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Thesis Abstract 

The fast-growing reliance of our daily life upon online information services often demands 
an appropriate level of privacy protection as well as highly available service provision. 
However, most existing solutions have attempted to address these problems separately. This 
thesis investigates and presents a solution that provides both privacy protection and fault 
tolerance for online information retrieval. A new approach to Attack-Tolerant Information 
Retrieval (ATIR) is developed based on an extension of existing theoretical results for 
Private Information Retrieval (PIR). ATIR uses replicated services to protect a user's privacy 
and to ensure service availability. In particular, ATIR can tolerate any collusion of up to t 
servers for privacy violation and up to / faulty (either crashed or malicious) servers in a 
system with k replicated servers, provided that k>t+f+ I where ^ > 1 and/< .̂ In contrast 
to other related approaches, ATIR relies on neither enforced trust assiunptions, such as the 
use of tanq)er-resistant hardware and trusted third parties, nor an increased number of 
replicated servers. While the best solution known so far requires A: (> 3/ + 1) replicated 
servers to cope with t malicious servers and any collusion of up to t servers with an 
(5(„L(*-i)/3.jj communication complexity, ATIR uses fewer servers with a much improved 
commimication cost, 0(n^) (where n is the size of a database managed by a server). 

The majority of current FIR research resides on a theoretical level. This thesis provides both 
theoretical schemes and their practical iir̂ jlementations with good performance results. In a 
LAN enviroimient, it takes well under half a second to use an ATIR service for calculations 
over data sets with a size of up to 1MB. The performance of the ATIR systems remains at 
the same level even in the presence of server crashes and malicious attacks. Both analytical 
results and experimental evaluation show that ATIR offers an attractive and practical 
solution for ever-increasing online information applications. 

Keywords: active attacks, attack tolerance, fault tolerance, malicious attacks, performance, 
private information retrieval, privacy protection, query services, and security. 
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CHAPTER ONE. INTRODUCTION 

Chapter 1 Introduction 

"Even when it is possible to build them, highly trustworthy components are costly." 

Trust in Cyberspace 

Fred B. Schneider, Editor 

Committee on Information Systems Trustworthiness 

National Research Council (USA), 1999. 

1.1 Problem Statement 

Querying online information services has gradually become an integral part of our 

daily life and work. The fast-growing development along this direction gives rise to 

significant security and rehability issues, hidividuals become much more concerned 

about online privacy issues than ever. Our society, as a whole, becomes increasingly 

vuhierable to service disruptions. At the same time, the ever-increasing number of 

malicious attacks makes it even more difficult to maintain privacy protection and 

service provision in online services. There is an urgent need for techniques which 

can protect users' privacy as well as simultaneously ensure highly available services 

even in the presence of malicious attacks. 

There has been considerable research effort put into online privacy protection. 

One such effort is Private Information Retrieval (PIR), an approach aiming to protect 

a user's privacy by keeping the intention of queries secret fi-om curious database 

servers [CGKS95]. The principle of PIR is simple: instead of asking for one specific 

data item, a user queries an entire database. As a result, each data item is equally 

likely to be the one of interest, rendering the server unable to figure out the user's 

actual intention. PER. is based on a passive attack model where the server is deemed 

to be controlled by an attacker. In this model, an attacker only passively observes 

queries without modifying the execution flow of PIR protocols. This simplified 

assumption about attackers can easily be invalid due to the ever-increasing presence 

of malicious attacks. Once occupying the server (i.e. inside the trust perimeter of a 

system) and having gathered private information, a benign attacker can easily turn 
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into a malicious one. For example, due to the ease of gathering inside information, 

the attacker can easily forge bogus requests and cause denial-of-service attacks. This 

type of attacks is very difficult to detect and eliminate because such requests are not 

distinguishable from legitimate ones. The attacker may even control the server to 

deliver purposefully manipulated answers. Again, such answers are also 

indistinguishable from what a server is supposed to return in normal circumstances. 

The majority of progress made along the line of FIR is based on a passive attack 

model [CGKS95, Amb97, BIMOO, BIOl, BIKR02, SSOl, IS03, Aso04, IS04]. 

Various communication efficient schemes have been proposed to solve the PIR 

problem. In confrast, little is known about extending PIR in an active attack model, a 

more realistic model making little assumptions on the behaviours of faulty 

components. There are basically two approaches of dealing with malicious attackers: 

attack detection/prevention and attack tolerance. Traditionally, attack 

detection/prevention is heavily used to keep attackers outside a system, such as using 

cryptographic algorithms and firewalls. EKie to the increasing size and complexity of 

computer systems, preventing attackers from hacking into a system becomes more 

costly and very difficult. Another approach for dealing with attacks is through the 

tolerance paradigm. Instead of purely preventing every single attack, a system is 

designed to tolerate attacks by allowing some components to be compromised and 

trigger mechanisms to ensure the delivery of correct services despite attacks 

[VNC03]. For example, by replicating a set of servers and using fault tolerant 

algorithms to identify correct results, the system can still deliver a correct service as 

promised in spite of the corruption of some of the servers. BFT [CasOl], COCA 

[ZRS02], and SINTRA [CP02] are three representative systems. All three systems 

are based on the state machine replication approach [Sch90] along the tolerance 

paradigm. 

The majority of PIR research aims to demonsfrate theoretical feasibilities and 

many obstacles preclude them from being used in practice. This is mainly due to two 

reasons: i) the standard database model of PIR schemes is only of theoretical interest 

(e.g. [SSOl, YXB02a, YXB02b, IS03, Aso04, IS04]); hence, it is difficult to 

implement PIR schemes; and ii) PIR schemes are perceived to be computationally 

expensive (e.g. [BIMOO, Kus03]). Initiated by IBM research in 2001 [SSOl], 

researchers have begun to investigate practical PIR schemes such as those presented 
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in [YXB02a, YXB02b, YXB03, IS03, Aso04, IS04]. However, some of these 

systems [IS03, Aso04, IS04] build on the assumption that the database server will 

use secure hardware to correctly perform PIR operations. This assimiption 

significantly restricts the scalability of these solutions and aggravates the 

computation problem of PIR. Some early performance studies (e.g. [SSOl, IS03, 

Aso04]) show that this approach is expensive which in turn limits its practicability. 

The thesis aims to tackle the Attack Tolerant Information Retrieval (ATIR) 

problem which is an extension of the FIR problem by taking malicious attacks into 

account. 

1.2 Research Challenges 

This section outlines the general research challenges of achieving ATIR while 

remaining practical to be implemented and be reasonably deployable. This will help 

to draw the research boundary of this thesis. Based on our understanding of the 

existing research on PIR and research on attack tolerance, the following five ATIR 

research challenges are derived. 

1) Communication Complexity 

Considerable research has been conducted on deriving communication efficient PIR 

schemes, such as those presented at [CGKS95, Amb97, BIOl, BIKR02, BIMOO, 

BS02]. This is a well-explored area. The problem and the basic approaches for 

tackling the challenge are relatively well understood. Recent studies show that some 

existing PIR schemes already have close to optimal communication complexity 

[WW04, Cha04]. In contrast, many other aspects of PIR, for example, the practical 

aspects, remain much less understood. Our research is focussed on those aspects by 

build on existing PIR schemes which already have a reasonable level of 

communication complexity. 

2) Trust Assumptions 

Existing PIR schemes often rely on unrealistic trust assumptions before and during 

the processing of PIR queries. The use of unrealistic trust assumptions restricts the 

applicability of these schemes. Existing attack-tolerant systems also make various 

degrees of trust assumptions on external trusted parties: a trusted third party is often 

required to securely and manually set up these systems. Trust assumptions are also 
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placed during the processing stages of all hardware-based PIR systems. For example, 

computation with secure hardware [SSOl, IS03, AF02] in the system and the reliance 

on an external avixiUary server [GGM98] are the typical trust assumptions in current 

PIR research. With the use of these trust assimiptions at various stages of deploying a 

system, the system is restiicted to a static group membership. Dynamic addition and 

removal of members is cosfly and requires the involvement of trusted third parties 

(e.g. human operators). Consequentiy, such a system cannot cope with the 

dynamicity membership requirement of its environment. 

3) Use of Replication 

In PIR, replication is introduced as a fundamental means to reduce the 

conununication complexity of unconditionally secure PIR schemes [CGKS95]. PIR 

schemes themselves do not provide mechanisms to support replication but rely on 

existing well-established replications protocols to disseminate updates and manage 

consistency among replicated servers. An inherent problem with replication is 

scalability, because replication protocols heavily rely on message passing to 

coordinate and synchronise among replicas. Replication should be used with care. In 

principle, the more rephcated servers a PIR scheme uses the better communication 

complexity it can achieve. It becomes a challenge to find a balanced degree of 

replication which can provide reduced communication complexity while not being 

too costiy. 

4) Implementation 

The standard PIR database model is too restrictive to be integrated with commercial 

database technologies. Most existing PIR schemes only demonstrate the theoretical 

feasibility of constructing such schemes, and littie practical unplementations of these 

schemes have been attempted. Extending the model is mandatory i f the technique is 

to be used to implement a real service. Some PIR schemes and corresponding 

implementations use secure hardware to perform PIR operations. Due to its 

processing limitation, the performance shown by the secure-hardware based 

implementations [SSOl, IS03, Aso04] is not satisfactory. 

5) Processing Costs 

It is often envisaged that PIR processing is computationally expensive, which is the 

main motivation for the work presented in [KusOB, IS03, SSOl, AF02, BIMOO]). Pre-
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processing was introduced into various PIR schemes as a means to reduce online 

processing costs [BIMOO, IS03, AF02, IS04, Aso04]. However, pre-processing is still 

costly: some recent experimental results show that the pre-processing time for secin-e 

hardware-based PIR schemes is in the order of several hours whereas the online 

processing time for retrieving one single record is in the order of several minutes 

[IS03, AF02, Aso04]. Hence, fi-om a practical point of view, processing cost is still a 

major decisive factor determining the real impact of ATIR technologies. Although 

these implementations demonstrate the practicability of such PIR schemes, the 

performance shown by the results is far worse than the performance of state of the art 

database technologies. 

1.3 Contributions 

This thesis contributes to tiie state-of-the-art security and fault tolerance research by 

presenting a new approach for achieving an adjustable level of privacy protection 

whilst maintaining a high level of service provision in the presence of malicious 

attacks. Specifically, the thesis tackles a number of less tmderstood open research 

challenges (challenges 2-5 presented in the previous section) in PIR research and 

provides a satisfactory answer to these challenges. In particular, this thesis 

contributes to the state-of-the-art PIR research and the state-of-the-practice practical 

PIR implementation in the following aspects. 

ATIR requires limited trust assumptions on remote execution environment. With 

neither relying on secure hardware nor trusted third parties on remote execution 

environment, replication-based ATIR schemes are developed to protect the privacy 

of a user and ensure the provision of an information retrieval service. Unlike existing 

practical PIR approaches, the ATIR approach does not require databases to be pre-

processed by encryption or be periodically shuffled. 

Compared with the best solution known so far, the number of replicated servers 

required by ATIR is reduced to be optimal in the sense that no additional servers are 

required to satisfy the privacy property of ATIR. To tolerate any collusion of up to 

/ servers and up to / faulty (crashed or malicious) servers in a system with k 

replicated servers, ATIR ensures the privacy and correctness properties, provided 

ihai k> t+f+ \ where f > I and/< ^ The best solution (i.e. [BS02]) with an 

0(«^<*-'""J) communication complexity requires k(>3t+\) repUcated servers to cope 
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with the same situation. In confrast, ATIR uses fewer servers with a much improved 

communication cost, 0(n^) (where n is the size of a database managed by a server). 

The usefiihiess and practicability of ATIR is proved by practical implementation 

on realistic databases with good performance. The implemented systems are purely 

based on software. Neither secure hardware nor trusted third parties are needed to 

implement and deploy these systems. Experimental results show that the 

implemented systems also perform well in both normal and simulated faulty 

circxraistances. The PIR and ATIR implementations build upon widely used database 

technologies (MySQL). No modification of the underlying database servers is 

required to support the deployment of the services. 

Moreover, the experimental results show that the Total Time for Processing (TTP) 

of using PIR and ATIR services are both well imder half a second for calculating 

over data sets of a size ranging from 100KB to 1MB in normal circumstances. The 

ATIR services maintain the same level of performance even in the presence of the 

simulated attacks. 

1.4 Thesis Organisation 

The remainder of this thesis is organised as follows. 

Chapter 2 presents a comprehensive survey on the following topics. The basic 

concepts and terminologies used by this thesis are presented first. A classification of 

attack models and a discussion on the relationship between these models are then 

followed. As a first line of defence against attacks, privacy protection techniques are 

categorised and their principles are described. We then present a survey of the PIR 

model, schemes and extensions which is followed by a review and discussion of 

attack tolerant techniques used in defending against active attacks. A review of 

common assumptions used by attack-tolerant approaches in designing and deploying 

distributed systems is given. 

Chapter 3 presents the system model, and construction of ATIR schemes. In 

particular, we show the link among three basic sfrategies used in ATIR schemes, 

which are privacy protection, error detection and attack tolerance. We analyse the 

intrinsic difficulties of using conventional error detection techniques in the settings 

of ATIR. We also present two ATIR schemes: one deterministic and one 
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probabilistic for ensuring information theoretic privacy protection and service 

correctness even in the presence of malicious attacks. Both schemes are replication-

based. This chapter also offers a thorough comparison between ATIR and related 

PIR schemes. 

Chapter 4 describes the architecture of ATIR systems and the realisation of ATIR 

schemes. Several important design and implementation issues are discussed. In 

particular, we describe how to extend the database model for performing ATIR 

computations. 

Chapter 5 presents experimental results of this thesis. This chapter is organised 

into three parts. At first, we develop an analytic model for the performance of the 

ATIR service implemented. The model is used to validate the performance 

measurements of the experiments conducted. We then examine the impacts of 

various major parameters on the total processing time of an ATIR service in normal 

circumstances. The performance comparison between a probabilistic ATER and a 

deterministic ATIR is then presented. Finally, we investigate the performance of an 

ATIR service in the presence of various simulated (crashed and malicious) faults. 

Chapter 6 recaps the main contributions made by this thesis, discusses the future 

work, and concludes the thesis. 



CHAPTER TWO. COPING wimATTACKS 

Chapter 2 Backgrounds Coping with 

This chapter reviews the state-of-the-art research efforts for coping with attacks in 

distributed systems. When attacks against computer systems are discussed, we 

should clearly state the following: i) types of systems being considered; ii) 

assumptions about system design, implementation, and deployment; iii) types of 

attacks that are defended. The first three sections of this chapter examine these issues 

in turn, hi Section 2.1 we describe a general model for distributed systems and a 

cUent/server system model. In Section 2.2 we present and discuss two attack models: 

a passive and an active attack model, hi Section 2.3 we review privacy protection 

techniques for defending against passive attacks and in Section 2.4 we present a 

survey on PIR research, hi section 2.5, we focus on attack-tolerant techniques and 

systems for coping with active attacks. 

2.1 Basic Concepts and Terminologies 

This section describes a conceptual system model which will be used throughout this 

thesis. We will then emphasize the client/server design paradigm, a widely used 

structuring technique for designing distributed systems. 

2.1.1 Systems, Services, and Components 

A system is an entity composed of multiple interacting components which are under 

the control of a system design to deliver a service to other entities, i.e. other systems 

[PSOl]. The other entities make up the environment for the system considered. A 

system design can be viewed as a special component of the system which not only 

defines the interactions among the components in the system but the interactions 

between the system and the environment that the system services [Xu04]. 



CHAPTER TWO. COPING WITH ATTACKS 

system 

. o 
system enviromnent 

interaction system/ 
component 

system/environment 
boundary 

Figure 2-1 A Generalised Conceptual System Model (Adapted from [Xu04]) 

Figure 2-1 depicts a generalised conceptual model of a system and the system 

environment it services. From the diagram, we can see that the systems in the 

environment are loosely coupled since they may or may not interact with each other. 

The system model is recursive in nature. The components in the system can be 

decomposed into sub-components. These sub-components in turn can be fiirther 

decomposed, and so on. The decomposition stops when the component is atomic (i.e. 

not divisible). The divisibility depends on the level of abstraction needed [HW92]. 

2.1.2 The Client/Server System Model 

Distributed systems usually are structured into one of the following four design 

paradigms: client/server, remote evaluation, code on demand, and mobile agent 

[FPV98]. It is important to note that design paradigms are independent of any 

particular programming languages, message transportation mechanisms and 

implementation technologies. The principle of our thesis applies to all of these 

paradigms. However, for simplicity of presentation, the client/server design 

paradigm will be emphasized. 
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Figure 2-2 A System Model of a Client/Server Distributed System 

As illustrated in Figure 2-2, a client/server distributed system is structured into 

two components: a client and a server. The client and the server interact with each 

other following a pre-defined protocol specified in the system design. The client and 

the server often run on separate processing nodes in a communication network. The 

server manages resources and defines operations that are exported to the client. The 

chent sends a request message to invoke the operations provided by the server and 

receives a reply message in the opposite direction. The system can interact with the 

system (execution) environment in at least two ways. First, the system delivers a 

service to the environment by taking inputs firom a system user and returning outputs 

back. The user is a special system in the environment that the system considered 

aims to service. Second, the interactions between the client and the server are built 

on top of a conmiunication network which is also a part of the system environment. 

In this case, there is no interaction between the user and the network. 

2.1.3 Security FaUures 

When being deployed in an error-prone environment, the system is often required to 

be dependable. A dependable system continues to deliver the intended service 

despite the occurrence of faults. Dependability is defined as the property of a 

computer system such that reliance can justifiably be placed on the service the 

system delivers [Lap92]. A dependable system needs to ensure that the service is 

available, reliable, safe, and secure. When a service delivered by a system derivates 

10 
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fi-om what it intends for (e.g. firom the design specification), this event is defined as a 

system failure [Lap95]. An error is that part of the system state liable to l e ^ to the 

failure [Lap92]. A fault is a hypothesised cause of an error [Lap92]. 

This dissertation focuses on security failures. Security is dependability with 

respect to the prevention of unauthorised access and/or handling of information 

[Lap92]. Security consists of three properties: confidentiality, integrity, and 

availability. A security failure occurs when one or more of these properties are 

violated. A security error is that part of the system state leading to the security failvire. 

A security fault is the hypothesised cause of a security error. A security failure may 

be neither detectable, nor observable. For example, when the confidentiality of a 

piece of information is breached, a security failure occurs. However, due to the 

passive nature of information leakage, such a fault may not manifest itself as a 

detectable/observable failure. 

2.2 Attack Models 

We now examine how security properties of a service can be violated and the effects 

of such violations to the service fi-om a security perspective. Security violations are 

often caused by attacks. An attack is defined as an intentional fault aiming to violate 

security properties of a service. Therefore, an attack is a type of fault. Consequently, 

attack models are a subset of fault models. Attack models are often used to categorise 

the aspects (e.g. types and assumptions) of attacks considered in a system design, 

implementation and deployment. 

2.2.1 Classification of Attacks 

The degree of security violations that may be caused by attackers is often used to 

characterise the power of attackers. As a result of the characterisation, system-level 

attacks are classified following two types of attack model: 

® Passive attack model: passive attacks only involve monitoring, intercepting, or 

eavesdropping on information. Passive attacks often lead to the violation of the 

confidentiality property, or traffic analysis attacks. 

« Active attack model: active attacks often build on passive attacks and involve 

intercepting, modifying, and probably fabricating information. Active attacks 

11 
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often lead to the violation of all security properties (i.e. confidentiality, 

mtegrity and availability), 

hi real world, attackers often rely on the information gained through passive 

attacks to laimch active attacks. Successive active attacks can also involve 

information disclosure, hence, causing the violation of confidentiality property. 

Therefore, the active attack model subsumes the passive one. 

Classified by their effect (i.e. severity) on the components of the system, active 

attacks can lead to two types of failures: benign failures and maUcious (also referred 

as Byzantine) failures [CDKOl pp. 56, Mul93 pp. 100]. Examples of benign failures 

include fail-stop, crash, and omission failures. Examples of malicious failures 

include arbitrary execution of a predefined protocol and/or malicious corruption of 

databases. The component that exhibits failures is described as a faulty component. 

The purpose of having two attack models is to simplify the design of security 

protocols and to make realistic assumptions against attacks. Protocols with weak 

assumptions are often too expensive to be deployed. Therefore protocols design 

typically rehes on certain assumptions [AndOl]. Assumptions are a double-edged 

sword. Without making assumptions, it is impossible to derive effective and useful 

protocols. Protocols can be made simple with certain assumptions. However, by 

invalidating assumptions of a system, the system will fail easily. The key issue is 

what are the vaUd assumptions, and under what circumstances. 

2.2.2 Relations between Attack Models 

Active attacks are often built upon findings through passive attacks because 

information collected during passive attacks is useful for conducting active attacks in 

the later stage. Both attack models apply to individual components, interactions 

among components, and a system as a whole. Consider a hospital database system 

which provides information about patients to authorised doctors. A doctor uses the 

client software installed on his desktop to access the database server. There is a 

communication network connecting the client and the server. In its simplest form, the 

system is composed of two components: the client software and the database server. 

I f the operator only steals patients' information, the operator only conducts a passive 

attack which targets an individual component. I f someone only manages to 

eavesdrop on the communication network, this is an attack against the interaction 

12 
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between the client and the server. The system administrator can easily launch attacks 

against the entire system. 

From a system's point of view, attackers can be classified into two categories: 

outsiders and insiders. In this thesis, we only consider closed systems. A closed 

system is defined as a system which has a clearly defined system boxmdary. 

According to the MAFTIA [PSOl] report, an outsider is defined as "a person who has 

no privilege, i.e. no rights to any object in the system" whereas an insider is "any 

individual who has some privileges, i.e. some rights on objects in the system". 

Attacks launched by insiders are insider attacks whereas attacks launched by 

outsiders are outsider attacks. 

2.2.3 Attacks on Systems and Cryptanalysis 

There are differences between attacks on systems and those on cryptographic 

algorithms. Attacks on systems are the topic we have discussed in this section and 

are the main concern of this thesis. Cryptanalysis is the science and art of finding the 

weakness in cryptographic algorithms. The aims of attackers, targets and methods of 

attacks are different. Although a successful attack on cryptographic algorithms can 

lead to successful attacks on systems (i.e. those use these algorithms), current 

research tends to treat them separately. Cryptographic algorithms are building blocks 

of secure computer systems and often are assumed to be secure. Therefore, there is a 

need to clarify the common security assumptions made when designing and 

implementing computer systems. 

A successful attack often leads to information disclosure. Considerable research 

has been done on understanding the effects and deriving effective countermeasures 

against information disclosure caused by the leakage of confidential information. The 

next section focuses on the concepts and approaches of information disclosure 

caused by the violation of personal private information. 

13 
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2.3 Privacy Protection: Defending against Passive Attacks 

The notion of "privacy" is central to many arguments about defending against attacks. 

In security, this term is often used inconsistently and/or loosely defined. For example, 

in [AndOl], Anderson defines the term privacy as follows: 

"Privacy is the ability and/or right to protect your personal secrets; it 
extends to the ability and/or right to prevent invasions of your personal 
space (the exact definition varies quite sharply fi-om one country to 
another). Privacy can extend to fiimilies but not to legal persons such as 
corporations." 

Security Engineering 
- A Guide to Building Dependable Distributed Systems 

Ross Anderson 

2.3.1 Defining Privacy 

In this thesis, our definition of privacy is based on a restricted version of Anderson's 

definition. Privacy is defined as the ability/right to protect one's personal information, 

including secrets, fi:om unsanctioned scrutiny. Examples of private information are 

identity, preference, location, and intention. 

Privacy protection technologies aim at preventing unsanctioned information 

collection of individuals and protecting data that has been collected. This aim should 

be considered in a broad sense. Individuals should have the ownership to their 

private information: it should be up to them to decide who is allowed to access the 

information and how the information is distributed. That is, they should have the 

ability/right to control private information. However, it is often up to others to 

maintain the confidentiality of the information. For example, patient medical records 

are private information of the patient. However, it is often up to the hospital or health 

care personnel to keep them secret. 

In the next section, we present privacy protection techniques which are 

categorised into the following approaches: encryption, anonymity, delegation, 

pseudonym, and poUcy negotiation. 

2.3.2 Privacy througli Encryption 

Encryption is a method of information transformation in which the process 

transforms a piece of private information into an unintelligent form so that the exact 
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content is masked. The design of an inverse process (i.e., decryption) is important to 

the success of encryption. Decryption provides a way to recover scrambled 

information to its original form. Often, this reverse transformation is controlled by 

secret information (e.g., decryption keys) which is only accessible to authorised 

parties. Encryption often relies on number theoretic assumptions, such as the 

computational difficulty of factormg large prime numbers in cryptographic 

algorithms [RSA78]. 

By encrypting private information, its exact content can be hidden fi-om attackers. 

However, once the information is decrypted, few technical measures can prevent 

further dissemination of the information. Performing encrypted computation is the 

approach for protecting the privacy of users without decrypting the content of 

computation. 

There has been a large body of research on encrypted computation. Three methods 

are often used to perform encrypted computation: processing encrypted data [Fei85, 

ALN87, AFK87, BF90], computing with encrypted functions via privacy 

homomoiphism [RAD78, ST98a, ST98b, BreOl], and processing obfiascated 

programs [WDHKOl, ZGZ03]. Unlike normal computation/processing, encrypted 

computation does not need to be decrypted before processing. 

This property is highly attractive because it means that users can utilize resources 

without information about their input data, functions, or program logic, being 

revealed. For certaui applications, such as bioinformatics, proprietary and patented 

programs, this is an appealing feature because these applications often require a large 

amount of computational resources and have significant privacy concerns. 

Currentiy, the first two methods (i.e. processing encrypted data and computing 

with encrypted functions) are restricted to limited types of functions and these 

functions often rely on computational assumptions, such as the difficulty of factoring 

large numbers. The major obstacle to adopting such methods is that there are not 

many functions that can be executed in an encrypted form. The general appHcability 

of constructing and executing obfuscated programs, i.e. the third method, for real 

application also remains to be explored. 

15 
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As a whole, all the research in this area largely focuses on demonstrating the 

theoretical feasibility of using these methods for solving restricted types of problems. 

