

Durham E-Theses

Reconstruction of Holocene sea-levels using diatomand pollen-based microfossil transfer functions, west coast of Scotland, UK

Gregory, Caroline

How to cite:

Gregory, Caroline (2007) Reconstruction of Holocene sea-levels using diatom- and pollen-based microfossil transfer functions, west coast of Scotland, UK, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/2916/

Use policy

 $The full-text\ may\ be\ used\ and/or\ reproduced,\ and\ given\ to\ third\ parties\ in\ any\ format\ or\ medium,\ without\ prior\ permission\ or\ charge,\ for\ personal\ research\ or\ study,\ educational,\ or\ not-for-profit\ purposes\ provided\ that:$

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way
- The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107 http://etheses.dur.ac.uk

Reconstruction of Holocene sea-levels using diatom- and pollen-based microfossil transfer functions, west coast of Scotland, UK

Volume 2: Figures, Tables, Plates and Appendices

The copyright of this thesis rests with the author or the university to which it was submitted. No quotation from it, or information derived from it may be published without the prior written consent of the author or university, and any information derived from it should be acknowledged.

Caroline Gregory

Thesis submitted for the degree of Doctor of Philosophy

Department of Geography Durham University

August 2007

- 4 JUN 2008

Vol	ume	2
-----	-----	---

		Page No
LIST OF FI	GURES	i
LIST OF TA	ABLES	vi
LIST OF PL	ATES	viii
APPENDIC	ES	ix
	GURES	
CHAPTER	1 – Introduction	1
Figure 1.1	Quadratic trend surface showing isobases (in metres)	1
	on the Main Postglacial Shoreline (c. 6.5 ka BP) in Scotland	
	(Firth <i>et al.</i> , 1993).	
Figure 1.2	Observations and model predictions of relative sea-level	2
	change 16000 cal yr BP to present.	
Figure 1.3	Cross section of a sediment profile illustrating the data	3
	used to reconstruct RSL using SLI points in comparison to	
	a transfer function which can be applied to the whole	
	fossil sequence.	
CHAPTER	2 – Field Sites	4
Figure 2.1	Location of the local sample areas on the northwest of	4
	Scotland. The approximate location of the study areas	
	at Kintail, Morar, Appin and Knapdale are shown as	
	rectangles and labelled accordingly.	
Figure 2.2	The Kintail area and the location of the field sites	5
	Nonach, Eilean nan Gall and Balmacara.	

- Figure 2.3The Nonach field site. The location of the sample6transect is shown on the tidal marsh as a red line.
- Figure 2.4Eilean nan Gall field site. The location of the sample7transect is shown on the tidal marsh as a red line.

Figure 2.5	Balmacara field site. The location of the sample transect	8
	is shown on the tidal marsh as a red line.	
Figure 2.6	The Morar area and the location of the Saideal nan Ceapaich field site.	9
Figure 2.7	The Saideal nan Ceapaich field site. The location of the sample transect is shown on the tidal marsh as a red line.	10
Figure 2.8	The Appin area and the location of Loch Creran field site.	11
Figure 2.9	The Loch Creran field site. The location of the sample	12
	transect is shown on the tidal marsh as a red line.	
Figure 2.10	The Knapdale area and the location of the Barr-na-Criche field site.	13
Figure 2.11	The Barr-na-Criche field site. The location of the sample	14
	transect is shown on the tidal marsh as a red line.	
Figure 2.12	The Nonach field site. The location of the fossil core NN04	15
	is shown as a red diamond and annotated accordingly.	
Figure 2.13	Location of monoliths MMN01A & B at Mointeach Mhor	16
	North, Morar.	
Figure 2.14	The Barr-na-Criche field site. The location of the fossil	17
	core BC006a is shown as a red diamond and annotated	
	accordingly.	
Chapter 4 –	Results: development of a transfer function	
Figure 4.1	Regional diatom training set	22
Figure 4.2	CCA Ordination diagram for samples and environmental	23
	Variables for the regional diatom training set.	
Figure 4.3	Regression results for the regional diatom training set	24
	using WAPLS components 1 – 3 are shown on the left	
	and the associated regression residuals are shown on the	
	right.	
Figure 4.4	Kintail diatom training set	25
Figure 4.5	Morar diatom training set	26
Figure 4.6	Argyll diatom training set	27
Figure 4.7	CCA Ordination diagram for samples and environmental	28

	variables for the diatom training sets.	
Figure 4.8	Regression results for the Kintail diatom training set	29
	using WAPLS component 3 are shown on the left and	
	the associated regression residuals are shown on the right.	
Figure 4.9	Regression results for the Morar diatom training set	29
	using WAPLS component 3 are shown on the left and	
	the associated regression residuals are shown on the right.	
Figure 4.10	Regression results for the Argyll diatom training set	30
	using WAPLS component 3 are shown on the left and	
	the associated regression residuals are shown on the right.	
Figure 4.11	Regional pollen training set	31
Figure 4.12	Kintail pollen training set	32
Figure 4.13	Morar pollen training set	33
Figure 4.14	Argyll pollen training set	34
Figure 4.15	CCA Ordination diagram for samples and environmental	35
	variables for the pollen training sets.	
Figure 4.16	Regression results for the regional pollen training set	36
	using PLS component 2 are shown on the left and	
	the associated regression residuals are shown on the	
	right.	
Figure 4.17	Regression results for the Kintail pollen training set using	36
	PLS component 3 are shown on the left and the associated	
	regression residuals are shown on the right.	
Figure 4.18	Regression results for the Morar pollen training set using	37
	PLS component 3 are shown on the left and the	
	associated regression residuals are shown on the right.	
Figure 4.19	Regression results for the Argyll pollen training set	37
	using WAPLS component 3 are shown on the left and	
	the associated regression residuals are shown on the right.	
Figure 4.20	Regional multi-proxy training set	38
Figure 4.21	Kintail multi-proxy training set	39
Figure 4.22	Morar multi-proxy training set	40
Figure 4.23	Argyll multi-proxy training set	41
Figure 4.24	CCA Ordination diagram for samples and environmental	42

variables for the multi-proxy training sets.

- Figure 4.25Regression results for the regional multi-proxy training43set using WAPLS component 3 are shown on the left and
the associated regression residuals are shown on the right.
- Figure 4.26Regression results for the Kintail multi-proxy training43set using WAPLS component 3 are shown on the left and
the associated regression residuals are shown on the right.
- Figure 4.27Regression results for the Morar multi-proxy training set44using WAPLS component 3 are shown on the left and
the associated regression residuals are shown on the right.

44

Figure 4.28 Regression results for the Argyll multi-proxy training set using WAPLS component 2 are shown on the left and the associated regression residuals are shown on the right.

Chapter 5 – Results: reconstruction of former sea-levels

Figure 5.1	Summary of the results of the diatom RWL reconstructions	70
	for core NN04.	
Figure 5.2	Summary of the results of the pollen RWL reconstructions	71
	for core NN04.	
Figure 5.3	Summary of the results of the multi-proxy RWL reconstructions	72
	for core NN04.	
Figure 5.4	Scatter plots comparing the regional diatom reference water	73
	level reconstruction with the local reconstructions for core NN04.	
Figure 5.5	Scatter plots comparing the regional pollen reference water	74
	level reconstruction with the local reconstructions for core NN04.	
Figure 5.6	Scatter plots comparing the regional diatom and pollen reference	75
	water level reconstruction with the local reconstructions for core	
	NN04.	
Figure 5.7	Summary of the results of the diatom RWL reconstructions	76
	for monolith MMN01A & B.	
Figure 5.8	Summary of the results of the pollen RWL reconstructions	77
	for monolith MMN01A & B.	
Figure 5.9	Summary of the results of the multi-proxy RWL reconstructions	78
	for monolith MMN01A & B.	

- Figure 5.10 Scatter plots comparing the regional diatom reference water 79 level reconstruction with the local reconstructions for monoliths MMN01A & B.
- Figure 5.11 Scatter plots comparing the regional pollen reference water 80 level reconstruction with the local reconstructions for monoliths MMN01 A & B.
- Figure 5.12 Scatter plots comparing the regional diatom and pollen reference 81 water level reconstruction with the local reconstructions for monolith MMN01 A & B.
- Figure 5.13 Bi-plots comparing the RWL reconstruction values produced for 82 the regional diatom, pollen and multi-proxy training sets using only the samples within the multi-proxy training set to allow direct comparison.
- Figure 5.14 Summary of the results of the pollen RWL reconstructions 83 for core BC006a.
- Figure 5.15Scatter plots comparing the regional pollen reference water84level reconstruction with the local reconstructions for core BC006a.

Chapter 6 – Discussion

- Figure 6.1 Summary of the results of the diatom-inferred reference water 90 level reconstruction for fossil monolith sample MMN01A&B.
- Figure 6.2 Summary of the results of the pollen-inferred reference water 91 level reconstruction for fossil monolith sample MMN01A&B.
- Figure 6.3 Summary of the results of the multi-proxy-inferred reference water 92 level reconstruction for fossil monolith sample MMN01A&B.

