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Abstract

In this thesis we study the configuration space, F (Γ, 2), of two particles moving

without collisions on a graph Γ with a view to calculating the Betti numbers of

this space. We develop an intersection theory for cycles in graphs inspired by the

classical intersection theory for cycles in manifolds and we use this to develop an

algorithm to calculate the second Betti number of F (Γ, 2) for any graph Γ. We also

use this intersection theory to provide a complete description of the cohomology

algebra H∗(F (Γ, 2),Q) for any planar graph Γ and to calculate explicit formulae for

the Betti numbers of F (Γ, 2) when Γ is a complete graph or a complete bipartite

graph. We also investigate the generators of group H2(F (Γ, 2),Z) and show that for

any planar graph this group is entirely generated by tori induced by disjoint cycles

in the graph. For non-planar graphs the situation is more complicated and we show

that there can exist a generator of H2(F (Γ, 2),Z) which is not the fundamental class

of a surface embedded in the space F (Γ, 2).
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Chapter 1

Introduction

The configuration space of n distinct points, ordered or unordered, lying in a topo-

logical space X plays an important role in modern topology and has been extensively

studied. Such spaces were introduced by Fadell and Neuwirth (for the case X = Rn)

in 1962 in [14] and since then many important results have been obtained. These

configuration spaces have strong links with the study of braid groups; the fundamen-

tal group of the configuration space of n distinct, unordered points on the Euclidean

plane is isomorphic to the classical braid group on n strings [14]. Configuration

spaces have been used in the calculation of many important results on the subject

of braid groups, for example by Arnol’d [4], Cohen [8] and Vassiliev [34]. The case

where X is an algebraic variety or an orientable manifold was studied by Totaro

in [33], where he introduces a spectral sequence which describes the cohomology

algebra of these configuration spaces.

This thesis explores the topological properties of the configuration space of 2 distinct

points lying on a finite graph. Spaces of n points moving without collision on a finite

graph arise in the study of topological robotics and were first studied in this context

by Ghrist in [21] and Ghrist and Koditschek in [22]. Such studies are motivated by

problems in engineering involving the scheduling of a number of Automated Guided

Vehicals (AGVs) operating without collisions on a pre-defined network of paths,

i.e. a planar graph [22]. These spaces have also been studied by Farber in [15, 16]

where the topological complexity ( [16] Definition 4.6) of the configuration space of

1
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n ordered points on a tree is calculated and this configuration space is explicitly

described for the case n = 2 ( [15] Theorem 10). There has also been some recent

work on calculating the fundamental group of configuration spaces of n unordered

particles moving on a tree, this was studied by Sabalka and Farley in [19] and by

Abrams in [1]. The homology and cohomology of such spaces have also been studied

by Farley in [17, 18] and by Sabalka and Farley in [20].

The main aim of this thesis is to study the configuration space of two ordered points

on a graph, where the graph in question is not a tree, i.e. it contains non-trivial

cycles. This thesis attempts to describe the homology and cohomology of such

configuration spaces, concentrating on calculating the Betti numbers of the space.

Such spaces have been studied as topological spaces in their own right, not linked

to problems in engineering, under the name deleted product spaces. A survery of

previous work on these spaces is given in Section 5.4.

We will now describe the structure of this thesis. Chapter 2 begins by describing

some notation and concepts from graph theory which will be used throughout this

work. We then introduce the configuration space, F (Γ, n), the space of n particles

moving on a finite graph without collisions, and the discretized version of this space,

D(Γ, n), which can be given the structure of a CW-complex that we will exploit

throughout this thesis. We give examples of these spaces and, for n = 2, show that

D(Γ, 2) is homotopy equivalent to F (Γ, 2) in all non-trivial cases. This chapter ends

by stating a conjecture which describes the generators of the group H2(F (Γ, 2),Z).

The conjecture states that the generators of this group come from surfaces embedded

in the space F (Γ, 2) which correspond to disjoint cycles and copies of the Kuratowski

graphs, K5 and K3,3, embedded in the graph Γ. Finally we prove a lemma showing

that the group H2(F (Γ, 2),Z) is isomorphic to the 2-dimensional oriented bordism

group of F (Γ, 2). The material in this chapter is not orignal and constitutes an

overview of results and examples previously obtained in the subject.

In Chapter 3 we introduce the tools used to obtain the main results of this thesis.

Our approach is based on studying the intersections of cycles in graphs in a similar

spirit to the classical intersection theory for cycles on manifolds. The work in this
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chapter is an expansion on the first two sections of the joint paper [6] by my supervi-

sor and myself. We begin by decomposing the space Γ×Γ, introducing the extended

diagonal NΓ, whose structure is described using a distance function defined on the

space Γ × Γ. We then introduce the main tool used in this thesis, the intersection

form,

IΓ : H1(Γ) ⊗H1(Γ) → H2(NΓ, ∂NΓ)

and prove that group H2(F (Γ, 2),Z) is isomorphic to the kernel of the intersection

form and the group H1(F (Γ, 2),Z) is isomorphic to the direct sum of the cokernel

of the intersection form with two copies of the group H1(Γ,Z). Throughout this

thesis all homology groups will be taken to have integer coefficients unless otherwise

stated. In the last two sections of the chapter we discuss a method for expressing the

intersection of two cycles in a graph as elements of a direct sum of ‘local homology

groups’, each of which describes the properties of small subgraphs within the graph.

This allows us to develop an algorithm to calculate the second Betti number of

F (Γ, 2) for any simple graph Γ.

The main result of this thesis is given at the beginning of Chapter 4. We calculate

the second Betti number of F (Γ, 2) for any planar graph Γ, proving that the group

H2(F (Γ, 2),Z) is generated by tori given by products of disjoint cycles in the graph.

In the remainder of this chapter we investigate the first Betti number of the space

F (Γ, 2) and calculate simple formulas for the first and second Betti number of F (Γ, 2)

for a large class of planar graphs which we call regular planar graphs. Finally, we

describe the cohomology algebra with rational coefficients of F (Γ, 2) for any regular

planar graph Γ. The results in this chapter were published in the joint paper by

myself and my supervisor [6].

In the final chapter of this thesis we turn our attention to non-planar graphs and

consider the question; for which graphs is the intersection form epimorphic? The

material in this chapter is original and has not been published elsewhere in the

literature. We show that for all complete graphs and complete bipartite graphs the

intersection form is epimorphic and this allows us to compute simple formulas for the

Betti numbers of F (Γ, 2) where Γ is a complete graph or a complete bipartite graph.
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The results of this chapter also have the interesting consequence of showing that

the second homology group of F (Γ, 2) can have generators which are not induced

by disjoint cycles or copies of the Kuratowski graphs embedded in the graph. The

thesis ends with a discussion of previous work published concerning configuration

spaces of two particles moving on a graph, and how the results of this thesis fit in

to the context of this work.



Chapter 2

Configuration Spaces of Particles

Moving on a Graph

We begin this chapter by introducing the main objects of study in this thesis. In

Section 1 we intoduce the concepts and notations from graph theory which will

be used throught this work. We then define the configuration space of n particles

moving without collision on a graph and give some examples of these spaces. In

Section 3 we discuss the main object of study for this thesis, the configuration space

of two particles moving on a graph, and give some important basic results about

this space. We end the chapter by describing a conjecture about the structure of

the second homology group of such spaces and show that this homology group is

isomorphic to the 2-dimensional oriented bordism group of the graph.

2.1 Definitions and Notation from Graph The-

ory

Throughout this thesis our main objects of study will be finite graphs.

Definition 2.1.1 A finite graph Γ is a one-dimensional CW-complex with finitely

many cells, the zero-cells of Γ are called vertices and the one-cells are edges.

5
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Unless otherwise stated, we will consider only connected finite graphs throughout

this work.

A graph can be given an orientation by chosing a direction along each edge. If

an edge e is oriented as in Figure 2.1 then the boundary of e, ∂e, viewing e as

a one-dimensional cellular chain, is equal to the zero-dimensional chain v2 − v1.

Throughout this thesis we will fix an orientation on all graphs we consider. Unless

indicated otherwise, an edge e will refer to the closure of the one-cell e, i.e. the

union of the cell e and its boundary vertices. We say that two edges are incident if

 e
v1 v2

Figure 2.1: An oriented edge.

they have a common boundary vertex and that two vertices v1 and v2 are joined by

an edge e if the boundary of e is equal to ±(v2 − v1).

Many of our results concern simple graphs,

Definition 2.1.2 A graph Γ is said to be simple if it contains no loops or multiple

edges i.e., the boundary of every edge of Γ is the union of exactly two vertices, and

no two vertices of Γ are joined by more than one edge.

In Chapter 4 we give some results concerning planar graphs.

Definition 2.1.3 A graph Γ is said to be planar if there exists a combinatorial

embedding of Γ into the plane R2.

A combinatorial embedding is a map from the graph Γ into the plane R2 which maps

the set of vertices of Γ into the plane in such a way that no two vertices occupy

the same point of the plane and maps the edges of Γ in such a way that no two

edges occupy the same point of the plane except at a vertex, this map also defines

a topological embedding. Such an embedding is called a plane drawing of Γ.
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The two Kuratowski graphs, K5 and K3,3, play an important role in this thesis. The

graph K5 is the complete graph on 5 vertices, that is the graph with 5 vertices such

that every vertex is joined to every other vertex by exactly one edge. The graph

K3,3 is a complete bipartite graph. This graph has 6 vertices divided into two sets

X and Y each containing three vertices. The set of edges of K3,3 contains 9 edges so

that each vertex of X is joined to every vertex of Y by exactly one edge.

There is a well known result of Kuratowski which states that a graph cannot be

embedded in the plane R2 if and only if it contains a subdivision of either K5 or

K3,3 as a subgraph.

Figure 2.2: The Kuratowski graphs (left) K5 (right) K3,3

2.2 The Space F (Γ, n)

We begin by describing the configuration space of n particles moving without colli-

sions on a graph. This is constructed by taking the n-fold product of Γ with itself

and removing the diagonal,

∆ = {(x1, · · · , xn) ∈ Γ × · · · × Γ; xi = xj for some i 6= j}.

Definition 2.2.1 The n-point configuration space of a graph Γ, F (Γ, n), is defined

as,

F (Γ, n) = {(x1, x2, · · · , xn) ∈ Γ × Γ × · · · × Γ; xi 6= xj for i 6= j} (2.1)

The n-fold product of Γ is an n-dimensional CW-complex with m-cells constructed

by taking the product of m edges with n−m vertices. However, the space F (Γ, 2) is
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not compact and cannot be given the structure of a finite cell-complex. We construct

another space which does admit such a structure.

Definition 2.2.2 The discrete n-point configuration space of a graph Γ, D(Γ, n) is

defined as the union,

D(Γ, n) =
⋃

(σ̄1 × σ̄2 × · · · × σ̄n) (2.2)

of all possible products

(σ̄1 × σ̄2 × · · · × σ̄n)

where σi is a cell of Γ and σ̄i ∩ σ̄j = ∅ for i 6= j with i, j = 1, · · · , n.

The space D(Γ, n) is the space of configurations where the n particles lie on n cells

whose closures are disjoint. So if one particle is lying on an edge, e, of Γ then no

other particle can lie on the edge e, on either of the boundary vertices of e, or on any

edge incident to e. Then D(Γ, 2) admits an n-dimensional CW-complex structure

with an m-cell described by a product of m disjoint edges of Γ with n−m distinct

vertices of Γ which are not boundary vertices of any of the m edges.

Example 2.2.1 We will describe the spaces F (Γ, 2) and D(Γ, 2) where Γ is the

‘Y-graph’. That is the tree with three edges incident to one central vertex shown in

Figure 2.3. This example is also described in the paper of Ghrist and Abrams, [3].

In this case Γ × Γ is made up of nine two cells. Six of them are the product of

v0

v2

   v3

v1

Figure 2.3: The Y-graph.

two distinct edges of Γ and by identifying common boundaries one can see that
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these cells form a disc with central point the zero-cell v0v0. This cell represents the

configuration where both particles occupy the vertex v0 and must be removed in the

construction of F (Γ, 2) to obtain a punctured disc.

The remaining three two-cells represent configurations where both particles lie on

the same edge. In constructing F (Γ, 2) each of these cells is ‘cut’into two triangular

two-cells by removing the diagonal line which represents configurations where both

particles occupy the same point of the edge. Attaching these cells to the punctured

disc by identifying common boundaries we obtain the space shown in Figure 2.4

which has the homotopy type of a punctured disc.
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Figure 2.4: (left) The configuration space F (Γ, 2) and (right) the space D(Γ, 2),

where Γ is the Y-graph. Dotted lines represent the diagonal, ∆.

To construct D(Γ, 2) we take only cells of Γ× Γ which represent two particles lying

on cells of Γ with disjoint closures. Since all edges of Γ are incident, D(Γ, 2) must

be one-dimensional. We see that D(Γ, 2) can be identified with the boundary circle

of the punctured disc F (Γ, 2) since this represents configurations where one particle

lies on a vertex of valence one, vi, i = 1, 2, 3, and the other lies on an edge, ej where

j 6= i.

Note that the circle D(Γ, 2) is a deformation retract of the punctured disc F (Γ, 2).

Example 2.2.2 Now consider a graph Γ with five edges which is homeomorphic to

the circle S1.

Then Γ × Γ is equal to the torus T 2 = S1 × S1. This can be given a CW-complex

structure with 25 square two-cells each representing the product of a pair of edges

in Γ. The line representing the diagonal ∆Γ runs through two-cells formed from the
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Figure 2.5: A graph homeomorphic to S1.

product of an edge with itself along the meridional circle of the torus. Then F (Γ, 2)

is a torus with a meridional circle removed and hence is homeomorphic to an open

cylinder.

Figure 2.6: The space F (Γ, 2) represented as a complex of 25 2-cells. The space

D(Γ, 2) is represented by the darker cells, and the diagonal ∆ is shown as a dotted

line. The boundary of the square is identified according to the arrows.

The space D(Γ, 2) is a complex of ten two-cells given by products of disjoint edges in

Γ. This is shown in dark grey in Figure 2.6. The ends of this complex are identified

so it has the homotopy type of a circle.

Again we see that D(Γ, 2) is a deformation retract of F (Γ, 2).

2.3 The Case of Two Particles

Throughout the rest of this thesis we will study configuration spaces of two particles

moving without collision on a graph, Γ. In this case, one can define an involution,

τ on the space Γ × Γ given by interchanging the two particles.
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Definition 2.3.1 Let the involution map, τ , be given by

τ : Γ × Γ → Γ × Γ (x, y) 7→ (y, x). (2.3)

This involution restricts to a map on the configuration spaces F (Γ, 2) and D(Γ, 2),

and the symmetry it provides will be exploited throughout this thesis.

In Examples 2.2.1 and 2.2.2 we noted that D(Γ, 2) was a deformation retract of

F (Γ, 2). It was shown by Abrams in his thesis [1] that this is true for any simple

graph Γ when considering the case of two particles.

Theorem 2.3.2 Let Γ be a simple graph. Then there exists a deformation retraction

of F (Γ, 2) onto D(Γ, 2) which is equivariant with respect to the involution τ .

Proof We take the deformation retraction described in Theorem 2.4 of [1]. This is

performed in two steps. Let

X = F (Γ, 2)�
⋃

e∈E(Γ)

(Int e× Int e).

Step 1: We first retract F (Γ, 2) onto X. If (x, y) is in F (Γ, 2)�X then the two

particles x and y lie on distinct points of the same edge e in Γ. To perform the

retraction we move particles x and y apart at a constant speed until at least one

of the particles reaches a vertex. The resulting configuration is in X. Note that

this map is continuous and that since Γ contains no loops it does not give rise to

collisions. Also, applying τ to interchange the two particles and then performing

the retraction will give the same configuration as performing the retraction and then

interchanging the particles.

Step 2: We now retract X onto D(Γ, 2). A configuration (x, y) is in X�D(Γ, 2) if

(i) it is in the interior of a two-cell e1 × e2 where e1 and e2 have one vertex, v, in

common, or (ii) it is in the interior of a one-cell v× e or e× v where v is a boundary

vertex of e.

In both cases we slide the particles away from the vertex v at a speed proportional

to their original distance from v. This proportionality is necessary to make the map

continuous. In case (i) we keep moving the particles until at least one particle lies
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on a vertex. In case (ii) we move the particles until the particle which began in the

interior of e lies on a vertex. Note that the other particle in this case began at the

vertex v and so does not move under this map.

This retraction is continuous and does not result in collisions. Finally we see that

this retraction also commutes with the involution τ . 2

Figure 2.7: A deformation retraction of F (Γ, 2) onto D(Γ, 2).

Remarks Figure 2.7 illustrates the deformation retraction described in Theorem

2.3.2. The arrows show the direction of the retraction away from the dotted line rep-

resenting the the diagonal ∆, to the space D(Γ, 2) bounded by the thicker line.

Theorem 2.3.2 shows that to study any homotopy invariant property of F (Γ, 2) it is

enough to study the corresponding property of the cell-complex D(Γ, 2).

It is shown by Patty in [27] that F (Γ, 2), and hence by Theorem 2.3.2 D(Γ, 2), is

always path connected unless Γ is homeomorphic to the closed interval [0, 1]. This

follows from Theorem 3 in Eilenberg’s paper, [13]. In his paper Patty also proves

that F (Γ, 2) is aspherical, that is all the homotopy groups of F (Γ, 2) are trivial

except for the fundamental group. This result is stated for completeness, we will

not make use of this fact in this thesis.

2.4 A Conjecture on the Generators of H2(F (Γ, 2),Z)

In subsequent chapters we attempt to describe the homology groups of F (Γ, 2) for

various classes of graphs. A conjecture has been proposed about the generators
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of H2(F (Γ, 2),Z) which is well known to people working with these configuration

spaces although it has never been formally stated in the literature. The conjecture

was brought to my attention by Henry Glover at the 2006 conference on Topological

Robotics in Zurich.

The conjecture claims that the second dimensional homology of F (Γ, 2) is generated

by surfaces embedded in the space, coming from copies of the Kuratowski graphs

K5 and K3,3 and pairs of disjoint cycles embedded in the graph Γ. Before stating

the conjecture we will describe the space D(Γ, 2) for Γ equal to K5 or K3,3.

Example 2.4.1 We show that D(K5, 2) is homeomorphic to an orientable surface

of genus 6. This example follows the method found in Ghrist’s paper [3].

  v1

v2

v3  v4

v5

Figure 2.8: The graph K5.

First we count the number of cells in D(K5, 2). The zero-cells correspond to pairs

of disjoint vertices of K5, there are 5 × 4 = 20 such pairs. The one-cells are given

by pairs ev and ve where e is an edge of K5 and v is a vertex of K5 such that v is

not in the boundary of e. There are 2 × 10 × 3 = 60 such pairs since K5 has 10

edges each of which is disjoint from the 3 remaining vertices of K5 which are not

in the boundary of the edge. The factor of 2 appears since we count ordered pairs.

Finally, the two-cells of D(K5, 2) are given by ordered pairs of disjoint edges. Each

edge of K5 is incident to six other edges of the graph, hence each edge is disjoint
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from 3 other edges, so we have 10 × 3 = 30 two-cells.

To see how these cells fit together, consider a zero cell v1v2. There are three edges in

K5 which are incident to v1 but disjoint from v2 and similarly there are three edges

which are incident to v2 but disjoint from v1. So there are six one-cells attached

to the zero-cell v1v2. For a one-cell, ev1 or v1e, to lie in the boundary of a two-cell

there must be an edge e′ disjoint from e which is incident to v1. Now e is incident to

v2, so e′ must be an edge disjoint from v2 but incident to v1. There are three such

edges as discussed before, however one of these edges must be incident to the other

boundary vertex of e since K5 only has five vertices, so we find there are exactly two

possibilities for e′. Hence every one-cell attached to v1v2 lies in exactly two two-cells

and we get a locally Euclidean complex of six two-cells around the zero-cell v1v2 as

shown in Figure 2.9.

Figure 2.9: A locally Euclidean complex of six 2-cells around a zero cell in D(K5, 2).

This argument applies to every zero-cell and one-cell in D(K5, 2), so we have shown

that D(K5, 2) is a two dimensional, locally Euclidean space; a surface. We also

note that it is possible to move from any configuration in D(K5, 2) to any other,

so D(K5, 2) is connected and further, it is possible give each cell of D(K5, 2) an

orientation which induces a consistent orientation on the whole complex.

Then we can use the Euler characteristic of the connected orientable surfaceD(K5, 2)

to calculate its genus. We have

χ(D(K5, 2)) = #0-cells − #1-cells + #2-cells = 20 − 60 + 30 = −10

So the genus of D(K5, 2) is equal to 1 − 1
2
χ = 6.
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Example 2.4.2 We can do a similar analysis to show that D(K3,3, 2) is homeomor-

phic to an orientable surface of genus 4.

u1   u2   u3

  v1  v2  v3

Figure 2.10: The graph K3,3.

In this case the number of zero-cells is equal to 6 × 5 = 30, the number of one-cells

is equal to 2 × 9 × 4 = 72 and the number of two-cells is equal to 9 × 4 = 36.

A similar analysis to that above shows that we obtain two possible configurations of

cells around the zero-cells of D(K3,3, 2). There are four one-cells incident to every

zero-cell of the form viuj or ujvi and around such cells we obtain a locally Euclidean

complex of four two-cells. Around zero-cells of the form uiuj or vivj we obtain a

locally Euclidean complex of six two-cells.

uiuj
viuj

Figure 2.11: (right) The complex of four 2-cells around the 0-cell viuj and (left) the

complex of six 2-cells around the 0-cell uiuj.

Again, we can find a consistant orientation of the complex D(K3,3, 2) to obtain

a connected orientable surface. In this case the Euler characteristic is given by

χ(D(K3,3, 2)) = 30 − 72 + 36 = −6 and we find that the genus of D(K3,3, 2) is 4.

Remarks
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1. The above examples show that

H2(F (K5, 2),Z) = H2(F (K3,3, 2),Z) = Z

In his thesis [1] Abrams shows that the Kuratowski graphs K5 and K3,3 are

the only connected, simple graphs for which F (Γ, 2) is homeomorphic to an

orientable surface.

2. Suppose that we have a graph Γ which is homeomorphic to S1 ⊔ S1, we will

denote one copy of S1 by C1 and the other by C2. Then D(Γ, 2) has four

connected components; two disjoint copies of the torus T 2, one coming from

the product C1 ⊗ C2 and one from C2 ⊗ C1, and two disjoint copies of the

circle S1, one coming from configurations where both particles lie on C1 and

one from configurations where the particles lie on C2. This implies that the

second homology group of D(Γ, 2), H2(F (Γ, 2),Z), is isomorphic to Z ⊕ Z.

We may now state the conjecture.

Conjecture 2.4.1 Let K be a graph isomorphic to either S1 ⊔ S1, K5 or K3,3 and

let Γ be a finite graph. Suppose there exists a topological embedding i : K → Γ, then

there also exists an embedding j : F (K, 2) → F (Γ, 2) which induces a map on the

homology j∗ : H2(F (K, 2),Z) → H2(F (Γ, 2),Z).

Let {ip}p∈P be the set of all possible embeddings of K into Γ, for K = K5 or K3,3,

and let {iq}q∈Q be the set of all possible embeddings of L ∼= S1 ⊔ S1 into Γ. Choose

a generator, zk for H2(F (K, 2),Z) = Z and a pair of generators yl and xl for

H2(F (L, 2),Z) = Z⊕Z. Then the group H2(F (Γ, 2),Z) is generated by the homology

classes {jp
∗(zk)}p∈P , {jq

∗(yl)}q∈Q, and {jq
∗(xl)}q∈Q.

2.5 Surfaces

The conjecture stated in the last section claims that all elements of H2(F (Γ, 2),Z)

come from embeddings of orientable surfaces of certain genus into F (Γ, 2). We now

prove a result which makes a small step towards proving this statement by showing
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that all elements of H2(F (Γ, 2),Z) correspond to maps of orientable surfaces in

to F (Γ, 2). Though the maps in this case are not necessarily embeddings and no

distinction is made as to the genera of the surfaces.

We denote by Ωn(X) the n-dimensional oriented bordism group of the space X as

described by Conner and Floyd in section 1.4 of [9] and by Ωn the n-dimensional

Thom bordism group as described in section 1.2 of [9].

Lemma 2.5.1 Let X be a two-dimensional CW-complex. Then the group H2(X,Z)

is isomorphic to Ω2(X).

Proof To prove this statment we will use the bordism spectral sequence as described

by Conner and Floyd in [9] which is a particular case of the Atiyah-Hirzebruch

spectral sequence first appearing in [5].

We will follow the notation used by Conner and Floyd in section 1.7 of [9]. Here it

is stated that, given an n-dimensional CW-complex X, there is a spectral sequence

{Er
p,q} with E2

p,q = Hq(X,Ωp) which converges to Ω∗(X). We will apply this spectral

sequence to the case where X is two-dimensional.

We will describe the E2 page of the spectral sequence. The space E2
p,q is equal to

the group Hq(X,Ωp) and since X is two-dimensional, Hq(X,Ωp) = 0 for q > 2. The

Thom bordism groups Ωn are completely described, see [24]. For low dimensions we

have

Ω0 = Z, Ω1 = Ω2 = Ω3 = 0, Ω4 = Z, Ω5 = Z2.

