
Durham E-Theses

Software-implemented attack tolerance for critical

information retrieval

Yang, Yunwen (Erica)

How to cite:

Yang, Yunwen (Erica) (2004) Software-implemented attack tolerance for critical information retrieval,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/2838/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2838/
 http://etheses.dur.ac.uk/2838/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Software-Implemented Attack Tolerance for
Critical Information Retrieval

Yunwen (Erica) Yang

A copyright of this thesis rests
with the author. No quotation
from it should be published
without his prior written consent
and information derived from it
should be acknowledged.

Submitted in partial fulfilment of the requirement for the degree ofDoctor of Philosophy

Department of Computer Science
University of Durham

United Kingdom

December 2004

This research was supported by a Teaching Assistantship from the University of Ehirham and the e-Demand
project from the U.K. Engineering and Physical Sciaices Research Council (EPSRC) and the Department of

Trade and Industry (DTI) e-Science Core Programme under grant no. THBB/C008/00176C.

2 B FEB 2QS5

Software-Implemented Attack Tolerance for
Critical Information Retrieval

Yunwen (Erica) Yang
Department of Computer Science

University of Durham

Thesis Abstract

The fast-growing reliance of our daily life upon online information services often demands
an appropriate level of privacy protection as well as highly available service provision.
However, most existing solutions have attempted to address these problems separately. This
thesis investigates and presents a solution that provides both privacy protection and fault
tolerance for online information retrieval. A new approach to Attack-Tolerant Information
Retrieval (ATIR) is developed based on an extension of existing theoretical results for
Private Information Retrieval (PIR). ATIR uses replicated services to protect a user's privacy
and to ensure service availability. In particular, ATIR can tolerate any collusion of up to t
servers for privacy violation and up to / faulty (either crashed or malicious) servers in a
system with k replicated servers, provided that k>t+f+ I where ^ > 1 and/< .̂ In contrast
to other related approaches, ATIR relies on neither enforced trust assiunptions, such as the
use of tanq)er-resistant hardware and trusted third parties, nor an increased number of
replicated servers. While the best solution known so far requires A: (> 3/ + 1) replicated
servers to cope with t malicious servers and any collusion of up to t servers with an
(5(„L(*-i)/3.jj communication complexity, ATIR uses fewer servers with a much improved
commimication cost, 0(n^) (where n is the size of a database managed by a server).

The majority of current FIR research resides on a theoretical level. This thesis provides both
theoretical schemes and their practical iir̂ jlementations with good performance results. In a
LAN enviroimient, it takes well under half a second to use an ATIR service for calculations
over data sets with a size of up to 1MB. The performance of the ATIR systems remains at
the same level even in the presence of server crashes and malicious attacks. Both analytical
results and experimental evaluation show that ATIR offers an attractive and practical
solution for ever-increasing online information applications.

Keywords: active attacks, attack tolerance, fault tolerance, malicious attacks, performance,
private information retrieval, privacy protection, query services, and security.

Acknowledgements

This thesis officially marks the end of my five-year long study in Durham, a

wonderful place in north east England where I will always be happy to go back to

walk around. The river, the woods, the castle, and the Cathedral, I miss you all.

Going to Durham is probably one of the most important career decisions I have ever

made. It was there that I met so many nice people who have transformed my life all

the way along. Among many, I would like to first express my gratitude to my

supervisor, Professor Jie Xu, who made a great effort to secure me the funding in the

first place, trained me to be a professional researcher, believed in me, and always

inspired me to be the best. I would like to express my deep appreciation for his

supervision, guidance, patience, and inspiration. These are the valuable gifts I shall

enjoy for the rest of my life.

My appreciation also goes to Professor Malcohn Munro, for kindly being my

supervisor during the last stage of my study, and for his encouragement and support.

Thanks to all the members of the Distributed Systems and Services Group, the

Department of Computer Science, and my fiiends in Durham for numerous research

discussions, jokes, trips, meals, and support. It was you guys who have made my life

colourful, rich and enjoyable for the past five years.

I would also like to express deep thanks to my family, who have always been there

helping, encouraging, loving, and being proud of me. Special thanks to Andrew, for

putting up with me, for always being there for me, and for your belief in me, which I

appreciate so much.

Table of Content

The§is Abstract "
Acknowledgements ^
Table of Content
List of Figures vi
List of Tables vii
Acronyms
Declaration
Chapter 1 Introduction 1

1.1 Problem Statement 1
1.2 Research Challenges 3
1.3 Contributions 5
1.4 Thesis Organisation 6

Chapter 2 Background: Coping with Attacks 8
2.1 Basic Concepts and Terminologies 8

2.1.1 Systems, Services, and Components 8
2.1.2 The Client/Server System Model 9
2.1.3 Security Failures 10

2.2 Attack Models 11
2.2.1 Classification of Attacks 11
2.2.2 Relations between Attack Models 12
2.2.3 Attacks on Systems and Cryptanalysis 13

2.3 Privacy Protection: Defending against Passive Attacks 14
2.3.1 Defining Privacy 14
2.3.2 Privacy through Encryption 14
2.3.3 Privacy through Anonymity 16
2.3.4 Privacy through Delegation 17
2.3.5 Privacy through Pseudonym 17
2.3.6 Privacy through Negotiation 18
2.3.7 Privacy through Secret Sharing 18

2.4 Private Information Retrieval (PIR): Model, Schemes, and Extensions 19
2.4.1 The PIR Problem 19
2.4.2 The PIR Model 19
2.4.3 Information Theoretic PIR Schemes 20
2.4.4 Computational Pffi. Schemes 21
2.4.5 PIR Extensions 22
2.4.6 PIR and Active Attacks 24
2.4.7 Hardware-based PIR Schemes 24

m

2.5 Attack Tolerance: Thwarting Active Attacks 26
2.5.1 Defining Attack Tolerance 27
2.5.2 Attack Tolerance through Secret Sharing 27
2.5.3 Attack Tolerance through Threshold Cryptography 28
2.5.4 Attack Tolerance through Proactive Security 29
2.5.5 Commonly Used Assumptions 30

2.6 Summary 33
Chapter 3 Attack-Tolerant Information Retrieval (ATM) 35

3.1 Introduction 35
3.2 Preliminaries 36

3.2.1 Basic System Model 36
3.2.2 Servers and Attack Models 39
3.2.3 System Assunq)tions 39
3.2.4 Requirements of ATIR 40
3.2.5 Definitions of ATIR 42

3.3 Attack-Tolerant Information Retrieval Schemes 44
3.3.1 Basic Algorithms 45
3.3.2 Characterisations of Fault Tolerance 48
3.3.3 Why is Error Detection Difficult in ATIR? 50
3.3.4 Error Detection 52
3.3.5 Two Result Verification Algorithms 56
3.3.6 Proofs for the ATIR Schemes 59
3.3.7 Communication Conq)lexity 63

3.4 Comparisons of ATIR with Existing PIR Schemes 64
3.4.1 Comparing with Robust PIR Schemes 64
3.4.2 Comparing with Hardware-based PIR Schemes 65
3.4.3 A Summary of Comparison Results 67

3.5 Discussions 68
3.5.1 Validity of ATIR System Assumptions 68
3.5.2 Con ĵarison with Existing Secure and Fault Tolerant Schemes 69

3.6 Summary 70
Chapter 4 System Architecture and Implementation 72

4.1 System Architecture 72
4.2 Design Issues 75

4.2.1 The Character-String Database Model 75
4.2.2 Core Components 78
4.2.3 Message Formats 84
4.2.4 Optimizations 86

4.3 Implementation Issues 87
4.3.1 Circumventing the Index Knowledge Assumption 87
4.3.2 Full-length Processing versus View Processing 88

4.4 Summary 88
Chapter 5 Empirical Evaluation 89

5.1 Performance Models 89

IV

5.1.1 Preliminaries 89
5.1.2 Performance Modelling 91

5.2 Experimental Setting 96
5.2.1 Experimental Objectives 96
5.2.2 Experimental Environment 96
5.2.3 Primitive Component Model Parameters 98

5.3 ATIR Experiments in a Fault-free Environment 103
5.3.1 ATIR Component Model Parameters 103
5.3.2 Varying View Sizes 108
5.3.3 Varying Result Sizes 109
5.3.4 Varying Undetected Error Rates 111
5.3.5 Performance Proportion of Each Component 113
5.3.6 Performance of Deterministic ATIR 114

5.4 ATIR Experiments in a Simulated Faulty Environment 116
5.4.1 ATIR Performance in the Presence of Crash Faults 116
5.4.2 ATIR Performance in the Presence of MaUcious Faults 117

5.5 Performance Comparisons among SQL Query, PIR and ATIR 121
5.6 Summary 122

Chapter 6 Conclusions and Future Work. 123
6.1 Main Contributions 123
6.2 Future Research Directions 125

6.2.1 Reducing Computation Conqjiexity 125
6.2.2 Reducing Communication Complexity 126
6.2.3 The Importance of Design Diversity and Assumptions 126
6.2.4 Exploring Other Applications 127
6.2.5 Defending against Denial-Of-Service Attacks 127

6.3 In Conclusion 128
Glossary 129
Reference* • ••••••• •••••«•••••••••••••••••••••••••••*••«••••••••••••••*••••••••••• 130

List of Figures

Figure 2-1 A Generalised Conceptual System Model (Adapted fi-om [Xu04]) 9
Figure 2-2 A System Model of a CUent/Server Distributed System 10
Figure 2-3 An Architectural Overview of Hardware-based PIR Schemes 26
Figure 3-1 A Query Algorithm for ATIR Schemes 46
Figure 3-2 An Answer Algorithm for Replica Sj 47
Figure 3-3 A Reconstruction Algorithm 48
Figure 3-4 A Probabilistic ResuU Verification Algorithm 57
Figure 3-5 A Deterministic Result Verification Algorithm 58
Figure 4-1 The ATIR System and Network Layers 73
Figure 4-2 An ATIR System Architecture in a Replication Setting 74
Figure 4-3 The ATIR Library Main APIs 78
Figure 4-4 Message Format for Queries 85
Figure 4-5 Message Format for Answers 85
Figure 5-1 A Timing Diagram for ATIR Services 93
Figure 5-2 Measured and Predicted One-way Host Processing 100
Figure 5-3 Measured and Predicted One-way Communication 102
Figure 5-4 Measured and Predicted TPQ vs. Query Sizes 104
Figure 5-5 Measured and Predicted TPA vs. View Sizes 104
Figure 5-6 Measured and Predicated TCV vs. View Size 106
Figure 5-7 Measured and Predicted TRV vs. Optimised Result Sizes 107
Figure 5-8 Measure and Predicted TTPs of pATIR 107
Figure 5-9 Relative Prediction Error of the TTPs of pATIR 109
Figure 5-10 Measured TTPs of pATIR vs. Original Result Sizes 110
Figure 5-11 TTPs of pATIR with Varying Undetected Error Rates 112
Figure 5-12 Performance Proportion of Each Component in TTP of ATIR 114
Figure 5-13 dATDR vs. pATIR (Small Data Sizes) 115
Figure 5-14 dATIR vs pATIR (Large Data Sizes) 116
Figure 5-15 ATIR in Normal vs. Crashed Situations 117
Figure 5-16 Undetected Error Rate vs. Number of Flipped Characters 120
Figure 5-17 TTP of pATIR in Normal and Malicious Faults 120
Figure 5-18 TTPs of PIR-256, pATIR-257, and SQL 121

V I

List of Tables

Table 3-1 A Comparison of PIR Schemes 68
Table 5-1 Notations for Performance Models 90
Table 5-2 Measured Host Processing Time (̂ is) 100
Table 5-3 Parameters of One-way HPT 100
Table 5-4 Measured Roimdtrip Time and One-way Communication Time 101
Table 5-5 Parameters of One-way Network Communication Time 102
Table 5-6 Protocol Constants 102
Table 5-7 Message Preparation Parameters (ATIR) 103
Table 5-8 Query Sizes, View Sizes, Message Sizes and Communication Time of ATIR... 106
Table 5-9 Parameters of TCV 106
Table 5-10 Reconstruction and Verification (ATIR): parameters 107
Table 5-11 The Mapping between UER and p 112

V l l

Acronyms

ATIR Attack Tolerant Information Retrieval

cPIR computational Private Information Retrieval

dATIR deterministic Attack Tolerant Information Retrieval

hPIR hardware-based Private Information Retrieval

LAN Local Area Network

pATIR probabilistic Attack Tolerant Information Retrieval

PIR Private Information Retrieval

rPIR robust Private Information Retrieval

vm

The material contained within this thesis has not previously been submitted for a

degree at the University of Ehirham or any other university. The research reported

within this thesis has been conducted by the author tmless indicated otherwise.

Some parts of the work presented in this thesis have previously appeared in the

following papers:

[YXBOl] E. Y. Yang, J. Xu and K. H. Bennett, "The SeCode Approach:
Towards Fault-tolerant and Secure Execution of Mobile Code", in
Proc. lEEE/IFIP International Conference on Dependable Systems
and Networks (DSN'Ol), Goteborg, July 2001, Fast Abstract,
Supplement, Goteborg, Sweden, 1-4 July 2001, pp. B74-B75.

[YXB02a] E. Y. Yang, J. Xu and K. H. Bennett, ''Private Information Retrieval
in the Presence of Malicious Faults", in Proc. 26 IEEE hitemational
Symposium on Computer Software and Applications (COMPSAC
2002), Oxford, UK, Aug. 2002, pp. 805-810.

[YXB02b] E. Y. Yang, J. Xu and K. H. Bennett, "A Fault-Tolerant Approach to
Secure Information Retrieval, in Proc. 21st IEEE International
Symposium on Reliable Distributed Systems (SRDS2002), Suita,
Osaka, Japan, Oct. 2002, pp. 12-21.

[YXB03] E. Y. Yang, J. Xu, and K. H. Bennett, "Sharing with Limited Trust:
An Attack-Tolerant Service in Durham e-Demand Project", in Proc.
UK eScience 2""* All-Hands Meeting, Simon J. Cox Eds., Sept. 2nd-
4th, 2003, Nottingham, U.K., ISBN 1-904425-11-9.

[YXB04] E. Y. Yang, J. Xu, and K. H. Bennett, "Privacy-Enhanced
Transactions for Virtual Organisations", in Proc. UK e-Science 3"̂
All-Hands Meeting, Simon J. Cox Eds., 31'' August - 3*̂ September,
2004, Nottingham, UK, ISBN 1-904425-21-6.

Copyright © Yunwen (Erica) Yang 2004

The copyright of this thesis rests with the author. No quotation from it should be published without
their prior written consent and information derived from it should be acknowledged.

IX

CHAPTER ONE. INTRODUCTION

Chapter 1 Introduction

"Even when it is possible to build them, highly trustworthy components are costly."

Trust in Cyberspace

Fred B. Schneider, Editor

Committee on Information Systems Trustworthiness

National Research Council (USA), 1999.

1.1 Problem Statement

Querying online information services has gradually become an integral part of our

daily life and work. The fast-growing development along this direction gives rise to

significant security and rehability issues, hidividuals become much more concerned

about online privacy issues than ever. Our society, as a whole, becomes increasingly

vuhierable to service disruptions. At the same time, the ever-increasing number of

malicious attacks makes it even more difficult to maintain privacy protection and

service provision in online services. There is an urgent need for techniques which

can protect users' privacy as well as simultaneously ensure highly available services

even in the presence of malicious attacks.

There has been considerable research effort put into online privacy protection.

One such effort is Private Information Retrieval (PIR), an approach aiming to protect

a user's privacy by keeping the intention of queries secret fi-om curious database

servers [CGKS95]. The principle of PIR is simple: instead of asking for one specific

data item, a user queries an entire database. As a result, each data item is equally

likely to be the one of interest, rendering the server unable to figure out the user's

actual intention. PER. is based on a passive attack model where the server is deemed

to be controlled by an attacker. In this model, an attacker only passively observes

queries without modifying the execution flow of PIR protocols. This simplified

assumption about attackers can easily be invalid due to the ever-increasing presence

of malicious attacks. Once occupying the server (i.e. inside the trust perimeter of a

system) and having gathered private information, a benign attacker can easily turn

CHAPTER ONE. INTRODUCTION

into a malicious one. For example, due to the ease of gathering inside information,

the attacker can easily forge bogus requests and cause denial-of-service attacks. This

type of attacks is very difficult to detect and eliminate because such requests are not

distinguishable from legitimate ones. The attacker may even control the server to

deliver purposefully manipulated answers. Again, such answers are also

indistinguishable from what a server is supposed to return in normal circumstances.

The majority of progress made along the line of FIR is based on a passive attack

model [CGKS95, Amb97, BIMOO, BIOl, BIKR02, SSOl, IS03, Aso04, IS04].

Various communication efficient schemes have been proposed to solve the PIR

problem. In confrast, little is known about extending PIR in an active attack model, a

more realistic model making little assumptions on the behaviours of faulty

components. There are basically two approaches of dealing with malicious attackers:

attack detection/prevention and attack tolerance. Traditionally, attack

detection/prevention is heavily used to keep attackers outside a system, such as using

cryptographic algorithms and firewalls. EKie to the increasing size and complexity of

computer systems, preventing attackers from hacking into a system becomes more

costly and very difficult. Another approach for dealing with attacks is through the

tolerance paradigm. Instead of purely preventing every single attack, a system is

designed to tolerate attacks by allowing some components to be compromised and

trigger mechanisms to ensure the delivery of correct services despite attacks

[VNC03]. For example, by replicating a set of servers and using fault tolerant

algorithms to identify correct results, the system can still deliver a correct service as

promised in spite of the corruption of some of the servers. BFT [CasOl], COCA

[ZRS02], and SINTRA [CP02] are three representative systems. All three systems

are based on the state machine replication approach [Sch90] along the tolerance

paradigm.

The majority of PIR research aims to demonsfrate theoretical feasibilities and

many obstacles preclude them from being used in practice. This is mainly due to two

reasons: i) the standard database model of PIR schemes is only of theoretical interest

(e.g. [SSOl, YXB02a, YXB02b, IS03, Aso04, IS04]); hence, it is difficult to

implement PIR schemes; and ii) PIR schemes are perceived to be computationally

expensive (e.g. [BIMOO, Kus03]). Initiated by IBM research in 2001 [SSOl],

researchers have begun to investigate practical PIR schemes such as those presented

CHAPTER ONE. INTRODUCTION

in [YXB02a, YXB02b, YXB03, IS03, Aso04, IS04]. However, some of these

systems [IS03, Aso04, IS04] build on the assumption that the database server will

use secure hardware to correctly perform PIR operations. This assimiption

significantly restricts the scalability of these solutions and aggravates the

computation problem of PIR. Some early performance studies (e.g. [SSOl, IS03,

Aso04]) show that this approach is expensive which in turn limits its practicability.

The thesis aims to tackle the Attack Tolerant Information Retrieval (ATIR)

problem which is an extension of the FIR problem by taking malicious attacks into

account.

1.2 Research Challenges

This section outlines the general research challenges of achieving ATIR while

remaining practical to be implemented and be reasonably deployable. This will help

to draw the research boundary of this thesis. Based on our understanding of the

existing research on PIR and research on attack tolerance, the following five ATIR

research challenges are derived.

1) Communication Complexity

Considerable research has been conducted on deriving communication efficient PIR

schemes, such as those presented at [CGKS95, Amb97, BIOl, BIKR02, BIMOO,

BS02]. This is a well-explored area. The problem and the basic approaches for

tackling the challenge are relatively well understood. Recent studies show that some

existing PIR schemes already have close to optimal communication complexity

[WW04, Cha04]. In contrast, many other aspects of PIR, for example, the practical

aspects, remain much less understood. Our research is focussed on those aspects by

build on existing PIR schemes which already have a reasonable level of

communication complexity.

2) Trust Assumptions

Existing PIR schemes often rely on unrealistic trust assumptions before and during

the processing of PIR queries. The use of unrealistic trust assumptions restricts the

applicability of these schemes. Existing attack-tolerant systems also make various

degrees of trust assumptions on external trusted parties: a trusted third party is often

required to securely and manually set up these systems. Trust assumptions are also

CHAPTER ONE. INTRODUCTION

placed during the processing stages of all hardware-based PIR systems. For example,

computation with secure hardware [SSOl, IS03, AF02] in the system and the reliance

on an external avixiUary server [GGM98] are the typical trust assumptions in current

PIR research. With the use of these trust assimiptions at various stages of deploying a

system, the system is restiicted to a static group membership. Dynamic addition and

removal of members is cosfly and requires the involvement of trusted third parties

(e.g. human operators). Consequentiy, such a system cannot cope with the

dynamicity membership requirement of its environment.

3) Use of Replication

In PIR, replication is introduced as a fundamental means to reduce the

conununication complexity of unconditionally secure PIR schemes [CGKS95]. PIR

schemes themselves do not provide mechanisms to support replication but rely on

existing well-established replications protocols to disseminate updates and manage

consistency among replicated servers. An inherent problem with replication is

scalability, because replication protocols heavily rely on message passing to

coordinate and synchronise among replicas. Replication should be used with care. In

principle, the more rephcated servers a PIR scheme uses the better communication

complexity it can achieve. It becomes a challenge to find a balanced degree of

replication which can provide reduced communication complexity while not being

too costiy.

4) Implementation

The standard PIR database model is too restrictive to be integrated with commercial

database technologies. Most existing PIR schemes only demonstrate the theoretical

feasibility of constructing such schemes, and littie practical unplementations of these

schemes have been attempted. Extending the model is mandatory i f the technique is

to be used to implement a real service. Some PIR schemes and corresponding

implementations use secure hardware to perform PIR operations. Due to its

processing limitation, the performance shown by the secure-hardware based

implementations [SSOl, IS03, Aso04] is not satisfactory.

5) Processing Costs

It is often envisaged that PIR processing is computationally expensive, which is the

main motivation for the work presented in [KusOB, IS03, SSOl, AF02, BIMOO]). Pre-

CHAPTER ONE. INTRODUCTION

processing was introduced into various PIR schemes as a means to reduce online

processing costs [BIMOO, IS03, AF02, IS04, Aso04]. However, pre-processing is still

costly: some recent experimental results show that the pre-processing time for secin-e

hardware-based PIR schemes is in the order of several hours whereas the online

processing time for retrieving one single record is in the order of several minutes

[IS03, AF02, Aso04]. Hence, fi-om a practical point of view, processing cost is still a

major decisive factor determining the real impact of ATIR technologies. Although

these implementations demonstrate the practicability of such PIR schemes, the

performance shown by the results is far worse than the performance of state of the art

database technologies.

1.3 Contributions

This thesis contributes to tiie state-of-the-art security and fault tolerance research by

presenting a new approach for achieving an adjustable level of privacy protection

whilst maintaining a high level of service provision in the presence of malicious

attacks. Specifically, the thesis tackles a number of less tmderstood open research

challenges (challenges 2-5 presented in the previous section) in PIR research and

provides a satisfactory answer to these challenges. In particular, this thesis

contributes to the state-of-the-art PIR research and the state-of-the-practice practical

PIR implementation in the following aspects.

ATIR requires limited trust assumptions on remote execution environment. With

neither relying on secure hardware nor trusted third parties on remote execution

environment, replication-based ATIR schemes are developed to protect the privacy

of a user and ensure the provision of an information retrieval service. Unlike existing

practical PIR approaches, the ATIR approach does not require databases to be pre-

processed by encryption or be periodically shuffled.

Compared with the best solution known so far, the number of replicated servers

required by ATIR is reduced to be optimal in the sense that no additional servers are

required to satisfy the privacy property of ATIR. To tolerate any collusion of up to

/ servers and up to / faulty (crashed or malicious) servers in a system with k

replicated servers, ATIR ensures the privacy and correctness properties, provided

ihai k> t+f+ \ where f > I and/< ^ The best solution (i.e. [BS02]) with an

0(«^<*-'""J) communication complexity requires k(>3t+\) repUcated servers to cope

CHAPTER ONE. INTRODUCTION

with the same situation. In confrast, ATIR uses fewer servers with a much improved

communication cost, 0(n^) (where n is the size of a database managed by a server).

The usefiihiess and practicability of ATIR is proved by practical implementation

on realistic databases with good performance. The implemented systems are purely

based on software. Neither secure hardware nor trusted third parties are needed to

implement and deploy these systems. Experimental results show that the

implemented systems also perform well in both normal and simulated faulty

circxraistances. The PIR and ATIR implementations build upon widely used database

technologies (MySQL). No modification of the underlying database servers is

required to support the deployment of the services.

Moreover, the experimental results show that the Total Time for Processing (TTP)

of using PIR and ATIR services are both well imder half a second for calculating

over data sets of a size ranging from 100KB to 1MB in normal circumstances. The

ATIR services maintain the same level of performance even in the presence of the

simulated attacks.

1.4 Thesis Organisation

The remainder of this thesis is organised as follows.

Chapter 2 presents a comprehensive survey on the following topics. The basic

concepts and terminologies used by this thesis are presented first. A classification of

attack models and a discussion on the relationship between these models are then

followed. As a first line of defence against attacks, privacy protection techniques are

categorised and their principles are described. We then present a survey of the PIR

model, schemes and extensions which is followed by a review and discussion of

attack tolerant techniques used in defending against active attacks. A review of

common assumptions used by attack-tolerant approaches in designing and deploying

distributed systems is given.

Chapter 3 presents the system model, and construction of ATIR schemes. In

particular, we show the link among three basic sfrategies used in ATIR schemes,

which are privacy protection, error detection and attack tolerance. We analyse the

intrinsic difficulties of using conventional error detection techniques in the settings

of ATIR. We also present two ATIR schemes: one deterministic and one

CHAPTER ONE. INTRODUCTION

probabilistic for ensuring information theoretic privacy protection and service

correctness even in the presence of malicious attacks. Both schemes are replication-

based. This chapter also offers a thorough comparison between ATIR and related

PIR schemes.

Chapter 4 describes the architecture of ATIR systems and the realisation of ATIR

schemes. Several important design and implementation issues are discussed. In

particular, we describe how to extend the database model for performing ATIR

computations.

Chapter 5 presents experimental results of this thesis. This chapter is organised

into three parts. At first, we develop an analytic model for the performance of the

ATIR service implemented. The model is used to validate the performance

measurements of the experiments conducted. We then examine the impacts of

various major parameters on the total processing time of an ATIR service in normal

circumstances. The performance comparison between a probabilistic ATER and a

deterministic ATIR is then presented. Finally, we investigate the performance of an

ATIR service in the presence of various simulated (crashed and malicious) faults.

Chapter 6 recaps the main contributions made by this thesis, discusses the future

work, and concludes the thesis.

CHAPTER TWO. COPING wimATTACKS

Chapter 2 Backgrounds Coping with

This chapter reviews the state-of-the-art research efforts for coping with attacks in

distributed systems. When attacks against computer systems are discussed, we

should clearly state the following: i) types of systems being considered; ii)

assumptions about system design, implementation, and deployment; iii) types of

attacks that are defended. The first three sections of this chapter examine these issues

in turn, hi Section 2.1 we describe a general model for distributed systems and a

cUent/server system model. In Section 2.2 we present and discuss two attack models:

a passive and an active attack model, hi Section 2.3 we review privacy protection

techniques for defending against passive attacks and in Section 2.4 we present a

survey on PIR research, hi section 2.5, we focus on attack-tolerant techniques and

systems for coping with active attacks.

2.1 Basic Concepts and Terminologies

This section describes a conceptual system model which will be used throughout this

thesis. We will then emphasize the client/server design paradigm, a widely used

structuring technique for designing distributed systems.

2.1.1 Systems, Services, and Components

A system is an entity composed of multiple interacting components which are under

the control of a system design to deliver a service to other entities, i.e. other systems

[PSOl]. The other entities make up the environment for the system considered. A

system design can be viewed as a special component of the system which not only

defines the interactions among the components in the system but the interactions

between the system and the environment that the system services [Xu04].

CHAPTER TWO. COPING WITH ATTACKS

system

. o
system enviromnent

interaction system/
component

system/environment
boundary

Figure 2-1 A Generalised Conceptual System Model (Adapted from [Xu04])

Figure 2-1 depicts a generalised conceptual model of a system and the system

environment it services. From the diagram, we can see that the systems in the

environment are loosely coupled since they may or may not interact with each other.

The system model is recursive in nature. The components in the system can be

decomposed into sub-components. These sub-components in turn can be fiirther

decomposed, and so on. The decomposition stops when the component is atomic (i.e.

not divisible). The divisibility depends on the level of abstraction needed [HW92].

2.1.2 The Client/Server System Model

Distributed systems usually are structured into one of the following four design

paradigms: client/server, remote evaluation, code on demand, and mobile agent

[FPV98]. It is important to note that design paradigms are independent of any

particular programming languages, message transportation mechanisms and

implementation technologies. The principle of our thesis applies to all of these

paradigms. However, for simplicity of presentation, the client/server design

paradigm will be emphasized.

CHAPTER TWO. COPING WITH ATTACKS

system

VCservil client ^

system environment

interaction system/
component

system/environment
boundary

Figure 2-2 A System Model of a Client/Server Distributed System

As illustrated in Figure 2-2, a client/server distributed system is structured into

two components: a client and a server. The client and the server interact with each

other following a pre-defined protocol specified in the system design. The client and

the server often run on separate processing nodes in a communication network. The

server manages resources and defines operations that are exported to the client. The

chent sends a request message to invoke the operations provided by the server and

receives a reply message in the opposite direction. The system can interact with the

system (execution) environment in at least two ways. First, the system delivers a

service to the environment by taking inputs firom a system user and returning outputs

back. The user is a special system in the environment that the system considered

aims to service. Second, the interactions between the client and the server are built

on top of a conmiunication network which is also a part of the system environment.

In this case, there is no interaction between the user and the network.

2.1.3 Security FaUures

When being deployed in an error-prone environment, the system is often required to

be dependable. A dependable system continues to deliver the intended service

despite the occurrence of faults. Dependability is defined as the property of a

computer system such that reliance can justifiably be placed on the service the

system delivers [Lap92]. A dependable system needs to ensure that the service is

available, reliable, safe, and secure. When a service delivered by a system derivates

10

CHAPTER TWO. COPING WITH ATTACKS

fi-om what it intends for (e.g. firom the design specification), this event is defined as a

system failure [Lap95]. An error is that part of the system state liable to l e ^ to the

failure [Lap92]. A fault is a hypothesised cause of an error [Lap92].

This dissertation focuses on security failures. Security is dependability with

respect to the prevention of unauthorised access and/or handling of information

[Lap92]. Security consists of three properties: confidentiality, integrity, and

availability. A security failure occurs when one or more of these properties are

violated. A security error is that part of the system state leading to the security failvire.

A security fault is the hypothesised cause of a security error. A security failure may

be neither detectable, nor observable. For example, when the confidentiality of a

piece of information is breached, a security failure occurs. However, due to the

passive nature of information leakage, such a fault may not manifest itself as a

detectable/observable failure.

2.2 Attack Models

We now examine how security properties of a service can be violated and the effects

of such violations to the service fi-om a security perspective. Security violations are

often caused by attacks. An attack is defined as an intentional fault aiming to violate

security properties of a service. Therefore, an attack is a type of fault. Consequently,

attack models are a subset of fault models. Attack models are often used to categorise

the aspects (e.g. types and assumptions) of attacks considered in a system design,

implementation and deployment.

2.2.1 Classification of Attacks

The degree of security violations that may be caused by attackers is often used to

characterise the power of attackers. As a result of the characterisation, system-level

attacks are classified following two types of attack model:

® Passive attack model: passive attacks only involve monitoring, intercepting, or

eavesdropping on information. Passive attacks often lead to the violation of the

confidentiality property, or traffic analysis attacks.

