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Abstract 
Development of Semi-Empirical Exchange-Correlation Functional 

Thomas W. Keal 

Kohn-Sham density functional theory (DFT) is the most widely-used method 
for quantum chemical calculations. For most chemical properties i t offers rel
atively accurate results for a relatively low computational cost. This accuracy 
is governed by the quality of the exchange-correlation functional used. The de
velopment and assessment of new functionals is a vital aspect of DFT research, 
and is the focus of this thesis. 

In Chapter 1, the theory of traditional wavefunction-based quantum chem
istry methods and of DFT is outlined, and the two approaches compared and 
contrasted. Chapter 2 considers the relatively poor performance of conven
tional DFT functionals for NMR shielding constants. A simple generalised 
gradient approximation (GGA) functional, denoted K T l , is developed, which 
improves this performance significantly. A more flexible functional fitted to 
experimental energetic data, denoted KT2, is also presented. In Chapter 3, 
K T l and KT2 are assessed for other magnetic properties, such as chemical 
shifts, magnetisabilities, and indirect spin-spin coupling constants. 

Chapter 4 details the development of a third GGA denoted KT3, which is 
designed to address the shortcomings of KT2 for non-magnetic properties. In 
Chapter 5, the more flexible functional form of KT3 is shown to give results 
competitive with the best GGAs for a wide range of chemical properties and 
for solid state calculations. 

In Chapter 6, we attempt to improve performance for classical chemical 
reaction barriers, for which KT3 is relatively poor. This requires a more flexible 
form in the resulting GGA functional, denoted KT4. A hybrid functional, B97-
3, is also developed with a similar emphasis on reaction barriers. Chapter 7 
presents an extensive chemical assessment for KT4 and B97-3. For the systems 
considered, B97-3 is shown to be the most accurate semi-empirical functional 
developed to date. Concluding remarks are presented in Chapter 8. 
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Chapter 1 

Quantum chemistry 

The field of quantum chemistry applies the principles of quantum mechan
ics to the simulation of chemical systems, which in practice means finding 
approximate solutions to the electronic Schrodinger equation. This chapter 
compares two approaches to that problem, namely wavefunction theory and 
density functional theory. 

1.1 The Schrodinger equation 
In Schrodinger's formulation of quantum mechanics [1], a chemical system 
can be completely described by its wavefunction, ^ . The wavefunction is not 
surprisingly a very complex quantity, depending on all the coordinates of every 
particle in the system. I t also has no direct physical interpretation, although 
its square is a probability density. 

To extract information about the system that can be compared with ex
periment, a mathematical operator must be applied to the wavefunction. For 
example, the total energy of the system can be found by applying the Hamil-
tonian operator (H), which is the sum of the kinetic energy and potential 
energy operators. For a molecular system with A'̂  electrons and M nuclei, in 
the absence of an external perturbation, the Hamiltonian operator (in atomic 
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units) is 

N M y N N M M y y 
- E E ^ + EE;^ + E E | f (1.1) 

i A '^^ i j>i 'V A B>A -"•'45 

where the first two operators describe the kinetic energies of the electrons and 
the nuclei, the third is the Coulomb attraction between the electrons and the 
nuclei, and the last two are the Coulomb electron-electron and nuclear-nuclear 
repulsions. and ZA are the mass and atomic number of nucleus A, and r 
and R represent the distances between the electrons and the nuclei. 

The Schrodinger equation involves the application of the Hamiltonian to 
the many-particle wavefunction. Its time-independent form is 

m = (1.2) 

The Schrodinger equation is an example of an eigenvalue equation, because 
the result of applying the Hamiltonian operator to the wavefunction gives a 
constant E (the eigenvalue, in this case the total energy) multiplied by the 
original wavefunction. The wavefunction is said to be an eigenfunction of 
the Hamiltonian. For any given Hamiltonian there are an infinite number of 
eigenfunctions, each with a corresponding eigenvalue. The eigenfunction with 
the lowest eigenvalue (£^o) is known as the ground state wavefunction, *o, and 
Eo is the ground state energy. 

The problem of solving the Schrodinger equation is the central problem 
of quantum chemistry. By choosing this equation to solve, we have already 
made some approximations. For example, the Schrodinger equation ignores the 
effect of special relativity (a deficiency corrected by the more complex Dirac 
equation [2]), as well as other less relevant physical phenomena. Unfortunately, 
with the exception of very simple chemical systems, more approximations have 
to be made. The first of these is the Born-Oppenheimer approximation [3]. 
This recognises that the nuclei in the system move much more slowly than 
the electrons because they have a much larger mass, and assumes that the 
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electrons can be treated as i f they are moving in a field of fixed nuclei. This 
approximation gives the electronic Schrodinger equation 

•f^elec^elec = •E'elec^elec (1-3) 

which takes the same form as the original Schrodinger equation but with a 
simplified Hamiltonian where the kinetic energy of the nuclei and the nuclear-
nuclear repulsion terms have been removed, giving 

^ i i A '^^ i j>i 'V 

= t + VNe + Ke (1.4) 

The electronic wavefunction again has no physical meaning, though its square 
is a probability density. The solution to the electronic Schrodinger equation 
gives the electronic energy, to which the constant nuclear repulsion energy 
must be added to give the total energy 

^tot = £^e.ec + E E ^ (1-5) 
A B>A ^AB 

The total energy depends parametrically on the nuclear coordinates. By solv
ing the electronic Schrodinger equation at various nuclear coordinates, a po
tential energy surface can be constructed. Al l calculations in this thesis are 
performed under the Born-Oppenheimer approximation, so all the wavefunc-
tions we consider are electronic wavefunctions and from this point on we drop 
the 'elec' subscript for clarity. 

Before the electronic Schrodinger equation can be solved, there remains 
the problem of the mathematical form of the wavefunction. I t is here that the 
two competing approaches, wavefunction theory and density functional theory, 
diverge. 
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1.2 Wavefunction theory 
Until the recent flourishing of density functional theory (DFT) for chemical 
applications, the dominant methods of quantum chemistry were those known 
collectively as wavefunction theory. These are all based ultimately on the 
Hartree-Fock approximation, which we describe below. Many of the concepts 
in this section reappear in density functional theory, but in a different context. 

1.2.1 The variational principle 

In the discussion of the Schrodinger equation above, it was assumed that the 
exact wavefunction was known. But if we only know an approximate wave-
function, ^ , i t will no longer be an eigenfunction of the Hamiltonian and there 
will be no eigenvalues associated with it . Instead, the expectation value of the 
Hamiltonian must be calculated 

= I ^*MdT (1.6) E 

or in Dirac bra-ket notation 

E = {^\H\^) (1.7) 

where ^ is an approximate (or trial) normalised wavefunction. The expectation 
value is an example of a function of a function, or a 'functional'. The link 
between this quantity and the exact ground state energy EQ is provided by the 
variational principle [4], which states that 

E>Eo for any § (1.8) 

Therefore we can be confident that the trial wavefunction that gives the lowest 
expectation value of the energy is the best approximation to the true wave-
function. If the true wavefunction was used as the trial wavefunction, then the 
expectation value would be equal to the exact ground state energy, EQ. 
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1.2.2 The antisymmetry principle 

The variational principle shows how to evaluate the quality of an approximate 
wavefunction, but it does not give any clue to its mathematical form. The 
first clue is provided by electron spin. The wavefunction must depend on the 
coordinates of the electrons, which consist of three spatial coordinates r and 
one spin coordinate s (spin up or spin down). However, there is no reference to 
electron spin in the Hamiltonian of Eq. 1.4, and it is not inherently present in 
the Schrodinger equation at all (electron spin arises naturally only in the Dirac 
equation). However, the spin-dependence of the wavefunction can be deduced 
from the antisymmetry (or Pauli) principle of quantum mechanics [5], which 
states that an electronic wavefunction must be antisymmetric with respect to 
the interchange of the spatial and spin coordinates of any two electrons. That 
is 

* ( x i , . . . , X i , . . . , X j , . . . , X i v ) = - * ( X i , . . . , X j , . . . , X i , . . . , X y v ) (1.9) 

where x denotes the four electron coordinates collectively. Any approximate 

wavefunction must satisfy the antisymmetry principle. 

1.2.3 The orbital approximation 

The orbital approximation assumes that the form of the many-electron wave-
function * can be simplified by writing it in terms of one-electron wavefunc-
tions called orbitals. To incorporate the effect of spin, the one-electron wave-
functions are written as spin orbitals x ( x ) , which are defined as 

X ( x ) = 

•ip{T)a{s) 

or (1.10) 

where •0(r) is a spatial orbital and Q;(S) and P{s) correspond to the up and 
down spin functions. 

The simplest method of devising a many-electron wavefunction of this form 
is to consider what would happen if the electron-electron interactions were re-
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moved from the Hamiltonian (giving a non-interacting system). The Hamilto-

nian can then be written as 

1 AT N M y 

N 
(1.11) 

where h{xi) is the core one-electron Hamiltonian for electron i. The simplest 
exact eigenfunction for a Hamiltonian which is a sum of one-electron operators 
is a product of one-electron spin orbitals, known as a Hartree product [6] 

^ " ( X i , X 2 , . . . , X j v ) = X l ( x i ) X 2 ( x 2 ) • • • Xiv(x;v) ' (1.12) 

where the spin orbitals are eigenfunctions of h. However, the Hartree product 
is not a useful approximation to the wavefunction because i t does not satisfy 
the antisymmetry principle. 

1.2.4 Hartree-Fock theory 

Hartree-Fock theory [7] reconciles the orbital approximation and the antisym
metry principle by writing the wavefunction as a Slater determinant [8 

^ " ^ ( X i , X 2 , . . . , X A r ) = 
1 

Xi (x i ) X 2 ( x i ) 

X l ( X 2 ) X 2 ( X 2 ) 

X I ( X N ) X 2 ( X i v ) 

Xiv(xi) 

Xiv(x2) 

XJv(xAr) 

(1.13) 

In this case the interchange of coordinates of two electrons is equivalent to 
swapping two rows of the determinant, which by definition changes the sign of 
the wavefunction and therefore complies with the antisymmetry principle. 

The expectation value of the Hamiltonian obtained using this wavefunction 
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is known as the Hartree-Fock energy, E^^, and is given by 

= Emz)+^ f : f : [ ( n b - i ) - im)] ( I . H ) 

where 

m ^ ) = / x : ( x i ) / i ( x i ) x i ( x i ) d x i (1.15) 

is a one-electron integral whose sum over the orbitals is the sum of the kinetic 
energy and the electron-nuclear interaction energy (and is the expectation 
value of the Hamiltonian defined in Eq. 1.11). The two-electron term consists 
of Coulomb integrals of the form 

{ii\3j) = [[ X * ( x i ) X i ( x i ) — X * ( x 2 ) X i ( x 2 ) d x i d x 2 (1.16) 
J J ri2 

and exchange integrals 

= 1 1 x I ( x i ) X j ( x i ) ^ x K x 2 ) X i ( x 2 ) d x i d x 2 (1.17) 

The Coulomb integrals correspond to the classical Coulomb interaction be
tween the electrons, whereas the exchange integrals are a purely quantum-
mechanical effect arising from the requirement that the wavefunction must be 
antisymmetric with respect to exchange of two electrons (if we had used a 
Hartree product as the wavefunction, the exchange term would not arise). 

By the variational principle, we minimise with respect to the spin 
orbitals, under the constraint that they remain orthonormal. This results in 
the Hartree-Fock equations 

FXi = EeijXj (1-18) 

Diagonalisation of the Lagrange multipUer matrix gives the more usual 

canonical form 

Fxi = eai (1.19) 

These are eigenvalue equations of the one-electron Fock operator, F, which 
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can be written as 

F = h + J - k (1.20) 

This is the sum of the core one-electron Hamiltonian and the two-electron 
Coulomb and exchange operators, which describe the average field experienced 
by electron i due to the other electrons in the system. The Coulomb operator 
is 

•̂  = E / X K ^ 2 ) — X i ( x 2 ) d X 2 (1.21) 

and the exchange operator (which, unlike the Coulomb operator, can only be 

defined by its eff'ect on an orbital) is 

^ X i ( x i ) -
^ r 1 
E / X i ( x 2 ) — X j ( X 2 ) d X 2 

A J '12 
X,(xi ) (1.22) 

Following the Aufbau principle, the lowest A'' solutions of the Hartree-Fock 
equations are the occupied orbitals, each of which has a corresponding eigen
value (the orbital energy). The Hartree-Fock ground state wavefunction 
consists of a Slater determinant of these occupied orbitals as defined in Eq. 1.13, 
with the Hartree-Fock energy given by Eq. 1.14. In terms of computational 
cost, Hartree-Fock theory formally scales with system size N as N'^. 

1.2.5 Electron correlation 

The use of a Slater determinant as the wavefunction in Hartree-Fock theory 
is an approximation, and so by the variational principle the Hartree-Fock en
ergy is higher than the exact energy by an amount known as the correlation 
energy [9], defined as 

E^^ = Eo- (1.23) 

The correlation energy is traditionally divided into two contributions. Dy
namic correlation is caused by instantaneous electron-electron interactions that 
the average Hartree-Fock treatment cannot model. The true wavefunction ex
hibits a cusp that represents the reduced probability of finding electrons close 
to each other. In Hartree-Fock theory this cusp is not modelled and the elec-
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trons get too close together, raising the energy of the system. 
Non-dynamic or left-right correlation occurs when a single Slater determi

nant is not sufficient to describe the system correctly. An example of this is the 
H 2 molecule under dissociation. The single determinant wavefunction for H 2 
gives equal probability to one electron on each nucleus (i.e. H • • • H) and both 
electrons on a single nucleus (H"'" • • • H~). This is acceptable at equilibrium 
geometries, but fails when the nuclei are far apart as the ionic contribution 
should be zero. 

Methods that include correlation are called post-Hartree-Fock methods and 
work by expressing the wavefunction in terms of more than one Slater determi
nant. The iV occupied orbitals are not the only orbitals that can be obtained 
by solving the Hartree-Fock equations. The Fock operator has an infinite num
ber of eigenfunctions (orbitals). The lowest energy A'̂  solutions correspond to 
the N occupied orbitals from which the wavefunction is formed, whereas the 
solutions with higher energies are called virtual orbitals. 

I t is possible to construct Slater determinants from a combination of occu
pied and virtual orbitals. A determinant where one electron has been promoted 
from an occupied orbital Xi to a virtual orbital Xa is a singly excited determi
nant. Similarly, a doubly excited determinant, ^ " j ' involves the promotion 
of two electrons, and so on. These determinants are known as configuration 
state functions (CSFs). In principle, i t is possible to write the many-electron 
wavefunction of any system exactly as a linear combination of CSFs 

= c o ^ f + Y: * i + E ^'"^ij + E ^'t^m + ••• (1-24) 
ia •<J i<j<k 

a<b a<b<c 

Configuration interaction (CI) expresses the wavefunction in this forrn, de
termining optimal expansion coefficients using the variational principle. In 
practice, only a limited number of virtual orbitals are available (see Sec
tion 1.4.2) and the number of possible CSFs is finite (but usually still very 
large). I f all available CSFs are used to construct the wavefunction then the 
method is called ful l CI. Full CI is only feasible for very small systems, and 
so truncated CI methods which use only a subset of the CSFs are used as an 
alternative. Singly-excited determinants are denoted S, doubly-excited deter-
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minants D, triply-excited determinants T, and so on. For example, the CISD 
method uses only singly- and doubly-excited determinants. 

Truncated CI methods are problematic because they are not size-consistent, 
which means that the energy of a molecule at infinite dissociation will not be 
equal to the sum of the constituent fragments of the molecule. The quadratic 
CI (QCI) [10] and coupled cluster (CC) [11] methods are size-consistent al
ternatives. QCI forces size-consistency by introducing new terms which are 
quadratic in the configuration coeflUcients, whereas coupled cluster methods 
achieve the same result by expressing the wavefunction in terms of an expo
nential excitation operator. They are also named according to their truncation 
level, with examples including QCISD and CCSD. Higher level excitations are 
increasingly complex and are often calculated by perturbation methods, giving, 
for example, CCSD(T) (where the triple excitations are treated by perturba
tion theory). Brueckner theory [12] is a similar variant, and again comes in 
forms such as BD and BD(T). 

The methods above use fixed spin orbitals derived from the solution of the 
Hartree-Fock equations. The multiconfiguration self-consistent field (MCSCF) 
method goes one step further by optimising the form of the spin orbitals at the 
same time as optimising the parameters in Eq. 1.24. This procedure increases 
the accuracy when only a limited number of CSFs are used. A popular variant 
is the complete active-space self-consistent field method (CASSCF) [13]. It is 
also possible to do configuration interaction using an MCSCF wavefunction, a 
method known as multireference configuration interaction (MRCI) [14 . 

In general, these methods have a very high computational cost. Full CI 
grows exponentially with system size and so it is only feasible for extremely 
small systems. Truncated methods are less costly but still very expensive 
compared to Hartree-Fock. For example, methods such as CCSD and BD 
scale with system size as A'̂ ,̂ whereas the higher level CCSD(T) scales as A'̂ '', 
and the still more accurate CCSDT scales as N^. 

An alternative approach is to apply many-body perturbation theory to 
the Hartree-Fock Hamiltonian, which is known as M0ller-Plesset perturbation 
theory [15]. The Hartree-Fock Hamiltonian, H^^, is defined as the sum of the 
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one-electron Fock operators 

H''^ = Y.F{x,) (1.25) 
i 

That is, the two electron terms of the form l / r ^ j in the true Hamiltonian 
have been replaced by the Coulomb and exchange terms in the Fock operator. 
This can be thought of as the exact Hamiltonian of a fictional non-interacting 
system. The Hartree-Fock ground state wavefunction is not an eigenfunction 
of the true Hamiltonian (as it is an approximation to the exact wavefunction) 
but i t is an eigenfunction of the Hartree-Fock Hamiltonian, so 

^ H F ^ H F ^ ^O^KF (1 26) 

where the eigenvalue of this equation (£'°) is the sum of the orbital energies 

iV 

i 

= ( * H F | ^ H F j ^ H F ^ (127) 

Note this is not the same as the Hartree-Fock energy E^^, which is the ex
pectation value of the true Hamiltonian. The difference between the true 
Hamiltonian and the Hartree-Fock Hamiltonian can be considered to be a per
turbation, H^: 

= H - ^ F { ^ i ) (1.28) 
i 

If the Hamiltonian is perturbed, the wavefunction and energy will also be 

perturbed, giving expansions of the form 

• = ^ H F ^ ^^1 ^ ;^2^2 ^ (129) 

E = E° + XE^ + X^E^ + ... (1.30) 

where A is an ordering parameter. By substituting these expansions into the 
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Schrodinger equation and collecting terms of the same order, the first order 
correction to the energy can be written as 

= ( ^ ^ ^ ' ' l ^ ^ l ^ " ^ ) (1.31) 

The Hartree-Fock energy is 

= E'^ + E^ (1.32) 

Therefore the Hartree-Fock energy already includes the first perturbation cor
rection to the 'unperturbed energy' E°. The first correction to the Hartree-
Fock energy therefore occurs at the second-order perturbation correction, E'^ 

^ _ 1 Mfcj) - (gjNP 

MP2 theory involves the calculation of this correction, as well as similar correc
tions to the wavefunction. I t formally scales as A'̂ .̂ Higher-order corrections 
can be calculated, giving MP3, MP4, etc., which scale as A'̂ ,̂ A^'', and so 
on. MP theory is size-consistent at all levels, but i t is not variational, so the 
corrections can result in energies below the exact energy. 

1.3 D e n s i t y funct iona l t h e o r y 

Density functional theory (DFT) presents a radically different approach to han
dling the electronic Schrddinger equation. Instead of calculating the electronic 
energy by determining an approximate wavefunction, the energy is written in 
terms of the electron density, p( r i ) , defined as 

p{ri)=N | . . . | | * ( x i , X 2 . . . X A r ) | 2 d s i d x 2 . . . d x A r (1.34) 
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The electron density has only 3 dimensions, those of space, and is therefore far 
more easily visualised than the wavefunction. The electron density integrates 
to the total number of electrons, and has cusps at the locations of the nuclei, the 
slopes of which are related to their charge. As observed by Bright-Wilson [16], 
the density therefore appears to contain all the information required to write 
the Hamiltonian of Eq. 1.4 and hence the electronic wavefunction. The task 
remains to write the electronic energy in terms of the density. 

1.3.1 Early models 

The earliest density functional theories were written in 1927 by Thomas [17 
and Fermi [18]. They formulated the kinetic energy of an atom as a functional 
of the electron density based on the uniform electron gas (UEG) approxima
tion. The UEG is an imaginary infinite system in which the electron density 
has a constant value everywhere in space, with a similarly uniform positive 
charge background to make the system neutral. Although this system is unre
alistic as an approximation to the highly inhomogeneous densities of atoms and 
molecules, i t does provide an analytical expression for the kinetic energy. The 
Thomas-Fermi (TF) theory treats the nuclear-electron and electron-electron 
interactions classically, giving the atomic energy 

E^'lp] = | ; ( 3 . ^ ) ^ / » / . ^ ( r ) d r - z / 4 ^ i d r + l / / ^ * l M £ 2 ) d r , d r . (1.35) 

The first term is the kinetic energy functional, the second the nuclear-electron 
interaction (where Z is the nuclear charge) and the third is the classical 
Coulomb interaction. 

Although crude, this model was the first to describe the energy of an atom 
solely in terms of functionals of the electron density. However, it is not useful 
for chemical calculations because it neglects quantum effects such as exchange 
and correlation and the kinetic energy model gives large errors for real systems. 
I t can also be proved that no molecule is stable relative to its fragments in 
Thomas-Fermi theory [19]. 

Thomas-Fermi theory can be improved by adding a term for the exchange 
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energy, which was derived for the uniform electron gas by Dirac [20 

^ x H = - ^ ( ^ ) ' 7 p ( r ) ^ / M r (1.36) 

This additional term gives the Thomas-Fermi-Dirac (TFD) model. A similar 
term was derived by Slater in the context of wavefunction methods [21]. Slater 
modelled the complicated, non-local exchange contribution to Hartree-Fock 
theory using a similar form to Eq. 1.36, but with the addition of a semi-
empirical parameter a that was generally set to give a more negative prefactor 
than Dirac's. This was known as the XQ or Hartree-Fock-Slater method. 

Although the TFD model is an improvement over the original TF theory, 
it is still not useful for chemical systems due to the large error in the kinetic 
energy (it is difl^icult to deduce how the kinetic energy can be found from 
knowledge only of the electron density at a point). I t is however possible to 
improve upon this model without discarding the exact result from the UEG. 
The Thomas-Fermi kinetic energy expression can be thought of as the first 
term in a Taylor expansion. A second term can then be derived which involves 
the gradient of the density. As the gradient is zero for the UEG, the result 
wil l still be exact in this limit. The gradient-corrected term is known as the 
Weizsacker correction [22], and is of the form 

Incorporating this term gives the Thomas-Fermi-Dirac-Weizsacker (TFDW) 
functional. Although this is an improvement, it still gives relatively poor re
sults, and higher order corrections do not offer much further improvement [23 . 

1.3.2 The Hohenberg-Kohn theorems 

Density functional theory was put on a firm theoretical foundation by the 
theorems of Hohenberg and Kohn in 1964 [24]. The first Hohenberg-Kohn 
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theorem relates to the nuclear-electron interaction potential 

M y 
^^ext(ri) = - E — (1-38) 

which is also known as the external potential. The theorem proves that the 

external potential is uniquely determined, up to a constant, by p(r). 

The proof considers two external potentials, Uext and Wĝ ,̂ which share the 

same ground state density. These correspond to different Hamiltonians U and 

li\ ground state wavefunctions ^ and and ground state energies and 

£̂ 0- If ̂ ' is used as a trial wavefunction for H, then by the variational principle 

0̂ < (̂ '1^1 '̂') = ('^'l^'l^'') + (^'1^ - ^'1^') 

= + 1 p(r)[t;ext(r) - < . t ( r ) ]dr (1.39) 

We can also use ^ as a trial wavefunction for H', giving 

K < E , - j p(r)[^ext(r) - < . t ( r ) ]dr (1.40) 

By adding the inequalities we get the contradiction that EQ + E'Q < E'Q + 
EQ, proving the theorem. The density therefore completely determines the 

Hamiltonian of Eq. 1.4 and hence the ground state wavefunction, and so the 

electronic energy can be written in terms of functionals of the density 

E[p]=T[p] + VuM + Vee[p] (1-41) 

The second Hohenberg-Kohn theorem provides a DFT version of the varia

tional principle 
E[p] > EQ for any p (1.42) 

The energy obtained from the functional of p(r) will be equal to the exact 

ground state energy i f the trial density p(r) is equal to the true ground state 

density. 
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1.3.3 Kohn-Sham D F T 

The Hohenberg-Kohn theorems prove that it is possible to write the electronic 

energy as a functional of the density, but i t does not give any indication what 

the mathematical form of the functional is. The major problem of the Thomas-

Fermi theory was its poor approximation to the kinetic energy, and i t was this 

problem that was addressed by Kohn and Sham in 1965 [25]. 

The Kohn-Sham approach is based on the concept of a fictional non-

interacting system of electrons, for which the exact kinetic energy is given 

by 
1 ^ 

Ts = - ^ E ( X i \ y ' \ X i ) (1-43) 

and the electron density is 

Ps(r)-f:ix.(r) | ' (1.44) 

A non-interacting reference system is set up, with a Hamiltonian of the form 

Hs = -lj:v^ + j:vs{r) (1.45) 

which combines the kinetic energy operator with an effective potential v^, which 

is chosen such that ps is equal to the density p of the fully-interacting system. 

The exact wavefunction of the non-interacting system can be written as a Slater 

determinant consisting of Kohn-Sham orbitals. These orbitals are determined 

by a set of one-electron equations of a form similar to the Hartree-Fock equa

tions 

\ i ( r ) = e i X i ( r ) (1.46) - ^ V ^ + ^s(r) 

In Kohn-Sham DFT, the kinetic energy of the non-interacting system, Tg, is 

used as an approximation to the kinetic energy of the real system, T. Although 

this way of calculating the kinetic energy is still not exact, it is much more 

accurate than the Thomas-Fermi approach. The electronic energy of Eq. 1.41 

is rewritten as 

E[p\ = T,[p] + V^e[p] + J[p] + Exc[p] (1.47) 
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where the electron-electron interaction has been split into the known Coulomb 
part J and the unknown exchange-correlation energy Exc, which includes the 
exchange and correlation energies familiar from Hartree-Fock theory as well as 
the small residual error in the kinetic energy 

Exc[p] = (T[p] - Ts[p]) + (V;e[p] - J[p]) (1.48) 

The form of the energy is therefore given by 

E[P] = - ^ f : ( X i | V ^ | x , ) + / ^ex t ( r i )p ( r i )d r i 

+ ^ / / ^ ^ ^ ^ d r , d r 2 + £;xc[p] (1-49) 
2 J J r i o 

where p(r) is related to the Kohn-Sham orbitals by Eq. 1.44. In the notation 

of Eq. 1.14, this is 

E""^ = E{i\h\i) + ^ E i : ( n | j i ) + E^cip] (1.50) 

As in Hartree-Fock theory, this energy is minimised with respect to the orbitals 

according to the variational principle, giving the Kohn-Sham equations 

- J + t;ext(ri) + / ^ d r 2 + vy,c{Ti)] Xi = £iXi (1-51) 

with an effective potential given by 

^̂ eff ( r i ) = Ve.t{ri) + I ^ d r 2 + vxc{v{) (1.52) 

The potential Vg of the non-interacting system is defined as the v^s of the real 

system. The only unknown term is the exchange-correlation potential, u x C ) 
defined as the functional derivative of Exc with respect to the density: 

vxc{rx) = . , \ (1.53) 
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The Kohn-Sham equations are exact in principle. However, the exact form of 
Exc is not known and so in practice the theory is approximate. 

Kohn-Sham DFT formally scales as A '̂*, although this can be reduced to 

N"^ and even to linear scaling by calculating the Coulomb term in a computa

tionally efficient way. 

1.3.4 Exchange-correlation functionals 

In order to use the Kohn-Sham scheme for practical calculations, the exchange-

correlation (XC) functional must be approximated. Generally, Exc is split into 

exchange and correlation components which are approximated separately 

Exc = Ex + Ec (1.54) 

The usual starting point for making these approximations is the uniform elec

tron gas. 

The local density approximation 

The local density approximation (LDA) is based on the uniform electron gas 

model. The principle of the LDA is that the energy contribution of a point 

can be expressed as a local functional of the density (unlike, for example, the 

Coulomb energy, which depends on the density at every point in space). We 

have already seen its use in the TFD theory for the kinetic and exchange ener

gies. The Kohn-Sham method uses a different approach for the kinetic energy, 

but it retains the Dirac expression for exchange. The LDA approximation to 

Exc is defined as 

Ekc^ip] = I P(r)£xc(p(r))dr (1.55) 

where £xc(p(r)) is the XC energy per electron, which is weighted with the 

probability density p(r) of an electron being at the point in space concerned. 

^xc(p(r)) can be split into exchange [ex) and correlation (ec) components. 

The exchange part is given by the Dirac expression, i.e. 

3 / 3 \ i / 3 
- 1 0 "C)"^ d- '̂̂ ) 
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Correlation in the UEG cannot be expressed in such a simple analytic form. 
However, it was approximated to high accuracy by Ceperley and Alder [26 
using quantum Monte-Carlo simulations. This was then converted into an ana
lytic expression involving spin densities by Vosko, Wilk, and Nusair (VWN) [27 . 
Other representations of the correlation energy exist [28-31], but V W N is the 
most popular. 

LDA exchange can also be expressed in terms of spin densities 

^x = -2'^'l{iy\jpArr^'dr (1.57) 

where the sum is over the a and /3 spin densities. By the Hohenberg-Kohn 
theorem, it is not necessary to write the functional in terms of spin densities 
to get an exact answer, but in practice this approach offers more flexibility in 
the approximate form. When we refer to the LDA in this study, we combine 
the unrestricted LDA exchange form with V W N correlation. 

Although LDA is a very drastic approximation for atoms and molecules, its 
performance in practice is surprisingly good [32]. In general, i t gives reason
able vibrational frequencies and molecular structures (though bond lengths are 
consistently too long). However, LDA considerably overbinds molecules [33]. 

The generalised gradient approximation 

Whilst the performance of LDA is better than expected, i t is still not nearly of 
sufficient accuracy for chemical calculations. Fortunately, gradient corrections 
for LDA exchange can be derived in much the same way as the Weizsacker 
correction for the kinetic energy. The first such correction gives the Gradient 
Expansion Approximation (GEA) exchange functional [24,34,35 

ciGEA iTiLDA 

Unfortunately, the GEA suffers from the severe problem that its potential 
diverges at long range. To counteract this the GEA can be multiplied by some 
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function of the reduced density gradient x^., 

4/3 
Pa 

(1.59) 

The form of x^ is such that a multiplication by any f{x„) wil l still satisfy the 

exact exchange scaling condition 

SX[PA] = A^x[p] (1.60) 

where 

PA(r) = AV(Ar) (1.61) 

Functionals that modify the GEA in this way are known as generalised gradient 
approximations (GGAs). One of the most simple and popular GGA exchange 
forms was proposed by Becke in 1986 [33 

= E =». = . r + / » i : / ^ ( T T ^ ) d r (1.62) 

where the semi-empirical parameters are /3 = —0.0036 and 7 = 0.004. At 
short range, x^ 0, so the functional will behave like the GEA. At long 
range, when x„ diverges, the functional collapses to LDA, so it does not suffer 
from the divergence problems of the GEA. However, behaving as the LDA at 
long-range is still not correct. Therefore Becke proposed another functional [36] 
that provided the correct asymptotic behaviour of the energy density 

where /3 = —0.0042 is determined by fitting to exact exchange energies. How
ever, although i t gives the correct asymptotic behaviour of the energy density, 
the X C potential from this functional is still not correct—it does not decay 
with the correct distance dependence. 

Other GGA exchange functionals exist, usually with a more complex form 
for f { X f f ) [37-50]. However, B86 and BBS are by far the most popular. B86 



C H A P T E R 1. Q U A N T U M CHEMISTRY 21 

exchange is also the basis of Becke's 1997 [43] functional, which is a power-
series expansion 

E-B97 
X 

a 
Y: I ek^'^fixMr (1-64) 

m / 2 \ » 

f M = E c . A Y ^ ] (1-65) 

where 7 = 0.004. The B97 functional form is very flexible and its parameters 
can be fitted in a number of ways. I t forms the basis of the B97-1 [47], B97-
2 [51], HCTH [47] and 1/4 [50] functionals, and the OPTX [49] functional uses 
the i = 2 term in isolation (with a value of 7 = 0.006). 

An alternative approach is to devise a mathematical form that satisfies 
certain exact conditions [37,40]. In these functionals there are no adjustable 
parameters. An example is the Perdew-Burke-Ernzerhof (PBE) functional [40], 
which uses the same exchange form as B86, but determines the parameters to 
conform with as many exact conditions as possible, rather than by a fit to exact 
data. Although this approach would seem to have a greater validity from a 
theoretical viewpoint, Becke has argued that both approaches to approximate 
DFT are equally valid [43] because we are trying to approximate an exact 
form which is known to exist from the Hohenberg-Kohn theorems. However, 
Perdew argues that such fitted functionals are unsatisfactory [52] because they 
may have no validity outside the systems they are fitted to. The functionals 
developed in this study all take the semi-empirical, adjustable approach. 

The correlation functional can be gradient corrected in the same way as the 
exchange functional [53-57]. Popular correlation functionals include Perdew's 
P86 functional [53] and Perdew and Wang's PW91 functional [38]. Probably 
the best known is the LYP functional of Lee, Yang and Parr [55]. LYP goes 
beyond the uniform electron gas model because it is based on the analysis of 
Colle and Salvetti [58] of the correlation of the helium atom. Another popular 
gradient-corrected correlation functional is the PBE correlation functional [40], 
which is a non-empirical correlation functional used in the PBE GGA. Again, 
it is also possible to expand the correlation energy as a power series. An 
example is the B97 functional form, which is an expansion based on the PW91 
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correlation functional. 
Any number of GGAs can be created by mixing and matching exchange and 

correlation functionals. Their names are usually taken from the constituent 
functionals, such as BLYP (B88 exchange and LYP correlation), OLYP (OPTX 
exchange and LYP correlation), BP86, and so on. 

M e t a - G G A s 

Higher order gradient corrections to the exchange-correlation functional are 
possible. Again, they need to be carefully formulated to avoid divergence 
problems. The next derivative after the gradient is the Laplacian, V^p, and a 
number of functionals have been developed to incorporate this [59-61]. How
ever, the Laplacian is a more numerically unstable quantity than the gradient 
and can pose problems from a computational viewpoint [62]. These function
als and others also often incorporate another new quantity, the non-interacting 
kinetic energy density 

r<r = LF:mAr)\' (1-66) 

Functionals that incorporate either of the above quantities are collectively 
termed meta-GGAs. Non-empirical examples include PKZB [52] and TPSS [63], 
whereas V S X C [64] is a semi-empirical meta-GGA. Results obtained have been 
encouraging, although i t is not clear whether they offer any significant improve
ment. 

Hybrid functionals 

A different approach to improving the GGA is to combine exact (i.e. Hartree-
Fock) exchange with density functional correlation. This is known as Hartree-
Fock-Kohn-Sham (HFKS) theory [25]. Although this seems like a natural ap
proach to take, i t does not work with standard DFT correlation functionals [65] 
because they only take into account dynamical correlation. Left-right correla
tion is handled by the local exchange functional, but Hartree-Fock exchange 
does not take into account this type of correlation and so new correlation 
functionals would have to be developed for a successful HFKS theory. 
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A more frui t ful approach is to combine a fraction of exact Hartree-Fock 
exchange with a GGA functional, giving a so-called hybrid functional 

^ G G A ^ ^ G G A ^ ^ G G A ^ ^ ^ H F g^) 

The first hybrid functional was the 'half and half method developed by Becke [66], 
which mixed 50% B88 exchange with 50% exact exchange, a fraction derived 
from the adiabatic connection formula [67]. A large fraction of exact exchange 
is known to give good results for kinetics calculations [68], but for all-round 
performance a smaller fraction is preferable. 

The most popular hybrid functional is the three-parameter B3LYP [69, 
70], which combines variable LDA exchange and correlation parameters, B88 
exchange, LYP correlation and 21% exact exchange 

£;B3LYP ^ (1 _ ^ ) ^ L D A ^ ^ ^ H F ^ ^ ^ B 8 8 ^ ^^LYP ^ _ 5)£;VWN gg) 

Other hybrid functional include the B97 series of functionals, all of which 
combine the B97 expansion with a fraction (19%-21%) of exact exchange [43, 
47,51 . 

Hybrid functionals generally perform better than GGAs for most prop
erties. However, whether the mixing is theoretically justified is not clear. 
The good performance may simply be due to a cancellation of errors, though 
Perdew et al. used a perturbation theory argument to justify the inclusion of 
25% exact exchange in hybrid functionals [71]. This figure has been used in 
the non-empirical PBEO hybrid functional (based on the PBE GGA) [72]. 

I t is also possible to devise hybrid meta-GGA functionals. Examples in
clude the TPSS hybrid [63] and several functionals devised for kinetics calcu
lations [73-75]. DFT can even be mixed with higher-level wavefunction theory 
to give doubly-hybrid functionals [76] although this loses the computational 
cost advantage of DFT. 
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1.4 Solving the equations 
This section deals with the computational aspects of solving the Hartree-Fock 
(HF) or Kohn-Sham (KS) equations. Despite their different theoretical foun
dations, the equations themselves and hence the details of implementation 
are very similar. This is especially true for programs originally written for 
Hartree-Fock theory that were modified for DFT calculations, such as two of 
the packages used in this thesis: CADPAC [77] and D A L T O N [78 . 

1.4.1 Closed shell calculations 

The first question that arises when considering a computational implementa
tion is the form of the spin orbitals. Spin orbitals can be either restricted or 
unrestricted. Restricted spin orbitals are constrained to have the same spatial 
orbital for both the a and ^ spin functions, whereas the spatial orbitals in 
unrestricted spin orbitals are free to vary. Restricted calculations are usually 
performed on closed shell systems (where the number of a. and ^ electrons are 
equal), though restricted open shell calculations are also possible. 

For both types of calculation, the HF/KS equations have to be integrated 
over the spin functions. For closed shell restricted calculations the equations 
remain of the form 

F ^ i = Eii^i (1 .69) 

with spaitial orbitals replacing the spin orbitals and a factor of a half occurring 

in the exchange operator. The corresponding energies are 

Af/2 Ar/2 iV/2 
E^^ = 2$:(^H^) + ^ l : [ 2 ( ^ ^ | j j ) - ( ^ J | i ^ ) ] (1 .70) 

i i j 
N/2 N/2 N/2 

E^^ = 2j:{i\h\i) + Y:^J2^(''\n) + Exc[p] ( 1 . 7 1 ) 
i i j 
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1.4.2 Introducing a basis 

The form of the spatial orbitals now has to be defined. The orbitals are 

expanded in a set of basis functions {<^^} 

i^^ = Y,C,i4>v (1 .72) 
V 

A natural choice of molecular basis is a linear combination of atomic orbitals 
(LCAO), but in practice any set of basis functions can be used. The form of 
the spatial orbitals is then substituted into the HF/KS equations 

K. K 

F ( r i ) Cv^M^l) = £i E Cv^Mrl) (1-73) 
V V 

The equations are then multiplied on the left by another basis function (p^ti^i) 

and integrated to give K equations, forming a matrix equation running from 

i = lto K 

J^Cvi [ </.;(rOF(ri)</'„(ri)dri = Ei^^c^i [ cf>;{r,)Mri)dri (1 .74) 

In the context of Hartree-Fock theory these are known as the Roothaan-Hall 
equations [ 79 ,80 ] , and they apply equally to Kohn-Sham theory. The matrix 
F (the Fock matrix in HF theory, or the Kohn-Sham matrix in KS theory), 
has elements defined as 

F,v = / 0 ; ( r i ) F ( r i ) 0 , ( r i ) d r i (1 .75) 

and the overlap matrix S is 

S,v = j </. ;(ri)0,(ri)dri (1 .76) 

Another matrix C defines the basis expansion coefficients C^j, and e defines 

a diagonal matrix of the orbital energies. The matrix equation can then be 

written as 
F C = SCe (1 .77) 
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where 

= J /^ r + E E ^ A . [ ( / X H ^ A ) - ^ ( / . A M 1 (1.78) 

F^' = ^ r " + E E ^ A . ( / x ^ k A ) + y , f (1.79) 
A c 

where the one electron terms are grouped into the core-Hamiltonian matrix 

l _ o i t Z 
riA 

Mr,)dT, (1.80) 

and the two electron terms are 

{M>^a) = I I 0 ; ( r i ) 0 , ( r i ) ^ 0 I ( r 2 ) ^ . ( r 2 ) d r i d r 2 (1.81) 

with the density matrix 
N/2 

P,. = 2j2c,ic:, (1.82) 
i 

I t is the two electron terms that are responsible for the N'^ scaling of Hartree-

Fock and Kohn-Sham theory. 

There is one extra term in the Kohn-Sham matrix that replaces the Hartree-

Fock exchange term with an exchange-correlation integral 

V^^"" = I c}>;{r,)vy,c{Ti)Mri)dT, (1.83) 

Unlike the other matrix elements which are evaluated analytically, the form 

of Vxc is far too complex for V^'^ to be evaluated in that way. I t is therefore 

evaluated numerically on a grid [81,82]. For a GGA functional, V^^ can 

alternatively be reformulated as 

V^P = / <l>;{v,)^Mri)dv, + / ^ • V[0;(rO<A„(ri)]dri (1.84) 

Eqs. 1.83 and 1.84 are formally equivalent in the limit of an infinite grid. 
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1.4.3 Open shell calculations 

Open shell molecules can be calculated using either a restricted open shell 

method (not considered in this thesis) or by an unrestricted method, in which 

the a and j3 spatial orbitals are allowed to differ. This leads to a pair of 

equations 

F ° V r = ef^f (1 .85) 

F^i^f = efvf (1-86) 
The Fock operators of Hartree-Fock theory are given by 

A'" N^ 
= M r i ) + E [ - ^ ; ( r i ) - ^ ; ( r i ) ] + E ' ^ ' ( ' ' i ) (1-87) 

j j 
N^ AT" 

= M r i ) + E [ ^ / ( r i ) - ^ / ( r i ) ] + E - ^ ; ( r i ) (1 .88) 
j 3 

The Kohn-Sham operators are of a similar form but with the exchange operator 

replaced with a spin-dependent exchange-correlation term, a terms appear in 

the F^ and vice versa, which means that the two HF/KS equations are coupled 

and must be solved together. Matrix equations are formed in the same way as 

for restricted systems, giving 

F " C " - SC"e" (1 .89) 

F'^C^ = SC^e^ (1 .90) 

These are known as the Pople-Nesbet equations [83] in the context of Hartree-

Fock theory. 

Unrestricted Hartree-Fock theory has the drawback that the wavefunction 

is no longer an eigenfunction of the total spin-squared {S"^) operator, a problem 

known as spin contamination. This is not a problem for unrestricted Kohn-

Sham theory because the Kohn-Sham Slater determinant is not intended to 

be an approximation to the true wavefunction [84] , and so it does not have to 

be an eigenfunction of the 5^ operator. 
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1.4.4 The self-consistent field procedure 

The matrix elements involve Coulomb and exchange (HF) / exchange-

correlation (KS) integrals that depend on the spatial orbitals that are the 

solutions to the equations. The equations must therefore be solved using a 

self-consistent field procedure, in which an initial guess is taken at the orbitals 

and the equations iterated to convergence. The description below assumes a 

restricted closed shell formalism, but the principle is the same for unrestricted 

calculations. 

At the start of the calculation, the one-electron matrix elements S'̂ ^ and 
and the two-electron integrals {tJ,X\av) are calculated. These do not 

vary during the course of the calculation, although the overlap matrix S must 
be diagonalised so that the matrix equations can be written in the standard 
eigenvector form. 

The density matrix contains the basis expansion coefficients which do 
vary, and so an initial guess of must be made. The simplest initial guess 
is to set the density matrix equal to zero, so that 

F,. = ( 1 -91 ) 

I t is also possible to guess a form for P^^y using a method such as extended 
Hiickel theory, which will generally give an improved initial guess. 

Once the matrix F is formed, it is diagonalised to obtain the solutions for 
the matrices C and e. C is the matrix of expansion coefficients, whose columns 
define the spatial orbitals (eigenvectors), e is the matrix of orbital energies 
(eigenvalues). 

A new density matrix is then formed from the matrix C , and the process 
repeated until the solutions converge. Convergence is accelerated by algorithms 
such as the direct inversion of the iterative subspace (DIIS) [85] and the level-
shifting method [86 . 

Once the SCF procedure has converged, the final energy and other prop
erties can be calculated. 
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1.4.5 Basis sets 

A good choice of basis set is vital for reliable calculations. In general, the 

accuracy of the orbital description will increase with the size of the basis set. 

An infinite basis set corresponds to the highest accuracy available within a 

theory and is known as the limit of that theory. In practice i t is not possible 

to use an infinite basis set and the choice of the finite basis set is a compromise 

between computational cost and accuracy. 

Most basis sets in use today were originally designed for wavefunction the
ory calculations, but they have proven to be equally useful for DFT (although 
there have also been attempts to develop basis sets optimised specifically for 
DFT [87]). The natural choice for basis functions are Slater-type orbitals 
(STOs) [88], which decay as e~^^, where r is the distance from the nucleus. 
STOs are a good approximation to the exact solutions to the Schrodinger 
equation for one-electron systems. They model the cusp at r = 0 and have the 
correct exponential decay. However, most modern basis sets use Gaussian-type 
orbitals (GTOs) [89], which decay as e""^^. GTOs do not model the cusp cor
rectly and they decay too quickly with r. However, GTOs are much easier to 
integrate than STOs, which is an important consideration because of the large 
number of two-electron integrals that have to be calculated for any sizeable 
molecular system. 

The form of the GTOs can be improved by using contracted Gaussian 
functions (CGFs). These consist of a fixed linear combination of 'primitive' 
Gaussians that can be chosen to more closely resemble STOs, without losing 
much of the computational advantage of GTOs. 

Minimal basis sets, such as ST0-3G, consist of one contracted basis func
tion for each atomic orbital (in the case of ST0-3G, the CGF consists of 
3 primitive Gaussians). These basis sets give only qualitative results and in
creases in computer power have essentially rendered them obsolete for practical 
applications. Larger basis sets use two or more CGFs for each atomic orbital 
and are termed double-zeta (DZ), triple-zeta (TZ), and so on. 

Some basis sets use more CGFs for the important valence orbitals. These 
are known as split-valence basis sets, and include most of the standard basis 
sets used in the GAUSSIAN [90] software package, such as 3-21G, 4-31G and 
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6-31G, all of which use double-zeta quality for the valence orbitals and one 
C G F for the inner orbitals. 6-31IG is of triple-zeta quality for the valence 
orbitals. 