This implies that the spaces E2
0,q are equal to the homology groups Hq(X,Z) and

spaces E2
p,q are all trivial for p = 1, 2, 3 and so the E2 page has no non-zero differ-

entials d2. The first possible non-zero differential is

d5 : E2
5,0 → E2

0,4,

so we have E2
p,q = · · · = E5

p,q. However the groups E2
p,q are trivial for all q ≥ 3 so all

the differentials must be zero and the spectral sequence collapses at the E2 page,

i.e.

E∞
p,q = E2

p,q.
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Then since this sequence converges to Ω∗(X) we have

Ω∗(X) =
∞

⊕

p+q=0

E∞
p,q,

and

Ω2(X) ≃
⊕

p+q=2

E2
p,q = E2

0,2 = H2(X,Ω0) = H2(X,Z)

as required. 2

Corollary 2.5.2 For any graph Γ the group H2(F (Γ, 2),Z) is isomorphic to the

oriented bordism group Ω2(F (Γ, 2)).

Proof Lemma 2.5.1 implies that the group H2(D(Γ, 2),Z) is isomorphic to the

bordism group Ω2(D(Γ, 2)) since D(Γ, 2) has the structure of a CW-complex. The

corollary then follows directly from Theorem 2.3.2. 2



Chapter 3

Intersections of Cycles in

Graphs

In this chapter we describe in detail an intersection theory for cycles in graphs and

its links to the homology of the configuration space F (Γ, 2). The work was inspired

by the intersection theory for cycles in manifolds which gives rise to results such as

the Poincare duality theorem. Sections 3.1, 3.2 and 3.3 are an expansion of sections

1 and 2 of the paper [6] written by Michael Farber and myself. In Section 3.1 an

explicit formula for the Euler Characteristic of F (Γ, 2) is given and in the following

two sections we introduce the intersection form and show how the properties of this

map relate to the homology of F (Γ, 2). In the final two sections we discuss a method

for expressing the intersection of two cycles as elements of a direct sum of ‘local

homology groups’, each of which describes the properties of small subgraphs within

the graph. This allows the explicit calculation of generators for H2(F (Γ, 2)). The

work in these final sections is an extension of unpublished work begun by Michael

Farber.

19
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3.1 The Euler Characteristic of F (Γ, 2)

The remainder of this thesis is devoted to describing the homology groups of F (Γ, 2).

To this end, we present a formula for the Euler characteristic of F (Γ, 2) made up of

easily calculated invariants of the graph Γ.

Theorem 3.1.1 Let Γ be a simple graph, let V (Γ) denote the set of vertices of Γ

and let µ(v) be the valence of the vertex v ∈ Γ. Then the Euler characteristic of the

space F (Γ, 2) is given by

χ(F (Γ, 2)) = χ(Γ)2 + χ(Γ) −
∑

v∈V (Γ)

(µ(v) − 1)(µ(v) − 2) (3.1)

Proof It is enough to calculate the Euler characteristic of the discrete space D(Γ, 2),

since the Euler characteristic is a homotopy invariant of a space and by Lemma 2.3.2

D(Γ, 2) is homotopy equivalent to F (Γ, 2). We calculate this Euler characteristic by

counting the number of cells of D(Γ, 2).

The zero-cells of D(Γ, 2) are given by ordered pairs, vu, of disjoint vertices of Γ. It

is easy to see that there are V 2 − V such pairs, where V = |V (Γ)| is the number of

vertices in Γ. The one-cells of D(Γ, 2) are given by pairs of edges and vertices, ve

and ev, such that e is an edge not incident to v. The number of edges not incident

to a vertex v ∈ Γ is equal to E −µ(v), where E is the number of edges in Γ. So the

total number of one-cells in D(Γ, 2) is equal to

2
∑

v∈V (Γ)

(E − µ(v)). (3.2)

Since,
∑

v∈V (Γ)

µ(v) = 2E, (3.3)

formula (3.2) can be rewritten as

2EV − 4E. (3.4)

Finally, the two-cells of D(Γ, 2) are given by pairs, ee′, of disjoint edges of Γ. The

number of such cells is given by

E2 −E −
∑

v∈V (Γ)

µ(v)(µ(v) − 1) (3.5)
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Here E2 is the total number of pairs of edges of Γ. The second term removes the E

two-cells of the form ee, and finally the last term removes the two-cells of the form

ee′ where e and e′ have one common boundary vertex. Formula (3.5) can also be

rewritten using formula (3.3) to give

E2 + E −
∑

v∈V (Γ)

µ(v)2. (3.6)

Hence χ(D(Γ, 2)) = χ(F (Γ, 2)) is equal to

(V 2 − V ) − (2EV − 4E) + (E2 + E −
∑

v∈V (Γ)

µ(v)2)

= (V 2 + E2 − 2EV ) + (V −E) − (2V − 6E +
∑

v∈V (Γ)

µ(v)2)

= χ(Γ)2 + χ(Γ) −
∑

v∈V (Γ)

(µ(v) − 1)(µ(v) − 2).

2

Theorem 3.1 allows us to determine completely the Betti numbers of F (Γ, 2) by

calculating either b1(F (Γ, 2)) or b2(F (Γ, 2)), as long as F (Γ, 2) is connected. This

formula also follows from a more general theorem by Gal given in Corollary 2.7 of [16]

which decsribes the Euler charateristic of F (X, n) where X is any polyhedron.

3.2 The Intersection Form

In order to calculate the second Betti number of F (Γ, 2) we will examine relations

between the intersections of pairs of cycles in the graph Γ.

As described in Definition 2.1.1, a graph Γ can be thought of as a one-dimensional

CW-complex, so we can consider the cellular chain complex of Γ

0 → C1(Γ)
d
→ C0(Γ) → 0.

Here C1(Γ) is the one-dimensional chain group of Γ, that is the abelian group gen-

erated by all oriented edges of Γ with coefficients in Z. Similarly C0(Γ) is the

zero-dimensional chain group, the abelian group generated by all vertices of Γ with
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coefficients in Z. The map d is the boundary map which maps an oriented edge e to

the ordered pair ±(v − u) of its boundary vertices. We can then give the following

defintion.

Definition 3.2.1 A cycle of a graph Γ is an element C =
∑

αiei, αi ∈ Z, of the

chain group C1(Γ) such that dC = 0 in the group C0(Γ).

Remarks Since the two-dimensional chain group C2(Γ) is empty, cycles of Γ are

identical to one-dimensional homology classes and H1(Γ) is isomorphic to the kernel

of the boundary map d. Any cycle of a graph is a linear combination of the simple

cycles in the graph, i.e. cycles homeomorphic to S1.

We now state a classical result which allows one to easily calculate the rank of the

group H1(Γ) for any finite graph Γ, proof of this result can be found in proposition

1A.2 of [23].

Definition 3.2.2 A maximal spanning tree of a graph Γ is a subtree of Γ, i.e. a

subgraph containing no cycles, with vertex set equal to the vertex set of Γ.

Theorem 3.2.3 Let Γ be a finite graph and let T be a maximal spanning tree for

Γ. Denote by ET the set of edges in Γ−T . Then the rank of H1(Γ) is equal to |ET |,

the cardinality of the set ET .

In order to examine the intersections of pairs of cycles in Γ we define a neighbour-

hood, N , of the diagonal ∆ ∈ Γ × Γ by,

N = NΓ = Γ × Γ −D(Γ, 2). (3.7)

The space N inherits a cell structure from Γ × Γ. Before describing this structure

we first introduce a distance function between vertices of simple graph Γ which will

be based on the combinatorial lengths of paths in Γ.

Definition 3.2.4 Let Γ be a simple graph. Then a combinatorial path, p from

vertex u ∈ Γ to vertex v ∈ Γ is defined as a sequence of closed edges,

p = e1, e2, · · · , ek,
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such that u is in the boundary of e1, v is in the boundary of ek and ei ∩ ei+1 = vi, a

vertex of Γ, for all i = 1, · · · , k − 1 such that vi 6= vj for i 6= j and vi 6= u, v for all

i = 1, · · · , k − 1.

The length of a path p will be denoted by lp and is defined as the number of edges

in the path.

Denote by P(u, v) the set of all paths p from vertex u to vertex v in Γ and by P(u)

the set of all paths p from a vertex u to any other vertex v in Γ.

We can then define a distance function on the set of vertices of Γ.

Definition 3.2.5 The distance function on a simple graph Γ is defined as

d : V (Γ) × V (Γ) → Z; d(u, v) = min
p∈P(u,v)

{lp} (3.8)

Remarks The map d defines the distance between two vertices of the graph to

be the length of the shortest path between them. We can use this function to

define the distance between an edge and a vertex of the graph. Suppose e is an

edge of Γ with boundary vertices u1 and u2, and v is any vertex of Γ, then let

d(v, e) = d(e, v) = min{d(u1, v), d(u2, v)}.

Before continuing our discussion of the space N we introduce some definitions based

on the function d which will be useful later in this chapter. In the following three

defintions, Γ will denote a simple graph.

Definition 3.2.6 The ball of radius r around the vertex v in Γ, Br
v , is defined to be

the union of all paths p ∈ P(v) such that lp ≤ r.

Definition 3.2.7 The ball, Br
e , of radius r around the edge e in Γ joining vertices

v and u, is defined to be the union of the edge e with all paths p ∈ P(u) such that

lp ≤ r and all paths q ∈ P(v) such that lq ≤ r.

Definition 3.2.8 The annulus of radii r and s, where r < s, around the vertex v

in Γ, Sr,s
v , is defined as,

Sr,s
v = Bs

v − Br
v .
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We can now describe the cell structure of the space N , see (3.7). Removing the cells

of D(Γ, 2) from Γ × Γ removes all cells σi × σj such that σ̄i ∩ σ̄j = ∅. So the space

Γ×Γ−D(Γ, 2) will have zero-cells of the form vv, where v is a vertex of Γ, one-cells

ve and ev where v is in the boundary of e and two-cells of the form ee or ee′ where

e and e′ have one common boundary vertex.

e1

e2

v0v1

v2

e1v2

-e1v0

v1e2 -v0e2

v1v2 v0v2

v0v0v1v0

Figure 3.1: Left Two oriented edges, e1 and e2, in Γ. Right The two-cell e1 ⊗ e2 in

Γ × Γ with labelled boundary.

To obtain the space N , take the closure of all cells of Γ×Γ−D(Γ, 2), by including the

boundary of every such cell into N . The boundary of a two cell ee′ ∈ Γ×Γ−D(Γ, 2)

includes one-cells of the form ve and ev where d(e, v) = 1, and the boundary of such

a one-cell contains zero-cells of the form uv where d(u, v) = 1 or 2, as pictured in

Figure 3.1. The boundaries of all other cells of Γ × Γ − D(Γ, 2) are contained in

Γ × Γ −D(Γ, 2).

We obtain the following cell structure for N ,

• Zero-cells - ordered pairs of vertices uv such that 0 ≤ d(u, v) ≤ 2.

• One-cells - pairs ev and ve of edges and vertices such that d(v, e) = 0 or 1.

• Two-cells - ordered pairs of edges ee or ee′ where e and e′ have a common

boundary vertex.

We also define another subcomplex of Γ × Γ called the boundary of N, let

∂N = ∂NΓ = NΓ ∩D(Γ, 2) (3.9)
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This space is one-dimensional and also has an obvious cell structure. Its zero-cells

are given by ordered pairs of vertices vu such that d(v, u) = 1 or 2, and its one-cells

are given by pairs, ve and ev, of edges and vertices such that d(e, v) = 1. This is the

space of configurations of two particles moving on the graph maintaining a distance

of one or two edges between them.

We are now in a position to define the intersection form which is central to the work

in the rest of this thesis.

Definition 3.2.9 The intersection form is a map

I = IΓ : H1(Γ) ⊗H1(Γ) → H2(N, ∂N), (3.10)

defined as the homomorphism induced on the homology by the inclusion j : Γ×Γ →

(Γ× Γ, D(Γ, 2)), where we identify H2(Γ × Γ) with H1(Γ) ⊗H1(Γ) by the Kunneth

isomorphism, and identify H2(Γ × Γ, D(Γ, 2)) with H2(N, ∂N) by excision.

The link between the intersection form and the homology groups of F (Γ, 2) is de-

scribed in the following theorem.

Theorem 3.2.10 Let Γ be a finite connected graph, not homeomorphic to the circle

S1. Then the following statements hold.

1. The group H2(F (Γ, 2)) is isomorphic to the kernel of the intersection form IΓ.

2. The group H1(F (Γ, 2)) is isomorphic to the direct sum,

coker(IΓ) ⊕H1(Γ) ⊕H1(Γ)

The proof of Theorem 3.2.10 will require the following lemma.

Lemma 3.2.11 Let Γ be a finite, connected graph not homeomorphic to the circle

S1. Then the map

α∗ : H1(F (Γ, 2)) → H1(Γ × Γ), (3.11)

induced by the inclusion of F (Γ, 2) into Γ × Γ, is an epimorphism.
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Proof We can think of every cycle, γ, in Γ × Γ as a pair of cycles, (γ1, γ2), in

Γ, where γi is a map from the circle S1 into the graph Γ. To show that α∗ is an

epimorphism we need to show that any pair of cycles (γ1, γ2) in Γ is homotopic to

a pair of cycles (γ′1, γ
′
2) which are disjoint at any moment of time in Γ and hence lie

in F (Γ, 2), i.e. if x is a point of the circle S1 then γ′1(x) 6= γ′2(x).

There is an isomorphism between H1(Γ×Γ) and H1(x0 ×Γ)⊕H1(Γ× x0) where x0

is some point of Γ. This isomorphism together with the fact that H1(Γ) is generated

by simple cycles implies that H1(Γ× Γ) is generated by pairs of cycles (γ, γ′) where

one of the pair is a simple cycle and the other is a constant cycle. Suppose that γ′

is the constant cycle at the point x0 ∈ Γ, then if x0 /∈ γ, γ and γ′ are disjoint and

we are done.

Suppose that x0 ∈ γ. Let v denote a vertex of γ with valence greater than or equal

to 3. This is possible since Γ is connected and not homeomorphic to the circle. Then

choose a vertex u which is joined to v but is not contained in the cycle γ. Then,

since Γ is connected, we can deform γ′ through a continuous homotopy along γ to

v and then to the constant cycle at u, γ̃′. We then obtain a pair of disjoint cycles

(γ, γ̃′) as required. 2

Proof of Theorem 3.2.10. To prove this theorem we consider the long exact

homology sequence of the pair (Γ × Γ, F (Γ, 2)),

0 → H2(F (Γ, 2))
α∗→ H2(Γ × Γ) → H2(Γ × Γ, F (Γ, 2)) (3.12)

∂
→ H1(F (Γ, 2))

α∗→ H1(Γ × Γ) → · · ·

Where α∗ is the map induced by the inclusion of F (Γ, 2) into Γ×Γ. As was already

mentioned in the definition of the intersection form (3.10), H2(Γ×Γ) is isomorphic to

H1(Γ)⊗H1(Γ) by the Kunneth isomorphism and H2(Γ×Γ, F (Γ, 2)) is isomorphic to

H2(N, ∂N) by excision. Also Lemma 3.2.11 shows that the map α∗ between the one

dimensional homology groups is an epimorphism, so we obtain the sequence,

0 → H2(F (Γ, 2))
α∗→ H1(Γ) ⊗H1(Γ)

IΓ→ H2(N, ∂N) (3.13)
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∂
→ H1(F (Γ, 2))

α∗→ H1(Γ) ⊕H1(Γ) → 0.

Statement 1 of the theorem then follows directly from this exact sequence. Statement

2 can be proved using the following short exact sequence, induced by exact sequence

(3.13),

0 → coker(IΓ) → H1(F (Γ, 2)) → H1(Γ) ⊕H1(Γ) → 0. (3.14)

The groupH1(Γ)⊕H1(Γ) is free, so this sequence splits and we obtain thatH1(F (Γ, 2))

is isomorphic to the direct sum, coker(IΓ) ⊕H1(Γ) ⊕H1(Γ). 2

We have now reduced the problem of calculating the Betti numbers of F (Γ, 2) to

calculating the dimension of the kernel and cokernel of the map IΓ. To end this

section, we state two important properties of the intersection form which follow

directly from its defintion.

Lemma 3.2.12 Let z, z′ ∈ H1(Γ) be two homology classes which can be realised by

disjoint cycles in Γ. Then

I(z ⊗ z′) = I(z′ ⊗ z) = 0.

Proof This clearly follows from the definition of the intersection form (3.10). 2

Lemma 3.2.13 Consider homology classes z, z′ ∈ H1(Γ), then

I(z′ ⊗ z) = −τ∗(I(z ⊗ z′))

Where τ : (N, ∂N) → (N, ∂N) is the restriction of involution (2.3) on Γ × Γ to

(N, ∂N).

Proof This statement follows from the definition of the cross product of two ho-

mology groups which satisfies the following commutativity relation,

T∗ : Hk(X,Z) ⊗Hl(Y,Z) → Hl(Y,Z) ⊗Hk(X,Z), T∗(z ⊗ z′) = (−1)kl(z′ ⊗ z)

induced by the involution

T : X × Y → Y ×X, T (x, y) = (y, x),
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see [23] Section 3B. In this case the involution τ (2.3) is equivalent to the map T

and we obtain

I(z′ ⊗ z) = I(−τ∗(z ⊗ z′)).

The map τ∗ is a chain map and so commutes with the intersection form I to ob-

tain

I(−τ∗(z ⊗ z′)) = −τ∗(I(z ⊗ z′)).

2

3.3 Consequences of the Intersection Form

In this section we discuss some useful consequences of the intersection form. First

we can use exact sequence (3.13) to describe the Euler Characteristic of the space

(N, ∂N).

Lemma 3.3.1 Let Γ be a simple graph, not homeomorphic to the circle S1 or to

the unit interval [0, 1], then the Euler Characteristic of the space (NΓ, ∂NΓ) is given

by,

χ(NΓ, ∂NΓ) = 1 − χ(Γ) +
∑

v∈V (Γ)

(µ(v) − 1)(µ(v) − 2) (3.15)

Proof If we apply the Euler-Poincare Theorem to the exact sequence (3.13) we

obtain

b2(F (Γ, 2)) − b1(Γ)2 + rank(H2(N, ∂N)) − b1(F (Γ, 2)) + 2b1(Γ) = 0

where bi(X) is the ith Betti number of the space X. This implies that the rank of

the group H2(N, ∂N), i.e. the second Betti number of (N, ∂N), is given by

b2(N, ∂N) = −b2(F (Γ, 2)) + b1(F (Γ, 2)) + b1(Γ)2 − 2b1(Γ)

= χ(Γ)2 − χ(F (Γ, 2))

Note that b1(N, ∂N) = 0, which is a consequence of Lemma 3.2.11 and the fact

H1(N, ∂N) is isomorphic to H1(Γ×Γ, F (Γ, 2)). Rewriting χ(F (Γ, 2)) using formula
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(3.1) we obtain the following expression for the Euler Characteristic of (N, ∂N),

1 − χ(Γ) +
∑

v∈V (Γ)

(µ(v) − 1)(µ(v) − 2).

2

Remark Formula (3.15) will be useful in later calculations, especially those in Chap-

ter 5, in which we address the question of when the intersection form is epimorphic.

We can already show that the intersection form is epimorphic for the Kuratowski

graphs K5 and K3,3. Examples 2.4.1 and 2.4.2 showed that F (K5, 2) and F (K3,3, 2)

have the homotopy type of an orientable surface, therefore we have H2(F (K5, 2)) =

H2(F (K3,3, 2)) = Z. The surface F (K5, 2) had genus 6 so H1(F (K5, 2)) is a free

abelian group of rank 12 and similarly, the surface F (K3,3, 2) has genus 4, so

H1(F (K3,3, 2)) is a free abelian group of rank 8. Using the spanning tree method

of Lemma 3.2.3 we can calculate that H1(K5) has rank 6 and H1(K3,3) has rank

4, therefore since, H1(F (Γ, 2)) = coker(IΓ) ⊕ H1(Γ) ⊕ H1(Γ), in both these cases

the cokernel of the intersection form, I, must be empty and hence I must be an

epimorphism.

Lemma 3.3.2 Let Γ be a simple graph. Suppose the intersection form IΓ is an

epimorphism. Then

b2(F (Γ, 2)) = b1(Γ)2 − b1(Γ) + 1 −
∑

v∈V (Γ)

(µ(v) − 1)(µ(v) − 2) (3.16)

b1(F (Γ, 2)) = 2b1(Γ) (3.17)

Proof This statement follows directly from exact sequence (3.13). If the intersection

form IΓ is epimorphic this exact sequence implies that the rank of H1(Γ) ⊗ H1(Γ)

is equal to b2(F (Γ, 2)) plus the rank of H2(N, ∂N). Using formula (3.15) we obtain

the first statement of the lemma. The second follows from the fact that the cokernel

of an epimorphic map is empty and statement 2 of Theorem 3.2.10. 2

Finally, we cover some exceptional examples.

Lemma 3.3.3 Let T be a tree. ThenH2(F (T, 2)) is the trival group and H1(F (T, 2))
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is isomorphic to H2(NT , ∂NT ) and so

b1(F (T, 2)) =
∑

v∈V (T )

(µ(v) − 1)(µ(v) − 2) − 1.

.

Proof A tree, T , is contractible, therefore H1(T ) is the trivial group. This means

that in the case of a tree the exact sequence (3.13) is reduced to the sequence,

0 → H2(NT , ∂NT )
∂
→ H1(F (T, 2)) → 0.

This proves the first part of the statement. From the calculation of the Euler

Characteristic of (N, ∂N) in Lemma 3.3.1 we can calculate the rank of H2(NT , ∂NT )

which is equal to b1(F (T, 2)). Since T is contractible b1(T ) = 0, and we obtain

b1(F (T, 2)) =
∑

v∈V (T )(µ(v) − 1)(µ(v) − 2) − 1 as required. 2

Remark It has been shown by Farber in [15] that the space F (T, 2) for any tree T

has the homotopy type of a wedge of
∑

v∈V (T )(µ(v)− 1)(µ(v)− 2)− 1 circles.

Example 3.3.1 Finally we consider the degenerate examples of a graph homeo-

morphic to the circle S1 and the graph homeomorphic to a closed interval.

The case of a graph homeomorphic to the circle S1 was discussed in Example 2.2.2,

where we showed that F (S1, 2) is homeomorphic to an open cylinder and D(S1, 2)

has the homotopy type of a circle. This means that H1(F (S1, 2)) = Z, but since the

graph Γ is also homeomorphic to a circle, the group H1(Γ) = Z, hence H1(F (S1, 2))

cannot be isomorphic to coker(IΓ)⊕H1(Γ)⊕H1(Γ). This is due to the fact that the

map

α∗ : H1(F (Γ, 2)) → H1(Γ × Γ) (3.18)

is not an epimorphism when Γ is homeomorphic to the circle S1. To see this consider

the space (N, ∂N) for this example. The space N is represented by the light grey

two-cells in Figure 3.2 and so has the homotopy type of an open cylinder with its

boundary ∂N given by the two bounding circles of the cylinder. Hence the space

N/∂N is constructed by collapsing the two boundary circles of the cylinder to a point

and so is homeomorphic to the quotient space S1/S0 which is homotopy equivalent



3.3. Consequences of the Intersection Form 31

to the wedge sum S2∨S1. This implies that the homolgy groups of N/∂N are equal

to Z in dimensions 1 and 2. Significantly, H1(N, ∂N) 6= ∅ and so exact sequence

3.13 implies that the map α∗ cannot be epimorphic.

Figure 3.2: The space F (S1, 2), where S1 is triangulated as a pentagon, represented

as a complex of 25 2-cells. The space D(S1, 2) is represented by the darker cells, and

the diagonal ∆ is shown as a dotted line. The boundary of the square is identified

according to the arrows.

Finally, we consider a graph Γ homeomorphic to the closed interval [0, 1]. In this

case the space D(Γ, 2) is equal to two points and F (Γ, 2) has the homotopy type

of two closed intervals. So the discrete configuration space is still a deformation

retraction of F (Γ, 2), but this space is not connected. Here the space N is equal to

the whole space Γ×Γ and ∂N is equal to the two points of D(Γ, 2) on the boundary

of the disc. Hence N/∂N has the homotopy type of a circle. In this case the only

non-trivial group in sequence (3.13) is H1(N, ∂N). So again Theorem 3.2.10 does

not hold.

Figure 3.3: Left A graph Γ homeomorphic to the closed interval. Right The space

Γ × Γ, the dotted line represents the diagonal, ∆.
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3.4 Calculating the Intersections of Cycles

In this section we describe an explicit formula for expressing the intersection of two

cycles as an element of H2(N, ∂N). First we describe the conditions under which

the extended diagonal, NΓ, is homotopy equivalent to the graph Γ.

Lemma 3.4.1 Let Γ be a simple, finite graph with every cycle of Γ having length

at least 5. Then the extended diagonal, NΓ ⊂ Γ × Γ , is homotopy equivalent to Γ.

