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Abstract 

Luminescence dating is a widespread dating method used in the fields of archaeology 

and Quaternary science. As an experimental method it is subject to various uncer­

tainties in the determination of parameters that are used to evaluate age. The need 

to express these uncertainties fully, combined with the prior archaeological knowl­

edge commonly available, motivates the development of a Bayesian approach to the 

assessment of age based on luminescence data. The luminescence dating procedure 

is dissected into its component parts, and each is considered individually before be­

ing combined to find the posterior age distribution. We use Bayesian multi-sample 

calibration to find the palaeodose in the first stage of the model, consider the prob­

lem of identifying a plateau in the data, and then use this, along with the annual 

dose, to estimate age. The true sample age is then modelled, incorporating any prior 

information available, both for an individual sample and for a collection of samples 

with related ages. 
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Chapter 1 

Introduction 

Luminescence is the light emitted from crystalline materials following absorption of 

energy from ionising radiation and subsequent external stimulation by some source. 

For example, thermoluminescence (TL) is emitted in response to heat and optically 

stimulated luminescence (OSL) in response to light from the visible spectrum. For 

luminescence, in contrast to other light emissions, such as fluorescence, there is a 

time lapse between the absorption and the emission of energy [46]. TL and OSL are 

the main types of luminescence used for dating. 

Luminescence dating is a powerful chronometric technique which can be applied 

to a wide range of materials containing abundant minerals. The event being dated in 

luminescence dating is either the most recent heating (above 200-300°C) of mineral 

grains (such as in pottery, burnt flint, bricks), or the most recent exposure to daylight 

(deposition of sediments). Currently objects with an age from around a century up 

to a few hundred thousand years can be dated [5], though the theoretical upper age 

limit is thought to be up to a million years [68]. Luminescence dating is widely used 

to date materials from the Quaternary, a period of significant interest as it spans 

great climatic change and the emergence of the first modern humans [68]. 

The basis of luminescence dating relies on the properties of minerals, such as 

quartz and feldspar grains, which enable energy to be stored as charge trapped at 

defect sites (traps) within their crystalline structure. Exposure to ionising radiation 

naturally occurring in the environment (alpha and beta particles, gamma radiation), 

and cosmic radiation originating from space, results in these electron traps being 

1 

0 
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filled [5]. The charge is stored cumulatively, and the amount stored is proportional 

to the time passed since a resetting event (unless the traps have become full i.e. 

reached saturation before this event occurs). The dating clock is reset when the 

minerals are exposed to heat or light ('bleached'), referred to as the zeroing event. 

The luminescence signal results when the charge is ejected from the traps ('de­

trapped') when stimulated by either heat or light. Some detrapped charge goes 

to sites known as recombination centres and, if these centres are radiative, the ex­

cess energy is released as photons (the luminescence signal). The rate at which the 

trapped charge accumulates is proportional to the rate of energy absorption by a 

grain. In turn, the intensity of the luminescence signal on stimulation is proportional 

to the energy absorbed [3]. 

A radiation dose is defined as the energy absorbed per unit mass, measured in 

Gray (1 Gy= 1 J kg-1 ) [5]. The dose the sample has received since the zeroing event 

is known as the palaeodose. The dose received each year is known as the dose rate 

or the annual dose. The number of years since resetting, or the age of the sample, 

is estimated using the age equation 

AE = Palaeodose 
Annual Dose 

( 1.1) 

In recent years significant advances have been made in both the development of 

the methodology [38, 120] and in instrumentation [108], though there are still some 

aspects of luminescence behaviour that are not fully understood. The experimental 

nature of this dating method, and the inherent variations of luminescence properties 

between samples, means that the validity of its application and the results obtained 

need to be carefully analysed [68]. This, along with the careful consideration of the 

uncertainty and expected luminescence behaviour may be handled within a Bayesian 

framework, which allows the numerous uncertainties in the dating process to be fully 

expressed. Such analysis is the subject of this thesis. 

Archaeological dating is a natural application of Bayesian methodology [28], as 

experts often have some degree of belief about the date of an object, or its context 

in relation to other such objects, before the scientific dating process has been car­

ried out. The Bayesian philosophy has been used to combine dating information 
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from a number of different sources and dating techniques. For example in radicr 

carbon (1 4C) dating, additional information from stratigraphy, typology and den­

drochronology have been used in a Bayesian framework [28, 105]. Bayesian methods 

have also been applied to electron spin resonance (ESR) dating [72], TL dating [73] 

and archeomagnetic dating [66]. 

Radiocarbon dating has been the biggest archaeological application area for 

Bayesian statistics, with particular emphasis on the construction of chronologies [30]. 

This has been facilitated by the the development of the radiocarbon calibration pro­

grammes OxCal [23] and BCal [29], which are widely available, where the chrono­

logical ordering of sample is used as prior information. 

OxCal has also been utilised for Bayesian chronology building with luminescence 

dates [92], which is applicable when there is certainty in the relative chronology. The 

potential has also been realised through the development of a mixture model for the 

evaluation of palaeodose in sediment mixtures [101]. 

These examples of the use of Bayesian statistics in luminescence dating apply 

the Bayesian methodology once the ages [92] or palaeodose estimates [101] have 

been computed. The luminescence dating process is complex and a number of 

separate calculation stages can be identified. Here we look at the uncertainties 

and assumptions made at each stage, modelling each stage and using the prior 

information available to find the posterior distribution for the parameters of interest 

at each step, culminating in modelling the relationship between the age ratio (1.1) 

and the true sample age. 

Luminescence dating requires a wide variety of measurements. Chapter 2 gives 

an overview of the important aspects of luminescence and routine methodologies 

used to date materials and explains the conditions and assumptions that are made 

in the dating situations that our Bayesian model will cover. 

Assessment of the palaeodose estimate is in part a problem in Bayesian multi­

sample calibration of a linear model, and the evaluation of a single palaeodose is 

described in Chapter 3. Combining the palaeodose estimates to evaluate the palaecr 

dose of the sample is covered in Chapter 4. Chapter 5 examines the uncertainties 

in the annual dose distribution. In Chapter 6, the uncertainty in palaeodose and 
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annual dose is considered to give uncertainty in their ratio AE, and then prior in­

formation on the age is utilised to produce a posterior distribution for the sample 

age. In Chapter 7 inference from multiple samples and the relationships between 

the sample ages is considered. A working example will be presented for each step 

of the model, and Chapter 8 details a further example to illustrate the procedure. 

Chapter 9 contains a concluding discussion. 



Chapter 2 

Luminescence Dating 

The application of luminescence to dating was first proposed in 1953 [33], though 

it took a further 10 years before reliable dates were produced [2] using thermolumi­

nescence (TL). TL was initially used to date pottery, and extended to other heated 

materials such as tephra1 and burnt flint [89]. The observation that exposure to light 

reset the luminescence clock in a similar way to heat [89], along with the separate 

recognition that luminescence can be stimulated by light [55], led to the develop­

ment of optically stimulated luminescence dating (081), with the main motivation 

being its application to dating Quaternary sediments [4]. 

The main minerals that are used in luminescence dating are quartz and feldspar. 

Quartz is mineralogically simple, whereas feldspar is often more complex, with a 

wide range of structures and compositions [36]. Ages obtained using feldspar are 

frequently underestimated [110]. This underestimation is often caused by a phe­

nomenon known as anomalous fading [116] where electrons are depleted from their 

traps over a short timescale compared to the predicted trap lifetime [113]. Dating 

using feldspar does have advantages over using quartz crystals, including the abil­

ity to stimulate the luminescence signal using wavelengths in the infra-red region 

(IRSL), which has technical advantages for measuring the luminescence signal, as 

the stimulating wavelength is significantly different from the wavelength of the re­

sulting luminescence emission [36] which makes it easier to eliminate the stimulation 

1Tephra is the glass material ejected into the air by a volcanic eruption 
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photons from the detection system. This issue, along with the relative brightness 

of the luminescence compared to quartz, has led to a number of techniques being 

developed to overcome the problem of anomalous fading [45, 65, 110]. To eliminate 

any problems with anomalous fading, in this thesis we will only consider OSL dating 

using quartz, which does not exhibit this unfavourable property. 

The quartz minerals that are used for optically stimulated luminescence dating 

can be divided into two main groups: those which have had their luminescence 

clock reset by light, or 'bleached' (e.g. sediments) and those for which the resetting 

occurred by heating (e.g. bricks, pottery). When the material is heated, for example 

in the firing of bricks, then the luminescence signal is completely reset (all the 

luminescence traps are emptied). However, the resetting of the signal by daylight 

can be highly heterogeneous with some grains being more completely bleached than 

others [109]. A sample containing grains which have not been completely reset can 

lead to overestimation of the sample age [100] and a broad, asymmetric distribution 

of palaeodoses [86]. 

The completeness of the signal bleach depends on the environment in which 

the sediment is deposited, which in turn dictates the length of time the grains 

are exposed to light and the spectrum of light available for bleaching [100]. For 

example, fluvial deposits are well known for exhibiting properties of heterogeneous 

bleaching [75] as the high energy wavelengths are attenuated through water [5], and 

it is these wavelengths that are most efficient at bleaching [100]. 

2.1 Luminescence Signal from quartz 

When quartz that has been irradiated with ionising radiation is exposed to light, a 

luminescence signal (OSL) is emitted. This signal decays with time as the trap(s) 

are depopulated. The decay curve does not fit a single exponential, indicating that 

the luminescence does not originate from a single trap and radiative recombination 

centre [79]. 

It is thought that the luminescence signal is a result of charge being released from 

several trap types [9], and that the decay can be adequately represented by three ex-
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ponential components [104]. These components are known as the fast, medium and 

slow components, with reference to their relative rate of decay [9]. The components 

result from the trap types having different photo-ionisation cross-sections and this 

implies different de-trapping probabilities [67]. Up to seven components in the OSL 

decay have been identified [58], depending on the properties of the quartz and the 

experimental procedure [62]. These can be divided into 'fast', 'medium' and 'slow' 

categories [99]. An 'ultra-fast' component is sometimes identified [59], which decays 

rapidly and is thermally unstable. This component is thought to result from a trap 

type distinct from that responsible for the fast component [59]. 

The fast and medium components dominate the initial part of the decay, after 

which the slow component can be identified [11]. The fast component is primar­

ily used for luminescence dating [67] as it exhibits the desirable properties that it 

bleaches easily [59] and the electrons in the associated traps are stable over mil­

lions of years [99]. The slow component has much greater thermal stability which 

indicates that this part of the signal originates from deep traps separate from those 

responsible for the fast and medium components [11]. During the initial decay, the 

proportion of signal from the slow component is usually relatively small. However, 

this is not true in all cases and if it is ignored (or assumed to be constant) this can 

induce errors in the evaluation of palaeodose [11]. 

A number of complex physical models have been developed to replicate the lu­

minescence process [9, 12, 71], though some observed luminescence behaviours are 

yet to be fully understood [68]. These models are based on a series of trap types 

and recombination centres. Some traps are highly photosensitive, and are emptied 

rapidly on exposure to light, while others are not affected by light exposure. The 

majority of traps are sensitive to heat, and are emptied when raised to high tem­

peratures. A small proportion have very short retention lifetimes, and are unable 

to store electrons for more than a few days at ambient temperatures, whereas some 

'deep' traps are thought to be able to hold electrons for millions of years. 

The characteristics of the various traps are important since they affect the degree 

to which sediments are zeroed/reset before burial. Incompletely reset grains will give 

rise to erroneously young ages. 



2.1. Luminescence Signal from quartz 8 

2.1.1 Measurement of the Luminescence Signal 

The probability of charge eviction from a trap is dependent on the sensitivity of 

the trap to photoeviction, and the rate at which photons from the stimulation 

source arrive at the trap [108]. The sensitivity of the trap is dependent on the 

wavelength of the stimulation light; the probability of eviction increases for shorter 

wavelengths [19]. Another important factor in the choice of stimulation wavelength 

is the emission wavelength of the luminescence. The intensity of the luminescence 

emission is ""10-19 of the intensity of the stimulating light [108], and so it is crit­

ical that the wavelength of the stimulation source is well separated from the main 

emission wavelengths. 

Quartz OSL emits strongly in the blue and ultra-violet spectrum [38] (320-

380nm), with the peak around 365 nm [5]. The intensity of the luminescence signal 

is measured using a photomultiplier (PM) tube detector coupled with appropriate 

coloured filters. These filters block any scattered stimulation light and define the 

wavelength range for detection of the emitted signal [5]. A number of different stim­

ulation sources have been used in OSL dating, including lasers, halogen lamps and 

light emitting diodes (LEDs) [5]. In recent times blue and green LEDs have become 

popular [108]. 

The luminescence signal measured by the PM tube includes some unwanted 

components [5]; when the luminescence signal from an aliquot whose charge traps 

have been emptied is measured, some signal is still detected. This originates from 

sources including PM noise, backscattering of the stimulation source (not blocked by 

the colour filters) and long term luminescence [4]. This is known as the background 

signal, and is subtracted to evaluate the intensity of the OSL signal. The background 

is measured as the intensity of the OSL signal after a period of stimulation (specified 

by the laboratory) once the signal does not decay further with time. It is desirable 

for the background signal to be constant for each measurement made [114]. 
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2.2 Palaeodose Evaluation 

The luminescence signal measured when the prepared sample is stimulated for the 

first time in the laboratory is referred to as the natural signal. The radiation dose 

that the grains have experienced in the natural environment resulting in this inten­

sity of luminescence is known as the palaeodose, and to be evaluated. The methods 

adopted for palaeodose evaluation in routine dating have evolved with theoretical 

and empirical knowledge [38], and laboratory equipment [21]. 

The two main approaches to palaeodose evaluation are the additive method 

and the regenerative method [5]. These approaches can be applied to multiple­

aliquot, single aliquot or single grains, where an aliquot of grains is typically 1-2mg 

of crystals. Each of these will be reviewed here, with a detailed examination of the 

single aliquot regeneration (SAR) protocol. The SAR procedure is often used in 

routine dating, and is the basis for the Bayesian model for palaeodose evaluation 

developed in Chapter 3. 

Historically, multiple aliquot methods were adopted to estimate palaeodose [3,5], 

where typically 24-48 aliquots were used to obtain a single palaeodose value. A 

number of problems were encountered with this approach, which is based on the 

assumption that each aliquot has the same palaeodose. This assumption cannot be 

verified using this method. Also, the large number of measurements and sample size 

required to produce one palaeodose estimate means that repeat estimates are not 

usually feasible, so that the uncertainty of the measurement is difficult to calculate 

[38]. 

Duller [35] first used a single aliquot approach for dating feldspar, with Murray 

and Wintle [81] developing the widely adopted SAR procedure for quartz grains. The 

ability to measure palaeodose from single aliquots enables repeat measurements to 

be made, and thus the uncertainty in the sample palaeodose to be evaluated [40]. 

Single grain approaches take this to the extreme, with large numbers of palaeodose 

estimates being made (and often required as the estimates are sensitive to grain to 

grain variations and as such may have a wider distribution). 
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2.2.1 Single Aliquot Additive Approach 

The single aliquot additive dose (SAAD) protocol [77] involves measuring the lu­

minescence signal, after a brief exposure to light, then irradiating the aliquot with 

a laboratory dose and sampling the trap population again. The measurement and 

irradiation cycle is repeated, and used to define an additive growth curve. This 

curve is extrapolated back to the intercept on the dose axis to estimate palaeodose, 

as illustrated in Figure 2.1. This method of palaeodose evaluation is not considered 

in our Bayesian model as it is no longer used routinely in OSL dating. 

Palaeodose 
Estimate 

' ' 

Q' 
' 

, 'a 

,' 0 

0 4---~---------+--------------------~ 

I I 

0 

Additive Dose 

Figure 2.1: The single aliquot additive dose method for palaeodose evaluation. 

(This approach is not considered in the remainder of the thesis.) 

2.2.2 Single Aliquot Regeneration Protocol 

The single aliquot regeneration procedure measures the natural luminescence signal 

resulting from the unknown palaeodose, and a series of OSL signals arising from 

known doses applied in the laboratory. The relationship between the laboratory 

doses and the luminescence signals subsequently measured is then used to estimate 
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the palaeodose. 

The single aliquot regeneration protocol is based on three main assumptions [81]: 

1. When the traps are being filled, the competition for charge is the same during 

the natural irradiation process as in the laboratory. 

2. The luminescence sensitivity (the OSL response per unit trapped charge) is 

the same for the natural signal as for the signals from the regenerative doses 

applied in the laboratory. 

3. The traps which contribute to the OSL signal, both natural and laboratory­

induced, are stable over archaeological timescales. 

The first assumption is difficult to check, and can only be verified by dating known­

age samples where all other sources of systematic error have been accounted for. 

The sensitivity of the sample is liable to change during the experimental pro­

cedure [107], and can be dependent on both thermal history and time [118]. It is 

the ability of the SAR procedure to monitor and compensate for these sensitivity 

changes which has fuelled its popularity in routine luminescence dating [38]. Af­

ter each regenerative dose is applied and the luminescence signal (L) measured, a 

further test dose is applied which produces an OSL signal T. This test dose is the 

same for each of the laboratory doses used, and is an indicator of the luminescence 

sensitivity at that particular time [40]. The ratio of the regenerative dose and test 

dose signals (L/T) is used as a measure of luminescence response. 

It is assumed that the sensitivity of the luminescence resulting from the regener­

ative dose is directly proportional to that of the signal arising from the test dose [82], 

but the constant of proportionality may be dependent on the dose [81]. In practice, 

there can be changes in sensitivity between the the regenerative and test doses being 

applied [81], but these are taken to be independent of dose [32], and relatively small. 

The third criterion given for the SAR procedure to be reliable is that the traps 

contributing to the OSL signal are stable over an archaeological period. A trap 

model has been developed by Bailey [12] (Section 2.1) where only some of the traps 

are stable over such time scales. Empirical results [80] have shown that signals 

arising from laboratory irradiated doses contain additional signal, with a relatively 
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short lifetime compared to the natural OSL, which is stable over archaeological and 

geological time periods. The unwanted unstable portion of the regenerated signal is 

removed by heating: this 'preheat' treatment occurs after the dose irradiation and 

prior to the signal being measured. 

The preheating temperature applied is typically between 160 and 300°C, and 

the sample is held at that temperature typically for lOs. The appropriate choice of 

temperature is sample dependent, so a number of different preheat treatments are 

used across the aliquots, and comparisons made between the palaeodose estimates 

achieved. 

The steps of the generalised SAR protocol from Murray and Wintle [81] are shown 

in Table 2.1. The first cycle measures the natural signal, so no dose is applied in the 

laboratory. The luminescence measurements are made at an elevated temperature 

to inhibit re-trapping of electrons associated with the l10°C TL peak that may give 

rise to a secondary phosphorescence signal [79]. The preheat temperature at stage 

2 is the same for each cycle, but is changed systematically for different aliquots. 

A palaeodose estimate is produced from each aliquot, by plotting the Li/Ti ra­

tios against regenerative dose, fitting a growth curve to the data and then using 

back interpolation from the natural signal L0 /T0 onto the fitted curve to estimate 

palaeodose. The shape of the curve is commonly accepted to be a saturating expo­

nential [5], to reflect the belief that at high doses the traps become full and so the 

luminescence signal saturates [39]. If ratio ~ = Ld~ is observed after irradiating 

doseD, then 

R(D) = Imax ( 1- exp {go}) + C (2.1) 

where D0 is the characteristic dose (characterising the rate at which the traps become 

full), Imax is the saturation level and cis an offset [39]. 

OSL traps typically saturate at around 200 Gy [121]; here we will only consider 

relatively young samples whose traps are not approaching saturation. Therefore the 

growth curve can be considered linear in this region [39], and a least squares line is 

fitted to the Ld~ values. An illustration is shown in Figure 2.2. 
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Step Treatment a Observedd 

1 Give dose Di 

2 Preheatb (160-300°C for lOs) 

3 Stimulatec for lOOs at 125°C L· t 

4 Give test dose Dt 

5 Heat to 160°C 

6 Stimulate for lOOs at 125°C T.· t 

7 Return to 1 

Table 2.1: Generalised single aliquot regeneration protocol, taken from Murray and 

Wintle (2000) [81] 

aFar the natural sample, i = 0, and Do= 0 Gy. 

b Aliquot cooled to < 60°C after heating. 

cThe Stimulation time is dependent on the stimulation light intensity 

d Li and Di are derived from the initial OSL signal (0.3 or 0.8s) minus a background 

estimated from the last part of the stimulation curve. 
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Figure 2.2: Example of estimating palaeodose using the SAR protocol 
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Initially, the natural signal L0/T0 is measured. Then, for example, at dose D1 and 

D3 two measurements of L/T were made, and at D2 one measurement of L/T was 

made. The dotted line is the least squares fit to these five points, and the back 

extrapolation estimates the palaeodose. 

2.2.3 Diagnostics of the Palaeodose Estimate from the SAR 

procedure 

A number of tests are routinely carried out to establish the reliability of the palaeo­

dose estimates, made and the validity of the assumptions made, by the SAR proce­

dure. 

1. Recycling Test During the SAR procedure, repeat measurements are often 

made for one or more of the regenerative doses applied. The ratio of the 

two corrected luminescence signals L/T with the same regenerative dose is 

calculated, and is known as the 'recycling ratio'. If the sensitivity changes are 



2.2. Palaeodose Evaluation 15 

correct, then this ratio should be 1 [120], though in practice a range of 0.9-1.1 

is generally accepted [81]. 

2. Recuperation Test. When a regeneration dose of 0 Gy is applied, zero signal 

should be observed. However, prior SAR cycles of irradiation, preheating and 

optical stimulation may cause charge to be transferred from deeper traps, 

and a recuperation signal observed [6]. For the SAR procedure to produce a 

good estimate of palaeodose, Murray and Wintle [81] suggest that the level of 

recuperation should be less than 5% of the natural signal. 

3. Dose Recovery Test. The greatest change in sensitivity is thought to occur 

when the sample is first heated [120]. The test signal T0 is measured after this 

so may not be an appropriate measure of sensitivity of the natural signal L 0 . 

This can be tested by zeroing the natural signal, and applying a known dose 

to an unheated part of the sample [95]. The SAR procedure is then applied, 

with satisfactory results if this dose is 'recovered'. 

4. Preheat Plateau Test. A number of different preheat treatments are used 

across the aliquots, and the palaeodose estimates achieved are plotted against 

preheat temperature. A region where the palaeodose remains the same across 

the different preheat treatments, a 'preheat plateau', indicates that the pre­

heat has suitably removed all the thermally unstable charge, and is used as a 

measure of self-consistency [120]. 

2.2.4 Single Grain Methods 

A protocol for evaluating palaeodose using single grains of quartz was initially set 

out by Murray and Roberts in 1997 [78], after Lamothe et al [64] had first used a 

single grain approach for dating feldspar [5]. Single grain methods were motivated by 

palaeodose variance across aliquots, allowing a distribution of palaeodose values to 

be found. The inter-grain palaeodose variation is explained by [93] and summarised 

below. 

• Grain characteristics [37]. The variability of the luminescence properties of 
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grains leads to some naturally 'bright' grains. 

• Incomplete bleaching [86]. Some of the grains may not have experienced suf­

ficient exposure to light before burial for their luminescence clock to be com­

pletely reset. 

• Beta dose non-uniformity [78]. The beta dose rate may not be homogeneous 

across all grains during the natural irradiation process. (The beta dose rate 

typically contributes at least half of the total dose rate). 

• Post-deposition mixing [94]. Grains from more recent deposits may contami­

nate older layers, e.g. by bioturbation. 

Both the additive and regenerative dose methods have been applied to single 

grains [78], though a large number of grains are required [8] to utilise the small 

proportion of 'bright' grains with a relatively high luminescence sensitivity [37]. 

Single grain methods have been made possible through the development of specialist 

laboratory equipment [21, 22], as the precise location of each of the individual grains 

mounted on a disc has to be determined. 

2.2.5 Palaeodose Models 

The development of single grain techniques (Section 2.2.4) has enabled a large num­

ber of palaeodose estimates to be made for each sample. Galbraith [47] developed a 

number of different models to represent the spread in the population, and so estimate 

the true palaeodose. The models proposed considered the logarithm of palaeodose, 

and are: 

1. Common age model. Here the palaeodose estimates would be consistent with 

a common value, so that, for each of the estimated log palaeodoses oi, with 

standard error si, 

(2.2) 

with the true common log palaeodose o, and where Ei is the deviation of Ji 
from o. This deviation is modelled as a random quantity with mean 0 and 

variance sr. 
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2. Central age model. If the log palaeodose estimates are not consistent with a 

common value, then the common age model can be generalised so that 

(2.3) 

where oi is the true log palaeodose for grain i, and Ei as above. Here the true 

palaeodose values for each grain are not equal but considered to be a random 

sample from a normal distribution. 

3. Minimum age model. This is applicable in situations where the sample was 

incompletely bleached on deposition, and so the true log palaeodose values 

oi are considered to be a random sample from a mixed truncated normal 

distribution [ 4 7]. 

2.2.6 Uncertainty in Palaeodose Evaluation 

The uncertainties in palaeodose evaluation can be categorised into systematic and 

random errors. The systematic errors induced usually originate from the laboratory 

measurement process, for example the calibration of the radioactive sources used. 

The sources of random uncertainty in the palaeodose estimates are discussed above 

in relation to grain-to-grain variation. The development of single aliquot and single 

grain methods of palaeodose evaluation have allowed multiple estimations to be 

made and allows the spread of palaeodose values to be investigated in routine dating 

[39]. 

The intensity of the luminescence signal is measured by counting the number of 

photons detected by the photomultiplier tube. Thus counting statistics [48] come 

into play in the assessment of the uncertainty in palaeodose, and are more significant 

when the intensity of the luminescence is low, especially when in comparison with 

the background signal. 

The development of single grain methods has allowed a greater number of palaeo­

dose estimates to be made for each sample, and a larger distribution of values to be 

observed. A number of models have been developed to calculate the most suitable 

palaeodose value given the distribution of aliquot estimates [13, 47]. 
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The uncertainty in each of the aliquot estimates of palaeodose can be considered 

to be a combination of uncertainty in the luminescence measurements, and uncer­

tainty in converting these measurements into a palaeodose estimate. The uncertainty 

in the luminescence measurement depends on the intensity of the signal and that 

of the subtracted background count. Instrumental error is typically assumed to be 

around 1% [39]. 

The mean of the aliquot palaeodose evaluations (over a particular preheat tem­

perature range) is routinely used to evaluate the sample palaeodose, and the un­

certainty in this value is quantified using the standard deviation of these estimates 

(e.g. [14]). 

2.3 Preheat Plateau 

Preheating is an important stage of the SAR procedure (Section 2.2.2). The tem­

perature of the aliquot is raised before the luminescence is stimulated in order to 

remove charge from the shallow traps which are unstable over dating timescales, and 

thus do not contribute to the natural luminescence signal. This allows the natural 

OSL signal and laboratory irradiated signal to be compared. The optimum preheat 

treatment empties the shallow traps while preventing a significant thermal erosion 

of the deep OSL traps (which contributes to the main OSL signal) [117]. 

The most suitable preheat treatment, in terms of both temperature and duration, 

has been widely debated in the past [119], with a treatment for 5 minutes at 220°C 

originally being suggested [103]. Currently, temperatures in the range 180-280°C are 

used, held for lOs. The use of a range of different preheat temperatures was recom­

mended by Murray et al (1997) [77], to allow for sample variation in luminescence 

properties. 

Preheating causes the luminescence properties of quartz to change [112]. Rhodes 

[91] observed a decrease in OSL signal intensity with preheat temperatures up to 

l40°C, followed by an increase in OSL. The signal has been observed to drop rapidly 

for high preheat temperatures, above around 280°C [76]. Most noteably, the sen­

sitivity of the sample changes, so, for example, if the quartz grains become more 
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sensitive, then a higher intensity of luminescence is observed for the same irradiation 

dose. 

The SAR protocol for palaeodose evaluation (Section 2.2.2) has been developed 

so that any sensitivity changes are adjusted for. In order to assess the effectiveness of 

these corrections, the palaeodose estimates obtained are plotted against the preheat 

temperature applied. If there is no change in the palaeodose estimates with preheat 

temperature, i.e. a 'preheat plateau' is observed, then it is concluded that the 

sensitivity changes have been adequately compensated for [4]. 

A preheat plateau also indicates that the preheat treatments applied were suf­

ficient. If the lowest preheat temperatures were not high enough to remove all the 

unstable charge, then the palaeodose evaluations from aliquots with these preheats 

would be underestimated. High temperatures can also lead to thermal erosion of 

the main OSL trap, and so to reducing the signal:background ratio which implies 

poor counting statistics, which can lead to overdispersion. 

The increase in OSL signal with preheat temperature was attributed to charge 

transferring from non-photosensitive shallow traps to light sensitive traps and thus 

contributing to the OSL signal [91, 117]. However, more recently it is thought that 

most (if not all) of the changes in the OSL signal are due to the changes in lumi­

nescence sensitivity, and charge transfer is not significant [76]. 

A wide variety of trends are observed for the relationship between preheat tem­

perature and palaeodose [120], some of which are not fully understood. However, if 

a preheat plateau is observed over some (or all) of the temperatures used, then these 

are the aliquots that are thought to be estimating the palaeodose of the sample. 

The presence (or lack of) a preheat plateau in the palaeodose estimates is cur­

rently assessed by eye. The aliquots which lie on the preheat plateau are then 

typically averaged to estimate the palaeodose of the sample, with their spread indi­

cating the level of uncertainty in this evaluation. 
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2.4 Dose Rate 

The dose rate, or annual dose, is an estimate of the average natural radiation dose 

that the sample has received each year since the luminescence clock has been reset. 

This is used as the denominator in the age equation (1.1) to estimate the sample 

age. The methods used to evaluate the dose rate remain similar to those used in the 

initial determination of luminescence ages around 40 years ago [68], though there 

have been advances in instrumentation. 

When a nucleus undergoes radioactive decay, ionising radiation is emitted and 

the type of radiation is dependent on the decay process. The radiation types are 

alpha particles, beta particles and gamma rays; cosmic radiation also contributes 

to the dose rate. These different radiation types exhibit different properties [5] (the 

ranges given below are those in typcial sample medium): 

• Alpha Particles These are heavily ionising and the radiation is highly lo­

calised; its range is ""'20J.Lm. 

• Beta Particles These are lightly ionising with a range of a few mm (""'3mm). 

• Gamma Rays These are also lightly ionising but with a range of a ""'30cm. 

• Cosmic Rays This is radiation originating from space and is lightly ionising. 

It has a small dependence on latitude at sea level, though at altitudes above 

lkm this dependency grows along with its intensity. 

The radiation types all produce secondary electrons, and ionisation occurs when 

these electrons have been slowed down sufficiently [5]. Ionisation of atoms within 

host crystalline structures generate free electrons, and it is these electrons and holes 

which are trapped in defects in the crystal structure of the quartz or feldspar, and 

utilised in luminescence dating. 

The main naturally occurring radioelements are uranium, potassium and tho­

rium (lithogenic radionuclides) which are present in the sample and the surrounding 

environment. These often contribute to the natural OSL signal in approximately 

equal proportions [5], depending on the sampling environment. Rubidium isotopes 

also make a small contribution to the dose rate. Radioactive decay starts with the 
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'parent' isotope, which decays into the 'daughter' nucleus whilst emitting nuclear 

radiation. This decay chain continues until a stable (non-radioactive) 'daughter' 

nucleus is reached. 

2.4.1 Measurement of Dose Rate 

The evaluation of the dose rate is based on the assumption that the overall rate at 

which energy is absorbed is equal to the rate of energy emission, within a volume 

larger than the range of the radiation [5]. Uniformity of the dose rate is assumed in 

the conventional calculation of the luminescence age, though in some cases this it 

may not be a valid assumption [61]. The dose rate can either be assessed by analysis 

of the radionuclide composition of the material, or by measuring the rates of alpha, 

beta, gamma and cosmic radiation individually. 

In the 'concentration approach' the content of potassium, rubidium, thorium 

and uranium are determined and the dose rate components are evaluated by use 

of conversion tables which detail the likely proportion of radioactive isotopes and 

their effective dose rates [1, 5]. The main drawback to this method is the possibility 

that the thorium and uranium decay chains are not in radioactive equilibrium. This 

occurs when, instead of the rate of decay of the isotope being equal to the rate 

of formation of its daughter, there is loss of some of the daughter material. For 

example the daughter radon is gaseous and a portion of it can escape, especially if 

the material is porous [3]. 

Alternatively, the alpha, beta, gamma and cosmic radiation dose rates can all 

be measured. Thick-source alpha counting [102] can be used to evaluate the alpha 

radiation component in fine grain dating where the alpha radiation penetrates the 

full radius of grains. This applies to silt-size grains in the range 4-llJ.Lm, whereas 

in coarse grain dating ( lOOJ.Lm) the alpha particles only reach the outer part of the 

grains due to their short range. Here the surface is etched using hydrofluoric acid 

(HF), which removes the part of the grain which is affected by the alpha radiation, 

and thus reduces the alpha radiation dose rate to a negligible level [3] and simplifies 

the dose rate calculation. 

Highly sensitive phosphors can be used to measure the present day environmental 
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dose rates using similar dosimetry methods as radiation monitoring around nuclear 

plants [5]. Phosphors commonly used include aluminium oxide doped with carbon 

(Ah03 :C) [20]; the phosphor needs to display similar absorption properties as quartz 

(or feldspar) [5]. The luminescence clock of the phosphor is set to zero, typically by 

heating, and is then placed in a small capsule [3]. This dosimetry capsule is then left 

in the sampling location for, ideally, one year to account for any seasonal variation 

in moisture content (Section 2.4.2), though a few months is sufficient if necessary [5]. 

The radiation dose that the dosimetry capsule has received is then measured, ei­

ther using thermoluminescence (a TLD capsule) or OSL. Depending on the radiation 

component rate to be assessed, the walls of the capsule are designed to absorb either 

alpha or alpha and beta radiation (to measure the gamma component). The cosmic 

radiation dose can be subtracted to isolate the gamma radiation component [3]. 

The beta dose rate component can either be measured using a dosimetry capsule 

as described above or directly using a beta-counter, for example a Geiger-Muller 

system [18]. Spectrometry can also be used to measure the beta dose rate. 

It is optimal to measure the gamma dose rate in-situ; especially if the validity of 

the homogeneous dose rate assumption is in doubt [3). This can be done by using a 

portable gamma spectrometer, scintillometer (which measures radioactivity levels) 

or with a TLD capsule [5]. A scintillometer has a short measurement time ( I"V 10 

minutes), though it only measures the overall gamma radiation dose rate; whereas 

a spectrometer returns the rate from the separate potassium, thorium and uranium 

components. 

Apart from environments with particularly low levels of radioactivity, or those at 

high altitudes, the cosmic radiation dose does not form a significant portion of the 

dose rate and so a calculated estimate of the cosmic dose rate is usually employed. It 

is possible to measure the present day cosmic dose rate using a portable gamma-ray 

spectrometer [31], though for sediments, due to the attenuation by the (increasing) 

overburden, this often does not represent an average for the burial period [5]. The 

cosmic dose rate is typically taken to be 150 f-LGy a- 1 [3], though the depth of the 

any sediment being dated needs to be taken into- account [7 4]. Reconstruction of 

the overburden history can be attempted if this is thought necessary [5]. 
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The dose rate due to sources located within the grams used in luminescence 

measurement (the internal dose rate) needs to be considered when dating feldspar 

and some types of quartz. In particular, potassium feldspar can be composed of 

up to 10-14% potassium of which around 0.05% are radioactive isotopes, which 

can contribute significantly to the dose rate depending on the grain size. Accurate 

evaluation of the internal dose rate is not straight forward [41]. Generally, it is 

assumed that quartz grains have no internal dose rate [5], though increasingly the 

validity of this assumption is being tested [111] and is now assessed for each sample 

in case of contamination. 

