively into smaller building blocks, finally yielding only 

three-point MHV vertices. In other words, one has to take Eq. (2.43) literally and apply 

a top-down approach of the computation, since for the evaluation of each subamplitude 

all previous spinor shifts have to be computed. Figuratively speaking, this is due to the 

fact that in the BCF recursion all subamplitudes "remember" which decomposition they 

originated from, thus inhibiting the calculation of general colour-dressed subamplitudes. 

This fact is also illustrated in Tab. 2.4, where the average number of distinct nonzero 

MHV vertices is listed along with the average number of distinct assignments of unshifted 

momenta at these vertices. The latter corresponds to the average number of internal lines 

in the CSW approach, counted by origination vertex. It grows much slower than the former, 

although faster than for example the average number of nonzero currents in the Berends­

Giele relations. 

When applying the top-down procedure of the computation described above, it is necessary 

to avoid the calculation of terms yielding zero due to the colour assignment of external and 

internal lines. This can be done in two steps. First, all valid colour flows are identified 

'· ·", emplo.Yin!Can algotithin similar tcr tne' 'oTiEt"use'd''fof'"tlf<tBefen~ds":_t; iere~·reclirs101r'·secoi1ct ·- · 
the subamplitudes are calculated only for the valid colour structures. The calculation can 

be alleviated if the reference particles in the recursion are chosen such that together they 
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Process Colour flow Adjoint 
gg---+ 2g 0.78 0.86 
gg---+ 3g 0.83 0.74 
gg---+ 4g 0.94 0.60 
gg---+ 5g 1.14 0.51 
gg---+ 6g 1.44 0.44 

Tab. 2.5 Ratio of the average number of nonzero MHV vertices 
in the colour dressed and the colour-ordered case in the 
colour-flow and the adjoint representation decomposi­
tion. 

form a colour current having a non-vanishing contribution to the respective amplitude. 

Since there exists no decomposition assigning both particles to a common subamplitude, 

the corresponding colour current does not contribute anymore. This procedure eliminates 

many terms in the recursion, but it is still insufficient in the case of the colour-flow basis. 

In fact one expects some redundancy in the calculation of colour-ordered subamplitudes 

due to the dual Ward identities, which is introduced by fixing the reference particles for all 

possible colour flows of an amplitude simultaneously, cf. Eq. (2.43). To see this, consider a 

dual Ward identity of the form 

A(2, 1, 3, ... , n) =- L A(1, ... , l, 2, l + 1, ... , n) . (2.49) 
lol2; l:S;l<n 

Assume that particles 1 and n have been fixed to be the reference particles in the recursion 

and the ordering {2, 1, 3, ... , n} yields a valid colour flow. In this case the above choice of 

reference particles is actually inconvenient to calculate the respective contribution to the 

total amplitude, since the sum on the right hand side of Eq. (2.49) could be replaced by 

the one term on the left hand side. This problem does not occur in the colour-ordered 

case, since the reference particles are chosen separately for each colour flow. To illustrate 

this, in Tab. 2.5 the ratio of the average number of distinct nonzero MHV vertices in the 

colour-dressed and the colour-ordered BCF relations is compared for the colour-flow basis 

and the adjoint representation incorporating all simplifications described above. In the 

. ~·~--: 'adjoint: representation ·tne c'Oldur::dres·sed.rehii16nscyi~ltff'ess l~fms th~n 'the~ cofour~ord~r~'(f~""'~~,-~·~~. ,,.~-~. 

ones, since the adjoint representation naturally avoids the problem of encountering singlet 

gluons, that decouple. However, much more effort is spent on the computation of colour 
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Process co CD 
general MHV 3-point MHV 

gg-----+ 2g 1.28 2.55 1.98 
gg-----+ 3g 1.84 5.51 4.57 
gg-----+ 4g 7.41 19.33 18.17 
gg-----+ 5g 48.78 110.7 126.3 
gg-----+ 6g 318.3 714.7 1026 
gg-----+ 7 g 2329 5269 10330 
gg-----+ 8g 20650 46890 124600 

Tab. 2.6 Average number of nonzero MHV vertices in the 
colour-flow decomposition for the colour-ordered 
(CO) and the colour-dressed (CD) BCF relations. 

factors in the adjoint representation [53], such that it is not the method of choice. 

In the colour-dressed BCF relations each amplitude is decomposed completely into three­

point vertices. In contrast, in the colour-ordered case, any MHV amplitude occurring in any 

step of the recursion can be evaluated immediately. To highlight the differences due to this 

treatment, Table 2.6 shows a comparison of the average number of distinct nonzero MHV 

vertices that have to be evaluated in the colour-dressed and in the colour-ordered case. The 

same number is given also for the colour-ordered case, when each amplitude is decomposed 

into three-point vertices as well. 



~ - ;.. 



3 Comix - A new matrix e~ement 

generator 

Apart from a better theoretical understanding of QCD, many attempts have been made in 

the past to tackle the task of numerically evaluating amplitudes with very large number of 

external legs [15, 18, 72, 73]. In this context it turned out, that often the most efficient method 

to compute colour-ordered multi-leg amplitudes is the Berends-Giele recursion [59, 74, 49]. 

Correspondingly one of the fastest methods available for the computation of full scattering 

amplitudes are the colour-dressed Berends-Giele relations introduced in Chapter 2, which 

are equivalent to the Dyson-Schwinger methods employed in Refs. [16, 72]. As noted in 

Chapter 2 and pointed out in Refs. [48, 71], a vertex decomposition of four-gluon vertices 

in QCD is clearly advantageous over the standard Feynman rules, if the speed of numerical 

implementations is concerned. These findings raise the question, whether it is possible to 

construct a full set of SM Feynman rules with no four vertices present in the theory, such 

that recursive relations analogous to the colour-dressed Berends-Giele equations can be 

employed in numerical programs. That this is feasible is demonstrated in Sec. 3.1. Details 

on the numerical implementation in form of the new ME generator COMIX are presented in 

Sec. 3.2 and a multi-threading concept is discussed. 

A very important part of computing cross sections for tree-level processes is, to find an 

efficient algorithm for phase space generation. If colours are sampled over, similar problems 

·.~·:c"'.aiiseiOr~c61our· space:·· ·An'eff'eetive.'tecliiliquetof pha8€-~·pac~'~g8{:iei~tTci;;Ka~'be~~{-p~esent~cr·'·"~"'-~'··~-~ ·--· 

in Ref. [29]. In Sec .. 3.3.1 it is observed, that it is possible to formulate the rules presented 

ibidem in a truly recursive fashion, i.e. on the same footing as the matrix element computa-
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tion. This implies in particular, that point by point the same calculational effort is spent for 

computing matrix element and phase space weight. Effective colour sampling techniques are 

introduced in Sec. 3.3.2. Having these techniques at hand, a strategy to eventually couple 

colour and phase space integration is outlined and a new type of integrator based on the 

HAAG generator [33] is presented in Sec. 3.3.3. 

A comprehensive comparison of results generated with COMIX to those generated with the 

two other multi-leg tree-level matrix element generators AMEGIC++ [18] and ALPGEN [15] is 

performed in Sec. 3.4. 

3.1 RecUJrsive relations for tree-leve~ amplitudes on the 

Standard Model 

As explained in Chapter 2, the calculation of multi-parton amplitudes is substantially sim­

plified when employing Berends-Giele type recursive relations. One main reason for the 

simplification is that these relations allow to reuse basic building blocks of an amplitude, 

which are the m-particle internal off-shell currents. Another reason is that they can be 

easily rewritten to include three-particle vertices only. The results of Chapter 2 suggest 

that any numerical implementation of recursive relations should employ vertices with more 

than three external legs in decomposed form. In the following it will briefly be illuminated, 

why this is the case. In the spirit of this observation a decomposition of the remaining four 

vertices in the Standard Model is constructed. 

· 3.1.1 The cost of computing a tree amplitude 

For the following arguments, one considers a theory with only one particle type and a 

recursive relation for internal n-particle currents, which is of the functional form 

n 
ln(w)=Pn('Tr) L L VN(7rl,···,7rN)Jil(wl) ... JiN(7rN) 

N=l PN(1f) 

