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Abstract 

In 1990, clonal seedlings from twelve full-sib families of Sitka spruce (Picea sitchensis 

(Bong.) Carr.) were planted at four contrasting sites throughout the UK; Newcastleton and 

Wauchope in the Scottish Borders; Scootmore in Morayshire; and Llandrindod in Wales. 

There were large differences in nutrient concentrations between sites, with Newcastleton 

generally having the highest nitrogen- and phosphorus- based nutrient concentrations and 

Wauchope the lowest. Both sites had a similar soil structure, with the soil at Scootmore 

having a lower ability to capture moisture. Scootmore experienced the highest 

temperatures during the growing season and Wauchope the lowest. There was little 

difference in precipitation levels between sites but there were large differences between 

years. 

After 10 years of growth in the field, height, diameter and wood density (using the 

Pilodyn® technique) were measured. The resulting data showed that Newcastleton and 

Wauchope were similar and had greater tree growth, whereas Scootmore and Llandrindod 

were also similar but had smaller tree growth but higher wood density. However, a high 

mortality rate at Llandrindod excluded this site from further analysis. The 10-year data 

were used to classify the clones into clusters, and a clone representative of each cluster was 

chosen for further analysis. 

The selected clones showed the same growth patterns between sites; C20177 had largest 

growth rate; C20211 had smallest growth rate but higher wood density; C20208 was 

intermediate in terms of growth and wood density. However, large variation was apparent 

at each site, a result of environmental impacts on the growth rates. Chlorophyll, total 

nitrogen (N) and phosphorus (P) were exfracted from differently aged needles, at different 

heights in the canopy for each clone at each site. N and P did not vary between clones or 

heights in the canopy, although did increase with increasing needle age. The distribution of 

chlorophyll followed light intensity patterns (increasing in shaded older and lower canopy 

needles) and was significantly higher in C20177. Al l foHar constituents were higher in 

Newcastleton trees and lowest in Scootmore. Foliar constituents reflected the nutrient 

concentration in the soils, although Scootmore had lower foliar concentrations than 

expected, which may be a result of the reduced moisture availability at this site. The lower 

uptake of nutrients at Scootmore explains the lower growth rate at Scootmore. 



Photosynthetic light response curves showed highest photosynthetic and respiration rates at 

Newcastleton and showed lowest rates at Wauchope. There was little difference in rates 

between clones or position in the canopy. Various parameters of light efficiency showed 

little difference between clones, position in the canopy or site. Differences in total non

structural carbohydrates were evident between sites (Wauchope had the highest 

concentrations) and between clones (C20177 had the lowest). Lower carbohydrate levels in 

C20177 reflected the greater growth rates by this clone. 

Destructive biomass sampling of above-ground organs reflected the results of the earlier 

height, diameter and wood density measiu-ements, indicating that the clones had not 

changed growth patterns between the years 2000 and 2004. Between sites, only C20177 

showed a change in carbon (C) allocation, with a switch from allocating the majority of C 

to the trunk at favourable sites (Newcastleton) to allocating the majority of C to branches 

under nutrient or water stress (Wauchope and Scootmore respectively). C allocation below-

ground showed no clear pattern between clones, although fine root density was lowest for 

C20177, suggesting this clone was less effected by nutrient or water stress. Differences in 

C allocation below-ground between Wauchope and the other two sites also suggested that 

nutrient concentration had a greater effect on coarse roots. 

Parameters were calculated from the observed data and used to simulate photosynthetic 

rates of Sitka spruce in a process-based model of tree evapotranspiration. A comparison 

between observed and simulated data showed that the model predicted seasonal, site and 

clonal differences but the absolute values were overestimated at Newcastleton and 

underestimated at Wauchope and Scootmore. A sensitivity analysis showed that six 

parameters largely affected the output of the model and, with the majority of these 

parameters extrapolated from the literature, they would explain the large differences 

between simulated and observed data. 
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1. Smmmary 

1.1 Genotype versus environment 

Sitka spruce (Picea sitchensis (Bong.) Carr.) is a native species of North America, with its 

natural distribution spread along the Pacific coast, in a narrow strip from California to 

Alaska. The growth requirements of Sitka spruce are broad, allowing it to establish on a 

diverse selection of sites (Roche & Haddock, 1987). The species has flourished since its 

arrival in Britain in 1831, as it is particularly well-adapted to the oceanic climate, and has 

become one of the most widely planted and important timber species (Hobnes, 1987). 

Experiments by the International Union of Forest Research Organisations have shown that 

Sitka spruce from various provenances have different growth qualities when cultivated on 

a common site. Sitka spruce from warmer provenances, such as those from California and 

southern Oregon, performed better at warmer sites (Nanson, 1984; Pederick, 1984; Roman-

Amat, 1984), whilst Sitka spruce from colder provenances, such as those from British 

Columbia and Alaska, were much hardier and outperformed the warmer provenances at the 

colder sites (Alexandrov, 1984; Kleinschmit & Svolba, 1984). In the UK, Australia and 

New Zealand, growth is inversely correlated to latitude of provenance (Lines «& Samuel, 

1984; Miller & Shelboume, 1984; Pederick, 1984), whereas in Latvia, growth was 

positively correlated with increasing latitude (Pirags, 1984). 

Environmental factors explain the majority of the growth variation in Sitka spruce, with 

climate and attack by white pine weevil (Pissodes strobi) accoimting for over two-thirds of 

the variation in tree height, trunk diameter and seedling survival in British Colombia, 

Canada (Ying, 1997). The effect of climate changes with increasing free age, from a 

temperature related effect in younger spruce frees to a moisture related effect in older frees 

(Xu et al, 2000). Abundant precipitation is one of the most important factors during the 

growing season of Sitka spruce (Roche & Haddock, 1987) and drought is also a major 

factor in determining plant growth and survival in Norway spruce {Picea abies) in southern 

Europe; CO2 assimilation decreased and there was a decline in radial increment of the 

trunk (Vygodskaya et al., 1995). Temperature is a major determinant of the geographical 

location of many species. The distribution of Tilia cordata, and many other European 

species, was limited by low summer temperatures (Pigott & Huntley, 1978, 1980, 1981) or 



by the tolerance of low winter temperatures (Grace, 1987), and the growth of Norway 

spruce increased with increasing temperatures during the growing season (Makinen et al, 

2001). Nutrient availability also impacts on growth, with soil nitrogen deficiency causing a 

decrease in chlorophyll content, photosynthesis, Rubisco activity, stomatal conductance, 

and needle size and number in Sitka spruce {Picea sitchensis (Bong.) Carr.) (Chandler & 

Dale, 1993, 1995; Murray et al, 2000). Phosphorus deficiency generally inhibited shoot 

growth and greatly diminished wood volume in trees (Conroy et al., 1990). 

1.2 Process-Based Tree Growth Models 

The Farquhar model is one of the most widely used and developed process-based models 

(Farquhar et al, 1980; von Caemmerer & Farquhar, 1981). The model is a comprehensive 

description of the biochemical processes of photosynthesis that are compatible with studies 

of gas exchange measiu-ements. The Farquhar model was fiirther developed to include 

limitation by thylakoid activity (Sage, 1990) and incorporated into models simulating 

canopy photosynthesis of Quercus alba (Harley & Baldocchi, 1995), Picea mariana 

(Rayment et al, 2002), Picea abies (Falge et al, 1996), and Picea sitchensis and Pinus 

radiata (Wang &. Jarvis, 1990). The Farquhar model was also coupled with carbon 

allocation models (Aber & Federer, 1992; Bartelink, 1998; Dewar, 1997; McMurtrie & 

Wolf, 1983; Reynolds & Thomley, 1982) and combined with the pipe-model theory 

(Makela, 1999; Valentine, 1999; West, 1993). However, the above models were developed 

for a generic tree and validated with data fi"om one species and for different environments, 

but did not consider genetic variation within species. 

1.3 Aims of the research contained within this thesis 

Using Sitka spruce as a test species, the impact of both genotype and environment are 

investigated in relation to photosynthesis and tree growth. 

Forest Research had a unique set of clonal experiments, planted in 1990. The experiment 

consisted of eight Sitka spruce stock plants randomly selected from within six unrelated 

fiill-sib families. The stock plants were the hybrids of 'plus' trees, trees with excellent 

heritable growth characteristics, and each family was a cross of unique parents. Fifteen 

seedlings were propagated from each stock plant, so in total there were 720 frees from 

eight stock plants within six families. The frees were planted randomly within a site and 



replicated at four sites across the UK. With 48 clones from six families, planted across four 

contrasting sites, the effect of genotype and environment could be thoroughly investigated. 

Forest Research has been developing a process-based tree growth model to forecast plant 

response to climate change and site management, and to select tree lines best suited to 

particular environments. The model predicts canopy photosynthesis, evapofranspiration 

and carbon allocation. The model is split into several modules: the weather generator, 

which downscales monthly climate data into daily time steps; the canopy light 

environment, calculating the light intensity through the canopy; the canopy water 

environment, calculating rainfall interception by the canopy and other tree structures; the 

soil environment, calculating the movement of water within the soil; the gas exchange 

model, calculating CO2 assimilation; and carbon allocation. 

By taking gas exchange and physiology measurements of different clones, within different 

families and at different sites, the model equations can be modified to take in account 

genetic variability and the differences in growth, yield and environmental interactions. The 

primary aim of this project was to quantify genetic variability in the growth and physiology 

of Sitka spruce and to extend the predictive capabilities of existing process-based models 

of tree growth. 

1.4 Thesis plan 

The thesis begins with an introduction to the present literature, indicating the 

environmental and genetic impacts on photosynthesis and growth, with additional 

information on the development of existing process-based models. A background to Sitka 

spruce, its growth requirements and use in British forestry is also included. Chapter 3 

investigates the differences in various climate and soil properties at each site. A 

comparison of these properties between sites and between clones within site is included. 

Chapter 4 explains the background to the Forest Research clonal experiments, a description 

of the field trials, previous data collection and an analysis of these data showing the effect 

of the environment and the growth differences between different families of Sitka spruce. 

Chapter 5 focuses on the selection of Sitka spruce clones from the data, as representative of 

the various growth patterns that are seen within the experiments. A comparison of the 

selected clones both within and between sites is also presented. Chapter 6 investigates the 

differences between the foliar nifrogen, phosphorus and chlorophyll contents of the 



selected clones both within and between sites. The effect of soil nutrient concentrations on 

the foliar concentrations is discussed. In Chapter 7, the differences in gas exchange and 

related photosynthetic parameters of the clones, normalised for foliar nitrogen 

concentration, are investigated. In Chapter 8, the carbon allocation of the clones is 

calculated from destructive biomass sampling and differences between the clones and sites 

are discussed. Chapter 9 includes a description of the Forest Research process-based tree 

growth model. Comparisons of model simulations with observed data are discussed. A 

sensitivity analysis of various parameters is also presented. The fmal chapter is a 

discussion of the results from Chapter 3 to Chapter 9, and the conclusions that can be 

drawn from these data. 



2. Literature 

2.1 Sitka spruce 

2.1.1 Natural distribution of Sitka spruce 

Sitka spruce (Picea sitchensis [Bong.] Carr.) is a native species of North America, with the 

natural distribution spread along the Pacific coast, in a narrow strip from California to 

Alaska (Fig 2.1). The natural distribution covers a distance of 3000 km and 22 degrees of 

latitude and is dependent on abimdant moisture during the growing season, with Sitka 

spruce particularly limited to areas where there is no summer drought (Roche & Haddock, 

1987). The annual precipitation ranges from 1345 mm to 2980 mm, with higher 

precipitation in the north, and July precipitation ranges from 4 mm to 175 mm. The annual 

heat sums, based on a threshold of 5 °C, range from 2511 °C in Oregon to 851 "C in Alaska 

and frost-free days vary from 194 to 111 at the same sites (Roche & Haddock, 1987). Sitka 

spruce is less competitive in warmer, drier areas and is replaced by Douglas-fir 

{Pseudotsuga menziesii) and western hemlock {Tsuga heterophylld), with the white pine 

weevil also becoming a pest. Sitka spruce is also a low elevation species, rarely found 

above 500 m and grows best on deep, moist, well-drained soils. However, it occurs on a 

wide variety of soils such as alluvial soils along river banks, on coarse textured soils and 

on soils with a thick accumulation of organic matter, with the pH generally ranging from 

4.0 to 5.7 (Harris, 1978). Sitka spruce is mainly associated with western hemlock but 

towards the south it is associated with red wood {Sequoia sempervirens), Port-Orford cedar 

{Chamaecyparis lawsoniana), western white pine {Pinus monticola), Douglas-fir, shore 

pine {Pinus contortd) and western red cedar {Thuja plicata), and towards the north with 

Alaskan cedar {Chamaecyparis nootkatensis), mountain hemlock {Tsuga mertensiana) and 

sub-alpine fir {Abies lasiocarpa). Over a small part of its range in British Colombia, Sitka 

spruce is sympatric with white spruce (Roche & Haddock, 1987). 

2.1.2 The use of Sitka spruce in British forestry 

David Douglas first brought Sitka spruce to Britain in 1831, after visiting the spruce forests 

in British Colombia (Holmes, 1987). The species has flourished since its arrival, as it is 

particularly well adapted to the British oceanic climate and because of its ability to grow 

on a wide range of soils (Roche & Haddock, 1987). It has now become widely planted and 



an important timber species because of its versatility, vigour and good quahty timber 

(Holmes, 1987). 

Fig 2.1: Natural distribution of Sitka spruce in North America (from 'Flora Online': 
http://flora.liuh.harvard.edu:8080/flora/index.jsp). 

Sitka spruce is the most important species growing in upland Britain and a woodland 

census in 1980 estimated that 48 % of the coniferous high forest area in Scotland was Sitka 

spruce plantation. In the early 1980s, over 70 % of the trees planted annually in Scotland 

were Sitka spruce (Low, 1987). During 1982 to 1986, the annual cut of Sitka spruce was 

1.32 million m ,̂ with 605 000 m^ as small roimd wood and 715 000 m^ as saw logs 

(Brazier, 1987). Round wood is mainly used for pulping and particleboard, and saw logs 

are used in house construction, fencing, sheds, agricultural buildings, pallets and packaging 

(Brazier, 1987). 



2.2 Environmental effects on plant growth 

2.2.1 Climate effects 

Temperature 

Temperature is one of the most important climatic variables, with numerous studies 

illusfrating the restriction on plant disfribution imposed by temperature. In 1944, research 

on Ilex aquifolium illusfrated an eastern distribution limitation in Britain, an area where it 

can tolerate the low temperatures (Grace, 1987), a similar distribution to ivy (Hedera), 

foxglove (Digitalis) and primrose (Primula) (Pigott, 1975). Tilia cordata in western 

Europe and Cirsium acaule in Britain are limited in their distribution by low summer 

temperatiires (Pigott, 1970; Pigott & Huntley, 1978, 1980, 1981), whereas the distiibution 

of Fagus species in both northern America and western Europe is determined by both the 

minimum temperatures of January and July (Huntiey et al., 1989). Birch (Betula 

pubescens) establishment sfrongly correlates with temperature, occurring only when 

temperatures rise above 5°C and to a much greater extent at 10°C (Woodward, 1987) 

(Fig 2.2), and during a 14-year study on Verbena officinalis, a population minimum 

occurred following a very cold January (Woodward, 1997). 

During periods of cold temperatures, the ability to resist frost and damage caused by cold 

temperatures often determines plant disfribution. The primary site of injury is the cell 

membrane (Senser & Beck, 1973) where a decrease in temperature causes a change in the 

hydrophobic matrix (Lyons, 1973), which in turn leads to a metabolic imbalance (Alberdi 

& Corcuera, 1991). In cold sensitive plants, photosynthesis is adversely affected, as the 

election fransport in the thylakoids is uncoupled (Alberdi & Corcuera, 1991). Limitation to 

photosynthesis can also be caused by end product synthesis during cold temperatures, as a 

result of increased inhibition of enzymes (Stitt, 1991). 

The lowest temperature for plant survival depends on the previous exposure to low 

temperatures (Grace, 1987). During seasonal periodic sfress plants have time to adapt 

(Alberdi & Corcuera, 1991), a process known as cold acclimation - a non-heritable 

modification of the structure and function of a plant, induced by cold temperatures, which 

minimises the damage caused by low temperatures (Fig 2.3). 



Cold acclimation depends on the species, the season in which the cold temperatures occur 

and is induced by decreasing day lengths (Alberdi & Corcuera, 1991). During acclimation, 

carbohydrates, amino acids, glycinebetaine, proteins and lipids accumulate in the 

cytoplasm to reduce the risk of internal freezing. In Picea, during the cold-hardening 

period there are a larger number of divisions in the chloroplasts (Senser & Beck, 1984), 

although it is vinknown how it affects freezing tolerance. In Scots pine frees from colder 

habitats, more biomass was allocated to the roots and they had lower growth rates than 

their warmer habitat counterparts (Oleksyn et al, 1998). 
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Fig 2.2: Relationship between temperature and seed germination of birch {Betula sp.) (after Woodward 
(1987) and KuUman (1979)). 

During the summer months, cold temperatures disrupt the development of the embryos 

during reproduction. Firstly, bad weather will reduce the number of pollinator visits, a 

particular problem if the stigma is receptive only for a short period (Pigott, 1970). 

Secondly, cold temperatures can delay development of the embryo and, i f development is 

not fiilly complete by the time of detachment, the fiiiit or seed will not be viable (Pigott, 

1975). Thirdly, i f the temperatures are too low, germination carmot occur. Flowering and 

germination will only occur in V. officinalis above a certain temperature (Woodward, 

1997), and in the case of 7. cordata growing in oceanic climates, pollen will not germinate 

and the seed cannot be fertilised if temperatures decline below a threshold (Pigott & 

Huntley, 1981). 
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Fig 2.3: Cold acclimation for three clones of red^osier dogwood {Cornus sericea; after Begon et al. (1996) 
and Weiser (1970)). 

Although dependent on species, there is an eventual decrease in photosynthesis at high 

temperatures. The stomata will close to reduce water loss i f temperatures rise too high but 

this also reduces the carbon dioxide (CO2) concentration in the leaf and will lead to a 

decrease in the rate of photosynthesis (Woodrow et al., 1990). Elevated temperatures can 

also change the canopy structure of trees by altering the total leaf area, distributions of leaf 

area and leaf age classes, which affect the transpiration rate and photosynthesis (Kellomaki 

& Wang, 1998). 

Rubisco has an affinity for both CO2 and oxygen (O2), and at temperatures of around 20°C, 

there is a higher affinity for CO2. With an increase in temperature, the solubility of CO2 
and O2 are altered (Stitt, 1991) and the affinity of Rubisco to O2 increases (Jordan & Ogren, 

1984). However, two thirds of the decrease in photosynthesis with increasing temperature 

is attributed to a decrease in the rate of Rubisco activity (Grub & Machler, 1990), with 

only a third due to the change in solubility of the gases (Jordan & Ogren, 1984). However, 

by increasing the demand for carbohydrates within the plant there is an increase in the rate 

of photosynthesis, which suggests there is limitation by carbohydrate accumulation. 

I f carbohydrates accumulate, the photosynthetic pathway is inhibited and physical damage 

to the photosynthetic apparatus may also occur (Tissue et al., 1993). In Trifoliumpratense 

carbohydrate accumulation decreased photosynthesis and, in monoecious cucumbers 

(Cucumis sativus cv. Chipper), an increase in starch led to a decrease in carbon exchange 



mechanisms during vegetative growth and flowering (Peet et al, 1986). Similarly, when 

the export of carbohydrates was blocked from the leaf oiAmaranthus edulis there was a 

decrease in the rate of photosynthesis, with soluble sugar concentrations increasing six fold 

(Azcon-Bieto & Osmond, 1983; Blechschmidt-Schneider a/., 1989). 

When there is an accumulation of sucrose, there is a decrease in inorganic phosphate (Pi) 

availability (Arp, 1991). With a low Pi concentration there is a decrease in the rates of 

photophosphorylation, electron fransport and phosphoglyceric acid (PGA) production 

(Blechschmidt-Schneider et al., 1989). Therefore, the rate of ribulose bisphosphate (RuBP) 

regeneration will be depressed (Azcon-Bieto, 1983) and will lead to photosynthetic 

inhibition. 

A large concentration of sucrose also induces higher formation rates of starch grains, 

which are of a larger and irregular shape. This accumulation of starch can damage or alter 

the structure of the thylakoid membranes in the chloroplast or compresses the cytosol, 

leading to an increase in the diffusive resistance to CO2 (Stitt, 1991). 

Moisture 

Water availability is an important factor of plant distribution. In the USA, tundra and forest 

formations occur where water deficits are low and coniferous forests occur only where 

water deficits are at their lowest, whilst grasslands and shrublands are at the opposite 

exfreme and occur where the annual water deficit is high (Stephenson, 1990). Norway 

spruce showed a decrease in CO2 assimilation by over 15 % during dry spells over a 100-

year period in southern Europe (Vygodskaya et al., 1995). Drought during the summer 

months limited photosynthesis in both moimtain and coastal populations of Pistacia 

lentiscus L. in Spain (Flexas et al., 2001) and during an extreme drought in 1995 in 

northern England, plant survival on a limestone grassland was limited to areas of deep soils 

in the valley bottom and greater moisture availability (Buckland et al. , 1997). 

During drought the water potential may fall below a threshold value and different 

processes, as opposed to cell expansion and leaf growth, may occur, e.g. leaf abscission 

(Woodward, 1987). A correlation between abscission and soil water potential has 

frequently been observed in trees (Woodward, 1987) but is species-dependent. 
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The main effect of water sfress is stomatal closure (Stitt, 1991). The effect of stomatal 

closure on franspiration and photosynthesis is well documented, although the mechanisms 

underlying the response to environmental variation are not (Whitehead, 1998). Stomatal 

conductance varies with needle age, depth in the canopy and shoot order (Leverenz et al, 

1982), so the effect of water sfress varies depending on the age of the leaf and its position 

in the canopy. With confrol imposed by stomatal closure, the water deficit decreases 

causing an increase in Rubisco activity, although the rate of CO2 assimilation decreases 

(Chaves, 1991; Woodrow etal, 1990). Other factors often accompany drought. Excess 

light and high temperatures damage the photo-reaction cenfres through photoinhibition 

(Chaves, 1991) - in Pinus radiata, drought caused a reduction in the election flow to 

photosystem I I (Conroy et al, 1986). 

Dehydration in a plant causes a change in the partitioning of carbon from starch to sucrose, 

creating molecules of a low molecular weight, probably a mechanism of osmotic 

adjustment (Chaves, 1991). Acclimation to drought sfress in Pinus radiata occurred with 

an increase in atmospheric CO2 availability, caused by an elevation in the amount of 

carbohydrate, which helped facilitate osmotic adjustment (Conroy et al, 1986). 

Wind 

Wind is an important factor for ventilating plant surfaces, mixing air near the leaf with new 

air from the atmosphere, bringing fresh supphes of CO2 to leaves and fransporting heat and 

water vapour away. However, species living in windy places often have dwarf or prosfrate 

growth forms (Grace, 1981). Dwarf forms also occur in areas of drought, so water sfress 

has been proposed as a mechanism in both cases; evaporation for drought and franspiration 

for wind. However, an increase in wind does not necessarily increase franspiration 

because, as the wind cools the leaf, the gradient of water vapour diffiision slows down 

(Grace, 1981). 

Experiments have shown that shaking, an analogy for wind sfress, prevents the lamina 

from expanding properly, affecting plant growth (Grace, 1981). The apical end of the shoot 

is very sensitive to displacement, which is likely to occur in windy environments. I f this 

happens, lower shoots outgrow upper shoots and leads to small bushy growth forms 

(Grace, 1981). 
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Wind can also cause physical micro- or macro- scopic damage. Microscopic damage is 

caused by collision of the leaves, altering the wax deposition on the cuticle and inducing 

the rupture of epidermal cells. This can lead to a higher conductance to water vapour and 

an increase in franspiration, which in turn may lead to water sfress. Integrity of the cuticle 

is important during periods of limited water availability. 

In the Cairngorms, Scotland, the meristem temperature of the vegetation was measured 

along an altitudinal fransect, running through native pine forest at low elevations through 

to dwarf shrubs at high elevations (Grace et al., 1989). In the forest and amongst dwarf 

vegetation at high elevation, the meristem temperature was similar to the air temperature, 

but at mid altitudes, there was a large difference between meristem temperature and air 

temperature. The dwarf structure at high elevations was aerodynamically smoother than 

taller vegetation at mid elevations. 

2.2.2 Light intensity 

Generally, an increase in solar irradiance increases the rate of photosynthesis (Campbell et 

al., 1988). With continuing high irradiance, there is a near linear increase in the rate of CO2 
fixation until a threshold level is reached, a result of light saturation or end product 

accumulation (Stitt, 1991). As the confrol by stomatal conductance increases with 

increasing irradiance (Stitt et al., 1991), the inhibition may also be a result of water deficit 

or reduction of the internal CO2 in the leaf In Trifolium pratense, an increase in light 

caused a decrease in the activity of Rubisco, suggesting the limiting process is the 

accumulation of carbohydrates (Grub & Machler, 1990). 

Using radiolabelled CO2 with "*C, Hodge et al. (1997) investigated the effects of different 

light freatments on Lolium perenne grown in sand and soil. In sand, total plant biomass 

was unaffected by an increase in light but there was a change in the partitioning. There was 

an increase in root growth, causing an increase in root to shoot ratio. L. perenne grown in 

soil also demonsfrated a difference in the carbon partitioning, but showing a decrease in 

the root to shoot ratio, a result of an increase in shoot growth. Where nutrients were 

limiting, increased photosynthesis of L. perenne was used to increase root growth for 

greater nutrient accumulation. 
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Plants adapted to low light environments have high photosynthetic efficiencies, low 

respiration rates and low light saturated photosynthetic rates (Boardman, 1977), a result of 

changes in nitrogen partitioning. Nitrogen is invested in more light harvesting proteins in 

the thylakoid membranes to compensate for low irradiance (Stitt, 1991). 

2.2.3 Atmospheric CO2 concentration 

An increase in atmospheric CO2 concentration increases photosynthesis. However, after 39 

weeks grown in elevated CO2, Pinus radiata could not sustain the high growth rates that 

were seen in the first few weeks (Conroy et al, 1990). The acclimation was a result of 

decreased Rubisco activity, caused by end product inhibition and a decline in the 

availabihty of Pj (Ceulemans & Mousseau, 1994). For P. radiata grown with phosphorus 

addition there was no acclimation under elevated atmospheric CO2 concentration, and there 

was a further increase in needle density, plant dry weight and photosynthesis (Conroy et 

al., 1988; Conroy et al., 1986). For P. sylvestris, after three growing seasons in elevated 

atmospheric CO2 concentration, there was no evidence for an increase m the rate of 

photosynthesis or for any acclimation (Wang & KellomSki, 1997). 

Generally, with increased CO2 concentration there is an increase of 38% and 40% for 

coniferous and an increase of 63% and 61% for broadleaf trees in biomass and in the rate 

of photosynthesis respectively, and a change in the carbon partitioning with more biomass 

allocated to the roots (Ceulemans & Mousseau, 1994; Conroy et al., 1990). Birch 

(Pettersson & McDonald, 1992), deciduous trees (Lee & Jarvis, 1995), sweet chestnut 

(Castanea sativa) and beech (Fagus sylvatica) (El Kohen et al., 1993) also show an 

increase in dry weight in elevated CO2. The increase in dry weight can have an inhibitory 

effect on tiie light harvesting processes. In Trifolium subterraneum, increased atmospheric 

CO2 led to a decrease in the chlorophyll a:b ratio. As the carbohydrate level increases, the 

starch grains become irregularly shaped and larger in volume. These starch grains can 

disrupt the configuration of the grana, affecting light harvesting properties (Cave et al., 

1981). Elevated atmospheric CO2 concentration increased photosynthesis but there was no 

change in above-ground growth of Populus tremuloides (Kubiske et al., 1998). Below-

ground, however, there was an increase in fine root production but only in high nitrogen 

conditions and only in early leaf fall genotypes. 
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Any decrease in photosynthesis under elevated atmospheric CO2 is generally thought to be 

nutrient stress related (Curtis, 1996). Addition of phosphorus stop plants from acclimating, 

but i f nitrogen concentration cannot be maintained then the dry weight wi l l decline (El 

Kohen et al, 1993) and wil l lead to Rubisco reduction. In tomato (Lycopersicon 

esculentum (Mill.) cv. Findon cross) plants, Rubisco activity declined under elevated 

atmospheric CO2 (Besford, 1990) and nitrogen addition was required to increase Rubisco 

activity (Besford et al., 1990). 

Water is also important for the increase in biomass and well-watered plants rarely 

acclimate (Lee & Jarvis, 1995; Townsend, 1995). An increase in atmospheric CO2 causes a 

decrease in the stomatal conductance, increasing the ability to withstand drought but may 

also increase the leaf temperature. Ultimately this leads to photoinhibition, but the increase 

in leaf area increases the size of the canopy and therefore shading, protecting the leaf (Lee 

& Jarvis, 1995). 

There was a decrease in the rate of respiration with an increase in atmospheric CO2 in 

Malus domestica and Quercus prinus (Bunce, 1992). Elevated atmospheric CO2 alters 

intracellular pH, suppressing the respiratory enzymes and leading to a recycling of respired 

CO2 before it leaves the leaf (WuUschleger et al., 1992). Elevated CO2 concentration alters 

the ratio of CO2 to O2 and there is a subsequent decrease in the rate of oxygenase activity 

of Rubisco, leading to a decrease in the respiration rate. 

2.2.4 Topographical effects 

Altitude 

An increase in altitude causes a decrease in air temperature and evaporation, and an 

increase in wind speed (Grace, 1987). The metabolic rates of plants from higher altitudes 

are affected less by temperature change, giving a comparative advantage over their 

lowland coimterparts. Populus genotypes from low altitudes were restricted to altitudes 

where temperature did not decline too low, as they lacked the metabolic mechanism to 

survive lower temperatures (Criddle et al., 1996). Sedum rosa, a high altitude species, and 

Sedum telephium, a low altitude relative, both grow well throughout the altitudinal range of 

Britain. However, the growth rate of S. telephium is reduced at higher altitudes and 

increased at lower altitudes, a result of the temperature difference between altitudes 
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(Woodward & Pigott, 1975). Geum urbanum and Geum rivale extend throughout Britain, 

although only G. rivale is found at higher altitudes, as the growth of G. urbanum ceases at 

higher altitudes due to cold temperatures (Graves & Taylor, 1986). 

Plant species in the Austrian Alps at higher elevations have a higher photosynthetic 

capacity and CO2 efficiency use than species at a lower elevation. The high elevation 

species have higher nitrogen contents and, therefore, have a larger quantity of assimilatory 

tissues for higher rates of CO2 assimilation (Komer «& Diemer, 1987). The populations of 

Picea abies at higher elevations had higher assimilation rates, higher respiration, higher 

needle nitrogen concentration and higher chlorophyll content, in comparison to lower 

altitude populations and these differences were correlated with mean armual temperature 

(Oleksyn et al, 1998). Slow mineralization of litter, an increase in leaching and frequent 

water-logging at higher elevations leads to reduced nitrogen availability. It has been 

suggested that the relationship between altitude and foliar nitrogen concentration is a result 

of genetic adaptation in high altitude populations (Oleksyn et al., 1998). 

G. rivale has a larger root system than its low altitude relative and could be a mechanism to 

allow greater nitrogen uptake or used as a carbohydrate store for regeneration of above-

groxmd parts after winter (Graves & Taylor, 1986). Alternatively, the change in root:shoot 

ratio may be due to a decrease in the shoot system. At different altitudes, there is a 

statistically significant relationship between leaf temperature and leaf extension 

(Woodward et al, 1986). Low elevation species had higher leaf extension rates but growth 

stopped below a threshold temperature, whilst plants from higher altitudes had lower leaf 

extension rates but growth did not cease at low temperatures. Better utilisation of nitrogen 

also occurred with slower above-ground growth (Oleksyn et al., 1998). 

Latitude 

Latitude, like altitude, is not a direct ftmctional factor affecting plant growth. Colder 

temperatures are experienced at higher latitudes but other factors also differ with latitude -

quaUty and quantity of solar radiation, climate extremes, site fertility, and length of 

growing season (Reich et al., 1996). In Western Poland, there was a positive correlation 

between foliar nitrogen concentration and latitude in P. sylvestris, and a decrease in 

nitrogen content with increasing temperature. However, the foliar nitrogen concentration 

also depended on site quality, with needles of trees grown at polluted sites containing 
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lower nitrogen contents (Reich et al., 1996). In herbaceous and woody plants, a greater 

percentage of foliar nitrogen and greater respiration rates are found with increasing 

latitude, although evergreen conifers had the greatest foliar nitrogen content at mid 

latitudes (Reich eial., 1996). 

Populus genotypes from different latitudes had different metabolic properties, which 

determined their geographic range (Criddle et al., 1996), whilst P. abies showed growth 

differences at different latitudes but little difference when grown in a common 

environment (Oleksyn et al., 1998). 

Solar radiation varies in latitudinal bands, with a decrease in radiation as latitude increases 

(Woodward, 1987) (Fig 2.4). Mean irradiance at different latitudes does not vary greatly 

although there are large monthly ranges. Plant growth depends on the ability to intercept 

solar radiation and convert it into carbohydrates and dry matter, and is therefore, directly 

related to leaf area index, incoming solar radiation and the efficiency of radiation to dry 

matter conversion (Woodward, 1987). 

Mean annual 
Irradiance 

SOOH 

Lotitude CN) 

Fig 2.4: Mean annual irradiance incident on earth's atmosphere, for the northern hemisphere, indicating 
maximum monthly range (after Woodward (1987)). 

The plant response to latitude and altitude appears to be similar. Both show an increase in 

respiration with higher values but with altitude there is also a mirrored effect of an increase 
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in photosynthesis. Within higher latitudes, there is no change in mean or maximum 

photosynthesis, although the increase in nitrogen content suggests there is an increase in 

assimilatory tissues. 

Aspect 

In New Zealand, north-facing slopes received 80% more radiation, had stronger winds, 

were dryer, had larger evapotranspiration and were warmer than south-facing slopes 

(Radcliffe & Lefever, 1981). In Colorado, USA, the south-facing slopes that received more 

radiation, had stronger winds, greater water loss and greater soil desiccation (Isard, 1986). 

Dryas octopetala was absent from the south-facing slopes although an abundant shrub in 

the area. Snow cover and soil moisture were the primary controllers. Snow provided a lot 

of meltwater but it evapotranspired very quickly and snow cover for long periods could 

lead to desiccation (Isard, 1986). In the UK, in Derbyshire, solar radiance was most 

affected by slope in the winter months, although the temperature difference between the 

slopes was greatest in the summer months (Rorison et al., 1986a). Arrhenatherum elatius 

was dominant on the south-facing slope and Centaurea nigra on the north-facing slope but, 

when grown in a controlled climate environment, there was no difference in the growth 

rate. In the field, soil type and location affected both species. In particular, A. elatius was 

not favoured on the south-facing slope but, when watered, the locational effect was 

removed. Greater radiation and stronger winds on the south-facing slope caused greater 

water loss and desiccation, affecting the growth of A. elatius. The north-facing slope was 

much more favourable for growth because the moisture concentration and possibly the 

atmospheric humidity were much more ideal (Rorison et ah, 1986b). In the field, the south-

facing slope was most favourable to both species for nitrogen accumulation and there were 

smaller temperature responses than on north-facing slopes, with the root component being 

the most responsive (Rorison et al., 1986b). 

2.2.5 Nutrient effects on plant growth and photosynthesis 

Nitrogen 

Nitrogen is important for the rate and fionctioning of photosynthesis, as nitrogen is 

partitioned into Rubisco, the main enzyme of photosynthesis, or chlorophyll (Evans, 1989). 

Plants store nitrogen in leaves and roots, and wi l l remobilise it from storage when needed. 
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especially during growth. The amoimt remobilised does not depend on available nifrogen 

at the present time but by the amount available in the previous year (Millard, 1996). 

The concentration of nitrogen available is positively correlated with the activity of Rubisco 

(Evans, 1989), so low nifrogen availability leads to a decline in photosynthesis and grovi1:h 

(Arp, 1991). Soil nitrogen deficiency caused a decrease in chlorophyll content, 

photosynthesis, Rubisco activity, stomatal conductance, and needle size and number in 

Sitka spruce (Picea sitchensis (Bong.) Carr.) (Chandler & Dale, 1993, 1995; Murray et al., 

2000) . In lodgepole pine {Pinus contorta ssp. latifolia) low nifrogen availability also led to 

low needle nifrogen and chlorophyll content, lower photosynthesis and lower Rubisco 

activity and content (Tissue et al., 1993). 

With the addition of nifrogen, Rubisco synthesis and activity, plus elecfron fransport 

activity, is stimulated (Besford et al., 1990), negating the deleterious effects of low 

nifrogen concenfration (El Kohen et al., 1993). Foliar nifrogen, leaf area index and dry 

matter increased in above ground parts during fertilisation experiments of Pinus radiata 

(Beets & Whitehead, 1996). Increasing nifrogen availability also had a positive effect on 

the photosynthesis of Scots pine {Pinus sylvestris L.) (Wang & Kellomaki, 1997), loblolly 

pine (Pinus taeda L.) (Murthy et al., 1997) and Picea mariana (Paquin et al., 2000), as 

well as increasing the rate of carboxylation of Rubisco in flush (current year needles) and 

1-year-old needles of black spruce (Picea mariana Mi l l . B.S.P.) (Paquin et al., 2000). 

However, increasing nifrogen availability had no effect on the growth of Sitka spruce at 

Aber forest in Wales, UK (Emmett et al., 1995), or on the growth of Balsam fir (Abies 

balsamed) (Evans et ah, 2001). And in Japanese red pine (Pinus densiflora Sieb. et Zucc), 

high nifrogen freatment led to a decrease in photosynthesis, due to a decrease in 

carboxylation efficiency and a decrease in Rubsico content and activity (Nakaji et ah, 

2001) . 

The use of nifrogen in photosynthesis is a carefully balanced process, with reallocation of 

nifrogen in low nifrogen conditions. For example, a greater proportion of nifrogen is 

partitioned into the thylakoids on sites with lower irradiances (Evans, 1989) to improve the 

light harvesting abilities, making the most efficient use of the available nifrogen. 

The efficient use of nifrogen differs between species and fimctional groups, with evergreen 

frees demonsfrating lower nifrogen efficiency than their deciduous counterparts. Several 
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reasons have been suggested for this. Firstly, the thick and impermeable mesophyll cell 

walls have a large resistance to CO2 diffusion and may limit the photosynthetic capacity of 

evergreens. Secondly, evergreen trees may allocate a smaller proportion of nitrogen to 

photosynthetic enzymes and, finally, these enzymes may have a lower specific activity. It 

was suggested that more nitrogen was used in plant defence or in cell wall proteins of the 

thick mesophyll cells in evergreen plants, which may be especially important for long-term 

leaf survival (Hikosaka et al., 1998). 

Phosphorus 

Phosphorus availability is positively correlated with Rubisco activity. Loblolly pine trees 

grown in low phosphorus environments had similar rates of decreasing photosynthesis as 

trees grown in low soil nitrogen concentration, and the maximum rate of assimilation was 

closely correlated with needle phosphorus concentration (Loustau et al., 1999). Plants 

grown in phosphorus-deficient soils had an inhibited shoot growth and trees had a greatly 

diminished wood volume (Conroy et al., 1990). Phosphorus deficiency also led to a 

dysftmction of photosystem I (Conroy et al., 1986) and a decrease in the efficiency of 

photosystem 11 (Loustau et al., 1999). In P. radiata, although the needle density was not 

affected by phosphorus deficiency (Conroy et al., 1986), there was a decrease in dry 

weight (Conroy et al., 1988). A decrease in available phosphorus, although initially not 

hmiting and not affecting needle size, caused an eventual decrease in Rubisco activity of 

Sitka spruce, a result of a decline in the formation of adenosine triphosphate (ATP) and 

nicotinamide adenine dinucleotide phosphate (NADPH), and a decline in the regeneration 

of RuBP (Chandler & Dale, 1993). Topa & Cheeseman (1992) found low soil phosphorus 

concentrations did not alter shoot or root dry weight ofPinus serotina until after six weeks, 

although there was a decrease in the growth rates and CO2 exchange rates during the first 

two weeks. After six weeks, the CO2 exchange rates had recovered, even though the needle 

growth and inorganic phosphate (P,) in the cells were still declining. In maritime pine 

(Pinus pinaster), after 12 weeks of phosphorus deficiency, there was a decrease in 

maximum carboxylation rate, maximum electron transport rate and quantum yield, but 

after 22 weeks there was an attenuation of these effects (Loustau et al., 1999). In the C4 

plant Amaranthus edulis, low foliar phosphorus concentration resulted in low Pi 

concentration in the chloroplast, affecting rates of photophosphorylation, electron transport 
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and PGA reduction, and leading to a reduction in the regeneration of RuBP and 

photosynthesis (Blechschmidt-Schneider e^a/., 1989). 

2.3 Genetic effects on plant growth 

Variation in the growth of trees from different provenances has been found when grown on 

a common site. The lipid content of Norway spruce (Picea abies) foliage fi-om 19 

provenances differed when grown on two sites in England. The environmental impact was 

the largest cause of variation but trees from provenances with the lowest extreme winter 

temperatures had a higher ratio of monogalactosyl diglyceride (MGDG) to digalactosyl 

diglyceride (DGDG) in comparison to provenances with warmer extreme winter 

temperatures. This was attributed to trees from warmer areas having to turn more of the 

MGDG into DGDG to provide protection from winter injury (Wellbum, 1997). 

Research on 14 provenances of Sitka spruce grown at eight sites also illustrated that 

environmental factors explain the majority of growth variation, with climate and attack by 

white pine weevil {Pissodes strobi) accoimting for over two-thirds (Ying, 1997). In the 

early stages of seedling growth, there was a latitudinal pattern in the response of the 

provenances, especially at sites with a strong oceanic climate and where free of weevil 

attack. As the seedlings aged, the pattern changed to a longitudinal effect at sites that were 

harsher, more northerly and fiirther inland (Ying, 1997). Southerly clones of Sitka spruce 

outperformed northerly clones, when grown in the same conditions (Centritto et al., 1999) 

but these differences were only seen in elevated atmospheric CO2 concenfration and not in 

ambient conditions. The same southerly clones also showed higher initial nifrogen use 

efficiency and a higher initial growth rate (Centritto & Jarvis, 1999). However, provenance 

had no effect on photosynthetic capacity. 

40 % of variation in the vigour characteristics was accounted for between provenances and 

60% within, during common site experiments of different provenances of Sitka spruce 

(Fletcher, 1992), showing considerable variation between trees from different areas of the 

natural populations but also a large proportion between frees within the same area. The 

International Union of Forest Research Organisations (lUFRO) experiments on Sitka 

spruce showed considerable growth differences between various provenances from Canada 

and northwest USA when cuhivated on a common site. Sitka spruce from warmer 

provenances performed better at milder sites but was more susceptible to frost (Lines, 
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1987; Lines etal., 1971; Nanson, 1984; Pederick, 1984; Roman-Amat, 1984), whilst Sitka 

spruce from colder provenances was much hardier but not able to attain the same growth 

rate (Alexandrov, 1984; Kleinschmit & Svolba, 1984). Variation was also evident in the 

provenances' susceptibility to green aphid {Elatobium abietinum [Walk.]) attack (Carter & 

Nichols, 1984; Day, 1984). 