2.4.2 Moisture Content 

Typical dating environments will contain water in voids between the mineral grains. 

Water absorbs a higher proportion of the energy released by the alpha, beta and 

gamma radiation compared with mineral grains. Hence the dose rate reduces as the 

moisture content increases [5]. The moisture content of the sample in the present 

day environment is easily measured and appropriate adjustments can be made to 

the dose rate. However, the water content history is not known and an average must 

be estimated based on any information available about the dating environment. 

2.4.3 Dose Rate Equation 

In routine luminescence dating using coarse-grain quartz (so there is no alpha dose2
), 

the dose rate iJ is calculated using a standard model [3] 

b . g . . 
D = 1 + H13WFD13 + 1 + H-yWFD-r +De (2.4) 

where 

• iJ13 , D-y, De are the measured beta, gamma and cosmic radiation dose rates 

• b, g are the attenuation factors for the beta and gamma radiation respectively 

in the sample medium: these are standard values and not sample-specific. 

2 As part of the laboratory preparation of the sample, chemical etching of the outer layer of the 

grains is carried out to remove the contribution to the dose rate from alpha particles 
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• Hf3, H'Y are the relative attenuation factors for beta and gamma radiation 

in water, which also take community-wide accepted values for every dating 

situation. 

• W is the saturation water uptake (i.e. the amount of water contained in the 

material at saturation), and F the time averaged fractional moisture content 

(on average, the water content of the material as a proportion of complete 

saturation). 

So here { Df3, D'Y, De, W} are measured values, {b, g, Hf3, H'Y} take standard values 

and are not sample-specific, and F is estimated based on any information available 

about past variations in water content. 

The dose rate, or annual dose is evaluated in milligray per year (mGy a-1), where 

the Gray is the unit of absorbed dose (1 Gy=1 J kg-1 ). 

2.4.4 Uncertainty in Dose Rate Evaluation 

The sources of uncertainty in the evaluation of dose rate, beyond any experimental 

and measurement errors, include the following. 

• Heterogeneity 

In evaluating the dose rate, it is assumed that the sample environment has a 

homogeneous dose rate [5]. However this is not always true [61], particularly 

for beta radiation. The heterogeneous distribution of radionuclides is not 

necessarily a critical factor when dating with multiple grains, as palaeodose 

evaluated from an aliquot of grains will reflect the average dose rate if the 

number of grains contributing to the measured luminescence is sufficient to 

avoid the effects of fluctuation [61]. However where single grains are measured 

(Section 2.2.4) the implications of dose rate heterogeneity are more significant 

[84]. 

• Water content history 

Unless the sample environment is known to have been arid or to have had a 

saturated water content throughout the dating timescale, the average moisture 
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content of the sample is subject to uncertainty. It is thought that in sediment 

dating this is a fundamental limitation on the ability to reduce error below 

±5% of the sample age [5]. 

• Standard values of attenuation factors 

Standard values are used for the attenuation factors for the radiation in water 

and the surrounding material [1], but nonetheless are likely to have small 

associated uncertainties [7]. However these differences are not expected to give 

rise to significant errors in the measurement of the dose rate for the majority 

of environments. 

2.5 Age Ratio 

The age is estimated by dividing the palaeodose by the dose rate, the age ratio: 

AE = Palaeodose . 
Annual Dose 

(2.5) 

The values obtained by the methods described previously to estimate the palaeodose 

and annual dose are used in this equation. In our Bayesian analysis we go on to 

consider the relationship between the age ratio and the true sample age. 

The uncertainty in the age is routinely assessed by summing the random and 

systematic errors in the palaeodose and annual dose [3]. However, there are two 

distinct categories of uncertainty in the sample age: the uncertainty in evaluating 

the age ratio, and the uncertainty in the age ratio as an estimate for the sample age. 

2.6 Assumptions Made in the Thesis 

Luminescence dating covers a wide range of different techniques and dating envi­

ronments [38]. In this thesis we are constructing a Bayesian model for luminescence 

dating, and so it is necessary to start with the most basic, realistic dating envi­

ronment. Therefore, the assumptions made in the remainder of the thesis are the 

following. 

• Optically stimulated luminescence ( OSL) will be used for dating. 
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• Quartz mineral grains free of internal radionuclide sources will be used, not 

feldspar, so the issues of anomalous fading and internal grain dose rate do not 

need to be addressed. 

• The evaluation of palaeodose and annual dose are independent, though this 

may not always be strictly true. 

• At the time of the event being dated, the material was fully zeroed. For 

example, heating of the quartz grains (for example firing of brick, pottery) 

or sediment dating where the grains were fully bleached on deposition. This 

means that we do not consider partially-bleached materials, where a skewed 

or mixture distribution for palaeodose would be expected. 

• The single aliquot regeneration protocol (SAR) is used to evaluate palaeodose. 

• The age of the sample and the dose rate is such that the traps are not close to 

being completely filled, i.e. saturation is not being approached. So, a linear 

relationship between dose and luminescence intensity is a good approximation, 

instead of the more general saturating exponential relationship. 

• The dose rate is homogeneous. 

2. 7 Motivation of the Model Strategy 

Routine analysis in luminescence dating comprises a number of separate steps to 

produce the final estimate of the sample age. For the situations which are be­

ing considered here (Section 2.6), for each aliquot, the palaeodose is estimated by 

back-interpolation from a fitted line using the SAR protocol (Section 2.2.2). These 

estimates are then plotted against preheat temperature as a diagnostic check; if a 

plateau is observed this indicates that sensitivity changes have been adequately ad­

justed for and the shallow traps have been emptied. The palaeodose of the sample 

is then evaluated by averaging the palaeodose estimates which lie on the preheat 

plateau. 
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Next, the dose rate is estimated using the dose rate equation (Section 2.4), 

combining experimental values with standard coefficients and estimation of the water 

content history. The palaeodose and dose rate evaluations are used to estimate the 

sample age by the age equation (1.1). This procedure is summarised in Figure 2.3. 

The approach taken in this thesis to modelling luminescence dating using Bayesian 

methodology is to consider each of the steps to the age evaluation individually. That 

is, a model has been developed to evaluate the posterior palaeodose distribution at 

each preheat temperature. Then, the preheat plateau is modelled to find the pos­

terior distribution for the starting temperature of the plateau. This is then used to 

assess which aliquots lie on the preheat plateau, and the data from such aliquots are 

used in the initial model to find the posterior palaeodose distribution of the sample. 

This process is described in Figure 2.4. 

A distribution for the dose rate is found using the dose rate equation used in 

routine dating, along with the experimental values and expert judgements about the 

precision of these measurements and the water content history of the sample. The 

next stage in the model is to find the distribution for the age ratio, using the age 

equation ( 1.1) and the distribution for dose rate and palaeo dose found previously. 

This is analogous to the final step in the routine age analysis (Figure 2.3). 

In the Bayesian model developed here, rather than this being the culmination 

of the analysis, we go on to model the relationship between the age ratio and the 

true sample age. It is at this stage that the prior information about the sample age 

is utilised. The structure of the Bayesian model, once the posterior distribution for 

palaeodose has been found, is illustrated in Figure 2.5. 

The Bayesian model developed here was designed to follow a similar structure 

to that of routine age analysis in luminescence dating, choosing to structure the 

Bayesian analysis as a series of sub-models for a number of reasons rather than 

accumulate the model into one large calculation. 

Firstly, the motivation behind the development of a Bayesian model for lumi­

nescence dating is to enable the luminescence community to make routine use of 

Bayesian techniques. Thus the modef needs to be accessible to those who do not 

have extensive knowledge of Bayesian methodology. Splitting the model into dif-
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ferent stages enables practitioners to understand each stage of the process, as it 

follows a similar pattern to current practice. Also, the MCMC methods used here 

have proved to be robust and not caused any convergence problems, and as such are 

suitable for implementation by practitioners unfamiliar with MCMC techniques. 

Secondly, this model strategy also allows the practitioner to view the posterior 

distribution for the relevant parameters at each stage. As luminescence character­

istics can be extremely variable between different samples, these parameters are of 

significant interest to the practitioner. It also allows the practitioner to monitor the 

levels of uncertainty in each of the parameters as the analysis of the luminescence 

age progresses. 

An alternative approach would have been to consider the age distribution in a 

single large calculation. However, this strategy presents a number of difficulties. The 

joint distributions of the parameters within the overall calculation are not straight 

forward. A lot of the details of the age evaluation would be lost within the large 

calculations required, and any modifications made to adapt the model to the dating 

environment and changes in the experimental protocol would become complex. It 

would be very difficult to express all of the expert prior judgements about the differ­

ent ingredients of the overall age assessment within a single calculation, particularly 

if different aspects of the assessment are made by different individuals. 

Such a solution would also somewhat oppose the aim of the model: to open the 

field of Bayesian statistics to luminescence dating. Overly complicated computa­

tions would only deter most luminescence practitioners from applying such Bayesian 

methods. 
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Figure 2.4: Flow chart of the steps in the Bayesian model for palaeodose evaluation. 
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Chapter 3 

Palaeodose Evaluation at a Single 

Preheat Temperature 

In this chapter we look at the evaluation of palaeodose at a single preheat tempera­

ture, based on the single aliquot regeneration (SAR) protocol [81, 82]. Throughout 

we assume that quartz grains, which have been reset through heating, are being 

dated and that they have originated from a homogeneous environment. Thus the 

luminescence signal would be bright and well-behaved (recuperation and recycling 

tests perform well). We also only consider relatively young archaeological samples, 

so that the relationship between dose and luminescence signal is considered to be 

linear (Section 2.2.2). 

First, the evaluation of palaeodose is considered as a calibration problem. A 

Bayesian model is laid out and a Gibbs sampler is detailed to estimate the posterior 

palaeodose distribution, and its stability and convergence are investigated. The 

model is tested using an example, and a sensitivity analysis carried out on the prior 

parameters used. 

3.1 Calibration 

As detailed in Chapter 2, Section 2.2.2, the SAR procedure involves the measurement 

of the natural luminescence signal followed by the irradiation of known regenerative 

laboratory doses. For each dose, luminescence response is recorded. This produces a 

32 
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data set for each aliquot containing the sensitivity corrected luminescence responses, 

within which some of the dose values may be repeated. The luminescence response is 

plotted against the regenerative dose applied, and conventionally a least squares line 

is fitted for each aliquot. The line is used to estimate an unknown x (palaeodose) 

from the known response (natural luminescence), which is a calibration problem. 

Several approaches have been taken to such univariate calibration problems. Sup­

pose we have a set of data X= {x1 , ... , Xn} with response variable Y = {yl, ... , Yn}, 

and assume a linear relationship between x andy. Denote a further observation of 

the response z, where its corresponding unknown x value is~· There are two different 

estimates in the statistics literature which are commonly used for ~: 

1. Classical estimate~ [44]. This fits the regression model 

(3.1) 

to the data, where Ei are independent and normally distributed errors. Then 

~ is estimated using 

so 

z = & + {3~, 

A z-& 
~=-A­

{3 

where &, j-J are the least squares estimates of a, {3, with 

& = fJ- /:lx, A Sxy 
{3=-

Sxx 

and 

(3.2) 

(3.3) 

(3.4) 

2. Inverse Estimate ~ [63]. This uses the least squares estimators of the linear 

coefficients when x is regressed on y. The inverse estimate ~ for ~ is found 

using 

(3.6) 

(3.7) 
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A simulated data set was used to compare the two estimates, and Figure 3.1 shows 

the two different regression lines fitted. The classical yon x regression has a steeper 

calibration line than regressing x on y as, if r is the correlation coefficient, 

(3.8) 

and when the two lines are plotted on the same set of axes the slope of the inverse 

regression is f.-. The exception is when the linear fit is perfect, so r 2 = 1 and the 

two lines coincide. The lines intersect at the point (x, y), where x = ~ L.::~=l Xi 

and j} = ~ L.::~ 1 Yi· The inverse estimator ~ lies closer to the mean of the x-values, 

x, than the classical estimator € [83]. These properties relate to the least squares 

method of fitting which minimises the errors in the direction of the regression, i.e., 

regressing y on x minimises the vertical errors about the fitted line. 
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Figure 3.1: Comparison of the classical estimate using regression of y on x and the 

inverse estimate from the regression of x on y, using a simulated data set. 

The use of the classical or inverse estimator in linear calibration problems has 

been heavily debated [87]. Krutchkoff (1967, [63]) promoted the use of the inverse 
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estimate, countering the classical approach that had been favoured since at least 

Einshart, 1939 [44]. Statistical arguments have been made for both estimators. 

Krutchkoff noted that the mean of the classical estimator t does not exist, and 

its mean square error is infinite, while the inverse estimator ~ has finite mean and 

variance. 

Brown (1993, [27]) shows that the mean and variance of the asymptotic distri­

butions of t and ~ are 

E[~] 

A a2 
Var[~] = (32 , 

2 • 4(7 
Var[~] = r (32 . 

(3.9) 

(3.10) 

t is unbiased asymptotically, where ~ is biased and E[~] is the weighted average 

of~ and the mean of the x-values, x. So the bias is large for~ when the value of~ 

is far from the mean. 

Calibration problems can be grouped into two types; controlled or random cal­

ibration. In controlled calibration, the x-values are fixed by experimental design, 

where as in random calibration they are randomly selected. 

The inverse estimate is more commonly used in random calibration situations, 

as X can be considered a random variable with (X, Y) jointly distributed [27] and 

so it is not as unintuitive to regress x on y. However, for controlled calibration there 

is no guarantee that the unknown ~ is 'like' the fixed x 1 , ... , Xn and so inferences 

should be restricted to be from y conditional on x, i.e. from the regression of y on 

x and hence the classical estimator. 

The SAR procedure is a controlled calibration problem, and the classical estimate 

is traditionally used by practitioners of luminescence dating to estimate palaeodose 

from the data. 

3.1.1 Bayesian Calibration 

The linear calibration problem has also been tackled from a Bayesian perspective, 

initially by Hoadley [56]. Hoadley notes that the inverse estimator ~ is a Bayes 

estimator if the prior distribution for ~ is student-t, with n- 3 degrees of freedom, 
1 

scale [(n + 1)/(n- 3)]2 and mean 0. 
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Hoadley goes on to propose a Bayes solution using non-informative priors, but a 

general form for the prior density was taken where [87] 

(3.11) 

Brown [26] also makes this assumption that ~ is independent a priori of the other 

parameters, as well as stating that in controlled calibration, 

P[~IX] = P[~] (3.12) 

(that is, the choice of X provides no information about ~). However, X might 

provide information about ~, if the values are chosen to lie in a region close to the 

expected value of~· Brown suggests that the prior distribution of~ should reflect 

the know ledge of ~ contained in X, and so ( 3.12) still holds. 

The Bayesian analysis of controlled calibration has been tackled by a number of 

other people, including Dunsmore [42], Hunter and Lamboy [54] and more recently 

Kacker et al [60]. However, all these approaches base the estimate of~ on a single 

calibration line (though Dunsmore [42] considers each of the (x, y) points to be from 

independent experiments). In the application of luminescence dating, a series of 

calibration lines are used, one for each aliquot, and an estimate for~ (the palaeodose) 

will be found from each. The distribution of these estimates around the mean value 

of palaeodose is then considered. 

3.2 Palaedose Evaluation using the Combined Aliquot 

Model 

Consider the single aliquot regeneration (SAR) protocol for evaluating palaeodose 

(Section 2.2.2). Denote natural luminescence signal, after background correction, 

YRj for the j = 1, ... , J aliquots with common preheat temperature T. A series 

of known doses are then applied to each of the aliquots, the luminescence signal 

produced is measured and, for the age of samples considered here, a linear model is 

fitted to the sensitivity corrected response. 
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The J aliquots which have the same preheat temperature T will produce palaeo­

doses x Rj, j = 1, ... , J. We will suppose that these can be related in a similar 

manner to Galbraith's central age model [47], so that for each j 

(3.13) 

where xn denotes the the mean palaeodose value at preheat temperature T. The 

b? are taken to be independently distributed; J? rv N(O, 'Y~) for all j, 'YR to be 

specified by the expert. This parameter reflects the heterogeneity in the palaeodose 

evaluation process, from sources discussed in the previous chapter. It is also possible 

to adapt the approach so that 'Y~ is treated as an unknown parameter with prior 

density taken as an inverse gamma distribution, and the effect of this is considered 

through an example in Section 3.5. The purpose of this model is to evaluate the 

palaeodose, xn. 

If each individual aliquot j with preheat temperature T has laboratory doses Xij 

applied, i = 1, ... , nj for each regeneration, let the resulting luminescence intensities 

after appropriate sensitivity corrections and subtraction of the background signal be 

denoted Yij (i.e. the Li/Ti values in Section 2.2.2). 

The dose response is often variable between aliquots, i.e. the natural lumines­

cence values for each aliquot can be quite different, even though they have come 

from the same environment (and thus will have been exposed to similar radiation 

levels). So, the luminescence sensitivity of each of the aliquots is different, so in turn 

will be the gradients of the linear fits. In order for the linear coefficients from each 

aliquot to be directly compared, the luminescence intensities are standardised by 

natural luminescence. That is, the natural luminescence for each aliquot is adjusted 

so that, say, YRi = 10000 counts Vj. Then the standardised luminescence intensities 

Yii are relatively adjusted, 

Yij 
Yij = Ynj- (3.14) 

Yni 

where YRi takes some suitable value and is the same for all j. We then consider the 

data to be {(ynj, Yij), i = 1, ... , nj, j = 1, ... , J}. 

With the assumption that there is a linear relationship between x and y (Section 
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2.2.2), let 

(3.15) 

where independent Gaussian errors are assumed, with Eij f".J N(O, a 2), and a 2 is 

unknown for i = 1, ... , nj. The use of standardised data, Yij, rather than the 

measured values Yij means that the Eij are not strictly independent. However, 

independence is assumed as in our experience the errors around the line are small. 

The palaeodose estimate XRj and natural luminescence YRj also make a point on 

the line, 

(3.16) 

where XRj is to be found and ERj f".J N(O, a 2
). 

The assumption of normally distributed errors Eij is considered reasonable, based 

on the counting statistics involved in luminescence measurement (Section 2.2.6). 

The current method to evaluate XRj involves back-interpolating from the natural 

luminescence YRj on to the fitted line, which follows the classical estimator for a 

calibration problem. 

The linear coefficients aj, {3j, can be modelled in relation to the mean values a, 

f3 for preheat temperature T by 

a· a+ 0~ J J oj f".J N(O, ,;) 

of f".J N(o, 1~) 

(3.17) 

(3.18) 

for aliquots j = 1, . .. , J. The parameters lm /{3 are to be specified by the expert. 

We specify a correlation, p, between a and {3. This induces a correlation between 

ai, {3j, but the oj, of are taken to be independent, so that the covariance between 

ai and f3j is the same as that between a and {3. 

3.2.1 Likelihood 

Let D denote the data from the J aliquots with preheat temperature T. For aliquot 

j the data runs over (x1j, y1j), ... , (xnij' Ynij), with the natural luminescence values 

YRj for each of these J aliquots. The likelihood £(8) for data D can be expressed 
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as: 

£(8) = P[DI8] (3.19) 

where Yoi = YRi (YRi is the standardised natural luminescence and so is the same 

for all j), Xoj = XRj and 8 is the set of parameters 

(3.20) 

3.2.2 Prior Distributions 

Gaussian prior distributions were employed for parameters XR, a, (3 and a gamma 

distribution for the precision, 1/ a 2
, where 

(3.21) 

(3.22) 

rv r (~ 9:_) 
a 2 2' 2 · 
1 

(3.23) 

This choice of prior distribution is computationally convenient, while being flexible 

enough to allow meaningful prior information to be represented. 

3.2.3 Prior Elicitation 

The prior distribution over 8 reflects the judgements about the parameter values 

before the data are observed. Prior elicitation is an important stage in a Bayesian 

analysis, where an expert's knowledge is converted into prior distributions and suit­

able hyperparameters are specified. 

In palaeodose evaluation using SAR, it is necessary for the palaeodose to lie 

within the range of laboratory doses applied (to ensure the linear approximation to 
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the dose response curve is still appropriate, i.e. they are not in the region approach­

ing saturation). In routine dating, the practitioner thinks about the region which is 

likely to contain palaeodose to determine suitable choices of regenerative dose, and 

this can be easily translated to elicitation of the prior distributions. 

In many dating situations, a rough age of the sample can be inferred using 

the local archaeology. An experienced practitioner will have an idea of a possible 

dose rate, and these two estimates will be used in the age equation to give a broad 

indication of palaeodose. This is used to select a possible range of regenerative doses 

which contains the palaeodose estimates from each aliquot. This is only a rough 

guide to the palaeodose value, so preliminary experiments are carried out on a small 

part of the sample to ensure that the laboratory doses chosen to regenerate signal in 

the SAR procedure are suitable. These preliminaries are also used as an indication 

of the luminescence characteristics for the sample, and hence the suitability of the 

sample for dating. 

Preliminary Experiments 

The preliminary experiments typically comprise one or two aliquots of the sample 

which are prepared and the SAR procedure used to evaluate palaeodose. The regen­

erative doses, initially chosen using a rough estimate of the sample age, are applied 

in the SAR procedure to produce an estimate for palaeodose. A single preheat tem­

perature is usually used for all measurements. If this palaeodose estimate does not 

lie within the range of the regenerative doses, then the irradiated doses are adjusted 

and further measurements made until the palaeodose estimates produced fall in the 

middle of the range. So, the practitioner is aware of likely palaeodose values before 

the data are observed, which can be used to elicit values for JlR, fJ'k_, the mean and 

variance of the prior normal distribution for XR· 

The mean for a, ma:, is usually taken to be 0, as this indicates a judgement 

that no luminescence signal will be observed if no dose is applied (i.e. there is no 

recuperation [6]). A value of m{3 is determined using ma:, /lR and the standardised 

natural luminescence signal so that YR = ma: + m{3JlR· The prior standard deviation 

of a and {3 will be based on past dating experience. The correlation, p, will be 
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negative, and considered to be small. 

The parameters '"'fn, '"'lao '"'113 are also to be specified by the expert. Judgements 

are made about how the aliquot estimates will differ from the mean values for xn, 

a and {3, using expertise in luminescence dating. Sensitivity analysis is carried out 

to investigate how influential these judgements are for the posterior distributions. 

3.3 Posterior Distributions 

We are interested in the posterior distribution for palaeodose with a preheat at 

temperature T. This probability distribution for xn combines the information from 

the data with the prior judgements made, using Bayes Theorem; 

P[ ID] = P[Dixn]P[xn] 
xn P[D] (3.24) 

where D represents the data observed. This posterior distribution is difficult to 

calculate directly as the likelihood P[Dixn] is complicated. However, the likelihood 

distribution P[DI8], where 8 is the set of all the parameters (3.20), is known (3.19). 

We can therefore find the posterior distribution of x R conditional on the remainder 

of the parameter set; 

(3.25) 

with 8\xn denoting the set 8 with xn removed. 

The conditional posterior distributions for all of the parameters can be used to 

estimate the posterior distributions using a Gibbs Sampler [52], a Markov Chain 

Monte Carlo (MCMC) method. The Gibbs Sampler draws from the posterior con­

ditional distributions of all the parameters in turn, updating the values with each 

draw. For example, if (for simplicity) the data comprised one aliquot (J = 1) then 

the algorithm for the Gibbs sampler would follow: 
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Draw (1) from P [ x I D x(o) a(o) a(o) {3(o) {3(o) o-2(o) J XR R ' R1 ' ' 1 ' ' 1 ' 

Draw (1) from P [ x I D x(1) a(o) a(o) {3(o) {3(o) o-2(o) J XR1 R1 ' R ' ' 1 ' ' 1 ' 

Draw a(l) from P [a I D x(1) x(1) a(o) {3(o) {3(o) o-2(o) J 
' R ' R1 ' 1 ' ' 1 ' 

Draw (1) from P [a I D x(1) x(1) a(l) (3(0) {3(o) o-2(0) J a1 1 ' R ' R1 ' ' ' 1 ' 

Draw {3(1) from P [!31 D x(1) x(1) a<1) a(1) {3(0) o-2(o) J 
' R ' R1 ' ' 1 ' 1 ' 

Draw !3P) from p [!3 I D x(1) x(1) a(1) a(1) {3(1) o-2(0)] 
1 ' R ' R1' ' 1 ' ' 

Draw a-2(1) from P [a-2 1 D x(1) x(1) a(l) a(1) (3(1) (3(1)] 
' R ' R1' ' 1 ' ' 1 

which completes one iteration of the process. Here a<0) represents the starting 

value for a, and a<1) the updated value in the first cycle. So after t iterations we 

would have 

(
x(t) x(t) a(t) a(t) {3(t) {3(t) o-2(t)) 

R ' R1 ' ' 1 ' ' 1 ' · 
(3.26) 

After a sufficient number of iterations the chains converge to approximate draws from 

the posterior distributions after appropriate thinning and burn-in period (Section 

3.4). 

The Gibbs sampler was chosen here as, due to the form of prior distributions 

assigned to the parameters (3.2.2), the conditional posterior distributions can all be 

explicitly found. The detailed calculation for the posterior conditional distribution 

of xn follows, along with the outline of the distributions for the remainder of the 

parameters. Detailed derivations can be found in Appendix C. 

Conditional Posterior Distribution for Palaeodose 

The conditional posterior distribution for XR is: 

P[xniD, 8\xR] ex: P[DI8JP[xnl8\xn]. (3.27) 

Here P[DI8J = P[DI8\xnJ, and XR is conditionally independent of D, e, given XRj, 

the palaeodose values from aliquots j = 1, ... , J, so 



3.3. Posterior Distributions 43 

P[xRI8\xR] ex: P[xRixRI, ... , XRJ] (3.28) 

<X (J] P[xn;[xn[) P[xn] 

as the XRj are conditionally independent given XR (3.13). Thus the conditional 

posterior distribution for x R is: 

exp {--
1
- [xR- J.LR]

2
} ITJ exp {--

1
- [xR·- XR] 2} 2a2 212 J 

R j=1 R 

ex: exp {--
1 

[xR- J.LR]
2
} exp {--

1 ~ [xR·- xR]
2
} 2a2 212 ~ J 

R R j=1 

{ 
1 ( [ 1 J] 2 [J.LR L.f-1 XRjl ) } ex: exp - 2 a2 + ,...,2 x R - 2 a2 + ~2 x R 

R IR R IR 

ex: exp { -~ (!._ + 2_) [xn- Lfr• 7 ~] 
2

} 
2 ,...,R2 a2R ---..- + ---..-

' '""~ a~ 1 R R 

(3.29) 

so that 

(3.30) 

Conditional Posterior Distribution for Aliquot Palaeodose 

Estimates 

Each of the J palaeodose values XRj, j = 1, ... , J from the J aliquots with preheat 

T, are only dependent on XR and have conditional posterior distributions of the form 

So that 

( 

f3j(Ynj-O'j) + :l:B.. ((32 ) -1) 
a2 7h j 1 

XRjiD, 8\XRj rv N {32 ' 2 + 2 · 
:1.. + 1 a IR 
a2 ~ 

(3.33) 

where the mean is a weighted average of the information from the data and the 

mean palaeodose value XR. 
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Conditional Posterior Distributions for the Regression Coef­

ficients 

The constant in the linear regression, a, is conditionally dependent on the gradient, {3 

and the aliquot values of the intercept, aj for j = 1, ... , J. These aj are independent 

conditional on a, so that 

P[aiD, 8\a] <X P[DI8]P[ai, ... , aJia, {3, fJ1, ... , f3J]P[aif3] (3.34) 

"' P[ D[6] (}] P[a; [a, {1, /1;]) P[a[/1] (3.35) 

<X exp { -~ ( 1';(1 ~ p2) + a-;(11- p2)) 

(3.36) 

and thus 

For the ajs, the dependencies are on {Jj, a and {3 so the conditional posterior 

distribution for each j = 1, ... , J is 

P[aiiD, 8\ai] <X P[DI8]P[aila,{3,{3i] 

<X exp { -~ ( nj a-~ 1 + ')';(1 ~ p2)) 

leading to 

(3.38) 

(3.39) 

(3.40) 
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Similarly, /3 is dependent on a and /31 , ... , /3j; 

P[/31D, 8\/3] ex P[DI8]P[/31a, a1, ... , aJ, f3IJ ... , f3J] 
J 

ex P[DI8] IT (P[/3jl/3, a, aj]P[/31a]) 
j=l 

ex exp {- ~ ( J + 
1 

) 2 'Y$(1 - p2) a$(1 - p2) 

so 

45 

(3.42) 

(3.43) 

(3.44) 

Each /3j is only dependent on a, /3 and aj, so the conditional posterior distribu­

tion is 

(3.46) 

(3.47) 

so that 

Conditional Posterior Distribution for a 2 

Finally, the conditional posterior distribution for a 2 is given by 

(3.49) 
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so that 

(3.50) 

Conditional Posterior Distribution for , ... r'k 

Here the parameter lk (3.13) is fixed, and its value specified by the expert. The 

model can be adapted so that lk is a random variable, with a prior distribution fol­

lowing an inverse gamma form. Another step would be added in the Gibbs Sampler, 

drawing from the posterior conditional distribution for /k, and updating its value 

accordingly, with 

leading to 

P[r~ID, 8] ex P[DI8, I~]P[r~lxR, xm ... , XRJ] 

oc (]} P[xR;IxR,'Yk]) P ['Y~] 
(3.51) 

(3.52) 

(3.53) 

3.4 Stability and Convergence of the Sampler 

A simulated data set was used to investigate the convergence and stability of the 

Gibbs sampler detailed above. Using simulated data means that the palaeodose 

value is known, and so can be used as a comparison tool with the value achieved 

through the MCMC simulation. A number of different diagnostic methods have 

been used [43], including those proposed by Gelman and Rubin [49], Geweke [51] and 

graphical methods. It is useful to analyse the sampler in a variety of ways, as each 

method provides evidence of convergence, rather than being rigorously conclusive. 

3.4.1 Data 

The palaeodose XR of the simulated data set was chosen to be 500 mGy, with a= 0 

and {3 = 10. The data were selected to comprise three aliquots, so J = 3. To 

simulate the aliquot palaeodose estimates (xRj, j = 1, ... , J), /R (3.13) was set at 
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5, and draws taken from Xnjlxn"" N(xn, lh)· Similarly, the aj, {Ji were simulated, 

with Ia = 5, /(3 = 5 and p = -0.3 (3.18). 

Five regenerative doses were used, 2 of which being repeated values. The lu­

minescence responses were calculated using the linear relationship with dose (3.16) 

set out in the model, with the the precision, r, where r = ~ simulated using a 

gamma distribution with mean 0.01, variance 0.0015. The natural luminescence 

values, were calculated using YRi = ai + {Jix Rj. In order for the 3 aliquots to be 

directly comparable, the luminescence response values were standardised against the 

natural luminescence for each aliquot, with YRi set at 5000. The simulated data set, 

along with the R code used to simulate it, is shown in Appendix D. 

The sampler was run using the conditional distributions detailed in Section 3.3, 

with 5 chains each of 50,000 iterations. 

3.4.2 Analysis of Chains 

The raw trace plot of the x n simulations from one of the chains of the sampler is 

shown in Figure 3.2, where the actual value of the xn is 500mGy, and xn is the pa­

rameter of interest in this analysis. The first plot shows the full50,000 iterations, and 

the second looks at the first 1000 iterations. These plots show consistent behaviour, 

and indicate that the sampler converges quickly, with no clear burn-in period. The 

true value of 500mGy for xn is also returned. To investigate the convergence prop­

erties further, different starting values for the parameters were chosen, and even 

when these were far from the expected value of the parameters the chain appeared 

to converge. The trace plots with such starting values are shown in Appendix B.l. 

Often the initial iterations are discarded, to remove the influence of the starting 

distributions [50]. This is known as the burn-in. Different burn-in periods were 

tried and the effect on the inferences made is shown in Table 3.1. The length of 

the burn-in period does not affect the mean and variance of x n estimated from the 

iterations in this example. When no burn-in is present, the standard deviation is 

increased, but only a small number of iterations needed to be discarded to remove 

this effect. 

The mean and variance of xn was computed at various intervals along the chain, 
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Figure 3.2: Raw trace plots of xn simulations, with all iterations (top) and just the 

first 1000 iterations. These calculations are based on a simulated data set, where 

500 mGy is the true value for xn. 

after a burn-in of 1000, and are shown in Table 3.2. Again the length of the chain 

dose not affect the mean and standard deviation of the posterior palaeodose distri­

bution, suggesting quick convergence. 

Consecutive iterations in a Gibbs Sampler can be correlated [52], so to obtain 

approximately independent draws from the desired posterior distribution, every kth 

value is used; that is, the chains are thinned. The level of thinning necessary to ob­

tain approximate independence is dependent on the sampler, here Table 3.3 shows 

the mean and standard deviation of the posterior palaeodose distribution calcu­

lated using increasing amounts of thinning (with a burn-in period of 1000 iterations 

throughout). Here these summary statistics are not particularly affected by the level 

of thinning, as the raw trace plots shown in Figure 3.2 have good spiky character­

istics. That is, each iteration does not have appear to be dependent on the value of 
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Burn-in, n0 Mean SD 

0 499.33 6.20 

50 499.32 5.78 

1000 499.32 5.78 

Table 3.1: Mean and standard deviation of the posterior XR distribution from the 

sampler for different burn-in periods, prior to thinning. 

Iterations Mean SD 

1000 499.32 5.76 

5000 499.30 5.77 

10000 499.28 5.80 

30000 499.31 5.77 

50000 499.32 5.78 

Table 3.2: Mean and standard deviation of the posterior XR distribution, calculated 

using different lengths of chain, prior to thinning. 

the previous draw, and so the trace plot is seen to jump around. It was chosen to 

thin the chains every 5th iteration. 

3.4.3 Gelman and Rubin Method 

Gelman and Rubin [49]look at the convergence of m independent simulated chains 

with n iterations. If the sampler has converged, then the inferences made from each 

chain should be similar [43]. The ratio of the variance estimate to the inter-chain 

variance with some correction factors, Rc, is computed, the details of which are 

shown in Appendix B.2. Rc --+ 1 as n--+ oo, and if the value is close to 1 then the 

sampler is considered to have reached convergence. The calculated value of Rc can 

be improved with further iterations, if required. 

The value of Rc calculated for the simulations of XR is 1.0013, which is close to 

1, and so indicates that the sampler has reached convergence. 
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Thin Mean SD 

1 499.32 5.76 

2 499.31 5.74 

5 499.29 5.77 

10 499.31 5.73 

15 499.28 5.75 

20 499.30 5.74 

Table 3.3: Mean and standard deviation of the posterior xn distribution, calculated 

using different levels of chain thinning. A burn-in of 1000 and chain length of 50,000 

iterations was used. 

3.4.4 CUSUM path plots 

Yu and Mykland [122] suggest using CUSUM (cumulative sum) path plots to look at 

the convergence and mixing of a sampler. The plots are constructed using the simu­

lated values, say for parameter xn, from a chain of length n (denoted x~), ... , x~)), 

where the first n0 are discarded. If 

1 n 

flxR = """' X~) n-no ~ 
r=no+l 

(3.54) 

then the partial sum or CUSUM is 

t 

Bt = L [x~)- flxR] (3.55) 
r=no+l 

fort= n0 + 1, ... , n, and then St is plotted against t. Figure 3.3 shows the CUSUM 

path plot for xn, based on one chain of the sampler with n0 = 1000. For comparison, 

this figure also shows a CUSUM plot for n - n0 draws from a normal distribution 

with the same mean and variance as the x R simulations. 