Basis sets are often improved by adding polarisation functions, such as d-
type orbitals to the first row atoms and p-type functions to hydrogen. This 
example, added to 6-31G, would be written as 6-31G(d,p) or 6-31G**. Polar
isation functions are also sometimes denoted by a '?', such as the TZ2P basis 
set [91]. TZ2P is of triple-zeta quality and contains two polarisation functions 
per atom. Polarisation functions allow the wavefunction to more accurately 
describe a distorted charge distribution caused by the molecular environment 
or by an external field. 

Another improvement is achieved with diffuse functions, which are designed 
to decay slowly in order to more accurately model the wavefunction at large 
distances from the nuclei. This is particularly useful for anions with a weakly 
bound electron, atoms with lone-pairs, and excitation energy calculations. For 
basis sets in GAUSSIAN, diffuse orbitals are denoted by a '-|-'. 

Quantum chemistry packages that were originally designed for wavefunc
tion theory (such as GAUSSIAN, CADPAC and DALTON) have carried over the 
use of Gaussian basis functions for DFT. Other packages that have been built 
from scratch for DFT often use different approaches, such as using Slater-type 
orbitals [92,93] or numerical basis sets [94 . 

Selected basis sets used in this thesis are presented in Table 1.1, with an 
indication of their size given by the primitive and contracted basis functions 
used for the carbon atom. 

1.4.6 Property calculations 

Once the HF/KS equations have been solved and the electronic energy deter
mined, it is possible to calculate a wide range of chemical properties. Most 
properties can be thought of as a response to a perturbation of some kind, 
such as a change in geometry, an external electric or magnetic field, a nuclear 
magnetic moment, or radiation. 

Geometry optimisations involve a change in energy on moving a nucleus 
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Table 1.1: Selected basis sets used in this thesis, with the primitive and contracted basis 
functions used for the carbon atom. 

Basis set Primitive Contracted 
6-31G* 10s4pld 3s2pld 
Sadlej 10s6p4p 4s3pld 
TZ2P Ils6p2d 5s4p2d 
6-311+G(2d,p) 12s6p2d 5s4p2d 
6-311+G(2df) 12s6p2dlf 5s4p2dlf 
6-311+G(3df,2p) 12s6p3dlf 5s4p3dlf 
Huzinaga III Ils7p2d 7s6p2d 
Huzinaga IV Ils7p3dlf 8s7p3dlf 

from R to R', in order to find an energy minimum (or a maximum in one 
coordinate in the case of transition state optimisations). This can be written 
as a Taylor expansion in terms of the energy. 

£;(R') = E(R) + 
dE_ 

( R ' - R ) + -
1 d'^E 

R 2 aR2 
(R' - R ) ' + . (1.92) 

R 

where the first derivative is the energy gradient and the second derivative is the 
force constant or Hessian. These derivatives are usually calculated analytically. 
I t is possible to optimise a geometry using only the energy gradients, but it is 
more efficient if the Hessian can be calculated (as it allows better optimisation 
schemes, although often an approximate Hessian is used, such as in C A D P A C ) . 

For transition state optimisations, knowledge of the Hessian is essential. The 
second derivative is also required to calculate harmonic vibrational frequencies. 

The effect of a uniform electric field (F) can also be written as a Taylor 

expansion 

E{¥) = E{0) + 
dE 
dF 

1 d'^E 
F + -2 aF2 

F ' + (1.93) 

The first derivative equals the negative of the permanent dipole moment /XQ, 
the second the negative of the polarisability a, and the third and higher corre
spond to hyperpolarisabilities. Additional terms involving the multipole mo
ments arise when the field is non-uniform. 
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A magnetic field (B) can be treated in the same way 

1 d'^E 
E{B) = E{0) + y B + 2 dB^ 

H - . . . (1 .94) 

In this case the first derivative is the negative of the permanent magnetic 
dipole moment mo (only present in degenerate open-shell states). The second 
derivative is proportional to the magnetisability C-

Finally, nuclear magnetic moments (I) give 

BE 

E{h,l2,...) = E{0) + Y: — 2 ^ dhdlj 
I X . . . (1 .95) 

0 

The first derivatives are the hyperfine coupling constants g and the second 

derivative with respect to two diff'erent nuclear spins is the NMR spin-spin 

coupling constant J. 

Derivatives with respect to a mixture of these perturbations can also be im

portant chemical properties. For example, the shielding constant cr is defined 

as 

The calculation of individual properties will be discussed in further detail as 

they are encountered in this work. 
The ultimate test of all chemical property calculations is comparison with 

experiment. I t is important when comparing with experimental data to con
sider the effect of the experimental conditions. Quantum chemistry calcula
tions correspond to 0 K and i t may be necessary to correct the theoretical val
ues for vibrational and rotational effects to ensure a fair comparison. Gas-phase 
experimental data is always preferable, as this is the most similar environment 
to a single molecule calculation. The effect of solvents has to be considered 
for liquid-phase data, although explicit modelling of solvent molecules is of
ten beyond the scope of quantum treatments. For solid state calculations, an 
entirely new set of techniques is required, as discussed in Chapter 5. 
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1.5 This thesis 
The focus of this thesis is the development of new exchange-correlation func
tionals in density functional theory. The approach used throughout is prag
matic and semi-empirical, but is justified by the fact that any improvement 
could be of real, practical benefit to the extensive DFT user community. The 
functionals we develop will be assessed for their performance for a variety 
of chemical systems and properties, not just those in the fitting data. I f a 
functional—albeit semi-empirical—can provide a good quality description of a 
wide range of chemical properties, then it must contain appropriate physics. 

In Chapter 2 we examine the performance of conventional DFT function
als for NMR shielding constants and investigate the link between the quality 
of the exchange-correlation potential and shielding constant results. We then 
develop two GGA functionals, denoted K T l and KT2, which are specifically 
designed to improve performance for shielding constants. In Chapter 3 the 
K T l and KT2 functionals are assessed for other magnetic properties, includ
ing magnetisabilities, chemical shifts, and spin-spin coupling constants, and 
for a further set of shieldings. In Chapter 4 the KT3 GGA functional is de
veloped following extensive investigations into the form of the exchange and 
correlation functionals and the choice of fitting data. An assessment of KT3 
is presented in Chapter 5. We also apply KT3 to the challenging shielding 
constant calculations of o-dichlorobenzene and selenium-containing molecules. 
Lastly, we assess KT3 for soUd state calculations. In Chapter 6 we attempt 
to develop another GGA, KT4, by including reaction barriers in the fitting 
data and using a more flexible functional form. We also develop a hybrid 
functional, B97-3, using the same methodology (but without the emphasis on 
maintaining performance for shielding constants). In Chapter 7 we present 
an extensive chemical assessment of the KT4 and B97-3 functionals, and then 
apply B97-3 to the problem of the oxirene-ketene potential energy surface and 
the calculation of spin-spin coupling constants. Conclusions are presented in 
Chapter 8. 

Unless otherwise stated, all calculations were performed using the CADPAC 

program. Throughout this work the exchange-correlation functionals we de-
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velop are assessed by the calculation of errors (calculated — reference) over 
the assessment sets listed in Appendix A. Mean errors are denoted d, mean 
absolute errors and mean absolute percentage errors 



Chapter 2 

The K T l and K T 2 functionals 

In this chapter two new semi-empirical GGA exchange-correlation functionals 
are developed with the aim of improving the performance of DFT for shielding 
constant calculations. 

2.1 Shielding constants in D F T 

The calculation of magnetic properties is vital for the interpretation of experi
mental nuclear magnetic resonance (NMR) and electron spin resonance (ESR) 
data. Hartree-Fock calculations often exhibit unacceptably large errors due to 
neglect of correlation effects [95], so DFT would seem to be a natural choice 
of method. 

One problem with using DFT is that if an external magnetic field is present, 
the Hohenberg-Kohn theorems of Section 1.3.2 no longer hold. The exchange-
correlation functional no longer just depends on the electron density but also 
on the current density j (r ) induced by the magnetic field 

= E - Vr^{r)Mv)] (2.1) 

Attempts have been made to develop 'current density functionals' [96,97], but 
i t has been observed [96] that the effect of the current dependence is relatively 
small, and so the vast majority of calculations simply ignore this dependence 

35 
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by assuming 

^xc[p( r ) , j ( r ) ] ; :^^xc[p( r ) ] (2.2) 

A second problem that all quantum chemical calculations face relates to 
the choice of a gauge origin. The external magnetic field is a perturbation 
that leads to extra terms in the electronic Hamiltonian. In addition to the 
magnetic flux density B , there are terms involving the vector potential A , 
which is related to B by 

Ao( r ) = ^ B x ( r - 0 ) (2.3) 

where O is the gauge origin, which should be free to move without affecting 
the results of any calculation (that is, i t should be gauge invariant). However, 
if a finite basis set is used, this will not be the case, and so results will depend 
on the choice of gauge origin. There are several approaches to combat this 
problem, such as gauge including atomic orbitals (GIAO) [98] and localised 
orbitals/localised origins (LORG) [99]. In this chapter we use the LORG 
formalism, which requires the use of an extensive basis set to minimise gauge 
problems. 

The shielding constant is defined as in Eq. 1.96. I t is a second derivative 
property, which requires knowledge of the first order response of the wavefunc-
tion to the magnetic field perturbation. The perturbed wavefunction is written 
in terms of the Kohn-Sham orbitals for a general perturbation A as [100 

i^j = i^^ + xT.c^A + --- (2-4) 
6 

where j and b denote occupied and virtual orbitals and a is the component of 
the applied field. In the case of a magnetic perturbation A = iB° . The linear 
response is determined from a set of coupled perturbed equations 

E(^2)ai,6iCr,. = (2.5) 
bj 

where l^j is the integral matrix of the angular momentum operator P. H2 is 
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the magnetic Hessian matrix [101 

{H2)ai,bj = (ca - ei)Sai,bj + ^ [{aj\bi) - iab\ij)] (2.6) 

where ^ is the fraction of exact exchange in the functional. For hybrid func

tionals the coupled perturbed equations must be solved directly, but for GGA 

functionals (where ^ = 0) they reduce to 

eg = (2.7) 

The shielding tensor expression is given by 

3 

- E c s [ O l f c ' l ^ ) + ( & I ^ W l i ) ] (2-8) 
bj 

which is an orbital reformulation of the original Ramsey expression [102]. The 
first term is the diamagnetic contribution to the shielding constant and the 
second term is the paramagnetic contribution. For GGA functionals the un
coupled expression is 

j 

_ + (2.9) 
bj ~ ^0 

The performance of conventional DFT for shielding constants is disappoint
ing. Following Ref. [103], we calculated isotropic and anisotropic shielding 
constants for a set of 21 molecules (listed as assessment sets A l and A2 in 
Appendix A) with LDA, the GGA HCTH, and the hybrid functional PBEO. 
We have chosen to highlight PBEO because i t has been claimed to give good 
performance for shielding constants [104]. However, in this earlier study it was 
only tested on an unchallenging set of carbon and hydrogen nuclei. 

Our isotropic set contains 32 challenging first- and second-row main-group 
nuclei and the anisotropic set contains a subset of 11 nuclei. For linear and 
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symmetric top molecules the isotropic shielding constants are given by [105 

(7iso = ^ h l + 2ax) (2.10) 

where a\\ is the component along the principal molecular axis and aj_ is the 

component perpendicular to it . The anisotropic shielding constants are 

A C T = (T|| - CTi (2.11) 

For all other symmetries 

cTiso = ^ t ra (2.12) 

Aa = (Taa - ^{(^^0 + (^j-r) (2.13) 

where an are the principal tensor components with CTQQ the largest component. 
The shielding constants were calculated at near-experimental geometries, using 
a modified version of the extensive Huzinaga IV basis set [106,107] as defined 
in Ref. [105]. (The modification is the choice of 3dlf polarisation functions for 
the second row atoms P, S, and CI instead of 4d2f, which affects the results 
for systems containing these atoms marginally.) 

Mean and mean absolute errors relative to experiment are presented in Ta
ble 2.1. The experimental reference values were taken from Ref [103]. Isotropic 
errors are presented with and without the challenging ozone nuclei, which con
tribute a significant portion of the error. 

Remarkably, the least accurate functional in this assessment is PBEO. 
Other hybrid functionals give a similar performance [103]. LDA is an improve
ment, with the GGA HCTH functional giving the lowest errors of the group. 
This is a reversal of the usual finding that hybrid functionals are superior to 
GGAs. (This result applies only to main group nuclei. For transition metal 
absolute shielding constants, GGA functionals perform poorly whereas hybrid 
functionals perform comparatively well [108].) However, even the HCTH func
tional has unacceptably large errors. 

The failure of DFT for main group shielding constants is well known, and 
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Table 2.1: Shielding constant error assessments for the LDA, HCTH, and PBEO functionals 
and the MKS(BD) and MKS(PBEO) methods. All values are in ppm. 

LDA HCTH PBEO MKS(BD)^ MKS(PBEO) 

A l . Isotropic N M R shielding constants (ppm) 
d -51.8 -32.4 -58.5 5.1 -2.7 
\d\ 52.2 32.4 58.8 16.7 15.4 
Excluding O 3 : 
d -40.5 -25.2 -32.7 -1.9 -6.0 
\d\ 41.0 25.2 33.0 10.1 9.8 

A2. Anisotropic N M R shielding consteints (ppm) 
d 46.1 27.0 40.7 -1.7 -2.3 
\d\ 54.3 28.4 43.9 8̂ 8 1L3_ 

^ Ref. [103] 

is attributed to an overestimated paramagnetic contribution to the shield
ing [109]. This is caused by underestimated occupied-virtual eigenvalue differ
ences on the denominator of the paramagnetic term in Eq. 2.9. A number of 
attempts have been made to improve the performance. Casida and co-workers 
have obtained notable improvements by explicitly correcting the eigenvalue 
differences based on arguments from sum-over-states density functional per
turbation theory [109,110]. Patchkovskii et al. [ I l l ] have observed that a self-
interaction corrected functional in the optimised effective potential approach 
leads to similar improvements. Wilson et al. [105] have demonstrated that the 
addition of an empirical amount of exact exchange in the Kohn-Sham equa
tions for the orbitals used in the uncoupled GGA expression (Eq. 2.9) gives 
shieldings approaching coupled cluster accuracy. Model exchange-correlation 
potentials can also give improved shielding constants [112]. However, these 
methods all lie outside the standard Kohn-Sham formalism. I t would be prefer
able to be able to calculate accurate shielding constants with a conventional 
functional. As GGAs appear to perform better than hybrid functionals, we 
chose to concentrate on functionals of the GGA form. Our starting point 
was another attempt to improve shielding constant performance known as the 
Multiplicative Kohn-Sham (MKS) method. 
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2,2 The MKS method 
The MKS method [103] involves the calculation of shielding constants from 

a set of orbitals and eigenvalues determined from a reference electron density 

rather than from a conventional functional. I t involves three stages. Firstly, 

a theoretical method and basis set are chosen to calculate a reference density 

matrix for a system. Either wavefunction or DFT methods can be used for 

this step. In the MKS nomenclature this method is given in parentheses. For 

example, MKS(BD) uses densities from the Brueckner Doubles wavefunction 

method, whereas MKS(PBEO) uses densities from the PBEO density func

tional. 

The second step is based on the Zhao-Morrison-Parr (ZMP) procedure [113 . 

The ZMP procedure is used, with the same basis set as in step 1, to deter

mine the exchange correlation potential f x c ( r ) from the supplied density ma

trix [114], The orbitals are constrained so that they give the reference density 

Po(r) = 2$ : iV ' i ( r )p (2.14) 
i 

The electron-nuclear energy. Coulomb energy, and exchange-correlation energy 

are explicit functionals of the density (Eq. 1.47), and therefore the Kohn-Sham 

orbitals are obtained for that density by minimising the kinetic energy 

T,[po] = m i n - i f : ( x i | V 2 | x i ) (2.15) 

This is the constrained search minimisation of Levy and Perdew [115]. Zhao, 

Morrison and Parr enforced the constraint on the density by ensuring that the 

self-repulsion was zero 

1 I I [ P ( r i ) - p o ( r 0 ] [ p ( r . ) - , o ( r . ) ] ^ ^ ^ ^ ^ ^ ^ ^ ^^.16) 

Minimisation of Eq. 2.15 subject to the constraint of Eq. 2.16 gives a set of 

equations 

- i v ^ + ^;^(ri)] ^pHri) = e^i^H^i) (2-17) 
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where the effective constraint potential, V Q { T I ) , is 

/ ( r 2 ) - Po{r2) dro 
ri2 

(2.18) 

and A indicates a dependence on a Lagrange multiplier. To bring these equa

tions into a conventional Kohn-Sham form, the Coulomb potential ( r i ) and 

the external potential fext(ri) are added. The Coulomb term is multiplied by 

the Fermi-Amaldi factor (1 — j j ) [116]. This is not theoretically required by 

the ZMP procedure, but it ensures that the exchange-correlation potential will 

exhibit the appropriate - l / r asymptotic behaviour for any isolated system. 

The final ZMP equations are 

-^V^ + ^ext(ri) + ( l - ^) ( r i ) + v^iv,)] ( n ) = e^^^v,) (2.19) 

The exchange-correlation potential vxc{^) is then identified as 

^xc(r) = --^^;j '(r) + t;^(r) (2.20) 

If the exact density was supplied, the ZMP procedure would yield the exact, 

electron deficient limit of the exchange-correlation potential [44]. The potential 

exhibits a discontinuity at an integer number of electrons [117], and so the 

exact potential on the electron abundant side would be shifted from the ZMP 

potential. 

These equations are solved iteratively, with the value of the Lagrange multi

plier A raised with each iteration. The formal value of A should be infinity, but 

the final value is usually set to 900 when using a finite basis set [114]. When 

the exchange-correlation potential has converged, it is output on a standard 

numerical integration grid. This potential is in principle exact (within the lim

itations of a finite basis set and finite A), should an exact electron density be 

input into the procedure. In practice the accuracy of the potential increases 

with the accuracy of the density supplied. 

The third step is a Kohn-Sham shielding constant calculation using the un

coupled formalism of Eq. 2.9. The standard Kohn-Sham equations are solved, 

but rather than calculating 7;xc(r) from a functional, the ZMP potential is 
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read from disk. Therefore only the Coulomb potential changes with each SCF 
iteration. As with conventional calculations, a large basis set (such as Huzi-
naga IV) has to be used in this step to minimise gauge problems. The basis 
set used in step 3 does not necessarily have to be the same as those used in 
steps 1 and 2, so a smaller, more computationally efficient basis set can be 
used for those steps. 

Table 2.1 presents shielding constant errors for the MKS(BD) and MKS (PBEO) 
methods. The TZ2P basis set was used for steps 1 and 2, and the Huzinaga 
basis set for step 3. The MKS(BD) method is more than twice as accurate 
as HCTH. This reflects the high-quaUty BD electron density. MKS(PBEO) 
also gives excellent results, with errors comparable to MKS(BD). This indi
cates that the PBEO electron density is equally good for calculating uncoupled 
shielding constant results. Other hybrid functional densities give similar re
sults [103 . 

I t is worth reiterating the difference between a conventional hybrid calcu
lation (such as PBEO) and that of MKS(PBEO). In the former the shielding 
tensor is evaluated in the coupled manner from Eq. 2.8. The orbitals and 
eigenvalues are determined using a non-multiplicative exchange-correlation op
erator. In the latter method the shielding tensor is evaluated in an uncoupled 
manner from Eq. 2.9 and the orbitals and eigenvalues are from a multiplica
tive exchange-correlation potential. I f the MKS method was used with a GGA, 
there would be little change in the results, as GGAs have no non-multiplicative 
part and are therefore already evaluated using the uncoupled methods. (Slight 
changes are observed due to the Fermi-Amaldi term and the finite value of 
A [103].) 

However, there are limitations with this method. Although MKS(PBEO) 
formally scales with system size as conventional DFT, in practice the com
putational cost is higher because of the additional cost of the ZMP stage. 
Convergence problems are also encountered in the ZMP procedure for larger 
systems and the method is not widely implemented in electronic structure 
codes. 
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Table 2.2; Isotropic shielding constants for three representative molecules. All values are in 
ppm. 

Mol. Nuc. L D A B L Y P H C T H M K S ( B D ) Eq. (2.26)"* Ab initio Expt. 
C O C -20 .3 -14 .8 - 7 . 5 - 1 . 5 2.8 5.6" 2.8 ± 0 . 9 " 

0 - 8 7 . 5 -77 .3 -66 .8 -45 .0 - 6 4 . 0 -52.9'' - 36 .7 ± 17.2'' 

N2 N -91 .4 -84 .6 -76 .9 -67 .4 - 6 4 . 8 -58.1*^ -59 .6 ± 1.5'' 

P N P - 7 3 . 7 -37 .1 - 7 . 6 41.7 18.2 86"= 53̂ ^ 

N -414 .9 -405.4 -378.5 -350 .2 -371 .9 - 3 4 P -349*= 

* /3 = -0 .0045, 7 = 0.1 
'' Ref. [118], G I A O - C C S D ( T ) , experimental values include rovibrational corrections 

Ref. [119] 

2.3 Modelhng the potential 
The high quahty MKS results demonstrate that a current-dependent func
tional is not necessary to obtain high quality shielding constants for these 
molecules. A l l that is required is accurate orbitals and eigenvalues obtained 
from an accurate exchange-correlation potential in Eq. 1.51. To investigate the 
influence of the potential further we considered three representative molecules 
from the shielding set: CO, N2, and PN. Table 2.2 presents isotropic shielding 
constants for these molecules using the LDA, BLYP and HCTH functionals 
(with the Huzinaga IV basis set), and the MKS(BD) method. To ensure a 
fair comparison, we have recalculated the MKS(BD) shielding constants using 
the Huzinaga IV basis set for all three steps (with / functions removed for the 
ZMP step for technical reasons). The trends for the individual nuclei are the 
same as those for the overall errors. The shieldings of all the nuclei improve 
uniformly from LDA to BLYP to HCTH to MKS(BD). Table 2.3 presents 
anisotropic shielding constants for the same molecules. The same trends are 
observed. 

The improvement in performance from LDA to BLYP to HCTH to MKS(BD) 
is a direct consequence of the differences in their exchange-correlation po
tentials. Figures 2.1, 2.2, and 2.3 plot the potentials for CO, N2 and PN 
respectively, compared to ZMP potentials from BD densities. Conventional 
functionals average over the integer discontinuity in the potential, so to allow 
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Table 2.3: Anisotropic shielding constants for three representative molecules. All values are 
in ppm. 

Mol. Nuc. LDA BLYP HCTH MKS(BD) Eq. (2.26)* Ab initio Expt. 
CO C 438.4 432.1 420.9 411.5 407.8 401.0" 406.1 ± 1.4" 

0 744.3 731.7 716.0 682.8 713.5 694.6*̂  676.1 ± 26'' 
N2 N 644.7 636.8 625.1 610.4 608.9 596.5'' 603 ± 28'' 
FN P 1557.5 1505.6 1461.7 1386.0 1425.3 1334<= 1376<= 

N 1133.3 1121.5 1081.0 1038.2 1072.7 1023"= 1048"= 

* p = -0.0045, 7 = 0.1 
'' Ref. [118], G I A O - C C S D ( T ) 

Ref. [119] 

comparison the ZMP potentials have been shifted up by half the discontinuity, 
approximated by [120] 

A = £HOMO + / (2.21) 

where £HOMO is the highest occupied molecular orbital (HOMO) eigenvalue and 
/ is the ionisation potential. We use experimental / values from Ref. [121 . 

For all three molecules, the agreement with the high quality ZMP poten
tials clearly improves from LDA to BLYP to HCTH. This is most evident in 
the intershell region, where the characteristic structure [122-124] is prominent 
in the ZMP potential. As noted previously [124], LDA completely fails to 
introduce the structure. The BLYP potential exhibits some structure due to 
the addition of density gradient information, although its magnitude is small 
and its position does not coincide with that of ZMP. The potential for BLYP 
diverges [125] to a negative value at the nuclei. The HCTH potentials provide 
a better description of the intershell structure, although they have an erratic 
shape. This is because ZMP potentials form part of the data that HCTH was 
fitted to, and the high number of parameters can be chosen to give a reasonable 
representation of the structure (although the form is not adequate to describe 
it smoothly). The vertical lines at the nuclei in the HCTH potential indicate 
a divergence to a positive value. 

We therefore commenced our investigations by attempting to find a simple 
gradient correction to the LDA that would reproduce the intershell structure 
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Figure 2.1: Exchange-correlation potentials for the CO molecule with (a) LDA, (b) BLYP, 
(c) HCTH, (d) Eqs. 2.26 and 2.31, and (e) K T l (solid lines) plotted against a shifted ZMP 
potential using BD densities (dashed lines). All values are in au. 
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Figure 2.2: Exchange-correlation potentials for the N2 molecule with (a) LDA, (b) BLYP, 
(c) HCTH, (d) Eqs. 2.26 and 2.31, and (e) K T l (solid lines) plotted against a shifted ZMP 
potential using BD densities (dashed lines). All values are in au. 
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Figure 2.3: Exchange-correlation potentials for the FN molecule with (a) LDA, (b) BLYF, 
(c) HCTH, (d) Eqs. 2.26 and 2.31, and (e) K T l (soUd lines) plotted against a shifted ZMF 
potential using ED densities (dashed lines). All values are in au. 
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found in the ZMP potentials. The obvious choice would be to add conventional 
GGA corrections such as B86X or OPTX, which are functions of the reduced 
density gradient in Eq. 1.59. These contain semi-empirical parameters that 
were originally fitted to thermochemical data, but they could be adjusted to 
fit the ZMP potentials. However, extensive investigations demonstrated that 
i t was not possible to recreate the intershell peak adequately even allowing 
these parameters to vary. This suggests that their mathematical form is defi
cient, and also explains the erratic shape of the HCTH potential (the HCTH 
expansion contains terms of the same form as B86X and OPTX but is more 
flexible). 

I t was therefore necessary to develop a new gradient correction that was 

capable of modelling the intershell peak. Our final form was based on an anal

ysis of the form of the GGA exchange-correlation potential. For a functional 

with independent a and /3 spin parts this is given by [126 

^^xc. = + 4'<^,. + + (2.22) 

where 

» S „ = ^ (2.23) 

(2) IV7 rxc 

(4) ^ 1 ( d'Fxc 1 dF^c \ y dp, d'p, dp, 
|Vp . |2 Va|Vp, |2 | V p , | d\Vp,\) dX dXdii dfi 

(4) 

AM 

and Fxc is the exchange-correlation integrand defined by 

Exc = I FxcdT (2.24) 

By plotting the four components of VXC,<T individually, we found that i t was the 

eff"ect of the Hessian term v^c,, that was responsible for the poor description of 

the intershell peaks in the case of BLYP (plots (b) of Figures 2.1-2.3), OLYP, 
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and similar functionals. 
We therefore attempted to devise a functional for which ^^XC,(T was zero. 

The simplest way to achieve this is to set the term in parentheses equal to zero 
by ensuring that 

xc 
5|Vp , |2 | V p , | a | V p „ 

This can be trivially achieved with the form 

(2.25) 

ExcW. pp] = E]S:^[p^. P/s] + ^ E / W T ^ ^ ^ (2.26) 
a J pj (r) + 7 

which closely resembles the gradient expansion approximation of Eq. 1.58. 
The only difference is the constant 7 on the denominator. This changes the 
exchange-correlation potential from 

„ . O A , 4^ |Vp4r)p 2 ^ V V , ( r ) 
Vy^^AA = %c,.(r) + 7/3. . 4737T- (2-27) 

2>pJ (r) pJ (r) 

in the case of the GEA to 

„ . O A , 4^|Vp.(r)|Vy^(r) 2/3VV.(r) 
^^xc,a(r) = %c,<T(r) + 4 /3 . ^ , 4 /3 . . ^ (2-28) 

3(p/ (r) + 7)2 pJ (r) + 7 
for the functional defined in Eq. 2.26. The addition of the constant prevents 
the potential from diverging at long range (as p —>• 0). The conventional way 
to prevent the divergence is with a function of x^-, but this will introduce 
complex Hessian contributions to the potential that will degrade it in the 
intershell region. 

Eq. 2.26 is not a conventional exchange functional because it does not obey 
the exchange scaling condition, Eq. 1.60. In the limit of an infinite density i t 
will scale like exchange, but for finite densities i t introduces some correlation. 
However, because the term has been designed to replace conventional exchange 
functionals, we will refer to i t as K T exchange or K T X (following the naming 
convention of Ref. [127]). 

The K T exchange term was implemented as a set of Fortran subroutines 
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in CADPAC. The K T X equations were written in open shell form so that 
both restricted and unrestricted calculations could be carried out. One sub
routine calculates the KTX contribution to Fxc and its analytic derivatives 
with respect to the a and P densities and density gradients that are neces
sary for the evaluation of the exchange-correlation contribution to the Fock 
matrix (Eq. 1.84). Fxc and its derivatives were checked for consistency using 
the Hellmann-Feynman theorem [128]. For a molecule in an electric field of 
strength F applied in the 2-direction, 

dF \ 
dH 
dF ^' ) = - ( ^ | A z | ^ ) = - M . (2.29) 

where is the dipole moment along the z axis. This is true for both an 
exact wavefunction and for any variational method, and so must hold in DFT. 
Therefore Hz can be calculated numerically by finite difference 

= ^ ' ^ " ^ V ' ^ - ^ ^ ' (2.30) 

The energy was calculated in an external electric field of ±0.0001 au and 
put into Eq. 2.30 to calculate fi^. The values obtained for closed shell and 
open shell molecules were checked so that they agreed with a standard dipole 
moment calculation, proving that the Hellmann-Feynman theorem was holding 
and therefore that the orbitals were variationally optimised. 

A second subroutine calculates the K T X contribution to the exchange-
correlation potential explicitly from Eq. 2.22. This provides an alternative 
but formally equivalent route to solving the Kohn-Sham equations (where the 
Fock matrix contribution is calculated according to Eq. 1.83). The two sub
routines were checked for consistency by ensuring that they converged to the 
same answers for both open-shell and closed-shell molecules as the size of the 
integration grid increased. 

There are two adjustable parameters in the K T exchange term, which we 
varied to give the best reproduction of the intershell structure in the ZMP 
potentials. The P coefficient is approximately linearly related to the size of 
the intershell peak and the 7 value prevents divergence but also effects the 



C H A P T E R 2. T H E K T l A N D K T 2 FUNCTIONALS 51 

shape of the potential nearer the nucleus. Optimal values were found to be 

/3 =-0.0045 7 = 0.1 (2.31) 

The CO, N2 and PN potentials for the functional defined by Eqs. 2.26 and 
2.31 are shown in plots (d) of Figures 2.1-2.3. The description of the intershell 
structure is clearly in better agreement with the ZMP potentials than those 
of LDA, BLYP and HCTH. The intershell peaks are much more pronounced 
than for BLYP and they exhibit none of the erratic behaviour of the HCTH 
potential. This improvement is reflected in the shielding constants for the 
three molecules, which are presented in Tables 2.2 and 2.3. In all cases they 
are closer to experiment than the other conventional functionals. 

The new functional was assessed by calculating the ful l A l and A2 sets 
of shielding constants. Overall the results were an improvement over those 
of conventional functionals, but i t was not competitive with MKS(BD) or 
MKS(PBEO). Compared to the experiment data the isotropic shielding con
stants remained too low and the anisotropic shielding constants too high. 

We found that the calculated shielding constants, like the size of the in
tershell peak, had a roughly linear relationship with the /5 parameter in the 
K T exchange term. By increasing the magnitude of /3, the shielding constants 
could be uniformly improved. The parameter values that best reproduced the 
experimental shielding constants were 

P = -0.006 7 = 0.1 (2.32) 

The functional defined by Eqs. 2.26 and 2.32 will hereafter be denoted K T l . 
Table 2.4 presents a ful l breakdown of the isotropic shielding constants of set 
A l for K T l , compared to LDA and HCTH. K T l is a significant improvement 
over these conventional functionals, with the mean absolute error reduced to 
13.0 ppm for all molecules or 10.0 ppm excluding O3. This is comparable 
to the MKS methods and competitive with the best ab initio wavefunction 
methods. K T l also has the advantage of being a computationally much simpler 
method than either MKS or the wavefunction methods. Table 2.5 presents the 
same breakdown for anisotropic shielding constants. Again, K T l is the best 
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performing conventional functional with a mean absolute error of 11.5 ppm, 
comparable to the MKS methods and in this case superior to the best ab initio 
calculations. 

The K T l exchange-correlation potentials are shown in plots (e) of Fig
ures 2.1-2.3. For all three molecules they slightly overestimate the size of the 
intershell peaks compared to the ZMP potentials. K T l is therefore specifically 
fitted to shielding constants and not exchange-correlation potentials. 



C H A P T E R 2. T H E K T l A N D K T 2 FUNCTIONALS 53 

Table 2.4: A l isotropic shielding constants for the LDA, H C T H , K T l , and K T 2 functionals. 
All values are in ppm. 

Mol. Nuc. LDA H C T H K T l K T 2 Ab initio Expt. 
H F F 416.2 411.5 412.0 412.4 418.6* 419.7 ± 6 * 
H 2 O 0 334.8 327.6 330.7 329.6 337.9* 357.6 ± 1 7 . 2 * 
CH4 C 193.1 189.3 196.4 195.2 198.9* 198.4 ± 0.9* 
CO C -20.3 -7.5 10.4 7.4 5.6* 2.8 ± 0 . 9 * 

0 -87.5 -66.8 -56.1 -57.1 -52.9* -36.7 ± 17.2* 
N 2 N -91.4 -76.9 -55.8 -59.7 -58.1* -59.6 ± 1 . 5 * 
F2 F -284.2 -269.9 -193.6 -211.0 -186.5* -192.8* 
O'OO' 0' -1532.6 -1438.2 -1246.3 -1278.7 -1208.2* -1290* 

0 -921.8 -859.4 -796.9 -809.1 -754.6* -724* 
PN P -73.7 -7.6 48.2 48.5 86'' 53'' 

N -414.9 -378.5 -357.3 -360.2 -341'' -349'' 
H 2 S S 733.9 720.1 746.9 741.0 754.6*= 752 ± 12<= 
NH3 N 266.3 259.8 265.9 264.5 270.7* 273.3 ± 0.1* 
HCN C 65.3 75.7 87.2 86.0 86.3* 82.1* 

N -56.7 -33.4 -18.6 -19.4 -13.6* -20.4* 
C2H2 C 100.8 112.2 120.5 120.4 121.8'' 117.2« 
C2H4 C 40.9 53.4 64.3 63.2 71.2^ 64.5'' 
H2CO c -40.0 -17.7 -3.0 -4.7 4.7* -4.4 ± 3* 

0 -493.5 -406.7 -383.8 -379.6 -383.1* -375 ± 100* 
N'NO N' 87.7 94.9 106.8 102.1 100.5s 99.58 

N -2.3 8.5 14.2 12.2 5.38 11.38 

0 179.0 174.8 184.1 177.5 198.88 200.58 
CO2 c 50.0 57.5 65.0 63.7 63.5^ 58.8^ 

0 209.7 215.3 224.5 221.6 236.4'' 243.4 ± 17'' 
OF2 0 -667.5 -610.9 -516.7 -534.0 -465.5'' -473.1'' 
H 2 C N N ' c 164.5 161.8 170.1 167.4 171.9* 164.5* 

N -61.5 -51.0 -37.5 -41.7 -31.6* -43.4* 
N' -166.4 -155.6 -128.3 -138.4 -142.4* -149.0* 

HCl CI 959.5 949.4 964.9 962.1 962.3' 952' 
SO2 s -242.9 -183.9 -127.8 -134.7 -134.2^= - 1 2 6 ± 12<= 

0 -282.0 -260.6 -243.7 -250.7 -170.4*= -205 ± 17*= 
PH3 P 583.1 576.6 605.4 601.0 594'' 599.9' 

d -51.8 -32.4 -4.7 -9.5 4.5 
\d\ 52.2 32.4 13.0 13.2 11.2 
Excluding 03: 
d -40.5 -25.2 -4.0 -7.7 3.1 
\d\ 41.0 25.2 10.0 10.9 8.2 

* Ref. [118], GIAO-CCSD(T) , experimental values include rovibrational corrections (except 
HCN). 
'' Ref. [119]. 
>= Ref. [129], I G L O - C A S S C F . 
•1 Ref. [130], GIAO-CCSD. 
« Ref. [107]. -
f Ref. [131], GIA0-MP2. 
8 Ref. [132], GIAO-CCSD. 
'' Ref. [133], GIAO-CCSD. 
' Ref. [134], GIA0-MP3. 
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Table 2.5: A2 anisotropic shielding constants for the LDA, H C T H , K T l , and K T 2 function
als. All values are in ppm. 

Mol. Nuc. LDA H C T H K T l K T 2 Ab initio Expt. 
H F F 95.4 105.3 108.0 109.8 94.3* 93.8* 
NHs N -50.3 -47.9 -46.8 -46.3 -43.8* -40.3'' 
CO C 438.4 420.9 397.7 403.2 401.0* 406.1 ± 1.4* 

0 744.3 716.0 703.1 706.6 694.6* 676.1 ± 2 6 * 
N2 N 644.7 625.1 596.7 604.0 596.5* 603 ± 28* 
F 2 F 1155.8 1137.2 1026.5 1054.9 1011.7* 1050 ± 50* 
H 2 C O C 194.5 167.1 152.3 154.7 158.3* 158.8* 
PN P 1557.5 1461.7 1382.2 1384.7 1334*= 1376<̂  

N 1133.3 1081.0 1052.0 1057.9 1023̂ ^ 1048̂ ^ 
HCl CI 281.1 300.1 279.8 287.7 279.8'' 298'' 
PH3 P -82.3 -64.5 -69.9 -67.1 -64.5'' -64.5'' 

d 46.1 27.0 -2.1 4.1 -10.9 
\d\ 54.3 28.4 11.5 8.8 14.4 

* Ref. [118], GIAO-CCSD(T) . 
'' Ref. [134], GIA0-MP3. 
<= Ref. [119]. 

Ref. [135], GIA0-MP2. 
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2.4 Thermochemical and structural assessment 
of K T l 

K T l was fitted to experimental shielding constant data, whereas most semi-
empirical functionals are fitted to thermochemical data. We have seen that 
the latter perform badly for shielding constants, and in the same way K T l 
might fail for thermochemical and other properties. I t is essential to assess 
semi-empirical functionals for a range of properties using non-fitted data to 
establish how generally applicable they are. 

Following Ref. [50], we assessed K T l for three thermochemical properties: 
atomisation energies (set A3 in Appendix A) , ionisation potentials (A4), and 
total atomic and ionic energies (A5). We also assessed K T l for molecular bond 
length optimisations of the set A6, again following Ref. [50]. Al l calculations 
were performed using the TZ2P basis set. Mean and mean absolute errors are 
presented in Table 2.6. 

An atomisation energy is defined as the energy required to break a molecule 
into its component atoms 

-E'AE = ^EA — EM (2.33) 
A 

where EA are the atomic energies and EM is the molecular energy. An atomisa
tion energy can be specified either as an electronic atomisation energy (written 
as De), which is the difference between the atomic energies and the electronic 
molecular energy, or as Do, which is the difference between the atomic energies 
and the molecule in the ground vibrational state. These two definitions differ 
by the value of the molecule's zero point energy (ZPE). The experimental data 
we compare to in set A3 (from Ref. [46]) has been corrected for ZPEs, so we 
compare electronic atomisation energies De- The A3 atomisation energy set 
is similar to the G2-1 atomisation energy set of Pople et al. [136], but with 
NO, H 2 S , and Si2H6 removed for incidental reasons [46]. A number of charged 
species have also been added, bring the total number of systems to 61. 

K T l atomisation energies for the A3 set are significantly improved com
pared to LDA, which suggests that addition of the K T exchange term is ben-
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Table 2.6: Error assessments for thermochemistry and molecular bond lengths for the LDA, 
H C T H , K T l , and K T 2 functionals. Units are given in parentheses. 

LDA H C T H K T l K T 2 

A 3 . Atomisation energies (kcal mol~^) 
d 35.3 0.9 12.5 -0.1 
\d\ 35.3 3.2 13.2 6.4 

A4 . lonisation potentials (kcal mol~^) 
d 3.1 0.1 1.2 -0.2 
\d\ 3.1 1.6 1.3 3.9 

A 5 . Total atomic and ionic energies (kcal mol-i) 
d 241.5 -0.9 -333.5 -461.4 
\d\ 241.5 4.2 334.7 461.8 

A 6 . G 2 subset bond lengths (A) 
d 0.014 0.012 0.014 -0.001 
\d\ 0.022 0.013 0.019 0.010 

A 7 . Diatomic bond lengths (A) 
d -0.012 0.036 0.008 -0.010 
\d\ 0.017 0.037 0.026 0.020 
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eficial. However, it cannot compete with the HCTH GGA, which offers one of 
the best GGA performances for thermochemistry (which might be expected as 
i t has been fitted to the A3 thermochemical data, unlike LDA or K T l ) . 

lonisation potentials are defined as the energy difference between a molecule 
or atom and the corresponding ion with one electron removed 

Eip = EM+ - EM (2.34) 

lonisation potentials again involve ZPE corrections, although their eflPect is 
much smaller because the ZPE of the molecule will be close to the ZPE of the 
molecular ion. The set A4 consists of seven second-row atoms with reference 
experimental values taken from Ref. [46]. K T l performs very well for this set, 
surpassing both LDA and HCTH (despite HCTH having been fit to this set). 

The atomic and ionic energy set A5 consists of 18 first-row atoms and ions 
from H to Ne. The reference values are exact energies taken from Refs. [137, 
138]. LDA gives a very high error over the set, which HCTH reduces consid
erably (again, HCTH was fitted to these energies). The performance of K T l 
is very poor, with a large error of the opposite sign to LDA. 

The final assessments are of bond length optimisations. The A6 set is a 
subset of the molecules from Pople's G2-1 set for which accurate geometries 
are known [46]. The K T exchange term again appears to be beneficial, with 
K T l performing better than LDA. However, HCTH performs better still, as 
i t was fitted to energy gradients. We also considered the performance of K T l 
for the A7 set of 45 diatomic bond length optimisations [139]. This is a more 
balanced test of geometry performance than the A6 set, as i t contains atoms 
drawn evenly from the first three rows of the s and p blocks of the periodic 
table. I t is also complementary as the A6 set contains many hydrogen atoms, 
whereas the A7 set has none. The TZ2P basis set is not available for all of 
the atoms considered, so instead we used the similar-sized 6-311+G(2df) basis. 
K T l improves greatly upon HCTH for the diatomics, but both functionals are 
inferior to LDA! This is generally true of most GGA functionals (see Ref. [139] 
for other results). The success of LDA is presumably down to the relatively 
heavy atoms included in the A7 set, and the lack of hydrogen atoms (LDA 
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performance is poor for light atoms, which are the most unlike the uniform 
electron gas model). 

2.5 The fit code 

To improve the performance of the K T l functional for properties other than 
shielding constants, i t was necessary to introduce more flexibility into the 
functional form. K T l behaves like the LDA in the uniform electron gas limit 
(when iVptrl 0), and hence satisfies this exact condition. However, i t is 
commonly found that a functional's performance for real chemical systems can 
be improved by relaxing this condition [43,47,49]. This results in a functional 
of the form 

a J p j (r) + 7 

+ 5 ^ ^ ^ [ p « , p ^ ] (2.35) 

The fitting procedure we used to optimise the parameters is a modified version 
of that used to develop the T H [44-46], HCTH [47], B97-1 [47], B97-2 [51], and 
1/4 [50] functionals. These functionals were fitted against the thermochemical 
data and/or ZMP exchange-correlation potentials of the systems from sets A3, 
A4, and A5. (B97-1 was fitted only to thermochemical data, and 1/4 was fitted 
only to exchange-correlation potentials.) 

For this study, we choose to fit only to thermochemical data. This is 
because we already know that K T exchange can reproduce the exchange-
correlation potential well, whereas we do not know the correct coefficients 
to give good thermochemical properties. As part of our investigations we did 
attempt to fit to exchange-correlation potentials as well, but the fitting proce
dure tended to give a value for the K T exchange coeflficient /9 of almost zero! 
We believe this is because it does not suflSciently emphasise the error in the 
intershell peak compared to other areas of the potential (which the K T ex
change term models less well). We also noted that in changing from the TZ2P 
basis set to the larger Huzinaga IV, the position of the intershell peak in the 
ZMP potential moves to line up more closely with that of K T l (the agreement 
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with TZ2P ZMP potentials is less good than with the Huzinaga IV potentials 
shown in Figures 2.1-2.3). This could be another reason why the K T exchange 
term is minimised. 

The fitting code uses a linear least-squares fit, and so i t cannot be used to 
fit to the non-linear parameter 7, which was kept fixed at the K T l value of 
0.1. We have found that the performance for shielding constants is relatively 
insensitive to the value of 7, and that this value is near-optimal. 

The linear parameters were fitted by the minimisation 

which may be generalised to any number of coefficients if required. The quan

ti ty is a measure of the thermochemical accuracy of the functional 

61 7 18 

^ = E [ ^ A E - ETir + EK'^ - îp'T + E[^^TE - E^Tr (2.37) 
A 3 A 4 A 5 

where AE represents the atomisation energies of the A3 set of molecules, IP 
the ionisation potentials of the A4 atoms, and TE the total energies of the A5 
atoms and cations. 

The initial energies E'^^^'^ are determined within the fit code by an approxi
mate calculation on the relatively small grids of the ZMP potentials (although 
the ZMP potentials are not fitted to directly, the corresponding densities and 
density gradients are used in this calculation), and the first least-squares iter
ation is performed compared to supplied reference numbers. This gives initial 
values for the parameters a, /3, and 6. The true self-consistent energies using 
the functional with these parameters are then calculated using C A D P A C . These 
results are put back into the fitting procedure, and the whole cycle is iterated 
until the coefficients have converged. Convergence is usually achieved in four 
or five iterations. 
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Table 2.7: Coefficients for functionals derived from the fitting procedure. T denotes fitting 
to total energies, A to atomisation energies, and I to ionisation potentials. F denotes that 
the coefficient was fixed at -0.006. All functionals use 7 = 0.1 

a 
L D A X K T X 

5 
VWN 

T,A,I 1.00473E + 0 -3.28801E - 3 5.92452E - 1 
A,I 1.06134E + 0 -5.42852E - 3 5.68370E - 1 
A 1.05606E + 0 -5.41846E - 3 5.78928E - 1 
T , A , I , F 9.01668E - 1 -6.00000E - 3 9.06839E - 1 
A,I ,F (KT2) 1.07173E + 0 -6.00000E - 3 5.76727E - 1 
A , F 1.07024E + 0 -6.00000E - 3 5.79792E - 1 

2.6 The K T 2 functional 

We experimented with several different types of fits to optimise the functional 
of Eq. 2.35. Table 2.7 presents the coefficients found using the fitting pro
cedure. Table 2.8 presents the thermochemical and structural assessments of 
these functionals. 

The first fit, to total energies, atomisation energies and ionisation poten
tials, was not a success. The value of /3 came out at roughly half that chosen for 
K T l . This resulted in poor shieldings, with a mean absolute error of 25.3 ppm 
for the A l set, compared to an error of 13.0 ppm for K T l . We attribute this 
problem to including total energies in the fit. We have already seen that the 
performance of K T l for total energies is very poor, so i t appears that this func
tional form is unable to reproduce both accurate total energies and accurate 
shielding constants. 