Clones from 16 open pollinated maternal families of black spruce were grown in present 

and fixture predicted climates (elevated atmospheric CO2 concentrations and higher 

temperatiu-es), and in conditions of low and high nitrogen concentrations. An increase in 

seedling survival and growth occurred in both elevated atmospheric CO2 concenfration and 

high nitrogen conditions, with no significant differences between families among treatment 

conditions. However, there were significant differences in the seed mass, seed germination, 

seedling survival and growth between families, with the survival rate ranging from 48 to 

78 %. Although the families could be split into fast growing or slow growing trees, the 

differences between seed mass, germination or survival could not be distinguished in the 

same way (Wang et al., 1994). 

In 24 clones of the aspen hybrid Populus tremula x Populus tremuloides and one clone of 

European aspen {Populus tremula), differences were found in the stability of the growth 

response. The clones could be split into three groups, based on results of height and trunk 

diameter data from four sites; low stability clones, which grew very well on good sites (i.e. 

forest sites as opposed to agricultural land); average stability clones, which grew well on 

poor sites but better on good sites; and high stability clones, which grew equally well on all 

sites but had a lower growth rate (Yu & Pulkkinen, 2003). Clones of frembling aspen 

{Populus tremuloides) showed that early-leaf fall genotypes had significantly higher 

photosynthesis, less leaf area, with leaf area development decreasing earlier in the season, 

in comparison to late-leaf fall genotypes, and had significantly greater fine root length 

(Kubiskeefa/., 1998). 

2.4 Process-based models 

2.4.1 Photosynthesis Models 

The Farquhar model was one of the most widely used and developed models (Farquhar et 

al., 1980; von Caemmerer & Farquhar, 1981). The model was a comprehensive description 
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of the biochemical processes of photosynthesis that was compatible with studies of gas 

exchange measurements. The fimdamental core of the model splits CO2 assimilation into 

two parts: the carboxylation reactions and the oxygenation reactions. These reactions could 

be limited by the partial pressures of CO2 and oxygen, which determined the partitioning 

of Rubisco activity; or by the concenfration of Rubisco and by the rate of RuBP 

regeneration, which was related to the supply of NADPH and ATP. The rate of NADPH 

and ATP production was dependent on the total phosphate concenfration and the 

consumption rate of NADPH and ATP was determined by the elecfron fransport rate. 

Elecfron fransport was dependent on the quanta absorbed and the threshold of the upper 

limit, related to the properties of the thylakoid membrane. A l l of the equations describing 

the above processes were integrated at the chloroplast level and extended to the leaf, by 

summing the contributions of each chloroplast. The respiration rate ran in parallel to the 

CO2 assimilation rate. 

Temperature and external CO2 partial pressure were included but had a low impact on 

assimilation rates. The most important factor affecting photosynthesis was light intensity 

and its distribution throughout the leaf. The elecfron fransport rate was dependent on the 

internal and external shading. Nifrogen content was an important factor confroUing CO2 

assimilation. The carboxylase reaction rate and the elecfron fransport capacity were the two 

key parameters, as these show important genotypic and phenotypic variation (Farquhar et 

al., 1980; von Caemmerer & Farquhar, 1981). 

The Farquhar model was further developed to describe the limitation of Rubisco activity 

by the thylakoid reactions or Pi regeneration (Sage, 1990). RuBP consumption, elecfron 

fransport and P, regeneration were regulated to avoid limitation by one of the processes. 

The model was used to investigate the response to alteration in the light intensity and the 

partial pressure of CO2. Increasing light intensity increased elecfron fransport rates and 

increased photosynthesis to saturation point, when Rubisco activity decreased. Decreasing 

the CO2 partial pressure reduced the Rubisco activity. Pi regeneration, confroUed by starch 

and sucrose synthesis, was affected by light and decreasing CO2 partial pressure. 

With slight modification of tiie temperature dependencies of the parameters, CANOAK 

was developed from the Farqhar model. The two-module model described the CO2 and 

water vapour fransfer from leaf to canopy, in a one-dimensional, multi-layer canopy. The 

first module computed the leaf and soil energy fransfer, turbulent diffusion and radiative 
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fransfer. The second module calculated photosynthesis, stomatal conductance and 

respiration (Baldocchi & Harley, 1995). The model effectively described the complex 

effects of light, temperature and relative humidity of sun and shade leaves of Quercus alba 

L. and Acer rubrum L. at Oak Ridge, USA (Harley & Baldocchi, 1995), although there was 

considerable error with variation of atmospheric CO2 concenfration. 

The Farquhar model has also been used to calculate photosynthesis of Picea mariana at the 

leaf, branch and canopy level (Rayment et al., 2002) and calculate photosynthesis of Picea 

abies at the branch level (Falge et al., 1996). The results for P. mariana demonsfrated the 

same seasonal dynamics but the results for P. abies showed errors in light acclimation, in 

the damage caused by pollutant deposition, needle age and cold sfress effects. 

The model MAESTRO was developed to predict radiation absorption, photosynthesis and 

franspiration for a free stand (Wang & Jarvis, 1990). The model predicts the radiation 

adsorption, photosynthesis and franspiration in the crown of each free using seven 

independent sub-models. Radiation, calculated from hourly positions of the sun, was split 

into direct beam and difftise radiation. The leaf area density and leaf angle were calculated 

for three age classes and three ecological types (sun, intermediate and shade) and radiation 

absorption subsequently calculated. For each leaf age and type, conductance of water 

vapour and CO2, franspiration and photosynthesis were calculated. Photosynthesis was 

calculated using the biochemical equations of the Farquhar model. The model was 

validated with data from Picea sitchensis and Picea radiata stands. Hourly calculations 

showed large deviations from the measured data but daily calculation differed by less than 

10%. 

MAESTRO was used to investigate the linear relationship between net primary production 

and absorbed photosynthetically active radiation (PAR) (Medlyn, 1998). The model 

showed that daily values of photosynthetic light use efficiency varied regardless of the 

canopy structure, rejecting the hypothesis that the linear relationship was due to the 

structure of the canopy, exposing leaves to non-saturating PAR. MAESTRO did show that 

variability decreases with an increase in time scale, although efficiency varied across sites 

with different leaf area indices or light climate. 

McMurtrie and Wang (1993) investigated the effects of temperature and CO2 at the canopy 

level using MAESTRO and comparing with another, afready established, model. 
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BIOMASS also used the Farquhar model of photosynthesis but varied in the detail of 

canopy structure and irradiation. Calculations were made daily and assumed a 

homogeneous canopy, with the foliage divided into three horizontal layers, subdivided into 

sunlit and shaded fractions. Both models showed the same photosynthetic response with 

increasing temperature and with ambient and elevated atmospheric CO2 concentrations. A 

comparison of the predictions of MAESTRO and BIOMASS showed an agreement within 

10 % across a range of conditions. However, neither model incorporated photosynthetic 

inhibition at high sucrose concentrations or the effect of sink strength on the rate of 

photosynthesis. 

The PHOTOS model also calculated photosynthesis within a heterogeneous canopy (Zhang 

& Xu, 2003). The tree crown was considered a cone shape, with six vertical layers and one 

to three horizontal sections in eight directions. The model also calculated within crown and 

between crown shading. The computed photosynthetic rates, net primary production and 

growth was in good agreement with the measured data of a Chinese fir plantation 

{Cunninghamia lanceolata (Lamb.) Hook.). 

STANDFLUX, a three dimensional microclimate and gas exchange model, considered the 

canopy to be series of concentric cylinders and vertical layers of homogeneous leaf and 

stem densities, but also considering leaf and stem angles (Falge et al., 2000). The 

calculated canopy conductance agreed with measured data of Picea abies within 20 %. 

'Big leaf models scaled up photosynthesis from chloroplast to leaf to canopy and did not 

take into account spatial heterogeneity in the canopy (multi-layer models). The theory 

underlying this approach was that simple biochemical models, treating canopies as 

hemispherical surfaces with uniform properties, work well provided that the photosynthetic 

machinery of leaves was distributed in approximate proportion to total photosynthetic 

potential (Lloyd et al., 1995). Therefore, i f the photosynthetic capacity between leaves was 

in proportion to the profile of absorbed irradiance or nitrogen distribution then the equation 

describing leaf photosynthesis would represent the canopy photosynthesis (De Pury & 

Farquhar, 1997). Using the Farquhar model, a curvature factor was added to account for 

the differences in irradiance across the canopy and an empirical model of stomatal 

conductance response to light, temperature and humidity was also added (Lloyd et al., 

1995). The output of the model was compared with eddy covariance data of part of the 

Amazon rainforest. As the rainforest canopy had nitrogen allocation and photosynthesis in 
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proportion to irradiance, the model was able to provide a good description of hourly gas 

exchange rates. 

De Pury and Farquhar (1997) compared the outputs of a 'big leaf model with a single 

layer model of sunlit and shaded leaves and a multi-layer model. Using the multi-layer 

model as standard, the big leaf model consistently over estimated photosynthesis and did 

not follow the observed frends with increasing irradiance. This was because the curvature 

factor varied with canopy leaf area index and foliar nifrogen content. However, the 

predictions of the sun/shade model closely followed that of the multi-layer model. 

Analyses by Raulier et al. (1999) also illustrated that big leaf models incurred a bias of 

15 % to 26 % when compared to multi-layer models, a result of the assumption of 

proportionality between photosynthetic capacity and irradiance. By modelling the degree 

of light saturation in leaves of a heterogeneous canopy, the predicted light response curves 

of photosynthesis concluded that the big-leaf model assumption of fixll acclimation of 

photosynthesis to irradiance was not justified (Kull & Kruijt, 1998). 

Three micrometeorological models were used to simulate daily rates of photosynthesis and 

transpiration in a maize crop (Sinclair et al., 1976). The most complex model simulated 

wind speed, CO2 concentration, water vapour, air and leaf temperature, and radiation 

distribution in a heterogeneous canopy. A simplified model did not include the same 

vertical gradients of micrometeorological factors, but predictions of CO2 assimilation were 

within 12 % of the rates predicted by the complex model. A big-leaf model, however, 

agreed within 5 % of the rates predicted by the complex model. 

2.4.2 Carbon allocation models 

Thomley (1972) developed an assimilation model describing the partitioning of 

photosynthate and attempted to explain the growth pattern upon the mechanisms by which 

the substrate is transported aroimd the plant and how it was subsequently used. At low 

concentrations the rate of utilisation was proportional to the concentration and at high 

concentrations the utilisation rate became saturated. The supply of the substrate was 

assumed limited by photosynthesis, which was limited by nitrogen availability. However, 

growth was dependent upon a single substrate in the leaves, which ultimately led to an 

imbalance. 
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A fijrther development on the Thomley growth model was a root to shoot partitioning 

model (Reynolds & Thomley, 1982). The total plant matter was divided into structure 

(shoot and root dry matter) and storage (carbon and nifrogen compounds). Partitioning co

efficients were used to describe the division of new dry matter between roots and shoots. 

Results from the model were similar to the observed root to shoot ratio of tomato plants. 

A partitioning model including respiration was developed by McMurtrie and Wolf (1983). 

Photosynthesis was calculated from radiation and partitioned into foliage dry weight, fine 

root dry weight and stem dry weight. The rate of tissue production in each compartment 

was proportional to the amount of subsfrate left after respiration and also included losses 

from leaves and roots including root exudates. The model was used to explore the 

disparities of estimated dry matter production and that observed, to help identify the factors 

that limit growth. 

In 1992, a model called PnET was developed to predict net primary production in 

temperate and boreal forests (Aber & Federer, 1992). There were four major components: 

climate calculation, photosynthesis, water balance and carbon allocation, each calculated 

on a monthly time step. The model predicted annual net primary production well in 

comparison to experimental data. 

In 1997, a model was developed for estimating stand growth for the benefit of foresters, 

called 3-PG. The gross primary production was calculated from the photosynthetically 

active radiation and the canopy quantum efficiency coefficient. It also included: estimation 

of below ground carbon allocation, using a simple relationship of growing conditions on 

root growth and turnover; a sub-model to calculate changes in stem numbers per unit area 

with time; allometric ratios to determine allocation of carbon to foHage and stems; an 

equation explaining the age related decline in net primary production associated with 

hydraulic conductance; and a ratio of net to gross primary production (Landsberg & 

Waring, 1997). The results showed that there was excellent correspondence between the 

simulated and measured cumulative stem biomass for Pinus radiata at sites in Ausfralia 

and New Zealand. A similar model exists that calculates dry matter partitioning based on 

five sub-models including allometric ratios between stem diameter, free height and branch 

biomass, and between free diameter and root biomass. Results showed that the root to 

shoot ratio had a sfrong impact on partitioning, which depended on the nutrient availability 
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and therefore the condition of the site. The model provided a feedback mechanism between 

growth conditions and partitioning (Bartelink, 1998). 

Dewar (1997) created a tree growth model based on a cereal crop model called RESCAP. 

The model was simple, with growth being either light limiting or water limiting. Light 

limitation was calculated from the amount of radiation intercepted by the canopy and the 

water limitation was calculated by the maximum rate of water extraction by the roots. This 

model was combined with a soil water balance model, assuming that daily maximum 

rainfall interception by the canopy is proportional to the canopy leaf area index. Results, 

using Pinus radiata, showed that the model could realistically simulate plant growth. 

2.4.3 Pipe model theory 

The pipe-model theory stated that each unit measure of the foliage on a tree was attached 

via an active pipe extending to the base of the trunk and into the root system (Shinozaki et 

al., 1964), so the sapwood area of a tree was proportional to foliage biomass. 

Using this theory, a model was developed, where dry matter growth was equal to pipe dry 

matter growth, height increment was equal to the increase in pipe length and basal area was 

equal to the total pipe basal area (Valentine, 1985). This model was fiulher developed by 

including a constant ratio between foliar dry matter and total cross-sectional area of active 

pipes (Valentine, 1988). Therefore, the development of a stand was a result of an increase 

in basal area because of growth of the active pipe area and the subsequent increase in total 

foliar dry matter. At foliar dry matter maximum, the continuing growth in basal area was a 

result of aggregated basal area of disused pipes (Valentine, 1988), where hve branches 

have withered and shed but still leaving their pipes in the stem (Chiba, 1998). Using 

empirical evidence from Picea taeda, the pipe-model theory, in the growth model 

'Pipestem' (Valentine, 1999), showed accurate predictions in above ground dry matter. 

Using the pipe-model theory. West (1993) developed a two part model comprising of a 

partitioning model and a biomass growth model to predict dry matter partitioning of 

Eucalyptus trees. Firstly, the light absorption was calculated over the year and used to 

determine the photosynthetic output. The losses, in terms of leaves, branches and stems, 

were determined and the volume of the crown was changed accordingly. With all predicted 

variables, the partitioning model predicted the growth in biomass, stem diameter and 
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height, and stem sap wood of each free. A mortality sub-model was applied to determine 

the niunber of frees that died during the year. Overall, the model simulated the growth 

behaviour of a monoculture of Eucalyptus frees well. 

Makeia (1999) combined carbon balance (by regulating gross growth or increasing 

senescence) with the pipe-model theory to develop a model in two parts; carbon balance 

modelled in terms of total mass increment, and structural balance in terms of the 

distribution of total mass to different plant parts. The conservative structural relationships 

in plants were re-established after a disturbance, through adaptive allocation of growth. 

The model also assumed a fimctional balance between the roots and the shoots, although 

the woody structure was additionally consfrained according to the pipe-model theory (the 

connection of sapwood for fransport between the roots, stems and branches). The model 

was then used to investigate the effect of disturbance or environmental change. Recovery 

after defoliation depended on how quickly the carbon balance was returned - the quicker 

the rebalance the quicker the recovery. However, the model overestimated growth in cases 

when the disturbance caused a decrease in the availability of water or nutrients. 
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3. Environmental differences between and amongst three Sitka 

spruce clonal experiments 

Abstract 

Environmental differences were investigated between and amongst three Sitka spruce 

clonal experiments located at different sites in Scotland: Newcastleton and Wauchope, 

both in the Scottish Borders, and Scootmore, in Moray. Soil nutrient concentrations were 

highest at Newcastleton and lowest at Wauchope. Despite large differences in nutrient 

concentrations between sites, nutrient concentrations within sites were fairly uniform. Silt 

was the largest proportion of soil at all three sites, with Newcastleton and Wauchope 

having equal proportions of sand and clay in the soil. At Scootmore, a larger proportion of 

the soil was sand than clay. Again, the proportions of soil constituents were largely 

uniform across the site. Precipitation during the growing season was very similar between 

sites and between years 2001 and 2002. In 2003, there was a large decrease in precipitation 

d\iring the growing season, with the greatest decline at Scootmore. Scootmore had the 

highest mean temperatures during the growing season. However, Wauchope had the 

highest absolute temperature, and the lowest mean and absolute temperature. 

3.1 Introduction 

3.1.1 Nutrient effects on plant growth and photosynthesis 

Nitrogen is a major limiting factor in plant growth. In elevated atmospheric carbon dioxide 

( C O 2 ) studies of loblolly pine (Pinus taeda L.), Tissue et al. (1993) demonstrated that 

photosynthesis only increased i f nitrogen input was increased; increased carbon alone 

could not increase plant growth as a result of limiting nitrogen availability. The addition of 

nitrogen under ambient atmospheric C O 2 conditions wi l l also increase plant growth. For 

example, when Populus tremuloides trees were grown under high nitrogen conditions, the 

trees grew to a height twice as tall as those grown under low nitrogen conditions (Kubiske 

et al., 1998). Acceleration of shoot and root growth of Scots pine {Pinus sylvestris L.) was 

also seen imder high nitrogen conditions, compared to accelerated root growth only under 

low nitrogen conditions (livonen et al., 1999). In Sitka spruce (Picea sitchensis (Bong.) 
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Carr.), tree height has previously been shown to increase following nitrogen addition, 

particularly after 10 years of growth (Miller & Miller, 1987). 

Increased soil nitrogen may increase plant growth primarily through enhancing 

photosynthesis, by increasing chlorophyll and Rubisco concentration in the foliage. 

Fertilisation enhanced photosynthesis in black spruce (Picea mariana Mi l l . B.S.P.) (Paquin 

et al, 2000) and Eucalyptus grandis (Grassi et al, 2002), and fertilised trees of 

P. tremuloides had significantly higher photosynthesis than the \mfertilised trees (Kubiske 

et al, 1998). Increasing soil nitrogen, increased photosynthesis in Scots pine (Wang & 

Kellomaki, 1997), by up to 15 % during fertilisation experiments by Tissue et al. (1993). 

Increasing soil nitrogen also had a positive effect on the photosynthesis of loblolly pine 

(Murthy et al., 1997), and increased the rate of carboxylation of Rubisco in flush and 1-

year-old needles of black spruce (Paquin et al., 2000). However, in Japanese red pine 

(Pinus densiflora Sieb. et Zucc), high nitrogen treatment led to a decrease in 

photosynthesis, due to a decrease in carboxylation efficiency and a decrease in Rubsico 

content and activity (Nakaji et al., 2001). Increasing nitrogen availability had no effect on 

the growth of P. sitchensis at Aber forest in Wales, UK (Emmett et al., 1995), or on the 

growth of Balsam fir {Abies balsamea) in Vermont, USA (Evans et al., 2001). 

Soil nitrogen deficiency has been shown to cause a decrease in chlorophyll content, 

photosynthesis, Rubisco activity and stomatal conductance in Sitka spruce (Chandler & 

Dale, 1993; Murray et al., 2000). In P. taeda, low soil nitrogen availability has been shown 

to lead to a low needle nitrogen and chlorophyll content, lower photosynthesis and lower 

Rubisco activity and content (Tissue etal., 1993). 

3.1.2 Climatic effects on plant growth 

Climate is a major determinant of growth, and it explains two thirds of the variation in 

height, diameter and survival of Sitka spruce in British Colombia, Canada (Ying, 1997). 

The effect of climate changes with increasing tree age, fi-om a temperature related effect in 

younger trees to a moisture related effect in older trees (Xu et al., 2000). 

Temperature is a major determinant of the geographical location of many species. For 

example, the absolute minimum winter temperature affects the survival of Verbena 

officinalis, and the temperature must be 16 °C for the plant to flower and greater than 14 °C 
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for seed germination to occur (Woodward, 1997). The distribution of Tilia cordata and 

many other European species is Hmited to where the mean maximum temperature in the 

warmest month, July, is 16 °C or above (Pigott, 1975). Temperature can also affect plant 

growth, with leaf extension in Alpine plants only occurring above a certain temperature 

(Woodward et al, 1986). An increase in daytime temperature from 10 °C to 20 °C and an 

increase of mean temperature from 7.6 °C to 14 °C led to an increase in leaf area and dry 

weight for Sedum rosea (L.) and Sedum telephium L. ssp.fabaria Syme (Woodward, 

1975). In southern Finland, an increase in radial trunk growth of Norway spruce (Picea 

abies (L.) Karst) was correlated with higher than normal temperatures during May 

(Makinen e/o/.,2001). 

Precipitation also affects plant growth. The growth of Sitka spruce is dependent on 

abundant moisture during the growing season and the greatest growth occurs where there is 

no drought (Roche & Haddock, 1987). In Buxton, England, during an exfreme drought in 

1995, the species that survived on the limestone grassland were found on deeper soils, but 

the same species on shallower soil did not survive (Buckland et ah, 1997). And in 

Mallorca, Spain, the photosynthesis of Pistacia lentiscus L. growing in both montane and 

coastal sites was limited in summer due to drought (Flexas et al., 2001). Norway spruce in 

southern Europe showed a decrease in C O 2 assimilation of 15 to 25 % during dry spells 

over a 100-year period, with fluctuations in the trunk radial increment, as a result of water 

sfress (Vygodskaya et al., 1995). Drought can affect plants in a number of ways. In Pinus 

radiata D. Don., drought led to a reduction in the elecfron flow to photosystem I I (Conroy 

et al., 1986), while in many plants drought causes a decrease in water potential and, i f it 

reaches below a threshold, leaf abscission wil l occur (Woodward, 1987). The stomatal 

closure during periods of reduced moisture availability restricts C O 2 assimilation but the 

decrease in photosynthesis with water deficits could be a result of other factors. Drought 

may be accompanied by excess light and by high temperatures, both damaging to photo-

reaction cenfres (Chaves, 1991). 

3.1.3 Hypotheses 

• With nutrient availability having a large impact on growth and photosynthetic rates, it 

is important to investigate tiie nutrient availability at each site. The concenfration of the 
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nitrogen-based nutrients (nitrate and ammonia) and phosphate in the soil are expected 

to differ between sites but wi l l remain uniform throughout each site. 

• With moisture abundance being important during the growing season, soil moisture 

status throughout the growing season wil l be important. Using particle size as an 

indication of the soil's capacity to hold moisture, differences are expected between 

sites that wi l l reflect the site's moisture retention properties, which may be reflected in 

the tree growth at each site. 

• Moisture availability also depends on the precipitation received at each site. 

Precipitation during the growing season is expected to differ between sites, potentially 

impacting on tree growth. 

• Temperature is an important determinant for the growth and survival of P. sitchensis. 

Differences in mean maximum and mean minimum temperature during the growing 

season are expected between sites, and may explain the different growth rates 

experienced at each site. 

3.2 Method 

3.2.1 Soil nutrient extraction and determination of concentrations 

Soil cores 

Soil cores were taken during October 2002 at Newcastleton and Wauchope, and during 

September 2003 at Scootmore, using a corer of 50 cm depth (for map of sites see Chapter 

4). One core was taken from each selected clone (Chapter 4) at each site, within 0.5 m of 

the root crown. The cores were wrapped tightly in polythene bags to maintain integrity and 

stored at 4 °C within two hours. In the laboratory, the cores were split into A and B 

horizons where appropriate and were analysed within five days (120 hours). 

Nitrate and ammonia extraction 

5 g (± 0.01 g) of fresh soil and 50 ml of 1 M potassium chloride (BDH Lab Supplies, 

Poole, Dorset, UK) were placed into a 100 ml polythene bottle, and shaken mechanically 

for one hour. The solution was then filtered through Whatman No 2 paper (BDH Lab 

Supplies, Poole, Dorset, UK) (Skalar, 1995), the extract stored at 4 °C, and subsequently 

analysed within 48 hours. I f analysis was delayed, the extract was stored at - 20 °C to 
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maintain sample integrity and, when ready for use, defrosted overnight and analysed within 

24 hours. 

Phosphate extraction 

1 g (± 0.01 g) of fresh soil and 200 ml of Truog exfracting solution were placed into a 

500 ml polythene bottle, and shaken mechanically for 30 minutes. Truog exfracting 

solution was prepared daily by adding 10 ml of 0.5 M sulphuric acid (BDH Lab Supplies, 

Poole, Dorset, UK) and 15 g ammonium sulphate (BDH Lab Supplies, Poole, Dorset, UK) 

to five lifres of distilled water (Skalar, 1995). After shaking, the solution was filtered 

through Whatman No 2 paper (BDH Lab Supplies, Poole, Dorset, UK) and the first 25 ml 

of exfract was discarded. The remaining exfract was stored at 4 °C and analysed within 48 

hours, or stored at -20 °C until required, defrosted overnight and analysed within 24 hours. 

Soil nutrient concentration determination 

The nifrate and ammonia concenfrations were determined using a SAN^'"^ 4000 segmented 

flow analyser (Skalar Analytical, Breda, The Netherlands), connected to a SAIOOO 

autosampler (Skalar Analytical, Breda, The Netherlands), matrix photometer (6250; Skalar 

Analytical, Breda, The Netherlands) and an interface unit (SA8600; Skalar Analytical, 

Breda, The Netherlands). SAN'''"^ v6.2 software was used to run the analyser and to 

calculate concenfrations of nifrate and ammonia. 1 M potassium chloride was used as a 

blank. Standard curves of ammonia were made by diluting ammonium chloride with 1 M 

potassium chloride to give a range of 0.02 to 1.00 mg N1"' and the standard ciures of 

nifrate were made by diluting sodium nifrate with 1 M potassium chloride to give a range 

of 2 to 10 mg N r'. The phosphate concenfrations were also determined using a SANP*"' 

4000 segmented flow analyser, using Truog exfracting solution as a blank and standard 

curves made by diluting potassium dihydrogen o-phosphate with Truog exfracting solution 

to give a range of 0.01 - 0.50 mg P l '. 

Nifrate concenfration was determined by passing the sample through a column of 

granulated copper-cadmium to reduce the nifrate to nitrite. The total nitrite concenfration 

was determined by diazotising with sulphanilamide and coupling with a-

naphthylehylenediamine dihydrochloride to produce a pink-coloured complex, which is 

measured at a wavelength of 540 nm. 
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Ammonia concentration was determined by a modified Berthelot reaction, by chlorinating 

the ammonia to monochloroamine, then reacting with sahcylate to form 5-aminosahcylate 

and oxidation to form a green coloured complex. The absorbance of the green complex 

was measured at a wavelength of 660 nm. 

Phosphate concentration was determined by mixing ammonium molybdate, potassium 

antimony tartrate and phosphate fi-om the sample to form an antimony-phospho-molybdate 

complex, which produced a blue colour when reduced by ascorbic acid. The absorbance of 

the blue complex was measured at a wavelength of 880 nm. A l l reagents were prepared 

according to manufacturers instructions (Skalar, 1995). 

A l l chemicals used were of analytical grade, obtained from BDH (BDH Lab Supplies, 

Poole, Dorset, UK) or fi-om Sigma (Sigma Chemical Company Ltd, Fancy Road, Poole, 

Dorset, UK), unless stated otherwise. 

3.2.2 Particle size determination 

The soil was air dried and sieved through a 2 mm sieve. 0.5 to 0.7 g was placed in a 50 ml 

plastic tube and, to oxidise the organic material, 20 ml of 20 % hydrogen peroxide was 

added. The tubes were then covered and placed in a boiling water bath. After two hours, 

the tubes were removed, centrifiiged at 4000 rpm for four minutes and the supernatant 

decanted off. Due to the high organic content, the process to oxidise the organic material 

was completed again. After the second centrifiigation and removal of supernatant, 20 ml of 

distilled water was added, the solution recentrifiiged at 4000 rpm for four minutes and the 

supernatant discarded once more. Finally, 20 ml distilled water and 2 ml sodium 

hexametaphosphate solution were added to prevent coagulation of the particles. 

The samples were analysed in a Coulter® granulometer (LS230; Coulter Electronics Ltd, 

Luton, UK). The granulometer uses lasers to calculate the proportion of the different sized 

particles in the sample, from the pattern of the light defraction of each particle. The 

granulometer also uses polarisation intensity differential scatter (PIDS) for accurate 

determination of particles smaller than 1 ̂ m, by measuring the scatter of polarised light 

from each particle. 
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The percentage of silt, clay and sand were calculated from the granulometer output. Clay 

particles were < 0.002 mm, silt particles were 0.06 mm > 0.002 mm, and sand particles 

were 2.00 mm > 0.006 mm diameter. 

3.2.3 Precipitation and temperature data 

Precipitation and maximum and minimum temperature were provided from the 

Meteorological Office Land Surface Observation Stations Data via the British Atmospheric 

Data Centre. Meteorological stations were located as close to the field sites as possible but 

were limited to those that recorded cxirrent observations. As a result, the stations were 

13 km, 12 km and 9 km from Newcastleton, Wauchope and Scootmore, respectively. Data 

were available for all three years at Wauchope and Scootmore but only for 2001 for 

Newcastleton, although the station was currently active. Other Meteorological stations with 

current data were located too far from Newcastleton to be considered suitable for the 

analysis in relation to the present study. 

Daily precipitation data were summed from the beginning of June to the end of August and 

the mean monthly precipitation calculated for the growing season. Mean minimum and 

maximum temperatures were calculated for each month of the growing season, from daily 

observations, and the absolute maximum and minimum temperatures were also recorded 

for the growing season. 

3.3 Results 

3.3.1 Soil nutrient concentrations 

Generally, the nutrient concentrations in the A horizon were higher at Newcastleton and 

lowest at Wauchope (Fig 3.1). There were significant differences in the soil concenfrations 

of nitrate between sites for all clones and in the ammonia soil concenfrations of C20208 

(Table 3.2). 

In the B horizon soils, Wauchope had the lowest concenfrations of the three nutrients (Fig 

3.2). Generally, Newcastleton had higher nifrate concenfrations and Scootmore higher 

ammonia and phosphate concenfrations. There were only significant differences in nifrate 

concenfration between sites for C20177 and C20211 (Table 3.2). 
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At Newcastleton and Wauchope, the nutrient concentrations for each clone showed a 

similar pattern in the A horizon soils (Fig 3.1); C20211 had the highest nitrogen-based 

nutrient concentrations; C20177 had the highest phosphate concentration but also the 

lowest nitrate concentration; C20208 had the lowest ammonia and phosphate 

concentration. 

The B horizon soils at Newcastleton showed very different results (Fig 3.2); C20177 had 

the highest nitrogen-based nutrient concentrations; C20208 had the highest phosphate 

concentrations and lowest nitrogen-based nutrient concentrations; C20211 showed the 

lowest phosphate concentration. 

At Wauchope, C20211 had the highest concentration of all the three nutrients in the B 

horizon soils (Fig 3.2), C20177 had the lowest nitrate and ammonia concentrations, and 

C20208 having the lowest phosphate concentration. 

At Scootmore, C20211 had the highest nitrate and phosphate concentration in the A 

horizon soils, C20177 had the highest ammonia concentration but also the lowest nitrate 

and phosphate concentrations, and C20208 had the lowest ammonia concentration 

(Fig 3.1). 

In the B horizon soils at Scootmore (Fig 3.2), C20177 had the highest nitrate concentration 

and lowest phosphate concentration, C20208 had the highest phosphate concentrations and 

lowest nitrate concentration, C20211 had the lowest ammonia concentration. 

There were no significant differences in the nutrient concentrations between clones for 

either horizon at all sites (Table 3.1). 

3.3.2 Particle size of soils 

The percentage of different particle sizes in the A horizon varied between sites. Silt was 

the highest percentage of the soil at all sites, with the greatest proportion at Wauchope 

(80 %) and smallest at Scootmore (60 %; Fig 3.3). Newcastleton and Wauchope had a 

similar percentage of clay and sand in the A horizon soils (20 % ) . Scootmore had a lower 

percentage of clay (10 %) but higher percentage of sand (40 % ) . There were significant 

differences in the clay, silt and sand percentages of C20177 between sites, in the clay 
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percentage of C20208 between sites, and in the silt and sand percentages of C20211 

between sites (Table 3.3). 

C20177 C20208 C20211 

b) ^ 

C20177 C20208 C20211 

C20177 C20208 

Clone 

C20211 

Fig 3.1: Mean nitrate (grey bars), ammonia (hashed bars) and phosphate (white bars) concentrations (+ls.e., 
n = 4) in the A horizon soil surrounding the root zone of clones C20177, C20208 and C20211, at a) 
Newcastleton, b) Wauchope and c) Scootmore. 
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Fig 3.2: Mean nitrate (grey bars), ammonia (hashed bars) and phosphate (white bars) concentrations (+ls.e., 
n = 4) m the B horizon soil surrounding the root zone of clones C20177, C20208 and C20211, at a) 
Newcastleton, b) Wauchope and c) Scootmore. 
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Table 3.1: and P values from the Kruskal-Wallis test, investigating differences in the nutrient 
concentrations between clones at the three sites. 

A Horizon B Horizon 

Nitrate Ammonia Phosphate Nitrate Ammonia Phosphate d.f 

4.149 1.911 0.481 0.554 3.835 0.611 
Newcastleton 2 

p 0.126 0.385 0.786 0.758 0.147 0.737 

1.378 2.563 3.292 0.286 0.682 0.515 
Wauchope 2 Wauchope 

p 0.502 0.278 0.193 0.867 0.711 0.773 

0.885 3.666 2.053 3.600 0.400 3.053 
Scootmore 2 

p 0.643 0.160 0.358 0.165 0.819 0.217 

Table 3.2: and P values from the Kruskal-Wallis test, investigating differences in the nutrient 
concentrations between sites for each clone. Results highlighted in grey are significant at the 0.05 probabiUty 
level and results in bold and highlighted in grey are significant at the 0.01 probability level. 

A Horizon B Horizon 

Nitrate Ammonia Phosphate Nitrate Ammonia Phosphate d.f 

C20177 

C20208 

C20211 

P 

P 

P 

mm 

mm. 

3.877 

0.144 

8,656 

p."0i3 

5.967 

0.051 

5.838 

0.054 

4.074 

0.130 

5.596 

0.061 

M24 

5.250 

0.072 

6.545 

{).038 

3.918 

0.141 

4.050 

0.132 

1.104 

0.576 

5.312 

0.070 

4.810 

0.090 

1.905 

0.386 

As in the A horizon, silt was the greatest proportion in B horizon soils at each site, being 

about 80 % of the soil at Wauchope but only 50 % to 60 % at Scootmore (Fig 3.4). 

Newcastleton and Wauchope shared a similar percentage of clay and sand (20 % ) , with 

Scootmore showing a smaller proportion of clay (10 %) and a higher proportion of sand 

(40 % ) . There were no significant differences in the percentage of different particle sizes 

between sites (Table 3.3). 

There was no significant difference in tiie percentage of the soil that was clay, silt or sand 

between clones within each site, in either horizon (Table 3.4). 

39 



a) 

0) 40 

C20177 C20208 C20211 

b) 

C20177 C20208 C20211 

C) 

C20177 C20208 

Clone 

C20211 

Fig 3.3: Mean clay (grey bars), silt (hashed bars) and sand (white bars) percentages (+ls.e., n = 4) in the A 
horizon soil surrounding clones C20177, C20208 and C20211, at a) Newcastleton, b) Wauchope and c) 
Scootmore. 
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C20211 

Fig 3.4: Mean clay (grey bars), silt (hashed bars) and sand (white bars) percentages (+ls.e., n = 4) in the B 
horizon soil surrounding clones C2G177, C20208 and €20211, at a) Newcastleton, b) Wauchope and c) 
Scootmore. 
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Table 3.3: and P values from the Kruskal-Wallis test, investigating differences in the particle size soil 

A Horizon B Horizon 

Nitrate Ammonia Phosphate Nitrate Ammonia Phosphate d.f 

0.857 2.000 2.059 0.426 1.867 0.157 
Newcastleton 2 

p 0.651 0.368 0.357 0.808 0.393 0.925 

-i 2.214 0.714 0.714 2.381 0.857 1.238 
Wauchope 

-i 
2 Wauchope 

p 0.331 0.700 0.700 0.304 0.651 0.538 

1.085 0.269 0.346 2.000 2.000 2.000 
Scootmore 2 

p 0.581 0.874 0.841 0.368 0.368 0.368 

Table 3.4: and P values from the Kruskal-WaUis test, mvestigating differences m the particle size soil 
proportions between sites for each clone. Results highlighted in grey are significant at the 0.05 probabihty 

A Horizon B Horizon 

Nitrate Ammonia Phosphate Nitrate Ammonia Phosphate d.f 

6.m 4.286 3095 4.286 
C20177 2 

P o.^p O.0S(j 0.117 0.213 0.117 

i ;5i00̂  5.500 5.333 2.143 2.381 2.381 
C20208 

;5i00̂  
2 

p jO.0^ 0.064 0.069 0.343 0.304 0.304 

4.900 6,111' 6J62 3.778 1.806 1.806 
C20211 2 

p 0.343 0.047 0.046 0.151 0.405 0.405 

3.3.3 Precipitation during the growing season 

During the growing season in 2001, the precipitation at all three sites was similar, with 

precipitation sHghtly higher at Scootmore and slightly lower at Wauchope (Fig 3.5). The 

data for Wauchope and Scootmore show, again, there was little difference in the amount of 

precipitation received during the growing season of 2002. When compared with the data 

from 2001, Scootmore had almost identical precipitation between the two years and 

Wauchope showed a slight increase from 2001 to 2002. Between the growing seasons of 

2002 and 2003 there was a large decrease in precipitation received at both Wauchope and 

Scootmore. At Wauchope, there was a decrease of 55 % and at Scootmore a decrease by 
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66 % in 2002 compared to 2001, with Wauchope receiving the higher deposition of the two 

sites. 

300 

© 100 

Newcastleton Wauchope Scootmore 

Fig 3.5: Total precipitation during the growing season (June to August) in 2001 (grey bars), 2002 (hashed 
bars) and 2003 (white bars). Note: Precipitation data during 2002 and 2003 not available for Newcastleton. 

3.3.4 Temperature during the growing season 

The mean maximum temperatiu-e during the three months (June to August) of the growing 

season of 2001 was approximately 2 °C higher at Newcastleton than at either Wauchope or 

Scootmore (Fig 3.6). Wauchope and Scootmore show very similar mean maximum 

temperature during the growing season of 2001. 

Between Jtme and July, for all three sites there was a large increase in mean maximum 

temperature (an increase of 3 °C at Newcastleton, 2.5 °C at Wauchope and 2 °C at 

Scootmore). Between July and August, there was very little change. 

Wauchope and Scootmore both showed a continuous increase in temperature during the 

growing season of 2002. Scootmore had the highest mean maximvmi temperatures but 

converged with Wauchope in August. 

During 2003, Scootmore again had the higher temperatures. At both sites, there was an 

increase between June and July. There was little change between July and August. 
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Although, Scootmore had the highest mean maximum temperatures, Wauchope had the 

highest absolute maximum temperature for all three years (Newcastleton has been 

excluded; Table 3.5). Between the three years, there was a general increase in temperature 

during the growing season. At Wauchope, there was a large increase (4.7 °C) between 2002 

and 2003. At Scootinore, increase was larger between 2001 and 2002, with an increase of 

7.9 °C. 

Newcastleton had the lowest mean minimum temperatures during the growing season of 

2001, with Wauchope and Scootmore showing almost identical values (Fig 3.7). There was 

an increase in minimum temperatures between June and July, of approximately 2 °C for all 

three sites, with a slight decrease, between July and August. 

During the growing season of 2002, there was a continuous increase in minimum 

temperature at Wauchope and Scootmore, with Wauchope showing the lowest 

temperatures of the two sites. 

In 2003, Wauchope again had the lowest temperatures. Both sites showed an increase in 

minimum temperature between June and July, but a decrease between July and August. 

Between Wauchope and Scootmore, Wauchope had the lowest absolute minimum 

temperatiare in 2001 and 2003 but Scootinore had the lowest in 2002 (Table 3.9). Both 

Wauchope and Scootmore showed an increase in absolute minimum temperature between 

the three years. 

Table 3.5: Absolute maximum and minimum temperatures for the growing season (June to August) during 
years 2001 to 2003 for each site. 

2001 2002 2003 

Maximum Minimum Maximum Minimum Maximum Minimum 

Newcastleton 25.7 -1.6 n/a n/a n/a n/a 

Wauchope 25.2 0 24.3 4.3 29 2.5 

Scootmore 15.7 2.5 23.6 1.8 24.7 4.7 
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a) 

August 

August 

August 

Fig 3.6: Mean maximum temperature (± Is.e.) during the growing season (June to August) for a) 2001, b) 
2002 and c) 2003, for Newcastleton ( • ) , Wauchope (o) and Scootmore ( A ) . 
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August 

August 

June July 

Month 
August 

Fig 3.7: Mean minimum temperature (± Is.e.) during the growing season (June to August) for a) 2001, b) 
2002 and c) 2003, for Newcastleton ( • , continuous line), Wauchope (o, dashed Une) and Scootmore (A, 
dotted line). 
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3.4 Discussion 

Newcastleton generally had the highest concentration of nutrients in the A horizon and B 

horizon soil. Wauchope had the lowest nutrient concentrations, with the nutrient 

concentrations at Scootmore being higher than those at Newcastleton for some clones, 

particularly in the case of phosphate concentration. The higher nutrient concentrations at 

Newcastleton may explain the increased growth rate of the trees at this site in comparison 

to the trees at Wauchope and Scootmore (Chapter 4). Greater nitrogen availability has been 

found to increase tree height in P. tremuloides (Kubiske et al, 1998) and accelerated shoot 

growth in P. sylvestris (livonen et al., 1999). However, the soil at Scootmore had greater 

nutrient concentrations in comparison to the soil at Wauchope. I f greater nutrient 

concentration did increase tree growth at Newcastleton, then the trees at Scootmore are 

expected to be growing faster than the trees at Wauchope. However, the opposite occurred, 

suggesting that nutrient concentration alone carmot have caused the difference in tree 

growth between the sites. 

Within sites, there is no general pattern in the nutrient concentration of the soil of either 

horizon amongst the clones. The distribution of nutrients within each site is fairly uniform, 

suggesting that differences in nutrient availability cannot be causing the differences in 

clonal growth (Chapter 4). 

Silt was the greatest proportion of soil at the three sites, for the soil of all clones and for 

each horizon. The percentage of clay and sand was very similar at Newcastleton and 

Wauchope but sand percentages were higher than clay percentages at Scootmore. Overall 

silt percentages were highest at Wauchope and lowest at Scootmore, and clay percentages 

lowest at Scootmore. The increased percentage of sand at Scootmore suggests that the soil 

was more free-draining and unable to capture and retain as much moisture as the other two 

sites. With moisture during the growing season an important factor in the growth of 

P. sitchensis (Roche & Haddock, 1987), the decreased growth rate at Scootmore may be 

linked to a reduced ability to hold moisture. 

There was little difference in precipitation receipt during the growing season of 2001 at all 

three sites and 2002 at Scootmore and Wauchope. Monthly precipitation at all sites was 

within the July precipitation levels found throughout the natural range of P. sitchensis 

(Roche &, Haddock, 1987). Precipitation receipt during 2001 and 2002 was therefore 
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unlikely to be causing a detrimental affect on the growth and photosynthesis of the clones. 

However, there was a large reduction in precipitation during the growing season of 2003 at 

Wauchope and Scootmore. P. sitchensis and other conifers are dependent on abxmdant soil 

moisture, particularly during the growing season (Makinen et al, 2001; Roche & Haddock, 

1987), and this reduction in precipitation may have impacted on photosynthesis and tree 

growth. Any impact in photosynthesis remains unmeasured as, due to unavoidable 

logistical constraints, Scootmore was the only site sampled in 2003 and this site was not 

sampled in any other year (Chapter 7). 

