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Abstract 

In this thesis we explore the infrared problem perturbatively in massless field 
theory. We review the current conventional methods and theorems that are applied 
in the calculation of QCD jet observables and then discuss the formulation of an 
alternative approach called the Asymptotic Interaction Picture (AIP). The AIP is 
based on a unitary transformation such that long-ranged interactions are present 
in the asymptotic Lagrangian and thus the states associated with this picture are 
no longer free Fock states but are asymptotic states containing soft and coUineaj 
interactions. 

Under the guidance of the AIP we are led to modifying conventional perturbation 
theory, cutting up amplitudes in a manner that allows for the construction of in­
frared finite ampHtudes that are in correspondence with the asymptotic states of 
the AIP. We apply this formahsm to several NLO corrections to QCD observables 
and construct dressed states who's amplitudes are finite in all regions of phase-
space. Using these amplitudes we compute several observables and show agreement 
with the conventional calculations in infrared safe regions. Higher-order calcula­
tions are then investigated in theory and the infrared pole structure is shown 
to behave as expected such that NNLO corrections to dressed states are obtained. 
Finally we present part of the NNLO correction to the dressed two-parton ampli­
tude in QCD and show that, with several provisos, this approach may potentially 
be apphed to the precision calculations of observables at the International Lin­
ear Collider (ILC). We therefore give a possible alternative to current subtraction 
methods at NNLO when no initial state radiation is present. 
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Chapter 1 

Introduction 

1.1 The S'-matrix and physical observables 

The goal of particle physics phenomenology is to make quantitative predictions 

for the vast data collider experiments acquire during their lifespans. Derived from 

a theory's Lagrangian, the theoretical construct that is central to making such 

predictions is the S-matrix. This object is used to compute the overlap of an 

asymptotic state defined at early times with that of an asymptotic state at late 

times and gives the so-called amplitude, A, of the process. Obtaining a prediction 

amounts to computing and integrating over the phase space of the final state 

particles, weighted by some function that defines the observable we are interested 

in. 

Asymptotic states should therefore represent physical quantities or particles, with 

well-defined momentum, charge, spin etc, that an experimentalist can measure at a 

coUider with some known level of precision^ Unfortunately the modern quantum 

field theory of the Standard Model, from which the S'-matrix is built, does not 

^More precisely, particles are an irreducible representation of the Poincare group with nonva-
nishing mass [1]. 
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permit a direct mapping between the degrees of freedom that are embodied in 

the Lagrangian to those that are measured by an experimentahst. Mismatching 

physical states with "theoretical" ones leads to the so-called infrared catastrophe 

2] where the S'-matrix contains infrared (IR) divergences, terms singular due to 

the long-ranged exchange of massless particles. 

Such a mismatching is evident for all the physical gauge theories of the Standard 

Model and is apparent at a classical level where Electromagnetism's description of 

the Coulombic potential is inextricably linked to the charged source that produces 

it . For the case of Quantum Electrodynamics (QED), the solution is to realise 

that there is no such thing as "free" charged particle and that an electron must 

be clothed in a field of photons. Despite this additional compUcation it is still 

possible to define what we really mean by a particle and indeed we may, in QED at 

least, assign such dressed states a physical interpretation [3]. However, in the case 

of Quantum Chromodynamics (QCD), the problem is comphcated significantly 

by the non-perturbative process of confinement that describes the formation of 

bound states of constituent quarks that are themselves formed from the quarks 

and gluons of the Lagrangian. Throughout this thesis, our aim will be to attempt 

to tackle IR divergences entirely within the context of perturbation theory. The 

belief is that this can be done consistently for both perturbative non-abelian and 

abelian theories despite the complication of confinement in QCD. 

In order to construct the S-matrix a formal relation between the ful l states \'^) 

and the asymptotic states IS) must be made 

^ont) = lim e^^*e-^^^*|H^i) 
t—•oo 

= ^-l^out), (1.1) 

with an equivalent definition for in states at t = -oo. Eq. (1.1) therefore gives us 
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the MoUer operators, that relate the in/out states of the ful l theory, defined 

by the Hamiltonian i f , to the in/out states of the asymptotic theory, defined by 

HA- Known as the adiabatic assumption, the standard approach in field theory 

is to identify asymptotic states with free-states; HA is taken to be equal to the 

free Hamiltonian HQ so that all interactions are assumed to die out at infinity. 

Taking this approach free field operators are constructed by imposing canonical 

equal-time commutation relations and solving the Schrodinger equations of the 

free Lagrangian [4,5]. This solution to the problem defines the state space to be 

a Fock space of non-interacting particles and gives the so-called Feynman-Dyson 

5-matrix, SFD- Transitions between states, or matrix elements of SFD, can then 

be computed via the Lehmann, Symanzik and Zimmerman (LSZ) formalism that 

relates scattering to the correlation functions of the ful l theory. 

For massive particles the LSZ reduction formalism can be legitimately applied be­

cause the 5-matrix is just a set of on-shell momentum-space Green's functions car­

rying simple poles for each external particle. Massless particles however introduce 

IR divergences as they alter the simple pole structure of the two-point functions 

of the theory [6,7]. Essentially there is always the possibility that a state can emit 

a massless particle of some physically unmeasurable energy; the spectral density 

function of the Kallen-Lehmann representation now defines a branch cut running 

across the entire positive real axis. This type of divergence is called soft and, up 

to the limit of detector resolution, particle number is no longer a good quantum 

number since there is an indeterminable number of soft particles present in each 

asymptotic state^. Collinear divergences also exist for QCD and massless QED, 

they arise from massless particles degenerate in all quantum numbers and indeed 

four-momenta. Physically this translates to the fact that it is impossible to dis­

tinguish two gluons travelling collinearly with the same total four-momentum as 

^The term infraparticle was coined by Schroer [8] to describe the process whereby a particle 
interacting with a massless field loses its discrete spectrum. 
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+ ' + . . . 

Figure 1.1: How, in terms of free-states, an asymptotic quark state of QCD might look. 

just a single gluon. This statement is of course meaningless in the sense that con­

finement stops you from ever measuring a gluon. However, QED's fermions and 

photons are not hidden by confinement and suffer from similar coUinear configu­

rations, thus combining this with the perturbative view that the gluon is massless 

and long-ranged, the IR problem of coUinear quarks and gluons of QCD persists. 

Alternatively you could argue that the final state hadron formed after hadronisa-

tion would be the same for the two gluonic states discussed. 

A slightly more abstract interpretation of the problem is to realise that the oper­

ators f2(±) must be isometric, requiring a one-to-one mapping of the ful l states to 

the asymptotic states of the theory. When we choose the asymptotic basis to be 

that of the non-interacting theory we end up with degenerate states, such that a 

given free-particle state will be part of a degenerate sub-space containing states 

with additional soft and collinear particles. Hence the MoUer operators relating 

the free states to the ful l ones are not isometric and therefore they are ill-defined. 

To summarise, theories with massless particles have a more intricate state-space 

than that of their massive counterparts. A naive attempt at solving massless gauge 

theories using a standard Fock space representation will lead to an ill-defined, 

divergent -S-matrix. The true asymptotic states of such theories effectively have 

all soft and collineax degeneracies absorbed into each state, see Figure 1.1. Thus if 

we want to perform perturbative calculations free of divergences^, it is necessary 

to obtain a better understanding of the true asymptotic dynamics. 

^Of course UV divergences still require regularisation, fortunately UV renormalisation is well 
understood [9]. In general discussion we assume that our theory has been rendered UV finite. 
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1.2 The cross-section method 

The modern prescription for coping with infrared divergences is to first regulate 

the 5-matrix by employing dimensional regularisation. The act of switching to an 

unphysical number of dimensions lifts the degeneracy of the free-states and allows 

perturbative calculations to be performed analytically. The four-dimensional limit 

can then be regained if we sum incoherent, but physically indistinguishable cross-

sections; this is known as the cross-section method. For massless gauge theories 

the method actually relies on two concepts. The first, introduced by Bloch and 

Nordsieck (BN) [2], says that all soft divergences may be cancelled by sumraijig 

all cross-sections with indistinguishable final states. Application of this concept 

renders massive QED infrared finite up to a logarithmic dependence on the detector 

resolution associated with the observable. 

However, massless fermions and self-interacting gluons introduce coUinear diver­

gences that significantly complicate the required cancellation of IR poles and';'^9:: 

necessitate the consideration of initial-state radiation. The natural extension of 

the BN theorem is given by the rather general Kinoshita-Lee-Naunberg theorem 

(KLN) [7,10] which states that the transition rates of quantum theories will be 

infrared finite provided all degenerate final and initial states are summed over'̂ . In 

practise however initial state coUinear divergences are factorised into the universal 

parton distribution functions (PDFs) and so practically speaking it is sufficient to 

only sum over final states for QCD since any remaining IR divergences axe defined 

to cancel when combined with the necessary PDF. 

Thus soft and coUinear divergences, revealed as poles in the standard dimensional 

regularisation parameter of e [12], cancel when all the free-state cross-sections 

that would make up the true asymptotic state cross-section are summed together. 

' 'It should further be remarked that fundamental questions still remain over the mechanism 
of IR cancellation with regard to initial-state divergences [11]. 
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Using this approach i t is possible to compute any observable that is defined to be 

infrared safe (see Section 2.3). 

The downfall of this approach is bo th aesthetic and practical in nature. Aes­

thetically speaking we do not have an S'-matrix - QCD loop amplitudes in four-

dimensions simply do not exist. Practically parts of the calculation have to be 

performed analytically in order to control the I R divergences. A t N L O this is not 

too much of a problem as general subtraction algorithms do exist [13-15]. For 

example the general subtraction procedure at N L O is of the fo rm 

V 

da"" 

CTNLO = I da^ + j 

= j (da^ - da^) + / da^ + / 
Jm+l Jm+l Jm 

= [ {da"" - da^) + / (da'' + /daA , (1.2) 

where the I R counter-term is sufficiently simple that i t can be analytically 

evaluated whilst s t i l l having identical I R divergent structure to that of the real 

cross-section a^. Observing the last line of Eq. (1.2) the first integral over m -h 1 

partons is explicitly finite and may be performed numerically, the second piece 

over m partons involves a cancellation of poles i n e before numerical integration 

of the phase-space can be implemented^. 

As we anticipate the need for precision physics at future colliders i t is clear that 

the bottle-neck associated w i t h performing horrendously comphcated loop and 

phase-space integrals at N N L O w i l l become severe. Despite the looming need, de­

velopment of a general subtraction algori thm [18,19] at N N L O is slow and whilst 

several analytic and semi-numerical methods for evaluating loop and phase-space 

integrals do exist [20-26], they al l suffer f r o m placing serious demands on com-

^Soper [16,17] has developed a procedure applicable to numerical integration of the virtual 
piece. 
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putational resources. Since numerical methods have to be employed for exclusive 

processes i t appears that the analytic route offers l i t t le benefit at higher orders or 

indeed leading radiative corrections to mult i-parton final states. Thus a completely 

numerical approach should be investigated, since i t would ult imately obviate the 

need for large scale analytic calculations. The main obstacle for doing this is the 

presence of I R divergences i n amplitudes and phase-space integrals. 

To overcome the shortcomings of the cross-section method we should therefore look 

for a new way to describe asymptotic dynamics in massless gauge theories. U l t i ­

mately we want to be able to write down relatively simple amplitudes well defined 

in four-dimensions and finite in all regions of phase-space. Such an achievement 

would in principle allow for an efficient automation of high order perturbative 

corrections. 

1.3 An infrared finite theory of 

Coulomb scattering 

Before re-examining the asymptotic dynamics of massless gauge theories i t is in­

structive to look at a simpler theory. Consider the non-relativistic scattering of an 

electron off a Coulomb potential [27,28], the Hamiltonian for such a system can 

be wr i t ten as 
-.2 

H = ^ + ^ = Ho + V. (1.3) 
2m |r I 

I f we consider the interaction representation, then the asymptotic behaviour of 

V{t) is given by 

where we have made use of f{t) = and p{t) = p at asymptotic times. This 

potential, w i t h respect to time, is not integrable at in f in i ty and so the dynamics 

7 
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of the system at inf in i ty cannot be described solely by HQ, indeed 

H . ^ H „ ^ ^ . (1.6) 

Using this definit ion for the asymptotic Hamiltonian, the Schrodinger equation 

can be solved for the wave-packet to give 

= e - W - t o ) exp I - i ! ! ^ Sign t In ^ 1 * 5 ( ^ 0 ) , (1-6) I p to ) 

w i t h to being some constant of integration. Expl ic i t ly we see that the evolution of 

the asymptotic theory is supplemented by a Coulomb phase factor missed by the 

free state solution. I t can then be shown [28] that Eq. (1.1) holds as a strong op­

erator l imi t for this choice of asymptotic Hamiltonian, i.e that the Moller operator 

is t ru ly isometric, 

= l i m e'^^'VAit), (1.7) 
t—»̂ c» 

and that the 5-matr ix, 

does exist. 

S = (1.8) 

1.4 Infrared finite approaches to Q C D 

Following the previous section, a possible approach to constructing an infrared 

finite 5-matr ix for QCD is apparent. The first step is to identify what interactions 

of the Lagrangian remain at asymptotic times and then to solve the corresponding 

Schrodinger equation. For massive QED this was achieved by P.P. Kul ish and 

L .D . Faddeev (KF) in 1970 [27]. They obtained the asymptotic interaction by 

8 
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simply inserting the free-field expansions of the fermion and photon field operators 

into the interaction part of the Q E D Lagrangian and then observing which terms 

could be neglected at large times. I t has since been shown [29] that this simple 

prescription actually fails when applied to scalar 0^ theory. The apparent mistake 

is the reliance on strong operator convergence, strictly analysis of the dynamics 

should be performed at the weaker level of matr ix elements, however this is not a 

problem for massive QED. 

K F showed that the terms non-vanishing at inf in i ty gave rise to an asymptotic 

current operator that could be viewed as a relativistic generalisation of Eq. (1.4). 

Solving the Schrodinger equation for this operator led K F to a f ini te theory at the 

expense of changing the state space to a Fock space of charged particles combined 

w i t h a non-separable von Neumann space of photons. This so-called coherent state 

basis [30,31] essentially gave states w i t h multiple soft photon emission summed to 

all orders in the coupling. The S'-matrix was also found to be modified by "phase 

factors" w i t h respect to SFD, but these factors where shown to drop out of cal­

culations. Many authors have attempted to generalise this approach to the more 

intricate problem of Q C D (a non-exhaustive list being [6,32-43]), however the con­

struction of coherent states becomes very complicated once coUinear singularities 

are included and all-order resummations appear intractable. This is no surprise, 

after all a solution would correspond to the extremely hard task of obtaining the 

f u l l hadronic spectrum of the theory! 

A different approach to this problem can also be found in the works of [3,29,44, 

45] where individual charged fields are constructed via a dressing that maintains 

gauge invariance of the field whilst violating Lorentz invariance and locality. This 

ult imately leads to a description of a charged particle at the cost of a less direct 

relationship to the fields producing i t . Having regained a simple pole structure for 

the propagators of the theory, f ini te perturbative calculations can be performed 

9 
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by applying the LSZ formalism. 

W i t h i n the context of this thesis we propose to sidestep the problem of confine­

ment and all order resummations by adopting an entirely perturbative viewpoint 

and placing the emphasis on a practical method for computing infrared finite am­

plitudes. Since today's colliders work in the high energy regime we take this l imi t 

and set a l l fermion masses to zero, embracing the f u l l infrared divergent behaviour 

of gauge theory. We do not intend to treat coUinear and soft divergences differ­

ently or indeed distinguish them in any way as such, therefore for the remainder 

of the thesis we w i l l consistently consider al l infrared divergences as soft w i t h the 

understanding that we include collinear configurations. 

Using this philosophy a first at tempt at a practical method is described in [46 

where i t is successfully applied to the calculation of e+e~ hadrons at N L O . Here 

the free states are dressed up to a given order i n t ime dependent perturbation 

theory w i t h infrared finite matr ix elements computed using the standard Spo 

47]. Unfortunately the time-ordered Hamiltonian approach taken in [46] results 

in a proliferation of non-covariant diagrams w i t h differing energy delta-functions. 

Besides significantly increasing the complexity of the calculation, the differing 

energy arguments made the translation to the cross-section ambiguous due to the 

need to "square" the amplitude. I n an attempt to circumvent this problem an 

entirely covariant approach has since been developed [48,49] using the asymptotic 

interaction picture [6,42 . 

1.5 Overview of thesis 

For the rest of this thesis we discuss the theory and practical implementation of 

the asymptotic interaction picture for calculations of jet observables using infrared 

finite amplitudes. Chapter 2 briefiy reviews the central concepts of perturbative 

10 
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QCD, including renormahsation, infrared safety and factorisation. This is then 

followed by a technical chapter discussing how perturbative calculations axe ac­

tual ly performed, i n particular we describe the modern methods of Mellin-Barnes 

transformations and sector-decomposition. 

I n Chapter 4 we introduce the general theory underlying the Asymptotic Interac­

t ion Picture (AIP) [49], highlighting its differences w i t h respect to the standard 

interaction pictmre. We discuss how the conventional Feynman rules are modified 

and how infrared finite amplitudes may be constructed. The precise separation 

of the Lagrangian of QCD into hard and soft sectors is described and the merits 

of both non-analytic and analytic separation functions are detailed. I n order to 

obtain an improved understanding of the formalism we advocate the use of a sep­

aration funct ion amenable to standard perturbative methods and in the following 

chapters we test the theory using this funct ion. 

Chapter 5 describes several jet calculations exemplifying the practicalities and 

u t ih ty of the asymptotic interaction picture. A new e+e" hadrons at N L O cal­

culation is presented and is followed by a N L O correction to a three-jet observable, 

the Nf part of the C-parameter. Problems w i t h the gauge structure of QCD w i l l 

then lead us to Chapter 6, where topologies at 0{a^) are investigated w i th in the 

context of (f)^ theory. Finally the N N L O corrections, proportional to Np, for e+e~ 

to qq are discussed in Chapter 7. 

Chapter 8 concludes the thesis and discusses the need for further development of 

the theory of the asymptotic interaction picture coupled w i t h the development of 

a completely numerical approach that dispenses w i t h costly analytic calculations. 
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Chapter 2 

Perturbative Quantum 

Chromodynamics 

2.1 The Lagrangian and Feynman rules of Q C D 

Before discussing how the asymptotic interaction picture should modify conven­

tional perturbation theory, we start by briefly summarising the theory of perturba­

tive QCD. We describe the Feynman rules and discuss the fundamental theorems of 

renormalisation, infra-red safety and factorisation crit ical to making quantitative 

predictions [5,9,50-52 . 

The Lagrangian of Q C D describes the interactions of the bare quark fields, g-f, of 

flavour i, transforming in the fundamental representation of SU{3) colour space, 

w i t h bare gluon fields, transforming in the adjoint representation. I t may be 

wr i t t en as 

CQCD = -iF^iF^l" + j2 q^iip - m,Uq^ - ~ ( ^ M ^ ) ' + £ghost, (2.1) 
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where p = w i t h 7^ defined by the Cl i f ford algebra 

{7^7''}=7'^7'^-f7'^7'' = 2p^^ (2.2) 

D*^ denotes a covariant derivative in colour space (we denote generators of the 

algebra as i"^) and is the field strength tensor defined by 

-igt^F^, = [D,,D,]. (2.3) 

The coupling of QCD is denoted by g and £ghost introduces ghost fields necessary 

to maintain a covariant description w i t h a physical state space. 

The Feynman rules describe the perturbative expansion of an n-particle Green's 

funct ion of the theory. They are obtained f r o m the Green's funct ion by first 

transforming into the interaction picture and expanding i n the coupUng g. Wick's 

theorem is then applied to reduce the expansion to products of two-point functions 

(or propagators) w i t h vertices created at the space-time points of overlapping 

propagators [4]. I n momentum space the Feynman rules for QCD are given as 

p2 + 20+ ' 

for the propagators, and the vertices, where momentum must be conserved, are 

given by 

13 
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= 9r'" [g'^'ik -PY + g'^'ip - qf + g''{q - k f ] 

p 
a » — 

c,p ^ face Jbde^gf.. gp. _ g^a g.p^ 

^fadefbce^g^ugpa_g^pg.a^^ 

Addit ional rules are the integration over undetermined loop momenta, symmetry 

factors, a factor of —1 for each fermion loop and representations for external states, 

see for example [4,50 . 

We note that the gluon propagator depends on the gauge-fixing parameter ^, this 

parameter is obtained f rom the gauge-fixing term, (5 '^A^)^, of the Lagrangian 

of QCD. Its presence is necessary to ensure that the operator corresponding to the 

gluon field's equation of motion may be inverted. ^ may be chosen arbitrarily, but 

consistently, for a perturbative calculation of all diagrams contributing to a gauge-

invariant subset of the amplitude. This also implies that , for Q C D and other gauge 

theories, there is no point in speaking about the "value" of an individual graph, 

as this value depends in general on our choice of the gauge parameter. Only in 

the sum of graphs over a gauge-invariant set does this dependency on the gauge 

parameter cancel. The most economical choice is ^ = 1, which is called Feynman 
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gauge. 

2.2 Renormalisation 

The gauge theories comprising the Standard Model (SM) al l suffer f rom ultra­

violet divergences; this is nothing but a reflection of our ignorance of a more 

fundamental theory. We can parameterise our ignorance via a redefinition of the 

bare fundamental fields and couplings of the corresponding Lagrangian. W i t h 

this re-parameterisation implemented the Feynman rules gain additional counter-

terms (propagators and vertices) that are defined through physical renormalisation 

conditions [50]. The counter-terms then remove all ultraviolet divergences leaving 

only the infrared divergences that are the subject of this thesis. 

In order to keep the coupling of the perturbative expansion dimensionless the renor­

malisation scale parameter f j . must also be introduced. This necessarily breaks the 

scale invariance of massless QCD and thus the theory w i l l exhibit qualitatively 

different behaviours at varying energies. Physical observables and bare parame­

ters of the Lagrangian cannot depend on the actual value chosen for /U, therefore 

renormalisation group equations may be derived that describe how the perturba­

tive expansion must change in order to maintain the physicality of predictions. 

We define the renormahsed coupling constant, ctg, of QCD in terms of the bare 

couphng, g, to be 

^s = ^ z ; ^ ^ ^ r ' . (2.4) 

where Zg is the multiplicative renomalisation factor for the coupling [50]. Insisting 

that g cannot depend on pi leads us to an integral equation that determines how 

the coupling constant changes w i t h the energy scale jj., we find that 

r ^ ^ " ' ) da , f fj,^ 
, = In , (2.5) 
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which is obtained f r o m the beta-function as (3{a) = ^ -^a. I f we assume that the 
coupling at both scales presented in Eq. (2.5) is small enough, then a perturba­
tive solution to this integral equation may be found. This leads us to the critical 
property of QCD known as asymptotic freedom, which states that at high ener­
gies quarks and gluons may be treated as weakly interacting particles jus t i fy ing a 
perturbative expansion^. 

