
Durham E-Theses

A distributed solution to software reuse

McGuigan, James F.

How to cite:

McGuigan, James F. (2008) A distributed solution to software reuse, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/2901/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2901/
 http://etheses.dur.ac.uk/2901/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

A Distributed Solution to Software Reuse

James F. McGuigan

M.Sc. Thesis

The copyright of this thesis rests with the
author or the university to which it was
submitted. No quotation from it, or
information derived from it may be
published without the prior written
consent of the author or university, and
any information derived from it should be
acknowledged.

Department of Computer Science
University of Durham

0 7 OCT 2008

September 2008

Abstract

Reuse can be applied to all stages of the software lifecycle to enhance quality and to
shorten time of completion for a project. During the phases of design and
implementation are some examples of where reuse can be applied, but one frequent
obstruction to development is the building of and the identifying of desirable
components. This can be costly in the short term but an organisation can gain the
profits of applying this scheme if they are seeking long-term goals.

Web services are a recent development in distributed computing. This thesis
combines the two research areas to produce a distributed solution to software reuse
that displays the advantages of distributed computing within a reuse system. This
resulted in a web application with access to web services that allowed two different
formats of component to be inserted into a reuse repository. These components were
searchable by keywords and the results are adjustable by the popularity of a
component's extraction from the system and by user ratings of it; this improved the
accuracy ofthe search. This work displays the accuracy, usability, and speed of this
system when tested with five undergraduate and five postgraduate students.

1

Acknowledgements

This MSc thesis is dedicated to Anne McGuigan. My life is her success.

11

Copyright

The copyright of this thesis rests with the author. No quotation from it should be
published without his prior consent and information derived from it should be
acknowledged.

Declaration

No part of the material offered has previously been submitted by the author for a
degree in the University of Durham or in any other university. All of the work
presented here is the sole work of the author and no one else.

l1l

Contents

Abstract .. i
Acknowledgements ... ii
Copyright ... iii
Declaration ... iii
Contents ... iv
Chapter 1 Introduction ... 1
1.1 Background .. 1
1.2 The Criteria for Success ... 3
1.3 Outline of Thesis .. 4
Chapter 2 Literature Survey ... 6
2.1 Component Based Software Engineering .. 6

2.1.1 Software Crisis ... 8
2.2 Software Reuse ... 1 0

2.2.1 Previous Applications and Advantages .. 11
2.2.2 Incorporating a Software Reuse Program inside an Organisation 13

2.3 Reverse Engineering .. 17
2.3.1 Cognitive Models ... 20

2.3.1.1 Brooks's Model ofProgram Comprehension 21
2.3.1.2 Soloway's Model of Program Comprehension 23
2.3.1.3 Evaluation of Approaches .. 24

2.3 .2 Representations .. 25
2.3.2.1 Internal Representation .. 25
2.3.2.2 Externalising the Internal Representation .. 26
2.3.2.3 External Representation ... 27

2.4 Electronic Data Interchange ... 28
2.4.1 ebXML ... 29
2.4.2 How it works .. 30

2.5 Web Services .. 31
2.5.1 Current Situation .. 33
2.5.2 Challenges with Existing Protocols .. .34
2.5.3 Strategies oflntegration for B2B Commerce of Reusable Assets 34

2.5.3.1 Portal-Orientated Integration ... 35
2.5.3.2 Data-Orientated Integration ... 35
2.5.3.3 Application-Orientated Integration36
2.5.3.4 Business Process-Orientated Integration .. 36

2.5.4 Service-Orientated Architecture (SOA) ... 37
2.5.5 Concepts of Web Services ... 40
2.5.6 Web Service Programming Stack .. 42
2.5. 7 SOAP ... 44
2.5.8 WSDL .. 48
2.5.9 UDDI .. 52
2.5.1 0 WSFL , .. 56
2.5.11 Advantages of Web Services ... 56
2.5.12 .NET Framework .. 58
2.5.13 XML ... 59
2.5.14 XSD .. 60

IV

2.5.15 XSLT .. 62
2.5.15.1 css ... 63

2.6 Design Patterns .. 63
2. 7 Summary .. 65
Chapter 3 Design .. 68
3.1 Introduction .. 68
3.2 Reverse Engineering .. 70

3 .2.1 Software Comprehension ... 72
3 .2.1.1 Internal Representation .. 72

3.2.2 Developing the 'Insert Component' Use-case ... 75
3.3 Software Reuse Techniques and Processes .. 78

3.3.1 Techniques ... 79
3.3.1.1 Internal Memory Reuse Techniques .. 79
3.3.1.2 External Memory Reuse Techniques ... 80

3.3.2 Processes .. 81
3.3.2.1 Identify Reusable Component.. .. 81

3.3.3 Extract Component. .. 87
3.4 Distributed Technologies ... 89

3.4.1 XML Encodings ... 92
3.4.1.1 Identify and Select Components .. 92
3.4.1.2 Insert Component ... 93
3.4.1.3 Extract Component. .. 93

3.4.2 Web Application Design .. 94
3.5 Summary .. 95
Chapter 4 Implementation .. 96
4.1 Introduction .. 96
4.2 Functions and Development ... 97
4.3 ReSULT Architecture .. 98

4.3.1 Servers .. 98
4.3.2 ASP.NET .. lOl
4.3 .3 Microsoft Visual Studio ... ! 02

4.4 Data Structures ... 1 03
4.5 Fulfilling Use-cases .. I 05

4.5.1 Inserting Code .. ! 05
4.5.1.1 Code Analysis Framework ... 108
4.5.1.2 Keyword Analysis .. ll1

4.5.2 Identify and Select Component.. .. 114
4.5.2.1 Structure ofSQL Query Searches .. ll5
4.5.2.2 Keyword Ranking Algorithm ... ll5
4.5.2.3 Rating Algorithm ... 117

4.5.3 Extract Component. .. 119
4.6 Web services .. 121

4.6.1 Architecture .. l21
4.6.2 Data Transfer inside the ReSULT Architecture 122
4.6.3 Displaying Transferred Data in ReSULT .. 126

4.7 Summary .. 131
Chapter 5 Case Study ... 132
5.1 Introduction .. 13 2
5.2 Modelling Software Quality ... 133
5.3 Software Metrics .. 136

v

5.4 Case Study .. 137
5.4.1 Scenario Based Case Study .. 137
5.4.2 Preparation for the Case Study ... 138
5.4.3 Problem Statement for the Case Study ... 141

5.5 Quality Factor Scoring ... 142
5.6 Summary .. 142
Chapter 6 Results and Evaluation .. 144
6.1 Introduction .. 144
6.2 Transition Issues when Introducing ReSULT into an Organisation 145

6.2.1 Using the Toolset to Support Reuse ... 145
6.2.1.1 Developing Components .. 146
6.2.1.2 Reusing Components ... 147
6.2.1.3 Maintaining Components ... 152

6.2.2 The Problems Faced by the Company in Implementing the ReSULT
system into its Existing Process ... 154

6.3 An Evaluation of the Operation ofthe Toolset .. 154
6.3.1 Usability ... 154
6.3.2 Performance ... 158

6.3.2.1 Web Application Efficiency ... 158
6.3.2.2 Web Service Performance .. 161
6.3.2.3 Database Efficiency ... 164

6.3 .3 Scalability ... 167
6.3.3.1 System Architecture ... 167
6.3.3.2 Algorithms ... 169

6.3.4 Error Tolerance .. 173
6.3 .4.1 Functional Errors .. 173
6.3.4.2 Inserting Code Errors ... 174
6.3.4.3 Search Errors .. 175
6.3 .4.4 Integrating Components into a Project.. ... 179

6.4 Overview ofWork .. 180
6.5 Summary ; ... 180
Chapter 7 Conclusions ... 182
7.1 The Main Achievements of the Research .. 182
7.2 General Conclusions of the Research .. 183
7.3 The Limitations of the Approach ... 191
7.4 Suggestions for Future Research .. 191
References .. 193
Appendix 1 UML Modelling ofReSULT System ... 199
Appendix 2 Web Service Descriptions (WSDL) ... 202
Appendix 3 Architecture .. 208
Appendix 4 XSL T Descriptions .. 209
Appendix 5 ReSULT Screenshots ... 219
Appendix 6 XSD Descriptions .. 227
Appendix 7 OCL Translations ... 232
Appendix 8 ReSULT Interface Definitions ... 233
Appendix 9 Results Chapter .. 235
Glossary ... 245

Vl

List of Tables

Table 3.4-1: Web page interaction with web services ... 91
Table 5.4-1: Example CRC card .. 140
Table 6.3-1: The results of the average time taken for the browser to response after a
request. ... 159
Table 6.3-2: The size of each database table in kilobytes at binary intervals 164
Table 6.4-1: Summary of McCall's Software Evaluation Criteria 180
Table 1.1-1: The translations between natural language used in the ReSULT system
andOCL ... 232
Table 7.4-2: The software metrics used to evaluate the ReSULT system 243
Table 7.4-3: Abbreviation table for Quality Factor Properties 244
Table 7.4-4: Quality Factor Equations for McCall's Software Quality Model 244

Vll

List of Figures

Figure 1.3-1: Research coverage within this work .. .4
Figure 2.4-1: A sample of an XML document.. ... 28
Figure 2.5-1: Service Orientated Architecture ... 38
Figure 2.5-2: Web services programming stack .. 43
Figure 2.5-3: The transformation ofXML to HTML. ... 62
Figure 3.1-1: The relationship between different research areas that are considered
during this work ... 68
Figure 3.2-1: The 'Insert Component' use-case ... 71
Figure 3.2-2: An example of Java code ... 73
Figure 3.2-3: An example of Object Constraint Language (OCL) 74
Figure 3.2-4: A list of similar structures identified between OCL and Java scripts 74
Figure 3.2-5: A diagram displaying the trace between the use case and the analysis
classes ... 76
Figure 3.2-6: Collaboration between analysis classes .. 76
Figure 3.2-7: A design model showing the interactions between design classes in the
'Insert Code' use-case .. 77
Figure 3.3-1: Realisation ofuse-cases with ReSULT system 81
Figure 3.3-2: The realisation of analysis classes from the use-case 85
Figure 3.3-3: The collaboration between analysis classes ... 85
Figure 3.3-4: A Design Class Diagram displaying the classes involved in the use-
cases 'Identify and Select Component' and 'Extract Component' 86
Figure 3.3-5: Realisation ofuse-cases with ReSULT system 87
Figure 3.3-6: The realisation ofthe analysis model from the use-case 88
Figure 3.4-1: Web application structure ... 89
Figure 3.4-2: The XML encodings for sending a response for a search request from
the identify components web service ... 92
Figure 3.4-3: The XML encoding when sending a request for inserting a component
from the web application to insert component web service ... 93
Figure 3.4-4: The XML encoding when requesting to extract a component from the
extract component web service .. 93
Figure 3.4-5: Template design for web application pages ... 94
Figure 4.3-1: ReSULT architecture ... 98
Figure 4.3-2: Details of software and hardware development environment. 100
Figure 4.4-1: Table layout used in ReSULT .. 103
Figure 4.4-2: Tables involved in the development ofthe 'SourceCode' Object 104
Figure 4.4-3: 'Sourcecode' class (mutator and accessor methods are not shown) 104
Figure 4.5-1: The traces between the design model in Figure 3.2-7, and ofthe
implementation classes ... 1 06
Figure 4.5-2: Implementation classes in the 'Inserting Source Code' use-case 107
Figure 4.5-3: A C# method that converts a binary array into a string 107
Figure 4.5-4: Inserting code framework. .. I 09
Figure 4.5-5: Segment of'SCH!nterface' .. 110
Figure 4.5-6: Methods in the 'Commentlnterface' 11 0
Figure 4.5-7: The process of identifying and inserting comments from Java and OCL
files ... 112
Figure 4.5-8: A collection of expelled words or characters that will not appear as
keywords .. 113

Vlll

Figure 4.5-9: Demonstrating ranking of the keyword algorithm 116
Figure 4.5-10: Method of calculating average weight for keyword distances in a class .
.. 116
Figure 4.5-11: Array list fields found in 'Ranking' class .. 117
Figure 4.5-12: Calculating rating formula in ca/cu/ateScoreO 118
Figure 4.5-13: View of extracted component on the ReSULT system 120
Figure 4.6-1: ReSULT web service architecture .. 121
Figure 4.6-2: Example of a Dataset in XML view ... 123
Figure 4.6-3: A screenshot of a small section of'dbstructure.xsd' in a graphical
format. .. 125
Figure 4.6-4: ASP.NET code displaying the initialising of dataset session variables .
.. 125
Figure 4.6-5: Sample of 'viewc/ass.aspx ' .. 127
Figure 4.6-6: Sample of 'viewsearchresu/ts.aspx ' ... 127
Figure 4.6-7: Sample of 'viewsearchresu/ts.aspx ' ... 128
Figure 4.6-8: Sample of 'viewc/ass.aspx' 128
Figure 4.6-9: A screenshot of the 'viewc/ass.aspx' .. 130
Figure 4.6-10: A fragment of the 'normalsty/e.css' file .. 130
Figure 5.2-1: McCall's Triangle of Quality Factors .. 135
Figure 5.4-1: Example problem statement. .. 139
Figure 6.1-1 : An abstract representation of the layout contained within this work. .. 144
Figure 6.2-1: The lifecycle of reusable components .. 145
Figure 6.2-2: A screenshot of' insertcode.aspx' 148
Figure 6.2-3: A screenshot of'searchform.aspx' 149
Figure 6.2-4: A screenshot of 'viewc/ass.aspx' (note: picture has had to be merged
because of the page being to large for the screen) ... 150
Figure 6.2-5: A screenshot of 'viewresu/ts.aspx' (note: picture has had to be merged
because of the page being to large for the screen) ... 151
Figure 6.2-6: A screenshot of' extractcomponent. aspx' 152
Figure 6.3-1: The key processes within the ReSULT system 156
Figure 6.3-2: The relationship between the response time and number connections to
liS ... 160
Figure 6.3-3: The mean times taken for the three web services to give a response to a
request made from the ReSULT web application .. 162
Figure 6.3-4: The relationship between the size of the component and the amount of
data stored within the database .. 165
Figure 6.3-5: The relationship between 'Total Size' and 'Actual Size' from the Table
6.2 ... 166
Figure 6.3-6: The relationship between the database size and the average time for the
ReSULT to produce search results when using one keyword as search criteria
keyword .. 170
Figure 6.3-7: The efficiency between the algorithms used to analyse code within the
ReSULT system ... 172
Figure 6.3-8: The number of errors produced during the data capture mechanism with
the 'Insert code' web service ... 174
Figure 6.3-9: An example of how the searching mechanism works with ReSULT .. 177
Figure 7.4-1: Collaboration between analysis classes ... 199
Figure 7.4-2: Identify traceability between analysis and design models 199
Figure 7.4-3: The realisation ofthe 'Identifying Component' use-case from analysis
classes to design classes ... 200

lX

Figure 7.4-4: A sequence diagram showing the relationship between the different
design classes in the 'Identifying Components' use-case .. 201
Figure 7.4-5: WSDL Description for the web service 'IdentifYing Reusable
Component' .. 203
Figure 7.4-6: WSDL description for the web service 'JnsertingCode.asmx' 204
Figure 7.4-7: WSDL for the web service 'extractcomponent. asmx' 207
Figure 7.4-8: An Example of Extended XTYPE Architecture 208
Figure 7.4-1: XSL T description for 'viewcomponents.xslt' 209
Figure 7.4-2: XSLT description for 'viewc/ass.xslt' .. 213
Figure 1.1-3: XSLT description for 'viewdesignpattern.xslt' 215
Figure 1.1-4: XSL T description for 'viewsearchresu/ts.xslt' 217
Figure 1.1-5: XSLT description for 'viewFields.xslt' .. 218
Figure 1.1-6: 'lndex.aspx' .. 219
Figure 1.1-7: 'searclform.aspx' .. 219
Figure 1.1-8: viewresults.aspx (note: picture has had to be merged because ofthe
page being to large for the screen) ... 220
Figure 1.1-9: 'viewjields.aspx' (only showing relevant fields to search criteria) 221
Figure 1.1-10: 'viewjields.aspx' (showing all fields in class) 221
Figure 1.1-11: 'viewcomponents.aspx' (only showing relevant fields to search criteria)
... 222
Figure 1.1-12: 'viewcomponents.aspx' (showing all fields in class) 222
Figure 1.1-13: 'viewc/ass.aspx' (note: picture has had to be merged because ofthe
page being to large for the screen) ... 223
Figure 1.1-14: 'viewdesignpattern.aspx' (note: picture has had to be merged because
of the page being to large for the screen) ... 224
Figure 1.1-15: 'extractcomponent.aspx' .. 225
Figure 1.1-16: 'extractcomponent.aspx' (rating entered for component) 225
Figure 1.1-17: 'insertcode.aspx' .. 226
Figure 1.1-18: 'CodeHandlerlnterface.cs' .. 233
Figure 1.1-19: 'Commentslnterface.cs' ... 233
Figure 1.1-20: 'CodeHand/erlnterface.cs' .. 234

X

Chapter 1 Introduction

1.1 Background

The software crisis has been with us for quite some time [Paulk95], and is not

diminishing. As hardware prices dramatically decrease, these days more people can

own their own hardware systems. So the demand for software by which hardware

systems operate is exploding while programmers' productivity is limited. Further

evidence of this difference is the fact that many software projects finish over budget.

This difference between demand and supply for software resulted in an enormous gap

between hardware and software development during the past few decades.

Another aspect of the software crisis is the lack of quality. Although quality can be a

subjective characteristic, overall system quality usually can be accessed in terms of

providing the functionality expected by the customer, meeting customer performance

requirements, and freedom from defects.

In addition to them, the quality factors of a software system also contains working as

advertised, having acceptable use oftime and space resources (efficiency), being

composable with other components (composiability), being understandable by clients

and maintainers, and being usable in a possibly different context (portability or

rehostability) [Bator92].

1

In the former approach, many software engineers have focussed on improving the

software development process. This approach usually includes the use of computer

aided software engineering (CASE) tools. The hope is that improvements in how an

organisation goes about managing software development will lead to better

productivity and to higher quality systems [Paulk95].

In recent years, researchers have aimed at providing a means for organisations to

integrate their processes together between multiple sites. Distributed technologies

focus upon providing a means for interoperability between heterogeneous systems,

and allows for the adoption of new software development processes such as reuse to

be instated within a global institution. Web service technologies are a field within

distributed computing that aims to accelerate application integration inside and

outside enterprises by providing a language-neutral, environment-neutral

programming model [GottsOO].

The following chapters will examine software reuse, reverse engineering, component

based engineering, electronic data interchange (EDI), design patterns and distributed

computing. From this analysis, a CASE tool is proposed and developed that aims to

integrate software reuse across a distributed organisation.

2

1.2 The Criteria for Success

The main objective of this research is to propose a system that enables an organisation

to introduce a reuse approach throughout the various stages of the software lifecycle.

The criteria for the success of this system are the following:

• Suggest guidelines for an approach to code reuse.

• Identifying criteria that are used to select a component for reuse within a

repository.

• Provide a distributed tool that enables many employees within an organisation

to insert and search for reusable components.

• Within the distributed reuse system, design a search mechanism that will

provide accurate search results that reflects upon the many fa~ades a

component can be viewed from.

• Validating the usefulness and usability of the distributed reuse system.

The above criteria will be judged in Chapter Chapter 7, Conclusion.

3

1.3 Outline of Thesis

The thesis is organised as follows. Chapter 2 introduces the general principles

relating to software reuse and distributed computing. Within this chapter,

consideration of areas that do not just involve software based, but other organisational

based issues concerning reuse is undertaken. Chapter 3 describes the architecture and

concepts behind the proposed system. Chapter 4 details how the system described in

Chapter 3 is implemented. In chapter 5, the approach taken into how the system is

measured for success is described. The following chapter evaluates the results

obtained from chapter five using the criteria from chapter 2. Finally, chapter 7

discusses possible future work and the conclusions drawn from the work so far.

I Computer Science I
I

I Software Engineering I I Distributed Computing I

I I
Software Design Web Services

Reuse Patterns

Reverse Electronic Data
Engineering Interchange

Component Based
Software Enginerring

Figure 1.3-1: Research coverage within this work.

Figure 1.3-1 describes the research areas involved within this thesis, and displays how

they fit together. The work presented in this thesis has links with other research

4

topics in software engineering such as "software cost estimation", "software safety"

or "distributed transactions".

5

Chapter 2 Literature Survey

2.1 Component Based Software Engineering

Mcilroy [Mcll68] foresaw software development becoming the process of

constructing software from standard interchangeable building blocks. Component­

based Software Engineering (CBSE) is a methodology that supports the compositional

approach the compositional approach to building software applications involving

'plug-and-play' software components (custom-built or Commercial Off-The-Shelf) in

a framework. Recent developments such as the shift from centralised mainframe­

based to distributed applications and the need to reuse existing resources in the

business and organisational contexts [Brown98] are accelerating the use of CBSE for

application development. Morris et al [Morri03] defmes how reuse in CBSE differs

from conventional reuse. Components are:

• Required to interoperate with other components as well as the frameworks.

• Required to hide their implementation details and thus their interfaces are

separated from their implementations.

• Usually designed on a pre-defined architecture to permit interoperability.

Component development and integration are the two key processes in CBSE. The

component-based "enterprise software process modef' [Aoyam95] for application

development consists of the following sequential stages:

6

• Analysis and Component Acquisition

• Component-Orientated Design

• Component Composition

• Integration Testing and System Testing

Developers during component integration often never see the source code of the

components being reused; therefore, a 'black box' approach to development is taken.

With black box CBSE, a number of factors must be taken into account. Weyuker

[Weyuk98] lists these factors as:

• Mismatch which can arise between component from several sources

• Incomplete or incorrect behavioural specifications for the components

• Components are highly volatile as they are often upgraded- leading to cases

where upgrades may not have the required capability or bug fues

All these factors contribute to making integration an error prone process producing

systems that are difficult to test and debug [Morri03].

7

2.1.1 Software Crisis

The 'software crisis' [Paulk95] of the 60,70,80, and 90's often produced software

systems; that were delayed in their delivery to the client, incurred escalated costs, had

reduced functionality to which was previously planned for, and contained a high

number of faults. It is seen as a long-term inability of organisations to create software

in a predictable, efficient, and timely manner [Brook95].

80% of all embedded systems are delivered late, and that much of the delay arises in

the software infrastructure of the system rather than the applications [Web03]. While

functionality is common, the requirements differ greatly. Despite many attempts to

create a "Silver Bullet" that solves the software crisis, no one simple solution has

been found, and will likely to be found [Brook95]. Software development is a

complex web of technical, business, personnel, and sociological factors that are

difficult to balance [Dykma99]. Complex technical problems have to be addressed

and resolved by the discovery of tools that address processes. Formal methods are

applied towards system development to ensure a reliable system. More visual

approaches such as UML are used to defme a visual modelling language to attempt to

capture component requirements and design component classes and interfaces more

accurately. Use cases generated can be used to derive test cases [Morri03]. Another

approach involves testing the components for each new environment so that

developers and users can predict behaviour and performance. This is not a very

feasible approach as it may incur significant cost [Weyuk98].

8

Once a correct approach to component development and reuse has been developed,

CBSE systems have a very high reliability rate. Based on limited analysis of data

from the Department of Defence, 99% of all executing instructions come from COTS

components [Boehm99].

The tools discovered must be compatible with third-party systems or legacy systems.

These tools are seen as the 'Golden Gun' of software development, and has the ability

for people, software tools, and processes to be carefully combined together and

managed to create quality software [Tracz95].

Brooks [Brook95] predicts ''that no single tool or technology would provide an order­

of-magnitude gain in software productivity, reliability or simplicity in the next 10

years". Tracz's [Tracz95] description of software reuse supports this Brooks's

[Brook95] statement and also adds that ''these tools can be expensive; a proper

investment in tools has a positive return on investment and provides increased

productivity and quality" [Tracz95]. He also believes that these tools are essential in

creating high-quality software.

CBSE cannot be used effectively until it can be employed within the context of well­

understood methods for designing, assembling and maintaining component-based

systems [Weyuk98]. Frey and Rosvall [Web03] believes that this has led to a ''very

low level of standardisation and reuse in resource-constrained embedded systems"

[Web03]. Embedded applications have become increasingly complex over the last

decades. The increases in functionality and complexity are related to infrastructure

rather than the actual applications [Web03]. Infrastructure functionality is often

9

tightly coupled to the application due to pressed time schedules that do not permit a

proper design where application and infrastructure are clearly separated. This greatly

hinders software reuse.

2.2 Software Reuse

The fundamental unit of software reuse is a component [Bator92]. The identification

of similar requirements and artefacts at an early stage can enable the reuse of

components at early stages of the development process. However, Karlsson [Karls95]

explains that the attitude in industry is for insufficient time to be spent in the earlier

phases of the development process such as analysis and design, in which the

possibility for reusing existing components and defining new reusable components is

greatest. This strengthens the point that software reuse "is just not limited to source

code fragments but may also include design documents, specifications ... " [CzarnOO,

Krueg92], and is further supported by Select Business Solutions [Selec03a] which

states that "reuse reduces the amount of work to be undertaken by a project; the

earlier an asset can be reused, the larger the scale of saving to the project".

Software reuse is fundamentally ...

" ... a means to improve the practice of software engineering by using existing

software artefacts during the construction of new software systems" [Krueg92].

10

Dykman [Dykma99] expands Krueger's [Krueg92] definition of software reuse to

reflect upon the possibility of applying components within it by explaining reuse as ...

" ... the use and development of software artefacts that are used over and over again in

a number of difforent but related software projects".

Prieto-Diaz and Freeman [Priet87] identifies that the identification of reusing existing

software artefacts is through "a matching process between new and old situations and

when matching succeeds, duplications of the same actions", and is supported by

Select Business Solutions [Selec03a] statement that "reuse requires a memory- a

memory of the intellectual property invested in each of the reusable assets so that the

intellectual property can be maintained and expanded as the business changes. The

memory is best maintained by the adoption of some level of tooling to support the

development process".

2.2.1 Previous Applications and Advantages

Results from the field of business show that there were considerable increases in

productivity, quality, and maintenance. These results are seen in Japan where Meyers

[Meyer98] highlights that the standard productivity is approximately 3,600 lines of

code lines per year while the total in Japan is 24,000. This figure correlates to the

wider reuse of reusable software within Japan that has been shown to have reuse

factors of 85% [Stand84, McNam84]. If an asset is reused then its lifetime will be

extended, increasing the returns that can be achieved. Any organisations seek to

achieve a rate of return by limiting the lifetime over which development costs are

11

written-off. If the level of reuse is high enough, then the rate of return will be

increased [Selec03a]. The rate of return generated by a solution is reduced by its cost

of maintenance. Ultimately these costs may become so significant that they act as a

significant brake on the rate of change within the organisation. The resulting

paralysis will significantly increase operating costs and reduce the competitive

advantage held by the organisation [Selec03a]. To follow the example of Japanese

software factories, a change of western cultures must be undergone to gain the

advantages of software reuse. These advantages have led to quicker delivery of

systems that is essential in today's competitive markets. This allows organisation to

be more responsive to commercial pressures and derive real value from new solutions

more quickly [Selec03a]. Agresti [Agres99] lists a number of specific gains other

than productivity that are gained from reuse.

• Reliability: through the use of proven components

• Consistency: by using the same components in many places, this reduces the

need for fresh and possibly idiosyncratic design.

• Manageability: using well-understood components as reuse reduces the

likelihood of cost and schedule overruns by providing already developed

components whose behaviour is understood.

• Standardisation: using libraries of components

12

2.2.2 Incorporating a Software Reuse Program inside an

Organisation

There is a need for high initial investments to implement an effective reuse

programme because current business processes have to be reorganised and new roles

created [Lim98]. Lim [Lim98] outlined these roles as being:

• Influencer/Consultant: captures and transfers technology and knowledge

through classes, tutorials, handbooks, and consulting.

• Producer/Business: delivers course on designing with reuse and produces

reusable assets.

• Librarian/Broker: provides a library service for the storage of reusable

components.

Influencer/Consultant acts as a catalyst within the organisation and keeps abreast of

reuse developments. It requires fewer resources to be required from the organisation,

and provides a divisional reuse program. This may mean that there is potential for

projects to deviate from standards and that future libraries may not have the ability to

be integrated. Divisional reuse teams may be more aware and responsive to the needs

of their consumers.

The focus for the producer/business role is the creation and maintenance of reusable

assets. This will incur activities such as domain analysis and infrastructure review to

produce assets that will be profitable. Expertise for this role is needed to produce

13

highly generalised assets that can be reused across projects; however generalising

programmable code reduces the efficiency of the program it lies in.

The librarian/broker provides information, and advice towards reuse within an

organisation. Centralised reuse architecture provides the possibility of this role.

However, the components produced and collected within this system are designed

towards reuse across many projects throughout the organisation and are highly

unlikely to be reused within a project. The ability for distributing reusable assets is

provided by a library tool [Lim98].

Karlsson [Karls95] provides a more in-depth evaluation of the new roles and

adaptations of existing roles for the integration of reuse into an organisation. He

focuses upon three views within an organisation, development, management, and

support.

Within the development view, Karlsson [Karls95] identifies that a developer could be

developing for or with reuse. Different activities are needed in each area, and that a

developer is placed into one of the following two categories, actual reuser or potential

reuser. An actual reuser is classified as waiting for a developing component while a

potential reuser is in the future. The requirements for a potential reuser are harder to

predict because it is impossible to define exactly what will be required.

There are two different roles in the development for reuse. Firstly, integration aims

their development on functionality, performance, and the quality of component for

integrating the component into a subsystem or product [Karls95]. Secondly, an

14

adapter role imposes requirements as the reusability of the component i.e. how easy it

is to adapt.

Development with reuse involves the process of continually searching and evaluating

components that may be reused to satisfy these requirements. There are two

approaches for a developer:

• Change requirements so that the component fits "as it is" into a subsystem.

• Adapt components to fit requirements

Often it is beneficial for requirements to be altered so that components can fit

seamlessly into a system. Introducing components like this can gain benefits such as

"Qualification of the development process used to create and maintain it" [KundaOO]

and can reduce the costs for "adapting and integrating the COTS, maintenance

(upgrades) cost, training and support" [KundaOO]. However, the changing of

requirements sometimes is not possible and adaptation of the component must be

performed. K won [K won98] identifies the process modelling of maintenance with

reuse, he identifies two approaches used for reusing components as:

• Black Box reuse: a component is reused on an "as-it-is" basis.

• White Box reuse: it should be modified before reuse.

The case for White Box reuse is strengthened by Select Business Solutions [Selec03a]

view that partial reuse may be the most cost effective way of providing new services

because in reality, the reused component or service is unlikely to provide a perfect

15

match for the projects needs, and the need for testing of the new application is always

essential.

Components can be reused either vertically in a project or horizontally across many

projects. Vertical reuse is the reapplying of components in the same project or in the

same domain. Horizontal reuse is the application of component in many different

projects that may or may not be in the same domain. However, Tracz [Tracz95] and

Griss and Wentzel [Griss94] say that software reuse is most effective when the

reusable software artefacts are developed for and used in a specific software domain.

It has been recognised that there are several pre-conditions that must be met in order

for a developer to be able to incorporate a reusable component into their software

system. Frazer [Fraze92] lists these as:

1. The component must exist

2. The component must be available to the developer

3. The developer must be able to find the component

4. Once found, the developer must be able to understand the component.

5. Based on an understanding of the component, the developer must identify the

component as being valid for the current system.

6. The developer must be able to successfully integrate the component into the

current system.

During this section, a review of how to integrate reuse into an organisation was

investigated, but outsourcing of a reuse is a possibility within business. The

16

purchasing of functionality offers opportunities for cost savings, and can be

considered to be a transfer of effort and risk from the organisation to a third party, but

the opportunities for savings are reduced by the need for the third party to operate at a

profit [Selec03a]. The failure to capture, manage and reuse these assets means that

critical knowledge about the application and the business processes it supports are lost

to the outsourcing organisation - making maintenance, upgrades and integration of

these application more difficult [Selec03b].

2.3 Reverse Engineering

Maintenance activities are categorised by Lientz and Swanson [Lien80] as

• Adaptive: changes in the software environment

• Perfective: new user requirements

• Corrective: fixing errors.

• Preventive: prevent problems in the future.

Their investigation into the effort spent on maintenance showed that 75% of effort

spent was on adaptive and perfective, while error correction consumed 21%. Lehman

[Lehma80] gives an insight into the reasons why perfective and corrective

maintenance takes up a large portion of maintenance, he states that "documentation

for systems is often quite poor and lacks the quality that a maintainer needs to do their

task. Over time, memories fade, software engineers leave, documents decay and thus

complexity increases as the knowledge of the inner workings of a system slip away

17

from the human domain". Bennett and Rajlich [BenneOO] strengthens that argument

by stating "that if changes can be anticipated at design time, they can be built in by

some form of parameterisation" and that "many changes actually required are those

that the original designers cannot even conceive of'. It is vital that the transfer of

architecture and design tradeoffs, engineering constraints, and the application domain

of software engineers are transferred through well-transcribed and accurate

documentation to define the architecture of a system and the dependencies between

components.

The task of analysing systems in a subjective manner is called reverse engineering.

This may include goals such as identifying the system's components and their inter­

relationship, or creating representations and design information of a system in another

form or at higher levels of abstraction. The primary goal of reverse engineering is the

understanding of programming code. This is key when introducing a reuse system

where there is potential for reusing already developed components that may not have

any documentation associated with them.

The main application for reverse engineering is on legacy systems where an

understanding gap arises between known, useful information and the required

information needed to enable software change. Reverse engineering tools focus on

bridging the understanding gap, and transferring this previously unknown information

to the mind of software engineers. It is beneficial to an organisation for it to reverse

engineer previously developed components when introducing software reuse. The

extracted information is useful for classifying these components within any reuse tool,

and gives the opportunity of reusing these previously developed components.

18

Program understanding plays an essential role during the phases after software

development. Henninger reports that "40% of maintenance is spent understanding

code" [Henni97]. As such, program understanding is the key activity during software

maintenance. To aid a maintainer's task, automated tools or defined standards must

be implemented to reduce the size of the task and to make maintenance work more

efficient.

Reverse engineering tools provide software engineers the ability to analyse systems at

various levels of abstraction and maintain mappings between these levels. The lowest

level is the programmer's abstraction which is the identification of semantics via

control flow and data flow analysis occurs. However, at these lower levels of

abstraction, the big picture behind the evolution of a software system is missed.

For efficient reverse engineering, the tools deployed must be automated to save

software engineers the time and effort of studying code. This is especially case when

introducing a reuse repository into an organisation, where possibly thousands of

previously developed components could be beneficial if introduced into the

repository. This however is much harder to gain by the imperfect knowledge these

tools have to tolerate. A serious solution of fixing this problem is through continuous

application of reverse engineering. This would reconstruct the earliest design and

architectural decisions at earlier stages of the lifecycle of a system.