A smooth plot would indicate poor mixing [122], and here the CUSUM plot 

for the iterations of xn from the sampler is irregular, with no sections with an 

increasing or decreasing trend, suggesting good mixing. It also performs well against 

the comparison plot computed from draws from a normal distribution, as the two 

paths lie within a similar range and with comparable 'hairiness' (not smooth), i.e. 
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Figure 3.3: CUSUM path plots for xn from the sampler (top) and from draws 

from a normal distribution with the same mean and variance as the xn simulations 

(bottom), for comparison. 

mixing in the sampler is comparable to that of independent draws from a normal 

distribution, supporting convergence of the sampler. 

This method of assessing the convergence properties of the sampler is subjective, 

so a quantitative method based on the CUSUM plots was developed by Brooks [25]. 

The level of 'hairiness' of the CUSUM path is measured using 

Then 

1 if Bt-l > Bt and Bt < Bt+l or Bt-l < Bt and Bt > Bt+1, 

0 else. 

n-1 
1 

Dn = "" dt n- no L......t 
t=no+l 

(3.56) 

(3.57) 

has a binomial distribution with mean ~, variance 4(n~no) [25], and takes values 

between 0 and 1. For large n - n0 a normal approximation can be made, and if Dn 
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lies outside the bounds 

(3.58) 

100(1 - ~)% of the time then this indicates that the sampler has not converged. 

Brooks [25] emphases that these bounds are just a guide to convergence and should 

not be used as an exact test. 

The values for Dn for XR, with a burn-in no = 1000 here is 0.5015, which lies 

inside the 95% interval, [0.4956, 0.5044], which suggests that the sampler has con­

verged. 

3.4.5 Geweke Method 

Gweke [51] proposes that if a chain of the sampler has converged, then the loca­

tion measures of two subsequences of the chain should be equal. Consider the two 

subsequences 

{ 
(t)l - } XR t- 1, ... , nA { 

(t) it- * } xR - n, ... ,n (3.59) 

where 1 < nA < n* < n. Then if { xW} is stationary [51], 

(3.60) 

where nB = n - n* + 1 xA = _L ""nA x(t) x 8 = 1 ""n (t) d f;A S8 are 
' R nA L.. . ..t=l R ' R ns L..Jt=n* X R ' an ' 

estimates of the variance of x R based on the respective subsequences. 

For the sampler using the simulated data, this statistic was calculated with 

nA = ;a, n* = ~' as suggested by Geweke [51], though the choice is arbitrary [43]. 

This convergence diagnostic computes to 0.216 in this example, which supports chain 

convergence as it does not provide evidence against Zn having a standard normal 

distribution. 

Values for Zn were calculated for different values of n, and the results are shown 

in Table 3.4. These support the initial calculations in Table 3.2 that the sampler 

converges quickly. 
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Iterations Convergence Diagnostic 

500 1.007 

1000 1.012 

5000 1.442 

10000 1.091 

50000 0.216 

Table 3.4: Geweke's convergence diagnostic computed for different chain lengths. 

3.4.6 Summary of Convergence Analysis 

In this simulated data example, the convergence of the sampler is clear, with each 

of the convergence checks carried out reaching the same conclusion, i.e. we have 

obtained convergence to the known palaeodose of the data. However, it is important 

to monitor convergence of the sampler for each example studied. Although we 

have only discussed the convergence of x R here, the other parameters were also 

investigated in a similar manner, as convergence of one parameter does not imply 

convergence of the whole sample. Our experience suggests that the MCMC system 

is sufficiently stable not to cause problems for non-experts. 

3.5 Example 

Here we use the example of a heated material that was dated using OSL. one sam­

ple has been taken from the study, labelled 311-6 from Fydell House, Boston, Lin­

colnshire, part of a larger project on dating bricks from Medieval buildings [14]. 

3.5.1 Prior Specification 

The hyperparameters used for the prior distributions are shown in Table 3.5. 

J.LR aR /R ma CYa mfJ CY(J p Ia /{3 d a 

1000 100 50 0 50 10 20 -0.3 20 5 5 13.! 7 3 

Table 3.5: Values assigned to the prior hyperparameters for the combined aliquot 

model, when it is applied to 311-6, Fydell House. 
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One aliquot was used in the preliminary experiments for sample 311-6. The 

resulting luminescence responses to the laboratory doses applied are shown in Fig­

ure 3.4. Using the traditional back-interpolation from the least squares fitted line 

method to estimate the palaeodose, this aliquot produces a palaeodose of 934mGy. 

This is near the centre of the range of doses applied, indicating that the choice 

of laboratory dose is suitable (and so supports initial simple order of magnitude 

estimates of the palaeodose by the practitioner). A prior distribution for sample 

palaeodose was chosen to be normal with mean 1000, standard deviation 100, after 

discussions with Bailiff. This falls within the range of regenerative doses, but does 

not rely too heavily on the preliminary palaeodose estimate, as this was produced 

using only one aliquot. 

-----------, 
~ ·0 I 

800 1000 1200 

Dose (mGy) 

Figure 3.4: Plotted data from one of the preliminary experiments, for sample 311-6 

from Fydell House. 

The data have been standardised against a natural luminescence value of 10000 

counts, and a linear least squares line has been fitted. 

The standardised value of natural luminescence was chosen to be 10000 counts: 

this is an arbitrary choice. The joint prior distribution for a and j3 was selected to 

be 

; ~ N ( ( I~ ) , ( ( -0 3~(~0)(20) ( -0.3~~0)(20) ) ) . (3.61) 
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The mean for a was chosen to be 0, as this implies that no luminescence signal 

will be expected if no dose has been applied. This choice, together with the choice 

of standardised natural luminescence, naturally leads to 10 as the prior mean of (3, 

as then the prior mean palaeodose and natural luminescence make a point on the 

line with coefficients as the mean prior values of a and (3. 

The least squares line fitted to the preliminary data set has intercept -280, gra­

dient 11.0. At first glance, this intercept may seem improbable considering the 

assumption that no signal should be seen with zero dose. However, the scale of the 

luminescence response needs to be considered; in comparison to the natural lumi­

nescence of 10000 counts, an intercept value of -280 is relatively close to zero. With 

this in mind, plus consultation from experienced practitioner Bailiff, the prior stan­

dard deviations aa and af3 were selected. A smaller value was placed on af3 because 

the standardisation of the data is expected to contain these values within a tighter 

range. The correlation between the linear coefficients is negative as, if the gradient 

of the fitted line were increased then, the point at which the line crosses the y-axis 

would be lower. This correlation is thought to be small, so a value of -0.3 was 

chosen. 

After discussion with Bailiff, an experienced practitioner of the SAR protocol, a 

5% error of the palaeodose estimates from each aliquot around the mean palaeodose 

was considered reasonable. So, with f.LR set at 1000mGy, "fR was assigned a value of 

50. 

3.5.2 Data 

The data set 311-6 comprises 20 aliquots across 5 preheat treatments in the range 

210- 250°C. The regenerative doses chosen were {603, 904, 1206,603, 1206}, and for 

each aliquot the data comprises the natural luminescence, plus the luminescence 

response to each of the laboratory doses applied. The data are shown in Appendix 

G.l. Here we will initially consider evaluating the palaeodose based on the 3 aliquots 

with a preheat of 210°C. 

The data for the 3 aliquots with a preheat temperature of 210°C are plotted 

in Figure 3.5, along with the least-squares fitted lines. From these lines the stan-
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Figure 3.5: Data from aliquots with a preheat temperature of 210°C, with fitted 

lines being used to estimate palaeodose by back-interpolation. 

The data have been standardised to a natural luminescence value of 10000 counts, 

so the regression lines can be directly compared. 

dardised natural luminescence is used to back-interpolate from the fitted lines to 

illustrate the traditional estimate for the palaeodose. Here a straight line fit to the 

data seems plausible, though linear diagnostics will be considered in Section 3. 7. 

3.5.3 Posterior Distribution 

The sampler detailed in Appendix H.l, with the input as above, was run with 5 

chains for 50,000 iterations. The first 1000 iterations were discarded as burn-in, and 

every 4th iteration taken. The convergence of the sampler was checked by looking 

at the trace plots of each of the parameters. 

The posterior palaeodose distribution for aliquots with a preheat of 210°C is 
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shown in Figure 3.6, with mean 1021.5 mGy and standard deviation 28.5. This 

distribution is approximately normal, illustrated by the normal density that is over­

layed in Figure 3.6 (dashed line), with the same mean and variance as the posterior 

palaeodose. In this example the posterior density for palaeodose and the normal 

density are almost the same. 

N -0 
d 

.~ <0 
~ 0 

~ 
0 
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0 
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Palaeodos.e mGy 

Figure 3.6: Posterior distribution of palaeodose based on three aliquots with a pre­

heat of 210°C. 

The dashed line represents the normal density with the same mean and standard 

deviation. 

3.6 Sensitivity to Prior Parameters 

The sensitivity of the posterior palaeodose distribution to the choice of prior param­

eter values is investigated here. The example of sample 311-6 from Fydell House is 

considered, in particular the evaluation of palaeodose at preheat 210°C. Here statis­

tics have been quoted to a high level of precision for comparative purposes: rounding 

to the nearest 5mGy is accepted as appropriate in routine luminescence dating. 

The hyperparameters of the prior distributions (Section 3.2.2) initially were set 

to the values in Table 3.5, and the reasoning for these choices is explained in Section 

3.5.1. 

The effect of the choice of prior mean (f-t R) and standard deviation (a R) of palaeo­

dose on the posterior palaeodose distribution is now explored. With f-tR = 1000, 

Figure 3.7 shows the influence of aR on the posterior distribution for palaeodose. A 
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small an value gives greater weight to the prior distribution, and so the posterior 

palaeodose distribution shifts towards the prior mean and the posterior variance is 

reduced. 

Figure 3. 7: Posterior palaeodose distributions at a preheat of 210°C, for different 

prior standard deviations, an, with the prior mean fixed at J.LR = 1000. 

The sensitivity of the posterior palaeodose distribution to the prior standard 

deviation an is dependent on the choice of prior mean, J.LR· Figure 3.8 illustrates 

how, in this example, CJn influences the posterior mean for palaeodose, for different 

1-LR· When the prior standard deviation is large, the posterior palaeodose mean is not 

affected by the choice of prior value for f.-LR· In this example, the posterior palaeodose 

had mean 1020 mGy when a broader prior was used and so the information from 

the data dominated the analysis. When the prior beliefs are strong, this is reflected 

in a small value for an, and so the posterior mean gravitates towards the prior. 

Further details of the investigation into the influence of J-Ln, an on posterior 

palaeodose, including the statistics from the posterior distributions produced, are 
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Figure 3.8: The influence of prior standard deviation, O"n, on posterior mean palaeo­

dose for three different choices of prior palaeodose mean. 

given in Appendix E. Similar trends are observed in the posterior mean palaeodose 

with prior standard deviation when different prior means are used. 

The sensitivity of the posterior palaeodose distribution to "'fR, the measure of 

spread of the palaeodose estimates from the aliquots was first considered treating 

"YR as a known constant. Figure 3.9 shows how the choice of "YR influences the 

posterior distributions for x R and the aliquot estimates of palaeo dose x R1, x R2, x R3. 

A small "YR value pulls the aliquot estimates towards each other and the posterior xn 

distribution. As "YR is increased, the x Rj distributions spread out (as the data from 

the aliquots has the more dominating effect on them), and the posterior variance of 

x R increases. 

The posterior palaeodose distribution is formed from a combination of the aliquot 

estimates and the prior, and so the posterior variance will have strong influences 

from both "YR and O"n. The effect of the choice of "'fR, for different O"R values, on the 
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Figure 3.9: Posterior distribution for palaeodose, and palaeodose estimates from the 

3 aliquots with preheat 210°C. 

The values of rR used are (a) 10, (b) 25 and (c) 50, with prior XR"" N(lOOO, 252
). 



3.6. Sensitivity to Prior Parameters 61 

Prior Posterior 

JlR fiR 'YR Mean SD 

1000 100 50 1021.4 28.2 

1000 10 50 1002.4 9.4 

1100 100 50 1029.9 28.7 

1100 10 50 1092.3 9.5 

1000 100 25 1021.8 16.7 

1000 10 25 1006.0 8.6 

1100 100 25 1024.9 16.5 

1100 10 25 1082.8 9.8 

1000 100 5 1019.0 17.5 

1000 10 5 1005.6 8.5 

1100 100 5 1022.3 16.7 

1100 10 5 1089.4 10.0 

Table 3.6: Influence of 'YR on posterior mean and standard deviation of palaeodose 

posterior mean and standard deviation of palaeodose is shown in Table 3.6. Results 

of further investigations are shown in Appendix E. 

A large value for 'YR relates to the belief that the aliquot estimates x Rj for 

palaeodose will have a large spread around XR. So, as shown in Table 3.6, a large 

'YR relates to a large posterior standard deviation if the prior standard deviation, 

fiR, is also large. However, if there are strong prior beliefs, then these will dominate 

the posterior distribution over the data (the XRjs) when there is a large value of 'YR, 

and so low confidence in the data. Conversely, if 'YR is small compared to fiR, the 

posterior variance reflects the spread of the estimates x Ri over the aliquots. 

The influence of the prior parameters for the linear coefficients on the posterior 

palaeodose are shown in Table 3.7. This table shows that the prior mean, variance 

of (a, (3)T, along with the spread of the ( aj, (3i) do not have a large influence on the 

posterior palaeodose in this example. 
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Prior Parameters Posterior Palaeodose 

mo: ffi(J a a af3 p Ia: /(3 Mean Standard deviation 

0 10 50 20 -0.3 5 20 1021.4 28.2 

0 10 10 5 -0.3 5 20 1021.6 28.4 

5 20 5 2 -0.3 5 20 1021.9 28.3 

0 10 5 2 0.8 5 20 1021.9 28.8 

0 10 50 20 -0.3 2 2 1021.8 28.6 

Table 3.7: Influence of the choice of prior parameters for the linear coefficients on 

posterior palaeodose distribution. 

Prior :} 
Ti> 

Posterior x R 

Mean Standard deviation Mean standard deviation 

1 10-3 1019.3 42.3 'fii2 
1 10-4 1019.4 29.1 1Q2 

1 10-5 1021.9 18.1 1Q2 

1 10-3 1018.8 43.2 252 

1 10-5 1022.0 25.0 252 

1 10-5 1019.7 42.1 502 
1 10-s 1021.6 28.3 502 

Table 3.8: Posterior mean and standard deviation for palaeodose when lh is treated 

as a unknown, a priori. 

3.6.1 "YR as a Random Variable 

The model can be adapted to let /R be a random variable rather than a constant to 

be specified by the expert, so an extra step is added to the Gibbs sampler to update 

this parameter in each iteration cycle. The prior density for :} was taken to be a 
"YR 

gamma distribution, and the corresponding prior density is given in Equation 3.53. 

Table 3.8 shows the posterior mean and standard deviation of palaeodose when 

this model is applied to the three aliquots with a preheat of 210°C from 311-6. These 

can be compared to the results calculated in Table 3.6 where lh is a constant. 

The posterior mean is not significantly affected by lh being a random variable 
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instead of a constant. However, if the prior standard deviation of~ is large, then the 
lR 

posterior variance of palaeodose is notably increased. This reflects the uncertainty 

about the relationship between xn and the aliquot estimates Xnj, j = 1, ... , J. 

The aliquot estimates x Rj can be considered as the data in the posterior distri­

bution for xn. As, in Table 3.6, there are only 3 aliquot estimates used, the choice 

of prior distribution on ~ is influential on the posterior palaeodose. However, when 
lR 

there are a large number of aliquots contributing to the estimate of x n, then this 

influence is not as strong, since more information from the data is available. 

3.6.2 Summary 

The values chosen for the prior parameters impact the posterior distribution for 

palaeodose in this example, most notably the posterior standard deviation. There­

fore, it is important that the opinions of the expert on the parameters a priori are 

reflected in the specification of the prior parameters. So it would be useful if further 

work on prior elicitation was carried out to achieve this. 

3. 7 Diagnostics 

3. 7.1 Linear Model Diagnostics 

Linear model diagnostics can be used to verify that fitting a linear model to the 

luminescence response to dose (3.15) is appropriate (Section 3.16). One method is 

to look at the residuals eij' 

(3.62) 

where &.i, {3i are the least squares estimates of ai, {3i. When the residuals are plotted 

against fitted values, then any trend can suggest a systematic misfit [115]. The fitted 

values, Yii are 

(3.63) 

The residuals for the aliquots with a preheat of 210°C are shown in Figure 3.10. Here, 

for each aliquot, a funnel pattern to the residuals can be detected from the plot. This 
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suggests that the variance of the data around the fitted model might increase with 

Yii. This is often a feature of counted data [96], and here the luminescence response 

is measured by the counts of photons observed. The residuals plotted in Figure 3.10 

are small compared with the magnitude of the luminescence response (rv 1%), with 

an even balance between the number of positive and negative residuals. None of the 

residuals have a relatively large value (compared to the residual standard errors in 

Table 3.9) so there are no outliers in the data. So, in this case, the residual plot 

does not indicate that a linear fit is inappropriate. 

0 
~-

Aliqum 
0 c 22031 0 
0-

1:!.. 22032 - 0 22033 
6 0 

575-

"' "iil 
+ -a 0 

~ 
.c. 0 -r 

a 
0 0 
L/1-

I 

0 
0-..... + I 

0 

0 
L/1--I 

I 

6000 8000 10000 12000 

Fitted Values 

Figure 3.10: Residuals from aliquots with a preheat of 210°C, plotted against fitted 

values. 

The correlation coefficient, 

(3.64) 

can be computed to indicate the strength of the linear relationship between dose and 

luminescence response. If there is a perfect linear relationship between the variables, 

then r = 1. For the example considered here, the data from each of the 3 aliquots 

with a preheat of 210°C had a correlation coefficient of 0.999, and so indicates a 
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Aliquot ID RSE 

22031 106.5 

22032 54.0 

22033 90.4 

Table 3.9: The residual standard error from the linear fit of the data from each of 

the three aliquots with a preheat of 210°C. 

strong linear trend in the data sets. However, there are only a small amount of data 

points for each aliquot making it more difficult to pick up a non-linear relationship. 

Another assumption made in the linear model (3.15) is that the residuals are 

independent and identically distributed, with Eij "' N(O, a 2
) across the aliquots 

with the same preheat temperature. The value of the residual standard error for 

each of the aliquots with a preheat of 210°C is shown in Table 3.9. Two of these 

values are similar, and support the assumption that the residuals have the same 

standard deviation across the aliquots. The second value in the table is around half 

the magnitude of the other two, but with just three data points it is difficult to test 

the validity of the normality assumption. 

When compared to the magnitude of the standardised luminescence response, 

the residual standard deviations are relatively small. The small sample size must 

also be taken into consideration, which implies a large variance on the estimates 

of RSE, and thus make it more difficult to detect departures from the assumptions 

made. 

3. 7.2 Diagnostics for the Bayesian Model 

The difference between the prior and posterior mean for palaeodose can be compared 

to the posterior standard deviation as a diagnostic check of the prior specification. 

Here, the prior mean was chosen to be 1000 mGy, and the posterior mean for aliquots 

with a preheat of 210°C is 1021.5 mGy. The difference of 21.5 mGy, when compared 

to the posterior standard deviation of 28.5 mGy, does not suggest that there are 

problems with the Bayesian prior specification. 

The posterior distribution for palaeodose estimated using the Gibbs sampler can 
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be compared to the posterior distribution of the aliquot estimates for palaeodose, 

Xnj, j = 1, ... , J and the prior distribution. The posterior palaeodose distribution 

should lie within the range of these distributions, as it can be considered an average 

of them weighted by their variance. For example, Figure 3.11 shows these distri­

butions for the palaeodose evaluated with a preheat of 250°C. Here the posterior 

palaeodose distribution straddles the distributions from the aliquot estimates, and 

is contained within the broad prior, so there is no reason to suggest the sampler has 

computed the distribution incorrectly. 

600 900 1000 

Palaeodose 

Posterior palaeodose 
Posterior aliquot estimates 
Prior palaeodose 

1100 1200 

Figure 3.11: Posterior distribution for palaeodose, estimates of palaeo dose from each 

aliquot with a preheat of 250°C and prior palaeodose distribution. 

3.8 Palaeodose Evaluation for Sample 311-6 

So far, only the aliquots from sample 311-6 with a preheat treatment of 210°C 

have been considered. However, the sample comprises 20 aliquots across 5 preheat 

temperatures. So, the combined aliquot model was applied to each set of aliquots, 

grouped by preheat temperature. The same regenerative doses were applied in each 

case. The same prior distributions were used at each temperature, and the posterior 

palaeodose mean and standard deviation achieved are shown in Table 3.10, with the 

distributions shown in Figure 3.12. 

It is notable in Table 3.10 that the largest posterior standard deviation for palaeo­

dose is produced using the data at a preheat of 240°C, which is based on 5 aliquots. 
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Figure 3.12: Posterior distribution for palaeodose at preheat (a) 220°C, (b) 230°C,(c) 

240°C, (d) 250°C 
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Preheat # aliquots Posterior Mean Posterior SD 

210 3 1021.5 28.5 

220 6 982.5 25.0 

230 3 949.4 28.4 

240 5 993.7 42.4 

250 3 979.12 28.1 

Table 3.10: Posterior mean and standard deviation of palaeodose estimates at each 

preheat, from sample 311-6. 

This is a comparatively large number of aliquots, and so it would be expected that 

the posterior standard deviation would be lower at this preheat temperature. This 

dispersion at 240°C is due to a large spread of the posterior x Rj values, rather than 

uncertainty around the regression lines, and illustrates the unpredictable nature of 

luminescence. 

The method described in this chapter allows the experimenter to combine the 

data for a given preheat temperature, and to assess their accuracy through the 

posterior palaeodose standard deviation. In the next chapter we will consider the 

issues that arise in combing information from different preheat temperatures. 

3.9 Summary Guide to evaluating palaeodose at 

each preheat temperature 

1. Write down a range in which the palaeodose is expected to lie, based on the 

preliminary experiments, the choice of regenerative doses to be used, and other 

archaeological knowledge. Use this as the basis for the prior mean and standard 

deviation of palaeodose. Elicit expert opinion on the spread of the aliquot 

estimates of palaeodose around the palaeodose value, for 'YR· 

2. Elicit values for the mean and variance of the linear coefficients, a and /3, and 

the spread of the aliquot estimates around these values, "fa, 'Y/3· 

3. Standardise the (sensitivity corrected) luminescence response against natural 
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luminescence for each aliquot, and group the aliquots by preheat temperature. 

4. For each preheat, run the Gibbs Sampler and check for convergence. 

5. Perform diagnostic checks to ensure the linear fit is appropriate. 

6. Look at the posterior palaeodose distribution obtained, and check that it is 

feasible. Note the posterior mean and variance. 



Chapter 4 

Preheat Plateau Model 

The combined aliquot model in Chapter 3 computes an estimate for palaeodose 

at each preheat temperature. In standard luminescence dating, the estimates of 

palaeodose are plotted against preheat temperature. A region where palaeodose 

does not change with temperature, a preheat plateau, is considered to provide· the 

best estimate for the sample palaeodose (Section 2.3). 

In this chapter we will consider the problem of identifying a preheat plateau. 

Once the plateau is located, the posterior distribution for the palaeodose of the 

sample will be calculated. This will be illustrated using the continued example of 

sample 311-6 from Fydell House, Lincolnshire. 

4.1 Motivation for modelling preheat plateau 

The standard practice in routine luminescence dating is to identify the preheat 

plateau by eye. This is very subjective, and it can be easy to 'find' a plateau in the 

data when it is desired, when it could equally be argued that a different trend was 

present. This is particularly disconcerting considering the care taken to make the 

aliquot estimates as accurate and precise as possible. A robust, statistical method of 

plateau identification would enable the luminescence community to have a firm basis 

for their choice of aliquots on which to base the evaluation of sample palaeodose. 

Once the posterior distribution for the location of the plateau region has been es­

tablished, the set of aliquots which have undergone preheat treatments in this region 

70 
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is selected, if this is clearly identified by the form of the posterior distribution. The 

luminescence data from these aliquots are used to evaluate the sample palaeodose 

distribution. Since, according to the plateau model, these aliquots all estimate the 

sample palaeodose, the combined aliquot model can be applied to this set to obtain 

the posterior sample palaeodose distribution. So, we use the methods described in 

Chapter 3 but apply them to the new set of aliquots which have been determined 

by the plateau model. 
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Figure 4.1: An example of variation in palaeodose evaluation with preheat temper­

ature given in Madsen et al 2007 [69]. 

Various different trends for the behaviour of palaeodose with preheat temperature 

are observed in the literature. For example, Figure 4.1, taken from Madsen et al [69], 

shows a dependence of palaeodose estimation with preheat temperature. Here there 

is an increasing trend in the palaeodose estimates with preheat temperature, with no 

clear plateau region. However, a decreasing trend can also be observed, for example 

Figure 4.2, which Wintle and Murray used as an example of a preheat plateau, 

taking the data from Jacobs et al [57]. The difficulty in identifying a plateau in the 

data motivates the development of a model for the preheat plateau. 



4.2. Model 72 

- 0 

I -1---t--~--r--~--~ , 
>. ro 
(j 
'"-" 

~ 0 
0 

1,0 

"'0 

~ 0 - -.:1" 
I'd 

p,. 
0 
N 

oL-------~------------~~--~ 

160 200 240 280 

Preheat Temperature, oc 

Figure 4.2: Variation of palaeodose evaluation with preheat temperature given as an 

example in Wintle and Murray 2006 [120], originating from Jacobs et al 2003 [57]. 

4.2 Model 

Denote the mean palaeodose for a given preheat temperature as XRT· The plateau 

is in the region [Ta, nJ such that 

(4.1) 

All aliquots which are preheated to a temperature on the plateau are evaluating the 

same palaeodose, xn*· This is the sample palaeodose, and used as the numerator in 

the age equation. The combined aliquot model (Chapter 3) can be applied to all of 

these aliquots to evaluate the palaeodose of the sample. 

The palaeodose estimates from aliquots j = 1, ... , Jk with preheat treatments 

which lie in the plateau region, {Tk E [Ta, n]}, are denoted XRjk where k labels the 

preheat temperature and j the aliquot number. These are related to the sample 

palaeodose, xn*' by 

(4.2) 

with 8j{!"" N(O, rh), independent for {kiTk E [Ta, Tb],j = 1, ... , Jk}. The relation­

ship between the linear coefficients a, {3 and the aliquot values CXjk, f3jk from the 

combined aliquot model also extends to cover all aliquots which produce palaeodose 
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values lying on the preheat plateau; 

{Jij 

a+ ojk, 
f3 + otk, 

4.2.1 Location of the plateau 

ojk "'N(O, 1;), 

o:k "' N(O, !~). 
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(4.3) 

(4.4) 

Once the location of the plateau has been identified, then the aliquots which lie on it 

can be used to evaluate the sample palaeodose using an extension of the combined 

aliquot model. However, the position of the plateau is not always obvious. The 

difficulty in modelling the preheat plateau stems from the uncertainty surrounding 

the relationship between preheat temperature T and palaeo dose x RT of the plateau. 

Here we assume that a monotone continuous function leads to the plateau, which 

starts at temperature Ta at palaeodose level xn*, so that for palaeodose estimate 

xnr with a preheat T, 

Xnr = { 
( 

(1-exp{ -17T})exp{ -KOT} ) 
XR* (1-exp{-1JTa})exp{-KOTa} (4.5) 

We consider the four parameters xn*' Ta, T/, "' to be independent a priori. The two 

uncertain curve parameters T/ and "' allow a wide variety of continuous shapes of 

curve to be achieved before the plateau is reached. Figure 4.3 illustrates some of 

the different curves that can be achieved with this function, for particular values of 

T/, /'i,, 

Here we assume that the data do not extend to temperatures beyond the plateau, 

and that a 'false plateau' will not be observed prior to the true preheat plateau. Al­

though such behaviour may occasionally have been observed, currently the physical 

reasoning behind it is not fully understood. So, as a first model for the preheat 

plateau, we do not consider such behaviour or the region beyond the plateau, but as 

theoretical knowledge is expanded the model can be further developed. As the model 

has been broken down into a number of separate stages, the practitioner can monitor 

the posterior parameter values produced and as such highlight any situations where 

this simplification of the problem may become an issue. 
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Figure 4.3: Examples of the shape of curve that can be achieved using (4.5) to 

represent possible relationships between palaeodose and preheat temperature. 

(a) Tf, "'= 0.001, (b) Tf, "'= 0.003, (c) Tf = 0.005, "'= 0.008, (d) Tf, "'= 0.008. 

4.2.2 Data Input 

Current routine practice in luminescence dating is to evaluate a palaeodose estimate 

from each aliquot, and then plot these estimates against the preheat temperature. 

The plateau is then identified (or otherwise) by eye, and the palaeodose estimates 

which lie on the plateau are used to evaluate the palaeodose of the sample. In our 

Bayesian model we aim to extract the corresponding quantities which allow us to 

make a similar determination. 

Aliquots at each preheat temperature {TI> ... , Tt} have been combined to give an 

overall palaeodose estimate at each temperature using the combined aliquot model 

in Chapter 3. Let the mean of the posterior distribution for palaeodose at temper­

ature 7i, E[xRTJ, be written as XRTp and standard deviation given by the posterior 

standard deviation of x nri, denoted a nri for i = 1, ... , t. 
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In the preheat plateau model, consider the data input to be the set of posterior 

palaeodose means at each preheat temperature, {xnr;, i = 1, ... , t}, found using 

the combined aliquot model. We assume normality of the XRT;, with variance CJhr;· 

As well as being analogous to current dating procedure, the reasoning behind 

using the information in the posterior distribution for XRT; as the data input to 

the plateau model is as follows. We assume here that the errors at each stage 

of the analysis are independent (in reality the dependencies are small). Consider 

observing data D to learn about xnr· If Di "" N(xnr;, CJl) for known variance CJT, 

then, with vague prior information for XnT; the posterior distribution for xnr; given 

Di would be approximately of the form N ( Di, CJl). So viewing the posterior means 

x RT;, i = 1, ... , t as data observations with variance CJhr; in the next stage of the 

analysis is a plausible representation of the information summarised by the posterior 

distribution. 

This approach has been chosen as it is intuitively comparable to current proce­

dures, is relatively easy to implement, straightforward to modify as experimental 

protocols change and leads to stable and managable calculations. As seen in the 

example (Section 3.5.3), this normal representation is a good approximation to the 

form of the posterior for heated materials from a homogeneous environment. 

It would be difficult to combine all of the evaluation in Chapter 3 and 4 in 

a single calculation because of the direct prior judgements of the magnitudes of 

the x RT; values. We also recognise the exploratory nature of the plateau model 

reflecting current theoretical understanding of the relationship between palaeodose 

and preheat temperature before a plateau is reached. As such it is more suited to 

being used mainly as a diagnostic tool to identify the presence of a preheat plateau 

and so in turn the aliquots which should be used to evaluate the palaeodose of the 

sample. 

We only use the reduced form to identify the start of the preheat plateau. So, as 

in routine practice, the preheat plateau is used as a diagnostic tool to assess which 

aliquots should contribute to the assessment of the sample palaeodose evaluation. 

Once the plateau has been identified, we then return to the full model of Chapter 3 

to evaluate the palaeodose of the sample. 
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4.2.3 Likelihood 

( 4.6) 

with Xnr defined in (4.5). 

4.2.4 Posterior Distribution for Ta 

We now use the model as a tool to identify the plateau starting temperature, Ta. 

As the aliquots have preheat temperatures with increments of, for example, 10°C, 

the precise value of Ta is not important. The real question is between which preheat 

temperature interval does the plateau start, i.e. which aliquots should be used to 

evaluate the sample palaeodose. 

Again, the Bayesian paradigm is applied to find the posterior distribution of Ta, 

P[Taldata] ex P[dataiTa]P[Ta] (4.7) 

ex J J J P[dataiTa, xn*' ry, ~JP[Talxn*' ry, ~Jdxn* dry d~ (4.8) 

ex P[Ta] J J J P[dataiTa, xn*' ry, ~JP[xn*' ry, ~Jdxn* dry d~ (4.9) 

ex P[Ta] J J J P[dataiTa, Xn*' ry, ~JP[xn*]P[ry]P[~Jdxn* dry d~. 
(4.10) 

The integrals ( 4.10) can be evaluated numerically given the prior distributions 

for Xn*' Ta, ry and ~which must be specified by the expert (Section 4.3.1). 

The posterior distribution of Ta is often not that sensitive to the precise form of 

the curve (4.5) because most "reasonable" shapes of curve will include the data which 

suggest similar xnr values, while eliminating xnr values that are much smaller. 

However, more experimental investigations into the form of (4.5) would be valuable. 

If the posterior distribution of Ta does not give a clear indication of the plateau 

starting temperature then different possible sets of aliquots should be selected in 
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order to evaluate the sample palaeodose, according to the posterior distribution of 

Ta. The distribution of Ta will give the relative probabilities of each of the posterior 

palaeodose distributions found using the combined aliquot model (illustrated in the 

example in Section 4.5). 

The selection of the plateau starting temperature, and thus the aliquots chosen 

to evaluate the sample palaeodose, can be considered as a bias-variance trade off. 

If a high plateau starting temperature is used, then fewer aliquots and so less data 

are used to evaluate the sample palaeodose, and so the variance of the palaeodose 

is increased. However, a lower choice of Ta will result in more data contributing to 

the sample palaeodose evaluation, and thus reduce the variance but at the cost of 

increasing the potential bias in the evaluation. 

4.2.5 Prior Distributions 

The prior probability distributions for xn*' Ta, and the curve parameters TJ, K are 

to be specified by the dating expert. The level of the plateau, xn* is the palaeodose 

of the sample, so it is usually appropriate to use the same prior distribution as 

for the palaeodose in the combined aliquot model (Section 3.5.1). The practitioner 

tries to choose preheat temperatures for which the palaeodose estimates will lie on 

the preheat plateau, and hence evaluate the sample palaeodose. So, a priori the 

practitioner judges all aliquots to be on the preheat plateau, and their estimates of 

palaeodose will correspond to the level of the plateau. 

There is no purpose in routine dating for palaeodose estimates to be made in 

regions where the practitioner thinks the preheat temperature is too low for the 

plateau to have begun. Therefore the prior distribution for Ta, the temperature at 

which the plateau begins, is likely to lie in the lower end of the preheat temperatures 

applied. As with everything in luminescence dating, the behaviour of the lumines­

cence can be unpredictable and strongly sample specific, so a reasonable degree of 

uncertainty is likely to be reflected in the prior distribution for Ta. 

As illustrated above, the nature of the relationship between palaeodose and pre­

heat temperature before the plateau is reached is variable amongst samples. The 

model has been set up in such a way that a wide variety of shapes are viable in this 
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region. Therefore, the prior distributions on the curve parameters ry, K should allow 

many reasonable curves to be adopted, so the uncertainty for these parameters will 

be substantial. It should also be noted that the data are likely to be relatively sparse 

before the plateau begins, so general priors for ry, K will prevent any available data 

being overpowered by somewhat arbitrary prior assumptions. 