For the calculations presented in this thesis we shall adopt the MS prescription of 

subtracting only the U V poles plus the attendant Euler-Mascheroni constant and 

factor of ln(47r), thus we define 

1 = ie-^s^(47^)^ (2.6) 

For the remainder of the thesis we shall exclusively use Feynman rules w i t h counter-

terms and thus the fields are no longer the bare fields as shown in Eq. (2.1). 

2.3 Infrared safety 

To understand the necessity of computing only infrared safe observables in QCD 

we consider the next-to-leading (NLO) correction to the process e+e" —> qq. Using 

the notation of cut diagrams [50,51] we can draw the contributing Feynman dia­

grams shown in Figure 2.1. We note that including the non-amputated diagram 

presented in Figure 2.1 is equivalent to the more standard approach of computing 

only w i t h amputated Green's functions and mul t ip lying by external wave funct ion 

renormalisation factors^. 

Anticipat ing the presence of I R divergences i n the amplitude for this process we 

^This comes with the caveat that the number of quark species must be less than 17. 
^This representation is particularly useful for visuahsing the cancellation of IR singularities 

across cuts of the same topology. 
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i V W 

Figure 2.1: Cut diagrams contributing to the amplitude-squared for the final state 
\qq). Note that the crossed circles denote counter-terms and that the anti-
quark leg also requires external leg renormalisation, conjugate diagrams 
must also be included. 

regulate w i t h a gluon mass^, m , suppressing technical calculations we find that 

the N L O cross-section for e+e~ —> qq is given by 

^virtual „ / 1 , "jCpas 
' ^ N L O = ( 1 + In ' 3 In — - - + - + 0 ( m 2 ) (2.7) 

where GQ gives the tree-level cross-section. We see immediately that taking m —>• 0 

w i l l give an infini te answer for this cross-section, this tells us that we have not 

actually computed a physically observable cross-section. Indeed, as discussed, 

the free quark final states can always be accompanied by other coUinear and soft 

massless free particles that are not resolved. 

To construct a physically measurable observable we realise that an experiment, 

w i t h some finite resolution, w i l l be unable to detect partons that are soft and 

coUinear w i t h respect to the qq final state. The B N / K L N theorem is nothing but 

a more precise statement of this fact. To the order we are working, such diagrams 

^The use of a gluon mass to regulate non-abelian gauge theories breaks down at higher orders 
because it introduces non-physical external states [5]. 
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including the necessary soft and collinear kinematics correspond to making a cut of 
Figure 2 . 1 that crosses the gluon propagator and gives a three-particle final state. 
Were we to add these real emission diagrams to the virtual ones we have just pre­
sented we would see a complete cancellation of the logarithmic mass divergences. 
The simplest observable tha t we may compute i n this way is the fu l ly inclusive 
to ta l rate of a(e+e" ^hadrons) , this observable is described as infrared safe be­
cause i t is completely insensitive to soft processes. The statement of insensitivity 
to soft processes is equivalent to insensitivity to long ranged interactions, which 
f r o m the running of the coupling of QCD correspond to process that perturbation 
theory cannot be reliably applied to i.e. confinement. Thus the statement of an 
observable being infrared safe really means that perturbative methods w i l l succeed 
in making predictions for i t . 

W i t h i n this thesis we shall seek to perturbatively construct infrared finite amph-

tudes, this means that the corresponding N L O cross-section for Eq. ( 2 . 7 ) w i l l be 

without logarithmic mass divergences^ and therefore the l imi t of m ^ 0 would be 

well defined. However this does not make the infrared finite prediction for O-J^LO '̂ 

infrared safe. To see this we realise that the argument of a detector having a finite 

resolution st i l l holds and therefore, despite CTJIJLQ '̂ being finite, i t would st i l l be 

sensitive to long-range physics. 

Total cross-section rates, particularly at the Large Hadron Collider (LHC) , are 

generally diff icult to measure, therefore i t is important to define exclusive observ­

ables that may be reliably computed in perturbation theory. A n infrared safe 

exclusive observable can be obtained by simply ensuring that the cancellation of 

mass divergences is maintained. This means that the defining observable funct ion 

0{pi) must, in the singular l imits of phase-space, behave the same as when fewer 

^For the remainder of the thesis will shall use dimensional regularisation to regulate all IR 
divergences. 
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external particles are defined in the amplitude. More precisely we have 

lim 0{pi,...,Pn-l,Pn) = 0{pu. . . ,Pn-l) 
Pn-*0 

l i m 0{pi,...,Pn-l,Pn) = 0{pu...,Pn-i+Pn)- (2.8) 

2.4 Factorisation 

When the in i t ia l state consists of massless particles the problem of infrared diver­

gences becomes more acute. K L N theorem would suggest that we should sum over 

in i t ia l states, as well as final, w i t h all possible soft processes attached, this would 

quickly become very complicated at increasing orders i n perturbation theory. Such 

an investigation has been carried out by the authors of [11], however the results 

of this pose fundamental questions over the validity of the K L N theorem and a 

satisfactory theoretical solution to the problem has yet to be formulated. 

A n additional obstruction for Q C D is that our external states are hadrons and 

mesons, i t is therefore not at all obvious how we can correctly represent these 

states using perturbation theory. Instead the fundamental theorem of factorisa­

t ion is applied, we factorise the calculation into a hard scattering, a, calculable in 

perturbation theory, and a parton distr ibution funct ion (PDF) , / , defined by pa­

rameters that are determined experimentally. Explicitly, for an electron scattering 

off a proton, we have 

a{ep^X) = y2 [' drjfa{v,M)a{ea^X,M), (2.9) 

where a denotes a sum over all different partons of QCD. The PDF, fa{rj,M), 

gives the probabili ty of a parton of species a w i t h momentum fract ion ri of the 

proton interacting w i t h the incoming electron. The significance of the mass scale 
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M refers to the fact that a renormahsation has been performed. The bare hard 
scattering, a^{ea X) would carry I R divergences associated w i t h in i t ia l state 
radiation, similarly the bare PDF, faiv)^ is defined to carry exactly the I R di­
vergences necessary to cancel those of a^{ea X). I f we are using dimensional 
regularisation then a soft scale M is required to make the coupling dimensionless 
and to allow finite expressions for a and / „ . As in the case of ultraviolet renormal­
isation, renormalisation group equations exist that describe how the PDFs evolve 
as the scale M is altered. These equations are known as the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi ( D G L A P ) equations [52 . 
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Chapter 3 

Modern Techniques for 

Perturbative Calculations 

3.1 Integral parameterisations 

I n order to perform the calculations presented in this thesis a variety of tech­

niques for evaluating loop and phase-space integrals have been employed. This 

chapter briefly reviews some of the tools available for perturbative calculations 

and concentrates on two more advanced methods necessary for the higher-order 

calculations. Throughout this thesis we shall perform analytic calculations using 

dimensional regularisation [5,9,12], where the space-time dimension of the integral 

is analytically continued to either d = 4 - 2e or d = 6 - 2e. 

The determination of a physical observable requires first the evaluation of the 

appropriate amplitudes or Green's functions contributing to the process, followed 

by their integration over the phase-space of the final state partons. Thus we 

need to compute bo th loop and phase-space integrals, this requires a suitable 

parameterisation of the physical parameters, i.e. the momenta and masses of the 
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interacting particles, that is amenable to analjrtic or semi-analytic methods^ I n 
the following sub-sections we outline the parameterisations used. 

3.1.1 Scalar loop integrals 

We define the most general, d-dimensional, scalar loop integral to be 

V 
C j i k - p j - m | + iO+ (3.1) 

\ /=i Z 7 r 2 y . ^ ^ y 

where pj denotes external momenta, rrij the external masses, Uj and Cji are complex 

numbers and iO'^ denotes the causal prescription. 

To evaluate Eq. (3.1), the propagators. Pi, are rewrit ten into one denominator 

using Feynman parameters [4,5 

n - - P ^ / n ^ / . f (3-2) 

i=l \ i = l / 

where u = Yl^i- The integral over the single denominator is then evaluated by 
1=1 

completing the square in the loop momentum, fcj, and using the identity 

/ d'^k 1 _ r(i/ - f ) u-^ 

once for every loop integral. What remains is a generally non-tr ivial integral over 

Feynman parameters of the functions U and The vanishing of U is associated 

w i t h ultra-violet sub-divergences whilst the vanishing of T is the root cause of 

infrared divergences in loop integrals. differs f rom U in the sense that its zeroes 

are dependent on the kinematics and not just the topology of the Feynman dia-

^If the integral is explicitly finite then entirely numerical methods may be employed. 
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gram. I t is this dependence on kinematics which makes i t hard to develop general 
theorems on the I R divergences of Feynman diagrams when compared w i t h U V 
divergences. 

For any Feynman diagram the functions T and U may be derived directly f rom 

the topology and choice of external kinematics, see for example [53,54 . 

3.1.2 Tensor loop integrals 

Gauge theories contain tensor structure that complicates the evaluation of loop 

integrals. The most popular method for dealing w i t h such structures is known 

as Passarino-Veltman reduction [55]. This simple approach basically relies on 

equating the integral to the most general tensor structure possible, i.e. i n terms 

of all possible combinations of the integral's external four-momenta p f and the 

metric tensor g^", mult ipl ied by unknown coefficients. The determination of the 

coefficients amounts to solving a system of equations that are themselves obtained 

by contracting the general tensor structure w i t h al l independent combinations of 

p f and g^^. However there are problems w i t h this approach. The &:st diff icul ty is 

the so-called Gram determinant problem where the coefficients become singular i n 

certain kinematic l imits. The second affects multi- loop integrals; in this case the 

presence of irreducible numerators forces the consideration of more complicated 

scalar integrals and this makes the approach less effective [56 . 

A n alternative method for reduction of tensor integrals to scalar integrals was de­

vised by Davydychev [57] and refined by Tarasov [54] i n terms of Tensor operators. 

For multi-loop problems the tensor operator must be constructed on a case by case 

basis, however a general expression at one loop does exist [58] and is given by 

^ £ U = ^ M . . . . . - ( t e } ' { ^ . } ' d + ) / r , (3-4) 
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where d+Ĵ *̂ ) = Q ^ a 
j 

=1 ,fc=l 
(3.5) 

The result of applying this tensor operator to some scalar integral is a set of 

tensorial structures dependent on the external momenta and the metric tensor 

times new scalar integrals. These integrals are generally in higher space-time 

dimensions, as a result of the d"*" operator, w i t h the powers of the propagators also 

raised, as a result of the dj operator. A n implementation of this one-loop tensor 

operator can be found in the program T I R A (see Appendix C). 

3.1.3 Representations of phase-space 

For the purposes of analytic calculations presented in this thesis we shall outline 

the representations of phase-space for e+e" annihilation to massless two, three 

and four parton f inal states. We shall use li and I2 to denote the four-momenta 

of the in i t ia l electron and positron respectively and we w i l l use Pi to represent 

final state momenta. We shall describe the representations found in [21], they are 

chosen due to their suitabili ty for the application of plus-distributions, as defined 

in Section 3.4.2. 

The two-parton final state phase-space is absolutely constrained, the fu l ly inte­

grated phase-space of the two massless particles, 7?.2, is given by 

7^2 = 

d-4 
S 2 d-i (3.6) 

where s is the centre of mass energy squared of the colliding electron and positron 
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and f)d is the solid angle in d dimensions, 

(3.7) 

For the three-parton massless final state phase-space the kinematics of the final 

state is f u l l y described by the invariant masses S12, S13, and S23, (wi th Sij = 2pi-pj) 

they satisfy the constraint S12 + S13 + S23 = s. Integrating over the t r i v i a l angular 

dependence, the three particle phase-space can be wr i t ten as 

J [dp,] [dps] [dps] (27r)'̂ 5('̂ ) ih + h-Pi-P2-Pz) = 

1 7^2 

(47r)^/2 r (3 - f ) 

s 2 r 
dAidAsAi^ ( l - A i ) " t " A 2 ^ ( I - A 2 ) ' ' - ' , (3.8) 

where [dpi] = df' ^Pi/{2'KY ^P?- The invariant masses have the following expres­

sions in terms of the Feynman parameters Ai and A2 

Sl2 = s ( l - A 2 ) ( l - A i ) , Si3 = S ( l - A2 )Ai , S23 = S A 2 . (3.9) 

Finally the massless four parton phase-space is given by 

j[dpi][dp2][dps][dpi]{2'aY5^'^\li+l2-Pi-P2-Pz-Pi) = MA dAidA2dA3dA4dA5 

X [Ai (1 - Ai) (1 - A 2 ) ] ' - ' [A2A3 (1 - A3) A4 (1 - A 4 ) ] ^ [A5 (1 - A 5 ) ] ^ , (3.10) 
, d-5 

where the overall normalisation is 

r ( 3 - f ) T 2 

2d-i 
{Anf T^d - 2)r{d - 3) 

^2T,fd-2 p2(3 + | ) p 4 ( d ^ ) r 2 ( d ^ ) (3.11) 

25 



C h a p t e r 3: M o d e r n Techniques for Per turbat ive Calculat ions 

and the invariant masses have the following expressions in terms of the Aj 

S234 = s A i , S34 = sA iA2 , 2̂3 = 5 Ai (1 - A2) A4, 

Sl34 = S A2 + S A3 (1 - Ai ) (1 - A2) , Si3 = As ( s j , - 5^3) + 5^3, (3.12) 

w i t h 

4 = s (1 - Ai ) [A3A4 + A2 (1 - A3) (1 - A4)] ± 

2 s (1 - Ai ) V A 2 A 3 ( 1 - A 3 ) A 4 ( 1 - A 4 ) . (3.13) 

3.2 Reduction of integrals 

Another important feature of analytic calculation is the use of reduction algo­

rithms. Often the number of integrals that need to be evaluated is very large and 

i t becomes necessary to reduce this number to a manageable number of master 

integrals. Loop and phase-space integrals generally obey various identities^ that 

relate integrals of differing space-time dimension and index power (the power that 

a propagator is raised to ) . The best known type of relation is integration by parts 

(IBP) [60], i t is based on the fact that the integral of a to ta l derivative is zero. 

The IBP identities are generated via 

/ - ^ 5 | r - V ( f c . P i ) = 0, (3.14) 

where the four-momentum, v^, may either be a loop momentum, fcf, or an external 

momentum Pj. Other identities include Lorentz identities ( L I ) , derived f r o m in -

variance due to infinitesimal Lorentz transformations [61], and recurrence relations 

^Note that the relations for phase-space integrals are generated by first re-writing them as 
loop integrals [59]. 
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w i t h respect to the space-time dimension [54 . 

Since each relation generated using these methods is linear in the scalar integrals, 

Gauss elimination can be used to reduce the set of integrals that need to be eval­

uated to a basis of master integrals. Several reduction algorithms are in existence 

using several different approaches in addit ion to Gauss elimination [58,62-64 . 

3.3 Mellin-Barnes representations 

Having obtained representations for master integrals in terms of integrals over 

Feynman parameters, the remaining steps are to analytically evaluate the inte­

grals and obtain their expansions in the regulator e. Only the simplest cases allow 

direct evaluation of the integral, so the past t h i r t y years since the inception of per­

turbative calculations [12,65,66] have looked at more advanced ways of computing 

the integral and ul t imately its expansion. One of the most successful methods 

for doing this lies in the use of the Mellin-Barnes identity [67], followed by an 

automated analytic continuation in the parameter e [22,23,68,69 . 

3.3.1 The integral identity 

The starting point for Mellin-Barnes calculations is the formula 

where c denotes a complex contour separating the poles of r{—w) and r ( Q ; + w) 

and the condition \arg{Ai) — arg{A2)\ < TT, must be satisfied. Closing the contom: 

to the right, i.e picking up the poles i n the positive half-plane, we obtain the 

Taylor expansion for | y l i / A 2 | < 1. I f we close to the left then we obtain the 
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complementary Taylor expansion for 17̂ 2 M i I < 1, thus giving us a simultaneously 
valid representation for bo th possibilities. 

The usefulness of this transformation is that integrals in terms of Feynman pa­

rameters can always be reduced to the fo rm 

through successive applications of Eq. (3.15). Having performed the t r iv i a l integra­

tions of Eq. (3.16), the Feynman integral has been reduced to a multi-dimensional 

contour integral over gamma functions or rather a multiple infini te sum of residues 

of gamma functions. In some simple cases i t is possible to compute the infinite 

sum or contour integral using Barnes' lemmas, however this problem is generally 

very diff icul t . 

3.3.2 Analytic continuation 

Instead of directly computing the multi-dimensional contour integral, a more ef­

fective route is to first perform the Taylor expansion in e, then the resulting con­

tour integrals are significantly simpler and also amenable to numerical evaluation. 

Before performing the Taylor expansion, the contour integral must first be ana­

lytically continued so that the representation is valid at e = 0. This is done by 

accounting for poles that lie on the wrong side of the contour when e = 0; auto­

mated algorithms exist for this process and can be found in the work of [22,23 . 

The idea is to first start w i t h a value for e = eo where the representation, TZ{e), is 

valid, then we find the maximum allowable value for e, say this occurs at e = ei , 

see Fig 3.1. I f there is only one such pole obstructing a valid representation at c i , 
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Im(w) 

e=eo 

® 

Re(w) 
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Re(w) 

Figure 3.1: Red dots denote poles belonging to r ( a + w) and green belong to r(—w) 
of Eq. (3.15). For e = CQ the Mellin-Barnes representation, TZ{eo), is valid. 
However, taking e ^ 0, poles migrate over the contour of integration such 
that TZ{0) is not valid (Figure taken from [23]). 

then we can account for this by wr i t ing 

7e(ei) = 7^(eo)±i^es(7^), (3.17) 

where Res{TZ) says to take the residue in one of the contour integral variables, 

Wi, at the position of the obstructing pole and the sign depends on the direction 

the pole was travelling. This procedure may be applied iteratively un t i l a valid 

representation for 11(0) is reached. 

3.3.3 Evaluating coefficients of the expansion 

Once the expansion in e has been performed, the resulting integrals may be solved 

using Barnes Lemmas or evaluated numerically for specific choices of kinematics 

invariants [22]. Alternatively the contour integrals may be re-writ ten as infini te 

sums and then evaluated using summation identities^, see for example [70,71 . 

^Many of the results presented in Chapters 6 and 7 are obtained from such calculations. 
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3.4 Sector decomposition 

A very powerful method for evaluating the e expansion of Feynman integrals is 

sector decomposition. The basic idea is to take the Feynman parameterisation of 

some integral and then apply various changes of variables such that al l overlapping 

singularities of the starting integrand are factorised. Once this has been achieved 

plus distributions may be applied and an expansion in e obtained [20,21,53]. I n 

general the coefficients of the expansion cannot easily be evaluated analytically. 

However, for Euclidean choices of kinematics, Monte-Carlo integration routines 

can efficiently compute the expansion. 

3.4.1 Overlapping divergences and changing variables 

To illustrate the technique consider the simple integral of 

/ = [\xdyx-'-'y-'-'ix + y ) - \ (3.18) 

Eq. (3.18) has an overlapping divergence that we remove by first spli t t ing the 

integral into two parts 

1= ( [ dx [ dy+ f dy r d x ) x'^-'y'^-'{x + y ) - \ (3.19) 
\Jo Jo Jo Jo J 

I f we consider the first t e rm of / and make the change of variables y' = y/x, and 

correspondingly the transformation x' = x / y for the second term, we obtain 

/ = j\xdy(^x-''''y-'-^l+yy' + y-'-''x-'--'{l + x y ' ) 

= 2 [ dxdyx''-^'y-'-'{l+yy' (3.20) 
Jo 

Using similar transformations to those described in the previous example, i t is 
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always possible to re-write any divergent multi-dimensional Feynman parameter 
integral, f{xi) into a sum of m factorised terms of the fo rm 

« l / n \ m „ i / n \ 

•^0 V i = l / j=i \i=l ) 

(3.21) 

where Cĵ  and r i j j are integers and /•' (x j ) is finite over the entire region of integra­

t ion. W i t h all singularities of the integral factorised, Eq. (3.21) is now amenable 

to the apphcation of plus-distributions. 

3.4.2 Plus distributions 

Observing Eq. (3.21) we note that an expansion in e, before integration, would be 

valid i f the singular regions of integration space could be subtracted out. I f we 

consider the example of a factorised one-dimensional integral, then the expansion 

in e can be obtained via the subtraction of / (O) : 

/ dxx-^^''']{x) = — /(O) - f / dxx-'+''' \ f i x ) - /(0)1 . (3.22) 
Jo K'^ Jo L J 

Such a subtraction is equivalent to making the substitution 

X -'^^^ = -Six) + V M 
Ke ^ ^ ^ n! n=0 

ln"(a;) 

x 

where a plus distr ibution is defined via 

x 
f { x ) = / dxln'^ix) 

Jo 

- / ( O ) 
X 

(3.23) 

(3.24) 

The generalisation to the multi-dimensional case and the necessary substitutions 

for x^""'"'^^ can be straightforwardly implemented. 
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Chapter 4 

Theory of the Asymptotic 

Interaction Picture 

4.1 An infrared finite perturbation theory 

I t is generally possible to infer Feyman rules directly f rom any field theories La-

grangian, thus allowing the computation of perturbative corrections to physical ob-

servables [4]. However, as discussed in the introduction, the usual on-shell Green's 

functions for massless theories suffer f r o m infrared divergences that hamper the de­

termination of higher-order corrections. For such massless theories^ i t is therefore 

desirable to develop an alternative method for performing perturbative calcula­

tions that does not suffer f rom infrared divergences and is well defined in fom: 

space-time dimensions^. 

For the rest of this chapter we w i l l analyse the standard approach to generat-

^ Massive theories may also suffer from large corrections due to logarithms of some mass-scale 
over the centre-of-mass energy, in such cases new approaches to perturbative calculations are 
also desirable. 

^Renormahsation can be performed using subtractions at the integrand level (e.g Bogoliubov-
Parasiuk-Hepp-Zimmerman (BPHZ) renormalisation) without violating any of the symmetries 
of the theory. 
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ing Feynman rules and advocate an alternative to this - namely the Asymptotic 
Interaction Picture (AIP) [42]. W i t h i n this new approach the usual unitary trans­
formation of the interaction picture is replaced by a transformation in which the 
states are no longer free Fock states, but are defined through the asymptotic Hamil-
tonian where soft interactions are s t i l l present. Thus the usual Hamiltonian, is 
divided as 

H = HQ + HI = HQ + Hg + Hf£ 

= HA + HH, (4.1) 

where HH = HJ — Hg and Hs is defined to carry all the soft interactions of the 

theory such that the states of the theory are determined by HA — HQ + Hg. 