LIST OF TABLES

1

CHAPTER 2 – Field Sites

Table 2.1	Summary of the tide levels from the Admiralty Tide	18
-	Tables (1986) transformed into m OD by Shennan	
	(pers comm.) for the ports nearest to the field sites.	
CHAPTER 4	I - Results: development of a transfer function	45
Table 4.1	Detrended Canonical Correspondence Analysis results	45
Table 4.2	Correlation matrices for environmental variables from	45
	the regional diatom training set	
Table 4.3	CCA results showing summary of eigenvalues for the	45
	Regional diatom training set.	
Table 4.4	Summary of the results of CCA analysis listing the	46
	percentage of explained and unexplained variance.	
Table 4.5	Summary of the transfer function performance statistics for	46
	the regional diatom training set. WA-PLS component 3 is	
	the chosen model.	
Table 4.6	List of r^2 values from other studies.	47
Table 4.7	Correlation matrices for environmental variables for diatom	48
	training sets.	
Table 4.8	CCA results showing summary of eigenvalues for the diatom	49
	training sets.	
Table 4.9	Summary of the transfer function performance statistics for	50
	the diatom training sets for each model chosen. The results	
	are shown in full in appendix 4.1.	
Table 4.10	Correlation matrices for environmental variables for the	51
	pollen training sets.	
Table 4.11	CCA results showing summary of eigenvalues for the	52
	pollen training sets.	
Table 4.12	Summary of the performance statistics for the chosen	53
	transfer function model for each of the pollen training sets.	
Table 4.13	Correlation matrices for environmental variables from the	54
	multi-proxy training sets.	
Table 4.14	CCA results showing summary of eigenvalues for the	55
	multi-proxy training sets.	

- Table 4.15Summary of the performance statistics for the chosentransfer function model for each of the multi-proxy trainingsets.
- Table 4.16Summary of the performance statistics for the chosen57transferfunction models for each of the training sets.

56

58

Table 4.17Summary of the performance statistics for the most
appropriate models for the multi-proxy training set and
diatom and pollen training sets comprising just the diatom
and pollen samples present in the multi-proxy training set.

Chapter 5 – Results: reconstruction of former sea-levels

- Table 5.1Lists the number of microfossils recorded in the fossil cores and85the percentages of microfossils also found in the modern trainingset (% of modern analogues).
- Table 5.2Lists the number of microfossils recorded in the fossil cores and86the percentages of microfossils also found in the modern trainingsets (% of modern analogues) for the diatoms and pollen sampleswithin the multi-proxy training sets.

Chapter 6 - Discussion

Table 6.1 For each transfer function model RMSEP in SWLI units have 93 been converted into m OD Table 6.2 For each transfer function model RMSEP in SWLI units has 94 been converted into m OD for the training sets that contain only samples within the multi-proxy training sets. 95 Table 6.3 Arisaig sea-level index point. Table 6.4 Shows the results of the diatom, pollen and multi-proxy RWL 96 Reconstructions and associated error terms and the RWL and error terms for the sea-level index points from Mointeach Mhor North (after Shennan et al., 2005). Table 6.5 Shows the results of the diatom and pollen RWL reconstructions 97 For the samples within the multi-proxy training set and associated error terms and the RWL and error terms for the sea-level index

points from Mointeach Mhor North (after Shennan et al., 2005).

LIST OF PLATES

CHAPTER 2 – Field Sites

Plate 2.1	Eilean nan Gall field site. The location of the sample	19
	Transect is shown as a red line on the photographs.	
Plate 2.2	Loch Creran field site. The location of the sample	20
	Transect is shown as a red line on the photographs.	
Plate 2.3	Barr-na-Criche field site. The location of the sample	21
	Transect is shown as a red line on the photograph.	

APPENDICES		Page No.
4.1	Transfer function results.	59
5.1	Stratigraphy.	87

Figure 1.1 Quadratic trend surface showing isobases (in metres) on the Main Postglacial Shoreline (c. 6.5 ka BP) in Scotland (Firth *et al.*, 1993).

1

Figure 1.2 Observations and model predictions of relative sea-level change 16000 cal yr BP to present. Age error bars for sea-level index points indicate the maximum and minimum calibrated ages and the vertical bar depicts the median calibrated age. The vertical error calculation includes the sum of all the quantified or estimated height errors (see table 1 in Shennan *et al.*, 2003). Relative sea-level must lie at or below limiting dates, shown as solid symbols **.** Model predictions come from: (A) the modified version of Lambeck (1995) described in Shennan *et al.* (2000); and (B) the modified version of Peltier *et al.* (2002) described as model 3 in Shennan *et al.* (2002).

Intertidal sand, the sediment that records the peak of marine influence.

Figure 1.3 Cross section of a sediment profile illustrating the data used to reconstruct RSL using SLI points in comparison to a transfer function which can be applied to the whole fossil sequence (vertical black lines represent a sediment core from which microfossil data can be used in a transfer function).

Figure 2.1. Location of the local sample areas on the northwest coast of Scotland. The approximate location of the study areas at Kintail, Morar, Appin and Knapdale are shown as black rectangles and labelled accordingly.

Figure 2.2 The Kintail area and the location of the field sites Nonach, Eilean nan Gall and Balmacara.

Figure 2.3. The Nonach field site. The location of the sample transect is shown on the tidal marsh as a red line.

Figure 2.5. Balmacara field site. The location of the sample transect is shown on the tidal marsh as a red line.

Figure 2.7. The Saideal nan Ceapaich field site. The location of the sample transect is shown on the tidal marsh as a red line.

Figure 2.9. The Loch Creran field site. The location of the sample transect is shown on the tidal marsh as a red line.

Figure 2.11. The Barr-na-Criche field site. The location of the sample transect is shown on the tidal marsh as a red line.

Figure 2.12. The Nonach field site. The location of the fossil core NN04 is shown as a red diamond and annotated accordingly.

Figure 2.14. The Barr-na-Criche field site. The location of the fossil core BC006a is shown as a red diamond and annotated accordingly.

Field Site	Nearest tidal prediction	LAT	LON	MHWS	MHWN	MLWN	MLWS	MTL
Balmacara	Kyle of Lochalsh	5717	543	2.57	1.17	-0.53	-1.93	0.32
Eilean nan Gall	Dornie Bridge	5717	531	2.62	1.12	-0.58	-1.98	0.3
Nonach	Dornie Bridge	5717	531	2.62	1.12	-0.58	-1.98	0.3
Saideal nan Ceapaich	Mallaig	5700	550	2.38	1.18	-0.52	-1.92	0.28
Loch Creran	Port Appin	5633	525	2.25	1.15	-0.05	-1,15	0.55
Barr-na-Criche	East Loch Tarbert	5552	524	1.78	1.28	-0.52	-1.32	0.31

Table 2.1. Summary of the tidal predictions for the ports nearest to the field sites. The tidal predictions have been transformed into mOD from the Admiralty Tide Tables (1986) by Shennan (*pers comm.*).

Is shown as a red line on the photographs.

Plate 2.2 Loch Creran field site. The location of the sample transect Is shown as a red line on the photographs.

Plate 2.3 Barr-na-Criche field site. The location of the sample transect is shown as a red line on the photograph.

Figure 4.1 Regional diatom training set, dominant diatom species exceeding 10% of the total are shown. Species are ordered according to their salinity tolerance. The diatom samples are ordered on the y-axis according to the elevation (SWLI) of the assemblage and the histograms show the percentage abundance of each of the diatom species.

Key:

SW	- Standardised Water Level Index
LOI	- Loss on Ignition
Ph	- pH
sa	- Salinity
Sa	- Sand
Si	- Silt

Cl - Clay

Figure 4.2 CCA Ordination diagram for samples and environmental variables for the regional diatom training set.

Figures, Tables & Plates - Chapter 4

Figure 4.3 Regression results for the regional diatom training set using WAPLS components 1 – 3 are shown on the left and the associated regression residuals are shown on the right.

Figure 4.4 Kintail diatom training set, dominant diatom species exceeding 2% of the total are shown. Species are ordered according to their salinity tolerance. The diatom samples are ordered on the y-axis according to their elevation (SWLI) and the histograms show the percentage abundance of each of the dominant diatom species.

Figure 4.5 Morar diatom training set, dominant diatom species exceeding 2% of the total are shown. Species are ordered according to their salinity tolerance. The diatom samples are ordered on the y-axis according to their elevation (SWLI) and the histograms show the percentage abundance of each of the dominant diatom species.

Figure 4.6 Argyll diatom training set, dominant diatom species exceeding 2% of the total are shown. Species are ordered according to their salinity tolerance. The diatom samples are ordered on the y-axis according to their elevation (SWLI) and the histograms show the percentage abundance of each of the dominant diatom species.

a) Morar

b) Argyll

Key:

- SW Standardised Water Level Index
- LOI Loss on Ignition
- Ph pH
- sa Salinity
- Sa Sand
- Si Silt Cl - Clay
 - Clay

Figure 4.7 CCA Ordination diagram for samples and environmental variables for the diatom training sets.

Figure 4.8 Regression results for the Kintail diatom training set using WAPLS component 3 are shown on the left and the associated regression residuals are shown on the right.

Figure 4.9 Regression results for the Morar diatom training set using WAPLS component 3 are shown on the left and the associated regression residuals are shown on the right.

Figure 4.10 Regression results for the Argyll diatom training set using WAPLS component 3 are shown on the left and the associated regression residuals are shown on the right.

Figure 4.11 Regional pollen training set, dominant pollen species exceeding 5% of the total are shown and species are ordered according to their life form. The pollen samples are ordered on the y-axis according to their elevation (SWLI) and the histograms show the percentage abundance of each of the pollen species.

Figure 4.12 Kintaill pollen training set, dominant pollen species exceeding 2% of the total are shown and species are ordered according to their life form. The pollen samples are ordered on the y-axis according to their elevation (SWLI) and the histograms show the percentage abundance of each of the pollen species.

Figure 4.13 Morar pollen training set, dominant pollen species exceeding 2% of the total are shown and species are ordered according to their life form. The pollen samples are ordered on the y-axis according to their elevation (SWLI) and the histograms show the percentage abundance of each of the pollen species.

Figure 4.14 Argyll pollen training set, dominant pollen species exceeding 2% of the total are shown and species are ordered according to their life form. The pollen samples are ordered on the y-axis according to their elevation (SWLI) and the histograms show the percentage abundance of each of the pollen species.