« Active attack model: active attacks often build on passive attacks and involve

intercepting, modifying, and probably fabricating information. Active attacks

11

CHAPTER TWO. COPING WITH ATTACKS

often lead to the violation of all security properties (i.e. confidentiality,

mtegrity and availability),

hi real world, attackers often rely on the information gained through passive

attacks to laimch active attacks. Successive active attacks can also involve

information disclosure, hence, causing the violation of confidentiality property.

Therefore, the active attack model subsumes the passive one.

Classified by their effect (i.e. severity) on the components of the system, active

attacks can lead to two types of failures: benign failures and maUcious (also referred

as Byzantine) failures [CDKOl pp. 56, Mul93 pp. 100]. Examples of benign failures

include fail-stop, crash, and omission failures. Examples of malicious failures

include arbitrary execution of a predefined protocol and/or malicious corruption of

databases. The component that exhibits failures is described as a faulty component.

The purpose of having two attack models is to simplify the design of security

protocols and to make realistic assumptions against attacks. Protocols with weak

assumptions are often too expensive to be deployed. Therefore protocols design

typically rehes on certain assumptions [AndOl]. Assumptions are a double-edged

sword. Without making assumptions, it is impossible to derive effective and useful

protocols. Protocols can be made simple with certain assumptions. However, by

invalidating assumptions of a system, the system will fail easily. The key issue is

what are the vaUd assumptions, and under what circumstances.

2.2.2 Relations between Attack Models

Active attacks are often built upon findings through passive attacks because

information collected during passive attacks is useful for conducting active attacks in

the later stage. Both attack models apply to individual components, interactions

among components, and a system as a whole. Consider a hospital database system

which provides information about patients to authorised doctors. A doctor uses the

client software installed on his desktop to access the database server. There is a

communication network connecting the client and the server. In its simplest form, the

system is composed of two components: the client software and the database server.

I f the operator only steals patients' information, the operator only conducts a passive

attack which targets an individual component. I f someone only manages to

eavesdrop on the communication network, this is an attack against the interaction

12

CHAPTER TWO. COPING WITH ATTACKS

between the client and the server. The system administrator can easily launch attacks

against the entire system.

From a system's point of view, attackers can be classified into two categories:

outsiders and insiders. In this thesis, we only consider closed systems. A closed

system is defined as a system which has a clearly defined system boxmdary.

According to the MAFTIA [PSOl] report, an outsider is defined as "a person who has

no privilege, i.e. no rights to any object in the system" whereas an insider is "any

individual who has some privileges, i.e. some rights on objects in the system".

Attacks launched by insiders are insider attacks whereas attacks launched by

outsiders are outsider attacks.

2.2.3 Attacks on Systems and Cryptanalysis

There are differences between attacks on systems and those on cryptographic

algorithms. Attacks on systems are the topic we have discussed in this section and

are the main concern of this thesis. Cryptanalysis is the science and art of finding the

weakness in cryptographic algorithms. The aims of attackers, targets and methods of

attacks are different. Although a successful attack on cryptographic algorithms can

lead to successful attacks on systems (i.e. those use these algorithms), current

research tends to treat them separately. Cryptographic algorithms are building blocks

of secure computer systems and often are assumed to be secure. Therefore, there is a

need to clarify the common security assumptions made when designing and

implementing computer systems.

A successful attack often leads to information disclosure. Considerable research

has been done on understanding the effects and deriving effective countermeasures

against information disclosure caused by the leakage of confidential information. The

next section focuses on the concepts and approaches of information disclosure

caused by the violation of personal private information.

13

CHAPTER Two. COPING WITH ATTACKS

2.3 Privacy Protection: Defending against Passive Attacks

The notion of "privacy" is central to many arguments about defending against attacks.

In security, this term is often used inconsistently and/or loosely defined. For example,

in [AndOl], Anderson defines the term privacy as follows:

"Privacy is the ability and/or right to protect your personal secrets; it
extends to the ability and/or right to prevent invasions of your personal
space (the exact definition varies quite sharply fi-om one country to
another). Privacy can extend to fiimilies but not to legal persons such as
corporations."

Security Engineering
- A Guide to Building Dependable Distributed Systems

Ross Anderson

2.3.1 Defining Privacy

In this thesis, our definition of privacy is based on a restricted version of Anderson's

definition. Privacy is defined as the ability/right to protect one's personal information,

including secrets, fi:om unsanctioned scrutiny. Examples of private information are

identity, preference, location, and intention.

Privacy protection technologies aim at preventing unsanctioned information

collection of individuals and protecting data that has been collected. This aim should

be considered in a broad sense. Individuals should have the ownership to their

private information: it should be up to them to decide who is allowed to access the

information and how the information is distributed. That is, they should have the

ability/right to control private information. However, it is often up to others to

maintain the confidentiality of the information. For example, patient medical records

are private information of the patient. However, it is often up to the hospital or health

care personnel to keep them secret.

In the next section, we present privacy protection techniques which are

categorised into the following approaches: encryption, anonymity, delegation,

pseudonym, and poUcy negotiation.

2.3.2 Privacy througli Encryption

Encryption is a method of information transformation in which the process

transforms a piece of private information into an unintelligent form so that the exact

14

CHAPTER TWO. COPING WITH ATTACKS

content is masked. The design of an inverse process (i.e., decryption) is important to

the success of encryption. Decryption provides a way to recover scrambled

information to its original form. Often, this reverse transformation is controlled by

secret information (e.g., decryption keys) which is only accessible to authorised

parties. Encryption often relies on number theoretic assumptions, such as the

computational difficulty of factormg large prime numbers in cryptographic

algorithms [RSA78].

By encrypting private information, its exact content can be hidden fi-om attackers.

However, once the information is decrypted, few technical measures can prevent

further dissemination of the information. Performing encrypted computation is the

approach for protecting the privacy of users without decrypting the content of

computation.

There has been a large body of research on encrypted computation. Three methods

are often used to perform encrypted computation: processing encrypted data [Fei85,

ALN87, AFK87, BF90], computing with encrypted functions via privacy

homomoiphism [RAD78, ST98a, ST98b, BreOl], and processing obfiascated

programs [WDHKOl, ZGZ03]. Unlike normal computation/processing, encrypted

computation does not need to be decrypted before processing.

This property is highly attractive because it means that users can utilize resources

without information about their input data, functions, or program logic, being

revealed. For certaui applications, such as bioinformatics, proprietary and patented

programs, this is an appealing feature because these applications often require a large

amount of computational resources and have significant privacy concerns.

Currentiy, the first two methods (i.e. processing encrypted data and computing

with encrypted functions) are restricted to limited types of functions and these

functions often rely on computational assumptions, such as the difficulty of factoring

large numbers. The major obstacle to adopting such methods is that there are not

many functions that can be executed in an encrypted form. The general appHcability

of constructing and executing obfuscated programs, i.e. the third method, for real

application also remains to be explored.

15

CHAPTER TWO. COPING WTTHATTACKS

As a whole, all the research in this area largely focuses on demonstrating the

theoretical feasibility of using these methods for solving restricted types of problems.

Although there are potentially huge practical motivations and demand for methods

that support encrypted computation, it remains to be seen how to extend and apply

these methods for use in real applications. The state of the art results in this area still

reside on a theoretical level. Little is known on how to apply them in real

applications.

Moreover, all existing work using any of these methods assumes the passive

attack model, where attackers will execute the predefined protocols correctly. This

assumption becomes shaky when these methods are appUed to solve privacy

problems arising in large scale distributed computing, such as mobile code

applications and Grid applications. The scale and dynamicity of these applications

demand solutions which do not only protect privacy, but also guarantee the integrity

of the computation.

2.3.3 Privacy through Anonymity

In order to protect the identities and locations of users, anonymity techniques involve

the use of a large number of intermediate nodes (e.g. computers) to cooperate

together to perform an operation. When a user sends a request, the request is often

routed through these intermediate nodes. It is therefore difficult for an observer to

determine the exact information (e.g. the sending location) of the request.

For example, by routing an email through a large number of intermediated nodes

before sending it to the receiver, the identity and location of the sender can be hidden.

Anyone in the participant set can be the one who sends the request and the initial

origin of the request. Initiated by Chaum in 1981 [ChaSl], there has been a large

body of work (e.g. [ChaSS, Wai89, RR98, MCOO]) in this area. This work can be

classified into two categories: anonymous remailers and anonymous web browsing.

Anonymous remailers (e.g. MIX networks [Cha81, Cha88] and MIXMASTER

[MCOO]) aim to protect the identity and original location of email senders.

Anonymous web browsing techniques protect the identity and/or location of web

users and examples of such are CROWS [RR98], onion routing [GRS99], and Web

MEXes [BFKOO]. The research in this area is relatively well developed and systems

(e.g. Zero-Knowledge System's Freedom Network [BSGQO]) with varying degrees of

16

CHAPTER Two. COPING wrmATTACKS

privacy properties and involvement fi-om commercial companies have been

developed.

In theory, the larger the population is, the harder it becomes to identify and pin­

point the identity and exact location of the originator. Usually, the provision of

anonymity-based techniques heavily relies on the availability of a large number of

trusted intermediaries. These techniques are also coupled with encryption to fiirther

protect otiier private information of users, such as authorships and censorship.

Recently, research has been begun to look at the privacy protection issues in the

presence of certain types of attacks on anonymous networks (e.g. [Dan03]).

2.3.4 Privacy througli Delegation

Some examples of this approach are Anonymizer [Ano04] and Rewebber [Rew04].

These web sites act as a "proxy server" to request senders. Using these websites, the

identity, IP address, and other private information of a requestor can be hidden fi-om

web site owners. The retrieved pages are routed through these servers back to

senders. One distinct feature about Rewebber.com is that it masks the location of

documents requested fi-om the request sender. This approach can protect the privacy

of the documait publisher. Both techniques rely on the trustworthiness of proxy

servers to provide privacy protection.

A special form of privacy protection through delegation is the use of secure

hardware. In this case, privacy protection is delegated to a maintainer or operator of a

piece of trusted hardware which is assumed to be tamper-resistant (i.e. no secrets will

be leaked even i f the hardware itself has been damaged). Secure co-processors are

often used to store private information and/or perform security critical operations.

There remain several problems with the use of secure co-processors (for details,

readers are referred to Section 2.5.5). Also, the memory and processing capability of

secure hardware is limited, which means that they may not be applicable for

computationally intensive applications.

2.3.5 Privacy through Pseudonym

Identity privacy has become one of the major security issues of Internet applications

because of the rapidly emerging threat of identity theft [DOJOO]. To combat identity

theft and reduce the damaging consequences of misusing personal information,

17

CHAPTER TWO. COPING wrmATTACKS

pseudonym techniques have been used for depersonalise uniquely identifiable

information fi-om transactions. To hide the exact information about a user,

pseudonym systems replace the personal information with randomly generated

pseudo-information.

Without using a user's real identity, the design and unplementation of

authentication and authorisation services for pseudonym systems become a challenge.

Currently, there are two basic approaches to address this problem. Both do rely on a

universally trusted authority to implement these services. For example, this is exactly

the strategy adopted by the IBM's IDEMDC system [CH02]. Alternatively, one can

employ a distiibuted solution, such as the one used by tiie Shibboleth framework

[CE02]. Shibboleth, by itself, does not tie application developers to any specific

authentication mechanisms. Authentication in Shibboleth relies on the existing

security mfrastructure provided by individual participating organisations. After a

user has been authenticated by its origin organisation, depersonalised information is

sent to a foreign organisation to authorise the user to certain resources. In this sense.

Shibboleth provides a privacy-preserving authorisation to users.

2.3.6 Privacy through Negotiation

There are other approaches for privacy protection, such as using privacy policy

negotiation mechanisms. The focus of existing work aims to automate the policy

checking and negotiation processes. The success of these techniques often depends

on the "good faith" of service providers. In this approach, a user can specify their

privacy preference and negotiate with servers before a transaction begins. Currentiy,

the work in this area aims to provide standard ways for achieving policy negotiations

and examples using this approach include P3P [P3P01] and Appel [Appel02].

2.3.7 Privacy through Secret Sharing

Secret Sharing [Sha79, Bla79] is a classical security approach for ensuring the

confidentiality and availability of private information, such as long term signing keys

and personal private keys. With the use of secret sharing techniques, a secret, in its

simplest form - a number - is split into randomly generated shares which are

distributed to mutually independent participants. A threshold number of shares can

be used to reconstruct the original secret. The loss of secrets usually causes

18

CHAPTER TWO. COPING wrmATTACKS

catastrophic consequence. For example, the loss of signing keys of a Certification

Authority invalidates all the certificates issued whereas the compromise of the latter

leads to the potential for invasion of private/confidential conmiunication or data. For

example, tiie COCA system [ZSR02] and SINTRA system [CP02] use secret sharing

techniques to protect service private key(s).

Secret sharing has also been used to protect the privacy of authors in the

application of online pubUcations. For example, Publius [WRCOO] uses secret

sharing to provide privacy protection for authors when they publish documents

through the Publius system.

2.4 Private Information Retrieval (PIR): Model, Schemes, and
Extensions

This section presents the background on the PIR problem [CGKS95] and a survey of

PER schemes.

2.4.1 The PIR Problem

Consider a database query scenario [CGKS95]. An investor queries a stock share

database for the value of a stock share but s/he doesn't want to disclose the identity

of the specific stock of interest. This is the classical motivating example of the PIR

problem which is concerned with querying databases privately - without revealing

the identity (i.e. intention) of the specific data item of interest to the database owner.

2.4.2 The PIR Model

The PIR problem is often considered in the following model. The database is

modelled as a binary string x = x\...x„, where each bit represents a data item in the

database, the suffix is the index of each data item, and n is the size of the database.

The user knows an index / of a data item jc, and is interested in getting Xi. With a

single server, in order to protect the privacy of the user without leaking any

information about the identity to the database server, the user has to download the

entire database and perform the query locally [CGKS95]. Essentially, this result

states that it is impossible to obtain unconditional privacy protection with the use of a

single server. The communication complexity of this solution is 0(n). When a PIR

scheme has communication complexity 0(/i), it is a tiivial solution [CGKS95]. The

19

CHAPTER TWO. COPING WITH ATTACKS

communication overhead of this solution prohibits its practical usage. Also,

downloading is simply not a practical choice in some circumstances (e.g. patients'

data or paid services) due to the proprietary nature of data and/or cost issues.

Therefore, reducing communication complexity becomes one of the major issues in

the PIR research, that is, achieving non-trivial communication complexity becomes

one of the main goals in current PIR research.

PIR schemes are concerned about hiding the user's intention (i.e. the index /) firom

the server. PIR schemes should have less than 0(n) communication complexity.

From a practical point of view, the PIR problem has a wide range of applications in

tiie traditional security and privacy sensitive domains, such as banking, insurance,

and e-govemment. In such domains, a vast amount of research has been done in

protecting servers' privacy whilst users' privacy protection problems remain largely

open.

All PIR schemes consider a passive server attack model where the attacker who

controls the server (s) can only passively observe the processing on the server(s) and

messages exchanged between the user and the server (s). In the passive attack model,

PIR schemes need to consider only the privacy of users. However, as indicated in

Section 2.2, the passive attack model is a restiicted version of an active attack model,

where an attacker is assumed to be only interested in finding out the identity of the

data item but follows the protocol correctly.

2.4.3 Information Theoretic PIR Schemes

A high level overview of a PIR scheme is described as follows to explain tiie

principle of PIR schemes. A PIR scheme consists of three algorithms: a query

algorithm, an answer algorithm, and a reconstruction algorithm. At first, the index of

the data item - an integer - is first transformed into a sequence of numbers following

the query algorithm by the user. The sequence is then sent to the server and used as

inputs for the answer algorithm. The answer algorithm processes through each record

in the entire database and produces an answer. Based on the answer returned, the

user executes the reconstruction algorithm to produce a result. Since every record in

the database is involved in the server side processing, the server has no way to figure

out the information about the intended data item. Therefore, in principle, all PIR

20

CHAPTER TWO. COPING WITH ATTACKS

schemes are based on the privacy through anonymity approach for protecting users'

privacy.

In order to achieve non-trivial communication complexity, two approaches have

been derived to achieve better communication complexity while still maintaining

privacy protection for users. The first approach is to relax the single server

requirement to the use of multiple servers. Usmg this approach, the PIR research has

been explored along two directions. One can either use multiple replicated servers

(i.e. replicas) to store identical copies of data. This is the approach used by [CGKS95,

Amb97, BIOl, BIKR02]). Also, auxiliary servers have been introduced to store

randomised data before a PIR scheme begms. This is the approach used by [GGM98].

hi the repUcation based PIR schemes, such as [CGKS95, IK99, BIOl, BIKR02,

Amb97], identical database servers are replicated on separate nodes of a distiibuted

system. It is assumed that communication between the repUcated servers is restiicted.

No more than ^ (/ ̂ 1) servers are allowed to communicate with each other so that the

servers cannot collude together in trymg to violate the user's privacy. Except in one

case [CG97], all replication based PIR schemes provide privacy guarantee

vinconditionally. No information about the user' intention can be obtained by the

servers.

In the replicated-server setting, Beimel et. al. in [BIKR02] construct several

information theoretic PIR schemes with less than 0(n'̂ ^^*''̂) communication

complexify for ̂ > 3. These are the best PIR schemes in a repHcation setting when

this thesis is written. However, a small number of replicated servers is particular

interesting because they place less demand on the deployment setting. At the time

this thesis is written (i.e. September 2004), the minimum number of servers required

by PIR schemes is two. The best communication complexity of two-server PIR

schemes is 0{n^'\ which is achieved in [CGKS95, BIKR02].

2.4.4 Computational PIR Schemes

Alternatively, the second approach relaxes the privacy requirement from

unconditionally secure to computationally secure. Hence, computational PIR (cPIR)

schemes are constiaicted based on computational assumptions. With this approach,

one can construct single-server PER. schemes to protect the users' privacy. Loosely

speaking, unconditional privacy means the queries cannot provide any useful

21

CHAPTER Two. COPING WITH ATTACKS

information to computational unbounded servers with respect to the intention of the

user. The implication of this approach is that the attacker who controls the server has

to be assumed to be computationally bounded.

Chor and Gilboa [CG97] proposed the first cPIR scheme with the use of (at least)

two non-communicating servers and this scheme assimies the existence of pseudo

random number generators. The communication complexity of this scheme is 0(n^

communication complexity for any positive real number £> 0. The communication

restriction and the use of multiple servers are essential in the first cPIR scheme since

the collusion between servers can completely reveal the user's privacy.

In the same year, Kushilevitz and Ostrovsky [K097] proposed the first single-

server cPIR scheme based on Quadratic Residuosity Assumption [GM84]. The work

first shows the possibility of getting rid of the multiple-server setting with the use of

a well estabUshed cryptographic problem. The communication complexity of their

scheme is also 0(n% Yamamura and Saito in [YS03] propose a single-server cPIR

scheme of communication complexity 0(n% where c > 0, based on the subgroup

membership problem.

Subsequently, Cachin, Micali, and Stadler [CMS99] presented the first single-

server cPIR scheme of polylogarithm communication complexity based on a

somehow less well-known number theoretic assvimption O-hiding assumption.

Recent studies show that some existing single-server PIR schemes already have

close to optimal communication complexity [WW04]. As long as these problems are

still hard to solve in a computational sense, the user's privacy is preserved. The

relaxation of the privacy requirement in computational PIR schemes is an important

step towards a single server PIR scheme which is more interesting in practice due to

the replication setting of unconditionally secure PIR schemes.

2.4.5 PIR Extensions

The PIR model has been extended along several directions. Symmetric PIR schemes

(SPIR) [GIK+98] were proposed to protect both the privacy of database servers and

users. SPIR schemes ensure that a curious user (even not correctly executing a SPIR

scheme) cannot obtain extra information firom the database except the single bit of

the data item originally intended for.

22

CHAPTER TWO. COPING WITH ATTACKS

Gertner et. al. in [GGM98] propose a random server model for achieving

unconditional privacy protection without using replication. Secret sharing schemes

[Sha79] are used to generate the contents of a number of auxiliary databases

randomly based on the content of the original database. Even an attacker can observe

the processing on all auxiliary databases; no information about the user's privacy

wil l be revealed. However, the attacker is assumed to not be able to access the

original database. To complete a PIR scheme, the user needs to access all databases,

including the original and auxiliary ones.

The PIR model assumes that the user knows the index of the data item of interest.

In practice, the index information is not always readily available. A database is

typically presented by keywords. Chor et. al. [CGN98] extends the PIR model with

added keyword search capability. In their schemes, the database owner is required to

insert a sequence of keywords (binary strings) into a data structure which supports

the search fimction. The user and the database collaboratively finish a sequence of

computations in a fixed number of rounds. The result of each computation

determines the address of the keyword to be fetched in the next round. The address is

used to perform a PIR scheme to fetch the data item accordingly. No modification of

the database and underlying data structures is required to support these schemes.

These extensions are based on the standard binary bit model and a passive server

attack model. Consequently, all database servers are assumed to execute protocols

correctly. They all add a constant level of complexities (botii conomunication and

computation) to the standard PIR schemes. However, the levels of complexities are

added at different stages of PIR processing. The random server model based PIR

schemes require an introduction of a number of additional auxiliary servers with

restricted communication among them before the PIR processing begins.

The keyword-based PIR schemes need a modification of the original database to

support the search facility and a constant number of execution rounds is needed to

complete a keyword-based PIR scheme. Finally, the databases in SPIR schemes do

not need to be pre-processed. However, the communication and computation

complexity of information-theoretic SPIR schemes are much better than those of

computational SPIR schemes [MalOO pp. 111]. But computational SPIR schemes are

more attractive in practice due to their single server setting.

23

CHAPTER TWO. COPING WITH ATTACKS

Al l these extensions introduce complexities on top of those of standard PIR

schemes, such as those presented in [CGKS95]. Hence, they may be too costly to be

implemented.

2.4.6 P M amd Active Attacks

The standard PIR model assumes a passive server attack model. In the multiple-

server PIR schemes, only up to a threshold number of servers are allowed to collude

together to perform passive attacks. In the single-server PIR schemes, the server is

also restricted to a passive attack model. In reality, once an attacker occupies a server

or a threshold number of servers, active attacks may be conducted. With the use of an

active server attack model, PIR schemes need to consider not only the privacy of

users but also tiie correctness of results.

The PER. problem has been extended to deal with two types of effects on the

servers caused by active attacks: crash failures and maUcious (Byzantine) failures.

Beimel and Stahl in [BS02] refer to the PIR schemes in these failure models as

robust PIR schemes. Yang, Xu, and Bennett in [YXB02a, YXB02b, YXB03] also

consider the same problem under these failure models, and the PIR schemes

developed are called attack-tolerant (fault-tolerant) information retrieval schemes.

Due to the use of the active attack model, these PIR scheme are required to guarantee

the privacy of users and ensure the availability and correctness of results even in the

presence of failures.

2.4.7 Hardware-toased PIR Schemes

In [SSOO, SSOl], two researchers Smith and Safford from the IBM Watson

research centre initiate hardware-based PIR research and propose several PIR

schemes based on secure co-processors. With the same goal as the research

conducted in this thesis, hardware-based PER also aims at practical implementation

and deployment of PIR schemes. This section only provides an overview of

hardware-based PIR and a comparison between these schemes and the ATIR

schemes presented in this thesis appear in Section 3.4.2.

A typical architecture of hardware-based PIR schemes is depicted in Figure 2-3,

which is adapted from the system architecture presented in [IS03]. In order to hide

the identity of the intended data item, a host is required to execute the proposed PIR

schemes inside secure co-processors which are responsible for two tasks: shuffling

24

CHAPTER TWO. COPING WITH ATTACKS

the database regularly and performing retrieval operations. In some other

implementations [Aso04], all the tasks are assumed to be performed within one

single co-processor.

There are conceptually two types of secure co-processors: a shuffler and a PIR

server. A shuffler periodically shuffles the records in the database. The shuffled

records are subsequently encrypted and put back to the database by the shuffler.

During shuffling, no PIR operations are allowed to be performed on the database.

The PIR server accepts users' queries, retrieves information from the database,

and returns encrypted results back to the client. Each record in the database needs to

be iterated through. (Otherwise, it is clear that the intended data item is not those

"untouched" records.)

Encryption keys have to be shared among each pair of secure co-processors and

between the client and the PIR server. The shadowed boxes in the figure depict the

places where data is encrypted. The dotted boxes represent the places that

encryption/decryption operations take place. The information exchanged between the

client and the secvire co-processors are encrypted so that the server cannot obtain the

information exchanged. The users' privacy is preserved given that the secure co-

processor(s) is tamper-resistant.

25

CHAPTER TWO. COPING WITH ATTACKS

cleartext DB shuffled and encrypted DB

1 *
shuffler PIRserver Secure

co-processors

Host

elKiry^tfoWdiBCryptio'ii

L

Client

User

Figure 2-3 An Architectural Overview of Hardware-based PIR Schemes

2.5 Attack Tolerance: Thwarting Active Attacks

Prevention-based approaches, such as the privacy protection techniques discussed in

Section 2.3 and 2.4, are not suflBcient to solve the problems caused by attacks, hi

most real world scenarios, the information collected through passive attacks is often

used to launch active attacks against a system [Shi04]. To effectively deal with

attacks, another approach - attack tolerance is therefore introduced and applied to

system design to prevent the security properties of a system being violated.

This section is organised as follows, hi Section 2.5.1, the term attack tolerance is

defined. From Section 2.5.2 to Section 2.5.4, we review three commonly used

approaches for achieving attack tolerance in designing and deploying distributed

systems, hi reality, the effectiveness of these approaches heavily relies on the

validity of the assumptions these approaches make about the deployment

environment. Hence, in Section 2.5.5, a number of commonly used assumptions

made by attack tolerant systems are examined and critically discussed. The aim is to

highlight the risks of making invalid assumptions and to understand the limitations of

the existing attack tolerance approaches.

26

CHAPTER TWO. COPING WITH ATTACKS

2.5.1 Definmg Attack Tolerance
Attack tolerance is a systematic approach for ensuring the delivery of correct

services in spite of attacks. Specifically, the aim of using attack tolerance approaches

is to guarantee the security properties of a system despite the occurrences of attacks.

The aim of an attack-tolerant system is to prevent security faults within some

components in the system from manifesting themselves as a system security failure.

Particular emphasis within attack tolerance is placed on the measures of dealing with

attacks. As indicated in the attack models presented in Section 2.2, passive attacks

violate the confidentiality property. Hence, they lead to information disclosure. In

contrast, active attacks may violate all security properties and render service

disruptions (e.g. unavailability of correct results). The design goal of such systems is

to provide continued availability and gracefial degradation of system services in the

presence of attacks, maximising the residual capacity available to legitimate users.

Attack tolerance research represents an effort in combining and unifying existing

security and fault tolerance techniques.

2.5.2 Attack Tolerance through Secret Sharing

Apart from being used to defend against passive attacks. Secret Sharing techniques

[Sha79, Bla79] have been widely used in the design of attack-tolerant systems to

protect secret information, such as long-term encryption keys and private data

storage, and to ensure service availability in the presence of attacks.

The security and availability of the information is assured so long as the number

of corrupted parties does not exceed a predefined threshold. Secret sharing is a

cryptographic primitive having been widely used to protect the security and

availability of secret information (see, for example, [Cac03, ZSR02, CP02, CS03]).

Secret sharing consists of three parts: secret splitting, secret distribution, and

secret reconstruction. In its simplest form, a secret sharing scheme is a threshold

scheme by which a secret is randomly split into mutually independent shares which

can be distributed to mutually suspicious participants. A standard setting of secret

sharing is to employ a trusted dealer who performs the secret splitting.

Secure channels are required by secret sharing schemes to ensiire that each share

remains secret to other participants during transit. Since participants do not trust each

other, shares are kept secret until secret reconstruction. When the shares are

disfaibuted, the original secret wi l l be destroyed. Since each share is independent

27

CHAPTER TWO. COPING WITH ATTACKS

from each other and the splitting is random, each individvial share reveals no

information about other shares or the secret. That is, none of the participants has any

knowledge of what other people have.

There is a reverse process - secret reconstruction. This process is usually done by

another trusted agent who pulls all the shares from an authorised set of participants

for recovering the secret.

Most of existing secret sharing schemes rely on a synchronous communication

model [Mul03]. Due to the increasing popularity of Internet based attacks, recent

research in this area focuses on extending the previous techniques in an

asynchronous setting, such as the Intemet. Secret sharing techniques, in particular

verifiable secret sharing techniques [Fel87], have been extended to an asynchronous

setting to deal with active attacks in an asynchronous environment.

The COCA system [ZRS02], an online certification authority designed and

developed in the University of Cornell, first propose the Asynchronoxis Proactive

Secret Sharing (APSS) protocol. The aim of the COCA system is to protect the

confidentiality of the signing key of an online certification authority and ensure the

service availability even in the presence of active attacks to an asynchronous system.

The Delta-4 project developed a distributed fault tolerance framework using secret

sharing protocol to store sensitive information into non-trusted sites/servers for open

distributed systems [DBF91]. The Fragmentation-Redundancy-Scattering (FRS)

technique was developed for tolerating both accidental and intentional faults

[FDR95].

2.5.3 Attack Tolerance through Threshold Cryptography

Threshold cryptography is a non-trivial extension of secret sharing by allowing the

cooperation of a number of mutually suspicious participants to complete a task (e.g.

signature signing) without revealing the secret (e.g. a signing key). For example, in a

tiireshold signature scheme, a secret signing key is shared among n participants and

each of them can generate shares of signatures given a message. A valid digital

signature can be generated from any t+ I valid signature shares and its validity can

be verified by a publicly known verification key.

The Stanford's Intrusion Tolerance via Threshold Cryptography project provided

tools and infrastructure for building intrusion tolerance applications, specifically a

28

CHAPTER TWO. COPING WITH ATTACKS

Certificate Authority based on distributed RSA signatures, embedded into a web

server [WMB99].

The IDA algorithm [Rab89] has been appUed to protect document integrity in the

e-Vault system [ICG+98], an online, distributed data repository developed at IBM

Watson Research. Shared distributed digital signatures are generated by the e-Vault

system and given to users as a proof of proper storage of documents. The design goal

of the e-Vault system is to guarantee the secure storage and retrieval of data in a

distributed storage system.

In the EU MAFTIA project, the SINTRA system [CP02, CS03] is designed and

implemented to protect critical online services such as DNS. SINTRA is based on a

variant of threshold cryptography.

2.5.4 Attack Tolerance through Proactive Security

Traditional security mechanisms often assumed that all the security-critical

components of a system must be secure throughout the hfetime of a system. This

goal is extremely hard to achieve in real world applications. Instead, the proactive

security techniques, as proposed in [Jar95, FGM+96, CGH+97, HJJ+97], are based

on the assumption that an attacker can never compromise more than t components

during a time period. Provided a sufficient number of critical components in the

system are secure, the overall system security can be guaranteed even when some

components have been compromised. Proactive security mechanisms consist of two

operation stages: distribution of secrets, and periodic refreshment of secrets. For

example, with the use of secret sharing, shares of a secret can be randomly generated

and distributed to a set of components in a system. These shares can be refreshed

periodically without the need to reconstruct the original secret. Notable examples of

using proactive security include AT&T's Omega project [RFL+96], Byzantine Fault

Tolerance (BFT) [CL99], and COCA [ZSR02].

In the AT&T's Omega project [RFL+96], the principle of proactive security was

used to build a highly resiHent and distributed key management service - the Rampart

Toolkit - which can tolerate the arbifrary corruption of some of the servers by an

attacker.