4.3 Example 

The example carries on the analysis of sample 311-6 of Fydell House from Chapter 

3. The data shown in Table 4.1, are the mean and standard deviations from the 

posterior palaeodose distributions at each preheat temperature, from the combined 

aliquot model. This is the same as Table 3.10, presented at the end of Chapter 3. 

The posterior palaeodose mean values are plotted against preheat temperature in 

Figure 4.4. 

Preheat Temperature oc # Aliquots XRTi CJRTi 

210 3 1021.5 28.5 

220 6 982.5 25.0 

230 3 949.4 28.4 

240 5 993.7 42.4 

250 3 979.12 28.1 

Table 4.1: Mean and standard deviations of the posterior palaeo dose at each preheat 

temperature for sample 311-6; the data input in the plateau model. 

4.3.1 Prior Specification 

In this example, the preheat temperature range of 210-250°C was used as the prac­

titioner, Bailiff, believed that the palaeodose evaluations made in this region were 

likely to form a preheat plateau (otherwise there would have been no purpose to 

evaluating the palaeodose at those temperatures). The prior distribution for the 

plateau starting temperature, Ta, was set to be normal with mean 215°C and stan­

dard deviation 30°C. A probability distribution that is unimodal and symmetrical 
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Figure 4.4: Posterior palaeodose mean and two standard deviation uncertainty bars 

for each group of aliquots at a certain preheat temperature. These values will be 

used as the data input in the model to find the start of the preheat plateau 

was desired, and so the Gaussian distribution was selected. The standard deviation 

of 30°C reflects the uncertain nature of luminescence; its behaviour can be problem 

specific and so we do not have extremely strong beliefs about the starting point of 

the plateau. 

The prior distribution of the level of the plateau, the palaeodose of the sample 

x R*, was also assigned a normal distribution. Its hyperparameters took the same 

values as the prior distribution for palaeodose in the combined aliquot model (mean 

1000 mGy, standard deviation 100 mGy). 

Very little is known about the curve parameters ry, K,, but the prior distributions 

were based on likely plateau shapes (Figure 4.3). The parameters were both assigned 

the same prior, a normal distribution with mean 0.003 and variance 1. 
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The prior distributions used in this example are summarised in Table 4.2. 

Parameter Ta XR* TJ 1'\, 

Prior N(215, 302 ) N(1000, 1002 ) N(0.003, 12 ) N(0.003, 12 ) 

Table 4.2: Prior distributions used for Sample 311-6, Fydell House, in the plateau 

model. 

4.3.2 Posterior Distribution 

The posterior distribution for Tawas found using (4.10) and shown in Figure 4.5. It 

was computed using Maple, as it is efficient in numerical integration, and the code 

used is shown in Appendix H.2. The integral was calculated between temperature 

100-250°C, at 0.01 intervals. This was then multiplied by a suitable constant so 

that the total probability summed to unity (as (4.10) is based on proportionality). 

The region over which the function was integrated was chosen on a trial and error 

basis; the whole distribution needs to be covered in order to compute the posterior 

probabilities. 
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Figure 4.5: Posterior distribution of plateau starting temperature Ta for sample 

311-6. 

The focus of this analysis is to choose which aliquots lie on the preheat plateau. 

Therefore the interest lies in the probability that the plateau starts between 210 and 
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220°C as this would indicate whether or not to include aliquots with a preheat of 

210°C in the evaluation of the sample palaeodose. 

The probability that the plateau starts between 210 and 220°C is 0.007, and the 

model assigns no probability to the plateau starting above 220°C. This indicates 

that it is likely that the plateau started before 210°C and therefore the palaeodose 

estimates from all the aliquots of 311-6 lie on the preheat plateau. 

4.3.3 Influence of the Prior Parameters 

In this section, the influence that the prior distributions assigned to the parameters 

have on the posterior distribution of Ta is investigated. We first look at the choice 

of prior for Ta. 

Table 4.3 shows how the choice of prior distribution for Ta influences the posterior 

probability that the plateau starts after 210°C. The posterior distributions achieved 

for Ta under these priors are shown in Appendix F. Here the focus is on which of 

the aliquots should be used to evaluate the sample palaeodose, i.e. do all the data 

points lie on a preheat plateau. The lowest preheat temperature used for aliquots 

from sample 311-6 was 210°C, so P[Ta > 210idata] is quoted in Table 4.3 for different 

prior judgements made. 

I Prior Mean I Prior SD I P[Ta > 210idata] J 

200 10 0.0053 

200 30 0.0045 

200 50 0.0032 

215 10 0.0253 

215 30 0.0075 

215 50 0.0042 

230 10 0.1030 

230 30 0.0107 

230 50 0.0053 

Table 4.3: Posterior probability that the preheat plateau starts at a temperature 

higher than 210°C, for varying prior specifications of Ta. 



4.3. Example 82 

The prior distribution used in the analysis for Ta was N(215, 302 ). When the 

prior standard deviation is decreased to 10°C, the posterior probability that the 

preheat plateau starts above 210°C is increased to 0.025. However, when the prior 

standard deviation is set to 50°C, this probability is reduced to 0.0042. The strong 

prior information is reflected in the posterior distribution; the model gives a higher 

probability to the plateau starting after 210°C (as the prior mean is set to 215°C) 

when the prior standard deviation is small. 

When the prior mean of Ta is set at 200°C, then the corresponding posterior 

probabilities for the plateau starting after 210°C is reduced for each of the standard 

deviations used (10, 30 and 50°C). Similarly, when Ta is assigned a mean of 230°C 

a priori, these posterior probabilities are increased, as the prior beliefs indicate that 

the plateau is thought to start above 210°C. 

The probability that the preheat plateau starts after the first data point at 210°C 

is small, for all the prior distributions assigned to Ta in Table 4.3. The data input to 

the model, plotted in Figure 4.4, are indicative of a plateau, and so suggests that the 

plateau has started at temperatures below the preheats associated with the data. 

Judgements made about the level of the plateau, namely the sample palaeodose 

XR*' may also affect the posterior distribution for Ta. Table 4.4 gives the posterior 

probability that the plateau starts after 210°C when different values are assigned to 

the prior mean and standard deviation of x R*. 

When the prior mean of XR* is set to be 1000 mGy, then lowering the prior 

standard deviation of XR* causes the posterior probability that Ta > 210 to decrease. 

This pattern of behaviour is also observed when the prior mean of x R* is assigned 

different values. When the prior mean of XR* is 900 mGy, the model assigns more 

probability to the plateau starting after 210°C than when the mean is 1100 mGy. As 

the first data point is at 1021.5 mGy (Table 4.1), the model gives more probability 

to this point being included in the plateau (i.e P[Ta > 210idata] is reduced) when 

the prior mean of the plateau level is closer to this point, at llOOmGy. 

The prior distributions assigned to the curve parameters K,, 'f/, had little influence 

on the posterior probability that the plateau starts after 210°C, as long as they 

allowed for all reasonable curve shapes (e.g. Figure 4.3). The posterior probabilities 
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I Prior Mean I Prior SD I P[Ta > 210jdata] I 
1000 200 0.0119 

1000 100 0.0075 

1000 50 0.0067 

1000 10 0.0029 

900 100 0.0083 

900 10 0.0031 

1100 100 0.0067 

1100 10 0.0026 

Table 4.4: Posterior probability that the preheat plateau starts at a temperature 

higher than 210°C, for varying prior specifications of XR*· 

achieved for different prior mean and variance values of""' 77 are given in Appendix 

F.l. 

The choice of values for the parameters a priori influences the posterior distri­

bution of Ta. In this example, the influence is not extensive enough to alter the 

concluding decision on where the preheat plateau lies, i.e. which aliquots should be 

used to evaluate the sample palaeodose. 

4.4 Sample Palaeodose Evaluation 

For a given preheat plateau, we evaluate the palaeodose as in Chapter 3. The 

posterior distribution for the plateau starting temperature, Ta in Figure 4.5 indicates 

that it is likely that the preheat plateau begins at a temperature below 210°C, and 

so all aliquots of sample 311-6 lie on the preheat plateau. This means that all of the 

aliquots from the sample are estimating the same palaeodose, the palaeodose of the 

sample. That is, 

_ + S:XR 
XRj- XR uj (4.11) 

for j = 1, ... , N, where N is the total number of aliquots lying on the preheat 

plateau (in this case the total number of aliquots in the sample). This is the same 

relationship used in (3.13) for aliquots at the same preheat temperature. 
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So, the combined aliquot model, for evaluating the posterior palaeodose distri­

bution based on a number of aliquots (Section 3.2) was used to find the distribution 

for the palaeodose of the sample. The same prior specification of the parameters in 

the regression model was made as when the combined aliquot model was applied to 

aliquots at a single preheat temperature (Section 3.5.1), which are given in Table 

3.5. 

The Gibbs sampler detailed in Section 3.3 and Appendix H.1 was run with 5 

chains over 100,000 iterations. A burn-in of 1000 was used, and the chains were 

thinned every 10. The resulting posterior distribution for the sample palaeodose is 

shown in Figure 4.6, which has mean 982.3 mGy and standard deviation 11.3. 

940 960 980 1000 1020 

Palaeodose (mG y) 

Figure 4.6: Posterior palaeodose distribution for sample 311-6. 

4.5 Extension of the Preheat Plateau 

It is difficult to develop the model for finding the starting point of the preheat plateau 

without further empirical or theoretical knowledge. Experimental data covering 

the low preheat temperature readings are not obtained routinely, as aliquots which 

are not thought to lie on the preheat plateau are not used to evaluate the sample 

palaeodose. 

To illustrate the plateau model further, additional observations were made by 

Bailiff in the laboratory with sample 311-6 using lower preheat temperatures. The 

preheat treatments used were at 140-200°C, at 20°C intervals, and the data are 

shown in Appendix G.2. 
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A posterior distribution for palaeodose was computed at each preheat tempera­

ture, using the combined aliquot model in Section 3.2. The same prior distributions 

were used as those used to compute the palaeodose distributions for the original data 

set. Again, the sampler given in Appendix H.1 was run for 100,000 iterations, with 

a burn-in of 1000 and the chains were thinned every 5. The mean and standard 

deviation of the palaeodose distributions for each preheat temperature, including 

those previously computed, are shown in Table 4.5, and plotted in Figure 4. 7. 

Preheat (°C) # aliquots Posterior Mean Posterior SD 

140 2 873.5 66.9 

160 2 924.1 35.9 

180 2 928.57 37.0 

200 2 964.5 41.1 

210 3 1021.5 28.5 

220 6 982.5 25.0 

230 3 949.4 28.4 

240 5 993.7 42.4 

250 3 979.12 28.1 

Table 4.5: Posterior palaeodose mean and standard deviation for aliquots at each 

preheat temperature, for the extended data set from sample 311-6. 

It should be noted that the data from the aliquots with the lower preheat temper­

atures were produced at a different time to the original data set, and fewer aliquots 

were analysed, which could potentially be influential. 

From Figure 4.7, the location of the preheat plateau is not as clear as when the 

original data were presented in Figure 4.4. The plateau model was applied using the 

same prior distributions as previously, which are given in Table 4.2. The posterior 

distribution found, using the code in Appendix H.2, for Ta is shown in Figure 4.8. 

The model analysis indicates that the plateau starts in the ranges 180-200°C with 

probability 0.47 and 200-210°C with probability 0.50, with the remaining probability 

for Ta above 210°C. This raises the question as to whether or not to include the data 

with a preheat of 200°C. 
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Figure 4. 7: Mean and 2 standard deviation bars of posterior palaeodose distributions 

obtained at each preheat temperature over the extended range. 

4.5.1 Influence of Prior Parameters 

The influence that the prior distribution assigned to Ta has on the posterior dis­

tribution for the start of the preheat plateau is examined for the extended data 

set. Table 4.6 shows the posterior probabilities of the plateau starting in particular 

regions for different prior distributions assigned to Ta· 

When the standard deviation of Ta is small, a larger probability is assigned to 

the plateau starting above 210°C, the region where the prior mean for Ta lies. If the 

prior mean for Ta is changed, then this results in the amount of posterior probability 

assigned to each region shifting accordingly. For all the prior distributions for Ta in 

Table 4.6, the majority of the posterior probability distribution falls in the region 
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Figure 4.8: Posterior distribution for plateau starting temperature over the extended 

data set. 

4.5.2 Sample Palaeodose Evaluation 

The palaeodose has already been evaluated based on aliquots with a preheat of 

210°C and above (the original data) in Section 4.4. So, the combined aliquot model 

was applied to all aliquots which had a preheat treatment of 200°C and above, with 

the same prior distributions as previously (Table 3.5). The Gibbs sampler was run 

for 100,000 iterations with 5 chains, a burn-in of 1000 was used and the chains were 

thinned to every 5th iteration. The posterior distribution for the palaeodose based 

on the 22 aliquots with preheats 200°C and above is shown in Figure 4.9. This 

distribution has mean 976.9 mGy and standard deviation 10.4. 

The palaeodose distribution for the sample could be presented as a mixture of two 

normal distributions, with means and standard deviations from the two palaeodose 

evaluations given above, and scaled by the probabilities from the plateau model. 

That is, a mixture of a N(976.9, 10.42) distribution with weighting 0.48 (plateau 

starts between 180 and 200oC) and N(982.3, 11.32 ) with weight 0.52 (plateau starts 
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Prior Posterior 

Ta P[Ta <180] P[180:S Ta <200] P[200:S Ta <210] P[Ta ~ 210] 

N(215, 302) 0 0.47 0.50 0.03 

N(215, 52 ) 0 0.45 0.51 0.04 

N(215, 502) 0 0.47 0.50 0.03 

N(195, 302) 0.02 0.47 0.48 0.01 

N(225, 302) 0 0.44 0.51 0.05 

Table 4.6: Influence of the prior distribution for Ta on its posterior for the extended 

data set of sample 311-6 . 
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Figure 4.9: Posterior distribution for palaeodose based the aliquots of 311-6 with 

preheat of 200°C and above. 

between 200 and 210°C). The weights were calculated by, for example, taking the 

posterior probability of the plateau starts between 180- 200°C (0.47), and dividing 

by the probability that the plateau starts between 180 and 210°C (0.97). This 

mixture distribution is plotted in Figure 4.10, along with the normal distribution 

with the same mean and variance (mean 979, standard deviation 12.3). 
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Figure 4.10: Normal mixture distribution of posterior palaeodose based on the 

weighted mixture of the two possible plateau locations, with the dashed line giving 

the normal distribution with the same mean and variance. 

4.6 Summary Guide to evaluating sample palaeo-

dose 

1. Plot posterior mean and standard deviation of palaeodose against preheat 

temperature, to be used as the data input in the plateau model. 

2. Elicit prior distributions for plateau starting temperature, and plateau level, 

curve parameters. 

3. Compute the posterior distribution for plateau starting temperature, to find 

the probability that each of the data points lie on the plateau. 

4. Use the combined aliquot model (Section 3.2) with the aliquots which lie on 

the preheat plateau to find the posterior palaeodose distribution of the sample. 
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5. If the plateau model results in a number of different viable locations for the 

preheat plateau, calculate the sample palaeodose distribution for each one and 

combine using a mixture of normals. 

6. Sensitivity analysis of prior judgements. 



Chapter 5 

Annual Dose 

The annual dose, or dose rate, is the estimate of the average annual radiation dose 

that the crystal grains have received since resetting (Section 2.4), and is the denom­

inator of the age equation (1.1). In this chapter we consider the current methods 

for evaluating dose rate, adapt this into a probabilistic model and then explore the 

model, continuing with sample 311-6 from Fydell House, Linconshire, as an example. 

5.1 Dose Rate Equation 

The dose rate is assessed by summing the component radiation parts: alpha, beta, 

gamma and cosmic radiation. Here we have assumed that the grains have no internal 

radionuclide sources, and coarse grains have been used, where the surface has been 

etched in hydrofluoric acid so the alpha contribution does not need to be considered 

(Section 2.4). 

The standard model for dose rate [3] used in luminescence dating expresses the 

annual dose, D, as: 

(5.1) 

where b 13 , D-y are the respective beta and gamma radiation dose rates, b, g are 

attenuation factors and De is the cosmic radiation dose rate. H13 , H-y represent the 

absorption of the radiation type by water, W is the saturation water uptake and F 

is the fractional average water content over the burial period. The measured values 

91 



5.2. Example 92 

. . . 
are Df3, D .. ~' De, W, with the coefficients b, g, Hf3, H1 having standard values. 

The most difficult parameter to assess here is F, the time averaged fractional 

moisture content of the sampling environment. Here we consider dating bricks, that 

are taken from elevated and dry contexts. A beta distribution is assigned to F, 

which lies in the range [0, 1], where 0 indicates complete dryness, 1 total saturation. 

The other parameters are considered to have independent Gaussian forms. 

The parameters H f3, H 1 , b , g (the correction factors for absorption of the 

radiation components in water and the material), are standard values and not sample 

specific. These are given normal distributions, centred at the current values used 

across the dating community [1], with standard deviations reflecting the limit of the 

precision in assessing their value. 

The independent distributions for iJf3, iJ,, De, W are considered to be normal, 

around the experimental data. The variance is dependent on how accurately the 

values are thought to reflect these components of the dose rate. After discussions 

with Bailiff, in an homogeneous material the errors in these parameters are likely to 

be around 5%. 

The distribution for dose rate iJ is found by simulating from the distributions 

assigned to the parameters and using (5.1), the code for this is given in Appendix 

H.3. The dose rate is an average measure over the lifetime of the sample. The mea­

surements taken are contemporary, and assumptions are made by the experimenter 

concerning the extent to which the dose rate has varied since the luminescence clock 

was reset. 

Hence we take iJ to be the estimate for the average annual radiation dose re­

ceived, based on contemporary measurements and the uncertainty associated with 

relating this quantity to the actual dose rate is incorporated into the model for 

sample age (Chapter 6). 

5.2 Example 

Sample 311-6 from Fydell House is again used here to illustrate the computation of 

the dose rate distribution. The data values for the dose rate are given in Table 5.1, 
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and where produced by Bailiff [14]. The standard parameter values for both the 

water and surrounding material are shown in Table 5.2. 

Df3 D-y De w 
2.21 1.30 0.2 0.033 

Table 5.1: Measurements used to compute the dose rate for sample 311-6, Fydell 

House. 

iJf3, D7 , De are the measured contemporary rates of beta, gamma and cosmic 

radiation and W is the water content at saturation. 

b g Hf3 H-y 

0.92 0.93 1.14 1.25 

Table 5.2: Standard attenuation parameter values [1] used in the dose rate calcula­

tion. 

5.2.1 Choice of Parameter Values 

The measured /3, 1 and cosmic dose rates, along with the saturated water content 

W, were assigned normal distributions, centred on the experimental values given 

in Table 5.1, with standard deviations 2.5% of these (i.e. 5% error represents two 

standard deviations). The value of uncertainty in the measurements was specified by 

the practitioner, Bailiff, based on past dating experience. Similarly, the attenuation 

and water correction coefficients were given Gaussian distributions, with mean the 

accepted standard value (Table 5.2) and a small standard deviation to reflect the 

belief's of the expert on the accuracy of these values. F, the average fractional water 

saturation was judged to follow a beta distribution with mean 0.15 and standard 

deviation 0.2. This reflects the fact that the sample originated from the a brick wall, 

where the saturation level will have been low and relatively stable since the brick 

was fired. These distributions are summarised in Table 5.3. 

To compute the distribution for the dose rate of sample 311-6, 100,000 draws 

were made from each of the distributions in Table 5.3 using the code in Appendix 



5.3. Influence of parameters 94 

Parameter Distribution 

Df3 N(2.21, (0.025x2.21) 2
) 

D, N(1.30, (0.025xl.30) 2
) 

De N(0.2, (0.025x0.2) 2
) 

w N(0.033, (0.025x0.033) 2
) 

b N(0.92, 0.052
) 

g N(0.93, 0.1 2
) 

Hf3 N(1.25, 0.1 2
) 

H, N(1.14,0.1 2
) 

F ,8(3.0375, 17, 2125) 

Table 5.3: Distributions assigned to the parameters in the model for dose rate for 

sample 311-6 of Fydell House. 

H.3. This results in a distribution with mean 3.42, standard deviation 0.18 and is 

shown in Figure 5.1. 

5.3 Influence of parameters 

The influence that judgements about the model parameters have on the dose rate 

is now investigated. The beta, gamma and cosmic components of the dose rate, 

Df3, D1 , De are assigned normal distributions of the form N(m, (mp)2
) where m is 

the measured value and p a proportion to be specified by the expert. As shown in 

Table 5.3, in this example the standard deviation was set to 2.5% of the mean (i.e. 

p=0.025) for each of Df3, D1 , De. This value was chosen as Bailiff considered the 

errors in these measurements to be around 5%. 

Figure 5.2 shows how the posterior mean and standard deviation of dose rate 

changes with respect to the value placed on the prior standard deviation of Df3, D1 , De. 
The dose rate model was run for 100,000 iterations and the value of p was changed 

in turn to obtain the readings for the dose rate statistics. 

The effect the magnitude of the standard deviation of Df3, D1 , De on the mean 

of the dose rate is minimal; in Figure 5.2 any changes in the mean are in the third 
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3.0 3.5 4.0 

Dose Rate (mGy/a) 

Figure 5.1: Posterior dose rate distribution for sample 311-6 from Fydell House. 

decimal place for each of the three parameters. It could be possible to observe 

some trend in the dose rate mean, for example for the higher values of iJfJ standard 

deviation, the mean of the dose rate looks to be falling, but these changes are small. 

There is a clear trend in Figure 5.2 in the standard deviation of dose rate, when 

compared against the standard deviation of each of iJfJ, iJ'Y, De. The standard devi­

ation of the dose rate increases monotonically with the standard deviation of iJfJ and 

iJT As the dose rate equation (5.1) can be considered the sum of the beta, gamma 

and cosmic dose components, with correction coefficients, then this behaviour of 

the variance was anticipated. The standard deviation of Df3 causes greater change 

in the dose rate standard deviation than that of iJ'Y" This is because the standard 

deviations of bf3, iJ'Y have been considered as a percentage of their means, and in 

this example the mean of bf3 is larger than that of iJ'Y (2.21 compared to 1.30). The 

standard deviations of the dose rate components have been expressed in this way, 

as the mean values are experimental measurements for which the practitioner will 

often find it natural to specify the uncertainty in these measurements from previous 

dating experience. 
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Figure 5.2: Mean and standard deviation of the posterior dose rate against the prior 

standard deviation of (a) Df3, (b) D'Y, (c) De, (d) W. 

. . . 
The prior distributions of Df3 D'Y, De, W, are considered normal, expressed as 

N(m, (mp2 )) where m is the measured value and p a proportion to be specified. 

Here we consider the influence of the choice of p on the posterior dose rate. 
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The standard deviation of De, the cosmic ray contribution to the dose rate, has 

very little effect on the dose rate standard deviation, which remains at a constant 

level in Figure 5. 2 (c). There is a very small increasing trend in the standard 

deviation values, which reflects the magnitude of the cosmic ray component of the 

annual dose compared to that of the beta and gamma radiation elements (Df3, D1 ). 

Similarly, the standard deviation of W, the saturation water uptake of the sam­

ple, has no notable effect on the standard deviation of iJ. No trend is observed in 

the mean of the dose rate as the standard deviation of W is increased, and on a 

different scale it would be possible to notice a slight upward trend in the standard 

deviation of iJ. Again, the mean of W, its experimental value, is relatively small, 

so an increase in its uncertainty as a percentage of the mean is not likely to have a 

large effect on the overall dose rate. 

The correction coefficients b, g, Hf3, H1 were next considered in this analysis. 

These parameters take community wide accepted values (Section 5.2.1) as the mean 

of their Gaussian distributions, with variance specified by the expert. Therefore, here 

we will only consider the influence that the judgements made about their uncertainty 

has on the dose rate distribution. 

Figure 5.3 shows how the choice of prior standard deviation of b, g, Hf3, H1 

influences the posterior dose rate standard deviation. The level of uncertainty in 

the attenuation correction parameters b, g has a notable influence on the standard 

deviation of iJ, with the standard deviation of iJ increasing with that of either b or 

g. The change in the standard deviation of iJ is more marked when the standard 

deviation of b is increased, compared to the influence of the standard deviation of g. 

This is because the magnitude of the beta component of the dose rate, to which b is 

part of the coefficient, is larger than the gamma part (which g is associated with). 

So any change in b will have greater weighting in the overall dose rate, D. 

The uncertainty of the parameters Hf3, H1 are not influential on the standard 

deviation of the dose rate, for the range of standard deviations of Hf3, H'Y inves­

tigated, and this is shown in Figure 5.3 (c), (d). The value of Hf3 is small, and 

coupled with this, Hf3 is just one of three parameters in the denominator, and so 

any influence it may have will be diminished further (similarly for H1 ). 
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Figure 5.3: Influence of the standard deviation of parameters (a) b, (b) g, (c) Hf3, 

(d) H-y, on the standard deviation of dose rate, iJ. 

The parameter F, the average level of saturation of the sample, is the one about 

which least information is known. Here sample 311-6 is from a brick building, and 

so considered to be relatively dry (so F has a small value). However, to look at 

the influence of the judgements made about F, Figure 5.4 shows how the mean and 

standard deviation of the dose rate changes with the mean chosen for F. 

There is a clear decreasing linear relationship between the mean of iJ and the 

value given to the mean of F. A large value of F is associated with the sample 

containing more water (a value of 1 means the material is saturated), and as water 

absorbs the radiation, the quartz grains will be exposed to a lower dose of radia­

tion, and thus the dose rate is reduced. The standard deviation of iJ also shows a 

decreasing trend with the F mean in Figure 5.4, though there is more scatter. 

Here we have considered the role each of the parameters takes in the posterior 

distribution for dose rate. In doing so, we have looked at extreme values of each of the 
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Figure 5.4: Influence of the mean ofF on the mean and standard deviation of D. 

parameters, which would not realistically be specified here. The main information 

that is required from the expert practitioner is the error in the measured values, 

which here we have considered as a proportion of their mean. It is important to 

carry out a sensitivity analysis on this parameter to ensure that the judgements of 

the expert are correctly represented in the analysis. 

5.4 Water Content Variations 

The example which has been considered throughout is a sample taken from a brick 

building. One of the reasons this example was chosen is that such a sample is known 

to have been relatively dry throughout the dating timescale, thus eliminating a 

potential source of uncertainty. However, in this section we look briefly at possible 

variations of F, and how using a single value may induce error in the dose rate 

evaluation. The water saturation fraction of the dating environment will generally 
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have seasonal variations, so here we will look at the yearly averages. 

First, consider a sample that has been in a relatively dry environment, except 

for a period when it has had a higher level of saturation. For example, the fractional 

saturation may change with time as in Figure 5.5, where F = 0.15 or F = 0.7. 

Time elapsed since resetting 

Figure 5.5: Possible variation of the fractional water saturation of the dating envi­

ronment since the resetting of the luminescence clock. 

Let q be the proportion of time that the fractional water saturation level was 

at 0.15, and calculate the overall dose rate using this information. This is then 

compared to the dose rate evaluation achieved if the practitioner were not aware 

that the fractional water uptake of the sample had been elevated (i.e. q = 1). 

For this hypothetical example, the remaining parameters were assigned the same 

values as those for the example above. Figure 5.6 shows how the evaluation of dose 

rate changes with the proportion ofF computed with the mean of 0.15 (with the 

remainder at 0.7). The mean and one standard deviation error bars are shown, along 

with the mean and standard deviation of the dose rate when it is assumed that F 

has mean 0.15 for the whole time. 

A larger value assigned to the mean of the distribution for F results in a lower 

dose rate (Figure 5.4), and Figure 5.6 shows that as the proportion of time spent 

with the mean Fat 0.70 rather than 0.15, the evaluation of dose rate falls below that 

when the mean of F is always 0.15. Although error would be induced in the dose 

rate if the practitioner considered the mean ofF to be 0.15, as they were unaware 

that the saturation level had been raised for some period, the magnitude of error is 

not of great concern. For example, even when the dose rate was evaluated with the 
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mean of F at 0.7 for half the time, the difference between the two means of iJ is 

2.4%. 
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Figure 5.6: Mean dose rate with one standard deviation uncertainty bars calculated 

with mean of F as 0.15 for different proportions of the dating lifetime (0. 7 for the 

remainder of the time). The dashed lines represent the mean and one standard 

deviation of the dose rate evaluated with mean F at 0.15 at all times. 

Now consider what would happen if the water saturation fraction of the sampling 

environment followed a sinusoidal pattern, as illustrated in Figure 5. 7. This shows 

the saturation varying between 0.25 and 0. 75, over a period of 40 years. To compare 

the dose rate evaluated with F as in Figure 5.7 with a standard calculation of iJ, 

the dose rate distribution was computed with F being assigned a mean of 0.5 (the 

midpoint of the cycle). Then, the mean ofF was set to follow the function shown in 

Figure 5.7, with the remaining parameters taking the same values as above (Table 

5.3). This resulted in a dose rate distribution with mean 3.380, standard deviation 

0.179 which can be compared to the dose rate when mean F was constant, which 

has mean 3.381, standard deviation 0.178. 

There is no substantial difference between the two dose rate distributions, and so 

there is no motivation for using an uncertain function or form for the mean ofF when 

more basic calculation will suffice in this situation. It is extremely unlikely that a 

practitioner of luminescence dating would ever have such detailed information about 

the past water uptake levels of the sampling environment. However, it is reassuring 

to see that using this model for dose rate, the choice of F does not dominate the 

evaluation of dose rate, and thus in most dating situations it is appropriate to use 
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a single value for its mean. 

0 20 40 60 80 100 

Time (years) 

Figure 5.7: Hypothesised Variation in the water saturation levels of the sampling 

environment. 

The uncertainty in F only has a small impact on uncertainty on D because here 

the value of W is very small. When dating material with a higher water content 

at saturation (for example some types of sediment), the same calculation will show 

a higher sensitivity to variation in F, and so motivate the need to consider such 

uncertainty more carefully. 



Chapter 6 

Age Evaluation 

In this chapter we consider the age ratio, the ratio of palaeodose to annual dose, 

which is the culmination of routine luminescence dating analysis. We then go on to 

consider the relationship between the age ratio and the sample age, continuing with 

the example of sample 311-6 from Fydell House, Lincolnshire. The date achieved is 

then compared with that found using a conventional analysis. 

The true sample age is the number of years that have passed since the last 

resetting event, either by heat (bricks) or light. The sample age is estimated by the 

age ratio, the quotient of palaeodose and annual dose. This is evaluated using the 

palaeodose and annual dose distributions found previously, and this estimate of the 

age ratio is referred to as the ratio estimate. 

6.1 Age Ratio 

The age ratio AE is given by the equation 

AE = Palaeodose 
Annual Dose 

(6.1) 

and is estimated using the distributions for sample palaeodose (Section 4.4) and 

annual dose (Chapter 5) found previously. Draws are taken from the posterior 

distribution for sample palaeodose, and combined with values drawn from the annual 

dose distribution using (6.1) to simulate the distribution for the age ratio, AE. This 

is the final step of routine dating, and the age ratio is used to evaluate the age 
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6.1. Age Ratio 104 

of the sample. A simulation approach is adopted here to allow for all forms of 

the posterior distributions of palaeodose and annual dose. Considering the ratio 

estimate as a ratio of two normals is investigated via the example in Section 6.1.1 

From the posterior distribution for AE we evaluate the posterior mean, AE, 

and the posterior variance w~. AE can be considered a ratio estimate for AE, and 

we observe from the examples studied that the form of the posterior distribution 

is approximately normal, with a unimodal and symmetric shape, or a mixture of 

normals if the plateau model has posterior uncertainty. Therefore, we model 

- E 
AE = AE +8 (6.2) 

with oE "" N(O, w~). This use of the posterior mean and standard deviation as data 

input in the next stage of the model is analogous to the use of the posterior mean 

and standard deviation of palaeodose at each preheat temperature as data input to 

the plateau model (Section 4.2.2). Thus the justification for the step follows the 

same line of reasoning. 

As there are direct prior judgements about palaeodose, the preheat plateau, and 

the annual dose, it would be very difficult to combine the age analysis into a single 

calculation. Considering the age analysis of a series of calculation steps allows 

the uncertainty at each stage to be considered carefully and be fully expressed. 

This transparent approach to the age analysis is user-friendly and easily adaptable 

to developments in both theoretical understanding and experimental methods in 

luminescence dating. 

6.1.1 Example 

The posterior distribution for the age ratio, AE, was calculated for sample 311-6 of 

Fydell House, Lincolnshire, based on the posterior palaeodose distribution found in 

Section 4.4 and the annual dose distribution in Section 5.2. The distribution for AE 

is shown in Figure 6.1, which has mean 286.9 and standard deviation 15.2 years. 

Also shown is the normal distribution with the same mean and standard deviation, 

the distribution of AEIAE. That is, AE is equivalent to making an observation of 

AE with error variance w2 . 
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Figure 6.1: Distribution of AE for sample 311-6. The dashed line gives the distri­

bution of AEIAE. 

Age ratio as a Ratio of Two Independent Normal Distributions 

The posterior palaeodose distribution for sample 311-6, and the dose rate distribu­

tion found both look approximately normal. This can be observed in Figure 6.2 

where normal distributions are overlayed on the palaeodose and dose rate posterior 

distributions, previously found in Chapters 3 and 5 respectively. We can then con­

sider the age ratio as approximately the ratio of two normal distributions, and as 

assumed throughout, these two distributions are considered independent. 

The distribution of the ratio of two normal distributions is a problem that has 

been well documented (e.g. [70]). The density of the ratio two independent normal 

distributions, X "' N(ltx, O";), Y "' N(py, O";), with Z = X/Y can be expressed 

by [53) 
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Figure 6.2: Posterior distributions for (a) Palaeodose and (b) Annual Dose for 311-6, 

as found in Chapters 3 and 5, overlayed with normal distributions with the same 

mean and variance for comparison. 

fz(z) = b(z)c(z) 1 
a3(z) v'2ifaxO"y [ ( 

b( z) ) l 1 { 1 ( f.L; f.L~) } 2<I> - - 1 + exp -- - + -
a(z) a2 (z)1raxO"y 2 a; a~ 

(6.3) 

where 
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a(z) 
1 1 

(6.4) -z2+-
a-2 a-2 

X y 

b(z) /-tx z + /-ty (6.5) a-2 a-2 
X y 

c(z) exp { ~ b2 ( z) - ~ ( 1-t; + 1-t~) } 
2 a2 (z) 2 a-; a-~ 

(6.6) 

<I>(z) - jz -1 
exp { -~u2 } du. (6.7) 

-00 V2ii 2 

Here we are considering the age ratio, the ratio of palaeodose to annual dose for 

sample 311-6, and we have approximated the distributions for these found in Chapter 

3 and 5 respectively as normal. That is, let the posterior palaeodose distribution of 

sample 311-6 be N(982.3, 11.32), and the dose rate have distribution N(3.42, 0.182 ). 

The distribution of the age ratio as a ratio of two independent normal distribu­

tions was found, using the density given above. This is shown in Figure 6.3. Also 

shown is the density of this distribution found using the ratio of simulations from 

each of the normal distributions. These were used to find the mean and standard 

deviation of the distribution, which are 288.0 and 15.6 years respectively. Overlayed 

is the density of the normal distribution with the same mean and variance. 

This distribution can be compared to Figure 6.1, the distribution for the age 

ratio and its estimate, found using simulations from the posterior distribution for 

palaeodose and annual dose. This has mean 286.9 and standard deviation 15.2 

years. The two distributions are similar, though there is a small difference in the 

posterior means for the age ratio. The standard deviations of the two distributions 

are comparable. 

