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Abstract 

In this Thesis we apply the Gross-Pitaevskii equation (GPE) to describe properties 
of a dilute, near zero temperature Bose gas for various confining geometries. We start 
by reviewing some basic information about the density, the chemical potential and 
elementary excitations of a dilute atomic condensate confined in a single harmonic 
trap for a Bose condensate with repulsive and attractive interactions and we also 
discuss the stability in the case of attractive interactions. We extend our study to 
a one and three dimensional double-well trap. We investigate the eigenenergy levels 
and show that the nonlinearity leads to triangular structures which appear either 
in the ground or excited states for the case of a Bose condensate with attractive or 
repulsive interactions respectively. We apply the eigenenergy level picture to analyse 
Josephson effects induced when the barrier is moved at a constant velocity across the 
trapping potential or by the appUcation of a time-dependent potential gradient. The 
GPE simulations are compared to the predictions of a nonlinear two-state model. 
Above a critical velocity there is a transition to a superposition of ground and excited 
states which leads to sudden changes in the population difference. The direction of 
Josephson flow depends critically on the initial state of the system and we discuss the 
feasibility of experimental control of the atomic flow using phase-imprinting. The 
stability of a low temperature Bose-Einstein condensate with attractive interactions 
in one and three dimensional double-weU potentials is discussed. The condensate 
is shown to collapse at a critical potential gradient which corresponds to a critical 
number of atoms in one of the two wells. Finally we investigate the stability and 
tunnelling effects in a multi-well system. 
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Chapter 1 

Introduction 

In natinre there are two fundamental types of particles, fermions and bosons. Fermions 

have half-integral spin and obey Fermi-Dirac statistics while bosons have integral 

spin and obey Bose-Einstein statistics. A gas of fermions can have at most one 

particle in each quantum state, whereas bosons can all occupy the same state. For 

bosons, below a certain temperature the atomic de BrogUe waves of neighbouring 

atoms start overlapping and a macroscopic nmnber of bosons tend to occupy the 

lowest-energy state of the system. At this temperature they form a Bose-Einstein 

condensate and they cam be described by one and the same single particle wave-

function. This temperatiure is given by the condition nA^^ = 2.612, where n is the 

number density and XdB = }/h'^/2kBmT is the de Broglie wavelength [1, 2, 3,4, 5, 6]. 

A possible manifestation of Bose-Einstein condensate was first proposed in the 1930*8 

after liqiiid helium was found to behave as a superfluid below a temperature of 

2.18 K. The analogy between liquid ^He and an ideal Bose-Einstein gas was first 

considered by London (1938) [7]. The *He atom is composed of an even number 

of elementary particles and according to the above the system should obey Bose-

Einstein statistics. He suggested that the sharp peak in the heat capacity known as 

the A-transition could be understood as an analogue of the transition which occurs 

in an ideal Bose gas at low temperatures. The fact that no A-transition has been 

foimd in ^He supports London's viewpoint. Soon thereafter Tisza suggested that 

the anomalous flow behaviour seen below the A-point (in the so called He-II phase] 
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could be qualitatively understood in terms of a "two fluid" model in which the con­

densate behaves completely without friction, while the rest behaves like an ordinary 

hquid [2, 5]. Although BEC is related to superfluidity in heUum, the interactions 

between the atoms are so strong that the process of condensation cannot be clearly 

identified. Therefore due to strong interactions the fraction of the condensate is 

small (~ 8%) thus it is difficult to develop a complete theoretical description of this 

system. The process of BEC has also been identified in other many-body systems, 

such as excitons in semiconductors [8, 9], in neutron stars [10] and the Cooper pairs 

in superconductors [11] and in ^He [12]. 

1.1 Alkali gases 

A breakthrough in the study of BEC came with the experimental realisation of di­

lute, weakly-interacting alkali gases. The first observations were made in 1995 in a 

remarkable set of experiments on vapours of '̂̂ Rb [13] and ^^Na [14]. Atoms con­

fined in magneto-optical traps were cooled down by laser and evaporative cooUng 

techniques to temperatures of order of 100 nanokelvin, suffeciently cold to observe 

BEC. The first evidence for condensation emerged from the free expansion of the 

condensate after switching off the confining trap: a sharp peak in the velocity dis­

tribution appeared below a critical temperature. In the same ye«ir, first signatures 

of BEC in ^Li were also reported [15]. 

BEC in alkali gases is new fast evolving field. By 2004 BEC has been realized in 

[16], ^Rh [17], metastable ^He [18, 19], "^K [20], ^̂ ^Cs [21] and ^^^Yb [22]. The use 

of Feshbach resonances [23, 24, 25] has led to the condensation of diatomic molecules 

of ^Li [26, 27] and ^"K [28]. We have already mentioned that fermions cannot occupy 

the same physical state - the exact opposite of what happens in a BEC. When two 

fermionic atoms join to form molecules, they become composite bosons, which can 

gather in the quantum state of lowest energy. 

Typical temperatures for BEC are of orders of 1 — 100 nanokelvin and the record 

low is ~ 500 picokelvin [29] at densities between 10^° to 10^* cm^. In contrast, the 
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temperatiu-es that quantum mechanical effects are important for superfluid heUum 

axe of order of K and the density is ~ 10̂ ^ cm~^. The number of atoms in the 

condensate varies from the order of milhons to just few hundred. By varying the 

confining potential, the shape of the condensate may be spherical with a diameter 

of few decades /im, "pancake"-shaped or "cigar"-shaped with 15/im in diameter and 

up to 5mm length. Because the densities are extremely small (100,000 smaller than 

air) and the temperatures are extremely low, three-body collisions are rare events 

and the hfetime of the metastable gas is of the order of seconds. 

Alkah gases constitute an ideal system to study BEC. Their optical transitions can 

be excited by available lasers smd have favourable internal energy-level structme for 

coohng. Moreover the densities of such systems are sufficiently low so their dilute 

nature allows one to describe the interparticle interactions with a single parame­

ter, the s-wave scattermg length. In addition magnetic-field Feshbach resonances 

[23, 24, 25] play an important role to control not only the strength of interparti­

cle interactions but also whether they are effectively repulsive or attractive. The 

behaviour of dilute Bose gases such as the static emd dynamical properties c«in be 

studied within the theory of weakly interacting bosons pioneerd by Bogoliubov and 

developed by Gross and Pitaevskii. The so-called Gross-Pitaevsku equation (GPE) 

provides the main theoretical tool for the study of atomic condensates (see following 

Section and Chapter 2). Despite bemg weakly interacting, at such low temperatures, 

the interactions in such systems still play an important role in various properties. 

The combination of experimental and theoretical "accessibifity" in ultrarcold gases 

has created great interest in investigating quantum phenomena. A major reason is 

that almost aU atoms ~ 90% occupy the same quantum state which is characterized 

by a complex order parameter which in terms of quantum mechanics is characterized 

by an amplitude and a phase. Therefore these systems are ideal for studies of 

properties that reveal its coherent nature. The existence of a common phase is 

relevant for the motion of the cloud since the superfluid velocity is proportional to 

the gradient of the phase. 

In superconductors the (relative) phase has been observed through the Josephson 
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effect [30, 31] and in superfluids through the irrotationality of the flow. In BECs 

it can be measured through interference phenomena. The simplest example is the 

interference between two independent condensates which is clear evidence for coher­

ence in such systems [32]. Two separated BECs where produced in a double-weU 

potential by splitting a magnetic trap in half with a laser beam. After switching 

off the trap, the two independent condensates expanded and overlapped. Interfer­

ence patterns in the overlapping region have been observed providing clear evidence 

for the coherence properties of a many-atom ground state with a second one. The 

relative phase between two trapped condensates in different hyperfine states and 

its subsequent dynamical evolution have been also observed in a two-component 

condensate [33]. T^mneUing effects in macroscopic systems are a manifestation of 

macroscopic quantum phase coherence and in the next section we review tunnelling 

experiments. 

1.2 Quantum tunnelling of macroscopic systems 

A Superconducting state is described by a complex order parameter that can be 

considered as a wavefunction of a macroscopic number of electrons that "condensate" 

in the same quantum state. In this sense, the superconducting state can be regarded 

as a macroscopic quantum state that possesses a quantiun phase common to all 

particles. Phase coherence can be demonstrated through the Josephson effect [30, 

31]. Josephson [30] predicted that i f two superconductors are separated by a weak 

link, then the wavefunctions describing the two systems overlap, resulting in current 

flow through the junction. The current / is related to the phase difference 4> by the 

equation 

/ = /o8m<^, (1.1) 

where 7o is the critical current of the link, that is the maximum cvurent allowed to 

flow through the junction. The phase difference can be varied by the apphcation of 
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a chemical potential difference A/ i according to the equation 

dA<f>/dt = -An/h (1.2) 

where h is Planck's constant divided by 2IT. The above equations (the dc and 

ac Josephson relations) for the cmrent and relative phase, are also applicable for 

any two weakly coupled, phase coherent systems [30, 34, 35] and in the context of 

superconducting Josephson junctions (S J Js) will be derived in the following Sections. 

In addition, if a T T phase difference is maintained across the link, so-called ir-junction 

[36], Eq. (1.1) shows that the cvurent obtains negative values [37], i.e. the current 

flow in the opposite direction to expected. 

Long after the observation of Josephson effects in superconductors, analogue effects 

in superfluid heUum were also observed. Josephson effects were first observed in ^He-

B [38, 39] and finally, almost four decades after Josephson's original paper, similar 

effects were also discovered in ^He [40]. The weak Unk which separates two heUum 

reservoirs was made using an array of 100 nm diameter apertures near the superfluid 

transition temperatiure T^. The difficulty in observing Josephson effects in hehum 

was mainly because the weak link has to be made comparable to the healing length ̂  

of the superfluid (the minimum length over which the wavefunction can change) and 

takes the values 65 nm and 0.1 nm for ^He and ^He respectively. At temperatures 

of the order of T;̂ , superfluid Josephson oscillations were observed where the flow of 

mass current across the weak Unk obeys Eqs. (1.1) and (1-2), with A / j = MAP/p, 

where p is the Uquid density, AP the pressure diffierence between the two helium 

reservoirs and M the peirticle mass. In addition, ^He exhibits Tr-states with phase 

difference of T T across the weak Unk [41], which are the superfluid analogue of a 

superconducting IT junction. 

The coherent properties of atomic BECs have been demonstrated by experiments in 

one [42, 43, 44, 45] and three dimensional [46] optical lattices through the formation 

of interference peaks when the lattice was timied off". Optical lattices are periodic 

potential structures created by the interference of laser beams. The potential is 

deep enough that atoms become trapped in the "egg-carton" like potential wells 
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but shallow enough that phase coherence between separated condensates allows the 

population to tunnel between wells. By increasing the lattice depth, the tunnelling 

is suppressed and the atoms are confined in the lattice minima resulting in loss of 

superfluidity and phase coherence. This is known as the Mott Insulator phase and 

the transition from a superfluid to Mott Insulator phase has been demonstrated in a 

recent experiment [46]. In the superfluid state the number of atoms in each well can 

vary whereas the phase is exactly the same in each well. In contrast, in the Mott-

Insulator phase, the atoms are localised at each lattice sites with an exactly defined 

number, and the phase changes randomly from one well to the next. Experiments 

with neutral atoms in optical lattices have attracted interest in realizing a quantum 

computer [47]. 

Josephson effiects in BECs have been demonstrated in one dimensional lattice. In 

[42] coherent matter wave emission was explored when atoms were released from a 

vertical array. Neglecting atomic interactions, the combination of optical plus gravi­

tational potential leads to periodic time-dependent atom current with frequency de­

termined by the gravitational potential difference between neighbouring sites. This 

effect is analogous to the ac Josephson effects in SJJs where the frequency is deter­

mined by the chemical potential difference between two superconducting reservofrs. 

More recent studies have measured the Josephson critical current in a linear chain of 

condensates produced in an optical lattice by observing the small amplitude atomic 

oscillations when the centre of the harmonic potential is suddenly displaced along 

the optical axis [43]. However if the displacement is bigger than a critical value the 

phase coherence and superfluidity of the BEC are destroyed [44]. 

Double-well systems provide simple models for understanding Bosonic Josephson 

junctions (BJJs). The aim of this Thesis is to explore Josephson effects in a double-

well potential. The motivation arises from the expectation of new dynamical regimes 

not accessible in superconducting/superfluid systems. In peirticular we find new 

effects due to the interparticle interactions which are sensitive to the choice of the 

initial conditions. 



Chapter 1. Introduction 

Magnetic [32, 48] and optical [49, 50] double-well potentials have been created in 

recent experiments and a proposal for a magnetic double-well has also been reported 

[51]. These experiments are related with the so-called "external" Josephson efTect 

in which two macroscopic states are spatially separated [2]. However up to now the 

experimental reaJization of the Josephson effects in a double-well potential is not 

possible due to the small critical current which is unobservable in current experi­

mental set ups. 

Another type of weak link was realized in JILA [52] which is related with the "in­

ternal" Josephson effect in which two states differ in an internal quantum number 

[2]. In Ref [52] *'̂ Rb atoms in two different hyperfine states were confined in the 

same magnetic trap. The system is driven by a weak field which couples the two 

internal states and transfers population back and forth between condensates. As a 

consequence Josephson-like oscillations in the relative population are observed which 

depend on the initial relative populations and phase. An analogue of this effect was 

observed in the 1970s with the ^He-A [53]. 

Considerable theoretical work based on mean-field theory has been performed on 

BECs in a double-well potential [52, 54, 55, 56, 57, 58, 59, 60, 61]. Mean-field theory 

provides an accurate description of the evolution of the macroscopic wavefunction 

and the corresponding nonlinear dynamics at low temperatures. A simplified two-

state model can be developed using the ansatz that the order parfuneter may be 

written in terms of a superposition of two wavefunctions on each well [62, 63, 64, 65, 

66, 67, 68, 69, 70, 71, 72, 73]. The dynamics is described in terms of two variables; 

the phase difference between two condensates and the relative population difference 

which is the BEC analogue of the current in S J Js. These variables obey a set of two 

coupled nonlinear equations which axe the generalization of Eqs. (1.1) and (1.2) for 

the current and the relative phase in SJJs. 

In the following sections we shall give a brief review of the Gross-Pitaevskii equation 

and introduce the Josephson equations in the context of SJJs. 
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1.3 Bose-Einstein Condensates 

1.3.1 T h e non- in t e rac t ing case 

We consider a system of N non-interacting spinless bosons, each of mass m confined 

by an externcd potential Vtrup (r) • The many-body Hamiltonian is the sum of single-

particle Hamiltonians [1, 5], 

^ = 1 ; / ^ , (1.3) 
i=l 

where is the Hamiltonian of the i th particle with spatial coordinate r . is given 

by, 

hi = -^n,+V,.,^{r,) . (1.4) 

In second quantisation and using the basis of single-particle creation a\ and anni-

lation 3 ^ operators, the many-body Hamiltonian, Eq. (1.3), of the system is given 

by, 

^ = ê mÔ Om , (1.5) 
em 

where 

€tm = j A^rri{ri)hii>m{ri) (1.6) 

is the single-particle energy expanded in the trap eigenstates %l)tm {r)- The single-

particle creation and aimihilation operators satisfy the commutation relations [5], 

a<i«m =hm, [o£,2m] = 0 and a\,a\n = 0 . (1.7) 

The equivalent form of the many-body Hamiltonian, Eq. (1.5), in terms of the quan­

tum field creation (r) and annihilation ̂  (r) operators is given by [5], 

H = y " d V ^ ^ ( r ) V ' ( r ) , (1.8) 
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where the field operators m the basis of single-particle creation and annihilation 

operators [5] can be written as, 

^Hr) = Y^i}eir)al (1.9) 

and 

i>{r) = '£^tir)ae. (1.10) 
t 

The field creation and annihilation operators satisfy the bosonic commutation rela­

tions [5], 

(r ) , (r')] = <5 (r - r ' ) , [i> (r ) , ^ (r')] = 0, [i>^ ( r ) , (r')] = 0 .(1.11) 

For an ideal Bose gas, BEC occiu-s when all atoms occupy the same single-particle 

ground state. Then the total wavefunction for the ground state of the Hamiltonian 

Eq. (1.8) for non-interacting particles is just the product of these single-particle 

ground state wavefiinctions which are given by the solution of the linear Schrodinger 

equation, i.e., 

V ' ( » - i , - , r ^ ) = I I V ' o ( n ) . (1.12) 
i 

The totsd number of atoms JV in the grand-canonical ensemble and using Bose 

statistics is given by the siun over the eigenstates of single-particle Hamiltonians hi 

[5] 

^ n . £ n . exp[^ ( . „ , , „ ! , - ; . ) ] - l ' ^'- '^^ 

where n is the chemical potential and P = ( / C B T ) " ^ . The confining potential for 

alkali atoms at low energies is given by 

Virap (r) = y {co^ + O .̂V + U>y) . (1-14) 
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The thermodynamic Umit in the case of harmonic trapping is defined by setting 
J V - > 0 0 and ujQ -> 0, with the combination JVWQ kept fixed where LJQ = {uxUytJzf'^^ 
is the geometric average of trap fi-equencies. The eigenvalues of these single-psurticle 
Hamiltonians have the form 

= (n^ + ^ ) + (riy + \^TuVy+ (n, + ^ ) • (1.15) 

The population of the ground state No becomes mjicroscopic, of the order of iV, when 

the chemical potential fi becomes equal to the energy of the lowest state eooo = 

(3/2) nuj, where aJ = (wj +u}y +tJz) /3 is the arithmetic average of the trapping 

firequencies. 

Using the condition that the excitation energies are much larger than the level spac­

ing of the trapping potential one can replace the sum by an integ^^ll over eigenstates 

of the single-particle Hamiltonian. This semi-classical approximation is vaUd when 

I f we separate the number of particles in the ground state iVo from the rest of the 

integral one can find the number of particles in the excited states 

00 

N-No= f dnxdnydn, 

The above integral can be evaluated i f we make a change of variables PhuxUx = x, 

etc, giving 

where C(x) = 1 + 2~* + 3"*̂  + + ... is the Riemann C function yielding results 

such as C (3) = 1.202, C (3/2) = 2.612, etc. We can also calculate the transition 

temperature T° , for non-interacting bosons, by setting ATQ 0 at the transition. 

One finds that 

kBlf = hujo j . (1.18) 
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Inserting the above expression for the transition temperature into Eq. (1.17) one 
finds the T dependence of the condensate firaction for T < T° , 

The above results for the trsmsition temperatiure and the condensate firaction can 

be compared with those for an ideal, i.e. non-interacting, homogeneous gas in three 

dimensions. In this case the many-body Hjimiltoniaji is given by 

2m ^ ( r ) , (1.20) 

while the eigenvalues of the eigenstates of single-particle Hamiltonians in firee space 

are given by e = p^/2m. 

Applying the same method we used for trapped bosons, one finds 

for the transition temperatme, and 

for the condensate fraction. Comparing Eqs. (1.16) and (1.19) we note that the 

trapping potential affiects the transition temperature and the number of particles in 

the condensate. We also see that for the same total number of atoms, the number 

of atoms in the ground state is larger in the case of a confined system than a fi-ee 

system. This can be explained using statistical mechanics and the energy density of 

states (see for example Huang [5]). 

1.3.2 T h e interacting case 

a. Mean-field theory 



Chapter 1. Introduction 12 

In this subsection, we consider the general case of N spinless bosons that are inter­
acting with a potential U {r — r'). The many-body Hamiltonian is given by the same 
equation as Eq. (1.8) if we add an extra term due to the interactions. Thus using 
again second quantisation and the basis of field operators the total Hamiltonian can 
be written in the form 

H = j d?r (r) - £ v ^ + K . p ( r ) V>(r) + 

^ j d V d V (r) (r ') U{r- r') i> (r ') (r) . (1.23) 

The last term represents the effects of two-body interatomic interactions (neglecting 

3-body interactions as the system is dilute). Using the same analysis as in the 

previous subsection, the field operators satisfy the commutation relations, Eq. (1.11), 

and we can expand them in the basis of single-particle creation and atmihilation 

operators, Eqs. (1.9) and (1.10). The ground-state wave function is again the product 

of N single-particle wavefunctions which are now given by the solution of a nonlinear 

Schrodinger-type equation. 

Bogoliubov was the first to describe a dilute Bose gas in terms of mean field the­

ory [1]. In the case of wezik interactions BEC occurs when a macroscopic number of 

atoms No occupies the same single-particle wavefunction and the ratio {N — No) /N <^ 

1 in the thermodynamic Umit N cx> . In this case, iVo + 1 ~ iVo and the operators 

So and OQ can be treated as real numbers: OQ = C Q = \/No, and the field operator 

can be decomposed in 

$ (r) = Vo +1?' (r) = y ' ^ + (r) , (1.24) 

where ^ ' ( r ) < ^ is called quantum depletion. Treating the depletion as a small 

pertxu-bation, Bogoliubov built the "first-order" theory of uniform Bose gases. 

b. The Gross-Pitaevskii equation 

The BogoUubov theory can also be applied for nonuniform and time-dependent 
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configurations [1]. In this case the field operator can be decomposed as 

$ ( r ,< )=V ( r ,< ) + $ ' ( r ,<) , (1.25) 

where t/* (r , t) is a classical field defined as the expectation value of the field operator, 

V" (r, = (r, t)^. I t has a well-defined phase and its modulus gives the density of 

the condensate no = IV* (r, t)^. I t is often called the wave function of the condensate 

and it characterises the off-diagoneil behaviour of the one-particle density matrix 

p{r',r,t) = {r{r\t)rP{r,t)) , (1.26) 

which is different from zero for macroscopic distances |r — r ' | of the order of the size 

of the sample (long-range order). 