Although there are potentially huge practical motivations and demand for methods 

that support encrypted computation, it remains to be seen how to extend and apply 

these methods for use in real applications. The state of the art results in this area still 

reside on a theoretical level. Little is known on how to apply them in real 

applications. 

Moreover, all existing work using any of these methods assumes the passive 

attack model, where attackers will execute the predefined protocols correctly. This 

assumption becomes shaky when these methods are appUed to solve privacy 

problems arising in large scale distributed computing, such as mobile code 

applications and Grid applications. The scale and dynamicity of these applications 

demand solutions which do not only protect privacy, but also guarantee the integrity 

of the computation. 

2.3.3 Privacy through Anonymity 

In order to protect the identities and locations of users, anonymity techniques involve 

the use of a large number of intermediate nodes (e.g. computers) to cooperate 

together to perform an operation. When a user sends a request, the request is often 

routed through these intermediate nodes. It is therefore difficult for an observer to 

determine the exact information (e.g. the sending location) of the request. 

For example, by routing an email through a large number of intermediated nodes 

before sending it to the receiver, the identity and location of the sender can be hidden. 

Anyone in the participant set can be the one who sends the request and the initial 

origin of the request. Initiated by Chaum in 1981 [ChaSl], there has been a large 

body of work (e.g. [ChaSS, Wai89, RR98, MCOO]) in this area. This work can be 

classified into two categories: anonymous remailers and anonymous web browsing. 

Anonymous remailers (e.g. MIX networks [Cha81, Cha88] and MIXMASTER 

[MCOO]) aim to protect the identity and original location of email senders. 

Anonymous web browsing techniques protect the identity and/or location of web 

users and examples of such are CROWS [RR98], onion routing [GRS99], and Web 

MEXes [BFKOO]. The research in this area is relatively well developed and systems 

(e.g. Zero-Knowledge System's Freedom Network [BSGQO]) with varying degrees of 
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privacy properties and involvement fi-om commercial companies have been 

developed. 

In theory, the larger the population is, the harder it becomes to identify and pin­

point the identity and exact location of the originator. Usually, the provision of 

anonymity-based techniques heavily relies on the availability of a large number of 

trusted intermediaries. These techniques are also coupled with encryption to fiirther 

protect otiier private information of users, such as authorships and censorship. 

Recently, research has been begun to look at the privacy protection issues in the 

presence of certain types of attacks on anonymous networks (e.g. [Dan03]). 

2.3.4 Privacy througli Delegation 

Some examples of this approach are Anonymizer [Ano04] and Rewebber [Rew04]. 

These web sites act as a "proxy server" to request senders. Using these websites, the 

identity, IP address, and other private information of a requestor can be hidden fi-om 

web site owners. The retrieved pages are routed through these servers back to 

senders. One distinct feature about Rewebber.com is that it masks the location of 

documents requested fi-om the request sender. This approach can protect the privacy 

of the documait publisher. Both techniques rely on the trustworthiness of proxy 

servers to provide privacy protection. 

A special form of privacy protection through delegation is the use of secure 

hardware. In this case, privacy protection is delegated to a maintainer or operator of a 

piece of trusted hardware which is assumed to be tamper-resistant (i.e. no secrets will 

be leaked even i f the hardware itself has been damaged). Secure co-processors are 

often used to store private information and/or perform security critical operations. 

There remain several problems with the use of secure co-processors (for details, 

readers are referred to Section 2.5.5). Also, the memory and processing capability of 

secure hardware is limited, which means that they may not be applicable for 

computationally intensive applications. 

2.3.5 Privacy through Pseudonym 

Identity privacy has become one of the major security issues of Internet applications 

because of the rapidly emerging threat of identity theft [DOJOO]. To combat identity 

theft and reduce the damaging consequences of misusing personal information, 
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pseudonym techniques have been used for depersonalise uniquely identifiable 

information fi-om transactions. To hide the exact information about a user, 

pseudonym systems replace the personal information with randomly generated 

pseudo-information. 

Without using a user's real identity, the design and unplementation of 

authentication and authorisation services for pseudonym systems become a challenge. 

Currently, there are two basic approaches to address this problem. Both do rely on a 

universally trusted authority to implement these services. For example, this is exactly 

the strategy adopted by the IBM's IDEMDC system [CH02]. Alternatively, one can 

employ a distiibuted solution, such as the one used by tiie Shibboleth framework 

[CE02]. Shibboleth, by itself, does not tie application developers to any specific 

authentication mechanisms. Authentication in Shibboleth relies on the existing 

security mfrastructure provided by individual participating organisations. After a 

user has been authenticated by its origin organisation, depersonalised information is 

sent to a foreign organisation to authorise the user to certain resources. In this sense. 

Shibboleth provides a privacy-preserving authorisation to users. 

2.3.6 Privacy through Negotiation 

There are other approaches for privacy protection, such as using privacy policy 

negotiation mechanisms. The focus of existing work aims to automate the policy 

checking and negotiation processes. The success of these techniques often depends 

on the "good faith" of service providers. In this approach, a user can specify their 

privacy preference and negotiate with servers before a transaction begins. Currentiy, 

the work in this area aims to provide standard ways for achieving policy negotiations 

and examples using this approach include P3P [P3P01] and Appel [Appel02]. 

2.3.7 Privacy through Secret Sharing 

Secret Sharing [Sha79, Bla79] is a classical security approach for ensuring the 

confidentiality and availability of private information, such as long term signing keys 

and personal private keys. With the use of secret sharing techniques, a secret, in its 

simplest form - a number - is split into randomly generated shares which are 

distributed to mutually independent participants. A threshold number of shares can 

be used to reconstruct the original secret. The loss of secrets usually causes 
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catastrophic consequence. For example, the loss of signing keys of a Certification 

Authority invalidates all the certificates issued whereas the compromise of the latter 

leads to the potential for invasion of private/confidential conmiunication or data. For 

example, tiie COCA system [ZSR02] and SINTRA system [CP02] use secret sharing 

techniques to protect service private key(s). 

Secret sharing has also been used to protect the privacy of authors in the 

application of online pubUcations. For example, Publius [WRCOO] uses secret 

sharing to provide privacy protection for authors when they publish documents 

through the Publius system. 

2.4 Private Information Retrieval (PIR): Model, Schemes, and 
Extensions 

This section presents the background on the PIR problem [CGKS95] and a survey of 

PER schemes. 

2.4.1 The PIR Problem 

Consider a database query scenario [CGKS95]. An investor queries a stock share 

database for the value of a stock share but s/he doesn't want to disclose the identity 

of the specific stock of interest. This is the classical motivating example of the PIR 

problem which is concerned with querying databases privately - without revealing 

the identity (i.e. intention) of the specific data item of interest to the database owner. 

2.4.2 The PIR Model 

The PIR problem is often considered in the following model. The database is 

modelled as a binary string x = x\...x„, where each bit represents a data item in the 

database, the suffix is the index of each data item, and n is the size of the database. 

The user knows an index / of a data item jc, and is interested in getting Xi. With a 

single server, in order to protect the privacy of the user without leaking any 

information about the identity to the database server, the user has to download the 

entire database and perform the query locally [CGKS95]. Essentially, this result 

states that it is impossible to obtain unconditional privacy protection with the use of a 

single server. The communication complexity of this solution is 0(n). When a PIR 

scheme has communication complexity 0(/i), it is a tiivial solution [CGKS95]. The 
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communication overhead of this solution prohibits its practical usage. Also, 

downloading is simply not a practical choice in some circumstances (e.g. patients' 

data or paid services) due to the proprietary nature of data and/or cost issues. 

Therefore, reducing communication complexity becomes one of the major issues in 

the PIR research, that is, achieving non-trivial communication complexity becomes 

one of the main goals in current PIR research. 

PIR schemes are concerned about hiding the user's intention (i.e. the index /) firom 

the server. PIR schemes should have less than 0(n) communication complexity. 

From a practical point of view, the PIR problem has a wide range of applications in 

tiie traditional security and privacy sensitive domains, such as banking, insurance, 

and e-govemment. In such domains, a vast amount of research has been done in 

protecting servers' privacy whilst users' privacy protection problems remain largely 

open. 

All PIR schemes consider a passive server attack model where the attacker who 

controls the server (s) can only passively observe the processing on the server(s) and 

messages exchanged between the user and the server (s). In the passive attack model, 

PIR schemes need to consider only the privacy of users. However, as indicated in 

Section 2.2, the passive attack model is a restiicted version of an active attack model, 

where an attacker is assumed to be only interested in finding out the identity of the 

data item but follows the protocol correctly. 

2.4.3 Information Theoretic PIR Schemes 

A high level overview of a PIR scheme is described as follows to explain tiie 

principle of PIR schemes. A PIR scheme consists of three algorithms: a query 

algorithm, an answer algorithm, and a reconstruction algorithm. At first, the index of 

the data item - an integer - is first transformed into a sequence of numbers following 

the query algorithm by the user. The sequence is then sent to the server and used as 

inputs for the answer algorithm. The answer algorithm processes through each record 

in the entire database and produces an answer. Based on the answer returned, the 

user executes the reconstruction algorithm to produce a result. Since every record in 

the database is involved in the server side processing, the server has no way to figure 

out the information about the intended data item. Therefore, in principle, all PIR 
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schemes are based on the privacy through anonymity approach for protecting users' 

privacy. 

In order to achieve non-trivial communication complexity, two approaches have 

been derived to achieve better communication complexity while still maintaining 

privacy protection for users. The first approach is to relax the single server 

requirement to the use of multiple servers. Usmg this approach, the PIR research has 

been explored along two directions. One can either use multiple replicated servers 

(i.e. replicas) to store identical copies of data. This is the approach used by [CGKS95, 

Amb97, BIOl, BIKR02]). Also, auxiliary servers have been introduced to store 

randomised data before a PIR scheme begms. This is the approach used by [GGM98]. 

hi the repUcation based PIR schemes, such as [CGKS95, IK99, BIOl, BIKR02, 

Amb97], identical database servers are replicated on separate nodes of a distiibuted 

system. It is assumed that communication between the repUcated servers is restiicted. 

No more than ^ (/ ̂  1) servers are allowed to communicate with each other so that the 

servers cannot collude together in trymg to violate the user's privacy. Except in one 

case [CG97], all replication based PIR schemes provide privacy guarantee 

vinconditionally. No information about the user' intention can be obtained by the 

servers. 

In the replicated-server setting, Beimel et. al. in [BIKR02] construct several 

information theoretic PIR schemes with less than 0(n'̂ ^^*''̂ ) communication 

complexify for ̂  > 3. These are the best PIR schemes in a repHcation setting when 

this thesis is written. However, a small number of replicated servers is particular 

interesting because they place less demand on the deployment setting. At the time 

this thesis is written (i.e. September 2004), the minimum number of servers required 

by PIR schemes is two. The best communication complexity of two-server PIR 

schemes is 0{n^'\ which is achieved in [CGKS95, BIKR02]. 

2.4.4 Computational PIR Schemes 

Alternatively, the second approach relaxes the privacy requirement from 

unconditionally secure to computationally secure. Hence, computational PIR (cPIR) 

schemes are constiaicted based on computational assumptions. With this approach, 

one can construct single-server PER. schemes to protect the users' privacy. Loosely 

speaking, unconditional privacy means the queries cannot provide any useful 
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information to computational unbounded servers with respect to the intention of the 

user. The implication of this approach is that the attacker who controls the server has 

to be assumed to be computationally bounded. 

Chor and Gilboa [CG97] proposed the first cPIR scheme with the use of (at least) 

two non-communicating servers and this scheme assimies the existence of pseudo 

random number generators. The communication complexity of this scheme is 0(n^ 

communication complexity for any positive real number £> 0. The communication 

restriction and the use of multiple servers are essential in the first cPIR scheme since 

the collusion between servers can completely reveal the user's privacy. 

In the same year, Kushilevitz and Ostrovsky [K097] proposed the first single-

server cPIR scheme based on Quadratic Residuosity Assumption [GM84]. The work 

first shows the possibility of getting rid of the multiple-server setting with the use of 

a well estabUshed cryptographic problem. The communication complexity of their 

scheme is also 0(n% Yamamura and Saito in [YS03] propose a single-server cPIR 

scheme of communication complexity 0(n% where c > 0, based on the subgroup 

membership problem. 

Subsequently, Cachin, Micali, and Stadler [CMS99] presented the first single-

server cPIR scheme of polylogarithm communication complexity based on a 

somehow less well-known number theoretic assvimption O-hiding assumption. 

Recent studies show that some existing single-server PIR schemes already have 

close to optimal communication complexity [WW04]. As long as these problems are 

still hard to solve in a computational sense, the user's privacy is preserved. The 

relaxation of the privacy requirement in computational PIR schemes is an important 

step towards a single server PIR scheme which is more interesting in practice due to 

the replication setting of unconditionally secure PIR schemes. 

2.4.5 PIR Extensions 

The PIR model has been extended along several directions. Symmetric PIR schemes 

(SPIR) [GIK+98] were proposed to protect both the privacy of database servers and 

users. SPIR schemes ensure that a curious user (even not correctly executing a SPIR 

scheme) cannot obtain extra information firom the database except the single bit of 

the data item originally intended for. 
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Gertner et. al. in [GGM98] propose a random server model for achieving 

unconditional privacy protection without using replication. Secret sharing schemes 

[Sha79] are used to generate the contents of a number of auxiliary databases 

randomly based on the content of the original database. Even an attacker can observe 

the processing on all auxiliary databases; no information about the user's privacy 

wil l be revealed. However, the attacker is assumed to not be able to access the 

original database. To complete a PIR scheme, the user needs to access all databases, 

including the original and auxiliary ones. 

The PIR model assumes that the user knows the index of the data item of interest. 

In practice, the index information is not always readily available. A database is 

typically presented by keywords. Chor et. al. [CGN98] extends the PIR model with 

added keyword search capability. In their schemes, the database owner is required to 

insert a sequence of keywords (binary strings) into a data structure which supports 

the search fimction. The user and the database collaboratively finish a sequence of 

computations in a fixed number of rounds. The result of each computation 

determines the address of the keyword to be fetched in the next round. The address is 

used to perform a PIR scheme to fetch the data item accordingly. No modification of 

the database and underlying data structures is required to support these schemes. 

These extensions are based on the standard binary bit model and a passive server 

attack model. Consequently, all database servers are assumed to execute protocols 

correctly. They all add a constant level of complexities (botii conomunication and 

computation) to the standard PIR schemes. However, the levels of complexities are 

added at different stages of PIR processing. The random server model based PIR 

schemes require an introduction of a number of additional auxiliary servers with 

restricted communication among them before the PIR processing begins. 

The keyword-based PIR schemes need a modification of the original database to 

support the search facility and a constant number of execution rounds is needed to 

complete a keyword-based PIR scheme. Finally, the databases in SPIR schemes do 

not need to be pre-processed. However, the communication and computation 

complexity of information-theoretic SPIR schemes are much better than those of 

computational SPIR schemes [MalOO pp. 111]. But computational SPIR schemes are 

more attractive in practice due to their single server setting. 
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Al l these extensions introduce complexities on top of those of standard PIR 

schemes, such as those presented in [CGKS95]. Hence, they may be too costly to be 

implemented. 

2.4.6 P M amd Active Attacks 

The standard PIR model assumes a passive server attack model. In the multiple-

server PIR schemes, only up to a threshold number of servers are allowed to collude 

together to perform passive attacks. In the single-server PIR schemes, the server is 

also restricted to a passive attack model. In reality, once an attacker occupies a server 

or a threshold number of servers, active attacks may be conducted. With the use of an 

active server attack model, PIR schemes need to consider not only the privacy of 

users but also tiie correctness of results. 

The PER. problem has been extended to deal with two types of effects on the 

servers caused by active attacks: crash failures and maUcious (Byzantine) failures. 

Beimel and Stahl in [BS02] refer to the PIR schemes in these failure models as 

robust PIR schemes. Yang, Xu, and Bennett in [YXB02a, YXB02b, YXB03] also 

consider the same problem under these failure models, and the PIR schemes 

developed are called attack-tolerant (fault-tolerant) information retrieval schemes. 

Due to the use of the active attack model, these PIR scheme are required to guarantee 

the privacy of users and ensure the availability and correctness of results even in the 

presence of failures. 

2.4.7 Hardware-toased PIR Schemes 

In [SSOO, SSOl], two researchers Smith and Safford from the IBM Watson 

research centre initiate hardware-based PIR research and propose several PIR 

schemes based on secure co-processors. With the same goal as the research 

conducted in this thesis, hardware-based PER also aims at practical implementation 

and deployment of PIR schemes. This section only provides an overview of 

hardware-based PIR and a comparison between these schemes and the ATIR 

schemes presented in this thesis appear in Section 3.4.2. 

A typical architecture of hardware-based PIR schemes is depicted in Figure 2-3, 

which is adapted from the system architecture presented in [IS03]. In order to hide 

the identity of the intended data item, a host is required to execute the proposed PIR 

schemes inside secure co-processors which are responsible for two tasks: shuffling 
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the database regularly and performing retrieval operations. In some other 

implementations [Aso04], all the tasks are assumed to be performed within one 

single co-processor. 

There are conceptually two types of secure co-processors: a shuffler and a PIR 

server. A shuffler periodically shuffles the records in the database. The shuffled 

records are subsequently encrypted and put back to the database by the shuffler. 

During shuffling, no PIR operations are allowed to be performed on the database. 

The PIR server accepts users' queries, retrieves information from the database, 

and returns encrypted results back to the client. Each record in the database needs to 

be iterated through. (Otherwise, it is clear that the intended data item is not those 

"untouched" records.) 

Encryption keys have to be shared among each pair of secure co-processors and 

between the client and the PIR server. The shadowed boxes in the figure depict the 

places where data is encrypted. The dotted boxes represent the places that 

encryption/decryption operations take place. The information exchanged between the 

client and the secvire co-processors are encrypted so that the server cannot obtain the 

information exchanged. The users' privacy is preserved given that the secure co-

processor(s) is tamper-resistant. 
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Figure 2-3 An Architectural Overview of Hardware-based PIR Schemes 

2.5 Attack Tolerance: Thwarting Active Attacks 

Prevention-based approaches, such as the privacy protection techniques discussed in 

Section 2.3 and 2.4, are not suflBcient to solve the problems caused by attacks, hi 

most real world scenarios, the information collected through passive attacks is often 

used to launch active attacks against a system [Shi04]. To effectively deal with 

attacks, another approach - attack tolerance is therefore introduced and applied to 

system design to prevent the security properties of a system being violated. 

This section is organised as follows, hi Section 2.5.1, the term attack tolerance is 

defined. From Section 2.5.2 to Section 2.5.4, we review three commonly used 

approaches for achieving attack tolerance in designing and deploying distributed 

systems, hi reality, the effectiveness of these approaches heavily relies on the 

validity of the assumptions these approaches make about the deployment 

environment. Hence, in Section 2.5.5, a number of commonly used assumptions 

made by attack tolerant systems are examined and critically discussed. The aim is to 

highlight the risks of making invalid assumptions and to understand the limitations of 

the existing attack tolerance approaches. 
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2.5.1 Definmg Attack Tolerance 
Attack tolerance is a systematic approach for ensuring the delivery of correct 

services in spite of attacks. Specifically, the aim of using attack tolerance approaches 

is to guarantee the security properties of a system despite the occurrences of attacks. 

The aim of an attack-tolerant system is to prevent security faults within some 

components in the system from manifesting themselves as a system security failure. 

Particular emphasis within attack tolerance is placed on the measures of dealing with 

attacks. As indicated in the attack models presented in Section 2.2, passive attacks 

violate the confidentiality property. Hence, they lead to information disclosure. In 

contrast, active attacks may violate all security properties and render service 

disruptions (e.g. unavailability of correct results). The design goal of such systems is 

to provide continued availability and gracefial degradation of system services in the 

presence of attacks, maximising the residual capacity available to legitimate users. 

Attack tolerance research represents an effort in combining and unifying existing 

security and fault tolerance techniques. 

2.5.2 Attack Tolerance through Secret Sharing 

Apart from being used to defend against passive attacks. Secret Sharing techniques 

[Sha79, Bla79] have been widely used in the design of attack-tolerant systems to 

protect secret information, such as long-term encryption keys and private data 

storage, and to ensure service availability in the presence of attacks. 

The security and availability of the information is assured so long as the number 

of corrupted parties does not exceed a predefined threshold. Secret sharing is a 

cryptographic primitive having been widely used to protect the security and 

availability of secret information (see, for example, [Cac03, ZSR02, CP02, CS03]). 

Secret sharing consists of three parts: secret splitting, secret distribution, and 

secret reconstruction. In its simplest form, a secret sharing scheme is a threshold 

scheme by which a secret is randomly split into mutually independent shares which 

can be distributed to mutually suspicious participants. A standard setting of secret 

sharing is to employ a trusted dealer who performs the secret splitting. 

Secure channels are required by secret sharing schemes to ensiire that each share 

remains secret to other participants during transit. Since participants do not trust each 

other, shares are kept secret until secret reconstruction. When the shares are 

disfaibuted, the original secret wi l l be destroyed. Since each share is independent 
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from each other and the splitting is random, each individvial share reveals no 

information about other shares or the secret. That is, none of the participants has any 

knowledge of what other people have. 

There is a reverse process - secret reconstruction. This process is usually done by 

another trusted agent who pulls all the shares from an authorised set of participants 

for recovering the secret. 

Most of existing secret sharing schemes rely on a synchronous communication 

model [Mul03]. Due to the increasing popularity of Internet based attacks, recent 

research in this area focuses on extending the previous techniques in an 

asynchronous setting, such as the Intemet. Secret sharing techniques, in particular 

verifiable secret sharing techniques [Fel87], have been extended to an asynchronous 

setting to deal with active attacks in an asynchronous environment. 

The COCA system [ZRS02], an online certification authority designed and 

developed in the University of Cornell, first propose the Asynchronoxis Proactive 

Secret Sharing (APSS) protocol. The aim of the COCA system is to protect the 

confidentiality of the signing key of an online certification authority and ensure the 

service availability even in the presence of active attacks to an asynchronous system. 

The Delta-4 project developed a distributed fault tolerance framework using secret 

sharing protocol to store sensitive information into non-trusted sites/servers for open 

distributed systems [DBF91]. The Fragmentation-Redundancy-Scattering (FRS) 

technique was developed for tolerating both accidental and intentional faults 

[FDR95]. 

2.5.3 Attack Tolerance through Threshold Cryptography 

Threshold cryptography is a non-trivial extension of secret sharing by allowing the 

cooperation of a number of mutually suspicious participants to complete a task (e.g. 

signature signing) without revealing the secret (e.g. a signing key). For example, in a 

tiireshold signature scheme, a secret signing key is shared among n participants and 

each of them can generate shares of signatures given a message. A valid digital 

signature can be generated from any t+ I valid signature shares and its validity can 

be verified by a publicly known verification key. 

The Stanford's Intrusion Tolerance via Threshold Cryptography project provided 

tools and infrastructure for building intrusion tolerance applications, specifically a 
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Certificate Authority based on distributed RSA signatures, embedded into a web 

server [WMB99]. 

The IDA algorithm [Rab89] has been appUed to protect document integrity in the 

e-Vault system [ICG+98], an online, distributed data repository developed at IBM 

Watson Research. Shared distributed digital signatures are generated by the e-Vault 

system and given to users as a proof of proper storage of documents. The design goal 

of the e-Vault system is to guarantee the secure storage and retrieval of data in a 

distributed storage system. 

In the EU MAFTIA project, the SINTRA system [CP02, CS03] is designed and 

implemented to protect critical online services such as DNS. SINTRA is based on a 

variant of threshold cryptography. 

2.5.4 Attack Tolerance through Proactive Security 

Traditional security mechanisms often assumed that all the security-critical 

components of a system must be secure throughout the hfetime of a system. This 

goal is extremely hard to achieve in real world applications. Instead, the proactive 

security techniques, as proposed in [Jar95, FGM+96, CGH+97, HJJ+97], are based 

on the assumption that an attacker can never compromise more than t components 

during a time period. Provided a sufficient number of critical components in the 

system are secure, the overall system security can be guaranteed even when some 

components have been compromised. Proactive security mechanisms consist of two 

operation stages: distribution of secrets, and periodic refreshment of secrets. For 

example, with the use of secret sharing, shares of a secret can be randomly generated 

and distributed to a set of components in a system. These shares can be refreshed 

periodically without the need to reconstruct the original secret. Notable examples of 

using proactive security include AT&T's Omega project [RFL+96], Byzantine Fault 

Tolerance (BFT) [CL99], and COCA [ZSR02]. 

In the AT&T's Omega project [RFL+96], the principle of proactive security was 

used to build a highly resiHent and distributed key management service - the Rampart 

Toolkit - which can tolerate the arbifrary corruption of some of the servers by an 

attacker. 

Casfro and Liskov [CL99] present a practical Byzantine Fault Tolerance (BFT) 

algorithm in an asynchronous setting with the use of symmetric key cryptography. 
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BFS - an implementation of BFT on NFS performs very well i f no failures occur. 

BFT heavily rehes on proactive security to recover compromised servers. Periodic 

refi-eshment of secret keys mvalid the information obtained by attackers. 

The Cornell Online Certification Authority (COCA) [ZSR02] also uses the 

principle of proactive security to thwart against active attacks. A l l these systems use 

the proactive security mechanisms to recover compromised components. 

The implementation of proactive security in all these systems relies on the 

availability of tamper-resistant hardware (e.g. secure co-processors) to store 

encryption and signing keys. A l l cryptographic keys are stored within the co­

processors and all security sensitive operations are assumed to be performed by the 

hardware. Hence, even i f a server is compromised, the security of the keys, such as 

the confidentiality of encryption keys and the integrity of verification keys, can still 

be maintained. 

An alternative approach is suggested by Zhou [ZhoOl] to enable proactive security 

without the use of secure hardware, hi this approach, trusted operators are employed 

to manually propagate security keys through secure offline channels. However, this 

approach seems even more restrictive than the secure-hardware approach due to the 

compulsory involvement of regular manual reconfiguration. 

2.5.5 Commonly Used Assumptions 

This section examines some common assumptions made by attack-tolerant systems, 

and aims to highlight the risks of making invalid assumptions and point out the 

limitations of existing attack-tolerant approaches. 

