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1.1 Retinoids 

 

1.1.1 Natural retinoids and their biology 

 

The retinoids are a class of over 4000 natural and synthetic molecules structurally and/or 

functionally related to all-trans-retinoic acid (ATRA), a metabolite of vitamin A 

(retinol).
1
 Endogenous ATRA regulates a range of essential processes during chordate 

embryogenesis and adult homeostasis including; embryonic development,
2 

vision,
3
 and 

cellular differentiation, proliferation and apoptosis.
4
 Retinoids are successfully used to 

treat certain dermatological conditions
5 

and have the potential to act as chemo-

preventative and chemotherapeutic agents, although toxicity issues have prevented their 

more widespread use.
6,7

 ATRA isomerises under laboratory and physiological conditions
 
 

to give mixtures of ATRA, 9-cis-retinoic acid (9cRA), 13-cis-retinoic acid (13cRA) 

(Figure 1.1) and other species.
8,9,10,11,12 

 

CO2H

ATRA

CO2H

13cRA

CO2H

9cRA

 

Figure 1.1 Natural retinoids. 

 

The structure of retinoids can be thought of as comprising three units, (as shown in 

Figure 1.2 for ATRA) a bulky, hydrophobic region, a linker unit and a polar terminus, 

which is usually a carboxylic acid group. 

 

Hydrophobic 
unit

Linker unit

Polar 
terminus

Hydrophobic 
unit

Linker unit Polar 
terminus

CO2H

Retinoid structural units Generic retinoid structure  

Figure 1.2 Retinoid structure. 
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Vitamin A (retinol, Figure 1.3) cannot be synthesised by any animal species and is 

obtained through the diet, either from pro-vitamin A carotinoids in plants (such as 

β-carotenoid) or directly from other animals. Ingested vitamin A is stored as retinyl esters 

in the liver until needed, at which time it is transported bound to retinol binding protein 

(RBP).
13 

Retinol is reversibly oxidised by retinol dehydrogenases (ROLDH) to give 

retinal which may then be irreversibly oxidised to ATRA
14

 by retinal dehydrogenases 

(RALDH), or by cytochrome P450 enzymes in hepatic tissue.
15 

ATRA can cross the 

plasma membrane passively and is translocated by cellular retinoic acid binding proteins 

(CRABP-I & II) to the nucleus where it binds to nuclear receptors. Otherwise, free 

ATRA can be stored by binding to retinoic acid binding protein I (CRABP-I), a process 

which inhibits its biological activity
16

 or can be oxidised by cytochrome P450 enzymes in 

conjunction with CRABP-I to give polar metabolites such as 4-hydroxy-retinoic acid and 

18-hydroxy-retinoic acid.
17

 

 

CHO

retinal

CH2OH

retinol-carotene

CO2H

ATRA  

 

Figure 1.3 ATRA biosynthesis precursors and ATRA. 

 

Retinoid activity results primarily from the transcriptional regulation of specific genes 

which is regulated by the binding of retinoids to receptors belonging to the 

steroid/thyroid superfamily of nuclear receptors.
1
 There are two classes of retinoid 

nuclear receptors, retinoic acid receptors (RARs) and retinoid X receptors (RXRs), with 

each subfamily being structurally and functionally distinct. In both cases the nuclear 

receptors act as ligand inducible transcriptional regulation factors.
18

 Both the RAR and 

RXR subfamilies are further separated into three isotypes,  and with the different 

RAR isotypes possess differing amino acid sequences in their ligand binding domains 



26 

 

(LBDs). In addition, RAR and RXR isotypes are further separated into different isoforms. 

For each isotype, the LBDs of the different isoforms are identical, but domains that are 

not involved in ligand binding are not conserved between the differing isoforms.
19,20 

In 

order to be functional, both RARs and RXRs must dimerise with other nuclear receptors. 

RARs predominantly heterodimerise with RXRs allowing for the binding of their specific 

nuclear DNA sequences known as retinoic acid response elements (RAREs), while RXRs 

form both homodimers and heterodimers
21,22,23 with RARs and other nuclear receptors 

including peroxisome-proliferation-activated-receptors (PPARs)
24

 and vitamin D3 

receptor (VDR).
25 

The endogenous ligands for retinoid receptors are ATRA and 9cRA, 

respectively. ATRA binds and activates the three RAR isotypes andwith similar 

affinities, while 9cRA acts as a pan-agonist for all six retinoid receptor isotypes, binding 

and activating both the RARs and RXRs.
26,27

 Crystallographic studies of both RAR and 

RXR ligand binding pockets (LBPs) bound to a variety of ligands have shown that the 

shape of the LBP differs markedly between RARs and RXRs.
28,29 ,30

 Crystal structures of 

the LBPs of RARand RXR have shown that RAR possesses a linear „„I‟‟ shaped 

LBP, whereas that of RXR is a shorter and more restrictive „„L‟‟ shape. As a result, the 

linear retinoid ATRA can act as a ligand only for RARs while the flexible 9cRA can 

adopt both the linear and twisted conformations required for binding to both RARs and 

RXRs respectively.
31 

The transcriptional activities of RAR agonists are mediated by 

ligand binding to the RAR LBP of RAR/RXR heterodimers (Figure 1.4A). The RXR 

partner may also bind to ligands, depending on the occupation of the RAR LBP and on 

the particular DNA-response element to which the heterodimer is bound.
32,33

 

Heterodimers of RXRs with RARs, thyroid receptor (TR) and vitamin D3 receptor (VDR) 

cannot be activated by the binding of RXR agonists alone and thus are termed „non-

permissive‟ heterodimers. However, RXR agonists can allosterically increase the efficacy 

of RAR agonists (retinoid synergism), and can activate „permissive‟ heterodimers
34

 of 

RXRs with numerous orphan nuclear receptors (OR) such as PPAR, liver X receptor 

(LXR), farnesoid X receptor (FXR) and pregnane X receptor (PXR) without the binding 

of agonists for the partner receptors (Figure 1.4C).
24,35 

Thirdly, RXRs can homodimerise 

on directly repeated sequences which are separated by one nucleotide. These homodimers 
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are transcriptionally activated by the binding of an RXR agonist such as 9cRA (Figure 

1.4B).
36

 

B C
RXRRXR RAR RXRRXR RXR RXRRXR OR?

A

RAR agonist RXR agonist OR agonist
 

Figure 1.4 Multiple retinoid signalling pathways. 

 

Activation of transcription from RAREs occurs in three stages or levels.
36 

In the absence 

of agonists, RARs bind to DNA via their DNA binding domains (DBDs) and recruit 

co-repressors, such as SMRT and NCoRT, leading to suppression of transcription from 

the response element (Figure 1.5A). Binding of RAR agonists, such as ATRA, to the 

ligand binding domain (LBD) of the RAR causes a conformation change of the RAR.  

This conformational change dislodges the bound corepressors, resulting in basal 

transcription levels (Figure 1.5B). Recruitment of transcriptional coactivators, such as 

SRC-1, COACT-X, CBP (steroid receptor coactivator-1, coactivator-X and CREB 

binding protein, respectively) or P-300, by the RAR-agonist complex results in an 

activated transcription complex and maximum levels of transcription from the RARE 

(Figure 1.5C). Deactivation of transcription from RAREs may be achieved through the 

use of RAR antagonists. Binding of RAR antagonists reversibly blocks the LBP without 

inducing the conformation change in the RAR required to dislodge the bound 

corepressors (Figure 1.5D).
36 
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Figure 1.5 Levels of transcriptional activation of RARE via RAR binding and activation and repression of 

transcription from RAREs by RAR antagonism. 

 

1.1.2 Receptor specificity in retinoids. 

 

The RAR/RXR isotypes differ in both their tissue distribution and in the biological 

processes mediated.
37

 RARis ubiquitous in its distribution, is involved in the 

differentiation therapy of acute human promyelocytic leukaemia
38

 and is associated with 

elevated triglyceride levels.
39

 RARis expressed predominantly in the heart, lungs and 

spleen
37

 and RARsubtypes exhibit suppressive effects on certain cell types
40

 and thus 
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constitute a possible target for the treatment of breast and other cancers.
41

 RAR is 

primarily expressed in the skin and bone
37,42 

and is associated with skin photoaging,
43

 

dermatological diseases
44

 and carcinogenesis.
45

 The wide ranging effects of non-isotype 

specific retinoids have so far limited their medical use. Thus, the preferential binding to 

the LBP of specific receptor isotypes is necessary if the high biological activities of the 

retinoids are to be harnessed for clinical use. 

 

1.1.2.1 RAR Selectivity 

 

Through sequence alignment of the RAR isotypes, it has been shown that the LBPs are 

highly conserved in the RARs with only 3 LBP residues differing between the 3 

isotypes
28b,31,46

 on the 3, 5 and 11 helices. Géhin et al. have demonstrated that ligand 

interaction with these non-conserved residues is crucial for determining RAR isotype 

selectivity (Table 1.1).
20 

 

 

1.1.2.2 RAR selectivity 

 

The LBP of RARdiffers from that of the  andisotypes by the presence on H3 of a H-

bond donor residue Ser232, in contrast to lipophilic Ala225 and Ala234 residues present 

in the LBPs of RARβ and RARγ, respectively. The formation of strong H-bonds between 

synthetic retinoids possessing H-bond acceptors, such as amide groups, in the linker 

region (i.e. AM 580,
47

 AGN 193836
48

 and AM 555S
49

) and this residue results in 

RARselectivity (Figure 1.6).
 

Table 1.1 Divergent residues in the RAR isotype ligand binding pocket. 

 Helices 

Receptor H3 H5 H11 

RAR Ser232 Ile270 Val395 

RAR Ala225 Ile263 Val388 

RAR Ala234 Met272 Ala397 
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Figure 1.6 Synthetic RAR selective retinoids. 

 

1.1.2.3 RAR selectivity 

 

The RARLBP lacks the H-bond donor residue Ser232 which is present in the RAR 

LBP and thus, cannot interact selectively with ligands via H-bonding. Instead, 

RARselectivity is conferred by steric effects, with the smaller Ala225 and Ile263 

residues distinguishing the RARLBP from that of RAR and RAR respectively. The 

less sterically demanding residues in the LBP allow for the binding of larger retinoids, 

especially those possessing larger lipophilic regions than the widely used 1,1,4,4-

tetramethyl-2,2,3,3-tetrahydronaphthalene (Figure 1.7).  
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7 AC 55649AC 261066
 

 

Figure 1.7 Synthetic retinoids. 
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This can be observed in the crystal structure of the complex of human RARβ (hRARβ) 

ligand binding domain with the RAR pan-agonist TTNPB
50

  (Figures 1.8 & 1.9),
28a 

in 

which an additional cavity in the hydrophobic region of the LBP is observed due to the 

smaller H3 Ala225 residue.  

 

CO2H

TTNPB  

 

Figure 1.8 Synthetic retinoid TTNPB. 

 

 

 

Figure 1.9 Crystal structure of the hRARβ LBP–TTNPB complex revealing an additional cavity in the 

LBP. Reproduced with permission of the copyright holder. 

 

    

 

 

 

 

 

 

 

 

Figure 1.10 Model structure of the docking of RARβ agonist / RARγ agonist BMS 453 into the RARβ 

(left) and RARγ LBP (right). Reproduced with permission of the copyright holder.
28a 
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The mixed agonist/antagonist behaviour of BMS 453
28a

 and AGN 193174
51

 results from 

the inability of BMS 453 and AGN 193174 to effectively induce the conformational 

change necessary to dislodge bound corepressors when bound into the smaller RARα and 

RARγ LBPs. This can be observed in the structure of the docking of the RARβ agonist 

BMS453 in the RARγ LBP, as modelled by VOIDOO and MSMS, which shows steric 

clashes between the BMS 453 phenyl ring and residues on H3 and H5 (Figure 1.10B).
28a

 

Altering the shape of the retinoid lipophilic unit from (Z)-3,3-dimethylbut-2-en-1-yl 

(BMS 987) to phenyl (BMS 453) reduces RARβ agonist activity suggesting that the 

phenyl ring may cause some weak interference with H12 positioning and recruitment of 

coactivator. Further increases in steric bulk lead to further decreased agonist activity for 

BMS 701 and a high affinity RARβ antagonist in the case of BMS 009.
28a

 Similar effects 

are observed for the exchange of the thiophenyl moiety of RARβ agonist AGN 193174 

with p-tolyl to give AGN 193109 which exhibits pan RARβ antagonism.
51 

4‟-Octyl-4-

biphenylcarboxylic acid
52

 (AC-55649, originally of interest for its liquid crystal phase 

behaviour
52b

) and AC-261066 are highly selective agonists for the RARβ2 receptor 

isoform.
 
RAR isoform selectivity cannot be achieved via interaction with non conserved 

residues in the LBP (AF-2) as the four RARβ isoform LBPs are identical. Instead, the 

variation between the isoforms is located in the ligand-independent activation domain 

(AF-1),
53

 which cooperates with the ligand binding domain (AF-2) in a promoter context 

manner.
54

 AF-1 and AF-2 are activating function domains which are responsible for 

transcriptional activity of nuclear receptors and can interact with coactivators such as 

p300/CBP.
53a

 Thus, retinoids, such as AC-55649 and AC-261066, which significantly 

interact with AF-2 (Figure 1.11),
52a

 may induce differing interactions between conserved 

AF-2 and non conserved AF-1 regions in the RARβ isoforms, leading to isoform 

selectivity.
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Figure 1.11 Modelling of the interactions of ATRA, AC 55649 and AC 261066 with the AF-2 domain. 

Reproduced with permission of the copyright holder.
52a 

  

1.1.2.4 RARselectivity 

 

The RARLBP differs from that of  and  isotypes by the presence of the weakly polar 

Met272 residue. The formation of a weak H-bond between this residue and retinoids 

possessing an H-bond donor on, or adjacent to the hydrophobic region confers 

RARselectivity.
31,55

 This can be observed in the modelling of the structure of the CD 

666-hRARγ complex (Figure 1.13).
56

 In addition, the smaller Ala397 residue allows for 

the docking of larger hydrophobic moieties, such as the 2-adamantylphenol group of CD 

437 (Figure 1.12),
57

 against helix 11 of RARwhich is not the case for RAR/RAR

OH

CO2H

CD 666 CD 437

HO

CO2H

 

Figure 1.12 RAR selective retinoids.
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

 

Figure 1.13 Modelling of the CD 666-hRARγ complex. Reproduced with permission of the copyright 

holder.
56 

 

1.1.2.5 RXR selectivity 

 

 RXRs are expressed mainly in adult tissue, with RXR present in nearly all tissue types, 

while RXRand RXR are expressed mainly in the liver, kidney, spleen and skin and in 

the brain and muscle, respectively.
58 

The endogenous ligand for RXRs is 9cRA.
26,27

 

Crystallographic studies
29,31

 of 9cRA-RXR complexes show distortion of the ligand with 

the region past C9 twisted perpendicular to the plane of the hydrophobic cyclohexenyl 

ring. The 9-cis double bond in 9cRA allows it to adopt both linear and twisted 

conformations in comparison to ATRA, which can only adopt linear conformations. This 

allows 9cRA to act as an agonist for RARs, which possess an elongated LBP with an „I‟ 

like shape, and for RXRs with a twisted „L‟-like LBP. In contrast to the RAR LBPs, the 

LBP of the RXR isotypes does not differ for each isotype and as yet, no isotype selective 

retinoids have been reported.
59

 The crystal structures of 9cRA bound to RXR LBPs show 

that the 9cRA ligand does not completely fill the LBP with 31% of the available LBP 

volume unfilled, predominantly in two regions.
60

 By synthesising retinoids which favour 

twisted conformations, and by increasing the size of both the hydrophobic and 
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hydrophilic regions with respect to 9cRA, the selectivity for RXRs over RARs may be 

increased. Synthetic retinoids which show high selectivities for RXRs over RARs are 

usually shorter than RAR agonists, typically with one linker atom between the 

hydrophobic ring and carboxyl bearing ring.
 
In addition, the presence of ortho ring 

substituents on the hydrophobic ring, which enforce twisted conformations (by steric 

interactions with the carboxyl bearing ring), is a common feature of many RXR agonists 

(Figure 1.14). 
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Figure 1.14 RXR selective retinoids. 

 

This is demonstrated by 3-Me TTNPB,
18,61

 which activates both RAR and RXRs, while 

TTNPB
18,28,50

 shows no RXR activation. SR 11237,
62

 LGD 100268
63

 and LGD 1069
64 

are 

all potent RXR agonists with binding affinities in excess of that for 9cRA. The 3-Me 

groups of LGD 1069 and LGD 100268 both enforce the twisted conformations necessary 

for RXR selectivity. 

 

1.1.3 Design and structure of synthetic retinoids 

 
The activities of natural retinoids, such as ATRA and 9cRA, are limited by their 

isomerism into species which possess differing activities and their oxidative metabolism 

by cytochrome P450 enzymes. These destructive processes proceed via reactions of key 

functionalities in ATRA and 9cRA. By replacing these moieties with more robust 

pharmacophores, retinoids may be synthesised which exhibit similar efficacies as ligands 
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for RARs or RXRs, but with improved resistance to metabolism and thus improved 

activities. 

 

 

 

 

 

 

 

 

 

Figure 1.15 Retinoid numbering scheme.
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Figure 1.16 Products of ATRA oxidative metabolism. 

 

The oxidative metabolism of ATRA leads to 4-hydroxy-, and 4-oxo-ATRA via oxidation 

at the allylic 4-position and at the 18-position to give 18-hydroxy ATRA. In addition, a 

5,6-epoxy derivative is formed from epoxidation of the terminal double bond of the 

polyene chain (in the cyclohexane ring).
65

 By replacing the trimethylcyclohexenylvinyl 

unit (C1-C8) with a structurally similar 1,1,4,4-tetramethyl-1,2,3,4-tetrahydro-naphthalene 

moiety, which possesses no allylic protons or alkene double bonds, degradation via 

radical oxidation and epoxidation is reduced. In addition, by replacing two C=C double 
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bonds in the conjugated polyene by an arene ring, photo-induced isomerism is decreased, 

leading to greater stability. These synthetic retinoids which contain one or more aromatic 

rings are termed arotinoids. Further increases in photostability and resistance to oxidative 

metabolism may be achieved by constraining the flexible polyene chain by incorporating 

it into one or more aromatic rings. By means of these modifications the 

trimethylcyclohexenyl ring and the conjugated tetraene of the natural retinoids may be 

replaced by robust structural units such as stilbene, tolan, biaryl or biaryl amide to give 

retinoids which exhibit high activity and stability such as TTNPB,
50

 EC23,
12

 TTNN (SRI 

5898-52)
66

 and Am580,
47

 respectively (Figure 1.17). 
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Figure 1.17 Arotinoids. 

 

1.1.3.1 Modification of the hydrophobic unit 

 

The effects of modification of hydrophobic unit on retinoid activity can be observed in 

the structure-activity relationships for a series of TTNPB analogues on the differentiation 

of cultured hamster trachea cells (TOC assay).
67

 Replacing the 1,1,4,4-tetramethyl-

1,2,3,4-tetrahydro-naphthalene in TTNPB with 1,2,3,4-tetra- methylnapthalene (SRI 

5193-55) led to a decrease in the activity by over 2 orders of magnitude, in comparison to 

TTNPB, suggesting that it is desirable for the methyl substituents on the hydrophobic unit 

to lie out of the plane of the aromatic ring. Removal of either of the C4 methyl groups 

needed to block oxidation metabolism at that position leads to a drop in activity, with the 
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S-isomer, SRI 6910-29, showing a reduction in activity of over one order of magnitude, 

compared to TTNPB. The R-isomer, SRI 6910-50, was found to be 4 times less active 

than the S-isomer, SRI 6910-29. Surprisingly a racemic mixture of SRI 6910-29 and SRI 

6910-50 displayed a lower activity than either of the isomers on their own. The decreased 

activity of SRI 6910-29, SRI 6910-50 and racemic mixtures in comparison to TTNPB 

indicates the need for two methyl groups at the C4 position for high biological activity.
68

  

 

 

 

Retinoid ED50 (M) 

ATRA 1 X 10
-11 

TTNPB 2 X 10
-12 

SRI 5193-55 8 X 10
-10 

SRI 6910-29 2.5 X 10
-11 

SRI 6910-50 1 X 10
-10 

SRI 5639-27 3 X 10
-11 

SRI 4445-86B 1 X 10
-9 

SRI 5387-12 2 X 10
-10 

SRI 5896-39 5 X 10
-11 

SRI 2965-38 2 X 10
-10 

 

 

 

 

           
 

Figure 1.18 Modification of the hydrophobic unit in TTNPB arotinoids and their activities in the TOC 

assay. 
 

This is reinforced by SRI 5639-27, lacking both C4 methyl groups, which possesses a 

similar activity to both SRI 6910-29 and ATRA, and by the dramatic decrease in activity, 

compared to TTNPB, of nearly 3 orders of magnitude for the benzonorbornenyl analogue 

SRI 4445-86B. SRI 2965-38, a C11-C14 benzofused analogue of ATRA, exhibits a 

biological activity over one order of magnitude less than SRI 5639-27, which also lacks 
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both methyl groups at C4. This suggests that incorporating the C5-C6 and C7-C8 double 

bonds into a benzene ring improves activity in this assay. SRI 2965-38 was also found to 

possess reduced activity, compared to both TTNPB and ATRA (results are summarised 

in Figure 1.18).
68 

 

Substitution of the C4 methylene group of aromatic retinoids with heteroatoms leads to a 

class of retinoids termed heteroarotinoids, which have demonstrated significant potential 

as anticancer agents due to their activity as inhibitors of the induction of orthinine 

decarboxylase (ODC)
69

 and their resultant ability to prevent or inhibit the transformation 

of healthy cells into cancerous cells.
70

 In addition, several heteroarotinoids exhibit much 

reduced toxicities,
69a,70a

 in comparison to their carbocyclic analogues, with the reduced 

toxicity believed to result from the incorporation of the heteroatom.
70a

 Both SRI 5387-12 

and its thia-analogue SRI 5896-39 exhibit diminished activity, in TOC assay, compared 

to the parent retinoid TTNPB, with the loss of activity resulting both from the lack of 

lipophilic bulk in the 4-position, and the increase in polarity of the hydrophobic unit 

caused by the substitution with more electronegative atoms. The lower activity of oxy-

TTNPB analogue SRI 5387-12, in comparison to SRI 5896-39, results from the increased 

electronegativity of the oxygen atom, which further reduces hydrophobic interactions 

with the non-polar residues present around the hydrophobic region of the LBP. Similar 

trends have been reported by Benbrook et al.
71

 for other oxygen and sulphur 

heteroarotinoids.  However, it must be noted that dihydrobenzothiapyran based retinoids 

such as SRI 5896-39 are oxidised to sulfones and sulfoxides which exhibit low activities 

in the TOC assay.
68

 This ease of oxidation and subsequent deactivation may explain low 

lower toxicities of sulphur heteroarotinoids in comparison to their carbocyclic 

analogues.
70a 

 

 

Although oxygen and sulphur are the most prevalent heteroatoms in heteroarotinoids, 

other elements have also been used, with Tacke et al. having reported the synthesis and 

binding to RARs and RXRs of 1,4-disila-analogues of the arotinoids TTNPB, 3-Me 

TTNPB
72

 and LGD 1069 (bexarotene).
73 

 

1.1.3.2 Modification of the polar terminus 
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In order to effectively bind to the RAR or RXR LBPs, the polar terminus of the retinoid 

must be capable of interacting favourably with the residues present in the „bottom‟ of the 

LBP. These interactions between the LBP and the „anchoring‟ group on the polar 

terminus can be observed in the crystal structures of 9cRA with RAR and RXR (Figure 

1.19).
74

 In the 9cRA-RAR complex, the carboxylate of 9cRA forms an ion pair with Arg 

278 and 3 hydrogen bonds with the main chain amide group, side chain hydroxyl group 

of Ser 289 and a bound water molecule of RAR. In the 9cRA-RXR complex, an ion pair 

is formed between the ligand carboxylate and Arg 316, as well as 2 hydrogen bonds 

between the carboxylate, the amide group of Ala 327 and a bound water molecule of 

RXR.
74
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Figure 1.19 Crystal structures of  9cRA-RAR (top) and 9cRA-RXR (bottom) complexes. Reproduced with 

permission of the copyright holder.
74 

 

Although not proven, it is believed that the highest oxidation state of vitamin A, ATRA, 

is responsible for controlling cellular differentiation. Thus, in order to display biological 

activity of this type, retinol and retinal must be oxidised to ATRA.
75

 As the hamster 

trachea organ culture (TOC) assay is based on a whole organ culture, it possesses the full 

complement of enzymes. As a result, retinoid amides, which are inactive in epidermal 

ODC assay, show high activities in the TOC assay, suggesting that the necessary 

enzymes for the hydrolysis of retinoid amides prodrugs to the active acid forms are 

present in the organ culture.
67,68
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Figure 1.20 Modifications of the polar terminus. 

 

Retinol, which is oxidised in vivo to give ATRA, is less active than its acid form in the 

TOC assay by over 2 orders of magnitude. Similar differences in biological activity were 

seen between TTNN and both its alcohol form SRI 5542-11 and the methyl ether SRI 

5442-12. The sulfonate analogue of TTNN, SRI 5942-92, possessed only a quarter of the 

activity of TTNN alcohol SRI 5542-11 in the TOC assay, suggesting that the sulfonate 

moiety does not interact with the receptor residues as effectively as the carboxylate 

moiety. Due to the full complement of enzymes present in the TOC assay, the methyl 

naphthalene derivative, SRI 5193-67, may be oxidised in vivo to give polar species which 

exhibit retinoid activity (including TTNN) and showed activity comparable to that of 

sulfonate SRI 5942-92. The naphthalene derivative, SRI 5193-71, which cannot be 

oxidised to TTNN, was not active in the TOC assay (Figure 1.20).
68

  

 

1.1.3.3 Modification of the linker unit 

 

Most arotinoids feature 1,1,4,4-tetramethyl-1,2,3,4-tetrahydro-naphthalene as the 

hydrophobic unit and a carboxylate-bearing aromatic ring as the polar terminus, with 

these two functionalities linked by a short linker unit of 1-3 atoms. Despite the small size 

of the linker unit, a wide variety of differing functionalities have been employed as 
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linkers in arotinoid structures, with changes in linker structure allowing for selectivity 

between RARs and RXRs as well as RAR isotypes to be controlled. The E-propenyl 

linker of TTNPB
50

 closely mimics the skip methylated chain of ATRA. TTNPB is one of 

the most active synthetic retinoids yet discovered, possessing an activity in the hamster 

TOC assay 5 times greater than that of ATRA.
68 

 

CO2HCO2H CO2H

CO2H

CO2H

CO2H

N
H

O
CO2H

O

N N

CO2H

S

O

O
CO2H

TTNPB TTNN

SRI 7101-27 SRI 7101-53 EC23

SRI-6751-84
(CD 367)

Am 580 YR 105AGN 193676  

 

Figure 1.21 Synthetic retinoids possessing varying linker units. 

 

Retinoids TTNN
66

 and SRI-6751-84
76

 can be considered as isomeric, benzo-fused 

analogues of TTNPB and display high biological activities, with that of TTNN 

comparable to TTNPB, and that of SRI-6751-84 showing equivalent activity to ATRA. 

Both TTNN and SRI-6751-84 are RAR selective agonists due to their rigid, linear 

structures, with TTNN showing a greater affinity for RARβ over RARα and RARγ. 

Other hydrocarbon linker units include; the biaryl groups of E-, and Z-cinnamate 

retinoids SRI 7101-27 and SRI 7101-53, respectively, which show limited biological 

activities in the TOC assay, and the triple bond of the photostable retinoid EC23, which is 

highly effective in the induction of neural differentiation in human TERA2.cl.SP12 

embryonal carcinoma cells, with activity greater than that of the native ligand ATRA.
12
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Other linker units not based upon hydrocarbons include; the amide linkages of Am 580,
47

 

the internal ester linkage of the RARβ agonist AGN 193676
51

 and the cyclic urea linkage 

of YR 105, an inducer of differentiation of HL-60 cells with activity comparable to that 

of ATRA, (structures are shown in Figure 1.21).
77
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Figure 1.22 RXR selective synthetic retinoids possessing varying linker units. 

 

Due to the differing shapes of the RAR and RXR LBPs, selectivity for RXRs over RARs 

requires ligands which adopt twisted conformations similar to the natural ligand 9cRA, 

rather than the linear conformations required for RAR binding. In RXR antagonist LGD 

100754,
78

 steric interactions between the 9-cis triene linker unit and an ortho-n-propyloxy 

substituent on the hydrophobic aromatic ring result in a twisted conformation. Polyene 

linker units can be effectively locked in the cis conformation by cyclopropanation of the 

cis double bond to give 1,2-cis-cyclopropane derivatives such as RXR agonist AGN 

194420
79 

or by addition of 1,1 disubstituted cyclopropanyl groups to the linker unit as in 

1 (Figure 1.22).
80
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Rigid, one atom linker units, usually in conjunction with ortho substituents on the 

hydrophobic aromatic ring, give RXR selectivity due to minimisation of steric 

interactions between the aromatic ring of the polar terminus and the ortho substituents on 

the hydrophobic aromatic ring. Examples (Figure 1.22)  of such rigid linker units include 

an alkene in LGD 1069 (Targetin
®
, bexarotene),

64
 which is currently licensed for the 

treatment of the treatment of cutaneous manifestations of T-cell lymphoma, a carbonyl 

group (e.g. 3-Me TTNCB),
63

 an oxime (e.g. 2),
81

 2,2-dioxanyl group (SR 11237)
62

 and a 

1,1-cyclopropanyl group (LGD 100268).
63

 Alternatively, the linker unit may be 

incorporated into a suitably functionalised benzo-fused ring system, as in the RXR 

agonist HX 600.
82

 

 

In conclusion, synthetic retinoids can offer many advantages over their endogenous 

analogues, ATRA and 9cRA, and would appear destined to play a significant role, both 

as tools for research and in medicine. Not only are synthetic retinoids typically more 

stable to light and to enzymatic metabolism, which usually leads to greater activity, but 

RAR isotype selective retinoids can offer a greater degree of control over their effects, 

which can prove to be beneficial in a clinical context, especially in regards to the 

reduction of toxicity. In addition, several selective retinoid-based treatments are currently 

in clinical trials for cancer therapy. 
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1.2 Palladium-catalysed cross-couplings 
 
Palladium-catalysed cross-coupling reactions play an important role in modern organic 

synthesis with many syntheses of large molecules featuring at least one Pd-catalysed 

cross-coupling step. 

 

Mechanistically, the various cross-coupling reactions (Suzuki-Miyaura,
83

 Stille,
84 

Negishi,
85

 Sonogashira,
86

 Hiyama,
87

 etc.) are all similar, with the basic catalytic cycle 

(assuming Ln represents two monodentate ligands) consisting of oxidative addition of a 

C-X (typically halide or triflate) bond to a zero valent metal centre to give a trans-Pd
II
 

species, transmetallation, and trans-cis isomerisation followed by reductive elimination 

yielding the cross coupled product and the original Pd
0
 species. 
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Scheme 1.1 Basic catalytic cycle for Pd-catalysed cross-couplings. 

 

1.2.1 Oxidative addition  

 

The first step of the catalytic cycle in Pd-catalysed cross-couplings is the oxidative 

addition of the C-X bond to the palladium centre, with reports suggesting that the active 

species is a coordinatively unsaturated Pd
0
 species bearing one (PdL), or two (PdL2) 
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dative ligands.
88,89,89,90,91,92 

For tetrakis(triphenylphosphine)palladium, phosphine 

dissociation gives rise to Pd(PPh3)3 and Pd(PPh3)2 in solution, with the latter initially 

considered to be the active species in the oxidative addition step.
90 

 A variety of 

mechanisms have been proposed for oxidative addition, with the exact pathway 

dependent on metal ion and oxidation state, ligand, substrate and conditions. For aryl 

halides, the three main pathways are shown in Scheme 1.2.
89b,91
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Scheme 1.2 Oxidative addition pathways from top to bottom: nucleophilic addition, single electron transfer 

and 3-centred concerted addition.  

 

Work by Fauvarque et al., and later by Amatore et al. showed that for the oxidative 

addition of aryl iodides to Pd(PPh3)4, the mechanisms in THF
89a,92 

and toluene
89b

 are 

identical and the slope of the Hammett plots are similar in the two solvents. The similar 

enthalpies and entropies of activation for the reaction in polar and non polar solvent 

shows that the transition state for the addition of aryl halides to the coordinatively 

unsaturated Pd
0
(PPh3)2 species has no significant ionic character suggesting that 

oxidative addition occurs via either a concerted three-centre reaction or by a radical 

mechanism. For oxidative addition of aryl halides, the order of reactivity is found to be I 

> Br >> Cl >> F with electron deficient aryl halides being more reactive than electron 

rich ones. This corresponds with a rate limiting step which involves the breaking of the 

C-X bond.
90

 For a three-centered concerted addition the oxidative addition leads to an 

initial cis adduct which then isomerises to give the thermodynamically more stable trans 

complex.
91 

Isomerisation may occur via a dissociative pathway with a trigonal 
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ArPd
II
PPh3X intermediate or by an associative pathway with a trigonal bipyramid 

ArPd
II
(PPh3)2XA intermediate formed by the coordination of either solvent or free halide 

anion (A) to ArPd
II
(PPh3)2X. 

      
 

Hartwig and coworkers have shown that for the addition of aryl bromides to Pd
0 

complexes bearing bulkier phosphine ligands such as P(o-tol)3 the active species is a 12e
-
 

monophosphine complex.
93

 This was supported by catalytic studies by Fu and coworkers 

employing Pd2dba3/PR3 mixtures in a 1:1 ratio to form the monoligated Pd species in 

situ.
94

 Well defined Pd
0
PR3 complexes were shown to be highly active for the 

Suzuki-Miyaura cross-coupling of aryl halides with phenylboronic acid by Beller and 

coworkers.
87j  

 

Further evidence for the role of monoligated PdL complexes was provided by the studies 

of ArX elimination, observed indirectly and directly by Hartwig and coworkers. P(o-tol)3 

ligated arylpalladium halides of the form [Pd(Ar)(μ-X)P(o-tol)3]2 eliminate ArX upon 

addition of an excess of P
t
Bu3 to give Pd(P

t
Bu3)2. In addition, well defined, three-

coordinate Pd
II
(P

t
Bu3)(Ar)X complexes were shown to undergo elimination of ArX upon 

the addition of P
t
Bu3 to give PR3-Pd

0
-P

t
Bu3 complexes and ArX in 60–98% yields.

95  

 

Jutand and co-workers have shown that the nature of the active Pd species for the 

oxidative addition reaction is sensitive to the bulk of the ligand L, with less bulky or 

bidentate ligands more likely to promote oxidative addition via PdL2 species while more 

bulky monodentate ligands such as P
t
Bu3 undergo oxidative addition via PdL.

 96 

 

Studies by Hartwig and coworkers on the oxidative additions of chloro-, bromo-, and 

iodobenzene to Pd(Q-phos-tol)2 (Q-phos-tol = (di-tert-butylphosphino)penta-p-

tolylferrocene) have shown that the mechanism of oxidative addition is dependent on the 

identity of the halide. For PhI, associative displacement of ligand by PhI, prior to 

oxidative addition was found to be rate determining, while for PhBr, ligand dissociation 

from Pd(Q-phos-tol)2 is rate determining. In contrast, for PhCl, oxidative addition was 
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rate determining and is preceded by reversible ligand dissociation. In all cases, the 

oxidative addition occurred via the monoligated Pd(Q-phos-tol) species.
 97

  

 

Lin and Marder carried out DFT studies on the oxidative addition of a range of 

p-Y-C6H4-X (Y = CN, H, OMe, X = Cl, Br, I) to Pd(PMe3)2 with both PdL and PdL2 

pathways investigated (Scheme 1.3).
98
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Scheme 1.3 Mono-, and bis-ligated pathways for oxidative addition of aryl halides to Pd
0
. 

 

For aryl chlorides, the monophosphine pathway is favoured with transition state TS5-6 

higher in energy than 4. Thus oxidation addition is expected to be the rate determining 

step with the nature of the para-substituents on ArX affecting the rate. This is consistent 

with the results of Hartwig and co-workers for the reaction of PhCl with Pd(Q-phos-tol)2. 

For aryl bromides, the monophosphine pathway is also favoured. The energy of 

monoligated palladium species 4 was found to be  similar to TS3-7 with TS3-7 being 

marginally higher in energy than 4 for PhBr and p-MeO-C6H4-Br, while for p-NC-C6H4-

Br 4 and TS3-7 are equal in energy. 

 

For aryl iodides PhI and p-MeO-C6H4-I, the monophosphine pathway is marginally 

favoured, with the barrier between 5 and 6 being lower than the barrier to phosphine 

dissociation from 3. This is consistent with the experimental findings of Hartwig and co-

workers for the reaction of PhI and Pd(Q-phos-tol)2. For p-NC-C6H4-I, the barrier to 
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oxidative addition to 3 is lower than the barrier to phosphine dissociation from 3 and thus 

the bisphosphine pathway is favoured. 

 

Pd
0
 complexes of π-acidic olefins such as dba (dibenzylideneacetone) are widely used in 

conjunction with donor ligands to generate “Pd
0
Ln” complexes in situ. Amatore and 

Jutand have studied the oxidative addition of “Pd
0
L2” generated from Pd2(dba)3 and 

monodentated ligands to aryl iodides. “Pd
0
L2”exists predominantly as Pd

0
(dba)L2 which 

is unreactive for oxidative addition, due to reduction in electron density on the palladium 

centre due to π-backbonding to dba. The active species, Pd
0
L2 is generated in low 

concentrations from Pd
0
(dba)L2, with which it is in an unfavourable equilibrium (Scheme 

1.4).
99
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Scheme 1.4 Reversible coordination of dba to Pd
0
 centres. 

 

Dissociation of dba from Pd
0
(dba)L2 to give Pd

0
L2 was shown to be the rate determining 

step. Therefore, the strength of dba binding controls the concentration of the active 

species for oxidative addition and thus the kinetics of this key step. Fairlamb and 

coworkers have employed a range of n,n‟-disubstituted dba analogues bearing a range of 

groups (OMe, 
t
Bu, H, CF3, NO2) as ligands in Pd2(dba)3 type catalyst precursors in a 

range of palladium catalysed cross-couplings.
100

 As expected, the use of Pd2(dba)3 

analogues bearing electron donating groups showed higher activity due to weaker 

π-backbonding between Pd
0
 and the dba analogue, which reduces ligation of the active 

species by the dba analogues.
101
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1.2.2 Transmetallation 

 

The predominant difference between the various cross-coupling reactions is the nature of 

the transmetallation step in which the halide or pseudohalide on Pd
II
 is replaced by the 

nucleophilic carbon centre of the transmetallating species M-R1. M may be a p-block 

element such as boron (Suzuki-Miyaura reaction), silicon (Hiyama reaction), tin (Stille 

reaction) or aluminium, a transition metal such as copper (Sonogashira reaction) or zinc 

(Negishi reaction) or s-block elements such as magnesium (Kumada-Tamao-Corriu 

reaction). The transmetallation steps in the Sonogashira and Suzuki-Miyaura reactions 

will be discussed in more detail in further sections. 

 

1.2.3 Reductive elimination 

 

The increased oxidation state of palladium and the high strength of the C-C bond make 

the formation of a C-C bond via reductive elimination of the two carbon centres on Pd
II
 

highly favoured. Due to the lack of polarisation in the bond formed, the elimination step 

occurs via a concerted mechanism. In order for reductive elimination to occur, the two 

substituents on palladium must be in a cis configuration. This is demonstrated by the two 

dimethyl palladium complexes shown in Figure 1.23. The differing bite angles of 1,2-

bis-diphenylphosphino-ethane (dppe) and 2,11-bis-[(diphenylphosphanyl)-methyl]-

benzo[c]phenanthrene enforce cis and trans conformations, respectively, in their 

dimethylpalladium complexes. Warming Pd(dppe)Me2 (8) in DMSO produces ethane due 

to reductive elimination,
102

 while no ethane production is observed from 

Pd(transphos)Me2 (9) under the same conditions. 

Ph2P PPh2Pd

H3C

CH3Ph2P
Pd

PPh2

H3C CH3

8 9  

Figure 1.23 Pd(dppe)Me2 and Pd(transphos)Me2 complexes. 
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Facile reductive elimination is important in all cross-coupling reactions but is especially 

so in the case of the cross-couplings of alkyl nucleophiles and/or electrophiles in which 

reductive elimination is usually slow and competes with β-hydride elimination. The use 

of π-acidic olefins either as additives or ligands can enhance reductive elimination rates 

by removing electron density from Pd
II
 and further favouring the formation of Pd

0
. For 

example, the coupling of allyl halides with allyl stannanes catalysed by 1 mol % of (
3
-

allyl)palladium chloride dimer required maleic anhydride as a co-catalyst (Equation 1.1). 

 

Br Bu3Sn

O OO

1 mol % [3-C3H5)PdCl]2

THF, 50 oC

(5 mol %)

40%
(+ 37% homocoupling)

Cl Bu3Sn

O OO

1 mol % [3-C3H5)PdCl]2

THF, 50 oC

(5 mol %)

64%
(+ 12% homocoupling)

 

 

Equation 1.1 Stille couplings of allyl stannanes and allyl halides with catalytic maleic anhydride. 

 

On the basis of stoichiometric experiments, the authors suggest that maleic anhydride is 

required to facilitate reductive elimination from the Pd
II

 bis-allyl intermediate.
103

 The 

coupling of allyl chloride with NaBPh4 catalysed by [Pd(
3
-C3H5)Cl(AsPh3)] gave 48 % 

of allylbenzene after 40 minutes at 50 
o
C in the absence of exogenous alkene. Addition of 

20 mol % dimethyl fumarate increased the yield to 90% under identical conditions 

(Equation 1.2).
104
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4 mol % [3-C3H5)}PdCl(AsPh3)]Cl
NaBPh4

THF, 0oC, 40 min
+

Additive                         none                                     (20 mol %)                        
                                                                       
    
                                                                               
Yield                              48%                         90%

MeO2C

CO2Me

 

 

Equation 1.2 Suzuki-Miyaura reactions of allyl chloride and sodium tetraphenylborate with catalytic 

dimethyl fumarate. 

 

Although the use of olefin additives can enhance reductive elimination, when in large 

excesses, these additives may retard the oxidative addition step similar to the action of 

dba. To overcome this, Aiwen Lei and coworkers developed novel phosphines bearing an 

electron deficient olefin (Figure 1.24). Palladium complexes of these ligands have 

proven highly effective in both Negishi couplings involving dialkylzinc reagents 

possessing β-hydrides
105

 and in Cadiot-Chodkiewicz type cross-couplings of 

bromoalkynes and terminal alkynes.
106

 In both cases, undesirable side reactions 

(β-hydride elimination and alkyne homocoupling, respectively) are minimised, with 

preliminary kinetic studies into the sp-sp cross-coupling showing that the 

phosphine-olefin ligand facilitated reductive elimination. 

 

O

PPh2

O

PCy2

 

 

Figure 1.24 Phosphine-olefins ligands synthesised by Lei and co-workers. 

 

1.2.4 The Sonogashira reaction 

The formation of a  bond between terminal acetylenes and aryl or vinyl halides has been 

known since the development of the Castro-Stephens reaction over 40 years ago.
107

 

However, this reaction involves the use of stoichiometric amounts of potentially 

explosive Cu acetylides in a reaction with aryl halides. In 1975, both Heck
108

 and 
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Cassar
109

 reported the coupling of terminal acetylenes with aryl or vinyl bromides and 

iodides. Heck et al. employed catalytic Pd(PPh3)2(OAc)2  in the presence of base at 100 

o
C, while Cassar showed that Ni(PPh3)4 and Pd(PPh3)4 in the presence of base mediated 

similar reactions under milder conditions. Coordination of the alkyne to nickel restricted 

subsequent oxidative addition steps with Ni
0
(PPh3)4, while the use of Pd(PPh3)4 allowed 

the reaction to run catalytically. Sonagashira et al. later developed a mild coupling of 

terminal acetylenes and bromoalkenes, iodoarenes and bromopyridines with catalytic 

amounts of Pd(PPh3)2Cl2, and CuI in an amine solvent.
85 

 

1.2.5.1 Mechanism of the Sonogashira reaction 

The original catalytic cycle, as proposed by Sonogashira,
86

 features a precatalytic 

initiation step in which PdL2X2 undergoes double transmetallation to give a 

(bis-alkynyl)palladium complex which reductively eliminates homocoupled diyne and 

gives rise to the catalytically active Pd
0
L2 species (Scheme 1.5). This initial 

homocoupling has been quantified by Marder and coworkers.
110
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(PR3)2PdCl2

(PR3)2Pd(CCR1)2

R1 R1

ArR1 Ar-X

(PR3)2Pd0

CuX

2CuCl /  R'3NHI

transmetalation

reductive elimination

trans oxidative addition 
(via cis-trans isomerisation)

transmetallationtrans-cis isomerisation

reductive elimination

 catalytically
active species

catalyst initiation

/ CuI / R'3NHR1

R1

PdII

R3P

R3P Ar

R1

PdII

Ar

R3P PR3

Cu R1

X
PdII

Ar

R3P PR3

H2

main catalytic cycle

 

Scheme 1.5 Classical Sonogashira reaction mechanism. X = Br, I or TfO.  

Recently, detailed mechanistic studies via cyclic voltammetry and 
31

P NMR 

spectroscopy
110,111,112

 have suggested that the Pd
0
(PPh3)2 species generated by 

electrochemical reduction of Pd(PPh3)2Cl2 actually exists as a mixture of three active 

forms in rapid equilibrium: [Pd
0
(PPh3)2Cl]

-
, its dimer [Pd

0
(PPh3)2Cl]2

2-
 and 

[Pd
0
(PPh3)2Cl2]

2-
 with the dimeric species being present in trace levels. Two catalytic 

cycles operate with the dominant cycle dependent on halide and nucleophile 

concentration as well as the nature of the metal ion, M. When MX exists as ion pairs, or 
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there is a lack of free halide, anionic palladium complexes are unable to form and the 

much slower non anionic secondary cycle dominates (Scheme 1.6). 

CuX

Secondary
cycle

PPh3 PdII

Ar

PPh3

R

Ar PdII

PPh3

PPh3

R

PPh3 PdII

Ar

X

PPh3

CCRCu

PdII Ar

PPh3

PPh3

S

X

PdII Ar

PPh3

PPh3

X

X
PdII Ar

PPh3

PPh3
X

R

Pd0 X

PPh3

PPh3

RAr

+ S, -X-

+ X-, -S

Main anionic
cycle

PdII Ar

PPh3

PPh3

X

Cl

PdI0 Cl

PPh3

PPh3

+ Cl

- Cl
Pd(PPh3)2

ArX

+ S

- Cl-
+ Cl-

- S

-S

CCRCu+

 

Scheme 1.6 Recent proposal for the mechanism of the Sonogashira eaction. S = THF, X = halide. 

 

For conditions in which the halide anion is not bound or is present in large excess 

(normal reaction conditions), ligation of Pd
0

 by halide leads to the formation of 

Pd
0
(PPh3)2X

- 
and Pd

0
(PPh3)2X2

2-
 and the dominance of the anionic cycle. The highly 

transient Pd
II
(PPh3)2ArX2

-
 species can be considered the key catalytic species in both 

cycles. It is involved in a rapid equilibrium with the neutral penta-coordinated 
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Pd
II
(PPh3)2ArXS  which may either dissociate solvent to give trans-Pd

II
(PPh3)2ArX or 

undergo transmetallation to give Pd
II
(PPh3)2ArX(CCR). Pd

II
(PPh3)2ArXS  interconnects 

the two cycles and as a result the secondary cycle remains important.
111,112,113

 

 

1.2.5.2 Transmetallation in the Sonogashira reaction 

The transmetallation step involves the transfer of the nucleophilic acetylide moiety from 

Cu
I
 to Pd.

II
. The transmetallating species is believed to be a Cu-acetylide formed in situ 

by the abstraction of the acidic acetylenic proton by base (typically NR3 or HNR2) and 

coordination of the acetylide anion to Cu
I
. Subsequent transmetallation yielding Pd 

acetylide and Cu halide occurs with retention of configuration at Pd suggesting that a 

concerted mechanism is in operation. 

 

1.2.5.3 Recent developments in the Sonogashira reaction 

Recent developments in the Sonogashira reaction have sought to increase both its scope, 

in relation to potential coupling partners, and its efficiency, in relation to higher turnover 

numbers (TONs) and the use of milder conditions such as room temperature couplings of 

aryl bromides. In addition, both Cu and amine free protocols have been developed. 

Copper free Sonogashira reactions, also referred to as Heck alkynylation reactions, have 

been developed to reduce the formation of homocoupled diyne side product in the 

presence of O2 by Cu-catalysed Glaser type reactions
114

 or by Pd/Cu catalysed 

reactions.
109,115

 Amine free protocols have also been developed, but require the use of 

stoichiometric amounts of an alternative base to deprotonate the terminal alkyne and to 

trap the HX byproduct.
116

 

Palladium catalysts featuring bulky, electron rich phosphines have been shown to be 

highly active for a wide range of cross-coupling reactions. Pd(PhCN)2Cl2 / 
t
Bu3P / CuI in 

a 1:2:1.5 ratio was found to promote the room temperature couplings of both activated 

and deactivated aryl bromides with a range of terminal acetylenes at room temperature.
117

 

A Cu free procedure using 1:1 Pd2(dba)3 / 
t
Bu3P was also found to be effective.

118
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Palladacyclic catalyst precursors such as 10 and 11 (Figure 1.25) possess high thermal 

stability in comparison to traditional Pd(PR3)2X2 catalyst systems. This, and the high 

TONs often obtained, has led to the use of palladacyclic precursors in a range of cross-

couplings, especially for substrates requiring the use of elevated temperatures. 