Wauchope and Scootmore experienced similar maximum temperatures during the growing 

seasons of 2001 to 2003, with Newcastleton exhibiting higher temperatures in 2001. 

Increased radial growth of P. abies in southern Finland was correlated with high 

temperatures in May and trunk diameter increase of P. sylvestris in northern Britain was 

correlated with summer temperatures (Hughes et ah, 1984; Makinen et ah, 2001). With 

higher temperatures at Newcastleton, the greater height and trunk diameter of the trees, in 

comparison to the trees at Wauchope and Scootmore, could be explained by the higher 

temperatures experienced at Newcastleton. The mean maximum temperatures at Wauchope 

and Scootmore increased between each growing season, with the highest temperatures in 

2003. Temperature also impacts on photosynthetic rates (Fredeen & Sage, 1999; 

Lamhamedi & Bemier, 1994; Leonardos etal, 1996; Ludlow & Jarvis, 1971; Neilson & 

Jarvis, 1975). The differences in temperature dtiring the growing seasons of different years 

may have altered photos)Tithetic rates. Newcastleton was the only site at which 

photosynthesis was measured over two consecutive years. However, since the 

meteorological data at this site were only available for one year, it is not possible to say i f 

temperature had impacted on photosynthetic rates. 

Wauchope experienced lower mean minimum temperatures during the growing seasons of 

2001 to 2003, in comparison to Scootmore. In 2001, the mean minimum temperature was 

lowest at Newcastleton. With increasing temperature causing an increase in 

photosynthesis, then lower temperatures should induce lower photosynthetic rates. 

Therefore, at Newcastleton the lower minimxmi temperatures may lead to lower 

photosynthetic rates in comparison to the other sites, and lower photosynthesis at 

Wauchope in comparison to Scootmore. Lower temperatures had not impacted on tree 
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growth i f the minimum temperatures of 2001 are typical, as Newcastleton has the lower 

minimum temperatures but the highest tree growth (Chapter 4). 

3.4 Conclusions 

Nutrient concentrations in both the A and B horizon soils were higher at Newcastleton and 

lower at Wauchope. Although there were large differences between sites, the distribution 

of nutrients within the sites was fairly uniform, with no significant differences in the 

nutrient concentration available to each clone. 

Silt was the largest component of the soil, and was highest at Wauchope and lowest at 

Scootmore. Newcastleton and Wauchope shared a similar and equal proportion of soil that 

was clay and sand. Scootmore had a smaller percentage of clay but a higher percentage of 

sand suggesting that the soil at Scootmore was more free-draining. There was little 

difference in the particle size distribution within each site. 

There was little difference in the precipitation between sites during the growing seasons of 

2001 and 2002, and between the years. During the growing season of 2003, there was a 

large decrease in precipitation, with the largest decline at Scootmore. 

Generally, there was an increase in temperature during the three months of the growing 

season. Scootmore had the highest mean maximum temperatures but Wauchope had the 

higher absolute maximum temperatures between 2001 and 2003. Wauchope also had the 

lowest minimum temperatures and the lowest absolute temperature in 2001 and 2003. 
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4. Growth differences between full=sib families of Sitka spruce 

at four sites 

Abstract 

Height, trank diameter and wood density data after ten years of growth were available for 

twelve full-sib families of Sitka spruce (Picea sitchensis (Bong.) Carr.), grown at four sites 

throughout the UK. Principal component analysis (PCA) showed that two sites, 

Newcastleton and Wauchope, were similar in terms of tree growth, with both sites having 

larger trees but lower wood density than the other two sites. The other two sites, 

Scootmore and Llandrindod, also showed a similar response, with trees generally smaller 

but having higher wood density. There was an apparent trade-off between tree size and 

wood density. There was a large enviromnental effect. The difference in PCA output was 

significant between sites for each family. Any differences that were not significant were 

between Newcastleton and Wauchope, or between Scootmore and Llandrindod, 

reaffirming the similarity amongst the two pairs. The similarity amongst each pair 

appeared to be a result of previous site use. Overall, the families had increased tree growth 

with respect to the control trees at all sites. 

4.1 Introduction 

4.1.1 Genetic variation in Sitlca spruce 

As with any species, Sitka spruce shows natural genetic variation. There are large 

differences in the grov^h rate between individuals, with 40% of variation in vigour 

characteristics accoimted for between provenances and 60% within provenances (the 

geographic region of the seed origin) (Fletcher, 1992). In a series of experiments 

conducted by the International Union of Forest Research Organisations (lUFRO), Sitka 

spruce from various provenances in Canada and northwest USA had different growth rates 

when cultivated on a common site. The main factor causing growth variation was the 

temperature that the trees experienced in the area fi^om which each provenance was 

derived. Sitka spruce fi-om warmer provenances performed better at milder sites, but was 

more susceptible to fi-ost (Nanson, 1984; Pederick, 1984; Roman-Amat, 1984), whereas 

Sitka spruce fi"om colder provenances, although never able to attain such good rates of 
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growth, was much hardier (Alexandrov, 1984; Kleinschmit & Svolba, 1984). Within the 

UK, southern provenances were more at risk from frost damage, although those individuals 

that survived still attained greater growth rates (Lines, 1987; Lines et al, 1971). Variation 

was also evident in the susceptibility of the provenance to attack by green aphid 

(Elatobium abietinum [Walk.]) (Carter & Nichols, 1984; Day, 1984). 

Within provenances there was considerable variation. For example, Sitka spruce of Queen 

Charlotte Islands (QCI; British Columbia, Canada) origin had superior growth at lower 

elevations in comparison to individuals of the same origin grown at higher elevations 

(Fletcher, 1992). 

4.1.2 Forest Research (FR) progeny experiments 

In 1948, the Forestry Commission set up a genetics section to investigate and exploit 

natural variation to improve the speed and quality of timber production and to determine 

the provenance best suited to particular sites (Samuel et al., 2000). Progeny trials have 

been nmning for many years, investigating the heritability of what are considered to be 

good growth characteristics. Recently, frees considered to have heritable, good growth 

characteristics have been cross-pollinated and cloned in nvunerous nursery and field trials, 

to help identify frees within provenances that wil l perform best on individual sites. 

Commencing in 1963, frees were selected for excellent vigour and stem fraits from British 

Sitka spruce forests. Due to the high level of variation at the level of the individual free, 

low level phenotypic selection plus progeny testing was employed to identify individuals 

that could be used for the improvement of timber (Fletcher, 1992). Over the next 20 years, 

over 1800 frees were selected, mostly of QCI origin, although records are incomplete. QCI 

provenance was preferred due to the similarity in latitude and climate to the UK and the 

provenance testing concluded that Sitka spruce of QCI origin should be planted on sites 

where the temperature in September drops below -5 °C (Fletcher, 1992). Since 1967, a 

regular programme of open-pollinated half-sib progeny testing has been running and 

superior stock frees have been selected based on the 15 year trunk diameter, wood density 

and stem form measurements of these experiments (Lee, 2001). In Scotland, the breeding 

programme has resulted in a 14% increase in wood volume at Kilmichael, Argyll at 27 

years, whilst at Aultmore, Moray and Whifrope, Scottish Borders, there was an increase by 

13% in trunk diameter after 22 years (Lee, 1992). Although it is possible to see the 

superiority of the progeny after 20 years or more of growth in the field, the length of time 
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it takes to gain results increases the length of time before the progeny can be used 

commercially. With regular measurements of the growth characteristics the trials can be 

used to predict, after a shorter period of time, the outcome after 20 years. Using a progeny 

test site in Garcrogo Forest, south-west Scotland, planted in 1972, it was calculated that, 

based on family means, mid-rotation diameter could be selected for using height at 5 years, 

although this increased to 7 to 9 years for individual trees (Lee et al., 2002a). For both 

individuals and family means, mid-rotation wood density could be predicted from the 

mean weighted density of the outer 4 rings from a 9-year-old free (Lee et al., 2002b). From 

a range of sites across north and west England, Scotland and cenfral Wales, frees selected 

at 6 or 10 years for their vigour characteristics retained their superiority at 15 years (Lee, 

1992). 

There is only a limited amount of improvement that can be gained from open pollination of 

superior phenotypes. By using both male and female gametes from selected frees the 

genetic gain can effectively be doubled (Shelboume, 1969). FR now employs this approach 

in its current progeny testing. In the Borders region of Scotland, a progeny test of specific 

crosses has been replicated at two sites and, after 4 years growth in the field, there was a 

46% increase in height when compared with the QCI confrol (Mboyi & Lee, 1999). This 

increase in height was mainly due to the greater lammas growth of the progenies (the free 

growth that occurs after predetermined growth has been completed), which was very small 

in the confrol frees. However, there was an associated increase in frost damage with 

increased lairmias growth. The progeny showed only a small increase in frost susceptibility 

(5%) and by selecting the crosses that showed the greatest overall height there was a 

decrease of 4% in frost damage compared to the confrol. 

4.1.3 Hypotheses 

The above field experiment, although showing a large increase in height, was based on two 

sites with similar rainfall, slope and daylength. This increase may not be so great or may be 

even greater i f replicated on sites that zire very different from these test sites. This may also 

be true of the open pollinated trials; although these showed an increase in various growth 

characteristics, the data are only available for one site. Therefore using the clonal trial at 

the two sites mentioned above plus two fiirther replicated sites at very different locations, 

the following were investigated: 
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• differences in tree height, trunk diameter and wood density between sites caused by 

changes in the environment 

• differences in tree height, trunk diameter and wood density between full-sib families 

within and between sites, to explore the genotypic response to the environment. 

4.2 Experiment Background 

Data are available for four FR experimental sites within the UK (Fig 4.1): Scootmore in 

north-east Scotland, Newcastleton and Wauchope in the Scottish Borders, and Llandrindod 

in Wales. Table 4.1 contains detailed site information. The same experiment was replicated 

at each site. 'Plus' trees (trees with excellent heritable growth characteristics) were cross-

pollinated, with each parent used once in a unique combination (Table 4.1c). The resulting 

seeds were grown in a nursery and eight seedlings selected from the crosses that exhibited 

the growth characteristics of the parents. The eight seedlings created a full-sib family and, 

from each seedling within a family, 15 cuttings were taken and grown into seedlings, 

effectively creating clones (Fig 4.2). For clarity, each set of 15 individuals wi l l be referred 

as a 'clone', with a unique number identifying each set. With eight clones in each family 

and with 12 full-sib families, 94 clones were created, with 1410 individuals in total (two 

families has only seven sibs). Each site was split into two plots. Each plot contained six 

full-sib families and the same families were planted on each site. Therefore, the same 

clones were planted on the same plot at each site. The plots were split into 15 fully 

randomised blocks and each block contains one individual of each clonal set, planted at a 

distance of 2 m from each neighbour in all directions. Each block also contained two 

control trees of imimproved Sitka spruce of QCI origin. The design of the blocks varied 

between sites (Table 4.2). At Wauchope and Llandrindod there were thirteen and seven 

sets of clones missing respectively. 

For all sites individual free height, trunk diameter at breast height (1.3 m; DBH) and wood 

density data after 10 years growth in the field were available. Missing data represented free 

mortality or, for wood density data only, individual frees considered too small to measure. 

Height was measured using a hypsometer and DBH with a girth tape. Wood density was 

measured indfrectly using a Pilodyn® machine (PROCEQ, Ztirich, Switzerland), where a 

blunt pin is fired into the trunk with a fixed force of 6 joules and the penefration distance is 

inversely related to the wood density. 
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Scootmore 

. Wauchope 
Newcastleton 

Llandrindod 

Fig 4.1: Map showing locations of clonal experiment plots. 

FAMILY 1 

Sib 1 Sib 2 Sib 3 Sib 4 Sib 5 Sib 6 Sib 7 Sib 8 

IS 
Individuals 
= C L O N E 

15 
Individuals 

= C L O N E 

15 15 15 
Individuals Individuals Individuals 
= C L O N E = C L O N E = C L O N E 

15 
Individuals 
= C L O N E 

15 
Individuals 
= C L O N E 

15 
Individuals 

= C L O N E 

Fig 4.2: Diagram showing the split of trees into individuals and sibs in each family. 
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Table 4.1 cont'd 

c) Plot 1 Plot 2 

Site Family Crosses Clone 
Numbers 

Family Crosses Clone Numbers 

1 689 x493 C20121-28 7 1150x1492 C20169-76 

2 1102x1370 C20129-36 8 1615x141 C20177-84 

3 94x1500 C20137-44 9 2000 x 563 C20185-92 
Newcastleton 

4 321 x1463 C20145-52 10 2099 x 980 C20193-200 

5 727 x 769 C20153-60 11 2122 x1773 C20201-04,06-08 

6 946 x 543 C20161-68 12 3159x492 C20209-14,16 

1 689x493 C20121-28 7 1150x1492 C20169-76 

2 1102x1370 C20129-36 8 1615x141 C20177-84 

3 94x1500 C20137-44 9 2000 x 563 C20185-92 
Scootmore 

4 321 X1463 C20145-52 10 2099 x 980 a0193-200 

5 727x769 C20153-60 11 2122 X1773 C20201-04,06-08 

6 946 x 543 C20161-68 12 3159x492 C20209-14,16 

1 689x493 C20121-27 7 1150x1492 C20169-76 

2 1102x1370 C20129-36 8 1615x141 C20177-84 

3 94x1500 C2013742 9 2000 x 563 C20185-92 
Wauchope 

4 321x1463 C20145-49, 
51-52 10 2099 x 980 C20193-97,98-200 

5 727x769 C20153-60 11 2122x1773 C20201-04,06,08 

6 946 x 543 C20161,63-
65,67-68 12 3159x492 C20209-11,13,14, 

16 

1 689 x493 C20121-28 7 1150x1492 C20169-76 

2 1102x1370 C20129-36 8 1615x141 C20177-84 

Llandrindod 3 94x1500 C20137-44 9 2000 x 563 C20186-88,90-92 

4 321X1463 C20145-52 10 2099 x980 C20193,95-96,99-
200 

5 727x769 C20153-60 11 2122x1773 C20201-03,06,08 

6 946 x 543 C20161-68 12 3159x492 a0209-ll, 13,14, 
16 
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Table 4.2: Layout of the two plots withm the clonal experiment at each site. Each number represents the 
number of trees in a row (fnst number) or column (second number). Each tree was planted 2 m apart. 

Layout of trees 

Site Plot 1 Pbt2 

Llandrindod 7x7 9x5 

Newcastleton 5x10 5x10 

Scootmore 5x10 12x4 

Wauchope 9x5 8x5 

4.3 Method 

Using SPSS® release 10 (SPSS Inc, Chicago, USA), the data for free height, DBH and 

wood density were standardized for both sites. A preHminary investigation using principal 

components analysis (PCA) was run using all three variables to examine the differences 

between sites and between families within each site. Using the mean PCA score from axis 

1 for each family, the distance from the site mean of axis 1 scores was calculated to 

compare the positions of the same families at different sites. The range of PCA scores for 

axis 1 was also calculated to determine the variation for each family at each site. A oneway 

Analysis of Variance (ANOVA) with Tukey's Honestly Significant Difference (HSD) post 

hoc test was then employed to determine significant differences between famihes within 

and between sites. 

4.4 Results 

4.4.1 Principal Components Analysis (PCA) 

The PCA exfracted three axes with eigenvalues of 2.453, 0.370 and 0.176, explaining 82%, 

12% and 6% of the variation respectively. The first axis, explaining the majority of the 

variation, had a large positive loading for each variable. The second axis had large and 

small negative loadings for height and DBH respectively, and a large positive loading for 

wood density. The thfrd axis had small positive loadings for height and wood density and a 
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negative loading for DBH (Table 4.3). Due to the small percentage of variation it 

explained, the third axis was omitted from fiirther analysis. 

Table 4.3: The eigenvalues, percentage of variance explained and the loadings of the PC A axes, using 
standardised height, DBH and wood density data. 

Conponent 

1 

Eigenvalues 2.453 0.370 0.176 

% of variance explained 81.78 12.35 5.88 

Loadings 

Standardised Height 0.886 -0.425 0.184 

Standardised DBH 0.942 -0.008 -0.335 

0.883 0.435 0.173 Standardised Wood 
Density 

The different sites occupied different spaces when plotted using the mean PCA scores of 

axes 1 and 2 for all individuals of each fiill-sib family (Fig 4.3). For the first axis, the 

families of Newcastleton and Wauchope had mostly positive scores, whereas Scootmore 

and Llandrindod had mostly negative scores. The positions on the second axis were less 

distinct with Wauchope and Scootmore having mostly positive scores and Newcastleton 

and Llandrindod mostly negative. There was less distinction between Newcastleton and 

Wauchope and between Scootmore and Llandrindod, but there was a definite distinction 

between the two pairs. 

The mean PCA axis 1 score for each family within each site is shown in Fig 4.4. 

Newcastleton and Wauchope showed similar positions as did Llandrindod and Scootmore, 

particularly for families 1 to 6, which were the families found on plot 1 at all sites. 

Llandrindod and Scootmore had the lowest mean differences and Newcastleton had the 

highest with the exception of family 3. The results of the oneway ANOVA (Table 4.4) 

showed that the families were occupying different PCA spaces within each site. The post 
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hoc test showed that there were some families that were not statistically significantly 

different (Fig. 4.4, not all results are shown) and these were usually Llandrindod and 

Scootmore or Newcastleton and Wauchope. The exceptions to this were with families 7 

and 9, where Llandrindod and Wauchope showed similar distances from the mean. 
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Fig 4.3: Scatterplot of PCA axis 1 scores against PCA axis 2 scores. Each point represents the mean of the 15 
individuals for each clone. Error bars have been omitted for clarity, o represents Llandrindod, A 
Newcastleton, • Scootmore and x Wauchope. 

The difference between mean PCA axis 1 score of each family and the site mean is shown 

in Fig 4.5. Families 3 and 12, and the confrol, had negative differences for each site, whilst 

famihes 8 and 11 were all positive. The other families had a mixture of positive and 

negative differences. However, for famihes 1 to 6 at Llandrindod the difference was 

always negative and for families 7 to 12 always positive, which corresponds to plot 1 and 

plot 2 respectively. A l l other sites had a mixture of positive and negative differences within 

each plot. Newcastleton and Wauchope had very similar differences within families 2 and 

12, Newcastleton and Scootmore had similar differences within family 4, and within 

family 8 Newcastleton and Llandrindod were very similar. For families 5 and 11 

Scootmore and Wauchope had almost identical differences with Newcastleton also 

showing a similar value. There were no obvious relationships between families that 
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showed a similar position from the site mean but there did appear to be a slight grouping of 

Newcastleton and Wauchope. 

Table 4.4: Results of oneway ANOVA investigating differences of PCA axis 1 scores between sites for each 
family, d.f. is degrees of freedom 

Family Within 
d.f 

Between 
d.f F P 

1 3 419 264.360 <0.001 

2 3 433 435.322 <0.001 

3 3 373 302.379 <0.001 

4 3 428 230.870 <0.001 

5 3 428 340.519 <0.001 

6 3 358 210.689 <0.001 

7 3 396 83.902 <0.001 

8 3 395 178.407 <0.001 

9 3 384 100.242 <0.001 

10 3 342 87.140 <0.001 

11 3 306 120.444 <0.001 

12 3 309 93.754 <0.001 

Control 3 167 57.710 <0.001 

The range of PCA axis 1 scores for each family at each site are shown in Fig 4.6. 

Scootmore had the largest range for all families, except family 7, with Wauchope usually 

having the smallest range. Newcastleton and Llandrindod swap in their ranking depending 

on the plot. In plot 1 (families 1 to 6) Newcastleton usually had the larger range and for 

plot 2 (families 7 to 12) Llandrindod had greater ranges than Newcastleton. The control 

followed the same pattern as plot 2. Very few of the families had identical ranges at all 

sites, although Wauchope and Llandrindod had a very similar range for family 1, and 

family 5 at Newcastleton, Wauchope and Scootmore had ahnost equal ranges. 
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Fig 4.4: The mean PCA axis 1 scores for each family at all sites. • represents Llandrindod, • Newcastleton, 
• Scootmore and • Wauchope. Error bars have been omitted for clarity. Ringed points show a non
significant result from Tukey's HSD post hoc test. 
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Fig 4.6: Range of PCA axis 1 scores for all individual trees belonging to each family for all sites. • represents 
Llandrindod, • Newcastleton, A Scootmore and o Wauchope. 

4.5 Discussion 

The results of the PCA show that there was one main axis explaining over 80% of the 

variation that, based on the loadings, described a gradient running from tall trees with a 

large DBH but low wood density (positive PCA axis 1 scores) to short trees with a small 

DBH and high wood density (negative PCA axis 1 scores). The second axis, explaining a 

much smaller percent of the variation, described a gradient running from tall trees with 

large DBH and high wood density (positive PCA axis 2 scores) to short trees with thin 

trunks and low wood density (negative PCA axis 2 scores). However, the loadings showed 

that height and wood density had the largest effect, with DBH being ahnost negligible. The 

third axis, explaining very little of the variation, was affected mainly by the DBH with a 

lesser but equal effect of height and wood density. As axis 1 explained the majority of the 

variation, it can be concluded that the majority of the frees were investing in their growth 

in a particular method. Trees either grew quickly, gaining greater height and thicker trvmks, 

although at the cost of the wood density, or the trees grew more slowly, were shorter and 

thinner, but with higher wood density. A negative correlation between wood density and 

height or diameter had been foimd previously (Pfeifer, 1984; Wood, 1986) and it seems 

that generally Sitka spruce invests in size or wood density but not both. 
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The scatterplot of PC A axis 1 scores against PC A axis 2 scores showed how the trees 

respond to the different environmental conditions at each site. At Newcastleton, the trees 

were mainly tall with large diameters but low wood density, with some that were smaller 

and thinner but still with low wood density. At Wauchope, the majority of the clones were 

similar to the Newcastleton trees but with some tall trees having large diameters and high 

wood density. At Scootmore, the trees were small and thin with high wood density, with 

some that were taller with larger diameters but still had high wood density. Llandrindod 

was similar to Scootmore but some of the trees were small and thin but with low wood 

density. From this analysis, Newcastleton and Wauchope appeared to be similar sites in 

terms of tree growth. The two sites were situated within a similar region in the UK, with 

similar climates (Mboyi & Lee, 1999) and both were previously old pastures. Llandrindod 

and Scootmore also showed similar responses and, although they were situated in very 

different locations geographically, both were re-stock sites, i.e. the land had previously 

been used for timber production. However, all sites were distinct in Fig 4.3, so there was a 

definite environmental effect, allowing the same clones to behave differently at each site. 

By focusing attention on the PCA axis 1 scores, it was possible to investigate the 

differences caused by the environment at each site. The mean scores for each family at 

each site showed the same pattern, in that Newcastleton and Wauchope were similar sites, 

as were Scootmore and Llandrindod. The results of the oneway ANOVA showed that there 

were significant differences between sites for each family, but where the post hoc test had 

shown there were no significant differences it was usually between Newcastleton and 

Wauchope or Scootmore and Llandrindod. The exceptions to this were families 7 and 9, 

where Llandrindod and Wauchope were not significantly different. Both families were 

found on plot 2 of the FR experiments and at Llandrindod this plot had a particularly high 

mortality rate (29%). The increased light availability to the surviving trees may have 

increased tree height and DBH, making it very similar to the sites with greater heights and 

DBHs - Newcastleton and Wauchope. The significant results of the oneway ANOVA 

showed that the environmental effect at each site was strong. If the environment was not 

exerting a large effect then each clone would grow at the same rate and in the same 

manner, and the oneway ANOVA would show no or few significant differences between 

sites within families. All the family means were greater than the control mean for each site, 

which suggested that phenotypic selection for superiority was successfiil, as has been 

shown at many sites before (Lee, 1992; Mboyi & Lee, 1999). However, at Llandrindod 
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there were two families with means less than the control, suggesting that clones suitable 

for enhanced growth at one site may not be suitable for others, although generally the 

success was high for most families. 

Although the clones and their families were significantly different between sites, there still 

may be a genetic effect exerted on the trees if the families were in the same relative 

positions with respect to the PCA axes within each site. By calculating the distances of the 

family mean firom the overall site mean, if the distance was the same it was possible to say 

the families were in the same relative position. The resuhs showed a mixed response. 

Families 3,8, 12 and the control were either all positive or negative for each site, showing 

that the families were all performing in the same way, i.e. they were growing larger or 

smaller than the mean. However, the distances of the families fi-om the mean at each site 

were not very similar, suggesting that the genetic effect was not very strong. For the other 

families there was a mixture of positive and negative values suggesting that the 

environmental effect was stronger than the effect exerted by the genotype. There were 

some families that were showing very similar distances fi-om the mean at several sites 

(families 2, 4, 8 and 12) and there were two families that had three sites showing very 

similar differences. Newcastleton, Wauchope and Scootmore were all very similar for 

families 5 and 11, with Wauchope and Scootmore almost identical. However, there were 

no families where all sites showed the same differences so the environment was having the 

largest impact on the growth of the trees. There was also no obvious relationship between 

which sites had the same or very similar distances. However, Newcastleton and Wauchope 

had the most similar distances leading to the suggestion that the clones within the two sites 

were responding in the same way. 

An interesting pattern emerged for Llandrindod, where the differences between the family 

and site means were all negative for families 1 to 6 and all positive for sites 7 to 12. 

Families 1 to 6 corresponded to plot 1 and families 7 to 12 to plot 2. Plot 1 and 2 were 

found at different locations within the site and this may have affected the growth ability of 

the trees depending upon their location. The mortality rate was much higher on plot 2, 

increasing light availability, which may have led to increased growth, so the trees were 

always larger than the site mean. 

The range of the PCA axis 1 scores showed that Scootmore had the largest variation with 

respect to the growth variables for all families, which suggested that Scootmore had a 
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larger environmental impact affecting the growth of the frees. The range would be small if 

the environmental impact was insignificant or the genetic factor was greatly imposed. 

Wauchope had the smallest ranges, so all frees within each family were growing in a 

similar maimer, suggesting that the effect from the environment is not as great as the other 

sites. Newcastleton and Llandrindod swapped in their ranking between plots, with an 

increase in the ranges on plot 2 (famiUes 7 to 12) for Llandrindod. This again would seem 

to correspond with the difference in location and mortality rates at Llan(frindod 

manifesting itself within quite different growth performances. There was little difference in 

the family ranges of PCA axis 1 scores between the two plots at Newcastleton, suggesting 

that there was little variation in the envirormiental or genetic impact experienced within 

each plot. Therefore, it appeared that Llandrindod was causing the change in ranking 

between the plots. 

The large ranges for each family suggested that there was large variation at the individual 

free level. Surprisingly, the confrol ranges were generally smaller than the family ranges. 

As the control was unimproved Sitka spruce of QCI origin, it would consist of a mixture of 

genotypes and would therefore be expected to show more variation than the individuals of 

each family. However, as the confrol was growing more slowly it may be that the frees 

had not yet reached a stage in their growth where the genetic variation is frilly expressed. 

Newcastleton was the best growing site in terms of height and diameter, indicating that the 

frees were growing fastest on this site. The confrol range was larger than some of the 

families at Newcastleton, indicating that it had more variation. On a faster growing site, the 

confrol may have reached a stage in its growth where the genetic variation was starting to 

show. 

4.6 Conclusions 

Newcastleton and Wauchope have been shown to be similar sites in terms of the free 

growth sfrategy, with larger frees but lower wood density than the other two sites. 

Scootmore and Llandrindod also showed a similar pattern in their growth although with 

smaller frees and higher wood density. It appeared that the frees at the pairs of sites that 

group together were investing their growth differently, with a frade off between size and 

wood density. There was a large environmental effect, swamping that of the genotype, as 

the mean PCA axis 1 scores for all sites were significantly different for all families and the 
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distance of the family mean from the site mean showed that the positioning within site was 

different for all families. Where there was some non-significant results it was usually 

between Newcastleton and Wauchope or Scootmore and Llandrindod, again suggesting 

that the sites could be split into two pairs. Newcastleton and Wauchope were similar sites 

in respect to their location, rainfall, slope, daylength and past use, so it was not surprising 

they were showing a similar clonal response. Scootmore and Llandrindod were contrasting 

sites in that they were located in very different regions of the UK with differing climatic 

conditions. However, their previous land use was as conifer plantation and this appeared to 

be the major factor affecting the growth of the trees. Overall, it seemed that the clonal trial 

had been successfiil in improving the rate of growth at all sites. However, the environment 

still had a large effect on the growth of the clones, although the genotype did appear to 

have an impact, especially when the sites had the same use history. 
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So Similarities and differences between and amongst clones of 

Sitka spruce grown at four contrasting sites 

5.1 Introduction 

5.1.1 Environnient versus genetics 

The environment has a large impact on tree growth. Fourteen provenances of Sitka spruce 

{Picea sitchensis (Bong.) Carr.) were grown at eight different sites across British 

Columbia, Canada, where the majority of variation in growth could be explained by 

environmental factors, with climate and attack by white pine weevil (Pissodes strobi) 

accounting for over two-thirds of this environmental variation (Ying, 1997). Environment 

was also the largest cause of differences in lipid concentration in 19 provenances of 

Norway spruce (Picea abies) when grown on two different sites in England (Wellbum, 

1997). 

Different provenances of Sitka spruce, however, do show a similar response between 

different sites, indicating that genetic control of growth is stronger than the environmental 

effects. In the early stages of seedling growth, there was the same latitudinal pattern in the 

response of fourteen Sitka spruce provenances at eight sites across British Columbia, 

Canada. The similarity was particularly striking at those sites with a strong oceanic climate 

and were fi-ee of weevil attack. As the seedlings aged, the pattern amongst the provenances 

changed to a longitudinal effect although it was evident only at sites that were harsher, 

more northerly and fiuther inland (Ying, 1997). In 24 clones of the aspen hybrid Populus 

tremula x Populus tremuloides, differences were found in the stability of the growth 

response. The clones could be split into three groups, based on results of height and 

diameter data fi-om four sites; low stability clones, which grew very well on good sites and 

poorly on poor sites, indicating a large environmental impact on growth; average stability 

clones, which grew well on poor sites but better on good sites; and high stability clones, 

which grew equally well on all sites, indicating a small environmental impact and strong 

genetic control on growth (Yu & Pulkkinen, 2003). 

During common site experiments of different provenances of Sitka spruce, 40 % of the 

variation in the vigour characteristics was accoimted for between and 60% within 
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provenances (Fletcher, 1992), showing considerable variation between trees from different 

areas of the natural populations but also a large proportion of variation between trees 

within the same area. Although provenances may show the same growth patterns between 

different sites, there is considerable difference in growth within provenance, suggesting 

that environmental differences within the site are affecting tree growth. 

5.1.2 Hypotheses 

Using the same height, trunk diameter and wood density data detailed in Chapter 3, it was 

hypothesised that: 

• The clones can be classified into different groups at each site and that the groups 

represent different positions on the gradient running through the PCA main axis as 

detailed in Chapter 3. 

• The data could be split into the same groups at each site. 

• A clone selected as representative of each group will show the same clone ranking for 

height, trunk diameter and wood density at each site. 

• The different sites will generally show differences in the three variables regardless of 

clone, as a result of the environmental differences. 

5.2 Methods 

The data used in Chapter 3 were also used for the selection of the clones. For the data 

analysis, only Newcastleton and Scootmore sites were used. Wauchope was excluded from 

the analysis because of its similarity in geographic and climatic position to Newcastleton, 

and Newcastleton was the superior site in terms of height growth and survival. Llandrindod 

was excluded due to the high mortality rate of the site (19% overall; 8% plot 1 and 29% 

plot 2) and dissimilarity between the two plots. Newcastleton and Scootmore were 

contrasting sites, where Scootmore was the colder site (Fig 5.1) and also had lower rainfall, 

therefore potentially having the shorter growing season (Fig 5.2). The sites and the plots 

were analysed separately and all trees considered individually, and only identified as an 

individual of a particular clone during the final selection stage. 
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Fig 5.1: Mean monthly maximum temperature for Newcastleton (—) and Scootmore ( ) during 1998. 
Calculated from daily temperature data, taken from nearest Met Office weather station to site, provided by 
the British Atmospheric Data Centre. 
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Fig 5.2: Yearly rainfall for Newcastleton (•) and Scootmore (•) during the period 1996 to 1999. Calculated 
from daily rainfall data, taken from nearest Met Office weather station to site, provided by the British 
Atmospheric Data Centre. 

As the PCA indicated that there were no visible clusters within each site, a hierarchical 

cluster analysis using Ward's method was performed on all three variables, to group 
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individual frees into clusters based on similar growth characteristics. The hierarchical 

analysis partitioned the individuals into a number of clusters so the total within-group sum 

of squares around the cenfroid was as small as possible. To begin with each individual was 

considered a separate cluster and, using an agglomerative algorithm, clusters were 

amalgamated so that the increase in the sum of squares was the smallest possible. This 

continued imtil all individuals were combined into one cluster. The resulting dendrogram 

illusfrated how similar clusters were by the length of the branching arm at each split. A 

large difference was represented by a long arm and, where this occurred, it was considered 

to be a split into separate clusters. 

Within the hierarchical cluster analysis, once an individual was assigned to a group it could 

not be moved, even i f this would improve the total within-group sum of squares. However, 

this was achieved by subsequently using a K-means cluster analysis. This approach had the 

same objective as the hierarchical cluster analysis but used an iterative relocation 

algorithm. Using randomly picked cenfroids, the individuals were split into groups, which 

were then modified by moving individuals from one group to another i f it reduced the sum 

of squares. Overall it produced a 'tighter' cluster, with a smaller sum of squares, than the 

hierarchical technique. 

The advantage of using the hierarchical cluster analysis and the resulting dendrograms was 

it indicated how many clusters there were in the data. This information was fed into the K-

means cluster analysis, which required the final number of clusters as an input. The mean 

values of the variables for each hierarchical cluster could be used to create hypothetical 

individuals used as the initial cenfroids for the K-means clusters. This was required to 

achieve clusters with the smallest sum of squares overall, which may not have happened if 

random cenfroids were used. 

After the data had been spHt into clusters using the cluster analyses, the clone number was 

identified for each free. A cluster was then assigned to each clone, based on its 15 

individuals. I f all individuals did not belong to the same cluster, then the clone was 

assigned to the cluster the majority of the individuals belonged to. One clone was selected 

from each cluster using the following procedure. 
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1. A representative clone within each cluster was chosen for the Newcastleton site, 

where clones with the largest number of individuals assigned to the cluster (i.e. a 

maximum of 15) were primarily selected. 

2. The clones chosen for Newcastleton were then compared with the same clones at 

the Scootmore site. Although these clones did not necessarily belong to the same 

cluster at Newcastleton, they had to be in different clusters within Scootmore. 

3. I f the clones were not in different clusters at Scootmore, step 1 had to be repeated 

to find the next suitable clone, and was continued until the representative clones at 

Newcastleton were in different clusters at Scootmore. 

4. Where there were several clones belonging to the same cluster and they all had the 

same number of individuals belonging to that cluster, the clone with the smallest 

sum of squares was used. 

5. The representative clones for each cluster had to belong to different families and be 

present at all sites (including Wauchope and Llandrindod) otherwise steps 1 to 5 

had to be repeated. 

At the end of this analysis there was a set of clones for plot 1 and a set of clones for plot 2, 

each belonging to a different cluster at Newcastleton and Scootmore and a different family 

for all four sites. 

This research only utilised one plot. For plot selection the ranking of the clones was 

considered, i.e. how many individuals belonged to the same cluster assigned to each clone. 

For example, if plot 1 had 15 individuals all belonging to the same cluster for each clone 

and plot 2 only had 10 individuals, plot 1 would be preferred. 

5.3 Results 

5.3.1 Hierarchical Cluster Analysis 

At Newcastleton, the dendrogram for plot 1 showed four distinct clusters (Fig 5.3a). After 

an initial very distinct split, each cluster could be further split into two distinct clusters. 

Within plot 2, there were two very distinct clusters again and one of these could be fiuther 

split into two less distinct clusters (Fig 5.3b). 
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The resulting dendrograms of the hierarchical cluster analysis for Scootmore showed that 

for plot 1 there were two very distinct clusters and both could be further split into two, less 

distinct, clusters (Fig 5.3c). Within plot 2, the dendrogram showed two distinct clusters and 

one of these could be split again (Fig 5.3d), although the difference between the two new 

clusters was small. 

At both Scootmore and Newcastleton, within plot 1 there were foiu" clusters and within plot 

2 there were three clusters. 

5.3.2 K-Means Cluster Analysis 

The K-means cluster analysis illustrated that there were no clones where all individuals 

were classified into the same cluster, except for clones C20180 and C20177 in plot 2 at 

Newcastleton. At both sites, the two plots showed different responses with respect to the 

classification of a clone's individuals into clusters. Plot 2 had a large number of clones 

where 10 or more individuals were classified into the same cluster. However, for plot 1 the 

majority of clones had fewer than nine individuals classified into the same cluster, 

resulting in a larger sum of squares. 

5.3.3 Clone selection 

Plotl 

The clones initially chosen for plot 1 at Newcastleton were C20158 for cluster 1, C20133 

and C20148 for cluster 2, C20123 for cluster 3 and C20168 for cluster 4 (Fig 5.4a). When 

comparing with Scootmore (Fig 5.4c), C20123 and C20133 were rejected as both were 

split between two clusters, and C20168 was rejected as it was in the same cluster as 

C20148. The next clone chosen for cluster 3 at Newcastleton was C20138, which was 

acceptable at Scootmore. For cluster 4, there were three more possibilities. Two were 

dismissed at Scootmore as they belonged to the same cluster as a previously chosen clone. 

The remaining clone, C20134, was accepted as, although it belonged to the same cluster as 

C20138, that particular cluster was made up of a large number of individuals and the 

cluster with no representative clone was so small the analysis was unable to fmd a clone 

with the majority of individuals belonging to that particular cluster. 
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Plot 2 

The clones initially chosen for plot 2 at Newcastieton were C20174, C20193, C20211 and 

C20213 for cluster 1, C20189, C20200 and C20216 for cluster 2, and C20177 and C20180 

for cluster 3 (Fig 5.4b). Both C20177 and C20180 have all 15 individuals classified into 

cluster 3, so the clone with the smallest sum of squares was chosen (C20177). When the 

other representative clones at Newcastleton were compared with those at Scootmore 

(Fig 5.4d), C20200 was split between two clusters and C20189 belonged to the same 

cluster as C20177. Both were rejected and C20216 chosen as representative of cluster 2. 

For cluster 1, C20174 belonged to the same cluster as C20216 at Scootmore and was 

rejected. C20211 was chosen from the three remaining clones as it had the smallest sum of 

squares. However, C20211 and C20216 belong to the same family. C20211 was selected 

because of its smaller sum of squares and larger number of individuals classified into the 

cluster assigned to the clone. Of the next choices for cluster 2, C20208 had the smallest 

sum of squares. 

Plot1 Plot 2 

Fig 5.3: Dendrograms from the hierarchical cluster analysis for a) Newcastleton plot 1, b) Newcastleton plot 
2, c) Scootmore plot 1 and d) Scootmore plot 2. 
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Fig 5.4: Dendrograms showing the clone selection for a) Newcastleton plot 1, b) Newcastleton plot 2, c) 
Scootmore plot 1 and d) Scootmore plot 2 (Red denotes clones in cluster 1, blue denotes cluster 2, green 
denotes cluster 3 and purple denotes cluster 4 at Newcastleton). 

5.3.4 Plot selection 

The K-means cluster analysis showed that the clones at plot 2 had a greater number of 

individuals classified in the cluster assigned to the clone and, hence, had a smaller sum of 

squares than plot 1. Due to the better structure of the data, plot 2 was selected. 

5.3.5 Clone and site dififerences 

The clones that were used for the physiological research were C20177, C20211 and 

C20208. The mean values for the three variables and the standard error of each clone is 

shown in Fig 5.5, for all sites, including Wauchope and Llandrindod. Height at 

Newcastleton, diameter at breast height (DBH; 1.3m) at Newcastleton, Wauchope and 

Llandrindod and wood density at all four sites showed the same pattern; C20211 had the 

lowest values, C20177 had the highest values, and C20208 with values in between. 

However, height at Scootmore, Llandrindod and Wauchope and DBH at Scootmore 

showed a different pattern; C20211 still had the lowest values but C20208 had the highest 

with C20177 in between. The error bars for height and DBH at Llandrindod are large and 

overlap, illustrating that the clones were not greatly different from each other. 
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In comparison to the PCA in Chapter 3, the three clones represent different positions along 

the main gradient. C20177 individuals are large trees, with greater height and tnmk 

diameter, but with lower wood density, representing the positive end of the PCA main axis. 

C20211 individuals are small trees, with smaller height and trunk diameter, but with high 

wood density, representing the negative end of the main axis of the PCA. C20208 

individuals lay between the positive and negative end of the PCA main axis, with a 

medium height, trunk diameter and wood density. 

There were also differences in the growth responses of the clones at each site. All clones at 

Newcastleton were growing faster and had greater height and trunk diameters, but smaller 

wood density than the clones at the other sites. Scootmore clones were smaller in height 

and trunk diameter but had the greatest wood density. Height, trunk diameter and wood 

density of the clones at Wauchope and Llandrindod were intermediate between those of the 

clones at Newcastleton and Scootmore. However, the clones at Wauchope had greater 

height and trunk diameters, but smaller wood density, in comparison to the clones at 

Llandrindod. 
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Fig 5.5: Mean ± 1 s.e. (n = 15) of a) height, b) diameter and c) wood density for C20177 (•),C20208 (o)and 
C20211 ( A ) at all four sites. 
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5.4 Discussion 

The cluster analysis proved successful by classifying all individuals into three or four 

clusters depending on the plot. The same clustering was found at both sites, although 

Newcastleton appeared to be the superior in terms of distinction between clusters, with the 

branching arms longer than at Scootmore. The same number of clusters found on each plot 

at both sites suggested that there was a common growth pattern between the sites. 

However, the individuals showed large variation suggesting a large environmental effect 

was confounding the identical growth of each individual and clone. Large variation within 

populations of Sitka spruce had been found before (Fletcher, 1992) and, with only two 

clones that have all 15 individuals assigned to the same cluster, the data agrees with these 

previous findings. Plot 2 appeared to have less of an environmental effect as the clones had 

a larger number of individuals (10 or above) that were grouped into the same cluster, in 

comparison to the clones growing on plot 1. However, both plots were very similar in 

structure and situated in the same location, and, therefore, the plots were subjected to the 

same environmental pressures. As there were different clones growing on the two plots, the 

particular crosses on plot 2 may be less susceptible to the effects caused by the 

environment. 

The selected clones showed the same pattern in ranking between sites and between growth 

variables. Usually C20211 had the lowest value and C20177 had the highest, with C20208 

in between. This pattern was particularly shown by DBH and wood density data, 

suggesting that the two were tightly linked. A strong negative correlation had been found 

before between DBH and wood density (Pfeifer, 1984; Wood, 1986), and agrees with the 

results here, as a high value represented a low wood density and a high value of wood 

density was linked to a large DBH. DBH at Scootmore did show a change in the ranking of 

the clones, with C20177 and C20208 swapping places and C20208 having the larger DBH, 

and could a result of the harsher conditions at Scootmore (lower temperatures and lower 

precipitation). 