Proof We show that the inclusion of Γ into NΓ and the projection of NΓ onto the

first coordinate are homotopy equivalences. We denote the inclusion by

i : Γ → NΓ, x 7→ (x, x) (3.19)

and the projection by,

π : NΓ → Γ, (x, y) 7→ x. (3.20)

Clearly the map π ◦ i is equal to the identity map on Γ, so it remains to show that

i ◦ π is homotopic to the identity map on NΓ.

Consider the subset of NΓ given by the preimage under π of a point x ∈ Γ, π−1(x).

If x = v, a vertex of Γ, then π−1(v) is homeomorphic to the ball of radius 2 around v

as described in Definition 3.2.6. If x is a point in the interior of an edge e ∈ Γ, then

π−1(x) is homeomorphic to the ball of radius 1 around the edge e. Since Γ contains

no cycles of length 3 or 4, any ball of radius 1 or 2 around an edge or a vertex in Γ

must be a tree and hence contractible.

Fix a contraction

ρx
t : π−1(x) → π−1(x), t ∈ [0, 1] (3.21)

of π−1(x) onto the point (x, x) ∈ π−1(x). So, ρx
0 is the identity map on π−1(x), and

ρx
1 is the constant map at the point (x, x).

We combine these contractions to construct a homotopy between i ◦ π and idN , the

identity map on N .

Rt : N → N , t ∈ [0, 1] (3.22)
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is given by,

Rt(x, y) = ρx
1−t.

We then see that R0(x, y) = (x, x) = i ◦ π(x, y) and R1(x, y) = (x, y) = idN (x, y).

The continuity of this homotopy follows from the fact that each contraction, ρx
t , is

continuous on the closed set π−1(x) ⊂ N and the union of the sets π−1(x) is equal

to the space N . 2

Remark Lemma 3.4.1 does not hold if Γ contains cycles of length 3 or 4. Let

C = e1 + e2 + e3 be a cycle of length three in Γ. Then C ⊗ C =
∑3

i,j=1 eiej is a

non-trivial two-dimensional cycle in N , therefore N cannot have the same homotopy

type as the one-dimensional graph Γ. Now consider a cycle of length 4 in Γ, C ′ =

e1 + e2 + e3 + e4. Then the one-cycle, v × (e1 + e2 + e3 + e4), where v is a vertex

of C ′, has length 4 but is not equal to the boundary of any 2-cell in N , and so is

non-trivial in N . However it is mapped to the trivial cycle v by the projection π,

therefore π cannot be a homotopy equivalence in this case.

We use the homotopy equivalence π to prove the following theorem.

Theorem 3.4.2 Let Γ be a simple graph containing no cycles of length 3 or 4, and

let Be denote the ball of radius 1 around the edge e. Define ∂Be, the boundary

of Be, to be the set of vertices v ∈ Γ such that d(v, e) = 1. Then there exists an

injective map,

g : H2(NΓ, ∂NΓ) →
⊕

e∈E(Γ)

H̃0(∂Be).

Proof Let π : N → Γ be the projection onto the first factor (3.20), and let A be

the pre-image under π of all vertices of Γ,

A = π−1(V (Γ)). (3.23)

This is equal to the following union of disjoint sets

A =
⋃

v∈V (Γ)

v ×Bv

where Bv denotes the ball of radius 2 around the vertex v ∈ Γ. Note that v ×Bv is

homeomorphic to Bv, a subgraph of Γ, and that since Γ contains no cycles of length

3 or 4, Bv is contractible for every vertex v ∈ Γ.
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We also define the boundary of A as ∂A = A ∩ ∂N . Then ∂A is described by the

following disjoint union

∂A =
⋃

v∈V (Γ)

v × Sv

where Sv denotes the annulus of radii 1 and 2 around the vertex v. Again we

note that v × Sv is homeomorphic to the subgraph Sv ⊂ Γ and that Sv has µ(v)

contractible components.

v v

Figure 3.4: Left A subgraph Bv Right The corresponding subgraph Sv

Consider the exact sequence of the triple ∂N ⊂ A ∪ ∂N ⊂ N ,

· · · → Hi(A∪∂N, ∂N) → Hi(N, ∂N) → Hi(N,A∪∂N)
d
→ Hi−1(A∪∂N, ∂N) → · · ·

(3.24)

We analyse the groups in this sequence. First note that Hi(A∪∂N, ∂N) isomorphic

to Hi(A, ∂A) by excision, since A ∩ ∂N is defined to be ∂A. The space A/∂A has

the homotopy type of the disjoint union
⊔

v∈V (Γ)Bv/Sv. Hence we have

Hi(A, ∂A) ≃
⊕

v∈V (Γ)

Hi(Bv, Sv)

Each space Bv/Sv is a one-dimensional connected graph, so its only non-trivial

reduced homology group will be H1(Bv, Sv). The quotient space Bv/Sv can be

thought of as a graph with two vertices and µ(v) edges joining the two vertices,

where µ(v) is the valence of v. Suppose we label the µ(v) edges incident to v as

e0, · · · , ek, k = µ(v) − 1. Then we can describe a basis for H1(Bv, Sv) by taking all

pairs of edges e0 ± ei, i = 1, · · · , k with the parity of ei chosen so that the boundary

of e0 ± ei is lies in Sv. We obtain that H1(Bv, Sv) = Zµ(v)−1.
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Now consider the space Sv, it is made up of µ(v) connected, contractible components,

one for each vertex vi joined to v, where vi is the other boundary vertex of the edge

ei. By labelling each of the µ(v) contractible components of Sv by its corresponding

vertex vi we can describe a basis for the reduced homology group H̃0(Sv) by taking

all pairs v0 − vi, i = 1, · · · , k. Then, applying the cellular boundary map to the

basis for H1(Bv, Sv) described above, we see that

∂(e0 ± ei) = ±(v0 − vi) (3.25)

and the boundary map is an isomorphism between H1(Bv, Sv) and H̃0(Sv) = Zµ(v)−1.

So we have an isomorphism,

q : H1(A, ∂A) →
⊕

v∈V (Γ)

H̃0(Sv)

and Hi(A, ∂A) is trivial for i 6= 1.

Now consider the group Hi(N,A∪∂N). Let Be denote the ball of radius one around

the edge e, and let ∂Be, the boundary of Be, denote the set of vertices v ∈ Γ such

that d(v, e) = 1. One can think of N as the union of all subspaces e× Be ∈ Γ × Γ,

where e is an edge of Γ. The space A ∪ ∂N is the union of the one-skeletons of all

such subspaces which can be written as the union ∂e × Be ∪ e × ∂Be. The space

e × Be/∂e × Be ∪ e × ∂Be is a wedge of spheres and so has free homology groups.

Hence we find that the group Hi(N,A ∪ ∂N) is isomorphic to the direct sum

Hi(N,A ∪ ∂N) ≃
⊕

e∈E(Γ)

Hi(e× Be, ∂e×Be ∪ e× ∂Be), i > 0

e

u v

e

u v

Figure 3.5: Left The ball of radius one around the edge e, Be Right The set of 5

vertices making up the boundary ∂Be
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For each group Hi(e×Be, ∂e×Be ∪ e×∂Be), projection onto the second coordinate

induces an isomorphism between Hi(e×Be, ∂e×Be ∪ e× ∂Be) and Hi−1(Be, ∂Be).

Consider an edge e with boundary vertices v and u, then the space Be/∂Be is a

graph with three vertices, u, v and w; u and v are joined by the single edge, e, the

pair u and w are joined by µ(u) edges and the pair v and w are joined by µ(v) edges.

Applying Theorem 3.2.3 we obtain that H1(Be, ∂Be) = Zµ(u)+µ(v)−3. Consider the

group H̃0(∂Be), by choosing a basis for the group H1(Be, ∂Be) we can show that the

celluar boundary map defines an isomorphism between H1(Be, ∂Be) and the reduced

homology group H̃0(∂Be). Suppose that ∂e = u − v, choose an edge e0 incident to

e at vertex u. The basis consists of all pairs of edges e0 ± ei for all edges ei incident

to e at the vertex u and all triples e0 ± e ± ej for all edges ej incident to e at the

vertex v. The parity of the edges in these basis elements is chosen by considering the

orientations of edges in Be and noting that in order for these basis elements to have

boundary in ∂Be, vertices u and v must appear with zero coefficient in the boundaris

of these elements. Examining all possible orientations for the edges of Be we see that

this implies that the boundary map injectively maps this basis to all pairs v0 − vi

and v0 − vj where v0 is the other boundary vertex of e0, vi is the other boundary

vertex of ei and similarly for vj . This evidently describes a basis for H̃0(∂Be) and so

the boundary map does induce an isomorphism between H1(Be, ∂Be) and H̃0(∂Be).

We obtain an isomorphism,

p : H2(N,A ∪ ∂N) →
⊕

e∈E(Γ)

H̃0(∂Be)

and Hi(N,A ∪ ∂N) = 0 for i 6= 2.

We now have the following diagram,

0 → H2(N, ∂N)
j∗
−→ H2(N,A ∪ ∂N)

d
−→ H1(A ∪ ∂N, ∂N) → 0

↓ p ↓ q ↓

0 → H2(N, ∂N)
g

−→
⊕

e∈E(Γ) H̃0(∂Be)
d1−→

⊕

v∈V (Γ) H̃0(Sv) → 0

.

(3.26)

To complete the proof it remains to define the maps g and d1 so that diagram 3.26

commutes and the second sequence is exact.
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To make the first square commute we simply define the map g to be the composition

p ◦ j∗. To find the definition of the map d1 we consider what happens to an element

of H2(N,A∪ ∂N) under the maps p and q ◦ d. First we must describe the structure

of a homology class in H2(N,A ∪ ∂N).

v

e1

e2

e3

v1

v2

v3

Figure 3.6: Three oriented edges incident to vertex v

Since (N,A∪ ∂N) is two-dimensional, homology classes in H2(N,A∪ ∂N) are iden-

tical to cycles in C2(N,A ∪ ∂N). Such cycles are represented by formal sums of

two-cells ee′ such that e ∩ e′ 6= ∅, the boundaries of such sums must lie in A ∪ ∂N

and so must consist of one-cells ev with d(e, v) = 1 and v′e′ with d(e′, v′) = 0, 1.

Consider a pair of edges e1 and e2 which are incident at the vertex v. For the two-

cell e1e2 to appear in a cycle of H2(N,A ∪ ∂N) with non-zero ceofficient the cycle

must contain another two-cell e1e3 with non-zero coefficient, where e3 is an edge also

incident to the vertex v, see Figure 3.6. Then the sum

e1e2 ± e1e3 (3.27)

has boundary

(δv1
v1 − δv1

v)e2 − e1(δv2
v2 − δv2

v) ± (δv1
v1 − δv1

v)e3 ∓ e1(δv3
v3 − δv3

v), (3.28)

where δvi
= ±1 is the parity of the vertex vi in the boundary of edge ei. In order

for this sum to have boundary in A∪ ∂N , we must choose the parity of the two-cell

e1e3 so that the one-cell e1v in the boundary of both e1e2 and e1e3 has coefficient

zero in the boundary of e1e2 ± e1e3. There are two cases, if δv2
= δv3

then we must

take the sum e1e2 − e1e3 and if δv2
6= δv3

we have the sum e1e2 + e1e3. Cycles in

H2(N,A∪∂N) can also contain two-cells formed by a product of an edge with itself.

Suppose a cycle contains e4e4 with non-zero coefficient, then it must contain a sum
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of the form

e4e4 ± e4e5 ± e4e6, (3.29)

see Figure 3.7. This sum has boundary

(δv4
v4 − δv4

v)e4 − e4(δv4
− δv4

v) ± ((δv4
v4 − δv4

v)e5 − e4(δv5
v5 − δv5

v4)) (3.30)

±((δv4
v4 − δv4

v)e6 − e4(δv6
v6 − δv6

v)).

We see that there are four cases in which the boundary of this sum does not contain

one-cells e4v4 or e4v with non-zero coefficient, these are listed below;

• δv4
= δv5

and δv4
= δv6

=⇒ e4e4 + e4e5 − e4e6

• δv4
= δv5

and δv4
6= δv6

=⇒ e4e4 + e4e5 + e4e6

• δv4
6= δv5

and δv4
= δv6

=⇒ e4e4 − e4e5 − e4e6

• δv4
6= δv5

and δv4
6= δv6

=⇒ e4e4 − e4e5 + e4e6.

Any cycle in C2(N,A ∪ ∂N) can be written as a linear combination of sums of the

form 3.27 and 3.29, hence it is enough to show that the maps d1◦p and q◦d commute

when applied to these sums.

v

v4

v5

v6e4

e5

e6

Figure 3.7: Edges incident to e4

First we apply the map q ◦ d to 3.27, we will consider the case where δv2
= δv3

. The

map d is the boundary map of a long exact sequence and so has the same effect as

applying the cellular boundary map to 3.27,

d(e1e2 − e1e3) = (δv1
v1 − δv1

v)e2 − δv2
e1v2 − (δv1

v1 − δv1
v)e3 + δv3

e1v3 (3.31)

The isomorphism q between H1(A ∪ ∂N, ∂N) and
⊕

v∈V (Γ) H̃0(Sv) was described

above as a composition of three maps, the first, which we will label a, maps H1(A∪
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∂N, ∂N) toH1(A, ∂A) by exision. Hence we excise 1-cells lying only inH1(∂N),

a ◦ d(e1e2 − e1e3) = (δv1
v1 − δv1

v)e2 − (δv1
v1 − δv1

v)e3. (3.32)

The second map, b, identifiesH1(A, ∂A) with the direct sum of groups
⊕

v∈V (Γ)H1(Bv, Sv)

by sorting the one-cells by the vertex in the first factor,

b ◦ a ◦ d(e1e2 − e1e3) = δv1
v1(e2 − e3) ⊕ δv1

v(e3 − e2) (3.33)

Finally we apply the cellular boundary map, ∂, which was shown above to induce

an isomorphism between
⊕

v∈V (Γ)H1(Bv, Sv) and
⊕

v∈V (Γ) H̃0(Sv). We have

∂◦b◦a◦d(e1e2−e1e3) = δv1





v v1

δv3
v3 − δv3

v + δv2
v − δv2

v2 δv2
v2 − δv2

v + δv3
v − δv3

v3





(3.34)

= δv1





v v1

δv3
v3 − δv2

v2 δv2
v2 − δv3

v3 = 0



 . (3.35)

This notation implies that the cycle is equal to the direct sum of cycle δv3
v3 − δv2

v2,

in summand H̃0(Sv) and δv2
v2 − δv3

v3 = 0 in summand H̃0(Sv1
), where we use the

basis for spaces Svi
described above. Note that δv3

v3 − δv2
v2 really does define a

cycle since δv2
= δv3

. In the case δv2
6= δv3

a similar argument shows that

∂ ◦ b ◦ a ◦ d(e1e2 + e1e3) = δv1





v v1

δv3
v3 + δv2

v2 δv2
v2 + δv3

v3 = 0



 . (3.36)

We can also apply the composition ∂◦b◦a◦d to sum 3.29, in case δv4
6= δv5

and δv4
=

δv6
we obtain the following cycle in

⊕

v∈V (Γ) H̃0(Sv),

∂ ◦ b ◦ a ◦ d(e4e4 − e4e5 − e4e6) = δv4





v v4

δv5
v5 + δv6

v6 −δv5
v5 − δv6

v6



 . (3.37)

Note that again the pair δv5
v5 + δv6

v6 does represent a cycle in H̃0(Sv) since the

conditions on the coefficients δvi
imply that δv5

6= δv6
. Applying the map ∂ ◦ b ◦ a ◦ d

to sum 3.29 in the other three cases we always obtain a cycle of the form

δv4





v v4

±(v5 − v6) ∓(v5 − v6)



 ∈
⊕

v∈V (Γ)

H̃0(Sv). (3.38)
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Now we apply the isomorphism p to 3.27 and 3.29. This map was also described

above as the composition of three maps. The first map, α, identifies H2(N,A∪∂N)

with
⊕

e∈E(Γ)H2(e × Be, ∂e × Be ∪ e × ∂Be) by sorting the two-cells in a cycle of

H2(N,A∪ ∂N) by the edge in the first factor. The second map, β, is the projection

onto the second factor which induces an isomoprphism between H2(e × Be, ∂e ×

Be ∪ e × ∂Be) and
⊕

e∈E(Γ)H1(Be, ∂Be). Finally, we apply the cellular boundary

map, ∂, which was shown to induce an isomorphism between
⊕

e∈E(Γ)H1(Be, ∂Be)

and
⊕

e∈E(Γ) H̃0(∂Be). Taking the cases δv2
= δv3

and δv4
6= δv5

, δv4
= δv6

discussed

above we obtain,

∂ ◦ β ◦ α(e1e2 − e1e3) =





e1

δv2
v2 − δv3

v3



 (3.39)

∂ ◦ β ◦ α(e4e4 − e4e5 − e4e6) =





e4

δv6
v6 − δv5

v5



 . (3.40)

This notation follows a similar pattern to that above with 3.39 consisting of the

class δv2
v2 − δv3

v3 in the summand H̃0(∂Be1
) ∈

⊕

e∈E(Γ) H̃0(∂Be). In all the other

cases applying p to 3.27 and 3.29 always produces cycles of the form,

∂ ◦ β ◦ α(e1e2 − e1e3) =





e1

±(v2 − v3)



 (3.41)

∂ ◦ β ◦ α(e4e4 − e4e5 − e4e6) =





e4

±(v6 − v5)



 , (3.42)

respectively.

We must now define the map d1 so that the maps d1 ◦ γ ◦ β ◦ α and c ◦ b ◦ a ◦ d

commute. The map d1 can be described as a matrix of maps. The rows of the matrix

correspond to the vertices of Γ and the columns to the edges. In each column there

are two non-zero maps, one for each boundary vertex of the corresponding edge. So

if we consider the edge e1, which has boundary δv1v1 − δv1
v then in the entry in

column e1 and row v is the map i∗ : H̃0(∂Be1
) → H̃0(Sv) induced by multiplication

by −δv1
followed by the inclusion of ∂Be1

into Sv. The other map in column e1 lies

in row v1 and is the map j∗ : H̃0(∂Be) → H̃0(Sv) induced by the map j : ∂Be1
→ Sv1

which multiplies element of ∂Be1
by δv1

and includes them into Sv1
.
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Applying the map d1 to 3.39 we see it maps δv2
v2 − δv3

v3 ∈ H̃0(∂Be1
) to the direct

sum of δv1
(δv3

v3 − δv2
v2) ∈ H̃0(Sv) and δv1

(δv2
v2 − δv3

v3) = 0 ∈ H̃0(Sv1
) as required.

A similar analysis shows that d1 also maps 3.40 and all other cases to the required

elements of
⊕

v∈V (Γ) H̃0(Sv).

It remains to show that second sequence in diagram 3.26 is exact. This can be shown

directly but also follows algebraically from the fact that diagram 3.26 commutes.

Consider a class z ∈ H2(N, ∂N), then by the commutativity of diagram 3.26, q ◦ d ◦

j∗(z) = d1 ◦ g(z) = d1 ◦ p ◦ j∗(z). Also, d ◦ j∗(z) = 0 so we have d1 ◦ g(z) = 0 as

required. 2

We now describe an explicit method for calculating g ◦ I(x), for any elements x ∈

H1(Γ) ⊗H1(Γ).

Choose a set of oriented, simple cycles in Γ, C = {zi}
n
i=1 which form a free basis for

the group H1(Γ). Then the kernel of IΓ is generated by all linear combinations

x =

n
∑

i,j=1

αij(zi ⊗ zj)

of simple tensors of elements of C such that IΓ(x) = 0 which is equivalent to g◦I(x) =

0.

Definition 3.4.3 Define the intersection of two cycles z, z′ ∈ C to be the unique

element g ◦ I(z ⊗ z′) ∈
⊕

e∈E(Γ) H̃0(∂Be).

We now give an explicit description of the intersection of any pair of cycles z, z′ ∈

C.

Consider a subgraph Bei
in Γ. We label the vertices of ∂Bei

by vi
0, v

i
1, · · · v

i
ki

. Where

∂Bei
consists of ki vertices.

Definition 3.4.4 For every edge ei ∈ Γ, define a family of maps

f
vi

j
ei : H2(N, ∂N) → Z
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for every vertex vi
j ∈ ∂Bei

by;

f
vi

j
ei (er × es) =







1 if er = ei and vi
j ∈ es

0 otherwise

which can be extended linearly to an element of H2(N, ∂N). Note that since the

space (N, ∂N) is two-dimensional, homology classes in H2(N, ∂N) are identical to

cycles in C2(N, ∂N) so these maps are well defined. Then define the scalar inter-

section forms to be the maps

I
vi

j
ei = f

vi
j

ei ◦ I : H1(Γ) ⊗H1(Γ) → Z

Lemma 3.4.5 Let z =
∑l

p=1 ǫpep and z′ =
∑l′

q=1 ǫ
′
qe

′
q be two oriented, simple cycles

representing homology classes in C, where ǫp, ǫ
′
q = ±1 depending on the orientations

of the edges ep and e′q and the chosen orientations for z and z′. Then

I
vi

j
ei (z ⊗ z′) = ǫiǫ

′
j

if z ⊗ z′ contains a summand of the form ǫiǫ
′
j(ei ⊗ e′j) where vi

j ∈ e′j. Otherwise,

I
vi

j
ei (z ⊗ z′) = 0.

Furthermore, let δi
j be the sign of vi

j in the boundary of the edge ej ∈ Bei
, then

g ◦ I(z ⊗ z′) is equal to the element

⊕

ei∈E(Γ)

ki
∑

j=0

(I
vi

j
ei (z ⊗ z′)δi

jv
i
j) ∈ ker(d1) ⊂

⊕

ei∈E(Γ)

H̃0(∂Bei
)

Proof The first statement of this lemma follows directly from Definition 3.4.4 of the

scalar intersection forms. To prove the second statement first note that if the two

cycles z and z′ do not intersect, the value of every scaler intersection form I
vi

j
ei will be

zero when applied to z⊗ z′, and g ◦ I(z⊗ z′) will be equal to zero as required.

Now suppose that z and z′ do intersect in the graph. Since z and z′ are simple

cycles, each point of intersection between the two cycles can have one of two forms;

either some number of edges or a vertex. We will treat these two cases seperately,

they are pictured in Figure 3.8.

In case one the cycles z and z′ intersect at the vertex v. Since the space N has

no three dimensional cells, the image under the intersection form I of z ⊗ z′ must
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v

v1 v2

v3 v4

e1 e2

e3 e4

v1

v2
v3 vk

vk+1

vk+2

v'1 v'k+2

e1 ek+1

e'1 e'k+1

e2 ek

Figure 3.8: Left Case 1: Two cycles intersecting at the vertex v. Right Case 2: Two

cycles intersecting along the edges e2, · · · , ek.

lie in the chain group C2(N, ∂N), that is the abelian group of chains of two-cells

in N with boundary in ∂N . The intersection form is induced by the inclusion of

Γ× Γ into the pair (Γ× Γ, F (Γ, 2)) followed by the excision map, therefore to form

I(z ⊗ z′) we take all simple tensors of edges ei ⊗ ej ∈ z ⊗ z′ such that ei ∩ ej 6= ∅

and obtain,

ǫ1ǫ3(e1 ⊗ e3) + ǫ1ǫ4(e1 ⊗ e4) + ǫ2ǫ3(e2 ⊗ e3) + ǫ2ǫ4(e2 ⊗ e4). (3.43)

To show that 3.43 really does lie in C2(N, ∂N) we need to show that when we apply

the boundary map we obtain an element of C1(∂N). In order to do this we need to

prove the following claim which will be useful throughout this proof.

Claim 1 Let e1 and e2 be two edges of a simple cycle z ∈ H1(Γ) such that e1∩e2 = v,

a vertex. Let v1 be the other boundary vertex of e1 and v2 the other boundary vertex

of e2. Let ǫi be the coefficient of edge ei ∈ z, let δvi
be the sign of the vertex vi in

the boundary of the edge ei and let δi
v be the sign of the vertex v in the edge ei,

i = 1, 2, then

1. ǫ1δv1
6= ǫ2δv2

,

2. ǫ1δ
1
v 6= ǫ2δ

2
v ,

3. ǫ1δ
1
v = ǫ2δv2

.

To prove this claim consider the two cases ǫ1 = ǫ2 and ǫ1 6= ǫ2, shown in Figure

3.9. In the first case the two arrows on the edges e1 and e2 must point in the
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same direction and we see that δv1
6= δv2

, also δ1
v 6= δ2

v and finally δ1
v = δv2

. In the

second case the two arrows point in opposite directions and we see that the opposite

statements hold, i.e. δv1
= δv2

etc. This proves the claim.

v

v1 v2e1 e2
v1 v2e1 e2

v

Figure 3.9: Left The case ǫ1 = ǫ2. Right The case ǫ1 6= ǫ2

Applying the boundary map to expression 3.43 we obtain the expression,

ǫ1ǫ3[e1(ǫv3
v3 − ǫv3

v) − (ǫv1
v1 − ǫv1

v)e3] (3.44)

ǫ1ǫ4[e1(ǫv4
v4 − ǫv4

v) − (ǫv1
v1 − ǫv1

v)e4]

ǫ2ǫ3[e2(ǫv3
v3 − ǫv3

v) − (ǫv2
v2 − ǫv2

v)e3]

ǫ2ǫ4[e2(ǫv4
v4 − ǫv4

v) − (ǫv2
v2 − ǫv2

v)e4],

where ǫvi
= ±1 is the coefficent of the vertex vi in the boundary of the edge ei. To

show that 3.44 is an element of C1(∂N) we must show that the coefficient of every

one-cell of the form eiv or vei, i = 1, · · · , 4 is equal to 0, since the vertex v is in the

boundary of all the edges ei. A one-cell eiv has coefficient

−ǫi(ǫ3ǫv3
+ ǫ4ǫv4

) (3.45)

in 3.44 and a one-cell of the form vei has coefficient

+ǫi(ǫ1ǫv1
+ ǫ2ǫv2

). (3.46)

Since edges e1 and e2 and edges e3 and e4 satisfy the conditions of Claim 1 above,

part 1 of this claim shows that ǫ3ǫv3
6= ǫ4ǫv4

and similarly ǫ1ǫv1
6= ǫ2ǫv2

hence cells

of the form eiv and vei have zero coefficient in 3.44 as required.