(3.1) 

~~~~-H:ere'7;''denote-\1horderecfm~particle<cur~eilt~--wliite v;"' are 'fv + i~ l)~i;'t-~;~tr~'e~~,-~'i1cf ?~is 
a propagator term. The two sums run over all possible vertex types VN and all (unordered) 

partitions PN ( 1r) of the set of particles 1r into N (unordered) subsets, respectively, cf. 
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Chapter 2. The full n + 1-particle scattering amplitude can be constructed by putting an 

arbitrary n-particle internal off-shell current on-shell and contracting the remaining quantity 

with the corresponding external one-particle current. 

(3.2) 

One now deals only with vertices of N + 1 external legs and considers their contribution to 

the computation of an n-particle off-shell current. The number of vertices to evaluate per 

m-particle subcurrent is the Stirling number of the second kindS (m, N), corresponding to 

the number of partitions of a set 1r of m integers into N subsets. The total number V ( n, N) 

of N + 1-particle vertices to be calculated thus becomes 

V(n, N) = j; (:) S (m, N) . (3.3) 

Since the Stirling numbers S(m, N) are zero form < N, we can extend the sum down to 

zero, leading to 

V(n, N) t (n) ~ t(-1)i (~) (N -i)m 
m N... z 

m=O i=O 

N 

= 1 "(-1)i(N+1)(N+1-it+l 
(N + 1)! ~ i 

t=O 

(3.4) 

=S(n+1,N+1). 

The question is now, whether a milder growth in computational complexity can be obtained, 

if all N + 1-particle vertices occurring in Eq. (3.1) are decomposed in terms of two or more 

vertices with fewer number of external legs. When doing so, one must introduce additional 

pseudoparticles reflecting the structure of the decomposed vertex. Hence one has to consider 

the contribution arising from the presence of these pseudoparticles, too. The problem can 

be simplified by assuming that there is only one additional pseudoparticle, which obeys a 

completely independent recursion. Then the full contribution of an N + 1-particle vertex, 

now being decomposed into an M + 1- and anN- M + 1-particle vertex becomes 

S (n + 1, N + 1)--+ S (n + 1, M + 1) + S (n + 1, N- M + 1) , (3.5) 



56 3 Comix - A new matrix element generator 

which can be either bigger or smaller than S (n + 1, N + 1), depending on n, N and M. 

With increasing n, however the right hand side is always smaller such that the vertex 

decomposition becomes clearly advantageous. Similar arguments hold when introducing 

more than one pseudoparticle. 

From this simple but general consideration it can be seen that the aim of any recursive 

formulation of interaction models should be, to reduce the number of external lines at 

interac~ion vertices to the lowest possible. In this section it will be shown that within the 

Standard Model it is. possible to reduce Nmax to two, which is the lowest possible number. 

For QCD interactions the results of Sec. 2.1 can be employed, where this task has already 

been performed and the original Berends-Giele recursive relations have been reformulated 

to incorporate colour. 

Note that in the above arguments it is assumed that Nmax is finite, which does not hold 

in general. For example the naive CSW vertex rules induce vertices with an arbitrary 

number of external particles, cf. Sec. 2.2. Although these rules have been reformulated in 

order to obtain three-point vertices only, they provide an excellent example of a recursion 

inducing a growth in computational complexity which, for large n, is roughly proportional to 

Bell numbers. To see this, consider the contributions of all N-particle vertices with N ::::; n. 

Assuming all of them are evaluated, which is approximately the case when computing helicity 

summed amplitudes, and employing Dobinski's formula one obtains 

n 

LS(n+l,N+l) (3.6) 
N=O 

This result has the nice interpretation of being the number of all partitions of a set of n + 1 

integer numbers into all possible subsets. 

3.1.2 General form of the recursive relations 

In the following .:fa. ( 1r) denotes an unordered SM current of type ex, which receives con­

tributions from all Feynman graphs having as external particles the on-shell SM particles 

"., in-the set 1r 'and--one~internai-·partiele;···desc'ribed by' this curre1it~- The index· 0/ci'fta-''nf{fltY='""'· ' . -· .· ._, 

index, carrying information on all quantum numbers and eventually on the pseudoparticle 

character of the particle. Special currents are given by the external particle currents. They 
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correspond to external scalars, spinors and polarisation vectors, see Sec. 1. For them there 

is only one multi-index a= ai associated with the external particle i, whereas in the general 

case multiple multi-indices may lead to non-vanishing internal currents. This corresponds 

to multiple particle types being possible as intermediate states. Assuming that only three­

point vertices exist, any internal SM particle and pseudoparticle off-shell current can be 

written as 

:la (7r) = Pa ('rr) L L s (7ri, 7r2) v:1
'
02 (7rl, 7r2) ..7al (7ri) ..7a2 (7r2) . (3.7) 

Va"'I•"2 Pz(n-) 

Here Pa ( 7r) denotes a propagator term depending on the particle type a and the set 7r. 

The term V~1 '02 (1r1 , 1r2 ) is a vertex depending on the particle types a, a 1 and a 2 and 

the decomposition of the set 7r into disjoint subsets 1r1 and 1r2. The quantity S (1r1, 1r2) is 

the symmetry factor associated with the decomposition of 1r into 1r1 and 1r2 and will be 

discussed in Sec. 3.1.4. Superscripts in this context refer to incoming particles, subscripts 

to outgoing particles. The sums run over all vertices in the reformulated Standard Model 

and all unordered partitions P 2 of the set 7r into two disjoint subsets, respectively. A full 

unordered n-particle scattering amplitude is then given by 

1 
A (1r) =:fan (n) P- ( \ ) :fan (1r \ n) , 

On 7r n 
(3.8) 

where 0: denotes a set of reversed particle properties. It has been proved in Sec. 2.1 that 

the above form is correct for pure gluonic scattering amplitudes once the four gluon vertex 

is suitably decomposed into two vertices involving an internal antisymmetric tensor pseu­

doparticle. One can thus continue to decompose the four particle vertices in electroweak 

interactions. Once their decomposition is complete, no further complications arise and 

Eq. (3. 7) can be employed to compute arbitrary scattering amplitudes in the Standard 

Model. 
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3.1.3 Decomposition of electroweak four-particle vertices 

A decomposition of four particle vertices with W-bosons only is suggested as 

V
w-p, w+o-, w- .\ VW-p, Znli. p af3. Vw+o-, w- .\ 
w-v -----t w-v Z4-yli Z4af3 

+ Vw- .\, Znli . p a{3 . V w+o-, w- p 
w-v Z4-yli Z4af3 · 

(3.9) 

Here Z4 denotes a new antisymmetric tensor pseudoparticle introduced for the vertex de­

composition. Its interaction vertex reads 

v:--:· Znli = ~ gw (g]gPii _ g~gP'Y) , 

V w+o-, w- p _ !:_ ( o- p p o-) 
Z4a{3 - 2 9w 9a9{3 - 9a9{3 · 

(3.10) 

To obtain correct signs of four-particle vertices, the tensor pseudoparticle "propagators" is 

defined as 

P po- - Dpo­
a11v - /'l,o_ tLV where /'l,a = 

{ 

-'l if 

'l 

a= z4 
else 

(3.11) 

and where Dt~ is given by Eq. (2.4). Note that the above decomposition of vertices is not 

unique. Also, the Z4 pseudoparticle is not self-conjugate. This definition prevents double 

counting four-particle vertices involving the W boson and constructing fake WWWW ver­

tices with all W's having the same charge. The four-particle vertices involving W bosons, 

photons and Z-bosons are decomposed as follows 

vAp, w-o-, A.\ -----t VA~ w4--yli . p - af3 . v w_-o-, A.\+ VA~, w4--yli • p - af3 . v w_:-o-, Ap 
''"··" , ....... , .. ,.,.",W .. :·y_c· ,_ ...... ,~.- ... :· :~-- ·'·•· ,W v .. , .-. .w4 .. -y/i ........ , ··W,r-af3 .. · ·.~·.,··c . • .-•. "lV,,v. "·.. <"··cW,{-y/i .... ,,..,: .. ~w4 af3 >·:L __ , ... , ..... " .. ·:··· """'-~~,..,, .... ,,.. .·~ .. >"'' .. ''· :···· 

vAp,w-o-,Z.\ -----t VAp,w4-'Yii. p af3. vw-o-,Z.\ + VZ.\,w4--yli. p af3. vw-o-,Ap (3.12) 
w-v w-v w4--yli w4-af3 w-v w4--yli w4-af3 ' 

vzp,w-o-,Z.\ VZp,w4-'Yii. p af3. vw-o-,Z.\ + VZ.\,w4--yli. p af3. vw-o-,Zp 
w-v -----t w-v w4- -yli w4-af3 w-v w4- -yli w4-af3 . 
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A new tensor pseudoparticle, W4-, was introduced here. Its interaction vertices are defined 

as 

V Ap, W4-'Y8 _ 'l . () ( "' p8 8 rYV) 
w-v - 2 9w sm w g~g - 9v9r' l 

V z p, w4- 'Y8 = !__ g cos() (g'YgP8 - g8gn) w-v 2 w w !I !I l 

V w-a, Ap _ 'l · () ( a p p a) 
w

4
-o:,a - 2 9w sm w 9o:9,a- 9o:9,B , 

(3.13) 

V w-a,Zp_'l (} (aP pa) 
w

4
-o:,B - 2 9w cos w 9o:9,a- 9o:9,B 

Corresponding vertices exist for w+ I w- bosons. The decomposition of four particle 

vertices involving the Higgs boson introduces a new scalar pseudoparticle, which is denoted 

by h4 . In order not to generate fake four particle vertices is is defined not to be self-conjugate. 

The corresponding vertices read 

V h,h,h vh,h4 n vh,h 
h ---+ h . .. h4 . h4 l 

(3.14) 

where the interactions of the h4 pseudoparticle are defined by 

2 
vzfJ,,ZV = -i 9w gf-LV 

h4 2 cos2 ew l 

2 
VW+f.L, w-v __ · 9w f.LV 

h4 - 'l 2 g l 

(3.15) 

V h,h4- . 
h - 'l, 

and where the scalar "propagator" of the h4 pseudoparticle is introduced as 

(3.16) 

Since all remaining vertices in the Standard Model are three point vertices, the vertex decom­

position is hereby complete. The complete set of vertices employed in the recursive relations 

is listed in Appendix B, with the corresponding Lorentz structures given in Appendix A. 
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3.1.4 Prefactors of diagrams with external fermions 

When calculating currents with an arbitrary number of possibly indistinguishable external 

fermions, one has to take into account, that each Feynman diagram contains a prefactor 

(3.17) 

according to the number of fermion permutations P1 in the external particle assignment 

a= (0"1 , ... , O"n)· To be used in the context of a recursive computation, this prefactor must 

be defined on a local basis in order to avoid the proliferation of information on different a. 
It is then sufficient to note that Eq. (3.17) holds on the level of interaction vertices. More 

precisely one can define the local prefactor S (1r1 , 1r2 ) of Eq. (3.7) as 

(3.18) 

Here Pf (1r1 , 1r2 ) counts the number of fermion permutations that is needed to restore a 

predefined, for example ascending index ordering when combining the sets 1r1 and 1r2 into 

the set 7f = 1r1 EB 1r2 . Upon iterating this procedure, the correct relative prefactors S are 

obtained for each diagram. 

3.2 Matrix element generation in Comix 

The general formulae to recursively compute a tree-level amplitude have been stated in 

Sec. 3.1. External particle currents and internal Lorentz structures are computed using the 

Weyl-van der Waerden formalism presented in Sec. 1.2, see also Appendices A and B. As 

pointed out in the previous section, within the Standard Model tensor particles never occur 

as external states, such that there is no need to explicitly construct polarisation tensors. The 

aim of this section is to explain some more details on the organisation of the computation. 

The algorithms presented in this part of the thesis are intended to be used for large multi­

plicity matrix element calculations. In this context, it is often useful to sample over helicities 

'""' · Of~exter·rrar·pai"tiaes.in· ~:eM ante -ca:riO'Iaslii6'B~"CIIowevef~~ tiii.~( introcilices ~aCidrtfZhllirdegrees 
of freedom and leads to a slower convergence of the integral. Furthermore when taking 

Eq. (3. 7) serious, one notes that for helicity-summed ME's, it is possible to reuse currents 
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Fig. 3.1 Structure of the multi-threaded implementation for matrix 
element computation in CO MIX. The number of threads N is 
variable and depends on the number of available processors. 
The main program communicates start and wait signals to 
the calculator threads, while those communicate done and 
wait signals to the main program. Details are explained in 
the text. 
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to compute amplitudes with different configurations. Namely if the helicities of external 

particles assigned to a particular current do not change, it does not need to be recomputed. 

This leads to a significant decrease in evaluation time for the helicity summed matrix ele­

ments compared to the naive method of computing the full amplitude afresh for different 

configurations. A corresponding comparison can be found in Sec. 3.4. The default choice in 

CO MIX is helicity summation. To allow computations for very large multiplicities, however, 

helicity sampling can be enabled as an option. 

The effective computation time per phase space point can be further reduced by a multi­

threaded implementation ofEq. (3.7). Figure 3.1 shows the basic structure of this algorithm. 

The main advantage of Eq. (3. 7) is, that in order to compute a current that depends on n 

external particles, it is sufficient to know all subcurrents that depend on m < n external 

particles. This leads to a straightforward multi-threading algorithm. 

• Create N threads at program startup with the following properties 

1. The thread waits for the main program to signal the start of a computation. 

2. It takes a number n and computes a block of currents depending on n external 

particles using subcurrents depending on m < n external particles. If n = 1, it 
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computes external polarisation vectors and spinors. 

3. It signals the main program that the calculation is done and returns to step 1. 

• For each phase space point, employ the following algorithm in the main program 

1. Start with n = 1. 

2. Split the number of currents that depend on n external particles into N blocks. 

Communicate n and one block to each calculator thread. 

3. Signal the threads to start their computation. 

Wait for all threads to signal completion. 

4. Let n -----+ n + 1 and return to step 2 if further currents need to be computed. 

The efficiency of this algorithm solely depends on an efficient thread library. The overhead 

with a modern POSIX threading is about 10% of the total computational cost. However, 

if on the ot,her hand it is possible to make use of multiple processors or multiple processor 

cores due to threading, the respective overhead is not of any concern, since the computation 

time decreases roughly proportional to the increase in processor usage. 

3.3 lntegratio1111 techniques in Comix 

In this section two new methods for integrating over the multi-particle phase space are 

presented. Both of them are designed to cope especially with large numbers of outgoing 

particles. The first method is a fully general approach and makes use of the standard multi­

channel technique [30] in a recursive fashion, i.e. the phase space sampling fits the method of 

generating the corresponding matrix element. The second method is designed for QCD and 

QCD-associated processes and employs the phase space generator HAAG [33] in conjunction 

with a new prescription for coupling colour and momentum sampling and the multi-channel 

technique. 

One of the most effective general approaches to sample the phase space of multi-particle 

processes is, to employ a multi-channel method according to Ref. [30] with each of the single 

. -=-- ·~···~:-..::.:-~ 
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channels corresponding to the pole structure of a certain Feynman diagram. However, for 

large numbers of diagrams this is clearly not the method of choice. In the following the 

focus will therefore be on the recursive relations for phase space generation proposed in 

Ref. [29]. A separate multi-channel for each possible subamplitude is constructed on the 

flight according to the propagator structure. Additionally, the VEGAS [31] algorithm is 

employed to optimise the integration over propagator masses and polar angles in decays. 

The obvious drawback of this procedure is evident: It relies heavily on the assumption 

that the matrix element factorises according to its propagator structure. However, it is a 

generalisable way to tame the rather factorial growth in the number of phase space channels 

encountered in conventional approaches [16, 18, 17]. If the prescription is taken serious, one 

can factorise the full phase space weight such that it can be computed in a recursive fashion 

corresponding to how the matrix elements are evaluated. 

Brief review of phase space factorisation 

In the following a 2 --+ n scattering process is considered. Incoming particles are denoted by 

a and b, outgoing particles by 1 ... n. The corresponding n-particle differential phase space 

element reads 

d<I>n (a, b; 1, ... , n) 

(3.19) 

where mi are the on-shell masses of outgoing particles. Following Ref. [75], the full phase 

space may be factorised according to 

d<I>n (a, b; 1, ... , n) = d<I>n-m (a, b; n, m + 1, ... , n) dsn d<I>m (n; 1, ... , m) , 
27r 

(3.20) 

where 1r = {a, b, 1, ... , m} indicates a newly introduced timelike intermediate momentum 

and if = {a, b, 1, ... , n} \ n. Generally Greek indices denote a subset of all possible indices. 

J"'Ifthe:Vai:>iJ-ear~a:s-· an'iricC>ining 1JartiHes''if1dex;tne:Y .. Eoriest>oi1d'-'f6·a:-'t~chahilei-paitiC1e\'VHi1'· ,.,-. 

spacelike momentum, while otherwise they denote s-channels. Equation (3.20) allows to 

decompose the complete phase space into building blocks corresponding to the t- and s-
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§J 
/ 
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Fig. 3.2 Basic decay vertices for weight calculation. Dark blobs denote potentially nontrivial 
known weights, light blobs weights to be determined. Arrows indicate the weight 
flow, i.e. the order in which unknown weights are determined from known ones. The 
D-vertex corresponds to overall momentum conservation. 

channel decay processes Ta.~balnr = d<I>2 (a, b; 1r, cdnr) and S%'1f\P = d<I>2( n; p, 1r \ p). The 

above decays can be referred to as phase space vertices, while the integral P1f = ds1f /2n, 

introduced in Eq. (3.20), will be called a phase space propagator. Within the algorithm 

presented here, only timelike propagators are employed. 

The two vertex types are used differently in the case of weight calculation and phase space 

generation. Consider the t-channel decay. If a phase space point is to be diced, the new final 

state momenta P1r and Pab1f are determined from the known initial state momenta Pa and Pb· 

If a weight needs to be computed, the new weight w~) is determined from the vertex weight 

and the input weights w1f and walnr· The corresponding situations are depicted in Figs. 3.2 

and 3.3, respectively. The basic building blocks of phase space integration are summarised 

as follows 

if 1r or if external 

else 

(3.21) 

The triangular function A is given by 

(3.22) 

Note that even since a might correspond to an off-shell internal particle, b always indi-
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cates a fixed external incoming particle. This is essential in all further considerations and 

allows reusing weight factors in the Monte Carlo integration, just as currents are reused 

in the matrix element computation. The functions corresponding to S!:'rr\p and To:rr,o:brr are 

in fact identical, since they represent a solid angle integration. In practice however the 

different sampling strategies proposed in Ref. [29] are employed. Additionally, overall four­

momentum conservation is maintained through the vertex 

(3.23) 

Formulation of the recursive algorithm 

Recursive relations for phase space integration in terms of the above quantities can then be 

defined through 

d<Ps (1r) = s:l,1f2 p1fl d<Ps (1r1) p1f2 d<Ps (1r2) 1 , 

( 1r1, 1r2)EO'P( 1r) 

d<P~) (a)= r:1'1f
2 

p1fl d<Ps (7r1) p1f2 d<P~) (a7r1) I - + Do:,b d<Ps (ab) 
' (rr1,1r2)EO'P( o:b) 

(3.24) 

The above equations correspond to selecting one possible splitting of the multi-index 1r or 

ab per phase space point. One can improve the integration procedure by forming an average 

over all possible splittings in the spirit of a multi-channel. Let F be a generalised mean 

function. Then the F-mean can be used to define 

d<Ps (1r) = p-1 
[ ( ) 

-1 

L wrrl,1f2 

(rr1,1r2)EO'P(rr) rr 

X 2.:.:: wrrl,1f2 F [ srrl,1f2 p d<I>s (7r ) p d<P (7r ) 
1f 1f 1fl 1 1f2 s 2 

( 1r1, 1r2) EO'P( 1r) 

d<l>~) (a)= p-I [ ( Wa,b + (••,.,~P(ao) w~''"" ) -I ( Wa,b P [ Da,b d<l>s(ab)] 

+ L w~1 ,o:rr 1 F [ r;,1'rr
2 

Prr1 d<Ps ( 1rl) Prr2 d<P~) ( a1ri) J) ] 
(rr1,1r2)EO'P( o:b) 

(3.25) 
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b b 

Fig. 3.3 Basic vertices for phase space generation. Grey blobs correspond to eventually 
off mass-shell particles. Dark blobs denote known momenta, light blobs unknown 
momenta. Arrows indicate the momentum flow, i.e. the order in which unknown 
momenta are determined from known ones. The D-vertex corresponds to overall 
momentum conservation. 

In this context the one- and no-particle phase space are defined through 

d<I> (i) = 1 ' 

d<I> (0) = 0 0 

(3.27) 

The function w corresponds to a vertex-specific weight which may be adapted to optimise 

the integration procedure, see Ref. [30]. The second sums run over all possible S- and T­

type vertices which have a correspondence in the matrix element. The full differential phase 

space element is given by 

d<I>n (a, b; 1, ... , n) = d<I>r (a) . (3.28) 

Note that Eqs. (3.25) and (3.26) in the form stated above are not suited to generate the 

sequence of final state momenta. To do so one rather has to employ the following algo­

rithm, which corresponds to a reversion of the recursion and respects the weight factors w 

introduced above. 

• From the set of possible vertices connecting currents in the matrix element, choose a 

sequence connecting all external particles in the following way: 

cL-Start with the set of-indices,n-- {b;11 ,~.c-''"in}, ,. 

corresponding to the unique external current of index a. 

2. From the set of possible phase space vertices connecting to 1r select one according 
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to an on the flight constructed multi-channel employing the weights w. 1 If n is a 

single index, stop the recursion. 

3. According to the selected vertex, split n into the subsets n1 and n2 . Repeat step 2 

for these subsets. 

• Fore each vertex, make use of the fact that 1r is equivalent to 7f and adjust the indices 

in an appropriate way for momentum generation. That is if any 1r contains b and other 

indices, replace 1r by ?f. 

• Order 1'-type vertices ascending and S-type vertices descending in the number of 

external indices connected to initial states. 

• Generate the corresponding momenta starting with 1'-type vertices. 

Even thoughT-type vertices depend on b, since b is fixed throughout the computation of one 

phase space point one obtains no expressions depending on more than two particle indices. 

This induces the same growth of computational complexity in both the hard matrix elements 

and the phase space and makes the above algorithm well suited for integration of processes 

with large final state multiplicity. In the following this algorithm will be referred to as the 

Recursive Phase space Generator (RPG). 

Implementation details 

Since the phase space weight computation, Eq. (3.25) obeys a recursion similar to those of 

the matrix element calculation, Eq. (3.7), it is straightforward to implement into a numerical 

program along the lines of Sec. 3.2. The same techniques described for the multi-threading 

of matrix element calculations can be implemented for the phase space weight. In the multi­

threaded version of COMIX, this weight is computed in parallel to the matrix element, which 

further reduces the net computation time if enough resources are available. 

3.3.2 Colour sampling 
;-_,.-_7~ _. , _ ····-~·-,:...£V.' .- • '-~. -..,.. "':"'-~.<.--~- ... ...,. .---;;.._ ··-- , ·- .>· ·'. , o _:,. ., _,_,. __ ., ,.::...,..,~:.:""'#·~·--',;;;..~;,..._-,,l,_...,_,.. --·- .... • · . - - l ---~ ;.,. -~ l-,; ,,.• ~-<'·-"'·'<>o·L 7 t"..;= ~ .-;.+-~~;,-- ,,.._ ''· --· .;... •:-.+.'"'"· . ..,: :".;. n -· ·- .- _:; • - ·-~- ~-,..c..<-r~·-: 

For QCD ana ~QCD associated processes with a large number of external legs, it becomes 

unfeasible to compute colour-summed scattering amplitudes. Instead the better strategy is 

1 Note that in this context weights have to be normalised to unity on the flight. 



68 3 Comix - A new matri.x element generator 

to sample over external colour assignments in a given representation of SU(3). According to 

Eqs. (1.4), (1.8) and (1.6), this selects a set of colour-ordered amplitudes which contribute to 

the corresponding point in colour space. This set is typically strongly reduced compared to 

the full set of partial amplitudes. The issue has been studied in Ref. (53] for the fundamental 

representation decomposition, the adjoint representation decomposition and the colour-flow 

decomposition. According to the findings therein and the results of Chapter 2 the colour­

flow decomposition is the method best suited for sampling over colour assignments if the 

number of external partons is large, i.e. it provides the slowest growth in the average number 

of partial amplitudes per non-vanishing colour assignment. The colour-flow basis is therefore 

employed throughout COMIX. 

In the following the focus will be on n-gluon scattering. However, the presented ideas and 

algorithms are straightforward to generalise for arbitrary sets of colour octet objects, such 

as e.g. quark-antiquark pairs. 

In the colour flow decomposition each external gluon is labelled by a colour index i and an 

anti-colour index ). The colour state for an n-gluon scattering is thus given by selecting 

each index i 1 , ... in and J1, ... Jn out of three values ( R, G, B) and ( R, G, B). A specific 

colour flow, and thus an ordering in the sense of a colour-ordered amplitude, is specified by 

a permutation 

(3.29) 

of external gluon indices. This colour flow contributes to a colour assignment, if 

(3.30) 

It is thus easy to construct an algorithm which determines all valid colour flows from a given 

colour assignment. 

1. Set the first gluon index to a-1 = 1. Let k = 2. 

If ierk-I = Jerk, let k ---+ k + 1. Otherwise this flow is invalid. 

3. If k = n + 1 and iern = Jer1 , a valid flow has been found. 
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Otherwise continue with step 2. 

The simplest way of choosing a colour assignment is accomplished by randomly selecting 

the 2n colours for the i- and ]-indices. Each colour is chosen with an equal probability, 

leading to a weight of 32n. However, only a small fraction of those assignments will have at 

least one colour flow. A trivial (butnot sufficient) condition for non-vanishing assignments 

is, that the number of i-indices carrying the colour R (G,B) must be equal to the number 

of J-indices carrying the corresponding anticolour. 

A more efficient way to determine colour configurations is thus proposed. 

1. The n i-indices are selected randomly in (R, G, B). 

2. A permutation iJ = (a1 , ... , an) of n particles is selected randomly with a uniform 

weight. 

The anticolours of the ]-indices are then given by 

)k = 'luk , for k = 1, ... , n 

3. Each colour assignment is weighted by 

w 
n! 3n ____ _ 

nR! nc!ns! ' 

where nR, nc and ns are the multiplicities of i-indices 

carrying the colours R, G and B, respectively. 

(3.31) 

(3.32) 

Clearly, assignments generated by this algorithm will always fulfil the trivial condition men­

tioned above. Moreover, the weight is roughly proportional to the number of possible colour 

flows and thus already corresponds to some extent to the expected cross section for this 

colour configuration. 

3.3.3 Combined colour-momentum integration techniques 

-·- ~ Gen:erally"the- peakii1g;~-b'ehavr&ur 6rth~'cot6ur~satn'pled 'dTffef~Il.ti~l <~t6ss-~scicticnr 1Etrati1e'r"" · 
complex within the phase space and strongly different for different colour assignments. The 

idea must thus be to construct integrators specific for a given colour assignment, based on 
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the knowledge of contributing partial amplitudes. One can for example think of a variant 

of the algorithm described in Sec. 3.3.1, where the basic building blocks of the phase space 

are either available or not, depending whether there is a corresponding non-vanishing colour 

current present in the matrix element. However, in practice this choice does not lead to any 

significant improvement of the integration behaviour. A different type of integrator is thus 

presented, dedicated to be used with QCD and QCD associated processes, which is based 

on the HAAG algorithm [33]. As before purely gluonic processes will be considered as an 

example. 

Integration of partial amplitudes- and colour configurations 

As a basic building block the HAAG-integrator is used, which generates momenta distributed 

according to a QCD antenna function [33]. Details on the implementation of the algorithm 

and improvements to the original version are given in Appendix C. A single HAAG-channel 

provides an efficient integrator for a specific squared partial amplitude, i.e. for a given colour 

flow. In the case of purely gluonic amplitudes averaged over helicities both obey the same 

symmetries w.r.t. to permutation of external particles. A specific integrator for a given 

colour assignment to external particles can thus be constructed as follows. 

• Determine all possible colour flows for the colour configuration. 

• For each colour flow add the corresponding HAAG channel to a multi-channel integra­

tor. 

However, with growing number of external particles one faces the following problem: 

Although the average number of contributing colour flows per colour assignment is relatively 

low in this decomposition, the maximal number grows factorially. Thus it quickly becomes 

impossible to store all data associated with the multi-channel, i.e. the contributing HAAG­

channels and the internal weights. The situation gets even worse if it is intended to sample 

over all colour configurations, whose number is growing exponentially with the number 

of external particles. The solution is thus not to store anything, but generate the whole 

c~.>'--' integratbr'~on'th"it'flight'. .. .... ·····~·-· "'···'""'"'"~---~--······· ......... '"~~ ··'--~.c#=·.·<c·-[-cc.<''"~~·-.... .;..-.... __ ,"-- •--oc~ .; ... . 

A fast algorithm to provide all colour flows from a colour assignment is essential for this 

step: for a single phase space point one has to loop three times over the list of all colour 
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flows (which due to the possibly factorial growth cannot be stored as well). 

1. To determine the normalisation of the weights o:k for each phase space channel within 

the multi-channel integrator, cf. Eqs. (C.ll) and (C.l2). 

2. To select a channel for generating a phase space point with a probability given by the 

relative weight o:k, and 

3. To compute the multi-channel weight corresponding to this phase space point. 

Strategies how to define suitable o:k (beyond equal weights for all channels) are discussed 

below. For the HAAG channels themselves, only one per type (as defined in Appendix C) 

needs to be stored. Together with a corresponding permutation of final state particles they 

can be reused throughout the algorithm. 

Optimisation techniques 

The proposed integrator contains a number of parameters which can be adjusted or adapted 

to reduce the variance during integration. 

• VEGAS maps within the HAAG channels, 

• Relative weights o:k in the multi-channel generator, 

• Probabilities to select colour assignments beyond the algorithms given above. 

The usage of adaptive techniques such as VEGAS is somewhat limited due to the fact that 

the number of those parameters increases quickly with the number of particles involved in 

the process. Not only that it becomes impossible to calculate the matrix element for enough 

phase space points to adapt each parameter individually, at some point all those parameters 

cannot even be stored. 

Thus the following strategy is applied: 

1. Optimisation of the VEGAS maps refining the HAAG channels 

The illimbei~ of struct ur'ally anrereil.t HAAc chail~~Etis· ii~it~d · r;:; c;'il~- ch8:~~~1 i>~/typ~.c· ,_o ,~ •· ~ ~,-, .• c 

Their optimisation is performed before the actual integration starts. To optimise a 

certain HAAG channel, only single squared partial amplitudes, corresponding to this 
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channel are computed2 . This not only speeds up the calculation, it also provides 

a much cleaner environment for the adaptation of the VEGAS maps. In this step a 

summation over helicities is performed. Cross sections at, given by the integration of 

a squared partial amplitude of type t over the allowed phase space, are stored. 

2. The actual integration run 

No further optimisation is performed. The channels are used as they emerged from the 

optimisation step, including the VEGAS-map and a multi-channel weight proportional 

to the cross section, at, of the corresponding squared partial amplitude. 

Best performance is achieved, if the colour assignment is selected with a probability 

proportional to the sum of cross sections of contributing squared partial amplitudes 

(as determined in step 1), instead of the weight given by Eq. (3.32). To do so, the total 

normalisation for the new weight must be determined summing over all colour assign­

ments. For n-gluon processes this number is given by the following simple formula: 

n-2 

N = (n- 2)! 3n L O"min(i,n-i-2) , (3.33) 
i=O 

where the O"min(i,n-i-2) is the cross section of a squared partial amplitude of the type 

"min(i, n- i- 2)". The reweighting can be achieved by a simple hit-or-miss method. 

For the integration run it is a matter of choice whether to sum or sample over helicities. 

All practical tests for up to the 11-gluon process favoured summation. Beyond that, 

however, it seems to become too costly to compute summed matrix elements, thus a 

sampling should be considered. 

In the context of this work, the above algorithm will be referred to as the Colour Sampling 

Integrator ( CSI). 

2During this step the full result can not be determined since potential interferences between partial 
amplitudes are ignored. However, it is sufficient for computing the leading 1/Nc limit for n gluon pro­
cesses, using the fact that in the colour flow decomposition (as well as in the fundamental representation 
decomposition) interferences are always subleading. 
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3.4 Results 

In this section selected results generated with COMIX are presented. The focus will be on 

the special feature of this new generator, to be suitable in particular for computation of 

large multiplicity matrix elements. 

3.4.1 Helicity summation vs. helicity sampling 

Firstly the effect of suitable matrix element generation in the helicity summed mode of 

COMIX is illustrated, cf. Sec. 3.2. To this end, computation times for helicity summed and 

helicity sampled matrix elements in purely gluonic processes are compared in Tab. 3.1. The 

naive ratio between the two is the number of possible helicity assignments of the respective 

amplitude, 2n- 2(n + 1), with n the number of external gluons. This ratio corresponds to 

computing the amplitude afresh for each of the different helicity assignments. Employing 

the ideas presented in Sec. 3.2, however it is found that this value overestimates the real 