A change in the order of clones at each site suggested that there was a strong 

environmental effect, as the clones would have been in the same order i f the genetic effect 

were stronger. By far the largest environmental effect seems to be on height. Scootmore, 

Llandrindod and Wauchope all showed the same order and share the same ranking as DBH 
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at Scootmore. Newcastleton showed a different ranking but the same as the DBH and 

wood density at the other sites. C20211 always had the lowest values but where the 

environment did exert a large effect then C20177 swapped places with C20208, which then 

had the largest values. Not only did the change in the ranking of the clones between sites 

suggest that there was a large environmental effect masking the genetic effect but there 

was also a lot of variation in individual height and DBH, shown by the larger error bars. I f 

the growth of clones was determined mainly by the genetic control then all individuals 

would grow in a similar way and the error bars minimised. On this basis, wood density 

seemed to be under a tight genetic control, as all sites showed the same order of clones and 

the error bars were small. 

With reference to the gradient running through the first PC A axis in Chapter 3, clone 

C20177 was towards the positive end, tall trees with large DBH but low density, and 

C20211 was at the negative end, small trees with small DBH but high wood density. Clone 

C20208 was an intermediate clone. 

The three variables showed the same pattern between sites. Height, trunk diameter and the 

Pilodyn® measurement of wood density were all higher at Newcastleton and lowest at 

Scootmore. The variables at Wauchope and Llandrindod were between the measurements 

at Newcastleton and Scootmore, but with Wauchope having the higher measurements. The 

measurements at Wauchope were closer to those at Newcastleton, whilst the measurements 

at Llandrindod were closer to those at Scootmore. This suggested Newcastleton and 

Wauchope were similar sites, and Scootmore and Llandrindod were also similar but with 

some environmental aspect resulting in a lower height and diameter growth rate. 

5.S Comcluisioiiis 

At Newcastleton and Scootmore, the individual trees could be split into 4 clusters on plot 1 

and split into 3 clusters on plot 2. The clusters were more distinct at Newcastleton and on 

plot 1. 

A greater number of trees were classified into the same cluster on plot 2, resulting in a 

smaller sum of squares. Plot 2 was therefore chosen for fiirther analyses. 
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Clones C20177, C20208 and C20211 were chosen from plot 2, as these clones had the 

greatest number of individual trees classified into the same cluster and the clones belonged 

to different clusters at Newcastleton and Scootmore. 

The three clones generally showed the same pattern at each site. C20177 had the greater 

height, trunk diameter and Pilodyn wood density measurement, with C20211 having the 

lowest measurements. The height, trunk diameter and wood density measurements of 

C20208 were intermediate of those of C20177 and C20211. Wood density and trunk 

diameter had the strongest relationship, showing the same clonal patterns between sites. 

The variables also showed the same pattern between sites. Newcastleton had the greatest 

height, diameter and wood density measurements, with Scootmore having the lowest. 

Wauchope and Llandrindod measurements were in between those of Newcastleton and 

Scootmore but with Wauchope having the greater measiu-ements between the two sites. 
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6. Chlorophyll concentration, nitrogen content and phosphorus 

content in the foliage of three clones of Sitka spruce grown at 

three sites. 

Abstract 

Chlorophyll, total nitrogen and total phosphorus were extracted from the needles of three 

different genotypes of Sitka spruce, at three different sites, taken from different positions 

in the canopy and from different needle age classes. Chlorophyll a and b both decreased 

with increasing height in the canopy and increased with increasing needle age. Older 

needles showed signs of shade adaptation, with an increase in the ratio of chlorophyll a:b 

with increasing needle age. Needle total nifrogen concentration increased with increasing 

canopy height, whilst total phosphorus concenfration did not differ between heights. Both 

nitrogen and phosphorus concentrations decreased with increasing needle age. There was 

little difference in the nitrogen and phosphorus concentration between the three genotypes, 

but C20177 did have higher concentrations of chlorophyll. The needles from Newcastleton 

contained the highest concentration of chlorophyll, nitrogen and phosphorus, with the 

needles from Scootmore having the lowest. 

6.1 Introduction 

6.1.1 Nitrogen availability and partitioning tlirougliout the canopy 

Soil nitrogen deficiency has been shown previously to cause a decrease in chlorophyll 

content, photosynthesis, Rubisco activity and stomatal conductance in Sitka spruce (Picea 

sitchensis (Bong.) Carr.) (Chandler & Dale, 1993; Murray et al, 2000). Needle size and 

number also decreased with soil nitrogen deficiency (Chandler & Dale, 1995), although 

needle cell size remained the same as non-deficient needles, suggesting nitrogen deficiency 

affects cell division and not cell expansion. In loblolly pine (Pinus taeda L.), low soil 

nitrogen availability led to a low needle nitrogen and chlorophyll content (Tissue et ah, 

1993) but nifrogen addition had no effect on the growth of Sitka spruce at Aber forest in 

Wales, UK (Emmett et al., 1995), or on the growth of Balsam fir (Abies balsamea) in 

Vermont, USA (Evans et al., 2001). 
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Nitrogen is partitioned into Rubisco, the main enzyme of photosynthesis, or chlorophyll, 

both of which are correlated positively with foliage nitrogen content (Evans, 1989). With 

variation in the photosynthetic photon flux densities (PPFD) through the tree crown 

(Norman & Jarvis, 1975; Sprtova & Marek, 1999), and with foliar nitrogen partitioned to 

optimise photosynthesis (Evans, 1989), different concentrations of Rubisco and 

chlorophyll would be expected throughout the canopy. In the top of the canopy, where 

photosynthesis is higher (Jarvis et al, 1976; Leverenz &. Jarvis, 1979, 1980b; Sprtovd & 

Marek, 1999), greater quantities of nitrogen wil l be partitioned to Rubisco (Sage & Pearcy, 

1987). In the lower canopy, where PPFD is lower, more nitrogen wi l l be used in 

chlorophyll and in the light-harvesting complex (Boardman, 1977; Leverenz & Jarvis, 

1980b; Sprtova & Marek, 1999). The lower chlorophyll a:b ratio found in shade foliage 

indicates an increase in the relative amount of light harvesting complex, which is more 

efficient at capturing low light intensities (Sprtova & Marek, 1999). However, although 

there is an increase in the partitioning of nitrogen to chlorophyll at low irradiances, there is 

a decrease in the electron transport rate per unit of chlorophyll (Evans, 1989; 

Lewandowska et al., 1977), resulting in the lower photosynthetic rates that are found in the 

shaded lower canopy (Boardman, 1977). 

6.1.2 Phosphorus deficiency and acclimation of photosynthesis 

Phosphorus availability can affect plant growth rates by altering photosynthetic rates. In 

Sitka spruce, phosphorus deficiency led to a reduction in Rubisco activity (Chandler & 

Dale, 1993). In maritime pine {Pinus pinaster Ait.), the rate of electron transport, the rate 

of Rubisco carboxylation and the carboxylation efficiency increased with increasing soil 

phosphorus content (Loustau et al., 1999). In Pinus radiata D. Don., phosphorus-deficient 

seedlings showed a change in chlorophyll a fluorescence and a decrease in photosynthesis 

(Conroy et al., 1986). However, after 22 weeks of growth in phosphorus-deficient soil, 

P. radiata had acclimated to low phosphorus concentrations and had the same 

photosynthetic rates as seedlings that were not phosphorus-deficient. Also in P. radiata, 

phosphorus deficiency caused a decrease in growth and foliar surface area but did not 

affect maximum rates of photosynthesis, unless grown under elevated atmospheric 

concentrations of CO2 (Conroy et al., 1988), and phosphorus-deficient seedlings exhibited 

a higher light-saturated photosynthesis than non-deficient seedlings after acclimation 

(Conroy et al., 1986). A similar response was also found in pond pine (Pinus serotina 
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Michx.), where phosphorus deficiency initially caused a decrease in relative groAvth rates 

and carbon exchange rates, but while there was a partial recovery of carbon exchange rates 

after six weeks (up to 85% of the non-deficient rates), the relative growth rate remained 

much lower (Topa & Cheeseman, 1992). 

6.1.3 Hypotheses 

• Chlorophyll content was expected to decrease with increasing height in the canopy, as 

a result of higher hght intensities at the top of the canopy. Chlorophyll content was 

expected to increase with increasing needle age, as a result of increased shading 

horizontally along the branch towards the interior of the crown. 

• Total foliar nitrogen was not expected to vary between needles at different heights in 

the canopy or in needles of different ages because where chlorophyll was expected to 

be lower, photosynthesis was expected to be higher and Rubisco content would also be 

increased. 

• Foliar phosphorus content was not expected to vary between different heights in the 

canopy or between needle age classes. 

• Differences of chlorophyll content, nitrogen content and phosphorus content within the 

needles were expected to reflect the differences in the growth of the three clones. 

• The chlorophyll content, nitrogen content and phosphorus content within the needles 

were expected to reflect the environmental differences between the three sites. With 

soil nitrogen and phosphorus concentrations highest at Newcastleton (Chapter 3), the 

foliar concentration of both nutrients was expected to be highest at Newcastleton. With 

nutrient concentrations lowest at Wauchope, then foliar concentrations of nitrogen and 

phosphorus were expected to be lowest at Wauchope. 

6.2 Method 

The needles placed in the conifer leaf chamber for the gas exchzinge measurements 

(Chapter 7) were removed after analysis and fi-ozen at -20 °C within one hour. Needles 

were kept fi-ozen imtil analysis. 
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6.2.1 Moisture content determination in needles 

For calculating chlorophyll and carbohydrate content on a dry weight basis and for 

producing the dried needle tissue for total nitrogen and phosphorus determination, 0.1 g 

fresh needles were placed in an oven at 85 °C for at least 48 hours and until there was no 

fiirther weight loss. After placing the needles in a desiccator whilst cooling, the needles 

were re-weighed and the moisture content determined gravimetrically, by subtracting the 

final weight from the initial weight. 

6.2.2 Chloropliyll content determination in needles 

The method used was taken from Chandler and Dale (1993), with some modifications. The 

chlorophyll was exfracted twice from 100 mg of needles by grinding in a pestle and mortar, 

initially with Uquid nifrogen to aid tissue disintegration, followed by 5 ml ice-cold 100% 

acetone and approximately 0.3 g of acid washed sand, again to aid tissue distintegration. 

The extract was centrifuged at 6000 rpm (Econospin, Sorall Instruments, Du Pont, 

Wilmington, Germany) for four minutes. The supernatant was decanted into a graduated 

plastic bottle and another 5 ml 100% acetone added to the centrifiigation tube and the 

pellet resuspended. After centrifuging again at 6000 rpm for three minutes, the 

supematants were combined and made up to 15 ml total volume. The absorbance of the 

supernatant was measured at 662 rmi and 645 nm on a spectrophotometer (Shimadzu 

UV150-02, Shimadzu Seisakusho Ltd., Kyoto, Japan), using 100% acetone as a blank. 

Chlorophyll content of the exfracts ()ug m l ' ) was calculated from Lichtenthaler & 

Wellbum(1983): 

Chlorophyll a = 11.75^662 - 2.35^645 [6.1] 

Chlorophyll b = 18 .6U645- 3.96^662 [6.2] 

where A^xx was the absorbance at xxx nm. The concentrations were then multiplied by 15 

(ml) and divided by fresh weight to give results in mg g"' fresh weight. The fresh weight to 

dry weight ratio, determined in section 6.2.1, was then used to calculate results as mg g"' 

dry weight. A l l procedures were carried out in dim light and on ice, to reduce pigment 

degradation dming extraction. 
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A l l chemicals used were of analytical grade, obtained from BDH (BDH Lab Supplies, 

Poole, Dorset, UK) or from Sigma (Sigma Chemical Company Ltd, Fancy Road, Poole, 

Dorset, UK). 

6.2.3 Total nitrogen and phosphorus determination in needles 

Foliage total nitrogen and phosphorus contents were determined using a micro-Kjeldahl 

digestion and a spectrophotometiic assay, based upon the method of Hind (1993) and 

Skalar(1995). 

10 mg (±0.4 mg) of oven-dried, ground needle tissue was added to 1 mi digestion acid and 

left overnight at room temperature. The digestion acid consisted of concentrated sulphuric 

acid containing 3.5% w/v Kjel tablet (1.5 g potassium sulphate and 7.5 |xg selenium; 

Thompson and Copper Ltd, Liverpool, UK) and 72% w/v salicylic acid, or sulphuric acid 

containing 3.5% w/v potassium sulphate, 0.4% w/v copper sulphate and 72%. w/v salicylic 

acid. The digestion acid containing the Kjel tablet was used for samples from Newcastleton 

and Wauchope but, as a result of contamination of the Kjel tablets, the digestion acid 

containing copper sulphate was used for samples from Scootmore. 

The digestion was heated at 100 °C for two hoiu-s in a heating block (Skalar 5620/40 

digester and Skalar 5600 conti-oUer; Skalar Analytical BV, 4800 Breda, Netiierlands). The 

digestion was left to cool before 3 ml of 30% v/v hydrogen peroxide was added and then 

re-heated at 330 °C for two hours. After cooling, the digestion mixture was decanted into a 

250 ml volumetric flask and made up to volume with distilled water. The digestion 

oxidises organic nitrogen and phosphorus to ammonium and phosphate, respectively. 

Potassium sulphate increases the reaction temperature, selenium or copper sulphate 

increases tiie oxidation of the organic matter and saUcylic acid converts nitrate into 5-

nitrosalicylic acid so that nitrate-nitrogen is also included in the total nitrogen 

determination (Bremner, 1996). Hydrogen peroxide fully oxidises the organic matter. 

Total nitrogen and phosphorus concentrations were determined as concentrations of 

ammonium (NH4^ and phosphate (P04^'), by using automated spectrophotometry. A 

SAN'''"* 4000 segmented flow analyser (Skalar Analytical, Breda, The Netherlands) was 

connected to a SAIOOO autosampler (Skalar Analytical, Breda, The Netherlands), matrix 

photometer (6250; Skalar Analytical, Breda, The Netherlands) and an interface unit 
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(SA8600; Skalar Analytical, Breda, The Netherlands), with SAN"'"' v6.2 software used to 

run the analyser and calculate concentrations of NHt^and P04^". 

Ammonia and phosphate concentrations were determined using the method described in 

Chapter 3, section 3.2.1. Blanks were made by diluting 1 ml of the digestion acid mixture, 

without the addition of any sample, with distilled water to a volume of 250 ml. Standard 

curves were made by diluting ammonium chloride with digested blank to give a range of 

0.02 to 1.00 mg N1"' and diluting potassixun dihydrogen o-phosphate with digested blank 

to give a range of 0.01 - 0.50 mg P l '. 

A l l chemicals used were of analytical grade, obtained fi-om BDH (BDH Lab SuppHes, 

Poole, Dorset, UK) or firom Sigma (Sigma Chemical Company Ltd, Fancy Road, Poole, 

Dorset, UK), imless stated otherwise. 

6.2.4 Statistical analysis 

Using SPSS® release 10, a two-way analysis of variance (ANOVA) was used to investigate 

the effect of site and clone on the chlorophyll, total nitrogen and total phosphorus 

concentrations. The same statistical test was also used to examine the effect of height and 

needle age on the chlorophyll, total nitrogen and total phosphorus concentrations at 

different heights in the canopy and for different age classes. Significant differences are 

reported at the 0.05 probability level. 

For ease of visually determining differences in the data, the mean value of chlorophyll, 

total nitrogen and total phosphorus content for each age class, at each height in the canopy, 

for each clone at each site were ranked. A black filled circle was used to represent each 

parameter value, with the size corresponding to the position in the ranking, so the highest 

value of each parameter had the largest circle. 

6.3 Results 

6.3.1 Moisture content of needles 

Moisture content generally ranged fi-om 40% to 60% for all needle samples throughout the 

canopy and at all three sites. Moisture content was subsequently used for calculation of 
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chlorophyll on a dry weight basis and was not subjected to any fiirther analysis. The resuhs 

are presented in Appendix 1. 

6.3.2 Chlorophyll a concentration in needles 

A l l three clones showed a similar range of concentrations but C20177 had sUghtly higher 

chlorophyll a concentrations, particularly at Wauchope (Table 6.1, actual mean chlorophyll 

a in Appendix 2). There was very little difference between C20208 and C20211 at all three 

sites. Differences between clones were significant for 3-year-old needles at 2 m and 2-

year-old needles at 4 m (Appendix 3). 

For each clone, the chlorophyll a concentrations were highest at Newcastleton and lowest 

at Scootmore, with significant differences between sites for flush, 1-year-old and 3-year-

old needles at 2 m and for 2-year-old needles at 4 m (Appendix 3). 

Regardless of clone, there was little difference between the chlorophyll a concentrations of 

the three heights, although there was slight decrease with increasing height in the canopy. 

This was most evident with C20211 at Newcastleton and Wauchope. Conversely, C20177 

at Scootmore showed an increase in chlorophyll a concentrations between 2 m and 4 m. 

Differences in the chlorophyll a concentrations between heights were significantly 

different for all clones at Newcastleton and C20211 at Scootmore (Appendix 3). 

There was an increase in chlorophyll a concentration with increasing needle age, although 

less apparent at 2 m. At 2 m, C20208 showed a decrease in chlorophyll a concentration 

with increasing needle age and, generally, there was httle difference between the needle 

age classes. There were significant differences between needle ages for C20208 at all sites, 

C20177 at Wauchope, and C20211 at Newcastleton and Wauchope (Appendix 3). 
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Table 6.1: Rank of chlorophyll a concentration (mg g 'd . wt) for all clones, at each site, for each height in 
the canopy and needle age class. The largest black circle represents the highest chlorophyll a concentration. 

4m 6m 

3yr 2yr lyr Flush 2yr 1yr Flush 1yr Flush 

Newcastleton • • • • • • • • • 
C20177 Wauchope • • • • • • • • • 

Scootmore • • • • • • • • 
Newcastleton • • • • • • • • 

C20208 Wauchope • • • • • • • • • 
Scootmore • • • • • • • • 
Newcastleton • • • • • • • • • 

C20211 Wauchope • • • • • • • • 
Scootmore • • • • • • • • 

6.3.3 Cliloropliyll b concentration in needles 

There was little difference in the chlorophyll b concenfrations of each clone, although there 

were slightly higher concenfrations in C20177, in particular at Wauchope (Table 6.2, 

actual mean chlorophyll b in Appendix 2). Differences between clones were significant for 

the oldest needles at each height only (Appendix 3). 

Chlorophyll b concentrations were highest, for all clones, at Newcastleton and lowest at 

Scootmore. The chlorophyll b concenfrations at Wauchope were most similar to those at 

Newcastleton. The differences between concenfrations at each site were significant for 

flush, 1-year-old and 3-year-old needles at 2 m, and for 2-year-old needles at 4 m 

(Appendix 3). 
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Table 6.2: Rank of chlorophyll b concentration (mg g"' d. wt) for all clones, at each site, for each height in 
the canopy and needle age class. The largest black circle represents the highest chlorophyll b concentration. 

2m 4m 6m 

3yr 2yr 1yr Flush 2yr 1yr Flush 1yr Flush 

Newcastleton • • • • • • • • • 
C20177 Wauchope • • • • • • • • • 

Scootmore • • • • • • • • 
Newcastleton • • • • • • • • 

C20208 Wauchope • • • • • • • • • 
Scootmore • • • • • • • • • 

Newcastleton • • • • • • • • • 

C20211 Wauchope • • • • • • • • • 

Scootmore • • • • • • • • • 

There was little difference in the chlorophyll b concentrations between the three heights in 

the canopy, although there was a slight decrease with increasing height. A significant 

difference exists for C20177 at Wauchope only (Appendix 3). 

Chlorophyll b concentration varied considerably with increasing needle age. At 2 m, there 

was generally a decrease with increasing needle age and at 6 m, there was an increase in 

chlorophyll b with increasing needle age. At 4 m, there was a mixture of increasing and 

decreasing concentrations between needle ages. There were few significant differences 

between needle ages, with significant differences for C20208 at Newcastleton and C20177 

at Wauchope (Appendix 3). 
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6.3.4 Chlorophyll a:b ratio in needles 

There was very little difference in the chlorophyll a:b ratio between clones (Table 6.3 

actual mean chlorophyll a:b ratio in Appendix 2), with no significant differences 

(Appendix 3). 

Table 6.3: Rank of chlorophyll a:b ratio for all clones, at each site, for each height in the canopy and needle 
age class. The largest black circle represents the highest chlorophyll a:b ratio. 

2m 4m 6m 

3yr 2yr 1yr Flush 2yr 1yr Flush lyr Flush 

Newcastleton • • • • • • • • • 

C20177 Wauchope • • • • • • • • 

Scootmore • • • • • • • • • 
Newcastleton • • • • • • • • 

C20208 Wauchope • • • • • • • • • 
Scootmore • • • • • • • • • 

Newcastleton • • • • • • • • • 
C20211 Wauchope • • • • • • • • • 

Scootmore • • • • • • • • • 

The differences between sites varied between the three heights in the canopy and between 

clones. At 2 m, Newcastleton had the lowest chlorophyll a.b ratio and Scootmore the 

highest, regardless of clones. At 4 m, Newcastleton had the highest ratio m C20177 and 

C20208 but Wauchope had the lowest in C20177 and Scootmore the lowest in C20208. 

For C20211, the highest ratio was at Scootmore, with Newcastleton and Wauchope showed 

a very similar, lower, ratio. At 6 m, C20177 and C20208 showed very little difference in 

chlorophyll a:b ratio between sites, but for C20211 Newcastleton had the highest and 
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Wauchope the lowest. There were significant differences between sites for 1-year-old 

needles and 3-year-old needles at 2 m (Appendix 3). 

There was very little difference in the chlorophyll a:b ratio between heights, although there 

was a decrease between 4 m and 6 m for C20177. A significant difference was present only 

for C20211 at Newcastleton (Appendix 3). 

The chlorophyll a:b ratio increased with increasing needle age. There were significant 

differences for all clones at Scootmore, C20211 at Newcastleton and Wauchope, and 

C20177 at Newcastleton (Appendix 3). 

6.3.5 Total nitrogen concentration in needles 

There was very little difference in the total nitrogen concentration of the clones (Table 6.4, 

actual mean nitrogen content in Appendix 2), with a significant difference between clones 

for flush needles at 2 m only (Appendix 3). 

The clones showed different responses of total nitrogen concentration between sites. The 

nitrogen concentration of C20177 and C20211 was highest at Newcastleton, with 

Wauchope and Scootmore showing lower but similar concentrations. With C20208, the 

nitrogen concentration was lowest at Scootmore, with Newcastieton and Wauchope 

showing higher and very similar concentrations. There were significant differences 

between sites for 1-year-old and 2-year-old needles at 2 m, and for flush needles at 4 m and 

6 m (Appendix 3). 

There was little difference in the nitrogen concentration between heights in the canopy, 

although there was a slight decrease between 4 m and 6 m. However, there were no 

significant differences between heights (Appendix 3). 

Generally, there was a decrease with increasing needle age. However, there are many 

exceptions; C20177 at 6 m at Wauchope and Scootmore, C20208 at all heights at 

Wauchope and at 6 m at Scootmore, C20211 at 6 m at Newcastleton and Scootmore and at 

4 m at Wauchope and Scootmore. There were significant differences between needle ages 

for C20208 and C20211 at Newcastieton, and C20177 at Scoottnore (Appendix 3). 
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Table 6.4: Rank of foliar nitrogen concentration (mg g 'd . wt) for all clones, at each site, for each height in 
the canopy and needle age class. The largest black circle represents the highest nitrogen concentration. 

2m 4m 6m 

3yr 2yr 1yr Flush 2yr 1yr Flush 1yr Flush 

Newcastleton • • • • • • • • • 
C20177 Wauchope • • • • • • • • • 

Scootmore • • • • • • • • • 

Newcastleton • • • • • • • • 
C20208 Wauchope • • • • • • • 

Scootmore • • • • • • • • • 

Newcastleton • • • • • • • • • 
C20211 Wauchope • • • • • • • • • 

Scootmore • • • • • • • • • 

6.3.6 Total pliospliorus concentration in needles 

There was very little difference in the total phosphorus concentration between the clones 

(Table 6.5, actual mean phosphorus content in Appendix 2), with only one significant 

difference for 2-year-old needles at 2 m in the canopy (Appendix 3). 
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Table 6.5: Rank of foliar phosphorus concentration (mg g"' d. wt) for all clones, at each site, for each height 
in the canopy and needle age class. The largest black circle represents the highest phosphorus concentration. 

2m 4m 6m 

3yr 2yr 1yr Flush 2yr 1yr Flush 1yr Flush 

Newcastleton • • • • • • • • 
C20177 Wauchope • • • • • • • • • 

Scootmore • • • • • • • • • 
Newcastleton • • • • • • • • 

C20208 Wauchope • • • • • • • • 
Scootmore • • • • • • • • • 
Newcastleton • • • • • • • • • 

C20211 Wauchope • • • • • • • • 
Scootmore • • • • • • • • • 

Between sites, Newcastleton had the slightly higher phosphorus concentrations for all three 

clones. There were significant differences between sites for 1-year-old needles at 2 m and 

flush needles at 4 m (Appendix 3). 

There was very little difference in the total phosphorus concentration between the different 

heights in the canopy, with a very small decrease between 4 m and 6 m. There were no 

significant differences between heights (Appendix 3). 

There was a decrease in total phosphorus concentration with increasing needle age for all 

clones at all sites. The only exception was at Wauchope for C20177 at 6 m. There were 

significant differences between needle ages for C20208 and C20211 at Newcastieton and 

Scootmore (Appendix 3). 
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6.4 Discussion 

The range of chlorophyll contents reported here were comparable with figures already 

published for Sitka spruce (Chandler & Dale, 1993; Murray et al, 2000). Chlorophyll a 

and chlorophyll b concentrations showed a slight decrease with increasing height in the 

canopy and could be explained by the light gradient. Light intensity increases with 

increasing height and, with greater Ught availability, the needles at the top of the canopy 

require less chlorophyll to capture the quanta needed for photosynthesis to occur. In the 

lower canopy, with much greater shading, less light is available and more chlorophyll is 

required to capture the equivalent quanta. C 3 plants grown in low light intensities 

partitioned more nitrogen into chlorophyll pigments (Evans, 1989). The decrease in 

chlorophyll a with increasing height was only significant at Newcastleton and for C20211 

at Scootmore, suggesting that there was little difference in the chlorophyll content between 

heights at most sites. A similar response was found with Picea abies, where no significant 

differences were found between the chlorophyll a content of sun and shade needles 

(Sprtova & Marek, 1999). Even fewer significant differences were found in chlorophyll b 

content between heights, suggesting that light availability was having a very small effect. 

This was in contrast to the research of Sprtova and Marek (1999), who found that the 

chlorophyll b content was significantly higher in shaded needles of P. abies. As the trees 

were still in their juvenile stage, light may not have impacted on the needle physiology, as 

high light intensities were able to penetrate through to the lower canopy. 

The chlorophyll a content increased with increasing needle age and may also reflect light 

availability. Older needles closer to the trunk are subjected to greater mutual shading and 

will need more chlorophyll for capturing the required quanta for photosynthesis. However, 

with increasing height there was less shading, so at 6 m in the canopy there was little 

mutual shading occxirring in the older needles, but these needles also showed an increase in 

chlorophyll a in older needles. This change between age classes could be a result of 

physiological changes that occur as needles age (Ludlow &. Jarvis, 1971), requiring higher 

concentrations of chlorophyll to capture enough light for photosynthesis. The response of 

chlorophyll b content with increasing needle age was not as straightforward. With 

increasing needle age, there was an increase in chlorophyll b content at 6 m and could be 

explained by the same age-related physiological changes that cause the increase in 

chlorophyll a. However, at 2 m, there was a decrease in chlorophyll b with increasing 
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needle age and a mixture of increases and decreases at 4 m, which were harder to explain. 

A decrease in chlorophyll b content may be caused by gaps in the canopy allowing high 

light intensity sun flecks to penetrate, requiring less chlorophyll in the needles. However, a 

similar response would be expected of the chlorophyll a content, which was not seen. 

Although there was little difference in the chlorophyll a:b ratio between heights, there was 

a slight decrease between 4 m and 6 m. As the ratio increased within low light 

environments with other P/cea species (Kayama et al, 2002), this agam suggested that the 

needles at the top of the canopy were adapted to high light environments. As the 

chlorophyll a:b ratio also increased with increasing needle age, this suggested that the 

needles are adapting to the horizontal light environment along the branch, with older 

needles adapted to lower light intensities. A phosphorus deficiency in Pinus radiata caused 

an increase in the ratio (Conroy et al, 1986), so the increase in chlorophyll a:b ratio may 

also reflect a change in the nutrient status of the needles at different positions in the 

canopy. 

The total foliar nitrogen content reported here was comparable with nitrogen contents of 

Balsam fir (Evans et al., 2001) but indicative of nitrogen deficiency as the values were 

lower than those of the optimum concentration reported for Sitka spruce (Emmett et al., 

1995; Jalkanen et al., 1998). There was a sUght increase in fohar nitrogen content between 

4 m and 6 m in the canopy, although there was little difference between the three heights. 

Plants optimise the partitioning of nitrogen to maximise photosynthesis, with the major use 

of nitrogen in Rubisco (Evans, 1989). With higher rates of photosynthesis expected in the 

upper canopy (Jarvis et al., 1976; Leverenz & Jarvis, 1979,1980b; Sprtova & Marek, 

1999), the majority of nitrogen would be partitioned into Rubisco at 6 m, decreasing with 

increasing deptii in the canopy. In this case, a decrease in foliar nitrogen content might be 

expected in the lower canopy. However, foliar nitrogen content was increased in lower 

irradiances in Balsam fir (Evans et al., 2001) and the results here had also shown an 

increase in chlorophyll in the lower canopy, another major source of foliar nitrogen, 

therefore leading to little difference in the foliar nitrogen content at different heights in the 

canopy. 

There was a decrease in foliar nitrogen content with increasing needle age. As there was an 

increase in chlorophyll content with increasing needle age, the higher foHar nitrogen 
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content in younger needles must be due to an increase in Rubisco. Therefore, higher 

photosynthetic rates were expected in younger needles. 

The total foliar phosphorus content of the clones was comparable with the range of values 

previously reported for Sitka spruce (Jalkanen et al, 1998). Foliar phosphorus content 

showed the same pattern seen with total foliar nitrogen content, with the three heights in 

the canopy showing similar concentrations and with a decrease in foliar phosphorus 

content with increasing needle age. Low foliar phosphorus content led to a reduced 

photosynthetic rate in Sitka spruce (Chandler & Dale, 1993), Pinus serotina (Topa & 

Cheeseman, 1992), Pinus radiata (Conroy et al., 1988) and Pinuspinaster (Loustau et al., 

1999). In the present study, therefore, photosynthesis was expected to show little 

difference between different heights in the canopy but would be higher in current year 

needles in comparison to older needles. Generally, there were few differences in the 

concentrations of the various foliar constituents between the three clones. However, where 

there were differences, C20177 usually had the higher concentrations. C20177 had the 

higher chlorophyll a and chlorophyll b concentrations, but this led to very little difference 

in the chlorophyll a:b ratio. There was very little difference in the concentrations of foliar 

nitrogen and foliar phosphorus between the clones. 

Chlorophyll content was generally highest in needles at Newcastleton and lowest in 

needles at Scootmore. The chlorophyll a:b ratio also generally showed the highest values 

in needles at Newcastleton but the lowest ratios varied between needles at Wauchope or 

Scootmore. Total foliar nitrogen content was also highest in needles at Newcastleton and 

the lowest concentration in needles at Scootmore. The foliar nitrogen concentration in 

needles at Wauchope varied with clone, showing similar values to Newcastleton in C20208 

and similar values to Scootmore in C20177 and C20211. The higher foliar nitrogen and 

phosphorus contents reflected higher soil nitrogen and phosphorus contents at 

Newcastleton. The increased availability of nitrogen at Newcastleton also led to increased 

chlorophyll contents in the fohage. However, Scootmore had higher soil concentrations of 

nitrogen and phosphorus, in comparison to Wauchope, but Scootmore had the lowest foUar 

concentration of both nutrients. This suggested that the trees were able to make use of the 

available nutrients at Wauchope and some factor was limiting uptake at Scootmore. 

Alternatively, the lower concentrations at Wauchope may have been a result of nutrient 

depletion, caused by the higher uptake by the trees. The soil cores were taken during the 
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same month at Newcastleton and Wauchope, but were taken during an earlier month at 

Scootmore. The difference in timing did not allow an exact comparison between sites and 

nutrient concentrations at Newcastleton and Wauchope may have been different in the 

preceding month. 

6.5 Conclusions 

Chlorophyll concentration of needles generally decreased with increasing height in the 

canopy and increased with increasing needle age, suggesting chlorophyll content is highest 

in shaded needles. Chlorophyll a:b ratio increased with needle age and depth in the canopy, 

again suggesting that older needles and needles in the lower canopy are shade-adapted. 

Foliar nitrogen content increased with increasing height in the canopy and increased in 

younger needles. Foliar phosphorus content did not differ between different heights in the 

canopy but did decrease with increasing needle age. 

C20177 had the highest concentration of chlorophyll. There was little difference in the 

concentration of foliar nitrogen and phosphorus between clones. 

The needles at Newcastleton had the higher concentrations of chlorophyll, foliar nitrogen 

and foliar phosphorus, with Scootmore having the lower concentrations. The higher 

concentrations in the needles at Newcastleton were reflected by the higher soil nutrient 

concentrations at this site. Soil nutrient concentrations were not reflected by foliar nutrient 

concentrations at Scootmore or Wauchope. 
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7. Light response and carbohydrate concentration of needles 

from three clones of Sitka spruce grown at three sites 

Abstract 

Photosynthetic light response curves of Sitka spruce were taken in situ from three different 

genotypes, at three different sites, at different positions in the tree canopy and for different 

needle age classes at each of these positions. The photosynthetic rates were normalised for 

nitrogen content and five different parameters were subsequently calculated from the 

curves: light saturated photosynthesis (Amca_N), dark respiration (Rdayjd> 'ight 

compensation point (LCP), light saturation estimate (LSE) and quantum efficiency. Amaxj/ 

and quantum efficiency were highest at Newcastleton and lowest at Scootmore, whilst 

Rday_N was also highest at Newcastleton but lowest at Wauchope. LCP and LSE showed 

little difference between sites. Within sites, there was Uttle difference in any of the 

parameters between clones or between different heights in the canopy, with only Rday_N 

showing a slight increase with increasing height. At Newcastleton, Amax_N, Rday N and LCP 

showed an increase with increasing needle age but at Wauchope and Scootmore there was 

a decrease with increasing needle age. LSE and quantum efficiency decreased with 

increasing needle age at Newcastleton but increased with increasing needle age at 

Wauchope and Scootmore. Carbohydrate analyses of the needles showed highest 

concenfrations in the needles at Wauchope, with similar concentrations at Newcastleton 

and Scootmore. C20177 had the lowest concentrations of carbohydrates and C20208 and 

C20211 had similar but higher concentrations. There was little difference in concentrations 

between heights but there was an increase in carbohydrates with increasing needle age. 

7.1 Introduction 

7.1.1 Gas exchange of conifers 

Conifers have typical C3 photosynthesis, with carbon dioxide (CO2) affinity and 

chlorophyll concentration comparable to herbaceous plants, although the photosynthetic 

rates in conifers are reduced by up to one fifth (Cannell, 1987). In Sitka spruce, this 

reduction has been attributed to several factors. Firstly, within the canopy there is mutual 

shading, a result of the compact arrangement of the needles (Norman & Jarvis, 1975). 
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Secondly, within needles, there are gradients of photon flux density that prevents light 

saturation in all photosjoithetic units, but particularly in the abaxial area of the needle 

(Jarvis et al., 1976). Thirdly, the maximum stomatal conductance for CO2 is lower in 

conifers than in herbaceous C3 plants (Beadle et al., 1983). Finally, it is has been predicted 

that there are low intrinsic rates of electron transport and carboxylase activity in spruce 

needles (Lewandowska et al., 1977; Lewandowska & Jarvis, 1978). 

Light is the dominating conditioning environmental influence upon photosynthesis, with 

canopies exposed to large differences in irradiance. Needles at the top of the canopy are 

physiologically and anatomically acclimated to higher irradiances ('sun' needles), whereas 

needles in the lower canopy are shade-adapted ('shade' needles) (Jarvis et al., 1976). 

Shade-adapted plants tend to have high photosynthetic efficiencies, low respiration rates, 

low compensation points, low saturation estimates and low light-saturated photosynthetic 

rates (Boardman, 1977); these adaptations would be expected in 'shade' needles. This has 

been found in the needles of Norway spruce (Picea abies [L.] Karst.), where light saturated 

photosynthesis, apparent quantum efficiency, light compensation point and dark respiration 

were higher in 'sim' needles compared to 'shade' needles (Sprtova & Marek, 1999). In 

conifers in general, the maximum rate of photosynthesis is higher in needles in the upper 

canopy, whilst respiration and light compensation point become progressively lower with 

increasing depth into the canopy (Jarvis et al., 1976). Rapid saturation of photosynthesis 

occurs in 'shade' needles, lowering their ability to use excess energy at high light 

intensities, hence a lower efficiency and a lower compensation point. The higher 

respiration of 'sun' needles could be an expression of higher energy expenditures, 

connected to both growth and maintenance, resulting from greater assimilation rates 

(Sprtova & Marek, 1999). In Sitka spruce, higher photosynthetic capacities and respiration 

rates have been found in 'sun' foliage (Leverenz & Jarvis, 1979,1980b), although other 

research has suggested there is little difference between the photosynthetic rates of the two 

foliage types (Leverenz & Jarvis, 1980a), with 'shade' shoots as efficient at utiUsing light 

as 'sun' needles (Jarvis et al., 1976). Similarly, another study of Sitka spruce, foimd the 

light response curves of 'shade' needles more convex than 'sun' needles. A small 

convexity indicates a large range of photon flux densities within the needles, so not all the 

photosynthetic units are saturated. Therefore, it appears that 'sun' needles are less efficient 

at utilising intermediate photon flux densities and may not be as productive as the 'shade' 

needles (Leverenz & Jarvis, 1979). 
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7.1.2 Gas exchange with needle age 

A decrease in the photosynthetic activity of older needles is evident in Black spruce (Picea 

mariana [Mill] BSP) (Lamhamedi «& Bemier, 1994) and Lodgepole pine {Pinus contorta 

[Dougl.] ssp. latifolia Engelm.) (Schoettle & Smith, 1999), as well as in Sitka spruce 

(Ludlow & Jarvis, 1971; Rajnnent et al., 2002). There have been several suggestions to 

account for this decline in activity with age. A strong gradient of light occurs horizontally 

along the branches, from the current year needles at the end of the branches in higher light 

intensities to the older shaded needles at the interior of the crown (Rayment et al., 2002). 

With acclimation to the local light environment, needles adapt to the most economical 

photosynthetic capacity and a decrease in photosynthesis would be expected in older 

needles in a way analogous to the adaptation of 'sun' and 'shade' foliage. I f older needles 

were shade-adapted, then older needles would be expected to be more productive than 

current year needles at lower light intensities. However, younger needles of Lodgepole 

pine were exhibiting higher photosynthetic rates in the shade, suggesting other factors may 

be involved in the age-related decline of photosynthesis (Schoettle & Smith, 1999). 

The decrease of photosynthetic rates in older needles has been attributed to physiological 

and anatomical changes in aging needles, with decreases in stomatal and mesophyll 

conductances, accumulation of wax in stomatal cavities and non-reversible winter 

chloroplast damage all suggested as possible causes (Lamhamedi & Bemier, 1994; Ludlow 

«& Jarvis, 1971). 

7.1.3 Differences in gas exchange of differing clones 

Differences in photosynthesis have been found between different provenances and clones 

of conifers. In Sitka spruce there are distinctions between provenances, although these are 

not statistically significant; more northerly spruces exhibit higher photosynthetic and 

respiration rates but, unexpectedly, are slow growing (Ludlow & Jarvis, 1971). In 10 

different clones of interior spruce (Picea glauca (Moench) Voss x P. engelmannii Parry ex 

Engelm.) from five full-sib families, significant differences in net photosynthesis, stomatal 

conductance and water-use efficiency were evident both between and within families (Fan 

& Grossnickle, 1999), and when studied over the period of cold acchmation in autumn, 

striking differences in freezing tolerance between families were also present. 
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7.1.4 The nitrogen-photosynthesis relationship 

Soil nitrogen deficiency has been shown to cause a decrease in photosynthesis and Rubisco 

activity in Sitka spruce (Picea sitchensis (Bong.) Carr.) (Chandler «& Dale, 1993; Murray et 

al., 2000). Increasing soil nitrogen also had a positive effect on the photosynthesis of Scot 

pine (Pinus sylvestris L.) (Wang & Kellomaki, 1997) and loblolly pine (Pinus taeda L.) 

(Murthy et al., 1997), as well as increasing the rate of carboxylation of Rubisco in flush 

and 1-year-old needles of black spruce {Picea mariana Mill. B.S.P.) (Paquin et al., 2000). 

In loblolly pine low soil nitrogen availability led to a low needle nitrogen and a lower 

photosynthetic rate (Tissue et al., 1993). 

Foliar nitrogen is partitioned into Rubisco, the main enzyme of photosynthesis, or 

chlorophyll, both of which are correlated with foliage nitrogen content (Evans, 1989). 

However, maximum photosynthesis was related significantly to nitrogen content in 

younger needles but not in older needles of lodgepole pine (Pinus contorta ssp. latifolia) 

(Schoettle & Smith, 1999). And in Japanese red pine (Pinus densiflora Sieb. et Zucc), 

high nitrogen treatment led to a decrease in photosynthesis, due to a decrease in 

carboxylation efficiency and a decrease in Rubisco content and activity (Nakaji et al., 

2001). 

With variation in the photosynthetic photon flux densities (PPFD) through the tree crown 

(Norman & Jarvis, 1975; Sprtovd & Marek, 1999), and with foliar nitrogen partitioned to 

optimise photosynthesis (Evans, 1989), different levels of Rubisco and chlorophyll would 

be expected throughout the canopy. In the top of the canopy, where photosynthesis is 

higher (Jarvis et al., 1976; Leverenz & Jarvis, 1979, 1980b; Sprtova & Marek, 1999), 

greater quantities of nitrogen will be partitioned to Rubisco (Sage & Pearcy, 1987). In the 

lower canopy, where PPFD is lower, more nitrogen will be used in chlorophyll and in the 

light-harvesting complex (Boardman, 1977; Leverenz & Jarvis, 1980b; Sprtova & Marek, 

1999). However, although there is an increase in the partitioning of nitrogen to chlorophyll 

at low irradiances, there is a decrease in the electron transport rate per unit of chlorophyll 

(Evans, 1989; Lewandowska et al., 1977), resulting in lower photosynthetic rates in the 

shaded lower canopy (Boardman, 1977). 
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7.1.5 Carbohydrate accumulation and photosynthetic inhibition 

With different rates of photosynthesis at different positions in the canopy and for different 

needle ages, different concentrations of total non-structural carbohydrates would be 

expected throughout the canopy. Carbohydrate concentrations also correspond to the 

natural environment (Wiemken & Ineichen, 2000), particularly shown through the seasonal 

dynamics of carbohydrate concenfrations. In Norway spruce (Picea abies L. [Karst.]), 

starch concenfration decreased following bud burst in spring, while at the same time there 

was an increase in sucrose, but with glucose and fructose showing no seasonal pattern 

(Wiemken & Ineichen, 2000). A similar pattern was seen in red spruce {Picea rubens 

Sarg.), with a decrease in starch concenfration through the summer after a peak in spring 

(Schaberg et al, 2000), and changes in carbohydrate concenfration were also sfrongly 

correlated with frost hardiness in Scots pine {Pinus sylvestris L.) and Norway spruce 

(Aronsson et al., 1976). Interestingly, site had no effect and soil nifrogen content did not 

affect carbohydrate concenfrations in Norway spruce (Wiemken & Ineichen, 2000). 