3.4. Calculating the Intersections of Cycles 45

In exact sequence (3.24) the group H2(N, ∂N) is mapped to H2(N,A ∪ ∂N) by

the map induced by the quotient map collapsing A to a point, but since A is one-

dimensional this map is equivalent to the inclusion map. So to map (3.43) to an

element g◦I(z) ∈
⊕

ei∈E(Γ) H̃0(∂Bei
) we simply follow the sequence of isomorphisms

from H2(N,A ∪ ∂N) to
⊕

ei∈E(Γ) H̃0(∂Bei
) described in Theorem 3.4.2.

H2(N,A ∪ ∂N)
α
→

⊕

e∈E(Γ)

H2(e×Be, ∂e× Be ∪ e× ∂Be) (3.47)

β
→

⊕

e∈E(Γ)

H1(Be, ∂Be)
∂
→

⊕

e∈E(Γ)

H̃0(∂Be).

The map α collects all terms with the same edge as the first factor, we obtain,

ǫ1(ǫ3(e1 ⊗ e3) + ǫ4(e1 ⊗ e4)) ⊕ ǫ2(ǫ3(e2 ⊗ e3) + ǫ4(e2 ⊗ e4)).

As described in Theorem (3.4.2), the map β is induced by the projection onto the

second factor,

ǫ1(ǫ3e3 + ǫ4e4) ⊕ ǫ2(ǫ3e3 + ǫ4e4).

Finally, the map ∂ is identical to the cellular boundary map. Applying this boundary

map to the expression above we obtain,

ǫ1(ǫ3(δv3
v3 − δv3

v)+ ǫ4(δv4
v4 − δv4

v))⊕ ǫ2(ǫ3(δv3
v3 − δv3

v)+ ǫ4(δv4
v4 − δv4

v)). (3.48)

Here, δvi
is the sign of the vertex vi in the boundary of the edge ei.

As before, part 1 of Claim 1 shows that, ǫ3δv3
6= ǫ4δv4

so formula (3.48) is equal to

the following element of
⊕

ei∈E(Γ) H̃0(∂Bei
),

ǫ1(ǫ3δv3
v3 + ǫ4δv4

v4) ⊕ ǫ2(ǫ3δv3
v3 + ǫ4δv4

v4) (3.49)

with the first summand an element of the group H̃0(∂Be1
) and the second summand

an element of H̃0(∂Be2
).

We now show that (3.49) lies in the kernel of the map d1.

Recall the description of the map d1 given in Theorem 3.4.2. This description shows

that d1 maps by inclusion and then multiplication by δv1
the entry in H̃0(∂Be1

)
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into H̃0(Sv1
). Since v3 and v4 lie in the same component of Sv1

this maps to zero.

Similarly the entry in H̃0(∂Be2
) is mapped to zero in H̃0(Sv2

). Both summands

are mapped to H̃0(Sv) since both edges e1 and e2 are incident to v, noting that

the summands are equal and applying statement 2 of the claim shows that we also

obtain zero under this map.

Finally, we note that Iv3

ei
and Iv4

ei
, i = 1, 2, are the only non-zero scalar intersection

forms when applied to z⊗ z′ and that since Iv3

ei
(z⊗ z′) = ǫiǫ3 and Iv4

ei
(z⊗ z′) = ǫiǫ4,

direct sum (3.49) is of the form given in the statement of this lemma.

We now consider case 2, as pictured in Figure 3.8. Here, I(z⊗z′) can be represented

by the following element of C2(N, ∂N),

ǫ1ǫ
′
1(e1 × e′1) + ǫ1ǫ2(e1 × e2) + ǫ2ǫ

′
1(e2 × e′1) + ǫ2ǫ2(e2 × e2) + ǫ2ǫ3(e2 × e3)+ (3.50)

· · ·+ ǫiǫi−1(ei × ei−1) + ǫiǫi(ei × ei) + ǫiǫi+1(ei × ei+1) + · · ·

+ǫkǫk−1(ek×ek−1)+ǫkǫk(ek×ek)+ǫkǫ
′
k+1(ek×e

′
k+1)+ǫk+1ǫk(ek+1×ek)+ǫk+1ǫ

′
k+1(ek+1×e

′
k+1).

Applying the three maps α, β and ∂ of (3.47) gives the following direct sum,

ǫ1(ǫ
′
1(δ

′
1v1 − δ′1v2) + ǫ2(δ2v2 − δ2v3)) (3.51)

⊕ǫ2(ǫ
′
1(δ

′
1v1 − δ′1v2) + ǫ2(δ2v2 − δ2v3) + ǫ3(δ3v3 − δ3v4)) ⊕ · · ·

⊕ǫi(ǫi−1(δi−1vi−1 − δi−1vi) + ǫi(δivi − δivi+1) + ǫi+1(δi+1vi+1 − δi+1vi+2)) ⊕ · · ·

⊕ǫk(ǫk−1(δk−1vk−1 − δk−1vk) + ǫk(δkvk − δkvk+1) + ǫ′k+1(δk+1vk+1 − δk+1v
′
k+2))

⊕ǫk+1(ǫk(δkvk − δkvk+1) + ǫ′k+1(δk+1vk+1 − δk+1v
′
k+2)).

Here, δj represents the sign of vertex vj in the boundary of edge ej , note that the

sign of the other vertex in this boundary is equal to −δj .

Applying statement 3 of the claim above shows that, for example, ǫi−1δi−1 = ǫiδi

and similarly ǫiδi = ǫi+1δi+1. Applying this statement to every summand of (3.51)

we obtain the following element,

ǫ1(ǫ
′
1δ

′
1v1 − ǫ2δ2v3) ⊕ ǫ2(ǫ

′
1δ

′
1v1 − ǫ3δ3v4) ⊕ · · · (3.52)
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⊕ǫi(ǫi−1δi−1vi−1 − ǫi+1δi+1vi+2) ⊕ · · · ⊕ ǫk(ǫk−1δk−1vk−1 − ǫ′k+1δk+1v
′
k+2)

⊕ǫk+1(ǫkδkvk − ǫ′k+1δk+1v
′
k+2).

We see that this lies in
⊕

ei∈E(Γ) H̃0(∂Bei
) since for any i, ǫi−1δi−1 = ǫi+1δi+1. This

can be seen using a similar argument to that used to prove the claim and is illustrated

in Figure 3.10.

vi-1

vi-2

vi

vi+1
ei-1

ei

ei+1

vi-1

vi-2

vi

vi+1
ei-1

ei

ei+1

Figure 3.10: Three oriented edges ei−1, ei and ei+1 in a cycle. Left The case ǫi−1 =

ǫi+1. Right The case ǫi−1 6= ǫi+1.

We can show that (3.52) lies in the kernel of the map d1 using a similar argument

to that for case one. For example, the entries in H̃0(∂Bei−1
) and H̃0(∂Bei

), shown

below, are mapped into Svi
by d for all i = 1, · · · , k.

ǫi−1(ǫi−2δi−2vi−2 − ǫiδivi+1) ⊕ ǫi(ǫi−1δi−1vi−1 − ǫi+1δi+1vi+2).

Note that the vertices vi−2 and vi−1 lie in the same component of Svi
, as do vertices

vi+1 and vi+2. Applying statement 3 of the claim we see that ǫi−2δi−2 = ǫi−1δi−1 and

ǫiδi = ǫi+1δi+1. Then recalling the description of the map d1 given in the remarks

after Theorem 3.4.2, we apply statement 2 of the claim to show that ǫi−1δ
i−1
i 6= ǫiδ

i
i

where δs
r is the sign of the vertex vr in the boundary of the edge es, and see that

d1(ǫi−1(ǫi−2δi−2vi−2 − ǫiδivi+1) ⊕ ǫi(ǫi−1δi−1vi−1 − ǫi+1δi+1vi+2)) = 0 ∈ H̃0(Svi
).

Finally, by examining which scalar intersection forms are non-zero when applied to

z⊗z′ we see that (3.52) has the form described in the statement of this lemma.

There is one final case to be considered, that of the intersection of a cycle, z, with

itself. This case follows directly from arguments given in case 2 after the observation

that, for each ei ∈ z, g ◦ I(z ⊗ z) has the following entry in H̃0(∂Bei
)

ǫi(ǫi−1(δi−1vi−1 − δi−1vi) + ǫi(δivi − δivi+1) + ǫi+1(δi+1vi+1 − δi+1vi+2)).
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2

3.5 An Algorithm to Calculate the Second Betti

Number of F (Γ, 2)

We can combine the previous results of this chapter to give the following algorithm

for calculating the second Betti number of F (Γ, 2) for any simple graph Γ.

1. Take the first barycentric subdivision of the graph, to eliminate any cycles of

length 3 or 4.

2. Choose a basis forH1(Γ), C = {zi}
k
i=1, perhaps using the spanning tree method

of Theorem 3.2.3.

3. Calculate

g ◦ I(zp ⊗ zq) =
⊕

ei∈E(Γ)

ki
∑

j=0

(I
vi

j
ei (zp ⊗ zq)δ

i
jv

i
j),∈

⊕

ei∈E(Γ)

H̃0(∂Bei
),

for all pairs of cycles zp, zq ∈ C, p, q = 1, · · · , k.

4. Use the images {g ◦ I(zp ⊗ zq)}
k
p,q=1 to construct the matrix form of the linear

map g ◦ I between the vector spaces H1(Γ) ⊗ H1(Γ) and
⊕

ei∈E(Γ) H̃0(∂Bei
).

The matrix will have b1(Γ)2 rows, each indexed by a pair of cycles in C, and
∑

v∈V (Γ) µ(v)(µ(v) − 3
2
) columns, indexed by the basis elements of the groups

H̃0(∂Bei
). The entries in the matrix should be coefficients in Z such that the

linear combination of basis elements for each group H̃0(∂Bei
) in row zp ⊗ zq is

equal to the sum
∑ki

j=0(I
vi

j
ei (zp⊗zq)δ

i
jv

i
j). Use a standard algorithm to calculate

the rank, R, of this matrix. Then, by the rank-nullity theorem, the dimension

of the kernel of g ◦ I, i.e. the second Betti number of the group H2(F (Γ, 2)),

is equal to

b1(Γ)2 − R.

The above algorithm will always yield an accurate answer for the second Betti num-

ber of F (Γ, 2) and each step uses methods of calculation which can be easily turned



3.5. An Algorithm to Calculate the Second Betti Number of F (Γ, 2) 49

into a programmable algorithm. However, for any general graph the calculation

could become quite large and it does not give any direct information as to the con-

struction of the homology classes which generate H2(F (Γ, 2)). In the remainder of

this thesis we explore how to use the results of this chapter to describe the second

homology group of F (Γ, 2) more simply for certain classes of graphs. To close this

chapter we apply the results of Section 3.4 to construct generators for H2(F (Γ, 2))

for Γ equal to the Kuratowski graphs K5 and K3,3.

Example 3.5.1 In Example 2.4.1 we showed that F (K5, 2) has the homotopy type

of an orientable surface of genus 6 and hence H2(F (K5, 2),Z) = Z. We will now

calculate the generator of H2(F (K5, 2),Z) as an element of H1(K5) ⊗H1(K5).

First label the vertices of K5 as v1, v2, v3, v4 and v5 and orient each edge of the graph

ei
j from vj to vi where i > j. Choose a maximal spanning tree, T , for K5 consisting

of all edges emanating from the vertex v5.

Then we have a basis for H1(K5) consisting of 6 cycles Ci
j with i, j = 1, · · · , 4 and

i > j. However, K5 contains cycles of length 3 so to apply Lemma 3.4.5 we must

take the first barycentric subdivision of the graph. This introduces ten new vertices,

one subdividing each edge of the graph. We label, ui
j the vertex subdividing the

edge ei
j , and label, Ei

j , the edge joining ui
j to vi and label ei

j the edge joining vj to

ui
j. All the vertices ui

j must be contained in any maximal spanning tree of K5 so we

expand T to include the edges Ei
j, i, j = 1, · · · , 4, i > j, to obtain the spanning tree

shown in Figure 3.11.

Then each of the six cycles generating H1(K5) have the form

Ci
j = +(E5

i + e5i ) − (e5j + E5
j ) − (ei

j + Ei
j), i, j = 1, · · · , 4, i > j. (3.53)

To calculate the generator ofH2(F (K5, 2)), consider the image under the intersection

form of tensors Ci
j ⊗ Ck

l where i, j, k, and l are all distinct, i > j, k > l. Then the

two cycles intersect only at the vertex v5 and we obtain the following element of

C2(N, ∂N)

IK5
(Ci

j ⊗ Ck
l ) = +e5i × e5k − e5i × e5l − e5j × e5k + e5j × e5l . (3.54)
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v5

v1 v2 v3 v4

u5
1

E5
1

e5
1

E2
1

Figure 3.11: A maximal spanning tree for the first barycentric subdivision of K5.

Then apply the map g to IK5
(Ci

j ⊗ Ck
l ) to obtain an element of the direct sum

⊕

e∈E(K5)
H̃0(∂Be) using the sequence of isomorphisms p ◦ j∗ described in the proof

of Theorem 3.4.2, we obtain,

g ◦ I(Ci
j ⊗ Ck

l ) =





e5i e5j

u5
l − u5

k u5
k − u5

l



 . (3.55)

This notation is the same as that used in Theorem 3.4.2 and shows that g◦I(Ci
j⊗C

k
l )

is the direct sum of the element u5
l −u

5
k in the group H̃0(∂Be5

i
) and the element u5

k−u
5
l

in the group H̃0(∂Be5
j
).

Consider the group H̃0(∂Be5
1
), a non-trivial element of this group appears as a sum-

mand of the image under g ◦ I of C1
2 ⊗ C3

4 , C
1
3 ⊗ C2

4 and C1
4 ⊗ C2

3 . We see that

g ◦ I(C1
2 ⊗ C3

4 − C1
3 ⊗ C2

4 + C1
4 ⊗ C2

3 ) has zero entry in the summand H̃0(∂Be5
1
).

A similar analysis for the three other edges e52, e
5
3 and e54 shows that the following

linear combination of tensors has trivial image under the map g ◦ I,

C1
2 ⊗ C3

4 − C1
3 ⊗ C2

4 + C1
4 ⊗ C2

3 − C3
4 ⊗ C1

2 + C2
4 ⊗ C1

3 − C2
3 ⊗ C1

4 (3.56)

and hence corresponds to the generator of H2(F (K5, 2)). Note that this element can

be written as the sum,
∑

ijkl

ǫ(ijkl)C
i
j ⊗ Ck

l (3.57)

where (ijkl) runs over all permutations of indices 1, 2, 3, 4 such that i > j, k > l

and ǫ(ijkl) is the sign of the permutation.
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v1 v2 v3

u1 u2 u3

w1
1

E1
1

e1
1

Figure 3.12: A maximal spanning tree for the first barycentric subdivision of K3,3.

The dotted edges are not included in the tree.

Example 3.5.2 In Example 2.4.2 it was shown that F (K3,3, 2) is also an orientable

surface and so H2(F (K3,3, 2),Z) = Z. We can follow a similar process to that in

Example 3.5.1 to find the generator of H2(F (K3,3, 2)) as an element of H1(K3,3) ⊗

H1(K3,3). We take the first barycentric subdivision of the graph since K3,3 contains

cycles of length 4 and then construct a spanning tree for the graph as shown in

Figure 3.12. We include in the spanning tree all subdivided edges of K3,3 which

are incident to vertices u1 or v1, and then extend the tree to include the vertices

subdividing the remaining edges of the graph. All edges are oriented from vertex vi

to vertex uj, we label wi
j the vertex subdividing the edge joining vertex vi to uj, the

edge joining vi to wi
j is labelled Ei

j and the edge joining vertex wi
j to uj is labelled

ei
j.

There are four edges of the subdivided graph which are not in the spanning tree,

e22, e
3
3, E

2
3 and E3

2 . These edges correspond to four cycles in the graph of length 8

which generate H1(K3,3). Label these cycles D2
2, D

3
3, D

2
3 and D3

2.

To calculate the generator of H2(F (K3,3, 2),Z) first consider the image of D2
2 ⊗D3

3

under the intersection form IK3,3
,

I(D2
2⊗D

3
3) = E1

2×(E1
3−E

1
1 )+E1

1×(−E1
3+E1

1+e11)+e
1
1×(E1

1+e11−e
1
3)+e

1
2×(−e11+e

1
3).

(3.58)

Applying the map g to I(B2
2 ⊗B3

3) we obtain,

g ◦ I(D2
2 ⊗D3

3) =





E1
2 E1

1 e11 e21

w1
3 − w1

1 u1 − w1
3 w3

1 − v1 w1
1 − w3

1



 . (3.59)
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The generator we are looking for must be symmetric with respect to the involution

τ (2.3), since for any x ∈ H1(K3,3) ⊗H1(K3,3) such that g ◦ I(x) = 0, the image of

g◦I(τ∗x) is also zero, butH2(F (K3,3, 2),Z) = Z must have exactly one generator. So

such a generator must also containD3
3⊗D

2
2. Lemma 3.2.13 implies that I(D3

3⊗D
2
2) =

−τ∗(I(D
2
2 ⊗D3

3)), applying this to (3.58) yields the following,

g ◦ I(D3
3 ⊗D2

2) =





E1
3 E1

1 e11 e31

w1
2 − w1

1 u1 − w1
2 w2

1 − v1 w1
1 − w2

1



 . (3.60)

Examining the image under g ◦ I of all other simple tensors of the generating cycles

of H1(K3,3) we find that,

g ◦ I(D2
3 ⊗D3

2) =





E1
3 E1

1 e11 e21

w1
2 − w1

1 u1 − w1
2 v1 − w3

1 w3
1 − w1

1



 (3.61)

and,

g ◦ I(D3
2 ⊗D2

3) =





E1
2 E1

1 e11 e31

w1
3 − w1

1 u1 − w1
3 v1 − w2

1 w2
1 − w1

1



 . (3.62)

Taking the direct sum of the four elements of
⊕

e∈E(K3,3)
H̃0(∂Be) calculated above,

we see that the combination

D2
2 ⊗D3

3 +D3
3 ⊗D2

2 +D2
3 ⊗D3

2 +D3
2 ⊗D2

3 (3.63)

is mapped to zero by g ◦ I and is therefore the generator of H2(F (K3,3, 2),Z).



Chapter 4

Planar Graphs

In this chapter we use the results of Chapter 3 to describe the homology and coho-

mology of F (Γ, 2) where Γ is a planar graph. Our main result calculates the second

Betti number of F (Γ, 2) and describes the generators of the second homology group

of this space. In the rest of the chapter we calculate simple formulas for the first

and second Betti numbers of F (Γ, 2) for a large class of planar graphs which we call

regular planar graphs. We also describe a relationship between the first homology

group of F (R2, 2), the space of two particles moving without collisions on the plane,

and the first homology group of F (Γ, 2) for regular planar graphs. In the last section

we describe the cup product for this space and calculate the cohomology algebra

H∗(F (Γ, 2),Q) where Γ is a regular planar graph. The material in this chapter cov-

ers the main results published in the joint paper [6] written by myself and Michael

Farber, though with some modifications in the method of proof to incorporate the

ideas developed in Section 3.4.

4.1 The Second Betti Number of F (Γ, 2)

The theorem below uses the theory developed in Chapter 3 to calculate the second

Betti number of the configuration space F (Γ, 2) for any planar graph Γ.

Theorem 4.1.1 Let Γ be a planar graph. Consider an embedding of Γ into R2. Let

53
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U0, U1, · · · , Ur denote the faces of Γ, that is the connected components of R2 − Γ,

with U0 denoting the unbounded face. Then the second Betti number of F (Γ, 2) is

equal to the number of ordered pairs (i, j) with i, j ∈ {0, 1, · · · , r} such that,

U i ∩ U j = ∅.

Furthermore, for each such pair (i, j) consider the torus T 2
ij in F (Γ, 2) formed by all

configurations where the first particle lies on the boundary of Ui and the second on

the boundary of Uj. The fundamental classes [T 2
ij] ∈ H2(F (Γ, 2)) of these tori freely

generate H2(F (Γ, 2)).

Proof Let zi denote the homology class in H1(Γ) of the cycle represented by the

boundary of the domain Ui passed in the anticlockwise direction. The classes

z1, z2, · · · , zr freely generate the group H1(Γ). The homology class, z0, of the bound-

ing cycle of the face U0, is equal to the sum z1 + z2 + · · ·+ zr.

Consider an element x ∈ H1(Γ) ⊗ H1(Γ) such that IΓ(x) = 0. We examine the

structure of such an x. It can be written as the sum,

x =

r
∑

i,j=1

xijzi ⊗ zj , xij ∈ Z.

The theorem can be proved by showing that the following claim is true.

The element x can be uniquely expressed as a linear combination of tensors of the

form

γij = zi ⊗ zj, (4.1)

such that i, j ∈ {1, · · · , r} and U i ∩ U j = ∅, and of the form

αi = zi ⊗ z0 and βi = z0 ⊗ zi (4.2)

such that U i ∩ U 0 = ∅.

By Lemma 3.2.12 tensors (4.1) and (4.2) clearly lie in the kernel of IΓ. The claim

above can be reformulated as follows:

If a tensor x ∈ H1(Γ) ⊗ H1(Γ) is such that IΓ(x) = 0 then there exist unique

integers

a1, a2, · · · , ar, b1, b2, · · · , br ∈ Z,
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called left and right weights, such that

xij = ai + bj (4.3)

for any pair (i, j) satisfying U i ∩ U j 6= ∅. Moreover we require that

ai = 0 = bi (4.4)

for any i = 1, · · · , r such that U i ∩ U 0 6= ∅.

If such weights exist then the linear combination

r
∑

i=1

aizi ⊗ z0 +
r

∑

j=1

bjz0 ⊗ zj

has coefficient xij in front of each tensor zi ⊗ zj with U i ∩U j 6= ∅ and therefore x is

a linear combination of tensors of the form (4.1) and (4.2).

It is enough to find the weight ai, since we can find bi using the formula

xii = ai + bi.

To prove this statement we show that having chosen one weight a1 we can consis-

tently transport this weight across edges to calculate other weights aj . Let U1 and

U2 be two faces of the graph with common edge e1, see Figure 4.1. Suppose the

weight a1 is given, then we can calculate the weight a2 from the following system of

equations,

x11 = a1 + b1

x12 = a1 + b2

x21 = a2 + b1

x22 = a2 + b2.

We obtain the following solution to the system for a2,

a2 = x21 − x11 + a1 = x22 − x12 + a1

subject to the condition

x11 + x22 = x21 + x12. (4.5)
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v e1 v1

ek

vk

e2

v2

ek-1

vk-1

U1

U2

Uk

U3

Figure 4.1: The ball Be1
and corresponding faces U1, · · · , Uk.

To show that condition (4.5) holds we consider g ◦ I(x) ∈
⊕

e∈E(Γ) H̃0(∂Be). Since

I(x) = 0 we also have g ◦ I(x) = 0. Consider Be1
as a subgraph of Γ, since Γ is a

planar graph, we assume that each edge of Be1
, and hence each vertex of ∂Be1

, lies

in the boundary of exactly two faces of the graph. Consider all edges of Be1
incident

to vertex v ∈ ∂e1, following the notation of Figure 4.1 and applying Lemma 3.4.5,

we see that, for each i ∈ {i, · · · , k}, the entry in the group H̃0(∂Bei
) contains the

sum,

k
∑

j=1,j 6=i

[xijI
vj

ei
(zi⊗zj)+xi+1jI

vj

ei
(zi+1⊗zj)+xij+1I

vj

ei
(zi⊗zj+1)+xi+1j+1I

vj

ei
(zi+1⊗zj+1)]δjvj ,

(4.6)

and that every occurrence of the vertices v1, · · · , vk in the group H̃0(∂Bei
) is counted

in this sum.