It is appropriate in this example to approximate the age ratio as a ratio of 

two independent normals. However this is not always the case, depending on the 

posterior palaeodose and annual dose distributions. Modelling the age ratio as a 

ratio of two normals could be carried through to the evaluation of the sample age 

with further work. However, in the model developed here we take forward only the 

mean and standard deviation of the age ratio to evaluate the posterior distribution 

sample age, and so using this method the discrepancy between the density of the 

ratio of normals, and the normal density in Figure 6.3 is not considered. 
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Figure 6.3: Ratio estimate distribution, as a ratio of two independent normal dis­

tributions, along with the normal distribution with the same parameters (the dis­

tribution of the age ratio). 

6.2 Sample Age 

The calculation of the luminescence age using routine methods culminates in the 

evaluation of AE, the quotient of palaeodose to annual dose. Since this is an estimate 

of the true sample age A, here a model is developed considering the relationship 

between these two parameters. 

Since even perfect evaluation of AE would not necessarily be the true sample 

age, the relationship between the age ratio AE and sample age A is modelled by 

(6.8) 

where <5A I".J N(O, a~) and aE is specified by the expert to reflect judgements about 

the reliability of AE for determining A. The lack of detailed knowledge about the 
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connection between A and Ae leads to this simple model being assigned. In current 

luminescence dating practise, this source of uncertainty is not explicitly considered. 

More information about the relationship between A and Ae could be found by 

dating known age samples, here bricks from buildings with documentary evidence 

of construction date have been selected. 

Bringing together (6.2) and (6.8); 

(6.9) 

where oA' oE are independent. The posterior distribution for age can be found using 

Bayes theorem, considering Ae with variance w~ to be the data input for the model, 

P[AIAE] ex P[AeiA]P[A]. (6.10) 

The justification for using the posterior mean and standard deviation from the age 

ratio distribution as input in the sample age model follows the same argument as 

outlined in Section 4.2.2. 

Here, suppose a priori that A"" N(mA, o-~), then 

P[AIAE] ex exp {- 2 (o-~ ~ w~) (Ae- A)
2

} exp {- 2~~ (A- mA)2
} 

ex exp{-~([ 1 +2_]A2 -2[ Ae +mAlA)} 
2 o-~ + w~ o-~ o-~ + w~ o-~ 

ex exp {-~ ( 2 

1 
2 ) [A -~ + ? ] 

2

} 
2 o-e+we ~+ +~ 

WE UA UA 

so that 

(6.11) 

is the posterior age distribution. 

The prior information about the sample age is strongly context dependent; in 

brick dating the architectural style of the building can indicate the period in which 

it was built, or documentary evidence can be found. A Gaussian prior is used here 

due to its simplicity and tractability. In some situations other priors may be more 

suitable, for example a mixture of normals when the dating sample could be assigned 

to one of two different periods. 
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6.2.1 Example 

The example is continued with sample 311-6 of Fydell House, Lincolnshire. The 

history of this building is well documented, with records indicating that it was built 

in the early 18th Century, and purchased by Joseph Fydell in 1726 [88]. Sample 

311-6 is associated with the front fac;ade, which is believed to have been altered 

with the change of ownership in 1726. The measurements were made in 2005, so the 

age of the sample here is thought of as years before 2005. 

This sample is taken from a larger project on dating bricks from post-Medieval 

buildings [14], which used this 'known-age' sample to look at the reliability of lu­

minescence dating methodology. Here, we also use this information for comparative 

purposes, rather than direct input into the prior distribution for age. Such strong 

prior information is not commonplace in luminescence dating; if the date of the 

building is known to within a few years, a luminescence date will not provide any 

new information. To replicate a routine dating scenario, some of this prior informa­

tion will be ignored in the model for the sample age, though it will be compared to 

the posterior age achieved. If the prior input to the model really were as precise as 

the knowledge here, than this would dominate any information from the data and 

make the model redundant, and so this would be a poor illustrative example. 

For this illustration, the age was chosen to be normal a priori, with mean 280 

years before 2005 (date 1725) and standard deviation 25 years. This variance reflects 

common levels of uncertainty in brick dating, rather than the more detailed knowl­

edge available for this particular building. The prior information in brick dating 

from a building is unlikely to be vague; architectural style will enable judgements 

to be made about the period from which the building originates. However, care 

must be taken to differentiate between the date of the building, and the date at 

which the brick was fired (which corresponds to the luminescence clock being re­

set). In particular, Medieval buildings are known for recycling bricks from older 

buildings [34]. 

The value assigned to O'E, the error in the ratio of palaeodose to annual dose 

in estimating the true age of the sample (6.8) was initially taken to be 5, which is 

around 2% error in the sample age. This value was chosen after discussions with 



6.2. Sample Age 111 

Bailiff referring to his experience of brick dating. 

The parameters used in the age model, both the data input and prior judgements, 

are summarised in Table 6.1, and the code is given in Appendix H.4 The posterior 

distribution achieved using these parameters is normal (6.11), with mean 284.9 and 

standard deviation 13. This gives a date of 1720 ± 13. The variance in the final age is 

reduced from that in the age ratio (w = 15), which is the current end point in routine 

dating. Here, the prior age supports the ratio estimate reducing the uncertainty in 

the date concluded. 

Data Input I Prior Judgements I 
AE WE mA O'A O'E 

286.9 15.2 280 25 5 

Table 6.1: Input in the age model for sample 311-6, Fydell House 

6.2.2 Influence of Priors 

The prior judgements made about the parameters mA, O'A and O'E will influence the 

posterior age distribution. Figure 6.4 shows how the posterior mean and standard 

deviation of age changes with each of these prior parameters. When the influence 

of any particular parameter is not being considered, its value is held at that given 

in Table 6.1. 

In this example, the posterior mean is most influenced by the value assigned 

to the prior mean age, mA. There is a linear relationship between the prior and 

posterior mean, which is evident from the form of the posterior distribution (6.11), 

when all of the other parameters are kept constant. The posterior standard deviation 

of age is not affected by the value assigned to mA, as shown in Figure 6.4(a). This 

is clear from the equation given for posterior standard deviation in (6.11), when the 

prior distribution for age is normal. 

The value assigned to 0' A, the prior standard deviation for age, influences both 

the mean and standard deviation of the posterior age distribution. When 0' A is 

small, the posterior mean is close to the prior mean, reflecting the strong beliefs in 

the prior mean chosen. However, as 0' A is increased, indicating greater uncertainty 
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Figure 6.4: Posterior mean and standard deviation of age with (a) mA, (b) aA, (c) 
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a priori in the age of the sample, the posterior mean for the sample age moves 

towards the ratio estimate. The posterior standard deviation for age is small when 

there are strong prior beliefs, and increases with a A. This increase is sharp until the 

prior standard deviation reaches a similar magnitude to WE, the standard deviation 

associated with the ratio estimate of age, and in this region the prior distribution 

is dominant in the posterior age distribution. The posterior standard deviation for 

age continues to increase, but at a much slower rate as, when the prior is vague, the 

information from the data will dominate the posterior which is seen in ( 6.11). 

The value assigned to aE represents the accuracy of the true value of the ratio 

of palaeodose to annual dose as an estimate for the age of the sample (6.8). When 

a very small value is given to aE, then the model assumes that the age ratio is very 

similar to the sample age, and thus the posterior mean is close to the ratio estimate. 

The mean of the posterior age gravitates towards the prior as aE is increased in 

value as, once aE is larger than aA (here set at 25), the expert has a greater belief 

in the prior than in the information from the data. Similarly, the posterior standard 

deviation for age strongly reflects the data input when aE is small, and moves 

towards the prior as the value assigned to aE is increased. 

Here we have looked at the influence of each of the prior parameters on the 

posterior age distribution in turn, with the remaining parameters being set at values 

given in Table 6.1. However the influence of one parameter can depend on the value 

of another. Table 6.2 shows how the posterior mean and standard deviation (and 

so the date achieved) for the sample is affected by the prior parameters. 

In Table 6.2 the same pattern in the standard deviation of the posterior age is 

seen irrespective of the value chosen for the prior mean. The posterior standard 

deviation increases with the values assigned to a E. The prior standard deviation a A 

is similarly influential, although when the prior standard deviation of age is small, 

(a A = 5) then the posterior age distribution is close to the prior, and the other prior 

judgements only have a minimal effect on the age. 

The mean ages here, and subsequently, are quoted to a higher degree of precision 

than can be achieved experimentally, for comparison purposes. 

This sensitivity analysis has shown how the prior information influences the 
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Prior Judgements Posterior Age Date 

mA a A aE Mean SD (A.D.) 

280 5 5 280.6 4.8 1724 ± 5 

25 280.2 4.9 1725 ± 5 

50 280.1 5.0 1725±5 

280 25 5 284.9 13.5 1720 ± 13 

25 282.9 19.0 1722 ± 19 

50 281.3 22.6 1724 ± 23 

280 50 5 286.3 15.2 1719± 15 

25 285.1 25.3 1720 ± 25 

50 283.3 36.1 1722 ± 36 

300 5 5 298.8 4.8 1706 ± 5 

25 299.6 4.9 1705 ± 5 

50 300.0 5.0 1705 ± 5 

300 25 5 290.7 13.5 1714±14 

25 294.5 19.0 1711 ± 19 

50 297.6 22.6 1707 ± 23 

300 50 5 288.1 15.2 1717 ± 15 

25 290.2 25.3 1715 ± 25 

50 293.7 36.1 1711 ± 36 

Table 6.2: Mean and standard deviation of the posterior mean age and date of the 

sample, for different prior judgements. 
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posterior age distribution. It is important to ensure that the prior judgements of 

the expert are carefully translated into prior specifications. The sensitivity analysis 

also shows the model behaves as expected, and as such increases confidence in the 

output. 

6.3 Extended Plateau Example 

In Chapter 4 we considered the extended data set of sample 311-6, including aliquots 

with lower preheat temperatures. This resulted in a mixture of normals for the poste­

rior palaeodose distribution. The mixture contained the distribution N(970.9, 10.42
) 

with weight 0.48 and N(982.3, 11.32
) with weight 0.52. To find the age ratio for the 

sample, draws from this mixture distribution were combined with draws taken from 

the distribution for dose rate. 

This results in a distribution with mean 286.1 and standard deviation 15.6 years. 

Using a prior of A rv N(280, 252
) and aE = 5 this dates the sample at 1721 ± 14. 

6.4 Comparison with Current Luminescence Age 

Evaluation 

The example of sample 311-6 from Fydell House was part of a project on late and 

post-medieval brick buildings [14] with strong documentary evidence of the age of 

the building in order to give confidence to the methodology. 

The building contains a brick with the date 1726 along with ironwork similarly 

embossed [14] though this marks the date which Joseph Fydell purchased the house 

[88]. The date achieved by Bailiff [14] using conventional luminescence analysis was 

1721 ± 17, which is very similar to the 1720 ± 13 (or 1721 ± 14 using the extended 

data set) from the Bayesian analysis. 

When these dates are compared to the 'known' date of 1726, the simple model 

used to represent the relationship between age ratio and sample age (6.8) does not 

seem inappropriate in this case. 



Chapter 7 

Inference with Related Samples 

In many dating situations a number of samples may be taken from site to check for 

consistency and/or contemporaneity. In this chapter we look at possible relation­

ships between samples, and the correlation structure induced by the luminescence 

dating methodology. 

7.1 Coeval Model 

The model is applied to samples which are thought to have the same age, i.e they 

are said to be coeval. First the model is developed for two coeval samples, and then 

generalised to the case of M coeval samples. An example with two samples is then 

presented. Dating situations where coeval samples would occur include sampling 

different bricks from the same building, or taking a number of samples from the 

same layer of sedimentation (and so they would have been bleached at the same 

time). 

Consider two samples with the same age. An estimate for the age based on the 

ratio of palaeodose to annual dose will be made for each of these samples. The 

relationship between the measured (AEi) and actual (AEi) value of this quotient is 

modelled by 

(7.1) 

where c5f"" N(O, w~i) for sample i = 1, 2. As in the age model based on one sample 

(Section 6.1), WEi is taken to be the variance of the posterior distribution of the 

116 
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ratio of palaeodose to annual dose found for each sample. The ratio estimates of age 

from two samples which are the same age (e.g. taken from two bricks in the same 

building) are correlated, so let 

PEW~IWE2 ) ) 

WE2 

(7.2) 

The correlation coefficient PE will be higher when the errors in measuring the ratio 

of palaeodose to annual dose are systematic rather than sample specific. These 

errors can be subdivided into those associated with measuring the palaeodose and 

those with measuring the annual dose, as it is assumed that these two quantities are 

independent. 

Systematic errors across samples will arise through measurement errors and cali­

bration of laboratory equipment (e.g. radiation sources), assuming that the measure­

ments are made in the same luminescence laboratory. The luminescence properties 

of the sample could also be prone to inducing errors in palaeodose evaluation, for 

example if there were poor or inconsistent dose recovery in one sample, it is likely 

another will have similar properties if they are taken from the same building. The 

dose rate measurements (Chapter 5) of iJfJ, iJ..,, W will be taken for each sample. 

However, the values of Hf3, H..,, b, g, De employ parameters or have values drawn 

from a common data set used by the luminescence community, and so this will in­

duce systematic errors and thus correlation between the two dose rate evaluations, 

and hence the two age estimates. 

The age ratios AEi represent the true value of the quotient of palaeodose and 

annual dose for each sample, i = 1, 2. These are related to the sample age, A by 

(7.3) 

where of "'N(O, cr1) for sample i = 1, 2, and so 

(7.4) 

where PA represents the correlation between the age estimates from the two samples. 

In this model, CJE is taken to have the same value for each sample (to be specified 
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by the expert), though it would be possible for this parameter to take a different 

value for each sample if it was deemed appropriate for the context. 

Pulling together (7.1) and (7.3) and assuming that 6f and 6f are independent, 

and so 

where, fori= 1, 2 

p 

Jw~i +a~ 
PEWEIWE2 + PAO"~ 

0"!0"2 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

The posterior distribution for the age of the two coeval samples, A, is found using 

Bayes Theorem, 

(7.9) 

Again here, a Gaussian prior distribution is assigned to the sample age, A ,......, 

N(mA, a~), so that 

(7.10) 

So the posterior distribution is normal, 

(7.11) 
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where 

f..LP 

7 .1.1 General Model for m Coeval Samples 

The model can be generalised to apply tom samples with the same age. Let them 

ratio estimates for age be denoted AEm so 

(7.12) 

and let 

AEmiA rv N((A, ... ,Af, E). (7.13) 

When a Gaussian prior for age is used, A ,...., N(mA, a~) then the posterior age 

distribution is also normal, 

(7.14) 

where 

c~ + B;!;E- 1 Bm) -
1 

( :; + B;!;E-1 AEm) (7.15) 

( 
1 ) -1/2 

a~ +B~E-1Bm (7.16) 

where Bm = (1, ... , lf, a vector of length m. 

7.1.2 Example 

Two samples, labelled 311-2, 311-4 were taken from two bricks that are believed 

to form part of the original walls of Fydell House (whereas the the example used 

previously, sample 311-6, is thought to be part of a later renovation). This is part of 

the same project as sample 311-6, where the data collection and laboratory analysis 

were performed by Bailiff [14]. 

For each sample, first the combined aliquot model was applied to aliquots at 

each preheat temperature (Chapter 3). The plateau model was then implemented, 
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and the aliquots which produce palaeodose estimates that lie on the preheat plateau 

were used to evaluate the sample palaeodose. The dose rate was computed using the 

model given in Chapter 5, and an estimate for the age ratio, AEi was found using 

Section 6.1. The details of these evaluations are given in Appendix I, along with the 

original data for the two samples. The resulting age estimates and their standard 

deviations are given in Table 7.1. 

Sample 311-2 Sample 311-4 

AEl WEI AE2 WE2 

260.9 15 273.5 18 

Table 7.1: Ratio estimates and their standard deviations achieved for samples 311-2, 

311-4. 

The majority of the correlation between the two ratio estimates AE1 , AE2 is 

considered to originate in the denominator of the age equation ( 1.1), the dose rate. 

This is because the evaluation of the dose rate relies on a number of standard 

parameter values that are not sample specific, and take community-wide accepted 

values. To assess the magnitude of the correlation between the dose rates in this 

case, and therefore give an indication of the value that should be assigned to PE in 

the coeval model, the two dose rates where simulated jointly. 

To simulate the two dose rates jointly, the correlation between each of the param­

eters in the dose rate model (Section 5.1) needs to be considered. These parameters 

can be divided into 3 categories: 

1. Measured Values. These parameters are based on experimental measure­

ments (Df3, D-y, W). 

2. Community-wide values. These parameters are not sample specific, and 

take the same values for each evaluation of the dose rate (Hf3, H-y, b, g) through­

out the luminescence dating community. 

3. Expert Judgement The time-averaged water uptake level of the sample 

takes values based on judgements made by the practitioner. 
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The remaining parameter in the model is De, the cosmic dose rate. Usually, the 

cosmic dose rate is taken to be the same for similar dating situations. 

As the two samples were processed in the same luminescence laboratory, and 

the measurements taken using the same equipment, there is likely to be a level of 

correlation between the measured values through systematic errors. Here, it was 

assumed that the correlation between each of the measured values is 0.2. 

The true values of the parameters which take community wide values may not 

be identical for each of the samples, but are likely to be very similar. So, here the 

correlation between the two samples for each of these parameters was taken to be 

0.999. The cosmic dose rate contribution, De, will also be highly correlated, with 

the correlation coefficient being set to 0.9 here. 

The water content history for the two samples are likely to be very similar, as 

they have been taken from bricks in the same buildings. So, the correlation between 

each of the sample's F parameter is going to be very high. It would be complex 

to take draws from the appropriate bivariate distribution. So here we use the same 

draw from a beta distribution for each sample. The purpose of this calculation is 

to get an idea of the correlation between the two dose rates, and any errors induced 

by this approximation are likely to be small. 

The distributions used to simulate the two dose rates jointly are summarised in 

Table 7.2. After 100,000 simulations the estimated dose rates were 3.89 ± 0.20 and 

3.97 ± 0.21. These dose rates have a correlation of 0.85. This strong correlation 

reflects the dependence of the annual dose on the common correction parameters. 

Here we assume that the palaeodose evaluations for each sample are independent. 

This is not strictly true, as the measurements were all taken in the same laboratory so 

inducing a source of systematic error. However, this is minimal and the difficulty in 

modelling the small amount of correlation outweighs the effect it will have on the final 

age. So, a correlation of 0.85 between the two dose rates, in the denominator, leads 

to a correlation between the ratio estimates AE1 , AE2 of 0.55. This is an estimate 

of the magnitude of PE, the correlation between the ratio estimates conditional on 

the age ratios, AE1 , AE2 · 

The parameter values used in applying the coeval model to this example are 
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Parameter Mean SD Correlation 

311-2 311-4 311-2 311-4 

b{3 2.80 2.91 (0.025)(2.80) (0.025)(2.91) 0.2 

D"~ 1.22 1.20 (0.025)(1.22) (0.025)(1.20) 0.2 

De 0.2 0.2 (0.025)(0.2) (0.025)(0.2) 0.9 

b 0.92 0.92 0.05 0.05 0.99 

g 0.93 0.93 0.1 0.1 0.99 

Hf3 1.25 1.25 0.1 0.1 0.99 

H"~ 1.14 1.14 0.1 0.1 0.99 

w 0.033 0.033 (0.025) (0.033) (0.025)(0.033) 0.2 

Table 7.2: Parameters of the joint prior distributions used to estimate the joint dose 

rate distributions of samples 311-2 and 311-4 from Fydell House. 

The parameters above were all assigned bivariate normal distributions with the 

parameters given. The remaining parameter, F, was assigned a beta distribution, 

F "',8(3.0375, 17.2125), for each sample. 

given in Table 7.3, and the R code is given in Appendix H.5. 

I AEl I WE! I AE2 I WE21 CTE I PE I PA I 
1260.91 15 1273.51 18 1 5 1 o.551 0.21 

Table 7.3: Parameter values for the coeval model. 

Initially, the prior distribution assigned to the sample age was normal with mean 

280 years, standard deviation 25 as the samples were taken from the same building 

as 311-6 (Section 6.2.1). This leads to a posterior age distribution which is normal 

with mean 268.9 years, standard deviation 12.7 which is a date of 1736 ± 13. Table 

7.4 shows the date estimates obtained if different prior judgements are made about 

the age of the samples. 

Figure 7.1 shows how cr E, p E and p A affect the posterior mean age and standard 

deviation. The prior distribution for age was set to A"' N(280, 252
), and the other 

parameters as indicated in Table 7.3. As erE is increased, both the posterior mean 
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Prior I Age (years) I Date (A.D.) I 
A""' N(280, 52

) 278 ±5 1727 ± 5 

A""' N(280, 252
) 269 ± 13 1736 ± 13 

A""' N(280, 502
) 266 ± 14 1739 ± 14 

A""' N(300, 52
) 296 ±5 1709 ± 5 

A"' N(300, 252
) 274 ± 13 1731 ± 13 

A""' N(300, 502
) 268 ± 14 1737±14 

Table 7.4: Posterior age and date estimates obtained with different prior age distri­

butions. 

and standard deviation increase. A small value of CJE implies high confidence in the 

age ratios as a representation of the sample age, and so the posterior statistics move 

towards the prior and away from the data input as CJE rises. 

The correlation between the ratio estimates AE1 , AE2 conditional on AE1 , AE2 

is denoted PE· When PE is set close to one, the posterior standard deviation of age is 

higher than when a smaller correlation is modelled. A high level of correlation here 

causes the increase in posterior variance due to the difference in AE1 , AE2 · When 

PE is less than 0.5, its value has little effect on the posterior age mean. However, as 

PE is increased to one, the posterior mean falls towards the ratio estimate AEl· 

The magnitude of PA, the correlation between the age ratios given the sample 

age, has a minimal effect on the posterior age in this example. It is difficult to 

specify correlations, but important to establish if they are positive or negative, and 

low, medium or high. This sensitivity analysis has shown that, in this example, 

we do not need to spend a long time considering the value of PA as it does not 

have much influence on the posterior age. The other parameters need to be more 

carefully considered so that the posterior distribution reflects the data and the prior 

judgements of the expert. 
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Figure 7.1: Posterior mean and standard deviation of age from the coeval model 

with ae, PE and PA· 

7.2 Similar Age Model 

Here we consider having a number of samples that have related ages, but are not 

thought to be coeval. The model is developed for two samples, and the relationship 

which is thought to exist between the sample ages is dictated by the specification of 

their joint prior distribution. 

As above let Aei, Aei be the measured and actual values of the ratio of palaeodose 

to dose rate for samples i = 1, 2, and denote the age of the samples Ai, i = 1, 2. 

Similarly, let 

(7.17) 

with of "" N(O, w~i) and of "" N(O, a~). Again, WEi is the standard deviation of 

the posterior distribution of the age estimate for each sample, and a~ represents the 

uncertainty in the age ratio as a representation of the sample age. 
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Let the prior distribution for the two sample ages be normal, 

( Al)""N((mAl),( a~l ppaA
2
1aA2))· 

A2 mA2 ppaAlaA2 aA2 
(7.18) 

If the two sample were judged to be close in age, then the values placed on 

the two prior means would be similar and the correlation PP would be large. The 

posterior age distribution is then computed by using a Gibbs sampler to draw from 

the conditional posterior distributions of A1IA2, AE1, AE2 and A2IA1, A.El, AE2 in 

turn, updating the values of A1 , A2 with each iteration, so that when convergence is 

reached these are approximately independent draws from the posterior distributions 

for A1 and A2 . 

The posterior distribution of A1 conditional on A2 is 

so that 

(7.19) 

where 

J1Pl (7.20) 

apl (7.21) 
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Similarly, by symmetry, the posterior distribution for A2 given A1 is normal, 

(7.22) 

where 

f.LP2 1 1 
a~(l-p2) + a~2 (l-p~) 

(7.23) 

O"p2 = ( 
1 1 ) -

1
/

2 

a~(l - p2) + o-~2(1 - p~) (7.24) 

Using a Gibbs sampler to simulate the posterior distributions gives the model 

scope to be adapted to, for example, age ratios which are a mixture of normals if 

the posterior plateau location is not certain. 

7.2.1 General m Similar Age Model 

The Gibbs sampler detailed above for finding the posterior ages of related samples 

can be generalised to a set of m samples. Consider m samples which have ages 
T . . . - - -

Am = (Ab ... , Am) , along With them ratio estimates AEm = (AEl, ... , AEm)· If 

:E represents the covariance matrix for the distribution of AEmiAm, then 

:E = [aiO"jPij] i,j = 1, ... , m (7.25) 

where 

(T· t Jw~i +a~, (7.26) 
2 

Pij 
PEijWEiWEj + PAijO"E 

i =1- j, (7.27) 
O"iO"j 

Pii 1. (7.28) 

Let the prior distribution for Am be multivariate normal, with 

(7.29) 

If Ak denotes Am \AI = (A2, ... , Amf, i.e. the vector of sample ages with A1 

removed, then consider the posterior distribution for A1 1Ak 

(7.30) 
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(7.31) 

Then write the parameters of the prior distribution for Am as 

~0 (7.32) 

Then the conditional posterior distribution P[A1 IAEm, Ak] is normal with mean 

(f.Lt + A1kA;~(Ak- Ak)) (At- AlkA;~Akt)- 1 + AEI(:E-1)n + 2:::;=2 (AEi- Ai) (:E- 1)Ij 

((:E-1 )n + (Au - AlkA"k~ Akt)-1) 

(7.33) 

and variance 

(7.34) 

Similarly the conditional posterior distributions for all other P[Ai lA Em, Am \Ai], 

j = 1, ... ,m can be found. 

7.2.2 Example 

The same example was used here as in the coeval model in Section 7.1.2, using 

samples 311-2 and 311-4 from Fydell House. The parameter values used in applying 

the similar age model are presented in Table 7.5. 

I AEl I WEI I AE2 I WE21 CTE I PE I PA I 
1 260.9 1 15 1 273.51 18 1 5 1 o.551 0.2 1 

Table 7.5: Parameter values for the similar age model for samples 311-2, 311-4. 

The prior distribution assigned to the ages here is 

(7.35) 

Here the two samples have both been taken from the original building of Fydell 

House, and are thought to be the same age. Thus the prior mean for A1 and A2 
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have been assigned the same value, the magnitude of which is based on documen­

tary evidence. Similarly, the prior standard deviations of AI and A2 are the same, 

though, as in previous analysis of this example, the standard deviation chosen re­

flects common levels in routine dating rather than the exceptional prior information 

available in this case. The influence of these judgements is looked at in Section 7.2.3 

below. The R code used to find the posterior distributions is given in Appendix H.6 

The posterior age distributions for 311-2 (AI) and 311-4 (A2 ) are shown in Figure 

7.2. The posterior distribution for AI has mean 266.2, standard deviation 13.1 years 

while the posterior distribution for A2 has mean 275.0, standard deviation 14.8. 

This leads to the dates 1739 ± 13 and 1730 ± 15 being assigned to 311-2 and 311-4 

respectively. 
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Figure 7.2: Posterior age distributions from the similar age model for 311-2 and 

311-4. 

These dates can be compared to the date achieved through the coeval model for 

the same samples with analogous prior specifications (Section 7.1.2). Modelling the 
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two samples as having the same age in the coeval model, a priori A rv N(280, 252 ) 

leads to a date of 1736 ± 13 which, as expected, falls between the two dates achieved 

through the similar age model. 

7.2.3 Influence of Prior Specifications 

The Gibbs sampler of the similar age model was run with a range of different prior 

specifications to look at how the prior judgements made influence the posterior age 

distributions and the dates evaluated for samples 311-2, 311-4. Table 7.6 gives the 

posterior ages and dates for the different prior distributions used. 

Here we have only looked at cases where prior hyperparameters mA1 = mA2 and 

CJ Al = cr A2 , as that is appropriate for this dating situation. 

ffiAlt ffiA2 CJ Al, CJ A2 Pp Age 311-2, 311-4 (years) Date 311-2, 311-4 (A.D.) 

280 5 0.5 278 ± 5, 279 ± 5 1727 ± 5, 1726 ± 5 

280 5 0.8 278 ± 5, 279 ± 5 1727 ± 5, 1726 ± 5 

280 25 0.2 266 ± 13, 277 ± 15 1739 ± 13, 1728 ± 15 

280 25 0.5 266 ± 13, 275 ± 15 1739 ± 13, 1730 ± 15 

208 25 0.8 267 ± 13, 273 ± 14 1738 ± 13, 1732 ± 14 

280 50 0.5 263 ± 15, 274 ± 18 1742 ± 15, 1731 ± 18 

280 50 0.8 263 ± 15, 273 ± 17 1742 ± 15, 1732 ± 17 

300 5 0.5 296 ± 5' 298 ± 5 1709 ± 5, 1707 ± 5 

300 25 0.5 272 ± 13, 282 ± 15 1733 ± 13, 1723 ± 15 

300 50 0.5 265 ± 15, 277 ± 17 1740 ± 15, 1728 ± 17 

Table 7.6: Influence of prior judgements on the posterior ages achieved with the 

similar age model. 

When the prior standard deviation is small, then the posterior distributions are 

pulled towards the prior. Conversely, a large value assigned to CJ Al, CJ A2 leads to the 

data input AE1 , AE2 dominating the posterior distributions, and the resulting dates 

for 311-2, 311-4 are further apart. Similarly, the magnitude of the prior mean has a 

greater influence on the dates achieved when the prior standard deviation is small. 
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When the correlation of the two ages is high a priori this reflects the expert's 

judgements about the relationship between the two samples. Here, as the two prior 

means are set to the same value, a high pp value represents the belief that the ages 

of the two samples are close. This is seen in Table 7.6 when m 1 , m2 = 280 and 

aA1, aAz = 25, the posterior ages are closer together when Pp = 0.8 compared to 

when Pp = 0.2. The effect of the value chosen for aE, the uncertainty of the true 

age around the age ratio, is shown in Figure 7.3. 
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Figure 7.3: Influence choice of aE has on the posterior mean and standard deviation 

for A1 and A2 under the similar age model. 

For both A1 and A2 , the posterior mean and standard deviation move towards 

the prior values as the magnitude of aE is increased. The parameter aE represents 

the confidence that the practitioner has in the age ratio as a representative for the 

age of the sample. Therefore, it is natural that when aE is large compared to the 

prior standard deviation a AI, a Az then the prior distribution will gain more weight 

in the posterior. 
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In the similar age model the specification of the prior distributions represents 

how 'similar' the samples are considered to be. Therefore, it is imporatant that this 

specification is done out carefully, and a senstivity analysis carried out to ensure 

that this information is correctly represented. 

7.3 Ordered Age Model 

In many dating situations, the relative chronology of the samples is known. To 

model a simple example, assume that 

(7.36) 

There is no scope in this model to allow any uncertainty in this ordering. The appli­

cation of such constraints is most suitable to sediment dating, where the chronology 

of the samples is dictated by their stratigraphic relationship. The samples taken 

from the layer closest to the surface will have been bleached by sunlight most re­

cently (so the luminescence clock reset), and thus is the youngest. Experts can 

often give a precise ordering of sample ages, though in some cases post-depositional 

mixing or exhumation of sediments, known as pedoturbation [15] may occur. This 

is often caused by flora and fauna, which is known as bioturbation. The resulting 

vertical and lateral disturbance need to be taken into account when dating such 

sediments [16]. 

In brick dating, such issues do not occur, though unlike sediment dating it is 

difficult (and often not appropriate) to place a relative chronology on samples with 

certainty. Here we are taking these brick samples to allow comparisons to be drawn 

with the similar age model while illustrating the potential of the model. It would 

not be recommended to apply this model in the age analysis of these two samples, 

though we can see the potential of the model for more appropriate dating situations. 

The posterior probability distribution for the sample ages are found using the 

order constraint along with the model above for two ages in Section 7.2. A Gibbs 

sampler (Section 3.3) is used, first a draw is made from the conditional posterior 

distribution P[A1 IA2 , AE1 , AE2 ], then using this updated value for A1 draws are 

repeatedly made from P[A2 IA1 , AE1 , AE2] until one satisfies the condition of A1 < 
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A2 , and this is taken to be the updated value of A2 . The code for the Gibbs sampler 

with the rejection criteria is shown in Appendix H. 7, where the prior distribution 

for A1 and A2 is specified as 

(7.37) 

7.3.1 Example 

Consider samples 311-2 and 311-6 from Fydell House, the example discussed previ­

ously. Sample 311-6 is taken from a fa<_;ade from renovations when the ownership of 

the house was transferred to Fydell [88], whereas 311-2 is from part of the original 

building. Let the true age of sample 311-6 be denoted A1 , and let A2 correspond to 

the age of 311-2, so that the chronological constraint here is 

(7.38) 

Table 7. 7 gives the values assigned to the parameters in the ordered age model. 

A1 is believed to be younger than A2 so the prior distribution reflects this: a priori 

let 

( 
A1 

) ( ( 280 ) ( 25
2 

A2 "' N 290 ' (0.5)252 

(0.5)25
2 

) ) 

252 
(7.39) 

311-6 311-2 

AEl WE! AE2 WE2 O'E PE PA 

286.9 15 260.9 15 5 0.55 0.2 

Table 7.7: Parameter values for the ordered age model for samples 311-6, 311-2. 

The Gibbs sampler with the chronological constraint A1 < A2 was run over 3 

chains for 20,000 iterations, and the code for this is given in Appendix H. 7. The 

resulting posterior distributions for the ages are shown in Figure 7.4 (a), and their 

statistics given in Table 7.8. These distributions are compared with the posterior 

age distributions achieved when the similar age model was applied, using the same 

prior specifications but without the constraint on the order, in Figure 7.4 (b) and 

Table 7.8. 
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Figure 7.4: Posterior distributions for A1 (Sample 311-6) and A2 (Sample 311-2) 

using (a) Ordered age model with A1 < A2 and (b) Similar age model. 

The condition applied in the ordered age model that A1 < A2 has a marJ.<:ed effect 

on the posterior age distributions in this case, particularly as the ratio estimates are 

ordered AE2 < AEl· The similar age model dates both samples a lot younger than 

the ordered age model, though the posterior standard deviations are the same. The 

constraint of A1 < A2 means that each draw of A2 is forced upwards above A1 even 

though the data are implying otherwise, and it also pushes the two dates together. 

The influence of the prior judgements made on the posterior age distributions is 

presented in Table 7.9, along with the run time of the sampler in each case. 

As expected, when the prior standard deviation of age is small, the prior age 

distribution has a greater influence on the posterior. However, when the prior stan­

dard deviation of the ages is large, the posterior ages are not close to the data input 

AE1 , AE2 as this contradicts the additional condition that A1 < A2 in this example. 

The value assigned to aE, the uncertainty in the age ratio as a representation of 
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Posterior age (years) Date (A.D.) 

Model A1 A2 A1 A2 

Ordered 306 ± 13 310 ± 13 1699 ± 13 1695 ± 13 

Similar 285 ± 13 269 ± 13 1720 ± 13 1736 ± 13 

Table 7.8: Posterior Ages resulting from the ordered age model and similar age 

model. 

age, is also influential on the posterior distributions. When aE is large, this indicates 

low confidence in the age ratios and so the posterior ages are dominated by the prior. 

This also adds more uncertainty into the posterior ages. When aE is small, then the 

age ratios are given greater weighting, but again here the order A1 < A2 comes into 

play and so the posterior ages get older. 