P
Pd Pd

PO O

O O
RR

R R

R = o-tolyl

10 11

Pd
N

OH

Cl

Cl

Pd
N

HO

Cl

Cl

Cl

Cl

 

Figure 1.25 Palladacyclic catalyst precursors. 

 

The oxime derived palladacycle 10 was used by Alonso et al. for the Cu and amine free 

Sonagashira reaction of aryl iodides and bromides with a variety of terminal acetylenes. 

TONs as high as 72000 were observed with tetrabutylammonium acetate as the base in 

N-methylpyrrolidinone at 110 
o
C.

119
 Interestingly, the reactions were carried out in air 

suggesting that an alternative mechanism to the traditional Pd
0
/Pd

II
 cycle may be 

operating. Palladacycle 11, derived from P(o-tolyl)3 and Pd(OAc)2,  shows high catalytic 

activity for a range of  cross-couplings
 
at elevated temperatures, and has been shown to 

mediate the Sonogashira reaction in the absence of Cu co-catalyst with very low catalyst 

loadings. TONs of up to 8000 have been reported in the coupling of 4-

bromoacetophenone with phenylacetylene.
120 

 

N-heterocyclic carbenes (NHCs) have attracted considerable interest as potential ligands 

for homogeneous catalysis since their isolation by Arduengo et al.
121

 The strong -donor 

and weak -acceptor properties of these ligands and their reluctance to dissociate from 

the metal centre make them attractive alternatives to bulky phosphine ligands.  
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Figure 1.26 N-heterocyclic carbene (NHC) precursors and a Pd
II
 complex bearing an NHC ligand. 

 

Catalyst precursor 12 (Figure 1.26) was shown by Batey et al. to promote Sonogashira 

cross-coupling under mild conditions with PPh3 and CuI co-catalyst and NEt3 or Cs2CO3 

as a base.
122

 Ligand precursor 13 (Figure 1.26) was used in conjunction with Pd(OAc)2 

and CuI with base to give highly efficient couplings of o-iodohaloarenes in a one-pot 

synthesis of N-substituted indoles. The alkyne product intermediates were not isolated, 

but overall yields of up to 99% were obtained for the final products.
123

 

 

In a highly important development, Fu and coworkers employed a range of 

N-heterocyclic carbene precursors, including 14 (Figure 1.26), in conjunction with Pd(-

allyl)Cl2 and CuI for the couplings of a range of unactivated alkyl bromides and iodides 

possessing -hydrogens. Yields of up to 81% were reported showing that the catalyst 

system successfully circumvents the propensity of the oxidative addition products to 

undergo -hydride elimination.
124

 

 

1.2.5 The Suzuki-Miyaura reaction 

 

The Suzuki-Miyaura reaction
82 

involves the formation of a  bond between two carbon 

atoms via the cross-coupling of an organoboron compound and an organic halide or 

pseudohalide (e.g. TfO). The reaction is tolerant of a wide range of functional groups, 

and the coupling of aryl or 1-alkenyl boronic acids (or equivalent) proceeds smoothly for 

aryl, 1-alkenyl, 1-alkynyl, allyl, and benzylic halides. -Hydride elimination in trans-

RPdL2X complexes formed from oxidative addition of RX has limited the use of primary 

and secondary alkyl halides as coupling partners. The Suzuki-Miyaura reaction follows 
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an oxidative addition, transmetallation, reductive elimination pathway common to most 

palladium-catalysed cross-couplings (Scheme 1.7).  

 

R-XLnPd0

LnPdII XR

LnPdII R'R

LnPdII

R'

R

oxidative addition

transmetallation
trans-cis isomerism

reductive 
elimination

R-R'

R'-B(OR)2 / ROM

B(OR)3 + MX  

Scheme 1.7 Mechanism of the Suzuki–Miyaura reaction. 

 

 

Oxidative addition of aryl, 1-alkenyl, 1-alkynyl, allyl, and benzylic halides to a 

coordinatively unsaturated Pd
0
 complex, and subsequent cis-trans isomerisation, leads to 

the formation of a stable trans-palladium(II) complex. The reaction proceeds with 

complete retention of configuration for alkenyl halides and with inversion for allylic and 

benzylic halides. A variety of Pd
0 

complexes such as Pd
0
(PPh3)4 can be used as catalysts, 

as can mixtures of Pd2(dba)3 and ligands which form active Pd
0 

complexes in situ. Air 

stable Pd
II 

catalyst precursors such as PdCl2(PPh3)2 and Pd(OAc)2/phosphine systems are 

also highly effective, with in situ reduction via reaction with phosphines in the presence 

of water or organometallics generating the active Pd
0 

species.
125

 Alternatively, two 

transmetallations of the organoboronate to Pd
II
, followed by reductive elimination (i.e. 

homocoupling) of biaryl gives Pd
0
. 

 

1.2.5.1 Transmetallation in the Suzuki-Miyaura reaction 

 

Organoboronates are inert to transmetallation to palladium
II
 halides in neutral conditions 

due to the low nucleophilicity of the organic group on boron. Addition of NaOH or other 
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basic species have been shown to have a dramatic effect on the rate of the 

transmetallation of organoborons compounds to Au, Ag, Pt and Hg.
126,127,128

 The 

nucleophilicity of the substituent on boron is enhanced by quaternisation of boron by the 

coordination of the Lewis base (Scheme 1.8). The exact mechanism of the quaternisation 

of the organoboron species and its subsequent transmetallation to Pd
II
 halides is 

dependent on the nature of the organoboronate species and occurs via either a 

quaternerised boronate species or Pd
II
OR intermediates.  

PdIILn XR1

PdIILn OR2R1

MX

B(OH)2R3

BR3

MOR2
R3

PdIILn OR2

B

OH
OH

OH

OR2

OH
MX

M

R1

PdIILn R3R1

B(OH)2R2O

Path A

Path B

 

 

Scheme 1.8 Base assisted transmetallation of organoborons compounds to Pd
II
(Ln)(R)X. 

 

Evidence for the free boronate pathway in the transmetallation of boronic acids is 

provided by the observation that the rate of cross-coupling of aryl boronic acids is 

retarded at pH 7–8.5 relative to that at pH 9.5-11. The pKa of phenyl boronic acid is 8.8 

suggesting the formation of the hydroxyboronate anion R‟-B(OH)3
-
 at pH values in 

excess of 8.8, and its transmetallation to Pd
II
 halides.

129
 However, although the basicity of 

the hydroxypalladium species is unknown, the analogous platinum complex 

Pt
II
Ph(PPh3)2OH is more basic than hydroxide, further complicating the situation.

130
 

 

The choice of base has an important effect on the selectivity of the reaction for 

unsymmetrically substituted alkenyl boronic acids.
131

 Strong Lewis bases such as fluoride 

and hydroxide give a predominantly cross-coupled product. However, in the presence of 

weakly basic species such as NEt3, „head to tail‟ coupling is observed with the coupling 
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occurring  to the position of the boron atom. This results from a competing pathway in 

which oxidative addition to RX is followed by η
2
-coordination of the alkenyl boronate 

ester 15 and subsequent 1,2-insertion into to the Pd-C bond to give 16. The alkyl 

palladium species is capable of isomerising via -hydride/deuteride elimination and 1,2-

insertion to give 17 with base-assisted elimination of the haloboronic acid and Pd
0
 giving 

the product.
132 

The alternative 1,2-insertion product, in which palladium and the butyl 

group are on the same carbon, may also undergo boryl elimination, but the product is 

identical to that of the conventional cross-coupled product (Scheme 1.9). 
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Scheme 1.9 Mechanism of head to tail coupling in Suzuki-Miyaura reactions. 

 

1.2.5.2 Potassium organotrifluoroborates and their reactions 

 

Potassium organotrifluoroborates are monomeric, crystalline solids that are readily 

isolated, indefinitely stable in the air and highly resistant to moisture.
133

 These materials 

are readily synthesised via the addition of KHF2 to a variety of organoboron 

intermediates in aqueous methanol.
134

 Aryl, alkenyl and alkynyl potassium 

trifluoroborates have been shown to be efficient coupling partners in the Suzuki-Miyaura 

reaction
135

 with the active transmetallating species, formed by reaction of 

organotrifluoroborate with base under aqueous conditions, being tetracoordinate 

organoboronates bearing one or more hydroxyl groups.
134c,136 
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The Lewis acidity and sensitivity of trivalent organoboranes and organoboronates to 

nucleophiles, bases and oxidants renders selective functional group interconversions of 

orgonaboron compounds challenging. In contrast, potassium organotrifluoroborates have 

been shown to be resistant to a range of nucleophilic, basic and oxidative reaction 

conditions that destroy organoboronic acids and boronate esters. 

 

R1

R2

BF3K
R1

R2

BF3K
O

OO

(1.2 equiv)

acetone, rt

C8H17 BF3K
O

Ph
BF3K

O
BF3K

O
Cl BF3K

O

85% 70% 71% 80%  

 

Equation 1.3 Epoxidation of potassium 1-alkenyl trifluoroborates with dimethyldioxirane. 

 

Molander and coworkers have shown that 1-alkenyl trifluoroborates could be oxidised 

with dimethyldioxirane to give their corresponding epoxides. In contrast, 1-alkenyl 

boronic acids and their corresponding pinacol esters yielded aldehydes, resulting from 

oxidative B-C cleavage (Equation 1.3).
137

 Similarly, aryl and alkyl trifluoroborates 

bearing alkene moieties underwent cis-dihydroxylation in the presence of catalytic OsO4 

and morpholine N-oxide without reaction of the trifluoroborate moiety.
138

  

 

I BF3K
1. Nucleophile (Nuc, 3 equiv)

2. aq. KHF2 (1.5 M)
Nuc BF3K

BF3K
S

NC BF3K BF3K

O

EtO2C

S BF3K

Br

H
N BF3K

N3 BF3K

N BF3K

O

O BF3K N BF3K

CO2Me

 

Equation 1.4 Nucleophilic substitution of iodomethyl trifluoroborates. 
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Potassium organotrifluoroborates have been shown to undergo further functionalisation 

under basic conditions with retention of the trifluoroborate group. Potassium 

aryltrifluoroborates were functionalised using Wittig
139

 or Horner-Wadsworth-

Emmons
140

 reactions, with incorporation of potassium trifluoroborate into both the 

carbonyl and triphenylphosphonium chloride salt possible. In addition, potassium 

p-bromophenyltrifluoroborate may be functionalised by lithiation and trapping with a 

variety of electrophiles
141

 and potassium iodomethyltrifluoroborate can be reacted with a 

range of nucleophiles, to give a range of functionalised methyltrifluoroborate salts 

(Equation 1.4).
142

 

 

1.2.5.3 Suzuki-Miyaura cross-couplings of organoboron reagents with alkyl 

halides 

 

In 1992, Suzuki and coworkers showed that 9-alkyl-9-BBN derivatives possessing -

hydrogens as well as 9-aryl/alkenyl-9-BBN derivatives could be cross-coupled with 

primary alkyl iodides in the presence of catalytic Pd(PPh3)4 and excess K3PO4. 
143

 

 

More recently, work by Fu and coworkers has shown that trialkylphosphine ligands, 

especially PCy3, in conjunction with Pd catalyst precursors are effective for the couplings 

of 9-alkyl-9-BBN derivatives to primary alkyl bromides (Table 1.2).
144

 Couplings of 

9-alkyl-9-BBN derivatives to alkyl tosylates
145

 and chlorides
146

 were also reported by the 

same group.  

 

Although easily synthesised by alkene hydroboration, 9-alkyl-9-BBN derivatives are 

sensitive to air. In comparison, boronic acid derivatives possess high stability with 

respect to air and water, in addition to being commercially available. A catalyst derived 

from Pd(OAc)2/P(tBu)2Me was found to be highly effective for cross-couplings of 

arylboronic acids and primary alkyl bromides in the presence of base in t-amyl alcohol at 

room temperature
147

 and was shown to oxidatively add bromoalkanes at temperatures as 

low as 0 
o
C. Further work with Ni catalysts bearing 2-aminoalcohol ligands showed them 

to be highly effective for the cross-couplings of arylboronic acids with a variety of 
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unactivated primary and secondary alkyl halides (including the more challenging alkyl 

chlorides).
148 

 

Table 1.2 Cross-couplings of 9-alkyl-9-BBN derivatives with alkyl bromides by Fu 

and co-workers. 

B
n-Hex

Br
n-Dec

1.2 equiv.

4 mol % Pd(OAc)2
8 mol % PCy3

1.2 equiv. K3PO4 H2O

THF, rt

n-Dec
n-Hex

.
+

 

entry Ligand
a 

n-Dec
n-Hex n-Dec  

1 PCy3 85 <2 

2 PPh3 <2 <2 

3 P(2-furyl)3 <2 <2 

4 P(o-tol)3 <2 14 

5 P(2,4,6-methoxylphenyl)3 <2 31 

6 dppf <2 12 

7 Binap <2 <2 

8 P(OPh)3 <2 <2 

9 AsPh3 <2 <2 

10 P
t
Bu3 <2 21 

11 P
n
Bu3 9 27 

12 dcpe <2 21 

13 P
i
Pr3 68 6 

% yield after 16 h (by GC)  
a
 In the case of bidentate ligands 4% of the ligand was used 

 

1.2.5.4 Suzuki-Miyaura cross-couplings of organoboron reagents with aryl 

chlorides 

 

The use of unactivated aryl chlorides as coupling partners in the Suzuki-Miyaura reaction 

is highly desirable due to the low cost and facile synthesis of aryl chlorides. In the last 

decade, huge progress has been made in the use of these unreactive substrates in cross-
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couplings
149

 facilated by the use of bulky, highly electron rich ligands. In 1995, the 

Pd(OAc)2/P(o-tolyl)3 derived palladacycle 11 was shown to mediate the Suzuki-Miyaura 

reaction of 4-chloroacetophenone and phenylboronic acid with K2CO3 base at 130 
o
C 

with similar conditions yielding high TONs for the coupling of aryl bromides.
149d 

 

Nolan and coworkers have employed the NHC-ligated palladacycle 18 as a precatalyst 

for the Suzuki-Miyaura coupling of unactivated aryl chlorides bearing ortho substituents 

with boronic acids at room temperature in technical grade 
i
PrOH (Equation 1.5). 

 

N

Pd
Cl

N

N
R

R

Cl (HO)2B

2 mol % 18

NaOtBu 0.6 mmol

Isopropanol 1 mL
Room temperature, 75 min

+

0.5 mmol 0.7 mmol

87%

18 R =

 

 

Equation 1.5 Cross-couplings unactivated aryl chlorides with aryl boronic acids by Nolan and co-workers. 
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Scheme 1.10 Activation of palladacycle 18 in 2-propanol. 
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Couplings of aryl chlorides yielded the corresponding biaryl products in high yields with 

short reaction times with anyhydrous 
i
PrOH giving no improvement in activity or yields. 

It was proposed that the displacement of chloride by iso-propoxide in 18 gave a iso-

propoxy substituted palladacycle which may undergo β-hydride elimination with loss of 

acetone to give a palladium hydride. Reductive elimination of 2-dimethylaminobiphenyl 

may then give NHC-Pd
0
 as the active catalytic species (Equation 1.5 and Scheme 

1.10).
150

 

 

Dialkyl(biaryl)phosphines (Figure 1.27) have been shown to be highly active ligands for 

the cross-coupling of aryl boronic acids and aryl chlorides.
151,152

 A combination of the air 

stable 2-dimethylamino-2‟-dicyclohexylphosphinobiphenyl (davephos) and Pd(OAc)2 is 

highly effective for the room temperature couplings of aryl chlorides, even those 

possessing electron donating groups and ortho substituents.
150

 In comparison, 

Pd(PCy3)2Cl2  catalyses the  Suzuki-Miyaura reactions of activated aryl halides at 100-

120 
o
C in N-methylpyrrolidone with CsF as base. Electron donating substituents are not 

tolerated and the presence of ortho substituents is found to lower the yield.
151

 For the 

synthesis of biphenyls with more than one ortho substituent more active systems are 

required. The dicyclohexyl-(2-phenanthren-9-yl-phenyl)-phosphine ligand 19 gives an 

extremely active catalyst when used in conjunction with Pd2(dba)3. Biaryl products with 

4 ortho-substituents are produced in high yields from the couplings of aryl chlorides with 

aryl boronic acids.
152

  

 

The high activities of these ligands are attributed to their electron rich nature and large 

steric bulk which favours a PdL mediated oxidative addition pathway. nteractions 

between the  system of the diphenyl moieties and palladium may stabilise highly active 

monophosphine species and are believed to encourage reductive elimination.
151
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Cy2P

NMe2

Cy2P

Davephos 19  

 

Figure 1.27 Dialkylbiarylphosphines for Suzuki-Miyaura reactions of aryl chlorides developed by 

Buchwald et al. 
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1.3 Transition metal-catalysed borylations of C-H bonds 

 

Organoboron compounds have received much attention, especially as intermediates in 

organic synthesis.
153,154

 The B-C bond may be cleaved with or without homologation and 

organoboranes can be utilised as substrates in a variety of catalytic reactions including 

Suzuki-Miyaura cross couplings,
82

 copper-catalysed Chan-Lam type couplings with N-, 

and O-nucleophiles,
155

 and rhodium-catalysed additions to a variety of unsaturated 

compounds.
156

  

 

1.3.1 Synthesis of organoborons 

 

The synthesis of organoboranes has traditionally involved the trapping of Grignard or 

organolithium reagents with trialkylborates
152

 or hydroboration of alkenes and alkynes,
152

 

as developed by H. C. Brown and coworkers, where the addition of the H-B bond 

proceeds with anti-Markovnikov regioselectivity. Diborylated products may be 

synthesised by the addition of diboron compounds to unsaturated systems. This was first 

demonstrated by Schlesinger and coworkers with the addition of B2Cl2 to ethene
157

 to 

form Cl2BC2H4BCl2, (Equation 1.6). 

 

 

 

 

Equation 1.6 Addition of B2Cl4 to ethene by Schlesinger and co-workers. 

 

However, due to the difficulty of preparation and instability of B2Cl4, this reaction has 

not found general application. However, the use of more stable diboron reagents such as 

B2(NMe2)4,
158

 B2pin2
159

 (pin = pinacolato = OCMe2CMe2O), B2neop2
160

 (neop = 

neopentaneglycolato = OCH2CMe2CH2O) and B2cat2
159, 161

 (cat = catecholato = 

1,2-O2C6H4) has allowed for the development of a variety of diborylation reactions, 

although transition metal catalysts are required to cleave the B-B bond.
162

 Figure 1.28. 

 

Cl

B B

Cl Cl

Cl

+
-80 oC

Cl2B BCl2
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Figure 1.28 Diboron compounds. 

 

Methods for the synthesis of aryl boron compounds have traditionally required 

preactivation of the aromatic ring or the presence of a directing group.
163

 Equation 1.7. 

 

X

H

DG

SiMe3

X

B(OR)2

B(OR)2

DG

BBr2

B(OR)2

B(OH)2

B(OH)2

DG

B(OH)2

H3O+

H3O+

H3O+

1. R'M

2. B(OR)3

1. R'Li

2. B(OR)3

BBr3

HB(OR)2 or

B2(OR)4
Pd, base

X = Br, I

DG = directing group

X = halide, OTf  

 

Equation 1.7 Methods for the synthesis of arylboron compounds. 

 

1.3.2 Transition metal-catalysed C-H borylations 

 

The synthesis of aryl and benzylic boron compounds, which cannot be synthesised via 

hydroboration, by the direct functionalisation of C-H bonds is highly attractive as it 

eliminates the need for preliminary steps associated with the preactivation of arenes. The 

rest of this section will concentrate on the scope and limitations of methods for the 

synthesis of aryl-, benzyl-, and vinyl boronate esters via transition metal catalysed 

borylations of aromatic, benzylic and vinylic C-H bonds. 
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1.3.3 Transition metal-catalysed benzylic C-H borylation  

 

Marder and coworkers reported the use of [Rh(Cl)(N2)(P
i
Pr3)2] with HBpin to generate a 

catalyst for the benzylic borylation of methylarenes at 140 
o
C with Rh loadings between 1 

and 0.3 mol % (Equation 1.8). In addition, the same catalyst system was found to be 

effective for the aromatic C-H borylation of benzene. The borylation of mesitylene, 

p-xylene and toluene led predominantly to benzylic borylation products with only small 

amounts of products of arene C-H borylation observed. Toluene was borylated in 76% 

yield with 81% selectivity for benzylic borylation after 80 h at 140 
o
C. Reactions of 

p-xylene and mesitylene lead to lower yields (41 and 17% respectively) with 100% 

selectivity for benzylic functionalisation, which was attributed to increased steric 

hindrance around the aromatic C-H bonds. In the borylation of toluene, greater than 

statistical levels of bis-pinacolboryl-methylbenzene were observed, suggesting that the 

presence of a boryl group further activates adjacent benzylic C-H bonds.
164

 

 

Men
H

HBpin Men-1
Bpin

H2

RhCl(PiPr3)2(N2)

140 oC / 80 h
+ +

Bpin

Bpin

Bpin BpinBpin

69% 7%

+

41% 17%  

 

Equation 1.8 Benzylic borylation of methylarenes by Marder and co-workers.
164 

 

Subsequent computational studies
165

 into the reaction have suggested that oxidative 

addition of HBpin to the 14 electron species [Rh(Cl)(P
i
Pr3)2], 19, followed by elimination 

of ClBpin generated the active catalytic species [Rh(H)(P
i
Pr3)2]. Coordination of toluene 

gives a ζ C-H complex which undergoes oxidative addition of the bound C-H bond to 

give [Rh(P
i
Pr3)2(η

3
-benzyl)(H)2]. Stabilisation of the benzylic C-H activation product by 

η
3 

coordination accounts for the observed selectivity for benzylic over aromatic C-H 

borylation. Reductive elimination of H2 from [Rh(P
i
Pr3)2(η

3
-benzyl)(H)2] gives a  ζ-H2 

complex, from which H2  is displaced by HBPin to give a ζ-HBpin complex. Subsequent 
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oxidative addition yields [Rh(P
i
Pr3)2(η

3
-benzyl)(H)(Bpin)] which reductively eliminates 

the borylated product to regenerate the Rh(I) hydride catalyst (Scheme 1.11). 

 

[Rh] = Rh(PiPr3)2

[Rh](Cl)(H)(Bpin)

[Rh] -H

[Rh]

H2
CH

H

[Rh] -CH2Ph
H

Bpin

[Rh] -H
Bpin

Ph

Cl -Bpin

PhH2C- [Rh]
H

H

CH2[Rh]

PhCH3

HBpin

H2

PhCH2Bpin

Bpin

H

 

|Scheme 1.11 Catalytic cycle for the borylation of toluene with [Rh(Cl)(P
i
Pr3)2] and HBpin. 

 

Ishiyama et al. reported that the widely available palladium on carbon (10% Pd/C) 

catalysed the benzylic borylation of alkyl arenes with both HBpin and B2pin2 at 100 
o
C 

without aromatic C-H borylation (Table 1.3).
166

 Reactions of toluene, o-, m-, and p-

xylene and mesitylene led to exclusive formation of benzylic borylation products whereas 

in the reaction of ethylbenzene, a mixture of benzylic and terminal C-H activation was 

observed. The lower yields and slower reactions observed when HBpin is used instead of 

B2pin2 indicated that reactions involving diboron occur via a two step process involving a 

fast and quantitative reaction with diboron, followed by a slower reaction with the HBpin 

generated by the earlier process.  
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Table 1.3 Pd/C-catalysed benzylic borylations of alkyl arenes with B2pin2 and HBpin.
166 

Bpin

Bpin

Bpin

Bpin

Bpin

Bpin

Bpin

Bpin

Bpin

Bpin

Product     Yields / %    a               b Product     Yields / %    a               b

72          54

77

79

72          51

64          45

72          54

15           6

38          13

39          42

9            5

a with B2pin2, b with HBpin. Yields relative to boron  

 

Beller et al. have reported that combinations of 2‟2-bipyridine (bpy) and the rhodium 

complexes [RhCl(COD)]2, [Rh(acac)COD] and Rh2(OAc)4 at 1.5 mol % Rh loadings are 

effective for the benzylic borylation of ortho-xylene at 80 
o
C

 
with ratios of sp

3
:sp

2
 

borylation of up to 67:3.
167

 

 

1.3.4 Transition metal-catalysed aromatic C-H borylation 

 

Direct functionalisation of aromatic C-H bonds is an attractive proposition, due to the 

elimination of synthetic steps usually associated with the preactivation of arenes. Of these 

reactions, the direct borylation of arene C-H bonds is of particular interest due to the wide 

range of transformations which utilize organoboranes. This field has recently been 

reviewed by Miyaura and Ishiyama.
168
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1.3.5 Stoichiometric group XII and XIII carbonyl mediated borylations 

 

One of the first examples of aromatic C-H borylation was reported by Hartwig and 

coworkers. Under photolytic conditions the stoichiometric borylation of benzene and 

toluene was achieved with [Mn(CO)5BCat], 20, [Re(CO)5BCat], 21 and 

[CpFe(CO)2BCat], 22. Reactions of toluene with Mn and Fe boryls 20 and 22 showed no 

formation of ortho substituted products and meta:para ratios of 1.6:1 and 1.1:1 

respectively.
169

 Later work by the same group reported the photolysis of 22 in benzene to 

give PhBcat in 99% yield.
170

 Photolysis of 22 in a range of monosubstituted arenes was 

studied, with the formation of only meta and para borylation products observed. Only 

photolysis reactions carried out in anisole yielded any ortho substituted products. This 

suggests that the regioselectivity is typically determined by steric effects, although the 

significant proportion of ortho-borylation observed for the reaction of 22 with anisole 

may result from the methoxy group acting as a directing group. The results are 

summarised in Table 1.4  

 

Table 1.4 Stoichiometric borylations of PhX with [CpFe(CO)2BCat], 22. 

 Product selectivities  

X o m p Yield / % 

Me - 1.1 1.0 70 

OMe 1.0 1.6 1.1 52 

Cl - 1.5 1.0 55 

CF3 - 1.5 1.0 33 

NMe2 - 1.0 8.0 30 

 

A pathway involving photochemical dissociation of CO to give a 16 electron intermediate 

followed by C-H bond oxidative addition or metathesis followed by reductive elimination 

of the B-C bond was proposed. 
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1.3.6 Rhodium-catalysed aromatic C-H borylation 

 

Hartwig and coworkers reported the use of [Cp
*
Rh(η

4
-C6Me6)], 23, in the borylation of 

benzene with HBpin. Catalyst loadings of 5 and 0.5 mol % were employed and the 

reactions were carried out at 150 
o
C in mixtures of arene substrate and HBpin.

171
 Further 

work by Smith and coworkers detailed the borylation of a range of functionalised arenes 

with the same catalyst.
172

 Monosubstituted arenes gave statistical distributions of 

meta:para borylation products, the exception being that of diethylbenzamide, the 

borylation of which gave a ratio of o:m:p products of 4.17:1.98:1. The statistical ratio of 

meta and para isomers suggest that a chelation directed ortho metallation and non 

directed pathways are in direct competition. 1,3-disubstituted arenes and 2,6-lutidine 

were borylated selectively in the meta position (Equation 1.9). 

 

R1

Bpin
R1

[Cp*Rh(4-C6Me6)]

HBpin / 150 oC

Yields  65 - 92%                     

R1 = H, CF3, NMe2, OMe,

 Me, CO2Et

[Cp*Rh(4-C6Me6)]

HBpin / 150 oC

Yields  50%
o:m:p = 4.17:1.98:1

NEt2

O

NEt2

O

Bpin

BpinX

R1

R2

X

R1

R2

[Cp*Rh(4-C6Me6)]

HBpin / 150 oC

X = CH                

Yields  73 - 86% 

R1 = R2 = CF3,  Me

X = N

Yield 41%

 R1 = R2 = Me
 

Equation 1.9 Rhodium-catalysed borylations of arenes by Hartwig and coworkers, and Smith and co-

workers. 

 

Smith and coworkers demonstrated the use of cyclohexane as an inert solvent in the 

borylation of arenes with HBpin and 23. This is highly desirable for the borylation of 

expensive or non volatile substrates, for which the use of the substrate as the solvent 

presents issues with cost and work up.
173

 Although 23 is able to catalyse the borylation of 

alkanes, secondary and tertiary C-H positions are not readily borylated. A range of 1,3-
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disubstituted arenes were borylated to give 1,3,5-substituted products, while veratrole 

(1,2-dimethoxybenzene) was borylated in the 4-position. N-protected 

1-triisopropylsilylpyrrole was selectively borylated in the least hindered 3-position 

(Equation 1.10). 

 

[Cp*Rh(4-C6Me6)]

HBpin / 150 oC

cyclohexane

R1

R2

R1

R2

Bpin

NTIPS NTIPS

Bpin[Cp*Rh(4-C6Me6)]

HBpin / 150 oC

cyclohexane

Yields  53 - 88%                     

R1 = CF3, NMe2, OMe, Me

R2 = CF3, NMe2, OMe, Me

Yield  81%

MeO

MeO

MeO

MeO

Bpin[Cp*Rh(4-C6Me6)]

HBpin / 150 oC

cyclohexane

Yield  82%

 

Equation 1.10 Regioselective aromatic borylations in cyclohexane by Smith and coworkers. 

 

Catalyst precursor [Rh(Cl)(N2)(P
i
Pr3)2], 19, previously discussed in relation to benzylic 

C-H borylation of methylarenes, is also effective for the aromatic C-H borylation of 

arenes (Equation 1.11).
163

 In the borylation of toluene, although benzylic C-H activation 

predominates, the ratio of sp
3
:sp

2
 products of 4:1 shows that the aromatic C-H borylation 

pathway is in competition with benzylic borylation and gives meta-MeC6H4Bpin as the 

main aromatic borylation product. Computational studies
164

 also show that the aromatic 

borylation pathway is similar in energetics to that for benzylic borylation. The borylation 

of benzene with HBpin in the presence of 1 mol % 19 gave 62% of PhBpin after 14 

hours, increasing to 86% after 58 hours.  

 

HBpin +
RhCl(PiPr3)2(N2)

140 oC
+

Bpin

H2
 

 

Equation 1.11 Borylation of benzene with [Rh(Cl)(N2)(P
i
Pr3)2] by Marder and co-workers. 
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1.3.7 Iridium-catalysed aromatic C-H borylation 

 

In 1993, during the preparation of Ir(η
6
-MeC6H5)(Bcat)3 from Ir(η

5
-C9H7)(COD), 24, and 

excess HBcat in toluene, Marder and coworkers observed substoichiometric borylation of 

the arene solvent. Reactions employing benzene and C6D6 gave similar results leading to 

the production of phenyl-Bcat and C6D5-Bcat as side products. When toluene was used as 

the solvent, 2 isomers of tolyl-Bcat were observed in a 2:1 ratio.
174

 

 

Later work by Smith and coworkers,
175

 in the light of earlier work by Bergman
176

 and 

Jones
177

 on alkyl C-H activation by group VII M(Cp
*
)PMe3 complexes,  detailed the 

thermal C-H activation of benzene using a Cp
*
(PMe3)Ir

I
 complex to give 

[Cp
*
Ir(PMe3)(H)(Ph)], 25. Reactions of 25 with HBpin and HBcat gave Ph-Bpin and Ph-

Bcat as the major products respectively (Equation 1.12). 

 

Cp*

Ir

H
Me3P Ph

Cp*

Ir

Bcat
Me3P Bcat

excess HBcat

C6D6, 150 oC
PhBcat H2+ +

Cp*

Ir

H
Me3P Ph

Cp*

Ir

H
Me3P Bpin

HBpin

C6D6, 150 oC
PhBpin H2+ +

 

 

Equation 1.12 Thermal reactions of [IrCp
*
PMe3(H)(Ph)] with HBcat and HBpin. 

 

The major product from the reaction of [Cp
*
Ir(PMe3)(H)(Ph)] with HBpin, 

[Cp
*
Ir(PMe3)(H)(Bpin)], 26, was found to be a precatalyst for the borylation of arenes 

with HBpin. The borylation of benzene was carried out with a catalyst loading of 17 mol 

%, at 150 
o
C for 120 hours, with three turnovers occurring in that time. Complex 26 was 

also employed as a catalyst in the borylation of a range of substituted arenes. Borylation 

was found to occur selectively in the meta and para positions, with many of the 

monosubstituted substrates giving statistical mixtures (in the range of 2:1) of meta and 

para isomers, Equation 1.13. 
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[Cp*Ir(PMe3)(H)(Bpin)]

HBpin, 150 oC

X

R1

R2

X

R1

R2

Bpin

R R
Bpin

Yields 55 - 99%

o:m:p - trace:2:1

R = H, Me, CF3, 

OMe, iPr

X = CH

Yields  60 - 86%

R1 = R2 =Me, CF3

X = N

Yield 41%

R1 = R2 = Me

[Cp*Ir(PMe3)(H)(Bpin)]

HBpin, 150 oC

 

 

Equation 1.13 [Cp
*
Ir(PMe3)(H)(Bpin)]-catalysed borylation of arenes. 

 

In 2002, building on the result of Marder,
173

 Smith and coworkers synthesised 

(η
6
-1,3,5-Me3C6H3)Ir(Bpin)3 by an analogous route from [Ir(η

5
-C9H7)(COD)], 24. This 

complex was used in conjunction with PMe3 to generate an active catalyst for the 

borylation of benzene with HBpin.
178

 The rate of borylation was found to decrease 

dramatically when the [P]:[Ir] ratio was 3:1 or higher, while [P]:[Ir] ratios of less than 3:1 

gave appreciable rates of borylation, suggesting that the active species possesses two 

dative ligands. In addition, catalysts were prepared in situ from a combination of 24, 

ligand and HBpin. Chelating phosphines such as 1,2-bis(diphenylphosphino)ethane 

(dppe) and 1,2-bis(dimethylphosphino)ethane (dmpe) led to substantial increases in 

activity and TONs, as demonstrated by dmpe, where the effective TON of 4500 

represents an improvement of 1500 fold over precatalyst (η
6
-1,3,5-Me3C6H3)Ir(Bpin)3. In 

addition, it was demonstrated that a combination of the commercially available 

[Ir(Cl)COD]2 dimer, 27, and dmpe led to an active catalyst for the borylation of benzene 

with HBpin.  

 

Catalyst precursor [Ir(η
5
-C9H7)(COD)], 24, in conjunction with dmpe and dppe, was 

utilised for the borylation of a range of mono-, and disubstituted arenes. As in borylations 

employing [Cp
*
Ir(PMe3)(H)(Bpin)], monosubstituted substrates gave statistical mixtures 

of meta and para isomers, while borylation of 1,3-disubstituted substrates occurred 

selectively at the mutually meta position. Borylation ortho to fluorine was demonstrated 
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for 1,4-difluorobenzene, demonstrating that the fluorine group has similar steric demands 

to that of a proton. In addition, 1,2-dimethoxybenzene was borylated at the 4-position. 

The results of these reactions are summarised in Equation 1.14. 

 

X

R1

R2

X

R1

R2

Bpin

MeO MeO

BpinMeO MeO

I I
Bpin

F

F

F

F

FF

Bpin

BpinF

F

F

F

HBpin
2 mol % Ir(Ind)COD
2 mol % dppe

100 oC

HBpin
2 mol % Ir(Ind)COD
2 mol % dmpe

150 oC

HBPin

2 mol % [(6-Mes)Ir(Bpin)3]

2 mol % dppe

100 oC

HBpin
2 mol % Ir(Ind)COD
2 mol % dmpe

150 oC

HBpin
2 mol % Ir(Ind)COD
2 mol % dppe

150 oC

X = CH                              X = N 

Yields  89 - 95%             Yield  69% 

R1 = Cl, Br                      R1 = R2 = Cl

R2 = Cl, Br, CO2Me

Yield  62%

Yield  77%
o:m:p - 0:21:79

ArH:HBPin - 4:1
1 h
Yield  63%

F

F

F

F

FF

Bpin
HBpin
2 mol % Ir(Ind)COD
2 mol % dmpe

150 oC

ArH:HBPin - 1:5
62 h
Yield  76%

Yield  81%

Bpin

Bpin

 

Equation 1.14 Iridium-catalysed arene C-H borylations by Smith and coworkers. 

 

Hartwig, Miyaura and coworkers demonstrated that a combination of [Ir(Cl)COD]2, 27, 

and 2,2‟-bipyridine (bpy) ligand was effective for the borylation of arenes with B2pin2 at 

80 
o
C in neat arene solvent.

179
 Both electron rich and electron poor arenes were borylated 

in high yields. Reactions were carried out over 16 hours using a 3 mol % Ir loading. 

Monosubstituted arenes gave statistical mixtures of meta and para borylation products, 

with steric effects preventing the formation of the ortho products for all substrates other 
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than anisole. Borylation of 1,2-disubstituted arenes, where R1 = R2, gave single products 

resulting from borylation in the para position, while 1,3-disubstituted arenes yielded 

1,3,5-substituted products resulting from borylation of the C-H bond meta to both 

substituents. Overall, the regioselectivity for the borylation of these arenes was 

characterized by the lack of borylation ortho to groups on the arene and statistical ratios 

of the meta and para borylation products, suggesting that it is the steric environment 

around the C-H bond, rather than electronic effects that determines the regioselectivity of 

Ir-catalysed borylations of substituted arenes. Borylations of benzene in the presence of 

either o-, m-, or p-borylanisole did not result in the formation of anisole, nor 

isomerisation of the boryl anisoles, showing that isomer ratios are kinetically rather than 

thermodynamically determined. The borylation of p-xylene, in which all aromatic C-H 

bonds are ortho to a methyl group, gives a single product although yields are lower than 

for o- and m-xylene due to steric hindrance (Table 1.5).   

 

Table 1.5 Iridium-catalysed direct borylations of arenes with B2pin2. 

Bpin

F3C
Bpin

MeO
Bpin

Bpin

Bpin

MeO

MeO

Bpin

Cl

Cl

Bpin

Bpin

Bpin

Bpin

MeO

Bpin

MeO

MeO

Product Yield / % (o:m:p) Product Yield / % (o:m:p)

95

95 (1:74:25)

82 (0:69:31)

82 (0:70:30)

83

86

83

58

86

72

73
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Competition reactions carried out in equimolar mixtures of trifluoromethylbenzene and 

toluene, trifluoromethylbenzene and anisole, and toluene and anisole gave product ratios 

of 90:10, 85:15 and 40:60, respectively, indicating that electron poor arenes are more 

reactive than electron rich ones. The higher reactivity of anisole, in comparison to 

toluene, suggests that coordination of substituent groups or inductive effects may also 

influence the reactivity of arenes. 

 

Later work by the same group sought to optimise this catalyst system via systematic 

studies into the effect of the nature of the 2,2‟-bipyridine ligand and the iridium source on 

the catalytic activity in room temperature reactions.
180

 Combinations of bpy and 

[IrX(COD)]2 complexes containing strongly basic and nucleophilic anions such as 

methoxide and hydroxide were found to be highly effective for the borylation of benzene 

with B2pin2 at room temperature in neat arene with 3 mol % Ir loadings, as was the use of 

[IrCl(COD)]2, 27, in conjunction with excess NaOH to generate [Ir(OH)COD]2 in situ. In 

contrast, the use of Ir(I)COD complexes of less basic and nucleophilic anions such as 

acetate, chloride and tetrafluoroborate as iridium sources showed little if any catalytic 

activity under identical conditions (Table 1.6). The high catalytic activity of (hydroxyl)-, 

and (alkoxy)-iridium complexes can be explained by faster formation of iridium 

monoboryl complexes. These species are formed by either; oxidative addition of B2pin2 

to (hydroxyl)-, or (alkoxy)-iridium species followed by reductive elimination of ROBpin 

or via transmetallation between B2pin2 and (hydroxyl)-, or (alkoxy)-iridium species 

(Scheme 1.12). In both cases the enhanced ability of hydroxyl and alkoxy ligands to 

interact with the vacant boron π-orbital and the formation of a strong B-O bond makes 

reactions more facile than for those of chloride, acetate and tetrafluoroborate complexes. 
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OMeIr
N

N BpinIr
N

N

OMeIr
N

N Ir
N

N Bpin

OMe

Bpin

BpinIr
N

N
+ B2pin2

+ B2pin2

+   MeO-Bpin

+   MeO-Bpin
Oxidative addtion / reduction elimination

Transmetallation N N
NN =

 

 

Scheme 1.12 Pathways for the formation of Ir
I 
monoboryl complexes from Ir(OMe) precursors. 

 

Table 1.6 Effects of differing iridium sources on the borylation of benzene with 

B2pin2 at room temperature. 

Entry Ir
I
 precursor Time / h Conversion / % Yield / % 

1 [IrCl(COD)]2 24 0 0 

2 [Ir(COD)2]BF4 24 3 0 

3 [Ir(OH)COD]2 4 100 88 

4 [Ir(OPh)COD]2 4 100 84 

5 [Ir(OMe)COD]2 4 100 90 

6 [{IrCl(COD)}2] / 4NaOH 4 100 73 

7 [Ir(OAc)COD]2 24 19 1 

 

To examine steric and electronic effects of substituents in 2,2‟-bipyridine ligands a range 

of substituted 2,2‟-bipyridines were used in conjunction with [Ir(OMe)COD]2, 28, (3 mol 

% Ir loading) for the room temperature of benzene with B2pin2 (Table 1.7). No large 

differences in activity was observed in catalysts featuring bpy (29a), 4,4‟- and 5,5‟-

dimethyl-2,2‟-bipyridine (29b and 29c, respectively) as ligands. The 3,3‟-dimethyl 

derivative 29d lead to reduced activity, suggesting that a planar ligand is desirable for 

high activity. The use 6,6‟-dimethyl substituted ligand 29e was ineffective due to steric 

crowding around the iridium centre. The use of ligands with electron donating 

substituents in the 4 and 4‟-positions (29f-29h) gave rise to higher activities than those 
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with no group or electron withdrawing groups in the 4 and 4‟-positions (29i and 29j, 

respectively).    

 

Table 1.7 Effects of ligands on the borylation of benzene with B2pin2 at room 

temperature. 

N N

R1 R1 R2

R3

R4R4

R3

R2
29a: R1, R2, R3, R4 = H

29b: R2 = Me, R1, R3, R4 = H

29c: R3 = Me, R1, R2, R4 = H

29d: R1 = Me, R2, R3, R4 = H

29e: R4 = Me, R1, R2, R3 = H

29f:  R2 = NMe2, R1, R3, R4 = H

29g: R2 = OMe, R1, R3, R4 = H

29h: R2 = tBu, R1, R3, R4 = H

29i:  R2 = , R1, R3, R4 = H

29j:  R2 = NO2, R1, R3, R4 = H  

Entry Ir
I 
precursor Ligand Time / h Conversion / % Yield / % 

1 [Ir(OMe)COD]2 29a 4 100 90 

2 [Ir(OMe)COD]2 29b 4 100 89 

3 [Ir(OMe)COD]2 29c 2 100 82 

4 [Ir(OMe)COD]2 29d 8 100 60 

5 [Ir(OMe)COD]2 29e 24 27 0 

6 [Ir(OMe)COD]2 29f 2 100 89 

7 [Ir(OMe)COD]2 29g 4 100 90 

8 [Ir(OMe)COD]2 29h 4 100 83 

9 [Ir(OMe)COD]2 29i 24 16 0 

10 [Ir(OMe)COD]2 29j 24 46 0 

 

 

1.3.7.1 Applications of the [Ir(X)COD]2/bpy catalyst system 

 

Since its initial publication, the use of [Ir(X)COD]2 (X = Cl, OMe) with 2,2‟-bipyridine 

ligands has become the predominant catalyst system for C-H borylation of arenes due to 

the stability of the catalyst precursors and its high activity under mild conditions in 

comparison to other reported systems. In the following pages the applications of this 

catalyst system will be reviewed. 
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1.3.7.1.1 Borylation of monosubstituted arenes  

 

Using a mixture of 27/bpy a range of monosubstituted arenes have been borylated with 

B2pin2 80 
o
C using neat substrate as the solvent.

178
 Borylation occurred in the meta and 

para positions giving a statistical ratio of products. Borylation ortho to the substituent is 

typically avoided due to steric factors (Equation 1.15). 

 

R R
Bpin0.5[IrCl(COD)]2/bpy (3 mol %)

80 oC, 16 h

Yields  80 - 95%

R = H, Me, CF3, OMe

B2pin2 +

 

 

Equation 1.15 Iridium-catalysed borylation of monosubstituted arenes with B2pin2 at 80 
o
C. 

 

1.3.7.1.2 Borylation of 1,2-disubstituted arenes 

 

Borylation of 1,2-disubstituted arenes has been demonstrated with both the 27/bpy and 

28/dtbpy catalyst systems.
178,179

 For symmetrical 1,2-disubstituted arenes, borylation 

para to the substituents yields a single regioisomer, with borylation of the C-H bonds 

ortho to substituents not observed (Equation 1.16). Borylation of unsymmetrical 1,2-

disubstituted arenes, which would yield two regioisomers, has, as yet, not been reported. 

 

B2pin2 +
0.5[IrCl(COD)]2/bpy (3 mol %)

80 oC, 16 h
R

R

R

R

Bpin

Yields  83 - 86%
R =  Me, Cl, OMe 

 

Equation 1.16 Iridium catalysed borylation of 1,2-disubstituted arenes with B2pin2 at 80 
o
C. 
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1.3.7.1.3 Borylation of 1,3-disubstituted arenes 

 

Borylation of 1,3-disubstituted arenes has been widely explored with both 27/bpy and 

28/dtbpy catalyst systems.
178,179,181

 For the latter, reactions may be carried out in a range 

of solvents at both ambient and elevated temperatures. Borylation typically occurs at the 

mutually meta position to yield 1,3,5-trisubstituted arenes with 100% regioselectivity. 

Due to the wide range of functional groups (Cl, Br, I, Me, OMe, CF3, CN, CO2Me, t-Bu) 

tolerated by Ir-catalysed borylation, this method offers an effective method for the 

functionalisation at the 5-position in 1,3-disustituted benzenes which is often difficult to 

access with ortho/para directing substituents. Borylations of 1,3-disubstituted arenes 

catalysed by the 28/dtbpy catalyst systems are summarised in Equation 1.17. 

 

0.5[Ir(OMe)COD]2/dtbpy

Yields  60 - 97%

R1 =  Cl, Br, I, Me, OMe, CF3 CN, CO2Me, tBu

R2 =  Cl, Br, I, Me, OMe, CF3 CN, CO2Me, tBu

R1

R2

R1

R2

BpinB2pin2 +

 

 

Equation 1.17 [Ir(OMe)COD]2/dtbpy-catalysed borylations of 1,3-disubstituted arenes. 

 

1.3.7.1.4 Borylation of 1,4-disubstituted arenes  

 

Although aromatic C-H bonds ortho to substituents are typically not borylated in the 

presence of less hindered aromatic C-H bonds, in substrates such as 1,4-disubstituted and 

1,3,5-trisubstituted benzenes borylation ortho to substituents can occur, albeit more 

slowly than with less hindered substrates. Borylation of p-xylene and 

1,4-dichlorobenzene was reported by Miyaura and coworkers using 27/bpy and 28/dtbpy 

respectively in 53–58% yields.
178,179
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Further work by Smith and coworkers detailed the borylation of a range of 4-substituted 

benzonitriles, for which borylation ortho to the two substituents may yield two isomeric 

products (Equation 1.18).
182

 Borylation ortho to the cyano group dominated when the 

4-substituent was larger than the cyano group, while for 4-fluorobenzonitrile, borylation 

ortho to the smaller fluoro group was favoured. The observed selectivity complements 

existing directed ortho metallation (DoM)
183

 and electrophillic aromatic substitution 

(EAS)
184

 chemistry allowing for selective functionalisation of 1,4-disubstituted arenes 

ortho to the cyano group in the presence of stronger ortho directing metallation groups 

(OMe, SMe, NMe2, CO2Me, NHAc) and ortho/para directors in the 4-position.  

 

CN

R

CN

R

Bpin CN

R Bpin

+
0.5[Ir(OMe)COD]2/dtbpy (3 mol %)

THF, 80 oC, 16 h

R = F, Cl, Br, I, Me, OMe, SMe

       NMe2, CO2Me, NHAc, CF3

Yields 55 - 70%                                            Ratio  

R = CF3, NHAc, CO2Me, NMe2, Br, I         99:1

R = Cl, SMe2, Me,                                        90:10

R = OMe                                                       67:33

R = F                                                             8:92

B2pin2 or HBpin +

 

 

Equation 1.18 Iridium-catalysed borylation of 4-substituted benzonitriles by Smith and coworkers. 

 

1.3.7.1.5 Borylation of polyaromatic substrates  

 

The high degree of regioselectivity displayed in Ir-catalysed arene borylations, and the 

steric basis of this selectivity allows for the functionalisation of a wide range of aromatic 

substrates with selectivity complementary to that of other methodologies. 

 

Sugihara and and coworkers. used a combination of 27 and bpy at 10 mol % Ir loading 

for the borylation of azulenes with B2pin2 in cyclohexane at reflux (Equation 1.19).
185

 

Borylation occurred predominantly at the 2-position with a minor isomer resulting from 

borylation of the more hindered 1-position adjacent to the ring junction. Interestingly, 

although the 7-membered ring possesses acidic and sterically unencumbered hydrogens, 
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borylation of these C-H bonds is not observed. The authors attributed this selectivity to 

the more favourable formation of π-coordinated precursors to C-H cleavage with the five 

membered ring. Borylation of both 4,6,8-trimethylazulene and 

1,4-dimethyl-7-isopropylazulene required longer reaction times and gave lower yields. In 

both cases, selective functionalisation of the 2-position was observed due to increased 

steric hindrance at the 1-, and 3-positions and blocking of the 2-position respectively. 