In order to derive the equation of the condensate wavefunction ij} (r, t) we use the 

time evolution for the field operator $ (r, t) in the Heisenberg pictiu-e with the 

many-body Hamiltonian, Eq. (1.23). This yields. 

ih-^{r,t) = [^{r,t),H 

[I 

• ^ + Krap(r) 

d V $t {r',t)U{r-r')^{r',t) 

* ( r , f ) + 

^ $ ( r , < ) . (1.27) 

We also make some additional approximations [1]: (a) For T = 0 and for weakly 

interacting systems we can replace $ (r, t) with the classical field ip (r , t). (b) At low 

temperatures the condensates are dilute (interparticle spacing n}^^ far exceeds the 

rsmge of interactions which is determined by the s-wave scattering length, a, na^ < 

1) and the interatomic collisions are described in the limit of a-wave scattering. With 

this approximation we can replace U (r — r') with an effective interaction gS (r — r') 

where g is a coupling constant given by the equation 

, = — (1.28) 
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which characterises the strength of interparticle interactions. The value of g can 
be either zero, positive or negative according to the sign of the scattering length a. 
For 5 = 0 we recover the ideal, non-interacting Umit. Positive (negative) values of 
a correspond to efi'ective repulsive (attractive) interactions respectively. With this 
approximation for the interatomic potential and by substitution in the equation of 
motion Eq. (1.27) for the wavefunction ij} (r, i ) , one finds 

i ; i | v ( » ' , < ) = ( - ^ + Vtrap{r)+^ff |V(r , i )p )v (r ,<) , (1.29) 

where m is the atomic mass, M is the number of atoms in the condensate, g is the 

self-interaction constant and Vtrap (r) is the total confining potential. In the most 

common case of a three dimensional magnetic trap Vtrap has the form, 

Krap (r) = \m {u;i(x2 -h J/2) + ^ ^ 2 ) ^ 1 ̂ 2 ^^2 ^ ^2 _̂ ^2^2) ^ (1,30) 

where cji. and a>|| are the transverse and the social trap fi-equencies respectively and 

A = a;||/a>j. is called the asymmetry parameter. I f A = 1 the trap is spherical, 

whereas i f A < 1 the trap is "cigar-shaped" and for A > 1 the trap is "pancake-like". 

The condensate wavefunction is normalised to unity that is. 

/

+00 

-00 
\i){r,t)\^d^r = \ . (1.31) 

Eq. (1.29) is called the Gross-Pitaevskii equation (GPE). I t has the form of a nonUn-

ear Schrodinger equation. The GPE can be used to describe the behaviour of dilute 

Bose gases at low temperatures, where the depletion of the condensate is negligible. 

At finite temperatures not all the atoms are in the condensate and the GPE can 

also be generaUzed to include thermally excited particles [74]. 

1.4 Superconductors 

Superconductivity is the ability of certain materials to conduct electric current with 

practically zero resistance a phenomenon which is £inalogous to the superflow of He 
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I I through narrow channels. Analogous to helium, metals become superconductors 
below a critical temperatiure Tc- The transition to superconductivity is marked by 
a sharp discontinuity in the specific heat, contrasts to the A anomaly in helium. 

Superconductivity was first observed in 1911 by H. K. Onnes, a Dutch physicist who 

observed that mercury displayed no electrical resistance when cooled to 4 K, the 

temperature of Uquid He. Since then superconductivity has been achieved at higher 

temperatures, although the achievement of superconductivity at room temperatures 

remains an open question. 

The microscopic theory that describes superconductivity was developed by Bardeen, 

Cooper and Schrieffier and is known as BCS theory [11]. It's based on s-wave pairing 

of two electrons which form Cooper pairs in which the centre-of-mass momentum 

is zero. The attractive interaction between electrons is via the metallic lattice: i f 

an electron travels through the lattice, i t couples to the positive ions, emitting a 

phonon. I f a pair of electrons travels through the lattice, then one electron can emit 

a phonon which is absorbed by another. I t is found that the interaction involving the 

exchEinge of a phonon is negative then the force between the electrons is attractive. 

As the electrostatic (Coulomb) interaction between a pair of electrons is always 

repulsive, a material only becomes superconducting i f the net force is attreictive. At 

zero temperature the ground state of the material is described by the BCS ground 

state which is formed by Cooper pairs and is separated by an energy gap A firom 

the Fermi energy of the normal metal. 

Consider two superconductors separated by a thin insulating material which are 

close enough that one afiects the other. In this case the tunnelling of Cooper pairs 

produces "superciurrent" fi:om one superconductor to the other. The weak link is a 

junction referred to as "Josephson junction" and the tunnelling is known as Joseph-

son timnelling. There is also single electron, "normal tunnelling", in parallel with the 

Josepbson current but this normal tuimelling is very small compared to the Joseph-

son current. The Josephson efiect and Josephson junctions have many practical 

applications and perhaps the most weU known devices which utilize the Josephson 

efliect, are superconducting quantum interference devices (SQUID's). Because of 
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its importance we summarize in the next Section the basic equations that describe 
Josephson tunnelling based on a "two-level" pictiure and on the resistively shunted 
junction (RSJ) model. The derivation and notation follow that in [31]. 

1.5 Josephson Equations 

1.5.1 Two-level model 

Let us consider the system superconductor-barrier-supercondunctor. Below a critical 

temperature Tc a macroscopicaUy large number of Cooper pairs condensate into the 

ground state. We denote by * / , (*« ) the pair wavefunction for the left (right) 

superconductor so that |*|^ represents the actual Cooper pair density p. Thus, 

\-^L? = PL, and | * f l | 2 = / , f l . (1.32) 

We assume weak couphng between the two superconductors due to finite overlap 

of the wavefunctions ^L,R- In the basis of I ' f L ) , | * H ) a vector that describes the 

system is of the form, 

W = C L | * 0 + C f l | * H ) , (1.33) 

where CI^R describe the amphtudes to find a particle in the left/right state respec­

tively. The time evolution is described by the Schrodinger equation, 

ihdt\->P) = H\^) = [HL + HT + HR) \-4,) , (1.34) 

where, 

HL = EL\iili,){<5/L\ and HR = ER\^ R\ (1.35) 

are the two Hamiltonians relative to the unperturbed states and with 

Ei^R the ground state energies of the two superconductors and 

HT = K [ | * L ) ( * H | + | * f l ) ( * L | ] (1.36) 
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is the tunnelling Hamiltonian between the two states with K the coupling constant. 
Substituting Eq. (1.30) into (1.31) we find, 

ihcL = ELCL + KCR, (1.37) 

ihcR = ERCR + Kct . (1.38) 

For two isolated superconductors, the energy terms are Ei = 2fiL and ER = 2fiR 

with /if, and fiR are the chemical potentials. With a dc voltage across the junction, 

the chemical potentials are shifted thus creating an energy difference E^—ER = 2eV. 

Redefining the zero energy to be halfway between the two values on the left and on 

the right we obtain, 

= eVcL+KcR, (1.39) 

i h ^ = -eVcR-^-KcL. (1.40) 

The amplitudes CL,R can be written in terms of the density p and the phase ^, 

CL = y/pLexi){i<t>L) and CR = y/pRexp{i<f)R) . (1.41) 

Separating the real and imaginary parts in Eq. (1.40) we obtain, 

^ = iK^/pZpksm^, (1.42) 

^ = -lK,/pEpRsm4> (1.43) 

and 

= T \ / — ' ^ o ^ ' ^ ^ ^ ' (1-44) at ftVPH n ' 

respectively, where we have defined 

d4>R K , eV 
— '—COS0—— . (1-45) 

4> = <f>L-<f>R (1.46) 
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as the phase difference across the junction. The pair current density / is given by 

thus using the above equations we take 

'2K 

I =-^y/pLpRsm(l) . (1.48) 

I f we now assmne pi = PR = p Eq. (1.48) gives 

/ = /osm<^, (1.49) 

where / Q = 2Kp/h. Prom Eq. (1.45) i t follows, 
d(f> 2eV , , 

Equations (1.49) and (1.50) describe the Josephson effects in SJJ. We can define 

two cases. I f V = 0, <̂  is constant but not necessarily zero so a finite current flows 

across the junction with zero potential until a critical value / Q . However i f we apply 

a static voltage, V 7^ 0 then 

<l> = <h + ^ t and / = /osin(^<^ + ^ < j (1.51) 

which corresponds to an ac Josephson effect. Thus in this case we have a current 

across the junction which varies with time, with firequency w = 2eVlh. One possi-

bifity to observe the effect is to expose the Josephson junction to electromagnetic 

radiation of frequency u/ which leads to steps in the V — I chziracteristics of the 

junction. The steps occur at voltages, Vn = nhu}'/2eV, where n is an integer which 

identifies a constant voltage step in the V — I characteristics. 

1.5.2 Resistively Shunted Junction model 

Superconducting Josephson Junctions (SJJ) are usually modelled by the resistibly 

shunted jimction (RSJ) model. The weak link is represented by the equivalent 
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circuit of Fig. 1.1. The RSJ model assumes that each junction is equivalent to 

an ideal junction with capacitance and quasiparticle conductance in parallel with 

a Josephson element. The circuit is current biased with a dc ciurent / and an ac 

component of amphtude h. We can apply the Kirchhoff's current law to derive the 

Figiure 1.1: Circuit diagram for a Josephson junction. The x represents an ideal 
junction. 

equations for the circuit. 

dV 
I = C— + GV-{-hmi<f> with G = l/R, (1.52) 

where the first term describes the displacement current through the capacitor C, GV 

is the current through the resistor R, and Ii sin (pis the Josephson supercurrent. The 

voltage V{t) is related to the phase difference <p{t), by Eq. (1.50). Substituting into 

Eq. (1.52), we obtain, 

(1.53) 

We can define for convenience dimensionless variables. 

t' = u.jt and /3/ = ; ^ ^ , (1.54) 

where a;/ = y/2eIi/hC is the plasma frequency, yielding, 

(1.55) 



Chapter 1. Introduction 20 

where a = / / / i is the normalized current. Eq. (1.55) is not analjrtically solvable 

except in the case in which the second derivative term is neglected. In other cases 

solutions can be obtained numerically or by using mechanical models such as a single 

rigid pendulum of mass m and length ^, where 0 is the angle fi:om the vertical, shown 

in Fig. 1.2. In this case using Classical Mechanics the equation of motion describing 

Figure 1.2: Single pendulum of mass m, length I, and 0 is the angle fi:om the vertical. 

the pendulum is, 

To = A f / ^ or Mrg - mgisva.6 - = 
dt^ (1.56) 

where M / is the moment of inertia and To is the total torque which has three terms: 

the first term is the applied torque T Q , the second term represents the torque due to 

gravity and the last term is the opposing torque due to fi-iction with Dt the damping 

coefficient. Eq. (1.56) becomes. 

dd 
Ta = ^i-j^ + + mgisinO (1.57) 
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Introducing the parameters, 

T = UMt, /3„ = - ^ ^ ^ and UM = {rngtlMif'^ , (1.58) 

Eq. (1.57), becomes. 

There are close analogies with Eq. (1.55) that describes the Josephson weak Unk as 

shown below: 

/ (external current) - (applied torque) 

C (capacitor) -> MI (moment of inertia) 

(resistor) -> A (damping coeflBcient) 

lo (maximum current) -> mgt (maximum torque due to gravity) 

<i> (phase difference) -> e (angle firom the vertical) . 

The mechanical analogue of a rigid pendulum has been successfully used to describe 

SJJs and in the following Chapters we shall see how this model is modified to describe 

BJJs as well (see Chapter 4). 

1.6 Plan of Thesis 

In this thesis we shall investigate Josephson effects in dilute, weakly interacting, 

low temperature aUcafi gases confined in a double-well potential within the Gross-

Pitaevskii mean-field theory. 

In Chapter 2, we review stationary solutions to the GPE for different single-harmonic 

trap geometries smd values of the nonlinear parameter. We introduce the Thomas-

Fermi approximation and study dynamical properties of the condensate such as 

collective excitations. In Chapter 3, we expand our previous knowledge of a BEC 
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in a single harmonic trap to a double-well potential and study eigenenergy states 
by numerical solution of the GPE and the two-state model. In Chapter 4 we begin 
our study of Josephson dynamics in a double-well potential by considering solutions 
from the two-state model for the ground and first excited states that have equal 
populations at the centre of the trap. In Chapters 5 and 6 we go beyond the two-
state model by considering ful l integration of the GPE to study the dynamics for 
ground and first excited states respectively. In Chapter 7, we study properties of a 
BEC with attractive intereictions in both a single trap and a double-well potential. 
In the latter case, the dyneimical properties of such system are examined in Chapter 
8 and we extend our studies to a multi-well system. The Conclusions summarise the 
main results. 

Several topics discussed in this thesis have been published in the following papers: 

• Josephson spectroscopy of a dilute Bose-Einstein condensate in a double-well 

potential, E. SakeUari, M. Leadbeater, N. J. Kylstra and C. S. Adams, Phys. 

Rev. A. 66, 033612 (2002). 

• Josephson tunnelling of a phase imprinted Bose-Einstein condensate in a time-

dependent double-well potential, E. SakellMi, N. P. Proukakis, M . Leadbeater 

and C. S. Adams, New J. Phys. 6, 42 (2004). 

• Tunnelling induced collapse of an atomic Bose-Einstein condensate in a double-

well potential , E. Sakellari, N. P. Proukakis and C. S. Adams, submitted 



Chapter 2 

Numerical solutions of the 
Gross-Pitaevskii equation 

We present numerical solutions of the stationary Gross-Pitaevskii equation, GPE, 

for positive and negative scattering lengths. We begin by expressing GPE in dimen-

sionless units and define the energy functional. We show how to reduce the three 

dimensional GPE to a one dimensional equation. We present numerical results in 

one and three dimensions in the case of a spherical and a cylindrical trap and con­

sider the Thomas-Fermi limit. Finally we study collective excitations and compare 

the numerical results with analytical solutions, providing a stringent test of our nu­

merical methods. 

2.1 Introduction 

At low temperatures, the behaviour of a Bose-Einstein condensate is accurately de­

scribed by a nonlinear Schrodinger equation known as the Gross-Pitaevskii equation, 

(GPE), [1, 2] 

ih^'^ir,t) = ( - ^ + Vtr,Ar)+Mg\i^{r,t)f]^Pir,t) , (2.1) 

where g = 4nh^a/m is the usual three-dimensional scattering amplitude, defined 

in terms of the «-wave scattering length a, and Af is the total number of atoms 

23 
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(mass m). The function (r,<) is an order parameter and can be regarded as the 
wavefunction of the single-particle state into which condensation occurs. Vtrap (r) 
represents the total confining potential. Large stable condensates can be produced 
for positive values of the scattering length which correspond to repulsive interac­
tions. On the other hand, spatially confined condensates with negative values of 
the scattering length become unstable against collapse if the number of atoms in 
the condensate increases above a critical value [1, 15, 75, 76, 77, 78, 79]. Although 
at low temperatures the atomic clouds realized in experiments are dilute, the ef­
fects of interactions are important and determine the shape, energy and elementary 
excitations of the condensate cloud. 

GPE has been successfully apphed to the dilute, near zero temperature Bose gas. 

Numerical solution of the GPE (2.1), has been obtained by several authors see for 

example [1, 75, 80, 81, 82, 83]. Solutions of the GPE provide information about the 

density, chemical potentijj and the evolution of the condensate. Early experimental 

studies also confirmed that the GPE is accurate in the low temperature limit [84, 85]. 

I t is convenient to work in dimensionless units. Therefore we begin this Chapter 

in Section 2.2 by rescaling the GPE (2.1), and the nonlinearity g in dimensionless 

units and discuss typical numbers of atoms in the condensate Af. In Section 2.3 we 

introduce the three dimensioneil energy functional. In Section 2.4 we show how to 

reduce the three dimensional GPE to an effective one dimensional equation in the 

limit of tight transverse confinement. We present numerical solutions in one and 

three dimensions in Sections 2.5 and 2.6 respectively. We consider both cases of 

repulsive and attractive interactions. We then discuss in Section 2.7 the so-called 

Thomas-Fermi approximation, where the ground state can be calculated analyti­

cally. Finally, in Section 2.8 we discuss the dynamic behaviour of the condensate by 

studying the collective modes. 



Chapter 2. Numerical solutions of the Gross-Pitaevskii equation 25 

2.2 Harmonic Oscillator Units 

For harmonically confined gases we use the so-called harmonic oscillator imits (h.o.u.). 

The distance unit that is associated with the size of the confining potential is the 

oscillator length aj . = ^h/mLJ±_ in the transverse direction(s) and ay = ^h/m(j}\^ in 

the 2:-direction, which denote the size of the noninteracting ground state wavefunc-

tion in a harmonic oscillator potential with transverse and longitudinal confining 

firequencies a>_L and UJ||, respectively. Using the above lengths the spatial transfor­

mation to the harmonic oscillator units becomes, 

r'i = ax V , , (2.2) 

where the index i = 1,2,3 denotes the three space coordinates x,y,z. Similarly, 

time and energy are defined in terms of the transverse trap firequency, 

t' = cj±t , (2.3) 

and 

= {huA,)-^ E . (2.4) 

With these transformations the normalisation condition for the condensate wave-

fimction tp (r,<), becomes, 

r ° ° | V ( r , ^ ) | V r = r ° ° | V ' ' ( r ' , < ' ) | V r ' = l (2.5) 
J—CO J-oo 

where, 

V ' ' ( r ' , < ' ) = « i - " ' ^ V { r , i ) , (2.6) 

is the wavefimction in h.o.u. Applying all the above transformations, we obtain 

the following dimensionless GPE fi-om Eq. (2.1) (primes henceforth neglected for 
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convenience). 

i | ^ ( r , t ) = - - V ^ + l ^ ( r ) + 5 3 D | V ( r , 0 r ^{r,t) (2.7) 

where, V (r) represents the total confining potential and 

•A/'g 47rA/'a 
5 3 0 = - 3 T — = (2-8) 

is the three dimensional nonlinearity in h.o.u. The ratio gso/^'"^ introduces m im­

portant paxfimeter Ma/a± which characterizes the effects of the interparticle inter­

actions Eint, on the zero point kinetic energy, Skin of the condensate at T ~ 0. 

I t is obtained by evaluating the ratio -Bint/^ldn: The interaction term is given by 

gAfn, where n = Af/a^ is the average density of the gas, thus Emt ~ /P\a\/a^. 

Moreover the kinetic term is of the order of A/hujo or equivalently E]d„ ~ Afa^^. 

Taking the ratio £?int/^kin we find Eq. (2.8). The importance of this parameter wiU 

be emphasised throughout the Thesis. 

In order to derive stationary solutions of Eq. (2.7) we use the trajisformation 1/' (r , t) = 

exp (-i/i<) * (r) and we obtain the three dimensional time-independent GPE, 

/ i * (r) = -^V2 + 7 ( r ) + f f 3 D | * ( r ) | 2 * ( r ) , (2.9) 

where / i is the dimensionless chemical potential of the three dimensional system. 

Rearrcinging the terms in the equation for 530, Eq. (2.8), one finds the following 

expression for the number of ptuiiicles in the condensate .A/", 

^ ^ ^ O^ f K L = J - / A ^ . (2.10) 
47r a 47ra y ma>x 47ra y m ^ tu j . 

We can also find an expression to introduce the asymmetry parameter A via wj . = 

aj||/A. I t is clear from Eq. (2.10) that for a given type of atoms, large number 

of condensate atoms M can be obtained by increasing the nonlinearity gso and 

for small firequencies and and large values of A. Eq. (2.10) shows that M is 

inversely proportional to the mass m and the s-wave scattering length a, therefore for 
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given transverse trap frequency and nonlinearity, larger values of A/" can be obtained 
with lighter atoms. In Tiibles 2.1 and 2.2 we give typical values of the number of 
particles in the condensate A/" in the case of positive and negative scattering length 
respectively for a given choice of the nonhnearity ^ S D • 

Elements scattering length (nm) mass (10~^^Kg) {1/4IT a\)y/h/m M 
1.40 1.661 14300.12 11 X 10^ 

^He 16.00 6.644 626.11 3500 
23Na 2.79 38.203 1502.23 8500 
4lK 3.44 68.101 910.09 5106 

«7Rb 5.77 144.507 215.34 1200 
i33Cs 23.28 220.913 74.52 420 
174Yb 6.00 289.014 0.25 2 

Table 2.1: Atom number M corresponding to a dimensionless nonlinear coefficient 
53D = IOTT and u}±_ = IOTT for various atomic species. 

Elements scattering length (nm) mass (10-"Kg) (l/47r|a|)v^ft/"i M 
^Li -1.45 11.627 5231.23 1470 

«5Rb -19.52 141.185 108.91 30 

Ikble 2.2: Same as Table 2.1 but now we consider gso = 0.5TT for the elements with 
negative scattering length. 

2.3 Energy functional 

The three dimensional energy functioned in h.o.u. is defined by, 

m ] = / d r [^ |V*( r ) |2 + Hrap (r) Mr)]' + ^SsDl^Cr)!" 

= Ei,i„ + Epot + Eint. (2.11) 

The first term represents the mean kinetic energy of the condensate E}an, the second 

term is the mean potential energy Epot and the last term is the mean-field interaction 

energy Ei„t. In case of a harmonic trap (Eq. (1.30)), '̂pot represents the harmonic 
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oscillator energy £ho and has the form, 

Euo = \{x' + y' + X'z') . (2.12) 

Comparison of Eqs. (2.9) and (2.11) yields, 

/ i = ^ + ^ f f 3 D / d r | * | \ (2.13) 

therefore in the interacting case, gsD ^ 0, the chemical potential is not equal to the 

mean energy per particle [2, 86, 87]. 