As well as influencing the posterior age distributions, the choice of prior param­

eters also has a notable effect on the run time of the sampler in this example. When 

the prior beliefs are dominant in the analysis, either through a small prior age stan­

dard deviation or large value of aE, then the sampler is very cheap to run. The 

sampler becomes much more expensive when there is comparatively high confidence 

in the ratio estimates. In the sampler, for each iteration the conditional posterior 

distribution for A2 is repeatedly drawn from until a value is obtained that satisfies 

the condition A1 < A2 . As the ratio estimates contradict this ordering, when they 

dominate the posterior distribution the probability that a draw from the conditional 

distribution meets the chronological criterion is smaller, and thus more draws need 

to be made before this is satisfied, and in turn this lengthens the run time of the 

sampler. 

It can be seen that if a large number of ages were involved in such a model, 

then the rejection criteria for each draw would be a lot more complex, and thus 

lead to an inefficient sampler. This problem has been encountered in radiocarbon 

dating, where the use of Bayesian statistics is widespread. Such rejection algorithms 

are used for simple chronologies [28], though for any more substantial problems the 

MCMC simulation can be challenging [85]. 

Such chronological models are also vulnerable to the Stein effect [106]. Archae-

.. '" . 
. , ··-!• 
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Prior Specifications Posterior Age (years) Sampler 

ffiAl ffiA2 CJ Al CJ A2 PP (JE A1 A2 run time (s) 

280 290 5 5 0.5 5 281 ± 5 288 ± 5 8 

280 290 25 25 0.5 5 306 ± 13 310 ± 13 346 

280 290 50 50 0.5 5 315 ± 15 319 ± 15 3471 

280 290 25 25 0.1 5 305 ± 13 306 ± 13 2334 

280 290 25 25 0.9 5 299 ± 13 303 ± 13 11 

280 290 25 25 0.5 15 295 ± 16 303 ± 16 20 

280 290 25 25 0.5 25 291 ± 19 303 ± 19 11 

280 290 25 25 0.5 50 290 ± 22 306 ± 22 8 

270 270 25 25 5 0.5 308 ± 13 312 ± 13 1248 

270 270 25 25 0.5 50 294 ± 22 307 ± 22 10 

260 265 25 25 0.5 5 302 ± 13 305 ± 13 687 

260 265 25 25 0.5 50 276 ± 22 291 ± 21 8 

Table 7.9: Posterior Age using the ordered age model with different prior specifica­

tions. 

ologists are interested in the range of the dates, and thus the temporal duration 

of the site. However, the Stein effect can lead to over estimation of this parame­

ter, especially when the date range is small compared to the uncertainty in each 

date [85]. This issue has been overcome in radiocarbon dating by using a uniform 

prior distribution on the span of dates which is derived from a physical model of 

deposition [85]. 

The model outlined above for ordered age samples is a simple extension of the 

similar age model, and as discussed above contains a number of problems. Any 

previous inclusion of chronological information in a Bayesian framework using lumi­

nescence dates [92] has used the radiocarbon calibration programme OxCal [23, 24]. 

Here radiocarbon dates are used in conjunction with the luminescence data to pro­

duce a chronology for the site being dated. However, as OxCal is designed for use 

with radiocarbon dates, it is only possible to input the OSL age estimates with their 

random errors, and any systematic errors have to be added after the analysis. 



Chapter 8 

Example 

In this chapter we take a second example to further illustrate our general approach 

of Bayesian analysis for luminescence dating. Again a dating environment has been 

chosen that meets the assumptions made in the thesis (Section 2.6), and the example 

is a 'known-age' sample so comparisons can be made with the age produced using 

our analysis. 

Two samples (labelled 318-1, 318-2) were taken from Tattershall Castle, Tatter­

shall, Lincolnshire by Bailiff as part of the project on late and post-Medieval brick 

buildings [14], which also includes the example previously considered from Fydell 

House, Lincolnshire. As for many of the buildings in this project, there is signif­

icant documentary evidence for the age of Tattershall Castle, which is used as a 

comparative tool to evaluate the luminescence dating methodology. Here we ignore 

some of this unusually precise prior knowledge, applying a more common level of 

uncertainty to the prior distribution of age and then use the extra information for 

comparative purposes after the Bayesian analysis. 

Samples were taken from the brick tower of Tattershall Castle, construction of 

which began in 1434-5 for Lord Cromwell, the treasurer of England at that time 

[ 88, 97]. A picture of Tattershall castle is shown in Figure 8 .1. Accounts from 1445-

6 indicate that 322,000 bricks were supplied for the tower and it was constructed 

under the Flemish 'brekemaker' Baldwin [14]. This documentary evidence, along 

with the architectural style of the building led Bailiff to assign a date range of 

1445-1450 [14] before the data were analysed. 

136 
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Figure 8.1: Tattershall Castle 

This image was taken from the Geograph project collection. The copyright on this image is 

owned by Kate Jewell and is licensed for reuse under the Creative Commons Attribution 

ShareAlike 2.0 license. 

137 

The samples were taken from the interior walls, one from the ground floor of the 

NE tower (318-2), and one from the basement in the NW tower (318-1), 318-2 is 

considered here first. We will use the measurements made by the laboratory, along 

with their expert judgement, to carry out a Bayesian analysis on the sample age as 

detailed previously. 

This analysis looks at each stage of luminescence dating in turn, using the fol­

lowing steps. 

1. Evaluation of palaeodose at each preheat temperature. 

2. Use these estimates to identify the start of the preheat plateau. 

3. Compute the posterior distribution for sample palaeodose based on aliquots 

which lie on the preheat plateau. 

4. Calculate the dose rate distribution. 

5. The distribution for age ratio is found using the sample palaeodose and dose 

rate distributions. 
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6. The sample age distribution is based on the distribution for age ratio along 

with the prior specifications. 

8.1 Palaeodose Evaluation at each Preheat Tern-

perat.ure 

The first stage in the Bayesian age analysis is to evaluate the palaeodose at each 

preheat temperature, using the combined aliquot model detailed in Chapter 3. In 

the laboratory, the first step is to prepare the sample and carry out some preliminary 

experiments. 

8.1.1 Preliminary Experiments 

A number of preliminary experiments were initially carried out by Bailiff to ascertain 

the suitability of the sample for luminescence dating and to find appropriate regen­

erative doses to be used in the single aliquot regeneration (SAR) protocol (Section 

2.2.2) to evaluate the palaeodose. 
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Figure 8.2: The initial preliminary experiment carried out by Bailiff for sample 

318-2, Tattershall Castle. 

-- F1gure8~2=snow8'-Hiei~itiar~li~ of tli~"'"sARprotocol, ~~;~reac·out_c_;t-a: p--;eh~~t-----~ 

temperature of 220°C. The regenerative doses were chosen by estimating a possible 

palaeodose value using the documentary evidence to estimate age and dating experi-
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ence to assign a likely value to the dose rate. In Figure 8.2, the natural luminescence 

value does not fall within the range of luminescence intensities produced by the lab­

oratory irradiated doses, and so they are not optimal for use in the SAR protocol. 

However, the luminescence produced from the repeated doses are similar, and a 

linear trend is apparent, so there is no evidence here to suggest the luminescence 

properties of the sample would render it unsuitable for dating. 

As this first range is a trial for application of the SAR protocol, further pre­

liminary readings were taken. Several aliquots were used and after repeated mea­

surements, the doses to be irradiated in the laboratory for the SAR procedure were 

chosen to be 1494, 1793 and 2091 mGy with the lowest and highest being repeated. 

The data are given in Appendix G.5. 

8.1.2 Prior Elicitation 

The prior judgements required for the combined aliquot model (Chapter 3) were 

based on discussions with Bailiff, and the results from the preliminary experiments. 

The magnitude of the regenerative laboratory doses were chosen as the expert be­

lieved that the palaeodose would be contained within that range. Therefore, the 

prior distribution for palaeodose was set as 

(8.1) 

The dispersion of the aliquot estimates for palaeodose at each preheat temperature, 

XRj, was judged to be around 2-3%, and so /R was assigned a value of 50. 

It is assumed here that the relationship between dose and luminescence counts 

is linear (i.e. saturation is not being approached), and that this line goes through 

the origin. So, the prior mean mo: of the intercept a was given a value of zero. To 

assign the prior mean of the gradient parameter /3, the point on the line made by the 

natural luminescence intensity and the palaeodose was considered. The data for each 

aliquot have been normalised to a natural luminescence value of 10000 counts, and 

so, with mo: = 0 and JlR = 1750, then m 13 = 5.7, approximately YR = mo: + m13 * JlR· 

From the preliminary experiments, a range of intercept values were observed. 

Based on this, the standard deviation ao: of the intercept was assigned a value of 
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200. To consider the value of O'f3, the standard deviation of the gradient, then 

mo: ± 20'o: and J.lR ± 20'R were considered in the relation YR = a+ f3xR where for this 

purpose, the error term is ignored. This leads to a range for j3 of around 4-7 and so 

O'f3 = 1 a priori. The linear coefficients a and j3 will be negatively correlated, but 

this correlation is not thought to be strong, so we let p = -0.3. This leads to the 

prior distribution 

( 
a ) ( ( 0 ) ( 100

2 -0.3(11~0)(1) ) ) . (8.2) 
j3 ""'N 5.7 ' -0.3(100)(1) 

The spread 'Yo:, "1!3 of the aliquot estimates for the linear coefficients, a1, j31 were 

assigned values 25 and 5 respectively. The spread of the gradient estimates is ex­

pected to be less than that of the intercept estimates, based on the results from the 

preliminary experiments. 

The remaining parameter to elicit a prior distribution for is 0'2 , the standard 

deviation of the residuals Eij, which are assumed to be independent and identically 

distributed, Eij ""' N(O, 0'2 ). Consider the mean of 0' to be 50 counts. In the Gibbs 

sampler, the precision T = 1/0'2 is used. So, the mean ofT was assigned a value of 

0.0004 with a variance of 0.001. This leads to a gamma prior distribution forT, 

T = 1/0'2 ""'r(o.ooo16, 0.4). (8.3) 

The judgements made about the prior parameters above are summarised in Table 

8.1. 

I a, ~ I ~ = !fa' I 

Table 8.1: Prior Parameters for the combined aliquot model to evaluate palaeodose 

for sample 318-2 from Tattershall Castle. 

8.1.3 Posterior Distributions 

At each preheat temperature in turn, the posterior distribution for palaeodose was 

found using the prior specifications given above with the combined aliquot model, the 
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code for which is given in Appendix H.l. The posterior distributions for palaeodose 

are shown in Figure 8.3 and their statistics given in Table 8.2. 

Preheat #Aliquots Posterior Mean Posterior SD 

200 2 1690 50 

210 1 1809 53 

220 7 1840 28 

240 3 1941 77 

Table 8.2: Posterior palaeodose distributions at each preheat temperature for sample 

318-2. 

The posterior palaeodose distribution has lowest variance at a preheat temper­

ature of 220°C, as here the density is based on 7 aliquots and so more information 

is available from the data. The spread of the posterior palaeodose distribution is 

largest for a preheat of 240°C. A possible explanation for this behaviour is that the 

higher preheat thermally erodes the luminescence signal, and so the signal strength 

is smaller. This means that there is greater error in the counting of the signal, which 

could lead to greater dispersion in the estimates of palaeodose from each aliquot. 

There is some agreement in the palaeodose evaluation at the different preheat 

temperatures. This will be considered in Section 8.2 where the preheat plateau for 

palaeodose is identified. 

Convergence of the Gibbs Sampler 

A number of diagnostic tools have been described in Section 3.4 for assessing the 

convergence and stability of the Gibbs sampler. It is important to ensure that the 

sampler has converged before any inferences are made from the posterior distribu­

tions. 

Here, first the trace plots of the sampler were viewed, the plot for the first 1000 

iterations of the first chain for XR with a preheat of 200°C is shown in Figure 8.4. 

This trace plot indicates that the sampler has converged as it is 'spikey', and remains 

in the same region throughout. 

Table 8.3 shows the evaluation of the posterior palaeodose mean and standard 
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Figure 8.3: Posterior palaeodose distributions for aliquots from sample 318-2 with 

preheat temperatures (a) 200°C (b) 210°C (c) 220°C (d) 240°C. 
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Figure 8.4: Raw trace plot of x R simulations for the first 1000 iterations with a 

preheat of 200°C. 

Burn-in Posterior Mean Posterior SD 

0 1689.7 49.7 

50 1689.8 49.5 

1000 1689.8 49.5 

Table 8.3: Posterior palaeodose mean and standard deviation at preheat 200°C 

evaluated with different burn-in lengths. 

deviation with different burn-in periods. Here the length of the burn-in does not 

have an influence on the posterior mean and standard deviation evaluation. A burn­

in of of 1000 was chosen, to eliminate the possibility that convergence has not been 

reached by this point. 

To further check the convergence of the sampler, the mean and standard devia­

tion of posterior palaeodose at a preheat of 200°C was computed for different lengths 

of chain, and these are shown in Table 8.4. For a chain of only 1000 iterations, the 

posterior standard deviation is slightly higher. However, past this point there is no 

marked difference in the evaluation of posterior palaeodose, again suggesting that 

the sampler has reached convergence. 

To achieve approximately independent draws from the posterior distribution, the 

chains are thinned. Table 8.5 gives the posterior palaeodose mean and standard de­

viation for different amounts of thinning, assuming that a burn-in of 1000 iterations 

is adopted. Again, the thinning level adopted does not have a large influence on the 
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# Iterations Posterior Mean Posterior SD 

1000 1688.9 53.7 

5000 1689.4 50.6 

10000 1689.4 49.9 

Table 8.4: Posterior palaeodose mean and standard deviation at preheat 200°C 

evaluated for different length of chains. 

Thin Posterior Mean Posterior SD 

1 1689.8 49.5 

2 1689.8 49.5 

5 1689.5 49.6 

10 1689.2 49.4 

20 1688.8 49.9 

Table 8.5: Posterior palaeodose mean and standard deviation at preheat 200°C 

evaluated for different thin levels. 

outcome of the posterior distribution for palaeodose, and so every lOth iteration was 

taken from the chains. 

The Gelman and Rubin method for testing convergence (Section 3.4.3) looks 

at the variance between chains as, if convergence has been reached, the inferences 

from each of the chains should be similar. Here, for the iterations of palaeodose 

at a preheat of 200°C the test statistic Rc = 1.000061. Rc - 1 as the number of 

iterations n - oo and this provides evidence that the sampler has converged. 

Bringing all these evaluations together, it appears that convergence has been 

achieved for this sampler. Similar tests were carried out for the simulations at the 

other preheat temperatures. The posterior distributions were evaluated based on 

the simulations from a 5-chain 20,000 iteration sampler with a burn-in of 1000 and 

thinned every 10. 

Model Diagnostics 

Both linear and Bayesian model diagnostics were carried out to check the suitability 

of the model and thus validate the posterior distributions for palaeodose achieved. 
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The residuals for the aliquots with a preheat temperature of 200°C are shown in 

Figure 8.5. There is no apparent trend in the residual plot, and the magnitude of 

the residuals is small in comparison to the fitted values, so this plot does not provide 

evidence that fitting linear model to the data is inappropriate here. 
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Figure 8.5: Residuals plotted against fitted values of the linear model for aliquots 

with a preheat of 200°C. 

The correlation between the regenerative dose and the intensity of the lumines­

cence response was also calculated for these aliquots. These were 0.9997 and 0.9990 

respectively for aliquots 1 and 2 at a 200°C preheat, indicative of a good linear fit. 

The residual standard error (RSE) was also computed, with regard to the as­

sumption that the residuals are identically distributed, Eij "' N(O, 0'2) over all 

aliquots using the same preheat temperature. The RSE for aliquot 1 is 41.5 and 

aliquot 2 90.1. Although these values are different, relative to the magnitude of the 

fitted values, this difference is not marked. 

Bringing all of these calculations together, there is no evidence that fitting a 
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linear model to luminescence intensity and irradiated dose is inappropriate. This 

is coupled with the fact that the age of the building and the size of the palaeodose 

lead the expert to believe that the relationship between dose and luminescence is 

linear and saturation is not being approached. 

To check the Bayesian aspect of the model, the prior and posterior means were 

calculated and these are presented in Table 8.6. Here the posterior mean values 

attained do not look unrealistic, compared to the prior. It can be noted here that 

for a preheat of 220°C the difference between the prior and posterior mean is large 

compared to the posterior standard deviation, with reference to this value calculated 

for the other preheat temperatures. At 220°C there is a large number of aliquots 

and so more data, which in turn are likely to reduce the standard deviation and give 

less weight to the prior. 

Preheat # Aliquots Prior Mean Posterior Mean Difference Posterior SD 

200 2 1750 1689.5 49.6 60.5 

210 1 1750 1808.6 58.6 52.7 

220 7 1750 1839.5 89.5 28.0 

240 3 1750 1940.9 190.9 76.7 

Table 8.6: Prior and posterior palaeodose means at each preheat temperature for 

sample 318-2. 

Since none of the diagnostic checks applied here provide any indication that there 

is a problem with the model, the posterior distributions achieved for palaeodose at 

each preheat temperature can be accepted and taken forward into the next stage of 

the analysis: locating the preheat plateau. 

8.2 Preheat Plateau 

The palaeodose for a sample is evaluated using data from all aliquots which lie on the 

preheat plateau (Section 2.3). The model to find the distribution for the starting 

point of the preheat plateau is given in Chapter 4, and uses the means of the 

posterior palaeodose distributions at each preheat temperature found previously as 
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data. These are plotted in Figure 8.6 for sample 318-2 along with their two standard 

deviation uncertainty bars. 
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Figure 8.6: Posterior palaeodose means plotted against preheat temperature for 

sample 318-2, with two standard deviation uncertainty bars of the posterior distri­

butions for palaeodose. 

8.2.1 Prior Elicitation 

The prior distributions assigned to the parameters in the plateau model (Section 

4.2) are given in Table 8.7 and are assumed to be independent a priori. 

The level of the plateau, xn*, was assigned the same prior distribution as that 

of the palaeodose x R at each of the preheat temperatures in the combined aliquot 

model. The parameters of the curve leading up to the plateau, 'f/, K, were assigned 

prior distributions to allow a wide range of curve shapes, as in the previous example 

(Section 4.3.1). 
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XR* Ta TJ /'\, 

N(1750, 1502 ) N(200, 152) N(0.001, 12 ) N(0.001, 12 ) 

Table 8. 7: Prior distributions assigned to the plateau model parameters for Sample 

318-2. 

The practitioner believes that the preheat plateau has begun before the lowest 

preheat, otherwise measurements would not have been made at that temperature (as 

they would not have contributed to the evaluation of the sample palaeodose). After 

discussions with Bailiff about his past dating experience and the unpredictable na­

ture of luminescence (hence the need to locate the preheat plateau), a prior of mean 

200, standard deviation 15°C was assigned to Ta to reflect this level of uncertainty. 

8.2.2 Posterior Distribution 

The posterior distribution for Ta, the temperature at which the preheat plateau 

begins, is given in Figure 8.7, and the code detailed in Appendix H.2. 

This distribution assigns a probability of 0.0128 to the plateau starting after 

200°C and before 210°C, 0.0008 to the plateau starting at a temperature higher 

than 210°C and lower than 220°, with the remaining majority of probability to the 

plateau starting before 200°C is reached. 

The influence of the choice of prior distribution chosen for Ta on the posterior 

probability is examined in Table 8.8. This table shows the posterior probability of 

the plateau starting in particular temperature ranges. 

Prior Posterior Probability 

Ta P[Ta < 200] P[200 ~ Ta < 210] P[Ta 2: 210] 

N(200, 152 ) 0.9864 0.0128 0.0008 

N(200, 302
) 0.9929 0.0061 0.0010 

N(190, 152 ) 0.9936 0.0062 0.0002 

N(220, 152 ) 0.9622 0.0289 0.0089 

Table 8.8: Posterior probabilities for plateau starting temperature for different prior 

judgements 
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Figure 8. 7: Posterior distribution of plateau starting temperature, Ta 

The prior distribution for Ta has an effect on the posterior distribution, but for 

all choices it is most likely the plateau has begun by 200°C. The choice of prior is 

only influential on the tails of the distribution. When the prior for Ta is broad, or its 

prior mean is below 200°C, the probability that the plateau starts at a temperature 

higher than 200°C is less than 1%. 

When the prior mean for Ta is chosen to be 220°C, a higher proportion of the 

probability is assigned to the plateau starting in the range 200-210°C, though this 

is still a relatively small probability (,....., 3%). The probability of the plateau starting 

above 210°C is larger than when a smaller value is assigned to the prior mean, but 

not significant. 
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8.3 Sample Palaeodose 

The palaeodose estimate for sample 318-2 is based on the aliquots which were judged 

to lie on the preheat plateau. Here, from Figure 8. 7, the plateau is most likely to 

have started at a lower preheat than that used for any aliquot. So all aliquots lie 

on the preheat plateau and should be used to evaluate the palaeodose of 318-2. 

The model also assigns a small probability to the plateau starting between 200°C 

and 210°C, if this was the case the aliquots with a preheat of 200°C should not be 

included in the evaluation of sample palaeodose. 

Here we evaluate the palaeodose for 318-2 using the combined aliquot model 

with all the aliquots of the sample, and then only with aliquots with a preheat of 

210°C and above. A mixture of these two distributions weighted with the posterior 

probabilities of Ta will make up the palaeodose distribution. 

The values assigned to the parameters of the combined aliquot model, used to 

evaluate palaeodose, are the same prior values which were used when the palaeodose 

was found at each preheat temperature (Table 8.1). The Gibbs sampler was run 

for 40,000 iterations over 5 chains, with a burn-in of 1000 iterations and thinning 

every 5 to produce approximately independent draws from the posterior distribution. 

After convergence analysis, the posterior palaeodose based on the 13 aliquots over 

all preheat temperatures has mean 1793 and standard deviation 29 mGy. If the 

2 aliquots which have been preheated to 200°C are not included in the palaeodose 

evaluation, the posterior distribution has mean 1871 and standard deviation 28 mGy. 

These posterior distributions for palaeodose, conditional on the interval in which 

the preheat plateau begins, are shown in Figure 8.8. Also presented is the mixture 

of two normal distributions with mean and standard deviation of the two alternative 

posterior sample palaeodose distribution. The mixture is weighted with the posterior 

probabilities of Ta: N(1793, 292 ) with weight 0.987 and N(1871, 282 ) with weight 

0.013. 

It is clear from Figure 8.8 that the inclusion of the two aliquots with a preheat of 

200°C notably impacts the posterior palaeodose distribution. Although the posterior 

standard deviation is similar for both, the mean of the distribution is lower for the 

distribution based on the full set of data available. As the probability that the 
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Figure 8.8: Posterior palaeodose distribution of 318-2. 

The distributions are based on (a) all aliquots, (b) aliquots with preheat ~ 210°C, 

(c) mixture of two normals with the same statistics of (a) and (b) weighted by the 

posterior distribution for plateau starting temperature. The dashed line is the 

density of a normal distribution with the same mean and variance as the mixture 

of normals. 
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preheat plateau for this sample begins above 200°C is small, the mixture of normals 

weighted using these probabilities is similar to the palaeodose distribution from 

the full aliquot set. Similarly, the normal distribution with the same statistics as 

the mixture (mean 1794, standard deviation 29 mGy) is close to both the mixture 

distribution and the posterior palaeodose distribution assuming the plateau has 

begun by 200°C. 

The higher preheat temperature of 240°C results in a lower signal strength, and 

thus there is more dispersion through the aliquot estimates. The palaeodose was 

computed without the data from aliquots at a preheat of 240°C, and the posterior 

distribution is shown in Figure 8.9. This distribution has a mean of 1806.9 and a 

standard deviation of 22.9 mGy, which is notably smaller than the posterior standard 

deviations in Figure 8.8. 
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Figure 8.9: Posterior palaeodose distribution for 318-2 based on aliquots with pre­

heat treatments < 240°C. 

As the model for the relationship between palaeodose and preheat temperature 

off the plateau is not robust, further experimental measurements at low preheat 

temperatures could be useful here. This would provide more data on which to 

base judgements on where the preheat plateau begins, and as such which aliquot to 

include in the evaluation of the sample palaeodose. 
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Parameter Distribution 

Df3 N(2.61, ((0.025)(2.61)) 2
) 

D-r N(0.85, ((0.025)(0.85)) 2
) 

De N(0.1, ((0.025)(0.1))2) 

w N(1, ((0.025)(1)) 2
) 

b N(0.92, 0.052
) 

Hf3 N(1.25,0.12
) 

G N(1.09, 0.012
) 

F {3(72.27, 2351.25) 

Table 8.9: Distributions assigned to parameters to evaluate the dose rate for sample 

318-2, based on prior judgements. 

8.4 Dose Rate 

Rather than using the model for dose rate set out in Chapter 5, here we will adopt 

the adapted version of this model which was used during the conventional analysis 

of this sample [14]. Here the dose rate iJ is computed using 

(8.4) 

where the coefficients of iJf3 are the same as in Chapter 5. 

The gamma dose rate was measured in situ using 1-TLD (Section 2.4.1), and 

the parameter G here corrects for the attenuation of the gamma radiation by the 

dosimeter capsule wall [14]. The value of G was estimated using Monte Carlo simu­

lations of gamma radiation transport, and it was concluded that a correction of 9% 

increase in D-r was appropriate. The parameter G is equivalent to the coefficient 

l+H~WF used in Chapter 5, and here was assigned a distribution of N(1.09, 0.012
). 

The distribution for dose rate achieved after 20,000 iterations using the distri­

butions given in Table 8.9 is illustrated in Figure 8.10. This distribution has mean 

3.34 and standard deviation 0.16. This analysis assumes a uniform beta dose rate. 
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Figure 8.10: Posterior dose rate distribution for sample 318-2. 

8.5 Age Ratio 

In luminescence dating, the age of a sample is estimated using 

AE = Palaeodose 
Dose Rate 

154 

(8.5) 

and this is the final step in routine age analysis. Here we estimate this age ratio 

by combining draws from the sample palaeodose distribution with ones from the 

distribution for dose rate. For sample 318-2, the resulting distribution is shown 

in Figure 8.11. This distribution has mean 538.1, standard deviation 28.0 years, 

and is overlayed with the density of a normal distribution with the same mean and 

standard deviation (dashed line). 
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Figure 8.11: Posterior age ratio of sample 318-2, with the dashed line giving the 

density of the normal distribution with the same statistics. 
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8.6 Age 

There is strong documentary evidence about the age of the building, which in part 

will be ignored to assigned a realistic prior distribution to age reflecting the level 

more common to prior beliefs in routine dating. The parameters used to compute 

the posterior distribution for the age of 318-2 are given in Table 8.10. 

I Data Input I Prior Judgements 

AE w2 E mA a A aE PE PA 

538.1 28.0 558 20 10 0.55 0.2 

Table 8.10: Prior parameter values used to calculate posterior sample age using the 

model outlined in Chapter 6. 

The building has been assigned a date range of 1445-1450 based on documentary 

evidence alone [14]. Here we take the mean age to be 558 years, where the age is 

considered as years before 2005 (when the laboratory measurements were made). 

This falls within the known date range, however we will apply a larger prior standard 

deviation, of 20 years, to the model, which is a more common uncertainty in brick 

dating. 

The parameter aE represents the uncertainty in the age ratio AE as an indicator 

of the sample age. Here aE = 10, based on expert judgements. 

Using the values laid out in Table 8.10, the posterior age distribution is normal 

with mean 552 years, standard deviation 17. This leads to a date of 1453 ± 17. 

8.6.1 Sensitivity to Prior Specifications 

The influence of the prior mean on the posterior mean age is shown in Figure 8.12. 

Here there is a direct relationship between the prior and posterior mean ages, with 

the effect being less marked when the prior standard deviation is high. 
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Figure 8.12: Influence of the prior mean on the posterior mean age with a prior age 

standard deviation of 20 and 50 years. 

8. 7 Sample 318-1 

Sample 318-1 was taken from a lower level of the tower of Tattershall castle [14]. The 

same prior judgements were made for palaeodose as sample 318-2 (Section 8.1.2). 

The posterior distribution for palaeodose at each preheat temperature are presented 

in Figure 8.13, with their statistics given in Table 8.11. The posterior palaeodose 

standard deviation is smallest for the preheat 220°C as here the palaeodose eval­

uation is based on 8 aliquots, and so there is more information available than for 

temperatures 200 and 240°C at which there are only 2 aliquots each. 

Preheat # Aliquots Posterior Mean (mGy) Posterior SD 

200°C 2 1711.5 89.5 

220°C 8 1771.3 30.5 

240°C 2 1885.2 66.5 

Table 8.11: Posterior palaeodose mean and standard deviation of palaeodose evalu­

ated at each preheat temperature of sample 318-1. 

Analogous to routine dating analysis, the posterior palaeodose means were plot­

ted against preheat temperature in Figure 8.14. Although there is an increasing 

trend in the posterior palaeodose means, given the posterior variances it would be 

hard to argue that a preheat plateau is not present. This proposition was supported 
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Figure 8.13: Posterior palaeodose distribution at preheat temperature (a) 200°C, 
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by the plateau model, that was run with the same prior distribution as elicited for 

sample 318-2 (Section 8.2.1) to evaluate the posterior distribution for the plateau 

starting temperature. This posterior distribution assigned a negligible probability 

to the plateau starting after 200°C under the current prior specifications. 
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Figure 8.14: Posterior palaeodose means plotted against preheat temperature for 

sample 318-1, with two standard deviation uncertainty bars. 

As all the aliquots are thought to lie on the preheat plateau, all aliquots of 

sample 318-1 were used to evaluate the sample palaeodose. The combined aliquot 

model was used with all 12 aliquots and the same prior distributions as when the 

palaeo dose was evaluated at each preheat temperature (and hence the same as for 

sample 318-2). The sampler was run for 40,000 iterations over 5 chains. After 

appropriate convergence checks, the chains were thinned. every lOth iteration, and a 

burn-in of 1000 was used. The resulting posterior distribution for the palaeodose of 

sample 318-1 is illustrated in Figure 8.15. This distribution has mean 1783.0 and 

standard deviation 24.0 mGy. 
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Figure 8.15: Posterior distribution for sample palaeodose for 318-1. 
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The next step in the age analysis is to evaluate the dose rate. Here, the same 

model for dose rate was used as for sample 318-2 above. Sample 318-1 was extracted 

from a brick in the basement of Tattershall Castle, in contrast to 318-2 which was 

sampled from ground level. The location of 318-1 was relatively damp, based on 

contemporary measurements, and as such the mean of the average fraction of satu­

ration F was taken to be 5± 1% (compared with 3± 1% for 318-1). With Df3 = 2.42 

and D-y = 0.97, but otherwise the same dose rate parameters as 318-2 (Table 8.9), 

the resulting dose rate distribution for sample 318-1 is shown in Figure 8.16. This 

distribution has mean 3.52 and standard deviation 0.16. 
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Figure 8.16: Dose rate distribution for 318-1. 

The age ratio of 318-1 was then evaluated using the posterior distribution for 

sample palaeodose and the dose rate distribution. The distribution for the age 

ratio is shown in Figure 8.17, along with a normal density with the same statistics 

(AEIAE)· The similarity between these two densities suggests that modelling the 
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age ratio in this way (Section 6.1) is not unsuitable. Here AE = 549.6 and w = 28.4, 

the mean and standard deviation of the age ratio. 
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Figure 8.17: Age ratio of sample 318-1, with the dashed line giving the density of 

the normal distribution with the same statistics. 

To evaluate the posterior age distribution, the same prior distribution for age 

was assigned as sample 318-2. Both these samples have been taken from the same 

building, and there is no evidence that they are different ages. So, with a priori 

A ,..._, N(558, 202 ), and O'E = 5, the posterior normal distribution for age for 318-1 

has mean 555.3 and standard deviation 16.4 years, leading to a date of 1450 ± 16. 

8.8 Age Analysis 

We compare the dates achieved for Tattershall Castle by applying different models 

for the data. The two samples can be considered independently, where the posterior 

age is evaluated for both individually. The coeval model is appropriate here, as 

there is documentary evidence that indicates the base of the tower of Tattershall 

Castle was built from one stock of bricks, and so the two samples have come from 

bricks manufactured in the same year. A further comparison was made with the 

dates achieved through applying the similar age model. 

Table 8.12 shows the dates achieved under each model, and Figure 8.18 shows 

the posterior age densities in each case. As the same data input and analogous prior 

distributions are used in each model, the posterior age distributions are all similar. 
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Model Prior Date 

Single Age (318-1) N(558, 202
) 1450 ± 16 

Single Age (318-2) N(558, 202 ) 1453 ± 17 

Coeval Model N(558, 202 ) 1453 ± 16 

I I 558 \ I 202 (0.8)202 \ \ 1451 ± 16 (318-1) 
Similar Age Model Nl I' 

\ \ 558 J \ (0.8)202 202 
J J 1453 ± 16 (318-2) 

Table 8.12: Comparison of different age models for 318-1, 318-2. 

When the posterior age distribution is evaluated for 318-1 and 318-2 indepen­

dently, the posterior age uncertainty is the same in each case, and the mean age is 

two years younger for 318-2. This difference is small compared with the posterior 

variance, and easily accounted for by random errors present in luminescence dating. 

Any practitioner would willingly conclude that these two samples have the same 

date. 

However, assessing the ages independently ignores a significant piece of prior 

information: there is strong documentary evidence that suggests that one batch of 

322,000 bricks was used to build the tower of Tattershall Castle [14]. The availability 

of this type of documentary evidence is very rare. If the samples have been taken 

from bricks in the same batch, then they will have been fired at the same time (or 

at most within a few weeks of each other). It is therefore appropriate to apply the 

coeval model to the age estimates here. Using the same prior for age as previously, 

the date assigned to the two samples is 1453 ± 16 AD. 

It is notable that here the posterior standard deviation for age from the coeval 

model is not smaller than when the two ages were considered individually. As 

more data are available in the coeval model, a smaller variance would usually be 

expected. Here the posterior standard deviation is slightly smaller for the coeval 

model, as it has been rounded up to the nearest year to 16 years, whereas the single 

age evaluation of 318-2 the posterior standard deviation was rounded down to 16 

years. In addition, the spread of two age ratio estimates (AE1 = 549.6, AE2 = 538.1) 

and the prior mean ( 558 years) is such that this posterior standard deviation seems 

reasonable. 
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Figure 8.18: Posterior age distribution for (a) 318-1, (b) 318-2, (c) 318-1 and 318-2 

under the coeval model,(d) 318-1 and 318-2 under the similar age model. 
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For comparison, the similar age model was also used to date the samples from 

Tattershall Castle. The prior assumption that the two samples are related (and the 

strength of the similarity induced by the prior distribution for age) is not as strong 

as using the coeval model. Here the same mean and standard deviation for age for 

both the samples was used, along with a correlation of 0.8. This allows there to be 

some discrepancy between the two dates. Again, the posterior distributions for the 

two ages are very similar, both to each other and the posterior densities from the 

other models. 

The dates achieved here (Table 8.12) can be compared with those from the 

conventional analysis (1455 ± 15, 1453 ± 15) and also that concluded from the 

documentary evidence alone (1445-1450). These dates are in agreement with those 

concluded through the Bayesian analysis, as the strength of the prior information 

was ignored here to replicate a routine dating situation. However the Bayesian model 

has scope to include the prior information which is very valuable in situations where 

the luminescence behaviour induces large errors in the analysis. 