 

 

0.5[IrCl(COD)]2/bpy (10 mol %)

cyclohexane, reflux, 14 h
Bpin

Bpin

+

B2pin2

+ Yield 70%                           10%

 

 

Equation 1.19 Iridium-catalysed borylation of azulene with B2pin2 by Sugihara and coworkers. 

 

Marder and coworkers utilised 28/dtbpy for the borylation of a range of polycyclic 

aromatic hydrocarbons with B2pin2.
186

 Borylation of naphthalene with 1.1 equivalents of 

B2pin2 and 10 mol % Ir loading in cyclohexane at 80 
o
C led to the formation of 

monoborylated product along with 2 isomeric bisborylated products and unreacted 

starting material in a ratio of 29:49:10:12. The combined yield of the bisborylated 

products could be increased to 93% by the use of 2.2 molar equivalents of B2pin2. The 

borylation of pyrene under identical conditions with 1.1 equivalents of B2pin2 led to 

mono and bisborylated products in 68% and 6% yields respectively, with selective 

functionalisation at the 2-, and 7-positions. The use of 2.2 equivalents of B2pin2 yielded 

2,7-bisborylated pyrene as the sole product in 97% yield. Perylene was borylated with 4.4 

equivalents of B2pin2 to give a 2,5,8,11-tetraborylated product in 83% yield. The results 

are summarised in Equation 1.20. Hartwig and coworkers also reported the borylation of 

phenanthrene with B2pin2 and 1 mol % 28/dtbpy in cyclohexane to give 2 isomeric 

products.
187

 Although not fully analysed, by comparison with an authentic sample, it was 

shown that neither of the isomers were the 9-borylated product and were tentatively 

assigned as 2-, and 3-Bpin-phenanthrene.  
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In all cases, borylation occurred at the least hindered C-H bonds, while positions ortho to 

ring junctions were not borylated. For pyrene and perylene selective functionalisation of 

these positions is not possible by electrophillic aromatic substitution, which occurs at the 

1-, and 4-positions of pyrene and may occur at the 1-, 3-, 4-, 9-, and 10-positions of 

perylene. Thus selectivity of iridium-catalysed borylation for reaction of the less hindered 

C-H bonds complements that of electrophillic aromatic substititution which leads to 

reaction at the most electron rich positions. 

1.1 equiv B2pin2

0.5[Ir(OMe)COD]2/dtbpy (10 mol %)

cyclohexane, reflux, 16 h

1.1 equiv B2pin2

0.5[Ir(OMe)COD]2/dtbpy (10 mol %)

cyclohexane, reflux, 16 h

4.4 equiv B2pin2

0.5[Ir(OMe)COD]2/dtbpy (10 mol %)

cyclohexane, reflux, 16 h

Bpin

Bpin

Bpin

BpinBpin

Bpin

BpinBpin

BpinBpin

Bpin Bpin

+

+

+

 

 

Equation 1.20 Ir-catalysed borylation of polyaromatic hydrocarbons by Marder and coworkers. 

 

Plenio and coworkers reported the borylation of monosubstituted and 1,1‟-disubstituted 

ferrocenes (Equation 1.21), along with the half sandwich complexes CpMn(CO)3 and 

CpMo(CO)3Me in octane at 126 
o
C.

188
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R1

R2

Fe

R1

Fe

Bpin

R1

Bpin

Fe

Bpin

R1

R2

Fe

Bpin

+

0.5[Ir(OMe)COD]2/dtbpy

0.5 equiv B2pin2

octane

R2 = H

R1 = H, Br, Me, COCH3, CO2Me, CH2OCH3

R2 = H, Br, Me, COCH3, CO2Me, CH2OCH3

Yields  8 - 83%

 

 

Equation 1.21 Ir-catalysed borylation of ferrocenes with B2pin2 by Plenio and coworkers. 

 

Bae and coworkers reported the borylation of crystalline polystyrenes with 27/dtbpy in 

cyclooctane at 150 
o
C, with introduction of Bpin of up to 42% (Figure 58).

189
 Further 

work by the same group detailed the borylation of aromatic main-chain polymer to give 

borylated polysulfones (Equation 1.22).
190

 In both cases, subsequent transformations of 

the borylated polymer via Suzuki-Miyaura cross coupling or oxidation to give hydroxyl 

groups was demonstrated. 

 

B2pin2 or HBpin

3 mol % 0.5[IrCl(COD)]2/dtbpy

cyclooctane, 160 oC, 6 h

Bpin

O S

O

O

O

B2pin2 or HBpin

3 mol % 0.5[IrCl(COD)]2/dtbpy

THF, 80 oC, 12 h

O S

O

O

O

Bpin Bpin  

 

Equation 1.22 Ir-catalysed borylation of polymers by Bae and coworkers. 
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Osuka and coworkers have demonstrated that iridium-catalysed borylation is effective for 

the regioselective functionalisation of a range of porphyrins and aromatic substituents on 

porphyrins (Equation 1.23). Borylation of 1,15-disubstituted porphyrins, bearing groups 

which are unable to undergo borylation themselves, underwent borylation selectively at 

the β-position, with borylation of both free and metalloporphyrins being demonstrated.
191

 

Exhaustive borylation of 5,15-di(1,5-di-tert-butylphenyl)porphyrin with an excess of 

B2pin2 led to a tetraborylated product resulting from the reaction of all 4 β C-H bonds. 

For 1-aryl-10-phenyl-porphyrins bearing no β-substituents, no borylation occurs at the 

β-positions due to steric effects of the 1,10-substituents. Instead, when an excess of 

B2pin2 is employed, borylation occurs on the substituents phenyl group leading to the 

formation of products resulting from para borylation and diborylation of the meta isomer. 

In contrast to most borylations of monosubstituted arenes, borylation of 1-phenyl-β-

substituted porphyrins showed a high level of selectivity for the formation of the para 

product. This can be attributed to the extreme steric demands of the substituted porphyrin 

group which inhibits borylation of the meta C-H bonds on the phenyl ring.
192

  

 

N

N N

N

M

N

N N

N

M

Bpin

B2pin2 

3 mol % 0.5[Ir(OMe)COD]2/dtbpy

dioxane

M = H, H  43%
M = Ni      47%
M = Cu     44%  
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HNN

NNH

NN

NNH

NN

NN

M

C8H17O

C8H17O

C8H17O

C8H17O

Bpin

Bpin
NN

NNH
C8H17O

C8H17O

Bpin

M = H, H  74%
M = Zn     80%

6 equiv B2pin2 

3 mol % 0.5[Ir(OMe)COD]2/dtbpy

dioxane

Bpin

Bpin
NN

NN

M Bpin

NN

NN

M

M = H, H  13%
M = Zn     17%

6 equiv B2pin2 

3 mol % 0.5[Ir(OMe)COD]2/dtbpy

dioxane

Yield 12% Yield 82%

+

+

 

 

Equation 1.23 Regioselectivities of the Ir-catalysed borylation of substituted porphyrins with B2pin2. 

 

1.3.7.1.6 Borylation of 5-membered heterocycles 

 

Miyaura and coworkers have reported the iridium-catalysed borylation of a range of 

thiophenes, free and N-protected pyrroles and furans with B2pin2 using 27/dtbpy in 

octane at 80 
o
C, and with 28/dtbpy in hexane at room temperature.

193,194
 The borylation of 

thiophene, pyrrole and N-methylpyrrole was also reported by Beller et al. using the 

27/bpy catalyst system.
166

 For thiophenes, free pyrroles and furans, borylation was found 

to occur at the 2-position. However, for pyrroles bearing N-substituents, borylation at the 

2-position is less favourable due to steric hindrance. Borylation of N-methylpyrrole 
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yielded a mixture of 2-, and 3-borylated products in a 76:24: ratio, while borylation of 1-

triisopropylsilylpyrrole, previously reported by Smith
172

 using [Cp
*
Rh(η

4
-C6Me6)], gave 

exclusive formation of the 3-borylated product. The results are summarised in Equation 

1.24. 

 

XR XR Bpin
0.5[IrCl(COD)]2 or 0.5[Ir(OMe)COD]2/dtbpy

+   B2pin2

octane, 80 oC or hexane, rt

X = O,    R = H, Me, OMe, CO2Me

X = S,    R = H, Me, Br, CN

X = NH, R = H, Me, CO2Me

Yields  60 - 99%

N N Bpin

0.5[IrCl(COD)]2/dtbpy

octane, 80 oC

R R

N

R

+

Bpin

R = Me       76                :            24 
R = TiPS    0                  :            100

R = Me, TiPS

 

 

Equation 1.24 Ir-catalysed borylation of 5-membered heterocycles. 

 

Smith and coworkers have carried out an extensive study into the borylation of 2-, 3-, 

2,3- and 2,5-substituted thiophenes
195

 using 28/dtbpy (Equation 1.25). Borylation of 2-, 

and 2,3-substituted thiophenes gave single products resulting from selective borylation at 

the 5-position. In 3-substituted thiophenes borylation occurred in both the 2-, and 5-

positions with borylation at the 5-position favoured. The degree of selectivity was 

reported to be determined by the size of the 3-substituent, although how the relative size 

of the substituents were determined was not mentioned. For 2,5-substituted thiophenes 

borylation ortho to the smaller substituent was favoured, similar to the borylation of 

unsymmetrical 1,4-disubstituted benzenes. Borylations were carried out using 28/dtbpy 

with HBPin at room temperature in hexane, except for 2,5-dimethylthiophene, which 

required the use of 2 mol % [(Ind)Ir(COD)]/dmpe in neat HBpin at 150 
o
C.  
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SR1

S

R

SR1 R2

SR1

S

R

SR1 R2

HBpin

0.5[Ir(OMe)COD]2/dtbpy

hexane, rt

HBpin

0.5[Ir(OMe)COD]2/dtbpy

hexane, rt

HBpin

0.5[Ir(OMe)COD]2/dtbpy

hexane, rt

Bpin

Bpin S

R

SR1

Bpin

R2 R2

R1 = I, CO2Me, TMS, C(O)Me, R2 = H

R1 = Cl, R2 = Br

Yields  78 - 94%

R = CN, Cl, Br, Me, C(O)Me,

       CO2Me, TMS, p-tolyl

R1 = Cl, Br, Me

R2 = Cl, Br, I, TMS

+

+

Yields  54 - 95%

R      5-product : 2-product

CN                 1:1.13

Cl                   3.5:1

Br                   8.9:1

Me                  8.9:1

C(O)Me         >99:1

CO2Me          >99:1

TMS              >99:1

R2

R1   R2  3-borylation : 4-borylation

Cl    Cl            one product

Br    Br            one product

Cl    I                     5.7:1

Cl    Br                  2.0:1

Cl    Me                 2.3:1

Cl    TMS             >99:1

Bpin Bpin

Yields  56- 97%

 

 

Equation 1.25 Ir-catalysed borylation of substituted thiophenes by Smith and coworkers. 
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1.3.7.1.7 Borylation of benzofused 5-membered heterocycles 

 

Miyaura and coworkers have reported the borylation of benzofused heterocycles with 

27/dtbpy at 80 
o
C. Borylation was found to occur at the 2-position, due to activation of 

this position by the adjacent heteroatom. Borylation of N-protected substrates was also 

demonstrated, with N-methyl indole giving 2-, and 3-borylated products in an 89:11 ratio, 

while N-TiPS indole was selectively borylated at the 3-position.
192

 Boron:arene ratios of 

less than 1:1 were used in order to prevent the formation of diborylated products. Similar 

work was also reported by Beller et al.
166

 using 27/bpy at 80 
o
C, and by Miyaura using 

with 28/dtbpy at room temperature with B2pin2 or HBpin.
193

 Borylations of benzofused 

5-membered heterocycles are summarised in Equation 1.26. 

 

Bpin
XX

0.5[IrCl(COD)]2/dtbpy

octane, 80 oC, 16 h
+ B2pin2

X        
N
O
S

Yield
92%
91%
89%

Bpin

NN

0.5[IrCl(COD)]2/dtbpy

octane, 80 oC, 16 h
+ B2pin2

Yield 83%

TiPS TiPS

 

 

Equation 1.26 Iridium-catalysed borylations of benzofused heterocycles by Miyaura and coworkers. 

 

Smith and coworkers observed that the borylation of indole, with an excess of boron, led 

to the formation of small amounts of 2,7-diborylated indole as the sole bisborylated 

product. Further work on 2-substituted indoles showed that borylation occurred 

selectively at the 7-position, with coordination of the indole nitrogen to either iridium or 

boron directing the borylation (Equation 1.27).
196

 Similar results were reported by Beller 

and coworkers.
197
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0.5[Ir(OMe)COD]2/dtbpy

hexane, 60 oC, 1-6 h
+ HBpin

Yields  78 - 83%

N
H

R
N
H

R

Bpin

R = Me, CO2Me, CO2Et,

 CONEt2, TMS, Ph  

 

Equation 1.27 Selective borylation of the 7-position in 2-substituted indoles. 

 

1.3.7.1.8 Borylation of 6-membered N-heterocycles and benzofused 

analogues 

 

Since the initial report of the borylation of 2,6-lutidine with HBpin and 

[Cp
*
Ir(PMe3)(H)(Bpin)] by Smith and coworkers in 2000,

174
 Ir-catalysed borylation of a 

range of 6-membered heterocycles has been reported. Borylation of pyridine gave 

statistical mixtures of 3-, and 4-borylated products, with borylation at the 2-position not 

observed. However pyridine was found to be a poor substrate, giving a combined yield 

for the 2 isomers of 42% after 16 h at 100 
o
C. Similarly, borylations of 3-substituted 

pyridines by Hartwig and coworkers gave moderate conversions, with borylation 

occurring solely at the 5-position. This is in contrast to the borylations of 

2,6-dichloropyridine and 2,6-lutidine which are readily borylated.
193 

 

It was proposed by Marder and coworkers that the coordination of pyridines to iridium 

inhibits their borylation, with the strongly donating 4-tert-butylpyridine showing no 

borylation after heating at 80 
o
C for 2 days

 
with a 2.5 mol % loading of [IrCl(COE)2]2 

and dtbpy. Further work by the same group has shown that the incorporation of 

substituents at the 2-position prevents coordination of the pyridine substrate to the 

sterically hindered iridium centre and allows borylation to occur smoothly at the 4-, and 

5-positions.
198

 Similarly, quinoline, which may be considered a 2,3-disubstituted 

pyridine, borylates smoothly at the 3-position, with steric effects preventing borylation at 

the 4-position ortho to the ring junction.
193
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It has been suggested by Hartwig and Miyaura that coordination of pyridine to either 

iridium or boron sterically hinders the 2-position, thus preventing its borylation.
192

 

However, in light of the work Smith and coworkers on borylation of indoles,
195

 

coordination to iridium seems unlikely to be the origin of the observed regioselectivity. In 

addition, Marder and coworkers have reported that adducts of pyridines and B2pin2 do not 

form, even in highly concentrated solutions. Adducts of this type are known for the more 

Lewis acidic B2cat2 and readily identified by an upfield shift of the 
11

B NMR resonance 

for the 4 coordinate boron.
199

  

 

For 4,4‟-dimethoxy-2,2‟-bypyridine, effectively a 2,4 disubstituted pyridine, borylation 

occurred in the 5-, and 5‟-positions suggesting that borylation will occur at sites other 

than the 2/6-position even in the presence of a small ortho group. Borylation of the more 

bulky dtbpy lead to reaction at the 6/6‟-positions. The results for the borylations of 

pyridines and quinolines are summarised in Equation 1.28. 

 

NR NR

Bpin
0.5[IrCl(COD)]2 or 0.5[Ir(OMe)COD]2/dtbpy

B2pin2    +

octane, 100 oC or hexane, 100 oC

R = H, Ph, Me

0.5[IrCl(COD)]2/dtbpy

octane, 100 oCN N

B2pin2    +

Bpin

hexane, 80 oC

B2pin2    +

N N

R R
N N

MeO OMe

R = MeO, tBu

0.5[Ir(OMe)COD]2/dtbpy
Bpin Bpin

N N
Bpin Bpin

or

 

 

Equation 1.28 Ir-catalysed borylation of pyridines and related substrates. 

 



97 

 

1.3.7.2 Tandem reactions  

 

Iridium-catalysed borylation of arenes has been shown to be compatible with a large 

range of transformations of boronic acids and boronate esters, and a variety of one-pot 

tandem reactions have been reported which feature aromatic C-H borylation as their 

initial step. The majority of the one-pot reactions have concentrated on the use of 

1,3-disubstituted substrates as their borylation results in a single product. The current 

scope of transformations of the Bpin group that have been utilised in tandem reactions is 

shown in Scheme 1.13. 
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Scheme 1.13 Current scope of one-pot C-H borylation / transformation of the Bpin group. 

 

Hartwig and coworkers have reported one-pot synthesises of aryl and heteroaryl boronic 

acids and potassium trifluorborates from the corresponding 1,3-disubstituted arenes and 

benzofused heterocycles.
200

 Borylations were carried out in THF at 80 
o
C and the 

boronate esters were transformed into either boronic acids, via oxidative hydrolysis with 

NaIO4 in THF/H2O, or potassium trifluoroborate salts via displacement of pinacol with 

KHF2 in THF/H2O. 
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Smith and coworkers have shown that iridium-catalysed C-H borylation/oxidation is an 

effective, one-pot route for the synthesis of meta substituted phenols from 

1,3-disubstituted arenes.
201

 Synthesis of these products is notoriously difficult when the 

1,3-substituents are ortho/para directing groups. Borylations were carried out in 

substrate/HBpin mixtures using (Ind)Ir(COD)/dmpe as the catalyst, and the subsequent 

oxidations were performed using aqueous Oxone
®

 in acetone at 25 
o
C giving the products 

in high yields. 

 

Hartwig and coworkers have demonstrated one-pot meta chlorination and bromination of 

1,3-disubstituted arenes and 3-substituted pyridines via C-H borylations and oxidative 

halogenation with CuCl2 and CuBr2 respectively. Borylations were carried out in THF 

using 0.2 mol % Ir loadings of 28/dtbpy, while the subsequent halogenations were carried 

out in MeOH giving the products in 46–81% yields.
202

 Although conversions of aryl-, 

and vinyl-boronic acids and trifluoroborates to the corresponding iodides have been 

reported by Kabalka,
203

 as yet, no one-pot C-H borylation/iodination protocol has been 

reported. 

 

In addition to simple transformations of the pinacolboronate ester group, Ir-catalysed C-H 

borylation has been shown to be compatible with transition metal-catalysed couplings of 

arylboronate esters with a range of electrophiles and nucleophiles.  

 

One-pot C-H borylation/Suzuki-Miyaura cross couplings have been widely reported as 

demonstrations of the synthetic utility of C-H borylations. Miyaura and coworkers have 

reported a one-pot C-H borylation/Suzuki-Miyaura reaction synthesis of unsymmetrical 

biaryls. Borylations were carried out using HBpin in hexane with 28/dtbpy at 25 
o
C, 

while addition of Pd(dppf)Cl2, K3PO4·nH2O, arylbromide and DMF gave the biaryl 

products.
180

 This method is an improvement on previous reports in which the solvent 

used for borylation was evaporated, prior to carrying out the cross coupling in a 

secondary solvent. In a further improvement, Marder and coworkers demonstrated a one-

pot C-H borylation/Suzuki-Miyaura cross coupling sequence in a single solvent. Both 

C-H borylation and Suzuki-Miyaura cross couplings were found to proceed smoothly and 
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with high yields in methyl-tert-butyl ether (MTBE). Other polar solvents typically used 

for Suzuki-Miyaura reactions, such as DMF and DMSO, have been previously shown to 

be poor solvents for Ir-catalysed borylations.
204

 Hartwig and coworkers have reported the 

combination of C-H borylations and Chan-Lam couplings as a one-pot route to anilines 

and aryl ethers from arene starting materials (Equation 1.29).
205

 Alkylamines could be 

coupled directly with the boronate ester products, while the use of phenols and anilines as 

coupling partners required the boronate ester to be oxidised to the more reactive boronic 

acid.  

 

R1

R2

R1

R2
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R1

R2

N
H

R3

R1

R2

B(OH)2

R1

R2

N
H

Ar

R1

R2

N
H

Ar

[Ir(OMe)COD]2/dtbpy

cyclohexane, 80 oC

2 equiv H2NR3, 1 equiv KF

10 mol % Cu(OAc)2
.H2O

4 A MS, CH3CN, O2, 80oC

3 equiv NaIO4

0.6 equiv HCl

H2O/THF, rt H2NAr, 2 equiv lutidine

10 mol % Cu(OAc)2
.H2O

20 mol % decanoic acid

toluene, air, rt

1 equiv Cu(OAc)2
.H2O

5 equiv NEt3
HOAr, CHCl2, 4 A MS, rt

R1 = OMe, CH3, CF3, 

CO2Me, Cl, H

R2 = OMe, CH3, Cl, H

Yields  31 - 67%

Yields  70 - 95%

Yields  39 - 94% 

 

Equation 1.29 Cu-catalysed couplings of boronic acids and boronate esters with N-, and O-nucleophiles. 
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In addition to transformations of the Bpin groups, the tolerance of halogens exhibited by 

Ir-catalysed C-H borylation allows for functionalisation of these reactive groups 

following C-H borylation. Smith and coworkers have demonstrated sequential 

borylation/Buchwald-Hartwig aminations of 3-substituted aryl chlorides and bromides to 

give arylamine boronate ester products in one-pot reactions (Equation 1.30).
206

  

 

R1

X

Bpin

R1

R3R2N

R1

Br

OH

R1

R2N

R3

O

R1 = Me, CO2Me, CF3, 

        OMe, NMe2

X = Cl, Br

Yields  49 - 83%

NR2R3 = NHPh, NPhMe, 

                NBu2, NC4H8O

1. 2 equiv HBpin

   (Ind)Ir(COD)/dmpe, 150 o C

2. Pd2dba3/P(t-Bu)3, K3PO4

    amine, DME, 100 oC

1. 2 equiv HBpin

   (Ind)Ir(COD)/dmpe, 150 o C

2. Pd2dba3/Xantphos, Cs3CO3

    amide, dioxane or DME, 100 oC

3. Filtration through SiO2 then

    Oxone, acetone, rt

4. 10 equiv NaIO4, acetone, rt

R1 = Me, CO2Me, CF3, 

        Cl, CN
Yields  33 - 82%

HR2COR3, AcNH2, BocNH2,

Bn2NCONH2, acrylamide, tiglic amide,

-valerolactam  

 

Equation 1.30 Sequential C-H borylation/Buchwald–Hartwig reactions by Smith and coworkers. 

 

Synthesis of 5-substituted 3-amidophenols from 3-substituted haloarenes via sequential 

C-H borylation/Pd-catalysed amidation/oxidation was also reported by the same group 

(Equation 1.30).
207

 Although C-H borylation/amidation could be carried out in a one-pot 

fashion, subsequent oxidation with Oxone
®

 failed without prior filtration of the 
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amidoarylboronate ester solution. In both cases the use of anhydrous conditions was 

found to be essential for preventing unwanted side reactions of the boronate ester group. 

 

Rhodium-catalysed additions of organoboronates to a range of electrophiles are widely 

known.
155

 Hartwig and Boebel have reported that arenes may be converted to chiral -

diarylmethylsufinylamines via a sequence of C-H borylation and Rh-catalysed addition of 

aryl boronate esters to chiral sulfinimines.
208

 Both stepwise and one-pot syntheses were 

demonstrated, Equation 1.31. 

 

1. 0.5 mol % [IrCl(COD)]2/1 mol % dtbpy

    1.7 equiv. B2pin2, 10 mol % HBpin

    THF, 80 oC

2. 5 mol % [Rh(COD)(CH3CN)2]BF4

    2 equiv NEt3

    1:1 H2O / dioxane
2 equiv.

1 equiv.

75%
87% de

Me

Me

Me

Me

HN
S

O

CF3

F3C

HN
S

O

H

 

 

Equation 1.31 One-pot synthesis of chiral -diarylmethylsufinylamines by Hartwig and Boebel. 

 

1.3.7.3 Iridium-catalysed borylations of silicon containing substrates 

 

Hartwig and Boebel have utilised the ability of iridium complexes to cleave and 

functionalise Si-H bonds in two studies into the borylation of silane substrates.  

Borylation of benzyldimethylsilane led to ortho-substituted products with no reaction at 

the meta or para positions observed. Phenols and anilines were silylated via 

[IrCl(COD)]2 catalysed coupling with SiMe2H2 to give functionalised dimethylsilanes, 

followed by silane directed C-H borylation with 27/dtbpy and B2pin2. The reversal of 

selectivity observed in the borylation to silane functionalised arenes was attributed to 

oxidative addition of the Si-H bond to the Ir centre followed by elimination of HBpin to 

give a new iridium complex in which the arene is coordinated via the silane moiety. The 
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reaction may then occur at the ortho C-H bonds of the bound arene, followed by Si-H 

reductive elimination from Ir(III)
 
which releases the ortho borylated product.

209
 

 

Later work by the same authors reported the catalytic borylation of a range of 

trialkylsilanes at 80 
o
C

 
with B2pin2 and 28/dtbpy as the catalyst to give borylsilane 

products in moderate to high yields.
210

  The borylsilane products were then employed as 

boron sources in the 28/dtbpy catalysed borylation of a range of methylarenes. Notably 

only borylation occurred with no silylation products observed. In contrast to typical 

28/dtbpy catalysed borylation of methylarenes both sp
2
 and sp

3
 borylation products were 

observed, with hindered substrates such as mesitylene borylated selectively at the 

benzylic positions.  

 

1.3.7.4 Novel iridium catalysts for aromatic C-H borylations 

 

Although the catalyst systems developed by Miyaura and Hartwig, and Smith have been 

the most widely studied and applied, other groups have reported the use of other ligands 

for iridium alternative catalyst systems (Figure 1.29). 

 

Masuda and coworkers have shown that Ir(Tp)COD or combinations of 27 and 

trispyrazolylborate (Tp) salts are effective catalysts for aromatic C-H borylations. 

Borylations of mono-, and 1,2-, 1,3- and 1,4-disubstituted arenes showed the same 

selectivities as for the use of [Ir(X)COD]2/dtbpy.
211

 Nishida and coworkers have shown 

that combinations of 27 and 2,6-diisopropyl-N-(pyridylmethylene)-aniline, 29, and 

related ligands are effective for the borylation of arenes and heteroarenes at 80 
o
C.

212
 

Borylations of 1,3-disubstituted benzenes and 2,6-disubstituted pyridines reacted 

selectively at the least hindered C-H bond, while benzofuran, benzothiophene and indole 

underwent selective borylation at the 2-position. 

 

Maguire and coworkers have shown that Ir(I)-salicylaldiminato(COD) complexes such as 

30 are effective for the borylation of arenes when used in conjunction with the ionic 

liquid tributyltetradecylphosphonium dodecylbenzenesulfonate (TBPB), CH2Cl2 and 
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tetra-2-pyridinylpyrazine, giving a catalyst system that can be reused up to 3 times 

without loss of activity.
213

 Borylations of monosubstituted benzenes (R = CF3, OMe and 

Me) led to the formation of meta and para substituted products in of 1.3:1, 1.1:1 and 

1.5:1 for trifluoromethylbenzene, anisole and toluene, respectively.   

 

Hermann and coworkers synthesised a range of iridium complexes of mono-, and 

bidentate NHC ligands (31 and 32) which were evaluated as catalysts for the borylation 

of arenes with HBpin at 40–45 
o
C. Mono-, 1,2-,  and 1,3-disubstituted arenes were all 

effectively borylated although the regioselectivity of the reactions was not confirmed.
214

 

 

Maguire and coworkers have demonstrated that Ir(0) nanoparticles, prepared by the 

reduction of hydridoiridiumcarborane (PPh3)Ir(H)(7,8-nido-C2B9H11), are active catalysts 

for the borylation of benzene with HBpin in mixtures of CH2Cl2 and ionic liquids when 

used in conjunction with tetra-2-pyridinylpyrazine and microwave heating. The catalyst 

systems could be recycled up to 6 times with less than 0.5% loss in activity.
215
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Figure 1.29 Novel ligands and Ir complexes employed in Ir-catalysed C-H borylations. 
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1.3.7.5 Proposed mechanism for the Ir(OMe)COD/L2-catalysed borylation 

of arenes 

 

Miyaura and coworkers have proposed that [Ir(dtbpy)(Bpin)3], 33, is the resting catalyst 

state in the [IrCl(COD)]2/dtbpy. Analysis of catalytic reactions containing high catalyst 

loadings by 
1
H NMR spectroscopy showed the main species to be a dtbpy-ligated Ir 

complex. This species was shown to be [Ir(dtbpy)(Bpin)3] by comparison to be the fac-

Ir
III

 trisboryl complex [Ir(dtbpy)(Bpin)3(COE)], 34, which was independently synthesised 

from [IrCl(COE)2]2, 2 equivalents of dtbpy and 10 equivalents of B2pin2 in mesitylene at 

50 
o
C (Figure 1.30). Dissolution of 34 in C6D6 rapidly generated 3 equivalents of 

C6D5Bpin at room temperature, showing that the complex is chemically and kinetically 

competent to be an intermediate in the catalytic cycle.
178

  

 

The proposed mechanism starts with the coordinatively unsaturated 33 which cleaves and 

functionalises the arene C-H bonds by either oxidative addition of the arene C-H bond to 

give the Ir(V) complex [Ir(dtbpy)(Bpin)3(Ar)(H)], 35, and subsequent reductive 

elimination of Ar-Bpin to give [Ir(dtbpy)(Bpin)2(H)], 36, or via a concerted ζ-bond 

metathesis pathway to give the same products. Reaction of B2pin2 with 36 is proposed to 

give [Ir(dtbpy)(Bpin)4(H)], 37, which may reductively eliminate HBpin to reform 33, 

completing the catalytic cycle. The HBpin byproduct is utilised in a second catalytic 

cycle in which HBpin reacts with 36 to give [Ir(dtbpy)(Bpin)3(H)2], 38, which eliminates 

H2 to give 33. This complex then reacts with arene substrate to give Ar-Bpin and to 

reform 36. The proposed catalytic cycle featuring an oxidative addition/reductive 

elimination pathway for C-H borylation is detailed in Scheme 1.14. 
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[Ir(dtbpy)(Bpin)3]  33

[Ir(dtbpy)(Bpin)3(H)(Ar)]  35

[Ir(dtbpy)(Bpin)2(H)]  36

[Ir(dtbpy)(Bpin)4(H)]  37[Ir(dtbpy)(Bpin)3(H)2]  38
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Scheme 1.14 Proposed catalytic cycle of [Ir(X)COD]2 / dtbpy catalysed borylation of arenes with B2pin2. 

 

Catalytic borylations carried out with [Ir(X)COD]2/dtbpy catalyst precursors were found 

to show an induction period, in which COD is reduced or hydroborated to give COE or 

related species. Reactions carried out with [Ir(X)(COE)2]2/dtbpy or 

[Ir(dtbpy)(Bpin)3(COE)] showed no such induction period. In addition, the species 

formed in the stoichiometric reaction of [Ir(TfO)(COD)] , dtbpy and B2pin2, namely 

[Ir(dtbpy)(Bpin)2(COD)]TfO, 39, (Figure 1.30) did not borylate C6D6 in the absence of 

added B2pin2.
178
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Figure 1.30 Iridium tris-, and bis-boryl complexes ligated by dtbpy. 
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Sakaki and coworkers have reported a theoretical study of the borylation of benzene 

using B2eg2 (eg = ethylene glycolato) as a model for B2pin2 and 

ethane-1,2-diylidenediamine (diim) or bpy as models of the dtbpy ligand.
216

 The results 

suggest that [Ir(bpy)(Bpin)3] is the active species for C-H bond activation, with oxidative 

addition of Ph-H to [Ir(bpy)(Bpin)3] to give to [Ir(bpy)(Bpin)3(H)(Ph)] occuring, rather 

than the reaction with [Ir(bpy)(Bpin)]. Reductive elimination of Ph-Bpin was proposed to 

occur from [Ir(bpy)(Bpin)3(H)(Ph)] to give [Ir(bpy)(Bpin)2(H)]. Oxidative addition of 

both B2pin2 and HBpin to [Ir(bpy)(Bpin)2(H)], giving [Ir(bpy)(Bpin)4(H)] and 

[Ir(bpy)(Bpin)3(H)2] respectively, are feasible, with the reaction of B2pin2 more 

favourable than that of HBpin. This supports the suggestion of Smith et al. that the 

catalytic borylation of benzene with B2pin2 at 80 
o
C is a two step process, with rapid 

reaction with B2pin2, followed by a slower reaction with HBpin once B2pin2 has been 

consumed. Sakaki and coworkers suggested that the formation of the unusual iridium(V) 

intermediates is made more favourable by the strongly electron donating Bpin and bpy 

ligands which stabilise the high oxidation state of iridium. In addition, the use of planar 

bpy ligands makes the formation of seven coordinate iridium(V) complexes more 

favourable by reducing steric hindrance in this highly congested intermediate. 

 

Hartwig and coworkers reported experimental mechanistic studies on the 

[Ir(X)COD]/dtbpy catalysed borylation of arenes with B2pin2, with the conclusions in 

consensus with those of Sakaki et al. COE was found to dissociate reversibly from 34 to 

give the active species 33. As suggested by Sakaki et al., C-H activation via 

[Ir(dtbpy)(Bpin)], although energetically feasible, does not occur as the equilibrium for 

the reversible oxidative addition of B2pin2 to [Ir(dtbpy)(Bpin)] lies far towards the 

iridium(III) trisboryl species 33.
186 
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1.3.8 Dehydrogenative borylation of olefins 

 

Vinyl boronate esters (VBEs) are useful intermediates in organic chemistry. They have 

been employed as precursors to aldehydes and vinyl halides, and can undergo a range of 

metal-catalysed reactions. Vinyl boron reagents can be synthesised by a variety of 

methods including hydroboration of alkynes,
217

 palladium-catalysed borylation of vinyl 

halides,
218

 lithiation of vinyl halides and subsequent trapping with trialkylborates,
219

 

hydrogenation of 1-borylalkynes,
220

 hydrozirconation of 1-borylalkynes,
221

 cross-

metathesis of terminal olefins with pinacolvinylboronate,
222

 transmetallation of vinyl 

metal reagents,
223

 and transition metal-catalysed diboration of alkynes with diboron 

reagents.
224

 However, the majority of these methods involve the preactivation of the vinyl 

group or are unsuitable for the synthesis of β,β-disubstituted vinylboronates. Thus, the 

dehydrogenative borylation of olefins, in which a vinylic C-H bond is replaced with a C-

B bond, is an attractive alternative to these methods. It does not require the preactivation 

of the olefin substrates, and it can be used to form VBEs from β,β-disubstituted olefins. 

 

1.3.8.1 Dehydrogenative borylation of olefins using borane clusters 

 

Sneddon and coworkers reported the first dehydrogenative borylations of olefins. The 

borylation of ethene, but-1-ene and propene was reported to occur with pentaborane in 

the presence of PdBr2 as a catalyst (Equation 1.31).
225

 However, the borylation of 

propene led to the formation of 3 isomeric vinylboranes, along with 2 hydroboration 

products. In addition, 50% of the olefin was hydrogenated using the hydrogen which is 

formed in the dehydrogenative borylation process. 

B5H9

+ B
B

B
B

B

B
B

B
B

B

B
B

B
B

B

B
B

B
B

B

B
B

B
B

BPdBr2

0 oC
+ + + +

 

 

Equation 1.31 PdBr2-catalysed dehydrogenative borylation of propene with pentaborane by Sneddon and 

coworkers. Terminal and bridging hydrogens on the boron cluster are omitted for clarity. 
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1.3.8.2 Dehydrogenative borylation of olefins with concomitant 

hydrogenation and/or hydroboration 

 

In 1992, Brown et al. reported the dehydrogenative borylation of 4-vinylanisole with 

oxazaborolidene 40 in the presence of [Rh(μ-Cl)(η
2
-CH2=CHAr)2]2, 41, (Ar = 

4-MeOC6H4) as catalyst.
226

 Reactions were conducted in toluene at room temperature 

giving a 1:1 mixture of VBE and hydrogenation products. In a subsequent publication by 

the same group, borylations of 4-vinylanisole, 4-vinylchlorobenzene and vinylferrocene 

with oxazaborolidene 40 and 0.2 mol % 41 gave a 1:1 ratio of VBE and hydrogenation 

products.
227

 No products from hydroboration were observed (Equation 1.33).  

 

Ar

Ar = 4-C6H4OMe

        4-C6H4Cl

        ferrocenyl

N
B OH

Ph

Me

+ 0.2 mol % [Rh(-Cl)(2-CH2=CHAr)2]2 (41)

toluene, 25 oC Ar

N
B O

Ph

Me

Ar

Ar                    Yield / %

4-C6H4OMe    

4-C6H4Cl         

ferrocenyl

+

98

99

38

(40)

 

 

Equation 1.33 Rhodium-catalysed dehydrogenative borylations of vinylarenes by Brown et al. 

 

The proposed mechanism of Brown‟s rhodium-catalysed dehydrogenative borylation of 

vinylarenes is detailed in Scheme 1.15. Initial reaction of the borane species with [Rh(μ-

Cl)(η
2
-CH2=CHAr)2]2, 41, is proposed to lead to the formation of 42, which acts as a 

source of the active monomeric rhodium hydride 43 Reversible 1,2-insertion of one of the 

bound olefin ligands into the Rh-H bond then gives the 12 electron species 44 which 

oxidatively adds the oxazaborolidene B-H bond to give 45. Reductive elimination of 

alkane and coordination of additional olefin would then give rhodium boryl complex 46 

which may insert one of the olefin ligands into the Rh-B bond to give the rhodium 

β-borylalkyl species 47. Subsequent β-hydride elimination gives the rhodium hydride 

complex 48 from which the bound VBE product is displaced by unreacted olefin to 

regenerate 43 and complete the catalytic cycle. 
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Scheme 1.15 Rhodium-catalysed dehydrogenative borylations of vinylarenes by Brown et al. 

 

Masuda and coworkers have reported the dehydrogenative borylation of olefins with 

HBpin catalysed by [RhCl(COD)]2 at room temperature in toluene (Scheme 1.34).
228

 This 

reaction is clearly reminiscent of the [Rh(μ-Cl)(η
2
-olefin)2]2-catalysed reaction reported 

by Brown and Lloyd-Jones. VBE products were obtained in high yields with respect to 

HBpin and with selectivities as high as 96%; however, in all cases, the formation of an 

equal quantity of the ethylarene byproduct resulting from the sacrificial hydrogenation of 

the substrate was observed. In addition, the synthesis of an unsymmetrical stilbene by a 

one-pot sequence of dehydrogenative borylation, followed by Suzuki-Miyaura cross-

coupling, was reported.  
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RhCl(COD)]2

Toluene, rt, 4 h
HBpin+

Bpin Bpin

Bpin

+ +

49 50 51

Boron containing product ratio     49 : 50 : 51

96 :   3 :   1

Ratio of 49:EtPh = 1:1   

 

Equation 1.34 Rhodium-catalysed dehydrogenative borylation of olefins by Masuda and coworkers. 

 

In addition to their work on rhodium-catalysed dehydrogenative olefin borylations, 

Masuda and coworkers reported dehydrogenative borylations of vinylarenes catalysed by 

1:4 mixtures of [Ru(COD)(COT)] (COD = 1,5-cyclooctadiene and COT = 1,3,5-

cyclooctatriene) and monodentate phosphines to give (E)-vinylboronate products 

(Equation 1.35).
229 

However, these catalysts were less active than those based on 

rhodium. Reactions catalysed by complexes containing phosphine ligands possessing 

electron-deficient aryl groups occurred with higher selectivities for dehydrogenative 

borylation over hydroboration, while those catalysed by complexes of PCy3 gave 

products resulting almost exclusively from hydroboration. In all cases, dehydrogenative 

borylation was accompanied by hydrogenation of the olefin. The proposed catalytic cycle 

involves the addition of two molecules of vinylarene to the ruthenium center, 

dehydrogenative borylation of one of the two vinylarenes and hydrogenation of the 

second.  

 Ru(COD)(COT)/4 PR3

Toluene, rt, 4 h
HBpin+

Bpin Bpin

Bpin

+ +

49 50 51

                                 Yields / %

PR3                         49 : 50 : 51

               

P(4-CF3C6H4)3         

P(3,4,5-F3C6H2)3     

PPh3                           

P(4-MeOC6H4)3

PCy3

+

78 : 15 :   7

76 : 15 :   5

62 : 18 : 19

50 : 22 :   9

3 : 52 :   0  

 Equation 1.35 Ruthenium-catalysed dehydrogenative borylation of olefins by Masuda and coworkers. 
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Sabo-Etienne and coworkers have demonstrated that [Ru(H)2(H2)2(PCy3)2] and 

[RuH{(μ-H)2Bpin}(ζ-HBpin)(PCy3)2] are catalyst precursors for the dehydrogenative 

borylation of linear and cyclic olefins with HBpin.
230

 The reaction of HBpin with 

[Ru(H)2(H2)2(PCy3)2] formed H2 and [RuH{(μ-H)2Bpin}(ζ-HBpin)(PCy3)2]. The reaction 

of this complex with ethene formed [RuH(Bpin)(C2H4)(PCy3)2], and this complex was 

proposed to be the catalyst resting state. A range of linear and cyclic olefins underwent 

dehydrogenative borylation at room temperature leading to mixtures of VBEs, 

hydroboration products, and alkanes from sacrificial hydrogenation of the substrates. 

 

n

n = 1-3

Bpin

n

Ar

B2pin2, DBU

2 mol % [IrCl(COD)]2

B2pin2

2 mol % [IrCl(COD)]2

Ar = Ph, 2-C6H4-Cl, 4-C6H4-Cl

Yields  72-99%

R = Ph, 4-C6H4Br, 4-C6H4NO2

CH=CHPh

Yields  53-61%

RHO

H

n

Bpin
ArI, base

5 mol % Pd(PPh3)4

neat substrate, 70 oC

neat substrate, 70-100 oC

RCHO

20-40 oC

dioxane/H2O

60-70 oC

 

 

Equation 1.36 Iridium-catalysed borylations of cyclic olefins by Szabó and coworkers. 

 

Szabó and coworkers reported the dehydrogenative borylation of cyclic olefins using 

B2pin2 catalysed by [IrCl(COD)]2 (Equation 1.36).
231

 For cyclohexene, a 1:1 ratio of 

allylic and vinylic borylation products was obtained after 3 h at 70 
o
C, while only the 

vinylic borylation product was observed after 16 h. Addition of 0.5 equivalents of 

1,8-diazabicyclo[5.4.0]undecane (DBU) led to an increase in the ratio of allylic to vinylic 

products (5:1 after 3 h at 70 
o
C), although the proportion of the vinylic product increased 

with prolonged heating. At 90-100 
o
C, the borylation reactions gave equimolar amounts 

of vinylboronate esters and their saturated counterparts, the latter resulting from 

sacrificial hydroboration of the substrate. The vinylboronate products were coupled in 
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situ with aryl iodides to give cyclic trisubstituted olefins, whereas the allylic boronates 

were allowed to react with aldehydes in situ to give stereo-defined homoallyl alcohols. 

 

Szabó also reported the dehydrogenative borylation of certain linear, terminal olefins 

with [IrCl(COD)]2 and B2pin2 at 80 
o
C to give vinylboronate esters which were then 

coupled with a range of aryl and vinyl halides in a one-pot process (Equation 1.37).
232

 

Allylsilanes and carbonyl, acetal and ether substituted olefins underwent dehydrogenative 

borylation to give 1:1 ratios of vinyl-, and alkylboronate ester products, the latter 

resulting from hydroboration by the HBpin generated by the dehydrogenative borylation 

with B2pin2. Of particular interest was the selective formation of VBEs over 

allylboronates from the reaction of B2pin2 with allyltrimethylsilane. This selectivity was 

attributed to a greater thermodynamic stability of the VBE product and a more favorable 

β-hydride elimination step. 

 

Me3Si

R2

1. B2pin2

    2 mol % [IrCl(COD)]2 

    neat substrate, 80 oC

2. R1X, Cs2CO3, 5 mol % Pd(PPh3)4

   dioxane/H2O, 50-60 oC

R2 = CH(OMe)2, CO2Me

       C(O)Me, OBu

1. B2pin2, [IrCl(COD)]2 

    neat substrate, 80 oC

2. trans-BrCH=CHSiMe3

    Cs2CO3, Pd source

    dioxane/H2O, 40-50 oC
R2

SiMe3

Me3Si R1

Yields  56-75%

R1 = substituted aryl or vinyl

Yields  54-87%

 

 

Equation 1.37 Iridium-catalysed dehydrogenative borylation of olefins and subsequent cross-coupling by 

Szabó and coworkers. 

 

Smith and coworkers reported the reactions of ethene with monoboranes catalysed by 3 

mol % [Cp
*
2Ti(η

2
-CH2=CH2)], 52.

233,234
 The catalytic reaction using HBop (op = benzo-

1,2,3-diazaborolene) gave VBE (58% yield) plus ethane. In contrast catalytic reactions 
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using HBcat gave the hydroboration product, ethylBcat, instead. Stoichiometric addition 

of HBcat or HBop to 52 led to the formation of boryl-substituted titanacycles, which 

underwent ligand exchange with additional ethene to regenerate 52 and give the VBE 

products. Borylation of 52 with HBop to give 53 was much slower than that with HBcat; 

however, subsequent displacement of the VBE by ethene was much faster for the Bop 

analog 14 than for the Bcat compound 54 (Equation 1.38). 

 

Ti
Cp*

Cp*

Ti
Cp*

Cp*

Bcat

Ti
Cp*

Cp*

Bop

HBcat

< 5 min at -80 oC

HBop

30 min at 25 oC

C2H4

40% conversion 

72 h at 25 oC

C2H4

> 90% conversion 

< 5 min at -80 oC

Ti
Cp*

Cp* Bcat+

Ti
Cp*

Cp* Bop+

52

52

52

54

53   

 

Equation 1.38 Stoichiometric reactions of [Cp
*

2Ti(η
2
-CH2=CH2)] with boranes and ethene by Smith and 

coworkers. 

 

1.3.8.3 Photochemically induced stoichiometric dehydrogenative olefin 

borylation  

 

During the course of initial studies on stoichiometric C-H activation reactions, Hartwig 

and coworkers reported the photolysis of [CpFe(CO)2(Bcat)], 22, and [Re(CO)5(Bcat)], 

21, in the presence of terminal and internal olefins (Equation 1.39).
169,170

 The reaction of 

22 with hex-1-ene led to the formation of the terminal hexenylboronate ester in 90% 

yield, along with 10% of hexyl-Bcat. The reaction of rhenium boryl 21 with hex-1-ene 

gave 55% of the terminal, trans-VBE product by NMR spectroscopy, with the majority 

of the remaining material (20–25%) consisting of the alkylboronate, presumably formed 

by metal-catalysed hydroboration. Reactions of 21 with internal olefins were less 

selective; the reaction of 4-octene gave the VBE product, along with at least 3 isomeric 

vinylboronates and octyl-Bcat from hydroboration. Photolysis of 21 in the presence of 

norbornene gave a single VBE product, along with two isomeric hydroboration products, 
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whereas the reaction with cyclohexene formed products other than vinylboronate esters. 

The formation of the VBE products was proposed to occur via photochemically induced 

dissociation of CO, followed by coordination of the olefin and either direct C-H bond 

cleavage or migratory insertion of the olefin into the M-B bond, followed by β-hydride 

elimination. 

Fe(Cp)(CO)2Bcat Bu+ Bu
Bcat

Bu
Bcat

+h

90% 10%

alkane
22

Re(CO)5Bcat Bu+ Bu
Bcat

Bu
Bcat

+h

55% 20-25%

neat hex-1-ene
21

 

 

Equation 1.39 Photochemically induced dehydrogenative borylation of olefins by Hartwig and coworkers. 

 

1.3.8.4 Dehydrogenative borylation of olefins under hydroboration 

conditions 

 

Marder, Baker and coworkers observed the formation of vinylboranes in the 

stoichiometric reactions of [Ru(η
2
-C2H4)(PMe3)4], 55, with 9-borabicyclo[3.3.1]- nonane 

(9-BBN).
235

 Addition of the boryl group to the bound olefin formed the cyclic species 56 

which is in equilibrium with the ruthenium β-borylalkyl complex 57, from which 

β-hydride elimination and hydride transfer gave the vinylborane product and 

[Ru(H)2(PMe3)4], 58 (Scheme 1.16).  

 

The same group observed the formation of VBE products in their study of the 

stoichiometric insertion of olefins into Rh-B bonds.
236

 Analysis of the reaction of 

[RhCl(Bcat)2(PPh3)2] with 2 equivalents of 4-vinylanisole in CD2Cl2 by 
1
H NMR 

spectroscopy showed the formation of VBE, 1,2-bis(boronate ester) (1,2-BBE) and 

internal hydroboration products in a 2:3:2 ratio, and trace amounts of the terminal 

hydroboration product. 
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VBEs were observed as side products in the catalytic diborations of olefins with B2cat2 

and 1 mol % of [RhCl(PPh3)3] as catalyst precursor at room temperature
237

 and in the 

catalytic hydroborations of certain allyl silyl ethers with HBcat in the presence of 

[RhCl(PPh3)3] as catalyst.
238

 

Ru
PMe3

PMe3

PMe3

PMe3

Ru
Me3P

Me3P PMe3

H

PMe3

BR2

Ru
Me3P

Me3P PMe3

PMe3

BR2

9-BBN

B

B
HBR2

= =  9-BBN

5 5755

H

Ru
Me3P

Me3P PMe3

H

PMe3

H

58

+

H abstraction

then 

hydride transfer

H

 

Scheme 1.16 Stoichiometric Ru-mediated formation of vinylboranes reported by Marder, Baker and 

coworkers. 