Casfro and Liskov [CL99] present a practical Byzantine Fault Tolerance (BFT)

algorithm in an asynchronous setting with the use of symmetric key cryptography.

29

CHAPTER TWO. COPING WITH ATTACKS

BFS - an implementation of BFT on NFS performs very well i f no failures occur.

BFT heavily rehes on proactive security to recover compromised servers. Periodic

refi-eshment of secret keys mvalid the information obtained by attackers.

The Cornell Online Certification Authority (COCA) [ZSR02] also uses the

principle of proactive security to thwart against active attacks. A l l these systems use

the proactive security mechanisms to recover compromised components.

The implementation of proactive security in all these systems relies on the

availability of tamper-resistant hardware (e.g. secure co-processors) to store

encryption and signing keys. A l l cryptographic keys are stored within the co­

processors and all security sensitive operations are assumed to be performed by the

hardware. Hence, even i f a server is compromised, the security of the keys, such as

the confidentiality of encryption keys and the integrity of verification keys, can still

be maintained.

An alternative approach is suggested by Zhou [ZhoOl] to enable proactive security

without the use of secure hardware, hi this approach, trusted operators are employed

to manually propagate security keys through secure offline channels. However, this

approach seems even more restrictive than the secure-hardware approach due to the

compulsory involvement of regular manual reconfiguration.

2.5.5 Commonly Used Assumptions

This section examines some common assumptions made by attack-tolerant systems,

and aims to highlight the risks of making invalid assumptions and point out the

limitations of existing attack-tolerant approaches.

The Soundness of Security Parameters

When a system incorporates cryptographic algorithms in its design, two assumptions

are often considered. The first assumption is to assume the security parameters

chosen for these protocols are sufficient, and that these protocols have been

implemented properly to ensure the validity of tiieir security properties. It is known

that some cryptographic algorithms can become vulnerable due to badly chosen

security parameters and/or poorly implemented algorithms [AndOl, Cop84]. This

assumption is only justifiable when parameters are carefiiUy chosen and algorithms

are properly implemented.

30

CHAPTER TWO. COPING wrmATTACKS

The Use of Probabilistic Cryptographic Algorithms

The second assumption assumes cryptographic algorithms employed in the system

design are perfectiy secure, which is referred to as secure cryptographic algoritiim

assumption. This is probably the most commonly used security assumption with

which numerous distributed systems are designed. By perfectly secure, it means that

cryptographic algorithms ensure security properties with a probability one. In reality,

tiiese algorithms are often probabiUstic because most of them are based on number

theoretic assumptions which are probabilistic in nature. For example, all systems

employing digital signatures rely on this assumption to check message integrity.

Corrupted messages can only be identified within a certain probability, and there is a

probability that a corrupted message cannot be identified. Therefore, this assumption

is also referred to as a perfect failure detector assumption, because probabilistic

cryptographic algorithms are freated as deterministic. Some example systems using

tills assumption include COCA [ZSR02], EFT [CL99], and SINTRA [CP02].

However, the soundness of this assumption depends on the validity of

computational assumptions made about signature algorithms. When an assumption of

such becomes no longer valid, the corresponding cryptographic algorithm wil l not be

secure. Hence, it is necessary to know the risk of relying on this assumption.

Risks of Using the Secure Cryptographic Algorithm Assumption

The rapid development of cryptanalysis often has great implications of invalidating

previously known-to-be sound cryptographic assumptions. Two examples of

commonly used cryptographic assumptions are the difficulty of factorising integers

and the collision-resistant property of hash functions. The popular RSA cryptosystem

[RSA78] is based on the former whereas MD5 and SHA hash functions are based on

the latter.

31

CHAPTER TWO. COPING wrmATTACKS

In the past, it was believed that the probability of producing collided hashes was

negligible and it took millions of years to break the computational assumptions i f

parameters were chosen properly. But now, Wang et. al. [WLF+04] have

demonsfrated that breaking MD5 takes just a matter of hours using a standard laptop

computer in the CRYPTO'04 conference! According to a report on CRYPTO'04

written by Edward W. Felten,

"Where does this leave us? MD5 is fatally wounded; its use will be
phased out. SHA-1 is still alive but the vultures are circling. A gradual
transition away from SHA-1 will now start."

This latest breakthrough in cryptanalysis of hash functions certainly shakes the

foundation of collision-resistant property of hash fimctions [McC04] because hash

functions are widely used in numerous practical secxirity protocols. For example, the

Apache web server products and Sun Microsystem's Solaris products use MD5 to

verify the integrity of their software distributions.

Hash fimctions are the foundation of many areas of modem cryptography, such as

digital signatures, encryption, authentication, and file integrity checking. For

example, digital signatures heavily rely on hash functions to produce collision-free

digests of different messages. Nearly all secure and fault tolerant systems rely on

digital signatures to detect message corruption during transmission, or to prevent

corrupted parties from modifying messages sent by correct parties in group

conmiunication protocols. The importance of the cryptanalysis result means that

attackers may be able to fabricate a piece of corrupted message to be validated as a

correct one and hence the authenticity of the message may no longer be guaranteed.

Therefore, the second assumption is not always sound and it should be often revisited

when designing computer systems.

Secure Bootstrapping Assumption

Assumptions are also made in the implementation stage of a system. For example,

the implementation of security services often relies upon the off band (i.e. cruiser

service) distribution of security keys (e.g. encryption and signing keys). When a

system is setup, a secure bootstrapping process is often assumed to exist to distribute

a set of secret information (e.g. private keys) to each participant. Examples include

COCA [ZSR02], BFT [CasOl], and SINTRA [CP02]. A l l these systems assume a

32

CHAPTER TWO. COPING wrm ATTACKS

secure bootstrapping process to perform initialisation. The consequence of this

assimiption is that the system assumes a static membership among its participants.

Extira services are needed to support dynamic addition and removal of members.

Currently, there is no known way to do that without reinitialising the system [Cac04].

Secure Hardware Assumption

The secure bootstrapping assumption sometimes is replaced by the secure hardware

assumption. Secure hardware (e.g. tamper-resistant secure co-processors) is used to

process critical security operations and store cryptographic keys (e.g. long term keys).

This assumption is often required for the purpose of proactive security in order to

defend against malicious attackers. After rebooting the system from scratch, the

confidentiality and integrity of the secret information are still preserved because of

secure hardware.

However, a system still needs a way to distribute secrete information to secure

hardware when the system initialises. This is often achieved with the employment of

trusted human operators who manually set up the system. Once initial keys are

distributed securely, fiuther keys can be generated via various authentication and key

agreement protocols. There remain many possible attacks which may invalidate the

security of tamper-resistant hardware when they are used in practice (for a

comprehensive description of these attacks against secure co-processors, see

[AndOl]).

2.6 Summary

The quest for dependable services was, is, and wil l continue to be a major focal point

in designing, implementing, and deploying modem distributed systems. However, as

the scale of a distributed system increases, so does the number of components in the

system, therefore, so does tiie probability that some components wi l l fail [Sch93].

Due to the ever rising number of malicious attacks against computer systems,

delivering dependable services has never been so challenging. To understand the new

challenges and limitations of existing approaches, this chapter takes a snapshot of the

state-of-the-art techniques and systems for coping with attacks.

To set the context of the thesis, we first present a generalised conceptual system

model for distributed systems. The model is absfract enough to capture the essence of

33

CHAPTER TWO. COPING WFTHATTACKS

a distributed system despite its size and dynamicity. This is followed by an in-depth

discussion on two types of attack model: a passive attack model and an active attack

model. To defend against passive attacks, a prevention-based approach - privacy

protection - can be used.

However, in most realistic execution environments, active attacks wil l be

encountered. Due to the size, complexity, and dynamicity of modem distributed

systems, a prevention-based approach is not always effective and is often costly for

keeping attackers outside the system. Hence, the attack tolerance design paradigm is

needed to cope with the situation by leveraging a combined use of secure and fault

tolerant techniques.

Hence, the last part of this chapter reviews the common attack-tolerant techniques

and critically examines some commonly used assumptions by attack tolerant systems.

34

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

Chapter 3 Attack-Tolerant

[nformation Retrieval (ATIR)

This chapter presents two rephcation-based Attack Tolerant Information Retrieval

(ATIR) schemes which are the theoretical core of this thesis, hi Section 3.1 we

highlight the major considerations for constructing a practical ATIR scheme. In

Section 3.2 we describe the system model that ATIR schemes aim to deploy and

formally define ATIR schemes. In Section 3.3, the detailed algorithms of the ATIR

schemes are described together with their communication complexity analysis and

formal proofs. Section 3.4 compares ATIR and several relevant PIR schemes.

Section 3.5 discusses the validity of ATIR assumptions, and compares ATIR with

other secure and fault tolerant schemes.

3.1 Introduction

The core of the PIR problem is about privacy protection with non-trivial

communication complexity. The use of multiple servers (e.g. repUcated servers) is

needed for any PER. schemes i f information theoretic privacy is required [CGKS95].

In all existing multiple-server PIR schemes (e.g. [CGKS95, Amb97, IK99, GGM98,

BIOl, BIKR02, BIMOO]), the availability of all servers is needed to ensure the

correctness of a result. Hence, the standard PIR problem has to use passive attack

models. Such a model basically assumes that all servers are available all the time and

execute predefined protocols correctly. This assumption places significant

restrictions on the types of attacks that an attacker may perform.

Once occupying a PIR server, an attacker may conduct active attacks against a

PIR service. The types of active attacks may include a combination of the following:

crashing servers, blocking communication links, sending wrong replies, or simply

deviating firom predefined protocols in an arbitrary way. Unlike traditional replies

fi-om servers, PIR replies are not straight answers (otherwise, a server knows the

user's intention) and a reconstruction algorithm is needed to "recover" the actual

35

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

results. Hence, the consequence of successful attacks may not be easily detectable

using traditional error detection techniques because attacks are usually assumed to

occur during message fransmission rather than server side processing.

The ATIR schemes, introduced in this chapter, aim to solve the PIR problem

based on an active attack model. In these schemes, apart from reducing

communication complexity, replication is also used as a means for dealing with

active attacks. ATIR schemes have two main requirements. First, since an ATIR

scheme is a generalisation of a PIR scheme (when there is no faulty server in an

ATIR system), it should have a non-trivial communication complexity (i.e. less than

0(n), where n is the size of the database). A trivial solution (i.e. through database

downloading) would be sufficient. In theory, the communication complexity of a

replication-based PIR scheme can be reduced when more servers are used.

In practice, replication is always associated with deployment issues. The need for

a large number of replicated servers often restricts the scalability of a system and

limits the applicable application domains of a PIR scheme. Moreover, as the number

of rephcated servers increases, the actual number of bits exchanged over the network

also increases, which, to some extend, contradicts with the original motivation of

using replication. To a great extent, the practicability of ATIR schemes is inversely

proportional to the number of servers required. Therefore, we are particularly

interested in ATIR schemes which can provide non-trivial communication

complexity with a small number of servers, which is the second requirement.

Before presenting the ATIR schemes, we introduce the preliminaries. Specifically,

we describe the system model of tiiese schemes and formally define ATIR schemes

in the next section.

3.2 Preliminaries

3.2.1 Basic System Model

Consider a distiibuted system implementing a database query service. The system is

comprised of one client and k repUcated servers ^ i , . . . , 5*. There can be more clients

but tiiey invoke the service independentiy from each otiier. For simplicity of

presentation, we assume there is only one client in the system. These components run

on separated processing nodes connected by a communication network: there are k

pairs of one-to-one independent communication channels between the client and

36

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

each server. The client and the servers communicate with each other by exchanging

messages. The message from a client to a server is called a query whereas the

message in the opposite direction is called an answer.

These channels are authenticated but are not assumed to be secure. That is, two

commimicating parties in this network are certain of the identities of each other. But

neither message confidentiality nor integrity exchanged through these channels is

assumed. The state of a channel is determined by the state of the server it attaches to.

The possible states of a server shall be elaborated in Section 3.2.2.

The system assumes a synchronous model of computation, that is, there exist

known boimds for both the execution speeds of the servers and message delays.

Specifically, we assume that each message is received within < t̂ime units after being

sent.

Database Model

In normal circumstances, each server has an identical copy of a database. The

database is modelled as a character string x = x\X2.. .x„, where n is the number of

records in the database. Representing a record in the database, each character is

considered to be an integer taken from a certain integer set {0, 1, X), that is,

Xj & {0, \, X), where j = 1, n. The subscripts represent the index of the

records in the database. For example, in extended ASCII encoding scheme

[IS08895], each character is associated with an integer taken from the set

{0 ,1 , . . . ,255} .

An Overview

Before going any fiirther, we present an overview of how an ATIR scheme works.

Suppose a user has an index / and is interested in obtaining the character jc„ where

I e { 1 , n}. The user invokes the service through a client by giving i as an input

and then awaiting a result res. The service should have two properties. First, it

protects the privacy of the user (i.e. the intention) through keeping the input / secret

from the servers. Second, it ensures the delivered resuU to be correct, that is, res is

indeed the intended character.

37

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

Let r denote a set of local random integers generated by the cUent and Lr be the

number of integers in the set. Based on i and r, the client produces k sets of random

and independent numbers to form queries, using k query algorithms Q\, ...,Qk- The

queries are denoted hy q\, ...,qk- Let 9 be the query which has a maximum number

of numbers and we denote this number be Lg. The randomness and independency of

the queries ensure that the servers carmot derive usefiil information about the input.

The queries are sent to the servers, respectively. Based on x and qj, the server Sj

produces an answer a, by executing an answer algorithm Aj, where j e {I, k}.

aj is sent back to tiie client. Similarly, let a be the answer which has a maximum

number of numbers and we denote this number be La.

Based on r, i, and some of the answers, the client repeatedly executes a

reconstruction algorithm 9t to produce results until a result is deemed to be valid. A

result can be in either of the two states: valid or invalid. A vahd result is in the set

{0, 1, X}. Otherwise, it is invalid. Valid results are fiirther divided into two

groups: correct results and incorrect results. The possibility of reconstructing valid

but incorrect results is characterised by a parameter - undetected error rate £ £ is the

probabiUty of the occurrence of valid but incorrect results. An error detection

function is employed to distinguish valid results fi-om the invalid ones. Together, the

reconstruction algorithm and the error detection fimction constitute a result

verification algorithm 3 which verifies the correctness of the results and produces an

output for the user.

Computation

Al l the computations involved in the above algorithms are performed over a finite

field Zp, where is a prime number and p > max{Xle, k, X\, where e> 0. Combined

with the database model, we also have x e {0, 1, X}" c Zp". As a finite prime

field, Zp can be denoted by the set {0, 1, ...,p - 1}. It is known that the operations

over a finite field are closed, i.e. the results of addition, multiplication, subtiraction,

and division, are still elements of the finite field [LN83].

ATIR schemes are based on tiie arithmetic of finite fields. The client calculates the

order of the field, i.e., p, based on the e specified by the user and the valid range of

database characters, i.e., X. p is determined before the query algorithm starts and is

used by all the finite field computations in ATIR schemes. Since £is specified by the

38

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

user, p can be determined on a case-by-case basis depending on the user's

requirements. The client informs the servers about p along with the queries. For

clarity of presentation, the algorithm for calculating p is deferred to Section 3.3.4

along with the presentation of an error detection function. Before that, we assume p

has been chosen properly.

3.2.2 Servers and At tack Models

We consider an active attack model for our system. In the system, a server can be in

one of the four possible states: correct, curious, faulty, and curious-and-faulty.

A correct server follows predefined algorithms correctly and is not interested in

finding out the identity of the item being retrieving. A curious server executes

predefined algorithms correctly but attempts to violate the user's privacy. A faulty

server exhibits failures by not following the algorithms. The answer returned fi-om a

faulty server is refereed to as corrupted. A curious-and-faulty server exhibits failures

and attempts to violate the user's privacy. As akeady mentioned, the state of a

commimication link is determined by the state of the server it attaches to. For

example, an attacker may attack a link through eavesdropping. But because the

server it attaches to also is curious, we can simpUfy the presentation by treating the

link and the server as one. In our system model, there are little differences between

the effects caused attacks during transit and those caused by attacks during server

side processing. For simplicity of presentation, we assume the conmiunication links

are reliable and secure hereafter. Therefore, we ignore the description of

communication links in the remaining parts of the presentation when no confiision

can be caused.

3.2.3 System Assumptions

In this system, three assumptions are made: 1) there are no more than /, where t>\,

curious servers who collude together to violate the privacy of the user; and 2) the

number of faulty servers is bounded by / where k > t + f + \, f < t\ ?>) Hoe client

remains trusted throughout the lifetime of the system: the client does not collude with

any servers and performs operations correctly. In Section 3.5, we shall discuss the

issues of how to realise these assumptions and the validity of making these

assumptions. These assumptions govern all aspects of our system model in the

remaining discussion. A curious-and-faulty server coiuits as one curious server and

39

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

one faulty server. The first assumption implies that there can be many independent

groups of colluding servers in the system so long as the maximum number of servers

in each group does not exceed t. As a special case, each individual server in the

system can be curious. The second assumption defines the fault tolerance capacity of

the system. When/is zero, the system provides a PIR service.

A faulty server may exhibit coordinated arbitrary and/or malicious behaviours

with other faulty servers under the control of an active attacker. For example, an

attack may control the faulty servers to: crash, stop responding, modify the content of

controlled databases in a coordinated way, and/or deliver purposefixlly manipulated

answers. Apart fi-om conducting the above attacks, the attacker may control curious-

and-faulty servers to exchange messages with other curious servers, attempting to

find out the user's intention. There is no restriction on the computational capability

of the attacker. Hence, the user's privacy is guaranteed in an information theoretic

sense. In short, the attacker can choose whatever strategies they like to attack the

servers and perform attacks in the way they decide so long as the assumptions of the

system are satisfied.

IXie to the synchronous system model considered, timeouts can be used to detect

the benign behaviours (e.g. crashed servers, send/receive omission) of faulty servers.

In particular, i f a cUent does not receive a response to a query message within

2^time imits after sending it, the client can conclude that the server is crashed.

Having defined the system model the ATIR aims to deploy, we are now ready to

define ATIR schemes.

3.2.4 Requirements of A T I R

Based on the system model, this section presents two definitions of an ATIR scheme.

Before going any fiorther, we first describe five requirements of an ATIR scheme as

follows:

1) Efficiency. ATIR schemes should have a non-trivial commimication

complexity.

2) Privacy: ATIR schemes should maintain the privacy of the user in an

information theoretic sense.

3) Availability: ATIR schemes should ensure the availability of a correct result.

40

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

4) Safety : ATIR schemes should ensure the correctness of an output i f there is an

output.

5) Liveness: ATIR schemes eventually terminate.

The efficiency requirement is a fiindamental requirement for constructing ATIR

schemes. Without satisfying the efficiency requirement, a trivial but inefficient

solution with the use of k servers can be derived as follows, where k>2t+ 1. The

client can download all k databases and perform all operations locally without using

any other services. In this case, the privacy of the user is ensured because every

client operation is performed locally. Also, the client can identify the correct result,

for example, using majority voting techniques even in the presence of up to

t maliciously faulty servers. Due to the condition A: > 2? + 1, the client is guaranteed

to be able to get the correct result. Hence, the availability and safety requirements are

met. Because of the synchronous setting, the system eventually terminates.

The number of communicating bits this trivial solution is A: x n x log2X and the

communication complexity is 0(n). The communication complexity of the solution

grows linearly as the number of records increases. Therefore, to have a better

solution, ATIR schemes should have a lower than 0(«) communication complexity,

i.e., sub-linear communication complexity. In other words, using ATIR schemes

should be better than downloading all databases and executing the queries locally.

The privacy and availability requirements should be satisfied in normal and faulty

circumstances. In the system, the user's private input i is the information that the

scheme aims to protect. The privacy requirement ensures that the system keeps

I secret fi-om all rephcas whereas the availability requirement ensure that at least a

correct result can be reconstructed.

The safety requirement is important for fault tolerant schemes [Sch93]. In some

circumstances, no output is better than a wrong result because wrong results may

lead to disastrous and unpredictable outcomes. The Uveness requirement is essential

for any distributed schemes [Sch93]. Without satisfying this requirement, the system

may not stop and the user may wait forever for a result to be returned.

41

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

3.2.5 DefmitSonsof A T I R

This section presents two different definitions of ATIR schemes. The first definition

is probabilistic which ensures the safety requirement within a predefined probability.

The second definition ensures the safety requirement with a probability of one; hence

it is deterministic.

Definition 3.1 (probabilistic A T I R - pATIR) A {k, U / , e) pATIR scheme is an

algorithm tuple {Qu Qk, A\, A^, % 3), where k, t , f , efollow the definitions

given in Section 3.2.1. The algorithms are formally detailed as follows:

k Query Algorithms Q\,..., Qk'.

{ l , 2 , . . . , n } x Z / ^ h ^ Z p ^

k Answer Algorithms A\,...,Ak'.

{ 0 , l , . . . , ^ " x Z p ^ h^Zp^

A Reconstruction Algorithm 51:

z / ' - x (Z p ^ y " '

A Result Verification Algorithm 3:

(Z / h ^ { 0 , l , . . . , ^

The scheme should have the following properties:

a) Availability: For V x e { 0 , 1 , . . . , J f] , i e { 1 , 2 , . . . , « } , and r e Z^^",

3 J i , . . . , € {1,2, ...,k)

9t(r, I , As\{x, Qsi(r, i)),..., Ast + Qs, +i(r, 0)) =

b) Privacy: For V z,ye {1,2 n} and V si,..., St e { 1 , 2 , k) , mdQe

PKiQsxii, r) , . . Q s i i , r)) = Q)= Pr{{Qsx{j, r),..., QM, r)) = 0 ,

where the probabilities Pr's are taken over uniformly and randomly chosen r € Z^.

c) Safety: The scheme outputs with a probability no less than \-e.

d) Liveness: The scheme eventually terminates.

Except the description of safety property, the definition of a deterministic ATIR

scheme repeats most parts of that of the probabilistic one. For completeness of

presentation, we include the whole definition of a deterministic ATIR scheme here.

42

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

Definition 3.2 (deterministic A T I R - dATIR) A (k, t, f) dTIR scheme is an

algorithm tuple (Qi, Qk, Au A^, % 3), where k, follow the definitions

given in Section 3.2.1. The algorithms are formally described as follows.

k Query Algorithms Qu Qk'.

{ l , 2 , . . . , / l } X Z p ^ h ^ Z ; , ^

k Answer Algorithms ^ i , A k ' .

{0 , l , . . . , Jn"xZp^ i ^ Z p ^

A Reconstruction Algorithm 91:

Z / ' - x (Z p ^) ' " ' H>Zp

A Result Verification Algorithm 3:

(Z p) * H > { O , l , . . . , Z , 0 }

The scheme should have the following properties:

a) AvaUabiUty: For V x €{0 , 1, X}, i e { 1 , 2, n}, and r € Zp

3s i , . . . e {1,2, ...,k)

9l(r, i, As\{x, Qs\{r, i)),..., As, + Qs, +i(r, /))) = Xi.

b) Privacy: For V / , j e { 1 , 2 , n } and V s i , . . . , Si e { 1 , 2 , k } , and g e Z ^ ^

/'KCaiO', r),..., r)) = 0 = /'raaiO', r) , . . . , a^-, r)) = 0,

where the probabilities Pr's are taken over uniformly and randomly chosen r e Zp^'^.

c) Safety: The scheme outputs, i f there is an output, the intended result JC, with a

probability one.

d) Liveness: The scheme eventually terminates.

Similar to traditional definitions of PIR schemes (e.g. the ones presented in

[CGKS98] and [BS02]), the above definitions of ATIR schemes use information

theoretic privacy property, where a computationally unbounded attacker can gain no

information about the user's intention. However, ATIR schemes differ from existing

PER schemes in three major ways. First, the former is based on an active attack

model whereas the latter is based on a passive attack model. Second, the former uses

a generalised character string database model rather than the standard bit database

model. The generalisation is trivial in theory but important in practice. The

43

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

generalised model paves the way for implementing ATIR schemes on existing

database technologies. Third, ATIR schemes are required to satisfy safety and

liveness properties, which are not the requirements in defining PIR schemes.

We now explain the implications of the above properties for both definitions of

ATIR schemes. The availability property states that there exists at least one set of

servers whose answers can be used to reconstruct the correct result. It is important to

note that this property only ensures the existence of at least one correct result. In the

worse case circumstances (i .e. , / = t), there is only one correct result.

The privacy property means that fi-om any set of t queries, it is impossible to

decide which specific record the user is interested in since the joint distribution of

random variables Qsiii, r), Qs^i, r) is independent of i . hi other words, fi-om t or

less queries, it is theoretically impossible for a server or a group of servers to gain

any information about /. The privacy property of both ATIR schemes stems fi-om

existing PER. definitions (e.g., tiie one in [CGKS98]).

The result verification algorithms in pATIR and dATIR guarantee the safety

property. For a pATIR scheme, this property guarantees that the scheme can always

deliver a result and the result is the intended one with a probability of no less than

1 - £ Whereas for a dATIR scheme, it ensures that the outputted result, i f there is

one, is jc, with a probability of one.

The liveness property holds provided that k>t+l+f.

Definition 3.3 (Communication Complexity) The communication complexity C of

an ATIR scheme is defined as the total number of bits exchanged between the client

and all servers. Let Cq be the number of bits sent from the client to a server and Q be

the number of bits sent from a server back to the chent. The communication

complexity of an ATIR scheme is k (Cq + Cg).

3.3 Attack-Tolerant Information Retrieval Schemes

In this section, two ATIR schemes are presented, and the presentation is organised as

follows: Section 3.3.1 presents three basic algorithms for both schemes. Section 3.3.2

characterises the fault tolerance conditions for these schemes. Section 3.3.3 explains

the difficulties of applying conventional error detection mechanisms in ATIR.

Section 3.3.4 presents a probabilistic error detection fimction that is used to detect

44

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

incorrect results. Section 3.3.5 describes two result verification algorithms for

identifying correct results. Section 3.3.6 presents the formal proofs for both ATIR

schemes. Section 3.3.7 appUes a generic balancing technique to reduce the

communication complexity to 0{n^^).

Both ATIR schemes are one-round. That is, a client sends queries to k servers

respectively and each server replies with an answer. Based on some of the answers,

the client outputs a result. Both ATIR schemes are an extension of the polynomial

interpolation based PIR schemes presented by Chor et. al. [CGKS95] in an active

attack model.

3.3.1 Basic Algorithms

This section presents three basic algorithms used by both ATIR schemes: a query

algorithm, an answer algorithm, and a reconstruction algorithm. These algorithms are

based on the polynomial-interpolation PIR schemes presented in [CGKS95].

A Query Algorithm

This section describes a query algorithm which is repeatedly used to create k random

and independent queries. The core of the algorithm is the creation and evaluation of

polynomial-based query functions. The algorithm consists of four steps. In the first

step, the client transforms the user's input into a sequence of bits. In the second step,

these bits subsequently are used as the constant terms of the query functions. Note

that the other coefficiencies of the polynomials are random elements chosen fi-om the

finite field Zp. Once the query fimctions are ready, the polynomials are evaluated at a

set of distinct points independentiy chosen fi-om Zp. This is step three. Along with p,

the evaluated results are grouped into k sets of query tuples and these tuples are

subsequently sent to the servers, respectively. Figure 3-1 presents the details of the

query algorithm.

An Answer Algorithm

Upon receiving a query, a server executes the answer algorithm to calculate an

answer based on the answer function. Each answer function calculates the scalar

products of two tuples: a query tuple and a database tuple. Since the query tuple is

45

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

the query function evaluated at various points, an answer fimction can be expressed

as the following:
n

A(z) = ^Qjiz) • Xj(modp), where z is an indeterminate over Zp.

The answer functions are identical for all servers. Figure 3-2 presents an answer

algorithm for server Sd.

A Query Algoritl im for ATIR

Input: a prime number p\ an integer i , where / G { 1 , ..., n}; a set randomly and

uniformly chosen numbers r= { r n , ..., ru, .. . , . . . , r„,}, where r e Zp"'; and k

randomly and uniformly selected non-zero distinct numbers m = {mi, mj,

ntk} from Zp.

Output: ^ random and independent sets with elements in Zp as queries

1. Map / into a sequence of numbers. For every i e { 1 , n}, we define a

mapping fimction A,: { 1 , . . . , «} i-> {0, 1}, so that for every / e { 1 , n},

hiil) = l,ifl=i; otherwise, h,{l) = 0.

2. Generate n degree-/ polynomials as query functions:

Q^z) = h,il) + m-z + ra-^ + .. . + r/,z' (mod/?) for / = 1 , . . . , n,

where the constant term of the /-th polynomial is /i,(/) and z is an indeterminate

over Zp.

3. Evaluate the polynomials at point m\,m2,ntk and group the results into k

tuples: < Q\{md), Qiima),..., Qn{md)>, where d=\,...,k.

4. Sendp and the tuple < Qiintd), Qiinid), Q„imd)> as a query to replica Sd

fOTd=\,2, ...,k.

Figure 3-1 A Query Algorithm for A T I R Scliemes

46

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

A n Answer Algorithm for replica Sd

Input: a prime number p, a tuple Qd = <Q\d, ••, Qnd> e Zp" and a tuple x e {0,

I, ...,X}", where Qd is an tuple exfracted from the query for 5,;.

Output: an element in Zp as an answer.

1. Calculate the scalar product of the tuples Qd and x: ad=^ Qjj • Xj (mod p).
7=1

2. Send the element Ud to the cUent as the answer of Sd-

Figure 3-2 An Answer Algorithm for Replica Sj

A technical lemma about the randomness of answers is proved as follows. In

Section 3.3.6, this lemma wil l be used to prove that the error detection fimction

satisfies certain properties.

Lemma 3.1 Answers in ATIR schemes are randomly and uniformly distiibuted

over Zp.

Proof. First, we show that answers are randomly and uniformly distributed over Zp^.

Using the query fimctions, we expand the answer fijnction as follows:

A{z)='^Qjiz)xjimodp) =

n n n

X ' 0 ') - X j + z - C ^ 0 , •Xj) + ... + z'-(^r.-Xj)(mod;?),
y=i 7=1 j=i

n n
when z is fixed, A(z) is a fimction of the variables ^r^.^" • • •' Xo,' •

7=1 ' 7=1

Since all these variables are composed by random variables uniformly chosen

from Zp, A(z) is therefore a fimction randomly and uniformly distributed over Zp. As

a result, answers are randomly and uniformly distributed over Zp. Q.E.D.

A Reconstruction Algorithm

From the servers, the client receives at least f + 1 answers ai, ...,at+\. Based on any

^ + 1 out of the k answers from the servers, the client can perform a reconstruction

47

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

algorithm using the polynomial interpolation technique [CLRSOl, pp. 826]. Figure

3-3 presents the reconstruction algorithm.

Without loss of generality, let ai, ..., 0 , + 1 be a set of f + 1 answers that the client

chooses to reconsti:uct a result from. Correspondingly, the cUent chooses the t + I

distinct points mi, m,+1 that have been used to evaluate the query functions for

the servers 5 i , . . . , 5, +1. Then, we have the following set of point-value paks:

(mi, a i) , . . . , (m/+i , a,+ i).

Based on the polynomial interpolation technique, the reconstruction function

can be constructed as follows:

^ ^ z-m.
^(mod; ,) .

7=1 P=l "^j ~

The reconstructed value is the evaluation of the reconstruction flmction at point

zero, i.e., 91(0).

A Reconstruction Algorithm

Input: a set of r + 1 non-zero independent and distinct elements mi, ..., m, +1 e Zp

and a separated set of ? + 1 elements a i , . . . , a,+1 e Zp.