Expl ic i t ly the usual interaction picture is defined by the transformation 

$ ( t , f ) = U^{t, to) ^i{t, x) U{t, to), (4.2) 

where to denotes a definite choice of Schrodinger picture and the Heisenberg field, 

$ , is related to the interaction pictm^e field, $ / , via the unitary operator 

U{t,to) = e''''^'-"^^e-'''^'-'°l (4.3) 

I n the standard interaction picture the operator $/'s t ime evolution is determined 

by commutation w i t h HQ and the Fock states evolve according to Hj{t), the inter­

action part of the Lagrangian given in the interaction picture. Instead, the A I P is 

obtained by the unitary transformation 

UA{t,to) = e^^^(t- to)e-i^(*-*o)^ (4.4) 

so that $/ 's t ime evolution is now determined through HA and the asymptotic 
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states, evolve in t ime according to the hard interaction operator, Huit), in 
the asymptotic interaction picture. Thus Hnit) is given by 

HH{t) = e^^^(*-*o) HHe-'"^^'-'°\ (4.5) 

Using this picture we would then wish to diagonahse the Hamiltonian, HA, and 

solve for a complete set of eigenstates \E) of HA- Such states would be characterised 

by a complete set of quantum numbers commuting w i t h HA, i n this situation we 

can no longer expect free-parton particle number to be conserved. Instead |E;)S w i l l 

be a superposition of free-parton states w i t h differing numbers of free particles; the 

free-parton I R divergences "carried" by these superpositions would cancel w i th in 

the state \E). Thus scattering amplitudes of the fo rm {Ei \ SAIEJ) would always 

be IR finite, w i t h SA only carrying hard interactions. 

Moreover such an approach justifies the use of perturbation theory, since we define 

all interactions to be hard and therefore the coupling is always small and an ex­

pansion in this parameter is valid. Unfortunately the main obstacle to this direct 

approach is that no exact solution to such an asymptotic Schrodinger equation 

is in existence, when we implement this transformation we shall ul t imately have 

to use the standard interaction picture to understand the states of HA- Thus in 

the following sections we shall determine how the standard Feynman rules should 

be modified and describe how calculations in the following Chapters w i l l be per­

formed. 
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4.2 Asymptotic fields 
4.2.1 The adiabatic assumption 

The critical starting point in the development of calculational tools for field theory, 

and the root cause of infrared divergences, is the adiabatic assumption^: 

^hm^(Q!|$(a;)|/3) = ^lirn^ {a\^A{x)\P). (4.6) 

Eq. (4.6) is a weak operator l imi t and effectively says that, at remote times in the 

past and future, the quantum field of some theory, $, has the same kinematics as 

the asymptotic field, such they are effectively identical up to a normalisation 
1 /9 

factor . We might hope that this relation is well defined, so that ZA is finite 

taking on some value between zero and one. 

I n the usual approach the asymptotic fields are taken to evolve freely, described by 

the free Lagrangian of $ w i t h al l interaction terms removed^. For massless gauge 

theory, ZA = Zp (where Zp is called the pole-scheme wave funct ion renormalisation 

factor), i t is calculated as the on-shell residue of a free external state. Using con­

ventional perturbation theory this corresponds to a scaleless integral and we find 

that the unrenormalised Zp = 1 to all orders (using dimensional regularisation). 

This result for the unrenormalised Zp is interpreted as a complete cancellation of 

I R and U V poles; including counter-terms we are left w i t h only the I R divergences 

and some finite part^. 

The appearance of I R poles in ZA for massless gauge theories i n four-dimensions 

indicates that long-ranged interactions pertain at asymptotic times and the adi-

^Where the operators ^{x) and ^Aix) correspond to measurable renormaUsed fields. 
''Throughout this thesis we shall use $ to denote a field that evolves with some interactions 

defined in its Lagrangian and (f) to denote the same field but with no interactions present in its 
Lagrangian. 

^This evidently depends on the choice of renormalisation scheme and we shall use MS renor­
malisation throughout. 
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abatic assumption breaks down unless regulated. To avoid the introduction of 
infrared divergences we instead attempt to use a different set of asymptotic states 
that have the asymptotic interactions of massless field theories included in their 
descriptions. Assuming this can be achieved, Eq. (4.6) becomes well defined in 
four-dimensions and w i l l be finite after ultra-violet renormalisation. 

4.2.2 Creation and annihilation 

We start examination of the A I P by comparing the usual free fields w i t h fields 

containing interactions i n massless scalar field theory. Our aim is to include only 

the soft interactions that do not die off at infinity, so we define the asymptotic field, 

$ A , to evolve according to the soft Lagrangian £ 5 . I n the non-interacting case 

the Lagrangian, £ = |(5^0)^, imphes that the scalar field satisfies the classical 

Klein-Gordon equation of 
d^^{x) 

= V'cj>{x), (4.7) 

where 0 denotes a free field. Supposing we now add some form of interaction into 

the Lagrangian then the equations of motion can be re-written as 

w i t h $^ denoting the interacting field and £ 5 denotes aU long-ranged interactions 

of the theory^. We also define £ H to describe al l the remaining short-ranged 

interactions, thus £ / = JCH + ^s-

I n both free and interacting cases we quantise the theory by promoting the field. 

^In writing Eq. (4.8) we make the standard assumption that the interaction, Ci has no 
derivative terms. We continue this assumption throughout the thesis. 
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$ A , and its conjugate momenta 

IIA{X) = do^Aix), (4.9) 

to operators and impose the usual equal-time commutation relations of 

[^Ait,S),UA{t,y)] = iS^'\S-y), 

[^A{t, x), ^A{t, y)] = 0, [TlAit, x), TlAit, y)] = 0. (4.10) 

The next step is to expand the fields in terms of asymptotic creation and annihi­

lation operators defined as 

lim {e\aait,k)./2Ek = out{^ik)\ l i m ^ZB^aKt, ^)|e) = |S(fc)),„ 
c—•oo t — o o 

l i m (e|4(i,fc) = 0 l i m aa{t,k)\e) = 0. (4.11) 
t—tCO t—» —oo 

Ek is an energy normahsation factor associated to the Fourier mode k, | 6 ) is the 

vacuum of the interacting field and IS) denotes an asymptotic state of the theory. 

Evidently the free field case gives us the free vacuum, |0), the standard creation 

and annihilation operators and the usual Fock basis of non-interacting states i.e. 

E) —>• Ultimately, for the AIP, we want to take the interacting field, to 

be precisely the true asymptotic field so that the fo rm for the interaction part of 

Lagrangian remains the same at all times. 

The expansion of the field i n the Heisenberg picture, gives 

^Ait, x) = j ^ ^ ^ ^ f ^ ( a„ ( t , k) S-^ + at (t, k) e-'^-') , (4.12) 
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and using Eq. (4.9) we write 

_ . r d^k 
( [HA, aa{t, k)] e''-^ + [HA, ai{t, k)] e"̂ ^̂ -") . (4.13) 

If we talce the case of a non-interacting scalar field then HA = HQ, the Hamiltonian 

describes a simple harmonic oscillator and may be written in diagonal form as 

Ho = 
( f k / - ^ 1 r ^ 

ujk \^a^{k)a{k) + - ^aik),a\k) (4.14) 

with ujk = k\ and the usual commutation relations of 

a{t, k), a\t, k')] = {27rfS^^\k - k') 

a{t,k),a{t,k') = 0 , a\t,k),a\t,k') 0, (4.15) 

hold. We shall now try to extend these relations to the case where an interaction 

term is present and the Hamiltonian cannot be diagonalised. To do this we assume 

that Eq. (4.15) is valid also for any asymptotic creation/annihilation operator i.e. 

we re-write Eq. (4.15) with a replaced by 0 ^ . Then we substitute Eq. (4.12) and 

Eq. (4.13) into the relation [^A{t,x), UA{t,y)] = iS^^^x - y), this gives 

'I 
<fk d^k' 

[aa{t, k),[HA,aa{t,k')]]e'^'-^e'^'-y 
(27r)3y2E^ (27 r )3y2^ 

+- [aa{t, k), [HA, aiit, k')]] e^^-^e-'''-^ + [ai{t, k), [HA, aa{t, k')]] eT^--^^ 

+ [a\{t, k), [HA, aiit, k')]] e-''-^e-'''A = iS^'\x - y), (4.16) 

which implies 

[HA,al{t, k)]^Ekal{t,k) HA, aa{t, k)] = -Ek aa{t, k), 
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in direct analogy with the free field calculation obtained using Eq. (4.14) and 
Eq. (4.15). If we use Eq. (4.17) combined with the Heisenberg picture relation, 

aait,k) = e'''^'aaik)e-'"^\ (4.18) 

we can write the asymptotic creation and annihilation operators as 

V ^ a t ( f c ) = j d'x e-''-^E,<^A{t,x) - mA(t , f ) ) |,o=^^. (4.19) 

What remains is to relate to the momentum of the mode k. Due to the nature 

of interactions such a relation is very hard to determine, instead we note that, in 

order to maintain covariance of the states, $ A must transform under displacements 

as the ful l field $, therefore 

r . * . W ] = - i ^ . (4.20) 

Now if we consider an arbitrary eigenstate 

P''\n)=p^\n) (4.21) 

and form the following matrix element with the free vacuum, |0), 

- z — ( n | ^A{X) |0) = (n| [ P ^ $^(a:)] |0) = ^ (^1 ^A{X) |0), (4.22) 

using Eq. (4.8) we see that 

(n| ^A{X) |0) = -pI {n\ $^(x) |0) = ( n | ^ ^ - ^ | 0 ) . (4.23) 
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Eq. (4.23) implies that the asymptotic states are not massless but depend on the 
interactions of the asymptotic Lagrangian. If we talce the interaction to only be 
those parts that would lead to infrared divergences in perturbation theory, then 
the asymptotic states no longer consist solely of the original parton, but include 
a cloud of soft and coUinear partons as perceived from the Fock basis of non-
interacting states. We therefore define the invariant mass of such an asymptotic 
state to be given as 

k^ = El-k'' = Ml, (4.24) 

where M\ is a function of the soft Lagrangian Cg. 

4.3 Green functions and LSZ reduction 

4.3.1 LSZ reduction 

The first step to obtaining quantitative predictions for observables is to relate 5-

matrix elements to time-ordered correlation functions^ via the LSZ formahsm [4,5], 

for a simple scalar field theory the standard expression is 

out(Pl. • • • ,Pn|9l, • • • ,9m)in = 

{iZp)-"^ J d^xi... d^Xm A i • • • d%n e'SZP^yie-'^'^'^^ x • • • 

Ky,... Ky^ K,,... K,^ (n | T { $ ( y i ) . . . $(z/n)$(xi) . . . $(a;^)} (4.25) 

where \Q) is the vacuum of the ful l theory^, Ki denotes the Klein-Gordon operator 

and Zp is the pole-scheme wave function renormalisation obtained by calculating 

^Correlation functions of the form (fij T {<b{z\).. .^{zr)]\^) are also known as r-particle 
Green's functions. 

^We shall always take the approach of [4] and denote |n) as the vacuum of the full interacting 
field and |0) to denote the vacuum for a free field. 
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the on-shell self-interaction of the field. The Klein-Gordon operator removes the 
propagators of the external legs of the S'-matrix element and we see that we need 
to compute the multi-pole residue of the r = m + n Green's function. Eq. (4.25) 
can be extended to include, for example QCD, where the tensor structure of the 
fields does not alter the general procedure of the LSZ reduction formalism; for 
spinor fields, Ki is replaced by the Dirac operator Di. 

For the AIP we must determine the corresponding reduction formalism for asymp­

totic creation operators acting on the vacuum. This proceeds along the same lines 

of the standard derivation that can be found in [5]. We start by extracting an 

asymptotic creation operator from the initial state 

A= outiPl, • • • ,Pn\qi, • • • ,qm)in 

= lim out{pu---,Pn\V^^al^{q[)\q2,...,qm)in, (4.26) 
t—oo 

where aj„(gi) is an asymptotic creation operator as defined in Eq. (4.11). Using 

Eq. (4.19) we obtain 

lim cmtiPl, • • • ,Pn\ V^Eg^ 4niQi) • • • 
Z—^—oo 

= hrn^J d?xe"^-^-^ij)u ... E,,^A{t,x) - m ^ ( t , x ) 1̂ 2, • • • ,9^) , (4.27) 

where we have dropped the in and out labels from the in and out states. In the 

asymptotic Umit we can then write 

e-̂ -̂̂ * ( E , ^ A { t , x) - illAit. x)) = - i {e-'^-' g *^ ( t , x)) 

= - 2 Z ; ' / ' ( e - ^ ' ' * a o $ ( t , f ) ) , (4.28) 
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Eq. (4.27) then becomes 

^nm^(- i) Z-'^'J d'xe-'"-- do (pi, ...,pn\Hx) \q,,... (4.29) 

where qf = M\ as a consequence of the soft interactions included in the asymptotic 

field. Following the standard approach we add and subtract 

(4.30) 

and use the result 

Mm - \im \ ( d^xF{x,t)= lim [ ^ dt^ [ d^x F{x,t), (4.31) 
t—>oo t^—ooJ J i/—•oo.ti—*-oo ot J 

to write Eq. (4.29) as 

iZ-'^^ J d'xdo (e-^'^'-^ do {pu ...,Pn\Hx) 192, • • • , Qm)) 

+ hm outiPi, • • • ,Pn| \/2.Bgi oLtiQi) \Q2, • • •,qm)in- (4.32) 
t—•oo 

The second term of Eq. (4.32) is either zero, in the case where qi is not an element 

of the set { p i , • • • ,Pn}, or it represents a disconnected piece. The disconnection 

represents an event where the initial state particle of momentum, gi, takes no part 

in scattering and simply becomes one of the final state momenta. In the usual LSZ 

formalism we drop such terms from our calculations since they do not contribute 

to A as it is defined^. However, since asymptotic states may interact softly, it 

is no longer clear that they do not contribute to the A of interest and therefore 

they cannot be ignored as in the usual approach. For the remainder of the LSZ 

derivation we shall drop these "disconnected" pieces and remember that they are 

^These terms are actually of importance when considering initial state radiation described by 
coherent states [30]. Only the conventional use of PDFs circumvents the consideration of such 
disconnected diagrams. 
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still to be accounted for. Expanding the first term of Eq. (4.32) and using the 
relation 

dl = ( V ' - Ml) e- '«l^ (4.33) 

we obtain 

iZ-"^ j d'x {pu . . . { e-̂ ^̂ -" dl ^{x) - • • • 

[(V^ - Ml) e-'"--] $(x) } 1̂ 2, ...Am). (4.34) 

Applying integration by parts to Eq. (4.34) gives 

iZ-"^ j d'x e-"^^-^{pu ...,Pn\A, $(x) |g2, • • •, 9m), (4.35) 

with qi = {Eg^,qi) and the operator is defined by the relation 

A, $^(x) = ^A{X) - = 0. (4.36) 

The extraction of all the in and out states proceeds to give the generalisation of 

the usual LSZ reduction formalism 

out{Pl, . • • ,Pnkl, • • •,qm)in = 

(iZA)-"^ j(fx^...d''xmd''yi...dSne'^^*y'e-'^''-''' x---

Ay,... Ay^ A,,... A,^ {Q\ T my,)... $ ( z / „ )$ (x i ) . . . ^ x j } \n), (4.37) 

remembering that we will have to consider all combinations of disconnected pieces 

as well. Comparing Eq. (4.25) with Eq. (4.37) we see two differences, the first is 

that Z has been replaced by the IR finite Z^, secondly the external legs of the 

process are now being operated on by A^ as opposed to the Klein Gorden operator. 
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We would naively expect that this operation basically removes the propagators of 
the external asymptotic states and puts them on-shell, i.e. with some mass MA-
Unfortunately, since we cannot directly solve for these asymptotic states, it is far 
from clear how such a process can be implemented. Instead we shall have to use 
perturbative methods based in the usual interaction picture to try to understand 
these asymptotic states and their propagators; the following sections describe how 
we do this. 

4.3.2 Expanding Green's functions 

Sticking with the case of a scalar field theory, the next step to formulating Feynman 

rules is to use the interaction picture to relate the full fields of the theory, to 

the free ones, 0, the standard relation takes the form 

(0| T{(P{x,)... cf>{xn) exp -z f Z , d'x Ci } |0) 

(4.38) 

The derivation of Eq. (4.38) is in fact a general result for any unitary transforma­

tion. Thus instead of using the transformation given by Eq. (4.3) we use instead 

Eq. (4.4) and obtain the result 

(01 T { $ ^ ( x i ) . . . ^A{xn) exp i - i d'xCH)}\e) 

{e\T{[-zJZ,d^xCH)m 

(4.39) 

where |9 ) denotes the vacuum of the asymptotic field $^ and CH denotes the part 

of the interaction Lagrangian, £ / , that only contains hard interactions not leading 

to IR divergences. For now we shall resist defining how precisely the split of the 

interaction Lagrangian into hard and soft parts is performed. Since we cannot 

solve for the asymptotic theory exactly, we will attempt to make a reasonable 
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approximation for the division of the hard and soft parts of the Lagrangian in the 
following sections. 

Obtaining the usual Feynman rules from Eq. (4.38) involves a perturbative ex­

pansion in the coupling of the theory Wick's theorem then allows a dramatic 

simplification of the expansion in terms of time-ordered two-point functions or the 

propagators of free field theory For every point in space-time that several propa­

gators meet a vertex can be associated to i t and we are able to build a set of rules 

associated to a diagrammatic representation for any term in the expansion. 

For the AIP we start again by performing a perturbative expansion in the cou­

pling and then applying Wick's theorem. Since this theorem relies solely on the 

creation and annihilation operator's commutation relations that are identical for 

the asymptotic and non-interacting theories, we can immediately generahse Wick's 

theorem to obtain the result 

{e\T{^A{x^)...^A{xn)}\e) 

0 : odd n 

j:p{e\T{^A{x,)^A{x2)} 1 6 ) . . . {e\T{^Aixn-i)^A{xn)} \&) : evcu n 

where P is a sum over all permutations of the Xi with (0 | T {^A{XI)^A{X2)} I©) 

and ( 0 | T {^A{X2)^A{XI)} |G) counted as a single term. 

Wick's theorem allows us to simphfy the perturbative expansion of the AIP's 

Green's functions into asymptotic two-point functions and interaction vertices that 

explicitly prevent soft momentum configurations from developing. In comparison 

to the usual free-field expansion we see that all the IR divergent structure has 

effectively been resummed into the asymptotic propagators leaving us with an IR 

finite perturbative series. Another pleasant feature of this expansion is that we 

expect the coupling to always be small since we are now exclusively dealing with 
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hard processes. 

Unfortunately we do not have an exact solution for the asymptotic propagator and 

we are forced to relate this object to a perturbative expansion using the interaction 

picture, thus we have 

(Oi T{<P{x,)cl>{x,) exp (-i JZ, d'x Cs)m 
(G| T{^A{xr)^A{x2)}\e) = y—-^ ^ 1 . (4.40) 

{0\T{[-ir^d^xCs)m 

4.3.3 Amputation of the external legs 

Within the usual prescription of the LSZ the Klein-Gorden operators remove the 

external free-field propagators and put these fields on-shell. Since we do not have 

an exact solution for the asymptotic propagators we instead consider the effect 

of the asymptotic operator Ax on the perturbative expansion of the asymptotic 

propagator given in Eq. (4.40), this gives 

Ax{Q\T{^A{x)^A{y)}\e) = 
/ c^p \ / poo \ 

- ^ ^ f T * ^ ( ^ ) " ' (O|T{0(x)0(2/)exp -i / d'zCs{z)]]\d), (4.41) 

where we have suppressed the denominator of this expression. The operation of Kx 

on the perturbative expansion of the asymptotic propagator would correspond to 

taking the residue of the pole as in the usual free field case, the only modification is 

the presence of a soft self-energy diagram attached to the external leg. Such a mod­

ification would only change the overall constant multiplying the free-propagator, 

so this corresponds to a relatively minor alteration to the formahsm. The effect 

of the operator ^A{X)~^ is far harder to quantify. The presence of several 

fields at the same space-time point seems to indicate that parton number will not 

be a good quantum number, since both free quark and gluons wil l be included in 
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a state This operator also contains powers in the coupling and, for a per-
turbative expansion, is suppressed relative to the leading order contribution that 
comes from the Klein-Gorden operator. Such soft interactions in principle permit 
the exchange of soft particles between external states and can interact softly with 
the disconnected pieces found in the derivation of Eq. (4.37). Whilst conceptually 
speaking such effects are to be expected, the correct theoretic treatment is far from 
clear. However, we may still use our qualitative understanding of the asymptotic 
external states to construct infrared finite amplitudes and we shall describe this 
in the next section. 

4.4 An alternative approach to the AIP 

4.4.1 Slicing up conventional amplitudes 

The basic idea of the AIP is to split the interactions of the theory into two sectors 

- soft and hard. The soft sector should describe the evolution of the asymptotic 

states and therefore defines the vector space of asymptotic states. The hard sec­

tor defines all the short-ranged interactions of the theory, for these interactions 

the use of perturbation theory is valid because we can say that the coupHng is 

small for such processes. Unfortunately solving the asymptotic equations of mo­

tion proves too difficult and we have found that a perturbative treatment of the 

soft sector is unavoidable - the cost of doing this is that we are left trying to in­

terpret Eq. (4.41). However, since we expand both the soft and hard regions and 

we must ultimately work in a Fock basis of free states, it is conceivable that the 

perturbatively expanded AIP should map straight onto the conventional ampli­

tudes and cross-sections of normal perturbative field theory. The crucial difference 

is that we have still split up the Lagrangian and therefore a vertex may either be 
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hard or soft. In order to obtain the same results as in the conventional approach 
we must therefore sum all combinations of hard and soft vertices. 

The utility of splitting up the vertices into hard and soft is that we can change 

the manner in which we group amplitudes. In the conventional approach ampli­

tudes are grouped according to the number of final state partons, this is necessary 

since the phase-space integration must generally be performed numerically. In this 

alternative approach we group amplitudes according to the number of "resolved" 

partons. 

4.4.2 A simple example 

Figure 4.1: The emission of a hard (dark circles) gluon contributes to the dressed state 
\{qqg}), whereas the emission of a soft (open circles) gluon contributes to 
the dressed state \{qq}). 