 

Marder, Baker and coworkers reported the first example of catalytic dehydrogenative 

olefin borylation without significant hydrogenation of the substrate.
239

 In addition, they 

reported the dehydrogenative borylation of 1,1-disubstituted olefins. The reaction of 

α-methylstyrene with 1.1 equivalents of HBcat in the presence of 2 mol % of 

[RhCl(PPh3)3] as a catalyst precursor in THF at room temperature gave VBE and 

1,1-BBE (derived from the hydroboration of the VBE product) with a combined 

selectivity of 80% (53% for VBE and 27% for 1,1-BBE), along with 17% hydroboration 

and 3% hydrogenation. The pathways are summarised in Equation 1.40.  
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Ph Ph

Bcat

Ph

Bcat

Bcat

Ph

Ph

Bcat

Ph

Bcat
+

HBcat

1.1 equiv. HBcat

2 mol % RhCl(PPh3)3

25 oC, THF

Hydroboration

Dehydrogenative
borylation

Hydrogenation

VBE 1,1-BBE

 

 

Equation 1.40 Borylation of α-methylstyrene with HBcat catalysed by [RhCl(PPh3)3] (Wilkinson‟s 

catalyst). 

 

Westcott and coworkers reported several systems for the dehydrogenative borylation of 

olefins. They showed that the dehydrogenative borylation of aminopropyl vinyl ethers in 

the presence of [RhCl(PPh3)3] as a catalyst precursor formed exclusively VBE as the sole 

boron containing product,
240

 although the issue of whether sacrificial hydrogenation of 

the substrate occurred was not explicitly addressed.  

 

1.3.8.5 Dehydrogenative borylation of olefins without sacrificial 

hydrogenation and/or hydroboration 

 

In 2003, Marder and coworkers reported the dehydrogenative borylation of olefins with 

B2pin2 or B2neop2 (neop = neopentaneglycolate = OCH2CMe2CH2O) in the presence of 3 

mol % of the catalyst precursor trans-[RhCl(CO)(PPh3)2], 59, at 80 
o
C

 
without sacrificial 

hydrogenation of an equivalent of the substrate.
241

 Vinylarenes, such as 4-vinylanisole, 

along with 1,1-disubstituted olefins, such as α-methylstyrene, diphenylethylene, 

methylenecyclopentane and methylenecyclohexane, underwent dehydrogenative 

borylation in the presence of 59 as the catalyst precursor. The selectivity depended on the 

solvent. Reactions conducted in THF, toluene and 1,4-dioxane yielded complex mixtures 

of VBEs, hydroboration products, hydrogenation, vinyl-bis(boronate) esters (VBBEs) 

and saturated bis-boronate esters (BBEs) with 4-vinylanisole as substrate. In contrast, 
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reactions conducted in neat CH3CN selectively formed VBEs, but these reactions were 

slow. Reactions performed in a 3:1 mixture of toluene to CH3CN selectively formed 

VBEs with acceptable rates. Reactions conducted with substoichiometric amounts of 

B2pin2 (0.67 equivalents) occurred in up to 100% conversion, showing that both boron 

moieties of B2pin2 can be incorporated into the VBE products with some substrates.  

 

In subsequent work, Marder and coworkers extended the scope of the dehydrogenative 

borylations catalysed by 59 (Equation 1.41).
242

 In addition to the diboron reagents B2pin2 

and B2neop2, they found that HBpin was an effective borylating agent; however, 

reactions with HBpin are slower than reactions conducted with B2pin2 or B2neop2. 

R1

R2

R

R1

R2

R
B(OR')2

B(OR')2

Bpin

R = Ph, 4-MeOC6H4

R1 = Ph, Me

R2 = Ph

n n
Bpin

n = 1, 2

B2pin2 or B2neop2                                

5 mol % [RhCl(CO)(PPh3)2] (59)

PhMe/MeCN (3:1), 80 oC

B2pin2 or B2neop2                        
3 mol % [RhCl(CO)(PPh3)2] (59)

PhMe / MeCN (3:1), 80 oC

B2pin2                                          

3 mol % [RhCl(CO)(PPh3)2] (59)

PhMe/MeCN (3:1), 80 oC

PhMe/MeCN (3:1), 6 d, 80 oC

Conversions  100%

Conversions  100%

Conversions  81-96%

Conversion  19%

B2pin2                                          

3 mol % [RhCl(CO)(PPh3)2] (59)

2 equiv. B2pin2                                                 
5 mol % [RhCl(CO)(PPh3)2] (59)

PhMe/MeCN (3:1), 80 oC

MeO
MeO

Bpin

Bpin

Conversion 93%
1,1-VBBE

 

 

Equation 1.41 Rhodium-catalysed dehydrogenative borylations of olefins by Marder and coworkers. 
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The relative reactivity of B2neop2 vs. B2pin2 was found to vary somewhat with substrate, 

but it appears that 1 equivalent of the former diboron compound is required to effect 

complete conversions as only one of the two boron moieties can be readily incorporated. 

This is presumably due to the instability of HBneop formed under the reaction conditions. 

Using 2 equivalents of B2pin2, and increasing the catalyst loading from 3 to 5 mol % with 

4-vinylanisole as substrate, led to the formation of the 1,1-vinyl bis(boronate ester) (1,1-

VBBE), i.e., the replacement of both geminal hydrogen atoms on the =CH2 group with 

boronate moieties in a single catalytic reaction (up to 93% selectivity for VBBE 

formation). The range of substrates was expanded from the vinyl arenes and 

1,1-disubstituted olefins previously studied to include 1-octene and indene. The reaction 

of 1-octene was rapid, but led to mixtures of the VBBE and VBE in a 2:1 ratio with the 

VBBE product consisting of several isomers, presumably resulting from double bond 

isomerization. Of the VBBEs formed, the major component is the 1,1-VBBE isomer 

(66%), indicating that both geminal olefin hydrogens were replaced. In contrast, the 

borylation of indene with B2pin2 led to selective formation of the VBE, with borylation 

occurring at the 2-position, but was slow giving only 19% conversion after 6 days at 80 

o
C. The slow reaction of indene was attributed to an unfavorable β-hydride elimination 

step due to the difficulty of achieving coplanarity of the Rh and β-hydride moieties, 

although it is possible that this substrate is borylated via a different mechanism from 

other olefins. No reaction was observed with 2-methyl-2-butene or 3,4,4-trimethyl-2-

pentene, suggesting that the system is not effective for dehydrogenative borylation of 

1,1,2-trisubstituted olefins. 

 

The reactions could also be conducted at 150 
o
C in sealed tubes in a microwave reactor 

giving, in general, fairly similar product distributions to those obtained by conventional 

heating at 80 
o
C, but with much shorter reaction periods (minutes vs. days). For 1,1-

disubstituted styrenes, conversions were improved when the amount of B2pin2 was 

increased from 0.67 equivalents to 1.0 or 2.0 equivalents. In general, the rate 

enhancements observed in the microwave reactions were consistent with that expected 

from the higher temperature employed, and thus do not appear to reflect any special 
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microwave enhancement, although catalyst lifetimes were somewhat reduced at the 

higher temperatures. 

 

The origin of the selectivity for VBE formation over diboration/hydroboration and the 

origins of the beneficial role of MeCN solvent in achieving the highest selectivities 

remain unclear. Certainly, the system promotes rapid -hydride elimination following 

olefin insertion into a Rh-B bond, which must be faster than competing processes that 

would result in saturated products.  

 

The observed selectivity for the formation of (E)-vinyl boronate products was proposed 

to result from diastereoselective β-hydride elimination from a rhodium β-borylalkyl 

intermediate. For -methylstyrene, highly selective borylation of the C-H bond cis to the 

Me group gives rise to a 1,1-disubstituted product that cannot be prepared by alkyne 

hydroboration. Following a syn addition of Rh and boryl groups to the olefin, either of 

the 2 diastereotopic β-hydrogens may be transferred to Rh. As β-hydride elimination 

requires a syn disposition of rhodium and hydride moieties, rotation around the C-C bond 

is required. Elimination from the least hindered rotamer (as illustrated for the 

α-methylstyrene case in Figure 1.31) would therefore lead to the observed (E)-product. 

The direction of the insertion of the styrenic substrates into the Rh-B bond generates the 

more hindered insertion product, placing the large groups  to the metal center. This is 

presumably a direct consequence of the nucleophilicity of the boryl ligands,
243

 which 

prefer to attack the terminal carbon of the styrenes during the olefin insertion step. 

Ph

Rh Me
B(OR)2

HH
Ph

Rh

Me

H

B(OR)2H Ph

Me

B(OR)2

Gauche rotamer 
following alkene 

insertion

(E)-productleast hindered
gauche rotamer

 

 

Figure 1.31 Conformation leading to the formation of (E)-VBE product. 

 

Westcott and coworkers reported dehydrogenative borylations of a range of vinylarenes 

in the presence of bulky rhodium diimine complexes as catalysts.
244

 The reactions of 
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HBcat, B2cat2 and HBpin with vinylarenes catalysed by 60, 61 and 62 (Figure 85) gave 

complex mixtures of products, but reactions with B2pin2 gave predominantly trans-VBE 

products. The borylation of 4-fluorostyrene with B2pin2 and an unspecified catalytic 

amount of 61 in toluene at 80 
o
C gave a 98% yield of the VBE product along with trace 

hydrogenation products. 

N
RhN

Ar

Ar

Cl

2

Rh
N

N

Ar

Ar

Rh(acac)
N

N

Ar

Ar
60 61 62

Ar =

O
B

O O
O

 

 

Figure 1.32 Bulky rhodium diimine catalysts for dehydrogenative borylation of olefins by Westcott and 

coworkers 

  

Miyaura and coworkers reported the borylation of vinyl C-H bonds in cyclic vinyl ethers 

by B2pin2 catalysed by [Ir(OMe)COD]2 and dtbpy (Table 1.8).
245

 This catalyst has been 

used widely for the borylation of aromatic C-H bonds, vide supra. Borylation of 1,4-

dioxene with 0.5 equivalents of B2pin2 at room temperature in hexane gave the VBE 

product in 81% yield. Borylations of dihydropyran and dihydrofuran gave regioisomeric 

mixtures of α-, and β-borylated products in ratios of 75:25 and 49:51, respectively. The 

introduction of substituents at the γ-position in dihydropyrans increased the 

regioselectivity, with borylation occurring solely at the α-position. Borylation of 

dihydrofurans was less selective; even γ,γ-disubstituted substrates gave products resulting 

from both α-, and β-borylation. In addition, the borylation of 1H-isochromene occurred 

solely α to oxygen, even in the presence of unhindered aromatic C-H bonds.  
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Table 1.8 Iridium-catalysed dehydrogenative borylation of cyclic vinyl ethers. 

Bpin
O

Bpin
O

Bpin
O

Bpin
O

Bpin
O

Bpin
O

p -C6H4Cl

p -C6H4Cl

Bu

Bu

Bpin
O

Bpin
O

Bpin

O

Bpin
O

Bpin
O

+ +

+

+

Product GC yield / % Product GC yield / %

64 (75:25)

61

65

81

75 (49:51)

71 (86:14)

73 (95:5)

All reactions were carried out at 80 oC for 8 h using B2pin2 (1.0 mmol), substrate (3.0 mmol), [Ir(OMe)COD]2

(0.015 mmol), dtbpy (0.03 mmol) in octane in a sealed tube. GC yields based on boron moieties in B2pin2.

O

R2
R1

O

R1R2

R3

O

R2
R1

O

R1R2

R3

Bpin

Bpin

B2pin2

1.5 mol % [Ir(OMe)COD]2
3 mol % dtbpy

octane, 80 oC

B2pin2

1.5 mol % [Ir(OMe)COD]2
3 mol % dtbpy

octane, 80 oC

 

Suginome and coworkers have reported a platinum-catalysed dehydrogenative borylation 

of 1,2-disubstituted olefins tethered to silylboronate groups to give (E)-VBEs, in which 

Si-B and olefinic C-H bonds are transformed into Si-H and C-B bonds, respectively 

(Equation 1.42).
246

 Silylboronates were synthesised from their corresponding alcohols
247

 

by reaction with ClPh2SiBpin, and were stirred in toluene at 80–100 
o
C in the presence of 

5 mol % Pt(dba)3 and 11 mol % PAr3, to give the VBE products in moderate to high 

yields, with no products arising from intramolecular alkene silylboration
248

 observed. A 

mechanism was proposed in which oxidative addition of the Si-B bond to the Pt
0 

center 
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would give a Pt
II 

(boryl)(silyl) species. Subsequent intramolecular 1,2-insertion of the 

olefin into the Pt-B bond, followed by β-hydride elimination would give the VBE product 

and a platinum hydride which could reductively eliminate Si-H to regenerate the Pt
0 

species. 

 

O R3

Si

R1
R2

Ph
Ph Bpin

n

O R3

Si

R1
R2

Ph
Ph H

n
Bpin

5 mol % Pt(dba)2
11 mol % PAr3

toluene

80-110 oC

n = 1,2 PAr3 = PPh3, P(4-C6H4CF3)3 

 

Equation 1.42 Dehydrogenative borylation of 1,2-disubstituted alkenes by Suginome and coworkers. 

 

1.3.8.6 Boryl transfer reactions and β-boryl elimination  

 

Pietraszuk and coworkers reported a boryl transfer reaction between two olefins using 

[Ru(H)(Cl)(PCy3)2(CO)], 63, as the catalyst and vinyl-ethyleneglycolato-boronate, 

(vinyl-Beg) or vinyl-trimethyleneglycolato-boronate, as sources of a boryl group.
249

 A 

range of styrenic and vinyl ether substrates were borylated in moderate to high yields, 

with reactions performed at 80 
o
C in benzene using a 5:1 ratio of olefin to vinylboronate 

to limit background reactions. A mechanism was proposed (Scheme 1.17) in which 63 

dissociates PCy3 to give the active species [Ru(H)(Cl)(PCy3)(CO)], 64. Migratory 

insertion of vinylboronate into the Ru-H bond of 64, would give the β-borylalkyl species 

65 which may undergo β-boryl elimination to give [Ru{B(OR)2}(Cl)(PCy3)(CO)], 66. 

Insertion of olefin into the Ru-B bond would give 67 which, followed by β-hydride 

elimination, would yield the VBE product and regenerate 64. The insertion of vinyl-Bcat 

into the Ru-H bond of 63 and subsequent extrusion of ethene to give 

[Ru(Bcat)(Cl)(PCy3)2(CO)] was demonstrated in stoichiometric experiments, as was the 

reaction of  [Ru(Bcat)(Cl)(PCy3)2(CO)] and styrene to give VBE and 63. The possibility 

of an olefin cross-metathesis pathway was eliminated via deuterium labeling studies. 
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Scheme 1.17 Ruthenium-catalysed transfer borylation of vinylarenes by Pietraszuk and coworkers. 

 

The mechanism of the above process was also examined via DFT calculations.
250

 

The energetics of the reversibility of the boryl ligand migration (olefin insertion into a 

metal-boryl bond) was explored, and the -boryl elimination process was calculated to 

have a low barrier. It was concluded that the “empty” p orbital on boron of the boryl 

ligand was not important in either the boryl migration or -boryl elimination processes, 

but that the high nucleophilicity of the Ru-boryl -bond promotes the boryl migration. 
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Synthesis of retinoids via sequential catalytic C-H 

borylations and Suzuki-Miyaura cross-couplings 

 

2.1 Introduction 
 

 

Retinoids are a group of more than 4000 natural and synthetic molecules that are 

structurally and/or functionally analogous to all-trans-retinoic acid (ATRA, 1) (Figure 

2.1), the major active metabolite of vitamin A. Endogenous retinoids regulate a range of 

essential processes during chordate embryogenesis and adult homeostasis, including 

embryonic development,
251 

vision,
252

 and cellular differentiation, proliferation and 

apoptosis.
253

 

 

 

CO2H CO2H

CO2H

CO2H
9cRA (2)

3-Me-TTNPB (4)

ATRA (1)

TTNPB (3)  
 

Figure 2.1 Natural and synthetic retinoids. 

 

Retinoids are successfully used to treat dermatological conditions
254 

and have the 

potential to act as chemopreventative and chemotherapeutic agents.
255,256 

However, for 

many retinoids, administration at efficacious concentrations is associated with side 

effects ranging from skin irritation to toxicity and teratogenicity.
257

 The pleiotropic 

(multiple) effects of retinoids are mediated via the retinoid nuclear receptors (RARs and 

RXRs).
258,259

 ATRA binds strongly with all three isotypes of RAR (,  and ) but has no 
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affinity for the RXRs, whereas 9-cis-retinoic acid (9cRA, 2), another physiological 

retinoid, binds and transactivates both the RARs and RXRs.
260

 

 

A common approach to designing new retinoids is to modify the structure of ATRA, for 

example, by replacing the tetraene chain with one or more aromatic rings in order to 

constrain the geometric conformation. These compounds are often referred to as 

arotinoids. One of the first retinoids of this type to be prepared was 4-(E)-[2-(5,6,7,8-

tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl]-benzoic acid (TTNPB, 3) 

(Scheme 2.1),
261,262

 a highly teratogenic pan-RAR agonist which is cytotoxic and a strong 

inducer of apoptosis, with a potency 500 times greater than that of ATRA. TTNPB 3 was 

initially prepared from 2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-ethan-1-

one, via a reduction-bromination-phosphorylation-Wittig sequence to derive the methyl-

diphenyl tri-substituted alkene. The Wittig reaction gave a mixture of Z-, and E-isomers, 

the E-isomer being separated by crystallization, and subsequent hydrolysis of the ethyl 

ester gave 3. 

 

CO2Et

O
OH Br

PPh3BrHCO

CO2Et

LiAlH4

Et2O

PBr3, pyridine

hexane

TTNPB (3)

NaOEt, DMF

PPh3

xylene

 

Scheme 2.1 Synthesis of TTNPB by Loeliger and coworkers. 

 

The replacement of a proton in the 3-position in 3 by a methyl group generates 

4-(E)-[2-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthalenyl)-1-propenyl]-benzoic 

acid, (3-Me-TTNPB, 4),
262

 (Figure 2.1). RAR- and RAR- isotypes are activated by 4, 

as is RXR-. The RAR binding affinity of 4, and consequently its toxicity, is decreased 

by 100-fold compared to 3. The differences in the observed receptor selectivities between 

3 and 4 result from unfavorable steric interactions between the C-3 methyl substituent 
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and the vinylic proton in 4, which are not present in 3. This causes a conformational 

change that alters the dihedral angle about the arene-olefin bond, giving 4 a twisted 

conformation that interacts more favorably with the RXRs and less favorably with the 

RARs. 

 

Heteroarotinoid analogues of TTNPB 3 and 3-Me TTNPB 4 are also known with 

5-oxo,
263

 5-thia
263,264

 and 5,8-disila-TTNPB
265 

(accessed by a [2+2+2]-cobalt-mediated 

phenyl ring construction, Scheme 2.2)
266 

previously synthesised as well as analogues 

bearing heterocycles such as thiophene,
267

 thiazole,
268

 imidazole,
268

 isoxazole
269 

and 

pyridine
267

 in place of the phenyl ring in the benzoic acid polar terminus. 

 

R = H, Me

1. DMSO, Cl(O)CC(O)Cl

2. NEt3

CO2Et

Si

Si

O
Si

Si

disila-TTNPBs

R

P

CO2Et
O

EtO
EtO

1. NaH, DMSO
2. NaOEt (R = H)

R

Si

Si

OH

Si

Si

OTMS

+

CpCo(CO)2, m -xylene

1. CpCo(CO)2, m-xylene

2. MeOH (AcOH)

Si

Si

O

+

R = H, Me  

 

Scheme 2.2  Synthesis of disila-TTNPBs by Tacke and coworkers. 

 

A rapid synthesis of TTNPB 3 and its analogues from simple hydrocarbon starting 

materials via a sequence of C-H borylations and subsequent Suzuki-Miyaura 

cross-couplings was envisaged (Scheme 2.3). Iridium-catalysed aromatic C-H borylation 

of tetrahydronapthalenes would give arylboronate esters which would be cross coupled 

with 2-bromopropene to give the desired α-methylstyrenes. Rhodium-catalysed 

dehydrogenative alkene borylation would yield (E)-vinylboronate esters that could 
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undergo Suzuki-Miyaura cross-coupling with iodobenzoic acids to give the desired 

products. 

R

CO2H

1. Aromatic C-H borylation
2. Suzuki-Miyaura cross-coupling

3. Vinylic C-H borylation
4. Suzuki-Miyaura cross-coupling

R

H
Br

H

CO2H

I

+ +

 

 

Scheme 2.3 Retrosynthetic analysis for the synthesis of TTNPBs via a combination of C-H borylations and 

Suzuki-Miyaura cross-couplings. 

 

Iridium-catalysed aromatic C-H borylation has attracted much attention since its original 

development due to the atom efficiency that results from the direct functionalisation of 

C-H bonds and the high levels of largely sterically induced selectivity observed, which 

complement traditional methods such as EAS (electrophilic aromatic substitution)
270

 and 

DoM (directed ortho metalation)
271

 chemistry. However, despite its inherent advantages 

and the large amount of methodological work published, its application in synthesis is 

extremely limited, with examples being the works of Hartwig,
272

 Moore,
273

 Gaunt,
274

  and 

Odom.
275

  

 

2.2 Results and discussion 

 
Borylation of 1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphthalene 5 was performed in 

hexane with 1 equivalent of B2pin2 and [Ir(OMe)COD]2/dtbpy (3 mol % Ir) as catalyst 

precursors. The reaction was monitored by in situ GC-MS analysis, with heating for 18 

hours at 80 
o
C required to give full conversion to 6,

276
 (95% isolated yield) with 100% 

regioselectivity for borylation of the least hindered aromatic C-H bonds (Equation 2.1).  
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B
O

O

6

H
1 equiv. B2pin2

0.5[Ir(OMe)COD]2/dtbpy (3 mol %)

hexane, 80 oC, 18 h, 95%

5  

 

Equation 2.1 Synthesis of 6 by Ir-catalysed aromatic C-H borylation of 5. 

 

4 .0 0 6 .0 0 8 .0 0 1 0 .0 0 1 2 .0 0 1 4 . 0 0 1 6 .0 0 1 8 .0 0 2 0 . 0 0

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

7 0 0 0 0 0 0

8 0 0 0 0 0 0

9 0 0 0 0 0 0

   1 e + 0 7

 1 . 1 e + 0 7

 1 . 2 e + 0 7

 1 . 3 e + 0 7

 1 . 4 e + 0 7

 1 . 5 e + 0 7

 1 . 6 e + 0 7

 1 . 7 e + 0 7

T im e -->

A b u n d a n c e

T IC :  jh b 3 8 1 b .D

 

Figure 2.2 GC (TIC) of the synthesis of 6 after 4 h. 

4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 2 0 2 4 0 2 6 0 2 8 0 3 0 0 3 2 0 3 4 0 3 6 0
0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

3 0 0 0 0 0

3 5 0 0 0 0

4 0 0 0 0 0

4 5 0 0 0 0

5 0 0 0 0 0

5 5 0 0 0 0

6 0 0 0 0 0

m / z -->

A b u n d a n c e

S c a n  9 4 8  (7 . 9 9 7  m in ):  jh b 3 8 1 b . D
2 9 9

1 5 7 3 1 4
1 0 1 1 9 9

1 2 95 7 8 3 1 7 11 4 3 2 1 51 8 5
1 1 5 2 4 1 2 5 72 7 1 3 5 92 8 5

 

Figure 2.3 MS of 6. 

 

 

The Suzuki-Miyaura coupling of 6 with 2-bromopropene was carried out with 3 mol % 

Pd(dppf)Cl2 and 2 equivalents of Ba(OH)2·8H2O base to give the α-methylstyrene 

product 7 in high yields.
277

 Reactions were heated thermally at 80 
o
C in a 5:1 mixture of 

DMF/H2O. In addition, 7 could be synthesised from 1,1,4,4-tetramethyl-1,2,3,4-

tetrahydronaphthalene in a one-pot C-H , single solvent
278

 borylation/Suzuki-Miyaura 

B2pin2

BpinOBpin

B
O

O

6

5

B
O

O

6
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reaction process in which both reactions were performed in MTBE, with thermal heating 

at 80 
o
C (Equation 2.2). 

 

a 1 eq B2pin2, 0.5[Ir(OMe)COD]2/dtbpy (3%), MTBE, 80 oC, 18 h  

b 2-bromopropene, 3% Pd(dppf)Cl2, Ba(OH)2
.8H2O, H2O, 80 oC, 2 h

B
O

O

6 7  93%

H a b

B
O

O

6 7 91%

2-bromopropene

3 mol % Pd(dppf)Cl2, Ba(OH)2
.8H2O

DMF/H2O, 80 oC, 2 h

5

 

 

Equation 2.2 Synthesis of 7. 

 

4 . 0 0 6 . 0 0 8 . 0 0 1 0 . 0 0 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0 2 0 . 0 0

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

7 0 0 0 0 0 0

8 0 0 0 0 0 0

9 0 0 0 0 0 0

   1 e + 0 7

 1 . 1 e + 0 7

 1 . 2 e + 0 7

 1 . 3 e + 0 7

 1 . 4 e + 0 7

 1 . 5 e + 0 7

 1 . 6 e + 0 7

 1 . 7 e + 0 7

 1 . 8 e + 0 7

T im e -->

A b u n d a n c e

T I C :  jh b 3 8 6 b 2 . D

 

Figure 2.4 GC (TIC) of the reaction of 6 and 2 bromopropene after 2 h. 

 

7

5
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4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 2 0 2 4 0 2 6 0 2 8 0 3 0 0 3 2 0 3 4 0 3 6 0 3 8 0 4 0 0
0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

1 0 0 0 0 0

1 2 0 0 0 0

1 4 0 0 0 0

1 6 0 0 0 0

1 8 0 0 0 0

2 0 0 0 0 0

2 2 0 0 0 0

2 4 0 0 0 0

m / z - - >

A b u n d a n c e

S c a n  6 1 4  ( 6 . 0 8 9  m i n ) :  j h b 3 8 6 b 2 . D
2 1 3

2 2 8

1 7 1

1 4 3
1 2 8

5 7
9 17 3

1 9 8 2 8 11 0 6 2 4 4 4 0 2

 

Figure 2.5 MS of 7. 

 

Synthesis of pentamethylated tetrahydronaphthalene 9
262c

 was achieved via 

AlCl3-catalysed Friedel-Crafts dialkylation of toluene with 2,3-dichloro-2,3-dimethyl-

butane, 8,
279

 which was synthesised from 2,3-dimethyl-butane-2,3-diol via chlorination in 

neat HCl (Equation 2.3). The use of high purity toluene was found to be necessary as 

reactions carried out with GPR (general purpose reagent) grade toluene led to a 

competing reaction between toluene and traces of ortho-xylene which were clearly 

present. Clearly the activating effect of the additional methyl group in ortho-xylene is 

significant, with even small quantities of xylene reacting preferentially over toluene. 

Similarly, attempts to synthesise 1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphthalene via 

AlCl3 catalysed Friedel-Crafts dialkylation of benzene with 2,3-dichloro-2,3-dimethyl-

butane resulted in the formation of the doubly reacted product even when reactions were 

carried out in neat benzene. 

 

OH

OH

Cl

Clconc. HCl

rt, 18 h, 87%

1.3 mol % AlCl3
2 equiv. PhMe

DCM, rt, 30 min then

65 oC, 15 min, 87%

8 9  

 

Equation 2.3 Synthesis of pentamethylated tetrahydronaphthalene 9. 

 

Borylations of 1,4-disubstituted benzenes typically give low conversions due to steric 

hindrance, with the exceptions being fluoro-, or cyano-substituted substrates.
280

 

7
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Borylation of 9, in which all aromatic C-H bonds are adjacent to methyl or bulky 

CMe2CH2R substituents, proceeded slowly with 10% iridium loadings and prolonged 

reaction times giving only 45% conversion. In contrast to the reaction of 1,1,4,4-

tetramethyl-1,2,3,4-tetrahydronaphthalene, two isomeric borylation products were 

observed by GC-MS in an 85:15 ratio, resulting from competing borylation of the two 

least hindered C-H bonds (Equation 2.4).  

 

9

H

H

Borylation ortho to C(CH3)2R - disfavoured

Borylation ortho to CH3 - favoured

B
H

O

O

H

B
OO

1 equiv B2pin2

0.5[Ir(OMe)COD]2/dtbpy (10 mol %)

hexane, 80 oC +

10a 10b

 

Equation 2.4 Attempted Ir-catalysed aromatic C-H borylation of 9. 

 

4 . 0 0 6 . 0 0 8 . 0 0 1 0 . 0 0 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0 2 0 . 0 0

5 0 0 0 0 0

1 0 0 0 0 0 0

1 5 0 0 0 0 0

2 0 0 0 0 0 0

2 5 0 0 0 0 0

3 0 0 0 0 0 0

3 5 0 0 0 0 0

4 0 0 0 0 0 0

4 5 0 0 0 0 0

5 0 0 0 0 0 0

5 5 0 0 0 0 0

6 0 0 0 0 0 0

6 5 0 0 0 0 0

7 0 0 0 0 0 0

7 5 0 0 0 0 0

8 0 0 0 0 0 0

8 5 0 0 0 0 0

T im e -->

A b u n d a n c e

T I C :  jh b 9 4 h . D

 

Figure 2.6 GC (TIC) of the attempted synthesis of 10a by aromatic C-H borylation of 9 with B2pin2. 

 

B O

O

B2pin2

10b

9

10a
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4 . 0 0 6 . 0 0 8 . 0 0 1 0 . 0 0 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0 2 0 . 0 0
0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

1 0 0 0 0 0

1 2 0 0 0 0

1 4 0 0 0 0

1 6 0 0 0 0

1 8 0 0 0 0

2 0 0 0 0 0

2 2 0 0 0 0

2 4 0 0 0 0

2 6 0 0 0 0

2 8 0 0 0 0

3 0 0 0 0 0

T im e - - >

A b u n d a n c e

I o n  3 2 8 . 0 0  ( 3 2 7 . 7 0  t o  3 2 8 . 7 0 ) :  jh b 9 4 h . D

 

Figure 2.7 Ion chromatogram (m/z = 328) of the attempted synthesis of 10a by aromatic C-H borylation of 

9 with B2pin2. 

 

6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 2 0 2 4 0 2 6 0 2 8 0 3 0 0 3 2 0
0

2 0 0 0 0 0

4 0 0 0 0 0

6 0 0 0 0 0

8 0 0 0 0 0

1 0 0 0 0 0 0

1 2 0 0 0 0 0

1 4 0 0 0 0 0

1 6 0 0 0 0 0

1 8 0 0 0 0 0

2 0 0 0 0 0 0

2 2 0 0 0 0 0

m / z -->

A b u n d a n c e

S c a n  1 0 1 3  (8 .3 6 9  m in ):  jh b 9 4 h .D
3 1 3

3 2 8
1 7 1

2 1 31 0 1 1 8 51 4 3 1 5 78 3 1 2 8 2 2 95 7 1 1 5 1 9 9 2 5 5 2 7 16 9 2 9 72 4 1 2 8 4

 

Figure 2.8 MS of 10a. 

 

In light of the poor selectivity and low reactivity exhibited in the Ir-catalysed C-H 

borylation of 9, alternative routes to the methylated analogue of 2 were sought. 

Friedel-Crafts acylation of 9 with acetylchoride and AlCl3 gave ketone 11
281

 The 

combination of 3 ortho/para directing groups on benzene in a 1,2,5 substitution pattern 

favoured acetylation para to the strongest activating group C(Me)2R and ortho to the 

methyl substituent with a regioselectivity of >99% observed by GC-MS. Ketone 11 was 

purified by Kugelrohr distillation to give pure product in high yields. Wittig 

methylenation of 11 with PPh3CH3I and potassium tert-butoxide in THF gave olefin 12 

which was purified by Kugelrohr distillation. 

B O

O

10b

10a

B O

O

10a
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9 11

O

12

1 equiv. AcCl 

2 equiv. AlCl3

DCM, 60 oC, 18 h, 86%

1.5 equiv. [PPh3CH3]I

1.5 equiv. KOt-Bu

THF, rt,  3 d, 84%

 

 

Equation 2.5 Synthesis of 12 via Friedel-Crafts acetylation and Wittig methylenation. 

 

3 . 0 0 4 . 0 0 5 . 0 0 6 . 0 0 7 . 0 0 8 . 0 0 9 . 0 0 1 0 . 0 0 1 1 . 0 0 1 2 . 0 0 1 3 . 0 0 1 4 . 0 0 1 5 . 0 0

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

7 0 0 0 0 0 0

8 0 0 0 0 0 0

9 0 0 0 0 0 0

   1 e + 0 7

T im e - ->

A b u n d a n c e

T I C :  jh b  p m n  k e t  2 0 0 9  2 . D

 

Figure 2.9 GC (TIC) of the acetylation of 9 with acetyl chloride to give 11 after 18 h. 

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0
0

5 0 0 0 0 0

1 0 0 0 0 0 0

1 5 0 0 0 0 0

2 0 0 0 0 0 0

2 5 0 0 0 0 0

3 0 0 0 0 0 0

3 5 0 0 0 0 0

m / z -->

A b u n d a n c e

S c a n  8 6 6  (7 .5 2 9  m in ):  jh b  p m n  k e t  2 0 0 9  2 .D
2 2 9

1 8 71 4 5

1 1 5
9 15 7 4 5 93 6 7 5 1 02 8 2 3 9 13 0 8 4 2 9 5 3 33 4 42 6 0 4 8 7

 

Figure 2.10 MS of 11. 

 

Monoclinic single crystals (P21/c) of compound 11 grew from liquid 11 upon standing. 

The C(O)Me group is inclined by 24.6° to the arene plane. The C(15) and O atoms are 

tilted out of this plane by 0.14 Å and 0.63 Å, while the methyl atom C(17) is displaced to 

the opposite side by −0.02 Å (Figure 2.11).  

O

11

O

11
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Figure 2.11 The molecular structure of ketone 11. Thermal ellipsoids are drawn at 50% probability. 

 

4 .0 0 6 .0 0 8 .0 0 1 0 . 0 0 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0 2 0 . 0 0
0

5 0 0 0 0 0

1 0 0 0 0 0 0

1 5 0 0 0 0 0

2 0 0 0 0 0 0

2 5 0 0 0 0 0

3 0 0 0 0 0 0

3 5 0 0 0 0 0

4 0 0 0 0 0 0

4 5 0 0 0 0 0

5 0 0 0 0 0 0

5 5 0 0 0 0 0

6 0 0 0 0 0 0

6 5 0 0 0 0 0

7 0 0 0 0 0 0

7 5 0 0 0 0 0

8 0 0 0 0 0 0

8 5 0 0 0 0 0

T im e -->

A b u n d a n c e

T I C :  jh b 1 5 6 a . D

 

Figure 2.12 GC (TIC) of the reaction of 11 with PPh3CH3I to give 12 after 48 h 

5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0 1 7 0 1 8 0 1 9 0 2 0 0 2 1 0 2 2 0 2 3 0 2 4 0 2 5 0
0

2 0 0 0 0 0

4 0 0 0 0 0

6 0 0 0 0 0

8 0 0 0 0 0

1 0 0 0 0 0 0

1 2 0 0 0 0 0

1 4 0 0 0 0 0

1 6 0 0 0 0 0

m / z - ->

A b u n d a n c e

S c a n  6 2 1  (6 . 1 2 9  m in ) :  jh b 1 5 6 a . D
2 2 7

2 4 2

1 7 11 5 7 1 8 5
1 4 3

1 2 8
1 1 55 7 9 1 1 9 81 0 57 7 2 1 16 7

 

Figure 2.13 MS of 12. 

OPPh3

12

O

11

12
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Monoclinic single crystals (P21/c) of olefin 12 were obtained by the slow evaporation of 

a diethyl ether/hexafluorobenzene solution. In 12 the olefinic moiety forms a dihedral 

angle of 80° with the benzene ring, due to steric interactions with the C(18) ortho-methyl 

group on the arene ring (Figure 2.14).  

 

Figure 2.14 The molecular structure of olefin 12. Thermal ellipsoids are drawn at 50% probability. 

 

Alternatively, olefin 12 could be synthesised via a borylation/Suzuki-Miyaura cross-

coupling route, analogous to the synthesis of 7. Due to the poor results obtained in the 

direct borylation of 9 alternative routes to the ortho-methylated boronate ester 10a were 

sought. Iodination of 9 with I2/HIO4 in AcOH/H2O/H2SO4 gave iodide 13. Although 

substoichiometric amounts of I2 were employed, in situ GC-MS analysis showed that full 

consumption of 9 occurred, with 13 being the sole species observed (Equation 2.6).  

 

I
0.2 equiv.  HIO4, 0.4 equiv. I2
1 equiv. H2SO4, AcOH, H2O

18 h, 70 oC, 64%

9 13  

 

Equation 2.6 Iodination of 9 with HIO4/I2 to give 13. 
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2 . 0 0 4 . 0 0 6 . 0 0 8 . 0 0 1 0 . 0 0 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0 2 0 . 0 0 2 2 . 0 0

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

7 0 0 0 0 0 0

8 0 0 0 0 0 0

9 0 0 0 0 0 0

   1 e + 0 7

T im e -->

A b u n d a n c e

T I C :  J H B 1 6 0 B . D

 

Figure 2.15 GC (TIC) for the iodination of 9 with I2/HIO4 to give 13 after 18 h. 

 

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 2 0 2 4 0 2 6 0 2 8 0 3 0 0 3 2 0 3 4 0 3 6 0
0

2 0 0 0 0 0

4 0 0 0 0 0

6 0 0 0 0 0

8 0 0 0 0 0

1 0 0 0 0 0 0

1 2 0 0 0 0 0

1 4 0 0 0 0 0

1 6 0 0 0 0 0

1 8 0 0 0 0 0

2 0 0 0 0 0 0

2 2 0 0 0 0 0

2 4 0 0 0 0 0

2 6 0 0 0 0 0

2 8 0 0 0 0 0

3 0 0 0 0 0 0

3 2 0 0 0 0 0

m / z - - >

A b u n d a n c e

S c a n  1 7 5 8  ( 1 1 . 8 7 6  m i n ) :  J H B 1 6 0 B . D
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Figure 2.16 MS of 13. 

 

Miyaura borylation
282

 of 13 with B2pin2 and KOAc in the presence of 5 mol % 

Pd(dppf)Cl2 required heating at 80 
o
C for a full week in DMF for the reaction to be 

complete. The use of DMSO as solvent reduced the reaction time to 4 days under the 

same conditions. Gratifyingly, exchanging B2neop2 for B2pin2 gave a marked 

improvement, with reactions in both DMF and DMSO giving full conversion after 18 

hours of heating (Equation 2.7). Similar results have been reported in the literature, with 

Wang and coworkers suggesting that the lesser steric demand of B2neop2, compared to 

B2pin2, led to the increase in reactivity, although a detailed explanation was not given.
283, 

284
 Although a variety of approaches have been taken to the Pd-catalysed borylation of 

reluctant substrates,
285 

the use of B2neop2 as a more active borylating agent has not been 

widely explored.  

I

13

I

13
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I

a  0.2 equiv. HIO4, 0.4 equiv. I2, 1 equiv. H2SO4, AcOH, H2O, 70 oC, 18 h, 64%

b  1 equiv. B2pin2, 5 mol % Pd(dppf)Cl2, 2 equiv. KOAc, DMSO, 80 oC, 4 d, 60%

c  1 equiv. B2neop2, 5 mol % Pd(dppf)Cl2, 2 equiv. KOAc, DMSO, 80 oC, 18 h, 67%

B
O

O

B
O

O

10a

14

a

b

c139

 

 

Equation 2.7 Palladium-catalysed borylations of 13 with B2pin2 and B2neop2. 
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Figure 2.17 GC (TIC) of the borylation of 13 with B2pin2 to give 10a after 96 h. 
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Figure 2.18 MS of 10a. 
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Figure 2.19 GC (TIC) of the borylation of 13 with B2neop2  to give 14 after 18 h. 
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Figure 2.20 MS of 14. 
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Monoclinic single crystals (Pc) of 10a were grown from a MeOH / DCM solution at -20 

o
C (Figure 2.21). 

 

Figure 2.21 The molecular structure of 10a showing the non-disordered molecule of 10a in the asymmetric 

unit. The disordered molecule of 10a is not shown for clarity. Thermal ellipsoids are drawn at 50% 

probability. 

 

For 10a, the asymmetric unit comprises of two molecules, one of which has the alkyl ring 

and its methyl substituents disordered between two conformations with occupancies 

0.626(4) and 0.374(4) (Figure 2.22). The methyl C(21) and the B atom deviate slightly 

from the arene plane in opposite directions, by 0.03 and −0.03 Å in the disordered 

molecule, and by 0.05 and −0.01 Å in the ordered molecule. The angles between the 

arene and C(6)BO2 planes are 2.5° and 6.7°, respectively. (Figure 2.22).  
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Figure 2.22 (a) The molecular structure of 10a with two independent molecules in the asymmetric unit, 

showing the disorder of one of the two molecules of 10a, (b) disorder in alkyl ring of one of the molecules 

of 10a. All hydrogen atoms, the C(21) methyl group and the Bpin group are removed for clarity. Thermal 

ellipsoids are drawn at 50% probability. 

 

Figure 2.23 The molecular structure of 14. Thermal ellipsoids are drawn at 50% probability. 

ba
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Tetragonal crystals (I41/a) of compound 14 (the neopentaneglycolate analogue of 10a) 

were grown from a MeOH solution at -20 
o
C (Figure 2.23).  

  

In comparison to 10a,  the molecular structure is more strained for 14, where the arene 

ring undergoes a small but significant twist of 4.7° between the C(6)−C(7) and 

C(9)−C(10) bonds. The boron and methyl C(20) atoms are displaced from the mean plane 

of the ring in opposite directions, by 0.13 and −0.14 Å, i.e. substantially more than in 

10a. Even so, the intramolecular non-bonding contact O(1)...C(20) of 2.863(2) Å in 10 is 

shorter than the corresponding contacts in 10a, O(1)...C(21) 2.923(2) and O(1')...C(21') 

2.942(2) Å. The angle between the arene and C(6)BO2 planes is 8.6°, and the 6-

membered boryl ring adopts an envelope conformation with the C(16) atom out-of-plane 

by 0.67 Å (Figure 2.13). Thermal ellipsoids are drawn at 50% probability. 

 

Due to its more rapid synthesis, in comparison to compound 10a, compound 14 was 

utilized as the coupling partner in the Suzuki-Miyaura cross coupling to give 12. The 

reaction with 2-bromopropene, in the presence of 5 mol % Pd(dppf)Cl2 catalyst and 2 

equivalents of Ba(OH)2·8H2O base was carried out in a 5:1 mixture of DMF/H2O at 80 
o
C 

to give 12  in a high yield (Equation 2.8). 

 

B
O

O

14
DMF/H2O, 80 oC, 18 h, 81%

12

2-bromopropene

5 mol % Pd(dppf)Cl2

2 equiv. Ba(OH)2
.8H2O

 

 

Equation 2.8 Synthesis of 12 via Suzuki-Miyaura cross-coupling of 14 with 2-bromopropene. 
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4 .0 0 6 .0 0 8 .0 0 1 0 . 0 0 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0 2 0 . 0 0

5 0 0 0 0 0 0

   1 e + 0 7

 1 . 5 e + 0 7

   2 e + 0 7

 2 . 5 e + 0 7

   3 e + 0 7

 3 . 5 e + 0 7

   4 e + 0 7

 4 . 5 e + 0 7

   5 e + 0 7

 5 . 5 e + 0 7

   6 e + 0 7

 6 . 5 e + 0 7

T im e -->

A b u n d a n c e

T I C :  jh b 2 4 9 b . D

 

Figure 2.24 GC (TIC) of the reaction of 14 with 2-bromopropene to give 12 after 18 h. 

 

Although compound 6 could be synthesised via Pd-catalysed borylation,
26

 direct C-H 

borylation is a more efficient route. However, for reasons not yet understood, Ir-catalysed 

aromatic C-H borylation is currently not effective with B2neop2, making this attractive 

route to the Bneop analogue of 6 unavailable. Iodination of 5 with I2/HIO4, under the 

same conditions utilized for the synthesis of 13, gave iodide 15.
286

 Although 

substoichiometric amounts of I2 were employed, in situ GC-MS analysis showed that full 

consumption of 5 had occurred after 4 hours, with 15 being the sole species. The 

borylation of iodide 15 with B2neop2 was performed with 1 mol % Pd(dppf)Cl2 catalyst 

and 2 equivalents of KOAc base in anhydrous DMSO and resulted in the full conversion, 

after 18 hours at 80 
o
C, of iodide 15 to the boronate ester 16 (Equation 2.8). 

 

B
O

O

16
DMSO, 80 oC, 18 h, 75%

15

I B2neop2, 1 mol % Pd(dppf)Cl2
2 equiv. KOAc

I
0.2 equiv. HIO4, 0.4 equiv. I2
1 equiv. H2SO4, AcOH, H2O

4 h, 70 oC, 71%

155

 

 

Equation 2.9 Synthesis of 16 via iodination of 5 and subsequent Miyaura borylation with B2neop2. 

 

9

12
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T im e - ->

A b u n d a n c e

T I C :  jh b  T M N I  2 0 0 9  3 b . D

 

Figure 2.25 GC (TIC) of the iodination of 5 with I2/HIO4 to give 15 after 4 h 
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Figure 2.26 MS of 15. 
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Figure 2.27 GC (TIC) of the borylation of 15 with B2neop2 to give 16 after 18 h. 
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Figure 2.28 MS of 16. 

 

Orthorhombic single crystals (Pbca) of 16 were grown form a concentrated MeOH 

solution at -20 
o
C (Figure 2.29).  

 

 

Figure 2.29 The molecular structure of 16. Thermal ellipsoids are drawn at 50% probability. 

 

The six-membered boryl ring adopts an envelope conformation with the dimethylated 

atom C(16) is tilted by 0.68 Å from the mean plane of the remaining five atoms, which is 

inclined to the benzene ring plane by only 2.2° (Figure 2.29). Interestingly, the 

differences in relative rates of formation of 10a and 14 were not observed in their 

subsequent Suzuki-Miyaura cross-couplings with 2-bromopropene to give the product 12. 

Thus, reactions of 10a and 14 at both 80 and 40 
o
C

 
gave similar results, as did analogous 

16
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reactions of the non-ortho-methylated aryl boronate esters 6 and 16. In an attempt to 

ascertain whether the nature of the base affected the relative activities of Ar-Bpin and Ar-

Bneop substrates in Suzuki-Miyaura cross-couplings, aryl boronates 6 and 16 were 

coupled to 2-bromopropene in the presence of 2 mol % Pd(dppf)Cl2 with a range of bases 

at room temperature in a 5:1 mixture of DMF/H2O to give the product 7 (Table 2.1). The 

reactions were examined by in situ GC-MS after 1 hour (i.e. at partial conversion).  

 

Table 2.1 Effects of base on Suzuki-Miyaura cross-couplings of 6 and 16 with 

2-bromopropene to give 7 

B(OR)2

6 / 16 7

2-bromopropene

2 mol % Pd(dppf)Cl2, 2 equiv. base

DMF/H2O, rt, 1 h

 
Base With 6 (Bpin) 

Protodeborylation / 6 / 7 

With 16 (Bneop) 

Protodeborylation / 16 / 7 

Ba(OH)2 3 / 48 / 49 6 / 63 / 31 

K3PO4 9 / 39 / 52 8 / 51 / 41 

K2CO3 20 / 58 / 19 20 / 54 / 26 

KOAc 47 / 52 / 1 31 / 67 / 2 
Results for the Suzuki-Miyaura cross-coupling of aryl boronates 6 and 16 with 2-bromopropene in the 

presence of 2 mol % Pd(dppf)Cl2 after 1 h at 20 
o
C. Product ratios were determined by GC-MS. 

  

 

It is proposed that under the mild conditions required to prevent unwanted 

Suzuki-Miyaura cross-coupling in the borylation of 13 with B2pin2 or B2neop2, the use of 

the more Lewis acidic B2neop2 leads to more favorable coordination of the weakly basic 

Pd(II)(dppf)Ar(OAc) intermediate and thus more facile transmetallation. Under the 

Suzuki-Miyaura conditions used for the biaryl coupling, with strong bases such as 

hydroxide and phosphate, transmetallation is rapid, leading to the negligible differences 

observed in the reactivities of the aryl and vinyl boronates. It was also noted that for the 

strong bases KOH and K3PO4, the Suzuki-Miyaura reaction of 6 is marginally faster than 

that of 16, whereas for K2CO3 the reverse is observed. Thus, it may be suggested that, 

under mild conditions, B2neop2 and neopentaneglycolate boronate esters may be more 

effective coupling partners than B2pin2 and pinacolboronate esters, though this effect is 

nullified by the use of more forcing conditions. In addition, it must be noted that although 

in Suzuki-Miyaura cross-couplings with 2-bromopropene, the Bneop aryl boronate ester 
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16 is a marginally poorer coupling partner, full conversion of 16 to 7 (and of Bneop ester 

14 to 12) can be achieved after heating at 80 
o
C for 1 h in the presence of 2 mol % 

Pd(dppf)Cl2 and 2 equivalents of Ba(OH)2·8H2O. This, in conjunction with the more 

rapid synthesis of the Bneop ester 14 from 13, makes the use of Bneop aryl boronate 

esters attractive intermediates for Pd-catalysed borylation/Suzuki-Miyaura reaction 

sequences. 