2.4 Reduction from three to one dimensions 

Recently there has been an interest in studying theoretically the properties of quasi-

one dimensional trapped atomic gases, see e.g. [88, 89, 90, 91]. Moreover one dimen­

sional Bose systems have also been prepared experimentally showing the transition 

firom three to one dimension^ behaviour [92, 93, 94, 95). These are systems which 

can be reached by applying a strong confinement in the transverse, x-y plane such 

that all thermal and interatomic induced excitations are suppressed. The condition 

that the one dimensional Umit is reached is / i < and AflT hu}± where 

is the three dimensional chemical potential and wj . is the frequency of the trans­

verse confinement. In this limit the BEC can be described by a one-dimensional 

Bose gas in the axial, ^-direction. Let us consider a we£ikly interacting BEC in 

a cigar-shaped condensate, A < 1. The total wavefunction of the condensate is 

•ilf{x,y,z,t) = (l>{x,y)^{z,t) where <f>ix,y) is normalised to unity. In the case of 

weakly mteracting BECs we can assume a Gaussian ansatz for the (f>{x,y) wavefunc­

tion, 

cf>ix,y) = ^exp[-{x^ + y^)/2]. (2.14) 

Substituting the above expression in the three dimensional energy functional (Eq. (2.11)), 

in the presence of a harmonic trap (Eq. (1.30)), and integrating the two transverse 
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degrees of fi-eedom we obtain the one dimensional energy functional, (see Appendix 
B for analytical derivation), 

EiD^ = Jdz [ i | V $ | 2 + (Viz) + 1)|*|2 + ig iDl* ! ' ] . (2.15) 

In the above equation the constant 1, in units of hiv_\_, corresponds to the zero-

point energy in the transverse directions and giB is the one-dimensional nonlinear 

parameter, given by [86, 87], 

9W = ff3D / drrdj/|<^(x,y)|^ = ^ . (2.16) 

The reduced one dimensionjil GPE is obtained by using a variational method, 

and has the form, 

i d t ^ z , t ) = ( - \ ^ + (V(z) + l)+g,T,mz,t)\''^^z,t) , (2.18) 

where *(z, t ) is normalized to unity, gm is the one dimensional self-interaction 

parameter and V{z) is the confining potential in the axial direction. We can replace 

$ = tjjexpl—it) which drops the constemt 1 a n d obtain the one dimensiouEil time-

dependent GPE, 

idtrl>iz,t) = (^-\-^ + V{z)+giT,\iP{z,t)f^^iz,t) , (2.19) 

with the normalization condition for the wavefiinction, 

r"\^{z,t)\''dz^l. (2.20) 
J-oo 

To find stationary time-independent solutions of Eq. (2.19) we make the substitu­

tion tp{z,t) = exp(-i/ i i£)i)*(z) for the condensate wave function in one dimension. 
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where HID is the one dimensional chemical potential. Applying the above transfor­
mation to Eq. (2.19) we find the following time-independent equation for '5(z) in 
one dimension, 

/ i i o* (^ ) = ( - ^ ^ + Vi^) + 5 I D | * ( - ^ ) | ' ) * W • (2.21) 

We stress that ^{z,t) = exp(—z^3£)i)*(z) thus combining the above transformations 

for the wavefunction ^{z,t), we obtain HZD = HID + 1. For a weakly interacting 

and elongated BEG, we expect the three and one dimensionfil results to be in good 

agreement which shows the one-dimensional behaviour of a BEG confined in a cigar-

shaped trap. The agreement becomes worse in the Thomas-Fermi (TF) limit which 

will be discussed in the following sections. For more details on the comparison of 

three and one dimensional results see Chapters 3 and 6. 

2.5 One dimensional solutions of the G P E 

We calculate numericEilly the time-independent solutions of Eq. (2.21). In the case 

of a harmonic trap in the axial direction, the one dimensional time-independent 

Eq. (2.21) becomes, 

HID^Z) = ^ - i ^ + 1̂ 2 + ffiD|*(z)|2^ *(z) , (2.22) 

where the wavefunction satisfies the normalization condition Eq. (2.20) and giD = 

2Ma/ax is a dimensionless coefficient that characterises the strength of interparticle 

interactions. 

For strong repulsive interactions, the interactions dominate and we can drop the 

kinetic term in Eq. (2.22). This is called the Thomas-Fermi (TF) limit and the 

density profile takes the parabolic form, 

|*(^)P = Ml£JlX(£) . (2.23) 
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Substituting Eq. (2.23) into Eq. (2.20) one obtains an expression for the chemical 
potential in one dimension in the TF-limit which has the form, 

We solve numerically the one dimensional GPE (2.21), for various values of the 

one dimensional nonlinear parameter gw using Newton's method [96]. As an ini­

tial wavefunction we consider the normalised nth order wavefunctions of the linear 

Schrodinger equation in the presence of a harmonic trap, 

where -Hn(^) are the nth order Hermite polynomials. 

In Fig. 2.1 we plot density profiles for the three lowest energy states for positive 

values of [97]. We note that in all cases the density profiles tend to spread 

out when gm > 0 increases. Moreover the distjince firom the origin to the density 

distributions changes very little as gin > 0 increases for the first excited states, 

Fig. 2.1(b), whereas for the second excited states, the distance of the second node 

approaches a fixed separation increasing giu, as shown in Fig. 2.1(c). In Fig. 2.2 

we plot the chemical potential as a function of the nonlinear constant ^ I D > 0 for 

the ground and the first two excited states. We also plot the TF limit for the 

one dimensional chemical potential given by Eq. (2.24). We note that for large 

nonlinearities ^ I D the ground state approaches the TF limit. In Fig. 2.3(a) we 

plot density profiles for the ground state in the case of negative scattering length. 

We note that in contrast to repulsive interactions, attractive interactions, ^ I D < 0 

increase the central density. In Fig. 2.3(b) we plot the ground state eigenenergy / i , 

as a function of the nonlinear constant giu- Fig. 2.3(b) shows that values of /x can 

be found for all the values of (both positive and negative). For further details 

about the one dimensional solutions of the GPE in the case of attractive mteractions 

see Chapter 7 and Appendix C. 
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0.2 k-

Figure 2.1: Condensate density against the position z, for (a) the ground, (b) 
first and (c) second excited states for positive values of the nonlinear constant giD =: 
0, (solid), 40, (dotted) and 100 (dashed) lines. 

'1D 

100 

Figure 2.2: Chemical potential n, for the grotmd state, (solid), the first, (dashed) 
and the second (dotted lines) excited states for positive values of the nonlinear 
constant gn,. The chemical potentisJ for the TF-limit, Eq. (2.24), is also plotted 
as dashed-dotted line. Inset the chemical potential for the ground (solid) and the 
TF-limit (dashed-dotted) Unes. 
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Figure 2.3: (a) Density profiles, as a function of the position z, for various 
values of the nonlinear constant 5ID " -10, - 7 , - 5 , -2.5,0 (in terms of increasing 
width), (b) Eigenenergy value, / i , for the ground state as a function of the nonlinear 
constant ^ I D . 

2.6 Three dimensional solutions of the G P E 

We solve the three dimensional time-independent GPE (2.9) in an anisotropic axially 

symmetric trap. We calculate relevant quantities such as the condensate wavefuction 

at T = 0 and chemical potential of the condensate [1, 75, 81, 82], vortex states [81, 

82, 98] and we finally discuss the behavioiu: of elementary excitations [1, 99,100,101]. 

2.6.1 Basic Equations 

Let us consider an axially symmetric trap of the form. 

Hrap(r) = i ( r i + A V ) , (2.26) 

with = a;2 + y2 -pĵ g dimensional time-independent GPE (2.9) in the 

presence of an axially symmetric trap, Eq. (2.26) has the form. 

(r) = [ - i V ? ^ , ^ , , + 1 (ri + A V ) + g3D|*(r)p] *(r) , (2.27) 
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where fj, is the chemical potential of the ful l three dimensional system, V ^ ^ ^ ^ is the 
Laplacian in cylindrical coordinates [6], 

A = tJz/<^± is the asymmetry parameter, 'J'(r) is the condensate wavefiinction nor­

malised to unity (Eq. 2.5) and 330 defined in Eq. (2.8), is the three dimensional 

nonlinear coefficient. The most general solution of Eq. (2.27) can be written as 

* ( r ) = *'(r)exp(z5(r)) , (2.29) 

where (r) P = p (r) is the number density while 5 (r) is the phase. I f the solution 

is axially symmetric, for example a vortex state, then S (r) = K<f>, where <f> is the 

azimuthal angle around the vortex axis, and K is the quantum of circulation. The 

velocity field is given by « = (h/m) VS, therefore 'd K 0 one has vortex states 

with tangential velocity 

V = — K (2.30) 
mr_L 

and angular momentum along the z-axis nh. Using transformation Eq. (2.29), the 

expression of the nonlinearity given by Eq. (2.8) and substituting in Eq. (2.27) one 

finds, (neglecting the primes), 

H<S! (r) = [ - i V ? ^ , , + C/eff (r) + 53D|*(r)|2] ^ (2.31) 

where, 

f̂ efr(r) = ^ + i ( r i + A V ) , (2.32) 

which diflfers from Eq. (2.27) because of the centrifugal term. Due to this term, 

solutions of Eq. (2.31) for K ^ 0 have to vanish on the ^-axis within a core of 

radius the healing length ^ [102] and ensures that the kinetic energy remains finite 

as -> 0. 
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2.6.2 Ground state solutions 

We solve numerically Eq. (2.31) in the presence of the potential Eq. (2.32) for K = 0 

and for various values of the nonUnearity 530 using the Crank-Nicholson method 

[96]. As initial wavefunction we consider the normalised wavefunctions of the linear 

Schrodinger equation in the presence of a harmonic trap, 

*(r) = exp ( - ( r i + z')/4) . (2.33) 

In Fig. 2.4 we show typical density plots in the r and the z direction, for positive 

values of the three dimensional nonlinear constant 530 and for different geometries. 

As in the one-dimensional case, we note that repulsive interactions decrease the 

central density and the condensate spreads out increasing 530- Moreover Fig. 2.4 

shows that the trap geometry modifies the density profiles with a tighter potential 

resulting in higher centred density. Thus although the size of the condensate is silmost 

the same in the r-direction. Figs. 2.4(a)-(c), stronger confining potential in the z-

direction, (A > 1), results in smaller spatial extension along that axis. Fig. 2.4(f). 

In Fig. 2.5 we plot the chemical potential for positive values of 53D for different 

geometries. We note that for A = 1 and for 530 = 0, / i = 1.5 which is the exact 

solution in the non-interacting hmit. 

In Fig. 2.6 we plot the stationeiry solutions of Eq. (2.31) for a range of values of 

93D < 0, and A^ = 1/8,1,8. Apart fi-om the same effects in the density profiles 

due to the confining potential as in the case of repulsive interactions, (Fig. 2.4), 

there are interesting effects arising fi-om the attractive nonlinearity. Comparing with 

Fig. 2.4 we note that an attractive (repulsive) interaction increases (decreases) the 

central density which is similar to the one dimensional case. In addition, the spatial 

extension of the system decreases, increasing the interaction energy and eventually 

tends to zero. Thus in the case of a three dimensional Bose gas confined in a trap, 

increasing the number of atoms in the condensate, above a critical number A/'cri can 

cause the collapse of the gas [1, 15, 75, 76, 77, 78, 79]. The study of collapse is an 

important feature in the case of Bose gases interacting with attractive forces and 
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Figme 2.4: Condensate densities along the r-axis (upper row) and along the z-
axis (lower row) for (a) and (d) = 1/8, (b) and (e) A = 1 and finally (c) and (f) 
A^ = 8. Black solid fines correspond to the non-interacting case, dotted, long-dashed 
and grey fines correspond to gsu = 5,10 and 20 respectively. 

will be discussed in more details in Chapters 7 and 8 and Appendix C. 

2.6.3 Vortex states 

In the previous subsection we showed how vortex states can be obtained fi:om the 

GPE (2.27). Quantised vortices have been the object of both theoretical (see for 

example an excellent review [98] and references therein) and experimental work 

[103, 104, 105, 106, 107, 108]. Here we consider states having a vortex line along 

the z-axis and we solve the time-independent GPE (2.31) states with K ̂  0 using 

the Crank-Nicholson method [96]. For weak interactions the vortex condensate 
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Figure 2.5: Chemical potential for the groimd state for positive values of the 
nonlinear constant 530 for = : 8 (dashed), 1, (sohd) and 1/8 (dotted) lines. 

wavefunction is well approximated by [81, 109], 

* K O c r l e x p ( - ( r i + ^2)/4^ . (2.34) 

In Fig. 2.7 we plot typical condensate densities for states with vorticity, K = 1 and 

K = 2, for positive values of the nonlinear constant 530 and for A = 1. These states 

correspond to atoms flowing around the 2!-axis with angular momentum h and 1h. 

We note that the density at the centre of the vortex core is zero and that the vortex 

core radius remains constant for increasing ^30. In Fig. 2.8 we plot density profiles 

in the rz plane for K = 1 and K = 2 vortex states. Fig. 2.8(b) and (c) respectively 

for a value of nonlinearity 930 = 71. In Fig. 2.8(a) we also plot the K = 0 ground 

state. Prom Fig. 2.8 we notice that due to the centrifugal term, i.e. first term in 

Eq. (2.32), atoms are pushed away from the z-axis forming a toroidal cloud [81]. 
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Figure 2.6: Same as Fig. 2.4 but now 530 = : 0, (solid), -2 . 5 , (dotted) and - 3 . 5 
(dashed) lines. 
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Figure 2.7: Condensate densities for states with vortices in a spherical trap, A = 1 
for (a) «; = 1 and (b) K = 2. Solid Unes correspond to gao = 0,10,20,35 and 60 in 
order of increasing width. 

2.7 Thomas-Fermi limit 

In the case of an assembly of atoms interacting with repulsive forces, solutions of 

the GPE (2.31) in the large interacting Umit take a rather simple form [1]. 

In the previous subsections we found that for repulsive interactions, increasing gao, 

the wavefunction spreads out and for large interactions the density becomes approx­

imately parabolic. This can be shown by neglecting the kinetic energy term in the 

GPE (2.31) givmg 

/ i * (r) = (t/eff (r) + 5 3 D | * ( r ) | 2 ) ^ ( ^ ) ^ 

which has the solution 

(2.35) 

| * ( r ) |2 = 
/ i - f7eff(r) 

53D 
(2.36) 

for | r | < |rc| where TC is given by the solution of / i = V^{r) and is zero elsewhere. 
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Figure 2.8: Density plots in the rz plane for the condensate wavefunction for (a) 
the ground K = 0 and (b) and (c) vortex states with K = 1 and 2 respectively. In all 
cases gsB = 71. 
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Prom Eq. (2.36) and using the normalisation condition Eq. (2.5) for the condensate 

wavefunction one finds the value of n for the ground state, « = 0, as a function of 

the nonlinear constant 530, 

(2.37) 

in hcirmonic oscillator units. 

In Fig. 2.9 we plot the chemical potential / i obtained by solving numerically Eq. (2.31) 

for A = 1, K = 0, (dot-dashed hne), and K = I (dotted line). Fig. 2.9 shows that 

for large values of ^30 the chemical potential / i approaches the TF value Eq. (2.37) 

for the ground state, whereas the first excited (vortex) state is constantly shifted by 

K (in h.o.u.) compared to the TF solution, Eq. (2.37). For large gsD the energy is 

given hy n = 1 + + K [81] using the dimensionless units and the notation of the 

previous subsection. 

Figure 2.9: Chemical potential for the ground, K = 0, (dot-dashed) and the first 
excited, K = 1, state (dotted) line. The TF limit, (Eq. (2.37)) is also plotted 
as solid line. Inset we plot the chemical potential for large 330-
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2.8 Dynamic Properties of trapped Bose-Einstein Con­
densates 

Oiu: aim in this section is to discuss the behaviour of the elementary excitations 

of the ground state and a single vortex line along the symmetry axis of an axially 

symmetric trap, Eq. (2.26). For a spherical trap the solutions are characterized by 

the quantiun numbers n, ̂ , m, where n corresponds to the number of radial modes 

and I is the total angular momentum and m its z component. For axially symmetric 

traps m is still a good quantum number asiA we can find the dispersion law for 

particular cases. Stringari [99] proved that the dispersion law for ^ = 2 and m = 0 

is given by [99] 

0)2 = 0) = Ji {2 + - 16A2 + 16^ , (2.38) 

where A = w^/wj. is the asymmetry parameter. When A -> 1 the above equation 

gives, w- (m = 0) = v/2a;x and w+ (m = 0) = y/bu}±_ which correspond to the hydro-

dynamic predictions for the quadrupole (n = 0,^ = 2) and monopole (n = 1,^ = 0) 

firequencies in a spherical trap [99]. When A < 1 (cigar-type geometry) the two 

firequencies become ^ | emd 2LO^_. In the opposite limit A 3> 1 (pancake-type 

geometry) the two solutions are and v ^ ^ . 

We compare the above analytical results by solving the GPE (2.27) numerically 

using the Crank-Nicholson method [96] and a potential of the form Eq. (2.32) with 

A = 1. We study the collective osciUations along the axial direction of a condensate 

without a vortex K = 0 [84, 99] and in the presence of a vortex line along the axial 

direction, K = 1 [100, 101]. We study the response of the condensate by a small 

increase of A at t = 0. We determine the quadrupole emd monopole modes along 

the axial direction by calculating the foUowrng integrals [110], 

q^ = j (3^2 - r 2 ) |*(r)|227rrxdridz (2.39) 



Chapter 2. Numerical solutions oj the Gross-Pitaevskii equation 43 

and 

= J r\<b{r)f2iTr_i_dr_idz (2.40) 

where = r̂ ^ + 2^. 

3f 

2.5 
>-
1 2 
LU 

2 1.5 
EH 

1 

0.5 

(a) 

0 100 
g 

200 

3 

2.5 
>-
o z 2 m 
Sl.5 

o z 2 m 
Sl.5 —• 

a: 
LL 1 (b) 

0.5 
0 200 400 

3D g 3D 

Figure 2.10: Monopole (grey) and quadrupole (black hne) frequencies obtained from 
the numerical solution of the GPE (2.27) for an isotropic trap, A = 1. (a) shows the 
case with no vortex K = 0 and (b) shows the two modes in the case of a vortex line 
along the z-sxis, K = 1. 

In Fig. 2.10 we show the behaviour of these modes as a function of the nonhnear 

constant gso, without a vortex, (Fig. 2.10(a)), and with a vortex, (Fig. 2.10(b)). 

We observe that for large nonlinearities (TF-limit), the solutions for the two modes 

approach the asymptotic results and y/5 for the quadrupole and monopole fre­

quencies respectively. We observe that for the noninteracting limit (gao = 0) one 

recovers the harmonic oscillator prediction a; = 2u}± [99] while for large gau the two 

frequencies in the presence of a vortex are shifted compared to the K = 0 case [101]. 

Both figures show a cut-off in the frequencies for negative values of gao, which co­

incides with the instabiUty mentioned in Section 2.6. However, comparing the two 

graphs. Fig. 2.10(a) and (b), we observe that the K = 1 state is more stable than 

the state without a vortex. For more details about this instabUity see Chapters 7 

and 8 and Appendix C. 
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In this Chapter we reviewed some basic properties that describe a dilute BEC con­

fined in a single harmonic trap by numerical solution of the GPE. In the following 

Chapters we apply this knowledge to describe the behaviour of BECs confined in a 

double-well potential. 



C h a p t e r 3 

Eigenenergy levels of a B E C in 
double-well potential 

We study the eigenenergy levels of a dilute BEC with repulsive interactions, confined 

in a double-well potential. By solving the time-independent GPE in one and three 

dimensions, we show that the nonlinearity leads to the appearance of loop structures 

in the higher energy levels. We show that the eigenenergies can be reproduced by 

the two-state model and we compare the model curves with the exact solutions of the 

GPE. 

3.1 Introduction 

The creation of superconducting [111] and superfluid [112] weak finks has led to the 

experimental observation of Josephson effects [30], arising as a result of macroscopic 

quantum phase coherence. Josephson weak links are typically created by connecting 

two initially independent systems (superconductors / superfluids) via a barrier with 

dimensions of the order of the system heaUng length. Such junctions lead to a variety 

of interesting phenomena [31], including dc- and ac-Josephson effects. Observations 

in superconductors preceded those in superfluids, due to the much larger healing 

lengths, thus enabfing easier fabrication of weak finks. Evidence for Josephson-Uke 

effects has been observed in '*He weak finks [40], and imequivocaUy demonstrated 

for weakly-coupled 'He systems [113]. The recent achievement of dilute trapped 

45 
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atomic Bose-Einstein condensation (BEC) [13, 14, 15, 16, 17, 18, 19, 20, 21, 22] 
gives rise to a new system for studying Josephson effects in neutral quantum flu­
ids, with the creation of atomic BEC Josephson junction arrays, in which the har­
monically trapped atoms are £idditionally confined by an optical lattice potential, 
generated by far-detimed laser beams. Phase coherence in different wells is ob­
served by interference experiments of condensates released from the lattice [42]. 
In addition, Josephson effects [43] and the control of tunneUing rate have been 
demonstrated [46]. Although experiments (and theoretical analysis) of such sys­
tems are well underway, deeper insight into the diverse range of Josephson phe­
nomena can be obtained by lookuig at the simplest single junction, double-well 
system which is the main subject of this Thesis. This system has already re­
ceived considerable theoretical attention, with treatments based on zero temperature 
mean field theory [52, 54, 55, 56, 57, 58, 59, 60, 61] and a two-state approximation 
[62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73]. 

In this Chapter, we begin our studies of dilute BECs in a double-well potential, by 

exploring the eigenenergy structure of such system. In Section 3.2, we present the 

model we use to obtain the eigenenergy curves and states based on numerical solution 

of the GPE and on the two-state model approximation [62, 63, 64, 65, 66, 67, 68, 

69, 70, 71, 72, 73]. Next, in Section 3.3, we calculate numerically the eigenenergies 

of an one dimensions^ double-well potential as a function of the barrier position and 

we compare the results with the two-state model solutions in Section 3.4. In Section 

3.5 we study three dimensional solutions of the GPE and finally in Section 3.6 we 

compare to the one dimensional results. In both limits, in the vicinity of a level 

crossing the nonlinearity leads to triangular structiures in the eigenenergy curves 

[114]. Similar structures have been shown to occur in a nonlinear Landau-Zener 

model [115], and near the zone boundary in optical lattices [116, 117, 118]. 
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3.2 Description of the Model 
3.2.1 G P E solutions 

First we present the eigenenergies of the double-well potential, based on numerical 

solution of the GPE. We begin by considering a one-dimensionjj model described 

by the GPE, 

i ^ V ( ^ , < ) = -^V^'^{z,t) + V,o(zMz,t)+gwmz,t)\''i>{z,t) . (3.1) 

Here gm = 2/\fa/a_i is the one dimensional nonlinear pfirameter, defined in terms 

of the s-wave scattering length a, Af is the total number of atoms with mass m and 

a J. = s/KJnuJx is the harmonic oscillator length in the transverse direction(s). We 

have concentrated on a system confined by the potential 

V^iz)='^z^ + heM-iz-zo)^], (3.2) 

describing a harmonic trap with a Gaussian potential barrier with height h, unit 

width, displaced by a distance ZQ from the centre of the trap. For = 0 the 

double-well is symmetric whereas for zo > 0, the double-well is asymmetric and the 

right well obtains higher potential energy. This model fecilitates an exploration of 

a wide range of values of the nonlinearity, gm, barrier height, h, (considered in this 

Chapter) and barrier velocity, v = zo/t (discussed in following Chapters). 