computational cost by up to a factor of~ 7. Obviously this statement is process dependent. 

The general feature, however is that there is a gain when computing helicity summed matrix 

elements. For the computation of cross sections this type of calculation might be preferred 

over the helicity sampled mode, especially when using customary phase space integration 

methods such as presented in the previous chapter. 

3.4.2 Performance of the Colour Sampling Integrator 

In this subsection a comparison of gluon production cross sections is presented to illustrate 

both the performance of the CSI and the efficiency of the matrix element generation. The 

first setup employs a fixed centre-of-mass energy. The parameters are those of Refs. [76, 53], 

i.e. as = 0.12 and 

Pri > 60 GeV, l77il < 2' 6.RJ > 0.7, (3.34) 

~-' ~fotaU"fill'arstate~··g;ruons i and ·pairs of''gfiioils'i~ J~-·'fiitegr~tl"on~~e~~1Ytt~;e-_cc~'tii;~~rised '1~-
Tab. 3.2. Perfect agreement with the results in the literature is observed and new predictions 

for the processes gg ---. llg and gg ---. 12g are given. Results have been generated with the 
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CSI, except for the 2 --+ 11 and 2 --+ 12 process, where RAMBO [32] has been employed. 

In order to examine the performance of the new phase space generator in a more realistic 

scenario, the same partonic processes are investigated at the LHC. The Tevatron Run II kr 

algorithm [77]3 to define a cut on the multi particle phase space. The respective results are 

summarised in Tab. 3.3. It can be seen that the CSI performs very well in both cases, even 

for large multiplicities, such that the respective cross sections can be computed with good 

precision. 

Figures 3.4 and 3.5 show the convergence behaviour of the CSI for various gluon multiplic­

ities. Since the computation of 2 --+ 8 and 2 --+ 9 gluon processes is quite cumbersome, 

it is worthwhile to switch to the helicity sampled mode in that case. Correspondingly 

the performance of the CSI in helicity summed and helicity sampled mode is compared in 

Fig. 3.5. 

3.4.3 Comparison with other matrix element generators 

The performance of COMIX can be compared directly to those of other matrix element 

generators. In a first step computation times for colour-ordered amplitudes in COMIX and 

a dedicated code implementing the CSW vertex rules in non-recursive form are considered. 

Corresponding results are displayed in Tab. 3.5. Similar to what was observed in Sec. 2.4, 

it is found that the CSW vertex rules lead to a significant speed-up for low multiplicities, 

while for high multiplicities the implementation of the Berends-Giele recursion in COMIX 

is superior. Given that this is found on the level of colour-ordered amplitudes, further 

improvement for full matrix elements can be expected. 

Next, QCD jet production and Drell-Yan lepton pair production are investigated. A num­

ber of integration times for different jet multiplicities are compared between AMEGIC++, 

COMIX and the dedicated code employing CSW rules. The stopping criterion corresponds 

to reaching a certain precision level in the integration. The setup listed in Tab. 3.4, origi­

nally established for the MC4LHC workshop [78], is employed but cuts are replaced by the 

following 

- ·.~. 

• Pl.,i > 30 GeV, I7Jil < 5 

3 Note that the replacement D..R?J -> cosh D..1JiJ- cos D..¢iJ is made in order to match the Durham measure 
for final state clusterings. 
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• 66 GeV < mu < 116 GeV 

• CDF Run II kr algorithm [77] with kr > 30 GeV, 

D=O. 7 and flRi; ---+ cosh ll1Jij - cos fl¢ij. 
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Corresponding cross sections and integration times are listed in Tab. 3.6 - Tab. 3.8. It 

should be noted that this comparison does not only test the efficiency of the matrix element 

computation, but rather the overall performance of the generator. It is therefore a vital 

benchmark to asses the usefulness of COMIX. 

Finally, cross sections obtained with COMIX are compared to results from other matrix 

element generators. As references AMEGIC++ [18] and ALPGEN [15] are employed. The 

original setup for the comparison has been established during the MC4LHC workshop [78]. 

For a comprehensive comparison of results from all participating projects, see ibidem. Input 

parameters are listed in Tab. 3.4. All results from COMIX are generated with the RPG 

presented in Sec. 3.3.1. Cross sections are summarised in Tab. 3.9 - Tab. 3.13. We find 

good agreement for all processes attempted so far. 

A measure for the efficiency of a phase space generator is given by the ratio of the aver­

age over the maximal weight (w) fwmax, i.e. the efficiency for generating events of unit 

weight using a hit-or-miss method. However, as discussed in Ref. [79], the maximum 

weight and thus this ratio is a numerically rather unstable quantity, determined by very 

rare events in the high tail of the weight distribution. In Tab. 3.11 the more stable quantity 

(w) jw~ax is therefore listed, where the reduced maximum weight w~ax is defined such that 

1 - (min( w, w~ax)) / ( w) = c « 1. It turns out that a reasonably good performance can be 

achieved, even for very large multiplicities. 
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Process Time [ ms / pt ] 
sum sample Ratio Gain 

gg -----t 2g 0.073 0.025 2.9 2.1 
gg -----t 3g 0.339 0.060 5.7 3.5 
gg -----t 4g 1.67 0.149 11 4.5 
gg -----t 5g 8.98 0.427 21 5.3 
gg -----t 6g 49.6 1.39 36 6.6 
gg -----t 7g 298 4.32 69 7.1 
gg -----t 8g 1990 13.6 146 6.9 
gg -----t 9g 13100 43.7 300 6.7 
gg -----t lOg 96000 138 695 5.9 

Tab. 3.1 Computation time for multi-gluon scattering matrix elements sampled 
over colour configurations. Displayed times are averages for a single 
evaluation of the colour-dressed BG recursion relation, when summing 
and sampling over helicity configurations, respectively. Additionally in 
the last column, labelled 'Gain' the inverse ratio of evaluation times 
multiplied by the naive ratio 2n - 2(n + 1) is given, where n is the 
number of external gluons. Numbers were generated on a 2.80 GHz 
Pentium® 4 CPU. 

gg -----t ng Cross section [pb] 
n 8 9 10 11 12 
ys [GeV] 1500 2000 2500 3500 5000 
Co mix 0.755(3) 0.305(2) 0.101(7) 0.057(5) 0.026(1) 
Phys. Rev. D67(2003)014026 0.70(4) 0.30(2) 0.097(6) 
Nucl. Phys. 8539(1999)215 0.719(19) 

Tab. 3.2 Cross sections for multi-gluon scattering at the centre of mass energy yls, using the 
phase space cuts specified in Eq. (3.34), compared to literature results. In parentheses 
the statistical error is stated in units of the last digit of the cross section. 

gg -----t ng Cross section [pb] 

n 7 8 9 10 
Co mix 2703(14) 407.0(36) 66.5(13) 15.2(26) 

Tab. 3.3 Multi-gluon cross sections at the LHC with Vd ~ 20 GeV and d 

defined as in Ref. [77], except that LJ..Rli~ cosll~~ij~CC>S ~</Jij· "····· -c.:c "·-->~.; ;'" , •. ~ •... 

·· -· • ">,.,,~ ,_.,_ .. ~ ·. · •· • · · • ··c-• ·· ·· ··In parentheses the StaiistiCaf error. is' stated 'in Units. oft lie ·last 
digit of the cross section. 
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Fig. 3.4 Overall integration performance for multi-gluon scattering. Upper panels display 
the Monte Carlo estimate of the cross section with the corresponding 10' statisti­
cal error band as a function of the total integration time. Lower panels show the 
relative statistical error. HAAG denotes the phase space integrator described in 
Appendix C, applied on colour- and helicity-summed ME, generated using the 
CSW recursion. CSI denotes the integrator discussed in Sec. 3.3.3 , applied on 
colour-sampled and helicity-summed MEs, generated using the CDBG recursion . 
Results for RAMBO were generated using colour- and helicity-sampled ME's 
form the CDBG recursion. Calculations have been performed on a 2.66 GHz 
XeonTM CPU 
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Fig. 3.5 Overall integration performance for multi-gluon scattering, continued from 
Fig. 3.4. Additionally, for the CSI a sampling over helicity is considered, de­
noted by CSI(HS). 

Parameter Value 
EW parameters in the G J.L scheme 

G F 1.16639 X 10- 5 

O'.QED 1/132.51 
sin2 ew 0.2222 

Mw 80.419 GeV 
Mz 91.188 GeV 
mH 120 GeV 

CKM matrix 
Vud, Vcs I 0.975 

QCD parameters 
PDFsci CTEQ6L1 

O'.s 0.130 
/-LF , f-LR 

jet, initial parton 
Mz 

g, u , d, s , c 

I Parameter I Value 
Non-zero fermion masses (no evolution) 

mb 4.7 GeV 
mt 174.3 GeV 
m 7 1.777 GeV 

Widths (fixed width scheme) 
fw 2.048 GeV 
fz 2.446 GeV 
rH 3.7 X 10-3 GeV 
ft 1.508 GeV 
rT 2.36 X 10-12 GeV 

Cuts 

P.L , i > 20 GeV 

I 'Tli I < 2.5 
!:lRj > 0.4 

no cuts on particles of m > 3 Ge V and liz 

Tab. 3.4 Parameters for the MC4LHC comparison setup. 



3.4 Results 

Process Time per ME Time per ME 
BG [s] CSW [s] BG/CSW 

gg-+ 2g 8.42 X 10-6 1.18 X 10-6 7.1 
gg-+ 3g 3.19 X 10-5 3.31 X 10-6 9.6 
gg-+ 4g 1.13 X 10-4 6.09 X 10-5 2.0 
gg-+ 5g 3.58 X 10-4 2.91 X 10-4 1.3 
gg-+ 6g 1.17 X 10-3 6.38 X 10-3 0.20 
gg-+ 7g 3.99 X 10-3 5.66 X 10-2 0.079 

qij-+ 2g 6.20 X 10-6 1.02 X 10-6 6.1 
qij-+ 3g 2.18 X 10-5 2.46 X 10-6 8.9 
qij-+ 4g 6.91 X 10-5 4.59 X 10-5 1.5 
qij-+ 5g 2.15 X 10-4 2.34 X 10-4 0.92 
qij-+ 6g 6.53 X 10-4 4.00 X 10-3 0.16 
qij-+ 7g 2.03 X 10-3 3.11 X 10-2 0.065 

qij-+ qij 2.86 X 10-6 1.56 X 10-6 1.8 
qij-+ qij g 1.17 X 10-5 3.26 X 10-6 3.6 
qij-+ qij 2g 4.99 X 10-5 5.92 X 10-5 0.84 
qij-+ qij 3g 1.94 X 10-4 2.90 X 10-4 0.67 
qij-+ qij 4g 7.16 X 10-4 4.93 X 10-3 0.15 
qij-+ qij 5g 2.86 X 10-3 3.69 X 10-2 0.076 

qij-+ q'q' 2.24 X 10-6 1.06 X 10-6 2.1 
qij-+ q'q' g 8.97 X 10-6 1.96 X 10-6 4.6 
qij-+ q' q' 2g 2.87 X 10-5 3.39 X 10-5 0.85 
qij-+ q' q' 3g 8.18 X 10-5 1.55 X 10-4 0.59 
qij -+ q' q' 4g 2.70 X 10-4 2.48 X 10-3 0.11 
qij-+ q' q' 5g 8.13 X 10-4 1.84 X 10-2 0.044 

qij-+ Z(-+ e-e+) 3.84 X 10-6 3.88 X 10-6 0.99 
qij-+ Z(-+ e-e+) g 1.02 X 10-5 6.85 X 10-6 1.5 
qij-+ Z(-+ e-e+) 2g 2.57 X 10-5 6.90 X 10-5 0.37 
qij-+ Z(-+ e-e+) 3g 7.06 X 10-5 2.95 X 10-4 0.24 
qij-+ Z(-+ e-e+) 4g 1.95 X 10-4 3.72 X 10-3 0.052 

Tab. 3.5 Average computation time for partial amplitudes in multi-jet pro­
cesses, summed over helicity configurations. Displayed are aver­
ages for single evaluation, employing colour-dressed Berends-Giele 
recursion and CSW vertex rules. Numbers were generated on a 
2.53 GHz Intel® Gore-r:~2,Duoe-::r'9400-GWU. ~, "''~''' = -· -··· ~d 
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pp---. n jets 

gluons only n=2 n=3 n=4 n=5 n=6 
(J [pb] 8.915 . 107 5.454. 106 1.150. 106 2.757. 105 7.95. 104 

stat. error 0.1% 0.1% 0.2% 0.5% 1% 

integration time for given stat. error [s] 

CDBG ® RPG 159 5050 33000 38000 74000 

CDBG ® CSI - 780 6930 6800 12400 

CSW ®HAAG 4 165 1681 12800 2. 10 6 

CSW ® CSI - 480 6500 11900 197000 

AMEGIC ® HAAG 6 492 41400 - -

Tab. 3.6 Cross section and evaluation times for different matrix element (phase space) gen­
eration methods for multi-gluon scattering at the LHC. Numbers were generated on 
a 2.53 GHz Intel® Core™2 Duo T9400 CPU. For cuts and parameter settings, cf. 
the text and Tab. 3.4. 

pp---. n jets 

~ 2 quark lines n=2 n=3 n=4 n=5 n=6 
(J [pb] 1.5129. 108 1.1198. 107 2.831. 106 8.13. 105 2.71. 105 

stat. error 0.1% 0.1% 0.2% 0.5% 1% 

integration time for given stat. error [s] 

CDBG ® RPG 525 10800 25600 59000 113000 

CSW ®HAAG 16 730 12300 120000 2. 10 7 

AMEGIC ® HAAG 19 1530 78000 - -

Tab. 3. 7 Cross section and evaluation times for different matrix element (phase space) gen­
eration methods for multi-jet production at the LHC. Numbers were generated on 
a 2.53 GHz Intel® Core™2 Duo T9400 CPU. For cuts and parameter settings, cf. 
the text and Tab. 3.4. 

pp---. Z+ jets n=O n=1 n=2 n=3 n=4 
(J [pb] 1080.8 121.67 54.67 23.59 11.22 

stat. error 0.1% 0.1% 0.1% 0.2% 0.5% 

integration time for given stat. error [s] 

CDBG ® RPG 15 364 6400 16400 54000 

AMEGIC ® MC 7 98 1060 10400 310000 

CSW ® MC 12 210 4100 57000 1500000 

Tab. 3.8 Cross section and evaluation times for different matrix element (phasespace) gen-
>,·· · ;,, ·- ---~--~-~ 'eration rrrethOds for· Z+'}eCJ>rodi'icH6n-at·tl1e tHe. Nulli1Jeis'we~e"·ge"ll~~at~(f'"trt~"''"· · 

2.53 GHz Intel® Core™2 Duo T9400 CPU. For cuts and parameter settings, cf. the 
text and Tab. 3.4. 
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(]" [J.lb] Number of jets 

jets 2 3 4 5 6 7 8 
Co mix 331.0(4) 22.72(6) 4.95(2) 1.232( 4) 0.352(1) 0.1133(5 0.0369(3 
ALPGEN 331.7(3) 22.49(7) 4.81(1) 1.176(9) 0.330(1) 
AMEGIC++ 331.0(4) 22.78(6) 4.98(1) 1.238( 4) 

(]" [J.lb] Number of jets 

bb + QCD jets 0 1 2 3 4 5 6 
Co mix 471.2(5) 8.83(2) 1.813(8) 0.459(2) 0.150(1) 0.0531(5 0.0205(4 
ALPGEN 470.6(6) 8.83(1) 1.822(9) 0.459(2) 0.150(2) 0.053(1) 0.0215(8 
AMEGIC++ 470.3(4) 8.84(2) 1.817(6) 

(]" [pb] Number of jets 

tt + QCD jets 0 1 2 3 4 5 6 
Co mix 754.8(8) 745(1) 518(1) 309.8(8) 170.4(7) 89.2(4) 44.4( 4) 
ALPGEN 755.4(8) 748(2) 518(2) 310.9(8) 170.9(5) 87.6(3) 45.1(8) 
AMEGIC++ 754.4(3) 747(1) 520(1) 

(]" [pb] Number of jets 

e+ve + QCD jets 0 1 2 3 4 5 6 
Co mix 5434(5) 1274(2) 465(1) 183.0(6) 77.5(3) 33.8(1) 14.7(1) 
ALPGEN 5423(9) 1291(13) 465(2) 182.8(8) 75.7(8) 32.5(2) 13.9(2) 
AMEGIC++ 5432(5) 1279(2) 466(2) 185.2(5) 77.3( 4) 

(]" [pb] Number of jets 

e-De + QCD jets 0 1 2 3 4 5 6 
Co mix 3911(4) 1011(2) 362(1) 137.1(3) 54.9(2) 22.4(1) 9.26( 4) 
ALPGEN 3904(6) 1013(2) 364(2) 136(1) 53.6(6) 21.6(2) 8.7(1) 
AMEGIC++ 3903(4) 1012(2) 363(1) 137.6(3) 54.8(6) 

(]" [pb] Number of jets 

e-e+ + QCD jets 0 1 2 3 4 5 6 
Co mix 723.5( 4) 187.9(3) 69.7(2) 27.14(7) 11.09( 4) 4.68(2) 2.02(2) 
ALPGEN 723.4(9) 188.3(3) 69.9(3) 27.2(1) 10.95(5) 4.6(1) 1.85(1) 
AMEGIC++ 723.0(8) 188.2(3) 69.6(2) 27.21(6) 11.1(1) 

(]" [pb] Number of jets 

VeDe + QCD jets 0 1 2 3 4 5 6 
Co mix 3266(3) 715.9(8) 266.6(7) 105.0(3) 44.4(2) 19.11(7) 8.30(7) 
ALPGEN 3271(1) 717.4(5) 267.4( 4) 105.4(2) 43.7(2) 18.68(8) 7.88(5) 
AMEGIC++ 3270(1) 717.3(7) 266.3(6) 105.4(3) 44.3(5) 

Tab. 3.9 Cross sections in the MC4LHC comparison [78] setup. In parentheses the statistical . 
-- · --~-~-~ --~~-~ ~ .... ·-eFrtr -i~f~s·t·atea inf·units··ar~'tlle-~iast£·cngrt~~gr·th·e·--~ro~;~'seCtiO~. ~r-r~tote=ti1Ettf~~~-AMEC£IC++·~·-· · 

and COMIX all subprocesses are considered, while ALPGEN is restricted to up to four 
quarks. Taking this into account, all values agree within 2 a 



82 3 Comix - A new matrix element generator 

a [nb] Number of jets 

'Y + QCD jets 1 2 3 4 5 6 
Co mix 89.5(2) 19.65(6) 7.52(3) 2.664(8) 1.000(5) 0.387(2) 
AMEGIC++ 89.6(1) 19.60(5) 7.59(2) 2.64(2) 

(J [pb] Number of jets 

e-De + bb + QCD jets 0 1 2 3 4 5 
Co mix 9.40(2) 9.81(3) 6.82(5) 4.32(4) 2.47(2) 1.28(2) 
ALPGEN 9.34( 4) 9.85(6) 6.82(6) 4.18(7) 2.39(5) 
AMEGIC++ 9.37(1) 9.86(2) 6.98(3) 4.31(6) 

(J [pb] Number of jets 
e- e+ + bb + QCD jets 0 1 2 3 4 5 
Co mix 18.90(3) 6.81(2) 3.07(3) 1.536(9) 0.763(6) 0.37(1) 
ALPGEN 18.95(8) 6.80(3) 2.97(2) 1.501(9) 0. 78(1) 
AMEGIC++ 18.90(2) 6.82(2) 3.06(4) 

Tab. 3.10 Cross sections in the MC4LHC comparison [78] setup. In parentheses the statistical 
error is stated in units of the last digit of the cross section. Note that for AMEGIC++ 
and COMIX all subprocesses are considered, while ALPGEN is restricted to up to four 
quarks. Taking this into account, all values agree within 2 a. 

efficiency Number of jets 

jets 2 3 4 5 6 7 8 
E = 10-3 9.3·10-2 7.8·10-3 2.1·10-3 7.0·10-4 3.6·10-4 1.3·10-4 6.1·10-5 

E = 10-6 3.1·10-2 3.8·10-3 1.5·10-3 4.3·10-4 2.4-1o-4 9.9·10-5 5.8·10-5 

efficiency Number of jets 

e+ve + QCD jets 0 1 2 3 4 5 6 
E = 10-3 1.5·10-1 2.4·10-2 9.1·10-3 2.0·10-3 6.7·10-4 1.9·10-4 3.1·10-5 

E = 10-6 1.6·10-2 4.5·10-3 3.3·10-3 1.2·10-3 4.3·10-4 1.3·10-4 2.8·10-5 

Tab. 3.11 Efficiencies for processes in the MC4LHC comparison [78] setup. 
); _c-:-" '• -=-- .-t:J _ ,_, '- , . • •'•"7' ·::--~ 1< ~·.'[·,~:···-;:> .... •._-~ ; ~- '-- "- ' • - ~- --:· ' ,-.<1 •• < 
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rJ [nb] Number of jets n 

QCD jets 7 8 

99--> n9 49.1(4) 14.2(3) 
99--> (n- 2)g2q 17.0(1) 6.0(1) 
99--> (n- 4)94q 1.69(1) 0.74(5) 
9 9 --> ( n - 6) 9 6q 0.0401(5) 0.0297(8) 
99 -t 8q - 0.000158(5) 
9q--> (n- 1)9 1q 30.5(2) 9.9(2) 
9q--> (n- 3)93q 8.46(6) 3.38(6) 
9q --> ( n - 5) 9 5q 0.565(7) 0.332(8) 
9q--> (n- 7)97q 0.00501(6) 0.0067(2) 
qq __, n9 0.0209(1) 0.0067(1) 
qq --> ( n - 2) 9 2q 4.97(4) 1.84(3) 
qq--> (n- 4)g4q 1.044(9) 0.477(9) 
qq--> (n- 6)g6q 0.0374(3) 0.0291(5) 
qq -t 8q - 0.000223(4) 

Tab. 3.12 Subprocess cross sections in the MC4LHC comparison [78] setup. In 
parentheses the statistical error is stated in units of the last digit of 
the cross section. 

(J [pb] Number of jets n 

e+ve + QCD jets 5 6 

qq--> e+ve n9 0.256(2) 0.0768(6) 
qq--> e+ve (n- 2)9 2q 6.49(3) 2.92(3) 
qq--> e+ve (n- 4)94q 0.591(3) 0.449(8) 
qq--> e+ve 6q - 0.00640(7) 
9q--> e+ve (n- 1)9 1q 20.0(1) 8.21(8) 
9q--> e+ve (n- 3)9 3q 4.03(2) 2.14(2) 
9q--> e+ve (n- 5)95q 0.0741(4) 0.094(1) 
99--> e+ve (n- 2)9 2q 2.13(1) 0. 775(5) 
99--> e+ve (n- 4)9 4q 0.1817(9) 0.1058(7) 
99--> e+ve 6q - 0.001403(7) 

Tab. 3.13 Subprocess cross sections in the MC4LHC comparison [78] setup. In 
parentheses the statistical error is stated in units of the last digit of 
the' cross section·. '· .. "-·'"'·•' .,.,..,,"- •·· ~·.-·.0(::: .·:;,. ·-.~". " .. · . ' '• . \e'.•.; .. ', ........ ,._..--,. .. : .• ,.. .. ___ .. .... : ..... • . 



4 Conclusions 

In this part of the thesis, a new approach to calculate multi-parton amplitudes has been 

presented, which extends the recursive relations for colour-ordered amplitudes to relations 

for full coloured amplitudes. It was shown how colour can be included in the colour-stripped 

recursive relations coming from twistor-inspired methods that do not have a straightforward 

relation with a standard perturbative Lagrangian approach. Numerical properties of the 

corresponding algorithms have been studied in detail. 

In general the new colour-dressed recursive relations are much more suitable for a numer­

ical implementation since they naturally avoid the factorial growth implicit in taking the 

sum over permutations of possible colour flows in an amplitude. The taming of the facto­

rial growth to an exponential one is easily proved in the colour-dressed formulation of the 

Berends-Giele recursive relations which are found to be the same as the Schwinger-Dyson 

approach introduced in Ref. [71] and equivalent to the ALPHA algorithm of Ref. [76]. Using 

a similar approach but exploiting the adjoint colour basis decomposition, Eq. (1.8), a new 

formulation of the BCF relations, Eq. (2.43), has been proved which involves the full ampli­

tudes, including colour, and retains the same formal simplicity as the original formulation. 

Finally, the CSW relations have been considered. They were recast into a form similar to 

the Berends-Giele relation through the introduction of a new type of three-point vertices 

and effective particles, Eqs. (2.28) and (2.29). It is interesting to note, that while for the 

Berends-Giele relations the· colour dressing is straightforward due to the close correspon-

.dence to"the standard quantum field theory--perturbative-approach;~this,isofar,less::.tr-ivial~Jor•""·· "'""~:e:.: .~.·-~'­

the BCF and CSW relations, for which there is no direct relation to these techniques. 

To test the numerical efficiency of the different formulations, all corresponding algorithms 
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were implemented into numerical programs and squared amplitudes for 2 ----> n gluon scat­

tering were computed, performing the sum over helicities and colours with a Monte Carlo 

method. The corresponding results clearly show the numerical superiority of the recursive 

formulation by Berends and Giele over all twistor-inspired methods, both from the point 

of view of the growth of complexity with n and the simplicity of the implementation. For 

the colour-ordered amplitude formulation, the results of Ref. [49] are confirmed, except for 

the CSW relations, on which considerable improvement is achieved by bringing them to the 

same level of complexity as the BCF relations. The colour-dressed formulations of the BCF 

and CSW relations perform worse than the corresponding colour-dressed Berends-Giele re­

lations for different reasons. The BCF relations are penalised by their top-down structure, 

i.e. the fact that for each helicity and colour configuration the decomposition in terms of 

amplitudes with smaller multiplicity has to be found, and by the fact that their natural 

(and minimal) colour basis is the adjoint basis which is computationally quite heavy. The 

"improved" colour-dressed CSW relations instead suffer from the presence of a large number 

of elementary line types and effective three-point vertices which eventually affect the overall 

growth of the algorithm. 

The colour-dressed Berends-Giele recursive relations lead to the construction of the new 

tree-level matrix element generator COMIX, which is especially suited for large multiplic­

ity processes. In this context, a new technique to recursively compute phase space inte­

grals has been presented, which is based on the assumed pole structure of the integrand, 

i.e. the Feynman diagrams leading to the full amplitude. This method induces at most 

the same growth in computational complexity as the matrix element computation in the 

colour-dressed Berends-Giele approach and is therefore a major improvement over current 

algorithms. 

The performance of the new generator has been analysed and results have been compared 

to those of other matrix element generators. It is observed that the new algorithms perform 

very well and promising results for large multiplicity processes are obtained. COMIX can 

therefore be considered an excellent supplementary generator for large multiplicities, which 

, 'iE(especi8:lly'nelpftil'in the context' of a matrixelemenf'parton shower "'I{le;girfg~''ffi.fs~~firt:;e· . 
considered in the second part of the thesis. The treatment of colour in Cmvnx makes the 

algorithm well suited for such an interface, since the colour structure of the matrix element 
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does not need to be guessed from kinematics, it is rather fixed on a point by point basis. 

Finally, a new type of integrator for QCD processes has been suggested, which is based on 

the HAAG generator and couples the sampling in colour and momentum space. Especially 

for large multiplicity processes it leads to a faster convergence of the integral than all other 

algorithms, essentially because information on possible partial amplitudes is included in the 

sampling. 

To conclude, present methods for matrix element computation have been improved and 

extended in this part of the thesis. The new colour-dressed recursive relations are a major 

theoretical improvement. The colour-dressed Berends-Giele recursive relations lend them­

selves nicely into a numerical implementation which even suggested that a corresponding 

algorithm for phase space integration should exist. This algorithm has been presented. 





Part II 

Generation of parton showers 





1 QCD parton evolution 

With the startup of the LHC, high-energy particle physics will enter a new era, where the 

tremendous centre-of-mass energy of 14 TeV opens a window to the search for new physics 

and more detailed study of known phenomena. The large energy involved in the production 

of interesting signals then typically gives rise to large radiative QCD corrections, which need 

to be described by event generators. Hard matrix elements have to be evaluated at scales, 

which are far from the hadronisation scale and the large open phase space can lead to the 

production of many additional particles. When calculated at fixed order inclusively, such 

radiative corrections appear as the finite remainder after the cancellation of divergences 

from real and virtual contributions. Under the assumption of good convergence of the 

perturbative series, they are small or at least decrease with increasing number of strong 

couplings involved. 

There is however no possibility to observe the fully inclusive cross section for the O(as) 

correction to any given QCD process. Every experiment will have a resolution criterion (most 

commonly defined in 6.R = J 6.rP + 6.(!;2), which determines the minimum separation of 

two separately resolved QCD partons. This implies a different approach to QCD associated 

processes, which proceeds in terms of measurable "jets". Experimentally a jet is seen as 

nothing but a bunch of collimated particles entering the detector. In the framework of 

perturbative QCD, these particles are thought to emerge from the resolved part of radiation 

stemming from a common initiating parton. The ultimate goal on the experimental side 
_ _. _- • ____ _., ___ • '!> .-., _ -·~ •• ·- "--~-. ,_,. •• _1 •.. , . ..-, __ ,,._.~--.::-~-::::;;.:·:;:,_~-,·-~:~,--.,;...:.... - - • ~ ,--h ·, ~- -,..._t~G:.~- ..... ~.,,.,.G=-:,._:~~--:..::..:.::;_~~~3-::·r,..,....- ~-··r -

c ~~is'fo"construcf"an algorithm, which translates one interpretation into the other, such that 

experimental signatures can be compared to perturbative QCD calculations. On theoretical 

grounds, the aim is to describe the evolution of QCD partons such, that at any resolution 
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scale the correct radiation pattern is produced. 

The standard theoretical framework to achieve both of these aims are the Dokshitzer-Gribov­

Lipatov-Altarelli-Parisi (DGLAP) equations [80, 81], which govern the evolution of frag­

mentation functions and parton distribution functions. The key observation is that next-to 

leading order corrections, if unintegrated below a certain resolution scale do not manifest 

themselves as poles but turn into large logarithms of the form log(Q2 /Q~), where Q is the 

initial scale of parton production and Q0 is the resolution scale. These logarithms, together 

with the logarithmic terms contained in the strong coupling a 8 , have to be resummed to 

all orders to obtain a finite cross section. They exponentiate and give rise to Sudakov form 

factors fj.a(q 2
, Q2) [82, 83], which are interpreted as the no-emission probability for a given 

parton a that evolves from scale Q to scale q without any resolvable radiation at q. Such 

expressions play an essential role in the construction of shower algorithms. 

The outline of this part of the thesis is as follows. Firstly the basics of QCD parton evolution 

are discussed at hand of the leading order DG LAP equations. Fragmentation functions 

and parton distribution functions are introduced. Their respective Q2--Bvolution under the 

DGLAP equations is discussed and the correspondence with shower algorithms is pointed 

out. A shower algorithm for Q2-evolution is briefly introduced. The merging with explicit 

real next-to-leading order corrections under an extension of the CKKW prescription is 

discussed in detail. A new kr-type measure, based on the respective shower evolution is 

presented and the implications of this definition are outlined. This part concludes with 

the presentation of BFKL evolution and a novel algorithm for generating ln(l/x) parton 

evolution in a Markovian approach. The striking similarity with parton shower generation 

is pointed out. 

1.1 Final state parton evolution 

QCD parton evolution and the occurrence of jets can be understood theoretically when the 

structure of perturbative amplitudes is examined in the kinematical regime where intrajet 

evollitioii'fakes~place, 'i.e. where two or riiorltpartons'Oec6me.dose 1il~pliase"'~pa2;~Wi~e~~er. -·. 

this happens, any QCD matrix element squared factorises into a matrix element squared 

containing the combined "mother" parton and a universal function describing the splitting 
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into external particles, cf. Refs. [84]. In other words, the theory becomes semiclassical and 

can be understood in a Markovian approach, where a single initiating parton develops a 

cascade of independent branchings, see also Refs. [85]. This is the basic concept of any 

shower Monte Carlo. Potential differences then arise in the factorisation scheme only. 

The most commonly used scheme is collinear factorisation. In this context two massless 

final state partons i and j become collinear, if kJ_ ---+ 0 in the following decomposition of 

their momenta. 

k2 nil 
Pi= (1- z) p11 + _ _1_ ___ - k11 • 

1-z2pn _l 
(1.1) 

Here p denotes the collinear direction, while n determines how the collinear direction is 

approached. The two light-like vectors p and n can be interpreted as reference vectors in 

"+"-and "-"-direction of a Sudakov parametrisation [82]. It is easy to see that 

(1.2) 

such that the collinear limit is approached if z(1- z) 2PiPj ---+ 0. It is observed that in this 

limit to CJ( a 8 ) any azimuthally summed QCD associated differential cross section factorises 

as 

d ( . . ) d ( { .. } ) dsij d G:s P.A ( ) an+l ... , Z, ... , J,... = an ... , ZJ , . . . -- Z- a· ·a· Z , 
s.. 27f •J ' 

1) 

(1.3) 

where Sij = (Pi + P] )2 and ai and aij are the flavours of parton i and the combined mother 

parton {ij}, respectively. The functions Pab(z) are regularised Altarelli-Parisi splitting 

kernels [81]. They describe the collinear splitting of parton a into parton band are given by 

C [ 
1 + z2 3 x(1 ) ] P. = CF 1 + (1- z)2 

= F (1- z)+ + 2 u - z ' qg z 

= 2CA [ ( z ) + 1- z + z(1- z)] + 6(1- z) llCA- 4nfTR ' 
1-z+ z 6 

(1.4) 

Pgq = T R [ z2 + ( 1 - z) 2 J , 

where CA = Nc, CF = (N't; -1)/2Nc and TR = 1/2. The "+"-prescription employed above 
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is defined as follows: If F(z) is a function of z, which exhibits a single singularity at z 1, 

the corresponding + -function ( F ( z)) + reads 

(F(z))+ = lim { F(z)B(1- z- !3)- 6(1- z- !3) t-(3 dz F(z)} 
f3----+0 Jo (1.5) 

Based on the factorisation formula, Eq. (1.3), electron-positron annihilation into hadrons 

at leading and next-to-leading order can now be investigated as an example to introduce 

master equations for standard final state parton showers. The derivation presented here 

closely follows Refs. [86] and [87]. 

Hadronic final states and fragmentation functions 

In terms of the Born cross section a 8 , the total next-to-leading order cross section for 

electron-positron annihilation into a specific hadron h with energy fraction x = Eh/ Q at 

scale Q2 reads [86] 

(1.6) 

It is universally employed to introduce the concept of fragmentation functions, which are 

nothing but a parametrisation of the unknown nonperturbative dynamics in the formation 

of hadrons. Terms containing the Altarelli-Parisi splitting functions correspond to the 

emission of a real, resolvable parton, while the 6-function implements the Born and virtual 

contributions. The dots stand for higher order contributions, which are regularisation­

scheme dependent and do not play a role at leading logarithmic order. The functions D;,a 
are bare fragmentation functions, which describe the transition of parton a into hadron h. 

They are not observable since they probe the z-dependent transition of a specific parton 

:::c.- m£o'-"a:--11adrort'ahd are'thehifore u11J>li:Ysic'aT''-·MoreoveF, E<T'{l.oYa€PeTI:a8"''0ilail~liD.pliysicat· -

regularisation parameter m, which is a fictious gluon mass or a dimensional parameter, 

depending on the regularisation scheme. Observable fragmentation functions to O(as) are 



1.1 Final state evolution 95 

therefore introduced through 

h( 2 - h ( 2 11 

dz CXs L A ( ) ( 2/ 2) - h ( / 2) Da x, Q ) = D0 a x, Q ) + - - Pab z log Q 11 D0 b X z, Q + ... 
' z 2rr ' 

X b=q,g 
(1. 7) 

such that to O(as) 

(1.8) 

The scale 11 introduced above is an arbitrary scale, used to factor off mass singularities. As 

a consequence, the dependence of (J on the unphysical parameter m, which was present in 

Eq. (1.6), is absorbed completely into the bare fragmentation functions Dt,a. This factori­

sation property has been proved to hold to arbitrary order in perturbation theory [87]. To 

O(as) it can be understood as the definition 

- h 2 11 
dz h 2 [ ) CXs A ( ) ( 2/ 2) ] D0,a(x, Q) = x --; D0,a(xjz, Q) <5(1- z + 

2
7rPaa z log 11 m +... , (1.9) 

Finally, to O(as) one obtains 

(1.10) 

This is the usual Altarelli-Parisi form of the leading order equations that govern the Q2 

evolution of fragmentation functions [81]. Note that due to the z-integration region, it is 

mandatory to implement the Altarelli-Parisi kernels in their regularised form, since Pqq(z) 

and P99 (z) are naively divergent for z .- 1. It will turn out, however that for a Monte Carlo 

simulation unregularised splitting functions can be employed. A pictorial interpretation of 

Eq. (1.10) is shown in Fig. 1.1. 

Final state parton showers 

. '" ·· EqiU1tion-(1·:10)'is· iwt·suited to compute tlie''CJ2~e~olutlo,n of full.QCtffiil~f~t;te;>i;;'~"M:~~t~ 

Carlo program, because it describes the behaviour of an inclusive quantity, which is related to 

employing the regularised Altarelli-Parisi kernels in "+"-prescription. This implies, however 
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d 

Fig. 1.1 Pictorial representation of the · Q2--evolution of fragmentation functions, 
Eq. (1.10). Shown are both, the quark- and gluon fragmentation functions. 

that two partons can come infinitely close in phase space before they hadronise. Given 

enough time, any parton thus has the chance to radiate infinitely many collinear partons 

or soft gluons before it hadronises. Such a scenario would obviously be unphysical, since 

the scale where radiation takes place somewhen falls below the hadronisation scale A, and 

hadrons are formed. 

Equation (1.10) must take this effect into account, which can be achieved through an addi­

tional term, describing virtual and unresolvable parton emission. The leading order equation 

for Q2-evolution of the fragmentation functions then reads 

(1.11) 

The factor 1/2 in the loss term avoids double counting final states when summing over 

all parton species. The bounds on ~ and the upper bound on z remain to be fixed. They 

depend on the resolution criterion for parton emission and are therefore related to the hadr6-

-- 'nisatibn sc~re x.·· N~t(tthat ·in. Eq. ~(l~ ii)"th~-- Altl-tr~ili:f>·a:~rsi -~plitti~i- f~ri~ti~il~" ~~P~~;-i~ · --
unregularised form, which amounts to dropping the "+"-prescription and terms containing 

6 functions in Eq. (1.4). To solve Eq. (1.11), it is convenient to introduce the Sudakov form 
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factor 

(1.12) 

which is interpreted as the resummation of the loss term in Eq. (1.11) to all orders. It 

corresponds to the no-emission probability for parton a during the transition from Q to 1-l 

in unconstrained parton evolution. Equation (1.11) can then be rewritten as 

L Pab(z) Dbh(xj z, Q2
) , 

(1.13) 

b=q,g 

The fraction of partons a, produced at Q2
, which does not branch between Q2 and q2 is 

given by 

(1.14) 

In a Monte Carlo simulation, Eq. (1.14) can be employed to decide whether or not a parton 

branches at scale q2 by selecting a random number R E [0, 1] and solving IIa(x, q2
, Q2

) = n 
for q2 . Then a corresponding z has to be found according to Eq. (1.13) and an azimuthal 

angle for the branching must be selected. This procedure is, however not the method of 

choice. Most commonly, the presence of a particular final state hadron of type h, assumed 

in the above derivation, is not of interest. One rather tries to simulate the full Q2 evolution 

of the complete final state produced through a hard scattering matrix element at the same 

time. In other words, rather than a constrained evolution, where in the last step a specific 

hadron h with momentum fraction x needs to be produced, an unconstrained evolution is 

considered. In this case the Sudakov form factor, Eq. (1.12) becomes 