The Soundness of Security Parameters 

When a system incorporates cryptographic algorithms in its design, two assumptions 

are often considered. The first assumption is to assume the security parameters 

chosen for these protocols are sufficient, and that these protocols have been 

implemented properly to ensure the validity of tiieir security properties. It is known 

that some cryptographic algorithms can become vulnerable due to badly chosen 

security parameters and/or poorly implemented algorithms [AndOl, Cop84]. This 

assumption is only justifiable when parameters are carefiiUy chosen and algorithms 

are properly implemented. 
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The Use of Probabilistic Cryptographic Algorithms 

The second assumption assumes cryptographic algorithms employed in the system 

design are perfectiy secure, which is referred to as secure cryptographic algoritiim 

assumption. This is probably the most commonly used security assumption with 

which numerous distributed systems are designed. By perfectly secure, it means that 

cryptographic algorithms ensure security properties with a probability one. In reality, 

tiiese algorithms are often probabiUstic because most of them are based on number 

theoretic assumptions which are probabilistic in nature. For example, all systems 

employing digital signatures rely on this assumption to check message integrity. 

Corrupted messages can only be identified within a certain probability, and there is a 

probability that a corrupted message cannot be identified. Therefore, this assumption 

is also referred to as a perfect failure detector assumption, because probabilistic 

cryptographic algorithms are freated as deterministic. Some example systems using 

tills assumption include COCA [ZSR02], EFT [CL99], and SINTRA [CP02]. 

However, the soundness of this assumption depends on the validity of 

computational assumptions made about signature algorithms. When an assumption of 

such becomes no longer valid, the corresponding cryptographic algorithm wil l not be 

secure. Hence, it is necessary to know the risk of relying on this assumption. 

Risks of Using the Secure Cryptographic Algorithm Assumption 

The rapid development of cryptanalysis often has great implications of invalidating 

previously known-to-be sound cryptographic assumptions. Two examples of 

commonly used cryptographic assumptions are the difficulty of factorising integers 

and the collision-resistant property of hash functions. The popular RSA cryptosystem 

[RSA78] is based on the former whereas MD5 and SHA hash functions are based on 

the latter. 
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In the past, it was believed that the probability of producing collided hashes was 

negligible and it took millions of years to break the computational assumptions i f 

parameters were chosen properly. But now, Wang et. al. [WLF+04] have 

demonsfrated that breaking MD5 takes just a matter of hours using a standard laptop 

computer in the CRYPTO'04 conference! According to a report on CRYPTO'04 

written by Edward W. Felten, 

"Where does this leave us? MD5 is fatally wounded; its use will be 
phased out. SHA-1 is still alive but the vultures are circling. A gradual 
transition away from SHA-1 will now start." 

This latest breakthrough in cryptanalysis of hash functions certainly shakes the 

foundation of collision-resistant property of hash fimctions [McC04] because hash 

functions are widely used in numerous practical secxirity protocols. For example, the 

Apache web server products and Sun Microsystem's Solaris products use MD5 to 

verify the integrity of their software distributions. 

Hash fimctions are the foundation of many areas of modem cryptography, such as 

digital signatures, encryption, authentication, and file integrity checking. For 

example, digital signatures heavily rely on hash functions to produce collision-free 

digests of different messages. Nearly all secure and fault tolerant systems rely on 

digital signatures to detect message corruption during transmission, or to prevent 

corrupted parties from modifying messages sent by correct parties in group 

conmiunication protocols. The importance of the cryptanalysis result means that 

attackers may be able to fabricate a piece of corrupted message to be validated as a 

correct one and hence the authenticity of the message may no longer be guaranteed. 

Therefore, the second assumption is not always sound and it should be often revisited 

when designing computer systems. 

Secure Bootstrapping Assumption 

Assumptions are also made in the implementation stage of a system. For example, 

the implementation of security services often relies upon the off band (i.e. cruiser 

service) distribution of security keys (e.g. encryption and signing keys). When a 

system is setup, a secure bootstrapping process is often assumed to exist to distribute 

a set of secret information (e.g. private keys) to each participant. Examples include 

COCA [ZSR02], BFT [CasOl], and SINTRA [CP02]. A l l these systems assume a 

32 



CHAPTER TWO. COPING wrm ATTACKS 

secure bootstrapping process to perform initialisation. The consequence of this 

assimiption is that the system assumes a static membership among its participants. 

Extira services are needed to support dynamic addition and removal of members. 

Currently, there is no known way to do that without reinitialising the system [Cac04]. 

Secure Hardware Assumption 

The secure bootstrapping assumption sometimes is replaced by the secure hardware 

assumption. Secure hardware (e.g. tamper-resistant secure co-processors) is used to 

process critical security operations and store cryptographic keys (e.g. long term keys). 

This assumption is often required for the purpose of proactive security in order to 

defend against malicious attackers. After rebooting the system from scratch, the 

confidentiality and integrity of the secret information are still preserved because of 

secure hardware. 

However, a system still needs a way to distribute secrete information to secure 

hardware when the system initialises. This is often achieved with the employment of 

trusted human operators who manually set up the system. Once initial keys are 

distributed securely, fiuther keys can be generated via various authentication and key 

agreement protocols. There remain many possible attacks which may invalidate the 

security of tamper-resistant hardware when they are used in practice (for a 

comprehensive description of these attacks against secure co-processors, see 

[AndOl]). 

2.6 Summary 

The quest for dependable services was, is, and wil l continue to be a major focal point 

in designing, implementing, and deploying modem distributed systems. However, as 

the scale of a distributed system increases, so does the number of components in the 

system, therefore, so does tiie probability that some components wi l l fail [Sch93]. 

Due to the ever rising number of malicious attacks against computer systems, 

delivering dependable services has never been so challenging. To understand the new 

challenges and limitations of existing approaches, this chapter takes a snapshot of the 

state-of-the-art techniques and systems for coping with attacks. 

To set the context of the thesis, we first present a generalised conceptual system 

model for distributed systems. The model is absfract enough to capture the essence of 
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a distributed system despite its size and dynamicity. This is followed by an in-depth 

discussion on two types of attack model: a passive attack model and an active attack 

model. To defend against passive attacks, a prevention-based approach - privacy 

protection - can be used. 

However, in most realistic execution environments, active attacks wil l be 

encountered. Due to the size, complexity, and dynamicity of modem distributed 

systems, a prevention-based approach is not always effective and is often costly for 

keeping attackers outside the system. Hence, the attack tolerance design paradigm is 

needed to cope with the situation by leveraging a combined use of secure and fault 

tolerant techniques. 

Hence, the last part of this chapter reviews the common attack-tolerant techniques 

and critically examines some commonly used assumptions by attack tolerant systems. 
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Chapter 3 Attack-Tolerant 

[nformation Retrieval (ATIR) 

This chapter presents two rephcation-based Attack Tolerant Information Retrieval 

(ATIR) schemes which are the theoretical core of this thesis, hi Section 3.1 we 

highlight the major considerations for constructing a practical ATIR scheme. In 

Section 3.2 we describe the system model that ATIR schemes aim to deploy and 

formally define ATIR schemes. In Section 3.3, the detailed algorithms of the ATIR 

schemes are described together with their communication complexity analysis and 

formal proofs. Section 3.4 compares ATIR and several relevant PIR schemes. 

Section 3.5 discusses the validity of ATIR assumptions, and compares ATIR with 

other secure and fault tolerant schemes. 

3.1 Introduction 

The core of the PIR problem is about privacy protection with non-trivial 

communication complexity. The use of multiple servers (e.g. repUcated servers) is 

needed for any PER. schemes i f information theoretic privacy is required [CGKS95]. 

In all existing multiple-server PIR schemes (e.g. [CGKS95, Amb97, IK99, GGM98, 

BIOl, BIKR02, BIMOO]), the availability of all servers is needed to ensure the 

correctness of a result. Hence, the standard PIR problem has to use passive attack 

models. Such a model basically assumes that all servers are available all the time and 

execute predefined protocols correctly. This assumption places significant 

restrictions on the types of attacks that an attacker may perform. 

Once occupying a PIR server, an attacker may conduct active attacks against a 

PIR service. The types of active attacks may include a combination of the following: 

crashing servers, blocking communication links, sending wrong replies, or simply 

deviating firom predefined protocols in an arbitrary way. Unlike traditional replies 

fi-om servers, PIR replies are not straight answers (otherwise, a server knows the 

user's intention) and a reconstruction algorithm is needed to "recover" the actual 
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results. Hence, the consequence of successful attacks may not be easily detectable 

using traditional error detection techniques because attacks are usually assumed to 

occur during message fransmission rather than server side processing. 

The ATIR schemes, introduced in this chapter, aim to solve the PIR problem 

based on an active attack model. In these schemes, apart from reducing 

communication complexity, replication is also used as a means for dealing with 

active attacks. ATIR schemes have two main requirements. First, since an ATIR 

scheme is a generalisation of a PIR scheme (when there is no faulty server in an 

ATIR system), it should have a non-trivial communication complexity (i.e. less than 

0(n), where n is the size of the database). A trivial solution (i.e. through database 

downloading) would be sufficient. In theory, the communication complexity of a 

replication-based PIR scheme can be reduced when more servers are used. 

In practice, replication is always associated with deployment issues. The need for 

a large number of replicated servers often restricts the scalability of a system and 

limits the applicable application domains of a PIR scheme. Moreover, as the number 

of rephcated servers increases, the actual number of bits exchanged over the network 

also increases, which, to some extend, contradicts with the original motivation of 

using replication. To a great extent, the practicability of ATIR schemes is inversely 

proportional to the number of servers required. Therefore, we are particularly 

interested in ATIR schemes which can provide non-trivial communication 

complexity with a small number of servers, which is the second requirement. 

Before presenting the ATIR schemes, we introduce the preliminaries. Specifically, 

we describe the system model of tiiese schemes and formally define ATIR schemes 

in the next section. 

3.2 Preliminaries 

3.2.1 Basic System Model 

Consider a distiibuted system implementing a database query service. The system is 

comprised of one client and k repUcated servers ^ i , . . . , 5*. There can be more clients 

but tiiey invoke the service independentiy from each otiier. For simplicity of 

presentation, we assume there is only one client in the system. These components run 

on separated processing nodes connected by a communication network: there are k 

pairs of one-to-one independent communication channels between the client and 
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each server. The client and the servers communicate with each other by exchanging 

messages. The message from a client to a server is called a query whereas the 

message in the opposite direction is called an answer. 

These channels are authenticated but are not assumed to be secure. That is, two 

commimicating parties in this network are certain of the identities of each other. But 

neither message confidentiality nor integrity exchanged through these channels is 

assumed. The state of a channel is determined by the state of the server it attaches to. 

The possible states of a server shall be elaborated in Section 3.2.2. 

The system assumes a synchronous model of computation, that is, there exist 

known boimds for both the execution speeds of the servers and message delays. 

Specifically, we assume that each message is received within < t̂ime units after being 

sent. 

Database Model 

In normal circumstances, each server has an identical copy of a database. The 

database is modelled as a character string x = x\X2.. .x„, where n is the number of 

records in the database. Representing a record in the database, each character is 

considered to be an integer taken from a certain integer set {0, 1, X), that is, 

Xj & {0, \, X), where j = 1, n. The subscripts represent the index of the 

records in the database. For example, in extended ASCII encoding scheme 

[IS08895], each character is associated with an integer taken from the set 

{0 ,1 , . . . ,255} . 

An Overview 

Before going any fiirther, we present an overview of how an ATIR scheme works. 

Suppose a user has an index / and is interested in obtaining the character jc„ where 

I e { 1 , n}. The user invokes the service through a client by giving i as an input 

and then awaiting a result res. The service should have two properties. First, it 

protects the privacy of the user (i.e. the intention) through keeping the input / secret 

from the servers. Second, it ensures the delivered resuU to be correct, that is, res is 

indeed the intended character. 
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Let r denote a set of local random integers generated by the cUent and Lr be the 

number of integers in the set. Based on i and r, the client produces k sets of random 

and independent numbers to form queries, using k query algorithms Q\, ...,Qk- The 

queries are denoted hy q\, ...,qk- Let 9 be the query which has a maximum number 

of numbers and we denote this number be Lg. The randomness and independency of 

the queries ensure that the servers carmot derive usefiil information about the input. 

The queries are sent to the servers, respectively. Based on x and qj, the server Sj 

produces an answer a, by executing an answer algorithm Aj, where j e {I, k}. 

aj is sent back to tiie client. Similarly, let a be the answer which has a maximum 

number of numbers and we denote this number be La. 

Based on r, i, and some of the answers, the client repeatedly executes a 

reconstruction algorithm 9t to produce results until a result is deemed to be valid. A 

result can be in either of the two states: valid or invalid. A vahd result is in the set 

{0, 1, X}. Otherwise, it is invalid. Valid results are fiirther divided into two 

groups: correct results and incorrect results. The possibility of reconstructing valid 

but incorrect results is characterised by a parameter - undetected error rate £ £ is the 

probabiUty of the occurrence of valid but incorrect results. An error detection 

function is employed to distinguish valid results fi-om the invalid ones. Together, the 

reconstruction algorithm and the error detection fimction constitute a result 

verification algorithm 3 which verifies the correctness of the results and produces an 

output for the user. 

Computation 

Al l the computations involved in the above algorithms are performed over a finite 

field Zp, where is a prime number and p > max{Xle, k, X\, where e> 0. Combined 

with the database model, we also have x e {0, 1, X}" c Zp". As a finite prime 

field, Zp can be denoted by the set {0, 1, ...,p - 1}. It is known that the operations 

over a finite field are closed, i.e. the results of addition, multiplication, subtiraction, 

and division, are still elements of the finite field [LN83]. 

ATIR schemes are based on tiie arithmetic of finite fields. The client calculates the 

order of the field, i.e., p, based on the e specified by the user and the valid range of 

database characters, i.e., X. p is determined before the query algorithm starts and is 

used by all the finite field computations in ATIR schemes. Since £is specified by the 
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user, p can be determined on a case-by-case basis depending on the user's 

requirements. The client informs the servers about p along with the queries. For 

clarity of presentation, the algorithm for calculating p is deferred to Section 3.3.4 

along with the presentation of an error detection function. Before that, we assume p 

has been chosen properly. 

3.2.2 Servers and At tack Models 

We consider an active attack model for our system. In the system, a server can be in 

one of the four possible states: correct, curious, faulty, and curious-and-faulty. 

A correct server follows predefined algorithms correctly and is not interested in 

finding out the identity of the item being retrieving. A curious server executes 

predefined algorithms correctly but attempts to violate the user's privacy. A faulty 

server exhibits failures by not following the algorithms. The answer returned fi-om a 

faulty server is refereed to as corrupted. A curious-and-faulty server exhibits failures 

and attempts to violate the user's privacy. As akeady mentioned, the state of a 

commimication link is determined by the state of the server it attaches to. For 

example, an attacker may attack a link through eavesdropping. But because the 

server it attaches to also is curious, we can simpUfy the presentation by treating the 

link and the server as one. In our system model, there are little differences between 

the effects caused attacks during transit and those caused by attacks during server 

side processing. For simplicity of presentation, we assume the conmiunication links 

are reliable and secure hereafter. Therefore, we ignore the description of 

communication links in the remaining parts of the presentation when no confiision 

can be caused. 

3.2.3 System Assumptions 

In this system, three assumptions are made: 1) there are no more than /, where t>\, 

curious servers who collude together to violate the privacy of the user; and 2) the 

number of faulty servers is bounded by / where k > t + f + \, f < t\ ?>) Hoe client 

remains trusted throughout the lifetime of the system: the client does not collude with 

any servers and performs operations correctly. In Section 3.5, we shall discuss the 

issues of how to realise these assumptions and the validity of making these 

assumptions. These assumptions govern all aspects of our system model in the 

remaining discussion. A curious-and-faulty server coiuits as one curious server and 
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one faulty server. The first assumption implies that there can be many independent 

groups of colluding servers in the system so long as the maximum number of servers 

in each group does not exceed t. As a special case, each individual server in the 

system can be curious. The second assumption defines the fault tolerance capacity of 

the system. When/is zero, the system provides a PIR service. 

A faulty server may exhibit coordinated arbitrary and/or malicious behaviours 

with other faulty servers under the control of an active attacker. For example, an 

attack may control the faulty servers to: crash, stop responding, modify the content of 

controlled databases in a coordinated way, and/or deliver purposefixlly manipulated 

answers. Apart fi-om conducting the above attacks, the attacker may control curious-

and-faulty servers to exchange messages with other curious servers, attempting to 

find out the user's intention. There is no restriction on the computational capability 

of the attacker. Hence, the user's privacy is guaranteed in an information theoretic 

sense. In short, the attacker can choose whatever strategies they like to attack the 

servers and perform attacks in the way they decide so long as the assumptions of the 

system are satisfied. 

IXie to the synchronous system model considered, timeouts can be used to detect 

the benign behaviours (e.g. crashed servers, send/receive omission) of faulty servers. 

In particular, i f a cUent does not receive a response to a query message within 

2^time imits after sending it, the client can conclude that the server is crashed. 

Having defined the system model the ATIR aims to deploy, we are now ready to 

define ATIR schemes. 

3.2.4 Requirements of A T I R 

Based on the system model, this section presents two definitions of an ATIR scheme. 

Before going any fiorther, we first describe five requirements of an ATIR scheme as 

follows: 

1) Efficiency. ATIR schemes should have a non-trivial commimication 

complexity. 

2) Privacy: ATIR schemes should maintain the privacy of the user in an 

information theoretic sense. 

3) Availability: ATIR schemes should ensure the availability of a correct result. 

40 



CHAPTER THREE. ATTACK-TOLERANT INFORMATION RETRIEVAL 

4) Safety : ATIR schemes should ensure the correctness of an output i f there is an 

output. 

5) Liveness: ATIR schemes eventually terminate. 

The efficiency requirement is a fiindamental requirement for constructing ATIR 

schemes. Without satisfying the efficiency requirement, a trivial but inefficient 

solution with the use of k servers can be derived as follows, where k>2t+ 1. The 

client can download all k databases and perform all operations locally without using 

any other services. In this case, the privacy of the user is ensured because every 

client operation is performed locally. Also, the client can identify the correct result, 

for example, using majority voting techniques even in the presence of up to 

t maliciously faulty servers. Due to the condition A: > 2? + 1, the client is guaranteed 

to be able to get the correct result. Hence, the availability and safety requirements are 

met. Because of the synchronous setting, the system eventually terminates. 

The number of communicating bits this trivial solution is A: x n x log2X and the 

communication complexity is 0(n). The communication complexity of the solution 

grows linearly as the number of records increases. Therefore, to have a better 

solution, ATIR schemes should have a lower than 0(«) communication complexity, 

i.e., sub-linear communication complexity. In other words, using ATIR schemes 

should be better than downloading all databases and executing the queries locally. 

The privacy and availability requirements should be satisfied in normal and faulty 

circumstances. In the system, the user's private input i is the information that the 

scheme aims to protect. The privacy requirement ensures that the system keeps 

I secret fi-om all rephcas whereas the availability requirement ensure that at least a 

correct result can be reconstructed. 

The safety requirement is important for fault tolerant schemes [Sch93]. In some 

circumstances, no output is better than a wrong result because wrong results may 

lead to disastrous and unpredictable outcomes. The Uveness requirement is essential 

for any distributed schemes [Sch93]. Without satisfying this requirement, the system 

may not stop and the user may wait forever for a result to be returned. 
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3.2.5 DefmitSonsof A T I R 

This section presents two different definitions of ATIR schemes. The first definition 

is probabilistic which ensures the safety requirement within a predefined probability. 

The second definition ensures the safety requirement with a probability of one; hence 

it is deterministic. 

Definition 3.1 (probabilistic A T I R - pATIR) A {k, U / , e) pATIR scheme is an 

algorithm tuple {Qu Qk, A\, A^, % 3), where k, t , f , efollow the definitions 

given in Section 3.2.1. The algorithms are formally detailed as follows: 

k Query Algorithms Q\,..., Qk'. 

{ l , 2 , . . . , n } x Z / ^ h ^ Z p ^ 

k Answer Algorithms A\,...,Ak'. 

{ 0 , l , . . . , ^ " x Z p ^ h^Zp^ 

A Reconstruction Algorithm 51: 

z / ' - x ( Z p ^ y " ' 

A Result Verification Algorithm 3: 

( Z / h ^ { 0 , l , . . . , ^ 

The scheme should have the following properties: 

a) Availability: For V x e { 0 , 1 , . . . , J f ] , i e { 1 , 2 , . . . , « } , and r e Z^^", 

3 J i , . . . , € {1,2, ...,k) 

9t(r, I , As\{x, Qsi(r, i)),..., Ast + Qs, +i(r, 0)) = 

b) Privacy: For V z,ye {1,2 n} and V si,..., St e { 1 , 2 , k ) , mdQe 

PKiQsxii, r ) , . . Q s i i , r)) = Q)= Pr{{Qsx{j, r),..., QM, r)) = 0 , 

where the probabilities Pr's are taken over uniformly and randomly chosen r € Z^. 

c) Safety: The scheme outputs with a probability no less than \-e. 

d) Liveness: The scheme eventually terminates. 

Except the description of safety property, the definition of a deterministic ATIR 

scheme repeats most parts of that of the probabilistic one. For completeness of 

presentation, we include the whole definition of a deterministic ATIR scheme here. 
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Definition 3.2 (deterministic A T I R - dATIR) A (k, t, f ) dTIR scheme is an 

algorithm tuple (Qi, Qk, Au A^, % 3), where k, follow the definitions 

given in Section 3.2.1. The algorithms are formally described as follows. 

k Query Algorithms Qu Qk'. 

{ l , 2 , . . . , / l } X Z p ^ h ^ Z ; , ^ 

k Answer Algorithms ^ i , A k ' . 

{0 , l , . . . , Jn"xZp^ i ^ Z p ^ 

A Reconstruction Algorithm 91: 

Z / ' - x ( Z p ^ ) ' " ' H>Zp 

A Result Verification Algorithm 3: 

( Z p ) * H > { O , l , . . . , Z , 0 } 

The scheme should have the following properties: 

a) AvaUabiUty: For V x €{0 , 1, X}, i e { 1 , 2, n}, and r € Zp 

3s i , . . . e {1,2, ...,k) 

9l(r, i, As\{x, Qs\{r, i)),..., As, + Qs, +i(r, /))) = Xi. 

b) Privacy: For V / , j e { 1 , 2 , n } and V s i , . . . , Si e { 1 , 2 , k } , and g e Z ^ ^ 

/'KCaiO', r),..., r)) = 0 = /'raaiO', r ) , . . . , a^-, r)) = 0, 

where the probabilities Pr's are taken over uniformly and randomly chosen r e Zp^'^. 

c) Safety: The scheme outputs, i f there is an output, the intended result JC, with a 

probability one. 

d) Liveness: The scheme eventually terminates. 

Similar to traditional definitions of PIR schemes (e.g. the ones presented in 

[CGKS98] and [BS02]), the above definitions of ATIR schemes use information 

theoretic privacy property, where a computationally unbounded attacker can gain no 

information about the user's intention. However, ATIR schemes differ from existing 

PER schemes in three major ways. First, the former is based on an active attack 

model whereas the latter is based on a passive attack model. Second, the former uses 

a generalised character string database model rather than the standard bit database 

model. The generalisation is trivial in theory but important in practice. The 
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generalised model paves the way for implementing ATIR schemes on existing 

database technologies. Third, ATIR schemes are required to satisfy safety and 

liveness properties, which are not the requirements in defining PIR schemes. 

We now explain the implications of the above properties for both definitions of 

ATIR schemes. The availability property states that there exists at least one set of 

servers whose answers can be used to reconstruct the correct result. It is important to 

note that this property only ensures the existence of at least one correct result. In the 

worse case circumstances (i .e. , / = t), there is only one correct result. 

The privacy property means that fi-om any set of t queries, it is impossible to 

decide which specific record the user is interested in since the joint distribution of 

random variables Qsiii, r), Qs^i, r) is independent of i . hi other words, fi-om t or 

less queries, it is theoretically impossible for a server or a group of servers to gain 

any information about /. The privacy property of both ATIR schemes stems fi-om 

existing PER. definitions (e.g., tiie one in [CGKS98]). 

The result verification algorithms in pATIR and dATIR guarantee the safety 

property. For a pATIR scheme, this property guarantees that the scheme can always 

deliver a result and the result is the intended one with a probability of no less than 

1 - £ Whereas for a dATIR scheme, it ensures that the outputted result, i f there is 

one, is jc, with a probability of one. 

The liveness property holds provided that k>t+l+f. 

Definition 3.3 (Communication Complexity) The communication complexity C of 

an ATIR scheme is defined as the total number of bits exchanged between the client 

and all servers. Let Cq be the number of bits sent from the client to a server and Q be 

the number of bits sent from a server back to the chent. The communication 

complexity of an ATIR scheme is k (Cq + Cg). 

3.3 Attack-Tolerant Information Retrieval Schemes 

In this section, two ATIR schemes are presented, and the presentation is organised as 

follows: Section 3.3.1 presents three basic algorithms for both schemes. Section 3.3.2 

characterises the fault tolerance conditions for these schemes. Section 3.3.3 explains 

the difficulties of applying conventional error detection mechanisms in ATIR. 

Section 3.3.4 presents a probabilistic error detection fimction that is used to detect 
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incorrect results. Section 3.3.5 describes two result verification algorithms for 

identifying correct results. Section 3.3.6 presents the formal proofs for both ATIR 

schemes. Section 3.3.7 appUes a generic balancing technique to reduce the 

communication complexity to 0{n^^). 

Both ATIR schemes are one-round. That is, a client sends queries to k servers 

respectively and each server replies with an answer. Based on some of the answers, 

the client outputs a result. Both ATIR schemes are an extension of the polynomial 

interpolation based PIR schemes presented by Chor et. al. [CGKS95] in an active 

attack model. 

3.3.1 Basic Algorithms 

This section presents three basic algorithms used by both ATIR schemes: a query 

algorithm, an answer algorithm, and a reconstruction algorithm. These algorithms are 

based on the polynomial-interpolation PIR schemes presented in [CGKS95]. 