Figure 4.15 CCA Ordination diagram for samples and environmental variables for

the pollen training sets.

Figure 4.16 Regression results for the regional pollen training set using PLS component 2 are shown on the left and the associated regression residuals are shown on the right.

Figure 4.17 Regression results for the Kintail pollen training set using PLS component 3 are shown on the left and the associated regression residuals are shown on the right.

Figures, Tables & Plates - Chapter 4

Figure 4.18 Regression results for the Morar pollen training set using PLS component 3 are shown on the left and the associated regression residuals are shown on the right.

Figure 4.19 Regression results for the Argyll pollen training set using WAPLS component 3 are shown on the left and the associated regression residuals are shown on the right.

Figure 4.20 Regional multi-proxy training set, dominant species exceeding 10% of the total are shown. Species are ordered according to their salinity tolerance or life form. The samples are ordered on the y-axis according to their elevation (SWLI) and the histograms show the percentage abundance of the diatom and pollen species. Diatoms are shown in black and pollen in green.

Figure 4.21 Kintail multi-proxy training set, dominant species exceeding 2% of the total are shown. Species are ordered according to their salinity tolerance or life form. The samples are ordered on the y-axis according to their elevation (SWLI) and the histograms show the percentage abundance of the diatom and pollen species. Diatoms are shown in black and pollen in green.

Figure 4.22 Morar multi-proxy training set, dominant species exceeding 2% of the total are shown. Species are ordered according to their salinity tolerance or life form. The samples are ordered on the y-axis according to their elevation (SWLI) and the histograms show the percentage abundance of the diatom and pollen species. Diatoms are shown in black and pollen in green.

Figure 4.23 Argyll multi-proxy training set, dominant species exceeding 2% of the total are shown. Species are ordered according to their salinity tolerance or life form. The samples are ordered on the y-axis according to their elevation (SWLI) and the histograms show the percentage abundance of the diatom and pollen species. Diatoms are shown in black and pollen in green.

Figure 4.24 CCA Ordination diagram for samples and environmental variables for the multi-proxy training sets.

Figure 4.25 Regression results for the regional multi-proxy training set using WAPLS component 3 are shown on the left and the associated regression residuals are shown on the right.

Figure 4.26 Regression results for the Kintail multi-proxy training set using WAPLS component 3 are shown on the left and the associated regression residuals are shown on the right.

Figure 4.27 Regression results for the Morar multi-proxy training set using WAPLS component 3 are shown on the left and the associated regression residuals are shown on the right.

Figure 4.28 Regression results for the Argyll multi-proxy training set using WAPLS component 2 are shown on the left and the associated regression residuals are shown on the right.

Training Environmenta Set Name Variable		DCCA axis 1 length (SD units) diatoms	DCCA axis 1 length (SD units) pollen	DCCA axis 1 length (SD units) diatoms and pollen
Regional	SWLI	4.12	1.57	2.64
Kintail	SWLI	6.78	1.52	2.66
Morar	SWLI	4.48	1.52	2.36
Argyll	SWLI	4.95	2.05	2.38

Table 4.1Detrended Canonical Correspondence Analysis results.

рΗ	0.18					
LOI	-0.19	-0.29				
% Sand	-0.44	0.19	-0.41			
% Silt	0.33	-0.19	0.48	-0.98		
% Clav	0.66	-0.12	0.14	-0.87	0.76	
SWLI	-0.48	-0.47	0.59	-0.07	0.17	-0.22
	Salinity	pН	LOI	% Sand	% Silt	% Clay

Table 4.2Correlation matrices for environmental variables from the regional
diatom training set.

Axes	1	2	3	4	Total inertia
Eigenvalues:	0.57	0.38	0.31	0.28	7.63
Species-environment					
correlations:	0.95	0.89	0.86	0.88	
Cumulative percentage variance					
of species data:	7.4	12.5	16.5	20.3	
of species-environment relation:	28.8	48.4	64.3	78.8	
Sum of all eigenvalues:					7.63
Sum of all canonical eigenvalues:					1.96

Table 4.3CCA results showing summary of eigenvalues for the regionaldiatom training set.

Training Set Name	Explained Variance (%)	Unexplained Variance (%)
Regional diatom training set	26	74
Kintail diatom training set	11	89
Morar diatom training set	51	49
Argyll diatom training set	34	66
Regional pollen Training Set	28	73
Kintail pollen Training Set	16	84
Morar pollen Training Set	53	47
Argyll pollen Training Set	37	63
Regional multi-proxy training set	28	72
Kintail multi-proxy training set	18	82
Morar multi-proxy training set	43	57
Argyll multi-proxy training set	38	62

Table 4.4Summary of the results of CCA analysis listing the percentage of
explained and unexplained variance.

Model Number	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	WAPLS Component 1 for SWLI	27.07	0.75	0.69	30.02	0.70	30.59
	WAPLS Component 2 for SWLI	18.86	0.88	0.79	24.85	0.79	26.43
1	WAPLS Component 3 for SWLI	13.97	0.93	0.84	21.84	0.83	24.83
	WAPLS Component 4 for SWLI	11.35	0.96	0.85	20.77	0.85	23.88
	WAPLS Component 5 for SWLI	9.13	0.97	0.87	19.65	0.87	23.32
· · · · · · · · · · · · · · · · · · ·	Weighted averaging model (inverse deshrinking) for SWLI	27.07	0.75	0.69	29.94	0.70	30.55
	Weighted averaging model (classical deshrinking) for SWLI	31.25	0.75	0.70	33.56	0.70	33.68
2	Weighted averaging model (tolerance downweighted, inverse deshrinking) for SWLI	21.51	0.84	0.74	27.87	0.74	29.48
	Weighted averaging model (tolerance downweighted, classical deshrinking) for SWLI	23.44	0.84	0.74	29.21	0.74	30.24

Table 4.5Summary of the transfer function performance statistics for the regionaldiatom training set.WA-PLS component 3 is the chosen model.

Paper	7
Gasse et al. (1995)	0.77 to 0.92
Campeau <i>et al.</i> (1999)	0.87 to 0.89
Zong and Horton (1999)	0.65 to 0.72
Gehrels (2000)	0.77 to 0.85
Sawai <i>et al</i> . (2004)	0.88 to 0.94

Table 4.6List of r^2 values from other studies.

a) Morar

	Salinity	рН	LOI	% Sand	% Silt	% Clay
SWLI	-0.49	-0.16	0.49	-0.40	0.45	0.16
% Clay	0.43	0.41	0.75	-0.90	0.85	
% Silt	0.16	0.48	0.93	-0.99		
% Sand	-0.22	-0.48	-0.91			
LOI	-0.04	0.41				
рН	0.61					

b) Argyll

pН	0.42					
LOI	-0.34	-0.56				
% Sand	-0.21	0.40	-0.53			
% Silt	0.24	-0.38	0.52	-0.99		
% Clay	0.28	-0.23	0.37	-0.91	0.88	
SWLI	-0.44	-0.80	0.59	-0.39	0.38	0.23
	Salinity	рΗ	LOI	% Sand	% Silt	% Clay

Table 4.7Correlation matrices for environmental variables for the local diatomtraining sets.

a) Kintail diatom training set

Axes	1	2	3	4	Total inertia
Eigenvalues:	0.70	0.88	0.61	0.52	6.52
Species-environment correlations:	0.92	0.00	0.00	0.00	
Cumulative percentage variance					
of species data:	10.70	24.30	33.60	41.50	
of species-environment relation:	100.00	0.00	0.00	0.00	
Sum of all eigenvalues					6.52
Sum of all canonical eigenvalues					0.70

b) Morar diatom training set

Axes	1	2	3	4	Total inertia
Eigenvalues:	0.69	0.41	0.32	0.23	3.52
Species-environment correlations:	0.99	0.95	0.86	0.931	
Cumulative percentage variance					
of species data:	19.6	31.3	40.4	46.9	
of species-environment relation:	38.5	61.4	79.4	92 .1	
Sum of all eigenvalues:					3.52
Sum of all canonical eigenvalues:					1.79

c) Argyll diatom training set

Axes	1	2	3	4	Total inertia
Eigenvalues:	0.70	0.43	0.38	0.29	6.21
Species-environment correlations:	0.97	0.90	0.88	0.86	
Cumulative percentage variance					
of species data:	11.20	18.10	24.10	28.80	
of species-environment relation:	33.6	53	69.8	84.5	
Sum of all eigenvalues					6.21
Sum of all canonical eigenvalues					2.11

Training Set Name	No of samples	Component	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
Regional diatoms	116	3	WAPLS Component 3 for SWLI	13.97	0.93	0.84	21.84	0.83	24.83
Kintail diatoms	43	3	WAPLS Component 3 for SWLI	11.23	0.96	0.82	24.19	0.82	27.79
Morar diatoms	22	3	WAPLS Component 3 for SWLI	2.76	0.99	0.93	10.28	0.91	12.46
Argyll diatoms	51	3	WAPLS Component 3 for SWLI	9.97	0.97	0.86	21.13	0.87	24.06

Table 4.9 Summary of the transfer function performance statistics for the diatom training sets for each model chosen. The results are shown in full in appendix 4.1.