Let ǫsr denote the orientation, ±1, of edge er in the cycle zs, then sum (4.6) above

is equal to,

k
∑

j=1,j 6=i

[xijǫ
i
iǫ

j
j + xi+1jǫ

i+1
i ǫjj + xij+1ǫ

i
iǫ

j+1
j + xi+1j+1ǫ

i+1
i ǫj+1

j ]δjvj . (4.7)

For the entry in the group H̃0(∂Bei
) to be zero, the coefficient of each vertex vj ,

j 6= i, j ∈ {1, · · · , k} must be equal to zero. Since every cycle zi is oriented in the

anticlockwise direction we have that ǫii 6= ǫi+1
i for all i ∈ {1, · · · , k}, together with

(4.7) this implies

xij − xi+1,j − xi,j+1 + xi+1,j+1 = 0 for all j 6= i ∈ {1, · · · , k}. (4.8)
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Here we assume without loss of generality that ǫiiǫ
j
jδj = +1.

Since the argument above applies to all edges ei incident to the vertex v equation

(4.8) is also valid for all i ∈ {1, · · · , k}. We can transform equation (4.8) into,

xij − xi,j+1 = xi+1,j − xi+1,j+1. (4.9)

Then by induction we have that

xij − xi,j+1 = xi+1,p − xi+1,p+1, for all i 6= p ∈ {1, · · · , k}. (4.10)

Taking i = k and j = 1 in equation (4.9) above we obtain xk1 − xk2 = x11 − x12

and taking i = 2 and j = 1 we obtain x21 − x22 = x31 − x32. Then since, by (4.10),

xk1−xk2 = x31−x32 we obtain x11−x12 = x21−x22 which is equivalent to condition

(4.5).

Hence we have shown that the weight a1 can be transported across an edge to find

the weight a2. Furthermore, (4.8) also implies that we can consistently export the

weight a1 around the vertex v. Rewrite (4.8) as

xi+1,j − xij = xi+1,j+1 − xi,j+1, (4.11)

then consider the coefficients xij = ai + bj for all i, j ∈ {1, · · · , k}, i 6= j and

i−j 6= ±1. Introduce the equation xjj to cancel the dependence on bj to obtain

xjj − xij = aj − ai. (4.12)

Solving the system of equations for the ai, i = 1, · · · , k we obtain,

for j > i,

aj − ai = xjj − xij =

j−1
∑

p=i

[xp+1,p − xpp] (4.13)

and for i > j

ai − aj = xij − xjj =
i−1
∑

p=j

[xp+1,p − xpp]. (4.14)

Equation (4.11) implies by induction that

xi+1,j − xij = xi+1,q − xiq for all i, j, q ∈ {1, · · · , k}. (4.15)
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v1
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ai

ai

Figure 4.2: The face Ui and its bounding faces. Each arrow represents the exporting

of the weight of a bounding face to the face Ui, each giving the same value for the

weight ai.

Then if we add xp+1,j − xp,j for p = i, · · · j − 1 to the right hand side of (4.13)

and xp+1,i − xp,i to the right hand side of (4.14), equation (4.15) implies (4.13) and

(4.14).

We have shown that one can consistently export the weights ai around a vertex. It

remains to show that if we choose two different paths of edges in Γ between a face

Ui and a face Uj and export the weight ai along these paths to Uj, then both paths

produce the same weight aj . It is enough to show that if one considers a face Ui and

two other faces Uj and Uk such that the boundaries of Uj and Ui contain a common

edge and the boundaries of Uk and Ui contain a common edge, then calculating the

weight ai in two ways, by transporting the weight aj across the boundary and by

transporting the weight ak across the boundary, one obtains the same value for ai.

The situation is illustrated in Figure 4.2. Consider the shortest combinatorial path,

e1e2 · · · ek, in the boundary of Ui between a vertex, vj , also in the bounary of Uj ,

and a vertex, vk, also in the boundary of Uk. Then one can export the weight aj

to calculate the weight ai by passing the weight around the vertex vj or passing

straight from Uj to Ui. Since we can consistently export weights around a vertex

both these methods will produce the same value for ai. Exporting the weight around

vertex vj will produce the same value for ai as exporting the weight a1 from face
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v

er

vr

es

vs

Ur

Us

Figure 4.3: The faces of Γ whose boundaries contain vertex v , with v lying on the

cycle z0.

U1 to Ui where the boundary of U1 and Ui intersect along edge e1. Again, this is

equivalent to exporting the weight a1 around the vertex, v1 = e1 ∩ e2, to calculate

ai. Continuing in this way we see that the transitivity of this relation implies that

calculating the weight ai from the weight ak by passing from Uk to Ui is equivalent

to calculating ai by passing from Uj to Ui. This is illustrated in Figure 4.2.

We can also show that we can consistently export the weights around the graph

by noting that the weights ai form a flat line bundle over the space constructed by

removing the vertices of the graph Γ from the sphere, a compactification of R2. We

have shown that there is no local monodromy in the system of weights as one travels

a path around a vertex, and since the fundamental group of the punctured sphere

is generated by the loops around the punctures, which correspond to vertices, there

can be no global monodromy either.

Now suppose that v lies in the cycle z0, see Figure 4.3. Then the two edges of z0

which intersect at v, er and es, each lie in only one generating cycle of H1(Γ), zr

and zs respectively. Suppose that the weights ar and br are given and ar = br = 0.

We show that transporting these weights around the vertex v gives ai = bi = 0 for

all faces Ui whose boundaries contain v. Consider the summand of g ◦ I(x) in the
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C2

C1

Figure 4.4: The annulus formed by cycles C1 and C2

group H̃0(∂Ber
), it can contain only one copy of vertex vs with sign given by

Ivs

er
(zr ⊗ zs)δs = ǫrrǫ

s
sδs.

Hence we have that xrs = 0, which implies that ar + bs = 0, then since ar = 0 we

have bs = 0 also. The analogous argument shows that xsr must also equal zero,

hence as + br = 0 and as = 0 as required. An equation similar to (4.8) applies

for all other faces Ui whose boundaries contain v, this along with the conditions

ar = br = 0 and as = bs = 0 shows that ai = bi = 0 for all faces Ui incident to v.

This completes the proof. 2

Remarks

1. This theorem shows that in the case of planar graphs Conjecture 2.4.1 holds

since the Kuratowski Theorem states that planar graphs contain no subgraphs

isomorphic to K5 or K3,3 and so the group H2(F (Γ, 2)) should be entirely

generated by embeddings of disjoint cycles in Γ. The theorem also shows that

the second Betti number of F (Γ, 2) will always be even since the torus T 2
ij is

distinct from T 2
ji in the space F (Γ, 2).

2. We can explicitly describe elements x ∈ H1(Γ) ⊗ H1(Γ) such that IΓ(x) = 0

but which contain simple tensors zi ⊗ zj , with non-zero coefficients, where zi

and zj are cycles given by passing anticlockwise around the boundaries of faces

Ui and Uj of Γ such that U i ∩U j 6= ∅. Consider two disjoint cycles, C1 and C2

in Γ, with C1 lying in the interior of C2 so that C1 and C2 form the boundary
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of an annulus in R2. Then IΓ(C1 ⊗C2) = 0 by Lemma 3.2.12 and both C1 and

C2 can be written as sums of faces of the graph which lie in the interior of the

cycle C2. Since C1 and C2 form an annulus, the closure of at least one face

appearing as a summand of C2 must intersect the closure of a face appearing

as a summand of C1, see Figure 4.4.

4.2 The First Betti Number of F (Γ, 2)

In this section we investigate the group H1(F (Γ, 2)) and calculate the first Betti

number of F (Γ, 2) for a large class of planar graphs. First we show that the cokernel

of the intersection form I is always non-empty for a planar graph.

Lemma 4.2.1 For any connected planar graph Γ ⊂ R2 having at least one vertex

of valence 3 or more, the cokernel of the intersection form IΓ has rank at least 1.

Proof We describe a two-cycle in C2(N, ∂N) and show that it cannot lie in the

v2

   v3

v1

v

e1
e2

e3

Figure 4.5: Three edges incident to the vertex v.

image of the intersection form IΓ. Consider a vertex v ∈ Γ with three edges, e1,

e2 and e3, incident to it, as shown in Figure 4.5. Then the following element of

C2(N)

e1(e2 − e3) + e2(e3 − e1) + e3(e1 − e2),



4.2. The First Betti Number of F (Γ, 2) 62

has boundary

∂y =

+ v1(e3 − e2) + (e1 − e3)v2

+ v3(e2 − e1) + (e3 − e2)v1

+ v2(e1 − e3) + (e2 − e1)v3

(4.16)

which is clearly a 1-dimensional cycle in C∗(∂N) since d(vi, ej) = 1 for all vi and ej

such that i 6= j, i, j = 1, 2, 3. So y is a relative cycle in C2(N, ∂N). To show that y

does not lie in the image of the intersection form, consider the map

ψ : (Γ × Γ, D(Γ, 2)) → (R2,R2 − {0})

given by

ψ(x, y) = x− y.

The image of ∂y under the map ψ is a closed curve in the punctured plane R2 −{0}

making one full twist around the origin. This is based on the observation that the

angle made by the ray from the first to second point is always increasing. Therefore

ψ∗(∂y) is a generator of H1(R
2 − {0}). This implies that ψ∗(∂y) and hence ∂y

has infinite order. Consider the following exact sequence which follows directly

from exact sequence (3.13) by replacing the space F (Γ, 2) with the discrete space

D(Γ, 2).

0 → H2(D(Γ, 2))
α∗→ H1(Γ) ⊗H1(Γ)

IΓ→ H2(N, ∂N) (4.17)

∂
→ H1(D(Γ, 2))

α∗→ H1(Γ) ⊕H1(Γ) → 0.

We then see that y passes to a non-trivial element of the cokernel of the intersection

form I, for if it was an element of the image of I then ∂y would be the trivial element

by the exactness of the sequence (3.13) and could not have infinite order. 2

For a large class of planar graphs, which we will call regular planar graphs, we can

find an explicit formula for the first and second Betti numbers of F (Γ, 2).

Definition 4.2.2 Let Γ ⊂ R2 be a planar graph and denote by U0, U1, · · · , Ur, the

faces of Γ where U0 denotes the unbounded face and r = b1(Γ). Such a graph is

called regular if it has the following properties,

1. every vertex of Γ has valance greater than or equal to 3,
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2. the closure of every face U i, with i = 1, · · · , r is contractible and the boundary

of the face U0 is homotopy equivalent to the circle S1,

3. for every pair i, j ∈ {0, 1, · · · , r}, i 6= j the intersection U i ∩ U j is connected.

Theorem 4.2.3 Let Γ ⊂ R2 be a regular planar graph with faces U0, U1, · · · , Ur

where U0 denotes the unbounded face of Γ. Then

b1(F (Γ, 2)) = 2b1(Γ) + 1 (4.18)

and

b2(F (Γ, 2)) = b1(Γ)2 − b1(Γ) + 2 −
∑

v∈V (Γ)

(µ(v) − 1)(µ(v) − 2). (4.19)

Proof By Theorem 4.1.1 the second Betti number of F (Γ, 2) is equal to twice the

number of pairs of disjoint faces of Γ, including the unbounded face U0. The total

number of pairs (Ui, Uj), i 6= j of faces of Γ is equal to r(r+1) or, b1(b1+1) = b21+b1.

By property 3, every pair of intersecting faces intersect either at a vertex or a single

edge. By properties 2 and 3, each edge of Γ lies in the boundary of exactly two

faces, hence there are 2E pairs of faces intersecting along an edge. Here E = |E(Γ)|,

is the cardinality of the set of edges of Γ. The number of pairs of faces intersecting

at a vertex is given by the formula

∑

v∈V (Γ)

µ(v)(µ(v) − 3).

To explain this formula consider a vertex v ∈ Γ with µ(v) edges incident to it.

Properties 1 and 2 imply that since the closure of every face of the graph must

be contractible, and there can be no vertices of valence 1, each such face must

be homeomophic to a disc and therefore its boundary must be homeormorphic to

the circle S1. There are therefore µ(v) distinct faces of the graph intersecting the

vertex v, else Γ would contain a face whose boundary contained a self intersection

at the vertex v. For each such face, Ui, there are µ(v) − 3 other faces Uj such

that Ui ∩ Uj = v. Hence by Theorem 4.1.1 we obtain the following formula for

b2(F (Γ, 2))

b2(F (Γ, 2)) = b21 + b1 − 2E −
∑

v∈V (Γ)

µ(v)(µ(v) − 3). (4.20)
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By the Euler-Poincare Theorem,

χ(Γ) = V − E = 1 − b1(Γ). (4.21)

Using this fact and applying some elementary transformations to the expression

above we obtain formula (4.19).

Finally, to show that b1(F (Γ, 2)) = 2b1(Γ)+1 note that the Euler-Poincare theorem

implies that χ(F (Γ, 2)) = 1−b1(F (Γ, 2))+b2(F (Γ, 2)). Substituting equation (4.19)

for b2(F (Γ, 2)) and equation (3.1) for the Euler characteristic of F (Γ, 2) into this

expression, then performing some transformations using equation (4.21) we obtain

equation (4.18). 2

Remarks

1. Note that the theorem above describes the first Betti number for a graph

satisfying the appropriate conditions, but the theorem doesn’t show that the

group H1(F (Γ, 2),Z) is torsion free. Currently there is no known example of

a graph Γ such that H1(F (Γ, 2),Z) contains torsion elements, but it has not

been proven that such a graph cannot exist. We can remove this consideration

by taking rational instead of integer coefficients.

2. We can describe 2b1(Γ)+1 explicit generators for the groupH1(F (Γ, 2),Q). Let

c1, c2, · · · cr be cycles in Γ given by traversing the boundary of each face of Γ, Ui,

in the anticlockwise direction. As discussed previously the homology classes

of these cycles freely generate H1(Γ,Q) ∼= H1(Γ,Z), so there are b1(Γ) = r

such cycles. For each cycle ci choose a vertex vi which is disjoint from ci in

Γ. Then the homology classes of the following 1-cycles in F (Γ, 2) give 2b1(Γ)

generators of H1(F (Γ, 2),Q),

y1 = v1c1, · · · , yr = vrcr and z1 = c1v1, · · · , zr = crvr.

To describe the remaining generator consider a vertex v with three edges e1,

e2 and e3 emenating from it, as pictured in Figure 4.5. Then the homology

class of the following 1-cycle gives the final generator of H1(F (Γ, 2),Q),

y0 = v1(e3−e2)+(e1−e3)v2 +v3(e2−e1)+(e3−e2)v1 +v2(e1−e3)+(e2−e1)v3.
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Lemma 4.2.4 Let Γ be a regular planar graph. Then the 2b1(Γ)+1 homology classes

{y0}, {y1}, · · · , {yr} and {z1}, · · · , {zr} freely generate the group H1(F (Γ, 2),Q).

Proof First we show that the homology classes yi and zi are independent of the

choice of vertex vi, i.e. we show that vici and vjci are homologous for any vertices

vi and vj disjoint from ci. This follows after showing that for every face boundary

ci, the space Γ − ci is path connected. If we choose a combinatorial path p ∈ Γ

connecting vi and vj then the cycle vici − vjci is equal to the boundary of the

two-chain p× ci.

Assume Γ − ci is not path connected for some ci and suppose vi and vj lie in

seperate connected components of Γ− ci. This implies that there exists an arc C in

the unbounded face of Γ, U0 such that the boundary of C equals two points C ∩ c0,

where c0 is the face boundary associated to U0, and such that the two points vi and

vj lie in different connected components of R2 − (C ∪ c0). This implies that the

intersection ci ∩ c0 is disconnected, contradicting the fact that Γ is a regular planar

graph.

To show that these 2r homology classes are generators of H1(F (Γ, 2),Q) recall from

Theorem 3.2.10 that

H1(F (Γ, 2),Q) ∼= H1(Γ,Q) ⊕H1(Γ,Q) ⊕ cokerIΓ.

Under this isomorphism the homology classes {{yi}, {zi}}
r
i=1 are mapped to a gener-

ating set of H1(Γ,Q)⊕H1(Γ,Q) as follows from the proof of Lemma 3.2.11. Finally,

it follows from the proof of Lemma 4.2.1 that the class {y0} lies in the cokernel of

IΓ, and Theorem 4.2.3 implies that therefore {y0} must generate the cokernel of IΓ.

2

For regular planar graphs there is a relationship between the homology of the config-

uration space F (Γ, 2) and the homology of the configuration space of two particles

moving without collision on the plane, R2. We will denote this configuration space

by F (R2, 2).
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Corollary 4.2.5 For a regular planar graph Γ ⊂ R2, the map

β : F (Γ, 2) → F (R2, 2) × Γ × Γ

given by

(x, y) 7→ ((x, y), x, y), x, y ∈ Γ, x 6= y

induces an isomorphism

β∗ : H1(F (Γ, 2),Q) → H1(F (R2, 2) × Γ × Γ,Q).

Proof The space F (R2, 2) is constructed by removing from R4 the plane defined

by the equations x1 = y1 and x2 = y2 where (x1, x2) and (y1, y2) are points of R2,

this space has the homotopy type of the circle S1. Therefore H1(F (R2, 2),Z) = Z

and H1(F (R2, 2),Q) = Q. This implies that H1(F (R2, 2) × Γ × Γ,Q) is has rank

2b1(Γ)+1. By Theorem 4.2.3, H1(F (Γ, 2),Q) also has rank 2b1(Γ)+1 so it remains

to prove that β∗ is an epimorphism.

We prove that β∗ is an epimorphism for any planar graph with at least one vertex

of valence 3 or more. In Lemma 4.2.1 we introduced a one-cycle ∂y (4.16). This

cycle was shown in Lemma 4.2.4 to be a generator of the homology H1(F (Γ, 2),Q)

and Lemma 4.2.1 showed that the image of ∂y under the map

ψ∗ : H1(F (Γ, 2)) → H1(R
2 − {0})

induced by

ψ : F (Γ, 2) → {R2 − {0}}; (x, y) 7→ x− y

is the generator of H1(R
2 − {0},Q) = Q.

Note that, in the case of planar graphs F (Γ, 2) ⊂ F (R2, 2) since Γ can be embedded

in R2. Expanding the domain of the map ψ to cover the space F (R2, 2) induces an

isomorphism

ψ∗ : H1(F (R2, 2)) → H1(R
2 − {0}).

Since this map is an isomorphism the homology class of the pre-image ∂y under the

map ψ must be a generator of H1(F (R2, 2)), hence the inclusion map

F (Γ, 2) → F (R2, 2)



4.2. The First Betti Number of F (Γ, 2) 67

maps a generator of H1(F (Γ, 2)) to the generator of H1(F (R2, 2)) and so is epimor-

phic. The fact that β∗ is epimorphic then follows from Lemma 3.2.11 which states

that the map induced by inclusion α∗ : H1(F (Γ, 2)) → H1(Γ × Γ) is epimorphic.

2

Before finishing this section we present an example to show that Theorem 4.2.3 does

not hold for planar graphs which are not regular.

Example 4.2.1 Consider the three graphs in Figure 4.6. Graph Γ1 does not have

property 2 of Definition 4.2.2 since the closures of two of its faces are not con-

tractible. Graph Γ2 does satisty property 2 but does not satisfy property 3 since the

intersection of the boundaries of some pairs of faces consist of two disjoint edges.

The third graph Γ3 satisfies all conditions of Definition 4.2.2.

1 2 3

Figure 4.6: Three planar graphs. Left Γ1 is not regular, centre Γ2 is not regular,

right Γ3 is regular.

We show that for Γ1 and Γ2, the first Betti number of the configuration space

F (Γi, 2), i = 1, 2 is not equal to 2b1(Γi) + 1. For Γ1, b1(Γ) = 6 and so χ(Γ1) =

−5. Using formula (3.1) we can calculate the Euler characteristic of F (Γ1, 2) as

χ(F (Γ1, 2)) = 0. By Theorem 4.1.1 we know that the second Betti number of

F (Γ1, 2) is equal to twice the number of pairs of disjoint faces of the graph, in this

case there are 24 such pairs. Then using the Euler-Poincare theorem we calculate

that b1(F (Γ1, 2)) = 1 + 24 − 0 = 25, whereas 2b1(Γ1) + 1 = 13.

For Γ2 we have that b1(Γ2) = 8 so χ(Γ2) = −7. Then formula (3.1) gives χ(F (Γ2, 2)) =

12. In this case, the number of ordered pairs of disjoint faces of the graph is 32 and

so we calculate b1(F (Γ2, 2)) = 1 + 32 − 12 = 21 and 2b1(Γ2) + 1 = 17.
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Finally, we see that Theorem 4.2.3 does hold for the regular planar graph Γ3. Here,

b1(Γ3) = 10 and χ(Γ3) = −9. Then, χ(F (Γ3, 2)) = 30 and the number of ordered

pairs of disjoint face boundaries equals 50. Hence we obtain that b1(F (Γ3, 2)) =

51 − 30 = 21 = 2b1(Γ3) + 1. We can also check that formula (4.19) for the second

Betti number of F (Γ3, 2) holds. We have

b2(F (Γ3, 2)) = b1(Γ3)
2 − b1(Γ3) + 2 −

∑

v∈V (Γ3)

(µ(v) − 1)(µ(v) − 2)

= 100 − 10 + 2 − (12 × 2) − (3 × 3 × 2) = 92 − 42 = 50

as required.

4.3 The Cup-Product and the Cohomology Alge-

bra of F (Γ, 2)

In this section we describe the cohomology groups of F (Γ, 2) for a planar graph Γ

and consider the action of the cup-product

∪ : H1(F (Γ, 2),Q) ×H1(F (Γ, 2),Q) → H2(F (Γ, 2),Q)).

Let Γ be a planar graph containing at least one vertex of valance 3 or more. Let

U0, U1, · · · , Ur denote the faces of Γ with U0 denoting the unbounded face and r =

b1(Γ). Let zi denote the homology class in H1(Γ) of the bounding cycle of face Ui

traversed in the anticlockwise direction. Then the classes z1, · · · , zr generate H1(Γ).

Let

J(Γ) = {(i, j) : U i ∩ U j = ∅, i, j ∈ 0, · · · , r}.

By Theorem 4.1.1 we know that the group H2(F (Γ, 2),Q) is generated by the ho-

mology classes of all tori T 2
ij ∈ F (Γ, 2) representing configurations where the first

particle lies on the boundary of the face Ui and the second on the boundary of face

Uj, with (i, j) ∈ J(Γ). Let ηij ∈ H2(F (Γ, 2),Q) be the cohomology class dual to the

class [T 2
ij ] ∈ H2(F (Γ, 2),Q), i.e.

〈ηij , [T
2
kl]〉 =







1, if (i, j) = (k, l)

0, otherwise.
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Then the set of cohomology classes,

ηij , (i, j) ∈ J(Γ)

generate the vector space H2(F (Γ, 2),Q).

Recall the map α∗ : H1(F (Γ, 2)) → H1(Γ × Γ) induced by inclusion. In Lemma

3.2.11 this map was shown to be an epimorphism. Therefore the map induced on

cohomology

α∗ : H1(Γ × Γ,Q) → H1(F (Γ, 2),Q) (4.22)

is a monomorphism. We now describe the action of the cup-product on one-

dimensional cohomology classes which lie in the image of α∗.

Theorem 4.3.1 Let Γ be a planar graph and let u1, · · · , ur be a basis for H1(Γ,Q)

dual to the basis z1, · · · zr for H1(Γ,Q) where zi is the bounding cycle of the face Ui.

Denote

ξi = α∗(ui × 1), φi = α∗(1 × ui). (4.23)

Then the following statements hold,

1. ξi ∪ ξj = φi ∪ φj = 0 for all i, j = 1, · · · , r.

2. φi ∪ ξj = ǫijηij + ǫ0jη0j + ǫi0ηi0 = −ξi ∪ φj

where

ǫij =







1, (i, j) ∈ J(Γ)

0, otherwise.

Proof To prove statement 1 we calculate,

ξi ∪ ξj = α∗(ui × 1) ∪ α∗(uj × 1) = α∗(ui × 1 ∪ uj × 1) = 0

since H2(Γ,Q) is trivial. For statment two we have

φi ∪ ξj = α∗(1 × ui) ∪ α
∗(uj × 1) = α∗(1 × ui ∪ uj × 1) = α∗(−(uj × ui)).

Then evaluating this cup-product on a homology class [T 2
pq] ∈ H2(F (Γ, 2),Q) for
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some (p, q) ∈ J(Γ) we obtain,

〈φi ∪ ξj, [T
2
pq]〉 = 〈α∗(−(uj × ui)), [T

2
pq]〉

= 〈−(uj × ui), α∗[T
2
pq]〉

= 〈−(uj × ui), zp × zq〉

= 〈uj, zp〉〈ui, zq〉.

This implies,

φi ∪ ξj =
∑

(p,q)∈J(Γ)

[〈uj, zp〉〈ui, zq〉]ηpq.

However, since ui is dual to zi for i = 1, · · · , r this expression can be simplified

further. Consider all cohomology classes ηpq such that p and q do not equal 0. Then

we see that the coefficient of the sum is zero unless p = j and q = i. Now suppose

that p = 0. Then the coefficient becomes

〈uj, z0〉〈ui, zq〉 = 〈uj, z1 + · · ·+ zr〉〈ui, zq〉.

The evaluation of uj on z0 is always 1 and so this coefficient is non-zero if and only

if q = i. Applying a similar argument to the case q = 0 we obtain,

φi ∪ ξj = ηij + ηi0 + η0j

which proves statement 2. 2

Definition 4.3.2 A cohomology class ξ ∈ H1(F (Γ, 2),Q) is said to be acyclic if the

evaluation 〈ξ, vc〉 = 〈ξ, cv〉 = 0, where vc and cv are 1-cycles in F (Γ, 2) constructed

by taking the product of any cycle c in the graph Γ with any vertex v ∈ Γ which is

disjoint from c.