Note that due to the forward evolution picture, splitting functions have their parton labels 
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reversed. The E integration is restricted by the resolution criterion. Most commonly the 

corresponding boundaries are fixed through a transverse momentum cutoff. If for example 

t is interpreted as 2PbPc and one requires 4k}_ > t 0 , Eq. (1.2) implies 

(1.16) 

The probability for a resolved branching of parton a at scale q2 now reads 

(1.17) 

A branching scale q2 can therefore be found in a Monte Carlo fashion by solving IIa(q2 , Q2 ) = 

R for q2
. The corresponding value of z and the branching type should be selected according 

1.2 Initial state partorn evolution 

Similar to the final state parton evolution introduced above, initial state partons can undergo 

branching during the evolution from the hadronisation scale A to the hard scale Q2 of the· 

process under consideration. A relatively clean environment for the analysis of initial state 

parton evolution is obtained in deep inelastic scattering (DIS). In this case, the most general 

form of the hard matrix element squared reads 

(1.18) 

where Q2 = -q2 and q is the virtual photon four momentum. The tensors LJ.I.v and WJ-1.1/ 

describe the interaction of the electron and the proton, respectively and contain the spin 

averaging factors. It is easily seen that, if p and p' are the electron's four momenta before 

(1.19) 
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For the hadronic tensor no closed form can be given because the dynamics of the interaction 

between virtual photon and proton are partly nonperturbative. The possible structures 

of WJ.Lv are however limited by current conservation, which requires qJ.L WJ.Lv and qvWJ.Lv to 

vanish. The most general Ansatz therefore reads [88] 

(1.20) 

where PJ.L is the nucleon momentum and M is its mass. The terms W1 and W2 are structure 

functions, which parametrise the unknown dynamics of the process. It is customary to 

characterise the interaction through Q2 and the parameter 

X= (1.21) 

called Bj¢rken-x. Then one defines new structure functions F1 and F2 , based on W1 and 

w2 through 

(1.22) 

Similar to the above procedure for fragmentation functions, parton distribution functions 

(PDFs) can now be introduced through investigation of the full next-to-leading order cor­

rections to electron-parton scattering and the comparison with the structure functions F1 

and g. The derivation closely follows Refs. [86] and [87]. 

Hadronic initial states and parton distribution functions 

The QCD next-to-leading order expression for F 2 (x, Q2
) = F2 (x, Q2 )/x reads [86] 
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As in Eq. (1.6), the dots stand for higher order contributions, which are regularisation scheme 

dependent and m denotes a regularisation scheme dependent mass scale. The functions 

f6,a are bare parton distributions. Note that in contrast to the final state case, the term 

proportional to £5(1- z) is unaltered by the O(a8 ) corrections. This is because the function 

F 2 is factorisation scheme dependent and the 0 ( a 8 ) corrections to the total cross sections 

appear in the respective function F 1 ( x, Q2
) = 2F1 ( x, Q2

) only. Similar to the final state 

case, mass singularities can be factored out using 

-P 2 t dz P ( / [ ( CYs A 2 2 J fo,a(x, Q ) = lx ----; fo,a X z) b' 1- z) + 
2

7f Paa(z) log(p, /m ) + ... (1.24) 

Physical parton distributions in terms of frf.a are then defined through 

2 - 2 t dz CYs """" A 2 2 - 2 f;f(x,Q) = f6,a(xjz,Q )+ J, ----; 
2

7r ~ Pba(z) log(Q jp, )fci,b(xjz,Q) + ... , (1.25) 
X b=q,g 

such that to O(as) 

nf 

Le~i [JJ:(x,Q2)+J{;(x,Q2)]. (1.26) 
i=l 

Like for the fragmentation functions D ~~, any dependence on the unphysical regularisation 

parameter m has dropped from Eq. (1.25). To O(a8 ) one thus obtains 

(1.27) 

This is the familiar form of the DGLAP equations for parton distribution functions [80, 81]. 

Their Q2-evolution is schematically depicted in Figure 1.2. 

Note'tnaTEqs.'-(1.27) and (1.10) 'differ only'Dy't'ne·cinter<!l1ange orthespfl'ttlng furieti6h~,"p~;=i'-· 

and Pgq· This is due to the fact that Q2 evolution of the parton densities proceeds towards 

the hard scattering, while evolution of the fragmentation functions proceeds away from it. 
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d 

Fig. 1.2 Pictorial representation of the DGLAP evolution of parton densities, 
Eq. (1.27). Shown are both, the quark- and the gluon distribution. 

Initial state parton showers 

Equation (1.27) describes an inclusive quantity, and in order to obtain an equation which 

is suited for Monte Carlo simulations, one should introduce a resolution criterion. This 

directly translates into an additional loss term, leading to the modified equation 

(1.28) 

The factor 1/2 in the loss term avoids double counting s and t channel partons when 

summing over all possible parton splittings. To solve Eq. (1.28), one introduces the Sudakov 

form factor 

(1.29) 

-"''"'\vlllch -is--Iiiferpret_e_d,-as the resummati~n of the~~~~ "t~;~ iil'Eci. (1.'28):'~¥." Eq.-~t1Y2Y,"l\r-~t~ ,~co -- - -----

however, that Eqs. (1.12) and (1.29) differ by the interchange of Pqg and P9q, corresponding 

to the direction of parton evolution. Employing this Sudakov form factor, Eq. (1.28) can be 
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rewritten as 

(1.30) 

Hence the fraction of partons a, produced at Q2
, which does not branch between Q2 and q2 

is given by 

(1.31) 

In a Monte Carlo simulation, Eq. (1.31) is employed to decide whether or not a parton 

branches at scale q2 by selecting a random number R E [0, 1] and solving fia(x, q2 , Q2 ) = R 

for q2
. Then a corresponding z is chosen according to Eq. (1.30) and an azimuthal angle 

for the branching is selected. In contrast to final state parton evolution, it is convenient 

to employ this prescription because type and momentum of the incoming hadron are fixed. 

The above procedure then assures that no branching is generated which violates either 

momentum conservation or the Q2 evolution of the PDFs. Care must be taken, however 

that the analytic parton distributions employed in fi(x, q2 , Q2
) are determined with the same 

input as the shower evolution, i.e. running coupling and splitting kernels must be determined 

at the same order and in the same regularisation scheme and the same factorisation scheme 

must be employed. 

As explained in Ref. [87], Eq. (1.31) can be rewritten such that the backward evolution 

formalism introduced in Ref. [89] is recovered. This means that the following equality holds 

For the initial state shower algorithm presented in Chapter 3, Eq. (1.32) is employed to" 

generate the branching scale q2
. 
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1.3 Coherent branching 

In the following, the most important correction to leading logarithmic parton evolution as 

discussed in the previous sections will be introduced. Although being a quantum interference 

effect, it essentially amounts to an ordering criterion for partons in the Q2 evolution and 

can thus be implemented in a probabilistic fashion. Namely, additional radiation initiated 

by a QCD parton is found to be confined to a cone with opening angle determined by the 

direction of the parton and its colour partner [90]. A similar effect is observed in QED 

and can be interpreted in a convenient way. If a parton radiates QCD quanta with inverse 

wavelength larger than the transverse momentum between the parton and its colour partner, 

the radiated particle cannot resolve the individual colour charge of the radiating parton. In 

this case, radiation can only stem from a particle which emits with the combined colour 

charge, as illustrated below. The following presentation closely follows Ref. [87]. 

Consider the colour-ordered mostly plus n-gluon MHV amplitude 

An ( ... , i-, ... , j-, ... ) 
( . ")4 

· n-2 'l) zg 
s (12) (23) ... (n-1n) (n1) 

Defining the dipole contribution 

(ij) 
(ik) (kj) ' 

this amplitude can be written as 

An ( ... , C, ... , j-, ... ) 
( . ·)4 n 

i n-2 'l) IT Dk-1 

9s (1n)(n1) k=2 lk 

. n-2 (ij)4 IT DP(k) 
zgs (mP(m))(P(m)m) mk ' 1 ~ m ~ n' 

kof-m 

(1.33) 

(1.34) 

(1.35) 

where P(k) is defined such that it yields the next index to the left of k, which is not equal 

to m, eventually employing cyclicity. The last equality trivially holds because of cyclic 

invariance of the amplitude. 

3 ~Now-"let·either<of tne· positiVe helicity gluoris oecoifie~sott;·sa:.Y grucritt Th(tfefe.renceTilCiices-~c- · 

m and P(m) can always be chosen different from l, since otherwise the amplitude would 

vanish. Hence the associated divergence is isolated in a single dipole contribution D~P-l(t) 
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and the colour-ordered amplitude factorises like 

An( ... ,C, ... ,j-, ... ) = An-I( ... ,i-, ... ,j-, ... )D!np-l(l), (1.36) 

Similar considerations hold for non-MHV amplitudes [47], since these are easily composed 

from MHV amplitudes in the CSW formalism, d. Part I, Sec 2.2. The squared amplitude 

in the large Nc limit thus factorises as 

lA( ·- ·- )12 lA ( ·- ·- )12W-t 
n · · · ''l '· · · 'J '· · · = n-l · · · 'Z '· · · 'J '· · · mP-l(l) ' (1.37) 

where 

1Dtl2 
(1.38) 

This factor is part of the typical "antenna" structure of QCD amplitudes. Effectively it 

describes not only soft, but also collinear divergences of the amplitude, where the collinear 

direction is given by the reference momenta i and j. To analyse its analytic properties, it is 

customary to define a dimensionless variable Wi~ and decompose Eq. (1.38) in the following 

way 

(1.39) 

where 

(1.40) 

The phase space integral corresponding to the emission of gluon k contains the solid angle 

integration dBk d¢k· To carry out this integration, it is convenient to define the z-axis along 

the direction of parton i and let ¢k = ¢j,k· The azimuthal average of Wik,j then reads 

''-:;:.-1 _,· ~.i~,joc:;- ~C-2~'• r~Jr df/h,k ~~k,j , . , .. --- - "lo 
1 1 [ 1 12

7r d¢- ] - 1 + (cos Bik - cos Bii) - J,k 
2 1 - cos Bi,k 2n 0 1 - cos Bij,k 

(1.41) 
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Changing variables </>j,k ----> z = exp { i</>j,k}, the integral can be solved using Cauchy's theo­

rem, where the only pole which lies inside the integration region is given by 

a~ 
z_ = -,;-y{}i-1, where 

a = 1 - cos ei,j cos ei,k 

b = sin ei,j sin ei,k 

Hence the azimuthally averaged dipole contribution Wik,j is given by 

-¢ w.k. t ,] 

e (B· · - e. k) t,J t, 

1- cos(} k t, 

(1.42) 

(1.43) 

It vanishes if the emission angle of gluon k lies outside a cone whose opening angle is 

determined by the parent partons. To first approximation QCD colour coherence can thus 

be implemented through angular ordered parton evolution. Similar considerations hold in 

QED, where the angular ordering constraint is known as the Chudakov effect [91]. The only 

difference arises from the fact that photons carry no QED charge and therefore at least one 

fermion line must be present in the process. 

For finite Nc, the situation becomes slightly more complicated. A convenient method to 

analyse the implications is to introduce colour charge operators T for QCD partons, such 

that T i · T j, when inserted into the appropriate matrix element squared, determines the 

colour correlation between parton i and j. This amounts to the combined colour charge, 

which leads to the emission of QCD radiation off the parton pair ij. The concept is explained 

in some more detail in Ref. [92]. The colour charge operators squared give the Casimir 

operators Tf = 4/3, if i is a quark and Tf = 3, if i is a gluon. For colour singlets, 

Tf vanishes. Each eikonal, Eq. (1.38), is now preceded by a corresponding colour charge 

operator, such that the full dipole contribution reads 

(1.44) 

In electron-positron annihilation into quarks, for example the situation corresponds exactly 

·'f6 =what ha~fbeen' pfeviohsly f6tind,· because -Ti + cTj ::=-·'0.'-~Iftlle""fa'ai~:fiori'Hfrotn -a'''tlfr~e , -

parton final state as depicted in figi1re 1.3 is considered, one obtains a case which is more 

typical for QCD. If m denotes an emitted gluon, the radiation pattern is given by 
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z 

J 

k 

Fig. 1.3 Three parton final state as described by equation (1.45). 

Wijk = - Ti · Ti Wij- Ti · Tk W}k- Tk · Ti Wtk 

= ~ [ T; ( Wij + Wik - W}k ) + TJ ( W}k + Wij - Wtk) 

+ T~ ( Wik + W}k - Wij ) ] . 

(1.45) 

Now it is assumed that i and j are close to each other thus forming a system l, which carries 

the net colour charge Ti + Tj = T 1 = -Tk. Using the decomposition (1.39) and noticing 

that for small angles between i and j 

- (j) '"""' - (i) 
wim,k '"""' wjm,k 

where 

'"""' w- (ij) 
'"""' lm,k 

- (i) 
wjm,k 

1 
= 2 ( Wim,k - Wim,j ) , 

- (ij) { :lm,k for Btm > 
wlm,k -

for Btm < 

()ij 

()ij 

Equation (1.45) can then be written as 

after averaging over cp . 

W '"""' T 2 wCi) T 2 wu) T 2 wCk) T 2 w- (ij) ijk '"'"' i im,j + j im,j + k km,l + l lm,k · 

(1.46) 

(1.47) 

(1.48) 

.. , __ TliiE(equatioi'rlias 'a rather simpl(dilterpretatioli..-"E8,d~pa;ton itself r~df~t;~ p;~P~~-ti~~~lct~ 

its colour charge squared, while additional radiation comes from coherent emission off the 

pair ij if the emission angle Btm exceeds the opening angle ()ij of the pair. The partons then 
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radiate proportional to their combined colour charge squared, Tf. This formalism may be 

extended to higher orders thus leading to a coherent branching formalism. In its simplest 

interpretation this translates into an angular ordering constraint for the partons emitted in 

each step of the parton shower evolution described above, i. e. to the explicit condition 

(1.49) 

for each parton i in the timelike shower evolution and also for each parton i in the backwards 

evolution for spacelike parton showers. 





2 Matrix element improved evolution 

The leading logarithmic QCD evolution presented in Chapter 1 and its next-to-leading 

corrections through angular ordering are often insufficient for QCD phenomenology. Key 

problems are the following 

• The total cross section in any given process is not altered by the shower evolution. 

Full next-to-leading order corrections should thus be implemented to stabilise the 

prediction of event rates. 

• Kinematic distributions might differ from the prediction of the parton shower due 

to spin correlations between final state partons. Next-to-leading order real emission 

matrix elements should thus be employed to correct evolution kernels for the most 

important emissions. 

The above issues have been addressed in a number of ways. The most traditional method 

consists in reweighting the emission off QCD particles in a hard process described by the 

parton shower with the respective exact matrix element, expressed in terms of shower vari­

ables [93,94]. Unfortunately, the applicability of this method, however elegant, is constrained 

to those cases, where the parton shower expression exceeds the matrix element, such that 

a traditional hit-or-miss reweighting can be employed. In practice, it is therefore limited to 

a few cases such as the production of a gluon in electron-positron annihilation to quarks, 

top-quark decay plus emission of an additional gluon, or the production of vector bosons in 

In the past years, new and powerful methods for the systematic inclusion of higher order 

effects into event generation have been developed. They can be seen as a major theoretical 
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improvement in the detailed understanding of complicated event topologies. The first of 

these new methods provides means to consistently match NLO calculations for specific 

processes with the parton shower and has been incorporated into the Mc@NLO program [13]. 

The basic idea here is to organise the counter-terms necessary to cancel real and virtual 

infrared divergences in such a way that the first emission of the parton shower is recovered. 

This allows the generation of kinematic configurations through matrix elements, which can 

eventually be fed into a parton shower Monte Carlo. Several applications of the original 

approach to different processes have been presented [11]. A further improvement, aiming at 

an enhanced independence of both the specific process and the parton shower is provided by 

the POWHEG-method [12], which uses the ratio of the actual real radiation matrix element 

and the original leading order one to generate the hardest emission. This approach has been 

implemented for various processes [14]. 

An alternative approach, aiming at an improved description of multi-jet topologies, has been 

described in Refs. [35, 36] and applied in Refs. [95] to the case of W and Z production and 

the production of pairs of these bosons at the Tevatron and the LHC. The idea there is to 

separate the phase space for parton emission into two domains, a region of jet production 

and a regime of intra-jet evolution. The separation is achieved through a kj_ -type jet mea­

sure [96]. Then matrix elements for different parton multiplicities are used to describe the 

production of a corresponding number of jets, whereas the parton shower is constrained such 

that it does not produce any additional jets. Leading higher-order effects are added to the 

various matrix elements by reweighting them with appropriate Sudakov form factors and 

with ratios of the strong coupling a 8 taken at the kj_ -scales of the individual jet emissions. 

Independence of the overall result on the cut in jet measure is achieved by the interplay of 

Sudakov form factors and the vetoed parton shower with suitable starting conditions. The 

method is one of the cornerstones of the event generator SHERPA. A similar approach has 

been formulated in Ref. [97] for the case of a dipole cascade. Another, similar but simplified 

method has been presented in Ref. [98]. The respective differences have been investigated 

in the example of W-production at the Tevatron and the LHC [99, 100]. 

The ·outline oftliis chapter is as follows~ "Iri'8e'c.·2:Yliie~shateiies lo~ ph;~e ~pac~·;;paratia'~­
are refined and the theoretical background of the merging approach is presented. Section 2.2 

deals with the actual event generation algorithm. Section 2.3 is devoted to the treatment 
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of colour and a detailed description of the merging for colour-sampled matrix elements as 

produced for example by the COMIX generator, cf. Part I, Chapter 3. 

2.1 Merging of matrix elements and showers 

Merging matrix elements with showers combines two essentially different approaches to per­

turbative QCD. Hard matrix elements are exact at some fixed order in the strong coupling 

a 8 and are therefore efficient in describing exclusive events with fixed jet multiplicity. Show­

ers are needed to generate the QCD radiation pattern especially at lower scales, close to the 

hadronisation scale A QeD. Their application is mandatory to resum large logarithmic cor­

rections due to Bremsstrahlung effects. Best results can be expected, if the two approaches 

are combined consistently, such that each of them operates in those regions of phase space 

that it describes best. 

The central idea for such a merging algorithm is, to replace certain evolution kernels in 

the shower by appropriate matrix elements, thus reinstalling information about the full 

hard process under consideration. Directly implementing a ratio of hard matrix elements 

in form of a splitting kernel has the apparent disadvantage, that the respective phase space 

integration proceeds in terms of shower kinematics and is thus hard to optimise in a generic 

way. A better technique is to first compute the matrix element and then reweight it such 

that, to the accuracy of the shower, the corresponding shower expression is obtained. If 

this strategy is pursued, the corresponding no-emission probabilities of the shower must be 

known. This is, however easily achieved because they emerge directly from the evolution 

equations on which the shower is based. 

Only one additional ingredient is eventually needed, namely a measure, which defines how 

: f~to- separate '1natr1x~element. ancf"'shc;wer 'don1ain.~~- tr-will' be sfiown.-- iri'tli~'f~ll~z;i~g·,""th~t;ca~ ··~ .. 
general form of this measure can be found, which is based on the soft and collinear behaviour 

of QCD at next-to-leading order. 
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Master evolution equations 

To exemplify the general idea of the merging approach, prototypical evolution equations for 

parton showers are introduced, similar to what was presented in Chapter 1. 

8ga(z, t) {(max d( 1/;max 

8lo (tj 2) = Jz ( L ICba((, t) 9b(zj(, t)- 9a(z, t) _ d~ L ~ ICab(~, t). (2.1) 
g f.L Z b=q,g (mm b=q,g 

In this context, g may denote either a fragmentation function or a parton distribution func­

tion, cf. for example Refs. [101]. This function can also explicitly depend on the splitting 

variable (, like in the case of angular ordered DGLAP evolution [90]. This does, however 

not complicate the formalism because corresponding terms do not modify the Sudakov form 

factor. As far as such evolution is concerned, the corresponding notation in Eq. (2.1) is 

implicit. The first term on the right hand side corresponds to resolvable emission, while 

the second (related through unitarity) describes unresolved branchings and virtual contri­

butions. The variable t is the evolution parameter, while z is the splitting variable of the 

scheme. The evolution kernels ICab are obtained from appropriate N + 1- and N-particle 

matrix elements. Schematically 

(2.2) 

Here <I>N denotes the respective N-particle phase space configuration, which does not play 

a role for the limiting behaviour of CJiN+l) (z, t; <I>N ). Equation (2.2) conversely implies that 

one can substitute any splitting kernel ICab with an appropriate ratio of matrix elements, 

because respective differences are always subleading. For the most common case of standard 

DGLAP evolution, cf. Chapter 1, the kernels are easily identified through 

/( ( ) 
0:8 ( Z, t) P. ( ) ab z, t -----+ 

2
1f ab Z , (2~3) 

with Pab(z) being the standard DGLAP splitting functions. If Eq. (2.1) is written in inclusive 

• CC>forrii~·· i~e:' e~in ~' 0;"~~~·;{:~~~ 1, 'the"ta8t'term''vahisheitbecati's'E(o'fm6mentumsum'·ruiilli'";• 

for the kernels. In exclusive form, where the (- and ~-boundaries are determined by a 

resolution criterion for parton emission, it can be expressed as the logarithmic derivative of 

- ·--"'::.. .• 
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the Sudakov form factor [82, 83] 

(2.4) 

The factor 1/2 is equivalent to ~ under the integral and the sum over parton species and 

avoids double-counting identical decay channels, cf. Chapter 1. Equation (2.4) has the 

generic form of a no-emission probability given in terms of the scales p 2 and t. Potential 

differences between shower algorithms implementing QCD evolution arise due to different 

evolution kernels K or different interpretation of the evolution and splitting variables. This in 

turn corresponds to the choice of a factorisation scheme. If Eq. (2.1) is modified accordingly, 

the kernels can also incorporate more than two partons, for example in the case of dipole 

[102, 103, 25] or dipole-like [104, 105, 24] cascades. 

Branching probabilities for showers 

As explained in the previous chapter, no-branching probabilities for unconstrained (forward) 

and constrained (backward) shower evolution can be derived from Eq. (2.1) [87]. They read 

(cf. Eqs. (1.17), (1.14) and (1.31)) 

and 

t1a(J-L2
, t') 9a(z, t) 

t1a(J-L2 , t) 9a(z, t') 

= exp {-it' d!i(max d( L Kba((, f) 9b(z/(, f)} 
t t z · ( 9a ( Z' f) 

b=q,g 

(2.5) 

(2.6) 

- , - The''standard procedure for collstiucthl{a pihfon-showei ~lgmith~Ts~.t~~~;it;~"-th~'J;;;~h.f;;gc "-~~ -. - .. ~-~ -

probability Pbranch,a as Pbranch,a(t, t') = 8Pno,a(t, t')/8log(t/p2
). Given a current evolution 

scale t', a new scale t is then chosen according to this probability. 
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Definition of a jet measure 

An important aspect, however obvious, becomes manifest in Eqs. (2.5) and (2.6). QCD 

branchings are logarithmically enhanced at large values of the evolution kernels /C. In 

corresponding regions of phase space, the hard matrix element must be regularised due 

to infra-red divergences. The occurrence of these divergences is not specific for a certain 

factorisation scheme, but is rather a property of QCD. A good definition of a jet measure for 

the purpose of phase space separation will arise, if these arguments are taken into account. 

Consider two partons i and j, which can (in terms of flavour) originate from a common 

mother parton iJ. The following jet measure is then proposed 1 

2 0 { 1 1 } Q ij = 2 PiPj mm C. - ' C . ' 
~,J J,~ 

where 

C--
~,J max 

k 

1 

(2.7) 

(2.8) 

else 

The maximum in Eq. (2.8) takes into account all possible colour partners k of the combined 

parton ij. 

In the following it is shown that this jet measure indeed correctly identifies soft and collinear 

parton splittings in QCD matrix elements and is thus suited to separate matrix element and 

shower domain in the envisaged merging approach. 

Soft limit 

If the energy of a single gluon j tends to zero in any fixed direction q, described through 

pj = >..q, ).. ~ 0, the above jet measure behaves as 

(2J)) 

The corresponding singularity of the matrix element is thus correctly identified, cf. Ref. [107]. 

1 A similar approach, but tailored to experimentally observable quantities and based on existing algo­
rithms has been chosen in Ref. [106]. 
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Quasi-collinear limit 

Consider partons i, j and k with Pij =Pi + p1 and let the light-like helper vectors l and n 

be given by 

Pij = l + aij n 
(2.10) 

Pk = n + ak l. 

This system has the solution 

(2.11) 

where aij = Pl1/r, ak =PUr and 1 = 2ln = Pi]Pk + J(Pi]Pk)2- PT1P~, cf. Ref. [108]. The 

momenta Pi and p1 can now be expressed in terms of l, nand a transverse component kj_. 

(2.12) 

A relation for PTj is immediately obtained. 

2 2 2 k}_ 1 - z 2 z 2 
Pij - mi - mj = z(1 - z) - -z- mi - 1 - z mj . (2.13) 

Taking the quasi-collinear limit amounts to the simultaneous rescaling [109] 

(2.14) 

Q\ -4 
2 
~ 2 2 \ 2 max { ci,j, C1,i .} , 

ij "' Pij - mi - mj 
(2.15) 
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where 

1- z PiPJ 
(2.16) 

2z 
if j = g 

2 else 

Equation (2.16) corresponds to the leading term of the massive Altarelli-Parisi splitting 

function for z----+ 1 [109]. The corresponding term for z----+ 0 (if present) is restored by Cj,i· 

Shower histories from matrix elements 

In order to obtain suitable starting conditions for showers from arbitrary matrix elements, 

a clustering algorithm needs to be defined, which corresponds to "running the shower evo­

lution backwards" on the respective matrix element. It identifies how, in a shower picture, 

the matrix element would have been composed from a lower multiplicity matrix element and 

a shower branching. Applied iteratively, it leads to the definition of a core process, which 

cannot be further decomposed and a sequence of shower branchings yielding the actual final 

state. The tasks for the algorithm are thus twofold: Firstly, within an arbitrary n-parton 

final state the most probable parton splitting in terms of shower evolution starting with 

n - 1 partons needs to be found. Secondly, corresponding partons must be recombined to 

obtain the respective final state. In order to construct this algorithm, one simply has to 

"invert" the shower evolution, which gives the following recipe: 

The measure of the cluster algorithm is defined by the shower evolution kernels. 

The recombination scheme is given by the inverted shower kinematics. 

This'~pfescript'ioii; 'together with the. above~"aefinitioii, ol a }ef rrieasure-len&i 1t'seH.i{I~~iy 

into a straightforward merging algorithm, based on the CKKW approach, which will be 

discussed in the following sections. 
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Construction of the merging algorithm 

As stated before, the basic idea of the merging algorithm is, to separate matrix element 

and shower domain through a cut in jet measure. This corresponds to a simple phase space 

slicing. Evolution kernels for matrix element and shower domain are therefore defined as 

/(~E(~, t) = J(ab(~, t) 8 [Qab(~, t)- Qcut] 

/(~~(~, t) = lCab(~, t) e [ Qcut - Qab(~, t)] , 
(2.17) 

where Qab denotes the jet measure defined along the lines of Sec. 2.1. Correspondingly, one 

obtains the Sudakov form factors 

(2.18) 

which will be called matrix element and shower Sudakov, respectively. They are related to 

the full Sudakov form factor, Eq. (2.4), through 

(2.19) 

Equation (2.19) effectively encodes the complete merging approach. The ultimate goal is, 

to replace J(ME with a ratio of matrix elements, according to Eq. (2.2). During the following 

rewrite of the evolution equations it will simply be identified, how the factorisation property 

of Sudakov form factors must then be interpreted and employed for event generation. The 

reasoning is straightforward: 

Correcting evolution kernels through higher order matrix elements, one must respect the 

master evolution equation, Eq. (2.1). The accuracy generated by the factorisation scheme 

will then be fully restored. 

No further proof is needed to show the correctness of the algorithm at any logarithmic · 

> ~oraei';~hebiusethis·to-no-ws directly fro'rii £lie accliia2.Y~iillj:)feillei1te'a in the<·~lio~~:tev~l;Jti~"i;·~'""·'· , .. "'" --"C" · 

In other words, the proposed merging scheme does not impair the logarithmic accuracy of 

the shower. 
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One starts by defining the conditional backward no-branching probability in the parton 

shower domain2 

(2.20) 

It corresponds to the modified evolution equation 

(2.21) 

Equation (2.20) differs with respect to the standard shower evolution because of the 8-

function, restricting emissions to Q < Qcut, i.e. the shower domain. Its interpretation is 

therefore straightforward and gives a rule for the modified shower algorithm in the merging: 

Standard shower evolution is implemented, but radiation with Q > Qcut is vetoed. 

Moreover, if backward evolution is concerned, as for the case of an initial state backward 

shower, the initial scale of PDF's is set by the core process of the event. 

If Eq. (2.20) is employed as is, the newly defined functions g do not obey the same evolution 

as the original functions g. The factorisation scheme is thus violated. If the two evolutions 

shall agree, one has to ensure that the full no-branching probability in the merging approach 

is given by Eq. (2.6). This leads to the definition of the no-emission probability for the matrix 

element domain 

P~~)a(z, t, t') 

P (B) PS ( t t') no,a z, , 

~ME(p,2, t') 
~ME(p,2, t) (2.22) 

It is interesting to note, that this probability is independent of z, which effectively is an 

outcome of the factorisation properties of PDF's and FF's. Assuming a "most probable" 

shower history corresponding to the current matrix eleiii.ei_lt is ob_taip,~ci th:rqlJgll t_}J.g_ c;lus:: 
·.,>, ,,,-_ ,.,:::-",.,. .·(>. ·:'J-$1::'",('•:-' .. _,. '<._.... -~-- .,_ - - ~ .- .• -· -- • "" • • '~ ~ l. ·:o:-o-:'!'",; "k......:.,;i;.><"< •: "''. .. 1-->0 ·=-··-~--~' . '" ~"' - ---->- . ----- .:•·:~--..:..= ··-'- ..... _...,., •. ~7-'- -·. -~--------- . 

tering algorithm outlined above, the following rule is obtained: 

2From here on the focus will be on backward evolution. The corresponding reasoning for forward evolution 
follows trivially. 
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The weight, Eq. (2.22), is assigned to any leg with production scale t' and decay scale t found 

during backward clustering. Strong couplings are evaluated at the nodal scales of parton re­

combination. 

The reasoning is easily explained. Hard matrix elements in the factorisation scheme of the 

shower have the same limiting behaviour as the splitting kernels K, once colour adjacent 

parton ensembles become close in phase space. Backward clustering will identify a hierar­

chical structure for the factorisation of hard matrix elements into lower multiplicity matrix 

elements and splitting kernels. Eventually, a core process is found, which cannot be further 

decomposed and which corresponds to the starting conditions for a respective shower evolu­

tion. Matrix elements, however do not implement the no-branching probabilities generated 

by showers. Also the strong coupling is evaluated at a common scale, rather than the nodal 

scales of splittings. Corresponding corrections must therefore be implemented. 

Total cross sections 

An immediate consequence of the general idea for merging matrix elements with showers 

is, that the total cross section can only be influenced by the difference between full hard 

matrix elements and the corresponding product of splitting kernels times the core process. 

In this respect, Eq. (2.21) must be interpreted in the following way: 

To compute hadronic cross sections, PDF's must be evaluated at the scale of the core process 

defined through backward clustering. 

This prescription is independent of the multiplicity of the matrix element, because backward 
-~ ., . ; - • . -~ "''": •. o•- • "'"-f"=.-"'; ~~· • "' ;.; ..,. '" ,~ .. "-<-'}'-- :•!.;2':•_ .. :,- •· -: . " ''""' ~·· •,)! "" : __ .<;.>,·~->:, :;-""••,/-""---{:;".~':_•; .. ' .. :~ ~ ~-··::-~:· ::'. c),_c ·-.. :·;;: " ... .:-·~ .-.,.;..~ .. ;. ,_; •1 ·..=J'_C:•~ •-0..:.~...-..,~.~ • -· • ;:;--;:- .. ,-·;._ ~_:·~-:- :.:..:_ •

0

' ·.-' :, ";:!:,_' ·~.-,-:-:· '·_" ::;~"'.-""""'(...;.:- .. ': ~,:::_:,...._;:•~ ,-' "~-, ,• 

-~-showering sta:its.at the scale of the core process. A mismatch in the two scales would lead 

to ill-defined backward no-branching probabilities and would hence violate the factorisation 

scheme. 
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Note on the hierarchy of scales 

A common effect of the merging algorithm is, that during backward clustering hard matrix 

elements, no strict hierarchy is found in the jet measures. As can be inferred from the above 

arguments, this is however not necessary once proper Sudakov form factors are computed 

and the shower is properly vetoed. The reason is that factorisation of hard matrix elements 

is guaranteed in the ordering parameter of the shower evolution, rather than the jet measure. 

Any clustering algorithm constructed according to the above recipe respects this ordering. 

2.2 The improved CKKW algorothm 

The original form of the merging method was proposed in Ref. [35] for e+e- collisions and 

extended to hadronic initial states in Ref. [36]. It approximately implements the above con­

structed algorithm. According to Sec. 2.1, the necessary steps for an improved prescription, 

employing jet measures and clustering algorithms introduced above are as follows 

• Relevant multi-jet cross sections for the process under consideration are calculated 

with the phase space restriction Q > Qcut· Strong couplings are computed such that 

they give an overestimate, which can later on be reweighted. PDF's are evaluated at 

the scale set by the core process. 

1. Events are generated according to the above defined cross sections with kinematics 

determined by the respective matrix elements. 

2. The most probable parton history of the final state is determined through backward 