a) Regional training set

	Salinity	рН	LOI	% Sand	% Silt	% Clay
SWLI	-0.34	-0.81	0.49	0.25	-0.26	-0.29
% Clay	0.79	0.20	-0.21	-0.86	0.71	
% Silt	0.43	0.20	0.08	-0.96		
% Sand	-0.58	-0.18	-0.01			
LOI	-0.32	-0.46				
рН	0.33					

b) Morar training set

	Salinity	ъH	LOI	% Sand	% Silt	% Clav
SWLI	-0.87	-0.55	0.06	0.57	-0.39	-0.78
% Clay	0.65	0.21	0.22	-0.74	0.52	
% Silt	0.21	0.47	0.79	-0.96		
% Sand	-0.38	-0.44	-0.69			
LOI	-0.22	0.30				
ρН	0.55					

c) Argyll training set

	Salinity	pН	LOI	% Sand	% Silt	% Clay
SWLI	-0.60	-0.87	0.51	0.23	-0.23	-0.44
% Clay	0.43	0.37	-0.06	-0.88	0.85	
% Siit	0.36	0.15	0.17	-0.99		
% Sand	-0.32	-0.13	-0.19			
LOI	-0.52	-0.57				
pН	0.58		<u> </u>			

Table 4.10Correlation matrices for environmental variables for the pollen training sets.

a) Regional training set

Axes	1	2	3	4	Total inertia
Eigenvalues:	0.17	0.13	0.07	0.07	1.90
Species-environment correlations:	0.88	0.79	0.61	0.77	
Cumulative percentage variance					
of species data:	9.00	15.70	19.50	22.90	
of species-environment relation:	32.50	56.80	70.60	83.00	
Sum of all eigenvalues					1.90
Sum of all canonical eigenvalues				-	0.53

b) Kintail training set

Axes	1	2	3	4	Total inertia	
Eigenvalues:	0.16	0.25	0.09	0.08	0.96	
Species-environment correlations:	0.76	0.00	0.00	0.00		
Cumulative percentage variance						
of species data:	16.30	42.90	52.20	61.00		
of species-environment relation:	100.00	0.00	0.00	0.00		
Sum of all eigenvalues:					0.96	
Sum of all canonical eigenvalues:					0.16	

c) Morar training set

Axes	1	2	3	4	Total inertia
Eigenvalues:	0.24	0.14	0.11	0.06	1.21
Species-environment correlations:	0.87	0.91	0.94	0.76	
Cumulative percentage variance					
of species data:	19.8	31.2	40.6	45.5	
of species-environment relation:	37.5	59.1	76.7	86.1	
Sum of all eigenvalues:					1.21
Sum of all canonical eigenvalues:					0.64

d) Argyll training set

	·			·	Total
Axes	1	2	3	4	inertia
Eigenvalues:	0.19	0.14	0.06	0.04	1.39
Species-environment correlations :	0.92	0.89	0.84	0.82	
Cumulative percentage variance					
of species data:	13.80	24.20	28.60	31.60	
of species-environment relation:	37.30	65.30	77.10	85.40	
Sum of all eigenvalues:					1.39
Sum of all canonical eigenvalues:					0.52

Table 4.11CCA results showing summary of eigenvalues for the pollen training sets.

Training Set Name	No of samples	Component	Name		RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot
	Jan							INNOLI		run çer
Regional pollen	82	2	PLS Comp	onent 2 for SWLI	39.44	0.56	0.34	48.19	0.36	50.89
Kintail pollen	25	3	PLS Comp	onent 3 for SWLI	34.63	0.66	0.30	52.92	0.31	57.61
Morar pollen	15	3	PLS Comp	onent 3 for SWLI	6.49	0.94	0.59	17.97	0.65	18.44
Argyll pollen	42	3	WAPLS Co	mponent 3 for SWLI	18.74	0.92	0.59	42.20	0.67	43.29

Table 4.12Summary of the performance statistics for the chosen transfer function model for each of the pollen training sets. A
table of the results for each model is shown in Appendix 4.1.

a) Regional training set

% Sand % Silt	-0.55 0.42	-0.06 0.10	-0.10 0.16	-0.96		
% Clay SWLI	0.75 -0.37	0.03 -0.65	-0.11 0.18	-0.87 0.13	0.71 -0.17	-0.11
	Salinity	pH	LOI	% Sand	% Silt	% Clay

b) Morar training set

SWLI	-0.85	-0.59	-0.03	0.58	-0.44	-0.76
% Clav	0.63	0.28	0.35	-0.77	0.58	
% Silt	0.22	0.50	0.82	-0.97		
% Sand	-0.37	-0.48	-0.76			
LOI	-0.14	0.33				
рН	0.58					

c) Argyll training set

	Salinity	рН	LOI	% Sand	% Silt	% Clay
SWLI	-0.79	-0.68	0.28	0.24	-0.24	-0.30
% Clay	0.35	0.17	0.11	-0.89	0.85	
% Silt	0.35	0.07	0.25	-0.99		
% Sand	-0.30	-0.05	-0.27			
LOI	-0.42	-0.33				
рН	0.55					

Table 4.13Correlation matrices for environmental variables from the multi-proxy
training sets.

a) Regional training set

Axes	1	2	3	4	Total inertia
Eigenvalues:	0.31	0.21	0.18	0.10	3.47
Species-environment correlations:	0.95	0.85	0.90	0.78	
Cumulative percentage variance					
of species data:	9.00	15.10	20.20	23.00	
of species-environment relation:	31.40	52.90	70.50	80.30	
Sum of all eigenvalues:					3.47
Sum of all canonical eigenvalues:					0.99

b) Kintail training set

Axes	1	2	3	4	Total inertia
Eigenvalues:	0.45	0.51	0.33	0.21	2.47
Species-environment correlations:	0.93	0.00	0.00	0.00	
Cumulative percentage variance					
of species data:	18.00	38.60	51.80	60.10	
of species-environment relation:	100.00	0.00	0.00	0.00	
Sum of all eigenvalues:					2.47
Sum of all canonical eigenvalues:					0.45

c) Morar training set

Axes	1	2	3	4	Total inertia
Eigenvalues:	0.37	0.21	0.17	0.12	1.76
Species-environment correlations:	0.97	0.94	0.93	0.85	
Cumulative percentage variance					
of species data:	21.10	32.80	42.40	49.20	
of species-environment relation:	37.10	57.80	74.70	86.50	
Sum of all eigenvalues					1.76
Sum of all canonical eigenvalues					1.00

d) Argyll training set

Axes	1	2	3	4	Total inertia
Eigenvalues:	0.35	0.23	0.17	0.11	2.62
Species-environment correlations:	0.96	0.92	0.80	0.83	
Cumulative percentage variance					
of species data:	13.30	22.00	28.50	32.80	
of species-environment relation:	34.80	57.60	74.70	85.70	
Sum of all eigenvalues:					2.62
Sum of all canonical eigenvalues:					1.00

Table 4.14CCA results showing summary of eigenvalues for the multi-proxytraining sets.

Training Set Name	No of samples	Component	Name	RMSE	Ŕ2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
Regional multi-proxy	75	3	WAPLS Component 3 for SWLI	6.10	0.97	0.82	15.66	0.81	17.90
Kintail multi-proxy	23	3	WAPLS Component 3 for SWLI	5.06	0.99	0.73	25.00	0.74	26.40
Morar multi-proxy	15	3	WAPLS Component 3 for SWLI	1.21	1.00	0.87	10.51	0.88	11.65
Argyll multi-proxy	37	2	WAPLS Component 2 for SWLI	7.34	0.95	0.80	14.42	0.80	15.93

.

Table 4.15Summary of the performance statistics for the chosen transfer function model for each of the multi-proxy training sets.A table of the results for each model is shown in Appendix 4.1.

Training Set Name	No of samples	Component	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
Regional diatoms	116	3	WAPLS Component 3 for SWLI	13.97	0.93	0.84	21.84	0.83	24.83
Kintail diatoms	43	3	WAPLS Component 3 for SWLI	11.23	0.96	0.82	24.19	0.82	27.79
Morar diatoms	22	3	WAPLS Component 3 for SWLI	2.76	0.99	0.93	10.28	0.91	12.46
Argyll diatoms	51	3	WAPLS Component 3 for SWLI	9.97	0.97	0.86	21.13	0.87	24.06
Regional pollen	82	2	PLS Component 2 for SWLI	39.44	0.56	0.34	48.19	0.36	50.89
Kintail pollen	25	3	PLS Component 3 for SWLI	34.63	0.66	0.30	52.92	0.31	57.61
Morar pollen	15	3	PLS Component 3 for SWLI	6.49	0.94	0.59	17.97	0.65	18.44
Argyll pollen	42	3	WAPLS Component 3 for SWLI	18.74	0.92	0.59	42.20	0.67	43.29
Regional multi-proxy	75	3	WAPLS Component 3 for SWLI	6.10	0.97	0.82	15.66	0.81	17.90
Kintail multi-proxy	23	3	WAPLS Component 3 for SWLI	5.06	0.99	0.73	25.00	0.74	26.40
Morar multi-proxy	15	3	WAPLS Component 3 for SWLI	1.21	1.00	0.87	10.51	0.88	11.65
Argyll multi-proxy	37	2	WAPLS Component 2 for SWLI	7.34	0.95	0.80	14.42	0.80	15.93

 Table 4.16
 Summary of the performance statistics for the chosen transfer function models for each of the training sets.

Multi-proxy Training S Name	Set No of samples	Component	Name	RMSE	Ŕ2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
Regional Diatom and pollen	75	3	WAPLS Component 3 for SWLI	6.10	0.97	0.82	15.66	0.81	17.90
Regional Diatoms	75	3	WAPLS Component 3 for SWLI	8.11	0.95	0.78	17.51	0.78	20.35
Regional Pollen	75	2	WAPLS Component 2 for SWLI	18.39	0.76	0.58	24.40	0.61	24.73

 Table 4.17
 Summary of the performance statistics for the most appropriate models for the multi-proxy training set and diatom and pollen training sets comprising just the diatom and pollen samples present in the multi-proxy training set.