Output: an element in Zp as a result.

1. Evaluate the reconstruction function at zero point:

/+i /+i 0 — m
5R(0)=Xfl , -n ^ (m o d p) .

y=i p=i -
p*j

2. Output 91(0) as a result.

Figure 3-3 A Reconstruction Algorithm

3.3.2 Characterisations off Fault Tolerance

This section explains why the existing PIR schemes cannot cope with failures and

presents the characterisations of fault tolerance properties of ATIR schemes.

The correctness condition for the polynomial interpolation PIR schemes

[CGKS95] \sk>t+ 1, where f ^ 1. It is both necessary and sufficient for passive

server models because an attacker does not change the data and the answers returned.

48

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

This condition, however, implies only the existence of a correct result under a

passive attack model.

For crashed servers, it follows immediately that

A : > (r + l) + y ; w h e r e / > l and/>0.

In the above condition, the parameter t is independent of / This condition

guarantees both the existence of a correct result and tolerance up to/crashed servers.

It is also necessary and sufficient when up to / servers do not response (or up to /

answers from the servers are lost or intercepted by an attacker during

conmiunication). However, based on / + 1 or more answers returned, a client could

still reconstruct an incorrect resuh i f the faulty servers are malicious. In order to be

able to reconstruct a correct result we consider two mutually exclusive hypothesises

respectively.

Assumption 1: A l l the incorrect results derived from the wrong answers returned

disagree mutually.

This hypothesis is based on the fact that the wrong answers do not have fiiU

confrol over a reconstructed result provided that f<t. That is because t + \ answers

are required for a reconstruction, when/< /, at least one correct answer wil l be used

in the reconstruction. In the worse case scenario, t out of / + 1 answers are wrong and

the remaining one is correct. Hence, it is not possible that a result is reconstructed

from the wrong answers only. In other words, any reconstructed result is derived

fix>m at least a correct answer from a fault-free server. Hence, tiie probability that

two incorrect results are identical is significantiy low. Under Assumption 1, it

follows imder the maUcious server condition that i f two reconstructed results are

identical, they must be correct, provided that

k>{t + 2) + /where /< t.

Assumption 2: Incorrect results derived from the wrong answers returned may be

identical.

This hypothesis states the most general situation and in the worst case all the

incorrect results may be identical, hi order to tolerate up to / malicious faults, the

number of correct results must be always greater than that of potentially incorrect

results. We have thus the following theorem.

49

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

Theorem 3.1 Under Assumption 2 and the malicious server condition, an ATIR

scheme is / faul t tolerant i f ^, / and/satisfy that

ic':!f>cf.

Proof: Note that C*^}^ is the number of correct results and C'^^ - C'^}^ is the number

of incorrect results. The number of correct results must be always greater than that of

incorrect results, i.e. C^t/ > C{*' - C^t/ • Hence, this proves the theorem. Q.E.D.

In the worse case, a large number of replicas (approximately in the order of 5/)

are required. This is too costiy in practice. However, we notice that the condition

k>{t+\)+f where t >f, holds for the malicious server condition and Assumption 2

i f a perfect error detection algorithm exists and can be used to identify any incorrect

result. The next section explores the construction of such algorithms.

3.3.3 Why is E r r o r Detection Difficult in A T I R ?

In fault tolerance, the erroneous state of a system can be identified through

acceptance test techniques and/or comparison techniques [HW92]. The goal of error

detection is to prevent errors manifesting themselves as system failures. In an

acceptance test, a program is executed and its output is subject to a test. I f the test is

successfiil, the program continues as normal. Otherwise, an error is signalled. A

failed acceptance test is an indication of the presence of a fault. However, the use of

acceptance tests alone cannot identify what goes wrong. Combining with other

techniques, such as fault masking techniques, correct outputs can be identified and

the detected errors can be eliminated.

Traditionally, comparison techniques are mainly used to detect errors caused by

software design faults. Errors are detected through comparing the results produced

by two or more versions of a piece of software developed by independent organised

programming teams implementing a common system specification.

In security, an error often manifests itself as corrupted data. Digital signature

techniques, such as the RSA signature [RSA78], can be used to validate whether data

has been corrupted during transit. In data communication, garbled messages are

detected through error detection codes which typically include checksums and Cyclic

Redundancy Checks (CRC) techniques [Bla83].

50

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

A l l these techniques have their own limitations and not all these techniques can be

directly apphed to the ATIR setting. Acceptance test techniques are general in the

sense that they can be applied even i f there is only one single component in the

system. However, deriving generic acceptance tests is often difficult because the

design costs and the effectiveness of acceptance tests are apphcation dependent

[Kim95].

Comparison techniques are appUcation independent. For example, voting is a

typical comparison technique that can be applied to virtually any appUcations. But

voting is often perceived to be costiy due to multiple copies/versions of executions

required. Furthermore, the effectiveness of voting is subject to the elimination of

common mode failures [AK84]. In an ATIR setting, answers cannot be directly voted

on because they are boxmd to be different even for retrieving the same information.

Digital signatures alone cannot defend against malicious attackers. Besides, the

validity of digital signatures relies on the availability of a trusted third party (e.g.

certification authorities) before any interactions begin. I f messages are corrupted

before transmission, digital signatures cannot detect such errors. Finally, error

detection codes are designed for identifying errors (e.g., corruption or loss of data)

caused during message transition. The challenge of using coding techniques is to

overcome the large number of redundancy required.

Designing an effective error detection method has been a great challenge in

constructing ATIR schemes. On the one hand, identifying what is correct is hard,

given that databases can store arbiti-ary information. On the other hand, although

voting techniques and error detection codes can be employed by ATIR for the

purpose of error detection, these techniques are often costly due to the large number

of repUcas required.

However, error detection helps to identify erroneous statuses but cannot guarantee

the delivery of correct results. In order to tolerate malicious attacks, redundancy has

to be introduced into the design of an ATIR scheme. Based on existing PIR schemes,

our strategy for ATIR is through a combined use of acceptance tests with redundant

servers. In our ATIR schemes, acceptance tests identify corrupted results while

redundant servers guarantee the existence of correct results. Compared with the

techniques described above, this strategy reduces the number of replicas required for

error detection and result verification.

51

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

3.3.4 E r r o r Detection

It is necessary to emphasise that the condition k>t+f + 1, where t>f, implies only

the existence of a correct result. In order to identify the correct result as the system

output, we have to design a perfect error detection fimction for ATIR schemes.

Alternatively, as Assumption 2 suggests, more rephcas can be used to ensure that the

client can find a correct result. Correspondingly, more message exchanges are

needed and the communication complexity of an ATIR scheme increases. But these

solutions are costly.

The polynomial interpolation-based PIR schemes and our ATIR schemes

essentially are Shamir's secret sharing scheme [Sha79]. Secret sharing exploits the

properties of polynomials (i.e. perfect secrecy and interpolation uniqueness) for

providing privacy protection and fault-tolerant operations [GB99]. Our ATIR

schemes are based on the same principle. It is therefore possible to apply and extend

the existing results of secret sharing, verifiable secret sharing (e.g. [Fel87,

CGMA85]), to both PIR and ATIR schemes. In the following, a probabilistic error

detection fimction is developed for ATIR based on the polynomial properties. We

now explain the principle of error detection in ATIR.

Principles

The main idea of the probabilistic error detection fimction is to limit the vahd range

of reconstinjcted results. Because a character xj, where y e { 1 , 2, ..., n}, is viewed as

an integer taken from a pre-known set {0, 1, ...,X}, for every xj, tiiere are exactiy

X candidates of valid results. And because all computations are performed over the

finite field Zp, there wil l be p possible reconstiiicted results for xj over the set

{0, 1, p - 1}. It follows immediately that i f a reconstructed resuh is witiiin

{ 0 , 1 , . . . , Z } , it is valid. Otherwise, it is invalid.

It is desirable that the client has such an error detection capabiUty. That is, when

a reconstruction algorithm uses one or more corrupted answers to reconstiuct a resuh,

the result becomes invalid. This property of the error detection fimction is fiirther

described in details as follows.

In the following, let us use the worse case circumstance for our analysis. Suppose

(/ M l , a ' l) , (m,, a't), (m/+1, a,+1) be / + 1 point-values pairs that a cHent uses for

52

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

the reconstruction algorithm. For simplicity of presentation, we assume the first t of

out the r + 1 pairs are corrupted. But in the realistic circumstances, the client does not

know which ones are corrupted in advance. In terms of the number of faulty servers,

this is the worse case situation because the number of faulty servers is maximimi

(i . e . / = t). It is desirable for the scheme to have the property that there is only a small

probability e> 0 that the output of the reconstiiiction algorithm is valid but corrupted.

Recall that {0, 1, ...,X] e Zp. We can increase the size of Zp such that most of

incorrect results appear in the set Zp - { 0 , 1 , . . . , h i other words, the probability of

undetected errors can be confined within a pre-defined bound, i.e. undetected error

rate £; for e> 0. An error is defined as the acceptance of a valid but corrupted result.

The error detection fimction only identifies correct results with a certain probability.

Therefore, it is possible that a valid resuU in { 0 , 1 , . . . , JiT} is in fact a corrupted result

(i.e. not the intended result). However, the user can adjust the probability which is

therefore can be arbiti-arily close to zero.

The error detection fimction is simple. I f an input element a e is also an

element in the set { 0 , 1 , . . . , X), the fimction outputs one (i.e. it is valid); otherwise, it

outputs zero (i.e. it is invalid). This fimction detects corrupted results with a

probability. By itself, it does not guarantee perfect error detection, namely the

correctness of a reconstructed result is not always guaranteed. Together with the

result verification algorithms (which we shall present in the next section), a perfect

error detection capability can be obtained.

The possible causes leading for a corrupted result are endless. Here is a list of

possibiUties: a query or an answer is tampered with in fransit or a server does not

execute the Answer algorithm properly, one or more answers are corrupted by a

malicious attacker. The list is mcomplete. In fact it is impossible to enumerate all the

possibilities. However, despite the actual causes of corrupted results, the outcome is

the same: a result is modified so that it is different from the original one. Hence, for

simplicity of presentation, we assume that all corrupted results are caused by using

corrupted answers in the following proofs.

Determining Zp

We now can describe how to determine p for both ATIR schemes based on the error

detection requirement.

53

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

Lemma 3.2 For a (k, t, f) ATIR scheme, suppose p is the smallest prime number

and £ > 0 such that the following inequality is satisfied:

p > max[X/£, k].

There is only a small probability f > 0 that the error detection function accepts a

valid but corrupted result.

Proof. Suppose a client receives t corrupted answers a'l, a't from replicas

Si, ...,St and receives one correct a<+1 answer from replica 5,+1. That is, the client

uses (mi, a'l), (m/, a't), {nit i) point-value pairs as inputs for the

reconstruction algorithm:

'̂ ^ m„ . ^ m„ ^ m
9l(0) = aVn '—+...+a'fY{ '—+at.rX[

p*t

From Lemma 3.1, we know that answers are randomly and imiformly distributed

over Zp. Despite that a'\, ...,a't may be chosen purposefully by an attacker, 91(0) is a

function of a random variable a, + i uniformly distributed over Zp. Since there are

X+ \ valid results and only one of them is xi, there X out of p possibilities that the

client reconstructs a valid but corrupted result. By the meaning of e, the probability

of accepting a valid but corrupted results XIp should be at most £; i.e. XIp < e.

Therefore, we have p > XIe.

On the other hand, because ATER schemes also require at least k non-zero points

to evaluate the query functions, p should also be greater than k. Hence, this proves

the lemma. Q. E. D.

It should be made certain that p is large enough to reveal incorrect results with an

arbitrarily high probabiHty (1 - e), e.g. 99.99%.

E r r o r Detection and Secret Sharing

The principle of the error detection function is the same as the Tompa and WoU's

modification [TW88] on the Shamir's secret sharing scheme. Both methods aim to

"force" a reconstruction algorithm to reconstruct invahd outputs i f the algorithm uses

any corrupted inputs. The input in ATIR schemes is called an answer whereas the

input in Secret Sharing schemes is called a share. There are differences between both

schemes. In ATIR, a client keeps evaluation points locally. Therefore, corrupted

54

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

servers can at best guess this information randomly. But in Shamir's scheme, an

evaluation point is a part of a share. Hence, corrupted participants have the full

information about evaluation points of corrupted shares. Intuitively, an attacker can

obtain more information in secret sharing schemes than in ATIR schemes.

Block E r r o r Detection

So far, the error detection function is performed on an individual character basis, hi

practice a result usually contains a block (i.e., string) of characters rather than just

one character. Therefore, the single character error detection function (hereafter,

refer to as a single detection) needs to be extended to a block error detection function

(hereafter, refer to as a whole detection). In order for a block to be valid, all its

characters are required to be valid. Any single invalid character invalids the entire

block and a failed reconstruction is resulted by the first unsuccessful single

verification. Therefore, the undetected error rate of a whole detection is calculated by

multiplying those of single verifications.

Let E denote the undetected error rate of the verification of an entire result and La

be the number of invalid characters in the result. We have

Instead of specifying e for each individual character, the user now specifies E as

the undetected error rate for the entire result. It is thai up to the client program to

automatically calculate e. Since the relationship between e and E is exponential, a

slight modification of e can significantly change E. Even a user requires a highly

effective error detection function by asking E to be 0.05. Assuming La is 100, setting

£ to be 0.95 is sufficient to satisfy E. Recall that the computational range p is

inversely proportional to £ A slight increase of p can largely improve tiie fault

detection capability of the scheme at a whole.

Implications of the E r r o r Detection Function

This error detection function does not rely on any unproven cryptographic premise,

such as, intractability of factorisation of big primes and on the availability tamper-

proof hardware (e.g. secure co-processors).

55

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

3.3.5 Two Result Verification Algorithms

The section presents two result verification algorithms: one for the pATIR scheme

and the other for the dATIR scheme. Both algorithms are used to identify correct

results and eliminate incorrect ones. They are both built on the error detection

function and the result reconstruction algorithm presented in the previous sections.

The result verification algorithms are executed by the client after executing the query

algorithm.

Figure 3-4 presents the probabiUstic result verification algorithm. After sending

queries, the client waits for the availability of at least t + 1 answers returned fi-om the

servers (line 3). This algorithm stops whenever a valid result becomes available. In

the normal circumstance, the algorithm only performs the reconstruction algorithm

(line 5) once. In the worse case (i.e. the occurrence of t corrupted answers), the

algorithm executes the while loop times. This is the situation where corrupted

reconstructions but no valid result is found, that implies there are more than t

answers are used in every result reconstruction except the last one. The while loop

stops at another two situations as well. First, when the algorithm attempts all

^ k ^
f + 1

corrupted answers available (line 10). Second, there are more than t crashed servers.

In this case, the timeout limit (line 9) is exceeded. Neither of these situations may

occur in our system because of the assumptions set out in the system model of the

scheme (i.e. the upper bound of / i s i).

Figure 3-5 presents the deterministic result verification algorithm. When the

algorithm is executed, there are two possibilities: i) all k answers become available

within the known time bound; and ii) only a part of the k answers become available

within the known time bound. Possibility i) occurs when every server is available.

' k
Possibility ii) occurs when there are crashed servers

k \

results will be in the

former situation whereas less than

? + l

in the latter. No matter which situation
r+1

actually occurs, the loop (Ime 11-16) iterates through all the reconstructed results in

the set E to check whether they are identical. The identical result is deemed to be the

final result and outputted to the user. In the most conditions (including the worse),

56

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

the algorithm executes the while loop
k ^

times (line 5). But in the case that there

are t crashed servers, the while loop is only executed once. The timeout checking

(line 10) in this algorithm has a much important role than that of the probabilistic

algorithm in the presence of crashed servers. It is used to prevent the algorithm halts

for ever in the presence of even just one crashed servers.

Clearly, the probabiUstic result verification algorithm is efficient than its

deterministic counterpart in normal circumstances. Both algorithms, however,

require an equal number of reconstructions in the worse case situation.

A Probabilistic Result Verification Algorithm

1. set counter = 0

2. set-timeout-to local_clock + 2S

3. wait-for at least t + 1 answers returned fi-om the servers

f k \
4. while (counter <)do

5. select and use a new group of t + \ available answers to reconstruct a

result res

6. set counter = counter +1 % increase the number of reconstructions %

7. if (res e {0,1, . . . , X}) then exit loop

8. check the availability of new answers

9. on-timeout exit loop

10. if (counter >
r I. \

or timeout) then output "no result" % more than t

corrupted answers or more than t crashed servers %

11. else output rej:

12. stop.

Figure 3-4 A ProbabiUstic Result Verificatioii Algorithm

57

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

A Deterministic Result Verificatioii Algorithm

Variables: success: Boolean

1. setEi-0, success <- true, counter = 0

2. set-timeout-to local_clock + 2S

3. wait-for at least t + \ answers available

4. while (true) do

5. select and use a new group of t + I available answers to reconstruct a

result res

6. set counter = counter + 1 % increase the number of reconstructions %

7. if (res e {0,1, ...,X}) then E <- {res} u E

8. if (counter ••
(k \

) then exit loop
t + \

9. check the availability of new answers

10. on-timeout exit loop

11. fori = l to |^do

12. fory = 1 to l^l do

13. if(ef !=e,)then

14. set success <- false

15. exit loop

16. if (isuccess) then exit loop

17. if (success) then output res

18. else output "no result"

19. stop.

Figure 3-5 A Deterministic Result Verification Algorithm

58

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

3.3.6 Proofs for the A T I R Schemes

After presenting all the algorithms, we are now ready to prove the properties of the

ATIR schemes.

We include the Lagrange Interpolation Theorem here because it plays an essential

role in proving the properties of both ATIR schemes. For a proof, readers are

referred to [LN97, pp. 28].

Theorem (Lagrange Interpolation Formula)

For n > 0 and any field F, let ao, • •., a« be « + 1 distinct elements of F, and let BQ,

Z>„ be n + 1 arbitrary elements of F. Then there exists exactly one polynomial

/ i x) G F[x\ of degree < n such thatX^ff) = K for i = 0, n. This polynomial is

given by

m = t,b;t[{a-a,rix-a,).
/=o t=o

In the following proofs, we use a special case of the Lagrange hiterpolation

Formula by considering the field F be a finite prime field Zp.

Before discussing the properties, we formally prove some technical lemmas

about the answer fimction and the reconstruction fiinction. Lemma 3.3 shows that the

answer fimction is effectively identical to the reconstruction fimction. Hence, they

can be used interchangeably in proving the theoretical results. The Lemma 3.4 shows

that the constant term of the reconstruction fimction is the intended result when the

answers used for the reconstruction are correct.

Lemma 3.3 Without loss of generality, let (wi, ai), ... , (w, +i, a, +i) be a set of

correct point-value pairs, where mi, mt+ i are / + 1 distinct elements e Zp and

a\, a< + 1 are correct answers. The answer fimction is identical to the

reconstruction fimction. And the degree of the answer fiinction A{z) (or 9t(z)) is at

most t.

Proof. Since the answer fimction is identical for all servers, from its construction, we

can view the values a\, a,+ i as the results of evaluating the fimction at points

mi, m,+1 respectively. On the other hand, (mi, a\), ... , (m,+i, a,+i) are used as

the inputs to the reconstruction fimction. Since mi, m, + i are ? + 1 distinct

elements e Zp and a\, 1 e Zp, due to the Lagrange Interpolation Theorem, we

59

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

know that these t + I point-value pairs (mi, a i) , . . . , (m, +1, at+1) uniquely determines

a polynomial of degree at most t. Hence, the answer function is identical to the

reconstruction function and its degree is at most /. Hence, this completes the proof.

Q. E. D.

Lemma 3.4 When a reconstruction function is created by / + 1 correct

point-value pairs, the constant term of 9l(z), i.e., 91(0), is Xi.

Proof. From Lemma 3.3, we know that ^(0) = 91(0). Therefore, it is sufficient to

show that ̂ (0) is x,. From the construction of the answer function, we know that

^(0) = Sg,(0) • xj (mod/p) = X'O) • (mod/>).

From the construction of the mapping function presented in Section 3.3.1, we

know that when i j, = 0 and / =j, = 1. Therefore, we have ̂ 4(0) = x,. This

proves the Lemma. Q. E. D.

Proofs for the p A T I R Scheme

We are now ready to prove the properties of ATIR schemes. We first present the

theoretical results about pATDR. schemes.

Theorem 3.2 (pATIR Availability) The pATIR scheme satisfies the availability

property.

Proof: It is sufficient to show that the scheme guarantees the existence of t + \

correct answers despite attacks. According to the system model described in Section

3.2.1, there are only up to / faulty servers in the system, k>t+\+f and / is bounded

by t. Hence, the chent can receive at least / + 1 correct answers. Due to the

synchronous setting of the system, the answers from these / + 1 servers are

guaranteed to be received by the client within a knovra bounded time. By Lemma 3.4,

we know that these answers can be used to reconstruct x,.

Hence, the conclusion. Q. E. D.

Theorem 3.3 (pATIR Privacy) The pATIR scheme satisfies the privacy property.

Proof: According to the definition of the privacy property of a pATIR scheme, it is

sufficient to show that the information of no more than t queries reveals nothing

about i. That is, the joint distribution of t queries is independent of i . Recall that the

60

CHAPTER THREE. ATFACK-TOLERANT INFORMATION RETRIEVAL

query functions are polynomials of degree at most t. According to the Lagrange

Interpolation theorem, for a polynomial of degree at most t, t (or fewer) distinct

point-value pairs indicate no information about the polynomial. Hence, fi-om t (or

fewer) points, no information about its fi-ee term can be obtained either. Note that

any of these polynomials can be the one that are used for generating tiie queries. Due

to the assumption that there are no more than t curious servers who collude together,

an attacker can at most collect the information about the polynomial at t points.

Therefore, no information about i can be revealed from no more than / queries.

Hence, the conclusion. Q.E.D.

Theorem 3.4 (pATIR Safety) The pATIR scheme satisfies the safety property.

Proof. Lemma 3.2 indicates that there is only a small possibility e>0 that the error

detection function fails to detect a corrupted (but valid) result. Additionally the

probabilistic result verification algorithm presented in Figure 3.4 indicates that when

the pATIR scheme outputs a result, there are only two possibilities: i) the result is

correct; or ii) the result is valid but corrupted with a small probability e. Hence, the

scheme outputs a correct result x, with a probability no less than 1 - e. Therefore, we

have the conclusion. Q. E. D.

Theorem 3.5 (pATIR Liveness) The pATIR scheme satisfies the liveness property.

Proof: In order to prove the liveness property, it is sufficient to show that the

probabilistic resuh verification algorithm stops. Theorem 3.2 indicates that the

scheme guarantees the existence of at least one correct result. The existence of this

result ensures that the algoritiim will stop. Hence, the conclusion. Q.E.D.

Proofs for the d A T I R Scheme

The dATIR scheme employs the same set of basic algorithms as the pATIR scheme

but uses different result verification algorithms. Because the result verification is

locally performed by the chent, the proofs of the availability and privacy properties

of the dATIR scheme remain exactiy the same as with the pATIR scheme. The

proofs of the safety and liveness properties of the dATER scheme, however, are

different.

61

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

Theorem 3.6 (dATIR Availability) The dATIR scheme satisfies the availability

property.

Proof: Since this proof is exactly the same as the proof given for Theorem 3.2, the

details are therefore omitted.

Theorem 3.7 (dATIR Privacy) The dTIR scheme satisfies the privacy property.

Proof Since this proof is exactly the same as the proof given for Theorem 3.3, the

details are therefore omitted.

Theorem 3.8 (dATIR Safety) The dTIR scheme satisfies the safety property.

Proof. Since the error detection fimction may fail to detect vahd but corrupted results.

At the end of the dATIR scheme, there is a chance that two or more distinct valid

results are available. In this case, the scheme outputs no result to avoid outputting a

corrupted result. On the other hand, after all the iterations, if all results are identical

and valid, it must be a correct result. Therefore, the outputted result, if there is one,

must be the intended one. Hence, the safety property is ensured. Q.E.D.

Theorem 3.9 (dATIR Liveness) The dATIR scheme satisfies the liveness property.

Proof To prove the liveness of the scheme, it suffices to show that the deterministic

result verification algorithm stops in the following situations: i) all answers are

returned from the servers; and ii) only a part of the k answers are returned. In the first

^
situation, the while loop stops at line 8 and results are reconstructed. This

situation covers both normal circumstances and the circumstances that there are

faulty (but not crashed) servers. All these results are subject to the second loop (line

11-16), which stops after ^ loops in the worse case. The second situation occurs

in the presence of at least one crashed server. This also includes the situation that

some answers used for the reconstruction algorithm are corrupted. The algorithm

stops when the algorithm timeouts (line 10). Again, all the results are subject to the

second loop (line 11 - 16), which stops after loops in the worse case scenario.

Hence, the conclusion. Q.E.D.

Now, we have presented all the theoretical results of both ATIR schemes.

However, the commimication complexity of both schemes is 0(n). In the next

section, we reduce the communication complexity to 0(ri}'^) through a generic

balancing technique which is first discussed in [CGKS95] and latter widely used in

62

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

seva-al other efforts, such as that presented in [CG97], to reduce the communication

complexity of their schemes.

3.3.7 CommMmacation Complexity

The conmiunication complexity in both ATIR schemes is unbalanced. The client

sends n logip bits to each server whereas the server replies with one single element

with log'jp bits. A similar problem was first observed by Chor et. al. in [CGKS95] on

PIR schemes. Note that the technique they proposed is based on the binary bit

database model whereas ATIR schemes use a character string database model. This

section shows how to apply a generic balancing technique presented in [CGKS95] to

balance the bits exchanged between the client and the server.

The generic balancing technique approaches this problem by partitioning the

characters of the database into m blocks B\,..., Bm. Each block contains / characters.

Without loss of generality, let use assume n = m-l. (the database is padded with

dummy values when necessary.) Instead of applying tiie answer algorithm of an

ATIR scheme to the entire database x, the algorithm is now repeatedly applied to

each block. (In practice, this process can be done concurrently.) The index i is

converted into an index i\ which is its relative position in the corresponding block.

The new position is calculated by V = i (mod /)• That is, /' is now an element of the

set {1, . . . , / } . The query functions are constructed using i ' as an input. As a result, a

query consists of / elements. This query is repeatedly used by the algorithm on each

block of the database. Consequently, instead of containing one element, an answer

now consists of m elements, one for each block. The rest of the ATIR scheme

remains the same.

After using the balancing technique, the communication complexity of the ATIR

schemes is brought down to 0(/i'^). hl-log^p bits are sent from the chent to the

servers while hm-log^ bits are sent back from the servers. In total, there are

log2p k'(m + t) bits exchanged between the client and the servers. When m = /, the

communication complexity is 2-\o%}p-hn^'^.

63

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

3.4 Comparisons of A T I R with Existing P I R Schemes

3.4.1 Comparing with Robust P I R Schemes

The closest work related to ATIR is Beimel and Stahl's robust Private Information

Retrieval (abbreviated rPIR henceforth) schemes, which were presented in [BS02].

Their schemes consider an active attack model and use Reed-Solomon Codes (RSC)

[RS60, MS81] to identify correct results. The principle of RSC is based on majority

voting techniques in fault tolerance. ATIR schemes differ from the rPIR schemes in

several key aspects. Firstiy, the correctness condition for rPIR schemes \sk>3>t+ 1

whereas that of ATIR schemes is A; > ^ + 1 + / where r > 1 and / < .̂ hi order to

tolerate up to /maliciously faulty servers where f<t, ATIR schemes use roughly 2/3

servers that rPIR schemes need. In practice, the reduction of the number of replicated

servers is significant because replication is costly. This is because their schemes only

rely on majority voting to identify the correct results whereas ATIR schemes use

probabilistic error detection to eliminate incorrect results, and rely on the result

verification algorithms to identify the correct ones.

In rPIR schemes with a crash failure model, the answers from any k out of /

servers are sufficient to reconstruct a result and up to t servers are allowed to collude

with each other. Such schemes are called f-private k-ovA-of-l robust PIR schemes,

where l>k,t>\ and k>t+ I, and the communication complexity of these schemes

k
is 0{-j • M"* • / • log/). In particular, under the same model, the authors also constiiict

2-out-of-/ robust PIR schemes with 0(n^'^ log I) communication complexity. But no

communication is allowed among the servers.

In ATIR schemes with a crash failure model, the answers from any t+ I outofk

servers can be used to reconstruct a correct result, provided that the number of

colluding servers is bounded by t, there are up to / crashed servers, and k>t+f+ 1.

These ATIR schemes have an 0(n^'^) conmiunication complexity.

In a malicious failure model, two types of Byzantine rPIR schemes are constructed.

If no communication is allowed among the servers, a ^-Byzantine robust k-out-of-l

PIR scheme is presented with an 0(A: /j"'-*'^-' / log/) communication complexity,

wh&Let<lk/3i,t>l,l>k.

64

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

However, the assxmiption that there is no communication among compromised

servers (still in the malicious failure model) is not realistic. Therefore, the authors

fijTther present a ̂ -private and r-Byzantine robust k-out-of-l PIR scheme which allows

the rPIR schemes to tolerate any collusion of up to t servers and up to t Byzantine

faulty servers. The commimication complexity of the -̂private and f-Byzantine rPIR

k I
schemes is 0{—n'^**" ""̂ • / • log/) commvinication complexity, where t < k/3, t > 1,

and l>k.]n particular, when t is one, the communication complexity of these rPIR

4
schemes become 0(— • w • / • log/), which is a trivial result in terms of communication

complexity. Therefore, in order to obtain non-trivial communication complexity, at

least five servers (when t=l) have to be used and the corresponding communication

complexity is (9(^ «' / log/) [Bei04]. In order to achieve 0(/i''^) communication

complexity, these schemes requke at least seven servers.

Under the malicious failvire model, ATIR schemes achieve better communication

complexity while requiring fewer servers. In particular, we construct -̂private and

^-malicious ATIR schemes which allow up to any t servers to collude together and

tolerate up to / maliciously faulty servers, provided that k>t+f+ \,t>l, and f<t.

The communication complexity of our ATIR schemes is 0(«'^^). For example, to

tolerate two maliciously faulty servers and having an 0(/i'̂)̂ commimication

complexity, ATIR schemes require at least five servers whereas rPIR schemes

require seven.

3.4.2 Comparing with Hardware-based P I R Schemes

With the use of secure co-processors, hardware-based PIR (hPER.) schemes can

reduce both computation and communication costs incurred by other PIR schemes.

Since hPIR does not take server faults into account, we consider a special case of

ATIR where there is no faulty servers in the system, i.e. / = 0. In this case, ATIR is

reduced to a normal PIR and ATIR can only offer privacy protection for users.

In hPIR schemes, secure co-processors are installed on a PIR server, and are

treated as black boxes within which all PIR operations are performed. Each co­

processor is assumed to have established a secure channel with a user, for example,

using encryption. All the traffic in and out of these secure co-processors passes

65

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

through these secure channels. Due to the use of encryption, the server cannot figure

out any information (in a computational sense) of PIR queries and answers. Hence,

the user's privacy is protected.

Due to the use of encryption and secure co-processors, the communication

complexity of all hPIR schemes is brought down to be constant (independent of the

size of a database), i.e. 0(1). But the computation cost of some early hardware-based

PIR schemes [SSOO, SSOl] is 0(«). Therefore, the subsequent work [AF02, IS03,

Aso04] introduces advanced pre-processing techniques (i.e. periodical database

shuffling) to reduce online computation time to be independent of database sizes, i.e.,

0(1). However, albeit a constant, the online computation time in these schemes

grows linearly as the number of queries increases. Periodical shuffling and

encryption operations are required to prepare databases for these hPIR schemes.

