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ii 

Web Services form the basis of web based eCommerce and eScience applications so 

it is vital that robust services are developed. Traditional validation and verification 

techniques are centred around the concept of removing all faults to guarantee correct 

operation whereas Dependability gives an assessment of how dependably a system can 

deliver the required functionality by assessing attributes, and by eliminating threats via 

means attempts to improve dependability. 

Fault injection is a well-proven dependability assessment method. Although much 

work has been done in the area of fault injection and distributed systems in general, 

there appears to have been little research carried out on applying this to middleware 

systems and Web Services in particular. There are additional problems associated with 

applying existing fault injection technologies to Web Services running in a virtual 

machine environment since most are either invasive or work at a machine level. 

The Fault Injection Technology (FIT) method has been devised to address these 

problems for middleware systems. The Web Service-Fault Injection Technology (WS­

FIT) implementation applies the FIT method, based on network level fault injection, to 

Web Services to create a non-invasive dependability assessment method. It allows 

targeted perturbation of Web Service RPC parameters as well as more traditional 

network level fault injection operations. The WS-FIT tool includes taxonomies that 

define a system under test, fault models to apply and failure modes to be detected, and 

uses these taxonomies to generate fault injection campaigns. 

WS-FIT has been applied to a number of case studies and has successfully 

demonstrated its effectiveness. It has also been successfully applied to a third-party 

system to evaluate dependability means. It performed this dependability assessment as 

well as allowing debugging of the means to be undertaken uncovering unknown faults. 
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Chapter 1 - Introduction 1 

Chapter 1 - Introduction 

Web Services [23] are a heavily used middleware technology in both eCommerce and 

eScience applications. Web Services also make a major contribution to the Globus 

Toolkit [28]that is the current front running Grid technology. Given the prominence of 

this technology it is vital that methods are developed to ensure that dependable software 

services are deployed. 

Dependability [8] is a discipline that provides an assessment of how much trust can 

be placed on a service to deliver its specified function. Conversely validation and 

verification [60] techniques attempt to determine that a system contains no faults, which 

is an important discipline and increases the overall reliability of a system, but is difficult 

to do with current techniques due to such problems as state explosion. Dependability is 

a more realistic approach to assessing a system since it measures the reliance that can be 

placed upon a service rather than validating it against its specification and includes 

methods that increase this reliance. Indeed Dependability embraces validation and 

verification as a fault prevention means [8]. 

Dependability analysis is therefore vital to aid in increasing the dependability of a 

system, not only to uncover existing problems with services but to also provide 

potential users with metrics to compare similar serviced based solutions. 

A Web Service is a software service defined by a number of standards that can be 

used to provide interoperable data exchange and processing between dissimilar 

machines and architectures. A Web Service by definition has to exchange data in a 

machine independent form and the most popular form currently in use is SOAP [15]. 

Currently Web Services provide both synchronous and asynchronous models but this 
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research will concentrate on the synchronous RPC mechanism [13] defined by the 

W3C. There are two reasons for this: 

1. It is a commonly used model 

2. The coupling of request and response messages simplifies the detection of 

incorrect results in this initial work 

The IFIP Working Group on Dependable Computing and Fault Tolerance defines 

dependability in [39] as " ... the trustworthiness of a computing system which allows 

reliance to be justifiably placed on the service it delivers ... ". This definition does not 

mention the system being fault free, just that it should be able to deliver the specified 

service when needed. This is because it is virtually impossible to engineer a system that 

can be guaranteed to be fault free. 

1.1 Dependability 

Validation and verification techniques commonly employed to ensure that systems 

are fit for use attempt to remove all faults so that error conditions cannot occur. Since it 

is not feasible to verify all states a system can achieve it is not possible to completely 

test a system using validation and verification techniques. This is commonly called the 

state explosion problem. Further, this technique can fail to take into account the failure 

of third party items such as operating systems, support software such as databases, and 

the hardware itself. 

Dependability takes a different approach. To understand dependability it is important 

to understand the three main concepts that it utilises: 
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Attributes: Measurements of how Dependable a system is 

Threats: Things that may affect the Dependability of a system 

Means: Ways of increasing the Dependability of a system. 

3 

Attributes are measures of how dependable a system ts. Some attributes are 

quantifiable, for instance you can put a number to them, whilst others are not. For 

instance it is very hard to put a simple numeric value to Confidentiality but relatively 

easy to measure reliability. Dependability is therefore quantified using a loose 

classification of: Dependable, Very Dependable or Highly Dependable. There is a 

judgement applied to the classification of the system. 

Threats are affects on a system that lower its dependability. Here we encounter the 

terms fault, error and failure. 

Fault: A fault is a defect in a system. 

Error: An error is an unexpected state within a system boundary. 

Failure: A failure is an instance in time when a system displays behaviour that is 

contrary to its specification. 

Faults, Errors and Failures are created according to a mechanism. This mechanism is 

sometimes known as a Fault-Error-Failure chain [9]. As a general rule a fault, when 

activated, can lead to an error (which is an invalid state) and the error may lead to 

another error or a failure (which is an observable deviation from the specified behaviour 

at the system boundary). 

The purpose of Dependability means is to break fault-error-failure chains and thereby 

increase the Dependability of a system. There are four means of improving the 
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dependability of a system: 

• Fault Prevention 

• Fault Removal 

• Fault Forecasting. 

• Fault Tolerance 

Therefore Dependability is measured using dependability attributes. It assumes that 

threats can exist in a system and employs means to break fault-error-failure chains and 

thus improve the overall dependability of the system. Since these means employ 

techniques that assume that not all faults are removed from the system it is a more 

realistic approach than verification and validation since it is currently not possible to 

guarantee all faults are removed from a system. 

Further it is a more appropriate way to assess a Service based system since loosely 

coupled service based systems may include third party services which have been 

validated by that third party. There may be a lack of trust between the party constructing 

the service-based system and the service provider such that the validation results may 

not be trusted. Dependability therefore allows means other than verification and 

validation to be used, for instance fault tolerance, to increase the dependability of the 

un-trusted service. 

1.2 Service Environment 

There are a number of problems associated with applying existing fault injection 

technologies to Web Services. Currently Web Services are predominantly written in 

Java to run in a Java Virtual Machine. Unfortunately most fault injection tools are 
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engineered to operate on the physical machine rather than on virtual machines and 

would therefore not allow tight correlation between trigger events and elements of a 

Web Service affected, in effect the fault injection would affect the environment the Web 

Service was running in rather than the Web Service itself. This is similar in effect to 

comparing hardware implemented fault injection and software implemented fault 

injection and its application to an operating system [30]. 

In loosely coupled systems the Services that are selected may not have been assessed 

as part of the constructed system or, in systems that employ ultra late binding [11], may 

change from invocation to invocation. This implies that the assessment technique used 

could be run on individual services as part of the system binding. Further a third party 

who may not supply the source code could supply these Services. This precludes the use 

of some compile-time injection techniques or detailed knowledge of the service other 

than that supplied by the service description and accompanying meta-data. Indeed it 

precludes any fault injector that requires physical access to the machine hosting the 

Service that may be another trust issue with the service provider. 

1.3 Objectives 

Fault injection is a well-proven method of assessing the dependability of a system 

through exercising dependability means. Although much work has been done in the area 

of fault injection and distributed systems in general, there appears to have been little 

research with regard to the application of fault injection techniques to middleware 

products [52]. 

Most dependability assessment of middleware appears to have been conducted using 

observational measurement techniques [ 41]. Some research has been conducted using 
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fault injection to test the dependability of CORBA implementations using network level 

fault injection [52, 53], again with promising results. 

Previous research in the field of service assessment vta fault injection has 

concentrated on tightly coupled, binary protocol, RPC based distributed systems. In 

defining an assessment method for Web Services new sets of challenges are faced 

which require different solutions and are non-trivial to address using existing methods 

and tools. Key differences that are encountered when testing Web Services are: 

1. Greater chance for network failure 

2. Higher levels of security and encryption 

3. More generic nature of the platform and possible virtualization of 

environment 

4. Timing constrains of Web Service operations 

5. Lack of access to physical system 

6. Lack of source code 

This thesis intends to utilise network level fault injection, which has been successfully 

applied to assess CORBA based middleware, to construct a method and tools to provide 

dependability assessment of Web Service systems. In particular this method will be 

concerned with points 2 and 3 because these are qualities of particular importance to 

Web Services. Traditional fault injection techniques can be used to cover points 1 and 4 

although the method will also be capable of assessing these. 

This method should be as non-invasive as possible and be capable of dependability 

analysis without access to the Web Service source code to cover points 5 and 6. The 
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method will also allow easy creation of fault injection campaigns though the use of an 

accompanying tool and provide an analysis of the results obtained. The method should 

be applicable to both the development phase, for example fault removal means, as well 

as during the testing phase to access all dependability means. Given this coverage it 

should also be possible to use the method and tool to assess functionally equivalent 

Web Services to give dependability metrics that can be used to compare and select 

competing Web Services. 

Since middleware messages run over the physical network interface as sequences of 

packets, for instance one message may be split across multiple network packets, the 

fault injector will work at a message level rather than a packet level so it can manipulate 

complete middleware messages. 

1.4 Criteria lFor Success 

Given the objectives defined above a number of criteria to measure the success of the 

work have been defined. These are as follows: 

Method: Devise a method based on network level fault injection to perfonn 

dependability testing of Web Services. This method should be comparable to 

other code insertion methods but with the added benefit of minimal alteration to 

code. 

Tool: Construct a tool for use with the method. This tool will be tailored to injecting 

faults into SOAP packets and will handle the decoding of SOAP packets so that 

lightweight scripts can be written by the user to implement test cases without the 

complexity of decoding SOAP packets. 
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Test Case Construction Method: Devise a method to construct test cases for the 

method given above. This method should be devised to allow easy automation 

so that it can be incorporated into the tool. 

Analysis Method: Devise an analysis method to assess dependability of result sets 

generated by the method. This analysis method should be applicable not only to 

the test phase of system development but also to the development stage. 

Applicable to both development and testing phases: The methods and tools should 

be applicable, not only to the testing phase of a project but also to the 

development phase. The method should also be able to test systems without 

access to source code. 

1.5 Major Contributions 

There are three major contributions of this thesis: 

1. Fault injection at a middleware message level rather than at a network 

message level. This allows fault injection operations to be preformed on an 

entire middleware message and affect a specific middleware service rather 

than test error recovery in a network protocol stack. 

2. Runtime decoding of each middleware message combined with information 

on message formats derived from interface definition language definitions of a 

service to allow targeted triggering on specific messages corresponding to 

specific operations. Further, given this information, specific parameters can be 

perturbed in an RPC exchange allowing network level fault injection to be 

used to perform API level injection similar to Code Insertion techniques. 
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3. Non-invasive manipulation of a service via instrumentation of surrounding 

machines which is comparable to Code Insertion but without physical access 

to the service source code or the machine. 

1.6 Thesis structure 

This thesis is structured into three main parts. 

1. A literature survey examines Web Service middleware (Chapter 2) and 

Dependability (Chapter 3) and examines the problems involved with applying 

Dependability Assessment to Web Services 

2. A method (Chapter 4) and implementation (Chapter 5) are described which 

address the problems described in the literature review 

3. A series of case studies are used to demonstrate the implementation (Chapter 

6) and conclusions are made based on this (Chapter 7). 
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Chapter 2 - Service Terminology and Technology 

This chapter will define the concepts and technology of services that is specifically 

relevant to this thesis. It will explore a general definition of a service and then explore 

how services are utilized via the use of Software-Oriented Architectures and 

implemented as Web Services. 

2.1 Services 

A service in economics and marketing terminology is defined by Boone and Kurtz 

[14] as " ... intangible tasks that satisfY both business and consumer needs.". This 

definition originated to describe activities in the service industry such as hotels, garages, 

barbers, etc. In general terms a service is not owned by the customer but is something 

that is utilised to complete a task. The advantage of utilising a service to do this is that 

the customer does not have to design, maintain or run the service. This definition can 

readily be adapted to software services, which is how the term will be used for the 

remained of this thesis. 

A service in computing terms is an entity that communicates with other entities via 

messages [18]. This definition does not specify that the services be networked or the 

method in which messages should be exchanged. Further it does not specify that the 

entities must perform tasks or satisfy a specified requirement but this is usually taken as 

implied. 

Software services can be characterised as follows: 

1) They must communicate over a network, in the case of Web Services 

this is usually an internet utilising HTTP as the transport protocol 
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2) They must provide an API that can be called by external programs to 

invoke service functions 

3) A service should be discoverable m someway so that external 

programs can utilise the service. This is usually done by registering 

the service in a registry which can be searched by programs 

searching for services 

4) Services should be loosely coupled which allows composed systems 

to be adaptable, for instance a system can be recomposed to utilise 

another service if needed without affecting the function of the system 

as a whole. These characteristics are explored in greater depth in the 

following sections. 

Services are often used to implement client/server architectures. A client/service 

Architecture [66] (also called two-tier architectures) are systems that are composed of a 

client, which utilises a service provided by a server. The client accesses the service on 

the server to perform some task. A client may also be a service itself, thus allowing 

services to be composed from other services. 

A client may be a thin client that needs to do little more than utilize services on 

servers to perform its task, with most, if not all business logic located on the server side. 

Conversely a thick client may implement its business logic local and utilize services 

only to perform specific tasks. Therefore the utilized services would not necessarily 

know any of the business logic. 
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Tasks provided by servers can be varied, for instance file storage, database, complex 

calculation, etc. In the context of Web Services a server may offer a number of services 

through a number of defined interfaces. 

For the purposes of this thesis, when considering service composition, it will be 

assumed that a client can also be a service and use the term client rather than service of 

a service. 

Since services must communicate with each other it is useful to have a model that 

defines this communication pattern. One of the first models defined and still one of the 

most used is the Remote Procedure Call (RPC) [12]. This model allows the 

implementation details of executing a routine on a remote machine to be hidden from 

the client program in such a way as the invocation looks like a normal routine call. This 

is done by hiding the implementation detail of the message exchange in a stub routine. 

A normal RPC invocation would consist of a request message being sent to the remote 

server, the requested processing being executed, and a response message being sent 

back by the server containing the result to the client program. Since data formats on 

clients and servers may vary according to machine architecture data must be converted 

into an agreed format for transfer between machines and this is known as marshalling. 

To utilize a service the data required and the format of the message the service 

requires must be known. A commonly used technique for achieving this without having 

to implement this by hand on a service-by-service basis is to use an Interface Definition 

Language (IDL) [75]. This is a type of language used to define an interface to a service. 

An interface is a collection of accessor methods, and possibly required data structures, 

necessary to utilise the service. IDLs tend to be system specific, for instance DCOM 

IDL [1] and CORBA IDL [2]. 
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While working at an abstract level the above is all that is required to implement a set 

of services and exchange messages between them, indeed if a common platform and 

common hardware is used the above is also adequate. Unfortunately most distributed 

systems rarely run on identical hardware and are frequently required to communicate 

with legacy systems and other organizations hardware/software. To overcome this 

problem and allow service-based systems to be constructed rniddleware is used. 

Middleware [73] is connectivity software that consists of a set of enabling services 

that allow multiple processes running on one or more machines to communicate across 

a network. Middleware eliminates differences between machines in a heterogeneous 

environment by marshalling data and includes an agreed set of useful functions. 

2.2 Processing Models 

For a third party to offer a software service to a customer there is usually an implied 

need for the service to operate on a separate processor. 

Once a number of processors are available it is possible to execute code in ways other 

than a simple sequential flow of control. The two main ways to achieve this are Parallel 

Processing and Distributed Processing and this section will give an overview of these 

two processing models. 

Parallel Processing [62] is an approach that allows processing to be shared out 

between a number of CPUs so that parts of a system can be executed at the same time. 

This approach originated on arrays of multiple processors linked by a bus. Such systems 

usually have access to common shared memory. 

It is also possible to implement an approach similar to parallel processing using a 

number of processors linked together by a computer network and this is termed 
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distributed processing. Although these two techniques share aspects in common they are 

two distinct programming models since distributed systems do not share memory, 

network operations are orders of magnitude slower that bus transfers and distributed 

systems tend to be geographically distributed as well. Further distributed systems can be 

independently owned so there can be trust issues involved in distributed processing. 

Services allow distributed processing to be undertaken in two different ways. Firstly, 

a Service can be invoked by asynchronous messaging rather than by a more traditional 

RPC mechanism. This allows a client to continue processing whilst the Service (hosted 

on a different machine) processes the request. When the Service has processed the 

request an asynchronous response message can be sent back if required. 

Secondly, if a synchronous RPC mechanism is being used parallel processing is still 

inherently present in the system if a number of Services are in use by a number of 

clients since RPC requests are sent to different Services at different times by different 

clients. This means that at any one time different servers are servicing requests in 

parallel. This is the model that will be examined in this thesis. 

2.3 Service-Oriented Architectures 

Distributed services must be organised into a system to be useful and a common 

architecture used to accomplish this is a Service-Oriented Architecture (SOA). SOA is 

an architecture that represents software functionality as discoverable services on a 

network. Channabasavaiah et al [21] define a SOA as 

"an application architecture within which all functions are defined as 

independent services with well-defined invokable interfaces, which can be 

called in defined sequences to form business processes." 
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The main principles are not new, for instance CORBA provides functionality by 

offering functions as components [2], but SOAs provide a number of advantages such 

as loose coupling and late binding. However, these advantages come with potential 

problems not least in the area of dependability. Given the widespread usage of these 

technologies methods for increasing the reliability of SOA is greatly desired. 

Loose coupling [10] is the capability of services to be composed and utilized on 

demand, possibly using different system technologies, to create a working system. This 

can be accomplished using a combination of Dynamic composition [54], which is the 

composing of systems from existing services that are discovered at runtime, and late 

binding. Loose coupling implies that a service is referentially transparent from any data 

or other services that it requires. From a dependability point of view this makes it 

impossible to assess a complete system since each time the system is composed it may 

be composed of different services. It can also have an impact on the integrity of the 

system since the integrity of the services used may be in question, for instance you may 

bind to a malicious service. 

Late Binding [10, 11] is the property of a system which allows a system to bind to a 

service at runtime, rather than at compile time. A new provider of a service can make a 

description of a new service available at runtime and an existing client can then utilize 

the new implementation without modification of it's code. This method implies that the 

client is written in such a way as to accommodate the utilization of new services in 

some way rather than just dynamically composing itself from already known service 

definitions. 

Whilst late binding is a very useful facility and essential for the construction of 

loosely coupled systems it means that new services can potentially be deployed which 
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have not been assessed with the combination of services being used by an SOA, and as 

described above the integrity of the service could be called into question. 

A directory service [32] can be used to supply an SOA with a service discovery 

function. A directory service is a service that keeps track of the location of available 

services. When a service becomes available it registers itself with a directory service. 

The directory service is sent the description of the service and its location. Once 

registered a client, or another service, can query the directory service to obtain this 

information and thus utilize the registered service. This process is known as service 

discovery. 

A directory service also has the potential to provide alternate services that match a 

requested description, for instance if a directory service has two entries for an identical 

service on different servers it could transparently provide either service entry to a 

requesting call. This can be leveraged by such dependability means as n .. voter 

algorithms and multi-version diversity to provide functionally equivalent services. 

A common directory services is Universal Description, Discovery and Integration 

(UDDI) [4]. This provides a way to publish and discover web services. The UDDI 

server is logic~lly centralized but physic~lly replicated to provide fault tolerance. Once 

registered a service is effectively published to the whole network and is automatically 

replicated on all servers 

Dependability is a key factor for SOAs. Many traditional distributed systems 

performing business-to-business (B2B) [32] operations, for instance those in the 

banking domain, perform computations that require very little execution time but the 

impact of incorrect results can have far reaching financial consequences. Conversely, 
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scientific Grid applications often perform tasks that require many days to complete so 

any failures during this time can have a considerable impact in terms of time and hence 

indirectly to costs thorough man hours lost. Dependability is therefore essential for both 

types of SOA to reduce the risk of failures. 

The cost and difficulty of containing and recovering from faults in service-based 

applications may be higher than that for normal applications [ 46] whilst the 

heterogeneous nature of services within an SOA means that many service-based 

applications will be functioning in environments where interaction faults, operational 

faults caused by a system interacting with another system within the environment, are 

more likely to occur. Dependability means are therefore an advantage in these situations 

since they can be used to mitigate faults without the need to remove them. 

Research in providing dependable SO As falls into two main disciplines [29]: 

• Increasing the Mean Time To Failure (MTTF). 

• Reducing the Mean Time To Recover (MTTR). 

These concepts will be discussed in more detail in Chapter 3. 

2.4 Web Services 

A Web Service is software service defined by a number of standards that can be used 

to provide interoperable data exchange and processing between dissimilar machines and 

architectures. For the purposes of this research it is concerned with Web Services 

defined by the W3C that are described by WSDL [22] and implemented using SOAP 

[15] and the RPC model. 

Web Services are commonly used to provide the 'building blocks' of SOA and, as 
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such, any dependability assessment method that targets them will be of wide use, not 

only to Web Services but also to Globus Grid services, which utilize the same 

technology. 

2.5 Extensible Markup Language 

Both WSDL and SOAP utilize Extensible Markup Language (XML) to define and 

implement Web Service message exchange. XML notation and terminology is used 

frequently in this thesis and the following covers the basic terms used. 

XML is a standard for document markup [16, 36]. It provides a document layout that 

allows a document to be self-describing and portable thus allowing data transfer 

between dissimilar systems. Its portability is largely due to it being an ASCII format 

document, with numeric values encoded as strings. Since it is portable it largely 

eliminates the need for marshalling and unmarshalling of data but this overhead is 

replaced by the need to construct XML documents and parse them at the receiving 

machine so no net gain is obtained by eliminating marshalling. 

An XML document is structured from a number of Elements. An Element is 

composed of a Start Tag, an End Tag and Element Content. The document can have 

only one root element, with all other elements nested within it. An example XML 

document is given in Table 2-1 and this shows the basic structure and format of a 

typical XML document with examples of all the major features. 
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Table 2-1: An example XML Document 

<?xml version="l.O" encoding="IS0-88S9-1" standalone="yes"?> 
<root> 

<elementl> 
<element2 attrl="some value" attr2="some other value"> 

Some element content and some &lt;escaped&gt; characters 
<element4 /> 

</element2> 
<elementS> 

<1 [CDATA[ 

19 

A CDATA section can contain unescaped characters like 
<>& etc ••• 

] ]> 
</elementS> 

</elementl> 
<element6 /> 

</root> 

A start tag consists of a tag name and an optional number of attributes, for instance 

<element2 attrl="some value" attr2="some other value"> 

The Start Tag and attribute names can be any user-defined name which may be made 

up from standard English letters and digits, non-English letters and ideograms as well as 

certain punctuation characters. The End Tag for an element must be the Start Tag name 

preceded by a solidus. 

Element Content can be a mixture of free format text and Elements. Free format text 

can take one of two forms: 

1. Normal characters and escaped special characters such as greater than and less 

than symbols 

2. CDA T A that is unescaped free format text enclosed in a CDA T A tag. 

Escaped symbols consist mainly of symbols that appear in the syntax of element tags, 

such as great than or less than symbols. 
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Namespaces are a way of grouping sets of elements and attributes together and an 

example is given in Table 2-2. They have two main uses: 

1. Distinguish between elements and attributes from different vocabularies that 

share the same names 

2. Group together related elements and attributes in an XML document so that 

applications can easily recognize them 

Table 2-2: Example XML using namespaces 

<?xml version="l.O" encoding="UTF-8"?> 
<soapenv:Envelope 
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 

instance"> 
<soapenv:Body> 

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-

<nsl:testl 
soapenv:encodingstyle="http://schemas.xmlsoap.org/soap/encoding/" 

xmlns:nsl="http://testl.testsuite.samples.wsfit.org"> 
<pl xsi:type="xsd:int">O</pl> 

</nsl:testl> 
</soapenv:Body> 

</soapenv:Envelope> 

XML is extremely flexible and can be used to represent a large variety of data but 

most programs that utilize XML are not designed to be this flexible and are only 

concerned with a sub-set of XML elements. XML can be limited by defining a 

Document Type Definition (DTD). A DTD can be used to define which elements are 

permissible and the circumstances that these elements can be used under. XML parsers 

can validate an XML document against a DTD and determine if it is valid according to 

the syntax defined by the DTD. 

DTDs allow the basic structure and syntax of an XML document to be defined and 

validated. A DTD cannot be used to limit such things as data types used within an 

element. For this purpose an XML Schema must be used. Schemas can be used to 
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describe and enforce complex restrictions on an XML document, such as type 

information for contents and complex data types. 

It is possible to check an XML document to see if it follows the XML syntax rules 

and this process is called validation. Validation is performed by parsing the XML 

document through a parser. This is a piece of software designed to read and validate 

XML against a set of restrictions defined in a DTD or schema. 

2.6 WSDL 

Web Services Description Language (WSDL) is an XML-based IDL used to define 

Web Services interfaces and how to access them [22, 23]. Our research is mainly 

concerned with RPC message exchanges and WSDL lends itself well to providing 

explicit information on the structure of message exchanges between Web Services and 

their clients. 

Table 2-3 shows an example WSDL description of a message. A WSDL message 

description is composed of an element that has a unique name attribute that is used to 

identify the message and a number of part elements. Each part defines a parameter or 

return value in the case of a response message. A part has an associated name that must 

be unique within the message element and a type that defines the parameter type. There 

are a number of predefined types and complex types can also be defined using a types 

element. 

Table 2-3: Example WSDL Description of a Message 

<wsdl:message name="unregisterserviceRequest"> 
<wsdl:part name="context" type="xsd:string"/> 
<wsdl:part name="entry" type="impl:ServiceEntry"/> 

</wsdl:message> 
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Once all request and response messages required to implement the RPC style 

interface have been defined they can be used to define the calling interface for a Web 

Service. This is done by use of the portType element (see Table 2-4). A portType 

contains a number of operation elements with each operation element corresponding to 

a method of the Web Service. Each operation is made up of an input element that will 

be the request part of the RPC and an output element that will be the response part of 

the RPC. 

Table 2-4: Example WSDL PortType 

<wsdl:portType name="Register"> 
<wsdl:operation name="registerService" 

parameterOrder="context entry"> 
<wsdl:input name="registerServiceRequest" 

message="impl:registerServiceRequest"/> 
<wsdl:output name="registerServiceResponse" 

message="impl:registerserviceResponse"/> 
</wsdl:operation> 
<wsdl:operation name="unregisterService" 

parameterOrder="context entry"> 
<wsdl:input name="unregisterServiceRequest" 

message="impl:unregisterServiceRequest"/> 
<wsdl:output name="unregisterServiceResponse" 

message="impl:unregisterServiceResponse"/> 
</wsdl:operation> 

</wsdl:portType> 

The above explanation briefly describes the use of WSDL to define a classic RPC 

style Web Service. WSDL can also be used to describe other styles of Web Service 

calling interface such as message-oriented calling but this is outside the scope of this 

research. 

2.7 Simple Object Access Protocol (SOAP) 

Simple Object Access Protocol (SOAP) [15, 23] is a messaging protocol designed to 

allow the exchange of messages over a network. It is XML based to allow the exchange 
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of messages between dissimilar machines. It is extensively used to implement Web 

Services so it has been chosen as the middleware protocol to examine. 

The research conducted in this thesis is primarily concerned with the RPC mechanism 

over SOAP. This is defined by the W3C in [33] and describes a general purpose RPC 

mechanism. The message types that are involved in an RPC exchange and the relevant 

features used by the WS-FIT method are briefly reviewed here. 

A SOAP message utilizes the http://schemas.xmlsoap.org/soap/envelope/ schema 

which defines the namespace soapenv and this namespace is setup in the 

soapenv:Envelope element. Consequently all elements that unitise this namespace must 

be enclosed by the soapenv:Envelope element. The soapenv namespace defines a 

semantic framework for SOAP messages. 

The body, or payload, of the SOAP message is enclosed by the soapenv:Body 

element. This element acts as a grouping for the body elements for different types of 

messages. Its primary function is to keep the body elements distinct from other 

grouping of elements, for instance a header block. 

These two elements form the basis of a SOAP message. The soapenv:Body element is 

then populated with elements that make up the payload of a request, response of fault 

message. 