A Query Algorithm 

This section describes a query algorithm which is repeatedly used to create k random 

and independent queries. The core of the algorithm is the creation and evaluation of 

polynomial-based query functions. The algorithm consists of four steps. In the first 

step, the client transforms the user's input into a sequence of bits. In the second step, 

these bits subsequently are used as the constant terms of the query functions. Note 

that the other coefficiencies of the polynomials are random elements chosen fi-om the 

finite field Zp. Once the query fimctions are ready, the polynomials are evaluated at a 

set of distinct points independentiy chosen fi-om Zp. This is step three. Along with p, 

the evaluated results are grouped into k sets of query tuples and these tuples are 

subsequently sent to the servers, respectively. Figure 3-1 presents the details of the 

query algorithm. 

An Answer Algorithm 

Upon receiving a query, a server executes the answer algorithm to calculate an 

answer based on the answer function. Each answer function calculates the scalar 

products of two tuples: a query tuple and a database tuple. Since the query tuple is 
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the query function evaluated at various points, an answer fimction can be expressed 

as the following: 
n 

A(z) = ^Qjiz) • Xj(modp), where z is an indeterminate over Zp. 

The answer functions are identical for all servers. Figure 3-2 presents an answer 

algorithm for server Sd. 

A Query Algoritl im for ATIR 

Input: a prime number p\ an integer i , where / G { 1 , ..., n}; a set randomly and 

uniformly chosen numbers r= { r n , ..., ru, .. . , . . . , r„,}, where r e Zp"'; and k 

randomly and uniformly selected non-zero distinct numbers m = {mi, mj, 

ntk} from Zp. 

Output: ^ random and independent sets with elements in Zp as queries 

1. Map / into a sequence of numbers. For every i e { 1 , n}, we define a 

mapping fimction A,: { 1 , . . . , «} i-> {0, 1}, so that for every / e { 1 , n}, 

hiil) = l,ifl=i; otherwise, h,{l) = 0. 

2. Generate n degree-/ polynomials as query functions: 

Q^z) = h,il) + m-z + ra-^ + .. . + r/,z' (mod/?) for / = 1 , . . . , n, 

where the constant term of the /-th polynomial is /i,(/) and z is an indeterminate 

over Zp. 

3. Evaluate the polynomials at point m\,m2,ntk and group the results into k 

tuples: < Q\{md), Qiima),..., Qn{md)>, where d=\,...,k. 

4. Sendp and the tuple < Qiintd), Qiinid), Q„imd)> as a query to replica Sd 

fOTd=\,2, ...,k. 

Figure 3-1 A Query Algorithm for A T I R Scliemes 
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A n Answer Algorithm for replica Sd 

Input: a prime number p, a tuple Qd = <Q\d, ••, Qnd> e Zp" and a tuple x e {0, 

I, ...,X}", where Qd is an tuple exfracted from the query for 5,;. 

Output: an element in Zp as an answer. 

1. Calculate the scalar product of the tuples Qd and x: ad=^ Qjj • Xj (mod p). 
7=1 

2. Send the element Ud to the cUent as the answer of Sd-

Figure 3-2 An Answer Algorithm for Replica Sj 

A technical lemma about the randomness of answers is proved as follows. In 

Section 3.3.6, this lemma wil l be used to prove that the error detection fimction 

satisfies certain properties. 

Lemma 3.1 Answers in ATIR schemes are randomly and uniformly distiibuted 

over Zp. 

Proof. First, we show that answers are randomly and uniformly distributed over Zp^. 

Using the query fimctions, we expand the answer fijnction as follows: 

A{z)='^Qjiz)xjimodp) = 

n n n 

X ' 0 ' ) - X j + z - C ^ 0 , •Xj) + ... + z'-(^r.-Xj)(mod;?), 
y=i 7=1 j=i 

n n 
when z is fixed, A(z) is a fimction of the variables ^r^.^" • • •' Xo,' • 

7=1 ' 7=1 

Since all these variables are composed by random variables uniformly chosen 

from Zp, A(z) is therefore a fimction randomly and uniformly distributed over Zp. As 

a result, answers are randomly and uniformly distributed over Zp. Q.E.D. 

A Reconstruction Algorithm 

From the servers, the client receives at least f + 1 answers ai, ...,at+\. Based on any 

^ + 1 out of the k answers from the servers, the client can perform a reconstruction 
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algorithm using the polynomial interpolation technique [CLRSOl, pp. 826]. Figure 

3-3 presents the reconstruction algorithm. 

Without loss of generality, let ai, ..., 0 , + 1 be a set of f + 1 answers that the client 

chooses to reconsti:uct a result from. Correspondingly, the cUent chooses the t + I 

distinct points mi, m,+1 that have been used to evaluate the query functions for 

the servers 5 i , . . . , 5, +1. Then, we have the following set of point-value paks: 

(mi, a i ) , . . . , (m/+i , a,+ i). 

Based on the polynomial interpolation technique, the reconstruction function 

can be constructed as follows: 

^ ^ z-m. 
^(mod; , ) . 

7=1 P=l "^j ~ 

The reconstructed value is the evaluation of the reconstruction flmction at point 

zero, i.e., 91(0). 

A Reconstruction Algorithm 

Input: a set of r + 1 non-zero independent and distinct elements mi, ..., m, +1 e Zp 

and a separated set of ? + 1 elements a i , . . . , a,+1 e Zp. 

Output: an element in Zp as a result. 

1. Evaluate the reconstruction function at zero point: 

/+i /+i 0 — m 
5R(0)=Xfl , -n ^ ( m o d p ) . 

y=i p=i -
p*j 

2. Output 91(0) as a result. 

Figure 3-3 A Reconstruction Algorithm 

3.3.2 Characterisations off Fault Tolerance 

This section explains why the existing PIR schemes cannot cope with failures and 

presents the characterisations of fault tolerance properties of ATIR schemes. 

The correctness condition for the polynomial interpolation PIR schemes 

[CGKS95] \sk>t+ 1, where f ^ 1. It is both necessary and sufficient for passive 

server models because an attacker does not change the data and the answers returned. 
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This condition, however, implies only the existence of a correct result under a 

passive attack model. 

For crashed servers, it follows immediately that 

A : > ( r + l ) + y ; w h e r e / > l and/>0. 

In the above condition, the parameter t is independent of / This condition 

guarantees both the existence of a correct result and tolerance up to/crashed servers. 

It is also necessary and sufficient when up to / servers do not response (or up to / 

answers from the servers are lost or intercepted by an attacker during 

conmiunication). However, based on / + 1 or more answers returned, a client could 

still reconstruct an incorrect resuh i f the faulty servers are malicious. In order to be 

able to reconstruct a correct result we consider two mutually exclusive hypothesises 

respectively. 

Assumption 1: A l l the incorrect results derived from the wrong answers returned 

disagree mutually. 

This hypothesis is based on the fact that the wrong answers do not have fiiU 

confrol over a reconstructed result provided that f<t. That is because t + \ answers 

are required for a reconstruction, when/< /, at least one correct answer wil l be used 

in the reconstruction. In the worse case scenario, t out of / + 1 answers are wrong and 

the remaining one is correct. Hence, it is not possible that a result is reconstructed 

from the wrong answers only. In other words, any reconstructed result is derived 

fix>m at least a correct answer from a fault-free server. Hence, tiie probability that 

two incorrect results are identical is significantiy low. Under Assumption 1, it 

follows imder the maUcious server condition that i f two reconstructed results are 

identical, they must be correct, provided that 

k>{t + 2) + /where /< t. 

Assumption 2: Incorrect results derived from the wrong answers returned may be 

identical. 

This hypothesis states the most general situation and in the worst case all the 

incorrect results may be identical, hi order to tolerate up to / malicious faults, the 

number of correct results must be always greater than that of potentially incorrect 

results. We have thus the following theorem. 
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Theorem 3.1 Under Assumption 2 and the malicious server condition, an ATIR 

scheme is / faul t tolerant i f ^, / and/satisfy that 

ic':!f>cf. 

Proof: Note that C*^}^ is the number of correct results and C'^^ - C'^}^ is the number 

of incorrect results. The number of correct results must be always greater than that of 

incorrect results, i.e. C^t/ > C{*' - C^t/ • Hence, this proves the theorem. Q.E.D. 

In the worse case, a large number of replicas (approximately in the order of 5/) 

are required. This is too costiy in practice. However, we notice that the condition 

k>{t+\)+f where t >f, holds for the malicious server condition and Assumption 2 

i f a perfect error detection algorithm exists and can be used to identify any incorrect 

result. The next section explores the construction of such algorithms. 

3.3.3 Why is E r r o r Detection Difficult in A T I R ? 

In fault tolerance, the erroneous state of a system can be identified through 

acceptance test techniques and/or comparison techniques [HW92]. The goal of error 

detection is to prevent errors manifesting themselves as system failures. In an 

acceptance test, a program is executed and its output is subject to a test. I f the test is 

successfiil, the program continues as normal. Otherwise, an error is signalled. A 

failed acceptance test is an indication of the presence of a fault. However, the use of 

acceptance tests alone cannot identify what goes wrong. Combining with other 

techniques, such as fault masking techniques, correct outputs can be identified and 

the detected errors can be eliminated. 

Traditionally, comparison techniques are mainly used to detect errors caused by 

software design faults. Errors are detected through comparing the results produced 

by two or more versions of a piece of software developed by independent organised 

programming teams implementing a common system specification. 

In security, an error often manifests itself as corrupted data. Digital signature 

techniques, such as the RSA signature [RSA78], can be used to validate whether data 

has been corrupted during transit. In data communication, garbled messages are 

detected through error detection codes which typically include checksums and Cyclic 

Redundancy Checks (CRC) techniques [Bla83]. 
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A l l these techniques have their own limitations and not all these techniques can be 

directly apphed to the ATIR setting. Acceptance test techniques are general in the 

sense that they can be applied even i f there is only one single component in the 

system. However, deriving generic acceptance tests is often difficult because the 

design costs and the effectiveness of acceptance tests are apphcation dependent 

[Kim95]. 

Comparison techniques are appUcation independent. For example, voting is a 

typical comparison technique that can be applied to virtually any appUcations. But 

voting is often perceived to be costiy due to multiple copies/versions of executions 

required. Furthermore, the effectiveness of voting is subject to the elimination of 

common mode failures [AK84]. In an ATIR setting, answers cannot be directly voted 

on because they are boxmd to be different even for retrieving the same information. 

Digital signatures alone cannot defend against malicious attackers. Besides, the 

validity of digital signatures relies on the availability of a trusted third party (e.g. 

certification authorities) before any interactions begin. I f messages are corrupted 

before transmission, digital signatures cannot detect such errors. Finally, error 

detection codes are designed for identifying errors (e.g., corruption or loss of data) 

caused during message transition. The challenge of using coding techniques is to 

overcome the large number of redundancy required. 

Designing an effective error detection method has been a great challenge in 

constructing ATIR schemes. On the one hand, identifying what is correct is hard, 

given that databases can store arbiti-ary information. On the other hand, although 

voting techniques and error detection codes can be employed by ATIR for the 

purpose of error detection, these techniques are often costly due to the large number 

of repUcas required. 

However, error detection helps to identify erroneous statuses but cannot guarantee 

the delivery of correct results. In order to tolerate malicious attacks, redundancy has 

to be introduced into the design of an ATIR scheme. Based on existing PIR schemes, 

our strategy for ATIR is through a combined use of acceptance tests with redundant 

servers. In our ATIR schemes, acceptance tests identify corrupted results while 

redundant servers guarantee the existence of correct results. Compared with the 

techniques described above, this strategy reduces the number of replicas required for 

error detection and result verification. 
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3.3.4 E r r o r Detection 

It is necessary to emphasise that the condition k>t+f + 1, where t>f, implies only 

the existence of a correct result. In order to identify the correct result as the system 

output, we have to design a perfect error detection fimction for ATIR schemes. 

Alternatively, as Assumption 2 suggests, more rephcas can be used to ensure that the 

client can find a correct result. Correspondingly, more message exchanges are 

needed and the communication complexity of an ATIR scheme increases. But these 

solutions are costly. 

The polynomial interpolation-based PIR schemes and our ATIR schemes 

essentially are Shamir's secret sharing scheme [Sha79]. Secret sharing exploits the 

properties of polynomials (i.e. perfect secrecy and interpolation uniqueness) for 

providing privacy protection and fault-tolerant operations [GB99]. Our ATIR 

schemes are based on the same principle. It is therefore possible to apply and extend 

the existing results of secret sharing, verifiable secret sharing (e.g. [Fel87, 

CGMA85]), to both PIR and ATIR schemes. In the following, a probabilistic error 

detection fimction is developed for ATIR based on the polynomial properties. We 

now explain the principle of error detection in ATIR. 

Principles 

The main idea of the probabilistic error detection fimction is to limit the vahd range 

of reconstinjcted results. Because a character xj, where y e { 1 , 2, ..., n}, is viewed as 

an integer taken from a pre-known set {0, 1, ...,X}, for every xj, tiiere are exactiy 

X candidates of valid results. And because all computations are performed over the 

finite field Zp, there wil l be p possible reconstiiicted results for xj over the set 

{0, 1, p - 1}. It follows immediately that i f a reconstructed resuh is witiiin 

{ 0 , 1 , . . . , Z } , it is valid. Otherwise, it is invalid. 

It is desirable that the client has such an error detection capabiUty. That is, when 

a reconstruction algorithm uses one or more corrupted answers to reconstiuct a resuh, 

the result becomes invalid. This property of the error detection fimction is fiirther 

described in details as follows. 

In the following, let us use the worse case circumstance for our analysis. Suppose 

( / M l , a ' l ) , (m,, a't), (m/+1, a,+1) be / + 1 point-values pairs that a cHent uses for 
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the reconstruction algorithm. For simplicity of presentation, we assume the first t of 

out the r + 1 pairs are corrupted. But in the realistic circumstances, the client does not 

know which ones are corrupted in advance. In terms of the number of faulty servers, 

this is the worse case situation because the number of faulty servers is maximimi 

( i . e . / = t). It is desirable for the scheme to have the property that there is only a small 

probability e> 0 that the output of the reconstiiiction algorithm is valid but corrupted. 

Recall that {0, 1, ...,X] e Zp. We can increase the size of Zp such that most of 

incorrect results appear in the set Zp - { 0 , 1 , . . . , h i other words, the probability of 

undetected errors can be confined within a pre-defined bound, i.e. undetected error 

rate £; for e> 0. An error is defined as the acceptance of a valid but corrupted result. 

The error detection fimction only identifies correct results with a certain probability. 

Therefore, it is possible that a valid resuU in { 0 , 1 , . . . , JiT} is in fact a corrupted result 

(i.e. not the intended result). However, the user can adjust the probability which is 

therefore can be arbiti-arily close to zero. 

The error detection fimction is simple. I f an input element a e is also an 

element in the set { 0 , 1 , . . . , X), the fimction outputs one (i.e. it is valid); otherwise, it 

outputs zero (i.e. it is invalid). This fimction detects corrupted results with a 

probability. By itself, it does not guarantee perfect error detection, namely the 

correctness of a reconstructed result is not always guaranteed. Together with the 

result verification algorithms (which we shall present in the next section), a perfect 

error detection capability can be obtained. 

The possible causes leading for a corrupted result are endless. Here is a list of 

possibiUties: a query or an answer is tampered with in fransit or a server does not 

execute the Answer algorithm properly, one or more answers are corrupted by a 

malicious attacker. The list is mcomplete. In fact it is impossible to enumerate all the 

possibilities. However, despite the actual causes of corrupted results, the outcome is 

the same: a result is modified so that it is different from the original one. Hence, for 

simplicity of presentation, we assume that all corrupted results are caused by using 

corrupted answers in the following proofs. 

Determining Zp 

We now can describe how to determine p for both ATIR schemes based on the error 

detection requirement. 
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Lemma 3.2 For a (k, t, f ) ATIR scheme, suppose p is the smallest prime number 

and £ > 0 such that the following inequality is satisfied: 

p > max[X/£, k]. 

There is only a small probability f > 0 that the error detection function accepts a 

valid but corrupted result. 

Proof. Suppose a client receives t corrupted answers a'l, a't from replicas 

Si, ...,St and receives one correct a<+1 answer from replica 5,+1. That is, the client 

uses (mi, a'l), (m/, a't), {nit i) point-value pairs as inputs for the 

reconstruction algorithm: 

'̂ ^ m„ . ^ m„ ^ m 
9l(0) = aVn '—+...+a'fY{ '—+at.rX[ 

p*t 

From Lemma 3.1, we know that answers are randomly and imiformly distributed 

over Zp. Despite that a'\, ...,a't may be chosen purposefully by an attacker, 91(0) is a 

function of a random variable a, + i uniformly distributed over Zp. Since there are 

X+ \ valid results and only one of them is xi, there X out of p possibilities that the 

client reconstructs a valid but corrupted result. By the meaning of e, the probability 

of accepting a valid but corrupted results XIp should be at most £; i.e. XIp < e. 

Therefore, we have p > XIe. 

On the other hand, because ATER schemes also require at least k non-zero points 

to evaluate the query functions, p should also be greater than k. Hence, this proves 

the lemma. Q. E. D. 

It should be made certain that p is large enough to reveal incorrect results with an 

arbitrarily high probabiHty (1 - e), e.g. 99.99%. 

E r r o r Detection and Secret Sharing 

The principle of the error detection function is the same as the Tompa and WoU's 

modification [TW88] on the Shamir's secret sharing scheme. Both methods aim to 

"force" a reconstruction algorithm to reconstruct invahd outputs i f the algorithm uses 

any corrupted inputs. The input in ATIR schemes is called an answer whereas the 

input in Secret Sharing schemes is called a share. There are differences between both 

schemes. In ATIR, a client keeps evaluation points locally. Therefore, corrupted 
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servers can at best guess this information randomly. But in Shamir's scheme, an 

evaluation point is a part of a share. Hence, corrupted participants have the full 

information about evaluation points of corrupted shares. Intuitively, an attacker can 

obtain more information in secret sharing schemes than in ATIR schemes. 

Block E r r o r Detection 

So far, the error detection function is performed on an individual character basis, hi 

practice a result usually contains a block (i.e., string) of characters rather than just 

one character. Therefore, the single character error detection function (hereafter, 

refer to as a single detection) needs to be extended to a block error detection function 

(hereafter, refer to as a whole detection). In order for a block to be valid, all its 

characters are required to be valid. Any single invalid character invalids the entire 

block and a failed reconstruction is resulted by the first unsuccessful single 

verification. Therefore, the undetected error rate of a whole detection is calculated by 

multiplying those of single verifications. 

Let E denote the undetected error rate of the verification of an entire result and La 

be the number of invalid characters in the result. We have 

Instead of specifying e for each individual character, the user now specifies E as 

the undetected error rate for the entire result. It is thai up to the client program to 

automatically calculate e. Since the relationship between e and E is exponential, a 

slight modification of e can significantly change E. Even a user requires a highly 

effective error detection function by asking E to be 0.05. Assuming La is 100, setting 

£ to be 0.95 is sufficient to satisfy E. Recall that the computational range p is 

inversely proportional to £ A slight increase of p can largely improve tiie fault 

detection capability of the scheme at a whole. 

Implications of the E r r o r Detection Function 

This error detection function does not rely on any unproven cryptographic premise, 

such as, intractability of factorisation of big primes and on the availability tamper-

proof hardware (e.g. secure co-processors). 
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3.3.5 Two Result Verification Algorithms 

The section presents two result verification algorithms: one for the pATIR scheme 

and the other for the dATIR scheme. Both algorithms are used to identify correct 

results and eliminate incorrect ones. They are both built on the error detection 

function and the result reconstruction algorithm presented in the previous sections. 

The result verification algorithms are executed by the client after executing the query 

algorithm. 

Figure 3-4 presents the probabiUstic result verification algorithm. After sending 

queries, the client waits for the availability of at least t + 1 answers returned fi-om the 

servers (line 3). This algorithm stops whenever a valid result becomes available. In 

the normal circumstance, the algorithm only performs the reconstruction algorithm 

(line 5) once. In the worse case (i.e. the occurrence of t corrupted answers), the 

algorithm executes the while loop times. This is the situation where corrupted 

reconstructions but no valid result is found, that implies there are more than t 

answers are used in every result reconstruction except the last one. The while loop 

stops at another two situations as well. First, when the algorithm attempts all 

^ k ^ 
f + 1 

corrupted answers available (line 10). Second, there are more than t crashed servers. 

In this case, the timeout limit (line 9) is exceeded. Neither of these situations may 

occur in our system because of the assumptions set out in the system model of the 

scheme (i.e. the upper bound of / i s i). 

Figure 3-5 presents the deterministic result verification algorithm. When the 

algorithm is executed, there are two possibilities: i) all k answers become available 

within the known time bound; and ii) only a part of the k answers become available 

within the known time bound. Possibility i) occurs when every server is available. 

' k 
Possibility ii) occurs when there are crashed servers 

k \ 

results will be in the 

former situation whereas less than 

? + l 

in the latter. No matter which situation 
r+1 

actually occurs, the loop (Ime 11-16) iterates through all the reconstructed results in 

the set E to check whether they are identical. The identical result is deemed to be the 

final result and outputted to the user. In the most conditions (including the worse), 
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the algorithm executes the while loop 
k ^ 

times (line 5). But in the case that there 

are t crashed servers, the while loop is only executed once. The timeout checking 

(line 10) in this algorithm has a much important role than that of the probabilistic 

algorithm in the presence of crashed servers. It is used to prevent the algorithm halts 

for ever in the presence of even just one crashed servers. 

Clearly, the probabiUstic result verification algorithm is efficient than its 

deterministic counterpart in normal circumstances. Both algorithms, however, 

require an equal number of reconstructions in the worse case situation. 

A Probabilistic Result Verification Algorithm 

1. set counter = 0 

2. set-timeout-to local_clock + 2S 

3. wait-for at least t + 1 answers returned fi-om the servers 

f k \ 
4. while (counter < )do 

5. select and use a new group of t + \ available answers to reconstruct a 

result res 

6. set counter = counter +1 % increase the number of reconstructions % 

7. if (res e {0,1, . . . , X}) then exit loop 

8. check the availability of new answers 

9. on-timeout exit loop 

10. if (counter > 
r I. \ 

or timeout) then output "no result" % more than t 

corrupted answers or more than t crashed servers % 

11. else output rej: 

12. stop. 

Figure 3-4 A ProbabiUstic Result Verificatioii Algorithm 
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A Deterministic Result Verificatioii Algorithm 

Variables: success: Boolean 

1. setEi-0, success <- true, counter = 0 

2. set-timeout-to local_clock + 2S 

3. wait-for at least t + \ answers available 

4. while (true) do 

5. select and use a new group of t + I available answers to reconstruct a 

result res 

6. set counter = counter + 1 % increase the number of reconstructions % 

7. if (res e {0,1, ...,X}) then E <- {res} u E 

8. if (counter •• 
( k \ 

) then exit loop 
t + \ 

9. check the availability of new answers 

10. on-timeout exit loop 

11. fori = l to |^do 

12. fory = 1 to l^l do 

13. if(ef !=e,)then 

14. set success <- false 

15. exit loop 

16. if (isuccess) then exit loop 

17. if (success) then output res 

18. else output "no result" 

19. stop. 

Figure 3-5 A Deterministic Result Verification Algorithm 
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3.3.6 Proofs for the A T I R Schemes 

After presenting all the algorithms, we are now ready to prove the properties of the 

ATIR schemes. 

We include the Lagrange Interpolation Theorem here because it plays an essential 

role in proving the properties of both ATIR schemes. For a proof, readers are 

referred to [LN97, pp. 28]. 

Theorem (Lagrange Interpolation Formula) 

For n > 0 and any field F, let ao, • •., a« be « + 1 distinct elements of F, and let BQ, 

Z>„ be n + 1 arbitrary elements of F. Then there exists exactly one polynomial 

/ i x ) G F[x\ of degree < n such thatX^ff) = K for i = 0, n. This polynomial is 

given by 

m = t,b;t[{a-a,rix-a,). 
/=o t=o 

In the following proofs, we use a special case of the Lagrange hiterpolation 

Formula by considering the field F be a finite prime field Zp. 

Before discussing the properties, we formally prove some technical lemmas 

about the answer fimction and the reconstruction fiinction. Lemma 3.3 shows that the 

answer fimction is effectively identical to the reconstruction fimction. Hence, they 

can be used interchangeably in proving the theoretical results. The Lemma 3.4 shows 

that the constant term of the reconstruction fimction is the intended result when the 

answers used for the reconstruction are correct. 

Lemma 3.3 Without loss of generality, let (wi, ai), ... , (w, +i, a, +i) be a set of 

correct point-value pairs, where mi, mt+ i are / + 1 distinct elements e Zp and 

a\, a< + 1 are correct answers. The answer fimction is identical to the 

reconstruction fimction. And the degree of the answer fiinction A{z) (or 9t(z)) is at 

most t. 

Proof. Since the answer fimction is identical for all servers, from its construction, we 

can view the values a\, a,+ i as the results of evaluating the fimction at points 

mi, m,+1 respectively. On the other hand, (mi, a\), ... , (m,+i, a,+i) are used as 

the inputs to the reconstruction fimction. Since mi, m, + i are ? + 1 distinct 

elements e Zp and a\, 1 e Zp, due to the Lagrange Interpolation Theorem, we 
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know that these t + I point-value pairs (mi, a i ) , . . . , (m, +1, at+1) uniquely determines 

a polynomial of degree at most t. Hence, the answer function is identical to the 

reconstruction function and its degree is at most /. Hence, this completes the proof. 

Q. E. D. 

Lemma 3.4 When a reconstruction function is created by / + 1 correct 

point-value pairs, the constant term of 9l(z), i.e., 91(0), is Xi. 

Proof. From Lemma 3.3, we know that ^(0) = 91(0). Therefore, it is sufficient to 

show that ̂ (0) is x,. From the construction of the answer function, we know that 

^(0) = Sg,(0) • xj (mod/p) = X'O) • (mod/>). 

From the construction of the mapping function presented in Section 3.3.1, we 

know that when i j, = 0 and / =j, = 1. Therefore, we have ̂ 4(0) = x,. This 

proves the Lemma. Q. E. D. 