We have the following theorem for acyclic cohomology classes.

Theorem 4.3.3 Let Γ be a planar graph and let ξ ∈ H1(F (Γ, 2),Q) be an acyclic co-

homology class. Then ξ∪η = η∪ξ = 0 for any cohomology class η ∈ H1(F (Γ, 2),Q).

Proof Consider a torus T 2
ij ∈ F (Γ, 2) for some pair (i, j) ∈ J(Γ). Then given

cohomology classes η, ξ ∈ H1(F (Γ, 2),Q) let ξ′ = ξ|T 2
ij and η′ = η|T 2

ij denote the

restrictions of these classes to the torus so that ξ′, η′ ∈ H1(T 2
ij,Q). Then,

〈ξ ∪ η, [T 2
ij]〉 = 〈ξ′ ∪ η′, sij〉
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where sij is the fundamental class of the torus T 2
ij . So it is enough to show that

ξ′ = 0 for any acyclic cohomology class ξ.

Consider two points, vi in the boundary of face Ui and vj in the boundary of face

Uj. Then since Ui and Uj are disjoint the 1-cycles formed by taking the procuct of

vi with the boundary of Uj and the product of vj with the boundary of Ui lie in

F (Γ, 2). Since ξ is acyclic, it must evaluate trivially on these cycles, however these

cycles generate H1(T
2
ij,Q) and so ξ′ = 0. 2

Finally, we can summarise the results of this section to completely describe the

cohomology algebra of regular planar graphs.

Theorem 4.3.4 Let Γ ⊂ R2 be a regular planar graph with faces U0, U1, · · · , Ur

where U0 denotes the unbounded face of Γ and b1(Γ) = r. Then there exists a unique

acyclic cohomology class η ∈ H1(F (Γ, 2),Q) such that every cohomology class in

H1(F (Γ, 2),Q) can be expressed uniquely in the form

ξ = α∗(ui × 1 + 1 × uj) + λη

where ui, uj ∈ H1(Γ,Q) and λ ∈ Q.

Proof In Lemma 4.2.4 we described 2b1(Γ) + 1 generators for H1(F (Γ, 2),Q) for a

regular planar graph Γ. These were labelled y0, · · · , yr, z1, · · · , zr. Consider a basis

for H1(F (Γ, 2),Q) dual to these generators. Then the dual generators y1∗, · · · , yr∗

and z1∗, · · · zr∗ generate the image of the monomorphism α∗ : H1(Γ × Γ,Q) →

H1(F (Γ, 2),Q), since they are the dual of classes represented by 1-cycles of the form

vici and civi, where ci is the bounding cycle of the face Ui and vi is a vertex not

contained in U i, which generate the group H1(Γ × Γ,Q). Clearly, these classes are

not acyclic. The final generator y0 is constructed from a subtree of the graph Γ and

is therefore acyclic and represents the unique acyclic cohomology class η. 2

Remark Bringing together all the results of this section we can describe the action

of the cup product for regular planar graphs. Consider two 1-dimensional cohomol-

ogy classes ξ, ξ′ ∈ H1(F (Γ, 2)Q). By Theorem 4.3.4 we know these must take the

form

ξ = α∗(ui × 1 + 1 × uj) + λη ξ′ = α∗(u′i × 1 + 1 × u′j) + λ′η.
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Applying Theorem 4.3.3 we see that the only non-zero part of ξ∪ξ′ is given by

α∗(ui × 1 + 1 × uj) ∪ α
∗(u′i × 1 + 1 × u′j).

The elements ui, uj, u
′
i, u

′
j ∈ H1(Γ,Q) can be written as linear combinations with

coefficients in Q of cohomology classes dual to homology classes in H1(Γ,Q) rep-

resented by the bounding cycles of faces of Γ. Following the notation of Theorem

4.3.1 we write

ui = a1u1 + · · ·+ arur, uj = b1u1 + · · · + brur,

u′i = a′1u1 + · · ·+ a′rur, u′j = b′1u1 + · · · + b′rur.

Then applying Theorem 4.3.1 we find that the cup product of ξ and ξ′ is equal

to

r
∑

i,j=1

[aib
′
j − a′ibj ]ǫijηij +

r
∑

i=1

[

r
∑

j=1

[aib
′
j − a′ibj ]

]

ǫi0ηi0 +
r

∑

j=1

[

r
∑

i=1

[aib
′
j − a′ibj ]

]

ǫ0jη0j

where ηij is the cohomology class dual to the torus [T 2
ij ] ∈ H2(F (Γ, 2),Q).



Chapter 5

Non-Planar Graphs

In this chapter we examine how one can use the intersection form to calculate the

Betti numbers of F (Γ, 2) when Γ is a non-planar graph. We explore the question

of which graphs have epimorphic intersection forms. This question arises naturally

from Chapter 4 where we showed that, for planar graphs, the cokernel of the inter-

section form has rank 1, and it was discussed in the remarks following Lemma 3.3.1

that, for the two Kuratowski graphs, K5 and K3,3, the intersection form is an epi-

morphism. This suggests that for non-planar graphs, the cokernel of the intersection

form could be empty.

In the first section of this chapter we examine the structure of the image group

for the intersection form, H2(N, ∂N), splitting this group into its symmetric and

anti-symmetric parts with respect to the involution τ (2.3). In section two we

make use of this structure to show that the intersection form is an epimorphism

for any complete bipartite graph of the form K3,m. This result has the interesting

consequence of showing Conjecture 2.4.1, which inspired the work in this thesis, to

be false. In the remainder of this section we use the techniques developed in Chapter

3 to prove that the intersection form is epimorphic for all complete bipartite graphs.

In the final section we turn our attention to complete graphs and prove that the

intersection form is also epimorphic for these graphs. We finish by giving an example

of a non-planar graph for which the intersection form has non-empty cokernel.

73
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5.1 The Structure of the Group H2(N, ∂N)

In order to show whether the intersection form is epimorphic for a particular graph

it is necessary to consider the structure of the image group of the intersection form,

H2(N, ∂N). To this end we consider the action of the involution τ on the space

(N, ∂N), given by the restriction of the involution on Γ × Γ which permutes the

two factors. This involution map induces an involution τ∗ on the homology group

H2(N, ∂N ; Q) which allows this group to be written as the direct sum,

H2(N, ∂N ; Q) = H2(N, ∂N ; Q)+ ⊕H2(N, ∂N ; Q)−,

of the subgroup H2(N, ∂N ; Q)+ ⊆ H2(N, ∂N ; Q) generated by cycles symmetric

with respect to the action of τ∗, and the subgroup H2(N, ∂N ; Q)− ⊆ H2(N, ∂N ; Q)

generated by cycles anti-symmetric with respect to this action.

Lemma 5.1.1 For any graph Γ, the symmetric part of the group H2(NΓ, ∂NΓ; Q)

has rank

rankH2(NΓ, ∂NΓ; Q)+ =
1

2

∑

v∈V (Γ)

(µ(v) − 1)(µ(v) − 2), (5.1)

and the anti-symmetric part of the group H2(NΓ, ∂NΓ; Q) has rank

rankH2(NΓ, ∂NΓ; Q)− = −χ(Γ) +
1

2

∑

v∈V (Γ)

(µ(v) − 1)(µ(v) − 2). (5.2)

Proof Define the equivariant Euler characteristic of any subcomplex X ⊆ Γ × Γ

by

χτ (X) =
2

∑

i=0

(−1)itrace(τ∗ : Hi(X,Q) → Hi(X,Q)).

Then, by the definition of the trace of a map, we have

χτ (N, ∂N) = rankH2(N, ∂N)+ − rankH2(N, ∂N)−

since Hi(N, ∂N) = 0 for i = 0, 1. The equivariant Euler characteristic, χτ , has an

additivity property analogous to that of the usual Euler characteristic so,

χτ (N, ∂N) = χτ (N) − χτ (∂N).
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We now assume without loss of generality that Γ has no cycles of length less than

5. Lemma 3.4.1 then implies that the space N is homotopy equivalent to the graph

Γ under the projection map π which projects N onto its first coordinate, hence the

involution τ on N is homotopic to the identity map on Γ. The trace of the identity

map on the group H1(Γ) is given by the rank of the group, b1(Γ), and the trace of

the identity map on the group H0(Γ) is 1, the rank of H0(Γ). So

χτ (N) = 1 − (1 − χ(Γ)) = χ(Γ).

Now consider the one-dimensional space ∂N . The involution τ acts freely on the

space ∂N on the chain level; τ maps a zero-cell uv to the zero-cell vu and it maps

the one-cell ve to the one-cell ev and vice versa. Hence the involution τ∗ has no

fixed points and χτ (∂N) = 0. Combining these results implies that

χτ (N, ∂N) = χ(Γ).

so we obtain,

χτ (Γ) = rankH2(N, ∂N)+ − rankH2(N, ∂N)−.

Using the fact that

rankH2(N, ∂N) = rankH2(N, ∂N)− + rankH2(N, ∂N)+ (5.3)

and formula (3.15) for the Euler characteristic of (N, ∂N) we find that,

2 × rankH2(N, ∂N)− = −2χ(Γ) +
∑

v∈V (Γ)

(µ(v) − 1)(µ(v) − 2).

Dividing this expression by 2 gives formula (5.2) and, finally, equation (5.3) implies

formula (5.1). 2

We will now examine the structure of the symmetric part of the group H2(N, ∂N).

First we introduce a definition which will be used throughout this chapter.

Definition 5.1.2 Let Γ be a finite graph and let

y =

k
∑

i=1

αi(eie
′
i) αi ∈ Q, αi 6= 0
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be a cellular two-chain in the space Γ×Γ. Then the support of the chain y is defined

to be the subgraph of Γ with edge set equal to the union of all the edges appearing

in the formal sum representing y,

E(supp(y)) =

k
⋃

i=1

{ei, e
′
i}

and vertex set equal to the union of the boundary vertices in Γ of the edges appearing

in the formal sum representing y,

V (supp(y)) =
k

⋃

i=1

{∂ei, ∂e
′
i}.

v2

   v3

v1

v

e1
e2

e3

Figure 5.1: The Y-graph

Consider the graph consisting of a central vertex v and three edges, e1, e2, e3 ema-

nating from it. We will call this graph the Y-graph. Consider the homology class in

H2(NY , ∂NY ) represented by the relative cycle,

y = e1e2 − e2e1 + e3e1 − e1e3 + e2e3 − e3e2. (5.4)

Note that this cycle was introduced in Lemma 4.2.1 where it was shown that for a

planar graph, the homology class represented by this cycle lies in the cokernel of the

intersection form. The cycle y is symmetric under the action of the involution τ and

it generates the group H2(NY , ∂NY ) since formula (5.1) implies that the dimension

of the symmetric part of H2(NY , ∂NY ) is 1 and the dimension of the anti-symmetric

part is 0. We now show that for any graph Γ, the symmetric part of H2(NΓ, ∂NΓ)

is generated by cycles analogous to y with supports given by embeddings of the

Y-graph into Γ.
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Theorem 5.1.3 Let Y denote the Y-graph and let Γ be any finite, simple graph.

Consider all possible combinatorial embeddings h : Y → Γ. Each embedding induces

a map on the homology,

h∗ : H2(NY , ∂NY ) → H2(NΓ, ∂NΓ)

which maps the generating class y ∈ H2(NY , ∂NY ) to a homology class yh ∈ H2(NΓ, ∂NΓ).

For each vertex v ∈ Γ choose an edge ev incident to v. Consider the set of all

embeddings

h(ev) : Y → Γ

such that edge e1 in Y is always mapped to edge ev in Γ. Then the set of homology

classes

G =
⋃

v∈V (Γ)

{{yh(ev)}}

freely generates the symmetric part of the group H2(NΓ, ∂NΓ).

Proof The set G contains

∑

v∈V (Γ)

(

µ(v) − 1

2

)

=
∑

v∈V (Γ)

1

2
(µ(v) − 1)(µ(v) − 2)

homology classes. Formula (5.1) confirms that the cardinality of G is equal to the

rank of the symmetric part of H2(NΓ, ∂NΓ), so to prove the statement it is sufficient

to show that the elements of G are linearly independent.

First consider the cycle y, (5.4). Apply Lemma 3.4.5 to write this cycle as an element

of
⊕

e∈E(Y ) H̃0(∂Be) to obtain

g ◦ IY (y) =





e1 e2 e3

v2 − v3 v3 − v1 v1 − v2



 ,

where element v2 − v3 lies in summand H̃0(∂Be1
) etc.

Now consider a general graph Γ, let Φev
denote the set of images g ◦ IΓ(yh(ev)) ∈

⊕

e∈E(Γ) H̃0(∂Be) of the homology classes yh(ev) where h runs over all embeddings

mapping edge e1 in Y to edge ev in Γ. Label the remaining edges incident to v as
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e′1, · · · , e
′
k where k = µ(v)− 1. Then Φev

contains 1
2
(µ(v)− 1)(µ(v)− 2) elements of

the form,

Yij = ±





ev e′i e′j

vi − vj vj − v′ v′ − vi





where i, j ∈ {1, · · · , k} and v′ is the other boundary vertex of edge ev. We call such

elements Y-cycles. The parity of a Y-cycle depends on the orientation of the three

edges making up the support of the cycle. There exist no relations between the

Y-cycles Yij ∈ Φev
since the vertex vi appears in the summand H̃0(∂Bej

) in exactly

one Y-cycle, Yij , for all i, j ∈ {1, · · · , k}.

Finally, note that there can be no relations between the elements of different sets

Φev
, and Φeu

because the balls of radius 1 around two vertices v and u can have at

most one edge in common. 2

Remark The anti-symmetric part of the group H2(N, ∂N) for a general graph Γ is

not simple to describe. Throughout the rest of this chapter we introduce some anti-

symmetric cycles which can lie in the group H2(N, ∂N) and describe the structure of

the anti-symmetric part of the group H2(N, ∂N) for certain classes of graphs.

5.2 Complete Bipartite Graphs

In this section we examine the properties of the intersection form for complete

bipartite graphs. The vertex set of a complete bipartite graph, Kn,m, consists of two

separated sets of vertices, a set X of n vertices and a set Y of m vertices. The edge

set of the graph contains nm edges, one joining each vertex from set X to each vertex

from set Y. First we consider complete bipartite graphs of the form K3,m.

Theorem 5.2.1 Let K3,m be a complete bipartite graph with m ≥ 3. Then the

intersection form

IK3,m
: H1(K3,m,Q) ⊗H1(K3,m,Q) → H2(NK3,m

, ∂NK3,m
; Q)

is an epimorphism.
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Proof To prove this theorem we will use the fact that the intersection form for

the graph K3,3 is epimorphic as discussed in the remarks following Lemma 3.3.1.

We will show that H2(NK3,m
, ∂NK3,m

) is generated by cycles whose support lies in a

subgraph of K3,m isomorphic to K3,3. The intersection form IK3,m
, when restricted

to a subgraph isomorphic to K3,3, is equal to the intersection form IK3,3
which we

know to be epimorphic, hence any such formal sum with support in a copy of K3,3

must be equal to the intersection of cycles in H1(K3,3) ⊗ H1(K3,3) ⊂ H1(K3,m) ⊗

H1(K3,m).

First we describe a set of independent generators for H2(NK3,3
, ∂NK3,3

). The graph

K3,3 consists of two separated sets of 3 vertices, X and Y. Label the vertices in X,

v1, v2 and v3 and those in Y, u1, u2 and u3. We orient each edge, (viuj), of K3,3

from vi to uj and label the edge ei
j .

v1 v2 v3

u1 u2 u3

e1
1

Figure 5.2: The labelled graph K3,3.

Using Lemma 3.3.1 the rank of H2(NK3,3
, ∂NK3,3

) can be calculated to be 15. By

Theorem 5.1.3 we know that the symmetric part of H2(NK3,3
, ∂NK3,3

) is generated

by Y-cycles, such generators have the form,

[ei
1e

i
2]

+ + [ei
3e

i
1]

+ + [ei
2e

i
3]

+ (5.5)

where [ei
je

i
k]

+ is equal to the symmetric sum ei
je

i
k − ei

ke
i
j , i, j, k ∈ {1, 2, 3} and the

three edges ei
1, e

i
2 and ei

3 emanate from a single vertex vi, i = 1, 2 or 3. Similar

generators can be described at vertices ui, i = 1, 2, 3. In K3,3 there are six Y-cycles,

one for each vertex of the graph, and they are all independent since each pair of

edges occurs in exactly one Y-cycle.



5.2. Complete Bipartite Graphs 80

To describe the anti-symmetric part of H2(NK3,3
, ∂NK3,3

) we construct an anti-

symmetric cycle in H2(NK3,3
, ∂NK3,3

). Choose four vertices of the graph, vi and

vj from X, and up and uq from Y. Then we obtain the following anti-symmetric

cycle,

Si,j
p,q = [ei

pe
i
q]
− + [ej

pe
j
q]
− + [ei

pe
j
p]

− + [ei
qe

j
q]
− − ei

pe
i
p − ei

qe
i
q − ej

pe
j
p − ej

qe
j
q (5.6)

where [ei
pe

i
q]
− represents the anti-symmetric sum ei

pe
i
q + ei

qe
i
p. We will call cycles

of this form S-cycles. Counting the number of such cycles we find there are,
(

3
2

)(

3
2

)

= 9 S-cycles, which is equal to the rank of the anti-symmetric part of

H2(NK3,3
, ∂NK3,3

).

To show that there are no relations between the S-cycles consider Sij
pq, this contains

the sums [ei
pe

i
q]
− and [ej

pe
j
q]
−. Each of the sums [ei

pe
i
q]
− and [ej

pe
j
q]
− lie in exactly one

other S-cycle, Sik
pq and Skj

pq respectively, so to cancel the sums [ei
pe

i
q]
− and [ej

pe
j
q]
− any

relation must contain the linear combination

±a[Sij
pq − Sik

pq − Skj
pq ], a ∈ Q.

However, this linear combination contains ±2a[ek
pe

k
q ]

− and the sum [ek
pe

k
q ]

− occurs

only in the S-cycles Sik
pq and Skj

pq which already appear and cannot be added to the

relation without re-introducing the sums [ej
pe

j
q]
− or [ei

pe
i
q]
−. Hence no relation can

exist between the S-cycles, and these cycles generate the anti-symmetric part of

H2(NK3,3
, ∂NK3,3

). So we have found a set of fifteen independent generators for the

group H2(NK3,3
, ∂NK3,3

).

Now consider complete bipartite graphs of the form K3,m. We label graphs of the

form K3,m in a similar way to K3,3. The graph has two sets of separated vertices X

and Y with m vertices,v1, · · · , vm, in X and 3 vertices, u1, u2, u3, in Y. Each edge

ei
j, i = 1, · · · , m, j = 1, 2, 3 is oriented from vi to uj.

For a graph of the form K3,m we can use formulas (5.1) and (5.2) from Lemma

5.1.1 to calculate the ranks of the symmetric and anti-symmetric parts of the group

H2(NK3,m
, ∂NK3,m

). We find,

rankH2(NK3,m
, ∂NK3,m

)+ =
1

2
[3(m− 1)(m− 2) + 2m] (5.7)
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v1 v2 v3 v4

u1 u2 u3

e11

Figure 5.3: The labelled graph K4,3.

=
1

2
[m2 − 7m+ 6],

and

rankH2(NK3,m
, ∂NK3,m

)− = 2m− 3 +
1

2
[3(m− 1)(m− 2) + 2m] (5.8)

=
3

2
[m2 −m].

From Theorem 5.1.3 we know that the symmetric part of the groupH2(NK3,m
, ∂NK3,m

)

is generated by

3

(

m− 1

2

)

+m =
1

2
[m2 − 7m+ 6]

Y-cycles. We now show that the anti-symmetric part of the group is entirely gener-

ated by S-cycles. Each S-cycle is defined by choosing two vertices from X and two

from Y so there are
(

3

2

)(

m

2

)

=
3

2
[m2 −m]

possible S-cycles. In view of (5.8) this implies that the anti-symmetric part of

H2(NK3,m
, ∂NK3,m

) is entirely generated by S-cycles if there exist no relations be-

tween them.

Choosing two vertices vi and vj from X and up, uq from Y consider the S-cycle Sij
pq,

this contains the sums [ei
pe

i
q]
− and [ej

pe
j
q]
− each of which lie in only one other S-cycle,

Sik
pq and Skj

pq respectively. The independence of the S-cycles now follows using the

argument which showed that the S-cycles in K3,3 were independent.

Hence we have that the group H2(NK3,m
, ∂NK3,m

) is generated by Y-cycles and S-

cycles each of which lies in a subgraph isomorphic to K3,3 so the intersection form
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IK3,m
must be epimorphic. 2

Corollary 5.2.2 For any complete bipartite graph of the form, K3,m, the Betti num-

bers of the space F (K3,m, 2) are,

b2(F (K3,m, 2)) = m2 − 3m+ 1 (5.9)

b1(F (K3,m, 2)) = 4(m− 1). (5.10)

Proof This follows directly from Theorem 5.2.1 above and Lemma 3.3.2. Applying

Lemma 3.3.2 we see that

b2(F (K3,m, 2)) = 4(m− 1)2 − 2(m− 1) + 1 − 3(m− 1)(m− 2) − 2m (5.11)

= m2 − 3m+ 1

and

b1(F (K3,m, 2)) = 2 × 2(m− 1) = 4(m− 1). (5.12)

2

Corollary 5.2.3 Conjecture 2.4.1 is false.

Proof Conjecture 2.4.1 suggests that all the generators of H2(F (K3,m, 2)) should be

induced by embeddings of K5, K3,3 or disjoint cycles into K3,m. First we show that

graphs of the form K3,m contain no disjoint cycles and no subgraphs isomorphic to

K5. Since graphs of the form K3,m are complete bipartite graphs all simple cycles

in such a graph must contain at least 4 edges and at least two vertices from set X

and at least two from set Y. Since the set Y contains only 3 vertices this implies

that every pair of simple cycles in K3,m must have at least one vertex in common

and there can be no disjoint cycles. If K3,m contained a subgraph isomorphic to

a subdivision of K5 it would have to contain at least 5 vertices of valence at least

4. However K3,m can contain at most 3 vertices of valence greater than or equal to

4.

Then if Conjecture 2.4.1 is true, the group H2(F (K3,m, 2)) should be generated by

surfaces of genus 4 each corresponding to a subgraph of K3,m isomorphic to K3,3.
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However, consider the graph K3,4, this contains
(

4
3

)

= 4 subgraphs isomorphic to

K3,3 but equation (5.9) shows that

b2(F (K3,4, 2)) = 16 − 12 + 1 = 5.

Simlarly, for m = 5, the graph K3,5 contains
(

5
3

)

= 10 subgraphs isomorphic to K3,3

but equation (5.24) shows that b2(F (K3,4, 2)) = 11. Therefore for K3,4 and K3,5

Conjecture 2.4.1 is not true in its present form, indeed there must be at least one

element in H2(F (K3,m, 2),Z), m = 4, 5, which does not arise from an embedding of

K5, K3,3 or a pair of disjoint cycles in the graph. For m ≥ 6, however, the number

of copies of K3,3 in K3,m exceeds the second Betti number of F (K3,m, 2), so for

these graphs it is possible that the second homology group is somehow generated by

embeddings of K3,3 in the graph. 2

Example 5.2.1 In Section 3.5 we described an algorithm for calculating the second

Betti number of F (Γ, 2) for any graph Γ using the results of Chapter 3. We can

apply this algorithm to graphs K3,m to calculate a free generating set in H1(K3,m)⊗

H1(K3,m) for the kernel of the intersection form.

First we must take the first barycentric subdivision of K3,m since graphs of this form

contain cycles of length 4. Label the graph according the labelling scheme in Lemma

5.2.1, i.e. with one set of m separated vertices labelled v1, · · · , vm and the other set

of three vertices labelled u1, u2, and u3. We label wi
j, the vertex which bisects edge

ei
j and then label the oriented edge from vi to wi

j as Ei
j and the oriented edge from

wi
j to uj by ei

j . Choose a spanning tree, T , for the graph, which includes all edges

emanating from vertices v1 and u1 along with every edge Ei
j with i = 2, · · · , m and

j = 2, 3, see Figure 5.4. Then the graph K3,m contains 2(m − 1) edges which are

not included in T , these edges define 2(m− 1) cycles which generate H1(K3,m), we

denote the cycle containing edge ei
j by Ci

j .

We must consider 4(m − 1)2 cycle intersections. Using Lemma 3.4.5 we can write

these intersections as elements in the image of the map g ◦ IK3,m
in the direct sum

⊕

e∈E(K3,m) H̃0(∂Be). Then to find the generators of the kernel of the intersection

form we must find linear combinations of these intersections which sum to zero in the
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group
⊕

e∈E(K3,m) H̃0(∂Be), i.e. we must find relations between these intersections.

Then the linear combinations of cycles in H1(K3,m) ⊗ H1(K3,m) corresponding to

these relations lie in the kernel of the intersection form. Here g is the injective map

defined in Lemma 3.4.2,

g : H2(NΓ, ∂NΓ) →
⊕

e∈E(Γ)

H̃0(∂Be).