A typical request message is given in Table 2-5. The request message name is defined 

in the wsdl:operation (see Section 2.6) but by convention the name of the message 

equates to the service method name but it can be defined as any valid name. In the 

example the message and method name are getQuote. The message element is therefore 

nsl:getQuote. The namespace nsl is defined to be the urn of the service that implements 
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the method. If this is combined with the address of the server hosting the service this 

allows a specific method of a specific service on a specific server to be identified. 

Table 2-5: Typical Request Message 

<soapenv:Envelope 
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

<soapenv:Body> 
<nsl:getQuote 

soapenv:encodingstyle="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:nsl="http://quote.stock.samples.dasbs.org"> 

<symbol xsi:type="xsd:string">foo</symbol> 
</nsl:getQuote> 

</soapenv:Body> 
</soapenv:Envelope> 

The ns 1 : getQuote element contains parameter elements that represent the RPC 

parameters, for instance the getQuote method takes one string parameter called symbol 

so nsl:getQuote contains one element with an element tag symbol which contains the 

string data for that parameter. Parameters are defined in WSDL by wsdl:part elements 

in wsdl:message elements (see Section 2.6). 

A typical response message is given in Table 2-6. The response message is similar in 

structure to the request message but by convention the response message name is post-

fixed with the word Response although again it can be any valid name defined in the 

wsdl:operation element. In this example the response element name IS 

ns 1: getQuoteResponse. 

A response element contains elements that represent any method return value and any 

parameters that are marked to be marshalled in-out or out. Method return results follow 

the naming convention of the method name post fixed by the word Return and are 
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represented in the WSDL by wsdl:part elements. In-out and out parameters follow the 

same conventions as parameters in a request message. 

The example response message in Table 2-6 also demonstrates the format that objects 

and arrays are marshalled in a SOAP message. This utilizes the multiRef element. Each 

object or item in an array is created using a multiRef that has an id. The actual 

parameter/return value is then set to this reference id and the complex data can then be 

constructed within the multiRef element in the same way that individual parameters are 

constructed in a message. This technique applies to both request and response messages. 

Table 2-6: Typical Response Message 

<soapenv:Envelope 
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.wJ.org/2001/XMLSchema-

instance"> 
<soapenv:Body> 

<nsl:getQuoteResponse 

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:nsl="http://quote.stock.samples.dasbs.org"> 

<getQuoteReturn href="#idO"/> 
</nsl:getQuoteResponse> 
<multiRef id="idO" 

soapenc:root="O" 

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
xsi:type="ns2:QuoteValue" 
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:ns2="http://quote.stock.samples.dasbs.org"> 

<date xsi:type="xsd:dateTime">2004 10 30Tl0:54:18.511Z</date> 
<quote xsi:type="xsd:double">47.5</quote> 

</multiRef> 
</soapenv:Body> 

</soapenv:Envelope> 

Table 2-7 shows a typical SOAP Fault Message. Fault Messages are used to return 

failure information from a server to a client. The soapenv:Fault element contains three 

elements: faultcode, faultstring and detail. These elements are used to convey failure 

information to the client with the faultstring and detail elements being language 

specific, for instance using Axis 1. 1 for Java if a piece of user code on a server throws a 
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Java exception the faultcode is set to soapenv:Server.userException to indicate that the 

fault originates in server side user code, then the fault string is set to the text description 

of exception and the detail element is not used. 

Table 2-7: Typical Fault Message 

<soapenv:Envelope 
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"> 
<soapenv:Body> 
<soapenv:Fault> 
<faultcode>soapenv:Server.userException</faultcode> 
<faultstring> 

java.rmi.RemoteException: can&apos;t get a stock price for this 
symbol 

</faultstring> 
<detail/> 

</soapenv:Fault> 
</soapenv:Body> 

</soapenv:Envelope> 

2.8 Summary 

This chapter has reviewed the concepts, problems and commonly used technology for 

implementing SOA. This review has concentrated on SOA implemented using Web 

Services since this is currently the predominant technology. It has highlighted that, 

because of the duration and financial consequences of failures of SO As, dependability is 

a key factor. It has also highlighted that dynamically constructed, loosely coupled SOA 

are particularly hard to assess because: 

1. The combination of services used may vary each time the SOA is constructed 

2. New services may become available that have not already been assessed 

within the SOA. 

Since SOAs composed in this manner may not have been assessed using a particular 

combination of services this implies that the level of trust in the SOA will be reduced 
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since interaction faults may be present that have not been detected. Also since services 

may be included in the SOA without being assessed at all this may lead to a decreases in 

the integrity of the SOA. 

SOA constructed from Web services utilise XML based protocols to exchange 

information. An RPC model allows a request to be coupled with a response, which 

allows easier error detection when injecting faults. Combining this with interfaces 

defined in WSDL, another XML based technology, then an easily decodable system 

definition and message exchange that can be easily manipulated is obtained. 
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Chapter 3 - Dependability Terminology and Fault Injection 

This chapter reviews and gives a consistent definition of the field of Dependability 

since, particularly in the area of Quality of Service, there is variation amongst the 

meaning of some of the terms used, for instance contrast A vizienis et al [8] with 

Somerville [60]. This chapter attempts to give a standard definition of all relevant terms 

and they are taken to be definitive throughout this thesis. 

3.1 A Definition of Quality of Service for Web Services 

When assessing the reliability of a system it is useful to have some agreed 

measurement to determine the quality of a system. A commonly used measurement is 

Quality of Service (QoS) [60]. QoS is commonly used in networking where it is defined 

by Steinmetz et al [63] as 

" ... a concept for specifYing how 'good' the offered networking services are. 

QoS can be characterised by a number of specific parameters. " 

When applied to Web Services this definition has to be slightly modified. Haas et al 

[34] define Quality of Service as 

" ... an obligation accepted and advertised by a provider entity to service 

consumers. 

where an obligation is defined as 

" ... a kind of policy that prescribes actions and/or states of an agent and/or 

resource 
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The factors that go to make up the obligation cover a wide range of factors that are 

combined to define the QoS offered by a system but the following factors are 

commonly used [51] and are taken as definitive when used in this work: 

Availability: the quality aspect of whether a Web Service is present and ready for 

use. This is represented as the probability that a Web Service will be available at 

a specific time. This may be affected by such things as time to complete a 

pervious operation, loading on a particular service, etc. 

Accessibility: the quality aspect that represents the degree the Web Service is capable 

of serving a request and a specific point in time. This is different from 

Availability since a service may be available but not accessible. For instance the 

initial request can be accepted but it cannot be processed due to some other 

dependency, for instance it may depend on another unavailable service, so that 

the request would be queued awaiting a response from the unavailable service. 

Accessibility can be improved by improving the scalability of a system. 

Integrity: the quality of the Web Service maintaining the correctness of any 

interaction. If a transaction fails data should remain in a consistent state. This 

can be achieved through mechanisms such as distributed commit [67], rollback 

mechanisms [65], etc. This also encompasses the concept of malicious 

tampering with a service. 

Performance: the quality aspect that is defined in terms of the throughput of a Web 

Service and the latency. Throughput is defined asthe number of requests 

serviced in a given period and the latency is the time taken to service a request. 

The aim is to produce a high throughput but low latency system. Throughput and 



Chapter 3 - Dependability Terminology and Fault Injection 30 

latency can be affected by such factors as processor speed, code efficiency, 

network transfer time, etc. 

Reliability: the quality aspect that represents the capability of maintaining the service 

and service quality. One measurement of reliability is the number of failures 

during a given period [59]. 

Regulatory: the quality aspect that the service corresponds to rules, laws, standards 

and specifications. This can have an affect on areas such as availability, 

performance, and reliability through Service Level Agreements (SLA). SLA can 

define minimum levels of performance expected by a service that set levels for 

its dependability. 

Security: the quality aspect that defines confidentiality for parties using a service. 

This can be influenced by regulatory factors. It can also affect performance due 

to the extra overhead incurred in implementing security mechanisms. 

Some attributes can be quantitatively measured and others remain harder to quantify, 

for example Reliability can be measured by failures over time but the effectives of 

Regulatory cannot be measured by any simple means (See Table 3-1) 

Table 3-1: Quantifiable QoS Attributes 

Attribute 
Availability 
Accessibility 
Integrity 
Performance 
Reliability 
Regulatory 
Security 

Quantifiable 
Yes 
Yes 
No 
Yes 
Yes 
No 
No 
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3.2 Dependability 

Quality of Service attempts to give a measurement of the over all quality of a service 

and utilises some of the same attributes present in Dependability, whilst Dependability 

is concerned not only with measuring the Dependability of a system but also with 

means to improve the Dependability of the System. 

The IFIP Working Group on Dependable Computing and Fault Tolerance [39] defines 

dependability as 

"The notion of dependability, defined as the trustworthiness of a computing 

system which allows reliance to be justifiably placed on the service it 

delivers, enables these various concerns to be subsumed within a single 

conceptual framework. " · 

A number of factors affect the dependability of a system [8] but for the purpose of our 

research we are interested in factors that can be used to assess dependability via fault 

injection [74]. Dependability can be assessed and increased by the use of three things: 

1. A way to assess the Dependability of a system 

2. An understanding of the things that can affect the Dependability of a system 

3. Ways to increase the Dependability of a system. 
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These things are known respectively as: 

1. Attributes 

2. Threats 

3. Means 

3.2.1 Attributes 

32 

Attributes are measurements that can be applied to a system to determine its overall 

dependability. A generally agreed list of Attributes is: 

1. Availability - the probability that a service is present and ready for use 

2. Reliability- the capability of maintaining the service and service quality 

3. Safety - the absence of catastrophic consequences 

4. Confidentiality- information is accessible only to those authorised to use it 

5. Integrity- the absence of improper system alterations 

6. Maintainability- to undergo modifications and repairs 

As with QoS some attributes are quantifiable by direct measurements whilst others 

are more subjective, for instance Safety cannot be measured directly via metrics but is a 

subjective assessment that requires judgmental information to be applied to give a level 

of confidence, whereas Reliability can be quantified by physical metrics (See Table 

3-2). The method devised in this work will focus on the quantifiable aspects of 

dependability, for instance Availability and Reliability. 
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Table 3-2: Quantifiable Dependability Attributes 

Attribute 
Availability 
Reliability 
Safety 
Confidentiality 
Integrity 
Maintainability 

uantifiable 
Yes 
Yes 
No 
No 
No 
No 
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Security is sometimes classed as an attribute [60] but the current view is to aggregate 

it together with dependability and treat it as a composite term called Dependability and 

Security [8]. The reasoning behind this is that a dependable system must also be secure 

since otherwise its Integrity and Confidentiality could not be guaranteed. In this thesis 

the term Dependability will be assumed to be the composite definition of Dependability 

and Security even if not explicitly stated. 

3.2.2 Threats 

Threats are things that can affect a system and cause a drop in Dependability. There 

are three main terms that must be clearly understood: 

Fault- A fault (which is usually referred to as a bug for historic reasons) is a defect 

in a system. The presence of a fault in a system may or may not lead to a failure, 

for instance although a system may contain a fault its input and state conditions 

may never cause this fault to be executed so that an error occurs and thus never 

exhibits as a failure. 

Error - An error is a discrepancy between the intended behaviour of a system and its 

actual behaviour inside the system boundary. Errors occur at runtime when, some 

part of the system enters an unexpected state due to the activation of a fault. 



Chapter 3 - Dependability Terminology and Fault Injection 34 

Since errors are generated from invalid states they are hard to observe without 

special mechanisms, such as debuggers or debug output to logs. 

Failure - A failure is an instance in time when a system displays behaviour that is 

contrary to its specification. An error may not necessarily cause a failure, for 

instance an exception may be thrown by a system but this may be caught and 

handled using fault tolerance techniques so the overall operation of the system 

will conform to the specification. 

It is important to note that Failures are measured at the system boundary. They are 

basically Errors that have propagated to the system boundary and have become 

observable. 

Faults, Errors and Failures operate according to a mechanism. This mechanism is 

sometimes known as a Fault-Error-Failure chain [9]. As a general rule a fault, when 

activated, can lead to an error (which is an invalid state) and the invalid state generated 

by an error may lead to another error or a failure (which is an observable deviation from 

the specified behaviour at the system boundary). 

Once a fault is activated an error is created. An error may act in the same way as a 

fault in that it can create further error conditions, therefore an error may propagate 

multiple times within a system boundary without causing an observable failure. If an 

error propagates outside the system boundary a failure is said to occur. A failure is 

basically the point at which it can be said that a service is failing to meet its 

specification. Since the output data from one service may be feed into another, a failure 

in one service may propagate into arJ.other service as a fault so a chain can be formed of 
. . 

the form: Fault leading to Error leading to Failure leading to Error, etc. 
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3.2.3 Means 

Since the mechanism of a Fault-Error-Chain is understood it is possible to construct 

means to break these chains and thereby increase the dependability of a system. 

There are four means of improving the dependability of a system: 

1. Prevention 

2. Removal 

3. Fore casting 

4. Tolerance 

Fault Prevention deals with preventing faults being incorporated into a system. This 

can be accomplished by use of development methodologies, and good implementation 

techniques. 

Fault Removal can be sub-divided into two sub-categories: 

1. Removal During Development 

2. Removal During Use 

Removal during development requires verification so that faults can be detected and 

removed before a system is put into production. Once systems have been put into 

production a system is needed to record failures and remove them via a maintenance 

cycle. 

Fault Forecasting predicts likely faults so that they can be removed or their effects 

can be circumvented. 
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Fault Tolerance [49] deals with putting mechanisms in place that will allow a system 

to function in the presence of faults but still deliver the required service, although that 

service may be at a degraded level. 

Dependability means are intended to reduce the number of failures presented to the 

user of a system. Failures are traditionally measured over time and it is useful to 

understand how they are measured so that the effectiveness of means can be assessed. 

Failure rate is a frequently used measurement that denotes the frequency with which 

failures occur and is represented by the Greek letter A. When used in relation to 

software it is often expressed as failures per hour but any measurement of time can be 

used in place of hours, indeed the units need not be based on time but based on any 

measurable period, for instance revolutions and miles are commonly used in general 

engmeenng. 

For mechanical systems it is common for the failure rate to increase during the 

lifetime of a component due, for instance due to mechanical wear, so this makes failure 

rate time dependent. Software systems, on the other hand, are often described as having 

no wear over time so failure rate can be considered constant. Whilst this is generally 

true there are factors which can cause failure rates to increase over time, for instance 

hardware failure of the environment running the software, but it is widely accepted as 

an approximation [37]. In this special case the failure rate is defined as the reciprocal of 

the Mean Time Between Failure (MTBF). 

1 
MI'BF=­

;.._ 

or 

1 
8=­

A 
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Thus it is the mean number of failures per hour (if the failure rate is measured in 

hours). There are variations on MTBF that break it down into discrete components. 

Mean Time To Failure (MTTF) is often used to denote the mean time for a failure to 

occur when a system is replaced in some way after the failure, for instance a new 

system is swapped in or the fault is fixed. This term does not include the time it takes to 

rectify the failure or replace the faulty component. This time is usually described as the 

Mean Time To Recovery (MTTR). So MTBF can be described as: 

fJ = MITF + MITR 

The MTTF can be used to improve the dependability of a system, for instance by 

making the MTTF very long, failures become infrequent and thus the reliability of the 

system is increased. Time and financial considerations may make this approach hard to 

achieve in practice so a different approach may be taken. The MTTR is small it may be 

acceptable to have a shorter MTTF since the system will recover quickly from a failure 

so failures can occur more frequently. 

A long MTTF can be an issue when a assessing and debugging a system since it 

means that in normal operation: 

1. Faults will take a long time to manifest themselves as failures, making fault 

removal problematic 

2. Fault tolerance means may not be exercised during development, which 

means that they will remain unproved until the execution of a fault in a 

production system causes their use. 

The second point can easily be assessed using fault injection since faults can be 

injected in such as way as to exercise fault tolerance mechanisms. 
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3.2.4 Fault Tolerance 

Fault tolerance is a specific Dependability Means that can directly improve the 

Dependability of a system and, since it acts to break fault-error-failure chains, it can be 

evaluated using fault injection. It therefore makes a good case study for this thesis. The 

function of fault-tolerance has been described by A vizienis [7] as 

'~ .. to preserve the delivery of expected services despite the presence of fault­

caused errors within the system itself Errors are detected and corrected, 

and permanent faults are located and removed while the system continues to 

deliver acceptable service." 

There are many mechanisms available to implement fault tolerance in software 

systems but a popular approach when seeking to tolerate both development faults and 

physical machine failures is that of design diversity, which can be defined as the 

production of two or more systems aimed at delivering the same service through 

separate designs and realizations. 

Redundancy has long been used as a means of increasing the availability of 

distributed systems, with key components being replicated to protected against 

hardware failure [47]. Redundancy can be achieved either through: 

1. Hardware modules can be replicated to provide backup capacity when a 

failure occurs 

2. Redundancy can be achieved usmg software solutions to replicate key 

elements of a business process. 

Redundancy can be dynamic or static. Both use replication but in static redundancy, 

all replicas are active at the same time. If one replica fails another replica can be used 
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immediately with little impact on response times. Dynamic redundancy has one replica 

active at one time and others are kept in a standby state. If the active replica fails, a 

previously inactive replica must be initialized and take over operations. This type of 

replication is more often used in hardware replication. 

Redundancy has many attractions as a technique for providing fault tolerance in a 

system but it also incurs a number of overheads in its use. These include: 

1. The cost of replicating calls to replicas 

2. An increase in the complexity of system design 

3. The cost of providing and maintaining the replicas 

Once redundancy has been introduced into a system it can also be used to protect 

against Byzantine faults through the use of the N-version model [57]. Most hardware 

failures result from either physical defects sustained during manufacture or develop 

over time as components wear out. This is not the case with software failures since 

software does not wear out. Software failures result from the invocation of paths that 

contain faults. Since software is typically more complex than hardware it can be 

expected to contain many more faults resulting in more failures. 

TheN-version model is a design pattern for implementing software fault tolerance. 

Physical faults, such as machine failure, can be handled by redundancy. Simply 

replicating a single software component n times may not eliminate a particular failure 

since the software fault will exist in each replica. 

The N-Version model uses n independently implemented versions of a software 

component run in parallel. By running the components in parallel with the same input 

data a set of results is obtained. By using a voting mechanism on this set of results 
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individual failures in a component can be eliminated and the integrity of the final result 

is increased. The voter will guarantee, to some agreed level of integrity, to return a 

correct result or flag an error. 

Since each version of the component is independently implemented each should 

contain a different set of faults and the voting process can cancel these out. In practice 

common-mode failures can still occur since developers tend to implement similar 

solutions to problems [44], and also Web Service composition can include common 

Web Services increasing the chance of common-mode failure [68, 70] but there is still a 

significant gain in reliability from using this model [ 4 7]. As stated by Knight et al in 

[44] 

" ... our result does not mean that N-version programming does not work or 

should never be used. It means that the reliability of anN-version system 

may not be as high as theory predicts under the assumption of 

independence. If the implementation issues can be resolved for a particular 

N version system, the required reliability might be achieved by using a 

larger value for N using the coincident errors model to predict reliability." 

The voting mechanism used in an N-version system can become a single point of 

failure within a system. This is traditionally overcome by making the voting mechanism 

simple and conducting extensive testing to determine its reliability. A tiered voting 

mechanism can be used to reduce the chance of failure through machine faults. 

An N-version model has traditionally been more expensive to design and implement 

that a single system since each version must be designed, implemented and maintained. 

With the advent of SOA and Web Services this cost may be reduced since many 
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independent vendors may offer functionally-equivalent Web Services which can be 

used to construct an N-version system, thus eliminating a large part of the 

implementation and maintenance cost. 

Some work has been conducted on constructing frameworks to facilitate N-version 

models using Web Services. Most prominently is the work ofTownend et al [68, 70] on 

the FT -Grid system which allows dynamic construction of N-version systems from 

existing Web Services. A simpler system designed for creating static N-version systems 

from Web Services is WS-FTM by Looker et al [48]. This system is less complex and 

service discovery is left to the application software unlike FT -Grid but it does allow 

construction of complex N-version systems and is therefore an ideal test bed for fault 

injection experiments. 

3.3 Dependability Assessment 

This work will focus on Dependability Analysis [8] rather than more traditional 

validation testing [61] and one of the areas focused on will be that of Dependability 

Means assessment. System dependability can be assessed using either model-based or 

measurement-based techniques [52]. Both techniques have their merits. 

Modelling can be used in the design stage to predict potential errors and faults in 

algorithms. Measurement can be applied to existing systems to provide metrics on 

dependability. 

Modelling can only make predictions of the dependability of a system since it is 

derived from system design, specification and code documents. Once a system has been 

implemented actual measurement techniques can be applied to obtain specific metrics 

and allow data on dependability to be derived from them. 



Chapter 3 - Dependability Terminology and Fault Injection 42 

Measurement techniques are useful because they can be applied to existing systems, 

and may not require access to source code or design documentation. There are two main 

measurement techniques: 

1. Observation 

2. Fault Injection 

Observation [ 41] measurements can be performed by the observation of errors and 

failures in a large set of deployed systems. This technique uses existing logs, either logs 

maintained by the system administrator or logs generated automatically by the system. 

Analysis of the data can obtain information on the frequency of faults and the activity 

that was in progress when they occurred. Since failures and errors may occur 

infrequently data must be collected over a long period of time and from a large number 

of systems. Even with this it is unlikely that this technique will catch rarely seen errors 

[37] since the MTTF may be very large (in the order of years). 

3.4 Fault Injection 

Fault injection [74] is a group of techniques that attempt to induce faults into a 

running system to assess, not only its tolerance to faults but it can also be used to 

exercise seldom used control pathways within the system which would otherwise go 

unused for long periods of time [19]. Since the MTTF may be very large, Fault 

Injection attempts to speed up this process by deliberately injecting faults into a running 

system in an attempt to speed up the production of errors and hence either exercise 

dependability means or produce failures. Fault injection can be used to simulate unusual 

input conditions and exercise the boundaries between software components that would 

otherwise rely on being exercised by calls generated by other components in response to 
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user input. Since this input will go through a number of intermediate steps it is 

extremely unlikely that this testing would be able to exercise all conditions of the 

component using traditional testing techniques [76]. 

Fault injection should be used as a supplement to traditional testing techniques. 

Traditional testing is intended to check that a system meets the requirements of the 

specification using expected input and conditions, whilst fault injection techniques are 

intended to assess the operation of a system under exceptional conditions and invalid 

input. Because fault injection assesses exceptional conditions and accelerates the 

occurrence of errors it is not suitable for the measurement of reliability or MTBF since 

these statistics are related to failures and time. These must be measured by 

observational techniques [38]. 

The technique of fault injection dates back to the 1970s [20] when it was first used to 

induce faults at a hardware level. This type of fault injection is called Hardware 

Implemented Fault Injection (HWIFI) and attempts to simulate hardware failures within 

a system. The first experiments in hardware fault injection involved nothing more that 

shorting connections on circuit boards and observing the effect on the system (bridging 

faults). It was used primarily as a test of the dependability of the hardware system. Later 

specialized hardware was developed to extend this technique, such as devices to 

bombard specific areas of a circuit board with heavy radiation. 

HWIFI is divided into two types: 

HWIFI With Contact: this involves the use of specialized hardware, which makes 

el~ctrical contact with a target chip. These connections can cause current and 

voltage changes externally to the chip. These voltage changes can be used to 



Chapter 3 - Dependability Terminology and Fault Injection 44 

simulate a number of different physical faults. By analyzing the electrical signals 

input into the chip and using timers it is possible to control fault injection timing 

with a good degree of accuracy. 

BWIFI Without Contact: this involves bombarding a specific part of a target device 

with heavy ion radiation or placing the target device in a strong magnetic field. 

This has the advantage of simulating natural physical phenomena but it has the 

disadvantage that it is very hard to control fault injection timing since there are 

latencies involved in physically firing these fault devices. 

It was soon found that faults could be induced by software techniques and that aspects 

of this technique could be useful for assessing software systems. Collectively these 

techniques are known as Software Implemented Fault Injection (SWIFI). 

The earliest application of SWIFI was Mill's fault seeding approach [55] which was 

later refined by stratified fault-seeding [56]. These techniques worked by adding a 

number of known faults to a software system for the purpose of monitoring the rate of 

detection and removal. This assumed it is is possible to estimate the number of 

remaining faults in a software system still to be detected by a particular test 

methodology. True SWIFI methods of injecting faults that simulated HWIFI faults soon 

followed [74]. 

In recent years there has been more interest in developing SWIFI based tools. This is 

partly because a SWIFI tool does not require any expensive specialized hardware. 

SWIFT also allow specific systems running on target hardware to be effectively targeted 

without injecting faults into other parts of the system. This is difficult to do with HWIFI 

techniques. 
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SWIFI also has a number of drawbacks: 

• Faults can not be injected into memory that is in protected, for instance a user 

process will not be able to corrupt the memory of a kernel process in a system 

running under the UNIX operating system 

• Instrumentation of the code to be assessed may perturb the operation of the 

system, for instance it may introduce latencies into an operation that could 

cause a time-out. 

• Timing of events may be inaccurate because the timers available to a software 

system on some hardware platforms may not have a high enough resolution to 

capture short latency faults. This problem could be overcome by using a 

combination of SWIFI and hardware monitoring to record fault events but this 

would increase the cost of the system and also decrease the portability of the 

system, since such hardware may be platform specific. 

SWIFI techniques can be categorized into two types. Compile-Time Injection and 

Runtime Injection. 

3.4.1 Compile-Time Injection 

Compile-Time Injection (also know as code mutation) is an injection technique where 

source code (or assembler code) is modified to inject simulated faults into a system. A 

simple example of this technique could be changing 

a = a + 1 

to 

a = a - 1 
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Although these types of faults can be injected by hand the possibility of introducing 

an unintended fault is high, so tools exist to parse a program automatically and insert 

faults. 

This technique has the advantage that it can be used to simulate both hardware and 

software faults. It has been shown to induce faults into a system that are very close in 

nature to those produced by programming faults [24]. It requires no expensive hardware 

and no additional software during runtime. Further, the faults are coded into the system 

and require no communication with a fault injector so it has a considerably smaller 

impact on the execution timing of the system under test than other techniques. Since the 

faults are hard coded into the system image it is possible to emulate permanent faults as 

well as transient faults. Finally this system is very simple to implement. 

The main drawbacks of this technique are that it requires the modification of the 

actual source code. This is a drawback for the following reasons: 

1. It requires that the source code must be available to the test team, which will 

most likely not be the case for COTS systems. 

2. There is the chance that unintended faults will be introduced during the code 

modification, especially if the faults are being injected by hand. 

3. Since the source code is being altered this technique cannot be used as part of 

a certification processes since the system under test will be a different system 

to that which is shipped. 
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3.4.2 Runtime Injection 

Runtime bijection techniques use a software trigger to inject a fault into a running 

software system. Faults can be injected via a number of physical methods and triggers 

can be implemented in a number of ways: 

Time based triggers: These triggers can be based on either hardware or software 

timers. When the timer reaches a specified time an interrupt is generated and the 

interrupt handler associated with the timer can inject the fault. Since this trigger 

method cannot be tied with any accuracy to specific operations it produces 

unpredictable effects in a system. Its main use is to simulate transient and 

intermittent faults within a system. 

Interrupt based triggers: Hardware exceptions and software trap mechanisms are 

used to generate an interrupt at a specific place in the system code or on a 

particular event within the system, for instance access to a specific memory 

location. These are the same mechanisms used by most debugging tools so it is a 

well understood technology. This method of trigger implementation is capable 

of injecting a fault on a specific event. Exception based triggers are usually 

limited to detecting access to a specific memory location as part of the fetch­

execute cycle [62], for instance memory access to a particular location which 

holds a variable. When the exception is raised execution is passed to an interrupt 

handler. 

The trap mechanism (often referred to as a breakpoint) is used to transfer 

execution to an interrupt handler at a certain point in the software [ 17]. It works 

by inserting a special trap instruction into the code (either at compile time or 
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runtime). When this instruction is executed it causes control to pass to an 

interrupt handler. 

In either case when control passes to the interrupt handler, the interrupt 

handler can insert the correct fault into the system dependent on the event that 

triggered the fault injection. This trigger technique has the advantages that it 

requires no modification to the system code and is possible to trigger on specific 

events. Its main disadvantage is that on systems that support a process protection 

model the fault injector may be required to run as a system level process. 

Code Insertion: This technique involves inserting code into the target system source 

just before an event is to occur. This code performs the fault injection and then 

the original statement can execute with the fault present in the system. In this 

way it is similar to using a trap mechanism but it is implemented as a normal 

function call so does not incur the problems associated with using processor 

dependent facilities. 