The above one dimensional model can be generalized to three dimensions. In the 

latter case, the asymmetry was induced by an additional linear potential of gradient 

6 pivoted at the centre of a harmonic trap. However as i t will be verified in later 

Sections, the results obtained by this three dimensional model are similar to those 

described in the one dimensional case. The three dimensional model is described 

by the following dimensionless GPE, describing the evolution of the condensate 

wavefimction (normalised to unity) 

^ir,t), (3.3) 



Chapter 3. Eigenenergy levels of a BEC in double-well potential 48 

where the atom-atom interaction is parametrized by gso = g/{a\ti(j±), where 
g = iMnh'^a/Tn is the usual three-dimensional scattering ampUtude, and the three 
dimensional confining potential has the form, 

Vir) = ^ [ ( l2 + ^ ;^2^2] + [_ (2/u,)2] + Sz . (3.4) 

The first term describes a cylindrically symmetric harmonic potential, with a trap 

aspect ratio A = LJ\\/U±: the trap is spherical for A = 1, "cigjir-shaped" for A < 1 

and "pancake-Uke" for A > 1. The second term describes a Gaussian potential of 

height h generated by a blue detuned light sheet of beam waist w in the z direction 

located at 2 = 0. In Eq. (3.4), the contribution Sz corresponds to an additional 

linear potential of gradient S pivoted at the centre of the trap. For S >0 considered 

throughout this Thesis, the right well obtains higher potential energy and the trap 

centre is additionally shifted into the z > 0 region; however this shift is negligible 

for the parameters studied throughout this work, and will be henceforth ignored. 

We work in the dimensionless units, discussed in Chapter 2, and distance, time and 

energy are measured in terms of the harmonic oscillator units (h.o.u.), (ft/ma»x)'^^) 

£jj^ and hujx, respectively, where is the harmonic trap firequency in the trans­

verse direction(s) and m is the atomic mass. Time-independent states of the form, 

ip{T,t) = e~'^**(r), where /x is the chemical potential (of the one and three dimen­

sional system respectively), sure found by numerical solution of the GPE using the 

Newton code [96] for solving nonlinear equations, described in Appendix A. As an 

initial guess we begin with a known solution, e.g. the harmonic oscillator ground 

state with no barrier and no interactions and then slowly increase the barrier height 

and the interaction parameter. To find the first excited state one may begin with 

the ground state solution for the symmetric double^well and change the parity. 

In Fig. 3.1 we show the density profiles for the ground state for increasing barrier 

height. As / i is increased, the ground state spreads as the barrier pushes atoms firom 

the centre of the trap. Eventually, the ground state becomes double peaked. 
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Figure 3.1: Schematic of the potential, Vzo, along the z-dhection for different values 
of h, (left coliunn) and the corresponding density profiles for the ground state (right 
coliunn). 

Fig. 3.2 shows the eigenenergy curves for the case of noninterjicting and interacting 

Bose gas with a > 0. Our studies expficitly consider the > 0 finut, however, for 

completeness, we also plot the ZQ < 0 solutions, which are produced by projecting 

the ZQ > 0 values about the origin (centre of the barrier). This fact has also been 

explicitly verified by calculations. For the noninteracting Umit there are only two 

levels and, for = 0, the eigenstates are a symmetric ground state * j , and an 

antisymmetric first excited state with equal population in both wells and a phase 

difference ir acvoss the trap centre, which we shaJl henceforth refer to as ^g- However 
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sufiiciently large positive nonhnearity leads to the appearemce of loop structure in 
the eigenenergy levels for the excited states. The two lower energy eigenstates are 
a symmetric ground state with equal population in both wells, whereas the 
first excited state is spUt into three sublevels which corr^pond to a lower energy 
antisynmaetric *e state and two higher energy "seff-trapped" states [60, 63, 64, 65], 
with most of the population in either the left or right well, see Fig. 3.2. 

Figiu'e 3.2: Lowest eigenenergy levels of a dilute BEC in a double-well potential 
for noninteracting gas (g = 0) and a gas with repulsive interactions, (g > 0) as a 
function of the barrier displacement ZQ. Bold lines correspond to stationary solutions 
of Eq. (3.1) and black lines are the symmetric projections for ZQ < zi {ZQ < zi). The 
wavefunctions at the centre of the barrier zi and zi' for each case, are also shown. 

3.2.2 Two-state model approximation 

In the foUowing we present a different method to calculate the eigenstates based 

on a two-state model approximation [62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73]. 

We consider the one dimensional limit; however similar results apply to the three 

dimensional limit by applying the substitutions z -> r and gw —> 530- The two-

state model is applicable when the barrier displacement is small, so that to a good 
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approximation the shape of the two wells does not change, while the minima of the 
weUs are simply shifted by an amount proportional to the displacement. We write the 
general solution of the wavefunction i/j (z, t) as a, superposition of the states ^^(z) , 
^R{Z) locafised in the left and right well with complex time-dependent coefficients, 
ct(t) and CR{t). Thus the wavefunction is of the form, 

rPiz,t) = CLmdz) + Cft(<)*fl(z) . (3.5) 

The wavefunctions (here i = Z/,i? denotes the left, right weU), are eigenfunctions 

of the time-independent GPEs 

= - ^ V 2 * < + Vi^i + gml^f^i , (3.6) 

with normafization condition ( * L | * R ) :^ 0 and ( * L | * t ) = (* f l | * f l> = 1- The 

potentials VL and Vn are single-well potentials displaced to the left and to the right 

of 2: = 0, respectively, with VL{Z) = Vji{-z) so that •^L{Z) = * R ( - - Z ) - The tune-

dependent coefficients are expressed in terms of the population of the particles and 

the phase on the left and right weU as, 

Ci{t) = y/Niexpiiei{t)) , (3.7) 

with NL + NR = N = 1. Substitutmg Eq. (3.5) into Eq. (3.1), multiplying by * j 

and integrating over spatial coordinates we obtain the coupled equations for the 

ampfitudes, 

nut) = [EL + Ec^NL{t)]cL{t)-

[Ej + ULNIH) + UiiNnit)] CR{t) , (3.8) 

icRit) = [ER + EcMt)]cRit)-

[Ej + U M t ) + URNRH)] CL{t) . (3.9) 

In the above equations, Ei is the zero-point energy in weU i , 

Ei = ldz(|V*,(z)|2 + V(z)|*<(z)|2) , (3.10) 
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Eci^iit) is the self-interaction energy of each well, with 

£^0, = 51D / d ^ | * L ( ; 2 ) | ' = 51D / d z | * f l ( ^ ) | ^ = Ec^ = Ec , (3.11) 

Ej represents the Josephson coupling energy between the two separated condensates 

due to tunnelling through the barrier, 

Ej = jdz[V^L{z)V^R{z) + ^L{Z)V{Z)^R{Z)] , (3.12) 

and ULNI + URNR represents the contribution of the mean-field theory due to the 

coupling and contains terms of fourth order in the localised wavefunctions *»(z), 

with, 

Ui = 5iD / d z ^ i i z f ^ L { z ) ^ R ( z ) . (3.13) 

For most cases the last two terms in Eqs. (3.8) and (3.9) can be neglected, and one 

yields the following equations for the two-state model, 

ictit) = {EL + EcNLit))cL{t) - EJCRU) , (3.14) 

icRit) = (Eii + EcNn{t))cR{t)-EjCL{t) . (3.15) 

The above system can be written in a matrix equation, 

iC = H-C , (3.16) 

where C is the colunm vector, 

( CL{t) \ 
\ CRit) J (3.17) 

and H is the nonlinear Hamiltonian matrix, 

„ _ ( E L + ECNL -EJ \ 
""-y -EJ ER + ECNR ) • ^^-^^f 
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Recalling that the two mode wavefunctions in each well satisfy { * L | ^ Z O = O | * L ) = 

{ * R | V 2 O = O | * / I ) and redefining the zero of energy at half the eigenenergy difference 
between the states *p and the Hamiltonian and therefore Eqs. (3.14) and (3.15) 
become, 

\ ( - A + EcN -Ej \ 
^ - 2 [ - E j A - E C N ) ^ (3-19) 

and 

icLit) = {-A/2 + Ec/2N)cUt)-Ej/2cait) , (3.20) 

icfl(t) = i£^/2-Ec/2N)cR{t)-Ej/2cL{t) . (3.21) 

In the above Hamiltonian, N = {NL - NR) is the population difierence between 

the left and right well, and Ec and Ej are the self-interaction and the Josephson 

energies defined in Eq. (3.11) and Eq. (3.12) respectively. We define the shift in the 

zero-point energies in each well due to the displacement of the barrier to be 

= ( * L | ( V ^ = O - T^zo)l*L> = {^R\iV^ - V.o=o)l*fi> • (3.22) 

Linearizing yields, 

~ ZO{^L\ 1*̂ -) = -"^0 , (3.23) 

where a < 0 is the rate of change of the eigenenergy with zo for the self-trapping 

state, or the ground state with zo > Zc- For small gm and high barriers, such that 

Ec>^ EJ, one finds a ~ —Ec/2zc. 

The eigenenergies of the system axe found by substituting ic{t) = fj,c{t) in the ex­

pressions for the time-derivatives in Eqs. (3.20) and (3.21). We obtsun the following 

system of equations, 

fiCLit) = i-A/2 + EcN/2)cLit) - {Ejl2)cR{t) (3.24) 

/iCH(f) = -{Ejl2)ci^{t) ^ {£^l2-EcNl2)cR{t). (3.25) 
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Substituting the expression ofci{t) from Eq. (3.7) we have, 

{-A/2 + EcN/2-n)^expiieL) - iEj/2)^expiieR) = 0 (3.26) 

- ( E j / 2 ) ^ e x p ( i 0 L ) + ( A / 2 - £ c ^ / 2 - A / ) N / i V ^ e x p ( i 0 f l ) = 0.(3.27) 

By multiplymg Eq. (3.24) with y/Nlexp{-i0L) and Eq. (3.25) with y/NRexp{-i0it), 

defining the phase diiference 0{t) = Oiit) — ^R(<) and rearranging, one finds. 

(-A/2 + ECN/2-H)NL - {Ej/2)VNLNRexpi-ie) = 0 (3.28) 

-{Ej/2)^/N^exp{ie) + {A/2-EcN/2-fi)NR = 0 . (3.29) 

Adding and subtracting we obtain, 

(-A/2)N + (Ec/2)N^-H-Ej^/Nj7^cosi0) = 0 (3.30) 

{-A/2) + {Ec/2)N + nN-iEj^/N^am{e) = 0 , (3.31) 

where we have tised NL -\- NR = 1 and NL - NR = N. Equating the real and 

imaginary parts in Eq. (3.31) we obtain the population difference N between the 

left and the right wells and the phase difference 6 via, 

N = ^ „ , (3.32) 
(Ec - 2/i) 

and 

sine = 0-^e = kn -^0 = 0 . (3.33) 

We can find the equation for the eigenvalues / i i f we make the final substitutions 

in Eq. (3.30) for the phase 0 = 0, the population difference N, Eq. (3.32), and 

NLNR = (1 - iV^)/4. The latter expression is obtained by taking the difference 

between the square of the equations NL + NR = 1 and Ni - NR = N. Thus the 

eigenstates are given by, 

/ - Ecu' + \{Eh - E ' j - A V + \ECE''JI^ - }^ElE''j = 0 . (3.34) 
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An important featiure of the above equation is that there are four real roots when 

the coefficient of the quadratic term (E^ - - A^) is positive and only two when 

it is negative. For a symmetric double-well (A = 0), the additional roots appear at 

the critical point where the self-interaction energy satisfies Ec = Ej. For Ec > Ej, 

the eigenenergies of the stationary states are ±Ej/2 and Ec/2, with the latter being 

doubly degenerate. The additional roots disappear if the displacement of the barrier 

is such that |A| = |2a2o| > ^/E^-E^. 

0.3 

0.15 h 

-0.15 h 

-0.3 
-0.6 -0.4 -0.2 

Figure 3.3: Schematic representation of the energy splittings Ej and Ec for the two-
state model. Eigenenergies fi for the double-well potential as a function of A, for the 
ground and the first excited states for Ec 0, (thick black) lines and Ec = 0, (thin 
black) lines aire also shown as solid and dashed lines respectively. The asymptotes 
(long dashed lines) correspond to the Umit that Ej = Ec = 0, yielding = ± | A | / 2 . 
Dotted horizontal line corresponds to the zero energy of the two-state model. 

This behaviour is illustrated in Fig. 3.3, where we plot numerical solutions of 

Eq. (3.34) for the eigenstates / i (indicated by bold black lines) as a function of 

A for EJ = 0.1 fiu}± and EQ = 0.24 hu}^. However we can find simple analytical 

solutions in the noninteracting limit, by setting Ec = 0 in Eq. (3.34), yielding, 

/ _ i ( £ ; 2 + A V = 0 or ;i± = 1 ^ E } + A^ . (3.35) 
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The above solutions are also shown in Fig. 3.3 as black lines. For large A the 

eigenenergies approach an asymptotic value corresponding to the Umit Ej = 0, and 

become a linear function of A, resulting /i± = |A| /2 , represented by long-dashed 

lines in Fig. 3.3. 

Figure 3.4: The dependence of the self-interaction energy, Ec, and the Josephson 
energy, Ej, (a) on the nonUnear parameter, g (with h = 4 hux), and (b) on the 
barrier height, h {hu}±) (with giD = 0.5). 

To apply the two-state model one needs to known the value of Ej, Ec and a for 

any particular barrier height or nonlinearity. In Fig. 3.4 we show how the energy 

spUttings vary with the nonlinearity and the barrier height. The critical point, 

Ec = EJ, appears as either a critical nonlinearity or a critical height depending on 

which parameter is varied. We note that for large nonlinearity, the existence of the 

second excited state, 62, eflfectively puts an upper limit on the value of Ec-

Next we give more details how the nonhnearity and the barrier height modify the 

eigenenergy levels by solving the GPE in one dimension. 

3.3 Eigenenergies of a double-well potential in one di­
mension 

In Fig. 3.5 we show the eigenenergies for the case of high barrier (/i <^ h) of the 

ground level g and the first and second excited levels, ei and 62, as a function of 
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the barrier position ZQ with ^ I D = 0.5 and h = 12 Tui)i_. A triangular structure 

appears in the upper levels at each level crossing. For states g and ei this structure 

is essentially the same as that discussed by Wu and Niu in the context of a nonhnear 

two-state model [115]. 

/ 3.435 

3.425 
0.04 0.08 

Figiure 3.5: The energy eigenvalue, ^, as a function of the barrier displacement, ZQ, 
for the ground state g, and the first two excited states, e\ and e2 with ft = 12 fta>x 
and giD = 0.5. In the vicinity of the level crossing the upper level is split into three 
states that form a trieingular structure. The ground-excited state splitting is shown 
inset. 

For small ZQ the energy of the ground state is ahnost independent of the barrier 

position. This is because the transfer of atoms through the barrier exactly compen­

sates for the change in potential energy. However, this cannot continue when all 

the atoms reach one side and the energy becomes strongly position dependent £igain 

at the critical displacement, Zc {zc = 0.07 aj . for the parameters in Fig. 3.3). At 

ZQ ~ 0.5 a j . there is a second level crossing where i t becomes energetically favourable 

for the first excited state ei to move bam the upper to the lower well. In this re­

gion the energy level structure is similar to that at ZQ = 0, where the ground state 

population moves &om the upper to the lower well. 
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Figure 3.6: The energy eigenvalue, / i , as a function of the barrier displacement, ZQ, 
for ei with guy = 0.5 and barrier heights ft = 2,5, and 12 ftwx- The energy curves 
for ft - 2.91 tiu}± and ft = 2.92 fiuis. are shown inset. The loop structure appears at 
ft = 2.916 fta;^. 

The energy spHtting between the ground and lowest excited state is extremely small 

for ft = 12 hu}±, see Fig. 3.5(inset). Lower barriers (/i ~ ft) result in larger energy 

sphttings, and therefore firom an experimental viewpoint are more interesting, mak­

ing them more robust to coupling due to external (e.g. thermal [68, 71, 73, 123]) 

perturbations. In Fig. 3.6 we illustrate how the triangular structures evolve as a func­

tion of barrier height with gio = 0.5. The appearance of the loop structure, which 

coincides with the threshold for self-trapping, occurs at critical height ft = 2.916 fta»x 

(see Section 3.6). The structure becomes more triangular as ft increases. 

In Fig. 3.7 we show the eigenenergies for ft = 4 hu}± with two different values of 

nonlinearity g. In Fig. 3.7(a) giD = 0.5, and the loop structure appears for the first 

but not the second excited state. The appearance of a loop structure results in the 

breakdown of adiabatic following of an eigenenergy curve [115]. In the following 

Chapters, we will see that this breakdown is associated with a discontinuity in the 
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Figure 3.7: The energy eigenvalue, / i , as a function of the barrier displacement, ZQ) 
for the ground state g, and the first two excited states, e\ and ei with / i = 4 hji\_ 
and (a) 5ID = 0.5 and (b) gxn = 5. 

population difference between the two wells. Finally in Fig. 3.7(b), we illustrate 

the effect of increasing the nonlinear parameter to gw = 5. In this case the energy 

spHttings are a significant fraction of the hjumonic oscillator energy level spacing 

and the critical displacement coincides with the position of the crossings between 

states ei and 62-

3.4 Comparison to the two-state model 

In this section we compare the eigenenergies with those determined irom the nu­

merical solution of the one-dimensional GPE. The energy curves are parametrised 

by three niunbers: the splitting between the two lower levels, which is equal to Ej; 

the energy of the self-trapping states, Ec/2; and the energy gradient a. Fig. 3.8 

shows a comparison between the exact eigenenergi^ and the model curves for 

h = 4 fiu}±, giD = 0.5. The values of Ej, and a are taken firom the exact 

solutions. The energy gradient is matched to that of the self-trapping states at 

2o = 0 (a = 3.187 huj±/a±). This value gives the best agreement when compar­

ing population dynamics (see Chapter 5). However, due to the slight curvature 

of the eigenenergy curves a smaller value (a = 2.663 hLJ±/a_i) gives a better fit 
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to the triangular structure. The agreement between the two-state model and the 
exact eigenenergies becomes less good at higher nonUnearities as the influence of 
higher-lying states increases. 

2.75 

2.65 

2.55 

0.03 

Figure 3.8: Comparison between the exact (solid) and the two-state model (dashed) 
eigenenergies, / i , as a function of the barrier displacement, ZQ, for /i = 4 hu}\_ and 
5iD = 0.5. 

3.5 Eigenenergies of a double-well potential in three di­
mensions 

By solving the three dimensional time-independent GPE (3.3), with a confining 

potential of the form Eq. (3.4) we obtain an eigenenergy structure similar to the 

one dimensional case. Note that in the three dimensional case we use a potential 

gradient rather than a barrier displacement to create the asymmetry, but the end 

result is essentially the same. Sufficiently large repulsive interactions lead to the 

appearance of a loop structure in the first excited state, shown in Fig. 3.9(b). For 

completeness the corresponding wavefunctions for the ground g and the first excited 

state ei are shown in Fig. 3.9(c) and they have similar form to the one dimensional 

states shown in Fig. 3.2. 

In Fig. 3.10 we present the eigenenergy curves for the same nonlinearity, ^30 = IOTT 
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Figure 3.9: Double well potential with corresponding eigenenergies and eigenstates. 
(a) Schematic geometry of the total confining potential in the axial direction for 
a Gaussian barrier (height / i = 4 waist w = a±) located at the centre of the 
trap. Plotted are the symmetric {6 = 0, solid line) and asymmetric {S = 0.5 
dashed fine) cases, (b) Eigenenergies for the double-well as a function of the potential 
gradient 5 indicating the self-interaction energy, Ec, and the Josephson coupling 
energy, Ej. The horizontal dotted grey fine corresponds to the zero energy of the 
two-state model. The parameters used here are g^u = TT and spherical trap geometry 
(A = 1) corresponding to Ec = 0.220 hu±_ and Ej = 0.102 hcjx- (c) Eigenstates at 
the centre of the trap: (i) ground state (lower solid Une), (ii) anti-symmetric first-
excited state with equal population in both wells (thick solid line), (iii) first excited 
state with unequal populations, having more population in left well (dotted), or in 
right well (dashed). 

and different geometries. The parameters A, h have been chosen such as to match the 

central density. We note that loop structure is independent of the trap geometry, it 

appears also for a "pancake" trap and that increasing A > 1 results in bigger energy 

splittings. 

An interesting subject is to investigate which type of geometry is favourable for 

observing Josephson effects. I t is proved in [57] that this condition is best satisfied 
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Figiu-e 3.10: The energy eigenvsilue, / i , as a function of the potential gradient S, for 
the ground, g, and the first excited state, ei for gsn = IOTT and (a) spherical (A = 1) 
and ft = 4 hu}± and (b) "pancake" (A = V s ) trap and ft = 15 hu)±. For the (b) case 
the energy splittings are larger thus the experimental observation of the Josephson 
effects are more feasible in the case of "pancake" geometry. 

for a "pancake" trap which increases the weak link area between the two weakly 

coupled Bose-Einstein condensates and therefore the Josephson tunnelling. For the 

value of nonlinearity chosen in Fig. 3.8, gsD = IOTT and for a typical firequency 

(i;x = 27r X 5 Hz, substituting in Eq. (2.10), (see Chapter 2) , yields jV = 3500 for 

2^Na and ^^ = 1200 for *^Rb which is independent of the asymmetry parameter A. 

Although J\f is the same for both spherical and "pancake" geometries, the latter is 

preferable for observing Josephson effects due to the Isirger energy splittings. 

3.6 Comparison to the one dimensional results 

The reduction firom three to one dimension is not straightforward due to the non-

Unear term of the GPE. By using a variational method the one dimensional time-

independent GPE is obtained by integrating the two transverse degrees of fireedom 

in the energy functional (see Chapter 2). By using a Gaussian ansatz, we have foimd 

that the nonlinearity in one dimension is given by the equation giD = 53D/(27r) that 

matches the one and three dimensional axial density profiles. In Fig. 3.11 we show for 

comparison the eigenenergy curves for the ground g and the first two excited states 
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ei and 62 as a function of the potential gradient 6 with / i = 4 hu}±_ in one (light 

grey) and three dimensional (black) Unes for a spherical trap, with (a) piD = 0.5 

and 33D = TT and (b) giD = 5 and g^n = IOTT. In plotting the eigenenergies, we 

have used the equation /iao = / i i D + 1 that relates the chemical potential in one 

and three dimensions (see Chapter 2). We observe that the three dimensional GPE 

agrees with one dimensional equation in the limit of weak interactions. However, 

as expected, for large nonlinearities the Gaussian approximation for the transverse 

wavefunction fails. 