We therefore fitted the functional again, but removed total energies from 
the fit. This is an unusual method of fitting semi-empirical functionals (which 
are often developed by fitting only to total energies), but it proved useful in 
this case. The K T exchange /3 coefficient rose to almost the same value as 
in K T l , giving shieldings with an error of 15.0 ppm. The A3 atomisation 
energies were also much improved over K T l , with an error of 6.3 kcal mol~^ 
compared to 13.2 kcal mol~^ for K T l . However, ionisation potentials worsened 
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Table 2.8: Error assessments for thermochemistry, molecular bond lengths, and isotropic 
shielding constants. T denotes fitting to total energies, A to atomisation energies, and I to 
ionisation potentials. F denotes that the coefficient P was fixed at -0.006. Units are given 
in parentheses. 

K T i T A I A J A T , A , I , F A , I , F A ^ 
(KT2) 

A l . Isotropic N M R shielding constants (ppm) 
d -4.7 -23.8 -12.9 -12.5 5.2 -9.6 -9.4 
\d\ 13.0 25.3 15.0 14.8 17.0 13.2 13.2 
Excluding O3: 
d -4.0 -19.0 -10.4 -10.0 3.7 -7.2 -7.6 
\d\ 10.0 20.6 12.7 12.6 12.9 10.9 10.9 

A 3 . Atomisation energies (ppm) 
d 12.5 3.7 0.6 0.6 -3.5 -0.1 -0.2 
|d| 13.2 6.6 6.3 6.2 7.9 6.4 6.4 

A 4 . lonisation potentials (kcal mol~^) 
d 1.2 -7.4 -1.6 -2.0 -13.3 -0.2 -0.3 
\d\ 1.3 7.6 3.8 3.8 13.3 3.9 3.8 

A 5 . Total atomic and ionic energies (kcal mol~') 
d -333.5 5.9 -372.3 -356.2 -7.6 -461.4 -457.4 
jdj 334.7 12.6 372.1 357.1 35.9 461.8 457.9 

A 6 . G 2 subset bond lengths (A) 
d 0.014 0.018 0.002 0.003 0.052 -0.001 -0.001 

Jdj 0.019 0.021 0.010 0.011 0.052 0.010 0.010 
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slightly, from 1.6 kcal mol~^ to 3.9 kcal mol~^ We also fitted another func
tional to only atomisation energies, with very little change observed in either 
coefficients or properties. While the ' A , r functional improved performance for 
thermochemistry, the original K T l functional gave better shieldings. This is 
directly related to the value of the K T exchange ^ coefficient. We therefore 
fixed the value of /3 to the K T l value of -0.006 ppm, in the knowledge that 
this gives highly accurate shieldings. We fitted the remaining parameters to 
all three sets of energy data, which gave very diff'erent coefficients but equally 
poor results to the non-fixed version. 

Removing total energies from the fit again gave much improved results. 
Atomisation energies improved to the level of the ' A , I ' functional (expected 
because the coefficients are similar), and ionisation potentials similarly im
proved. Shielding errors were reduced to 13.2 ppm, on a par with K T l . 

The A6 set of bond lengths were also improved compared to K T l , with the 
error reducing to 0.010 A (surpassing HCTH). Removing ionisation potentials 
from the fit had a negligible effect on the coefficients and results; as before. 
The best performing functional is therefore 'A,I ,F ' , which following Ref. [127 
we denote KT2. A summary of the performance of KT2 in comparison to 
LDA, HCTH, and K T l is presented in Table 2.6. KT2 also performs well for 
the A7 set of diatomic bond lengths, with an error of 0.020 A. This error is still 
not as low as that of LDA, and it is also not competitive with the best GGA, 
1/4, which gives an error of 0.010 A. However, 1/4 gives poor performance for 
non-structural properties [50] and so cannot be considered a general purpose 
functional. 

The fu l l breakdown of isotropic shielding constants for KT2 is presented 
in Table 2.4. We also assessed KT2 for the A2 set of anisotropic shielding 
constants. For this set KT2 gave better performance than K T l , with d — 
4.1 ppm and \d\ = 8.8 ppm. A ful l breakdown is presented in Table 2.5. 

In conclusion, we are confident that KT2 gives comparable performance to 
K T l for shielding constants, whilst improving thermochemical and structural 
performance. For thermochemical properties i t is still not competitive with the 
best GGAs, but its performance is promising. For atomic and ionic energies its 
performance remains very poor, but we consider this to be relatively unimpor-
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tant as practical chemical observations involve energy differences, where these 
errors cancel. 

2.7 Rationalising the improvement in shield
ing constants 

The impressive performance of K T l and KT2 for shielding constants can be 
ascribed to the quality of their exchange-correlation potentials, and i t is natu
ral to assume that the description of the intershell peak in the valence region 
is particularly important. However, i t is possible to get good quality shield-
ings without such a peak. For example, the MKS(B97-1) method [103] gives 
excellent shieldings (with |ci| = 16.5 ppm over the A l set), but does not have 
a noticeable peak in its potential. A more general explanation for the perfor
mance is required. 

2.7.1 Split potentials 
We first tested which regions of space were responsible for the improvement 
in shielding constants, looking at the N2 and C O molecules. The potential 
was calculated on a numerical integration grid, so i t was possible to apply the 
K T exchange correction only to certain parts of the grid, leaving other parts 
as the LDA. We placed spheres of radius R around each nucleus, and defined 
the potential as equal to K T l inside the sphere, and LDA outside. If i? = 0, 
the potential is LDA everywhere, whereas if i? = 00, the potential is K T l 
everywhere. For intermediate values of R, the potential is split into two. 

Figure 2.4 shows the effect of varying R on the shielding constant of N2. 
Between i? = 0 au and R « 0.4 au, the isotropic shielding constant varies by 
approximately 5 ppm. This demonstrates that the K T correction to the core 
is not very important for the shielding constant. Between R ^ 0.4 au and 

fti 1.0 au the change in shielding constant is much larger, nearer 40 ppm. 
This indicates that the valence region is very important for shielding constant 
results. For values of R above 1.0 au, the shielding constant variation is 
small, which shows that the shielding constant is insensitive to the eisymptotic 
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region of the potential. This is consistent with Ref. [100], which showed that 
adding a correction to the potential in the asymptotic region did not affect the 
shielding constant results. 

The C O molecule showed analogous results. Although we were dealing with 
two different nuclei at the same time, we did not have to vary the size of the 
spheres independently because the intershell structure occurs in roughly the 
same region of both nuclei. For molecules where this is not the case, such as 
P N , a more sophisticated analysis would be necessary. 

Two further conclusions can be drawn from these results. Firstly, in both 
N2 and C O , the variation in shielding constant in the core is roughly equivalent 
to the difference in shielding constant on increasing /3 from —0.0045 (the value 
that agrees most precisely with the Z M P potentials) to -0.006 (the value 
that gives the best shielding constants). This supports the argument that the 
increase in the P value in the K T exchange term is necessary to compensate 
for an inappropriate correction to the core that it gives. I f K T exchange could 
be modified in some way to give a better description of the core, i t would no 
longer be necessary to have such a high P value. 

Secondly, closer inspection of the region between i? w 0.4 au and 1.0 au 
in N2 shows that the bulk of the shielding constant change actually occurs 
between R 0.4 au and R « 0.6 au, and above that value the change is much 
less pronounced. This first region corresponds to the rise of the potential 
towards the intershell peak. The second region corresponds to a lowering of 
the potential to produce the characteristic turning shape. This suggests that 
i t is the initial rise in the potential which is more important than the ful l turn. 
This indicates why potentials such as MKS(B97-1), which contain the rise but 
not the turn, also give good shielding constants. 

Results for anisotropic shielding constants for N2 and C O are presented in 
Figure 2.5. The results are analogous to the isotropic case. 

2.7.2 HOMO-LUMO gaps 

I t has previously been observed that there is a correlation between GGA DFT 
shielding constants for main-group nuclei and occupied-virtual eigenvalue dif-
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Figure 2.4: Spatial analysis (in au) of the isotropic shielding constant (ppm) for (a) N2, (b) 
C nucleus of CO and (c) O nucleus of CO. 
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Figure 2.5: Spatial analysis (in au) of the anisotropic shielding constant (ppm) for (a) N2, 
(b) C nucleus of CO and (c) 0 nucleus of CO. 
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ferences [109,110,112,140]. As discussed in Section 2.1, GGA shielding con
stant errors are caused by an overestimated paramagnetic contribution to the 
shielding, which is in turn caused by underestimated eigenvalue differences. 

In Refs. [109,110] i t was shown that shielding constants could be improved 
by adding an ad hoc correction to the denominator of the paramagnetic (sec
ond) term of Eq. 2.9. In Ref. [140], a similar improvement was found simply 
by increasing the lowest unoccupied Kohn-Sham eigenvalue (the LUMO), thus 
increasing the gap between i t and the highest unoccupied (HOMO) eigenvalue. 
This works because the HOMO-LUMO gap often gives a particularly impor
tant paramagnetic contribution (it has the smallest occupied-virtual eigenvalue 
difference, which appears on the denominator of the expression). I t should be 
noted, however, that neither of these approaches bring the shielding constants 
up to the standard of the best MKS methods or K T l / 2 . 

We therefore considered the HOMO-LUMO eigenvalue differences corre
sponding to the K T l and KT2 shielding calculations. The values for a sub
set of the A l molecules in which the improvement in shielding constants is 
particularly significant are presented in Table 2.9, together with near-exact 
MKS(BD) gaps. When compared with LDA and HCTH, there is a clear in
crease in HOMO-LUMO gaps, as expected, and the K T l and KT2 gaps are 
much closer to the MKS(BD) values. Moreover, for those molecules whose 
shielding constants were not improved by K T l (such as H2O and NH3), the 
gaps remained small in comparison to those of MKS(BD). This confirms the 
view that there is an explicit link between the HOMO-LUMO gaps and the 
shielding constant results. 



C H A P T E R 2. T H E K T l A N D K T 2 FUNCTIONALS 68 

Table 2.9: Kohn-Sham HOMO-LUMO eigenvalue differences. All values are in atomic units. 

Mol. LDA H C T H K T l K T 2 MKS(BD)'' 
CO 0.253 0.263 0.269 0.272 0.27 
N2 0.302 0.309 0.316 0.319 0.32 
F 2 0.126 0.136 0.154 0.155 0.16 
F N 0.160 0.166 0.169 0.171 0.17 
H 2 C O 0.126 0.137 0.141 0.143 0.15 
O F 2 0.122 0.132 0.144 0.145 0.16 
S O 2 0.134 0.136 0.139 0.140 0.15 

Ref. [101]. 



Chapter 3 

Assessment of K T l and KT2 

In this chapter we assess the K T l and KT2 functionals for the computation 
of magnetisabilities, chemical shifts, and indirect nuclear spin-spin coupling 
constants, to establish whether their good performance for shielding constants 
is maintained for these other magnetic response properties. We also assess 
their performance for shielding constants of larger molecules than previously 
considered, using the GIAO formalism. 

3.1 Magnetisabilities 

The magnetisability of a molecule is defined as the second derivative of the 
electronic energy with respect to the magnetic field 

For a GGA functional, the magnetisability tensor is expressed in terms of the 
Kohn-Sham orbitals and eigenvalues [141 

a. = 4E( . i (^ ' ^ - - "^»)b) + E ™ ^ (3.2) 

with quantities as defined in the shielding constant tensor expression of Eq. 2.9. 
Like that expression, the tensor components are separated into diamagnetic 
and paramagnetic terms, with occupied-virtual eigenvalue differences in the 

69 
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denominator of the latter. It is therefore anticipated that the KT exchange 
term will have a significant effect on the paramagnetic term. 

Isotropic and anisotropic magnetisabilities are defined following Ref. [141]. 
For linear and symmetric top molecules, the isotropic magnetisability is given 
by 

Ciso = ^(Cll + 2a) (3.3) 

where C|| is the component along the major molecular axis and C_L is the com
ponent perpendicular to it. The anisotropic magnetisability is 

A C = a - Cll (3.4) 

For all other symmetries, the isotropic magnetisability is 

Ciso = ^trC (3.5) 

and the anisotropic magnetisabilities are 

A C l = 2 C x x - C y , - C . . 

AC2 = 2 C , , - C x x - C . . (3.6) 

where Cii are the principal tensor components. 
Relatively few DFT studies of magnetisabilities have been carried out [100, 

141-143], and it is of interest to determine how well K T l and KT2 perform. 
Following Ref. [141], we calculated isotropic magnetisabilities for the A8 set 
of 12 molecules (a subset of the A l shielding constant set). Anisotropic mag
netisabilities were calculated on the smaller A9 set of 10 molecules (with CH4 
and C O not included). The magnetisabilities were calculated at the same 
near-experimental geometries as for the shielding constant assessment, using 
the same modified Huzinaga IV basis set defined in Ref. [105], and a centre of 
mass gauge origin following Ref. [141 . 

Isotropic results are presented in Table 3.1 and anisotropic results in Ta
ble 3.2. It is difficult to find reliable experimental reference data for these 
properties, so errors are calculated relative to linearised coupled cluster doubles 
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Table 3.1: K T l and K T 2 isotropic magnetisabilities compared with H C T H and B97-2. All 
values are in 10-^° J T - ^ 

Molecule K T l K T 2 H C T H B97-2 L - C C D * M C S C F 
H F -179.1 -176.1 -176.4 -175.3 -176.0 -177.0" 
H2O -238.1 -234.4 -233.9 -233.1 -234.7 -236.6'' 
CH4 -321.2 -316.5 -314.5 -315.0 -317.1 -318 . r 
CO -215.0 -210.2 -203.5 -203.9 -212.4 -217.6'' 
N2 -210.1 -205.4 -196.6 -197.9 -207.5 -211.4" 
F2 -176.5 -172.0 -165.9 -173.8 -174.0 -175.6'' 
O3 128.7 135.3 180.5 237.5 - 97.8'' 
NH3 -293.5 -289.3 -287.9 -287.7 -290.2 -293.1'' 
HCN -276.0 -271.8 -262.9 -266.3 -274.5 -282.8" 
C2H2 -379.7 -375.0 -365.3 -368.6 -373.5 -376.6'' 
H2CO -118.9 -120.1 -113.2 -118.7 -129.9 -133.4'' 
CO2 -373.6 -369.0 -366.5 -370.0 -372.6'' 

\d\ (MCSCF) 5.7 7.7 15.9 18.7 
Excluding O3: 
\d\ (L-CCD) 4.0 2.2 7.1 5.0 
\d\ (MCSCF) 3.4 5.0 9.9 7.7 

* Ref. [144], L - C C D . 
" Ref. [145], GIAO-MCSCF. 
" Ref. [146], G I A O - M C S C F . 
'' Ref. [147], GIAO-MCSCF. 
" Ref. [148], GIAO-MCSCF. 
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Table 3.2: K T l and K T 2 anisotropic magnetisabilities compared with H C T H and B97-2. 
All values are in IQ-^o J T - ^ . 

Molecule K T l K T 2 H C T H B97-2 L - C C D * M C S C F 
HF AC -8.8 -8.7 -8.9 -9.0 -8.5 -8.5'' 
H2O ACi -5.5 -5.3 -4.9 -4.4 - -4.4'' 

AC2 7.5 7.8 7.3 7.8 6.9 7.3'' 
CO AC 136.5 136.8 143.3 142.6 133.3 126.4'' 
N2 AC 143.7 144.1 152.9 152.4 139.2 134.9<= 
F2 AC 164.8 164.7 174.5 160.9 163.9 -
O3 ACi 1174.0 1179.8 1401.5 1588.3 1050.8'' 

AC2 2.6 5.6 -62.5 -55.2 12.8'' 
NH3 AC -17.7 -17.3 -17.3 -16.9 17.2 -17.0'' 
HCN AC 113.1 112.2 118.8 115.8 104.5 90.7*= 
C2H2 AC 44.4 43.3 48.4 46.5 38.6 33.7" 
H2CO ACi 418.1 411.6 442.8 441.7 431.8 408.9'' 

AC2 -75.8 -65.2 -64.9 -52.2 — -47.4'' 

\d\ (MCSCF) 18.8 17.4 46.3 59.7 
Excluding O3: 
|d| (L-CCD) 4.2 4.8 7.8 6.3 
Id (MCSCF) 9.2 7.3 13.0 11.0 

Ref. [144], L - C C D . 
'' Ref. [145], GIAO-MCSCF. 
^ Ref. [148], GIAO-MCSCF. 
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(L-CCD) and MCSCF results from Refs. [144-148 . 
Both K T l and KT2 perform very well for magnetisabilities. For isotropic 

magnetisabilities, K T l performs better than KT2 compared with MCSCF 
but KT2 performs better compared to L-CCD. The situation is reversed for 
anisotropic magnetisabilities. Both functionals outperform HCTH and B97-2 
by a significant margin. B97-2 is the worst functional compared with MCSCF, 
but this error is dominated by ozone. When ozone is removed, B97-2 gives 
lower errors than HCTH. The K T l and KT2 results are comparable with the 
more computationally demanding MKS(BD) and MKS(B97-1) methods [141 . 

Wilson et al. recently assessed the performance of K T l and KT2 for the 
determination of rotational g tensors, which are closely related to magnetisabil-
itres [149]. These two functionals were found to have the widest applicability 
and reliability of all the functionals considered in the study. 

3.2 Chemical shifts 

NMR properties are generally measured relative to a reference molecule, and so 
differences in shielding constants are measured rather than absolute shielding 
constants. These differences are termed chemical shifts {5), and are defined 
for a given nucleus with an absolute shielding a as 

6 = CTref - (T (3-7) 

where a r e f is the absolute shielding constant of that nucleus in a reference 
molecule. 

DFT is a long-established method for chemical shift calculations [150], and 
calculations have been performed on systems as diverse as transition metal 
complexes [151-153], fuUerenes [154,155], lanthanides [156], and biological sys
tems [157-161]. Prom Eq. 3.7, it might be expected that DFT calculations of 
chemical shifts would be subject to a cancellation of errors between the two 
absolute shieldings. However, the performance of LDA and GGA functionals 
for challenging nuclei (such as nitrogen, oxygen, and fluorine) remains poor 
and the inferior performance of hybrid functionals for shielding constants is 
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also observed for chemical shifts [111,112]. 
It is not obvious that the K T l and KT2 functionals will give as good results 

for chemical shifts as they did for shielding constants — the improvement over 
other GGAs for shielding constants could just be a uniform rise, which would be 
cancelled out when shielding constant differences are considered. It is therefore 
important to assess them for a set of chemical shifts [162 . 

The AlO chemical shifts dataset is a subset of the systems in Ref. [ I l l ] , 
in which the isotropic chemical shifts of 44 molecules containing H, C, N, 
O and F nuclei were studied. This has previously been used to assess the 
performance of the self-interaction corrected Vosko-Wilk-Nusair (SIC-VWN) 
method of Patchkovskii et al. [ I l l ] and the statistical average of orbital po
tentials (SAOP) method of Poater et al. [112]. SIC-VWN consists of the local 
density approximation modified with the self-interaction correction of Perdew 
and Zunger [30], calculated within the optimised effective potential formalism. 
SAOP is a model exchange-correlation potential. 

For technical reasons, we considered only 36 of these molecules. It was 
therefore necessary to recalculate the results of the previous studies for this 
subset, in order to allow comparison. Following Ref. [112], we calculated the 
errors for each method by optimising the value of a notional reference shield
ing (Tref such that the mean error for the calculated chemical shifts is zero. 
This process was carried out separately for each nucleus. All calculations were 
performed at the TZP-quality BP86 geometries from the supplementary infor
mation of Ref. [ I l l ] , using the LORG formalism. 

We used a standard CADPAC Van Duijneveldt contraction basis set, with 
8s6p3d basis functions for C, N, 0 and F, and 6s3p for H, which is slightly 
smaller than that used for the SAOP assessment, but larger than that used 
for the SIC-VWN assessment. To quantify the agreement with the results in 
Refs. [111,112], we recalculated their LDA errors for the subset of 36 molecules. 
This involved using their quoted LDA chemical shifts and reference shieldings 
to determine the corresponding absolute shieldings using Eq. 3.7. A new set 
of reference shieldings and chemical shifts was then calculated for the subset 
by the method of minimising the mean error outlined above. The new errors 
are compared with our own LDA errors in Table 3.3. 
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Table 3 .3: LDA reference shieldings aref and mean absolute errors in isotropic chemical 
shifts for the AlO set. Values for Poater et al. [ I l l ] and Patchkovskii et al. [112] have been 
re-calculated from the data in the original references. All values are in ppm. 

C H N 0 F 
This work 

Cref 
Mean abs. error 

175.1 

9.2 

30 .57 

0.41 

- 1 1 2 . 9 

57.3 

173.3 

138.5 

302 .6 

31.1 

Poater et al. [112] 
fref 
Mean abs. error 

173.8 

9.4 

30 .43 

0.41 

- 1 1 4 . 3 

56.1 

176.6 

133.1 

306 .2 

30.1 

Patchkovskii et al. [ I l l ] 
fref 
Mean abs. error 

179.3 

7.8 

30 .45 

0.41 

- 1 0 6 . 6 

53.5 

192.6 

124.6 

314 .7 

24 .7 

Our values are in good agreement with the large basis set calculations of 
Poater et al., but not with the smaller basis set results of Patchkovskii et al. 
(in general their errors are smaller). This indicates that we can make a di
rect comparison of our methods with the SAOP results but not with those of 
SIC-VWN. Table 3.4 presents isotropic chemical shifts from the HCTH GGA 
functional, the B97-2 hybrid functional, the SAOP model potential (recalcu
lated using the data in Ref. [112]), the MKS(B97-2) method, and the KT2 
functional, all determined at BP86 geometries. These are compared with ex
perimental values from Ref. [ I l l . 

Table 3.5 presents the corresponding reference shieldings (Tref and mean 
absolute errors for each method. The HCTH results represent the best that can 
be obtained from previous GGA functionals, but as for shielding constants they 
are disappointing. In particular the errors from the N and O nuclei are very 
large. The hybrid functional B97-2 gives worse results overall, with O errors 
getting markedly larger. The H errors are similar in magnitude to a typical 
rovibrational correction, and the experimental values have not been corrected 
for these effects. A detailed assessment of these results would therefore require 
further analysis. 

Results improve greatly when using SAOP, with the performance for 0 in 
particular improving notably. MKS(B97-2) improves even further, especially 
for O and F. KT2 is intermediate between these two methods. However, both 
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MKS(B97-2) and SAOP are non-standard methods. MKS(B97-2) in particular 
is computationally demanding, and neither method can be used to optimise 
geometries because they are not associated with well-defined functionals and 
therefore will not be invariant to translations. Optimisations in internal coor
dinates would suppress this problem, but the optimised geometry would then 
depend on the choice of internal coordinates [163 . 

The KT2 results, therefore, are encouraging. They offer a significant im
provement over HCTH, the other GGA tested, and are surpassed only by 
MKS(B97-2). KT2 is also a much simpler method than MKS(B97-2) and less 
computationally costly. 

Because KT2 is a well-defined functional, we were also able to test the 
geometry dependence of its chemical shifts. The structures of the 36 molecules 
were optimised using the same 8s6p3d/6s3p basis used for the chemical shifts, 
and the reference shielding and errors were re-calculated. Results are shown in 
Tables 3.4 and 3.5. Chemical shifts are clearly sensitive to the geometry, with 
N and O errors decreasing, although F errors get slightly larger. However, the 
lack of rovibrational corrections in the experimental chemical shift have to be 
taken into account. For the most part these corrections are small, because 
the correction for the absolute shielding is cancelled in part by the reference 
shielding, but for the F2 molecule in particular the net shift correction is large, 
at approximately 35 ppm [164]. By including this result alone, the KT2 errors 
at the BP86 geometries and the KT2 geometries become almost identical, at 
16.2 ppm. To keep consistency with the earlier studies we did not attempt 
to find rovibrational corrections for every experimental number. Although 
these corrections should be negligible for most molecules under consideration, 
these results should be considered a qualitative guide to functional performance 
rather than a precise assessment. 

For comparison we also present the errors for the KT2 functional performed 
at geometries optimised using the 1/4 functional, which is known to have an 
excellent performance for structures in general [50,139]. The results show little 
change, and in fact overall they degrade slightly. Therefore we consider KT2 
geometries to be of acceptable quality for achieving optimal chemical shift 
results for main-group systenis. 
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Table 3.4: Isotropic chemical shifts. SAOP values have been re-caJculated from the data 
in Ref. [112]. Unless otherwise stated, calculations are performed at T Z P BP86 geometries. 
All values are in ppm. 

Molecule Nucleus HCTH B97-2 SAOP MKS K T 2 KT2'' Expt" 
(B97-2) 

CO C 195.6 202.0 192.0 192.6 188.8 188.6 194.2 
0 296.0 272.0 313.4 345.4 330.8 354.3 386.3 

CO2 c 127.7 131.7 128.6 129.6 130.1 131.0 136.4 
0 11.4 -20.3 44.8 73.4 50.2 74.5 100.6 

F2 F 629.3 618.2 638.6 585.8 573.6 536.1 596.0 
OF2 0 967.9 869.1 952.6 905.6 910.5 853.3 817.1 

F 457.8 446.4 455.1 424.0 446.3 420.4 426.0 
HOF 0 399.4 365.5 443.5 431.6 400.0 389.2 

H 12.6 12.6 13.4 12.1 11.8 11.4 12.1 
F 206.9 187.8 191.4 203.2 197.8 186.8 194.0 

NF3 N 108.8 99.3 110.4 106.5 112.0 103.3 
F 357.0 353.1 343.3 338.1 364.1 358.4 312.8 

H2O 0 -96.8 -130.8 -71.6 -27.4 -55.4 -35.7 0.0 
H 0.2 0.4 0.8 0.4 0.2 0.0 0.55 

H2O2 0 154.3 109.7 177.4 204.7 181.2 184.6 210.6 
H 7.1 6.9 7.5 6.9 6.8 6.5 

HCN c 108.1 111.5 111.1 108.5 106.2 108.1 113.0 
N -60.0 -54.5 -54.5 -53.1 -54.9 -44.8 -41.3 
H 2.6 2.6 2.2 2.7 3.0 2.9 2.83 

N2 N -12.5 -4.4 -8.4 -8.4 -10.8 -3.1 0.0 
N2O N (terminal) -180.4 -171.9 -168.1 -167.5 -168.0 -162.5 -161.1 

N(middle) -98.3 -87.2 -86.3 -81.6 -82.7 -74.8 -72.9 
0 61.5 32.2 100.8 117.3 104.4 123.1 141.5 

N2O3 N{NO) 654.6 544.9 541.5 520.3 535.6 466.0 366.0 
N(N02) 89.1 115.0 112.1 108.8 103.3 100.5 138.0 
0(N0) 1217.7 1089.5 1068.1 1069.0 1088.2 1036.0 891.0 
0(n62) 347.3 344.0 398.8 407.8 388.4 395.6 461.0 

O3 0 (terminal) 1803.5 2047.1 1755.2 1566.8 1664.6 1587.0 1634.0 
0 (middle) 1137.3 1387.9 1193.3 1122.1 1126.3 1116.2 1068.0 

HF F -89.5 -74.3 -74.0 -64.3 -79.5 -66.2 -46.9 
H 1.7 2.1 3.3 2.1 1.5 1.4 2.10 

NH3 N -350.0 -352.6 -349.0 -332.5 -335.9 -330.5 -326.2 
H -0.4 -0.3 -0.5 -0.3 -0.4 -0.5 -0.09 

CH4 C -3.5 -4.7 -5.7 -1.4 -1.1 -2.1 0.0 
H -0.1 -0.1 -0.4 -0.1 -0.1 -0.1 0.00 

C2H6 C 13.6 10.8 11.8 14.8 15.9 14.6 14.2 
H 0.7 0.6 0.4 0.7 0.8 0.8 0.74 

continued on next page.. 
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Table 3.4: continued 

Molecule Nucleus H C T H B97-2 SAOP MKS 
(B97-2) 

K T 2 KT2'' Expt" 

C2H4 C 131.3 131.9 133.2 130.5 129.8 130.2 130.5 
H 5.5 5.4 5.2 5.4 5.4 5.6 5.18 

CH2CCH2 C(iniddle) 225.0 228.3 227.5 222.7 222.0 223.4 224.3 
C (terminal) 77.8 77.9 77.7 77.7 77.7 77.6 79.7 
H 4.7 4.6 4.2 4.6 4.7 4.8 

C2H2 C 71.2 72.8 74.6 72.7 71.5 73.4 77.9 
H 1.2 1.2 0.7 1.3 1.5 1.4 1.33 

H2CO 0 640.7 628.0 616.0 650.7 657.1 681.9 590.0 
C 204.2 204.3 205.6 201.8 199.5 200.1 195.2 
H 10.2 9.9 9.8 9.7 10.0 10.2 9.5 

CH3CHO C(C(0)H) 207.9 209.1 210.8 207.4 203.7 204.1 201.7 
C(CH3) 37.2 34.7 36.3 38.8 39.8 39.2 38.0 
0 568.7 555.2 548.9 586.4 591.4 613.7 628.0 
H(C(0)H) 10.2 9.9 9.9 9.8 10.1 10.4 
H(CH3) 1.8 1.8 1.6 2.0 1.8 2.1 1.79 

CH2CO C(CO) 200.0 203.8 200.4 198.1 198.6 198.3 201.0 
C(CH2) 1.9 1.8 2.3 3.7 3.3 2.2 9.5 
0 240.3 217.2 255.0 287.0 277.0 299.3 
H 2.2 2.3 1.7 2.2 2.3 2.3 

CH2CHCHO 0 572.2 550.0 542.2 580.9 588.7 611.5 615.1 
C(C(0)H) 201.3 203.0 202.7 198.4 197.7 198.5 201.2 
C(CH) 148.8 149.1 150.1 147.8 148.2 148.5 145.8 
C(CH2) 146.9 147.3 149.7 145.6 144.0 145.6 144.6 
H(C(0)H) 9.9 9.7 9.5 9.5 9.8 10.1 
H(CH) 6.3 6.4 6.2 6.3 6.4 6.6 
H(CH2,cis) 6.5 6.5 5.9 6.1 6.5 6.8 
H(CH2,trans) 6.2 6.2 6.3 6.4 6.1 6.3 

(CH2)20 C 49.0 45.5 49.9 51.1 50.4 49.6 47.6 (CH2)20 
0 -101.6 -144.9 -83.8 -34.9 -66.7 -44.2 -13.0 
H 2.4 2.3 2.1 2.4 2.4 2.4 

C302 C(middle) -14.0 -16.7 -13.4 -14.8 -13.0 -12.6 -7.6 
C (terminal) 119.7 125.2 121.1 122.1 120.9 122.2 136.7 
0 89.2 58.3 121.5 148.0 125.0 150.8 

CH3NH2 C 37.3 34.0 36.6 38.4 40.1 39.1 36.8 
N -325.6 -332.3 -326.6 -311.0 -312.2 -307.4 -311.7 
H(CH3) 2.2 2.1 2.0 2.1 2.3 2.3 
H(NH2) 0.0 0.0 -0.2 0.1 0.1 0.0 0.27 

CH2NN C 25.4 25.6 28.2 26.8 28.3 26.7 30.1 
N(middle) -38.5 -40.8 -23.3 -27.7 -28.8 -21.7 -16.2 
N (terminal) 75.8 102.1 79.5 72.2 76.6 78.1 90.4 
H 3.1 3.2 2.7 3.1 3.3 3.4 

continued on next page.. 
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Table 3.4: continued 

Molecule Nucleus H C T H B97-2 SAOP MKS 
(B97-2) 

K T 2 K T 2 * Expt" 

CH3CN C(CH3) 5.1 2.9 3.5 6.5 8.0 7.4 7.4 
C(CN) 119.1 121.5 121.8 118.8 117.1 118.9 121.3 
N -69.2 -63.5 -64.1 -62.6 -61.5 -52.7 -52.8 
H 1.6 1.6 1.2 1.6 1.8 1.8 1.53 

CH3NC C(CH3) 30.6 28.6 29.8 32.1 33.9 33.4 33.8 
C(NC) 173.9 179.7 175.9 172.8 168.9 170.3 165.2 
N -181.0 -180.2 -178.1 -169.8 -172.0 -162.2 -141.0 
H 2.9 2.8 2.5 2.9 3.0 3.1 

CH3NO2 C 68.1 66.9 68.7 68.5 70.7 68.9 68.4 
N 42.2 71.4 71.2 58.7 57.1 61.1 74.7 
0 589.1 580.5 613.5 601.4 609.5 617.4 639.0 
H 4.1 4.0 3.7 4.0 4.2 4.1 3.91 

CH3F C 80.9 77.1 82.1 81.5 82.5 81.6 78.9 
F -133.3 -127.4 -130.0 -111.0 -128.4 -114.0 -107.7 
H 4.1 4.0 4.1 4.1 4.2 4.4 4.00 

CH2F2 C 124.8 119.5 123.6 124.2 126.5 125.4 117.6 
H 5.8 5.5 5.6 5.7 5.9 6.1 
F 4.3 7.7 6.6 19.5 17.6 32.5 24.1 

CHF3 C 136.8 131.6 131.2 135.7 138.4 137.0 126.7 
H 6.7 6.4 6.4 6.5 6.8 7.0 
F 71.0 76.3 73.3 84.9 87.1 100.9 89.1 

CF4 C 143.2 138.0 132.7 141.5 145.0 144.0 130.7 
F 88.1 96.6 89.5 103.6 102.3 115.1 104.2 

COF2 C 147.0 147.2 141.2 147.3 148.6 149.3 141.1 
0 202.4 180.4 216.5 255.0 237.6 258.2 
F 141.5 148.7 139.4 149.3 152.3 163.2 141.5 

* Evaluated at K T 2 optimised geometries 
'' Ref. [ I l l ] 
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Table 3.5: Reference shieldings (Tref and mean absolute errors in isotropic chemical shifts 
for the AlO set. SAOP values have been re-calculated from the data in Ref. [112]. Unless 
otherwise stated, calculations are performed at T Z P BP86 geometries. All values are in 
ppm. 

L-6Q ^H 15N i 'O I S p 

H C T H 
Cref 
Mean abs. error 

182.9 
4.5 

31.15 
0.26 

-95.6 
44.4 

216.1 
102.3 

309.7 
24.4 

B97-2 
fref 
Mean abs. error 

184.0 
4.7 

31.16 
0.17 

-96.8 
29.3 

184.3 
136.2 

327.0 
18.1 

SAOP 
fref 
Mean abs. error 

181.7 
4.1 

30.83 
0.45 

-^94.2 
27.0 

249.4 
78.0 

337.2 
20.4 

MKS(B97-2) 
fref 
Mean abs. error 

186.5 
4.0 

31.14 
0.14 

-76.1 
23.8 

290.4 
50.8 

340.4 
8.5 

K T 2 
fre f 
Mean abs. error 

191.6 
4.4 

31.19 
0.25 

-76.5 
26.1 

260.4 
59.5 

321.0 
17.3 

K T 2 * 

Mean abs. error 
194.0 

4.0 
31.69 
0.35 

-65.6 
16.1 

289.7 
42.8 

342.8 
19.7 

KT2'' 
fre f 
Mean abs. error 

194.9 
4.2 

31.57 
0.37 

-65.2 
23.2 

303.7 
47.6 

349.9 
19.7 

* Evaluated at K T 2 optimised geometries 
'' Evaluated at 1/4 optimised geometries 
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3.3 Implementation in D A L T O N 
The C A D P A C program has some limitations with respect to magnetic prop
erties. The GIAO formalism is not implemented, so calculations have to be 
performed using the LORG formalism with a large basis set. Also, CADPAC is 
not capable of calculating spin-spin coupling constant calculations. We there
fore implemented the K T l and KT2 functionals in the DALTON [78] program, 
which is not subject to these limitations. 

The implementation of the KTX term required a similar set of Fortran 
subroutines to the CADPAC implementation, with the only difference being 
that the KTX equations were written in closed shell form as DALTON cannot 
do unrestricted calculations. To check the implementation, we confirmed that 
the converged energy of closed shell molecules from the two programs agreed 
to within the error introduced by the different numerical integration grids 
10~^ £'h). The Hellmann-Feynman test (Section 2.3) was performed to ensure 
a variational implementation. 

3.3.1 GIAO shielding constants 

Shielding constant calculations in D A L T O N are performed using the GIAO for
malism [98] rather than LORG. To further validate our implementation and 
assess the effect of this change of gauge treatment, we recalculated the A l 
set of isotropic shielding constants for K T l and KT2 in DALTON . The same 
geometries as before were used, with the (unmodified) Huzinaga IV basis set. 
Another difference in DALTON is that by default spherical-harmonic basis func
tions are used (giving for example 5 d functions of the form xy, xz, yz, -y^, 
and 2ẑ  - x"^ - y^), although it is also possible to use Cartesian basis func
tions (which would give 6 d functions of the form xy, xz, yx, x^, y^, and z'^). 
C A D P A C can only use Cartesian basis functions, so for this check Cartesian 
functions were also used in DALTON. 

Results are presented in Table 3.6. The LORG and GIAO results are in 
very good agreement, demonstrating a correct implementation. The effect of 
the gauge treatment is small for the Huzinaga IV basis set, as expected. (This 
is also a validation of our LORG results as GIAO results are more converged 
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Table 3.6: Comparison of L O R G and GIAO isotropic shielding constants determined using 
the Huzinaga IV basis set. All values are in ppm. 

Mol. Nuc. 
K T l 

L O R G GIAO 
K T 2 

L O R G GIAO 
HF F 412.0 410.9 412.4 411.4 
H2O 0 330.7 330.5 329.6 329.5 
CH4 C 196.4 196.3 195.2 195.1 
CO C 10.4 9.9 7.4 6.9 

0 -56.1 -55.9 -57.1 -56.9 
N2 N -55.8 -56.0 -59.7 -59.9 
F2 F -193.6 -193.0 -211.0 -210.4 
O'OO' 0 -1246.3 --1246.0 -1278.7 --1278.4 

0' -796.9 -796.6 -809.1 -808.9 
PN P 46.6 46.9 47.1 47.3 

N -358.8 -358.3 -361.5 -361.0 
H2S S 741.5 742.4 735.7 736.3 
NH3 N 265.9 266.1 264.5 264.6 
HCN C 87.2 86.9 86.0 85.7 

N -18.6 -18.8 -19.4 -19.6 
C2H2 C 120.5 120.3 120.4 120.2 
C2H4 C 64.3 64.1 63.2 63.0 
H2CO c -3.0 -3.3 -4.7 -4.9 

0 -383.8 -383.5 -379.6 -379.3 
N'NO N' 106.8 106.4 102.1 101.7 

N 14.2 13.5 12.2 11.4 
0 184.1 184.3 177.5 177.6 

CO2 c 65.0 64.0 63.7 62.8 
0 224.5 224.4 221.6 221.4 

OF2 0 -516.7 -516.4 -534.0 -533.7 
H2CNN' c 170.1 169.9 167.4 167.2 

N -37.5 -37.9 -41.7 -42.1 
N' -128.3 -128.7 -138.4 -138.8 

HCl CI 961.3 965.2 958.6 962.3 
SO2 s -149.5 -148.5 -156.8 -155.9 

0 -244.6 -244.8 -251.8 -251.8 
PH3 p 600.5 601.6 596.0 596.9 
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for a given basis set). Note that the results for molecules with second-row 
atoms (P, S, and CI) differ from those in Table 2.4 due to the use here of the 
unmodified basis set. 

We next assessed the K T l and KT2 functionals for GIAO isotropic shield
ing constants of the A l l set of 14 systems. This set was previously stud
ied by Helgaker et al. [165]. It is a very challenging set of highly correlated 
molecules, including charged species and two systems ( C O 2 and N 2 O ) at non-
equilibrium cyclic geometries. Calculations were performed using the geome
tries of Ref. [165] and the Huzinaga I I I basis set [106,107] with spherical-
harmonic basis functions. In Ref. [165] it was shown that under the GIAO 
formalism the Huzinaga I I I basis set gave essentially the same shielding con
stant results as the more computationally demanding Huzinaga IV. 

Table 3.7 presents the results for K T l and KT2 in comparison with LDA, 
the BLYP GGA, the hybrid functional B3LYP and reference ab initio and ex
perimental data. The errors show a similar trend to that of the A l shielding 
constant set. The BLYP errors are improved compared to LDA, and the hybrid 
functional B3LYP performs less well than BLYP. All three functionals give er
rors that are significantly too deshielded. The results for K T l and KT2 are 
significantly improved, with both mean absolute errors and mean absolute per
centage errors reduced by more than a factor of two over BLYP. This suggests 
that K T l and KT2 perform as well for charged species and non-equilibrium 
geometries as they do for the neutral systems at equilibrium geometries. How
ever, their performance compared to experiment is still inferior to the best ab 
initio wavefunction methods. (Note that the ab initio value for C6H5N2 is 
not included in any error analysis because it was calculated using uncorrelated 
Hartree-Fock theory.) 

The reason for the good performance of K T l and KT2 is the same as for 
the A l set, namely the raising of the occupied-virtual eigenvalue differences. 
For the systems in the A l l set, we observe that the K T l and KT2 HOMO-
LUMO gaps are noticeably larger than those of LDA and BLYP, repeating the 
findings of Table 2.9. This makes the paramagnetic contribution to the shield
ing constant smaller. To check this we calculated the average diamagnetic 
and paramagnetic contributions to the shielding constant for the A l l systems, 
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Table 3.7: GIAO isotropic shielding constants determined using the Huzinaga I I I basis set. 
All values are in ppm. 

Mol. Nuc. LDA B L Y P B3LYP K T l K T 2 ab initio Expt.8 
CH2 H -62.5 -24.5 -29.8 -19.8 -16.8 -7.8* 

C -2003.2 -1135.3 -1252.6 -915.7 -868.8 -718* 
CF2 C -151.4 -139.3 -145.8 -91.2 -94.5 -101* 

F -117.6 -92.0 -77.6 -64.7 -60.5 -34* 
CF4 C 37.3 35.8 44.6 53.7 52.2 64.4'' 64.5 

F 219.2 224.6 236.2 231.9 231.9 
NO2- N -427.4 -420.1 -473.4 -350.5 -360.8 -360* -368 

0 -492.1 -474.0 -502.1 -396.6 -409.0 -382* -342 ± 20 
linear-C02 C 48.7 48.5 48.3 63.2 61.9 63.5'' 58.8 

0 207.9 210.1 211.4 222.0 218.9 236.4̂ ^ 243 ± 17 
cyclic-C02 c -93.1 -87.9 -93.3 -52.1 -55.6 -50.6* 

0 -138.4 -130.2 -138.8 -77.3 -89.6 -52.1* 
linear-N20 Nterm 87.5 87.3 81.1 105.6 100.8 100.5"= 99.5 

Ncent -3.0 -5.2 -11.9 12.5 10.4 5.3<= 11.3 
0 179.1 173.4 172.7 183.0 176.3 198.8*= 200.5 

cyclic-N2 0 N -171.3 -169.3 -171.0 -126.5 -132.3 -87.3* cyclic-N2 0 
0 44.8 37.1 53.4 82.0 68.4 87.4* 

cis-N2F2 N -172.9 -175.5 -183.7 -137.1 -143.2 -100.9" -119.8 
F -6.2 -3.3 14.5 27.2 21.7 80.7" 52.8 

trans-^2F2 N -256.3 -255.8 -266.3 -208.4 -216.9 -165.5" -181.7 
F 14.5 18.4 40.3 47.5 42.9 103.7" 95.1 

CeHe C 39.9 40.9 43.0 61.0 59.6 64.0'' 57.2 
C2H+ -165.7 -165.7 -183.1 -128.7 -132.5 -143.0*= C2H+ 

107.2 105.8 108.6 121.2 120.0 129.2*= 
C7H+ Ca -64.8 -62.5 -68.6 -37.1 -39.4 -36.6« C7H+ 

C0 120.8 120.4 124.7 136.0 134.7 145.6^ 
C/3' 149.7 148.6 155.4 162.1 160.9 175.2« 
C-y 125.4 125.3 132.5 139.9 138.5 152.1« 
C-y' 128.1 127.0 133.6 141.9 140.5 156.5* 

C6H5N+ Na -8.0 -6.5 -0.8 17.0 14.5 41.8^ 15.9 
-102.4 -97.2 -97.1 -64.2 -69.5 -62.4f -73.5 

|d| (Expt.) 44.5 42.5 46.2 17.6 19.3 11.3 
\d\ {ab initio) 91.4 56.7 62.8 23.7 24.3 

\d\% (Expt.) 52.4 51.7 51.1 15.5 16.6 13.7 
\d\% {ab initio) 86.1 61.6 68.0 28.5 28.1 

* Ref. [166], I G L O - M C S C F . 
Ref. [167], GIA0-MBPT(2) . 
Ref. [132], GIAO-CCSD. 

" Ref. [168], G I A O - F V CASSCF. 
« Ref. [169], GIAO-CCSD(T) . 
f Ref. [170], L O R G - S C F (not included in any error analysis), 
g See Ref [165]. 
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Table 3.8: Average diamagnetic (cTd) and paramagnetic (cTp) contributions to the calculated 
shielding constants {a = + cTp) of the A l l set, in ppm. 

LDA BLYP B3LYP K T l KT2 
(Td 391.6 393.2 393.0 395.2 396.3 
CTp -486.0 -455.9 -460.6 -423.1 -426.4 

which are presented in Table 3.8. The diamagnetic contributions show little 
variation, whereas as expected the K T l and KT2 paramagnetic contributions 
are significantly less negative than those of the other functional. 

The reduced paramagnetic contribution can also be seen in the individual 
shielding constant tensor components. In Table 3.9, we present the individual 
tensor components for the CH2 and CF2 carbenes and cyclic CO2 and N2O, 
which were originally studied by van Wiillen and Kutzelnigg [166]. Those 
authors observed a strong deshielding xx component in the C shielding tensor 
of the carbenes that can be attributed to the lone pair on the carbon atom (all 
the systems are in the xz plane). They calculated this contribution using an 
MCSCF approach. By comparison, the xx components of our BLYP results 
are too deshielded, which explains why the overall BLYP shielding constants 
for the carbene are too deshielded. In contrast, the K T l and KT2 values are 
much less deshielded, and the overall shielding constants are raised accordingly. 
In the case of cyclic CO2 and N2O, there is again a general trend for the K T l 
and KT2 components to be more shielded than BLYP and hence closer to the 
MCSCF values. For CO2 the xx components dominate due to lone pairs on 
the carbon and oxygen atoms. The same is seen for the O atom of N2O, but 
for the N atom the zz tensor component dominates, due to excitations from 
the lone pairs into the N-N TT* orbital. 

3 .3 .2 S p i n - s p i n c o u p l i n g c o n s t a n t s 

Indirect spin-spin coupling constants are, along with chemical shifts, the most 
important property for the interpretation of experimental NMR data, as they 
describe the size of the characteristic splittings observed in NMR spectra. The 
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Table 3.9: Shielding constant principal tensor components. All values are in ppm. 