Chapter 9 

Conclusions 

The Bayesian model developed here was designed to establish a computational 

framework that incorporated the basic elements of a routine age analysis in lumines­

cence dating, based on the application of a single aliquot OSL regenerative dating 

procedure. That is, the palaeodose evaluation is first carried out at each preheat 

temperature. Then, these distributions are used to identify the preheat plateau; 

the aliquots whose palaeodose estimates lie on the plateau are used to evaluate the 

posterior distribution of the palaeodose of the sample. The dose rate is evaluated 

using a separate experimental procedure, the distribution of which is combined with 

the palaeodose to find the age ratio using the age equation. An additional step is 

added to consider the relationship between the age ratio and the sample age. This 

allows the expert knowledge of the palaeodose, annual dose, preheat plateau and the 

uncertainties associated with their measurement to be incorporated in a way that 

reflects current practice. 

By separating the age evaluation into its component parts and considering the 

posterior distribution at each step, the modulalised model is very adaptable and 

enables individual sections to be tailored to experimental techniques specific to the 

laboratory without significant restructuring of the model. It can also be modified 

as experimental methods and theoretical knowledge is further advanced, without 

having to remodel the whole process. 

From a pragmatic viewpoint, with consideration to the clearly defined steps of 

luminescence and the complexity of the errors within them, this model structure 

164 
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seems appropriate as it allows the uncertainty resolved at each stage of the analysis 

to be compared with the empirical reckoning of the practitioner. 

The analogous structure of the Bayesian model and routine age analysis increases 

the potential accessibility of it to luminescence dating practitioners. Although find­

ing the age of the sample is the ultimate aim, the posterior distributions of the 

parameters at each stage are of significant interest to the experimenter. It also 

enables palaeodose distributions from different evaluations to be compared. 

Considering the age analysis in a number of separate stages results in MCMC 

computations, in our experience, that are well behaved. As such, they could be 

implemented by a practitioner who is new to the field of Bayesian statistics without 

experiencing great convergence problems. 

In line with routine dating methods, we have considered the preheat plateau as a 

diagnostic test for the aliquots which should be included in the evaluation of sample 

palaeodose, using the posterior palaeodose evaluations at each preheat temperature 

as the 'data' input to this section of the model. Once the appropriate aliquots 

have been selected, these are then used in the original 'combined aliquot model' to 

evaluate the posterior distribution for the palaeodose of the sample. An alternative 

approach to this problem would have been to construct a large single model which 

makes inferences about the sample palaeodose from the original data. However, the 

relationship between all of the parameters is not straightforward and hence it is 

difficult to write down their joint distributions. 

It is recognised that the preheat plateau section of the model is in a preliminary 

stage of development, reflecting current understanding of luminescence behaviour 

in this region. Hence this component of the model is most suitable to test for the 

presence of a preheat plateau, and so indicate which aliquots should be used in 

the sample palaeodose evaluation. As in routine age analysis, such plateau analysis 

supports reasonable scientific judgement, rather than being used as a quantitative 

element in the determination of the palaeodose. 

This approach to the structure of the analysis also corresponds well to the general 

sources of prior information. At each stage of the model, there is prior information 

available, from past dating experience, environment and, in the case of the palaeo-
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dose, preliminary experiments. Considering the inference in a number of separate 

stages allows appropriate prior information to be utilised at each step and the in­

fluence of each prior judgement to be carefully monitored. 

Putting practical limitations aside, the development of a model with a single cal­

culation and corresponding complex MCMC calculations could lead to a 'black-box' 

approach to statistics for any luminescence practitioners wishing to apply Bayesian 

methods, which should be avoided [28]. In contrast, the approach developed in 

the thesis provides the basis for a transparent age analysis, where each step in the 

calculation can be easily tracked. It allows Bayesian methods to be accessible to 

luminescence practitioners with well-behaved MCMC calculations and an analogous 

method to their routine analysis. 

There are several of areas in which this model can be extended to include a 

greater range of dating situations. As developed here the model is limited to a linear 

relationship between dose and luminescence. However, it would not be difficult to 

adapt the model to incorporate the non-linear case. 

The examples chosen have been fired brick samples from buildings with good 

dating control where there is no doubt in the completeness of the resetting process. 

When sediment samples are considered, this is not always the case and partial 

resetting often occurs, resulting in a skewed distribution of palaeodose estimates 

across the sample. The model can be adapted to such situations, for example a 

log-normal distribution could be assigned to palaeodose a priori. 

Single grain methods for palaeodose evaluation are becoming more widespread 

in luminescence dating. Currently, the model assumes that the SAR procedure has 

been used, but it could be extended to cover single grain protocols as well (which 

are usually based on a regenerative procedure). Using aliquots of grains means that 

any grain-to-grain variation in luminescence brightness is diluted, and so a greater 

dispersion in palaeodose values are observed in single grain dating, which could be 

accommodated. Such adaptations are facilitated by the structure of our model, 

allowing individual stages to be tailored to the particular dating situation. 

A barrier that needs to be overcome for Bayesian analysis to reach its full poten­

tial in this application is the crossing of inter-disciplinary boundaries. Although the 
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basic principles of Bayesian statistics are relatively simple, the application to real­

life situations are somewhat more complex. The need to have a full understanding 

of complex mathematical ideas in order to apply a Bayesian model may be some­

what daunting for practitioners of luminescence dating, and indeed the lack of true 

understanding of Bayesian principles led to some initial opposition in radiocarbon 

dating [90]. 

The potential of Bayesian statistics in luminescence dating has been noted [92], 

and the aim of this thesis was to realise some of this potential. The model has to 

be accessible to the luminescence dating community as a whole, and we feel that 

the intuitive approach to the modelling taken here will facilitate this. However, it 

will still be an area where Bayesian experts are required to work in collaboration 

with luminescence experts, as is emphasised by advocates of Bayesian methods in 

radiocarbon dating [98]. 

9.1 Future Work 

The model developed in this thesis is in the preliminary stages of development, and 

there are a number of areas that would benefit from further work. A number of 

these are outlined below. 

Incomplete resetting of the luminescence signal on deposition can be a common 

problem when dating sediments. We currently have not considered this in the model, 

but with work it could be adapted into the model for palaeodose. It is likely that 

such a development would be of particular interest to many luminescence dating 

practitioners. In the model here, we consider the palaeodose to follow a normal 

distribution a priori; this would not be the case when the sample was incompletely 

bleached. A possible line of research in this area would be to consider Galbraith's 

models for such situations [47] and adapt them into a Bayesian framework. A 

straight forward adaption of the current combined aliquot model would be to let the 

palaeodose have a log normal distribution a priori; that is use the Gibbs sampler 

detailed in Chapter 3 but consider the log of the palaeodose. 

In the combined aliquot model, used to evaluate palaeodose and detailed m 
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Chapter 3, we consider the relationship between luminescence intensity and applied 

dose to be linear (after appropriate sensitivity and background signal corrections). 

This is an approximation to the true saturating exponential relationship, but is 

appropriate for the samples considered. However, to make the model more widely 

applicable, this relationship could be adopted. 

Another area of the combined aliquot model which has potential for further 

research is the use of a normal distribution for the errors around the fitted dose 

response line. The data here is photon counts, and so a poisson distribution would 

be suitable. 

It is noted in Chapter 4 that the model given for the preheat plateau is in the 

early stages of development. Although a useful diagnostic tool, it would benefit from 

further work as currently it does not consider the behaviour of palaeodose estimates 

beyond the plateau, or the possibility that a 'false plateau' could be observed. 

There is room for development in the dose rate model (Chapter 5), as here we 

have assumed that the material is homogeneous. Heterogeneity in the beta dose 

rate can be a source of error here, so it would be beneficial if scope for this, where 

appropriate, could be included in the model. 

At present, we consider the age of the sample to be normal a priori. The model 

would be more adaptable if it could be applied for a range of different prior distri­

butions for age. We also considered inference from a number of samples, including 

those which the relative chronology is known. The construction of chronologies us­

ing Bayesian methods has been researched and applied in depth for other dating 

methods, particularly carbon dating [30], and it would be interesting to see if this 

could be included in the model here for luminescence dating. 

Eliciting the expert's views on the prior parameters is a challenge for all Bayesian 

practitioners. Further work looking into this process in the context of this model 

would be very valuable. 

As the model develops it would become applicable to a wider number of dating 

situations and so make it more appealing to dating practitioners. Such developments 

would be more valuable if the computational side of the model was more user­

friendly, with software being written to provide an accessible user interface. If this 
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work was carried out then the luminescence dating community would be enthusiastic 

to adopt Bayesian philosophies .. 
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Appendix A 

Notation 

A.l 

Yij 

n· J 

J 

/R 

a, f3 

Notation for Palaeodose Evaluation 

ith regenerative dose applied in the SAR procedure to aliquot j, i = 1, ... , nj 

Natural luminescence of aliquot j 

Standardised natural luminescence of aliquot j 

Sensitivity and background corrected luminescence response of aliquot j 

by regenerative dose i, i = 1, ... , nj 

Sensitivity and background corrected luminescence response of aliquot j 

by regenerative dose i, i = 1, ... , nj, normalised to natural luminescence 

Number of regenerative doses applied to aliquot j 

Palaeo dose 

Palaeodose estimate from aliquot j 

Number of aliquots used for the palaeodose estimate (either with 

the same preheat temperature (Chapter 3), or those which lie on the preheat 

plateau (Chapter 4)) 

Error between aliquot palaeo dose estimates x Rj and palaeodose x R 

Coefficients of linear relationship between luminescence and dose 

Estimate of a from aliquot j 

Estimate of f3 from aliquot j 

Correlation between a and f], and aj, f]j 

Variance of the independent and identically distributed errors of (xij, Yij) 
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A.2. Notation for Preheat Plateau Model 

A.2 

XRT 

Error between Cl'.j and a 

Error between (Ji and (3 

Prior mean and variance for palaeo dose x R 

Prior mean and variance for a 

Prior mean and variance for (3 

Notation for Preheat Plateau Model 

Mean palaeodose at preheat temperature T 

Palaeodose value on the preheat plateau 

Starting temperature of the preheat plateau 

183 

Curve parameters for the relationship between palaeodose and preheat 

temperature before the plateau has begun. 

XRT; Mean of the posterior distribution for palaeodose at temperature 7i, E[xRrJ 

CJ RT; Posterior standard deviation of x RT;. 

A.3 Notation For Dose Rate Model 

Df3 Beta dose rate 

D-y Gamma dose rate 

D c Cosmic radiation dose rate 

W Water content at saturation 

F Average fractional saturation level 

Hf3 Water attenuation factor for beta particles 

H-y Water attenuation factor for gamma rays 

h Attenuation factor in the surrounding material for beta particles 

g Attenuation factor in the surrounding material for gamma rays 
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A.4 Notation for Age evaluation 

AE Ratio of palaeodose to annual dose used to estimate age, the age ratio . 

.AE Ratio estimate, the posterior mean of the distribution computed for AE. 

w'i; Variance of the ratio estimate around the age ratio, which takes the value 

of the variance of the posterior distribution of AE. 

A Sample age 

a'i; Variance of the age ratio around the true sample age (specified by the expert). 



Appendix B 

Convergence Diagnostics 

A number of diagnostic tools were used to investigate the convergence of the Gibbs 

sampler used in the combined aliquot model (Chapter 3). Here we provide the 

details of two of these methods. 

B.l Independence of Starting Values 

To look at the convergence of the Gibbs sampler (Section 3.3), starting values for 

the parameters far from their expected values where chosen. The raw trace plots 

(Figure B.l) show the first 1000 iterations for XR, a and (3, and indicate that the 

chains converge quickly from distant starting values. These iterations are based on 

the simulated data set detailed in Section 3.4. 

B.2 Gelman and Rubin Method 

For a sampler with m chains, each with n iterations, then for parameter () let ()~ 

denote the tth iteration from chain i, compute 
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Figure B.1: Raw trace plots from the Gibbs sampler for XR, a, (3, showing conver­

gence independent of the starting values chosen. 

{ji ~ f=o~ 
n l 

t=l 

{j 
1 m 

- L:tJi 
m. 

l=l 
n 

82 n ~ 1 L ( o; - {ji) 2 l 

t=l 

The variance between the means of each chain is calculated, 

and the mean of the m variances within each chain, 

1 m 
W=- ~s~ 

mL...Jl 
i=l 

(B.2.1) 

(B.2.2) 

(B.2.3) 

(B.2.4) 

(B.2.5) 



B.2. Gelman and Rubin Method 

The variance across all the simulations is estimated by V, 

~ n-1 ( 1)B V= --W+ 1+- -
n m n 

and used to compute the ratio 

2'2 
where d = ~ and 

VarlVJ 

v~r [v] = 

R = (d + 3) V 
c d+1 w 

(
n- 1)2 _!_Var[s2] + (m + 1)2 2 B2 

n m ~ mn m-1 

(m + 1)(n- 1) m - - -
+2 2 -(cov(s7,0l)-20cov(s7,Bi)) 

mn m 
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(B.2.6) 

(B.2.7) 

(B.2.8) 



Appendix C 

Conditional Posterior 

Distributions for the Combined 

Aliquot Model 

The combined aliquot model is used to evaluate the palaeodose based on a collection 

of aliquots (Chapter 3). Consider i = 1, ... , nj doses applied to j = 1, ... , J aliquots 

which have all undergone a preheat treatment at temperature T. The conditional 

posterior distributions of the combined aliquot model parameters are below, and are 

used to implement the Gibbs Sampler and thus produce a posterior distribution for 

palaeodose. 

Let 8 be the set of all parameters, 

(C.0.1) 

and 8\xR, for example, represent this set with XR removed. Here Yoj is the natural 

luminescence YRj and Xoj = XRj, the jth aliquot palaeodose parameter. 
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C.l Conditional Posterior Distribution for Palaeo-

dose 

P[xRID, 8\xR] ex P[DI8]P[xRI8\xR] 

ex P[DI8]P[xRixR1, ... , XRJ] 

ex (1] P[xn;[xn]) P[xn] 

ex exp { --
1
- [xn -l'n]2} tr exp { --

1
- [xR·- xR]2

} 2a2 212 J 
R j=l R 

ex exp { --
1
- [xn -l'n]

2} exp { --
1
- t [xn- xn]

2} 2a2 212 J R R j=l 

{ 1 ([ 1 J l 2 [/'R 2:;-1 XRj] ) } ex exp -- - + - X R - 2 - + - XR 
2 a2 12 a2 12 R R R R 

exp { -~ ( !__ + _1_) [xn-
Lf~; ""' + /~jl} 

ex 'YR CTR 

J 1 2 12 a2 ~+~ R R 
R R 

so that 

(C.1.2) 

C.2 Conditional Posterior Distribution for Aliquot 

Palaeodose Estimates 
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So 

(C.2.3) 

C.3 Conditional Posterior Distributions for the 

Regression Coefficients 

P[adD, 8\a] ex P[DI8]P[al8\a] 

ex P[DI8]P[ai,B, a1, ... , aJ, ,81, ... , fJJ] 

ex P[DI8]P[a1, ... ,aila,,B,,BI, ... ,,Bj]P[ai,B,,BI, ... ,,Bi] 

ex P[DI8]P[a1, ... , aila, ,8, ,81, ... , ,Bi]P[ai,B] 

oc P[ D[e] (D ( P[ai [a, ,6, ,6i]) P[a[,6] 

{ 

1 J ni } 
ex exp - 2a2 ]; ~ (Yii - ai - ,BjXij )2 

IIJ [exp {-
1 

(a·- a- p(,B·- ,B) lo.) 2

}] 
j=l 21~(1- p2 ) J J /{3 

exp { -
1 (a -mo. - p(,B - mf3) a o.) 

2

} 
2aa.(1 - p2) af3 

ex exp{-
1 (~(a·-a-p(,B·-,B)'o.))

2

} 2-y2(1-p2) ~ J J /{3 
0. J=l 

exp { -
1 (a -mo. - p(,B - mf3) a o.) 

2

} 
2aa.(1- p2) af3 

<X exp { -~ ( [ ~~( 1 ~ p2) + a~(l ~ p2)] a
2 

_
2 

[Lf=l ( ai - p(,Bi- ,8)!:;) + mo.- rho(,B- mf3)~] a) } 
~~(1- p2) a~(l - p2) 

<X exp { -~ ( ~~(1 ~ p2 ) + a~(l ~ p2)) 
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so that 

P[ai!D, 8\ai] ex P[DI8]P[ail8\ai] 

ex P[DI8]P[aila, fi, Pi] 

leading to 
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P[f31D, 8\,8] ex P[DI8]P[,8I8\,8] 

ex P[DI8]P[,8Ia,al, ... ,aJ,,81, ... ,,8J] 

ex P[D!8]P[,81, ... , ,8JI,8, a, a1, ... , aJ]P[,8Ia, a1, ... , aJ] 

ex P[DI8]P[,81, ... , ,8JI,8, a, all ... , aJ]P[,8Ia] 

ex P[D[8[ (ft P[IJ; [a, iJ, il;[) P[il[a] 

ex { 1 J "' } exp - 2a2 f; ~ (Yii- ai- ,8jXij)2 

IT exp { --
1 (il -!l- p(a -a) 'YP )'} 212 J J I j=l ~ Q 

exp { -~ (il- mp- p(a- rna) "P) '} 
2a~ aa 

ex exp { --
1 t (il -!l- p(a -a) 'YP )'} 

212 1 1 
I ~ j=l Q 

exp { -~ (il- mp- p(a- ma) "P )'} 
2a~ aa 

ex exp -- + ,8 { 1 ([ J 1 ] 2 
2 ~~(1 - p2) a~(l - p2) 

-2 J-l J J 'Yo + Q Uo. ,8 [z:;J_ (il -p(a -a)'-) mp+p(a-m )"'] ) } 
~~(1 - p2) a~(l - p2) 

ex { 1( J 1 ) exp -- + 
2 ~~(1 - p2) a~(l - p2) 

r- Ef~, (P,-p(aJ -a)*) (mp+p(a-m.);; T } 
-y3(1-p2) + u3(1-p2) 

J 1 
-y3(1-p2) + u3(1-p2) 

so 
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C.4 Conditional Posterior Distribution for a 2 

P[a2 1D, 8\a2
] ex P[DI8]P[a2 18\a2

] 

ex P[DI8]P[a2
] 
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C.5 Conditional Posterior Distribution for "/h 
If the parameter lh is considered to be unknown (rather than a fixed constant), 

then it can be added to the Gibbs Sampler. If a priori lh"" Invf(b/2, c/2) then its 

conditional posterior distribution is 

P[f~ID, 8] ex P[DI8, 1k]P[I'kl8] 

ex P[DI8, !k]P[!'klxR, XRI ... , XRJ] 

oc (}] P[xn;lxn,f'~]) P[l'~] 

ex (rr 1 
2 exp {-~ (XRj- XR)

2
}) 

j=l v'2if1R 2lR 

(c/2)Cb/2
) 1 { c } 

r(b/2) ~~(b/2+1) exp - 21'k 

ex ( 2)[(J:b)/2+l]exp{-212 t(XRj-XR)2+~} 
lR lR j=l 

(C.5.9) 



Appendix D 

Simulated Data used to Test 

Convergence and Stability of the 

Gibbs Sampler 

A data set was simulated to investigate the convergence properties of the Gibbs 

Sampler used in the combined aliquot model (Chapter 3). The true values of the 

parameters were chosen (given below), and then these were used to simulate a data 

set. This data was used in the combined aliquot model to see if the parameter 

values were returned. The code used to simulate the data, along with the data set 

achieved, follows. The table below shows the values chosen for the parameters, on 

which the data was based. 

XR /R a lOt (3 /{3 

500 5 0 5 10 5 

R Code to simulate a data set 

library(MASS) 

J<-5 #Number of aliquots 

xR<-500 #Palaeodose 
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gamR<-5 

xRj<-c(rnorm(J,xR,gam)) #Simulate the aliquot palaeodose values 

yRj<-c(5000,5000,5000) 

x<-c(250,250,400,650,650) 

alpha<-0 

beta<-10 

gambet<-5 

gamalp<-5 

rho<--0.3 

aljbetj<-array(mvrnorm(J,c(alpha,beta), 

matrix(c(gamalp~2,rho*gamalp*gambet,rho*gamalp*gambet,gambet~2),2,2)),c(J,2)) 

mtau<-0.01 

vartau<-0.00015 

a<-mtau~2/vartau 

b<-mtau/vartau 

tau<-rgamma(length(x)*J,a,b) 

sig<-1/sqrt(tau) 

ep<-array(rnorm(length(x)*J,O,sig),c(J,length(x))) 

y<-array(NA,c(J,length(x))) 

for (i in 1:length(x)){ 

for (j in 1:J){ 

y[j,i]<-aljbetj [j,1]+aljbetj[j,2]*x[i]+ep[j,i] 

} 

} 

#Use the known palaedose and the fitted line to find the natural 

luminescence values. 
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yRj<-aljbetj[,1]+aljbetj[,2]*xRj 

#Standardise the luminescence response against a natural luminescence 

value of 5000 counts. 

stany<-array(NA,c(J,length(x))) 

for (i in 1:length(x)){ 

for (j in 1:J){ 

stany[j,i]<-y[j,i]*5000/yRj[j] 

} 

} 

The simulated data set used in Section 3.4 was produced using the code above 

and is shown in Table D. 

Applied Dose (mGy) 

250 250 400 650 650 

2488.3 2486.3 3987.2 6494.6 6461.5 

2547.1 2482.7 4033.9 6559.5 6575.7 

2477.5 2474.4 3956.7 6423.8 6420.5 

Table D.l: The simulated luminescence response values for the given doses, stan­

dardised to a natural luminescence value of 5000 counts 



Appendix E 

Sensitivity of the Combined 

Aliquot Model to Prior 

Judgements 

Section 3.6 looked at the sensitivity of the posterior distributions to the prior judge­

ments made in the combined aliquot model for evaluating palaeodose. Here we 

provide further details and results of the analysis carried out. 

Table E.l shows the influence of the choice of aR, the prior palaeodose standard 

deviation, when the prior mean f.-lR is 900 mGy. Figure E.l shows a selection of the 

corresponding posterior distributions for palaeodose. Similarly, Table E.2 illustrates 

the influence of aR on posterior palaeodose when f.-lR = lOOOmGy, and Table E.3 

and Figure E.2 for f.-lR = 1100 mGy. 

As discussed in Section 3.6, the sensitivity of the posterior palaeodose distri­

bution to the choice of prior mean is dependent on the choice of prior standard 

deviation. If the value of aR is small, then the posterior palaeodose mean is similar 

to the prior. 

198 



Appendix E. Sensitivity of the Combined Aliquot Model to Prior 
Judgements 199 

Prior Posterior 

aR Mean SD Mode IQ range 

5 902.2 5.0 902.2 6.8 

10 909.1 10.3 909.2 13.9 

15 922.5 16.1 922.4 21.8 

20 943.3 21.4 9437 29.4 

25 967.7 23.0 969.9 31.0 

30 984.9 20.9 987.1 27.3 

50 1007.5 17.0 1000.8 21.6 

100 1017.4 16.7 1017.5 21.2 

500 1020.3 16.7 1020.2 21.1 

Table E.1: Influence of aR on posterior palaeodose when f.LR = 900mGy 
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Figure E.1: Influence of aR on posterior palaeodose distribution when f.LR = 900 

mGy. 
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Prior Posterior 

an Mean SD Mode IQ range 

5 1001.8 4.8 1001.8 6.4 

10 1005.9 8.6 1006.0 11.6 

15 1009.6 11.3 1009.8 15.0 

20 1012.4 12.7 1012.6 16.7 

25 1014.5 13.5 1014.7 17.6 

30 1015.6 14.5 1016.0 18.9 

50 1017.7 16.0 1017.9 20.2 

100 1019.8 16.7 1020.0 21.3 

500 1020.5 16.5 1020.4 21.0 

Table E.2: Influence of an on posterior palaeodose distribution when J-Ln = 1000. 

Prior Posterior 

an Mean SD Mode IQ range 

5 1097.4 501 1097.3 69 

10 1089.0 10.2 1089.0 13.8 

15 1074.6 14.8 1074.3 20.4 

20 1058.2 17.0 1057.1 22.7 

25 1047.6 17.0 1046.1 22.3 

30 1039.6 16.4 1038.6 21.0 

50 1028.3 16.4 1027.6 20.6 

100 1021.8 16.0 1021.5 20.5 

500 1020.2 16.9 1020.0 21.2 

Table E.3: Influence~ of an on posterior palaeodose distribution when J.tn = 1100 

mGy. 
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Prior Posterior 

/-LR fiR /R Mean SD 

900 100 50 1013.8 28.6 

900 50 50 991.1 25.9 

900 25 50 950.7 19.3 

900 10 50 912.2 9.6 

1000 100 50 1021.4 28.2 

1000 50 50 1017.8 25.4 

1000 25 50 1009.9 19.1 

1000 10 50 1002.4 9.4 

1100 100 50 1029.9 28.7 

1100 50 50 1043.7 25.8 

1100 25 50 1068.4 19.3 

1100 10 50 1092.3 9.5 

Table E.4: Influence of J-LR, fiR on palaeodose when 'YR =50. 

The influence of /R, the measure of spread of the aliquot palaeodose estimates, 

on the posterior palaeodose distribution was also considered in Section 3.6. Here we 

provide further details of this investigation. 

Table E.4, E.5, E.6 and E.7 show how the prior mean and standard deviation 

influence the posterior distribution for palaeodose for different values of 'YR· When 

'YR is large, this indicates less confidence in the aliquot estimates evaluating the 

palaeodose, and so the prior mean and standard deviation for palaeodose have more 

influence. This is particularly true when the value of 'YR is large in comparison to 

fiR. The reverse trend is also observered: when /R is small in comparison to fiR, then 

the prior specifications have less impact on the posterior palaeodose distribution. 
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Prior Posterior 

/-LR fiR TR Mean SD 

900 100 25 1019.4 16.6 

900 50 25 1010.1 16.2 

900 25 25 980.9 16.7 

900 10 25 911.2 10.6 

1000 100 25 1021.8 16.7 

1000 50 25 1020.4 15.8 

1000 25 25 1015.7 14.1 

1000 10 25 1006.0 8.6 

1100 100 25 1024.9 16.5 

1100 50 25 103.5 16.0 

1100 25 25 1047.0 14.3 

1100 10 25 1082.8 9.8 

Table E.5: Influence of J-LR, fiR on palaeodose when !R = 25. 

Prior Posterior 

/-LR fiR TR Mean SD 

900 100 10 1016.6 16.3 

900 50 10 1007.5 16.8 

900 25 10 969.3 22.3 

900 10 10 909.4 10.3 

1000 100 10 1019.8 16.7 

1000 50 10 1020.4 15.8 

1000 25 10 1015.7 14.1 

1000 10 10 1006.0 8.6 

1100 100 10 1021.8 16.4 

1100 50 10 1028.4 16.3 

1100 25 10 1047.4 17.0 

1100 10 10 1088.7 10.2 

Table E.6: Influence of J-LR, fiR on palaeodose when !R = 10. 
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Prior Posterior 

/-LR an "/R Mean SD 

900 100 5 1015.5 16.7 

900 50 5 1005.8 17.2 

900 25 5 964.2 23.0 

900 10 5 908.8 10.4 

1000 100 5 1019.0 17.5 

1000 50 5 1017.1 15.9 

1000 25 5 1013.3 14.2 

1000 10 5 1005.6 8.5 

1100 100 5 1088.7 10.2 

1100 50 5 1027.9 16.1 

1100 25 5 1029.1 16.6 

1100 10 5 1089.4 10.1 

Table E.7: Influence of f.Ln, an on palaeodose when 'YR = 5. 



Appendix F 

Influence of Prior Parameters in 

the Plateau Model 

The plateau model evaluates the posterior distribution for the plateau, based on 

the palaeodose estimates at each preheat temperature. This model is detailed in 

Chapter 4, and in Section 4.3.3 the influence of the prior judgements on the posterior 

distribution for Ta, the plateau starting temperature, for the example of Fydell 

House, 311 - 6. The statistics of these distributions have been presented in Table 

4.3 and here we show the corresponding posterior distributions. 

Figure F.l shows how the posterior distribution for Ta changes with prior mean, 

with the prior standard deviation set at 10°C. Figure F.2 and F.3 also show how 

the posterior Ta distribution is influenced by the prior mean, but with the prior 

standard deviation set at 30°C and 50°C respectively. 

F.l Influence of curve parameters 

In the plateau model, the parameters rJ, /'\, control the shape of the curve before 

the plateau has begun on a plot of palaeodose against preheat temperature. We 

assume that a monotone continuous function leads to the plateau, which starts at 

temperature Ta at palaeodose level x R*, so that for palaeo dose estimate x RT with a 
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Figure F.2: Posterior Ta distributions with prior (a) Ta "" N(200, 302
), (b) Ta "" 

N(230, 302). 

preheat T, 

T<Ta 

T ?:_ Ta 
(F.l.1) 

In the example in Section 4.3 these parameters are assigned prior distributions 

that allow for a wide range of curve shapes. Here we look at how the prior judgements 

made about these parameters influences the posterior distribution for Ta. 

Table F.1 gives the posterior probability that, for sample 311-6 from Fydell 

House, the preheat plateau starts above 210°C for different prior judgements about 

the curve parameters. If prior standard deviation of K,, a,., is small then the proba­

bility that the plateau starts after 210°C is increased. The prior standard deviation 

of rJ is not as influential. 
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Figure F.3: Posterior Ta distributions with prior (a) Ta "" N(200, 502
), (b) Ta "" 

N(215, 502
), (c) Ta ""N(230, 502

). 

The prior means of TJ and K are not influential if they are small, i.e. they represent 

reasonable shapes of curves. When aK,, a 11 are high with mK,, m 11 set to 1, then the 

posterior probability for the plateau starting after 210°C increases. However, these 

statistics do not represent an expected curve shape, and as such should not be used 

in the analysis. 

Prior Posterior 

mTJ (JTJ mK, (JK, P[Ta > 210idata] 

0.001 1 0.001 1 0.008 

0.001 10 0.001 10 0.007 

0.001 0.1 0.001 0.1 0.035 

0.001 0.1 0.001 10 0.007 

0.001 10 0.001 0.1 0.034 

0.005 1 0.005 1 0.008 

0.01 1 0.01 1 0.008 

0.1 1 0.1 1 0.007 

1 1 1 1 0.007 

1 10 1 10 0.019 

Table F .1: Posterior probability for the preheat plateau starting above 210°C, for 

different prior judgements about the curve parameters 



Appendix G 

Data 

G.1 Fydell House, 311-6 

This data has been produced by Bailiff [14] using the single aliquot regeneration pro­

tocol [81]. The tables gives the sensitivity corrected luminescence signal strength 

(counts),with the background count subtracted as well as this data after standar­

dising against the natural luminescence values, for each of the regenerative doses 

applied. 

Preheat 210°C 

aliquot Natural Laboratory irradiated dose (mGy) 

reference luminescence 603 904 1206 603 1206 

22031 68570 40732 61606 81469 40536 80127 

10000 5940 8984 11881 5912 11685 

22032 54227 30516 45592 59952 30365 59642 

10000 5627 8408 11056 5600 10998 

22033 52077 32427 48737 64561 32391 65714 

10000 6227 9359 12397 6220 12619 
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Preheat 220° C 

aliquot Natural Laboratory irradiated dose (mGy) 

reference luminescence 603 904 1206 603 1206 

21031 44548 27299 40872 53995 27375 52748 

10000 6128 9175 12121 6145 11841 

21032 73517 45790 69388 93210 45768 91847 

10000 6228 9438 12679 6226 12493 

21033 36849 23154 34966 45951 23090 45261 

10000 6283 9489 12470 6266 12283 

21034 25405 16620 24919 32789 16621 33105 

10000 6542 9809 12906 6542 13031 

21035 29860 19194 28913 38062 19150 38390 

10000 6428 9683 12747 6413 12857 

21036 43424 26477 39411 52806 26542 52074 

10000 6097 9076 12161 6112 11992 

Preheat 230° C 

Aliquot Natural Laboratory irradiated dose (mGy) 

reference luminescence 603 904 1206 603 1206 

22034 59783 38173 57645 75799 38080 74945 

10000 6385 9642 12679 6369 12536 

22035 20231 12838 19114 25455 12874 25038 

10000 6346 9448 12582 6364 12376 

22036 49640 32444 49024 64903 32298 64599 

10000 6536 9876 13075 6507 13013 
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Preheat 240°C 

Aliquot Natural Laboratory irradiated dose (mGy) 

reference luminescence 603 904 1206 603 1206 

05041 28458 16398 24573 32479 16317 32310 

10000 5762 8635 11413 5734 11354 

05042 59757 35540 53043 69669 35416 69983 

10000 5947 8876 11659 5927 11711 

05043 31616 19208 29163 38600 19142 38363 

10000 6076 9224 12209 6055 12134 

05044 36121 22508 34169 44999 22460 45409 

10000 6231 9459 12458 6218 12571 

05046 40620 25215 37643 50012 25094 49640 

10000 6208 9267 12312 6178 12220 

Preheat 250° C 

Aliquot Natural Laboratory irradiated dose (mGy) 

reference 1 uminescence 603 904 1206 603 1206 

22037 52295 32619 48572 64549 32539 65486 

10000 6238 9288 12343 6222 12522 

22038 42999 26954 40087 53205 26959 53719 

10000 6268 9323 12373 6270 12493 

22039 15347 9381 14003 18446 9368 18751 

10000 6113 9124 12019 6104 12218 

G.2 Data at Lower Preheat Temperatures 

Further experimental data was collected from sample 311 - 6 in an extension to 

routine dating procedure. Measurements were taken from aliquots with low preheat 

temperatures used, to investigate the behaviour of palaeodose before the preheat 
~~ -

plateau has begin. 

The data below gives both the sensitivity corrected luminescence values (counts), 

and the values after standardisation by natural luminescence (set to a value of 10000 
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counts). 

Preheat 140°C 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 750 923 1096 750 923 1096 

01071 8264 7902 9624 11466 8066 9652 11785 

10000 9562 11646 13875 9760 11680 14261 

01072 9848 8619 10149 12349 8447 10302 12186 

10000 8752 10306 12540 8577 10461 12374 

Preheat 160° C 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 750 923 1096 750 923 1096 

01073 19467 15654 19104 22613 15890 19056 22467 

10000 8041 9814 11616 8162 9789 11541 

01074 7701 6661 7820 9457 6561 7956 9561 

10000 8650 10155 12280 8520 10370 12454 

Preheat 180°C 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 750 923 1096 750 923 1096 

01075 4546 3668 4399 5322 3597 4422 5398 

10000 8069 9677 11707 7912 9727 11874 

01076 11608 9591 12049 13784 9746 11914 14296 

10000 8262 10380 11875 8396 10264 12346 
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Preheat 200° C 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 750 923 1096 750 923 1096 

01707 6494 5019 6634 7675 5121 6316 7308 

10000 7729 10216 11819 7886 9726 11253 

01078 7135 5529 6795 7932 5391 6815 8012 

10000 7735 9523 11117 7556 9552 11229 

G.3 Fydell House 311-2 

This data is from aliquots sampled from a different part of Fydell House, Lin­

colnshire [14]. The brick is thought to be part of the original building. The tables 

gives the sensitivity corrected luminescence signal strength (counts),with the back­

ground count subtracted as well as this data after standardising against the natural 

luminescence values, for each of the regenerative doses applied. 