To make this more concrete we shall sketch the basic idea for e+e~ annihilation to 

hadrons at 0{as). If we just consider the real emission of a gluon as illustrated in 

Fig 4.1, then if the vertex is hard, we expect it to contribute to the asymptotic or 

dressed three-parton state \qqg)H = liqqg}), else if i t is soft then the amplitude 

should contribute to the two-parton dressed state \qq) + \qqg)s = | { ^ q } ) - We note 

that no hard or soft vertex is placed at the photon vertex since we are explicitly 

assuming it to be off-shell and not leading to IR divergences. The point here is that 

integration over the three-parton phase space of the amplitude-squared of \{qqg}) 

is explicitly finite. Contrary to the conventional amplitude \qqg), which diverges 
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V\A/( 

Figure 4.2: Cut diagrams contributing to an amplitude squared for the final state 
\{qqg}) (left) and \{qq}) (right). 

in the two-jet regions of phase-space, the dressed three-parton amplitude-squared 

simply vanishes in this region. 

The amplitude \{qq}) now corresponds to an amalgamation of the IR divergent 

loop correction to the tree-level two-jet amplitude, plus the IR divergent phase 

space integral over the soft gluon of Fig 4.1. Combining these IR divergent "sub-

amplitudes" gives rise to the infrared finite amplitude Kg^}) at 0{as). Regarding 

the IR divergent phase space integral, the important point to note is that, because 

the gluon is not resolved, we may be completely inclusive in the integration over 

its phase-space. Therefore the idea would be to factorise the three-parton phase 

space into a two-parton phase-space times a fully inclusive, divergent, one-parton 

phase-space integral that cancels the IR divergences of the loop integral. 

Keeping with the simple example we have so far discussed, we see an additional 

comphcation to this approach in Fig 4.2. I t is clear that we must actually consider 

individual cut diagrams before deciding whether or not a contribution should be 

part of the dressed three or two-parton final state. In the case where all vertices 

are hard we expect all final state free-partons to be resolved and therefore the 

diagram on the left must contribute to \{qqg}). The diagram on the right is a 

contribution to \{qq}), we can see that this must be true since the left hand side 

of the cut belongs to a dressed state with a reduced final state particle content. 

Physically this cut contribution corresponds to the kinematic situation where a 

49 



Chapter 4: Theory of the Asymptotic Interaction Picture 

gluon is emitted co-linearly with respect to the quark field. We further note 
that, due to the hard vertex, the limit of vanishing gluon energy should set this 
amplitude to zero. 

4.4.3 Summary of alternative approach 

Adopting this alternative approach we see that basically the conventional Feyn-

man rules remain unchanged. The only difference is that each vertex will now 

either be multiplied by a hard factor, that will set an amplitude to zero if a soft 

momentum configuration flows through it , or a soft factor where the inverse con­

dition holds. We can consider the amplitude for some process where all vertices 

are hard, ^ H ( { 0 P I • • • 0p„}), this can be considered a contribution to the infrared 

finite expansion of Eq. (4.39). The presence of soft vertices gives contributions to 

the amplitude, collectively grouped as As{{4>pi • • •'?^P„})I that we associate with 

modifications to the usual LSZ reduction formula. Having outlined the basic idea 

for constructing such amplitudes, what remains is to define a suitable spht of the 

Lagrangian into hard and soft sectors, to check that amplitudes .4H({0PI • • • 0p„}) 

are indeed infra-red finite and to then make explicit constructions. 

To summarise, we expect amplitudes in this alternative approach to take the form 

AAMP, . . . K } ) = Mi^P. •••<t>Pn})+ M{4>pr •••^pj), (4.42) 

where AH is IR finite and is obtained by taking the conventional amplitude and 

inserting hard factors at every vertex. ^ 5 denotes an IR finite sum of conventional 

Feynman diagrams with various combinations of hard and soft factors, this term 

is associated to the perturbative expansion of asymptotic propagators and the 

required modifications of the LSZ formalism. 
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4.5 Splitting the Lagrangian 
4.5.1 The soft scale A 

The next step in development of this theory is to actually determine how to split the 

interaction part of the Lagrangian d into hard and soft sectors. Ideally we would 

choose Cs so that it has precisely the asymptotic dynamics of the field theory, 

i.e. the asymptotic limit of £ / . Since we do not know how to compute this limit, 

instead we simply ensure that Cs has all long-ranged interactions plus a portion of 

the short-ranged interactions defined by the soft scale A . Thus, roughly speaking, 

the limit A ^ 0 shrinks the soft region to zero and recovers the conventional 

perturbative field theory, whereas the hmit A ^ oo should correspond to solving 

the AIP with ful l states of the theory. 

Essentially A acts as a resolution parameter and determines to what extent we 

may resolve any jets that appear in our calculations; the work of [46] takes this 

view where an explicit split is introduced for the Hamiltonian rather than the La­

grangian. We expect that, providing the scale A is smaller than any experimental 

resolution parameter and there is some hard scale present, we should recover the 

same results for a jet observable as obtained using conventional methods. 

Indeed, were we not to use perturbation theory, we might expect that the asymp­

totic matrix elements are completely independent of A , consider 

( E ; 3 ( A ) | 5 ^ ( A ) | H , ( A ) ) = (S^(A) |f) i - )^f}(-)5^(A)0i-^^Qi-) |S.(A)) 

= (H;3(2A) |5A(2A) |S«(2A)) (4.43) 

where is a unitary operator which relates the two pictures. We know that Q "̂̂  

is unitary since the two different pictures should only differ by a finite amount. 

Evidently Eq. (4.43) implies that the actual matrix elements do not depend on A , 
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despite the fact that working to a finite order in perturbation theory will invoke a 
dependence. 

4.5.2 Separation requirements 

Any function that separates the hard and soft parts of the Lagrangian effectively 

must satisfy a number of criteria which will now be outlined. We discuss only the 

requirements for fs, since A = 1 — /«, and we will only consider three-leg vertices, 

as this is all we require for the calculations presented in this thesis. In principle 

the criteria presented can be straightforwardly implemented for four-leg vertices 

as well. Denoting pi, p2 and ps as the momenta entering a three-leg vertex, we 

might require that fs tends to one if a soft configuration develops, say ps = Api . 

However, it is known that preventing the soft emission of partons from external 

lines is sufficient to construct infrared finite amplitudes [72,73]. Taking this into 

account we arrive at the following conditions -

1. /s ^ 1 for all momenta on-shell. 

2. fs=>0 for any momenta tending to infinity. 

3. fs is symmetric with respect to all Pi. 

4.5.3 The Theta-function split 

Having defined the requirements of the spUtting function in Section 4.5.2 we shall 

now specify an appropriate choice for fs. Many choices are possible, each with 

their own merits. If we were to implement a completely numerical evaluation, 

which is our ultimate goal, a simple choice would be that of a theta-function type 
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separation 

fs{PuP2,P3) = Y [ Q { A - I P ^ I ) , fh{Pl,P2,P3) = 1 - fsiPl,P2,P3), ( 4 . 4 4 ) 

1=1 

where A > 0 and defines the scale at which hard/soft separation occurs. 

Figure 4.3: For the theta-function split, conflicting hard and soft insertions will set 
any possible cut of a self-energy diagram to zero. Grey blobs denote any 
sub diagram. 

The great advantage of this separation function is that it sets many cut diagrams 

to zero immediately. For example any self-energy cut-diagrams with mixed hard 

and soft vertices will always be zero as depicted in Fig 4 . 3 . 

^ {Q} 

Figure 4.4: Contribution of a conventional Feynman diagram with soft and hard ver­
tices to a Feynman diagram corresponding to dressed external states. 

The theta-function also ensures a specific ordering of momentum for real emission 

processes. If we consider the situation of a soft emission from an external free quark 

shown in Fig 4 . 4 , we see that the first hard vertex signals the end of any further soft 

emission since iq+gi+ 92 + 93 + 94)'^ > {1+92 + 93 + 94)^ for massless external states. 

Such an observation suggests that, in this situation, we do not need to consider the 
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division of the vertex of gi into hard and soft. The conventional amphtude on the 
left therefore reduces to an apparent four-parton dressed-state \{qqgig2})- K we 
consider cut diagrams then we see that soft configurations where, say 52 becomes 
coUinear to either gi or q, may st i l l occur and therefore the state also contributes 
to the dressed states \{qqg}) and \{qq}). 

4.5.4 A separation for perturbative calculations 

Whilst Eq. (4.44) may be a good choice for a numerical approach, i t is bad i f we 

want to have analytic control over infrared finite amplitudes. Ult imately we want 

to avoid analytic calculations al l together, however at this stage in the development 

of the theory i t is important to have analytic insight into this new approach. 

Thus we shall now use a definit ion practical f rom the viewpoint of perturbative 

calculations 

/ . (Pi ,P2,P3;A) = n U ^ T a ' (̂ -̂ ^^ 
i = i -r 

where we take N to be some positive integer. The advantage of this choice is that 

conventional reduction methods can immediately be applied, albeit at the cost 

of large algebraic expressions. For example, in practical calculations dependent 

denominators w i l l appear and these can be t r iv ia l ly simplified as 

1 
(4.46) 

Generalisations of this identity always allow us to return to terms w i t h the same 

number of denominators as the conventional amplitude, the difference being that 

the denominators may now carry the imaginary mass term given by A . 

Taking A'' = 1 i n Eq. (4.45) would correspond to the simplest fo rm computationally 

speaking, since larger values of iV would inevitably lead to more reduction and 

larger analytic expressions. However, i t has been empirically discovered that the 
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choice N = 1 appears to lead to an unsatisfactory separation of hard and soft 
sectors. I n Chapter 5 we adopt the the choice N = 2 since i t gives good agreement 
w i t h the standard QCD results i n the perturbative regime (see Section 5.2.3). I n 
Chapter 6, where we look at higher order corrections i n 0^, = 1 is preferred 
since we are only interested in the pole structure of various amplitudes and do not 
really care about the finite part. 

Finally we note that this choice of split w i l l not have the nice properties of the 

non-analytic split defined in the previous section where certain contribtutions could 

immediately be set to zero. Instead such contributions w i l l only be suppressed by 

the ratio A over some hard scale. 

4.6 Finiteness of hard diagrams 

A crucial ingredient for the consistency of calculations using hard and soft vertex 

factors, and the construction of dressed states, is that Feynman diagrams w i t h 

exclusively hard vertices are always free of I R divergences. This is a necessary 

condition since an infrared finite amplitude at leading-order can have no contri­

butions f rom diagrams w i t h soft factors. Unfortunately, whilst power-counting 

arguments exist for Euchdean four-momenta [51], the generahsation to the case 

of Minkowski space has yet to be achieved. Wi thou t a complete framework for 

showing finiteness of the amplitude we resist discussing the problem in detail and 

instead refer to the previous work of [48,49 . 

The conclusions drawn f r o m [49] essentially rest in Euclidean space and state that 

possible I R divergences that develop at higher orders in perturbation theory w i l l 

be removed by the asymptotic gluon generating a mass through soft resummations. 

However such an argument requires the mixing of different orders in perturbation 

theory and i t is less clear how this may be implemented f r o m a practical point of 

55 



C h a p t e r 4: T h e o r y of the A s y m p t o t i c Interact ion P i c t u r e 

view. A way out of this is to redefine how we spht up the gluon propagator so that 
i t maintains its transverse structure, see Section 4.7.5. Doing this keeps the gluon 
massless to all orders in perturbation theory, but also improves the I R behaviour 
of the perturbatively expanded asymptotic gluon propagator such that the theory 
appears to be finite when hard factors are present at all vertices. 

Less can be said about finiteness in Minkowski space. However, i f we observe the 

hard vertex defined by the non-analytic separation funct ion of Eq. (4.44), we see 

that this absolutely prevents all propagators at a vertex going on-shell i n massless 

perturbation theory. Since i t is impossible for such soft momentum configurations 

to form i t should be impossible for any I R divergences to develop in the region 

of integration. Thus were the analytic hard/soft separation funct ion to fai l at 

higher order in perturbation theory, this would not be disastrous since the analytic 

funct ion is simply a tool for investigating the AIP . As mentioned previously, our 

ult imate goal is a numerical algori thm for computing cross-sections and in such 

cases the use of a theta-function split is actually desirable. 

4.7 Asymptotic interaction propagators 

4.7.1 Perturbative solutions 

Despite the fact i t is not possible to solve exactly for the asymptotic propagators, 

we can of course perturbatively expand the correlation funct ion i n terms of free 

fields. Using Eq. (4.45), w i t h N = 2, for fg we can determine the asymptotic 

propagator's behaviom: as corrections to the free propagators, where the vertices 

have been supplemented w i t h soft factors as depicted in Fig 4.5. We shall compute 

the corrections for bo th the fermion and the A^̂ r dependent part of the gluon 

propagator. The spli t t ing of the interaction w i l l be shown to dynamically generate 
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a gluon mass, we shall then discuss the implications of this mass term. 

Figure 4.5: Feynman diagrams for lowest order corrections to th.e fermion and gluon 
asymptotic propagators, the open circles indicate soft vertex functions re­
stricting the flow of hard momentum configurations. 

4.7.2 The fermion propagator 

Using the standard interaction picture the asymptotic fermionic propagator can 

be formally wr i t t en as 

Ssixi - X2) = (G| T { * ^ ( x i ) ^A{x2)}\e) 

_ {0\T {i;{x,mx2) exp (^-i f^^d^x Csix))] \0) 

{0\T{exp[-ifZ^d^xi:s{x))}\0) 
(4.47) 

Evidently at zeroth order we obtain the free field propagator. By defining all higher 

order one-particle-irreducible diagrams ( I P I ) for this calculation as the self-energy 

E = , we can write the perturbative expansion as 

5 . = 4 ° ) + 4 ^ E H 5 f + E H 4 ° ^ E H 5 ^ + . . . (4.48) 

where 4 ° ^ denotes the zeroth order correction (i.e order (0) i n the couphng g) and 

therefore corresponds to the free propagator. Re-summing this geometric series 

,allows us t o obtain a. solution, to the, fermion asymptotic propagator in .terms of 

I P I diagrams -
o(0) 

- (4.49) 
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We can then compute the leading contribution to E=;, which is given by 

(p2 + A ) r J (27r Y (p + k)mp + k)^ + AY k^k^ + AY ' 
(4.50) 

where the usual causality prescription is taken for each Feynman denominator and 

the external momentum p^^ is off-shell {^x = I - ^ for brevity) . This integral 

is well-defined in four-dimensions and may therefore by directly evaluated using 

numerical integration or simplified to master integrals using some automated re­

duction routine (see Appendix C). The resulting expression is rather long and 

can be found in Appendix A , instead we substitute the result into Eq. (4.49) and 

examine the behaviour of the resummed propagator at large values of p^, where 

we find 

q(2) 
~ 7 

1 
A V CF9' ( - 4 + ^ , ) 

+ (4.51) 
96 7r2 

This is an essentially negligible contribution, i t is in correspondence w i t h setting 

A = 0 and recovering the free propagator. Since we are including only soft con­

tributions to the propagator i t can of course be argued that the coupling should 

be defined at the scale A and therefore an all orders determination of E= would 

be necessary to make statements about the behaviour of the two-point function. 

However, we intend to work entirely w i th in the realms of perturbatively calcula­

ble observables, i.e. infrared safe, where a weak coupling expansion is just if ied 

and where the preceding statements can be made w i t h some confidence. Similarly 

we can look at the region where the A becomes the large scale, i n this l imi t the 

propagator behaves as 

5 '̂ (2) 
p. 

CFQ^ -223 + 328e. + 140 {-1 + ^x) I n ( ^ ) 
1 + 

2240 7r2 

(4.52) 
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Eq. (4.52) shows that while the infrared behaviour appears to be altered no mass 
term has been generated and the propagator is s t i l l singular at = 0. Numeri-
cally^° the behaviour of the asymptotic fermion propagator appears to trace that 
of the free one for timelike p^; the spacelike behaviour is similar but carries some 
complicated structure associated w i t h branch cuts of logarithms. 

4.7.3 The gluon propagator 

Following the same methodology for the asymptotic fermion propagator applied 

to the gluon propagator we can write 

i ? r ( p ) = D ^ : o i p ) + D ^ o i p ) ^ ^ a p { p ) D ^ ^ : o { p ) + - , (4.53) 

where D^{p) denotes the f u l l gluon two-point funct ion and D^Q{P) denotes the 

normal propagator of free field theory Eq. (2.4). Parameterising the self-energy as 

n r (P) = A{p^) P' 9'" + B{p') T f p \ (4.54) 

we can write down a general fo rm for Eq. (4.53) by substituting w i t h Eqs. (4.54) 

and (2.4) to obtain an expression for the n*'^ t e rm of the expansion of the f u l l 

two-point function as 

p2 {Aipr-^ - ^ ) + C (Aip^) + ^ ) . (4.55) 
V V ^ ^ p^ J 

^°Standard values for constants and couplings have been taken and has been taken to range 
from —5 to 5. 
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We therefore have two geometric series, one describing the transverse part of the 
propagator the other describing the longitudinal part, they are resummed to give 

= ( ^ l + i A ( p 2 ) + l + Z ^ ( A ( p 2 ) + 5 ( p 2 ) ) J ' (^-^^^ 

where T^^ and L^^ respectively denote the transverse and longitudinal tensor struc­

ture displayed in Eq. (4.55). In the standaxd approach gauge invariance requires 

that Bij?) = —A{p'^) and the longitudinal part receives no radiative corrections 

to al l orders i n perturbation theory. We can write the lowest order correction to 

n='^(p) for the fermion loop as 

(p2 + A ) ' ' J (27r)4A;2[A:2 + A ] 2 ( p + /c)2[(j9 +A;)2 + A ] 2 ' ^ > 

where Np is the number of flavours running in the loop, Tr is the normalisation 

constant of the fundamental representation and 5°'' is the colour factor. The f u l l 

result for this integral can also be found in Appendix A . Including only Eq. (4.57), 

the behaviour of the resummed gluon propagator, for the l imi t ^ A is given by 

^^^nu ^ ' ^ ^ f ^ (2T'^" - Se ' L^"^) + 
\p^ J 12 7r2 ^ 

(4.58) 

in correspondence w i t h the soft interactions not altering the high energy behaviour 

of the propagator. I f however we look in the soft region of the propagator, A > j?̂ ^ 

we find that 
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indicating that propagator's pole has been shifted f rom = 0. Thus the effect 
of including soft interactions into the gluon propagator is to dynamically generate 
a gluon mass. This is in correspondence w i t h the fact that our split of the La-
grangian violates gauge-invariance; the gluon's masslessness to all orders i n normal 
perturbation is a direct consequence of this symmetry, so we expect a gluon mass 
to be generated for the asymptotic interaction picture. Solving for the gluon mass 
perturbatively we find that, to order ccg, the gluon's mass is given by 

Of course a f u l l one-loop calculation necessarily requires the calculation of the 

gluon loops and the accompanying ghost correction, these additional calculations 

cannot change the above result i n the sense that none of them are proportional to 

the colour structure Np. 

4.7A Perturbative calculations and transversality 

We have shown that dressing the free gluon propagator appears to assign some 

inertia to i t , this could be said to be i n correspondence w i t h confinement. Gluons 

afterall do not propagate over large distances, so when we attempt a more accurate 

solution to their equations of motion we might expect this to be confirmed by the 

dynamic generation of a mass term. However, f rom the viewpoint of free-field per­

turbative calculations, the asymptotic interaction picture's resummed propagators 

now introduce calculational difficulties. 

I t is basically impossible to take the one-loop resummed forms presented in the 

previous two sections and attempt to perform analytic perturbative calculations 

using them; ult imately we must use expanded forms for the resummed propaga­

tors. Using the expanded forms, as advocated in Section 4.4, has the immediate 
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advantage of l inking straight back to standard perturbation theory. Thus, i n the 
asymptotic interaction picture, to whatever order we calculate for some fu l ly in­
clusive process, i f we use expanded propagators and external states, then we must 
obtain the same results as compared to conventional perturbation theory. 

Figure 4.6: Depiction of the approach to computing the on-shell LSZ residue of the 
gauge boson propagator in perturbation theory. 

Unfortunately, the way we split up the gluon self-energy violates the transverse 

structure of the perturbative gluon, i t is no longer clear how we can compute the 

wave-function renormahsation necessary for the standard LSZ formahsm. Consider 

the usual procedure for computing the on-shell residue of the external gauge boson 

field shown in Fig 4.6. Usually the orthogonality of the polarisation vector is 

sufficient to remove all tensor structures like p'^p", we are then left w i t h the rest of 

the process denoted as A and the g^^"^ part of the gluon self-energy mult ipl ied by 

l/p^. Depending on the order we are calculating at, the self-energy is given by the 

wave-function renormalisation constant of the gluon field and this is proportional 

to p^, therefore the on-shell l imi t is regular. By violating transversality in the 

perturbatively expanded asymptotic interaction picture we instead find terms like 

A g'^" related to the generation of a gluon mass that are not regular in this l imi t 

and prevent a straightforward application of the LSZ formaUsm. 

Such a predicament leaves us w i t h the options of either modifying the LSZ or 

changing precisely how we split up the gluon propagator. The latter option repre­

sents a more pragmatic route to take since the split of the Lagrangian is rather ad 
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hoc anyway and i t is quite possible that some choices may satisfy the separation 
requirements of Section 4.5.2 but lead to an ill-defined perturbative expansion. 
Indeed a simple modification as used in [74] maintains the transverse structure of 
the propagator. For the fermion one-loop diagram this is done by taking the stan­
dard expression for the gluon self-energy and adding a t e rm that amounts to zero 
in dimensional regularisation. Having done this the transverse structure can be 
extracted completely f rom the integral; once this modification has been performed, 
then i t is permissable to introduce hard and soft vertex factors. The masslessness 
of the gluon is maintained and perturbative calculations using standard methods 
may be applied. 

4.7.5 Subtracting the quadratic divergence of the gluon 

propagator 

I n order to maintain the transverse structure of the propagator, we re-consider 

the one-loop calculation of the Np part of the asymptotic propagator. Taking a 

different choice for the routing of momenta, we write the conventional perturbative 

expression as 

n. . (2) , 2 ; v T s'^" ! "^"^ ^r(7^^ + f ) r - f)) 

N,Tn5 J — + - (4-61) 

where d denotes the space-time dimension. We then add to this expression, as 

suggested by [74], a term that evaluates to zero in dimensional regularisation 

2TTY 

8 { d - l ) kf'k" + 2p^p^ + g -̂̂  ( 4 (rf - 1) k^ + {d- 3) p^ ) 
( d - l ) ( A ; + | ) 2 ( f c - f ) 2 
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Adding Eq. (4.61) and Eq. (4.62) gives a scalar integral that ensiires gauge in-
variance for loop corrections even when hard and soft factors are amended to the 
integral, the integral takes the fo rm 

n/ '̂̂ (2) ,2 V rj. f d'^k 2{d-2){g'^'^p'-p^pn . . . . . 