clustering. The clustering is guided by information from the matrix element, which 

means that only those parton histories may be identified, which have a corresponding 

Feynman diagram. 

3. The event is accepted or rejected according to a kinematics dependent weight, which 

corresponds to evaluating strong couplings in the shower scheme and computing the 
,._ .• "'". --~".,.p,-;- . ' .• _, - .-!".:)>Jt:.~c-·, -··...-·--~- •. ,~ .. -~-" .....,._. . . ...,,"-.. - "~-~,:~-- • ~-:·-~::q:-.. 0~ ...:..~~ ::..._~,o':"-~:._··.- •• 

no-branching probability, Eq. (2.22), for each matrix element parton. 

4. The shower evolution is started with suitably defined scales for intermediate and final 
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state particles. During showering, any emission harder than Qcut is vetoed. Interme­

diate partons undergo evolution. 

Modified weighting procedure 

The above algorithm has the apparent drawback, that the no-emission probability Eq. (2.22) 

must be computed at a stage, where, in terms of computer algebra, little is known about 

the shower and its evolution. Ideally, however it should result as a direct consequence of 

shower branchings which fall in the realm of matrix elements and are thus forbidden. To 

obtain a corresponding prescription, the above algorithm is slightly reformulated. 

Firstly, the logarithmic derivative of the no-branching probabilities PA~)aME/PS is defined as 

y(B)ME/PS( [' = i(max d( ~ K:ME/PS(( [' 9b(zj(, f) 
a z, "J ( L-t ba '"J ( [' · 

z b=q,g 9a Z,c) 

(2.23) 

From Eq. (2.6) one then obtains the full branching probability in terms of y(B) ME/PS 

(B) ME61PS t _ (B) ME (B) PS _ dt (B) 

{ 

t' - } 
Pbranch,a (z, t, t) - [ 'Ia (z, t) + 'Ia (z, t) J exp 1 f 'Ia (z, f) , (2.24) 

where 'I~B) = 'I~B)ME + 'I~B)PS. Equation (2.24) corresponds to generating an ordering 

parameter t in unconstrained shower evolution, i.e. without the restriction Q < Qcut· The 

first term in the square bracket is however given by hard matrix elements through Eq. (2.2). 

In order not to double count this contribution, corresponding branchings must lead to 

rejection of the entire event. This modifies the respective cross section by 

(2.25) 
--.-->..-.:,; __ ·<;~._:,•_ -~· -~_-__ .;_>;:'-&--';.~ .. ~-:;_-~....:;:,;.-~.:-

Since corresponding events are rejected, the remaining branching probability for accepted 

shower steps is given by ( cf. the description of the veto algorithm, for example in Ref. [110]) 
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(B) PS ( ') 
pbranch a z, t, t 

' 
:rjB)PS(z, t) exp { -1' ~ :riB)(z, f)} 

X exp { { ~ [ IjB)(z, f)- :rjB)PS(z, f) l } ' 

which yields exactly the vetoed shower algorithm described by Eq. (2.20). 

One therefore obtains the modified rules 

(2.26) 

3. The event is accepted or rejected according to a kinematics dependent weight, which 

corresponds to evaluating strong couplings in the shower scheme. 

4. The shower evolution is started with suitably defined scales for intermediate and fi­

nal state particles. Intermediate partons undergo evolution. During showering, any 

emission harder than Qcut leads to rejection of the event. 

Effectively, even the two above steps can be combined through evaluating strong couplings 

during the shower evolution. 

Highest multiplicity treatment 

An apparent problem of the merging algorithm is, that only a very limited number of final 

state multiplicities can normally be generated through full matrix elements. Hence the 

matrix element domain will eventually not contain enough radiation, as explained in the 

following. 

Assume that N = Nmax emissions in the matrix element domain have been generated 

through the above defined algorithm. This means that up to this point, the branching 

probability, Eq. (2.24) has been employed, as it should be. Beyond this point, no further 

emission can be generated through matrix elements, so the branching probability becomes 

(2.27) 
,-,_ .. ..;._:.:- . -""~··; ·:. ~ .... -... -::::.:~ ··-·~- --= _-:-_:::::.: 

Relation (2.27) would obviously violate factorisation, because of the missing derivative, 

corresponding to the integrated kernel from Eq. (2.2). 
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This problem can be circumvented by implementing standard shower evolution beyond the 

last matrix element emission. 3 This prescription is referred to as the highest multiplicity 

treatment. It guarantees, that the shower respects the description of hard radiation through­

out the regime where matrix elements are applicable, while still filling the remaining phase 

space. 

In virtuality ordered DGLAP evolution, this procedure approximately corresponds to setting 

a local veto scale Qcut ~ Qmin if N = Nma;x, where Qmin is the minimum jet measure found 

during backward clustering. The reason is the following: Because of dimensional arguments, 

Q2 must be proportional to the ordering variable t. Following Sec. 2.1, it cannot increase 

over t, since only soft and soft-collinear terms have to be matched in addition to collinear 

ones, see also Sec. 3.1. Moreover, any matrix element branching is likely to be close to 

the phase space cut Qcut· Now assume the jet measure veto scale for shower branchings 

is set to Qmin· On average, the parton shower domain then extends only slightly into the 

matrix element regime. The corresponding error, generated by shower evolution where 

matrix element branchings exist, is small. On the other hand, setting the veto scale Qmin 

effectively acts like setting an upper evolution scale tcut, from where unconstrained evolution 

is possible. 

2.3 The treatment of colour 

The treatment of colour is a central issue when dealing with matrix element and shower gen­

eration in QCD processes. As explained in Chapter 1, QCD coherence effects are determined 

by colour correlations between partons. When matrix elements are combined with parton 

showers, this poses a certain problem, because the colour partners of each parton have to 

be defined in the large Nc limit. Hence the hard matrix element must be interpreted in this 

limit. The problem is more easily solved, if an algorithm is employed, which unambiguously 

assigns a certain set of colours to external particles in the hard matrix element. The basic 

idea is rather than to sum over colours, to sample them in a Monte Carlo fashion, cf. Part I, 

Chapter 3. 

Consider an n-gluon amplitude A (1, ... , n). This amplitude can be decomposed in the 

3The term "beyond" refers to the ordering parameter t. Note that the respective scale is set globally for 
the event, because the matrix element connects all shower evolutions. 
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colour flow basis as [53], cf. Part I, Eq. (1.6) 

A(1, ... ,n) (2.28) 

Here icrk and Jerk denote the 3- and 3-index of parton ak. respectively and the sum runs 

over all possible permutations of the set {2, ... , n }. The quantities A (1, a 2 , •.• , a 11 ) are 

called colour-ordered or partial amplitudes. They depend on the kinematics of the process 

only. All information about colour is incorporated in their respective prefactors. Therefore 

any colour-ordered amplitude only contains planar diagrams, which greatly alleviates its 

computation. A convenient way to interpret Eq. (2.28) is to consider it the decomposition 

of the full QCD amplitude into subamplitudes in the large Nc limit. If the result from the 

matrix element calculation is to be fed into a shower program, the corresponding colour 

connections are thus readily determined if one picks one of the terms in the sum as the 

most probable colour structure and identifies the colour flow according to its colour factor. 

In this context one can make use of the fact that interference terms between two different 

colour structures are always subleading in N 0 .4 

An algorithm to identify the most probable colour structure could thus look as follows ( cf. 

Ref. [76]) 

1. Compute the full matrix element with randomly assigned colours for external QCD 

partons. 

2. Identify all possible permutations {1, 8} which give a non-zero value of 

(2.29) 

Label them by iJi and compute the corresponding partial amplitudes A(1, iJi)· 

3. If N8 is the number of identified permutations, choose a partial amplitude with prob­

ability 

4This argument holds in the colour flow decomposition and the fundamental decomposition. For the 
latter, see for example Ref. [51]. 
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Because of the way, potential partial amplitudes are identified in the colour-flow decompo­

sition, this prescription is similar to the following simplified strategy 

1. Compute the full matrix element with randomly assigned colours for external QCD 

partons. 

2. Assign colours in the large Nc limit at random, but respecting the actual point in 

colour space. That is, two partons may only be colour adjacent at large Nc, if they 

were colour adjacent at finite Nc. 

3. Identify the corresponding permutation a and compute the partial amplitude A(1, a). 
Accept the configuration with probability 

Pa 
IA(1, a) 12 

IA(1, ... , n)l 2 (2.31) 

The drawback of the latter algorithm seems to be, that potentially many points have to be 

drawn for the colour assignment at large N c. In practice, this is however sufficiently fast 

compared to evaluating all possible partial amplitudes. Also, in principle the full amplitude 

squared, IA(1, ... , n)l 2
, might be much smaller than the sum of partial amplitudes squared, 

such that acceptance probabilities are modified. The algorithm is still sufficiently accurate, 

since respective differences are always subleading in Nc. 

Matrix element configurations might exist, which do not allow an immediate projection 

onto large Nc because of the U(1) pseudo-gluon. In this case, a new point in colour space 

can safely be assigned, because the respective contribution to the total cross section is 

subleading. 
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3 Multi-jet merging with SHERPA 

The intention of this chapter is twofold. Firstly, the basic parton shower algorithm cur~ 

rently employed within SHERPA shall be presented, which is the standard parton cascade 

APACIC++ [20]. It is essentially based on the formalism introduced in Sees. 1.1 and 1.2, 

while the angular ordering constraint introduced in Sec. 1.3 is implemented through an ex­

plicit veto. A jet measure along the lines of Sec. 2.1, but specifically adapted for usage in 

APACIC++ is proposed. 

Secondly, differences in the merging algorithms for different matrix element generators 

within the SHERPA framework are studied. An extended comparison, also including dif­

ferent shower generators is in preparation [111]. With the two available matrix element 

generators, AMEGIC++ and COMIX a unique opportunity is given to to study and cross­

check merging systematics within the same framework. In particular the effect of colour 

sampling on the merging can thus be investigated. An application of the procedure to the 

production and decay of top pairs at the LHC and a potential ILC is presented. 

3.1 The parton shower APACIC++ 

Final state showering in APACIC++ proceeds along the lines of Ref. [112]. DGLAP evolution 

of QCD partons is simulated through 1 -+ 2 splittings, governed by the forward no-branching 

probability, Eq. (2.5). The evolution kernels defined in Sec. 2.1 are therefore given by the 

V' ( ) a 8 (z, t) p (-) 
f\..,ab Z, t -+ ab Z , 

27r 
(3.1) 
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Here a denotes the flavour of the splitting parton, and Pab(z) are the unregularised Altarelli­

Parisi kernels in four dimensions for the splitting a -----+ be. For massive partons, splitting 

functions including mass effects can be employed [109]. Evolution and splitting variable are 

defined through 

2 2 t = Pa- ma, and z (3.2) 

ma being the on-shell mass of parton a. The splitting variable z is related to the light-cone 

momentum fraction z = Pb /Pt (with the "+"-direction defined by Pa) through 

2 2 2 h Pa + mb - me , w ere 
r:-;f 

~= 1+yJ_-BI. (3.3) 

Although defined in a seemingly not covariant way, the splitting variable is actually Lorentz 

invariant. This can be seen by investigating electron-positron annihilation in the centre­

of-mass frame of the intermediate virtual photon or Z-boson, where z = (pbP)j(paP) and 

P = P-y•jz = (Q, 0) acts as a gauge fixing vector. 

Colour coherence during evolution is guaranteed by an explicit angular veto, which means 

that a branching is rejected if the opening angle of the emission is larger than the one in 

the previous branching. The strong coupling, in Eq. (3.1) is evaluated at the scale set by 

the transverse momentum k_1_ defined in light-cone kinematics 

z(1- z) 2PbPc- (1- z) 2 m~- z2 m~ . (3.4) 

Initial state showering proceeds in the backward evolution picture along the lines of Ref. [89]. 

The no-branching probability is then given by Eq. (2.6) with the above identification of 

the evolution kernels in terms of DGLAP splitting functions. The splitting variable z is 
reinterpreted as 

s 
(3.5) Z-----tZ= s' , 

s and .§' being the partonic centre-of-mass energies before and after the branching, respec­

tively. This immediately yields the relation x' = xjz, thus partially defining the kinematics 
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after branching. 

An important issue for DGLAP shower algorithms is the convention to implement kinematic 

constraints once a splitting generates recoil due to the branching parton going off mass-shell. 

The recoil strategy seems ambiguous because the branching equations are independent of 

it. In fact however, for the derivation of the DGLAP equation, it is assumed that there is 

a spectator parton aligned along the same axis as the splitter, but with opposite direction. 

This leads to the following approach for APACIC++ 

• In final state showering, the parton which originates from the same splitting as the 

branching parton takes the recoil. This amounts to redefining the splitting variable of 

the respective branching by 

_ _ 1 (- ta + tb- tc) 
Z--tZ = z-----

2 ta 
( ta - t~ - t~)2 - 4 t~ t~ ta + t~ - t~ 
(ta- tb- tc) 2 - 4tbtc + 2ta ' 

(3.6) 

where t and t' denote original and reassigned virtualities, respectively. The reassign­

ment is performed only after both partons have eventually split. 

• In initial state branchings all remaining partons take the recoil. For any splitting 

b --t a the process is redefined with parton b rather than a aligned along the beam 

axis and.§ --t .§'=sf z. 

local definition of a jet measure 

As outlined in Sec. 2.1, the measure of a clustering algorithm for APACIC++ must be based 

on the evolution kernels, Eqs. (3.1). The separation of two partons i and j in the APACIC++ 

scheme is therefore defined through 

2 . { 1 1 } 
Qii = 2PiPi mm C..' C·. ' 

1,] ],1 

(3.7) 

If both partons are in the final state, according to the interpretation of z as an energy 

fraction 

{ 
z·. 1,] if J=g 

1- z· · Ei 
Ci,j = 1,] where 

' 
Z·. 

' 1,] 
Ei +Ei 

1 else 

(3.8) 
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For initial state partons j -t b±, because of Eq. (3.5) we have 

if z = g 

(3.9) 

else 

with xi and Xb± being light-cone momentum fractions with respect to the incoming hadron 

producing initial state parton b± and ib± denoting the t-channel parton which emerges 

from the splitting. The above measure represents the identification of potentially divergent 

structures in the hard matrix element through the shower scheme employed in APACIC++. 

It is now demonstrated that both, the soft and the collinear limit of QCD are matched and 

that the jet measure, Eq. (3. 7) can therefore also be employed to regularise next-to-leading 

order real emission matrix elements. 

Soft limit 

If the energy of a single final state gluon j tends to zero in any fixed direction q, described 

by PJ = >.q, )... -t 0, the above jet measure behaves as 

if i, j final states 
(3.10) 

else 

The corresponding singularity of the matrix element is thus identified. Neither the definition 

of energy fractions zi,J in Eq. (3.8) nor the definition of xi do, however project onto the correct 

eikonals, which would involve the potential colour partners of the splitting parton [113], cf. 

Sec. 2.1. Hence the phase space for soft gluon radiation is overestimated by Eq. (3.7). This 

is due to the fact that only the double leading logarithmic part of branchings is considered 

in the soft gluon limit. Matrix element contributions are then cut off too early (in terms of 

jet measure) when performing matrix element parton shower merging. 

Collinear limit 

· · ... · Tmf collinear limit for part oils i ancf i 1;t Ciefined'tBr~ligii'' t-he .. li~i£()~ill:~~eS'c~ii~g "''R:"'~ 

>. k.L [81], cf. Sec. 2.1. For the current splitting kinematics, the transverse momentum can 

be defined as k.L = 'A - 'fliJ ('Pi PiJ) / ~]. In this case Zi,j is constant (Xi and xb are constant) 
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and for final state singularities the jet measure, Eq. (3. 7) behaves as 

where 
{ 

Z·. t,) 

- 1- Z· C·. = t,J 
t,) 

1 

if j = g 
2 2 ·{1 1} Qii --->.X 2 PiPi mm ---, --- , 

G· C·· t,J J, t 

(3.11) 

else 

with a corresponding relation for initial state singularities. Equation (3.11) identifies the 

leading part of the corresponding Altarelli-Parisi splitting function and thus corresponds to 

Eq. (2.15) in the massless limit. 

3.2 Comparative stUJdies with APACIC++ 

In the following, results from an implementation of the improved CKKW merging prescrip­

tion are presented. APACIC++ is employed as the corresponding shower generator, while the 

two programs AMEGIC++ and COMIX are used to provide hard matrix elements. In the first 

part, e+e- annihilation into hadrons is discussed, while the second part deals with Drell-Yan 

lepton pair production. The two processes offer the possibility, to study both pure final 

state and final plus initial state parton evolution. Initial state evolution is more complex 

due to the constraint that outermost partons in the shower have to match up with the beam 

hadron content. A proper understanding of final state evolution is therefore mandatory, 

before one can turn to combined showering. Additionally, an application of the new merg­

ing techniques to the production and decay of tt pairs at the LHC and a linear collider is 

presented. It is observed that, at hadron colliders, hard matrix elements predict P.1.. and TJ 

spectra for jets originating from the tt production process, which are significantly different 

from pure parton shower results. 

Jet production in e+e- collisions 

For this study, a configuration according to the setup of the LEP e+e--collider, Run I, was 

chosen, i.e. yiS = 91.25 GeV. At the level of hard matrix elements, jets are equivalent to 

. >"the'QCDpartoris d, u, s, c,· b andcgriio-n:·Tne''maximarnumbe'r'or}eis~-N~;-'18-.sel~ctecf. 

such that event generation can easily be performed with AMEGIC++, which restricts Nmax. 

to 5. Results are given at the hadron level, i.e. after showering and hadronisation. It can be 
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argued that it would be more appropriate, to quote results at the parton level because this 

offers the possibility to study merging systematics without having to worry about potential 

smearing effects from hadronisation, decays and photon radiation. However, another effect 

is then underestimated, which is the distribution of colour in the final state and its potential 

effects on hadronisation. Especially for the merging with COMIX this could play a vital role, 

as explained in Sec. 2.3 

Differential kT-jet rates are chosen as observables. In the context of this work, the differential 

rate Ynn+l gives the distribution of normalised jet measures Qnn+l' where n + 1 jets are 

clustered to n jets according to the kT-algorithm presented in Refs. [96]. y is related to 

Q through simple rescaling y = Q2 
/ s. Given that similar measures are used to separate 

matrix element and shower domain in the CKKW algorithm, it can be expected to see the 

largest merging systematics in these observables. Especially when varying the separation 

cut Qcut, the region around the respective cut values usually shows the biggest differences, 

which makes the kT-jet rates preferred observables for the study. 

The following separation cuts have been used in the simulation: 

• logwYcut = -2.5 +-t Qcut = 5.131 GeV 

• loglO Ycut = -2.0 +-t Qcut = 9.125 GeV 

• loglO Ycut = -1.5 +-t Qcut = 16.227 GeV 

Figure 3.2 shows the three differential jet rates y23 , y34 , and y45 for the two generator 

combinations. As expected, deviations are biggest around the respective cut values. None 

of the samples, however leads to variations exceeding 10%. Also, none of them shows a 

clearly lower variation than others around the separation cut. It can hence be concluded 

that the impact of colour correlations in the final state is properly described through both, 

the merging with colour summed and with colour sampled matrix elements. 

Drell-Van lepton pair production 
~:.·"'"~·-• .::,-: .. -..... ~:;;.·-r .• -~ . -

· ;,.. Tlie ~ahn'o"o(tlie analysis presented· in this section is, to study potential differences with 

respect to pure final state parton evolution. This is achieved by investigating Drell-Yan 

pair production at the Tevatron, Run I. The criteria for event generation are pp collisions 
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Fig. 3.1 Differential jet rates in e+e~ ----. jets using the Durham jet measure [96] and the 
E-scheme for parton recombination. Shown are the results for the combination of 
AMEGIC++ (first row) and COMIX (second row) with APACIC++. 

at ..fS = 1800 GeV and a mass window of the Drell-Yan pair of 66 GeV < m1+1- < 116 GeV. 

For the hard process, CKKW merged samples of pj5----+ e+e~ + N jets were produced, with 

the maximum jet multiplicity restricted to Nma:x = 3, which corresponds to a jet multiplicity 

of 5 for the e+e--case. 

Analyses have been carried out on parton level, with the two different generator combina­

tions also employed for the previous study. The choice not to include hadronisation and 

hadron decays in the simulation is motivated by the fact, that also the underlying event 

would have to be simulated. This could, however add extra hard radiation to the event, 

which is not the current object of interest and should therefore be avoided. 

The tests are again concerned with differential jet rates. For this analysis, the CDF Run II 

kT algorithm [77] has been employed to defin~ jets. T~he phase space s~pa!11ti9p. _c\};t t~~~-s _ 
~~ '"""· ----=--.,;~_:._.....,.:·-~:·,:\~ '""ff.:- ~·.=..-.-.~· .-· . - . - • -~ •. ....:'c:.,.,..,_._-,!t,.oc~-----:>;l.~-- ..... ~~ ..... .-.....,.-: .• ~ • - ~--'<"'- ·'"·"' -~______.,'-",__~ .. --.• ~--- --- '-~.-.--.r .... ----·~ ~ ·~-r 

the following values 

• Qcut = 15 GeV +--+ loglO(Qcut/GeV) = 1.18 
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Fig. 3.2 Differential jet rates in pp ---t e+e- employing the CDF Run II kT algorithm [77]. 

Shown are the results for the combination of AMEGIC++ (first row) and COMIX (second 
row) with APACIC++. 

• Qcut = 20 GeV +---+ log10 (Qcut/GeV) = 1.30 

• Qcut = 30 GeV +---+ log10 (Qcut/GeV) = 1.48, 

As expected and as explained in Sec 3.2, systematic differences occur predominantly around 

the merging cuts. They are of the order of 20%, as can be seen in Figure 3.2. 

3.3 Application to tl production and decay 

It is worthwhile to study the implications of the improved CKKW formalism for relevant 

processes at future colliders. An example for such a process, which plays a significant 

role, both as a signal for a better measurement of Standard Model parameters and as a 
~.--,.-J;, .. '-!-.-.:~--· .• :.--.~~.-.....:::_,-_,........,.<~-:::>::!:' ~ ._,_,, __ ,. .'' _,, ·-· ~-.::::~--"'~~·~:_,,.,._,..,.:o_;:._~.:;-"V-;-.-~ ...... ::,..-::.<1~'"!.~-·-.:.__ 

~ -cb~~kg;(;'U_i{Cf"'t~'new physics searches, is top quark pair production. In the context of this 

thesis, the process will be investigated at the LHC and a potential linear collider (ILC) 

operating at a centre-of-mass energy of 500 GeV. Firstly, modifications of the parton shower 
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are presented, which are needed for a proper simulation of radiation from the decaying heavy 

quarks. Then a comparison between the pure parton shower approach and the CKKW 

merging is drawn, highlighting that proper real next-to-leading order corrections might be 

crucial for this kind of process. Systematics in the merging of decay processes are briefly 

discussed. 

Parton shower modifications 

The QCD radiation pattern in heavy flavour decay has been thoroughly investigated in 

Refs. [94, 114]. In this thesis, a rather simple strategy is employed. QCD radiation off the 

decaying heavy particle is described by the standard parton shower with massive splitting 

functions, except for two modifications: 

1. In ordinary final state parton showering, the mother particle goes off-shell, while the 

daughters retain their respective on-shell masses. In showering off decaying heavy 

particles, on the contrary, the mother particle retains its on-shell mass, while the 

daughter of the same flavour goes off-shell with decreased virtuality. 

2. The maximally allowed phase space volume in a branching process of a decaying 

particle is reduced by the factor 

IP~/bl 
Wps = -- = 

IP~I 
t (t'- tb- ic) 2 - 4tbtc 
t' (t- tb- ic) 2 - 4tbtc ' 

(3.12) 

where t and t' are the virtualities of the decaying particle before and after the emission 

and tb and tc are the virtualities of the decay products. This correction weight cor­

responds to a decrease in phase space volume due to a decrease in three-momentum 

IP~/11 in the centre-of-mass frame of the decayed parton. 

The corresponding radiation pattern of APACIC++ is shown in Fig. 3.3 for the decay t --. 

(3.13) 

.·~::.· .. -
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Fig. 3.3 Dalitz plot for the decay process t ---+ Wbg. The phase space 
boundary, computed according to Ref. [94], is depicted by the 
solid line. It can be seen that APACIC++ completely fills the 
phase space, while the largest part of emissions lies in the soft­
quasi-collinear region (upper left corner). 

Treatment of decay products 

To correctly describe the decay process of the heavy flavour, it is vital to respect spin 

correlations between production and decay amplitudes. Within the algorithm presented 

here, this is done by firstly computing the full matrix element for production and decay 

of the heavy flavour and then adding in the parton evolution of the intermediate quark. 

In this respect, it must be defined, how the kinematics of the decay products are to be 

reconstructed, once a parton emission occurred in the shower. The following strategy is 

used: 

1. If the decaying heavy particle keeps its mass, i.e. if the radiation occurs in the pro­

duction part of the process, the decay products are simply boosted into the new 

centre-of-mass frame of the decayer. 

2. If the decaying heavy particle does not keep its mass, i.e. if the radiation occurs in 

~,, '-~ tn('rdeca;Vp'ai-t of tli"e piOcess,'.tlie decaf-pr~dilct'S' are rec~mt~-ucted- ;~ch-Th~ti~-1 tl~~~-"~- --
centre-of-mass frame of the daughter the momenta point into the same direction as 

they did in the centre-of-mass frame of the mother before. 
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The CKKW approach for heavy resonances 

The combination of matrix elements and parton showers in production and decay of strongly 

interacting heavy resonances is based on using a (potentially Breit-Wigner improved) narrow 

width approximation to compute the corresponding hard matrix elements. This allows to 

cut the propagator of the decaying particle such that there are two separate processes, the 

production and the decay of the heavy flavour. Both are spin-and colour correlated but 

can be computed as on-shell matrix elements and are therefore gauge invariant. Through 

the identification of the decaying intermediate particle, a parton shower can independently 

be assigned to its production and decay. Within SHERPA, the narrow with approximation 

is realised by projecting the full matrix element on those amplitudes, which include the 

resonances as intermediate states, thus summing over its degrees of freedom, such as spin, 

momentum and colour. The full amplitude therefore factorises into a production and a 

decay part, connected with a propagator. For a number of intermediate states, labelled by 

'l, 

A
(n) = Ll(nprod) tO-. II p A(n;) 

"' 'prod 'U i dec; ' (3.14) 
i Edecays 

such that the total number of outgoing particles is given by ntot = nprod + Li(ni -1). Upon 

application of the CKKW merging algorithm and when integrating over the phase space 

of the outgoing particles, jet measures Q between strongly interacting particles must be 

larger than a critical value Qcut· Due to the factorised structure of the process, this critical 

value can be specified per subprocess, i.e. there may be different values Qprod = Qcut (prod) 

and Qdec,i = Qcut(deci)· When reweighting the hard matrix element with Sudakov form 

factors, these different cutoff values must be employed. Furthermore, the highest multiplicity 

treatment as described in Sec. 2.1 is to be applied separately in each subamplitude. 

Once a particular kinematics is chosen for the hard matrix element, the parton shower his­

tory is identified as in the standard merging prescription. Since the full amplitude factorises 

over time-like propagators, only particles belonging to the same subamplitudes Aprod or 

·.--· )(i~-.i 'can ·Be-combined. Sudakov -reweightfi1g-cfo;~"th~ p;~(fuction ~fre~-or{~'ut··~t~~~~ci'i;t~ 

particles also takes places according to the original prescription, cf. Chapter 2. Finally the 

jet veto is applied separately within each part of the parton showers related to a different 
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Fig. 3.4 Comparison of the Durham 2- and 3-jet rates for massive quarks, calculated according 
to Ref. [115], with results from APACIC++. Good agreement is found between the 
parton shower result (solid histogram) and the analytical calculation (dashed line). 
For reference, results with massless quarks are also shown. 

subamplitude with the corresponding veto scale Qcut(proc). 

To summarise, the above prescription translates into the CKKW method being applied 

separately and completely independent for each subamplitude Aprod and ~ec,i of the process 

under consideration. 

Preliminary results 

For the numerical analyses in this subsection the reweighting with analytic Sudakov form 

factors is employed, cf. Sec. 2. 1. It must therefore be assured that those match the respective 

distributions generated by the parton shower. A corresponding comparison is shown in 

Fig. 3.4. Predictions from APACIC++ and an analytic calculation performed in Ref. [115] 

are displayed for t he Durham kr-jet rates at a linear collider operating at 500 GeV. 

Figure 3.5 shows the impact of description of additional hard radiation through appropriate 

matrix elements in the case of tt-production at the LHC. Subsamples from a given matrix 

element configuration are displayed in colour with the colour code explained above each 

figure. The following notation is employed 

• The first number denotes the additional jet multiplicity in the tt production process. 
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• The second and third numbers denote the additional jet multiplicity in the t and f 

decay processes, respectively. 

It is clearly seen that subsamples including an additional hard jet in the production process 

(1-0-0, 1-1/0~0/1 and 1-1-1 (not displayed)) generate a much harder transverse momentum 

spectrum of the tt pair and much harder kr-jet rates as the pure parton shower. This is 

because of possible hard initial state radiation, which is poorly described in the shower 

approach. Simultaneously, this radiation deforms the pseudorapidity spectrum of the first 

additional hard jet (identified through kr-clustering and Monte Carlo truth based b-tagging). 

It is seen that the pure parton shower approach predicts a dip at central rapidity, while the 

merged sample does not show this feature. 

In Fig. 3.6 a consistency check of the merging m decay processes is presented. As an 

example, the production of a tf-pair at a linear collider operating at 500 GeV is chosen. 

The phase space separation cut is varied from 9 GeV to 28 GeV, which gives a reasonable 

estimate of associated uncertainties. At first glance (inferred from the difference between 

predictions, shown in the lower panels of Fig. 3.6), these uncertainties seem to be quite 

large. However, it must be noted that this is actually "twice" the theoretical uncertainty 

generated by the merging because the separation cut is varied in both, the t and the f decay 

process. Variation in the production process induces smaller uncertainties. 
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Fig. 3.5 Comparison of the kT 2- and 3-jet rates (upper panels), the .rapidity of the first extra 
jet and the t ransverse momentum of the "reconstructed" tt-pair (lower panels) in 
pp -t tt -t w+w-bb+ jets events at .jS = 14 TeV. Shown is a comparison between 
t he pure parton shower result (no int. PS), parton shower with radiation off inter­
mediate top quarks (Apacic++) and a CKKW-merged sample. Contributions from 
various matrix element configurations are highlighted in colour for the merged sam­
ple, with the colour code indicating the additional jet multiplicity in the production 
® t-decay ® t-decay process. Here, up to one extra jet has been simulated through 
the matrix element . 
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Fig. 3.6 Comparison of the Durham 2- and 3-jet rates (upper panels) and the rapidity 
and transverse momentum of the first extra jet with respect to the axis of the 
reconstructed tl-pair (lower panels) in e+e- ~ tl ~ w+w- bb +jets events at 
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element configurations are highlighted in colour, with the colour code indicating the 
additional jet multiplicity in the production ® t-decay ® f-decay process. 
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4 Comparison with other generators 

In this chapter, a comprehensive comparison of implementations of multi-jet merging pre­

scriptions is presented, where w+-production is chosen as core process. Three different 

merging approaches are compared, the CKKW scheme presented in the previous chapters, 

the Lonnblad scheme, and the MLM scheme. This comparison has be published in Ref. [100]. 

It is an evolution and extension of the work in Ref. [116], where implementations of CKKW 

were presented for HERWIG and the so-called pseudo-shower alternative to CKKW using 

PYTHIA, as well as the results of an approach inspired by the MLM-scheme. The work 

presented here considers the predictions of five different codes, ALPGEN, ARIADNE, HELAC, 

MADEVENT and SHERPA. ALPGEN implements the MLM scheme, where the results shown 

here are obtained with the HERWIG shower; ARIADNE the Lonnblad scheme; HELAC the 

MLM scheme, but results will be shown with the PYTHIA shower; MADEVENT uses a vari­

ant of the MLM scheme, based on the CKKW parametrisation of the multi-parton phase 

space. This list of codes therefore covers a broad spectrum of alternative multi-jet merging 

approaches and, in particular, includes all the programs used as reference event genera­

tors for multi-jet production by the Tevatron and LHC experimental collaborations. For 

those, results are shown relative to publicly available versions, therefore providing valuable 