APPENDIX 4.1 Transfer function results.

Regional Diatom Training Set

Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	Component 1	WAPLS Component 1 for SWLI	27.07	0.75	0.69	30.02	0.70	30.59
	Component 2	WAPLS Component 2 for SWLI	18.86	0.88	0.79	24.85	0.79	26.43
1	Component 3	WAPLS Component 3 for SWLI	13.97	0.93	0.84	21.84	0.83	24.83
	Component 4	WAPLS Component 4 for SWLI	11.35	0.96	0.85	20.77	0.85	23.88
	Component 5	WAPLS Component 5 for SWLI	9.13	0.97	0.87	19.65	0.87	23.32
Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	WA_Inv	Weighted averaging model (inverse deshrinking) for SWLI	27.07	0.75	0.69	29.94	0.70	30.55
	WA_Cla	Weighted averaging model (classical deshrinking) for SWLI						
2	_		31.25	0.75	0.70	33.56	0.70	33.68
	WATOL_Inv	Weighted averaging model (tolerance downweighted, inverse deshrinking) for SWLI	21.51	0.84	0.74	27.87	0.74	29.48
	WATOL_Cla	Weighted averaging model (tolerance downweighted, classical deshrinking) for SWLI	23.44	0.84	0.74	29.21	0.74	30.24

Kintail Diatom Training Set

Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	Component 1	WAPLS Component 1 for SWLI	27.04	0.77	0.68	32.07	0.69	34.27
	Component 2	2 WAPLS Component 2 for SWLI	16.18	0.92	0.79	25.76	0.80	28.93
1	Component 3	3 WAPLS Component 3 for SWLI	11.23	0.96	0.82	24.19	0.82	27.79
	Component 4	WAPLS Component 4 for SWLI	8.29	0.98	0.86	21.54	0.85	26.32
	Component 5	5 WAPLS Component 5 for SWLI	6.05	0.99	0.87	20.79	0.86	26.39
Model	Code	Nama	RMSF	R2	Jack R2	Jack	Boot R2	Boot
MODEI	Code	Name			•	RMSEP	DOOLINE	RMSEP
MODEI	WA_Inv	Weighted averaging model (inverse deshrinking) for SWLI	27.04	0.77	0.68	RMSEP 31.94	0.68	RMSEP 33.43
MOGEI	WA_Inv WA_Cla	Weighted averaging model (inverse deshrinking) for SWLI Weighted averaging model (classical deshrinking) for SWLI	27.04 30.76	0.77 0.77	0.68 0.69	RMSEP 31.94 35.71	0.68 0.69	RMSEP 33.43 36.12
2	WA_Inv WA_Cla WATOL_Inv	Weighted averaging model (inverse deshrinking) for SWLI Weighted averaging model (classical deshrinking) for SWLI Weighted averaging model (tolerance downweighted, inverse deshrinking) for SWLI	27.04 30.76 24.10	0.77 0.77 0.82	0.68 0.69 0.70	RMSEP 31.94 35.71 31.30	0.68 0.69 0.69	RMSEP 33.43 36.12 34.67

Morar Diatom Training Set

Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	Component 1	WAPLS Component 1 for SWLI	8.67	0.94	0.84	15.00	0.84	15.64
	Component 2	2 WAPLS Component 2 for SWLI	4.38	0.99	0.89	12.75	0.89	13.68
1	Component 3	WAPLS Component 3 for SWLI	2.76	0.99	0.93	10.28	0.91	12.46
	Component 4	WAPLS Component 4 for SWLI	1.56	1.00	0.93	10.17	0.92	12.29
	Component 5	WAPLS Component 5 for SWLI	0.99	1.00	0.93	10.05	0.92	12.18
Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	WA_Inv	Weighted averaging model (inverse deshrinking) for SWLI	8.67	0.94	0.86	14.01	0.88	13.81
	WA_Cla	Weighted averaging model (classical deshrinking) for SWLI	8.92	0.94	0.86	13.75	0.88	13.48
2	WATOL_Inv	Weighted averaging model (tolerance downweighted, inverse deshrinking) for SWLI	6.38	0.97	0.89	12.21	0.91	14.48
	WATOL_Cla	Weighted averaging model (tolerance downweighted, classical deshrinking) for SWLI	6.47	0.97	0.89	11.98	0.91	14.30

Argyll Diatom Training Set

Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	Component ⁻	1 WAPLS Component 1 for SWLI	24.46	0.81	0.74	28.69	0.75	29.51
	Component 2	2 WAPLS Component 2 for SWLI	15.73	0.92	0.82	23.66	0.82	26.20
1	Component	3 WAPLS Component 3 for SWLI	9.97	0.97	0.86	21.13	0.87	24.06
	Component 4	4 WAPLS Component 4 for SWLI	7.34	0.98	0.87	20.13	0.87	23.87
	Component s	5 WAPLS Component 5 for SWLI	5.18	0.99	0.88	19.90	0.88	24.33
Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	WA_Inv	Weighted averaging model (inverse deshrinking) for SWLI	24.46	0.81	0.74	28.73	0.73	30.22
	WA_Cla	Weighted averaging model (classical deshrinking) for SWLI	27.18	0.81	0.74	31.48	0.74	32.19
2	WATOL_Inv	Weighted averaging model (tolerance downweighted, inverse deshrinking) for SWLI	14.58	0.93	0.80	25.44	0.80	30.02
	WATOL_Cla	Weighted averaging model (tolerance downweighted, classical deshrinking) for SWLI	15.10	0.93	0.81	24.84	0.80	29.82
Regional	Pollen Training) Set						
----------	-----------------	---	-------	------	---------	---------------	---------	---------------
Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	Component 1	PLS Component 1 for SWLI	47.30	0.36	0.17	54.82	0.19	55.71
	Component 2	PLS Component 2 for SWLI	39.44	0.56	0.34	48.19	0.36	50.89
1	Component 3	PLS Component 3 for SWLI	37.91	0.59	0.33	49.26	0.32	54.01
	Component 4	PLS Component 4 for SWLI	36.32	0.62	0.23	57.29	0.27	58.28
	Component 5	PLS Component 5 for SWLI	35.65	0.64	0.19	58.96	0.24	61.21
Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	PCAR_01	Imbrie & Kipp Factor Analysis Regression model for SWLI using axes 1 - 1	59.12	0.00	0.61	62.69	0.55	64.85
	PCAR_02	axes 1 - 2	52.52	0.21	0.09	57.46	0.09	60.09
2	PCAR_03	axes 1 - 3	46.94	0.37	0.22	52.68	0.22	56.13
	PCAR_04	axes 1 - 4	46.31	0.39	0.23	52.42	0.25	54.43
	PCAR_05	Imbrie & Kipp Factor Analysis Regression model for SWLI using axes 1 - 5	40.73	0.53	0.35	47.96	0.32	52.47
Model	Code	Name	RMSE	R2				
	PCAR_01	Principal Components Regression model for SWLI using axes 1 - 1	57.59	0.05				
	PCAR_02	Principal Components Regression model for SWLI using axes 1 - 2	48.94	0.32				
3	PCAR_03	Principal Components Regression model for SWLI using axes 1 - 3	42.05	0.49				
	PCAR_04	Principal Components Regression model for SWLI using axes 1 - 4	39.35	0.56				
	PCAR_05	Principal Components Regression model for SWLI using axes 1 - 5	39.35	0.56				

Kintail Pollen Training Set

Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	Component 1	PLS Component 1 for SWLI	46.71	0.38	0.27	51.12	0.29	52.14
	Component 2	PLS Component 2 for SWLI	37.36	0.60	0.35	48.84	0.37	50.86
1	Component 3	PLS Component 3 for SWLI	34.63	0.66	0.30	52.92	0.31	57.61
	Component 4	PLS Component 4 for SWLI	32.76	0.70	0.11	68.96	0.20	69.13
	Component 5	PLS Component 5 for SWLI	28.02	0.78	0.05	81.47	0.16	77.25
Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	PCAR_01	Imbrie & Kipp Factor Analysis Regression model for SWLI using axes 1 - 1	54.46	0.16	0.07	58.44	0.16	59.96
	PCAR_02	Imbrie & Kipp Factor Analysis Regression model for SWLI using axes 1 - 2	44.43	0.44	0.28	51.11	0.33	53.01
2	PCAR_03	axes 1 - 3	40.62	0.53	0.36	48.39	0.40	50.74
	PCAR_04	axes 1 - 4	36.76	0.62	0.40	46.49	0.41	50.33
	PCAR_05	axes 1 - 5	35.92	0.63	0.40	46.79	0.38	55.50
Model	Code	Name	RMSE	R2				
	PCAR_01	Principal Components Regression model for SWLI using axes 1 - 1	49.44	0.31				
	PCAR_02	Principal Components Regression model for SWLI using axes 1 - 2	44.29	0.44				
3	PCAR_03	Principal Components Regression model for SWLI using axes 1 - 3	38.93	0.57				
	PCAR_04	Principal Components Regression model for SWLI using axes 1 - 4	35.80	0.64				
	PCAR_05	Principal Components Regression model for SWLI using axes 1 - 5	35.80	0.64				