Proofs for the p A T I R Scheme 

We are now ready to prove the properties of ATIR schemes. We first present the 

theoretical results about pATDR. schemes. 

Theorem 3.2 (pATIR Availability) The pATIR scheme satisfies the availability 

property. 

Proof: It is sufficient to show that the scheme guarantees the existence of t + \ 

correct answers despite attacks. According to the system model described in Section 

3.2.1, there are only up to / faulty servers in the system, k>t+\+f and / is bounded 

by t. Hence, the chent can receive at least / + 1 correct answers. Due to the 

synchronous setting of the system, the answers from these / + 1 servers are 

guaranteed to be received by the client within a knovra bounded time. By Lemma 3.4, 

we know that these answers can be used to reconstruct x,. 

Hence, the conclusion. Q. E. D. 

Theorem 3.3 (pATIR Privacy) The pATIR scheme satisfies the privacy property. 

Proof: According to the definition of the privacy property of a pATIR scheme, it is 

sufficient to show that the information of no more than t queries reveals nothing 

about i. That is, the joint distribution of t queries is independent of i . Recall that the 
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query functions are polynomials of degree at most t. According to the Lagrange 

Interpolation theorem, for a polynomial of degree at most t, t (or fewer) distinct 

point-value pairs indicate no information about the polynomial. Hence, fi-om t (or 

fewer) points, no information about its fi-ee term can be obtained either. Note that 

any of these polynomials can be the one that are used for generating tiie queries. Due 

to the assumption that there are no more than t curious servers who collude together, 

an attacker can at most collect the information about the polynomial at t points. 

Therefore, no information about i can be revealed from no more than / queries. 

Hence, the conclusion. Q.E.D. 

Theorem 3.4 (pATIR Safety) The pATIR scheme satisfies the safety property. 

Proof. Lemma 3.2 indicates that there is only a small possibility e>0 that the error 

detection function fails to detect a corrupted (but valid) result. Additionally the 

probabilistic result verification algorithm presented in Figure 3.4 indicates that when 

the pATIR scheme outputs a result, there are only two possibilities: i) the result is 

correct; or ii) the result is valid but corrupted with a small probability e. Hence, the 

scheme outputs a correct result x, with a probability no less than 1 - e. Therefore, we 

have the conclusion. Q. E. D. 

Theorem 3.5 (pATIR Liveness) The pATIR scheme satisfies the liveness property. 

Proof: In order to prove the liveness property, it is sufficient to show that the 

probabilistic resuh verification algorithm stops. Theorem 3.2 indicates that the 

scheme guarantees the existence of at least one correct result. The existence of this 

result ensures that the algoritiim will stop. Hence, the conclusion. Q.E.D. 

Proofs for the d A T I R Scheme 

The dATIR scheme employs the same set of basic algorithms as the pATIR scheme 

but uses different result verification algorithms. Because the result verification is 

locally performed by the chent, the proofs of the availability and privacy properties 

of the dATIR scheme remain exactiy the same as with the pATIR scheme. The 

proofs of the safety and liveness properties of the dATER scheme, however, are 

different. 
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Theorem 3.6 (dATIR Availability) The dATIR scheme satisfies the availability 

property. 

Proof: Since this proof is exactly the same as the proof given for Theorem 3.2, the 

details are therefore omitted. 

Theorem 3.7 (dATIR Privacy) The dTIR scheme satisfies the privacy property. 

Proof Since this proof is exactly the same as the proof given for Theorem 3.3, the 

details are therefore omitted. 

Theorem 3.8 (dATIR Safety) The dTIR scheme satisfies the safety property. 

Proof. Since the error detection fimction may fail to detect vahd but corrupted results. 

At the end of the dATIR scheme, there is a chance that two or more distinct valid 

results are available. In this case, the scheme outputs no result to avoid outputting a 

corrupted result. On the other hand, after all the iterations, if all results are identical 

and valid, it must be a correct result. Therefore, the outputted result, if there is one, 

must be the intended one. Hence, the safety property is ensured. Q.E.D. 

Theorem 3.9 (dATIR Liveness) The dATIR scheme satisfies the liveness property. 

Proof To prove the liveness of the scheme, it suffices to show that the deterministic 

result verification algorithm stops in the following situations: i) all answers are 

returned from the servers; and ii) only a part of the k answers are returned. In the first 

^ 
situation, the while loop stops at line 8 and results are reconstructed. This 

situation covers both normal circumstances and the circumstances that there are 

faulty (but not crashed) servers. All these results are subject to the second loop (line 

11-16), which stops after ^ loops in the worse case. The second situation occurs 

in the presence of at least one crashed server. This also includes the situation that 

some answers used for the reconstruction algorithm are corrupted. The algorithm 

stops when the algorithm timeouts (line 10). Again, all the results are subject to the 

second loop (line 11 - 16), which stops after loops in the worse case scenario. 

Hence, the conclusion. Q.E.D. 

Now, we have presented all the theoretical results of both ATIR schemes. 

However, the commimication complexity of both schemes is 0(n). In the next 

section, we reduce the communication complexity to 0(ri}'^) through a generic 

balancing technique which is first discussed in [CGKS95] and latter widely used in 
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seva-al other efforts, such as that presented in [CG97], to reduce the communication 

complexity of their schemes. 

3.3.7 CommMmacation Complexity 

The conmiunication complexity in both ATIR schemes is unbalanced. The client 

sends n logip bits to each server whereas the server replies with one single element 

with log'jp bits. A similar problem was first observed by Chor et. al. in [CGKS95] on 

PIR schemes. Note that the technique they proposed is based on the binary bit 

database model whereas ATIR schemes use a character string database model. This 

section shows how to apply a generic balancing technique presented in [CGKS95] to 

balance the bits exchanged between the client and the server. 

The generic balancing technique approaches this problem by partitioning the 

characters of the database into m blocks B\,..., Bm. Each block contains / characters. 

Without loss of generality, let use assume n = m-l. (the database is padded with 

dummy values when necessary.) Instead of applying tiie answer algorithm of an 

ATIR scheme to the entire database x, the algorithm is now repeatedly applied to 

each block. (In practice, this process can be done concurrently.) The index i is 

converted into an index i\ which is its relative position in the corresponding block. 

The new position is calculated by V = i (mod /)• That is, /' is now an element of the 

set {1, . . . , / } . The query functions are constructed using i ' as an input. As a result, a 

query consists of / elements. This query is repeatedly used by the algorithm on each 

block of the database. Consequently, instead of containing one element, an answer 

now consists of m elements, one for each block. The rest of the ATIR scheme 

remains the same. 

After using the balancing technique, the communication complexity of the ATIR 

schemes is brought down to 0(/i'^). hl-log^p bits are sent from the chent to the 

servers while hm-log^ bits are sent back from the servers. In total, there are 

log2p k'(m + t) bits exchanged between the client and the servers. When m = /, the 

communication complexity is 2-\o%}p-hn^'^. 
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3.4 Comparisons of A T I R with Existing P I R Schemes 

3.4.1 Comparing with Robust P I R Schemes 

The closest work related to ATIR is Beimel and Stahl's robust Private Information 

Retrieval (abbreviated rPIR henceforth) schemes, which were presented in [BS02]. 

Their schemes consider an active attack model and use Reed-Solomon Codes (RSC) 

[RS60, MS81] to identify correct results. The principle of RSC is based on majority 

voting techniques in fault tolerance. ATIR schemes differ from the rPIR schemes in 

several key aspects. Firstiy, the correctness condition for rPIR schemes \sk>3>t+ 1 

whereas that of ATIR schemes is A; > ^ + 1 + / where r > 1 and / < .̂ hi order to 

tolerate up to /maliciously faulty servers where f<t, ATIR schemes use roughly 2/3 

servers that rPIR schemes need. In practice, the reduction of the number of replicated 

servers is significant because replication is costly. This is because their schemes only 

rely on majority voting to identify the correct results whereas ATIR schemes use 

probabilistic error detection to eliminate incorrect results, and rely on the result 

verification algorithms to identify the correct ones. 

In rPIR schemes with a crash failure model, the answers from any k out of / 

servers are sufficient to reconstruct a result and up to t servers are allowed to collude 

with each other. Such schemes are called f-private k-ovA-of-l robust PIR schemes, 

where l>k,t>\ and k>t+ I, and the communication complexity of these schemes 

k 
is 0{-j • M"* • / • log/). In particular, under the same model, the authors also constiiict 

2-out-of-/ robust PIR schemes with 0(n^'^ log I) communication complexity. But no 

communication is allowed among the servers. 

In ATIR schemes with a crash failure model, the answers from any t+ I outofk 

servers can be used to reconstruct a correct result, provided that the number of 

colluding servers is bounded by t, there are up to / crashed servers, and k>t+f+ 1. 

These ATIR schemes have an 0(n^'^) conmiunication complexity. 

In a malicious failure model, two types of Byzantine rPIR schemes are constructed. 

If no communication is allowed among the servers, a ^-Byzantine robust k-out-of-l 

PIR scheme is presented with an 0(A: /j"'-*'^-' / log/) communication complexity, 

wh&Let<lk/3i,t>l,l>k. 
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However, the assxmiption that there is no communication among compromised 

servers (still in the malicious failure model) is not realistic. Therefore, the authors 

fijTther present a ̂ -private and r-Byzantine robust k-out-of-l PIR scheme which allows 

the rPIR schemes to tolerate any collusion of up to t servers and up to t Byzantine 

faulty servers. The commimication complexity of the -̂private and f-Byzantine rPIR 

k I 
schemes is 0{—n'^**" ""̂  • / • log/) commvinication complexity, where t < k/3, t > 1, 

and l>k.]n particular, when t is one, the communication complexity of these rPIR 

4 
schemes become 0(— • w • / • log/), which is a trivial result in terms of communication 

complexity. Therefore, in order to obtain non-trivial communication complexity, at 

least five servers (when t=l) have to be used and the corresponding communication 

complexity is (9(^ «' / log/) [Bei04]. In order to achieve 0(/i''^) communication 

complexity, these schemes requke at least seven servers. 

Under the malicious failvire model, ATIR schemes achieve better communication 

complexity while requiring fewer servers. In particular, we construct -̂private and 

^-malicious ATIR schemes which allow up to any t servers to collude together and 

tolerate up to / maliciously faulty servers, provided that k>t+f+ \,t>l, and f<t. 

The communication complexity of our ATIR schemes is 0(«'^^). For example, to 

tolerate two maliciously faulty servers and having an 0(/i'̂ )̂ commimication 

complexity, ATIR schemes require at least five servers whereas rPIR schemes 

require seven. 

3.4.2 Comparing with Hardware-based P I R Schemes 

With the use of secure co-processors, hardware-based PIR (hPER.) schemes can 

reduce both computation and communication costs incurred by other PIR schemes. 

Since hPIR does not take server faults into account, we consider a special case of 

ATIR where there is no faulty servers in the system, i.e. / = 0. In this case, ATIR is 

reduced to a normal PIR and ATIR can only offer privacy protection for users. 

In hPIR schemes, secure co-processors are installed on a PIR server, and are 

treated as black boxes within which all PIR operations are performed. Each co­

processor is assumed to have established a secure channel with a user, for example, 

using encryption. All the traffic in and out of these secure co-processors passes 
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through these secure channels. Due to the use of encryption, the server cannot figure 

out any information (in a computational sense) of PIR queries and answers. Hence, 

the user's privacy is protected. 

Due to the use of encryption and secure co-processors, the communication 

complexity of all hPIR schemes is brought down to be constant (independent of the 

size of a database), i.e. 0(1). But the computation cost of some early hardware-based 

PIR schemes [SSOO, SSOl] is 0(«). Therefore, the subsequent work [AF02, IS03, 

Aso04] introduces advanced pre-processing techniques (i.e. periodical database 

shuffling) to reduce online computation time to be independent of database sizes, i.e., 

0(1). However, albeit a constant, the online computation time in these schemes 

grows linearly as the number of queries increases. Periodical shuffling and 

encryption operations are required to prepare databases for these hPIR schemes. 

Like the majority of PIR schemes, the computation complexity of ATIR schemes 

is 0(M), i.e. the computation time of ATER grows linearly as the number of records 

involved increases. In terms of online computation costs, ATIR is much worse than 

hPIR. However, ATIR does not require any database pre-processing and the database 

in ATIR is available all the time. 

Whereas as shown in [IS03, Aso04], hPIR schemes have exceedingly high pre­

processing costs (in the order of hours in the best algorithm known so far [Aso04]). 

That is due to the algorithmic cost of performing periodical shuffling. Siace this is a 

mandatory process for privacy concerns, it can cause performance and deployment 

concerns in practice. Currentiy, even using the best shufflmg algorithm, the 

computation complexity of shuffling is 0(n'^) [Aso04] which is verified 

experimentally. 

However, ATIR relies on k (> 2) repUcated servers and restiicts the 

communication among servers to provide privacy protection whereas hPIR only 

requires one single server to achieve the goal. 

The communication complexity of both ATIR schemes is 0{n^'\ However, 

unlike hPIR, ATIR require neither encryption nor secure hardware to support privacy 

protection. In summary, we believe that ATIR is appealing because it demands fewer 

configurations on and makes fewer assumptions about on the execution environment. 
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Limitations of Hardware-based P I R Schemes 

Here, we discuss the limitations of hPIR schemes in details. hPIR schemes impose 

sfrong trust assumptions on the deployment environment which significantly restiict 

tiie practicability of these schemes. 

Pre-processing, such as encryption and shuffling, is needed to prepare a database 

for hPIR operations. The database of an hPIR scheme is assumed to be encrypted to 

hide its content. That is because without encryption, the server can easily spot the 

identity of a record being retrieved. Periodical reshuffling is needed to randomise the 

positions of the records in the database. Otherwise, the access history can reveal 

some information about the intended record. Between two reshuffling operations, no 

database updates are allowed. As a whole, the encryption and shuffling requirements 

mean that hPIR schemes have to use dedicated databases which are maintained 

separately from normal databases. In theory, this is feasible. But in reality, it is 

doubtful whether a service provider will provide such setting just for the sake of the 

privacy of users. 

A trusted copy of the encryption and shuffling algorithm implementations is 

needed to be installed on secure co-processors before any hPIR schemes start. The 

conmiunication channels, between secure co-processors and clients, are needed to be 

encrypted to prevent privacy violation from the servers and the communication 

channels. 

3.4.3 A Summary of Comparison Results 

So far, we have presented ATIR schemes and compared them with relevant PIR 

schemes. Table 3-1 presents a comparison between ATIR schemes and two other 

most relevant PIR schemes (i.e. rPIR and hPIR). The downloading solution discussed 

in section 3.2.4 is abbreviated as the dl-PIR in the table. Columns three, four, and 

five represent the communication complexity, the worse case reconstiuction times, 

and the computation complexity of these schemes, respectively. 
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Table 3-1A Comparison of PIR Schemes 

Schemes # servers 
Comm. 

Camp. 

Rec. 

Camp. 

Camp. 

Camp. 
FT Privacy 

dl-PIR 
k>2t+\ 

t>0 
0(«) No No 

< t malicious 

servers 

Against all 

servers 

dATIR 
k>t+f+1 

t>\,t>f 
0(«"^) 

' k ^ 
0(«) 

< t malicious 

servers 

Collusions 

< t servers 

pATIR k>t+f+1 

t>l,t>f 
1 0(«) 

< / malicious 

servers 

Collusions 

< t servers 

rPIR k>3t+l 

t> 1 

o(„l»-'>'"J) ' k ^ 

/ + i 
V ) 

0(«) 
< t malicious 

servers 

Collusions 

< t servers 

hPIR 1 0(1) No 0(1) No 
Against one 

server 

3.5 Discussions 

We have presented the construction and theoretical results of two ATIR schemes and 

compared them with relevant PIR schemes. In order to fully understand the strength 

and limitations of these schemes and the impUcations of our results, we discuss some 

relevant issues of ATIR in a wider context. 

3.5.1 Validity of A T I R System Assumptions 

We now examine the three assumptions made in the ATIR system model in turn. The 

first two assumptions place a bound on the mraiber of curious servers and the number 

of faulty servers. To realise these assumptions, it is important to apply the design 

diversity approach [AK84] in various stage of system design and implementation. 

Otherwise, an attacker can easily exploit a common vulnerabiUty of all servers to 

compromise the entire system. Consequently, the scheme will be of little use if such 

vulnerability can be easily found and exploited. For example, diverse operating 

systems (Linux and Windows) and programming languages (e.g. Java and C) can be 

used for the implementation. We can also choose from a wide range of readily 

available commercial database engines (e.g. MySQL and Microsoft SQL Server) for 

the servers. All these countermeasures may help to reduce the overall vulnerability of 

the system by incorporating diversity into the system implementation. So long as all 

the implementations conform to a well-defined set of protocol interfaces (which we 
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shall describe in the next chapter), the problem of communicating among diverse 

implementations can be resolved. 

The third assumption is about the trustworthiness of the cUent throughout the 

lifetime of the system. For example, this assumption can be realised by requiring the 

user to choose a personal computer (i.e. a client) which the user has fiiU control of 

and to ensure the authenticity of the software installed on this computer. 

3,5.2 Comparison with Existing Secure and Fault Tolerant Schemes 

We now compare ATIR with three latest developed secure and fault tolerant 

algorithms/systems. These systems are BFT [CasOl, CL99], COCA [ZSR02], and 

SINTRA [CP02] and they share many similarities with ATIR. For example, all these 

systems use repHcated servers, are based on the active attack model and provide 

correct services so long as no more than a threshold number of servers are corrupted. 

But they also differ from ATIR in several important aspects. All these systems 

rely on an external trusted party (e.g. a system operator) to setup the systems. In 

particular, distributing security keys (e.g. authentication keys, encryption keys, 

signing keys) is mandatory to be performed by a trusted operator. However, the 

purpose of employing such a trusted party is different in these systems. BFT is a 

generic fault tolerant algorithm. The use of security keys in BFT is for enabling 

authentication among participants and providing secure communication within the 

system (thus thwarting eavesdroppers, for example). The current ATIR system model 

assumes authenticated but not secure communication links. When authentication is 

needed in ATIR, authentication mechanisms can be added into ATIR as BFT does. 

However, messages fransmitted over the communication links are not required to be 

encrypted in ATIR. 

In COCA and SINTRA, the role of the trusted party is more essential than that in 

BFT. COCA and SINTRA are application specific systems: COCA aims to provide 

an online certification authority whereas the goal of SINTRA is to enable secure 

DNS. Apart from demanding authenticated and secure communication among 

participants, the services in COCA and SINTRA require tiie protection of the service 

signing key, such as the signing key of a certification authority. Both systems use 

some variants of secret sharing (discussed in Section 2.5.2) to split a signing key and 

distribute the shares of the secret. Proactive security (discussed in Section 2.5.4) with 
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the use of secure co-processors is also employed to enable regular refi-eshment of the 

key. Therefore, in both systems, the trusted operator is also responsible to distribute 

the initial shares of the key. 

In contrast, no trusted operators are required to initialise an ATIR system. No 

secure co-processors are needed during the operation stage of an ATIR system either. 

Finally, none of the three systems provide fault-tolerant privacy protection as 

ATIR does. When a server is compromised by an attacker, users' privacy is violated 

in all three systems. On the contrary, ATER provides privacy protection even in the 

presence of active attacks. 

ATIR provides a new way of detecting and tolerating malicious attacks without 

relying on trusted third parties during the setup and operation stages of an ATIR 

system. However, the semantic of ATIR is much weaker than all three systems. 

ATIR only provides read-only operations whereas they offer both read and 

write/update operations. 

3.6 Summary 

This chapter presents two ATIR schemes for performing database queries in a 

synchronous distributed network environment. These schemes protect the privacy of 

users and ensure the correctness of results even in the presence of malicious attacks. 

We tackle the ATIR problem through three closely linked techniques: privacy 

protection, error detection and attack tolerance. By hiding the intention of retrieval 

operations, the privacy of users can be protected. Hence, the risk of targeted attacks 

can be reduced. Through restricting the range of valid results, errors may be detected 

and corrupted servers may therefore be identified. Finally, attack tolerance is 

achieved through the introduction of a form of redundancy - rephcation, a classic 

and well-known fault tolerance technique for tolerating faults. As a whole, all three 

techniques complement to each other and together they provide a solution for the 

ATIR problem. 

Together with a thorough description of the formal database model, and a list of 

assumptions used in the ATIR system model, detailed constructions of ATIR 

schemes are first presented. This is followed by a presentation of the basic 

algorithms of ATIR schemes and a detailed characterisation of their fault tolerance 
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conditions. We then describe the rationale for introducing a probabilistic error 

detection function that is followed by a detailed description of the principle, 

calculation, extensions, and implications of the error detection function. Two result 

verification algorithms are then derived: one for probabilistic ATIR and the other for 

deterministic ATIR. The properties of both ATIR schemes are proved and the 

communication complexity these schemes are reduced to 0(n'^). ATIR is then 

compared with relevant PIR efforts to reveal the strengths and limitations of ATIR. 

Finally, we place ATIR in a wider context by discussing the vaUdity of the 

assumptions made in the ATIR system model and fiirther examining the relationship 

between ATIR and other state-of-the-art secure and fault tolerant systems. 
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Chapter 4 System Architecture and 

Implementatioii 

In the preceding chapters we have presented the theory to model the ATIR problem 

and to construct ATIR schemes. This chapter describes a system architecture to 

realise the ATIR schemes based on realistic databases. We also discuss the design 

decisions and implementation issues that arise during system implementation. 

PIR can be viewed as a special case of ATIR in that there is no faxilty server in the 

system. We have also implemented the polynomial-interpolation based PIR schemes 

presented in [CGKS95]. Since the PIR implementation is very similar to the ATIR 

implementation, only some distinct details of the former are included. 

4.1 System Architecture 

At the basic level, an ATIR system can be viewed as a data query service with 

additional security and fault tolerance supports. 

To distinguish ATIR services from the conventional data query services, such as 

database queries, we illustrate the logical relationship of the layers of the ATIR 

system in Figure 4-1. However, it is important to note that ATIR only supports read­

only operations and an ATIR query has a much restricted SQL syntax than general 

SQL statements. In particular, ATIR users are assumed to know the index 

information about the records in a database. (Section 4.3.1 discusses some possible 

solutions of relaxing this assumption.) 

At the basic design level, an ATIR system follows the conventional client-server 

architecture consisting of a cUent and a server. At the top layer, a user program 

interacts with database services through the Data Query Protocol (DQP). The DQP 

protocol is simply an abstracted representation of ATIR query operations that can be 

invoked by the user. Ideally, apart from specifying their security and fault tolerance 

requirements, users should not need to worry about the underlying protocol 

complexity of ATIR systems. To facilitate this need, a set of standardised (i.e.. 

72 



CHAPTERFOUR. SYSTEM ARCHITECTURE AND IMPLEMENTATION 

following conventional fiinction calls in UNIX/LINUX) interfaces is designed to 

accommodate a range of such requirements. The system also provides a set of default 

settings to ease the pain of comphcated configuration. 

User Program 

ATIR Client Interface 

ATIR Client 

Communication 
Cfiannel 

[Data Query Protocol] 

[ATIR Protocol] 

[TCP/IP Protocol] 

Data Service 

ATIR Server Interface 

ATIR server 

Communication 
Channel 

ATIR Client ATIR Server 
Figure 4-1 The ATIR System and Network Layers 

ATIR clients and servers commimicate via the ATIR protocol, which specifies 

the format and types of the data contained in the ATIR queries and answers. We shall 

give fiirther details of the ATIR protocol in the later section of this chapter. The 

ATIR protocol sits on top of the TCP/IP communication channels. 

In the system, there are two types of Application Program Interfaces (APIs): one 

for the client and one for the server. The ATIR client interface API defines the type 

and format of the input that the system takes fi-om the user and the result that the 

system outputs to the user. The server interface API specifies the type and format of 

the information that it passes to and obtains from the normal data services, such as 

databases or data directories. Commonly, a query for these services is required to 

follow specific protocols and tiirough dedicated data engines or database drivers. The 

server API interface ensures that the queries created by the ATIR server conform to 

these protocols and support seamless integration with backend data services. 
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Query 
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Protocol] 
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[Repository! 

Figure 4-2 An ATIR System Architecture in a Replication Setting 

As shown in Figure 4-2, an ATIR system is conceptually divided into a number 

of components by their functionalities. On the client side, we have the following 

components: client daemon, query manager, result manager, and index resolver. On 

the other hand, the server side components are server daemon, view manager, and 

answer manager. Some of the components are integrated with the others to avoid the 

unnecessary complications in real implementation. For example, the result manager 

is implemented as a major part of the client program in the current implementation. 

ATIR is implemented as a stand-alone library and can be utilised through 

invoking an ATIR library function. The implementation is currently supported under 

the Linux environment. The current design, however, can be easily ported to 

different platforms (e.g., WESfDOWS) with little or no modifications. Meanwhile, the 

modular design may help to ease the effort of porting the ATIR library to Windows 

operating system as well. The ATIR library provides simple APIs and gives the user 

(e.g. a program) to choose whether to utilise ATIR service with integrated security 

and fault tolerance features. We have also implemented a simplified version of ATIR 

database service in Java to demonstrate the portability of the implementation. 
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The user invokes the ATIR service through an ATIR function call which connects 

the user with the cUent daemon tired, which is a central processing program for 

coordinating the tasks of the client side, tired first decides whether it needs to 

perform the Index Resolve Protocol (IRP) to obtain the index of an intended data 

item fi-om the index resolver. If it does, it resolves the index. Together with the index 

and other information it already acquires fi-om the user, tired creates a request and 

forwards it to the query manager qm through the Query Protocol (QP). When the QP 

protocol completes, tired obtains a reply (in the form of a tuple) from qm which 

contains k ATIR queries, one per server. The queries are sent to the ATIR servers 

appropriately via the ATIR Protocol {ATIRP) over point-to-point TCP channels. 

The ATIR server daemon tirsd forwards ATIR queries to a view manager vm via 

the View Protocol (VP). The vm converts the ATIR queries into the appropriate 

format that is accepted for performing the Data Access Protocol (DAP) on the data 

repository on the servers. When the VP protocol completes, tirsd obtains a tuple that 

consists of the inputs for tiie answer computation. In summary, vm polls the 

information from the data repository according to the ATIR queries and forwards 

such information to the answer manager am via the answer protocol (AP). am is 

responsible for the server side computation of the ATIR scheme, am produces an 

answer which is sent back to tired, again, over the point-to-point TCP chaimels. 