^ ' 5 . 6 

4.4 

3.8 h 

3.2 
-0.8 

Figure 3.11: The energy eigenvalue, / i , as a function of the potential gradient S, 
for the ground state g and the first two excited states, ei (dashed) and 62 (dotted) 
lines in one (light grey) asid three dimensions (black) lines, with h = 4 ?iuij_ and (a) 
9w = 0.5 and pan — TT and (b) gw = 5 and gso = IOTT. In both cases in three 
dimensions, we asstmie a spherical trap, A = 1. 

In the following Chapter, we study the two-state model in more detail to investigate 

the tunnelling dynamics of mitial states that have zero and IT phase. These states 

correspond to the ground ( * j ) and the first excited (*«) states respectively. 



Chapter 4 

Josephson dynamics within the 
two-state model 

We study the tunnelling dynamics of atoms through a barrier between two weakly 

coupled Bose-Einstein condensates in a double-well potential. The dynamics is de­

scribed in terms of a two-state model and reveals a variety of interesting phenomena, 

including macroscopic quantum self-trapping where the average population imbalance 

is nonzero and ir-phase oscillations where the mean value of the phase across the 

junction is IT. 

4.1 Introduction 

In this Chapter we continue our study of an atomic BEC formed in a double-well 

potential by considering the tunneUing dynamics. We assume that the two traps 

are weakly connected and the lowest states are well separated from higher lying 

states even in the presence of many-body interactions. Under these assmnptions, 

the dynamics of the system is described by means of a two-mode equations of motion 

for the population and the phase difference jicross the junction [60, 62, 63, 64, 65, 66, 

67, 68, 69, 70, 71, 72, 73]. Recently, interestmg effects includingdc- and ac-Josephson 

effects in bosonic Josephson junctions, (BJJs), have been extensively studied [58, 60, 

64, 65]. Moreover macroscopic quantum self-trapping (MQST) [64, 65, 66] find n 

oscillations [64, 65, 66, 67] have also been reported in such systems. MQST arises 

64 
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firom the nonlinear interatomic interaction and is a kind of self-locked population 
imbalance between two BECs. Atomic BJJs also exhibit Tr-oscUlations where the 
mean value of the phase difference across the junction is TT. These modes have been 
also observed in two weakly linked 'He-B reservoirs [41]. 

The tunnelling between two weakly coupled BJJs, is analogous to the Josephson 

effect m Superconductors (SJJs), [30]. In the latter case, the presence of an external 

circuit results in zero Cooper-pair population imbalance (if the materials are the 

same) and the tunnelling arises from the relative phase difference of the macroscopic 

wavefunctions between the two Superconductors. Moreover, SJJs are described in 

terms of a rigid pendulum (see Introduction) whereas BJJs, are generally discussed 

in terms of a nonrigid pendulmn and the timnelling is a result of oscillatory exchange 

of neutral atoms between the two separated traps (see Section 4.3). 

The two-mode or BJJ equations are also appUcable to describe internal Josephson 

effects such as population transfer between different hyperfine states by variable 

external fields [52] and Bloch band timnelling [56]. The internal Josephson effect in 

'He-A weak links, is described by equations analogous to the BJJ equations with the 

weak coupling provided by the dipole interaction of spin up and spin down and the 

rigid two-state equations describe the rate of change between spin-up and spin-down 

[53]. 

This Chapter is organised as follows. In Section 4.2 we begin the study of Josephson 

djrnamics in BJJs, by considering the dynamics of a single particle in a double-well 

potential. Section 4.3 introduces the two-state model, BJJ equations and generalises 

the previous picture of single-particle tunnelling for the case of macroscopically 

occupied state. We solve the BJJs for the case of a synunetric and asymmetric trap 

and discuss different regimes. 

4.2 Evolution of a wave packet 

Before studying the two-state model, we review the basic theory of evolution of 

a wavepacket (see any stjmdard textbook of quantum mechanics, e.g. [6]). We 
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Figure 4.1: Eigenstates *g (solid grey) and '̂e (dashed grey lines) in the double-well 
potential. We also show a state that has most particles in the right well. 

consider the problem in one dimension but it is also apphcable in three dimensions. 

Let us first consider an eigenstate, the ground, * j or the first excited state *e in 

a double-well potential that have equal population in the left and right well (solid 

and dashed grey Unes in Fig. 4.1 respectively). I f a system is initially prepared in 

one of its eigenstates, it will remain in the same state in the absence of external 

pertiu-bations. However, time evolution will rise when a system is initially prepared 

in any other state, e.g. a superposition state that is localised in the right well (black 

line in Fig. 4.1). This state can be represented in the basis of the eigenstates of the 

system by, 

*(z,< = 0) = - ^ ( * s ( ^ ) + *e(^)) , (4.1) 

and the evolution of the wavefunction is simply, 

*(^,<) = ^{exp{-iEgt/h)^g{z) + exp{-iEet/n)^eiz)) , (4.2) 

where Eg^e are the eigenenergies of the corresponding eigenstates ^g ,e i which for 

simphcity we assume real functions. The shape of the wave packet is given by the 
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probabihty density. 

P(z,t) = |*(z,<)|2 = 1*2(^) ^ 1^2(^) ^ *,(z)*,(^)co8(a;i) , (4.3) 

where *?(z), i = g,e, are the probabiUty density amplitudes in the groimd or first 

excited state and w = {Eg — Eg)/h, is the firequency, corresponding to a transition 

between the ground and first excited states. The last term in Eq. (4.3) describes 

the interference between the two states and * e and produces density oscillations 

as shown in Fig. 4.2. The quantiun interference between the two states induces 

oscillations between the two wells in a periodic manner, and we can have more 

particles on the left or right well, depending on which point of the cycle we are in. 

At the middle point of each cycle, the population is equal in both wells (bold black 

lines). 
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Figure 4.2: Coherent density oscillations of a wavefunction obtained by interference 
of the ground and first excited states in a double-well potential. The period of the 
motion is 2ir/u}. 



Chapter 4- Josephson dynamics within the two-state model 68 

In the following Section we generalize the above picture of single-particle wavefunc-
tion evolution, to study the timnelling dynamics between macroscopic wavefunctions 
for the cases of both ideal and interacting Bose gases. We present results for the 
evolution of the phase and fractional population difference between two separated 
BECs in a double-well potential. Next we present the two-state model. 

4.3 Two-state model 

The description of the GPE dynamics for a BEC in a double-well trap reduces 

to a nonhnear, two-mode equations for the time dependent amplitudes CL^R{t) = 

y J { N L , R i t ) ) exp(iflL,ft(<))) where NL,R and 0L,R are the populations and phases of 

the condensate in the left (L) or right (R) well respectively. 

We can derive the equations for the population difference N and the relative phase 

0 by substituting C j = y/Niexp{-i0i) into Eq. (3.20) and Eq. (3.21), 

iNL^'^NL/2 exp (tfl/,) + iy/Nli0L exp (i0L) = ( - A / 2 + EcN/2)^exp {i0L) -

iEj/2)^exp{i0R) (4.4) 

iN^^^^NR/2exp {i0R) + i^/N^i0Rexp {i0R) = (A/2 - EciV/2)^/]V^exp {i0R) -

{Ej/2)^/N2exp{i0L) . (4.5) 

Multiplying Eqs. (4.4) and (4.5) by exp{—i0i,) and exp{—i0R) respectively and re­

arranging the terms we obtsun, 

iNl^''^NL-2y/NL0L = {-A + EcN)^-Ejy/N^exp(-i0) (4.6) 

iN^'^^NR-2VN^0R = { A - E c N ) ^ - E j s ^ e x p ( i 0 ) , (4.7) 

where 0 = 0L— 0R- We can obtsun the equations of motion for the phase 0i and the 

population Ni of the condensate in each well i by equating the real and imaginary 

pjirts in the above equations. Eq. (4.6) gives. 

0L = -{-A/2 + EcN/2) + {Ej/2)y/NR/NL cos 6/ (4.8) 
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NL = Ej^NiNRsine , (4.9) 
and Eq. (4.7), 

0R = - ( A / 2 - EcN/2) + (Ej/2)y/NL/NRCoa6 (4.10) 

NR = -EjyjNiNRSxne . (4.11) 

Thus we obtain the following two coupled systems for 0j, 

61 = - ( - A / 2 + EcN/2) + {EJI2)^NRINL COSO (4.12) 

OR = - ( A / 2 - ECN/2) + iEj/2)y/NL/NRC086 , (4.13) 

and for the populations iVj, 

NL = Ejy/NLNRsmO (4.14) 

NR = -Ejy/Nj^sinO . (4.15) 

Subtracting the above equations so that to create the differences N = NL — NR and 

0 = 6L - dRve obtain. 

N = 2Ejs/NLNRsme (4.16) 

e = A - EcN + iEj/2) ^ N R / N L - ^NL/NR^ COS 6 , (4.17) 

or 

N = Ejs/l-N^aine (4.18) 

6 = A-EcN + - ^ ^ c o s d , (4.19) 

where we have used the equation NLNR = (1 — N^)/4. 

The equations of motion can also be derived fi-om the Hamiltonisui formalism, 

N . (4.20) 
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where H is the Hamiltonian of the system, 

H = ^EcN^ + AN + EjVl - cos 0 , (4.22) 

and N is the momentum for the generaUzed coordinate 6. 

Eqs. (4.18) and (4.19), describe Josephson effects between two BJJs with fractional 

population difference N and relative phase 6. In order to apply the above equations 

one needs to know the parameters Ec, Ej, A = a^Oi where a is a numerical factor, 

obtained by numerical solution of the time-independent GPE. The corresponding 

evolution is characterized by the ratio A = Ec/Ej, of the self-interaction to the 

Josephson coupling energy. For A > 1 the behavioiu: is similar to SJJ and for A < 1 

Rabi oscillations are observed. The condition Ac = 1 marks the transition from 

interaction-dominated to tunnelling-dominated regime. However for the parsimeters 

used throughout this Thesis, the Rabi oscillation regime is not attainable. 

Moreover Eqs. (4.18) and (4.19), are the analog of Eqs. (1.49) and (1.50) for SJJ. 

However there are some differences between the two systems. BJJ is described by a 

nonrigid pendulum of length y/l — N"^ dependent on the momentum N whereas SJJ 

is described by a rigid pendulum of length /q. Moreover in the SJJ N = 0 due to the 

presence of an external circuit in contrast to the BJJ where N ^ 0 due to density 

oscillations. The latter leads to interesting phenomena xmique in BJJs which will be 

presented in the next Sections. 

4.3.1 Symmetric double-well 

For a symmetric double-well, A = 0, the equations of motion, Eqs. (4.18) «ind (4.19), 

become, 

N = Ej\/l-N^sm0 , (4.23) 

e = - N E c - ^ ^ = c ^ e . (4.24) 
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For the noninteracting Bose gases (EQ = 0) the eigenstates at = 0 are a sym­
metric ground state *g and an antisymmetric first excited state, (see Fig. 4.1). 
Within the two-state model these states are described with the initial conditions 
N{0) = 0 and 6(0) = 0 and 7*̂ (0) = 0 and 6(0) = IT respectively. In this case 
the properties of the system are time-independent, since both of them are eigen­
states. However, i f we start with an initial population imbsJance, the system will 
yield Rabi-oscillations with frequency Cl = Ej. This picture is the generalization 
of a single-particle dynamics for the case of many-atom BEC state and has been 
discussed in [119]. 

4.3.2 Interacting limit 

We now focus on the more interesting case of interacting atoms {Ec ^ 0 ) . As before 

we are interested in the dynamical properties of the system such as the evolution 

of the population and the phase difiierence across the junction. Our studies reveal 

that new interesting phenomena arise due to the nonUnearity and the choice of the 

initial conditions N{0) and 0{O). We consider two different cases where the time-

averaged phase difference across the junction is zero and T T . In the former case 

the oscUlations are called zero phase oscillations whereas in the latter case, they 

are conventially referred to as 7r-oscillations as discussed in the context of BJJ by 

Smerzi [64, 65, 66, 67]. Now we will discuss each mode separately. 

Zero phase oscillations 

In Fig. 4.3 we show the evolution of the population difference for increasing values of 

N{0) for 6{0) = 0. I f the system is initially in a state that is not an eigenstate of the 

symmetric double-well, for example in a state that has N{0) 0, then the system 

yields Josephson oscillations between the wells with complete exchange of atoms. 

The amplitude of these oscillations (i) increases for N{0) < Nc, (Figs. 4.3(a) and 

(b)), (ii) reaches a critical value at JV(0) = (Fig. 4.3(c)) and (iii) then decreases 

again for N(0) > (Fig. 4.3(d)) with the oscillations trapped in one well. In 

the latter case the populations become macroscopically self-trapped, (MQST), with 
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Figure 4.3: (a)-(d) The fractional population difference, N, and (e)-(h) the cor­
responding phase difference, 0, as a function of time (wj^) for Ej = OAhuJxi 
Ec = 0.22h(j± and 0{0) = 0 in a symmetric trap (A = 0). In (a) and (e) N{0) = 0.5, 
(b) and (f) iV(0) = 0.7, (c) and (g) iV(0) = Nc = 0.99585919488 and finally (d) and 
(h) N{0) = 0.996. The phase difference 6 as & function of time is plotted inset in 
(h). 

{N{t)) ^ 0. Thus even though there is an initial population imbalance iV(0), there is 

a small periodic transfer of atoms between the two wells while the majority of atoms 

remains trapped in one well. For 6(0) = 0 MQST occiu-s if N{0) > Nc whereas for 

9{0) = n it occurs when N{0) < Nc, as we shall see next. Finally by looking at the 

evolution of the phase difference, we observe oscillations with a time-average value 

of {0{t)) = 0 that increasing N{0) < Nc, become nonsinusoidal (Figs. 4.3(e)-(g)). 

For N{0) > Nc, (Fig. 4.3(h)), the phase difference oscillates around a nonzero value, 

running phase mode, which corresponds to the MQST regime. 

The behaviour of the zero phase modes can be also represented using a phase portrait 
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{0,N) of the variables 6 and iV, shown in Fig. 4.4(a). The trajectories correspond 

to the values of N{0) used in Fig. 4.3 with 6(0) = 0. We see that for N{0) < 

Nc the trajectories are closed loops that enclose the origin, and that for N{0) > 

Nc the trajectories are unbounded. This transition is represented by a grey line 

which acts as a sepaxatrix between symmetric and nonsymmetric oscillations of the 

population imbalance N. In the classical pictiu-e of nonrigid pendulum, i t represents 

the transition of oscillatory to rotational motion. 

2n 

Figure 4.4: Phase as a function of N for (a) the case of Figs. 4.3 and (b) 4.5. In (a) 
e{0) = 0 and JV(0) := 0.5,(Ught grey), 0.7, (bold black), 0.99585919488 (dark grey) 
and 0.996 (black) lines. In (b) 0(0) = TT and 7V(0) := 0.5,(light grey), 0.5749595734, 
(dark grey), 0.6 (bold black) and 0.7 (black) lines. 

Tr-oscillations 

For the initial condition 0{O) = TT one finds oscillations with (0{t)) = TT [64, 65, 66, 

67]. For our study we plot the evolution of N{t) and B{t) for fixed 6(0) = TT and 
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various values of iV(0). Figs. 4.5(a)-(d) show Josephson oscillations with increasing 

amplitude. For N{0) < Nc (Fig. 4.5(a)) there is a transition to the MQST regime 

with the oscillations are trapped in one well whereas for N(0) > Nc (Figs. 4.5(c) 

and (d)) the evolution of the population difference oscillates around a zero value 

{{N{t)) = 0). The transition firom the MQST regime to Josephson oscillations is 

marked from a value of N(0) = Nc (Fig. 4.5(b)) for which the Josephson oscillations 

are frozen initially and appear again for later times. 
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Figure 4.5: (a)-(d) The population difference, iV, and (e)-(h) the corresponding 
phase difference, 5, as a function of time (wj^) for Ej = 0.2ftcjj., Ec = 0.22fiu;x 
and 5(0) = TT in a symmetric trap (A = 0). In (a) and (e) iV(0) = 0.5, ( b ) and 
(f) N{Q) = Nc = 0.5749595734, (c) and (g) N{0) = 0.6 and finally (d) and (h) 
JV(0) = 0.7. 

By looking at the phase profiles as a function of time in Figs. 4.5(e)-(h) we observe 

that the phase oscillates around a mean value (0{t)) = n and that increasing N{0) 

these oscillations become nonsinusoidsd. In Fig. 4.4(b) we plot the phase portrait, 

{6, N), of the variable 0 as a function of N for the case of 7r-modes. The trajectories 
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are closed loops for all values of N{0) > Nc and for N{0) < Nc do not enclose the 

origm. For iV(0) = Nc, grey loop in Fig. 4.4(b), the trajectory crosses the origin 

juid is the separatrix of the MQST and symmetric regimes. 
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Figiure 4.6: The sensitivity of evolution of the population difference (a)-(b) and the 
phase difference 9 across the junction in the initial conditions N{0) and 0{O) for 
a synmietric (A = 0) double-well. In (a) and (c) Ej = 0.1hu}j_, Ec = 0.22hu}±, 
0{O) = 0 and iV(0) := 0.99585919487 (dotted black), 0.99585919488 (grey) and 
0.99585919489 (dashed black) lines. In (b) and (d) Ej = 0.2hcjx, Ec = 0.22ftwx, 
0(0) = TT and N{0) := 0.5749595733 (dotted black), 0.5749595734 (grey) and 
0.5749595735 (dashed black) lines. 

Finally we point out that the value of Nc, for both the zero and 7r-phase modes, 

depends critically on the initial conditions. Fig. 4.6 shows that even a smsM change 

in the initial condition for iV(0), occuring in the tenth decimal place, changes the 

corresponding evolution of the parameters N, 0. We emphasize that, in both cases, 

one could not manage to lock the fractional population difference at N{t) =0 for a 

long time interval as the sensitivity in N(0) is extremely high, see Fig. 4.6. 
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4.3.3 Asymmetric double-well 

We continue our study of the Josephson dynamics in an asymmetric double-well 

(A 0). The asymmetry is induced by a barrier that moves away from the origin 

with a constant velocity v. We solve the full set of Eqs. (4.18) and (4.19), using 

A = —2azo = —2avt. In Fig. 4.7 we show the Josephson dynamics of a system with 

mitial conditions N(0) = 0 and 6(0) = 0 (Figs. 4.7(a) and 4.7(b)) and T T , (Figs. 4.7(c) 

and 4.7(d)) for various values of velocities for the low (left) and high barrier hmit 

(right column). These initial conditions correspond to the ground, ^g, and first 

excited, state with equal population in both wells. For the asymmetry 

induces a Josephson cmrent to the left (lower potential energy region), whereas for 

*e flow occurs to the right (higher potential energy). Moreover the evolution of the 

population difference for $e initial state. Figs. 4.7(c) and 4.7(d) predicts that the 

atoms remain in the upper (right) well (MQST). 

M Q S T regime 

We attempt to find the condition for MQST in the case of an asymmetric trap for 

zero- and 7r-phase modes. We study the dynamical properties of the system with a 

fixed population asymmetry N{0) for various values of the potential gradient A. 

a. zero phase modes 

Ffrstly let us consider the case of 0(0) = 0 shown in Fig. 4.8. Fig. 4.8(a) shows that 

there is a range of values A < Ac for which {N{t)) < N{0) ^ 0 whereas for A > Ac, 

the evolution of N{t) is trapped in the left (lower well), with amphtudes that vary 

between A^(0) and N^ax = 1- In the case of an asymmetric well the latter condition 

corresponds to the MQST regime. At A = Ac = 0.177 â;_L the average population 

difference is {N{t)) = N{0) with N{0) a stationary value of the two-state model. 

Fig. 4.8(b) displays the corresponding 9{t). For A < Ac, the time average Aradue of 

the phase across the junction equals zero, {6(t)) — 0, whereas for A > Ac, {0{t)) ^ 0 

corresponding to the running-phase MQST regime. 

The dynamics can also be represented in terms of phase portraits (6, N) shown in 
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Figiure 4.7: Evolution of fractional population iV as a function of barrier displace­
ment zo, for a system initially prepared in the ground ^g, {N{0) = 0 and 0{O) = 0), 
Figs, (a) and (b) and the first excited state *e state, (iV(0) = 0 and 0(0) = n) 
Figs, (c) and (d). The barrier is moved from the centre towards the right well at 
constant speed v{a±u}s_) =: 1 x 10"^, (black), 4 x 10~^, (brown) and 1 x 10~^ (grey 
Unes) in (a) and (c) and 2 x 10"^, (black), 3.4 x 10"^, (brown) and 4 x 10"^ (grey 
fines) in (b) and (d). The pareuneters for the two-state model used here are: (a) 
and (c) Ej = O.lftwi, Ec = 0.24;ia;j. and 2a = 3.187ho;j_/a_i and (b) and (d) 
Ej = 0.(m7?ujj_, Ec = 0.287ftwj. and 2a = 3.964ncJx/a±. 

-4 
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Fig. 4.8(c). For A < Ac the trajectories are closed and increasing A, the trajectory 

area decreases while for A = Ac it shrinks to a point at {N{t)) = N{0). For A > Ac 

the trajectories are reflected along the {N{t)) = N{0) vertical Eixis, and for further 

increase of A the trajectories are unboimded (MQST regime). The critical value Ac 
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Figure 4.8: Evolution of (a) the population imbalance N and (b) the phase difference 
across the junction 6 for different values of the potential gradient A. (c) Correspond­
ing phase portrait {6, N) for a system with 6{0) = 0 and N(0) = 0.5. The values 
of the potential gradient are A{huj_i_) =: 0 (light grey), 0.0867 (black), 0.177 (bold 
black), 0.344 (dark grey) and 0.357 (dotted black) lines. Other paremieters for the 
two-state model are Ej = 0.lhu;± and EQ = 0.24/iwj_. 

can be obtained by the two-state model Eqs. (4.18) and (4.19), by setting 6 = n 

which gives, 

Ec + 
EJ 

Nr (4.25) 

where Nc = 7V(0). In the mechanical model of a nonrigid pendulum this corresponds 
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to the condition that the pendulum has enough energy to go over the top. Substitut­

ing the values Ej = 0.i;iu;_L and EQ = 0.24hoj± (see Fig. 4.8) we find Ac = 0.177ftwj. 

which is in excellent agreement with the two-state model prediction. 

b. TT phase modes 

We now study the critical condition for MQST in the case of n modes, shown in 

Fig. 4.9. As in the previous case we firstly present the evolution o{N{t) in Fig. 4.9(a). 
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Figure 4.9: Evolution of (a) the population imbalance N and (b) the phase difference 
across the junction 0 for different values of the potential gradient A. The phase 
portrait {9, N) is also plotted in (c) for a system with 0{O) = n and N{0) = 0.7. The 
values of the potential gradient are A(huj±) = : 0 (light grey), 0.070 (bold black), 
0.072 (black), 0.332 (dark grey) and 0.352 (dotted black) fines. Other parameters 
as Fig. 4.8. 