 

As noted above, dehydrogenative borylation of 1,1-disubstituted alkenes, using 

trans-[Rh(PPh3)2(CO)Cl] as catalyst precursor, offers an attractive method for the 

synthesis of 1,1-disubstituted vinylboronate esters (VBEs) which cannot be accessed via 

alkyne hydroboration, and yields air and moisture stable products (in contrast to Zr-

catalysed carboalumination of alkynes
287

) which may be coupled with organic halides to 

give trisubstituted alkenes in high yields and stereoselectivities.
288

 In contrast, Heck-

Mizoroki reactions of α-methylstyrenes are characterised by low conversions and poor 

selectivities arising from β-hydride elimination pathways giving vinylic and allylic 

products.
289

 

 

Alkenes 7 and 12 underwent dehydrogenative borylation with either B2pin2 or B2neop2 in 

the presence of trans-[Rh(PPh3)(Cl)CO] at 80 
o
C , with a 3:1 mixture of toluene and 

MeCN being the optimal solvent system. E-vinyl boronate products were obtained with 

high stereoselectivities, with no sacrificial hydrogenation of the substrate alkene observed 

(Equation 2.10). Borylations of 12 were noticeably slower than those of 7 and did not 

proceed past 70% conversion, although the precise origin of this effect is not known. It is 

possible that either increased steric hindrance or partial loss of conjugation between the 

alkene and arene π-systems, vide infra, are responsible. In addition, no improvement in 

reaction rate was observed for borylations carried out with B2neop2.  
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a  1 equiv B2neop2, 5 mol % [Rh(PPh3)2(CO)Cl], 3:1 PhMe/MeCN, 80 oC

b  1 equiv B2pin2, 5 mol % [Rh(PPh3)2(CO)Cl], 3:1 PhMe/MeCN, 80 oC

B

R

RR

O

O

7     R = H
12   R = Me

a b

19, R = H, 3 d, 57%
20, R = Me, 7 d, 49%

17, R = H, 3 d, 50% 
18, R = Me, 7 d, 63%

H

 

 

Equation 2.10 Dehydrogenative borylations of 7 and 12 to give 17, 18, 19 and 20. 
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Figure 2.30 GC (TIC) of the dehydrogenative borylation of 7 with B2pin2 to give 17 after 48 h. 
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Figure 2.31 MS of 17. 
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Figure 2.32 GC (TIC) of the dehydrogenative borylation of 12 with B2pin2 to give 18 after 72 h. 
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Figure 2.33 MS of 18. 
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Figure 2.34 GC (TIC) of the dehydrogenative borylation of 7 with B2neop2 to give 19 after 48 h. 
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Figure 2.35 MS of 19. 
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Figure 2.36 GC (TIC) of the dehydrogenative borylation of 12 with B2neop2 to give 20 after 72 h. 
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Figure 2.37 MS of 20. 
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The Suzuki-Miyaura cross-coupling of vinyl boronate ester 17 directly with 

4-iodobenzoic acid led to TTNPB 3. However, analysis of the reaction mixture and 

subsequent purification of the product was extremely troublesome, making this route 

inefficient. Despite these drawbacks, monoclinic single crystals (P21/c) of TTNPB (the 

acid form of 21) were grown via slow evaporation of a CDCl3 solution of TTNPB 

derived from the coupling described above. TTNPB crystallised as doubly hydrogen 

bonded dimers with its inversion equivalent. The carboxylic C-O bond distances C(24)-

O(1) 1.278(4) and C(24)-O(2) 1.257(4) Å are nearly symmetrical, suggesting a double-

minimum hydrogen bond O(1)...O(2'), in agreement with the electron density distribution 

along this vector. Two hydrogen atom positions, H(01) and H(02), were included in the 

final refinement with occupancies of 0.6 and 0.4, respectively. The planes of the arene 

ring (i), olefinic moiety (ii), the benzene ring (iii) and the carboxylic group (iv) were 

found to form dihedral angles: i/ii 41.2, ii/iii 31.9, i/iii 73.3 and iii/iv 3.9° (Figure 2.38). 

 

Figure 2.38 Molecular structure of TTNPB. Shown as one half of its doubly hydrogen bonded dimer. 

Thermal ellipsoids are drawn at 50% probability. 

 

In contrast to the cross-couplings with iodobenzoic acids, the use of 3-, and 

4-iodobenzoic acid methyl esters as coupling partners, allowed for easy analysis and 

purification of products 21, 22, 23 and 24 in high yields (Equation 2.11). 

 

i

ii
iii

iv
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O

O

21, R = H, Ar = 4-C6H4CO2Me, 84%; 22, R = H, Ar = 3-C6H4CO2Me, 75%;

23, R = Me, Ar = 4-C6H4CO2Me, 86%; 24, R = Me, Ar = 3-C6H4CO2Me, 86%

R

B

R

O

O ArI, 5 mol % Pd(dppf)Cl2
2 equiv. K3PO4

5:1 DMF/H2O, 80 oC, 2 d

 

 

Equation 2.11 Suzuki-Miyaura reactions of 17 and 18 with aryl iodides to give 21, 22, 23 and 24. 

 

4 .0 0 6 .0 0 8 .0 0 1 0 .0 0 1 2 .0 0 1 4 .0 0 1 6 .0 0 1 8 .0 0 2 0 .0 0
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

3 5 0 0 0

4 0 0 0 0

4 5 0 0 0

5 0 0 0 0

5 5 0 0 0

6 0 0 0 0

T im e -->

A b u n d a n c e

T IC :  jh b 1 3 7 b .D

 

Figure 2.39 GC (TIC) of the Suzuki-Miyaura reaction of 17 and 4-C6H4-CO2Me to give 21 after 48 h. 
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Figure 2.40 MS of 21. 
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4 . 0 0 6 . 0 0 8 . 0 0 1 0 . 0 0 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0 2 0 . 0 0

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

7 0 0 0 0 0 0

8 0 0 0 0 0 0

9 0 0 0 0 0 0

   1 e + 0 7

 1 . 1 e + 0 7

 1 . 2 e + 0 7

 1 . 3 e + 0 7

 1 . 4 e + 0 7

 1 . 5 e + 0 7

 1 . 6 e + 0 7

 1 . 7 e + 0 7

 1 . 8 e + 0 7

T im e -->

A b u n d a n c e

T I C :  jh b 2 8 5  1 a  a . D

 

Figure 2.41 GC (TIC) of the Suzuki-Miyaura reaction of 17 and 3-C6H4-CO2Me to give 22 after 48 h. 
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Figure 2.42 MS of 22. 
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Figure 2.43 GC (TIC) of the Suzuki-Miyaura reaction of 18 and 4-C6H4-CO2Me to give 23 after 48 h. 
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Figure 2.44 MS of 23. 
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Figure 2.45 GC (TIC) of the Suzuki-Miyaura reaction of 18 and 3-C6H4-CO2Me to give 25 after 48 h. 

 

4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 2 0 2 4 0 2 6 0 2 8 0 3 0 0 3 2 0 3 4 0 3 6 0 3 8 0 4 0 0
0

2 0 0 0 0 0

4 0 0 0 0 0

6 0 0 0 0 0

8 0 0 0 0 0

1 0 0 0 0 0 0

1 2 0 0 0 0 0

1 4 0 0 0 0 0

1 6 0 0 0 0 0

1 8 0 0 0 0 0

2 0 0 0 0 0 0

2 2 0 0 0 0 0

2 4 0 0 0 0 0

2 6 0 0 0 0 0

2 8 0 0 0 0 0

m / z - - >

A b u n d a n c e

S c a n  1 5 9 5  ( 1 1 . 6 9 5  m i n ) :  j h b 1 6 3 a . D
3 6 1

3 2 9 3 7 7

2 8 7
3 4 5

1 1 5 2 2 9
1 7 3 3 0 52 5 91 4 39 1 2 0 25 9

7 5 4 0 5

 

Figure 2.46 MS of 24. 
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Monoclinic single crystals (P21/c) of TTNPB methyl esters 22 were grown via slow 

evaporation from a hexane solution.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.47 Molecular structures of compound 22 in conformations A and B (a and b, respectively). 

Superimposition of both conformations of compound 22 (c). Thermal ellipsoids are drawn at 50% 

probability for all figures. 
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For 22, the crystal is disordered with equal probability between two conformations (A and 

B) with the exceptions being the C(4), C(8), C(9), C(10), C(11), C(12) atoms (with their 

attached hydrogens) and the benzoate methyl ester moiety which are ordered. The 

dihedral angles between the planes of the arene ring (i), olefinic moiety (ii), the benzene 

ring (iii) and the carboxylate group (iv) were found to be i/ii 41.4, ii/iii 51.4, and i/iii 

88.2° for conformation A and 42.0, 42.2 and 83.8° for conformation B, respectively. The 

iii/iv angle equals 14.9° in both A and B.  

 

Monoclinic single crystals (P21/c) of compound 23 were grown via the slow evaporation 

of a MeOH solution.  

  

Figure 2.48 Molecular structure of compound 23. Thermal ellipsoids are drawn at 50% probability. 

 

For 23, the dihedral angles between the planes of the arene ring (i), olefinic moiety (ii), 

the benzene ring (iii) and the carboxylic group (iv) were found to be i/ii 56.1
o
, ii/iii 11.1, 

i/iii 45.0
o
 and iii/iv 5.5

o
.  

 

 

i

ii

iii

iv
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2.2.2 Discussion of the relative solid and solution state structures of TTNPB 

esters and their vinylic precursors 

 

The effects of addition of a methyl group (or larger substituents) to the ortho position of 

TTNPB on the biological activity have been widely documented and may result from 

steric interactions between the 3-substituent and the vinylic proton which induces an 

increase in the dihedral angle between the aryl ring of the hydrophobic terminus and the 

alkene moiety, giving a bent a conformation similar to that of 9cRA.
 

 

Comparison of the molecular structures of 12, 17 and 23 with those of 18, 1 and 22 

shows that for ortho methylated species, the presence of the 3-substituent makes planar 

conformations unfavourable. In alkene 12, the olefinic moiety forms a dihedral angle of 

80° with the benzene ring, however crystallographic comparison with 7 was not possible 

as 7 is a liquid at both room temperature and -20 
o
C.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.49 Comparison of the molecular structures of 17 and 18, showing the increase in the dihedral 

angle between the arene and olefin planes caused by the ortho-methyl group in 18 over 17. Disorder of the 

Bpin group is removed for clarity in 17. Disorder of the C(15)C(16)C(17)C(18) alkyl group is removed for 

clarity in 18. Thermal ellipsoids are drawn at 50% probability. 

 

In vinylboronate ester 17, the olefinic fragment C(9)C(8)C(7)B(1) is planar within 

experimental error, and is inclined by 6.2° to the arene  plane. In the ortho-methylated 
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vinylboronate ester 18 the conformation is altered drastically. Due to steric crowding, the 

olefinic moiety is twisted by 3.4° around the double bond, while its mean plane is 

inclined by 60.3° to the arene plane (Figures 2.49)  

 

For TTNPB the dihedral angle between the planes of the benzene ring of the hydrophobic 

unit and the olefinic moiety is 41.2
o
. For 23, the ester of the ortho-methylated analogue 

3-Me TTNPB, steric interactions between the ortho-methyl group and the olefinic moiety 

lead to an increased dihedral angle of 56.1
o
 (Figure 2.50). In the case of 22 direct 

crystallographic comparison with its ortho-methylated analogue 24 was not achieved, but 

the dihedral angle between the planes of the benzene ring of the hydrophobic unit i and 

the olefinic moiety ii was found to be either 41.4 or 42.0
o
 (for the two conformations of 

22 present in the unit cell), values similar to that of TTNPB.   

 

Figure 2.50 Comparison of TTNPB and 3-Me TTNPB methyl ester 23, showing the increase in the i/ii 

dihedral angle caused by the ortho-methyl group in 23. Thermal ellipsoids are drawn at 50% probability. 

 

Although comparisons of solid state structures are useful, information about the relative 

solution conformations of the methylated and non-methylated compounds detailed above 

is necessary as the solid state structures might be influenced by intermolecular 

interactions (i.e. packing effects). In this case, the use of UV-vis spectrometry is highly 
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beneficial. Comparisons of λmax values give information on the relative degrees of 

conjugation, and therefore twist, in compounds which differ only by the presence of an 

ortho-methyl group (Table 2.2). This is especially useful for pairs of compounds for 

which suitable single crystals could not be obtained for one or both members (i.e. 7 and 

12, where 7 is a liquid at room temperature and at -20 
o
C). 

 

Table 2.2 UV-vis spectrometry data of TTNPB esters and vinylic precursors 

Compound                λmax (nm) / CHCl3 ε (L mol
-1 

cm
-1

) / CHCl3 

7 246 10900 

 12 252 4540 

 17 270 18600 

 18 253 9500 

 19 268 10500 

 20 255 9100 

 21 309 29500 

 22 284 22800 

 23 288 17500 

 24 241, 268 24800, 16200 

 

Comparison of λmax values showed that for related pairs of vinylboronate esters and 

TTNPB methyl esters, the incorporation of an ortho-methyl group led to a blue shift in 

λmax of between 21 and 13 nm. For Bpin and Bneop vinylboronates 17, 18, and 19, 20, 

respectively, the nature of the boronate ester moiety did not greatly affect λmax. In 21, 22, 

23, and 24 conjugation extends throughout the stilbene moiety to the electron 

withdrawing ester group, with λmax values for para-retinoid esters 21 and 23 being red 

shifted by 25 and 20 nm compared with their meta-substituted analogues, 22 and 24, 

respectively. The addition of ortho-methyl groups led to blue shifts in the λmax values of 

21 and 16 nm for the para-, and meta-TTNPB esters, respectively. 
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2.3 Conclusions 

 

In conclusion, concise and stereoselective syntheses of the methyl esters of the highly 

active TTNPB series of synthetic retinoids has been achieved. The approach, based upon 

combinations of Ir-, and Rh-catalysed C-H borylations  of unactivated arenes and alkenes 

to give aryl-, and vinyl-boronate esters, and subsequent Suzuki-Miyaura cross-couplings 

gave the products in good yields, with excellent regio-, and stereoselectivities, 

exemplifying the synthetic utility of these transformations.  The effect of adding an 

ortho-methyl group, well documented in biological studies, has been studied both 

crystallographically and spectroscopically, and shown to induce an increase in dihedral 

angle between the arene and olefin planes, giving twisted conformations which may be 

proposed to be more like those adopted by the endogenous retinoid 9cRA than for 

ATRA, hence resulting in the increase in RXR selectivity often shown for ortho-

methylated retinoids.  

 

2.4 Experimental 

 

General Experimental  

 

All reactions were carried out under a dry nitrogen atmosphere using standard Schlenk 

techniques or in an Innovative Technology Inc. System 1 double-length glove box. 

Glassware was oven dried before transfer into the glove box. Hexane and THF were dried 

over sodium / benzophenone and acetonitrile was dried over CaH2 and all were distilled 

under nitrogen. The solvents 1,4-dioxane, DMF, MTBE, THF and DMSO and H2O were 

degassed by 3 freeze-pump-thaw-cycles. Toluene was dried and deoxygenated by 

passage through columns of activated alumina and BASF-R311 catalyst under Ar 

pressure using a locally modified version of the Innovative Technology Inc. SPS-400 

solvent purification system. The compound 1,1,4,4-tetramethyl-1,2,3,4-tetrahydro-

naphthalene, 5, was purchased from Avocado Chemical Company or from Maybridge 

and was dried over CaH2 and distilled. [Ir(μ-Cl)(COE)2]2,
290 

[Ir(μ-OMe)COD]2,
291
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trans-[Rh(PPh3)2(CO)Cl]
292,293

 and the Wittig reagent [Ph3PMe]I
294

 were synthesised by 

literature procedures. B2pin2 was supplied as a gift by Frontier Scientific Inc., NetChem 

Inc. and AllyChem Co. Ltd. Hydrochloric acid was obtained from Fisher Scientific and 

all other compounds were obtained from Aldrich Chemical Company, tested for purity by 

GC-MS and used without further purification. NMR spectra were recorded at ambient 

temperature on Varian Inova 500 (
1
H, 

13
C{

1
H}, HSQC), Varian C500 (

1
H, 

13
C{

1
H}, 

HSQC, HMBC Bruker 400 Ultrashield (
1
H, 

13
C{

1
H},

11
B and 

11
B{

1
H}), Varian Unity 300 

(
11

B and 
11

B{
1
H}) and Bruker AC200 (

13
C{

1
H}) instruments. Proton and carbon spectra 

were referenced to external SiMe4 via residual protons in the deuterated solvents or 

solvent resonance respectively. 
11

B NMR spectra were referenced to external BF3∙OEt3. 

UV-vis and fluorescence measurements were recorded in CHCl3. UV-vis absorption 

spectra and extinction coefficients were obtained on a Hewlett-Packard 8453 diode array 

spectrophotometer using standard 1 cm quartz cells. Fluorescence spectra were recorded 

on a Horiba Jobin-Yvon Fluoromax-3 spectrophotometer. The spectra of dilute solutions 

with absorbance maxima of less than 0.1 were recorded using conventional 90 degree 

geometry. The emission spectra were fully corrected using the manufacturer‟s correction 

curves for the spectral response of emission optical components. Elemental analyses were 

conducted in the Department of Chemistry at Durham University using an Exeter 

Analytical Inc. CE-440 Elemental Analyser. GC-MS analyses were performed on a 

Hewlett-Packard 5890 Series II gas chromatograph equipped with a 5971 mass selective 

detector and a 7673 autosampler or on an Agilent 6890 Plus GC equipped with a 5973N 

MSD and an Anatune Focus robotic liquid handling system / autosampler. A fused silica 

capillary column (10 m or 12 m, cross-linked 5% phenylmethylsilicone) was used, and 

the oven temperature was ramped from 50 
o
C to 280 

o
C at a rate of 20 

o
C/min. UHP 

grade helium was used as the carrier gas. The screw-cap autosampler vials used were 

supplied by Thermoquest Inc. and were fitted with Teflon / silicone / Teflon septa and 0.2 

mL micro inserts. HRMS spectra were recorded in the Department of Chemistry at 

Durham University using a Thermo Finnigan LTQ FT Ultra Hybrid mass spectrometer. 

 

 



179 

 

B
O

O

6 

 

4,4,5,5-Tetramethyl-2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-

[1,3,2] -dioxaborolane (6).
276

 In a dry, N2 filled glove box, a solution of [Ir(OMe)COD]2 

(0.16 g, 0.24 mmol) and 4,4‟-di-tert-butyl-2,2‟-bipyridine (0.13 g, 0.48 mmol) in hexane 

(3 mL) was shaken vigorously and added to a solution of 1,1,4,4-tetramethyl-1,2,3,4-

tetrahydronaphthalene, 5, (3.0 g, 15.9 mmol) and B2pin2 (4.45 g, 17.5 mmol) in hexane 

(12 mL) in a thick walled glass tube fitted with a Young‟s tap. The mixture was heated at 

80 
o
C until GC-MS analysis showed the reaction to be complete (18 h). The reaction 

mixture was passed through a short silica gel column (hexane as eluent). The hexane was 

evaporated and the residue was recrystallised from MeOH giving 6 as a white powder 

(4.71 g, 95%); mp 115-117 
o
C; IR (KBr disc, cm

-1
) 2966, 2857, 1607, 1553, 1466, 1408, 

1358, 1314, 1294, 1267, 1210, 1144, 1117, 1099; UV-vis (CHCl3) λmax (ε) 243 nm (2730 

L mol
-1 

cm
-1

); λem (CHCl3) 298 nm; m/z (EI-MS) 314 (15%, M
+
), 299 (100%, M

+
 - Me); 

1
H NMR

 
(400.13 MHz, C6D6)  8.23 (1H, s), 8.01 (1H, d, J = 8.0 Hz), 7.26 (1H, d,  J = 

8.0 Hz), 1.52 (4H, s), 1.19 (6H, s), 1.15 (6H, s) 1.06 (12H, s); 
13

C{
1
H} NMR (100.13 

MHz, C6D6)  148.35, 144.22, 133.97, 132.70, 126.39, 88.55, 35.55, 35.40, 34.54, 34.40, 

31.94, 31.82, 24.95, the resonance of the carbon attached to boron was not observed; 

11
B{

1
H} NMR (128.37 MHz, C6D6)  31.30; elemental analysis calcd. (%) for 

C20H31BO2: C 76.44, H 9.94; found: C 76.15, H 9.93. 

 

 

7 

 

6-Isopropenyl-1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphthalene (7).
277

 In a dry, N2 

filled glovebox, Pd(dppf)Cl2 (64 mg, 0.08 mmol), compound 6 (0.80 g, 2.6 mmol), 2-
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bromopropene (0.73 g, 3.3 mmol), and Ba(OH)2·8H2O (1.77 g, 5.2 mmol) were added to 

a thick walled glass tube fitted with a Young‟s tap along with degassed DMF (10 mL) 

and degassed H2O (2 mL). The mixture was heated at 80 
o
C until GC-MS analysis 

showed the reaction to be complete (2 h). Dilute HCl(aq.) (2 mL) was added and the 

mixture was extracted with DCM (3 x 10 mL). The organic phase was washed with dilute 

HCl(aq.) (3 x 10 mL) then H2O (3 x 10 mL), dried over MgSO4 and concentrated in vacuo. 

Purification by silica gel chromatography, eluting with 40:60 DCM/hexane gave 7 as a 

clear oil (0.53 g, 91%); IR (KBr disc, cm
-1

) 2966, 2857, 1607, 1553, 1466, 1408, 1358, 

1314, 1294, 1267, 1210, 1144, 1117, 1099; UV-vis (CHCl3) λmax (ε) 246 nm (10900 L 

mol
-1 

cm
-1

); λem (CHCl3) 315 nm;  m/z (EI-MS) 228 (20%, M
+
), 213 (100%, M

+
 - Me); 

1
H NMR (400.13 MHz, CDCl3)   7.44 (1H, s), 7.27 (2H, s), 5.35 (1H, s), 5.04 (1H, s), 

2.16 (3H, s), 1.70 (4H, s), 1.32 (6H, s) 1.30 (6H, s); 
13

C{
1
H} NMR (100.61 MHz, CDCl3) 

 144.76, 144.44, 143.63, 138.57, 126.58, 123.74, 123.10, 111.69, 35.46, 35.32, 34.43, 

34.32, 32.11, 32.04, 22.27.  

 

One-pot synthesis of 7. In a dry, N2 filled glove box, a solution of [Ir(OMe)COD]2 (26 

mg, 0.04 mmol) and 4,4‟-di-tert-butyl-2,2‟-bipyridine (21 mg, 0.08 mmol) in MTBE (2 

mL) was shaken vigorously and added to a solution of 5 (0.50 g, 2.65 mmol) and B2pin2 

(0.675 g, 2.65 mmol) in MTBE (8 mL) in a thick walled glass tube fitted with a Young‟s 

tap. The mixture was heated at 80 
o
C until GC-MS analysis showed the reaction to be 

complete (18 h). After transfer of the reaction vessel to a glove box, degassed H2O (2 

mL) was added and the mixture was stirred for 5 minutes. Pd(dppf)Cl2 (64 mg, 0.079 

mmol), Ba(OH)2·8H2O (1.67 g, 5.30 mmol) and 2-bromopropene (0.42 g, 3.44 mmol) 

were added and the reaction mixture was heated at 80 
o
C until GC-MS analysis showed 

the reaction to be complete (2 h). Dilute HCl(aq.) (2 mL) was added and the mixture was 

extracted with DCM (3 x 10 mL). The organic phase was washed with dilute HCl(aq.) (3 x 

10 mL) then H2O (3 x 10 mL), dried over MgSO4 and concentrated in vacuo. Purification 

via silica gel chromatography, eluting with 40:60 DCM/hexane and removal of the 

solvent in vacuo gave 7 as a clear oil (0.56 g, 93%). All other analytical data are identical 

to those obtained when using the above methods.   
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Cl

Cl

  8 

 

2,5-Dichloro-2,5-dimethyl-hexane (8).
262c,279

 2,5-Dimethyl-hexane-2,5-diol (20.0 g, 137 

mmol) was added to a 1 L conical flask and 250 mL HCl conc. (37% v/v, d = 1.18) was 

added. The solution was stirred overnight, filtered and the filtrate was washed with H2O 

(2 x 100 mL) and then dissolved in Et2O (200 mL). The organic layer was dried over 

MgSO4, filtered and the solvent removed in vacuo to give a crude product. Purification 

via a short silica gel column (eluting with hexane) and removal of solvent in vacuo gave 

8 as white needles (21.8 g, 87%), mp 67-68 
o
C (lit.

262c
 mp 63-65 

o
C), m/z (EI-MS) 133 

(100% M
+
 - MeCl); 

1
H NMR (400.13 MHz, CDCl3) 1.95 (4H, s), 1.59 (12H, s), 

13
C{

1
H} NMR (100.61 MHz, CDCl3)  70.57, 41.45, 32.79; elemental analysis calcd. 

(%) for C8H16Cl2: C 52.47, H 8.81; found: C 52.55, H 8.97.  

 

 

  9 

 

1,1,4,4,6-Pentamethyl-1,2,3,4-tetrahydronaphthalene (9).
262c

 This compound was 

synthesised as previously described.
12c 

To a stirred solution of toluene (10.0 g, 110 mmol) 

and compound 8 (10.0 g, 54.5 mmol) in DCM (75 mL) under N2 was added anhydrous 

AlCl3 (0.10 g, 0.75 mmol). The mixture was stirred for 30 min then refluxed for 15 min 

and then quenched with 10 mL of 10% HCl(aq.). The mixture was extracted with hexane (2 

x 60 mL). The organic layers were combined, washed with H2O (2 x 100 mL), dried over 

MgSO4 and the solvent was removed in vacuo to give a brown/orange oil. Kugelrohr 

distillation (131 
o
C, 3.3 x 10

-2 
mbar) gave 9 as white crystals (9.43 g, 85%); mp 30-32 

o
C 

(lit.
262c

 31-32 
o
C); IR (KBr disc, cm

-1
) 2956, 2917, 2868, 1614, 1499, 1456, 1385, 1362, 

1274, 1188, 1106, 1068, 1047; UV-vis (CHCl3) λmax (ε) 289 nm (405 L mol
-1 

cm
-1

); λem 

(CHCl3) 357 nm; m/z (EI-MS) 202 (10% M
+
), 187 (100% M

+
 - Me); 

1
H NMR (400.13 
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MHz, CDCl3)  7.25 (1H, d, J = 8.0 Hz), 7.14 (1H, s), 6.99 (1H, d, J
 
= 8.0 Hz), 2.33 (3H, 

s), 1.70 (4H, s), 1.30 (6H, s), 1.29 (6H, s); 
13

C{
1
H} NMR (100.61 MHz, CDCl3)  

144.88, 142.05, 134.95, 127.22, 126.76, 126.64, 35.48, 35.42, 34.35, 34.12, 32.15, 32.09, 

21.34; elemental analysis calcd. (%) for C15H22: C 89.04, H 10.96; found: C 89.02, H 

11.13. 

 

 

O

  11 

 

1-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-ethanone (11).
280

 To a 

solution of acetyl chloride (0.7 mL, 9.9 mmol) and compound 9 (2.0 g, 9.9 mmol) in 

DCM (40 mL) was added anhydrous AlCl3 (2.63 g, 19.8 mmol) in 0.5 g aliquots. The 

mixture was refluxed under N2 for 15 min then stirred overnight at room temperature. 

20% HCl(aq.) (5 mL) was added and the mixture was extracted with hexane (2 x 30 mL). 

The organic layers were combined, washed with H2O (2 x 30 mL), dried over MgSO4 and 

the solvent was removed in vacuo to give a crude product. Purification by Kugelrohr 

distillation (170 
o
C, 9 x 10

-3
 mbar) yielded 11 as white crystals (1.94 g, 86%); mp 31-32 

o
C; IR (KBr disc, cm

-1
) 2958, 2923, 1673 (C=O), 1609, 1545, 1499, 1460, 1362, 1254, 

1117, 1086, 1037; UV-vis (CHCl3) λmax (ε) 296 nm (1570 L mol
-1 

cm
-1

); λem (CHCl3) 349 

nm; m/z (EI-MS) 244 (35%, M
+
), 229 (100%, M

+
 - Me); 

1
H NMR

 
(400.13 MHz, C6D6)  

7.58 (1H, s), 7.08 (1H, s), 2.61 (3H, s), 2.22 (3H, s), 1.55 (4H, s), 1.19 (6H, s), 1.17 (6H, 

s); 
13

C{
1
H} NMR (100.13 MHz, C6D6)  199.70, 148.53, 142.18, 136.02, 135.75, 130.28, 

127.13, 35.26, 35.24, 34.32, 33.93, 31.86, 31.58, 28.88, 21.68; elemental analysis calcd. 

(%) for C17H24O: C 83.55, H 9.90; found: C 83.73, H 10.03. 
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 12 

 

6-Isopropenyl-1,1,4,4,7-pentamethyl-1,2,3,4-tetrahydronaphthalene (12).
277

 To a 

flask containing a solution of compound 11 (4.0 g, 16.4 mmol) and [CH3PPh3]I (9.90 g, 

24.6 mmol) in THF (100 mL), under N2, was added KO(t-Bu) (2.75 g, 24.6 mmol). A 

rapid color change from white to dark orange was observed. The mixture was stirred until 

GC-MS analysis showed the reaction to be complete (3 d). The solution was filtered 

though celite with hexane as the eluent and the solvent was removed in vacuo. 

Purification by Kugelrohr distillation (100 
o
C, 1.5 x 10

-1
 mbar) yielded 12 as white 

crystals (3.30 g, 84%); mp 46-47 
o
C; IR (KBr disc, cm

-1
) 2956, 2912, 2857, 1637, 1497, 

1454, 1387, 1362, 1264, 1189, 1115, 1045; UV-vis (CHCl3) λmax (ε) 252 nm (4540 L 

mol
-1 

cm
-1

); λem (CHCl3) 328 nm; m/z (EI-MS) 242 (35%, M
+
), 227 (100%, M

+
 - Me); 

1
H 

NMR (400.13 MHz, C6D6)  7.37 (1H, s), 7.27 (1H, s), 5.25 (1H, d, J = 2.5 Hz), 5.04 

(1H, d, J = 2.5 Hz), 2.38 (3H, s), 2.06 (3H, s), 1.71 (4H, s), 1.38 (6H, s), 1.37 (6H, s); 

13
C{

1
H} NMR (100.13 MHz, C6D6)  146.67, 143.42, 142.17, 141.64, 131.66, 127.34 

126.08, 114.54, 35.63, 35.61, 34.01, 33.98, 32.05, 32.01, 24.56, 19.71; elemental analysis 

calcd. (%) for C18H26: C 89.19, H 10.81; found: C 89.30, H 10.86. 

 

Alternative synthesis of 12 by Suzuki-Miyaura cross-coupling.  

In a dry, N2 filled glovebox, Pd(dppf)Cl2 (0.15 g, 0.18 mmol), compound 14 (1.0 g, 3.7 

mmol), Ba(OH)2·8H2O (2.33 g, 7.4 mmol) and 2-bromopropene (0.49 mL, 5.5 mmol) 

were placed in a thick walled glass tube fitted with a Young‟s tap along with DMF (10 

mL) and H2O (2 mL). The mixture was heated at 80 
o
C for 18 h at which time GC-MS 

analysis showed the reaction to be complete. Dilute HCl(aq.) (2 mL) was added and the 

mixture was extracted with Et2O (3 x 10 mL); the organic phase was washed with dilute 

HCl(aq.) (3 x 10 mL), dried over MgSO4 and concentrated in vacuo. The mixture was 

passed through a short silica gel column (eluting with hexane) and the solvent was 

removed in vacuo to give a clear oil which solidified upon standing to give 12 as a white 
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solid (0.73 g, 81%). All other analytical data are identical to those obtained when using 

the above method.   

 

I

  13 

 

6-Iodo-1,1,4,4,7-pentamethyl-1,2,3,4-tetrahydronaphthalene (13). A solution of 

compound 9 (10.1 g, 50 mmol), iodine (5.1 g, 20 mmol) and HIO4 (2.30 g, 10 mmol) in 

glacial acetic acid (50 mL), H2O (10 mL) and 98% H2SO4 (1.5 mL) was heated at 70 
o
C 

for 24 h. The mixture was extracted into Et2O (200 mL), washed with H2O (200 mL) and 

aqueous Na2S2O3 solution (200 mL). The organic layer was dried over MgSO4 and the 

solvent was removed in vacuo. The crude product was passed through a short silica gel 

column (eluting with hexane) and the solvent was removed in vacuo to give a solid which 

was recrystallised from hot MeOH to give 13 as white crystals (10.45 g, 64%); mp 65-67 

o
C; IR (KBr disc, cm

-1
) 2956, 2917, 2868, 1478, 1385, 1361, 1298, 1264, 1190, 1111, 

1071; UV-vis (CHCl3) λmax (ε) 241 nm (6620 L mol
-1 

cm
-1

); λem (CHCl3) does not 

fluoresce; m/z (EI-MS) 328 (40%, M
+
), 315 (100%, M

+
 - Me); 

1
H NMR (499.80 MHz, 

CDCl3) δ 7.69 (1H, s), 7.15 (1H, s), 2.37 (3H, s), 1.65 (4H, s), 1.25 (12H, s); 
13

C{
1
H} 

NMR 125.67 MHz, CDCl3) δ 145.57, 145.17, 138.50, 137.34, 128.28, 98.56, 35.25 (two 

peaks), 34.38, 34.20, 32.11, 32.01, 27.99; elemental analysis calcd. for C15H21I: C 54.89, 

H 6.45, found: C 54.82, H 6.31.  

 

B
O

O

10a 

 

4,4,5,5-Tetramethyl-2-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-

[1,3,2]dioxaborolane (10a). In a dry, N2 filled glovebox, Pd(dppf)Cl2 (0.124 g, 0.15 

mmol), compound 13 (1.0 g, 3.05 mmol), B2pin2 (0.77 g, 3.05 mmol) and KOAc (0.59 g, 
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6.1 mmol) were placed in a thick walled glass tube fitted with a Young‟s tap along with 

dry, degassed DMSO (8 mL). The mixture was heated at 80 
o
C until GC-MS analysis 

showed the reaction to be complete (4 d). The mixture was extracted with DCM (30 mL) 

and washed with dilute HCl(aq.) (30 mL) and H2O (30 mL). The organic layer was dried 

over MgSO4, filtered and the solvent removed in vacuo. The crude product was passed 

through a short silica gel column, eluting with hexane, and then 50:50 DCM/hexane. 

Removal of the solvent in vacuo gave a white powder which was recrystallised from hot 

MeOH to give pure 10a (0.60 g, 60%); mp 131-133 
o
C; IR (KBr disc, cm

-1
) 2963, 2917, 

2862, 1606, 1541, 1492, 1409, 1393, 1295, 1266, 1215, 1143, 1112, 1095; UV-vis 

(CHCl3) λmax (ε) 241 nm (8240 L mol
-1 

cm
-1

); λem (CHCl3) 304 nm;  m/z (EI-MS) 328 

(20%, M
+
), 313 (100%, M

+
 - Me); 

1
H NMR (499.80 MHz, CDCl3) δ 7.73 (1H, s), 7.01 

(1H, s), 2.49 (3H, s) 1.67 (4H, s), 1.31 (6H, s), 1.30 (6H, s), 1.27 (12H, s); 
13

C{
1
H} NMR 

125.67 MHz, CDCl3) δ 147.91, 141.90, 141.27, 134.69, 128.09, 83.31, 35.48, 35.30, 

34.46, 33.99, 32.08, 31.88, 25.09, 22.25; the resonance for the carbon attached to boron 

was not observed; 
11

B{
1
H} NMR (128.37 MHz, C6D6)  31.28; elemental analysis calcd. 

for C21H33BO2; C 76.83, H 10.13, found: C 76.75, H 10.18. 

 

 

B
O

O

14 

 

5,5-Dimethyl-2-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-

[1,3,2]dioxaborinane (14). In a dry, N2 filled glovebox, Pd(dppf)Cl2 (0.124 g, 0.15 

mmol), compound 13 (1.0 g, 3.05 mmol), B2neop2 (0.69 g, 3.05 mmol) and KOAc (0.59 

g, 6.1 mmol) were placed in a thick walled glass tube fitted with a Young‟s tap along 

with dry, degassed DMSO (8 mL). The mixture was heated at 80 
o
C for 18 h, at which 

time analysis by GC-MS showed the reaction to be complete. The mixture was extracted 

with DCM (30 mL) and washed with dilute HCl (30 mL) and H2O (30 mL). The organic 

layer was dried over MgSO4, filtered and the solvent was removed in vacuo. The crude 
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product was filtered through a SiO2 plug eluting with hexane and then 50:50 

DCM/hexane. Removal of the solvent in vacuo gave a white powder which was 

recrystallised from hot MeOH to give pure 14 (0.64 g, 67%); mp 115-117 
o
C; IR (KBr 

disc, cm
-1

) 2958, 2923, 2865, 1604, 1477, 1417, 1377, 1339, 1308, 1267, 1248, 1124; 

UV-vis (CHCl3) λmax (ε) 242 nm (9450 L mol
-1 

cm
-1

); λem (CHCl3) 305 nm;  m/z (EI-MS) 

314 (20%, M
+
), 299 (100%, M

+
 - Me); 

1
H NMR (499.80 MHz, CDCl3) δ 7.71 (1H, s), 

7.07 (1H, s), 3.75 (4H, s) 2.47 (3H, s), 1.66 (4H, s) 1.29 (6H, s), 1.27 (6H, s), 1.02 (6H, 

s); 
13

C{
1
H} NMR 125.67 MHz, CDCl3) δ 147.14, 141.22, 141.14, 133.76, 128.34, 72.51, 

35.65, 35.50, 34.47, 34.09, 32.23, 32.02, 31.96, 22.53, 22.27; the resonance for the 

carbon attached to boron was not observed; 
11

B{
1
H} NMR (128.37 MHz, C6D6) ; 

elemental analysis calcd. for C20H30BO2: C 76.44, H 10.18; found: C 76.17, H 10.00. 

 

 

I

15 

 

6-Iodo-1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphthalene (15).
286

 To a mixture of 

compound 5 (3.76 g, 20 mmol), iodine (2.04 g, 8.0 mmol) and HIO4 (0.92 g, 4.0 mmol) 

was added glacial acetic acid (20 mL), H2O  (4 mL) and concentrated H2SO4
 
(98%, 1 

mL). The reaction mixture was heated to 70 
o
C for 4 h. A precipitate formed upon 

cooling, which was collected by filtration, dissolved in hexane and passed through a short 

silica gel column (eluting with hexane). The hexane was evaporated and the residue was 

recrystallised from EtOH to give 15 as a white crystalline solid (4.45 g, 71%); mp 69-70 

o
C; IR (KBr disc, cm

-1
) 2961, 2924, 2856, 1577, 1478, 1457, 1384l 1363, 1295, 1264, 

1191, 1107, 1066, 1039; UV-vis (CHCl3) λmax (ε) 241 nm (4800 L mol
-1 

cm
-1

); the 

compound did not fluoresce; m/z (EI-MS) 314 (25%, M
+
), 299 (100%, M

+
 - Me);  

1
H 

NMR (200 MHz, CDCl3) 

(1H, d, J = 8.0 Hz), 1.66 (4H, s), 1.28 (6H, s), 1.26 (6H, s); 
13

C{
1
H} NMR (100 MHz, 

CDCl3) 

elemental analysis calcd for C14H19I: C, 53.52; H, 6.10. Found: C, 53.66; H, 6.13.  
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B
O

O

16 

 

5,5-Dimethyl-2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-

[1,3,2]dioxaborinane (16). In a dry, N2 filled glovebox, Pd(dppf)Cl2 (26 mg, 0.032 

mmol), compound 15 (1.0 g, 3.18 mmol), B2neop2 (790 mg, 3.18 mmol) and KOAc (0.64 

g, 6.36 mmol) were placed in a thick walled glass tube fitted with a Young‟s tap along 

with dry, degassed DMSO (10 mL). The mixture was heated at 80 
o
C overnight, at which 

time analysis by GC-MS showed the reaction to be complete. The mixture was extracted 

with Et2O (30 mL) and washed with H2O (30 mL). The organic layer was dried over 

MgSO4, filtered and the solvent was removed in vacuo. The crude product was filtered 

through a SiO2 plug eluting with hexane, and then 50:50 DCM/hexane. Removal of the 

solvent in vacuo gave white powder which was recrystallised from hot MeOH to give 

pure 16 (0.71 g, 75%); mp 116-119 
o
C; IR (KBr disc, cm

-1
) 2961, 2932, 2888, 1605, 

1473, 1417, 1345, 1323, 1296, 1268, 1246, 1135, 1069; UV-vis (CHCl3) λmax (ε) 241 nm 

(8700 L mol
-1 

cm
-1

); λem (CHCl3) 297 nm; m/z (EI-MS) 300 (15%, M
+
), 285 (100%, M

+
 - 

Me); 
1
H NMR

 
(400.13 MHz, C6D6)  7.78 (1H, s), 7.57 (1H, dd, J = 8.0, 1.0 Hz), 7.31 

(1H, d, J = 8.0 Hz), 3.76 (4H, s), 1.69 (4H, s), 1.32 (6H, s), 1.30 (6H, s), 1.03 (6H, s); 

13
C{

1
H} NMR (100.13 MHz, C6D6) δ 147.69, 143.41, 132.41, 131.13, 125.93, 72.42, 

35.44, 35.25, 34.56, 34.30, 32.03, 32.02, 31.92, 22.09, the resonance of the carbon 

attached to boron was not observed; 
11

B{
1
H} NMR (128.37 MHz, C6D6)  26.67; 

elemental analysis calcd. (%) for C19H28BO2: C 76.01, H 9.74; found: C 75.88, H 9.51. 

 

 

B
O

O

17 
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4,4,5,5-Tetramethyl-2-[2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-

propenyl]-[1,3,2]-dioxaborolane (17). In a dry, N2 filled, glovebox, B2pin2 (0.33 g, 1.3 

mmol), compound 7 (0.30 g, 1.3 mmol), and trans-[Rh(PPh3)2(CO)Cl] (45 mg, 0.07 

mmol) were dissolved in 6 mL of 3:1 toluene/MeCN and added to a thick walled glass 

tube fitted with a Young‟s tap. The reaction was heated at 80 
o
C until GC-MS analysis 

showed the reaction to be complete (3 d). H2O (5 mL) was added, and the aqueous layer 

was washed with ethyl acetate (3 x 5 mL). The combined organic phases were dried over 

MgSO4 and concentrated in vacuo to give a dark green oil. Recrystallization from hot 

MeOH gave 17 as a white, fluffy powder (0.23 g, 50%); mp 125-127 
o
C; IR (KBr disc, 

cm
-1

) 2958, 2857, 1618, 1555, 1497, 1453, 1410, 1345, 1263, 1209, 1144, 1108, 1078; 

UV-vis (CHCl3) λmax (ε) 270 nm (18600 L mol
-1 

cm
-1

); λem (CHCl3) 344 nm; m/z (EI-MS) 

354 (30%, M
+
), 339 (100%, M

+
 - Me); 

1
H NMR (400.13 MHz, C6D6) 7.64 (1H, d, J = 

2.0 Hz), 7.31 (1H, dd, J = 8.5, 2.0 Hz), 7.10 (1H, d, J = 8.0 Hz), 6.28 (1H, s), 2.68 (3H, 

s), 1.55 (4H, s), 1.19 (6H, s), 1.17 (6H, s), 1.14 (12H, s); 
13

C{
1
H} NMR (100.13 MHz, 

C6D6) 159.03, 144.85, 144.63, 141.89, 126.72, 124.36, 123.83, 115.43, 82.77, 35.55, 

35.41, 34.39, 34.21, 31.92, 31.89, 24.99, 20.48; 
11

B{
1
H} NMR (128.37 MHz, C6D6) 

29.58; elemental analysis calcd. (%) for C23H35BO2: C 77.96, H 9.96; found: C 78.18, 

H 10.18. 

 

Alternative synthesis and purification of 17. In a dry, N2 filled, glove box, B2pin2 (89 

mg, 0.35
 
mmol), compound 7 (80 mg, 0.35

 
mmol) and trans-[Rh(PPh3)2(CO)Cl] (12 mg, 

17 x 10
-3 

mmol) were dissolved in 4 mL of 3:1 toluene/MeCN in a thick walled glass tube 

fitted with a Young‟s tap and then heated to 80 C. The reaction was monitored by GC-

MS. After 3 d, the solvent was removed in vacuo and the crude solid redissolved in a 

mixture of hexane/DCM (60:40), and then purified via silica gel chromatography 

(hexane/DCM, 60:40) to yield 17 as an analytically pure white powder (98 mg, 80%); 

elemental analysis calcd. for C23H35BO2: C 77.96, H 9.96; found: C 77.84, H 9.77. All 

other analytical data are identical to those obtained when using the above synthesis and 

purification. 
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B
O

O

18 

 

4,4,5,5-Tetramethyl-2-[2-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-

propenyl]-[1,3,2]-dioxaborolane (18). In a dry, N2 filled glovebox, B2pin2 (0.31 g, 1.2 

mmol), compound 12 (0.30 g, 1.2 mmol), and trans-[Rh(PPh3)2(CO)Cl] (43 mg, 0.07 

mmol) were dissolved in 6 mL of 3:1 toluene/MeCN and added to a thick walled glass 

tube fitted with a Young‟s tap. The reaction was heated at 80 
o
C until GC-MS analysis 

showed no further progress (7 d). H2O (5 mL) was added, and the aqueous layer was 

washed with ethyl acetate (3 x 5 mL). The combined organic phases were dried over 

MgSO4 and concentrated in vacuo to give a dark green oil. Purification by silica gel 

chromatography, eluting with 1:1 DCM/hexane, and recrystallization from hot MeOH 

gave 18 as white needles (0.29 g, 63%); mp 69-71 
o
C; IR (KBr disc, cm

-1
) 2954, 2857, 

1633, 1498, 1435, 1389, 1318, 1287, 1273, 1226, 1213, 1189, 1163, 1146, 1111, 1077; 

UV-vis (CHCl3) λmax (ε) 253 nm (9500 L mol
-1 

cm
-1

); λem (CHCl3) 324 nm; m/z (EI-MS)  

368 (35%, M
+
), 353 (100%, M

+
 - Me); 

1
H NMR 399.96 MHz, CDCl3)  7.05 (1H, s), 

7.02 (1H, s), 5.26 (1H, s), 2.27 (3H, s), 2.24 (3H, s), 1.66 (4H, s), 1.32 (12H, s), 1.27 (6H, 

s), 1.24 (6H, s); 
13

C{
1
H} NMR 100.57 MHz, CDCl3)  161.71, 144.19, 143.44, 142.10, 

130.80, 128.17, 125.47, 83.04, 35.41, 35.39, 34.09, 34.08, 32.08, 32.06, 25.13, 23.31, 

20.01; the resonance for the carbon attached to boron was not observed; 
11

B{
1
H} NMR 

(128.37 MHz, C6D6)  29.70; elemental analysis calcd. (%) for C24H37BO2: C 78.25, H 

10.12; found: C 77.97, H 10.14. 

 

Alternative synthesis and purification of 18. In a dry, N2 filled glovebox, B2pin2 (201 

mg, 0.79 mmol), compound 12 (200 mg, 0.83
 
mmol) and trans-[Rh(PPh3)2(CO)Cl] (28.5 

mg, 41.3 x 10
-3 

mmol) were dissolved in 4 mL of 3:1 toluene/MeCN in a thick walled 

glass tube fitted with a Young‟s tap. The reaction was heated to 80 C and monitored by 

in situ GC-MS. After 3 d, the solvent was removed in vacuo and the resulting solid was 
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redissolved in 40:60 DCM/hexane and then purified via silica gel chromatography, 

eluting with 40:60 DCM/hexane, to yield 18 as an analytically pure white solid (151 mg, 

50%); elemental analysis calcd. (%) for C24H37BO2: C 78.25, H 10.12; found: C 78.12, H 

9.98. All other analytical data are identical to those obtained when using the above 

synthesis and purification. 