19

2.3.1 Cognitive Models

Ramalingham et al [Ramal04] describes programming as "a highly cognitive activity

that requires the programmer to develop abstract representations of a process in form

oflogic structures", and highlights that mental models "play an important role in

program comprehension and correspondingly in comprehension related tasks, such as

modification" [Ramal04]. A mental model is defined by Norman [Norma83] as

"predictive representations of real world systems. People create internal

representations of objects and information in the world, and use these mental

representations to reason about, explain, and predict the behaviour of external

systems". These features are of major significance towards reuse. A person who

applies reuse to their work needs to gain substantial knowledge of what code actually

does to identify whether it is suitable for their needs. Their internal representation is

defined by Retkowsky [Retko99] as being a reuser's 'mental model'.

The mental model is defined by Timens [Timen89] as being a list of domains:

• Task Domain.

• Intermediate Domains.

• Algorithms.

• Plans.

• Beacons.

• Programming Languages.

• Source Code.

20

Knowledge about a specific mental model domain consists of information about the

objects and the operations within that domain, as well as information between objects

and operations ofthis domain to objects and operations to nearby domains. Brooks

[Brook83] and Soloway [Solow84] describe the various domains, and the relationship

between them.

2.3.1.1 Brooks's Model of Program Comprehension

Brooks's [Brook83] cognitive model of program comprehension takes a top down

approach of mapping between domains. The understander develops a primary

hypothesis; this is usually provided from the program name, and forms the root of the

tree. A cascade of subsiding hypothesis follows from the basic understanding of the

domain knowledge. This has been built from experience in the task domain, and

experience from the programming domain. This process is completed via a depth first

search. This cascading continues until the understander can verify the hypothesis

against the program code and/or documentation.

To aid this process of identifying mappings between domains within code beacons are

identified with it. These beacons describe those visible details that show the presence

of a particular structure or operation, and provide an important first link between the

top down hypothesis and the actual program text. Mittenneir et al [MitteO 1]

highlights that novices and experts both use beacons in program comprehension.

When scanning the program code, the understander is searching for a set of beacons

dealing with the current hypotheses. When a hypothesis has been verified to the

21

satisfaction of the understander than actual bindings between the hypothesis and the

program code occurs. If the understander has created the correct primary hypothesis,

as well as all the subsiding hypotheses, and is able to bind the program code

completely and uniquely to these hypotheses, the understander is said to have

comprehended the program completely.

The task of comprehension can vary greatly depending on a number of factors.

Primarily, documentation explaining the functionality of the program is the most

important. Usually it is rare to obtain documentation explaining these intermediate

domains rather than the original program task. Ibis increases the difficulty upon

tracing the mappings from the programming level to the problem domain. Secondly,

the ability for an understander to identify beacons within code is controlled by the

quality of code, the amount of documentation, the individual's abilities, the task they

are attempting, and the quality of the primary and higher level hypotheses. Ibis is

amplified by the programming domain knowledge of the understander, and affects the

lower level bindings and beacon location process.

Since understanders can rarely generate large numbers of alternative hypotheses

which have the same behaviour, it is most likely the understander simply repeatedly

attempts to interpret and bin program code to existing hypotheses, rather than using

know features, or beacons of the program to adopt different hypotheses.

22

2.3.1.2 Soloway's Model of Program Comprehension

Soloway's [Solow84] approach defmes the process of program comprehension as

being "the recognising of plans in code, combining these plans (by reversing the

rewrite rules) to form sub goals, and combining into higher level goals" [Hoyda91].

This attempts to recover the intention behind the code; therefore, the goal denotes the

intention, and plans denote techniques for realising those intentions. This is seen as a

bottom-up approach as it maps from the programming domain up to the task domain.

Rajlich and Wilde [Rajli02] describe Soloway's strategy as "the programmer piecing

together his understanding of the program by combining chunks into increasingly

large chunks".

The knowledge base used in the Soloway's model [Solow84] is:

• Programming language: deals with understanders' knowledge.

• Goal knowledge: the encoding of the understanders 'set of meaning for

computational goals.

• Plan knowledge: the encoding of solutions to problems that the understander

has solved or understood in the past.

• Efficiency knowledge: detect inefficiencies.

• Domain knowledge: understanders' knowledge of the world

• Discourse rules: programming conventions attach greater meaning to the

same code.

23

2.3.1.3 Evaluation of Approaches

Von Mayrhauser and Vans [vonMa94] evaluates Brooks [Brook83] and Soloway

[Solow84] models and states that each accommodates the following:

• A mental representation of code

• A body of knowledge stored in long-term memory

• A process for combining the knowledge in long-term memory with new

external information into a mental representation.

The bottom-up orientation of the Soloway model [Solow84] is bound to fail. It

simply creates too much data for a human can handle. The top-down generation of a

human's mental model produced by Brooks [Brook83] ensures that human limitations

are incorporated at every level of the understanding at every step of the understanding

process ensuring that humans do not feel overwhelmed. This view is shared by

Rajlich and Wilde who states that "complete comprehension of the whole program is

unnecessary and often impossible" [Rajli02]. They add that "as programs become

larger, it has become less feasible to achieve complete comprehension" [Rajli02].

They further add that these models "have been combined into unified models"

[Rajli02] to include "an as-needed strategy in which they attempt to understand only

how certain specific concepts are reflected in the code" [Rajli02].

24

2.3.2 Representations

2.3.2.1 Internal Representation

In Section 2.3.1, the cognitive perception of software comprehension was analysed.

An analysis was performed on both Brooks [Brook83] and Soloway [Solow84]

methods of program comprehension. This provided the different domains within

software comprehension and defined how they were mapped and traversed for each

method. The goal of which is to defme an accurate mental model of software by

filling the gaps missing in a programmers internal representation.

Maintainers when observing must gain a 'mental model' of what is happening in

code. This involves the analysis of control flow and dataflow within an operation.

This is helped through a set of guidelines for programming and documentation

practices. Retkowsky lists the following guidelines:

• A class must have a multi-line prologue commentary preceding the class,

indicating the purposes and goals of the class.

• Also included are annotations indicating author and version number.

• Program comments within and between modules and procedures usually

convey information about how the program achieves the goals set out in the

prologue comments.

• Information such as the functionality, any assumptions, declarations,

algorithms, and reminder notes can be added 'in-line' to the class.

• A class/module should be responsible for one well-defined process [Retko97].

25

2.3.2.2 Externalising the Internal Representation

Externalisation is how programs externalise their internal representations via

programming and how to describe a program.

When externalising the internal representations of a program, a programmer can

describe either a possible solution, or their solution. 1bis proves to be a grey area in

software comprehension. Extemalising internal representations can be done through a

number of different approaches such as natural language keywords, or using tree

architecture.

Natural language is used to give components textual descriptions. These are very

difficult to develop. These are possibly inaccurate or inefficient due to the possibility

of their descriptions containing useless information because of full textual description

that programmers possible may add to components.

Keywords can be used to describe components and then can be matched using

synonyms or equivalent. This approach requires a limited dictionary of words, and

forces the programmer to really think about what he/she wants. Most keyword

searches indifferently describe the problem and the solution; therefore, the results

produced from this act as a ftrst level filter. Further analysis of components is needed

to make a judgement whether one ftts the desired task.

26

2.3.2.3 External Representation

External representation can be in one of three forms, code, textual representation, and

graphical representation. However varied these approaches maybe when compared to

each other, the resulting mental model should be the same. The accuracy of these

external representations can be judged between the mental models obtained, and of

the "pseudo code" ofthe initial developer.

Code is the primitive method of representing a program. The understanding of code

is enhanced through defining a structured layout within it. Examples of this are seen

by indentations to define blocks of code, or lines in-between functions to break up

code so that it is easier to a maintainer to analyse.

A new approach being undertaken by developers of programming environments is to

introduce colouring to code so that various keywords are highlighted [Retko97].

Applications introduce colours automatically when displaying these scripts; however,

the user does not have the ability to manually manipulate the colour of code.

Important sections or significant keywords that a programmer would want to point out

to the maintainer as being vital to the understanding process cannot be highlighted by

this automation.

27

2.4 Electronic Data Interchange

As businesses identify the growing advantages of cooperating to streamline costs in

this ever competitive environment, technologies such as EDI (Electronic Data

Interchange) and Electronic Business using eXtensible Markup Language (ebXML)

are becoming ever more desirable for companies to invest in. The application of these

technologies is possible when considering the transferring of reusable assets between

these organisations.

EDI allows the transfer of information between companies in a format that can be

understood clearly and concisely. Before EDI was introduced, the transfer of

information between organisations was in a raw format (it is still common practice for

small companies to operate in this manner). For this raw data to be processed by the

receiving company, it was often the case that manual data entry was needed. This

took time and vital human resources; it also opened up the opportunity for errors to

occur. EDI therefore allowed the automation of data entry into a system, and

removed the possibility of errors and saved resources.

<?xml version="1.0"?>

<person>

<name>Jim</name>

<age>22</age>

</person>

Figure 2.4-1: A sample of an XML document

The growth of EDI saw many new techniques emerge. For EDI to become successful

and worthwhile for a business to implement, its business partners must also

28

implement in the same technique. As the web of business partners span worldwide,

the need for just one technique was apparent. eXtensible Markup Language (XML)

ISO 8879 became the de-facto standard for all EDI over the web. XML is a text­

based language that displays data in tags that defines structure within the document

(shown in Figure 2.4-1).

2.4.1 ebXML

ebXML is a global business standard that is sponsored by UNICEF ACT (United

Nations Centre for Trade Facilitation and Business (Organisation for Advancement of

Structural Information Standards) [IraniOl]. The goal of this standard is to bring

about the integration of small and large businesses into one business environment that

enables inter-company processes based on a common protocol. The standards for

global electronic business are defined in a framework that is based ''upon well-defined

XML messages within the context of standard business processes" [IraniOl].

The advantages of implementing this framework are:

• A reduction in the cost of implementation since only one global standard

needs to be implemented within a system.

• Businesses are not restricted to who their trading partners are. This opens up

more competition in the marketplace.

• Businesses are integrated more easily due to them implementing the same

standards

29

2.4.2 How it works

The primary underlying function of ebXML can be split into three abstract categories.

These are publishing, finding and binding. Publishing involves giving the ability to

companies of disclosing the services they can offer to a potential partner. These are

services such as common business transactions e.g. sales ledgers, or profiling their

capabilities. These details then could be discovered by other organisations searching

a data repository containing these details. During the binding stage, negotiation and

transactions are performed. Once a search of the ebXML repository produces results

that highlight a number of companies that are valid for the desired business

collaboration, a Collaborative Partner Agreement (CPA) business contract is

negotiated to agree the terms and conditions of the transaction. On agreement,

business transaction can be performed between the two corporations.

The current feedback from industry concerning the use of ebXML within industry is

positive. Jennifer Hamilton CEO ofRosettaNet highlights the company's drive

towards ebXML with "plans to integrate support for the ebXML Messaging Services

Specification in future releases ofRosettaNet's Implementation Framework"

[Web08]. David Russell CTO of Bind Systems is also very positive upon the uptake

of ebXML which he sees as "a pivotal component enabling the delivery of 'business

ready' Web Services" [Web08].

The growth in the uptake ofbusiness collaboration between small and medium sized

business using ebXML highlights that the economics of integrating their legacy

systems and business processes with current business integration frameworks gives a

30

positive of investment. This is of vital importance in this sector where profit margins

are much smaller then larger corporations.

2.5 Web Services

Web service technology encourages the distribution of business processes, such as

reuse across physical boundaries, which have prevented processes to be streamlined

or accessible to off-site entities. This emerging area has many definitions associated

with it that attempts to explain this.

"Web services are not EAI in and of themselves. Rather, Web Services are just

another technology that enables EAI, and can significantly change the traditional

point-to-point approach" [Samta02].

Dogac et al [Dogac02] gives a particular interesting explanation that gave an insight

into the possibility for web services becoming an international standard in distributed

computing.

"A web service is a programmable entity that provides a particular element of

functionality, such as application logic and is accessible to any number of potentially

disparate system through the use of Internet standards, such as XML and HTTP"

[Dogac02].

31

Ceremi [Cerem02] provides details into why web services are accessible over the

Internet.

"A web service is any service that is available over the Internet, uses a standardised

XML messaging system, and is not tied to any one operating system or programming

language" [Cerem02].

Caul dwell et al [Caul dO 1] expands upon the points of accessibility of web services

from [Dogac02, Cerem02] by mentioning the structure of coupling within web service

application, and the procedures used the infrastructure.

"Web Services are modular, self describing applications that can be published,

located, and invoked from just about anywhere on the Web or local networ/C'

[CauldOl].

Chaudhary et al [Chaud02] extends Caudwell's [CauldOl] point by highlighting the

fact that a web service is packaged as a single entity to a network.

"A web service is a programmable application logically accessible using standard

Internet protocols, having a collection of fUnctions that are packaged as a single

entity and published to the network for use by other programs" [Chaud02].

Gottschalk [GottsOO] quite simply describes web services as being "an interface that

describes a collection of operators that are network accessible through standardised

XML messaging" [GottsOO].

32

2.5.1 Current Situation

Traditional distributed architectures incorporate relatively brittle coupling between

various components in the system. Over the past few years, businesses have

interacted using ad hoc approaches that take advantage of the basic Internet

infrastructure [JepsoOl]. These are sensitive to change, so as the scale, demand,

volume, and rate of business change, the brittleness of these systems increase and

becomes a crisis [Chaud02]. A number of problems can occur through this crisis such

as unresponsive/unavailable websites, lack of speed to market, inability to rapidly

shift to new business opportunities or competing against threats.

The high coupling of components in traditional systems ensures that the management

of these architectures is virtually impossible. To replace current models of

application design, a new generation of distributed applications have been designed to

provide an architecture that is more flexible [Chaud02].

In previous years, server based applications such as Common Gateway Interface

(CGI) technologies have dominated solutions to reusable libraries, but with the advent

of web services many previous solutions to the reuse paradigm are lacking

functionality and efficiency that web services can provide [Cerem02].

33

2.5.2 Challenges with Existing Protocols

The heterogeneous network environments of the web provide a challenge to existing

protocols. Distributed technologies such as Common Object Request Broker

Architecture (CORBA), Distributed Component Object Model (DCOM) or Remote

Method Invocation (RMI) are required to have present symmetrical requirements

where "both ends of the communication link are implemented in the same distributed

object model" [CauldOl]. This problem is amplified because of these distributed

technologies relying upon single vendor solutions; thus generating compatibility

problems between different programming languages and operating systems, and

always relying upon their protocols being better than competitors. It is this lack of

universal acceptance throughout industry, which has encouraged the search for

another solution to distributed computing.

2.5.3 Strategies of Integration for 828 Commerce of Reusable

Assets

The integration of businesses to form partners among each other has allowed

businesses to specialise in certain areas of business processes. This expertise allows

companies to focus on their primary objectives/goals, and not to be distracted by

menial objectives. It is more desirable for other organisations to be producing higher

quality components and integrating these organisations into their own business

processes. This strategy opens up the possibility for 'Business-2-Business' (B2B)

34

commerce amongst business partners. Samtani and Sadhwani [Samta02] states that

this form of integration among companies can increase growth and success, and that

this includes all sizes of organisations. He also states that strengthening relationships

between business partners and producing seamless integration can "increase

operational efficiencies and reduce costs". This is of relative importance in the

current economic environment.

Samtani and Sadhwani [Samta02] defines a number of conventional patterns for

integration of B2B commerce that depends upon the trading agreement chosen by

trading partners.

2.5.3.1 Portal-Orientated Integration

This approach is highly suited towards small to medium sized companies because of

the reduced amount of investment needed. A portal is established by the development

of a web application that gives data access to trading partners. However, this

approach does not offer seamless integration between businesses, and the delicacies of

business processes are not analysed to gain maximum efficiency.

2.5.3.2 Data-Orientated Integration

Data-Orientated Integration involves the sharing of data between two different

partners. This is in the form of replicating data sources via synchronous or

asynchronous updates, or the merging of data sources into one data warehouse.

35

Data is a vital commodity in business and has a significant value in specific contexts.

The sharing of data between partners can be of a significant advantage but it can also

be a threat. To remove this threat, the identification of whether this will create

competition has to be analysed.

2.5.3.3 Application-Orientated Integration

Application integration involves a group of organisations working closely together to

form software that communicates via RMI or API to each other's software

components. This form of integration provides the least amount of automation;

however, it does offer synchronous data retrieval and updating.

2.5.3.4 Business Process-Orientated Integration

Ideally for a company to progress in the CMM, business processes must be fully

understood and described in a non-ambiguous language [Caput98). This gives the

ability for automation to occur within processes. Business Process-Orientated

Integration "provides process interface abstraction that maintains the integrity of

business rules" [0Rior02]. Integration of this nature gives companies complete

autonomy in terms of how they want to conduct their business, although

predetermined standards must first be agreed and met by both companies for complete

autonomy to occur.

36

2.5.4 Service-Orientated Architecture (SOA)

For true dynamic integration, software resources such as applications, objects, and

programs should be loosely coupled [0Rior02]. For integration to occur between

businesses, public interfaces of these entities are provided to describe their actions.

The presence of these resources and interfaces should be made available to

application developers through searching mechanisms that involve sifting for multiple

repositories. The successfully undertaking of these actions requires that these

resources are to be built to open standards.

SOA provides a framework and architecture ''that enables seamlessly interconnecting

applications and software components" [0Rior02]. The invocation or installation of

remote business services into a different application can now be applied without

composing a single line of programming code. SOA focuses on how service

components are described and organised to support dynamic, automated discovery

and use [FlurrOl]. To make this possible, SOA has a defmed architecture. Samtani

and Sadhwani [Samta02] outlines a number of roles and operations within service

orientated architecture.

Components

• Service provider: creates and publishes interfaces of services.

• Service requester: registers and categories published interfaces.

• Service requestor: an actual user is aiming to discover services by

searching a repository storing the published interfaces.

37

Operations

• Publish.

• Find.

• Bind.

Publish Bind

Find

Figure 2.5-1: Service Orientated Architecture

Gottschalk et al [Gotts02] provides additional details to this architecture by outlining

a number of objects that operations are performed upon.

Objects

• Services.

• Services descriptions.

The operations performed within this architecture are done so by actors. These actors

are a list of Simple Object Access Protocol (SOAP) service nodes that defmes a

message path. Each intermediate node can perform some processing before the

message is forwarded to the next node [Cerem02].

Chaudhary et al [Chaud02] expands Gottschalk et al's [Gotts02] list of possible

operations within the service-orientated architecture to be applicable to web services.

38

• Web services are created and interfaces and invocation methods defined.

• Web services needs to be published to one or more intranet or Internet

repositories for potential users to locate.

• Web services needs to be located in order to be invoked by potential users.

• Web services needs to be invoked to be any use.

• Web services needs to be unpublished when it is no longer available or

needed.

This description provides addition actions such as the creation of interfaces and

methods, and the need for authors to remove interface entries from repositories if

there is no need for them. Doing this is a form of maintenance and ensures that

results from search queries are accurate, and improves the responsiveness of search

the repository.

Chaudhary et al [Chaud02] produces summarised explanation following their

previous definition ofthe fundamental concepts of web services. These are:

• Encapsulation.

• Message passing.

• Dynamic binding.

• Service description and discovery.

39

2.5.5 Concepts of Web Services

The concepts behind web services are aimed at reducing complexity through

encapsulation; this enables web services to be easily understood. This also represents

black-box functionality that can be reused without worrying about how the service is

implemented because service requesters do not need to understand underlying

implementations when accessing interfaces. Service providers also have no idea of

how a service requester uses its service. Encapsulation and the need not to know the

underlying implementations promote the easy learning curve of web services

[Chaud02].

These fundamental concepts also aid Just-In-Time Integration of web services.

Collaborations in web services are bound dynamically at runtime. Dynamic service

discovery, invocation and message-orientated collaboration yield applications with

looser coupling, enabling just-in-time integration of new applications and services

[Chaud02]. Glass [GlassOO] points out that these features "yield systems that are self

configuring, adaptive and robust with fewer single points of failure".

Web services are composed of three components. These are Simple Object Access

Protocol (SOAP), Universal Descriptions Discovery and Integration (UDDI), and

Web Services Description Language (WSDL). Each component aids the 'publishing,

fmding, binding' philosophy highlighted in Figure 2.5-1. Each of these are analysed

further on in this section.

40

Before web services, the vast majority of enterprise scale developments platforms

were rather limited with Java Application only being accessible via Java

programming language, CORBA applications only being accessible through using the

CORBA framework. With web services, an integration channel between the various

applications and programming languages is present. This allows methods from

different programming languages to be invoked by each other. This compatibility is

possible because web services are developed with open standards in mind. Not only

are different applications and programming languages possible, but they are also

platform independent.

Web services provide a solution to the problems of distributed computing by bridging

"the differences that exist between systems that use incongruent component models,

operating systems and programming languages." [Chaud02] Cauldwell et al

[CauldOl] highlights that the provider or consumer of a web service does "not have to

worry about the operating system, language environment, or component model used

to create or access the XML Web service, as they are based on ubiquitous and open

standards, such as XML, HTTP, and SMTP". The use of HTTP in the transport layer

of the infrastructure enables communication to pass through firewalls or proxy servers

easily. A system may have severe restrictions upon the accessibility of ports through

a frrewall with the only ports being accessible being the ones used for HTTP and

SMTP communications. This removes any need for processes to open sockets and

listen for requests that may be blocked by firewalls or proxy servers.

The contents of the Web can be separated into to groups "eyeball web" and

''transaction web". A collection ofhuman readable pages that are virtually

41

unintelligible to computer programs are described as being eyeball web while pages

that can be interpreted by computer programs are denoted as "transactional web"

[Sycar03]. The "eyeball web" is dominated by program-to-user business-to­

consumer interactions. Transaction web is mainly involves program-to-program

business-to-business interactions. The transformation of eyeball web computer

programs to transaction web versions is being fuelled by the program-to program

communication model of web services built on Hypertext Transfer Protocol (HTTP),

eXtensible Markup Language (XML), Simple Object Access Protocol (SOAP), Web

Service Description Language (WSDL) and UDDI (Universal Description, Discovery,

and Integration [Gotts02].

2.5.6 Web Service Programming Stack

Given the Web's intrinsically distributed and heterogeneous nature, communication

mechanisms must be platform independent, international, secure, and as lightweight

as possible [JepsoOl]. Gottschalk et al [Gotts02] provide an insight into how the

collection of standardised protocols and APis used within web services are coherent

to Jepson's [JepsoOl] requirement, and how applications and users can access and

utilise these services. They state "at each layer of the web service programming stack

is the standardisation of simple, open protocols and APis" [Gotts02]. The use of

standardised, simple, open protocols and APis in web service components enables

communication between levels of the programming stack; it is also the "key to the

ubiquitoqs d~ployment of web services lilfChitectures,,and the ubiquitous d~ployment

of the infrastructure is the key to the network effect of web service adoption"

[Gotts02]. This feature ensures that "Web services can be accessed by any language"

42

[Chaud02], and "accessed by any component mode, running on any operating

systems" [Chaud02]. Web services achieve high levels ofinteroperability compared

with previous programming languages [Gotts02].

Protocols and APis

WSFL

Static UDDI

Dynamic UDDI

WSDL

SOAP

HTTP,SMTP

Service Flow

Service Discovery

Service Publication

Service Description

XML -Based Messaging

Network

Figure 2.5-2: Web services programming stack

Network, XML based messaging, and service descriptions are needed to have

interoperable web services. They also create a low cost entry for leveraging by

allowing these services to be deployed over the Internet. The remaining layers in the

programming stacks are optional and will be used as businesses need them [Gotts02].

Open standards such as SMTP, HTIP and File Transfer Protocol (FTP) are listed in

the network layer of the Web services programming stack (Figure 2.5-2). The use of

these protocols enables advantages such as the passage of messages through firewalls

and compatibility with other business networks [Chaud02]. However, the reliability

ofusing HTTP is questionable. The use of this protocol does not guarantee the

delivery"Or the"order of·packets·at the destination: tJsingmessage queuing can

increase reliability but this is at the cost of the response time. To overcome this

43

problem, new protocols such as reliable HTTP (HTTPR), Blocks Extensible

Exchange Protocol (BEEP) and Direct Internet Message Encapsulation (DIME) are

used.

For the networking layer of the model standards, Gottschalk et al [Gotts02] outlined a

number of standards:

• Share a common networking protocol.

• Use a protocol converter to convert between the networking protocols each

uses.

2.5.7 SOAP

The messaging layer of the web services programming stack (Figure 2.5-2) is based

on SOAP. SOAP is a standardised packaging protocol for the messages shared by

applications [Snell02]. This is an XML protocol, which facilitates the publishing,

finding, binding and invoking operations [Gotts02]. SOAP works on existing

transports, such as SMTP, HTTP [JepsoOl], and ensures that messages are not

uniquely tied to just one operating system or programming language [Snell02].

Simple Object Access protocol (SOAP) enables communication among web services.

It was initially created by Microsoft and later developed in collaboration with

.de:velopers IBM,Lotus,and UserLand.,.SOAPisan XML-based,protocol for

messaging and RPCs. At the basic functionality level, you can use SOAP as a simple

messaging protocol [JepsoOl]. It can also be used as a method for extending the

44

usage of legacy applications. A SOAP wrapper can enclose a legacy application.

1bis casts the application as a web service. 1bis would allow these dying legacy

applications to be used in interesting new ways [Dogac02].

SOAP specification defines a model that dictates how recipients should process the

SOAP messages. The message model also includes actors, which indicate who should

process the message. Actors indicate a series of intermediaries that process the

message parts meant for them and then pass on the rest [JepsoOl].

Business messages typically originate deep inside one enterprise and go deep inside

another. Additional security is needed such as Secure MIME (S-MIME), HTIP

Secure (HTTPS) or Kerberos. Mechanisms such as Secure Socket Layers (SSL) are

great for confidentiality of information between two machines in a direct connection.

SSL does not operate in an in-direct connection [Dogac02]. To enforce security,

SOAP security extensions are being developed that detail specifications for

authentication, confidentiality, and authorisation at the SOAP level [Jepso02].

The World Wide Web Consortium (W3C) schema specification provides a standard

language for defining the document structure and the XML structures' data types.

XML has gained widespread acceptance as a standard specification for data markup,

validity checking, and tagging. XML greatly aids in the generation, validation and

machine interpretation of complex data structures or documents. SOAP is built on top

ofXML [Gotts02]. SOAP assumes a type system based on the one in XML schemas

ana"defines it canoriical encoaing hi XML' to produce an XML eiicodiiig for ariy. type.

45

~ .

of structured data. XML and SOAP are the base technologies ofWeb Services

architectures [CauldOI].

SOAP offers basic communication, but it does not tell us what messages must be

exchanged to successfully interact with a service [Jepso02]. For successful

interactions to occur, both the service providers and requester must agree to a

common format for the messages [Gotts02]. Messages can fall into one of two

categories. Gottschalk et al [Gotts02] describe these methods:

• Composed primarily of a document that is to be processed remotely.

• Contain components and parameters that are used to directly invoke a RPC

and return values in XML.

Gottschalk et al [Gotts02] identifies that is was until recently that there was "no

common protocol for handling both types of messages". Applications such as ffiM

MQ series handled the formatting and delivery of documents within transactions

during Electronic Data Interchange (ED I), while Java Remote Method Invocation

(RMI) and Distributed Component Object Model (DCOM) is used to format

components and parameters. SOAP standardizes both types of messages, document­

centric messages and RPC using XML. SOAP implementations exist for several

programming languages, including C, Java, and PERL, which automatically generate

and process the SOAP specifications; they thus be exchanged by services

implemented in different languages [JepsoOl]. This greatly enhances the ability of

service providers, an'Cf~ers''to'"properly interpret the "messages [Gotts02j. . ,

46

SOAP messages have a common structure. An envelope encloses a SOAP header and

SOAP body blocks. The SOAP header block has child blocks within it holding

information relevant to how the message is to be processed. These blocks control

the routing and delivery settings, authentication or authorisation assertions, and

transaction contexts. The blocks within the SOAP body block contains the actual

message that is to be delivered and processed [Snell02].

Dogac et al [Dogac02] identified that the SOAP performance is degraded within its

use inside the web services architecture because of a number of reasons:

• SOAP uses XML instead of binary data that makes the size of the data almost

400% larger.

• Extracting the SOAP envelope from the SOAP packet is time expensive

• Encoding binary data in a form acceptable to XML is time expensive

• XML parsers support a number of features that makes them resource

intensive. Not all ofthesefeatures may be used by SOAP.

Chaudhary et al [Chaud02] provides a number of solutions for this performance issue:

• Some applications can consider compressing XML when CPU overhead

required for compression is less than the network latency

o Consider using stripped down versions of XML parsers

• Current SOAP implementations are Document Object Model (DOM) based

• DOM parsers are slow to parse messages.

47

• Simple API for XML (SAX) based SOAP implementations can be used to

increase through put and reduce memory overhead

2.5.8 WSDL

Within the web service programming stack (Figure 2.5-2), the ability for describing

services to clients is provided by the WSDL specification. SOAP offers basic

communication, but it does not tell us what messages must be exchanged to

successfully interact with a service [JepsoOl]. A web service is described using a

standard, formal XML notation called its service description that provides all of the

details necessary to interact with the service; this includes message formats, transport

protocols, and location. Standardization of service descriptions to support web

services is achieved via Web Services Description Language (WSDL) [Gotts02].

WSDL was developed by IBM and Microsoft to describe web services using a

common semantic understanding of the context of these messages [Gotts02]. This

forms collections of communication end points that can exchange certain messages

[JepsoOl].

For a web service to be invocated, a potential requester must know what services are

available from a service provider. WSDL forms an integral component of the

discovery process, by providing a formal, computer readable description of web

services [Snell02). These descriptions enable the ability to use inputs to dynamically

invocation proxy's which can generate the correct service requests at runtime. This
·-.!'"·· Y.

relieves the user and developer of the need to remember or understand all the details

of service access [JepsoOl]. This also reduces the need ofmaintenance within SOAP

48

clients if changes to web service are made. The dynamic discovery of WSDL

descriptions within a repository ensures that links between SOAP clients and web

services are not lost and expensive changes to client code is not needed [Snell02].

A WSDL document describes a web service's interface and provides users with a

point of contact [JepsoOl]. This defines the interface required for interaction between

a requester and a service provider and identifies the location of the service provider

[Gotts02]. It also defmes a service's abstract description in terms of messages

exchanged in a client service interaction. WSDL is the de-facto standard for

· providing these descriptions. Other, less popular, approaches include the use of the

W3C's Resource Description Framework (RDF) and the DARPA Agent Markup

Language (DAML), both of which provide a much richer (but far more complex)

capability of describing web services than WSDL [Snell02].

Jepson [JepsoOl] describes that a complete WSDL service description provides two

pieces of information:

• An application level service description (abstract interface).

• Specific protocol-dependent details that users must follow to access the

service at concrete service end points.

Jepson [JepsoOl] identifies that there are three main components of an abstract

interface within WSDL service descriptions:

• Vocabulary.

49

• Message.

• Interaction.

Jepson [JepsoOl] determines that ''the agreement on a vocabulary is the foundation of

any type of communication". WSDL uses external type systems to provide data-type

definition for the information exchange. It can support any type system, most

services use XSD. This is possible because XML schemas are platform neutral

[JepsoOl].

"XSD: xml schemas are an application of XML used to express the structure of XML

documents" [Snell02].

WSDL defines message elements as aggregation of parts, each of which is described

by XSD types or elements from a predefined vocabulary. Messages provide an

abstract, typed data definition sent to and from the services [JepsoOl]. The sequence

or possible patterns of message exchange between services and invokers are clearly

defmed within this section of the WSDL interface.

An interaction is simply a combination of messages labelled as input, output, or fault

to indicate what part a particular message plays in the interaction [JepsoOl].

Gottschalk et al [Gotts02] makes a point of indicating that this area of web services

has not been standardized yet, but highlights the importance of doing this to ensure

interoperability among web service repositories and web services for the future. This

accounts for the fact that similar application-level service functionality is often

50

deployed at different end points with slightly different access protocol details, this

helps WDSL represent common functionality between seemingly different end points

[JepsoOl].

Snell et al [Snell02] provides an in-depth analysis of the structure ofWSDL by

categorising five sections to an abstract interface instead of Jepson • s [J epsoO 1] three

point definition. Snell et al [Snell02] categorises these as:

• Data types: both parties involved must agree upon the data types being used

before the services description can be analysed

• Messages: defines the sequence or possible patterns of message exchanged

between service and invoker.

• interfaces: identify the port types. A port element describes a single endpoint

as a combination of a binding and a network address. Service elements group

a set of related ports.

• Binding: defines the methods of how messages will be transmitted over the

network, and includes the communication protocol (such as SOAP over

H1TP), and data format specification that is being transmitted It also

describes how to accomplish individual service interaction over this protocol,

and where to terminate communications (net address)

• Services: lists the network location of the service.

51

2.5.9 UDDI

The discovery and publication of a service within the web services programming

stack (Figure 2.5-2) is provided by Universal, Description, Discovery and Integration

(UDDI) directory. UDDI is a registry of web services descriptors. UDDI

specifications offer users a unified and systematic way to find service providers

through a centralised registry of services. This is roughly equivalent to an automated

online "phone directory" ofweb services [JepsoOl].

A service provider must first register the service with a registry; this enables a service

requester to discover the service using UDDI [Gotts02]. Jepson [JepsoOl] describes

how UDDI provides two basic specifications that defme a service registry structure

and operation:

• A definition of the information to provide about each service and how to

encode it.

• A query and update API for the registry that describes how this iriformation

can be access and updated

Jepson [JepsoOl] explains how access to the UDDI registry is accomplished using ''a

standard SOAP API for both querying and updating". A Service provider first

registers the required technical specifications, and then assigns it to a unique identifier

,key so that encodipgjs_possiple. Cauldwell et ~L[CauldOl] describes how they al,so

define the three different types of encoding that are used within UDDI.

52

• White pages: name and contact details.

• Yellow pages: categorization based on a business.

• Green pages: technical data about the services.

The UDDI registry is organized around two fundamental entities that describe

businesses and the services they provide. Both business and service entities can

specify a 'categoryBag' to categorize the business or service [JepsoOl].

"Category Bag element: A list of name-value pairs that tag the business entity with

specific classification information. This could be in the form of industry taxonomy or

geographical classifiers" [Caul dO 1].

The design of a UDDI entry is described [Web02]. Jepson [JepsoOl] describes the

number of key elements in it:

• Unique keys identify each data entity: businesses, services.

• Long hexadecimal strings generated when the entity is registered

• The keys are guaranteed to be universally unique identifiers (UUID).

• Business key attribute maps to business entity.

• Service key attribute maps to service entity and business key attribute.

UDDI enables business and service descriptions using arbitrary external information

(not defined by UDDI) to find the expected unique key (binding key) and a cross-

reference to the service key. Replacing the information itself with a unique key

provides a reference to arbitrary information types. The location types of businesses

53

and services depend on the ability to qualify the directory business and service

entities. In addition to the three kinds of data published within a UDDI registry, the

standards bodies and businesses also register information about their service types.