This method differs from compile-time injection in that it injects its faults at 

runtime rather than at compile time and rather than corrupt existing code it adds 

code to perform the fault injection. Its main disadvantage is that it requires the 

system source code to be modified but it has the advantage that the fault injector 

can be compiled into the system as a library and run as part of the system in user 

mode on systems that support this process protection model. 

This technique can be considered a hybrid of compile-time and runtime 

fault injection since it can use a trigger to determine when and if a fault is to be 

injected, either as an explicit trigger or by virtue of the placement of the code 
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insertion, but it requires code to be modified prior to compilation to inject faults 

similar to compile-time techniques. 

To determine which SWIFI techniques are most appropriate to use when assessing 

Web Services it is useful to consider a number of criteria as well as general criteria that 

would contradict our stated goals. 

One of the main defining characteristics of Web Services is that they run m a 

heterogeneous environment, in terms of machine architecture and implementation 

language. Further it is common for Web Services to run in a virtual machine that 

precludes injecting faults directly onto the hardware of the hosting machine. Therefore 

any SWIFI technique cannot depend on processor dependent features and this is our 

main criteria to determine if a SWIFI technique is appropriate to a Web Service 

environment. 

One of the stated aims of this research is that the developed method should be as non­

invasive as possible. Consequently any SWIFI technique should make as few 

modifications to source code and the environment as possible. 

Finally, two further criteria, which are important generally to developing a fault 

injection method, are that there is a close linkage between the trigger mechanism and 

the injected fault and the possibility of unexpected faults being injected. A close linkage 

between a trigger event and the specific area a fault is injected into is important in terms 

of the repeatability of an assessment and also allows specific pieces of code to be 

assessed. A method which does not generate any unexpected or unrepeatable faults is 

also an advantage for similar reasons. 
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Table 3-3: Comparison of SWIFI techniques 

Compile-time 

Runtime 

Time-based 
Triggers 

Interrupt­
based 
Triggers 

Code 
Insertion 

X 

X 

X 

X 
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Table 3-3 compares these various criteria and identifies both Compile-time injection 

and Code-insertion as appropriate techniques since they do not rely on any processor 

specific parameters. Of these techniques Code-insertion provides the potential for far 

more targeted fault injection that Compile-time injection because it corrupts existing 

algorithms whereas Code-insertion can be used to manipulate inputs and outputs with a 

fine degree of control since it inserts extra code, for instance method parameters can be 

corrupted prior to making a method call. 

1 Whilst it is possible to implement time-based triggers using software timers rather 
than hardware timers, it would be hard to implement them in a language/environment 
agnostic way. 
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Runtime injection techniques can use a number of different techniques to insert faults 

into a system via a trigger. Some of the more pertinent ones with regard to middleware 

assessment are given here but the list if not exhaustive: 

Corruption of memory space: This technique consists of corrupting RAM, 

processor registers, and I/0 map. Both permanent and transient faults can be 

injected. Memory and processor registers can be simply corrupted by writing 

new values from the trigger handler routine. There are a number of different 

strategies for calculating new values to inject but one of the most effective 

methods is to bit flip values [64]. 

Syscall interposition techniques: This is concerned with the fault propagation from 

operating system kernel interfaces to executing systems software. This is done 

by intercepting operating system calls made by user-level software and injecting 

faults into them. Traditionally this has required kernel level code to archive but 

recent research indicated that it can also be achieved as user level processes [ 40] 

although this research was concerned with intrusion detection. Since most 

software relies on the operating system for a number of services, errors injected 

at this level can be propagated up to the system being assessed. There are a 

number of ways to propagate errors from the operating system, two of the most 

important being returning an invalid error code from a system call and signalling 

an exception. 

Network Level fault injection [77]: This technique is concerned with the corruption, 

loss or reordering of network packets at the network interface. It is possible to 

use SWIFI tools to inject faults by instrumenting the operating system protocol 

stack as in Dawson et al. [26] but this runs the risk of being detected and 
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rejected by the receiving systems protocol stack. It is therefore preferable to 

inject the fault at the application level before this stage [52]. Faults are then 

processed normally by the protocol stacks at both ends and can be relayed to the 

application layer. The faults injected are based on corrupting packet header 

information and injecting random byte errors. 

Given these fault insertion techniques it is useful to compare them in terms of their 

applicability to a Web Service environment. Given the heterogeneous nature of Web 

Service environments the key criteria of whether it is appropriate to use a technique is 

closely related to its dependence on a specific hardware environment. Further, security 

issues must be taken into account but since techniques exist to work around these 

problems it is possible to apply a technique that has implications to security. Finally, as 

a general criteria, the technique must be able to target faults reliably in specific pieces 

of code. 

Table 3-4 gives a comparison of fault insertion techniques. It has identified network 

level fault injection as an appropriate fault insertion technique to use. Although it has 

issues with security it is possible to circumvent them, whereas the other two techniques 

are tightly coupled with specific hardware platforms. 

Fault insertion techniques allow faults to be inserted into a system, either as a general 

corruption of the environment the system is running in, for instance memory corruption, 

or tied to a specific event, for instance a message transfer with network level fault 

injection. These techniques can be used to stress a system and can therefore be used to 

undertake Robustness testing. 
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Table 3-4: Comparison of Fault Insertion Techniques 
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Robustness testing is the deliberate stressing of a system to determine if it can 

function correctly in the presence of this stress. Marsden et al states in [53] 

"The robustness of a system is a measure of its ability to operate correctly 

in the presence of invalided inputs and stressful environmental 

conditions". 

This is achieved by corrupting data at the interface level of a component and 

observing its behaviour. Robustness testing can also be achieved by running the system 

under a heavy processor load and observing its effects. 

Robustness testing is particularly useful in assessing a system since it not only covers 

fault tolerance means to prevent invalid input, such as input that may be received by a 

system when it is under malicious attack, but it also assessing its operation under load 

and hence can give an indication of how a scalable a system will be when in use. 

2 May not be possible without running at kernel level. 
3 Corrupted messages may be rejected by protocol stack as security failures. 
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3.4.3 Fault Injection Tools 

A number of SWIFI Tools have been developed and a brief review of a selection of 

these tools is given here. Five commonly used fault injection tools are Ferrari [42, 43], 

FT APE [72], Doctor [35], Orchestra [25] and Xception [20]. 

Ferrari [42] (Fault and Error Automatic Real-Time Injection) is based around 

software traps that are used to inject errors into a system. The traps are activated 

by either a call to a specific memory location or a timeout. When a trap is called 

the handler injects a fault into the system. The faults can either be transient or 

permanent. Research conducted with Ferrari shows that error detection Is 

dependent on the fault type and where the fault is inserted [42]. 

FTAPE [71] (Fault Tolerance and Performance Evaluator) can inject faults, not only 

into memory and registers, but into disk accesses as well. This is achieved by 

inserting a special disk driver into the system that can inject faults into data sent 

and received from the disk unit. FT APE also has a synthetic load unit that can 

simulate specific amounts of load for robustness testing purposes. 

DOCTOR [35] (IntegrateD sOftware Fault InjeCTiOn EnviRonment) allows 

injection of memory and register faults, as well as network communication 

faults. It uses a combination of time-out, trap and code modification. Time-out 

triggers are used to inject transient memory faults and traps are used to inject 

transient emulated hardware failures, such as register corruption. Code 

modification is used to inject permanent faults. 

Orchestra [25] is a script driven fault injector which is based around Network Level 

Fault Injection. Its primary use is the evaluation and validation of the fault-
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tolerance and timing characteristics of distributed protocols. Orchestra was 

initially developed for the Mach Operating System and uses certain features of 

this platform to compensate for latencies introduced by the fault injector. It has 

also been successfully ported to other operating systems. 

Xception [20] is designed to take advantage of the advanced debugging features 

available on many modem processors. It is written to require no modification of 

system source and no insertion of software traps, since the processor's exception 

handling capabilities are used to trigger fault injection. These triggers are based 

around accesses to specific memory locations. Such accesses could be either for 

data or fetching instructions. It is therefore possible to accurately reproduce test 

runs because triggers can be tied to specific events, instead of timeouts. 

Each fault has a fault mask and this mask defines the type of fault that will 

be injected from a predefined set of fault classes, for instance stuck-at-zero, 

stuck-at-one, bit-flip, bridging, etc. Although this method of predefining faults 

speeds up fault generation, over a script based tool, research comparing it to 

static analysis methods has shown that it fails to detect some classes of faults 

(namely those contained in infrequently executed pieces of code) [50] but it did 

prove to be effective at detecting faults in frequently executed code. 

Table 3-5 compares the features and properties of these common fault injection tools. 

The heterogeneous environment that hosts Web Services means that any fault injection 

tool must not be tied to a particular hardware platform. Any tool used must therefore be 

able to run equally well under any environment hosting Web Services. Network Level 

Fault Injection offers a way of using a relatively machine independent way of injecting 
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faults whilst allowing tools to be run on a specific hardware platform since only 

messages are intercepted and relayed to the fault injector. 

Table 3-5: Features of Common Fault Injection Tools 
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From Table 3-5 both DOCTOR and Orchestra support network level fault injection 

and could potentially be used to implement fault injection into Web Services but these 

two tools have been designed to perform network protocol testing and therefore don't 

decode complete middleware message sequences. 

3.4.4 Fault Models 

A fault model [6] is a model of the types of fault that can occur in a system whilst it is 

running. A fault model can be categorized into the following types of faults: 

4 Trap instructions are inserted into system code. 
5 A replacement disk driver is required. 
6 Code modification is used to provide permanent faults. 
7 Ported to a number of operating systems but each variant is still tied to a particular 
system. 
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Physical Faults: These are faults that are caused by physical hardware failures, such 

as memory failures, processor failures, power spikes, etc. It has been found that 

this class of faults can be replicated effectively by using bit flipping techniques. 

Software Faults: This class of faults includes both programming faults and design 

faults. 

Resource-management faults: This class of faults includes such faults such as 

memory leakage and exhaustion of resource, for instance file descriptor 

exhaustion. 

Communication faults: This class of faults is specific to systems that use some form 

of communication so they may not be present in all systems. These faults are 

concerned with simulating faulty network connections by the corruption, 

duplication, reordering and deletion of network messages. 

Life-cycle faults: This class of fault is concerned with the mechanisms that maintain 

objects. This class of faults includes such faults as premature object destruction, 

delayed asynchronous operations (outside specified timing constraints). 

This list is not exhaustive but covers commonly found classes of faults found within 

most systems. A specific fault model must be defined for a system before its failure 

modes can be defined. 

3.4.5 Failure Modes 

Once a fault model has been defined the ways in which a system can fail must be 

defined. These are know as the Failure Modes [6] and these will vary from system to 

system but some common failure modes are given in Table 3-6. 
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Table 3-6: Example Failure Modes 

• Crash of an object, process or thread 
• Hang of an object, process or thread 
• Corruption of data into the system 
• Corruption of data out of the system 
• Omission or duplication of messages 
• Incorrect generation of exceptions 

Again this list is not exhaustive but covers the likely failures encountered by a Web 

Service based system. 

More detailed failure modes are defined on a per-application basis. For instance The 

Apache Software Foundation defines a set of failure modes for Axis [5] that are shown 

in Table 3-7. By comparison with the example failure modes given in Table 3-6 we can 

see that the failure modes given can be grouped into groupings mainly concerned with 

communication, with only one group "500: internal Error" being concerned with 

programming failures and exceptions. 

This is a reasonable set of failure modes from an end user perspective of Web Service 

middleware such as Apache Axis since its failure model is concerned with the correct 

function of the middleware rather than Web Services. The failure modes given in Table 

3-7 assume that the middleware is fault free and these are the failure modes that will be 

encountered by a normal user. To test the actual middleware a far more extensive set of 

failure modes is required since other failures may be encountered during testing. These 

failure modes will be more akin to the failure modes found in any large application. 

Web Services are a rapidly evolving technology and as such specialized testing has 

concentrated on protocol issues and general middleware validation. It is a sad fact that 

most general texts on the subject neglect testing all together [27, 58] the assumption 

being that normal test methodologies can be used to test systems. Whilst this may be the 
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case during development of an in-house SOA, larger SOA using external third party 

components would not have access to source code so validation techniques could not be 

applied. 

As far as we are aware dependability analysis of Web Services and middleware has 

not be extensively applied [52] although some work is now underway to apply Interface 

Propagation Analysis (IPA) to Web Services [78] although this work is only concerned 

with applying IPA to Web Services and not with providing a non-invasive framework to 

undertake dependability analysis. 

A more detailed set of failure modes is given by Gorbenko et al [31]. This work 

concentrates on providing information on constructing fault tolerant Web Services from 

unreliable sets of Web Services. Consequently the failure modes given are aimed at 

providing a basis for constructing fault tolerant solutions rather than testing for correct 

implementation of Web Services, for instance the taxonomy given in this report groups 

all suspected corrupted results under one failure mode to allow these to be dealt with by 

Multi-Version Diversity mechanisms. Conversely for testing requirements we may 

require a higher level of granularity to help assess at which point a Web Service is 

failing. 
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'fable 3-7: Axis Failure Modes 

Failure Mode Cause 
Connection refused The host exists: nothing is listening for 

connections on that port. Alternatively, a 
firewall is blocking that port. 
Site Finder: the URL is using a port other than 
80, and the .com or .net address is invalid 

Unknown host The hostname component of the URL is invalid, or 
the client is off-line. 

404: Not Found There is a web server there, but nothing at the 
exact URL. Proxy servers can also generate 404 
paqes for unknown hosts. 

302: Moved The content at the end of the URL has moved, and 
the client application does not follow the links. 
Site Finder: the .com or .net address is invalid, 
the port is explicitly -or defaulting to- port 80 

Other 3xx response The content at the end of the URL has moved, and 
the client application does not follow the links. 

wrong content The URL may be incorrect, or the server 
type/MIME type application is not returning XML. 

Site Finder: a 302 response is being returned as 
the host is unknown 

XML parser error This can be caused when the content is not XML, 
but the client application assumes it is. 
Site Finder: this may be the body of a 302 
response due to an unknown host, the client 
application should check return codes and the 
Content-Type header 

500: Internal Error SOAP uses this as a cue that a SOAPFault has been 
returned, but it can also mean 'the server is not 
working through some internal fault' 

Connection Timed The hostname can be resolved, but not reached. 
out/ NoRouteToHost Either the host is missing (potentially a 

transient fault), or network/firewall issues are 
preventing access. The client may need to be 
configured for its proxy server. This can also 
crop u~ if the caller is completely off-line. 

GUI hangs/ long Client application may be timing out on 
pauses lookups/connects 

3.5 Summary 

This chapter has defined some commonly used terms and concepts used in QoS and 

some of these are subjective and therefore not suitable for measurement whilst others 

are quantifiable and will form part ofthe basis of this thesis. 
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This chapter has also reviewed dependability and fault tolerance methods that can be 

used to increase dependability. It has reviewed the process of how a fault may produce a 

failure. 

Execution of an error may or may not lead to a failure being observed at the system 

boundary and this may be due to the presence of a fault tolerance mechanism. The main 

purpose of fault tolerance mechanisms is to allow a system to continue functioning 

reliably in the presence of errors. One simple fault tolerance model for eliminating 

errors is the N-version model which compares multiple outputs from functionally 

equivalent services and provides a consensus to either prevent failures of indicate when 

an answer cannot be reliably obtained. 

MTBF may be very large since control pathways containing errors may be executed 

infrequently so fault injection techniques can be used to speed up the process of 

assessing fault tolerance mechanisms since specific faults can be injected into a 

replicated service to check the consensus processes. 

There seems to have been little research carried out using network level fault injection 

to assess middleware products, the notable exception to this being it's application to 

CORBA systems where it provided promising results. Therefore this chapter has 

reviewed Dependability Assessment and Fault Injection as a means of assessing the 

dependability of systems. It has described the different techniques available for 

performing fault injection and has reviewed the available tools. Of these tools most are 

designed for general-purpose dependability assessment of protocol stacks and not 

middleware products. 
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It has demonstrated that network level fault injection can be applied to RPC 

exchanges since network messages are sent to implement each call. Traditionally simple 

fault models are applied using network level fault injection, such as bit-flip fault 

models, to test network protocols. Network level fault injection also runs the risk of 

being detected by the protocol stack and messages rejected so it is preferable to inject 

faults at a higher level in the protocol stack if specific middleware functionality is to be 

assessed. 
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Chapter 4 -FIT Method for Dependability Assessment 

Although much work has been done in the area of fault injection and distributed 

systems in general, most dependability assessment of middleware appears to have been 

conducted using observational measurement techniques. There also appears to have 

been little research carried out on applying this technique to Web Services. Some 

research has been conducted using fault injection to test the dependability of CORBA 

implementations using network level fault injection with successful results and we have 

used this as a starting point for defining our new novel method. 

4.1 Problem Definition 

There are many problems associated with using traditional testing techniques and 

formal proofs on distributed systems. Dependability assessment provides a useful 

technique for allowing a level of confidence in a system to be obtained, even though 

this does not assure correct operation under all circumstances. 

To address this need within the middleware domain a new dependability assessment 

method has been developed which has been called Fault Injection Technology (FIT) 

method has been developed. The FIT method provides a dependability assessment 

method that can be applied to SOA to allow an indication of the level of reliability of a 

system. There are many variations possible for an SOA. For the purpose of the FIT 

method we will define an SOA as being a simple system, composed of a number of 

services and clients interconnected via a middleware layer. Clients can make use of 

services via the middleware layer and services may make use of other services via a 

middleware layer (see Figure 4-1). We further assume a homogenous middleware layer 

is used by each service, although the services may run on heterogeneous platforms. 
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Figure 4-1: Outline Middleware System 

The FIT method addresses three areas of dependability assessment: 

• Fault Injection mechanism (Section 4.2) 

• Automatic test generation (Section 4.3) 

• Automatic failure detection (Section 4.4) 

We intend the FIT method to be extendable and act as a framework, so the models 

given here are generic and it is intended that they should be enhanced and adapted to a 

specific system. 

This thesis details the FIT dependability assessment method and shows how it can be 

applied to service based systems. Whilst the method supports ontology based automatic 



Chapter 4- FIT Method for Dependability Assessment 65 

test generation and failure detection the intension is to demonstrate the framework that 

the FIT method provides and any ontologies given are provided to illustrate this and are 

not intended to be definitive or complete. 

The major contribution of this work is the novel fault injection mechanism that allows 

network level fault injection to be used to simulate Code Insertion fault injection whilst 

circumventing the need for modifications to the service source code. This comparison is 

limited to Code Insertion where it is used to perturb method input parameters or output 

results when an RPC is made since this generates a network request/response exchange 

which network level fault injection can operate on. It does not compare Code Insertion 

that operates on internal method calls, which do not involve an RPC. 

This novel injection mechanism is achieved by intercepting middleware messages 

within the protocol stack, decoding the middleware message in real-time and injecting 

appropriate faults. By decoding the middleware message and allowing this level of 

targeted fault injection it is possible to perform parameter perturbation. This is detailed 

in Section 4.2. 

The method incorporates three data structures intended to assist a user in describing a 

service-based system and construct triggers on specific parameters (Section 4.2), a data 

structure to aid a user in classifying and utilizing fault models (Section 4.3), and a data 

structure to classify and detect failures in a system (Section 4.4). This part of the FIT 

method could be implemented via any fault injection mechanism that supports 

parameter perturbation. 
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4.2 Fault Injection Mechanism 

Of the techniques available we have decided to base the FIT method on network level 

fault injection for the following reasons: 

1. Since the test domain involves transfer across a network interface it is a 

common factor in the design of both client and server software. 

2. It is simple to implement under heterogeneous middleware because it can be 

implemented using small modifications to the middleware protocol stack. 

3. Middleware messages can be modified to simulate a large number of fault 

classes, for instance transport layer failure, API parameter faults, etc. 

Physical Medium 

Figure 4-2: Detailed Middleware System 

The FIT method uses a modified network level fault injection technique to inject 

faults into a service. Standard network level fault injection works by performing the 
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following operations on network packets at the physical network interface (see Figure 

4-2): 

• Corrupting 

• Reordering 

• Dropping 

Figure 4-3: FIT Fault Injection Hook Code Placement within Middleware 

Since this fault injection is done at the network interface modifications to these 

packets tend to only be reflected at the middleware level as random corruption of data, 

even reordering and dropping of packets may only result in corruption of a data stream 

since a middleware level message may span more than one physical network packet. 

Further, reordered or dropped packets may be subject to error correction such as 

retransmission so faults injected may not reach the middleware layer. Also packets 

corrupted at this level may be rejected by the network protocol stack lower layers, for 
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instance via mechanisms such as checksums. It is thus hard to target a particular 

element of a middleware message with any great certainty. Thus network level fault 

injection has traditionally been used only for assessing network protocol stacks, not 

service based systems. 

The FIT method of network level fault injection takes the basic concept given above 

but moves the fault injection point away from the network interface and positions it in 

the actual middleware transport layer (see Figure 4-3). Since middleware messages are 

then intercepted as complete entities it is possible to corrupt, reorder and drop complete 

messages, rather than just part of a network packet that may be discarded before it 

reaches the middleware layer. Messages can thus be modified and then passed on to the 

lower layers of the middleware and network protocol stacks. In this way faults can be 

injected but not filtered out by the network protocol stack. 

Further, if the messages are intercepted before they are signed or encrypted (or after 

they are decrypted and the signature checked in the case of incoming messages), it is 

possible to corrupt individual elements within a message without that message being 

rejected by the middleware as having been tampered with. Since we can assume we are 

familiar with the rules and metadata used to construct messages for the specific 

middleware we are using, by combining the corruption of data in a message with these 

rules and metadata it is possible to produce meaningful perturbations of such things as 

RPC input parameters and thus we can use our network level fault injection method to 

simulate API level fault injection. 
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Figure 4-4: Procedure for Intercepting and Processing a Middleware Message 

The procedure used to implement this process is shown in Figure 4-4. A message is 

processed in the following way on an instrumented machine: 

1. A middleware message (a) is received by the Network Protocol Stack and is 

passed into the middleware stack (1). 

2. This part of the middleware stack (1) receives the message from the Network 

Protocol Stack, decrypts it if necessary and validates any signatures. 

3. The message (b) that is passed out of ( 1) is therefore in an unprotected and 

modifiable form. The message (b) is passed into the FIT hook code (2). 
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4. This part of the Hook Code (2) intercepts the message (b) and transmits it (c) 

via a socket to the FIT Fault Injection Engine (3). 

5. The Fault Injection Engine (3) can then process the message and inject any 

faults required. 

6. This processed message (d) is then transmitted back to the hook code ( 4 ). 

7. The hook code (4) then retransmits the message (e) on to the remainder of the 

original middleware stack (5) that will complete the processing of the 

middleware message. At this point the message (e) may contain a fault and 

should be rejected by the protocol stack if the fault violates the protocol 

syntax. 

8. If the middleware message (e) is valid and has not been rejected it will be 

processed as normal (5) and passed on (f) to the Service (5). 

The rules and metadata used to define the interface of a service in a middleware are 

typically encapsulated in an IDL. Some IDLs, for instance DCE IDL, just define the 

interface of the web service and have a set of implicit rules built into the IDL compiler 

to generate the required message structures. Other IDLs, for instance WSDL, explicitly 

define the messages to be exchanged in the IDL definitions themselves. Which ever 

system is used it is possible to interpret the IDL files to decompose the service interface 

into method calls with their associated messages and within the messages identify 

specific parameters. 

The FIT method decomposes this information into a taxonomy (see Figure 4-5) that 

we will refer to as the System Model. This taxonomy provides all the information 

required to construct a fault injection trigger. Although triggers can be constructed to 
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trigger on any node in the taxonomy the FIT method allows triggers to be constructed 

for either the parameter nodes or the message nodes. FIT is primarily concerned with 

perturbing parameters in RPC messages and this matches closely with the lowest level 

of node within the taxonomy. FIT also allows custom operations to be preformed at the 

message level so that the method can be more versatile. 

Figure 4-5: Taxonomy created from IDL 

By using this taxonomy and creating triggers on specific parameters the FIT method 

can target individual elements of a message rather than inject random faults into 

middleware messages as in standard network level fault injection techniques. The 

method will decode the middleware message and inject meaningful faults, such as 

modifying RPC parameters and results, so that they are syntactically correct but may be 

out of specified ranges. The method builds on this framework to allow test cases to be 

written. These test cases can either be written manually or automatically generated 

using our Extended Fault Model. 
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4.3 Automatic Test Generation 

The FIT method uses the concept of an Extended Fault Model (EFM). This is, again, 

structured as a taxonomy (see Figure 4-6). It is intended to act as an aid to the user 

evaluating a system by organising well known fault models into a structure that can be 

applied to the system described in Section 4.2. This takes the standard concept of a fault 

model and groups fault models into the taxonomy so that they can be classified and 

applied to an element of the System Model. 

Figure 4-6: Fault Model Taxonomy 

This is done by apply the technique of functional decomposition to the top-level fault 

model, for instance we can define a high level fault model, as show in Table 4-1, which 

shows a fairly standard fault model for an SOA. Then each item in the fault model 

would be decomposed into a more detailed sub-category (see Table 4-2) after which 

further decompose of each item in the model can continue until a level is reached where 

we have a detailed enough description to implement a specific test case (see Table 4-3). 
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Table 4-1: High Level Fault Model 

o Physical Faults 
• Software Faults 
• Resource Management Faults 
o Communication Faults 
o Life-cycle Faults 

The detailed test case should be generic enough so that it can be applied to any 

message/parameter of an appropriate type in the System Model, for instance a test case 

could be written to perturb any numeric input parameter so that it contains a random 

value within a specified range. The range would be obtained from the specification of 

that RPC and associated with the parameter's node in the System Model. The two 

taxonomies could then be linked together and the EFM could obtain the required range 

information from the System Model taxonomy. 

Table 4-2: Partially Decomposed Fault Model 

o Software Faults 
o Perturbation of Data into a Service 

• Values in Specified Range 
o Values out of Specified Range 
• Values in Specified Range but Logically Incorrect 

o Perturbation of Data out of a Service 
• Values in Specified Range 
• Values out of Specified Range 
• Value in Specified Range but Logically Incorrect 

o Coding Errors 
o Data Returned is the wrong type 

The EFM is intended to be extendable so that a user of the system can customize it to 

cater to their system. The EFM described both here and implemented in the tools is 

therefore not extensive but is intended to provide a basic level of functionality that can 

be enhanced to fit users needs. 
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Table 4-3: Fully Decomposed Fault Model 

• Software Faults 
o Perturbation of Data into a Service 

• Values in Specified Range 
• Upper Bound 

o Replace specified parameter with the 
upper bound value specified for this 
parameter. 

• Lower Bound 
o Replace specified parameter with the 

lower bound value specified for this 
parameter. 

• Lower Bound + 1 
o Replace specified parameter with the 

lower bound value specified for this 
parameter with one added to it. 

• Upper Bound - 1 

• 

o Replace the specified parameter with the 
upper bound specified for this parameter 
with one subtracted from it. 

Random Values between Upper and Lower Bounds 
o On test generation, generate a static 

sequence of randomly distributed values 
that lie between the upper and lower 
bounds inclusively. Cyclically 
substitute the next value from the 
statically generated sequence for the 
specified parameter. A static sequence 
should be used to provide a level of 
test repeatability although this 
repeatability may be effected by 
concurrency effects and timing. 

It is possible, by careful perturbation of input parameters, to perturb the internal state 

of a service but this requires detailed knowledge of the design of the service and so is 

considered outside the scope of this method's automatic test case generation, but it can 

be accomplished via manual test case construction and manual inspection of the service 

code. 

4.4 Automatic Failure Detection 

To detect potential failures in a system, the method includes an Extended Failure 

Model (EF AM). This is similar in concept to the EFM described in Section 4.3 and is 

structured as a taxonomy (see Figure 4-7) 
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The EF AM defines a high level set of failure modes as described in Table 4-4. The 

FIT method applies decomposition to the failure modes in a similar way to the EFM. 

Figure 4-7: Taxonomy of Failures 

Decomposition is applied iteratively to the Failure Modes to compose a number of 

partial models (see Table 4-5). These partial models sub-divide each failure mode into a 

number of sub sections until a simple enough level is reached at which point a script can 

be written to detect the detailed failure mode as in Table 4-6. 