Foliage has a critical role in the storage of carbohydrates, so a loss of foUage leads to a 

decline in capacity for both the production and storage of carbohydrates, which can, in 

turn, lead to a decrease in plant growth and vigour. Indeed, extensive foliage loss has been 

linked to the decline in growth and increased mortality rate seen in field grown red spruce 

in the USA (Schaberg et al., 2000). 

Carbohydrates can also impact on photosynthesis through inhibition by accumulation. 

Accumulated carbohydrates in red clover {Trifolium pratense L. cv. Renova) and wheat 

(Triticum aestivum L.) caused a decrease in photosynthesis, which was restored when 

carbohydrate export was able to resume (Azcon-Bieto, 1983; Grub & Machler, 1990). In 

the C 4 ^XdixA Amaranthus edulis L., blocking of sucrose export resulted in a carbohydrate 

increase of five- to six-fold and a large decline in photosynthesis, which did not recover 

until after 14 hours in the dark (Blechschmidt-Schneider et al., 1989). Accumulation of 

sucrose leads to a decrease in internal phosphorus concenfration (Pi), a result of the 

inhibition of sucrose-phosphate synthetase. A reduction in Pi affects the rates of 

photophosphorylation and elecfron fransport, which in turn leads to a decrease in ribulose 

1,5 bisphosphate regeneration and consequently photosynthesis (Lawlor, 2001). 



7.1.6 Hypotheses 

• With photosynthetic rates differing between clones in previous research, it was 

expected that there would be differences in the photosynthesis of the three different 

Sitka spruce clones. 

• Photosynthetic rates were also expected to differ with increasing height m the canopy, 

as a result of the light environment, and to decrease with increasing needle age. 

• Photosynthetic differences were expected between sites, as the environment impacts on 

the photosynthesis, although photosynthesis per unit of nitrogen was not expected to 

differ. 

• Lower concentrations of carbohydrates were expected to reflect the sink demand, 

where there is faster growth. Differences in carbohydrates throughout the canopy and 

between sites were expected to reflect the needle or tree growth rates. 

7.2 Method 

7.2.1 Gas exchange measurements 

The set up of the clonal experiments, with regards to breeding background and 

experimental set-up, have been discussed in Chapter 4. The selection of clones for the gas 

exchange experiments and the description of the three sites have been discussed in 

Chapter 5. 

Gas exchange measurements were taken after bud burst in late May, several weeks into the 

growing season, during June and July in 2001, between June and August in 2002 and 

during July in 2003. Data were collected at Newcastleton in 2001 and in the early part of 

the 2002 growing season, at Wauchope in the latter half of 2002 and at Scootmore in 2003. 

The same protocol was used for each of the three clones at each site. 

To gain access into the canopy, scaffolding towers were erected adjacent to each tree. Each 

tower consisted of three 2 x 2 x 2 m units allowing a total of 6 m into the canopy to be 

reached and allowing access to the upper part of the canopy. A platform was constructed at 

the top of each unit, providing three working areas (plate 7.1). The trees had been brashed 

in 1999 to a height of about 2 m above the forest floor, making 2 m the lowest part of the 

canopy. With 2 m representing the lower part of the canopy and 6 m the upper part, a 
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height of 4 m was chosen as representative of the middle canopy whilst also allowing for 

ease of access, with platforms at each chosen height. As a result of the brashing, the trees 

could only be accessed from one side, dictating where the scaffolding towers could be 

placed. At Newcastleton and Wauchope, the trees could be reached from the north-east or 

south-west sides and at Scootmore the north-west or south-east sides. In all cases, the most 

southerly, most suitable branch was used. Each branch was chosen on its quality and how 

well it represented the canopy height, with branches that were damaged, broken, dying or 

had prematurely stopped growing discounted from the analysis. 

Plate 7.1: Photograph showing 6 m high scaffolding tower, with platforms at 2 m intervals. 

Gas exchange was measured using an infra-red gas analyser (LCA4; ADC Bioscientific 

Ltd, Hoddesdon, Herts, UK) and an attached conifer leaf chamber (PLC4C; ADC 

Bioscientific Ltd, Hoddesdon, Herts, UK)(Plate 7.2). The leaf chamber was modified to 

allow the use of larger branches, up to a diameter of 10 mm. During measurements, a 5 cm 

segment of branch was clamped into the chamber, avoiding the trapping of needles in the 

jaw gaskets, and for branches with diameters less than 10 mm, the excess width was filled 

with Blu-Tack® (Bostik, Leicester, UK). The LCA4 was calibrated with 700 ppm CO2 

(Cryoservice, Worcester, UK) at least once a week. Air with ambient atmospheric CO2 

concentration was supplied, via plastic tubing, from 3 m above the top of the canopy. 
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7.2.2 Photosynthetic light response curves 

An artificial light source (20W 12V Cool beam, dichroic 'white light' bulb; Osram, 

Germany) was attached to the top of chamber and using various arrangements of iconel-

coated null density glass filters (ADC Bioscientific Ltd, Hoddesdon, Herts, UK), a 

sequential range of 10 light intensities was obtained: 1750, 1150, 730, 430, 290, 230, 140, 

90, 57 and 0 ^mol Q m"̂  s"'. Using these 10 light intensities, a light response curve of 

photosynthesis (^mol CO2 m"̂  s"') was obtained for each needle age class that could be 

safely reached at the three different heights in the canopy. At 2 m, a maximum of four age 

classes could be reached (flush [current year's needles], 1-year-old, 2-year-old and 3-year-

old needles), at 4 m, a maximum of three classes could be reached (flush, 1-year-old and 2-

year old needles) and at 6 m, at maximum of two age classes could be reached (flush and 

1-year-old needles)(Fig 7.1). Control of temperature, humidity and ambient CO2 was not 

possible in the use of the conifer chamber. 

Plate 7.2: Photograph showing the LCA4 set up on a scaffolding platform, with an artificial light source 
attached to the conifer leaf chamber and the five null density glass filters. 
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Fig 7.1: Diagram showing the positioning of the three heights in the canopy and the different needle age 
classes. 

The needles within the chamber were removed from the branch after analysis, immediately 

chilled and then frozen at -20 °C within two hours. Projected area of the needles was 

calculated by scanning the needles on a flatbed scanner and the area calculated using 

Delta-T Scan software (Delta T Devices Ltd, Burwell, Cambridge, UK). 

Photosynthesis was normalised for foliar nitrogen content. The foliar nitrogen 

concentration from Chapter 6 was recalculated as mol N m" .̂ The photosynthesis 

measurements were then divided by this value to give photosynthesis as |imol CO2 mol"' N 

7.2.3 Calculation of light response curves 

Light response curves and their parameters were calculated using Photosyn Assistant® 

v l . 1.2 (Dundee Scientific, Dundee, UK). Using a non-rectangular hyperbola, the program 

calculated various parameters. Apparent quantum efficiency ( ^ was calculated from the 

initial slope of the light response curve, light compensation point (LCP) and apparent dark 

respiration (Rday) from the axes intercepts, and light saturated photosynthesis iA„ax) from 

the upper asymptote (Fig 7.2). An additional parameter (k) described the bending of the 

curve between the linear gradient and the maximum value. The parameters were 

determined by fitting a quadratic equation (equation 1) to minimise the sum of squares 

(Prioul & Chartier, 1977). 

Ik 
day [1] 
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Fig 7.2: An idealised response curve of photosynthesis (A) to photon flux density (0 and associated 
parameters; light saturated photosynthesis iA„ax), dark respiration (Rday), convexity (k), light compensation 
point (LCP) and quantum efficiency (<#). 

By estimating the initial values of Rjay, </>, k and Amax from a linear regression of the first 

part of data, a Neider-Mead simplex routine was used to calculate the four parameters by 

the least squares method. LCP was then extrapolated from the x-axis intercept and the light 

saturation estimate (LSE) from the linear ftinction of (j) and Rday to its intersection with Amax 

(Walker, 1989). k was not included in subsequent analyses. 

7.2.4 Statistical analyses of light response curves 

Five parameters were exfrapolated from the light response curve: Amax, Rday, LCP, LSE and 

quantum efficiency {<!>). Using SPSS® release 10 (SPSS Inc, Chicago, USA). A two-way 

analysis of variance was used to investigate the effect of site and clone on the 

photosynthetic parameters for each needle age class at each height in the canopy. A two-

way analysis of variance was also used to investigate the effect of height and needle age on 

the photosynthetic parameters for each clone at each site. Differences were considered 

significant at the 0.05 probability level. 

As temperature and humidity could not be controlled in the conifer leaf chamber, 

temperature and water vapour may have impacted on the photosynthetic rates. To accoimt 

for any variability, temperature and vapour pressure deficit (VPD) was used as a covariate 

in the two-way analysis of variance for Amax-

For ease of visually determining differences in the data, the mean value of the parameters 

for each age class, at each height in the canopy, for each clone at each site were ranked. A 
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black filled circle was used to represent each parameter value, the size corresponding to the 

position in the ranking, so the highest value of each parameter had the largest circle. 

7.2.5 Total non-structural carbohydrate content determination in needles 

The exfraction method was based upon Farrar (1993). 100 mg of needles were lightly 

crushed, added to 10 ml of 90% aqueous ethanol (Fisher Scientific, UK) and heated at 

60 °C for 1 hour in a water bath or heating block (Skalar 5620/40 digester and Skalar 5600 

confroller; Skalar Analytical BV, 4800 De Breda, Netherlands). The extract was decanted 

and the residue re-exfracted a fiirther two times. All exfracts were combined. The tissue 

carbohydrates were further extracted in 10 ml distilled water at 30 °C for two hoixrs. The 

ethanol and water exfracts were stored separately at 4 °C and analysed for carbohydrate 

content within 24 hours. 

Starch was subsequently exfracted from the same tissue by adding the needles to 6 ml 

amyloglucosidase solution, buffered at pH 4.5. The enzyme solution was made by adding 

0.4925g amyloglucosidase (10 units ml ') to a buffer of 490 ml 0.2M sodium acetate and 

510 ml 0.2M acetic acid (Dawson et al., 1989). The exfraction medium was heated at 55 °C 

in a water bath for 24 hours. 

Carbohydrate concenfrations of all three exfracts were determined using the phenol-

sulphuric acid assay (Dubois et al., 1956). Using a dry, thick walled, glass test tube, 50 ^ l 

80% phenol w/w was added to 1 ml of exfract (diluted according to carbohydrate content) 

and 5 ml 98% sulphuric acid was carefiilly but forcefiilly pipetted into the tube, ensuring 

the mixing of the tube contents. The assay was left for 20 minutes to allow the colour to 

develop and the reaction to cool. Using 1 cm^ quartz glass cuvettes, the absorbance of the 

solution was measured at 485 nm on a specfrophotometer (Shimadzu UVl50-02, Shimadzu 

Seisakusho Ltd., Kyoto, Japan), using assayed water and assayed enzyme solution as 

blanks for the ethanol/water exfractions and enzyme exfraction respectively. A standard 

curve of glucose ranging from 0 to 100 fxg ml"' was used to calculate the concenfration of 

glucose equivalents in each sample from all three exfraction methods. The moisture 

content, determined in section 6.2.1, was then used to calculate results as mg g'' dry 

weight. 
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All chemicals used were of analytical grade, obtained fi-om BDH (BDH Lab Supplies, 

Poole, Dorset, UK) or from Sigma (Sigma Chemical Company Ltd, Fancy Road, Poole, 

Dorset, UK), unless stated otherwise. 

7.2.6 Statistical analyses of carbohydrates 

A two-way analysis of variance was used to investigate the effect of site and clone on the 

non-structural carbohydrate concentration for each needle age class at each height in the 

canopy. A two-way analysis of variance was also used to investigate the effect of height 

and needle age on the carbohydrate concentration for each clone at each site. Differences 

were considered significant at the 0.05 probability level. 

7.3 Results 

7.3.1 Light saturated photosynthesis per mol of nitrogen (A„ax_N; jumol CO2 mol * N s ') 

Amax_N was highcst at Newcastieton and lowest at Scootmore for all clones (Table 7.1, 

actual mean values of Amaxjj are given in Appendix 4). Within site, there was little 

difference in the Amaxji between clones. The differences were significantly different for all 

needle ages at each height with the exception of flush needles at 4 m, but there were no 

significant differences between clones (Appendix 5). 

The Amaxji did not largely differ between heights in the canopy but did show a decrease 

with increasing needle age at Wauchope and Scootmore. At Newcastieton, particularly at 

2 m, there was an mcrease m Amax N 

with increasing needle age. There were no significant 

differences between the different heights but there were significant differences between 

needle ages for each clone at Wauchope and Scootmore (Appendix 5). 
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Table 7.1: Rank ofA^ax (nmol CO2 mol ' N s"') for all clones, at each site, for each height in the canopy and 
needle age class. The largest black circle represents the highest A„ax-

2m 4m 6m 

3yr 2yr 1yr Flush 2yr 1yr Rush 1yr Flush 

Newcastleton • • • • • • • • # 
C20177 Wauchope • • • • • • • • • 

Scoofmore • • • • • • • • • 
Newcastleton • • • • • • • 

C20208 Wauchope • • • • • • • • • 
Scootmore • • • • • • • • • 
Newcastleton • • • • • • • • • 

C20211 Wauchope • • • • • • • • • 
Scootmore • • • • • • • • 

There was little difference in the results using either temperature or VPD as covariates. 

With VPD as covariate, there were significant differences between sites for all needle ages 

at each height in the canopy, with the exception of flush and 2-year-old needles at 4 m. 

With temperature as covariate, there were significant differences between sites for flush 

needles and 2-year-old needles at 2 m, 1-year-old needles at 4 m, and flush needles at 6 m. 

There were no significant differences between clones with either temperature or VPD as 

covariates (Appendix 5). 

7.3.2 Dark respiration per mol of nitrogen {Rday_N\ ^niol CO2 mol'* N s'*) 

Rday_N was highest at Newcastleton and lowest at Wauchope for all clones (Table 7.2, 

actual mean values of Rday_N are given in Appendix 4). Within site, there was little 

difference in the Rdayj/ between clones. The differences were significantly different for all 

needle ages at each height with the exception of needles at 6 m, and 1-year-old and 2-year-

old needles at 2 m and 4 m (Appendix 5). There were no significant differences between 

clones. 
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There was a slight increase in Rdayji with increasing height, most noticeable between 2 m 

and 6 m at Wauchope and Scootmore. There was a decrease with increasing needle age at 

Wauchope and Scootmore, whilst at Newcastleton, there was an increase in Rdayji with 

increasing needle age. There were significant differences between heights and between 

needle ages at each site (Appendix 5). 

Table 7.2: Rank of Rday (nmol CO2 mol"' N s ') for all clones, at each site, for each height in the canopy and 
needle age class. The largest black circle represents the highest Rd„y. 

2m 4m 6m 
3yr 2yr 1yr Flush 2yr lyr Flush 1yr Flush 

Newcastleton • • • • • • • • • 
C20177 Wauchope • • • • • • 

Scootmore • • • • • • • • • 
Newcastleton • • • • • • • 

C20208 Wauchope • * e • 0 • • 
Scootmore • • • • • • • 
Newcastleton • • • • • • • • # 

C20211 Wauchope • • • • • • 
Soootmore • • • • • • • • • 

7.3.3 Light compensation point per mol of nitrogen (LCP; ̂ moi Q mol~' N s'') 

There was little difference between the LCP of Newcastleton and Scootmore, with 

Wauchope showing lower values (Table 7.3, actual mean values of LCP are given in 

Appendix 4). There was little difference between the LCP of the clones. There were 

significant differences between sites for all needle ages at each site, with the exception of 

1-year-old needles at 2 m and 6 m, but there were no significant differences between 

clones (Appendix 5). 
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Table 7.3: Rank of LCP (nmol Q mol"' N s"') for all clones, at each site, for each height in the canopy and 
needle age class. The largest black circle represents the highest LCP. 

2m 4m 6m 

3yr 2yr 1yr Flush 2yr 1yr Flush 1yr Flush 

Newcastleton • • • • • • • • • 
C20177 Wauchope • • • • • • • » • 

Scootmore • • • • • • • • • 
Newcastleton • • • • • • • • 

C20208 Wauchope • • • • • • • • • 
Scootmore • • • • • • • • • 
Newcastleton • • • • • • • • • 

C20211 Wauchope • • • • • • • • 
Scootmore • • • • • • • • • 

There was little difference in the LCP between the different heights but there was a 

decrease with increasing needle age at Wauchope and Scootmore. At Newcastleton, 

particularly at 2 m, there was an increase with increasing needle age. There were 

significant differences between heights for C20211 at Newcastleton and C20177 at 

Scootmore, with C20208 at Wauchope and C20177 at Scootmore showing a significant 

difference between needle ages (Appendix 5). 

7.3.4 Light saturation estimate per mol of nitrogen ( L S E ; ^mol Q mol'̂  N s'̂ ) 

LSE was highest at Newcastleton. For C20211, LSE was lowest at Wauchope, but with 

little difference in the LSE between Wauchope and Scootmore for C20177 and C20208 

(Table 7.4, actual mean values of LSE are given in Appendix 4). There was little difference 

between the LSE of the different clones, although the LSE of C20211 was sUghtly lower 

than the LSE of the other two clones at Wauchope. There were significant differences 

between sites for all needle ages at each height, with the exception of 1-year-old needles at 
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2 m and flush needles at 4 m. There was a significant difference between clones for 1-year-

old needles at 4 m (Appendix 5). 

Table 7.4: Rank of LSE (|imol Q mol'' N s"') for all clones, at each site, for each height in the canopy and 
needle age class. The largest black circle represents the highest LSE. 

2m 4m 6m 

3yr 2yr lyr Flush 2yr 1yr Flush 1yr Flush 

Newcastleton • • • • • • • • 
C20177 Wauchope • • • • • • • • 

Scootmore • • • • • • • • • 
Newcastleton 

C20208 Wauchope • • • • • • • • • 
Scootmore • • • • • • • • • 
Newcastleton • • • • • • • • • 

C20211 Wauchope • • • • • • • • • 

Scootmore • • • • • • • • • 
There was little difference in the LSE between different heights but there was a decrease 

with increasing needle age, again with the exception of LSE at Newcastleton, which 

showed an increase with increasing needle age. There were few significant differences; 

C20208 and C20211 at Newcastleton between heights, and C20208 at Wauchope and 

C20177 and C20208 at Scootmore between needle ages (Appendix 5). 

7.3.5 Quantum efficiency per mol of nitrogen (QE; mol'̂  N) 

Newcastleton had the highest QE (Table 7.5, actual mean values of QE are given in 

Appendix 4). For C20177, Wauchope and Scootmore both had similar, lower values, 

whilst the QE was lowest at Scootmore for C20208 and C20211. For C20211, the QE at 

Wauchope was similar to the QE at Newcastleton. 
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Table 7.5: Rank of QE (mol"' N) for all clones, at each site, for each height in the canopy and needle age 
class. The largest black circle represents the highest QE. 

2m 4m 6m 
3yr 2yr 1yr Flush 2yr 1yr Flush lyr Flush 

Newcastleton • • • • • • • • • 
C20177 Wauchope • • • • • • • • • 

Scootmore • • • • • • • • • 
Newcastleton 

C20208 Wauchope • • • • • • • • • 
Scootmore • • • • • 0 • • • 

Newcastleton • • • • • • • • • 
C20211 Wauchope • • • • • • • • • 

Scootmore • • • • • • • • 

There was little difference between clones within Newcastleton and Scootmore, but at 

Wauchope, C20211 had slightly higher QE in comparison to the other clones. There were 

significant differences between sites for each clone but no significant differences between 

clones (Appendix 5). 

There was Httle difference between the heights in the canopy, but a decrease with 

increasing needle age at Wauchope and Scootmore. At Newcastleton, there was an increase 

with increasing needle age. There were significant differences between heights and 

between needle ages for C20177 at Wauchope and significant differences between needle 

ages for C20177 at Scootmore (Appendix 5). 

7.3.6 Total non-structural carbohydrate (TNC) concentration in needles 

C20177 had the lowest TNC concentration, with C20208 and C20211 showing similar 

concentrations (Table 7.6, actual mean TNC concentrations are given in Appendix 4). 

There were no significant differences between clones (Appendix 5). 
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Between sites, Wauchope had the highest TNC concentrations. Newcastleton and 

Scootmore showed very similar concentrations in C20177 and C20211, but Newcastleton 

had the smallest concentration in C20208. There are significant differences between sites 

for flush needles at all heights in the canopy and 2-year-old and 3-year-old needles at 2 m 

(Appendix 5). 

There was little difference in the total carbohydrate concentration between heights, with a 

significant difference for C20208 at Newcastleton only (Appendix 5). 

Flush needles had the lowest total carbohydrate concentration at each height, with an 

increase in concentration with increasing needle age, with the exception of C20177 and 

C20208 at 4 m and 6 m at Wauchope, and C20208 at 4 m at Scootmore. There were 

significant differences for C20208 at Newcastleton and Wauchope, and C20211 at 

Wauchope and Scootmore (Appendix 5). 

There was little difference in the ethanol and water soluble carbohydrate concentrations 

between clones. Starch concentrations were similar between C20177 and C20208 but were 

higher in the needles of C20211. There were few significant differences (Appendix 5). 

Ethanol-soluble carbohydrate concentrations were highest at Wauchope and lower but 

similar at Newcastleton and Scootmore. Water-soluble carbohydrate and starch 

concentrations were similar at Wauchope and Scootmore, whilst water-soluble 

carbohydrate concentrations were highest at Newcastleton but lower for starch. There were 

significant differences in the concentrations of the three carbohydrates for nearly all needle 

ages at each height (Appendix 5). 

Ethanol-soluble carbohydrate, water-soluble carbohydrate and starch concentrations did 

not differ largely between heights in the canopy but increased with increasing needle age. 

There are few significant differences between heights and between needle ages 

(Appendix 5). 
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Table 7.6: Rank of TNC (mg g"' d. wt) for all clones, at each site, for each height in the canopy and needle 
age class. The largest black circle represents the highest TNC. 

2m 4m 6m 
3yr 2yr lyr Flush 2yr lyr Flush lyr Flush 

Newcastleton • • • • • • • • 

C20177 Wauchope • • • • • • • • • 
Scootmore • • • • • • • • • 
Newcastleton • • • • • • • • 

C20208 Wauchope • • • • • • • • • 
Scootmore • • • • • • • • • 

Newcastleton • • • • • • • • • 

C20211 Wauchope 

Scootmore • • • • • • • • • 

7.4 Discussion 

There were some distinct differences in the photosynthetic parameters between sites. 

Newcastleton had higher growth rates than the other two sites (Chapter 5), therefore it was 

not imexpected thatAmax_N was higher at this site. Higher growth and photosynthetic rates 

at Newcastleton also led to a higher Rjayj/ rate, as greater respiration occurred where 

activity was highest. Newcastleton also had the highest LCP, LSE and QE. With higher 

Rday_N, higher photosynthesis was required to reach the point where CO2 assimilated 

equalled the CO2 respired, requiring a greater quantity of light and hence a higher LCP. 

With hi^QX Amax_N, a greater quantity of Hght was required to reach saturation and hence 

the higher LSE at Newcastleton. Newcastleton also has a higher QE, showing that the 

needles at this site are more efficient in utilising light during photosynthesis. 

The clones at Scootmore show the lowest growth rate and, therefore, lower Amax_N was 

expected. With lower growth rates and lower A^axji rates at Scootmore and therefore lower 

activity, lower Rday_N would also be expected. However, although not as high as 
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Newcastleton, Scootmore did not show the lowest Rdayj/. A low Amaxj/ but higher Rday N, 

may explain the lower growth rates at Scootmore. LSE was also lower, as less light was 

required to reach the lower Amaxjj rates. QE was also lower at Scootmore, showing the 

needles at this site were less efficient at utilising light for photosynthesis. 

Rday_N was lowcst at Wauchope, which was unexpected as the needles did not show the 

lowest activity and the trees at this site did not show the lowest growth rates (Chapter 4). 

During the particular year in which the gas exchange was measured at Wauchope, the 

needles may have been slower growing, therefore showing lower activity and a lower 

Rday_N rate. With decreased Rday_N and Amax_N still at a high rate, carbohydrates would be 

accumulating in the needles. There was also a low LCP, a result of the low respiration rate. 

The LSE was also low, with very similar results to the clones at Scootmore. However, with 

higher ^;„ax_Af in comparison to the clones at Scootmore, the QE was higher at Wauchope, 

showing that the needles at Wauchope are more efficient at utilising light and reach 

saturation at a faster rate. 

The clones did not show distinct differences in their photosynthetic parameters, 

particularly with Amaxji, Rday_N and LCP. However, at Wauchope, C20211 had lower LSE 

but increased QE, whilst C20208 and C20177 had higher LSE and lower QE. With the 

clones photosynthesising at the same rate, saturation at a lower Ught concentration resulted 

in a greater efficiency in the light use and, hence, a greater QE. Saturation at a higher hght 

concentration resulted in a lower efficiency and lower QE. 

There were also few differences in the photosynthetic parameters between the different 

heights in the canopy. A decrease in photosynthesis with increasing depth in the canopy 

was expected. Plants from low hght environments had reduced electron transport, resulting 

in a lower photosynthesis per unit of nitrogen (Evans, 1989), and the photosynthetic 

parameters were characteristically low in shade-adapted plants (Boardman, 1977), in the 

lower canopy of white spruce (Man & Lieffers, 1997), and in shaded needles of Norway 

spruce (Picea abies [L.] Karst.) (Sprtova & Marek, 1999). It may be that the needles in the 

lower canopy were not shade adapted, a result of the young age of the trees and a less 

dense canopy. However, previous research on Sitka spruce has shown that QE was not 

affected by the position in the canopy (Jarvis et ah, 1976; Leverenz & Jarvis, 1979). 
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There was a decrease in the photosynthetic parameters with increasing needle age at 

Wauchope and Scootmore. A light gradient runs horizontally along a branch, fi-om needles 

at the end in high light intensity to shaded needles close to the trunk (Rayment et al, 

2002). Older needles, therefore, were shaded and the decrease in photosynthesis was a 

reflection of the decrease in light intensity. However, the decrease could also have been a 

result of the physiological changes that occur as needles age (Lamhamedi & Bemier, 1994; 

Ludlow & Jarvis, 1971). With a decrease in Amaxji and activity as needles age, then a 

reduced Rdayji was expected, as well as less light needed to reach compensation point or 

saturation. Conversely, the clones at Newcastleton did not show a decrease with increasing 

needle age, except with Amaxji- The increase in Rdayji in older needles may be a result of 

damage to older needles, consequently increasing maintenance respiration. However, i f the 

older needles were damaged, then a decrease in QE would also be expected but it increased 

in older needles. 

The concentrations of TNC were comparable with those previously reported for P. abies 

(Wiemken & Ineichen, 2000) but higher than those ofPicea rubens (Schaberg et al., 

2000), although the starch contents were comparable. Wauchope had the highest TNC 

concentration, with Newcastleton and Scootmore having similar concentrations. The 

higher concentrations in the needles of the clones at Wauchope were a result of a high 

Amax_N rate but a low Rdayjr rate. Although Amaxjf was higher at Newcastleton, and 

producing greater carbohydrate concentrations, activity was higher, resulting in the use of a 

large proportion of the TNC. Scootmore had lower ^;„ai_A^ but also lower activity, so fewer 

carbohydrates used, resulting in the same concentration of TNC as in the needles at 

Newcastleton. At Newcastleton, the TNC may have been exported to other parts of the tree 

to avoid inhibition by the accumulation carbohydrates, a result of the higher Amaxji-

There was little difference in the TNC concentration between clones, although C20208 and 

C2021I had higher concentrations than C20177. With the C20177 trees being taller and 

having a larger trunk diameter, the increase in growth may have resulted in a greater use of 

the TNC. There were few differences between the different heights in the canopy, showing 

that the sink strength was equal throughout the canopy. There was also an increase in TNC 

with increasing needle age. Flush needles had higher sink strength than the older needles, a 

result of needle growth. Flush needles were also photosynthesising at a higher rate, making 

the flush needles the largest source and sink in the canopy. 
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7.5 Conclusions 

Amax_N, Rday_N, LSE and QE wcrc all highest at Newcastleton, and lowest at Wauchope for 

i?</aj,jvand LSE but lowest at Scootmore for Amax_N and QE. LCP showed very little 

difference between sites. 

A l l five parameters showed little difference between clones. 

There was little difference in Amax_N, LCP, LSE and QE between heights in the canopy, 

with Rday_N showing a slight increase with increasing height. 

Amax_N, Rday_N, LCP, LSE and QE all increased with increasing needle age at Newcastleton 

but decreased with increasing needle age at Wauchope and Scootmore. 

TNC concentrations of C20208 and C20211 were similar and higher than the TNC 

concentrations of C20177. The clones at Wauchope had the highest TNC concentrations, 

with lower but similar concentrations at Scootmore and Newcastleton. There was little 

difference in concentration with increasing height in the canopy but there was an increase 

in TNC concentration with increasing needle age. The different extractions of 

carbohydrates all showed similar patterns. 
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8. Carbon partitioning in three clones of Sitka spruce grown at 

three sites 

Abstract 

Twelve trees from three clones of Sitka spruce were felled at three sites. Dry mass was 

determined for branches, foliage and trunk. Root cores were taken from three distances 

from the root collar of each tree and the dry mass of coarse and fine root density 

calculated. Wood density and root density was calculated for each free. Wood density was 

greatest for clone C20208 at Wauchope and Scootmore, greatest for C20211 at 

Newcastleton, and lowest for C20177 at all three sites. Carbon allocation above-groimd 

was greatest for C20177 at Newcastleton and Wauchope, greatest for C20211 at 

Scootmore and lowest for C20211 at all sites. Bigger frees contained more carbon, 

although they had the lowest wood density. The majority of carbon was allocated to the 

trunk, except for C20177 at Wauchope and Scootmore, which allocated more carbon to the 

branches. This suggested that imder water or nufrient sfress, C20177 changed allocation 

patterns. While there was no pattern seen in coarse root density, fine root density was 

lowest for C20177 at all sites, with carbon allocation below-groimd also lowest for this 

clone. Carbon allocation to coarse roots showed the same pattern amongst clones at 

Newcastleton and Scootmore, suggesting that differences in allocation to coarse roots were 

mainly affected by soil nufrient concenfration. 

8.1 Introduction 

8.1.1 Environmental effects on carbon allocation and dry mass partitioning 

Generally, under conditions of sfress, plants partition more carbon (C) to the root systems 

(Negi et al, 2003). During fertilization experiments, seedlings of Populus nigra grown 

under low nutrient conditions allocated 24% more C to the roots than the high nutrient 

availabihty coimterparts (Glynn et al., 2003), and the root biomass of Pinus radiata 

showed an inverse relationship with nutrient availability (Rodriguez et al, 2003). In slow-

growing Arctic vegetation, increasing nutrient availability corresponded with an increase 

in root biomass, giving advantage over the faster-growing species (van Wijk et ah, 2003). 

However, with 40-year-old Larix leptolepis, there was no difference in root biomass 
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between different nutrient concentrations (Son & Hwang, 2003), and in loblolly pine 

{Pinus taeda), growing in north-west Florida, fertilization had no effect on fine root 

biomass (Lee & Jose, 2003). With Eucalyptus saligna, increased nutrient availability 

increased C assimilation, almost all of which was allocated above-ground (Giardina et al, 

2003). 

Nutrient stress in Pinus palustris increased root: shoot ratio by 69 %, showing an increase 

in below-ground biomass in relation to above-ground biomass (Jose et al, 2003). Water 

stress also caused a similar but smaller impact, with an increase in root: shoot ratio by 19 % 

(Jose et al., 2003). Stem and needle biomass were also affected by nutrient and water 

stress, with more biomass partitioned above-ground in high nitrogen and high water 

conditions (Jose et al., 2003). 

The C allocation in Pinus contorta post-fire was independent of tree density or age (Litton 

et al., 2004), but three years after thinning, fine root biomass of Quercus ilex increased by 

100 % (Lopez et al., 2003), and the foliage mass of Pinus radiata was not affected by 

silvicultural regime, tree size or tree status (dominant or subdominant) (Rodriguez et al., 

2003). Differences in silvicultural regime can alter competition for light, moisture and 

nutrients. In P. radiata, C allocation to the stem was increased when in competition for 

light or nutrients (Rodriguez et al., 2003). Increased light availability has also been shown 

to significantly increase the C partitioning below-ground in Loliumperenne (Hodge et al., 

1997). When grown in sand culture, the total biomass was unaffected, therefore increasing 

the root:shoot ratio of L. perenne (Hodge et al., 1997). However, when grown in soil, total 

biomass increased, with an increase in shoot growth and, therefore, there was a decline in 

the root-shoot ratio (Hodge et al., 1997). 

An increase in atmospheric ozone concentration decreased the wood biomass ofBetula 

pendula saplings by 22 % in the first growing season but there was no further change in the 

second growing season (Karlsson et al., 2003). Root biomass also decreased by 30 % in the 

first growing season but the biomass of the foliage increased during both growing seasons 

(Karlsson et al., 2003). However, elevated atmospheric CO2 concentration resulted in an 

increased uptake of C in a Pinus taeda forest in North Carolina, USA. Eighty-three percent 

of the increased C was allocated to the trunk and the majority of the remainder to the root 

system (Schafer et al., 2003). In Castanea sativa and Fagus sylvatica biomass increased 

with increased atmospheric CO2 concentration, but in C. sativa the additional C was 
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partitioned mainly to the roots and in F. sylvatica the additional C was allocated equally 

amongst all organs (El Kohen et al, 1993). In Pinus sylvestris, elevated atmospheric CO2 

increased late wood density (Kilpelainen et al., 2003) but in Pseudotsuga menziesii 

elevated CO2 did not alter biomass production or allocation to any organ (Olszyk et al., 

2003). However, elevated temperature decreased biomass allocation to the leaves (Olszyk 

et al., 2003). During 1993 to 1999, May temperature was discovered as an important 

predictor of total tree biomass production in a hardwood forest in Quebec, Canada (Cote et 

al., 2003). 

8.1.2 Genotypic effects on carbon and biomass allocation 

Twenty-three percent of the variation in biomass in Acer nibrum seedlings was accounted 

for by differences among the geographic origins (Mohan et al., 2004). A common garden 

experiment of Picea abies from 54 populations from different altitudes showed a decrease 

in seedling dry mass with increasing altitude of seed origin, regardless of the elevated 

photosynthetic rates (Oleksyn et al., 1998). The allocation of dry mass also differed with a 

doubling of partitioning to the root with increasing altitude of origin (Oleksyn et al., 1998). 

In three populations of Eucalyptus microtheca from north-west, central and south-east of 

Ausfralia, biomass decreased under water deficit with the effect greater in the north-west 

and central populations (Li & Wang, 2003). In Eucalyptus cloeziana from humid and dry 

provenances grown under 100 %, 70 % and 50 % field capacity water regimes, there was 

no alteration in biomass production (Ngugi et al., 2003). However, when compared with a 

species from a dryer environment. Eucalyptus argophloia, the species from the dryer 

environment produced twice as much biomass imder 100 % field capacity and three times 

as much biomass at 70 % and 50 % field capacity than E. cloeziana (Ngugi et al., 2003). 

The seedling biomass of northern provenances of Picea abies all decreased with elevated 

atmospheric CO2 concentration, with no difference between provenances (Vanhatalo et al., 

2003). Slow-growing clones of Betula pendula increased biomass in elevated atmospheric 

CO2 concentration but there was a decrease in fast-growing clones (Vanhatalo et al., 2003). 

The biomass of six clones from two populations of P. abies was enhanced by elevated 

atmospheric CO2 but did not alter allocation patterns (Spinnler et al., 2003), and elevated 

atmospheric CO2 increased whole plant dry matter production in two families of Pinus 

radiata but only when phosphorus was in adequate supply (Conroy et al., 1990). However, 
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allocation differed with more C allocated to the trunk in one family, while the other 

allocated more C to roots and branches (Conroy et al., 1990). In ambient atmospheric CO2 

concenfration, there was very little difference between two northerly clones and two 

southerly clones of Picea sitchensis (Centritto et al., 1999). In elevated atmospheric CO2, 

there was an increase in biomass for all clones with no change in allocation but southerly 

clones out-performed northerly clones (Centritto et al., 1999). 

8.1.3 Hypotheses 

• With environmental effects largely influencing carbon allocation, it was expected that 

the carbon allocation would reflect the differences between the three sites, regardless of 

clone. 

• With Newcastleton having the highest nutrient concenfration and Wauchope the lowest 

(Chapter 3), a greater proportion of carbon allocated to above-ground organs was 

expected at Newcastleton and below-groimd at Wauchope. 

e With differences in height, diameter and wood density seen after 10 years of growth 

(Chapter 4), differences in carbon allocation were expected between clones at each site, 

and the same pattern was expected between clones at each site. 

8.2 Methods 

8.2.1 Destructive biomass sampling 

Four individual frees of each clone were randomly selected and felled at the three sites. 

Branches were removed from each whorl of each free, coimted and weighed. The canopy 

was spht into three equal sections and three branches from each section were randomly 

selected and sealed in pierced polythene bags. The branches were stored at 4 °C witiiin 

eight hours of cutting and analysed within 96 hoiu-s of felling. 

The trunks were cut into 2.5 m long logs and fransported to the Cenfre for Timber 

Technology and Construction (Building Research Establishment, Watford, UK) for 

analysis of wood density. 
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8.2.2 Foliage and branch analysis 

Within laboratory conditions, all foliage fi-om current year, 1-year, 2-year and 3-year-old 

needle age classes were removed from the three branches of each section of the canopy. 

Needles were separated into needle age classes, weighed and dried at 65 °C for at least 48 

hours. After cooling in a desiccator, needles were re-weighed and percentage dry weight 

calculated. 

Branches were stripped of any remaining foliage and a 10 cm long section cut from one 

branch of each section of the canopy. The branch section was weighed and dried at 65 °C 

for at least 48 hours. After cooling in a desiccator, the branch section was re-weighed and 

percentage dry weight calculated. 

8.2.3 Wood density calculation (kg m'̂ ) 

A small disc of variable thickness (10 to 100 mm long) was cut from each log using a 

chain saw. The disc was debarked and submerged in water for 48 hours until fiiUy 

saturated. The volume (m'^) of the disc was then calculated by measuring the displacement 

caused by the disc in a container of water. The disc was then dried in an oven at 103 °C for 

48 hours or until there was no change in weight to ensure complete removal of water. The 

disc was weighed and the density calculated (equation 8.1). 

. .3 Mass (kg) 
Density (kg m') = — [8.1] 

Volume (m ) 

8.2.4 Coarse and fine root density (mg roots cm'̂  soil) 

For each felled tree at each site, using a chamber auger, three cores were taken at 0.1 m, 

0.5 m and 1.0 m from the root collar in a north-west direction. The core was taken to a 

depth of 1 m. The cores were stored in PVC piping and placed in a black plastic bag, to 

avoid the formation of moulds and retain humidity. The cores were stored in a cool (4 °C) 

and dry environment. 

The core was separated into 10 cm long sections and the soil suspended in water. The soil-

root mixture was poiu-ed into stacked sieves with a mesh size range of 2 cm^ to 0.2 mm^ 

and washed using a jet of water aided by hand manipulation. Roots were then removed 
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individually and water carefiilly removed by blotting on tissue paper. The roots were 

separated into coarse (> 5mm diameter) and fine (< 5mm diameter) roots, weighed and 

dried in an oven at 65 °C for 48 hours. Percentage dry weight of the roots was then 

calculated. Root density was calculated as mg roots cm"̂  soil, from the measured root 

weight within the known volume of the auger. 

8.2.5 Carbon allocation 

Carbon mass was reported as equivalent to the dry weight of the various components of the 

tree, although it was recognised that this measurement wi l l also include other elements and 

that the dry weight was not entirely comprised of carbon. 

The carbon allocated to needles was calculated per age class, as the dry weight proportion 

of the needle sample per branch. The carbon mass for each age class was summed to gain 

the carbon mass per branch and then multiplied by the number of branches in the section of 

the canopy the original needle samples were taken from. The foliage carbon mass for each 

section of the tree was summed to gain the foliar carbon mass for the whole of the canopy. 

The fresh weight of the branches in each section was determined by subtracting the fresh 

weight of the whole of the foliage in the section from the weight of the section of the 

canopy (branches plus fohage). The carbon mass of the branches was calculated as the dry 

weight proportion of the branches. The branch carbon mass for each section of the free was 

summed to calculate the branch carbon mass for the whole canopy. 

The carbon mass of the trunk was calculated from the trunk volume and wood density 

measurements. The trunk volume was calculated from the diameter measurement of each 

log and the length of each log, assuming that each log was a cylinder. By knowing the 

volume and wood density of the trunk, it was possible to calculate the carbon mass. 

With the total fresh weight of the root system unknown, it was not possible to calculate the 

total carbon mass for the roots. Carbon allocation to roots was, therefore, expressed as a 

dry weight density (mg roots cm"̂  soil). 
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8.2.6 Statistical analyses 

Using SPSS® release 10, an analysis of variance was used to investigate the effects of site 

and clone on wood density, root density and carbon allocation. As a result of small sample 

sizes, a Kruskal-Wallis test was used. Significant differences were reported at the 0.05 

probabiHty level. 

8.3 Results 

8.3.1 Wood Density 

Wood density was highest at Scootmore and lowest at Newcastleton for all clones (wood 

density values in Appendix 6). However, there was only a significant difference between 

sites for C20208 (Appendix 7). 

C20177 had the lowest wood density at all three sites. C20208 had the highest wood 

density at Wauchope and Scootmore, witii C20211 having the highest wood density at 

Newcastleton. The differences between the clones were significant at all sites 

(Appendix 7). 

8.3.2 Root Density 

The fine root density (mg roots cm'̂  soil) was highest at Scootmore and lowest at 

Wauchope for all clones at all distances from the root collar, with the exception of C20211, 

which had the lowest root density at 0.1 m fi-om the root collar at Newcastleton (Table 

8.1) . There were no significant differences between sites (Appendix 7). 

The coarse root density (mg roots cm"̂  soil) was much more variable, with highest and 

lowest density differing both within clones at different sites and between clones on the 

same site (Table 8.1). At 0.5 m fi-om the root collar only, the lowest coarse root density for 

all clones was at Wauchope. The only significant difference between sites was for C20211 

(Appendix 7). 

The clone with the highest fine root density varied between sites and between distances 

fi-om the root collar, although at 0.5 m C20211 had the highest density at all sites (Table 

8.2) . At 0.5 m and 1.0 m, C20177 had the lowest fine root density at all sites. There were 
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no significant differences in fine root density between clones at any site or position 

(Appendix 7). 

The highest and lowest coarse root density was even more varied, with no pattern between 

clones at each site (Table 8.2). The clones with the highest and lowest coarse root density 

(C20208 and C20211, respectively) were the same at Newcastleton at 0.1 m and 0.5 m. At 

1.0 m, there was little difference in the root density between clones, particularly at 

Newcasdeton and Wauchope. There were no significant differences in coarse root density 

between sites for any clone at any position (Appendix 7). 

Table 8.1: The site (Newcastleton (•), Wauchope (o) or Scootmore (A) with the highest and lowest fine and 
coarse root density for each clone at three distances from the root collar (0.1 m, 0.5 m and 1.0 m). 

Fine Roots Coarse Roots 

Distance Clone Highest Lowest Highest Lowest 

0.1 m 

C20177 

C20208 

C20211 

• 

• 

A 

O 

O • 

0.5 m 

C20177 

C20208 

C20211 

A 

A 

o 

o 

o 

A 

A 

o 

o 

o 

1.0 m 

C20177 

C20208 

C20211 

A 

A 

A 

O 

o 

o 

A 

• A 

O A 

• O 

O 
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Table 8.2: The clone (C20177 (•), C20208 (o) or C20211 (A) with the highest and lowest fine and coarse 
root density for each clone at three distances fi-om the root collar (0.1 m, 0.5 m and 1.0 m). 