For ease of notation we will refer to the intersection, g ◦ IK3,m
(C⊗C ′), of two cycles

C and C ′ simply as C ⊗C ′. Consider cycle intersections of the form Ci
j ⊗Cp

q where

i = p or j = q. We have,

Ci
j ⊗ Ci

q = ±





E1
j E1

1 e11 ei
1 Ei

1 Ei
j

w1
1 − w1

q w1
q − u1 v1 − wi

1 v2 − w1
1 wi

q − u1 wi
1 − wi

q



 ,

and

Ci
j ⊗ Cp

j = ±





ei
j e1j E1

j E1
1 e11 Ei

1

w1
p − wp

j wp
j − v1 uj − w1

1 u1 − w1
j wp

1 − v1 w1
1 − wp

1



 .

Since the vertex wp
q , p = 2, · · · , m, q = 2, 3 lies in exactly one generating cycle, Cp

q ,

and the edges ei
j and Ei

j lie only in the cycle Ci
j we see that the vertex wp

q appears

in the summand H̃0(∂Bei
j
) in exactly one cycle intersection, Ci

j ⊗ Cp
q , where i = p

or q = j. Hence such intersections can not appear in any relations.

Consider intersections of the form Ci
j⊗C

p
q where i 6= p and j 6= q. These intersections

v1 v2 v3 v4

u1 u2 u3

e11

E1
1

w11

Figure 5.4: The subdivided graph K4,3. The spanning tree T is shown in solid lines.
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take two possible forms,

Ci
2 ⊗ Cp

3 = ±





E1
2 E1

1 e11 ei
1

w1
3 − w1

1 u1 − w1
2 wp

1 − v1 w1
1 − wp

1



 ,

and

Ci
3 ⊗ Cp

2 = ±





E1
3 E1

1 e11 ei
1

w1
3 − w1

1 u1 − w1
2 wp

1 − v1 w1
1 − wp

1



 ,

with i, p = 2, · · · , m. Note that these are the only two intersections which contain

the vertex ±wi
1 in the summand H̃0(∂Bei

1
), so every linear combination which lies

in the kernel of IK3,m
must be made up of pairs of the form ±[Ci

2 ⊗ Cp
3 − Ci

3 ⊗ Cp
2 ].

Any two of these pairs form a relation, for example,

g ◦ IK3,m

(

±[Ci
2 ⊗ Cp

3 − Ci
3 ⊗ Cp

2 − Cj
2 ⊗ Cq

3 + Cj
3 ⊗ Cq

2 ]
)

=























E1
2 E1

3 E1
1 e11 ei

1 ej
1

+ w1
3 − w1

1 0 u1 − w1
3 wp

1 − v1 w1
1 − wp

1 0

+ 0 w1
1 − w1

2 w1
2 − u1 v1 − wp

1 wp
1 − w1

1 0

+ w1
1 − w1

3 0 w1
3 − u1 v1 − wp

1 0 wq
1 − w1

1

+ 0 w1
2 − w1

1 u1 − w1
2 wq

1 − v1 0 w1
1 − wq

1























.

Each column in this matrix corresponds to a group H̃0(∂Be), note that the sum of

the entries in each column is zero, therefore the image of this combination is trivial

in
⊕

e∈E(K3,m) H̃0(∂Be).

Fix an ordered pair of indices i, p ∈ 2, · · · , m, and consider all linear combinations

of the form

±[Ci
2 ⊗ Cp

3 − Ci
3 ⊗ Cp

2 − Cj
2 ⊗ Cq

3 + Cj
3 ⊗ Cq

2 ]

where the index pairs (j, q) run over all ordered pairs chosen from {2, · · · , m} such

that (j, q) 6= (i, p), there are 2 ×
(

m−1
2

)

− 1 such pairs. Denote this set of linear

combination by G. Each intersection Cj
2 ⊗ Cq

3 and Cj
3 ⊗ Cq

2 appears in exactly one

element of G, therefore the elements of G are linearly independent. Corrolary 5.2.2

implies that the second Betti number of F (K3,m, 2) is equal to

m2 − 3m+ 1 = 2 ×

(

m− 1

2

)

− 1.
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Therefore the set of linear combinations, G, of intersections freely generates the

kernel of the intersection form IK3,m
.

Consider an element of G,

±[Ci
2 ⊗ Cp

3 − Ci
3 ⊗ Cp

2 − Cj
2 ⊗ Cq

3 + Cj
3 ⊗ Cq

2 ]

with (j, q) distinct from (i, p). Then the support of this linear combination, i.e. the

union of all edges contained in the cycles forming the combination, contains five

vertices, v1, vi, vp, vj and vq as well as the three vertices u1, u2 and u3. In fact the

support is equal to the union of edges in K3,m isomorphic to a subgraph of the form

K5,3 containing the five vertices described. Similarly, if we consider an element of

G with three distinct indices, with j = i say, then the support of such a linear

combination is isomorphic to a subgraph of the form K3,4 containing the vertices

v1, vi, vp, vq as well as the vertices u1, u2 and u3.

Consider such a subgraph isomorphic to K3,4. In Corollary 5.2.3 above it was shown

that the second Betti number of this graph is five, yet it contains only four different

subgraphs isomorphic to K3,3. Each of these subgraphs induces an orientable surface

of genus 4 embeded in the discrete configuration space D(K3,4, 2), and therefore

corresponds to a homology class in the group H2(F (K3,4, 2),Z). Such classes are

represented by linear combinations of pairs of cycles in H1(K3,4) ⊗H1(K3,4) which

lie in the kernel of the intersection map IK3,4
. Following the discussion above we see

that the kernel of IK3,4
can be generated by the linear combinations,

C2
2 ⊗ C3

3 − C2
3 ⊗ C3

2 + C3
2 ⊗ C2

3 − C3
3 ⊗ C2

2 ,

C2
2 ⊗ C3

3 − C2
3 ⊗ C3

2 − C2
2 ⊗ C4

3 + C2
3 ⊗ C4

2 ,

C2
2 ⊗ C3

3 − C2
3 ⊗ C3

2 − C3
2 ⊗ C4

3 + C3
3 ⊗ C4

2 ,

C2
2 ⊗ C3

3 − C2
3 ⊗ C3

2 + C4
2 ⊗ C2

3 − C4
3 ⊗ C2

2 ,

C2
2 ⊗ C3

3 − C2
3 ⊗ C3

2 + C4
2 ⊗ C3

3 − C4
3 ⊗ C3

2 .

(5.13)

Four of these combinations have the full graph K3,4 as their support. We ask if

these combinations can be written as the sum of combinations representing the

fundamental classes of the four surfaces of genus 4 embeded inD(K3,4, 2) as classes in
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H2(F (K3,4, 2),Z). Three of these classes are represented by the linear combinations,

C2
2 ⊗ C3

3 − C2
3 ⊗ C3

2 + C3
2 ⊗ C2

3 − C3
3 ⊗ C2

2 ,

C2
3 ⊗ C4

2 − C2
2 ⊗ C4

3 − C4
3 ⊗ C2

2 + C4
2 ⊗ C2

3 ,

C3
3 ⊗ C4

2 − C3
2 ⊗ C4

3 + C4
3 ⊗ C3

2 − C4
2 ⊗ C3

3 .

(5.14)

These combinations represent the the fundamental classes of the surfaces corre-

sponding to the subgraphs Γ123, Γ124 and Γ134, where Γijk is the subgraph of K3,4

isomorphic to K3,3 containing the vertices vi, vj and vk. The fundamental class of

the final surface, corresponding the subgraph Γ234, is represented by the sum of the

three combinations (5.14).

We see that every pair ±[Ci
3 ⊗Cj

2 −Ci
2 ⊗Cj

3] lies in exactly one of the combinations

(5.14) corresponding to the subgraphs Γ123, Γ124 and Γ134, hence no sum of these

combinations can be equal to any generator (5.13) of the kernel of IK3,4
.

The space D(K3,4, 2) is not an orientable surface. This follows from a theorem by

Abrams in [1] but can also be seen directly. If D(K3,4, 2) was a surface, then every

one-cell would have to lie in the boundary of exactly two two-cells. Consider the

one-cell ei
juk, then this lies in the boundary of any two-cell ei

je
q
k with q 6= i, there

are 3 such edges eq
k so this one-cell lies in the boundary of three two-cells. Hence we

have a cycle in H2(F (K3,m, 2),Z) which does not arise as a cycle in the homology of

a surface embeded in the space D(K3,4, 2). However Corollary 2.5.2 shows that the

group H2(F (K3,m, 2),Z) is isomorphic to the 2-dimensional oriented bordism group

of F (K3,m, 2), this implies that these generators must correspond to surfaces mapped

into F (K3,4, 2) but the maps must be more complicated than simple embeddings.

In the following theorem we extend the techniques used in Example 5.2.1 to find the

generators of H2(F (Kn,m, 2)), for all complete bipartite graphs Kn,m.

Theorem 5.2.4 Let Kn,m be a complete bipartite graph, with n ≥ 3 and m ≥ 3.

Then the intersection form

IKn,m
: H1(Kn,m,Z) ⊗H1(Kn,m,Z) → H2(NKn,m

, ∂NKn,m
; Z)

is an epimorphism.
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Proof To prove this theorem we will use the algorithm described in Section 3.5 to

calculate the rank of the kernel of the intersection form IKn,m
and hence the second

Betti number of H2(F (Kn,m, 2),Z).

To do this, take the first barycentric subdivision of the graph. We label the sub-

divided graph as follows; label the n vertices in the separated set, X as v1, · · · , vn,

and label the vertices in set Y as u1, · · · , um. Label the vertex which subdivides the

edge joining vertex vi to uj as wi
j, then label the oriented edge from vertex vi to wi

j

as Ei
j and label the oriented edge from wi

j to uj as ei
j . Next, choose a spanning tree,

T for the graph. Include in T all edges emanating from the vertices u1 and v1 as

well as all edges Ei
j with i = 2, · · · , n and j = 2, · · · , m, see Figure 5.5.

v1 v2 v3 v4

u1 u2 u3

e11

E1
1

w11

v5

u4

Figure 5.5: The subdivided graph K5,4. The spanning tree T is shown in solid lines.

There are (n − 1)(m − 1) edges of the form ei
j with i = 2, · · · , n and j = 2, · · · , m

which do not lie in the tree T . Each such edge defines a generating cycle of H1(Kn,m)

which will be denoted Ci
j . Therefore there are (n − 1)2(m − 1)2 cycle intersections

and to calculate the second Betti number of F (Kn,m, 2) we must first find all possible

relations between these intersections in the group
⊕

e∈E(Kn,m) H̃0(∂Be).

As in Example 5.2.1 we will refer to the intersection g ◦ IKn,m
(C ⊗C ′) as C ⊗C ′ to

shorten the notation. Consider an intersection of the form Ci
j ⊗ Cp

q where i = p or

j = q. We have,

Ci
j ⊗ Ci

q = ±





E1
j E1

1 e11 ei
1 Ei

1 Ei
j

w1
1 − w1

q w1
q − u1 v1 − wi

1 v2 − w1
1 wi

q − u1 wi
1 − wi

q



 ,
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and

Ci
j ⊗ Cp

j = ±





ei
j e1j E1

j E1
1 e11 Ei

1

w1
p − wp

j wp
j − v1 uj − w1

1 u1 − w1
j wp

1 − v1 w1
1 − wp

1



 .

Since the vertex wp
q , p = 2, · · · , n, q = 2, · · · , m lies in exactly one generating cycle,

Cp
q , and the edges ei

j and Ei
j lie only in the cycle Ci

j we see that the vertex wp
q

appears in the summand H̃0(∂Bei
j
) in exactly one cycle intersection, Ci

j ⊗Cp
q , where

i = p or q = j. Hence such intersections cannot appear in any relations.

Similarly consider the intersection of a cycle Ci
j with itself. We have

Ci
j ⊗ Ci

j =

±





ei
j e1j E1

j E1
1 e11 ei

1 Ei
1 Ei

j

w1
j − vi wi

j − v1 uj − w1
1 u1 − w1

j wi
1 − v1 w1

1 − vi u1 − wi
j u3 − wi

1



 .

The vertex vi appears in the summand H̃0(∂Bei
j
) only in this cycle intersection, so

an intersection of a cycle with itself cannot appear in any relation.

This implies that the only intersections which can appear in a relation are of the

form Ci
j ⊗ Cp

q with i 6= p and j 6= q. We have,

Ci
j ⊗ Cp

q = ±





E1
j E1

1 e11 ei
1

w1
q − w1

1 u1 − w1
q wp

1 − v1 w1
1 − wp

1



 .

The choice of plus or minus sign arises since Ci
j ⊗ Cp

q = −Cp
q ⊗ Ci

j, see the proof

of Lemma 3.2.13. We will assume without loss of generality that every intersection

appears with positive sign.

We now show the kernel of the intersection form IKn,m
is generated by linear com-

binations of the form

+Ci
j ⊗ Cp

q − Ci
x ⊗ Cp

y − Cr
j ⊗ Cs

q + Cr
x ⊗ Cs

y (5.15)

with i 6= p, j 6= q, r 6= s and x 6= y. Note that the vertex w1
q appears in the

summand H̃0(∂BE1
j
) only in the intersection of a cycle containing vertex uj with

a cycle containing vertex uq, i.e. an intersection of the form Ci1
j ⊗ Cp1

q with i1 6=

p1 ∈ {1, · · · , m}. Similarly, vertex wp
1 appears in summand H̃0(∂Bei

1
) only in the
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intersections of a cycle containing vertex vi with a cycle containing vp, i.e. an

intersection of the form Ci
j1
⊗ Cp

q1
with j1 6= q1 ∈ {1, · · · , n}. So any relation

containing intersection Ci
j ⊗Cp

q must contain a linear combination of the form

a[Ci
j ⊗ Cp

q − Ci
j1
⊗ Cp

q1
− Ci1

j ⊗ Cp1

q ] a ∈ Z (5.16)

with j1 6= q1 and i1 6= p1. Note that the intersections Ci
j ⊗ Cp

q and Ci
j1
⊗ Cp

q1
also

have the same pair of vertices, u1 − w1
q , in summand H̃0(∂BE1

1
) and intersections

Ci
j ⊗ Cp

q and Ci1
j ⊗ Cp1

q have the same pair of vertices in summand H̃0(∂Be1
1
). The

image under the map g ◦ IKn,m
of the linear combination (5.16), when taken as an

element of H1(Kn,m) ⊗H1(Kn,m), is equal to





E1
j1

E1
1 e11 ei1

1

w1
q1
− w1

1 u1 − w1
q1

wp1

1 − v1 w1
1 − wp1

1





which is equal to the intersection Ci1
j1
⊗ Cp1

q1
.

So we see that relations between these intersections must take the general form,

Ci0
j0
⊗ Cp0

q0
+

l
∑

k=1

(−1)k[C
ik−1

jk
⊗ Cpk−1

qk
+ Cik

jk−1
⊗ Cpk

qk−1
] + (−1)l+1Cil

jl
⊗ Cpl

ql
(5.17)

with ik 6= pk and jk 6= qk for k = 1, · · · l. Adding the sum

l−1
∑

k=1

Cik
jk
⊗ Cpk

qk
− Cik

jk
⊗ Cpk

qk
= 0 (5.18)

to the relation transforms it into the sum

l
∑

k=1

C
ik−1

jk−1
⊗ Cpk−1

qk−1
− C

ik−1

jk
⊗ Cpk−1

qk
− Cik

jk−1
⊗ Cpk

qk−1
+ Cik

jk
⊗ Cpk

qk
. (5.19)

Each summand is a linear combination of form (5.15), as required.

We now construct a collection, G, of relations which are linearly independent and

generate all relations of form (5.15). Choose an ordered pair of indices, (i, p) from

the set {2, · · · , n} and another ordered pair of indices (j, q) from the set {2, · · · , m},

then let G contain all relations of the form,

±[Ci
j ⊗ Cp

q − Ci
x ⊗ Cp

y − Cr
j ⊗ Cs

q + Cr
x ⊗ Cs

y ] (5.20)
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where indices (r, s) range over all ordered pairs from {2, · · · , n} with (r, s) 6= (i, p)

and indices (x, y) range over all ordered pairs from {2, · · · , m} with (x, y) 6= (j, q).

Then for each choice of ordered pairs (r, s) from {2, · · · , n} and (x, y) from {2, · · · , m}

the intersection Cr
x ⊗C

s
y appears in exactly one relation in G, therefore the relations

in G are linearly independent.

Finally consider a general relation of form (5.15),

±[Ca1

b1
⊗ Ca2

b2
− Ca1

b3
⊗ Ca2

b4
− Ca3

b1
⊗ Ca4

b2
+ Ca3

b3
⊗ Ca4

b4
] (5.21)

where a1, · · · , a4 ∈ {2, · · · , n} and b1, · · · , b4 ∈ {2, · · · , m}. This relation is equal to

the following sum of elements of G

+ [Ci
j ⊗ Cp

q − Ci
b1
⊗ Cp

b2
− Ca1

j ⊗ Ca2

q + Ca1

b1
⊗ Ca2

b2
]

− [Ci
j ⊗ Cp

q − Ci
b3
⊗ Cp

b4
− Ca1

j ⊗ Ca2

q + Ca1

b3
⊗ Ca2

b4
]

− [Ci
j ⊗ Cp

q − Ci
b1
⊗ Cp

b2
− Ca3

j ⊗ Ca4

q + Ca3

b1
⊗ Ca4

b2
]

+ [Ci
j ⊗ Cp

q − Ci
b3
⊗ Cp

b4
− Ca3

j ⊗ Ca4

q + Ca3

b3
⊗ Ca4

b4
].

Hence the relations in G generate all relations between the cycle intersections, i.e.

the elements of H1(Kn,m) ⊗ H1(Kn,m) in G generate the kernel of the intersection

form IKn,m
.

The set G contains

((m−1)P2 − 1)((n−1)P2 − 1) = ((n− 1)(n− 2) − 1)((m− 1)(m− 2) − 1)

relations and so the second Betti number of F (Kn,m, 2) is equal to

((n− 1)(n− 2) − 1)((m− 1)(m− 2) − 1).

Finally, we show that this implies that the intersection form IKn,m
is an epimorphism.

Exact sequence (3.13) implies that IKn,m
is epimorphic if and only if the second Betti

number of F (Kn,m, 2) is equal to the difference of the rank of H1(Kn,m)⊗H1(Kn,m)

and the rank of H2(NKn,m
, ∂NKn,m

). We have,

rankH1(Kn,m) ⊗H1(Kn,m) − rankH2(NKn,m
, ∂NKn,m

) (5.22)

= (n− 1)2(m− 1)2 − (n− 1)(m− 1) + 1 − n(m− 1)(m− 2) −m(n− 1)(n− 2)
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using Lemma 3.15 to calculate the rank of H2(NKn,m
, ∂NKn,m

). Multiplying out the

expression above we obtain

n2m2 − 3n2m− 3nm2 + 9nm+ n2 +m2 − 3n− 3m+ 1 (5.23)

= ((n− 1)(n− 2) − 1)((m− 1)(m− 2) − 1)

as required. 2

Corollary 5.2.5 For any complete bipartite graph, Kn,m, the Betti numbers of the

space F (Kn,m, 2) are,

b2(F (Kn,m, 2)) = ((n− 1)(n− 2) − 1)((m− 1)(m− 2) − 1) (5.24)

b1(F (K3,m, 2)) = 2(n− 1)(m− 1). (5.25)

Proof This follows directly from Theorem 5.2.4 and Lemma 3.3.2. 2

5.3 Complete Graphs

In this section we apply similar techniques to those applied in the previous section

in the case of complete bipartite graphs to examine the properties of the intersection

form for complete graphs. Let Kn denote the complete graph on n vertices, that is

the graph with n vertices and
(

n

2

)

edges, one edge joining each vertex to every other

vertex of the graph.

Theorem 5.3.1 Let Kn be the complete graph with n vertices, n ≥ 5. Then the

intersection form

IKn
: H1(Kn,Q) ⊗H1(Kn,Q) → H2(NKn

, ∂NKn
; Q)

is an epimorphism.

Proof The proof of this theorem uses a similar method to that employed to prove

Theorem 5.2.1. We base the proof on the fact that the intersection form for K5,

IK5
, is epimorphic, as was shown in the remarks following Lemma 3.3.1. We will
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show that the group H2(NKn
, ∂NKn

) is generated by cycles with supports lying

in subgraphs of Kn isomorphic to K5. Since the intersection form IKn
is equal

to the intersection form IK5
when restricted to a subgroup H1(K5) ⊗ H1(K5) ⊆

H1(Kn) ⊗ H1(Kn), any cycle in the group H2(NKn
, ∂NKn

), with support in a sub-

graph isomorphic to K5 is equal to the intersection of cycles in H1(K5)⊗H1(K5) ⊆

H1(Kn) ⊗H1(Kn).

We consider the symmetric and anti-symmetric parts of H2(NKn
, ∂NKn

) seperately.

Theorem 5.1.3 shows that the symmetric part of the group H2(NKn
, ∂NKn

) is gen-

erated by Y-cycles. The support of a Y-cycle is equal to the union of three edges

emanating from a single vertex, i.e. a subgraph isomorphic to the Y-graph. All such

Y-graphs embeded in Kn clearly lie in subgraphs of Kn isomorphic to K5. Hence it

remains to show that the anti-symmetric part of the group H2(NKn
, ∂NKn

) is also

generated by cycles whose supports lie in subgraphs of Kn isomorphic to K5.

First we label the graph Kn. Label the n vertices of Kn as v1, · · · , vn. Orient the

edge of Kn joining vertex vi to vj from vi to vj where i < j and label this edge as

ei
j, see Figure 5.6.

v1 v2

v3

v4v5

v6

e1
2

Figure 5.6: The labelled and oriented graph K6.
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We will show that the anti-symmetric part of H2(NKn
, ∂NKn

) is generated by two

types of anti-symmetric cycles. First consider a triangle in the graph Kn, i.e. the

union of the edges of a cycle of length three in the graph. Then the product of the

triangle with itself is an anti-symmetric cycle in the group H2(NKn
, ∂NKn

) which we

will call a T-cycle. The support of a T-cycle is a triangle in Kn, which clearly lies in

a subgraph of Kn isomorphic to K5. Consider the triangle in Kn containing vertices

vi, vj and vk where i < j < k, see Figure 5.7, then the T-cycle corresponding to this

triangle is given by

Tijk = [ei
je

j
k]

− − [ei
je

i
k]

− + [ei
ke

j
k]

− − ei
je

i
j − ei

ke
i
k − ej

ke
j
k

where, as in Theorem 5.2.1,

[ei
je

j
k]

− = ei
je

j
k + ej

ke
i
j.

There are
(

n

3

)

= 1
6
n(n − 1)(n − 2) T-cycles in the group H2(NKn

, ∂NKn
) and no

relations exist between them since each pair of edges which appears in the cycle Tijk

has boundary involving all three vertices vi, vj and vk and so can appear only in the

T-cycle Tijk.

vi

vj

vk

Figure 5.7: The triangle v1vjvk.

Now consider a graph equal to the union of four edges emanating from a central ver-

tex, call this graph the X-graph. We describe an anti-symmetric cycle with support

equal to the X-graph which we shall call an X-cycle, see Figure 5.8. Fix a vertex in
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the graph Kn, say v1, to be the central vertex and choose two pairs of edges incident

to v1, (e1i , e
1
j) and (e1p, e

1
q). Construct the following cycle in H2(NKn

, ∂NKn
),

X = e1i e
1
p − e1i e

1
q − e1je

2
p − e1je

1
q.

Then to obtain an anti-symmetric cycle we take X−τ(X), where τ is the involution

map (2.3), to obtain the X-cycle,

1X
ij
pq = [e1i e

1
p]

− − [e1i e
1
q ]

− − [e1pe
1
j ]

− + [e1qe
1
j ]
−.

Chosing a vertex other than v1 means the coefficients of the terms in the X-cycle

may have different parity depending on the orientation of the edges of the graph.

Each X-graph embeded in Kn is the support of three different X-cycles, it is clear

that there are no relations between X-cycles whose supports have different central

vertices, however there are relations between X-cycles with supports having the same

central vertex.

Consider the graph, Γ, consisting of a central vertex, v0 with m edges emanating

from it. We label the edges of Γ as e1, · · · , em and orient edge ei from v0 to vi

where vi is the other boundary vertex of ei, see Figure 5.9. We will show that all

anti-symmetric cycles in the group H2(NΓ, ∂NΓ) are equal to linear combinations of

X-cycles. Recall that a cycle in H2(NΓ, ∂NΓ) is given by a chain of two-cells in NΓ,

i.e. a formal sum of pairs of edges ee′ such that e ∩ e′ 6= ∅, with boundary given

by a chain of one-cells in ∂NΓ. The space ∂NΓ is made up of all pairs ve and ev of

v1

vi
vj

vp

vq
e1

q

Figure 5.8: An X-graph with central vertex v1.
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closed edges and vertices such that d(v, e) = 1 or 2, where d represents the distance

function (3.2.5) defined in Chapter 3.