Table 4-4: High Level Failure Modes 

• Crash of a service instance 
• Crash of a hosting server 
• Hang of a service 
• Corruption of data into service 
• Corruption of data out of service 
• Duplication of messages 
• Omission of messages 
• Delay of messages 

Table 4-5: Partially Decomposed Failure Model 

• Corruption of data out of service 
o Data out of specified range 
o Data logically incorrect 

Once a EF AM is available it can be applied to the whole or part of the SOA, so unlike 

the fault model it is active for all message exchanges so it can detect normal failures as 

well as failures caused by fault injection. 
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Table 4-6: Detailed Failure Model 

• Corruption of data out of service 
o Data out of range 

• Data above upper bound 
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• Check specified parameter against upper bound 
in specification and if it is greater than 
this value flag an error condition. 

• Data below upper bound 
• Check specified parameter against lower bound 

in specification and if it is less that this 
value flag an error condition. 

To aid in failure detection the FIT method allows three predefined outcomes from a 

fault injection operation: 

1. Exception 

2. Response out of specified range 

3. No visible effect. 

These outcomes are specified when a fault model is applied to a parameter and apply 

to the next message exchange in that sequence after the fault model has been applied. 

The expected outcome is specified terms of a specific EF AM as part of the EFM. This 

effectively links the two taxonomies together using a many to many relationship (see 

Figure 4-8). 

The exception outcome is the normal outcome to be expected from a fault injection 

since well-written code should detect parameter perturbation and reject the transaction. 

If we expect this outcome and do not detect the expected outcome this would be flagged 

to the user as a discrepancy, where as receiving the exception would be classed as being 

the correct outcome. 

-_,--- ~-- ------------~------~---------- --,----,---~------__ ---:o-·-------=-:--~-;--·--·-.--:-;------ ----- --------;-:--- --.::----

The response out of specified range outcome is typically to be expected from a 

system in the development or testing phase of a project when not all guard mechanisms 
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are present. This would typically result from a perturbed input parameter creating a 

perturbed result and should therefore be flagged to the user. We may expect this 

outcome if the result is being intentionally perturbed to allow it to be fed into another 

component to perturb it. 

EFAM 

EFM 

' ' ' 

Figure 4-8: Fault Model Taxonomy Linked to Failure Model Taxonomy 

The no visible effect outcome would typically be expected mainly from the message 

manipulation fault model class. This outcome would arise if normal message flows 

continued with no corruption of output data or exceptions. This is most likely to occur 

under two sub-classes: 
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1. Omission of messages from client to server, since the server would have no 

mechanism for knowing the original message had been sent so it could not 

generate an exception 

2. Message manipulation involving time, since if a timeout is not reached this 

would result in a performance degradation rather than timeout exceptions. 

In both cases a specialized test script in the failure model would need to be 

constructed to test for these on a per system basis. 

This outcome could also be seen when parameters are perturbed within their specified 

range. In this case a manually constructed script would be written to detect the expected 

outcome on a per test basis. 

·· .... 
··············· 

··--.... ... ···· .. :·\. 

Figure 4-9: Linking Taxonomies 

By applying one of the fault models contained in the EFM to the System Model 

taxonomy by linking the System Model to the EFM (see Figure 4-9) we not only 

generate a fault injection a specific place but because the EFM is linked to the EF AM it 
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is possible to determine any error condition that should be generated by the fault 

injection. This allows automated failure detection to be preformed. 

4.5 Summary 

This chapter has detailed the FIT method. The FIT method is composed of a novel 

network level fault injection technique, combined with a three of taxonomies to allow 

automated test generation and failure detection. 

The novel fault injection technique used allows faults to be precisely injected into 

messages allowing perturbations of specific RPC parameters at the middleware message 

level. The injection mechanism also allows faults to be injected and passed to a service 

without being intercepted and rejected by either the network or middleware protocol 

stacks. 

Test generation is achieved by use of the Extended Fault Model taxonomy. This is a 

collection of standard fault models that are categorised according to high-level criteria 

and each individual fault model can be applied generically to any RPC parameter. 

Failure detection is accomplished through the Extended Failure Model taxonomy. 

This is a collection of standard failure modes that are categorised according to high­

level criteria. The individual failure modes can be globally applied to the System Model 

to detect unexpected failures. Individual failure modes from the model can be associated 

with individual fault models from the Extended Fault Model that allows expected 

outcomes from fault injections to be detected. 
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Chapter 5 - WS-FIT Applied to Web Services 

The FIT method detailed in Chapter 4 describes a generic method that can be applied 

to a range of RPC based middleware, such as DCE, DCOM, CORBA, Web Services, 

etc. This chapter applies the FIT method to Web Service middleware to demonstrate the 

method. This implementation is termed Web Service- Fault Injection Technology or 

WS-FIT whilst the generic method is referred to as FIT. 

WS-FIT was conceived in two distinct phases with the intention of evolving the 

secoQ.d phase from the first. The first phase is an implementation of a fairly 

conventional fault injector but with the enhancement that it processes middleware 

messages as opposed to network packets. The second phase builds on the first allowing 

meaningful faults to be injected into specific parts of a middleware message and 

implements the various taxonomies described in Chapter 4. 

The first phase of the WS-FIT implementation implements the functionality of 

existing fault injection techniques and applies them to Web Services. The reasons for 

this were three fold: 

1. We can draw on existing fault injection methods to select the best techniques 

that can be applied to Web Services. 

2. Once we have a solid working method we can use it as a basis to design and 

implement our second phase method. 

3. It should be possible to compare the FIT method to existing methods to gauge its 

effectiveness, . 
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5.1 Middleware Environment 

This implementation of FIT for Web Services realises the method described in 

Chapter 4 and provides a dependability assessment method that can be applied to SOA 

based on Web Service middleware (see Figure 5-1). This implementation has been 

applied to both Apache Axis 1.1 and Apache SOAP 2.3 for the SOAP implementation 

and Apache Jakarta Tomcat 4.x & 5.x reference implementation for a service container. 

This Web Service implementation can be deployed to form a heterogeneous distributed 

system comprising many different machine architectures with the rniddleware layer 

allowing interoperability between them (See Figure 5-l). WS-FIT must take this 

heterogeneity into account. 

Mac OS XPI!Itform UhuxPI~orm 

ebSefvlce Web SerVIce 

Apache Axla1 .1 Apache Axla1.1 

Apache Axle1 .1 

Cl nt 

Windows Platfonn 

Figure 5-1: Web Service Middleware System 
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The WS-FIT implementation addresses the following areas which were defined in 

Section 4. 1 : 

• Fault Injection mechanism (Section 5.2) 

• Automatic test generation (Section 5.3) 

• Automatic failure detection (Section 5.4) 

This chapter shows the details of how the FIT method has been implemented and 

applied to Web Services and demonstrates the concepts behind the Automatic Test 

Generation and Automatic Failure Detection mechanisms on a real middleware product. 

5.2 Fault Injection Mechanism 

WS-FIT is physically divided into two parts: 

I) Hook Code inserted into the SOAP stack to capture messages (see Figure 5-2 

items H). 

2) The Fault Injection Engine (FIE) that processes the messages and injects faults 

when required (see Figure 5-2 item E). 

As shown in Figure 5-2 the hook code (Figure 5-2 items H) can be installed onto 

more that one machine, for instance on the SOAP stack of the machine running client 

software (Figure 5-2 machine 1) and the SOAP stack of the machine running the Web 

Service the client is utilising (Figure 5-2 machine 2). In this way the WS-FIT fault 

injection engine (Figure 5-2 item E) can intercept outgoing messages on machine 1 

destined for machine 2 or incoming messages on machine 2 from machine 1. It is also 

'"~- --- ~ -possible-to-intercept-either-outgoing"results~before··they-leave-machine-2-orasthey are 

received by machine 1. 
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Figure 5-2: WS-FIT Fault Injection Hook Code Placement within Axis 1.1 Stack 

Therefore the hook code is further sub-divided into two parts, one part that intercepts 

incoming messages and a second part that intercepts outgoing messages. This is partly 

dictated by the design of the SOAP stack (there are two distinct pathways through the 

code to allow processing of incoming and outgoing messages) and also to allow 

differentiation between the two message types. Although it would be possible to 

instrument only one pathway, for instance outgoing messages, and thus make the 

modifications to the SOAP stack less invasive capturing both incoming and outgoing 

message on one machine has certain advantages in terms of the flexibility of the 

method. 

A basic requirement of certification release testing in a production environment is that 

the code installed and tested should be the code that is distributed to a customer since 

modifications to it could alter the control pathway used in production. Also compilation 
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of a source file can produce different binaries between compilations even when an 

unaltered source file is used because the compiler may have faults in it, etc. 

The extra flexibility offered by WS-FIT could be used as part of a certification 

process. This can be demonstrated by use of Figure 5-3. This shows a distributed system 

made up of a number of Web Services and a client running on a heterogeneous network 

of platforms. In this example machine 1 and machine 2 have been instrumented with 

WS-FIT hook code, whilst machines 3, 4 and 5 have been left unmodified. 

This configuration allows WS-FIT to inject faults into messages send and received by 

machines 1 and 2 without modifying the production environment of machines 3, 4 and 

5. Thus faults can be propagated through the system into unaltered production machines 

without the need for specific test harness. This can be used to simulate transient and 

permanent faults in workflows. 

For instance the client (on machine 5) can send a request to the Web Service on 

machine 1. The Web Service on machine 1 utilizes the service on machine 3, which in 

turn utilises the Web Service on machine 2, which makes a call on the Web Service on 

machine 4. Since machine 2 is instrumented with WS-FIT hook code it is possible to 

inject a fault into the request message going to machine 4 without altering the Web 

Service or environment on machine 4. If an error state is produced by the invalid 

request sent to machine 4 it may be propagated back to the client with no further 

modification to the system with the hook code on machine 1 being used to monitor the 

failure. 

Sirrtilarly_a_fault_could_be injected_into __ the system by _modifying_the return result of 

machine 4 as it is received from machine 4 by machine 2. This could then propagate any 
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error back through the workflow and be monitored by machine 1 at the system 

boundary. A similar effect to this could be achieved by injecting a fault into the 

response message sent by machine 2 to machine 3 but this would mean that the logic of 

the Web Service on machine 2 would have to be incorporated into the construction of 

the fault injected. 

e.tac OS X Platform Unua Platform Solarj• Pljttform 

Apache Axla 1.1 

WlndoWa Platfotln 

Figure 5-3: Instrumentation showing potential for certification 

5.2.1 Hook Code 

SOAP 
Mesaages 
over HTTP 

The hook code used to intercept message and pass them to the fault injection engine is 

relatively simple and the main components and data passed are shown in Figure 5-4. A 

message is processed in the following way on an instrumented machine: 
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1. A SOAP message (a) is received by the Network Protocol Stack and is passed 

into the SOAP stack (1). 

2. This part of the SOAP stack (1) receives the message from the Network 

Protocol Stack, decrypts it if necessary and validates any signatures. 

3. The message (b) that is passed out of ( 1) is therefore in an unprotected and 

modifiable form. The message (b) is passed into theWS-FIT hook code (2). 

4. This part of the Hook Code (2) intercepts the message (b) and transmits it (c) 

via a socket to theWS-FIT Fault Injection Engine (3). 

5. The Fault Injection Engine (3) can then process the message and inject any 

faults required. 

6. This processed message (d) is then transmitted back to the hook code (4). 

7. The hook code (4) then retransmits the message (e) on to the remainder of the 

original SOAP stack (5) that will complete the processing of the SOAP 

message. At this point the message (e) may contain a fault. If it is a SOAP 

schema fault the message (e) should be rejected by (5) as a protocol error. 

8. If the SOAP message (e) is valid against the SOAP schema it will be 

processed as normal (5) and passed on (t) to the Web Service (5). 

Whilst a number of existing fault injectors could be used to do this, notably DOCTOR 

and Orchestra, these tools are designed for general purpose protocol testing. WS-FIT 

has been designed around an engine to decode SOAP messages and presents an 

~ _ ~ interfa~-~ at the scrj_p! AP_I_!e_ve! with. t~e information included il!__~_sp~ _RPC .(!~sBy 

accessible. 
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Figure 5-4: Instrumented SOAP Stack showing processing of incoming message 
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Outgoing messages from Web Services/clients are processed in a similar way (See 

Figure 5-5). 

1. The service or client (5) sends information into the SOAP stack API (g). This 

may either be a direct call to the API from the program code or via the stub 

generated to handle return responses, etc. 

2. The information (g) is then processed by the SOAP stack (6) into and 

unsigned and unencrypted message (h). 

3. This SOAP message (h) is then intercepted by theWS-FIT hook code (7). 

4. The hook code (7) then passes the message (c) to theWS-FIT Fault Injection 

engine (3). 
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5. The Fault Injection Engine (3) then processes the message in the same way as 

informing messages are processed (see above). 

6. The modified message (d) is then passed back to the hook code (8). 

7. The hook code (8) then send the message (j) on through the SOAP stack with 

can then perform any signing and encryption (9) that may be required before it 

is transmitted by the Network Protocol Stack to its destination. 

I 

0 

Figure 5-5: Instrumented SOAP Stack showing processing of outgoing message 

FIT method is an enhancement from standard Network Level Fault injection in that it 

allows the targeted manipulation of specific parts of the message. This allows the FIT 

method to trigger on very specific RPC sequences and specific parameters contained 
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within them. This allows FIT to use Network Level Fault Injection to emulate Code 

Insertion fault injection. 

The Hook Code is the only component ofWS-FIT that must be implemented for each 

SOAP implementation that it is to be used with. The Hook Code is a simple piece of 

code that connects itself to the FIE via a network socket. Each SOAP message passing 

down the SOAP stack is intercepted by the Hook Code and transmitted to the FIE that 

may be running on a separate machine. The Hook Code then waits for a string reply 

from the FIE and substituted this message in place of the original message as described 

above. 

Since WS-FIT is intended to be interoperable between different platforms and 

machine architectures it uses an XML format for transferring data between the fault 

injector Hook Code and the fault injector. This document is the message data passed 

into the FIE (c) and also the message passed out of the FIE back to the hook code (d). 

The SOAP message is encapsulated within an XML document as a CDAT A section to 

circumvent the need to escape reserved characters. This makes the original message 

easy to receive and process since the start and end of the XML document is easily 

detectable. Also the encapsulating XML document can be used to carry such 

information as the originating machine's identity and timestamps. 

The CDAT A section within the document carries protocol specific information and 

this would change between implementations for different middleware products so the 

encapsulating XML document can also be used to identify the message data contained 

within. In this way it would be possible, although it may not be desirable for reasons of 

efficiency, to have on implementation of FIT handle several middleware products by 
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detecting the middleware type sent and switching to the appropriate parser for that 

product. 

The Hook Code must be inserted into the SOAP stack at a convenient point, just 

before signing and encryption take place for outgoing messages and just after signature 

checking and decryption have taken place for incoming messages. In this way the 

injected faults in the messages can be propagated up the protocol stack to their intended 

destination and consequently test the domain they were intended for, rather than be 

rejected as network errors or a malicious attack on the system. 

We have used this design, rather than something more complex because we believe 

that it provides the most portable solution between different SOAP implementations. 

For instance with our main test environment it would be possible to implement the 

Hook Code as a plug-in module in the processing chain. Whilst this would provide a 

neater solution for this particular implementation of SOAP, it would not be possible to 

implement the Hook Code in this way under all implementations since this facility is 

not available on some SOAP implementations. Further if our system used WS-

Addressing or WS-MessageDelivery it would be possible to redirect the SOAP 

messages to the fault injector via the protocol stack, effectively removing the 

requirement for Hook Code on systems under test and thus removing the need to modify 

protocol stack code, but this would restrict the tools to working on SOAP based SOA 

that supported these standards and would make it harder to implement FIT on other 

middleware products that are not SOAP based. Also this approach would mean that 

each SOAP message would have to be processed by multiple SOAP stacks before being 

received by WS-FIT, and hence would make it harder to identify where errors have 
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occurred since the message must pass through intermediate nodes before reaching the 

fault injector. 

The Hook Code is implemented so that once it had been inserted into the SOAP 

protocol stack it can safely be turned off and left in a normally running system via a 

configuration file. Whilst this should be relatively non-invasive it would not be 

advisable to ship a system with the Hook Code left in because of the risk of malicious 

attack because the Hook Code gives unsecured access to all messages sent and received 

by a server running it. 

5.2.2 Fault Injection Engine 

Once a SOAP message has been received from the Hook Code by the FIE it must be 

processed. The FIE is split up into a number of functional steps to aid processing of 

these message. These steps are: 

Receive: Physically receive the XML document containing the SOAP message from 

the Hook Code. 

Process: Extract the SOAP message from the encapsulating XML document and 

process and log the associated information in the encapsulating document. 

First Stage Trigger: This step determines if the message supplied requires a fault 

injected into it. It is intended to be relatively fast so that detailed processing, and 

thus the inherent time overhead, can be minimised for message that do not 

require fault injection. 

Second Stage Trigger: This is a more detailed triggering process that locates the 
- ·- - - --

actual position in the message where a fault needs to be injected. It relies on the 
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First Stage Trigger to identify messages where fault injection is required so it 

can be optimised with this assumption. 

Fault Injection: Injects the actual fault into the message. It assumes that the Second 

Stage Trigger has located the correct position. 

Transmit: This packages the message into an encapsulating XML document and 

physically transmits it back to the Hook Code. 

Whilst these are the functional steps followed by the FIE design in the actual 

implementation some of them must be combined for efficiencies sake, for instance the 

Second Stage Trigger and the Fault Injection are combined. This is partly for efficiency 

and partly because they must be preformed iteratively if multiple faults are to be 

injected into the same message since the location of the faults will be different for each 

second stage trigger. 

There are two paths through the FIE. One deals with the case where no faults are to 

be injected into a message, and the other deals with the case where faults must be 

injected. We assume that not injecting a fault is the default and have optimised WS-FIT 

accordingly because faults will be injected infrequently. This is shown in Figure 5-6. 
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Figure 5-6: Processing of SOAP Message (No Fault Injected) 

In this case the following steps are undertaken: 
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1. The encapsulated SOAP message (c) is received by the receive process (10). 

2. The XML document (i) is then processed (11) to extract the SOAP message 

and the originating machine address. 

3. This data (ii) is then used by the First Stage Trigger (12) to determine if the 

SOAP message should be triggered on and a fault injected. This is done by 

pattern matching specific XML tags to determine the specific message, for 

instance request/response message and message name, and if it contains 

specific RPC parameters. A match can also be done on originating machine 
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address so that specific Web Services on specific machine scan can be 

triggered upon. This stage also lends itself to a SAX parser implementation 

but the decision was made to implement it using pattern matching to reduce 

latency overheads. 

4. If the SOAP message does not match the trigger criteria the data is passed (ii) 

to the transmit process ( 15) where it is packaged into an XML document for 

return and transmitted back to the Hook Code (d). 

The other case specifies the path through the code when a message is received that 

does require a fault or faults injecting into it. This is shown in Figure 5-7. 

Figure 5-7: Processing of SOAP Message (Fault Injected) 
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In this case the following steps are undertaken: 

1. The encapsulated SOAP message (c) is received by the receive process (10). 

2. The XML document (i) is then processed (11) to extract the SOAP message 

and the originating machine address. 

3. This data (ii) is then used by the First Stage Trigger (12) to determine if the 

SOAP message should be triggered on and a fault injected. This is done by 

pattern matching specific XML tags to determine the specific message, for 

instance request/response message and message name, and if it contains 

specific RPC parameters. A match can also be done on originating machine 

address so that specific Web Services on specific machine scan can be 

triggered upon. This stage also lends itself to a SAX parser implementation 

but the decision was made to implement it using pattern matching to reduce 

latency overheads. 

4. If the SOAP message matches the trigger criteria the data is passed (iv) to 

the Second Stage Trigger ( 13 ). The Second Stage Trigger locates the precise 

location in the message data where the fault associated with a trigger should 

be inserted. In the WS-FIT implementation this lends itself to a SAX parser 

implementation since: a) the message is XML based; b) if multiple triggers 

are used on one message the SAX parser structure lends itself to iterative 

processing of a message. 

5. Once the location in the message has been found in (13) the data (v) is 

· -passed-to-the-F ault-Injection~process -(14) -tlmr -injectstlie -faUlts into the 

message. Since a SAX parser was used this process was combined with the 



Chapter 5- WS-FIT Applied to Web Services 96 

Second Stage Trigger to allow iterative processmg of a message with 

multiple triggers. 

6. After the Fault Injection (15) process has injected all the required faults it 

passes the new SOAP message (vi) to the transmit process (15). 

7. The transmit process (15) packages into an XML document for return and 

transmitted back to the Hook Code (d). 

These two cases write data to a log at two main points shown in Figure 5-8. The log is 

structured as an XML document, with each transaction being enclosed in an XML 

element to aid in the analysis of the data. 

Figure 5-8: Logging Activities within WS-FIT 
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The first point is in the Processing of the initial XML document (11). This extracts 

the associated data from the encapsulating XML document, for example timestamps, 

and writes it to the log along with a copy of the original unaltered SOAP message. This 

provides a record of all data received from the Hook Code for later analysis. This also 

allows baseline audit data to be obtained from any system by running a 'null' script, for 

instance a script that does not inject any errors. This allows comparisons to be made 

with later fault injection campaigns. 

The second point data is written to the log is at the end of the Fault Injection process 

(14). This logs the modified SOAP message thus allowing the exact fault injected into 

the message at a later data by comparison to the original message. 

At various points in the Fault Injection Engine timestamp and diagnostic information 

is recorded so that assessments of the latency introduced by the FIE can be made but 

this is omitted for clarity. 

5.2.3 First Phase Fault ][njector 

The first phase of the WS-FIT implementation implements a relatively standard fault 

injection mechanisms based on existing models with one major exception, WS-FIT is 

designed to decode each SOAP message as it is received and inject faults at a message 

level rather than on a network packet level. All middleware messages are supplied as 

complete entities regardless of the number of network packets involved in their 

transport. Faults can then easily be injected at this message level and supplied back to 

the protocol stack. 
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The first phase allows: 

1. Triggers on particular messages to be created and executed. 

2. Any part of a message to be manipulated, and thus inject a fault, including the 

structure of a message. 

The first phase fault injector allows traditional fault injection operations to be 

implemented, for instance corruption of bytes within a message, reordering messages, 

dropping messages. This can be used for SOAP protocol stack assessment. 

5.2.4 Second Phase Fault Injector 

The second phase fault injector is based on the first stage and enhances it. Since 

SOAP messages are presented as complete entities it is possible to modify the triggers 

to trigger on specific parts of the message, for instance a specific RPC parameter in the 

message. This allows syntactically correct perturbations of input and output data to be 

preformed by substituting one value for another. Since these perturbations are 

syntactically correct as far as the SOAP scheme is concerned the SOAP stack will pass 

them through to their destination thus injecting a fault into a Web Service. 

WS-FIT uses a simple script based trigger mechanism and is intended to be used with 

SOAP based RPC mechanisms so there will be a request message and a response. A 

uniquely named message is used by each RPC to implement both the request and 

response messages. This name is defined as a tag within the SOAP envelope to uniquely 

define each message transfer. 

One of the advantages of the XML based SOAP is that it is self-describing. This 

means that our trigger mechanism can parse each SOAP message as an XML document 

and determine which RPC is being used by detecting the RPC's unique tag within the 
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message. In this way WS-FIT can determine a specific request or response message to a 

specific method of a service. 

It is also possible to determine which client or server is transmitting the message 

because it will be known which particular SOAP API on which machine is instrumented 

and this information is passed as part of the enclosing XML document from the hook 

code to the FIE. 

The first stage ofWS-FIT implements a two-stage trigger mechanism. The first stage 

determines which message has been sent. This allowed fault injection to be targeted at a 

specific message and a specific method of a service. Once the first stage has detected 

the trigger message, the second stage runs and this injects the fault into the message. 

The fault injected is generated by a second script. The script is only executed if the 

trigger determined that the message is of the specified type. Since our first stage model 

is designed to employ conventional fault injection techniques WS-FIT allows the 

corruption of any byte within the message but since SOAP messages are implemented 

as XML documents WS-FIT reflects this in its injection technique. An XML document 

is made up of elements; each element is composed of a start tag, a body and an end tag. 

WS-FIT treats each of these as a separate entity and presents each of these in turn 

through the model and allows each to be corrupted separately. Elements can also be 

nested within an element body so these are presented recursively through the method. 

Within each of these parts, any byte can be modified or the entire string making up this 

part of the message can be modified or discarded. 

ln _thjs_way faults_can_b_e_injected _so_thaLeitheLvalidly_formatted SOAR messages, 

conforming to the SOAP schema, can be constructed or SOAP messages can be 
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corrupted in such a way as to present invalid SOAPIXML to the system. Invalid 

SOAP/XML should be rejected by the SOAP stack at a low level and would not allow 

us to ultimately target the domain we wished, but our fault injection method is capable 

of performing this type of corruption none the less. 

WS-FIT is capable of processing multiple connections to multiple servers 

concurrently. When a server's Hook Code makes a socket connection to WS-FIT a 

thread is created and this thread acts as a listener on the socket. All processing of 

messages is then carried out asynchronously, with only shared logging and monitoring 

operations synchronized. In this way it is possibly to construct test cases that are 

coordinated across a number of machines, for instance if there are three services on 

three different machines and each has a trigger event associated with it, it is possible to 

coordinate their triggers such that trigger (C) can only happen once trigger (B) has 

occurred, which can only occur after trigger (A) has fired. 

Each SOAP message is decoded using an Apache Xerces SAX parser. The SAX 

parser parses each message and calls appropriate abstract methods for each of the three 

sub-divisions of an XML tag, namely start, body and end. These abstract methods are 

implemented in the user script so that each element of the SOAP message is available in 

sequence to the user script. Each abstract method returns either the tag that it was 

supplied with, or a start containing an injected fault. Triggers and fault injection can 

thus be preformed on the SOAP message. 

The body part of an XML element can potentially be nested and this adds extra 

complexity to the processing algorithm, for in~~c~~3.!ll_i!'!~-tll~ S__QAP _messag~gi_ye!! __ _ 

in Table 5-1 we can see that each Body element is nested inside an Envelope tag. The 
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RPC message is, in turn, contained inside the Body tag and the RPC message element 

contains any parameters associated with this RPC call. 

Table 5-1: Example SOAP Message 

<?xml version="l.O" encoding="UTF-8"?> 
<soapenv:Envelope 

xmlns:soapenv=http://schemas.xmlsoap.org/soap/envelope/ 
xmlns:xsd=http://www.w3.org/2001/XMLSchema 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

<soapenv:Body> 
<nsl:setTemp 

soapenv:encodingStyle= 

http://schemas.xmlsoap.org/soap/encoding/ 
xmlns:nsl= 

"http://heatercontroller.samples.dasbs.org"> 
<newTemp xsi:type="xsd:double"> 

80.0 
</newTemp> 

</nsl:setTemp> 
</soapenv:Body> 

</soapenv:Envelope> 

It is clear from this example that a mechanism is required to track triggers on 

messages and nested parameters. Since our input data will always be structured 

according to an XML Schema we can safely assume that all parameters will be nested 

inside the message element utilizing them. We therefore utilize a choice of triggers: 

1. Trigger on a message and have the script process the entire message body 

2. Trigger on a parameter within a message. 

The first type is used to trigger so that the whole message body is passed to the user 

script. It is then the responsibility of the user script to interpret the message body and 

inject faults in appropriate places. This allows the user script to inject faults that are 

syntactically -incorrect, -for- instance- they are- invalid--XML-or -invalidate-the -SGAP 

) 
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schemas being used. This also allows specialized test cases to be written which are not 

included in WS-FIT by default. 