>·, information'-onthe systerhatics involvedTrrtllit'generatTon ·of niulti~jet configuratioii's-by"{l{€­

experiments. A preliminary study, limited to the ALPGEN, ARIADNE and SHERPA codes, 

was presented in Ref. [99]. 
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4.1 Merging procedures 

In general, the different merging procedures in the various codes follow a similar strategy: 

1. A jet measure is defined and all relevant cross sections including jets are calculated 

for the process under consideration. I.e. for the production of a final state X in pp­

collisions, the cross sections for the processes pp -r X+ n jets with n = 0, 1, ... , nmax 

are evaluated. 

2. Hard parton samples are produced with a probability proportional to the respective 

total cross section, in a corresponding kinematic configuration following the matrix 

element. 

3. The individual configurations are accepted or rejected with a dynamical, kinematics­

dependent probability that includes both effects of running couplings and of Sudakov 

form factors. In case the event is rejected, step 2 is repeated, i.e. a new parton sample 

is selected, possibly with a new number of jets. 

4. The parton shower is invoked with suitable initial conditions for each of the legs. In 

some cases, like, e.g. in the MLM procedure described below, this step is performed 

together with the step before, i.e. the acceptance/rejection of the jet configuration. 

In all cases the parton shower is constrained not to produce any extra jet. Stated in 

other words: configurations that would fall into the realm of matrix elements with a 

higher jet multiplicity are vetoed in the parton shower step. 

The merging procedures discussed below differ from the CKKW prescription and with re­

spect to each other mainly 

• in the jet definition used in the matrix elements 

• in the way the acceptance/rejection of jet configurations stemming from the matrix 

element is performed 

• and in details concerning the starting conditions of and the jet vetoing inside the 

part on shower. 
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The CKKW approach in SHERPA 

In general, the CKKW implementation in SHERPA, as presented in the previous chapters 

is employed. It must be noted however that in contrast to what is introduced there, the 

internal jet definition follows a different strategy. Namely jet measures for hadronic collisions 

are defined along the lines of Refs. [95, 117] 

(4.1) 

Also, the highest jet multiplicity is dealt with as presented ibidem and backward clustering 

proceeds by means of a kr-algorithm with the above measure and employing the E-scheme. 

According to Ref. [118] the regularisation of initial state soft and collinear singularities 

through Qib± is equivalent to employing dimensional regularisation in the MS subtraction 

scheme. Other schemes are presented e.g. in Refs. [90, 119]. The D-parameter is introduced 

in Ref. [77]. It corresponds to a first approximation of Ci,b± in Eq. 3.9. 

The Dipole Cascade and CKKW 

The merging prescription developed for the dipole cascade in the ARIADNE program [103] 

is similar to CKKW, but differs in the way the shower history is constructed, and in the 

way the Sudakov form factors are calculated. Also, since the ARIADNE cascade is ordered 

in transverse momentum the treatment of starting scales is simplified. Before going into 

details of the merging prescription, it is useful to describe the basics of the dipole cascade, 

since it is different from conventional parton showers. 

The dipole model [102] as implemented in the ARIADNE program is based on iterating 

2 ---+ 3 dipole splittings instead of the usual 1 ---+ 2 partonic splittings in a conventional 

parton shower. Gluon emission is modeled as coherent radiation from colour-anti-colour 

charged parton pairs. This has the advantage of e.g. including first order corrections to 

the matrix elements for e+ e- ---+ qq in a natural way and it also automatically includes 

tlfe~"cohefe~tfce"effects modeled by angular oroefing~ino~convecndo:iuil sh.owers~o'Tl1~'pro~~sS~f ·~ 

quark-anti-quark production does not come in as naturally, but can be added [120]. The 

emissions in the dipole cascade are ordered according to an invariant transverse momentum 
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defined as 

k2 - 813832 
j_- ' 

8123 
( 4.2) 

where 8ij is the squared invariant mass of parton i and j, with the emitted parton having 

index 3. 

When applied to hadronic collisions, the dipole model does not separate between initial- and 

final-state gluon radiation. Instead all gluon emissions are treated as coming from final-state 

dipoles [121]. To be able to extend the dipole model to hadron collisions, spatially extended 

coloured objects are introduced to model the hadron remnants. Dipoles involving hadron 

remnants are treated in a manner similar to normal final-state dipoles. However, since the 

hadron remnant is considered to be an extended object, emissions with small wavelength 

are suppressed. This is modeled by only allowing a fraction of the remnant to take part in 

the emission. The fraction that is resolved during the emission is given by 

(4.3) 

where 11 is the inverse size of the remnant and a is the dimensionality. These are semi­

classical parameters, which have no correspondence in conventional parton cascades, where 

instead a suppression is obtained by ratios of quark densities in the backward evolution. The 

main effect is that the dipole cascade allows harder gluon emissions in the beam directions, 

enabling it to describe properly e.g. forward jet rates measured at HERA (see e.g. [122]). 

There are two additional forms of emissions, which need to be included in the case of hadronic 

collisions. One corresponds to an initial state g -----+ qij. This does not come in naturally in 

the dipole model, but is added by hand in a way similar to that of a conventional initial­

state parton shower [123]. The other corresponds to the initial-state q -----+ gq (with the gluon 

entering into the hard sub-process), which could be added in a similar way, but this has not 

yet been implemented in ARIADNE. 

A different model, based on a perturbative interpretation, where emissions in hadron col­

,-. 'lisionsc.stem' from'"initial~finaJ and friitia:l-initial··m-pores ·was presented''ill-'Rer'[25f~"i'hi"s 

model yields very promising results in hadron-hadron collisions. It has, however not been 

investigated in deep inelastic scattering yet. 
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When implementing CKKW for the dipole cascade [97, 124], the procedure is slightly dif­

ferent from what has been described above. Rather than using the standard k1_ -algorithm 

to cluster the state produced by the matrix-element generator, a complete set of interme-

diate partonic states, Si, and the corresponding emission scales, q1_i are constructed, which 

correspond to a complete dipole shower history. Hence, for each state produced by the 

matrix-element generator, basically the question how would ARIADNE have generated this 

state is answered. Note, however, that this means that only coloured particles are clustered, 

which differs from eg. SHERPA, where also theW and its decay products are involved in the 

clustering. 

The Sudakov form factors are then introduced using the Sudakov veto algorithm. The idea 

is that the Sudakov form factors used in ARIADNE should be reproduced. This is done by 

performing a trial emission starting from each intermediate state Si with q1_i as a starting 

scale. If the emitted parton has a q1_ higher than Ql_i+l the state is rejected. This correspond 

to keeping the state according to the no-emission probability in ARIADNE, which is exactly 

the Sudakov form factor. 

The M LM procedure 

The so-called MLM "matching" algorithm is described as follows. 

1. The first step is the generation of parton-level configurations for all final-state parton 

multiplicities n up to a given N (W + N partons). They are defined by the following 

kinematical cuts: 

part > min P1_ P1_ , 117part I < 17max , f:lRjj > Rmin , (4.4) 

where viart and 7]part are the transverse momentum and pseudo-rapidity of the final­

state partons, and tlRii is their minimal separation in the ( 7], ¢) plane. The parameters 

vTin, 17max and Rmin are called generation parameters, and are the same for all n = 

1, ... , N. 
-0 ~ --:-·-~· _,,: """"-'·~.->-"'·~ . ::..-

2. The renormalisation scale is set according to the CKKW prescription. The necessary 

tree branching structure is defined for each event, allowing however only branchings, 
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which are consistent with the colour structure of the event, which in ALPGEN is 

extracted from the matrix-element calculation [76]. For a pair of final-state partons i 

and j, the k 1_-measure defined by 

(4.5) 

is used, where D.Rrj = b.rl[j + b.<Prj, while for a pair of initial/final-state partons one 

has 

( 4.6) 

i.e. the Pl of the final-state one. 

3. The k1_ -value at each vertex is used as a scale for the relative power of as. The 

factorisation scale for the parton densities is given by the hard scale of the process, 

Q6 = m~ + Plw· It may happen that the clustering process stops before the lowest­

order configuration is reached. This is the case, e.g., for an event like uu -----+ W csg. 

Flavour conservation allows only the gluon to be clustered, since uu -----+ W cs is a LO 

process, first appearing at O(a;). In such cases, the hard scale Q0 is adopted for all 

powers of as corresponding to the non-merged clusters. 

4. Events are then showered, using PYTHIA or HERWIG. The evolution for each parton 

starts at the scale determined by the default PYTHIA and HERWIG algorithms on the 

basis of the kinematics and colour connections of the event. The upper veto cutoff to 

the shower evolution is given by the hard scale of the process, Q0 . After evolution, a 

jet cone algorithm is applied to the partons produced in the perturbative phase of the 

shower. Jets are defined by a cone size Rc1us, a minimum transverse energy E~us and a 

maximum pseudo-rapidity 17~:. The parameters are called matching parameters, and 

should be kept the same for all samples n = 0, 1, ... , N. Jets such defined provide the 

starting point for the matching procedure, described in the next point. In the default 

implemehtation, Rc1us = · R~in, 1]~~ ~ 77~::"'ai1crB_rus ~-PTin + ffi'ax(5'tfeV;cr:txpT1fi) · 

are assumed, but these can be varied as part of the systematics assessment. To 

ensure a complete coverage of phase space, however, it is necessary that Rc1us 2: Rmin, 
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nclus < n and Eel us > Pmin. '/max - .,max 1_ _ 1_ 

5. Starting from the hardest parton, the jet which is closest to it in (TJ, ¢) is selected. If 

the distance between the part on and the jet centroid is smaller than 1.5 x Rc1us, one says 

that the parton and the jet match. The matched jet is removed from the list of jets, 

and the matching test for subsequent partons is performed. The event is fully matched 

if each parton matches to a jet. Events, which do not match, are rejected. A typical 

example is when two partons are so close that they cannot generate independent jets, 

and therefore cannot match. Another example is when a parton is too soft to generate 

its own jet, again failing matching. 

6. Events from the parton samples with n < N, which survive matching, are then required 

not to have extra jets. If they do, they are rejected, a suppression, which replaces the 

Sudakov reweighting used in the CKKW approach. This prevents the double counting 

of events, which will be present in, and more accurately described by, the n + 1 sample. 

In the case of n = N, events with extra jets can be kept since they will not be generated 

by samples with higher n. Nevertheless, to avoid double counting, it is required that 

their transverse momentum be smaller than that of the softest of the matched jets. 

When all the resulting samples from n = 0, ... , N are combined, one obtains an inclusive 

vV +jets sample. The harder the threshold for the energy of the jets used in the matching, 

ETus, the fewer the events rejected by the extra-jet veto (i.e. smaller Sudakov suppression), 

with a bigger role given to the shower approximation in the production of jets. Using lower 

thresholds would instead enhance the role of the matrix elements even at lower E 1_, and 

lead to larger Sudakov suppression, reducing the role played by the shower in generating 

jets. The matching/rejection algorithm ensures that these two components balance each 

other. This algorithm is encoded in the ALPGEN generator [98, 15], where evolution with 

both HERWIG and PYTHIA are enabled. However, in the framework of this study, the parton 

shower evolution has been performed by HERWIG. 

>· T~he M~D.EV:ENT approach 

The approach used in MADGRAPH/MADEVENT [125, 17] is based on the MLM prescription, 

but uses a different jet algorithm for defining the scales in et8 and for the jet matching. The 
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phase space separation between the different multi-jet processes is achieved using the k1_­

measure as in SHERPA (Eq. (4.1) with D = 1), while the Sudakov reweighting is performed 

by rejecting showered events that do not match to the parton-level jets, as in ALPGEN. This 

approach allows more direct comparisons with SHERPA, including the effects of changing the 

k1_ -cutoff scale. The details of the procedure are as follows. 

Matrix-element multi-parton events are produced using MADGRAPH/MADEVENT version 

4.1 [73], with a cutoff Q~~ in clustered k1_. The multi-parton state from the matrix-element 

calculation is clustered according to the k1_ -algorithm, but allowing only clusterings that are 

compatible with the Feynman diagrams of the process, which are provided to MADEVENT 

by MADGRAPH. The factorisation scale, i.e., the scale used in the parton densities, is taken 

to be the clustering momentum in the last 2 -> 2 clustering (the "central process"), usually 

corresponding to the transverse mass, m1_, of the W boson. The k1_-scales of the QCD 

clustering nodes are used as scales in the calculation of the various powers of 0:8 • 

As in the ALPGEN procedure, no Sudakov reweighting is performed. Instead, the virtuality­

ordered shower of PYTHIA 6.4 [6] is used to shower the event, with the starting scale of the 

shower set to the factorisation scale. The showered (but not yet hadronised) event is then 

clustered to jets using the k1_ -algorithm with a jet measure cutoff Q~~n > Q~~' and the 

matrix-element partons are matched to the resulting jets, in a way, which differs from the 

standard MLM procedure. A parton is considered to be matched to the closest jet if the 

jet measure Q(parton,jet) is smaller than the cutoff Q~~n· Events where not all partons are 

matched to jets are rejected. For events with parton multiplicity smaller than the highest 

multiplicity, the number of jets must be equal to the number of partons. For events with the 

highest multiplicity, N jets are reconstructed, and partons are considered to be matched if 

Q(parton,jet) < Q~arton, the smallest k1_-measure in the matrix-element event. This means 

that extra jets below Qr;rton are allowed, similar to the Sherpa treatment. The standard 

MLM scheme with cone jets is implemented as an alternative. 

HELAC implementation of the MLM procedure 

-:c, ' HELAC""generates events for all possible ptocesses-,."-at hadron arid leptort"colliders "-within 

the Standard Model and has been successfully tested with up to 10 particles in the final 

state [72, 126, 127]. It implements the MLM procedure as described above, where partons 
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from the matrix-element calculation are matched to jets constructed after parton showering. 

Parton-level events are generated with a P_Lmin threshold, a minimum parton separation, 

Rmin, and a maximum pseudo-rapidity, T/max· In order to extract the necessary information 

for reweighting, initial- and final-state partons are clustered backwards as described for the 

MLM procedure, where again the colour information extracted from the matrix-element 

calculation is used as a constraint on the allowed clusterings. For every node, a factor of 

a 8 (Q 2 )/a5 (Q6) is multiplied into the weight of the event, with Q being the nodal scale of 

clustering. For unclustered vertices as well as for the scale used in the parton densities, 

the hard scale of the process Q6 = m~ + Plw is used. Events from HELAC are output in 

Les Houches event file format [128]. This output is read into PYTHIA version 6.4 [6], where 

the virtuality-ordered parton shower is constructed. For each event, a cone jet-algorithm 

is applied to all partons resulting from the shower evolution. Resulting jets are defined 

by Ef~in' TJ~: and by a jet cone size Rc!us· Partons in the parton-level event are then 

matched to one of the constructed jets. Starting from the parton with the highest pj_, 

the closest jet (1.5 x Rcius) is selected in the pseudo-rapidity/azimuthal-angle space. All 

subsequent partons are matched iteratively to jets. If this is impossible, the event is rejected. 

Additionally, for n < N, matched events with the number of jets greater than n are rejected, 

whereas for n = N, i.e. the highest multiplicity, events with extra jets are kept only if the 

extra jets are softer than the N matched jets. 

4.2 General properties of the event generation for the 

study 

In the following sections the case of W +multi-jet production is presented as an example for 

multi-jet merging. This is one of the most studied final states because of its important role 

as a background to top quark studies at the Tevatron. At the LHC, W +jets, as well as the 

similar Z+jets processes, will provide the main irreducible backgrounds to signals such as 

multi-jet plus missing transverse energy, typical for Supersymmetry and other manifestations 

--'ofnew ·rh:Ysics~~-Tlte uriCierstalidinfot T¥+111liitl=Jet~pibalicti~D: ~t'the--t~~;t;c;;!~,_th~~-~f~;-;--- ,. 
an essential step towards the validation and tuning of the tools presented here, prior to their 

utilisation at the LHC. 



152 4 Comparison with other generators 

The CD F and D0 experiments at the Tevatron collider have reported cross-section measure­

ments for W +multi-jet final states, both from Run I [129] and, in preliminary form, from 

Run II [130]. The Run I results typically refer to detector-level quantities, and a compari­

son with theoretical predictions requires to process the generated events through a detector 

simulation. These tests were performed in the context of the quoted analyses, using the LO 

calculations available at the time, showing a good agreement within the large statistical, 

systematic and theoretical uncertainties. The preliminary CDF result from Run II [130] is 

instead corrected for all detector effects, and expressed in terms of true jet energies. In this 

form it is therefore suitable for direct comparison with theory predictions. Measurements 

of Z+multi-jet rates are also crucial, but suffer from lower statistics w.r.t. the W case. A 

Run II measurement of jet pj_ spectra in Z+multi-jet events from D0 has been compared to 

the predictions of SHERPA in Ref. [131], showing again a very good agreement. Preliminary 

CDF results on the spectra of the first and second jet in Z +jet events have been compared 

against parton-level NLO results [132]. For both theW and Z cases, the forthcoming anal­

yses of the high-statistics sample now available at the Tevatron will provide valuable inputs 

for more quantitative analyses of the codes presented here. 

For each of the codes, a large set of observables is calculated, addressing inclusive properties 

of the events (transverse momentum spectrum of the W and of leading jets) as well as 

geometric correlations between the jets. What is presented and discussed here is a subset 

of the studies, which illustrates the main features of the comparison between the different 

codes. A preliminary account of these results, limited to the ALPGEN, ARIADNE and SHERPA 

codes, was presented in Ref. [99]. More complete studies of the systematics of each individual 

code have been [95, 124, 133] or will be presented elsewhere by the respective authors. 

The existence in each of the codes of parameters specifying the details of the merging 

algorithms presents an opportunity to tune each code so as to best describe the data. This 

tuning should be seen as a prerequisite for a quantitative study of the overall theoretical 

systematics: after the tuning is performed on a given set of final states (e.g. the W +jets 

considered here), the systematics for other observables or for the extrapolation to the LHC 

--carr Be obtained by comparing the diffefencce '<fi1-exti:·apolalfori between~tflitva:riOiisco<l~s:'"-­

Here it would be advantageous if future analysis of Tevatron data would provide spectra 

corrected for detector effects in a fashion suitable for a direct comparison against theoretical 
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predictions. 

The following two sections present results for the Tevatron (pp collisions at 1.96 TeV) and 

for the LHC (pp at 14 TeV). The elements of the analysis common to all codes are the 

following: 

• Event samples. Tevatron results refer to the combination of w+ and w- bosons, while 

at the LHC only w+ are considered. All codes have generated partop.-level samples 

according to matrix elements with up to 4 final-state partons, i.e. N = 4. Partons 

are restricted to the light-flavour sector and are taken to be massless. The Yukawa 

couplings of the quarks are neglected. The PDF set CTEQ6L has been used with 

o:8 (mz) = 0.118. Further standard-model parameters used were: mw = 80.419 GeV, 

fw = 2.048 GeV, mz = 91.188 GeV, fz = 2.446 GeV, the Fermi constant G11 

1.16639 · 10-2 GeV-2
, sin2 Ow = 0.2222 and o:EM = 1/132.51. 

• Jet definitions. Jets were defined using Paige's GET JET cone-clustering algorithm, with 

a calorimeter segmentation of (6.TJ, 6.¢) = (0.1,6°) extended over the range 1"71 < 2.5 

(ITJI < 5), and cone size of 0. 7 (0.4) for the Tevatron (LHC). At the Tevatron (LHC) jets 

with Ej_ > 10 (20) GeV and pseudo-rapidity 1771 < 2 ( 4.5) are required. For the analysis 

of the differential jet rates denoted as di, the Tevatron Run II kj_-algorithm [77] 1 was 

applied to all final-state particles fulfilling 1"71 < 2.5 (5). The kj_-measure used in the 

algorithm is given by equations (4.5) and (4.6). 

In all cases, except the di plots, the analysis is done at the hadron level, but without 

including the underlying event. The di plots were done to check the details of the merging 

and are therefore done at parton level to avoid any smearing effects from hadronisation. 

For all codes, the systematic uncertainties are investigated by varying the merging scale 

and by varying the scale in 0:8 and, for some codes, in the parton density functions. For 

ALPGEN and HELAC, the scale in o:8 has been varied only in the 0:8 -reweighting of the matrix 

elements, while for the others the scale was also varied in the parton cascade. Note that 

varying the scale in the final-state parton showers will spoil the tuning done to LEP data 

;:, ' for the .d1scaiies .. A consistent way of testrn:g-'tBescafe varia£ ions ~ol'iTd-;eq~r~-~,;~t~~i~·g·of 

hadronisation parameters. However, a strong dependence on the hadronisation parameters 

1More precisely, the implementation in the ktclus package [134] was employed (IMODE=5, or 4211). 
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in the observables considered here should not be expected, and no attempt to retune has 

therefore been made. 

The parameter choices specific to the individual codes are as follows: 

• ALPGEN: The parton-level matrix elements were generated with ALPGEN [98, 15] and 

the subsequent evolution used the HERWIG parton shower according to the MLM pro­

cedure. Version 6.510 of HERWIG was used, with its default shower and hadronisation 

parameters. The default results for the Tevatron (LHC) were obtained using parton­

level cuts (see Eq. (4.4)) of PTin = 8 (15) GeV, 'f/max = 2.5 (5), Rmin = 0.7 (0.4) 

and matching defined by ET_us = 10 (20) GeV, TJ~: = 'f/max and Rclus = Rmin· The 

variations used in the assessment of the systematics cover: 

different thresholds for the definition of jets used in the matching: ET_us = 20 

and 30 GeV for the Tevatron, and ET_us = 30 and 40 GeV for the LHC. These 

thresholds were applied to the partonic samples produced with the default gen­

eration cuts, as well as to partonic samples produced with higher PTin values. No 

difference was observed in the results, aside from an obviously better generation 

efficiency in the latter case. In the following studies of the systematics, the two 

threshold settings will be referred to as ALPGEN parameter sets ALptX, where X 

labels the value of the threshold. Studies with different values of Rc1us and Rmin 

were also performed, leading to marginal changes, which will not be documented 

here. 

- different renormalisation scales at the vertices of the clustering tree: 11 = J-lo/2 

and J-l = 2 J-lo, where J-lo is the default kj_ -value. In the following studies of the 

systematics, these two settings will be referred to as ALPGEN parameter sets 

ALscL (for "Low") and ALscH (for "High"). 

The publicly available version V2.10 of the code was used to generate all the ALPGEN 

results . 

• ARIADNE:- The parton-level matrix elemenfs~were'generated. with MADEVENT-~;idth~--·­

subsequent evolution used the dipole shower in ARIADNE according to the procedure 

outlined in Sec. 4.1. Hadronisation was performed by PYTHIA. 
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For the default results at the Tevatron (LHC) the parton-level cuts were P_lmin = 

10 (20), RJJ < 0.5 (0.4) and, in addition, a cut on the maximum pseudo-rapidity of 

jets, f/jmax = 2.5 (5.0). The variations used in the assessment of the systematics cover: 

- different values of the merging scales p _imin = 20 and 30 Ge V for the Tevatron 

(30 and 40 GeV for the LHC). In the following studies of the systematics, these 

two settings will be referred to as ARIADNE parameter sets ARptX. 

- a change of the soft suppression parameters in Eq. ( 4.3) from the default values 

of J1 = 0.6 GeV and a= 1, to J1 = 0.6 GeV and a= 1.5 (taken from a tuning to 

HERA data [135]). This setting will be referred to as ARs. 

- different values of the scale in a 8 : J1 = J.Lo/2 and J1 = 2 J.Lo were used (ARscL and 

ARscH). This scale change was used in a 8 evaluations in the program. 

• HELAC: The parton-level matrix elements were generated with HELAC and the phase 

space generation is performed by PHEGAS [16]. The subsequent evolution used the 

default virtuality-ordered shower in PYTHIA 6.4 [6] according to the MLM procedure. 

Hadronisation was performed by PYTHIA. 

The default results for the Tevatron (LHC) were obtained using parton-level cuts of 

P_imin = 8 (15) GeV, f!max = 2.5 (5), Rmin = 0.7 (0.4) and matching defined by 

E~~in = 10 (20) GeV, rt~~ = 2 (4.5) and R~i~ = 0.7 (0.4). The variations used in the 

assessment of the systematics cover: 

- different thresholds for the definition of jets used in the matching: E~~in = 

30 GeV for the Tevatron, and E~~in = 40 GeV for the LHC. In the follow­

ing studies of the systematics, these two settings will be referred to as HELAC 

parameter sets HELptX, where X labels the value of the threshold. 

- different renormalisation scales at the vertices of the clustering tree: J1 = J.Lo/2 

and J1 = 2 J.Lo, where J.Lo is the default k1_ -value. In the following studies of 

the systematics, these two settings will be referred to as HELAC parameter sets 

HELseL and HELseR. 

• MADEVENT: The parton~level matrix elements were generated with MADEVENT and 

the subsequent evolution used the PYTHIA shower according to the modified MLM 
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procedure in MADEVENT described above. Hadronisation was performed by PYTHIA. 

For the default results at the Tevatron (LHC) the value of the merging scale has been 

chosen to k l_O = 10 ( 20) Ge V. The variations used in the assessment of the systematics 

cover: 

different values of the merging scale k1_0 = 20 and 30 GeV for the Tevatron, and 

k1_0 = 30 and 40 GeV for the LHC. In the following studies of the systematics, 

these two settings will be referred to as MADEVENT parameter sets MEktX. 

- different values of the scales used in the evaluation of a8 , in both the matrix 

element generation and the parton shower: f-L = f.-Lo/2 and f-L = 2 f-Lo, where f-Lo 

is the default k1_ -value. These two settings will be referred to as MADEVENT 

parameter sets MEscL and MEscH. 

• SHERPA: The parton-level matrix elements used within SHERPA have been obtained 

from the internal matrix-element generator AMEGIC++ [18]. Parton showering has 

been conducted by APACIC++ [20] whereas the combination of the matrix elements 

with this parton shower has been accomplished according to the CKKW procedure2 . 

The hadronisation of the shower configurations has been performed by PYTHIA 6.214, 

which has been made available through an internal interface. 

For the default Tevatron (LHC) predictions, the value of the merging scale has been 

chosen to k1_0 = 10 (20) GeV. All SHERPA predictions for the Tevatron (LHC) have 

been obtained by setting the internally used D-parameter ( cf. Eq. ( 4.1)) through 

D = 0.7 (0.4). Note that, these two choices directly determine the generation of the 

matrix elements in SHERPA. The variations used in the assessment of the systematics 

cover: 

first, different choices of the merging scale k1_0 . Values of 20 and 30 GeV, and 

30 and 40 GeV have been used for the Tevatron and the LHC case, respectively. 

In the following studies of the systematics, these settings will be referred to as 
·-·- -~,. '-::.:--·._.;-.S~-.i ~. ;·-c._ • <"'" --·-,·~--~ -,;,-_,··o·· ,.,.. ,.,_~-\~-- -·--~.-· ""-· _f..::;.;~. ·::;S:. ~_;e:,"· ·. ~-.!=o'~'-'~ -""'i< ' · ·- "'-- • ~ ',;;, •• :r -- ~:··_ .• _,=..,-.;·.;_·,•.2. .. --~:!.v _:.~::---;··::·':;'-_-':..:<~ ~~ ..;,~;;::'"~ 

SHERPA parameter sets SHktX where X labels the value of the internal jet scale. 

2Beyond the comparison presented here, SHERPA predictions for W plus multi-jets and W-pairs plus 
multi-jets have already been validated and studied for Tevatron and LHC energies in Refs. [95]. 
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and, second, different values of the scales used in any evaluation of the as and the 

parton distribution functions3 . Two cases have been considered, 1-L = J-Lo/2 and 

J-L = 2 J-Lo· The choice of the merging scale is as in the default run, where J-Lo denotes 

the corresponding k1.. -values. In the subsequent studies of the systematics these 

two cases are referred to as SHERPA parameter sets SHscL and SHscH. It should 

be stressed that these scale variations have been applied in a very comprehensive 

manner, i.e. in both the matrix-element and parton-showering phase of the event 

generation. 

All SHERPA results presented in this comparison have been obtained with the publicly 

available version 1.0.10. 

4.3 Tevatro111 Studies 

Event rates 

In this section the comparison among inclusive jet rates is presented. These are shown 

in Tab. 4.1. For each code, in addition to the default numbers, the results of the various 

individual alternative choices used to assess the systematics uncertainty are displayed. In 

Tab. 4.2 the "additional jet fractions", namely the rates a-(W +n+ 1 jets)/a-(W +n jets) are 

listed, once again covering all systematic sets of all codes. Fig. 4.1, finally, shows graphically 

the cross-section systematic ranges: for each multiplicity, rates are normalised to the average 

of the default values of all the codes. 

It should be noted that the scale changes in all codes lead to the largest rate variations. This 

is reflected in the growing size of the uncertainty with larger multiplicities, a consequence 

of the higher powers of as. Furthermore it is noted that the systematic.ranges of all codes 

have regions of overlap. 

Kinematical distributions 

rate predicted by each code is used, in units of pb/GeV. The relative differences with respect 

3For example, the analytical Sudakov form factors used in the matrix-element reweighting hence vary 
owing to their intrinsic 0:8 -coupling dependence. 
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Code cr[tot] cr[2: 1 jet] cr[2: 2 jet] cr[2: 3 jet] cr[2: 4 jet] 
ALPGEN, def 1933 444 97.1 18.9 3.2 
ALpt20 1988 482 87.2 15.5 2.8 
ALpt30 2000 491 82.9 12.8 2.1 
ALscL 2035 540 135 29.7 5.5 
ALscH 1860 377 72.6 12.7 2.0 
ARIADNE, def 2066 477 87.3 13.9 2.0 
ARpt20 2038 459 76.6 12.8 1.9 
ARpt30 2023 446 67.9 11.3 1.7 
ARscL 2087 553 116 21.2 3.6 
ARscH 2051 419 67.8 9.5 1.3 
ARs 2073 372 80.6 13.2 2.0 
HELAC, def 1960 356 70.8 13.6 2.4 
HELpt30 1993 373 68.0 12.5 2.4 
HELseL 2028 416 95.0 20.2 3.5 
HELseR 1925 324 55.1 9.4 1.4 
MAD EVENT, def 2013 381 69.2 12.6 2.8 
MEkt20 2018 375 66.7 13.3 2.7 
MEkt30 2017 361 64.8 11.1 2.0 
MEscL 2013 444 93.6 20.0 4.8 
MEscH 1944 336 53.2 8.6 1.7 
SHERPA, def 1987 494 107 16.6 2.0 
SHkt20 1968 465 85.1 12.4 1.5 
SHkt30 1982 461 79.2 10.8 1.3 
SHscL 1957 584 146 25.2 3.4 
SHscH 2008 422 79.8 11.2 1.3 

Tab. 4.1 Cross sections (in pb) for the inclusive jet rates at the Tevatron, 
according to the default and alternative settings of the various 
codes. 

to the ALPGEN results, in this figure and all other figures of this section, are shown in the 

lower in-sets of each plot, where for the code X the quantity (cr(X)- cr0 )/cr0 is plotted, cr0 

being the values of the ALPGEN curves. 

There is generally good agreement between the codes, except for ARIADNE, which has a 

harder Ej_ spectra for the leading two jets. There it is also found that SHERPA is slightly 

harder than ALPGEN and HELAC, while MADEVENT is slightly softer. 

Fig. 4.3 shows the inclusive 17 spectra of the leading 4 jets, all normalised to unit area. 

~.·· ""'Ther·{tfs 'iti8od'agr~emenfbeiwe~il "t1e<si>~Cfr~'of Aff>cEN, HEi:Ac ~~d.MAnEvE~~:> ;hi1~- · 
ARIADNE and SHERPA spectra appear to be broader, in particular for the sub-leading jets. 

This broadening is expected for ARIADNE since the gluon emissions there are essentially 
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Code a-l2:1J 1 a-ltotJ a-l2:2J 1 a-l2:1J a-l2:3J I a-l2:2J a-l2:4J I a-l2:3J 

ALPGEN, def 0.23 0.22 0.19 0.17 
ALpt20 0.24 0.18 0.18 0.18 
ALpt30 0.25 0.17 0.15 0.16 
ALscL 0.27 0.25 0.22 0.19 
ALscH 0.20 0.19 0.17 0.16 
ARIADNE, def 0.23 0.18 0.16 0.15 
ARpt20 0.23 0.17 0.17 0.15 
ARpt30 0.22 0.15 0.16 0.16 
ARscL 0.26 0.21 0.18 0.17 
ARscH 0.20 0.16 0.14 0.14 
ARs 0.18 0.22 0.16 0.15 
HELAC, def 0.18 0.20 0.19 0.18 
HELpt30 0.19 0.19 0.18 0.19 
HELseL 0.21 0.23 0.21 0.17 
HELseR 0.17 0.17 0.17 0.15 
MAD EVENT, def 0.19 0.18 0.18 0.22 
MEkt20 0.19 0.18 0.20 0.20 
MEkt30 0.18 0.18 0.17 0.18 
MEscL 0.22 0.21 0.21 0.24 
MEscH 0.17 0.16 0.16 0.20 
SHERPA, def 0.25 0.22 0.16 0.12 
SHkt20 0.24 0.18 0.15 0.12 
SHkt30 0.23 0.17 0.14 0.12 
SHscL 0.30 0.25 0.17 0.13 
SHscH 0.21 0.19 0.14 0.12 

Tab. 4.2 Cross-section ratios for (n + 1)/n inclusive jet rates at the 
Tevatron, according to the default and alternative settings of 
the various codes. 
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unordered in rapidity, which means that the Sudakov form factors applied to the matrix­

element-generated states include also a log(1lx) resummation absent in the other programs. 

Fig. 4.4a shows the inclusive Pl. distribution of the W boson, with absolute normalisation 