 

 

B
O

O

19 

 

5-Dimethyl-2-[2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-propenyl]-

[1,3,2]dioxaborinane (19). In a dry, N2 filled, glovebox, B2neop2 (0.50 g, 2.20 mmol), 

compound 7 (0.50 g, 2.20 mmol), and trans-[Rh(PPh3)2(CO)Cl] (70 mg, 0.1 mmol) were 

dissolved in 4 mL of 3:1 toluene/MeCN and added to a thick walled glass tube fitted with 

a Young‟s tap. The reaction was heated at 80 
o
C until GC-MS analysis showed the 

reaction to be complete (3 d). H2O (5 mL) was added, and the aqueous layer was washed 

with ethyl acetate (3 x 5 mL). The combined organic phases were dried over MgSO4 and 

concentrated in vacuo to give a dark green oil. Recrystallization from hot MeOH gave 19 

as a white, fluffy powder (0.40 g, 57%); mp 71-72 
o
C; IR (KBr disc, cm

-1
) 2960, 2922, 

2870, 1615, 1467, 1408, 1341, 1270, 1183; UV-vis (CHCl3) λmax (ε) 268 nm (10500 L 

mol
-1 

cm
-1

); the compound does not fluoresce; m/z (EI-MS) 340 (25%, M
+
), 325 (100%, 

M
+
 - Me); 

1
H NMR (499.80 MHz, CDCl3) δ 7.45 (1H, s), 7.26 (2H, s), 5.65 (1H, s), 3.72 

(4H, s) 2.37 (3H, s), 1.69 (4H, s) 1.28 (6H, s), 1.27 (6H, s), 1.02 (6H, s); 
13

C{
1
H} NMR 

125.67 MHz, CDCl3) δ 156.17, 144.83, 144.74, 141.79, 126.53, 124.28, 123.48, 72.43, 

35.53, 35.37, 34.67, 34.45, 32.19, 32.14, 22.27, 19.81; the resonance for the carbon 

attached to boron was not observed; 
11

B{
1
H} NMR (128.37 MHz, C6D6) 26.85, 

elemental analysis calcd. (%) for C22H33BO2: C 77.62, H 9.77; found: C 77.39, H 9.88. 
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B
O

O

20 

 

5,5-Dimethyl-2-[2-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-

propenyl]-[1,3,2]dioxaborinane (20). In a dry, N2 filled glovebox, B2neop2 (0.47 g, 2.1 

mmol), compound 12 (0.50 g, 2.1 mmol), and trans-[Rh(PPh3)2(CO)Cl] (70 mg, 0.1 

mmol) were dissolved in 4 mL of 3:1 toluene/MeCN and added to a thick walled glass 

tube fitted with a Young‟s tap. The reaction was heated at 80 
o
C until GC-MS analysis 

showed no further progress (7 d). H2O (5 mL) was added, and the aqueous layer was 

washed with ethyl acetate (3 x 5 mL). The combined organic phases were dried over 

MgSO4 and concentrated in vacuo to give a dark green oil. Recrystallization from hot 

MeOH gave 20 as a white, fluffy powder (0.36 g, 49%); mp 67-69 
o
C; IR (KBr disc, 

cm
-1

) 2961, 2926, 1634, 1496, 179, 1335, 1276, 1187, 1085; UV-vis (CHCl3) λmax (ε) 255 

nm (9100 L mol
-1 

cm
-1

); λem (CHCl3) 368 nm;  m/z (EI-MS) 354 (25%, M
+
), 339 (100%, 

M
+
 - Me); 

1
H NMR (499.80 MHz, CDCl3) δ 7.05 (1H, s), 7.03 (1H, s), 5.18 (1H, s), 3.70 

(4H, s), 2.25 (6H, s), 1.66 (4H, s) 1.28 (6H, s), 1.27 (6H, s), 1.02 (6H, s); 
13

C{
1
H} NMR 

125.67 MHz, CDCl3) δ 159.28, 144.85, 143.33, 142.19, 130.95, 128.22, 125.64, 72.39, 

35.57, 35.55, 34.23, 34.20, 32.22, 32.21, 22.88, 22.32, 20.09; the resonance for the 

carbon attached to boron was not observed; 
11

B{
1
H} NMR (128.37 MHz, C6D6) 26.81, 

elemental analysis calcd. (%) for C23H35BO2: C 77.96, H 9.96; found: C 77.88, H 9.85. 

 

 

O
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4-[2-(5,5,8,8-Tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-propenyl]-benzoic acid 

methyl ester (21). In a dry, N2 filled glovebox, Pd(dppf)Cl2 (33 mg, 0.04 mmol), 

compound 17 (0.40 g, 1.1 mmol), 4-iodobenzoic acid methyl ester (0.24 g, 0.9 mmol), 

K3PO4·2H20 (0.57 g, 2.3 mmol) and degassed DMF (15 mL) were added to a thick walled 

glass tube fitted with a Young‟s tap. The tube was attached to a Schlenk line and 

degassed H2O (3 mL) was added via cannula. The mixture was heated at 80 
o
C for 2 d, at 

which time GC-MS analysis showed complete consumption of the starting materials. 

Dilute HCl(aq.) (2 mL) was added and the mixture was extracted with DCM (3 x 10 mL). 

The organic phase was washed with dilute HCl(aq.) (3 x 10 mL), dried over MgSO4 and 

concentrated in vacuo. The mixture was passed through a short silica gel column eluting 

with hexane and then 10% DCM/hexane and the solvent was removed in vacuo. 

Recrystallization from hot EtOH gave 21 as a white fluffy powder (280 mg, 84%); mp 

137-139 
o
C; IR (KBr disc, cm

-1
) 2951, 2920, 2857, 1706 (C=O), 1600, 1560, 1492, 1438, 

1388, 1361, 1275, 1182, 1110, 1046, 1016; UV-vis (CHCl3) λmax (ε) 309 nm (29500 L 

mol
-1 

cm
-1

); λem (CHCl3) 388 nm; m/z (EI-MS) 362 (90%, M
+
), 347 (100%, M

+
 - Me); 

1
H 

NMR (499.80 MHz, CDCl3)  8.04 (2H, d, J = 8.5 Hz), 7.46 (1H, d, J = 2.0 Hz), 7.43 

(2H, d, J = 8.5 Hz), 7.32 (1H, s), 7.31 (1H, d, J = 2.0 Hz), 6.82 (1H, s), 3.94 (3H, s), 2.30 

(3H, s), 1.72 (4H, s), 1.34 (6H, s), 1.31 (6H, s); 
13

C{
1
H} NMR 125.67 MHz, CDCl3)  

167.28, 145.06, 144.76, 143.54, 140.82, 140.08, 129.68, 129.28, 127.96, 126.79, 126.27, 

124.31, 123.57, 52.28, 35.74, 35.22, 34.60, 34.37, 32.12, 32.03, 17.91; HRMS calc for 

C25H31O2 ([M + H]
+
) 363.23186, found 363.23180. 

 

 

O

O

  22 

 

3-[2-(5,5,8,8-Tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-propenyl]-benzoic acid 

methyl ester (22). In a dry, N2 filled glovebox, Pd(dppf)Cl2 (33 mg, 0.04 mmol), 

compound 17 (0.40 g, 1.1 mmol), 3-iodobenzoic acid methyl ester (0.24 g, 0.9 mmol), 
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K3PO4·2H20 (0.57 g, 2.3 mmol) and degassed DMF (15 mL) were added to a thick walled 

glass tube fitted with a Young‟s tap. The tube was attached to a Schlenk line and 

degassed H2O (3 mL) was added via cannula. The mixture was heated at 80 
o
C for 2 d, at 

which time GC-MS analysis showed complete consumption of the starting materials. 

Dilute HCl(aq.) (2 mL) was added and the mixture was extracted with DCM (3 x 10 mL). 

The organic phase was washed with dilute HCl(aq.) (3 x 10 mL), dried over MgSO4 and 

concentrated in vacuo. The mixture was passed through a short silica gel column eluting 

with hexane and then 10% DCM/hexane and the solvent removed in vacuo. 

Recrystallization from hot EtOH gave 22 as a white fluffy powder (0.25 g, 75%); mp 86-

88 
o
C; IR (KBr disc, cm

-1
) 2952, 2920, 2856, 1717 (C=O), 1581, 1492, 1440, 1359, 1306, 

1287, 1250, 1201, 1106, 1085; UV-vis (CHCl3) λmax (ε) 284 nm (22800 L mol
-1 

cm
-1

); λem 

(CHCl3) 386 nm; m/z (EI-MS) 362 (90%, M
+
), 347 (100%, M

+
 - Me); 

1
H NMR (499.80 

MHz, CDCl3)  8.05 (1H, s), 7.92 (1H, d, J = 7.5 Hz), 7.55 (1H, d, J = 7.5 Hz), 7.46 (1H, 

s), 7.44 (1H, t, J = 7.5 Hz), 7.32 (1H, s), 7.31 (1H, t, J = 7.5 Hz), 6.82 (1H, s) 3.95 (3H, 

s), 2.28 (3H, s) 1.72 (4H, s), 1.35 (6H, s), 1.32 (6H, s); 
13

C{
1
H} NMR 125.67 MHz, 

CDCl3) δ 167.59, 145.14, 144.67, 140.99, 139.17, 133.92, 130.57, 130.39, 128.56, 

127.73, 126.88, 126.17, 124.39, 123.66, 52.52, 35.51, 35.36, 34.72, 34.49, 32.25, 32.17, 

17.82; HRMS calc for C50H60O4Na ([M2Na]
+
) 747.43838, found 747.44029. 

 

O

O

23 

 

4-[2-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-propenyl]-benzoic 

acid methyl ester (23). In a dry, N2 filled glovebox, Pd(dppf)Cl2 (28 mg, 0.03 mmol), 

compound 18 (0.30 g, 0.82 mmol), 4-iodobenzoic acid methyl ester (0.18 g, 0.68 mmol), 

K3PO4·2H2O (0.42 g, 1.7 mmol) and degassed DMF (15 mL) were added to a thick 

walled glass tube fitted with a Young‟s tap. The tube was attached to a Schlenk line and 

degassed H2O (3 mL) was added via cannula. The mixture was heated at 80 
o
C for 2 d, at 

which time GC-MS analysis showed complete consumption of the starting materials. 
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Dilute HCl(aq.) (2 mL) was added and the mixture was extracted with DCM (3 x 10 mL). 

The organic phase was washed with dilute HCl(aq.) (3 x 10 mL), dried over MgSO4 and 

concentrated in vacuo. The mixture was passed through a short silica gel column eluting 

with hexane and then 10% DCM/hexane and the solvent was removed in vacuo. 

Recrystallization from hot EtOH gave 23 as a white fluffy powder (0.22 g, 86 %); mp 

137-139 
o
C; IR (KBr disc, cm

-1
) 2957, 2918, 2851, 1714 (C=O), 1605, 1562, 1492, 1437, 

1411, 1361, 1278, 1182, 1111, 1016; UV-vis (CHCl3) λmax (ε) 288 nm (17500 L mol
-1 

cm
-

1
); λem (CHCl3) 380 nm; m/z (EI-MS) 376 (90%, M

+
), 361 (100%, M

+
 - Me); 

1
H NMR 

(499.80 MHz, CDCl3)  δ 8.05 (2H, d, J = 8 Hz), 7.45 (2H, d, J = 8 Hz), 7.13 (1H, s), 7.12 

(1H, s), 6.42 (1H, s), 3.94 (3H, s), 3.31 (3H, s), 1.70 (4H, s), 1.31 (6H, s), 1.30 (6H, s); 

13
C{

1
H} NMR 125.67 MHz, CDCl3) δ 167.40, 143.98, 143.31, 143.00, 142.59, 142.19, 

131.87, 129.85, 129.18, 128.63, 128.53, 128.11, 126.26, 52.41, 35.54, 35.39, 34.30, 

34.39, 32.27, 32.21, 20.69, 20.06;  HRMS calc for C26H33O2 ([M + H]
+
) 377.24695, 

found 377.24685. 

 

 

O

O

  24 

 

3-[2-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-propenyl]-benzoic 

acid methyl ester (24). In a dry, N2 filled glovebox, Pd(dppf)Cl2 (285 mg, 0.03 mmol), 

compound 18 (0.30 g, 0.82 mmol), 3-iodobenzoic acid methyl ester (0.18 g, 0.68 mmol), 

K3PO4·2H20 (0.42 g, 1.7 mmol) and degassed DMF (15 mL) were added to a thick walled 

glass tube fitted with a Young‟s tap. The tube was attached to a Schlenk line and 

degassed H2O (3 mL) was added via cannula. The mixture was heated at 80 
o
C for 2 d, at 

which time GC-MS analysis showed complete consumption of the starting materials. 

Dilute HCl(aq.) (2 mL) was added and the mixture was extracted with DCM (3 x 10 mL). 

The organic phase was washed with dilute HCl(aq.) (3 x 10 mL), dried over MgSO4 and 

concentrated in vacuo. The mixture was filtered through a short silica gel column eluting 
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with hexane and then 10% DCM/hexane and the solvent was removed in vacuo. 

Recrystallization from hot EtOH gave 24 as a white fluffy powder (0.22 g, 86%); mp 91-

92 
o
C; IR (KBr disc cm

-1
) 2952, 2919, 2858, 1722 (C=O), 1582, 1496, 1440, 1360, 1292, 

1254, 1198, 1108, 1086; UV-vis (CHCl3) λmax (ε) 241 nm (24800 L mol
-1 

cm
-1

); λem 

(CHCl3) 383 nm; m/z (EI-MS) 376 (90%, M
+
), 361 (100%, M

+
 - Me); 

1
H NMR (499.80 

MHz, CDCl3)  δ 8.06 (1H, s), 7.92 (1H, d, J = 7.5 Hz), 7.56 (1H, d, J = 7.5 Hz), 7.46 (1H, 

t, J 7.5 Hz), 7.13 (1H, s), 7.12 (1H, s), 6.42 (1H, s), 3.95 (3H, s), 2.32 (3H, s), 2.20 (3H, 

s), 1.70 (4H, s), 1.32 (6H,s), 1.31 (6H, s); 
13

C{
1
H} NMR 125.67 MHz, CDCl3) δ 167.60, 

143.85, 142.98, 142.55, 141.05, 138.86, 133.76, 131.95, 130.41, 130.29, 128.59, 128.48, 

128.36, 127.76, 126.35, 52.53, 35.55, 35.52, 34.28, 34.27 32.27, 32.22, 20.42, 20.08; 

HRMS calcd for C26H33O2 ([M + H]
+
) 377.24751, found 377.24852. 

 

General experimental for Suzuki-Miyaura cross-couplings of aryl boronic esters at 

40 
o
C. 

In a dry, N2 filled glovebox, aryl boronate (0.32 mmol), Pd(dppf)Cl2 (5.2 mg, 0.007 

mmol), and base (0.64 mmol) were added to a thick wall glass tube fitted with a Young‟s 

tap. Degassed DMF (5 mL) and degassed H2O (1 mL) were added along with 2-

bromopropene (0.043 mL, 0.42 mmol). The tube was sealed and heated at 40 
o
C and the 

reaction was monitored by GC-MS. 

 

General experimental for Suzuki-Miyaura cross-couplings of aryl boronic esters at 

room temperature.  

In a dry, N2 filled glovebox, aryl boronate (0.32 mmol), Pd(dppf)Cl2 (5.2 mg, 0.007 

mmol), and base (0.64 mmol) were added to a screw top vial. Degassed DMF (5 mL) and 

degassed H2O (1 mL) were added along with 2-bromopropene (0.043 mL, 0.42 mmol). 

The vial was stirred at room temperature inside the glovebox and the reaction was 

monitored by GC-MS. 

 

General experimental for Suzuki-Miyaura cross-couplings of vinyl boronic esters at 

40 
o
C. 
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In a dry, N2 filled glovebox, vinyl boronate (0.28 mmol), 3-iodobenzoic acid methyl ester 

(0.065g, 0.25 mmol) Pd(dppf)Cl2 (4.5 mg, 0.006 mmol), and base (0.56 mmol) were 

added to a thick wall glass tube fitted with a Young‟s tap. Degassed DMF (5 mL) and 

degassed H2O (1 mL) were added. The tube was sealed and heated at 40 
o
C and the 

reaction was monitored by GC-MS 

 

General experimental for Suzuki-Miyaura cross-couplings of vinyl boronic esters at 

room temperature.  

In a dry, N2 filled glovebox, vinyl boronate (0.28 mmol), 3-iodobenzoic acid methyl ester 

(0.065g, 0.25 mmol) Pd(dppf)Cl2 (4.5 mg, 0.006 mmol), and base (0.56 mmol) were 

added to a screw top vial. Degassed DMF (5 mL), and degassed H2O (1 mL) were added. 

The vial was stirred at room temperature inside the glovebox and the reaction was 

monitored by GC-MS. 

 



197 

 

Table 2.3 Photophysical data for all compounds in CHCl3 

Compound λmax (nm) ε (L mol
-1 

cm
-1

) λem (nm)  (λex = λmax (abs)) 

TMN-Bpin (6) 243 2730 298 

TMN-Bneop (16) 241 8700 297 

TMN-isopropene (7) 246 10900 328 

PMN-isopropene (12) 252 4540 315 

PMN (9) 289 405 357 

TMN-I (15) 241 4800 does not fluoresce 

PMN-I (13) 241 6620 does not fluoresce 

PMN ketone (11) 296 1570 349 

PMN-Bpin (10a) 241 8240 304 

PMN-Bneop (14) 242 9450 305 

TMN Bpin VBE (17) 270 18600 344 

PMN Bpin VBE (18) 253 9500 324 

TMN Bneop VBE (19) 268 10500 does not fluoresce 

PMN Bneop VBE (20) 255 9100 368 

TTNPB-Me ester (21) 309 29500 388 

m-TTNPB-Me ester (22) 284 22800 386 

3-Me-TTNPB-Me ester (23) 288 17500 380 

3-Me-m-TTNPB-Me ester (24) 241, 268 24800, 16200 383 (λex 241nm), 383 (λex 268 nm) 
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Synthesis of tolan-, and biaryl-based retinoids via 

palladium-catalysed cross-couplings 
 

3.1 Introduction 

 

All-trans retinoic acid (ATRA), and its two naturally occurring isomers, 9-cis-retinoic 

acid (9cRA) and 13-cis-retinoic acid (13cRA) (Figure 3.1), are involved in the mediation 

of many biological processes, in both embryonic development and in adult life, 

particularly in the nervous system.
295

 Endogenous retinoids are essential for the 

mediation of cell proliferation, differentiation and apoptosis, and maintain these 

processes in both normal and tumour cells both in vivo and in vitro. 

 

CO2H

CO2H

CO2H

ATRA 13cRA 9cRA

 

 

Figure 3.1 Natural retinoids. 

 

The polyene chains of natural retinoids are excellent chromophores, which efficiently 

absorb light in the region of 300-400 nm (depending on the solvent). This makes these 

molecules particularly susceptible to photoisomerisation, leading to degradation into a 

mixture of retinoic acid isomers.
296

 The isomerisation of ATRA plays an important part 

in its metabolic pathways within cells, giving rise to 9cRA and 13cRA which possess 

different mechanisms of action,
297,298

 with Murayama et al. reporting that the different 

retinoic acid isomers differentially affected the ability of mammalian stem cells to 

differentiate along alternative lineages.
296

 

 

In addition, cellular responses may be determined by the concentrations of the different 

retinoic acid isomers present in solution. For example, the induction of the differentiation 

of pluripotent stem cells using retinoids is variable, resulting in the differential activation 

of key molecular pathways involved in tissue development in a concentration dependent 

manner.
299

 In turn, this variation has the potential to result in mixed proportions of 
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alternative differentiating cell types leading to increased culture heterogeneity. To reduce 

such variability in differentiation responses and improve experimental reproducibility, it 

is essential that compounds used for the induction of cellular differentiation exist in the 

same form and concentration every time. For compounds such as ATRA and its 

stereoisomers, this cannot be currently guaranteed, due to the high degree of 

susceptibility of these compounds to undergo isomerisation under the conditions used for 

sample preparation, storage of stock solution and in cell culture. 

 

Due to the diverse effects of RA isomers on cells, attempts have been made to limit the 

isomerisation and degradation of ATRA. A number of additives have been found to 

inhibit either the cis–trans interconversion or oxidation of natural retinoids, including 

bovine serum albumin (BSA), fibrogen, lysozyme, phosphatidylcholine, 

N-ethylmaleimide and vitamin C.
300

 However, the addition of such molecules to cell 

culture media is often not viable as such additives may themselves affect cell behaviour. 

In addition, none of these additives can completely prevent isomerisation and, for 

example, the use of BSA is not possible in serum-free culture media. 

 

An alternative is the synthesis of analogues of ATRA in which the unstable polyene chain 

of the linker unit is incorporated into one or more aromatic rings (arotinoids). As detailed 

in chapter 1 (section 1.1.3.4), a wide variety of different functionalities have been 

employed as linker units in arotinoids, with changes in linker structure allowing for 

selectivity between RAR and RXR as well as RAR isotypes to be controlled. 

 

Arotinoids possessing linker units based on disubstituted alkynes or biaryl units were 

chosen because it was envisaged that the use of these moieties as linker units would give 

retinoids with high degrees of resistance to both thermal and photochemical degradation. 

 

Comparison of ATRA and 9cRA with tolan-, and biaryl-based arotinoids (Figure 3.2) 

shows that para-substituted arotinoids appear similar to the natural retinoid ATRA, while 

their meta-substituted analogues may be considered to be potential 9cRA analogues. 
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CO2H

CO2HCO2H

CO2H

CO2H

R

R

R

R

R

CO2H

9cRA             
(natural retinoid)

CO2H

ATRA             
(natural retinoid)

 
 
Figure 3.2 Arotinoid analogues (detailed in this work) of ATRA and 9cRA, R = H, Me. 

 

 

3.2 Synthetic retinoids based on the tolan structure 

 

Although substituted alkynes can be synthesised via a variety of methods, the 

Sonogashira reaction
301

 is one of the most effective methods due to the mild conditions 

employed and the high degree of functional group tolerance displayed. Thus, a short 

synthesis of tolan-based arotinoids was devised based upon Sonogashira cross-coupling 

of an aryl halide with a monoprotected alkyne, removal of the alkyne protecting group 

and subsequent Sonogashira reaction of the monosubstituted alkyne with a second aryl 

halide to give the tolan products (Scheme 3.1). 
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CO2H

CO2HX
P

X

1. Sonogashira cross-coupling

2. Deprotection
3. Sonogashira cross-coupling

X = halide
P = protecting group

+ +

 
 
Scheme 3.1 Retrosynthetic analysis of tolan-based retinoids via Sonogashira cross-couplings. 

 

Attempts to synthesise the desired aryl bromide via AlCl3-catalysed Friedel-Crafts 

dialkylation of bromobenzene with 2,5-dichloro-2,5-dimethylhexane, as described in the 

literature,
302

 were unsuccessful, as were reactions of 2,5-dichloro-2,5-dimethyl-hexane 

with iodobenzene or phenylethynyltrimethylsilane under the same conditions (Equation 

3.1). 

 

Cl

Cl
X X

AlCl3

DCM, rt,18h
+

X = Br, I, CC-TMS  
 

Equation 3.1 Unsuccessful attempts to synthesise functionalised tetrahydronaphthalenes. 

 

 

Instead, bromination of the commercially available 1,1,4,4-tetramethyl-1,2,3,4-

tetrahydronaphthalene 1 was achieved using BF3·OEt2 and 1.8 equivalents of bromine in 

DCM at 0 
o
C to give 6-bromo-1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphthalene 2 in 

good yield (Equation 3.2).  

 

 

Br
1.8 equiv Br2

1.1 equiv BF3
.OEt2

DCM, 0 oC, 2 h, 78%
21  

 

Equation 3.2 Bromination of 1 with Br2/BF3·OEt2 to give 2. 
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Attempts to further increase yields by the use of more forcing conditions led to the 

formation of a dibrominated product, as evidenced by GC-MS (Figure 3.3). 

 

 

4 .0 0 6 .0 0 8 .0 0 1 0 . 0 0 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0 2 0 . 0 0

5 0 0 0 0 0

1 0 0 0 0 0 0

1 5 0 0 0 0 0

2 0 0 0 0 0 0

2 5 0 0 0 0 0

3 0 0 0 0 0 0

3 5 0 0 0 0 0

4 0 0 0 0 0 0

4 5 0 0 0 0 0

5 0 0 0 0 0 0

5 5 0 0 0 0 0

6 0 0 0 0 0 0

6 5 0 0 0 0 0

7 0 0 0 0 0 0

7 5 0 0 0 0 0

8 0 0 0 0 0 0

8 5 0 0 0 0 0

T im e -->

A b u n d a n c e

T I C :  jh b 5 5 a . D

 
Figure 3.3 GC (TIC) for the synthesis of 2 via bromination of 1 with BF3·OEt2. 
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0

1 0 0 0 0 0

2 0 0 0 0 0
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1 3 0
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Figure 3.4 MS of 2. 

 

The subsequent Sonogashira cross-coupling of 2 with 2-methy-3-butyn-2-ol or 

ethynyltrimethylsilane (TMSA) (Equation 3.3), carried out according to the literature 

procedure (2 mol % Pd(PPh3)2Cl2 and 2 mol % CuI in triethylamine at 78 
o
C for 18 h),

303
 

initially gave low conversions of <5%. Increased catalyst loadings (up to 10 mol %), 

under the same conditions, did not lead to improved conversions, and large amounts of 

black palladium precipitates were observed. The low activity of 2 in Sonogashira 

couplings, even under forcing conditions, suggests that the tetramethylated aliphatic ring 

of 2 is strongly ζ-donating and thus deactivating. However, a combination of PdCl2, PPh3 

Br

Br

Br1

2

Br

2
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and Cu(OAc)2, in a 1:5:1 ratio, which generates the active catalyst in situ, was found to 

be effective for the Sonogashira couplings of 2. 

 

The use of this catalyst system with 10 mol % Pd loadings in the couplings of 2 with both 

TMSA and 2-methy-3-butyn-2-ol gave 100% conversions in both cases giving 3, and 4, 

respectively, with no formation of black palladium precipitates observed. The reaction 

with TMSA was more rapid than that of 2-methy-3-butyn-2-ol with full conversion to the 

alkyne products requiring 18 hours and 3 days of heating, respectively (Equation 3.3).  

Br

OH

TMS

a 10 mol % PdCl2, 0.5 equiv PPh3, 10 mol % Cu(OAc)2, NEt3, 78 oC, 3 d, 45%

b 10 mol % PdCl2, 0.5 equiv PPh3, 10 mol % Cu(OAc)2, NEt3, 78 oC, 18 h, 81%

OHa

b
TMS

2

3

4

 
 

 

Equation 3.3 Sonogashira cross-couplings of 2 to give 3 and 4. 

 

 

 

4 . 0 0 6 . 0 0 8 . 0 0 1 0 . 0 0 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0 2 0 . 0 0
0

5 0 0 0 0 0
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1 5 0 0 0 0 0

2 0 0 0 0 0 0

2 5 0 0 0 0 0

3 0 0 0 0 0 0

3 5 0 0 0 0 0

4 0 0 0 0 0 0

4 5 0 0 0 0 0

5 0 0 0 0 0 0

5 5 0 0 0 0 0

6 0 0 0 0 0 0

6 5 0 0 0 0 0

T i m e - - >

A b u n d a n c e

T I C :  j h b 4 9 d 1 . D

 
Figure 3.5 GC (TIC) of the Sonogashira reaction of 2 with 2-methyl-3-butyn-2-ol to give 3 after 72 h. 

 

 

OH

3
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Figure 3.6 MS of 3. 
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Figure 3.7 GC (TIC) of the Sonogashira reaction of 2 with TMSA to give 4 after 18 h. 
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Figure 3.8 MS of 4. 

 

In light of the low activity of 2, more reactive coupling partners were required. The use of 

the iodide analogue of 2 (previously detailed in Chapter 2, compound 15) allowed for the 

OH

3

TMS

TMS diyne 4

TMS

4
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reaction to be carried out at room temperature, using of 1 mol% Pd(PPh3)2Cl2 and 1 mol 

% CuI as catalysts, with full conversion to 4 observed after 12 hours (Equation 3.4). 

 

I

TMS
TMSA

1 mol % Pd(PPh3)2Cl2
1 mol % CuI

NEt3, rt, 12 h, 88% 4
 

 
Equation 3.4 Mild Sonogashira cross-coupling to give 4.  

 

TMS-protected alkyne 4 was desilylated by treatment with KOH in Et2O / MeOH to give 

5 (Equation 3.5). Deprotection of 3 with KOH in refluxing toluene was sluggish and, in 

the light of the higher reactivity of TMSA in Sonogashira cross-couplings with bromide 

2, and the more facile deprotection of 4, the use of 3 was not pursued further. 

 

.  
TMS

KOH, MeOH, Et2O

rt, 2 h, 74%
4 5  

 
Equation 3.5 Desilylation of 4 with KOH to give acetylene 5. 
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T im e -->
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T IC : jh b 6 1 b .D

 
Figure 3.9 GC (TIC) for the desilylation of 4 with KOH to give 5. 

 

5
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Figure 3.10 MS of 5. 

 

Monoclinic single crystals of 5 (P21/c) grew from pure liquid 5 upon standing. The 

alkyne triple bond distance C(15)-C(16) was found to be 1.1789(16) Å (Figure 3.11). 

 
Figure 3.11 Molecular structure of alkyne 5. Thermal ellipsoids are drawn at the 50% probability level. 

 

Terminal alkyne 5, was coupled with 4-iodomethylbenzoate with a 1 mol % loading of 

both Pd(PPh3)2Cl2 and CuI in neat NEt3 at room temperature to give retinoid methyl ester 

6 in a high yield (Equation 3.6). 

 

5

1 mol % Pd(PPh3)2Cl2
1 mol % CuI

NEt3, rt, 18 h, 87% 6

I

CO2Me

CO2Me

+

 
Equation 3.6 Sonogashira cross-coupling of 5 with 4-iodomethylbenzoate to give 6. 

5
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Figure 3.12 GC (TIC) for the Sonogashira cross-coupling of 5 with 4-iodomethylbenzoate to give 6. 
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Figure 3.13 MS of 6. 

 

Triclinic single crystals of para-retinoid ester 6 (P-1) were grown from a concentrated 

solution of 6 in MeOH at -20 
o
C. The interplanar angle between rings i and ii is 69.3

o
, 

while that between ring ii and the methoxycarbonyl group is 6.4
o
. The torsion angle C(7)-

C(6)···C(17)-C(22) is 66.2(2)
 o
 (Figure 3.14). 

CO2Me

5

6

CO2Me

6
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Figure 3.14 Molecular structure of compound 6. Thermal ellipsoids are drawn at the 50% probability 

level.
304

 

 

Hydrolysis of 6 with concentrated aqueous NaOH in refluxing THF gave the target 

compound 7 in high yield (Equation 3.7) after acidification. The synthesis of 7 directly 

could be achieved via the Sonogashira cross-coupling of 5 with 4-iodobenzoic acid under 

the same conditions described for the synthesis of 6. However, yields were lower than for 

the 2 step process and both the work up and purification of the product proved 

troublesome. 

 

1) 20% w/w NaOH/H2O

THF, 70 oC, 18 h,

2) HCl

CO2H

6

CO2Me

7   72%
 

 

Equation 3.7 Hydrolysis of 6 with aqueous hydroxide to give 7. 

 

 

 

3.2.2 Synthesis of 3-methylated retinoids based on the tolan structure 

 

                                                 

The molecular structures of 2, its iodide analogue, 4, and the meta-analogue of 6 were also determined. 

Crystals of these compounds were grown by Ms E. B. Cartmell and Dr. J. C. Collings. 

i

ii
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The replacement the of proton in the 3-position of certain arotinoids with larger 

substituents (i.e., Me) results in substantial changes in the binding affinities for RARs and 

RXRs and in the toxicity. This effect, often termed the α-methyl effect, is believed to 

result from the increase in the dihedral angle between the plane of the hydrophobic unit 

and that of the linker unit due to unfavourable steric interactions between the 

3-substituent and the linker unit.
305

 The adoption of this twisted conformation (more 

similar to that of 9cRA than to ATRA) results in an increased selectivity for RXR 

binding over RAR binding and reduced toxicity (which is associated with pathways 

mediated by RAR activation).
306

 In addition, the toxicity of retinoids with 3-alkyl 

substituents may also be reduced by their more facile oxidative metabolism, which 

predominantly occurs in allylic / benzylic positions in retinoids.
307

 Thus, by comparing 3-

methylated retinoids with linear and non-linear linker units it may be possible to 

determine the extent of the contributions of conformational and metabolic effects to the 

change in biological activity observed upon the addition of a 3-methyl group to 

arotinoids. 

 

A short synthesis of 3-methylated tolan-based arotinoids was devised. Again, this was 

based upon the Sonogashira cross-coupling of an aryl halide with a monoprotected 

alkyne, removal of the alkyne protecting group and subsequent Sonogashira reaction of 

the monosubstituted alkyne with a second aryl halide to give the tolan products (Scheme 

3.2).   

 

CO2H

CO2HX
P

X

1. Sonogashira cross-coupling

3. Deprotection
4.  Sonogashira cross-coupling

X = halide
P = protecting group

+ +

 
 
Scheme 3.2 Retrosynthetic analysis for the 3-methylated EC retinoid skeleton via Sonogashira 

cross-couplings. 
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The desired iodide (detailed in Chapter 2, compound 13) was synthesised by the 

iodination of 1,1,4,4,6-pentamethyl-1,2,3,4-tetrahydronaphthalene (chapter 2, compound 

9) with a combination of I2/HIO4 in acetic acid. Sonogashira cross-coupling with TMSA 

with 1 mol % of Pd(PPh3)2Cl2 and CuI catalysts gave the desired TMS-protected alkyne 8 

in excellent yield. 

 

I
TMS

TMSA

1 mol % Pd(PPh3)2Cl2
1 mol % CuI

NEt3, rt, 18h, 97%

8  
 

Equation 3.8 Synthesis of 8 via Sonogashira cross-coupling. 

 

4 . 0 0 6 . 0 0 8 . 0 0 1 0 . 0 0 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0

5 0 0 0 0 0

1 0 0 0 0 0 0

1 5 0 0 0 0 0

2 0 0 0 0 0 0

2 5 0 0 0 0 0

3 0 0 0 0 0 0

3 5 0 0 0 0 0

4 0 0 0 0 0 0

4 5 0 0 0 0 0

5 0 0 0 0 0 0

5 5 0 0 0 0 0

6 0 0 0 0 0 0

6 5 0 0 0 0 0

T i m e - - >

A b u n d a n c e

T I C :  J H B 2 2 2 B . D

 
Figure 3.15 GC (TIC) for the synthesis of 8 via Sonogashira cross-coupling. 
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Figure 3.16 MS of 8. 
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Desilylation of compound 8 was achieved with NaOH in MeOH / Et2O to give the 

terminal alkyne 9
308

 in excellent yield. 

 
TMS

0.67 equiv NaOH

MeOH/Et2O, rt, 2 h, 91%
8 9 

 
Equation 3.9 Desilylation of 8 with NaOH to give 9. 

 

4 . 0 0 6 . 0 0 8 . 0 0 1 0 . 0 0 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0 2 0 . 0 0
0

5 0 0 0 0 0

1 0 0 0 0 0 0

1 5 0 0 0 0 0

2 0 0 0 0 0 0

2 5 0 0 0 0 0

3 0 0 0 0 0 0

3 5 0 0 0 0 0

4 0 0 0 0 0 0

4 5 0 0 0 0 0

5 0 0 0 0 0 0

T i m e - - >

A b u n d a n c e

T I C :  j h b  P M N C C H  2 0 0 9  1 . D

 
Figure 3.17 GC (TIC) for the desilyation of 8 to give 9 after 2 h. 
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2 1 1

2 2 6

1 6 9

1 5 5

1 8 1
1 9 61 2 8 1 4 11 1 55 7 8 97 6

1 0 26 5

 
Figure 3.18 MS of 8. 

 

Terminal alkyne 9 underwent Sonogashira cross-couplings with 3-, and 4-iodo-

methylbenzoate in the presence of 1 mol % of Pd(PPh3)2Cl2 and CuI catalysts at ambient 

temperature to give the 3-methylated retinoid esters in good yields. 

9

9
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CO2Me

CO2Me

a. p-I-C6H4-CO2Me, 1 mol % Pd(PPh3)2Cl2, 1 mol % CuI, NEt3, rt, 18 h, 77%

b. m-I-C6H4-CO2Me, 1 mol % Pd(PPh3)2Cl2, 1 mol % CuI, NEt3, rt, 18 h, 71%

a

b
9

10

11

 
 

Equation 3.10 Sonogashira cross-couplings of 9 with iodomethylbenzoates to give 10 and 11. 
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6 5 0 0 0 0 0

7 0 0 0 0 0 0

7 5 0 0 0 0 0

8 0 0 0 0 0 0

8 5 0 0 0 0 0

T im e -->

A b u n d a n c e

T I C :  jh b 2 2 4  2 a 2 . D

 
Figure 3.19 GC (TIC) for the synthesis of 10 from 9 and 4-iodomethylbenzoate after 18 h. 
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Figure 3.20 MS of 10. 
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4 . 0 0 6 . 0 0 8 . 0 0 1 0 . 0 0 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0 2 0 . 0 0
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 2 . 8 e + 0 7

   3 e + 0 7
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 3 . 6 e + 0 7

 3 . 8 e + 0 7

   4 e + 0 7

 4 . 2 e + 0 7

 4 . 4 e + 0 7

 4 . 6 e + 0 7

T im e - - >

A b u n d a n c e

T I C :  j h b  P M N  E C 1 9  M e . D

 
Figure 3.21 GC (TIC) for the synthesis of 11 from 9 and 3-iodomethylbenzoate after 18 h. 
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2 3 9
3 0 3
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1 6 51 2 0 1 8 91 4 21 0 15 9
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Figure 3.22 MS of 11. 

 

 

Orthorhombic single crystals of 10 (Pccn) were grown from a concentrated EtOH 

solution at -20 
o
C (Figure 3.23), while monoclinic single crystals of 11 (P21/c) were 

grown via slow evaporation of a concentrated EtOH/Et2O solution at room temperature 

(Figure 3.24). 

 

For 10, the interplanar angle between rings i and ii 16.3
o
, and that between ring ii and the 

methoxycarbonyl group is 7.7
o
. For 11 the interplanar angle between rings i and ii is 5.3

o
, 

and that between ring ii and the methoxycarbonyl group is 5.5
o
. 

 

11

CO2Me

11

CO2Me



218 

 

 
Figure 3.23 Molecular structure of compound 10. Thermal ellipsoids are drawn at the 50% probability 

level. 

 
Figure 3.24 Molecular structure of compound 11. Thermal ellipsoids are drawn at the 50% probability 

level. 

 

Retinoid methyl esters 10 and 11 were hydrolysed with LiOH at ambient temperature in a 

mixture of THF and H2O to give their acid derivatives 12 and 13, respectively, in good 

yields (Equation 3.11). 

 

ii

i

i

ii
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CO2H

CO2H

a. LiOH, THF/H2O rt, 18 h, 76%

b. LiOH, THF/H2O rt, 18 h, 73%

a

b

12

13

CO2Me

CO2Me

10

11

 
 
Equation 3.11 Hydrolysis of 10 and 11 with LiOH to give 12 and 13. 

 

3.3 Synthesis of retinoid esters based on the biaryl structure 

 

Biaryl-based arotinoids, such as TTNN,
309,310

 have been shown to possess high activities 

in a variety of screens for retinoidal activity, such as the TOC (tracheal organ cells) 

assay. In addition, biaryl moieties can be efficiently constructed by Suzuki-Miyaura 

cross-couplings making these compounds excellent targets for synthesis using the 

combined aromatic C-H borylation / cross-coupling approach for retinoid synthesis 

previously applied to the TTNPB series in Chapter 2. 

 

Building upon the synthesis of 3-methylated and non-methylated 1,1,4,4-tetramethyl 

1,2,3,4-tetrahydronaphthalene boronate esters  a, b, c and d (detailed in Chapter 2, as 

compounds 6, 16, 10a and 14, respectively) (Figure 3.25) rapid syntheses of a range of 

biaryl retinoid esters were envisaged utilising Suzuki-Miyaura cross-couplings of these 

useful building blocks. 

 

B
O

O

B
O

O

B
O

O

B
O

O

a c db  
 
Figure 3.25 Boronate ester building blocks for retinoid synthesis. 
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For the synthesis of the non-methylated biaryl retinoid esters 14, 15 and 16, 

pinacolboronate ester a (Chapter 2, compound 6) was utilised due to its ease of synthesis 

(via Ir-catalysed C-H borylation with B2pin2) and its marginally higher reactivity, 

compared to its neopentaneglycolato ester analogue b. 

 

The pinacol boronate ester underwent Suzuki-Miyaura cross-coupling with 3-, and 4-

bromo-cinnamic acid methyl esters and 6-bromonaphthalene-2-carboxylic acid methyl 

ester to give the retinoid esters 14, 15 and 16, respectively, in high yields (Equation 

3.12). The reactions were carried out in the presence of 5 mol % Pd(dppf)Cl2 catalyst and 

2 molar equivalents of K3PO4·2H2O base in a combination of DMF/H2O at 80 
o
C. The 

reactions were heated for 2 days, at which time analysis by in situ GC-MS showed all 

reactions to be complete. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation 3.12 Synthesis of biaryl retinoid esters 14, 15 and 16 via Suzuki-Miyaura cross-couplings. 

 

 

B
O

O

CO2Me

CO2Me

CO2Me
5 mol % Pd(dppf)Cl2

2 equiv K3PO4
.2H2O

5:1 DMF/H2O, 80 oC, 2 d

+

Br

R

16     87%

14     84%

15     88%
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2 8 0 0 0 0

3 0 0 0 0 0

3 2 0 0 0 0

3 4 0 0 0 0

T i m e - - >

A b u n d a n c e

T I C :  J H B  C E B 1 6  M e  2 0 0 9  3 b . D

 
Figure 3.26 GC (TIC) for the synthesis of 14 from boronate ester a. 
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Figure 3.27 MS of 14. 
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Figure 3.28 GC (TIC) for the synthesis of 15 from boronate ester a. 
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Figure 3.29 MS of 15. 
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Figure 3.30 GC (TIC) for the synthesis of 16 from boronate ester a. 
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Figure 3.31 MS of 16. 

 

 

For the synthesis of 3-methylated biaryl retinoid esters, the neopentaneglycolato boronate 

ester d was utilised as a precursor. Although compound d is marginally less reactive than 

CO2Me

15

CO2Me

16

CO2Me

16
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its pinacol boronate ester analogue c, the synthesis of d from the corresponding aryl-

iodide via Pd-catalysed Miyaura borylation with B2neop2 is much more rapid than the 

corresponding borylation with B2pin2 to give c (18 hours at 80 
o
C versus 4 days at 80 

o
C, 

respectively), making the synthesis from arene to retinoid ester via an iodination / 

borylation / Suzuki-Miyaura cross-coupling sequence much more rapid (4 days versus 7 

days). 

 

Neopentane glycolate boronate ester d underwent Suzuki-Miyaura cross-coupling with 3-

, and 4-bromo-cinnamic acid methyl esters and 6-bromonaphthalene-2-carboxylic acid 

methyl ester to give the retinoid esters 17, 18 and 19, respectively, in high yields 

(Equation 3.13). The reactions were carried out in the presence of 5 mol % Pd(dppf)Cl2 

catalyst and 2 molar equivalents of K3PO4·2H2O based in a combination of DMF/H2O at 

80 
o
C. The reactions were heated for 2 days, at which time analysis by in situ GC-MS 

showed all reactions to be complete. 

 

B

CO2Me

CO2Me

CO2Me

5 mol % Pd(dppf)Cl2

2 equiv K3PO4
.2H2O

5:1 DMF/H2O, 80 oC, 2 d

+

Br

R

19     83%

17     84%

18     80%

O

O

 
 
Equation 3.13 Synthesis of biaryl retinoid esters 17, 18 and 19 via Suzuki-Miyaura cross-couplings of d. 
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4 . 0 0 6 . 0 0 8 . 0 0 1 0 . 0 0 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0 2 0 . 0 0
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Figure 3.32 GC (TIC) for the synthesis of 17 from boronate ester d. 
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Figure 3.33 MS of 17. 
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Figure 3.34 GC (TIC) for the synthesis of 18 from boronate ester d. 
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Figure 3.35 MS of 18. 
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Figure 3.36 GC (TIC) for the synthesis of 19 from boronate ester d. 
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Figure 3.37 MS of 19. 
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The biaryl retinoid esters 14 – 19 were hydrolysed with aqueous LiOH at ambient 

temperature to give their corresponding carboxylic acids in moderate to good yields 

(Equation 3.14). 

 

CO2H

CO2H

CO2H

5:1 THF/H2O, rt, 3 d

R = H    20      72% 
R = Me  21      69%

R

R

R

CO2Me

CO2Me

CO2Me

R

R

R

LiOH

R = H    22     62% 
R = Me  23     57%

R = H    24     70% 
R = Me  25     75%  

 
Equation 3.14 Hydrolysis of biaryl retinoid esters 14 – 19. 

 

3.4 Conclusions 

 

Two series of highly rigid arotinoids have been synthesised via combinations of aromatic 

iodinations and palladium-catalysed C-C and C-B forming reactions, giving the products 

with good to high yields. Preliminary results
304

 have shown that compound 7 and its 

meta-analogue are highly effective in inducing the differentiation of the human 

embryonal carcinoma stem cell line, TERA2.cl.SP12, with 7 leading to the formation of 

neuronal cells (similar to the effects of ATRA) while its meta-analogue led to the 

formation of „plaques‟ of epithelial cells showing a marked difference in selectivity 

between the para and meta isomers.  
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In contrast to the stilbene-based arotinoids (TTNPB series) detailed in Chapter 2, the 

incorporation of ortho-methyl groups on the arene ring of the hydrophobic terminus does 

not result in any conformational change in the alkynyl compounds, as observed by 

comparisons of the molecular structures and λmax values of compounds differing only by 

the presence of an ortho-methyl group. As a result, these compounds can be used to 

assess the effects (if any) of increasing the steric bulk of the hydrophobic terminus by 

incorporation of this ortho-methyl group, and further work is currently underway to 

evaluate the ability of these compounds to induce the differentiation of the human 

embryonal carcinoma stem cell line, TERA2.cl.SP12. 

 

3.5 Experimental 

 

All reactions were carried out under a dry nitrogen atmosphere using standard Schlenk 

techniques or in an Innovative Technology Inc. System 1 double-length glove box. 

Glassware was oven dried before transfer into the glove box. Hexane was dried over 

sodium/benzophenone was distilled under nitrogen. The solvents DMF, and DMSO and 

H2O were degassed by 3 freeze-pump-thaw-cycles. B2pin2 and B2neop2 were kindly 

supplied as gifts by AllyChem Co. Ltd., Frontier Scientific Inc. and NetChem. Inc. 

Hydrochloric acid was obtained from Fisher Scientific and all other compounds were 

obtained from Aldrich Chemical Company, tested for purity by GCMS and used without 

further purification. NMR spectra were recorded at ambient temperature on Varian 

Systems 700 (
1
H, 

13
C{

1
H}) Varian Inova 500 (

1
H, 

13
C{

1
H}), Varian C500 (

1
H, 

13
C{

1
H}), 

Bruker 400 Ultrashield (
1
H, 

13
C{

1
H}) and Bruker AC200 (

13
C{

1
H}) instruments. Proton 

and carbon spectra were referenced to external SiMe4 via residual protons in the 

deuterated solvents or solvent resonance respectively. IR spectra were recorded on a 

Perkin-Elmer Paragon 500 FT-IR spectrometer. UV-vis and fluorescence measurements 

were recorded in CHCl3. UV-vis absorption spectra and extinction coefficients were 

obtained on a Hewlett-Packard 8453 diode array spectrophotometer using standard 1 cm 

quartz cells. Fluorescence spectra were recorded on a Horiba Jobin-Yvon Fluoromax-3 

spectrophotometer. The spectra of dilute solutions with absorbance maxima of less than 

0.1 were recorded using conventional 90 degree geometry. The emission spectra were 
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fully corrected using the manufacturer‟s correction curves for the spectral response of 

emission optical components. Elemental analyses were conducted in the Department of 

Chemistry at Durham University using an Exeter Analytical Inc. CE-440 Elemental 

Analyser. GC-MS analyses were performed on an Agilent 6890 Plus GC equipped with a 

5973N MSD and an Anatune Focus robotic liquid handling system / autosampler. A 

fused silica capillary column (10 m or 12 m, cross-linked 5% phenylmethylsilicone) was 

used, and the oven temperature was ramped from 50 
o
C to 280 

o
C at a rate of 20 

o
C/min. 

UHP grade helium was used as the carrier gas. The screw-cap autosampler vials used 

were supplied by Thermoquest Inc. and were fitted with Teflon / silicone / Teflon septa 

and 0.2 mL micro inserts. HRMS spectra were recorded in the Department of Chemistry 

at Durham University using a Thermo Finnigan LTQ FT Ultra Hybrid mass spectrometer. 

 

Br

 2 

 

6-Bromo-1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphthalene (2).
302

 To a solution of 

1,1,4,4-tetramethyl-1,2,3,4-tetrahydro-naphthalene (10.0 g, 53.0 mmol) in DCM (60 mL) 

at 0 
o
C under N2 was added 1.8 eq. of Br2 (15.58 g, 97.5 mmol). BF3.Et2O (8.27 g, 58.3 

mmol) in DCM (10 mL) was added dropwise over 2 h. The reaction mixture was diluted 

with 40/60 EtOAc/hexane (150 mL) and washed with saturated Na2SO3 solution (100 

mL), saturated NaHCO3 solution (100 mL), and H2O (100 mL). The organic layer was 

dried over MgSO4, filtered and the solvents were removed in vacuo to give a dark brown 

oil. Kugelrohr distillation (120 
o
C, 8 x 10

-3
 mbar) gave the product as pale yellow crystals 

(11.0 g, 78%); mp 43-45 
o
C; EI-MS m/z: 266 (30% M

+
), 251 (100%, M

+
 - Me); 

1
H NMR

 

(400.13 MHz, CDCl3)  7.40 (1H, d, J = 3 Hz), 7.21 (1H, d, J = 3 Hz), 7.18 (1H, s), 1.67 

(4H, s), 1.27 (6H, s), 1.26 (6H, s); 
13

C{
1
H} NMR (100.13 MHz, CDCl3)  147.63, 

144.09, 129.67, 128.88, 128.66, 119.62, 35.11, 35.10, 34.70, 34.30, 31.96 (two peaks 

overlapped); anal. calcd for C14H19Br: C 62.93; H 7.17; found: C 62.81; H 7.16.  
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Si

 3 

 

 

Trimethyl-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-ylethynyl)-silane (3). 

PdCl2 (75 mg, 0.43 mmol), Cu(OAc)2 (77 mg, 0.43 mmol), 1 (1.14 g, 4.30 mmol) and 

PPh3 (0.56 g, 2.14 mmol) were placed in a 250 mL Schlenk flask under N2. Dry, 

degassed NEt3 (100 mL) was added via cannula and ethynyltrimethylsilane (0.7 mL 5.14 

mmol) was added via syringe. After 18 h at 70 
o
C, the NEt3 was evaporated and the 

residue was passed through a short silica gel column (hexane as eluent) to give the crude 

product as a viscous, pale yellow oil after evaporation which slowly solidified to give an 

off-white solid which was recrystallised from ethanol to give 3 (1.0 g, 81%); mp 51-52 

o
C; EI-MS m/z: 284 (25%, M

+
), 269 (100%, M

+
-Me); 

1
H NMR

 
 (400.13 MHz, CDCl3) 

7.22 (1H, s), 7.02 (2H, s), 1.47 (4H, s), 1.07 (6H, s), 1.07 (6H, s), 0.05 (9H, s); 
13

C{
1
H} 

NMR (100.61 MHz, CDCl3) 145.94, 145.10, 130.45, 129.31, 126.71, 120.31, 106.20, 

93.51, 35.23, 35.14, 34.54, 34.39, 31.96, 31.89, 0.31; anal. calcd. for C19H28Si: C 80.21, 

H 9.92; found: C 80.04, H 9.90. 