Fine Roots Coarse Roots 

Distance Site Highest Lowest Highest Lowest 

Newcastleton • ^ o A 

0.1 m Wauchope • • • o 

Scootmore • o 

Newcastleton • • o A 

0.5 m Wauchope A O • o 

Scootmore • • o • 
Newcastleton o • • O A 

LOm Wauchope o • • O A 

Scootmore • • o • A 

8.3.3 Above-ground carbon allocation 

C20177 contained the largest quantity of carbon and C20211 the lowest at Newcastleton 

and Wauchope (Table 8.3). At Scootmore, C20211 contained the lowest carbon 

concentration but C20208 had the largest. 

The greatest allocation of carbon was in the trunk for all clones at Newcastleton (Table 

8.3). At Wauchope and Scootmore, the greatest allocation carbon was in the trunk for 

C20208 and C20211 but in the branches for C20177. For all clones at all sites, the lowest 

quantity of carbon was allocated to the needles. 

Amongst the clones at each site, the greatest proportion of carbon allocated to needles was 

in C20211 and the lowest in C20177 (Table 8.3). The greatest proportion of carbon 

allocated to the branches and tnmk was in C20177 and C20208, respectively. The lowest 

proportion of carbon allocated to the branches and trunk was in C20211 and C20177, 

respectively. There were no significant differences between sites or clones in C allocation 

to trunk, foliage and branches, or total C in above-ground organs. 
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8.3.4 Below-ground carbon allocation 

Fine roots 

The greatest carbon allocation to fme roots at Newcastleton and Wauchope was in C20208 

and in C20211 at Scootmore (Appendix 6). The lowest allocation was in C20177 at all 

three sites. 

The distance fi-om the root collar where the greatest allocation to fine roots was found 

differed between sites for each clone (Table 8.4). Only C20177 had the greatest fine root 

allocation at the same position (0.1 m fi-om the root collar) at each site. For C20208, the 

greatest root allocation was found at the same position at Newcastleton and Wauchope, and 

for C20211 the C allocation to fine roots was greatest at the same distance at Newcastleton 

and Scootmore. The same pattern was present for the lowest fine root allocation, with the 

allocation lowest at the same position at all sites for C20177, at Newcastleton and 

Wauchope for C20208, and at Newcastieton and Scootinore for C20211. 

Table 8.4: Percentage C allocation to fme and coarse roots, for three distances (0.1m, 0.5 m and 1.0 m) from 
the root collar, for each clone (C20177, C20208 and C20211) at the three sites (Newcastleton, Wauchope and 

Fine Roots Coarse Roots 

0.1 m 0.5 m 1.0 m 0.1 m 0.5 m 1.0 m 

Newcastleton 43.04 30.97 25.99 58.95 27.24 13.81 

C20177 Wauchope 32.36 29.12 38.52 50.89 40.00 9.11 

Scootmore 21.08 38.00 40.92 57.62 18.08 24.31 

Newcastleton 38.67 30.82 30.51 80.36 12.71 6.93 

C20208 Wauchope 32.96 32.89 34.15 49.46 8.08 42.46 

Scootmore 39.58 31.72 28.70 75.22 17.11 7.67 

Newcastleton 46.54 36.52 16.94 89.41 6.96 3.62 

C20211 Wauchope 23.17 44.65 32.18 4.08 21.44 74.48 

Scootmore 15.58 40.63 43.80 24.04 48.71 27.25 

There was little similarity between the clones with the greatest C allocation to fine roots at 

each site, although C20177 and C20211 had the highest allocation at 0.1 m and 1.0 m, 
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respectively, at Newcastleton and Scootmore (Table 8.5). C20211 and C20177 also at 

Newcastleton and Scootmore had the lowest root allocation at 0.1 m and 1.0 m, 

respectively (Table 8.6). 

Table 8.5: The clone (C20177 (•), C20208 (o) and C20211(A)) with the greatest C allocation to fine and 
coarse roots for the three positions (0.1 m, 0.5 m and 1.0 m fi'om the root collar) at each site (Newcastleton, 
Wauchope and Scootmore). 

Highest C allocation to fme roots 

0.1 m 0.5 m 1.0 m 0.1 m 0.5 m 1.0 m 

Newcastleton • A A • o A 

Wauchope A o o • A O 

Scootmore • o A • A O 

Highest C allocation to coarse roots 

Coarse Roots 

The greatest carbon allocation in coarse roots was in C20208 at Newcastleton and 

Scootmore, and in C20177 at Wauchope (Appendix 6). The lowest carbon allocation to 

coarse roots was in C20211 at Newcastleton and Scootmore, and in C20208 at Wauchope. 

At Newcastleton and Wauchope, the highest coarse root allocation for all clones was at 

0.1 m from the root collar (Table 8.4). At Scootmore, each clone showed a different 

response. The lowest coarse root allocation varied greatly between clones at all sites, with 

no pattern emerging between or among the clones. 

At 0.1 m from the root collar, C20177 had the greatest root allocation (Table 8.5) and 

C20208 the lowest at all three sites (Table 8.6). C20211 had the greatest allocation at 0.5 m 

and C20208 at 1.0 m at Wauchope and Scootmore, whilst at Newcastleton C20208 had the 

highest allocation at 0.5 m and C20211 at 1.0 m. The clone with the lowest allocation at 

0.5 m and 1.0 m varied between sites, although C20177 had the lowest allocation at 1.0 m 

at Wauchope and Scootmore. 
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Table 8.6: The clone (C20177 (e), C20208 (o) and C20211( A)) with the lowest fine and coarse root density 
(mg roots cm'̂  soil) for the three positions (0.1 m, 0.5 m and 1.0 m fi-om the root collar) at each site 
(Newcastleton, Wauchope and Scootmore). 

Lowest C allocation to fine roots 

0.1m 0.5 m 1.0 m 

Lowest C allocation to coarse roots 

0.1m 0.5 m 1.0 m 

Newcastleton A 

Wauchope O 

Scootmore A 

O o 

o 

o 

o 

• 

8.4 Discussion 

Wood density was highest at Scootmore and lowest at Newcastleton, which was in 

agreement with the 10-year Pilodyn® measurement data in Chapter 4. The trees at 

Newcastleton have larger trunk diameters but lower wood density, showing an inverse 

relationship between diameter and wood density, a relationship commonly seen in trees 

(Wood, 1986). There were no significant differences between sites, suggesting that the 

environmental differences were causing little effect on the wood density. Moisture 

availability affected C allocation in Pinus palustris (Jose et al, 2003), with water stress 

causing an increase in the root systems and high water availability increasing C allocation 

to the above-groimd organs. With precipitation levels lower at Scootmore (Chapter 3), a 

lower wood density was expected. However, with precipitation abundant during the year 

and during the growing season at all three sites then water availability was unlikely to have 

impacted on wood density. Temperature was also similar between sites (Chapter 3) and 

was unlikely to be causing differences in wood density. Nutrient levels were different 

between sites (Chapter 3), with concentration highest at Newcastleton and lowest at 

Wauchope. Populus nigra and Pinus radiata allocated more C to the roots under nutrient 

limitation (Glynn et al., 2003; Rodriguez et al., 2003), so a reduced wood density was 

expected at Scootmore. However, nutrient availability had no effect on Larix leptolepis and 

loblolly pine (Lee & Jose, 2003; Son & Hwang, 2003) and even increased C allocation 

above-ground in Eucalyptus saligna (Giardina et al., 2003). It appeared that nutrient 

availability was not affecting wood density or that other factors were causing a larger 

effect. 
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Fine root density was highest at Scootmore and lowest at Wauchope. Previous research has 

shown that low nutrient availability stimulated fine root growth (Glynn et al, 2003; 

Rodriguez et al., 2003), therefore greater fine root density was expected at Wauchope and 

the lowest density at Newcastleton. Water stress also increased the fine root system in 

Pinuspalustris (Jose et al., 2003). There was little difference in precipitation levels 

between sites during the growing season but annual precipitation was lower at Scootmore, 

with little difference between Wauchope and Newcastleton. The difference in armual 

precipitation explained the higher root density at Scootmore. The soil at Scootmore also 

contained a higher percentage of sand (Chapter 3), suggesting that the soil is more fi-ee 

draining and therefore unable to hold as much water as the soils at Wauchope and 

Newcastleton. Coarse root density varied greatly between distance fi-om the root collar and 

between sites, with no consistent or explainable pattern. It appeared that the larger, 

regional, environmental impacts were not affecting coarse root growth. 

C20208 had the highest wood density at Wauchope and Scootmore but C20211 had the 

highest wood density at Newcastleton. C20177 has the lowest wood density at all sites. 

C20177 had the largest trunk diameter at each site and agreed witfi the inverse relationship 

between diameter and wood density (Pfeifer, 1984; Wood, 1986). C20211 had the highest 

wood density at Newcastleton and also had the smallest diameter and Pilodyn® 

measurement, again fitting the diameter-wood density relationship. C20208 had the highest 

wood density at Scootmore and Wauchope suggesting that changes have occurred during 

the three years after height, diameter and Pilodyn® distance were measured to the 

destructive biomass sampling. To fiuther confound matters, C20208 at Scootmore had the 

largest diameter after 10 years of growth and was therefore expected to have the lowest 

wood density. 

Within each site, C20177 had the lowest fine root density but the highest fine root density 

response between clones was varied. With nutrient concentration, water availability and 

temperature uniform throughout each site, it appeared that C20177 differed fi-om the other 

clones by allocating more C to above-ground organs and less to the root systems. The 

clone with the highest fine root density varied between C20208 and C20211, suggesting 

that these clones were showing a similar pattern in allocation, allocating more C to below-

ground organs in comparison to C20177. The differences in fine root density were a result 

of the clone's response to the environment at each site. The response of the clones in 
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coarse root density was not consistent and showed no pattern within any site, suggesting 

the differences in genotype did not affect coarse root density. 

At Newcastleton and Wauchope, carbon allocation was highest above-ground in C20177 

and lowest in C20211. At Scootmore, above-ground C allocation was also lowest in 

C20211 but highest in C20208. The ti-ees that were taller and had larger tiimk diameters 

also contained the largest C concentration and those that were smaller had the lowest C 

concentration. Therefore, at Newcastleton and Wauchope, C20177 had the tallest trees, the 

largest diameters and the greatest C content. At all three sites, C20211 had the shortest 

trees, smallest diameters and, therefore, the lowest C content. At Scootmore, C20208 had 

the greatest C content but at this site C20208 also had the tallest trees and largest 

diameters. There were no significant differences between clones within each site, 

suggesting that there was little difference between the clones. A previous comparison of 

two northerly clones and two southerly clones of Picea sitchensis also illustrated very little 

difference in carbon content between clones (Centritto et al, 1999). 

The greatest proportion of C was allocated to the trunk in all clones at Newcastleton but 

only for C20208 and C20211 at Wauchope and Scootinore. C20177 at Wauchope and 

Scootmore allocated the greatest proportion of carbon to the branches. All clones at all 

sites allocated the smallest proportion of C to the needles. Differences in above-groimd 

allocation have been found previously in Pinus radiata, with more C allocated to the trunk 

in trees fi-om one family, while the trees fi-om another family allocated more to branches 

(Conroy et al., 1990). Although the clones were showing differences in C allocation above-

ground, it also depended on the site. At Newcastleton, all clones showed the same 

allocation but environmental differences at Wauchope and Scootmore produced a 

differentiation in allocation patterns amongst the clones. 

An increase in C allocation to the branches was not accompanied by an increase in C 

allocation to the foliage. Amongst the clones, C20211 allocated the greatest proportion of 

C to foliage and C20177 the smallest, even though at Wauchope and Scootmore C20177 

allocated the largest proportion of C to the branches. There was an inverse relationship 

between C allocation to foliage and C allocation to branches, as C20211 has the smallest C 

allocation to the branches but the largest to the foliage, whilst C20177 has the largest C 

allocation to branches but the smallest to the foliage. 
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At Newcastleton and Wauchope, C20208 allocated proportionally more C to fme roots 

than the other clones. At Scootmore, C20211 allocated proportionally more C to fine roots 

and at all sites C20177 allocated the least C to fme roots. Again, the clones at 

Newcastleton and Wauchope were behaving in the same way. As Newcastleton and 

Wauchope were similar sites in terms of geographic location, climate and land-use history, 

it was expected that the clones would respond in a similar way. 

There were differences in C allocation to fine roots between the sites and clones at 

different distances from the root collar. C20177 showed the same pattern at each site, with 

greatest C allocation to fme roots at the same distance from the root collar. C20208 also 

showed the greatest C allocation to fine roots at the same distance but at Newcastleton and 

Wauchope only, and C20211 showed the greatest C allocation to fine roots at the same 

distance at Newcastleton and Scootmore. The clones were showing the same pattern at 

Newcastleton, again suggesting that the conditions were more favourable at this site, with a 

small environmental effect on the C allocation to fine roots. Wauchope and Scootmore 

showed more variation, suggesting that there were greater environmental effects. 

Precipitation levels were lower at Scootmore and nutrient concentration lower at 

Wauchope, possible explaining the increased variation in C allocation. 

The greatest C allocation to coarse roots at Newcastleton and Scootmore was in C20208 

and at Wauchope in C20177. The lowest C allocation to coarse roots at Newcastleton and 

Scootmore was in C20211 and C20208 at Wauchope. Newcastleton and Scootmore were 

showing the same pattern suggesting that precipitation levels may not be causing 

differences in coarse root allocation. Wauchope was different from the other two sites, and 

with nutrient availabiHty lower at this site, suggests that the differences in C allocation to 

coarse roots were a result of nutrient concentrations. However, all clones at Newcastleton 

and Wauchope showed the greatest C allocation to coarse roots at the same distance from 

the root collar, suggesting that these sites were similar. The distance at which C allocation 

to coarse roots was greatest showed no pattern at Scootmore, and there was no pattern in 

the distance from the root collar, which had the lowest C allocation to roots, suggesting 

there was little genotypic control over C allocation to coarse roots and the distribution of 

coarse roots for each tree. 
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The environment affected wood density, with each site showing different wood densities. 

Wood density showed an inverse relationship with trunk diameter, so that the clone with 

largest trunk diameter at each site also had the lowest wood density and the clone with the 

smallest trunk diameter had the highest wood density. 

Fine root density showed a clear pattern amongst sites, with fine root density highest at 

Scootmore and lowest at Wauchope. This response was probably a result of precipitation 

levels, as Scootmore had the lowest annual precipitation and Wauchope the highest. 

Nutrients did not appear to have an effect, as low nutrient availability increases fine root 

biomass but Wauchope had the lowest nutrient concentrations and lowest fine root density. 

There was no consistent pattern in coarse root density. 

The greatest carbon allocation above-ground was in the same clone at Newcastleton and 

Wauchope, and the lowest carbon allocation above-groxmd was in the same clone at all 

three sites. C allocation was positively related to tree height and trunk diameter. 

For each clone at each site, with the exception of C20177 at Wauchope and Scootmore, the 

greatest allocation among above-ground organs was in the trunk. For C20177 at Wauchope 

and Scootmore the greatest allocation was in the branches. For all clones, the lowest 

allocation was in the foliage. There was an inverse relationship between C allocated to the 

trunk and C allocated to the foliage. 

The greatest C allocation to fine roots was in the same clone at Newcastleton and 

Wauchope, and the lowest C allocation was in the same clone at all three sites. The greatest 

and lowest C allocation to coarse roots was in the same clone at Newcastleton and 

Scootmore. This suggested that the fine root C allocation of the clones were affected by 

climate effects, and therefore showed a similar response at Newcastleton and Wauchope, 

but were not greatly affected by the nutrient concentrations. The similarity of C allocation 

to coarse roots at Newcastleton and Scootmore suggested that nutrient concentration 

affected C allocation to coarse roots. 
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9. Process=based modelling of sun and shade photosynthesis of 

three clones of Sitka spruce at three sites 

Abstract 

A process-based model of tree evapotranspiration was used to simulate the net 

photosynthetic rates (Anet) of Sitka spruce. Anet was calculated for sun and shade foliage on 

a daily basis and validated with data fi-om three Sitka spruce clones at three sites. Anet of 

sun foliage was highest at Newcastleton. The Anet of sim foliage was lowest at Scootmore 

for clones C20177 and C20211, and lowest at Wauchope for C20208. There was little 

difference in the Anet of shade foliage between sites. Within Newcastleton and Scootmore, 

C20177 had the highest Anet and C20211 the lowest Anet of sun foliage. C20208 had the 

highest and C20211 had the lowest Anet for the sun foliage at Wauchope and for the shade 

foliage at all sites. The differences between sites and between clones were greater during 

the growing season and smaller during winter. The model overestimated Anet between 

29 % and 70 % at Newcastleton and imderestimated Anet between 10 % and 71 % at 

Wauchope and Scootmore. The error between simulated and observed values was a result 

of errors in the weather input data and errors in certain parameters. A sensitivity analysis of 

the parameters indicated that six largely influenced the photosynthetic output of the model 

( L A I , nitrogen concentration at the top of the canopy, ratio of photosynthetic capacity-to-

leaf nitrogen, Vm activation energy, S and H). The effects were greater in sun foliage except 

for L A I , which had greater effects on the shade foliage photosynthesis. 

9.1 Introduction 

9.1.1 The Farquhar model 

The Farquhar model is one of the most widely used and developed models (Farquhar et al., 

1980; von Caemmerer & Farquhar, 1981). The model is a comprehensive description of 

the biochemical processes of photosynthesis that was compatible with studies of gas 

exchange measurements. The fundamental core of the model split CO2 assimilation into 

two parts: the carboxylation reactions and the oxygenation reactions. These reactions may 

be limited by Rubisco activity, by the concentration of Rubisco and by the rate of RuBP 

regeneration. The equations describing the carboxylation and oxygenation reactions are 
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integrated at the chloroplast level and extended to the leaf, by summing the contributions 

of each chloroplast. 

The Farquhar model was fiirther developed to describe the limitation of Rubisco activity 

by the thylakoid reactions or Pj regeneration (Sage, 1990). A slight modification to the 

temperature dependencies of the equations allowed the model to effectively describe the 

complex effects of light, temperature and relative humidity of sun and shade leaves of 

Quercus alba L. and Acer rubrum L. at Oak Ridge, USA (Harley & Baldocchi, 1995). The 

Farquhar model has also been used to simulate the photosynthesis of Picea mariana at the 

leaf, branch and canopy level (Rayment et al., 2002) and estimate photosynthesis of Picea 

abies at the branch level (Falge et al., 1996). The results for P. mariana demonstrated the 

observed seasonal dynamics but the results for P. abies showed errors in light acclimation, 

in the damage caused by pollutant deposition, needle age and cold stress effects. The 

model also showed considerable error in simulating the photosynthetic response of Q. alba 

and A. rubrum at different atmospheric CO2 concentrations. 

Using the Farquhar model to describe photosynthesis, a model was designed to predict 

radiation absorption, photosynthesis and transpiration for Picea sitchensis and Picea 

radiata stands (Wang & Jarvis, 1990), using three needle age classes and three ecological 

types of needles (sun, intermediate and shade), different leaf area densities and leaf angles. 

Hourly calculations showed large deviations from the observed data but daily calculation 

differed by less than 10 %. Other models based on the Farquhar model also found good 

agreement (within 20 %) between observed and simulated data (Falge et al., 2000; Zhang 

& Xu, 2003). 

9.1.2 Carbon allocation and the pipe-model theory 

The Farquhar photosynthetic model has also been coupled with carbon allocation models 

to describe dry matter partitioning. The photosynthetic products were partitioned into root 

and shoot dry matter (Reynolds & Thomley, 1982; Thomley, 1972), using allometiic ratios 

between stem diameter, tree height and branch biomass, and between tree diameter and 

root biomass (Bartelink, 1998), after considering losses from leaves and root and through 

respiration (McMurtrie & Wolf, 1983). Resulting models were used to calculate net 

primary production in temperate and boreal forests (Aber & Federer, 1992; Landsberg & 

Waring, 1997). 
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Carbon allocation models often included the principles of the pipe-model theory to 

describe dry matter partitioning. The pipe-model theory states that each tmit measure of the 

foliage on a tree was attached via an active pipe extending to the base of the trunk and into 

the root system (Shinozaki et al, 1964), so the sapwood area of a tree was proportional to 

foliage biomass. Models include a constant ratio between foliar dry matter and total cross-

sectional area of active pipes, and dry matter growth was equal to pipe dry matter growth, 

height increment was equal to the increase in pipe length and basal area was equal to the 

total pipe basal area (Valentine, 1985, 1988). However, frees reach a foliar dry matter 

maximum but the basal area continues to increase. The increase in basal area was a result 

of aggregated disused pipes, where live branches have withered and shed but their pipes 

remain (Chiba, 1998). Allocation models incorporating the pipe-stem theory have been 

used to accurately simulate the growth of Picea taeda (Valentine, 1999) and Eucalyptus 

(West, 1993). 

9.1.3 Hypotheses 

Using a process-based model of evapofranspiration (ForestETp), with photosynthesis 

described using the Farquhar model, daily photosynthesis was calculated for Sitka spruce. 

Using parameters calculated from each clone at each site, it was hypothesised that: 

• ForestETp would accurately predict the photosynthesis at each site and for each clone, 

when compared with the observed data (Chapter 7). 

• The simulated photosynthesis would show the same pattern between sites as the 

observed photosynthetic rates (i.e. the site showing the highest photosynthetic rates 

will also show the highest simulated rates). 

• The simulated photosynthesis would show the same pattern amongst the clones as the 

observed data (i.e. the clone showing the highest photosynthetic rates would also show 

the highest simulated rates). 

9.2 Methods 

9.2.1 Model description 

For an in-depth description of the ForestETp model, see Evans et al. (2005). 
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The macro-climate module 

The module is a stochastic-deterministic, site-scale module that provides daily time step 

climate input fi-om readily available monthly time step chmate data. 

Precipitation is generated using a two-state Markov process to determine the occurrence of 

a rain day. On a rain day, the module assumes a single rainfall event of imiform intensity 

and when the temperature falls beneath zero, this is assumed to be in the form of snow. A 

two-step gamma probability distribution fimction describes the amount of rainfall 

occurring on a rain day. 

Air temperature is generated fi-om an auto-correlation intensity process coupled with a 

uniformly random generated distribution around the observed mean and constrained within 

the observed standard deviation. Wind speed and relative humidity are estimated using a 

modelling technique analogous to mean air temperature. 

Solar radiation is approximated using spherical geometry and is corrected for the impact 

caused by the atmosphere's constituent gases and dust particles. The solar radiation is 

further attenuated and scattered by cloud cover and corrected for latitude, aspect and slope. 

The radiation is separated into direct and diffuse radiation, with a further separation into 

the photosynthetically active elements. 

Canopy radiative transfer module 

The canopy is differentiated into different layers and within each layer a distinction is 

made between sunlit and shaded leaves. A radiative transfer scheme simulates the 

transmittance, reflectance and adsorption of long wave, near infi-a-red and direct and 

diffuse photosynthetically active radiation (PAR), and separates the penetration of direct 

and diffuse radiation through the canopy of sunUt and shaded leaves. The composition of 

wavelengths does not change, regardless of cloudiness or aerosol composition, but does 

consider changes through canopy absorption. The module irradiance equations follow De 

Pury & Farquhar (1997). For both sxmlit and shaded leaves, the area within the canopy is 

calculated and the mean irradiance, mean layer assimilation, transpiration and conductance 

rate generated. The irradiance absorbed by the sunlit leaves is calculated with direct beam, 

scattered beam and diffuse radiation. The shaded leaves are assumed to receive diffuse 

radiation only. Leaf angle is also taken into consideration, as is sunfleck penetration. The 
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profile of nitrogen follows the predicted distribution of absorbed irradiance through each 

layer and, with the inclusion of seasonal variation, non-uniform profiles of photosynthetic 

capacity can be developed. 

Canopy Water Environment Module 

The model considers that there is only a single rainfall event per day. The canopy structure 

(i.e. the different layers), the mean evaporation and rainfall rates are used to calculate the 

rainfall interception and the wet canopy evaporation rates. Following the equations of Gash 

et al. (1995), during each rainfall event there is a period of wetting up followed by canopy 

saturation followed by a period of drying out after the rainfall ceases. The water holding 

capacity is dependent on the size and shape of the canopy. Also defined are the rainfall 

falling directly to the soil without touching the canopy, the rainfall dripping onto the soil 

surface fi-om the saturated canopy, the stem storage rate and the proportion of rain diverted 

to stem flow that will end up on the soil surface. Evaporation from the wet canopy is 

defined using a modified Penman-Monteith equation (the ground heat-sink and canopy 

transpiration terms have been removed). 

Soil Environment Module 

The module of soil-water balance works on a daily timestep, multi-horizon capacity, which 

requires the input of climate data with soil survey and laboratory measured physical data. 

The model allows the vertical and lateral movement of water but does not include the 

effect of slope, nor does it allow excess soil water to move into profiles from spatially 

adjacent profiles. For each soil type and within each horizon, movement of water is 

dependent upon the depth, the content of clay, sand and silt, organic content and the initial 

water content. The model will simulate the formation of fransient perched water tables and 

generate surface run-off. Root water uptake is calculated from the franspiration demand, 

the distribution of the roots and the soil water content using the 'sink fimction' of Jarvis 

(1989). This assiunes a root adaptability factor, a ratio between actual to potential root 

water uptake proportional to a dimensionless water sfress index, which adjusts the stress in 

one part of the root system by increasing the uptake where conditions are more favourable. 

The root length distribution is assiuned to be logarithmic with depth and the root water 

uptake is distributed along the root depth according to stress, determined by the water 

availability, in each horizon (Feddes et al., 1974). 
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Soil surface evaporation is dependent upon the total incident radiation on the soil surface, 

which is separate for the soil surface underneath the canopy and not imdemeath the 

canopy. The resistance to evaporation during the soil drying out period is generated from a 

matrix model calculating the soil moisture in both liquid and gaseous phases within the soil 

pores at different depths (Campbell, 1985). Soil temperature is assumed not be equal to the 

air temperature. 

Gas exchange module 

Gas exchange is based on the model describing C3 photosynthesis by the regulation of 

Rubisco and electron transport in the leaf developed by Farquhar et al. (1980) and von 

Caemmerer and Farquhar (1981), with additions from Long (1991), McMurtrie and Wang 

(1993) and Friend (1995). 

Photosynthesis is tightly coupled with the Ball-Berry method of stomatal conductance 

(Aphalo & Jarvis, 1993; Woodrow et al., 1990) to provide a robust phenomenological 

description of stomatal conductance. The Ball-Berry model is dependent upon the level of 

photosynthetic activity, so that the stomata are only open as much as is needed, indirectly 

affected by the environmental variables. 

The temperature effects on the kinetic properties of carboxylation and RuBP regeneration 

are taken into account by changes in the C O 2 solubility and the affinity of Rubisco to 

oxygen, calculated using the kinetic constants of McMurtrie and Wang (1993). The module 

explicitly describes the role of nitrogen by influencing the Rubisco concentration and the 

soluble leaf proteins used in electron transport (Friend 1995). 

The Ball-Berry method for calculating stomatal conductance is an iterative process to 

resolve the values of the internal concentration of C O 2 (CO and assimilation, by altering the 

value of stomatal conductance. Assimilation and stomatal conductance are inter-dependent 

and Ci is a function of the interaction between C O 2 assimilation and stomatal conductance 

to C O 2 , regulated by the leaf botmdary layer and the mesophyll cell surface resistances to 

C O 2 fransfer. 
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9.2.2 Calculation of parameters 

Parameters derived from the collected data are shown in Table 9.1. Rooting depth (cm) 

was calculated from root cores (Chapter 8) and was the maximum depth where roots were 

found. Tree height (m) was the mean height of the clone, calculated from the heights of the 

individual trees that were used during the gas exchange measurements (Chapter 3). Canopy 

storage (mm), quantity of precipitation captured by the canopy, was calculated as the L A I 

multiplied by 0.2 mm (Gash et al, 1995). Nitrogen at the top of the canopy (mmol m'^) 

was simply calculated from foliar nitrogen concentrations in the needles at 6 m in the 

canopy. Light compensation point (LCP; mmol mol"' N s"') was calculated from the x-axis 

intercept of the light response curves of gas exchange, normalised for tissue nitrogen 

concentration (Walker, 1989). 

A l l other photosynthetic and canopy parameters (Table 9.2) were extrapolated from the 

ECOCRAFT database (Medlyn et al., 1999) or from the literature (De Fury & Farquhar, 

1997). Nb (mmol m"̂ ) was the non-photosynthetic foHar nitrogen concenfration; Xn (mmol 

mol"' s ') was the ratio of photosynthetic capacity-to-leaf nitrogen; K„ was the nitrogen 

allocation co-efficient; Vm activation energy (J mol ' ) was the energy required for the 

activation of Rubisco; J „ activation energy (J mol"') was the energy required for the 

activation of electron transport; S (J K"' mol ') was the electron transport response to low 

temperatures; H (J mol"') was the curvature temperature response to higher temperatures; 6 

explains the curvature of electron transport to irradiance; Gmm (mol m"̂  s"') was the 

minimum stomatal conductance. 

Rain stemflow is defined as the proportion of water that runs along the branches and trunk, 

and ultimately ends up on the soil siuface. Storage trunk is the quantity of rain that is 

collected by the trunk and does not end up on the soil surface. The %PAR parameter 

describes the percentage of radiation that is photosynthetically active and the spectral 

reflectance factor describes the proportion of radiation that is reflected and not absorbed. 

Soil parameters were calculated for each horizon (Table 9.3). Clay, silt, sand and organic 

content were calculated directly from the laboratory analysis (Chapter 3). 

142 



9.2.3 Meteorological data 

Meteorological data were obtained from the Met Office Land Surface Observation Stations 

via the British Atmospheric Data Centre. Data were available from Met stations close to 

the Wauchope and Scootmore sites. However, for Newcastleton, there were no Met 

stations located near to Newcastleton and the climate data was calculated via the weather 

generator module by interpolating data from the Met stations nearest to Newcastleton. 

9.2.4 Model Simulations 

The model was run for a period of 10 years, starting from 1998 and finishing in 2008. To 

compare between simulated and observed data, only the results from 2001,2002 and 2003 

during the growing season were used. The model was run once for each clone at each site, 

so a total of nine simulations were made. 

9.2.5 Sensitivity Analysis 

For each parameter inputted during each simulation, a sensitivity analysis was conducted. 

Each parameter was altered by ± 10 %, and the photosynthesis subsequently simulated 

between 2001 and 2003 for each aUered parameter, using only one alteration per 

simulation. 
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Table 9.2: Parameters extrapolated from the literature 

Ec/R 0.15 

Storage trunk (mm) 0.25 

Rain stemflow 0.1 

V„ activation energy (J mol" ' )* 54000 

J„ activation energy (J mol ' ) * 55400 

5 ( J K - ' mo l ' ) * 670 

/ / ( J m o l " ' ) * 200500 

0.713 

Nt (mmol m"^)** 25 

•XJ, (mmol m o l ' s ' ) 1.16 

G„i„ (mol m"^ s"') * 0.043 

Stomatal conductance slope* 6.44 

Spectral reflectance factor** 0.15 

(9** 0.7 

Radiation: % PAR 45 

PPFD conversion factor 4.5 

*Medlyn & Jarvis (1999) 
**De Puiy e/a/. (1997) 
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Table 9.3: Soil parameters for the soil environment module 

Newcastleton Wauchope Scootmore 

Horizon one 

Depth (cm) 20 5 30 

Clay content (%) 15.84 1.99 2.45 

Silt content (%) 60.66 11.93 22.46 

Sand content (%) 12.79 1.99 16.77 

Organic content (%) 10.71 84.09 58.32 

Horizon two 

Depth (cm) 30 22 20 

Clay content (%) 16.60 6.13 6.87 

Silt content (%) 63.31 37.53 51.77 

Sand content (%) 11.62 6.98 27.32 

Organic content (%) 8.47 49.36 14.04 

Horizon three 

Depth (cm) - 23 

Clay content (%) - 8.42 

Silt content (%) - 48.05 

Sand content (%) - 11.28 

Organic content (%) - 32.25 
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9.3 Results 

9.3.1 DifTerences in simulated data between sites 

Sun foliage 

The simulated data showed that all clones had the highest Anet at Newcastleton (Figs 9.5-

9.7). C20177 and C20211 had the lowest Anet at Wauchope, while the Anet of C20208 was 

very similar at Wauchope and Scootmore but with Anet slightly higher at Scootmore during 

the summer and slightly higher at Wauchope during the winter. For C20211, during winter 

the Anet at all three sites was similar and for C20177 the Anet was similar diuing winter at 

Wauchope and Scootmore. 

Shade foliage 

The Anet of C20177 at Newcastleton and Scootmore was very similar, with the Anet at 

Wauchope being lower. There was little difference between sites during winter (Figs 9.5-

9.7). The Anet of C20208 showed very little difference between sites. The A„et of C20211 

was highest at Newcastleton and very similar at Wauchope and Scootmore. There was httle 

difference between sites especially during winter. 

9.3.2 Differences in simulated data between clones 

Sun foliage 

At Newcastleton, there was little difference between the Anet of the clones. C20177 had the 

highest Anet, particularly during summer (Figs 9.2-9.4). During summer, C20211 had the 

lowest Anet, whilst C20208 had the lowest Anet during winter. At Wauchope, C20208 had 

the highest A„et, with little difference between the Anet of C20177 and C20211. During 

winter, all clones had a very similar Anet rate. At Scootmore, there was little difference 

between the clones, although C20177 had slightly higher Anet and C20211 slightly lower 

Anet during summer. During winter, there was little difference, although C20208 had 

slightly lower Anet rates. 
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Shade foliage 

At all three sites, C20208 had the highest Anet and C20211 the lowest (Figs 9.2 - 9.4). 

However, during the winter, there was very little difference in the Anet rates between 

clones. 

9.3.3 Sensitivity analysis 

The sensitivity analysis showed that six of the ETp parameters largely affected the 

simulated photosynthetic response (Table 9.4). 

A 10 % increase in L A I increased gross photosynthesis by just under 5 %, while a decrease 

in L A I caused a decrease in photosynthetic rates by about 5 %. An increase in N 

concenfration at the top of the canopy and an increase in the ratio of photosynthetic 

capacity to leaf N caused a similar increase in photosynthetic rates and a decrease in either 

parameter caused a similar decrease in photosynthesis. For L A I , N concenfration and the 

ratio of photosynthetic capacity to leaf N , the increase in photosynthesis with a 10 % 

increase in parameter value was a very similar percentage to the decrease in photosynthesis 

with a 10 % decrease in parameter value. 

An increase in Vm activation energy caused a decrease in photosynthetic rates, while a 

decrease in parameter value caused an increase in photosynthetic rate. A 10 % decrease in 

parameter value caused a slightly higher percentage change than a 10 % increase in 

parameter value. 

An increase in S caused an increase in photosynthetic rates and a decrease in S caused a 

decrease in photosynthesis, while an increase in i f caused a decrease in photosynthesis and 

a decrease in H caused an increase in photosynthesis. In both cases, the decreasing 

photosynthetic response was much greater than the increasing photosynthetic response; so 

decreasing S largely decreased the photosynthetic rates, while an increase in H caused a 

large decrease in photosynthetic rates. 
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Table 9.4: Percentage difference between simulated And and simulated Amt w i t h an increase or decrease o f 

Sun Anet Shade And 
Gross 

Photosynthesis 

+10% -10% +10% -10% +10% -10% 

L A I 2.85 -3.41 8.50 -9.32 4.37 -4.98 

Tree height -0.18 0.26 -0.01 0.03 -0.14 0.20 

Canopy storage -0.14 0.16 -0.01 0.02 -0.11 0.12 

Leaf nitrogen not photosynthetic -0.29 0.31 0.00 0.01 -0.22 0.24 

Photosynthetic capacity to leaf 
nitrogen 

8.59 -8.78 0.65 -0.79 6.44 -6.62 

Nitrogen concentration at top o f 
canopy 

8.79 -9.01 0.17 -0.32 6.68 -6.87 

Ligh t compensation point -1.15 1.14 -3.06 3.22 -1.60 1.64 

V m activation energy -11.64 13.25 0.02 -0.01 -8.37 9.51 

Jm activation energy 0.00 0.02 -1.13 0.97 -0.31 0.28 

Electron transport temperature 
response 

0.07 -8.61 6.64 -5.28 1.78 -7.59 

Jm curvature parameter -8.61 0.07 -5.28 6.58 -7.60 1.77 

Nitrogen allocation coefficient -1.71 1.75 -0.15 0.14 -1.36 1.40 

Stomatal conductance min CO2 0.61 -0.58 0.15 -0.15 0.48 -0.46 

Stomatal conductance slope 0.99 -1.12 0.07 -0.06 0.76 -0.85 

9.3.4 Differences between observed and simulated pliotosyntliesis during the growing 

season 

The ETp model overestimated photosynthesis between 29 % and 71 %, and underestimated 

between 10 % and 70 % during the growing season (Table 9.5). Generally, the model 

overestimated photosynthesis at Newcastleton and underestimated photosynthesis at 

Wauchope and Scootmore. Within each site, there was little difference in over- or under

estimation of photosynthesis between sun and shade foliage, or between clones. 
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Table 9.5: Mean observed photosynthetic rates (nmol m"^ s"'), mean simulated photosynthetic rates and 
percentage difference between them for each clone at each site for sun and shade foliage. 

Sun foliage Shade foliage 

Site Clone 
Mean 

Observed 
Mean 

Simulated 
Difference 

(%) 
Mean 

Observed 
Mean 

Simulated 
Difference 

(%) 

C20177 5.67 8.72 54 3.05 2.31 -24 

Newcastleton C20208 4.65 7.96 71 2.11 2.75 30 

C20211 6.11 7.90 29 2.89 1.93 -33 

C20177 9.88 4.98 -50 4.18 1.98 -53 

Wauchope C20208 8.68 6.02 -31 3.66 3.02 -17 

C20211 10.01 4.83 -52 5.08 1.51 -70 

C20177 9.31 6.85 -26 4.99 2.75 -45 

Scootmore C20208 6.89 6.23 -10 4.41 3.04 -31 

C20211 4.46 6.64 49 3.58 1.74 -51 

9.4 Discussion 

The simulated Anet was highest at Newcastieton, lowest at Wauchope for C20177 and 

C20211 and lowest at Scootmore for C20208. However, the observed data showed a 

different pattern. The Amax (not normalised for nitrogen) was highest at Scootmore and 

lowest at Newcastleton for all clones. With C20177 and C20211 showing a higher Anet at 

Scootmore in comparison with Wauchope, this suggested that the simulated Anet at 

Newcastleton was too high. The model consistently overestimated the Anet of sun foliage at 

Newcastleton, leading to the higher overall mean at Newcastleton. The model 

underestimated the Anet of sim and shade foliage at Wauchope and Scootmore, leading to a 

lower overall mean at these two sites and, therefore, a lower Anet than at Newcastleton. 

The differences between the observed and simulated data were similar between sun and 

shade foliage, with a general underestimation by the model. The differences between 

simulated and observed ranged from 10 % to 71 %, with only five results below 30 % 

difference. This disparity between simulated and observed was much greater than the 
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differences between simulated and observed of a range of process-based models. The 

simulated data of other photosynthetic models and observed data generally agree within 

20 % for Cunninghamia lanceolata (Zhang & Xu, 2003), Picea abies (Falge et al., 2000), 

Quercus alba mdAcer rubrum (Harley & Baldocchi, 1995). Another process-based 

photosynthetic model (MAESTRO; Wang & Jarvis, 1990), based on the equations of 

Farquhar et al. (1980), found that the daily photosynthetic simulations of Picea sitchensis 

and Picea radiata differed from the observed data by less than 10 %. 

In the present study, the errors in the simulated data were most likely a result of errors in 

the parameters. Parameters for the ETp module were extracted from the available literature 

or the ECOCRAFT database (Medlyn & Jarvis, 1999) i f they could not be calculated from 

the collated data. V„ activation energy, Jm activation energy, H, S and both stomatal 

conductance parameters were all extrapolated from the ECOCRAFT database for Sitka 

spruce growing in a similar environment. However, it was not always possible to obtain 

parameters for Sitka spruce and parameters from other Picea or Pinus species were used. 

The spectral reflectance factor, the curvature of electron transport to irradiance and the 

nitrogen parameters were all extrapolated from De Pury and Farquhar (1997). There were 

differences between species, in particular differences between broadleaf and deciduous 

frees (Reich et al., 1995), which could have an impact on the overall photosynthetic 

response. 

The sensitivity analysis showed that there were six parameters that largely affected the 

photosynthetic output of the model. An increase in L A I increased photosynthesis, a direct 

response of an increase in photosynthetic area leading to an overall increase in 

photosynthesis. An increase in Vm activation energy caused a decrease in photosynthesis, 

most likely a result of greater light energy required for Rubisco activity, limiting the 

photosynthesis of days with lower light availability. An increase in nitrogen concentration 

increased photosynthesis. Rubisco content and photosynthesis are positively related to 

nifrogen content (Evans, 1989), so an increase in nitrogen increased Rubisco content and 

photosynthesis. An increase in the ratio of photosynthesis-to-foliar nitrogen also increased 

photosjoithesis. With an increase in this parameter, for each unit of nitrogen the 

photosynthetic capacity was increased, and the nifrogen use efficiency increased. The two 

parameters describing the temperature response of the elecfron fransport effected 

photosynthesis in different ways. An increase in S increased photosynthesis, while an 
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increase in H decreased photosynthesis. S described the low temperature elecfron fransport 

response; therefore an increase S lowered the optimum temperature for elecfron fransport 

and, hence, increased photosynthetic rates at a given temperature, / f described the high 

temperature elecfron fransport response; therefore an increase in H increases the optimum 

temperature for elecfron fransport and, hence, decreased photosynthetic rates at a given 

temperature. Generally, increasing or decreasing a parameter value had a similar effect on 

photosynthesis. However, the effect of decreasing 5* was greater than the effect of 

increasing the parameter value. The opposite was true for H, with an increase in the 

parameter having a greater effect on photosynthesis. The effect of ahering the six 

parameters was greater for sun fohage, with the exception L A I , which had a much greater 

effect in the shade foliage. 

Of the six parameters that have the greatest impact on photosynthesis, only two were 

calculated from the observed data; L A I and nifrogen concenfration at the top of the canopy. 

The other four parameters were exfrapolated from De Pury and Farquhar (1997) or the 

ECOCRAFT database. With large effects caused by these parameters, it seems that the 

error between simulated and observed photosynthesis were caused by the errors in these 

parameters. S, H, and Vm activation energy were all estimated from Pinus sylvestris 

growing in Finland, exfrapolated from the ECOCRAFT database. The ratio of 

photosynthetic capacity-to-leaf nifrogen was taken from De Pury and Farquhar (1997). 

This relationship has been shown to be very robust in deciduous species but very weak in 

evergreen species, often with no relationship present (Reich et ai, 1995). This parameter 

was calculated from data from crop species, and was most likely too high for an evergreen 

such as Sitka spruce. 

The photosynthetic rates at Newcastleton were consistently overestimated by the model but 

underestimated at Wauchope and Scootmore. The major difference between the sites in the 

model simulations was the climate input data. As meteorological data were not available 

for Newcastleton, it was interpolated from the nearest weather stations, which wil l have 

brought error into the model simulations. The apparent underestimation of photosynthesis 

by the model could partly be explained the differences in the measurement of 

photosynthesis by the model and by the field data. The model reported photosynthesis as 

the maximum net rate during the day, whilst the observed data reported photosynthesis as 

the light-saturated photosynthetic rate. It was very possible that, on many days. 
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photosynthesis was not light-saturated and, therefore, the simulated data showed a lower 

photosynthetic rate than the observed data. 