Like the majority of PIR schemes, the computation complexity of ATIR schemes

is 0(M), i.e. the computation time of ATER grows linearly as the number of records

involved increases. In terms of online computation costs, ATIR is much worse than

hPIR. However, ATIR does not require any database pre-processing and the database

in ATIR is available all the time.

Whereas as shown in [IS03, Aso04], hPIR schemes have exceedingly high pre­

processing costs (in the order of hours in the best algorithm known so far [Aso04]).

That is due to the algorithmic cost of performing periodical shuffling. Siace this is a

mandatory process for privacy concerns, it can cause performance and deployment

concerns in practice. Currentiy, even using the best shufflmg algorithm, the

computation complexity of shuffling is 0(n'^) [Aso04] which is verified

experimentally.

However, ATIR relies on k (> 2) repUcated servers and restiicts the

communication among servers to provide privacy protection whereas hPIR only

requires one single server to achieve the goal.

The communication complexity of both ATIR schemes is 0{n^'\ However,

unlike hPIR, ATIR require neither encryption nor secure hardware to support privacy

protection. In summary, we believe that ATIR is appealing because it demands fewer

configurations on and makes fewer assumptions about on the execution environment.

66

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

Limitations of Hardware-based P I R Schemes

Here, we discuss the limitations of hPIR schemes in details. hPIR schemes impose

sfrong trust assumptions on the deployment environment which significantly restiict

tiie practicability of these schemes.

Pre-processing, such as encryption and shuffling, is needed to prepare a database

for hPIR operations. The database of an hPIR scheme is assumed to be encrypted to

hide its content. That is because without encryption, the server can easily spot the

identity of a record being retrieved. Periodical reshuffling is needed to randomise the

positions of the records in the database. Otherwise, the access history can reveal

some information about the intended record. Between two reshuffling operations, no

database updates are allowed. As a whole, the encryption and shuffling requirements

mean that hPIR schemes have to use dedicated databases which are maintained

separately from normal databases. In theory, this is feasible. But in reality, it is

doubtful whether a service provider will provide such setting just for the sake of the

privacy of users.

A trusted copy of the encryption and shuffling algorithm implementations is

needed to be installed on secure co-processors before any hPIR schemes start. The

conmiunication channels, between secure co-processors and clients, are needed to be

encrypted to prevent privacy violation from the servers and the communication

channels.

3.4.3 A Summary of Comparison Results

So far, we have presented ATIR schemes and compared them with relevant PIR

schemes. Table 3-1 presents a comparison between ATIR schemes and two other

most relevant PIR schemes (i.e. rPIR and hPIR). The downloading solution discussed

in section 3.2.4 is abbreviated as the dl-PIR in the table. Columns three, four, and

five represent the communication complexity, the worse case reconstiuction times,

and the computation complexity of these schemes, respectively.

67

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

Table 3-1A Comparison of PIR Schemes

Schemes # servers
Comm.

Camp.

Rec.

Camp.

Camp.

Camp.
FT Privacy

dl-PIR
k>2t+\

t>0
0(«) No No

< t malicious

servers

Against all

servers

dATIR
k>t+f+1

t>\,t>f
0(«"^)

' k ^
0(«)

< t malicious

servers

Collusions

< t servers

pATIR k>t+f+1

t>l,t>f
1 0(«)

< / malicious

servers

Collusions

< t servers

rPIR k>3t+l

t> 1

o(„l»-'>'"J) ' k ^

/ + i
V)

0(«)
< t malicious

servers

Collusions

< t servers

hPIR 1 0(1) No 0(1) No
Against one

server

3.5 Discussions

We have presented the construction and theoretical results of two ATIR schemes and

compared them with relevant PIR schemes. In order to fully understand the strength

and limitations of these schemes and the impUcations of our results, we discuss some

relevant issues of ATIR in a wider context.

3.5.1 Validity of A T I R System Assumptions

We now examine the three assumptions made in the ATIR system model in turn. The

first two assumptions place a bound on the mraiber of curious servers and the number

of faulty servers. To realise these assumptions, it is important to apply the design

diversity approach [AK84] in various stage of system design and implementation.

Otherwise, an attacker can easily exploit a common vulnerabiUty of all servers to

compromise the entire system. Consequently, the scheme will be of little use if such

vulnerability can be easily found and exploited. For example, diverse operating

systems (Linux and Windows) and programming languages (e.g. Java and C) can be

used for the implementation. We can also choose from a wide range of readily

available commercial database engines (e.g. MySQL and Microsoft SQL Server) for

the servers. All these countermeasures may help to reduce the overall vulnerability of

the system by incorporating diversity into the system implementation. So long as all

the implementations conform to a well-defined set of protocol interfaces (which we

68

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

shall describe in the next chapter), the problem of communicating among diverse

implementations can be resolved.

The third assumption is about the trustworthiness of the cUent throughout the

lifetime of the system. For example, this assumption can be realised by requiring the

user to choose a personal computer (i.e. a client) which the user has fiiU control of

and to ensure the authenticity of the software installed on this computer.

3,5.2 Comparison with Existing Secure and Fault Tolerant Schemes

We now compare ATIR with three latest developed secure and fault tolerant

algorithms/systems. These systems are BFT [CasOl, CL99], COCA [ZSR02], and

SINTRA [CP02] and they share many similarities with ATIR. For example, all these

systems use repHcated servers, are based on the active attack model and provide

correct services so long as no more than a threshold number of servers are corrupted.

But they also differ from ATIR in several important aspects. All these systems

rely on an external trusted party (e.g. a system operator) to setup the systems. In

particular, distributing security keys (e.g. authentication keys, encryption keys,

signing keys) is mandatory to be performed by a trusted operator. However, the

purpose of employing such a trusted party is different in these systems. BFT is a

generic fault tolerant algorithm. The use of security keys in BFT is for enabling

authentication among participants and providing secure communication within the

system (thus thwarting eavesdroppers, for example). The current ATIR system model

assumes authenticated but not secure communication links. When authentication is

needed in ATIR, authentication mechanisms can be added into ATIR as BFT does.

However, messages fransmitted over the communication links are not required to be

encrypted in ATIR.

In COCA and SINTRA, the role of the trusted party is more essential than that in

BFT. COCA and SINTRA are application specific systems: COCA aims to provide

an online certification authority whereas the goal of SINTRA is to enable secure

DNS. Apart from demanding authenticated and secure communication among

participants, the services in COCA and SINTRA require tiie protection of the service

signing key, such as the signing key of a certification authority. Both systems use

some variants of secret sharing (discussed in Section 2.5.2) to split a signing key and

distribute the shares of the secret. Proactive security (discussed in Section 2.5.4) with

69

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

the use of secure co-processors is also employed to enable regular refi-eshment of the

key. Therefore, in both systems, the trusted operator is also responsible to distribute

the initial shares of the key.

In contrast, no trusted operators are required to initialise an ATIR system. No

secure co-processors are needed during the operation stage of an ATIR system either.

Finally, none of the three systems provide fault-tolerant privacy protection as

ATIR does. When a server is compromised by an attacker, users' privacy is violated

in all three systems. On the contrary, ATER provides privacy protection even in the

presence of active attacks.

ATIR provides a new way of detecting and tolerating malicious attacks without

relying on trusted third parties during the setup and operation stages of an ATIR

system. However, the semantic of ATIR is much weaker than all three systems.

ATIR only provides read-only operations whereas they offer both read and

write/update operations.

3.6 Summary

This chapter presents two ATIR schemes for performing database queries in a

synchronous distributed network environment. These schemes protect the privacy of

users and ensure the correctness of results even in the presence of malicious attacks.

We tackle the ATIR problem through three closely linked techniques: privacy

protection, error detection and attack tolerance. By hiding the intention of retrieval

operations, the privacy of users can be protected. Hence, the risk of targeted attacks

can be reduced. Through restricting the range of valid results, errors may be detected

and corrupted servers may therefore be identified. Finally, attack tolerance is

achieved through the introduction of a form of redundancy - rephcation, a classic

and well-known fault tolerance technique for tolerating faults. As a whole, all three

techniques complement to each other and together they provide a solution for the

ATIR problem.

Together with a thorough description of the formal database model, and a list of

assumptions used in the ATIR system model, detailed constructions of ATIR

schemes are first presented. This is followed by a presentation of the basic

algorithms of ATIR schemes and a detailed characterisation of their fault tolerance

70

CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL

conditions. We then describe the rationale for introducing a probabilistic error

detection function that is followed by a detailed description of the principle,

calculation, extensions, and implications of the error detection function. Two result

verification algorithms are then derived: one for probabilistic ATIR and the other for

deterministic ATIR. The properties of both ATIR schemes are proved and the

communication complexity these schemes are reduced to 0(n'^). ATIR is then

compared with relevant PIR efforts to reveal the strengths and limitations of ATIR.

Finally, we place ATIR in a wider context by discussing the vaUdity of the

assumptions made in the ATIR system model and fiirther examining the relationship

between ATIR and other state-of-the-art secure and fault tolerant systems.

71

CHAPTERFOUR. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Chapter 4 System Architecture and

Implementatioii

In the preceding chapters we have presented the theory to model the ATIR problem

and to construct ATIR schemes. This chapter describes a system architecture to

realise the ATIR schemes based on realistic databases. We also discuss the design

decisions and implementation issues that arise during system implementation.

PIR can be viewed as a special case of ATIR in that there is no faxilty server in the

system. We have also implemented the polynomial-interpolation based PIR schemes

presented in [CGKS95]. Since the PIR implementation is very similar to the ATIR

implementation, only some distinct details of the former are included.

4.1 System Architecture

At the basic level, an ATIR system can be viewed as a data query service with

additional security and fault tolerance supports.

To distinguish ATIR services from the conventional data query services, such as

database queries, we illustrate the logical relationship of the layers of the ATIR

system in Figure 4-1. However, it is important to note that ATIR only supports read­

only operations and an ATIR query has a much restricted SQL syntax than general

SQL statements. In particular, ATIR users are assumed to know the index

information about the records in a database. (Section 4.3.1 discusses some possible

solutions of relaxing this assumption.)

At the basic design level, an ATIR system follows the conventional client-server

architecture consisting of a cUent and a server. At the top layer, a user program

interacts with database services through the Data Query Protocol (DQP). The DQP

protocol is simply an abstracted representation of ATIR query operations that can be

invoked by the user. Ideally, apart from specifying their security and fault tolerance

requirements, users should not need to worry about the underlying protocol

complexity of ATIR systems. To facilitate this need, a set of standardised (i.e..

72

CHAPTERFOUR. SYSTEM ARCHITECTURE AND IMPLEMENTATION

following conventional fiinction calls in UNIX/LINUX) interfaces is designed to

accommodate a range of such requirements. The system also provides a set of default

settings to ease the pain of comphcated configuration.

User Program

ATIR Client Interface

ATIR Client

Communication
Cfiannel

[Data Query Protocol]

[ATIR Protocol]

[TCP/IP Protocol]

Data Service

ATIR Server Interface

ATIR server

Communication
Channel

ATIR Client ATIR Server
Figure 4-1 The ATIR System and Network Layers

ATIR clients and servers commimicate via the ATIR protocol, which specifies

the format and types of the data contained in the ATIR queries and answers. We shall

give fiirther details of the ATIR protocol in the later section of this chapter. The

ATIR protocol sits on top of the TCP/IP communication channels.

In the system, there are two types of Application Program Interfaces (APIs): one

for the client and one for the server. The ATIR client interface API defines the type

and format of the input that the system takes fi-om the user and the result that the

system outputs to the user. The server interface API specifies the type and format of

the information that it passes to and obtains from the normal data services, such as

databases or data directories. Commonly, a query for these services is required to

follow specific protocols and tiirough dedicated data engines or database drivers. The

server API interface ensures that the queries created by the ATIR server conform to

these protocols and support seamless integration with backend data services.

73

CHAPTER FOUR. SYSTEM ARCHITECTURE AND IMPLEMENTATION

User Program
4

[ATIR Functid hCall]

Query
Manager

[Query Pro tocoO
• Client

Daemon I
[Result ProtocoO

Result
Manager

[Identifi^
Resolve
Protocol)

Index
Resolver

ATIR Client

[ATIR Protocol]
1^ •

TCP
Server^
Daemon ^

View
Manager'

[View Protocol]''
^ '

[Answer Protoco]

Answer
Manager

View
Manager

^ [ATlRProtocoq

TCP
Server^
Daemon •*

[View Protocol]
^ '

[Answer Protoco]

Answer
Manager

ATIR Servers

[Data
Query
Protocol]

Data
iRepositoryl

[Data
Query
Protocol]

Data
[Repository!

Figure 4-2 An ATIR System Architecture in a Replication Setting

As shown in Figure 4-2, an ATIR system is conceptually divided into a number

of components by their functionalities. On the client side, we have the following

components: client daemon, query manager, result manager, and index resolver. On

the other hand, the server side components are server daemon, view manager, and

answer manager. Some of the components are integrated with the others to avoid the

unnecessary complications in real implementation. For example, the result manager

is implemented as a major part of the client program in the current implementation.

ATIR is implemented as a stand-alone library and can be utilised through

invoking an ATIR library function. The implementation is currently supported under

the Linux environment. The current design, however, can be easily ported to

different platforms (e.g., WESfDOWS) with little or no modifications. Meanwhile, the

modular design may help to ease the effort of porting the ATIR library to Windows

operating system as well. The ATIR library provides simple APIs and gives the user

(e.g. a program) to choose whether to utilise ATIR service with integrated security

and fault tolerance features. We have also implemented a simplified version of ATIR

database service in Java to demonstrate the portability of the implementation.

74

CHAPTER FOUR. SYSTEM ARCHITECTURE AND IMPLEMENTATION

The user invokes the ATIR service through an ATIR function call which connects

the user with the cUent daemon tired, which is a central processing program for

coordinating the tasks of the client side, tired first decides whether it needs to

perform the Index Resolve Protocol (IRP) to obtain the index of an intended data

item fi-om the index resolver. If it does, it resolves the index. Together with the index

and other information it already acquires fi-om the user, tired creates a request and

forwards it to the query manager qm through the Query Protocol (QP). When the QP

protocol completes, tired obtains a reply (in the form of a tuple) from qm which

contains k ATIR queries, one per server. The queries are sent to the ATIR servers

appropriately via the ATIR Protocol {ATIRP) over point-to-point TCP channels.

The ATIR server daemon tirsd forwards ATIR queries to a view manager vm via

the View Protocol (VP). The vm converts the ATIR queries into the appropriate

format that is accepted for performing the Data Access Protocol (DAP) on the data

repository on the servers. When the VP protocol completes, tirsd obtains a tuple that

consists of the inputs for tiie answer computation. In summary, vm polls the

information from the data repository according to the ATIR queries and forwards

such information to the answer manager am via the answer protocol (AP). am is

responsible for the server side computation of the ATIR scheme, am produces an

answer which is sent back to tired, again, over the point-to-point TCP chaimels.

Upon receiving answers, tired forwards them to the result manager rm via the

Result Protocol (RP). When the RP is completed, the intended result is returned to

the Mser via tired. This completes the ATIR function call.

4.2 Design Issues

4.2.1 The Character-String Database Model

Why Character String Model?

This section describes why and how to extend the existing bit-string database model

to character-string database model. In the original PIR database model, each database

is modelled as a binary bit string where each bit is an absfraction of a data item on

the server. To implement PIR schemes for real applications, we need to extend the

model and map the abstracted notation to reality. In the real world, the smallest unit

of a data item is commonly represented as a single byte character. Most commercial

75

CHAPTER FOUR. SYSTEM ARCHITECTURE AND IMPLEMENTATION

database engine, such as MySQL [MySQL04] database server and JDBC [JDBC04]

database APIs, provide methods to retrieve data (items) as character strings. In our

current implementation, each character is associated with an extended ASCII code

and is uniquely associated with a decimal integer in the interval [0,255].

Having described the rationale for a character-string database model, the next

section explains how to associate a character with a unique element of a finite field

so that it can be used for the PIR/ATIR computations. First, we show how to

associate characters with field elements of finite prime fields. We then describe how

to associate characters with field elements of GF(256). The former is applicable for

our ATIR implementation whereas the latter one is for the PER. implementation only.

Characters, Prime Fields, and ATIR

This section shows the association of characters with field elements in finite prime

fields Zp, where is a prime number and p > 255. In the current implementation,

each character can be uniquely associated with a smallest possible element in the

chosen prime field. For instance, the character 'A' is associated with the integer 65 in

the prime field GF(331).

Prime fields, however, are not necessarily for implementing PIR due to the

performance concerns. Since there are 256 characters, ideally, the computation

should be done with all these characters. Besides, the elements in GF(257) consume

more memory spaces and communication bandwidth which can be a concern when

measuring the message sizes exchanged among the client and the servers. The

smallest possible prime field that can accommodate all 256 characters is GF(151)

which is ttie set {0,1,2, . . . , 256}. There is one extra element, i.e., 256, which cannot

be associated with any character.

Althougji we can use GF(257) for PIR operations, however, GF(257) is not

necessary for the PIR implementation because of the extra overheads that may be

introduced by the extra element. It requires 2-byte integers to represent the field

elements in GF(257) and only 1-byte integer for GF(256). That is, from a theoretical

point of view, using GF(251) doubles the communication bandwidtii and storage

space.

76

CHAPTER FOUR. SYSTEM ARCHFTECTURE AND IMPLEMENTATION

This suggests that the PIR implementation may only needs a finite field which

can just accommodate all 256 elements. Fortunately, we do have such a finite field

GF(256) which has 256 elements.

Characters, GF(256), and PIR

Before going any fiirther to explain how to associate the single byte characters with

field elements of GF(256), we need some brief background in finite fields. From

finite field theory [LN97], we know the following:

GF(256) = Z2[x]lm{x\

where Ziix] are polynomials over the finite field Zi [LN97 pp. 20, Chi79 pp. 125],

m{x) is a degree-8 irreducible polynomial [LN97, pp.91] in Z2[x\. The equation

means that GF(256) is associated with polynomials over finite field Z2 and the

degree of the polynomials is no more than seven. (Readers are referred to, for

example, [Chi79, pp. 172, pp. 185 and LN97] for details of congruence classes

modulo a polynomial)

Note that there are many degree-8 irreducible polynomials in Z2[x] [LN97, pp.

553] that can be chosen for constructing GF(256). In the current implementation, the

modulus is:

m{x) = + x' + + + :^ + \,

where x, a formal symbol, is an indeterminant of the polynomial.

One way of thinking of the elements of GF(256) is to view them as polynomials

in X with co-efficiencies in Z2 of degree < 7 and there are 256 (there are eight

coefficiencies and therefore 2̂ possibilities) such polynomials. The operations of

these elements are just like the operations of polynomials (for example, see

[Chi79, pp. 125]. Addition and subtraction are done by bit-wise exclusive-or of the

corresponding coefGciencies. To get the product again as a polynomial of degree < 7,

vise the equation x^ = x' + x^ + x^ + x^ + ^ + 1. Also, each element has a

multiplicative inverse so that we can do division over the field as well. Notice that

there are eight co-efficiencies of these polynomials and each of them is a bit. When

putting these bits together and ordering from the leading co-efficient to the constant

co-efficient, a binary nimiber vmiquely corresponding to a decimal integer in the

77

CHAPTERFOUR. SYSTEM ARCHHECTURE AND IMPLEMENTATION

interval [0, 255] can be obtained. In that way, a field element can be uniquely

associated with a character and vice versa.

We slightly modify (i.e., getting rid of the namespace) the GF(256)

implementation from Wei Dai's Crypto library [Dai04] for our wse.

4.2.2 Core Components

We have implemented ATIR as an ANSI C [Ker88] Ubrary with simple interfaces for

secure and fault tolerant database access. In this section, we will describe the

interfaces and protocols involved in an ATIR function call.

The A T I R APIs

Figure 4-3 shows the main APIs of ATIR client and server. On the client side, there

are two major function calls. User programs can invoke ATIR client tired by

calling the function tir_subinit_query with two parameters.

tir_sumit_queryO will perform three tasks: initialise the system, construct

queries, and proceed the first attempt to send queries to the rephcas.

C l i e n t :
i n t t ir_submit_query(char * c o n f i g _ f i l e , char *query_time);
i n t t i r_ge t_resu l t (char *resul t , char *resul t_t ime);

Server:
i n t t i r_execute (i n t connfd, char *dbhost, char *dbusr, char
*dbpass);

Figure 4-3 The ATIR Library Main APIs

The conf i g _ f i l e parameter is a pointer to the configuration file to initialise

ATIR clients and contains two types of information: the user's ATIR requirements

and authentication information. The user's requirements are used to generate queries

and include the following: number of calculation records numcalrecs, imdetected

error rate e, range of valid data data_range, minimvim number of correct replicas k,

and maximum number of faulty replicas / Note that numcalrecs is both the

number of query elements sent to the server and the size of each block on the server

side. The authentication information is used for establishing TCP connections with

remote servers and includes the following: the IP addresses of ATIR servers, the

78

CHAPTER FOUR. SYSTEM ARCHTTECTURE AND IMPLEMENTATION

service port, database, table, and data item. The configuration file also contains the

following specific information about the intended database, table, and data item with

a pair of usemame and password to enable the servers to enforce access control.

Currently, the library rehes on the access control mechanisms provided by the

servers.

The second parameter is a value-result argument [Ste98, pp. 65] which is a string

pointer for storing the time taken to bootsfrap the system from the configuration file,

for preparing and sending queries. When the fimction returns, guerY_time stores

tiie actual timing measurements.

Followed by calling tir_sul3mit_query fiinction, the user program should call

the fiinction t i r _ g e t _ r e s u l t to obtain results. The first parameter result is also a

value-result argument which provides a storage space for storing the result

reconstructed by the system. Similarly, the resul t_t ime parameter is used to

return the time taken for reconstructing results. t i r_ge t_ resu l tO conducts three

tasks: i) continuing to estabUsh the socket connections with the servers i f they

haven't been done, ii) sending queries and wait for the answers to return, and iii)

reconstructing results and determine when to stop the reconstruction process.

On the server side, the main computation is triggered by the server daemon calling

the fimction t i r_execute with four parameters: the descriptor for an established

socket, the database host name (in case the database server is separated from the

ATIR server), and the usemame-password pair for accessing the database. In the

current implementation, the ATIR server is multi-threaded. A new and separated

thread is created to deal with the each client's ATIR request. A server assigns a new

socket descriptor to each new connection which is stored in the parameter connf d.

To ensure the service availability, three other parameters (i.e. dbhost, dbusr,

dbpass) are also provided for authenticating legitimate users and identifying

spurious ones.

79

CHAPTER FOUR. SYSTEM ARCHITECTURE AND IMPLEMENTA TION

Query Manager

This section describes how to prepare the query messages using the ATIR query

protocol. The fimctionalities of the query manager include the following five tasks:

1) Generate a random record set for the server side computation;

2) Determine the order of the finite field;

3) Generate the query polynomials;

4) Set distinct evaluation points for the polynomials; and finally

5) Put all the information together to create the query elements for each replica.

Based upon the i d e n t i f i e r passed by the cUent daemon and the

nxiincalrecs setting, the query manager determines the record set by randomly

selecting two integers in tendedindex and in tendedblock from the interval

[1, numcalrecs]. The size (number of records) of each block is niomcalrecs.

The index of the first record f i r s t r e e is calculated as follows:

blocks = intendedblock - 1;
f i r s t r e c = i d e n t i f i e r - intendedindex + 1 + blocks*numcalrecs;

The index of the last record l i is calculated as follows.

blocks = numcalrecs - intendedblock + 1;
l i = i d e n t i f i e r - intendedindex + blocks * numcalrecs;

The selection should make sure that the index of the first and the last record of the

sever side computation are within the interval [1, n], where n is the total number of

records in the database. That is, f i r s t r e c should be no less than 1 and

l a s t index should be no greater than n.

Only transmitting the index of the first record rather than the indexes of all records

significantly saves the commxinication cost. With the index of the first record, the

server program derives other indexes on the server side. That is straightforward since

the block size is fixed.

When the query protocol finishes, the query message for each replica is ready to

be sent by the client daemon. The size of an index is different from the size of a

query or an answer element. An index is a fixed-size (i.e., 8-bit) character whereas

80

CHAPTER FOUR. SYSTEM ARCHITECTURE AND IMPLEMENTATION

the size of query and answer elements varies according to the size of the finite field

that are chosen by the user.

Client Daemon and Result Manager

Logically, the client daemon is separated firom the result manager. In the

implementation, they physically coexist within one single program. That is because

witii the use of non-blocking I/O sockets, the coimection operation returns

immediately and informs the program that the operation cannot finish immediately.

The client program can proceed to perform other operations and come back later.

Apart fi-om coordinating the index resolver and query manager, tired'^ other tasks

are to send queries and reconstruct results. Since ATIR clients connect to the servers

through one-to-one commtmication chaimels, concurrent but separated socket

connections are required between a client and each of the server to which it connects.

We rely on TCP sockets to provide reliable conmiunication.

There are two design alternatives for implementing multiple concurrent

connections with servers: a multithreaded client with each thread dealing with a TCP

connection with a server or a single-threaded cUent with non-blocking I/O processing.

Our previous PIR/ATIR system implementation used the first approach with the Java

programming language whereas our current implementation adopts the second

approach using the C programming language. We presented the experimental results

of the PIR/ATIR Java implementations in [YXB02a, YXB02b]. Compared with the

second approach, the first one, however, is rather inefficient because of the use of

blocking I/O and a polling model [Ste98 pp. 145]. The client daemon sits in a loop,

which checks the availabiHty of answers in the threads. This is often considered to be

a waste of CPU time. Strictly speaking, it is not a proper approach for ATIR

implementation because of its sequential checking metiiod to poll the information of

the threads. Before the system starts, it is unknown that which set of servers will first

return answers.

Our current implementation xjses the single-threaded approach to avoid the

application level compUcation introduced by coordinating multiple concurrent

threads and to reduce thread overhead. As shown in the next chapter, the C

implementation of ATIR performs well. Indeed, non-blocking I/O processing has

81

CHAPTER FOUR. SYSTEM ARCHITECTURE AND IMPLEMENTA TION

been well documented to outperform thread processing. (See, for example, [Ste98, pp.

409], [KG02], and [Wel02]).

The client program follows an event-driven architecture by using the s e l e c t

function call to wait for answers to arrive or for timeout to be reached. We follow a

similar approach used by Stevens in [Ste98, Chapter 15] to design the main logic of

the non-blocking I/O processing. The client side sockets are all set to be non-

blocking so that the system can effectively manage the socket connections and

send/recv buffers. Generally speaking, blocking sockets will wait until the condition

to be tine while non-blocking sockets rely on the underlying system mechanisms to

handle the concurrent events.

Specifically, we use non-blocking connect operations to attempt the first socket

connection with each of the servers. Often, the first connection attempt will not be

successful immediately. This may be caused by the slow response of servers and the

delay of network transmissions. Since the system uses a non-blocking I/O, the socket

will return immediately and report the error status (i.e. socket connection in process).

Of course, the socket status will be checked later to check whether the connection

has been estabHshed. By exploiting non-blocking I/O in our system, the impact

caused by exceptional slow servers can be largely reduced and therefore the overall

system performance may be improved. As demonstrated in ovir performance in the

next chapter, this approach is can be very effective for dealing with slow or unstable

network connections with remote servers.

Each replica is associated with a flag which can be in one of the statuses of the
following set:

{connec t ing , r ead ing , done, f a i l e d } .

After the first socket connection attempts, the socket status of all servers is set to

be connect ing. The first two statuses mean tiiat the server is still interacting with

the server. Once the connection is established, the client sends the corresponding

query message immediately. Otherwise, the connection is failed and the server status

is marked as failed.

Each socket has a pair of read/write descriptors that are used to examine whether

the sockets are ready to read or write. When a non-blocking socket connection is

established, the cUent sends the corresponding query to the respective server while

82

CHAPTER FOUR. SYSTEM ARCHTTECTURE AND IMPLEMENTATION

setting the read descriptor of this socket to be on and changing the server status to

reading. The failvire of the first non-blocking socket connection attempt does not

mean that the server is not available. It may be the case that the server response or

the network connection is slow. Therefore, the connection will be attempted later. In

the meanwhile, the server status is set to be connect ing and both read and write

descriptor for this socket are set to be on.

Since we are using non-blocking sockets, there can be data available from any

socket at any time. The data on TCP sockets is fransmitted as segments which can

arrive in one-go or separately. It is up to the xmderlying TCP mechanism to

dynamically handle the fransmission. Therefore, it is mandatory to ensure that the

cUent keeps checking the socket until no more data is available to read. For a large

trunk of data that are transmitted in several TCP segments, the underlying socket

handles the actual data amount transmitted in each segment despite the total number

of bytes sent out by the server. Each time, a newly arrived message segment is

appended to the end of the current answer buffer. Once the nvimber of ready sockets

exceeds the threshold limit, the reconstruction fimction will start to reconstruct

results.

Server Daemon, View IVIanager, Answer Manager

The server daemon is implemented as pre-threaded servers to handle multiple chents'

concurrent connections due to its good performance over non pre-threaded servers

[Ste98]. By creating a pool of threaded when a server starts, it reduces the time taken

to deal with each connection as the server can just reuse the existing threads without

creating new ones, mutex is used to control concurrent access to critical regions and

variables, for example, the acceptQ fiinction. Once a new thread is created to

handle the client's connection, the program control is handed over to the fimction

tirexecuteO, which has a loop to produce the answer for each block repeatedly.

For each block, the view manager does three tasks. First, it constructs a SQL

statement based on numcalrec and f i r s t r e c parameters obtained from the

received query stiucture. It then proceeds to execute the SQL statement and

fransform the SQL results into a computable format.

83

CHAPTER FOUR. SYSTEM ARCHTTECTURE AND IMPLEMENTATION

4.2.3 Message Formats

With the tase of non-blocking I/O operations, however, we do need to pay some extra

attention to socket buffer management. In our case, we have paid particular attention

to the format of the query and answer messages to tune for better communication

complexity. Figure 4-4 and Figure 4-5 shows the message formats in our current

implementation. There are two types of messages exchanged over the

communication channels in ATIR. A message fi-om the client to servers is called a

query and a message on the reverse direction is an answer. The major content of

query messages is query elements whereas the major content of answer messages is

answer elements. In general, we refer to the major content as elements.

These formats only specify the maximum communication capabiUty of ATIR

messages. Each message contains two parts: a fixed-length header and a non-fixed

length data. The length of headers is fixed no matter how much data items to be

retrieved. The actual size of messages transmitted over the network varies mainly

due to the size of contents (i.e., actual queries and answers). The following specifies

the meanings of each part.

o cM: an 2-byte integer which specifies the cUent id (currently unused)

o gfforder: set the order of the finite field

o mimcalrec: number of records in a block

o ftrstrec: the index of the first record

o dbmffo: the name of the intended database, table, usemame and password

o content: query elements

An answer message contains two sections: len and content, len is the total

number of elements in each block and elen^, where y = 1, 2, f len and f len is

the number of fields in a block, len and elen^ has the following relationship:

len = ^slsfij .
y=l ,2 Jlen

84

CHAPTER FOUR. SYSTEM ARCHITECTURE AND IMPLEMENTATION

(fixed-length) Header (non-fixed length) Data

8 bytes 60 bytes up to 4,028 bytes

old gforder numcalrec firstrec dbinfo content

element^ element^ elementnu^cairec

Figure 4-4 Message Format for Queries

(fixed-length) Header

2 bytes

(non-fixed length) Data

up to 4,094 bytes
- ^ 1

len content

block^ blockj

elen,
r

. eleng elen,ien

field. i fields fieldfien

^ ^ ^ ^ ^

element, elementj elementeienz

Figure 4-5 Message Format for Answers

85

CHAPTER FOUR. SYSTEM ARCHITECTURE AND IMPLEMENTA TION

4.2.4 Optimizations

This section describes three optimisations used in the PIR/ATIR C implementation.