BLYP K T l KT2 MCSCF" 
CH2 (C) 

CTxx 

Ozz 

-3228 
209 

-387 

-2631 
217 

-333 

-2494 
216 

-328 

-2120 
201 

-237 

CF2 (C) 

^VV 

-431 
11 
2 

-327 
30 
23 

-334 
27 
23 

-397 
52 
42 

Cyclic CO2 (C) 
Oxx 

^yy 
<yzz 

-349.2 
74.2 
11.4 

-280.3 
89.3 
34.8 

-286.6 
85.1 
34.7 

-295.4 
98.3 
45.2 

Cyclic CO2 (0) 
Oxx 

^yy 
Ozz 

-379.6 
80.7 

-91.5 

-302.3 
110.7 
-40.4 

-307.5 
93.1 

-54.4 

-297.5 
156.3 
-15.0 

Cyclic N2O (N) 
Oxx 

'^yy 
(Tzz 

-72.0 
43.3 

-479.2 

-27.3 
66.4 

-418.7 

-29.2 
60.3 

-428.1 

25.7 
86.2 

-374.0 

Cyclic N2O (0) 
fir a; 
'^yy 
Ozz 

-254.4 
501.2 

-135.7 

-183.3 
495.4 
-66.2 

-207.1 
486.5 
-74.3 

-177.8 
517.9 
-77.8 

Ref. [166]. 
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indirect spin-spin coupling constant is defined as [171 

where 7̂ - is the nuclear magnetogyric ratio of nucleus K, which depends on its 

isotope. Therefore spin-spin coupling constants are dependent on the isotopes 

involved (unlike shielding constants). Kkl is the reduced indirect spin-spin 

coupling constant, defined as 

where the nuclear magnetic moments M^^ are related to the nuclear spins Ij^ 

by 

Mk = 7KhlK (3.10) 

The expression for Kkl was given by Ramsey [172] as 
(0|hPSO|,)(,|hPSO|o)T 

Kkl = ( 0 | h ^ i ° | 0 ) + 2 E 

(0|hgP + h |P |^ ) ( t |h i^ + h |P |0)^ 

where the first summation is over all singlet excited states and the second sum

mation is over all triplet excited states. The diamagnetic spin-orbit (DSO), 

paramagnetic spin-orbit (PSO), spin-dipole (SD), and Fermi-contact (FC) op

erators are given by 

.DSO (rS^rg)! -^iK^lL (o->n\ 
^KL - -77 2^ ;xT3 y^-^^i 2 ^ ry-lL 

riK X Pi hPSO = a 2 ^ i i K _ i P i (3^3) 

j^pc ^ ^ ^ < j ( r , ^ ) s , (3.14) 

\,f = ^ 2 ^ M ^ i £ ) £ i ^ Z l k ! i (3.15) 
i ^iK 
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The DSO and PSO components are similar in form to the diamagnetic and 
paramagnetic contributions to the shielding constant, but the SD and FC com
ponents do not have counterparts. The FC component contains a Dirac delta 
function which restricts its evaluation to the core of each nucleus. We expected 
that the K T l and KT2 functionals would have a similar effect on the DSO and 
PSO contributions as they did for the shielding constant calculations, but it is 
unclear what effect they would have on the other contributions, especially the 
FC term, as the form of the K T X term at the nucleus was not considered in 
its development. 

The spin-spin coupUng constant is calculated using response theory as for 
shielding constants, but the SD and FC components require the additional 
evaluation of the electric Hessian. The analytic expression for this contains 
second derivatives of Fxc with respect to the density and density gradient, so 
an extra subroutine was implemented in DALTON to calculate these derivatives 
for the K T X term. This was checked for consistency with the other subroutines 
with the Hellmann-Feynman theorem by calculating the polarisabihty of closed 
shell molecules first analytically and then by finite difference of the dipole 
moment in a positive and negative uniform electric field. 

Assessments of spin-spin coupling performance are less common than for 
shielding constants due to the greater complexity of the calculations, but some 
examples do exist [111,171,173-178]. To assess the performance of K T l and 
KT2 for spin-spin couplings, we performed calculations on the A12 set of 
11 molecules taken from Refs. [176] and [177]. A l l four contributions to the 
coupling constant were calculated. 

The nature of the Fermi-contact term requires special attention to the 
choice of the basis set. I t is important to have sufficient flexibility in the basis 
functions at the core. We therefore use the augmented Huzinaga I I I basis set 
of Ref. [176] (Huzinaga III-su3), in which the s functions are uncontracted and 
three further tight s functions are added. Spherical-harmonic basis functions 
were used. Near-experimental geometries from Ref. [103] were used (except 
for CeHe, for which rcc = 1-392 A, rcn = 1-086 A, and CzHe, for which 
rcc = 1-526 A, rcH = 1-088 A, ĈCH = 107.4°, ^HCH = 111.5°). Results are 
presented in Table 3.10. Again, we compare with the LDA, BLYP, and B3LYP 
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Table 3.10: Indirect spin-spin coupling constants determined using the Huzinaga III-su3 
basis set. All values are in Hz. 

Mol. LDA BLYP B3LYP K T l KT2 Expt.'' 
HF 395.9 390.0 439.3 344.7 335.1 538.0 
CO 26.7 22.7 19.4 25.8 27.3 15.7 
1 4 ^ 1 5 ^ 4.3 3.1 1.8 3.9 3.9 1.7 
H2O -65.7 -72.6 -76.9 -66.2 -68.1 -86.0 

VHH -3.3 -6.4 -8.1 -6.3 -10.4 -8.2 
-8.1 -12.6 -18.1 -5.1 -5.5 -20.5 

VcH 223.9 284.3 284.4 250.8 279.5 262.2 
-6.3 -5.9 -7.5 -4.0 -3.0 -8.2 
37.0 44.9 45.4 40.8 43.5 44.1 

VHH -5.0 -9.1 -10.4 -8.2 -12.5 -10.3 
CH4 100.2 133.3 132.2 117.1 128.4 120.0 

-7.3 -12.5 -13.3 -10.6 -15.6 -12.1 
C2H2 176.8 201.0 204.9 175.4 180.9 184.8 

215.8 277.0 274.2 251.6 280.9 243.0 
48.9 57.2 55.9 58.2 58.7 53.1 
6.5 10.3 11.0 10.8 14.9 9.7 

C2H4 51.4 69.5 73.1 53.0 56.3 66.7 
128.0 166.7 166.1 148.6 164.6 151.2 

1.4 0.1 -1.4 2.7 -0.2 -1.2 
VHH 4.5 4.9 3.4 6.3 3.5 2.0 

10.0 13.1 13.1 12.1 14.6 10.5 
3 T •'trans 14.7 20.5 20.2 20.8 25.0 16.7 

C2H6 Vcc 11.4 21.8 24.5 11.4 13.2 34.5 
103.9 137.2 136.4 121.1 133.4 125.2 
-2.3 -3.9 -4.6 -2.8 -4.8 -4.7 

VHH -5.0 -9.1 -10.0 -7.3 -11.8 
CeHe V c c 42.6 56.7 60.1 42.1 45.0 56.1 

0.5 -0.3 -1.8 0.4 -1.2 -1.7 
Vcc 9.8 10.5 11.2 8.9 9.6 9.4 
VcH 129.9 167.2 166.8 149.6 166.4 153.8 

3.3 3.1 2.0 4.4 2.8 1.4 
'JCH 6.1 7.9 8.1 7.8 8.6 7.0 
VcH -0.3 -0.8 -1.3 -0.6 -1.1 -1.0 
VHH 6.9 9.0 8.8 8.3 9.5 7.0 

1.2 1.6 1.3 2.0 1.9 1.2 
0.2 0.5 0.8 0.4 0.9 0.6 

\d\ (all) 12.9 10.0 8.0 10.8 12.6 
Ml" 9.1 6.0 5.3 5.5 7.0 
\d\% (all) 45.7 29.5 15.2 49.4 35.8 

* All experimental values include vibrational corrections (calculated at the B3LYP level), 
except C2H6. See Refs. [176,177]. 

Excluding ^ JHF in HF 
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functionals, against vibrationally-corrected experimental reference data. Er
rors are presented with and without the challenging VHF coupling of the HF 
molecule. 

The trend here is different from that observed for the shielding constants. 
The errors improve from LDA to BLYP to B3LYP (unlike for shielding con
stants, the hybrid functional performs better than the GGA). The K T l and 
KT2 errors are overall slightly worse than BLYP. K T l and KT2 therefore offer 
no improvement for spin-spin couplings. They are particularly poor for HF, 
and if i t is removed from the error analysis then the K T l mean absolute error 
is close to that of B3LYP, whereas KT2 remains slightly worse than BLYP. 
Both functions have large percentage errors, which indicates that the couplings 
with small values are significantly in error. 

The reason for the relatively poor performance of K T l and KT2 can be 
deduced from the values of the individual components of the couplings. Ta
ble 3.11 presents the DSO, PSO, SD, and FC contributions to the coupling 
constants VHF in HF, ^Jco in CO, ĴCH in HC^^N, and Vcc in C2H2. K T l 
and KT2 give poor results for the first two couplings but are relatively ac
curate for the second two. The change in the DSO and PSO contributions 
are analogous to the findings for shielding constants. In all cases the DSO 
contributions vary very little, whereas the PSO contributions from K T l and 
KT2 are smaller than from the other functionals. This is expected due to 
the presence of the occupied-virtual eigenvalue differences in the PSO term. 
Patchkovskii et al. suggest that such a reduction is desirable [111]. However, 
the spin-spin coupling constant results are dominated by the variation in the 
Fermi-contact term. In the first two couplings, the change in the Fermi-contact 
term for K T l and KT2 causes the total results to degrade. In the second two 
couplings, the opposite occurs. 

These conclusions are consistent with the findings of Patchkovskii et al. [ I l l . 
They assessed their SIC-VWN procedure for spin-spin couplings and obtained 
results similar to those of K T l and KT2. This is because SIC-VWN also in
creases occupied-virtual eigenvalue differences, giving good chemical shifts, but 
again this can have a detrimental effect on the Fermi-contact term. The errors 
inherent in DFT spin-spin coupling calculations are therefore fundamentally 
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Table 3.11: Diamagnetic spin-orbit (DSO), paramagnetic spin-orbit (PSO), spin-dipole (SD) 
and Fermi-contact (FC) contributions to selected indirect spin-spin coupling constants. All 
values are in Hz. 

LDA BLYP B3LYP K T l KT2 Expt. 
HF, VHF 
DSO 0.3 0.3 0.3 0.4 0.3 
PSO 199.7 203.4 201.3 198.4 198.0 
SD 5.3 3.4 1.3 4.0 1.5 
FC 190.6 182.9 236.4 141.9 135.3 
Total 395.9 390.0 439.3 344.7 335.1 538.0 

CO, iJco 
DSO 0.1 0.1 0.1 0.1 0.1 
PSO 15.1 14.5 14.3 13.7 14.0 
SD -4.8 -5.7 -6.1 -5.2 -5.7 
FC 16.4 13.8 11.1 17.3 18.9 
Total 26.7 22.7 19.4 25.8 27.3 15.7 

HCi^N, iJcH 
DSO 0.5 0.4 0.4 0.4 0.4 
PSO -0.5 -0.4 -1.0 -0.4 -0.4 
SD 0.7 0.6 0.5 0.6 0.7 
FC 223.3 283.7 284.4 250.1 278.8 
Total 223.9 284.3 284.4 250.8 279.5 262.2 

C2H2, ^Jcc 
DSO 0.0 0.0 0.0 0.0 0.0 
PSO 6.6 7.1 8.4 5.9 6.3 
SD 8.4 10.8 11.6 8.8 10.5 
FC 161.8 183.2 184.9 160.6 164.1 
Total 176.8 201.0 204.9 175.4 180.9 184.8 
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diflferent in nature to those for shielding constants. 

3.3.3 MKS spin-spin coupling constants 

Finally, we consider spin-spin couplings calculated using the MKS method, in 
order to further explore the relationship between the DFT functional used and 
the individual coupling components. The ZMP program was modified to print 
out the potential on a numerical grid compatible with DALTON, and DALTON 
was modified to read in the potential from disk for use in a spin-spin coupling 
calculation. An additional complication for MKS shielding constants is the 
need to calculate the electric Hessian, which requires explicit derivatives of 
Fxc- This was not the case for shielding constants, because they only require 
the magnetic Hessian which can be expressed solely in terms of the Kohn-
Sham eigenvalues. The Fxc derivatives cannot be extracted from the ZMP 
orbitals and eigenvalues and therefore they must be calculated using a specific 
functional. 

We considered the same four coupling constants as in the previous section. 
Table 3.12 presents MKS(BD) and MKS(B3LYP) results using LDA, BLYP, 
K T l , and KT2 as Fxc- The TZ2P basis set was used to calculate the ZMP 
potential and Huzinaga HI-su3 for the coupling calculations. We also recalcu
lated the MKS(B3LYP) results using the Huzinaga in-su3 basis to calculate 
the ZMP potential. The change in the results was insignificant, which suggests 
that TZ2P is a satisfactory basis set for the ZMP calculations (no extra core 
functions are required). 

There are no straightforward conclusions that can be drawn from the MKS 
spin-spin coupling constant results. For some couplings, use of the MKS 
method improves the result, and for others the results are degraded. There 
is no consistency across the functionals used in Fxc, and the MKS(BD) and 
MKS(B3LYP) do not always change the result in the same direction. However, 
the results indicate that supplying improved orbitals and eigenvalues does not 
give overall improved results. This is in agreement with our findings from the 
conventional KT2 results. 
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Table 3.12: MKS indirect spin-spin coupling constants using Fxc =LDA, BLYP, K T l , and 
KT2 for the evaluation of the electric Hessian. 

LDA BLYP K T l KT2 Expt. 
HF, VHF 
Non-MKS 395.9 390.0 344.7 335.1 538 
MKS(BD)* 349.6 360.0 365.6 368.7 
MKS(B3LYP)'' 371.4 381.2 387.0 390.4 
MKS(B3LYP)<= 373.1 383.0 388.9 392.5 

CO, iJco 
Non-MKS 26.7 22.7 25.8 27.3 15.7 
MKS(BD)* 25.2 22.1 23.9 23.9 
MKS(B3LYP)'' 25.4 22.0 24.0 23.8 
MKS(B3LYP)'= 25.4 22.0 24.0 23.7 

HCi^N, 1 JcH 
Non-MKS 223.9 284.3 250.8 279.5 262.2 
MKS(BD)* 211.2 247.9 234.8 254.7 
MKS(B3LYP)'' 230.7 270.8 256.7 278.8 
MKS(B3LYP)= 233.0 273.4 259.2 281.6 

C2H2, ^Jcc 
Non-MKS 176.8 201.0 175.4 180.9 184.8 
MKS(BD)* 163.2 177.6 173.9 178.1 
MKS(B3LYP)'' 174.4 189.6 185.4 190.1 
MKS(B3LYP)'= 176.0 191.4 187.1 191.8 

* Using TZ2P to calculate the ZMP potential, and Huzinaga ni-su3 for the spin-spin 
calculation. 
^ Using TZ2P to calculate the ZMP potential, and Huzinaga III-su3 for the spin-spin 
calculation. 

Using Huzinaga HI-suS to calculate the ZMP potential £ind for the spin-spin calculation. 



Chapter 4 

The KT3 functional 

The KT2 functional is superior to all other conventional exchange-correlation 

functionals for shielding constants, chemical shifts, rotational g tensors [149], 

and magnetisabilities. Its performance for thermochemical and structural 

properties is also good, but is surpassed by other GGA functionals. For ex

ample, the 1/4 functional provides better geometries and HCTH gives better 

atomisation energies. In this chapter, we attempt to derive a new functional 

which retains the good quality magnetic response performance of KT2, while 

also improving performance for other properties. 

4.1 Choice of correlation functional (1) 
K T l and KT2 were both developed as simple corrections to the LDA. I t was 

therefore natural to use the V W N correlation functional, which is a parametri-

sation of the LDA correlation energy involving a functional only of the density. 

Improved correlation functionals can be developed by including derivatives of 

the density into their mathematical form, just as GGA exchange improves 

over LDA exchange. We therefore considered the effect of using the gradient-

corrected correlation functionals LYP and PBE instead of VWN. The new 

functionals take the form 

Exc[Pa, Pp] = aE^°^[p„ , p^] + ^ E / W T ^ d ^ + ^^c[Pa, Pp] (4.1) 
T J pj ( r ) -h7 

94 
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Table 4.1: Coefficients for functionals considering the replacement of VWN correlation with 
PBE or LYP. All functionals use 7 = 0.1 

a 8 
LDAX KTX C 

PBE(l) l.OOOOOE + 0 -5.50000E - 3 l.OOOOOE+ 0 
PBE(2) 1.07198E + 0 -6.00000E - 3 6.00000E - 1 
LYP(l) l.OOOOOE + 0 -6.00000E - 3 l.OOOOOE+ 0 
LYP (2) 1.09781E + 0 -6.74060E - 3 5.75228E - 1 

where the correlation functional Ec may be LYP or PBE. Our first task was to 
construct the LYP/PBE equivalents of K T l {a = 5=l). The value of 7 = 0.1 
was retained to reproduce the intershell structure of the exchange-correlation 
potential and prevent divergence at long range. Therefore the only variable 
coefficient was /9, which as for K T l was fitted to the A l isotropic shielding 
constant set. 

Table 4.1 presents the coefficients for these functionals. The KTl- type func
tionals are denoted LYP(l) and PBE(l) respectively. Table 4.2 summarises 
their performance for some of the molecular assessments considered in Chap
ter 2. Overall their performance is slightly worse than K T l , and they are also 
marginally worse for the A l shielding constants. The LYP and PBE function
als have a small but non-negligible effect on the shieldings, and they appear 
to match experiment less well as a result. This is because LYP and PBE 
introduce some unphysical distortions into the potential, particularly in the 
intershell region, which affects the shielding results. V W N does not introduce 
distortions of this kind as i t a functional only of the density. 

KT2-type functionals were also calculated, with the values of a and 6 free 
to vary. The LYP(2) variant did not have a fixed value of ^, because the fitted 
value of /? was sufficiently high to give good quality shieldings. The value of P 
did have to be fixed in PBE(2). 

As Table 4.2 shows, the LYP(2) and PBE(2) variants are again similar 
to KT2, but again their performance is not quite as good, in particular for 
the A3 atomisation energies. This is disappointing because LYP and PBE 
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Table 4.2: Error assessments for thermochemistry, molecular bond lengths, and isotropic 
shielding constants for the PBE and LYP functionals combined with KTX. Units are given 
in parentheses. 

PBE(l) PBE(2) LYP(l) LYP (2) K T l KT2 

A l . Isotropic N M R shielding constants (ppm) 
d -2.5 -3.7 -3.3 -5.6 -4.7 -9.5 
\d\ 16.1 13.8 14.7 13.1 13.0 13.2 
Excluding O3: 
d -1.7 -2.8 -2.8 -4.5 -4.0 -7.7 
\d\ 13.8 11.3 11.6 10.4 10.0 10.9 

A3. Atomisation energies (ppm) 
d 15.8 0.7 13.9 0.5 12.5 -0.1 
|d| 16.8 8.6 14.4 7.5 13.2 6.4 

A4. lonisation potentials (kcal mol" )̂ 
d -6.5 -4.5 -8.6 -2.8 1.2 -0.2 
|d| 6.5 5.4 8.6 4.7 1.3 3.9 

A5. Total atomic and ionic energies (kcal mol~ )̂ 
d -152.4 -416.9 -210.9 -544.3 -333.5 -461.4 
\d\ 158.9 418.0 217.0 545.2 334.7 461.8 

A6. G2 subset bond lengths (A) 
d 0.014 -0.001 0.015 -0.009 0.014 -0.001 
|d| 0.019 0.009 0.022 0.013 0.019 0.010 
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are generally believed to be better correlation functionals than VWN. The 
relatively good results for VWN are possibly a consequence of allowing the 
correlation coefficient to vary, rather than as a direct result of the quality of 
VWN. Nevertheless, VWN clearly remains the best correlation functional to 
use with functionals of this form. 

The results also raise the question of why all three correlation functionals 
are scaled to approximately 60% of their standard values. I t suggests that 
rather than there being a problem with the correlation functional, there is 
instead something intrinsically wrong with the energy characteristics of the 
K T exchange functional. 

4.2 Modifying the exchange functional (1) 
For non-magnetic properties, K T exchange is not an optimal functional. When 

developing the K T exchange term, we concentrated on the description of the 

intershell peak in the exchange-correlation potential. This description is better 

than any other GO A functional. Prom the perspective of the potential it could 

be argued that the problems with other properties are due to flaws in a different 

region of the potential that is not so important for shielding constants. We 

now consider whether these flaws can be fixed. 

4.2.1 Asymptotic correction 

A l l conventional GGA functionals, including K T l and KT2, have potentials 

that die off too quickly at long range. The exact exchange-correlation potential 

should die off as - 1 / r (to within a constant), where r is the distance from the 

nucleus. The LDA instead dies off exponentially. As r —>• oo, p{r) —> e"'"" (in 

the limit of a complete basis) and so the LDA potential behaves as 

-P ,1/3 (r) _e-(V3)ar (4 2) 
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The behaviour of the GEA potential is worse as i t diverges as r goes to infinity. 
At long range, the properties of the GEA potential of Eq. 2.27 are 

^ _e - ( l /3 )ar 1^^2g(l/3)ar _ 2/5a2g(l/3)ar (4 3) 
o 

Both GEA terms diverge, but the third term (involving the Laplacian of the 
density) has a higher coeflScient and so the potential diverges upwards (as p 
is usually negative). The correlation potential goes to zero at long range so it 
does not aff"ect the divergence. 

GGA functionals usually solve this problem by altering the form of the 
GEA such that i t behaves like the LDA at long range. They therefore also die 
off exponentially, instead of the correct — 1/r. Properties that depend on the 
long-range behaviour of the potential are therefore affected. The description 
of virtual orbitals and eigenvalues deteriorates, which in turn leads to poor 
Rydberg excitation energies and polarisabilities, among other properties. The 
extent to which it affects other properties, such as energies and structures, is 
less clear. Recently, Coulomb-attenuated hybrid functionals have been devel
oped that vary the amount of exact exchange with distance to give improved 
performance for long-range properties [179,180]. However, this can lead to a 
deterioration in properties at short-range [181 . 

We considered whether altering the K T functionals to give a better repre
sentation of the asymptotic potential, within the GGA formalism, might lead 
to improved property calculations. This was based on two beliefs: firstly, that 
the 1/4 functional gives good structures because its fit emphasised regions 
of the potential far from the nucleus; and secondly, any improvement to the 
potential should in some way improve the results gained from a functional. 

One method of asymptotically correcting the potential is simply to alter 
its value at every point at long range to give the correct —1/r behaviour [120 . 
However, this means the potential is no longer the derivative of a well-defined 
functional, and the calculations are therefore no longer within the GGA for
malism. Instead, we attempted to modify the K T exchange functional form 
such that the corresponding potential behaves more like—1/r. This is a dif-
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ficult task because the values of the density and its derivatives at long range 
are so low that any mathematical form that doesn't tend to zero or diverge is 
hard to find, and in any case will tend to magnify numerical instabilities. 

Our first crude attempt to alter K T exchange involved adding on another 
term of the form 

^xc[Pa, Pp] = Ell\p^, pp] - 0.12 ^ / p ' f ' \ v ) (4.4) 

which gave a corresponding potential 

VXCAPC^ = ^xc i - 0.1218pr''(r) (4-5) 

The low power of p meant that i t still had an effect on the potential even at 
long range where the density is very low. The coefficients were determined 
by a fit to the ZMP potentials of CO, N2, and PN, using the Excel fitting 
routine Solver. Solver is a general iterative non-linear fitting procedure, al
though the details of the fitting algorithm are proprietary. We denote the 
resulting functional AC(1). The assessment for this functional is presented in 
Table 4.3. I t gives shielding constants of a similar standard to K T l (as ex
pected because the asymptotic region does not contribute much to shieldings), 
and the performance for the A6 bond length optimisations is slightly improved, 
but its atomisation energies are inferior to K T l . Its ad hoc nature was also 
unsatisfactory. We therefore concluded that i t was not an improvement over 
K T l . 

We next investigated a more sophisticated approach involving a direct mod
ification to the K T term itself. From the discussion of the GEA divergence 
above, it is clear that a modification to the power of p wil l remove the diver
gence. Instead of the GEA form we used a functional of the form 

Exc[Pa,Pp] = E]i^^[p,, P ]̂ + /3 E / '̂ rl?''̂ " (̂-̂^ 
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Table 4.3: Error assessments for thermochemistry, molecular bond lengths, and isotropic 
shielding constants for the CC and AC functionals. Units are given in parentheses. 

AC(1) AC(2) CC(1) CCAC(l) CCACjjT 

A l . Isotropic N M R shielding constants (ppm) 
d -5.8 -14.7 -10.9 -9.0 -13.8 
\d\ 12.9 17.3 14.0 12.9 14.7 
Excluding O3: 
d -5.0 -12.4 -8.7 -7.4 -11.0 
\d\ 10.0 15.1 11.3 10.0 11.9 

AS. Atomisation energies (kcal mol~ )̂ 
d 15.0 -3.6 14.2 7.3 -0.4 
\d\ 15.4 8.3 14.7 10.2 6.5 

A4. lonisation potentials (kcal mol~ )̂ 
d 80.0 -1.1 1.7 0.9 1.5 
\d\ 80.0 1.5 1.7 1.4 3.5 

A5. Total atomic and ionic energies (kcal mol~ )̂ 
d -740.2 -372.4 -153.5 -216.1 -346.8 
\d\ 740.2 372.4 154.7 216.8 346.8 

A6. G2 subset bond lengths (A) 
d 0.009 0.024 0.013 0.016 0.001 
\d\ 0.016 0.024 0.018 0.018 0.010 
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The corresponding potential was 

» x c „ ( r ) - « x c . ( r ) + - ^ j ; 5 (4.7) 

so at long range 

«xo . ( r ) . - e - < . * . , ^ _ M ^ ( ,S) 

^ _ e - ( V 3 ) a r _ ^^2 (4 9) 

Therefore as r gets larger the potential will go to a positive constant (as P will 

be negative). The exact exchange-correlation potential also goes to a positive 

constant [117], so this functional has useful properties. However, its potential 

wil l not necessarily go like — 1 / r as i t approaches this constant. This can be 

shown by considering the case of the hydrogen atom, for which the density 

is a simple exponential for all values of r. Therefore the contribution of the 

new term to the potential will be constant, even though the exact hydrogen 

potential should go like —1/r. For heavier atoms, the density is more complex, 

and plots of the exchange-correlation potentials indicate a behaviour similar 

to - 1 / r . 

This functional form is in fact the well-known Weizsacker correction to 

the kinetic energy functional from Section 1.3.1. There are problems involved 

with using this functional as an approximation to exchange. Firstly, it is 

dimensionally incorrect (it has the kinetic energy dimensions of p^^^ rather 

than the exchange dimensions of p^^^). As a consequence of this, it does not 

scale like exchange (Eq. 1.60), although of course neither does K T exchange. 

Also, the potential at short range is highly inaccurate (it gets increasingly too 

deep compared to the correct potential as i t approaches the nucleus). The 

GEA is much more accurate at short range, indicating that the GEA has the 

correct power of p. 

We therefore attempted to develop a functional which acts like the GEA 

at short range but like the Weizsacker functional at long range. This was 

m 
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accomplished by multiplying the GEA form by a term 

nV3 

pl/3 + 1 
(4.10) 

As p^/^ 0, 1 » p^/^, so this term will behave like p^/^. However, as p^/^ —)• 
oo, p^l^ » 1, so the term will have no effect. Hence the functional will act 
like the GEA at short range and the Weizsacker functional at long range. The 
complete functional form simplified to 

<T J pj (r) + 7p<,(r) 

The only difference between this form and K T l is the multiplication of 7 by 
P(^(r). We denote this functional AC(2). Its coefficients are 

/3 = -0.009 7 = 1 (4.12) 

An assessment for AC(2) is presented in Table 4.3. Its performance for atom-
isation energies is improved compared to K T l , but both shielding constants 
and bond length optimisations have deteriorated. Considering the disadvan
tages of using this functional outlined above, it does not appear that i t offers 
much advantage over K T l . 

We also considered a combination of the K T exchange term and the AC(2) 
term to give more flexibility for the form of the potential in the core and 
valence regions. This did not offer significant improvement either. 

4.2.2 Core correction 
The K T exchange potential also requires improvement at short range, in the 
region we loosely define as the core. By the core we mean the potential from the 
nucleus to the edge of the intershell/valence region, rather than the potential 
at the point r = 0, which does not have any effect on molecular property 
calculations (except the Fermi-Contact term in spin-spin coupling calculations) 
and has been proven to diverge in GGAs [125]. 

Compared to the near-exact ZMP potential, the K T exchange potential is 
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too deep in the core (its slope is too high). One method for correcting this is 
to decrease the value of j3. However, this will decrease the size of the intershell 
peak in the valence region and hence lead to inferior performance for shielding 
constants. Therefore we needed to decrease ^ in the core whilst keeping it 
high in the valence region. One way of achieving this is to replace /3 with a 
term such as 

^ - ^'^TT-. (4.13) 

At low p^l^ (i.e. in the intershell and tail regions of vxc), this will behave like 

p. At high p^l^ (in the core), i t will behave like ^ — P'. This is the behaviour 

required. The resulting functional has the form 

EMp., P,] = E^^^W, p,] + ^' E / , ^ /a l '^^r^ ' i f f a ' / ? ^ (4.14) 
a J {pj {r) + ^){pj (r) + 7 ' ) 

The new term is called the core correction (CC) term. We expected that this 

term would lead to an improvement in performance for bond lengths opti

misations, based on the observation that the greatest difference between the 

1/4 potential and the K T potential is in the core. We developed a KTl-style 

functional CC(1), for which the parameters are 

P = -0.006 13' = 0.0075 7 = 0.1 7 ' = 50 (4.15) 

Results are presented in Table 4.3. While there is a small improvement for 

bond lengths, the new term makes little difference to the results overall. 

Finally, we considered a functional consisting of K T exchange combined 

with both the core correction term and the asymptotic correction term. We 

denote this CCAC. The ful l functional is of the following form 

Exc[Pa,P0] = c,Ek''^[p,,Pp]+PE^^'[p^,pp] + 5E^'^''[p^,Pp]{A.16) 

{p'J\r)+^){pr{r)+y) + 

+ 
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Clearly this functional is much more complex than the original K T functional, 
and so a significant improvement in results is required to justify this. We 
built CCAC functionals both with and without the uniform electron gas con
dition, which we denote CCAC(l) and CCAC(2) respectively. The CCAC(l) 
coefficients are 

/9 = -0 .005 ^ ' = 0.008 = 0.0025 7 = 0.1 7 ' = 50 7 " = 1 
(4.19) 

whereas the CCAC(2) coefficients are as for CCAC(l) , but with the LDA 
coefficients set to 

Q; = 1.0639 5 = 0.7 (4.20) 

Table 4.3 presents an analysis of their performance. CCAC(l) is a moderate 
improvement over K T l for the A6 bond lengths and A3 atomisation energies, 
whereas CCAC(2) gives very similar results to KT2. The results are therefore 
not impressive, and cannot be used to justify the increased complexity of the 
functional. We also developed a version of CCAC with PBE correlation instead 
of VWN, for which similar results were obtained. 

4.3 K T exchange as a correction 

Instead of modifying the K T exchange form itself, a different approach can be 
taken. The K T term can be thought of as a correction to the LDA functional. 
From this point of view, the next logical step is to add the K T term to other 
functionals. 

4.3.1 The 1/4 functional 

Our first attempt to use the K T exchange term as a correction involved the 1/4 
functional [50]. This is known to give excellent performance for structures, but 
poor magnetic properties. We hoped that by combining the two functionals in 
some way we could get good results for both properties simultaneously. 

As a preliminary investigation we simply added the two functionals to
gether. This improved the performance of 1/4 for magnetic properties greatly, 
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but unfortunately its performance for bond length optimisations deteriorated 
to the level of KT2. Therefore no benefit was gained. We next used the same 
fitting code used in Chapter 2, but fitted to ZMP potentials rather than ther
mochemistry (i.e. the same way 1/4 was determined). The fit procedure was 
the same as that described in Ref. [50], except that the K T exchange potential 
was subtracted from the ZMP potential before fitting (this was to prevent the 
minimisation effect discussed in Section 2.5 that had prevented us fitting K T l 
and KT2 to potentials before). We therefore had to choose a value of /3; our 
optimal value was /5 = —0.0045. We also experimented with weighting the 
density in the fit code: a power of 1/4 was optimal for structures (as it was for 
the 1/4 functional). Unfortunately, although shieldings improved by as much 
as the simple addition had done (giving a mean absolute error over the A l 
set of 14 ppm), bond lengths also deteriorated by the same level (to an error 
for the A6 set of 0.014 A, worse than KT2). Therefore we concluded that 
the corrected 1/4 functionals do not offer any improvement over the original 
K T l / 2 functionals. 

4.3.2 B97 exchange 

1/4 is a complex functional, with 15 parameters. There is no easy way to gain 
insight into how it works, and no way of knowing if the fit code is successfully 
optimising i t to work with the K T exchange term. We already know that fitting 
to potentials is flawed in the sense that it minimises the K T exchange term 
(which reproduces the potential very well). Therefore it would seem better to 
use a simpler functional form, and fit to energies. 

We chose to investigate individual components of the B97 exchange form 
(which forms the basis of the 1/4 functional, among others, as discussed in 
Chapter 1). In particular, we looked at the third term in the exchange expan
sion, which forms the basis of the OPTX functional [49]. Handy and Cohen 
determined that of all the terms in the expansion, this term was the most 
important for energies when considered separately. I t performed best when 
combined with LYP correlation to give the OLYP functional. We therefore 
start by considering K T exchange as a correction to OLYP. 
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Table 4.4: Coefficients for B97-based functionals with and without KTX. All functionals use 
7 = 0.1. T denotes fitting to total energies, A to atomisation energies, and I to ionisation 
potentials. F denotes that the KTX coefficient was fixed. 

LDAX B86X O P T X KTX LYP 

O P T X only 
Orig. 1.05151E + 0 
T,A,I 1.05144E + 0 
A,I 1.07467E4-0 

O P T X + K T X 
T,A,I 1.05641E + 0 
A,I 1.07517E + 0 
A,I,F 1.08598E + 0 

B86X only 
T,A,I 9.97814E-1 
A,I 1.03751E + 0 

B 8 6 X + K T X 
T,A,I 9.99237E-1 
A,I 1.04831E + 0 
A,I,F 1.07327E + 0 

-9.00532E - 1 
-9.32680E - 1 

-9.29289E - 1 
-7.56998E - 1 
-3.51377E - 1 

B 8 6 X + O P T X - f - K T X 
T,A,I 1M660E + 0 -1.63516E-1 
A,I 1.05573E + 0 -5.38433E - 1 
A,I,F 1.04306E + 0 -1.01645E + 0 

-1.43169E + 0 
-1.45638E + 0 
-1.52494E + 0 

-1.52994E + 0 
-1.49182E + 0 
-7.42401E + 0 

-1.27384E + 0 
-4.63565E - 1 
8.70123E - 1 

2.79177E 
-1.89978E 
-4.50000E 

1.75884E 
-1.80127E 
-6.00000E 

2.91889E 
-1.19096E 
-4.50000E 

l.OOOOOE + 0 
9.54779E - 1 
9.41011E- 1 

9.62706E - 1 
9.36072E - 1 
8.27819E - 1 

9.36461E - 1 
8.73382E - 1 

9.40590E - 1 
8.57656E - 1 
8.22323E - 1 

9.63202E - 1 
8.87936E - 1 
7.89950E + 0 

Correcting O P T X 

The OLYP functional is 

+ SEh''''W,Pp] (4.21) 

where the coefficients are given in Table 4.4. OPTX was fitted to Hartree-

Fock exchange energies, but OLYP was built without optimising the LYP 

coefficient. In order to make a fair comparison with our functionals we needed 
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to allow LYP to vary and fit the whole functional to our thermochemistry data 
set. Following the procedure of Chapter 2, we fitted both with and without 
total energies. The coefficients are presented in Table 4.4 and assessments in 
Table 4.5. Like all conventional GGAs, OLYP is poor for the A l isotropic 
shielding constants (about the same standard as HCTH). Its performance for 
atomisation energies is superior to KT2, with or without total energies in the 
fit. Wi th them included, the A6 bond length errors are poor, but without, 
they are of similar quality to KT2 (the A7 bond length errors are poor in both 
cases). 

Our aim in combining OLYP with K T exchange is to obtain a functional 
with KT-standard shieldings and OLYP-standard atomisation energies, with
out harming performance for structural properties. We therefore fitted a four 
parameter functional, varying the LDA exchange, K T exchange, OPTX ex
change and LYP correlation parameters. We kept the 7 values of K T and 
OPTX at their original values of 0.1 and 0.006 respectively (note that the 
OPTX value differs from the original B97 expansion value of 0.004). Again as 
in Chapter 2, we fitted three types of functionals: with total energies, with
out total energies, and without total energies but with a fixed K T exchange 
coefficient. A l l the functionals were fitted to both atomisation energies and 
ionisation potentials. 

Given the poor performance of K T l and KT2 for total energies, i t is unsur
prising that the K T exchange term is minimised in the total energy fit. The 
performance of this functional is therefore no different from that of OLYP. 
Given that OLYP performs much better for atomisation energies than the 
LYP(2) functional, i t is again not surprising that the K T exchange term is still 
minimised when total energies are taken out. In order to get good shielding 
constants, therefore, the K T exchange coefficient must be fixed. We experi
mented with several values, and the optimal value was found to be -0.0045. 
This is lower than for KT2, which is expected because OLYP gives shieldings 
with a significantly less negative mean error than LDA, so less of a correction 
from the K T exchange term is required. The advantage of this functional, 
however, is not its shieldings (which are of a similar quality to KT2), but 
its thermochemical and structural performance. Although at 5 kcal mol"^ the 
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Table 4.5: Error assessments for thermochemistry, molecular bond lengths, and isotropic 
shielding constants for the OLYP functional (O) with and without KTX (K). T denotes 
fitting to total energies, A to atomisation energies, and I to ionisation potentials. F denotes 
that the KTX coefficient was fixed. Units are given in parentheses. 

o o 0 O;K O;K o i r 
Orig. T , A , I A , I T , A , I A , I A , I , F 

(QKTLYP) 

A l . Isotropic N M R shielding constants (ppm) 
d - 3 0 . 7 -30.1 -31 .3 - 3 1 . 6 -30 .4 -10 .4 
\d\ 30.7 30.1 31.3 31.6 30.4 13.3 
Excluding O 3 : 
d - 2 3 . 9 -23 .4 -24 .4 - 2 4 . 5 - 2 3 . 7 - 8 . 2 
\d\ 23.9 23.4 24.4 24.5 23.7 11.4 

A3. Atomisation energies (kcal mol )̂ 
d 3.5 0.6 0.5 0.6 0.5 0.2 
\d\ 4.5 3.1 3.1 3.2 3.0 5.0 

A4. lonisation potentials (kcal mol )̂ 
d - 1 . 9 - 2 . 6 0.2 - 1 . 8 0.1 - 0 . 7 
\d\ 2.6 3.2 1.5 2.5 1.6 2.5 

A5. Total atomic and ionic energies (kcal mol )̂ 
d - 1 . 8 - 0 . 5 -81 .0 - 0 . 7 -95 .4 -424.5 
\d\ 2.9 2.1 81.0 2.4 95.4 424.7 

AG. G2 subset bond lengths (A) 
d 0.015 0.017 0.010 0.016 0.010 0.000 
\d\ 0.015 0.017 0.011 0.016 0.011 0.008 

A7. Diatomic bond lengths (A) 
d 0.040 0.038 0.037 0.038 0.036 0.004 

Ml 0.041 0.039 0.038 0.039 0.036 0.012 
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mean absolute error over the A3 set is higher than OLYP, i t is still a significant 
improvement over KT2. The bond length performance is greatly improved over 
both KT2 and OLYP. I t is of comparable quality to the 1/4 functional, which 
represents the best that DFT can currently achieve. For reference we denote 
this functional form OKTLYP. 

Correcting B 8 6 X 

Although the OKTLYP functional is a genuine improvement over KT2, there 
is still room for improvement in its performance for atomisation energies. Our 
target was to approach the quality of the OLYP functional (i.e. 3 kcal mor^ 
for the A3 set) or surpass it without a deterioration in OKTLYP's performance 
for shieldings and structures. 

The next step is to consider other terms in the B97 exchange expansion. 
Although Handy and Cohen [49] have observed that the OPTX term provides 
the best quality thermochemistry when considered on its own, that does not 
mean that i t is the best term to use with K T exchange. We therefore considered 
the addition of K T exchange to the previous term in the B97 expansion, which 
is equivalent to Becke's 1986 exchange term (B86X) 

( T ^ ) (4.22) 

As for OPTX, we started by fitting LDAX+B86X+LYP. Again, we fitted with 
and without total energies. Coefficients are presented in Table 4.4 and results 
in Table 4.6. Bond lengths and atomisation energies improved on removing 
total energies from the fit, but performance for shielding constants became 
slightly worse. Overall B86LYP does not perform as well as OLYP, justifying 
Handy and Cohen's claim that OPTX is a better exchange functional than 
B86X. 

Next, we developed a functional analogous to OKTLYP, containing LDAX, 
B86X, K T X and LYP. As expected, the K T X term was minimised when its 
coefficient was not fixed, although when total energies were taken out of the 
fit it rose to a non-negligible value. When its coefficient was fixed at the value 
-0.0045 (as for OKTLYP), its performance for atomisation energies was better 
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Table 4.6: Error assessments for thermochemistry, molecular bond lengths, and isotropic 
shielding constants for the B86LYP functional (B) with and without KTX (K). T denotes 
fitting to total energies, A to atomisation energies, and I to ionisation potentials. F denotes 
that the KTX coefficient was fixed. Units are given in parentheses. 

B B B,K B,K B,K 
T,A, I A,I T , A , I A,I A , I , F 

A l . Isotropic N M R shielding constants (ppm) 
d -43.3 -47.2 -44.7 -35.2 -7.6 
\d\ 43.3 47.2 44.7 35.2 13.5 
Excluding O 3 : 
d -34.8 -37.9 -35.9 -28.4 -6.5 
\d\ 34.8 37.9 35.9 28.4 10.8 

A3. Atomisation energies (kcal mol 
d 0.9 1.0 0.9 0.8 0.2 
\d\ 4.0 3.7 4.1 2.6 5.7 

A4. lonisation potentials (kcal mol~ 
d -1.7 2.8 -1.1 2.1 0.5 
\d\ 4.1 2.9 3.9 2.2 2.0 

A5. Total atomic and ionic energies (kcal mol-i) 
d 0.4 -129.4 0.3 -260.3 -570.4 
\d\ 2.9 129.4 3.1 260.3 570.6 

AG. G2 subset bond lengths (A) 
d 0.021 0.010 0.021 0.005 -0.003 
\d\ 0.022 0.011 0.022 0.013 0.015 

A7. Diatomic bond lengths (A) 
d 0.042 0.027 0.042 0.016 -0.007 
\d\ 0.042 0.028 0.042 0.021 0.025 
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than OKTLYP, but bond lengths were worse and shieldings were not optimal 
(as might be expected, because B86LYP gives worse shieldings than OLYP 
and so requires a larger K T correction). To obtain optimal shieldings, we had 
to set the K T X coefficient to —0.006. The A3 atomisation energies for this 
functional were inferior to OKTLYP. 

B 8 6 X and O P T X 

The next step was to develop a five parameter functional, containing both 
B86X and OPTX. With the extra flexibility in the functional form, atomisa
tion energies could improve further without the quality of shielding constants 
deteriorating. As before, we fitted three functionals. Fitting with total ener
gies minimised K T exchange, and poor shieldings were still produced without 
them. Unfortunately, fixing the K T X coefficient did not produce the gains we 
expected. As can be seen in Table 4.4, the OPTX coefficient became highly 
positive, whilst the B86X term became large and negative. The resultant can
cellation gave excellent atomisation energies, but its performance for shielding 
constants and bond lengths deteriorated dramatically. Errors are presented in 
Table 4.7. This problem will always occur given a sufficiently flexible functional 
form, because we were only fitting to energies. 

We have also considered functionals incorporating the third and fourth 
power of the B97 expansion (as used in the HCTH functionals and 1/4, but 
not in the B97 functionals themselves). Using them on their own oflFered no 
advantage over OKTLYP, and attempting to combine them with the other 
terms led to the same problem we encountered with the combination of B86X 
and OPTX. In Chapter 6, we discuss a method of fitting explicitly to the 
shielding constants, which avoids this problem. In this chapter we pursue an 
alternative approach to go beyond OKTLYP, by readdressing the problem of 
the form of the K T exchange term. 

4.4 Modifying the exchange functional (2) 

One problem we have not addressed is the intrinsic performance of KT2 for 
thermochemistry. The gains OKTLYP has made have been primarily due to 
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Table 4.7: Error assessments for thermochemistry, molecular bond lengths, and isotropic 
shielding constants for the B86LYP functional (B) with OPTX (O) and KTX (K). T denotes 
fitting to total energies, A to atomisation energies, and I to ionisation potentials. F denotes 
that the KTX coefficient was fixed. Units are given in parentheses. 

B A K B A K B A K 
T , A , I A , I A , I , F 

A l . Isotropic N M R shielding constants (ppm) 
d -33.9 -34.4 -23.9 
\d\ 33.9 34.4 26.9 
Excluding O3: 
d -26.6 -27.5 -19.4 
\d\ 26.6 27.5 22.6 

A3. Atomisation energies (kcal mol~ )̂ 
d 0.6 0.7 0.7 
\d\ 3.2 2.6 3.4 

A4. lonisation potentials (kcal mol~ )̂ 
d -1.6 1.6 2.6 
\d\ 2.6 1.7 2.6 

A5. Total atomic and ionic energies (kcal mol )̂ 
d -0.6 -203.1 -480.8 
\d\ 2.4 203.1 480.8 

AG. G2 subset bond lengths (A) 
d 0.017 0.007 -0.001 
\d\ 0.017 0.010 0.020 

A7. Diatomic bond lengths (A) 
d 0.045 0.023 -0.005 
\d\ 0.045 0.023 0.039 
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the fact that a lower coefficient of K T exchange could be used. However, there 
is no systematic way of achieving an improvement in the K T form itself. In 
this section we outline some of the modifications that we have considered. 

4.4.1 Functions of pa 

The K T exchange form can be re-written in the form 

| V p . ( r ) | V p^iv) \ 

pll\v) \pl'\v) + ^. 
dr (4.23) 

that is, as the GEA multiplied by some / ( p ^ ) - This is the essential difference 
between K T exchange and standard GGA exchange; for the latter, the GEA 
is multiplied by some /(a;,^), where x^j is 

^.(r) = ^ (4.24) 
pj (r) 

We spent some time searching for a form / (x^) which gave good shielding 
constants, because this form satisfies certain universal properties which / ( p a ) 
does not, such as the exchange scaling condition (Eq. 1.60). We were unable to 
find such a form, because x,, fluctuates markedly in the intershell region and 
tends to distort the description of the intershell peak (this is also the reason 
why standard GGAs give poor shielding constants). The form of the potential 
is also more complex and difficult to interpret. 