in pbiGeV. This distribution reflects in part the behaviour observed for the spectrum of 

the leading jet, with ARIADNE harder than SHERPA, which, in turn, is slightly harder than 

ALPGEN, HELAC and MADEVENT. The region of low momenta, Pl.w <50 GeV, is expanded 

in Fig. 4.4b. Fig. 4.4c shows the 17 distribution of the leading jet, 771, when its transverse 

how much rate is predicted by each code to survive this harder jet cut. The 1171 separation 

between the W and the leading jet of the event above 30 Ge V is shown in Fig. 4.4d, 
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0~--------------------------------------------------~ 
;?:4 

Fig. 4.1 Range of variation for the Tevatron cross-section rates of the five 
codes, normalised to the average value of the default settings for 
all codes in each multiplicity bin . 

normalised to unit area. Here it is found that ARIADNE has a broader correlation, while 

HELAC and MADEVENT are somewhat more narrow than ALPGEN and SHERPA. 

In Fig. 4.6 the merging scales di as obtained from the k1_ -algorithm are shown, where di 

is the scale in an event where i jets are clustered into i - 1 jets. These are parton-level 

distributions and are especially sensitive to the behaviour of the merging procedure close to 

the merging/matching scale. Note that in the plots showing the difference the wiggles stem 

from both the individual codes and from the ALPGEN reference. 

Also shown in Fig. 4.6 is the separation in llR = J llrP + ll(p2 between successive jet pairs 

ordered in hardness. The llR12 is dominated by the transversal-plane back-to-back peak at 

llR12 = 1r, while for larger llR in all cases the behaviour is more dictated by the correlations 

in pseudo-rapidity. For these larger values a weaker correlation in ARIADNE and SHERPA is 

found , which can be expected from their .broader rapidity distributions in Fig. 4.3. 

Finally, in Fig. 4.5 H1_ is displayed, the scalar sum of the transverse momenta of the charged 

lepton, the neutrino and the jets. This is a variable in which one often does experimental 

cuts in searches for new phenomena and is not expected to be very sensitive to the particulars 

in the merging schemes. The results show good agreement below 100 GeV, but at higher 
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values, as expected from the differences in the hardness of the jet and p_1_w spectra, ARIADNE 

has harder spectra than SHERPA and ALPGEN, while MADEVENT and HELAC has slightly 

softer spectra. 

4.4 LHC Studies 

Event rates 

The tables (Tab. 4.3 and 4.4) and figure (Fig. 4. 7) of this section correspond to those shown 

earlier for the Tevatron. The largest rate variation is, similarly to the Tevatron rates, 

determined by the scale changes. The main feature of the LHC results is the significantly 

larger rates predicted by ARIADNE, which are outside the systematics ranges of the other 
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Code O"[tot] O"[~ 1 jet] CJ[~ 2 jet] O"[~ 3 jet] O"[~ 4 jet] 
ALPGEN, def 10170 2100 590 171 50 
ALpt30 10290 2200 555 155 46 
ALpt40 10280 2190 513 136 41 
ALscL 10590 2520 790 252 79 
ALscH 9870 1810 455 121 33 
ARIADNE, def 10890 3840 1330 384 101 
ARpt30 10340 3400 1124 327 88 
ARpt40 10090 3180 958 292 83 
ARscL 11250 4390 1635 507 154 
ARscH 10620 3380 1071 275 69 
ARs 11200 3440 1398 438 130 
HELAC, def 10050 1680 442 118 36 
HELpt40 10150 1760 412 116 37 
HELseL 10340 1980 585 174 57 
HELseR 9820 1470 347 84 24 
MAD EVENT, def 10830 2120 519 137 42 
MEkt30 10080 1750 402 111 37 
MEkt40 9840 1540 311 78.6 22 
MEscL 10130 2220 618 186 62 
MEscH 10300 1760 384 91.8 27 
SHERPA, def 8800 2130 574 151 41 
SHkt30 8970 2020 481 120 32 
SHkt40 9200 1940 436 98.5 24 
SHscL 7480 2150 675 205 58 
SHscH 10110 2080 489 118 30 

Tab. 4.3 Cross sections (in pb) for the inclusive jet rates at the LHC, ac­
cording to the default and alternative settings of the various codes. 

codes. Aside from this and the fact that SHERPA gives a smaller total cross section, the 

comparison among the other codes shows an excellent consistency, with a pattern of the 

details similar to what is seen for the Tevatron. Details on the internal systematics of the 

programs are presented in Ref. [100]. 

Kinematical distributions 

Following the same sequence of the Tevatron study, firstly in Fig. 4.8 the inclusive E1_ 

-~---spectra of-"the-'leading' 4'·<jets are sliowri~'"'The absohite rate preClittea'b)te'aCl{'c-od~cl's'us£eCi~''c~- .. - · -- 4. 

in units of pb/GeV. 

Except for ARIADNE, good agreement is found among the codes, with ARIADNE having 
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Code 0"[2-lJ 1 O"[totj 0"[2-2] I 0"[2-lJ 0"[2'3J I O"l2'2J O"l2'4J I O"l2'3J 

ALPGEN, def 0.21 0.28 0.29 0.29 
ALpt30 0.21 0.25 0.28 0.30 
ALpt40 0.21 0.23 0.27 0.30 
ALscL 0.24 0.31 0.32 0.31 
ALscH 0.18 0.25 . 0.27 0.27 
ARIADNE, def 0.35 0.35 0.29 0.26 
ARpt30 0.33 0.33 0.29 0.27 
ARpt40 0.32 0.30 0.30 0.28 
ARscL 0.39 0.37 0.31 0.30 
ARscH 0.32 0.32 0.26 0.24 
ARs 0.31 0.41 0.31 0.30 
HELAC, def 0.17 0.26 0.27 0.31 
HELpt40 0.17 0.23 0.28 0.32 
HELseL 0.19 0.30 0.30 0.33 
HELseR 0.15 0.24 0.24 0.29 
MAD EVENT, def 0.20 0.24 0.26 0.31 
MEkt30 0.17 0.23 0.28 0.33 
MEkt40 0.16 0.20 0.25 0.28 
MEscL 0.22 0.27 0.30 0.34 
MEscH 0.17 0.22 0.24 0.29 
SHERPA, def 0.24 0.27 0.26 0.27 
SHkt30 0.23 0.24 0.25 0.27 
SHkt40 0.21 0.22 0.23 0.24 
SHscL 0.29 0.31 0.30 0.28 
SHscH 0.21 0.24 0.24 0.25 

Tab. 4.4 Cross-section ratios for (n + 1)/n inclusive jet rates at the 
LHC, according to the default and alternative settings of the 
various codes. 

significantly harder leading jets, while for sub-leading jets the increased rates noted in 

Fig. 4.7 mainly come from lower E1_. Among the other codes, HELAC and SHERPA have 

consistently somewhat harder jets than ALPGEN, while MADEVENT is a bit softer, but these 

differences are not as pronounced. 

For the pseudo-rapidity spectra of the jets in Fig. 4.9 it is clear that ARIADNE has a much 

broader distribution in all cases. Also SHERPA has broader distributions, although not as 

_ pronounced, while the other codes are very consistent. 

'". ''Th(t'j5j_-·aistributi6n oll:V'F bosons in .. Fig~';f10-'f~ii~;s "the tr~;J·"~f-th~''i~"acii~g~J;t''e~~· 

spectra. The differences observed in the P1_w region below 10 GeV are not due to the choice 

of merging approach, but are entirely driven by the choice of shower algorithm. Notice 
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for example the similarity of the HELAC and MADEVE T spectra, and their peaking at 

lower PT than the HERWIG spectrum built into the ALPGEN curve, a result well known from 

the comparison of the standard PYTHIA and HERWIG generators. Increasing the transverse 

momentum of the leading jet in Fig. 4.10a does not change the conclusions much for its 

pseudo-rapidity distribution. Also the rapidity correlation between the leading jet and the 

w+ follows the trend found for the Tevatron, but the differences are larger, with a much 

weaker correlation for ARIADNE. Also SHERPA shows a somewhat weaker correlation, while 

HELAC is somewhat stronger than ALPGE and MADEVE T. 

For the distribution in clustering scale in Fig. 4.12, it is found again that ARIADNE is by far 

the hardest . The results given by the other codes are comparable, with the only exception 

that for the d1 distribution, SHERPA gives a somewhat harder prediction compared to the 

ones made by the MLM-based approaches. 

The !:1R distributions, in Fig. 4.12, show at large separation a behaviour consistent with the 

broad rapidity distributions found for SHERPA, and in particular for ARIADNE, in Fig. 4.9. 

This increase at large !:1R is then compensated by a depletion with respect to the other 

codes at small separation. 
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The scalar transverse momentum sum in Fig. 4.11 shows significantly larger deviations as 

compared to the results for the Tevatron. ARIADNE has a much harder spectra than the 

other codes, while SHERPA and HELAC are slightly harder than ALPGEN and MADEVENT is 

significantly softer. As in the Tevatron case, it is a direct reflection of the differences in the 

hardness of the jet and pj_w spectra, although the increased phase space for jet production 

at the LHC makes the pj_w contribution less important at high H j_ values. 

4.5 Summary of findings 

This chapter summarises the comparisons of five independent approaches to the problem of 

merging matrix elements and parton sho~ers. The codes under study, ALPGEN, ARIADNE, 
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HELAC, MADEVENT and SHERPA, differ in which matrix-element generator is used, which 

merging scheme ( CKKW or MLM) is used and the details in the implementation of these 

schemes, as well as in which parton shower is used. 

It is found that, while the three approaches (CKKW, L, and MLM) aim at a simulation 

based on the same idea, namely describing jet production and evolution by matrix elements 

and the parton shower, respectively, the corresponding algorithms are quite different~ The 

main differences can be found in the way in which the combination of Sudakov reweighting 

of the matrix elements interacts with the vetoing of unwanted jet production inside the 

parton shower. This makes it very hard to compare those approaches analytically and to 

formalise the respective level of their logarithmic dependence. In addition, the different 

showering schemes used by the different methods blur the picture further. For instance 

virtuality ordering with explicit angular vetoes is used in SHERPA as well as in the HELAC 

and MADEVENT approach, both of which employ PYTHIA to do the showering, p1_ordering 

is the characteristic feature of ARIADNE, and, through its usage of HERWIG it is angular 

ordering that enters into the ALPGEN merging approach. However, although the formal 

level of agreement between the codes is not worked out, the results show a reasonably good 

agreement. This proves that the variety of methods for merging matrix elements and parton 

showers can be employed with some confidence in vector boson plus jet production. 

The comparison also points to differences, in absolute rates as well as in the shape of indi­

vidual distributions, which underline the existence of an underlying systematic uncertainty. 

Most of these differences are at a level that can be expected from merging tree-level matrix 

elements with leading-log parton showers, in the sense that they are smaller than, or of the 

order of, differences found by making a standard change of scale in a 8 • In most cases the 

differences within each code are as large as the differences between the codes. And as the 

systematics at the Tevatron is similar to that at the LHC, it is conceivable that all the codes 

can be tuned to Tevatron data to give consistent predictions for the LHC. 

: -<---. •• ~ 
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factorisation scheme 

Hard scattering at hadron colliders is usually described in the framework of collinear fac­

torisation. As explained in Chapter 1, the full scattering amplitude is factorised into a hard 

perturbative parton scattering matrix element and process-independent universal parton dis­

tributions, In this factorisation scheme, all initial state partons are on-shell and have zero 

transverse momenta. An alternative approach is the framework of k_1_- or high-energy factori­

sation. There, unintegrated PDFs (UPDFs) are convoluted with off-shell matrix elements. 

The PDFs are unintegrated in terms of the initial partons' k_1_. Initially, k_1_ -factorisation 

has been formulated for heavy quark production [136]. The approach has been further 

investigated in other channels, see for instance Refs. [137]. The k_1_-factorisation scheme 

has apparent advantages over conventional collinear factorisation: First, in the high-energy 

limit, i.e. for t « s with s being large, the QCD cross section for jet production is domi­

nated by gluon exchange diagrams, which diverge in this limit. The divergence is alleviated 

or even removed by realising that the 1/t terms in the matrix element can be identified 

with divergences of the form 1/k}_ and thus using a suitable form of unintegrated PDFs, 

vanishing fast enough for k_1_ -+ 0. Second, employing UPDFs means including the leading 

logarithmic contribution of higher order corrections to a given process, since the effect of 

additional QCD radiation is encoded in them [138, 139]. 

'··' Takingthe.llign~energy iimit in a giv~I;~;;;oce~~~i~o~ci~alent to th~~·B;lit~k;-,F~di~~Ku·~~e~=·' ··'··"'" ·~~­

Lipatov (BFKL) limit [140], which builds on t-channel dominance of scattering cross sections 

and the reggeisation of t-channel gluons [141], cf. Sec. 5.1. In the past, there have been 
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various approaches, aiming at a solution of the BFKL dynamics with Monte Carlo methods 

and thus producing exclusive final states. An approximation, aiming at a correct description 

of essential features of the BFKL equation and a correct extrapolation to the DG LAP regime, 

has been proposed in the linked dipole chain model [142]. This model has been implemented 

in Ref. [143]. The scope of the approach is closely related to the Catani-Ciafaloni-Fiorani­

Marchesini (CCFM) equation [144] Event generators based on this evolution equation have 

been presented in [145]. An iterative solution of the pure BFKL equation has been proposed 

in [146], iterative Monte Carlo solutions in [147, 148]. Later on, this prescription has been 

extended to next-to-leading logarithmic accuracy [149, 150]. 

In this chapter, a different implementation of k.1-factorisation for the case of multi-jet 

production is discussed. Emphasis is put on finding a gauge invariant form of the cor­

responding expressions and on identifying their matching to unintegrated PDFs derived 

from conventional collinear ones through the Kimber-Martin-Ryskin-Watt (KMRW) pro­

cedure presented in Refs. [151, 152]. It turns out that this in fact can be achieved by 

working in the high-energy limit, using as basic building blocks splitting functions in the 

limit z ~ 0, 1 in conjunction with a proper reggeisation of all t-channel propagators as 

introduced in Sec. 5.1. Since four-momentum conservation can explicitly be imposed in a 

Monte Carlo solution, this approach clearly includes effects beyond the naive leading order 

BFKL limit, cf. Refs. [153, 154, 150], Furthermore, identifying the probabilistic interpreta­

tion of each emission in the high-energy limit, the Monte Carlo solution has for the first time 

been implemented as a Markovian approach, similar to conventional parton shower event 

generators. This enables generation of an a priori arbitrary number of emissions, which 

is important at high energies, where corrections due to large final state multiplicities are 

sizable. 

This chapter is organised as follows. Section 5.1 briefly recalls the basics of high-energy 

parton evolution and the resulting BFKL equation. In Sec. 5.2 the KMRW procedure of 

Refs. [151, 152, 155] to generate doubly unintegrated PDFs (DUPDFs) and the correspond­

ing angular ordering constraints are reviewed. In Sec. 5.3 it is then shown that the leading 

ln( 1/ x) terms are correctly taken into accou~t ~~h~.!l co_rpqining ~h,¥)\-Y.Q .. P!:!:,§SI!Rtig_nsL,S.~G;- __ 
~-·:..·""~-"·~ •.J.·t ~ __ .-,·~- ·"·""'":-• .._ -. """-:- : .... - -. :, •.• o<>·.~ ..... , • ....,...,...~.- .. -- •• <;~-~· -

tion 5.4 contains the description of the Markovian Monte Carlo procedure to generate event 

1 In addition to the pure gluonic ladders of the high-energy limit, here also vertices for quark production 
are included. 
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topologies with an a priori undetermined number of final state partons. In Sec. 5.6 first 

results are presented. 

5.1 The reggeised gluon 

A particle of mass m and spin J is said to reggeise, if the amplitude A for the exchange of 

the quantum numbers of that particle in the t-channel behaves asymptotically in s, i.e. for 

s ----+ oo, t fixed, like [156, 157] 

A(s, t) ex sa(t) . (5.1) 

Here, o:(t) is called the Regge trajectory of this particle. The basic idea for reggeisation [158] 

is inspired by non-relativistic quantum mechanics, where bound states of a spherically sym­

metric potential can be characterised in the partial wave expansion. Associated partial 

wave amplitudes are essentially proportional to the Legendre polynomials, which, in the 

high-energy limit, induce a behaviour of A as given by Eq. (5.1). The advantage of this 

formalism is evident. No assumptions have to be made about the underlying theory, in­

stead the behaviour of the full scattering amplitude in any given process can be fitted to 

obtain the corresponding o:(t). This has been done for example in Ref. [159], where the total 

proton-proton and other hadronic cross sections were parametrised using Regge theory. 

The optical theorem implies that the total cross section for a process which is dominated 

by the leading Regge trajectory o:(t) with intercept o:(O) satisfies 

.-T ex sa(0)-1 
vtot · (5.2) 

It was proved in Refs. [160] that in any scattering process with exchange of charges the total 

cross section must vanish asymptotically as s increases. This is called the Pomeranchuk 

theorem [161]. Conversely, it was shown in Ref. [162] that if the cross section does not 

fall as s increases, the scattering must be dominated by the exchange of vacuum quantum 

:::comimbets~-I~t~pteseht, tliere' is iio"' ev1denceCti1at"Q'ci:f C~~~~,·~~~d~~; d~~r~~s~"'""i~;·]'~~~;C·~:- --·-··· 

On the contrary, a slow rise has been observed experimentally. Thus, if single Reggeon 

exchange causes this rise, the corresponding Regge trajectory must have an intercept of 

~- ;:;_·.·.,~--· 
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-\1 P1 ,\~ P1- q 

a q 

A2 P2 ,\~ P2 + q 

Fig. 5.1 Leading order amplitude for quark quark 
scattering into two quarks at ltl « s. 

a(O) > 1 and the corresponding Reggeon must carry the quantum numbers of the vacuum. 

This trajectory, ap(t), is called the Pomeron. Particles which would provide the resonances 

at integer values of ap(t) have not yet been identified. However they might exist as bound 

states of gluons and it is natural to try and establish a relation between QCD and Regge 

theory. 

A number of authors showed that the QCD gluon reggeises to all orders in perturbation 

theory, which implies large logarithmic contributions of the form log(s/ lti)E to the cross 

section. These terms can be resummed to all orders, leading to a recursive equation for 

t channel gluon emission, known as the BFKL equation. It is connected to the analytic 

properties of this equation, that it has been seen in the strict high-energy limit, ltl « s, 

for a long time. It has therefore not lead to many reliable predictions of observable QCD 

final states. As was discussed for example in [153, 154, 150], the implementation of four­

momentum conservation and running a 8 effects strongly modifies naive leading order BFKL 

predictions. In Refs. [147, 148] it was shown that the BFKL equation can be implemented 

in a Monte Carlo fashion, thus allowing to conserve energy and momentum in each step 

of the recursion. This procedure yields a significant improvement over the old approaches. 

In the following section, the arguments of Fadin, Kuraev and Lipatov [140] will briefly be 

recalled to introduce the basic formalism, before the method presented in Refs. [147, 148] is 

outlined. 

Eikonal couplings and the Lipatov effective vertex 

> ConsiClef-tlie·"scattering of two quarks of dHferent 'fiavour ·due-toa c~l~~i~~~a:et ~~~ha~ge i~ 

the t-channel and let m7, It I « s. According to the Feynman rules given in [87] the upper 

part of the leading order amplitude depicted in Fig. 5.1 is given by 
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(5.3) 

where the A's denote helicities, p are momenta and T is a generator of the colour group in 

the fundamental representation. In the relevant high-energy limit, all components of the 

exchanged momentum q are small because lq2 l = ltl and (p1 - q)2 = (P2 + q)2 = 0. The 

upper part of the amplitude can then be replaced with -ig8u(>../,p1 )"'!1lu(>.. 1 ,pl)~j. This 

translates into an eikonal coupling to the fermion line, 

(5.4) 

The eikonal approximation is valid whenever the gauge particle exchange is "soft", more 

precisely, for all components of the exchanged momenta being small compared to those of 

the emitting particle. This eikonal structure of the coupling generalises also to theories 

with scalars and even the gauge particle itself. It is closely related to the soft gluon limit 

discussed for example in Sec. 1.3. If the quarks in Fig. 5.1 are replaced with gluons, one 

obtains 

(5.5) 

Provided that the incoming and outgoing gauge particles are on-shell and therefore have 

transverse polarisations only, this translates into the eikonal coupling 

2 p JlV ;a 
9sP19 Jbc' (5.6) 

Finally the amplitude for quark-quark scattering into two quarks due to colour-octet ex­

change at lowest order becomes 

(5.7) 

The term G~8) denotes the colour factor ~jTf:1 related to colour-octet exchange. In covariant 

'~'gatigesthereC',are'llo 'self-ener'gf or veifexcorrectlons which contdb{{t~ t~""th~-,~~plit~cie''i~·­

the Regge limit. The first corrections arise from box and crossed box diagrams, where both 

contributions can be related through crossing relations. It turns out to be convenient to 
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P1 P1 ~ q P1 P1- q 

a b a b 

k k-q 

P2 P2 + q P2 P2 + q 

Fig. 5.2 Box and crossed box diagram for quark-quark scattering. The con­
vention is such that momenta to the left of the cut are oriented 
downwards, while momenta to the right of the cut direct upwards. 

decompose such amplitudes into two parts as depicted in Fig. 5.2 and to use the Cutkosky 

rules to obtain the full result. Furthermore, it proves useful to rewrite the corresponding 

phase space integration as an integration in t-channel momenta k. These momenta are then 

decomposed into Sudakov parameters a and {3, defined through 

k = ap1 + fJP2 + k1_ , 

such that the phase space integral over intermediate states becomes 

J d<I>(l) = (
2
:)2 J d4k8((pl- k) 2)8((P2- k)2) 

=-; /dad,Bd2kj_8(-,8(1- a)s- ki) 8(a(l + ,B)s- ki). 
87r 

(5.8) 

(5.9) 

Since all components of the momentum q exchanged in the t-channel are small compared to 

s and all are of the same order, the virtuality of q is dominated by its transverse component, 

i.e. t = q2 ;:::::; -qi. The transverse momentum kj_ will then, on average, also be of the order 

of .Jm. The delta functions in the phase space integral lead to ,8 = -a and [,8[ = a ~ 

ki/ s « 1. Hence 

k2 ~ - k2 . - j_ ' and (k- q) 2 ~ - (k- q)~ . (5.10) 

(5.11) 
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where G~~l is the associated colour factor of the uncrossed box. Using the analytic contin­

uation of the logarithm, log(x) = log(lxl) - i1r, V x < 0 this implies that the real part of 

the amplitude reads 

(5.12) 

The complete one-loop amplitude for colour octet exchange is the sum of uncrossed and 

crossed boxes 

(5.13) 

where 

Ncet8 J 2 t 
E(t) = 47r2 d k_L kl_ (k- q)l_ (5.14) 

Obviously E(t) is infrared divergent. The corresponding singularity is naively lifted by the 

fact that external partons are never on-shell but typically have a virtuality of kl_ ~ A~cD 

arising from a primordial k_1_ distribution inside the parent hadron. 2 

To arrive at the order a;-correction to the quark-quark scattering shown in Fig. 5.1, all 

possible combinations of the cut graphs shown in figure 5.3 must be taken into account. 

This time both, k1 and k2 are decomposed according to Eq. (5.8). The leading logarithmic 

contribution stems from the region where the Sudakov parameters obey a strong ordering 

(5.15) 

The on-shell condition for the emitted gluon yields 

(5.16) 

such that kr ~ - ki_1_ and k~ ~ - k~_1_. The squared transverse moment~_ ki_1_ and 1<.~_1_ .. 
- - . .-... ,·~·''-..:..... .. ~ '' <=-.,·,:-,.--j.~""~"-::,·~,.:.,.,;._•-.··"-."-~"'-~--: - - . _-~,··- ·-::•'·~·-:-1':-•'i:•' --··-· .. o· ___ .... ,_·.,- ,_, .. -~----"'·-'-· .,.-.-- !',., __ ._,.. ~-.-1<.' .- ~- '..:;' 1-.l"-2~ ..,.::::_ .:-= -,-,. 

are hence both of the same order. In this limit, the Lorentz structures of all diagrams in 

2Fadin, Kuraev and Lipatov showed that it is also possible to obtain an infrared finite integral by 
spontaneously breaking the gauge group symmetry [140]. 



178 5 Multi-jet events in kT factorisation 

CCJ 
P2 

P1 P1 
P2 

(J (J 

P2 k2 P2 k2 
Fig. 5.3 Cut diagrams introducing the order a;-corrections to the total quark quark 

scattering amplitude. 

Fig. 5.3 may be combined to form an effective non-local vertex, called the Lipatov effective 

vertex [141] 

(5.17) 

In terms of this vertex the amplitude for the cut diagram becomes 

(5.18) 

Although this result has been obtained working in Feynman gauge, the Lipatov vertex is 

gauge invariant. It can be employed for any t channel emission in bigger diagrams, such 

that the result for multiple t channel gluon exchange reads 

(5.19) 

~ A remarkal3leobserwiti-on ~as ~~de i; Ref[i'63f,-~h~~;-th:;,eq~i;~i~~~~-~nvrliv ~;;;iit~d;~ ~-<-·-· ··-· · ·· ·"· · 

and BFKL amplitudes in the high-energy limit is proved. The corresponding analysis leads 

to a very compact form of the Lipatov vertex and corresponding amplitudes A~8~2 • 
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.-. 
-1Jy-

+ k' 
k 

k 

Fig. 5.4 Pictorial representation of the recursion relation for :F(R). Dashes on vertical 
gluon lines denote the reggeisation of the corresponding particle. In the sec­
ond term on the right hand side an integration over the internal momentum 
k' is understood. 

The BFKL equation 
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To determine the integrated n-gluon exchange amplitude, an iterative procedure can be ap­

plied. At each step of the iteration, the amplitude has the form of a t channel tree-amplitude 

with effective vertices and t channel propagators corresponding to reggeised gluons. Such a 

gluon propagator is given by 

(5.20) 

where E(kl) is determined from Eq. (5.14). For further analyses, it is convenient to define 

the Mellin transform J(R) through 

(5.21) 

The leading order process can be extracted using the definition 

f (R) ( t) = (4 )2 Q(R) J d2k_l _F(R) ( w, k_l, Q_l) 
W, 1f0:s 2 k2 (k )2 ' (27r) j_ -qj_ 

(5.22) 

and investigating _F(R) instead of J(R). Indices (R) stand for either colour octet or colour 

singlet exchange. Correspondingly 

and 

The function _F(R) fulfils the recursion schematically depicted in Fig. 5.4. The first term on 

the right hand side describes the exchange of a single gluon on either side of the cut. The 
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second term gives the contribution from the addition of one more gluon, exchanged in the 

t channel, which couples to the ladder rungs through effective vertices. 

(5.24) 

Here 71(s) = 4Nc, while 71(l) = 2Nc. The BFKL evolution kernel K(q1_, kj_, k~) is given by 

2 kJ_(k'- q)J_ + kl(k- q)J_ 
qj_ - (k - k')i (5.25) 

It corresponds to the. contraction of the two Lipatov vertices connecting k and k' on either 

side of the cut. For colour octet exchange, the solution to Eq. (5.24) reads 

1 
(5.26) 

W- E(-qi) ' 

which gives 

(5.27) 

The analytic continuation yields an intercept of the reggeised gluon trajectory of ac(t) = 

1 + E(t). Its numerical value does however not agree with that of the Pomeron as deduced 

from total hadronic cross sections, which indicates the need for higher order corrections. 

Colour singlet exchange and cut ladders 

Equation (5.24) can be employed for a different type of analysis. Consider colour singlet 

exchange for q = 0. This corresponds to the situation where the outgoing partons on the 
' • • • • • "" '·.- ~ .b~'-' '-" '· -- > ~: -t; •. - - -c- '-- -.- - ·:-; ~ -.-;;---- • _, •• __ ,;• • ___ :~---~.::;-_.__..._, .-:::::--:- :'-::..·::.:_·~~----· ·' -~-=--.'- -~, 'l·~-- -··::_ . )..~.- -~-:-:'..;' .-::.-·. :_~.-:___~·:.,.,-- ::.... ·:" :-=-~Co.,"':f!=.:;;_.~---=· -:~::::;;..;:::.~ ~- -- .-.·- -...:---:-:-- . .:.;.:··-=-

-- riglit 'hand siae carry exactly the same quantum numbers as the incoming ones and have 

exactly the same momenta. The imaginary part of the amplitude with n intermediate rungs 

then corresponds to the full matrix element squared for the scattering of the incoming 
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partons into 2 + n real final states. In this case, Eq. (5.24) can be rewritten as 

(5.28) 

where F is related to :F(1) by 

(5.29) 

The inverse Mellin transform of Eq. (5.28) can be cast into an integra-differential equation 

in rapidity and transverse momentum using the on-shell condition of ladder rungs in multi 

Regge kinematics, 6 ( ais - k]J 

dF(~y, k_1_, k~) 
d~y 

(5.30) 

The rapidity difference ~y corresponds to the interval spanned by the s-channel partons 

initiating the t-channels k and k'. It was proved in Refs. [146, 147], that Eq. (5.30) can be 

cast into the more suitable form 

00 

L Fn(~y, k1_, k~) . 
n=l 

Then-emission part of the kernel is hereby defined through 

where 

'·- ~, .... ~ -·". i .. 

Qu = k_1_ + L ku . 
j=l 

(5.31) 

(5.32) 

(5.33) 



182 5 Multi-jet events in kT factorisation 

{ 0 ~0 

Fig. 5.5 Multiple gluon emission in deep inelastic lepton-nucleon scatter­
ing. The hard scattering process is characterised by the scale 1-l· 
Usually this scale is also employed as the factorisation scale. 

The advantage of Eq. (5.31) over Eq. (5.30) becomes evident if one realises the similarity of 

the exponential term in Eq. (5.31) and the Sudakov form factor in Eq. (1.15). The basic idea 

is to generate an unconstrained cascade of independent parton branchings in the spirit of a 

parton shower to solve the leading order BFKL equation. Thus an arbitrary n-gluon final 

state can be generated without the need for explicit computation of a hard, perturbative 

cross section. The corresponding procedure has been presented in Ref. [164] and will be 

introduced in Sec. 5.4. 

5.2 Uruontegrated PDF's and the KMRW procedure 

In this section, the KMRW procedure of constructing unintegrated PDFs from conventional 

DGLAP PDFs [151, 152, 155] is reviewed. Discussion and notation closely follow Refs. [152, 

155]. 

In collinear factorisation, where the transverse momenta k_1_ of incoming partons are taken to 

be zero, the parton densities obey the DGLAP evolution equation [80,81], which determines 

the f-lrdependence at fixed light-cone momenta. This evolution equation resums leading 

logarithmic parts of higher perturbative orders. In a Monte Carlo formulation, real emission 

corrections can be implemented as a Markov chain of 1 --> 2 parton splittings [86, 87, 165]. 

However, a study of QCD beyond double leading logarithmic order reveals that quantum 

coherence effects suppress parton emissions in regions of phase space, where the emission 

angle of the emitted parton is larger than the opening angle of the emitting colour dipole [90]. 

> Tcr e'xempliff tHis; consider a parton evolutloii''"Cfi'al'n In 'ilie initiaTstate- ~r~~t)fs'-Cce~1i.t, a's: . 

depicted in Fig. 5.5. If angular ordering is fulfilled, the momenta ki of the radiated partons 

will be distributed such that their angle ei with respect to the beam direction increases from 
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the incoming proton towards the hard scattering. To investigate the implications of this 

constraint, it is convenient to start with a Sudakov decomposition of the momenta [82], 

(5.34) 

where Pis the proton momentum, q is the photon momentum and q' = q + xsP, with xs 

being the Bj!llrken x. In the high-energy limit, the proton mass can be neglected, m; « 
Q2 = -q2 . Hence q'2 = 0 and in the Breit frame the momenta read 

P= 
1 

-2 (Q,O,Q)' 
XB 

q' 
1 

2(Q, 0, -Q) and (5.35) 

kil_ (0, ku, 0) . 

All emitted partons are on-shell, which allows to relate their Sudakov parameters through 

Zi ki_l_/Q2 

1- Zi xdxs ' 
(5.36) 

where zi = xdxi-l· Imposing angular ordering for the emissions results in ordering of the 

corresponding rapidities Yi, since 

(5.37) 

where ~i = kt /ki = adxs (Ji and ei is the angle of ki with respect to the beam axis. 

According to Eq. (5.34) 

(5.38) 

where the rescaled transverse momentum ki = ku/ (1 - zi) has been introduced. Hence 

angular ordering requirements yield the constraints 

(5.39) 

Here j5 = Xn+ 1Q-J3/xs is the maximal rescaled transverse momentum which is fixed by 
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the hard process through 2 = (1 + /Jn+l)f(xn+dxs - 1). Typically, in an angular ordered 

evolution of the parton distributions, j5 plays the role of the factorisation scale J1F [144]. 

The above ordering procedure can be generalised to hadron-hadron collisions. In this case, 

both incoming particles have a partonic substructure. In general, this leads to two separate 

factorisation scales, p,~) and p,~), for the two parton densities, respectively. 

In [151, 152, 155] it has been shown that doubly unintegrated PDFs (DUPDFs) may be 

inferred from conventional DGLAP PDFs. In the following, DUPDFs will be denoted by 

fa(x, z, k3_, p,}), while their conventional DGLAP counterpart will be denoted by fa(x, p,}). 

The DUPDFs must satisfy the normalisation condition 

1
1 J dk3_ 2 2 ( 2 ) 

x dz k3_ fa(x,z,kj_,P,p) = xfa x,p,p . (5.40) 

Employing the Sudakov form factor3 

(5.41) 

with Pab ( () denoting regularised DG LAP splitting functions for the splitting a -----+ b, a singly 

unintegrated parton distribution fa(x, k3_, p,}) is obtained through 

(5.42) 

In the region k3_ > p,} this UPDF is set to zero. This procedure leaves some minimum 

k3_ -scale to be defined, below which DGLAP parton evolution is not valid. In the following, 

this scale will be denoted by 116- Relation (5.42) then holds only above 116, which yields the 

constraint 

(5.43) 

on the singly unintegrated PDF. Whenever UPDFs, satisfying this normalisation condition, 

are applied in kj_ -factorisation, physical observables must be insensitive to details of the 
. ·•"J~·,,.,.!.;::.J...:·-,~:- ':~ -',-;.:=-::· .. :,.;>!,._~-. .::;.~:~~.,...:_,_,.~.·.~-c-~ ,·,-~-~ -," · •· ~.:~~---"_c-; ~-<:·:-·~···~~' ;__: fo·~·: ..... :.-o.;;;:-_;~"': =-·_;")·-'-:· -~_,·::,_ •,.•-;_•·:,,-~·;: ____ '_ ·::._·>:f:"".,:.,:-__ ~-':i,;.·~~-:;;;:;·:~7-·'c:,..._ ~~- :-~·~··;.-;:' 

infrared behaviour of fa(x, ki, p,}), i.e. below 116.4 Therefore, a choice can be made, for 

3 The factor of 1/2 in the sum over the parton species avoids double-counting s- and t-channel partons. 
4It turns out that there is no need for an explicit form of the DUPDFs below J.L6, since the t-channel 
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example [155] 

(5.44) 

where 

(5.45) 

This choice implies that the UPDF vanishes with ki for kj_ ---+ 0, as required by gauge 

invariance [166]. 

Instead of the regularised splitting functions Pab(z), unregularised splitting functions Pab(z) 

may safely be used here. This is because the splitting kernels are implicitly regularised by 

imposing the rapidity ordering constraint Eq. (5.39). Inserting corresponding 8-functions 

in z results in the singly unintegrated quark and gluon distributions Jq(x, k3_, t-t}) and 

f 9 (x, ki, t-t}), respectively [152, 155]. The term singly unintegrated indicates that these 

PDFs depend on one additional variable w.r.t. the collinear ones. It is straightforward, 

however, to introduce an additional z-dependence by simply dropping the z-integration in 

Eq. (5.40). Such defining the DUPDF 

fa(x, z, k3_, f.t~) 

(5.46) 