Structure optimisations

The first optimisation only applies to the PIR implementation and reduces the

communication cost by half, comparing to that of the ATIR implementation. This

reduction is significant for PIR requests which require high privacy protection.

In PIR, the elements in query and answer messages are 1-byte integers/characters,

which are enough to accommodate all the characters that could appear on the server

side computation. Therefore, these elements are sufficient to cover all the field

elements that are required for PIR computations. However, ATIR has to use two-byte

integers due to the fault tolerance requirement. Excluding the constant

communication overheads imposed by the message headers, this technique reduces

the communication by half

Probabilistic Reconstruction for ATIR

This optimisation speeds up the reconstruction process of ATIR. Instead of waiting

for the finish of the deterministic reconstruction, the probabiUstic reconstruction

stops when the first valid result is obtained. With the use of the pATIR, the

reconstruction time can be reduced significantly in the normal situation. For example,

with the use of three servers, the reconstruction time of pATIR is 1/3 of that of

dATIR in normal circumstances.

MySQL InitiaUsation

In the current implementation, MySQL server side initialisation performs once

before the block processing. This is an alternative to initialise MySQL connections

for each block. This saving increases as the number of blocks grows. For example,

when numtok = 100, i.e., there are 100 blocks, the total processing time is reduced

from 0.277 second to 0.246 second. In this case, the optimisation saves 11% of the

total processing time of ATIR.

86

CHAPTER FOUR. SYSTEM ARCHITECTURE AND IMPLEMENTA TION

4.3 Implementation Issues

4.3.1 Circumventing the Index Knowledge Assumption

There are several inherent stumbling blocks that preclude the practical ATIR

implementations. As noted by an early paper [CGN97], all known PIR schemes

require the user to know exactly the physical index of the intended record in a

database. This assumption suffers from the following limitations: i) the physical

index of records changes all the time, and it is difficult to keep users updated with the

latest changes; i i) the implementation of indexing mechanisms varies from system to

system. In most of the cases, user applications cannot directly access this information.

Often, this information is transparent to the user applications. The implementation of

ATIR schemes also faces this problem.

We can relax this assumption by associating each entry in the database with a

unique numerical identifier, and introducing an identifier resolution protocol to

extend the ATIR service from hiding the index of an intended data item to hiding the

keyword of the data item.

When the user supplies the keyword of an entity, the ATIR service wi l l query a

directory service with the keyword and returns two pieces of information to the user:

the identifier of the keyword and the total number of identifiers in the directory.

Currently, our implementation only supports an one-to-one mapping relationship

between a keyword and an identifier.

This adaptation removes the index knowledge assumption and paves the way for

integrating ATIR service in real applications. In practice, the physical index of the

data item in databases can be substituted with the identifier information. An identifier

is a label that identifies a person or an entity. Examples of identifiers include primary

keys of databases, names of objects in an object-orientation programming, and the

newly proposed permanent identifier for public key certificates [PG04]. Identifiers

are usually required to be unique to ensure the one-to-one mapping relationship

between an identifier and a subject entity.

We assume that this mapping relationship is published correctly by service

providers and stored in a trusted public directory. By searching the public directory

using a subject name, we can resolve the identifier of an entity and then use it to

retrieve the corresponding data item. This is through the use of the Identifier

87

CHAPTER FOUR. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Resolution Protocol that returns a unique identifier corresponding to the inputted

keyword.

4.3.2 FulHength Processing versus View Processing

The server side computation of PIR schemes can be classified as: pre-processing and

online processing. Both computations process the entire database on each individual

server. We call it fiiU-length (pre-/online) processing. Only one of them wil l be

chosen for any specific PER. scheme. The pre-processing aims to reduce the cost of

online processing by changing the data to a specific format. This approach is used

by [IS03], which reduces the cost of online processing to a constant. In terms of

online processing, this is optimal although it is at the cost of fiill-length pre­

processing. Without pre-processing, online processing needs to compute over an

entire database.

The full-length processing over the entire database guarantees the perfect privacy

property in PIR schemes, i.e., each record has an equal probability of being the one a

user wants. For example, i f the processing is over a 100-record database, each record

has 1/100 chance being the one wanted. Although the fiiU-length processing is secure,

i t is costly and not flexible. Generally speaking, the level of privacy protection is

proportional to the number of records involved in the server side computation. In

other words, the chance of successfiil privacy violation by a server is inversely

proportional to the number of records involved in the server side computation. This

is a trade-off between computation cost and privacy. A better strategy is to let the

user decide the amount of time for processing, and correspondingly, the level of

privacy protection an ATIR service can provide. For example, by specifying the

number of records the user wishes to compute over, a xxser can choose the level of

privacy protection s/he can get.

4,4 Summary

This chapter first presents the architectural design of our ATIR system and the

character-string database model used in the ATIR system implementation. We then

describe the design details of the major components and present the message formats

used in the ATIR system. A number of optimisation techniques used in the

implementation of ATIR are briefly described. That is followed by some discussion

on the important implementation issues of the ATIR system.

88

CHAPTER FIVE. EMPIRICAL EVALUATION

Chapter 5 Empirical Evaluation

This chapter presents the experimental studies of ATIR systems. We first derive an

analytic model for the performance of an ATIR service and then derive performance

model parameters. We validate the model by showing that it accurately predicts the

performance results gathered in the experimental studies. The model can also be used

to predict the performance of the system in different settings.

We fijrther examine the impacts of varying the major parameter, such as view

sizes and resuU sizes, on the Total Time for Processing (TTP) of ATIR in fault-free

situations. To xmderstand the source of performance bottleneck of both services, we

also examine the contributions of each component to the TTP.

Finally, we investigate the behaviours of the ATIR system in the presence of

simulated faults. We focus on the impacts of these faults to the TTPs of ATIR and

discuss the implications of the experimental results. This chapter also compares the

performance of ATIR with that of PIR and the downloading solution.

5.1 Performance Models

This section investigates the major factors that make an impact on the ATIR system

performance. We present a complete analytic model for the ATIR implementation to

analyse the costs imposed by various operations in the system. Performance models

are useful for xmderstanding and explaining performance results. We can use these

models for identifying the major sources of performance bottlenecks and verify the

importance of theoretical concerns. These models are also useful for predicting the

performance of the ATIR system in a different setting. The analytic model consists

of a number of component models where each of them models an individual function

of the system.

5.1.1 Preliminaries

The following notations are used in the performance models throughout this chapter.

A symbol with / as its subscript means that it is a fixed cost incurred for performing

an operation, that is, tiiis cost is independent of the input of a function. A symbol

89

CHAPTER FIVE. EMPIRICAL EVALUATION

with a as its subscript means that it is an additional cost incurred per unit. A unit can

be a byte, an element, or a record. An element is either a single-byte integer or a two-

byte integer. An element is used in both computational and storage contexts. The

element size, denoted by es, is defined as the number of bytes in an element.

A result is the parts of a record that a user wants to retrieve. The result size,

denoted by rs, is defined as the original number of elements in a result. By trimming

off the empty spaces at the end of a result, an optimised result size, denoted by ors, is

obtained.

A query message contains a fixed-sized query header and query elements. The

number of query elements in the message is defined as query size, denoted by qs.

The query message size is the total number of bytes in a query message.

An answer message consists of a fibted-sized answer header and answer elements.

The number of answer elements in the message is defined as answer size, denoted by

as. The answer message size is the total number of bytes in an answer message.

The size of a message, denoted by mess, is the total number of bytes in a query

and an answer message.

A view is a collective representation of the data sets involved in the server side

computation. A view size, denoted by vs, is defined as the total number of records

involved. Table 5-1 offers a list of the notations for the variables described.

Table 5-1 Notations for Performance Models

Variables Name Unit Description
es element size bytes number of bytes in an element
qs query size element number of elements in a query, exclusive of a

fixed-sized query header
as answer size element number of elements in an answer, exclusive

of a fixed-sized answer header
rs result size element number of elements in a result
mess message size byte number of bytes in a message
vs view size record number of records in a view
ors optimised result

size
element number of elements in a result after trimming

off the spaces at the end

90

CHAPTER FIVE. EMPIRICAL EVALUATION

In the ATIR implementation, these variables have the following relationships:

as = qs xrs

mess = (qs + as) xes

vs = (qsf

5.1.2 Performance Modelling

The overall performance of an ATIR service is characterised by TTP - the time taken

from the system starting to process an ATIR configuration file until the system

obtaining a result. TTP can be divided into three processing time as follows: client

side, server side, and commvmication.

On the client side, the major components of TTP include: system initialisation,

query message preparation, and result reconstruction/verification. On the server side,

the major components of TTP are: view creation, and answer message preparation.

To help our presentation, let us first give a list of the short forms for timing variables

and their corresponding meanings.

T I S : time taken to initialise the system, (a constant cost)

T P Q : time taken to prepare query messages, including headers.

T R V : time taken to reconstruct and verify results.

TCV: time taken to create views.

T P A : time taken to prepare answer messages, including headers.

T T Q M : time taken to fransmit a query message.

T T A M : time taken to transmit an answer message.

We fijrther infroduce the following timing variables to represent the sums of the

above timing components:

T S P : server processing time.

T C O M M : communication time of an ATIR service.

T S R : server response time.

91

CHAPTER FIVE. EMPIRICAL EVALUATION

They have the following relationships:

TSP = TCV +TPA

TCOMM = TTQM + TTAM

The client also spends time to perform the following regular tasks: establishing

and closing TCP cormections, method invocations, memory management,

establishing and releasing MySQL server connections, and garbage collections. We

refer them as the time taken to do miscellaneous tasks, denoted by TMIS.

Figure 5-1 shows a timing diagram which illustrates the relationships among these

variables. (For clarity, TMIS is not presented in the diagram.) The shadow boxes

represent the participants of an ATIR service. Each participant is associated with an

execution line from top to bottom. To simplify the presentation, the diagram assumes

that the client concurrently sends the query messages to tiie servers respectively and

the servers receive them at the same point along the time line. A similar situation is

also assumed for the answer messages. In reality, many non-system factors may have

various degrees of impacts on message arrivals. Network load, system load, and

system management tasks are the typical factors.

The TTP of ATIR is given by the following formula:

TTP = TIS + TPQ + TCOMM + TCV + TPA + TRV

In the remaining presentation of this section, we shall focus on these components:

TPQ, TPA, TCOMM, TCV, TRV, and finally TTP. The communication cost in

ATIR is quantified through two models: a message model (TCOMM-1) and a

communication cost model (TCOMM-2). Message sizes and actual communication

costs are the major concerns in PIR and ATIR research. TCOMM-1 represents the

bandwidth consumption of ATIR whereas TCOMM-2 characterises the performance

overhead of message transmission.

92

CHAPTER FIVE. EMPIRICAL EVALUATION

TTP

TIS+TPQ

TTAM

Figure 5-1 A Timing Diagram for ATIR Services

Message Preparation (TPQ and TPA)

We first derive a model for calculating TPQ. The computation is modelled as a linear

fimction of query size as follows.

TVQiqs) = Q M f + Q M a x qs

QMfis a fixed cost of computing a query which contains zero query elements and

is measured in microseconds. QMa is an additional cost of computing each query

element and is measured in microseconds per element.

We then derive an answer model for calculating TPA which is modelled as a

linear function of view size and result size.

TPA(ys, rs) = TPAf+ TPAa xvsxrs

where vs is the view size and rs is the result size.

TPAf is a fixed cost of computing an answer message which contains zero

elements and is measured in microseconds. T P A a is an additional cost of computing

93

CHAPTER FIVE. EMPIRICAL EVALUATION

with each element and is measured in microseconds per element, vs x rs is the

number of elements in an answer.

Commumication Model 1: Message Model (TCOMM-1)

We first derive a message model which calculates message sizes based on query

sizes, result sizes, and element sizes. Message sizes correspond to the bandwidth

consumption of ATIR services. Since message sizes are independent of any specific

network infi-astructure, it is usefiil to analysis them when communication cost is

discussed.

Between a cUent and a server, the total message size transmitted, denoted by tms,

is the sum of the size of a query message and an answer message. We have the

following formula which calculates the total number of elements exchanged between

a client and a server:

tms (qs, ors, es) = qh + ah + qsx (es + ors x es)

where qh is the size of a query message and ah is the size of an answer message.

Alternatively, the above formula can be revised as a parameter of vs as follows:

tms (qs, ors, es) = qh + ah + v j * ^ x (es + ors x es)

In PIR, each element is represented by a one-byte integer and thus the tms of PIR

is also the number of bytes exchanged between a client and a server. In ATIR, each

element is represented by a two-byte integer and thus the number of bytes exchanged

between a client and a server doubles the above tms.

Communication Model 2: Communication Cost Model (TCOMM-2)

We now derive the second communication model (TCOMM-2) to model the actual

communication cost of transmitting the messages in the ATIR system. This second

communication model is based on the first communication model (TCOMM-1)

because it relies on the first model to calculate the size of a message. The second

model separates the host processing overhead fi-om the actual network

communication overhead. The separation enables us to predict the performance of

the system in a different network setting, such as the Internet. Since our

implementation uses TCP connections for message transmission, our discussion

focuses on TCP.

94

CHAPTER FIVE. EMPIRICAL EVALUATION

The communication model of an ATER systan consists of two parts: the model of

host processing and the model of network processing. The former model aims to

model host processing time whereas the latter models network communication time.

The communication costs in both models are modelled as a linear flinction of the

variable tms. For the host-processing model, there are two parameters: a fixed cost Hf

of processing zero byte data and an additional cost Ha of processing an extra byte.

For the network-processing model, there are also two parameters: a fixed cost A^of

transmitting zero byte data and an additional cost Na of transmitting one-byte data. Hf

and Nf are measured in microseconds whereas Ha and Na are measured in

microseconds per byte. Therefore, TCOMM is calculated as follows:

TCOMM (tms) = Hf+ 2 x i / ^ x (tms) + Nf+ Na x (tms)

View Creation (TCV)

This section presents a model for computing TCV, i.e. the time taken to get records

from databases and transform them into a view. Again, the model consists of two

components: a fixed overhead TCVf of performing the transformation and an

additional cost TCVa of fransforming an element. TCVf is measured in microseconds

and TCVa is measured in microseconds per element. The input to the model is view

size and result size. TCV is modelled as follows.

TCV(vs, rs) = TCVf+ TCVa xvsxrs

Result Reconstruction and Verification (TRV)

This section describes a model for computing TRV, i.e., tiie time taken to reconstiiict

a result. The TRV model consists of two components: a fixed cost TRVf of

reconstructing and verifying a record and an additional cost TRVa of reconstiiicting

and verifying an element. The model is as follows:
TRV(ors) = TRVf + TRVaXors

TRVf is measured in microseconds and TRVa is measured in microseconds per

element. Each reconstructed element is subject to verification. Therefore, TRV can

be further divided into two sub-components: the time taken to reconstruct a result

and the time taken to verify a result.

95

CHAPTER FIVE. EMPIRICAL EVALUATION

In theory, it is necessary to separate TVER from TREC because there is one of the

major differences between PIR and ATIR. However, as we shall show in the

experimental studies, the separation is not necessary because of the cost of verifying

a result in TTP is effectively negligible. Therefore, we only present one combined

model for the result reconstruction and verification.

Total Processing Time (TTP)

Putting all these models together, we have the following formula for computing the

TTP of an ATIR service.

TTPatii(e5, vs, rs, ors) = TIS + T?Qiqs) + TCOMM(gs, ors, es) + TCV(vs, rs) +

TPA(v5, rs) + TRV(ora) + TMIS

5.2 Experimental Setting

Unless otherwise stated, the experimental settings described in this section apply to

all experiments presented in this chapter.

5.2.1 Experimental Objectives

In this thesis, there are four goals of conducting our experimental studies:

• Deriving the analytic model of the performance of an ATIR service;

• Quantify the cost of providing privacy protection;

• Investigating the cost of dealing with attacks in ATIR;

• Comparing the experimental results of ATIR with SQL queries and PIR.

5.2.2 Experimental Environment

Our experiments use a set of identical DELL machines with the following

specifications: Dell Precision 650 workstation with Dual Intel Xeon 3.06GHz hyper-

threaded, 1 GB RAM, 36GB Fujitsu MAS3367NP SCSI hard drive, and 3COM

3c905C NIC. They are interconnected through a Cisco switch which has the

following specifications: Cisco Catalyst 2924 (model: WS-C2924C-XL-A). The

switch has twenty-two 10/lOOBaseTX ports and two lOOBaseFX ports.

96

CHAPTER FIVE. EMPIRICAL EVALUATION

A l l machines run Redhat Linux release 9 (Shrike) and the kernel version is 2.4.26.

The kernel is compiled with smp' support. The specifications of the major software

packages are described as follows. The version of MySQL is 11.18 with distribution

3.23.58 for redhat-linux-gnu (1386). A l l the programs used in the experiments are

compiled with GCC 3.2.2.

Three machines are used as servers in all ATIR experiments. Two machines are

used as servers in all PIR experiments whereas one machine is used as a server to

perform SQL queries. One client machine is used in all the experiments presented in

this chapter.

The database (precisely the database table) used in the experiments contains over

44,000 records where each record contains 880 bytes. Apart fi-om otherwise specified,

the default size of a result in the experiments is 10 bytes.

Unless stated otherwise, the finite field for ATIR computation is GF(257) and the

finite field for PIR computation is GF(256).

Again, unless stated explicitly, we use a simple (single factor) linear regression

method to compute the model parameters in all the experimental studies.

Due to the resource restriction, the network is not an entirely private closed

network. For system administration purposes, there are regular synchronisation jobs

running on the machines which are beyond our control. That means there may be a

small amount of bursting trafiBc in the network which may have unpredictable

impacts on system measurements. However, as any random factors, such as tasks

running by operating systems, we tiy to minimize such unpredictable impacts

through conducing repeated experiments, excluding outiiers, and using statistical

methods to justify the accuracy and validity of the experimental results.

It is, however, observed that some outside factors do have an impact on the

performance of our experiments. For example, the first execution of any program

often experiences exceedingly high (twice or three times more than usual)

performance overhead. We believe it is due to the context switching management

performed by the operating system. Another such outside impact occurs with the use

of MySQL database services, on top of which the system is built. It is observed that

' smp: shared memory multiprocessor

97

CHAPTER FIVE. EMPIRICAL EVALUA TION

the time taken to establish a connection with a MySQL server at the first time is two

or three times of that in the subsequent establishment. The exact cause of this

phenomenon is not clear. Since this does have a direct impact on our system

performance, we repeat all experiments eleven times and eliminate the first result.

5.2.3 Primitive Component Model Parameters

Concerns of Deriving the Communication Cost Model

Host processing and network processing are two major sources of TCP performance

overheads. Previous studies (e.g. [CJRS89]) have shown that host processing can

impose noticeable overheads on the overall TCP performance. Here, a host is defined

as the computers at the end points of a network. Host processing is mainly software

overheads and includes, for example, the costs of running TCP program on the

computers (i.e., at the application layer), and the costs of moving bytes in the

memory (i.e. between user address space and system address space and between

network interfaces to system address space).

A network encompasses both intermediate processing nodes (e.g. routers) and

communication links. Network processing overheads include the costs that arise fi-om

processing the packets on intermediate notes and communication links. Separating

host processing fi-om network processing gives us a better insight on the real source

of the communication costs of TCP. Furthermore, the separation can help us to

predict the performance in a different network environment with other settings.

As similarly assumed in other commxmication experiments (e.g. [KROl]), we

make a number of assumptions to simpUfy the measuring task. Using these

assiraiptions keeps the thesis in focus. With respect to the communication model, our

goal in this thesis is to model the communication cost of the system m action. It is

not our goal to develop a generic methodology to model the communication of the

TCP/IP protocols. In a network environment, the communication latency would

depend on several parameters, such as reti-ansmission, flow conti-ol policies of the

TCP protocol, buffer sizes of senders and receivers, the communication distance,

bandwidth availability, traffic intensity, and the mraiber of intermediate hops in the

network communication path.

98

CHAPTER FIVE. EMPIRICAL EVALUATION

We assume that all the communication channels in our system are dedicated and

the bandwidth availability is the same. We also assume that the network has no

congestion, and packages are neither lost nor corrupted so that the TCP protocol wi l l

not refransmit packets. From the statistics data collected, this assumption seems to be

valid for our experiments due to the fact that it is a closed and dedicated network

envirorunent.

Host Processing Time

We need to run two batches of experiments because our communication model

(TCOMM-2) separates the host processing from network communication. Host

Processing Time (HPT) is the time taken to process a message on a single computer.

Network Commimication Time (NCT) is the time taken to fransmit a message by a

network from one computer to another computer. Round Trip Time (RTT) is the

double of the sum of HPT and NCT. It should be noted that most RTT measurements

in the literatures do not distinguish HPT and NCT from RTT. In our studies, however,

the separation provides us with a way to predict the communication overhead that

may exhibit by the system in a different network setting.

The first batch of experiments aims to measure HPT. That is, the client and the

server reside on the same computer. Therefore, the measured host processing

overhead is the sum of the following two costs: the cost of segmenting and copying

the messages from the client (program) address space to the system address space

and the cost of reassembling and copying the messages from the system address

space back to the chent address space. Essentially, the host processing cost is the cost

of going through the TCP protocol stacks (TCP/IP).

To measure HPT, we resort to the loopback address (or interface) [Ste94]. A

loopback address specifically refers to the local host IP address 127.0.0.1. Any

messages send to this address wil l be routed back to the originated source. The

roundtrip time obtained through a loopback address is, therefore, the cost incurred by

tiie software processing on a single computer. Table 5-2 shows the measured

roundtiip and one-way HPT. One-way HPT is half of the roundtiip HPT. Based on

the measured data, we compute the parameters HfZtmdi Ha, which are shown in Table

5-3. The parameter is calculated based on the one-way HPT.

99

CHAPTER FIVE. EMPIRICAL EVALUATION

Figure 5-2 plots the measured and predicted one-way HPT against various

message sizes. The predicated values match with the measured values with a high co­

efficient of determination (98.37%). That means the prediction is accurate.

Table 5-2 Measured Host Processing Time Ois)

Messŝ e
(bytes)

size Roundtrip (us) One--way(|ls) Std.
Dev.

100 29.60 14.8 2%
200 30.40 152 5%
300 31.10 15.55 2%
400 30.90 15.45 5%
500 3U0 15.6 3%
600 31.50 15.75 4%
700 3220 16.1 2%
800 32.90 16.45 4%
900 33.80 16.9 2%
1000 33.60 16.8 3%
1100 34.30 17.15 4%
1200 34.80 17.4 2%
1300 35.30 17.65 3%
1400 35.30 17.65 5%
1448 35.80 17.9 3%

Table 5-3 Parameters of One-way HPT

Parameter Value Description

Hf 14.629 ŝ A fixed overhead of transmittir^ messages of any si2e
through the loopback interface

0.002252Ms/byte An additional cost of transmitting a single byte t h r o i ^ the
loopback interface

20 -

18

16

c 14 -

§
12 -

1 10

8

1 6
i o 4 -

2

0 -

• msasured one-w ay host

predicted one-way host

200 400 600 800 1000

message size (bytes)
1200 1400 1600

Figure 5-2 Measured and Predicted One-way Host Processing

100

CHAPTER FIVE. EMPIRICAL EVALUATION

When the system is deployed in a different network enviroimient, the potential

impact of the network environment becomes a dominant factor on the stability of

TTP. I f the same set of machines is used for the new deployment, the HPTs wil l

remain the same since they are independent of the xmderlying network infi-astructure.

Network Communication Time

The second batch of experiments aims to investigate the relationship between NCT

and message sizes. NCT is obtained through subtracting HPT firom RTT. Table 5-4

shows the measured RTTs and calculated one-way NCT obtained through

experimenting with two separated computers. The second colimm (i.e., RTT) is the

time taken to send the messages back and forth between the computers. The third

column (i.e., Std. Dev.) is the standard deviation, which is the variance of the ten

observations fi-om the averaged RTT. The last column is the one-way NCT which is

the time taken to transmit the messages fi"om the client to the server, which is half of

the difference between the RTT and four times of the corresponding one-way HPT.

Based on the measured data, we compute the parameters A/-and Ng, which are shown

in Table 5-5.

Table 5-4 Measured Romidtrip Time and One-way Communication Time

Messs^e size RTr(Ms) Std One-way
(bytes) Dev. NCr(jis)

100 497 1.64% 219
200 556 0.66% 248
300 629 0.25% 283
400 612 0.47% 275
500 690 0.49% 314
600 687 0.36% 312
700 746 026% 341
800 788 0.42% 361
900 837 0.70% 385
1000 875 0.66% 404
1100 938 0.46% 435
1200 982 0.40% 456
1300 999 0.00% 464
1400 1037.4 0.25% 483
1448 1047.7 0.31% 488

CHAPTER FIVE. EMPIRICAL EVALUATION

Table 5-5 Parameters of One-way Network Communication Time

Parameter Value Description

Nf 205.36 îs
A fixed overhead of transmitting messages of any size
through the network (one-byte)

Na 0.19978 ^s/byte An additional cost of transmitting one-byte through the
network (one-bj1;e)

600

500

400

£ 300

1

I
i

* measured onew ay
connm
predicted onew ay
comm

200 400 600 800 1000 1200 1400 1600

message size (bytes)

Figure 5-3 Measured and Predicted One-way Communication

Table 5-6 Protocol Constants

Name Value Description

TSQL-INIT 238^18 time taken to establish a connection with a local MySQL server
TIS (ATIR) 74 |xs time taken to initialise the ATIR system

Figure 5-3 plots the one-way NCT between two computers in our network. The

predicted values match with the measured values with a high co-efficient of

determination (99.09%)

Constants

Table 5-6 shows the protocols constants for all the experiments. These values are

used to produce to predict TTPs in the subsequent sections.

102

CHAPTER FIVE. EMPIRICAL EVALUATION

5.3 A T I R Experiments in a Faialt-free Emvnrommemt

This section first derives the component parameters for the ATIR models and then

investigates the impacts of varying view size, result size, undetected error rate on the

TTP of ATIR and the proportions of each component in the TTP of ATIR. We also

investigate the impact of using a deterministic ATIR (dATIR) to the system

performance. Unless mentioned explicitly, an ATIR scheme refers to a probabilistic

ATIR scheme. We further present the experimental results of ATIR performance in

the presence of various simulated faults.

5.3.1 ATIR Component Model Parameters

Message Preparation

We use a simple linear regression model to find out the parameters TPQf and TPQa

in the query model and TPAf and TPAa in the answer model. Table 5-7 shows the

parameters obtained through using the regression (least square) method.

To verify the query model, we run ten independent experiments varying the query

size fi-om 10 elements to 100 elements which are then used to compute fi-om 100 to

10,000 records on the server side. Each experiment involved a different-sized query

message, hi each series, each experiment is consecutively repeated eleven times.

Figure 5-4 shows the measured and predicted TPQ as the query sizes increase.

Each diamond point is the average value of five runs. Apart fi-om the first series of

experiments, the TPQ time for the overall experiments is fairiy stable. The standard

deviation of the averaged values of the first experiment is 7% whereas that of the rest

of the experiments is below 5%. The model is also accurate. The co-efficient of

determination is 97.5%, The high co-efficient of determination means that the model

matches with the measured data.

Table 5-7 Message Preparation Parameters (ATIR)

Parameter Value Description
TPQf 9.09194 us A fbffid oveiiiead of computing query mesŝ es of any size
TPQa 0.7231 us/element Additional cost per element in a query message
TPAf A fixed overiiead of computing answer mesŝ es of any

size
T P A . 0.9246 |js/element Additional cost per element in an ansAver message

103

CHAPTER FIVE. EMPIRICAL EVALUATION

To verify the answer model, we also log TPA in the above experiments on the

server side. Corresponding to the query size from 10 to 100 elements, the view size

ranges from 100 to 10,000 records. Figure 5-5 plots the measured and predicted TPA

against the view sizes. The co-efficient of determination of the experiments is over

99.99%. This means that our model is accurate.

100 1

• measured TPQ
- • — predicted TR3

40 60 80

query size (elements)

100 120

Figure 5-4 Measured and Predicted TPQ vs. Query Sizes

10.000

9.000

8,000

_ 7,000

6.000

5.000

4,000

3,000

2,000

1,000
• measured TPA

- • — predicted TPA

2,000 4,000 6,000 8,000

view size (records)

10,000 12,000

Figure 5-5 Measured and Predicted TPA vs. View Sizes

104

CHAPTER FIVE. EMPIRICAL EVALUATION

Communication

As explained in Chapter 4, it is sufficient and necessary for the ATIR

implementation to use a 2-byte integer to represent an element. Table 5-8 shows the

relationship among message sizes, query sizes, view sizes and the total

communication time for transmitting the messages. The original result size is 10

bytes and the optimised result size is 6 bytes. Since the answer size is determined by

the optimised result size, we simply assume that the result size is 6 bytes per block.

In order to understand the table, let us take the first row as an example to explain

the meanings of these figures. In this row, an APIR query computes over 100 records.

Therefore, the query contains 10 elements with 2 bytes each and the answer contains

10 blocks. The query message size is 120 bytes, which is the sum of a 100-byte

query header and 20-byte query elements. The answer message size is 122, which is

the sum of a 2-byte header and 120-byte (i.e., 12 bytes/block x 10 blocks) answer

elements. Using the commimication parameters derived in Section 5.2.3, we can

obtain the total communication time as follows.

2*14.629 + 205.36 + 242 x (2*0.002252 + 0.19978) = 284.054 |is

It is important to note that the total message size of ATIR is solely determined by

the view size. The deployment in a different network environment will only have an

impact on the total communication time, not the total message size.

View Creation

To verify the model, we use the linear regression method to calculate the parameters

TCV/ and TCV^ which are shown in Table 5-9. Figure 5-6 plots the predicted and

measured costs of TCV against view sizes. The model is accurate because the co-

efficiency of determination is 99.97%.

105

CHAPTER FIVE. EMPIRICAL EVALUATION

Table 5-8 Query Sizes, View Sizes, Message Sizes and Communication Time of ATIR

Query Size View Size Bsent Brecv Total Message Total Comm.
(elements) (records) (bytes) (bytes) Size (bytes) Time (|is)

10 100 120 122 242 284
20 400 140 242 382 313
30 900 160 362 522 341
40 1600 180 482 662 370
50 2500 200 602 802 398
60 3600 220 722 942 427
70 4900 240 842 1082 456
80 6400 260 962 1222 484
90 8100 280 1082 1362 513
100 10000 300 1202 1502 541

Table 5-9 Parameters of TCV

Patameter Value Description
TCV/ 153 \xs A fixed overhead of performing DB transformation

operations
Tcy. 13.573 |is/record Additional cost per record of performing DB

transformation operations

160,000

140,000

120.000

80.000

60.000

40,000

20,000

I 100.000

• measured TCV

«—predicted TCV

4000 6000 8000 10000 12000

view size (records)

Figure 5-6 Measured and Predicated TCV vs. View Size

106

CHAPTER FIVE. EMPIRICAL EVALUATION

45

40

35

30

25

20

15

10

5

0

• treasured TW
predicted TRV

10 20 30 40 50

optiirised resuit size (tiytes)
70

Figure 5-7 Measured and Predicted TRV vs. Optimised Result Sizes

160.000

140.000

120.000

S 100.000

£ 80,000

S 60,000
Q.