First, we show that no cycle in the group H2(NΓ, ∂NΓ) can contain a summand of

the form eiei with non-zero coefficient. The boundary of such a pair of edges is given

by,

∂(eiei) = ei(vi − v0) − (vi − v0)ei.

This boundary is disjoint from ∂NΓ since d(ei, v0) = d(ei, vi) = 0 for all edges ei ∈ Γ.

There exists no other edge in Γ incident to vi, hence the boundary elements eivi and

−viei cannot be cancelled by adding any other pair of edges to eiei besides −eiei so

such a product of an edge with itself cannot have non-zero coefficient in a cycle in

H2(NΓ, ∂NΓ).

We now construct a general anti-symmetric cycle in the group H2(NΓ, ∂NΓ). Con-

sider the sum [ei0ej0]
− with i0 6= j0 ∈ {1, · · · , m}. The boundary of this sum contains

the one-cells −ei0v0 and v0ej0 , these one-cells cannot lie in the boundary of a relative

cycle in H2(NΓ, ∂NΓ) since d(ei, v0) = 0 for all edges of Γ. In order to cancel these

boundary elements, any anti-symmetric cycle in H2(NΓ, ∂NΓ) must contain linear

combinations of the form

α([ei0ej0]
− − [ei0ej1 ]

− − [ei1ej0]
−).

v0

v1
v2

v3

vm

Figure 5.9: The graph Γ with m edges incident to a central vertex v0.
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Assuming i1 6= j1, adding the sum α[ei1ej1 ]
− to this linear combination produces an

X-cycle. We see that in general anti-symmetric cycles take the form,

α[ei0ej0]
− + (−1)l+1α[eilejl

]− + α

l
∑

k=1

(−1)k[eik−1
ejk

]− + [eikejk−1
]−. (5.1)

Here we assume that i0 6= j0 and il 6= jl. If we assume that ik 6= jk for all k = 0, · · · , l

we may add to this expression the sum

α

l−1
∑

k=1

[eikejk
]− − [eikejk

]− = 0 (5.2)

to obtain the the following sum of X-cycles,

α

l
∑

k=1

(−1)k([eik−1
ejk−1

]− − [eik−1
ejk

]− − [eikejk−1
]− + [eikejk

]−). (5.3)

Now suppose that ik = jk for some k ∈ {1, · · · , l − 1}, no cycle in the group

H2(NΓ, ∂NΓ) can contain the sum ±[eikeik ]
−, however adding +[eik+1

ejk−1
]−−[eik+1

ejk−1
]−

to the sum (5.1) in place of ±[eikeik ]
i still results in a sum of X-cycles. The two

X-cycles,

[eik−1
ejk−1

]− − [eik−1
ejk

]− − [eikejk−1
]− + [eikejk

]−

[eikejk
]− − [eikejk+1

]− − [eik+1
ejk

]− + [eik+1
ejk+1

]−

are replaced by

[eik−1
ejk

]− − [eik−1
ejk−1

]− − [eik+1
ejk

]− + [eik+1
ejk−1

]−

and

[eikejk−1
]− − [eikejk+1

]− − [eik+1
ejk−1

]− + [eik+1
ejk+1

]−

in sum (5.3). Similar arguments can be made when ik = jk for more than one value

of k. So we see that the anti-symmetric part of the group H2(NΓ, ∂NΓ) is generated

by X-cycles.

Lemma 5.1.1 implies that the rank of the anti-symmetric part of the groupH2(NΓ, ∂NΓ)

is equal to
1

2
(m− 1)(m− 2) − 1.
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Then, considering all possible embeddings of Γ into the complete graph Kn, we see

that there exists an anti-symmetric free subgroup of H2(NKn
, ∂NKn

) containing all

possible X-cycles, generated by n[1
2
(n− 2)(n− 3) − 1] X-cycles.

We now describe relations between the X-cycles and T-cycles in H2(NKn
, ∂NKn

).

Consider the index set {1, · · · , n}, choose three pairs of indices from this set, (ij)(pq)(rs),

with i, j, p, q, r, s all distinct, call such a choice an index triple. For each such index

triple we obtain a relation between the X-cycles and T-cycles containing Tα,β,γ for

all (α, β, γ) with α an index from the first pair of the triple, β from the second pair

and γ from the third pair, and one X-cycle with central vertex vα for α equal to

each of the six indices and the other indices of the X-cycle given by the two pairs in

the index triple not containing α. For example taking index triple (12)(34)(56) we

obtain the relation,

T135 − T136 − T145 + T146 − T235 + T236 + T245 − T246 (5.4)

+1X
34
56 −2 X

34
56 −3 X

12
56 +4 X

12
56 −5 X

12
34 +6 X

12
34 = 0.

The choice of index triple completely determines the relation and we will refer to

such a relation as an index triple relation. Note that the coefficients of the terms

in an index triple relation do not follow the same pattern for every choice of index

triple.

Let G be the subgroup of H2(NKn
, ∂NKn

) with generating set equal to the union of

the set of all T-cycles and a set of n[1
2
(n − 2)(n − 3) − 1] X-cycles which generate

the subgroup of all X-cycles in the group H2(NKn
, ∂NKn

). The set of relations for

G will be the set of all index triple relations.

Lemma 5.1.1 implies that the anti-symmetric part of the group H2(NKn
, ∂NKn

) has

rank
1

2
n(n− 1) − n+

1

2
n(n− 2)(n− 3). (5.5)

The generating set of the subgroup G has cardinality,

1

3
n(n− 1)(n− 2) +

1

2
n(n− 2)(n− 3) − n, (5.6)
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and the difference between these two expressions is

1

3
n(n− 1)(n− 2) −

1

2
n(n− 1) (5.7)

=

(

n

3

)

−

(

n

2

)

.

In order to prove the statment of the theorem we will transform the subgroup G

using the Tietze Transformations until we obtain a presentation for G with 1
2
n(n−

1)−n+ 1
2
n(n−2)(n−3) generators and no relations. This will show that G is a free

group with rank equal to the rank of the anti-symmetric part of H2(NKn
, ∂NKn

),

therefore G must be isomorphic to the anti-symmetric part of H2(NKn
, ∂NKn

) and

so this group can be generated by X-cycles and T-cycles.

We will use the index triple relations between the X-cycles and T-cycles to eliminate
(

n

3

)

−
(

n

2

)

T-cycles from the generating set for G. To do this we choose an ordered set

of T-cycles and relations such that each T-cycle lies in its corresponding relation but

does not lie in any subsequent relation. Consider the T-cycle T123, this appears in

the relation given by the index triple (14)(25)(36) and so we can use this relation to

remove T123 from the generating set of G, then the index triple relation (14)(25)(36)

is removed from the set of relations for G and T123 is replaced in all other index triple

relations by (14)(25)(36)−T123. Then consider T124, this appears in the relation given

by (13)(25)(46) which does not contain T123 so we can also remove T124 from the

generating set of G. Continuing in this way, we can remove T12α from the generating

set of G for α = 5, · · ·n−1 using the relation (1, α−2)(2, α−1)(α, α+1), since this

relation does not contain T12β for any β < α ∈ {1, · · · , n}. Having removed these

T-cycles from the generating set of G we cannot also remove T12n since any index

triple (1, α)(2, β)(n, γ) gives rise to a relation containing T12γ where γ < n which

has previously been removed from the generating set.

Following a similar pattern we can also remove all T-cycles T13α with α = 4, · · · , n−1

using relations given by (12)(3, α−1)(α, α+1) for α = 5, · · · , n−1 and the relation

given by (12)(35)(46) for α = 4. None of these relations contain any of the previously

removed T-cycles as the first pair of indices is (12) in all of the index triples.
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Following this pattern we can remove, in dictionary order, all T-cycles T1αβ with

α = 2, · · · , n−3 and β = α+1, · · · , n−1. To remove T1αβ with β−α > 1 we use the

relation given by the index triple (1, α−1)(α, β−1)(β, β+1) and to remove T1αβ with

β−α = 1 use relation given by the index triple (1, α−1)(α, β+1)(β, β+2). Fixing

α we see that the relation given by (1, α − 1)(α, β − 1)(β, β + 1) does not contain

T-cycles T1,α,γ for γ < β, similarly this relation does not contain any T-cycles T1,γ,β

with γ < α. In this way we remove

(n− 3) + (n− 4) + (n− 5) + · · ·+ (n− (n− 2))

=
1

2
[4(n− 4) + (n− 4)(n− 5)]

T-cycles from the generating set of G. It is not possible to remove any more T-cycles

containing vertex v1 from the generating set of G since it is not possible to choose

an index triple which contains 1 but does not correspond to a relation containing a

T-cycle T1αβ which has already been removed.

Then we must remove further T-cycles from the generating set of G using relations

corresponding to index triples chosen from the index set {2, · · · , n}. With some

relabelling we can then apply the process of removing T-cycles containing vertex v1

described above to remove

(n− 4) + (n− 5) + · · ·+ (n− (n− 2)) =

1

2
[4(n− 5) + (n− 5)(n− 6)]

T-cycles containing vertex v2. Continuing by induction we then remove

(n− 5) + · · ·+ (n− (n− 2)) =
1

2
[4(n− 6) + (n− 6)(n− 7)]

T-cycles containing vertex v3 from the generating set of G and so on until we have

removed

1

2
[4(n− 4) + (n− 4)(n− 5)] +

1

2
[4(n− 5) + (n− 5)(n− 6)] (5.8)

+ · · ·+
1

2
[4(n− (n− 2)) + (n− (n− 2))(n− (n− 1))]

T-cycles from the generating set of G. Note that this series terminates when we

consider an index set of less than 6 vertices, since every index triple relation contains
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at least 6 vertices. The final term in this series is always equal to 5, which is equal

to
(

6
3

)

−
(

6
2

)

. The sum (5.8) can be written as the following sum of finite series,

2

n−2
∑

i=1

(n− i) +
1

2

n−2
∑

i=4

(n− i)(n− (i+ 1)) (5.9)

= 2
n−2
∑

i=1

(n− i) +
1

2

n−2
∑

i=1

n2 −
1

2
n

n−2
∑

i=1

i

−
1

2
n

n−2
∑

i=1

(i+ 1) +
1

2

n−2
∑

i=1

i2 +
1

2

n−2
∑

i=1

i.

Taking the sums of these series using the formula for the sum of a finite arithmetic

progression and the formula for the sum of the first k square numbers, we obtain

the following expression in n,

2(n− 5) + (n− 5)(n− 4) +
1

2
(n− 5)n2 −

1

4
n[4(n− 5) + (n− 5)(n− 2)] (5.10)

−
1

4
n[5(n−5)+(n−5)(n−1)]+

1

12
[(n−2)(n−1)(2n−3)]−7+

1

4
[4(n−5)+(n−5)(n−2)].

Simplifying expression (5.10) we obtain.

1

6
n3 − n2 +

5

6
n =

1

6
n(n− 1)(n− 2) −

1

2
n(n− 1) (5.11)

=

(

n

3

)

−

(

n

2

)

.

Hence we have removed
(

n

3

)

−
(

n

2

)

T-cycles from the generating set of G so, by

(5.7), the cardinality of this generating set is now equal to the dimension of the

anti-symmetric part of the group H2(NKn
, ∂NKn

).

Finally we show that there are no relations between the remaining X-cycles and

T-cycles in the generating set of G. The remaining T-cycles in the generating set of

G are

Tαβn, α < β α ∈ {1, · · · , n− 3}, β ∈ {α + 1, · · · , n− 1}

Tα,n−2,n−1, α ∈ {1, · · · , n− 3}

Tα,n−2,n, α ∈ {1, · · · , n− 3}

Tn−2,n−1,n.

Consider a T-cycle of the form

Tαβn, α < β, α ∈ {1, · · · , n− 3}, β ∈ {α + 1, · · · , n− 1}.



5.3. Complete Graphs 102

Then since every pair of incident edges in the graph lie in exactly one T-cycle, any

relation containing Tαβn must also contain an X-cycle of the form αX
βγ
nδ to cancel

edge pair eα
βe

α
n. Since their are no relations between the X-cycles in the generating set

of G, this in turn implies that the relation must contain the T-cycle Tα,γ,δ to cancel

edge pair eα
γ e

α
δ but the only T-cycle of this form which remains in the generating set

of G is Tα,n−2,n−1 so the X-cycle must have the form αX
β,n−2
n,n−1 . This implies that the

relation contains Tαβ,n−1 but this T-cycle was removed from the generating set of G.

Hence there can be no relation between the remaining elements of the generating

set of G containing a T-cycle of the form Tαβn.

Similar arguments show that the other remaining T-cycles, Tα,n−2,n−1, Tα,n−2,n and

Tn−2,n−1,n cannot lie in any relation between the remaining generating cycles of G.

2

Corollary 5.3.2 For any complete graph Kn, the Betti numbers of the space F (Kn, 2)

are given by the following expressions,

b2(F (Kn, 2)) =
1

4
(n4 − 10n3 + 31n2 − 30n) + 1, (5.12)

b1(F (Kn, 2)) = (n− 1)(n− 2). (5.13)

Proof This follows from Theorems 5.3.1 and 3.3.2. Theorem 3.3.2 implies that since

the intersection form IKn
is epimorphic,

b2(F (Kn, 2)) = b1(Kn)2 − b1(Kn) + 1 −
∑

v∈V (Kn)

(µ(v) − 1)(µ(v) − 2), (5.14)

and

b1(F (Kn, 2)) = 2b1(Kn). (5.15)

The first Betti number of a complete graph Kn is equal to
(

n−1
2

)

= 1
2
(n− 1)(n− 2).

Substituting this expression into 5.14 and 5.15 implies that

b2(F (Kn, 2)) =
1

4
(n− 1)2(n− 2)2 −

1

2
(n− 1)(n− 2) − n(n− 2)(n− 3) + 1, (5.16)

and

b1(F (Kn, 2)) = (n− 1)(n− 2). (5.17)
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Simplifying 5.16 we obtain 5.12 to complete the proof. 2

Remarks

1. Corrolary 5.3.2 confirms a result of Copeland and Patty in their paper [11].

In Theorem 6.2 of [11] the authors prove a formula for calculating the second

Betti number of F (Kn, 2), which corresponds exactly to 5.12, using an iterative

method which calculates the second Betti number for a sequence of subgraphs

of Kn.

2. Theorems 5.3.1 and 5.2.4 show that the intersection form is epimorphic for

all complete and complete bipartite graphs, however the methods used in the

proofs of these two Theorems take two different approaches. In Theorem

5.2.4 we show that the intersection form is epimorphic by directly calculating

the second Betti number of F (Kn,m, 2) using the methods set out in chapter

3. In Theorem 5.3.1 however, we take a less direct route by showing that the

image group of the intersection form, H2(N, ∂N), is generated by cycles whose

supports lie in subgraphs of the complete graph isomorphic to K5 and then use

the fact that the intersection form IK5
is known to be epimorphic. A similar

approach is also taken in Theorem 5.2.1 for complete bipartite graphs of the

form K3,m.

In general I believe that, for all graphs, the group H2(N, ∂N) is generated

by ‘small cycles ’i.e. cycles whose support is the union of a small number of

edges of the graph. Theorem 5.1.3 shows that the symmetric part of the group

H2(N, ∂N) is generated by Y-cycles whose support is given by the union of

just three edges of the graph. I believe it could be shown that, for all graphs,

the anti-symmetric part of this group is generated by T-cycles, X-cycles and S-

cycles all of which have supports small enough so that the support of each such

cycle lies in a subgraph isomorphic to K5 or K3,3 in any complete or complete

bipartite graph. Such a Theorem would directy imply that the intersection

form should be epimorphic for all complete and complete bipartite graphs.
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Lemma 4.2.1 shows that the intersection form is never an epimorphism for any planar

graph, the theorems in this chapter show that for all complete graphs and complete

bipartite graphs the intersection form is epimorphic. Therefore, it is natural to ask

the question whether the intersection form is epimorphic for all non-planar graphs.

In the next example we consider a graph which is non-planar but not complete and

show that for this graph the intersection form is not epimorphic.

Example 5.3.1 We consider the graph Γ1 shown in Figure 5.10. The graph Γ1 is

clearly not a complete graph nor a complete bipartite graph, however it is non-planar

since it contains a copy of K5 as a subgraph.

v0
e1

e2
e3

Figure 5.10: The graph Γ1.

We show that the intersection form for this graph, IΓ1
, is not epimorphic. Consider

the Y-graph embeded in Γ1 consisting of the union of the three edges, e1, e2, and e3

which are incident to the vertex v0. Then by Theorem 5.1.3, the generating set of

the symmetric part of the group H2(NΓ1
, ∂NΓ1

) contains one Y-cycle whose support

is equal to this Y-graph.

This Y-cycle is clearly not equal to the intersection of any cycles in Γ1 since the

edge e3 does not lie in any cycle of the graph. Hence the cokernel of the intersection

form IΓ1
is non-zero and IΓ1

is not epimorphic.
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5.4 Discussion

In this final section we discuss how the work in this thesis fits in with previous work

on deleted product spaces of graphs. These spaces have been studied as important

topological objects in their own right in papers by Patty [28], by Sarkaria [30], by

Copeland [10] and by Copeland and Patty [11]. In these papers the authors at-

tempt to describe the homology groups of such spaces, unfortunately however some

of these papers contain some serious errors. In [28] Theorem 4.2 is incorrect, it un-

derestimates the second Betti number of F (Γ, 2). Similarly in [10] section two claims

wrongly that the second homology group of a deleted product space is generated only

by tori corresponding to products of disjoint cycles in the graph. This is disproved

by Example 2.4.1 in Chapter 2 of this thesis which shows that the configuration

space F (K5, 2), of the complete graph K5, has the homotopy type of an orientable

surface and therefore the second homology group of this space is isomorphic to the

group of integers, however K5 contains no disjoint cycles. The misconceptions in

papers [28] and [10] are addressed in the joint paper [11], the abstact of this paper

states “the two-dimensional Betti numbers of the deleted product space are larger

than they were originally thought to be”. The paper goes on to calculate upper and

lower bounds for the second Betti number of F (Γ, 2) by decomposing the graph,

adding one edge at a time. The paper makes use of the Kuratowski graphs in its

analysis, and the last section uses the decomposition method to calculate the second

Betti number of F (Γ, 2) where Γ is any complete graph. Corollary 5.3.2 confirms

this result.

The paper by Sarkaria [30] also acknowledges the importance of the Kuratowsik

graphs K5 and K3,3 in calculating the Betti number of deleted product spaces of

graphs. The paper claims without proof in statement 3.4.1 that, with Z2 coefficients,

the second homology group of the deleted product space must be generated by tori

and by orientable surfaces of genus 4 and 6 corresponding respectively to embeded

copies of the two Kuratowski graphs, K5 and K3,3 in the graph. However statement

3.4.2 of this paper wrongly describes the dimension of this second homology group.

Conjecture 2.4.1, which claims that the generators of the second homology group of
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F (Γ, 2) come from copies of the Kuratowski graphs and disjoint cycles embeded in

the graph, is similar to statement 3.4.1 of [30]. However in section 3 of this chapter

we proved Theorem 5.2.1 which showed this conjecture to be false.

The work in this thesis provides a method for calculating the second Betti number

of the configuration space F (Γ, 2) for any simple graph Γ as described in Section

3.5. The formula for the Euler characteristic of F (Γ, 2) given in Lemma 3.1.1 then

allows the calculation of the first Betti number. The results in Chapters 4 and 5

give simple formulas for the calculation of these Betti numbers for certain classes

of graph. However the structure of the generators of the second homology group of

F (Γ, 2) for a general graph Γ remains unclear. For planar graphs we showed that this

group is generated by pairs of disjoint cycles in the graph, however for graphs which

cannot be embedded in the plane the situation is not well understood and is more

complicated than was first thought. Theorem 5.2.1 shows that for graphs containing

copies of the complete bipartite graphs K3,4 or K3,5, the group H2(F (Γ, 2),Z) may

have generators which come from surfaces mapped into the space F (Γ, 2) but not

embedded in the space, as was suggested in Conjecture 2.4.1. Corollary 2.5.2 shows

that the group H2(F (Γ, 2),Z) is isomorphic to Ω2(F (Γ, 2)), the two-dimensional ori-

ented bordism group of F (Γ, 2). This group consists of bordism classes of orientable

surfaces mapped into the space F (Γ, 2) but it places no restriction on the maps

from the surfaces to the space F (Γ, 2). Together these results suggest that more

complicated generators of the group H2(F (Γ, 2),Z) may be possible.



Bibliography

[1] A. Abrams (2000), Configuration Spaces and Braid Groups of Graphs, PhD

thesis, UC Berkeley,

[2] A. Abrams, H. Landau, Z. Landau, J. Pommersheim and E. Zaslow (2002),

Evasive Random Walks and the Clairvoyant Demon, Randon Structures and

Algorithms 20 no. 2, pp 140-150.

[3] A. Abrams and R. Ghrist (2002), Finding Topology in a Factory: Configuration

Spaces, American Mathematics Monthly. February 109, pp 140-150.

[4] V. I. Arnol’d (1969), The cohomology ring of the group of dyed braids., Mat.

Zametki 5, pp 227-231.

[5] M. F. Atiyah and F. Hirzebruch 1961, Vector Bundles and Homogeneous

Spaces, Proc. of Symposia in Pure Maths, Differential Geometry 3, pp 7-38.

[6] K. Barnett and M. Farber (2009), Topology of configuration space of two par-

ticles on a graph, I, Algebraic and Geometric Topology. 9, pp 593-624.

[7] B. Bollobas (1979), Graph Theory-an introductory course, Springer-Verlag.

[8] F. R. Cohen (1976), The homology of Cn+1-spaces, n ≥ 0., from: The homol-

ogy of iterated loop spaces. Lecture Notes in Math., Springer 533, pp 207-353.

[9] P. E. Conner and E. E. Floyd (1964), Differentiable Periodic Maps, Springer-

Verlag.

[10] A. H. Copeland (1965), Homology of deleted products in dimension one., Proc.

AMS 16, pp 1005-1007.

107



Bibliography 108

[11] A.H. Copeland and C. W. Patty (1970), Homology of deleted products of one-

dimensional spaces., Trans. AMS 151, pp 499-510.

[12] A. Dold (1970), Lectures on Algebraic Topology, Springer-Verlag.

[13] S. Eilenberg (1941), Ordered Topological Spaces, American Journal of Math-

ematics. 63, pp 39-45.

[14] E. Fadell and L. Neuwirth (1962), Configuration spaces, Math. Scand. 10,

pp 111-118.

[15] M. Farber (2005), Collision free motion planning on graphs, from: Algorithmic

foundations of robotics VI, Springer, New York. pp 124-138.

[16] M. Farber (2008), Invitation to Topological Robotics, EMS.

[17] D. Farley (2006), Homology of Tree Braid Groups., from:Topological and

asymptotic aspects of group theory. Contemp. Math. 394, pp 101-112.

[18] D. Farley (2007), Presentations for the cohomology rings of tree braid groups.,

from:Topology and robotics. Contemp. Math. 438, pp 145-172.

[19] D. Farley and L. Sabalka (2005), Discrete Morse theory and graph braid

groups., Algebraic and Geometric Topology. 5, pp 1075-1109.

[20] D. Farley and L. Sabalka (2008), On the cohomology rings of tree braid groups.,

J. Pure Appl. Algebra. 212, pp 53-71.

[21] R. Ghrist (2000), Configuration Spaces and Braid Groups on Graphs in

Robotics, Braids, Links and Mapping Class Groups: the Proceedings of Joan

Birman’s 70th Birthday, AMS/IP Studies in Mathematics, 19, pp 31–41.

[22] R. Ghrist and D. Koditschek (1998), Safe cooperative robot dynamics via dy-

namics on graphs, Eighth Intl. Symp. on Robotic Research, Y. Nakayama, ed.

Springer Verlag pp 81-92

[23] A. Hatcher (2002), Algebraic Topology, Cambridge University Press.

[24] J. Milnor (1962) A Survey of Cobordism Theory Enseignement Math. 8, pp 16-

23



Bibliography 109

[25] J. R. Munkres (2000), Topology, Pearson Education International.

[26] J. McCleary (1985), User’s Guide to Spectral Sequences, Mathematics Lecture

Series, Publish or Perish Inc.

[27] C. W. Patty (1961), Homotopy Groups of Certain Deleted Product Spaces,

Proceedings of the American Mathematical Society. 12, pp 369-373

[28] C. W. Patty (1962), The fundamental group of certain deleted product spaces,

Trans. AMS 105, pp 314-321.

[29] A. Ranicki (2002), Algebraic and Geometric Surgery, Oxford Mathematical

Monographs, Oxford University Press Inc.

[30] K. S. Sarkaria (1991), A one-dimensional whitney trick and Kuratowski’s graph

planarity criterion., Israel J. of Math. 73, pp79-89.

[31] H. Seifert and W. Threlfall (1980), A textbook of Topology, Academic Press,

Inc.

[32] E. H. Spanier (1966), Algebraic Topology, Springer-Verlag.

[33] B. Totaro (1996), Configuration spaces of algebraic varieties., Topology 35,

pp 1057-1067.

[34] V. A. Vassiliev (1992) Complements of discriminants of smooth maps: topology

and applications., Trans. of Math. Monogr. Amer. Math. Soc. 98.