We therefore concentrated on investigating new forms o f / ( p < r ) to see if they 
would improve atomisation energies. We experimented with an exponential 
form 

/ ( p , ) = e - ^ / ^ - ' W (4.25) 

This cuts off the potential at low p„ but will tend towards the GEA at high 
p^. This function gave essentially identical results to K T exchange, so there is 
no reason to favour i t . 
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Another function we investigated was 

f M = 4 / 3 ^ (4-26) 
pJ (r) + ^ 

This modifies the behaviour in the region where the GEA is cut off. With an 
appropriate value of 7 = 0.002, the intershell region is no longer affected by 
the cut off function (the magnitude of the peak is diminished slightly in K T 
exchange). Hence a lower value of ^ = -0.0045 could be used to get the same 
shielding results. However, the A3 atomisation energy errors remained at the 
level of KT2. Therefore this form has nothing to recommend i t either. 

4.4.2 K T expansion 

A more complex modification is to write an expansion of the K T exchange 
term in the same way as B86X was expanded to give B97. This leads to terms 
of the form 2 

/^7"E/,,(,}:rA;,„dr (4.27) 

where K T exchange is returned when n = \ (save for the extra 7 coefficient). 
Although the atomisation energy errors could be improved using these 

terms, the shieldings deteriorated significantly. This is because i t suffers from 
the same flexibility problems seen above when we added both B86X and OPTX 
to KTX. I t is clear that highly flexible forms do not work with our current fit
ting procedure. We also attempted to use the second term in the expansion on 
its own (analogous to OPTX), but this caused performance for both shielding 
constants and atomisation energies to deteriorate compared to KT2. 

4.4.3 a-p terms 
The GEA is sometimes written in the form 

Vp , (r ) Vp , /(r) 
dr (4.28) 
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When written out in ful l , this implies an extra term involving an interaction 
between the a and jS spins. Because it involves an interaction between different 
spins, this is a correlation term. An analogous KT - t ype term is 

V - n / Vp^(r)Vp^.(r) 
1^^-^-' / r 2 / 3 . s 2 / 3 . (4.29) 

In the restricted case, this will collapse to the ordinary K T exchange term. 

However, it will have an effect on open shell calculations (in particular, the 

fragments used to calculate atomisation energies). We therefore considered 

the addition of this extra term to the K T functional. However, although the 

fitted term had a large coefficient (about a third of the standard K T exchange 

term), it had no significant effect on the A 3 atomisation energy errors. 

4.5 Choice of correlation functional (2) 

In parallel with our investigations of the exchange functional, we also consid

ered more complex correlation functional forms to bring the atomisation en

ergy errors down. Our first attempt involved combining both V W N and LYP 

correlation (as in the B 3 L Y P functional). Unfortunately, the same flexibility 

problem emerged as before, with large opposite coefficients being given by the 

fitting code. This led to some improvement in atomisation energies but at the 

cost of other properties. A similar problem was encountered when we used 

the HCTH correlation functional, which consists of an eight term gradient-

corrected expansion. This highly parameterised form brought the atomisation 

energy errors down to almost 2 kcal mol~^, but the unphysical nature of the 

functional was evident in its very poor performance for shieldings and bond 

length optimisations. Once again we found that the number of parameters has 

to be kept to a minimum in our normal fitting procedure. 

4.6 Non-fitted thermochemistry 

The OKTLYP form is the best we have considered so far. Its performance 

for the A 3 atomisation energy set and the A 4 ionisation potential set is much 
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improved over KT2, although the poor performance for the A5 total atomic and 
ionic energies remains. The high quality performance for shielding constants 
is retained and bond length optimisations are much improved. 

I t is important to assess semi-empirical functionals for data outside the 
fit t ing set, and so we conducted more thermochemistry cissessments on OK-
TLYP to confirm that its good performance is not confined to the A3 and 
A4 sets. Following Ref. [182], we considered the ful l G2 set of atomisation 
energies developed by Pople and co-workers [136,183], We used the standard 
6-311+G(3df,2p) basis set and MP2/6-31(d) geometries [184] for all calcula
tions. These were both available only in a format suitable for the GAUSSIAN 

program. We converted them using scripts written in the Perl programming 
language, which was chosen for its powerful text-processing capabilities. Al l 
experimental reference data from Ref. [182] had been corrected for zero-point 
energies. Errors are presented in Table 4.8. 

The ful l 02 atomisation energy set is divided into two parts: G2-1 (A13 in 
this thesis) and G2-2 (A14). The G2-1 set is very similar to the A3 atomisation 
energy set (as discussed in Section 2.4) although different basis sets and ge
ometries were used. The OKTLYP mean absolute errors are therefore similar 
(4.5 kcal mol-^ for A13 compared to 5.0 kcal mol"^ for A3). The 02-2 set, 
like 02-1, contains predominantly organic molecules, but the average number 
of atoms is larger than in 02-1. We would therefore expect the 02-2 errors 
to be larger, and that is the case. The 02-2 error is 6.8 kcal mol"^ giving an 
overall error of 5.9 kcal mol"^ 

For comparison, the OLYP error over the ful l 02 set is 4.6 kcal mol~^ and 
the HCTH error is 5.5 kcal mol~^ OKTLYP is therefore competitive with 
the performance of the best 00As , but there is still room for improvement. 
We therefore investigated whether further improvements could be achieved by 
fitting to the ful l 02 set. 

4.7 Rewriting the fit code 

The original fit code of Chapter 2 was designed for use with the sets A 3 -
A5 as the fitting data. For each system in the set there is a corresponding 
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Table 4.8: Error assessments for G2 thermochemistry, molecular bond lengths, and isotropic 
shielding constants for the OKTLYP-type functional. Units are given in parentheses. 

Oriĝ  G 2 f i F P G2 fit 2" G2 fit 3*= 
(KT3) 

A13/14. G2 atomisation energies (kcal mol~ )̂ 
G2-1: 
d -0.6 -1.0 -1.0 -1.2 
\d\ 4.5 4.6 4.2 4.3 
G2-2: 
d 4.3 0.4 0.4 0.4 
|d| 6.8 5.4 4.9 5.0 
Full G2: 
d 2.5 -0.1 -0.1 -0.2 
|d| 5.9 5.1 4.7 4.7 

A l . Isotropic N M R shielding constants (ppm) 
d -10.4 -8.4 -11.3 -11.9 
|d| 13.3 12.9 14.0 14.4 
Excluding O3: 
d -8.2 -6.7 -8.9 -9.4 
|d| 11.4 10.9 11.8 12.1 

A6. G2 subset bond lengths (A) 
d 0.000 0.004 0.003 0.000 
|d| 0.008 0.009 0.008 0.008 

A7. Diatomic bond lengths (A) 
d 0.004 0.010 0.011 0.009 
|d| 0.012 0.015 0.015 0.014 

K T X coefficient fixed at -0.0045 
^ K T X coefficient fixed at -0.004 
" K T X coefficient fixed at -0.004, LDAX coefficient fixed at 1.092 
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grid of density and gradient points obtained from coupled cluster densities for 
fitting to the ZMP potential. I t is not straightforward to add extra sets to the 
fitting procedure because the program assumes that a set of these points will 
be available for every new system added. As we do not fit to ZMP potentials, 
this assumption is not necessary. It proved easier to write the fit code again 
from scratch than to try to rework the original one. 

The new fit code is written in Fortran and is also based on a hnear least-
squares fit, although the way the fitting procedure is initialised is slightly 
different. In the new procedure an initial guess for the functional parameters 
is required from which a set of property errors is calculated. These are then 
used as the basis of the next iteration. The exchange-correlation energy for a 
system is written as 

Exc = Y,a,U (4.30) 

i 

where ttj is the coefficient of component i and fi is the unit contribution to 
the exchange-correlation energy of component i. N is the total number of 
components (A'̂  = 4 in the case of OKTLYP). Our aim is to find the optimal 
change in the values of the coefficients 5ai, giving a new functional with com
ponents Oj + 5ai. Assuming that the energy is linear (i.e. ignoring changes in 
the density as the coefficients change), the error in a property for a molecule 
M is 

A ^ = - f : 5 a , 5 f (4.31) 
i 

where is the error in the property (calculated — experiment). I f the 

property fitted to is an atomisation energy, 

9r = Y . f t - f ^ (4.32) 
A 

where A are the constituent atoms. We then define a merit function 

N 

M L 

M (4.33) 
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We need to find the minimum of Q, that is 

on 
d{5aj) 

for j = l . . . N (4.34) 

By differentiation 

2 E 
M L 

N 

gf = 0 (4.35) 

so 

or 

N 

M M 
EA^fff = EE5f5f5«^ (4.36) 

N 

hj^Y^GjiSai (4.37) 

i 

This matrix equation is then solved using the LU decomposition routine also 
used in the old fit code [185] to find the change in components 6ai. For con
venience we sometimes used Solver (the Microsoft Excel fit code) to solve the 
final equation instead, but we have confirmed that this gives identical results. 
The new functional is then used to calculate a new set of errors and the process 
is iterated until the coefficients have converged. 

The new fit code requires the fi contributions and atomisation energy errors 
for each system as input. We therefore modified C A D P A C to print out the fi 

contributions and used a Perl script to collate the information and calculate 
the Qi values. A second script was used to calculate and collate the property 
errors at each iteration. 

4.8 Fitting to the G2 set 
Using the new fit code, we fitted the OKTLYP form to the fu l l G 2 atomisation 
energy set. For simplicity, we did not include ionisation potentials in the fitting 
data, as we had observed previously that this made little difference to the 
outcome of the fit. We kept the K T X coefficient fixed at - 0 . 0 0 4 5 as before to 
ensure high quality shielding constants. The final parameters of this functional 
( G 2 fit 1) are quite similar to those of the original OKTLYP, as shown in 
Table 4.9. Errors for the new functional are presented in Table 4.8. The 
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Table 4.9: Coefficients of OKTLYP-type functionals. 

LDAX OPTX KTX LYP 

Orig. 1.08598E + 0 -7.42401E - 1 -4.5E - 3 8.27819E - 1 
G2 fit 1̂  1.07658E + 0 -8.18190E - 1 -4.5E - 3 8.79537E - 1 
G2 fit 2'' 1.08256E + 0 -9.08093E - 1 -4.0E - 3 8.80366E - 1 
G2 fit 3*= (KT3) 1.09200E + 0 -9.25452E - 1 -4.0E - 3 8.64409E - 1 

^ KTX coefficient fixed at -0.0045 
K T X coefficient fixed at -0.004 

" KTX coefficient fixed at -0.004, LDAX coefficient fixed at 1.092 

mean absolute error for the ful l G2 set is lowered to 5.1 kcal m o l " \ surpassing 
HCTH (but still not quite at the same level as OLYP). This reduction is 
expected as the new functional includes the ful l G2 set in its fitting data. 
This is consistent with the finding that the new functional gives a marginally 
higher error than before for the G2-1 set (approximately equivalent to the old 
fitting data set A3). The performance for shielding constants also improves, 
but the bond length optimisation sets deteriorate slightly, with the bonds on 
average getting too long. This is due to the smaller value of the LDA exchange 
coefficient, which will make the density more diffuse and hence lead to longer 
bond lengths. 

The improvement in shielding constants suggested that we might be able 
to decrease the K T X coefficient a little. Our next functional (02 fit 2) re
duced the K T X coefficient to —0.004. The change in the fitting coefficients 
was again small. The atomisation energy error was reduced further to 4.7 kcal 
m o l ~ \ essentially the same as OLYP. The A6 set of bond lengths also im
proved marginally, although the A7 diatomics set did not. Shielding constants 
deteriorated slightly as expected, but we felt this was an acceptable trade-off 
for the improvement in atomisation energies. 

Finally, we observed that the bond lengths could be shortened by fixing the 
LDA exchange coefficient at a higher value. The optimal value was 1.092. This 
left only two fitted parameters, OPTX and LYP. The resulting functional (02 
fit 3) gave the same atomisation energy errors as before. The bond lengths 
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also shortened, although only the A 7 diatomic set gave a reduction in the 
mean absolute errors. Again, shielding constants deteriorated slightly, but we 
decided this was acceptable. We denote this functional K T 3 [186 . 



Chapter 5 

Assessment of K T 3 

In this chapter we present a ful l assessment of the KT3 functional for the 
chemical properties considered in its development and for a number of new 
properties. The performance of KT3 is compared to a range of GGA and 
hybrid functionals. We then consider applications which require both the high 
quality structural predictions and shielding constant performance that KT3 
provides. 

5.1 Fitting data assessments 
Table 5.1 presents a summary of the performance of KT3 for the sets considered 
in its development. The G2 atomisation energies set was the only one explicitly 
fitted to, but the LDA exchange and K T exchange parameters were fitted in 
the sense that they were chosen to ensure improved geometries and shielding 
constants respectively. Errors are compared to the K T l , KT2, PBE, HCTH, 
and OLYP GGAs, and the B3LYP, PBEO, and B97-2 hybrid functionals. 

For the A l set of isotropic shielding constants, the slight degradation from 
K T l to KT2 to KT3 is apparent. However, the KT3 error of 14.4 ppm is still 
at least a factor of two improved over PBE, HCTH, and OLYP. OLYP is the 
best competing GGA with an error of 30.7 ppm. The hybrid functionals all 
perform worse than any GGA as previously observed. 

The atomisation energies of the G2 set show a significant improvement from 
K T l to KT2 to KT3. This is mainly due to the extra flexibility introduced 

122 
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Table 5.1: Fitting data error assessments for the K T 3 functional. Units are given in 
parentheses. 

K T l K T 2 K T 3 P B E H C T H O L Y P B 3 L Y P PBEO B97-2 

A l . Isotropic N M R shielding constants (ppm) 
d -4.7 -9.5 -11.9 -40.3 -32.4 -30.7 -60.7 -58.5 -50.4 
|d| 13.0 13.2 14.4 40.3 32.4 30.7 60.7 58.8 50.4 

A13/14. G2 atomisation energies (kcal mol )̂ 
G2-1: 
d 12.9 -0.8 -1.2 6.3 -0.4 2.1 -0.8 -2.0 -0 .7 
|d| 13.4 6.2 4.3 7.9 3.3 3.2 2.7 3.2 2.2 
G2-2: 
d 36.6 10.4 0.4 21.2 -2.1 1.7 -4.8 3.8 0.8 
\d\ 37.1 12.0 5.0 21.5 6.8 5.4 5.1 5.6 3.6 
Full G2: 
d 27.8 6.2 -0.2 15.6 -1.4 1.8 -3 .3 1.7 0.2 
|d| 28.3 9.9 4.7 16.5 5.5 4.6 4.2 4.7 3.1 

A6. G2 subset bond lengths (A) 
d 0.014 -0.001 0.000 0.015 0.012 0.015 0.004 0.000 0.002 
|d| 0.019 0.010 0.008 0.015 0.013 0.015 0.008 0.007 0.008 

A7. Diatomic bond lengths (A) 
d 0.008 -0.010 0.009 0.024 0.036 0.040 0.015 0.007 0.017 
\d\ 0.026 0.020 0.014 0.024 0.037 0.040 0.018 0.014 0.022 
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with each iteration of the K T functionals. KT3 is the only one of the three to 
be fitted to the ful l 02 set, but this only reduced the error from 5.9 kcal mol~^ 
(of the original OKTLYP, fitted to the A3 set) to 4.7 kcal mol^K The rest 
of the improvement over KT2 is due to the addition of the OPTX exchange 
term and the replacement of V W N with LYP. Compared to the other GGAs, 
KT3 is superior to PBE and HCTH, and gives essentially the same quality as 
OLYP (4.6 kcal mol~^). OLYP represents arguably the best atomisation energy 
performance that GGAs are capable of, so this result is very encouraging. 
However, the best hybrid functionals perform better than the GGAs, with 
B97-2 giving the lowest error (3.1 kcal mol~^). 

KT3 gives very good performance for the A6 (0.008 A) and A7 (0.014 A) 
bond lengths, significantly improving over K T l and KT2. I t is also substan
tially more accurate than the other GGAs considered in this assessment, the 
best being PBE with mean absolute errors of 0.015 A and 0.024 A. The only 
superior GO A is the 1/4 functional considered earlier in this thesis. KT3 
provides errors comparable to the hybrid functionals, which is a considerable 
achievement for a GGA. The best hybrid is PBEO, with errors of 0.007 A and 
0.014 A, only marginally better than KT3. 

5.2 Non-fitting data assessments 
In Table 5.2, we present a new series of assessments to explore the perfor
mance of KT3 outside the set of fitting data. The first new properties that 
we consider are thermochemical. These are the ionisation potentials, electron 
affinities and proton affinities of the 02-1 set [136]. In previous chapters we 
have also considered ionisation potentials (the A4 set), but that set was very 
small and considered only atomic ionisation potentials. The G2-1 set considers 
a mixture of atoms and molecules and provides a more accurate measurement 
of quality. A l l three sets were calculated at the same 6-311-t-G(3df,2p) basis set 
as for the G2 atomisation energies, using the same quality MP2/6-31G(d) ge
ometries from Ref. [184]. Adiabatic values are calculated rather than vertical 
values (that is, the geometries of the neutral and ionic systems were opti
mised separately). ZPE-corrected experimental reference values were taken 
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Table 5.2: Non-fitted data error assessments for the KT3 functional, 
parentheses. 

Units are given in 

K T l KT2 KT3 PBE HCTH OLYP B3LYP PBEO B97-2 

A15. G2-1 ionisation potentials (eV) 
d -0.06 -0.11 -0.03 0.01 -0.02 -0.12 0.01 0.02 -0.02 
|d| 0.14 0.23 0.16 0.16 0.15 0.18 0.16 0.17 0.12 

A16. G2-1 electron affinities (eV) 
d 0.11 -0.05 -0.07 0.08 -0.02 
|d| 0.15 0.17 0.14 0.10 0.10 

A17. G2-1 proton affinities (kcal mol~ )̂ 
d -4.1 -2.2 1.6 -1.6 2.5 
\d\ 4.9 3.5 2.3 2.6 2.5 

A18. Hydrogen bond dimer distances (A) 
d -0.18 -0.21 -0.03 -0.03 
\d\ 0.18 0.21 0.05 0.04 

0.26 
0.26 

A19. Other bond lengths (A) 
d 0.009 -0.008 -0.003 0.010 
\d\ 0.022 0.018 0.012 0.015 

0.005 
0.017 

-0.11 
0.14 

1.0 
2.0 

0.26 
0.26 

0.009 
0.015 

-0.01 
0.09 

-1.4 
2.2 

0.01 
0.04 

-0.002 
0.014 

A20. 
d 
\d\ 

A21. 
d 
\d\ 

Bond angles (degrees) 
-0.8 -0.7 -0.5 0.0 0.1 -0.1 0.1 

1.1 0.9 1.0 0.8 0.9 1.0 0.3 

Diatomic harmonic vibrational wavenumbers (cm~^) 
-13 

21 
4 

15 
-3 
15 

-16 
21 

-18 
26 

-21 
27 

A22. Isotropic electronic polarisabilities (au) 
d 1.16 0.68 0.32 0.76 0.41 0.57 
\d\ 1.16 0.68 0.36 0.76 0.45 0.57 

3 
20 

0.36 
0.44 

A23. Classical chemical reaction barriers (kcal mol 
No. 6 9 12 10 15 14 15 
d -15.3 -11.4 -8.0 -7.8 -3.3 -5.6 -5.1 
\d\ 15.3 11.4 8.0 7.8 3.8 5.6 5.1 

-0.05 
0.13 

-0.4 
2.4 

-0.02 
0.04 

-0.021 
0.023 

0.0 
0.5 

20 
26 

0.03 
0.24 

16 
-4.4 

4.4 

-0.09 
0.11 

1.8 
1.8 

0.06 
0.06 

-0.016 
0.017 

0.0 
0.4 

12 
26 

-0.04 
0.22 

16 
-1.8 

2.4 
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from Ref. [182] (strictly speaking, we are therefore evaluating the electronic 
contribution to the ionisation potential, electron affinity and proton affinity). 
Note that two of the systems of the G2-1 ionisation potential set, H2S (^A) 
and N2 (^H), were excluded from our analysis because of convergence problems 
with the GGAs (the same problems were observed in Ref. [182]). 

For ionisation potentials, KT3 has an error of 0.16 eV, which improves 
on KT2 but is still slightly inferior to the remarkably good performance of 
K T l (0.14 eV). The KT3 error is typical of the GGAs considered, with PBE, 
HCTH, and OLYP all giving similar results. The hybrid functionals also do 
not improve over KT3, with the exception of B97-2 (0.12 eV). 

An electron affinity is defined as the energy of a system M minus the energy 
of the same system with an additional electron. 

-E-EA = EM — EM- (5.1) 

The A16 electron affinity set consists of 25 small atoms and molecules. There is 
slightly more variation in performance for the set than there was for ionisation 
potentials. In this case KT3 is superior to K T l and KT2, with an error of 0.14 
eV. This is comparable with the other GGAs, but both PBE and HCTH give 
better results (0.10 eV). The best performing functional is the hybrid B3LYP, 
with an error of 0.09 eV. 

A proton affinity is the energy of a system minus the energy of the same 
system with an additional proton. 

•Ê PA = EM — EMH+ (5.2) 

The A17 proton affinity set consists of 7 small molecules. I t is important not 
to overinterpret the results for this set due to its size, but it still gives a good 
indication of relative performance. Again KT3 improves on K T l and KT2, 
with an error of 2.3 kcal m o r ^ This also beats PBE and HCTH but OLYP 
improves further with an error of 2.0 kcal mol~^. This is comparable with 
the hybrid functional results, with the best overall error given by B97-2 with 
1.8 kcal m o r ^ 

Overall the KT3 functional is competitive with the best GGA functionals 
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for all the thermochemical properties we have assessed. We have also calculated 
the errors for the KT3 functional over the A5 total atomic and ionic energy 
set considered in previous chapters. As expected, KT3 is very poor, with an 
error of 425.4 kcal mol~^. This reflects the substantial amount of K T exchange 
present in KT3. As these errors cancel when energy differences are considered, 
we do not consider this to be a hinderance to practical use of this functional. 

The second set of new properties we considered involved geometry optimi
sations. The KT3 functional was assessed for hydrogen bond dimer distances, 
another set of challenging bond lengths, and a set of bond angles. 

The A18 hydrogen bond set consists of 5 systems, (HF)2, (HC1)2, (H20)2, 

(CO)(HF), and (OC)(HF), each consisting of two molecules linked with a hy
drogen bond. These are a subset of the systems considered in Ref. [187]. The 
calculations were performed using the TZ2P basis set, and the errors calcu
lated for the F- • -F, CI- • -CI, O- • -O, O- • -F and C- • -F intermolecular distances 
against ab initio wavefunction results [187,188]. Again, the quantitative re
sults should not be overanalysed due to the small size of the set. KT3 gives 
a mean absolute error of 0.05 A, a marked improvement over K T l and KT2, 
which uniformly underestimate the distances. The KT3 error is comparable 
with PBE, with HCTH and OLYP uniformly overestimating the results. For 
this set KT3 is also competitive with the hybrid functional, which give similar 
errors. 

The A19 bond length set consists of the challenging molecules FOOF, 
F N O 2 , O 3 , and F O 2 (calculated with TZ2P) and two transition metal com
plexes, Cr(C0)6 and Ni(C0)4 (using the Wachters basis set [189] for the tran
sition metal atoms and TZ2P for the others). In total i t consists of 11 bond 
lengths. These systems were previously studied in Ref. [51], from where the 
reference experimental values were taken. KT3 gives a mean absolute error of 
0.012 A, which is the best out of all the functionals considered. 

The A20 bond angles set consists of the polyatomic molecules from sets A6 
and A19, giving a total of 13 bond angles. The errors are calculated relative 
to ab initio values for the A6 systems [47] and experimental values for the 
A19 systems [51]. Overall, the KT3 performance {\d\ = 1.0°) is similar to the 
other K T functionals and all the other GGAs. The hybrid functionals perform 
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significantly better, with the lowest error given by B3LYP (0.3°). 
Overall, the bond length optimisations are clearly a strength of the KT3 

functional. For the A6, A7, A18, and A19 sets, KT3 gives results that are 
significantly improved over the other GGAs, and are competitive with the 
hybrid functionals. For bond angles the performance is not quite as good, but 
KT3 is still competitive with the other GGAs. 

The next set is closely related theoretically to the geometry assessments. 

Harmonic vibrational wavenumbers are calculated as the square roots of the 

eigenvalues of the force constant matrix 

where qi are mass-weighted cartesian displacements. This gives a set of 3iV 
normal mode vibrational frequencies, of which the six that correspond to trans-
lational and rotational degrees of freedom will be equal to zero (five in the case 
of hnear molecules). Vibrational wavenumbers u are related to the vibrational 
frequencies by 

V=u/c (5.4) 

where u is the vibrational frequency. 
The A21 set consists of the same 45 diatomics considered in the A7 bond 

length optimisations. The wavenumber analysis is calculated at the A7 opti
mised geometries and compared to experimental reference values from Ref. [139 . 
KT3 gives an error of 15 cm~\ which is equal to the already impressive error 
given by KT2. This is superior to all the other GGA and hybrids considered 
here. The nearest competing functional is B3LYP with an error of 20 cm~^ 
This result is expected because wavenumber performance is usually closely 
correlated with performance for geometry optimisations. The 1/4 functional 
is better still [139], in line with its excellent performance for geometries, but 
we emphasise that 1/4 performs very poorly for other properties. 

We also assessed the KT3 functional for the set of 14 static isotropic po
larisabilities previously considered in Ref. [51]. The polarisability is a second 
derivative property (Eq. 1.93), and therefore requires the first order response 
of the wavefunction to the electric field perturbation. The polarisability is 
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given by [190 

ai 

where the dipole integral is 

P^a = mra\i^a) (5.6) 

The linear response C f j is determined from a set of coupled perturbed equations 

where H i is the electric Hessian [120]. Unlike the magnetic Hessian, this does 
not reduce to a trivial form for GGAs, and the coupled perturbed equations 
have to be solved for all functionals. The isotropic polarisability is defined as 

ciiso = ^ t r a (5.8) 

The polarisability calculations were performed using the Sadlej basis set [191 
and the errors calculated relative to BD(T) values. This avoids problems with 
reference experimental values that have not been vibrationally corrected [192]. 
KT3 gives an error over the A22 set of 0.36 an, which is a substantial improve
ment over K T l and KT2. KT3 is also substantially better than the other 
GGAs, with the best performance given by HCTH (0.45 au). I t also beats 
B3LYP, but the other hybrid functionals are significantly improved over KT3, 
with B97-2 giving an error of 0.22 au. 

Finally, we consider classical chemical reaction barrier heights, which are a 
very challenging property for DFT methods. They are defined as the energy 
of the transition state TS of a reaction minus the sum of the energies of the 
reactants R. 

£^BH = £ ^ T S - E ^ « (5-9) 
R 

This set was previously studied in Ref. [51]. We used a TZ2P basis set for 
the calculations. The transition states were found by a saddle point geometry 
optimisation and checked by confirming firstly that an imaginary vibrational 
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frequency was present (which indicates an energy maximum), and secondly 
that the energy of the transition state was higher than that of the reactants. 
For some reactions with some functionals we could not locate the transition 
state, and so we report the number of barriers calculated for each functional 
in Table 5.2. The errors were calculated over the successful barriers relative 
to the ab initio values quoted in Ref. [51 . 

The A23 is the only set we considered where KT3 was not competitive 
with the best GGA results. KT3 located 12 transition states and gave an 
error of 8.0 kcal/mol, which is significantly better than K T l and KT2, and is 
comparable to PBE. However, the performance of OLYP and HCTH is better 
still, with HCTH locating 15 of the transition states and giving a remarkably 
low error of 3.8 kcal mol"^ Of the hybrids only B97-2 beats this figure, with 
all the transition states located and an error of 2.4 kcal/mol. 

The ful l set of assessments consists of 3,987 individual calculations. A 
ful l breakdown of the results is available in Ref. [193] (the supplementary 
information for Ref. [186]). 

5.2.1 Magnetic properties 

Finally, we compare the performance of KT3 to the earlier K T functionals 
for the magnetic property assessments of Chapters 2 and 3. Errors are pre
sented in Table 5.3. Given the small degradation in the isotropic shielding 
constants, we expected that the performance of KT3 would be slightly worse 
for all the magnetic property sets (with the possible exception of spin-spin cou
pling constants). For the A2 anisotropic shielding constant set however, KT3's 
performance of 9.4 ppm is superior to K T l (with KT2 having the smallest error 
of 8.8 ppm). This contrasts with the isotropic A l set, where the performance 
is K T l > KT2 > KT3. K T l gives the best performance for isotropic magneti-
sabilities (5.7 x 10~^° JT~^ compared to MCSCF) whereas some degradation 
is observed for KT3. A similar result is found for anisotropic magnetisabiUties, 
although in this case it is KT2 that gives the best performance {\d\ = 17.4x 
10-3° JT-2 compared to 22.9 x 10-^° JT-^ for KT3). The pattern is mixed 
for chemical shifts, with the ^^N and '̂̂ O results worsened but ^^C and ^^F 
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Table 5.3: Non-fitted magnetic property assessments for the KT3 functional. Magnetisabil-
ity errors are presented relative to MCSCF (including O3). Units are given in parentheses. 

K T l KT2 KT3 

A2. Anisotropic N M R shielding constants (ppm) 
d -2.1 4.1 6.7 
|d| 11.5 8.8 9.4 

A8, Isotropic magnetisabilities (10~^° JT-^) 
d 3.7 7.7 11.0 
\d\ 5.7 7.7 11.0 

A9. Anisotropic magnetisabilities (10~^° JT~^) 
d 12.0 13.0 16.3 
|d| 18.8 17.4 22.9 

AlO. Isotropic N M R chemical shifts (ppm) 
|d|(i3C) 4.5 4.4 4.4 
I d j O H ) 0.32 0.25 0.20 

|d|O^N) 25.7 26.1 29.1 
\d\{^''0) 56.0 59.5 64.1 
|d|(i9F) 16.7 17.3 16.8 

A l l . G I A O shielding constants (ppm) 
d -20.4 -22.8 -21.5 
|£Z| 23.7 24.3 23.1 

A12. Indirect spin-spin coupling constants (Hz) 
d -5.3 -2.2 0.2 
\d\ 10.8 12.6 1 3 ^ 
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remaining steady and ^H actually improving. 
The DALTON calculations also give interesting results. KT3 gives the best 

errors (23.1 ppm) for the A l l QIAO shielding constant sets, although the 
improvement is not significant. For spin-spin coupling constants, KT3 gives an 
error of 13.9 Hz, which is even worse than KT2. Again the error is dominated 
by the Fermi-contact term, which suggests that the source of this increased 
error is not the reduced amount of K T exchange, but actually some worsening 
of the description of the core. 

Overall, however, the degradation for magnetic properties is small, and we 
believe i t is well worth the trade-off for the substantial improvement in per
formance for the other chemical properties we have assessed. KT3 is overall 
the best performing GGA out of all those considered ( K T l , KT2, KT3, PBE, 
HCTH, and OLYP), and for bond length optimisations and harmonic vibra
tional wavenumbers i t is as accurate as the best hybrid functionals. The only 
assessments for which KT3 performs poorly are the A5 total energy set and the 
A23 classical reaction barriers. Unlike total energies, classical reaction barri
ers are a very important property for practical purposes, and in Chapter 6 we 
focus on building functionals with improved performance for reaction barriers. 
In the remainder of this chapter, we consider further applications of KT3. 

5.3 o-dichlorobenzene 
In a recent investigation of theoretically calculated ^^C NMR spectra of organic 
molecules [194], Bagno and co-workers highfighted the poor performance of 
conventional DFT functionals such as BLYP and B3LYP for the chemical 
shifts of halogen-bonded carbon nuclei. Table 5.4 illustrates this with the 
B3LYP, BLYP, and Hartree-Fock results for o-dichlorobenzene, calculated by 
Maslen [195] using the 6-311+G(2d,p) basis set at B3LYP/6-31G* geometries. 
By symmetry, there are three non-equivalent carbon sites: ortho (bonded to a 
chlorine atom), meta (adjacent to ortho), and para (furthest from the chlorine 
atoms). The experimental chemical shifts for o-dichlorobenzene span a range 
of 3.5 ppm, in the order ortho > meta > para (note this is the reverse of 
the corresponding shielding constant order). The B3LYP chemical shifts give 
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Table 5.4: Calculated HF, B L Y P , and B3LYP shielding constants and B3LYP chemical 
shifts for o-dichlorobenzene from Ref. [195]. All values are in ppm. 

Carbon HF B L Y P B3LYP B3LYP Expt. 
nucleus shielding shielding shielding shift* shift'' 
ortho 47.1 32.4 34.6 147.8 132.3 
meta 54.8 44.7 45.8 136.6 131.0 
para 58.7 49.6 50.5 132.0 128.8 
Range 11.6 17.2 15.9 15.8 3.5 

* Calculated using a TMS reference value of 182.47 ppm (B3LYP/6-31H-G(2d,p)). 
" Ref. [194]. 

the correct order, but a much higher range of 15.8 ppm. These shifts were 
calculated using a B3LYP reference shielding, but we can directly calculate 
the range from the original shielding constants (to within a rounding error) 
and so a reference shielding is not required. Both BLYP and Hartree-Fock 
also get the correct ordering. The BLYP range is higher still than B3LYP at 
17.2 ppm, whereas Hartree-Fock gives a better result of 11.6 ppm. I t therefore 
appears that the addition of correlation with DFT worsens the results. We 
examined whether any improvement could be gained by using KT3. This is 
an interesting test for the K T functionals as we have not previously studied 
any halogen-bonded carbon shielding constants (the only halogen-containing 
molecule we have studied is HCl in the A l and A2 sets). 

Table 5.5 presents the results. We first considered KT3 shielding constants 
calculated using the same 6-311-|-G(2d,p) basis set and B3LYP/6-31G* geome
tries. We also recalculated B3LYP to check that they agreed with Maslen's 
results and calculated KT2 results to compare to KT3. Shielding constants 
were calculated under the GIAO formalism using the D A L T O N program with 
spherical-harmonic basis functions. 

Our B3LYP results agreed very well, with the same calculated range of 
15.9 ppm. The KT3 shielding constants were significantly more shielded than 
B3LYP, as also observed in all our previous assessments. A l l three carbon 
atoms were raised by approximately 20 ppm. KT2 results were essentially 
identical to KT3. However, as the increase was uniform over all the atoms, 
the calculated range remained very similar to B3LYP (15.4 ppm in the case of 
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Table 5.5: Calculated B3LYP, K T 2 and K T 3 shielding constants for o-dichlorobenzene at 
various geometries and basis sets. All values are in ppm. 

Carbon B3LYP K T 2 K T 3 Expt. 
nucleus shielding shielding shielding 

6-311+G(2d,p) at B3LYP/6-31G* geometries 
ortho 34.8 53.8 54.1 
meta 46.0 64.4 64.8 
pora 50.7 69.4 69.5 
Range 15.9 15.6 15.4 3.5 

Huzinaga IV at B3LYP/6-31G* geometries 
ortho 27.2 44.6 44.4 
meta 39.1 55.8 55.6 
para 44.0 61.0 60.6 
Range 16.8 16.4 16.2 3.5 

6-31H-G(2d,p) at KT3/6-31G* geometries 
ortho 36.3 55.3 55.6 
meta 46.7 65.0 65.3 
para 51.8 70.3 70.4 
Range 15.5 15.0 14.8 3.5 

6-31H-G(2d,p) at B3LYP/6-311+G(2d,p) geometries 
ortho 36.2 55.0 55.3 
meta 47.3 65.5 65.9 
para 51.8 70.3 70.4 
Range 15.6 15.3 15.1 3.5 
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KT3). Therefore the K T functionals appear to offer no improvement. 
We next examined whether the results had any dependence on the basis set 

or geometry used. The 6-31H-G(2d,p) basis set used by Maslen is relatively 
small for shielding constant calculations even under the GIAO formalism, and 
we would expect the calculated shielding constants to be more shielded than 
they would be at the basis set limit (as the smaller basis set pulls the electron 
density in towards the nucleus, giving greater shielding). To eliminate basis set 
issues we recalculated all the numbers using the extensive Huzinaga IV basis. 
For all three functionals the shielding constants are lowered, but the shielding 
constant range increases to 16.8 ppm for BLYP and 16.2 ppm for KT3. Again, 
there is little improvement gained by moving from B3LYP to KT3. 

To test the geometry dependence we also calculated results at KT3/6-31G* 
geometries using the original basis set for the shielding constant calculations. 
We found that the shielding constants rise slightly over the B3LYP geome
try results, but there is a negligible change in the shielding constant ranges. 
Finally, we reoptimised the geometries at the B3LYP level using the larger 
6-311+G(2d,p) basis set and recalculated the shielding constants. Again, the 
change in shielding constants was very small, and the change in the shielding 
constant range was insignificant. 

In conclusion, we have eliminated the question of geometry and basis set 
dependence and we believe that the overestimated shielding constant range is 
a true failure of all the DFT functionals we considered. We did observe the 
usual increased shieldings from KT2 and KT3, but as this rise was uniform it 
did not affect the shielding constant range performance. Further investigation 
of this important issue is ongoing. 

5.4 Selenium chemistry 

Our previous shielding constant assessments have only considered first- and 
second-row nuclei. In this section we consider the performance of KT3 for the 
shielding constants of the third-row selenium nucleus, to give some indication 
of how KT3 performs for systems containing heavier atoms. We also take 
the opportunity to investigate the performance of KT3 for calculating the 
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Table 5.6: The basis sets used in the selenium assessments. For each set the contracted 
basis functions used for H, C - F , and Se are given. 

Basis set H C,N,0 ,F Se 
Sel 3s2pd 5s4p2dlf 9s8p4dlf 
Se2 3sp 6s3pd 8sl0p5dlf 
Se3 4s2pd 7s6p4d 8sl0p5dlf 

geometries of selenium-containing molecules. 
A number of previous studies have investigated theoretical ''̂ Se shielding 

constants and chemical shifts [109,196-205]. Biihl and co-workers have per
formed calculations at the GIAO-SCF, GIA0-MP2 [196] and GIAO-CCSD [197 
levels of theory. Magyarfalvi and Pulay [198] have carried out similar inves
tigations with GIAO-SCF and GIA0-MP2. Both concluded that correlated 
methods were necessary to give quantitative agreement with experiment for 
chemical shifts. Within DFT, Malkin et al. [109] (using their Loc. 1 approxi
mation) and Schreckenbach et al. [199] showed that it was possible to obtain 
results for chemical shifts that are superior to GIAO-SCF. Wilson [200] showed 
that particularly accurate results were given by the empirical scheme of Wil 
son, Amos and Handy [105]. Magyarfalvi and Pulay [201] showed that apply
ing a constant level shift to the virtual orbitals also improved the DFT results. 
These improvements indicate that selenium NMR results are influenced by 
eigenvalue differences in the same way as lighter main group elements, which 
suggests that improvements should also be seen with the KT3 functional. 

We carried out a geometry optimisation assessment for the A24 set of 14 
selenium-containing molecules from Ref. [196] followed by a shielding constant 
assessment for the A25 set of 7 molecules from Ref. [200]. The A25 set is a 
subset of A24. The shielding constant calculations were performed using the 
LORG formalism in CADPAC, which demanded careful attention to the choice 
of basis set. The basis sets we used are presented in Table 5.6. 

We used the Sel basis set for the geometry optimisations. Sel is the same 
as that used for our A7 diatomic bond length assessment [139], and so we were 
confident that this would be suitable for geometry optimisations. However, the 
A7 set contained no hydrogens and so the hydrogen basis was undefined. 2pd 
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polarisation functions -were added to hydrogen to give a good balance. The 
resulting basis set was 6-311+G(2df,2pd). Bond length results are presented 
in Table 5.7 and bond angles in Table 5.8, where KT3 is compared with the 
HCTH and OLYP GGAs and the B3LYP and B97-2 hybrid functionals. 
Of the GGAs, KT3 gives the best bond lengths, with a mean absolute error 
of 0.010 A. KT3 is only beaten by the B97-2 hybrid functional (0.007 A). 
The same trends are seen with the mean absolute percentage errors. For bond 
angles, KT3 beats all the other functionals, with an error of 0.6°. Overall, B97-
2 gives marginally better geometries than KT3, with both being substantially 
better than the other functionals. This confirms our previous assertion of the 
quality of KT3 geometry predictions. 

We next considered shielding constants. The choice of basis set is very 
important as we are working under the LORG formalism. We compared two 
basis sets, denoted Se2 and Se3. The Se2 basis set is taken from the work 
of Magyarfalvi and Pulay [201] (where it was used for calculating shielding 
constants). It is based on the pVTZ basis of Schafer et al. [206], with the Se 
basis modified by the decontraction of the p functions and addition of diffuse 
functions as described in Ref. [198]. Se3 is similar to the basis set used in 
Ref. [200]. For the non-Se atoms the basis is Huzinaga I I I augmented with a 
single d function for hydrogen with exponent 1.3, and two diffuse d functions 
for C, O, and F, with exponents determined from the geometric progression. 
The Se3 basis for the selenium atom is the same used in Se2. 

To compare the performance of Se2 and Se3, isotropic shielding constants 
for the A25 set were calculated with the KT3 functional at KT3 optimised 
geometries using both the LORG (in CADPAC) and GIAO (in DALTON) for
malisms. Results are presented in Table 5.9. For a given basis set, GIAO 
should give results closer to the basis set limit than LORG. The results show 
that the shielding constants calculated with Se2 undergo a much larger change 
from LORG to GIAO than those calculated with Se3. Also, the Se2 GIAO re
sults are much closer to the Se3 results with LORG and GIAO. This suggests 
that Se3 gives results closer to the basis set limit and therefore we used Se3 
for the rest of our assessments. 

Table 5.10 presents isotropic shielding constants for the A25 set and anisotropic 
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Table 5.7: Selected bond lengths for selenium-containing systems. All values are in A. 

Mol. Par am. Expt.^ K T 3 H C T H O L Y P B3LYP B97-2 
Se(CH3)2 Se - C 1.945 1.946 1.957 1.959 1.963 1.945 
SeH2 Se - H 1.460 1.459 1.470 1.472 1.469 1.463 
SeCO Se = C 1.710 1.707 1.708 1.713 1.716 1.705 

C : = 0 1.154 1.161 1.161 1.165 1.152 1.150 
HaCSe Se = C 1.756 1.749 1.751 1.755 1.752 1.742 
CSe2 Se = C 1.692 1.696 1.697 1.701 1.697 1.689 
SeFe Se - F 1.685 1.704 1.714 1.720 1.706 1.692 
CHaSeH Se - C 1.959 1.954 1.965 1.967 1.972 1.953 

Se - H 1.473 1.461 1.473 1.475 1.471 1.465 
(CH3)2CSe Se - C 1.768 1.773 1.779 1.782 1.778 1.767 

C - - C 1.502 1.492 1.498 1.501 1.497 1.493 
C4H4Se Se - C 1.855 1.855 1.861 1.864 1.870 1.853 

C - - C 1.370 1.363 1.365 1.368 1.359 1.358 
C - - C 1.433 1.421 1.425 1.428 1.429 1.424 

SeOF2 Se - 0 1.576 1.588 1.587 1.593 1.584 1.574 
Se - F 1.730 1.755 1.770 1.775 1.757 1.740 

(SiH3)2Se Se - S i 2.274 2.277 2.299 2.300 2.299 2.286 
SeF4 Se - F 1.771 1.787 1.804 1.809 1.795 1.780 

Se - F 1.682 1.710 1.718 1.724 1.709 1.695 
trans-C2H5SeH Se - H 1.440 1.461 1.473 1.475 1.471 1.465 

Se - C 1.962 1.970 1.984 1.986 1.988 1.968 
C - - C 1.525 1.515 1.520 1.524 1.522 1.517 

gauche-C2H5SeH Se - H 1.467 1.462 1.473 1.475 1.472 1.466 
Se - C 1.957 1.964 1.978 1.980 1.983 1.964 
C - - C 1.524 1.514 1.520 1.523 1.520 1.515 

d 
\d\ 
\d\% 

0.003 
0.010 

0.6 

0.011 
0.014 

0.8 

0.015 
0.015 

0.9 

0.010 
0.013 

0.8 

0.000 
0.007 

0.5 

* Experimental values, except MP2 values for (CH3)2CSe. See Ref. [196] and references 
therein. 



C H A P T E R 5. ASSESSMENT OF K T 3 139 

Table 5.8: Selected bond angles for selenium-containing systems. All values are in degrees. 

Mol. Par am. Expt.* K T 3 H C T H O L Y P B3LYP B97-2 
Se(CH3)2 C - Se - C 96.3 97.0 98.2 98.1 97.4 97.6 
SeHa H - Se - H 90.9 90.7 90.8 90.8 91.3 91.3 
HsCSe H - C - -Se 121.3 121.8 121.9 121.9 121.8 121.8 
CHsSeH C - Se - H 95.5 95.0 95.4 95.3 95.5 95.5 
(CH3)2CSe S e - - C - C 122.6 122.3 122.1 122.1 122.3 122.3 
C4H4Se C - Se - C 87.8 87.5 87.5 87.5 87.1 87.5 
SeOFz 0 - Se - F 104.8 104.8 105.0 105.0 104.7 104.7 
(SiH3)2Se S i - Se - S i 96.6 96.3 98.7 98.6 98.2 97.4 
SeF4 F - Se - F 169.2 169.9 172.1 171.9 169.9 169.6 

F - Se - F 100.6 100.4 100.1 100.1 100.3 100.4 
trans-C2H5SeH H - Se - C 93.5 95.2 95.2 95.1 95.5 95.6 

C - C - -Se 108.7 109.5 110.3 110.5 109.7 109.7 
gauche-C2H5SeH H - Se - C 93.1 94.8 95.3 95.3 95.3 95.3 

C - C - -Se 113.5 114.3 115.1 115.2 114.4 114.5 

d 0.4 1.0 0.9 0.6 0.6 
\d\ 0.6 1.2 1.2 0.8 0.8 
\d\% 0.6 1.1 1.1 0.8 0.8 

* Experimental values, except MP2 values for (CH3)2CSe. See Ref. [196] and references 
therein. 

Table 5.9: Isotropic NMR shielding constants for the K T 3 functional calculated at K T 3 
geometries. All values are in ppm. 

Mol. Se2 Se2 Se3 Se3 
L O R G GIAO L O R G GIAO 

Se(CH3)2 1669 1705 1706 1718 
SeHz 2101 2127 2112 2127 
SeCO 2297 2302 2298 2303 
H2CSe -1136 -1138 -1154 -1145 
CSe2 1548 1553 1549 1551 
SeFe 1101 1065 1092 1075 
CHsSeH 1863 1895 1887 1900 
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shielding constants for the A26 set (a subset of A25). The shieldings are calcu
lated using self-consistently optimised geometries. Results are compared with 
CCSD [197] and experimental reference values. The experimental values were 
taken from Refs. [207-210]. The paramagnetic part was determined from the 
spin-rotation constant tensor of the relevant nucleus and the diamagnetic part 
estimated using the shielding constant of the free Se atom. Relativistic effects 
can be much reduced by using a non-relativistic value for the free atom (a 
residual error remains in the paramagnetic part). Therefore we do not need to 
consider applying any relativistic corrections to our calculated results. Of all 
the functionals, KT3 gives the best results, with a mean absolute error com
pared to experiment of 33 ppm and 156 ppm compared to CCSD. Only CCSD 
results were available for anisotropic shieldings, for which KT3 was again sig
nificantly better than the other functionals with an error of 260 ppm. The 
same trends are observed in the mean absolute percentage errors. 