Upon receiving answers, tired forwards them to the result manager rm via the 

Result Protocol (RP). When the RP is completed, the intended result is returned to 

the Mser via tired. This completes the ATIR function call. 

4.2 Design Issues 

4.2.1 The Character-String Database Model 

Why Character String Model? 

This section describes why and how to extend the existing bit-string database model 

to character-string database model. In the original PIR database model, each database 

is modelled as a binary bit string where each bit is an absfraction of a data item on 

the server. To implement PIR schemes for real applications, we need to extend the 

model and map the abstracted notation to reality. In the real world, the smallest unit 

of a data item is commonly represented as a single byte character. Most commercial 
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database engine, such as MySQL [MySQL04] database server and JDBC [JDBC04] 

database APIs, provide methods to retrieve data (items) as character strings. In our 

current implementation, each character is associated with an extended ASCII code 

and is uniquely associated with a decimal integer in the interval [0,255]. 

Having described the rationale for a character-string database model, the next 

section explains how to associate a character with a unique element of a finite field 

so that it can be used for the PIR/ATIR computations. First, we show how to 

associate characters with field elements of finite prime fields. We then describe how 

to associate characters with field elements of GF(256). The former is applicable for 

our ATIR implementation whereas the latter one is for the PER. implementation only. 

Characters, Prime Fields, and ATIR 

This section shows the association of characters with field elements in finite prime 

fields Zp, where is a prime number and p > 255. In the current implementation, 

each character can be uniquely associated with a smallest possible element in the 

chosen prime field. For instance, the character 'A' is associated with the integer 65 in 

the prime field GF(331). 

Prime fields, however, are not necessarily for implementing PIR due to the 

performance concerns. Since there are 256 characters, ideally, the computation 

should be done with all these characters. Besides, the elements in GF(257) consume 

more memory spaces and communication bandwidth which can be a concern when 

measuring the message sizes exchanged among the client and the servers. The 

smallest possible prime field that can accommodate all 256 characters is GF(151) 

which is ttie set {0,1,2, . . . , 256}. There is one extra element, i.e., 256, which cannot 

be associated with any character. 

Althougji we can use GF(257) for PIR operations, however, GF(257) is not 

necessary for the PIR implementation because of the extra overheads that may be 

introduced by the extra element. It requires 2-byte integers to represent the field 

elements in GF(257) and only 1-byte integer for GF(256). That is, from a theoretical 

point of view, using GF(251) doubles the communication bandwidtii and storage 

space. 
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This suggests that the PIR implementation may only needs a finite field which 

can just accommodate all 256 elements. Fortunately, we do have such a finite field 

GF(256) which has 256 elements. 

Characters, GF(256), and PIR 

Before going any fiirther to explain how to associate the single byte characters with 

field elements of GF(256), we need some brief background in finite fields. From 

finite field theory [LN97], we know the following: 

GF(256) = Z2[x]lm{x\ 

where Ziix] are polynomials over the finite field Zi [LN97 pp. 20, Chi79 pp. 125], 

m{x) is a degree-8 irreducible polynomial [LN97, pp.91] in Z2[x\. The equation 

means that GF(256) is associated with polynomials over finite field Z2 and the 

degree of the polynomials is no more than seven. (Readers are referred to, for 

example, [Chi79, pp. 172, pp. 185 and LN97] for details of congruence classes 

modulo a polynomial) 

Note that there are many degree-8 irreducible polynomials in Z2[x] [LN97, pp. 

553] that can be chosen for constructing GF(256). In the current implementation, the 

modulus is: 

m{x) = + x' + + + :^ + \, 

where x, a formal symbol, is an indeterminant of the polynomial. 

One way of thinking of the elements of GF(256) is to view them as polynomials 

in X with co-efficiencies in Z2 of degree < 7 and there are 256 (there are eight 

coefficiencies and therefore 2̂  possibilities) such polynomials. The operations of 

these elements are just like the operations of polynomials (for example, see 

[Chi79, pp. 125]. Addition and subtraction are done by bit-wise exclusive-or of the 

corresponding coefGciencies. To get the product again as a polynomial of degree < 7, 

vise the equation x^ = x' + x^ + x^ + x^ + ^ + 1. Also, each element has a 

multiplicative inverse so that we can do division over the field as well. Notice that 

there are eight co-efficiencies of these polynomials and each of them is a bit. When 

putting these bits together and ordering from the leading co-efficient to the constant 

co-efficient, a binary nimiber vmiquely corresponding to a decimal integer in the 
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interval [0, 255] can be obtained. In that way, a field element can be uniquely 

associated with a character and vice versa. 

We slightly modify (i.e., getting rid of the namespace) the GF(256) 

implementation from Wei Dai's Crypto library [Dai04] for our wse. 

4.2.2 Core Components 

We have implemented ATIR as an ANSI C [Ker88] Ubrary with simple interfaces for 

secure and fault tolerant database access. In this section, we will describe the 

interfaces and protocols involved in an ATIR function call. 

The A T I R APIs 

Figure 4-3 shows the main APIs of ATIR client and server. On the client side, there 

are two major function calls. User programs can invoke ATIR client tired by 

calling the function tir_subinit_query with two parameters. 

tir_sumit_queryO will perform three tasks: initialise the system, construct 

queries, and proceed the first attempt to send queries to the rephcas. 

C l i e n t : 
i n t t ir_submit_query(char * c o n f i g _ f i l e , char *query_time); 
i n t t i r_ge t_resu l t (char *resul t , char *resul t_t ime); 

Server: 
i n t t i r_execute ( i n t connfd, char *dbhost, char *dbusr, char 
*dbpass); 

Figure 4-3 The ATIR Library Main APIs 

The conf i g _ f i l e parameter is a pointer to the configuration file to initialise 

ATIR clients and contains two types of information: the user's ATIR requirements 

and authentication information. The user's requirements are used to generate queries 

and include the following: number of calculation records numcalrecs, imdetected 

error rate e, range of valid data data_range, minimvim number of correct replicas k, 

and maximum number of faulty replicas / Note that numcalrecs is both the 

number of query elements sent to the server and the size of each block on the server 

side. The authentication information is used for establishing TCP connections with 

remote servers and includes the following: the IP addresses of ATIR servers, the 
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service port, database, table, and data item. The configuration file also contains the 

following specific information about the intended database, table, and data item with 

a pair of usemame and password to enable the servers to enforce access control. 

Currently, the library rehes on the access control mechanisms provided by the 

servers. 

The second parameter is a value-result argument [Ste98, pp. 65] which is a string 

pointer for storing the time taken to bootsfrap the system from the configuration file, 

for preparing and sending queries. When the fimction returns, guerY_time stores 

tiie actual timing measurements. 

Followed by calling tir_sul3mit_query fiinction, the user program should call 

the fiinction t i r _ g e t _ r e s u l t to obtain results. The first parameter result is also a 

value-result argument which provides a storage space for storing the result 

reconstructed by the system. Similarly, the resul t_t ime parameter is used to 

return the time taken for reconstructing results. t i r_ge t_ resu l tO conducts three 

tasks: i) continuing to estabUsh the socket connections with the servers i f they 

haven't been done, ii) sending queries and wait for the answers to return, and iii) 

reconstructing results and determine when to stop the reconstruction process. 

On the server side, the main computation is triggered by the server daemon calling 

the fimction t i r_execute with four parameters: the descriptor for an established 

socket, the database host name (in case the database server is separated from the 

ATIR server), and the usemame-password pair for accessing the database. In the 

current implementation, the ATIR server is multi-threaded. A new and separated 

thread is created to deal with the each client's ATIR request. A server assigns a new 

socket descriptor to each new connection which is stored in the parameter connf d. 

To ensure the service availability, three other parameters (i.e. dbhost, dbusr, 

dbpass) are also provided for authenticating legitimate users and identifying 

spurious ones. 
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Query Manager 

This section describes how to prepare the query messages using the ATIR query 

protocol. The fimctionalities of the query manager include the following five tasks: 

1) Generate a random record set for the server side computation; 

2) Determine the order of the finite field; 

3) Generate the query polynomials; 

4) Set distinct evaluation points for the polynomials; and finally 

5) Put all the information together to create the query elements for each replica. 

Based upon the i d e n t i f i e r passed by the cUent daemon and the 

nxiincalrecs setting, the query manager determines the record set by randomly 

selecting two integers in tendedindex and in tendedblock from the interval 

[1, numcalrecs]. The size (number of records) of each block is niomcalrecs. 

The index of the first record f i r s t r e e is calculated as follows: 

blocks = intendedblock - 1; 
f i r s t r e c = i d e n t i f i e r - intendedindex + 1 + blocks*numcalrecs; 

The index of the last record l i is calculated as follows. 

blocks = numcalrecs - intendedblock + 1; 
l i = i d e n t i f i e r - intendedindex + blocks * numcalrecs; 

The selection should make sure that the index of the first and the last record of the 

sever side computation are within the interval [1, n], where n is the total number of 

records in the database. That is, f i r s t r e c should be no less than 1 and 

l a s t index should be no greater than n. 

Only transmitting the index of the first record rather than the indexes of all records 

significantly saves the commxinication cost. With the index of the first record, the 

server program derives other indexes on the server side. That is straightforward since 

the block size is fixed. 

When the query protocol finishes, the query message for each replica is ready to 

be sent by the client daemon. The size of an index is different from the size of a 

query or an answer element. An index is a fixed-size (i.e., 8-bit) character whereas 
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the size of query and answer elements varies according to the size of the finite field 

that are chosen by the user. 

Client Daemon and Result Manager 

Logically, the client daemon is separated firom the result manager. In the 

implementation, they physically coexist within one single program. That is because 

witii the use of non-blocking I/O sockets, the coimection operation returns 

immediately and informs the program that the operation cannot finish immediately. 

The client program can proceed to perform other operations and come back later. 

Apart fi-om coordinating the index resolver and query manager, tired'^ other tasks 

are to send queries and reconstruct results. Since ATIR clients connect to the servers 

through one-to-one commtmication chaimels, concurrent but separated socket 

connections are required between a client and each of the server to which it connects. 

We rely on TCP sockets to provide reliable conmiunication. 

There are two design alternatives for implementing multiple concurrent 

connections with servers: a multithreaded client with each thread dealing with a TCP 

connection with a server or a single-threaded cUent with non-blocking I/O processing. 

Our previous PIR/ATIR system implementation used the first approach with the Java 

programming language whereas our current implementation adopts the second 

approach using the C programming language. We presented the experimental results 

of the PIR/ATIR Java implementations in [YXB02a, YXB02b]. Compared with the 

second approach, the first one, however, is rather inefficient because of the use of 

blocking I/O and a polling model [Ste98 pp. 145]. The client daemon sits in a loop, 

which checks the availabiHty of answers in the threads. This is often considered to be 

a waste of CPU time. Strictly speaking, it is not a proper approach for ATIR 

implementation because of its sequential checking metiiod to poll the information of 

the threads. Before the system starts, it is unknown that which set of servers will first 

return answers. 

Our current implementation xjses the single-threaded approach to avoid the 

application level compUcation introduced by coordinating multiple concurrent 

threads and to reduce thread overhead. As shown in the next chapter, the C 

implementation of ATIR performs well. Indeed, non-blocking I/O processing has 
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been well documented to outperform thread processing. (See, for example, [Ste98, pp. 

409], [KG02], and [Wel02]). 

The client program follows an event-driven architecture by using the s e l e c t 

function call to wait for answers to arrive or for timeout to be reached. We follow a 

similar approach used by Stevens in [Ste98, Chapter 15] to design the main logic of 

the non-blocking I/O processing. The client side sockets are all set to be non-

blocking so that the system can effectively manage the socket connections and 

send/recv buffers. Generally speaking, blocking sockets will wait until the condition 

to be tine while non-blocking sockets rely on the underlying system mechanisms to 

handle the concurrent events. 

Specifically, we use non-blocking connect operations to attempt the first socket 

connection with each of the servers. Often, the first connection attempt will not be 

successful immediately. This may be caused by the slow response of servers and the 

delay of network transmissions. Since the system uses a non-blocking I/O, the socket 

will return immediately and report the error status (i.e. socket connection in process). 

Of course, the socket status will be checked later to check whether the connection 

has been estabHshed. By exploiting non-blocking I/O in our system, the impact 

caused by exceptional slow servers can be largely reduced and therefore the overall 

system performance may be improved. As demonstrated in ovir performance in the 

next chapter, this approach is can be very effective for dealing with slow or unstable 

network connections with remote servers. 

Each replica is associated with a flag which can be in one of the statuses of the 
following set: 

{connec t ing , r ead ing , done, f a i l e d } . 

After the first socket connection attempts, the socket status of all servers is set to 

be connect ing. The first two statuses mean tiiat the server is still interacting with 

the server. Once the connection is established, the client sends the corresponding 

query message immediately. Otherwise, the connection is failed and the server status 

is marked as failed. 

Each socket has a pair of read/write descriptors that are used to examine whether 

the sockets are ready to read or write. When a non-blocking socket connection is 

established, the cUent sends the corresponding query to the respective server while 
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setting the read descriptor of this socket to be on and changing the server status to 

reading. The failvire of the first non-blocking socket connection attempt does not 

mean that the server is not available. It may be the case that the server response or 

the network connection is slow. Therefore, the connection will be attempted later. In 

the meanwhile, the server status is set to be connect ing and both read and write 

descriptor for this socket are set to be on. 

Since we are using non-blocking sockets, there can be data available from any 

socket at any time. The data on TCP sockets is fransmitted as segments which can 

arrive in one-go or separately. It is up to the xmderlying TCP mechanism to 

dynamically handle the fransmission. Therefore, it is mandatory to ensure that the 

cUent keeps checking the socket until no more data is available to read. For a large 

trunk of data that are transmitted in several TCP segments, the underlying socket 

handles the actual data amount transmitted in each segment despite the total number 

of bytes sent out by the server. Each time, a newly arrived message segment is 

appended to the end of the current answer buffer. Once the nvimber of ready sockets 

exceeds the threshold limit, the reconstruction fimction will start to reconstruct 

results. 

Server Daemon, View IVIanager, Answer Manager 

The server daemon is implemented as pre-threaded servers to handle multiple chents' 

concurrent connections due to its good performance over non pre-threaded servers 

[Ste98]. By creating a pool of threaded when a server starts, it reduces the time taken 

to deal with each connection as the server can just reuse the existing threads without 

creating new ones, mutex is used to control concurrent access to critical regions and 

variables, for example, the acceptQ fiinction. Once a new thread is created to 

handle the client's connection, the program control is handed over to the fimction 

tirexecuteO, which has a loop to produce the answer for each block repeatedly. 

For each block, the view manager does three tasks. First, it constructs a SQL 

statement based on numcalrec and f i r s t r e c parameters obtained from the 

received query stiucture. It then proceeds to execute the SQL statement and 

fransform the SQL results into a computable format. 
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4.2.3 Message Formats 

With the tase of non-blocking I/O operations, however, we do need to pay some extra 

attention to socket buffer management. In our case, we have paid particular attention 

to the format of the query and answer messages to tune for better communication 

complexity. Figure 4-4 and Figure 4-5 shows the message formats in our current 

implementation. There are two types of messages exchanged over the 

communication channels in ATIR. A message fi-om the client to servers is called a 

query and a message on the reverse direction is an answer. The major content of 

query messages is query elements whereas the major content of answer messages is 

answer elements. In general, we refer to the major content as elements. 

These formats only specify the maximum communication capabiUty of ATIR 

messages. Each message contains two parts: a fixed-length header and a non-fixed 

length data. The length of headers is fixed no matter how much data items to be 

retrieved. The actual size of messages transmitted over the network varies mainly 

due to the size of contents (i.e., actual queries and answers). The following specifies 

the meanings of each part. 

o cM: an 2-byte integer which specifies the cUent id (currently unused) 

o gfforder: set the order of the finite field 

o mimcalrec: number of records in a block 

o ftrstrec: the index of the first record 

o dbmffo: the name of the intended database, table, usemame and password 

o content: query elements 

An answer message contains two sections: len and content, len is the total 

number of elements in each block and elen^, where y = 1, 2, f len and f len is 

the number of fields in a block, len and elen^ has the following relationship: 

len = ^slsfij . 
y=l ,2 Jlen 
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(fixed-length) Header (non-fixed length) Data 

8 bytes 60 bytes up to 4,028 bytes 

old gforder numcalrec firstrec dbinfo content 

element^ element^ elementnu^cairec 

Figure 4-4 Message Format for Queries 

(fixed-length) Header 

2 bytes 

(non-fixed length) Data 

up to 4,094 bytes 
- ^ 1 

len content 

block^ blockj 

elen, 
r 

. eleng elen,ien 

field. i fields fieldfien 

^ ^ ^ ^ ^ 

element, elementj elementeienz 

Figure 4-5 Message Format for Answers 
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4.2.4 Optimizations 

This section describes three optimisations used in the PIR/ATIR C implementation. 

Structure optimisations 

The first optimisation only applies to the PIR implementation and reduces the 

communication cost by half, comparing to that of the ATIR implementation. This 

reduction is significant for PIR requests which require high privacy protection. 

In PIR, the elements in query and answer messages are 1-byte integers/characters, 

which are enough to accommodate all the characters that could appear on the server 

side computation. Therefore, these elements are sufficient to cover all the field 

elements that are required for PIR computations. However, ATIR has to use two-byte 

integers due to the fault tolerance requirement. Excluding the constant 

communication overheads imposed by the message headers, this technique reduces 

the communication by half 

Probabilistic Reconstruction for ATIR 

This optimisation speeds up the reconstruction process of ATIR. Instead of waiting 

for the finish of the deterministic reconstruction, the probabiUstic reconstruction 

stops when the first valid result is obtained. With the use of the pATIR, the 

reconstruction time can be reduced significantly in the normal situation. For example, 

with the use of three servers, the reconstruction time of pATIR is 1/3 of that of 

dATIR in normal circumstances. 

MySQL InitiaUsation 

In the current implementation, MySQL server side initialisation performs once 

before the block processing. This is an alternative to initialise MySQL connections 

for each block. This saving increases as the number of blocks grows. For example, 

when numtok = 100, i.e., there are 100 blocks, the total processing time is reduced 

from 0.277 second to 0.246 second. In this case, the optimisation saves 11% of the 

total processing time of ATIR. 
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4.3 Implementation Issues 

4.3.1 Circumventing the Index Knowledge Assumption 

There are several inherent stumbling blocks that preclude the practical ATIR 

implementations. As noted by an early paper [CGN97], all known PIR schemes 

require the user to know exactly the physical index of the intended record in a 

database. This assumption suffers from the following limitations: i) the physical 

index of records changes all the time, and it is difficult to keep users updated with the 

latest changes; i i ) the implementation of indexing mechanisms varies from system to 

system. In most of the cases, user applications cannot directly access this information. 

Often, this information is transparent to the user applications. The implementation of 

ATIR schemes also faces this problem. 

We can relax this assumption by associating each entry in the database with a 

unique numerical identifier, and introducing an identifier resolution protocol to 

extend the ATIR service from hiding the index of an intended data item to hiding the 

keyword of the data item. 

When the user supplies the keyword of an entity, the ATIR service wi l l query a 

directory service with the keyword and returns two pieces of information to the user: 

the identifier of the keyword and the total number of identifiers in the directory. 

Currently, our implementation only supports an one-to-one mapping relationship 

between a keyword and an identifier. 

This adaptation removes the index knowledge assumption and paves the way for 

integrating ATIR service in real applications. In practice, the physical index of the 

data item in databases can be substituted with the identifier information. An identifier 

is a label that identifies a person or an entity. Examples of identifiers include primary 

keys of databases, names of objects in an object-orientation programming, and the 

newly proposed permanent identifier for public key certificates [PG04]. Identifiers 

are usually required to be unique to ensure the one-to-one mapping relationship 

between an identifier and a subject entity. 

We assume that this mapping relationship is published correctly by service 

providers and stored in a trusted public directory. By searching the public directory 

using a subject name, we can resolve the identifier of an entity and then use it to 

retrieve the corresponding data item. This is through the use of the Identifier 
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Resolution Protocol that returns a unique identifier corresponding to the inputted 

keyword. 

4.3.2 FulHength Processing versus View Processing 

The server side computation of PIR schemes can be classified as: pre-processing and 

online processing. Both computations process the entire database on each individual 

server. We call it fiiU-length (pre-/online) processing. Only one of them wil l be 

chosen for any specific PER. scheme. The pre-processing aims to reduce the cost of 

online processing by changing the data to a specific format. This approach is used 

by [IS03], which reduces the cost of online processing to a constant. In terms of 

online processing, this is optimal although it is at the cost of fiill-length pre­

processing. Without pre-processing, online processing needs to compute over an 

entire database. 

The full-length processing over the entire database guarantees the perfect privacy 

property in PIR schemes, i.e., each record has an equal probability of being the one a 

user wants. For example, i f the processing is over a 100-record database, each record 

has 1/100 chance being the one wanted. Although the fiiU-length processing is secure, 

i t is costly and not flexible. Generally speaking, the level of privacy protection is 

proportional to the number of records involved in the server side computation. In 

other words, the chance of successfiil privacy violation by a server is inversely 

proportional to the number of records involved in the server side computation. This 

is a trade-off between computation cost and privacy. A better strategy is to let the 

user decide the amount of time for processing, and correspondingly, the level of 

privacy protection an ATIR service can provide. For example, by specifying the 

number of records the user wishes to compute over, a xxser can choose the level of 

privacy protection s/he can get. 

4,4 Summary 

This chapter first presents the architectural design of our ATIR system and the 

character-string database model used in the ATIR system implementation. We then 

describe the design details of the major components and present the message formats 

used in the ATIR system. A number of optimisation techniques used in the 

implementation of ATIR are briefly described. That is followed by some discussion 

on the important implementation issues of the ATIR system. 
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Chapter 5 Empirical Evaluation 

This chapter presents the experimental studies of ATIR systems. We first derive an 

analytic model for the performance of an ATIR service and then derive performance 

model parameters. We validate the model by showing that it accurately predicts the 

performance results gathered in the experimental studies. The model can also be used 

to predict the performance of the system in different settings. 

We fijrther examine the impacts of varying the major parameter, such as view 

sizes and resuU sizes, on the Total Time for Processing (TTP) of ATIR in fault-free 

situations. To xmderstand the source of performance bottleneck of both services, we 

also examine the contributions of each component to the TTP. 

Finally, we investigate the behaviours of the ATIR system in the presence of 

simulated faults. We focus on the impacts of these faults to the TTPs of ATIR and 

discuss the implications of the experimental results. This chapter also compares the 

performance of ATIR with that of PIR and the downloading solution. 

5.1 Performance Models 

This section investigates the major factors that make an impact on the ATIR system 

performance. We present a complete analytic model for the ATIR implementation to 

analyse the costs imposed by various operations in the system. Performance models 

are useful for xmderstanding and explaining performance results. We can use these 

models for identifying the major sources of performance bottlenecks and verify the 

importance of theoretical concerns. These models are also useful for predicting the 

performance of the ATIR system in a different setting. The analytic model consists 

of a number of component models where each of them models an individual function 

of the system. 

5.1.1 Preliminaries 

The following notations are used in the performance models throughout this chapter. 

A symbol with / as its subscript means that it is a fixed cost incurred for performing 

an operation, that is, tiiis cost is independent of the input of a function. A symbol 
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with a as its subscript means that it is an additional cost incurred per unit. A unit can 

be a byte, an element, or a record. An element is either a single-byte integer or a two-

byte integer. An element is used in both computational and storage contexts. The 

element size, denoted by es, is defined as the number of bytes in an element. 

A result is the parts of a record that a user wants to retrieve. The result size, 

denoted by rs, is defined as the original number of elements in a result. By trimming 

off the empty spaces at the end of a result, an optimised result size, denoted by ors, is 

obtained. 

A query message contains a fixed-sized query header and query elements. The 

number of query elements in the message is defined as query size, denoted by qs. 

The query message size is the total number of bytes in a query message. 

An answer message consists of a fibted-sized answer header and answer elements. 

The number of answer elements in the message is defined as answer size, denoted by 

as. The answer message size is the total number of bytes in an answer message. 

The size of a message, denoted by mess, is the total number of bytes in a query 

and an answer message. 

A view is a collective representation of the data sets involved in the server side 

computation. A view size, denoted by vs, is defined as the total number of records 

involved. Table 5-1 offers a list of the notations for the variables described. 

Table 5-1 Notations for Performance Models 

Variables Name Unit Description 
es element size bytes number of bytes in an element 
qs query size element number of elements in a query, exclusive of a 

fixed-sized query header 
as answer size element number of elements in an answer, exclusive 

of a fixed-sized answer header 
rs result size element number of elements in a result 
mess message size byte number of bytes in a message 
vs view size record number of records in a view 
ors optimised result 

size 
element number of elements in a result after trimming 

off the spaces at the end 
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In the ATIR implementation, these variables have the following relationships: 

as = qs xrs 

mess = (qs + as) xes 

vs = (qsf 

5.1.2 Performance Modelling 

The overall performance of an ATIR service is characterised by TTP - the time taken 

from the system starting to process an ATIR configuration file until the system 

obtaining a result. TTP can be divided into three processing time as follows: client 

side, server side, and commvmication. 

On the client side, the major components of TTP include: system initialisation, 

query message preparation, and result reconstruction/verification. On the server side, 

the major components of TTP are: view creation, and answer message preparation. 

To help our presentation, let us first give a list of the short forms for timing variables 

and their corresponding meanings. 

T I S : time taken to initialise the system, (a constant cost) 

T P Q : time taken to prepare query messages, including headers. 

T R V : time taken to reconstruct and verify results. 

TCV: time taken to create views. 

T P A : time taken to prepare answer messages, including headers. 

T T Q M : time taken to fransmit a query message. 

T T A M : time taken to transmit an answer message. 

We fijrther infroduce the following timing variables to represent the sums of the 

above timing components: 

T S P : server processing time. 

T C O M M : communication time of an ATIR service. 