As a result of photosynthesis data only being available during the summer months, it was 

only possible to compare the simulated and observed data for the period Jime to August. 

The observed data showed C20177 had the highest Amax, with little difference between 

C20208 and C20211, although C20208 had slightly higher Amax in shade needles. The 

simulated data showed the sim foliage of C20177 had the highest Anet at Newcastleton and 

Scootmore, and C20211 the lowest, agreeing with the observed data. The simulated data of 

the sun foliage at Wauchope and the simulated data of shade fohage at all sites showed that 

C20208 had the highest and C20211 the lowest Anet- Altiiough there was large variation in 

the absolute photosynthetic values, the model was generally showing the same clonal 

response within sites at Newcastleton and Scootmore for the sun foliage. At Wauchope, 

although the response of C20211 agreed with the observed data, C20208 had the highest 

simulated photosynthetic rates when C20177 had the highest observed photosynthetic 

rates. The difference between simulated and observed was most likely a result of the 

nitrogen parameters. The photosynthetic capacity-to-leaf nitrogen ratio and non-

photosynthetic nitrogen were constant for all simulations. However, nifrogen concentration 

at the top of the canopy was directly calculated from the foliar nitrogen concentrations and 

differed between clones. With photosynthetic rates directly related to nifrogen 

concentration (Evans, 1989), the differences in nitrogen concenfration at the top of the 

canopy were likely to have affected photosynthetic rates. 

Other factors that may have affected photosynthesis include needle age, which was not 

taken into account by the model. Needle age was found to affect the simulated response of 

photosynthesis of P. abies (Falge et al., 1996) and may explain the disparity between 

observed and simulated photosynthetic rates of the three clones. The model does not 

include a planting density function, therefore the effect of the neighbour's proximity would 

not be taken into account when calculating parameters such as light availability, 

temperatiu-e, wind or precipitation. The sensitivity analysis showed that temperature based 

parameters varied the photosynthetic rate considerably when aUered, the variation in 

immediate climate surrounding the individual tree in the field may have caused the 

differences been observed and simulated data. 
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9.5 Conclusions 

The Anet of sun foliage of all clones was highest at Newcastleton, and lowest at Wauchope 

for C20177 and C20211. The Anet of sun foliage of C20208 was very similar between 

Wauchope and Scootmore. There was little difference in the Anet of shade foliage of all 

clones between sites, although A„et was highest at Newcastleton for C20177 and C20211. 

At Newcastleton and Scootmore, C20177 had the highest Anet of sim foliage and C20211 

the lowest. At Wauchope, C20208 had the highest Anet of sun foliage, with little difference 

between C20177 and C20211. For all sites, C20208 had the highest A„et and C20211 the 

lowest in shade foliage. 

The differences between sites and, within site, the differences between clones were much 

smaller during the winter months and greatest during the growing season. 

The sensitivity analysis indicated six parameters were largely affecting photosynthetic 

rates (LAI, nitrogen concentration at the top of the canopy, ratio of photosynthetic 

capacity-to-leaf nitrogen, Vm activation energy, S and H). The effects were larger in the sun 

foliage, except for L A I , which had larger effects on the shade foliage. 

The model largely overestimated photosynthesis between 29 % to 71 % at Newcastleton 

and underestimated between 10 % to 70 % at Wauchope and Scootmore. The errors were 

caused by parameters extracted from the hterature, errors in the meteorological data and 

differences in the reporting of simulated and reported photosynthetic rates. 
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Fig 9.2: Net photosynthesis (Anet) from the beginning o f 2001 to the end o f 2003 for C20177 at Newcastleton 
(black), Wauchope (red) and Scootmore (blue) in a) sun foliage and b) shade foliage. 

156 



a) 

-1 1 1 r 
Jan 2001 June 2001 Jan 2002 June 2002 Jan 2003 June 2003 Jan 2004 

b) 

o 
E 
3 

Jan 2001 June 2001 Jan 2002 June 2002 Jan 2003 June 2003 Jan 2004 

Fig 9.3: Net photosynthesis (A„et) from the beginning of2001 to the end of 2003 for C20208 at Newcastleton 
(black), Wauchope (red) and Scootmore (blue) in a) sun foliage and b) shade foliage. 
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Fig 9.4: Net photosynthesis (A„e,) from the beginning of 2001 to the end of 2003 for C20211 at Newcastleton 
(black), Wauchope (red) and Scootmore (blue) in a) sun foliage and b) shade foliage. 
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Fig 9.5: Net photosynthesis (A„e,) from the beginning of 2001 to the end of 2003 at Newcastleton for C20177 
(black), C20208 (red) and C20211 (blue) in a) sun foliage and b) shade foliage. 
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Fig 9.6: Net photosynthesis (Ane,) from the beginning of 2001 to the end of 2003 at Wauchope for C20177 
(blacic), C20208 (red) and C20211 (blue) in a) sun foHage and b) shade foHage. 
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Fig 9.7: Net photosynthesis (Ane,) from the beginning of 2001 to the end of 2003 at Scootmore for C20177 
(black), C20208 (red) and C20211 (blue) in a) sun foliage and b) shade foliage. 
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10 Final Discussion 

The main aim of the research presented herein was to investigate the environmental and 

genotypic variation of Sitka spruce (Picea sitchensis (Bong.) Carr.) by measuring 

photosynthetic rates, various physiological variables and carbon allocation, for three 

different clones of Sitka spruce at three different sites. Parameters derived from these data 

were also used to assess the predictive capabilities of a process-based tree groAvth model. 

This chapter presents the main conclusions, puts them into a wider biological context and 

sets priorities for further work. 

10.1 Environmental variation 

The detailed analyses in Chapter 4, of tree height, trunk diameter and wood density for all 

four sites, over which the clonal experiment was replicated, indicated a growth gradient 

running from tall frees with large diameters and low wood density to short frees with small 

diameters and high wood density. A second, weaker, gradient also existed; running from 

tall frees with large diameters and high wood density to short frees with small diameters 

and low wood density. A scatterplot of the two gradients illusfrated that frees growing at 

Newcastleton were tall, of large diameter and low wood density. The frees at Wauchope 

also showed a similar growth pattern, but with some tall frees having a large diameter and 

high wood density. The frees at Scootmore and Llandrindod were shorter, with small 

diameters and high wood density, although some frees at Llandrindod also exhibited low 

wood density. The mean height, trunk diameter and wood density data also showed the 

same pattern between sites, regardless of clone. Newcastleton and Wauchope are situated 

in a similar geographic location (Mboyi & Lee, 1999), with a similar climate and land use 

history - the similarity of environment explained the similar free growth response at both 

sites. Scootmore and Llandrindod are located in very different parts of the UK, with 

different precipitation levels and air temperatures, but both sites were previously 

coniferous forest before the present experiment was planted. The frees at Scootmore and 

Llandrindod showed similar growth responses and here the similarity in land use history 

appeared to be the major factor affecting free growth. 

Within each site, the growth variables of the twelve fiiU-sib families showed considerable 

scatter, indicating a large variation in growth at the individual free level. With each family 

162 



consisting of eight full-sibs, the growth response of the individuals within each family was 

expected to have been very similar. As there was large variability in tree growth, it 

suggested there was a large environmental impact at the individual level. A large variation 

in growth at the individual tree level has previously been found in Sitka spruce (Fletcher, 

1992) and so was not tmexpected. And in clones of hydrids of Populus trichocarpa and 

Populus deltoides, 30 to 65 % of growth variation in the stem was attributed to 

environmental differences when grown on two contrasting sites (Wu & Stettler, 1997). 

The classification of each individual tree into clusters based on the growth characteristics 

within each site also indicated a large environmental impact (Chapter 5). The 15 

individuals of each set of clones should have been classified into the same cluster at each 

site i f the environment exerted little control over tree growth. However, only two clones 

had all 15 individuals classified into the same cluster and this only occurred at one site. 

Nitrogen-based nutrients and phosphate are two important environmental factors that can 

affect tree growth. Increased nitrogen availability increased root and shoot growth in Pinus 

sylvestris (livonen et al, 1999), and increased the height of Sitka spruce (Miller & Miller, 

1987) and Populus tremuloides (Kubiske et al., 1998). Soil concentrations of nitrogen-

based nutrients and phosphate concentrations were calculated in two soil horizons at each 

site (Chapter 3). Concentrations were highest at Newcastleton and lowest at Wauchope, 

with intermediate concentrations at Scootmore. The higher concentration of nitrogen-based 

nutrients at Newcastleton may have been the cause of the increased tree height at this site. 

However, with tree growth similar between Newcastleton and Wauchope, a similarity in 

nutrient concentrations was expected but was not evident. However, the nutrient 

concentrations were only provided for one month in one year and did not indicate nutrient 

concentrations for any other year. In previous years, nutrient concentrations may have been 

similar at Newcastleton and Wauchope. Alternatively, the higher nutrient concentration at 

Scootmore, in comparison to Wauchope, may potentially have caused an increase in tree 

growth but other environmental factors were preventing the trees at this site from utilising 

the nutrients available. However, higher nitrogen availability has been shown not to affect 

the growth of Sitka spruce (Emmett et al., 1995) and Abies balsamea (Evans et al., 2001). 

Therefore, higher nitrogen concentration does not always coincide with increased growth. 

Chlorophyll, nitrogen and phosphorus concentrations were highest in needles at 

Newcastleton and lowest in needles at Scootmore (Chapter 6). Low soil nitrogen 
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availability has previously been shown to reduce needle nitrogen and chlorophyll content 

in Sitka spruce (Chandler & Dale, 1993; Murray et al, 2000) and in Pinus taeda (Tissue et 

al, 1993), suggesting that the needles reflect the soil nutrient availability. Therefore, tiie 

higher concentrations at Newcastleton were a reflection of the soil nutrient concentrations. 

This would also suggest that needles at Wauchope would have the lowest chlorophyll and 

nitrogen concentrations but the analysis did not show this. However, rather than the 

needles at Wauchope not following this relationship, the trees at Scootmore may not have 

been able to utilise the available nitrogen and hence exhibit a lower needle nitrogen 

content. 

Amaxji, Rday_N, LSE and QE were highest at Newcastleton, Amaxji and QE were lowest at 

Scootmore, and Rdayji and LSE lowest at Wauchope. LCP did not differ between sites 

(Chapter 7). 

Increased nitrogen availability increased photosynthesis in Picea mariana (Paquin et al., 

2000), P. tremuloides (Kubiske et al., 1998), P. sylvestris (Wang & Kellomaki, 1997) and 

P. taeda (Murthy et al., 1997), and the higher nitrogen availability at Newcastleton 

resulted in higher A„ax_N-- The higher Rday_N was a result of the greater photosynthetic 

activity. The higher needle chlorophyll content at Newcastleton resuhed in a higher 

quantity of light was required to saturate each chlorophyll unit, resulting in higher LSE. 

The relationship between the photosynthetic variables, foliar constituents, environmental 

variables and growth at Wauchope and Scootmore was less straightforward. Although 

there were fewer nutrients at Wauchope, in comparison to Scootmore, the photosynthetic 

rate was higher. However, foliar nitrogen is partitioned into Rubisco, the main enzyme of 

photosynthesis, or chlorophyll, both of which are correlated with foliage nitrogen content 

(Evans, 1989). Therefore, the higher nitrogen content in the needles at Wauchope resulted 

in a higher concentration of chlorophyll, and hence a higher photosynthetic rate, regardless 

of the nutrient availability. 

Photosynthesis is inhibited above a threshold temperature of about 30 "C in Sitka spruce 

(Leonardos et al., 1996; Ludlow & Jarvis, 1971; Neilson et al., 1972) and mean air 

temperature was highest at Scootmore, which may have impacted on the photosynthetic 

rates at this site. However, the temperature at Scootmore during the gas exchange 

measurements and the ambient temperature during any part of the year did not increase 
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above the maximum temperature for photosynthesis of Sitka spruce (Ludlow & Jarvis, 

1971). However, although nifrogen availability was not the lowest, the foliar nifrogen 

content was lowest, resulting in the lower concenfrations of chlorophyll and, therefore, 

lower photosynthetic rates. Phosphorus content was also lowest in the needles at 

Scootmore. Phosphorus deficiency caused a reduction of photosynthesis in Sitka spruce 

(Chandler & Dale, 1993), Pinus pinaster (Loustau et al, 1999) and Pitius radiata (Conroy 

et al., 1986), so the lower photosynthetic rates at Scootmore may be a result of a lower 

phosphorus concenfration. 

Precipitation during the growing season is an important factor in the growth of Sitka spruce 

(Roche & Haddock, 1987). Precipitation levels, although some variation was present, did 

not vary greatly between sites (Chapter 3). There was very little difference in the structure 

of the soil at Newcastleton and Wauchope, but Scootmore had a larger proportion of sand 

and a lower proportion of clay in comparison (Chapter 6). Emmett et al. (1995) found that 

the main limitation on the growth of Sitka spruce at Aber Forest, UK, was soil water 

availability irrespective of nifrogen application. The larger proportion of sand at Scootmore 

made the soil more free draining, resulting in lower water availability, and this may explain 

the reduced uptake of nutrients by the frees at this site, and therefore the lower 

photosynthetic and growth rates. 

The destructive biomass sampling showed an inverse relationship between wood density 

and trunk diameter, a frend that has been shown before (Pfeifer, 1984; Wood, 1986). Wood 

density was highest at Scootmore and lowest at Newcastleton (Chapter 8), agreeing with 

the results of the 10-year height, diameter and Pilodyn® wood density data (Chapter 4). 

There appear to be two sfrategies in which frees invest above-ground C. A free can increase 

its height and diameter but at the expense of wood density, or increase wood density but 

have a reduced height and diameter. With slightly higher atmual precipitation and nutrient 

concenfration at Newcastleton, these conditions appeared to favour the first option, 

whereas the lower annual precipitation and nutrient concenfration at Scootmore favour the 

second option. At Wauchope, the height, diameter and wood density were intermediate 

between Newcastleton and Scootmore. The annual precipitation was similar to 

Newcastleton but the nutrient concenfration much lower. The effect of lower nutrient 

availability appeared to slightly reduce height and diameter, and slightly increase wood 

density. 
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Fine root density was highest at Scootmore and lowest at Wauchope, suggesting that the 

trees at Scootmore were under high environmental stress, as plants generally increase root 

density under stress conditions (Negi et ah, 2003). With nutrient levels and root density 

lowest at Wauchope, nutrient availability did not appear to be affecting root density. 

Aimual precipitation was lower at Scootmore, and with fine root density affected by water 

availability (Jose et al., 2003), it appeared that moisture was the main factor affecting the 

root density. 

Newcastleton had the largest carbon (C) content in above-ground organs and Scootmore 

the lowest. However, Scootmore had the highest C content in below-ground organs and 

Wauchope the lowest. Moisture availability and nutrient concentration can affect the 

partitioning of C, with water stress in Pinus palustris (Jose et al, 2003) and nutrient stress 

in Populus nigra and Pinus radiata (Glynn et al., 2003; Rodriguez et al., 2003) causing an 

increase in C allocation to below-ground systems (Negi et al., 2003). At Scootmore, annual 

precipitation was lower and the trees were responding by increasing C allocation below-

grotmd. Newcastleton had the highest nutrient concentration and higher annual 

precipitation resulting in an increase in above-ground partitioning. However, the below-

groimd allocation was lowest at Wauchope. Although Wauchope had the highest annual 

precipitation, the site also had the lowest nutrient concentration, suggesting that Wauchope 

would have increased C allocation below-ground. For these genotypes of Sitka spruce it 

appeared that precipitation levels were more important than nutrient concentration for C 

allocation below-ground. 

Using parameters fi-om data collected in Chapters 3, 6 and 7, a process-based 

evapotranspiration model (ForestETP) largely overestimated photosynthesis at 

Newcastleton and largely xmderestimated photosynthesis at Wauchope and Scootmore. 

There were several reasons for this. Firstly, observed weather data were available for 

Wauchope and Scootmore, but at Newcastleton the data were interpolated fi-om nearby 

Met stations using the weather generator module. Secondly, the sensitivity analysis 

suggested that there were six parameters that greatly affected the model output, four of 

which were not calculated fi-om the data but extrapolated fi-om data available in the 

literature. The underestimation of photosynthesis by the model was most likely a result of 

errors in these parameters and errors in the daily weather input. The model predicted 

highest photosynthetic rates during the growing season, declining to a minimum in winter 
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although photosynthesis was still occurring. Sitka spruce has been shown to 

photosynthesise during the winter months and can assimilate greater CO2 during winter 

(Ludlow & Jarvis, 1971). At each site, sun foliage photosynthesis was greater than the 

shade foliage, agreeing with the observed data, showing that the model effectively predicts 

differences in sim and shade foliage. 

10.2 Genotypic variation 

The PCA (Chapter 4) and cluster analyses (Chapter 5) identified three clones that were 

distinct in their growth patterns. The individuals of C20177 were tall, with large trunk 

diameters and low wood density; the individuals of C20211 were small, with small 

diameters and high wood density; and the growth variables of the individuals of C20208 

were mid-way between those of C20177 and C20211. The three clones showed the same 

pattern at each site, showing that the genotypic effect on growth was determining the 

growth pattern of the clones regardless of the environmental effect. Experiments in 

Belgium (Nanson, 1984), Australia (Pederick, 1984), France (Roman-Amat, 1984), 

Bulgaria (Alexandrov, 1984), Northern Germany (Kleinschmit & Svolba, 1984) and 

Britain (Lines, 1987) have all shown similar results in the growth rate of different 

provenances of Sitka spruce. Sitka spruce from more southerly provenances grew faster 

than more northerly provenances. In a study investigating the growth, leaf traits and 

canopy architecture of different clones from crosses of Populus trichocarpa and Populus 

deltoids, grown in a common garden experiment in the USA, growth was foimd to be 

largely genetically determined (Wu & Stettler, 1996). When grown on contrasting sites, 15 

to 30 % of the growth variance was attributed to genotypic differences (Wu & Stettler, 

1997). In particular, the genetic correlations of differences in stem growth traits and some 

leaf traits suggested that part of the genetic response to the different environments was 

shared (Wu & Stettler, 1997; Wu & Stettler, 1998). ¥or Populus trichocarpa clones 

collected from confrasting environments but grown on a common site, leaf and crown traits 

were shown to be under high genetic control (Dunlap & Stettler, 1998). The clones in this 

experiment mainly originate from the same provenance (Queen Charlotte Islands) but there 

was still genotypic distinction between them. Fletcher (1992) reported that 40 % of growth 

variation was accounted for between provenances but 60 % was within provenances, and 

this research has capitalized on this variation by selecting three clones with distinct growth 

patterns. 
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The nutrient concentrations in the soil available to each clone varied between sites and 

between horizons but there was no pattern in which clone had the highest or lowest 

nutrient concentrations. However, the variation was small, with no significant differences. 

There was also little difference in particle size in the soil surrounding the clones, with no 

significant differences at the 5 % level. The differences in growth between clones within 

each site were not attributed to differences in the soil structure or nutrient availability. 

C20177 had the higher chlorophyll a and chlorophyll b concentration, in particular at 

Wauchope, suggesting that C20177 had a greater capacity for photosynthesis. There was 

little difference in the total nitrogen content or total phosphorous content between clones 

(Chapter 6). With no difference in the soil nitrogen or phosphorus concentrations between 

clones, the foliar concentrations were a reflection of this. With little difference between 

clones in the nitrogen content, C20177 appears to proportion a larger concentration of 

nitrogen to chlorophyll and less to Rubisco, potentially lowering the photosynthetic 

capacity of the clone. However, i f light was the limiting factor of photosynthesis, then 

higher chlorophyll contents would be beneficial and C20177 would have a higher 

photosynthetic rate. 

There was little difference in the Amaxji, Rday_N and LCP between clones at all sites, and 

little difference in LSE and QE between clones at Newcastieton and Scootmore (Chapter 

7). At Wauchope, C20211 had slightly lower LSE and slightly higher QE in comparison to 

the other clones. The difference in chlorophyll contents between C20177 and the other 

clones did not affect the photosynthetic capacity of any clone. The higher chlorophyll 

content of C20177 suggested that the trees were shaded (Boardman, 1977; Evans, 1989; 

Leverenz 8c Jarvis, 1980b; Sprtova & Marek, 1999) and required higher chlorophyll 

content to photosynthesise at a similar rate to the other clones. However, C20177 was the 

tallest clone and was unlikely to be shaded. The lack of distinction in the photosynthetic 

parameters between clones suggested that the differences in growth were attributable to 

genotypic differences in allocation. 

The total non-structural carbohydrates (TNC) content reflected the growth rate of each 

clone. C20177 had the lowest concentration of soluble TNC, reflecting the greater 

utilisation of carbohydrates, a result of higher growth rates. C20211 had the highest starch 

concentration, as a lower growth rate required fewer carbohydrates and the soluble TNC 

was converted starch for storage. 
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C20177 had the largest trunk diameter and the lowest wood density (Chapter 8), agreeing 

with the Pilodyn® measurements and fitting the inverse relationship between diameter and 

wood density (Pfeifer, 1984; Wood, 1986). C20211 had the highest wood density at 

Newcastleton and also the smallest diameter, again agreeing with the Pilodyn® 

measiu"ements and the diameter-wood density relationship. However, C20208 had the 

highest wood density at Wauchope and Scootmore but had an intermediate trunk diameter 

and even the largest diameter at Scootmore, showing a deviation from the expected 

relationship. The clones were under greater sfress at Wauchope (low nutrients) and 

Scootmore (lowest annual precipitation of all the sites), suggesting that the diameter-wood 

density relationship was not robust and that C20208 outperformed the other clones, in 

terms of wood density, under sfress conditions. In confrast, research on Populus clones 

between two sites, growth fraits were genetically sfronger on the less favourable site (Wu 

& Stettler, 1998). C20177 also had the lowest fine root density at all sites, suggesting that 

this clone was less affected by sfress conditions, as an increase in fine root density 

occurred in drought and low nutrient conditions (Glynn et al., 2003; Jose et al., 2003; Negi 

et al., 2003; Rodriguez et al., 2003). 

At Newcastleton and Wauchope, C20177 had the greatest height and diameter, and also the 

greatest above-ground C allocation. At Scootmore, C20208 had the greatest height and 

diameter but also the greatest above-groimd C allocation. C20211 had the lowest above-

ground C allocation and also the smallest height and diameter. Irrespective of the wood 

density, the clones with the largest volume contained the largest quantity of C. The 

majority of the C was allocated to the trunk but at Wauchope and Scootmore C20177 

allocated the greatest proportion of C to the branches. As the clones were under more sfress 

at Wauchope and Scootmore, it appeared that C20177 allocated more C to branches dxiring 

sfress conditions. 

C20208 allocated the greatest proportion of C into fine roots at Newcastleton and 

Wauchope, C20211 allocated the greatest proportion of C into fine roots at Scootmore, and 

C20177 allocated the smallest proportion of C into the fine roots at all sites. With C20177 

allocating the least C to fine roots it appeared that C20177 was less affected by the 

differences in envfronmental conditions, as below-ground sfress increases fine root 

systems. With Newcastleton and Wauchope showing the same clonal response, this 

suggested that the two sites had similar environmental pressvires and that Scootmore was 
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very different. The climatic variable that seemed to be responsible was precipitation as 

annual precipitation levels were similar at Newcastleton and Wauchope, but lower at 

Scootmore. 

The evapotranspiration model predicted that C20177 had the highest photosynthetic rates 

and C20211 the lowest in sun foliage at Newcastleton and Scootmore (Chapter 9), which 

agreed with observed data. For sun foliage at Wauchope and for shade foliage at all sites, 

the model simulated C20208 as having the highest photosynthetic rates and C20211 the 

lowest. This differed from the observed as C20177 had the highest photosynthetic rates at 

Wauchope and C20211 the lowest, although there was very little difference in the 

photosynthetic rates of shade foliage between clones. The difference appeared to be a 

result of the differences in nitrogen concentration at the top of the canopy. 

10.3 Further research 

This study has shown that, whilst the environment plays a major part in the growth of Sitka 

spruce, genotypic selection could influence the overall outcome. For example, C20177 was 

less affected by environmental stress, whilst C20208 and C20211 appeared more 

susceptible. Although C20177 generally outperforms the other clones in terms of height 

and trunk diameter, this clone had a reduced wood density. There is a trade-off between 

volume and wood density. However, the trees were only in a juvenile growth stage at 15-

years-old and, with a harvesting age of about 30-years-old, there is still a long time before 

the wood is required for timber. During the next 15 years, fiarther research would be 

required to investigate i f the genotypic differences found here remain until felling. With 

little significant difference found in the photosynthetic rates of the clones, i f logistics 

require limitation, it would be prudent to fiirther investigate the overall tree carbon 

allocation and carbon allocation between organs. Interestingly, with Populus clones, leaf 

and branch traits were under stronger genetic control at the top of the canopy than the 

lower canopy (Wu & Stettler, 1996) and also in younger than older leaves (Dimlap & 

Stettler, 1998). Further investigation into the genetic control of growth and carbon 

allocation at different positions and needle ages in the canopy may provide a more 

beneficial way of selecting for Sitka spruce clones that perform equally amongst difference 

environments. 
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The tree growth model would also benefit from fiuther development. More accurate 

parameters, particularly photosynthetic and climate parameters, are required to investigate 

i f the model can precisely predict the photosynthetic rates of Sitka spruce. A carbon 

allocation submodel is also available and it would be beneficial i f the model can accurately 

predict wood voltune and density for each clone at each site. An accurate prediction would 

enable foresters to select the best genotype, in terms of timber production, for each site 

based on easily measurable photosynthetic rates. 
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Appendix 1 
Table 1: Mean % foliar moisture content and standard error (s.e.) for all needle ages (flush - 3yr), heights 
in the canopy (2 m-4 m), sites (Newcastleton, Wauchope and Scootmore) and clones (C20177, C20208 and 
C20211). 

2m 4m 6m 

3yr 2yr 1yr Flush 2yr 1yr Flush 1yr Flush 

Newcastleton 

C20177 Wauchope 

Scootmore 

Mean 56.38 56.02 56.45 35.75 

s.e. 1.45 3.03 3.91 29.88 

Mean 59.75 61.11 63.16 65.01 

s.e. 1.74 0.85 1.38 0.68 

Mean 55.43 55.99 59.28 65.66 

s.e. 1.41 1.10 0.82 0.80 

52.64 57.44 64.48 

2.10 1.78 7.40 

59.94 57.66 62.27 

2.06 0.51 1.27 

55.81 60.98 60.16 

0.58 5.67 0.79 

47.54 60.51 

2.35 4.37 

59.46 58.63 

2.89 

57.17 59.91 

0.07 0.53 

Newcastleton 

C20208 Wauchope 

Scootmore 

Mean 55.31 58.43 62.44 

s.e. 2.07 1.54 1.41 

Mean 56.58 57.04 54.48 63.09 

s.e. 0.57 1.16 1.86 0.27 

Mean 52.89 55.53 54.90 61.37 

s.e. 0.91 5.92 0.77 1.23 

54.25 54.33 72.32 

2.06 0.51 1.27 

55.33 56.19 61.69 

1.56 1.49 1.43 

52.98 54.69 60.36 

0.78 0.61 0.88 

53.18 66.51 

2.89 

54.78 60.09 

1.95 2.87 

55.43 59.37 

1.44 1.14 

Newcastleton 

C20211 Wauchope 

Scootmore 

Mean 52.67 50.78 56.35 50.09 

s.e. 1.59 3.49 6.26 11.89 

Mean 53.79 56.04 56.76 63.47 

s.e. 1.03 0.99 1.56 0.42 

Mean 52.67 52.76 56.16 62.23 

s.e. 1.60 1.21 1.06 1.11 

44.89 49.63 64.72 

4.09 2.49 5.48 

53.32 56.11 58.45 

0.74 1.81 1.20 

54.36 55.97 60.72 

1.03 0.49 

47.69 58.43 

1.61 1.61 

55.04 56.74 

1.97 

56.09 60.42 

0.51 0.99 
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Appendix 2 

Table 1: Mean chlorophyll a concentration (mg g'd. wt) and standard error (s.e.) for all needle ages (flush 
- Syr), heights in the canopy (2 m - 4 m), sites (Newcastleton, Wauchope and Scootmore) and clones 

2m 4m 6m 
3yr 2yr lyr Flush 2yr ly r Flush lyr Flush 

Mean 4.30 5.29 5.31 4.76 4.75 4.91 4.28 4.40 2.52 
Newcastleton 

s.e. 0.32 0.41 0.68 0.98 0.30 0.34 0.47 0.19 0.39 

Mean 4.37 4.13 4.93 3.86 4.81 4.39 3.72 6.75 2.69 

C20177 Wauchope 
s.e. 0.27 0.18 0.35 1.05 0.03 0.62 0.61 - 0.50 

Mean 3.23 3.69 3.65 2.70 4.47 4.67 1.98 3.61 1.61 

Scootmore 
s.e. 0.13 0.28 0.17 0.38 0.51 1.91 0.15 0.04 0.11 

Mean 3.43 4.14 5.41 - 4.39 4.51 3.25 4.12 2.13 
Newcastleton 

s.e. 0.54 0.12 0.76 - 0.13 0.33 0.47 0.24 0.29 

Mean 3.74 4.03 3.76 2.62 3.56 4.01 2.97 3.67 2.58 

C20208 Wauchope 
s.e. 0.09 0.28 0.27 0.07 0.26 0.43 0.49 0.05 0.37 

Mean 2.43 3.88 3.02 1.92 2.92 2.84 2.03 2.75 1.76 

Scootmore 
s.e. 0.15 1.21 0.21 0.16 0.10 0.39 0.24 0.34 0.24 

Mean 4.65 4.40 5.96 4.20 3.72 4.34 3.74 4.09 1.99 
Newcastleton 

s.e. 0.14 0.26 1.42 0.98 0.48 0.18 0.37 0.67 0.26 

Mean 3.89 4.08 3.83 3.84 3.62 3.27 2.70 3.05 1.96 
C20211 Wauchope 

s.e. 0.15 0.21 0.33 0.97 0.44 0.17 0.27 - 0.19 

Mean 3.12 3.59 3.11 2.45 3.21 3.15 2.14 3.19 2.26 
Scootmore 

s.e. 0.02 0.24 0.18 0.43 - 0.25 0.29 0.55 0.45 
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Table 2: Mean chlorophyll b concentration (mg g'd. wt) and s.e. for all needle ages (flush - 3yr), heights in 
the canopy (2 m - 4 m), sites (Newcastleton, Wauchope and Scootmore) and clones (C20177, C20208 and 

2m 4m 6m 
3yr 2yr lyr Flush 2yr 1yr Flush 1yr Flush 

Mean 2.48 3.35 3.51 4.14 2.38 2.37 3.67 2.91 2.14 

Newcastleton 

s.e. 0.25 0.70 0.87 0.33 0.28 0.32 0.80 0.51 0.61 

Mean 3.09 2.34 2.89 2.52 3.12 2.60 2.29 6.62 1.82 

C20177 Wauchope 
s.e. 0.32 0.15 0.46 0.76 0.13 0.48 0.42 - 0.23 

Mean 1.79 1.80 1.85 2.06 2.79 2.36 1.50 2.06 1.03 

Scootmore 
s.e. 0.12 0.20 0.20 0.42 0.54 0.89 0.23 0.14 0.15 

Mean 1.94 2.41 3.92 - 2.10 2.71 1.99 2.44 1.43 

Newcastleton 
s.e. 0.40 0.17 0.99 - 0.18 0.62 0.29 0.37 0.30 

Mean 2.17 2.47 2.41 1.47 1.81 2.95 2.23 1.90 1.96 

C20208 Wauchope 

s.e. 0.21 0.36 0.43 0.01 0.11 0.50 0.45 0.38 0.56 

Mean 1.14 2.25 1.85 1.35 1.72 1.63 1.72 1.47 1.25 

Scootmore 
s.e. 0.12 0.73 0.28 0.30 0.17 0.27 0.31 0.22 0.25 

Mean 2.79 2.55 4.80 3.03 2.04 2.82 2.57 1.99 1.36 

Newcastieton 
s.e. 0.24 0.32 2.05 0.52 0.38 0.38 0.43 0.77 0.25 

Mean 2.19 2.29 2.04 3.49 2.07 1.80 1.87 1.80 1.38 

C20211 Wauchope 
s.e. 0.29 0.20 0.18 1.35 0.37 0.27 0.12 - 0.18 

Mean 1.50 1.83 1.55 1.73 1.52 1.44 1.59 1.80 2.04 

Scootmore 
s.e. 0.04 0.16 0.26 0.44 - 0.17 0.32 0.69 0.68 
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Table 3: Mean chlorophyll a:b ratio and s.e. for all needle ages (flush - 3yr), heights in the canopy (2 m -
. — „ ^ , , , V -

2m 4m 6m 
3yr 2yr 1yr Flush 2yr 1yr Flush 1yr Flush 

Mean 1.76 1.88 1.73 1.18 2.08 2.21 1.31 1.70 1.46 

Newcastleton 
s.e. 0.13 0.25 0.16 0.33 0.16 0.19 0.18 0.24 0.20 

Mean 1.43 1.79 1.82 1.54 1.55 1.72 1.75 1.02 1.45 

C20177 Wauchope 
s.e. 0.08 0.11 0.24 0.04 0.07 0.08 0.28 - 0.10 

Mean 1.85 2.10 2.05 1.37 1.66 2.04 1.41 1.76 1.65 

Scootmore 
s.e. 0.18 0.09 0.17 0.10 0.18 0.23 0.13 0.10 0.16 

Mean 1.84 1.75 1.56 - 2.15 1.85 1.63 1.81 1.57 

Newcastleton 
s.e. 0.12 0.10 0.18 - 0.19 0.22 0.10 0.22 0.11 

Mean 1.75 1.70 1.63 1.78 1.98 1.43 1.39 2.01 1.56 

C20208 Wauchope 
s.e. 0.13 0.19 0.15 0.06 0.15 0.15 0.16 0.38 0.28 

Mean 2.17 1.76 1.74 1.62 1.75 1.80 1.26 1.89 1.49 

Scootmore 
s.e. 0.11 0.05 0.13 0.23 0.19 0.13 0.10 0.10 0.14 

Mean 1.72 1.81 1.61 1.36 1.97 1.65 1.59 2.58 1.58 

Newcastleton 
s.e. 0.13 0.12 0.16 0.09 0.20 0.16 0.15 0.36 0.13 

Mean 1.84 1.81 1.91 1.24 1.78 1.92 1.44 1.69 1.44 

C20211 Wauchope 
s.e. 0.17 0.16 0.16 0.23 0.11 0.26 0.07 - 0.10 

Mean 2.09 1.99 2.15 1.53 2.10 2.19 1.42 1.94 1.17 

Scootmore 
s.e. 0.07 0.08 0.20 0.11 - 0.08 0.13 0.44 0.17 
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Table 4: Mean foliar nitrogen concentration (mg g"' d. wt) and s.e. for all needle ages (flush - 3yr), heights 
in the canopy (2 m - 4 m), sites (Newcastleton, Wauchope and Scootmore) and clones (C20177, C20208 and 

2m 4m 6m 
Syr 2yr lyr Flush 2yr lyr Flush lyr Flush 

Mean 8.57 9.11 10.35 23.92 8.69 11.24 15.98 9.60 11.22 
Newcastleton 

s.e. 0.28 0.60 0.94 4.54 1.15 2.06 3.71 0.97 1.27 

Mean 7.36 8.83 10.08 6.56 7.68 8.86 7.53 9.16 7.48 

C20177 Wauchope 
s.e. 1.59 1.57 1.90 1.32 0.61 0.61 0.57 - 0.65 

Mean 7.89 8.27 9.00 7.44 8.25 9.15 8.37 9.39 6.84 

Scootmore 
s.e. 0.23 0.29 0.61 0.33 0.70 0.50 0.68 0.69 0.22 

Mean 9.29 9.01 10.48 - 8.05 8.70 13.26 8.36 9.61 
Newcastleton 

s.e. 1.02 0.45 0.93 - 0.21 0.84 1.99 1.00 1.39 

Mean 9.41 6.89 7.21 5.39 12.05 8.18 6.85 10.08 5.25 

C20208 Wauchope 
s.e. 0.97 0.21 0.57 0.37 3.55 0.90 0.73 0.42 0.80 

Mean 7.47 7.61 8.07 7.84 8.24 9.40 7.47 8.00 7.41 

Scootmore 
s.e. 0.19 0.34 0.15 0.21 1.07 0.39 0.44 0.03 0.51 

Mean 8.32 7.78 12.30 13.84 8.60 8.55 11.99 10.86 9.36 
Newcastleton 

s.e. 0.52 0.48 1.42 1.39 0.83 0.54 1.28 1.42 0.49 

Mean 6.98 7.20 7.79 6.51 9.00 10.74 7.95 7.49 9.05 

C20211 Wauchope 
s.e. 0.40 0.46 0.17 1.12 0.24 2.75 1.01 - 2.30 

Mean 8.08 8.10 8.26 8.18 7.64 9.68 7.23 9.64 7.89 
Scootmore 

s.e. 0.43 0.11 0.35 0.52 - 0.91 0.75 0.74 0.61 
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Table 5: Mean foliar phosphorus concentration (mg g"' d. wt) and s.e. for all needle ages (flush - 3yr), 
heights in the canopy (2 m - 4 m), sites (Newcastleton, Wauchope and Scootmore) and clones (C20177, 

2m 4m 6m 

Syr 2yr lyr Flush 2yr lyr Flush lyr Flush 

Mean 1.19 1.35 2.05 4.19 1.31 1.34 2.49 0.95 1.63 
Newcastleton 

s.e. 0.21 0.13 0.33 0.79 0.41 0.11 0.45 0.09 0.21 

Mean 1.45 1.26 1.75 1.25 1.08 1.21 1.36 1.61 1.16 

C20177 Wauchope 
s.e. 0.38 0.08 0.27 0.36 0.21 0.10 0.13 - 0.12 

Mean 1.37 1.16 1.43 1.70 1.14 1.50 1.50 1.31 1.35 

Scootmore 
s.e. 0.06 0.07 0.07 0.18 0.18 0.18 0.14 0.37 0.09 

Mean 1.02 1.07 1.81 - 0.77 1.11 2.71 0.97 1.83 
Newcastleton 

s.e. 0.15 0.14 0.28 - 0.12 0.12 0.47 0.16 0.39 

Mean 0.67 0.81 1.12 1.59 1.08 1.01 1.49 1.28 1.18 

C20208 Wauchope 
s.e. 0.07 0.16 0.17 0.44 0.28 0.18 0.15 0.14 0.21 

Mean 1.13 1.03 1.08 2.11 1.31 1.71 1.58 1.46 1.58 

Scootmore 
s.e. 0.08 0.11 0.07 0.16 0.17 0.36 0.12 0.18 0.09 

Mean 0.71 0.94 1.83 2.84 1.09 0.93 2.54 1.30 1.80 
Newcastleton 

s.e. 0.05 0.10 0.24 0.56 0.35 0.08 0.31 0.17 0.05 

Mean 0.60 0.93 1.28 2.07 0.96 1.26 1.44 1.06 1.70 

C20211 Wauchope 
s.e. 0.04 0.13 0.15 0.27 0.08 0.32 0.08 - 0.15 

Mean 1.19 1.44 1.14 2.05 0.83 1.19 1.67 1.30 1.82 
Scootmore 

s.e. 0.14 0.20 0.10 0.28 - 0.13 0.18 0.35 0.36 
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Appendix 3 

Results highlighted in grey are significant at the 0.05 probability level and results in bold 
and highlighted in grey are significant at the 0.01 probability level. 

Table 1: F statistic and P value from the two-way ANOVA, investigating differences of chlorophyll a (mg 
g ' d. wt) between clone, site and clone by site interaction. 

Qone 

Site 

Qone 
X Site 

Residual 
DF 

2m 

3yr 2yr lyr Flush 

H g 0.430 0.409 1.672 

0.654 0.667 0.211 

WW^ 2.410 8.005 S.90i^ 

PiP 0.103 6.001 0 ^ ^ 

1.102 0.516 0.388 0.156 

0.373 0.724 0.816 0.924 

31 40 40 22 

4ii i 

2yr lyr Flush 

iSiĝ il 1.195 1.879 

plOl 0.315 0.167 

2.053 1.141 H^gl 

0.149 0.332 WMi\ 

0.999 0.261 0.906 

0.426 0.901 0.470 

25 34 38 

6m 

lyr Flush 

2.432 1.869 

0.118 0.170 

2.007 2.749 

0.165 0.078 

1.762 im 
0.183 M 

17 34 

Between 
DF 

Table 2: F statistic and P value from the two-way ANOVA, investigating differences of chlorophyll a (mg 
g"' d. wt) between canopy height, needle and height by age interaction. 

Newcastleton Wauchope Scootmore 

C20177 C20208 C20211 

'MM » 1 

C20177 C20208 C20211 C20177 C20208 C20211 
Between 

DF 

Canopy 
Height p 

m 

0.393 

0.680 

0.225 

0.800 

0.439 

0.648 

0.411 

0.666 

0.219 

0.805 

Needle 
Age 

2.009 i iPl ppl 
0.127 jSiool i S i 

p 2 | p s j 1.395 

s s 0.271 

3.115 0,558 0.608 

0.052 0.649 0.617 

18 22 22 

2.752 

0.057 

3.836 

b.02j 

Height ^ 
X Age p 

Residual 
DF 

0.882 

0.483 

43 

1.140 

0.333 

32 

0.551 

0.650 

46 

0.518 

0.673 

36 

0.377 

0.770 

37 

0.126 

0.944 

25 
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Table 3: F statistic and P value from the two-way ANOVA, investigating differences of chlorophyll b (mg 
g' d. yyt) between clone, site and clone by site interaction. 

Qone 

Site 

Qone 
X Site 

Residual 
DF 

2ni 

3yr 2yr lyr Flush 

p j j 0.258 0.003 1.183 

P W 0.774 0.997 0.187 

2.617 4306 3.611' 

0.085 p,02_» 0,044 

1.542 0.702 0.308 1.048 

0.215 0.595 0.871 0.391 

31 40 40 22 

4ra 

2yr lyr Flush 

i H 0.547 1.195 

^ 0.584 0.314 

0.520 1.855 5^S( 

0.601 0.172 OlO^ 

1.337 0.718 1.425 

0.284 0.585 0.245 

25 34 38 

6m 

lyr Flush 

ilfi 0.307 

H 0.737 

2.135 0.518 

0.149 0.601 

1.903 2.137 

0.156 0.098 

17 34 

Between 
DF 

Table 4: F statistic and P value from the two-way ANOVA, investigating differences of chlorophyll b (mg g" 

Newcastleton Wauchope Scootmore 

C20177 C20208 C20211 C20177 C20208 C20211 C20177 C20208 C20211 
Between 

DF 

Canopy 
Height p 

2.674 2.615 2.664 

0.080 0:089 0.080 

t H i 0.582 2.087 

ggg 0.567 0.082 

0.755 0.374 0.465 

0.477 0.690 0.633 
2 

Needle ^ 
Age p 

1.706 | . l 6 ^ 1.315 

0.180 § 5 l | 0.281 

E l 0.773 0.512 

BH] 0.521 0.678 

0.958 1.316 0.202 

0.423 0.284 0.894 
3 

Height ^ 
X Age p 

0.633 0.438 0.337 

0.642 0.649 0.799 

1-464 1.513 

0.252 0.239 

1.287 0.500 0.017 

0.294 0.685 0.997 
3 

Residual 
DF 43 32 46 18 22 22 36 37 25 

Table 5: F statistic and P value from the two-way ANOVA, investigating differences of chlorophyll a:b 

2m 4m 6m 

3yr 2yr lyr Flush 2yr lyr Flush lyr Flush 
Between 

DF 

F 
Clone 

P 

2.490 1.072 1.659 1.284 

0.099 0.352 0.203 0.297 

0.407 1.323 0.130 

0.670 0.280 0.878 

2.491 0.550 

0.113 0.582 
2 

F 
Site 

P 

13 1.170 330O 0.336 

0.321 O J ^ 0.718 

2.844 1.406 1.037 

0.077 0.259 0.364 

0.683 0.478 

0.518 0.624 
2 

Clone X ^ 
Site p 

0.779 0.213 0.333 0.726 

0.547 0.930 0.854 0.547 

0.944 1.108 1.442 

0.455 0.369 0.239 

1.172 0.429 

0.358 0.787 
4 

Residual 
DF 31 40 40 22 25 34 38 17 34 
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Table 6: F statistic and P value from the two-way ANOVA, investigatmg differences of chlorophyll a:b 
ratio between canopy height, needle age and height by age interaction. 