40.000

20,000 • measured TTP
predicted TTP

0 2,000 4,000 6,000 8,000 10.000 12,000

view size (records)

Figure 5-8 Measure and Predicted TTPs of pATIR

Table 5-10 Reconstruction and Verification (ATIR): parameters

Parameter Valxie Description
TRVf 20.753 |J5 A fixed oveiliead of reconstructiĉ any nxunber of

elements
TRVa 0.34111 us/byte An additional cost per record of reconstructii^ an byte

107

CHAPTER FIVE. EMPIRICAL EVALUA TION

Reconstruction

To verify the model derived for reconstructing results (i.e. TRV), we use a linear

regression model on the data to determine the regression parameters which are

shown in Table 5-10. Figure 5-7 shows the time taken to reconstruct and verify the

results against the increased (optimised) result sizes. The predicted values match well

with the measurements. The co-efficient of determination is 98%.

5.3.2 Varying View Sizes

Figure 5-8 shows the measured and predicted TTPs of pATIR against view sizes.

The predicted values are calculated following the performance models presented in

Section 5.1. The values of each component are calculated through the use of

primitive performance model parameters presented in Section 5.2.3 and the ATIR

component model parameters presented in Section 5.3.1.

The view size used in an ATIR service is an indication of the level of privacy

protection achieved. In the service, a user only needs one record in the view. As the

view size grows, the protection of the user's privacy increases. That is because the

view size directly reflects the number of records involved in the server side

computation. As the number of records involved in an ATIR computation grows, the

server has less information about the actual record that the user is interested in.

The TTPs clearly increase linearly as the view sizes increase. The figure shows

that there is little difference between the prediction and the measurements of TTPs of

ATIR. The co-efficient of determination is 99.96%. As the prediction for the TTPs of

APIR, the relative prediction error of pATIR quickly converges to the X aixs as the

view sizes increase, which is shown in Figure 5-9. That indicates that the accuracy of

the prediction of TTPs of ATIR increases as the size of a view involved in the server

side computation increases.

108

CHAPTER FIVE. EMPIRICAL EVALUATION

a.

i

5%

0%

-5%

-10%

-15%

-20%

-25%

-30%

-40%

1
1
1 1

(1 2,600 4,(00 8.(00 10. DOO 12,

/ 1 J 1
•

of ' 1 1
1 1 1 I

m
1
1

view size (records)

Figure 5-9 Relative Prediction Error of tlie TTPs of pATIR

5.3.3 Varying Result Sizes

This section investigates the impact of varying result sizes on the TTPs of pATIR. In

the previous experiments, we fix the result size to be 10 bytes. With the use of

optimisation techniques, the actual result size reduces 6 bytes (because the spaces at

the end of tiie fields are trimmed). Figure 5-10 shows the impact of increased result

sizes on the TTP of pATIR for varied result sizes and view sizes. In total, the figure

plots ten different view sizes along with varied result sizes.

109

CHAPTER FIVE. EMPIRICAL EVALUATION

•vs=100

-vs=3600

300,(X)0

250,000

-vs=400

-vs^900

vs=900

-vs=6400

- K — vs=1600

— v s = 8 1 0 0

-vs=2500

vs=10000

i

o
Q.

200,000

150,000

100.000

50,000

40 60 80

result size (bytes)

120

Figure 5-10 Measured TTPs of pATIR vs. Original Result Sizes

As the result sizes increases, so does the amovmt of data set involved in the server

side computation. The trend shown in the figure clearly confirms the results obtained

in Section 5.3.2 that TTPs grow linearly as the amount of data set involved in the

server side computation increases. However, for small view sizes, such increment is

not as significant as that of large view sizes.

When the result size hits 70 bytes, the TTPs of all view sizes exhibits a sudden

increase (ranging fi-om 1.2% of view size of 100 records to 4.7% of view size of

10,000 records) but returns to a linear trend when it reaches the result size of 80

bytes. It is independent of the actual sizes of data sets and clearly only relates to this

particular result size. After tracking down the proportion of the time taken by each

component of the system, we find that the symptom is caused by server side

computation rather than client side computation. In particular, the sudden increase of

TPA (the time taken to prepare answers) causes the sudden increase of TTPs of the

result size of 70 bytes. From the process of tracking down the problem, we believe

that there are two possible sources which may cause this problem. First, it may be

due to an implementation bug of the ATIR system. Second, it may also be a problem

caused by the underlying operating system. However, the exact cause is still under

investigation.

110

CHAPTER FIVE. EMPIRICAL EVALUATION

5.3.4 Varying Undetected Error Rates

The order of finite fields, i.e., p, in pATIR determines the fault tolerance capability

of an ATIR scheme and is inversely proportional to the Undetected Error Rate

(UER). UER is specified by a user and is the level of errors that the user wishes to

tolerate. In the current implementation, UER is specified at a character level rather

than a result level. For example, i f we retrieve one result which contains one

character and the UER is 0.30, there is 30% chance that the reconstructed result (in

this case, one character) is valid but not correct.

When a result contains more characters, the overall UER is the multiplication of

the UER of each tampered character in the result. For example, i f four characters in a

result is tampered and the UER for each character is 30%, the UER for the

reconstructed result is 0.0081 = (30%)'*, which means that the reconstructed result

has only 0.81% chance to be a valid but incorrect one. In terms of fault tolerance, this

implies that the more characters of a result being tampered, the easier for the system

to detect the corrupted result. This is, however, a theoretical explanation.

Table 5-11 shows the relationship between UER and the size of the finite prime

fields that are used in the experiments of this section. The calculation is based on the

following settings: the valid range of reconstructed characters is the integers in the

interval of [0, 255] and the number of replicas is three, which tolerates one faulty

server. This value of k, we beUeve, is expected to be sufficient for most real

applications because, with more replicas, the configurations and resource

consumptions may become excess for real world applications.

Each element of a finite field in our ATIR implementation is represented by a two-

byte unsigned integer, whose range is fi'om 0 to 65,535. This range is sufficient to

cover the most stiingent fatolt tolerance requirement that our system designs for. For

example, when the UER is 0.01 (that is, there is only 1% chance that a reconstinicted

character is valid but not correct), the corresponding size of a finite field is 25523.

Figure 5-11 illusti-ates the trend of TTPs of ATIR with increased view sizes with

varying undetected error rates. For a given view size, the figure clearly suggests that

the variance of UER has little impact on the TTPs of ATIR. The implication of this

outcome is significant because it suggests that we can have a higher-level fault

tolerance without compromising performance.

I l l

CHAPTER FIVE. EMPIRICAL EVALUATION

Table 5-11 The Mapping between UER and p

UER 0.01 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
P 25523 2557 1277 853 641 521 431 367 331 293 257

ie=0.01 ae^O.IO •e=0.20 Dê O.SO •e=0.40 •e=0.50 1 6=0.60 @e=0.7 •e=0.8 16=0.9 Qe=1.00

M •o c e
I
S o
E,
cc

o
a.

160,000

140,000

120.000

100.000

80,000

60.000

40,000

20,000

1,600 2,500 3,600 4,900 6,400 8,100 10,000

view size (records)

Figure 5-11 TTPs of pATIR witli Varying Undetected Error Rates

It should be pointed out that the variance of UER only change the time taken to

perform certain ATIR operations (e.g. query preparation and answer calculation)

while the time taken to do other operations, such as TCV, remain the same. From an

operating system's point of view, a finite field operation involves two unsigned

16-bit integers, which is true despite the actual values of these integers. Furthermore,

the number of operations does not change as a result of varied UER. Therefore, the

size of a finite field has no influence on the time taken to do the operation.

Although the figure (5-11) suggest there is not much difference between the TTP

of the system with different UERs, the variance of UER does makes an impact on

certain components of TTP. A closer examination of the component values reveals

that the TRV (i.e., reconstruction and verification) cost is inversely proportional to

UER. The smaller UER is the longer TRV takes. It is because with the finite fields

use prime numbers, rather than 257, as its order (i.e., size), the time taken to perform

field operations (in particular, reverse operations) is higher than using the field

112

CHAPTER FIVE. EMPIRICAL EVALUATION

GF(257). This is an implementation specific issue because we store the

corresponding reverse element in the memory for each element in the field GF(257).

However, with a larger prime field, the system has to perform the reverse calculation

on the fly and the time taken to perform such computation is inversely proportional

to the size of the field. The bigger the size the longer it takes. Note that bigger finite

field sizes correspond to smaller UER. But because TCV is a small portion of TTP

and due to the scale of the figure, such difference is masked by the figure.

5.3.5 Performance Proportion of Each Component

To identify the major sources of performance overheads, this section describes how

each component contribute to the overall TTPs of ATIR for fixed result size 10 bytes.

Figure 5-12 shows the proportion of each component of ATIR in the TTP as the view

sizes increase. In particular, the proportion of the time taken for server side

computation (i.e., TPV and TPA) quickly becomes the dominator factor of the TTPs.

As the view sizes increase, it is also clear that the proportion of commimication time

rapidly reduces from 23.27% (view size = 1 record and data size = 0.01 KB) to

1.40% (view size = 1,600 records and data size = 16 KB).

The figure also shows us that TRV vanishes quickly as the view size increases.

When the view size is one record, TRV takes up 1.97% of the TTP time. When the

view size becomes 10,000 records, the proportion drops to 0.02%. Although the data

in the figure uses a fixed result size, it does give us a clear implication of how TRV

compares to TTP as the view sizes increase.

113

CHAPTER FIVE. EMPIRICAL EVALUATION

iTMSalFQaTOOMIIaTCV MTPA mim

4 9 16 25 36 49 64 81 100 400 900 1,600 2,500 3,600 4,900 6,400 8,100 10,000
view size (records)

Figure 5-12 Performance Proportion of Eacli Component in TTP of ATIR

5.3.6 Performance of Deterministic ATIR

So far, we have been focused on the probabilistic ATIR. This section compares the

TTPs of a deterministic ATIR (dATIR) and a probabiHstic ATIR (pATIR). dATIR

ensures that the delivered result is 100% to be the correct one whereas pATIR only

offers a probabiHstic guarantee of the safety property. Both ATIR implementations

differ in the way that the reconstruction and verification algorithm is implemented.

pATIR stops and returns a result once it finds a valid result whereas dATIR

reconstructs all the possibilities of results and determines whether there is a correct

result. When distinct valid results are more than one, dATIR aborts and reports a

failtire. Since the system can reconstruct at least one correct result, i f only one result

remains, it must be the correct one. In terms of number of reconstruction attempts

needed, dATIR represents the worse case scenario of pATIR. So, clearly, the TRV of

dATIR is longer than that of pATIR. But as we have shown in the previous section

the proportion of TRV in TTP of pATIR is small.

We conduct ten series of independent dATIR experiments as follows. The view

sizes in the series increment from 100 to 10,000 records. In each series, we vary the

resuh sizes from 10 to 100 bytes in each test. Each test is repeated eleven times and

the first resuh is ignored. Each value reported is the average of ten tests. At the end,

we have 100 measurements for the ten series of experiments.

114

CHAPTER FIVE. EMPIRICAL EVALUATION

Figure 5-13 compares the pATIR with the dATIR when data sizes involved in the

server side computation are small, that is, the data sizes range from 1,000 bytes to

10,000 bytes. Figure 5-14 does the same comparison with large data sizes (from

100KB to 1MB). Overall, the dATIR adds some performance overhead to the TTP

time. Over 96% of the observed dATIR TTP measurements are larger than that of

pATIR, which suggests that dATIR does have some performance overhead,

comparing with pATIR. The increments are, however, not the same for all

experiments. As shown in these figures, the increments of dATIR are much

significant (as high as 13.43% for 1,000 bytes data) for small data sizes than those

for large data sizes (consistently lower than 0.8% when data sizes are IK bytes to I M

bytes). This is mainly because of the scale of the measurements. For small data sizes,

the increments are compared with small quantities (several milHseconds) of TTPs.

For large data sizes, the increments are compared with large quantities (several

hundreds of milliseconds) of TTPs.

lpATIR-257 •dATIR-257

7,000

8 6,000

I 5,000
E
T 4,000

% 3.000

I 2,000

I 1,000 blllUU
1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10.000

data size (bytes)
Figure 5-13 dATIR vs. pATIR (Small Data Sizes)

115

CHAPTER FIVE. EMPIRICAL EVALUATION

lpATIR-257 mdATm-257

^ 300,000

I 250,000

I 200.000

I 150.000

ai

I 100,000

8 50.000 1
100.000 200,000 300.000 400.000 500.000 600,000 700.000 800.000 900.000 1.000.000

data Size (bytes)

Figure 5-14 dATIR vs pATIR (Large Data Sizes)

5 .4 A T I R Experiments in a Simulated Faulty Environment

This section describes ATIR performance in the presence of the following simulated

faults: crash faults and malicious faults.

5.4.1 ATIR Performance in the Presence of Crash Faults

In this experiment, one of the three servers is shut down and only two servers

provide ATIR services. Figure 5-15 compares the TTPs of ATIR in normal and crash

failure situations when the result size is set to be 10 bytes. It is clear that the

occurrence of crash faults has little impact on the measured TTPs of the ATIR

system. In some cases, such as when the view size is 8,100 records, the observed

TTP in the presence of crash failures is even lower than that of ATIR in normal

situations. It is because the system adapts to the situation and uses the answers fi-om

the available servers to reconstruct the resuh. The server fault was detected by the

socket coimection operation of the client program and therefore the result fi-om this

particular server will not be waited for. Since the machines are identical and any two

servers are sufficient to reconstruct a result, the unavailability of one server does not

have much influence on the TTP of the system. We expect this situation remains for

other result sizes.

116

CHAPTER FIVE. EMPIRICAL EVALUATION

I pA7lR257-rs10 • pAnR257-crash-rs10

o
1

160,000

140,000

120,000

100.000

80.000

60.000

40,000

20,000

100 400 900 1,600 2,500 3,600 4,900 6,400 8,100 10,000
view size (records)

Figure 5-15 ATIR in Normal vs. Craslied Situations

5.4.2 ATIR Performance in the Presence of Malicious Faults

Having shown that the system maintains good performance in the presence of crash

failures, we now investigate the performance and behaviours of the system when

malicious faults occur. As a security system, what we really concern with is how an

attacker can effectively attack the system. Any system is built on assumptions and

therefore, invalidating assumptions is one of the effective ways of compromising the

system. However, such information is often not readily available. For a system that

implements a new security scheme, such as o\irs, it is important to ensure that we

know the weakness of the system.

In fact, the behaviours of malicious attackers are hard to determine and difficult to

predict. Therefore, the most important thing we need to make sure when it comes to

simulating malicious faults and experimenting with the system in such situations is to

ensure that tiie simulation is fair. That is, we are not choosing an attack sti-ategy that

is in our favour. In other words, we shall identify the types of attacks that our system

is susceptible to. Once we have this information, the attack simulation should be

based on such attacks to experiment with the system. That is effectively how it works

in real world. Once an attacker finds out an effective attack strategy that can be taken

advantage of, it is certain that the new sti-ategy will be used rather than relying on

any exiting ones.

117

CHAPTER FIVE. EMPIRICAL EVALUA TION

Simulating Malicious Failures

Our system is most susceptible to malicious value faults, in which one or more

compromised servers deliver purposefixlly manipulated answer(s). We simulate this

type of attacks by randomly flipping the characters in an answer right before it is

returned to the client.

The simulation has two purposes. First, we need to find out the optimal value for

achieving a required level of security through experiments. To our system, that

means how to set the UER parameter for given a user security requirement. Second,

since the system performance in normal situations is already known, it is mandatory

to find out whether the performance will degrade as a result of such attacks.

In the experiments, we do not single out the time taken to do the simulation since

it is negligible. It only adds several microseconds to the TTP of the system. To

simulate the attacks, we add no more than 10 lines of code into the client program

and add one line of code into the server program. Hence, the impact of injecting the

faults can be ignored.

To avoid over simplifying the possible attacker behaviours, we need to answer

two fiirther questions as follows:

• What is the best sti-ategy for an attacker to attack the ATIR system? As

indicated in Section 3.3.4, we know that the more characters being changed the

easier for the client to detect the corrupted result. Is this true for the real

experiments?

• To what extent, the TTPs of ATIR will degrade in the presence of maUcious

attacks.

Finding out the Actual Undetected Error Rates

To address the first question, five series of experiments, with different number (i.e.,

one to five) of characters being randomly flipped just before an answer is returned,

were conducted. Each series of experiment contains 19 tests in which the undetected

error rate starts from 0.01, 0.02 to 0.10 and then 0.20 to 1.00. In each test, we varied

tiie view sizes from 100 to 10,000 records. Each test is repeated eleven times and the

first result is ignored. In each test, we log down tiie following information: TTP and

UER.

118

CHAPTER FIVE. EMPIRICAL EVALUA TION

Since there is only one out of three servers that involves in the simulated attacks,

the client wil l have sufficient correct answers to reconstruct a valid and correct result.

The most dangerous situation is that the client delivers valid but incorrect results.

Therefore, we search through the log and identify the maximum undetected error rate

with which no valid but incorrect results are observed.

Figure 5-16 shows the relationship between the required (maximum) undetected

error rates and the number of characters that are randomly flipped on the server side.

The picture tells us that the required UER increases as the number of flipped

characters increases. That means when an attacker modifies more characters, a large

UER is good enough to detect invalid results and identify the correct ones. In other

words, it is easier for the client program to detect the occurrence of attacks when

more characters are manipulated even with large UERs. Therefore, this provides an

affirmative answer to our first question, that is, the best strategy an attacker should

follow is to modify as few characters as possible. Otherwise, the client can easily

detect the occurrences of attacks even with large UERs.

On the other hand, this figure also reveals that when the number of flipped

characters exceeds a certain level, in this case, four characters, a same level of

undetected error rates are sufficient to detect all the errors. This provides an

affirmative answer to our first question arise in the last section. That is, the more

characters an attacker tampers, the easier the ATIR system detects the occurrence of

tampering. Therefore, in order to conceal the act of attacking the system, the best

strategy an attacker should take is to tamper with fewer characters.

TTPs in the Presence of Malicious Attacks

To answer the second question, we need to go back to the fundamentals of our

scheme. We now describe how much extra time is required for the system to deal

with the value attacks. Figure 5-17 compares the TTPs of tiie system in normal

situations and in the presence of (simulated) malicious attacks with varied view sizes.

Six groups of experiments with a different number of flipped characters are

performed and each colunm in the figure represents the results obtained for each

group of experiment. For example, "e=0.01-normal" means that no character is

flipped and they are the experiments conducted in a normal situation. "e=0.01-lchar"

means that one character is randomly flipped to simulate value attacks on the system.

119

CHAPTER FIVE. EMPIRICAL EVALUATION

In all experiments, the undetected error rate is set to be 0.01. The figure suggests that

there is little difference between the TTPs in the different situations. Effectively, that

means that the occurrence of malicious failures has little impact on the system

performance.

45%

40%

35%

30%

25%

20%

15%

10%

5%

0%
2 3 4

number of characters

Figure 5-16 Undetected Error Rate vs. Number of Flipped Characters

Malicious Failures v& Normal

I e=0.01-1char • e=0.01-2chars • e=0.01-3chars • e=0.01-4chars • e=0.01-5chars • e=0.01-normal

160,000

140,000

120,000

<5 100,000

E 80,000

60.000

40,000

20,000

400 900 1,600 2,500 3,600 4,900

view size (records)

6,400 8,100 10,000

Figure 5-17 T I P of pATIR in Normal and Malicious Faults

120

CHAPTER FIVE. EMPIRICAL EVALUATION

I pATIR-257 • PIR-256 • SQL

•sr 400,000

I 350,000

I 300,000

1 250,000

I 200,000

g 150,000
100,000

0. 50,000

100,000 200,000 300,000 400,000 500.000 600,000 700,000 800,000 900,000 1,000,000

data size (bytes)

Figure 5-18 TTPs of PIR-256, pATIR-257, and SQL

5.5 Performance Comparisons among SQL Query, PIR and ATIR

In this section, we compare the TTPs of using three query services: SQL, PIR, and

ATIR to retrieve data from remote server (s). A normal SQL query with varied view

sizes is executed between two separated computers in the same network environment

to download the given amoimt of data. Therefore, in this experiment, the use of SQL

queries is equivalent to the use of downloading to provide privacy protection.

Figure 5-18 compares the TTPs of using ATIR, PIR and SQL technologies to

query remote databases. The sizes of data sets involved in the queries range from

100KB to 1 MB.

Firstly, the TTPs of all services increase linearly as the data size increases. The

increment rates, however, are significantly different. Compared with querying

100KB data, it is observed that it costs 85%, 132%, and 20% more for ATIR, PIR,

and SQL services to query 1MB data, respectively.

Secondly, ATIR consistently shows a better performance than that of PIR in all

these experiments. As the data size grows, the superiority becomes even obvious. For

example, when the data size is 1MB, it takes the ATIR implementation 24% less

TTP time to complete the operation comparing with using the PIR implementation. It

is clearly not a coincident event that can be caused by (random) system errors

because of the consistency shown in the figure. It is due to the different

computational operations reqmred by PIR and ATIR schemes and the

121

CHAPTER FIVE. EMPIRICAL EVALUATION

implementations of finite field operations, which subsequently lead to different

implementation strategies used in the systems. As mentioned in Section 4.2.1, PIR

uses a finite power field GF(256) for computation whereas ATIR uses a finite prime

field GF(257). Putting it simply, the calculation operations (in particular, reverse

operations) in GF(257) takes less steps than those in GF(256). This is the major

reason for the better performance of ATIR over PIR in all tiiese experiments.

Finally, the observed TTPs of both PIR and ATIR are all well under 0.5 second

for data sets of sizes ranging fi^om 100KB to 1 MB. These results make both

technologies appealing for real applications.

5.6 Summary

This chapter first derives performance models to model the major components of an

ATIR system. These models are then used to predict the TTP of ATIR. We show that

the component prediction models are accurate since the predicated results match well

with the measurements. Most predictions achieve a h i ^ co-efficient of determination,

often above 97%. We also show that the communication overhead plays a negligible

part of the overall TTPs in ATIR.

We then present significant experimental studies to evaluate the performance of

the implemented ATIR system in normal and simulated faulty enviroiraients. In

particular, the experiments examine the impacts of varying the parameters of ATIR

on the system performance. We further study the performance contributions of each

major component of an ATIR system and compare the performance between pATIR

and dATIR.

The effectiveness of attack tolerance capability of ATIR schemes is evaluated by

simulating various attacks on servers. The major experimental results reveal the

following: i) crash faults make little impact on the performance of an ATIR system;

and ii) the system performance maintains at the same level even in the presence of

simulated malicious attacks.

Finally, we compare the performance among SQL, PIR and ATIR and observe

that the TTP of PIR increases most significantly as the sizes of data sets grow. We

also show that the TTPs of both PIR and ATIR are well under half a second for

performing the operations over data sets of sizes up to 1 MB.

122

CHAPTER SIX. CONCLUSIONS AND FUTURE WORK

Chapter 6 Conclusions and Future

Work

Our fast-growing reliance on online query services demands an appropriate level of

privacy protection as well as highly available service provision. These problems are

often treated separately. The prevalence of malicious attacks on online services calls

for a balanced solution to satisfy both requirements. This thesis has developed new

ATIR schemes for performing certain database queries privately and correctiy

despite the occurrence of attacks, has addressed the problem of privacy protection as

well as service provision for certain types of database query applications, has

explored the practical ways for designing and implementing ATIR systems, and has

presented significant evaluation results for demonstrating the effectiveness and

practicability of the implemented ATIR systems.

This chapter is organised as follows. In Section 6.1, we summarize the main

contributions made by this thesis to the following three areas of research: PIR,

security, and fault tolerance. At the same time, we also revisit the research challenges

set out in Chapter One and spell out the results we have achieved in this thesis on

tackling these challenges. The theoretical and practical results of ATIR spark a

nxmiber of interesting research questions for future research, which are outiined and

discussed in Section 6.2. Finally, Section 6.3 concludes the thesis.

6.1 Main Contributions

This thesis has demonstrated a systematic and sound approach for constructing ATIR

schemes, implementing ATIR systems, and evaluating ATIR systems through

extensive experiments. In this thesis, two advanced ATIR schemes are developed for

performing certain database queries privately and correctly even in the presence of

certain attacks. Compared with existing PIR schemes, ATIR works in a much more

realistic setting by taking malicious attacks into account while maintaining a

balanced level of communication efficiency. By enabling privacy protection and

simultaneously achieving a high level of service provision, ATIR represents a new

123

CHAPTER SIX. CONCLUSIONS AND FUTURE WORK

approach for constructing secure and fault tolerant schemes and designing privacy-

preserving and highly available systems. In order to investigate the practicability of

the schemes, ATIR has been evalxiated extensively through empirical studies in

various conditions. Along with a revisit on the research challenges set out in Chapter

One, we summarise the major results obtained by this thesis as follows:

® A survey of the major techniques and the state of the practice systems of coping

with attacks has been given to set the context of this thesis. In order to

characterise the power of different types of attackers, two attack models are

derived and their relationship is examined (Section 2.2). The characterisation is

followed by a critical review of privacy protection techniques, PIR research, and

attack tolerant techniques and systems (Section 2.3, 2.4, 2.5). In particular, some

commonly used assumptions on design and implementation of attack tolerant

systems are critically reviewed and examined (Section 2.5.5).

9 ATIR is novel because it offers privacy protection for users as well as ensuring

service availability even in the presence of malicious attacks. In particular, ATIR

can tolerate any collusion o f up to t servers for privacy violation and up to /

favdty (crashed or malicious) servers in a system with k replicated servers,

provided that k>t+f+\ where t > 1 and f<>t. Albeit a specific type of privacy

protection, none of existing fault tolerant systems provide such protection for

users against colluded servers. (Section 3.3.2, 3,3.4, 3.3.5, 3.3.6)

® In contrast to other related approaches, ATIR relies on neither enforced trust

assumptions, such as the use of tamper-resistant hardware and trusted third

parties, nor an increased number of replicated servers. While the best solution

known so far requires k {>'it + \) replicated servers to cope with t malicious

servers and any collusion of up to t servers, with an 0(rF^) communication

complexity, ATIR uses fewer servers with a much improved communication cost,

0{n') (where n is the size of a database managed by a server). (Section 3.3.7, 3.4)

In particular, this contribution answers three research challenges -

Communicatioii Complexity, Trust Assumptions, and Use of Replication - set

out in Chapter One.

• This thesis provides the details of integrating and implementing ATIR on realistic

database systems. Specifically, we describe the ATIR system architecture and

124

CHAPTER SIX. CONCLVSIONS AND FUTURE WORK

show how to realise the character database model of ATIR on realistic databases

for ATIR computations (Section 4.2.1). This paves the way for practically

implementing ATIR as a real service. Since PIR can be viewed as a special case

of ATIR in that there is no faulty server in the system. The ATIR implementation

described in this thesis also demonstrates a purely software based approach for

implementing FIR systems on realistic databases (Chapter 4). In particular, this

contribution answers Hie research challenge - Implementation - set out in

Chapter One.

• Although the processing costs of FIR schemes is envisaged to be exceedingly

high, this thesis, for the first time, shows that no pre-processing or shuffling is

needed for ATIR systems and the experimental results reveal that ATIR performs

well. In a LAN environment, it takes well imder half a second to use an ATIR

service for the calculations over data sets of size up to 1MB (Section 5.5). The

performance of the ATIR systems remains at the same level, even with tiie

occurrence of server crashes and malicious attacks. (Section 5.4) In particular,

this contribution answers the research challenge - Processing Costs - set out in

Chapter One.

6.2 Future Research Directions

6.2.1 Reducing Computation Complexity
In order to protect the user's privacy, ATIR involves a large quantity of computation

(e.g. in the order of n). In practice, it may be difficult to find a service provider who

is willingly to allocate such a level of computation resources for the privacy and

result availability of users. Hence, an interesting and important future work is to

reduce the processing costs of servers and provide a negotiation mechanism between

a chent and service providers to choose the level of resources they wish to assign to

perform ATIR operations.

Instead of purely hardware-based or purely software implementations, a

combination of secure hardware and software processing may reduce the overall

computation costs. Only security-sensitive operations are performed inside the piece

of secure hardware, just like some existing secure and fault tolerant systems BFT

[CasOl], COCA [ZhouOl]. The installation of multiple secure co-processors may

125

CHAPTER SIX. CONCLUSIONS AND FUTURE WORK

also achieve load balancing and consequently improve overall performance of an

ATIR system.

6.2.2 Reducing Communication Complexity
Currently, the communication complexity of ATIR schemes is independent of the

number of rephcas used. The construction of existing PIR schemes show that this

problem may be resolvable with the use of recursive techniques. For example,

several PIR schemes (e.g. [Amb97] and [BIKR02]) apply recursion to achieve lower

communication complexity in a repUcation setting.

In [IK99], Ishai and Kushilevitz present PIR schemes with 0(^n''^^*"'^)

communication complexity using rephcation-based secret sharing techniques

[ISN87]. It remains unclear whether the same technique can be applied to our ATIR

schemes to achieve lower communication complexity.

At the time tiiis thesis is written, despite the improvement on the asymptotical

commxmication complexity of PIR schemes, the communication complexity of

2-server PIR schemes remains the same, i.e. 0{n^'^) as the result obtained by the

seminal paper [CGKS95]. Several techniques (e.g. covering codes in [CGKS95],

recursion in [Amb97], and emulation techniques in [IK99]) are used to achieve that

commxmication complexity. It wil l be interesting to explore these techniques for

further reducing the communication complexity of both PIR and ATIR schemes.

6.2.3 The Importance of Design Diversity and Assumptions

The bounded numbers of curious and faulty servers are of little meaning i f common-

mode failures [AK84] occur in the ATIR system, because an attacker can easily

exploit a common vulnerability in all servers to compromise the entire system.

Traditionally, design diversity [AK84], data diversity [AK88, TMB80], and

environment diversity approaches [HK93] have often been considered to cope with

such failures.

It would be helpful to reduce the overall vulnerability of the system by

incorporating these design diversity approaches into the system design and

implementation. For example, in our systems, diverse operating systems (Linux and

Windows) and programming languages (e.g. Java and C) can be used for the

implementation. We can also choose from a wide range of readily available

commercial database engines (e.g. MySQL and Microsoft SQL Server) to integrate

126

CHAPTER SIX. CONCLUSIONS AND FUTURE WORK

with servers. In fact, apart fi-om the C implementation, ATIR systems have a

demonstration version which is implemented in Java. Both implementations conform

to the same interface and design but with different implementation strategies (the C

implementation integrates with MySQL C APIs whereas the Java implementation

uses the JDBC Driver for MySQL.).

6.2.4 Esplorimg Other AppMcatioms

We have shown that the ATIR system performs well for certain database queries in

normal as well as simulated faulty cases. The next task for this research is to find a

wider range of applications that can take advantage of this technology. It would be

appealing to adapt and incorporate the existing implementations with other

applications, such as certification authority, public data repository, and patent query

services. Among them, certification authorities are the most interesting because they

offer an infi-astractural security service underpinning most distributed systems. Due

to the increasing popularity of large scale distiibuted systems, the use of certificates

has become popular. Hence, privacy-preserving, secure and fault-tolerant online

certification authorities wi l l be of real interest in practice. The Cornell Online

Certification Authority (COCA) [ZSR02] is a latest effort along this direction. But

COCA doesn't provide any privacy protection for users in the presence of malicious

attacks. Once a server is compromised, all the messages exchanged between the user

and the servers are exposed to an attacker.