The B97-2 hybrid is the second best performing functional. I t is substan
tially better than B3LYP and the other GO As, with errors of 51 ppm and 
208 ppm respectively. This reflects the high quality B97-2 geometries. The 
performance of KT3 is also partly due to its good geometries. To assess the 
functionals for their shielding constant performance alone, we recalculated all 
the shielding constants at the highest quality geometries (B97-2). Results 
are presented in Table 5.11. As expected, the discrepancy between KT3 and 
B97-2 and the other functionals narrows, although interestingly B97-2 remains 
substantially better than the HCTH and OLYP GGAs. Our previous observa
tions that GGAs are uniformly superior to hybrids is only true for lighter main 
group elements. The KT3 functional again gives the best performance. The 
errors compared to CCSD improve slightly to 144 ppm for isotropic shieldings 
and 234 ppm for anisotropic shieldings, but they worsen for isotropic shielding 
compared to experiment to 36 ppm. The small differences suggest that KT3 
geometries are equally acceptable for the calculation of selenium shielding con
stants. We are encouraged by the performance of KT3 for both geometries and 
shielding constants. Although the functional was developed with an empha
sis on light, main-group atoms, i t can clearly also be successful for heavier 
systems. 
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Table 5.10: Isotropic and anisotropic NMR shielding constants calculated at the respective 
optimised geometries of the functionals. All values are in ppm. 

Mol. Expt. CCSD^ K T 3 H C T H O L Y P B3LYP B97-2 

Isotropic Shieldings 
Se(CH3)2 1756 ± 64'' 1878 1706 1623 1608 1632 1730 
SeH2 2101 ± 64'' 2213 2112 2053 2057 2050 2094 
SeCO 2348 ± 60'' 2345 2298 2265 2261 2255 2297 
HsCSe -1202 ±200^= -741 --1154 -1462 -1477 -1612 -1389 
CSe2 1544 ± SO'' 1596 1549 1498 1491 1464 1521 
SeFe 1138 ± 64'' 1092 1009 1000 1023 1096 
CHgSeH 1911 ± 64'' 1887 1816 1808 1822 1893 
d (expt.) -15 -113 -121 -137 -51 
\d\ (expt.) 33 113 121 137 51 
\d\% (expt.) 2 8 8 10 4 
d (CCSD) -156 -263 -270 -301 -208 
\d\ (CCSD) 156 263 270 301 208 
\d\% (CCSD) 15 26 26 30 21 

Anisotropic Shieldings 
Se(CH3)2 632 624 641 626 674 666 
SeH2 602 635 646 642 656 654 
SeCO 993 1072 1116 1120 1127 1067 
HaCSe -5147 --6248 -6859 -6862 -6984 -6596 
CSez 2118 2197 2267 2276 2315 2231 
d (CCSD) -183 -277 -279 -282 -235 
\d\ (CCSD) 260 407 409 453 345 
d % (CCSD) 8 12 12 15 11 

* Ref. [197] 
^ Ref. [207] 

Calculated using the spin-rotation constant, as in Ref. [209], but with a non-relativistic 
free atom shielding of 2998 ppm. 
d Ref. [210] 
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Table 5.11: Isotropic and anisotropic NMR shielding constants calculated at B97-2 geome
tries. All values are in ppm. 

Mol. Expt. CCSD* K T 3 H C T H OLYP B3LYP B97-2 

Isotropic Shieldings 
Se(CH3)2 1756 ± 64*̂  1878 1699 1653 1644 1668 1730 
SeH2 2101 ± 64'' 2213 2101 2069 2077 2065 2094 
SeCO 2348 ± 60'' 2345 2321 2288 2300 2280 2297 
HaCSe -1202 ±200^= -741 --1119 -1423 -1420 -1563 -1389 
CSe2 1544 ± 80** 1596 1572 1524 1530 1493 1521 
SeFe 1138 ± 64'' 1114 1050 1052 1050 1096 
CHsSeH 1911 ± 64'' 1878 1839 1835 1845 1893 
d (expt.) - 4 -85 -82 -108 -51 
|d| (expt.) 36 85 82 108 51 

(expt.) 2 6 6 8 4 
d (CCSD) -144 -236 -232 -270 -208 
|d| (CCSD) 144 236 232 270 208 
|£i|% (CCSD) 14 23 23 28 21 

Anisotropic Shieldings 
Se(CH3)2 632 617 650 632 670 666 
SeH2 602 632 646 642 657 654 
SeCO 993 1039 1080 1062 1090 1067 
HaCSe -5147 --6181 -6813 -6791 -6923 -6596 
CSe2 2118 2164 2227 2217 2271 2231 
d (CCSD) -186 -281 -287 -286 -235 
|d| (CCSD) 234 385 371 424 345 
\d\% (CCSD) 7 11 10 13 11 

" Ref. [197] 
'' Ref. [207] 

Calculated using the spin-rotation constant, as in Ref. [209], but with a non-relativistic 
free atom shielding of 2998 ppm. 
<̂  Ref. [210] 
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5.5 Solid state calculations 
Semi-empirical functionals are rarely used in solid state calculations, because 
they often do not satisfy the uniform electron gas limit (which is argued to be 
more important for solids than for atoms and molecules [211]) and they are 
usually only fitted to chemically-relevant reference data. A previous study by 
Rushton et al. [212] considered the performance of the semi-empirical HCTH 
functional for a range of solid state properties. It was observed that HCTH 
gave a reasonable description for systems containing atoms present in its fitting 
data, but systems containing heavier atoms were much less well described. 

To investigate the performance of KT3 for solid state properties we imple
mented i t in the CASTEP program [213]. In C A S T E P , the Kohn-Sham orbitals 
are represented as a linear combination of plane-waves. Unlike Gaussian func
tions, plane-waves are not localised and so they are well suited to treating 
periodic systems. The plane-wave formulation of the Kohn-Sham equations 
is computationally efficient and a very large basis set (approaching the basis 
set limit) can be used. However, plane-waves cannot efficiently describe core 
electrons (where the wavefunction oscillates) and so a pseudopotential approx
imation is used for the core region. By construction, the wavefunction of the 
pseudopotential does not oscillate and so can be described by a smaller number 
of plane-waves. 

The closed-shell implementation of KT3 in CASTEP is similar to the im
plementation in CADPAC and DALTON, with a subroutine that calculates the 
energy contribution of the functional and its derivatives with respect to the 
density and density gradients. In the case of CASTEP, a further subroutine is 
required to calculate self-consistent pseudopotentials. Our implementation was 
checked using the Hellmann-Feynman theorem and by a comparison of isolated 
molecular geometry optimisation results with CADPAC. Following Ref. [212], 
all the assessments involved the A28 set of 10 Group IV and Group I I I -V 
semiconductors with diamond/zinc-blende structures. Errors were calculated 
relative to experimental reference values from Ref. [212]. 

An optimised lattice constant is the unit cell length at equilibrium and 
is the solid state equivalent of a geometry optimisation. Table 5.12 presents 
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Table 5.12: Optimised lattice constants. All values are in A. 

Expt.* LDA'' PW91^ HCTH'' O L Y P K T 3 
c 3.57 3.53 3.57 3.56 3.57 3.55 
Si 5.43 5.38 5.46 5.50 5.46 5.39 
Ge 5.66 5.54 5.71 5.80 5.77 5.69 
SiC 4.35 4.30 4.36 4.37 4.35 4.32 
AIN 4.37 4.31 4.39 4.43 4.36 4.32 
AlP 5.45 5.41 5.49 5.54 5.51 5.43 
AlAs 5.66 5.60 5.69 5.78 5.74 5.66 
GaN 4.50 4.46 4.55 4.57 4.56 4.52 
GaP 5.45 5.38 5.49 5.54 5.55 5.46 
GaAs 5.65 5.57 5.70 5.81 5.80 5.70 
d -0.06 0.03 0.08 0.06 -0.00 
\d\ 0.06 0.03 0.08 0.06 0.03 

* Ref. [212] 

results for optimised lattice constants for KT3 and OLYP, compared to results 
from Ref. [212] for LDA, HCTH, and the non-empirical PW91 GGA, which is 
widely used for solid state calculations. In CASTEP, the LDA correlation energy 
is given by the Perdew-Zunger correlation functional [30], LDA uniformly 
underestimates the lattice constants, whereas PW91, HCTH, and OLYP all 
overestimate them. Of these functionals, PW91 gives the lowest mean absolute 
error of 0.03 A. KT3 gives the same mean absolute error as PW91. This is 
extremely encouraging as the systems in the A28 set are very different to those 
that KT3 was fitted to. 

The second property considered was the bulk modulus, defined as 

where E is the electronic energy and V is the cell volume. The bulk modulus 
for each system was calculated numerically from several energy calculations at 
various cell volumes. Results are presented in Table 5.13. Remarkably, LDA 
gives the lowest mean absolute error of 5 GPa for this set. PW91, HCTH, and 
OLYP are all significantly less accurate, but KT3 gives an error much closer 
to LDA. I t is encouraging that KT3 does not deteriorate for this set as much 
as the other GGAs, and it is particularly interesting that its performance is 
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Table 5.13: Bulk moduH. All values are in GPa. 

Expt.* LDA* PW91* H C T H * O L Y P K T 3 
c 442 457 425 428 429 443 
Si 98.8 97 88 82 86 96 
Ge 76.8 78 62 54 56 67 
SiC 227 215 212 212 225 
AIN 202 206 192 186 190 204 
AlP 89 82 78 79 88 
AlAs 75 71 60 64 72 
GaN 190 199 173 161 153 171 
GaP 88.7 89 77 69 68 80 
GaAs 74.8 75 65 51 52 64 
d 4 -13 -20 -20 - 7 
\d\ 5 13 20 20 8 

Ref. [212] 

superior to the non-empirical PW91. 
Finally, we assessed KT3 for electronic band gaps at experimental lattice 

constants. The band gap is the difference between the highest valence band 
energy and the lowest conduction band energy. Conventional GGA function
als are known to perform relatively poorly for band gaps [214-216], with a 
significant part of the error ascribed to the integer discontinuity in the poten
tial. The KT3 functional behaves like a normal GGA in this respect, but the 
increased HOMO-LUMO gaps i t gives suggested that i t might give a similar 
improvement for band gaps. Results are presented in Table 5.14. For this 
property LDA is the worst functional. Surprisingly, PW91 gives the highest 
error of all the GGAs of 0.97 eV. HCTH gives the lowest error of 0.76 eV. 
KT3 offers no real improvement over PW91, and gives a poor result for carbon 
(diamond). 

In summary, KT3 gives results as good as or better than the other GGAs 
considered for lattice constant optimisations and bulk moduli and gives results 
comparable to PW91 for electronic band gaps. We therefore conclude that KT3 
should not be ruled out for solid state calculations even though i t does not 
satisfy the uniform electron gas condition and it was fitted only to chemically-
relevant data. The results are particularly encouraging given the failure of the 
semi-empirical HCTH functional. 
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Table 5.14: Minimum electronic band gaps calculated at experimental lattice constants. 
All values are in eV. 

Expt.* LDA* PW91* H C T H * O L Y P K T 3 
c 5.48 4.12 4.20 4.22 4.10 3.89 
Si 1.17 0.49 0.60 0.80 0.77 0.69 
Ge 0.71 0.03 0.18 0.32 0.34 0.34 
SiC 2.39 1.33 1.42 1.63 1.40 1.29 
AIN 3.26 3.39 3.70 3.48 3.38 
AlP 2.50 1.42 1.56 1.89 1.85 1.74 
AlAs 2.32 1.32 1.39 1.66 1.73 1.60 
GaN 3.45 1.74 1.73 1.99 1.67 1.33 
GaP 2.35 1.40 1.55 1.80 1.86 1.74 
GaAs 1.52 0.32 0.49 0.72 0.71 0.67 
d -1.08 -0.97 -0.76 -0.83 -0.96 
\d\ 1.08 0.97 0.76 0.83 0.96 

Ref. [212] 



Chapter 6 

The KT4 and B97-3 functionals 

The KT3 functional gives excellent results for a wide variety of chemical prop
erties while retaining the high quality shielding performance of K T l and KT2. 
However, its performance for classical reaction barriers is not competitive with 
the best GGAs. In this chapter we attempt to develop a GGA that improves 
reaction barrier performance without a decline in performance for other prop
erties. We then consider the development of hybrid functionals with the same 
methods. 

6.1 The K T 4 functional 

6.1.1 The BH42/04 database 

An obvious way to improve the performance of a semi-empirical functional for 
reaction barriers is to include the reaction barriers in the fitting data. Several 
hybrid functionals and hybrid meta-GGA functionals have been developed in 
this manner [68,73-75,217]. In every case i t has been found that the fitting 
procedure results in a relatively high fraction of exact exchange. For example, 
the M P W I K hybrid functional of Truhlar and co-workers [68] features 43% 
exact exchange. This phenomenon was first observed for the original half-
and-half hybrid functional [66], which gives relatively good reaction barriers 
despite being poor for other properties [218]. No pure GGA functionals have 
been designed in this way, and it is unclear how they will perform as they 

147 
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Table 6.1: Basis set dependence of error assessments for BH42/04 classical chemical reaction 
barrier heights. All values are in kcal mol~^. 

K T l K T 2 K T 3 P B E H C T H O L Y P B3LYP PBEO B97-2 
TZ2P 
d -14.7 -12.7 -8.4 -9.7 -5.0 -6.4 -4.6 -4.7 -3.3 
|d| 14.7 12.7 8.4 9.7 5.2 6.5 4.7 4.7 3.4 
6-311+G(3df,2p) 
d -14.6 -12.5 -8.1 -9.4 -4.7 -5.9 -4.4 -4.5 -3.1 
\d\ 14.6 12.5 8.1 9.4 4.8 6.0 4.5 4.5 3.3 

contain no exact exchange. 
To fit our functionals to reaction barriers requires a suitable fitting set. 

The A23 reaction barrier assessment set is not suited to fitting because its 
energies are calculated at optimised geometries. This means that the fit quality 
will not solely depend on the energy calculations as we would like. I t also 
causes problems for the fitting procedure because transition states may not 
be located and the geometry dependence may cause convergence issues. We 
therefore require a barrier height assessment set that is calculated using a set 
of reference geometries. 

The BH42/04 barrier height set of Zhao et al. [73] (also known as BH42/03) 
fulfills this criterion. I t is the A29 set in this thesis. This set is the same as 
that in the earlier Database/3 of the same authors [219], but with one reaction 
removed because of an unreliable reference value. The BH42 set consists of 42 
barrier heights from 21 predominantly hydrogen-transfer reactions (forward 
and reverse). The geometries were calculated at the QCISD level with the 
extensive MG3 basis set. They were taken from Ref. [220] and were converted 
into CADPAC format using Perl scripts. 

We considered the same set of functionals as in Section 5.1 using both the 
TZ2P basis set (as used in the A23 barrier assessment) and the 6-31 l-t-G(3df,2p) 
basis set (used in the G2 thermochemistry calculations). Errors are presented 
in Table 6.1. The trends are similar to those of the A23 assessment. For the 
6-311-hG(3df,2p) basis set, K T l gives the highest error of 14.6 kcal mo\-\ 
which is reduced significantly by KT2 and again by KT3, with an error of 

.8.1_kcaLmolzi. KT3-performs^better-than EBE-(unlike-for the A23-set) but 
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Table 6.2: Coefficients of functionals of the KT3 form (and B86X) fitted to barrier heights 
and other properties. 

LDAX B86X OPTX KTX LYP 

FBHl 1.217782E 4- 0 
FBH2 1.111753E + 0 
FBH3 1.152317E + 0 
FBH4 1.110964E + 0 
FBH5 1.108981E + 0 

3.20696E - 1 
5.61369E - 1 

-1.384829E + 0 
-1.798830E + 0 
-1.151970E + 0 
-1.924173E + 0 
-2.166665E + 0 

-2.2780E- 3 3.51287E-1 
4.7300E-4 9.69940E-1 

-4.0000E - 3 8.66580E - 1 
-2.0000E - 3 l.OOOOOE + 0 
-2.0192E-3 9.52262E-1 

as before is not competitive with OLYP or HCTH. HCTH gives the lowest 
GGA error of 4.8 kcal mol~^ For the BH42 set all three hybrid functionals 
are superior to HCTH, with B97-2 giving the lowest error of 3.3 kcal mol '^ 
Similar results are obtained with TZ2P, but the errors are slightly higher for 
all the functionals considered. 

Using the extensive MG3S basis set, Zhao et al. obtained errors for B3LYP, 
PBEO and B97-2 of 4.3, 4.3, and 3.1 kcal mol'^ respectively. Our 6-311+G(3df,2p) 
numbers give the best agreement with these values and so this basis set was 
selected for the fitting procedure. 

6.1.2 Fitting to barriers 

Fitting to the barrier heights of the BH42 set is similar to fitting to atomisa-
tion energies as both calculations involve energy differences. We followed the 
procedure of Section 4.7 with Eq. 4.32 redefined as 

, B H T S (6.1) 

where TS is the transition state and R are the reactants. 
We commenced by fitting the KT3 form (LDAX, KTX, OPTX, and LYP) 

to the BH42 set. Our first functional (FBHl) was fitted only to barrier heights 
and all four KT3 parameters were allowed to vary. The resulting coefficients 
are given in Table 6.2. The KTX coefficient came out quite small (just over half 
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of the KT3 value), as did the LYP coefficient. The LDA exchange component 
increased dramatically, from the KT3 value of 1.092 to 1.218. This is analogous 
to the hybrid case where the fraction of exact exchange rises considerably. 
Results for the BH42 set are presented in Table 6.3. The mean absolute error 
is remarkably good, at 1.6 kcal mol~^. This is significantly better than the 
KT3 error of 8.1 kcal mol~^ and is less than half the error of B97-2, the best 
performing functional we have considered. We then assessed FBHl for the 
G2-1 atomisation energy set to give an indication of how well it performs for 
thermochemistry. The error was 21.9 kcal mol~\ which is considerably less 
accurate than KT3 (4.3 kcal mol~^). This highlights the danger of fitting a 
semi-empirical functional to a single chemical property (we first observed this 
for K T l , which is fitted only to shielding constants). 

We therefore added the G2-1 atomisation energies to the fitting data. In 
order to minimise the computational cost of our initial investigations, we did 
not consider the G2-2 set at this time. The fitting program required no changes 
except the addition of an appropriate weighting factor to the Qi values to 
compensate for the diflferent size of the barrier height and atomisation energy 
sets. The resulting functional, FBH2, had a smaller value for LDA exchange 
(1.112) and a much larger value for LYP. Both components were much closer 
to their KT3 values. The amount of OPTX exchange also increased. The KT 
exchange coefficient, however, became smaller in magnitude and positive. 

FBH2 gives errors for BH42 of 3.1 kcal mol"^ (still surpassing B97-2) and a 
dramatically lower error of 3.1 kcal mol~^ for the G2-1 set. This is superior to 
KT3 and comparable to the best GGAs and hybrid functionals (see Table 5.1). 
It is not a satisfactory functional, however, because the small positive value 
for KT exchange gives poor shieldings. Errors for the A l set are 31.3 ppm, 
which is comparable to OLYP (this is expected as the functional coefficients 
are similar to OLYP). 

We therefore enforced good quality shieldings by fixing the KT coefficient 
at the KT3 value of -0.004. The FBH3 functional gives a shielding error of 
17.5 ppm, which is not as good as KT3 but is greatly improved over FBH2 
(and other GGAs). The reduction in flexibility of the functional leads to lower 
quality kinetics and thermochemistry, with an error of 5.7 kcal mol~^ for BH42 
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Table 6.3: Error assessments for functionals of the KT3 form (and B86X) fitted to barrier 
heights and other properties. Units are given in parentheses. 

FBHl FBH2 FBH3 FBH4 FBH5 

A29. BH42/04 classical chemical reaction barriers (kcal mol 
d 0.0 -2.2 -5.7 -4.4 -4.9 
|d| 1.6 3.1 5.7 4.5 5.0 

A13/14. G2 atomisation energies (kcal mol )̂ 
G2-1: 
d -21.6 -1.0 -1.0 -0.3 -0.9 
|d| 21.9 3.1 5.3 4.2 4.3 
G2-2: 
d -1.6 -0.8 
\d\ 5.2 5.1 
Full G2: 
d -1.1 -0.8 
\d\ 4.8 4.8 

A l . Isotropic N M R shielding constants (ppm) 
d -31.3 -14.2 -15.1 -12.1 
\d\ 31.3 17.5 17.4 15.9 
Excluding O 3 : 
d -24.2 -11.1 11.5 -8.8 
|d| 24.2 14.7 13.9 12.9 

A6. G2 subset bond lengths (A) 
d -0.016 0.003 0.006 
\d\ 0.016 0.009 0.010 

A7. Diatomic bond lengths (A) 
d 0.029 
\d\ 0.034 
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and 5.3 kcal mol~^ for the G2-1 set. The barrier height performance is still 
better than KT3 but the G2-1 result is worse. Also, in order to improve the 
shielding quaUty to KT3 levels, the KT coefficient would have to become larger 
in magnitude, which would result in a further deterioration for BH42 and G2-1. 

To summarise, it is possible to improve KT3's performance for barrier 
heights but only at the cost of atomisation energy quality. It is clear that 
we have reached the limits of accuracy for this functional form and further 
improvements require extra flexibility. We attempted to add several of the new 
forms discussed in Chapter 4, such as the KT expansion, VWN correlation, 
and the B86 exchange term. B86 exchange was the most successful. 

By adding B86 exchange, we again ran into the problem of the B86X 
coefficient going negative and the OPTX coefficient going positive (see Sec
tion 4.3.2), leading to poor shieldings. To keep this problem under control, we 
considered the ratio of B86X:OPTX that gave the highest quality shieldings 
for various values of KTX. Using the non-linear fit code Solver, all the coeffi
cients except KTX were then optimised while enforcing the ratio constraint on 
B86X:OPTX and forcing OPTX to be negative. We also decided to fit to the 
full 02 atomisation energy set (A13/14). The most satisfactory results were 
obtained using a B86X:OPTX of ratio l : - 6 with a KTX value of -0.002 and 
a fixed LYP value of 1. This functional, FBH4, gave promising barrier height 
results of 4.5 kcal mol~^ (better than all the other 00As we consider) and full 
02 atomisation energy errors of 4.8 kcal mol~^ (comparable with KT3). The 
shielding constant quality was maintained at the FBH3 level with an error of 
17.4 ppm. We also calculated errors for the A6 set of bond lengths, for which 
FBH4 gave an error of 0.009 A (compared to 0.008 A for KT3). 

Although the extra fiexibility in the FBH4 functional led to better results in 
general, our approach to fitting to it was not very rigorous and the constraints 
we imposed would be likely to break down again if we attempted to add any 
more flexibility. The source of the problem is the need to force coefficients 
to values that are energetically unfavourable but are necessary to give good 
shielding constants. We therefore sought to find a method for explicitly fitting 
to shielding constants, thus removing the need for constraints. 
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6.1.3 Fitting to shieldings 

Our method for fitting to shielding constants is conceptually simple and re
quired no changes to our least squares algorithm. Our previous fits have all 
been to energetic quantities, for which the contributions of the individual func
tional components to the exchange-correlation energy can be formally sepa
rated. It is not possible to define a formal shielding constant contribution in 
the same way, so we have to find the equivalent quantity using a numerical 
method. 

We assume that the dependence of the shielding constant a on the compo
nent coefficients a, can be written as 

o{ai -I- (5aj) = a(ai) -I- —(5oi (6.2) 

By ignoring higher derivatives, we assume linear behaviour and can use our 
least squares optimisation procedure. The shielding constant contribution from 
each component, / j , is 

In the case of shielding constants, Qi from Eq. 4.31 is equivalent to / j . The 
fitting procedure then gives the change in components Joj, and is then iterated 
to convergence. Therefore, in order to fit to shielding constants we simply 
have to calculate This is found by one-point finite difference. A one-
point method is used because a two-point method would have incurred too 
great a computational cost, and any inaccuracies introduced are not important 
in the context of the macro-iterative fitting procedure. The finite difference 
method uses a 5% change in the value of the parameter (this is preferable 
to a smaller value as it implicitly includes some of the non-linear behaviour 
ignored in Eq. 6.2, which helps to keep the earliest iterations numerically 
stable). Therefore 

dc_ _ a(1.05ai) - a{ai) 
dtti ~ 0.05ai ^ • ^ 

We also had to multiply the shielding constant contributions by a very small 
weighting factor because of the different units used compared to the energetic 
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data. 

The main disadvantage of this procedure is the significant increase in com
putational cost incurred by the finite difference method. Even with a one-point 
method, the entire A l shielding constant set has to be calculated once for each 
component in the functional. We also found that the functionals became more 
difficult to converge, particularly when more components were added to the 
form. The functionals we present in this chapter are converged in the sense 
that the property assessments are converged to the accuracy given. It was not 
feasible to attempt to converge the individual coefficients, but we could also not 
reduce the number of significant figures in the coefficients as this would lead to 
a change in the property results and cause even more convergence problems. 
The problem of converging flexible functional forms to diverse fitting data has 
been observed previously for functionals such as HCTH [221]. 

The next functional, FBH5, took the same form as FBH4, but all the con
straints were removed and the shielding constants were included in the fitting 
procedure. The coefficients of FBH5 are similar to FBH4 (which demonstrates 
that the constraints we placed on FBH4 were well chosen), and the assessment 
results are also similar. The accuracy of barrier heights is reduced slightly to 
5.0 kcal mol~\ while the full 02 set errors remain at 4.8 kcal mol~\ The 
shielding constants benefit from the explicit fitting procedure, with the error 
over the A l set reduced to 15.9 ppm (almost competitive with KT3). The 
G2 subset bond lengths are slightly reduced in accuracy. We also calculated 
errors for the A7 diatomic bond length set, which gave a disappointing result 
of 0.034 A. 

While the FBH5 results are overall quite impressive, the real advantage of 
explicitly fitting to shielding constants is the scope for increasing the flexibility 
of the functional form beyond that which we have previously considered. In 
the next section we demonstrate this by fitting to the 15-parameter HCTH 
functional form. 
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Table 6.4: Expansion parameters defining the HCTH functional [47]. 

1.09320E + 0 
2.22601E - 1 

CCa/3 ,0 7.29974E - 1 
CXa,l -7.44056E - 1 
CCa<T,l -3.38622E - 2 
CCa/3,1 3.35287E + 0 
CX<T,2 5.59920E + 0 
CCff(r,2 -1.25170E - 2 
CCa/3 ,2 -1.15430E + 1 
CX<7,3 -6.78549E + 0 
CCa<T,3 -8.02496E - 1 
C C a / 3 , 3 8.08564E + 0 
CX<7,4 4.49357E + 0 
CC<r<r,4 1.55396E + 0 
CCa/3 ,4 -4.47857E + 0 

6.1.4 Fitting to the H C T H form 

As discussed in Section 1.3.4, the HCTH functional [47] is based on the B97 
functional expansion [43] (which also forms the basis for B97-2). B97 was 
originally designed as a hybrid functional, but it has proved to be equally 
applicable to the GGA form. For each expansion power i up to a limit of 
m (beginning at i = 0), there is one exchange coefficient {cxa,i), one same-
spin correlation coefficient {cca<7,i)^ and one opposite-spin correlation coefficient 
(cca)3,t)- The original B97 functional was truncated at m = 2 (giving a total of 
9 coefficients plus one exact exchange coefficient) because Becke observed that 
larger values of m led to an overfitted functional with unphysical coefficients. 
The B97-1 and B97-2 revisions retained this number of parameters. However, 
the fitting procedure for HCTH involved a large amount of extra fitting data 
(due to the inclusion of exchange-correlation potential data), and so a larger 
value of m = 4 was appropriate. The HCTH series of functionals therefore have 
15 coefficients. For reference, the HCTH coefficients are given in Table 6.4. Our 
own original fitting data set (the BH42 barriers, full G2 atomisation energies, 
and A l isotropic shielding constants) contained a total of 222 data points. 
This is substantially larger than the set used by Becke for the original B97 
functional (116 data points). We were therefore able to fit to the HCTH form 
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(m = 4) without overfitting. 
The large number of components in HCTH increased the computational 

cost of the numerical fitting procedure further. To counteract this we auto
mated the procedure by modifying CADPAC to change any given parameter by 
5% if instructed to do so in the dataset. The calculations for each iteration 
could then be run as a single batch overnight. 

We began by fitting to just the BH42 barriers and 02 atomisation ener
gies. The coefficients of the resulting FBH6 functional are given in Table 6.5. 
Results are presented in Table 6.6. The LDA exchange coefficient (cx .̂o) again 
rose significantly. As expected, FBH6 gives excellent results for the BH42 
and 02 sets, but gives very poor shieldings, with an error over the A l set 
of 36.1 ppm. The next functional, FBH7, reintroduced shielding constants 
into the fitting set. The coefficients of the functional changed substantially, 
with LDA exchange falling almost to the uniform electron gas value of unity. 
The reaction barrier and 02 atomisation energy errors worsened somewhat (to 
2.6 kcal mol~^ and 3.7 kcal mol~^ respectively), but the shielding constants 
improved dramatically to 16.5 ppm. This is not quite of the same quality as 
KT3 but is competitive with FBH5. It is an interesting result because it is 
the first time good quality shielding constants have been achieved using the 
HCTH form, and the first time good quality shielding constants have been 
achieved with a 0 0 A without the KT exchange term. FBH7 demonstrates 
that the HCTH form is sufficiently flexible to give good shielding constants. 
It is also surprising that high quality reaction barriers are achieved with such 
a low LDA exchange coefficient. 

Unfortunately, FBH7 does not perform as well for other properties. Errors 
over the A6 bond lengths are acceptable but the A7 bond length error is 
poor at 0.030 A (this is typical of a functional of the HCTH form). We also 
assessed FBH7 for the 02-1 ionisation potentials, electron affinities, and proton 
affinities. The results are extremely poor, with errors of 2.72 eV, 2.43 eV, and 
13.0 kcal mol~^ respectively. 

We took the pragmatic view of adding these properties to the fitting data. 
This did not cause any problems as they are simple energy differences that can 
be fitted in the same way as the reaction barriers and atomisation energies. In 
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Table 6.5: Expansion parameters defining the functionals of the HCTH form (and KTX) 
fitted to barrier heights and other properties. 

FBH6 FBH7 FBH8 FBH9 
CX<T,0 1.249754E + 0 1.016765E + 0 1.148202E + 0 1.137503E + 0 

-1.691122E + 0 5.489207E + 0 -7.973017E - 1 -4.774522E - 1 
C C a / 3 , 0 1.199467E + 0 9.659508E - 1 1.055780E + 0 7.399990E - 1 
CX<r,l 1.503437E + 0 -2.270551E + 0 -1.810442E + 0 -4.726323E - 1 
C C C T C T , ! -4.031978E + 0 2.263294E - 1 -5.923239E - 2 -9.278328E - 1 
CCa/3 ,1 -3.946719E + 0 2.201647E + 0 2.050114E + 0 3.421925E + 0 
CXtr,2 2.661678E + 0 1.446258E + 1 1.078928E + 1 8.246710E + 0 
CCaa,2 7.931091E + 0 2.173811E + 0 1.658771E + 0 2.717525E - 1 
C C a / 3 , 2 -3.661360E + 0 -1.702580E + 1 -1.170078E + 1 -1.171057E+ 1 
C X a , 3 8.738272E - 1 -1.615515E + 1 -9.387465E + 0 -7.171700E + 0 

2.820932E + 0 2.221116E- 1 -1.563420E- 1 8.358988E + 0 
C C Q / 3 , 3 1.446167E + 1 1.115054E + 1 8.664478E + 0 2.987443E + 0 
C X C T , 4 -7.591669E + 0 4.880042E + 0 -1.994121E+ 1 -2.135559E + 0 
CC<T(r,4 -1.020223E + 1 -6.504032E - 1 1.351702E- 1 -8.873539E + 0 
CCa/3 ,4 -1.528694E + 0 4.328427E + 0 -3.189174E + 0 -4.578744E - 1 
C K T X 

FBHIO F B H l l FBH12 FBH13 
(KT4) 

CXiT.O 1.228727E + 0 1.171592E + 0 1.104216E + 0 1.209341E + 0 
CCCTO-,0 -3.003771E + 0 -7.186446E- 1 1.433555E + 0 -2.676674E + 0 
C C Q ^ . O 1.132752E + 0 8.635140E - 1 1.090405E + 0 1.114412E + 0 
C X C T . I -2.902786E + 0 -2.286280E + 0 -8.725420E - 1 -2.407309E + 0 
CCCT<T,1 6.111999E + 0 -4.356303E - 2 -6.412536E + 0 7.038354E + 0 
CCa/3 ,1 3.413973E + 0 4.287278E + 0 2.192550E + 0 4.040817E + 0 
C X ( r , 2 1.239718E + 1 9.865171E + 0 3.415459E + 0 9.523125E + 0 
CCCTff,2 -4.187639E 4- 0 -1.769516E + 0 6.456058E + 0 -9.093437E + 0 
CCa0,2 -2.063354E + 1 -1.299663E + 1 -8.642138E + 0 -2.186552E+ 1 
CXa,3 -2.126939E + 1 -8.571224E + 0 -1.462289E + 1 
CC(7<7,3 -1.376225E + 1 2.171537E- 1 -7.153146E + 0 
CCaP,3 1.972425E + 1 5.375507E + 0 1.339655E+ 1 
CX<T ,4 1.490510E + 1 1.438342E + 0 1.022631E + 1 
CC<T<T,4 1.865558E + 1 4.607201E + 0 1.551032E + 1 
C C a 0 , 4 -3.848758E + 0 -5.654672E + 0 5.573080E + 0 
C K T X -4.970879E - 3 -8.041046E - 4 -2.958216E - 3 -4.882198E - 3 



CHAPTER 6. T H E K T 4 AND B 9 7 - 3 FUNCTIONALS 158 

Table 6.6: Error assessments for functionals of the HCTH form (and KTX) fitted to barrier 
heights and other properties. Units are given in parentheses. 

FBH6 FBH7 FBH8 FBH9 FBHIO FBHll FBH12 FBH13 
(KT4) 

A29. BH42/04 classical chemical reaction barriers (kcal mol )̂ 
d -0.3 -1.8 -4.4 -5.7 -4.5 -5.1 -5.6 -4.6 
|d| 1.9 2.6 4.6 5.8 4.6 5.3 5.7 4.8 

A13/14. G2 atomisation energies (kcal mol 
G2-1: 
d 0.4 0.5 2.3 0.3 0.8 0.4 1.8 0.6 
\d\ 2.6 3.0 3.2 2.8 2.5 3.1 3.7 2.5 
G2-2: 
d 0.2 -0.1 0.8 -0.1 -0.2 0.6 1.6 -0.3 
\d\ 2.7 4.1 4.9 3.7 3.5 5.0 4.9 3.4 
Full G2: 
d 0.3 0.1 1.3 0.1 0.2 0.5 1.7 0.0 
\d\ 2.7 3.7 4.3 3.4 3.1 4.3 4.5 3.1 

A l . Isotropic N M R shielding constants (ppm) 
d -34.3 -3.7 -10.6 -17.1 -5.8 -14.6 -12.4 -8.7 
|d| 36.1 16.5 16.0 18.2 15.3 18.2 16.7 15.1 
Excluding O 3 : 
d -26.8 -2.3 -7.1 -12.9 -4.1 -10.6 -9.5 -6.5 
\d\ 28.8 16.0 13.0 14.1 14.2 14.3 14.1 13.3 

A6. G2 subset bond lengths (A) 
d -0.028 0.005 0.016 0.007 -0.002 0.012 0.011 -0.001 
\d\ 0.031 0.010 0.017 0.010 0.008 0.012 0.012 0.008 

A7. Diatomic bond lengths (A) 
d 0.008 0.026 0.051 0.034 0.012 0.039 0.033 0.012 
\d\ 0.034 0.030 0.052 0.035 0.015 0.040 0.034 0.015 

A15. G2-1 ionisation potentials (eV) 
d 0.19 2.72 0.03 0.07 -0.02 -0.03 -0.01 0.00 
|d| 0.26 2.72 0.13 0.16 0.10 0.16 0.11 0.10 

A16. G2-1 electron affinities (eV) 
d -0.29 2.43 -0.01 -0.04 0.03 0.01 0.00 0.02 
\d\ 0.31 2.43 0.08 0.11 0.10 0.10 0.09 0.09 

A17. G2-1 proton affinities (kcal mol )̂ 
d 13.4 13.0 3.5 3.4 2.2 0.5 3.7 2.6 
Ml 13.4 13.0 3.5 3.4 2.6 2.1 3.7 2.9 
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these cases gi in Eq. 4.31 is redefined as 

= ir- (6.5) 

9f^ = fM 
i (6.6) 

5 ^ = / f - J (6.7) 

The resulting FBH8 functional had another large change in the coefficients. 
The LDA exchange coefficient rose again, although not to the same level as 
FBH6. The reaction barriers lost 2 kcal mol~^ in accuracy, and the atom
isation energy errors also deteriorated to 4.3 kcal mol~^. The A l shielding 
constants improved sUghtly to 16.0 ppm. The introduction of the other ther-
mochemical properties into the fitting data leads to a great improvement in 
their errors, with A15, A16, and A17 giving 0.13 eV, 0.08 eV, and 3.5 kcal 
mol~^ respectively. The ionisation potential and electron affinity results are 
superior to KT3 (0.16 and 0.14 eV), but the proton affinities are not as good 
as KT3 (2.3 kcal mol"^). The small A17 proton affinity set is dominated by 
the error of the C2H2 molecule, and we consider a change in error of 1 kcal 
mol~^ either way to not be significant. More problematic is the performance 
of FBH8 for bond length optimisations. The A6 error rose to 0.017 A and the 
A7 error to 0.052 A. These errors are worse than KT3 (0.008 A and 0.014 A), 
FBH5 (0.010 A and 0.034 A), and even the original HCTH functional (0.013 A 
and 0.037 A). 

This problem was addressed by adding the bond length optimisations to 
the fitting data. As these are not energy differences, they had to be fitted 
numerically using the same procedure as for shielding constants. However, the 
combined number of systems in the A6 and A7 sets (91) is almost three times 
larger than in the A l shielding constant set (32). The bond length optimi
sations in these sets also usually take longer to calculate than the shielding 
constants. It was therefore too computationally costly to attempt to fit to 
the full A6 and A7 sets. Instead we chose a representative sample of 26 di
atomic systems (the A30 set). These were calculated using the TZ2P basis set 
or 6-311-|-0(2df) basis set as appropriate. The Croup 1 diatomics from the 
A7 set were strongly represented as these contributed most to the errors of 
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HCTH-type functionals. In the fitting procedure gi is equivalent to / i , as for 
shielding constants. We found that the approximations in the least squares 
fitting procedure were not as accurate for geometries as for shielding constants 
and therefore each functional required more iterations for the property assess
ments to converge. 

The FBH9 functional was fitted to reaction barriers, atomisation energies, 
shielding constants, ionisation potentials, electron affinities, proton affinities, 
and bond lengths. This leads to an improvement in performance for bond 
lengths compared to FBH8, but at the expense of the other fitted properties. 
The errors for the A6 and A7 bond lengths fell to 0.010 A and 0.035 A (com
parable to FBH5). The barrier height errors were 5.8 kcal mol~^ (worse than 
FBH8) and the G2 errors were 3.4 kcal (better than FBH8). The shielding 
constant errors deteriorated slightly compared to FBH8 to 18.2 ppm, and ion
isation potentials and electron affinities also got worse, whereas proton affinity 
errors stayed essentially constant. The coefficients of FBH9 are relatively sim
ilar to FBH8, which suggests that we have reached the limit of the HCTH 
form's flexibility. 

In summary, the FBH9 functional is improved over KT3 for barrier heights 
and atomisation energies, but at the cost of other properties. Thus it does not 
satisfy our aim of retaining KT3's all-round performance. It appeared that 
we had reached the limit of the HCTH form's ability to get a wide range of 
properties correct simultaneously. Our next step was to increase flexibility by 
adding the KT exchange term. 

The FBHIO functional was fitted to the same set of data as FBH9, but 
included KT exchange. The coefficients changed more than between FBH8 
and FBH9, and the LDA exchange rose to a level similar to that of FBH6. 
The KT exchange coefficient was a little larger than in KT3, at approximately 
—0.005. The additional flexibility leads to an improvement in all the fitted 
properties. The reaction barrier set error falls to 4.6 kcal mol~^, atomisation 
energies to 3.1 kcal mol~^, and shielding constants to 15.3 ppm (almost KT3 
standard), and the other properties also improve to roughly KT3 levels. 

We also applied the FBHIO functional to the A5 total energy set, and found 
that it reproduced KT3's very poor performance with an error of 383.84 kcal 
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mol~^ This is not surprising as KT exchange is present and there were no total 
energies in the dataset. We next investigated whether the HCTH-I-KTX form 
was sufficiently flexible to give good total energies as well as good performance 
for the other properties. The FBHU functional contained the A5 set in its 
fitting data, which reduced the A5 error to 2.9 kcal mol~^ Unfortunately, this 
resulted in a deterioration for aU the other properties, and the KT exchange 
term coefficient was reduced to almost zero (as we have observed several times 
before when fitting to total energies). 

We also considered whether aU 15 of the HCTH parameters were necessary 
to achieve good results for all properties. The FBH12 functional was fitted to 
the same set of data as FBHIO, but it contained only the first 9 parameters 
of the B97 expansion (the same number as in the B97 series of functionals) as 
well as KTX. Again, this resulted in significant deterioration in almost all the 
properties considered. 

Finally, we assessed the FBHIO functional for the other sets we had consid
ered when assessing KT3. Our full assessment of these properties (and others) 
is discussed in Chapter 7, but our conclusion was that the performance of 
FBHIO was satisfactory for all the properties except the A22 polarisability 
set. The KT3 error for this set is 0.36 au, but FBHIO gives an error of 0.55 au. 
Our last addition to the fitting data is the A22 set, which again had to be fit
ted numerically. In total our final fitting data set consisted of 348 data points. 
The resulting functional, FBH13, has similar coefficients to FBHIO and gives 
very similar results for the properties considered in Table 6.6. Its performance 
over the A22 set improved to 0.43 au, which is still not quite as good as KT3, 
but is now better than the non-KT OOAs. We denote this functional KT4. 

6.2 Hybrid functionals 

We now turn for the first time to the development of hybrid functionals. It is 
well-known that hybrid functionals give superior results to conventional OOAs 
for reaction barriers, and we therefore investigated whether we could develop 
a hybrid functional to give high quality reaction barriers following the same 
semi-empirical philosophy as for our OOA development. The aim now was to 
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Table 6.7: Expansion parameters defining the B97-2 functional [51]. ^ denotes the fraction 
of exact exchange. 

CX<r,0 8.27642E - 1 
CCiT<r,0 5.85808E - 1 
CCa0,O 9.99849E - 1 
CX<7,1 4.78400E - 2 
CCo-o-,1 -6.91682E - 1 
CCa0,l 1.40626E + 0 
CX<r,2 1.76125E + 0 
CCff<T,2 3.94796E - 1 
C C a / 3 , 2 -7.44060E + 0 
CX<r,3 

CCCTO-,3 

C C a / 9 , 3 

CX<T,4 

CCCT(r,4 

CCa/3 ,4 

2.10000E - 1 

develop a functional that surpassed B97-2, the third revision of the B97 func
tional form. The first such functional, B97 [43], was developed by fitting to 
atomisation energies, ionisation potentials, and total energies. The B97 fitting 
data set of 116 points suff'ered from overfitting when more than 9 parameters 
were considered. The B97-1 functional was a self-consistent reparameterisa-
tion of B97, which retained the same number of parameters [47]. The B97-2 
functional added data from ZMP exchange-correlation potentials to the fitting 
set (the same data that HCTH was fitted to) [51]. The aim of that work was 
to investigate whether this addition would improve performance compared to 
B97-1, and so the number of parameters remained at 9. For reference, the 
B97-2 coefficients are presented in Table 6.7. The additional size of the fit
ting set would have allowed more parameters to be used, and in this thesis 
we investigate whether a hybrid functional with 15 B97 expansion parameters 
(and KT exchange) gives a sufficient improvement in performance to justify 
the additional complexity. 

Unlike B97-2 (but like the original B97 functional), we explicitly incor
porated the fraction of exact exchange into our fitting procedure. For all 
properties the exact exchange contribution was calculated numerically. 
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Our first hybrid functional, FBH14, contained 15 B97 expansion terms, 
the KT exchange term, and a fraction of exact exchange. It was fitted to the 
full 02 atomisation energy set, the BH42 barriers, the 02-1 ionisation po
tentials, electron affinities, and proton aflinities, and the A l set of shielding 
constants. The resulting coefficients are presented in Table 6.8. Results are 
presented in Table 6.9. FBH14 is characterised by quite similar coefficients to 
our final KT4 OOA. The exact exchange coeflftcient is remarkably low (approx
imately 8%), which reflects the inclusion of shielding constants in the fitting 
procedure. The shielding constants have been calculated in the conventional 
coupled (non-Kohn Sham) manner, and it has been observed that shielding 
constants calculated in this way deteriorate as the amount of exact exchange 
increases [101]. Although the fraction of exact exchange is very low, there is 
still some deterioration in the shielding constants (the error over the A l set 
is 17.7 ppm). This explains why the excellent BH42 barrier errors (3.1 kcal 
mol"^) have been obtained from a high value of LDA exchange rather than 
a high fraction of exact exchange. In order to minimise the deterioration in 
the shielding constants, the fitting procedure has to keep the fraction of exact 
exchange low and so the LDA exchange value has to rise accordingly (as pre
viously observed for the OOAs fitted to reaction barriers) in order to give high 
quality reaction barriers. With the exception of the reaction barriers, there 
is no real improvement in the chemical properties obtained by adding exact 
exchange, and so it is difficult to justify the additional complexity. 

There is much discussion [103, 222] about how shielding constants should 
properly be calculated for hybrid functionals. If shielding constants are cal
culated in the conventional coupled manner, hybrid functionals such as PEE, 
B3LYP, and B97-2 give very poor results. But in an uncoupled (Kohn-Sham) 
formalism, such as the MKS method or the optimised effective potential, they 
give results competitive with the KT functionals. It is therefore not appro
priate to try to fit hybrid functionals to coupled shielding constants. In this 
chapter we will continue to assess the functionals using the coupled formaUsm 
for consistency, but we discuss this question in more detail in Chapter 7. 

The FBH15 functional is the same as FBH14 but with shielding constants 
removed from the fitting set. This resulted in a substantial change in coeflS-
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Table 6.8: Expansion parameters defining the functionals of the HCTH form (and KTX) 
with a fraction ^ of exact exchange, fitted to reaction barriers and other properties. 