the desired relation, Eq. (5.40), is satisfied for both parton species. To guarantee the con­

sistency of the approach, the conventional DGLAP PDF employed to obtain the DUPDFs 

should be determined using the leading order unregularised splitting kernels employed in 

Eq. (5.46). Furthermore, a consistent treatment of the running coupling as should be im­

posed. 

parton chains contain a natural cutoff in k1_, cf. [147], by imposing phase space cuts given by physical 
observables like mini-jets. 
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5.3 DUPDFs as impact factors for ll BFKL evolution 

In this section it is proved that the DUPDFs defined above may be employed as impact fac­

tors in the calculation of multi-gluon cross sections in the high-energy limit. The argument 

works at leading logarithmic (LL) accuracy. The starting point is the integrated LL gluon 

branching probability fbLL) = -log i::l.bLL), which determines the behaviour of the DGLAP 

evolution of the gluon density. 5 

r1LL) (M2, fl2) = r1;L) (M2, fl2) + L r1~L) (M2, fl2) , (5.47) 
q 

where 

(5.48) 

with Pab(z) again denoting the unregularised DGLAP splitting kernels and the integration 

boundaries determined by angular ordering, cf. the 8-function in Eq. (5.46). To simplify 

the discussion one firstly focuses on rbtL) only. The corresponding part of the Sudakov form 

factor reads 

(5.49) 

Replacing the splitting variable z of the emitter parton by the rapidity y of the emission, 

which, according to Eq. (5.38) is given by 

1 
y = -ln~ = 

2 

results in 

ln (_!__ 9_) - ln _z . 
x 8 k1_ 1-z 

(5.50) 

(5.51) 

5The factor 1/2 contained in Eq. (5.41) must be cancelled here in order to restore the t/u-symmetry of 
the splitting process. 
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where 0:8 = a 8 CA/7r. The term z(1 - z) in the numerator corresponds to helicity non­

conserving configurations in the 1 -. 2 parton splittings and thus in the impact factor [54]. 

These configurations are absent in the high-energy limit, which simplifies the integrand of 

Eq. (5.51), such that the part of the integrated LL gluon branching probability induced by 

g -. gg splittings reads 

(5.52) 

Keeping in mind that 0:8 depends on transverse degrees of freedom only, performing the 

y-integration results in 

(5.53) 

The order of integration in Eq. (5.52) may be changed, 

(5.54) 

If the running coupling is treated identically, this result agrees with the reggeisation factor 

of the t-channel gluon propagator found in Eq. (5.32), 

(5.55) 

where Ci8 = a 8 C A/ 1r and qi = Pa - L:;=l kj. The exponential term in the square brackets is 
creadiiy'~identifi~cras ... · . . . . ··- .c.•c>><''-·<•; .. ,.,, . .••.. ~. '"•"'. ····~;.,'-"··-·:•~=-

(5.56) 
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where 

(5.57) 

which is the desired result. It has been pointed out e.g. in [139] that the comparison with 

NLO BFKL calculations suggests the choice a 8 = a 8 (ki), similar to the DGLAP case. 

Employing 

where 
a _ 11- 2/3N1 
fJO- 47f ' (5.58) 

one then ends up with the result presented in Ref. [148], 

(5.59) 

In numerical analyses, A is chosen consistent with the input PDF. Equation (5.55) can be 

used to construct the full LL BFKL kernel f through 

00 

L Jn ( Yab, Pa_l, PH) (5.60) 
n=O 

Since rapidity ordering is trivially satisfied in the BFKL evolution, the explicit ordering 

requirement incorporated in the 8-function of Eq. (5.54) may be dropped whenever li(y, y) 

is employed. 

Following the same reasoning, fb~L) is given by 

(5.61) 

In principle, this term vanishes in the high-energy limit due to the prefactor z(1 - z), thus 

allowing to identify li(y,y) with t1bLL)(f.L2 ,ji2
). However, it may be used to model quark 

production along the BFKL ladder, as will be discussed in Sec. 5.5. 

Similar considerations may be applied to the integrated quark branching probability. Start-
-- ·-·-o.r·.••-::.'"-o.G~-··~-..r_,.o.:.·•-,i' ''~-·.:."'"• . .';,.L·"-._-,._--.-_ •• /~.":"t-· _,_;_,__0;,;•·_ • •• , •• -:-.,··;: -- , 
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and again replacing the splitting variable z by the rapidity y results in 

(5.62) 

By identifying z = -t/ s, all factors 1- z become unity in the high-energy limit. Thus, 

(5.63) 

Simultaneously, due to the denominator part (1 - z) in Pqq(z) quark production in the 

t-channel is suppressed, hence allowing to identify 

(5.64) 

However, r~L) (J-L2, ji2) may be employed to model gluon emission from t-channel quark lines, 

as will be described in Sec. 5.5. 

The above considerations show that to leading logarithmic accuracy the DUPDFs, Eq. (5.46), 

resemble all features of the BFKL evolution. Therefore, they can safely be employed as im­

pact factors for the calculation of cross sections in the high-energy limit. 

5.4 Markovoa1r11 Monte Carlo solution of the 

In ( 1/ x )-evolution 

The Markovian approach to the calculation of cross sections and differential distributions 

in the high-energy limit will be presented in this section. The advantage of the algorithm is 

that the number of emissions stays a priori undetermined, similar to the case of conventional 

parton showers employed to solve log( Q2 
/ J-L 2)-evolution [86, 87, 165]. The factorisation of the 

radiation pattern into individual emissions, which depend on each other merely through the 

correct ordering, allows to model further physics effects involving the produced outgoing 

>, partons;·1ike for instance adding final stare radiatrorL 
-,.·. - ' .. _ --· ~ .. ;::---~ .. .:;:.._·_. "--

The basis of the formalism is encoded in Eq. (7) in Ref. [147] and Eq. (5.56). These equations 

translate into the probability for having an additional emission from the BFKL kernel being 

. ,..··-'-.~: 
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approximately distributed according to the function 

(5.65) 

Here, Yi is the rapidity of the previous and Yn is the rapidity of the final emission. Such 

distributions may be generated employing the veto algorithm, described for example in 

Ref. [165]. It allows to simultaneously select the rapidity and transverse momentum of the 

new emission.6 In the following, the superscripts (LL) will be dropped. 

To determine the corresponding z-k_1_ -factorisation formula, the simplest case, a gluon lad-

der with no emission, is investigated. This corresponds to a "2 ----+ 0 process" in the z--

k_1_ -factorisation approach. When working in collinear factorisation rather than with the 

DUPDF prescription of Ref. [155], it is a 2 ----+ 2 process. The corresponding phase space 

element can thus be determined by factorising the collinear matrix element and its phase 

space integral. The starting point is 

f ( {1) Q2) f ( (2) Q2) I MaUl a(2) 1

2 
1 

X J aUl X ' J a(2l X ' 2 ~(1)~{2) S 2 ' 

(5.66) 

where the factor 1/2 is due to the identity of the final state particles, Q2 denotes the 

factorisation scale, P 2 = s, s = ~( 1 )~(2lS, ~ = xjz, and the superscripts (1) and (2) refer to 

the left and right beam, respectively. The matrix element reads 

. 2 ( ) 2 2 CA tu us st IM I = (47rns) - 3------ . 99 2 s2 t 2 u2 (5.67) 

Employing z1 = z2 = z, t = -zs and u = -(1- z)s transforms this into 

2 21 2 IM99 I = (47rns) 8 [ P99 (z)] { 1 + 0 (z(1- z))} (5.68) 

where terms proportional to z(1 - z) in the numerator vanish in the high-energy limit and 

.'~ are not explicitly displayed. 

The phase space element of the general case of a gluon ladder with an arbitrary number of 

6In fact applying a veto is not necessary here, as long as quark production is neglected in the approach. 
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gluons emitted between the two outermost jets can be derived by combining their momenta 

into one final state momentum K. Ignoring the substructure of K, the differential two­

particle initial and final state phase space element for the remaining degrees of freedom 

reads 

(5.69) 

with P again the total four momentum of the process. Employing the four-dimensional b­

function and the relations d~( 1 ) d~(2) = dyds / S and dpz = d ( JSJ:" sinh y) = JSJ:" cosh y dy = 

E dy results in 

d<I> = 271" d d dy1 dkL_ d¢1 b ((P- K- k )2) 
2 s s y 4(271")3 1 

(5. 70) 

Furthermore, the definition P = P - k2 allows to rewrite 

(5. 71) 

Using P = y'S(coshy,O,sinhy) gives 

ds b (s + K 2
- 2P(K + kl) + 2Kk1) 

s s 

s- P(K + k1) Pk2 ' 
(5. 72) 

SliGh that 

(5.73) 

Finally, when fixing the factorisation scale in Eq. (5.66) and the renormalisation scale in 

Eq. (5.67) to be the transverse momenturp in the process and adding a Regge suppression 

factor for the t-channel gluon, the z-k1_ -factorisation formula reads 

Here, f9 is defined such that only gluon splittings are contained in the sum over parton 
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species of Eq. (5.46) and angular ordering is implemented by the DUPDFs, while llg(y1, y2 ) is 

given by Eq. (5.56). The superscripts (l) and (2) refer to the left and right beam, respectively. 

Since the emitted gluons are distinguishable due to rapidity ordering, the symmetry factor 

1/2 appearing in Eq. (5.67) must be dropped. The factorisation scale J.LF of each DUPDF 

introduced in Eq. (5.46) is unambiguously determined by the rescaled transverse momentum 

k1_ of the emissions. 

Equation (5.74) describes a gluon ladder with no rung, but it can be easily extended to 

final states with an arbitrary number of gluons. In contrast to the previous case,. the 

momentum fractions z(l) and z(2
) are then generally different from each other. Hence the 

rescaled transverse momenta k~~ = ka/(1- z(l)) and k~22a = kn-a/(1- z(2
)) are defined. 

Employing Eq. (7) of [147], the cross section for the 2 ---t n gluon scattering reads 

(5. 75) 

where 

(5.76) 

The corresponding Monte Carlo event generation algorithm can be described as follows: 

1. Determine the kinematics of the first emission and the rapidity of the last emission 

according to the modified z-k1_-factorisation formula, Eq. (5.75). 

2. As long as phase space allows, choose a new rapidity Yi according to Eq. (5.65) and 

a new transverse momentum kil_. The corresponding cuts on the individual emissions 

have already been discussed in Ref. [147]. In the notation employed ibidem, they are 

12 2 d 2 2 <:il_ > J.Lo an qu > J.Lo · 
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3. Fix the transverse momentum of the last emission 

through overall momentum conservation. 

It should be stressed that the results presented in Sec. 5.6 have been cross-checked with 

an alternative phase space integration algorithm. An iterative approach to generate the 

event topology for the process PaPb -----+ p 1 ... Pn is then employed, considering the equivalent 

2 -----+ 2-scattering in each emission step. Previous steps are taken into account by combining 

the particle momenta Pa, p 1 ... Pi into Pa; and thereby considering the 2 -----+ 2-process Pa;Pb -----+ 

PiPn· When denoting by si = m? and su the squared mass and squared transverse mass of 

the particle i, in the centre of mass frame of Pa;b one obtains the integration boundaries 

Efax = -
2 

1 
(sa;b + Si- Sn) , 

ma;b 

k2max 1 \2 ( ) 
i..l = --/1 Sa;b, Si, Sn ' 

4 Sa;b 

where ,\2 (s, s 1, s 2) = (s- s1 - s2 )
2

- 4s1s2 . The corresponding rapidity interval is fixed by 

max= ~ ln 1 + J1- su/ Efax2 

Yt 2 1- J1- si..L/ Efax 2 ' 

and may be computed once kT...L is selected. The kh selection itself is performed employing 

a divergence-free distribution, such as (kT...L)a, where a > -1. Since the above boundaries 

are unambiguously determined, then-particle phase space may be completely filled. 

5.5 A mode~ for quark production 

So far, it has been shown that Eq. (5.75) yields the correct LL gluon evolution in the 

high-energy limit. In this limit quark production is strongly suppressed due to the spin 

structure entering the corresponding vertices. However, energies and rapidity intervals at 

real colliders are finite and quarks do appear as final state partons. Since, for instance, heavy 

quark production is of large phenomenological interest, it needs to be described. The aim is, 

'how~~~r,"'D.of to spoil the fiigh~-eil~rgygiuan.··e~~f11ti~~~ 'fh:~;~£~;~-oii~--~~il,~h~~;~-"-t~ ~~ci~l' · · 
quark production within the BFKL ladder structure by simply adding a g*q* -----+ q effective 

vertex, which vanishes in the high-energy limit, but keeping the finite, non-leading terms. 
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i n 

k, i 
... 
i k,+l ni ~ 

qi-1 qi qi+l Pb Pa 

Fig. 5.6 Multi-Regge amplitude including the emission of a quark pair 
with the particle indices i and i + 1. The shaded blobs represent 
the vertices proposed in Eq. (5.77). 

Additionally, quarks can be produced by employing qg* -----+ q and qq* -----+ g impact factors 

contained within the DUPDFs. These quarks may further radiate gluons, which is modelled 

by a q*q* -----+ g vertex. Figure 5.6 shows a possible configuration of quark production. 

Following Sec. 5.3, the remaining vertices are then readily determined. At leading loga­

rithmic accuracy they are given by the corresponding DGLAP splitting functions in the 

high-energy limit, 

Cqg = CF' 
1 

Cqq(zi) = 2CF zi , 

1 
C9q(zi) = 2 TR zi . 

Then, the general case of a parton cascade in the high-energy limit reads 

where now both quarks and gluons are contained in the sums over parton species. 

(5. 77) 

(5.78) 

If heavy quarks are included in the simulation, their masses are taken care of in the Reggei­

sation factor and the phase space integration. Following the discussion in Ref. [115], the 

-~-, braflching·probability f~L) (y, yr'for lieavy>quarks'of-rr{aSS TrCis modffie(i~by ____ ":'"'-'"'-'e""""c-~~ :----

k3_ c 
k3_ + m 2 qg · (5.79) 
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Fig. 5. 7 Transverse momentum spectra f (knl.) for fixed and running 
coupling solution of Eq. (5.75) at fixed ku and b.y. Note that 
the result for running coupling has been rescaled by a factor 
of 0.1. 

Accordingly all external momenta are constructed employing the correct on-shell masses of 

the corresponding particles. 

5.6 IResLUits 

In this section, results obtained with the Monte Carlo algorithm described above will be 

presented. All of them have been obtained with an implementation into the MC event 

generator SHERPA [19]. To eliminate possible dependencies on the phase space integration, 

calculations were cross-checked with the second integration method outlined in Sec. 5.4. No 

deviations from the results generated in the Markovian approach have been found. 

Firstly, the focus is on purely gluonic processes, reflecting the behaviour of the 10 BFKL 

equation. This essentially translates into invoking Eq. (5. 75) for event generation. In Fig. 5. 7 

the azimuthally averaged knl. spectrum f (knl.) = (f (knl.))¢> is shown, where ku =50 GeV 
•• ,"'-'_.-,;:"o,:,:-.o.,'" • ..,..,,,___:_~~-".! ----+- ·-· <"· . -;-~ -- ._ >..,...>-<;...!<"'~~.:;~-!:-• ...c.-.-'1':~-:..~o.;c_';_!;!c~-=-n-~---: -·-.:.:, •• 

and !:ly = 4, and where the DUPDFs ,have been set to 1. Therefore, this plot investigates 

the behaviour of the BFKL kernel, Eq. (5.60), only. As collider setup, the LHC with a c.m. 

energy of 14 TeV has been chosen. In the fixed coupling solution 0:8 has been evaluated 
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Fig. 5.8 Left panel: Comparison of log (k.L)-distributions between BFKL and reweighted 
DGLAP matrix elements. Right panel: Comparison between BFKL and reweighted 
DGLAP matrix elements for the ~y-distributions. 

at scale ki.L- The figure shows the effect of going from a fixed coupling and unconstrained 

kinematics to a running coupling with kinematical constraints, which considerably widens 

the distribution. Also, since a 8 is typically evaluated at smaller scales, f is significantly 

enhanced. The large influence of kinematical constraints and running coupling on the BFKL 

dynamics has already been noted, e.g. in Refs. [154, 150]. 

As a next step, jet-production is investigated, comparing the results of the new algorithm 

to those obtained in collinear factorisation with on-shell matrix elements, which in the 

following will be denoted by DGLAP. The DGLAP results have been subject to the following 

corrections and constraints: 

• ordering of final state momenta in rapidity, 

• evaluating the coupling weight as ni as (kr_l)-

However, without any t-channel reggeisation factor in the DG LAP matrix elements there are 

-: ·stnrlarge-Cfiffereilces. Applying -~ t-ch~~~~l-~;i~i~;t·i;;;·;,eight-t~-~he 6ci:-AP--c-~l~~la~-i-~~- -

results in much smaller discrepancies. The corresponding comparison for the log (k.L)- and 

~y-spectra is shown in Fig. 5.8. Due to the formal equivalence of Eqs. (5.66) and (5.74) at 
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leading logarithmic accuracy, agreement is to be expected and can be interpreted as another 

indication for the validity of the approach. Sizable deviations occur for k1_ > 5 GeV, which 

is due to the fact that the BFKL approach is bound to describe large energy partons only 

incompletely. In order to verify this, the BFKL matrix elements were reweighted with 

the exact matrix element obtained in collinear factorisation. The corresponding correction 

weight for a 2 ----+ n gluonic process reads 

where the factor n! occurs due to the rapidity ordering in the BFKL approach and cancels 

the symmetrisation of the full DGLAP matrix element Mgg--mg· Performing this reweighting 

yields exact agreement between the two approaches. 

Finally results are compared to recent experimental data. Firstly a comparison to data 

obtained by the CDF collaboration [167] is shown. The corresponding prediction of jet-k_l­

spectra from the MC implementation is depicted in Fig. 5.9. It fits the data considerably 

well, both in their shape and their normalisation. Note that no K-factor has been employed 

in the calculations. Although a tilt of the distribution is observed, which potentially arises 

from missing s-channel contributions to quark production, this is a quite remarkable result 

considering the fact that a modified LO BFKL kernel is employed for event generation. As 

can be seen in Fig. 5.9, deviations are up to ~50%, which is well within the expected leading 

logarithmic accuracy. 

Secondly the decorrelation observable investigated in Ref. [168] is addressed. As can be 

seen in Fig. 5.10 the presented approach does not completely describe the data. However, 

deviations are of similar size as in Ref. [148]. Note that the data have not been corrected 

to the parton level and therefore correlated and systematic errors might have an impact. 
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Left panel: Comparison of jet-k.1-spectra with CDF data. Details of the analysis 
can be found in [167]. Dashed lines show contributions from subsamples of 2- to 
4-particle final states. Right panel: Relative differences in jet-k.1-spectra compared 
between Monte Carlo results and CDF data. 
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Fig. 5.10 Comparison of the jet decorrelation observable presented 
in [168] with D~ data. The full error bars include both sta­
t istical and systematic errors, whereas statistical errors are 
independently highlighted by the smaller error bars . 



6 Conclusions 

In this part of the thesis improved algorithms for matrix element parton shower merging 

were presented and a natural way to incorporate colour into the CKKW algorithm was 

outlined. A new type of jet measure has been introduced, which is based on the identifica­

tion of potential collinear and soft enhancements of the matrix elements and corresponding 

singularities in the evolution kernels of shower algorithms. A brief comparison has been per­

formed for the improved CKKW method, including colour information and using algorithms 

described in the first part of the thesis. Corresponding systematics have been studied. The 

findings are promising especially with respect to the consistency of the new methods upon 

changing the matrix element generator. It should be noted that the corresponding imple­

mentation will soon be publicly available and allows a straightforward application of the 

improved CKKW merging to any QCD associated process in the Standard Model, which, 

at leading order, contains no disconnected QCD subprocesses. 

A detailed comparison of matrix element parton shower merging approaches was presented. 

Five different implementations of merging prescriptions have been compared, which are 

implemented into the programs ALPGEN, ARIADNE, HELAC, MADEVENT and SHERPA. As 

testing ground, the production of w+ -bosons at the Tevatron and LHC colliders has been 

chosen. The results show a reasonably good agreement between the codes, which means 

that the variety of methods for merging matrix elements and parton showers can be em­

ployed with some confidence. Differences arise, due to the different ways in which Sudakov 

:::-- suppression of the rna tiE<: elements and veta'''i)r~~;ciu;~~in th~ pa:~to~ ~h;;;-;r,~;~ ·;~~l~;cii~ 
the corresponding code and how they interact with each other. Also the usage of potentially 

different shower algorithms (virtuality or angular ordered showers) plays a role. 
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Apart from the aforementioned analyses and improvements of multi-jet merging, a new 

Monte Carlo algorithm for the description of particle production through the BFKL evo­

lution equation was presented. The algorithm has been written in a Markovian approach, 

iterating independent emissions in order to obtain the full BFKL radiation picture. It has 

been discussed how doubly unintegrated PDFs, obtained from conventional PDFs through 

the KMRW procedure can be employed as impact factors, retaining essential features of 

small-x physics encoded in the BFKL equation. 

The numerical implementation of this algorithm was presented. Corresponding results show 

that the proposed algorithm correctly reproduces the BFKL features visible in analytical 

calculations. They also show the important effect of a running of the coupling and of 

kinematical constraints, which go beyond the LO BFKL approach. The realisation of the 

Markovian algorithm is straightforward. Using DUPDFs obtained from collinear PDFs 

allows to compare results for jet production to those obtained in the collinear factorisation 

approach. Comparably good agreement between both approaches is obtained, when effects 

that are not present in both approaches, such as t-channel reggeisation and rapidity ordering, 

are taken into account. 

This work is a first step towards a unified description of particle production in the regime 

of high and low transverse momenta, i.e. of jet and mini-jet production. The formalism 

presented here can be extended to the simulation of multiple parton interactions, which 

constitute an important part of the underlying event. Also diffractive processes and quarko­

nia production may be included in the description. 
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Appendix A Lorentz functions in 

(OM IX 

In this appendix explicit expressions are listed for all possible Lorentz vertex structures 

occuring in the Berends-Giele recursion defined by the Standard Model. They are sorted 

ascending in the spin of connecting particles and the following notation is employed. 

S Scalar, 

F Fermion, 

V Vector Boson, 

T Antisymmetric tensor of rank two. 

Note that all interaction terms occuring in the Standard Model Lagrangian yield no more 

than three-particle vertices of the above defined particle types with the possible couplings 

listed in Appendix B. The quantities listed in Tab. A.l in explicit form are given by 

0 

,Q 

·+ '* J Vo + )j_ V1 

Jj_Vo + j-v1 

(A.l) 

(A.2) 
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Vertex ID Lorentz structures 

u v s v u s 

FFS y y y 
uv sv us 

u v c v u c 
ppy- y y y 

1-'"l 
EJ.L"(J.L 

1- "/5 
UEJ.L"(J.L 

1- "/5 
U"(J.L v v 

2 2 2 

u v c v u c 
ppy+ y y y 

1 + "/5 
EJ.L"(J.L 

1 + "/5 
UEJ.L"(J.L 

1 + "/5 
U"(J.L v v 

2 2 2 

c c:' s c:' 

vvs '/ '',,( 
I 
I • 

c:J.Lc:' J.L s c:'J.L 

c:(p) c:'(q) 

VVV(p, q) y 
fvap (p, q) cac~ 

c c:' c T 
"-../ '1 .. · 

VVT 
... ·· 

• 
. TW(e;E!Jr·.· -~:-- ' , __ ;·, " -~'c:;; i"1w· ··· ·'- :.-..- ;,_,i:.:!-·:_,....!_ ~- '-"" .. -. . 

.:...>;--:·.·-,·.- . ·. --.,· 

Tab. A.l Lorentz structures of Standard Model interactions. 
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(A.3) 

j-v2- Jl V3 

. ·+ 
-]l_V2 + J V3 

(A.4) 
0 

fvap (p, q) E17 E~ = EE
1 (p- qr + E1 (2q + p) Ev-E (2p + q) E

1
v, (A.5) 

Due to the antisymmetry of TJLv, the following identity holds 

(A.7) 

Corresponding replacements in the recursive relations lead to an asymmetric form of the 

VVT vertex, and a slight decrease in evaluation time. 





Appendix B Vertices and propagators 

in (OMIX 

In this appendix all vertices occuring in the recursive relations for the Standard Model as for­

mulated in Sec. 3.1 are listed explicitly. Their Lorentz structures are defined in Appendix A. 

QCD interactions 
q,K q,L 

y 
g,HG 

g(p), KL g(q), MN 

Y= 
g,HG 

g,KL g,lv!N 

~ 

q 
I H 

·:.H fJ+m 
~ U[ 2 2 

p -m 
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- g4 - H (; 
pa, I J ·· ··· ··· .. · ··· J.LV, H G = -i 81 8 J D~~ 

f 1 y 
I 

f 

I 
J.l v 

h 

f 1 y 
z 

f !' y 
w+ 

W/Z W/Z 

~ 
I 
I 
I 

oh 

QED interactions 

Electroweak interactions 

3m2 
. h 
~--

v 

.mf 
-~- FFS 

v 

h 

>.w = 1 

• >o x.z -~- .. c\)s ()i{/ . 



W/Z W/Z 

~ 
I 
I 
I 

h4 
w-(p) w+(q) 

y 
A/Z 

w- w+ 
'/ 

z4 
w- A/Z 
~ 

w-
4 

h 

W/Z 
11 v 

z4 
11v .............. pa 

2 Aw = 1 . gw vvs where -z 
2,\~/Z Az = cos Ow 

i gw ri,A/Z VVV (p, q) where 
r;,A = sinOw 

= cosOw 

igw VVT 

igw "'Afz VVT where 

r;,z 

r;, A = sin Ow 

r;,z = cosOw 

+ J.t v/ 2 . -gJ.tv P P mw;z 
z 2 2 

P - mw;z 

·npa -z J.tv 
w± 

4 
/-lV .............. pa ·npa 

Z JLV 

The following definitions are employed 
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Appendix C The HAAG integrator 

. The HAAG phase space generator [33] is designed to produce momenta distributed approxi­

mately according to a QCD antenna function for ann-particle process 

1 
An (Po, P1, · · ·, Pn-1) = ( ) ( ) ( ) ( )" 

PoP1 P1P2 ··· Pn-2Pn-1 Pn-1Po 
(C.1) 

Different antennas can be obtained from permutations of the momenta Pi· Cyclic permu­

tation and reversion of the order will however lead to the same structure. Generally HAAG 

relies on the phase space factorisation formula, Eq. (3.20). In Ref. [33] two algorithms are 

proposed which are referred to as closed and open antenna and which differ in the decom­

position of the 2-particle phase space d<I>2 . Only the closed antenna contains all factors in 

Eq. (C.1), while in the open antenna one factor (PiPi+l) is missing. Although the closed 

antenna seems to be more symmetric, in practice it turns out that the open antenna is more 

efficient. This is mainly due to its simpler structure and less additional weight factors that 

appear within the algorithm. 1 In the following the focus will therefore be on open antennas. 

The algorithm is reviewed for the case of massless external particles, however it can easily 

be generalised to the massive case. 

Antenna Generation 

In the following, a classification of antenna types by the position of the incoming momenta, 

- ·"'Po and P1' Within· tlfe~ahterina will'b~e used; -sfie' Ff[CG.1. The type is.tfien~ gi'veil''t:Y'l\.!JI!'J:'( :ni ~ 
1, n- m -1). 

1These weights are nonsingular in any of the products (PiPj ). 
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Po 

P,~-~~ 
~ 

rv 

1·\ 
&b-1 ~+1 

1 

(Po ·p2)(p2 ·p3). ·· (Pm ·PI) (PI· Pm+I) ·· · (Pn-2 · Pn-I) (Pn-I ·Po) 

Fig. C.l Antenna configuration. 

The basic building block for antenna generation is the split of a massive momentum accord­

ing to the phase space element dsd<P2(Q;p,P;q), where P 2 =sand the last argument, q, 

defines an axis for the momentum generation. The 2-particle phase space is decomposed 

according as 

d<P 2 ( Q; p, P; q) = da dc;b , where 
q·p 

a=--
q·P 

(C.2) 

and where c;b is an azimuthal angle around q. 

The phase space for a single split, now defined through the variables s, a, c;b, is constructed 

as follows2
: 

1. Dice s according to 1/ s in [smin, Smax]· 

2. Dice a according to 1/a in [amin, amax]· 

3. Dice c;b according to a flat distribution in [0, 21T-]. 

4. The momenta are given by 

(C.3) 

2Frame dependent quantities are defined in the centre-of-mass frame of Q with the z-axis along q 
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5. The weight is given by 

g(smin, Smax) g(amin, amax) 1 
s a 2n ' 

( 
Xmax 

where g Xmin, Xmax) =log--. 
X min 

(C.4) 

Type 0 antennae 

The phase space for type 0 antenna configurations can be obtained by a direct multiple 

application of the basic building block: 

d<I>n(Po,PI;P2, ... ,Pn-d = ds2 d<I>2(Po + P1;p2, Q2;p1) 

x ds3 d<I>2(Q2;p3, Q3;p2) 

The corresponding total weight is given by 

n;:; Pj ( L::j~l Pi) 1 

w rv n;:; (2:::~~/ Pi) 2 ...,..(P-1-.P-2.,--)(_p_2.-P-3)---. ·----,(-Pn---2-.P-n-----,--1)' 

where the contributions from boundary dependent functions g have been omitted. 

Type 1 antennae 

For this configuration the following phase space decomposition is considered: 

X ds3 d<I>2(Q2;p3, Q3;pi) 

x ds4 d<I>2(Q3;p4, Q4;p3) 

X dsn-3 d<I>2(Qn-4;Pn-3, Qn-3;Pn-4) 

X d<I>2(Qn-3;Pn-l,Pn-2;Pn-3) · 

(C.5) 

(C.6) 

(C.7) 
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In the first momentum split, d<I>2(p0 + p1;p2, Q2 ;p0 ), the variable a is now diced according 

to a(La) 0 All following splits are generated according to the basic building block. The 

corresponding total weight is given by 

IJ;:; PJ ( L~==-J~l Pi) 1 
w "'Poo(Po + Pl- P2) Pr(Po + P1- P2) n-3 ( n-1 ·)2 --,--(P_o_OP_2_)(_P_1o_P_3)_o_O -0 (-Pn---2-0P_n __ -1)" 

nj=3 Li=j Pt 

Type k (> 2) antennae 

In this case the following decomposition is employed: 

x dsk-2 d<I>2(Qk-3;Pk-2, Qk-2;Pk-3) 

X d<I>2(Qk-2;Pk-l,Pk;Pk-2) 

X dsn-3 d<I>2(Qn-4;Pn-3, Qn-3;Pn-4) 

X d<I>2(Qn-3;Pn-1,Pn-2;Pn-3) o 

(Co8) 

(Co9) 

All splittings are generated according to the basic building block. The corresponding total 

weight is given by 

W"' 

X --,-------,----,----~--~----~------------------
(pooP2)(p2oP3) 0 0 0 (Pk-1°Pk)(P1°Pk+1) 0 0 0 (Pn-2°Pn-d 

0 
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Symmetrisation of antennae 

As well as the antenna function in Eq. (C.l), each HAAG channel can be labeled by a specific 

permutation of the momenta. Since the described algorithm always starts from incoming 

momenta, the channels are invariant with respect to cyclic permutations of the momenta. 

However, unlike the antenna function itself, different channels are obtained if the order of 

the momenta is reversed. This is due to the fact that the open antenna algorithm is used. 

In order to recover symmetry, the two channels given by a permutation and its reverse are 

combined into into one, i.e. one of the two configurations is chosen with equal probability 

and the weight is given by the average of the two. 

Note that all channels of the same type are in principle equivalent, i.e. they can be obtained 

from each other by simply relabeling the final state momenta. 

HAAG and variance reducing technoques 

To generate an adequate phase space integrator for realistic n-particle QCD processes, dif­

ferent HAAG channels can be combined using the multi-channel method [30]. Symbolically 

one can write a single channel as a map X from uniformly distributed random numbers 

a E [0, 1] 3
n-

4 to the four-momenta p= (p1 , ... ,Pn) of external particles, The corresponding 

phase space weight g is given by 

1 d<I>n (X (a)) 
g da (C.lO) 

The multi-channel method now combines several maps Xi to a new map as follows: 

k-1 k 

X(a,a) = Xk(a), for l:.:a1 <a< l:.:a1, (C.ll) 
1=1 1=1 

requiring an additional random number a and arbitrary coefficients ak with ak > 0 and 

, 2;k ak'= 1. Cfhe corresponding phase,space~weight~'is ·givew'by 

(C.12) 
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The coefficients o:.k can be adapted such that the variance of the phase space integral is 

minimised. 

The efficiency of the integrator is improved if additionally the VEGAS algorithm [31 J is 

applied to the single channels. VEGAS is very efficient in the numerical adaptation to func­

tions, whose peaking behaviour is not too extreme and which are factorisable to a product 

of one-dimensional functions. Although this is usually not the case for full differential cross 

sections, it can be used to better adapt the antenna-like structures in a single HAAG-channel 

to the corresponding structures in the matrix elements, including phase space cuts. 

For each channel k, VEGAS is used to generate a mapping ~k from uniformly distributed 

random numbers to a non-uniform distribution, still inside the interval [0, 1], and a corre­

sponding weight vk. To combine this with the multi-channel method the mapping X(a) for 

single channels must be invertible, which is true for HAAG channels. The full map reads 

k-1 k 

X( a, a) = Xk(~k(a)) , for L o:.z <a< L o:.z . (C.l3) 
l=l l=l 

For a momentum configuration p the weight is therefore given by 

G(PJ = L o:.k 9k(PJ vk(X}; 1 (PJ) . (C.14) 
k 

One can make use of the equivalence of HAAG-channels of the same type, such that all of 

them employ the same VEGAS map. This alleviates the adaptation significantly, since one 

is left with only very few maps and a linear growth with the number of particles. 



Appendix D NLL Sudakov form 

factors 

In this section, the connection between the notation of Sudakov form factors, Eq. (2.4), 

Part II, Chapter 2 and the commonly used form in terms of the jet measure, cf. Ref. [96] is 

established. The focus will be on massless partons, such that, to next-to-leading logarithmic 

accuracy, the Sudakov form factors are given by 

t,,(q, Q) ~ exp { -J.Q dqr,(q, Q)} 
t,,(q, Q) ~ exp { ~ { dq [ r,(q, Q) +ft(ii, Q)] } , 

(D.1) 

Note that they depend on the jet measure only. This is in contrast to what is employed in 

Eq. (2.18) and allows to compute jet rates to next-to-leading logarithmic accuracy, while 

only the respective jet measure scales of parton production are needed as an input. The 

functions r(q, Q) are given by 

rjF) (q) = 2Tn o:s(q) Nf . 
- ... ,.·, ... - •• · ·. ···• .,?L .. _.,v-<.Q-.-:•~•3.:,._·•·>c, 

(D.2) 

The above formulae are derived using the coherent branching formalism, based on the 

standard evolution equation, Eq. (2.1). Collinear factorisation as in the shower generator 
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APACIC++, cf. Sec. 3.1, is employed while the evolution parameter is the angular variable 

z(1 - z) ' 
(D.3) 

with z the light-cone momentum fraction in the splitting and p2 the virtuality of the (mass­

less) mother part on. 

Comparing this to the standard shower algorithm in APACIC++ (cf. Sec. 3.1), the main differ­

ence arises because angular ordering is implemented directly. However, since d log( iP / f-i2 ) = 

d log(p2 
/ f-i2 ) and since APACIC++ effectively implements angular ordering, both schemes are 

formally equivalent. The evolution within APACIC++ can then be cast into the form em­

ployed in Ref. [96] and the respective Sudakov form factors agree because in the soft-collinear 

regime and for massless partons, the jet measure, Eqs. (3. 7) and (3.8) effectively encodes 

the Durham scheme 

Q~_,bc = min { E;, E~} (1 -cos Obc) . (D.4) 

The lower scale q of the above Sudakov factors then corresponds to the jet veto scale Qcut, 

while the upper scale is set by the nodal Q-value of the branching where the respective 

parton was produced. 

__ ;._~~-- __ .-_';, __ _ 
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