A further question is to investigate whether there are any other domains that ATIR

can be used. One of the fimdamental difficulties of adapting ATIR to other

appropriate domains is the restricted semantics of the ATIR operations, as discussed

in Section 4.1 and 4.3.1.

6.2.5 Befemdimg against Demial-OIF-Service Attacks

To some extent, ATIR has an inherent capability to deal with Denial-Of-Service

(DOS) attacks. Servers that are compromised by DOS attacks respond slower flian

the normal servers do. Due to the adaptive nature of our scheme, the client program

in ATIR simply ignores the slow servers and use the answers from the good servers

to reconstruct results, assuming good servers perform as good as they do in normal

situations. However, it is important to incorporate design diversity into various stages

127

CHAPTER Sa. CONCLUSIONS AND FUTURE WORK

of system design, as discussed in Section 6.2.3. Otherwise, attackers can easily

exploit tiie common vdnerabilities of an ATIR system and hack into the system.

63 In Conclusion

In this thesis, we have successfully demonstrated a systematic approach for

investigating and studying the feasibility, usefuhiess, and practicability of ATIR - a

privacy-preserving and fault tolerant mechanism for secure information retiieval.

The soundness of the research conducted by this thesis is supported by the following:

i) a significant literature survey on the state-of-the-art techniques and systems on

privacy protection, PIR, and attack tolerance; ii) a detailed presentation of several

ATIR schemes with complete characterisations of fault tolerance conditions and

privacy protection properties; iii) analytical comparison of ATIR with relevant PIR

efforts and critical examinations amongst ATIR and state-of-the-art secure and fault

tolerant systems; and iv) an extensive experimental evaluation of ATIR systems in

both normal and simulated faulty environments, with good performance results.

As a whole, we have shown that ATIR offers an attiactive and practical solution

for ever-increasing online information applications. We believe that many principles

of ATIR may be extended to a wider range of application domains. As Avith any other

research disciplines, there still remains much research to be done on deploying ATIR

in real world applications.

128

GLOSSARY

Glmmrj

Attack An attack is an intentional fault aiming to violate the security properties of

a service. There are two kinds of attacks: passive attacks and active attacks. Passive

attacks seek to disclose confidential information whereas active attacks not only

disclose confidential information but also disrupt services that are provided by a

computer system.

Attack Model An attack model is an absfaraction of all the types of attacks that are

considered by a computer system.

Attacker An attacker is a person or a computer program who carries out attacks

against a computer system.

Component is an entity of a system.

Error An error is the part of a system state that is liable to lead to subsequent

failures.

Failure A failure is the manifestation of an error of a system. A system failure

occurs when the delivered service deviates fi"om what a system is aimed at (e.g.,

specification).

Fault A fault is the hypothesised cause of an error.

Result A result is the intended data item (s) that a user wants to retrieve fi"om a

database. For example, a result can be the parts of a record or an entire record stored

in a database.

View A view is a collective representation of all the records involved in the server

side computation in an ATIR/PIR system.

129

REFERENCE

[AF02] D. Asonov and J-C. Freytag, ''Almost Optimal Private Information
RetrievaP\ in Proc. 2"^ Workshop on Privacy Enhancing Technologies
(PET2002), San Francisco, USA April 2002.

[AFK87] M. Abadi, J. Feigenbaum, J. Kilian, "On Hiding Information from an
Oracle", in Proc. 19* Annual ACM Conference on Theory of Computing,
1987, pp.195-203.

[AK84] A. Avizienis and J. P. J. Kelly, "Fault Tolerance by Design Diversity:
Concepts and Experiments", IEEE Computer, 17(8): 67-80, August 1984.

[AK88] P. E. Amman and J. C. Knight, "Data Diversity: An Approach to Software
Fault Tolerance", IEEE Transactions on Computers, 37(4): 418-425,1988.

[ALN87] N. Ahituv, Y. Lapid, and S. Neumann, "Processing Encrypted Data",
Communications of the ACM, 30(9), pp. 777-780,1987.

[Amb97] A. Ambainis, "Upper Bound on the Communication Complexity of Private
Information Retrievar, Proc. 24th Intemational Colloquium on Automata,
Languages and Programming (ICALP'97), LNCS, vol. 1256, Springer-
Verlag, Bologna, Italy, July 1997, pp. 401-407.

[AndOl] R. J. Anderson. "Security Engineering: a Guide to Building Dependable
Distributed Systems", New York; Chichester : John Wiley, c2001.

[Ano04] Anonymizer, an onhne tool for providing private web surfing service,
www.anonymizer.com.

[Appel02] A P3P Preference Exchange Language 1.0 (Appel 1.0), working draft, W3C,
Apr. 2002.

[Aso04] D. Asonov, "Querying Databases Privately - a New Approach to Private
Information Retrievar, LNCS 3128, Springer, 2004, ISBN: 3540224416.

[Bei04] A. Beimel, Personal Communication via emails, 2004.

[BF90] D. Beaver and J. Feigenbaum, "Hiding Instances in Multioracle Queries", in
Proc. 7th Annual Symposium on Theoretical Aspects of Computer Science
(STACS'90), Rouen, France, LNCS, vol. 415, Springer-Veriag, Feb. 1990,
pp. 37-48.

[BFKOO] O. Berthold, H. Federrath, and S. KopseU, "Web MIXes: A System for
Anonymous and Unobservable Internet Access", m Designing Privacy
Enhancing Technologies, LNCS Vol 2009, pp. 115-129, Springer-Verlag,
2000.

130

REFERENCE

[BIOl] A. Beimel and Y. Ishai, "•Information-Theoretic Private Information
Retrieval: A Unified Construction", in Extended Abstract in ICALP 2001,
vol. 2076 of LNCS, pp. 89-98.

[BIKR02] A. Beimel, Y. Ishai, E. Kushilvitz, and J.-F. Raymond, "Breaking the
Q^^V(2*-i)) Barrier for Information-Theoretic Private Information
Retrievar, in Proc. of the 43rd IEEE Symposium on Foundations of
Computer Science (FOCS), 2002.

[BIMOO] A. Beimel, Y. Ishai, and T. Malkin, ''Reducing the Servers Computation in
Private Information Retrieval: PIR with Preprocessing', in Proc CRYPTO
2000, LNCS vol. 1880, pages 56-74, Springer-Verlag, 2000.

[BJNOO] D. Boneh, A. Joux, and P. Nguyen, ''Why Textbook ElGamal and RSA
Encryption are Insure", in Proc. AsiaCrypt'OO, LNCS vol. 1976, pp. 30 - 40,
Springer-Verlag, 2000, available at:
http://crvpto.stanford.edu/~dabo/papers/ElGamalattack.ps.

[Bla79] G. R. Blakley, "Safeguarding Cryptographic Keys", in Proc. National
Computer Conference, American Federation of Information Processing
Societies Proceedings 48,1979.

[Bla83] R. Blahut, "Theory and Practice of Error Control Codes", Addison-Wesley
Publishing Company, 1983, ISBN 0-201-10102-5.

[BreOl] T. Brekne, "Encrypted Computation", Ph.D. thesis, Department of
Telematics, Norwegian University of Science and Technology, July, 2001.

[BS02] A. Beimel and Y. Stahl, "Robust Information-Theoretic Private Information
Retrievar, in Proc. 3rd Conference on Security in Communication
Networks, 2002, pp. 326-341.

[BSGOO] P. Boucher, A. Shostack, and I . Goldberg, Freedom Systems 2.0
Architecture, 2000, available at:
http://whitepapers.zdnet.co.ulc/0.39025945.60025335p-39000494q.00.htm.

[Cac03] C. Cachin, "An Asynchronous Protocol for Distributed Computation of RSA
Inverses and its Applications", in Proc. 22nd ACM Symposium on
Principles of Distributed Computing (PODC 2003), pp. 153-162, July 2003.

[Cac04] C. Cahine, "Distributed Trust on the Internet - Position Paper for S.O.S.
Workshop 2004", in Proc. FuDiCo U: S.O.S., Survivability: Obstacles and
Solutions, 2"̂ Bertinoro Workshop on Future Directions in Distributed
Computing, 23-25 June 2004, Bertmoro, Italy, available at:
http://www.cs.utexas.edu/users/loren2o/sos/SOS/Cachin.pdf.

[CasOl] M. Castro, "Practical Byzantine Fault Tolerance", tech. report
Mrr/LCS/TR-817 and Ph.D. dissertation, Laboratory for Computer Science,
MIT, Cambridge, MA, USA Jan. 2001.

[CDKOl] G. Coulouis, J. Dollimore, and T. Kindberg, "Distributed Systems -
Concepts and Design", Addison-Wesley Publishers Limited and Pearson
Education Limited, 3"* Edition, 2001.

131

REFERENCE

[CE02] S. Cantor and M. Erdos, "Shibboleth-Architecture", Draft v05, NSF
Middleware Initiative Draft, May 2, 2002. URL:
http://shibboleth.intemet2.edu/draft-intemet2-shibboleth-arch-v05.html.

[CG97] B. Cher and N. Gilboa, "Computational Private Information Retrieval, in
Extended Abstract in Proc. 29* Annual ACM Symposium on Theory of
Computing (STOC) , 1997, pp. 204-313.

[CGH+97] R. Canetti, R. Gennaro, A. Herzberg, and D. Naor, "Proactive Security:
Long-term Protection against Break-ins", CryptoBytes, 3(1), spring 1997.

[CGKS95] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, "Private Information
Retrievar, in Proc. 36th Annual Symposium on Foxmdations of Computer
Science (FOCS'95), Milwaukee, Wisconsin, USA 23-25 Oct. 1995, pp. 41-
51. Journal version: J. of the ACM, vol. 45, no. 6,1998, pp. 965-981.

[CGN98] B. Chor, N. Gilboa, and M. Naor, "Private Information Retrieval by
Keywords", Technical Report 98-03, Theory of Cryptography Library, 1998,
available at: http://philbv.ucsd.edu/crvDtolib/l 998/98-03 .html.

[CGMA85] B. Chor, S. Goldwassser, S. MicaU, and B. Awerbuch, "Verifiable Secret
Sharing and Achieving Simultaneity in the Presence of Faults", in Proc. 26*
IEEE Symp. On Foundations of Comp. Science, pages 383 - 395, Portland,
1985.

[CH02] J. Camenisch and E. van Herreweghen, "Design and Implementation of the
IDEMIX Anonymous Credential System", in Proc. Of ACM Conference on
Computer and Communications Security, ACM, 2002.

[ChaSl] D. Chaum, "Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms", Communications of the ACM, 24(2):-88, February 1981,
available at: http://mixmaster.shinn.net/chaum-acm-1981.html.

[Cha88] D. Chaum, "The Dining Cryptographers Problem: Unconditional Sender
and Recipient Untraceability", Journal of Cryptography, 1: 65-75,1988.

[Cha04] Y. Chang, "Single Database Private Information Retrieval with Logarithmic
Communication", in Proc. ACISP 2004, Lecture Notes in Computer Science
3108, Springer-Verlag, pp. 50-61, 2004.

[Chi79] L. Childs, "A Concrete Introduction to Higher Algebra", Springer-Verlag,
1979, ISBN: 0-387-90333-x.

[CJRS89] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen, "An Analysis of TCP
Processing Overhead", IEEE Commimications Magazine, vol. 27, pp. 23-29,
June 1989.

[CL99] M. Castro and B. Liskov, "Practical Byzantine Fault Tolerance", in Proc.
Of the 3"* Symposium on Operating Systems Design and Implementation
(OSDI), New Orleans, LA, Feb. 1999.

[CLRSOl] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, "Introduction to
Algorithms", 2"* Edition, MTT Press, 2001, ISBN: 0-262-03293-7.

132

REFERENCE

[CMS99]

[Cop84]

[CP02]

[CS03]

[Dan03]

[Dai04]

PBF91]

[DH76]

[DOJOO]

[FDR95]

[Fei85]

[Fel87]

[Fel04]

[FGM+96]

[FPV98]

C. Cachin, S. Micali, and M. Stadler, '•''Computationally Private Information
Retrieval with Polylogarithmic Communication", in J. Stem, Editor,
Advances in Cryptology - EUROCRYPT ' 99, Vol. 1592 of LNCS, p. 402-
414, Springer, 1999.

D. Coppersmith, "Evaluating Logarithms in GF(2")," in Proc. 16* ACM
Symposium on Theory of Computing, pp. 201 - 207,1984.

C. Cachin and J. A. Poritz, "Secure Intrusion-Tolerant Replication on the
Internet, in Proc. Intl. Conf. on dependable systems and networks (DSN-
2002), Washington DC, USA, June 2002.

C. Cachin and A. Samar, "Secure Distributed DNS", Research Report RZ
3509, IBM Research, October 2003.

George Dane2ds, "Mix-Networks with Restricted Routes", in Proc. 3"*
International Workshop on Privacy Enhancing Technologies (PET'03),
LNCS 2760, Springer-Verlag, 2003, pp. 1-17.

Wei Dai, Crypto-H- Library 5.2,
http://wwweslcimn.com/~weidai/crvptlib.html.

2004, URL:

Y. Deswarte, L. Blain, and J.-C. Fabre, "Intrusion Tolerance in Distributed
Computing Systems", in Proc. of the IEEE Symposium on Research in
Security and Privacy, Oakland, USA 1991.

W. Diffie and M.E. Hellman, "New directions in Cryptography", IEEE
Transactions on Information Theory 22 (1976), pp. 644-654.

U. S. Department of Justice, "Identity Theft and Fraud", 2000, available at:
http://www.usdoi.gOv/r.riminal/fraud/idtheft.html.

J.-C. Fabre, Y. Deswarte, and B. Randell, "Designing Secure and Reliable
Applications using Fragmentation-Redundancy-Scattering: an Object-
Oriented Approach", in Predictably Dependable Computing Systems, B.
RandeU et al, Eds.: Springer-Verlag, pp. 173-188,1995.

J. Feigenbaum, "Encrypting Problem Instances: Or..Can You Take
Advantage of Someone without Having to Trust HimT, In Proc. Advances in
Cryptology (Crypto'85), LNCS vol. 218, pp. 477 - 488, Springer-Verlag,
1986.

P. Feldman, "A Practical Scheme for Non-interactive Verifiable Secret
Sharing', in Proc. 28* Annual. Symposium on the Foundations of Computer
Science, pp. 427-437, IEEE, Oct. 12-14,1987.

E. W. Felten, "Report from Crypto 2004", August 18, 2004, available at:
httD://www.freedom-to-tinker.com/archives/000664.html.

Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung, "Proactive RSA",
in Proc. Advances in Cryptology (Crypto'97), LNCS vol. 1294, Springer-
Verlag, 1997.

A. Fuggetta, G. P. Picco, and G. Vigna, "Understanding Code Mobility",
IEEE Transactions on Software Engineering, Vol. 24,1998.

133

REFERENCE

[FS96]

[Gar95]

[GB99]

[GGM98]

[GIK+98]

[GM84]

[Gol02]

[Gon97]

[GRS99]

[GWB97]

[HJJ+97]

[HK93]

[HLMR74]

[HW92]

S. Forrest and A. Soma, "Building Diverse Computer Systems", in Proc. of
the 1996 Hot Topics of Operating Systems,

S. Garfinkel, "PGP: Pretty Good Privacy", O'Reilly & Assoc, 1995.

S. Goldwasser and M. Bellare, "Lecture Notes on Cryptography", 1999,
available at http://www-cse.ucsd.edu/users/mihir.

Y. Gertner, S. Goldwasser, and T. MaUdn, "A Random Server Model for
Private Information Retrieval (or How to Achieve Information Theoretic
PIR Avoiding Database Replication)", in Proc. 2"̂ Intemational Workshop
on Randomization and Approximation Techniques in Computer Science,
1998.

Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin, "Protecting Data
Privacy in Private Information Retrieval Schemes", in Proc. of the 30*
Annual ACM Symposium on the Theory of Computing, 1998, pp.151-160.

S. Goldwasser and S. Micali, "Probabilistic Encryption", J. of Computer
and Systems Sciences, vol. 28,1984, pp. 270-299.

I . Goldberg, "Privacy-Enhancing Technologies for the Internet, II: Five
Years Later", 2°^ Intemational Workshop on Privacy Enhancmg
Technologies (PET 2002), San Francisco, CA USA, April 2002.

L. Gong, "Survivable Mobile Code is Hard to Build", in Proc. DARPA
Workshop on Foundations for Secure Mobile Code Workshop, 26-28,
March, Monterey, California, USA, 1997, available at:
http://www.cs.nps.navy.mil/research/languages/wkshp.html.

D. Goldschlag, M. Reed, and P. Syverson, "Onion Routing for Anonymous
and Private Internet Connection", Communication of the ACM, 42(2): 39-
41,1999.

I . Goldberg, D. Wagner, and E. Brewer, "Privacy-Enhancing Technologies
for the Intemef, in Proce. COMPCON'97,1997.

A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung.
"Proactive Public Key and Signature Systems", in Proc. ACM Conference
on Computer and Communications Security (CCS), 1997.

Y. Huang and C. Kintala, "Software Implemented Fault Tolerance:
Technologies and Experience", in Digest 23"* Annual Intemational
Symposium on Fault-Tolerant Computing, Toulouse, France, pp. 2-9, June,
1993.

J. J. Homing, H. C. Lauer, P. M. Melliar-Smith and B. Randell, "A Program
Structure for Error Detection and Recovery", Lecture Notes in Computer
Science, 16:177-193,1974.

W. L. Heimerdinger and C. B. Weinstock, "A Conceptual Framework for
System Fault Tolerance", Technical Report, CMU/SEI-92-TR-033, ESC-
TR-92-033, Oct. 1992.

134

REFERENCE

[ICG+98]

[IK99]

[IS03]

[IS04]

[ISN87]

[IS08895]

[Jar95]

[Jai91]

[JDBC04]

[Ker88]

[KG02]

[Kim95]

[K097]

[KROl]

pCus03]

A. Iyengar, R. Cahn, J. A. Garay, and C. Jutla, "Design and Implementation
of a Secure Distributed Data Repository", in Proc. 14th IFIP International
Information Security Conference (SEC 98), 1998.

Y. Ishai and E. Kushilevitz, "Improved Upper Bounds on Information
Theoretic Private Information Retrievar, in Proc 31" STOC, pp.79-88,
1999.

A. niev and S. Smith, "Privacy-Enhanced Credential Services", in Proc. 2nd
PKI Research Workshop, USA, 2003.

A. Iliev and S.W. Smith, "Private Information Storage with Logarithmic-
space Secure Hardware", in Proc. i-NetSec 04: 3"" Working Conference on
Privacy and Anonymity in Networked and Distributed Systems, Kluwer,
2004, available at: http://www.cs.dartmouth.edu/~sws/abstracts/is04.shtml.

M. Ito, A. Saito and T. Nishizeki, "Secret Sharing Scheme Realizing
General Access Structure", in Proc. Global Communication, 1987.

ISO/IEC 8859, "8-bit single-byte coded graphic character sets, Part 16:
Latin alphabet No. 10", published July 15, 2001, available at
http://www.iso.ch/iso/en.

S. Jarecki, "Proactive Secret Sharing and Public Key Cryptosystems",
Master's thesis. Department of Electrical Engineering and Computer
Science, Massachusetts histitute of Technology (MIT), 1995.

R. Jain, "The Art of Computer Systems Performance Analysis, Techniques
for Experimental Design, measurement. Simulation, and Modelling', John
Wiley & Sons, 1991, ISBN 0-471-50336-3.

Sun Microsystem Ltd, JDBC technology,
http://iava.sun.coni/products/idbc/. 2004.

URL:

B. W. Kemighan, "The C Programming Language", 2"̂ Edition, Prentice
Hall PTR, 1988, ISBN: 0-13-110362-8.

A. Kalagnanam and Balu G, "Merlin Brings Nonblocking I/O to the Java
Platform - New Addition Greatly Reduces Thread Overhead", available at:
http://www-106.ibm.com/developerworks/iava/Ubrarv/i-iavaio/. 2002.

K. H. Kim, "The Distributed Recovery Block Scheme", in M. Lyu Eds.,
Software Fault Tolerance, John Wiley & Sons, 1995.

E. Kushilevitz and R. Ostrovsky, "Replication is Not Needed: Single
Database, Computationally-Private Information Retrievar, Proc. 38th Ann.
IEEE Symposium on Foiindations of Computer Science (FOCS'97), 1997,
pp. 364-373.

J. F. Kurose and W. R. Ross, "Computer Networking: A Top-Down
Approach Featuring the Internet", Addison Wesley Logman, Inc., 2001.

E. Kushilevitz, "Querying Databases Privately", a presentation to IBM
Ahnaden Research Lab, 2003, URL:
http://www.almaden.ibm.com/institute/pdfy2003/EvalKushilevitz.pdf.

135

REFERENCE

[LABKH87] J. C. Laprie, J. Arlat, C. B6ounes, K. Kanoun and C. HourtoUe, "Hardware
and Software Fault Tolerance: Definition and Analysis of Architectural
Solutions", in Digest of 17th FTCS, pages 116-121, Pittsburg, PA, 1987.

[Lap92] J.-C. Laprie (Ed.), "Dependability: Basic Concepts and Terminology",
Dependable Computing and Fault-Tolerance, Springer-Verlag, Vienna,
Austria, 1992.

[Lap95] J.-C. Laprie (Ed.), "Dependable Computing: Concepts, Limits, Challenges",
in Special Issue, 25* IEEE International Symposium on Fault-Tolerant
Computing (FTCS-25), Pasadena, CA, USA, pp. 42-54, IEEE Computer
Society Press, 1995.

[LN83] R. Lidl and H. Niederreiter, Finite Fields, Encyclopaedia of Mathematics
and Its Applications (vol. 20), Addison-Wesley, Reading, 1983.

[LN97] R. Lidl and H. Niederreiter, Finite Fields, Encyclopaedia of Mathematics
and Its Applications (vol. 20), 2°^ Edition, Cambridge University Press,
1997, reprinted 2000.

[LP84] R. Lidl and G. Pilz, Applied Abstract Algebra, Undergraduate Texts in
Mathematics, Springer-Verlag, New York, 1984.

[MalOO] T. G. Malkin, "A Study of Secure Database Access and General Two-Party
Computation", Ph.D. Thesis, MIT, Feb. 2000.

[McC04] D. McCullagh, "Crypto Researchers Abuzz over Flaws", available at:
http://news.com.com/Crypto+researchers+abuzz+overi-flaws/2100-1002_3-
5313655.html.

[MCOO] U. Moller and L. Cottrell, "Mixmaster Protocor, version 2, draft, June 2000,
available at: http://www.eskimn.com/~rowdenw/crvpt/Mix/.

[MKKW99] D. Mazieres, M. Kaminsky, M. F. Kaashoek, and E. Witchel. "Separating
Key Management from File System Security", in Proc. 17th ACM SOSP,
Kiawah Island, SC, Dec. 1999.

[MOV97] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied
Cryptography, CRC Press, 1997, available at
httD://www.cacr.math.uwaterloo.ca/hac.

[MS81] R. J. McEUece and D. V. Sarwate, "On Sharing Secrets and Reed-Solomon
Codes", CACM, vol. 24, no. 9,1981.

[Mul93] Sape Muller edits. Distributed Systems, Addison-Wesley, 1993.

[MySQL04] MySQL.com, URL: www.mvsal.com. 2004.

[Nee89] R. M. Needham, "Using Cryptography for Authentication", Chapter 6, Sape
Mullender Ed., Distributed Systems, ACM Press, Addison-Wesley, 1989, pp.
103-116.

[P3P01] The Platform for Privacy Preferences 1.0 (P3P 1.0) Specification, W3C,
Sept. 2001.

136

REFERENCE

[PSOl] MAFTIA deliverable D2, ''Project IST-1999-11583 Malicious- and
Accidental-Fault Tolerance for Internet Applications - Conceptual Model
and Architecture", David Powell and Robert Stroud (Eds.), 2001.

[PG04] D. Pinkas and T. Gindin, "Internet X.509 Public Key Infrastructure
Permanent Identifier", IETF Internet draft <draft-ietf-pkix-pi-09.txt>, issued
January 2004, expires M y 2004, PKIX Working Group, available at
http://www.ieft.org/internet-drafts/draft-ietf-pkix-pi-09.txt. accessed at June
2004.

[RAD78] R. L. Rivest, L. Adlerman, and M. L. Dertouzos, "On Data Banks and
Privacy Homomorphisms", in Foundations of Secure Computation,
Academic Press, pp. 171-179,1978.

[Rab89] M. O. Rabin, "Efficient Dispersal of Information for Security, Load
Balancing, and Fault Tolerance", Journal of the ACM, 36(2): 335-348,
1989.

[Rew04] Rewebber, an online tool for providing private web surfing services,
www.rewebber.com.

[RFL+96] M. K. Reiter, M. K. Franklin, J. B. Lacy, and R. N. Wright, "The Omega
Key Management Services", in Journal of Computer Security, vol. 4, pp.
267-287,1996.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman, "A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems", Communication of the ACM,
21(2), pp. 120-126,1978.

[RR98] M. K. Reiter and A. D. Rubin, "Crowds: Anonymity for Web Transactions",
ACM Transactions on Information System Security, 1(1), Apr. 1998.

[RS60] I . S. Reed and G. Solomon, "Polynomial Codes over Certain Finite Fields",
Journal of the SIAM, 8(2): 300-304, June 1960.

[Sch90] F. B. Schneider, "Implementing Fault-Tolerant Services Using the State
Machine Approach: A Tutoriar, ACM Computing Surveys, 22(4): 299-319,
Dec. 1990.

[Sch93] Fred B. Schneider, "What Good are Models and What Models are Good?",
a chapter in the 2"^ edition of "Distributed Systems" edited by Sape
MuUender, Addison-Wesley, 1993, pp. 17-26.

[Sha79] A. Shamir, "How to Share a Secret, Communications of the ACM,
22(11):612-613,1979.

[Shi04] R. J. Shimonshki, "Wireless Attacks Primer", Windows Security.com,
accessed at Sept. 2004, available at:
http://www.windowssecurity.com/articles/Wireless_Attack_Primer.html.

[SSOO] S. W. Smith and D. Safford, "Practical Private hiformation Retrieval with
Secure Co-processors", Technical Report, IBM Research Division, T. J.
Watson Researcher Centre, July, 2000.

137

REFERENCE

[SSOl] S. W. Smith and D. Safford, ''Practical Server Privacy with Secure Co­
processors", IBM System Journal, 40(3), Sept. 2001.

[ST98a] T. Sander and C. F. Tschudin, ''Protecting Mobile Agents against Malicious
Hosts", Mobile Agents and Security, (G. Vigna, ed.). Lecture Notes on
Computer Science 1419,1998.

[ST98b] T. Sander and C. F. Tschudin, "Towards Mobile Cryptography", in Proc.
IEEE Symposium on Security and Privacy, 1998.

[Ste98] W. Richard Stevens, "Unix Network Programming - Networking APIs:
Sockets and XTP', Volume 1, Edition, Prentice Hall PTR, 1998, ISBN:
0-13-490012-X.

[Ste94] W. Richard Stevens, "TCP/IP Illustrated Volume 1 - The Protocols'",
Addison-Wesley Professional Computing Series, Addison-Wesley, 1994,
ISBN: 0201633469.

[TW88] M. Tompa and H. Woll, "How to Share a Secret with Cheaters", J. of
Cryptography, vol. 1, no. 2,1988, pp. 133-138.

[TMB80] D. J. Taylor, D. E. Morgan, and J. P. Black, "Redundancy in Data Structures:
Improving Software Fault Tolerance", IEEE Transactions in Software
Engineering, vol. 6, pp. 585 - 593, 1980.

[VNC03] P. E. Verissimo, N. F. Neves, and M. P. Correia, "Intrusion-Tolerant
Architectures: Concepts and Design", in a Book - Architecting Dependable
Systems, R. Lemos, C. Gacek, A. Romanovsky (eds.), LNCS2677, Springer
Verlag, 2003, also available at: http://www.navigators.di.fc.ul.pt.

[VS97] R. Ostrovsky and V. Shoup, "Private Information Storage", in Proc. 29*
Annual ACM Symposium on Theory of Computing (STOC), pp. 294-303,
1997.

[Xu04] J. Xu, "Towards Dependable and Secure e-Science/GRID Applications",
invited talk given at the open ceremony of e-Science building in the
University of Newcastle, 11* May 2004.

[YXB02a] E. Y. Yang, J. Xu and K. H. Bennett, "Private Information Retrieval in the
Presence of Malicious Faults", in Proc. 26* IEEE International Symposium
on Computer Software and Applications (COMPSAC 2002), Oxford, UK,
Aug. 2002, pp. 805-810.

[YXB02b] E. Y. Yang, J. Xu and K. H. Bennett, "A Fault-Tolerant Approach to Secure
Information RetrievaP', in Proc. 21st IEEE International Symposium on
Reliable Distributed Systems (SRDS2002), Suita, Osaka, Japan, Oct. 2002,
pp. 12-21.

[YXB03] E. Y. Yang, J. Xu, K. H. Bennett, "Sharing with Limited Trust: An Attack-
Tolerant Service in Durham e-Demand Project", in Proc. UK e-Science
Second All-Hands Meeting, Simon J. Cox Eds, Nottingham Conference
Centre, U.K., Sept. 2nd-4th, 2003, ISBN 1-904425-11-9.

138

REFERENCE

[Wai89] M. Waidner, "Unconditional Sender and Recipient Untraceability in Spite of
Active Attacks", in Advances in Cryptology - Eurocrypt' 89, Lecture Notes
in Computer Science, Vol. 434, Spriner-Verlag, 1989.

[WDHKOl] C. Wang, J. Davidson, J. Hill, J. Knight, "Protection of Software-based
Survivability Mechanisms", in Proc. Dependable Systems and Networks
(DSN'01),2001.

[Wel02] M. Welsh, "NBIO: Nonblocking I/O for Java", available at
http://www.eecs.harvard.edu/~mdw/proi/iava-nbio/. 2002.

[WLF+04] X. Wang, X. Lai, D. Feng, and H. Yu, "Collisions for Hash Functions MD4.
MD5, HAVAL-128 andRIPEMD", Crypto'04 Rump Sessions, 2004.

[WMB99] T. Wu, M. Malkin, and D. Boneh, "Building Intrusion Tolerant
Applications", in Proc. 8*USENIX Security Symposium, Washington D.C.,
USA, 1999.

[WRCOO] M. Waldman, A. D. Rubin, and L. F. Cranor, "Publius: a Robust, Tamper-
Evident, Censorship-resistant, Web Publishing System", in Proc. 9*
USENDC Security Symposium, Denver, CO, USA, 2000.

[WW04] S. Wehner and R. de Wolf, "Improved Lower Bounds for Locally Decodable
Codes and Private Information Retrieval, Quantum Physics, quant-
ph/0403140, available at: http://arxiv.org/abs/quant-ph/0403140.

[ZGZ03] X. Zhang, R. Gupta, and Y. Zhang, "Precise Dynamic Slicing Algorithms",
in Proc. IEEE/ACM International Conference on Software Engineering
(ICSE), Portland, Oregon, May 2003.

[ZhoOl] L. Zhou, "Towards Fault-Tolerant and Secure On-line Services", Ph.D.
dissertation. Dept. Computer Science, Cornell University, Ithaca, N.Y., USA,
May 2001.

[ZSR02] L. Zhou, F. B. Schneider, and R. van Renesse, "COCA: A Secure
Distributed On-line Certification Authority", ACM Transaction on
Computer Systems, Vol. 20, No. 4, pp. 329 - 268, Nov. 2002.

139