The f u l l expression for this result is i n Appendix A; expanding for A » we 

obtain 

thus no mass term is generated. 
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Chapter 5 

Perturbative Calculations Using 

IR-Finite QCD 

5.1 Perturbative calculations 

Now that we have defined an analytic separation of the QCD Lagrangian amenable 

to modern perturbative techniques, Eq. (4.45), the next step is to test the the­

ory. As implied by Section 4.4 we take the pragmatic approach of computing all 

combinations of hard and soft vertices. That is we take the standard integrand 

defined by a particular Feynman diagram and mul t ip ly by appropriate hard and 

soft separation functions at each vertex. 

I n the calculations to be presented we shall avoid the additional difficulties as­

sociated w i t h in i t ia l state radiation and only examine e'^{li)e~{I2) hadrons in 

QCD. We shall aim for maximal simpHcity of the method, so we leave the QED La­

grangian intact and take Feynman gauge for the photon propagator, the amplitude 

for some process can then be wr i t t en as 

A=L^^{h,l2)^—H''{Pi), (5.1) s 
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where s denotes the centre of mass energy, L^(li,l2) is the leptonic tensor and 
the hadronic tensor, / / " ( p i ) , is a funct ion of the final state momenta p,. The 
amplitude-squared can then be wr i t ten as 

Af = L'^''{lul2)H,,{p,), (5.2) 

where we have defined L to absorb the photon propagator and normalisation of 

the cross-section, l / 8 s , obtained by neglecting fermion masses and averaging over 

in i t ia l spins. We also define the integral over the final state momenta to be carried 

by the hadronic tensor {{'^"{pi) (see Section 3.1.3 for representations of the final 

state phase-space). The leptonic part then involves a Dirac trace and can be 

wr i t ten as 

L'%liM)^^,{l9'''-K^-l''A). (5.3) 

This expression can be further simplified by taking the average of the component 

matr ix to obtain 

^'^''(9) = ^ ( s 5 ^ ' ' - 9 V ) , (5.4) 

w i t h q = li + l2. We fmthe r note that for any calculation corresponding to a 

physical observable, the hadronic tensor H^^{pi) must conserve the electromagnetic 

current, therefore the second term of Eq. (5.4) may be neglected and i t suffices to 

compute H'^{q). 

5.2 e+e hadrons at 0{as) 

Before discussing the results of the calculation we shall consider how we expect to 

fo rm the infrared finite amplitudes |{9^19^2}) and \{qp^ Qp^}) detailed in Sec­

t ion 4.4.2. A t next-to-leading order (NLO) , \{qp^qp2]), consists of a free quark 

and an antiquark pair carrying momentum pi and p2 respectively, plus an un-
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resolved free gluon. This gluon may be unresolved because i t corresponds to a 
v i r tua l vertex correction or i t is a soft real emission, the combination of these 
two possibilities leads directly to the cancellation of infrared poles and hence a 
finite four-dimensional amplitude. I n the case of \{qp^ Qp2 9p3}) three partons 
are resolved and, outside the l imi t of the two-parton phase-space, a one-to-one 
mapping exists between the asymptotic states and the free-states. This amplitude 
w i l l contain vertices that are entirely hard and therefore w i l l be finite i n aU regions 
of the massless three-parton phase-space. 

5.2.1 The Born term 

As discussed we are concerned w i t h only the hadronic part of the amplitude and 

therefore we look at elements of the form 7* hadrons. A t leading order (LO) 

the infrared finite amplitude matches the standard calculation and is given by 

A^'\qp.,qp.) - A'-'\{q,,,q,,}) = {-ie)Sn{pimP2), (5.5) 

where and \p2) represent the spinors of massless fermions. The superscript (0) 

indicates the power of the strong coupling g, e is the Q E D coupling and 5i2 is the 

colour factor. 

5.2.2 The dressed three-parton amplitude 

To obtain the three-parton dressed state amplitude, A^^^{qp-^ qp^ S'ps}), we mul t ip ly 

the conventional amplitude by hard factors at each Q C D vertex. Using the hard 
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separation funct ion defined by Eq. (4.45), w i t h N = 2, we obtain 

i2A + s,,) J , (5.6) 

f = ^(Ps) denotes the polarisation vector of the gluon, denotes the colour 

matr ix and = {pi + P j ) ^ . The separation function w i l l not generally maintain 

gauge invariance and we see that this symmetry is violated by terms suppressed 

by the soft scale 

/ A^ A^ \ 

q^A^'\{qp.,qp.,gps}) = {ieg)Tf2 {Pi\i\P2) \ j ^ - ^ j ^ 2 - ( A T ^ J ' ^^''^^ 

I n principle this means that the three-jet rate computed f r o m Sps}) is 

gauge-dependent. Such unphysical violations would clearly be disastrous for the 

theory were i t not for the fact they are heavily suppressed and negligible. A t 

higher-order in the strong coupling, such non-cancellations w i l l become a problem, 

since they may be mult ipl ied by factors containing poles in e = this w i l l lead 

us to modifying the approach for calculating infra-red finite amplitudes. 

5.2.3 Three-jet observables 

Now that we have determined the dressed three-parton amplitude at LO we are at 

l iberty to compute any infrared safe three-jet observable that could be obtained 

using conventional methods. The key point is that bo th infrared finite and con­

ventional amplitudes should give the same results in regions of phase-space where 

perturbation theory is considered to be reliable i.e. where a hard scale is present. 

The only proviso to this is that the soft scale A should be smaller than the ex­

perimental resolution defined in the observable function, i f this is not the case 
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then i t w i l l become possible to resolve this non-fundamental dressed construct. In 
the region where perturbation theory breaks down the results for observables are 
meaningless, the important difference between the conventional and infrared finite 
amplitudes is that the latter w i l l give a meaningless, but finite, result. 

normal step N=l N=2 N=4 

Figure 5.1: The three-jet rate as a function of the resolution parameter, = 0.01. 

Thus using this amplitude we can easily calculate a simple observable like the 

three-jet cross-section. We do this by defining a three-jet event to be measured i f 

mm{yij} > ?/cut, w i t h yij = S i j / s and ?/cut defining some fraction of the to ta l centre 

of mass energy. Indeed for this observable i t is straightforward to test a variety 

of different soft-separation functions i n order to compare the quality of hard/soft 

separation. Figure 5.1 for = A / s = 0.01 depicts this. The red line denotes 

the standard perturbative result which diverges in the two-jet hmit , t/cut ~^ 0 , 

the green line was computed using Eq. (4.44) and other lines show various values 

of N for Eq. (4.45). Crucially we see that the infrared finite amplitudes tend 

to finite values for t/cut -> 0. Deviations f r o m the standard red line should be 
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restricted to the region where perturbation theory breaks down, i.e where the 

three-jet rate exceeds the total cross-section and no line can be expected to agree 

with experiment. 

normal step N=l N=2 N=4 

0.02 0.04 0.06 

Ycut 

0.08 0.1 

Figure 5.2: The three-jet rate as a function of the resolution parameter, = 0.002. 

The dark blue N = 1 line also appears to disagree where perturbation theory is 

a valid approximation and therefore does not offer a suitable separation of hard 

and soft regions. For this reason we have chosen to evaluate amplitudes in the 

rest of this Section using N = 2, where the agreement with the conventional 

calculational method is improved over N = 1. The N = A curve is an even better 

approximation to the red curve and we may assume that this trend continues for 

larger N. However, larger A'' results in technically harder analytic calculations and 

since we actually want numerically (in addition to analytically) finite amplitudes 

m soft regions of phase-space, there is no apparent benefit from choosing larger 

values of A'̂ . Of course, whilst not amenable to analytic calculation, the theta-

function split has the advantage of setting certain Feynman graphs to zero and 
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ensures infraxed finiteness to all orders as previously discussed in Chapter 4. 

If we lower the soft scale to = 0.002 (Figure 5.2), then we see a significant 

improvement for all analytic separation functions and this is a reflection of the 

resolution paramater being generally an order of magnitude larger than the soft-

scale. From analysis of this simple example we can derive some confidence, at 

least to this order in perturbation theory, that the N = 2 choice of split wih give 

a satisfactory separation of hard and soft regimes and that we can proceed to 

calculate using this choice. 

5.2.4 The dressed two-parton amplitude 

+ + 

+ 

Figure 5.3: Schematic structure of the ampHtude A^^^ ({^pj ^pj}). The conventional 
diagrams have their QCD vertices made hard (black circles), the usual UV 
counter-terms remain (crossed circles) and the grey blobs denote diagrams 
related to the modification of the LSZ formalism. A correction to the 
anti-quark leg must also be included. 

To determine A^'^\{qp-^ Qpn}) must consider contributions that come from the 

inherent modification to the LSZ formalism. First of all we have the contribution 

A^\{qpi gps}) that comes from the hard scattering and requires renormalisation, 
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plus an additional piece ^s^^({9pi Qp2}) due to modifications to the LSZ formalism, 
see Figure 5.3. 

The hard vertex contribution is obtained by taking the standard loop integral, 

where the usual +iO'^ prescription is understood, and multiplying by the appro­

priate hard vertex factors 

. 4 i ? ' ( { 9 p , f c } ) = (8.8) 

X r i - , . . U i 
[/c2 +A ]2 [ (A ;+p i )2 + A ] V V + A]2 p - p s ) ' + A] 

Cp is the usual Casimir operator of QCD and ^ denotes the gauge parameter. 

To compute this integral we take advantage of the linear dependence of Feynman 

denominators to reduce the problem to only three-point functions with propagators 

raised to some power, see Eq. (4.46). Davdychev tensor reduction [57] followed by 

Tarasov et al's scalar reduction algorithm [58] (see also Appendix C) is used to 

reduce the result to a simple set of massless and massive basis integrals, where the 

mass scale is i \ / A and all master integrals can be found in Appendix A. 

Substituting the basis integrals, expanding in and dropping suppressed contri­

butions we obtain 

^^ ' ({9p,9pJ) = 4 ? { { ? p . 9 , J ) + .4(» ' ({<,„gpJ)Cf c , ^ X (6.9) 

) € 3 3 

where = (47r)'e^'^^. Only an ultra-violet pole remains in this expression and this 

is cancelled exactly by the standard MS" counter-term diagram. Aft {{qp^.qp^}). 

Similarly, due to the presence of the hard factors, the wave-function graph of the 

72 



Chapter 5: Perturbative Calculations Using IR-Fini te Q C D 

quark propagator is infrared-finite and will give an overall constant once renor-

malised. This is in contrast to the normal perturbative calculation where the 

corresponding integral vanishes in dimensional regularisation and is therefore left 

with an infrared pole once the MS' wave function-renormalisation counter-term has 

been added. Thus the hard asymptotic wave function constant for the external 

quark field, before renormalisation, is found to be 

ZK = 1 a 
4^ 

C f c , 
- A i _ 3 

e 4 

383^ 
210 

(5.10) 

Combining both MS renormalised contributions gives 

A^\{<ln%.}) = A^'\{%.%.})CF 

X 

47r 

-21n^ A . - f ^ In A . + A + l | i _ | ! + ^ ( A , ) 

(5.11) 

(a) \ 

Figure 5.4: Cut diagrams contributing to the amplitude squared for the final state 
\{qq}). Additional diagrams obtained through symmetry are understood. 

What is left now is to compute the contributions due to modification of the LSZ 
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formaUsm {{qp^ 9p2})) ^^lis consists of the Feynman diagrams shown Figure 5.4. 
As a consequence of the cutting rules [75] and unitarity, each sum-over-cuts is 
guaranteed to be finite provided the gluon polarisation sum is treated identically 
to the gluon propagator, this amounts to taking Feynman gauge, ^ = 1. Failure 
to treat the polarisation sum and propagators the same will instead lead to poles 
in e that cancel only once both topologies of Fig 5.4 have been combined. 

Construction of finite amplitudes proceeds by taking, for example, the real cuts 2 

and 3 and dividing their contributions between the virtual cut 4 and its conjugate 

cut 1. This amounts to re-writing terms with Ins and In^s as Ins = l/2(ln(—s) -|-

ln*(-s)) and In^ s = l/2{ln'^{-s) + TT )̂ + l/2{ln^{-s) + tt^)*, then assigning the 

first term of each equality to cut 4 and the second term to the conjugate cut 1. 

Using this division of the soft real diagrams it is possible to write down finite 

amplitudes. An explicit example is the sum of Eq. (5.12) and Eq. (5.13) 

= A^'\qp,qp,)CFC,^ ( ^ ) \ (5.12) 

6 6 O 
-e 

< ) 2 & 3 = ^^"\'1p.Qp.)Cfc.-^{^) X (5.13) 47r \ / i^ 

2 4 ( 1 - I n A , ) ^ , 2 ^ ^ 57r2 
^ + ^ — + 41n2 A , - 81n A , - f — -
C 6 O 

where the poles cancel provided ^ = 1. 

Using Feynman gauge and summing over the cuts of diagrams a, b, c and d in 
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Figure 5.4, we obtain 

- 4 ! a ) ( a . f e } ) = A^'\qp,qp,)CF^{7r' + 0{As)) (5.14) 

A^^iUp^qp.}) - A ^ ' \ q p , q p , ) C p ^ ( - l + OiA,)^ (5.15) 

= A^'\qp,qp,)Cp^l^-^^ + 0{A,)^ (5.16) 

A^$j{{Qp.Qp.}) = A^'\qp,%,)CF^{^^^+0{As)) . (5.17) 

Including the contributions of all diagrams obtained through symmetry operations 

we find 

= A^'\%. %.) Cf ^ (-g^ + vr^ + ^ ( A ^ ) ) . (5.18) 

Finally, combining Eq. (5.11) with Eq. (5.18) and not dropping terms suppressed 

by As we obtain the infrared-finite amplitude 

A ^ ' \ { M p . } ) = A^'\qp,qp,)CF^^ (5 .19) 

1 , (1 - 2 A , - 6 A ^ - 2AI + 2 A ^ ) ( A s 
2(1 + A , ) 1 + 2 A , V I + A , 

As can be seen, Eq. (5.19) is exphcitly finite and well defined in four dimensions. 

Again, like the case of the three-parton dressed amplitude, it is now possible to go 

ahead and compute any two-jet observable. We obtain a prediction for the cross-

section by computing the amplitude-squared, obtained by contracting the NLO 

state K^pj qp^]) with its LO companion, and then integrating over the two-parton 

phase-space. 

Using this ampUtude we choose to compute the two-jet rate as shown in Figure 5.5, 

where ?/cut = 0.1 and the rate has been plotted as a function of A ^ . The red fine 
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0 0.05 0.1 
As 

0.15 0.2 

Figure 5.5: The two-jet rate as a function of As {ycut = 0.1), red line displays the 
standard perturbative result, pink curve the sum of the contributions from 
\{QPI Qp2}) (dark blue) and \{qp^ Qpz^}) (dark red). 

displays the standard perturbative result with the approaching pink curve the 

sum of the contributions from \{qp^ qp^}) (dark blue) and |{gpi qp^ g}) (dark red). 

Yet again we see the benefit of using infrared finite amplitudes. In the standard 

approach we add the divergent contributions from the two-parton and three-parton 

final states to give the finite result that is the red line. In contrast the dressed-state 

rates are individually finite and therefore manageable by a numerical integration 

routine. It should be stressed that, despite the contributions from the two states 

being finite, they have no individual physical interpretation and only their sum 

is relevent. We note that for a range of A^, from approximately A^ = 0.02 to 

As = 0.07, the dressed-state rates have similar sized contributions and therefore 

do not lead to issues of numerical rounding error associated with the adding of 

large terms of different sign. 

Prom this example we conclude that AIP formalism may well be applicable to 
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the numerical evaluation of perturbative corrections. Of course many more as­
pects of the analytic theory should be first be investigated before an numerical 
implementation is attempted. Technically speaking, the biggest difficulty for an 
entirely numerical algorithm would be the computation of the sum over cuts of 
Figure 5.4. However, i t may be possible to take advantage of the inclusive nature 
of the gluon's phase-space integral to match that of the loop integral. Assuming 
such an ahgnment of integration variables between real and virtual contributions 
can be achieved, then integration would be possible in four-dimensions, and a 
Monte-Carlo approach would ultimately be successful. Work along these lines has 
already been published by Soper et al [17], where one-loop integrals, after contour 
integration in the energy variable, are re-written as phase-space integrals. 

5.3 ê e~ hadrons, the part at 

Having successfully implemented the infrared finite formalism for the simplest of 

QCD observables we shall now describe results for Feynman diagrams proportional 

to Np at the next order in the strong coupling. For the remainder of the calcula­

tions in this section Feynman gauge wil l be used throughout. We do this in order 

to treat the tensor structiure of the polarisation sum and the gauge-boson propa­

gator the same and facilitate IR cancellations at the level of individual topologies. 

Throughout this section we wiU use the N = 2 analytic split for Eq. (4.45). We 

shall show that gauge boson's tensor structure leads us to further problems and 

forces us to modify our procedure for computing infrared finite amplitudes. 

5.3.1- Th^ 

The Nf dependent part of the dressed four parton amplitude is obtained simply 

by calculating in standard massless QCD with each quark-gluon vertex assigned a 
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hard factor. At this order we have two hard vertices preventing the possibility of 
any soft momentum configurations developing in the amplitude. Note that if we 
were to use the non-analytic separation function defined by Eq. (4.44) then it would 
be sufficient to place a single hard vertex at the secondary pair of quarks. This is 
because, as explained in Section 4.5.3, the requirement that the gluon propagator 
has an invariant mass > A ensures that subsequent real emissions down the chain 
must also be hard. However, in the case of the analytic split this argument breaks 
down and i t is necessary to explicitly place hard factors at every QCD vertex. 

+ 

Figure 5.6: Contributions to the dressed-four-jet amphtude A^'^\{qp.^ Qp^ qp3,%i])i ad­
ditional diagrams are obtained by permuting the quark labels. 

Using Feynman gauge the amplitude for the hadronic matrix element correspond­

ing to the first Feynman graph of Figure 5.6 takes the form 

2 A + 5 3 4 ^ / S 3 4 ( 2 A H - 5 3 4 ) , A ^ , A ^ ) 

( A + S34)V I S i34 S134 + A ( S134 + A )2 

where .we see that-the limit A - > 0. reproduces the standard result. Using-this 

amplitude, plus the seven other Feynman graphs obtained via permutation of the 

quark labels and the external leg from which the gluon is emitted, the squared 
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result reproduces exactly that found in [76] except that the potential singular 
denominators are regulated by hard factors as in Eq. (5 .20) . 

5.3.2 The Np part of \{qp, Qp^ Qp^}) at NLO 

Figure 5.7: Various cuts of the Np topologies contributing to A^^\{qpj^ qp^ Qps})- Con­
tributions to As come from the four diagrams to the left with the remaining 
two diagrams contributing to AH- Additional diagrams obtained through 
symmetry are understood. 

To compute the three-parton dressed state it is helpful to consider the cuts of the 

different topologies that contribute to the Np part as depicted in Figure 5.7. It 

is clear that placing a soft factor at either, or both, of the two "inner" vertices 

can only enforce the momenta of the two internal quarks to coalesce, if the other 

vertices are hard then this must be a three-parton dressed state. Soft "outer" 

vertices we attribute solely to NNLO corrections to As{{qp^ 9p2}) i ^ possible 

contribution to the three-partoh dressed state would be heavily suppressed. 

Were we to use theta-functions to separate hard and soft as in Eq. (4.44), we would 

find that several of the Feynman graphs for this amplitude are set to zero. This 
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happens because, due to the symmetry of the graph, the self-energy bubble cannot 
have a hard momentum entering it with a soft momentum leaving. The only non-
vanishing contributions in this case come from the all hard diagrams of Figure 5.7 
plus contributions due to modification of the LSZ coming from the diagrams where 
the self-energy bubble is completely soft. 

In principle the cuts involving wave-function renormahsation with differing hard 

and soft factors should be calculated separately as in the 0{as) calculation of 

the previous section. However, as we are only really interested in their sum it is 

simpler to add these diagrams immediately, giving us the standard Np part of the 

gluon wave-function renormalisation constant of massless QCD [50] multiplying 

the 0{as) dressed-three-jet Eq. (5.6). 

The real cuts require an integration over the unresolved phase space of the "in­

ner" external quarks. This integral can be performed using standard factorisation 

formula for coUinear momentum configurations [15] and will generate poles that 

cancel against the aforementioned virtual cuts. By virtue of the soft factors, the 

four-parton phase-space, P5'4, can be factorised into a three-parton phase-space, 

PSs, times an integral over the invariant mass of the collinear composite, given as 

PS, ^ PSs X rl^^^^.p^ 3̂-4 dss,. (5.21) 

In calculating the integral over the unresolved phase space of the internal quark 

line composite there is a degree of arbitrariness as to what energy scale, x in 

Eq. (5.21), to integrate up to. However, since the integrand has been constructed 

such that it only contributes in the region where the energy of the composite 

is small, integrating up to large energies effectively makes no difference to the 

resulting amplitude for the dressed three-parton amplitude-squared. Empirically 

we find that the integrand is only non-vanishing below 2A and so we integrate up 
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to this squared-energy scale. 

5.3.3 Problems with gauge invariance 

Applying the prescription for infrared finite amplitudes as outlined at lowest order 

presents us with a problem. In the standard calculation the real cuts of the two 

topologies have terms with infrared 534̂  singularities, such divergences have no 

physical interpretation and always cancel due to gauge invariance [51]. However, 

this cancellation occms only at the level of a gauge invariant sum of diagrams and 

not for an individual topology, thus the sums over the cut diagrams in Figure 5.7 

are not separately finite. In fact, by virtue of the "external" hard factors, there are 

also additional suppressed but un-cancelled poles that come from terms related to 

the q^^q'^ part of the Leptonic tensor. 

In short, the approach of using soft separation functions breaks down unless the 

sum-over-cuts of each Feynman diagram is finite. For gauge theories such as mass-

less QCD and QED this constraint is not satisfied for standard MS' renormalisa-

tion. We can see an example of this by considering the full-form of the photon 

propagator in standard perturbation theory 

^ „ , - M s U l ^ (5.22) 
, 2 ( 1 - n(,^)) V"" 9 V o n 9 

Usually the Ward identity is used to remove terms in Eq. (5.22) proportional to 

QaQp, this leaves the propagator with a simple pole the residue of which can be 

interpreted as Z3. Since gauge invariance is manifest in all physical observables this 

approach is perfectly adequate for performing analytic perturbative calculations. 

However, it is also clear that making use of gauge invariance in Eq. (5.22) imphes 

that renormalisation of the photon propagator occurs in a global sense - Z3 counter-
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terms associated with a particular cut-diagram do not necessarily contain the 
correct UV sub-divergences. As a result the sum-over-cuts will not be finite in 
general for any diagram containing charge renormalisation [9 . 

To get around this problem we take the more pragmatic approach of discarding 

the terms that disrupt the sum-over-cuts and then inserting hard and soft factors; 

this amounts to applying the ful l symmetries of the theory. Thus we take our 

Leptonic tensor to be proportional to g^^ enforcing charge conservation and we 

require that terms that cancel at the integrand level in normal perturbation theory 

are allowed to do so before hard and soft factors are introduced. Effectively we are 

now splitting the Lagrangian in a manner that respects gauge invariance allowing 

for finite computations at the level of individual topologies. 