Morar Pollen Training Set

Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	Component 1	PLS Component 1 for SWLI	17.58	0.59	0.39	21.53	0.47	22.02
	Component 2	PLS Component 2 for SWLI	9.67	0.88	0.60	17.50	0.61	19.18
1	Component 3	PLS Component 3 for SWLI	6.49	0.94	0.59	17.97	0.65	18.44
	Component 4	PLS Component 4 for SWLI	3.67	0.98	0.72	14.93	0.72	16.91
	Component 5	PLS Component 5 for SWLI	2.70	0.99	0.80	12.35	0.74	16.42
Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	PCAR_01	Imbrie & Kipp Factor Analysis Regression model for SWLI using axes 1 - 1	25.17	0.17	0.08	48.41	0.11	51.19
	PCAR_02	Imbrie & Kipp Factor Analysis Regression model for SWLI using axes 1 - 2	20.16	0.46	0.18	27.54	0.42	43.05
2	PCAR_03	Imbrie & Kipp Factor Analysis Regression model for SWLI using axes 1 - 3	16.55	0.64	0.39	21.64	0.54	40.40
	PCAR_04	Imbrie & Kipp Factor Analysis Regression model for SWLI using axes 1 - 4	14.25	0.73	0.49	21.26	0.52	43.39
	PCAR_05	axes 1 - 5	13.78	0.75	0.51	19.37	0.38	47.79
Model	Code	Name	RMSE	R2				
	PCAR_01	Principal Components Regression model for SWLI using axes 1 - 1	23.38	0.28				
	PCAR_02	Principal Components Regression model for SWLI using axes 1 - 2	16.50	0.64				
3	PCAR_03	Principal Components Regression model for SWLI using axes 1 - 3	13.94	0.74				
	PCAR_04	Principal Components Regression model for SWLI using axes 1 - 4	11.79	0.82				
	PCAR_05	Principal Components Regression model for SWLI using axes 1 - 5	9.66	0.88				

Argyll Pol	llen Training So	et			-			
Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	WA_Inv	Weighted averaging model (inverse deshrinking) for SWLI	26.50	0.84	0.69	37.29	0.70	40.84
	WA_Cla	Weighted averaging model (classical deshrinking) for SWLI	29.00	0.84	0.70	36.42	0.71	39.82
1	WATOL_Inv	Weighted averaging model (tolerance downweighted, inverse deshrinking) for SWLI Weighted averaging model (tolerance downweighted, classical	23.04	0.88	0.67	38.84	0.72	41.99
	WATOL_Cla	deshrinking) for SWLI	24.62	0.88	0.68	37.91	0.73	40.72
Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	Component 1	WAPLS Component 1 for SWLI	26.50	0.84	0.69	37.30	0.72	40.99
	Component 2	WAPLS Component 2 for SWLI	21.78	0.89	0.66	38.35	0.70	40.83
2	Component 3	WAPLS Component 3 for SWLI	18.74	0.92	0.59	42.20	0.67	43.29
	Component 4	WAPLS Component 4 for SWLI	16.72	0.93	0.56	44.75	0.64	45.66
	Component 5	WAPLS Component 5 for SWLI	14.92	0.95	0.47	50.39	0.62	48.35
Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	Component 1	PLS Component 1 for SWLI	26.22	0.84	0.58	43.61	0.55	53.52
	Component 2	PLS Component 2 for SWLI	25.44	0.85	0.67	37.88	0.69	41.91
3	Component 3	PLS Component 3 for SWLI	23.48	0.87	0.65	39.44	0.69	41.73
	Component 4	PLS Component 4 for SWLI	22.39	0.88	0.66	38.45	0.68	42.40
	Component 5	PLS Component 5 for SWLI	21.88	0.89	0.55	44.80	0.67	44.84

Regional Multi-proxy Training Set

Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	WA_Inv	Weighted averaging model (inverse deshrinking) for SWLI	14.16	0.86	0.76	18.16	0.75	19.45
	WA_Cla	Weighted averaging model (classical deshrinking) for SWLI	15.31	0.86	0.77	18.73	0.76	19.72
1	WATOL_Inv	Weighted averaging model (tolerance downweighted, inverse deshrinking) for SWLI	13.98	0.86	0.65	22.39	0.73	22.49
	WATOL_Cla	Weighted averaging model (tolerance downweighted, classical deshrinking) for SWLI	15.08	0.86	0.65	24.00	0.73	22.91
Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	Component 1	WAPLS Component 1 for SWLI	14.16	0.86	0.76	18.26	0.75	19.47
	Component 2	WAPLS Component 2 for SWLI	8.40	0.95	0.80	16.65	0.79	18.53
2	Component 3	WAPLS Component 3 for SWLI	6.10	0.97	0.82	15.66	0.81	17.90
	Component 4	WAPLS Component 4 for SWLI	4.79	0.98	0.83	15.33	0.81	17.97
	Component 5	WAPLS Component 5 for SWLI	3.92	0.99	0.83	15.55	0.81	18.45
Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	Component 1	PLS Component 1 for SWLI	19.23	0.73	0.69	20.68	0.69	21.28
	Component 2	PLS Component 2 for SWLI	14.98	0.84	0.71	20.20	0.72	20.76
3	Component 3	PLS Component 3 for SWLI	12.80	0.88	0.72	19.73	0.74	20.30
	Component 4	PLS Component 4 for SWLI	10.68	0.92	0.75	18.65	0.76	19.98
	Component 5	PLS Component 5 for SWLI	9.29	0.94	0.77	18.13	0.77	19.83

Figures, Tables & Plates – Chapter 4

Kintail Multi-proxy Training Set

Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	WA_Inv	Weighted averaging model (inverse deshrinking) for SWLI	16.16	0.88	0.63	29.13	0.65	29.81
	WA_Cla	Weighted averaging model (classical deshrinking) for SWLI	17.21	0.88	0.63	30.36	0.65	30.43
1	WATOL_Inv	Weighted averaging model (tolerance downweighted, inverse deshrinking) for SWLI	17.73	0.86	0.67	27.75	0.69	29.31
	WATOL_Cla	Weighted averaging model (tolerance downweighted, classical deshrinking) for SWLI	19.13	0.86	0.67	30.00	0.70	29.68
Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	Component 1	WAPLS Component 1 for SWLI	16.16	0.88	0.63	29.07	0.64	30.16
	Component 2	WAPLS Component 2 for SWLI	8.18	0.97	0.73	25.32	0.74	26.87
2	Component 3	WAPLS Component 3 for SWLI	5.06	0.99	0.73	25.00	0.74	26.40
	Component 4	WAPLS Component 4 for SWLI	3.41	0.99	0.68	27.15	0.71	27.55
	Component 5	WAPLS Component 5 for SWLI	2.27	1.00	0.58	31.53	0.68	28.84
Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	Component 1	PLS Component 1 for SWLI	23.72	0.75	0.63	28.64	0.65	29.10
	Component 2	PLS Component 2 for SWLI	11.13	0.94	0.78	22.35	0.77	23.97
3	Component 3	PLS Component 3 for SWLI	8.61	0.97	0.77	22.98	0.78	23.78
	Component 4	PLS Component 4 for SWLI	6.16	0,98	0.76	23.46	0.77	23.99
	Component 5	PLS Component 5 for SWLI	4.92	0.99	0.76	23.37	0.77	24.15

Morar Multi-proxy Training Set

Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	WA_Inv	Weighted averaging model (inverse deshrinking) for SWLI	6.20	0.95	0.83	11.47	0.84	12.20
	WA_Cla	Weighted averaging model (classical deshrinking) for SWLI	6.37	0.95	0.84	11.24	0.84	11.81
1		Weighted averaging model (tolerance downweighted, inverse						
	WATOL_Inv	deshrinking) for SWLI	5.39	0.96	0.88	9.71	0.86	13.45
	WATOL_Cla	deshrinking) for SWLI	5.50	0.96	0.89	9.48	0.86	13.21
Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	Component 1	WAPLS Component 1 for SWLI	6.20	0.95	0.81	12.34	0.83	13.02
	Component 2	WAPLS Component 2 for SWLI	2.79	0.99	0.88	10.72	0.88	11.88
2	Component 3	WAPLS Component 3 for SWLI	1.21	1.00	0.87	10.51	0.88	11.65
	Component 4	WAPLS Component 4 for SWLI	0.57	1.00	0.88	10.36	0.88	11.63
	Component 5	WAPLS Component 5 for SWLI	0.28	1.00	0.88	10.32	0.88	11.62
Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	Component 1	PLS Component 1 for SWLI	12.50	0.79	0.68	15.64	0.68	16.64
	Component 2	PLS Component 2 for SWLI	4.09	0.98	0.81	12.23	0.78	14.14
3	Component 3	PLS Component 3 for SWLI	2.10	0.99	0.84	11.47	0.81	13.5 9
	Component 4	PLS Component 4 for SWLI	1.18	1.00	0.86	10.81	0.82	13.34
	Component 5	PLS Component 5 for SWLI	0.79	1.00	0.87	10.63	0.82	13.22

Figures, Tables & Plates – Chapter 4

Argyll I	Multi-proxy Ti	raining Set						
Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	WA_Inv	Weighted averaging model (inverse deshrinking) for SWLI	10.88	0.88	0.77	14.96	0.79	15.84
4	WA_Cla	Weighted averaging model (classical deshrinking) for SWLI	11.59	0.88	0.78	15.39	0.80	15.72
I I	WATOL_Inv	Weighted averaging model (tolerance downweighted, inverse deshrinking) for SWLI	8.42	0.93	0.74	16.06	0.81	19.37
	WATOL_Cla	Weighted averaging model (tolerance downweighted, classical deshrinking) for SWLI	8.74	0.93	0.74	16.03	0.81	19.17
Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	Component 1	WAPLS Component 1 for SWLI	10.88	0.88	0.77	14.97	0.78	16.09
2	Component 2	WAPLS Component 2 for SWLI	7.34	0.95	0.80	14.42	0.80	15.93
2	Component 3	WAPLS Component 3 for SWLI	5.10	0.97	0.78	15.52	0.80	16.76
	Component 4	WAPLS Component 4 for SWLI	3.40	0.99	0.76	16.50	0.79	17.34
	Component 5	WAPLS Component 5 for SWLI	1.97	1.00	0.75	17.12	0.79	17.53
Model	Code	Name	RMSE	R2	Jack R2	Jack RMSEP	Boot R2	Boot RMSEP
	Component 1	PLS Component 1 for SWLI	15.14	0.77	0.70	17.19	0.71	17.95
2	Component 2	PLS Component 2 for SWLI	11.69	0.86	0.74	15.95	0.75	16.85
J	Component 3	PLS Component 3 for SWLI	9.59	0.91	0.74	16.36	0.76	17.27
	Component 4	PLS Component 4 for SWLI	7.94	0.94	0.75	15.82	0.77	17.44
	Component 5	PLS Component 5 for SWLI	6.59	0.96	0.76	16.00	0.78	17.83

Figure 5.1 Summary of the results of the diatom RWL reconstruction showing the transfer function inferred values of RWL for core NN04. The diatom training set reconstructions are shown to the immediate right of the diatom diagram and the training sets containing only the samples in the multi-proxy training set are shown on the far right. The grey vertical line shows MHWS at the location of the nearest tidal prediction.