Table 5-2: Example Script 

1:from org.dasbs.fit.exec import Servercontainer 
2:from org.dasbs.fit.exec import Injectscript 
3:from org.dasbs.fit.exec import ResultScript 
4:from string import find 
5:from operator import mod 
6: 
?:class UserResult(ResultScript): 
8: def init (self,graph): 
9: ResultScript. __ init __ (self,graph) 
10: return 
11: 
12:class userinjectScript(InjectScript): 
13: def __ init __ (self): 
14: InjectScript. __ init __ (self) 
15: self.reset() 
16: 
17: 
18: 
19: 
20: 

def reset(self): 
self.m_msg = 0 
self.m_param = o 

21: def create(self): 
22: return userinjectScript() 
23: 
24: def injectStart(self, name, attrs): 
25: if self.checkName(name, attrs, 'ns1:setTemp', 
'http://heatercontroller.samples.dasbs.org'): 
26: self.m_msg = 82 
27: return None 
28: 
29: def injectBody(self, name, attrs, body): 
30: self.m_param = 0 
31: if self.m_msg == 82: 
32: if name == 'newTemp' and 
mod(self.getResults().getCount('newTemp', None), 10) -- 0: 
33: self.m_param = 105 
34: if self.m_param == 105: 
35: print "the trigger has fired" 
36: return None 
37: 
38: def injectEnd(self, name, attrs): 
39: return None 
40: 
41:server.startServer(UserinjectScript(), userResult(monitorGraph)) 

parameter body is supplied to the user script and can be manipulated by it. Since only 

the body of the element is supplied to the user script, whatever fault the user script 
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injects will result in syntactically correct XML being generated since the tags will be 

the responsibility of the fault injection framework. It will be possible for the user script 

to supply an element body that will be invalid according to the schemas being used, for 

instance a double with a decimal point could be supplied for a parameter that is typed to 

an integer via a schema. 

This trigger mechanism is implemented in the user script (see Table 5-2). Each RPC 

message type is allocated a unique numeric value that is used to quickly identifY it. Also 

each parameter is allocated a unique numeric id. In the start method, the start tag of the 

message to trigger on is pattern matched and if it is detected the unique id for that 

message is stored in a variable. This variable has scope whilst the SOAP message is 

being processed and is reset when the next SOAP message is processed. This can then 

be used in the start, body and end methods in the user script as a trigger for a specific 

message. 

Parameters are triggered on in a similar way. The message variable is checked to see 

if the correct message body has been reached. If it has, pattern matching is preformed 

on the tag to determine if a particular parameter has been reached and if it has the 

unique ID for the parameter is stored in a second variable. This can be used in a similar 

way to the message ID to trigger on a specific parameter in all three script methods. 

The design for the first stage utilizes a two-stage trigger mechanism. The purpose of 

this is two fold: 

1. The first parser stage can be lightweight and can speed up the trigger process 

in S)'S1ems _with_sparsely_triggered_eyents _ 
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2. Since the whole message is parsed in the trigger stage out of sequence triggers 

can be constructed, for instance if a test script wants to modify an element in a 

message that occurs before the trigger element this can be done. 

This design has the disadvantage that it complicates the user script triggers. Since the 

trigger stage returns a simple Boolean to determine if the second stage should run, the 

second stage user script needs to do an amount of pattern matching as the message is 

parsed the second time to determine the correct place to insert the fault. Also multiple 

faults can be injected into the same message meaning that all pattern matching needs to 

be carried out on each message, since the only thing the trigger stage indicates is that 

the message needs a fault injecting into it, not which set of faults need to be injected. 

The two-pass design allows an initial check of the SOAP message to ascertain if any 

faults need to be injected. Then the second pass can be preformed which locates the 

specific points in the message where faults need to be injected. By using a two stage 

trigger mechanism WS-FIT is capable of injecting multiple faults into a SOAP message 

whereas a one stage trigger mechanism would be far more complex, for instance if we 

required a trigger test to determine that a fault must be injected into a message but the 

specific trigger tag came after the point where the fault was required to be injected then 

a one pass mechanism would need to reposition the buffer and inject the fault, whereas 

a two stage mechanism would do an initial pass to determine if a fault injection was 

required and then in the second stage locate the point in the message where the injection 

was required and inject the fault. 

Although the API used to construct scripts allows them to be written and executed 
--- ----·-- - ----~-- --- --- -·---- --------- - -- -

manually the WS-FIT tool implements a graphical user interface that automates the 

construction of triggers and allows predefined fault models to be applied. 
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.. -·-·-·-·-·-·-· 

Figure 5-9: Typical System Configuration Showing Latency Terms 

5.2.5 Latency Model 

As described in Chapter 3 any SWIFI technique will incur some form of overhead 

when in use. This section quantifies the overhead introduced into a WS-FIT 

instrumented system under a number of typical scenarios. To achieve this we defme a 

Latency Model that describes the temporal overheads introduced into a system under 

test. This model is demonstrated in Chapter 6 and is used to determine under what 
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conditions WS-FIT can be used with little impact on a running system and outline 

possible improvements to WS-FIT to further reduce its impact. 

5.2.5.1 Model 

To model the behaviour of the overheads introduced into a system under test, we 

break down WS-FIT into a number of discrete parts as shown in Figure 5-9. Each part is 

assigned a term which we use in our model. 

As described in section 5.2.2 there are a number of discrete steps involved in injecting 

a fault into a SOAP message using WS-FIT: 

1. Intercept SOAP message and transmit to Fault Injector. 

2. Receive Intercepted message from Hook Code. 

3. First Stage Trigger. 

4. Second Stage Full Trigger. 

5. Inject Fault. 

6. Transmission of modified message to Hook Code. 

7. Retransmission of modified message to remainder of SOAP Stack. 

There are two main paths through the fault injection system: 

1. If a fault in injected into the message all the steps listed above are followed. 

2. If a message does not pass the first stage trigger then steps 1, 2, 3, 6 and 7 are 

executed in order. 

Tne stages snoWil -inFigure -5=9-liavefime--overlieaasassoCiateo witntnem and these--­
are shown in Table 5-3. Each of the terms given in Table 5-3 is affected to differing 
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degrees by the properties of the messages being processed and these are given in Table 

5-4. 

Table 5-3: Overhead Terms 

Term Description 

Awl The average time taken to intercept the SOAP message in the Hook Code 
and write it to the socket. 

Ani The average time taken to transmit the SOAP message across the socket 
from the Hook Code. 

Arr The average time taken to read the SOAP message from the socket. 

~p The average time taken to put it in a form that WS-FIT can process. 

Aq The average time taken to perform a first stage trigger on the SOAP 
message. 

Att The average time taken to perform a second stage full trigger on the SOAP 
message. 

At~ The average time taken to inject faults into a SOAP message. 

Awt The average time taken to write the modified SOAP message to the socket. 

Ant The average time taken to transmit the SOAP message across the socket to 
the hook code. 

Art The average time taken to read the modified SOAP message from the socket 
and pass it on to the remaining part of the SOAP stack for transmission to 
source. 

Any of the terms that involve processing a message can be affected by the triggering 

mechanism. There are two types of trigger: 

1. A message trigger 

2. A parameter trigger 

There can be one message trigger per SOAP message type but there can be multiple 

· -·parameter-triggers-fora-single -SQAPmessage-type; All-triggers-detect-certainc"pattems~- ·- ·~ _., 

of elements within a SOAP message. 
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Table 5-4: Factors Affecting Overhead Terms 

Term Factors 

Awt This step is primarily affected by message size since no processing is 
carried out in this step. 

Am This step is primarily affected by message size since no processing is 
carried out in this step. It may also be expected that this latency would 
increase in discrete steps if a fixed size packet based network is being used, 
since increases in latency would occur as a modulus of the packet size 
since packets must be transmitted even if they are not full. 

Arr This is a function of the message size since no processing is carried in this 
step. 

~p This is a function of message size since payload start and end points are 
being searched for. 

Aq This is a function of message size and may also be affected by the number 
of message triggers since each one will have to be matched. 

Att This is a function of message size. It may also be affected by the number of 
message triggers and the number of parameter triggers since these will 
have to be matched. Finally the number of elements within the message 
may also affect the result depending on the implementation used, for 
instance a SAX parser. 

An This is a function of the number of parameter triggers on a single message, 
since there may be more that one, and also the time taken to actually inject 
a single fault into the message. 

Awt This step is primarily affected by message size since no processing is 
carried out in this step. 

Ant This step is primarily affected by message size since no processing is 
carried out in this step. It may also be expected that this latency would 
increase in discrete steps if a fixed size packet based network is being used, 
since increases in latency would occur as a modulus of the packet size 
since packets must be transmitted even if they are not full. 

Art This step is primarily affected by message size since no processing is 
carried out in this step. 

5.2.5.2 Latency introduced when no fault is injected 

Equation 1 gives the term Atnr that is the overhead introduced when no fault is 

injected into a message. This is the latency measured from the point of entering the 
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Hook Code to leaving the Hook Code and returning the original message to the SOAP 

stack so that it can be passed down the remainder of the stack. 

Equation 1 

5.2.5.3 Latency introduced when a fault is injected 

Equation 2 shows the term Atif that is the overhead introduced when a fault is injected 

into a message. This is the latency measured from the point of entering the Hook Code 

to leaving the Hook Code and returning the modified message to the SOAP stack so that 

it can be passed down the remainder of the stack. 

Equation 2 

5.3 Automatic Test Generation 

Automatic test generation in WS-FIT realises the FIT method described in Section 

4.3. The WS-FIT implementation must implement and populate two taxonomies to 

implement this method: 

1. The System Model which describes the system m terms of messages 

exchanged to form RPCs. 

2. The EFM that defines a set of fault models that can be applied to messages. 

5.3.1 System Model 

-The- firsrorthesetaxonomiesis the System ModeCThisc~m 15e-instailtiated -using the 

WSDL definitions of all the Web Services used to compose a system. Since WSDL is 
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XML based WS-FIT uses an XML parser to extract required information from the 

WSDL files. The format of these is described in Section 2.6 and Table 2-3 shows an 

example WSDL message. The relevant elements obtained from the WSDL are mapped 

onto the System Model as shown in Figure 5-10. 

As described in Section 2.6 a wsdl:portType defines a collection of wsdl:operations. 

A wsdl:operation is defined as a wsdl:input and a wsdl:output. The wsdl:input defines 

the request message of an RPC and the wsdl:output defines the response message. A 

wsdl:message is used to define the format of the message with wsdl:part defining the 

parameters/return values in a specific message. 

This structure maps onto the FIT System model with Services equating to 

wsdl:portType elements. There may be a number of Services defining the system under 

assesment so a number of wsdl:portType elements may have to be parsed into the 

system. It is also conceivable that more than one replica of a Service exists within the 

system (each service being on a different machine). This is dealt with by having 

multiple copies of the same wsdl:portType imported into the System Model and each 

one being tagged with the machine address of the host it is installed on. In this way 

triggers can be setup to only trigger on a particular wsdl:portType from a particular 

machine. 

Each wsdl:portType Is made up of a number of wsdl:operations and each 

wsdl:operation equates to a method in the System Model. Further each wsdl:operation 

contains both a wsdl:input element and a wsdl:output element and these point to the 

wsdl:message elements that are used at the method level in the System Model for the 
.ccc-------

request and response messages. 
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5 ... 
E • .. . ... 

Figure 5-10: System Model Constructed from WSDL 
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Finally each wsdl:message is made up of wsdl:part elements. For request messages 

these make up the parameters and are unambiguous. For the response message we 

assume that the name follows the format of post-fixing the wsdl:part name with the 

word 'Return' to identify the return wsdl:part. 

When this information is mapped onto the generic System Model given in Section 4.3 

it creates a WS-FIT specific System Model. This specific System Model can be used as 

a basis for generating triggers described in section 5.2.2 that can identify specific RPC 

parameters within a SOAP message and allow faults to be injected at this level. 

5.3.2 Extended Fault Model 

The second taxonomy that must be implemented to realise the FIT method is the EFM 

defined in section 4.3. To demonstrate theWS-FIT implementation a sample EFM has 

been implemented. This is not intended to be exhaustive or complete but is rather to 

demonstrate the WS-FIT implementation. 
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The types of fault that can affect a Web Service based system have be classified as 

follows: 

Physical Faults: affecting memory or processor registers 

Software Faults: both programming errors and design errors. These can occur at 

either the application level or within the system boundary but we will only 

consider faults within the system boundary that may propagate to the system 

boundary as failures or be detected as errors inside the system boundary. The 

detection of errors within the system boundary assumes that the system is 

composed of more than one Web Service and that these services propagate the 

error between each other. 

Resource-management faults: such as memory leakage and exhaustion of resource 

such as file descriptors 

Communication faults: such as message deletion, duplication, reordering or 

corruption. Whilst in traditional distributed systems this class of errors is widely 

assumed to not have a large effect on middleware (since this is usually built on a 

reliable transport over a LAN) Web Service middleware runs over WAN s that 

may be more unreliable that LAN based systems (especially in message delivery 

times) 

Life-cycle faults: such as premature object destruction through starvation of keep-

alive messages and delayed asynchronous responses (outside specified timing 

constraints). 

~-, -- ---------- ----

This classification is intended to demonstrate how an EFM may be classified and is 

not intended to be exhaustive. 



Chapter 5- WS-FIT Applied to Web Services 113 

Initially WS-FIT fault models concentrated on communications faults since this fits in 

well with the stage one fault injector design. Subsequent evolutions of the fault models 

used have concentrated on Software Faults since these exercise the second stage of the 

WS-FIT implementation. 

WS-FIT implements the EFM by allowing functional decomposition of the top-level 

fault model into sub-sections and finally into methods that can be applied to individual 

parameters. Structuring the fault model in this way aids the designing phase of the fault 

model and allows a more comprehensive model to be constructed. This is similar to 

functional decomposition techniques used in such design methods as Y ourdon where 

three levels of decomposition are required by most projects to allow detailed designs 

and state machines to be constructed. This level of decomposition is arbitrary but 

appears to work well. 

WS-FIT uses a three level decomposition: 

Top level: This is a general grouping 

Second level: This is a detailed grouping and there could be many of these under a 

top-level heading 

Third level: This defines a detailed grouping group specific fault models together. 

Under the third level of decomposition individual fault models can be constructed. 

Each fault model is defined as a name, a textual description of its function and a script 

to implement this function. 

The script can be further decomposed into two parts: 
------·-·--------------------------

1. A script that implements any specialized GUI and static test generation. The 

GUI tool executes this when the fault model is applied to a parameter. As well 
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as generating the GUI this is a convenient place to implement any static data, 

either input or randomly generated. An example of this is given in Table 5-5 

in the Random Values between Upper and Lower Bounds model which 

requires the generation of a statically encoded sequence of random numbers. 

Most scripts do not require this script since only simple data is required at 

instantiation. For these scripts a simple GUI is used for data input that allows 

the entry of named types. An example of this is given in Table 5-5 Upper 

Bound that only requires the maximum valid value (given by a system 

specification). 

2. A script that generates the script fragment of the fault injection script that 

injects the required fault. This fragment of code is inserted into the test script 

to form part of the test campaign. The test script is generated by 'printing' 

lines of text which give the lines of code that make up the test script fragment. 

The scripting language used by WS-FIT is Python. In the initial prototype systems 

these scripts were generated by hand and run from a standard Python interpreter. In the 

WS-FIT implementation these test scripts are automatically generated from the EFM 

and can be executed natively from the GUI using the Jython package [3]. This allows 

scripts interoperability with the Java JVM used to implement WS-FIT and also allows 

them access to the GUI for entering data etc. An example of this is given in Table 5-5. 

This shows only one section of the fault model defined in Table 4-3 decomposed down 

to its most detailed level. 
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Table 5-5: Implemented Extended Fault Model 

• Software Faults 
o Perturbation of Data into a Service 

• values in Specified Range 
• Upper Bound 

o Replace specified parameter with the upper 
bound value specified for this parameter. 

if enable == 1: 
out.println(' # Upper Bound Check') 
out.print(' return ') 
out.println(vars.getConst('upperBound')) 

• Random Values between Upper and Lower Bounds 
o On test generation, generate a static 

sequence of randomly distributed values 
that lie between the upper and lower 
bounds inclusively. Cyclically substitute 
the next value from the statically 
generated sequence for the specified 
parameter. A static sequence should be 
used to provide a level of test 
repeatability although this repeatability 
may be effected by concurrency effects and 
timing. 

(For script see Table 5-6) 
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Table 5-6: Example Script 

import string 

# Check enable variable and only run generation 
# script if it is true. 
if enable == 1: 

# Writes a line to the generated script to 
# read the stored index variable. 
# This is used to index into the static sequence. 

out.print( 1 index = 1
) 

out.print( 1 self.getResults(). 1
) 

out.print( 1 getint(self.m_param,') 
out.println( 1 "index") 1

) 

# Write a line to the generated script to read 
# the static sequence 

out.print( 1 sequence= 1
) 

out.println(vars.getVarList("RandomSequence")) 

# Make sure the index for the static sequence 
# loops round at the end of the sequence. 

out.println( 1 if index>= len(sequence): 1
) 

out.println( 1 index= 0 1
) 

# Check for type of parameter. if it is an int 
# get rid of the floating point part. 

if vars.getConst("type").find("int") > 0: 
out.print( 1 value=') 
out.println( 1 int(sequence[index]) 1

) 

else: 
out.print( 1 value= 1

) 

out.println( 1 sequence[index] 1
) 

# Write out a line to increment the sequence. 
out.println( 1 index= index+ 1 1

) 

# Write out code to save the index back into 
# stateful storage 

out.print( 1 self.getResults(). 1
) 

out.print( 1 setint(self.m_param, 1
) 

out. pr intln ( I "index" , index) I ) 

# Write out code to record the new value to 
# the minotor graph for this parameter/ip 
# combination. 

out.print( 1 self.getResults(). 1
) 

out. print ( 1 addValue ( "mon: I /Corruption of 1 
) 

out.print( 1 Data into Web Service/Values in') 
out.print( 1 Range/Random Values/%IP%", ') 
out.println( 1 str(value)) 1

) 

out.println( 1 return str(value) 1
) 

116 
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5.4 Automatic Failure Detection 

As described in Section 4.4 the FIT method defines an EF AM that is comprised of a 

number of discrete failure modes classified into a taxonomy. As in Section 5.3 the 

EF AM described here is intended to demonstrate WS-FIT rather than be an exhaustive 

model that can be applied to any Web Service system. 

The EFAM is built upon a set of high-level failure modes. These classify how a Web 

Service can fail. The high-level classifications are: 

1. Crash of a Web Service 

2. Crash of a hosting Web Server 

3. Hang of a Web Service 

4. Corruption of data into a Web Service 

5. Corruption of data out of a Web Service 

6. Duplication of messages 

7. Omission of messages 

8. Delay of messages 

The effect of each of these modes will depend on the fault tolerance of the system as a 

whole. We can assume that a well-written Web Service should be able to detect and 

reject any corrupted data given to it and raise appropriate error responses. Although the 

rejection mechanism can vary we assume that the majority of error conditions are 

relayed by SOAP Fault messages since these equate to Java exceptions and the 
------ ----;-------o--;----.------o---·-. ·--· -----··--·--- ------

prevalent language in use in the construction of Web Services in Java. 
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We can further assume that the detection of duplicated and omitted messages 

generated by fault transmission mediums will be handled by the Network Protocol 

Stack. Since these failure modes do not generate any traffic at the middleware layer 

their detection by WS-FIT will not be possible. WS-FIT can be employed to detect 

duplicated or omitted messages at the SOAP stack level which could result from such 

activity as security attacks, for instance replay attacks. 

Crashes of services/hosting environments should be detected vta time-out 

mechanisms. For this experiment the fault injector framework has no means of checking 

for this. It will be addressed in later research. 

More problematic is an operation that corrupts data leaving the middleware. When 

corrupt data is passed through a SOAP stack it can be intercepted and examined. A 

detailed knowledge of the logic of the Web Service and its current state is required to 

determine if a result returned by a Web Service is correct. TheWS-FIT implementation 

of a EF AM uses available range data, supplied manually from the system specification, 

to determine if the value is in range. This will not catch all failures but it will give an 

indication of failure. 

Another problematic area is that of a service hang. Whilst this may superficially 

appear as a service crash it is indicative of corruption in the hosting environment. Since 

it may present the same symptoms to the application level it will be harder to detect. 

Differentiating between a service hang and a server crash will be left for future research. 

Finally, delayed messages may cause errors due to service life span issues. The Web 

Service_middleware should present-relevant-error- conditions to -the -application- for -
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delayed messages. The application layer must ultimately handle these. WS-FIT can 

handle this by delaying request/response packets. 

The High Level EF AM used to demonstrate WS-FIT is therefore defined in Table 

5-7. 

Table 5-7: High Level Failure Modes 

• 
• 
0 

• 
• 
0 

0 

• 

Crash of a Web Service 
Crash of a hosting Web server 
Hang of a Web Service 
Corruption of data into Web Service 
Corruption of data out of Web Service 
Duplication of messages 
Omission of messages 
Delay of messages 

As described in Section 4.4 this set of high-level groupings is decomposed into a 

taxonomy until a level is reached where a detailed description of the failure mode can 

be written. A generic script is then written to generate code for the fault injection 

campaign script that can detect the defined failure mode when applied to a parameter. 

An example of this is given in Table 5-8. 

'fable 5-8: Implemented Detailed Failure Model 

• Corruption 
o Data 

• 

• 

of data out of service 
out of range 

Data above upper bound 
• Check specified parameter against upper bound 

in specification and if it is greater than 
this value flag an error condition. 

If value > maxLimit: 
Flag error in log 

Data below upper bound 
• Check specified parameter against lower bound 

in specification and if it is less that this 
value flag an error condition. 

If value < minLimit: 
Flag error in log 

___ This EEAM_could then-be-applied -globally-to-all-messages--defined,-in-the -System - ~' 

Model (see Section 5.3.1) and would provide detection of unexpected failures. 
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To detect failures generated by specifically injected faults, injected by linking the 

System Model to the EFM, a link must be made from the EFM to the EF AM script 

corresponding to the expected failure mode as described in Section 4.4. The expected 

outcome from the fault injection may be no failure detected since a fault tolerance 

mechanism may be in place. 

In our implementation this stage of WS-FIT was implemented by post processing the 

generated logs manually but this facility could be integrated into the WS-FIT tool in 

future work. 

5.5 Summary 

This chapter has detailed an implementation of the FIT method detailed in Chapter 4 

that has been applied to Web Services, specifically using SOAP as the middleware 

protocol. 

It describes how the message based injection mechanism and triggering can be 

implemented to work with SOAP middleware and how this can be used to realise the 

method described in Section 4.2 by the use of Hook Code to intercept SOAP messages, 

decode and manipulate messages. 

WS-FIT demonstrates how the EFM (Section 4.3) can be implemented using a Python 

based scripting language. A system model can be created by importing WSDL for the 

Web Services making up an SOA and mapping certain WSDL elements to certain 

elements within the System Model taxonomy. The System Model can then be used to 

create triggers which the EFM can be applied to. 
----- ·--~~ 
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Finally the EF AM (Section 4.4) has been described and how this can be implemented 

via WS-FIT to detect failures in an SO A. An outline EF AM is shown as a 

demonstration. 
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Chapter 6 - Case Studies 

This chapter describes a number of case studies that demonstrate different areas of the 

FIT method through use of the WS-FIT tool. The case studies are divided into two 

groups: 

1. Case studies demonstrating the operation of the Fault Injection Mechanism 

(Section 6.1) 

2. Case studies demonstrating the application ofthe FIT method to SOA (Section 

6.2) 

The first set of case studies demonstrating the operation of the Fault Injection 

Mechanism are as follows: 

• Fundamental Operation of WS-FIT (Section 6. 1. 1) 

This demonstrates the basic features of the method: 

1. Fault Injection into a middleware message 

2. Trigger Mechanism 

3. Simple Parameter Perturbation 

• Latency Model (Section 6.1.2) 

This demonstrates the latency model outlined in Section 5.2.5. 

• Comparison ofFIT with Code Insertion (Section 6.1.3) 

This compares WS-FIT to another fault injection technique. 

The second set of Case Studies demonstrating the application of the FIT method to 

SOA are as follows: 
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• Fault Generation and Failure Detection (Section 6.2.1) 

This case study demonstrates test campaign generation and failure 

detection through the: 

1. Application of the Extended Fault Model for test campaign 

2. Application of the Extended Failure Model for failure 

detection 

3. Parameter Perturbation 

• Assessment of a Fault Tolerance Mechanism (Section 6.2.2) 

This case study demonstrates the use of parameter perturbation to assess 

the dependability of a fault tolerant SOA using the 'Software Faults' 

categorization of the Extended Fault Model and also the 

'Communications Fault' categorization of the Extended Fault Model. 

This Case Study also shows how the Extended Failure Model can be 

applied. 

1. Application of the Extended Fault Model to assess a fault 

tolerant SOA 

• Application of Communications Faults to an SOA (Section 6.2.3) 

This demonstrates how WS-FIT can be used to apply fault models which 

are categorized as 'Communication Faults' rather than 'Software Faults'. 

1. Application of the Extended Fault Model to a real-time 
----=,;:: 

--- -.---- --~--

scenano 
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6.1 Fault Injection Mechanism 

The case studies in this section demonstrate the main features of the FIT method 

through theWS-FIT tool. The key features demonstrated are: 

1. Injection into a message 

2. Trigger Mechanism 

3. Parameter Perturbation 

4. Acceptable Latency Overhead 

5. Comparison to Code Insertion 

6.1.1 Fundamental Operation of WS-FIT 

This case study demonstrates the basic operation of the WS-FIT implementation. The 

features exercised are: 

1. Injection into a message (rather than individual network packets) 

2. Triggering mechanism 

3. Parameter perturbation 

These features form the first stage fault injector on which the FIT method is based. 

6.1.1.1 Scenario 

This scenario is based around a simple client and server. The server exports a service 

constructed using simple data types that is utilized by a client. A SOAP application was 

written and deployed onto the server machine that provided a simple set of routines that 

-- ----~------·-~---

, __ ---- --c-alcillate_d_a-simple-inreger -sequence ot nllinlJ-ers.-An interface method was defined to 

return this sequence one value at a time. A SOAP client was written which polled back 
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the sequence of numbers via the Apache SOAP API. These two simple applications 

form the test-bed for the experiments described here. 

6.1.1.2 Configuration 

The middleware package used was Apache SOAP 2.2 with the container being 

provided by Apache Tomcat 4. Both the server and the client were hosed under Redhat 

Linux 8.0 running Java version 1.3.1. 

6.1.1.3 Results of the First Test Script 

This test was intended to check the middleware under a combination of fault 

conditions. A script was written to inject the following faults into the stream of SOAP 

messages: 

1. Every 1Oth sequence request from the client to the server, corrupting the 

encoding styles schema address 

2. Every 15th sequence response from the server to the client, corrupting the 

encoding styles schema address 

3. Discarding every 3rd sequence response from the server to the client 

4. Every 7th sequence request from the client to the server, inserting extra text 

into the <SOAP-ENV:Body> element after the method element 

The number of faults injected into the system by this test is approximately 25% of the 

total number of packets sent and received by the fault injector (see Table 6-1). 

Approximately 17% were corrupted SOAP packets, with the remainder being withheld 

---- -- -------resptirtSe ·p1iCkets. --- --- - -----
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The test was performed using a loop iteration of 1000, 15000, 45000 and 90000 and 

was repeated 5 times for each loop iteration. There was no variation in results for each 

set of results produced for a particular loop iteration value but there was a very small 

variation in percentage totals between loop iterations (see Table 6-2). 

Table 6-1: Faults injected by test 1 

Loop Total Faults Injected Responses Total Faults 
Iterations Packets (%) Discarded Injected (%) 

% 
1000 5551 17.26 8.11 25.37 
15000 83251 17.26 8.11 25.36 
45000 249651 17.26 8.11 25.35 
90000 499501 17.25 8.11 25.35 
Variance 0.00 0.00 0.00 

The fault injector recorded the following classes of faults: 

1. Failure expected and generated 

2. Failure expected but not generated 

3. Failure generated but not expected. 

A fourth category of response to injecting a fault is also inferred. This is No Failure 

expected, and is deemed to have occurred if a fault is injected into the system but no 

fault message is expected to be generated. This condition could occur when a response 

is sent back from the server to the client but the fault injector discards the message. The 

client cannot generate a fault message because it has no way of knowing that a response 

message is expected. 

Of the failure conditions generated (see Table 6-2), the 7% of failure expected and 
---- --------- ------ -----··· -- ~ -----~ ----

received were generated by the schema corruption case as expected. The 31% of no 

failure expected failures were attributed to the discarding of response packets from the 
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server to the client. This indicated a level of reliability within the middleware since all 

these error conditions appear to have been handled correctly within the middleware and 

the server remained stable. The reliability of the middleware was only assessed over a 

period of approximately 24 hours, due to time constraints, so our data can only indicate 

a level of reliability during this period of time and these conditions [37]. 