5.3.4 The ampUtude A^^\{qp^ Qp^ gp^}) 

Applying this modified procedure and performing the sum of the cut diagrams for 

the two topologies of Figure 5.7 (taking into account the symmetries) we obtain 

the hadronic part of the infrared finite dressed-three-parton amplitude-squared 

given as 

2 \ A ^ ' \ { q p , qp. 9p,}) A^'\{qp, qp, QpM = 

\A^K{<lp.<lp.})\ N ^ C p T n [ ^ ) J (̂ 3̂ + A^)2(^^3 + ^^)2 

162 ln(3)A^ - IISA^ + 82A, + {1 - - 2/23) f82A, + 81 In 

2A 

(5.23) 

127 

(y23 + A , ) ^ {yi3 + 2As) ( y i a t o , , 

^ (y23 + 2A,) (2/13 + A , ) 2 V 2A 127 - 8 2 A ^ + { 1 ^ 2 } . 
J J J 

Having obtained this result we can now use it , together with the dressed-four-jet 

amplitude-squared, to compute the Np part of any multi-final-state observable at 
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Working backwards i t is also straightforward to infer that the dressed-three-jet 
amplitude at NLO is given by 

^ . ^ ^ 2 A ( A ( - 5 9 + 811n(3)) 5X3^23 , 

\y [ S - S23) ( S - Si3 - S23) 

+ 41 ( ^ ( ^ ^ ' » > - . . 3 + ^ ' | I ). (5.24) 
V S - Si3 - S23 S - S23 / 

5.3.5 Calculation of the C-parameter 

The C-parameter defines a global event shape parameter independent of the jet 

axis [76]. I f the external partons are massless then, in terms of Lorentz invariants, 

it is given by 

C = 3 - ' V , (5.25) 
2 ^ (p, • q) {pj • g) ' ' ' 

where Pi is the four-momentum of the i-th particle and q is the total four momen­

tum of the centre of mass system. The C parameter varies in the range 0 < C < 1. 

C = 0 corresponds to a perfect two-jet event, while C = 1 characterises a spher­

ical event. Planar events are distributed in the range 0 < C < 3/4; in particular 

the 0{as) perturbative result is entirely planar in nature. 

In order to compute the C-parameter, standard methods for integration over the 

phase space of multi-particle final states are employed. To keep the evaluation as 

technically simple as possible we choose to avoid using the method of sequentially 

-boosting two-parton phase spaces [77] and use the RAMBO [78]-algorithm which 

generates a flat phase space for massless particles. We use the basic integration 

routine of VEGAS [79] to obtain our results. No attempt has been made to 
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optimise the integration and since the amplitudes are explicitly finite no constraints 
have been placed on what points in the integration space VEGAS may go. Results 
are obtained by first simulating dressed-three-jet events and binning the computed 
values for the C-parameter and then repeating this procedure for the dressed-four-
jet contribution. 

standard Ac =0.002 Ac =0.005 Ac =0.01 

Figure 5.8: Part of the 0{aj) correction to containing the Casimirs CFTR is plot 
ted in units of ( f ^ ) ^ against the variable C, Np = 5. 

Figure 5.8 displays the infrared finite cross-sections compared with the standard 

calculation using dipole subtraction [13] (data for the standard rate obtained from 

the EVENT2 program). The number of points required to reach an accuracy of 

approximately 0.1% on the total integral varies greatly with the value of A j chosen, 

for larger values of Ag convergence is fast, typically 1,000,000 integration points 

"are"heededr'This corresponds to the fact VEGAS converges faster the sm 

the integrand. For A^ = 0.002 (pink curve), which closely follows the data points 

obtained with EVENT2, 100,000, 000 integration points where required. 
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For all three infrared finite curves we see that the general trend is to only diverge 
from the standard perturbative result in the region where perturbation theory 
itself becomes unreUable, in this region none of these curves can be expected to 
give accurate physical predictions since they have all been constructed exclusively 
using finite-order perturbation theory. In the standard approach the divergence 
at C = 0 would be cancelled by contributions from the two-parton final state and 
large logarithms that spoil the convergence of the perturbation series would have 
to be resummed. For the infrared finite amplitudes the divergence at C = 0 has 
already been shifted into the dressed-two-jet by virtue of the hard factors at the 
"outer" vertices. The problem of resummation of large logarithms still remains for 
the infrared finite approach. It is conceivable that these all order resummations 
can be included consistently in the asymptotic propagator of the theory. For the 
purposes of this thesis we have taken a perturbative expansion of the asymptotic 
propagator in terms of free fields but in principle a non-perturbative form for the 
propagator could be used. Indeed a phenomenological study of the correct form 
for the propagator could be undertaken in this way, but is beyond the scope of 
this thesis. 

5.4 Extension to more complex processes 

A logical next step would be the calculation of the Feynman diagrams, at 0{al), 

contributing to the Casimir combinations of CpNc and Cp- This is a formidable 

task. First we require a systematic method for identifying all terms that cancel 

across topologies due to gauge invariance and then removing them. Secondly we 

need a method for identifying whether a given set of hard soft vertices constitutes 

part of the dressed-two, three or four jet. Clearly a dressed-four-jet contribution 

is obtained when all the vertices are hard, however it is not completely clear how 
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to allocate between dressed-two and dressed-three jets. Lastly we need to reduce 
the associated amplitudes to basis integrals. For scalar four-point functions the 
reduction turns out to generate very large algebraic expressions and this problem 
alone makes serious demands on computer resources. 

Another possible route is the examination of the singularity structm-e for cut dia­

grams contributing to the fully inclusive computation of the A^^ part at 0{a'^) that 

contains the NNLO correction to the dressed-two-jet. We should note that, since 

we already have dressed state amplitudes for four and three partons, the dressed 

two-parton amplitude can be obtained by fully integrating over the phase-space 

of these two amphtude-squared and subtracting them from the total cross-section. 

However, from the point of view of developing the AIP, it will be instructive to 

construct the infrared finite, dressed two-parton amplitude by directly assembling 

the diagrams that contribute to this. We shall examine part of this calculation in 

Chapter 7. 

Ultimately the cross-topology cancellations of poles is a result of faihng to treat 

the polarisation sum for external gluons exactly the same as for the internal prop­

agators and this is related to the degeneracy in the choice of the gauge parameter 

^. For the simple leading order correction to the hadronic cross-section it was 

sufficient to take Feynman gauge, ^ = 1, and treat the polarisation sum with the 

corresponding metric tensor, however this naive approach will breakdown for more 

complicated processes. For gauge theories we therefore need to construct a new 

way of treating the gauge bosons. 

Sidestepping this problem for the moment we can instead investigate the Asymp­

totic Interaction Picture applied to cf)^ theory. The advantage of using this set of 

Feynman rules is that the renormalised sum-over-cuts of a given topology is guar­

anteed to be finite since there is no gauge structure and therefore no ambiguity 

associated with fixing the gauge. Also from a technical point of view, calculations 
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will be considerably simpler as there are no tensor structures. The results from 
these calculations will also allow us to validate the general approach of the asymp­
totic interaction picture at higher order and help us to identify what type of jet a 
set of hard and soft vertex factors belongs to, so this shall be investigated in the 
following section. 
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Chapter 6 

Perturbative Calculations Using 

IR-Finite 0^ 

6.1 Working in massless (j)^ theory 

As discussed in Section 5.4, the standard approach for perturbative calculations 

for gauge theories involves the cancellation of infrared divergences across various 

topologies and this is intimately related to the gauge structure of the theory. Such 

cross topology cancellations will break down when hard and soft factors are used 

and it is therefore necessary to develop a new way of treating the gauge bosons. 

For now we want to avoid this additional complication and look at higher-order 

corrections in field theory, a suitable candidate for investigation is theory. Using 

this theory as a toy model, we can investigate the divergent behaviour of higher-

order corrections without the complications outlined for gauge theories with tensor 

structure. We shall generally neglect the finite parts of the calculations since they 

cannot be compared to any experiment. 

In order to mimic the infrared structure of QCD as closely as possible we would 

wish to explore the asymptotic interaction picture apphed to massless 0^ in four 
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space-time dimensions. However, if we look at the form of the resummed propa­
gator we see that higher-order contributions will, in general, introduce a radiative 
correction to the mass of the cj) field. As a result the massless Lagrangian is not 
renormalisable, save for the case of six space-time dimensions where we find that 
the propagator remains massless to all orders in perturbation theory. Therefore 
to avoid massive fields we choose to perform the calculations in six space-time 
dimensions. It would of course still be enlightening to look at the massive theory 
in four-dimensions, where infrared poles in e would be replaced by logarithms of 
the mass parameter, however the calculations would be technically much harder 
to perform. That said, we note that for graphs in 0^ in four dimensions without 
self-energy insertions, the mass of the external 4> field and the internal propagators 
can be taken to be zero [16]. Later we shall exploit this fact to look at the infrared 
divergent structure of a (j)^ graph in four space-time dimensions. 

Changing to a larger space-time dimension alters the nature of the infrared singu­

larities present. In six dimensions only coUinear singularities remain and therefore 

there is a clear difference between the divergences when compared to QCD [32], 

specifically there axe no double poles associated with overlapping soft and collinear 

configurations, so we expect at most one inverse power of e for every order of 

perturbation theory. However, the separation function's form is independent of 

space-time dimension and these calculations therefore provide some insight into 

the method applied to four-dimensional gauge theory and give useful tests for a 

future numerical implementation. Throughout this section we shall use the soft 

separation factor as defined in 4.45, we shall take N = 1 as, this is technically 

simpler. 

The coupling constant Q will be defined as 
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where A denotes the coupling of the theory as defined in the Feynman rules of 0^ 
theory [9,80]. 

6.2 Wave function renormalisation and residues 

For practical perturbative calculations of correlation functions, the LSZ formalism 

requires the calculation of on-shell residues for external particles. 

6.2.1 Residues at one-loop 

-zE(2)(0)= — ' ^ + ^ 
i ii 

Figure 6.1: The renormalised one-loop computation of the on-shell residue of the scalar 
field amounts to the calculation of the pole-scheme wave function renor­
malisation constant plus counter-term. 

Fig 6.1 describes the one-loop contribution to the on-shell residue of the scalar field 

(j). For massless perturbation theory Feynman graph i is zero since the integral is 

devoid of scale, whereas contribution ii corresponds to the counter-term, defined 

in some appropriate renormalisation scheme, and is the subtraction of the ultra­

violet divergence of graph i, plus some finite part. Taking the MS prescription, as 

given in Eq. (2.6), the counter-term for the one-loop wave function renormalisation 

constant is given by 

where ~ denotes that the poles structures are the same. Correspondingly 

~6Z=1 + - ^ , (6.3) 
p2=o -L^e/ft 
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where Zp denotes the renormalised on-shell residue of the two-point function to 
0{a). 

The insertion of soft factors at the vertices of Fig 6.1, alters the calculation con­

siderably. First we recognise that diagram i with a soft factor is no longer scaleless 

and is ultra-violet finite. A naive argument would then set the counter-term dia­

gram ii to zero since there is no longer any high-energy behaviour to be accounted 

for, however this is not necessarily correct. I t can be argued that the soft separa­

tion function may cut up the counterterm such that it gives a finite contribution to 

diagrams that are themselves UV finite. I t is certainly possible to pick an integral 

representation for the constant defined in Eq. (6.2), for example 

- i A V [ d^-^'k 1 

6 

where is the renormalisation scale, will integrate to give 5Z to 0{e). Applying 

soft factors to Eq. (6.4) will then give us finite renormalisation constants. As there 

is apparently some ambiguity as to how to treat the diagram ii we shall choose 

to cut up the counter-term such that all of i t is contained only in the diagram 

with both vertices hard. We shall come back to this point when we discuss a more 

involved calculation in Section 6.3. 

For graph i we give the results for the calculation with a single soft factor at one of 

the vertices, Z^, and two soft factors, Z^^, these two results can then be combined 

to obtain the result for any combination of hard and soft vertices for the on-shell 

one-loop self-energy. Note that the two vertices are symmetric and therefore their 

soft factors are the same, we obtain 

Z; = l + ^ _ - ^ ( l n ( - A , ) - 4 ) (6.5) 

= l + ^ _ - ^ ( 4 2 0 1 n ( - A , ) - 1999), (6.6) 
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with = ^ (where // is the renormalisation scale and not a Lorentz index!). A 
simple check on these two results is that the sum of all diagrams with soft factors 
should reproduce the same infrared poles as Zp, thus we have 

+ z^^ + z;^ = 2z;-z;^ = i + ̂ _ - ^ ( 3 i n ( - A ^ ) - 7 ) , (6.7) 

giving us the correct divergence. The fact that Eqs. (6.5) and (6.6) also have the 

correct infrared structure is a direct consequence of Zp^ being both UV and IR 

finite. 

6.2.2 Residues at two-loop 

-zE(4)(0)= — ' ^ + — ' i — + 0 -
i ii in 

Figure 6.2: Part of the two-loop computation of tlie on-siiell residue of tiie scalar field. 

Moving on to two loop we can investigate the pole-scheme wave-function renormal­

isation of Fig 6.2, here we consider only part of the two loop correction necessary 

for the topologies that we will consider in the following subsections. As in the 

previous calculation diagrams i and ii now constitute scaleless integrals and there­

fore evaluate to zero. The two loop MS counterterm, diagram Hi, obtained by 

computing the diagrams of i and ii off-shell, gives 

Again we proceed in a similar manner to the one loop calculation and compute 

diagram i now with some soft vertices. We start by investigating the effect of 
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placing a soft separation factor at one or both of the external field lines, we obtain 
the unrenormalised residues of 

*^' = - 1 4 4 ? + 8 6 « ( ^ ^ ' " ( - ^ ' ' ' + 

(72 ln2(-A^) - 588 l n ( - A ^ ) + 18TT^ - f 1303) (6.9) 
5184 

with one soft vertex and 

^ ^ r - - I ^ + ^ - ( 1 2 1 n ( - A , ) - 5 9 ) 4 -

0? 
5184 

(72 In2(-A^) - 7081n(-A^) + 1871^ - f 1817) (6.10) 

with two soft vertices. To renormalise we add diagram %i\ with one soft vertex the 

one-loop counterterm diagram corresponds to Eq. (6.5) multiplied by Eq. (6.2), 

giving 

9 9 
- 7 2 i ^ - 4 3 2 i ( ^ ^ ^ ^ - ^ ^ ) - ^ 9 ) + ---

+ 2 ^ ( l 8 1 n 2 ( - A ^ ) - 1 1 4 1 n ( - A ^ ) - f 3 7r^-M93) (6.11) 

and 

+ ^ (6 l n ' ( - A J - 48 ln ( -A„) + T T ^ + 98) . (6.12) 

I t is clear that diagram Hi will be zero (or at least finite) when a soft vertex is 

placed at the vertices involving external fields, since in that case the only source of 

UV divergence is contained in the internal loop and counter-term diagram ii will 

completely negate this. Taking Eqs. (6.9),(6.10),(6.11) and (6.12) we can sum all 
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xy hh 
"^p ss 

sz,!! 

-119529-20720 Y+39420 ^^+540 l n ( - A ^ ) ( -25+3 ln( -A^, ) ) 
233280 

20457+13840 Y - 1 7 2 8 0 7r2 
116640 

32463-17320 Y+15120 7r̂  
116640 

5 , 9279+3760 Y - 8 4 6 0 7r2+10350 ln( -A;^) 
36 € "'̂  38880 

1 , 5187-2480 Y+2580 7r^-1440 j n C - A ^ ) 
18e 12960 

1 , -38061+11120 Y-70207r2-2160 ln( -A;^) 
36?"'" 38880 

109+5 I n ( - A ^ ) 152163-61900 Y+155925 ^^-320760 l n ( - A ; , ) - 1 2 1 5 0 ln( -A;x)^ 
360 e 583200 

49 _ L -702063+163000 T-145800 7r^+158760 l n ( - A ^ ) 
583200 360 e 

1 187+60 I n ( - A ^ ) _|_ 2227401-528200 T+268650 7r^+100980 l n ( - A ^ ) + 16200 I n ( - A ^ ) ^ 

144 e2 4320 6 1166400 

Table 6.1: Table showing all renormalised combinations of hard and soft vertices ap­
plied to the two loop self-energy of Figure 6.2 with symmetric amplitudes 
omitted. The coupling has been set to one and T is defined in Eq. (6.14). 

combinations of hard and soft vertices except both hard, as in Eq. (6.7), to obtain 

+ 5Z^' + 5Z'p' 
11 

144 e2 864 e + 

5184 
(36 ln2(-A^) - 300ln(-A^) + 12TT" + 605). (6.13) 

Comparing with Eq. (6.8) we see that Eq. (6.13) has precisely the IR poles of the 

standard calculation, this is expected since all diagrams with soft vertices have 

been included and renormalisation has been performed. 

6.2.3 Ultra-violet finite residues at two loop 

In the previous section we discussed only the addition of soft factors at the outer 

vertices of Figure 6.2, in order to determine all combinations of hard and soft 

vertices it suffices to calculate the remaining combinations of soft factors placed 
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Figure 6.3: Investigation of the sum-over cuts of a three-loop self-energy type topology 
with soft factors inserted at vertices A and B. 

on the inner and outer loops. Using power-counting, diagrams with soft factors on 

the inner loop are UV finite, therefore we set the counterterm diagrams, ii and Hi, 

to zero. This leaves us needing to compute the on-shell diagram i of Figure 6.2; 

integrals defined in Appendix A and hypergeometric reduction identities (see for 

example [81]) were necessary to reduce the problem to a small set of basis functions 

on which an expansion in e could be apphed. Table 6.1 details all combinations of 

hard and soft vertices, with the upper labels referring to factors on the external 

vertices and the lower labels referring to the inner loop's vertices. Note that a has 

been set to 1 in this table and for convenience we make the definition 

r- / 1 \ 
V 3 / + 

eVs Lio 
l-iVS 

— Li2 l + iVs' 
4 4 

(6.14) 

From Table 6.1 we see that both of the external vertices need to be hard for infrared 

divergences to be avoided. 
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6.3 The three-loop self-energy topology 

Having obtained residues for wave function renormalisation, we shall now investi­

gate the sum-over-cuts of the topology shown in Figure 6.3. We shall show that 

infrared cancellation due to KLN [7,10] is maintained in the presence of soft/hard 

vertices at A and B and that we can construct amplitudes that correspond to 

dressed two, three and four parton final states. 

6.3.1 Checking K L N with soft factors present 

As a first step we calculate the three cuts with soft and hard factors on vertices 

A and B. We shall also show that the results given in this section, plus their 

accompanying finite parts, are sufficient to construct the dressed final states - in 

other words we will not need to consider placing soft factors at the vertices of the 

innermost loop. We note that for the purposes of displaying this section's results 

we have absorbed a factor of into a and omitted the finite parts of cuts 2 and 

3 owing to their large size. 

Cut 1 of Figure 6.3, with the appropriate normalisation, is obtained simply by 

multiplying the renormahsed residues computed in Section 6.2 with the six dimen­

sional two-parton phase-space, the results are given below in Table 6.2. 

a 

a 

hh 

hs 

Txaa^ (605+12TT^-SOO l n ( - A ^ ) + 3 6 l n ( - A ; , ) ^ ) 

15552 

-nsa^ ( 2 6 - 5 1 n ( - A ^ ) ) 
1296 

7rsa3 , 5 7rsa3 _ TT s ( ? ( 5 7 + 7 r 2 ) + 4 1 n ( - A ^ ) ( -35+3 I n ( - A ^ ) ) ) 
432£2 + 2592 e 5184 

Table 6.2: Table showing the inclusive calculation of cut 1 of Figure 6.3 with different 
combinations of hard and soft factors at vertices A and B where s is the 
centre-of-mass energy and a factor of has been absorbed into a. 

Cut 2 requires integration over the four-parton phase-space, this can be calculated 
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by applying plus-distributions to the representation of [21] or using Mellin-Barnes 
transformations [67] to obtain a form amenable to the algorithm of [22]. We obtain 
results given in Table 6.3, the analytic form for the finite part is too large to display 
but will be included in the construction of the dressed states. 

a. hh 

hs 

7rsa3 (17+42 As+2'lAs^+6ln[^^] ( l + A , ) ^ (1+4 A ^ ) ) 

648 € 

(waa^ ( 2 + 9 A 3 + 6 A , ^ + 6 1 n [ j ^ ] A , ( l + A , ) ^ ) ) 

216 e 
^sa^ , T r a a ' ' (71-12 ln(s )+24 A , ( 1 + A , ) - 1 2 l n [ ^ ^ ] ( 1 + A . ) ^ ( 1 - 2 A , ) ) 
216 £2 + 1296 e 

Table 6.3: Table showing the inclusive calculation of cut 2 of Figure 6.3 with different 
combinations of hard and soft factors at vertices A and B where s is the 
centre-of-mass energy and a factor of has been absorbed into a. 

Similarly cut 3 can be obtained either by using plus-distributions or by direct inte­

gration followed by multiplication of the standard wave function renormalisation 

factor of Eq. (6.2). As can be seen in Table 6.4, a^^ gives precisely the poles 

necessary to cancel those of 1/2(7^'^ -1- a^^ where A or B can be either a hard or 

soft separation factor. 

° 3 
TTsa^ (l7+42 As+24 As^+ein r A, 

l+As ° 3 1296 e 

0̂ 3 
TTsa^ (2+9 A s + 6 As2+61n I A,, 

.1+As A s { l + A s f ) 
0̂ 3 432 e 

'^3 
^g^3 ^ 7 rsa3^-19+31n{s; , ) -6As( l+A3)+31n[j^]( l+As )2 ( l -2A,) ) 

'^3 216e2 ' 648 e 

Table 6.4: Table showing the inclusive calculation of cut 3 of Figure 6.3 with different 
combinations of hard and soft factors at vertices A and B where s is the 
centre-of-mass energy and a factor of has been absorbed into a. 

To extend this check on K L N further we should also compute the results for hard 

and soft factors at the vertices of the inner loop. However as discussed in Sec­

tions 6.2.1, within the approach of MS renormalisation, there is a problem with 

the inherent ambiguity associated with finite counterterms. In the calculations 
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presented so far any contributions from finite counterterms could only alter the 
finite part of the amplitude and not the pole structure, this is no longer the case 
when hard and soft factors are inserted at the inner-loop vertices. For example, for 
cut 3 we may have a divergent three-parton phase-space multiplying a UV-finite 
residue with an ill-defined finite part. In this case taking the contribution from the 
finite counter-term to be zero fails to give the necessary pole structure to satisfy 
KLN theorem. 