Figures, Tables & Plates - Chapter 5

Figure 5.2 Summary of the results of the pollen RWL reconstruction showing the transfer function inferred values of RWL for core NN04. The pollen training set reconstructions are shown to the immediate right of the pollen diagram and the training sets containing only the samples in the multi-proxy training set are shown to the far right. The grey vertical line shows MHWS at the location of the nearest tidal prediction.

Figure 5.3 Summary of the results of the multi-proxy RWL reconstruction showing the transfer function inferred values of RWL for core NN04. The multi-proxy training set reconstructions are shown to the immediate right of the microfossil diagram. The grey vertical line shows MHWS at the location of the nearest tidal prediction.

Figure 5.4 Scatter plots comparing the regional diatom reference water level reconstruction with the local reconstructions for core NN04.

Figure 5.5 Scatter plots comparing the regional pollen reference water level reconstruction with the local reconstructions for core NN04.

Figure 5.6 Scatter plots comparing the regional diatom and pollen reference water level reconstruction with the local reconstructions for core NN04.

Figures, Tables & Plates - Chapter 5

Figure 5.7 Summary of the results of the diatom RWL reconstructions showing the transfer function inferred values of RWL for monolith MMN01A&B. The diatom training sets reconstructions are shown to the immediate right of the diatom diagram and the diatom training sets containing only the samples in the multi-proxy training set are shown to the far right. The grey vertical line shows MHWS at the location of the nearest tidal prediction.

Figure 5.8 Summary of the results of the pollen RWL reconstruction showing the transfer function inferred values of RWL for monolith MMN01A&B. The pollen training set reconstructions are shown to the immediate right of the pollen diagram and the training sets containing only the samples in the multi-proxy training set are shown to the far right. The grey vertical line shows MHWS at the location of the nearest tidal prediction.

Figure 5.9 Summary of the results of the multi-proxy RWL reconstructions showing the transfer function inferred values of RWL for monolith MMN01A&B. The multi-proxy training sets are shown to the right of the microfossil diagram. The grey vertical line shows MHWS at the location of the nearest tidal prediction.

Figure 5.10 Scatter plots comparing the regional diatom reference water level reconstruction with the local reconstructions for monoliths MMN01A & B.

Figure 5.11 Scatter plots comparing the regional pollen reference water level reconstruction with the local reconstructions for monoliths MMN01 A & B.

Figure 5.14 Summary of the results of the pollen RWL reconstructions showing the transfer function inferred values of RWL for core BC006a. The pollen training set reconstructions are shown to the immediate right of the pollen diagram. The grey vertical line shows MHWS at the location of the nearest tidal prediction.

Figure 5.15 Scatter plots comparing the regional pollen reference water level reconstruction with the local reconstructions for core BC006a.

Core	Training Set	Microfossil	No. of microfossils in fossil dataset	Modern analogues (%)
NN04	Regional	Diatom	65	89.2
NN04	Kintail	Diatom	65	83.1
NN04	Morar	Diatom	65	58.5
NN04	Argyll	Diatom	65	72.3
NN04	Regional	Pollen	33	87.9
NN04	Kintail	Pollen	33	75.8
NN04	Morar	Pollen	33	78.8
NN04	Argyll	Pollen	33	81.8
NN04	Regional	Diatom and pollen	91	92.3
NN04	Kintail	Diatom and pollen	91	79.1
NN04	Morar	Diatom and pollen	91	72.5
NN04	Argyll	Diatom and pollen	91	81.3

Core	Training Set	Microfossil	No. of microfossils in fossil dataset	Modern analogues (%)
MMN01	Regional	Diatom	26	73.1
MMN01	Kintail	Diatom	26	53.8
MMN01	Morar	Diatom	26	57.7
MMN01	Argyll	Diatom	26	57.7
MMN01	Regional	Pollen	45	68.9
MMN01	Kintail	Pollen	45	55.6
MMN01	Morar	Pollen	45	62.2
MMN01	Argyll	Pollen	45	5 71.1
MMN01	Regional	Diatom and pollen	65	78.5
MMN01	Kintail	Diatom and pollen	65	60.0
MMN01	Morar	Diatom and pollen	65	64.6
MMN01	Argyll	Diatom and pollen	65	67.7

Core	Training Set	Microfossil	No. of microfossils in fossil dataset	Modern analogues (%)
BC006a	Regional	Pollen	2	1 76.2
BC006a	Kintail	Pollen	2	1 71.4
BC006a	Morar	Pollen	2	1 71.4
BC006a	Argyll	Pollen	2	1 71.4

 Table 5.1
 Lists the number of microfossils recorded in the fossil cores and the percentages of microfossils also found in the modern training set (% of modern analogues).

Core	Training Set	Microfossil	No. of microfossils in fossil dataset	Modern analogues (%)
NN04	Regional	Diatom	6	5 87.7
NN04	Kintail	Diatom	6	5 76.9
NN04	Morar	Diatom	6	5 56.9
NN04	Argyll	Diatom	6	5 67.7
NN04	Regional	Pollen	3	3 75.8
NN04	Kintail	Pollen	3	3 69.7
NN04	Morar	Pollen	3	3 66.7
NN04	Argyll	Pollen	3	3 78.8

Core	Training Set	Microfossil	No. of microfossils in fossil dataset	Modern analogues (%)		
MMN01	Regional	Diatom	2	6 73.1		
MMN01	Kintail	Diatom	2	6 46.2		
MMN01	Morar	Diatom	2	6 50.0		
MMN01	Argyll	Diatom	2	6 50.0		
MMN01	Regional	Pollen	4	2 73.8		
MMN01	Kintail	Pollen	4	2 54.8		
MMN01	Morar	Pollen	4	2 59.5		
MMN01	Argyll	Pollen	4	2 66.7		

Table 5.2 Lists the number of microfossils recorded in the fossil cores and the percentages of microfossils also found in the modern training sets (% of modern analogues) for the diatoms and pollen samples within the multi-proxy training sets.

APPENDIX 5.1 - Stratigraphy

Site: Nonach, Core NN04

Altitude m OD	Corrected depth, cm	Observed depth, cm	Description nig, straf, sic, elas, lim
3.97 3.96		0 – 1	In-situ sphagnum (substratum confusum)
3.96 – 3.52		1 - 45	3 0 2 0 0 Sh2 Th ² 2 Ag+ Dark brown herbaceous peat with occasional silt.
3.52 – 3.45		45 - 52	3 0 2 0 0 Ag1 As1 Th ² + Sh2 Brown organic silt and sand.
3.45 – 3.32		52 - 65	3 0 2 0 0 As3 Ag+ DI+ Gg+ Brown organic silt sand with occasional woody fragments and gravel.

Site: Mointeach Mhor, Core MMN01/AB

Altitude m	Corrected	Observed	Description
OD	depth, cm	depth, cm	nig, straf, sic, elas, lim
9.37 –		0-7	30200
9.30			Sh3 Th ² 1
			Very dark brown soft wet humified peat with
			rootlets and visible organic fragments.
9.30		7 - 33	20200
9.04			Sh3 Th ² 1 Ga+
			Dark brown humified peat with frequent
			rootlets and occasional sand.
9.04 –		33 – 45	30200
8.92			Sh3 Ga1 Ag+ Th ² +
			Organic sand with silt and occasional rootlets.
8.92 -		45 - 50	30200
8.87			Sh 2 Ag 1 Th ² 1 As+
			Organic silt clay with organic fragments and
			rootlets.
8.87 –		50 - 65	30200
8.72			Sh 3 Th ² 1
			Very dark brown humified peat with large
			organic fragments and rootlets.

Site:	Barr na	Criche.	Core	BC006a
• •••••		,		

Altitude m OD	Corrected depth. cm	Observed depth, cm	Description nig. straf. sic. elas. lim
3.34 – 3.11		37 - 60	3 0 2 0 – Sh 3, Th ³ 1 Humified herbaceous peat.
3.11 – 2.92		60 - 79	2 0 2 0 0 Sh 1, Ag 2, Ga 1, Th ³ + Slightly laminated organic silt and sand with herbaceous rootlets.
2.92 – 2.84		79 - 87	2 0 2 0 0 Ga 4, Ag +, Gg +, Sh +, Th ³ + Slightly organic sand with rare rootlets, silty towards top, gravel at base. (Core ended on gravel).