Table 6-2: Failures Detected by test 1 

Loop Failures Generated No Failures Expected Failures Missing 
Iterations {%} {%} {%} 

1000 7.10 31.96 60.94 
15000 7.11 31.98 60.92 
45000 7.11 31.98 60.91 
90000 7.11 31.98 60.91 
Variance 0.00 0.00 0.00 

The 60% failures missing figure were generated by the inserting of text into the 

SOAP-ENV:Body element. A failure was expected because the fault would break the 

SOAP specification although it was syntactically correct according to XML but no fault 

messages were generated. Although this was a small deviation from the SOAP 

specification it did not appear to affect the reliability of the middleware over the 

lifespan of the test, which continued to function correctly in all other respects. This 

could be caused by the SOAP implementation not installing a handler for the specific 

element body, since it never expects any data there according to the specification. 

Consequently this explains the continued functioning of the SOAP implementation 

because data within the SOAP-ENV:Body tag would just be silently discarded. 

This fault condition can therefore be classed as a non-catastrophic event but caused 

--~- ---------- ··---·- ----c~= 

-by arare event. we have classed this event as rare because its likelihood of happening 

outside of our fault injection experiment is extremely remote. It would require a 
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corresponding bug m the SOAP implementation connected to the SOAP 

implementation receiving the message to generate the event. Its effects on the system as 

a whole seemed to be negligible during the lifespan of the test since the test case caused 

no server or service crashes and no application crashes. 

It was noted that the client application returned error conditions when faults were 

injected and its performance was degraded slightly due to a combination of timeout 

effects when response messages were discarded and the latency introduced by the fault 

injector parsing SOAP messages. 

Overall the middleware appeared to have a high degree of dependability since it 

continued to operate and service requests even when generating error conditions for 

which handlers had not been implemented in the SOAP implementation. Furthermore 

the test was executed over a period of 24 hours and no cumulative memory leaks or 

similar effects were seen. More data is required on determining a suitable duration for a 

test to determine the dependability of the middleware over long periods of time but this 

experiment would seem to indicate that the middleware does have a level of 

dependability when errors are present in the communications medium. 

6.1.1.4 Results of the Second Test Script 

The intent of this test is to check the dependability of the middleware with a 

simulated bad connection. A script was written that discarded every other request and 

response. This caused approximately 50% of the SOAP messages, both requests and 

responses to be discarded (see Table 6-3). A trigger was constructed to do this based on 

the message-type-and-the-frequency-of-the-message.--The-message -type-was-obtained. 

from the WSDL definition for the Web Service. 



Chapter 6 - Case Studies 129 

Table 6-3: Faults injected by test 2 

Loop Total Packets Messages Discarded Total Faults Injected 
Iterations {%} {%} 

1000 4001 49.99 49.99 
15000 60001 49.99 50.00 
45000 180001 50.00 50.00 
90000 360001 50.00 50.00 
Variance 0.00 0.00 

The same loop iteration and run repeats were used in Test 2 as in Test 1. There was, 

again, no variation in the results obtained within a repeated test with the same number 

of loop iterations. There is a small variance in % totals between loop iterations. 

Table 6-4: Failures generated by test 2 

Loop Failures Generated No Failures Expected Failures Missing 
Iterations {%} {%} {%} 

1000 0.00 100.00 0.00 
15000 0.00 100.00 0.00 
45000 0.00 100.00 0.00 
90000 0.00 100.00 0.00 
Variance 0.00 0.00 0.00 

Of the fault conditions detected 100% of the faults were of the class No Failures 

Expected (see Table 6-4). This is the expected result of the test since discarding a 

request message from client to server, from the server's point of view, will be the same 

as never having received the request. Discarding a response message from server to 

client generates no network fault messages since this is handled by a time out. The 

client application was manually monitored to verify that the correct error responses 

were giVen. 

Thi~ t~st a~peared ~? ~indi~a!~ that !he middlewar~ ~~er tes! has a high ~~gree ~f 

resilience to SOAP message loss over an unreliable network during the duration ofthe 

test, since the middleware continued to operate correctly under the presence of these 
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faults. No unexpected results were obtained indicating a level of dependability under 

this test case. Discarding the SOAP messages seemed to cause no adverse effects on 

either the client or the server such as server crashes/hangs. 

6.1.1.5 Parameter Perturbation Modification 

A test script was written to allow application return values to be changed. This 

experiment allowed the return data to be modified, whist still returning a valid SOAP 

response message. These tests generated no failures and the modified results were seen 

at the client program. 

A trigger was set which detected first a specific message (the response message from 

the server) and then a specific element within the message (the return parameter). This 

allowed the contents of the element containing the parameter to be modified without 

invalidating the syntax of the message. This in turn allowed the message to be passed 

across the network interface and be received and processed normally by the client 

protocol stack. 

This test was carried out to ensure that the fault injector infrastructure could reliably 

handle modifying SOAP parameter data, whilst still returning correctly formatted 

SOAP response messages. 

6.1.1.6 Evaluation 

This case study has demonstrated that the basic mechanisms employed to implement 

FIT can be applied to Web Services written using SOAP. 

It firstly demonstrated that WS-FIT can inject faults at a middleware message level 
-- -~- --- ----------~- --- ------~--~-- -------. 

rather than a network packet level by instrumenting the protocol stack at the appropriate 

level within the stack. This case study also demonstrated that WS-FIT can be used to 
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injected faults which corrupt the syntax of a message which is akin to more traditional 

network level fault injection although it is not intended to be the main use of WS-FIT. 

This case study also demonstrated a potential weakness in the SOAP implementation 

under evaluation (not detecting extra text outside of elements in a SOAP message). 

Secondly this case study has demonstrated that the triggering mechanisms can target 

specific messages within an RPC exchange between a client and a server by parsing 

intercepted messages and determining the message type. The message type can be 

obtained from the WSDL definition of a Web Service. 

Thirdly it has demonstrated that WS-FIT can target specific parameters within an 

RPC exchange and inject faults into them so that the messages remain syntactically 

correct. This allows faults to be injected and processed by a SOAP stack as normal valid 

messages, thus allowing perturbed parameters to be propagated through the middleware 

layer to clients or Web Services. WS-FIT is therefore capable of injecting API level 

faults into a middleware system without the need for modification to the client or Web 

Service code. 

6.1.2 Latency Model 

These test cases will be used to demonstrate conditions under which the latency 

introduced by WS-FIT can be regarded as acceptable. This will indicate the types of 

SOA that can be assessed using WS-FIT without the instrumentation adversely 

affecting the system. A formal proof will not be attempted but rather demonstrate when 

various terms in the model detailed in Section 5.2.5 become significant. 

--- Th-etest cases wiWfirstestaolisli an empirical-measurement of a RPC execution time 

and subsequent test cases will be compared against this. We will go on to demonstrate 
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under what conditions various terms become significant and which terms can be 

disregarded. 

6.1.2.1 Scenario 

The test cases use a simple SOA that demonstrates types and interconnections that 

WS-FIT supports. The system is deliberately simplistic so that timings can easily be 

measured. 

The scenario utilises a test Web Service calledLatencyTest. It has two main groups of 

service methods: 

• Ten service methods that take an integer parameter as input and return the 

integer parameter as the output. This group of methods are called sequentially 

in a loop to allow both multiple message triggers and parameter triggers to be 

added. Each service call is comprised of two messages (a request and a 

response) and each message contains one parameter, either a call parameter or 

a return parameter. The SOAP messages that make up these exchanges 

contain a relatively small number of XML elements. 

• A single service method that takes an array of strings as input and returns the 

same array of strings as the output. This method is used to provide a message 

with a large number ofXML elements. 

6.1.2.2 Configuration 

The test scenario utilizes three machines to minimise interference effects from 

machine loading. Two 1.2Ghz AMD Sempron based system~,_ ~ach with_1?6M!LC>f 
------------ ·-- - ------- ~ -·--- -----------

RAM running Fedora Core 3 Linux were used to host the LatencyTest service and the 

client. A separate lGhz G4 based system with 392MB of RAM running MacOS 10.3 
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was used to run WS-FIT. Various combinations of connection were used to simulate 

different network configurations (See Table 6-5 and Table 6-6). 

Table 6-5: Configuration 1 

Client LatencyTest WS-FIT 
Service 

Client 1 Mb Broadband 
Internet 

LatencyTest 1Mb Broadband 1OOMb Ethernet 
Service Internet 

WS-FIT 1OOMb Ethernet 

Web Services were hosted using the following software: 

• Apache Jakarta Tomcat 5.5.4 

• Sun Microsystems Java 2 Platform, Standard Edition, Version 1.4.2.06 

• Middleware was provided using: 

• Apache Axis Version 1.1 

• Sun Microsystems JavaMail Version 1.3.2 

• Sun Microsystems JavaBeans Activation Framework Version 1.0.2 

• Apache XML Security Version 1.2.0 

Two network configurations were used. One to simulate interconnections between 

Web services over an Internet (Table 6-5) and one to simulate a more controlled 

network environment (Table 6-6). 

·-"'"".,-------" - ~ --- -- ---------
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Table 6-6: Configuration 2 

Client LatencyTest WS-FIT 
Service 

Client I OOMb Ethernet 

LatencyTest 
100Mb Ethernet I OOMb Ethernet 

Service 

WS-FI'f I OOMb Ethernet 

6.1.2.3 Internet latency 

The data shown in Table 6-7 was gathered using Configuration I (See Table 6-5). 

This data is empirical and is not intended to be an exhaustive study but to give a rough 

baseline to compare WS-FIT instrumented services to. The first group of services was 

used to gather data. Each group of ten service method calls was iterated I 000 times and 

averages were taken of this data. 

Table 6-7: Timings ofRPC Across an Internet 

Average Standard Deviation Min Max 
(ms) (ms) (ms) (ms) 

Normal1 167.72 19.64 92.07 3808.07 

Normal2 167.48 28.76 90.78 6041.78 

Loaded Connection 374.16 834.13 89.95 17579.95 

The total time taken to perform an RPC was obtained by recording the time just prior 

to making the RPC call and the time just after the RPC returned and subtracting the two. 

This time includes the time taken by the SOAP stack to process the RPC but this time 

should be a constant if the same environment is used to run subsequent test. 

Table 6-7 shows three measurements of total RPC execution time across an Internet 

connection. The measurements labelled Normal were taken using a client and server 
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connected by a lightly loaded connection. Since the Internet connection between the two 

machines could not be regulated some variation between the results is to be expected as 

can be seen in the results. 

The measurements labelled Loaded Connection were obtained with a loaded network 

connection to show how this can affect round trip RPC times. Whilst the test was 

running, a large file was intermittently transferred from the server running the 

LatencyTest service. This shows that there can be a great variation in RPC execution 

time according to the loading of the Internet connection. The value given by this 

measurement should be considered extreme and a smaller execution time should be 

expected. Axis 1.1 uses a default timeout value of 10 seconds. 

6.1.2.4 Triggering 

These tests are used to assess the impact of the WS-FIT trigger mechanism on a 

running system. The results were generated by calling the group of ten similar service 

methods in a 1000 iteration loop and applying a sequence of different trigger setups 

each time. The trigger setups ranged from no triggers to 20 triggers (one for each 

parameter and return the values). The test run by the trigger was a random corruption 

test as defined in the fault generic fault model given in Table 5-5. The SOA used 

network configuration 2 (see Table 6-6) to eliminate major timing variations introduced 

by network transfers. 

The SOA under test was instrumented as shown in Figure 6-1. WS-FIT was 

instrumented to provide timings for ~rr, ~p, ~q, ~t., ~ti and ~wt· The client side Hook 

Code-was-also -instrumented--to-record-- -the- -client-side- ~wi- and-~rt.-Since- the 

synchronization of the clock on the machines used could not be guaranteed it was not 
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possible to measure ~ni and ~nt directly. We have assumed that ~ni and ~nt are 

approximately the same since similar amounts of data will be transferred across the 

same network link. We therefore approximate these values by subtracting all the other 

measured terms from the total RPC execution time to get ~ni + ~nt · 

··-·-·-·-·-·-·-·-
.-·-·-·-·-

- • - • MoooogoTo&.., .. 

..,___ Me•ege From Seftlice 

Figure 6-1: Basic Fault Injector Configuration 

Figure 6-2 shows the average RPC execution time for a call to LatencyTest. The 

values displayed are averaged over the loop iteration. For the tested number of triggers 

(20) the increase in latency appears to be linear, with an equation of: 

y = 4x/10000 + 0.0379 
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This makes the latency injected into the system less than the standard deviation for 

the internet transfer time given in Table 6-7 which should be acceptable for most 

applications since all Web Service systems should be designed to tolerate this level of 

latency due to the relatively unpredictable nature oflntemet transfer times. 
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Figure 6-2: Total RPC execution timings 

A more detailed breakdown of timings is given in Figure 6-3. This graph gives each 

term as a percentage of the total. From this we can see that L1p is the most significant 

term, ranging from 66% to 83% making it the most significant factor when processing 

messages with small numbers of elements. This is due to an amount of processing 

required after reading the data sent from the Hook Code toWS-FIT to put it into a form 

readable by the SAX parser. This requires several string searches to find certain points 

in the message and hence is relatively constant throughout this test since the size of the 

message in bytes is relatively constant. We can also see that whilst L1u increases L1ti 

remains roughly constant. 
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Terms as a Percentage of Total Latency 
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Figure 6-3: Terms as a Percentage of Total Latency 
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This set of results is used to assess the impact of theWS-FIT trigger mechanism on a 

running system when the messages contain a large number of elements. The results 

were generated by calling the Latency Service method that takes an array of strings and 

returns an array of strings in a 1000 iteration loop. 

Three tests are preformed: 

1. Execute test with no WS-FIT instrumentation which provides a baseline to 

compare the following tests against; 

2. Instrument the system but do not apply any triggers which allows us to 

measure the latency of the first part triggering mechanism; 

3. Apply a single trigger. 
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A range of array sizes were tested for ranging from and array containing 1 element to 

an array containing 500 elements. The system was setup to use network configuration 2 

(see Table 6-6) to eliminate major timing variations introduced by network transfers. 

The data given in Figure 6-4 shows the total RPC execution timings for the system 

running with no WS-FIT instrumentation. This data shows a small linear execution time 

increase over the given array size range. 

y = 3x/10 

The data given in Figure 6-5 shows the system running with WS-FIT instrumentation 

but no active triggers. The data shows a polynomial increase in RPC execution time of 

y = 3x2/100000 + 41x/10000 

For this test the latency rise is dictated by the size of the message since it must be 

scanned by the first stage trigger that gives a character based latency. 
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Figure 6-5: Array Transfer Timing with WS-FIT Instrumentation 

6.1.3 Comparison of FIT with Code Insertion 

This case study compares WS-FIT to Code Insertion fault injection and demonstrates 

that it can achieve comparable results. This case study also demonstrates the value of 

WS-FIT in providing a framework for certification testing of Web Services. The test 

case simulates a complex real-world scenario and WS-FIT is used to locate a defect in 

the design of the SO A. 

6.1.3.1 Scenario 

Our system is based on a simulation of a self-regulating heating system (see Figure 

6-6). The system is composed of three main elements: 

1. Heater coil 

2. Thermocouple 

3. Controller 
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A driver to both the heater coil and the thermocouple are provided via a Web Service. 

In a real world application these could be embedded devices. The heater coil hardware 

is designed to allow only small stepped changes to the power. It also has an upper limit 

to its power output of 1 oo·c, if set above this limit the coil will burn out. 

6.1.3.2 Configuration 

Figure 6-6: SOA with WS-FIT Instrumentation 

Each Web Service is hosted on a separate server as shown in Figure 6-6. The 

Thermocouple service is hosted on an instrumented server whilst the HeaterCoil service 

is hosted on an unaltered server. 
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The controller is hosted on a third server. It allows a required temperature to be set. 

The Controller service runs a continuous polling loop that periodically polls the 

Thermocouple service to check that the actual temperature is equivalent to the required 

temperature. If it is not the Controller increments or decrements the power supplied by 

the HeaterCoil, thereby increasing or decreasing the temperature. 

In our simulated system the Thermocouple requests the currently set power from the 

HeaterCoil and calculates the temperature based on this. In the real system this 

information would come from the thermocouple hardware. 

A simple state machine is implemented by the controller to first increase the 

temperature to 10°C, then decrease the temperature to SOC and finally increase and hold 

the temperature at TC. 

The test case is performed using two different configurations: 

1. A WS-FIT instrumented system 

2. A system using Code Insertion. 

By comparing the results from these two configurations we demonstrate that WS-FIT 

can be used to produce compatible results to Code Insertion whilst being less invasive. 

6.1.3.3 WS-FIT Experiment 

As shown in Figure 6-6 a small amount of hook code must be installed on any server 

on which faults are to be injected. By strategically positioning this hook code on certain 

machines WS-FIT can be used as part of the certification process for individual 

______f_<mmonents of a_s)'stem._ .&>_r_example_iLthe_ instrumented-SOAP stack is_positioned on 
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the server running the HeaterCoil service it could be used to certification test the 

Thermocouple or Controller since no changes are made to these servers. 

Our system is set up to certification test the HeaterCoil service so we have chosen to 

position the instrumented SOAP stack on the machine running the Thermocouple 

service (see Figure 6-6). In this way we can monitor the output of the Thermocouple 

driver and inject faults into the messages received from the HeaterCoil (without 

modifying the HeaterCoil code or environment). 

A script was constructed to monitor temperature response messages between the 

Thermocouple and the Controller. A trigger was created to inject a fault into the 

getPower responses received by the Thermocouple from the HeaterCoil after the 

temperature has reached a certain limit. By modifying this response to give a constantly 

low value we will attempt to force the controller to continually increase the power 

emitted by the heater coil, thus causing the heater coil to exceed its maximum power. 

This configuration uses two test scripts. The first is a control script that passes all 

messages through unaltered to their destination and is used to monitor SOAP messages. 

The second script is the one described above. While running a test script, the fault 

injector framework logs a variety of data including unmodified and modified messages. 

6.1.3.4 Code Insertion Experiment 

This configuration demonstrates that Code Insertion can produce similar results to 

those of WS-FIT. The original code for the services was taken and perturbation 

functions were inserted at appropriate points to perturb parameters in a similar way to 

,. ____ thoseinSection 6T.T3-. --~-- -
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Two points were identified for Code Insertion in this scenario but in practice with a 

complex SOA many more insertion points would potentially be needed, for instance 

where RPC calls are called from multiple places in the code. Inserted code is marked in 

grey on Figure 6-7. 

private int injectl(int power) { 
int injectPower; 
if (power > 5) { 

injectPower 5; 
} else { 

injectPower power; 
} 

System.out.println(power + "," + 
injectPower); 

return injectPower; 

public int getTemp(int ctx) 
throws java.rmi.RemoteException 
HeaterCoilServiceLocator locator = 

new HeaterCoilServiceLocator(); 
try { 

HeaterCoil service = 

locator.getHeaterCoil(new URL( 
getHeaterContext(ctx) .getUrl())); 

return injectl(service.getPower( 
getHeaterContext(ctx) .getCtx() )) * 

POWER TO TEMP; 
catch (MalformedURLException e) { 

e.printStackTrace(); 
throw new RemoteException( 

e.getMessage()); 
catch (ServiceException e) 
e.printStackTrace(); 
throw new RemoteException( 

e.getMessage()); 

Figure 6-7: Instrumented Thermocouple Routine 

The first insertion point was in the getTemp routine in the Thermocouple service (See 

Figure 6-7). The second was a Controller routine where the controller calls the 

Thermocouple getTemp routine. This insertion point was constructed to modify the 
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value returned by the call to getPower of the HeaterCoil service. This corresponds to 

the getTempResponse SOAP message that was logged and modified in the WS-FIT 

configuration. As in theWS-FIT configuration the returned power was set to a constant 

value once it had reached a certain value, thus attempting to force the Controller service 

to continually increment the heater coil power. Both the original value and the modified 

value were logged. 

The second insertion point was implemented to log the modified temperature to the 

system log on the server running the Controller service so a comparison of injected 

temperature to actual temperature could be made. 

To obtain data similar in form to that obtained from the WS-FIT configuration the 

two log files were combined via a simple shell script. 

6.1.3.5 Results 

Three series of data were collected: 

1. Control experiment (Figure 6-8) 

2. Fault injection experiment using WS-FIT (Figure 6-10) 

3. Fault injection experiment using Code Insertion. 

The control experiment was carried out using WS-FIT running a 'null' script that 

injected no faults but captured all messages received by and sent to the Thermocouple 

service. These messages were analyzed to give a temperature plot of the system when 

running under normal conditions. The data obtained from this experiment (Figure 6-8) 

__ ji!_di~Jl.tes _ th~._t th~~y:~t~m_fim~tiQllS_acc_ording _ _to_the_state_macbine _given _in_Section __ 

6.1.3.1. This experiment gave us a basis for comparison with the following fault 

--~ 



Chapter 6 - Case Studies 146 

injection experiments. 

The following metrics were extracted from the logged data: 

1. The temperature returned by the Thermocouple to the Controller 

2. The power reading sent by the HeaterCoil to the Thermocouple 

3. The power reading supplied to the Thermocouple with a fault injected into it. 

Results of Injected Fau lts 
Returned Temperatura 
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Results of Control 
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Figure 6-8: Control Temperatures 

Figure 6-9: Returned Temperature with Fault Injected 

Results of Injected Faults 
Actual Temperature 
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Figure 6-10: Actual Temperature of Heater Coil 
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The logged data was converted into temperature graphs, one for the temperature 

returned by the Thermocouple and one for the actual temperature. The actual 

temperature was extrapolated from the power reading sent by the HeaterCoil to the 

Thermocouple. 

The control data shown in Figure 6-8 clearly demonstrates that the system is 

functioning according to specification with only random variations (introduced 

deliberately as part of the simulation). 

The data returned by WS-FIT (Figure 6-10) demonstrates a problem with the design 

of the SOA. Once a trigger condition has been met the fault injection modifies the 

power sent to the Thermocouple to a power that indicates a temperature of 1 OC and 

holds at this temperature. The controller is written in a simple fashion. According to its 

criteria the temperature is too low so it keeps ramping the power to increase the 

temperature. The heater coil soon exceeds its maximum operating temperature and in a 

real system would malfunction. The Code Insertion configuration yielded results 

identical to those obtained using theWS-FIT configuration (see Figure 6-10). 

The scenario used here could be caused, under real world conditions, by a 

thermocouple malfunctioning and thus causing an invalid reading to be received. It 

would indicate that some form of fault tolerance mechanism is required in the system, 

for instance a piece of guard code in the heater coil driver service. 

6.1.3.6 Evaluation 

This case study has demonstrated how the FIT method can be used as part of a 

specifidition oased certification strategy. Tfie comparison or- Ws~:F1T with. Code 
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Insertion has indicated that it is less intrusive, requiring just one set of modifications to 

the network stack as opposed to many potential modifications for Code Insertion. 

Our proposed method allows specific components within a SOA to be certification 

tested, provided that strategic decisions on instrumented SOAP stacks are taken based 

upon which components will be certification tested. 

Finally Code Insertion requires access to the service source code to allow placement 

of extra code where as WS-FIT tests can be based entirely on the WSDL specification 

since it requires no modifications to the service code. Also Code Insertion may require 

instrumentation of the code in multiple places to capture or perturb parameters to a 

single method, for instance if a remote method is called from more that one place. 

6.2 Application of FIT to SOA 

The case studies in this section demonstrate the application of the method FIT method 

through theWS-FIT tool to SOA. The key features demonstrated are: 

1. Application of the Extended Fault Model for test campaign generation 

2. Application of the Extended Failure Model for failure detection 

6.2.1 Fault Generation and Failure Detection 

This case study demonstrates test campaign generation and failure detection through 

the: 

1. Application of the Extended Fault Model for test campaign generation 

2. Application of the Extended Failure Model for failure detection 

3. Parameter Perturbation 
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6.2.1.1 Scenario 

To provide a test bed to demonstrate WS-FIT a test system has been constructed that 

simulates a typical stock market trading system (See Figure 6-11 ). This system is 

composed of a number of elements: 

1. A Web Service to supply real-time stock quotes 

2. A Web Service to automatically trade shares 

3. A bank Web Service that provides a simple interface to allow deposits, 

withdrawals and balance requests 

4. A client to interact with the SOA 

The stock quote service is implemented to use a large repeatable dataset, stored in a 

backend database to produce a time based real-time stock quote. Since the quote service 

is based around a database containing the simulated quote values it is possible to 

replicate a test run exactly by resetting time etc. to a set of starting conditions. The 

trading service implements a simple automatic buying and selling mechanism. An upper 

and lower limit is set which triggers trading in shares. Shares are sold when the high 

limit is exceeded and shares are brought when the quoted price is less than the lower 

limit. 

The buying and selling process involves transferring money using the bank service 

and multiple quotes (one to trigger the transaction and one to calculate the cost of the 

transaction). Since these multiple transactions involve processing time and network 

transfer time this constitutes a race condition as the quoting service produces timed real­

time quotes. Any such race condition leaves the potential for the system to lose money 

since the initial quote price may be different from the final purchase price. 



Chapter 6 - Case Studies 

.--·-·-·-·- ·-·-·-

· ·-·-·-·-·-·-·-·-·-· 
· ~---------------------------~------~ 

·. 

··-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-· 

Figure 6-11: Instrumented System 

6.2.1.2 Configuration 

This paper details three different series of data: 

1. A baseline set of data with the system running normally 

2. A simulated faulty/malicious service 

3. A simulated heavily loaded server 

151 
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The test system was implemented using Apache Tomcat 5.0.28 with Web Services 

implemented using Apache Axis 1.1, hosted on Fedora Linux Core 2 running on 2Ghz 

IA-32 Processors. 

Since the Extended Failure Model has not been implemented in WS-FIT at present it 

has been applied by hand. The method described by the Extended Failure Model has 

been implemented either by writing specialized scripts that detect failures in real time or 

post processing of log information to flag failures. 

6.2.1.3 Baseline Test 

The baseline test is designed to demonstrate the system runnmg under normal 

conditions. This provides a series of data to compare further test cases against. We 

instrument the system for all tests. This instrumentation allows faults to be injected into 

the system and also monitor the RPC exchanges between Web Services (See Figure 

6-15). It has been demonstrated in Section 6.1.2 that the latency introduced by this 

instrumentation is negligible when compared to Internet message transfer times 

involved in a SOAP based SOA. 

Table 6-8: Baseline Test Series 

Test 1 Test2 Test3 Test4 TestS 
Match Miss Match Miss Match Miss Match Miss Match Miss 

Match 99.00 1.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 
% 
Average 0.05 0.06 0.05 0.05 0.05 0.05 
Time 
StdDev 0.03 0.03 0.03 0.03 0.03 

The -first series of data-collected from the-normally running~ system allows us-to verify 

that the system operates according to its specification. Table 6-8 shows a summary of 
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the results collected and demonstrates that the deviation between the original quoted 

prices and the transaction completion price is negligible 0.2%. 
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Figure 6-12: Baseline Test Series 

The test case was iterated five times and the transactions from each were compared. 

Apart from minor timing variations the analysis showed that the test case was repeatable 

as can be seen in Figure 6-12. This plot is drawn as a line graph to show the trend of 

purchase and sales and to make discrepancies between runs clear. This also allows the 

sequence in which transactions occur in any run to be clearly represented. In this plot all 

five test runs produced similar results so the points plotted and lines drawn linking them 

together appear as one line. 

6.2.1.4 Faulty/Malicious Service 

The second test series simulated a faulty/malicious quote service by applying one of 

the Extended Fault Model tests to the quote service. The test chosen was a test that 

generated a random value that is within the specified range for the parameter it is 
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applied to. The random model used injects a normally distributed randomly generated 

value that replaces the RPC parameter specified. The same starting conditions as the 

first test series were used and the test was iterated five times. 

Table 6-9: Attack Injection 

Test 1 Test 2 Test3 Test4 Test 5 
Match Miss Match Miss Match Miss Match Miss Match Miss 

Match% 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 
fAverage 0.02 0.02 0.02 0.02 0.02 
Time 
StdDev 0.01 0.02 0.01 0.01 0.01 

Table 6-9 shows the results of the analysis. The data shows a clear deviation from the 

first test series since the quote service is returning different data. Each test run was 

repeatable since the randomly generated sequence was contained statically within the 

test script. During all test runs the system appeared to run correctly from a user 

perspective but by comparing it to the first test series it is clear that the system was 

being corrupted by the fault, with the consequence that the share trades were inaccurate 

(see Table 6-9 and Figure 6-13). 