Rather than this result being a general breakdown of the asymptotic interaction 

approach it really is related to how we chose to renormalise our theory. Although 

technically more comphcated, using BPHZ renormahsation [9] we may write down 

an expression for the above computation that is explicitly UV finite at the inte­

grand level. I t is clear that there is no longer any ambiguity with regard to the 

finite part of the propagator's residue and with this approach we expect KLN the­

orem to survive for all combinations of hard and soft vertices. However, in the 

next section we shall see that, for the purposes of constructing dressed states from 

this topology, it is not necessary to change the renormalisation scheme. 

6.3.2 Constructing dressed final states 

To determine what combinations of hard and soft vertices go into the dressed two-

jet amplitude it is enough to consider Table 6.1 and the singularity structure of 

the four-jet cross-section given in Table 6.3. First we recognise that the following 

relationships are satisfied 

„ hh „ hh ^ hs ^ hs ^ ss _ ss (a ^ ^\ 

where ~ denotes that the two terms have the same pole structure. We see this is 

true by realising that, when the four-jet cross-section is in a region of phase space 
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that might simulate a three-jet or two-jet event, a hard factor on the inner-loop will 
suppress the amphtude. Note that this argument is true only if we working in a 
six dimensional phase-space - the hard factor contributes a factor of the invariant 
mass of the particles that make-up the inner loop, while the phase-space also 
contributes a power of the invariant mass. If we were to work in foiur-dimensions 
then taking A/' = 2 for Eq. (4.45) would be required for this argument to hold and 
this is precisely what is done in the previous chapter^. 

If we then take this result and combine it with what is known about the pole 

structure of cut 1, we see that generally cut 3 must be included in order to cancel 

all the remaining singularities. From Table 6.1 we see that all three cuts contribute 

to the dressed two-jet if a soft factor is placed at either vertex A or B of Figure 6.3. 

The dressed three-jet can now be assembled by taking both vertices A and B hard 

and combining cuts 2 and 3 summing over all soft/hard permutations on the inner-

loop. The only cut that need be excluded from this sum is cut 2 with all vertices 

hard, this should be associated with the dressed four-jet amplitude. It may also 

be argued that since contributions like a^^l are finite they can be attributed to 

either the dressed four or three-jet amplitude. Whilst this is true we find that 

such contributions, which would be zero using the theta-function split, are heavily 

suppressed by larger powers of the ratio and are therefore negligible. 

Below we display the infrared finite amplitudes of Figure 6.3. The final analytic 

form for the dressed two-jet is too comphcated to be displayed here and so we 

expand it to order A^. 

. ( 3 ) / f , M M A \\ ^ {yi23^s+yn (^123 + As)) 

yi23 (2/13 + A , ) (?/i23 + A , ) 

^The easiest way to see this explicitly is to take the four-parton phase-space of [76] and make 
the substitution e —+ — 1 to obtain the six dimensional phase-space. 
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yi3 y23 

yi3 Z/23 + As 
+ • 

+ 10 + 
6 ( l - 3 y i 3 ) A , , (6 -52 /13) t/13 A , 

yi3 2/23 + As + 
2 y i 3 ' A 2 A 3 

(2/13 2/23 + As) (y i3 2/23 + As)^ 
(6.17) 

^^'\{<f>P.M)=^A^'\{4>n,cPp,}) j I - l n ( - s , )^ - In(As)^ ( l - 1 2 A s ) + 

/31 \ 
+ In(-s^) — - M 2 As - ln(As) (2 - 12 As) + • • • 

V / 

+ ln(As) ( ' y - 2 0 A s ] - ^ + 26As + 7r2 ("1 + 4 A s ] + O(A^) (6.18) 

6.4 The three-loop vertex topology 

2 3 

Figure 6.4: Investigation of the sum-over cuts of a three-loop vertex type topology with 
soft factors. 

Another topology that is related to the QCD calculation of the Np part at 0{a^) is 

displayed in Figure 6.4. In four dimensions cut 1 represents a complex mix of UV 

and IR divergences, however in six dimensions we find that this cut is in fact IR 

finite. Thus the cancellation of infrared divergences occurs only in the sum of cuts 

2 and 3 where the particles in the inner loop become coUinear. The corresponding 

calculations are relatively straight-forward however since the soft factors placed on 

the vertices of the inner loop are irrelevant to the infrared structure as they tend 
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always to one in the three-jet region of phase-space. As a result it is easy to show 
that the presence of a hard factor on the inner loop prevents coUinear divergences 
and renders the cut in question infrared finite. This is commensurate with the 
fact that the soft residues computed at one loop, Eqs. (6.5) and (6.6), give the 
same infrared poles as the standard result. Therefore the only non-trivial check 
of the soft factors occurs for the vertices of the outer loop. Yet again we find the 
cancellation is exact and therefore we give only the pole structure of cut 3 with 
one soft factor on an outer vertex 

TT s A , (3 + 2 A , ) TT s A , (1 + A , ) ' I n ( ^ ) 
144 e 72 7r2, 

(6.19) 

and also denoting two soft vertices 

- 187r26- + ~ '^ '^ 

T T s o ^ A ^ r A , 

36 e ^ 1 + A , 

36 e 

2 (1 + A , ) + (1 + 2 A , ) In 

r A , -
— Li2 

" 1 + A , • 
I + 2 A , 

— Li2 
.1 + 2A,_ I + 2 A , .1 + 2A,_ 

1 + 2 A , 
(6.20) 

using these two results the pole structure of any combination of hard and soft 

factors for any cut in Figure 6.4 may be determined. As in the previous topology 

we can combine those three and four parton cuts (minus the all hard four-parton 

cut) with hard factors on the outer loop to obtain the dressed three-jet amplitude 

for this topology given as 

8Q! 

~9" 
6 In 

5 A , ^ - 6 A , , 3 (?/i3 + 2/23) A , (3yi3y23 + 2 A , ) - 7 A , 

2/13 2/23 + As + 

Sn 2/13 2/23 Ag 
2/13 2/23 + As 

2 A , ' 

- 1 0 + - • 

(2/13 2/23 + As) ' (2/13 2/23 + A s ) ' 

(6.21) 

Comparing Eq. (6.21) and Eq. (6.17) it is clear that NLO corrections to the LO 

101 3 i i 



C h a p t e r 6: Per turbat ive Calculat ions U s i n g I R - F i n i t e (fi^ 

dressed three-parton amplitude w i l l be dependent on the conjugate cut. For the 
NF part of the QCD dressed three parton final state i t was possible to write down 
a fo rm for the N L O correction that would give the correct amplitude-squared 
when contracted wi th either of the two LO conjugate three-parton cuts. The 
possibility to do this exploited the tensor structure of the amplitude, since this 
is absent for scalar field theory such a construction is not possible. In general a 
higher-order correction to a dressed amplitude w i l l therefore have a conjugate cut 
associated to i t and it should be defined to only give a non-zero contribution when 
the amplitude-squared is formed w i t h this conjugate cut. 

6.5 U V finite massless (j)^ in four-dimensions 

We have seen that using a theory without gauge structure, namely 0^ in six dimen­

sions, we can construct dressed states and successfully compute on-shell UV-f in i te 

residues required by the LSZ formalism. We have also seen potential ambiguities 

associated w i t h MS* renormalisation and have advocated the use of a prescrip­

t ion, such as BPHZ, that renders amplitudes finite at the level of the integrand. 

However, by working i n six dimensions we l imi t ourselves to coUinear divergences 

only. I n four spacetime dimensions, despite the fact that the external state of 

0^ are necessarily massive, we can f rom a technical viewpoint perform massless 

calculations provided we work only w i t h diagrams that have no self-energy inser­

tions. I n the next sub-section we shall look at one such diagram and check that 

the soft separation functions perform as expected. Another advantage of such cal­

culations is tha t the vertex is ultra-violet finite so we no longer need to perform 

any renormalisation. 
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Figure 6.5: A check on the soft function - in the three-jet region of phase-space the 
singular behaviour of cuts 1 and 2 must cancel. 

6.5.1 An uncrossed topology 

Observing Figure 6.5 we see that the in the three-jet region of phase-space the I R 

divergences of cuts 1 and 2 have to cancel. To check this we can consider all other 

cuts that might possibly give divergences in the three-jet region of phase-space. 

Looking at all other three parton cuts, we first realise that the two cuts which 

involve all hard vertices i n the loop integral cannot have any I R divergences. The 

remaining three parton cut is obtained by reflecting cut 1 i n the central x-axis of 

Figure 6.5 and corresponds to the loop integral shown in Figure 6.6 

->P3 

P2 

Figure 6.6: This configuration of hard and soft vertices should give no IR singularities 
in the loop integral. 

Figure 6.6 should have no I R divergences. The loop integral corresponds to a three-

point funct ion w i t h two off-shell legs, the presence of the soft factor is incompatible 

w i t h this and the theta-function split would send this graph to zero. Alternatively 
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you can argue that the lowermost hard vertex alone prevents singular momentum 
configurations. For analytic separations we would therefore expect only a finite 
contribution and this is precisely what is found. 

There are two four final state cuts, the partner of cut 2 describes the hard real 

emission of a particle followed by a soft emission f r o m loer down the same leg. In 

the language of the theta-function split this would also be set to zero, since al l 

successive emissions must be hard. Using the analytic split we can also clearly 

see that there are no divergences i n the three-parton region of phase-space, this 

implies that the IR divergences of cuts 1 and 2 must cancel. 

Using the program T I R A (see Appendix C) we compute the loop integral of cut 1 

and we find that the pole structure of the conventional calculation is modified to 

- 1 H ' - f ) ^ - 1 A l n ( A ± a . ) + i n ( ^ ) , , , ^^^^^^ 

16 7r2 e Si2 S23 ( s i3 + S23) 16 7r2 e ( A + Siif ( A + S23) (si3 + S23)' 

where the external momentum are described by Figure 6.6. The pole structure of 

cut 2 can be computed using Eq. (5.21) and simply applying a plus-distribution; 

we find that the pole structure is identical to Eq. (6.22) up to a minus sign. 
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Chapter 7 

A Two Loop Calculation in QCD 

7.1 Back to Q C D 

Having successfully implemented the asymptotic interaction picture in 0^ theory 

we shall go back to QCD and test K L N at two loop for a gauge theory. Here 

we present the first step in the calculation of the inclusive Np part of e"*"e~ to 

hadrons at 0{al) and therefore to the construction of the N N L O correction to 

the dressed two-parton amplitude. Since we already know the form for the dressed 

three and four parton amplitudes we could of course obtain the dressed two-parton 

amplitude by integrating over the phase-space of these squared amphtudes and 

then subtracting the result f rom the to ta l cross-section. Instead we are interested 

in the process of directly constructing the amplitude wi thout reference to the to ta l 

cross-section. 

We start by examining the effect of adding a single soft factor at the vertices 

shown in Figure 7.1. The advantage of this is that MS renormahsation can stilL 

be used and because the fo rm for the soft factor is common to bo th topologies 

this modification should not destroy the finiteness of their sum. We w i l l denote 
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the vertex topology as Tl and the self-energy type topology of Figure 7.1 as T2. 

Feynman gauge is used throughout. 

Figure 7.1: Investigation of the sum-over-cuts of the three-loop diagrams contributing 
to the Np part of the total hadronic cross-section with a single soft factor. 

7.2 Renormalisation 

Before discussing the technical details of the calculation, i t is worth mentioning 

tha t at least two different views of renormalisation can be adopted when applied to 

the LSZ formalism. One approach is to compute renormahsed on-shell residues in 

some scheme (typically MS') by including the necessary counter-terms to render 

the connected amputated Green's funct ion U V fini te . From this viewpoint the 

residues of the on-shell two-point functions are f ini te or I R divergent i f massless 

particles are present i n higher-order corrections. Alternatively the pole-scheme 

(on-shell) residues can be used un-renormalised and therefore counter-terms for 

external lines must also be included in the calculation. Clearly both views give 

identical results, though the former is possibly more transparent. Following the 

methodology of the previous chapter we take the first view and write the 0{(X^) 

renormalised pole-scheme fermion propagator as shown in Figiire 7.2. For massles;s 

QCD the first two terms are of course zero, however this w i l l not be true when the 

vertices are separated into hard and soft parts. 
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+ — 6 ' ^ + ^ 
a Hi 

Figure 7.2: Calculation of the two-loop residue of the Np part of the fermion propa­
gator in the pole-scheme. 

7.2.1 Computation of the Â ^ part of the fermion 

pole-scheme residue 

Whils t the soft vertex gives a proliferation of non-zero contributions, the Np part 

is made simpler since i t occurs only at 0{a'^). Diagram ii of Figure 7.2 is noth­

ing but the corresponding 0{a) diagram mult ipl ied by (1 — Z 3 ) to the order we 

are working. The remaining two diagrams constitute the on-shell and off-shell 

computations (wi th only the U V pole of the off-shell calculation required for MS 

renormalisation) of the same Feynman integral. However, by virtue of the soft 

factor, this integral only has a U V sub-divergence due to the fermion loop, hence 

the two-loop counter-term is zero (or at least is finite) and this is borne out by 

calculation (see Appendix A for required loop integrals). The on-shell calculation 

of diagram i gives 

where = {AnYe'^'"^, combining this w i t h contribution ii gives a soft renormalised 

pole-scheme residue of 
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The 0{a) renormahsed residue of the gluon propagator, wi thout a soft factor, is 

also required for this calculation 

Z , , = l+ ( - ) c^CpN^Tn — . (7.3) 

7.3 Ful ly inclusive contributions to Np at 0{a^) 

Using the renormahsed pole-scheme, we need to compute al l the cut diagrams, 

suggested by Figure 7.1, that contribute to the S'-matrix and the real cuts of the 

corresponding 0{a) diagrams mult ipl ied by \JZj,^ (or in fact - | ^ ) . I n addition we 

need the graph corresponding to the MS ' renormalisation of the gluon propagator 

as well as the Np part of the two loop vertex counter-term and the 0{p?) residue 

of the quark propagator. The results for each cut represent contributions to the 

to ta l cross-section, they include any symmetry factors and are normalised by the 

factor = ( f ) ' c^C^ A ^ T ^ , A , = f . 

7.3.1 The single real contributions 

The two single real emission diagrams can be easily evaluated using the three-

parton phase-space as given in Eq. (3.8). Using this representation, plus-distributions 

can be applied or the integrals can be evaluated directly i n terms of iF\ hyperge-

ometric functions. The results for the two topologies are 

a, If (l^^W 1 , 2 - l n ( T ^ ) , 36 - 77r2 + „ 7 ' + 
(JQN \S J [ 3 e 3 3e2 36e 

L i 2 ( - A 7 ^ ) Hj^tf HYTk:) (2 + 3 A , ) 
3e 3e 

4? _ ff^'Yf 1 2 + A , - I n ( ^ ) (1 - A,^) 
f7oA^ \ s J \ 12e'^ 12 e 
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7.3.2 The double real contributions 

To evaluate these two cut diagrams the four-parton phase-space is parameterised 

as given by Eq. (3.10), w i t h this implemented the Melhn-Barnes identity [67 

can be used to repose the problem as contour integrals over gamma functions. 

This transformation allows the automated analytic continuation of the integral 

representation to be performed and hence a series expansion in e can be obtained 

using [22]. The coefficients of the poles can then be evaluated analytically using 

Barne's Lemmas and summation identities. A good check of the analytic results 

is obtained by applying sector-decomposition instead of Mellin-Barnes identities 

and numerically integrating the coefficients using a Monte-Carlo routine. Bo th 

the integrals' contour integral representations and sector decomposed forms can 

be found in Appendix B, here we simply quote the results. 

r ^ f _ f f ^ ' V ' f 1 , - 7 + 3 1 n ( ^ ) - 3 0 8 + 33 T T ^ - 36 A , 

aoN \ s J [ 12e3 18 216 e 

5 L i , ( - A - ) ^ l n ( ^ ) ^ _̂  I n ( ^ ) (14 + 9 A . - 3 A . ^ ) 

6e 4e 18 e 

^ - f ^ ^ ' Y ' i 1 , l + 2 A , + 2 1 n ( ^ ) A . ( l + A . ) ^ 
aoN - { s j \ l 6 e + 126 ^ ^^'^^ 

7.3.3 The two loop contribution 

Only topology T l has a contribution to the S'-matrix. Automated Mellin-Barnes 

and standard reduction loop integral methods can be used w i t h bo th methods 
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giving the same analytic result 

all = ([iy^l_L_ 7 - 3 1 n ( ^ ) 266 - 277r̂  + 108 A , - 72 
aoN \ s J | l2e3 ^ ISe^ ^ 216e 

H j ^ f ^ H y ^ J ( - l l + 3 A , - t - 6 A , ^ - 6 A , ^ ) 

+ 

4e 18e 

l n ( A , ) ( - 2 + l n ( A , ) - h 4 1 n ( ^ ) - 4 A , ) 

12 e 
^ L i 2 ( - A , ) (L i2 ( l - A , ) - L i 2 ( - A , ) ) (1 - A , ^ ) ^ ^^^^ 

6 6 3 6 

I t should be noted that the results presented are contributions to the cross-section 

and are therefore real as the conjugate cut has been included. Due to the soft 

factor, the renormahsation of this v i r tua l cut requires only the Np part of Z3 

mult ip lying the 0{a) diagram, i t is 

""TI _ f f ^ ' ^ y f 1 , - 2 + l n ( j | - ; ) ^ - 2 4 0 + 3 0 7 r 2 - 1 0 8 A , + 72A2 

aoN \s J [ 3e3 Se^ 2166 

66 3e 
^ l n ( A , ) (1 - l n ( A , ) + A , ) ^ l n ( l + A , ) ' 

36 66 
L i 2 ( - A , ) (L i2 ( l - A , ) - L i 2 ( - A , ) ) (1 - A , ^ ) 

3e 36 ^ ' ^ ' 

The two loop counter-term does not contribute to the pole structure of topology 

T l and is zero for the purposes of this calculation. This is because the overall 

divergence of the two-loop cut is also zero; only an ultra-violet sub-divergence, 

coming f r o m the inner fermion loop, requires subtraction. 

110 



C h a p t e r 7: A T w o L o o p Calcu la t ion in Q C D 

7.4 Adding up the poles 

Despite the involved nature of the calculation we f ind that summing up al l the 

contributions to the to ta l cross-section does lead to a complete cancellation of the 

I R poles. Thus, aside f rom the problems associated w i t h the gauge dependence 

of the amplitudes and the need to modify the method of renormalisation, we f ind 

that , for this topology, i t should be possible to construct infrared finite amplitudes 

at N N L O in QCD. We have shown that the origin of all IR divergences in the 

amplitude appear to be understood and therefore the main obstacle to doing so is 

the sheer complexity of the calculation. 
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Chapter 8 

Conclusions and Outlook 

8.1 Summary of results 

We have outlined a new approach to the calculation of observables i n field theory. 

To begin w i t h we considered precisely how one might construct a new perturbation 

series based in the asymptotic interaction picture. We found that the necessary 

modifications to the LSZ, as described by Eq. (4.41), were beyond our capacity to 

compute directly. For the same reasons the propagators of the theory had to be 

expanded perturbatively on the free-state basis of states, see Eq. (4.40). This led 

to a more pragmatic interpretation of the A I P where we reverted to conventional 

perturbation theory, but used hard and soft factors to change the way amplitudes 

are defined. 

Instead of the usual approach where states are defined by the number of external 

particles, our dressed states are effectively defined by the number of "resolved" 

particles. Taking a conventional amplitude we thus constrain each vertex to be 

hard and then add to i t amplitudes w i t h greater external particle content, where 

the additional particles are constrained by vertex factors to be soft. Due to the 

soft interacting nature of these states we found that dressed states could only 
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really be defined f r o m calculations performed at the level of the amplitude-squared 

(discussed more fu l ly i n Section 4.4). A result of this is that the S-matrix, l iving on 

a basis of Fock states, is really s t i l l ill-defined. However, this does not mean that 

the new method for constructing infrared finite amplitudes does not offer benefits 

over the conventional approach. 

I n Sections 5, 6 and 7 we implemented practical checks of the new theory, con­

structing infrared finite amplitudes and their corresponding cross-sections. For 

QCD at N L O the method appears to work well for the hmited number of ob-

servables we have tested. The apparent finiteness of the amplitudes means that 

a numerical algorithm could successfully evaluate these observables. Further in­

vestigations at higher orders in the coupling highlighted two key problems w i t h 

the method. The first diff icul ty stems f rom the method used for renormalisation. 

I n the MS prescription ambiguities develop over the finite contributions obtained 

when soft factors are applied to counter-terms of the theory. However this is evi­

dently a technical problem that can be overcome by ensuring that renormalisation 

is performed consistently at the level of the integrand, using BPHZ renormalisation 

for example. 

A more serious problem for gauge theories is that the need to f ix the gauge in order 

to form the boson propagator introduces an apparent inconsistency over how the 

polarisation sum and internal lines are treated and this leads to cross topology 

cancellations of I R poles. Thus for gauge theories only a gauge invariant infrared 

safe sum of renormalised topologies can be shown to be finite. We saw in Section 6 

that such problems were indeed constrained to gauge theories and found that 

infrared finite amplitudes could be constructed in 0^ wi thout the need to modify 

the theory. For calculating the Np part of e+e" hadrons at 0{ag) we negotiated 

this problem by altering the way we split up the conventional amplitudes w i t h hard 

and soft factors. This was achieved by invoking the gauge symmetries of the theory 
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before applying hard and soft factors. In this way i t was possible to compute the 

N L O contribution to the dressed three-parton state and the LO contribution to 

the dressed four-parton state. 

Section 7 represents the application of the modified A I P to the first steps in the 

direct construction of the dressed two-parton state at N N L O for e"̂ e~ —> hadrons. 

We have shown that the two loop I R singularity structure for this example is 

under control and i t is therefore hopeful that this method may eventually be used 

to compute N N L O corrections to observables. However there are s t i l l problems to 

be overcome. 

8.2 Outlook 

There are many issues stiU to be addressed by this formahsm. The most pressing 

is the need to develop a method of systematically removing cross-topology cancel­

lations. I t seems impossible to construct a perturbation theory without fixing the 

gauge, thus the first step to dealing w i t h cross-topology cancellations is to iden­

t i f y which groups of topologies add to make a gauge invariant sum [82,83]. The 

question then remains how to systematically remove all terms that cancel across 

topologies. A successful algori thm for doing this would then make the applica­

t ion of hard and soft factors as straightforward as in scalar field theory. A possible 

alternative to this approach is described by Sterman [72,73], where a complex non-

covariant choice of gauge fixing may be chosen such that all I R divergences cancel 

at the level of individual topologies. Losing covariance would of course complicate 

renormalisation and make analytic calculations technically more diff icul t . 