Cauldwell et al [CauldOl) calls this Service Type Registration; however, in the UDDI

white paper these are more commonly known as tModels [Web02). Jepson [JepsoOl]

takes a different approach into the describing oftModels. He states that ''!Model

mechanisms are 'simple and powerful'. To adequately describe a service, there is

often a need to reference information whose type or format cannot be anticipated.

Users and implementers of compliant services must be aware of the registered

tModels and their keys".

Human readable description, name, and categorization, the service entity contains a

list of binding templates that encode the technical service access information. Jepson

[JepsoOl] details the actions ofthese binding templates as:

• Representation of an access point to the service.

• Same service can be provided at different end points (might have different end

points, this will have different technical characteristics).

Service endpoints that support the specification can then imply the addition of the

corresponding reference to their tModellnstanceDetails list. tModellnstanceDetails

provides the services technical description (green pages) [JepsoOl). This field will

then contain a list of references to the technical specifications with which the service

compiles.

54

When a service requester identifies a suitable service via the UDDI interface, the

interface provides the service requestor with a WSDL interface and an URL pointing

the requestor to the service itself [Gotts02]. The WSDL descriptions outlines how

exactly invoker methods can interact with it using SOAP messaging and SOAP RPC

calls [JepsoOI]. The service requestor may then use this information to the service

and invoke it [Gotts02]. SOAP API is used for both querying and updating [JepsoOI].

A standard is needed for publishing and finding web services. UDDI emerged to help

this problem. This provides sets of APis for publishing and fmding services. A

service provider creates a web service and its service definition, publishes the service

with a service registry based on UDDI [Gotts02]. This point has already specified

business context descriptions for services specified by UDDI categorizing information

on the type of business, location, and contact info. This facilitates further discovery

and usage of appropriate services, however Gottschalk et al [Gotts02] identifies that

"further standardization is needed".

A solution provided by Gottschalk et al [Gotts02] advises "businesses to provide

standard APis so that partners can publish and find services". Gottschalk et al

[Gotts02] also identifies that "for a company to create their own APis for finding and

publishing services is a costly venture. It would also create a burden on the merchants

and suppliers who are dealing with multiple service provides. These partners would

have to customize their applications to work with each service provider". Jepson

[JepsoOI] explains that the development of web services is not only effective in inter­

organizational dealings but also Within business proeesses that should not be

accessible outside the organization. They highlight that "several individual

55

companies and industry groups are also starting to use "private" UDDI directories to

integrate and streamline access to their internal services" [JepsoOl]. These maintain

"private UDDI registries and control what service data is registered and who can

access data" [Gotts02]. A public UDDI registry is located at http://www.uddi.org.

This registry is synchronized and maintained by IBM and Microsoft.

2.5.10 WSFL

IBM has produced the web service flow language (WSFL) as it input in the

standardisation process [Gotts02]. Service flow layer of the stack facilitates the

composition of web services into workflow and the representation of this aggregation

of web services as a high-level web service [JepsoOl].

2.5.11 Advantages of Web Services

Web services are emerging to provide a systematic and extensible framework for

application-to-application interaction built on top of existing web protocols and based

on open XML standards. Jepson [JepsoOI] divides the web services framework into

three different areas:

• Communication protocols.

• Servicedescriptors. ·

• Service discovery.

56

The Web services framework is modular. The advantage of modularity for

developers with this framework is to gain from the availability of specifications and

tools now and incorporate more modules as the technology matures [JepsoOl].

However these reasons are not the only reasons why the uptake of Web services is

growing, Gottschalk et al [Gotts02] highlights a number of reasons why:

~ Web services provide a language-neutral, environment-neutral programming

model that accelerates application integration inside and outside an

enterprise.

• Web services yields flexible loosely coupled business systems.

~ Web services are easily applied as a wrapper technology around existing

applications.

• New solutions can be deployed quickly.

• Pool of services is growing due to the increase in the uptake of web services

within industry.

• Aids development of more dynamic models such "Just-in-time applications"

and business integration over the web.

With these reasons in mind, Chaudhary et al [Chaud02) predicts Web services

technology to be "both an evolutionary and revolutionary step forward in the domain

of distributed computing". They state that this it is evolutionary because ''the next

~t~p in apstractio11 is beyond object orientated te.chnology" [Chaud02),while the-term

revolutionary is used to indicate the "catalytic effect web services have upon the shift

away from traditional client-server architectures to peer-to-peer architectures"

57

[Chaud02]. This has been achieved by "combining the best aspects of component­

based development and object orientated approach, geared towards the architecture,

design, implementation and deployment of e-business solutions" [Chaud02].

2.5.12 .NET Framework

Web services are components that facilitate the sharing of data and functionality

through heterogeneous protocols. This is achieved by using open standards such as

XML, SOAP and HTTP. The .NET framework provides a developer with the ability

of developing these web services. [Web04] lists these key benefits and goals of using

the .NET framework and are listed below.

• Shared code and increased efficiency.

• Robust code.

• Secure execution.

• Support for encryption.

• Automatic deployment.

• Rapid application development that requires fast time to market.

• Ability to call Win32 DLL (direct link libraries) without having to rewrite

them.

• Debugging and development can be used by Microsoft Visual Studio .NET

2003.

• Coae is not prime toJail due to un-'irzitialised variables.

• JIT compilation is not interpreted

58

• Garbage collection greatly minimises memory leaks by cleaning up objects no

longer in use.

The .NET framework consists of two major areas of focus; these are common

language runtime, and a unified set of class libraries.

The common language runtime (CLR) allows the developer the flexibility to develop

in one of many languages that are classified as 'Managed Code'. These languages

exhibit features such as strong type-safety, no bad pointers or create memory leaks.

Languages that conform to theses features are C#. NET, VB.NET, C++. NET, J#.

NET, and ASP.NET. The CLR is responsible for managing the execution of managed

code. The first stage of compiling managed code involves parsing it into MSIL

(Microsoft Intermediate Language) and metadata, and packaging both languages into

a Pre Execution file (PE). The JIT compiles the PE down to a native code when it is

being requested. The result of this is that all .NET framework components run as

native code and increase the performance of a service.

2.5.13 XML

Extensible Markup Language (XML) provides a way to describe structured data.

Unlike HTML tags, which are primarily used to control the display and appearance of

data, XML tags are used to define the structure and data types of the data itself.

XML ~es a set of tags to ,,delineate elements of data.-.Each,element.encapsulates a

piece of data that may be very complicated or very simple.

59

As XML tags are adopted throughout an organization and across organizations, data

from all kinds of different data stores will be easier to exchange and manipulate.

XML is simple, platform-independent, and a widely adopted standard. The advantage

of XML over HTML is that it separates the user interface from the structured data.

This separation of data from presentation enables the integration of data from multiple

code repositories. These can be sited off site and accessed via web services.

To maintain constancy between the XML tags adopted by the different organisations

to define their data sources, XSD scripts are applied to XML datasets.

2.5.14 XSD

The XML Schema Definition language (XSD) allows constraints to be specified on

the elements and attributes it defines. When mapping on XML schema to relational

schema in a Dataset, XML schema constraints are mapped to appropriate relational

constraints on the tables and columns within the dataset.

The Microsoft's developer's network has defined a number of advantages that XML

Schemas have over previous technologies, such as Document Type Definitions

(DTD):

• XML Schemas use XML syntax, so there is no need to learn a new syntax to

define your data structure. .

• XML Schemas support reusable types and allow the creation of new types

using inheritance.

60

• XML Schemas allows the grouping of elements to control the recurrence of

elements and attributes [Web06].

XML Schema guarantees consistency among certain types of XML data that is shared

between applications and organizations. XML schemas are used within the ReSULT

architecture to verify the structure of the information being passed to it. These XML

schemas could be published over the web to promote software reuse between two

different sites or organisations. By publishing theses schemas, organisations that wish

to exchange data can then build their applications around these schemas so their xml

messages will be understood. This is of great importance when considering that the

ReSULT is a distributed system that has the opportunity of interacting with other

systems during business-to-business commerce.

61

2.5.15 XSLT

XlAL XSLT

HTML css

Figure 2.5-3: The transformation ofXlAL to HTML.

As described in Section 2.5.13, the data held within XlAL data structures does not

contain any specific information. The process of converting raw XML data into

HTML is displayed in Figure 2.5-3. The process of formatting XML data is achieved

through a XSL processor. This takes the XML data and applies an XSLT

transformation to the data. An XSL processor is embedded within Microsoft liS. The

output of this is plain HTML with styling applied from the XSL T transformation, the

application of any generic styling cannot be applied during the XSL T processing.

This can only be applied at the internet browser. Generic styles are applied in the

ReSULT system using Cascading Style Sheets (CSS).

62

2.5.15.1 css

CSS provide additional formatting at the end of the process for converting raw XML

data into presentable HTML (Figure 2.5-3). When a request is made by an Internet

browser for a web page that contains an externally linked CSS script, the web server

extracts the class featured in the HTML document and replaces these declarations

with their fully declaration stored inside the CSS script. This provides the advantage

of avoiding the repetition of HTML elements and tags, thus saving the developer time

and effort when developing.

2.6 Design Patterns

Larman defines that "in object orientated design, a pattern is a named description of a

problem and solution that can be applied to new contexts; ideally, a pattern advises us

on how to apply its solution in varying circumstances and considers the forces and

trade offs" [Larma05].

Gamma et al describes a design pattern as "One person's pattern is another person's

primitive building block" [Gamma95].

They elaborate further on the definition of design patterns as "a description of

communicating objects and classes that are customised to solve a general design

problem in a particular context'' [Gamma95).

63

Design patterns enforce users to program to an interface, not an implementation

[Larma05]. Many patterns guide the assignment of responsibilities to objects, and

often are loosely coupled; therefore, a client component is unaware of the specific

object types they use, and are unaware of the classes that implement these. Larman

states that "a good pattern is a named and well-known problem/solution pair that can

be applied in new contexts with advice on how to apply it in novel situations and

discussion of its trade offs" [Larma05]. There are a large number of design patterns

available to designers and maintainers. Gamma et al describes the design and

application for twenty three different design patterns in [Gamma95].

The ability to control how a system evolves during its lifetime is another key

advantage of design patterns. Design patterns allows requirements to be anticipated

and for changes to be made significant redesigning of the system to be performed.

[Larma05] defmes a number of different causes for redesign and how these changes

can be performed using design patterns.

Creating an object by specifying a class explicitly: this commits to an

implementation and not an interface. Factory Method design pattern [Larma05]

would be used to allow objects to be created indirectly instead.

Dependence on specific operations: this commits to a way of handling a request. To

modify this execute path a command design pattern would be used.

64

Dependence on platform: components may be reliant upon on APis that differ

between platforms. The abstract factory design allows flexibility on design on a

system that has to interface with different APis.

Dependence on object representation or implementation: clients that know how

an object is represented, stored, located or implemented may need to change when the

object changes. The proxy design pattern provides a surrogate or placeholder for

another object to control access to it.

Algorithmic dependencies: objects that depend on an algorithm may need to change

if the algorithm changes. Ideally, algorithms should be isolated using a design pattern

such as Iterator or Visitor.

Tight coupling: inter-class dependency causes problems when maintaining code. To

reduce problems the Command or Observer design pattern is used.

Inability to alter classes conveniently: it may be difficult to modify a class because

the source code is unavailable, or it may require modifying sub classes. A Decorator

or Visitor design pattern should be applied [Larma05].

2.7 Summary

In this chapter; background'topics ,relating to software engineering and distributed

computing were discussed. The software crisis was the main motivation for which the

65

idea of reusing software was born. The benefits which can arise from reusing

components were also discussed. After that, an insight of how reuse can be

introduced into a company was performed. Within this three important roles were

identified as being influencer/consultant, producer/business, and librarian/broker.

Methods of how reusable components can be integrated into existing systems were

identified as adapt components to fit requirements, and change requirements so that

the component fits as it is. The scope at which these components could be used

within an organisation was identified as horizontal and vertical reuse.

The following section introduced reverse engineering. This provides the means of

replacing gaps of understanding within legacy systems. Automated reverse

engineering tools are best to reduce the amount of time and effort spent analysing

code. Following on from this, two approaches were described that are used for

modelling program comprehension when analysing code; these are Soloway and

Brooks. There are three different types of representation for the understanding of

program comprehension. They were internal, external, and extemalising the internal

representation. After that an introduction into the concepts and workings of EDI were

also discussed.

A discussion of the concepts and advantages web services bring to a distributed

organisation and the challenges they face followed. A number of strategies are

described into the integration ofBusiness-2-Business commerce of reusable assets;

these are portal-orientated, data-orientated, application-orientated, and business

process.:orienfuted integration. After that, an analysis of service orientated

architecture follows introducing the various components involved with web services

66

such as SOAP, WSDL, UDDI, WSFL, XML, .NET, XSD, XSLT and CSS. Finally,

design patterns were introduced giving the reasons why they are useful when

designing or applying changes to a system. The following section will take the

findings from this chapter, and produce a design proposal for such a system.

67

Chapter 3 Design

3.1 ~ntroductoon

Figure 3.1-1 : The relationship between different research areas that are considered
during this work.

The literature survey in Chapter 2 highlighted that there are clear advantages to

companies implementing software reuse strategies. Furthermore, their strategies have

differed over tiirie based on changes that have occurred within organisations.

Organisations are frequently located on many sites and any strategy and support tools

68

must support the distributed nature of the organisation. This chapter will describe a

support tool which reflects these changes within organisations while supporting a

reuse process.

This chapter proposes a distributed solution to software reuse. The proposed system is

called Reusable Source code Units Library Tool (ReSULT). ReSULT is an electronic

reusable library that provides a distributed organisation with the ability for the sharing

of entities; therefore enabling the spreading of knowledge within it. This tool is

Internet based to promote the distribution of information across company and nation

boundaries. To achieve this goal of developing this system, a number of different

areas were considered and reviewed during Chapter 2.

From the different research areas reviewed during Chapter 2, a map that defines the

relationships between these areas is shown in Figure 3 .1-1. This figure provides an

abstract representation of this chapter.

The first section in this chapter is reverse engineering. Taking the findings from the

analysis of program comprehension during Section 2.3.1, the software and design

languages of Java and OCL are used to apply these findings. The core of this work is

to identify useful beacons within these languages that will maximise the

understanding of code in either language. The conclusion of this subsection will

highlight how all this data is to be stored in an efficient manner inside a database.

Section 3.3 t>roposes'h.owtliis system'isintegrafed with the current tecliniques and

processes of software developers.

69

For the rest of this chapter, an increasing focus on practical issues will be taken

towards this research.

An important feature to any system is usability. In this chapter, an insight is provided

in how web service technology can be transcribed into a usable feature of a software

development workplace. This will include how XML data that is produced from web

services is interpreted by web applications. Web applications have many methods of

dealing with XML. Features such as Extensible Stylesheet Language Transformation

(XSLT) and Cascading Style Sheets (CSS) are approaches used by web applications

to transform XML data into organised information that can be transmitted to a user's

web browser, using HTML. These technologies mentioned above will provide the

majority of the work in this chapter.

3.2 Reverse Engineering

Within the development of any software reuse system, reverse engineering is of

significant importance. As described in Section 2.3.1, a reuser needs to fully

understand the functionality of a component to identify whether it satisfies their

'mental model'. The goal of reverse engineering during software reuse is to obtain an

accurate representation of a component. This representation must have the ability to

become externalised to provide a method for reusers to search a collection of

components;

70

When developing a reuse system, an analysis of the current processes involved within

it must be considered as possible areas for automation. Processes such as the

inserting, searching and extraction of components are likely candidates for automation

with a reuse system. By providing the ability of automation within the system, the

time taken to complete tasks is reduced and the degree of accuracy achieved is

significantly increased by removing the opportunity for human error.

Reuser

Figure 3.2-1: The 'Insert Component' use-case.

During this research, a use-case (Figure 3.2-1) will be used to identify individual

automated processes involved within the system. The first use-case designed for the

ReSULT will give the user the ability to insert components into the system. The

components will be in Java or OCL. The user is classified as a producer of reusable

assets (Section 2.2.2), or possibly a librarian (Section 2.2.2) who is given these assets

from a producer. The following sub-sections look into how the system deals with

these languages and describes the rationale for comprehension.

71

3.2.1 Software Comprehension

To achieve any degree of automation, it is first necessary to create a model of what

understanding is all about. In Section 2.3.1 of the literature survey, two models of

describing program comprehension were analysed; these models were Brooks's

[Brook83] and Soloway's [Solow84]. It was concluded in Section 2.3 .1.3 that the

bottom-up orientation of the Soloway model is bound to fail because it creates too

much data for a human to handle. The top-down orientation of Brooks [Brook83]

incorporates these human limitations at every step of the understanding process, and

will be used for the ReSULT system.

3.2.1.1 Internal Representation

For the ReSULT reuse library, the analysis of comments and program structure will

provide the key areas of research. These factors will help the reuser build up a

satisfactory mental model for a piece of software. By generating this model, the

reuser can then start to map between the domains from the top downwards to identify

whether this is ideal to their desired usage.

72

package Organisation;

import java.util.*;

public class Company{

private int numberOfEmployees=O;
private Person manager;
private TreeSet employees=new TreeSet();
private List topTenEmployees=new ArrayList();
private Person[] topTwentyEmployees=new Person[20];
private Company(String description, Person manager)
{

super(description);
this.manager=manager;
employees.add(manager);
manager.employers.add(this);
numberOfEmployees=employees.size();
topTenEmployees.add(manager);
topTwentyEmployees[O]=manager;

public Person getOldestEmployee()
{

return null;

public int getOldestEmployeeAge()
{

return 0;

public void employ(Person p)
{

employees.add(p);
p.employers.add(this);
numberOfEmployees=employees.size();

public boolean assertTrue()
{

return true;

Figure 3.2-2: An example of Java code.

In the ReSULT reuse system, it was decided to define a reuse system for the scripting

languages Java and Object Constraint Language (OCL). The languages chosen for

ReSULT reflect the possibilities of identifying traceability between the design and

implementation stages of development. Java was chosen due to a large repository of

code available for testing. oce is a scripting language that adds semantic details to

UML structured models that cannot express statements, which should be part of a

73

thorough specification. These statements should migrate through to implementation

code, and provide a method of traceability and reusability.

@invariant numberOfEmployees:
Self.numberOfEmployees=employees->size

@invariant manager is employee:
@element-type Person
employees->iterate(
p:Person; b:Bag(Person)=Bag{}
b->including(p)
b->includes(manager)
)

@invariant manager_is_employee2:
manager.employers->includes(self)
@invariant manager.oclisKindOf(Person)

@invariant topTenTwenty:
topTenEmployees->first=topTwentyEmployees->first

Figure 3.2-3: An example of Object Constraint Language (OCL).

OCL and Java are situated in different areas of the software lifecycle; OCL is situated

in the design while Java is found during the implementation stage. Traceability

between related documents can be reinforced between related documents to promote

reuse throughout the software lifecycle. This approach was taken when designing and

implementing the ReSULT reuse library to aid reuse within an organisation by

providing a continuous application of reverse engineering to reconstruct the early

design decisions in the lifecycle of a system.

• Class name
• Package name
• Imports
• Interfaces
• Methods (including parameters and return types)
• Fields

Figure 3.~-:~: Ali~t o(l)imil~s~ctures identified between OCL and Java scripts.

74

Examining the code transcriptions of Java (Figure 3.2-2) and OCL (Figure 3.2-3)

brings about the identification of similar elements displayed in both. This

commonality aids the development of the automated process for analysing

components. Figure 3.2-4 displays the information that is held in both languages. It

is noticeable that Java contains more structures within its code than OCL; examples

are the use of keywords static, abstract etc. These details are also included into the

system, so that this increase in the levels of information will provide a greater success

rate for the ReSULT system, by providing the ability for a reuser to gain a greater

understanding of a component. The inclusion of class and package names gives the

reuser an initial indication of what exactly the code does. This acts as a first level of

understanding before the reuser continues to observe possible interactions with other

classes via interfaces and import declarations. Specific information about

functionality is identified by analysing methods and the annotations that lie within

methods.

These factors help the reuser build up a satisfactory mental model of a piece of

software. By generating this mental model, the reuser can then start to map between

the individual software comprehension domains (Section 2.3 .1), starting from the top

downwards to identify whether this is ideal to their desired usage.

3.2.2 Developing the 'Insert Component' Use-case

The goal o.fthe,,Use case 'insert component' is to place a component into the reuse

library. The ReSULT functionality will process this component, identify important

features of this code, and place these details with the component itself into a database.

75

«traces» ,. -------
I '

Insert Component
-------------1 Insert Component) ------- ', /'

-~">----r---"'(',
_., ,.-" I \.

,......... / I \.
.,..,.. .,"' I \.

.... ...- "" I \.
-"" "" I \.

.,...,....-- ,.,-' ,' ',
............ ,."' I \.

.... "' / I \.
,..-'.,..,. ,."' _.I ',

L~~ L"' 'J
.--~-.~.t-..., «control»

«boun .. ary» «boundary» «entity»Repository of Components
Webservice Insert Interface Insert

Figure 3.2-5: A diagram displaying the trace between the use case and the analysis
classes.

Figure 3.2-5 displays a number of roles that are needed to fulfil the use-case.

Jacobson et al [Jacob99] describes how these roles fall into three categories. These

are:

• Boundary class: acts as an entry point for an interaction.

• Control class: coordinates interactions between boundaries and entities.

• Entity class: storage of state.

.------,,.......,.--' 3. Validate and insert componant'----...,-----,
«boundary» 1 2. Enter file location «COntrol» > centity»
Webservlce Insert Repository of Components

Reuser

Figure 3.2-6: Collaboration between analysis classes.

76

How the classes in Figure 3.2-5 collaborate is displayed in Figure 3.2-6. Each class

must fulfil all its collaboration roles. A collaboration role describes the type of object

that may play the role and describes its relationships to other roles.

If a class is changed, the developer of the class must verify that the class can still fulfil

its roles in use-case realisation. If a role in a use-case realisation is changed, the use-

case developer must convey the change to the class developer. The roles thus help

both the developer of the classes, and the developers of use-cases, to maintain the

integrity of the analysis [Jacob99].

Analysis classes when designed give rise to more refined design classes that are

adapted to the implementation environment.

lnsertfonn Design dass diagram showing part of the realisation of the lnsart Sourcecode usa case . j
-;?, /\ Vlaw Componant

\ Client Web Application

Actor4

~""""'""' +Showfile() I / ~+"&earchCritsria()
+Verify File Upload()

Procass Status 1/
Source Code Manager Component Manager Component

+Status()
~ ~

if"uploadedFilelocation() +CraataNawComponent()

~ ~ ~
File Upload Soun:eCode Interpreter Peralstant Clasa

+ComponentTransfer()

Figure 3.2-7: A design model showing the interactions between design classes in the
'Insert Code' use-case.

Within Figure 3.2-7, the 'Source Code Manager' coordinates the actions beneath the

web service. Once the details of the uploaded file are passed to it from the web

77

service, this component invokes the 'File Upload' to upload the binary from the

client's specified location. The binary content of the file is passed towards the source

code interpreter. For each language catered for within the ReSULT, a different

implementation class is used to analyse the different language formats. The outcome

of this analysis is the formation of a generic 'Sourcecode' class. This is constructed

from a list of similar structures identified between the OCL and Java in Figure 3.2-4.

The component manager negotiates the interactions with the database. For this

application, this class inserts the component, the abstract representation, and the

keywords that are associated with this component into the persistent class.

3.3 Software Reuse Techniques and Processes

The introduction of any new system is based upon the fact that it will do the job of the

current system and more. It would not be beneficial for a system to be replaced by

one that just replicated its current features, or does not improve dependability, or

reduce the time taken for an operation to be executed. To provide the additional

functionality, changes to current processes are needed to allow for the added features.

This section will look towards the processes currently used within software reuse, and

how they will be integrated with the current practices of software developers.

78

3.3.1 Techniques

3.3.1.1 Internal Memory Reuse Techniques

A programmer develops their own approaches to reuse. One factor that inhibits the

success of systematic software reuse is the problem of 'no attempt to reuse'

[Yunwe02]. This involves developers constructing new systems from scratch rather

than reusing existing software components from a reuse repository. Fisher categorises

this into two cognitive difficulties; firstly, developers are unaware of the existence of

reusable components, and secondly there is a lack of means to locate the wanted

components [Fishe87]. Further studies from Rosenbaum and DuCastel [Rosen95]

conclude that most software developers only anticipate the existence of a limited

portion of components within a repository, and that they are would not actively seek

the reuse of components whose existence that did not know.

The CodeBroker system [Yunwe02] attempts to amend these difficulties by offering

reusable components to a developer to import whenever a prologue comment is

inserted into the editing space. This comment is parsed into a query for matching

against the reuse repository. The output from this was a selection of components;

however, Yunwen acknowledges that this was prone to identifying irrelevant

components to a developer [Yunwe02].

Without a developed integrated support tool such as CodeBroker [Yunwe02] that

users are familiar with and trained to use, programmers have their own interpretations

of how to reuse source code. There are a number of approaches outlined in [Retko97]

79

that document how a programmer thinks about reuse. These are 'Write/Copy/Paste',

code scavenging, and design scavenging.

A reuser at an early stage may identify similarities in functionality at different stages

of a program. It is at this stage that the reuser prepares a generic section of code that

may be copied to other locations in the code with the possibility of slight alterations to

adapt to differences in data types or functionality. Within the process of code

scavenging, programmers may identify relevant pieces of code within previous

programs they have implemented or have identified through program analysis. These

sections of code are then copied and pasted for further instances, modifying these

sections if necessary. Design scavenging involves the reusing of code abstractions,

rather than reusing code.

After analysis of the current practices, and performing a judgement upon the size of

this master's work, it has been decided that a code and design scavenging approach is

taken within this work. An extracted component will be displayed on the screen to

the user. The user is then free to copy and paste this component to their work.

3.3.1.2 External Memory Reuse Techniques

During the identification stage of software reuse, an external entity must be used to

store components in an organised manner. The manners of which these components

~e organ!~ed are important fqi: :Ute ~fficiency_~(f ~cur~y of the system, In this

modem era, the storage and efficient retrieval of these components is gained through a

database.

80

3.3.2 Processes

3.3.2.1 Identify Reusalb~e Component

Insert Component

Rauser

Figure 3.3-1: Realisation ofuse-cases with ReSULT system.

The primary goal of any reuse system is the identification of components that have the

opportunity of being reused. Identifying these components is realised as a use-case

because this process directly interacts with a reuser (Figure 3.3-1). This is a crucial

stage within the process of software reuse. Any failings within this process may mean

a substandard fmal product being produced or an increase in effort to develop the

product. There are two independent approaches towards the identification of reusable

components. The engineer may rely upon their own experiences and internal

representations (Section 2.3 .2.1) to produce sufficient external representations, or they

may place their faith into an external memory system (Section 2.3.2.3).

For the ReSULT reuse library, the analysis of comments and program structure will

provide an accurate external representation to help a reuser define a realistic mental

model of a component. These factors will help the reuser build up a satisfactory

mental moderofapiece ofsoftWare from' its external representation displayed by the

system. By generating this model, the reuser can then start to map between the

81

domains from the top downwards to identify whether this is ideal to their desired

usage.

3.3.2.1.ll External RepresentatioDD.

The inserting of a component into the system relies heavily upon how the ReSULT

interprets the external representation of the component. External representation can

be identified as being a method of transferring the "pseudo code" of the initial

software engineering into a form that can be interpreted by other engineers to identify

decision decisions and architectures within a system. This can be via notes produced

while developing or through documentation produced during the design phase.

To avoid this initial learning curve, the ReSULT system externalises scripts in a

textual format. It also ensures that when externalising the problem using database

servers, textual search criteria will identify matching text from external

representations of components. If these scripts were pictorial, an approach into

translating textual search criteria to effectively search the database server would have

to be designed.

3.3.2.ll.2 Externalisling the Inter:nan Representation

The ReSULT reuse library takes into consideration the factors mentioned above. A

keyword approach to searching for a component acts as a frrst level filter. Other

details must be given to the reuser to aid further levels of filtering, and because

different types of users need different types of information to reuse a component

82

using different kinds of representation. This places a great emphasis on how a

component is classified or selected and is of vital importance for a success reuse

scheme.

3.3.2.1.3 Identifying anull Classifying a Component

A programmer when reusing one of his/her programs will make use of their old

internal representations as well as their external representations. These internal

representations can be abstracted into the form of programming concepts or patterns

that are used as searching criteria to filter their own long-term memory for reusable

objects. The internal representations of the components found can be evaluated

against each other. If an engineer's own internal representation of components does

not reflect well upon their own desired solution of the problem, an external memory

can be used to act as a first stage of filtration during the selection process. This

external memory is in the form of a library. The automated search tool that examines

this library must tackle two cognitive issues.

• To help the programmer externalise the problem or requirements

• Help him select some solution

ReSULT provides early results within the selection process from which the reuser

must evaluate between to gain the most desirable component. To help them make this

decision, the results produced from searching the system are provided by entering
~

search criteria concerning the properties of the component i.e. class name, package,

imports etc.

83

This method of finding a component has its advantages due to the ability for an

engineer to have access to an infinitive number of components. However, it is of

primary importance that the reuser has sufficient knowledge of what that component

actually does and how to apply it to his solution. Cross evaluation of a solution is

used to identify the best solution but the reuser's confidence of using another

engineer's code may be low and may prove to be a de-motivational factor towards

software reuse within an organisation.

To reduce any de-motivational factors caused through user confidence, the ReSULT

reuse library incorporates feedback from reusers, and the number of times the

component has been selected into the searching algorithm. High ratings from reuser

feedback and more extractions a component has will provide it with a higher rank

when being compared to components with similar criteria that matches the reusers

search criteria.

3.3.2.1.4 Developing the 'Identify Reu.nsable Componellllt' Use-case

As discussed in the design Section 3.3.2.1, the use-case 'identify and select

component' concerns the realizing of possible reusable components from a reuse

library. This involves using search criteria in the form of keywords to generate a list

of results. From these results, a software developer or librarian (Section 2.2.2) can

view details stored in the database and extract the component if it is desirable.

84

,,-~------ ,
_ _ -(Identify Reusable \

-------------- ', Component /'
>- ~ .,."' __ 7___ '

,.."' I ',

«traces»

, ' ' II ',,

/ I '
,' I ',

I~,.,"' \1
1

',,"\

«bouncfary» «COntrol»
Webservice Search «entity»Reposltory of Components

Figure 3.3-2: The realisation of analysis classes from the use-case.

I Use Case 1: A. Identify possible components J
11 L ogon

I 3. Extract data from reposiiOfY ..._
/ I cboundmy» I 2. Provide search aiteria ccontroh• 7 centity» . Webservlce 1 7 Search Repository of Components

I 5. Display rated resu~s I J 4. Rated resu~s •
I I

._
.......

Rauser

Figure 3.3-3: The collaboration between analysis classes.

Figure 3.3-2 identifies the classes involved in the 'identify reusable component' use-

case. Figure 3.3-3 displays how these analysis classes interact and collaborate with

each other during the use-case. The control class within these diagrams, 'Search', is

the focal point for the rest of this section.

The goal of the 'Search' control class is to produce search results from querying the

repository of components. The traceability from the analysis model to the design

model is display in Figure 7.4-3 of Appendix Section 1. In this figure, the search

manager controls interactions between "search keywords", "rate keywords", and

"process keywords".

85

Sean:hForm

I Design dass diagram shoiMng part of the realisation of the Identifying Souroealde use case j ?,

~
Search Results Client Web ApplicatiOn Transaction Manager Extract Component

--------:?> ~ __________,

l l Aclor3 Component
Display Component Search Manager Component Manager

/~ ¢I
Rate 1<8yv«lrda Search K8yv«lrda MYSQL Database

+performSean:hQ

Figure 3.3-4: A Design Class Diagram displaying the classes involved in the use­
cases 'Identify and Select Component' and 'Extract Component'.

Figure 3.3-4 identifies how the design classes interact with each other to fulfil the use-

case. Once the user has entered the search criteria, these parameters are passed to the

web application and then towards the search manager. This design class coordinates

the interactions between the database and the components that produce the search

results.

The design class 'Search keywords' has the functionality of producing search results

from a number of individual searches. The goal of taking this response is to view the

code repository using a faceted classification. The facets that are looked upon are:

• ClassName

• FieldName

e Method Name

e> Class Keyword

• Method Keyword

86

These results are returned back to the search manager where they are placed into

ranking by the design class 'Rate Keywords'.

3.3.3 Extract Component

Figure 3.3-5: Realisation of use-cases with ReSULT system.

There is a strong possibility that when a reuser i.e. a software developer or librarian

(Section 2.2.2) identifies a component that is suitable to their needs, it will not be

100% compatible with the current system. It is therefore likely that disruption will

occur when integrating a component into a system. This 'black box' reuse concept of

components is not reusable enough in a current working environment. The 'white

box' concept allows the reuser to 'open' the component to automate the specialisation

of the code at a low level. The ability for this specialisation allows a general piece of

code to be adopted to apply to one's precise problem.

Section 2.6 describes how design patterns fit into software engineering and highlights

the positives for use within the development of systems. ··Design, patterns are the

easiest to integrate into a design change and are without the demand for any

87

specialisation. This factor often produces a general viewpoint that design patterns are

the most successful method of reuse.

There are a number of different levels to which code is observed. Three levels can be

defined reflecting upon the tasks needed. The highest level reflects upon management

based issues that orientate around making decisions or analysing relationships

between elements in a system. A desire to analyse components and data structures

within a system is allocated towards the middle layer of a system where system

architects. The middle layer also the detailed the algorithms used. A low level

approach is undertaken by programmers. Their aim is to understand the semantics of

the code, and identify control flow and data flow through the code. ReSULT takes

these matters into consideration and allows users to copy and paste code (Section

3.3 .1.1). This takes into consideration the fact that the possibility of code being

seamlessly integrated is low. It is best giving the reuser the ability to be selective

upon the code they reuse to allow for this.

-------.,.... -.....

" ' «traces» ' ' _____ / -l Extract Component)
--- ----- ,."'""' ', // -------- ,""" ,,....--------<,

"' ' ,."' I ',
"' I ' ,"' I ',

,.""' I ',

L,."'"' . ..j_ ',,l

Extract Component

«boundary» «control» «entity>)Reposltory of Components
Webservtce Extract

Figure 3.3-6: The realisation of the analysis model from the use-case.

Figure 3.3-6 shown above identifies the classes involved in this use-case. In this

section, the focus is on the control class 'extract'. This will provide the functionality

of extracting the component from the database.

88

3.4 Distributed! Technologies

One of the goals of producing the ReSULT reuse library is the ability to provide

effective reuse features over the Internet or a company's Intranet. These

environments provide a broad variety of implementations, platforms and devices.

XML web services provide the ability to exchange messages in a loosely coupled

environment using standard protocols such as HTTP, XML, XSD, SOAP, and WSDL.

SOAP and WSDL are both based on XML. These XML messages can be structured

and typed or loosely defmed.

Successfullyinserted.aspx

Viewdesignpattem.aspx

Figure 3.4-1: Web application structure.