Newcastleton Wauchope Scootmore 

C20177 a0208 C20211 C20177 C20208 C20211 C20177 C20208 C20211 
Betwen 

DF 

Canopy 
Height p 

1.158 

0.324 

2.484 

0.099 

2.541 

0.107 

0.993 

0.386 

0.155 

0.857 

0.541 

0.587 

0.598 

0.555 

1.112 

0.345 

Needle 
Age 

3.811, 

o.ort 

2.590 

0.070 m 

0.585 

0.632 

1.102 

0.369 

5262 
Bl3 

mm, 

Height 
X Age p 

1.672 

0.174 

0.060 

0.942 

2.602 

0.063 

0.923 

0.450 

1.545 

0.231 

0.361 

0.782 

1.598 

0.207 

0.901 

0.450 

0.160 

0.922 
Residual 
DF 43 32 46 18 22 22 36 37 25 

Table 7: F statistic and P value from the two-way ANOVA, investigating differences of total foliar 

2m 4m 6m 

3yr 2yr lyr Flush 2yr lyr Flush lyr Flush 
Between 

DF 

F 
Qone 

P 

0.472 1.235 2.262 3.997 

0.628 0.302 0.117 Q.m^ 

0.289 0.594 0.198 

0.751 0.558 0.821 

0.198 1.901 

0.823 0.165 
2 

F 
Site 

P 

2.415 3.822 1.464 

0.106 10.030 0.253 

0.365 0.091 

0.698 0.914 

0.094 10.0p 

0.910 < ) M | 
2 

Qone ^ 
X Site p 

0.919 0.311 0.554 1.119 

0.465 0.869 0.697 0.363 

0.823 1.167 0.120 

0.523 0.342 0.975 

0.658 0.934 

0.630 0.456 
4 

Residual 
DF 31 40 40 22 25 34 38 17 34 

Table 8: F statistic and P value from the two-way ANOVA, investigating differences of total foliar 
nitrogen (mg g"' d. wt) between canopy height, needle age and height by age interaction. 

Newcastleton Wauchope Scootmore 

C20177 C20208 C20211 C20177 a0208 C20211 C20177 C20208 C20211 
Betwen 

DF 

Canopy 
Height 

F 

P 

0.510 

0.604 

2.872 

0.071 

1.779 

0.180 

0.084 

0.920 

2.005 

0.159 

0.172 

0.843 

0.706 

0.500 

1.960 

0.155 

0.252 

0.779 
2 

Needle F 0.218 P i 1.190 2.820 0.454 2.594 2.653 
3 Age P 0.883 m 0.342 0.063 0.717 0.067 0.071 
3 

Height 
X Age 

F 

P 

0.827 

0.515 

1.127 

0.336 

0.228 

0.876 

0.263 

0.851 

1.151 

0.351 

0.988 

0.417 

0.939 

0.432 

1.637 

0.197 

1.777 

0.177 
3 

Residual 
DF 43 32 46 18 22 22 36 37 25 
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Table 9: F statistic and P value from the two-way ANOVA, investigating differences of total foliar 
phosphorus [mg g" d. wt) between clone, site and clone by site interaction. 

2m 4m 6m 

3yr 2yr lyr Flush 2yr lyr Flush lyr Flush 
Between 

DF 

F 
Qone 

P 

1.222 3.330 2.751 1.885 

0.309 0.046 0.076 0.176 

0.273 0.558 0.309 

0.763 0.577 0.736 

0.104 1.048 

0.902 0.362 
2 

F 
Site 

P 

1.017 1.937 0.768 

0.374 0.157 i m 0.476 

0.312 1.951 WMM 

0.735 0.158 O g 

0.594 1.392 

0.563 0.262 
2 

Qone X ^ 
Site p 

0.995 2.151 0.349 0.304 

0.425 0.092 0.843 0.823 

0.876 0.857 0.223 

0.492 0.499 0.924 

0.987 1.198 

0.441 0.330 
4 

Residual 
DF 31 40 40 22 25 34 38 17 34 

Table 10: F statistic and/* value from the two-way ANOVA, investigating differences of total foliar 
phosphorus (mg g"' d. wt) between canopy height, needle age and height by age interaction. 

Newcastleton Wauchope Scootmore 

C20177 C20208 C20211 C20177 C20208 C20211 C20177 C20208 C20211 
Betwen 

DF 

Canopy 
Height 

F 

P 

0.422 

0.659 

0.479 

0.624 

0.112 

0.895 

0.621 

0.549 

0.088 

0.916 

1.167 

0.330 

0.364 

0.698 

0.627 

0.540 

0.950 

0.400 
2 

Needle F 0.932 2.748 1.522 1.039 3:083 12.419 1.398 

Age P 0.432 0.059 0.221 0.399 0:048 O.OOl 0.259 0.002j 
J 

Height 
X Age 

F 

P 

1.010 

0.413 

0.587 

0.562 

1.178 

0.329 

0.861 

0.479 

1.081 

0.378 

1.437 

0.259 

0.023 

0.995 

5.090 

0.005 

0.535 

0.662 
3 

Residual 
DF 43 32 46 18 22 22 36 37 25 
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Appendix 4 

Table 1: Mean Amax (nmol CO2 mol ' N s ") and s.e. for all needle ages (flush - 3yr), heights in the canopy 
(2 m-4 m), sites (Newcastleton, Wauchope and Scootmore) and clones (C20177, C20208 and C20211). 

2m 4m 6m 
3yr 2yr 1yr Flush 2yr 1yr Flush 1yr Flush 

Newcastleton 

C20177 Wauchope 

Scootmore 

Mean 

Mean 

Mean 

130.96 

12.05 

27.91 

10.19 

36.01 

4.62 

129.75 

36.79 

37.84 

7.21 

39.46 

5.88 

123.98 

32.85 

50.96 

16.23 

59.59 

9.98 

14.93 

1.62 

132.49 

15.21 

63.93 

9.42 

280.82 

135.79 

46.00 

1.87 

45.30 

5.42 

116.60 

26.25 

42.01 

6.41 

72.85 

17.17 

112.12 

43.40 

92.66 

10.52 

71.46 

7.27 

142.84 

55.39 

41.13 

54.08 

3.63 

121.06 

33.82 

86.48 

12.07 

92.03 

10.04 

Newcastleton 

C20208 Wauchope 

Scootmore 

Mean 

Mean 

Mean 

102.87 

25.58 

87.74 

69.45 

30.42 

9.70 

134.13 

14.88 

36.85 

7.57 

48.34 

11.42 

127.31 

24.68 

50.50 

6.13 

53.10 

11.45 

87.84 

19.38 

52.84 

8.29 

194.33 

10.26 

35.32 

8.04 

35.90 

8.19 

233.68 

60.96 

46.42 

7.74 

38.23 

8.17 

192.86 

75.22 

95.82 

9.94 

79.49 

11.14 

244.15 

37.07 

39.74 

3.33 

44.07 

10.55 

328.92 

127.57 

128.88 

28.46 

67.46 

5.55 

Newcastleton 

C20211 Wauchope 

Scootmore 

Mean 

Mean 

Mean 

87.71 

30.32 

36.77 

4.05 

21.71 

5.18 

88.22 

37.49 

46.45 

3.28 

23.99 

4.15 

80.54 

37.85 

58.46 

7.57 

26,73 

5.44 

41.23 

11.49 

100.56 

39.70 

56.72 

9.26 

132.03 

37.81 

39.00 

6.30 

13.14 

154.14 

45.15 

47.14 

4.94 

30.03 

0.91 

87.52 

28.65 

81.16 

14.33 

61.76 

2.69 

123.31 

57.48 

64.23 

20.77 

4.99 

151.53 

43.71 

84.13 

18.86 

51.97 

23.79 
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Table 2: Mean Rday (nmol CO2 mol"' N s"') and s.e. for all needle ages (flush - 3yr), heights in the canopy 

2m 4m 6m 

3yr 2yr lyr Flush 2yr lyr Flush 1yr Flush 

Newcastleton 
Mean 

s.e. 

-16.33 

4.62 

-25.79 

19.56 

-19.93 

13.49 

-1.44 

0.17 

-22.25 

15.72 

-4.59 

0.72 

-14.02 

4.54 

-38.86 

22.83 

-46.91 

26.98 

C20177 Wauchope 
Mean 

s.e. 

-4.51 

2.61 

-1.79 

0.38 

-4.12 

0.84 

-9.50 

1.11 

-3.34 

1.65 

-3.44 

2.48 

-9.09 

3.67 

-3.17 -24.21 

11.19 

Scootmore 

Mean 

s.e. 

-6.05 

0.58 

-6.42 

1.35 

-5.54 

0.74 

-13.67 

1.53 

-8.88 

1.87 

-12.26 

2.34 

-19.77 

4.18 

-13.39 

6.11 

-43.05 

11.30 

Newcastleton 
Mean 

s.e. 

-16.14 

5.56 

-13.52 

3.08 

-10.50 

3.92 : 
-8.58 

1.73 

-9.58 

2.06 

-16.67 

4.36 

-11.65 

3.58 

-49.60 

13.51 

C20208 Wauchope 
Mean 

s.e. 

-6.41 

3.45 

-2.27 

0.42 

-6.87 

2.92 

-13.16 

2.18 

-2.54 

1.03 

-2.83 

1.06 

-6.40 

2.19 

-3.60 

0.15 

-23.06 

5.39 

Scootmore 

Mean 

s.e. 

-4.88 

1.48 

-6.65 

1.19 

-6.73 

1.06 

-12.96 

2.45 

-6.23 

1.07 

-5.85 

1.24 

-21.65 

6.93 

-6.07 

0.91 

-21.16 

5.55 

Newcastleton 
Mean 

s.e. 

-9.92 

3.11 

-7.20 

2.81 

-7.09 

2.96 

-3:84 

0.16 

-26.15 

10.14 

-9.84 

4.77 

-16.80 

5.51 

-12.15 

3.79 

-44.25 

12.62 

C20211 Wauchope 
Mean 

s.e. 

-3.44 

0.53 

-0.81 

1.63 

-3.97 

1.63 

-6.28 

1.63 

-4.02 

1.15 

-2.06 

0.33 

-5.91 

1.42 

-2.76 -17.07 

6.07 

Scootmore 
Mean 

s.e. 

-6.20 

0.71 

-6.23 

1.31 

-4.96 

0.49 

-9.87 

2.11 

-6.48 -5.39 

1.60 

-21.36 

4.53 

-9.14 

5.90 

-28.32 

21.22 
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Table 3: Mean light saturation estimate (nmol Q mol"' N s"') and s.e. for all needle ages (flush - 3yr), 
heights in the canopy (2 m - 4 m), sites (Newcastleton, Wauchope and Scootmore) and clones (C20177, 

2m 4m 6m 
3yr 2yr 1yr Flush 2yr 1yr Flush 1yr Flush 

Newcastleton 
Mean 

s.e. 

13255.57 

1319.52 

9088.62 

1936.41 

5156.77 

897.38 

1152.87 

269 .68 

18144.25 

6651.98 

8700.12 

2049.73 

7278.61 

2471 .40 

6322.37 

3022.21 

8037.06 

2126.99 

C20177 Wauchope 
Mean 

s.e. 

1263.65 

269.70 

4428 .56 

2238.87 

3208.91 

801.47 

5283 .08 

1229.56 

3069 .53 

273 .65 

2652.14 

225.51 

5053 .56 

1279.04 

2406.19 4401 .70 

629.13 

Scootmore 
Mean 

s.e. 

4212.92 

513 .79 

3596.85 

437.43 

3509.56 

643.27 

5295.77 

805.04 

2580.15 

241 .39 

4488 .19 

978.51 

5942.46 

1115.12 

3187.83 

710.69 

8142.41 

1119.16 

Newcastleton 
Mean 

s.e. 

15155.63 

7422.51 

10018.01 

2062.43 

77.16.26 

969.24 

" 21899.53 

2588.84 

22152.76 

3880.09 

11655.86 

2878.83 

19477 25 

2286.82 

30565.68 

12445.73 

C20208 Wauchope 
Mean 

s.e. 

7720.33 

4784 .20 

3438.61 

587.04 

2987.73 

610.54 

5244.47 

708.18 

3541.91 

1247.71 

3958.19 

754 .07 

4710 .37 

425.22 

2131.41 

816.21 

8269 .02 

983.50 

Scootmore 
Mean 

s.e. 

3176.63 

610.61 

4681.50 

928.77 

7009.49 

3336.56 

6732.86 

929 .22 

3747.42 

363.91 

3372.03 

375 .52 

8059 .67 

1284.06 

3809.77 

299.17 

8991.74 

1340.97 

Newcastleton 
Mean 

s.e. 

10182.95 

3034.07 

4977 .02 

1535.11 

4027.28 

1487.86 

2896 .05 

1158.42 

85.34.47 

1307.35 

9095 .26 

2033 .65 

5475.19 

1653.13 

9224.95 

3770.75 

12198.28 

4194.24 

C20211 Wauchope 
Mean 

s.e. 

1985.02 

479 .58 

2555.18 

326.22 

3558.32 

938.69 

3239.69 

1298.86 

2014.74 

622 .89 

2095.14 

468 .04 

4131 .28 

605 .55 

2848.02 2793.27 

795.79 

Scootmore 
Mean 

s.e. 

4412 .48 

2052.18 

3856.25 

842.20 

4286.00 

732.51 

6645.07 

1419.69 

2193.26 9414.54 

4434 .40 

6492.17 

2108 .08 

3331.84 

298.67 

10843.42 

3726.62 
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Table 4: Mean light compensation point (|imol Q mol ' N s"') and s.e. for all needle ages (flush - 3yr), 
heights in the canopy (2 m-4 m), sites (Newcastleton, Wauchope and Scootmore) and clones (C20177, 

2m 4m 6m 
3yr 2yr lyr Flush 2yr lyr Flush lyr Flush 

Newcastleton 
Mean 

s.e. 

1483.81 

442.74 

746.04 

283.93 

443.82 

156.53 

107.61 

44.72 

1233.1 

711.65 

334.31 

65.01 

901.10 

262.62 

936.20 

356.07 

1683.72 

559.15 

C20177 Wauchope 
Mean 

s.e. 

155.93 

70.80 

180.73 

82.04 

285.10 

104.70 

343.50 

7.67 

209.68 

108.43 

158.35 

91.35 

557.50 

332.41 

172.94 817.32 

327.93 

Scootmore 

Mean 

s.e. 

615.49 

88.62 

494.40 

68.79 

303.66 

58.82 

959.16 

157.91 

422.11 

77.67 

707.28 

193.73 

1233.75 

273.14 

647.80 

335.71 

2567.09 

639.84 

Newcastleton 
Mean 

s.e. 

2244.89 

1434.46 

826.89 

180.30 

703.75 

137.39 

" 963.73 

250.84 

914.22 

215.10 

1051.20 

126.32 

985.27 

320.12 

4142.91 

1398.79 

C20208 Wauchope 
Mean 

s.e. 

632.45 

249.76 

200.53 

30.90 

334.31 

117.42 

691.74 

139.23 

247.91 

125.74 

233.64 

90.73 

291.16 

95.45 

170.21 

45.73 

1384.96 

410.06 

Scootmore 

Mean 

s.e. 

446.53 

79.53 

636.75 

182.75 

2127.16 

1749.54 

1517.23 

404.03 

576.33 

74.49 

442.20 

44.66 

1507.16 

323.62 

474.24 

45.73 

1693.08 

455.46 

Newcastleton 
Mean 

s.e. 

1117.94 

449.59 

382.91 

108.83 

264.79 

108.33 

230.94 

40.38 

1403.71 

319.61 

588.88 

299.27 

938.19 

338.40 

931.16 

262.25 

2854.38 

996.60 

C20211 Wauchope 
Mean 

s.e. 

163.95 

37.62 

137.47 

19.15 

177.75 

61.62 

188.03 

55.61 

197.72 

75.48 

82.82 

19.01 

278.12 

55.75 

117.40 423.43 

140.10 

Scootmore 
Mean 

s.e. 

941.29 

350.03 

1006.09 

474.98 

856.26 

278.73 

1026.32 

318.35 

724.65 1260.15 

338.91 

1953.61 

399.57 

868.19 

248.64 

1423.97 

1394.67 
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Table 5: Mean quantum efficiency (mol"' N) and s.e. for all needle ages (flush - 3yr), heights in the canopy 

2m 4m 6m 

3yr 2yr 1yr Flush 2yr lyr Flush 1yr Flush 

Mean 0.61 1.37 1.54 0.07 1.39 0.42 0.43 1.36 0.47 

Newcastleton 
s.e. 0.05 0.91 0.92 0.01 0.89 0.11 0.18 0.73 0.17 

Mean 0.10 0.14 0.28 0.46 0.18 0.15 0.27 0.14 0.21 

C20177 Wauchope 
s.e. 0.02 0.04 0.05 0.05 0.03 0.02 0.06 - 0.03 

Mean 0.09 0.12 0.18 0.22 0.19 0.19 0.15 0.14 0.16 

Scootmore 
s.e. 0.01 0.02 0.01 0.03 0.04 0.05 0.01 0.01 0.01 

Mean 0.73 0.94 1.13 - 0.57 1.97 0.70 0.93 0.75 

Newcastleton 
s.e. 0.30 0.15 0.33 - 0.05 1.23 0.29 0.29 0.21 

Mean 0.34 0.15 0.26 0.35 0.08 0.11 0.33 0.12 0.29 

C20208 Wauchope 
s.e. 0.28 0.02 0:06 0.03 0.01 0.02 0.03 0.01 0.11 

Mean 0.10 0.15 0.16 0.15 0.10 0.09 0.14 0.10 0.10 

Scootmore 
s.e. 0.02 0.04 0.04 0.03 0.03 0.01 0.01 0.02 0.02 

Mean 0.46 0.76 0.94 0.17 1.08 0.75 0.32 0.43 0.48 

Newcastleton 
s.e. 0.13 0.41 0.56 0.03 0.55 0.24 0.11 0.22 0.15 

Mean 0.20 0.51 0.63 0.43 0.54 0.19 0.27 0.12 0.39 

C20211 Wauchope 
s.e. 0.03 0.29 0.37 0.11 0.36 0.03 0.03 - 0.12 

Mean 0.07 0.08 0.08 0.14 0.09 0.03 0.14 0.06 0.09 

Scootmore 
s.e. 0.01 0.02 0.03 0.03 - 0.01 0.03 0.03 0.07 
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Table 6: Mean total non-structural carbohydrate concentrations (mg g"' d. wt) and s.e. for all needle ages 
(flush - Syr), heights in the canopy (2 m - 4 m), sites (Newcastleton, Wauchope and Scootmore) and clones 
(C20177, C20208 and C20211). 

2m 

3yr 2yr 1yr Flush 

Newcastleton 

C20177 Wauchope 

Scootmore 

Mean 131.62 126.97 104.63 59.37 

s.e. 18.03 13.35 8.70 12.83 

Mean 133.05 164.30 135.90 109.96 

S.e. 11.98 25.82 24.30 12.46 

Mean 130.86 121.90 123.74 95.57 

S.e. 12.46 7.79 10.11 5.29 

Newcastleton 

C20208 Wauchope 

Scootmore 

Mean 92.43 123.90 99.16 

s.e. 14.38 4.11 15.09 

Mean 237.50 152.48 163.56 91.41 

s.e. 25.88 14.24 19.14 5.19 

Mean 161.26 176.84 147.45 89.69 

S.e. 6.98 42.07 6.39 7.97 

Newcastleton 

C20211 Wauchope 

Scootmore 

Mean 131.92 132.08 141.42 100.09 

s.e. 7.67 8.56 26.54 22.13 

Mean 203.83 217.08 144.19 142.79 

S.e. 21.95 21.32 20.66 17.42 

Mean 135.99 139.02 132.36 93.15 

S.e. 10.84 5.50 10.80 5.56 

4m 

2yr 1yr Flush 

163.37 128.09 80.90 

13.85 12.81 13.09 

103.74 151.97 156.73 

25.12 5.07 28.13 

126.27 179.76 105.22 

7.96 43.99 7.80 

140.23 126.80 68.03 

12.15 8.69 4.60 

180:65 139.71 164.59 

22,26 8.47 21.35 

135.11 139.36 161.18 

10.72 11.10 32.64 

153.19 140.12 106.47 

14.09 9.45 20.52 

194.90 153.10 139.56 

25.33 14.13 12.29 

147.18 158.97 96.08 

#DIV/0! 4.74 8.04 

6m 

1yr Flush 

119.06 99.00 

14.43 9.31 

106.88 164.27 

23.39 

136.06 109.84 

4.34 10.27 

151.48 99.44 

12.90 12.17 

138.80 213.27 

18.65 17.39 

139.30 98.16 

10.57 8.29 

145.20 83.82 

11.21 12.03 

242.41 170.84 

23.50 

134.91 115.35 

14.59 13.85 
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Appendix 5 

Results highlighted in grey are significant at the 0.05 probability level and results in bold 

and highlighted in grey are significant at the 0.01 probability level. 

Table 1: F statistic and P value from the two-way A N O V A , investigating differences of Amax (pmol CO2 
mol"' N s') between clone, site and clone by site mteraction. 

Qone 

Site 

Qone 
X Site 

Residual 
DF 

2m 

3yr 2yr lyr Flush 

iH ESI SI i m 

E H i n a n 
0.849 0.562 1.035 0.828 

0.438 0.574 0.365 0.450 

0.809 0.377 0.467 0.947 

0.529 0.824 0.760 0.435 

31 40 40 22 

4m 

2yr lyr Flush 

pig llIM 2.852 

E S SSI! 
0.310 0.627 1.436 

0.736 0.540 0.251 

0.238 1.515 0.709 

0.914 0.220 0.591 

25 34 38 

6m 

lyr Flush 

SS3 WM 
0.332 1.899 

0.722 0.165 

0.545 1.452 

0.705 0.238 

17 34 

Between 
DF 

Table 2: F statistic and P value from the two-way ANOVA, investigating differences of Amax (nmol mol'' N 
s') between canopy height, needle and height by age interaction. 

Newcastleton Wauchope Scootmore 

C20177 C20208 a0211 C20177 C20208 C20211 C20177 C20208 C20211 
Betvreai 

DF 

Canopy 
Height 

1.514 2.156 1.970 

0.232 0.132 0.151 

1.488 0.192 0.555 

0.252 0.826 0.582 

0.710 0.000 0.413 

0.498 >0.999 0.666 

Needle ^ 
Age p 

1.798 0.112 0.289 

0.162 0.952 0.833 
mm M » 1211 ESI 

Height 
X Age p 

0.611 0.559 0.539 

0.657 0.577 0.658 

1.288 0.341 0.138 

0.309 0.796 0.936 

0.981 2.028 0.251 

0.413 0.127 0.860 

Residual 
DF 43 32 46 18 22 22 36 37 25 
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Table 3: F statistic and P value from the two-way ANOVA, investigating differences of R<iay (nmol CO2 mol" 

2ra 4m 6m 

Syr 2yr lyr Flush 2yr lyr Flush lyr Flush 
Between 

DF 

F 
Site 

P 

EKl 1.849 1.352 1.853 2.717 

0.178 0.080 | T g 6 

0.934 1.800 

0.412 0.181 
2 

F 
Site 

P 0.171 0.270 

1.853 2.717 

0.178 0.080 | T g 6 

0.934 1.800 

0.412 0.181 
2 

F 
Qone 

P 

0.576 0.420 0.391 1.525 

0.568 0.660 0.679 0.240 

0.295 0.083 0.011 

0.747 0.920 0.989 

0.359 0.186 

0.704 0.831 
2 

Qone ^ 
X Site p 

0.475 0.420 0.448 0.936 

0.754 0.793 0.773 0.440 

0.235 1.653 0.108 

0.916 0.184 0.979 

0.279 0.165 

0.887 0.955 
4 

Residual 
DF 31 40 40 22 25 34 38 17 34 

Table 4: F statistic and P value from the two-way ANOVA, investigating differences of R<iay (nmol CO2 mol" 
' N s"') between canopy height, needle and height by age interaction. 

Newcastleton Wauchope Scootmore 

a0177 C20208 C20211 a0177 C20208 C20211 C20177 C20208 C20211 

p l ^ 0.594 

Betmoi 
DF 

Canopy 
Height p 

1.655 i p g 

0.203 ^ 

0.661 3.884 1.490 

0.529 p.q36 0.247 

2.519 

0.101 

Needle 
Age 

0.179 2.195 

0.910 

1.510 e:048 2.592 

mm 0.101 0.246 0.004 0.078 

mm ^ g i g 

M H H H Q 

Height 
X Age p 

0.141 p B | 2.505 

0.966 g M | 0.071 

0.545 ,3.099 

0.658 0.048 

1.425 

0.262 

1.979 0.980 

0.135 0.413 

1.292 

0.299 

Residual 
DF 43 32 46 18 22 22 36 37 25 

Table 5: F statistic and P value from the two-way ANOVA, investigating differences of Ught saturation 
estimate (nmol Q mol"' N s"') between clone, site and clone by site interaction. 

2m 4m 6m 

3yr 2yr lyr Flush 2yr lyr Flush lyr Flush 
Between 

DF 

Site 
1.581 4.821 

0.218 0.018 

3 1 S 3 M i S 2.510 

H i « 

Qone 
0.663 2.006 1.433 0.308 

0.522 0.148 0.250 0.738 

1.001 | 4 2 | 1.754 

0.382 i p j i 0.187 

1.139 2.657 

0.344 0.085 

Qone 
X Site 

0.429 1.013 0.581 0.678 

0.786 0.412 0.678 0.575 

0.778 17603 0.759 

0.550 :o.0O1: 0.558 

1.527 1.697 

0.239 0.173 

Residual 
DF 31 40 40 22 25 34 38 17 34 
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Table 6 
estimate 

F statistic and P value from the two-way ANOVA, investigating differences of light saturation 

Newcastleton Wauchope Scootmore 

C20177 C20208 C20211 C20177 C20208 C20211 C20177 C20208 C20211 Betwen 
DF 

Canopy 
Height p 

2.695 3,972 J ^ B , 

0.079 o:q'29 ^1 

0.293 0.213 0.319 

0.750 0.810 0.730 

0.492 0.362 0.240 

0.615 0.699 0.788 
2 

Needle ^ 
Age p 

2.452 0.464 1.430 

0.076 0.709 0.246 

2.147 1̂ 84 1.565 

0.130 j3j04i 0.226 

5.^35 3:57^ 1.877 

0.002 p.p^ 0.159 
3 

Height ^ 
X Age p 

0.558 1.895 0.580 

0.694 0.167 0.631 

0.061 0.923 1.024 

0.980 0.446 0.401 

1.597 1.244 1.978 

0.207 0.308 0.143 
3 

Resictual 
DF 43 32 46 18 22 22 36 37 25 

Table 7: F statistic and P value from the two-way ANOVA, investigating differences of Hght compensation 

2m 4m 6m 

3yr 2yr lyr Flush 2yr lyr Flush lyr Flush 
Betweoi 

DF 

F 
Site 

P 

Wm, 1.232 5.304 

prop prog 0.303 0.013 

3.642 ^ g g i B i ^ 

0.041 1005 <0.00^ 

2.598 

0.104 W p . 
2 

F 
Qone 

P 

0.317 0.080 0.937 1.186 

0.731 0.923 0.400 0.324 

0.087 0.943 0.221 

0.917 0.399 0.802 

0.041 0.798 

0.960 0.458 
2 

Gone ^ 
X Site p 

0.478 1.212 0.541 0.052 

0.752 0.321 0.706 0.984 

0.116 2.273 0.775 

0.976 0.082 0.548 

0.118 1.227 

0.974 0.318 
4 

Residual 
DF 31 40 40 22 25 34 38 17 34 

Table 8: F statistic and P value from the two-way ANOVA, investigating differences of light compensation 

Newcastleton Wauchope Scootmore 

aoi77 C20208 C20211 C20177 C20208 C20211 C20177 C20208 C20211 
Betmen 

DF 

Canopy F 1.718 2.261 0.211 2.718 0.618 0.592 0.311 
2 

Height P 0.191 0.121 f);0O4 0.812 0.088 0.548 0.559 0.735 

Needle F 2.114 2.520 2.475 1.099 p g g 2.082 1.218 0.631 

Age P 0.112 0.075 0.073 0.375 0.023 0.132 0.317 0.602 
J 

Height F 0.443 2.241 1.682 0.381 2.979 1.168 2.142 0.760 0.411 
3 

X Age P 0.777 0.123 0.184 0.768 0.054 0.344 0.112 0.524 0.747 
Residual 
DF 43 32 46 18 22 22 36 37 25 
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Table 9: F statistic and P value from the two-way ANOVA, investigating differences of quantum efficiency 
(mol"' N) between clone, site and clone by site interaction. 

Site 

Qone 

Qone 
X Site 

Residual 
DF 

2m 

3yr 2yr lyr Flush 

E H ^1 

m% mm. 
0.903 0.064 0.073 1.067 

0.416 0.938 0.930 0.361 

0.352 0.322 0.251 1.412 

0.840 0.861 0.907 0.266 

31 40 40 22 

4m 

2yr lyr Flush 

1.873 | g 6 § 

0.175 mm p w s 

0.282 0.903 0.979 

0.757 0.415 0.385 

0.168 1.284 0.698 

0.952 0.295 0.598 

25 34 38 

6m 

lyr Flush 

2.473 

0.114 mm 
0.195 0.352 

0.825 0.706 

0.225 0.665 

0.921 0.621 

17 34 

Between 
DF 

Table 10: F statistic and P value from the two-way ANOVA, investigating differences of quantum efficiency 
/ 1̂-1 X T \ 1 1 x^i.t 1 1 ;-.u» u., .^t t: 

Newcastleton Wauchope Scootmore 

C20177 C20208 C20211 C20177 C20208 C20211 C20177 C20208 C20211 
BctNveen 

DF 

Canopy F 0.518 0.298 0.102 0.785 0.684 0.695 2.732 0.402 
2 

Height P 0.600 0.745 0.903 0.469 0.515 0.506 0.078 0.673 

Needle F 1.481 1.030 1.042 Mm 2.880 0.848 1.130 2.474 
3 

Age P 0.233 0.392 0.383 pool 0.059 0.483 prep 0.349 0.085 

Height F 0.435 1.092 0.550 2.047 0.150 0.558 2.430 0.404 0.392 
3 

X Age P 0.782 0.348 0.651 0.143 0.929 0.648 0.081 0.751 0.759 
Residual 
DF 43 32 46 18 22 22 36 37 25 

Table 11: F statistic and P value from the two-way ANOVA, investigating differences of total carbohydrate 

2ni 4m 6m 

3yr 2yr lyr Flush 2yr lyr Flush lyr Flush 
Between 

DF 

F 
Qone 

P 

3.091 2.100 0.676 3.209 

0.060 0.136 0.515 0.060 

2.206 0.485 0.585 

0.131 0.620 0.562 

3.028 0.611 

0.075 0.548 
2 

F 
Site 

P 
& m MM 2.402 

0.593 1.610 g 9 | 

0.560 0.215 p]00| 

1.626 iS^6li 
2 

F 
Site 

P l<OsOOl| jB.O0«| 0.103 t}XM 

0.593 1.610 g 9 | 

0.560 0.215 p]00| 0.226 ^ l o i 
2 

Gone ^ 
X Site p 

p S ? 1.559 0.919 1.669 

|pMtt03; 0.204 0.462 0.203 

1.181 0.289 2.226 

0.343 0.883 0.084 

^ | 5 | 1.613 

bj34 0.193 
4 

Residual 
DF 31 40 40 22 25 34 38 17 34 
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Table 12: F statistic and P value from the two-way ANOVA, investigating differences of total carbohydrate 

Newcastleton Wauchope Scootmore 

C20177 C20208 C20211 C20177 C20208 C20211 C20177 C20208 C20211 
Between 

DF 

Canopy 
Height 

F 

P 

0.713 

0.496 m 
0.600 

0.553 

0.007 

0.993 

3.072 

0.067 

2.690 

0.090 

1.073 

0.353 

0.347 

0.709 

1.102 

0.348 
2 

Needle F 0.546 1.268 0.103 7.2Y4 5.878 2.246 1.327 
3 

Age P 0.654 0.297 0.957 0.002 Q0Q4 0.100 0.280 
3 

Height 
X Age 

F 

P 

1.108 

0.365 

0.143 

0.868 

0.848 

0.475 

1.865 

0.172 

B l 
E l 

1.267 

0.310 

0.870 

0.465 

2.509 

0.074 

1.080 

0.375 
3 

Residual 
DF 43 32 46 18 22 22 36 37 25 

Table 13: f statistic and/* value from the two-way ANOVA, investigating differences of ethanol soluble 

2m 4m 6m 

3yr 2yr lyr Flush 2yr lyr Flush lyr Flush 
Between 

DF 

F 
Clone 

P 

3.091 1.761 0.897 | ^ 

0.060 0.185 0.416 gOp 

0.728 1.352 1.097 

0.493 0.272 0.344 

0.564 2.563 

0.579 0.092 
2 

F 
Site 

P 

|4,769; fm% ^mt 2.372 3.62~6 7.034 

0.114 0;037 O.OOjj: 

4.122 ill ,28^ 
2 

F 
Site 

P WMt ;0,Otf»; 0.005 0.01^ 

2.372 3.62~6 7.034 

0.114 0;037 O.OOjj: 0-035 i^Mfflll 
2 

Qone ^ 
X Site p 

g g 1.410 0.6006 0.565 

H i l 0.248 0.661 0.644 

0.984 0.212 1.413 

0.434 0.930 0.248 

3 055 2.127 

0M6 0.099 
4 

Residual 
DF 31 40 40 22 25 34 38 17 34 

Table 14: F statistic and/' value from the two-way ANOVA, investigating differences of ethanol soluble 

Newcastleton Wauchope Scootmore 

C20177 C20208 ao2ii C20177 C20208 C20211 C20177 C20208 C20211 
Bet wen 

DF 

Canopy 
Height 

F 

P 

0.405 

0.670 

2.351 

0.111 

1.269 

0.294 

0.311 

0.737 

2.191 

0.136 

2.509 

0.104 

0.574 

0.568 

0.373 

0691 

1.284 

0.295 
2 

Needle F 1.408 1.436 0.309 0597 S.8U6 4790 1.812 0.200 p 5 | 

Age P 0.254 0.250 0.819 0.625 0.004 0.162 0.896 ^ H i 
3 

Height 
X Age 

F 

P 

0.812 

0.525 

0.167 

0.847 

0.484 

0.695 

1.003 

0.414 

3.265 

0.041 

0.822 

0.496 

1.118 

0.355 

2.349 

0.088 

0.185 

0.906 
3 

Residual 
DF 43 32 46 18 22 22 36 37 25 
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Table 15: F statistic and P value from the two-way ANOVA, investigating differences of water soluble 
carbohydrate concenfrations between clone, site and clone by site interaction. 

2m 4m 6m 

3yr 2yr lyr Flush 2yr lyr F l u s h lyr Fhish 
Between 

DF 

Clone 
1.928 1.975 0.138 1.453 

0.162 0.152 0.872 0.255 

0.410 1.370 1.325 

0.668 0.268 0.278 

1.858 I S 

0.186 ioffl 

Site 
H i H I S P l l i-̂ ss 

MM H i S H I 0.305 

12.506 7.274 23.300 

<0,001 0.002 <0.00f 

20-.591I U P W 

foMl Mai 
Qone 
X Site 

0.262 0.942 0.513 1.248 

0.900 0.450 0.726 0.317 

0.140 0.071 0.355 

0.966 0.991 0.839 

2.536 2.373 

0.078 0.072 

Residual 
DF 31 40 40 22 25 34 38 17 34 

Table 16: F statistic and P value from the two-way ANOVA, investigating differences of water soluble 
carbohydrate concentrations between canopy height, needle and height by age interaction. 

Newcastleton W a u c h o p e Scootmore 

C20177 C20208 C20211 C20177 C20208 C20211 C20177 C20208 C20211 
Between 

DF 

Canopy 
Height 

0.949 

0.395 

0.247 

0.783 

0.732 

0.486 

0.902 

0.423 

0.253 

0.779 

0.565 

0.577 

1.860 

0.170 

1.501 

0.236 

0.868 

0.432 

Needle 
Age p 

2.407 

0.080 ffll 

2.415 

0.079 

2.272 

0.115 

2.605 

0.077 

0.069 

0.976 

^igfi WM BiS 
H I a»i5B 

Height 
X Age 

1.078 

0.379 

1.293 

0.289 

0.265 

0.851 

0.590 

0.630 

1.006 

0.409 

1.160 

0.347 

0.824 

0.489 

1.336 

0.277 

0.107 

0.955 

Residual 
DF 43 32 46 18 22 22 36 37 25 

Table 17: F statistic and F value from the two-way ANOVA, investigating differences of starch 

2m 4m 6m 

3yr 2yr lyr Flush 2yr lyr Flush lyr Flush 
Between 

DF 

F 
Qone 

P 

3.278 0.576 1.947 

0.051 0.567 0.167 

0.514 0.781 

P®?^ 0.603 0.465 

1.775 1.427 

0.254 0.199 
2 

F 
Site 

P 

2.617 1.239 2.342 |a>jO! 

0.089 0.300 0.109 p . l 5 | 

Kzei; 3.025 2.357 2.820 1.066 

0.088 0.356 
2 

F 
Site 

P 

2.617 1.239 2.342 |a>jO! 

0.089 0.300 0.109 p . l 5 | ]61Wri 0.062 0.108 

2.820 1.066 

0.088 0.356 
2 

Clone X ^ 
Site p 

0.882 0.942 1.196 0.380 

0.486 0.450 0.327 0.769 

0:693 0.469 SsST^ 

0.604 0.758 

1.137 0.960 

0.373 0.442 
4 

Residual 
DF 31 40 40 22 25 34 38 17 34 
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Table 18: F statistic and P value from the two-way ANOVA, investigating differences of starch 
concentrations between canopy height, needle and height by age interaction. 

Newcastleton Wauchope Scootmore 

C20177 C20208 C20211 C20177 C20208 C20211 C20177 a0208 C20211 
Between 

DF 

Canopy 
Height 

0.291 

0.749 

S.666 

0.008 

0.211 

0.810 

1.319 

0.292 

0.580 

0.568 

1.157 

0.333 

0.856 

0.433 

0.322 

0.727 

0.073 

0.929 

Needle ^ 
Age p 

1.303 12^?lj 2.601 

0.286 ^.dOll 0.063 

0.124 

0.945 

0.548 

0.654 mm 
0.573 

0.637 

m 
P I 

Height 
X Age 

1.195 

0.327 

0.507 4.66$ 

0.607 gm 

1.560 

0.234 

0.804 

0.505 

1.190 

0.336 

1.321 

0.283 

0.680 

0.570 

1.577 

0.220 

Residual 
DF 43 32 46 18 22 22 36 37 25 
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Appendix 7 

Table 1: Results of Kruskal-Wallis test, investigating the effects of site on wood density (kg m'̂ ) for each 
clone. 

Clone d.f P 
C20177 5.856 2 0.053 

C20208 12.362 2 0.002 

C20211 2.243 2 0.326 

Table 2: Results of Kruskal-WalUs test, investigatmg the effects of clone on wood density (kg m"') at each 
site. 

Site d.f P 
Newcastleton 7.691 2 0.021 

Wauchope 14.689 2 0.001 

Scootmore 12.551 2 0.002 

Table 3: Results of Kruskal-Wallis test, investigating the effects of site on fme root density (mg roots cm"' 
soil) at 0.1 m, 0.5 m and 1.0 m from the root collar for each clone. 

0.1 m 0.5 m 1.0 m 

Clone d.f P d.f P i d.f P 

C20177 2.756 2 0.252 4.622 2 0.099 2.222 2 0.329 

C20208 2.222 2 0.329 4.356 2 0.113 4.356 2 0.113 

C20211 1.867 2 0.393 3.467 2 0.177 6.489 2 0.039 

Table 4: Results of Kruskal-WaUis test, investigating the effects of clone on fme root density (mg roots cm" 
soil) at 0.1 m, 0.5 m and 1.0 m from the root collar at each site. 

0.1 m 0.5 m 1.0 m 

Site d.f P d.f P -i d.f P 
Newcastleton 2.489 2 0.288 0.356 2 0.837 5.067 2 0.079 

Wauchope 0.800 2 0.670 3.384 2 0.184 1.156 2 0.561 

Scootmore 2.409 2 0.288 1.156 2 0.561 4.356 2 0.113 
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Table 5: Results of Kruskal-Wallis test, investigating the effects of site on coarse root density (mg roots cm"̂  
soil) at 0.1 m, 0.5 m and 1.0 m from the root coUar for each clone. ^ ^ ^ ^ ^ 

Clone 

0.1 m 

d.f. X 

0.5 m 

d.f. 

1.0 m 

d.f. 

C20177 

C20208 

C20211 

1.067 

3.384 

0.022 

0.587 1.689 

0.184 5.600 

0.989 0.622 

0.430 1.156 

0.061 0.202 

0.733 4.267 

0.561 

0.904 

0.118 

Table 6: Results of Kruskal-Wallis test, investigating the effects of clone on coarse root density (mg roots 
cm"̂  soil) at 0.1 m, 0.5 m and 1.0 m from the root collar at each site. 

Site 

0.1m 

d.f. 

0.5 m 

d.f. 

1.0 m 

d.f. 

Newcastleton 1.156 0.561 5.067 0.079 0.267 0.875 

Wauchope 1.067 2 0.578 1.412 2 0.494 0.605 2 0.739 

Scootmore 2.756 2 0.252 3.200 2 0.202 0.800 2 0.670 

Table 7: Results of Kruskal-WaUis test, investigating the effects of site on carbon allocation to foliage, 
branch and trunk, and total above-ground carbon allocation for each clone. 

Clone 

Foliage 

-i d.f. 

Branch 

d.f. 

Trunk 

d.f. 

Total 

t d.f. 

C20177 0.857 2 0.651 2.571 2 0.276 4.751 2 0.102 4.571 2 0.102 

C20208 1.143 2 0.565 1.838 2 0.399 3.714 2 0.156 3.714 2 0.156 

C20211 4.571 2 0.102 3.714 2 0.156 3.714 2 0.156 3.429 2 0.180 

Table 8: Results of Kruskal-Wallis test, investigating the effects of clone on carbon allocation to foUage, 
branch and trunk, and total above-ground carbon allocation at each site. 

Site 

Foliage 

d.f. 

Branch 

t d.f. 

Trunk 

d.f. 

Total 

d.f. 

Newcastleton 3.429 0.180 3.714 0.156 3.714 0.156 3.714 0.156 

Wauchope 0.000 2 1.000 2.000 2 0.368 1.143 2 0.565 2.000 2 0.368 

Scootmore 1.143 2 0.565 3.714 2 0.156 3.429 2 0.180 3.429 2 0.180 