Addit ional ly we need a way of systematically identifying what dressed amplitude-

squared a particular cut diagram, w i t h various hard and soft factors, belongs to. 

For the case of the non-analytic theta cut, this w i l l be simpler to achieve, however 
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for complicated topologies ambiguities remain and i t appears that only a direct 

calculation can shed hght on the problem. Evidently non-analytic investigations 

using the theta funct ion split are basically impossible, whilst for the analytic split 

they are just very hard using perturbative methods. Thus un t i l a better un­

derstanding of the effect of hard and soft factors on cut diagrams is achieved the 

analytic methods used in this thesis cannot be abandoned in favour of non-analytic 

methods. 

Another development that is of key importance is how to develop a successful 

numerical implementation of this theory. Assuming the previous two problems 

are addressed, we are left w i t h computing contributions that give a finite to ta l 

answer but have separately divergent parts. What is absolutely necessary is that 

we parameterise these divergent parts in exactly the same manner. Once this is 

achieved then a Monte-Carlo integration routine would be stable and able to eval­

uate such infrared finite amplitudes-squared. The advantage of this approach, in 

comparison to semi-analytic approaches, being that no further algebraic reduction 

of the integrand would be necessary. 

Work along these line has been presented by Soper for N L O corrections [84] where, 

after a contour integral over the energy, the v i r tua l term is rewrit ten as a phase-

space integral w i t h identical singular regions of phase-space to the corresponding 

real graphs. This method appears viable but also requires careful consideration of 

the singularities present i n the region of integration in order that a stable sampling 

of integration points may be made. I f hard soft separation functions were to be 

used i t would also require the use of an analytic separation function, at least 

in the energy, in order that the contour integral might be performed. Instead, 

since the application of soft factors allows for a completely inclusive integration 

in the soft regions of phase space, we advocate a method of re-writ ing the soft 

real phase-space integral as a loop integral. Assuming this could be achieved then 
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the assumption is that some form of Feynman parameterisation might be used to 

cancel the divergences directly at the level of the integrand. 

A problem that has yet to be considered is initial state radiation. This opens 

up a host of problems that need to be investigated. It is clear that relying on 

the usual PDFs would mean that we would not be able to define infrared finite 

amphtudes using the standard conventional methods of perturbation theory. Using 

the usual bare PDFs would mean that some of the IR divergences present in the 

perturbative calculation would have to be removed using IR subtractions similar to 

conventional subtraction methods. If we wish to avoid this then we will ultimately 

need to appeal to KLN theorem and look at ways of including different initial 

state diagrams such that all IR divergences are cancelled. The formulation for 

doing this is currently far from clear and fundamental questions remain over IR 

cancellations involving initial state radiation [11]. Assuming this problem could be 

surmounted we would also be left with the problem of having to redefine exactly 

what is meant by a PDF and then recalculate them. This new definition would of 

course be attractive in the sense it would not lead to divergent PDFs and would 

correspond directly to the probability of picking out some parton in a bound state. 

8.3 Conclusion 

In this thesis we have, through example, described the usefulness of the modified 

asymptotic interaction picture, which essentially involves a new way of group­

ing terms in conventional perturbation theory. This new approach opens up the 

possibility of taJdng fully inclusive integrations over the soft phase-space of real 

emission diagrams and converting them effectively to the status of loop corrections 

to conventional contributions with external particle content reduced. In this way 

infrared finite amplitudes, or at least amplitudes-squared, can be formed. 
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We have attempted to extend the vahdity of the theory to higher-order corrections 

and have discovered that gauge theories introduce additional obstructions to the 

method that stem f rom the procedure of gauge fixing. For the cases considered 

we described how to get around these problems and discussed how hard and soft 

factors can be used to classify the effective external particle content of a cut-

diagram. We have highlighted the need to develop algorithms that can identify 

cross-topology cancellations and determine the contributions of cut-diagrams to 

dressed states. 

Aside f rom these problems, we have shown that this method appears to work for 

N N L O corrections and there appears to be no further obstruction to its application 

at even higher orders. This method, wi thout the additional complication of in i t i a l 

state radiation, therefore offers an alternative approach to conventional subtraction 

methods and may eventually offer a competitive alternative when the era of the 

I L C beckons. 
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Appendix A 

Full Expressions and Basis 

Integrals 

Asymptotic propagator corrections 

The two-point basis integrals 

The two-point basis integrals for the reduction of the asymptotic propagators are 

given below in Eq. (A.l) . Note that the integrals have been expanded in 4 — 2e 

dimensions and that the poles are defined in the usual MS fashion earring the 

attendant factor of = (47r)̂ ê ^̂ . Note also that u = , where A is the soft 

scale and can be interpreted as the square of an imaginary mass. 
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" '̂̂  ^ ^ A + A l n ( - A ) (A.l) 

/ = - + 2 - l n ( - p 2 ) 

'^''^ ^ = ^ + 2 - l n ( - A ) + ( l + u;) In 

/ - ^ T n ^ITTl ^ = - + 2 - l n ( - A ) + v T T 4 ^ 1 n 

I n^/^ [k^ + A [{k + p)2 + A e ^ ^ V V I + 4cj + 1 / 

The fermion propagator 

The full form for the calculation of Eq. (4.50) in Section 4.7.2 is given by 

2 n r 14 

1 +0) 
(g; - ex (2 + g;)) (21n(l + a;) - ln(a;)) ^ 

a; 
a;(C, + C,e.) (̂ ^3 + C 4 e . ) l n ( ^ ^ ) 

6 ( l + a ; r ( l + 4 a ; f a;(l + 4a;)^ 
(A.2) 

Ci = 12 u;+ 228 a;2^ 1722 u;̂  + 6464a;̂  + 12092 + 

+ 8760 J' + 1796 + 896 + 240 

C2 = - 24 - 468a; - 3672u;̂  - 14658a;̂  - 30835a;'* - 31711a;̂  + • • • 

- 12906 o;̂  - 130 a;̂  +584 a;̂  +600 a;̂  

C 3 = - a; - 22a;2 - 198a;̂  - 924a;̂  - 2310a;̂  + • • • 

- 2772a;^- 924a;̂  + 264a;̂  + 152a;9 + 80a;^° 

C 4 = 2 + 45a; + 418a;2 + 2046a;̂  + 5544a;̂  + 7854a;̂  + ---

+ 4620uj^ + 396uj^ + 1 3 2 - 172o;̂  + 200a;^° (A.3) 
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The gluon propagator 

The full form for the calculation of Eq. (4.57) in Section 4.7.2 is given by 

j-jMf (2) 

12 

t 4 

1 +a; 
(21n(l +w) - { g ^ ' ' - p^p") + 

V l + 4 a ; - l j ^ 2 p2g,u __ {A^p'g'"'- B2P^n ln( 
+ 11 

v/l+4t^+l' 

3 ( l + a;) ' ( l+4cj)^ ( l + 4a;)^ 
(A.4) 

5 i = 

Ao = 

6 + lOSu; + 753^2 + 2481u;̂  + 3605u;̂  + • • • 

+ 1104 a;° + 378 u;̂  + 920 a;̂  + 600 

6 + lOSu; + 753a;2 + 2481 a;̂  + 3596a;'' + • • • 

- 852 + 1224 a;̂  +2360 a;̂  + 1680 o;̂  

1 + 22u; + 198a;̂  + 924cj^ + 2310cj^ + 2772w^ + 

+ 924 a;̂  - 264 a;̂  - 72a;̂  - 280 o;̂  - 400a;^° 

1 + 22 cc; + 198 u;̂  + 924 + 2310 u'^ + 2772 + 

+ 924 io^ - 264 - 432 - 640 a;̂  - 1120 u;'° (A.5) 

For the calculation of Eq. (4.63), where quadratic subtraction is used, the coeffi­

cients take the form 
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A ^ = B i = 6 + 114u; + 861u;2 + 3232a;̂  + 6046u;̂  + ---

+ 4380 + 898 + 448 + 120 

1 + 22a; + 1980;̂  + 9240-̂  + 2310a;̂  + 2772w^ + 

+ 924 - 264 a;̂  - 152 o;̂  - 80 cj^ (A.6) 

Three-point function integrals 

Here we define three-point integrals used in the loop calculations of Chapter 5 

and Chapter 6. The external momentum are on-shell with p\ = p\ = ^ and the 

invariant mass is given by (pi + ^ 2 ) ^ = Si2-

J 
Sl2 

'̂ /2 A;2 (A; - p i f [{k - pi - P2Y + A] 

— - L12 
6 

J IT^' 

h 

I -
J ITT' 

S12. 

S12 

S12 
- I n 

d'^k 
d/2 /i.2 p _ p^)2 + A] _ _ p2)2 

d'^k S12 

1 
In 

A " 
+ • • • e 

In 
A - f S12. 

+ • • • 

A " 
In ( - ^ 1 2 ) ( A + S12. 
In ( - ^ 1 2 ) ( 

= h Lio 
6 ^ 

A 
1 

S12 \ M 

A " 
S12. 

TT 
1^2 [(;, _ p^)2 + ^ ] p _ p ^ _ + ^ 

d'^k Sl2 

'̂ /2 [/c2 + A] (A: - pi)2 [(A; - pi - P2Y + A 
= 41n̂  

+ L i 2 

1 
2 

A ' 1, 2 " A " 
+ -ln2 

Sl2_ 2 •512 

S12 

[A;2 + A] [(A; - pi)2 + A] [(A; - pi - P2Y + A 
2 

Lio 
1 + V ' J ^ + T 

— Lio 1 - ^ / 4 ^ + T 

4 + ^ + 
^ A ^ V A 

(A.7) 
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Two loop propagator integrals 

In Chapter 6 most of the on-shell two loop propagator integrals are straightfor­

ward to evaluated using known one-loop integrals computed in terms of gamma 

functions. The all massive two-loop integral is less straightforward and is given by 

// i 7r'̂ /2 i 7r̂ /2 [A;2 + A ] " i [{k - If + A ] " ^ [̂ 2 + A]"3 
f ,n2 , 723,7123 - f 1 

i i - 2 in-> 2 ' 2 ^ 2 

= -{-if'^' ( - A ) ' X 

+• 

I - Til, ?2l2 - f, 72i3 - | , ni22, - d 

1,712,723,2 71123 " d 
4^3 

71i, 7112 - f, ni3 - f , 72123 - d 1 

a,-,b 
c,- - ,d 

_ r(a)-r(b) 
- r(c)-r(d)' where Tijj = ni + nj, riijk = Ui + rij + Uk and F 

For the six-dimensional self-energy in 0̂  theory, the methods described in [81 

were used to reduce all hypergeometric functions to two basis functions. Necessary 

expansions in e are given below 

2Fi 

2F1 

1,1+ e 1 \/37r 2e (V3.1n(3)-, '( i) 

l , l + 2e 1 
i + e ' 4 

2e 2e ( r- 1 ( \ \ 

- — v/3 7r( ln(12)-2)-2 7/; [-A^l^ 
9 V V3/ 

• • + i6V3e f Lis 
V3" 

— Lio 
1 +iN/3 

(A.8) 
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Integrals for two loop Q C D calculation 

For the two loop vertex diagram of Section 7 the analj^ic evaluation can be 

achieved using the following integrals 

/ d'^k 1 
i 7r'i/2 [A;2 + A] (/c - pif [k - ps)^ 

= (-l)"^+'(-A)-^ X - 1 

r ( - i + f - n,Y r(2 - f + m) 
r ( - 2 + d - n i ) 

+ ( - A ) - ' + ^ " ^ r ( f ) r ( f - m) r ( i - f + m) 

1,1 - 1 - ni _ s_" 
d - 2 - n i ' A 

"1,1 s 
d ' 

/ d'^k 1 
= (-l)"i=3 ( -A)- '+^ l+f-ni23 

r ( f - n i ) r ( l - f + ni23) 
r( |)r(n23) ( i - f + ni) 

3-P2 
l ,n3, l - I + ni23 _s_ 

i,n23 ' " A 
. (A9) 

The hyper geometric functions generated in the calculation of the soft two loop 

vertex give functions that can be expanded in e using [85]. An analytic check of this 

calculation was performed using the technique of automated Mellin-Barnes [22 . 
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Mellin-Barnes and 

Sector-Decomposed 

Representations 

During the computation of more difficult Feynman diagrams, particularly at two 

loop, MeUin-Barnes and Sector-Decomposition techniques were used to analytically 

and numerically evaluate the integrals. This appendix presents the forms of the 

integrand used to obtain the results quoted in the main body of the thesis for the 

four-parton phase-space diagrams of Section 7.3.2. 

The integrands of the fully inclusive four-parton final state graphs are given below 

( 2 \ 2 e 2 
'TI \W) CF NPTR is missing. The 

variables of integration are the Aj's, with the region of integration being the unit 
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cube. 

T l = 
/ 16̂  ^ 2 . + ^)2 ^ ^ _ l - 2 e ^ ^ - 2 - e ( i _ ;^^)2-2e _ ^^ )2 -2e _ ^^-e ^ 

V r(4 - 2 e) (A2 + (1 - Ai) (1 - A2) A3) (A, + Ax)̂  (A, + Ai As)̂  ) 

( - ( A 2 ( l + 2 A i A 2 ) ) + ( l + Ai ( - l + A2 + 2 e A 2 + 2A22) ) A3 - (1 - Ai) (1 - A2) Aĝ ) 

T2 = 

V 2 r(4 - 2 e) (A, + Ai) ' (A, + Ai A 2 ) ' ) 

( - l + A3-2A2A3 + 2eA2A3) (B.l) 

These two expressions, re-cast as contour integrals, have terms of the form 

Tl,: = 

3 c,+ioo 16̂  ^ r ( - ^ i ) r ( i + zi) T{-Z2) r(2 + Z2) r(-23) r(2 + ^3) A/+^^+^3 
) UZj 

7 = 1 
n / dZn 

J In _„•^3 • 

r ( l - e + m) r ( l - e + m3 + zi) r ( l - 2 e + m + zi) r ( l - 2 e + n2 + 2:1) 

r(2 - 2e + ms -h ns -h 21) r ( - l - 3e + m2 + n2 - Z3) 

r ( -2 - e + m2 - zi - 2:3) r ( -3 - 2e + - Z2 - Z3) 

r ( -2 - Ae + mi + ni + zi - Z2 - Z3) 

T2i = 

3 

(B.2) 

16̂  7r2 ̂  r(-Z2) r(2 + Z2) n-z^) r(2 + Z3) A/+^2+^^ 

•̂ ~2 c, —ioo 
- n / •J /o _„-\2 • (2 7ri)^r(4-2e) 

r(3 - 2 e) r ( l - e) r(2 - e) r ( -3 -e-zz) r ( - 4 - 2 e - ^2 - ^3) 
2r(-3e - Z3)r(-1 - 4e - 22 - 23) 

(B.3) 

where rrii and nj correspond to the integer powers (1 — 2;,) and zi are respectively 

raised. To compute the contour integrals M.Czakon's Mathematica algorithm [22 

is used to analytically continue the integrals and then expand about e = 0. The 

analytic forms for the poles can then be obtained using Barnes lemmas and sum­

mation identities. A strong check on the analytical results is obtained by using 

125 



Chapter B: Mellin-Barnes and Sector-Decomposed Representations 

sector-decomposition techniques, 
T l = 

23+36 _ A j ^ ^ ^ ^ - 2 - 3 . ^^-2-2e ^^-2e _ ^^ye 

(1 - ( - 2 + A i A2) (1 - ^ ) ' ' ( - 2 - 2 A i + A i A2 A3) 

23+36 F ( l _ A i ^ ^ ^^_2-3 . ^ ^ - 2 - . ^^-2-2 . _ 

( 1 - ^ ) ' ' ( - 2 + A1) ( 1 - A i ^ ) ' ' ( _ 2 _ 2 A 2 + A i A 2 A 3 ) 

2^+3^ F ( l - ^ , A2 A3) A2-^-^^ A i - 2 ^ A a - ^ 

( 1 - ^ ) ' ' ( - 2 + A1) ( i - ^ ) ' ' ( i - A 2 A 3 r ( - 2 - 2 A 1 A 3 + A1A2A3) 
23+36 ^ ( ^ ^ X^-l-2e ^^-2-2e _ ^ ^ y e 

( i - ^ y ' ( i - (4-2x1+2x2-2x2X3+X1X2 As) 

2^+3^ F ( ^ , ^ , A2 A3) A i - ^ - 2 ^ A 2 - ' - ' ^ Ag-^ 

(1 - (1 - (1 - A2 A s ) ' (2 + 4As - 2 A i As - 2 A2 As + A i A2 A3) 

2^+4^ F ( l - ^ , 1 - ^ , A2 As) A 2 ^ - ' ' A i - 2 ^ As ' 

( 1 - ^ ) ' ' ( - 2 + A1) ( l - f ) ' ( - 2 + A2)'( l-A2A3)' ( 4 - 2 A 2 + A1A22A3) 

2^+4^ 1 - f , A2 As) A i - ^ - 2 ^ A2^- ' ' A3- ' 

(1 - ^ ) ' ' (1 - ^ ) ' ( - 2 + A2)' (1 - A2 A s ) ' ( - 4 + 2 A2 - 2 A2' A3 + A i A2' As) 

23+46 - ^ , 1 - As) A s ^ - ^ ' A r 2 ^ A 2 - ' ' (1 - A s ) " ' 

( - 2 + A1) (1 - ( - 2 + A2 A3)' ( 4 - 2 A 2 A S + A1A2AS') 

+ 

+ 

+ 

^ 2̂ +̂ ^ F ( ^ , 1 - As) Ar^-2^ A s ^ - ^ ' A2-^' (1 - A s ) " ' 

(1 - ^ ) ' ' (1 - ^ ) ' (-2 + A2 Xsf ( - 4 + 2 A2 As - 2 A2 As^ + A i A2 A s " ) ' 

here the finite function F before sector decomposition takes on the form F(Ai, A2, A3). 

Numerical evaluation proceeds by applying plus-distributions, inserting the cor­

rect form for the finite function F and simply integrating the result using VE­

GAS [79,86]. The T2 topology can be evaluated directly using plus distributions 

since it has no overlapping singularities. 
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T I R A - A n Interactive One-Loop 

Reduction Algorithm 

Program summary 

Title of program: TIRA 

Version: 1.0 

Available at: http:www.ippp.dur.ac.uk/~dph3gb/main.html 

Programming Language: Mathematica 5.0 

Nature of problem: Reduction of Feynman Integrals at one-loop with upto four 

denominators (raised to any integer power) and a tensor rank of three. 

Dependencies: Requires the installation of FeynCalc for tensor algebra. 
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Program notes 

In these program notes we describe how to use a simple deterministic one-loop 

reduction algorithm. The algorithm will reduce one-loop integrals with upto four 

Feynman denominators raised to any integer power and with a tensor rank of no 

more than three. The tensor reduction is achieved by implementing Davdychev's 

solution of rewriting tensor integrals as scalar integrals in higher dimensions with 

propagators raised by some power [57]. Such scalar integrals can naturally be 

reduced using recurrence relations and integration-by-parts as described in [58 . 

The purpose of this program is to provide users with an easy to use calculational 

tool for quick reduction of small to medium sized one-loop calculations. It is 

written in Mathematica and is not intended for large one-loop reduction problems, 

such situations require the building of integral reduction tables (see for example 

AIR [87]). The program should be viewed as an alternative to the OneLoop 

reduction program found in FeynCalc. Compared to OneLoop it offers a more 

complete reduction for arbitrary kinematics; the reduction algorithm adapts as 

required if either the Gram or Cayley determinants vanish. TIRA also improves 

over OneLoop in that it can deal with propagators raised to higher integer powers 

and Feynman integrals defined in dimensions different from 4 — 2e. It should be 

noted that reduction times for scalar integrals grows exponentially with the powers 

of the propagators and therefore computing resources quickly become an issue. For 

example TIRA will not be able to reduce a four-denominator Feynman integral 

where the powers of the propagators have all been raised to, say, four or more. In 

such cases Mathematica will most likely run out of memory on modern desktop 

computers. 
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In principle it is straightforward to reduce higher ranked tensors; the algorithm 
may also be extended to a greater number of denominators. However as previously 
discussed this is a move towards more serious one-loop calculations and is outside 
the scope of this program. 

Description of T I R A 

The Mathematica package is loaded simply via the command <C TIRA.m where­

upon Feyncalc will also be automatically loaded. The basic scalar integral is 

defined as given in equation C.l and the functions available are 

/ 
• SetGlobalMomentum[ { pi, p2, ps, PA}] - Function takes a four element hst 

that defines the external momenta entering into the scalar integral defined 

in equation C.l. 

• SetGlobalMasses[ { mf, ml, m^, ml } ] - Function takes a four element hst 

that defines the propagator masses-squared entering into the scalar integral 

defined in equation C.l. 

• SetKinematicInvariant[ Pa, Pb, Pa • Pb ] - Function takes the symbolic names 

of two external four-vectors as the first two arguments and sets their dot-

product to be equal to the third argument. This is of critical importance since 

the reduction of associated scalar integrals will change as the calculation of 

Gram and Cayley determinants depends directly of the value of the kinematic 

invariants. 

• SI[ dim , { 71,1, ^ 2 , 724 } ] - First argument defines the dimension of a 

the scalar integral you wish to reduce, the second argument is a list defining 
129 



Chapter C: T I R A - An Interactive One-Loop Reduction Algorithm 

the powers of the propagators. Note that the dimension must be an inte­
ger, an associated —2e is necessarily assumed. This function will return an 
expression for this integral in terms of a reduction to basis scalar integrals, 
BSI's. The reduction algorithm will work based on the global definitions for 
external four-momenta and masses. The BSI function is defined as 

BSI 

n2 

\\_Pn "̂n J / 

• TI[ dim , rank , { ni , ^2, ^3, 714 } ] - This will write out the Davdychev 

tensor reduction using the global four-momenta definitions, tensor rank can 

take on the values 1, 2 or 3. The scalar integrals returned take the form SI 

dim , { Hi, n2, n^, 724 } , { 1, 2, 3, 4 } ], the third argument is a list used by 

the internal scalar reduction algorithm. 

• ReduceSI[ expression ] - Function will apply the scalar reduction algorithm to 

any scalar integrals found in expression (format as given by the TI function). 

The algorithm relies on global definitions of momentum and masses. 

• SI[ VEC, MASS, dim , { n i , n2, n3, ^4 } ] - This is the same as the previously 

defined SI function except that the external four-momenta and masses are 

defined by two four-entry lists that defines local values. 

• TI[ VEC, MASS, dim , rank, { rii, n^, n^, n4 } ] - This is the same as the 

previously defined TI function except that the external four-momenta and 

masses are defined by two four-entry lists that defines local values. 

• ReduceSI[ VEC, MASS, expression ] - This is the same as the previously 

defined T I function except that the external four-momenta and masses are 

defined by two four-entry lists that defines local values. 
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