Figure 6-13 is drawn as a line graph to show the trend of purchase and sales and to 

make discrepancies between runs clear. This also allows the sequence in which 

transactions occur in any run to be clearly represented. In this plot all five test runs 

produced similar results so the points plotted and lines drawn linking them together 

appear as one line. The baseline plot is shown as a sixth line but since the original 

baseline plot has a small scale compared to the scale used in this plot the baseline 

appears as a single straight line near the bottom of the Y axis. 

The Extended Failure Model is capable of detecting this smce our specification 

specified a time duration for quote repeatability. Within this period the quote service 
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must return the same result. Since each value from the quote service is replaced by a 

random value and the quote that triggers the purchase/sale and the purchase/sale quote 

fall within this time duration, it was possible to customize the Extended Failure Model 

with a script to detect this from the data extracted from the WSDL and original 

specification. 
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Figure 6-13: Attack Data Series 

1000 

The test series showed that it was possible for the system to be corrupted/attacked 

without the user being aware of any such failure. 

6.2.1.5 Latency Injection 

The third and final series of data in this set of tests again injected a fault into the 

system. This fault was an increased latency induced into the quote service. This latency 

simulates server loading. To implement this one of the predefined tests in the Extended 

Fault Model. The test used introduced a delay into the system based on a possion 
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distribution. The distribution is statically encoded into the test script to allow for 

repeatability. Latency was first introduced into the quote service and data was collected. 

Then a second series of data was collected with the latency introduced into the bank 

service. The test was iterated over five runs. 

Table 6-10 contains the results from the injection performed on the quote service. 

This clearly shows that the system is functioning differently to the baseline test series. 

By analysing the test data gathered it can be see that the quote value that triggers a 

sale/purchase of shares differs from sale/purchase price approximately 63% of the time. 

This is due to some quote values being delayed long enough to cause the quote to fall 

into the next quote period (see Figure 6-14). 

Figure 6-14 is drawn as a line graph to show the trend of purchase and sales and to 

make discrepancies between runs clear. This also allows the sequence in which 

transactions occur in any run to be clearly represented. In this plot all five test runs 

produced slightly different results so the sequencing of the points plotted can be seen by 

following the line linking any given set of points for a run. This allows discrepancies in 

both timing and transaction to be seen. The baseline is shown as a sixth line on the plot 

for comparison. 

Table 6-10: Latency Injection 

Test 1 Test 2 Test 3 Test4 Test 5 
Match Miss Match Miss Match Miss Match Miss Match Miss 

Match 39.00 61.00 32.89 67.11 40.00 60.00 38.00 62.00 36.96 63.04 
% 
Average 3.23 24.86 2.33 23.94 3.40 25.11 3.69 24.64 3.93 24.03 
Time 
StdDev 4.22 7.63 3.40 7.82 4.29 7.43 5.38 7.75 5.20 8.52 

--- - -- - - - - - - ~-------- ----
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We repeated this test by injecting the same latency into the bank service rather than 

the quote service. This produced results comparable to those obtained above. Since the 

race condition designed into the system includes both a call to the quote service and the 

bank service this similarity is to be expected. 

This test series demonstrates not only that the system Is susceptible to delays 

introduced by loaded servers but also that a user of WS-FIT need not have detailed 

knowledge of the system to use the Extended Fault Model since it is not critical where 

latency is introduced into this system. Again Extended Failure Model can detect this 

failure using the same failure model test as the second test series. 
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Figure 6-14: Latency Test Series 

6.2.1.6 Evaluation 

This case study has demonstrated that the Extended Fault Model can be used to 

automatically generate fault injection test campaigns. This required a minimum of user 

intervention, apart from constructing the ontology for the SOA by importing WSDL, 



Chapter 6 - Case Studies 158 

and selecting the services/methods to inject faults into. For the test scenano 

demonstrated that applying the same latency injection to a number of points in the 

system could generate a similar effect. This demonstrated that, for this test scenario, 

user knowledge of the injection point was not important to the test outcome. 

The Extended Failure Model was applied to the test results to demonstrate its 

potential for detecting failures in a SOA. The current Extended Failure Model is a proof 

of concept and further work is required to enhance this and integrate it into the WS-FIT 

tool. 

Finally this case study demonstrated that it is possible to create parameter 

perturbation using WS-FIT and use it to aid in the dependability assessment of an SOA. 

6.2.2 Assessment of a Fault Tolerance Mechanism 

This case study demonstrates that parameter perturbation can be applied to a non­

trivial system using WS-FIT. Specifically this case study assesses a Multi-Version 

Design (MVD) fault tolerance mechanism intended to increase the overall dependability 

of an SOA. This is an important use ofWS-FIT since Fault Tolerance is one of the four 

means of countering threats to a system and hence increasing its dependability. 

6.2.2.1 Scenario 

To provide a test bed to demonstrate WS-FIT we have constructed a test system that 

simulates a typical stock market trading system that incorporates a MVD system called 

FT -Grid [ 69]. This system is composed of a number of Web Services: 

1. A servi~e to s~~PP!Y_r~a!-_t~~ ~tock _qu~tes 

2. A service to automatically trade shares 
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3. A bank service that provides deposits, withdrawals and balance requests. 

The trading SOA implements a simple automatic buying and selling mechanism. An 

upper and lower limit is set which triggers trading in shares. Shares are sold when the 

high limit is exceeded and shares are purchased when the quoted price is less than the 

lower limit. The buying and selling process involves transferring money using the bank 

service and multiple quotes, one to trigger the transaction and one to calculate the cost 

of the transaction. These multiple transactions involve processing and network transfer 

time, and this constitutes a race condition since the quoting service produces real-time 

quotes using a time-based algorithm. Any such race condition leaves the potential for 

the system to lose money since the initial quote price may be different from the final 

purchase price. 

6.2.2.2 Configuration 

We instrument each server in the system to eliminate any bias caused by the slight 

latency introduced by WS-FIT. This instrumentation allows faults to be injected into the 

system and monitor the RPC exchanges between Web Services (see Figure 6-15 and 

Figure 6-16). 

There are three different series of test data: 

1. A baseline with the system running normally 

2. A simulated malicious service 

3. A simulated heavily loaded server 
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There are two configurations of the SOA for each test series: 

1. The SOA running with a single quote service (Figure 6-15). This will be 

known as configuration cl 

2. The SOA running with 5 replicated quote services using FT-Grid to provide a 

fault tolerance mechanism (Figure 6-16). This will be known as configuration 

c2 

C1 is used to provide a baseline system to compare C2 against. To demonstrate that 

our results are repeatable each test series is repeated four times. 
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Figure 6-15: Instrumented SOA 
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The test system was implemented using Apache Tomcat 5.0.25 with Web Services 

implemented using Apache Axis 1.1 , hosted on Fedora Linux Core 2 running on dual 

3Ghz IA-32 Processors. Each quote service was hosed on a separate Tomcat server to 

avoid interaction effects. 
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Quote Service 

Fault Tolerance Co-ordination Service 

Bank Service 

Figure 6-16: Instrumented FT-Grid SOA 

This results collected from the configurations simulate three different test conditions: 

1. Normal SOA Operation 

2. Malicious Service 

3. Server Loading 

6.2.2.3 Normal SOA Operation 

This test is designed to demonstrate the system running under normal conditions (C1) 

and to provide a baseline to compare further test cases against. It also demonstrates that 

C2 improves the system in terms of reliability whilst minimising the overhead 

introduced by the fault tolerance mechanism itself. 
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The first series of data collected from C1 allows us to verify that the system operates 

according to its specification. The data given for each configuration and test type in 

Table 6-11 is split into three parts (Normal, Malicious and Server Loading). For each 

configuration and each test type four metrics are shown: 

1. Percentage match between trigger price and sale/purchase price 

2. Time for a successful transaction 

3. Time for a failed transaction 

4. Percentage of transactions that have a successful consensus. 

From the data given in Table 6-11 it can be seen that under normal operation C2 

causes approximately the same number of mismatches as C1 indicating that FT-Grid 

does not adversely affect the system. It should be noted the FT -Grid does cause a small 

latency of0.22 seconds in overall transaction time when compared to C1. 

Table 6-11: Summary of Data From Test Cases 

Normal Malicious Loaded Server 
c1 c2 c1 Cz c1 c2 

Match% 99.50 99.00 0.00 99.71 37.37 76.33 
Transaction Time 0.05 0.27 N/A 0.22 3.16 3.28 
(sec) 
Transaction Time 0.06 0.37 0.04 0.20 24.64 11.59 
(Failure) (sec) 
Consensus% N/A 100.00 N/A 68.38 N/A 50.31 

6.2.2.4 Malicious Service 

The second test series simulates a malicious quote service by applying one of WS-

FIT's predefined fault model tests to the quote service. The test chosen generated a 

was used and was applied to 2 ofthe 5 replicated quote services. 
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Figure 6-17 is drawn as a line graph to show the trend of purchase and sales and to 

make discrepancies between runs clear. This also allows the sequence in which 

transactions occur in any run to be clearly represented. In this plot all four test runs 

produced similar results so the points plotted and lines drawn linking them together 

appear as one line. The baseline plot is shown as a fifth line but since the original 

baseline plot has a small scale compared to the scale used in this plot the baseline 

appears as a single straight line near the bottom of the Y axis. 

Figure 6-18 is drawn as a line graph to show the trend of purchase and sales and to 

make discrepancies between runs clear. This also allows the sequence in which 

transactions occur in any run to be clearly represented. In this plot all four test runs 

produced slightly different results so the sequencing of the points plotted can be seen by 

following the line linking any given set of points for a run. This allows discrepancies in 

both timing and transaction to be seen. The baseline is shown as a fifth line on the plot 

for comparison. 

The malicious service data contained in Table 6-11 shows the results of the simulated 

attack using C1. This data demonstrates a clear deviation from the normal system since 

the quote service is returning corrupt data and there is a 100% mismatch between 

trigger and sale/purchase quotes. By comparing the trend given in Figure 6-17 with the 

baseline trend shown by the crosses, it is clear that the system is under attack but since, 

under normal operation, this data would not be available it would not be possible to 

easily detect this attack. 
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Figure 6-17: C1 Malicious Trend 

By comparing this data to the attack data for C2 we can demonstrate that the FT -Grid 

voting has rectified a proportion of the attack. This can be seen by comparing C1 (See 

Figure 6-17) with C2 (See Figure 6-18). Since FT -Grid has been configured to use 

consensus voting, any value returned to the trading service can be guaranteed correct 

since corrupted values are rejected. We see that with only 3 reliable quote services out 

of 5, consensus is reached in 68% of all transactions. Further this operation introduces 

no more latency into the system than when running C2 without injected faults . 
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Figure 6-18: C2 Malicious Trend 

6.2.2.5 Server Loading 

The third series of data injects a latency fault into the quote service and this simulates 

server loading since the request to the server from the client is delayed. To implement 

this one of the predefined tests in the Extended Fault Model that introduces a delay into 

the system based on a poisson distribution was applied. For C2 the fault was injected 

into 2 out of 5 of the replicated quote services. 

For C1 it can be seen that the match rate between trigger and sale/purchase quotes has 

fallen to 37%. This indicates that the latency is causing the race condition between 

trigger and sale/purchase quotes to fail. This can be verified by examining the average 

transaction time for a mismatch, which is 24 seconds. This is double the frequency used 

to generate the real-time quotes and is causing the sale/purchase quote to be miss-

calculated. By comparison the match rate for C2 is 68%. Since the voting algorithm is 



Chapter 6 - Case Studies 167 

written to accept the first three returned values and discard the rest C2 ts not as 

susceptible to latency as C1. 

6.2.2.6 Evaluation 

Our initial dependability analysis of FT-Grid using WS-FIT uncovered a number of 

problems that had gone undetected during development testing and would have been 

hard to detect using conventional test methods. Firstly, when running the two sets of 

baseline tests for cl and c2 it became apparent that a 2 second latency was being 

introduced into the system. This was tracked to the service discovery mechanism, which 

was performing a UDDI lookup for every operation. This was modified to cache the 

initial service discovery for reuse and only request a discovery when the cache becomes 

invalid. 

A second problem was uncovered which biased the consensus voter to favour certain 

services over others partly as a result of the above fix. Initially FT -Grid performed a 

service discovery and then invoked the services in a linear manner. It was hoped that the 

service discovery was sufficiently different each time to provide some different in 

ordering. When the service discovery was cached this then favoured the services started 

first, and hence biased the voting mechanism. This was eliminated from FT -Grid by 

randomising the service invocation order each time from within FT -Grid. 

The above demonstrates that WS-FIT can be effectively applied to a fault tolerance 

mechanism during development to debug a system. The above faults were unexpected 

and had gone undiscovered during the previous development of this third party code. 

An interference effect- caused-by excessive latency being injeCted into a-service was 

also observed. If a large enough latency was injected into a server a marked degradation 
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in performance was seen. This is more than would be expected from the system since 

FT -Grid should compensate for latency effects in the system as we have demonstrated 

in section 6.2.2.5. This may be due to an interaction between the Web Service container 

and WS-FIT. Latency is injected by a single thread in WS-FIT (one per server) so if the 

latency injected is greater that the frequency of the service call then the server may still 

be blocking on the previous latency from WS-FIT, hence the degraded performance. It 

is believed that this effect is only present in extreme latency injection but further 

research is required to determine the exact cause. 

The analysis of the data given in section 6.2.2.3 simulating Normal SOA Operation 

demonstrates that for this scenario FT -Grid works in a non-invasive manner with only a 

small latency introduced. Whilst this latency is not significant in the context of this 

demonstration, since timing constraints are in the order of 5s or greater, it could become 

significant in systems with tighter timing constraints. Although these results are 

promising more experimentation is required to determine if this latency is fixed or if it 

is cumulative, etc. This in turn will give an indication of the scalability ofFT-Grid. 

This data also shows that WS-FIT can be used in a non-invasive way when applied to 

a system with the given timing constraints and not adversely affect the operation of the 

system. The timing constraints specified are typical of a Web Service system operating 

over the Internet. 

The data collected for a simulated SOA Operating with a Malicious Service shows a 

marked increase in reliability when using FT -Grid. This is due to the consensus voting 

mechanism utilized by FT -Grid. This ensures that single corrupted values cannot be 
:s--

passed to the utilizing client. Although there is a drop in the number of readings that are 
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accepted by the client the overall operation of the system can continue at a degraded 

level. The degradation was 32% for this test scenario. 

This data demonstrates that WS-FIT and its EFM can be used to effectively assess the 

fault tolerance mechanism employed here and simulate a service who's integrity has 

been compromised. 

The scenario that simulates an SOA Operating with Server Loading indicated a 

marked improvement when operating in the FT -Grid configuration when latency was 

introduced. It was observed that whilst C1 was susceptible to latency and an increased 

number of mismatched readings were observed, C2 saw a reduction in this due again to 

its consensus voting mechanism. The voting mechanism is designed to vote on the first 

3 values returned and discard the other two is consensus if reached. Consequently any 

delayed values are discarded and the effect of any latency within the quote services is 

reduced. 

This data demonstrates that WS-FIT and its EFM can be applied to a fault tolerance 

mechanism to assess its operation in the presence of delayed communications, in this 

case simulated server loading. This is a more traditional application of fault injection 

not involving any parameter perturbation or other data corruption demonstrating that 

WS-FIT can be used to inject standard fault models as well as message level parameter 

perturbation. 

6.2.3 Application of Communications Faults to an SOA 

This case study demonstrates how WS-FIT can be used to apply fault models which 

-··----

are categofizea as 'Comniunicatiori-Faiilts' nither tlian 'Software Faults'. It will 

demonstrate how theWS-FIT method and tools can be used to assess whether a Web 
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Service based system can meet its timing constrains under extreme conditions. We will 

demonstrate the test case can be automatically generated from our extended fault model 

and this can be compared to previous experiments that we conducted on the same 

system using manual methods. 

6.2.3.1 Scenario 

The test scenario will be based around an electronically controlled heater system. In 

the scenario a 'heater unit' is made up of a thermocouple, a heater coil and a control 

unit. The thermocouple and heater coil hardware are interfaced to two separate 

machines whilst the heater controller runs on a third machine. 

Figure 6-19: 'Heat Unit' Design 
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Driver functionality is provided by a Web Service runnmg on each machine: 

Thermocouple to drive the thermocouple hardware; Heater to drive the heater coil 

hardware; and HeaterController to provide a coordination facility for both the 

Thermocouple and Heater Web Services. (See Figure 6-19) 

With embedded smart devices becoming more prevalent this type of system may 

become more common in the future, and testing reliability and security aspects will 

become crucial [45]. This system could be constructed with three embedded 

microprocessor boards, running an embedded OS and could conceivably be running a 

full web server connected to the outside world via an Internet connection for remote 

monitoring and control. 
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The Heater service allows power to be applied in small increments vta two 

operations: incPower and decPower. The heater coil power increments are logarithmic 
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in nature (See Figure 6-21 ), therefore if linear behaviour is required a control algorithm 

is required to provide this. 

Thermocouple allows the current temperature to be read back via the getTemp 

operation. Since power to the heater coil can only be modified in small increments the 

HeaterController provides the setTemp operation that uses a time-based algorithm that 

issues incPower and decPower operations to the Heater to set the correct power level. 

The current temperature is monitored by HeaterController to provide feedback into the 

algorithm. HeaterController also provides the current temperature to the client program 

via the getTemp operation. 

This 'heater unit' is to be used in a chemical process. A sample is to be heated over a 

precisely defined period with a precisely linear temperature rise to a temperature of 

60°C. This constitutes the SLA for the HeaterController. 

6.2.3.2 Configuration 

Figure 6-21 shows the modelled behaviour. A client program is to be used to provide 

this behaviour. This client will send the temperature every second to HeaterController 

via the setTemp operation. The HeaterControl/er will then use its time-based algorithm 

( 10 adjustments per second) to adjust the power the heater coil supplies. The small time 

steps used by the client should ensure that the temperature rise is linear. 

This test scenario will demonstrate how WS-FIT can be used to modify latencies in a 

system. WS-FIT will allow this to be achieved without the need for any additional test 

harness or test code. 

Each machine in the system will be instrumented with a modified SOAP stack. This 

will allow us to not only inject faults on any machine but also capture and log all traffic 
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to that server. This logged traffic can then be analyzed off line to determine latencies, 

etc. 

By using theWS-FIT tool it is possible to introduce latencies into any RPC messages 

and also monitor messages sent/received. In this way we can assess the system and 

determine if the fault tolerance mechanisms included in the system are adequate, if the 

system is scalable, etc. 

6.2.3.3 Results 

Initially we will run the system with no fault injection triggers set. The system is 

executed for a length of time under normal conditions to determine baseline timings 

from the collected log. WS-FIT has the capability to visualize parameters in SOAP 

messages in real-time. The data from these visualizations can be output to file to allow 

offline processing in spreadsheets. 

Linear Client Compared to Linear Model 
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---11-- ·linear Client 
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nme (seconds) 

Figure 6-21: Model compared to Linear Client 
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The system can be assessed by monitoring the getTemp operation (See Figure 6-21 ). 

This data shows that under normal operation, the system operates as required and the 

client algorithm effectively removes the logarithmic nature of the heater coil from the 

overall system. We can compare the operation of the system with the model to confirm 

this. 

An analysis of the log files generated by WS-FIT shows the frequency of incPower 

and deeP ower operations sent between the HeaterController and Heater. The maximum 

theoretical throughput of these messages is 10 per second. This data shows that the 

current system is running within this throughput constraint with an incPower/decPower 

message being sent on average every 1. 07 seconds. 

6.2.3.4 Test Case Generation 

The test case generation is based around the EFM detailed in Chapter 5 that can be 

used to provide automatic test case generation from a predefined set of alternatives. The 

test cases uses the scenario described in Section 6.2.3.1 but instead of devising a test 

script based on the Web Service design we will base our analysis purely on the Service 

specification which will be derived from the WSDL interface specifications and 

separately specified bounds for all parameters (both input and output parameters). 

Our experiment will be designed to inject latency into the system at an appropriate 

point. The injection trigger must be chosen with care since we are attempting to change 

the maximum throughput of the system. 

To determine the effectiveness of a particular injection point we utilized the feature of 

WS=FIT Wliicli allows real-time visualization ofRPC parameters. A monitor -can-be set 

on any RPC parameter contained in a SOAP message and these can be used to give a 
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visual representation of the system as it is running. This can be used to determine that a 

test script is producing the desired results. 
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Figure 6-22: Constructing a Detailed Fault Model 

GenScript 

( Delete Script ) 

Once it has been determined which RPC to target a detailed model must be selected 

from the Extended Fault Model. Since no detailed knowledge of the implementation of 

the system can be assumed, other than its specification, the detailed model takes general 

parameters and constructs a specific test case from these. If a suitable model was not 

present in the model a new detailed test could be added with theWS-FIT tool. 

The fault model test is composed of a simple script which takes the various attributes 

associated with a WSDL defined message, for instance parameter name, parameter type, 

upper and lower bound, etc. and use these to generate a piece of test code to be inserted 

into the main test script in the same way that a manually written script is inserted into 

the main script. 
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The fault model test does not actually run as part of the main test script, it merely 

generates static code for the main test script. In this way it is possible to maintain a level 

of repeatability of testing, since any random values introduced should be statically 

encoded into the main test script and executed in subsequent runs. 

6.2.3.5 Latency Injection 

Since WS-FIT is attempting to affect the throughput of the system the first injection 

point will introduce a latency into the setTemp operation sent between the client and 

HeaterController. The client sends a setTemp operation to the controller every second 

with the required temperature at that point in time. The HeaterController will then use a 

loop running in a thread to increment/decrement the Heater. The threading of this 

algorithm allows it to run asynchronously. 
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The first test script was generated by adding a fault model to the setTempRequest 

message. From the Extended Fault Model the Message Within Tolerance model was 

selected. This model delays the return of a message from the FIE to the Hook Code 

which is within the tolerance of the SOAP protocol stack. 

The first test introduces a 10 second delay into sending the setTemp operation to the 

HeaterController. This latency was chosen because it was large enough to be noticeable 

but less that the default timeout set by SOAP stack for the timeout of RPC operations. 

The visualization feature was used to monitor the thermocouple readings to determine if 

the test scenario had adversely affected the system. 

In this case the temperature increase was not adversely affected. It is possible that this 

is due to the asynchronous nature of the HeaterContro/ler. Since the HeaterController 

is capable of increasing the power to the Heater independently, introducing the latency 

at this point caused the client to request larger temperature increases at a lower 

frequency rather than smaller temperature increases at a higher frequency. The simple 

fault tolerant nature of the HeaterController design allowed these requests to be 

correctly serviced. This is verified by the information contained in the log files once 

they were analyzed. 

The second test introduced latency into the message exchanged between the 

HeaterController and the Heater. As explained previously the HeaterController runs in 

an asynchronous manner, largely independent of the other latencies introduced by other 

components. The HeaterController sends incPower and decPower operations to the 

Heater dependent on the temperature returned by the Thermocouple and the required 

temperature set by the setTemp operation. 
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Injecting a Latency Into the System 
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Figure 6-24: Injecting Latency into the System 

The script introduced a 1 second delay into sending each incPower and decPower 

message to the Heater. In this way the throughput of the HeaterContro/ler to 

Thermocouple message exchange was reduced, and thus the performance of the system 

as a whole was altered. 

The visualization facility was used to monitor the results of this experiment The 

results are given in Figure 6-24 and clearly demonstrate that the SLA for this system 

has not been met Further analysis of the log files confirms that the throughput of 

messages has been significantly reduced and hence the required rise in temperature 

cannot be achieved. 

6.2.3.6 Evaluation 

This scenario has demonstrated how WS-FIT can be used as an aid to dependability 

assessment of QoS constraints. WS-FIT has been used to perform a quantifiable 
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experiment on a simple Web Service based system and used the results to assess the 

impact of unexpected latencies within the system. 

It further demonstrates how the EFM can be used to automatically generate test cases 

from WSDL definitions and specifications with comparable results to test cases 

generated manually. The user can also enhance the EFM through theWS-FIT tool. 

6.3 Summary 

This chapter has presented a number of case studies that demonstrate key features of 

the FIT method and its realisation in WS-FIT. 

The first case study (Section 6.1.1) demonstrated that WS-FIT can inject faults into 

middleware messages, rather than network packets. Using this as a basis the triggering 

mechanism was demonstrated by allowing specific middleware messages to be 

triggered upon. Since individual messages could be targeted it was possible to perturb 

individual parameters within the targeted message. 

The second case study (Section 6.1.2) demonstrates that WS-FIT can be used in an 

Internet based Web Service system in a non-invasive way, with the latency overhead 

being acceptable when used in this configuration. This case study further examined the 

types and amounts of data that can be exchanged in an SOA instrumented with WS-FIT. 

The third case study (Section 6.1.3) demonstrated how the modified Network Level 

Fault Injection technique can be used as part of a specification based certification 

strategy and how it can be used to achieve the same effect as Code Insertion fault 

injection but with the added benefit that it is fare less invasive. Code Insertion also 
. ------------------. --------------- ----------- -- ---

requires access to the service source code to allow placement of extra code where as 
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WS-FIT tests can be based entirely on the WSDL specification since it requires no 

modifications to the service code. 

The fourth case study (Section 6.2.1) builds on the features demonstrated in the first 

three to show how the extended fault model and extended failure models can be applied 

to a SOA to perform a dependability assessment. This case study has demonstrated that 

the Extended Fault Model can be used to automatically generate fault injection test 

campaigns. The Extended Failure Model was applied to the test results to demonstrate 

it's potential for detecting failures in a SOA. This was accomplished by hand although 

at a future time it is envisaged that this functionality could be incorporated into the WS-

FIT tool. Finally this case study demonstrated that it is possible to create parameter 

perturbation using WS-FIT and use it to aid in the dependability assessment of an SO A. 

The fifth case study (Section 6.2.2) used WS-FIT to evaluate a fault tolerance 

mechanisms. Dependability attributes of reliability, integrity and performance were 

assessed by simulating threats in the SOA at known points thus verifying the means that 

were used to eliminate them. This case study not only allowed the demonstration of the 

dependability means and indicated that it provided an increase in dependability but was 

used as part of the debugging process to allow the discovery and repair of two 

undiscovered faults in FT -Grid. It was demonstrated that WS-FIT can be used in a non-

invasive way when applied to a system with timing constraints and did not adversely 

affect the operation of the system. Timing constraints used are typical of a Web Service 

system operating over the Internet. Finally it was demonstrated that WS-FIT can also 

inject faults that do not involve parameter perturbation and thus function as a more 

traditional fault injector. 
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The final case study (Section 6.2.3) was a more detailed demonstration of how 

Communications faults can be applied to a SOA. It was further demonstrated how the 

EFM can be used to automatically generate test cases from WSDL definitions and 

specifications with comparable results to test cases generated manually. A 

demonstration of how the EFM can be enhanced using the tool was also given. 
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Chapter 7 - Conclusion 

This thesis has presented research on devising a dependability assessment method for 

Web Services using network level fault injection. Although this work is based on 

standard Web Services the middleware combination used forms the core of current Grid 

middleware Globus 4 so the methods and techniques developed here should be 

applicable to this emerging field. 

After reviewing current research it was found that little work had previously been 

undertaken on perfonning dependability assessment of distributed middleware and in 

particular Web Service and Grid middleware. The closest related work was undertaken 

on the assessment of CORBA middleware by using network level fault injection. This 

presented promising results but it was based on standard network level fault injection 

techniques and as such assessed only the middleware mechanism and protocol stacks 

rather than the CORBA components. 

The FIT method, defined in Chapter 4, uses network level fault injection as a basis 

but extends it in two ways. Firstly it operates at a middleware message level rather than 

a network packet level, thus allowing complete middleware messages to be processed 

rather than having to rely on messages being contained within a single packet. Also by 

operating above the network interface level messages are can be intercepted before they 

are signed or encrypted thus allowing them to be decoded. 

Secondly the FIT method allows, not only normal fault injection techniques to be 

applied to a middleware message, but targeted perturbations of RPC parameters. This 

can be accomplished by processing the message and combining this with information on 

the structure of the interface and messages exchanged. Using this information to 
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construct triggers it is possible to inject specific faults into RPC parameters in a way 

this is comparable to how Code Insertion fault injection injects faults at an API interface 

but in a far less invasive way. 

The FIT method also incorporates a method for classifying and applying fault models 

to a Software-Oriented Architecture (SOA). This is the Extended Fault Model (EFM) 

and it is constructed as a taxonomy classifying faults into specific groupings to aid in 

their application to SOA, thus allowing a toolkit of common fault models to be 

constructed that can be easily applied. 