For A < Ac, the average value of the population difference is trapped in the lower 
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(left) well and oscillate between JV(0) and Nmax = 1- In agreement with the case 
of zero phase modes, at A = = 0.070^x the average population difference is 
(N{t)) = N{0) with N{0) a stationary value of the two-state model whereas for 
larger values of A > Ac the oscillations of N{t) are nonsinusoidal with {N{t)) 7̂  0. 
We also study the evolution of 0(t) in Fig. 4.9(b). For A < Ac, («(<)) = TT whereas 
for A > Ac, {0) 0. Finally in Fig. 4.9(c) we present the phase portraits (0, N). For 
A < Ac the trajectories are closed. For increasing A the trajectory area decreases 
and at A = Ac i t shrinks to a pomt at {N{t)) = N{0). For A > Ac the trajectories 
are reflected about the {N{t)) = N{0) vertical axis and are unbounded. 

In the case of 7r-phase modes, the critical value Ag can be also obtained by the 

two-state model Eqs. (4.18) and (4.19), by setting 0 = 0 which gives, 

^ ^ = { ^ c - ^ ) n . , (4.26) 

where Nc = N{0). In the mechanical model of a nonrigid pendulum this corresponds 

to the condition that the pendulum reaches the equiUbrium (0 = 0). Substituting 

the values Ej = OAhuix. and Ec = 0.24hu)± (see Fig. 4.8) we find Ac = 0.070^x 

which is in excellent agreement with the two-state model prediction. 

In this Chapter we presented the Josephson dynamics of states with initial phase zero 

or IT and various initial population difference N{0) in a symmetric and asymmetric 

double-well potential within the two-state model. In the following, we continue our 

studies on the Josephson dynamics of a system with repulsive interactions initially 

prepared in the *p (Chapter 5) and *e (Chapter 6) states by considering the ful l 

numerical solution of the GPE and we compare our results to the two-state model. 



Chapter 5 

Josephson tunnelling of a dilute 
B E C initially prepared in the 
ground state 

We investigate the Josephson dynamics of a dilute Base-Einstein condensate initially 

prepared in the ground state in a one dimensional asymmetric double-well potential. 

The asymmetry is induced by a Gaussian barrier that moves uniformly through the 

condensate at a constant velocity. Above a critical velocity there is a transition to 

an ac current. We study the tunnelling dynamics by considering transitions between 

eigenstates and we show that in the regime of greatest interest for experiments, i.e., 

where the energy splittings are large, the influence of higher-lying states cannot be 

ignored. 

5.1 Introduction 

The experimental realization of atomic Bose-Einstein condensation (BEC) [13, 14, 

15, 16, 17, 18, 19, 20, 21, 22] gives rise to a new system for studying Josephson 

effects consisting of two weakly interacting BECs. Such systems can be produced 

in a double-well trap with the two independent condensates coupled by quantum 

tunnelling. The weak link is provided by a barrier moving with constant velocity 

across the trap. I f the velocity is small there is no potential difference across the 
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junction which is the analogue of the dc current in S JJs. At a critical velocity there 
is a sharp transition between the dc and ac regimes and the fractional population 
difference remains constant, apart from a decaying oscillatory component. 

In the previous Chapter we studied Josephson effects in BJJs within the two-state 

model which is based on the approximation that the wavefunction is given by a super­

position of two time-independent wavefunctions of the left and right well. However 

our analysis in this Chapter goes beyond the two-state model to investigate niuneri-

cal solutions of the GPE which is a powerful tool to describe the behavioiur of dilute, 

near zero temperatiure condensates. Our main motivation is to find new effects not 

present in the two-state model as well as to check its limitations. Our studies of 

the Josephson dynamics axe based by considering transitions between eigenstates 

of a double-weU potential. Here we Umit our discussion to the dynamics of a BEC 

initially prepared in the groimd state, and in the following Chapter we consider the 

Josephson dynamics of phase-imprinted states. 

This Chapter is organised as follows. In Section 5.2, we calculate the fractional 

population difference of the lowest three eigenstates in an asymmetric double-well 

potential. In Section 5.3, we consider the time-independent evolution as the barrier 

is moved at a constant velocity from the centre outwards and in Section 5.4, we 

discuss the critical velocity for the transition between dc and ac cm-rent. In Section 

5.5, we study the Josephson dynamics for the case of asymmetric initial conditions. 

We close this Chapter, by discussing typical experimental parameters in Section 5.6. 

5.2 General discussion on the eigenstate fractional pop­
ulation difference 

We present typical plots of the fractional population difference N, for the ground 

and the first two excited states which correspond to the eigenenergy levels shown in 

Chapter 3. Our results are based on varying the nonlinearity at fixed barrier height, 

but it should be noted that similar results will be obtained in the opposite limit 

of variable barrier height at fixed nonlinearity. Our study is based on numerical 
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solutions of the time-independent GPE (3.1), using the Newton method presented 
in Appendix A. Our studies explicitly consider the 2:0 > 0 Umit, however, for com­
pleteness, we also plot the 20 < 0 values, which which are produced by projecting 
the zo> 0 solutions about the origin. This fact has also been expUcitly verified by 
calculations. 

Fig. 5.1 shows the fractional population difference for the ground state. In Fig. 5.1(a) 

typical eigenenergy levels for various nonlinearites are plotted. We observe that for 

positive nonfinearity there is only one eigenenergy level for the ground state at 

zo > 0 thus there is only one ciu-ve for the fractional population difference at ZQ > 0. 

Fig. 5.1(b) shows the effect of the nonlinearity on the fractional population differ­

ence. As the nonUnearity is increased, the crossover region in which the population is 

transferred from right to left well becomes smoother. The corresponding wavefiinc-

tions for the case gw are plotted in Fig. 5.1(c) at points (i)-(iv). This demonstrates 

that the initially symmetric population distribution for the ground state becomes 

asymmetric with increasing ZQ, with the population gradually transferred to the left 

well. 

We also consider the fractional population difference for the excited states, shown 

in Fig. 5.2. Fig. 5.2(a) shows the eigenenergy levels for the first excited eigenstate 

for small (grey) and large (black fines) nonlinearities. The corresponding fractional 

population differences are shown in Figs. 5.2(i)-(iu). For gm = 0 there is no loop 

structure and the fractional population difference is single valued (zero at ZQ = 0), 

as shown in Fig. 5.2 (i). However, for sufficiently large nonlinearities, loop structure 

appears in the eigenenergy levels which is related to the existence of "self-trapped" 

states that have nonzero fractional population difference at ZQ = 0 (see discussion 

in Chapter 3). Therefore the first excited state is degenerate at the origin find the 

fractioneil population difference acquires three values at ZQ = 0, shown in Figs. 5.2(ii) 

and (in). These values correspond to: a state with the population balanced in both 

wells at the centre of the trap, thus (Ar(0) = 0); and two other nonzero values that 

correspond to "self-trapped" states that have most particles trapped on the left 

(iV(0) > 0) and right well (JV(0) < 0), see also the wavefimctions plotted in Fig. 3.2. 
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Figure 5.1: (a) The eigenenergies ^ as a function of the barrier displacement ZQ for 
the the ground eigenstate g for barrier height / i 4 hu}±_ and gm := 0, (dark grey), 
0.5, (fight grey) and 5 (black fines). The eigenenergies for gm = 0.5 have been 
shifted eilong the /i-axis by +0.3 hwi_. (b) The corresponding population difference 
N for 5iD = 0,0.5,5 (from top to bottom), (c) Plots of the ground eigenstates for 
the case of </id = 0.5 at various positions of the barrier displacement, ZQ indicated 
by dashed fines. From (i)-(iv) (a i ) = 0,0.2,0.5,0.9. 
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In all cases (i)-(iii), the fractional population difference oscillate as a function of 
the barrier displacement with zeroes at the level crossings (ZQ = 0 with the groimd 
state and ZQ ~ 0.5 o j . with the second excited state, see for example the eigenstates 
in Fig. 5.2(a)). 

Finally we consider the second excited state, 62. An example of the eigenlevel 

structiure for small (grey) and large (black fines) nonlinearities is shown in Fig. 5.2(b). 

The corresponding fractional population difference for the second excited eigenstates 

are shown in Figs. 5.2(iv)-(vi). As before, sufficiently large nonfinearities lead to 

the appeareince of loop structure in the eigenlevels (see for example black line in 

Fig. 5.2(b)). In addition, the fractional population difference oscillates as a function 

of ZQ and is symmetric aroimd the zo = 0 axis with N{0) = 0. However, there are 

two extra zero values of the fractional population difference which correspond to 

the level crossings with the first at ~ 0.5 ox and the third ZQ ~ 0.9 a± excited 

states, (see for example grey line in Fig. 5.2(b)). Moreover, Fig. 5.2(v) shows that 

the derivative dN/dzQ diverges for gm = 0.5 at ZQ ~ 0.5 ax which is related to 

a cusp-like structure in the eigenenergy curve at that point. Figs. 5.2(i)-(vi) show 

that increasing the interactions, the fractional population difference curves undergo 

a shearing along the ZQ axis. 

We further comment on the "self-trapped" states appearing in the loop structure. In 

Fig. 5.3, we show the population difference of the "self-trapping" state. A population 

asymmetry appears at the critical point, EQ = Ej, corresponding to the critical 

barrier height, h = 2.916 huix. for = 0.5 (see also Chapter 3). The asymmetry 

increases with increasing barrier height. As a function of the nonlinearity, the "self-

trapping" population first increases, then saturates, and finally decreases at large 

gxtt due to the influence of 62 . 

We now apply the eigenstate level picture to analyse the population dynamics when 

the barrier is moved uniformly through the condensate at velocity v. The time-

dependent GPE (3.1), is integrated using a Crank-Nicholson algorithm and the time 

evolution analysed in terms of transitions between eigenstates. 
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Figure 5.2: The eigenenergies / i for (a) the first and (b) the second excited states for 
large (black) and low interactions (grey) lines as a function of the barrier displace­
ment 20 for giD := 0, (dark grey), 0.5, (fight grey) and 5 (black). The eigenenergies 
for 5iD = 0 and 0.5 have been shifted Edong the /i-£ixis by +0.1 7m\_ and +0.3 
respectively. The firactional population difference iV for the first (i)-(iii) and (iv)-(vi) 
the second excited state respectively as a function of for / i = 4 In (i) and 
(iv) giD = 0, (fi) and (v) giD = 0.5 Jind finally (iii) and (vi) giD = 5. Bold lines 
correspond to stationary solutions of Eq. (3.1) and black lines are the symmetric 
projections in the —zo-axis-
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Figure 5.3: The population asymmetry of the self-trapping state as a function of the 
self-interaction parameter, gm (with h = 4 hu)±_), and the barrier height, h (with 
5iD = 0.5). 

5.3 Symmetric initial condition 

We consider first the case where the barrier is moved from the centre towards the 

right at different velocities. We show both the eigenstate fractional population 

differences (N = NL- NR) and the calculated evolution of the population difference 

for gio = 0.5. This is shown in Figs. 5.4(a) and (b) for both low (/i ~ h) and 

high barriers {fx « h), respectively. In both cases, for low velocities, the evolution 

is adiabatic, and the time-dependent solution follows the ground state population 

difference curve resulting in a dc tunnelling current. Above a critical velocity Vc, 

there is a transition to a superposition of groimd and excited states such that the 

firactional population difference remains constant, apart from a decaying oscillatory 

component. Subsequently, the excited state component encounters a level crossing 

with higher-lying states which leads to further 'steps' in the fractional population 

difference or resonances in the tunnelling current. For example, for the velocity 

V = 0.01 a±u}± shown in Fig. 5.4(a), the time-dependent evolution follows the first 

excited state, whereas in Fig. 5.4(b) for u = 4 x 10~^ a±u)± the speed is just below the 

critical velocity for the transition from the second to the third excited states leading 

to a large tunnelling cvurrent as the object moves past ZQ ~ 0.9 ax- Compared to the 
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solutions of the two state-model shown in Figs. 4.7(a) and (b), we note that for slow 
velocities v < Vc, both methods give similar results. However for large velocities the 
two-state model does not predict the additional steps in the population dynamics. 
The break down of the two-state model occurs mainly due to the influence of higher-
lying states. 

1 F , .\...i.u*w(ir''*rirTAa3d 1 

^ 0.5 

0 0.02 

Figiure 5.4: The fractional population difference, N, as a function of the barrier 
displacement, ZQ, for the eigenstates g, e\ and 62 with gio = 0.5 and (a) h = 
4 /iwx and (b) / i = 12 The fractional population difference as the bsirrier is 
moved from the centre towards the right at speeds: (a) v (aj.a;x) = 0.001,0.004,0.01 
and (b) ii(xlO~^ a±wx) = 2,3.4,4 are plotted as grey, brown and thick black line 
respectively. An expanded view of the short-time evolution of the case i ; = 4 x 
10~^ ai_u}±_ is shown inset (b). The corresponding population differences N for 
eigenstates g, ei, and 62 are indicated by the solid, dashed ajid dotted lines in both 
cases. 

5.4 Critical velocity 

Following previous calculations, we plot the fractional population difference as a 

function of the barrier speed in Fig. 5.5. For comparison we also plot the prediction 

of the two-state model. For v < the fractional population difference increases 
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Figure 5.5: The fractional population diflFerence as a function of the barrier speed 
V obtained from the GPE (sohd Une) and the two-state model (dashed Une) for 
5iD = 0.5 and (a) /i = 4 ?iu}± and (b) h = 12 hu}±. The barrier is moved from the 
centre outwards for a time (a) < = 30 a>Ĵ  and (b) t = 1000 w j ^ For v = Vc there is 
a large step in the fractional population difference which corresponds to the critical 
velocity for the transition from a dc to an ac-current. In (a) Vc = 0.005 aj.aJx and 
(b) Vc = 0.000035 a±u)± which are in good agreement with previous calculations. In 
(a) for V > 0.017 aj_a;j_ the second level crossing is reached leading to a departure 
between the GP simulation and the prediction of the two-state model whereas in 
(b) we are below the second level crossing for the range of velocities chosen. Other 
parameters as in Fig. 4.7. 

such that the chemical potential difference is kept zero, corresponding to a dc-

cvurent. However, above v = Vc there is a large drop in the fractional population 

difference corresponding to the transition to an £m; Josephson regime. Moreover 

Fig. 5.5 shows that except for large displacements, i.e., large velocity in Fig. 5.5(a), 

the two-state approximation reproduces the GP solution extremely well. The two-

state approximation works so well because if the barrier is displaced by less than its 

width, then apart from a shift in the potential and energy of the minima, the shape of 

the potential on either side of the barrier does not change significantly. Consequently, 

the parameters Ec and Ej derived from the symmetric wave functions sire also 

accurate for the asymmetric well. However, when the barrier reaches a position 
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corresponding to a level crossing between excited states, the two-state model ceases 
to be a good approximation because it does not include the effects of higher lying 
states. For the parameters in Fig. 5.5(a) the second level crossing at 20 ~ 0.5 o j . is 
reached when v > 0.017 a_ico±, see Fig. 3.7(a). 

Apart from the eigenenergy level picture, the dyneimics of BJJ can be also described 

in terms of the motion of a particle moving in a "washboard" potential. Differenti­

ating Eqs. (4.18) and (4.19) and substituting for N and 9 gives 

I f JV is roughly constant, this equation may be re-written as 0 = —deU, where U{0) 

describes a "tilted-washboard" potential, 

UiO) = 1-Ae- cose - W T ^ , cos2e - cos6 . (5.2) 

For iV « 0 at i = 0 and using A = —2azQ = —2avt, the above equation is reduced 

to, 

which is plotted in Fig. 5.6 for different velocities and for the case of low and high 

barrier heights. We observe that there is a critical velocity Vc, such that for v < Vc 

the particle is trapped at the minima of the potential U{0) which corresponds to 

a dc-Josephson ciu:rent. However for v > Vc, the minima of the potential U{0) 

disappear, and the particle runs down the washboard potential, corresponding to 

an ac-Josephson current. The criticaJ velocity, Vc, is determined by setting the 

minimmn gradient of U{6) equal to zero yielding. 

For giu = 0.5 and / i = 4 hwj^, GP calculations yield Ej = 0.1 fiuj_L, Ec = 0.24 tiu}± 

and 2a = 3.187 huj±/a±, thus the above equation gives Vc = 0.008 cxo^j,- However 
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Figure 5.6: Plots of the washboard potential as a function of 6/n for different ve­
locities V, for giu = 0.5 and (a) / i = 4 fiwj. and (b) h = 12 h(jjj_. For v = Vc the 
washboard potential has no bound states (dashed lines). For the parameters used 
here, Eq. (5.4) gives Vc — 0.008 oxwj. in (a) and 5 x 10~^ a±u± in (b). In (a) 
w(xl0-^ axwj.) := 1,3,5,7,8,9 whereas in (b) t;(xlO~^ ax^i.) := 1,3,4,5,7,9. 

for Ec 2> Ej, one can use the hnear approximation, a = —Ec/2zc, where Zc is the 

critical displacement, which yields Vc ~ EjZc. Taking the values for gm = 0.5 and 

h = 12 hwj_, E] = 7 X 10~^ hu±_ and Zc = 0.07 ax, gives Wc ~ 5 x 10~^ axWx-

According to Eqs. (4.18) and (4.19) the maximum fractional population difference 

occurs at approximately Vc/y/2 = 0.005 axwx and 3.4 x 10~^ ax^Xi for the case of 

Fig. 5.4(a) and (b) respectively, which are in excellent agreement with the values 

determined by numerical integration of the GPE. 

5.5 Asymmetric initial condition 

As stated above, the small critical velocity for high barriers (typicaUy less than a 

/im/s) makes experimental verification challenging. Although higher critical veloc­

ities are obtained for lower barriers, the transition between the dc and ac regime 

becomes less sharp. This problem can be partially circumvented by noting that 

one can induce larger population changes by starting with an asymmetric well and 

moving the barrier back through the origin. This is illustrated in Fig. 5.7 with a 
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lower barrier height, h = 4 ^ j . . Again for low barrier speeds the population follows 
the ground state distribution, whereas for faster speeds a transition to an oscillatory 
ciurrent is observed. The critical velocity is a factor of 200 times larger than for 
h = 12 TM^. 

1 

^ 0 

Figure 5.7: The fractional population difference, iV, obtained from numericeil so­
lution of the GPE, (black) and the two-state model (brown) as a function of the 
barrier displacement, ZQ^ as the barrier is moved from ZQ = a± towards the left at a 
constant speed v = 0.007 a_iu)± (thick) and 0.015 a±(j± (light) for / i = 4 tujj± and 
giu = 0.5. The corresponding population differences for eigenstates g, ei, and 
are indicated by the solid, dashed and dotted lines. 

For ZQ < —0.6 a±_ the fractional population difference follows that of the excited 

state, 61, therefore to observe a large population difference, i t is important to stop 

the motion before the barrier reaches ZQ ~ —0.4 oj . . This restricts the evolution to 

short times or low velocities. 

For small velocities the two-state model gives similar results to the GP solutions 

apart from a smaller amplitude in the osciUatory current. However for larger veloc­

ities the two-state description is insufficient to completely describe the tunnelling 

dynamics because it does not include the effects of higher lying states. Therefore 
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a ful l numerical solution of the GPE is needed to acciu-ately describe the dynamics 
for ZQ < —0.5 ax-

In Fig. 5.8 we show the fractional population difference as a function of the barrier 

velocity for an asymmetric initial state. Comparison with Fig. 5.5 illustrates that 

a larger fractional population difference and a better demarcation of the critical 

velocity is obtained by moving the barrier from the edge of the condensate inwards 

(asymmetric initial condition). However, it is not straightforward to predict the 

criticjJ velocity for the asymmetric initial condition because the relative importance 

of the coefficients in Eq. (5.1) depends on the instanteineous value of N{t). For 

the parameters chosen in Fig. 5.8(a), the numerical results indicate that the critical 

velocity is similar to that for a symmetric initial state, however it is reduced from 

the symmetric one by a factor of three, shown in Fig. 5.8(b). Finally, in both cases, 

the two-state model gives similar predictions. 
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Figure 5.8: The fractional population difference as a function of the barrier speed v 
obtained from the GPE (sohd Une) and the two-state model (dashed line) for gin = 
0.5 and (a) /» = 4 hu}± and (b) h = 12 ?i(v± for an asymmetric initial condition. The 
barrier is moved from (a) zo = 0.95 ax and (b) 0.6 ax and stopped at zo = —0.3 ax 
and —0.2 ax respectively. In (a) Vc = 0.0075 axtt'x similar with the critical velocity 
obtained using a symmetric initial condition and (b) Vc = 0.00001345 ax^x which 
is approximately three times smaller than the corresponding one for the synunetric 
initial state. Other parameters as in Fig. 4.7. 
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Finally, we consider the interesting case where the influence of higher-lying states 
severely limits the applicability of the two-state model. In Fig. 5.9 we show the 
population change as a barrier with height h = A fuvx is moved through the centre 
of a condensate with giD = 5. For these parameters the criticeil velocity is suflSciently 
high that the level crossing to a higher-lying state is reached before the transition 
to the ac regime is completed. However, a large fractional population difference for 
different barrier velocities can still be observed i f the motion is halted when the 
barrier reaches ZQ ~ —0.5 a±. 
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Figure 5.9: The fractional population difference, iV, as a function of the barrier 
displacement, ZQ, as the barrier is moved from ZQ = 0.9 ax towards the left at speed 
V {a±_u)±} = 0.05 (fight grey) and 0.08 (brown) for ft = 4 hcj± and giu = 5. The 
corresponding population difference for eigenstates g, ei, and e2 are indicated by 
the sofid, dashed and dotted fines. 