In Section 3.3.2 and 3.3.3, a number of web services were defined. The web services

designed are:

89

• Insert Component

• Identify Reusable Component

• Extract Component

The implementation of these web services will be undertaken in the .NET

environment. .NET has a number of advantages over other web service architecture;

these are listed in Section 2.5.12.

For a user to access these web services, a web application has to be constructed to aid

in the usability of the system. The building of this application provides a front end to

these services. The user will interact with this system without the knowledge of the

complexities hiding behind it. The design for this web application is displayed in

Figure 3 .4-1. There is a distinct hierarchical structure to the web application. The

control flow through the web applications incorporates two operations, inserting

components into the system and searching for reusable components. A number of

branches to the control flow propagate once search results have been generated. This

allows individual elements (such as fields) of component to be examined more

closely. The following chart displays the interactions web pages have with web

services defmed in Section 3.3 .2 and 3.3 .3.

90

Web Page Web Service Interacted With

Searchform.aspx Identify and Select Components

Insertingcode.aspx Insert Component

Viewsearchresults.aspx Identify and Select Components

Successfullyinserted.aspx Insert Component

Viewdesignpattern Identify and Select Components

Viewclass.aspx Identify and Select Components

Viewfields.aspx Identify and Select Components

Viewcomponents.aspx Identify and Select Components

Extractcomponent.aspx Extract Component

Table 3.4-1: Web page interaction with web services.

There are two main paths of execution within the system that correspond with the two

main processes involved in reuse, identifying a component, and inserting a

component. As detailed in Section 3.3.2.1, the more information a reuser is given

helps them choose a component; however, users do not want to be overloaded with

too much information. It has been decided that the information given to the user is

categorised into structures that are identified in Figure 2.5-3. These enable reusers to

view fields, classes, and design patterns to help them generate an internal

representation of the component.

To communicate between the web application and the underlying web services, data

is passed in the format of XML.

91

3.4.1 XML Encodings

3.4.1.1 Identify and Select Components

<Search>
<Component>

<ID><IID>
<Rating></Rating>
<Name></Name>
<Package><!Package>
<Interface></lnterface>
<lnherits><llnherits>
<Designpattem></Designpattem>
<Abstract>
<Static></Static>
<Comments></ Comments>
<Field>

<Name></Name>
<Type></Type>
<Accessibility></ Accessibility>
<Static></Static>

</Field>
<Method>

<Name></Name>
<Returntype></Returntype>
<Accessibility></ Accessibility>
<Static></Static>
<Parameters>

<Name></Name>
<Type></Type>

</Parameters>
</Method>

<I Component>
</Search>

Figure 3.4-2: The XML encodings for sending a response for a search request from
the identify components web service.

Figure 3.4-2 displays the design for XML encoding when from the identify

component web service when responding to a message from the web application that

the web application. The data is initial displayed in the Viewclass.aspx (Figure

92

3.4-1), and is recovered from cache for pages such as Viewfields.aspx,

Viewcomponents.aspx and viewdesignpattems.aspx (Figure 3.4-1).

3.4.1.2 Insert Component

<Insert>
<Language><!Language>
<Designpattem></Designpattem>
<Trace><ffrace>
<Component></ Component>

</Insert>

Figure 3.4-3: The XML encoding when sending a request for inserting a component
from the web application to insert component web service.

When inserting a component into a ReSULT, a user will be prompted for the file

location of the component. In addition to this, the user will have to input the

component's language, design pattern, and links to components that it traces from.

Figure 3.4-3 displays how this data is encoded into XML at the web application and

sent to the insert component web service.

3.4.1.3 Extract Component

<Extract>
<Component></Component>

</Extract>

Figure 3.4-4: The XML encoding when requesting to extract a component from the
extract component web service.

When a user extracts a component, they have already analysed the structure of the

component and related information returned from the identify component web service

(Figure 3.4-2). Figure 3.4-4 displays the message returned from the extract

93

3.4.2 Web Application Design

Header

Detail

Footer

Figure 3.4-5: Template design for web application pages.

The design template for ReSULT's web application is shown in Figure 3.4-5. The

header will display the title of a page. The footer for pages that are children of

Viewsearchresults.aspx (Figure 3.4-1) will have links to return the user to search

results and to search again. All other pages within the web application will contain a

hyperlink to direct the user back to the index.aspx (Figure 3.4-1). Formatting within

the web application will be designed using CSS scripting (Section 2.5 .15 .1).

When displaying results, the XML produced by web services 3.4.1 will be translated

into displayable HTML using a combination ofXSLT (Section 2.5.15) and CSS

(Section 2.5 .15 .1) within the detail section of the template. This will provide

organised, human reiulat:He infoiniation oil c6iiiponehts:

94

3.5 Summary

In this chapter, a design for the ReSULT system has been outlined. This design is

split into two sections. Firstly, the processes featured within the system are identified

and defmed using use-cases. These are obtained from examining the processes within

current reuse approaches. The identified use-cases are 'Inserting Code', 'Identifying

Components', and 'Extracting Component'.

After that, the three use-cases are applied to distributed system architecture. Within

Section 3.3, an examination of the technologies involved within the proposed

distributed system is examined and the use-cases developed into a workable solution.

95

Chapter 4 Implementation

4.1 Introduction

In the previous chapter, a number of use-cases were defmed for the ReSULT system.

These reflected upon how the system would behave towards the user. In this chapter,

the findings from the design are expanded to explain 'how' this system is

implemented.

The first aspect of the system discussed is the basic functions that were identified

from the use-cases found during the design of this system. These functions are

examined during Section 4.2, and during Section 4.3, the underlying architecture and

development tools needed to fulfil these functions are examined.

From Section 4.4, the details of the system are described in their full context. This

includes a number of areas to discuss; the data structures used within the system, the

methods used to insert data into the system, the algorithms used to select appropriate

components, and how this data is displayed to the user.

96

4.2 Functions and Development

During Section 3.3.2 and 3.3.3, the use-cases 'Insert Components', 'Identifying

Reusable Components', and 'Extract Component' were identified within the proposed

design of the ReSULT system. In this section, an introduction into the proposed

fulfilment of these use-cases is described, and how these will be developed into a

distributed architecture.

By having the function for inserting components into the system, the system provides

the user with the ability to distribute their knowledge and expertise through an

organisation by allowing users access to their work. ReSULT also helps a reuser

filter through many transcripts to identify possible components that may fit into their

mental model of their solution. It does this by searching for beacons within the code

that fit the search criteria. There are many stages to a reuser selecting a component

for reuse within in their own development. During Section 2.3 .2 a discussion is made

of how reusers defme internal representations of code to evaluate their value for

development with. Within Section 3.3.2.1.2 descriptions ofthe various methods for

externalising these internal representations are placed. The ReSULT system is

designed to aid the identification of possible reusable components that match the

reuser's needs by acting as an initial filter of accurate internal representations that are

produced by ReSULT parsing components. By these actions, ReSULT aims to reduce

the number of components a reuser has to examine before proceeding with

development.

97

Web driven technologies aim to promote distribution within a business. This is based

upon open standards for communication, such as HITP, to provide the ability for

servers to talk with other servers and to individual clients. By defining a

communication standard, such as HITP, allows the breakdown of communication

barriers that may exist with heterogeneous networks.

4.3 ReSULT Architecture

The ReSULT tool is designed for a distributed heterogeneous network. It is a Web

based application that provides the ability to communicate to clients using the

standard HITP protocol. This functionality is provided using a number of servers

that offer unique services to client requests.

4.3.1 Servers

My SOL
Server

XTYPE
Application

Figure 4.3-1: ReSULT architecture.

Web Browser

Figure 4.3-1 displays the architecture of ReSULT. In this figure, a number of servers

are communicating with other servers and other external entities. A database server

acts as a wrapper around databases. This controls a number of features such as

maintaining consistency of the data, serialisation with atomic transactions, and fault

tolerance. In this implementation, it was decided that a MySQL database would

98

provide this service over other database server applications such as Microsoft's SQL

server or Oracle because of its availability over the web and the licensing costs that

are incurred for using SQL server or Oracle.

Servers often have designated processors. By having these individual processors,

multiple requests are dealt with effectively and efficiently. The ReSULT prototype is

an experimental system designed to demonstrate a possible solution to a reuse library;

therefore it was decided that there would be no loss in performance if both the

MySQL server and the Microsoft Internet Information Server were to be located on

the machine, and operating from the same processor.

A web service deals with requests from Internet browsers and fmds the file or

program requested. The chosen web server for ReSULT was the liS 6.0 (Internet

Information Services) by Microsoft. This is because liS has the ability to handle

requests for active server pages (ASP) by implementing an ASP. NET worker

process, and dealing with web service interactions. liS is more desirable to

developers working in Microsoft operating systems. Other products such as the

Apache Web Server are aimed towards non Microsoft operating systems where web

applications such as Tomcat are being used to process Java Servlets and Server Pages.

99

1.1.1 Software
WindowsXP Pro
Internet Information Services 6. 0
MySQL Server
.NET Framework 1.1
C# .NET within the IDE Visual Studio .NET 2003
Internet Explorer 6. 0

1.2 Hardware
Pentium IV 2. 66MHz
256MegRAM
Ethernet 10/100Meg

Figure 4.3-2: Details of software and hardware development environment.

Figure 4.3-2 displays the details of the hardware and software that was used in the

development of the ReSULT system. It was decided that this project would be

developed using mainly Microsoft products. Over the past years, Microsoft has

developed a stronghold within the software development market. Recently the

emphasis has moved towards the distributed computing area. With the launch of

.NET, Microsoft has developed an approach that encompasses this area. One feature

that .NET has is the ability to reduce the number of requests made to services.

Microsoft developed within its .NET framework an approach that drastically reduces

the number of requests made between a web application and a database server. They

identified that by taking a subset of data from the appropriate data sources at the

beginning of the process and storing the data locally within a table (in effect caching

data) inside the web application reduces the number of connections being opened and

closed between the web service and database server. This feature becomes of great

significance because it reduces the demand on the database server when an

application is-scaled up-to cater for 10,000 transactions. The capability of

implementing this feature may not be of much significance during this research

100

because of the number of users, but it this functionality will be implemented and

evaluated within the ReSULT system.

4.3.2 ASP.NET

ASP .NET is a unified Web development platform that provides the services necessary

for developers to build enterprise-class Web applications. It is a compiled, .NET-

based environment that allows authoring in any of the .NET compatible languages

and access to the framework classes.

ASP.NET takes advantage of performance enhancements found in the .NET

Framework and common language runtime (listed in section 2.5.12). These features

offer significant performance improvements over ASP and other Web development

platforms. Other than the Just-In-Time (JIT) compiling of managed code into native

code, ASP .NET offers a number of performance enhances by offering:

• Extensive caching services (both built-in services and caching AP!s).

• Factorabi/ity, meaning that developers can remove modules (a session

module, for instance) that are not relevant to the application they are

developing. ASP. NET also provides.

• Performance counters that developers and system administrators can monitor

to test new applications and gather metrics on existing applications.

• Provide default authorization and authentication schemes for Web

applications.

101

• Corifiguration settings are stored in XML-based files, which are human

readable and writable. Each application can have a distinct configuration file

and can be extended to requirements.

4.3.3 Microsoft Visual Studio

Microsoft Visual Studio .NET 2003 packages all the features of the .NET framework

into an integrated desktop environment that allows seamless editing of HTML editing,

compiling source code and other programming tools such as handling ADO

interactions, xml handling but to name a few. Not only does this make Web

development easier, but it also provides all the benefits that these tools have to offer,

including a GUI that developers can use to drop server controls onto a Web page and

fully integrated debugging support.

102

4.4 Data Structures

Figure 4.4-1: Table layout used in ReSULT.

Section 2.3.2.1 defines what features of a component are needed when identifying its

internal representation, and are listed in Figure 3.2-4. These features are displayed

within the 'Sourcecode' database table in Figure 4.4-1. The internal representation of

a component is separated from its actual content (stored inside the table

'coderepository') to maintain efficiency in the searching repository. Additional

properties, such as fields and components, are grouped together into individual tables.

This is to cater for the need to search amongst these properties individually during the

identification of suitable components (Section 3.3.2.1.3).

103

Class Method Field

-ClassiC -Name -Name
-Ciassname -RetumType -Type
-Package -Accessibility -Accessibility
-Interfaces -Parameters -Static
-Inherits -ClassiC -ClassiC
-Abstract
-Static
-Fields
-Methods

Figure 4.4-2: Tables involved in the development of the 'SourceCode' Object.

Sourcecode

-iUniqueiC : int
-sCiassname : string
-sPackage : string
-a !Interface
-iTotaiNumberofComments: int
-a I Keywords
-a !Inherits
-allmports
-iWeight : int
-bStatic : bool
-bAbstract : bool
-sCesignPattern : string
-aiComponent
-a I Fields

Figure 4.4-3: 'Sourcecode' class (mutator1 and accessor2 methods are not shown).

OCL and Java scripts are converted into one homogeneous 'Sourcecode' object

(Figure 4.4-3). The components of this object are displayed in Figure 4.4-2. This

promotes the possible expansion of the system to include different scripting

languages, and aids in the transferring of objects between classes that are involved in

a process. The work needed to do this consists of only defining a process of

converting these new scripts into the homogeneous object. The programmer does not

need to focus upon the underling details of ReSULT programming. 'class type' data

table stores the original types of these homogeneous objects.

1 A mutator method enables a private field variable within a class to be changed.
2 An accessor method enables a class to obtain the value for a field variable.

104

Data involving the number of hits and the ratings a reuser gives to a component

(3.3.2.1.3) are stored inside the tables 'codehits' and 'coderatings' respectively.

Traceability between OCL scripts and Java source code (as mentioned in Section

3 .2.1.1) are stored inside the 'traceability' data table.

4.5 Fu~fiUing Use-cases

4.5.1/nserting Code

During a reuser's interaction with the ReSULT system, he/she will use various forms

that help users insert data and receive data from the system that will satisfy the 'Insert

Component' use-case. These forms are part of the web application. The web

application is a boundary class because of its interaction with entities outside the

ReSULT architecture.

105

Soun:e Coda Manager I
I

L-u.;,pload~ed-FD-el.ocationO 1
- ctraces-

,' I
E3

I
I

Figure 4.5-1: The traces between the design model in Figure 3.2-7, and of the
implementation classes.

Figure 4.5-1 displays the implementation objects present within ReSULT for the

inserting code use-case. When a user has selected the file that they wish to insert into

the system on the web form "insertingcode.aspx", an ASP function called

"System. Web. UIHtmlControls.HtmllnputFile" is used to coordinate the uploading of

this file from the client's location. The result of performing this action is a binary

array. The "insert code. aspx" passes this binary array as a parameter to the web

service "insertingcode.asmx" which inherits the object 'Insertingcode' (Figure 4.5-1).

106

insertingcode (web service)

ssed Depending upon the parameters pa
to the web service, a new instance
lnsertOCL or lnsertSource is used.

of either

lnsertOCL lnsertCode lnsertSourceCode

<1- r--f>

/ ~
DBHandler Transaction

+insertauery() : bool +getStringFromByte() : string

Figure 4.5-2: Implementation classes in the 'Inserting Source Code' use-case.

Figure 4.5-2 displays the relationship between implementation classes (Figure 4.5-1).

'InsertOCL' and 'lnsertSourceCode' both inherit from 'InsertCode' because there are

common functional elements when inserting code such as the facets that the search

mechanism uses (Section 3.3.2.1.4)

Once the web service receives the binary contents of the file, it must be converted

back into a string format; the method Transaction.getStringFromByteO (Figure 4.5-2)

performs this action.

private string getStringFromByte(byte[] filecontents)
{

string sResult="";

for(int i={);i< filecontents.Length;i++)
{

iftfilecontents [i)!={))
{

byte byTmp ={);
byTmp filecontents [i];
sResult += System.Convert.ToChar(byTmp);

}
return sResult;

Figure 4.5-3: A C# method that converts a binary array into a string.

107

After the conversion of binary array data into a string that reflects the contents of the

uploaded file, this string is then analysed. The discussion of the analysis process

follows on in the next section.

4.5.1.1 Code Analysis Framework

Figure 4.4-3 displays the objects that are returned after the operation of

ComponentTransferO in the 'SCHinterface' class. The goal ofthis class is to analyse

the inserted code and identifying the information that aids successful code reuse (as

discussed in Section 3.2.2). The process of interpreting source code produces the

'Sourcecode' object that contains in its fields 'Field' objects and 'Method' objects;

both of these are stored in individual Array lists. This design provides the idea that

code (either Java or OCL) when translated produces one homogeneous 'Sourcecode'

Object. This reduces complexity that may incur if different codes are interpreted into

their different 'Sourcecode' objects. The Class 'Object' is then passed to the

'DB Handler' class that converts it into SQL statements for insertion into the relevant

tables.

108

«interface» OCLComments Java Comments Comments Interface

if ~

Java Handler «interface»
SCHinterface

'r
Code Handler «interface» Code Handler

CHandler

Figure 4.5-4: Inserting code framework.

Figure 4.5-4 displays the framework implemented in the design class 'SourceCode

Interpreter'. This framework promotes extensibility of the ReSULT system to other

programming languages by providing interfaces for programmers to implement.

In Section 3.2.2, an analysis of the scripting languages Java and OCL was undertaken.

The fmdings made from the analysis identified certain features each possessed. From

these features, three interfaces were designed to give the opportunity for languages to

be integrated into the system (full transcripts ofthese interfaces are found in

Appendix Section 8). The features identified consisted of a basic structure of blocks

that distinguished segments of code. Similar features were apparent in both languages

such as fields and methods, and comments. Although, these two languages contained

the same properties, they were defined in different ways; therefore, interpretation

classes for both languages were needed. To ensure that these properties were

implemented for both languages, programmers need to implement the framework that

is de!ffied in Figure 4.5-4.

109

string D identifyMethod (string sSegment, int iComponent/D);
ArrayList identifyBlocks(string sTemp);

Figure 4.5-5: Segment of'SCH!nterface'.

The 'SCH!nterface' within the 'Inserting code' framework provides the ability for the

analysis of object orientated scripting languages. If code is not based around blocking

and object orientation e.g. OCL, this interface needs not be implemented (as shown in

Figure 4.5-5). A key feature with the processing of scripts in ReSULT is the blocking

mechanism. Lines of code are processed together i.e. methods are extracted and

analysed, during this analysis comments and structure about that method are recorded.

This interface also extends the features identified in the 'Codehandler' interface by

allowing the user to identify advanced features that may not appear in other languages

such as accessibility (public, private etc.), inheritance (abstract, final etc) but to name

a few.

ArrayList identifYComments(int iComponent!D,string sSegment);
void addLineComments(string sComment, int iComponent!D);
void checkExpelledWords(string item, int iLocationOjWord, int iComponent!D);

Figure 4.5-6: Methods in the 'Commentlnterface'.

One feature observed was that of different styles techniques of commenting are seen.

As noted in Section 2.3 .2.1, there are two possible types of commenting inline and

prologue. Some languages do allow prologue comments while others do not, such as

OCL. The starting signature that a line maybe a comment also varies from language

to language, and thus mu~~ be irrlPA~mente4 differently for these languages using the

interface 'Commentlnterface' (Figure 4.5-6).

110

The goal of checkExpel/edWordsO in the Commentlnterface is to allow the

programmer the ability to analyse comments to identify whether they are nouns or

commented out code. If these are not removed, they may affect database efficiency,

or produce unwarranted results when searching for components.

4.5.1.2 Keyword Analysis

Keywords are a method of externalising the internal structure of a piece of software

(Section 2.3.2.2). The keywords selected must give an accurate representation of this

internal structure. The selection process for keywords differs for both scripting

languages because their internal structures do not resemble each other's. OCL

describes constmints about a system during the design process while Java describes

and implements these constraints. There must be an approach towards the analysis of

these scripts to extract information from both sources that resembles each language's

internal structure; thus promoting traceability inside the system.

Ill

Scrjpt File : <unspecified>

OCL file actions Java file actions

Remove Commented Out Code

Positions of Comments Calculated

Inserted Into Keyword Relation Data table

Figure 4.5-7: The process of identifying and inserting comments from Java and OCL
files.

In the ReSULT system, it was identified in Section 2.3.2.3 that reusers when

understanding software define an abstract representation of it. To automate this

process of abstraction, the ReSULT system must analyse code for beacons (as

identified in Section 2.3.1.1). An OCL script is observed as being abstract ofwhat it

implements in a programming language; therefore, it was decided that all the data in

this scripting language is analysed as keywords. When analysing Java source code,

112

the data extracted must roughly resemble that of the OCL files. As seen in

Figure 3.2-3, OCL contains information concerning packages, classes, methods,

fields, and comments; this same information is identified in Java.

Figure 4.5-7 displays the different routes of analysis taken in the interpretation of Java

and OCL. OCL files contain large amounts of symbolic representation. The

translation of these symbols into words ensures that there is no confusion when

producing search results. A list of these translations is found in the Appendix Section

7.

"} .. ,"{"," ", ", ", ".", "·", "and", "the", "a", nto", "is", "at",
"this", "all", "\r", "\n", "\t", "on", "of", "", "*", "break;"

Figure 4.5-8: A collection of expelled words or characters that will not appear as
keywords.

In Figure 4.5-7, the execution path for the process of keyword analysis separate and

merges for the different scripting languages. Once the comments in each language are

- identified, the path merges. A1 tliis stage, all expelled' words and characteni that may

113

reduce the effectiveness ofthe searching capabilities ofthe ReSULT system are

removed from the comments. A list of these is displayed in Figure 4.5-8.

The next stage of keyword analysis involves the searching mechanism as discussed in

the following section. By identifying the location of where each keyword appears in a

script and placing those details into a separate table with the keyword, the amount of

data that one search has to analyse is reduced significantly.

4.5.2 Identify and Select Component

The search algorithm consists of observing the repository at different fac;ades. It was

decided in Section 3.3.2.1.4, to construct this approach to produce results that took

into consideration a wider search space, which returned results that would be more

accurate to the reuser. The concept behind this evolves around searching a number of

database tables. These are entered into the system using the approach described in

Section 3.3.2.1.3. The tables searched are 'Keywords', 'Sourcecode', 'Field',

'Method', and 'Class'. The searches performed on these tables are categorised into

two groups:

• Structured Search.

• Keyword Search

A structured search operates on the tables 'Fields', 'Method', and 'Class' tables

whereas the keyword search consist.ofthe search results,from tables 'Class' and

'Method'.

114

The following sections describe how each search produces results, and how they are

amalgamated together to form one set of ranked results.

4.5.2.1 Structure of SQl Query Searches

A simple SQL query is used to identify whether any of the search criteria match

records in any of the three tables. The SQL function 'Like' is preferred to '=' because

it allows the conception that a reuser does not exactly know what they want, so

solutions that approximately fit the search criteria should be allowed as a possible

result.

The results returned from these queries are not in any ranking order. When

performing search queries on the 'keywords' table'=' is used instead of 'like'. The

idea behind this is to minimise the result set that is returned from executing the query.

Keyword searching when compared to structured searches produces a larger results

set. If the function 'like' is used when querying this result set would be even larger,

and thus would reduce efficiency, and may cause incorrect components to be

displayed in the fmal set of amalgamated results.

4.5.2.2 Keyword Ranking Algorithm

The class 'Rate keywords' contains the algorithm for calculating rank. This is

involved when "calculating dis4tnce ,b_etween multiple search, criteria.for example.

115

Example 1

II searching these words to match specific criteria provides so much benefit to reusers

Example2

II searching criteria for a reuser

Figure 4.5-9: Demonstrating ranking of the keyword algorithm.

If two components both contain the keywords specified in the search criteria, there

must be a way of specifying whether one component is more desirable then the other.

This is done by examining the distance between where the words occur within the

script. In Figure 4.5-9, if the search criteria are 'searching' and 'criteria', Example 2

would be ranked higher than 'Example I'. This is because both elements of the

search criteria can be found closer than they can be found in Example I.

This approach is simple in theory for working with only two words, but what happens

if more than two words are entered as search criteria, or there are multiple

occurrences of a word? The approach taken to tackle this problem involves three

stages of processing.

• Grouping together keywords from the same class

• Ordering keywords into the order they appear in the script

• Calculate the distances between each word in a serial fashion and obtaining

an average from these values.

Average Weight= Sum distances between all elements
Number of Elements -I

Figure_~.5-10: Method ?fca!fulati!Jg avemge \Y~ight f~r keyword distancesina class. ·

116

For each class that appears in the results, an average is obtained from the calculation

shown in Figure 4.5-10. A record is also kept ofhow many keywords (including

replications) appear inside a class.

This class returns an Arraylist of'Sourcecode' Objects sorted by their average

weighting. If averaged result scores obtained are equal, the numbers of keywords that

appear in the script are used to define which one gets the higher ranking. The returned

Arraylist will then be passed to the rating algorithm where it will be used in the rating

algorithm.

4.5.2.3 Rating Algorithm

Structure Search Keyword Sear.ch
Class Results Method Results Field Results Class Results Method Results

Figure 4.5-11: Array list fields found in 'Ranking' class.

From the five different fa~ades observed of the reuse repository, five arraylists

containing ranked results are stored as fields in the 'Ranking' class (shown in Figure

4.5-11). These five data collections are grouped together to form a list of class ids

that have been reported as being relevant to the search. For each class id stored in this

data collection, each result's arraylist is queried to identify the ranking, if any. If no

rank is obtained from an"arraylist,,the·rank is"identified as being,Q. Once all ranking

scores are identified from the five data collections, the scores are processed by

calculateScoreO. When the rating is returned, the 'SourceCode' Object is created by

117

querying the 'SourceCode' table with the class's id, and then is passed to the method

InsertlntoRankedO.

xw
XR

CKeyword
MK.eyword
Hits
Ratings

X

Rating

=Weighting
=Ranking
= CKeywordw*CKeywordR
= MK.eywordw*MK.eywordR
= HitsR *Hits W
= RatingsR *Ratings W

= CKeyword+MK.eyword+CStructureR+MStructureR +FStructureR
-Hits- Ratings

= 100.001-x

Figure 4.5-12: Calculating rating formula in ca/culateScoreO.

The method calculateScoreO calculates a rating for a script. Scores for the ratings of

components are in percentages. This reflects upon the ideology that it is highly

unlikely that a component will fit exactly into the mental model the reuser has for the

desired solution, and therefore the likelihood of scoring 100% is low.

To produce dynamic ratings that are not just based on scripts but from feedback from

reusers, data concerning the number of extractions ('Hits') and ratings submitted are

used in calculateScoreO. Section 3.3.2.1.3 discusses why this approach was taken.

Structure searches populate fields in the 'Ranking' class, such as CStructureR (class),

MStructureR (method) and FStructureR (field). These collections are unordered,

whereas searches concerning Keywords are ordered. These are also stored as fields of

the Ranking class (CKeyword-for classes and MK:eyword-fo'fmeth'Sas)'. -

118

Figure 4.5-12 displays the formula that is used for calculating ratings. This produces

results that are highly unlikely to be 100%. For a script to be rated as 100%, it must

have result entries found in CStructure, MStructure, FStructure, CKeyword, and

MKeyword. This would result in a static score of that would be no less than 4 (when

weightings for keywords equal 0.5). With weightings for dynamic scores such as for

hits and ratings, both equal to 0.001. 1000 hits and 1000 '1' ratings (with no other

ratings) would provide a deduction of 4. This implies that x = 0 and nothing is taken

away from the value 100.001. It is highly unlikely for this outcome to occur, and

highlights the points made above about the possibility of components fitting

seamlessly into a reuser's mental model of their solution.

4.5.3 Extract Component

The goal of the 'extract component' use-case is for the user to be able to gain access

to components that are stored within the reuse repository. As detailed in Section

3.2.2, the actual storage ofthe component is separated from its external

representation. This component is stored as a BLOB (large binary object) because the

size of components can be infinite; therefore, components could not be stored in a

normal text field.

119

extract component

p&:!.vau! Li.!!c Seuo;,hSpfK':e;
p&:!.Vftt:t! L!.!!t:. 3-fl!l\J

pub i !e Bts ts~arehS~ i~ p) !
Setu:el\5J18C1! • MU L i J\JC.@<U. i~C. t; ;
SEuehSpace. fK\ct (O,p;;
S~en ,. ll'!U Li~i:tc (j 1

e, ..
k-·
~i

Seuehl'b l.e <1- {~P.rel'll\b!e} Seftt'el'~pftCe.z:Et:>OVi'! {O}; ' 1

'lcerat<U: i "' eh, !t:.i!Cti.C<lt: !j;

i '. f ' £~""::~£k ~·

How UliCful was this piece of code? Submit a rating for it (!-Useless 1 0·
Exceptional).

1' 1 r' 2 1'3 r' 4 r'j r' 6 1' 7 r' 8 1'9 r' }O """SiiiiM - I

Figure 4.5-13: View of extracted component on the ReSULT system.

Once a user identifies a component that they wish to analyse to a greater depth or use

it in their program. They can extract the code from the code repository table within

the system's database. A component is extracted by selecting the extract hyperlink.

This data is transferred to 'extractcomponent.aspx' that initiates and passes the

component id over to the web service 'extractcomponent.asmx'. This web service

obtains the component from the repository. The component is held inside the

database as a BLOB object. When this database is queried for this BLOB object, a

binary array is returned. To convert this to a string format, a new instance of the

'transaction ' class is created. This same mechanism was used to input data into the

system. The code for this is displayed in Figure 4.5-3. After conversion from byte

array to string, the component is displayed on the resulting web page (Figure 4.5-13).

120

4.6 Web services

4. 6.1 Architecture

For the three use-cases identified during Chapter 3, individual web services will be

used to represent each of these use-cases. This ensures that the responsibility for

satisfying these use-cases solely relies upon these services. If the qualities of these

services are of a high standard, it can be assured that the use-cases are satisfied.

Insert Code
[web service)

Reuser

Identify Code
[web service)

Figure 4.6-1: ReSULT web service architecture.

Extract Code
[web service 1

The web services in Figure 4.6-1 are located on a web service host. These services do

not have to be on the same host, but for practicality issues they were for this project.

The ReSULT web application is deployed on the web application server. However,

this web application must firstly identify these services using WSDL descriptions that

are located in UDDI directories. These directories contain a list of services that are

121

registered with them. Querying a UDDI directory will result in the ability for a

programmer to analyse WSDL descriptions, and select services that would be of

benefit to them. The ReSULT web services are registered in a UDDI directory. This

opens up the opportunity for the integration of another organisation's reuse system to

enlarge the current knowledge base (Section 2.4), and allows the opportunity for

Business-2-Business commerce of reusable assets (Section 2.5.3). The full WSDL

transcripts are found in the Appendix Section 2.

4.6.2 Data Transfer inside the ReSULT Architecture

Communication between the web application and the three services is coordinated

using SOAP messaging. As discussed in Section 2.5.7, SOAP is an extension of

XML. .NET allows the programmer to take advantage of SOAP messaging using the

Dataset class that is found in the API of .NET.

122

<?xml version="l.O" encoding="utf-8" ?>
<Source code>

<Table>
<ClassiD>12</ClassiD>
<Classname>CLASSNAMEl</Classname>
<Package>PACKAGENAMEl</Package>
<Imports>

<Import>
<Name>Importl</Name>

</Import>
<Import>

<Name>Import2</Name>
</Import>

</Imports>
<Inherits>

<Inherit>
<Name>INHERITSl</Name>

</Inherit>
<Inherit>

<Name>INHERITS2</Name>
</Inherit>

</Inherits>
<Interfaces>

<Interface>
<Name>INTERFACEl</Name>

</Interface>
<Interface>

<Name>INTERFACE2</Name>
</Interface>

</Interfaces>
<Accessibility>PUBLIC</Accessibility>
<Static>YES</Static>
<Fields>

<Field>
<id>l</id>
<Name>fieldl</Name>
<Type>INT</Type>
<Accessibility>PUBLIC</Accessibility>
<Static>NO</Static>
<Abstract>NO</Abstract>

</Field>
<Field>

<id>1234</id>
<Name>FIELD2</Name>
<Type>INT</Type>
<Accessibility>PPRIVATE</Accessibility>
<Static>NO</Static>
<Abstract>NO</Abstract>

</Field>
</Fields>
<Components>

<Component>
<id>1239456</id>
<Name>COMPONENTl</Name>
<ReturnType>INT</ReturnType>
<Accessibility>PUBLIC</Accessibility>
<PARAMETERS>

<Type>INT</Type>
<NAME>PARAl</NAME>

</PARAMETERS>
<PARAMETERS>

<Type>INT</Type>
<NAME>PARA2</NAME>

</PARAMETERS>
</Component>

</Components>
</Table>

</Sourcecode>
- • - "'-"- ___ ., -,~,.~ o· •

Figure 4.6-2: Example of a Dataset in XML view.

123

Datasets are passed between the web application and services to help those entities

successfully complete their defined processes. Figure 4.6-2 displays a simple Dataset

structure; this highlights the use ofXML within Datasets and how easily this system

could be integrated with other heterogeneous systems by using these open standards.

An important advantage of using Datasets within the ReSULT system is the ability to

cache data. This caching enables the reduction of connections made to databases that

significantly reduce the load a database server has to take when the system is scaled

up (Section 4.3.1). This is of significant benefit to this system when considering the

size of data that is searched through for each user.

The information stored in these datasets will hold data from a number of data tables

that will be used during a user's session. To prepare the datasets for this data, an

XML schema is imported into the datasets. This provides table structure information

and appropriate relational constraints between those tables that will enable the dataset

to be queried. XML schemas are defined using XML schema definition language

(XSD).

124

ilil· i!J ·I!Jiil" : ~ e."'·""· ~· - .-..
~ (I& ill"' IJ•)Id IIJiti Q<lluo - I"* - ~

···············<>-··············

··-·--<>-· ..

Figure 4.6-3: A screenshot of a small section of'dbstructure.xsd' in a graphical

format.

Microsoft's Visual Studio 2003 provides graphical support for this within their

development tool. Within this graphical support, addition elements such as types,

X

complex types etc. can be added to the schema. An option to display the raw XML is

given at the bottom of the screen. The full XSD transcription in XML is given when

this option is selected. This is shown in the Appendix Section 6.

Session["SearchResults "] = dsResults;
Session["DBStructure"] = dsStructure;

Figure 4.6-4: ASP.NET code displaying the initialising of dataset session variables.

125

For each search performed by the ReSULT system, two datasets are created and

populated with data from the database tables' class, fields, and components (Figure

4.6-4). With this choice of tables, the opportunity for the 'sourcecode' object

(Section 4.4) to be created is given. One dataset will represent the entire collection of

components held within the system for the desired language. The other dataset will

hold the results returned by the system for the search criteria entered. In addition to

the data tables mentioned earlier on in this paragraph, this dataset holds information

concerning rating. This is of vital importance when displaying the results to the user.

4.6.3 Displaying Transferred Data in ReSULT

As seen in Figure 4.6-2, raw XML data within datasets is not very pleasing to the eye.