 

Synthesis of 3 from 6-iodo-1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphthalene  

6-Iodo-1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphthalene (3.14 g, 10.0 mmol), 

Pd(PPh3)2Cl2 (0.07 g, 0.1 mmol) and CuI (0.02 g, 0.1 mmol) were placed in a 250 mL 

Schlenk flask under N2. Dry, degassed NEt3 (150 mL) was added via cannula under N2 

and ethynyltrimethylsilane (1.18 g, 12 mmol) was added via syringe. The reaction was 

stirred under N2 at room temperature, until analysis by GCMS showed the reaction to be 

complete (12 h). The NEt3 solvent was removed in vacuo and the residue was passed 

through a short silica gel column, eluting with hexane. Evaporation of the solvent gave 

the crude product as a pale yellow oil which slowly solidified to give an off-white solid. 

Recrystallisation from hot EtOH gave 3 (2.50 g, 88%). All spectroscopic and analytical 

properties were identical to those reported above. 
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OH

 4 

 

2-Methyl-4-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-but-3-yn-2-ol 

(4). PdCl2 (0.331 g, 1.87 mmol), Cu(OAc)2 (0.274 g, 1.87 mmol), 1 (5.0 g, 18.71 mmol) 

and PPh3 (2.45 g, 9.35 mmol) were placed in a 500 mL Schlenk flask, and the flask was 

evacuated and back-filled with N2 gas (3x). NEt3 (150 mL) was added via cannula, 

followed by 2-methylbut-3-yn-2-ol (4.72 g, 56.13 mmol). The solution was stirred under 

N2 at 70 
o
C for 3 d. The NEt3 was evaporated and the residue was passed through a short 

silica gel column (hexane, then 10% EtOAc/hexane as eluent). The EtOAc/hexane 

solution was washed with 1M HCl solution (100 mL), dried (MgSO4) and evaporated to 

give 4 as an off-white solid (2.25 g, 45%); mp 107–109 
o
C; EI-MS m/z: 236 (90%, M

+
), 

205 (100%, OH and Me loss); 
1
H NMR

 
(499.76 MHz, CDCl3)  7.36 (1H, s), 7.24 (1H, 

d, J  = 8.0 Hz), 7.21 (1H, d, J = 8.0 Hz), 2.05 (1H, s), 1.67 (4H, s), 1.62 (6H, s), 1.27 (6H, 

s), 1.26 (6H, s); 
13

C{
1
H} NMR (126 MHz, CDCl3) 145.6, 145.1, 130.1, 128.9, 126.8, 

119.8, 92.8, 82.8, 65.8, 35.2, 35.1, 34.5, 34.4,  31.9, 31.9, 31.8; m/z (EI) 270 (M
+
); 

HRMS (ES
+
) calcd. for C19H26ONa ([M + Na]

+
) 293.18759, found 293.18776, and 

HRMS (ES
+
) calcd. for C19H25 ([M − OH]

+
) 253.19508, found 253.19522. 

 

 

5 

 

6-Ethynyl-1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphthalene (5). To a solution of 3 

(1.42 g, 5 mmol) in MeOH (50 mL) and Et2O (50 mL), was added NaOH (0.14 g, 3.5 

mmol) in H2O (2 mL). After 4 h, the mixture was extracted with Et2O (30 mL), washed 

with H2O (3 x 30 mL), dried (MgSO4) and evaporated to give 5 as an oil which slowly 

solidified to give a white solid (0.78 g, 74%); mp 48–49 
o
C; IR(KBr disc, cm

−1
) 2105 

(C≡C); 
1
H NMR

 
(199.99 MHz, CDCl3)  7.47 (1H, s), 7.27 (2H, s), 3.03 (1H, s), 1.70 

(4H, s), 1.29 (6H, s), 1.26 (6H, s); 
13

C{
1
H} NMR (100.61 MHz, CDCl3) δ 146.1, 145.1, 
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130.5, 129.2, 126.6, 119.1, 84.3, 75.9, 34.9, 34.8, 34.3, 34.2, 31.8, 31.7; m/z (EI-MS): 

212 (M
+
); anal. calcd. for C16H20: C 90.51, H 9.49; found: C 90.27, H 9.57. 

 

CO2Me

 6 

 

4-(5,5,8,8-Tetramethyl-5,6,7,8-tetrahydronaphthalen-2-ylethynyl)-benzoic acid 

methyl ester (6). CuI (0.03 g, 0.14 mmol), 4-iodobenzoic acid methyl ester (3.59 g, 13.7 

mmol) and Pd(PPh3)2Cl2 (0.09 g, 0.14 mmol) were placed in a 500 mL Schlenk flask 

under N2 and 5 (3.50 g, 16.48 mmol) was added. Dry, degassed Et3N (200 mL) was 

added via cannula and the reaction mixture was stirred under N2 until GCMS analysis 

showed the reaction to be complete (18 h). Et3N was removed in vacuo and the remaining 

crude solid purified via passage through a silica plug, eluting with hexane (100 mL), then 

10% DCM/hexane. Removal of solvent and drying in vacuo gave a crude solid. 

Recrystallisation from hot EtOH gave the product as a white crystalline solid; (4.13 g, 

87%); mp 122 
o
C; R (KBr disc, cm

−1
) 2207 (C≡C), 1712 (C=O); UV-vis (CHCl3) λmax 

310 nm ( 26400 M
−1

cm
−1

; λem (CHCl3) 362 nm; m/z (EI-MS) 346 20% M
+
), 331 (100% 

M
+
-Me); 

1
H NMR (400.13 MHz, CDCl3) 8.03 (2H, d, J = 9.0 Hz), 7.59 (2H, d, J = 9.0 

Hz), 7.51 (1H, s), 7.31 (2H, s), 3.94 (3H, s), 1.71 (4H, s), 1.28 (12H, s);
 13

C{
1
H} NMR 

(100.61 MHz, CDCl3)  166.83, 146.34, 145.41, 131.67, 130.31, 129.69, 129.43, 129.00, 

128.61, 126.98, 119.84, 93.30, 87.23, 52.39, 35.16, 35.09, 34.61, 34,45, 31.99, 31.90; 

anal. calcd. for C24H26O2 C, 83.20; H, 7.56; found: C, 83.03; H, 7.59. 

 

CO2H

 7 
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4-(5,5,8,8-Tetramethyl-5,6,7,8-tetrahydronaphthalen-2-ylethynyl)-benzoic acid (7). 

A solution of 6 (0.35 g, 1 mmol) in THF (20 mL) was treated with aqueous 20% NaOH 

(20 mL). After heating at 70 
o
C for 20 h, the reaction mixture was diluted with Et2O (150 

mL) and water (150 mL), then 1 M HCl solution was added until mixture reached pH 1. 

The organic layer was separated, dried (MgSO4) and evaporated to give an off-white 

powder, which was recrystallised from MeCN to give the product 7 as a white crystalline 

solid (0.24 g, 72%); mp 254–256 
o
C;IR (KBr disc, cm

−1
) 2205 (C≡C), 1681 (C=O); UV-

vis (CHCl3) λmax 310 nm ( 26900 M
−1

cm
−1

; λem (CHCl3) 365 nm; (ES-MS) m/z 377 

(20%, MNa2), 331 (100%, [M-H]
-
); 

1
H NMR (400.13 MHz, DMSO-d6) 8.09 (2H, d, J = 

8.5 Hz), 7.62 (2H, d, J = 8.5 Hz), 7.51 (1H, s), 7.31 (2H, s), 1.68 (4H, s), 1.31 (12H, s); 

13
C{

1
H} NMR (125.67 MHz, CDCl3) 171.49, 146.46, 145.43, 131.76, 130.35, 130.33, 

129.56, 129.02, 128.38, 127.01, 119.69, 93.85, 87.76, 35.10, 35.04, 34.62, 34.46, 31.98, 

31.89; HRMS (ES
-
) calcd. for C23H23O2 331.16926 [(M − H)

-
], found 331.16949. 

 
SiMe3

8 

 

Trimethyl-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-ylethynyl)- 

silane (8). Pd(PPh3)2Cl2 (0.21 g, 0.31 mmol) CuI (58 mg, 0.31 mmol) and  6-iodo-

1,1,4,4,7-pentamethyl-1,2,3,4-tetrahydronaphthalene (10.0 g, 30.5 mmol) were placed in 

a 1 L Schlenk flask under N2. Dry, degassed Et3N (500 mL) was added via cannula and 

ethynyltrimethylsilane (5.17 mL, 36.6 mmol) was added via syringe. The mixture was 

stirred under N2 until GCMS analysis showed the reaction to be complete (18 h). The 

solvent was removed in vacuo and the residue was filtered through a SiO2 plug eluting 

with hexane (300 mL). Removal of the solvent in vacuo gave a clear oil. Addition of 

MeOH (5 mL) and cooling gave 8 as analytically pure white crystals (8.82 g, 97%); mp 

77-78 
o
C; IR (KBr disc, cm

-1
) 2963, 2926, 2860, 2143, 1493, 1457, 1362, 1247; m/z (EI-

MS) 354 (100%, M
+
 - Me), 339 (25%, M

+
); 

1
H NMR (499.80 MHz, CDCl3) δ 7.37 (1H, 

s), 7.10, (1H, s), 2.37, (3H, s), 1.65, (4H, s), 1.25 (6H, s), 1.24 (6H, s), 0.25 (9H, s); 

13
C{

1
H} NMR 125.67 MHz, CDCl3) δ 146.02, 142.54, 137.65, 130.58, 127.73, 120.48, 
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105.02, 97.04, 35.34, 35.32, 34.54, 34.18, 32.12, 32.02, 20.62, 0.50; anal. calcd for 

C20H30Si: C 80.46, H 10.13; found: C 80.29, H 10.17. 

 

 

9 

 

6-Ethynyl-1,1,4,4,7-pentamethyl-1,2,3,4-tetrahydronaphthalene (9). Compound 8 (6.0 

g, 20.1 mmol) and NaOH (0.53 g, 13.4 mmol) were dissolved in a 50/50 mixture of Et2O 

and MeOH (100 mL) with 1 mL of H2O. The mixture was stirred for 2 h at which time 

GCMS analysis showed the reaction to be complete. H2O (100 mL) and hexane (100 mL) 

were added and the product was extracted into the organic layer. The organic layer was 

dried over MgSO4, filtered and the solvent removed in vacuo to give a white solid. 

Recrystallisation from MeOH gave 9 as an analytically pure white powder (0.41 mg, 91 

%); mp 45-47 
o
C (lit. 41-43 

o
C

308
); IR (KBr disc, cm

-1
) 2963, 2926, 2861, 2143, 1493, 

1458, 1391, 1247; m/z (EI-MS) 226 (25%, M
+
), 211 (100%, M

+
 - Me); 

1
H NMR (499.80 

MHz, CDCl3) δ 7.42 (1H, s), 7.13 (1H, s), 3.20 (1H, s), 2.40 (3H, s), 1.66 (4H, s) 1.27 

(6H, s), 1.26 (6H, s); 
13

C{
1
H} NMR 125.67 MHz, CDCl3) δ 146.32, 142.67, 137.72, 

131.161, 127.84, 119.49, 83.38, 79.91, 35.28, 35.27, 34.55, 34.16, 32.12, 32.01, 20.59; 

anal. calcd for C17H22: C 90.20, H 9.80; found: C 89.95, H 9.80. 

 

O

O

10 

 

4-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydronaphthalen-2-ylethynyl)-benzoic acid 

methyl ester (10). Pd(PPh3)2Cl2 (29 mg, 0.042 mmol), CuI (8 mg, 0.004 mmol), 

4-iodobenzoic acid methyl ester (1.1 g, 4.2 mmol) and compound 9 (1.0 g, 4.4 mmol) 

were placed in a 250 mL Schlenk flask under N2. Dry, degassed Et3N (100 mL) was 

added via cannula. The reaction was stirred under N2 for 3 d. The solvent was removed in 
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vacuo and the residue was filtered through a SiO2 plug eluting with hexane (200 mL) and 

then with 50:50 DCM/hexane (200 mL). The DCM/hexane fraction was evaporated in 

vacuo to give a pale brown solid. Recrystallisation from EtOH gave white needles (0.12 

g, 77%); mp 135-137; IR (KBr disc, cm
-1

)  2921, 2857, 1711 (C=O), 1602, 1433, 1287, 

1108; UV-vis (CHCl3) λmax 317 nm (ε) 25700 L mol
-1 

cm
-1

; λem (CHCl3) 378 nm;  m/z 

(EI-MS) 360 (50%, M
+
), 345 (100%, M

+
 - Me); 

1
H NMR (499.80 MHz, CDCl3) δ  8.01 

(2H, d, J = 8.5 Hz), 7.58 (2H, d, J = 8.5 Hz), 7.45 (1H, s), 7.16 (1H, s), 3.93 (3H, s), 2.46 

(3H, s), 1.68 (4H, s), 1.29 (6H, s) 1.28 (6H, s); 
13

C{
1
H} NMR 125.67 MHz, CDCl3) δ 

166.99, 146.52, 142.89, 137.43, 131.69, 130.63, 129.84, 129.49, 128.94, 127.97, 120.04, 

92.36, 91.72, 52.57, 35.29, 34.62, 34.24, 32.16, 32.10 32.02, 20.73; anal. calcd. for 

C25H28O2: C 83.29, H 7.83; found: C 82.83, H 7.67. 

 

O

O

11 

 

3-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydronaphthalen-2-ylethynyl)-benzoic acid 

methyl ester (11). Pd(PPh3)2Cl2 (29 mg, 0.042 mmol), CuI (8 mg,0.0042 mmol), 

3-iodobenzoic acid methyl ester (1.1 g, 4.21 mmol) and compound 9 (1.0 g, 4.42 mmol) 

were placed in a 250 mL Schlenk flask under N2. Dry, degassed Et3N (100 mL) was 

added via cannula. The reaction was stirred under N2 for 3 d. The solvent was removed in 

vacuo and the residue filtered through a SiO2 plug eluting with hexane (200 mL) and 

50/50 DCM/hexane (200 mL). The DCM/hexane fraction was evaporated in vacuo to 

give a pale brown solid. Recrystallisation from EtOH to gave white needles (0.11 g, 

71%); mp 115-117; IR (KBr disc, cm
-1

) 2956, 2926, 2862, 1725 (C=O), 1439, 1280, 

1256; UV-vis (CHCl3) λmax 290 nm (ε) 22000 L mol
-1 

cm
-1

; λem (CHCl3) 370 nm;  m/z 

(EI-MS) 360 (50%, M
+
), 345 (100%, M

+
 - Me); 

1
H NMR (499.80 MHz, CDCl3) δ  8.04 

(1H, s), 7.82 (1H, d, J = 7.5 Hz), 7.70 (1H, d, J = 7.5 Hz), 7.46 (1H, s), 7.33 (1H, t, J = 

7.5 Hz) 7.16 (1H, s), 2.46 (3H, s), 3.94 (3H, s), 2.46 (3H, s), 1.68 (4H, s), 1.29 (6H, s) 

1.28 (6H, s); 
13

C{
1
H} NMR 125.67 MHz, CDCl3) δ 166.89, 146.23, 142.79, 137.34, 

135.97, 132.88, 130.71, 130.57, 129.22, 128.79, 127.91, 124.63, 120.20, 91.33, 90.13, 
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52.64, 35.31, 34.59, 34.23, 32.17, 32.10, 32.03, 20.76; anal. calcd. for C25H28O2: C 83.29, 

H 7.83; found: C 83.03, H 7.36. 

 

OH

O

12 

 

4-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydro-naphthalen-2-ylethynyl)-benzoic acid 

(12). LiOH·H2O (17.5 mg, 0.42 mmol) and 10 (0.10 g, 0.28 mmol) were placed in a large 

screw top vial. THF (5 mL) and H2O (1 mL) were added and the solution stirred at room 

temperature until analysis via tlc showed the reaction to be complete. Et2O (30 mL) was 

added and the mixture washed with dilute HCl(aq.) (30 mL), and H2O (2 x 30 mL). The 

organic layer was dried with MgSO4, filtered and the solvent removed in vacuo. 

Recrystallisation from MeCN gave the product as a white powder (0.73 mg, 76%); mp 

220-222 
o
C; UV-vis (CHCl3) λmax 319 nm (ε) 26100 L mol

-1 
cm

-1
; λem (CHCl3) 381 nm; 

m/z (ES
+
-MS) 692 (2M

+
); 

1
H NMR (499.80 MHz, DMSO-d6) δ  7.96 (2H, d, J = 8.0 Hz), 

7.65 (2H, d, J = 8.0 Hz), 7.45 (1H, s), 7.27 (1H, s), 2.40 (3H, s), 1.62 (4H, s), 1.23 (12H, 

s); 
13

C{
1
H} NMR 125.67 MHz, DMSO-d6) δ 167.47, 146.68, 142.97, 137.45, 132.03, 

130.97, 130.48, 130.28, 128.36, 127.80, 119.67, 92.21, 92.14, 35.14, 35.10, 34.25, 32.17, 

32.06, 20.64; anal. calcd. for C24H26O2: C 83.20, H 7.56; found: C 83.23, H 8.04. 

 

 

O

OH

13 

 

3-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydro-naphthalen-2-ylethynyl)-benzoic acid 

(13). LiOH·H2O (17.5 mg, 0.42 mmol) and compound 11 (0.10 g, 0.28 mmol) were 

placed in a large screw top vial. THF (5 mL) and H2O (1 mL) were added and the 

solution stirred at room temperature until analysis via tlc showed the reaction to be 
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complete. Et2O (30 mL) was added and the mixture washed with dilute HCl(aq.) (30 mL), 

and H2O (2 x 30 mL). The organic layer was dried with MgSO4, filtered and the solvent 

removed in vacuo. Recrystallisation from MeCN gave the product as a white powder (71 

mg, 73%); mp 206-207 
o
C; UV-vis (CHCl3) λmax 290 nm (ε) 23000 L mol

-1 
cm

-1
; λem 

(CHCl3) 376 nm; m/z (ES
+
-MS) 692 (M

+
);  

1
H NMR (499.80 MHz, DMSO-d6) δ  8.03 

(1H, s), 7.93 (1H, d, J = 7.5 Hz), 7.76 (1H, d, J = 7.5 Hz), 7.54 (1H, t, J = 7.5 Hz), 7.44 

(1H, s), 7.24 (1H, s), 2.39 (3H, s), 1.60 (4H, s), 1.22 (12H, s); 
13

C{
1
H} NMR 125.67 

MHz, DMSO-d6) δ 166.55, 145.69, 136.47, 135.13, 131.37, 129.70, 129.17, 127.54, 

123.16, 119.10, 91.04, 89.49, 34.46, 34.42, 33.91, 33.51, 31.44, 19.90; anal. calcd. for 

C24H26O2: C 83.20, H 7.56; found: C 83.09, H 8.00. 

 

O

O

14 

 

3-[4-(5,5,8,8-Tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-phenyl]-acrylic acid 

methyl ester (14). Pd(dppf)Cl2 (23 mg, 0.03 mmol), compound a (0.20 g, 0.64 mmol), 

K3PO4·2H2O (0.29 g, 1.16 mmol) and 3-(4-bromo-phenyl)-acrylic acid methyl ester (0.14 

g, 0.58 mmol) were placed in a thick walled glass tube fitted with a Young‟s tap along 

with DMF (10 mL) and H2O (2 mL) in a dry, N2 filled, glovebox. The mixture was 

heated at 80 
o
C until GCMS analysis showed the reaction to be complete (2 d). Dilute 

HCl (aq.) (2 mL) was added and the mixture was extracted with Et2O (3 x 10 mL); the 

organic phase was washed with dilute HCl(aq.) (3 x 10 mL), dried over MgSO4 and 

concentrated in vacuo. The mixture was filtered through a silica plug, eluting with hexane 

and then 10% DCM/hexane, and the solvent was removed in vacuo. Recrystallisation 

from hot EtOH gave the product as a white fluffy powder (180 mg, 84%); mp 167-169 

o
C; IR (KBr disc, cm

-1
) 2956, 2922, 2857, 1711 (C=O), 1638, 1313, 1193m 1171; UV-vis 

(CHCl3) λmax 307  nm (ε)  28400 L mol
-1 

cm
-1

; λem (CHCl3) 396 nm; m/z (EI-MS) 333 

(100%, M
+
 - Me), 348 (20%, M

+
); 

1
H NMR (499.80 MHz, CDCl3) δ 7.75 (1H, d, J = 16.0 

Hz), 7.60 (2H, d, J = 9.0 Hz), 7.58 (2H, d,  J = 9.0 Hz), 7.53 (1H, d, J = 2.0 Hz), 7.40 

(1H, d, J =  9.0 Hz), 7.37 (1H, dd, J = 9.0, 2.0 Hz), 6.46 (1H, d, J = 16.0 Hz), 3.82 (3H, 



237 

 

s), 1.72 (4H, s), 1.34 (6H, s), 1.32 (6H, s); 
13

C{
1
H} NMR 125.67 MHz, CDCl3) δ 

167.70, 145.59, 144.96, 144.71, 143.60, 137.42, 133.07, 128.65, 127.59, 127.31, 125.35, 

124.46, 117.44, 51.85, 35.24, 35.13, 34.58, 34.35, 32.06, 32.08; HRMS (ES
+
) calcd. for 

C24H29O2 ([M + H]
+
) 349.21621, found 349.21628. 

 

O

O

15 

 

 

3-[3-(5,5,8,8-Tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-phenyl]-acrylic acid 

methyl ester (15). Pd(dppf)Cl2 (23 mg, 0.028 mmol), compound a (0.20 g, 0.64 mmol), 

K3PO4·2H2O (0.29 g, 1.16 mmol) and 3-(3-bromo-phenyl)-acrylic acid methyl ester (0.14 

g, 0.58 mmol) were placed in a thick walled glass tube fitted with a Young‟s tap along 

with DMF (10 mL) and H2O (2 mL) in a dry, N2 filled, glovebox. The mixture was 

heated at 80 
o
C until GCMS analysis showed the reaction to be complete (2 d). Dilute 

HCl (aq.) (2 mL) was added and the mixture was extracted with Et2O (3 x 10 mL); the 

organic phase was washed with dilute HCl(aq.) (3 x 10 mL), dried over MgSO4 and 

concentrated in vacuo. The mixture was filtered through a silica plug, eluting with hexane 

and then 10% DCM/hexane, and the solvent was removed in vacuo. Recrystallisation 

from hot EtOH gave the product as a white fluffy powder (0.178 g, 88%); mp 163-165 

o
C; IR (KBr disc, cm

-1
) 2956, 2921, 2856, 1709 (C=O), 1637, 1313, 1170; UV-vis 

(CHCl3) λmax 268 nm (ε) 14400 L mol
-1 

cm
-1

; λem (CHCl3) 396 nm;  m/z (EI-MS) 333 

(100%, M
+
 - Me), 348 (20%, M

+
); 

1
H NMR (499.80 MHz, CDCl3) δ 7.78 (1H, d, J = 16.0 

Hz), 7.70 (1H, s), 7.59 (1H, d, J = 8.0 Hz), 7.51 (2H, m). 7.45 (1H, t, J = 8.0 Hz), 7.40 

(1H, d, J = 8.0 Hz), 7.37 (1H, dd, J = 8.0, 2.0 Hz), 6.47 (1H, d, J = 16.0 Hz), 3.82 (3H, s), 

1.72 (4H, s), 1.34 (6H, s), 1.32 (6H, s); 
13

C{
1
H} NMR 125.67 MHz, CDCl3) δ 167.61, 

145.58, 145.13, 144.71, 142.44, 137.79, 134.86, 129.35, 129.24, 127.29, 127.05, 126.54, 

125.40, 124.55, 118.08, 51.90, 35.24, 35.14, 34.57, 34.31, 32.07, 32.00; HRMS (ES
+
) 

calcd. for C24H28O2Na ([M + Na]
+
) 371.19815, found 371.19816. 
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O

O

16 

 

5',5',8',8'-Tetramethyl-5',6',7',8'-tetrahydro[2,2']binaphthalenyl-6-carboxylic acid 

methyl ester (16). Pd(dppf)Cl2 (23 mg, 0.028 mmol), compound a (0.20 g, 0.64 mmol), 

K3PO4·2H2O (0.29 g, 1.16 mmol) and 2-bromo-naphthalene-6-carboxylic acid methyl 

ester (0.15 g, 0.58 mmol) were placed in a thick walled glass tube fitted with a Young‟s 

tap along with DMF (10 mL) and H2O (2 mL) in a dry, N2 filled, glovebox. The mixture 

was heated at 80 
o
C until GCMS analysis showed the reaction to be complete (2 d). 

Dilute HCl (aq.) (2 mL) was added and the mixture was extracted with Et2O (3 x 10 mL); 

the organic phase was washed with dilute HCl(aq.) (3 x 10 mL), dried over MgSO4 and 

concentrated in vacuo. The mixture was filtered through a silica plug, eluting with hexane 

and then 10% DCM/hexane, and the solvent was removed in vacuo. Recrystallisation 

from hot EtOH gave the product as a white fluffy powder (0.196 g, 87%); mp 169-170; 

IR (KBr disc, cm
-1

) 2955, 2922, 2857, 1706 (C=O), 1476, 1293, 1222, 1094; UV-vis 

(CHCl3) λmax 266 nm (ε) 34500 L mol
-1 

cm
-1

; λem (CHCl3) 378 nm; m/z (EI-MS) 347 

(100%, M
+
 - Me), 372 (20%, M

+
); 

1
H NMR (699.73 MHz, CDCl3) δ 8.63 (1H, s), 8.08 

(1H, dd, J = 9.0, 2.0 Hz), 8.04 (1H, s), 8.01 (1H, d, J = 9.0 Hz), 7.94 (1H, d, J = 9.0 Hz), 

7.80 (1H, dd, J = 9.0, 2.0 Hz), 7.65 (1H, d, J = 2.0 Hz), 7.49 (1H, dd, J = 9.0, 2.0 Hz), 

7.44 (1H, d, J = 9.0 Hz), 3.99 (3H, s), 1.75 (4H, s), 1.38 (6H, s), 1.35 (6H, s); 
13

C{
1
H} 

NMR δ 167.44, 145.68, 145.93, 141.48, 137.83, 136.00, 131.63, 130.98, 129.87, 128.46, 

127.39, 127.26, 126.70, 125.79, 125.74, 125.38, 124.89, 52.39, 35.29, 35.17, 34.63, 

34.37, 32.11, 32.01; HRMS (ES
+
) calcd. for C26H28O2Na, ([M + Na]

+
) 395.19815, found 

395.19813. 
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O

O

17 

 

3-[4-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-phenyl]-acrylic acid 

methyl ester (17). Pd(dppf)Cl2 (23 mg, 0.028 mmol), compound d (0.20 g, 0.64 mmol), 

K3PO4·2H2O (0.29 g, 1.16 mmol) and 4-(3-bromo-phenyl)-acrylic acid methyl ester (0.14 

g, 0.58 mmol) were placed in a thick walled glass tube fitted with a Young‟s tap along 

with degassed DMF (10 mL) and H2O (2 mL) in a dry, N2 filled, glovebox. The mixture 

was heated at 80 
o
C until GCMS analysis showed the reaction to be complete (2 d). 

Dilute HCl (aq.) (2 mL) was added and the mixture was extracted with Et2O (3 x 10 mL). 

The organic phase was washed with dilute HCl(aq.) (3 x 10 mL), dried over MgSO4 and 

concentrated in vacuo. The mixture was filtered through a silica plug with hexane and 

then 10% DCM/hexane and the solvent was removed in vacuo. Recrystallisation from hot 

EtOH gave the product as a fluffy, white powder (0.17 g, 80%); mp 152-153; IR (KBr 

disc, cm
-1

) 2965, 2922, 2856, 1714 (C=O), 1634, 1491, 1314, 1169; UV-vis (CHCl3) λmax 

307 nm (ε) 29600  L mol
-1 

cm
-1

; λem (CHCl3) 400 nm; m/z (EI-MS) 362 (20%, M
+
), 347 

(100%, M
+
 - Me); 

1
H NMR (499.80 MHz, CDCl3) δ 7.74 (1H, d, J = 16.0 Hz), 7.57 (2H, 

d, J = 9.0 Hz), 7.37 (2H, d, J = 9.0 Hz), 7.19 (1H, s), 7.16 (1H, s), 6.47 (1H, d, J = 16.0 

Hz), 3.83 (3H, s), 2.26 (3H, s), 1.71 (4H, s), 1.33 (6H, s), 1.29 (6H, s); 
13

C{
1
H} NMR 

125.67 MHz, CDCl3) δ 167.71, 142.83, 144.60, 144.56, 142.77, 138.40, 132.78, 132.29, 

130.07, 128.63, 127.99, 127.95, 117.55, 51.89, 35.27, 35.26, 34.16, 34.13, 32.04, 32.01, 

20.36; HRMS (ES
+
) calcd. for C25H31O2 ([M + H]

+
) 363.23186, found 363.23189.  

 

O

O

18 

 

3-[3-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-phenyl]-acrylic acid 

methyl ester (18). Pd(dppf)Cl2 (23 mg, 0.028 mmol), compound d (0.20 g, 0.64 mmol), 
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K3PO4·2H2O (0.29 g, 1.16 mmol) and 3-(3-bromo-phenyl)-acrylic acid methyl ester (0.14 

g, 0.54 mmol) were placed in a thick walled glass tube fitted with a Young‟s tap along 

with degassed DMF (10 mL) and H2O (2 mL) in a dry, N2 filled, glovebox. The mixture 

was heated at 80 
o
C until GCMS analysis showed the reaction to be complete (2 d). 

Dilute HCl (aq.) (2 mL) was added and the mixture was extracted with Et2O (3 x 10 mL). 

The organic phase was washed with dilute HCl(aq.) (3 x 10 mL), dried over MgSO4 and 

concentrated in vacuo. The mixture was filtered through a silica plug with hexane and 

then 10% DCM/hexane and the solvent was removed in vacuo. Recrystallisation from hot 

EtOH gave the product as a fluffy, white powder (0.17 g, 83%); mp 121-122; IR (KBr 

disc, cm
-1

) 2953, 2924, 2857m 1714 (C=O), 1639, 145, 1322, 1170; UV-vis (CHCl3) λmax 

267 nm (ε) 25600 L mol
-1 

cm
-1

; λem (CHCl3) 378 nm; m/z (EI-MS) 362 (20%, M
+
), 347 

(100%, M
+
 - Me); 

1
H NMR (399.60 MHz, CDCl3) δ 7.74 (1H, d, J = 16.0 Hz), 7.49, (2H, 

m), 4.40 (2H, ov m), 7.21 (1H, s), 7.16 (1H, s), 6.47 (1H, d, J = 16.0 Hz), 3.82 (3H, s), 

2.24 (3H, s), 1.72 (4H, s), 1.34 (6H, s), 1.29 (6H, s); 
13

C{
1
H} NMR 50.29 MHz, CDCl3) 

δ 167.82, 145.22, 144.69, 143.34, 142.97, 138.09, 134.56, 132.49, 131.69, 129.39, 

128.02, 128.76, 128.19, 126.59, 118.28, 52.04, 35.54, 35.53, 34.36, 34.33, 32.26, 32.23, 

20.47; HRMS (ES
+
) calcd. for C25H30O2Na ([M + Na]

+
) 385.21434, found 385.21492. 

 

 

O

O

19 

 

3’,5',5',8',8'-Tetramethyl-5',6',7',8'-tetrahydro[2,2']binaphthalenyl-6-carboxylic 

acid methyl ester (19). Pd(dppf)Cl2 (23 mg, 0.28 mmol), compound d (0.20 g, 0.64 

mmol), K3PO4·2H2O (0.29 g, 1.16 mmol) and 6-bromo-naphthalene-2-carboxylic acid 

methyl ester  (0.15 g, 0.58 mmol) were placed in a thick walled glass tube fitted with a 

Young‟s tap along with degassed DMF (10 mL) and H2O (2 mL) in a dry, N2 filled, 

glovebox. The mixture was heated at 80 
o
C until GCMS analysis showed the reaction to 

be complete (2 d). Dilute HCl (aq.) (2 mL) was added and the mixture was extracted with 

Et2O (3 x 10 mL). The organic phase was washed with dilute HCl(aq.) (3 x 10 mL), dried 
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over MgSO4 and concentrated in vacuo. The mixture was filtered through a silica plug 

with hexane and then 10% DCM/hexane and the solvent was removed in vacuo. 

Recrystallisation from hot EtOH gave the product as a fluffy, white powder (0.19 g, 

84%); mp 162-163 
o
C;

 
IR (KBr disc, cm

-1
) 2954, 2918, 2853, 1709 (C=O), 1436, 1295, 

1128, 1096; UV-vis (CHCl3) λmax 302 nm (ε) 16200 L mol
-1 

cm
-1

; λem (CHCl3) 369 nm; 

m/z (EI-MS) 386 (20%, M
+
), 372 (100%, M

+
 - Me); 

1
H NMR (499.80 MHz, CDCl3) δ 

8.64 (1H, s), 8.08 (1H, dd, J = 9.0, 2.0 Hz), 7.98 (1H, d, J = 9.0 Hz), 7.89 (1H, d, J = 9.0 

Hz), 7.82 (1H, s), 7.56 (1H, dd, J = 9.0, 2.0 Hz), 7.25 (1H, s), 7.24 (1H, s), 4.00 (3H, s), 

2.29, (3H, s), 1.73 (4H, s), 1.35 (6H, s), 1.31 (6H, s); 
13

C{
1
H} NMR (125.67 MHz, 

CDCl3) δ 167.49, 144.58, 142.59, 142.53, 138.74, 135.60, 132.51, 131.35, 131.00, 

129.01, 128.97, 128.62, 128.36, 128.28, 128.83, 127.32, 125.63, 52.40, 35.30, 35.29, 

34.19, 34.17, 32.18, 32.14, 20.41; HRMS (ES
+
) calcd. for C27H31O2 ([M + H]

+
) 

387.23186, found 387.23155. 

 

General procedure for the hydrolysis of retinoid esters 14 – 19 with LiOH. To a 

large, screw top vial equipped with a stirred bar was added a solution of the retinoid 

methyl ester in 5:1 THF/H2O (6 mL) and LiOH monohydrate (3.0 equiv. w.r.t, retinoid 

ester). The mixture was stirred at room temperature until analysis via tlc showed the 

reaction to be complete (3 days). Et2O (30 mL) was added and the mixture was washed 

with dilute HCl(aq.) (30 mL), and H2O (2 x 30 mL). The organic layer was dried with 

MgSO4, filtered and the solvent was removed in vacuo. Recrystallisation from MeCN 

gave the products as white powders. 

 
CO2H

20 

 

3-[4-(5,5,8,8-Tetramethyl-5,6,7,8-tetrahydro-naphthalen-2-yl)-phenyl]-acrylic acid 

(20). 

The reaction was performed on a 0.18 mmol scale. 
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(43 mg, 72%); mp 275-277 
o
C;

 
IR (KBr disc, cm

-1
) 2953, 2920, 1675, 1626, 1420, 1310, 

1181, 1107; m/z (ES
-
) 333 ([M – H]

-
); 

1
H NMR (400.13 MHz, DMSO-d6) δ 7.56 (5H, ov, 

m), 7.46 (1H, s), 7.31 (2H, ov, s), 6.38 (1H, d, J = 16.0 Hz), 1.64 (4H, s), 1.27 (6H, s), 

1.24 (6H, s); 
13

C{
1
H} NMR (100.67 MHz, DMSO-d6) δ 166.92, 144.00, 143.33, 142.50, 

141.49, 135.63, 131.81, 127.28, 125.89, 123.53, 122.86, 117.47 two aromatic/vinylic 

carbon resonances are overlapped, 33.70, 33.58, 33.02, 32.80, 30.64, 30.54; anal. calcd. 

for C23H26O2: C 82.60, H 7.84; found: C 81.97, H 8.02. 

 
CO2H

21 

 

3-[4-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydro-naphthalen-2-yl)-phenyl]-acrylic acid 

(21). 

The reaction was performed on a 0.28 mmol scale. 

(66 mg, 69%); mp 235-238 
o
C;

 
m/z (ES

-
) 347 ([M – H]

-
); 

1
H NMR (400.13 MHz, DMSO-

d6) δ 7.70 (2H, d, J = 8.0 Hz), 7.60 (1H, d, J = 16.0 Hz), 7.35 (2H, d, J = 8.0 Hz), 7.20 

(1H, s), 7.09 (1H, s), 6.54 (2H, d, J = 16.0 Hz), 2.17 (3H, s), 1.63 (4H, s), 1.25 (6H, s), 

1.22 (6H, s); 
13

C{
1
H} NMR (100.67 MHz, DMSO-d6) δ 168.48, 150.38, 149.63, 144.15, 

142.47, 138.36, 136.57, 134.78, 132.06, 130.02, 128.72, 128.43, 127.66, 35.28 (two 

carbon environments), 34.22, 34.16, 32.21 (two carbon environments), 20.50; anal. calcd. 

for C24H28O2: C 82.72, H 8.10; found: C 82.41, H 8.36. 

 

 

CO2H

22 

 

3-[3-(5,5,8,8-Tetramethyl-5,6,7,8-tetrahydro-naphthalen-2-yl)-phenyl]-acrylic acid 

(22). 

The reaction was performed on a 0.12 mmol scale. 

(24 mg, 62%); mp 207-208 
o
C; m/z (ES

-
) 333 ([M – H]

-
); 

1
H NMR (400.13 MHz, 

DMSO-d6) δ 12.20 (1H, br), 7.73 (1H, s), 7.66 (1H, d J = 16.0 Hz), 7.54 (1H, tr J = 7.5 
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Hz), 7.49 (2H, m), 7.41 (1H, tr, J = 7.5 Hz), 7.33 (2H, ov, s), 6.49 (1H, d J = 16.0 Hz), 

1.66 (4H, s), 1.29 (6H, s), 1.25 (6H, s); 
13

C{
1
H} NMR 100.61 MHz, DMSO-d6) δ 166.30, 

143.52, 142.59, 142.49, 140.07, 135.48, 133.34, 127.76, 126.90, 125.47, 125.03, 124.76, 

123.25, 122.67, 117.94, 33.37, 33.22, 32.66, 32.38, 30.28, 30.20; anal. calcd. for 

C23H26O2: C 82.60, H 7.84; found: C 81.97, H 8.02. 

 

CO2H

23 

 

3-[3-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydro-naphthalen-2-yl)-phenyl]-acrylic acid 

(23). 

The reaction was performed on a 0.21 mmol scale. 

(42 mg, 57%); mp 170-172 
o
C; m/z (ES

-
) 347 ([M – H]

-
); 

1
H NMR (400.13 MHz, 

DMSO-d6) δ 7.58 (3H, ov, m), 7.44 (1H, t, J = 8.0 Hz), 7.33 (1H, d, J = 8.0 Hz), 7.20 

(1H, s), 7.09 (1H, s), 6.56 (1H, d, J = 16.0 Hz), 2.16 (3H, s), 1.65 (4H, s), 1.25 (6H, s), 

1.24 (6H, s); 
13

C{
1
H} NMR (100.67 MHz, DMSO-d6) δ 168.85, 144.23, 142.85, 142.63, 

138.68, 134.96, 132.34, 131.45, 129.40, 128.83, 127.98, 126.79, 125.66, 125.11 two 

aromatic/vinylic carbon resonances are overlapped, 35.38, 35.34, 34.29. 34.25, 32.30 

(two carbon environments), 20.56; anal. calcd. for C24H28O2: C 82.72, H 8.10; found: C 

82.83, H 7.67. 

OH

O

24 

 

5',5',8',8'-Tetramethyl-5',6',7',8'-tetrahydro[2,2']binaphthalenyl-6-carboxylic acid 

(24). 

The reaction was performed on a 0.13 mmol scale. 

(33 mg, 70%); m/z (ES
-
) 357 ([M – H]

-
); mp 280-282 

o
C (lit. 287.5-288.5 

o
C);

 1
H NMR 

(499.76 MHz, DMSO-d6) δ 13.06 (1H, br, s), 8.62 (1H, s), 8.26 (1H, s), 8.18 (1H, d, J = 
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9.0 Hz), 8.08 (1H, d, J = 9.0 Hz), 7.99 (1H, d, J = 9.0 Hz), 7.91 (1H, d, J = 9.0 Hz), 7.74 

(1H, s), 7.56 (1H, d, J = 8.0 Hz), 7.46 (1H, d, J = 8.0 Hz), 1.69 (4H, s), 1.34 (6H, s), 1.29 

(6H, s); 
13

C{
1
H} NMR (126.67 MHz, DMSO-d6) δ 167.50, 145.13, 144.34, 140.14, 

136.78, 135.40, 131.23, 130.30, 129.89, 128.51, 127.87, 127.24, 126.12, 125.56, 125.08, 

124.72, 124.51, 34.74, 34.55, 34.17, 33.91, 31.69, 31.60; anal. calcd. for C25H26O2: C 

83.76, H 7.31; found: C 83.32, H 7.09. 

OH

O

25 

 

3',5',5',8',8'-Tetramethyl-5',6',7',8'-tetrahydro[2,2']binaphthalenyl-6-carboxylic acid 

(25). 

The reaction was performed on a 0.08 mmol scale. 

(22 mg, 75%); mp 260-263 
o
C (lit.

310
 263-265 

o
C);

 
m/z (ES

-
) 371 ([M – H]

-
); 

1
H NMR 

(400 MHz, DMSO-d6) δ 8.64 (1H, s), 8.14 (1H, d, J = 9.0 Hz), 8.04 (1H, d, J = 9.0 Hz), 

7.99 (1H, d, J = 9.0 Hz), 7.92 (1H, s), 7.59 (1H, d, J = 9.0 Hz), 7.24 (1H, s), 7.19 (1H, s), 

2.20 (3H, s), 1.63 (4H, s), 1.27 (6H, s), 1.24 (6H, s); 
13

C{
1
H} NMR (125.67 MHz, 

DMSO-d6) δ 167.56, 143.80, 142.06, 141.61, 138.19, 134.95, 131.87, 130.92, 128.95, 

128.60, 128.29, 127.89, 127.57, 127.30, 125.46, two aromatic peaks are believed to be 

overlapped, 34.71, 34.70, 33.68, 33.62, 31.65 two carbon resonances overlapped, 19.97; 

anal. calcd. for C26H28O2: C 83.83, H 7.58; found: C 83.39, H, 7.55.  
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Mild and selective formation of vinylboronate esters via the 

Rh-catalysed dehydrogenative borylation of alkenes 

 

4.1 Introduction 

 

Vinyl boronate esters (VBEs)
311

 are useful intermediates in organic chemistry, having 

been employed as precursors to aldehydes and vinyl halides, and can undergo transition 

metal-catalysed additions to a range of electrophiles. VBEs can be synthesised by a 

variety of methods including: (a) lithiation of vinyl halides and subsequent trapping with 

trialkylborates,
312

 (b) palladium-catalysed borylation of vinyl halides,
313

 (c) 

transmetallation of vinyl metal reagents,
314

 (d) hydrozirconation of 1-borylalkynes,
315

 (e) 

cross-metathesis of terminal alkenes with pinacolvinylboronate,
316

 (f) hydrogenation of 1-

borylalkynes,
317

 (g) transfer of a boryl group between two alkenes,
318

 (h) hydroboration 

of alkynes,
319

 and (i) transition metal-catalysed diboration of alkynes with diboron 

reagents.
320

 However, the majority of these methods involve the preactivation of the vinyl 

group (a-f) or are unsuitable for the synthesis of β,β-disubstituted vinylboronates (h-i). 

Thus, the dehydrogenative borylation of alkenes
321

 (Scheme 4.1), in which a vinyl C-H 

bond is replaced by a C-B bond, is an attractive alternative to these methods as it does not 

require the preactivation of the substrate, and is suitable for the synthesis of VBEs from 

β,β-disubstituted alkenes.  

 

 catalyst

 HB(OR)2 / B2(OR)4

R1

R2

H

R1

R2

B(OR)2 + H2 or HB(OR)2

R3 R3  

Scheme 4.1 Catalytic dehydrogenative borylation of alkenes.  

 

The formation of VBE products has been observed as a side reaction in 

rhodium-catalysed diborations
321a

 and hydroborations of alkenes.
321b,c

 Combinations of 

phosphine free Rh(I)
321d-g

 catalysts and boranes have been shown to give 1:1 mixtures of 

VBEs and hydrogenation products while Ru catalysts
321g,n,o

 (not phosphine free) give 
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mixtures of VBEs and products resulting from hydroboration and hydrogenation. 

Significant amounts of VBE products were observed in the Rh(PPh3)3Cl-catalysed 

reactions of 1,1-disubstituted alkenes and catecholborane.
321b,c 

In the majority of cases it 

has been demonstrated, or is believed, that the reaction occurs through 1,2-insertion of 

the alkene substrate, followed by β-hydride elimination to give the VBE product.
321a-t

 

Alternatively, VBE formation can occur by the direct oxidative addition of a vinylic C-H 

bond, followed by C-B reductive elimination.
321u,v

 For the majority of dehydrogenative 

borylation reactions, the concomitant hydrogenation and/or hydroboration of the substrate 

leads to the formation of unwanted by-products and remains a major obstacle to the 

realisation of effective dehydrogenative borylations of unactivated alkenes. In 2003, it 

was reported that trans-[Rh(PPh3)2(CO)Cl] (1) catalyses the dehydrogenative borylation 

of a range of vinylarenes,
321k,l

 to give E-VBEs  with high levels of chemo-, and 

stereoselectivity and a dehydrogenative borylation reaction catalysed by 1 has recently 

been utilised as a key step in the stereoselective synthesis of TTNPB retinoids.
322 

However, dehydrogenative borylations involving 1 require temperatures of 80 
o
C and 

prolonged reaction times in order to give acceptable conversions. Also, the nature of the 

catalytic cycle and active species were not determined for reactions involving 1. Thus, in 

order to realize an efficient synthesis of VBEs from unactivated alkenes, there is a need 

for catalysts which are stable and display high activities under mild conditions. In 

addition, elucidation of the catalytic cycle would give information on the factors 

determining the activity of the catalysts and allow for the future development of more 

efficient catalysts for this reaction. 

 

 4.2 Results and discussion 

 

Although reactions of rhodium(I) phosphine complexes with boranes and diboron 

reagents have been studied extensively,
323

 the Rh-boryl complex postulated to be the 

active catalyst in reactions involving 1 has not been identified. Whereas trans-

[Ir(PPh3)2(CO)Cl] oxidatively adds HBcat (cat = 1,2-O2C6H4),
324

 no reaction was 

observed between the rhodium analogue 1 and either B2pin2 or B2cat2.
323d 
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In light of the acceleration, in the presence of basic additives, of the transmetallation of 

diboron, and organoboron reagents to transition metal centers
325,326,327,328,329

 the 

borylation of 2-phenylpropene with B2pin2 catalysed by 1 in the presence of oxygen 

containing bases (1.1 equiv w.r.t, Rh) was investigated (Table 4.1). Reactions were 

performed in 3:1 C6D6/CD3CN, a solvent combination which was previously shown to be 

especially effective for 1-catalysed dehydrogenative borylations.
321k,l 

 

Table 4.1 Dehydrogenative borylations of 2-phenylpropene with B2pin2 in the presence 

of bases 

Ph Ph
B

O

O

1 equiv B2pin2

5 mol % trans-[Rh(PPh3)2(CO)Cl] (1)

5.5 mol % base

3:1 C6D6/CD3CN, 18 h, N2

H

 

Entry base temp 
o
C conversion %

a 

1 none 20 5 

2 none 45 43 

3 KO(t)Bu 45 65 

4 KOAc 45 43 

5 KOH 45 77 

6 KOH 20 28 

Reactions were analysed after 18 h by in situ 
1
H NMR and GC-MS. 

a
Conversions were determined by 

comparison of the integrals of the resonances of the vinylic protons of 2-phenylpropene and the E-VBE 

product by 
1
H NMR. Product identities and conversions were confirmed by GC-MS analysis. 

 

 

Reactions performed in the presence of KOH and KO(t)Bu showed enhanced activity 

(w.r.t, 1 alone), with KOH found to be the most effective. In addition, the reaction with 1 

and 5.5 mol % KOH gave 28% conversion to the VBE product after 18 h at room 

temperature, whereas the use of 1 without additional base showed very low activity (ca. 1 

turnover). Reasoning that the additive reacts with 1 to form a Rh-OR species in situ, 

although other pathways are possible,
329c,330

 a range of Rh(I) complexes bearing different 

anionic and neutral ligands (Table 4.2) were screened as catalyst precursors for the 
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dehydrogenative borylation of 2-phenylpropene with B2pin2 in a 3:1 mixture of 

C6D6/CD3CN.
321k,l 

The activity of 6, the well known hydroformylation catalyst,
331

 was 

also examined.  

 

Table 4.2 Rh-catalysed dehydrogenative borylations of 2-phenylpropene with B2pin2 

after 18h.  