Figure 6.1 Summary of the results of the diatom-inferred reference water level reconstruction for fossil monolith sample MMN01A & B. The depths of the sea-level index sample points are shown as black squares and the associated radiocarbon ages are shown adjacent to the lithology. The RWL reconstruction for the regional diatom training set is shown to the immediate right of the diatom diagram and the RWL reconstruction for diatom training set samples from the multi-proxy training set are shown on the far right. The dotted vertical line indicates the approximate position of the predicted MHWS at Mallaig (2.38 m OD)

Figure 6.2 Summary of the results of the pollen-based reference water level reconstruction for fossil monolith sample MMN01A & B. The depths of the sea-level index sample points are shown as black squares and the associated radiocarbon ages are shown adjacent to the lithology. The RWL reconstruction for the regional pollen training set is shown to the immediate right of the pollen diagram and the RWL reconstruction for pollen training set samples from the multi-proxy training set are shown on the far right. The dotted vertical line indicates the approximate position of the predicted MHWS at Mallaig (2.38 m OD).

Figure 6.3 Summary of the results of the multi-proxy-based reference water level reconstruction for fossil monolith sample MMN01A & B. The depths of the sea-level index sample points are shown as black squares and the associated radiocarbon ages are shown adjacent to the lithology. The dotted vertical line indicates the approximate position of the predicted MHWS at Mallaig (2.38 m OD).

			RMSE	R2	_		F	RMSEP (m OD))
Training Set Name	No of samples	Name			Boot R2	RMSEP (Boot)	Nonach	Mointeach Mhor North	Barr-na- Criche
Regional diatoms	116	WAPLS Component 3 for SWLI	13.97	0.93	0.83	24.83	0.58	0.52	0.36
Kintail diatoms	43	WAPLS Component 3 for SWLI	11.23	0.96	0.82	27.79	0.64	0.58	0.41
Morar diatoms	22	WAPLS Component 3 for SWLI	2.76	0.99	0.91	12.46	0.29	0.26	0.18
Argyll diatoms	51	WAPLS Component 3 for SWLI	9.97	0.97	0.87	24.06	0.56	0.51	0.35
Regional pollen	82	PLS Component 2 for SWLI	39.44	0.56	0.36	50.89	1.18	1.07	0.75
Kintail pollen	25	PLS Component 3 for SWLI	34.63	0.66	0.31	57.61	1.34	1.21	0.85
Morar pollen	15	PLS Component 3 for SWLI	6.49	0.94	0.65	18.44	0.43	0.39	0.27
Argyll pollen	42	WAPLS Component 3 for SWLI	18.74	0.92	0.67	43.29	1.00	0.91	0.64
Regional multi- proxy	75	WAPLS Component 3 for SWLI	6.10	0.97	0.81	17.90	0.42	0.38	0.26
Cintail multi-proxy	23	WAPLS Component 3 for SWLI	5.06	0.99	0.74	26.40	0.61	0.55	0.39
Vorar multi-proxy	15	WAPLS Component 3 for SWLI	1.21	1.00	0.88	11.65	0.27	0.24	0.17
Argyll multi-proxy	37	WAPLS Component 2 for SWLI	7.34	0.95	0.80	15.93	0.37	0.33	0.23

 Table 6.1
 For each transfer function model that was considered the best model, the RMSEP in SWLI units has been converted into m OD for each of the fossil sample sites taking into account the local tidal parameters.

							1 ,	RMSEP (m O	D)
Multi-proxy Training Set Name	No of samples	Name	RMSE	R2	Boot R2	Boot RMSEP	Nonach	Mointeach Mhor North	Barr-ha- Criche
Regional diatom	75	WAPLS Component 3 for SWLI	8.11	0.95	0.78	20.35	0.47	0.43	0.30
Kintail diatom	23	WAPLS Component 2 for SWLI	7.29	0.98	0.71	27.91	0.65	0.59	0.41
Morar diatom	15	WAPLS Component 3 for SWLI	1.56	1.00	0.87	11.22	0.26	0.24	0.16
Argyll diatom	37	WAPLS Component 3 for SWLI	6.61	0.96	0.76	18.92	0.44	0.40	0.28
Regional pollen	75	WAPLS Component 2 for SWLI	18.39	0.76	0.61	24.73	0.57	0.52	0.36
Kintail pollen	23	WAPLS Component 3 for SWLI	13.98	0.91	0.55	35.71	0.83	0.75	0.53
Morar pollen	15	WAPLS Component 3 for SWLI	3.53	0.98	0.76	16.99	0.39	0.36	0.25
Argyll pollen	37	WAPLS Component 3 for SWLI	6.55	0.96	0.74	17.93	0.42	0.38	0.26

Table 6.2For each transfer function model that was considered the best modelfor the training sets containing only samples from the multi-proxy training set, theRMSEP in SWLI units has been converted into m OD for each of the fossil samplesitestakingintoaccountthelocaltidalparameters.

Site	Lab code	14C age E erroi	BP and	Elevation (m oD)	Indicative meaning (m)	Median, maximum, minimum calibrated age (yr BP)		Relative sea level and error		Sea-level tendency	
Mointeach Mhor North MMN01	AA54113	5771	47	9.27	2.73	6575	6716	6452	6.54	0.2	Negative
Mointeach Mhor North MMN01	AA54112	6499	47	9.04	2.58	7394	7551	7309	6.46	0.2	Negative
Mointeach Mhor North MMN01	AA54111	6786	49	8.91	2.18	7635	7710	7515	6.73	0.2	Positive
Mointeach Mhor North MMN01	AA54110	6836	59	8.87	2.28	7671	7786	7580	6.59	0.2	Positive

Table 6.3Sea-level index points from Arisaig area (Shennan *et al.*, 2005).

		Regi Trainii	ional ng Set	Kintail Tra	aining Set	Morar Tr	aining set	Argyll Tra	aining Set
u u	Sample depth (cm)	RWL (m)	Error (m)	RWL (m)	Error (m)	RWL (m)	Error (m)	RWL (m)	Error (m)
itor	32	2.45	0.32	1.95	0.53	2.51	0.19	2.32	0.33
Dia	34	2.45	0.34	1.78	0.56	2.32	0.17	2.51	0.37
	46	2.85	0.35	2.59	0.66	2.57	0.23	2.30	0.40
	50	2.52	0.32	2.42	0.60	2.58	0.25	2.20	0.35

		Regi Trainii	onal ng Set	Kintail Tra	aining Set	Morar Tra	aining set	Argyll Tra	aining Set
	Sample depth (cm)	RWL (m)	Error (m)	RWL (m)	Error (m)	RWL (m)	Error (m)	RWL (m)	Error (m)
ú	10	4.92	0.94	4.02	1.56	1.89	0.28	4.88	0,80
oile	32	3.55	0.74	2.10	0.74	1.89	0.24	4.55	0.82
P,	34	3.60	0.74	2.06	0.74	1.80	0.24	4.17	0.85
	46	4.27	0.77	2.49	0.87	2.44	0.44	3.77	0.59
• • •	50	3.96	0.72	2.92	0.87	2.75	0.38	2.57	0.82

		Regi Trainir	onal ng Set	Kintail Tra	aining Set	Morar Tra	aining set	Argyll Tra	aining Set
xy.	Sample depth (cm)	RWL (m)	Error (m)	RWL (m)	Error (m)	RWL (m)	Error (m)	RWL (m)	Error (m)
bro	32	1.85	0.20	1.95	0.33	1.93	0.12	2.16	0.17
lti-	34	1.70	0.20	1.86	0.33	1.87	0.13	2.29	0.17
Mu	46	2.07	0.20	2.27	0.34	2.08	0.13	2.00	0.17
	50	2.38	0.23	2.59	0.37	2.04	0.13	2.22	0.18

Xe	Sample	RWL	Error
nde	depth (cm)	(m)	(m)
el II nts	10	2.73	0.2
ev Poi	33	2.58	0.2
a-l	46	2.18	0.2
Se	50	2.28	0.2

Table 6.4 Shows the results of the diatom, pollen and multi-proxy RWL reconstructions and associated error terms and the RWL and error terms for the sea-level index (SLI) points from Mointeach Mhor North (after Shennan *et al.*, 2005).

			Reg Traini	ional ng Set	Kintail Tr	aining Set	Morar Tr	aining set	Argyll Tra	aining Set
5	Diatom	Sample depth (cm)	RWL (m)	Error (m)	RWL (m)	Error (m)	RWL (m)	Error (m)	RWL (m)	Error (m)
tor		32	2.18	0.23	2.10	0.38	1.90	0.13	2.01	0.19
Ë		34	2.14	0.24	2.02	0.38	1.83	0.13	2.13	0.20
		46	2.07	0.23	2.29	0.39	1.93	0.13	1.65	0.19
		50	2.15	0.23	2.23	0.38	1.92	0.14	1.88	0.20

		Reg Traini	ional ng Set	Kintail Tr	aining Set	Morar Tr	aining se	t Argyll Tra	aining Set
	Sample depth (cm)	RWL (m)	Error (m)	RWL (m)	Error (m)	RWL (m)	Error (m)	RWL (m)	Error (m)
U	10	2.21	0.29	1.68	0.45	2.18	0.21	2.74	0.28
Polle	32	1.67	0.27	2.26	0.54	1.73	0.26	1.80	0.23
	34	1.42	0.30	1.91	0.61	1.35	0.30	1.62	0.24
	46	2.41	0.37	1.83	0.51	2.20	0.23	2.93	0.23
	50	4.21	0.47	6.54	1.46	2.59	0.27	3.94	0.54

dex	Sample depth (cm)	RWL (m)	Error (m)
vel In oints	10	2.73	0.2
P.G	33	2.58	0.2
Sea 	46	2.18	0.2
	50	2.28	0.2

Table 6.5 Shows the results of the diatom and pollen RWL reconstructions for the samples within the multi-proxy training set and associated error terms and the RWL and error terms for the sea-level index (SLI) points from Mointeach Mhor North (after Shennan *et al.*, 2005).