With the ReSULT system there are a number of pages that display database

information. These pages are:

• 'viewsearchresu/ts.aspx'

• 'viewjields.aspx'

• 'viewcomponents. aspx'

• 'viewclass. aspx'

• 'viewdesignpattern. aspx'

Each page displays different data upon it; therefore, each one will have its own

translation page. As·discussed in Section 2.5.15, XSLT style sheets use XPATH

expressions to locate and display data within the associated XML sources.

126

<xsl:variable name ="ClassiD" select="ClassiD"/>

Figure 4.6-5: Sample of 'viewclass.aspx '.

XSL T gives the opportunity for XML data to use within HTML components. This

ability is given by given a variable with the style sheet (see Figure 4.6-5).

target=" self">

<TD>

</TD>
<TD>

<form action="viewfields.aspx" method="post" name="ClassiD"

<input type = "hidden" name="classiD" value="{$ClassiD}" />
<input type="submit" value="View" />
</form>

<form action="viewcomponents.aspx" method="post"
name="ClassiD" target=" self">

<input type= "hidden" name="classiD" value="{$ClassiD}" />
<input type="submit" value="View" />

Figure 4.6-6: Sample of 'viewsearchresults.aspx '.

These XSL variables are applied to a HTML component by encasing the declared

variable within curly brackets. A number of examples showing how this is applied

are displayed above in Figure 4.6-6. This is where xml data is being used as a value

that is being posted in a form. Not only can this be applied to values within a form,

but also it can be embedded into a string that will form a query string hyperlink.

127

<TBODY>

<xsl:for-each select="structure/class">
<xsl:variable name ="ClassiD" select="ClassiD"/>
<tr>

<form action="extract.aspx" method="post" name="extract">
<TD>

<input type="hidden" name="ClassiD" value="{$ClassiD}" />
<input type="submit" name="extract" value="Extract" />

</TD>
</form>
<TD>

</TD>
<TD>

</TD>
<TD>

<xsl:value-of select="Rating"/>%

<xsl:value-of select="ClassiD"/>

<xsl:value-of select="Classname"/>

<Ia>
</TD>
<TD>

</TD>
<xsl:if test="Package!='; 1 "><xsl:value-of select="Package"/></xsl:if>

Figure 4.6-7: Sample of 'viewsearchresults.aspx '.

<TD>

</TD>
<TD>

</TD>

<xsl:if test="DesignPattern!= 1
;

1 ">
<xsl:variable name ="DesignPattern" select="DesignPattern"/>
<xsl:value-of select="DesignPattern"/>

</xsl:if>

<xsl:choose>
<xsl :when test="Abstract [. ! = 1 0 1

] ">
Yes

</xsl:when>
<xsl:otherwise>No</xsl:otherwise>

</xsl:choose>

Figure 4.6-8: Sample of'viewclass.aspx'.

The "xsl.for-each" XP ATH expression iterates through an XML source for every

occurrence of the select value. In Figure 4.6-7, the select value is "structure/class".

If this was applied to the XML in Figure 7.4-2 in the Appendix Section 4, at every

iteration, the XSL processor would extract the group of children tags associated with

this value. In the ReSULT system the main use of this expression was to iterate

through an XML source so that individual items, such as fields, components or

classes, are translated and placed as individual records in a HTML table.

The XPATH expressions choose, when, and otherwise perform a similar to an "if, if­

else, else" conditional statement. This gives the programmer flexibility of what can

be outputted for the user. The main use ofthis functionality in the ReSULT system is

the translation of binary data held inside the system into a textual yes or no format.

This is displayed in Figure 4.6-8, where the value for the abstract field depends upon

whether the input is a '0' or' 1 '.

129

Figure 4.6-9: A screenshot ofthe 'viewclass.aspx' .

. BackgroundTitle {
font-family: Arial, Helvetica, sans-serif;
font-size: 70px;
font-style: italic;
line-height: normal;
font-weight: bolder;
font-variant: normal;
text-transform: lowercase;
color: #FFFFFF;
bac kground-color: #6BB7FF;
letter-spacing: normal;
text-align: center;
word-spacing: normal;

Figure 4.6-10: A fragment of the 'normalstyle.css' file.

The CSS file 'normalstyle.css' provides additional HTML formatting to web pages in

the ReSULT system. An example of this is shown in Figure 4.6-9; this provides the

developer the opportunity to reuse HTML styles in a number of different web pages

by calling its class name. The example in Figure 4.6-10 has a class name

'BackgroundTitle'. The result of applying this formatting is apparent in Figure 4.6-9.

130

The highlighting of tables within the system (seen in Figure 4.6-9) is performed by

Jscript coding. This is located within an HTML component, and is linked to each web

page that uses tables.

4. 7 Summaii"Y

This chapter begins with an insight of the use-cases defmed in chapter 3. Following

on from this, the system architecture is proposed with a detail specification for the

hardware and software used. A description of the objects used within in the system is

further defined. This includes the structure of objects used within the ReSULT

system and the tables used within the database.

The next section of the design elaborates the use-cases identified during the design

stage. There are two areas for discussion within the design for insert code use-case;

these are insert code framework, and keyword analysis. Within the design for the use­

case for identifying and selecting components the keyword ranking algorithm is

defined. The final use-case is expanded and developed for extracting components.

Within the final section of the design chapter, the focus is transferred to the design of

web services architecture and application. An insight is given into how data is

organised and displayed within the web application.

131

Chapter 5 Case Study

5.1 Introduction

The previous chapters of this thesis have displayed how the architecture and processes

ofthe ReSULT reuse system came about. From early on the emphasis of this system

was focused upon three different processes identified within current reuse practices

(Section 3.3.2 and 3.3.3); these are inserting a component, identifying a reusable

component, and extracting a component. This chapter will describe how the ReSULT

system will be tested and evaluated against these three areas of the system.

For any system to be tested and evaluated, a framework must be chosen that reflects

the goals of the system. The second section of this chapter highlights the

experimental framework taken in this research. Using the experimental framework

chosen, metrics are defined that corresponds to this. These are outlined in the

Appendix Section 9.

Section 5.4 concentrates on the application of the ReSULT reuse system in a case

study. This case study describes the process of how the system is to be used in a

small fictional company, and has been chosen to accurately reflect the uses of this

system in a software engineering company that is applying software reuse to their
, ' •-~~: .· _ - . .-.·. - ·2"_;::.-T_,:-~ -·"'- -';·_1-~" ,.,~, • -;- ·

software development processes. From the metrics obtained from this case study,

critical evaluation of the system can begin in the next chapter.

132

5.2 Modelling Software Quality

Improving software quality is one of the aims of dealing with the present software

crisis [Paulk95]. Developers can aim towards improving software quality by being

objective towards it, and measuring their performance.

The main goal of a software measurement process is to satisfy certain information

needs by identifying entities, and the attributes of these entities. The attributes of

software are classified as internal and external attributes. An example of an external

attribute is 'reliability'. This also replies on the environment and users. From a

user's point of view, the quality of the software is regarded as the external attributes

of the product.

Over the years a number of approaches have been defined to analyse the quality of

software. The external attributes that are regarded by the user are hard to objectively

measure, and thus evaluation becomes difficult. To gain effective evaluation a

relationship is established between the external and internal attributes so that software

measurements can be taken.

The measurement principles are formulation, collection, analysis, interpretation, and

feedback. There is often confusion with regards to terms metrics and measurement.

Lorenzcet al"defines the >terms, as-follows "Metrics is a standard' of measurement used

to judge the attributes of something being measured, such as quality or complexity, in

133

an objective manner. On the other hand, Measurement is the determination of the

value of a metric for a particular object. Therefore, considered with those definitions,

the term, measurement should be used, when mentioned about the activity itself to

measure something" [Loren94].

In order to evaluate software quality quantitatively and qualitatively, metrics are

established to measure the software's quality from defmed quality metric models.

The majority of quality models are hierarchically based, such as McCall et al

[McCal77]. A number of problems with these models were identified by Mei et al

[Mei02]. They addressed a number of problems with the traditional hierarchical

quality model:

• Which quality criteria should be included into the metrics model?

• What relationship between these quality criteria?

• Which metrics should be associated with the quality criteria?

• How to combine the values of these metrics to derive the value of quality

criteria? [Mei02].

In practice these problems become more complex as certain metrics are associated

with several quality criteria. This generates the possibility of a metric being positive

in one criterion but negative towards another. There are also conflicts between

quality criteria when analysing maintainability and efficiency.

134

Product Revision Product Transition

Product Operation

Figure 5.2-1: McCall's Triangle of Quality Factors.

For this research, the McCall software quality model [McCal77] is used in the

undertaking of evaluation. This model is an extension to the hierarchical Goal­

Question-Metric model that is generally adopted as a basis of software evaluation.

The main principle of the McCall model is for a system to be split into three areas

(Figure 5.2-1). Each area is then decomposed into a set of measurable properties,

which themselves can be decomposed into a set of criteria for metric assessment.

Product Revision

• Maintainability (MJ (Can I flX it?)

• Flexibility (FiJ (Can I change it?)

• Testability (I' e) (Can I test it?)

Product Transition

• Portability (P a) (Will I be able to use it on another machine?)

• Reusability (Re,J (Will I be able to reuse some of the software?)

• Interoperability (Io) (Will I be able to interface another system

135

:ProdUIIct Operation

CD Correctness (Co) (Does it do what I want?)

CD Usability (UJ (Can I run it?)

• Efficiency (E.r) (Will it turn on use hardware as well as it can?)

• Reliability (RetJ (Does it do it accurately all the time?)

• Integrity (I,J (Is it secure from external attacks?)

The criteria can be attained from using a set of software metrics.

5.3 Software Metrics

For this research, the goal of using software metrics is to help evaluate the quality of

the ReSULT reuse system. Metrics are divided into two independent groups, direct

and indirect. Immediate measurable attributes such as lines of code or execution

speed are classed as direct. Other metrics that are not immediately quantifiable e.g.

functionality, or reliability are categorised as indirect. These are highly subjective

and difficult to measure. The measurement of software quality for the ReSULT reuse

system includes both approaches.

As described in Section 5 .2, metrics are classified into two groups direct, or indirect.

Whichever group a metric is categorised into, it must hold true for the following

properties for the metric to be a good objective evaluator.

• Attributes of effoctive software metrics

136

• Simple and computable

• Empirically and intuitively persuasive

• Consistent and objective

• Consistent in units and dimensions

• Programming language independent

• Effective mechanism for quality feedback [Berto04]

It is extremely important that these properties are held within metrics. Often quality

factors scores are highly subjective and are open to questioning by the reader.

In the Appendix Section 9, the quality factors declared in Section 5.2 are decomposed

into metric based criteria that will be used to evaluate the ReSULT system within a

scenario based case study.

5.4 Case Study

5.4.1 Scenario Based Case Study

The objective ofthis case study is to evaluate the model defined in the ReSULT

model, and to gain metric values that indicate successes and failures of this prototype

system. In order to demonstrate the strengths of the ReSULT system, twenty problem

statements have been defined to produce results that display the effectiveness of the

se}¥Cbi:Qg @d r~tg~y~pg ,m~hani~m, aqdwUl he test~9 on five undergra.QM~t~,and five

postgraduate students to prove how successful it is.

137

The objectives of the case study are to:

• Show how the ReSULT system developed in this research is applied in practice

during a software lifecycle.

• Identify what search settings produce optimal search results, by repeating the

application of the case studies.

• Provide performance data concerning the web services involved in the system

(using the Web Application Stress Tool by Microsoft).

5.4.2 Preparation for the Case Study

The goal of this case study is to identify the success of the searching mechanism, and

of the inserting process. To prepare for the testing of the insertion process, one

hundred Java scripts were developed from a mixture of correct and incorrect solutions

to first year undergraduate programming practical work. With these scripts their OCL

representations are also produced. These were then inserted into the ReSULT reuse

system. With this populated system, a user has the ability to enter search criterion

into system to obtain search results.

To reflect upon how this system would be used within a company, an approach is

o"taken,in this research.that-corresponds ,with normal practices used inside software

engineering companies. These practices focus upon the software lifecycle waterfall

138

model [Jacob99]. This includes stages such as requirements engineering, design,

implementation, testing, and maintenance. The ReSULT reuse system is effective

during the design and implementation stages of this lifecycle. To devise a testing

strategy for the searching mechanism of this system, an analysis into what outputs are

received from the previous stage ofthe lifecycle is needed.

A triangle is made up of three sides. Create options that enable you to initialise a
triangle by entering the length of its three sides. Test whether the lengths of only
three sides have been entered, get each side and identify the area of the triangle, test
whether the sides of the triangle are equal to each other, and from these result
identify whether the triangle is scalene, isosceles or equilateral.

Figure 5.4-1: Example problem statement.

During requirements engineering, a description of the problem is composed that

defines 'what' the problem is, and not 'how' it can be addressed. From this statement,

functional and non-functional requirements are gathered. For the ReSULT system,

there is no concern for functional or non-functional requirements, only the problem

statement is used. This statement is analysed, and broken down into design modules

using a concept called 'Class, Responsibility, and Collaboration cards' (CRC)

[Beck89]. CRC cards follow on from the previous stage of the software lifecycle by

describing 'how' a problem is to be solved.

139

Class name: Triangle

Super class:

Subclasses:

5.4.2.1.1 Responsibilities 5.4.2.1.2 Collaborations

Initialise(side 1 ,side2,side3) Integers

All side lenlrths entered? Boolean

Get area of triangle Real

Are three sides egual to each other? Boolean

Are two sides eg.ual to each other? Boolean

Are all sides unigue in length? Boolean

Table 5.4-1: Example CRC card.

Table 5.4-1 displays the resulting CRC from the problem definition in Figure 5 .4-1.

There are three sections of CRCs; these are Class name, responsibilities, and

collaborators. CRCs are conceived from their problem definitions by identifying the

nouns and verbs within them. The responsibility field of a CRC is populated by verbs

found; these are implemented as public functions during the implementation. The

collaborators field identifies nouns that represent objects within the system.

The data held in the CRC displayed in Table 5.4-1 is used as search criteria.

However, there is a need to be selective upon what infonnation can be used as search

criteria in the ReSULT system. For this, it has been decided to use the class name,

super class, subclasses, and one adjective from each responsibility listed. The words

selected from the CRC example are double underlined in Table 5.4-1.

140

To provide a quantitative analysis of the search mechanism, the process is repeated on

nineteen other problem statements that are based upon nineteen questions from the

first year programming practical work, so that a mean average can be obtained.

5.4.3 Problem Statement for the Case Study

The following problem statement is a fictional account that displays how the ReSULT

system could be introduced into an organisation.

A fictional software engineering company (Amberwood Engineering) has researched

into the advantages and disadvantages of integrating a reuse strategy into its current

processes. The findings from this research highlighted the potential economic gains

and the overall improvement in software quality.

Amberwood specialise in producing diary systems for government departments and

blue-chip companies. These systems often have many similarities, and in the past

programmers have copied and pasted code from their own code to develop new

applications. The introduction of the ReSULT reuse system brought about the

calculation for the total number of scripts (excluding different versions, and design

documents) that had been developed through the lifespan of the company; this

amounted to one hundred scripts.

By introducing ReSULT reuse system, it is hoped that it would help influence the

spread of knowledge through the company, and increase the efficiency of developing

141

solutions for clients. This relies on the searching mechanism of the ReSULT system

to produce accurate results. The criteria used for searching is obtained from the

problem definition defined at the beginning of any contract.

5.5 Quality Factor Scoring

From the metrics defmed in the Appendix Section 9, the application of the quality

factors that are defmed in McCall's software quality model [McCal77] is performed.

The equations defined in Table 7.4-4 of the Appendix Section 9 show how the

individual metrics for each quality factor are calculated. A key for the acronyms used

in these equations can be found in Table 7.4-3 of the Appendix Section 9.

5.6 Summary

In this chapter there is a description of how the ReSULT system will be evaluated. A

software quality model will be used to define specific quantitative and qualitative

criteria to measure from the system. It was decided to use McCall's quality model to

do this.

The second section of this chapter details the case study that will be used to evaluate

the ReSULT system using McCall's software quality model. The applied fictional

scenario consists ofa software engill~~ring company thatproduces reusable

components, and also reuses these components in current projects.

142

The following chapter evaluates the results produced from this chapter.

143

Chapter 6 Results and Evaluation

6.1 ~ntroductoon

This chapter evaluates the results of the work described in this thesis. The results of

the research which has been conducted are evaluated in two main sections that

correlate with McCall's software quality factors [McCal77].

Literature
Survey

Insert
Component

Identify Reusable
Components

Extract
Component

Design

ReSULT
System

Implementation

McCall's
Software Quality
Model [McCal77]

Product
Transition

Product
Revision

Product
Operation

Results and Evaluation

Figure 6.1-1: An abstract representation of the layout contained within this work.

The first section evaluates the issues involved with introducing the ReSULT system

into a fictional scenario. This evaluates how the toolset supports reuse, changes that

may occur to an organisation, and what benefits are brought from the introduction of

the ReSULT system.

144

The second section looks more in depth into the ReSULT system and evaluates the

operations within it. This takes into account the usability, performance, component

integration, and error tolerance of the ReSULT system.

6.2 Transition Issues whern lntroducong ReSUlT onto

an Organisation

6.2.1 Using the Toolset to Support Reuse

For reuse to be successful, a defmed strategy must be put into place for reuse to occur.

The integration of reuse into an organisation must take into account the components

that are already present within an organisation, while defining standards for the

developing of future components.

(Developing J ..____:> (Reusing J .________,> (Maintaining J

Figure 6.2-1: The lifecycle of reusable components.

Figure 6.2-1 displays the lifecycle of reusable components. The following sections

will describe how the ReSULT tool was applied to each stage of the lifecycle.

145

6.2.1.1 Developing Components

When developing components for use within the ReSULT system consideration must

be made towards the number of comments added to the component. This aids the

system in two ways; firstly, it helps a reuser understand important beacons within a

component (Section 2.3.1), and secondly, it is the extraction of these beacons from the

code that provides a mechanism for classifying components.

Components that are designed for reuse must be self contained units of code with

descriptive entities, such as fields and methods, which complement the comments

made to them. Using a naming convention that totally avoids the context of which the

component is a part ofwill not aid the reuser, or the ReSULT system into identifying

a satisfactory component.

The ReSULT is not a compiler of any sort, nor is it an environment where code is

spawned. The ReSULT system is purely a tool where text-based files are processed

by identifying patterns within files and extracting information. The downfall of this is

that the system cannot identify incorrect syntax from the correct format. It is down to

the developer to create scripts in their desired environments. From these

environments, the script can be compiled to identify errors. Once a script is identified

as error free, it is ready to insert into ReSULT.

One key feature ofthe ReSULT system is that it provides the ability of identifying

Java components that have been produced from an OCL component, or displays the

146

trace from the Java component to an OCL component. When inserting a component

into the system, the developer is given the option of inserting a code identification

number that this component traces from. This approach may lead to errors with

inserting the correct code identification number. Components that trace each other

may not be added to the system at the same time or by the same developer. As time

passes, the probability of the correct class identification number being added into the

system falls. The ReSULT system does not offer a 'lookup' facility for the developer

and in doing so, the developer changes his/her role into a 'reuser' within the ReSULT

system to identify which component the current work has originated from.

6.2.1.2 Reusing Components

The second mode of operation is when a developer is searching for a component that

they want to maintain, or include in their current system. In Section 2.2.2, there are a

number of preconditions that must be met in order for a developer to be able to

incorporate components into their software system. These preconditions are listed

below, along with the support which ReSULT provides for each level.

147

1. The component must exist.

What langu¥ is the component? r Java r OCL

Design Pattan (if applicable)

Component Traces to (if applicable)

File
Location

GotnMajo MID.!

Figure 6.2-2: A screenshot of'insertcode.aspx'.

The ReSULT system gives the opportunities for developed Java and OCL

components the opportunity to be inserted into the system. Figure 6.2-2 displays the

form that gives the ability for users to insert components into the system.

2. The component must be available to the developer.

ReSULT system enables developers to store components in a reuse repository.

148

3. The developer must be able to find the component.

search form
i OCL r Java

Se.-cll Criteria

So~

Gg tp Maio H!loy

Figure 6.2-3: A screenshot of 'searchform.aspx'.

The ReSULT system stores as well as the component, an abstract representation of it.

This abstract representation involves data categorised by the means described in

Section 4.4. This provides a reuser with a multi-faceted searching mechanism for

examining a reuse repository by keyword search criteria. This provides a multi-

faceted searching mechanism that is used by a reuser by entering keywords as

searching criteria. Figure 6.2-3 displays the keyword search form that allows the user

to select either a search for Java or OCL components.

149

4. Once found, the developer must be able to understand the component.

view class

e.-j J916Nl6J lauBPS No 0

has be traced to this to c

FUddNt~~a Type AueuibiHI)• Stalic
&tur:ltSpaee Ltrt ,.;- No

SNPI Ltrt prtwa Nil

FieldNIIIM Rltbu11 Type Acumbility Paratnetua
BFS Colutnlctor J1rl'ltD Searr;habk:p

~ bt1oktm pflbl1c Gooi!JJ-:g.n

81£&1n ID B.lwi;J

~

Figure 6.2-4: A screenshot of 'viewc/ass.aspx' (note: picture has had to be merged
because of the page being to large for the screen).

The ReSULT system displays the selected component in the same format as which it

was inserted into the system. The system does not remove any indents or line spaces

from the component, thus keeping to a uniform structure that is readable and easily

interpreted by a reuser (Figure 6.2-4).

150

5. Based on an understanding of the component, the developer must identify the

component as being valid for the current system.

view search results

Rslilttl
a- a- P~ I""'f- Tumt. = At.rrlfd Stlllk tl FNIG Jlfltltod.r
ID N- Co-a _,_
"'916$1" - ~ - NO NO " ~ ~

~

E'dnd. l ""· 19JJ- ~ - NO NO " ~ ~
-~~

~,,. 1«11111V- ~ - NO ,... II ~ ~
-~~ , ~· -11'1611 ~ - - NO NO 0 ~ ~ -....... ,_ 11MI961 ~ - - NO NO " ~ ~ _,

...... , 86~· 7~- ~ - - NO ,., 0 ~ ~
-~~

.._, lim Wl8488 - ~-Nwllrd - NO ,... 0 ~ ~

...... , 41"> 311UOS2_ ~ - - ./VI> NO 0 ~ ~ -d
....,.., I 111m 2MJI2fl2 -. ~=- - NO "" 0

...... , 13"• 321114111 - ~ - - No "" 0 -
Figure 6.2-5: A screenshot of 'viewresu/ts.aspx' (note: picture has had to be merged
because of the page being to large for the screen).

The ReSULT system provides a list of candidates for a reuser to choose from (Figure

6.2-5). This list contains information that is associated with the component within the

system (detailed in Section 4.4); this helps the reuser define a mental model of what

the component does. From this model, a comparison is made with their image of that

the ideal component should be, and a decision on the desirability of that component is

then produced.

151

6. The developer must be able to successfully integrate the component into the

current system.

l ' ' ' " '"

'=--"" -~"' :li:;' '~'"--"~-""ill: w l:Jl:$i, • ~~<; _, >l1i'\-_,..~~-~~'iu,.,~~~:.::s:t:i!.f,.t->!.~:¥$~o;o:. ~~u"s-~;_.., ~:L:::<iii<.:.x-."ti:.u-" ... ~~--lW..~'-o::.G;~:ii.~ ~~Jl'-'i-""'"""'1-~~li~o;"'ibi.~;:, P:':-r'">-"'+":s¥4~

extract com QQCJ,~Jilt~~:~:,:;b~;:~~:~.~:~~.

_pWl:io claaa 815 :o.tn»leueat.s Sean:hStnt.t&Q'f \
private L:!st. SeatcbSpace:
pn.vate t.:i.at Seen;

public ers rSearchable p } ;:
SeatchSpe.ce • ~q Lil\~dl.iet 0 :
&te.tchSp.ac;e.tWd;O,p;:
Seen • r\89 Lin.la!dL:iet 0 :

i! ro.solut.:i."f\ (Qll t.)i {

~et.Qtn tt\le:

List ctl. • o.euccetU$0nl (i:

Itetato[" i .. c:h. :o.t.etat.ot 0:

How useful was this pie« of code? Submit a rating for it (1-Useless 10-
Exteptional).

r- 1 r 2 r- 3 r 4 r .S r 6 r- 7 r 8 r- 9 r 10 Siibmii' :!

Figure 6.2-6: A screenshot of' extractcomponent. aspx'.

The ReSULT system offers the reuser the opportunity to copy and paste the selected

component into their existing system (Figure 6.2-6).

6.2.1.3 Maintaining Components

Maintenance of the software products within the ReSULT system takes two forms, an

existing component that is converted to a reusable component, or a component that is

152

already present within the system that needs to be updated due to performance,

functionality, or error reasons (Section 2.2.2).

When converting existing components for use within the ReSULT system, a uniform

approach must be developed. This approach consists ofthe examination of

components for specific properties, and updating the component where this property

is not met. These properties are listed below.

• A significant number of comments present.

• The inclusion of both inline and prologue comments.

• High cohesion.

• Low coupling with other components.

• A definite naming scheme for fields, and methods.

This approach ensures that an accurate representation is taken for each component

inserted; therefore, improving the accuracy of the searching mechanism within the

ReSULT system.

In current practices, the majority of time that is taken up within the software lifecycle

is during the process of maintenance [Timen89). As discussed in Section 2.3, an

estimate of 50% of all maintenance effort is placed within the process of

understanding the code that is being maintained. Current practices involve

maintainers analysing documentation to determine an understanding. The ReSULT

system is,n~'(J~~igned t~ r~place-the need for documentation (good documen~tion is

always a sign of a good system), but if the documentation is not up to date, the

153

ReSULT bridges the gap in knowledge by displaying the structural features present

within a component and the component it traces from.

6.2.2 The Problems Faced by the Company in Implementing

the ReSULT system into its Existing Process

When an organisation already has introduced a reuse policy into its business

processes, it is harder to integrate the ReSULT system without needing to refme the

system's design to match the current reuse process. Lets take for example, an

organisation that depends upon a reuse repository with a change configuration

management (CCM) system; currently the ReSULT system does not have CCM

facilities. Versions ofthe same component are stored within the system, but the

ReSULT system does not give any indication of which is the current version. One

benefit of reusing code is that as more reusers develop using the same component, the

likelihood is that any underlying errors will come forth and cause new versions of the

component being produced without these errors. This is examined further in Section

7.4 'Suggestions for Future Research'.

6.3 An Evaluation of the Operation of the Toolset

6.3. 1 Usability

Usability is an important concept that has to be investigated within the introduction of

any system. Seamless integration of a new system into an organisation is desired by

154

any software developers, but is often never achieved [Kwon98]. From a user's aspect,

seamless integration of a new system is warranted by the measurement of a number of

factors. These factors are measured by metrics M9.1 through to Mll.2 in Appendix

Section 9 inclusive, and cover the usability factors screen design, error tolerance,

users' expectation, suitability, documentation, and training.

Users Expectation

One of the most underestimated aspects of what is misjudging the users' expectations,

and misinterpreting what the system will do. A system's level of acceptance is

decided by its users. By analysing precisely what features the ReSULT system

performs for reusers to the needs determined in Section 3.2 and 3.3, a value for the

metric Ml0.2 is obtained for evaluation.

Training Strategies/Intensive Training

Users are often unsure about the introduction of new systems to their work practices.

Management have to consider appropriate training strategies that details how new

users should use the system while stimulating confidence with the new system. With

the introduction of the ReSULT system, the content of a training strategy has to

consider two factors, training with reuse, and training for reuse.

Training for reuse considers the introduction of the ReSULT system into an

organisation where reuse is not present. To aid the'integration ofthe ReSULT system

into an organisation, the teaching of reuse is performed using the ReSULT system.

155

The fundamentals of reuse are listed in Section 2.2.1; these must be thoroughly

incorporated into the training scheme. The principles, methods and skills required to

develop reusable software cannot be learned effectively by generalities and platitudes.

Instead, developers must learn concrete technical skills and gain hands-on experience

during training [Schmi99].

Figure 6.3-1: The key processes within the ReSULT system.

When an organisation already possesses some form of reuse within its corporate

boundaries, training strategies are designed to aid the transfer of knowledge from the

current system to the new system that is being introduced. Training strategies are

looked upon as the formation of links between key processes between the two

systems. Within the ReSULT system, there are four key processes (shown in Figure

6.3-1).

Without components to reuse, there would be no reuse system. In an unorganised

system of reuse, there would be many standards of code production. Engineers would

selectively remember useful segments of their code, and reuse them within their own

projects. Reusable code would,~ot be produced through the performing of problem

156

domain analysis, but instead code would be designed for a specific role within a

project. The chance of this role being generic through many different projects is low.

It was discussed in Section 2.2.2 that effective reuse is brought about by successful

problem domain analysis, and by producing components that are loosely coupled and

highly cohesive. In addition to these high level properties, low level properties such

as an appropriate naming schema for variables, methods and classes, which refers

clearly to the problem domain, is applied to components.

The ReSULT system brings to an organisation a central storage for reusable

components. Old practices of only storing their work on either restricted access

network spaces, or individual machines should be removed from the workplace to

gain the most out of software reuse that is aided by the ReSULT system. Training for

this process must focus upon diminishing the culture of the 'not invented here'

syndrome within an organisation by focusing on uniform standards of code

production.

Software engineers follow a different approach towards selecting components for

reuse. In Section 2.2.2, an analysis of the different approaches used in the selection of

components was taken to understand the details of this process. From the fmdings in

this section, an approach was taken that took into an account how a system is

developed from an initial problem statement. This approach was taken during the

gathering of experimental data, and is described in Section 5.4.3.

157

The extraction of a component from the ReSULT system relies upon the user copying

the component from the web browser, and pasting it into their project. This formed a

simple method of transferring components from the centralised repository to

individual projects. Within primitive approaches to reuse, approaches such as copy

and pasting are familiar practices (Section 3.3 .1.1). The approach used in ReSULT

expands this practice by enabling developers to copy and paste components from

other developers instead of not just from their own reusable code; therefore, the need

for additional training is limited.

6.3.2 Performance

When evaluating the performance of the searching mechanism, a number of different

factors are observed that may lead to a downgrading of performance from the search

mechanism. These factors are:

• The number of users connected to the web application server.

• The number of concurrent searches made.

• The amount of data held within the database.

6.3.2.1 Web Application Efficiency

The symptoms of an under-performing web application server are highly noticeable to

the user, and affect their confidence towards the system. Users will wait about 10

seconds for-' a page to download, sometimes-~ts seconds before they4ose interest

158

[Web07]. For the ReSULT system, the Internet Information Service web service was

used to handle the requests for the C# .NET web application.

Connections 1 2 3 4 5 6 7 8 9 10

Average 5714 11428 17142 22857 28571 34285 39999 45714 51428 57142

Response

Time (mS)

Table 6.3-1: The results of the average time taken for the browser to response after a
request.

Within the Windows 2000 operating system, this software is hard coded to accept no

more than ten connections. Table 6.3-1 shows the time taken for the 'index.aspx' of

the ReSULT application to be returned to the requesting browser when ten

simultaneous requests are made for that page. 'index.aspx' is a static web page that

greets the user when they initially reach the web application. The goal of this

experiment was to measure the performance of the ASP. NET worker process within

liS (Section 4.3.1).

159

Ji

31428

2 3 4 5 6 7 8 9 10

Number of Connections

Figure 6.3-2: The relationship between the response time and number connections to
US.

Microsoft's Web Application Stress (WAS) tool simulates multiple clients attempting

to connect to web applications and services. The results shown in Figure 6.3-2

display a distinct linear relation between the response time of the ReSULT web

application and the number of connections. This ensures that as the numbers of

connections grow, the response time does not increase exponentially. It has to be

remembered that a limit is placed upon the number of connections accepted by US at

any one time within Windows 2000. This is set is to ten, and because of the small

number of connections the chance of a downgraded performance from the test system

is highly unlikely. Ten concurrent connections are appropriate within any small

organisation, but it would not be acceptable to any larger distributed organisation with

which this product is aimed towards.

160

6.3.2.2 Web Seii'Vice Performance

The underlying architecture ofthe system consists of three web services that perform

the following processes, inserting, searching, and extracting components. Each of

these web services are based upon XML. This ensures interoperability within

heterogeneous networks of a distributed organisation. However, when compared to

traditional web interactions, the requests and replies are much larger for XML

transaction because ofthe need to parse XML code; this adds additional server

overhead [Tian02].

To test the performance of these three web services, performance monitors were

placed at each web service. These monitors measured the time taken for a request to

receive a response from the web service. To remove the possibility oflosing packets

during transmission testing is performed on the same machine as the web application,

and web services. A mean value is taken from fifty requests made from the ReSULT

web application.

161

Tlma (nS)

Inserting Searching

Web SllfYice

Figure 6.3-3: The mean times taken for the three web services to give a response to a
request made from the ReSULT web application.

There are a number of factors that may cause web services to decrease in response

time, such factors include the number of connections, bytes transferred, or the amount

of computation needed; these factors must be considered when evaluating the web

services that are present within ReSULT (these are listed in Section 4.5). To control

the affects of network latency on the results, all web services and the web application

were hosted on the same machine.

For the web service 'extract component', the web service performance depends upon

how much data is transferred between the MySQL server and itself. The performance

of the web service 'insert component' again depends upon the size of the component,

but additional processing and data transfer is needed to gain an external representation

of the component and for it to be inserted into the database along with the component

itself. It is this additional processing and data transfer that produces the average

162

increases observed in the performance between the web services. Gathering external

representations is vital to the ReSULT system. They aid the searching mechanism by

providing different f~ades that can be searched by the web service 'identify reusable

components'.

Interpreting Figure 6.3-3, the differences between the response time for the web

services that are involved with searching for and inserting components is

approximately by a multiple of ten. This outcome occurs from the design architecture

for the system that is detailed in Section 4.3.1. The design of this web service took

advantage of a number of features within .NET that are designed to reduce the

number of connections made to data sources. .NET provides a caching mechanism

using 'datasets' that stores data tables from a database locally at the web service,

where they are queried, and updated. At the end of the transaction any updates made

to the dataset are updated made to the dataset are replicated to the data source.

The use of datasets within this project is not justified because of the small number of

connections made to the service. In the current testing environment, the cost taken to

deliver the functionality of datasets is greater than the cost for the number of

connections. The implementation of datasets can only be justified when the cost for

the number of connections exceeds this. Even then, web services could be held on

different machines to improve performance (even with network latency), to avoid

implementing datasets. It also has to be considered whether it is worthwhile

implementing this feature if large data tables are involved, this may mean

downloading a large portion of data that may never be used, or produce lapses in the

security of the system.

163

6.3.2.3 Database Efficiency

Database efficiency is not just based upon the software used, but upon how the data is

organised within a database. The design of the database is discussed within Section

4.4. The concept of this design was to produce two representations of a component,

the actual component (stored inside the Code Repository table), and an external

representation. This external representation consisted of five different fa~;ades; these

are Classes, Fields, Methods, Context Relation, Class Type, and Traceability.

Grouping these properties into individual tables removed the need for individual

components to be analysed every time a search is performed.