5.6 Experimental realization 

The large critical velocity, ~ 0.08 aj_u}±, offers the best potential for the ex­

perimental observation of dc tunnelfing currents. For example, taking a sodium 
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condensate with gn, = 5, trap firequency of 20 Hz, equation. 

yields M = 4000 atoms. The dark and fight grey curves in Fig. 5.9 correspond to 

a barrier formed by a blue detuned laser sheet with wedst 5 /im, moved by 2.5 /im 

in 80 ms and 50 ms, respectively. For these parameters, a model involving higher-

lying excited states is essential to give a clear picture of the Josephson population 

dynamics. 

We have studied the Josephson dynamics for a system initiaJly prepared in the 

ground state and we have compared our results with the two-state model. In the 

foUowing Chapter we study the tunnelling dynamics of a phase imprinted conden­

sate. 



Chapter 6 

Josephson tunnelling of 
phase-imprinted B E C s 

We discuss the feasibility of experimental control of the flow direction of atomic 

Bose-Einstein condensates in a double-well potential using phase-imprinting. The 

flow is induced by the application of a time-dependent potential gradient, providing 

a clear signature of macroscopic quantum tunnelling in atomic condensates. By 

studying both initial state preparation and subsequent tunnelling dynamics we find 

the parameters to optimise the phase induced Josephson current. We find that the 

effect is largest for condensates of up to a few thousand atoms and is only weakly-

dependent on trap geometry. 

6.1 Introduction 

In this Chapter, we investigate the Josephson dynamics for a phase-imprinted atomic 

condensate in a double-well potential under the influence of a time-dependent po­

tential gradient. We focus on the sensitivity of the Josephson flow direction to 

the initial state preparation. In particular, preparation in the odd parity energy 

eigenstate combined with the application of the potential gradient leads to a flow 

towards a region of higher potential energy providing a clear signature of Joseph-

son tunneUing. Flow reversal in context of the Josephson effect is weU known. For 

example in a superconducting 7r-junction [36], the addition of a macroscopic phase 

96 
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difference <f) = n across the superconducting weak fink leads to reversal of the sign 
of the current [37, 120, 121]. Also a related effect has been predicted for conden­
sates in optical lattices as a result of the renormafization of the mass in the lattice, 
based on Bloch wave analysis [122]. The superfluid analogue of a supeconducting 
TT-junction is a metastable 7r-state, recently observed in ^He weak links [41]. Atomic 
BEC junctions behave similarly to those of ^He-B. Thus, sdthough superconduct­
ing Josephson junctions can be mapped onto a rigid pendulum, atomic condensate 
tunnel junctions map onto a nonrigid pendulum [64, 65, 66], thus exhibiting richer 
oscillation modes. For example, TT oscillations arise in such systems [64, 65, 66, 67]. 
For an atomic condensate in a double-weU potential, TT osciUation modes can be 
produced by imprinting a phase shift of TT between the two wells. We study how 
these modes behave under the action of an external potential difference. 

This Chapter is structiured as foUows. In Section 6.2 we discuss the dynamics as­

sociated with particular initial states, including the TT oscillation modes, under the 

addition of a time-dependent potential gradient. Under the action of a gradient, 

states with initial phase difference TT across them exhibit tunneUing to the upper 

weU, providing a clear manifestation of Josephson effects. In Section 6.3 we compare 

the one and three dimensional results, whereas in section 6.4 we give an explanation 

in terms of a first-order time-dependent perturbation theory. Finally in Section 6.5 

we discuss the possibifity of experimental observation of this phenomenon in ciurent 

BEC set-ups. 

6.2 Tunnelling Dynamics under a time-dependent mag­
netic field gradient 

In the previous Chapter we studied the tunnelUng dynamics of BEC initially pre­

pared in the state in a one dimensional double-weD potential, by considering 

a barrier that moves with a constant velocity along the trap. In this Chapter we 

study the tunnelfing dynamics in three dimensional double-weU induced by a time-

dependent potential gradient which increases Uneaurly. The potential gradient is 

appfied at f = 0, i.e., 6 = RtioTt> 0, (dashed fine in Fig. 3.9(a) showing the right 
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well with higher potential energy than the left). Fig. 6.1 shows that the evolution of 

the fractional population difference for the ground state *g (grey fine) is similar to 

the one studied in the previous Chapter. We also show the tunnelling of the excited 

state (black line) with initial phase TT. We note that the direction of the initial 

flow depends on the initial phase difference. 

1 

^ 0 

-0.5 

1000 

Figure 6.1: Evolution of fractional population difference iV as a function of time 
(cjj^), for a system initially prepared in (grey) and *e (black hues) states based 
obtained from the numerical solution of the GPE (3.3). The tunneUing is induced 
by a time-dependent potential gradient S = Rt which increases at constant rate 
R = 10~^ {hu]^/a±). Other parameters used here: ft = 4 ftwx, A = 1, 330 = TT. 

The main theme of this Chapter is to investigate the tunnelling of states with initial 

phase <t> = 0 and n whose symmetry is broken by the addition of a time-dependent 

potential gradient. We also study the tunnelling dynamics in a symmetric double-

well potential {6 = 0) which are well known in terms of the two-state coupled 

Eqs. (4.18) and (4.19) (see Chapter 4). 

I f a system is initially prepared in one of its eigenstates, * j or i t will remain 

in that same state and there is no tuimelling ciurent. This is shown in Fig. 6.2(a), 
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Figure 6.2: Evolution of fractional population difference TV as a function of time 
(calculated using the GPE) without {t < 0) and with (< > 0) a potential gradient 
5 = Rt (shown at the top of each figure) for different initial states: (a) a pure ground 
*p or first excited 'J'e state with equal populations in both wells. In this case, 
tunnelling only arises due to the additional external potential; (b) the superposition 
states *OT± for g^u = 7^/2, corresponding to the regime A < Ac {Ec = 0.123 hu}± and 
Ej = 0.095 hu}±), showing maximum ampfitude ir-oscillations for t <0: and (c) the 
superposition states ^ ,r± for 530 = TT, corresponding to A > Ac (Ec = 0.220 hu)_i 
and EJ = 0.102 h(v±). Note that in (b) and (c) we have shifted the time origin by 
a quarter of an oscillation period such that JV = 0 at < = 0. The other parameters 
used here are A = 1, / i = 4 h(v±, R = 2x 10~^ (hJ^/ax)-

where we plot the fractional relative population, N as a. function of time with 6 = 0 

for t <0. However, i f the system is prepared in a superposition of or 'i'e with a 

TT phase difference, i.e.. 

(6.1) 

the population tunnels back and forth (see Fig. 6.2(b) and (c)) and the relative 

phase between the two wells oscillates around a mean value of TT (7r-oscillations 

[64, 65, 66,67]). The ampUtude of the Tr-osciUations depends on the ratio A = Ec/Ej 

[2, 55, 57, 65, 66, 67]. By solvmg the two-state coupled Eqs. (4.18) and (4.19) with 

initial conditions N{0) = 0.994 (determined from the GP solution for V'TT-) and 
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(f){0) = n, we find a critical ratio, Ac ~ 1.80 (see Fig. 6.3). For A < Ac, (Figs. 6.3(a) 

and (b)), the population oscillates between ±N{0), as in Fig. 6.2(b)(t < 0), whereas 

for A > Ac, (Fig. 6.3(d)), the oscillations in N are suppressed, as in Fig. 6.2(c) 

{t < 0). For A = Ac, (Fig. 6.3(c)), the oscillations are frozen initially and appear 

again for later times. 

500 

500 

Figirre 6.3: Evolution of fractional population difference N as a function of time, 
calculated using the two-state coupled Eqs. (4.18) and (4.19), with initial condi­
tions iV(0) = 0.994 and 0(0) = TT in a symmetric double-well trap {6 = 0). A 
takes the values: (a) 0, (b) 1.8, (c) 1.80407218718131001 (dashed) with iV > 0 and 
1.8080407218718131010 (dotted) with iV < 0 and finally (d) 1.9. 

The effect of introducing an asymmetry depends sensitively on the initial state. For 

the potential gradient induces a Josephson current to the left (lower potential 

energy region), whereas for *e flow occurs to the right (higher potential energy) 

(Fig. 6.2(a)). The situation is more complex for superposition states, such as *,r±. 
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For A < Ac, i f the potential gradient is turned on rapidly (compared to the period of 

the TT-oscillations), the oscillations in iV are suppressed tending towards a mean N 

close to its initial value. Fig. 6.2(b). For A > Ac, the induced flow is very different 

for and ^w- - For ^?r+ most of the population remains "self-trapped" in the 

higher energy well, whereas for a large fraction of the population flows from 

the lower to the upper well. In this regime, the experimental preparation of 

from the ground state is more difficult as it requires a transfer of population in 

addition to imprinting a phase diference of TT. However, as we will see in Section 

6.5, straightforward phase-imprinting can generate a superposition that contains a 

large fraction of * w ± -
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Figure 6.4: (a) Evolution of fractional population difference AT as a function of 
time, for a system initially prepared in state based on the GPE (black line) 
and the two-state model, Eqs. (4.18) and (4.19) (grey Une) with initial condition 
A^(0) = 0 and </i(0) = TT and parameters Ej = 0.10 ftwx, EQ = 0.22 nu± and 
2a = 3.77 hu}±/a± (obtained from the numerical solution of the GPE). The fractional 
population differences for the eigenstates are also plotted for the ground (soUd Une), 
first excited (dashed Une) and second excited states (dotted Une). (b) Snapshots of 
the evolution of the density distribution for case (a) when (i) < = 0, (u) 100, (ui) 
300 and (iv) 800 in units of (wj^)- Other parameters same as Fig. 6.1. 

The tunnelling behavioiu' of different initial states such as *g and *e under a po-

tentijJ gradient can be explained in terms of the time-independent solutions (see 

Chapter 3). These can be plotted as a function of time via their dependence on the 
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time-dependent potential gradient <5 = Rt. The time evolution and the correspond­
ing time-independent population difference for state *e is shown in Fig. 6.4(a), from 
which it is found that, for slow velocities, the system follows the eigenstate almost 
adiabaticaUy. The initial dynamics discussed above is also well described by the two-
state model [62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73] (grey line in Fig. 6.4(a)). 
However, for larger gradients the fuU potential G P calculation predicts that the 
atoms return to the lower (or left) potential well, whereas the two-state model sug­
gests they remain in the upper (right) well. This breakdown of the two-state model 
occurs because it does not take higher lying modes into consideration [60] (see also 
discussion in Chapter 5). This is an important consideration for any experimental 
demonstration of macroscopic flow to the higher well. The tunnelling dynamics of 
*e state is also illustrated by the density snapshots in Fig. 6.4(b). The population 
of both wells is initially equal (t = 0). As the gradient is increased population starts 
being trajisferred towajrds the right (z > 0), upper well. Increasing the asymmetry 
beyond a threshold value leads the population to be once again transferred to the 
left (̂ : < 0), lower well. Eventually, a transition to the second excited state occurs 
at large potential gradients. 

The flow towards the right (higher) potential well shown in Fig. 6.4(b) provides a 

clear macroscopic demonstration of quantum tuimelling. To consider whether this 

effect is observable in current experimental set-ups, we have studied the effect of 

varying the nonlinearity, trap geometry, and the time dependence of the ramp. 

6.2.1 Dependence on nonlinearity 

We now discuss the dependence of the flow on the nonlinearity for fixed trap ge­

ometry. Figs. 6.5(a)-(c) show the evolution of the fractional population difference 

for identical trap geometry, rate and different nonlinearities. The corresponding 

evolution for the eigenstate population difference is also shown as dashed lines. We 

observe that for the same trap geometry, increasing the nonlinearity causes a reduc­

tion in the amount of initial flow to the upper weU. For the parameters chosen in 

Fig. 6.5, with a nonlinearity ten times bigger (i.e. gso = lOir), leads to a reduction 
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of the average population imbalance induced by the applied potential gradient of 

slightly more than a factor of 2. This restricts the observation of the phenomenon 

for small nonlinearities, corresponding to no more than few thousands atoms (see 

Section 6.5 for experimental estimates). The effect of interactions have also been 

considered in [56], with the effective interaction also modified by atom losses [72]. 
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Figure 6.5: Evolution of fractional population difference N as a, function of time 
(wj^) for identical trap configurations (A = 1, /i = 4 fiui±_ and R - 10~^ ( ^ ^ / a x ) ) 
and increasing nonUnearity (a) gsu = TT, (b) 4n and (c) IOTT. Dashed hues indicate 
corresponding eigenstate populations for the first excited state. 

6.2.2 Dependence on trap geometry 

TunneUing has been predicted to be enhanced for 'pancake' traps (A > 1) [57], with 

such traps leading to a shghtly increased current flow. Furthermore, such geome­

tries feature enhanced energy splitting between ground and first excited state, (see 

Chapter 3), thus making them more robust to coupling due to external (e.g. thermal 

[68, 73, 71, 123]) perturbations. However, the suppression of timneUing induced by 

increased nonlinearities cannot be compensated by changing the geometry, as shown 

in Fig. 6.6 for trap aspect ratios in the range 1 to \ /8. In plotting this figure, the 

barrier height h has been increased for larger A, such that the peak density in the 
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trap centre remains essentially unchanged (see Fig. 6.7). 

^ -0.5 

0 200 400 0 200 400 0 200 400 
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Figure 6.6: Dependence of fractional population difference dynamics on trap geome­
try. Plotted is the evolution of iV as a function of time (a;J^) for R = 10~' 
(black), = IOTT and different trap aspect ratios: (a) cyhndrically-symmetric trap 
A = 1 (/i = 4 Rwj.) (same as Fig. 6.1), (b) 'pancake'-like trap with A = \ /5 
(/i = 6 TUJJX) and (c) A = %/8 (/i = 15 ^ j . ) , respectively. 

Figure 6.7: Density distributions along the z-axSs for the * j for fixed gao = IOTT 
and different geometries: solid corresponds to the geometry shown in Fig. 6.6(a), 
dashed to the one in Fig. 6.6(b) and finally long dashed to the one in Fig. 6.6(c). 
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6.2.3 Dependence on the rate 

We should further comment on the extent to which the above findings depend on 

the rate R with which the linesir potential gradient 6 — Rt \a applied. In Fig. 6.8 

we plot the population diflference N for fixed geometry and nonlinearity, but for two 

different rates at which the potential gradient is increased. We observe that when R 

is increased by a factor of 10 then the maximum flow to the right well is reduced by 

roughly a factor of 2. Also flow to higher potential region can only be observed for 

approximately one tenth of the time, unless the gradient is ramped up to a particular 

value and subsequently kept constant which is also shown in Fig. 6-8. We see that 

in both cases, the population remains trapped in the right or upper well, i.e. M Q S T 

occurs to a state with higher potential energy. In this regime, where the gradient 

does not exceed the value at which the flow is reversed, the two-state model predicts 

the behaviour correctly. 

1 

0 250 500 0 

Figure 6.8: Evolution of fractional population difference as a function of time 
(thick black lines) for different rates R of increase of the potential gradient: (a) R = 
10~' (ftwj^/ax) and (b) R = 10~^ {tuj\/ax)- Grey (brown) lines plot corresponding 
evolution of the population difference for the case when the potential gradient is 
held constant after a tune t = (a) 100 wj^ (400 wj^) and (b) 10 (40 a>X )̂. 
Other parameters used, as in Fig. 6.1. 
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6.3 Comparison to numerical results in one dimension 

In this section we compare numerical results in three dimensions to the one dimen­

sional solutions. The one dimensional time-dependent G P E is given by Eq . (2.19) 

with the potential, 

Viz) = hh"^ + /iexp(-^2) + Sz , (6.2) 

which describes a harmonic trap with a Gaussian barrier at the centre of the trap 

and a potential gradient. The one dimensional nonlinearity is given by Eq . (2.16) 

which matches the densities profiles in one dimension and along the ^-direction in 

the three dimensional system. In Fig. 6.9 we show a comparison of the Josephson 

flow in one and three dimensions in the case of small nonline£iritie8 for the same 

trap geometry, A = 1 and /i = 4 hoj±. Fig. 6.9 shows that for smaU nonlinearities 

the results are in good agreement in both dimensions, thus the three dimensional 

dynamics can be accirrately described by a one dimensional model which simphfies 

the numerical study. However the agreement becomes worse as the nonhnearity is 

increased, hence a three dimensional model is not always well described by a one 

dimensional problem. 

6.4 Time-dependent Perturbation theory argument 

In this section we present a first order time-dependent pertiurbation theory which 

explains the initial flow dynamics. However higher order perturbation theory is 

needed in order to acciurately describe the dynamics for later times. Following 

the standard method presented in the textbooks of quantum mechanics we write 

the total Hamiltonian of the system as the siun of two parts: HQ which is the 

unperturbed Hamiltoniaji that describes the confinement of bosons in a cyhndrically 

symmetric potential in the presence of a Gaussian barrier and Hi which is the 

pertiu-bation on HQ. Thus the total Hamiltonian is written as 

H = Ho + Hi, (6.3) 
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Figure 6.9: Comparison between the evolution of fractional population difference N 
(a) in three and (b) one dimension as a function of time {u)']}). In g^o = TT and 
A = 1 whereas in (b) gij) = 0.5. Solid bold (dashed) lines indicate corresponding 
eigenstate populations for the ground (first excited) state. Other parameters same 
as in Fig. 6.1. 

where 

^0 = - ^ V 2 + i [(x2 + J/2) + xh^] + hexp [-z^] + ff3D|V(r)P (6.4) 

and 

Hi{r,t) = 6it)z , (6.5) 

where S{t) = Rt. We denote by and ip^ the eigenvalues and the orthonormal 

eigenfunctions of the imperturbed Hamiltonian HQ. Thus, 

(6.6) 
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The total wavefimtion of the system, is given by the solution of the time-dependent 
equation, 

ih^ = Hi> . ( 6 . 7 ) 

Let us consider the atoms are initially in the 7r-state. Because the wavefunctions 

ipl form a complete set, the total wavefunction which describes the evolution of 

the system can be written as a superposition of the initial state, V'2 said the ground 

state V"? with certain probabilities if we neglect the mixing with higher order states 

and is given by equation, 

tA(r,t) = V.2(r) e M - i ^ t ) + '̂ ftV'JCr) e x p ( - i £ ? f ) , (6.8) 

where Cj, describes the transition probability for a system initially in state a, to be 

found at time t in state 6, 

cb = \ f ^ exp[i(E« - El)t']t'RVbadt' , (6.9) 

with, 

Vba =< rjzl^t > (6.10) 

describes the mixing of states ipa and i/'6- The wavefunctions of can be writ­

ten in the basis of the stationary symmetric and axitisynmietric solutions of the 

unperturbed Hamiltonian HQ in each well: 

^t = ^ , { < + ^l) , (6-11) 

and 

ifi - 1 f.ifi_ _ ,1,0 ra = ^ , [ r R - r L ) • (6 .12) 
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Replacing the above expressions for the wavefunctions and calculating the matrix 

element Eq . (6.10), we obtain the following expression for the wavefunction. 

= 5 S « c [ ( l + i ^ ) ^ o „ - ( l - i f ) V , J ] , 

where K is given by. 

K = RVba 
J _ ^ ^ exp{iAEt) 

AE iAE^ iAE^ 

AE = £ ^ - E ° and C is the normalization factor given by equation. 

(6.13) 

(6.14) 

|l+if|2 + |l-if|2 

The number of particles on the left and right well is given by. 

(6.15) 

NL = C^(l - K){1 + K*) = 

and 

n2 ) , . 16) 

NR = C^{l + K){l-K*) = 

(I , (6. 17) 

respectively. Substituting the above equations in the expression for the asymmetry 

parameter N = {NL - NII)/{NL + NR) we obtain. 

(6.18) 

In order to find the evolution of N one should calculate AE and Vjo for a given trap 

geometry, asymmetry parameter 530 and rate R = 10"^ {hu\/a_i). For h = 4 fiLjj_, 
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200 

Figmre 6.10: Comparison between the G P E (black) and the perturbation theory 
(fight grey) evolution of the population difference N for a B E C with pan = TT, 
h = A hu}± and A = 1 as the potential gradient S = Rt increases with constant rate 
R = 10""̂  (tkjj^/ax)- The perturbation theory correctly describes the dynamics for 
small times. 

A = 1 and 53D = TT we take AE = 0.10 /iwj. and Vba = 2.17 ftwj.. In Fig. 6.10 

we plot the evolution of the poptilation difference as a function of time predicted 

by the time-independent perturbation theory (light grey) and by exact solution of 

the time-dependent G P E for with R = 10~^ {hu}\/a±_). We observe that the time-

dependent perturbation theory describes correctly the initial dynamics. However 

first-order perturbation theory is insufficient to describe the dynamics at later times 

and a higher-order theory is needed. 

6.5 Experimental Considerations 

We now discuss the feasibiUty of observing flow to the upper weU using phase im­

printing [124, 125, 126]. Starting from the condensate ground state in a symmetric 

double-well trap, population can be transferred to the excited states by applying a 
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light-induced potential of the form 

Vr (z, t) =asm (irt/To) tanh (z) (6.19) 

for [t < To), where a and TQ are constants which we vary. At * = TQ, the potential Vr is 

suddenly switched off such that there is a TT phase shift between the two wells. This 

simple phase-imprinting method does not distinguish between states with similar 

density and phase profiles such as or *n^±. Other more sophisticated methods 

of preparing the initial state such as 2-photon adiabatic passage [127] could also be 

explored. 
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Figiure 6.11: Evolution of fractional population difference N as a. function of time 
for initial states prepared by phase imprinting for different values of a (ftoij.) and 
To (wj^). Top row: a = 0.5 hujx with TO = 6.0,7.0,7.5 u j ^ in (a)-(c) respectively. 
Bottom row: a = 1.0 hLJ± with TO = 3.0,3.2,6.3 in (e)-(f) respectively. In (a) 
and (d) the oscillations are "self-trapped" with {N{t)) ^ 0. Other parameters as in 
Fig. 6.1. 

In Fig. 6.11, we show the evolution of the population difference for different values 

of a and TQ. We observe that we can choose the phase imprinting parameters such 
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that the ampHtude of the subsequent number oscillations between the wells in a 
symmetric double-well potential (i.e. in the absence of a potential gradient) are 
minimized. The time dynamics for this case are shown by the grey lines in Fig. 6.12, 
and essentiaUy correspond to the jr-osciUations with {N{t)) ^ 0 discussed in [66, 
64, 65, 67] and shown in Fig. 6.2(c). For an imprinted phase of ir, the population 
oscillates with most of the condensate in the left well (grey line in Fig. 6.12(a)), 
while for an imprinted phase of —TT, the population oscillations are contjiined within 
the right weU (grey line in Fig. 6.12(b)). 