Rh
OC

Ph3P O

PPh3

O

H Ph3P Rh
PPh3

PPh3

H

CO

Rh
OC

Ph3P O

PPh3

O

Ph

Rh
OC

Ph3P Cl

PPh3

Rh
OC

P Cl

PtBu3

Rh
OC

Ph3P CltBu3

N
N

Mes

Mes1 2 3

4 5 6

Ph
Ph

B
O

O
1 equiv B2pin2

5 mol % Rh-complex 1 - 6

3:1 C6D6/CD3CN, N2

H

 

entry Rh-complex temp 
o
C conversion %

a 

1 1 20 5 

2 1 45 43 

3 1 80 71 

4 2 20 8 

5 2 45 23 

6 2 80 89 

7 3
b 

20 1 

8 3
b
 45 12 

9 3
b
 80 36 

10 4 20 11 

11 4 45 57 

12 4 80 88 

13 5 20 10 

14 5 45 51 

14 5 80 84 

16 6 20 32 
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17 6 45 48 

18 6 80 87 

Reactions were analysed after 18 hours by in situ 
1
H NMR and GC-MS.

  a
Conversions were determined 

by comparison of the integrals of the vinylic protons signals of 2-phenylpropene and the E-VBE 

products by 
1
H NMR. 

b
Conversion determined by comparison of the integrals of 2-phenylpropene, 

B2pin2 and VBE product peaks in the GC (TIC) trace.  

 

All of the Rh(I) complexes examined catalysed the dehydrogenative borylation reaction, 

with VBE products formed with high selectivity. At 80 
o
C, the complexes 1, 2, 4, 5 and 6 

gave similar results, within experimental error. At lower temperatures, the effect of 

exchanging chloride for hydride or oxy-anions was more pronounced, with complexes 4, 

5, and 6 exhibiting increased catalytic activity in comparison to Rh-Cl complexes 1, 2 

and 3, suggesting that the ease of the initial transmetallation (Rh-X + B-B → Rh-B + B-

X) process may be important for high catalytic activity by increasing the rate of catalyst 

initiation.  

 

The activity of 6 was further examined (Table 4.3) for a range of substrates including 

monosubstituted alkenes (Entries 1-4), 1,1-disubstituted alkenes (Entries 5-8) and cyclic 

alkenes (Entries 9-12). Monosubstituted substrates were borylated at 45 
o
C in order to 

reduce the formation of products resulting from further borylation of the VBE products, a 

process which yields saturated or unsaturated bis-boronates or even tris-

boronates,
320a,320k,320l,332

 while the less reactive 1,1-, and 1,2-disubstituted alkenes were 

borylated at 80 
o
C. 
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Table 4.3 Dehydrogenative borylation of alkenes with B2pin2 catalysed by 6 

R2

R1

R2

R1

B
O

O
1 equiv B2pin2, 5 mol % 6

3:1 C6D6/CD3CN

18 h, N2

H

R3 R3
 

Entry substrate temp 

o
C

 

Yield 

% 

Isolated VBE 

product 

HB 

%
a
 

VBE  

%
a
 

VBBE 

%
a
 

1 
Ph  

45 31 Ph
Bpin

7a 10 53 36 

2 p-MeO-C6H4

 

45 28 
Ar

Bpin
7b 

27 60 13 

3 Hex  45 n.d. - 35 11
 

51 

4 p-MeO-C6H4

 
45 n.d. - 6 26 18

 

5 

Ph  
80 85

b 

Ph
Bpin

7c 
0 84 0 

6 
 

80 92
b 

Bpin7d 
trace 73 0 

7 
 

80 73 Bpin7e 
trace >98 0 

8 
Ph

Ph

 
80 89

b 

Ph

Ph

Bpin
7f 

0 84 0 

9 
 

80 n.d. - 0 trace 0 

10 

 

80 n.d. - 0 trace 0 

11  80 n.d. 
Bpin

7g 

trace 30 0 

 Reactions were carried out with 5 mol % 6 and 1 equiv of B2pin2 in 3:1 C6D6/CD3CN at 45 
o
C or 80 

o
C, 

and analysed by in situ 
1
H NMR and GC-MS after 18 hours. 

a
% conversion to each product type at 18 h. 

HB = hydroboration. VBBE = vinyl-bis-boronate ester. For entries 1, 2 and 7, isolated yields are for the 

VBE product after 18 h reaction. 
b
For 5, 6 and 8, isolated yields are for the VBE product after 42 h 

reaction, i.e. when the reaction is complete, rather than after 18 h. n.d. = not determined.  
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Borylations of styrene and 4-vinylanisole (entries 1 and 2) were found to be rapid, with 

full consumption of both the alkene and B2pin2 observed after 18 hours. VBE products 

were formed with moderate selectivities, along with significant amounts of vinyl bis-

boronate ester (VBBE) products, resulting from the further dehydrogenative borylation of 

the VBE products. The borylation of 1-octene led to full consumption of the substrate 

after 18 h giving a complex mixture of hydroboration, VBE and VBBE products (due to 

double bond migration in either, or both, the substrate or products), with VBBEs being 

the major product type. 4-Allylanisole gave a single VBE product along with a mixture of 

isomeric hydroboration and VBBE products. In contrast, reactions of 1,1-disubstituted 

alkenes were more selective, giving VBEs and only trace amounts of hydroboration 

products. This high degree of chemo-, and stereoselectivity is in contrast to Heck 

reactions of 1,1-disubstituted alkenes
333

 such as 2-phenylpropene which typically give 

mixtures of allylic and vinylic products with poor E/Z selectivities. In both cases, 

borylation of 1,1-dialkyl-substituted alkenes (entries 6 and 7) led to the selective 

formation of the exocyclic VBE product, over the endocyclic allylboronate ester. For 

indene, previously found to be extremely unreactive,
321k,l

 30% conversion to the 

synthetically useful 2-borylated product 7g (vida infra) was observed after 18 h. This 

compares to 19% conversion after 148 h using 1 as a catalyst precursor.
321l

 In the 

reactions of cyclohexene and cyclooctene, only trace amounts of VBE products were 

observed after 18 h. The low reactivity of cyclic substrates
321m

 may result from the 

difficulty of achieving planarity between the β-hydride and rhodium moieties leading to 

an unfavourable β-hydride elimination process or the poor binding of cyclohexene and 

cyclooctene to rhodium. 

 

The use of 3:1 toluene/MeCN or C6D6/CD3CN was previously found to be highly 

effective at minimizing side product formation in the dehydrogenative borylation of 4-

vinyl anisole with 1, however, MeCN retards the rate of the reaction.
321k

 In light of the 

high selectivities exhibited in the borylations of 1,1-disubstituted substrates, the 

borylation of 2-phenylpropene with B2pin2 and 5 mol % 6 at 45 
o
C in different solvents 

(Table 4.4) was examined. 
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Table 4.4  Dehydrogenative borylation of 2-phenylpropene in different solvents 

Ph Ph
B

O

O

1 equiv B2pin2, 5 mol % 6

45 oC, N2

H

 

entry solvent  % VBE at 4 h 

1 Hexane 57 

2 Toluene 61 

3 Benzene 57 

4 MTBE 70 

5 THF 15 

6 3:1 benzene/MeCN 22 

Reactions were carried out with 5 mol % 6 and 1 equiv of B2pin2 at 45 
o
C, and analysed periodically by 

1
H NMR and GC-MS. % conversions were determined by comparisons of the integrals of NMR 

resonances corresponding to 2-phenylpropene and the E-VBE product. Product identities and 

conversions were confirmed by comparison with the substrate and VBE peaks in the GC/MS (TIC) 

trace. 

 

Reactions performed in non-coordinating solvents showed increased rate w.r.t, the use of 

3:1 C6D6/CD3CN. MTBE (Me-O-(t)Bu) was found to be the most effective solvent 

followed by hexane, toluene and benzene. In contrast to MBTE, reactions performed in 

the more strongly coordinating ether, THF, showed the lowest activity. 

It has recently shown that MTBE is an excellent solvent for a one-pot, single solvent 

process involving Ir-catalysed arene or heteroarene C-H borylation
334,335

 followed by 

Suzuki-Miyaura cross-coupling. The high activity displayed by 6 in MTBE led us to 

explore a one-pot, single solvent dehydrogenative borylation/Suzuki-Miyaura 

cross-coupling sequence for the direct functionalisation of indene. 2-Arylindenes are 

highly desirable products due to their use as ligands in organometallic chemistry, 

especially in the Zr-catalysed polymerization of propene,
336

 but current methods for their 

synthesis are limited by side reactions related to the high basicity of the arylmetal 

reagents used,
337

 the need for preactivation of the 2-position,
338

 or a lack of selectivity for 

2-functionalisation.
339
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H B
O

O
R

8a R = CO2Me, 78%a

8b R = F, 83%a

a c

a. 1 equiv B2pin2, 5 mol % 6, MTBE, 80 oC, 42 h

b. 1 equiv B2pin2, 1.5 mol % [Ir(OMe)COD]2, 3 mol % dtbpy MTBE, 45 oC, 18 h

c. 0.85 equiv p-I-C6H4-R, 3 mol % Pd(dppf)Cl2
.DCM, 2 equiv. K3PO4

.2H2O, H2O (20% v/v), 80 oC

a Isolated yields; b Conversions by 1H NMR spectroscopy

H B
O

Oa

7g 70%a

H B
O

Ob

34%b

H

H

B
O

O

58%b

 

 

Equation 4.1 Borylation of indene and synthesis of 2-arylindenes via one-pot, single 

solvent C-H borylation/Suzuki-Miyaura cross-coupling. 

 

Ir-catalysed borylation
335

 with 1.5 mol % [Ir(μ-OMe)COD]2 / 3 mol % 4,4‟-di-tert-2,2‟-

bipyridine as catalyst was investigated, and found to give a mixture of products resulting 

from vinylic C-H borylation at the 2-position and aromatic C-H borylation at the 5- and 

6-positions. In contrast, borylation of indene with 5 mol % 6 and B2pin2 in MTBE at 80 

o
C led to full conversion to 7g after 42 h. After addition of Ar-I, Pd(dppf)Cl2·CH2Cl2, 

K3PO4·2H2O and H2O to the completed Rh-catalysed  reactions, heating (80 
o
C) gave the 

2-arylindene products in good yields (Equation 4.1) offering an efficient alternative 

route to these products. 
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4.3 Investigations into the mechanism of the dehydrogenative borylation 

reaction 

 

Borylations of 2-phenylpropene with 1 equivalent of B2pin2 and 20 mol % of 4 or 6 as the 

catalyst precursor were performed in 3:1 C6D6/CD3CN at 20 
o
C and analysed by in situ 

1
H, 

31
P{

1
H} and 

11
B NMR spectroscopy after 6 hours. 

 

 

Figure 4.1 162 MHz 
31

P{
1
H} NMR spectrum of the borylation of 2-phenylpropene with 20 mol % of 6 in 

3:1 C6D6/CD3CN after 6 h at 20 
o
C. 

 

For the use of 6 as the catalyst precursor, in situ 
31

P{
1
H} NMR spectroscopy showed 6 to 

be the main phosphine containing species present (Figure 1), along with a doublet at 37.8 

ppm (JRh-P = 196 Hz) corresponding to the known dimer [Rh(-CO)(PPh3)2]2 9
340,341 

and a 

small, broad peak at 30.5 ppm. 

 

Ph3P Rh
PPh3

PPh3

H

CO

JRh-P = 154 Hz

6

[Rh(PPh3)2(-CO)]2 9
JRh-P = 196 Hz
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Figure 4.2 162 MHz 
31

P{
1
H} NMR spectrum of the borylation of 2-phenylpropene with 20 mol % of 4 in 

3:1 C6D6/CD3CN after 6 h at 20 
o
C. 

 

In contrast, in situ 
31

P{
1
H} NMR spectra

 
of the same reaction with 4 instead of 6 did not 

display the doublet corresponding to 4. Peaks corresponding to 6 and 9 were observed, as 

well as a broad peak at 31.5 ppm (Figure 4.2). Although 6 can be synthesised from 4 in 

the presence of PPh3,
342

 solutions of 4 in C6D6/MeCN showed no formation of 6 after 18 

hours at room temperature, suggesting that 6 is formed from 4 via a process involving 

B2pin2 and 2-phenylpropene. 

 

Reactions of 4 and 6 with stoichiometric amounts of B2pin2 in 3:1 C6D6/CD3CN at 20 
o
C 

resulted in the formation of HCOO-Bpin and HBpin, respectively, as observed by 
11

B 

NMR spectroscopy, suggesting that transmetallation had occurred. It is possible that 

HBpin and HCOO-Bpin are formed via oxidative addition of the B-B bond, followed by 

rapid reductive elimination; however, the lack of reactivity displayed by 1 under the same 

conditions (vide supra) suggests otherwise. It should be noted that no 
11

B NMR signal 

corresponding to any Rh-boryl species was observed in the 
11

B NMR spectra. Marder, 

Norman et al. have reported that they were unable to observe a resonance for the boryl 

group of [Rh(dppe)2(Bcat)] in the 
11

B NMR spectrum, presumably because it is 

extremely broad.
323d

 In situ 
31

P{
1
H} NMR spectra of the reaction of 4 or 6 with B2pin2 

Ph3P Rh
PPh3

PPh3

H

CO

JRh-P = 154 Hz

6

[Rh(PPh3)2(-CO)]2 9
JRh-P = 196 Hz
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did not reveal any resonances which could be attributed to the expected Rh(I) monoboryl 

complex trans-[Rh(PPh3)2(CO)Bpin]. Instead, a new 
31

P signal at 37.8 ppm (JRh-P = 196 

Hz) was observed, corresponding to [Rh(-CO)(PPh3)2]2 9 (Scheme 4.2) and its intensity 

was found to increase with time. 

 

To investigate whether the rhodium boryl complex was consumed via reaction with the 

arene solvent, solutions of 4 and 6 with 10 equivalents of B2pin2 were stirred in benzene 

at room temperature and were then analysed by 
31

P{
1
H} NMR spectroscopy and in situ 

GC-MS. Reactions of 6 were found to contain small amounts of 9 as well as residual 6 as 

the major phosphorus-containing species, while reactions of 4 resulted in its complete 

consumption within 4 hours, with 9 being the major phosphorus-containing species 

observed by 
31

P{
1
H} NMR spectroscopy. Analysis of the reaction mixtures by in situ 

GC-MS showed the formation of substoichiometric amounts of C6H5-Bpin. However, 

performing the reactions in C6D6 did not lead to the formation of C6D5-Bpin, nor did 

analogous reactions in toluene give tolyl-Bpin. Instead C6H5-Bpin was formed in all 

cases, indicating that the source of the C6H5 fragment is not the solvent, but most likely 

the PPh3 ligands which may be undergoing P-C bond cleavage. However, due to the 

small amounts of arylboronate ester products observed, any further mechanistic 

speculation is unwarranted at present. 

As borylation of the solvent was not observed, it is proposed that the rhodium boryl 

species, in the absence of substrate, is consumed by reaction with unreacted 4 or 6 to 

yield additional HCOO-Bpin or HBpin, respectively, and 9 (Scheme 4.2). Such 

bimolecular reductive elimination processes have been previously observed in the 

reaction of trans-[Rh(PPh3)2(CO)(p-C6H4Me)] with 6 to give toluene and 9.
340 

 

Rh
Ph3P

OC PPh3

Bpin

Rh

Ph3P

Ph3P

O
C

O
C

Rh
PPh3

PPh3

 9

4

- HCOOBpin
Rh

Ph3P

OC PPh3

O

O H

B2pin2

- HCOOBpin

4  
 

 

Scheme 4.2 Proposed formation of 9 from 4. 
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As previously noted, 9 and 6 are observed by 
31

P{
1
H} NMR in borylations of 

2-phenylpropene with B2pin2 using 4, 5 and 6 as catalyst precursors. For reactions with 4 

and 5, these catalyst precursors are not observed by in situ 
31

P{
1
H} NMR during the 

reaction. However, for reactions with 6, 6 is observed as the major species. In order to 

assess whether 6 or 9 might be the catalytically active species, a solution of 9 was 

prepared by reacting 4 with 10 equivalents of B2pin2 in C6D6 at room temperature. Full 

consumption of the starting material was observed after 4 hours. Addition of HBpin (10 

equiv) and stirring for 18 h at 20 
o
C

 
generated the rhodium hydride complex 6, along with 

an unidentified product (a broad peak at 30.5 ppm). Addition of 2-phenylpropene (10 

equiv) to a solution of 9 and B2pin2 led to the formation of the VBE product with 50% 

conversion after 18 hours at 20 
o
C. Analysis by in situ 

11
B NMR spectroscopy showed 

that HBpin had been formed, while the 
31

P{
1
H} NMR spectrum of the reaction mixture 

showed the presence of 6, as well as 9.  This suggests that 9 is not an inactive side product 

of catalyst breakdown, but is able to react with B2pin2 and HBpin to give species capable 

of catalysing the dehydrogenative borylation of alkenes.  

 

Rh
Ph3P

Ph3P

O
C

O
C

Rh
PPh3

PPh3

9

10 equiv HBpin

C6D6, 18 h, 20 oC

Ph3P Rh
PPh3

PPh3

H

CO 6

unidentified
products

+

1 equiv B2pin2

10 mol % 9

C6D6, 18 h, 20 oC

B
O

O

50% conversion  

Scheme 4.3 Reactions of 9. 

 

Compound 9 has been reported to undergo bimetallic oxidative addition of H2 in the 

presence of excess PPh3 to give 2 equivalents of HRh(PPh3)3CO 6, to undergo oxidative 

cleavage in the presence of I2
343

 and to mediate the reductive coupling of alkyl halides to 

give trans-[Rh(PPh3)2(CO)X] and the dialkyl coupling products.
344

 In addition, the 

bimetallic oxidative addition of B2cat2 to an isoelectronic bimetallic Ni
I
 complex has 

recently been reported by Mindiola and coworkers (Scheme 4.4).
345
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Scheme 4.4 Bimetallic oxidative addition of B2cat2 to a dimeric Ni
I
 complex. 

 

Analysis of a control experiment (in which the borylation of 2-phenylpropene with B2pin2 

in C6D6 at 20 
o
C was catalysed by 10 mol % 6) by in situ GC-MS and 

31
P{

1
H} NMR 

spectroscopy showed 6 to be the major phosphine containing species present after 18 

hours, with small amounts of 9 observed. Both the conversions and product selectivities 

for the reactions catalysed by 10 mol % 6 and 5 mol % 9 are similar, suggesting that both 

6 and 9 give rise to the same catalytically active species.  

 

Based on the above observations, a catalytic cycle is proposed for the dehydrogenative 

borylation of alkenes catalysed by Rh(PPh3)n(CO)X catalyst precursors (Scheme 4.5).  

 

Transmetallation of trans-[Rh(PPh3)2(CO)X] with B2pin2 would give the Rh(I) boryl 

complex  trans-[Rh(PPh3)2(CO)Bpin]. This is much more efficient when X = OR or 

O(C=O)R than when X = Cl, as is established for other metal centres.
325-329

 The same 

rhodium compound could also be formed from HRh(PPh3)3CO via the initial dissociation 

of PPh3 and subsequent reaction with B2pin2, forming HBpin as the byproduct. Reaction 

of trans-[Rh(PPh3)2(CO)Bpin] with trans-[Rh(PPh3)2(CO)X] or trans-[Rh(PPh3)2(CO)H] 

would give XBpin or HBpin, respectively, along with [Rh(μ-CO)(PPh3)2]2 9. Dissociation 

of PPh3 from trans-[Rh(PPh3)2(CO)Bpin], followed by binding and 1,2 insertion of the 

alkene substrate into the rhodium-boron bond would give a coordinatively unsaturated 

tertiary alkyl-rhodium complex. Subsequent diastereoselective β-hydride elimination
321o

 

and coordination of PPh3 would release the VBE product and regenerate 

[Rh(PPh3)2(CO)H], completing the catalytic cycle. In contrast to Rh(PPh3)3Cl-catalysed 

additions of HB(OR)2/B2(OR)2 to alkenes and alkynes,
321a,346

 the proposed catalytic cycle 

does not involve  oxidative addition of HB(OR)2/B2(OR)2 to Rh(I), due to the strongly 

electron-withdrawing effects of the carbonyl ligand. 
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Scheme
 
4.5 Proposed catalytic cycle for the Rh(PPh3)n(CO)X/H-catalysed dehydrogenative borylation of 

alkenes with B2pin2. 

 

4.4 Conclusions 

 

The use of the commercially available hydroformylation catalyst HRh(PPh3)3CO 6 allows 

for the mild, stereoselective C-H borylation of alkenes to give (E)-VBE products in one 

step and has been utilised in the one-pot synthesis of 2-arylindenes from the parent 

hydrocarbon. This represents the first catalytic dehydrogenative borylation of unactivated 

alkenes which proceeds under mild conditions without the formation of large amounts of 

unwanted hydrogenation and hydroboration products. Combined multinuclear NMR and 

GC-MS studies of stoichiometric and catalytic reactions have identified two viable 
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catalyst resting states. A catalytic cycle is proposed, in which the active rhodium-boryl 

complex is formed via transmetallation of rhodium hydride or carboxylate with the 

diboron reagent rather than oxidative addition of the B-B bond and subsequent reductive 

elimination of B-X. Further applications of this reaction are under investigation.  

 

4.5 Experimental 

 

All reactions were carried out under a dry nitrogen atmosphere using standard Schlenk 

techniques or in an Innovative Technology Inc. System 1 double-length glove box. 

Glassware was oven dried before transfer into the glove box. Hexane was dried over 

sodium / benzophenone and acetonitrile and benzene were dried over CaH2 and both were 

distilled under nitrogen. The solvents H2O and anhydrous MTBE were degassed by 3 

freeze-pump-thaw-cycles. Toluene was dried and deoxygenated by passage through 

columns of activated alumina and BASF-R311 catalyst under Ar pressure using a locally 

modified version of the Innovative Technology Inc. SPS-400 solvent purification system. 

THF was dried by passage through columns of activated alumina under Ar pressure using 

the same system and then degassed by 3 freeze-pump-thaw-cycles. 

Trans-[Rh(PPh3)2(CO)Cl] 1,
347 

trans-[Rh(Pt-Bu3)2(CO)Cl] 2,
348

 

trans-[Rh(PPh3)2(CO)OOCH] 4,
349

 HRh(PPh3)3CO 6,
350

 were synthesised by literature 

procedures. Trans-[Rh(PPh3)(iMes)(CO)Cl]
351

 3 was a gift from Prof Antonio M. 

Echavarren, Fundaciό Privida Institut Català D‟investigaciό Química (ICIQ). B2pin2 was 

supplied as a gift by AllyChem Co. Ltd., Frontier Scientific Inc. and NetChem Inc. 

Hydrochloric acid was obtained from Fisher Scientific and all other compounds were 

obtained from Aldrich Chemical Company, tested for purity by 
1
H NMR and GC-MS, 

degassed and used without further purification. NMR spectra were recorded at ambient 

temperature on Varian Inova 500 (
1
H, 

13
C{

1
H}), Varian C500 (

1
H, 

13
C{

1
H}, 

31
P{

1
H}, 

19
F), Bruker 400 Ultrashield (

1
H, 

13
C{

1
H},

11
B and 

11
B{

1
H}) instruments. Proton and 

carbon spectra were referenced to external SiMe4 via residual protons in the deuterated 

solvents or solvent resonances, respectively. 
11

B NMR spectra were referenced to 

external BF3∙OEt3. Elemental analyses were conducted in the Department of Chemistry at 

Durham University using an Exeter Analytical Inc. CE-440 Elemental Analyser. GC-MS 
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analyses were performed on an Agilent 6890 Plus GC equipped with a 5973N MSD and 

an Anatune Focus robotic liquid handling system / autosampler. A fused silica capillary 

column (10 m or 12 m, cross-linked 5% phenylmethylsilicone) was used, and the oven 

temperature was ramped from 50 
o
C to 280 

o
C at a rate of 20 

o
C/min. UHP grade helium 

was used as the carrier gas. The screw-cap autosampler vials used were supplied by 

Thermoquest Inc. and were fitted with Teflon / silicone / Teflon septa and 0.2 mL micro 

inserts.  

 

Unless otherwise specified the vinylboronate ester products were synthesised via the 

following methods. 

 

Method A: synthesis of VBEs via Rh-catalysed dehydrogenative borylation. In dry, 

N2-filled glovebox, a solution of alkene, B2pin2 (1.0 equiv) and HRh(PPh3)3CO 6 (5 mol 

%) in 3:1 C6D6/CD3CN was added to a thick-walled glass tube which was then sealed. 

The mixture was heated at the appropriate temperature and monitored by in situ 
1
H NMR 

and GC-MS. Reactions were performed on a 0.2 mmol scale in 1 mL of solvent or on a 

0.4 mmol scale in 2 mL of solvent. Unless otherwise specified, the products were purified 

in the following manner. The solvent was removed in vacuo and the residue was 

dissolved in 3:2 hexanes/CH2Cl2 and passed through a silica plug. The solvent was 

removed in vacuo to give a crude product that was purified via silica gel chromatography 

(hexanes to 1:1 CH2Cl2/hexanes, gradient elution). 

 

Method B: synthesis of VBEs via Ir-catalysed dehydrogenative borylation. In dry, 

N2-filled glovebox, alkene (0.5 mmol) was added to a premixed solution of 

[Ir(OMe)COD]2 (1.5 mol %, 5.0 mg, 7.5 µmol), dtbpy (3 mol %, 4.0 mg, 1.5 µmol mol) 

and B2pin2 (1.0 equiv 127 mg, 0.5 mmol) in MTBE (1.2 mL). Additional MTBE (1 mL) 

was added, and the solution was transferred to a thick-walled glass tube which was then 

sealed. The mixture was heated at the appropriate temperature and monitored by in situ 

1
H NMR and GC-MS. The solvent was removed in vacuo and the residue was dissolved 

in 3:2 hexanes/CH2Cl2 and passed through a silica plug. The solvent was removed in 
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vacuo to give a crude product that was purified via silica gel chromatography (hexanes to 

1:1 CH2Cl2/hexanes, gradient elution). 

 

Synthesis of 4,4,5,5-tetramethyl-2-styryl-[1,3,2]dioxaborolane
316b, 321g

 (7a) via 

method A (0.2 mmol scale). The reaction with styrene was heated at 45 
o
C and found to 

be complete within 18 h. Chromatographic purification gave a clear oil (15 mg, 31%); 
1
H 

NMR (400.13 MHz, CDCl3)  7.50 (m, 2H), 7.40 (d, J = 16.0 Hz, 1H), 7.27 (m, 3H), 

6.10 (d, J = 16.0 Hz, 1H), 1.24 (s, 12H); 
13

C{
1
H} NMR (100.59 MHz, CDCl3)  149.65, 

137.64, 129.02, 128.71, 127.20, 83.49, 24.97 (the resonance for the carbon attached to the 

boron atom was not observed); 
11

B NMR (128.38 MHz, CDCl3)  30.13 (s, br); m/z (EI-

MS) 230 (M
+
, 80%), 215 ([M – Me]

+
, 40%), 130 ([M – MeC(O)CMe3]

+
, 100%. 

 

Synthesis of 2-[2-(4-methoxy-phenyl)-vinyl]-4,4,5,5-tetramethyl-[1,3,2]dioxaboro- 

lane
321g

 (7b) via method A (0.2 mmol scale). The reaction with 4-vinyl anisole was 

heated at 45 
o
C and found to be complete within 18 h. Chromatographic purification gave 

a clear oil (15 mg, 28%); 
1
H NMR (400.13 MHz, CDCl3)  7.43 (d, J = 8.0 Hz, 2H), 7.36 

(d, J = 16.0 Hz, 1H), 7.86 (d, J = 8.0 Hz, 2H), 6.04 (d, J = 16.0 Hz 1H), 3.82 (s, 3H), 

1.30 (s, 12H); 
13

C{
1
H} NMR (100.59 MHz, CDCl3)  160.43, 149.18, 130.55, 126.59, 

114.10, 83.33, 55.40, 26.95 (the resonance for the carbon attached to the boron atom was 

not observed); 
11

B NMR (128.38 MHz, CDCl3)  30.34 (s, br); m/z (EI-MS) 260 (M
+
, 

100%), 245 ([M – Me]
+
, 15%), 160 ([M - MeC(O)CMe3]

+
, 70%. 

 

Synthesis of 4,4,5,5-tetramethyl-2-(2-phenyl-propenyl)-[1,3,2]dioxaborolane
321l

 (7c) 

via method A (0.2 mmol scale). The reaction with 2-phenyl propene was heated at 80 
o
C 

and found to be complete within 42 h. Chromatographic purification gave a clear oil (42 

mg, 85 %); 
1
H NMR (400.13 MHz, CDCl3)  7.49 (m, 2H), 7.28 (m, 3H), 5.76 (s, 1H), 

2.41 (s, 3H), 1.32 (s, 12H); 
13

C{
1
H} NMR (100.59 MHz, CDCl3)  157.93, 143.93, 

128.28, 128.06, 125.95, 83.08, 25.04, 20.24 (the resonance for the carbon attached to the 

boron atom was not observed); 
11

B NMR (128.38 MHz, CDCl3)  30.15 (s, br); m/z (EI-

MS) 244 (M
+
, 90%), 229 ([M – Me]

+
, 25%), 144 ([M - MeC(O)CMe3]

+
, 100%, HRMS 

for C15H21BO2 calcd: 244.1749, found: 244.1752. 
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Synthesis of 2-(2,2-diphenyl-vinyl)-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane
321l, 352

 

(7d) via method A (0.2 mmol scale). The reaction with 2,2-diphenylethene was heated at 

80 
o
C and found to be complete within 42 h. Chromatographic purification gave a clear 

oil (55 mg, 89%); 
1
H NMR (400.13 MHz, CDCl3)  7.33 (m, 4H), 7.28 (m, 6H), 6.00 (s, 

1H), 1.16 (s, 12H); 
13

C{
1
H} NMR (100.59 MHz, CDCl3)  159.91, 143.22, 141.98, 

129.97, 128.16, 128.122, 127.74, 127.67, 83.28, 24.75 (the resonance for the carbon 

attached to the boron atom was not observed); 
11

B NMR (128.38 MHz, CDCl3)  30.20 

(s, br); m/z (EI-MS) 306 (M
+
, 50 %), 291 ([M – Me]

+
, 10%), 190 ([Ph2CCHB]

+
, 100%. 

 

Synthesis of 2-cyclohexylidenemethyl-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane
316b, 

321l
 (7e) via method A (0.2 mmol scale). The reaction with methylene cyclohexane was 

performed at 80 
o
C and was found to be complete within 42 h. Chromatographic 

purification gave a clear oil (41 mg, 92%); 
1
H NMR (400.13 MHz, CDCl3)  5.00 (s, 

1H), 2.50 (m, 2H) 2.18 (m, 2H) 1.57 (m, 6H), 1.24 (s, 12H); 
13

C{
1
H} NMR (100.59 

MHz, CDCl3)  167.03, 82.65, 40.23, 33.34, 28.83, 28.59, 26.57, 24.96 (the resonance 

for the carbon attached to the boron atom was not observed); 
11

B NMR (128.38 MHz, 

CDCl3)  29.79 (s, br); m/z (EI-MS) 222 (M
+
, 10 %), 207 ([M - Me]

+
, 15%), 165 (][M - 

OCMe2]
+
) (100%), HRMS for C13H23

10
BO2 calcd: 222.1906, found: 222.1899. 

 

Synthesis of 2-cyclopentylidenemethyl-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane
316g, 

321l
 (7f) via method A (0.2 mmol scale). The reaction with methylene cyclopentane was 

performed at 80 
o
C and was found to be complete within 42 h. Chromatographic 

purification gave a clear oil (30 mg, 73%) containing trace amounts of three isomeric 

products (7f2-4) and the hydroboration product (7f5), as determined by GC-MS; 
1
H 

NMR (400 MHz, CDCl3) δ 5.27 (t, J = 4.0 Hz, 1H), 2.52 (t, J = 7.0 Hz, 2H), 2.36 (t, J = 

7.0 Hz, 2H), 1.73 – 1.59 (m, 4H), 1.25 (s, 12H);  13
C{

1
H} NMR (100.59 MHz, CDCl3)  

172.09, 82.68, 37.17, 33.43, 26.97, 26.03, 25.05 (the resonance for the carbon attached to 

the boron atom was not observed); 
11

B NMR (128.38 MHz, CDCl3)  29.74 (s, br); m/z 

(EI-MS) 208 (M
+
, 10 %), 193 ([M - Me]

+
, 15%), 151 (][M - OCMe2]

+
) (100%). 
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Synthesis of 2-(1H-inden-2-yl)-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane 
3201l, 337

 (7g) 

via a modification of method A (0.4 mmol scale). The reaction with indene was 

performed in MTBE (2 mL) at 80 
o
C and was found to be complete within 42 h. 

Chromatographic purification gave an off-white solid (67 mg, 70%); mp 67–69 
o
C (lit

28
 

73-74 
o
C); 

1
H NMR (400.13 MHz, CDCl3)  7.85 (d, J = 7.5 Hz, 1H), 7.47 (d, J = 7.5 Hz, 

1H), 7.27 (m overlapped, 2H), 7.21 (t, J = 7.5 Hz, 1H), 3.47 (s, 2H), 1.36 (s, 12H); 

13
C{

1
H} NMR (100.59 MHz, CDCl3)  149.14, 146.93, 143.95, 126.32, 124.40, 123.54, 

122.87, 83.64, 40.75, 25.05 (the resonance for the carbon attached to the boron atom was 

not observed); 
11

B NMR (128.38 MHz, CDCl3)  29.47 (s, br); m/z (EI-MS) 242 (M
+
, 80 

%), 227 ([M – Me]
+
, 20%), 142 ([indenyl-B-O]

+
, 100%). 

 

Synthesis of 2-(4-fluoro-phenyl)-1H-indene
353

 (8a) (0.4 mmol scale). The synthesis of 

7g was performed as above. Once the consumption of the starting materials had been 

confirmed by GC-MS analysis, the reaction vessel was transferred to a dry, N2 filled 

glovebox and opened. 4-Fluoro-1-iodobenzene (75 mg, 0.34 mmol, 0.85 equiv w.r.t, 7g), 

Pd(dppf)Cl2
.
CH2Cl2 (10 mg, 0.012 mmol), K3PO4∙2H2O (198 mg, 0.8 mmol) and 

degassed H2O (0.5 mL) were added, the vessel was sealed and heated at 80 
o
C

 
until 

analysis by in situ GC-MS showed the reaction to be complete (3 h). The reaction 

mixture was diluted in CH2Cl2 (20 mL) and washed with H2O (3 x 20 mL), the organic 

layer was dried (MgSO4), filtered and the solvent removed in vacuo to give a crude 

product that was purified by silica gel chromatography (hexanes to 1:1 CH2Cl2/hexanes, 

gradient elution) to give the product as a off-white solid (59 mg, 83% w.r.t, aryl iodide); 

mp 155-156 
o
C; 

1
H NMR (400 MHz, CDCl3) δ 7.64 – 7.56 (m, 2H), 7.47 (d, J = 7.5 Hz, 

1H), 7.40 (d, J = 7.5 Hz, 1H), 7.28 (t, J = 7.5 Hz, 1H), 7.19 (td, J = 7.5, 1.0 Hz, 1H), 7.16 

(s, 1H), 7.11 – 7.03 (m, 2H), 3.77 (s, 2H);
 13

C NMR (101 MHz, CDCl3) δ 163.69, 161.23, 

145.45, 143.12, 132.47, 132.43, 127.39, 127.31, 126.84, 126.43, 126.41, 124.94, 123.80, 

121.11, 115.87, 115.65, 77.48, 77.16, 76.84, 39.30; 
19

F NMR (376 MHz, CDCl3) δ -

114.77 to -114.81 (m); m/z (EI-MS) 210 (M
+
, 100%), 191 ([M - F]

+
, 10%). 

 

Synthesis of 4-(1H-inden-2-yl)-benzoic acid methyl ester (8b) (0.4 mmol scale). The 

synthesis of 7g was performed as above. Once the consumption of the starting materials 
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had been confirmed by GC-MS analysis, the reaction vessel was transferred to a dry, N2 

filled glovebox and opened. 4-Iodomethylbenzoate (89 mg, 0.34 mmol, 0.85 equiv w.r.t, 

7g), Pd(dppf)Cl2
.
CH2Cl2 (10 mg, 0.012 mmol), K3PO4∙2H2O (198 mg, 0.8 mmol) and 

degassed H2O (0.5 mL) were added, the vessel was sealed and heated at 80 
o
C

 
until 

analysis by in situ GC-MS showed the reaction to be complete (3 h). The reaction 

mixture was diluted in CH2Cl2 (20 mL) and washed with H2O (3 x 20 mL), the organic 

layer was dried (MgSO4), filtered and the solvent removed in vacuo to give a crude 

product that was purified by silica gel chromatography (hexanes to 1:1 CH2Cl2/hexanes, 

gradient elution) to give the product as a white solid (66 mg, 78% w.r.t, aryl iodide); mp 

191-192 
o
C; IR (solid) 2357, 2327, 2060, 1952, 1711 (vC=O), 1425, 1275, 1175, 1098; 

1
H 

NMR (400.13 MHz, CDCl3)  8.04 (d, J = 9.0 Hz, 2H), 7.69 (d, J = 9.0 Hz, 2H), 7.50 (d, 

J = 7.5 Hz, 1H), 7.44 (d, J = 7.5 Hz, 1H), 7.36 (s, 1H), 7.30 (t, J = 7.5 Hz, 1H), 7.23 (dt, J 

= 7.5, 1.0 Hz, 1H), 3.93 (s, 3H), 3.82 (s, 2H); 
13

C{
1
H} NMR (100.59 MHz, CDCl3)  

167.00, 145.30, 145.04, 143.52, 140.43, 130.18, 129.19, 128.90, 126.95, 125.61, 125.53, 

123.94, 121.64, 52.22, 39.10; m/z (EI-MS) 250 (M
+
, 100%), 219 ([M

+
 - MeO], 35%); 

HRMS for C17H18O2 calcd: 251.1072, found: 251.1066. 

 

Formation of  [Rh(PPh3)2(μ-CO)]2 9 from trans-[Rh(PPh3)2(CO)OOCH] 4 and 

B2pin2. Trans-[Rh(PPh3)2(CO)OOCH] 4 (40 mg, 0.057 mmol) and B2pin2 (145 mg, 0.57 

mmol) were dissolved in C6D6 (1 mL). A colour change from yellow to dark red was 

observed within 5 minutes. Analysis by 
31

P{
1
H} NMR spectroscopy after four hours 

showed the complete consumption of 4 and the formation of 9 (δ 37.75, dd, JRh-P = 196 

Hz, JRh-Rh-P = 12 Hz) along with a broad doublet (δ 30.5 ppm, JRh-P = 120 Hz). Analysis of 

the reaction at 18 hours showed no additional change in the 
31

P{
1
H} NMR spectrum.
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Figure 4.3 162 MHz 
31

P{
1
H} NMR spectrum of the reaction of 4 and B2pin2 (10 equiv) in C6D6 after 4 h at 

20 
o
C. 

 

Figure 4.4 162 MHz 
31

P{
1
H} NMR spectrum of the reaction of 4 and B2pin2 (10 equiv) in C6D6 after 18 h 

at 20 
o
C. 

 

[Rh(PPh3)2(-CO)]2 9

JRh-P = 196 Hz

[Rh(PPh3)2(-CO)]2 9

JRh-P = 196 Hz
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Figure 4.5 128 MHz 
11

B NMR spectrum of the reaction of 4 and B2pin2 (10 equiv.) in C6D6 after 18 h at 20 

o
C. 

 

Formation of [Rh(PPh3)2(μ-CO)]2 9 from HRh(PPh3)3CO 6 and B2pin2. 

HRh(PPh3)3CO 6 (26 mg, 0.03 mmol) and B2pin2 (73 mg, 0.29 mmol) were dissolved in 

C6D6 (0.5 mL). A slow colour change from yellow to dark orange was observed within 

~1 hour. The mixture was analysed after 18 h at 20 
o
C by 

31
P{

1
H} NMR spectroscopy, 

showing partial consumption of 6 and the formation of 9 (δ 37.75, d, JRh-P = 196 Hz).  

Analysis by 
11

B NMR spectroscopy showed the formation of HBpin (δ 28.1, d, JH-B = 

173 Hz). 

 

HCOO-Bpin

B2pin2
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Figure 4.6 162 MHz 
31

P{
1
H} NMR spectrum of the reaction of 6 and B2pin2 (10 equiv.) in C6D6 after 18 h 

at 20 
o
C. 

 

Figure 4.7 128 MHz 
11

B NMR spectrum of the reaction of 6 and B2pin2 (10 equiv.) in C6D6 after 18 h at 20 

o
C. 

 

Reaction of 9 with pinacolborane (HBpin). Trans-[Rh(PPh3)2(CO)OOCH] 4 (40 mg, 

0.057 mmol) and B2pin2 (145 mg, 0.57 mmol) were dissolved in C6D6 (1 mL), the 

solution was left for 18 h at 20 
o
C, at which time analysis by 

31
P{

1
H} NMR spectroscopy 

showed the complete conversion of 4 into 9. Pinacolborane (82 μL, 0.57 mmol) was 

JRh-P = 154 Hz
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added. After 18 hours at 20 
o
C, the mixture was analysed by 

31
P{

1
H} and 

11
B NMR 

spectroscopy. 

 

Figure 4.8 162 MHz 
31

P{
1
H} NMR spectrum of the reaction of HBpin with 9 and B2pin2 in C6D6 after 18 h 

at 20 
o
C. 

 

 

Figure 4.9 128 MHz 
11

B NMR spectrum of the reaction of HBpin with 9 and B2pin2 in C6D6 after 18 h at 

20 
o
C. 
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Dehydrogenative borylation of 2-phenylpropene in the presence of 5 mol % 9. 

Trans-[Rh(PPh3)2(CO)OOCH] 4 (40 mg, 0.057 mmol) and B2pin2 (145 mg, 0.57 mmol) 

were dissolved in C6D6 (1 mL), the solution was left for 18 h at 20 
o
C, at which time 

analysis by 
31

P{
1
H} NMR spectroscopy showed the complete conversion of 4 into 9. 2-

phenylpropene (60 μL, 0.57 mmol) was added. After 18 hours at 20 
o
C, the mixture was 

analysed by 
31

P{
1
H} and 

11
B NMR spectroscopy and by GC-MS and the reaction was 

found to be 50% complete by GC-MS. 

 

 

Figure 4.10 162 MHz 
31

P{
1
H} NMR spectrum of the reaction of 2-phenylpropene with 9 and B2pin2 in 

C6D6 after 18 h at 20 
o
C. 
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Figure 4.11 128 MHz 
11

B NMR spectrum of the reaction of 2-phenylpropene with 9 and B2pin2 in C6D6 

after 18 h at 20 
o
C. 
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Figure 4.12 GC (TIC) of the reaction of 2-phenylpropene with 9 and B2pin2 in C6D6 after 18 h at 20 
o
C. 
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Figure 4.13 EI-MS of the peak at 7.3 minutes for the reaction of 2-phenylpropene with 9 and B2pin2 in 

C6D6 after 18 h at 20 
o
C. 

 

The reaction was analysed further by 
31

P{
1
H} and 

11
B NMR spectroscopy after the 

borylation reaction was complete, as determined by in situ 
1
H NMR spectroscopy (3 d). 

The broad peak at 30.5 ppm was now the major phosphorus-containing species present in 

solution, suggesting that in the absence of substrate catalyst breakdown occurs. 
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Figure 4.14 162 MHz 
31

P{
1
H} NMR spectrum of the reaction of 2-phenylpropene with 9 and B2pin2 in 

C6D6 after 3 d at 20 
o
C. 

 

Dehydrogenative borylation of 2-phenylpropene in the presence of 10 mol % 6. A 

solution of HRh(PPh3)3CO 6 (26 mg, 0.029 mmol) and B2pin2 (70 mg, 0.29 mmol) and 2-

phenylpropene (30 μL, 0.29 mmol) in C6D6 (0.5 mL) was prepared. After 18 hours at 20 

o
C, the mixture was analysed by 

31
P{

1
H} and 

11
B NMR spectroscopy and by GC-MS and 

the reaction was found to be 65% complete by GC-MS. 

 

Figure 4.15 162 MHz 
31

P{
1
H} NMR spectrum of the reaction of 2-phenylpropene with 6 and B2pin2 in 

C6D6 after 18 h at 20 
o
C. 
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Figure 4.16 128 MHz 
11

B NMR spectrum of the reaction of 2-phenylpropene with 6 and B2pin2 in C6D6 

after 18 h at 20 
o
C. 
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Figure 4.17 GC (TIC) of the reaction of 2-phenylpropene with 6 and B2pin2 in C6D6 after 18 h at 20 
o
C. 
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Figure 4.18 EI-MS of the peak at 7.3 minutes for the reaction of 2-phenylpropene with 6 and B2pin2 in 

C6D6 after 18 h at 20 
o
C. 

 

 Synthesis of trans-[Rh(PPh3)2(CO)O2CPh] 5 and related data. The compound was 

synthesised by the method of Robinson et al.
354

 In a dry, N2 filled glovebox 

HRh(PPh3)3CO (200 mg, 0.21 mmol) and benzoic acid (500 mg, 4.1 mmol) were added 

to a thick walled glass tube fitted with a Young‟s tap. Degassed ethanol (10 mL) was 

added, the vessel was sealed and heated under reflux for 30 mins. The mixture was 

cooled and the precipitate was filtered under N2. The crude solid was recrystallised from 

EtOH/DCM at -20 
o
C and dried in vacuo to give the product as a bright yellow solid; 

yield 107 mg, 62%; 
1
H NMR (400 MHz, C6D6) δ 7.95 (m, 14H), 7.00 (m, 21H); 

31
P{

1
H} 

NMR (162 MHz, C6D6) δ 32.91 (d, JRh-P = 136 Hz); IR (solid) 1958 (CO), 1816 

(asymOCO), 1352 (symOCO); elemental anal. Calcd for C44H35O3P2Rh·CH3OH: C, 

66.84; H, 4.86, found C, 65.71; H, 4.47. 

 

 

Bpin
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Figure 4.19 400 MHz 
1
H NMR spectrum of compound 5 in C6D6. 

 

 

Figure 4.20 162 MHz 
31

P{
1
H} NMR spectrum of compound 5 in C6D6. 

 

Triclinic single crystals (Pī) of compound 5 were grown from a solution in a 1:1 mixture 

of MeOH/DCM at -20 
o
C. Compound 5 was characterised by a single-crystal X-ray 

structure determination.
355
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Figure 4.21 X-ray molecular structure of trans-[Rh(PPh3)2(CO)(O2CPh)]·MeOH (5), showing thermal 

ellipsoids at the 50% probability level and the disorder of the methanol molecule and the PPh3 phenyl ring.  

 

The rhodium atom adopts a square-planar coordination geometry with a slight tetrahedral 

distortion. The benzoate ligand is monodentate, the un-coordinated oxygen atom 

accepting a hydrogen bond from the disordered methanol molecule of crystallization. The 

carboxylate plane is inclined by 68° to the mean coordination plane of Rh and by 19° to 

the adjacent phenyl ring. Bond distances (Å) and angles (°): Rh−P(1) 2.3377(6), Rh−P(2) 

2.3216(6), Rh−O(1) 2.066(1), Rh−C(8) 1.808(2), O(1)-C(7) 1.284(2), O(2)-C(7) 

1.245(2), P(1)-Rh-P(2) 170.26(2), O(1)-Rh-C(8) 176.93(6), Rh-O(1)-C(7) 117.9(1). Bond 

distances are similar to those in trans-[Rh(PPh3)2(CO)(O2CR)] analogues, where R = H 

(compound 4),
344

 Me
356

 and CF3.
357
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Future work 

 

5.1 Future work relating to Chapter 2 

 

Although the synthesis of the TTNPB series of retinoid was successfully completed, 

possibilities for improving the work exist. In particular, the Pd-catalysed borylation 

reactions of aryl iodides with B2pin2 or B2neop2 could be coupled with subsequent 

Suzuki-Miyaura cross-couplings to give the cross coupled products directly from the aryl 

iodides in two-step, one-pot procedures. In addition, work in Chapter 4 has demonstrated 

that Rh-catalysed dehydrogenative borylations of alkenes can be performed in MTBE and 

followed by Suzuki-Miyaura cross-couplings to give the cross-coupled products in a one-

pot procedure. Applying this to the synthesis of the TTNPB retinoids would allow for the 

syntheses to be carried out in two one-pot procedures from the parent arene or aryl 

iodide. 

 

 

5.2 Future work relating to Chapter 3 

 

Similarly, the syntheses of biaryl-based retinoid esters could be performed by one-pot 

borylation/Suzuki-Miyaura cross-coupling sequences, while the tolan-based retinoid 

esters could possibly be synthesised in a one-pot sequence consisting of a Sonogashira 

reaction between aryl iodides and TMSA, in situ desilyation of the protected alkyne 

products and addition of a second aryl halide and subsequent Sonagashira cross-coupling 

to give the retinoid ester products. 

 

5.3 Future work relating to Chapter 4 

 

Chapter 4 details the development of second generation catalysts for the synthesis of 

vinyl boronate esters (VBEs) from unactivated alkenes. In this work it is established that 
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the anionic ligand in the rhodium complex is lost in the catalyst initiation step and that 

catalyst initiation is rapid when the anionic ligand is OR or H. The low activity exhibited 

by trans-[Rh(PPh3)(iMes)(CO)Cl] compared to  trans-[Rh(PPh3)2(CO)Cl] shows that 

catalytic activity can be altered by changing the dative ligand. Thus, to further improve 

catalytic activity a range of HRh(PR3)3(CO) complexes should be screened to assess the 

effects of phosphine structure on catalytic activity. 

 

In addition a catalytic system that gave VBEs as the sole products from styrenes and 

other mono-substituted terminal olefins would be desirable as the current system, though 

highly active and selective for the borylation 1,1-disubstituted alkenes and indene, is 

poorly selective for VBE formation from styrenes. 
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