T S R : server response time. 
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They have the following relationships: 

TSP = TCV +TPA 

TCOMM = TTQM + TTAM 

The client also spends time to perform the following regular tasks: establishing 

and closing TCP cormections, method invocations, memory management, 

establishing and releasing MySQL server connections, and garbage collections. We 

refer them as the time taken to do miscellaneous tasks, denoted by TMIS. 

Figure 5-1 shows a timing diagram which illustrates the relationships among these 

variables. (For clarity, TMIS is not presented in the diagram.) The shadow boxes 

represent the participants of an ATIR service. Each participant is associated with an 

execution line from top to bottom. To simplify the presentation, the diagram assumes 

that the client concurrently sends the query messages to tiie servers respectively and 

the servers receive them at the same point along the time line. A similar situation is 

also assumed for the answer messages. In reality, many non-system factors may have 

various degrees of impacts on message arrivals. Network load, system load, and 

system management tasks are the typical factors. 

The TTP of ATIR is given by the following formula: 

TTP = TIS + TPQ + TCOMM + TCV + TPA + TRV 

In the remaining presentation of this section, we shall focus on these components: 

TPQ, TPA, TCOMM, TCV, TRV, and finally TTP. The communication cost in 

ATIR is quantified through two models: a message model (TCOMM-1) and a 

communication cost model (TCOMM-2). Message sizes and actual communication 

costs are the major concerns in PIR and ATIR research. TCOMM-1 represents the 

bandwidth consumption of ATIR whereas TCOMM-2 characterises the performance 

overhead of message transmission. 

92 



CHAPTER FIVE. EMPIRICAL EVALUATION 

TTP 

TIS+TPQ 

TTAM 

Figure 5-1 A Timing Diagram for ATIR Services 

Message Preparation (TPQ and TPA) 

We first derive a model for calculating TPQ. The computation is modelled as a linear 

fimction of query size as follows. 

TVQiqs) = Q M f + Q M a x qs 

QMfis a fixed cost of computing a query which contains zero query elements and 

is measured in microseconds. QMa is an additional cost of computing each query 

element and is measured in microseconds per element. 

We then derive an answer model for calculating TPA which is modelled as a 

linear function of view size and result size. 

TPA(ys, rs) = TPAf+ TPAa xvsxrs 

where vs is the view size and rs is the result size. 

TPAf is a fixed cost of computing an answer message which contains zero 

elements and is measured in microseconds. T P A a is an additional cost of computing 
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with each element and is measured in microseconds per element, vs x rs is the 

number of elements in an answer. 

Commumication Model 1: Message Model (TCOMM-1) 

We first derive a message model which calculates message sizes based on query 

sizes, result sizes, and element sizes. Message sizes correspond to the bandwidth 

consumption of ATIR services. Since message sizes are independent of any specific 

network infi-astructure, it is usefiil to analysis them when communication cost is 

discussed. 

Between a cUent and a server, the total message size transmitted, denoted by tms, 

is the sum of the size of a query message and an answer message. We have the 

following formula which calculates the total number of elements exchanged between 

a client and a server: 

tms (qs, ors, es) = qh + ah + qsx (es + ors x es) 

where qh is the size of a query message and ah is the size of an answer message. 

Alternatively, the above formula can be revised as a parameter of vs as follows: 

tms (qs, ors, es) = qh + ah + v j * ^ x (es + ors x es) 

In PIR, each element is represented by a one-byte integer and thus the tms of PIR 

is also the number of bytes exchanged between a client and a server. In ATIR, each 

element is represented by a two-byte integer and thus the number of bytes exchanged 

between a client and a server doubles the above tms. 

Communication Model 2: Communication Cost Model (TCOMM-2) 

We now derive the second communication model (TCOMM-2) to model the actual 

communication cost of transmitting the messages in the ATIR system. This second 

communication model is based on the first communication model (TCOMM-1) 

because it relies on the first model to calculate the size of a message. The second 

model separates the host processing overhead fi-om the actual network 

communication overhead. The separation enables us to predict the performance of 

the system in a different network setting, such as the Internet. Since our 

implementation uses TCP connections for message transmission, our discussion 

focuses on TCP. 
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The communication model of an ATER systan consists of two parts: the model of 

host processing and the model of network processing. The former model aims to 

model host processing time whereas the latter models network communication time. 

The communication costs in both models are modelled as a linear flinction of the 

variable tms. For the host-processing model, there are two parameters: a fixed cost Hf 

of processing zero byte data and an additional cost Ha of processing an extra byte. 

For the network-processing model, there are also two parameters: a fixed cost A^of 

transmitting zero byte data and an additional cost Na of transmitting one-byte data. Hf 

and Nf are measured in microseconds whereas Ha and Na are measured in 

microseconds per byte. Therefore, TCOMM is calculated as follows: 

TCOMM (tms) = Hf+ 2 x i / ^ x (tms) + Nf+ Na x (tms) 

View Creation (TCV) 

This section presents a model for computing TCV, i.e. the time taken to get records 

from databases and transform them into a view. Again, the model consists of two 

components: a fixed overhead TCVf of performing the transformation and an 

additional cost TCVa of fransforming an element. TCVf is measured in microseconds 

and TCVa is measured in microseconds per element. The input to the model is view 

size and result size. TCV is modelled as follows. 

TCV(vs, rs) = TCVf+ TCVa xvsxrs 

Result Reconstruction and Verification (TRV) 

This section describes a model for computing TRV, i.e., tiie time taken to reconstiiict 

a result. The TRV model consists of two components: a fixed cost TRVf of 

reconstructing and verifying a record and an additional cost TRVa of reconstiiicting 

and verifying an element. The model is as follows: 
TRV(ors) = TRVf + TRVaXors 

TRVf is measured in microseconds and TRVa is measured in microseconds per 

element. Each reconstructed element is subject to verification. Therefore, TRV can 

be further divided into two sub-components: the time taken to reconstruct a result 

and the time taken to verify a result. 

95 



CHAPTER FIVE. EMPIRICAL EVALUATION 

In theory, it is necessary to separate TVER from TREC because there is one of the 

major differences between PIR and ATIR. However, as we shall show in the 

experimental studies, the separation is not necessary because of the cost of verifying 

a result in TTP is effectively negligible. Therefore, we only present one combined 

model for the result reconstruction and verification. 

Total Processing Time (TTP) 

Putting all these models together, we have the following formula for computing the 

TTP of an ATIR service. 

TTPatii(e5, vs, rs, ors) = TIS + T?Qiqs) + TCOMM(gs, ors, es) + TCV(vs, rs) + 

TPA(v5, rs) + TRV(ora) + TMIS 

5.2 Experimental Setting 

Unless otherwise stated, the experimental settings described in this section apply to 

all experiments presented in this chapter. 

5.2.1 Experimental Objectives 

In this thesis, there are four goals of conducting our experimental studies: 

• Deriving the analytic model of the performance of an ATIR service; 

• Quantify the cost of providing privacy protection; 

• Investigating the cost of dealing with attacks in ATIR; 

• Comparing the experimental results of ATIR with SQL queries and PIR. 

5.2.2 Experimental Environment 

Our experiments use a set of identical DELL machines with the following 

specifications: Dell Precision 650 workstation with Dual Intel Xeon 3.06GHz hyper-

threaded, 1 GB RAM, 36GB Fujitsu MAS3367NP SCSI hard drive, and 3COM 

3c905C NIC. They are interconnected through a Cisco switch which has the 

following specifications: Cisco Catalyst 2924 (model: WS-C2924C-XL-A). The 

switch has twenty-two 10/lOOBaseTX ports and two lOOBaseFX ports. 
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A l l machines run Redhat Linux release 9 (Shrike) and the kernel version is 2.4.26. 

The kernel is compiled with smp' support. The specifications of the major software 

packages are described as follows. The version of MySQL is 11.18 with distribution 

3.23.58 for redhat-linux-gnu (1386). A l l the programs used in the experiments are 

compiled with GCC 3.2.2. 

Three machines are used as servers in all ATIR experiments. Two machines are 

used as servers in all PIR experiments whereas one machine is used as a server to 

perform SQL queries. One client machine is used in all the experiments presented in 

this chapter. 

The database (precisely the database table) used in the experiments contains over 

44,000 records where each record contains 880 bytes. Apart fi-om otherwise specified, 

the default size of a result in the experiments is 10 bytes. 

Unless stated otherwise, the finite field for ATIR computation is GF(257) and the 

finite field for PIR computation is GF(256). 

Again, unless stated explicitly, we use a simple (single factor) linear regression 

method to compute the model parameters in all the experimental studies. 

Due to the resource restriction, the network is not an entirely private closed 

network. For system administration purposes, there are regular synchronisation jobs 

running on the machines which are beyond our control. That means there may be a 

small amount of bursting trafiBc in the network which may have unpredictable 

impacts on system measurements. However, as any random factors, such as tasks 

running by operating systems, we tiy to minimize such unpredictable impacts 

through conducing repeated experiments, excluding outiiers, and using statistical 

methods to justify the accuracy and validity of the experimental results. 

It is, however, observed that some outside factors do have an impact on the 

performance of our experiments. For example, the first execution of any program 

often experiences exceedingly high (twice or three times more than usual) 

performance overhead. We believe it is due to the context switching management 

performed by the operating system. Another such outside impact occurs with the use 

of MySQL database services, on top of which the system is built. It is observed that 

' smp: shared memory multiprocessor 
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the time taken to establish a connection with a MySQL server at the first time is two 

or three times of that in the subsequent establishment. The exact cause of this 

phenomenon is not clear. Since this does have a direct impact on our system 

performance, we repeat all experiments eleven times and eliminate the first result. 

5.2.3 Primitive Component Model Parameters 

Concerns of Deriving the Communication Cost Model 

Host processing and network processing are two major sources of TCP performance 

overheads. Previous studies (e.g. [CJRS89]) have shown that host processing can 

impose noticeable overheads on the overall TCP performance. Here, a host is defined 

as the computers at the end points of a network. Host processing is mainly software 

overheads and includes, for example, the costs of running TCP program on the 

computers (i.e., at the application layer), and the costs of moving bytes in the 

memory (i.e. between user address space and system address space and between 

network interfaces to system address space). 

A network encompasses both intermediate processing nodes (e.g. routers) and 

communication links. Network processing overheads include the costs that arise fi-om 

processing the packets on intermediate notes and communication links. Separating 

host processing fi-om network processing gives us a better insight on the real source 

of the communication costs of TCP. Furthermore, the separation can help us to 

predict the performance in a different network environment with other settings. 

As similarly assumed in other commxmication experiments (e.g. [KROl]), we 

make a number of assumptions to simpUfy the measuring task. Using these 

assiraiptions keeps the thesis in focus. With respect to the communication model, our 

goal in this thesis is to model the communication cost of the system m action. It is 

not our goal to develop a generic methodology to model the communication of the 

TCP/IP protocols. In a network environment, the communication latency would 

depend on several parameters, such as reti-ansmission, flow conti-ol policies of the 

TCP protocol, buffer sizes of senders and receivers, the communication distance, 

bandwidth availability, traffic intensity, and the mraiber of intermediate hops in the 

network communication path. 
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We assume that all the communication channels in our system are dedicated and 

the bandwidth availability is the same. We also assume that the network has no 

congestion, and packages are neither lost nor corrupted so that the TCP protocol wi l l 

not refransmit packets. From the statistics data collected, this assumption seems to be 

valid for our experiments due to the fact that it is a closed and dedicated network 

envirorunent. 

Host Processing Time 

We need to run two batches of experiments because our communication model 

(TCOMM-2) separates the host processing from network communication. Host 

Processing Time (HPT) is the time taken to process a message on a single computer. 

Network Commimication Time (NCT) is the time taken to fransmit a message by a 

network from one computer to another computer. Round Trip Time (RTT) is the 

double of the sum of HPT and NCT. It should be noted that most RTT measurements 

in the literatures do not distinguish HPT and NCT from RTT. In our studies, however, 

the separation provides us with a way to predict the communication overhead that 

may exhibit by the system in a different network setting. 

The first batch of experiments aims to measure HPT. That is, the client and the 

server reside on the same computer. Therefore, the measured host processing 

overhead is the sum of the following two costs: the cost of segmenting and copying 

the messages from the client (program) address space to the system address space 

and the cost of reassembling and copying the messages from the system address 

space back to the chent address space. Essentially, the host processing cost is the cost 

of going through the TCP protocol stacks (TCP/IP). 

To measure HPT, we resort to the loopback address (or interface) [Ste94]. A 

loopback address specifically refers to the local host IP address 127.0.0.1. Any 

messages send to this address wil l be routed back to the originated source. The 

roundtrip time obtained through a loopback address is, therefore, the cost incurred by 

tiie software processing on a single computer. Table 5-2 shows the measured 

roundtiip and one-way HPT. One-way HPT is half of the roundtiip HPT. Based on 

the measured data, we compute the parameters HfZtmdi Ha, which are shown in Table 

5-3. The parameter is calculated based on the one-way HPT. 
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Figure 5-2 plots the measured and predicted one-way HPT against various 

message sizes. The predicated values match with the measured values with a high co­

efficient of determination (98.37%). That means the prediction is accurate. 

Table 5-2 Measured Host Processing Time Ois) 

Messŝ e 
(bytes) 

size Roundtrip (us) One--way(|ls) Std. 
Dev. 

100 29.60 14.8 2% 
200 30.40 152 5% 
300 31.10 15.55 2% 
400 30.90 15.45 5% 
500 3U0 15.6 3% 
600 31.50 15.75 4% 
700 3220 16.1 2% 
800 32.90 16.45 4% 
900 33.80 16.9 2% 
1000 33.60 16.8 3% 
1100 34.30 17.15 4% 
1200 34.80 17.4 2% 
1300 35.30 17.65 3% 
1400 35.30 17.65 5% 
1448 35.80 17.9 3% 

Table 5-3 Parameters of One-way HPT 

Parameter Value Description 

Hf 14.629 ŝ A fixed overhead of transmittir^ messages of any si2e 
through the loopback interface 

0.002252Ms/byte An additional cost of transmitting a single byte t h r o i ^ the 
loopback interface 
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Figure 5-2 Measured and Predicted One-way Host Processing 
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When the system is deployed in a different network enviroimient, the potential 

impact of the network environment becomes a dominant factor on the stability of 

TTP. I f the same set of machines is used for the new deployment, the HPTs wil l 

remain the same since they are independent of the xmderlying network infi-astructure. 

Network Communication Time 

The second batch of experiments aims to investigate the relationship between NCT 

and message sizes. NCT is obtained through subtracting HPT firom RTT. Table 5-4 

shows the measured RTTs and calculated one-way NCT obtained through 

experimenting with two separated computers. The second colimm (i.e., RTT) is the 

time taken to send the messages back and forth between the computers. The third 

column (i.e., Std. Dev.) is the standard deviation, which is the variance of the ten 

observations fi-om the averaged RTT. The last column is the one-way NCT which is 

the time taken to transmit the messages fi"om the client to the server, which is half of 

the difference between the RTT and four times of the corresponding one-way HPT. 

Based on the measured data, we compute the parameters A/-and Ng, which are shown 

in Table 5-5. 

Table 5-4 Measured Romidtrip Time and One-way Communication Time 

Messs^e size RTr(Ms) Std One-way 
(bytes) Dev. NCr(jis) 

100 497 1.64% 219 
200 556 0.66% 248 
300 629 0.25% 283 
400 612 0.47% 275 
500 690 0.49% 314 
600 687 0.36% 312 
700 746 026% 341 
800 788 0.42% 361 
900 837 0.70% 385 
1000 875 0.66% 404 
1100 938 0.46% 435 
1200 982 0.40% 456 
1300 999 0.00% 464 
1400 1037.4 0.25% 483 
1448 1047.7 0.31% 488 
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Table 5-5 Parameters of One-way Network Communication Time 

Parameter Value Description 

Nf 205.36 îs 
A fixed overhead of transmitting messages of any size 
through the network (one-byte) 

Na 0.19978 ^s/byte An additional cost of transmitting one-byte through the 
network (one-bj1;e) 
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Figure 5-3 Measured and Predicted One-way Communication 

Table 5-6 Protocol Constants 

Name Value Description 

TSQL-INIT 238^18 time taken to establish a connection with a local MySQL server 
TIS (ATIR) 74 |xs time taken to initialise the ATIR system 

Figure 5-3 plots the one-way NCT between two computers in our network. The 

predicted values match with the measured values with a high co-efficient of 

determination (99.09%) 

Constants 

Table 5-6 shows the protocols constants for all the experiments. These values are 

used to produce to predict TTPs in the subsequent sections. 
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5.3 A T I R Experiments in a Faialt-free Emvnrommemt 

This section first derives the component parameters for the ATIR models and then 

investigates the impacts of varying view size, result size, undetected error rate on the 

TTP of ATIR and the proportions of each component in the TTP of ATIR. We also 

investigate the impact of using a deterministic ATIR (dATIR) to the system 

performance. Unless mentioned explicitly, an ATIR scheme refers to a probabilistic 

ATIR scheme. We further present the experimental results of ATIR performance in 

the presence of various simulated faults. 

5.3.1 ATIR Component Model Parameters 

Message Preparation 

We use a simple linear regression model to find out the parameters TPQf and TPQa 

in the query model and TPAf and TPAa in the answer model. Table 5-7 shows the 

parameters obtained through using the regression (least square) method. 

To verify the query model, we run ten independent experiments varying the query 

size fi-om 10 elements to 100 elements which are then used to compute fi-om 100 to 

10,000 records on the server side. Each experiment involved a different-sized query 

message, hi each series, each experiment is consecutively repeated eleven times. 

Figure 5-4 shows the measured and predicted TPQ as the query sizes increase. 

Each diamond point is the average value of five runs. Apart fi-om the first series of 

experiments, the TPQ time for the overall experiments is fairiy stable. The standard 

deviation of the averaged values of the first experiment is 7% whereas that of the rest 

of the experiments is below 5%. The model is also accurate. The co-efficient of 

determination is 97.5%, The high co-efficient of determination means that the model 

matches with the measured data. 

Table 5-7 Message Preparation Parameters (ATIR) 

Parameter Value Description 
TPQf 9.09194 us A fbffid oveiiiead of computing query mesŝ es of any size 
TPQa 0.7231 us/element Additional cost per element in a query message 
TPAf A fixed overiiead of computing answer mesŝ es of any 

size 
T P A . 0.9246 |js/element Additional cost per element in an ansAver message 
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To verify the answer model, we also log TPA in the above experiments on the 

server side. Corresponding to the query size from 10 to 100 elements, the view size 

ranges from 100 to 10,000 records. Figure 5-5 plots the measured and predicted TPA 

against the view sizes. The co-efficient of determination of the experiments is over 

99.99%. This means that our model is accurate. 
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Figure 5-4 Measured and Predicted TPQ vs. Query Sizes 
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Figure 5-5 Measured and Predicted TPA vs. View Sizes 
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Communication 

As explained in Chapter 4, it is sufficient and necessary for the ATIR 

implementation to use a 2-byte integer to represent an element. Table 5-8 shows the 

relationship among message sizes, query sizes, view sizes and the total 

communication time for transmitting the messages. The original result size is 10 

bytes and the optimised result size is 6 bytes. Since the answer size is determined by 

the optimised result size, we simply assume that the result size is 6 bytes per block. 

In order to understand the table, let us take the first row as an example to explain 

the meanings of these figures. In this row, an APIR query computes over 100 records. 

Therefore, the query contains 10 elements with 2 bytes each and the answer contains 

10 blocks. The query message size is 120 bytes, which is the sum of a 100-byte 

query header and 20-byte query elements. The answer message size is 122, which is 

the sum of a 2-byte header and 120-byte (i.e., 12 bytes/block x 10 blocks) answer 

elements. Using the commimication parameters derived in Section 5.2.3, we can 

obtain the total communication time as follows. 

2*14.629 + 205.36 + 242 x (2*0.002252 + 0.19978) = 284.054 |is 

It is important to note that the total message size of ATIR is solely determined by 

the view size. The deployment in a different network environment will only have an 

impact on the total communication time, not the total message size. 

View Creation 

To verify the model, we use the linear regression method to calculate the parameters 

TCV/ and TCV^ which are shown in Table 5-9. Figure 5-6 plots the predicted and 

measured costs of TCV against view sizes. The model is accurate because the co-

efficiency of determination is 99.97%. 
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Table 5-8 Query Sizes, View Sizes, Message Sizes and Communication Time of ATIR 

Query Size View Size Bsent Brecv Total Message Total Comm. 
(elements) (records) (bytes) (bytes) Size (bytes) Time (|is) 

10 100 120 122 242 284 
20 400 140 242 382 313 
30 900 160 362 522 341 
40 1600 180 482 662 370 
50 2500 200 602 802 398 
60 3600 220 722 942 427 
70 4900 240 842 1082 456 
80 6400 260 962 1222 484 
90 8100 280 1082 1362 513 
100 10000 300 1202 1502 541 

Table 5-9 Parameters of TCV 

Patameter Value Description 
TCV/ 153 \xs A fixed overhead of performing DB transformation 

operations 
Tcy. 13.573 |is/record Additional cost per record of performing DB 

transformation operations 
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Figure 5-6 Measured and Predicated TCV vs. View Size 
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Figure 5-8 Measure and Predicted TTPs of pATIR 

Table 5-10 Reconstruction and Verification (ATIR): parameters 

Parameter Valxie Description 
TRVf 20.753 |J5 A fixed oveiliead of reconstructiĉ  any nxunber of 

elements 
TRVa 0.34111 us/byte An additional cost per record of reconstructii^ an byte 
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Reconstruction 

To verify the model derived for reconstructing results (i.e. TRV), we use a linear 

regression model on the data to determine the regression parameters which are 

shown in Table 5-10. Figure 5-7 shows the time taken to reconstruct and verify the 

results against the increased (optimised) result sizes. The predicted values match well 

with the measurements. The co-efficient of determination is 98%. 

5.3.2 Varying View Sizes 

Figure 5-8 shows the measured and predicted TTPs of pATIR against view sizes. 

The predicted values are calculated following the performance models presented in 

Section 5.1. The values of each component are calculated through the use of 

primitive performance model parameters presented in Section 5.2.3 and the ATIR 

component model parameters presented in Section 5.3.1. 

The view size used in an ATIR service is an indication of the level of privacy 

protection achieved. In the service, a user only needs one record in the view. As the 

view size grows, the protection of the user's privacy increases. That is because the 

view size directly reflects the number of records involved in the server side 

computation. As the number of records involved in an ATIR computation grows, the 

server has less information about the actual record that the user is interested in. 

The TTPs clearly increase linearly as the view sizes increase. The figure shows 

that there is little difference between the prediction and the measurements of TTPs of 

ATIR. The co-efficient of determination is 99.96%. As the prediction for the TTPs of 

APIR, the relative prediction error of pATIR quickly converges to the X aixs as the 

view sizes increase, which is shown in Figure 5-9. That indicates that the accuracy of 

the prediction of TTPs of ATIR increases as the size of a view involved in the server 

side computation increases. 
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Figure 5-9 Relative Prediction Error of tlie TTPs of pATIR 

5.3.3 Varying Result Sizes 

This section investigates the impact of varying result sizes on the TTPs of pATIR. In 

the previous experiments, we fix the result size to be 10 bytes. With the use of 

optimisation techniques, the actual result size reduces 6 bytes (because the spaces at 

the end of tiie fields are trimmed). Figure 5-10 shows the impact of increased result 

sizes on the TTP of pATIR for varied result sizes and view sizes. In total, the figure 

plots ten different view sizes along with varied result sizes. 
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Figure 5-10 Measured TTPs of pATIR vs. Original Result Sizes 

As the result sizes increases, so does the amovmt of data set involved in the server 

side computation. The trend shown in the figure clearly confirms the results obtained 

in Section 5.3.2 that TTPs grow linearly as the amount of data set involved in the 

server side computation increases. However, for small view sizes, such increment is 

not as significant as that of large view sizes. 

When the result size hits 70 bytes, the TTPs of all view sizes exhibits a sudden 

increase (ranging fi-om 1.2% of view size of 100 records to 4.7% of view size of 

10,000 records) but returns to a linear trend when it reaches the result size of 80 

bytes. It is independent of the actual sizes of data sets and clearly only relates to this 

particular result size. After tracking down the proportion of the time taken by each 

component of the system, we find that the symptom is caused by server side 

computation rather than client side computation. In particular, the sudden increase of 

TPA (the time taken to prepare answers) causes the sudden increase of TTPs of the 

result size of 70 bytes. From the process of tracking down the problem, we believe 

that there are two possible sources which may cause this problem. First, it may be 

due to an implementation bug of the ATIR system. Second, it may also be a problem 

caused by the underlying operating system. However, the exact cause is still under 

investigation. 
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5.3.4 Varying Undetected Error Rates 

The order of finite fields, i.e., p, in pATIR determines the fault tolerance capability 

of an ATIR scheme and is inversely proportional to the Undetected Error Rate 

(UER). UER is specified by a user and is the level of errors that the user wishes to 

tolerate. In the current implementation, UER is specified at a character level rather 

than a result level. For example, i f we retrieve one result which contains one 

character and the UER is 0.30, there is 30% chance that the reconstructed result (in 

this case, one character) is valid but not correct. 

When a result contains more characters, the overall UER is the multiplication of 

the UER of each tampered character in the result. For example, i f four characters in a 

result is tampered and the UER for each character is 30%, the UER for the 

reconstructed result is 0.0081 = (30%)'*, which means that the reconstructed result 

has only 0.81% chance to be a valid but incorrect one. In terms of fault tolerance, this 

implies that the more characters of a result being tampered, the easier for the system 

to detect the corrupted result. This is, however, a theoretical explanation. 

Table 5-11 shows the relationship between UER and the size of the finite prime 

fields that are used in the experiments of this section. The calculation is based on the 

following settings: the valid range of reconstructed characters is the integers in the 

interval of [0, 255] and the number of replicas is three, which tolerates one faulty 

server. This value of k, we beUeve, is expected to be sufficient for most real 

applications because, with more replicas, the configurations and resource 

consumptions may become excess for real world applications. 

Each element of a finite field in our ATIR implementation is represented by a two-

byte unsigned integer, whose range is fi'om 0 to 65,535. This range is sufficient to 

cover the most stiingent fatolt tolerance requirement that our system designs for. For 

example, when the UER is 0.01 (that is, there is only 1% chance that a reconstinicted 

character is valid but not correct), the corresponding size of a finite field is 25523. 