This can be combined with the FIT concept of a System Model that is derived from 

Interface Definition Language (IDL) definitions of the Services and organizes the SOA 

into a taxonomy with Services at the top level and message parameters at the bottom 

level. Each parameter can be used as a trigger and then be linked to fault models 

contained in the EFM to generate a fault injection campaign. 

Finally the FIT method includes a third taxonomy that allows the classification of 

failure modes in a similar way to the EFM. This is the Extended Failure Model (EF AM) 

and it can be applied in two ways: 1) Applied globally to an SOA to detect unexpected 

failures; 2) Linked to a model in the EFM to detect failures caused by injected faults. 

A realization of the FIT method has been implemented called WS-FIT as detailed in 

Chapter 5. This applies the FIT method to Web Service middleware. WS-FIT 

implements the EFM and System Model whilst the EF AM must be applied by hand to 

the recorded log file at present although it could be incorporated into the tool in the 

fl1t!,lr~. I_b_c;t LOL_definitions for _the _SeiYice_ interfaces and-messages-are extracted- from 

the WSDL definition for the Web Services making up an SOA. 
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The case studies conducted and documented here are intended to demonstrate this 

novel method and its applicability to providing dependability assessment of SOA. The 

case studies documented in Chapter 6 determine parameters for using WS-FIT in a non­

invasive way and demonstrate the key features of the FIT method and its 

implementation WS-FIT. The first (Section 6.1.1) demonstrates the basic operation of 

WS-FIT; The second (Section 6.1.2) demonstrates that under typical Web Service 

environments WS-FIT introduces an acceptable latency overhead into an SOA under 

assessment; the third experiment (Section 6.1.3) compares WS-FIT to another fault 

injection technique and shows it can perform in a comparable way whilst being less 

invasive; the fourth (Section 6.2.1) demonstrates the application of the EFM and the 

EF AM~ the fifth (Section 6.2.2) demonstrates the application of WS-FIT to assess a 

dependability means (Fault Tolerance); whilst the final (Section 6.2.3) demonstrates 

that WS-FIT can perform more traditional fault injection techniques. 

7.1 Criteria For Success 

This section will discuss how this thesis addresses the original criteria for success. 

The following five criteria will be addressed: 

• Method 

• Tool 

• Test Case Construction Method 

• Analysis Method 

• Applicable to both development and testing phases 
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7.1.1 Method 

Devise a method based on network level fault injection to perform 

dependability testing of Web Services. This method should be comparable to 

other code insertion methods but with the added benefit of minimal 

alteration to code. 
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This thesis has documented a method based on a modified version of network level 

fault injection (Section 4.2) which allows parameter perturbation to be achieved as well 

as a more traditional use of network level fault injection, for instance Corruption; 

Reordering; and Dropping of network packets. This method has been applied to Web 

Services through the WS-FIT tool (Section 5.2) and it has been demonstrated that 

parameter perturbation can be applied (Sections 6.1.1, 6.1.3, 6.2.1 and 6.2.2). 

Further WS-FIT can be used in a non-invasive way, for instance with minimal 

introduced latency (Section 5.2.5 and 6.1.2) and also WS-FIT has been compared to 

Code Insertion fault injection (Section 6.1.3). It has been demonstrated that Code 

Insertion fault injection requires both access to the source code and many modifications 

whilst WS-FIT requires only the insertion of hook code in two places in a middleware 

stack. Since these modifications need not necessarily be on the machine hosting the 

service (Section 5.2) it is conceivable that WS-FIT could be used as part of a 

certification strategy since the server running the code need not be changed in any way 

from a production environment. 

7.1.2 Tool 

Construct a- tool-for use with the -method This wol-will be- tltilored to 

injecting fault into SOAP packets and will handle the decoding of SOAP 
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packets so that lightweight scripts can be written by the user to implement 

test cases without the complexity of decoding SOAP packets. 
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The FIT method (Chapter 4) has been realized in a tool (Chapter 5) that applies the 

FIT method to Web Services using SOAP middleware. The tool intercepts and decodes 

middleware messages (Section 5.2) to allow the construction of lightweight test scripts 

(Section 5.3) that do not require SOAP messages to be decoded by the scripts. 

The application of theWS-FIT tool to Web Services and the generation of scripts is 

demonstrated in Appendix A where a sample script is generated via the tool. A further 

demonstration of the use of scripting is given in Sections 6.1.3 and 6.2. 

7.1.3 Test Case Construction Method 

Devise a method to construct test cases for the method given above. This 

method should be devised to allow easy automation so that it can be 

incorporated into the tool. 

The FIT method describes the concepts of a System Model and an Extended Fault 

Model (Section 4.3) that allows the construction of test scripts. The System Model 

represents all operations that can occur within the system so that triggers can be defmed, 

whilst the Extended Fault Model contains predefined fault models that can be applied to 

these operations. The use of the Extended Fault Model and System Model is 

demonstrated in Sections 6.1.3 and 6.2 where it is applied to a SOA to construct a fault 

injection campaign. A further demonstration of the use of the Extended Fault Model is 

given in Section 6.2.2 where it is applied by a third party to a third party system to 

· ~assessa-aepencUi5ility means. 



Chapter 7 - Conclusion 187 

7.1.4 Analysis Method 

Devise an analysis method to assess dependability of result sets generated 

by the method. This analysis method should be applicable not only to the 

test phase of system development but also to the development stage. 

The FIT method defines the concept of an Extended Failure Model and how to use it 

(Section 5.4). The Extended Failure Model contains a taxonomy that groups individual 

failure modes so they can be easily applied to a System Model. Whilst this mechanism 

has not been integrated into theWS-FIT implementation it has been possible to apply it 

by hand to demonstrate its potential. The application of the Extended Failure Model has 

been demonstrated in Section 6.2. 

7.1.5 Applicable to both development and testing phases 

The methods and tools should be applicable, no only to the testing phase of 

a project but also to the development phase. The method should also be able 

to test systems without access to source code. 

The Extended Fault Model (Section 4.3) and Extended Failure Model (Section 4.4) 

are applicable to systems in a testing phase as demonstrated in Section 6.2.1 and to 

systems in a development phase as was demonstrated in Section 6.2.2 where previously 

unknown faults were uncovered in a third party system. 

7.2 Future Work 

Firstly we intend to apply WS-FIT to more complex systems to allow us to, not only 

improve and develop our method and tools, but to collect metrics for use by our 
-- -~- -- - ~---· --~-----·---------------~ -------- ---- --------------------

Extended Fault Model and Extended Failure Model. This will allow us to refine our 

ontology and assess its reliability in detecting failure states in SOA. 
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In Section 6.1.2 WS-FIT was demonstrated to introduce a polynomial latency 

overhead when applied to RPC messages that contained large numbers of multiple 

elements within a SOAP message, for instance large arrays. Whilst this latency was 

demonstrated to be acceptable for small numbers of elements it quickly becomes 

invasive with increasing element size. Research is therefore required into reducing this 

latency overhead possibly by eliminating the use of a SAX parser and using a custom 

written state machine instead which may reduce the latency to a linear latency. 

Currently theWS-FIT implementation does not integrate the Extended Failure Model 

into the tool and this part of the method must be applied by hand to the generated logs. 

Whilst this is acceptable for short test campaigns it would soon become time consuming 

for analysing large test campaigns that may run for log periods of time. We therefore 

propose that theWS-FIT tool should be extended to include this functionality, either as 

a post processing step or as part of the runtime visualization. 

The Extended Fault Model and Extended Failure Model detailed in this thesis are 

intended only as proof of concepts and will need populating before they can be useful to 

real world dependability assessment case studies. Further enhancements should be made 

so that they will be capable of producing metric-based evaluations of fault injection on 

SOA. The aim is to improve dependability in services by providing criteria and metrics 

capable of evaluating dependability as well as uncovering faults for fault removal. This 

should produce comparison metrics capable of facilitating value judgments in the 

dependability of competing services as well as being of use in the debugging and testing 

phases of a product to assess dependability means. 

One of the aims of this research has been to utilise FIT with current Grid 

technologies. Integration with the Globus 4 Toolkit would be advantageous since 
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Globus is the front running Grid technology and should be relatively straightforward 

since they share both Tomcat and Axis SOAP as a core but detailed experiments will 

have to be carried out in order to determine differences in message syntax. 

From the case studies carried out here it was ascertained that the FIT method requires 

an experienced tester to utilize the method since expert knowledge of testing is required 

to select injection points within the system. Whilst FIT simplifies this process it has not 

been possible at this stage to totally automate the process. The FIT method currently 

defines an ontology that describes a system, the faults that can occur within it and the 

failures that can be observed. These are linked to allow specific failures to be deteched 

after a fault injection. Another ontology and engine is required that would utilise this 

information as a base but would construct fault injection campaigns utilising heuristic 

testing and rules captured in the ontology. 

Finally applying FIT to a binary middleware, for instance CORBA, would 

demonstrate that FIT could be easily ported amongst dissimilar middleware products. 

CORBA is a good candidate since there is widespread use of CORBA and it also shares 

the concept of an IDL to define its interfaces. CORBA IDL does not define message 

formats for RPC exchanges but these can be inferred from the CORBA specification 

and since these message are binary in nature they would provide a good test of the 

portability of FIT since WS-FIT is based on an XML format message. 

7.3 Summary 

This thesis has documented the FIT method and the WS-FIT tool that realizes this 

method.-The-F'I'f-method-fulfils the criteria detailed in Ghapter-1 and-provides a-basis 

for future research. 
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The modified version of network level fault injection, which works at a middleware 

message level rather than a packet level, used by the FIT method allows faults to be 

injected into Services in a manner that is comparable to Code Insertion fault injection 

with the added benefit that it requires far fewer modifications to a system than Code 

Insertion and can be implemented without the need for access to the source code of the 

servtce. 

The System Model described here allows a service-based system to be described for 

the purpose of constructing triggers on messages without access to the Service source 

code. These triggers can then be used as a basis to undertake traditional network level 

fault injection or parameter perturbation. 

The Extended Fault Model allows fault models to be categorized into descriptive 

classifications that can then be used to guide construction of fault injection campaigns. 

These fault models can then be linked to specific parameters/messages in the System 

Model and fault injection scripts can be automatically generated. 

The Extended Failure Model allows failure modes to be categorised into descriptive 

groupings that again can aid a tester in selecting the correct failure mode. Individual 

failure modes can then be linked to individual fault models as expected outcomes and 

thus allow automation of failure detection to take place. 

WS-FIT is the realization of the FIT method and it has been applied to a number of 

case studies and has successfully demonstrated these features. It has also been applied 

successfully to a third-party SOA to evaluate a dependability means (fault tolerance) 

__ and not onjy_~rform~d_this_dependabilityassessment but allowed debugging of _the 

mechanism to be undertaken to uncovering two unknown faults in the SOA. 
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Appendix A- WS-FIT Tool 

This appendix describes the operation of theWS-FIT tool. WS-FIT is implemented as 

a GUI application written in Java. Java was chosen because it allowed portability 

between platforms and there were also a number of packages available which simplified 

the parsing of SOAP messages. Python was chosen as the scripting language because it 

allowed object oriented scripts to be written which simplified the design and 

implementation of the support classes and also because it can be executed natively using 

the jython package from a Java JVM. 

The WS-FIT GUI is divided into a number of tabbed panes (See Figure A-1 ). They 

are: 

][njection Model - Allows a System Model to be constructed and used as detailed in 

Section 5.3.1 

Fault Model - This allows the entry and manipulation of the Extended Fault Model 

described in Section 5.3.2 

Execution - Allows a constructed test campaign to be executed and logged. This also 

allows real-time visualization of specified RPC parameters. 

Other tabs are implemented for debugging purposes. 
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"'"'" '"" 
File System Model Fa=u=lt =M=od:_::e_l -,--.,----:-:-~=--=======::=-

About Injection Model Fault Model Execution Script Analys is 

Web Service - Faull Injection Technology 
University of Dumam 

Vtr>lon O.S Calphal 

Figure A-1: Start-up Screen 

A.1 Extended Fault Model 
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., 

The Fault Model tab (See Figure A-2) allows the entry and manipulation of the 

Extended Fault Model (EFM). As shown in Table 5-5 a proof of concept EFM has been 

developed and this can be modified by using the Fault Model tab. 

The Fault Model tab is split into three main parts: 

1. A tree on the left hand side ofthe tab representing the Extended Fault Model 

2. A dialog on the right hand side of the tab that allows data entry and display. This 

is context sensitive and its contents depend on which type of element is selected 

from the EFM tree on the left hand panel. 
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3. A set of context sensitive buttons on the lower right hand side of the tab. Again 

these are context sensitive and depend on which type of element is selected from 

the EFM tree in the left hand panel. 

File System Model Fault Model 

I About lr\iection Model I hliltMHel j Execution Script Analys is ) 

:.. Custom Fault Model 

., Corruption of Data Into Web Service ., 
., 

., 

., 

Vaules In Range 

Random Vaules 

Variable : enable -
_ lnfomatlon Script 

Upper Bound 

Variable : enable 

lnfomatlon Script 

_ Generate Script 

Lower Bound 

Variable : enable 

_ lnfomatlon Script 

Generate Script 

Corruption of Data out of Web Service 

Figure A-2: An Extended Fault Model 

The tool allows new high-level groupings of fault models to be added, such as 

Software Fault, Physical Fault, etc. and then sub-groupings to be added as 

decompositions until a fault model can be defined through scripting. 

As a brief example a Communications Faults grouping can be added and grouped 

within this a sub-grouping of Server Loading (See Figure A-3). This can be done 

through the context sensitive buttons. At each stage the names for each of these 

categorizations can be entered. 
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File System Model Fault Model 

I About 1'1)oction Model Fault Model Execution Script Analysis 1 

Custom FiUlt Model 
9 COrruptiOn of Oiti Into Web Service 

• Vaules in Range 
• Random vaules 

Variable. enable 
lnfomatlon SCript 

• Upper Bound 
Variable. enable 
lnfomatlon SC ript 
Generate SCript 

• Lower Bound 
Variable: enable 
tnfomatlon SCript 
Genorate SCript 

COrruption ol Data out of Web Servi<e 
• Communlutlons Faults 

SubSMtlon 

Sub Section Name: Server Loading 

Figure A-3: Adding a new Sub-Section to a Extended Fault Model 
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Once suitable categorizations have been entered a fault model can be added to the 

appropriate sub-group (See Figure A-4). A Fault Model is made up of a python script 

that generates a fragment of script to run as part of the fault injection campaign (See 

Figure A-5). Details of how the script is implemented are given in Chapter 5. The script 

shown in Figure A-5 implements a simple constant delay in processing the SOAP 

message. This can be though of as equivalent to a server with a constant loading and 

therefore a constant latency in returning a SOAP request. A generate script is the 

minimum required to implement a fault model. 

Some fault models will require data to be entered, for instance a variable to say if the 

fault model is enabled or a value to say how many times to iterate a sequence. These 

can be added to the Fault Model by using the Add Variable button (See Figure A-6). 

These state variables are then stored as part of the state information available in the 
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System Model (See section 0) that also contains other state information such as 

parameter upper and lower bounds. This state information can then be retrieved and 

used in the scripts. 

File System Model Fault Mo:::..:de'-1 --,=:=c==:;=:=:::;=::;:=;:7'1'"'~~7r:;=:-:-::-::====;=,=::=;:=.=:;::=;----------
J About Injection Model 1 --1 Execution S<ript Anolyols ) ----------

Custom Fauft Model 

• CcwrupbOn d o.ua into Wt 

Y Vaulu In Range 

VINblt: INbl 
lnlor'Ntlon Scri~ 

1' Upper Bound 

V1.Nble . tnlbl 

lnlomition SCr1' 
Gener~.tt SCrlpl 

"' l.OWir lourd 
VaNbtt . tMbl 
lnfonuUon Scri' 
Gtneratt Script 

Cotruption cl Dati. out ol ' • 

• Comrnunlutions Faulrs 
• ~ Serwr loading 

FoultModt!Node 

Tut Name: Con.st.tnt 

( Add Variable ) ( Add Info Script ) ( Add Gen S<ript ) ( Add Monitor ) ~ ~ ~ 

Figure A-4: Adding a new Fault Model to the Extended Fault Model 

Some scripts require complex setup and initialization. For this purpose it is possible 

to add an information script in the same manner as a generate script. The info script is 

executed when the fault model is selected and can be used to display an interface that 

can be used to enter complex information as well as processing the information. If the 

information script is not present any variables added to the fault model are 

automatically displayed as appropriate controls, for instance check boxes for Boolean 

variables, text boxes for string variables, etc. 
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'""" 
File System Model Fault Model 

~~--(,~A~bo~ut~~~~~ec==t~lo~n- ;M7od~e~I ==~Fau~I~IM~o~dd~~Ex~ec~uct~io=n==~~~ri~~==~An~~~~~~~.:;-, 

J Custom Fauk fllode l 
Y Co.-ruptlon of oa .. lmo Wt!b SoMCe 

• VauJes In Range 
Y Random Vaules 

.. 

.. 

Variable. enable 
lnfo.-natlon Script 

Upper Bound 
Variable. enable 
lnlo.-nauon Script 
Generare Script 

Lower Bound 
Variable: enable 
lnfo.-nallon Script 
Generate Script 

CO<ruptlon of oa .. out of Web Sorvite 
" CommunkaUOns Faults 

Y Server Load ing 

,. conisi .. l"'lllllll 
Variable: enable 

if enable •• 1· 
out.println(l Constant Server Loading1 
out.prin!ln(lime.Sieep(l)') 

Cen~ripl 

( Delete ~ript ) ~ ~ { Delete ) 

Figure A-5: Adding a Generation Script to a Fault Model 

File System Model Fault Model 

J About Injection Model Fault Model Execution ~npt An~VSIS 

Custom Fault Model 
Y Corruption of oa .. Into Web Service 

Y vaulu In Range 
• Riilndom Vaults 

Variable enable 
lntomotion Script 

Y Upper Bound 
Variable. enable 
lnlo.-nauon Script 
Gentrltt Scr1pt 

Y LDwer Bound 
Variable; enable 
lnfo<natlon Script 
Generace Script 

Co.-ruptJon of oa .. out ot Web Service 
• COmmunications Faulu 

Y Server Loading 

• Constam 
_ Generate SCnpt 

Figure A-6: Adding a variable to a script 

Var 

Variable Name: enable 

V.ariable Label : enable 

Variable Type: :;o;K~ 

( Delete Variable ) ~ ~ ~ 

196 

1 

J 



Appendix A - WS-FIT Tool 197 

A.2 System Model 

Once an EFM has been constructed it can be applied to a system model. A system 

model can be constructed by using the Injection Model tab. 

Since a System Model is made up of interface definitions a System Model can be 

populated by importing WSDL definitions for all services making up an SOA. This is 

done using the Import WSDL function (See Figure A-7). 

',...,..." 
file System Model fault Model 

-----1 About 1'1)tctlon Modtl fault Modtl Execution Scri pt A~Wvsl• !--- --- --

.. , 
SknpleTrl.dt .wsdl 
StockQuote.wsd l 

Open 

Wodnudaf: MAr II , 2001 1:14 Ptol 

Wednesday, Mly 11, 2005 1:53 PM 
Wtd nudiy, Ml.y 11, 2005 1 51 PM 

file Format : , WSDL File• (.wsdll ------,:ij 

Figure A-7: Importing WSDL into a System Model 

Imported WSDL is decomposed into a tree structure in the left hand tree pane. This 

shows a root entry for the Web Service, followed by the PortType, Operations, 

Messages and finally Parts. 

Any number of Web Service can be imported in this way including duplicate Web 

Services to represent replicated services running on multiple servers. To differentiate 

these replicated Web Services the server address can be added to a specific Web Service 
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definition (See Figure A-8), thus making it a unique IP/Web Service combination that 

can be used as part of the triggering mechanism. In this way different IP/Web Service 

combinations can hand different fault models applied to them . 

. ('\ ('\ ('\ 

File Syst-em- M-od:-:-ei - Fa-ul:-1 M-odel 

• J# 5irnpi<S.nk 

• ~ deposit 
• J dtpos~ 

• MelSI.ge P.arameren 
amount 

• ,1 dtposllRuponse 
Mesnge Panmettrs 

_ 1mount 

'f' ,.1 withdriwRUponst 

MtSSlgt P.rlmtttn 

• J bUI.nct 
• J b1Lince 

MtSYQI P.irilmtttn 

• J bi~nc:tResponst 

Y ~ Mtnlgt Plrlmtttrs 

baiAnctA.tNm 

J About lnje<tlon Modtl Foult Model Execution Script Analysis l- - -

dlflnitions 

S.Mct Address: 192.168.0.1 

Figure A-8: Associating a Server with a Web Service 

Since WSDL does not include any parameter bounds information other than general 

bounds associated with the type specification it is possible enter specific bounds 

information from a more detailed specification using the GUI (See Figure A-9). This 

information can then be utilized by the fault model scripts to generate appropriate fault 

campaign code. 

Once the System Model has been constructed individual parameters can be associated 

with specific fault models contained within the EFM (See Figure A-1 0). In the example 

given in Figure A-1 0 the Constant Server Loading fault model is associated to a specific 

parameter in the System Model. This will then generate the appropriate code fragment 

complete with trigger conditions in the final fault injection campaign script. 
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More complex fault injection fault models can be implemented on a message basis by 

adding a manually written generation script to either the Message or Part on which they 

will operate. By adding a script to the Message the complete message body is available 

for manipulation whilst if the script is attached to the parameter only the parameter tags 

and body are available. In this way syntax errors can be introduced into the message to 

test the middleware protocol stack or to introduce fault models that the EFM cannot 

handle. 

~ hUD.//blllk.laul!UJI.samplu.w>fil.OtV 

.. ,1 Simpllll•nk 

• J deposit 
• ~ deposit 

,. Message PArameters 

"""'""' • J depositR.tstKJMt 
Mesw.ge Pifimtters 

Y J withdraw 

Y wtthdriwRtsponst 

Muw.ge P1r1meters 
., ,.1 b•lonu 

Mtss1.ge Pirlmtttrs 

• ,J b1t.oceResponu 
,. J Mtsw.ge Plrlmtttn .. 

J About Injection Modtl Fwlt Modol Execution Script Anolysls ~ 

part 

Pa~ete.r Name: balanuRetum 

Paramt:ter TyJM!: xsd:doublt 

Monitor: 0 

Lower Bound: 0 

Uppor Bound: 2000.00 

~ ( AddModll ) 

Figure A-9: Manually adding bounds information to an RPC parameter 
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. () 

File System Model Fau:.:..lt M:_:_o::.::d~el----;r=:===:::::=:::::::::::;:;::;::=::=;::=:=:=:=:=--:==.=-~-,---==:=;=:==;­
~ About 

r_ hltp.//banl<.t•ulnol.s•mplts.wsfitorg-­

r • SimpleBank 
• deposit 

• deposit 
• Mesnge P~ra.mtttn 

amoun1 
T depositRuponse 

Mesnge Parameters 
• withdraw 

.., Withdraw 

• Mesnge P.i ramelers 
J.mount 

T wfthdrawResponse 
Message Parameters 

• ba~nce 

• bJ.linceRuponse 
• Mess1ge Pu ameters 

• bii~nceRewrn --

Corrupllon ol Dati lniD Web S.Mc:e 
• Vaults In R•nge 

Random Vaules 

Upptr Bound 
Lowor Bound 

FaultModel 

Corruption ol Data out of Web SefVIct 
Communki.tlons FaullS 

• Serwr loidlng -
enablo 

Figure A-10: Associating a Fault Model from the EFM to an RPC parameter 
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Once a System Model has been constructed a fault injection campatgn script ts 

automatically generated (See Figure A-ll). The fault injection campaign script ts 

generated by executing all the fault model generation scripts in sequence whilst 

generating the appropriate trigger code for each generated fragment. The script can be 

viewed on the Script tab that is included for debugging purposes. 

The script fragment shown in Figure A-ll shows the trigger code to trigger on the 

balanceReturn parameter of the balance response message from the bank Web Service. 

The fault model applied generates a 1 second timed delay in returning the result but 

otherwise leaves the message unaltered. 

Once the correct fault injection campaign script has been generated it can be executed 

using the Execute tab. The execute tab is structured as two panes: 
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• The top panel which displays visualization information 

• The bottom panel that contains context sensitive buttons 

' 11110 

File System Model Fault Model 

21: def crute(selfl: 
24: return UserlnjoctScrlptO 
25 : 

i About 11\Jt<tlon Modtl Fault Modtl Execution Script Analysis )-

26: def injoctStillt(self, no.mo, &ttrs, Address): 
27: if self.checkName(name, attn, 'nsl :tmanceResponse', 'hnp://M.nk.faulttol .sAmples .wsfit.org', '•' , address): 
28: solf.m_msg • 43 
29: return None 
30: 
11: def irl)ectllody(self, n&me, &ttrs, body): 
32: self.m_par.un • 0 
33: if ulf.m..msg •• 43 : 
34: if name -- 'baJanceReturn': 
35: self.m_par&m • 75 
36: if self.m_param •• 75 : 
3 7: I Constant Server Loading 
38: time.51eep(l) 
19: return None 
40: 
4 1: def ii\JectEnd(self, name, attrs): 
42 : return None 
43: 
44:sorver.stvtServer(User1rl)ectScript0, UserResult(monitorCraph,log)) 

Figure A-11: Scripts generated from System Model using applied EFM 
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To start a fault injection campaign running the start button is pressed. This prompts 

the user to select a log file (See Figure A-12) that will be used to log the fault injection 

campaign as described in Section 5.2. Once the fault injection campaign is executing the 

top panel will display simple visualizations of RPC parameters (See Figure A-13 ). 

Simple numeric parameter in RPC can be configured to be monitored by selecting a 

'Monitor' check box for the parameter in the system model (See Figure A-9). 
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1 About IIIJ•ctlon Model fault Model Execution Scnpt Analysis 

( Ntw fold..- ) 

WtdntSdl.y, ftbrUlf'Y 15. 2006 9 46 AM 
Tuesday, ftbr~ry H, 2006 12 00 PM 
Mond1.y, Ftbnury 1), 2006 <4 19 PM 

Mondi.y, Aprllll , 200S 10'36 PM 
Totsdily, April 12. 2005 12 S9 AM 

File FotmM: r XMl Filu t•mf• 

Figure A-12: Specifying a log file to record fault injection campaign execution 
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J I Ill - - - l i I nlllr - - - 1\1111\ 
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- I - -v ' - ... -=::..-..=......:::.,.. -· - - .... ., -- ...... - - ... q ... ..... \-_ . --...._.~0..--........ .........-~ 

I Q!U ~CEJ I 
Figure A-13: Fault Injection Campaign execution 
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A.4 Summary 

This appendix has documented how the WS-FIT tool realises the FIT method 

(Chapter 4) and implementation (Chapter 5) and has briefly shown how the EFM and 

System model can be constructed and used to assess a SO A. 

This chapter has also examined under what circumstances WS-FIT can be considered 

non-intrusive as far as introduced latency is concerned. The demonstrations documented 

here indicate parameters for using WS-FIT. 

Firstly, under normal conditions an RPC exchange over an Internet connection can 

take ofthe order of seconds to complete, including Web Service execution time with the 

default timeout for Axis SOAP being 10 seconds. This baseline demonstrated that there 

can be a large variation in the execution time of a Web Service RPC running over an 

Internet connection depending on the load that connection is under. WS-FIT can be 

considered acceptable if its induced latency falls within this variability. 

Secondly, it was demonstrated that the number of triggers utilised by WS-FIT in a 

fault injection campaign gave a linear rise in latency which was within the standard 

deviation of the baseline non-instrumented data over the number of triggers tested and 

was thus and acceptable overhead. 

Thirdly, it was demonstrated that for a Web Service RPC which utilised multiple 

element data structures such as arrays the latency introduced into the SOA rose linearly 

depending on the number of elements in the data structure. The same SOA instrumented 

for use with WS-FIT gives a polynomial rise dependent on message size. This is to be 

. - expected-since-the-SOAP-message-is-parsed-and-each-element -within-the-messagemust. 

be processed. 
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By examining the data from the experiment an upper bound of 450 elements could be 

chosen since this falls below the default timeout of 10 seconds although under these 

circumstances WS-FIT could affect the running system. This upper value could also be 

adjusted if a larger timeout was set in the SOA to allow for long processing times by the 

Web Service etc. 
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