FBH14 FBH15 FBH16 
C X C T . O 1.184943E + 0 7.450703E - 1 7.488648E - 1 
CCo-ff.O -3.569672E + 0 -6.577950E - 2 6.360573E - 1 
C C a / 3 , 0 1.347736E + 0 1.220724E + 0 1.174137E + 0 
C X f f.l -3.878492E + 0 -4.768328E - 1 -8.950794E - 1 
CCCT<7,1 6.877622E + 0 3.021952E + 0 -L436848E + 0 
CCa/3 ,1 2.063401E + 0 -2.317052E + 0 -5.982782E - 1 
CX<7,2 1.565718E+1 2.922525E + 0 4.909806E + 0 
CCiTO-,2 -9.060622E + 0 -2.883280E + 0 2.182693E + 0 
C C a / 3 , 2 -1.815684E+ 1 3.537381E + 0 -3.314793E + 0 
CX<r,3 -2.501428E+ 1 -7.408743E + 0 -8.711994E + 0 
CC<ra,3 -4.837158E + 0 -4.926586E + 0 -9.185343E- 1 
C C a / 3 , 3 1.173940E + 1 6.103897E + 0 7.230777E + 0 
CX<T,4 1.557784E + 1 8.984854E + 0 7.888892E + 0 
CC<TCT,4 1.518807E + 1 6.851097E + 0 1.344506E + 0 
C C o ^ , 4 5.794021E + 0 -1.633065E + 1 -9.202861E + 0 
C K T X -4.722414E - 3 -2.186151E-4 

7.733800E - 2 2.729900E - 1 2.803440E - 1 
FBH17 FBH18 
(B97-3) 

CXff.O 7.334648E - 1 7.191278E - 1 
CCCTCT.O 5.623649E - 1 1.768011E- 1 
CCa0fi 1.133830E + 0 1.184808E + 0 
C X < r , l 2.925270E - 1 7.737838E - 1 
CCff iT , ! -1.322980E + 0 2.983762E + 0 
CCa/3 ,1 -2.811967E + 0 -3.007421E + 0 
CX(r,2 3.338789E + 0 -5.950025E - 1 
CC(T<7,2 6.359191E + 0 -3.461228E + 0 
CCa0,2 7.431302E + 0 8.131203E + 0 
CX<r,3 -1.051158E + 1 -2.183118E- 1 
CC(T0-,3 -7.464002E + 0 -2.258463E + 0 
CCa;S ,3 ^1.969342E + 0 -8.048121E + 0 
CX<r,4 1.060907E + 1 2.160877E + 0 
CCo-(r,4 1.827082E + 0 2.851016E-fO 
CCoi3 ,4 -1.174423E + 1 -3.839905E + 0 
C K T X 

2.692880E - 1 2.710510E - 1 
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Table 6.9: Error assessments for functionals of the HCTH form (and KTX) with a fraction 
^ of exact exchange, fitted to barrier heights and other properties. Units are given in 
parentheses. 

FBH14 FBH15 FBH16 FBH17 FBH18 
(B97-3) 

A29. BH42/04 classical chemical reaction barriers (kcal mol~M 
d -2.9 -1.7 -2.1 -2.3 -2.3 
\d\ 3.1 1.9 2.2 2.4 2.4 

A13/14. G2 atomisation energies (kcal mol" 
G2-1: 
d 0.5 0.1 0.2 -0.2 -0.4 
\d\ 2.8 1.9 1.9 1.9 1.9 
G2-2: 
d 0.0 -0.2 0.2 -0.3 -0.5 
|d| 3.2 2.8 3.0 2.5 2.5 
Full G2: 
d 0.2 -0.1 0.2 -0.3 -0.4 
|d| 3.1 2.5 2.6 2.3 2.3 

A l . Isotropic N M R shielding constants (ppm) 
d -5.7 -62.3 -57.7 -61.5 -64.1 
Ml 17.7 62.6 58.0 61.5 64.1 
Excluding O3: 
d -0.5 -33.8 -30.2 -34.2 -35.9 
Ml 13.3 34.1 30.5 34.2 35.9 

A6. G2 subset bond lengths (A) 
d -0.005 0.003 0.005 0.000 0.000 
Ml 0.010 0.011 0.012 0.008 0.007 

A7. Diatomic bond lengths (A) 
d 0.009 0.016 0.019 0.011 0.013 
Ml 0.018 0.024 0.026 0.016 0.018 

A15. G2-1 ionisation potentials (eV) 
d 0.00 0.02 0.03 0.03 0.03 
Ml 0.11 0.12 0.12 0.14 0.13 

A16. G2-1 electron affinities (eV) 
d 0.01 -0.00 0.00 -0.03 -0.03 
Ml 0.11 0.08 0.08 0.09 0.09 

A17. G2-1 proton affinities (kcal mol" )̂ 
d 2.2 0.2 0.4 1.2 0.8 
Ml 2.4 2.0 1.8 1.4 1.6 
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cients. The LDA exchange coefficient was reduced to a typical hybrid value of 
about 0.75, and the fraction of exact exchanges rose to around 27%. This is 
higher than B97-2 (21%) but not as high as the functionals designed specif
ically for kinetics calculations. The K T exchange term fell to almost zero, 
which is not surprising as i t was only added to give good quality shielding 
constants. The conventional shielding constant performance of FBH15 rose 
to 62.6 ppm, a level typical of a hybrid functional (see Chapter 7 for further 
discussion). Atomisation energies and barrier heights improved, whereas bond 
lengths got slightly worse. 

As K T exchange no longer appeared to be necessary for the properties that 
we fitted to, we removed i t from the functional form (leaving effectively HCTH 
with exact exchange). The resulting functional, FBH16, suffered from slightly 
worse barriers (2.2 kcal mol~^) and atomisation energies (2.6 kcal mol~^), 
but shielding constants actually improved and the other properties remained 
comparable. This slight degradation in properties does not justify the addition 
of KTX. 

FBH16 gives an error over the A5 total energy set of 141.7 kcal mol"^ This 
is solely because total energies are not included in the fit. As K T X exchange is 
no longer in the functional form, there is no reason not to fit to total energies, 
and so they were added to the fit. The FBH16 is also poor for the A6 and A7 
bond length optimisations, so the representative A30 set of bond lengths was 
also added to the fitting set. We found that the resulting functionals were not 
optimal for polarisabihties (with an error over the A22 set of 0.36 au, which 
is comparable to KT3 but not competitive with B97-2). Therefore the A22 
set was also added to fit set. In summary, the final fitting set for the hybrid 
functional was the same as that of the KT4 GGA, but with shielding constants 
removed and total energies added. The final fitting set consisted of 316 data 
points. 

The resulting FBH17 functional deteriorates slightly for barriers (2.4 kcal 
mol~^) compared to FBH16, but improves for atomisation energies (2.3 kcal 
mol"^). Coupled shielding constants get slightly worse, but the bond lengths 
improve significantly (as they have been fitted to), with an A6 error of 0.008A 
and A7 error of 0.016A. Overall the FBH17 functional does appear to be 
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superior to B97-2, in particular for barriers and atomisation energies, for which 
the B97-2 errors are 3.3 kcal mol~^ and 3.1 kcal mol"^ respectively. 

Towards the end of our investigations we were given access to more power
ful computing facilities. This meant we were able to investigate whether any 
further improvement in geometries could be obtained by fi t t ing to the ful l A6 
and A7 sets. The coefficients of the resulting FBH18 functional showed little 
change from FBH17, which suggests that our A30 subset was genuinely repre
sentative. The results showed a small improvement in the A6 set (with errors 
falling from O.OOSA to 0.007A), but the error of the A7 set actually increased. 
There was little change in the other properties. Therefore FBH18 offers no 
improvement. For future reference we denote our final FBH17 functional as 
B97-3 (as it contains no K T exchange term) [223 . 



Chapter 7 

Assessment of K T 4 and B97-3 

In this chapter we present an extensive chemical assessment of the KT4 and 
B97-3 functionals in comparison with the published GGAs and hybrids we 
have previously considered and the K T l , KT2, and KT3 GGAs. We then 
consider the performance of B97-3 for an enlarged spin-spin coupling constant 
assessment set. 

7.1 Fitting data summary 

We start by comparing the performance of KT4 and B97-3 with other func
tionals for the data used in the fitting procedure. KT4 and B97-3 are expected 
to perform well for these assessments. The fitting data set in total consists of 
9 different properties, 348 data points, and 3,828 individual property calcula
tions. Errors are presented in Table 7.1. As KT4 and B97-3 were designed 
specifically to give good reaction barriers, i t is not surprising that they per
form very well for the BH42/04 set. KT4 gives the joint lowest (with HCTH) 
mean absolute error out of the GGAs of 4.8 kcal mol"^. This is a signifi
cant improvement over KT3 (8.1 kcal mol~^). No GGA performs as well as 
the hybrid functionals. The best performing hybrid is B97-3 with an error 
of 2.4 kcal mo l~ \ which is significantly better than the next best functional, 
B97-2 (3.3 kcal mor^) . 

The performance for the G2 atomisation energy set is equally good. KT4 
gives the lowest error (3.1 kcal mol^^) out of all the GGAs; with OEYP the 

168 
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Table 7.1: KT4 and B97-3 fitting data error assessments. Units are given in parentheses. 

K T l KT2 KT3 KT4 PBE HCTH OLYP B3LYP PBEO B97-2 B97-3 

A29. BH42/04 classical chemical reaction barriers (kcal mol ^ ) 
d -14.6 -12.5 -8.1 -4.6 -9.4 -4.7 -5.9 -4.4 -4.5 -3.1 -2.3 
\d\ 14.6 12.5 8.1 4.8 9.4 4.8 6.0 4.5 4.5 3.3 2.4 

A13/14. G2 atomisation energies (kcal mol )̂ 
G2-1: 
d 12.9 -0.8 -1.2 0.6 6.3 -0.4 2.1 -0.8 -2.0 -0.7 -0.2 
\d\ 13.4 6.2 4.3 2.5 7.9 3.3 3.2 2.7 3.2 2.2 1.9 
G2-2: 
d 36.6 10.4 0.4 -0.3 21.2 -2.1 1.7 -4.8 3.8 0.8 -0.3 
\d\ 37.1 12.0 5.0 3.4 21.5 6.8 5.4 5.1 5.6 3.6 2.5 
Pull G2: 
d 27.8 6.2 -0.2 0.0 15.6 -1.4 1.8 -3.3 1.7 0.2 -0.3 
|d| 28.3 9.9 4.7 3.1 16.5 5.5 4.6 4.2 4.7 3.1 2.3 

A15. G2-1 ionisation potentials (eV) 
d -0.06 -0.11 -0.03 0.00 0.01 -0.02 -0.12 0.01 0.02 -0.02 0.03 
\d\ 0.14 0.23 0.16 0.10 0.16 0.15 0.18 0.16 0.17 0.12 0.14 

A16. G2-1 electron eiffinities (eV) 
d 0.11 -0.05 -0.07 0.02 0.08 -0.02 -0.11 -0.01 -0.05 -0.09 ^0.03 
\d\ 0.15 0.17 0.14 0.09 0.10 0.10 0.14 0.09 0.13 0.11 0.09 

A17. G2-1 proton affinities (kcal mol~ )̂ 
d -4.1 -2.2 1.6 2.6 -1.6 2.5 1.0 -1.4 -0.4 1.8 1.2 
|d| 4.9 3.5 2.3 2.9 2.6 2.5 2.0 2.2 2.4 1.8 1.4 

A30. Fitting set of diatomic bond lengths (A) 
d 0.006 -0.011 0.003 0.004 0.019 0.029 0.032 0.006 0.005 0.012 0.003 
\d\ 0.024 0.018 0.011 0.013 0.019 0.029 0.032 0.013 0.013 0.019 0.013 

A22. Isotropic electronic polarisabilities (au) 
d 1.16 0.68 0.32 0.40 0.76 0.41 0.57 0.36 0.03 -0.04 0.06 
\d\ 1.16 0.68 0.36 0.43 0.76 0.45 0.57 0.44 0.24 0.22 0.26 

A l . Isotropic N M R shielding constants (ppm) 
d -4.7 -9.5 -11.9 -8.7 -40.3 -32.4 -30.7 -60.7 -58.5 -50.4 -61.5 
|d| 13.0 13.2 14.4 15.1 40.3 32.4 30.7 60.7 58.8 50.4 61.5 

A5. Total atomic and ionic energies (keaJ mol )̂ 
d -333.5 -461.4 -425.4 -392.0 31.0 -0.9 -1.8 3.8 25.6 -0.1 -0.7 
|d| -334.7 461.8 425.4 392.0 31.0 4.2 2.9 4.5 25.6 3.4 2.7 
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next best at 4.6 kcal mol~^ The performance of KT4 is superior to the hybrids 
B3LYP and PBEO, and equal to B97-2. The B97-3 hybrid has the lowest error 
(2.3 kcal mol - i ) . 

For ionisation potentials (0.10 eV) and electron affinities (0.09 eV), KT4 is 
the best performing GGA, and also gives the smallest or joint-smallest errors 
out of all the functionals. For proton affinities KT4's performance (2.9 kcal 
mol"^) is inferior to KT3 (2.3 kcal mol"^), but we consider this to be accept
able (see Section 6.1.4). B97-3 is not the best hybrid functional for the G2-1 
ionisation potentials (it is beaten by B97-2), but it does give the joint lowest 
error for electron affinities and the lowest error (1.4 kcal mol~^) for proton 
affinities. 

For the A30 fitting set of bond lengths, KT4's error of 0.013 A is slightly 
worse than KT3 (0.011 A ) , but this is still a much lower error than any of the 
other GGAs. In fact, KT3 gives the lowest error of any functional, with three 
hybrids (B3LYP, PBEO, and B97-3) all giving the same performance as KT4. 
B97-2 gives a significantly higher error (0.019 A ) , which is mainly due to the 
challenging Group 1 diatomics. 

Despite being explicitly fitted to polarisabilities, KT4 is still not as accurate 
as KT3 for the A22 set, with errors of 0.43 and 0.36 au, respectively. To some 
extent this reflects the choice of weighting parameters in the fit. A greater 
emphasis on polarisabilities would have achieved a lower error, but at the cost 
of the other properties. An error of 0.43 au was considered to be acceptable 
because i t was still superior to every other GGA. A l l the hybrid functionals 
give better results with the exception of B3LYP. 

KT4 is slightly worse than KT3 for isotropic shielding constants, which in 
turn is worse than KT2 and K T l . In each case a slight decrease in accuracy for 
the A l set is observed in return for improvements in a wider range of properties. 
KT4's error of 15.1 ppm is still much smaller than those of the other GGAs 
considered. Al l the hybrid results (calculated using the conventional coupled 
equations) are very poor (the B97-3 functional was not explicitly fitted to the 
A l set). Hybrid shielding constant results are discussed further below. 

The KT4 fitting data set did not contain the A5 total energy set, and as 
for the other K T functionals its error is very high (392.0 kcal mol"^). We 
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believe this is inevitable to achieve good results for other properties when K T 
exchange is included in the functional form. The B97-3 functional does not 
include K T exchange and so the A5 set was included in the fitting data. Its 
performance is the best of all the functionals, with an error of 2.7 kcal mol~^ 

Overall, the KT4 and B97-3 perform very well over the sets they are fit
ted to, as expected. Their performance for reaction barriers and atomisation 
energies is very pleasing, particularly the former as previous functionals have 
tended to be unable to get good performance for reaction barriers and other 
properties simultaneously. In general, the KT4 functional maintains the per
formance of KT3 for other properties, with only minor degradation for some 
properties. The B97-3 hybrid functional gives excellent performance for all 
fitted properties, either comparable to or in most cases surpassing the perfor
mance of B97-2, PBEO, and B3LYP. 

7.2 Non-fitting data assessments 

The performance of KT4 and B97-3 is promising for the fitted data set, but the 
real test of semi-empirical functionals is over non-fitted data. In this section we 
assess our new functionals for a total of 23 non-fitted assessments, including 11 
chemical properties not considered in the fitting data. The non-fitted assess
ments together consist of 552 reference data points (6,072 individual property 
calculations). Errors are presented in Tables 7.2-7.7. A ful l breakdown of 
the fitted and non-fitted assessments for the hybrid functionals considered is 
available from Ref. [224] (the supplementary information to Ref. [223]). 

7.2.1 Kinetics and thermochemistry 

The first set of non-fitted assessments relate to kinetics (classical reaction 
barrier heights) and thermochemistry (enthalpies of formation, ionisation po
tentials, and electron affinities). 

The NHTBH38/04 classical chemical reaction barrier height set (A31) 
was developed by Truhlar and co-workers [225] to be complementary to the 
BH42/04 set. The BH42 set predominantly consists of hydrogen transfer reac-
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tions, whereas the NHTBH38 set consists of 38 non-hydrogen transfer (NHT) 
reactions. These are divided into three groups: 6 heavy-atom transfer reac
tions, 8 unimolecular nucleophilic substitution reactions, and 4 unimolecular 
and association reactions. As for the BH42 set, both forward and reverse 
barrier heights are calculated. The calculations were performed at the same 
QCISD/MG3 geometries [226] and errors were calculated relative to correlated 
ab initio reference values. We used the same 6-311-l-G(3df,2p) basis set that 
was used for the BH42 set and the 02 thermochemistry calculations. This gives 
results of a similar quality to the MG3S basis set used in Ref. [225]. Errors are 
presented in Table 7.2. The results show a similar trend to that observed for 
the BH42 set, but not identical. The KT4 functional gives an overall error of 
5.3 kcal mol~^, which improves upon the KT3 error of 8.0 kcal mol~^ However, 
unlike for BH42, KT4 is surpassed by the HCTH functional. HCTH is remark
ably accurate for barriers even though i t was not explicitly fitted to them (the 
good quality might arise from the inclusion of exchange-correlation potentials 
in the fit). KT4, on the other hand, appears to deteriorate for reactions out
side its fitting set. This is often observed in semi-empirical functionals, but i t 
is particularly clear here because the reactions are of very different types in 
the non-fitted set compared to the fitting set. Compared to KT4, HCTH is 
particularly good for nucleophilic substitution reactions. The B97-3 hybrid is 
more successful, giving the lowest error of all the functionals (1.5 kcal mol"^). 
B97-3 therefore appears to be better adapted to a wide range of reaction types 
than KT4. 

We also calculated KT4 and B97-3 errors for the A23 barrier set. For this 
set the barrier heights were calculated at the stationary points of the respective 
methods rather than at a set of reference geometries, and therefore i t tests the 
quality of transition state geometries as well as energetics performance. For 
this set KT4 is the best performing GGA, with an error of 3.7 kcal mol~^ 
(slightly better than the HCTH error of 3.8 kcal mol"^). Again, B97-3 is the 
best functional overall with an error of just 1.8 kcal mol~^ Both KT4 and 
B97-3 locate all 16 transition states. 

The next three assessments consider further thermochemical data from the 
'G' sets of Curtiss et al. [227,228]. The first of these (A32) is the G3-3 en-
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Table 7.2: KT4 and B97-3 non-fitted reaction barrier and thermochemistry error assess
ments. Units are given in parentheses. 

K T l KT2 KT3 KT4 PBE HCTH OLYP B3LYP PBEO B97-2 B97-3 

A31. NHTBH38/04 classical chemical reaction barriers (kcal mol )̂ 
Heavy-atom transfer reactions 
d -20.8 -17.7 -13.0 -9.0 -14.9 -8.1 -11.2 -8.5 -6.6 -3.1 -2.5 
|<i| 20.8 17.7 13.0 9.0 14.9 8.1 11.2 8.5 6.6 3.3 2.5 
Nucleophilic substitution reactions 
d -12.7 -11.7 -7.0 -4.2 -6.9 -2.1 -2.6 -3.3 -1.7 -1.3 -0.1 
\d\ 12.7 11.7 7.0 4.2 6.9 2.1 2.6 3.3 1.9 1.4 0.8 
Unimolecular and association reactions 
d -5.7 -4.2 -2.5 -1.3 -3.1 -0.9 -2.2 -1.6 -0.7 0.5 0.5 
\d\ 6.2 4.6 3.5 2.5 3.4 2.1 2.8 2.0 2.3 1.9 1.4 
Overall: 
d -13.4 -11.6 -7.7 -5.0 -8.4 -3.7 -5.2 -4.5 -3.0 -1.4 -0.7 
|d| 13.4 11.7 8.0 5.3 8.5 4.0 5.4 4.6 3.5 2.1 1.5 

A23. Cleissical chemical reaction barriers (kcaJ mol-i) 
No. 6 9 12 16 10 15 14 15 16 16 16 
d -15.3 -11.4 -8.0 -3.7 -7.8 -3.3 -5.6 -5.1 -4.4 -1.8 -1.6 
\d\ 15.3 11.4 8.0 3.7 7.8 3.8 5.6 5.1 4.4 2.4 1.8 

A32. G3-3 enthalpies of formation (kcal mol )̂ 
d -69.7 -23.5 -0.9 5.9 -32.6 12.8 5.6 12.2 -9.0 0.7 2.0 
\d\ 69.7 23.8 5.1 6.7 32.6 13.7 6.9 12.2 10.2 6.2 4.7 

A33. G2-2 ionisation potentials (eV) 
d -0.19 -0.20 -0.14 -0.12 -0.17 -0.17 -0.29 -0.12 -0.11 -0.16 -0.10 
\d\ 0.23 0.29 0.26 0.23 0.24 0.28 0.34 0.23 0.22 0.21 0.18 

A34. G2-2 electron affinities (eV) 
d 0.08 -0.05 -0.06 0.00 0.03 -0.04 -0.14 0.02 -0.01 -0.05 0.01 
|d| 0.15 0.15 0.14 0.10 0.12 0.10 0.14 0.15 0.18 0.15 0.17 
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thalpies of formation set of 75 molecules. This is the third set after G2-1 (A13) 
and G2-2 (A 14). The G3-3 set again consists largely of organic molecules, but 
in general they are larger than those in the G2 set. Together the three sets 
are known as the ful l G3 set (223 molecules). Previously we have compared 
our calculated atomisation energy results with electronic atomisation energies 
from Ref. [182]. In that work the experimental enthalpies of formation were 
converted into reference atomisation energies. However, the G3-3 set was not 
considered in that reference, so for this set we compare directly with the origi
nal enthalpies of formation (that is, instead of subtracting the correction from 
the experimental enthalpies of formation and comparing atomisation energies, 
we add the same correction onto our calculated atomisation energies and com
pare enthalpies of formation). 

For a molecule AxByCz, the enthalpy of formation AfH° at 0 K is [183 

AfH\A^ByC,) = xAfH\A,OK) 

+ yAfH\B,OK) 

+ zAfH\C,OK) 

- Do (7.1) 

where Do is the ZPE-corrected atomisation energy. The error when com
paring enthalpies of formation is therefore minus the error when comparing 
atomisation energies. Our atomisation energies were corrected using scaled 
HF/6-31G(d) zero-point energies with a scaling factor of 0.8929. The atomic 
enthalpies of formation were taken from Ref. [183]. A temperature correc
tion then had to be applied to the theoretical enthalpy of formation of each 
system to compare with the experimental values measured at 298 K. To main
tain consistency with the A13 and A14 sets, we performed the calculations 
at MP2/6-3lG(d) geometries with the 6-311+G(3df,2p) basis set. The ge
ometries, zero-point energies, and temperature corrections were taken from 
Ref. [229]. Experimental reference values were taken from Ref. [227]. 

The results for the K T functionals are very interesting. As expected, K T l 
is poor and KT2 is improved, but not competitive with the best GGAs. The 
KT3 functional gives a remarkably low mean absolute error of 5.1 kcal mol"^. 
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This is superior to all the other GGAs and all of the previously published 
hybrids. KT4 does not perform as well as KT3, giving an error of 6.7 kcal 
mol~^. This is a disappointing result given their relative performance for the 
G2 sets, although KT4 still surpasses all the other GGAs. KT3 and KT4 were 
both fitted to the fu l l G2 atomisation energy set, but KT3 appears to be more 
robust with respect to systems outside the set. In fact, this result should be 
interpreted as a reflection of the high quality of KT3 rather than a flaw in 
KT4, as KT3's errors degrade far less than any other functional from G2 to 
G3-3. We would normally expect some degradation as the G3-3 set involves 
larger systems which would naturally lead to larger errors, but this is not the 
case for KT3. Of the hybrids, B97-3 gives the lowest error of 4.7 kcal mol~ \ 
which is significantly better than the next best functional, B97-2, at 6.2 kcal 
mol~^ Therefore B97-3 also seems to be more robust than KT4 for non-fitted 
thermochemistry. Although proportionally B97-3 degrades more from G2 to 
03-3 than KT3, its error remains lower. 

We next considered the 02-2 ionisation potentials (49 systems) and elec
tron affinities (32 systems) [228]. Again, we used MP2/6-310(d) geometries 
with the 6-31H-0(3df,2p) basis set and added scaled (0.8929) Hartree-Fock 
zero-point energy corrections (from Ref. [229]) to our calculated values rather 
than compare against electronic (i.e. ZPE-corrected) ionisation potentials and 
electron affinities as we did for the 02-1 sets in the fitting data. For these • 
properties the corrections are small as the ZPE of the system and its ion are 
usually close. Experimental reference values were taken from Ref. [188]. The 
ionisation potential of ON and the electron afl&nity of C 2 were removed from 
their respective sets as CN+ and C 2 are open-shell singlets. 

KT4's performance for these sets is markedly better than for the 03-3 
enthalpies of formation. I t gives the joint lowest mean absolute error (with 
K T l ! ) out of the OGAs for the 02-2 ionisation potentials (0.23 eV). This 
is competitive with the hybrid functionals, although the lowest error is given 
by B97-3 (0.18 eV). For the G2-2 IP set, B97-3 performs better than B97-2, 
even though the reverse was true for the 02-1 IP set in the fitting data. Al l 
the functionals uniformly underestimate the ionisation potentials. For the 02-
2 electron affinities, KT4 gives the joint lowest GGA error (with HCTH) of 
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Table 7.3: KT4 and B97-3 error assessments for the full 03 set of enthalpies of formation and 
the full 02 sets of ionisation potentials and electron affinities. Units are given in parentheses. 

K T l KT2 KT3 KT4 PBE HCTH OLYP B3LYP PBEO B97-2 B97-3 

A13/14/32. Full G3 enthalpies of formation (kcal mol 
d -41.9 -12.0 -0.2 2.0 -21.3 5.3 0.7 
\d\ 42.2 14.5 4.9 4.3 21.9 8.3 5.4 

6.3 
6.9 

-4.1 
6.6 

0.1 
4.1 

0.8 
3.1 

A15/33. Full G2 ionisation potentials (eV) 
d -0.13 -0.16 -0.09 -0.07 -0.10 -0.11 
|d| 0.19 0.27 0.22 0.18 0.21 0.22 

-0.22 -
0.27 

-0.06 
0.20 

-0.05 
0.20 

-0.10 
0.17 

-0.04 
0.16 

A16/34. Full G2 electron affinities (eV) 
d 0.10 -0.05 -0.06 0.01 0.05 -0.03 
|d| 0.15 0.16 0.14 0.10 0.11 0.10 

-0.13 
0.14 

0.01 
0.13 

-0.02 
0.16 

-0.07 
0.14 

-0.01 
0.13 

0.10 eV. This is a better performance than all of the hybrid functionals, with 
B3LYP and B97-2 giving the lowest error of 0.15 eV (B97-3 gives an error of 
0.17 eV). Again this is the reverse of the finding for G2-1 electron affinities, 
where B97-3 gave a lower error than B97-2. 

Finally, we present the results for the ful l G3 (= G2-1 + G2-2 - I - G3-
3) enthalpy of formation and G2 (= G2-1 - I - G2-2) ionisation potential and 
electron affinity sets in Table 7.3. These errors contain a mixture of fitted 
and non-fitted data. The enthalpy of formation errors of sets A13 and A14 
were calculated by taking minus the atomisation energy errors. KT4 gives the 
lowest GGA mean absolute error of 4.3 kcal mol"^, which is now superior to 
the KT3 error because of its performance in the fitted G2 set. The lowest 
error overall is given by the B97-3 hybrid (3.1 kcal mol"^). For the ful l G2 
ionisation potentials, KT4 gives the lowest GGA error (0.18 eV) and B97-3 
gives the lowest overall error (0.16 eV). For the full G2 electron affinities, KT4 
gives the joint lowest overall error (with HCTH) of 0.10 eV. B97-3 gives the 
joint-lowest hybrid error (with B3LYP) of 0.13 eV. 

In summary, KT4 and B97-3 give the best overall performance for their 
respective classes of functionals for kinetics and. thermochemistry, although 
the KT4 functional is surpassed by the remarkably good HCTH non-hydrogen 
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transfer barrier results and the KT3 enthalpies of formation for the G3-3 set. 
7.2.2 Structural response properties 

We next consider properties related to geometry perturbations, namely opti
mised bond lengths, bond angles, hydrogen bond dimer distances, and har
monic vibrational wavenumbers. Results are presented in Table 7.4. 

The first bond length optimisation sets we consider are the A35 G2 subset 
bond lengths and A36 diatomic bond lengths. These are equivalent to the 
original A6 and A7 sets but with the molecules used in the A30 fitting set 
removed. KT4 gives the lowest GGA mean absolute error of 0.007 A for the 
A35 set, and with KT3 gives the joint-lowest error for A36 of 0.015 A. With 
errors of 0.006 A and 0.016 A respectively, B97-3 gives good performance 
over these sets. PBEO gives the best performance for both sets (0.004 A and 
0.011 A ) . 

The next assessment (A37) is a set of bond lengths of 16 radical diatomic 
species following Ref. [51]. Calculations were performed using the TZ2P basis 
set and errors calculated relative to reference experimental values. For this set 
KT3 and B97-2 give the joint lowest error of 0.009 A. KT4 is marginally less 
accurate (0.010 A) and B97-3 is slightly less accurate again (0.011 A ) . 

We also calculated errors for the A18 hydrogen bond dimer distance set, 
the A19 bond length set, and the A20 bond angle set that were previously 
discussed in Section 5.2. For the A18 and A19 sets, KT4's performance is 
reasonable, with errors of 0.09 A and 0.015 A respectively, but this is not as 
good as the results that KT3 attains. B97-3 gives a low error for the A18 set 
of 0.06 A but gives the joint highest error with PBEO of 0.023 A for the A19 
set. This is an anomalous result because both B97-3 and PBEO perform very 
well for all the other bond length sets. However, this is a small set of diverse 
and challenging molecules and i t is quite likely to highlight quirks such as this. 
For the A20 bond angles set, KT4 gives the same error (1.0°) as KT3, which 
is typical of a GGA functional. B97-3 gives an error of 0.5°, which is typical 
of a hybrid. 

We also consider geometry optimisations of the selenium-containing molecules 
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Table 7.4: KT4 and B97-3 non-fitted geometry perturbation assessments. Units are given 
in parentheses. 

K T l KT2 KT3 KT4 PBE HCTH OLYP B3LYP PBEO B97-2 B97-3 

A35. Non-fitted G2 subset bond lengths (A) 
d 0.017 0.002 0.001 -0.001 0.014 0.009 
\d\ 0.018 0.008 0.008 0.007 0.014 0.009 

A36. Non-fitted diatomic bond lengths (A) 
d 0.011 -0.007 0.009 0.014 0.024 0.034 
\d\ 0.025 0.018 0.015 0.015 0.024 0.034 

A37. Radical bond lengths (A) 
d 0.024 0.007 0.007 0.004 0.017 0.012 
\d\ 0.024 0.010 0.009 0.010 0.017 0.012 

A18. Hydrogen bond dimer distances (A) 
d 
\d\ 

-0.18 
0.18 

-0.21 
0.21 

-0.03 
0.05 

0.07 
0.09 

A19. Other bond lengths (A) 
d 0.009 -0.008 -0.003 -0.002 
|d| 0.022 0.018 0.012 0.015 

A20. Bond eingles (degrees) 
d -0.8 -0.7 -0.5 -0.1 
\d\ 1.1 0.9 1.0 1.0 

-0.03 
0.04 

0.010 
0.015 

0.0 
0.8 

A24. Selenium bond lengths (A) 
d 0.020 0.002 0.003 0.003 0.017 
|d| 0.020 0.009 0.010 0.009 0.019 

A25. Selenium bond emgles (degrees) 
d -0.4 -0.4 0.4 0.9 0.3 
\d\ 0.9 0.9 0.6 1.0 0.8 

0.26 
0.26 

0.005 
0.017 

0.1 
0.9 

0.011 
0.014 

1.0 
1.2 

0.012 
0.012 

0.037 
0.037 

0.016 
0.016 

0.26 
0.26 

0.009 
0.015 

-0.1 
1.0 

0.015 
0.015 

0.9 
1.2 

0.004 
0.006 

0.018 
0.019 

0.007 
0.012 

0.01 
0.04 

-0.002 
0.014 

0.1 
0.3 

0.010 
0.013 

0.6 
0.8 

A21. Diatomic harmonic vibrational wavenumbers (cm )̂ 
d -13 4 -3 -11 -16 -18 -21 3 
|d| 21 15 15 22 21 26 27 20 

-0.001 
0.004 

0.007 
0.011 

-0.002 
0.010 

-0.02 
0.04 

-0.021 
0.023 

0.0 
0.5 

-0.002 
0.007 

0.3 
0.7 

20 
26 

-0.000 
0.005 

0.016 
0.019 

0.001 
0.009 

0.06 
0.06 

-0.016 
0.017 

0.0 
0.4 

0.000 
0.007 

0.6 
0.8 

12 
26 

0.000 
0.006 

0.014 
0.016 

0.001 
0.011 

0.06 
0.06 

-0.014 
0.023 

-0.1 
0.5 

0.003 
0.008 

0.6 
0.8 

16 
26 
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(sets A24 and A25) considered in Section 5.4. For bond lengths, KT4 (0.009 A) 
is marginally better than KT3 (0.010 A ) , whereas B97-3 (0.008 A) is marginally 
worse than B97-2 (0.007 A ) . For bond angles, KT4 deteriorates by 0.4° com
pared to KT3, but this gives an error of 1.0° which is still competitive with 
the other GOAs. B97-3 gives the same error as B97-2 (0.8°). 

Finally, we consider the A21 set of diatomic harmonic vibrational wavenum-
bers from Section 5.2. These are usually correlated with accuracy of geometry 
optimisations. Although KT4 is on average only slightly less accurate for ge
ometries than KT3, it gives a significantly higher error for the A21 set (22 
cm"^ compared to 15 cm"^ for KT3). However, this is still competitive with 
the other GO As. The B97-3 error (26 cm"^) is comparable to that of B97-2 
and PBEO. 

Overall, KT4 maintains the excellent performance that KT3 gave for geom
etry properties, and B97-3 does the same compared to B97-2. However, there is 
some significant deterioration for KT4's hydrogen bond dimer distances, A20 
bond angles, and diatomic vibrational wavenumbers. B97-3 is significantly 
worse than B97-2 for the A19 set of bond lengths, but is significantly better 
for the A36 set. 

7.2.3 Magnetic response properties 

In this section we consider the non-fitted magnetic response properties pre
viously considered in Chapters 2 and 3. Results are presented in Table 7.5. 
The mean absolute error for anisotropic NMR shielding constants increases 
from 9.3 ppm for KT3 to 11.1 ppm for KT4. A similar degradation is seen for 
isotropic and anisotropic magnetisabilities (where errors are presented relative 
to MCSCF values including O 3 ) . The same pattern is seen for the AlO chemi
cal shifts set; the KT4 functional does improve slightly over KT3 for hydrogen 
shifts, but this may simply be due to the lack of vibrational corrections in the 
reference data. For all other nuclei a degradation is observed for KT4. We also 
considered the A26 and A27 sets of shielding constants for selenium-containing 
molecules. Errors are presented for calculations at optimised geometries (com
parable with Table 5.10). Isotropic errors are presented versus experiment 
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Table 7.5: KT4 and B97-3 non-fitted magnetic response property error assessments. Units 
are given in parentiieses. 

K T l KT2 KT3 KT4 PBE HCTH OLYP B3LYP PBEO B97-2 B97-3 

A2. Anisotropic N M R shielding constants (ppm) 
d -2.1 4.1 6.7 3.5 35.7 27.0 24.6 44.5 40.7 34.6 42.8 
|<i| 11.5 8.8 9.3 11.1 39.0 28.4 26.2 45.9 43.9 36.1 44.1 

A8. Isotropic magnetisabilities (10~^° JT 
d 3.7 7.7 11.0 13.4 13.4 15.9 13.3 15.9 19.1 18.7 20.5 
\d\ 5.7 7.7 11.0 13.4 14.4 15.9 13.6 16.1 19.4 18.7 20.6 

A9. Anisotropic magnetisabilities (10"̂ " JT-2 ) 
d 12.0 13.0 16.3 17.7 31.8 30.7 28.6 45.4 53.9 47.4 55.3 
|d| 18.8 17.4 22.9 24.8 50.7 46.3 45.8 59.7 69.3 59.7 68.3 

AlO. Chemical Shifts (ppm) 
\d\C^C) 4.5 4.4 4.4 4.6 6.5 4.5 4.6 6.5 6.1 4.7 6.0 
\d\Cn) 0.32 0.25 0.20 0.17 0.31 0.26 0.27 0.20 0.20 0.17 0.18 
|d|(iSN) 25.7 26.1 29.1 30.9 48.9 44.4 43.5 33.5 30.1 29.3 30.0 
jdO'^O) 56.0 59.5 64.1 66.2 113.8 102.3 100.0 147.0 154.4 136.2 157.0 
\d\C^F) 16.7 17.3 16.8 16.9 25.1 24.4 22.5 22.1 19.1 18.1 18.7 

A26. Selenium isotropic N M R shielding constants (ppm) 
d -42 -8 -15 -11 -155 -113 -121 -137 -41 -51 -42 
\d\ 49 24 33 39 155 113 121 137 52 51 42 

A27. Selenium anisotropic N M R shielding constants (ppm) 
d -218 -217 -183 -181 -359 -277 -279 -282 -273 -235 -217 
|d| 315 286 260 245 511 407 409 453 366 345 332 



C H A P T E R 7. ASSESSMENT OF K T 4 A N D B97-3 181 

and anisotropic errors versus CCSD numbers. For the isotropic shielding con
stants, KT4 again gives a slightly higher error than KT3, but for anisotropic 
shielding constants KT4 improves upon KT3 (from 260 ppm to 245 ppm). As 
KT4 selenium geometries are of a similar quality to KT3, i t is likely that this 
results is a reflection of the uncertainty in the reference values of the selenium 
molecules. 

In general, there is a small but noticeable increase in errors from KT3 to 
KT4 for each set. This reflects the emphasis put on the shielding constants 
in the fit (for KT4) and the magnitude of the K T exchange coefficient chosen 
(for KT3). In eff'ect, an increase in the errors for magnetic properties has 
been allowed to occur in order to decrease errors for other properties such as 
reaction barriers. 

The errors for the hybrid functionals in Table 7.5 are calculated using the 
conventional coupled formalism and as expected are poor compared to GGA 
results. Overall B97-3 is actually the worst performing of all the hybrid func
tionals, with only the shielding constants for the selenium molecules improving 
compared to B97-2. This is consistent with the findings of Ref. [101], which 
indicates that the increased fraction of exact exchange in B97-3 will lead to 
a deterioration in shielding constant quality. However, the coupled formalism 
is not consistent with Kohn-Sham theory. I t is more appropriate to calculate 
magnetic properties using an uncoupled formalism such as the MKS method of 
Section 2.2. MKS errors for the hybrid functionals are presented in Table 7.6. 
They are up to 9 times smaller than the errors calculated by the coupled ap
proach! Results for all four hybrid functionals are similar, which suggests that 
they are all capable of supplying high quality densities for use in the ZMP 
procedure. For the A l isotropic and A2 anisotropic shielding constants sets, 
the MKS(B97-3) results (15.8 ppm and 9.8 ppm) are competitive with KT4 
(15.1 ppm and 11.1 ppm). For isotropic and anisotropic magnetisabilities, 
MKS(B97-3) surpasses KT4, with errors of 5.0 ppm and 7.7 ppm for the for
mer compared to 13.4 ppm and 24.8 ppm for the latter. The MKS(B97-3) 
chemical shift errors are also smaller for every nucleus. In summary, the poor 
B97-3 results in Table 7.5 are not problematic. When the more appropriate 
MKS method is used, the B97-3 errors are lower than those of B97-2. 
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Table 7.6: Magnetic response property error assessments calculated using the MKS method. 
Units are given in parentheses. 

B3LYP PBEO B97-2 B97-3 

A l . Isotropic N M R shielding constants (ppm) 
d -15.4 -2.7 -5.5 -1.5 
\d\ 20.8 15.4 15.8 15.8 

A 2 . Anisotropic N M R shielding constants (ppm) 
d 9.5 -2.3 0.4 -3.6 
|d| 11.3 11.3 8.8 9.8 

A 8 . Isotropic magnetisabihties (10~^° JT"^) 
d 3.3 3.4 6.0 3.6 
|d| 3.6 4.3 6.0 5.0 

A 9 . Anisotropic magnetisabilities (10~^° JT~^) 
d 9.5 8.8 10.8 7.1 
|d| 14.2 11.8 13.2 7.7 

A l O . Chemical Shifts (ppm) 

\d\eE) 
\d\e'N) 
\d\e'o) 

4.9 4.3 3.9 4.1 
0.14 0.14 0.12 0.11 
26.7 22.7 23.9 21.6 
58.2 50.6 51.0 47.7 
10.6 9.1 8.5 8.9 
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Table 7.7: K T 4 and B97-3 other non-fitted error assessments. Units are given in parentheses. 

K T l K T 2 K T 3 KT4 P B E H C T H O L Y P B3LYP PBEO B97-2 B97-3 

A38. Exci tat ion energies (eV) 
d -1.25 -1.18 -1.23 -1.35 
\d\ 1.25 1.19 1.23 1.37 

-1.30 
1.30 

-1.29 
1.30 

-1.44 
1.44 

-0.86 
0.86 

-0.66 
0.66 

-0.74 
0.74 

-0.62 
0.62 

A39. Dipole moments (au) 
d -0.044 -0.040 -0.043 -0.025 
\d\ 0.054 0.045 0.047 0.035 

-0.025 
0.042 

-0.020 
0.035 

-0.034 
0.046 

-0.009 
0.018 

-0.002 
0.017 

-0.004 
0.015 

0.003 
0.012 

A40. Quadrupole momients (au) 
d 0.00 0.01 -0.02 -0.01 
|d| 0.18 0.17 0.19 0.18 

-0.05 
0.19 

-0.06 
0.19 

-0.06 
0.20 

-0.08 
0.14 

-0.03 
0.12 

-0.04 
0.13 

-0.04 
0.11 

A41. Hyperpolarisabilities (au) 
d 8.8 7.4 7.7 6.8 
\d\ 13.9 11.2 9.3 11.8 

8.0 
14.7 

8.8 
13.2 

10.0 
13.7 

4.0 
7.3 

3.5 
4.8 

3.8 
5.2 

3.6 
4.9 

7.2.4 Other properties 

Finally, we consider electronic excitation energies, multipole moments, and 
higher order static electric response properties. Errors are presented in Ta
ble 7.7. Excitation energies are calculated using time-dependent density func
tional theory (TD-DFT). I f an electric field of frequency u is applied to a 
system, the frequency dependent polarisability is given by [230 

a,,{-uj;uj) = -2^Z\,P,^,„ (7.2) 
aicr 

where P^j^. are the dipole integral matrix elements and the linear response 
matrix elements Z^^^ are found by solving the coupled-perturbed Kohn-Sham 
equations involving both the electric and magnetic Hessian matrices. The ver
tical excitation energies are the values of oj for which Eq. 7.2 diverges. The 
A38 excitation energy set consists of 7 vertical singlet electronic excitation 
energies from each of the molecules CO and N2. Following Ref. [231], calcu
lations were performed at near-experimental geometries using the Sadlej basis 
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set augmented with additional diffuse functions as defined in Ref. [120]. Of 
the GGAs, the lowest mean absolute error is given by the KT2 functional 
(1.19 eV) with some deterioration in moving to KT3 and KT4. The hybrid 
functionals give superior results to the GGAs, with B97-3 giving the lowest 
error of 0.62 eV. For all the functionals the errors arise primarily from the 
Rydberg excitations. 

The A39 set consists of 10 small molecules with electric dipole moments 
determined using the Sadlej basis set [191] at experimental geometries (follow
ing Ref. [232]). KT4 and HCTH give the joint lowest GGA errors of 0.035 au. 
Smaller errors are given by the hybrid functionals, with the lowest of 0.012 au 
given by B97-3. 

Like the dipole moment, the electric quadrupole moment is calculated from 
a simple expectation value 

= (* | r„r^ |^ ' ) (7.3) 

The A40 set of 15 quadrupole moments were calculated with respect to the 
centre of mass, using the Sadlej basis set at experimental geometries (following 
Ref. [232]). There is little variation in the GGA errors, with KT2 giving the 
lowest error of 0.17 eV. Hybrids again give smaller errors, with B97-3 the lowest 
at 0.11 au. 

The first electric dipole hyperpolarisabihty is the next derivative after the 
polarisability in Eq. 1.93. To calculate this analytically would require an im
plementation of the third derivative of Fxc with respect to the density and 
gradient of the density. Instead, we calculated the hyperpolarisability tensor 
components by a finite difference of static polarisabilities in an applied electric 
field of ±0.001 au. 

The A41 hyperpolarisability set consists of 8 molecules. Following Ref. [233], 
hyperpolarisabilities were determined at experimental geometries using a Sadlej 
basis set modified by adding extra basis functions at lone-pair positions. Our 
error analysis concerns the average static hyperpolarisability which is de
fined as [233] 

Al=|(/5xx. + ^ , , . + ^ . . ^ ) ^ (7.4) 
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Table 7.6: Magnetic response property error assessments calculated using the MKS method. 
Units are given in parentheses. 

B3LYP PBEO B97-2 B97-3 

A l . Isotropic N M R shielding constants (ppm) 
d -15.4 -2.7 -5.5 -1.5 
\d\ 20.8 15.4 15.8 15.8 

A 2 . Anisotropic N M R shielding constants (ppm) 
d 9.5 -2.3 0.4 -3.6 
\d\ 11.3 11.3 8.8 9.8 

A 8 . Isotropic magnetisabilities (10 -30 j T - 2 ) 

d 3.3 3.4 6.0 3.6 
\d\ 3.6 4.3 6.0 5.0 

A 9 . Anisotropic magnetisabilities (10-30 J T - 2 ) 
d 9.5 8.8 10.8 7.1 
|d| 14.2 11.8 13.2 7.7 

A l O . Chemical Shifts (ppm) 
\d\i^^C) 4.9 4.3 3.9 4.1 
jdOH) 0.14 0.14 0.12 0.11 
dO^N) 26.7 22.7 23.9 21.6 
d(i^O) 58.2 50.6 51.0 47.7 
|d(i9F) 10.6 9.1 8.5 8.9 
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except for C H 3 C N where 

P\\ = Pxxz + /3yyz + Pzzz (7.5) 

The errors are presented relative to reference ab initio values from Ref. [233 . 
KT3 gives the lowest GGA error of 9.3 au. KT4 gives a higher error of 11.8 
au, but this remains superior to the non-KT GGAs. The hybrid functionals 
all give a better performance, with the lowest error of 4.8 au given by PBEO. 
B97-3 gives essentially the same error. 