Number of Files 0 1 2 4 8 16 32 64

Cumulative File Size 0 0.458 1.458 3.458 10.251 25.159 62.245 125.214

Class 1 2.1 2.3 2.4 2.8 3.2 3..4

Methods 1 2.1 2.2 2..4 2.9 3.6 4.8

Fields 1 2.2 2.5 2.7 3.3 5.2 9.6

~ode Repository 1 2.5 3 5.4 18.5 45.3 112.2

~ontext Relation 1 2.1 2.1 2.2 2.4 2.8 3.6

Keyword Relation 1 4 8.1 8.1 10.2 16.4 23.1

~lass Type 1 2.1 2.2 2.2 2.4 2.9 2.8

!Traceability 1 2.1 2.1 2.1 2.3 2.5 2.8

rrotal Size 8 19.2 24.5 27.5 44.8 81.9 162.3

Table 6.3-2: The size of each database table in kilobytes at binary intervals.

Table 6.3-2 displays the size of the database for each component entered into it. A

notable result from this table is when the number of files entered into the system is

164

4.8

5.9

10.5

225

5.3

35.1

4.4

3.5

294.5

zero. This is because the database management system allocates a minimum space

allocation for each table to hold its structure within it.

Storing two different representations of the same component will of course have an

additional cost towards database size. Table 6.3-2 shows that when a small number of

components are held in the database the ratio between the total size of the database

and the actual file size is roughly forty times larger.

6 ~--------------------------------~----------------~

0 2 4 8

Number ol Components

~Actual Size

-CodeRepositO<Y

Figure 6.3-4: The relationship between the size of the component and the amount of
data stored within the database.

As discussed in the previous paragraph, the overhead for storing a small number of

components within the MySQL database table is significantly larger than the actual

size. The largest increase is inserting the database with the data for the first

165

component. From an empty state of8KB, the table increases to 19.25KB by the

addition of just a 0.458KB file.

Overheads are also seen when comparing the actual size of a component and the size

of it within MySQL. Files are stored within MySQL in a BLOB format (described in

Section 4.5.3). Examining the Figure 6.3-4, the BLOB format at which MySQL

stores the component files is not the most efficient. The relationship between these

factors is approximately that the database representation is approximately three times

as big as its actual size.

45

' \
\ '

40

35

\
"• \

" 10 "" '~
5

0
2 4 8 16 32 64

Number of Components

Figure 6.3-5: The relationship between 'Total Size' and 'Actual Size' from the Table
6.2

Figure 6.3-5 displays that the large ratio is just an initial overhead placed upon the

data by MySQL, and that the relationship forms a logarithmic curve. The increase

storage capacity needed to store BLOB objects does not affect this curve in any

166

significant manner. This curve displays that this approach of storing two

representations is ideal when considering large quantities of components that are

needed within a successful reuse programme.

6.3.3 Scalability

When considering the scalability of a system, the analysis of why a system must

change is undertaken. Firstly, a system could become a victim of its own success. As

software engineers realise the benefits of using the ReSULT system, the demands

placed upon the system may lead to a downgrade in the quality of service or a

complete failure unless expanded. Secondly, systems must adapt with changing

business conditions to maintain a cutting edge. This involves adding additional

functionality to the system. Within this section, an evaluation of how these factors are

involved within the system's architecture and search algorithm is performed.

6.3.3.1 System Architecture

The current hardware architecture is limited, and is developed purely for testing. The

architecture ofthis system is shown in Figure 4.3-1. The version of liS used in this

system is hard coded at only accepting ten concurrent connections when installed on

the Windows 2000 service pack 4 test machine. This limits the number of users that

can interact with the system at any one time, and limits possible growth in usage of

the system.

167

During Section 4.3 .1, it was discussed how there were different web servers available

on the market. The performance of Microsoft's liS compared to other web servers,

such as Zeus, iPlanet, and Apache, liS is far superior when delivering static pages and

performs very well when dealing with dynamic page requests [Tian02]. This is

apparent when taking into consideration the results from Figure 6.3-2 because liS

delivers a linear relationship when measuring the response time and the number of

requesting connections; however, increased testing is needed to identify whether this

is true when larger numbers of requests are received; a change of operating system is

therefore needed.

Consideration of the movement away from the Windows 2000 architecture is of

paramount importance when planning for the future development of the ReSULT

system. When choosing an operation system that is suitable for the task of hosting the

ReSULT system, it must have the ability to host .NET services, liS, and has the added

feature of being secure. Windows based operating systems, such as Server 2003 or

Windows XP Professional, are examples of operating systems that can host .NET

services and liS, but the level of security within these systems is questionable, with

many security breaches being identified since their releases. In the future, it is

worthwhile for an investigation towards the compatibility of Linux based servers

within the ReSULT architecture to improve security ofthe system.

The adaptation ofthe ReSULT system from a test system to a live system, involves

the separation of the web and database services on to individual servers. The

distribution ofthese services on to individual machines will increase the capacity of

168

the system, but will also increase network latency, and bring in concurrency problems

with database locking during transactions.

As users identify the benefits of reuse, new applications for reuse are identified within

the organisation. To allow this growth, the software architecture of the ReSULT

system is designed to a framework that allows developers to expand the system. Full

details of this framework are found in Section 4.5 .1. This framework contains

interface definitions that must be implemented when developers are expanding this

system. To allow for the structural differences between design components and

object orientated source code, an additional interface is implemented for the

development of additional source code languages.

6.3.3.2 Algorithms

The efficiency ofthe algorithms involved with the ReSULT is an important factor

when considering the scalability of the system. Within the ReSULT system, two

algorithms are present that involve the insertion of data into the system, and the

searching of information.

169

Search Algorithm

350000000

300000000

250000000

i
-:: 200000000
I
~
;,
~ 150000000 ..
~

110000000

50000000

0
19.2 24 .5

I

I
iio I
"' I

~
i,i

~
_;----

27.5 44 .8 8t9 '62 .3 294 .5

Tota l Size of Database (KB)

Figure 6.3-6: The relationship between the database size and the average time for the
ReSULT to produce search results when using one keyword as search criteria
keyword.

The details of this algorithm are detailed in Section 4.5.2.2. A major factor of this

algorithm is the amount of database caching involved. Described earlier in Section

6.3.3.2, it was concluded that the use of datasets was the key reason for the efficiency

differences between the three web services within the ReSULT system. When

considering the scaling up of this algorithm, Figure 6.3-6 displays the results when

different amounts of data were in the ReSULT system. This graph displays that the

algorithm operates at approximately to 0 log (n2
) . This is not a desirable result for

the system, and will cause the performance downgrade during operation.

To improve the performance of this algorithm, a solution that involves a reduction of

data passing from the database server to the web service is needed. By defining a

170

subset within the original data, the amount of data can be reduced, but this gives the

opportunity for the web service of needing to reopen connections with the database to

obtain data. The use of datasets was designed to reduce the need for this, and to

improve overall efficiency of a database server by lowering the number of connection

requests. For this work, the use of datasets was not seen as being advantageous. This

is because the time cost gained from the number of concurrent connections to the web

service does not produce sufficient service downgrading for the use of caching of data

within datasets to be profitable. From Figure 6.3-6 and Figure 6.3-3, when taking into

consideration that ten connections to a service provides a response of 57142 ms, and

that for 162.3KB of data held in the MySQL database, a time cost of 118014223 ms is

achieved. Using these values, the conclusion is made that approximately 2000

connections are needed to provide a sufficient time cost for datasets to be

implemented within the ReSULT system. This translates into a ratio of twelve

concurrent connections for every kilobyte of data stored in the database. This figure

reflects that implementing the current format of ReSULT is only beneficial to large

organisations where a reuse mentality is present throughout it, and distributed systems

are essential.

171

Insert Algorithm

1010

1000

990

980

U' i 970

' f.960
Gl

950

940

930

920
Java OCL

Figure 6.3-7: The efficiency between the algorithms used to analyse code within the
ReSULT system.

From Figure 6.3-7, the time taken for the insert algorithm to process a byte of Java

code on average takes fifty milliseconds more than OCL script. To identify where

this difference in time is achieved, the analysis of the different approaches were taken

towards parsing each format of component. For each format, there are two stages of

parsing; structure analysis (Section 4.5 .1) and keyword analysis (Section 4.5 .1.2).

For the processing of Java scripts during structure analysis, an approach is taken

where blocks of code are identified and then the lines inside them are analysed. This

ensures that any features within the code are associated with the correct structure.

OCL does not take this approach; it processes each line within a script independently

because these scripts do not contain any code blocks. The benefit of which is that

172

these scripts are processed quicker by ReSULT, but a reduction in the readability of a

script is seen.

Keyword analysis is the function where comments are identified within components.

Each language is processed differently within the ReSULT system. Figure 4.5-7

displays the approaches taken. The actions taken by the both comment parsers can be

categorised into two groups; comment identification and comment processing. While

actions involved within these groups are different, simple procedures such as

identifying and removing characters from a component are only being performed.

6.3.4 Error Tolerance

There are two factors to investigate when considering error tolerance within the

evaluation of the ReSULT system. Firstly, how often will functional errors appear to

the user? Secondly, what is the accuracy of the components being displayed as search

results?

6.3.4.1 Functiona~ Errors

When discussing functional errors, the consideration of screens that are either

displayed incorrectly or are reported with server errors is undertaken. With the

current output given by the WAS tool and the limitations imposed by Windows 2000
• 1"-: 10·· ~ ""' - .

operating system, no server failures were obtained. This was mainly due to the

limited pressure placed on liS; therefore, the request rate did not exceed the service

173

rate. A small number of exceptions were thrown and caught by the application when

interacting with the ' insertcode' web service. When these occurred, the ASP .NET

driver process failed, and the system needed to be rebooted.

6.3.4.21nserting Code Errors

An error within the web service of 'Insertingcode' can lead to incorrect representation

of a component. An error is classified as a misrepresentation of a field, method, or

class. For example, "classnam "' is missing the last character and is interpreted as an

error.

e
~ 6 +--------~~-~ ---...,...-------'

4 ~----------------~---

0 -~----~------~
2 4 6 16

Number of Components

32 64

•Number of Java Errors

DNumber al OCL Errors

Figure 6.3-8: The number of errors produced during the data capture mechanism with
the ' Insert code' web service

Figure 6.3-8 identifies that the current version of 'InsertSourceCode' contains more

errors than 'InsertOCL'. This has a direct result on the search results produced by

174

ReSULT, and reduces the accuracy of searches. For future versions, errors produced

by both classes need to be removed.

6.3.4.3 Search Errors

There is no one description of what classifies as a search error. The only

characteristic displayed by search errors is that they are undesired by the reuser. To

examine why components are undesirable, consideration of the processes within the

ReSULT system is performed. These processes are:

• Entry of search criteria by the reuser

• Development of ranking scores

e IdentifY components ' ratings

In Section 5.4.3, a description of how the search criteria were identified for inserting

into the ReSULT system was given. This took into consideration the outputs from

earlier stages of the software lifecycle such as requirement engineering. The output

produced from this stage is a problem statement; from this the identification of nouns

and verbs can proceed. Using the CRC approach [Beck89], the identification of these

nouns and verbs indicate the desired objects wanted by the reuser and the actions that

are wanted performed by these objects. However, the likelihood of a component that

identically matches the search criteria entered into ReSULT is highly unlikely. To

give the reuser indication of hJ>w closely components relate to their search criteria, a

rating score of between 0-100 was assigned to identify components. The algorithm

used to produce these ratings is described in Section 4.5.2.3. What this algorithm

175

achieved is to identify components that match the search criteria entered in more than

one f~ade ofthe ReSULT. These f~ades are listed below.

• Class name

• Method name

• Fieldname

• Keyword

• Traceability

• Code Hits

• Code Ratings

The searching mechanism queried the tables listed above (these represented fac;ades

of a component) and obtained a rank from each of them. The ranks obtained from

'Code Hits', 'Code Ratings', and 'Keyword' all had weights placed on the rank.

These ranks were then processed to obtain a percentage score; with 1 00% identifying

a component as perfect, but as explained in Section 4.5.2.3 the likelihood of this

occurring is low.

The approach defined above has a number of possible flaws. Firstly, there was no

preference towards matching a class over a field. It may be of more relevance for a

reuser to have a preference towards a keyword matching a class than towards a field.

One approach to solve this is by placing weights upon the structured searches, with

higher values used on class searches than on fields. This approach places greater
.·.,: "'>:. : .;;- • -. - ,~~ -c : '-: . - - '

focus towards users to search for objects rather than operations within their choice of

keywords. This is helpful because different objects may contain the same titled

176

operation and may produce inaccurate results, where as when objects of the same

name are identified; it is highly likely that it is a different version of the same

component. With either approach, a reuser must take their own understanding and

initiative to identify exactly what they want from the search results.

Keywords Entered

Buffer
Trim
Database
Transaction

Resultant Classes from Keyword Search

[]Class 1

Class 2

!::::II::::::::) Class 3

Figure 6.3-9: An example ofhow the searching mechanism works with ReSULT.

Secondly, the algorithm used does not rely upon the order of keywords entered.

When a reuser enters keywords into the ReSULT system using the selection process

described in Section 4.5.2.3, the system purely relies upon the presence of the

keywords words being present within the different database tables. From this, it is

increasingly likely that when using the example displayed in Figure 6.3-9, 'Class 1'

would be ranked higher than ' Class 2' . However, if the searching algorithm used an

ordering approach, 'Class 2' would rate higher than 'Class 1 '. To identify the correct

approach, consideration must be made into what form of reuse this system is being

aimed towards.

177

Entering more search criteria into ReSULT increases the likelihood that the

component achieving the highest rating will be the ideal component for reuse. This is

however not a goal for the ReSULT system. The concept for this system within the

process of reuse is to act as a first level filter; therefore, components of a lower rating

must be distinguished clearly from each other. To achieve this clarity, a limit to the

number of words a reuser can enter into a system was placed within ReSULT.

Placing this limit reduces the number of components identified by the system, and

improved ReSULT's performance, but this does not increase the mean value for the

ratings produced. To increase the performance of ReSULT even further and to

achieve a larger mean value, a limit to the number of results provided by the system

should be implemented into the system in future versions.

By enforcing this restriction upon reusers, they are forced to prioritise features that

they desire. The current design of ReSULT applies weights to ranks achieved from

querying the fayades of 'Code Hits', 'Code Ratings', and 'Keyword'. Weighting of

ranks are not applied for structural features such as class hierarchies, interfaces

implemented, methods and field names. The decision to not apply this weighting was

based on the limit of search criteria, and for reuser's feedback to distinguish

component quality. One attribute of component quality is documentation. If a

component contains many comments that detail the processes within the component,

it will firstly give a reuser an advantage in gaining an in-depth understanding of a

component; but secondly, a larger number of comments will be identified by the

ReSULT system. This increases the likelihood that this collection will contain

replications ofimporlant terms that a reuser ruis entered as search criteria. Using the

formula designed in Section 4.5.2.3, the ratings of a component that contain replicated

178

comments and are equivalent to the reuser's search criteria are increased, and are

displayed higher up in the list of search results. The ability of placing weights on

'Code Hits' and 'Code Ratings' to indicate quality is a problem during the early

stages of deployment because there will be no data to make these distinctions. This

will increase the amount of work (in the form of examining components) that a reuser

will perform, and may damage their confidence of using this system.

6.3.4.4 lntegll'ating Components into a Project

In Section 2.2.2, discussion of the differences between white box and black box reuse

[K won98] was performed. From this, it was identified that it is more effective for the

reuser to identify a component that they do not have to build upon, and can simply

insert into their project. If this component is identified during the design phase, the

reuser can then take advantage of the traceability function with the system that can

select the source code script for the OCL component, or identify design patterns that

classes may be members of. It is however; an unlikely circumstance that all the

keywords entered will be associated with one component. The result of which will

lead to the reuser either altering the desired component, or producing new objects that

will interact with the selected class to provide the ideal functionality. By using the

approach 'close but not perfect' when considering the selection algorithm, less effort

is needed into performing adaptive maintenance to the component. It is therefore,

more appropriate to consider the number of terms associated with a component than

to consider the ord~ring of these terms.

179

6.4 Overview of Work

Product Transition 78%

Product()peration 86%

Product Revision 52%

Table 6.4-1: Summary ofMcCall's Software Evaluation Criteria.

Table 6.4-1 displays the percentage scoring for McCall's software quality factors

[McCal77]. These values have been gathered by grouping together the measurable

properties defined in Section 5.2. These properties have been calculated using the

equations for McCall's software quality model in Table 7.4-4, and using the metrics

scores in Table 7.4-2 for values for these equations.

From the scores achieved in Table 6.4-1, the ReSULT system displays weakness

when considering the areas of maintenance, flexibility and testability, but shows

significant quality when considering the portability, reusability, interoperability,

correctness, efficiency, integrity and reliability.

6.5 Summary

In this chapter, the ReSULT reuse system was evaluated. The criteria for the success

of this research appeared in Chapter 1 were discussed.

In the next section, its strong points and weak points were identified.

180

Through the above evaluation, it can be said that the soundness and usefulness of

ReSULT towards reuse within an organisation has been demonstrated.

181

Chapter 7 Conclusions

7.1 The Main Achievements of the Research

The achievements and results of this research are as follows:

• The development of a distributed reuse system (ReSULT).

• ReSULT allowed two different types of code to be inserted into a reuse

repository.

• The reuse repository was searchable using keywords. The results of these

searches adjusted due to the popularity of a component's extraction and user

ratings of it; therefore increasing the accuracy ofthe search.

• Components could be extracted from the repository.

• Components were related by design pattern and package; therefore, identifying

components that were related to the component from the search results was

quick and simply.

e An approach was also defined that identified the how the ReSULT system was

to be introduced into the software lifecycle of an organisation.

182

7.2 General Conclusions of the Research

The outcome of this thesis was the production of a distributed system called Reuse

Sourcecode Units Library Tool (ReSULT). The major results ofthis research as

described in the criteria for success in Chapter 1 are as follows.

Criteria 1: Suggest guidelines for an approach to code reuse.

There are four key processes within ReSULT, these correspond to key activities

within reuse, and are focused upon when considering an approach to code reuse.

Process 1: Produce reusable code

For the ReSULT system's search mechanism to work efficiently, inserted components

must conform to a set of standards for components (Section 2.3 .2.1) such as prologue

commentary at the beginning of a component, traceability to a component's design

document, in-line comments, and correct indentation. These standards ensure that

components' external representations are identified precisely before being inserted

into the system. Applying these standards, also encourages the diminishing of the

'not invented here' syndrome within an organisation that users must adhere to. The

guidelines for producing reusable code within the ReSULT system are:

• Uniform appr:oach to converting existing components_ .

• A significant number of comments present within code

183

• The inclusion of both inline and prologue comments

• High cohesion

• Low coupling with other components

• A definitive naming scheme for fields, and methods

Process 2: Insert code into system

Insert code into the ReSULT system relied upon the presence of a reusable asset.

This asset may be part of a design pattern, or has been produced by design documents

that can be referenced. It is at this stage where the entering of this information into

the system is performed.

Process 3: Search repository

ReSULT introduced a three-part approach to searching for reusable assets. The first

defmes the problem within a statement. The second uses this problem statement to

identify attributes within it and organise them onto Class Responsibility and

Collaboration (CRC) cards. From CRC cards, OCL transcriptions are produced or

identified using the ReSULT search mechanism. Search criteria were selected using

the values from CRC. Source code can then be identified using traces from OCL

components, or if no reuse options are available, code is written. This approach

increases the time spent on design, but decreases implementation costs by increasing

software quality, and decreasing time costs with integrating reusable components into

projects.

184

Process 4: Extract component

The extraction of a component from the ReSULT system relied upon the user copying

the component from the web browser and pasting it into their projects. The

centralised storage architecture for reusable components within the ReSULT system,

and the accessibility to the system via HTTP enables reusers to access many peoples

work across physical boundaries.

Criteria 2: Identifying criteria that are used to select a

component for reuse within a repository.

The properties defined for selection criteria can be identified as either structural

elements of components or user feedback. When considering structural elements,

consideration is made for properties of components such as class name, method name,

field names, comments, design pattern information, and traceability links that have

been declared by the author. These properties are declared as different facets a

component is viewed upon. To include feedback from previous reusers experience

with selected components feedback data such as how many times a component has

been extracted from the system, and feedback scores provided from the user is also

included as search criteria.

185

Criteria 3: Provide a distributed tool that enables many

employees within an organisation to insert and search for

reusable components.

The ReSULT is a means for employees to effectively reuse code within an

organisation. The system used web service technologies to provide communication

database servers, web application servers, and the reuser.

Within this system, there are four processes (Criteria 1). These provide functionality

for reusers to insert, search and extract components from a reuse repository. To

define an accurate search algorithm, research was performed into how components

could be represented within the system, and how this representation could be

identified and placed into the system during the inserting process. The criteria chosen

for this is defmed in Criteria 2.

The performance ofthe searching was not desirable. The operating time ofO log (n2
)

was identified as being caused by the use of datasets when transporting data between

web services, and the need for additional processing to identify the external

representation of the component. Analysis into this identified that roughly two

thousand concurrent connections are needed to provide a sufficient time cost for

datasets to be implemented within ReSULT; therefore, the conclusion was made that

ReSULT is beneficial to large organisations where a reuse mentality is present

throughout.

186

The process of parsing components and inserting both the internal and external

representations of a component produced a time cost that was quicker than the process

of searching. There was a significant difference in the time taken to parse the

different languages. Java code on average took fifty milliseconds to insert per byte

compared to OCL, but a reduction in the detail of the component's external was seen.

To provide the ability for the system to grow and adjust to changes in working

practices, a framework was developed that eased the integration of new languages.

ReSULT provided interfaces for new implementation modules to aid this

maintenance.

The system architecture provided a method of delivering the system to many users.

The findings found that when analysing the performance of the web application, the

limit placed upon the number of connections to the web service did not justifY the

implementation design. The design of the system was for a large number of

connections and to improve efficiency for connections from the many users by

applying datasets to the system design; this was not justified. The test system only

allowed for ten concurrent connections, and with the large overhead the datasets had

on the system. The advantages of using datasets were never seen, and at the low level

of connections impaired the systems efficiency.

MySQL database server is an effective means of storing data. The design ofReSULT

ensured that both the internal representation and external representations of a

component were stored in this database server. The internat repres-entation l:e. the

component itself was stored in a Binary Large Object (BLOB) format. BLOB format

187

is not the most efficient for storing small component because the database

representation is approximately three times larger than its actual size. This is just an

initial overhead placed upon the data by MySQL, and as component sizes increases

the ratio decreases. This forms a relationship that corresponded to a logarithmic

curve.

Criteria 4: Within the distributed reuse system; design a

search mechanism that wm provide accurate search results

that reflect upon the many facets a compone1111t can be viewed

from.

As concluded earlier in Criteria 2, the ReSULT system identifies a number of

different structural elements and user feedback that are interpreted as individual

fa~ades of a component. Weights were applied to the rankings of these f~ades, so

that the final ratings placed upon components increased if objects and operations were

identified with the component. Smaller weights were applied to user feedback scores.

The concept for this was to acknowledge that for a component to be identified as

being good, it must be deemed this by many reusers and not by a select few. As time

goes by, the number of components extracted and the number of feedback scores

increase; therefore, improving the accuracy and reliability of the search results.

Accuracy also increased if there was a significant number of comments were present

within components. It has to be remembered that the ReSULT system was designed

to act as a first level fil~er because ,the system uses the 'close butnot perfecf approach

was considering the production of search results. A reuser therefore must take their

188

own understandings and initiative to identify exactly what they want from the search

results, and possibly expand upon it.

During this work an investigation was performed that considered what search criteria

was entered into the system by a reuser. It was identified that it was more appropriate

to consider the number of terms associated with a component then to consider the

ordering of search criteria terms, and that by entering more increases the likelihood

that the component achieving the highest rating will be ideal for reuse within that

scenario. To give clarity to the outputted results and increase performance, a limit

was placed on the possible number of words entered as search criteria. This ensured

that a reuser identifies strong terms such as objects and operations that they are

considering to be reused.

Criteroa 5: Validating the usefulness and IL.!Isabmty of tlhe

distributed reuse system.

The forecasted benefits of introducing the ReSULT system into an organisations fall

into three different categories, increased speed of production, fmancial benefits, and

improve the quality of the software. The fmancial benefits brought by introducing the

ReSULT all concern the reduction in time spent in producing code. An increased

speed is forecasted to be observed by the reduction in time spent during the

implementation phase of projects. This is aided through providing an efficient

accurate search mechanism that searches a reuse repository for keywords and

identifying features that have been defmed at the design stage.

189

A large investment is initially needed at the introduction of a reuse system, the main

reason for this being the production of reusable assets to populate a repository. To

counter these costs, the use of web service architecture within the ReSULT lowers the

time costs of the initial implementation, and enables the possibility ofthe selling of

reusable assets to third parties using EDI.

An increase in software quality is not directly brought to an organisation by

introducing a reuse tool; it is brought by the application of two concepts, introducing

a disciplined approach to reuse, and continual code reviewing. Applying these

concepts increases the percentage of time spent on planning and reduces time within

implementation. If errors are identified later on in a components lifecycle, perfective

maintenance is performed upon the component, therefore giving an improvement in

the component's quality. Providing additional design documentation eases

maintenance duties and gave the ReSULT system more opportunities to gain a greater

detailed external representation of a component, therefore improving the accuracy of

component searching.

ReSULT provided a web-based application that is accessible over a heterogeneous

network. This enables the distribution of knowledge through an organisation of how

reusable assets are designed. To gain the most out of the ReSULT, it is predicted that

a stringent training is put into place that not only teaches the processes ofReSULT,

but of how to produce reusable components.

190

7.3 The limitations of the Approach

Firstly, in this research, the ReSULT system was not applied and tested within a real

company; therefore, the true benefits or problems caused by implementing the

ReSULT system into an existing reuse process, or initiate a reuse approach within a

company could not be identified.

Secondly, all application servers were located on one machine. This affected the

performances of the services they provided, and an accurate measurement of the

systems performance could not be obtained.

Finally, the implemented system did not have a suitable architecture that supported

the desired application of the system. The web server that supported the system only

allowed for a maximum of ten connections at any one time, and therefore could not be

tested to the appropriate levels.

7.4 Suggestions for Future Research

From the research performed within this work, a foundation has been built that can

extended in a number of areas. These areas are distributed systems, and software

engmeenng.

W1thln.the field of distributed systems, further research into the areas of how to

reduce the time costs incurred by the using the ReSULT. A commercial area of

191

research within the distributed arena is the application of e-commerce within the

ReSULT. The area of e-commerce in question concerns Business-to-Business (B2B)

commerce. This research would examine the interactions between web services from

different organisations and the possible security issues that may arise.

When considering possible extensions of research within Software Engineering, the

main areas of research involve change configuration management, and reverse

engineering. The advantages of applying change configuration management to the

ReSULT system are the application of versioning of components, and providing the

ability of locking components to one editing sessions. These are highly advantageous

features when considering a large distributed system with many users accessing and

editing components on it. Within the area of reverse engineering, research into the

identifying of external representations for other languages is also a possibility. This

would allow the possibility for the system to inserting other languages and expanding

the scope of the system.

192

References

[Aoyam95]Aoyama, M.; ''New age of software development: How component based
software engineering changes the way of software development";
International Conference on Software Engineering; 1998; pp 179-185

[Agres99] Agresti, W. W., McGarry, F.; "The Minnowbrook Workshop on Software
Reuse: a summary report". In Tracz. W.; "Software Reuse: Emerging
Technology", Ed., IEEE; 1987

[Bator92] Batory, D., O'Malley., S.; "The Design and Implementation of
Hierarchical Software Systems with Reusable Components"; ACM
Transactions on Software Engineering and Methodology Vol. 1(4);
October 1992; : pp355-398

[Beck89] Beck, K.; "A Laboratory for Teaching Object-Orientated Thinking"; From
the OOPSLA'89 Conference Proceedings October 1-6, 1989, New Orleans,
Louisiana; pp 1-6

[BenneOO] Bennett, K. H.; Rajlich, V. T; "Software Maintenance and Evolution: a
Roadmap". In Finkelstein, A. (ed.); "The Future of Software Engineering";
ACM Press; 2000; pp75-87

[Berto04] Bertoa M.F., Vallecillo A.; "Usability metrics for software components";
Dpto. Lenguajes y Ciencias de Ia Computacion, Universidad de Malaga.

[Boehm99]Boehm, B.; "Managing Software Productivity and Reuse"; IEEE
Computer Vol. 32; Sept. 1999; pp 111-113

[Brook95]Brooks, J.R.; ''No Silver Bullet Refined". In The Mythical Man-Month,
Anniversary ed. Reading, MA.; Addison-Wesley Pub. Company, Inc.;
pp205-226

[Brook83]Brooks, R.; "Towards a Theory ofthe Comprehension of Computer
Programs"; International Journal of Man-Machine Studies; Vol. 18 (6);
1983;pp543-554

[Brown98] Brown, A.W., Wallnau, K.C.; "The Current State ofCBSE"; IEEE
Software Vol. 15 (5); Sept. 1998; pp37-46

[Caput98] Caputo, K.; "CMM Implementation Guide: Choreographing Software
Process Improvement"; Book; 1st Edition; Addison-Wesley Pub.
Company, Inc.; 1998

[Cauld01] Cauldwell, P., Chopra, V., Zoran, Z., Damschen, G., Dix, C., Chawla, R.,
Saunders, K., Olander, G., Norton, F., Hong, T., Ogbuji, U., Richman,
M.A.; "Professional XML Web Services"; Book; Wrox Press Ltd 2001

193

[Cerem02] Ceremi, E.; "Web Services Essentials"; Book; O'Reilly & Assoc; Feb
2002

[Chaud02] Chaudhary, A.S., Saleen, M.A., Bukhari, H.Z.; "Web Services in
Distributed Applications: Advantages and Problems"; Ghulam Ishaq Khan
Institute of Engineering Science and Technology; 2002

[CzarnOO] Czarnecki, K., Eisenecker, V.W.; "Generative Programming methods,
Tools and Application"; Book; Addison-Wesley Pub. Company, Inc. 2000

[Dogac02] Dogac, A., Tambag, Y., Pembecioglu P., Pektas S., Laleci G., Kurt
Gokhan., Toprak S., Kabak Y.; "An ebXML infrastructure Implementation
through UDDI Registries and RosettaNet PIP's"; ACM SIGMOD
International Conference on Management of Data, Madison, Wisconsin,
USA; June 2002; pp512-523

[Dykma99]Dykman, N.; "Sage: Generating applications with UMLand
Components"; MSc Thesis; University ofUtah; 1999.

[Fishe87] Fischer, G.; "Cognitive view of reuse and redesign"; IEEE Software, 4 (4);
1987; pp60-72

[Flurr01] Flurry, G.; "Applying web services to the Application service provider
environment: An example of web services applied toe-business"; IBM
DeveloperWorks; January 2001

[Fraze92] Frazer, A.; "Reverse Engineering- hype, hope or here?'' In Software
Reuse and Reverse Engineering in Practice; P. A. V Hall (ed.) pp209-243

[Gamma95]Gamma, E., Helm, R., Johnson, R., Vlissides, J.; "Design Patterns:
Elements of Reusable Software"; Book; Addison-Wesley; 1995

[GlassOO] Glass, G., "The Web Services Revolution: Applying Web Services to
Applications", IBM Developer Works, November 2000

[GottsOO] Gottschalk, K.; "Architecture Overview: The next stage of evolution fore­
business"; IBM Developer Works; September 2000

[Gotts02] Gottschalk, K., Graham, S., Kreger, H., Snell, J.; "Introduction to Web
Services Architecture"; IBM Systems Journal; Vol. 41 (2); 2002

[Henni97] Henninger, S.; "Case-Based Knowledge Management Tools for Software
Development"; Journal of Automated Software Engineering, Vol. 4 (3);
July 1997

[Hoyda91] Hoydalsvik, G. M., Karlsson, E. A., Sorumgard, S., Thunem, S.,
Tryggeseth, E.; "Object-Orientated Development With and For Reuse";
Division of Computer Systems and Telematics, Norwegian Institute of
Technology; 1991

194

[Irani01] Irani, R.; "Introduction to ebXml". In Fletcher, P.; Waterhouse M.; "Web
Services and Business Strategies and Architectures Book"; Book; Expert
Press; 2002; pp221-236

[Jacob99] Jacobson, I., Booch, G., Rumbaugh, S.; "The Unified Software
Development Process"; Book; Addison-Wesley Pub. Company, Inc. 1999

[Jepso01] Jepson, T.; "SOAP Cleans up Interoperability Problems on the Web"; IT
Professional, Vol. 3 (1); January-February 2001; pp52-55

[Karls95] Karlsson, E.A., "Software Reuse: A Holistic Approach"; Book; John
Wiley & Sons Ltd; 1995

[Krueg92] Krueger, C.W.; "Software Reuse"; ACM Computing Surveys; Vol.24 (2);
June 1992

[KundaOO] Kunda, D., Brooks, L.; "Identifying and Classifying Processes (traditional
and soft factors) that Support COTS Component Selection: A Case Study";
European Journal of Information Systems, Vol. 9(4); 2000; pp 226-234

[Kwon98] Kwon, O.C.; "A Process Model of Maintenance with Reuse: An
Investigation and an Implementation"; Ph.D. Thesis, University of
Durham; 1998

[Larma05] Larman, C.; "Applying UML and Patterns: An Introduction to Object­
Orientated Analysis and Design and Iterative Development"; Book; Third
Edition; Prentice Hall; 2005

[Lehma80]Lehman, M.; "Programs, life cycles and laws of software evolution",
Proceedings of IEEE Special Issue on Software Engineering, Vol. 68 (9),
Sept. 1980; pp 1060-1076

[Lien80] Lientz, B. P., Swanson, E. B.; "Software Maintenance Management";
Book; Addison Wesley; 1980

[Lim98] Lim, W.C.; "Managing software reuse: a comprehensive guide to
strategically reengineering the organisation for reusable components";
Book; Prentice Hall PTR; 1998

[Loren94] Lorenz, M., Kidd J.; "Object-Oriented Software Metrics: A Practical
Guide"; Book; Prentice-Hall, Inc.; 1994

[McCal77]McCall, J.A, Richards, P.K., Walters, G.F.; "Factors in Software Quality,
vol. 1, 2, 3"; Springfield, VA: National Technical Information Service;
1977

[Mcilr68] Mcilroy, M.D., "Mass-produced Software Components". In Naur, P.,
Randell, P(ed).; Proceedings ofNATO Software Engineering Conference
Vol. 1; NATO Science committee 1968; pp 138-150

195

[McNam84]McNamara, B.; "Japanese Software Factories". In Standish T.A.; "An
Essay on Software Reuse"; IEEE Transactions on Software Engineering;
Vol. 10, No.5; September 1984

[Mei02] Mei, B., Xie T., Yang F.; "A Model-Based Approach to Object-Oriented
Software Metrics"; Journal of Computer Science and Technology Vol. 17
(6) Nov. 2002; pp757-769

[Mitte01] Mittermeir, R. T., Bollin, A., Pozewaunig, H., Rauner-Reithmayer, D.;
"Goal-Driven Combination of Software Comprehension Approaches for
Component Based Development"; Institute of Informatics-Systems,
Klagenfurt University, Austria

[Meyer98] Meyer, B.; "Object Orientated Software Construction"; Book; Prentice­
Hall; 1998

[Morri03] Morris, J., Peng Lam, C., Bundell, G.A., Lee, G., Parker, K.; "Setting a
Framework for Trusted Component Trading". In Component-Based
Software Quality: Methods and Techniques, Cechich, A., Piattini, M.,
Vallecillo, A.; (Eds.) Lecture Notes in Computer Science, Vol. 2693,
Springer; June 2003; pp 101-131

[Norma83]Norman, D.A.; "Some observations on mental models". In Gentner, D.,
Stevens, A.L; Eds., Mental Models, Erlbaum, Hillsdale, NJ, 1983; pp7-14

[0Rior02] O'Riordan, D.; "Business Process Standards for Web Services". In
Fletcher, P.; Waterhouse M.; "Web Services and Business Strategies and
Architectures Book"; Book; Expert Press; 2002; pp157-174

[Paulk95] Paulk, M.C., Weber, C.V., Curtis, B., Chriss, M.B.; "The Capability
Maturity Model: Guidelines for Improving the Software Process"; Book;
Addison-Wesley Pub. Company, Inc.; 1995

[Priet87] Prieto-Diaz, R., Freeman, P.; "Classifying Software for Reusability"; IEEE
Software; January 1987; Vol.4 (1) pp6-16

[Rajli02] Rajlich, V., Wilde, N.; "The Role of Concepts in Program
Comprehension"; Proc. Of IWPC 2002, IEEE Computer Society Press,
Los Alamitos, CA; pp271-278

[Ramal04] Ramalingam, V., LaBelle, D., Widenbeck, S.; "Efficacy and Mental
Models in Learning to Program", Proc. Ofthe9th annual SIGCSE
Conference on innovations and technology in Computer Science Eduction;
2004; pp171-175

[RananOO] Rafumjan, A., Roy, J., "XML: Data's Universal Language" IT Professional
Vol. 2 (3); May/June 2000; pp32-36

196

[Retko97] Retkowsky, F.; "Software reuse from an external memory: The cognitive
issues of support tools". In PPIG Workshop '98 Proceedings (Open
University, Milton Keynes, UK, Jan. 1998); Psychology of Programming
Interest Group 1998

[Rosen95] Rosenbaum, S., DuCastel, B.; "Managing software reuse- an experience
report". In Proceeding of 17th International Conference in Software
Engineering", Seattle, WA; 1995; pp105-111

[Samta02] Samtani, G., Sadhwani, D.; "Enterprise application integration (EAI) and
Web Sevices". In Fletcher, P., Waterhouse, M. (Eds),Web services
Business Strategies and Architectures, Expert Press Ltd, Birmingham, AL,
pp.39-54.