Figure 5-11 illusti-ates the trend of TTPs of ATIR with increased view sizes with 

varying undetected error rates. For a given view size, the figure clearly suggests that 

the variance of UER has little impact on the TTPs of ATIR. The implication of this 

outcome is significant because it suggests that we can have a higher-level fault 

tolerance without compromising performance. 

I l l 



CHAPTER FIVE. EMPIRICAL EVALUATION 

Table 5-11 The Mapping between UER and p 

UER 0.01 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
P 25523 2557 1277 853 641 521 431 367 331 293 257 
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Figure 5-11 TTPs of pATIR witli Varying Undetected Error Rates 

It should be pointed out that the variance of UER only change the time taken to 

perform certain ATIR operations (e.g. query preparation and answer calculation) 

while the time taken to do other operations, such as TCV, remain the same. From an 

operating system's point of view, a finite field operation involves two unsigned 

16-bit integers, which is true despite the actual values of these integers. Furthermore, 

the number of operations does not change as a result of varied UER. Therefore, the 

size of a finite field has no influence on the time taken to do the operation. 

Although the figure (5-11) suggest there is not much difference between the TTP 

of the system with different UERs, the variance of UER does makes an impact on 

certain components of TTP. A closer examination of the component values reveals 

that the TRV (i.e., reconstruction and verification) cost is inversely proportional to 

UER. The smaller UER is the longer TRV takes. It is because with the finite fields 

use prime numbers, rather than 257, as its order (i.e., size), the time taken to perform 

field operations (in particular, reverse operations) is higher than using the field 
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GF(257). This is an implementation specific issue because we store the 

corresponding reverse element in the memory for each element in the field GF(257). 

However, with a larger prime field, the system has to perform the reverse calculation 

on the fly and the time taken to perform such computation is inversely proportional 

to the size of the field. The bigger the size the longer it takes. Note that bigger finite 

field sizes correspond to smaller UER. But because TCV is a small portion of TTP 

and due to the scale of the figure, such difference is masked by the figure. 

5.3.5 Performance Proportion of Each Component 

To identify the major sources of performance overheads, this section describes how 

each component contribute to the overall TTPs of ATIR for fixed result size 10 bytes. 

Figure 5-12 shows the proportion of each component of ATIR in the TTP as the view 

sizes increase. In particular, the proportion of the time taken for server side 

computation (i.e., TPV and TPA) quickly becomes the dominator factor of the TTPs. 

As the view sizes increase, it is also clear that the proportion of commimication time 

rapidly reduces from 23.27% (view size = 1 record and data size = 0.01 KB) to 

1.40% (view size = 1,600 records and data size = 16 KB). 

The figure also shows us that TRV vanishes quickly as the view size increases. 

When the view size is one record, TRV takes up 1.97% of the TTP time. When the 

view size becomes 10,000 records, the proportion drops to 0.02%. Although the data 

in the figure uses a fixed result size, it does give us a clear implication of how TRV 

compares to TTP as the view sizes increase. 
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Figure 5-12 Performance Proportion of Eacli Component in TTP of ATIR 

5.3.6 Performance of Deterministic ATIR 

So far, we have been focused on the probabilistic ATIR. This section compares the 

TTPs of a deterministic ATIR (dATIR) and a probabiHstic ATIR (pATIR). dATIR 

ensures that the delivered result is 100% to be the correct one whereas pATIR only 

offers a probabiHstic guarantee of the safety property. Both ATIR implementations 

differ in the way that the reconstruction and verification algorithm is implemented. 

pATIR stops and returns a result once it finds a valid result whereas dATIR 

reconstructs all the possibilities of results and determines whether there is a correct 

result. When distinct valid results are more than one, dATIR aborts and reports a 

failtire. Since the system can reconstruct at least one correct result, i f only one result 

remains, it must be the correct one. In terms of number of reconstruction attempts 

needed, dATIR represents the worse case scenario of pATIR. So, clearly, the TRV of 

dATIR is longer than that of pATIR. But as we have shown in the previous section 

the proportion of TRV in TTP of pATIR is small. 

We conduct ten series of independent dATIR experiments as follows. The view 

sizes in the series increment from 100 to 10,000 records. In each series, we vary the 

resuh sizes from 10 to 100 bytes in each test. Each test is repeated eleven times and 

the first resuh is ignored. Each value reported is the average of ten tests. At the end, 

we have 100 measurements for the ten series of experiments. 
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Figure 5-13 compares the pATIR with the dATIR when data sizes involved in the 

server side computation are small, that is, the data sizes range from 1,000 bytes to 

10,000 bytes. Figure 5-14 does the same comparison with large data sizes (from 

100KB to 1MB). Overall, the dATIR adds some performance overhead to the TTP 

time. Over 96% of the observed dATIR TTP measurements are larger than that of 

pATIR, which suggests that dATIR does have some performance overhead, 

comparing with pATIR. The increments are, however, not the same for all 

experiments. As shown in these figures, the increments of dATIR are much 

significant (as high as 13.43% for 1,000 bytes data) for small data sizes than those 

for large data sizes (consistently lower than 0.8% when data sizes are IK bytes to I M 

bytes). This is mainly because of the scale of the measurements. For small data sizes, 

the increments are compared with small quantities (several milHseconds) of TTPs. 

For large data sizes, the increments are compared with large quantities (several 

hundreds of milliseconds) of TTPs. 
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Figure 5-14 dATIR vs pATIR (Large Data Sizes) 

5 .4 A T I R Experiments in a Simulated Faulty Environment 

This section describes ATIR performance in the presence of the following simulated 

faults: crash faults and malicious faults. 

5.4.1 ATIR Performance in the Presence of Crash Faults 

In this experiment, one of the three servers is shut down and only two servers 

provide ATIR services. Figure 5-15 compares the TTPs of ATIR in normal and crash 

failure situations when the result size is set to be 10 bytes. It is clear that the 

occurrence of crash faults has little impact on the measured TTPs of the ATIR 

system. In some cases, such as when the view size is 8,100 records, the observed 

TTP in the presence of crash failures is even lower than that of ATIR in normal 

situations. It is because the system adapts to the situation and uses the answers fi-om 

the available servers to reconstruct the resuh. The server fault was detected by the 

socket coimection operation of the client program and therefore the result fi-om this 

particular server will not be waited for. Since the machines are identical and any two 

servers are sufficient to reconstruct a result, the unavailability of one server does not 

have much influence on the TTP of the system. We expect this situation remains for 

other result sizes. 
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Figure 5-15 ATIR in Normal vs. Craslied Situations 

5.4.2 ATIR Performance in the Presence of Malicious Faults 

Having shown that the system maintains good performance in the presence of crash 

failures, we now investigate the performance and behaviours of the system when 

malicious faults occur. As a security system, what we really concern with is how an 

attacker can effectively attack the system. Any system is built on assumptions and 

therefore, invalidating assumptions is one of the effective ways of compromising the 

system. However, such information is often not readily available. For a system that 

implements a new security scheme, such as o\irs, it is important to ensure that we 

know the weakness of the system. 

In fact, the behaviours of malicious attackers are hard to determine and difficult to 

predict. Therefore, the most important thing we need to make sure when it comes to 

simulating malicious faults and experimenting with the system in such situations is to 

ensure that tiie simulation is fair. That is, we are not choosing an attack sti-ategy that 

is in our favour. In other words, we shall identify the types of attacks that our system 

is susceptible to. Once we have this information, the attack simulation should be 

based on such attacks to experiment with the system. That is effectively how it works 

in real world. Once an attacker finds out an effective attack strategy that can be taken 

advantage of, it is certain that the new sti-ategy will be used rather than relying on 

any exiting ones. 
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Simulating Malicious Failures 

Our system is most susceptible to malicious value faults, in which one or more 

compromised servers deliver purposefixlly manipulated answer(s). We simulate this 

type of attacks by randomly flipping the characters in an answer right before it is 

returned to the client. 

The simulation has two purposes. First, we need to find out the optimal value for 

achieving a required level of security through experiments. To our system, that 

means how to set the UER parameter for given a user security requirement. Second, 

since the system performance in normal situations is already known, it is mandatory 

to find out whether the performance will degrade as a result of such attacks. 

In the experiments, we do not single out the time taken to do the simulation since 

it is negligible. It only adds several microseconds to the TTP of the system. To 

simulate the attacks, we add no more than 10 lines of code into the client program 

and add one line of code into the server program. Hence, the impact of injecting the 

faults can be ignored. 

To avoid over simplifying the possible attacker behaviours, we need to answer 

two fiirther questions as follows: 

• What is the best sti-ategy for an attacker to attack the ATIR system? As 

indicated in Section 3.3.4, we know that the more characters being changed the 

easier for the client to detect the corrupted result. Is this true for the real 

experiments? 

• To what extent, the TTPs of ATIR will degrade in the presence of maUcious 

attacks. 

Finding out the Actual Undetected Error Rates 

To address the first question, five series of experiments, with different number (i.e., 

one to five) of characters being randomly flipped just before an answer is returned, 

were conducted. Each series of experiment contains 19 tests in which the undetected 

error rate starts from 0.01, 0.02 to 0.10 and then 0.20 to 1.00. In each test, we varied 

tiie view sizes from 100 to 10,000 records. Each test is repeated eleven times and the 

first result is ignored. In each test, we log down tiie following information: TTP and 

UER. 
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Since there is only one out of three servers that involves in the simulated attacks, 

the client wil l have sufficient correct answers to reconstruct a valid and correct result. 

The most dangerous situation is that the client delivers valid but incorrect results. 

Therefore, we search through the log and identify the maximum undetected error rate 

with which no valid but incorrect results are observed. 

Figure 5-16 shows the relationship between the required (maximum) undetected 

error rates and the number of characters that are randomly flipped on the server side. 

The picture tells us that the required UER increases as the number of flipped 

characters increases. That means when an attacker modifies more characters, a large 

UER is good enough to detect invalid results and identify the correct ones. In other 

words, it is easier for the client program to detect the occurrence of attacks when 

more characters are manipulated even with large UERs. Therefore, this provides an 

affirmative answer to our first question, that is, the best strategy an attacker should 

follow is to modify as few characters as possible. Otherwise, the client can easily 

detect the occurrences of attacks even with large UERs. 

On the other hand, this figure also reveals that when the number of flipped 

characters exceeds a certain level, in this case, four characters, a same level of 

undetected error rates are sufficient to detect all the errors. This provides an 

affirmative answer to our first question arise in the last section. That is, the more 

characters an attacker tampers, the easier the ATIR system detects the occurrence of 

tampering. Therefore, in order to conceal the act of attacking the system, the best 

strategy an attacker should take is to tamper with fewer characters. 

TTPs in the Presence of Malicious Attacks 

To answer the second question, we need to go back to the fundamentals of our 

scheme. We now describe how much extra time is required for the system to deal 

with the value attacks. Figure 5-17 compares the TTPs of tiie system in normal 

situations and in the presence of (simulated) malicious attacks with varied view sizes. 

Six groups of experiments with a different number of flipped characters are 

performed and each colunm in the figure represents the results obtained for each 

group of experiment. For example, "e=0.01-normal" means that no character is 

flipped and they are the experiments conducted in a normal situation. "e=0.01-lchar" 

means that one character is randomly flipped to simulate value attacks on the system. 
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In all experiments, the undetected error rate is set to be 0.01. The figure suggests that 

there is little difference between the TTPs in the different situations. Effectively, that 

means that the occurrence of malicious failures has little impact on the system 

performance. 
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5.5 Performance Comparisons among SQL Query, PIR and ATIR 

In this section, we compare the TTPs of using three query services: SQL, PIR, and 

ATIR to retrieve data from remote server (s). A normal SQL query with varied view 

sizes is executed between two separated computers in the same network environment 

to download the given amoimt of data. Therefore, in this experiment, the use of SQL 

queries is equivalent to the use of downloading to provide privacy protection. 

Figure 5-18 compares the TTPs of using ATIR, PIR and SQL technologies to 

query remote databases. The sizes of data sets involved in the queries range from 

100KB to 1 MB. 

Firstly, the TTPs of all services increase linearly as the data size increases. The 

increment rates, however, are significantly different. Compared with querying 

100KB data, it is observed that it costs 85%, 132%, and 20% more for ATIR, PIR, 

and SQL services to query 1MB data, respectively. 

Secondly, ATIR consistently shows a better performance than that of PIR in all 

these experiments. As the data size grows, the superiority becomes even obvious. For 

example, when the data size is 1MB, it takes the ATIR implementation 24% less 

TTP time to complete the operation comparing with using the PIR implementation. It 

is clearly not a coincident event that can be caused by (random) system errors 

because of the consistency shown in the figure. It is due to the different 

computational operations reqmred by PIR and ATIR schemes and the 
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implementations of finite field operations, which subsequently lead to different 

implementation strategies used in the systems. As mentioned in Section 4.2.1, PIR 

uses a finite power field GF(256) for computation whereas ATIR uses a finite prime 

field GF(257). Putting it simply, the calculation operations (in particular, reverse 

operations) in GF(257) takes less steps than those in GF(256). This is the major 

reason for the better performance of ATIR over PIR in all tiiese experiments. 

Finally, the observed TTPs of both PIR and ATIR are all well under 0.5 second 

for data sets of sizes ranging fi^om 100KB to 1 MB. These results make both 

technologies appealing for real applications. 

5.6 Summary 

This chapter first derives performance models to model the major components of an 

ATIR system. These models are then used to predict the TTP of ATIR. We show that 

the component prediction models are accurate since the predicated results match well 

with the measurements. Most predictions achieve a h i ^ co-efficient of determination, 

often above 97%. We also show that the communication overhead plays a negligible 

part of the overall TTPs in ATIR. 

We then present significant experimental studies to evaluate the performance of 

the implemented ATIR system in normal and simulated faulty enviroiraients. In 

particular, the experiments examine the impacts of varying the parameters of ATIR 

on the system performance. We further study the performance contributions of each 

major component of an ATIR system and compare the performance between pATIR 

and dATIR. 

The effectiveness of attack tolerance capability of ATIR schemes is evaluated by 

simulating various attacks on servers. The major experimental results reveal the 

following: i) crash faults make little impact on the performance of an ATIR system; 

and ii) the system performance maintains at the same level even in the presence of 

simulated malicious attacks. 

Finally, we compare the performance among SQL, PIR and ATIR and observe 

that the TTP of PIR increases most significantly as the sizes of data sets grow. We 

also show that the TTPs of both PIR and ATIR are well under half a second for 

performing the operations over data sets of sizes up to 1 MB. 

122 



CHAPTER SIX. CONCLUSIONS AND FUTURE WORK 

Chapter 6 Conclusions and Future 

Work 

Our fast-growing reliance on online query services demands an appropriate level of 

privacy protection as well as highly available service provision. These problems are 

often treated separately. The prevalence of malicious attacks on online services calls 

for a balanced solution to satisfy both requirements. This thesis has developed new 

ATIR schemes for performing certain database queries privately and correctiy 

despite the occurrence of attacks, has addressed the problem of privacy protection as 

well as service provision for certain types of database query applications, has 

explored the practical ways for designing and implementing ATIR systems, and has 

presented significant evaluation results for demonstrating the effectiveness and 

practicability of the implemented ATIR systems. 

This chapter is organised as follows. In Section 6.1, we summarize the main 

contributions made by this thesis to the following three areas of research: PIR, 

security, and fault tolerance. At the same time, we also revisit the research challenges 

set out in Chapter One and spell out the results we have achieved in this thesis on 

tackling these challenges. The theoretical and practical results of ATIR spark a 

nxmiber of interesting research questions for future research, which are outiined and 

discussed in Section 6.2. Finally, Section 6.3 concludes the thesis. 

6.1 Main Contributions 

This thesis has demonstrated a systematic and sound approach for constructing ATIR 

schemes, implementing ATIR systems, and evaluating ATIR systems through 

extensive experiments. In this thesis, two advanced ATIR schemes are developed for 

performing certain database queries privately and correctly even in the presence of 

certain attacks. Compared with existing PIR schemes, ATIR works in a much more 

realistic setting by taking malicious attacks into account while maintaining a 

balanced level of communication efficiency. By enabling privacy protection and 

simultaneously achieving a high level of service provision, ATIR represents a new 
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approach for constructing secure and fault tolerant schemes and designing privacy-

preserving and highly available systems. In order to investigate the practicability of 

the schemes, ATIR has been evalxiated extensively through empirical studies in 

various conditions. Along with a revisit on the research challenges set out in Chapter 

One, we summarise the major results obtained by this thesis as follows: 

® A survey of the major techniques and the state of the practice systems of coping 

with attacks has been given to set the context of this thesis. In order to 

characterise the power of different types of attackers, two attack models are 

derived and their relationship is examined (Section 2.2). The characterisation is 

followed by a critical review of privacy protection techniques, PIR research, and 

attack tolerant techniques and systems (Section 2.3, 2.4, 2.5). In particular, some 

commonly used assumptions on design and implementation of attack tolerant 

systems are critically reviewed and examined (Section 2.5.5). 

9 ATIR is novel because it offers privacy protection for users as well as ensuring 

service availability even in the presence of malicious attacks. In particular, ATIR 

can tolerate any collusion o f up to t servers for privacy violation and up to / 

favdty (crashed or malicious) servers in a system with k replicated servers, 

provided that k>t+f+\ where t > 1 and f<>t. Albeit a specific type of privacy 

protection, none of existing fault tolerant systems provide such protection for 

users against colluded servers. (Section 3.3.2, 3,3.4, 3.3.5, 3.3.6) 

® In contrast to other related approaches, ATIR relies on neither enforced trust 

assumptions, such as the use of tamper-resistant hardware and trusted third 

parties, nor an increased number of replicated servers. While the best solution 

known so far requires k {>'it + \) replicated servers to cope with t malicious 

servers and any collusion of up to t servers, with an 0(rF^) communication 

complexity, ATIR uses fewer servers with a much improved communication cost, 

0{n') (where n is the size of a database managed by a server). (Section 3.3.7, 3.4) 

In particular, this contribution answers three research challenges -

Communicatioii Complexity, Trust Assumptions, and Use of Replication - set 

out in Chapter One. 

• This thesis provides the details of integrating and implementing ATIR on realistic 

database systems. Specifically, we describe the ATIR system architecture and 
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show how to realise the character database model of ATIR on realistic databases 

for ATIR computations (Section 4.2.1). This paves the way for practically 

implementing ATIR as a real service. Since PIR can be viewed as a special case 

of ATIR in that there is no faulty server in the system. The ATIR implementation 

described in this thesis also demonstrates a purely software based approach for 

implementing FIR systems on realistic databases (Chapter 4). In particular, this 

contribution answers Hie research challenge - Implementation - set out in 

Chapter One. 

• Although the processing costs of FIR schemes is envisaged to be exceedingly 

high, this thesis, for the first time, shows that no pre-processing or shuffling is 

needed for ATIR systems and the experimental results reveal that ATIR performs 

well. In a LAN environment, it takes well imder half a second to use an ATIR 

service for the calculations over data sets of size up to 1MB (Section 5.5). The 

performance of the ATIR systems remains at the same level, even with tiie 

occurrence of server crashes and malicious attacks. (Section 5.4) In particular, 

this contribution answers the research challenge - Processing Costs - set out in 

Chapter One. 

6.2 Future Research Directions 

6.2.1 Reducing Computation Complexity 
In order to protect the user's privacy, ATIR involves a large quantity of computation 

(e.g. in the order of n). In practice, it may be difficult to find a service provider who 

is willingly to allocate such a level of computation resources for the privacy and 

result availability of users. Hence, an interesting and important future work is to 

reduce the processing costs of servers and provide a negotiation mechanism between 

a chent and service providers to choose the level of resources they wish to assign to 

perform ATIR operations. 

Instead of purely hardware-based or purely software implementations, a 

combination of secure hardware and software processing may reduce the overall 

computation costs. Only security-sensitive operations are performed inside the piece 

of secure hardware, just like some existing secure and fault tolerant systems BFT 

[CasOl], COCA [ZhouOl]. The installation of multiple secure co-processors may 
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also achieve load balancing and consequently improve overall performance of an 

ATIR system. 

6.2.2 Reducing Communication Complexity 
Currently, the communication complexity of ATIR schemes is independent of the 

number of rephcas used. The construction of existing PIR schemes show that this 

problem may be resolvable with the use of recursive techniques. For example, 

several PIR schemes (e.g. [Amb97] and [BIKR02]) apply recursion to achieve lower 

communication complexity in a repUcation setting. 

In [IK99], Ishai and Kushilevitz present PIR schemes with 0(^n''^^*"'^) 

communication complexity using rephcation-based secret sharing techniques 

[ISN87]. It remains unclear whether the same technique can be applied to our ATIR 

schemes to achieve lower communication complexity. 

At the time tiiis thesis is written, despite the improvement on the asymptotical 

commxmication complexity of PIR schemes, the communication complexity of 

2-server PIR schemes remains the same, i.e. 0{n^'^) as the result obtained by the 

seminal paper [CGKS95]. Several techniques (e.g. covering codes in [CGKS95], 

recursion in [Amb97], and emulation techniques in [IK99]) are used to achieve that 

commxmication complexity. It wil l be interesting to explore these techniques for 

further reducing the communication complexity of both PIR and ATIR schemes. 

6.2.3 The Importance of Design Diversity and Assumptions 

The bounded numbers of curious and faulty servers are of little meaning i f common-

mode failures [AK84] occur in the ATIR system, because an attacker can easily 

exploit a common vulnerability in all servers to compromise the entire system. 

Traditionally, design diversity [AK84], data diversity [AK88, TMB80], and 

environment diversity approaches [HK93] have often been considered to cope with 

such failures. 

It would be helpful to reduce the overall vulnerability of the system by 

incorporating these design diversity approaches into the system design and 

implementation. For example, in our systems, diverse operating systems (Linux and 

Windows) and programming languages (e.g. Java and C) can be used for the 

implementation. We can also choose from a wide range of readily available 

commercial database engines (e.g. MySQL and Microsoft SQL Server) to integrate 
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with servers. In fact, apart fi-om the C implementation, ATIR systems have a 

demonstration version which is implemented in Java. Both implementations conform 

to the same interface and design but with different implementation strategies (the C 

implementation integrates with MySQL C APIs whereas the Java implementation 

uses the JDBC Driver for MySQL.). 

6.2.4 Esplorimg Other AppMcatioms 

We have shown that the ATIR system performs well for certain database queries in 

normal as well as simulated faulty cases. The next task for this research is to find a 

wider range of applications that can take advantage of this technology. It would be 

appealing to adapt and incorporate the existing implementations with other 

applications, such as certification authority, public data repository, and patent query 

services. Among them, certification authorities are the most interesting because they 

offer an infi-astractural security service underpinning most distributed systems. Due 

to the increasing popularity of large scale distiibuted systems, the use of certificates 

has become popular. Hence, privacy-preserving, secure and fault-tolerant online 

certification authorities wi l l be of real interest in practice. The Cornell Online 

Certification Authority (COCA) [ZSR02] is a latest effort along this direction. But 

COCA doesn't provide any privacy protection for users in the presence of malicious 

attacks. Once a server is compromised, all the messages exchanged between the user 

and the servers are exposed to an attacker. 

A further question is to investigate whether there are any other domains that ATIR 

can be used. One of the fimdamental difficulties of adapting ATIR to other 

appropriate domains is the restricted semantics of the ATIR operations, as discussed 

in Section 4.1 and 4.3.1. 

6.2.5 Befemdimg against Demial-OIF-Service Attacks 

To some extent, ATIR has an inherent capability to deal with Denial-Of-Service 

(DOS) attacks. Servers that are compromised by DOS attacks respond slower flian 

the normal servers do. Due to the adaptive nature of our scheme, the client program 

in ATIR simply ignores the slow servers and use the answers from the good servers 

to reconstruct results, assuming good servers perform as good as they do in normal 

situations. However, it is important to incorporate design diversity into various stages 
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of system design, as discussed in Section 6.2.3. Otherwise, attackers can easily 

exploit tiie common vdnerabilities of an ATIR system and hack into the system. 

63 In Conclusion 

In this thesis, we have successfully demonstrated a systematic approach for 

investigating and studying the feasibility, usefuhiess, and practicability of ATIR - a 

privacy-preserving and fault tolerant mechanism for secure information retiieval. 

The soundness of the research conducted by this thesis is supported by the following: 

i) a significant literature survey on the state-of-the-art techniques and systems on 

privacy protection, PIR, and attack tolerance; ii) a detailed presentation of several 

ATIR schemes with complete characterisations of fault tolerance conditions and 

privacy protection properties; iii) analytical comparison of ATIR with relevant PIR 

efforts and critical examinations amongst ATIR and state-of-the-art secure and fault 

tolerant systems; and iv) an extensive experimental evaluation of ATIR systems in 

both normal and simulated faulty environments, with good performance results. 

As a whole, we have shown that ATIR offers an attiactive and practical solution 

for ever-increasing online information applications. We believe that many principles 

of ATIR may be extended to a wider range of application domains. As Avith any other 

research disciplines, there still remains much research to be done on deploying ATIR 

in real world applications. 
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GLOSSARY 

Glmmrj 

Attack An attack is an intentional fault aiming to violate the security properties of 

a service. There are two kinds of attacks: passive attacks and active attacks. Passive 

attacks seek to disclose confidential information whereas active attacks not only 

disclose confidential information but also disrupt services that are provided by a 

computer system. 

Attack Model An attack model is an absfaraction of all the types of attacks that are 

considered by a computer system. 

Attacker An attacker is a person or a computer program who carries out attacks 

against a computer system. 

Component is an entity of a system. 

Error An error is the part of a system state that is liable to lead to subsequent 

failures. 

Failure A failure is the manifestation of an error of a system. A system failure 

occurs when the delivered service deviates fi"om what a system is aimed at (e.g., 

specification). 

Fault A fault is the hypothesised cause of an error. 

Result A result is the intended data item (s) that a user wants to retrieve fi"om a 

database. For example, a result can be the parts of a record or an entire record stored 

in a database. 

View A view is a collective representation of all the records involved in the server 

side computation in an ATIR/PIR system. 
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