To summarise our full assessment, the KT4 GGA and the B97-3 hybrid 
functional give notable improvements for some properties and maintain the 
performance of KT3 and B97-2 respectively for most other properties. As 
expected, they perform particularly well for the fitting data assessments, with 
notable improvements for both functionals for the BH42 reaction barriers and 
G2 atomisation energies. KT4 gives significant improvements over KT3 for the 
A31 and A23 barrier sets, but its performance for the A31 set is disappointing 
compared to HCTH. B97-3 gives significant improvements over B97-2 for both 
sets. KT4 is also disappointing for the G3-3 enthalpies of formation, with an 
error somewhat higher than the (remarkably low) KT3 error. Again, B97-
3 improves significantly over B97-2. For the other properties KT4 generally 
maintains the performance of KT3, although there is some deterioration for the 
A18 hydrogen bond dimer distances and A21 vibrational wavenumbers. B97-3 
generally maintains or improves performance compared to B97-2. I t is arguable 
whether KT4 is overall a truly improved functional compared to KT3. Among 
the GGAs, KT4 provides the lowest or joint lowest error for 13 out of the 34 
assessments, compared to 9 for KT3. Among the hybrids, B97-3 provides the 
lowest error for 18 of the assessments, compared to 7, 8, and 7 for B3LYP, 
PBEO, and B97-2 respectively (using MKS values for magnetic properties). 
We believe that, overall, B97-3 represents a significant improvement over B97-
2 and the other hybrid functionals and so should be recommended for chemical 
applications of the types considered in this chapter. 
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7.3 Oxirene-ketene interconversion 

Given the excellent performance of B97-3 for reaction barriers, we next inves
tigated whether i t can provide an accurate description of the potential energy 
surface for the interconversion from oxirene to ketene, which is known to be a 
challenging problem for DFT. Scott et al. [234] demonstrated from CCSD(T) 
calculations that the interconversion path contains two transition states (2 and 
4) between the minima of oxirene (1), formylmethylene (3), and ketene (5). 
Figure 1 presents a schematic representation of their potential energy surface 
(taken from Ref. [235]). 

The oxirene-ketene potential energy surface was previously studied using 
DFT by Wilson and Tozer [235]. They observed that the B3LYP and B97-1 
functionals failed to predict the transition state 2 and falsely predicted that 
oxirene was a transition state. The B97-2 functional, however, did predict the 
correct transition state. These results are consistent with our reaction barrier 
assessments, for which B97-2 gives superior results to B3LYP. For these barrier 
assessments B97-3 gives results of higher quality than both B3LYP and B97-2, 
and so we would expect it to give good results for the oxirene-ketene potential 
energy surface. 

Following Ref. [235], we performed geometry optimisations for the systems 
1-5 using the TZ2P basis set. For the transition states 2 and 4 saddle point 
optimisations were performed and the transition state confirmed by the pres
ence of a single imaginary harmonic vibrational frequency. Relative energies 
of the structures for B3LYP, PBEO, B97-2, and B97-3 are presented in Ta
ble 7.8. Our findings confirm that B3LYP is unable to locate the transition 
state 2. The other three hybrids did locate the transition state, with B97-3 
giving the closest relative energy to the CCSD(T) results. For structures 3-5, 
PBEO gives the closest results to CCSD(T). A l l the functionals are able to 
locate transition state 4. Overall, the performance of B97-3 is comparable to 
that of B97-2, although PBEO gives the highest quality results. 

We also carried out the same geometry optimisations using the GGA func
tionals considered in previous assessments. None of the GGAs were able to 
locate transition state 2, including KT4. This is further confirmation that the 
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H -t/i p c 

1. Oxirene 

3, Formylmethylene 

H' 
c-

5, Ketene 

Figure 7.1: Schematic representation of the oxirene-ketene potential energy surface from 
CCSD(T) calculations [234]. 
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Table 7.8: Relative energies for energy minima and transition states on the oxirene-ketene 
potential energy surface. All values are in kcal mol~^. 

B3LYP PBEO B97-2 B97-3 CCSD(T)'' 

1. Oxirene 0.0 0.0 0.0 0.0 0.0 
2. — -t-0.64 -F0.31 +0.35 4-0.44 
3. Formylmethylene -3.78 -0.74 -2.09 -1.94 -0.50 
4. -1-0.79 -1-4.92 +2M -1-2.17 +5.71 
5. Ketene -82.56 -81.20 -81.51 -82.38 -80.02 

* Mean of CCSD(T)/cc-pVTZ(f) and CCSD(T)/cc-pVTZ(g) single-point energy calculations 
at CCSD(T)/6-311G(df,p) optimised geometries [234]. 

performance of KT4 for reaction barriers is not as reliable as that of B97-3. 

7.4 Spin-spin coupling constants 

Finally, we return to the problem of calculating accurate spin-spin coupling 
constants within DFT. In a recent study [236], Maximoff et al. demonstrated 
that i t was possible to calculate ^ J C H couplings accurately using the PBE GGA 
functional. Over a set of 96 couplings determined using an extensive selection 
of functionals, PBE gave the lowest mean absolute error of 3.49 Hz. I t is 
surprising that it is possible to obtain such a low error with a GGA functional. 
This result is not due to the fact that PBE is a non-empirical functional, as 
the more sophisticated non-empirical TPSS meta-GGA gives a much higher 
error (24.98 Hz). I t is also not a general result for GGAs. In particular the 
findings of Maximoff et al. confirmed our observations of KT2's relatively poor 
performance, with an error over their set of 20.48 Hz. 

B97-2 was the best-performing hybrid functional, giving essentially the 
same error as PBE (3.51 Hz). I t is therefore of interest to establish whether 
B97-3 maintains this high level of accuracy. We calculated ^ C H couplings 
for the A42 set of molecules. This is a subset of the molecules considered in 
Ref. [236] (six molecules were removed for technical reasons). The same aug-
cc-pVTZ-J basis set [237] and the same geometries optimised at the PBEO/6-

•31-f-G(2df,p) level were used. FoUowing-Ref. [236], an arf /ioc correction of 5 Hz 



C H A P T E R 7. ASSESSMENT OF K T 4 A N D B 9 7 - 3 189 

was added to the calculated coupling constant to account for rovibrational 
effects. The calculations were performed using the D A L T O N program. 

Table 7.9 presents results for the P B E , B 3 L Y P , B 9 7 - 2 , and B97-3 func-

tionals. The results for this subset follow the same trend as that observed in 

Ref. [236], and the overall errors agree to within 1 Hz. P B E gives the lowest 

mean absolute error of 4.30 Hz, closely followed by B97-2 with 4 .37 Hz. There 

is a minor deterioration with B97-3 {\d\ = 4 .61 Hz) compared to B97 -2 , but 

Maximoff et al. considered errors below a margin of ± 2 Hz to be equivalent 

because of uncertainties caused by solvent, geometry, rovibrational, and finite 

basis set size effects. B 3 L Y P is significantly worse, with an error of 16.34 Hz. 

The performance of P B E is remarkable but the A 4 2 set considers only one 

type of coupling, which is expected to be relatively easy to calculate as i t con

tains no highly electronegative atoms. To test the more general applicability 

of P B E , we assessed it for our previous A 1 2 set, which contains more challeng

ing couplings involving systems such as HF, C O , and N2, and 2- to 5-bond 

couplings. Results are presented in Table 7.10. P B E continues to perform well 

for the ^ J c H couplings in the set, but i t is less accurate for the other types of 

coupling. P B E gives a mean absolute error of 8.0 Hz, the same error as B 3 L Y P . 

B 9 7 - 2 is substantially more accurate, and B97-3 is more accurate still, giving 

an error of 4.7 Hz. When the problematic HF coupling is removed, P B E sur

passes B 3 L Y P , but remains inferior to B97-2 and B 9 7 - 3 . The high performance 

of P B E therefore appears to be confined to V C H couplings, and for other types 

of coupling a hybrid functional such as B97-3 is preferable. Given the diffi

culty of computing spin-spin coupling constants, we are extremely encouraged 

by the success of B 9 7 - 3 . 
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Table 7.9: Indirect spin-spin coupling constants for the A42 set of ^ JCH couplings marked 
in bold. All values are in Hz. 

Mol. Expt.* P B E B3LYP B97-2 B97-3 
H C = C H 249.00 258.41 281.73 259.61 260.65 
HC=C(C6H5) 251.00 259.97 283.35 261.10 262.26 
HC=C(CH2)20H 253.00 258.69 281.70 259.38 260.62 
H C = C ( C H 2 0 H ) 248.00 259.67 282.83 260.45 261.67 
HC=C(CH3) 248.00 258.07 280.99 258.72 259.88 
H C = N 269.00 262.73 292.06 265.85 270.09 
H C = C F 275.50 290.86 314.59 290.01 290.94 

H C = C C 1 270.00 276.10 299.19 276.30 276.98 
HC=C(CH2C1) 252.00 262.59 285.90 263.50 264.63 
HC=C(CH2CN) 251.00 264.35 287.83 265.35 266.23 

H C = C C H = C H 2 251.70 260.29 283.87 261.57 262.60 
H C = C = C = C H 259.00 266.75 290.97 268.57 269.33 

HCH=:CH2 156.20 157.07 173.13 160.38 161.22 
HCH=CH(CH3) 153.10 154.29 170.28 157.62 158.52 

HCH=CH(CH3) 157.00 158.40 174.47 161.39 162.32 

HCH=CH(CH3) 152.00 151.06 166.11 154.02 155.01 

H C H = C H - C H = C H 2 159.21 160.04 176.68 163.72 164.44 

H C H = C H - C H = C H 2 154.91 155.68 171.93 159.40 160.02 

H C H = C = C H 2 168.20 168.55 185.88 171.01 172.45 
H C H = F C H 159.18 160.06 176.66 163.07 164.29 
H C H = F C H 162.16 163.47 179.67 165.63 166.84 
H C H ^ F C H 200.20 195.25 214.86 198.63 200.17 

HC(0)C6H5 173.70 168.83 186.39 172.82 174.76 

H C H = 0 172.00 172.47 191.50 178.02 179.55 
H C ( 0 ) C H 3 172.40 166.35 183.47 170.45 171.98 

HC(0)NH2 188.30 186.63 205.34 189.41 191.83 

HC(0)N(CH3)2 191.20 188.11 206.60 190.53 193.03 

H C 0 0 { C H 3 ) 226.20 205.59 226.48 208.26 211.14 

H C ( 0 ) F 267.00 252.45 276.43 253.92 257.36 

trans-HC{CH3)=N0H 163.00 148.06 165.04 152.53 153.77 
c»s-HC(CH3)=N0H 177.00 184.54 201.27 186.04 187.27 

HCH=CHC1 162.64 163.23 180.05 166.48 167.63 

HCH=CHC1 160.89 161.73 177.81 164.39 . 165.39 

HCH=CHC1 194.86 194.20 212.88 196.65 198.68 

H C H = C H ( C N ) 163.20 163.94 180.54 167.52 168.26 

continued on next page 
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Table 7.9: continued 

Mol. Expt."* P B E B3LYP B97-2 B97-3 

H C H = C H ( C N ) 165.43 163.60 180.23 167.24 168.04 

H C H = C H ( C N ) 176.74 170.62 187.73 173.11 174.89 

H C H = C H ( C H O ) 156.60 161.82 178.85 165.84 166.76 

H C H = C H ( C H O ) 162.30 160.69 176.98 164.18 164.82 

H C H = C H ( C H O ) 162.30 157.82 174.12 160.67 162.08 

H C H - C H ( C C l 3 ) 169.00 170.15 186.81 172.12 173.86 

HCH=:CH(CCl3) 162.00 162.01 178.05 164.92 165.88 

irans-HC(CH3)=CH(CH3) 148.70 148.78 163.81 152.41 153.28 

irans-HCCl=CHCl 199.10 197.57 217.22 200.57 202.73 

cis-H(CN)C=CH(CN) 184.00 174.86 192.70 177.96 179.67 

c j s -HCCl=CHCl 197.30 196.66 215.56 198.90 200.99 

HCH2CH3 124.90 124.99 138.03 127.02 128.65 

HCH(CN)2 145.20 138.13 152.74 139.20 142.27 

H C H ( C 0 0 H ) 2 132.00 127.67 141.92 129.17 132.05 

HCH(CN)CH3 135.50 132.08 145.78 133.50 136.03 

CH(CN)(CH3)2 135.50 131.54 144.93 132.90 135.57 

HCH2C{0)OCH2CH3 130.30 125.39 139.06 127.13 129.28 

HCH2C(0)C6H5 125.70 134.96 148.45 136.03 138.07 

H C H 3 125.00 126.45 139.82 128.59 129.91 

H C H 2 C N 136.10 133.62 147.70 135.11 137.46 

H C H 2 C O O H 130.00 125.70 139.32 127.31 129.50 

H C H 2 C O H 127.00 128.79 142.29 130.45 132.34 

H C H 2 C = C H 132.00 130.14 143.88 131.82 133.90 

HCH(OH)HC(CH3)2 140.00 134.27 148.75 137.12 139.06 

HCH2NO2 146.70 138.78 153.61 140.56 142.90 

H C H F ( C N ) 166.00 155.52 171.72 157.92 160.54 

HCH(0H)(CF3) 147.50 140.80 156.25 143.47 145.85 

HCH2OCHO 147.00 144.23 159.87 147.17 149.36 

(HCH2)20 140.00 135.11 150.02 138.37 140.08 

(HCH2)2NC(0)H 138.00 134.73 148.72 136.93 138.72 

HCH{N(CH3)2)2 136.60 138.21 152.49 140.42 142.49 

HCFHCfiHs 151.00 147.18 162.53 149.87 152.03 

HCH(N02)2 169.40 163.51 180.83 165.42 168.55 

H C H 2 O H 141.00 141.03 155.48 143.48 145.14 

HCH2NH2 133.00 132.16 145.98 134.46 136.16 

HGH2OC6H5 143.00 138.98 154.13 141.98 143.96 

continued_onne^^^^ 
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Table 7.9: continued 

Mol. Expt.* P B E B3LYP B97-2 B97-3 

H C H F 2 184.50 177.48 195.26 181.02 183.01 

H C F 3 239.10 234.17 253.53 235.01 236.59 

C6H5NH2 (0) 156.01 155.75 170.55 157.61 159.01 

C6H5NH2 (m) 156.90 158.03 173.15 160.20 161.65 

C6H5NH2 (p) 160.46 159.32 174.32 161.31 162.71 

C6H5CHO (0) 160.95 158.10 173.01 160.02 161.41 

C6H5CHO (m) 161.92 161.15 176.38 163.25 164.72 

CeHsCHO (p) 160.43 159.20 174.37 161.51 162.90 

CeHsOH (0) 158.35 153.62 168.65 155.73 157.22 

CeHsOH (m) 158.99 158.15 173.17 160.29 161.72 

CeHsOH (p) 160.84 161.63 176.74 163.45 164.89 

CeHsFs 168.28 167.29 183.66 169.10 171.06 

CeHe 158.50 158.59 173.61 160.74 162.14 

CeHsF (0) 155.00 161.95 177.59 163.95 165.58 

C6H5F (m) 163.00 159.96 175.06 162.07 163.49 

CsHsF (p) 161.00 161.26 176.44 163.21 164.66 

C4H4N2 206.00 203.61 221.07 204.57 206.33 

d -0.77 16.34 1.53 3.18 

\d\ 4.30 16.34 4.37 4.61 

Ref. [236] 
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Table 7.10: Indirect spin-spin coupling constants determined using the Huzinaga'III-su3 
basis set. All values are in Hz. 

Mol. P B E B3LYP B97-2 B97-3 Expt." 
H F VHF 369.0 439.3 444.7 458.0 538.0 
CO 25.4 19.4 18.4 17.8 15.7 

3.8 1.8 2.0 1.1 1.7 
H2O -67.1 -76.9 -74.5 -75.5 -86.0 

VHH -5.5 -8.1 -8.3 -7.4 -8.2 
-9.8 -18.1 -17.7 -20.9 -20.5 

256.6 284.4 257.7 263.9 262.2 
-5.5 -7.5 -6.2 -7.8 -8.2 

" N H 3 40.8 45.4 42.3 43.5 44.1 
-8.3 -10.4 -9.5 -9.4 -10.3 

CH4 119.7 132.2 120.5 123.2 120.0 
-12.0 -13.3 -11.4 -11.5 -12.1 

C2H2 189.7 204.9 201.9 199.6 184.8 
252.2 274.2 251.5 254.7 243.0 

54.0 55.9 50.6 54.3 53.1 
10.3 11.0 10.3 10.0 9.7 

C2H4 63.4 73.1 71.8 70.6 66.7 
151.1. 166.1 152.8 155.3 151.2 
-0.6 -1.4 -2.1 -1.0 -1.2 

VHH 3.4 3.4 2.3 3.4 2.0 
3 7 • 

''CIS 
12.0 13.1 11.4 11.7 10.5 

3 T " t r a n s 18.9 20.2 18.0 18.3 16.7 
C2H6 V c c 18.5 24.5 23.5 23.6 34.5 

123.9 136.4 124.5 127.5 125.2 
-4.1 -4.6 -4.4 -4.3 -4.7 

VHH -9.0 -10.0 -8.9 -8.7 
CeHe V c c 51.9 60.1 58.3 58.5 56.1 

V c c -0.7 -1.8 -2.7 -1.6 -1.7 
' J c c 10.5 11.2 11.6 10.5 9.4 
'JCH 152.6 166.8 153.3 156.4 153.8 
V c H 2.4 2.0 1.2 2.0 1.4 

7.4 8.1 7.7 7.6 7.0 
V c H -0.8 -1.3 -1.5 -1.2 -1.0 
VHH 8.1 8.8 7.7 7.9 7.0 

1.5 1.3 1.1 1.3 1.2 
0.6 0.8 0.7 0.6 0.6 

Ml (all) 8.0 8.0 5.1 4.7 
\d\^ 3.3 5.3 2.5 2.5 
\d\% (all) 23.7 15.2 14.3 11.3 

" All experimental values include vibrational corrections (calculated at the B3LYP level), 
except C2H6. See Refs. [176,177]. 
^ Excluding VHF in H F 



Chapter 8 

Conclusions 

With the development of accurate generalised gradient approximation (GGA) 
and hybrid functionals, Kohn-Sham density functional theory has rapidly be
come the most popular quantum mechanical method for chemical applications. 
However, the approximate functionals in the literature do not offer the same 
level of accuracy for all properties. The calculation of nuclear magnetic res
onance (NMR) shielding constants is a notable failure for conventional DFT 
functionals. In this thesis, we demonstrated that i t was possible to obtain 
highly accurate NMR shielding constants within the GGA formalism by the 
addition of a simple gradient-corrected term (KT exchange) to the local den
sity approximation (LDA) functional. To the best of our knowledge this is the 
first time that shielding constants of this accuracy have been calculated using 
conventional DFT. These functionals, denoted K T l and KT2, were also found 
to give excellent performance for magnetisabilities and chemical shifts. How
ever, they offered no improvement over conventional GGAs for indirect spin-
spin coupling constants, and they were not competitive with the best GGAs 
for non-magnetic properties such as atomisation energies, although KT2 gave 
good results for molecular bond length optimisations. 

To improve upon KT2, a third functional was developed after extensive 
investigations into the form of the exchange and correlation components and 
the choice of fitting data. The new functional, KT3, featured an improved cor
relation functional and extra flexibility in the exchange representation form. 
The K T exchange term was retained to ensure-high quality shielding constants.-

194 
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KT3 also provides atomisation energies, ionisation potentials, electron affini
ties, proton affinities, bond angles, and electronic polarisabilities that are com
parable to or surpass those of the best conventional GGAs. Its performance for 
equilibrium molecular bond lengths and diatomic harmonic vibrational wave 
numbers is as good as the best hybrid functionals. KT3 was also found to 
give excellent performance for geometry optimisations and shielding constant 
calculations of selenium-containing molecules, and is competitive with the non-
empirical PW91 GGA for solid state optimised lattice constants, bulk moduh, 
and electronic band gaps. 

KT3 is not competitive with the best GGAs for classical chemical reaction 
barriers, but performance could be improved by including barrier heights in the 
fitting data. However, i t was observed that the KT3 form was not sufficiently 
flexible to obtain high quality reaction barriers whilst maintaining the good 
performance of KT3 for other properties. A more flexible functional form 
based on Becke's B97 exchange-correlation expansion was used, but with the 
addition of the K T exchange term to maintain shielding constant performance. 
The resulting functional, KT4, was fitted to a large and diverse set of fitting 
data in order to explore the limits of accuracy achievable within the GGA 
formalism. For assessments in the fitting data, KT4 performed extremely well, 
in particular for reaction barriers and atomisation energies. We also assessed 
KT4 for an extensive set of non-fitted data. In general, KT4 maintained the 
high accuracy of KT3, but its performance for non-fitted reaction barriers and 
thermochemistry fell short of our expectations. 

We next attempted to develop a hybrid functional that was able to give 
high quality performance for reaction barriers and provide competitive results 
for other properties. This functional, B97-3, was also based on the B97 form, 
but K T exchange was removed because i t did not prove possible to obtain 
high quality shielding constants using the conventional coupled formalism. 
B97-3 provided very high quality reaction barriers and atomisation energies 
for both the fitted and non-fitted data, and therefore appeared to be a more 
generally applicable functional than KT4. B97-3 also gave performance com
petitive with (and in many cases superior to) the best hybrid functionals for 
ionisation potentials, electron affinities, protoii afl[inities, total energies, equi-
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librium molecular bond lengths, diatomic harmonic vibrational wavenumbers, 
electronic excitation energies, dipole moments, quadrupole moments, polar-
isabilities and hyperpolarisabilities. Furthermore, when magnetic properties 
were calculated using the more appropriate uncoupled MKS formalism, the 
results were competitive with the K T GGAs. B97-3 also maintained the high 
quality performance of B97-2 for the oxirene-ketene potential energy surface 
and indirect spin-spin coupling constants. 

In summary, the KT3 functional is recommended for the calculation of 
magnetic properties (with the exception of spin-spin coupling constants) and 
is an excellent general-purpose functional for situations where hybrids cannot 
be used. The B97-3 hybrid functional is recommended for general purpose 
calculations, but especially for reaction barriers and thermochemical proper
ties. I f the appropriate uncoupled method is available, B97-3 also provides 
high-quality magnetic properties. For systems such as those considered in this 
study, B97-3 is the most accurate hybrid functional available in the literature. 
Further investigation of B97-3 is essential. 



Appendix A 

Assessment systems 

This appendix lists the systems and basis sets of the assessment sets used in 
this thesis. The value in parenthesis gives the number of quantities in each 
assessment. 

A l . Isotropic N M R shielding constants [nuclei 

Huzinaga IV basis 
HF [F], H2O [O], CH4 [C], CO [C,0], N2 [N], F2 [F], O3 [ 0 ,0 ' ] , PN [P,N], H2S 
[S], NH3 [N], HON [C,N], C2H2 [C], C2H4 [C], H2CO [C,0], N2O [N,N ' , 0 ] , 
CO2 [0 ,0] , OF2 [O], H2CNN [C,N,N'], HCl [01], SO2 [S,0], PH3 [P]. {32} 

A2. Anisotropic N M R shielding constants [nuclei] 

Huzinaga IV basis 
HF [F], NHs [N], CO [0,0] , N2 [N], F2 [F], H2CO [C], PN [P,N], HCl [01], 

PHs [P]. {11} 

A3. Atomisation energies 

TZ2P basis 
H2, LiH, BeH, OH, CU2CA), OHaC^B), OH3, OH4, NH, NH2, NH3, OH, H2O, 
HF, Li2, LiF, O2H2, O2H4, C2H6, ON, HON, 0 0 , HOO, H2OO, CH3OH, N2, 
N2H4, O2, H2O2, F2, OO2, SiH2(iA), SiH2(3B), SiH3, SiH4, PH2, PH3, HCl, 

197 
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Na2, Si2, P2, S2, CI2, NaCl, SiO, CS, SO, CIO, GIF, CH3CI, CH3SH, HOCl, 
SO2, HF+, HC1+, C0+, N ^ , Ot, P^, S^, Clt. {61} 

A4. lonisation potentials 

TZ2P basis 
Na, Mg, Al , Si, P, S, CI. {7} 

A5. Total atomic and ionic energies 

TZ2P basis 
H, He, L i , Be, B, C, N, O, F, Ne, Li+, Be+, B+, C+, N+, 0 + , F+, Ne+. {18} 

A 6 . G 2 subset bond lengths 

TZ2P basis 
H2, L iH, BeH, CH, CE^i'A), CHaC^B), CH3, CH4, NH, NH2, NH3, OH, H2O, 
HF, Li2, LiF, C2H2, C2H4, CN, HON, CO, HCO, H2CO, N2, O2, H2O2, F2, 

CO2, HCl, Na2, Sia, P2, S2, CI2, NaCl, SiO, CS, SO, CIO, CIF. {46} 

A 7 . Diatomic bond lengths 

6-311+G(2df) basis 
Li2, LiNa, LiK, Na2, NaK, K2, N2, NP, NAs, P2, PAs, As2, F2, FCl, FBr, CI2, 
ClBr, Br2, LiF, LiCl, LiBr, NaF, NaCl, NaBr, KF, KCl, KBr, BF, BCl, BBr, 
AlF, AlCl , AlBr, GaF, GaCl, GaBr, CO, CS, CSe, SiO, SiS, SiSe, GeO, GeS, 
GeSe. {45} 

A8. Isotropic magnetisabilities 

Huzinaga IV basis 
HF, H2O, CH4, CO, N2, F2, O3, NH3, HON, C2H2, H2CO, CO2. {12} (exclud

ing O3 and CO2 for L-CCD errors) 
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A9. Anisotropic magnetisabilities 

Huzinaga IV basis 
HF, H 2 O , CO, N2, F 2 , O3, NH3, HCN, C2H2, H 2 C O . {13} (excluding H 2 O 

ACi, O3, and H 2 C O AC2 for L-CCD errors, and F 2 for MCSCF errors) 

AlO. Isotropic N M R chemical shifts [nuclei] 

8s6p3d/6s3p basis 

CO [C,0], C O 2 [C,0], F 2 [F], O F 2 [0,F], HOF [H,F], N F 3 [F], H 2 O [0,H], 

H2O2 [O], HCN [C,N,H], N2 [N], N 2 O [N(terminal),N(middle),O], 

N2O3 [N(NO),N(N02),0(NO),0(N02)], O3 [O(terminal),O(middle)], HF [F,H], 

NH3 [N,H], C H 4 [C,H], C2H6 [C,H], C2H4 [C,H], C H 2 C C H 2 [C(middle),C(terminal)], 

C 2 H 2 [C,H], H 2 C O [0,C,H], C H 3 C H O [C(C(0)H) ,C (CH3 ) ,0 ,H (CH3)] , 

C H 2 C O [C(C0),C(CH2)] , C H 2 C H C H O [0,C(C(0)H),C(CH),C(CH2)], 

( C H 2 ) 2 0 [C,0], C3O2 [C(middle),C(terminal)], C H 3 N H 2 [C,N,H(NH2)], 

C H 2 N N [C,N(middle),N(terminal)], C H 3 C N [C(CH3),C(NC),N,H], 

C H 3 N C [C(CH3),C(NC),N], C H 3 N O 2 [C,N,0,H], C H 3 F [C,F,H], C H 2 F 2 [C,F], 

C H F 3 [C,F], C F 4 [C,F], C O F 2 [C,F]. {85} 

A l l . G I A O isotropic shielding constants [nuclei] 

Huzinaga H I basis 

C H 2 [H,C], C F 2 [C,F], C F 4 [C,F], NO2- [N,0], linear-C02 [C,0], cycIic-C02 [C,0], 

linear-N20 [Ntenn,Nce„t,0], cyclic-N20 [N,0], « s - N 2 F 2 [N,F], irans-NsFa [N,F], 

CeHe [C], C 2 H + [C„C^], C 7 H + [C«,C^,C^,,C^,Cy], C 6 H 5 N + [N„,N^]. {31} 

A12. Indirect spin-spin coupling constants [coupling] 

Huzinaga III-su3 basis 

HF [ I J H F ] , CO [iJco], ^'Ni^N [ V N N ] , H 2 O ['Jq, V H H ] , H C ^ ^ N [ V C N , ' ^ C H , 

V N H ] , ^ ' N H 3 [ V N H , V H H ] , CH4 [VcH, V H H ] , C2H2 [^JcC, VcH, VcH, V H H ] , 
C2H4 l^Jcc, ^JcU, ^JCB, ^JuH, ^Jcis, ^JtTSLns], C2H6 [ ^ C C , ^JcU, "^JCH], CeHfi [^JcC, 

V c c , V c c , 'Jen, 'Jen, 'Jen, 'Jen, 'Jnn, 'Jnn, 'Jnn]- {35} 
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A13. G2-1 atomisation energies 

6-311+G(3df,2p) basis 

LiH, BeH, CH, CH2 ( 'B) , CH2(^A), CH3, CH4, NH, NH2, NH3, OH, H2O, HF, 

SiH2(^A), SiH2(^B), SiHs, SiH4, PH2, PH3, H2S, HCl, Li2, LiF, C2H2, C2H4, 

C2H6, CN, HCN, CO, HCO, H2CO, CH3OH, N2, N2H4, NO, O2, H2O2, F2, 

CO2, Na2, Si2, P2, S2, CI2, NaCl, SiO, CS, SO, CIO, CIF, Si2H6, CH3CI, 

CH3SH, HOCl, SO2. {55} 

A14. G2-2 atomisation energies 

6-311+G(3df,2p) basis 

BF3, BCI3, AIF3, AICI3, CF4, CCI4, OCS, CS2, C O F 2 , SiF4, SiCl4, N2O, 
CINO, NF3, PF3, O3, F2O, CIF3, C2F4, C2CI4, C F 3 C N , propyne, allene, cyclo-

propene, propene, cyclopropane, propane, butadiene, 2-butyne, methylene cy

clopropane, bicyclobutane, cyclobutene, cyclobutane, isobutene, trans butane, 

isobutane, spiropentane, benzene, CH2F2, CHF3, CH2CI2, CHCI3, methy-

lamine, methyl cyanide, nitromethane, methyl nitrite, methyl silane, formic 

acid, methyl formate, acetamide, aziridine, cyanogen, dimethylamine, trans 
ethylamine, ketene, oxirane, acetaldehyde, glyoxal, ethanol, dimethylether, 

thiooxirane, dimethyl sulfoxide, ethanethiol, dimethyl sulfide, C H 2 C H F , ethyl 

chloride, vinyl chloride, acrylonitrile, acetone, acetic acid, acetyl fluoride, acetyl 

chloride, propyl chloride, isopropanol, methyl ethyl ether, trimethylamine, 

furan, thiophene, pyrrole, pyridine, H2, SH, CCH, C2H3, CH3CO, H2COH, 
CH3O, CH3CH2O, CH3S, C2H5, (CH3)2CH, (CH3)3C, NO2. {93} 

A15. G2-1 ionisation potentials 

6-311+G(3df,2p) basis 

Li , Be, B, C, N, O, F, Na, Mg, A l , Si, P, S, CI, CH4, NH3, OH, H2O, HF, SiH4, 
PH, PH2, PH3, SH, H2S(2B), HCl, C2H2, C2H4, CO, ^2^:), O2, P2, S2, CI2, 
CIF, CS. {36} (H2S (2A) and N2 (^H) excluded due to convergence problems) 



A P P E N D I X A . A S S E S S M E N T S Y S T E M S 201 

A16. G2-1 electron affinities 

6-311+G(3df,2p) basis 
0, O, F, Si, P, S, CI, OH, O H 2 , C H 3 , NH, N H 2 , OH, SiH, SiH2, SiH3, PH, P H 2 , 
SH, O 2 , NO, ON, PO, S 2 , C I 2 . {25} 

A17. G2-1 proton affinities 

6-311+G(3df,2p) basis 

N H 3 , H 2 O , C 2 H 2 , SiH4, P H 3 , H 2 S , HCl. {7} 

A18. Hydrogen bond dimer distances 

TZ2P basis 

(HF)2, (H01)2, (H20)2, (CO)(HF), (OC)(HF). {5} 

A19. Other bond lengths 

Wachters basis (transition metals) 
TZ2P basis (other atoms) 

FOOF, F N O 2 , O 3 , F O 2 , Cr(C0)6, Ni(C0 )4 . {11} 

A20. Bond angles 

TZ2P basis 

C H 2 ("B), C H 2 (^A), N H 2 , N H 3 , H 2 O , C 2 H 4 , HOO, H 2 C O , H 2 O 2 , FOOF, 

F N O 2 , O3, F O 2 . {13} 

A21. Diatomic harmonic vibrational wavenumbers 

As A7. 

A22. Isotropic electronic polarisabilities 

Sadlej basis 
HF, H 2 O , N 2 , CO, F 2 , N H 3 , O O 2 , C H 4 , C 2 H 4 , P H 3 , H 2 S , S O 2 , HCl, O I 2 . {14} 
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A23. Classical chemical reaction barriers [transition state 

TZ2P basis 

H + H2 [H-H2]; CH4+CH3 [H3CH-CH3]; H2+CH3 [HH -CH3]; H2+NH2 
[HH-NH2]; H2+OH [HH-OH]; C H 4 + O H [ H 3 C H - O H ] ; H+N2 [H-N2]; N+O2 
N -O2] ; 0 + H C l [ 0 - H C l ] ; H+N2O [H-N2O]; H+N2O [NNOH]; H+N2O [H-ON2]; 

H+NO [H-NO]; O+H2 [O-H2]; H+HF [H-FH] ; H+HCl [H-CIH] . {16} 

A24. Selenium bond lengths 

6-311+G(2df,2pd) basis 

Se(CH3)2, SeH2, SeCO, H2CSe, CSea, SeFg, CH3SeH, (CH3)2CSe, C4H4Se, 

SeOF2, (SiH3)2Se, SeF4, trans-C2H5SeH, gauche-C2H5SeH. {25} 

A25. Selenium bond angles 

6-311+G(2df,2pd) basis 

Se(CH3)2, SeH2, HsCSe, CHaSeH, (CH3)2CSe, C4H4Se, SeOF2, (SiH3)2Se, 

SeF4, trans-C2H5SeH, gauche-C2H5SeH. {14} 

A26. Selenium isotropic N M R shielding constants 

See text for discussion of basis sets 

Se(CH3)2, SeH2, SeCO, H2CSe, CSe2, SeFg, CHsSeH. {7} 

A27. Selenium anisotropic N M R shielding constants 

See text for discussion of basis sets 

Se(CH3)2, SeH2, SeCO, HgCSe, CSe2. {5} 

A28. Solid state calculations 

C, Si, Ge, SiC, AIN, AlP, AlAs, GaN, GaP, GaAs. {10} 

A29. BH42/04 classical chemical reaction barriers 

6-311+G(3df,2p) basis 

H + H C r - > H2 + CI, O H + H2 -> H + H2, CH3 + H2 ^ H + C H 4 , O H + 
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CH4 ^ OH3 + H2O, H + H2 ^ H2 + H, OH + NH3 -> H2O + NH2, HCl + 

CH3 ^ 01 + CH4, OH + C2H6 ^ H2O + C2H5, F + H2 ^ HF + H, 0 + 

CH4 ^ OH + CH3, H + PH3 -> PH2 + H2, H + CIH' ^ HCl + H', H + HO 

^ H2 + O, H + iran5-N2H2 H2 + N2H, H + H2S Ha + HS, O + HCl -> 

OH + 01, NH2 + OH3 -> CH4 + NH, NH2 + C2H5 ^ C2H6 + NH, C2H6 + 

NH2 -> NH3 + C2H5, NH2 + CH4 ^ OH3 + NH3, s-trans cis-C^Es ^ s-trans 

cis-C^Es. {42} 

A 3 0 . Fitting set of diatomic bond lengths 

TZ2P basis 

H2, BeH, CH, OH, P2, O2, LiH, NH, ON, CO, F2, HCl, Li2, Nag. 

6-311+G(2df) basis 

LiK, NAs, CI2, NaBr, AlF, SiS, NaK, NP, FBr, KF, BCl, GeO. {26} 

A 3 1 . N H T B H 3 8 / 0 4 classical chemical reaction barriers 

6-311+G(3df,2p) basis 

Heavy-atom transfer reactions 

H + N2O ̂  OH + N2, H + FH -> HF + H, H + CIH ^ HCl + H, H + FCH3 

HF + CH3, H + F2 ^ - HF + F, CH3 + FCl C H 3 F + CI. 

Nucleophilic substitution reactions 

F - + CH3F -> FOH3 + F - , F - • • •CH3F FCH3 • • -F-, 01- + CH3CI ^ 

C10H3 + 01-, 01- • • •CH3C1 CICH3 • • - o r , F - + CH3C1 ^ FCH3 + o r , 

F - • • •CH3CI ^ FCH3 • • - o r , O H - + CH3F -> HOOH3 + F - , O H - • • •CH3F 

-> H0CH3-- F - . 
Unimolecular and association reactions 

H + N2 -> HN2, H + CO -> HOO, H + C2H4 CH3CH2, CHs + C2H4 -> 

CH3CH2OH2, HCN HNC. {38} 

A 3 2 . G 3 - 3 enthalpies of formation 

6-311+G(3df,2p) basis 
1,2-butadiene, isoprene, cyclopentane, n-pentane, neopentane, 1,3-cyclohexadiene, 
1,4-cyclohexadiene, cyclohexane, nrhexane, 3-methyl pentane, toluene, n-heptane, 
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1,3,5,7-cyclooctatetraene, n-octane, napthalene, azulene, methyl acetate, t-
butanol, aniline, phenol, divinyl ether, tetrahydrofuran, cyclopentanone, 1,4-

benzoquinone, pyrimidine, dimethyl sulfone, chlorobenzene, succinonitrile, pyrazine, 

acetyl acetylene, crotonaledehyde, acetic anhydride, 2,5-dihydrothiophene, 2-

methyl propanenitrile, methyl ethyl ketone, isobutyraldehyde, 1,4-dioxane, 

tetrahydrothiophene, f-butyl chloride, n-butyl chloride, pyrrolidine, 2-nitrobutane, 

diethyl ester, 1,1-dimethoxy ethane, i-butanethiole, diethyl disulfide, t-butylamine, 

tetramethyl silane, 2-methyl thiophene, iV-methyl pyrrole, tetrahydropyran, 

diethyl ketone, isopropyl acetate, tetrahydrothiopyran, piperidine, ^-butyl methyl 

ether, 1,3-difluorobenzene, 1,4-difluorobenzene, fluorobenzene, diisopropyl ether, 

PFs, SFe, P4, SO3, SCI2, POCI3, PCI5, CI2O2S, PCI3, CI2S2, SiCl2, CF3CI , 

C2F6, CF3 , CeHs. {75} 

A 3 3 . G 2 - 2 ionisation potentials 

6-311-|-G(3df,2p) basis 

H, He, Ne, Ar, BF3, BCI3, B2F4, CO2, CF2, OCS, CS2, CH2, CH3, C2H5, C3H4, 

CH2=C=CH2, (CH3)2CH, CeHe, C6H5CH3, HCO, CH2OH, CH3O, CH3OH, 

CH3F, CH2S, CH2SH, CH3SH, CH3CI, C2H5OH, CH3CHO, CH3OF, C2H4S, 

(CN)2, C4H4O, C4H4NH, CgHsOH, C6H5NH2, B2H4, NH, NH2, N2H2, N2H3, 

HOF, SiH2, SiHa, Si2H2, Si2H4, SiaHg, Si2H6. {49} (CN excluded as CN+ is 

an open-shell singlet.) 

A 3 4 . G 2 - 2 electron affinities 

6-311-FG(3df,2p) basis 

Li , B , Na, A l , c e o , CF2, NCO, NO2, O3, OF, SO2, S2O, CCH, CH2=CH, 

CH2=C=C, CH2C=CH, CH2=CHCH2, HCO, CHF, CH3O, CH3S, CH2S, CH2CN, 

CH2NC, HCCO, CH2CHO, CH3CO, CH3CH2O, CH3CH2S, L iH, HNO, HOO. 

{32} (C2 excluded as i t is an open-shell singlet.) 

A 3 5 . Non-fitted G 2 subset bond lengths 

As A6 but with those molecules in A30 removed. {31} 
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A 3 6 . Non-fitted diatomic bond lengths 

As A7 but with those molecules in A30 removed. {28} 

A 3 7 . Radical bond lengths 

TZ2P basis 
BH+, NH+, 0H+, BeF, BN, BO, C2+, CF, NF, NO, OF, F2+, AI2, SiCl, NS, 
PO. {16} 

A 3 8 . Electronic excitation energies [transition] 

Augmented Sadlej basis 

CO 
F i E + [a^Sda], E^U [a ̂  Spn], C^E+ [a^Spa], B^E+ [a3s], D^A 
TT ^ TT*], / ^S" [TT ^ TT*], A^Il [a ̂  TT* . 

N2 
i n „ [TTU Ssag], [a 3pau], [a 3p7r„], ^2+ [a 3scr,,], ^A^ 

A 3 9 . Electric dipole moments 

Sadlej basis 
CO, H2O, H2S, HCl, HF, LiH, LiF, NH3, PH3, SO2. {10} 

A 4 0 . Electric quadrupole moments 

Sadlej basis 
C2H4 {xx, zz), CO, CO2, CS2, H2, H2O {xx, zz), HCl, HF, N2, NH3, PH3, SO2 

{xx, zz). {15} 

A 4 1 . Static electric hyperpolarisabilities 

Augmented Sadlej basis 
HF, H2O, NH3, CO, H2S, H2CO, CH3F, CH3CN. {8} 
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A42. ^ JcH spin-spin coupling constants 

aug-cc-pVTZ-J basis 
H C = C H , HC=C(C6H5), HC=C(CH2)20H, HC=C(CH20H), HC=C(CH3), 
H C = N , H C = C F , HC=CC1, HC=C(CH2C1), HC=C(CH2CN), HC=CCH=CH2, 
H C = C = C = C H , HCH=CH2, HCH=CH(CH3), HCH=CH(CH3), HCH=CH(CH3), 
H C H = C H - C H = C H 2 , HCH=CH-CH=CH2, HCH=C=CH2, H C H = F C H , 
H C H = F C H , H C H = F C H , HC(0)C6H5, H C H = 0 , HC(0)CH3, HC(0)NH2, 
HC(0)N(CH3)2, HC00(CH3) , H C ( 0 ) F , iran5-HC(CH3)=NOH, 
ds-HC(CH3)=N0H, HCH=CHC1, HCH=CHC1, H C H ^ C H C l , HCH=CH(CN), 
HCH=CH(CN), HCH=CH(CN), HCH=CH(CHO), HCH=CH(CHO), 
HCH=CH(CHO), HCH=CH(CCl3), HCH=CH(CCl3), fran5-HC(CH3)=CH(CH3), 
iran5-HCCl=CHCl, ds-H(CN)C=CH(CN), d5 -HCCl=CHCl, HCH2CH3, 
HCH(CN)2, HCH(C00H)2, HCH(CN)CH3, CH(CN)(CH3)2, 
HCH2C(0)OCH2CH3, HCH2C(0)C6H5, HCH3, HCH2CN, HCH2COOH, 
HCH2COH, HCH2C=CH, HCH(OH)HC(CH3)2, HCH2NO2, HCHF(CN), 
HCH(0H)(CF3), HCH2OCHO, (HCH2)20, (HCH2)2NC(0)H, HCH(N(CH3)2)2, 
HCFHCeHs, HCH(N02)2, HCH2OH, HCH2NH2, HCH2OC6H5, HCHF2, 
HCF3, C6H5NH2 (o), C6H5NH2 (m), C6H5NH2 (p), CeHsCHO (o), CgHsCHO 
(m), CeHsCHO (p), CgHsOH (o), CgHsOH (m), CgHsOH (p), CeHgFa, CgHe, 
CgHsF (o), C6H5F (m), CeHsF (p), C4H4N2. {88} 



Appendix B 

Publications 

1. The exchange-correlation potential in Kohn-Sham nuclear magnetic res
onance shielding calculations 
T.W. Keal and D.J. Tozer 
J. Chem. Phys., 2003, 119, 3015. 

2. Improved NMR chemical shifts in density functional theory 
M.J. Allen, T.W. Keal, and D.J. Tozer 
Chem. Phys. Lett, 2003, 380, 70. 

3. GIAO shielding constants and indirect spin-spin coupling constants: per

formance of density functional methods 
T.W. Keal, D.J. Tozer, and T. Helgaker 
Chem. Phys. Lett, 2004, 391, 374. 

4. A semiempirical generalized gradient approximation exchange-correlation 

functional 
T.W. Keal and D.J. Tozer 
J. Chem. Phys., 2004, 121, 5654. 

5. Selenium chemistry with DFT: molecular structures and "^"^Se NMR shield
ing constants 
T.W. Keal and D.J. Tozer 
Mo/. Phys., 2005, 103, 1007. 
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6. Semiempirical hybrid functional with improved performance in an exten
sive chemical assessment 
T.W. Keal and D.J. Tozer 
J. Chem. Phys., 2005, 123, 121103. 

7. Investigation of Coulomb attenuated exchange-correlation functionals 
M.J.G. Peach, T.U. Helgaker, P. Salek, T.W. Keal, O. Lutnaes, D.J. 
Tozer, and N.C. Handy 
Phys. Chem. Chem. Phys., 2005, in press. 



Appendix C 

Conferences attended and talks 
given 

9 July 2003 
13th Annual Northern Universities Meeting on Chemical Physics 
University of Durham 
Poster presentation 

7-12 September 2003 
10th International Conference on the Applications of Density Functional The
ory in Chemistry and Physics 
Vrije Universiteit Brussel, Brussels, Belgium 
Poster presentation 

21-22 October 2003 
CCWP course on the DALTON quantum chemistry package 
King's College, London, UK 

24-29 July 2004 
Molecular Quantum Mechanics: The No Nonsense Path to Progress. An In
ternational Conference in Honour of Professor Nicholas C. Handy 
University of Cambridge, UK 
Poster presentation 
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24 September 2004 
CCPl special interest group meeting on DFT response properties 
CCLRC Daresbury Laboratory, UK 

13 Apri l 2005 
25th Anniversary Graduate Student Meeting of the Royal Society of Chem
istry's Theoretical Chemistry Group 
University of Nottingham, UK 

Talk given on 'Semi-empirical fitting of exchange-correlation functional ' 

11-15 September 2005 

11th International Conference on the Applications of Density Functional The
ory in Chemistry and Physics 
Universite de Geneve, Geneva, Switzerland 
Poster presentation 

15 September 2005 
Seminar 
Universitat Heidelberg, Heidelberg, Germany 
Talk given on 'Development of new exchange-correlation functionals in DFT' 

20 September 2005 
Seminar 
Max-Planck-Institut fi ir Kohlenforschung, Miilheim an der Ruhr, Germany 
Talk given on 'Development of semi-empirical exchange-correlation functionals' 
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