[Schmi99] Schmidt, D.C.; "Why Software Reuse has Failed and How to Make It
Work for You", C++ Report SIGS Vol. 11; January 1999

[Selec03a] "Software Reuse: Measuring Return on Investment"; Select Business
Solutions, Inc; 2003

[Selec03b] "Select on Web Services"; Select Business Solutions, Inc; 2003

[Snell02] Snell J., Tidwell, D., Kulchenko, P.; "Programming Web Services with
SOAP"; Book; O'Reilly & Assoc inc.; Jan 2002

[Solow84] Soloway, E., Ehrlich, K.; "Empirical Studies of Programming
Knowledge"; IEEE Transactions on Software Engineering; Vol. SE-1 0,
No. 5, pp. 595 - 609; September 1984

[Stand84] Standish, T.A.; "An Essay on Software Reuse"; IEEE Transactions on
Software Engineering; vol. 10. (5); Sept 1984. In Burd, E.L.; "Reuse with
Risk Management: A Decision Support Approach"; D.Phil. Thesis,
University ofYork; 1999

[Stand97] Standish, T.A.; "An Essay on Software Reuse: principles and practices and
economic models"; Book; Addison-Wesley Pub. Company, Inc; 1997

[Sycar03] Sycara, K.P.; "From the 'eyeball' web to the Transaction web"; On the
Move Federated Conferences (OTM '03): "On the Move to Meaningful
Internet Systems and Ubiquitous Computing"; Catania, Sicily, Italy; 2003

[Tian02] Tian, M., Voigt, T., Naumowicz, H., Schiller, J.; "Performance Impact of
Web Services on Internet Servers"; Computer Systems & Telematics;
Freie Universitat Berlin; 2002

[Timen89] Timens, T.; "Cognitive Models ofProgram Comprehension"; Software
Engineering Research Center, 1989

[Tracz95] Tracz, W., "Confessions of a used Program Salesman: Institutionalizing
Software Reuse"; Book; Addison-Wesley Pub Company, Inc.; 1995.

197

[vande03] van der Aalst, W.M.P., "Don't go with the flow: Web Services
Composition Standards Exposed". In "Trends & Controversies"; IEEE
Intelligent Systems; Vol18 (1); 2003; pp72-76

[vonMa94]von Mayrhauser, A., Vans, A.M.; "Program Understanding- A Survey"
Computer, Vol. 28 (5); August 1995; pp44-55

[WebOl] ''Namespaces in XML", WWW Consortium, January; online at URL:
http://www.w3.org/TRIREC-xml-names/; Viewed on 31 November 29th
November 2003

[Web02] "UDDI Technical White Paper"; Publication; Aribia Inc.; International
Business Machines Corporation 5; 2000 online at
h~://www.uddi.com/pubsllru UDDI Technical White Paper; Viewed on
24 January 2004

[Web03] Frey, J.E., Rosvall, A.; "Web Services Simplifies iAppliance Software
Reuse"; online at URL:
h~://www.iapplianceweb.com/story/OEG20020331 S0003; Viewed on
20 November 2003

[Web04] Baxter, J., Humpries, A.; ".NET ARCHITECTURE"; online at URL:
http://ecommerce.ncsu.edu/csc513/student-work/DOT -NET /DOT­
NET.htm; Viewed on 30th November 2004

[Web05] Wikipedia Encyclopedia..; "Reverse Engineering Definition"; online at
URL: http://en.wikipedia.org/wiki/Reverse engineering; Viewed on 12th
December 2003.

[Web06] "Introduction to XML Schemas"; online at URL:
msdn.microsoft.comllibrary/en-us/
vbconlhtmUvbconlntroductionToXMLSchemas.asp; Viewed on 24th June
2004

[Web07] "Research-Based Web Guidelines: Software/Hardware"; online at URL:
http://usabilitv.gov/guidelines/softhard.html; Viewed on the 3rd March
2005

[Web08] "ebXML- Enabling A Global Electronic Market"; Viewed on the 11th
May2005

[Weyuk98]Weyuker, E.J.; "Testing Component Based Software: A Cautionary Tale";
IEEE Software 15; 1998; pp32-37

[Yunwe02]Yunwen, Y.; "An Empirical User Study of an Active Reuse Repository
System." In Proceeding of 7th International Conference on: Software Reuse
(ICSR-7), Austin, TX, pp281-292, Apr 15-19,2002.

198

Appendix 1 UML Modelling of ReSULT System
I Use Case 1: A. Identify possible components J

..----:-~'' 3. Extract data from repository_--...,------,
Provide search criteria «control» > «entity»

Insert Repository of Components

Reuser

I Use Case 1: B. Select and extract component J
/1 Select ·at

__Q
appropn ':._ componen

2. Component id
I 3. Select and validate component -' I «boundary» <control> > «entity» >

}, • W-M~ Identify Repository of Components

5. Display selected componeri• 4. Rated results . .
\ -... I "'

Reuser

Use Case 3: Extract component

Rauser

Figure 7.4-1: Collaboration between analysis classes

Use Case
Model

cboundary•
Web Service

I
I ' ctraoes»
I I

'f
II

I I
I I

I I

I I
I '
'«traces•
I I
I I
I I
' I ctrace51t
' I
I I
I

Analysis Model

ctraces» ,,, --------- ,

-----------\ Identify Component ~-
' ' _ ... "

ccontrol•
Insert

I I
I I
I I
' I I

«traces» 1 ctraces»
' I
I I
I I I

,' ctraOes:t\
I

Design Model

ctraces» ," - ... ,

' ' ---------\Identify Component\
' ' ' '

' __ ... ______ _

centity•
Component Repository

I
I
I

ctraCes»
I
I
I
I
I

l' .. ctraces»
' ' ' I '• 1',
ctroce~),~----, \ I Component

l'~·'~l
I
I View Component I I

I

I I
I I

I ,.~ =---=--:--:-----,
I
I

\Lr-----1
\l I

' I
I
I
I

'
I
I
I
I
I
I
I
I
I
I

Status a
Client Web Application

+Insert file location of component()
+lnsertedComponentStatus()

I
: SourceCode Interpreter

I
I

File Upload I
I
I

Persistent Class
I

+UploadFile() I
I
I
I

Source Code Manager

Figure 7.4-2: Identify traceability between analysis and design models

199

Component Manager

Use Case
Model

cboundary>

Analysis Model

«traces• /,,- ,

- -------- - -(Identify Component \E -
' / ,.."

Design Model

«traces» , ""' ,

- -------- -(Identify Component \
' / __ "'

centity>
Web Service ~

coontrol>
extract Component Repository

e:traces
~ctraces•

I I I \. · ... ,, • /7' '!' I

, : ~ ',, ' ... ,
------;,-'---+1 --L--Jf-----•traces•

,.,., traa!s» : \
Display Componeat 1 : ctraceS>

I I
1 I I

clr

L------+--'' ctra~s·\ a:
1 i \ Search Manager
I I I
I I I : : ~
~ 1 I

I
I Search Resulte

I
I
I
I

aces•
I
I
I
I
I
I
I
I
I
I
I
I
I
I

' ' ' ' \
\

\

'

""

I I I I
Rate Keywords I I I I

I I \ I

I
I I

I
I Extract Component I
I I I I I I I I

',\ : \ 1--------t:
', ctraces• 1

1
, 1 ctracesa ctraCes• ' ctracesa 1 \ 1

· ,, : \ :
I I I

/I
I
I
I

I
I
I

rc treces•

' '
ctraces Component ,§ .I

I
I

I
I
I
I
I
I
I
I
I

Peraistent Class
t;; 1 I ',, : \ :

'' \ I '11 \ I

: ', \ I
I ' \ I
I ', \ I
I , \ I
I \. \ I

I
I
I
I
I

Client Web Application

1 "_1
I ' \ I
I '\ \ I
I \ \ I

I ' \ :
I '\ \ I

\ I I

Transaction Manager ',, 1\-:----.l.~----,
' Component Manager

+ldentifyComponent()

Search Form

Design class diag:am showing part of lhe realisation of the Identifying Component use-casa ~

~ Search Reaulte Client Web Application Transaction Manager Extract Component

;; ---:) ~ ~

I I Actor3 Component
Display Component Search Manager Component Manager

/ ~ ~
Rate Keywords Search Kayworda MYSQL Database

+perform Search()

Figure 7.4-3: The realisation of the 'Identifying Component' use-case from analysis
classes to design classes.

200

A
Actors

[I Sti!Cb Egrm I Surcb Bosuns I Display c;mgonent I Client Web Agpl!calton I Surch Monogor I Bill K~ywordl I Sllrch ~eywordl I Tranuct!o~ Manogor I Extrtct c;mponent I Comoone~t Manager I Component I MYSQL DB I
: log On : : 1 1 t 1 1 1 :
I I I I I I I I I I

' ' l aearchCrlterlab l : l l l l
I I I I I I I I I I
I I I I I I I

: : l l M essage4 : : l : l
I I I I I I I I I

! : : : perform~earch() : l l l

I
I
I

I I I I

: l l l M easage9 : l
I I

: l l l l l Message10 Meuage10
I I I I I

: l : l l Messages l l ,
: : : ~-----------~--------------L-------------J :
! t Meuage7 • : :
l , Maaaage11 ! :
I I I I I

l t Meuage12 , l l
: I ~----------i------------l : :
l l Message13 l ! : Menages :
I I fE----------- I I

I
I
I

, Meiaage14 l l l l - ' ' I o I
I 0 I

' I
Measage15 '

I 0 I
I I I
I I I

7. I I I

: Mesaage17 : :

l Mes~age16 J
I I I

l l Mess8ge18 l
I I I

l l , Message19 l
I I I I

l l l Meuage20 l
I I I
I I I
: : Meuage2 1 Meuage10 l
I I

l : M essag,e22 :
I I ~--- ---------~-------- --- i I

l ' l M euage23 l l l l
I I I I I I
I I I I I I I I l t t Meuage24 l l l l
I I I I I I I I
l M euage25 t l : : : l l

I I I I I I I I I

1 1 Measage26 : : : : : l l l
I I I I I I I I I

I I I I I I I I I I

Figure 7.4-4: A sequence diagram showing the relationship between the different design classes in the 'Identifying Components' use-case.

Appendix 2 Web Service Descriptions (WSDL)

<?xml version="l.O" encoding="utf-8" ?>
.::<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:sO="http:/1129.234.201.28/reuse/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xml ns: tm ="http:// microsoft.com/wsdl/ mime/textMatch ing/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
targetNamespace="http:/1129.234.201.28/reuse/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

.::<types>
.:: <s:schema elementFormDefault="qualified"

targetNamespace="http:/1129.234.201.28/reuse/">
.:: <s:element name="getRankedSearch">

.:: <s:complexType>
.:: <s:sequence>

<s:element minOccurs="O" max0ccurs="1"
name= "sSearchMethod" type= "s:string"
/>

<s:element minOccurs="O" max0ccurs="1"
name= "sKeyWords" type= "s:string" />

</s:sequence>
<Is: complexType>

<Is: element>
.:: <s:element name= "getRankedSearchResponse">

.:: <s:complexType>
.:: <s:sequence>

<s:element minOccurs="O" max0ccurs= "1"
name="getRankedSearchResult"
type="s:string" />

</s:sequence>
</s:complexType>

<Is: element>
</s:schema>

</types>
.::<message name="getRankedSearchSoapln">

<part name="parameters" element="sO:getRankedSearch"
/>

</message>
.:: <message name= "getRankedSearchSoapOut" >

<part name="parameters"
element= "sO:getRankedSearchResponse" I>

</message>
.:: < portType name= "searchrepositorySoap" >

.::<operation name= "getRankedSearch">
<input message="sO:getRankedSearchSoapln" />
<output message= " O:getRankedSearchSoapOut" />

</operation>
</portType>

.::<binding name="searchreposltorySoap"
type= "sO:searchrepositorySoap" >

202

<soap: binding
transport="http://sclhemas.xmlsoap.org/soap/http"
style="document" />

=.<operation name="getR.ankedSearclh">
<soap:operation

soapAction="http:J/129.234.201.28/reuse/getRank
edSearch" style="document" />

=.<input>
<soap: body use="Diteral" />

</input>
=.<output>

<soap: body use="Diteral" />
</output>

</operation>
</binding>

=.<service name="searchrepository">
=.<port name="searchrepositorySoap"

bindlng="sO:searchrepositorySoap">
<soap:address

location="http://BocaDhost/reuse/searchrepository.
asmx" />

</port>
</service>

</definitions>

Figure 7.4-5: WSDL Description for the web service 'Identifying Reusable
Component'

<?xml version="l.O" encoding="utf-8" ?>
-<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:sO="http:J/129.234.201.28/reuse/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns: mime= "http: II schemas.xmlsoap.org/wsdl/ mime/"
targetNamespace="http:f/129.234.201.28/reuse/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

=.<types>
=. <s:schema elementFormDefault="qualiffiedl"

targetNamespace="http:/1129.234.201.28/reuse/">
- <s:element name="insertCode">

=. <s:complexType>
=. <s:sequence>

<s:element minOccurs="O" max0ccurs="1"
name= "iaSearchMethod"
type="sO:ArrayOfint" />

<s:element minOccurs="O" maxOccurs="l"
r~a,[l,e,;:= ~~~~,~pi~!~~·"
type= "s:base64Binary" />

</s:sequence>
</s:complexType>

</s:element>

203

= <s:complexType name="ArrayOfint">
= <s:sequence>

<s:element minOccurs="O"
maxOccurs= "unbounded" name= "int"
type="s:int" />

</s:sequence>
</s: complexType>

= <s:element name="insertCodeResponse">
<s:complexType />

</s:element>
</s:schema>

</types>
=<message name="insertCodeSoapln">

<part name="parameters" element="sO:insertCode" />
</message>

=<message name="insertCodeSoapOut">
<part name="parameters"

element="sO:insertCodeR.esponse" />
</message>

= <portType name="insertingcodeSoap">
=<operation name="insertCode">

<input message="sO:insertCodeSoapln" />
<output message= "sO:insertCodleSoapOut" />

</operation>
</portType>

=<binding name="insertingcodeSoap"
type= "sO:insertingcodeSoap" >
<soap:binding

transport="http://schemas.xmlsoap.org/soap/http"
style="document" />

=<operation name="insertCode">
<soap:operation

soapAction= "http:J/129.234.20 1.28/reuse/insertC
ode" style="document" />

=<input>
<soap:body use="literal" />

</input>
=<output>

<soap:body use="lill:eral" />
</output>

</operation>
</binding>

=<service name="lnsertlngcode">
=<port name="insertingcodeSoap"

binding="sO:insertingcodeSoap">
<soap:address

location= "http: //localhost/ reuse/insertingcode.as
mx" />

</port>
</service>

</definitions>
Figure 7.4-6: WSDL description for the web service '/nsertingCode.asmx'

204

<?xml version="l.O" encoding="utf-8" ?>
.:. <wsdl:definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="http://tempuri.org/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns: mime="http://schemas.xmlsoap.org/wsdl/mime/"
targetNamespace="http://tempuri.org/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

:. <wsdl:types>
.:. <s:schema elementFormDefault="quaOified"

targetNamespace= "http://tempuri.org/" >
.:. <s:element name="insertComponent">

<s:complexType />
</s:element>

.:. <s:element name="insertComponentResponse">

.:. <s:complexType>

.:. <s:sequence>
<s:element minOccurs="l" maxOccurs="l" name="insertComponentResult"

type="s:boolean" />
</s:sequence>
</s:complexType>
<Is: element>

.:. <s:element name="submitRatlng">

.:. <s:complexType>

.:. <s:sequence>
<s:element minOccurs="l" maxOccurs="l" name="iRating" type="s:lnt" />

</s:sequence>
<Is: complexType>
<ls:element>

.:. <s:element name="submitRatingResponse">
<s:complexType />

<Is: element>
.:. <s:element name="extractComponent">
.:. <s:complexType>
.:. <s:sequence>

<s:element minOccurs="l" maxOccurs="l" name="uniqueid" type="s:int" />
</s:sequence>
</s:complexType>
</s:element>

.:. <s:element name="extrad:ComponentResponse">

.:. <s:complexType>

.:. <s:sequence>
<s:element minOccurs="O" maxOccurs="l" name="extractComponentResuBt"

type= "s:string" />
</s:sequence>
</s:complexType>
</s:element>
<ls:sch~ma>
</wsdl:types>

.:. <wsdl:message name="insertComponentSoapin">
<wsdl:part name="parameters" element="tns:insertComponent" />

</wsdl: message>

205

.:. <wsdl:message name= 11 insertComponentSoapOut11 >
<wsdl:part name="parameters" element="tns:insertComponentResponsell />

</wsdl: message>
.:. <wsdl: message name= "submltRatingSoapln" >

<wsdl: part name= "parameters" element= "tns:submitRating" />
</wsdl: message>

.:. <wsdl:message name= 11SUbmitR.atingSoapOut">
<wsdl:part name="parameters" element="tns:submitRatingResponse" />

</wsdl: message>
.:. <wsdl:message name="extractComponentSoapin">

<wsdl:part name="parameters" element= 11tns:extractComponent11 />
</wsdl:message>

.:. <wsdl:message name=llextractComponentSoapOut">
< wsdl: part name=" parameters" element= "tns:extractComponentResponse" />

</wsdl:message>
.:. <wsdl:portType name= 11transact6onsSoap 11 >
.:. <wsdl:operation name= 11 insertComponent11 >

<wsdl: input message= 11tns:insertComponentSoapin" />
<wsdl: output message= 11tns:insertComponentSoapOut11 />

</wsd I: operation>
.:. <wsdl:operation name="submlt1Ratlng 11 >

<wsdl: input message= 11tns:submltRatlngSoapln 11 />
<wsdl :output message= 11tns:submitRatingSoapOut11 />

</wsdl:operation>
.:. <wsdl:operation name= 11extractComponent11 >

<wsdl:input message= 11tns:extractComponentsoapln 11 />
<wsdl:output message=lltns:extractComponentsoapOut11 />

</wsdl :operation>
</wsdl: portType>

.:. < wsd I: binding name= "1tra nsactlonsSoap II type= 11tns:transactionsSoap 11 >
<soap: binding transport= 11 http://schemas.xmOsoap.org/soap/http11

style="documentll />
.:. <wsdl:operation name= 111nsertCompornent11 >

<soap: operation soapAction = 11http://tempuri.org/insertComponent11

style="documentll />
.:. <wsdl: input>

<soap:body use="literaB 11 />
</wsdl: input>

.:. <wsdl:output>
<soap:body use="literaD" />

</wsdl: output>
</wsdl: operation>

.:. <wsdl:operation name= 11SUbmitR.ating 11 >
<soap: operation soapAction = 11http://tempuri.org/ submitR.atingll

style= 11document11 />
.:. <wsdl: input>

<soap:body use= 111iteral" />
</wsdl: input>

- <wsdl:output>
- <soap:boay use="lftteraD 11 />

</wsdl :output>
</wsdl :operation>

.:. <wsdl: operation name= llextractComponentll >

206

<soap:operation soapAction="http://tempuri.org/extractComponent"
style="document" />

:. <wsdl:input>
<soap:body use="literal" />

</wsdl: input>
:. <wsdl:output>

<soap:body use="literal" />
</wsdl:output>
</wsdl: operation>
</wsdl: binding>

:. <wsdl:service name="trarnsactions">
<documentation xmlns="http://schemas.xmlsoap.org/wsdl/" />

:. <wsdl:port name="transactionsSoap" binding="tns:transactionsSoap">
<soap:address locatlon="http://cs201-028/reuse/transactions.asmx" />

</wsdl: port>
</wsdl:service>
</wsdl: definitions>

Figure 7.4-7: WSDL for the web service 'extractcomponent. asmx'

207

Appendix 3

MySQL
Server

MySQL
Server

MySQL
Server

MySQL
Server

MySQL
Server

My SOL
Server

Architecture

XTYPE
Application

XTYPE
Application

liS

Figure 7.4-8: An Example of Extended XTYPE Architecture

208

VVeb Browser

Appendix 4 XSLT Descriptions

<?xml version="l.O" ?>
- <xsl:stylesheet xmlns:xsl="http://www.w3.org/l.999/XSL/Transform"

version=" 1.0" >
:. <xsl:template match="/">
:. <HTML xmlns="http://www.w3.org/1999/xhtml">
-<HEAD>

<link href="normalstyle.css" rel="stylesheet" type="text/css" />
</HEAD>

-<BODY>
:. <TABLE cellspacing="3" cellpadding="8"

style="behavior:url(tablefunctions.htc};" slcolor="#FFFFCC"
hlcolor= "#BECSDE" >

- <THEAD>
:. <TD class="heading">

Field Name
</TD>

:. <TD class="heading">
Return Type

</TD>
:. <TD class="heading">

< B> AccessibiBity
</TD>
</THEAD>

- <TBODY>
:. <xsl:for-each select="Sourcecode/Table">
:. <xsl: if test="CiassiD[.=lL2]">
:. <xsl:for-each select="Components/Component">
- <tr>
- <TD>

<xsl:value-of select="Name" />
</TD>

- <TD>
<xsl:value-of select="ReturnType" />

</TD>
- <TD>

<xsl:value-of select="Accessibllity" />
</TD>
</tr>
</xsl: for-each>
</xsl:if>
</xsl:for-each>
</TBODY>
</TABLE>
</BODY>
</HTML>
</xsl:te_r:nplate>
</xsl: stylesheet>

Figure 7.4-1: XSL T description for 'viewcomponents.xs/t'

209

<?xml version='l.O'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="l.O">
<xsl:template match="/">
<HTML xmlns="http://www.w3.org/1999/xhtml">
<HEAD>
<link href="normalstyle.css" rel="stylesheet" type="text/css"/>
</HEAD>
<BODY>

<TABLE cellspacing="3" cellpadding="8"
style="behavior:url(tablefunctions.htc);" slcolor="#FFFFCC"
hlcolor="#BECSDE">
<THEAD>
<TD></TD>
<TD class="heading">Class ID</TD>
<TD class="heading">Class Name</TD>
<TO class="heading">Package</TD>
<TO class="heading">Interfaces</TD>
<TO class="heading">Inherits</TD>
<TO class="heading">Design Pattern</TD>
<TD class="heading">Abstract</TD>
<TD class="heading">Static</TD>
<TO class="heading"># Comments</TD>
</THEAD>
<TBODY>

<xsl:variable name ="ClassiD"
select="structure/class/ClassiD"/>

<tr>
<TD>

<form action="extract.aspx" method="post"
name="extract" target=" self">

<input type="hidden" name="ClassiD"
value="{$ClassiD}" />

<input type="submit" name="extract"
value="Extract" />

</form>
</TO>
<TO>

</TO>
<TD>

</TO>
<TD>

<xsl:value-of select="structure/class/ClassiD"/>

<xsl:value-of select="structure/class/Classname"/>

<xsl:if test="Package!=';'"><xsl:value-of
select="Package"/></xsl:if>

</TO>
<TO>

<xsl:choose>
<xsl:when test="structure/class/Interfaces[.

! ='; '] ">
<xsl:value-of

select="structure/class/Interfaces"/>
</xsl:when>
<xsl:otherwise>None

Implemented</xsl:otherwise>

</TO>
<TD>

</xsl:choose>

<xsl:choose>

210

<xsl:when test="structure/class/Inherits[.
! =' i '] ">

<xsl:value-of
select="structure/class/Inherits"/>

</xsl:when>

<lTD>
<TD>

<xsl:otherwise>None Inherited</xsl:otherwise>
</xsl:choose>

<xsl:if test="structure/class/DesignPattern!=';'">
<xsl:variable name ="DesignPattern"

select="structure/class/DesignPattern"/>
<xsl:val
ue-of select="structure/class/DesignPattern"/>

!='0']">

!=' 0'] ">

</TD>
<TD>

</TD>
<TD>

</TD>
<TD>

</xsl:if>

<xsl:choose>
<xsl:when test="structure/class/Abstract[.

Yes
</xsl:when>
<xsl:otherwise>No</xsl:otherwise>

</xsl:choose>

<xsl:choose>
<xsl:when test="structure/class/Static[.

Yes
</xsl:when>
<xsl:otherwise>No</xsl:otherwise>

</xsl:choose>

<xsl:value-of
select="structure/class/TotalNumberOfComments"/>

</TD>
</tr>

</TBODY>
</TABLE>

<xsl:choose>

<xsl:when test="structure/traceability/ClassiD[. !='0']">
<xsl:for-each select="structure/traceability">

<xsl:variable name ="TraceOCL" select="OCLID"/>
<xsl:variable name ="TraceClass" select="ClassiD"/>

<xsl:choose>
<xsl:when test="structure/traceability/ClassiD[.

!='{$ClassiD}']">
This component traces back to <xsl:value-of
select="TraceOCL"/>

</xsl:when>
<xsl: ot'herwise>

<xsl:value-of
select="ClassiD"/> has be traced to this to component

</xsl:otherwise>

211

</xsl:choose>
</xsl:for-each>
</xsl:when>
<xsl:otherwise>This component cannot be traced to anoth0ull4

?</xsl:otherwise>
</xsl:choose>

<xsl:choose>

<xsl:when test="structure/field/FieldiD[. !=' ']">
<TABLE cellspacing="3" cellpadding="8"
style="behavior:url(tablefunctions.htc);" slcolor="#FFFFCC"

hlcolor="#BEC5DE">
<THEAD class="heading">
<TO >Field Name</TD>
<TD>Type</TD>
<TD>Accessibility</TD>
<TD>Static</TD>
</THEAD>
<TBODY>
<xsl:for-each select="structure/field">
<TR>

<TO>

</TO>
<TO>

</TO>
<TO>

</TO>
<TO>

</TO>

<xsl:value-of select="Name"/>

<xsl:value-of select="Type"/>

<xsl:value-of select="Accessibility"/>

<xsl:choose>
<xsl:when test="Static[. !='0']">

Yes
</xsl:when>
<xsl:otherwise>No</xsl:otherwise>

</xsl:choose>

</TR>
</xsl:for-each>
</TBODY>
</TABLE>
</xsl:when>
<xsl:otherwise>No Methods Found</xsl:otherwise>

</xsl:choose>

<xsl:choose>

<xsl:when test="structure/method/Name[. !='']">
<TABLE cellspacing="3" cellpadding="8"

style="behavior:url(tablefunctions.htc);" slcolor="#FFFFCC"
hlcolor="#BECSDE">

<THEAD>
<TO class="heading">Field Name</TD>
<TO class="heading">Return Type</TD>
<TO class="heading">Accessibility</TD>
<TD class="heading">Parameters</TD>
</THEAD>
<TBODY>
<xsl:for-each select="structure/method">

<tr>
<TO>

212

</TD>
<TD>

</TD>
<TD>

</TD>
<TD>

</TD>
</tr>

</xsl:for-each>
</TBODY>

</TABLE>
</xsl:when>

<xsl:value-of select="Name"/>

<xsl:value-of select="ReturnType"/>

<xsl:value-of select="Accessibility"/>

<xsl:value-of select="Parameters"/>

<xsl:otherwise>No Methods Found</xsl:otherwise>
</xsl:choose>

Return To Results

Search Again

</BODY>
</HTML>
</xsl:template>
</xsl:stylesheet>

Figure 7.4-2: XSLT description for 'viewc/ass.xslt'

<?xml version="l.O"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/l999/XSL/Transform"
version="l.O">

<xsl:template match="/">
<HTML xmlns="http://www.w3.org/1999/xhtml">
<HEAD>
<link href="normalstyle.css" rel="stylesheet" type="text/css"/>
</HEAD>
<BODY>
<TABLE cellspacing="3" cellpadding="B"
style="behavior:url(tablefunctions.htc);" slcolor="#FFFFCC"
hlcolor="#BECSDE">
<THEAD>
<TD></TD>
<TD class="heading">Class ID</TD>
<TD class="heading">Class Name</TD>
<TD class="heading">Package</TD>
<TD class="heading">Interfaces</TD>
<TD class="heading">Inherits</TD>
<TD class="heading">Design Pattern</TD>
<TD class="heading">Abstract</TD>
<TD class="heading">Static</TD>
<TD class="heading"># Comments</TD>
<TD class="heading">.Fields</TD>
<TD class="heading">Methods</TD>

</THEAD>
<TBODY>

213

<xsl:for-each select="structure/class">
<xsl:variable name ="ClassiD" select="ClassiD"/>

<tr>
<TD>

<form action="extract.aspx" method="post"
name="extract" target=" self">

<input type="hidden" name="ClassiD"
value="{$ClassiD}" />

<input type="submit" name="extract"
value="Extract" />

</form>
</TD>
<TD>

</TD>
<TD>

<xsl:value-of select="ClassiD"/>

<xsl:value-of select="Classname"/>

<Ia>
</TD>
<TD>

<xsl:if test="Package!= 1
;

1 "><xsl:value-of
select="Package"/></xsl:if>

</TD>
<TD>

<xsl:choose>
<xsl:when test="structure/class/Interfaces[.

! ='; '] ">
<xsl:value-of

select="structure/class/Interfaces"/>
</xsl:when>
<xsl:otherwise>None

Implemented</xsl:otherwise>

! ='; '] ">

</TD>
<TD>

</xsl:choose>

<xsl:choose>
<xsl:when test="structure/class/Inherits[.