Preheat 200°C 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 914 1097 1280 914 

3112.2001 4395 4251 5038 5549 4116 

10000 9672 11463 12626 9365 

Preheat 220°C 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 914 1097 1280 914 

3112.2201 3860 3270 3891 4663 3351 

10000 8472 10080 12080 8861 

3112.2202 1975 1729 1893 2234 1628 

10000 8754 9484 11311 8243 
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Aliquot Laboratory irradiated dose (mGy) 

ref 0 616 1231 2462 616 

3112.2203 1882 1212 2229 1521 1216 

10000 6440 11844 24022 6461 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 865 1081 1298 865 

3112.2204 1130 1036 1257 1418 1037 

10000 9168 11123 12589 9177 

3112.2205 567 517 600 813 510 

10000 9167 10638 14415 9043 

Preheat 230°C 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 865 1081 1298 865 

3112.2301 1127 928 1114 1363 928 

10000 9233 9777 12094 8237 

Preheat 240°C 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 865 1081 1298 865 

3112.2401 1246 952 1204 1439 951 

10000 7637 9666 11549 7630 

3112.2402 829 697 934 1110 697 

10000 8413 11269 13394 8409 
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Preheat 250°C 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 865 1081 1298 865 

3112.2501 720 487 802 834 

10000 6764 11139 11583 

3112.2502 425 293 452 514 292 

10000 6899 10630 12093 6871 

Preheat 260°C 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 865 1081 1298 

3112.2601 838 809 1026 1557 

10000 9654 12243 18580 

G.4 Fydell House 311-4 

This data is from aliquots sampled from a different part of Fydell House, Lin­

colnshire [14]. The brick is thought to be part of the original building. The tables 

gives the sensitivity corrected luminescence signal strength (counts),with the back­

ground count subtracted as well as this data after standardising against the natural 

luminescence values, for each of the regenerative doses applied. 

Preheat 200° C 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 882 1176 1470 882 1470 

3114.2001 1164 1108 1365 1747 1073 1671 

10000 9519 11728 15007 9221 14357 

3114.2002 750 550 737 890 555 934 

10000 7334 9826 11868 7404 12451 
- - -· -

3114.2003 552 350 414 356 463 

10000 6340 7498 6455 8383 
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Preheat 210°C 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 882 1176 1470 882 1470 

3114.2101 1589 1087 1347 1870 1085 1762 

10000 6843 8476 11770 6827 11089 

3114.2102 955 922 1162 1524 911 1692 

10000 9657 12166 15954 9542 17720 

3114.2103 1344 912 1338 1446 917 1478 

10000 6785 9553 10755 6819 10996 

Preheat 220°C 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 882 1176 1470 882 

3114.2201 1123 866 1180 1430 872 

10000 7707 10504 12736 7797 

3114.2202 929 580 654 959 614 

10000 6240 7036 10318 6607 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 1003 1239 1475 1003 1475 

3114.2203 1235 713 877 978 709 972 

10000 5777 7104 7916 5743 7870 

3114.2204 898 777 959 1102 783 1080 

10000 8655 10685 12272 8716 12027 

Preheat 230°C 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 1211 1513 1816 1211 1816 

3114.2301 1852 1968 2239 2508 1976 2460 

10000 10627 12092 13542 10671 13283 



G.5. Tattershall Castle 318-2 216 

Preheat 240° C 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 1176 1470 1764 1176 1764 

3114.2401 1192 952 1224 1463 988 1374 

10000 7987 10269 12269 8289 11527 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 882 1470 882 1470 

3114.2402 473 339 611 345 613 

10000 7168 12920 7298 12987 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 882 1179 1470 882 1470 

3114.2403 808 535 764 954 537 878 

10000 6625 9459 11811 6650 10871 

G.5 Tattershall Castle 318-2 

The samples taken from Tattershall Castle are part of the same project on brick dat­

ing using OSL [14]. This example was used to illustrate the Bayesian model for age 

analysis in Chapter 8. The tables gives the sensitivity corrected luminescence signal 

strength (counts),with the background count subtracted as well as this data after 

standardising against the natural luminescence values, for each of the regenerative 

doses applied. 

Preheat 200° C 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 1494 1793 2091 1494 2091 

3182.2001 10488 9443 11045 12774 9490 12726 

10000 9003 10531 12179 -9o48 12134 

3182.2002 3811 3412 4054 4810 3434 4762 

10000 8954 10637 12622 9009 12495 
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Preheat 210°C 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 1494 1793 2091 1494 2091 

3182.2101 8641 7186 8455 9960 7166 9895 

10000 8316 9785 11527 8293 11452 

Preheat 220°C 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 1496 1796 2095 1496 2095 

3182.2201 6285 5156 6109 7309 5213 7336 

10000 8204 9720 11630 8294 11672 

3182.2202 8299 7132 8432 9782 7064 9800 

10000 8594 10161 11787 8512 11809 

3182.2203 4449 4366 4824 5197 4652 5018 

10000 9814 10843 11682 10457 11279 

3182.2204 7147 6701 7125 7960 6178 7879 

10000 9376 9969 11138 9399 11024 

3182.2205 7921 7909 8870 9477 8189 9211 

10000 9985 11198 11965 10338 11629 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 1317 1497 1676 1317 1676 

3182.2206 5083 3612 4015 4422 3637 4343 

10000 7107 7898 8700 7155 8545 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 1483 1839 2195 1483 2195 

3182.2207 3810 3138 3799 4402 3174 4361 

1000 8236 9972 11555 8332 11447 
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Preheat 240°C 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 1494 1793 2091 1494 2091 

3182.2401 2926 2523 2887 3447 2500 3483 

10000 8624 9867 11779 8545 11903 

3182.2402 3206 2040 2750 2724 2033 2836 

10000 6363 8579 8496 6340 8846 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 1483 1839 2195 1483 2195 

3182.2403 2243 1673 2065 2386 1593 2437 

10000 7458 9206 10637 7104 10866 

G.6 Tattershall Castle 318-1 

This sample was taken from Tattershall Castle [14] and is used to illustrate the model 

for inference from a number of samples in Chapter 8. The tables gives the sensi­

tivity corrected luminescence signal strength (counts),with the background count 

subtracted as well as this data after standardising against the natural luminescence 

values, for each of the regenerative doses applied. 

Preheat 200°C 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 1495 1794 2093 1495 2093 

3181.2001 21573 18304 21673 25092 18185 25497 

10000 8485 10047 11631 8429 11819 

3181.2002 21231 19787 24003 27524 19661 27521 

10000 9320 11306 12964 9261 12962 
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Preheat 220°C 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 1496 1796 2095 1496 2095 

3181.2201 16387 13671 16190 19169 13748 18616 

10000 8342 9880 11698 8390 11360 

3181.2202 32089 29092 34556 40415 29094 41145 

10000 9342 9880 11698 8390 11360 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 2095 2394 2693 2095 2693 

3181.2203 11739 13734 15103 16921 13582 16951 

10000 11700 12865 14414 11570 14440 

3181.2204 16890 19908 23095 25724 20060 25532 

10000 11801 13690 15248 11891 15134 

3181.2205 10141 12076 15756 15841 12446 15585 

10000 11908 15534 15620 12273 15369 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 600 899 1199 600 1199 

3181.2206 15811 5131 7511 10279 5072 10352 

10000 3245 4750 6501 3208 6548 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 1424 1780 2136 1424 2136 

3181.2207 6826 5076 6525 7794 5277 7834 

10000 7436 9559 11418 7730 11477 

3181.2208 8228 6561 8292 9997 6621 9491 

10000 7974 10077 12150 8047 11535 
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Preheat 240°C 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 1424 1780 2136 1424 2136 

3181.2401 3074 2260 2957 3473 2286 3502 

10000 7352 9620 11298 7436 11391 

Aliquot Laboratory irradiated dose (mGy) 

ref 0 1499 1799 2098 1499 2098 

3181.2402 6634 5108 6322 6975 5274 6959 

10000 7700 9530 10513 7949 10490 



Appendix H 

Code 

Here we present the code used to programme the various stages of the model. 

H.l Code for the Combined Aliquot Model 

The combined aliquot model is detailed in Chapter 3, and is used to evaluate the 

palaeodose at a single preheat temperature. It is used later in the analysis, once the 

preheat plateau has been located, to estimate the posterior palaeodose distribution 

for the sample. The code is written for R. 

##Code for the Combined Aliquot Model to estimate Palaeodose 

########################################################################## 

#Evaluates the posterior palaeodose distribution based on J aliquots 

#i.e. J aliquots with the same preheat temperature 

#or J aliquots which lie on the preheat plateau 

########################################################################### 

#It assumes that the single aliquot regeneration procedure has been used 

#and there is a linear relationship between dose and luminescence intensity 

221 



H.l. Code for the Combined Aliquot Model 222 

########################################################################### 

#PRIOR SPECIFICATIONS 

muR<-1000 #Prior mean palaeodose (xR) 

sigmaR<-100 #prior palaeodose SD 

mA<-0 #prior mean for alpha, the intercept coefficient of the dose response 

mB<-10 #prior mean for beta, the gradient coefficient of the dose response 

sigmaA<-50 #prior SD for alpha 

sigmaB<-20 #prior SD for beta 

gamR<-50 #SD of the aliquot estimates xRj around true palaeodose xR 

gamalp<-20 #SD of the aliquot estimates alphaj around true alpha 

gambet<-5 #SD of the aliquot estimates betaj around true beta 

mtau<-0.01 #prior mean of tau, the precision of the residuals 

vartau<-0.0015 #prior SD of tau 

a<-2*mtau/vartau 

d<-a*mtau #hyperparameters of the gamma distribution for tau a priori 

rho<--0.3 #correlation between alpha and beta a priori, and alphaj and betaj 

conditional on alpha and beta 

########################################################################### 

#DATA INPUT 

yR<-10000 #Standardised value of natural luminescence used for all 

#aliquots 
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dat1<-read. table( 11 /filepath/aliquot1. txt 11
, header=T) 

dat2<-read.table( 11 /filepath/aliquot2.txt 11
, header=T) 

dat3<-read.table( 11 /filepath/aliquot3.txt 11
, header=T) 

#The data should consist of two columns for each aliquot, the 

#regenerative dose values 'x' and the background and sensitivity 

#corrected luminescence response, 'y', standardised against yR. 

#Here the data should be saved in a plain text document, 

#one for each aliquot, with the columns labelled appropriately. 

n<-length(dat1$x) #number of regenerative doses applied 

223 

J<-3 #number of aliquots which are to be used to evaluate palaeodose 

#Write all the data in a single array 

dat<-array(NA,c(n,2,J)) 

for (i in 1 :n){ 

for (j in 1:2){ 

dat[i,j,1]<-dat1[i,j] 

dat[i,j,2]<-dat2[i,j] 

dat[i,j,3]<-dat3[i,j] 

} 

} 
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#Find the required sums for the conditional distributions 

sumy<-array(NA,J) 

sumxy<-array(NA,J) 

sumx<-array(NA,J) 

sumx2<-array(NA,J) 

for (k in 1: J){ 

sumy[k]<-sum(dat[,2,k]) 

sumxy[k]<-sum(dat[,1,k]*dat[,2,k]) 

sumx[k]<-sum(dat[,l,k]) 

sumx2[k]<-sum(dat[,1,k]~2) 

} 

224 

######################################################################### 

#CONDITIONAL POSTERIOR DISTRIBUTIONS FOR THE GIBBS SAMPLER 

xR.update<-function(){ 

v.xR<-1/(J/gamR~2+1/sigmaR~2) 

xR.hat<-((sum(xRj)/gamR~2)+muR/sigmaR~2)*v.xR 

rnorm(l,xR.hat,sqrt(v.xR)) 

} 

alpha.update<-function(){ 

v.alpha<-1/(J/(gamalp~2*(1-rho~2))+1/(sigmaA~2*(1-rho~2))) 

alpha.hat<-(sum((alphaj-rho*(betaj-beta)*(gamalp/gambet))/ 

(gamalp~2*(1-rho~2))+(mA-rho*(beta-mB)*(sigmaA/sigmaB))/ 

(s_igmaA ~2* C1-:-rho ~~2)) ))*JI'. alpha 

rnorm(l,alpha.hat,sqrt(v.alpha)) 

} 
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xRj.update<-function(){ 

v.xRj<-1/(betaj~2*tau+1/gamR~2) 

xRj.hat<-(betaj*(yR-alphaj)*tau+xR/gamR~2)*v.xRj 

rnorm(J,xRj.hat,sqrt(v.xRj)) 

} 

alphaj.update<-function(){ 

v.alphaj<-1/((n+1)*tau+1/(gamalp~2*(1-rho~2))) 

alphaj.hat<-((sumy+yR-betaj*(sumx+xRj))*tau+ 

(alpha+rho*(betaj-beta)*(gamalp/gambet))/ 

(gamalp~2*(1-rho~2)))*v.alphaj 

rnorm(J,alphaj.hat,sqrt(v.alphaj)) 

} 

betaj.update<-function(){ 

v.betaj<-1/((sumx2+xRj~2)*tau+1/(gambet~2*(1-rho~2))) 

betaj.hat<-((sumxy+yR*xRj-alphaj*(sumx+xRj))*tau+ 

(beta+rho*(alphaj-alpha)*(gambet/gamalp))/ 

(gambet~2*(1-rho~2)))*v.betaj 

rnorm(J,betaj.hat,sqrt(v.betaj)) 

} 

beta.update<-function(){ 

v.beta<-1/(J/(gambet~2*(1-rho~2))+1/(sigmaB~2*(1-rho~2))) 

beta.hat<-(((sum(betaj-rho*(alphaj-alpha)*(gambet/gamalp)))/ 

(gambet~2*(1-rho~2))+(mB-rho*(beta-mB)*(sigmaB/sigmaA))/ 

(sigmaB~2*(1-rho~2))))*v.beta 

!'J!Or!ll(L be_ta. hat. sqrt_(y. b~ta)) 

} 
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tau.update<-function(){ 

tau.shape<-(d+J*n)/2 

resid<-array(NA,J) 

for (j in 1:J){ 

resid[j]<-sum((dat[,2,j]-alphaj[j]-betaj[j]*dat[,1,j])~2)+ 

(yR-alphaj[j]-betaj[j]*xRj[j])~2 

} 

tau.scale<-(sum(resid)+a)/2 

rgamma(1,tau.shape,tau.scale) 

} 
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#############################################################################l 

#GIBBS SAMPLER 

n.chains<-5 

n.iter<-20000 

lations<-array(NA,c(n.iter,n.chains,J*3+4)) 

dimnames(lations)<-list(NULL,NULL,cC'xR", "alpha", "beta", 

paste ( "xRj [", 1: J, "] ", sep=""), paste ( "alphaj [", 1: J, "] ", sep=""), 

paste("betaj [", 1: J, "] ", sep=""), "tau")) 

for(m in 1:n.chains){ 

alpha<-mA 

alphaj<-rep(mA,J) 

beta<-mB 

betaj<-rep(mB,J) 

xR<-muR 

xRj<-rep(muR,J) 

tau<-0.1 
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for (t in 1:n.iter){ 

xR<-xR. update() 

alpha<-alpha.update() 

beta<-beta.update() 

xRj<-array(xRj.update(),J) 

alphaj<-array(alphaj.update(),J) 

betaj<-array(betaj.update(),J) 

tau<-tau.update() 

lations[t,m,]<-c(xR,alpha,beta,xRj,alphaj,betaj,tau) 

} 

} 
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#############################################################################l 

nos<-seq(1000,n.iter,4) #Thin the chains, with a burn-in period 

mean(lations[nos,, 11 XR 11
]) #Posterior mean for palaeodose 

sd(as.vector(lations[nos, 11 xR 11
])) #Posterior SD for palaeodose 

plot(density(lations[nos, 11 XR 11
])) #Posterior palaeodose density 
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H.2 Code for Plateau Model 

Chapter 4 details a model to compute the posterior distribution of the starting 

temperature of the preheat plateau. Below is the code used in Maple to find this 

distribution for sample 311-6, Fydell House. 

with(Statistics): 

with(plots): 

post:=proc(x,k,g,t) 

#Data Input (posterior palaeodose means at each preheat) 

X:=[1019.0,984.0,955.6,1002.2,990.6]; 

#Preheat temperatures 

T:=[210,220,230,240,250]; 

#Variance in X 

sigma:=[27,31,34.7,26.9,44.3]; 

#Prior mean and SD for kappa, eta, curve parameters 

mK:=O.OOl; 

sigK:=l; 

me:=0.001; 

sige:=l; 

#Prior mean and SD for xR*, palaeodose on the plateau 

mx:=lOOO; 

sigx:=lOO; 

#Prior mean and SD for Ta, temperature at which plateau starts 

mT:=215; 

sigT:=30; 



H.2. Code for Plateau Model 

#Compute likelihood 

for i from 1 to nops(X) do 

xR:=proc(x,k,e,t,i) 

if T[i]<t then 

(x*(1-exp(-e*T[i]))*(exp(-k*T[i])))/((1-exp(-e*t))*(exp(-k*t))) 

else x 

end if; 

end proc; 
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S[i] :=(1/sqrt(2*Pi*sigma[i]~2))*exp(-(1/(2*sigma[i]~2))*(xR(x,k,e,t,i)-x)~2: 

end do; 

lik:=mul(S[i] ,i=1 .. nops(X)); 

kap:=RandomVariable(Normal(mK,sigK)): 

ka:=proc(k) PDF(kap,k) end proc; 

eta:=RandomVariable(Normal(me,sige)): 

et:=proc(g) PDF(eta,e) end proc; 

xRss:=RandomVariable(Normal(mx,sigx)): 

xRs:=proc(x) PDF(xRss,x) end proc; 

Tss:=RandomVariable(Normal(mT,sigT)): 

Ts:=proc(t) PDF(Tss,t) end proc; 

post:=lik*ka(k)*ga(g)*xRs(x)*Ts(t); 

end proc; 
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#Estimate the posterior distribution for Ta using numerical 

#integration 

L1: = [] : 

230 

for i from 100 to 250 by 0.01 do 

11:=[op(11),evalf(Int(Int(Int(post(x,k,e,i),k=O .. 1),e=O .. 1),x=600 .. 1500))] 

od: 

12: = [] : 

for j from 100 to 250 by 0.01 do 

12:=[op(12),j] 

od: 

13: = []: 

for k from 1 to nops(12) do 

13:=[op(13), [12[k] ,11[k]]] 

od: 

pointplot(13,connect=true); 

#This is not a true density, but proportional to it. If all the 

#probability lies in this region, then they can be normalised to 

#find the probability of the plateau starting in certain preheat 

#regions. 
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H.3 Code for Dose Rate 

The model for evaluating the dose rate distribution is detailed in Chapter 5. Here 

we present the code used in R to compute the dose rate distribution for a particular 

example. 

############################################################## 

#Measured beta dose rate 

mB<-2.21 

#Measured gamma dose rate 

mgam<-1.30 

#Cosmic dose rate 

mc<-0.2 

#Water saturation content 

mW<-0.033 

#Mean average fractional water content (F) 

mF<-0.15 

#Standard deviation of average fractional water content 

sigF<-0.2 

#Calculation of hyperparameters of beta distribution for F 

alphaF<-(mF*(1-mF)/sigFA2)-mF 

betaF<-alphaF*(1-mF)/mF 

################################################################ 

num<-200000 #Number of iterations 

#Dose rate based on the dose rate equation 
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Annual<-function(){ 

b<-rnorm(1,0.92,0.05) 

g<-rnorm(1,0.93,0.1) 

Hg<-rnorm(1,1.25,0.1) 

Hb<-rnorm(1,1.14,0.1) 

beta<-rnorm(1,mB,0.025*mB) 

gam<-rnorm(1,mgam,0.025*mgam) 

c<-rnorm(1,mc,0.025*mc) 

W<-rnorm(1,mW,0.025*mW) 

F<-rbeta(1,alphaF,betaF) 

(b/(1+Hb*W*F))*beta+(g/(1+Hg*W*F))*gam+c 

} 

dose<-array(NA,num) 

for (pin 1:num){ 

dose[p]<-Annual() 

} 

mean(dose) 

sd(dose) 

plot(density(dose)) 
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H.4 Code for Age Evaluation 

The model for sample age is given in Chapter 6. The age ratio is estimated by 

taking draws from the simulated palaeodose distribution and dividing each one by 

a draw from the dose rate distribution. The mean and standard deviation of these 

are used as the data input in the evaluation of the sample age. The R code used for 

sample age is shown below, assuming a normal distribution for age a priori. 

############################################################### 

#Data Input 

AE<-549.6 #mean of the ratio estimate 

omE<-28.4 #SD of the ratio estimate 

############################################################### 

#Prior Specifications 

mA<-558 

sigA<-20 

sigE<-5 

#prior age mean 

#prior age SD 

#uncertainty in age ratio as an estimate for age 

############################################################### 

#Posterior 

meanage<-(AE/(sigE~2+omE~2)+mA/sigA~2)/(1/(sigE~2+omE~2)+1/sigA~2) 

sdage<-sqrt(1/(1/(sigE~2+omE~2)+1/sigA~2)) 

meanage 

sdage 

#Date of the sample (giVen measurements·taken in-2005) 

2005-round(meanage) 
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H.5 Coeval Model 

The coeval model is developed in Section 7.1 for inference from a number of samples 

which are the same age. The R code for this model for two coeval samples is laid 

out below. 

################################################################# 

#Data Input 

AE1<-260.9 #Mean of the ratio estimate 1 

AE2<-273.5 #Mean of the ratio estimate 2 

w1<-15 #SD of ratio estimate 1 

w2<-18 #SO of ratio estimate 2 

################################################################# 

#Prior Specifications 

#Correlation between the ratio estimates given the age ratios 

rhoE<-0.55 

#Correlation between the age ratios given the age 

rhoA<-0.2 

mA<-280 #Prior mean age 

sigA<-25 #Prior SO age 

sigE<-5 #Uncertainty in the age ratios estimating the age 

################################################################# 

sig1<-sqrt(w1~2+sigE~2) 

sig2<-sqrt(w2~2+sigE~2) 
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rho<-(rhoE*w1*w2+rhoA*sigE~2)/(sig1*sig2) 

agesigma<-((1/(1-rho~2))*(1/sig1~2-2*rho/(sig1*sig2)+1/sig2~2) 

+1/sigA~2)~(-1) 

age<-((1/(1-rho~2))*(Ae1/sig1~2-rho*(Ae1+Ae2)/(sig1*sig2)+ 

Ae2/sig2~2)+mA/sigA~2)*sigma 

mu #Posterior mean age 

sqrt(sigma) #Posterior SD age 

2005-round(mu) #Date (given measurements taken in 2005) 

################################################################# 
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H.6 Similar Age Model 

The similar age model is applicable to a number of samples which are similar in age. 

The similarity is expressed through the prior specifications made. The model is set 

out in Section 7.2 and the R code for two such samples below. 

################################################################ 

#Data Input 

AE1<-260.87 #Mean of ratio estimate 1 

AE2<-273.53 #Mean of ratio estimate 2 

w1<-15.09 #SD of ratio estimate 1 

w2<-18.98 #SD of ratio estimate 2 

############################################################### 

#Prior Specifications 

mA1<-280 #Prior mean of age 1 

mA2<-290 #Prior mean of age 2 

sigmaA1<-10 #Prior SD of age 1 

sigmaA2<-10 #Prior SD of age 2 

rhop<-0.2 #Prior correlation between age 1 and age 2 

#_Correlation between the ratio estimates--given the age ratios 

rhoE<-0.55 
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#Correlation between the age ratios given the age 

rhoA<-0.2 

#Uncertainty in the age ratios as an estimate for age 

sigmaE<-5 

################################################################# 

#Posterior Conditional Distributions 

sigma1<-sqrt(w1A2+sigmaEA2) 

sigma2<-sqrt(w2A2+sigmaEA2) 

rho<-(rhoE*w1*w2+rhoA*sigmaEA2)/(sigma1*sigma2) 

A1.update<-function(){ 

V.A1<-(1/(sigma1A2*(1-rhoA2))+1/(sigmaA1A2*(1-rhopA2)))A(-1) 

A1.hat<-(AE1/(sigma1A2*(1-rhoA2))+(rho*(A2-AE2)) 

/(sigma1*sigma2*(1-rhoA2))+(mA1+rhop*(sigmaA1/sigmaA2)*(A2-mA2)) 

/(sigmaA1A2*(1-rhopA2)))*V.A1 

rnorm(1,A1.hat,sqrt(V.A1)) 

} 

A2.update<-function(){ 

V.A2<-(1/(sigma2A2*(1-rhoA2))+1/(sigmaA2A2*(1-rhopA2)))A(-1) 

A2.hat<-(AE2/(sigma2A2*(1-rhoA2))+rho*(A1-AE1) 

/(sigma2*sigma1*(1-rhoA2))+(mA2+rhop*(sigmaA1/sigmaA2)*(A1-mA1)) 

/(sigmaA1A2*(1-rhopA2)))*V.A2 

rnorm(1,A2.hat,sqrt(V.A2)) 

} 
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#Gibbs Sampler 

n.iter<-20000 

n.chains<-3 

ages<-array(NA 1 c(n.iter 1 n.chains 1 2)) 

dimnames(ages)<-list(NULL 1 NULL 1 C( 11 A1 11
1

11 A2 11
)) 

for (m in 1:n.chains){ 

A1<-mA1 

A2<-mA2 

for (t in 1:n.iter){ 

A1<-A1. update() 

A2<-A2. update 0 

ages[t 1 m1 ]<-c(A1 1 A2) 

} 

} 

nos<-seq(1000 1 n.iter 1 6) #Thin chains with a burn-in 

mean(ages [,nos 1 
11 A1 11

]) #Posterior mean age 

mean (ages[, nos 1 
11 A2 11

]) #Posterior mean age 

sd(as. vector(ages [,nos 1 11 A1 11
])) #Posterior 

sd(as.vector(ages[ 1 nOS 1
11 A2 11

])) #Posterior 

2005-round (mean (ages [nos 1 1 
11 Al"])) #Date 1 

2005-round(mean(ages[nos 11
11 A2 11

])) #Date 2 

1 

2 

SD age 1 

SD age 2 
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H.7 Ordered Age Model 

This model considers samples which have a known relative chronology (Section 7.3) 

which implies a priori that, say, A1 < A2 . The R code for such a model is given 

below. 

################################################################ 

#Data Input 

AE1<-260.87 #Mean of ratio estimate 1 

AE2<-273.53 #Mean of ratio estimate 2 

w1<-15.09 #SD of ratio estimate 1 

w2<-18.98 #SD of ratio estimate 2 

############################################################### 

#Prior Specifications 

A_1<A_2 

mA1<-280 #Prior mean of age 1 

mA2<-290 #Prior mean of age 2 

sigmaA1<-10 #Prior SD of age 1 

sigmaA2<-10 #Prior SD of age 2 

rhop<-0.2 #Prior correlation between age 1 and age 2 

#Correlation between the ratio estimates given the age ratios 

rhoE<-0. 55 -- --

#Correlation between the age ratios given the age 
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rhoA<-0.2 

#Uncertainty in the age ratios as an estimate for age 

sigmaE<-5 

################################################################# 

#Posterior Conditional Distributions with rejection criteria 

sigma1<-sqrt(w1~2+sigmaE~2) 

sigma2<-sqrt(w2~2+sigmaE~2) 

rho<-(rhoE*w1*w2+rhoA*sigmaE~2)/(sigma1*sigma2) 

A1.update<-function(){ 

V.A1<-(1/(sigma1~2*(1-rho~2))+1/(sigmaA1~2*(1-rhop~2)))~(-1) 

A1.hat<-(AE1/(sigma1~2*(1-rho~2))+(rho*(A2-AE2)) 

/(sigma1*sigma2*(1-rho~2))+(mA1+rhop*(sigmaA1/sigmaA2)*(A2-mA2)) 

/(sigmaA1~2*(1-rhop~2)))*V.A1 

rnorm(1,A1.hat,sqrt(V.A1)) 

} 

A2.update<-function(){ 

V.A2<-(1/(sigma2~2*(1-rho~2))+1/(sigmaA2~2*(1-rhop~2)))~(-1) 

A2.hat<-(AE2/(sigma2~2*(1-rho~2))+rho*(A1-AE1) 

/(sigma2*sigma1*(1-rho~2))+(mA2+rhop*(sigmaA1/sigmaA2)*(A1-mA1)) 

/(sigmaA1~2*(1-rhop~2)))*V.A2 

repeat{ 

Ato<-rnorm(1,A2.hat,sqrt(V.A2)) 

if(Ato>A1) return (Ato) 

} 

} 
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###################################################################### 

#Gibbs sampler 

n.iter<-20000 

n.chains<-3 

ages<-array(NA,c(n.iter,n.chains,2)) 

dimnames(ages)<-list(NULL,NULL,c( 11 A1 11
,

11 A2 11
)) 

for (min 1:n.chains){ 

A1<-mA1 

A2<-mA2 

for (t in 1:n.iter){ 

A1<-A1. update() 

A2<-A2. update() 

ages[t,m,]<-c(A1,A2) 

} 

} 

mean (ages[, , 11 Al"]) #Posterior mean age 1 

mean(ages[,nos, 11 A2 11
]) #Posterior mean age 2 

sd(as.vector(ages[,nos, 11 A1 11
])) #Posterior SD age 1 

sd(as.vector(ages[,nos, 11 A2 11
])) #Posterior SD age 2 

2005-round(mean(ages[nos,, 11 A1 11
])) #Date 1 

2005-round(mean(ages[nos,, 11 A2 11
])) #Date 2 



Appendix I 

Analysis of 311-2, 311-4 Fydell 

House 

Samples 311-2, 311-4 are taken from bricks in Fydell House, as was sample 311-

6 which has been used as an illustrative example throughout the thesis. Here we 

present the evaluation of the age ratios of samples 311-2, 311-4 which are used as 

an example in Chapter 7. The data for these samples is given in Appendix G. 

1.1 Sample 311-2 

First, the palaeodose was estimated at each preheat temperature using the combined 

aliquot model. The prior distributions used were the same as in the analysis of 311-

6, as they were taken from the same building. The prior hyperparameters are given 

in Table I.1, and were chosen using the reasoning in Section 3.5.1. 

f.-lR an "fR ma: O"a: m/3 O"fJ p 'Yo: 'Y/3 d a 

1000 100 50 0 50 10 20 -0.3 20 5 5 131 7 3 

Table I.1: Values assigned to the prior hyperparameters for the combined aliquot 

model, when it is applied to 

The Gibbs sampler was run for 20,000 iterations for 5 chains, and after ap­

propriate convergence diagnostics a burn-in of 1000 iterations was used and they 

were thinned every 10. The posterior distributions for palaeodose at each preheat 
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temperature are summarised in Table 1.2 and given in Figure 1.1. 

Preheat Temperature (°C) # Aliquots Posterior Mean (mGy) Posterior SD 

200 1 987 62 

220 5 1021 34 

230 1 1022 76 

240 2 1042 45 

250 2 1036 78 

260 1 987 62 

Table 1.2: Posterior mean and standard deviation of palaeodose at each preheat 

temperature, for sample 311-2. 

The posterior mean and standard deviations given in Table I. 2 were used as data 

input for the preheat plateau model, to estimate the location of the preheat plateau. 

These values are plotted against preheat temperature in Figure 1.2 for sample 311-6. 

The prior distributions used in the plateau model to evaluate the posterior dis­

tribution of the plateau starting temperature are given in Table 1.3; these values 

were elicited using the reasons laid out in Section 4.3.1. This resulted in a posterior 

probability that the plateau started after 200°C of 0.0001. 

Parameter Ta XR* rJ K 

Prior N(215, 302 ) N(1000, 1002
) N(0.003, 12

) N(0.003, 12 ) 

Table 1.3: Prior distributions used for Sample 311-6, Fydell House, in the plateau 

model. 

This indicates that it is likely that the preheat plateau starts before 200°C, 

and so all aliquots from sample 311-2 lie on the plateau and hence can be used 

to evaluate the sample palaeodose. So the combined aliquot model was applied to 

all the aliquots, with prior distributions as Table 1.1. This resulted in a posterior 

palaeodose distribution for the sample with mean 1013 mGy, standard deviation 27. 

Next, the dose rate was evaluated. The distributions used in the dose rate model 

are given in Table 1.4. 

After 100,000 iterations this resulted in a dose rate distribution with mean 3.88 
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Parameter Distribution 

Df3 N(2.8, (0.025x2.81)2 ) 

D-r N(1.22, (0.025xl.22) 2) 

De N(0.2, (0.025x0.2) 2
) 

w N(0.033, (0.025x0.033) 2
) 

b N(0.92, 0.052 ) 

g N(0.93, 0.1 2 ) 

Hf3 N(1.25, 0.1 2 ) 

H-r N(1.14,0.1 2 ) 

F ,8(3.0375, 17, 2125) 

Table !.4: Distributions assigned to the parameters in the model for dose rate for 

sample 311-2 of Fydell House. 

mGy/a and standard deviation 0.20. This was used, along with the sample palaeo­

dose distribution, to estimate the age ratio (Chapter6), which had mean 260.9 and 

standard deviation 15 years. 

1.2 Sample 311-4 

Similarly, the luminescence measurements from sample 311-4 were analysed. The 

same prior distributions for the palaeodose were used, as the sample was taken 

from the same building. The posterior distributions for palaeodose at each preheat 

temperature are summarised in Table I.5 and shown in Figure I.3. 

The palaeodose estimates are plotted against preheat temperature in Figure 1.4. 

These are used as data input in the plateau model, to find the posterior distribution 

for the temperature at which the plateau starts. Using the same prior distributions 

as for sample 311-2 (Table I.3), the posterior probability that the preheat plateau 

starts above 200°C is 0.001. This indicates that all the palaeodose estimates lie 

on the preheat plateau, and so all aliquots should be used to evaluate the sample 

palaeodose. 

The combined aliquot model was applied to all14 aliquot of 311-4, with the same 
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Preheat Temperature (°C) # Aliquots Posterior Mean (mGy) Posterior SD 

200 3 1068 79 

210 3 1070 62 

220 4 1173 77 

230 1 1063 94 

240 3 1223 53 

Table 1.5: Posterior mean and standard deviation of palaeodose at each preheat 

temperature, for sample 311-4. 

prior hyperparameters as previously (Table 1.1). The posterior distribution of the 

sample was evaluated to have a mean 1084 mGy, standard deviation 52. 

The dose rate for sample 311-4 was evaluated using the model set out in Chapter 

5. The distributions used for this calculation are given in Table 1.6, and the resulting 

dose rate distribution has mean 3.97 mGyja, standard deviation 0.20. 

Parameter Distribution 

D/3 N(2.91, (0.025x2.91) 2 ) 

D'Y N(1.2, (0.025x1.2) 2
) 

De N(0.2, (0.025x0.2f) 

w N(0.033, (0.025x0.033) 2
) 

b N(0.92, 0.052 ) 

g N(0.93, 0.12
) 

H/3 N(1.25, 0.12 ) 

H'Y N(1.14, 0.12 ) 

F /](3.0375, 17, 2125) 

Table 1.6: Distributions assigned to the parameters in the model for dose rate for 

sample 311-4 of Fydell House. 

The palaeodose and dose rate distributions are used to evaluate the age ratio 

using the age equation. For sample 311-4, the age ratio was estimated to have a 

mean of 273.5 years with standard deviation 18. 
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Figure I.l: Posterior Palaeodose distribution for sample 311-2 at preheats (a) 200°C, 

(b) 220°C, (c) 230°C, (d)240°C, (e)250°C, (f)260°C. 
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200 210 220 230 240 250 260 

Preheat Temperature (OC) 

Figure 1.2: Palaeodose estimates plotted against preheat temperature for 311-2, with 

two standard deviation uncertainty bars. 
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Figure !.3: Posterior Palaeodose distribution for sample 311-4 at preheats (a) 200°C, 

(b) 210°C, (c) 220°C, (d)230°C, (e)240°C; 
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200 210 22{) 230 240 
Preheat Temperature (OC) 

Figure 1.4: Palaeodose estimates plotted against preheat temperature for 311-4, with 

two standard deviation uncertainty bars. 