<xsl:value-of
select="structure/class/Inherits"/>

</xsl:when>

</TD>
<TD>

</TD>
<TD>

</TD>
<TD>

<xsl:otherwise>None Inherited</xsl:otherwise>
</xsl:choose>

<xsl:value-of select="DesignPattern"/>

<xsl:choose>
<xsl:when test="Abstract[. != 1 0 1]">

Yes
</xsl:when>
<xsl:otherwise>No</xsl:otherwise>

</xsl:choose>

<xsl:choose>
<xsl: when test="Static [. ! = 1 0 1

] ">
Yes

214

</TO>
<TO>

</TO>
<TO>

</xsl:when>
<xsl:otherwise>No</xsl:otherwise>

</xsl:choose>

<xsl:value-of select="TotalNumberOfComments"/>

<form action="viewfields.aspx" method="post"
name="ClassiD" target="_self">

<input type = "hidden" name="classiD"
value="{$ClassiD}" />

</TO>
<TO>

<input type="submit" value="View" />
</form>

<form action="viewcomponents.aspx" method="post"
name="ClassiD" target="_self">

<input type = "hidden" name="classiD"
value="{$ClassiD}" />

<lTD>
</tr>

</xsl:for-each>

</TBODY>
</TABLE>

<input type="submit" value="View" />
</form>

Return To Results

Search Again
</BODY>
</HTML>
</xsl:template>
</xsl:stylesheet>

Figure 1.1-3: XSL T description for 'viewdesignpattern.xslt'

<?xml version="l.O"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="l.O">

<xsl:template match="/">
<HTML xmlns="http://www.w3.org/1999/xhtml">
<HEAD>
<link href="normalstyle.css" rel="stylesheet" type="text/css"/>
</HEAD>
<BODY>
<TABLE cellspacing="3" cellpadding="B"
style="behavior:url(tablefunctions.htc);" slcolor="#FFFFCC"
hlcolor="#BECSDE">
<THEAD>
<TD></TD>
<TO class="heading">Rating</TD>
.~T{) class="heading">Class ID</<TD>
<TO class="heading">Class Name</TD>
<TD class="heading">Package</TD>
<TD class="heading">Interfaces</TD>
<TD class="heading">Inherits</TD>

215

<TO class="heading">Oesign Pattern</TO>
<TO class="heading">Abstract</TO>
<TD class="heading">Static</TO>
<TD class="heading"># Corrunents</TO>
<TO class="heading">Fields</TO>
<TO class="heading">Methods</TO>

</THEAD>
<TBOOY>

<xsl:for-each select="structure/class">
<xsl:variable name ="ClassiO" select="ClassiD"/>
<tr>

<form action="extract.aspx" method="post" name="extract">

<TO>
<input type="hidden" name="ClassiD"

value="{$ClassiO}" />
<input type="submit" name="extract"

value="Extract" />
</TD>

</form>
<TO>

</TO>
<TO>

</TO>
<TO>

<xsl:value-of select="Rating"/>%

<xsl:value-of select="ClassiD"/>

<xsl:value-of select="Classname"/>

</TD>
<TO>

<xsl:if test="Package!='; '"><xsl:value-of
select="Package"/></xsl:if>

</TO>
<TO>

</TO>
<TO>

</TO>
<TO>

<xsl:value-of select="Interfaces"/>

<xsl:value-of select="Inherits"/>

<xsl:if test="OesignPattern!=';'">
<xsl:variable name ="OesignPattern"

select="OesignPattern"/>
<xsl:val
ue-of select="OesignPattern"/>

</TO>
<TO>

</xsl:if>

<xsl:choose>
<xsl:wnen test="Abstract[. !='0']">

Yes
</xsl:when>
<xsl:otherwise>No</xsl:otherwise>

</xsl:choose>

216

</TD>
<TD>

</TD>
<TD>

</TD>
<TD>

<xsl:choose>
<xsl:when test="Static[. != 1 0 1]">

Yes
</xsl:when>
<xsl:otherwise>No</xsl:otherwise>

</xsl:choose>

<xsl:value-of select="TotalNumberOfCornments"/>

<form action="viewfields.aspx" method="post"
name="ClassiD" target="_self">

<input type = "hidden" name="classiD"
value="{$ClassiD}" />

</TO>
<TD>

<input type="submit" value="View" />
</form>

<form action="viewcomponents.aspx" method="post"
name="ClassiD" target="_self">

<input type = "hidden" name="classiD"
value="{$ClassiD}" />

<input type="submit" value="View" />
</form>

</TD>
</tr>

</xsl:for-each>

</TBODY>
</TABLE>

Search Again

</BODY>
</HTML>
</xsl:template>
</xsl:stylesheet>

Figure 1.1-4: XSL T description for 'viewsearchresults.xslt'

<?xml version= 1 1.0 1 ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="l.O">
<xsl:template match="/">
<HTML xmlns="http://www.w3.org/1999/xhtml">
<HEAD>
<link href="normalstyle.css" rel="stylesheet" type="text/css"/>
</HEAD>
<BODY>

<xsl:choose>
<xsl,: when test="structur,e/fielcVFieldiD.[. ! = 1 1

] ">
<TABLE cellspacing="3" cellpadding="8"
style="behavior:url(tablefunctions.htc);" slcolor="#FFFFCC"

hlcolor="#BEC5DE">
<TREAD class="heading">
<TO >Field Name</TD>

217

<TD>Type</TD>
<TD>Accessibility</TD>
<TD>Static</TD>
</THEAD>
<TBODY>
<xsl:for-each select="structure/field">
<TR>

<TD>

</TO>
<TD>

</TO>
<TD>

</TD>
<TD>

</TO>

<xsl:value-of select="Name"/>

<xsl:value-of select="Type"/>

<xsl:value-of select="Accessibility"/>

<xsl:choose>
<xsl:when test="Static[. !='0']">

Yes
</xsl:when>
<xsl:otherwise>No</xsl:otherwise>

</xsl:choose>

</TR>
</xsl:for-each>
</TBODY>
</TABLE>
</xsl:when>
<xsl:otherwise>No Methods Found</xsl:otherwise>

</xsl:choose>

Return To Results

Search Again

</BODY>
</HTML>
</xsl:template>
</xsl:stylesheet>

Figure 1.1-5: XSLT description for 'viewFields.xslt'

218

Appendix 5 ReSULT Screenshots

reuse source code units library
tool (result)

This tool allows n:users to seardl a reuse tq10sitory, it also gives the opportunity for the insertion of code irto il
This tool was developed for a Masters Degree allhe University ofDurbam.

~~~==~----~------~==========~============~~·~r~ lu~­
Figure 1.1-6: 'Index.aspx' 

search form 
rOCL rJava 

Search Criteria 

~~~~~.~~~~~~~~~~~=========,=-~~====:=~==~=:=:::~:~,~r~~~~ 
Figure 1.1-7: 'searchform.aspx'

219

.. --~-···--·---··----·n••~• 1111111111!

view search results

Rllting Cltln CltiD PdlltJe l'*'ft~CG IaD'ib lJniin Alntr«:t StDtU: # Fieltls ID Ntime Ptlltetn - -
"e_,.l .96" $92611165 llllr&.l!l! 8t!me1131Mtqj Ntmt No No 0 ~ ~

llflrttril6d

a !moct I 94" 19J/SfH6 ~ s-eh!Jtralqy Ntmt No No 0 ~ ~
IIIJwrliMI

' NINa ~ .~ EmKij ~ S4(179S1S /JiuJ&. s-c,.,..,
hJirerlled No No 0

. ~"'""'' ~ 869J/360 ~ S..Ch!iiNIIIID No,.,
ciRIRIZ. No No 0 ~ ~

INie1ltlld

Extt"' I 88" 65168961 - &ale~ Noll/l
lllhmlld *Bii No No 0 l ~ ~

. e.,. • ., I 86!'' 71052.966 ~ &atchStnlllgy No,.,
./Jtlrerllld -!.;! No No 0 ~ ~

E•nctl &f9' 38428488 lllt..lrl.ll!i /<lollS s-rlr!JIIalto btlteritwtJ - No No 0 ~ j:"'V,.,.,

e l 82~ 84114082 ~ SNIIrhSirrJiqy No¥
lnJJniJtd - No No 0 ~ ~

e, l &Mt 26'131202 ~ No¥
~D .111M~ - J!o No 0

~- ~

82!72481 lllil£6ld!li.
11/qM

S..ChS~rr~Ugy .IIIMIWIJ - Jlo No 0 ~ "'"" ~

Figure 1.1-8: viewresults.aspx (note: picture has had to be merged because of the page being to large for the screen)

l • '• '1 • r • • ~.F •

r View all fields in this
cl866

view fields

Type Acceuibility

lil,_ r::::r-1:'" ~«-

Figure 1.1-9: 'viewfields.aspx' (only showing relevant fields to search criteria)

) • ' ' ' ' I' _ ~~------ __ ...__._, -'-"'::.:m ~":

P View all fields in this
class

Field Nt~~M Type Acceasibility Stlllic

pri'lt:M No

Figure 1.1-10: 'viewfields.aspx' (showing all fields in class)

221

view components
r View all c~ in this class

Method Name Relllm Type Acceasibility Ptll'fl/lleters
BJIS

RflhKn Tg Rnm
SUOitlliiJiD

~ F
Figure 1.1-11: 'viewcomponents.aspx' (only showing relevant fields to search criteria)

view com onents
fl View all componeru in this class

BJIS

~h

Figure 1.1-12: ' viewcomponents.aspx' (showing all fields in class)

222

Field Name
S,an;JtS.pQCe

&en

BPS

.rean;h

BIWmiaB.tlsub
~

-~

= Packllfe lnterf~~ea blherits ~= Abatracl StatU:

Type Acceaibility Static
LisJ ~ No

LisJ prlYak No

-&~;

Reblr11 Type
Cons11'11t:tor]1l'iw:b

boo/et11f pub&

&!tuChablt:p

~c;gst.

No No 0

,~::~M$~"""""'"'-M.--·~-/~~·· ,s,-,, ·· ·- -,-----.;y :;;--~ ~-v:;·~~ ~- : ,--~---~-~~--;;;_T--;-:-;~--~--f""~':;B[1~;.;_ -~ 1 • .-J:~r;;:•<~JS!I..,

Figure 1.1-13: 'viewclass.aspx' (note: picture has had to be merged because of the page being to large for the screen)

view desi n attern

N~~~~~e. M!i!IOi',......... Plllterlt ~ .. .,............ ~ Co111111D118 FuNis Methoda

fm.tll:ffl
No1Je· Mme Iii · Rv,...l
llflplnnenlld lnhetiled ~ No No 0 ~

illuR6.
No/» Nt:nw !rv'Z I ~
~ htiter~Ud

dptut) No No Q

Ill

liltUia&
NoM Non~ ~I ~I
{lilp~d ~

dptesj2 '' NiJ .No 0

tmJiiW!ii
NiJ111· ' ' Nt»te ~li!:~i'' HY....I

. ~--d, ' lnltetiled '
djJ(uQ . % No 1'{Q 0 vtrwl

·:® \$!1Jlii4~ ml
Wf. , ''"' '

'I!
gj! •'!f.

ltu..la.!l§ •m Noj!l NoM .I ~
lit

{!.:.'!
~ l1flttrltMJ

d,pMst2 '' No ' No 0: ~ . llf,.

lP.l ' ,NtiM J;tlone
&ili..lfi dpl¢2 [~t

~d lnhtrrliMI No No 0 ~
';+;

l&.aMtBO
NoM NoM f~

·.~~ 1nherlUd dpt¢2 No No 0 ·~

E. *'r F...allal riK& ,...,

;-:.--:.·o-ai-iif~;:d.-iijr.;;.;o..-·-

extract component
peclteQe Puu:le:

pUbhc clas'5 Brs :u:sple.t:1enr,'5 searcbS~C'a~eqy !

PC'lve.t:e: l.ltst searcb5poce:
PtlVO.!:e: LlSt See:c:

plA>l::.c liFS !Searcboble Pl !
Setl.rcbS pe.ce • nev L::.nJtedLl!!lt 0:
Se4\rt:bSptlrCe.odd(O~p}:

Seen • Delt t.::.n~dLl!!lt 0;

!teC'at.or::. • cb.::.teratoro:

How useful was this piece of code? Submit a rating for it (1-Useless 1 ()..
Exceptional).

r- 1 r-2 r-3 r- 4 t'~ r-6 r-7 r- 8 r-9 r- 10 SIA>Mil

m~n~~~----~--------~--r:r.:~ ~~~

Figure 1.1 -15: ' extractcomponent. aspx'

extract component

225

What language is the~? r lava r OCL

Design Pattan (if applicable)

c~ Traces to (If applicable)

File
Location

Go to. Maio Menu

IMtrl

Figure 1.1-17: 'insertcode.aspx' ='

226

Appendix 6 XSD Descriptions

<?xml version="l.O" encoding="utf-8" ?>
<xs:schema id="structure" xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:msdata="urn:schemas - microsoft-com:xml­
msdata">

<xs :e lement name= "structure" msdata:IsDataSet="true" msdata:Locale="en- GB" >
<xs:complexType>

<xs:choice maxOccurs="unbounded">
<xs :element name="class">

<xs : complexType>
<xs: sequence>

<xs :element name="ClassiD" type="xs:int" />
<xs:element name="Classname">

<xs:simpleType>
<xs :restriction base="xs:string">

<xs :maxLength value="20" />
</xs:restriction>

</xs:simpleType>
</xs :element>
<xs:element name="Package">

<xs :simpleType>
<xs:restriction base="xs : string" >

<xs :maxLength value= " 40 " />
</xs :restriction>

</xs:simpleType>
</xs :element>
<xs :element name="Interfaces">

<xs :simpleType>
<xs :restriction base="xs:string" >

<xs:maxLength value="20" />
</xs:restriction>

</xs :simpleType>
</xs :element>
<xs :element name= "Inherits" >

<xs :simpleType>
<xs : restriction base="xs:string" >

<xs :maxLength value="40" />
</xs :restriction>

/>

</xs:simpleType>
</xs :element>
<xs:element name="DesignPattern" >

<xs :s impleType>
<xs:restriction base="xs:string" >

<xs :maxLength value="40" />
</xs:restriction>

</xs : simpleType>
</xs :element>
<xs:element name= "Abstract" type="xs:int" />
<xs:element name="Static" type="xs:int" />
<xs : element name="TotalNumberOfComments" type="xs:int" />
<xs : element name="Rating" type="xs:double" minOccurs=" O" />

</xs:sequence>
</xs :complexType>

</xs :element>
<xs : element name="field">

<xs:complexType>
<xs :sequence>

<xs :element name="Field!D" msdata:Auto!ncrement="true" type="xs:int" minOccurs="O"

<xs : element name="Name">
<xs :simpleType>

<xs:restrict ion base="xs :string">
<xs :maxLength value=" 20 " />

</xs:restriction>
</xs : simpleType>

</xs : element >
<xs:element name="Type">

<xs :simpleType>
<xs :restriction base="xs:string" >

<xs : maxLength value=" 20 " />
</xs :rest riction>

</xs :simpleType>
</xs :element>
<xs:element name="Accessibility">

<xs : simpleType>
<xs:restriction base="xs:string">

<xs:maxLength value= " 20 " />
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="Static" type="xs : int " />
<xs:element name="ClassiD " type="xs :int" />

</xs : sequence>
</xs:complexType>

</xs:element>
<xs : element name= " traceability">

<xs:complexType>
<xs : sequence>

<xs : element name="TraceiD" type="xs : int" />
<xs:element name= "ClassiD " type= "xs : int" />
<xs:element name= "OCLID" type= " xs : int " />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="classtype">

<xs:complexType>
<xs : sequence>

<xs:element name= " Cl assiD" type= " xs : int " />
<xs:element name="Name" type= "xs:string" minOccurs= "O" />
<xs:element name="Type" type= "xs : string" minOccurs="O " />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs : element name="method">

<xs:complexType>
<xs : sequence>

<xs : element name="ComponentiD" type= "xs:int" />
<xs:element name="Name">

<xs:simpleType>
<xs : restriction base="xs:string">

<xs:maxLength value="20 " />
</xs : restriction>

</xs:simpleType>
</xs:element>
<xs:element name= "ReturnType " >

<xs : simpleType>
<xs:restriction base="xs : string">

<xs:maxLength value="20 " />

</xs :restriction>
</xs:simpleType>

</xs :element>
<xs : element name="Accessibility">

<xs:simpleType>
<xs :restriction base="xs:string">

<xs :maxLength value="20" />
</xs:restriction>

</xs : simpleType>
</xs:element>
<xs:element name= "Parameters">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:maxLength value="20 " />
</xs : restriction>

</xs :simpleType>
</xs:element>
<xs :element name="ClassiD" type="xs:int" />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs : choice>

</xs:complexType>
<xs:unique name="Constraintl" msdata:PrimaryKey="true">

<xs:selector xpath= ". //class" />
<xs : field xpath=" ClassiD" />

</xs:unique>
<xs : unique name="field_Constraintl " msdata:ConstraintName="Constraintl">

<xs:selector xpath=" . //field" />
<xs:field xpath="FieldiD" />

</xs:unique>
<xs:unique name="method_Constraintl" msdata:ConstraintName="Constraintl " msdata:PrimaryKey="true">

<xs:selector xpath=". //method" />
<xs :field xpath= " ComponentiD" />

</xs:unique>
<xs:keyref name="Relat ion2" refer="Constraint l" >

<xs:selector xpath= ". //method " />
<xs:field xpath=" ClassiD" />

</xs:keyref>
<xs:keyref name="Relationl" refer= "Constraintl">

<xs:selector xpath=". //field" />
<xs :field xpath="ClassiD" />

</xs:keyref>
</xs : element>

</xs :schema>

Appendix 7 OCL Translations

OCL Keyword ReSULT Translation
Self "ignore??"
> Greater than
< Less than
= Is Equal to

Is of type
Inv Invariant
Pre Precondition
Post Postcondition
.. Includes ..
Let Let local variable
Def Definition
.oclAsType Casts to
-> Is
.. To and including
EmployeeRanking[bosses] Set of employeeranking belonging to the

collection of bosses
OcllsTypeOf Is of type?
) : Returns (watch out for number of spaces)
OcllsKindOf Is of kind?
OclinState Is of state?
OcllsNew Is new?
oclAsType Is of type
x@pre At the precondtion value for x
Select Selected with
Reject Rejected for value

I Where
Collect Collected for
for All For all values of
<> Are all unique to
Exists Existed with value
Table 1.1-1: The translations between natural language used in the ReSULT system
andOCL.

232

Appendix 8 ReSUlT ~ntellface Definitions

using System;
using System.Collections;

namespace reuse.insertcode
{

/// <sum...rnary>
!!/ Summary description for SourceCodeHandler.
!II </summary>
public interface

SourceCodeHandlerinterface:CodeHandlerinterface
{

void setStatic();
void setAbstract();
bool getStatic();
bool getAbstract();
ArrayList getinterfaces();
void setlnterfaces(string sDeclaration);
ArrayList getimports();
void addimport(string sStatement);
void setinheritance(string sDeclaration);
ArrayList getinheritance();
string [] identifyMethod (string sSegment,int

iComponentiD);
ArrayList identifyMethodParams(string sSegment);
ArrayList identifyBlocks(string sTemp);
void identifyFields(string sSegment);
void setSourceCodeObject();
SourceCode getSourceCodeObject();

Figure 1.1-18: 'CodeHandler Interface. cs'

using System;
using System.Collections;

namespace reuse.insertcode
{

!// <:surn .. rnary>
!I/ Summary description for Commentsinterface.
!!/ </E;ummary>
public interface Commentsinterface
{

ArrayList identifyComments(int iComponentiD,string
sSegment);

void addLineComments(string sComment, int
iComponentiD);

void checkExpelledWords(string item,int
iLocationOfWord,int iComponentiD);

}

Figure 1.1-19: 'Commentslnterface.cs'

233

using System;

namespace reuse.insertcode
{

!/! <surmnary>
//! Summary description for CodeHandlerinterface.
! / / <.Is ununa.ry>
public interface CodeHandlerinterface
{

int getNumberOfWords();
void setUniqueiD();
void setFields(string [] sField);
string getPackageName();
string getClassName();
int getUniqueiD();
void setComponent(Component c);
void setPackageName(string sName);
void setClassname(string sTemp);
string removeinvalidCharacters(string sWord);

Figure 1.1-20: 'CodeHandlerlnterface.cs'

234

Appendix 9 Results Chapter

Metric Metric Properties Goal Properties Scoring Weighting Score
ID Criteria
Ml.1 Do code generation tools produce Self-Descriptiveness Maintainability Yes (1) 116 1

reusable source code that is Testability No (0)
documented? Flexibility

Portability
Reusability

Ml.2 Are comments accurate and Self-Descriptiveness Maintainability 0 ... 5 1130 2
describe the "what's and whys?" Testability O=no

Flexibility comments.
Portability 5 =Precise
Reusability Comments

Ml.3 Are comments set off from code Self-Descriptiveness Maintainability 0 ... 5 1/30 4
and of consistent style Testability O=No
throughout? Flexibility Comments

Portability 5 = Consistent
Reusability Style

M1.4 Is a standard format for Self-Descriptiveness · Maintainability 0 No standard 1130 4
organisations of modules Testability present
implemented consistently? Flexibility

Portability 5 Consistent
Reusability standard

M1.5 Is a standard prologue Self-Descriptiveness Maintainability Yes (1) 1/6 1
consistently implemented? Testability No (0)

Flexibility
Portability

j/

Reusability
Ml.6 Does the documentation specify a Self-Descriptiveness Maintainability Yes (1) 116 1

standard prologue? Testability No (0)
Flexibility
Portability
Reusability

M2.1 Is there a representation of the Consistency Correctness Yes (1) 1115 1
design in the paper Reliability No(O)
documentation? Maintainability

M2.2 Is the software implemented in Consistency Correctness Yes (1) 1115 1
accordance with the design Reliability No(O)
representation? Maintainability

M2.3 Are there consistent global, unit, Consistency Correctness Yes (1) 1/15 1
and data type definitions? Reliability No (0)

Maintainability
M2.4 Is there a definition of standard Consistency Correctness Yes (1) 1/15 1

1/0 handling in the paper Reliability No(O)
documentation? Maintainability

M2.5 Is there a consistent Consistency Correctness Yes (1) 1/15 1
implementation of external 1/0 Reliability No(O)
protocol and format for all units? Maintainability

M2.6 Are data naming standards Consistency Correctness Yes (1) 1115 1
specified in the paper Reliability No(O)
documentation? Maintainability

M2.7 Are naming standards consistent Consistency Correctness 0 ... 5 1/75 2
across IPC calls? Reliability O=Non

Maintainability Existent
5 =Standards
always meet I

'
M2.8 Are naming standards consistent Consistency Correctness 0 ... 5 1/75 4

across languages? Reliability O=No
Maintainability Standards Met

5 =All
Enforced '

M2.9 Is there a standard for function Consistency Correctness Yes (1) 1/15 1
naming in the paper Reliability No (0)
documentation? Maintainability

M2.10 Are the naming conventions Consistency Correctness Yes (1) 1115 1
consistent for functional Reliability No(O)
groupings? Maintainability_

M2.11 Are the naming conventions Consistency Correctness Yes (1) 1115 1
consistent for usage? Reliability No (0)

Maintainability
M2.12 Are the naming conventions Consistency Correctness Yes (1) 1115 0

consistent for data type, etc.? Reliability No(O)
Maintainability

M2.13 Does the paper documentation Consistency Correctness Yes (1) 1115 1
establish accuracy requirements Reliability No (0)
for all operations? Maintainability

M2.14 Are there quantitative accuracy Consistency Correctness Yes (1) 1115 1
requirements stated in the paper Reliability No (0)
documentation for all 1.0? Maintainability

M2.15 Are there quantitative accuracy Consistency Correctness Yes (1) 1/15 1
requirements stated in the paper Reliability No(O)
documentation for all constants? Maintainability_

M3.1 Is the structure of the design Modularity Maintainability Yes (1) 119 1
hierarchical in a top-down design Testability No (0)
within tasking threads? Flexibility

.:JI;

Reusability
Interoperabilit}'_

M3.2 Do the functional groupings of Modularity Maintainability 0 ... 5 1/45 4
units avoid calling units outside Testability O=Always
their functional area? Flexibility 5 =Never

Reusability
Interoperability

M3.3 Are machine dependent and I/0 Modularity Maintainability Yes (1) 119 4
functions isolated and Testability No (0)
encapsulated? Flexibility

Reusability
Interoperability

M3.4 Do all functional procedures Modularity Maintainability 0 ... 5 1145 3
represent one function (one-to- Testability 0 =Never
one function mapping)? Flexibility 5 =Always

Reusability
Interoperabi.J.!ty_

M3.5 Are all commercial software Modularity Maintainability Yes (1) 119 1
interfaces & APis, other than GUI Testability No (0)
Builders, isolated and Flexibility
encapsulated? Reusability

Interoperability
M3.6 Have symbolic constants been Modularity Maintainability Yes (1) 119 1

used in place of explicit ones? Testability No (0)
Flexibility
Reusability
Interoperability_

M3.7 Are all variables used exclusively Modularity Maintainability Yes (1) 1/9 1

I for their declared purposes? Testability No (0)

Flexibility
Reusability
Interoperability

M3.8 Has the code been structured to Modularity Maintainability Yes (1) 119 1
· minimise coupling to global Testability No (0)
variables? Flexibility

Reusability
Interoperability

M3.9 Are interpreted code bodies Modularity Maintainability Yes (1) 1/9 0
protected from accidental or Testability No(O)
deliberate modification? Flexibility

Reusability
Interoperability

M4.1 Is the data representation machine Machine Portability Yes (1) 112 0
independent? Independence Reusability No (0)

M4.2 Are the commercial software Machine Portability Yes (1) 1/2 1
components available on other Independence Reusability No (0)
platforms in the same level of
functionality?

M5.1 Does the software avoid all usage Software system Portability Yes (1) 116 1
of specific pathnames/filenames? independence Reusabili_ty. No(O)

M5.2 Is the software free of machine, Software system Portability Yes (1) 116 1
OS and vendor specific independence Reusability No (0)
extensions?

M5.3 Are system dependent functions, Software system Portability Yes (1) 1/6 1
etc., in stand-alone modules (not independence Reusability No (0)
embedded in code)?

M5.4 Are the languages and interface Software system Portability Yes (1) 116 1
libraries selected standardised and independence Reusability No (0)

portable? '

M5.5 Does the software avoid the need Software system Portability Yes (1) 116 1
i

for any unique compilation in independence Reusability No(O) I
I

order to run? I

M5.6 Is the generated code able to run Software system Portability Yes (1) 116 1
i

I

without a specific support runtime independence Reusability No (0)
i

component?
M6.1 How quickly does it take to Execution Efficiency Efficiency 1-x 1/3 0.7 to

complete one search of the reuse 1dp
i

repository?
M6.2 How long does it take to extract a Execution Efficiency Efficiency 1-x 113 0.9to

comQonent? 1dp I

M7.1 Are there restrictions to areas of Access Control Integrity Yes (1) 112 0 i

the system? No(O)
'

M7.2 Are there different levels of Access Control Integrity Yes (1) 1/2 0 I

access? No(O}
M8.1 Are actions of users monitored? Access Audit Integrity Yes (1) 1/2 0

No(O)
M8.2 Are individual actions of users Access Audit Integrity Yes (1) 1/2 0

logged? No(O)
M9.1 Are there training strategies for Training Usability Yes (1) 113 1

the system? No(O)
M9.2 Is there sufficient user Training Usability Yes (1) 113 1

documentation? No (0)
M9.3 Is intensive training need for Training Usability Yes (1) 113 0

users? No (0)
M10.1 Is the component suitable for the Operability Usability Yes (1) 113 1

task? No (0)
M10.2 Does the system conform to the Operability Usability 0-5 113 1

users' expectation?
M10.3 Is the system tolerant to errors? Operability Usability Yes (1) 113 1

No(O)
M11.1 Are the user interface forms self- Communicativeness Usability 0 ... 5 1/10 3

descriptive? 0 =None
5 =All are

M11.2 Has an effective colour scheme Communicativeness Usability 0 ... 5 1110 4
been used in the system that O=Non
draws the users attention to Effective
important aspects of a screen? 5=

Meaningful
M12.1 Are interfaces designed into the Expandability Flexibility Yes (1) 1/3 1

system to allow 'plug and play' No (0)
expansion?

M12.2 Has the system been design with Expandability Flexibility Yes (1) 1/3 1
inheritance? No(O)

M12.3 Are the structures of interfaces, Expandability Flexibility Yes (1) 1/3 1
and inheritance well documented? No (0)

M13.1 How long does it take to correct Simplicity Testability 1-time taken 1
errors? Reliability

M14.1 Does the system perform a broad Generality Flexibility 0 ... 5 115 2
range of functions? Interoperability 0 =Just one

Reusability function
5 =Many
varied
functions

M15.1 Minimise the time to correct Conciseness Maintainability Yes (1) 1/3 1
errors that occur in the system. No_(OJ.

M15.2 How long does it take for Conciseness Maintainability 1-x 1/3

someone else to read and
understand code?

M15.3 Has the reuse of code been Conciseness Maintainability Yes (1) 113 0
applied in the development of the No (0)
system?

M16.1 Does the system implement open Communication :U:nteroperability Yes (1) 1/3 1
standards? Commonality No (0)

Ml6.2 Is the system platform Communication Interoperability Yes (1) 1/3 1
independent? Commonality No(O)

M16.3 Is the tool operating system Communication 1lnteroperability Yes (1) 1/3 1
independent? Commonality No (0)

M16.4 How easy is it to transfer the Communication Interoperability 0 ... 5 1/15 4
system to another environment? Commonality 0 = Impossible

5 =Seamless
MI7.1 Can the data be compressed? Storage Efficiency Efficiency Yes (1) I 0

No(O)
MI8.1 Does the system implement all Completeness Correctness Yes (I) 112 1

required capability defmed during No(O)
the analysis stage?

MI8.2 Does the system contain all Completeness Correctness Yes (1) 112
references and required items? No (0)

MI9.1 How well is the system Traceability Correctness 0 ... 5 1 5
implementation traced back to the 0 =Never
defined use-cases set out in the 5 =All
analysis?

M20.1 Number of incorrect search Accuracy Reliability 0 ... 5 1/2 2
results found. O=Many

5 =None
M20.2 Number of incorrect characters Accuracy Reliability 0 ... 5 112 3

t

parsed into the system when O=Many
inserting code into the repository. 5 =None

M21.1 Number of runtime errors Error tolerance Reliability 0 ... 5 1 5
occurred O=Many

5 =None
Table 7.4-2: The software metrics used to evaluate the ReSULT system

.,

Access Audit (A a)
Access Control (A c)
Accuracy <A c)
Communication Commonality (Cc)
Communicativeness (Com)
Completeness (Com.J_
Conciseness (Cone)
Consistency (Cons)
Error tolerance (E,)
Execution Efficiency (Ee)
Expandability (Ex)
Generality (Ge)
Instrumentation {Ins)
~achinelndependence (M;)

~odularity (Mod)
Operability (0,)
Self-descriptiveness (SD)
Simplicity (S;)
Software system independence (Sstl
Storag_e Efficiency (Se)
Traceability (Ta)
Training (T,)
Table 7.4-3: Abbreviation table for Quality Factor Properties

~aintainability Integrity

Flexibility Efficiency

Testability Usability

Portability Correctiveness

Reusability Reliability

. ··lnteroperability

Table 7.4-4: Quality Factor Equations for ~cCall's Software Quality Model

244

Glossary

Adjective: The part of speech that modifies a noun or other substantive by limiting,
qualifying, or specifying and distinguished in English morphologically by one of
several suffixes, such as -able, -ous, -er, and -est, or syntactically by position directly
preceding a noun or nominal phrase- [http://www.dictionary.com].

Artefact: An artefact is a man-made object taken as a whole -
[http:/ /workdnet. princeton.edu/perVwebmn].

Beacons: A beacon is a feature or detail that is visible in a program or documentation
that serves as an indicator of the function of the particular operation or structure­
[http:/ /www.cise. ufl.edu/research/ParalletPattems/PatternLanguage/Background/Gloss
ary.htm].

Client: a client is a system that accesses a (remote) service on another computer by
some kind of network. The term was first applied to devices that were not capable of
running their own stand-alone programs, but could interact with remote computers via
a network. These dumb terminals were clients of the time sharing mainframe
computer- [http://en.wikipedia.org/wiki/client_(Band)].

COTS: Commercial Off-the-shelf (COTS) is a term for systems which are
manufactured commercially, and then may be tailored for specific for specific uses.
This is most often used in military, computer, and robotic systems. COTS systems are
in contrast to systems that are produced entirely and uniquely for the specific
application - [http:/ /en. wikipedia.org/wiki/COTS].

CSS: Cascading Style Sheets is a style sheet language that allows authors and users to
attach style (e.g., fonts, spacing, and aural cues) to structured documents (e.g., HTML
documents and XML applications). By separating the presentation style of documents
from the content of documents, CSS simplifies Web authoring and site maintenance­
[http://www.perfectxml.com/glossary.asp].

Delocalised plans: Delocalised plans are pieces of code that are conceptually related
that are physically located in non contiguous parts of a program -
[http://www.cc.gatech.edu/reverse/glossary.html].

Domain: A problem area. Typically, many applications programs exist to solve the
program in a single domain. The following prerequisites indicate the presence of a
domain; the existence of comprehensive relationships among objects in the domain, a
community interested in solutions to the problem in the domain, recognition that
software solutions are appropriate to the problems in the domain, and a store of
knowledge or collected wisdom to address the problems in the domain. Once
recognised, a domain can be characterised by its vocabulary, common assumptions,
architectural approach and literature'-
[http:/ /www.cc.gatech.edu/reverse/ glossary .html].

245

Domain Model: The domain model should serve as a unified, definitive source of
reference when ambiguities arise in the analysis of problems or later during the
implementation of reusable components, a repository of the shared knowledge for
teaching and communication, and a specification to the implementer of reusable
components. A model of a domain should include information on at least three aspects
of a problem: concepts to enable the specification of systems in the domain; plans to
describe how to map to the specification into code; and rationales for the specification
concepts, their relations, and their relations to implementation plans -
[http:/ /www.cc.gatech.edu/reverse/ glossary .html].

DTD: The purpose of a DTD is to define the legal building blocks of an XML
document. It defmes the document structure with a list of legal elements. A DTD can
be declared inline in your XML document, or as an external reference. - Jan Egil
Refsnes [http://www.xmlfiles.com/dtd/dtd_intro.asp].

Embedded System: An embedded system is a special-purpose computer system,
which is completely encapsulated by the device it controls. An embedded system has
specific requirements and performs pre-defmed tasks, unlike a general-purpose
personal computer - [http:/ /en. wikipedia.org/wiki!Embedded _system].

Faceted Classification: A component can be classified among several dimensions
(facets). A facet is a multi-valued attribute where each facet can be represented by a
set of terms with any kind of structure
[http://www.cc.gatech.edu/reverse/glossary.html].

Formal Methods: A formal method is some advocate applying rigorous mathematical
analysis to compute programming especially proof of correctness. They believe that
traditional engineering is carried out with mathematical rigor, while programming is an
iterative, trial-and-error process. These advocates strive to make programming more
rigorous - [http://en. wikipedia.org/wiki/Formal_ methods].

Framework: A reusable design for a class of software that is high level and highly
structured, and makes extensive use of design patterns. It inverts usual control, so you
can insert into low level parts; however, it is very difficult to implement well
[http:/ /www.cc.gatech.edu/morale/local/morph _glossary .html].

Legacy System: A legacy system is an application that has been developed and
maintained over a period of time; typically its original designers and implementers are
no longer available to perform the system's maintenance. Often specifications and
documentation for legacy systems are outdated, so the only definitive source of
information about the system is the code itself­
[http://www.cc.gatech.edu/morale/local/morph_glossary.html].

Metric: A metric is something that can be measured. Metrics are used to better define
what is meant by more abstract or general statements. For example, the program
outcomes are the metrics of the program objectives since the outcomes better define
what is intended by the objective arid are measurable - '
[http:/ /ceaspub.eas.asu.edu/MAE-EC2000/glossary .htm].

246

Noun: The part of speech that is used to name a person, place, thing, quality, or action
and can function as the subject or object of a verb, the object of a preposition, or an
appositive- [http://www.dictionary.com].

Program Comprehension: Program comprehension is the process of acquiring
knowledge about a computer program -
[http://www.cc.gatech.edu/reverse/glossary.html].

Program Plan: A description or representation of a computational structure that the
designers have proposed as a way of achieving some purpose or goal in a program­
[http:/ /www.cc.gatech.edu/reverse/ glossary .html].

Reverse Engineering: Reverse Engineering is the process of analysing a subject
system to identify the system's components and their interrelationships, and create
representations of the system in another form or at a higher level of abstraction -
[http://www.cc.gatech.edu/reverse/glossary.html].

Scalability: How well a solution to some problem will work when the size of
the problem increases- [www.dictionary.com].

UML: In software engineering, Unified Modelling Language (UML) is a non­
proprietary, third generation modelling and specification language. However, the use
of UML is not restricted to software modelling. It can be used for modelling hardware
(engineering systems) and is commonly used for business process models and
organisation structure modelling- [http://wikipedia.org/wiki/Uml].

Use case: A complete sequence of related actions initiated by an actor; it represents a
specific way to use the system- [www.cbu.edu/~lschmitt/BSI/glossary.htm].

Verb: The part of speech that expresses existence, action, or occurrence in most
languages - [www .dictionary.com].

XML Schema: XML Schemas express shared vocabularies and allow machines to
carry out rules made by people. They provide a means for defining the structure,
content and semantics ofXML documents- [http://www.w3.org/XML/Schema].

XSL Transformations: XSL T is an XML-based language used for the transformation
ofXML documents. The original document is not changed; rather, a new XML
document is created based on the content of an existing document. The new document

i may be serialized (output) by the processor in standard XML syntax or in another
.· format, such as HTML or plain text. XSLT is most often used to convert data between
, different XML schemas or to convert XML data into web pages or PDF documents-
· [http://en.wikipedia.org/wiki/XSLT].

247