In both cases, the addition of the potential gradient at a time indicated by the open 

circle in Fig. 6.12, induces a flow to the right or upper potential well (soUd Unes in 

Fig. 6.12). Even at the time in the 7r-oscillation cycle when most of the population is 

already on the right weU and would subsequently flow back to the left, the addition 

of the gradient induces more flow to the right, as shown in Fig. 6.12(b). Note that, 

in this case, the population remains trapped in the right well until the influence of 

the second excited state becomes important. K the correct initial state parameters 

are obtained from the full G P calculation, then the results shown in Fig. 6.12 can 

be reproduced using the two-state model, except for the transition to the second 

excited state. However, a full potential calculation is required to correctly predict 

the initial state and the dynamics for larger potential gradients, where the two-state 

model breaks down. 

Finally, we discuss typical experimental parameters required for the demonstration 

of Josephson flow to the upper potential well. The number of atoms is given by 

M='-^^ = f ^ J - ^ . (6.20) 

The total atom number is independent of the trap aspect ratio, therefore, for given di-

mensionless nonUnearity gso, large atom numbers can be obtained for light, weakly-

interacting, transversally weakly-confined systems. For a large niunber of atoms, 

one should preferably choose species with a small value of Oy/m. For example, tak­

ing gsB = 47r and = 27r x 20 Hz, we find: = 1700 (^^Na) and 500 («^Rb). 

An enhancement of the atom niunber by a factor of 10 may be possible by tuning 
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Figiure 6.12: Evolution of fractional population difference as a function of time 
for initial states prepared by phase imprinting (|a| = ^ x , TQ = 3 u}']}). The grey 
and black curves correspond respectively to the absence of a potential gradient (i.e. 
symmetric double weU), and the addition of a potential gradient S = R[t — n ) 
increased linearly at rate R = 2 x. 10~^ {hij\lax) from time n , with this time 
indicated by the open circles, (a) a = T\ = 10 UJ']} and (b) a = —Tui}±_ 
Ti = 85a;J^. Other parameters as in Fig. 6.1. 

around a Feshbach resonance (e.g. ^^Na, ^ R b , ^'^Cs) [23, 24, 25]. In the case of 

^Li and ^ R b , the mm[iber of atoms needed to observe such Josephson flow is not 

likely to exceed the critical value [1, 15, 75, 76, 77, 78, 79] for collapse, see also next 

Chapter. 

Note that for fixed, reasonably small, nonUnearity [gso < lO^r), such that the effect 

can be clearly observed, one needs weak transverse confinement u}± in order to 

obtain a reasonable number of atoms which can be imaged easily. However, small 

LJ± imply long timescales, such that the observation of this effect become limited 

by other &ctors (e.g. thermal damping [68, 71, 73, 123], atom losses [72], etc.). If 

we choose wx = 27r x 20 Hz and an appUed field gradient i? = 2 x 10~^ (huy^/ax) 

the experimental realization requires a time <exp ~ 2 s. 

In the next two Chapters we concentrate on the properties of dilute B E C s with 

attractive interactions in a double-well potential. We begin Chapter 7 by considering 
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the static properties of a B E G in a single harmonic trap which has been extensively 
studied and we generalise to a double-weU potential. Finally, in Ghapter 8 we study 
the timnelling dynamics. 



Chapter 7 

Stability of a B E C with 
attractive interactions 

We study the stability of a condensate with attractive interactions by solving nu­

merically the GPE. We begin by studying the stability of a dilute BEC in a single 

harmonic trap for which we compare our results with existing predictions and ex­

perimental results. We then study the stability of a dilute BEC in a double-well 

potential. 

7.1 Introduction 

One of the central questions in the field of Bose condensed gases concerns the influ­

ence of interparticle interactions on the character of B E C . In the mean field model 

described in Chapter 1, these interactions are described by a nonlinear term in the 

G P E that depends on the density of the condensate and the a-wave scattering length 

o. When o > 0 (a < 0), the interatomic interactions are repulsive (attractive). In 

addition one can control not only the strength of these interactions but also whether 

they are attractive (a < 0 e.g. ^Li , ^^Rb, ^^Cs at low magnetic fields) or repulsive 

(a > 0) using magnetic-field induced Feshbach resonances [23, 24, 25]. Whereas a 

harmonically confined B E C with repulsive interactions is stable for any number of 

atoms, a condensate with attractive interactions is only stable if the atom number 

is smaller than a critical value Afc [1, 15, 75, 76, 77, 78, 79]. As the niunber of atoms 

115 
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exceeds the critical value the interaction energy becomes larger than the zero-point 

kinetic energy, determined by the confining potential and a coUapse occurs. 

In Ref. [75] it was shown niunerically that a condensate with attractive interac­

tions becomes unstable if Afc is reached. A dimensionless constant relating the 

scattering length a with Afc and the properties of the confining trap, is defined by, 

where oo = y/h/muo and m is the mass of the atonas confined in the trap and 

Wo = X^^^LJ± is the geometrically averaged trap frequency. The above parameter 

describes the ratio of the interparticle interaction to the kinetic energy, (see Ghapter 

2) and its importance will be discussed in the following Sections. 

B E G with attractive interactions was first achieved with ^Li [15, 128, 129, 130] 

and more recently with *^Rb atoms [131, 132] using a Feshbach resonance [17]. In 

experiments on ^Li , the magnetic field is held fixed and the number of condensate 

atoms grows up to A^ whereas for ^ R b , a Feshbach resonance [17, 131] has been 

used to switch the scattering length from positive to negative values, producing a 

condensate with A/" » A/'c- There have been many theoreticjJ estimates for A/'c both 

nimiericaUy using mean-field calculations [75, 79, 133, 134] and using variational 

methods [1, 76, 135]. In the case of ^Li , the G P E correctly predicts A/'c whereas for 

**Rb atoms, there is disagreement between the experimental value and theoretical 

estimates derived using the G P E . 

Although much work has been done to study the collapse properties of dilute B E G s 

in a single-harmonic trap, an interesting subject is to study the behaviour of a 

condensate with attractive interactions in a double-well potential. Magnetic [32, 48] 

and optical [49, 50] double-well potentizils have been created in recent experiments 

and a proposal for a magnetic double-weD trap has been reported [51]. Although 

condensates with a > 0 in a double-well system has received considerable theoretical 

attention (see previous Chapters), only Adhikari [136] and Goullet et a/. [137] have 

studied the a < 0 case. 
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We begin this Chapter by studying the stability of a B E C with attractive mteractions 
in a three-dimensional harmonic trap, in Section 7.2. Our study is based on the 
numerical solution of the three-dimensional G P E for different trap geometries and 
we compare our results with existing work. We also study the stabihty of a dilute 
B E C in the presence of vortex states. Finally, in Section 7.3, we study the stabihty 
in a double-well. In this case the barrier expels atoms from the centre of the trap 
and the competition between the attractive interaction and the kinetic term modifies 
the stabihty. 

7.2 Stability of a B E C in a harmonic trap 

In this Section we study the stability of a B E C with attractive interactions in a 

three dimensional harmonic trap. We solve numerically the G P E (2.31) using the 

Newton method [96], described in Appendix A. We consider ground state solutions 

( K = 0) as well as vortex states (K ^ 0). In Appendix C we also present a variational 

C£ilculation to study the stabihty, in the case of a spherical and axially symmetric 

trap, by minimizing the energy functional and we compare the solutions derived by 

the numerical solution of the G P E and the v£U-iational method. 

7.2.1 Ground state solutions 

In Chapter 2 we presented tjrpical density plots for a B E C with attractive inter­

actions and we saw that attractive interactions increase the centred density and 

decrease the spatieil extension of the condensate. This is also shown in Fig. 7.1 by 

presenting surface plots of the density distribution for positive and negative nonlin­

earity gsD for the case of a condensate confined in a spherical trap (A = 1). We note 

that as the nonlinearity is decreased the condensate density becomes narrow and 

sharply peaked, increasing the interaction energy, and at a critical value g^p which 

is related to Mc from E q . (2.8), the condensate collapses. 

We begin our study for the stabiUty of a condensate with attractive interactions 

by showing in Fig. 7.2 the variation of the eigenenergy for the groimd state / i , as 
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Figure 7.1: Surface plots of the condensate density for a B E C confined in a spherical 
trap for gso := 13 (left) and —13 (right). 

a function of the parameters (a) QSD and (b) k = M\a\/a{i for different types of 

geometries. The choice of these parameters will be more apparent in the following 

paragraphs. In both cases, there is a critical value ^313 or fcc beyond which there 

are no stable solutions of the G P E , and a collapse occurs. Substituting the value of 

ff^D in Eq . (7.1) we obtain a critical value kc = 0.54, 0.57, 0.54 for = 1/8, 1, 8, 

respectively. For A = 1 oiu: simulations give kc = 0.57 whicli is in excellent agreement 

with Refs. [1, 75, 77, 78, 79, 133, 134]. Taking values used in the ^Li experiments 

at Rice University [128] with an almost symmetric trap, A = 1, a = -14.5 A, 

a;o ~ 27r X 160 Hz we obtain Mc ^ 1250. The experiments with ^Li predict a value 

of A/'c = 1400 atoms, [128, 129], which is consistent with the theoretical value and 

provide a good test of the G P E . 

We also study the instability in the case of a "cigar-shape" trap (A < 1) using 

the value of A from experiments with *^Rb of J I L A [131, 132]. The frequencies of 

the trap were 17.24 x 17.47 x 6.80 Hz and the critical constant was found to be 

kc = 0.46 experimentally. Using the above values for the trap geometry we obtain 

u}± = y/(^x(^y = 2n X 17.35 Hz and A = oJzl^i. = 0.39 which gives kc = 0.55 which 
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Figure 7.2: Eigenenergy value for the ground state for a spherical, A = 1 (solid), 
a "pancake", = 8 (dashed) and "cigar" trap, A^ = 1/8 (dotted Une) as a function 
of: (a) the nonlinear parameter gya and (b) the parameter fc = .V|a|/ao. 

is in excellent agreement with previous numerical calculations [79, 133, 134]. We 

note that there is a disagreement with the experimental result kc = 0.46 [132]. This 

discrepancy might be resolved by including higher order terms in the G P E (2.31) 

[79, 133]. Substituting the values of wj. and kc in Eq . (7.1) we find jVc = 84 for *^Rb 

atoms. Higher number of atoms can be obtained by means of a Feshbach resonance 

[17]. 

By exchanging the radial and axial frequencies of the trap, we study the stabiHty 

of a "pancake-shape" trap (A > 1) with = 27r x 17.35 Hz, wo. = 27r x 6.80 Hz, 

and A = 1/0.39 = 2.55. In this case, kc = 0.55, which corresponds to J\fc = 98 from 

E q . (7.1). Comparing with the previous values of kc for A^ = 8 and 1/8 we note 

that fcc(A) = A;c(l/A) but the number of atoms in a "pancake-shape" trap is larger 

than the corresponding number for a "cigar-shape" trap, because, 

^c(A) = M A ) ^ = M A ) ^ A - V « . (7.2) 

Substituting aj . = X^^'^a^, we obtain a new expression for the critical number of 

atoms, 

^c(A) = M A ) g A i / ^ (7.3) 

By exchanging the frequencies u)± Uz we have a j . —>̂  a^, and A -> 1/A, thus taking 
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the ratio INc{lIX) we obtain [133], 

Mcil/X) kcil/X) (7.4) 

yielding M;(A) > ^ ^ ( l / A ) for kdX) « itc{l/A) and A > 1. 

We summarise our main results by plotting the stability curves for the parameters 

g^jj and kc for different trap geometries (difiFerent values of A), and the corresponding 

critical number Mc for *^Rb atoms, in Fig. 7.3. We note that the maximum number 

of atoms in the condensate depends on the trap frequencies as pointed in [134]. 

If we fix two equal frequencies, for example cjj = Wj, = cjx, corresponding to the 

choice of units that have been considered in this Thesis, then Mc is maximized for 

A < 1 since gao is proportional to Af. However considering previous calculations 

we note that if we fix only one of the frequencies then Afc is maximized for A > 1. 

Finally, if CQ is fixed, and therefore the product tv^iv^, then Mc is maximized for 

A = 1 corresponding to a spherical trap in agreement with the variational method 

presented in Appendix C . 

Figure 7.3: Plots of the critical parameters, (a) nonlinear constant g^jj and (c) kc, 
Eq. (7.1) «ind the corresponding Afc in (b) and (d) as a function of A. 
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An interesting question is how the stability is modified by changing the trap fre­
quency. We solve the G P E (2.31), for K = 0 usmg a harmonic trap, 

Vtrap(r,^) = L i ( r 2 + A V ) , (7.5) 

where U}_L is the angular frequency of the potential in the radial direction. By in­

creasing wj. the trap becomes tighter in all directions and the condensate is confined 

in a smaller volume. In Fig. 7.4(a) we plot the three dimensional trap, E q . (7.5) for 

A = 1 for two values of wj. and in Fig. 7.4(b) we plot the critical parameter kc as & 

function of cj±. We observe that by squeezing the condensate in all directions the 

stability is decreased. 

7.2.2 Vortex States 

In the previous subsection we saw that the attractive interactions increase the central 

density leading to instability and coUapse. In the case of axial confinement, this 

increase is along the axis of the trap. However in the presence of vortex states 

(K ^ 0), due to the centrifugal force the atoms are pushed away from the 2;-axis and 

the atoms have more space to stabilize. Thus B E C s with vortices are more stable 

than in the absence of vorticity (K = 0) [79, 81, 98]. 

We repeat the previous calculations for low values of vorticity. In Fig. 7.5(a) and (b), 

and (c) and (d) we plot the eigenenergy value fi for K = 1 and K = 2, respectively, 

for = 1/8, (dot-dashed), = 1, (solid) and A^ = 8 (dashed line) as a function of 

the parameters gsD and k = ^ |a | /ao . For K = 1 we obtain kc = 1,67, 1-87, 1.91 for 

A^ = 1/8, 1, 8, respectively, whereas for K = 2 we obtain that kc = 2.56, 2.94, 3.11, 

respectively. Our calculations are in excellent agreement with [79] and small difier-

ences between the results are due to numerical precision. We note that for the same 

type of geometry, fee increases with increasing K and that in the presence of vorticity, 

kc increases with increasing A from ^1/8 to y/8. We note that A;c(A) ^ kc{l/X) for 

states with K ^ 0. 
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Figure 7.4: (a) Plots of the three dimensional harmonic trap, Eq . (7.5), for two 
frequencies, wj, = 1 (outer trap) and = 3.1 (inner trap), (b) Stability parameter 
kc as a, function of u±. In both cases we assume A = 1. 
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Figure 7.5: Eigenenergy value / i , for (a) and (b) K = 1 and (c) and (d) K = 2, as 
a function of the nonlinear parameter 530 (left colimin) and the parameter, k = 
A''|a(/ao, (right column). Other par£uneters as in Fig. 7.2. 

7.3 Stability of a B E C with attractive interactions in a 
double-well potential 

Next we consider the stabiUty of a dilute B E C with attractive interactions in a 

double-well potential which is created by superimposing a harmonic trap and a 

Gaussian barrier of height h in the z-direction located at 2 = 0. In addition, a linear 

potential Sz of gradient 5 is pivoted about the centre of the trap. In order to study 

the stability we solve the stationary G P E (3.3) in the presence of the total confining 

potential E q . (3.4). We aiso consider the one dimensional limit (Eq. (3.1)), which 

jiccmately takes into account the transverse dynamics of "cigar-shape" condensates 

with a total confining potential in the axial direction given by. 

(7.6) 

We present the eigenenergy curves and the eigenstates of a dilute B E C with attrac­

tive interactions in one and three dimensional double-well configiu-ation and address 

the issue of the stability. 
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7.3.1 Stationary solutions 

The eigenstates of the double-well condensate in one and three dimensions are calcu­

lated as discussed in Chapter 3. For small nonlinearities there are only two levels and 

at <J = 0 the eigenstates are (in order of increasing energy): (i) a symmetric ground 

state *g and (ii) an antisymmetric first excited state, with equal population in 

both wells, as shown in Fig. 7.6(a). Sufliciently large attractive interactions lead 

to the appearance of a loop structure in the ground state, [115, 116, 117, 118] and 

asymmetric states at J = 0, as shown in Fig. 7.6(b). The corresponding wavefiinc-

tions at J = 0 are: (iii) two low energy, asymmetric groimd state solutions with most 

of the particles in either the left (dashed) or the right (dotted) well (the so-called 

"self-trapped" states [60, 63, 64, 65]), (iv) a higher energy symmetric ground state 

*g with equal population in both wells, and (v) an antisymmetric first excited state 

*e with equal population in both wells. 

Under certain conditions the eigenenergies / i can also be reproduced by the two-state 

model approximation (see Chapter 3) using Eq . (3.34) where the values of EQ, EJ, 

and A = a6 are determined from the C P solution. The energy splittings EQ and Ej 

are indicated in Fig. 7.6 for a noninteracting system (-Be = 0) and in the presence 

of attractive interactions {Ec < 0). In Fig. 7.7 we plot the two-state model and the 

G P solutions for giu- We note that the two-state model correctly reproduces the 

eigenenergy curves for small values of the nonlinearity. 

The picture for the eigenenergy levels as a function of d shown in Figs. 7.6 and 7.7, 

is only vafid in one and three dimensions for a limited range of nonUnearities. To 

illustrate the behaviour for the complete range of nonUnearities we plot the value of 

splittings l^^cl and -Bj as a ftmction of gm and gac in Figs. 7.8 and 7.11 for the one 

and three dimensional cases, respectively. 

First we discuss the one dimensional case. In Fig. 7.8(a) we plot the two-state model 

parameters \Ec\ and Ej a,t d = 0 (symmetric double-well) as a function of ^ I D - For 

9it> < 0, increasing the magnitude of the nonlinearity leads to the appearance of a 

loop structure in the ground state at a critical point \Ec\ = Ej. As a one dimensional 
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Figure 7.6: Eigenenergies for the double-well for (a) a noninteracting and (b) attrac­
tive Bose gas as a function of the potential grjidient J indicating the self-interaction 
energy, Ec, and the Josephson coupling energy, -Bj in each case. The horizontal 
dotted grey line corresponds to the zero energy of the two-state model. The values 
of the nonlinearity used here are (a) 530 = 0 and (b) 53D = —TT corresponding to 
(a) Ei = 0.089 fiwx and £?c = 0 and (b) E j = 0.071 ftwx and £^0 = -0.379 hujy. 
The eigenstates at the centre of the trap are also shown in each case. We assume a 
spherical trap geometry (A = 1), and a Gaussian barrier of height /i = 4 ftci;_L located 
at the centre of the trap. 
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0.04 

Figure 7.7: Comparison between the G P solutions (soUd) and the two-state model 
(dashed) eigenenergies, fi, as a function of the potential gradient S for giu = -0.5 
and for the one dimensional confining trap (Eq. 7.6), with h = 4 hu}_i. Black (grey) 
Unes correspond to the ground (first excited) states. The parameters of the two-state 
model used here are: Ej = 0.074 ftwj,, EQ = -0.268 hu}± and a = 2.695. 

condensate is stable against collapse, (see Chapter 2 and Appendix C ) , |£^c| remains 

finite and a loop structure is always observed. Note that for a nonUnearity less than 

a critical value (indicated by Ii in Fig. 7.8(a)) the spUtting Ej becomes negative 

signifying an inversion of the lowest two energy eigenvalues. 

In Fig. 7.8(b) we show typical eigenenergy levels for the ground and the first excited 

states as a function of the potential gradient for different values of the nonlinearity 

both negative and positive. Note that decreasing the nonUnearity (gio < 0), the first 

excited state has lower eigenenergy than the symmetric ground state for small values 

of S (Figs. 7.8(b)/i and 7.9(a)). However, the initial inversion of the eigenenergy 

levels is absent when considering the energy levels, where we find that the first 
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Figure 7.8: (a) The self-interaction energy \Ec\ (dashed) and the Josephson energy 
Ej (solid) lines at ^ = 0 as a function of the nonlinearity gm for the one dimen­
sional confining trap (Eq. 7.6), with /i = 4 tiLij±. (b) Typical eigenenergies fi as 
a function of the potential gradient 6 for various nonlinearities (from left to right) 
ffiD = - 4 , -0.5,0 and 0.5. The horizontal soUd line corresponds to E = 0. 

excited state has higher energy than the ground state, shown in Fig. 7.9(b). This 

can be explained using fi = Etot - l/2|flr| / |*|^dr = Eu,t - j^intl- Although Etot 

is larger for the first excited state than for the ground state, the first excited state 

has more negative interaction energy (shown in Fig. 7.9(c)) as its peak density is 

higher thereby reducing / i below the ground state value. In Fig. 7.10 we compare 

the two-state model (dashed) and the G P E solutions (solid fines) for the same value 

of nonlinearity as in Figs. 7.8(b)/i and 7.9(a). We observe that the two-state model 

cannot reproduce the inversion of the eigenenergy levels. 

In Fig. 7.11 we consider the three dimensional case. In Fig. 7.11(a) we plot the split­

tings | E c | and E j at 6 = 0 as a function of gso- In contrast to the one dimensional 

case, for gso < 0 the condensate collapses when the atom nimiber or magnitude of 
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Figure 7.9: (a) The eigenstates / i , (b) the total energy ^̂ tot and (c) the interaction 
energy .Bint as a ftinction of the potential grswiient 5 for the (solid black), the 
(grey) and the "self-trapped" ground (dotted lines) states. Inset in (a) we plot the 
eigenstates / i for small S. Other parameters: gw = —4 and h = 4 ?kj±. 

the nonlinearity 330 exceeds a critical value. The collapse appears first in the "self-

trapping" states. In Fig. 7.11(a) this corresponds to the point where the curve for 

\Ec\ terminates at the boundary between region I and I I (indicated by the vertical 

dotted line in Fig. 11(a)). At larger negative nonlinearities (region I in Fig. 7.11(a)) 

the lowest eigenstates invert (as in the one dimensional case) and at 5 = 0 the sym­

metric states also become unstable at gsri = —11.6. In Fig. 7.11(b) we plot typical 

eigenenergy levels as a function of 6. The curves are similar to the one dimensional 

case except in the limit of large negative nonlineaxities (region I) where a completely 

different structure is foimd. In this region there is no longer a loop structure as the 

"self-trapped" states are unstable. This parameter region is of interest for investi­

gating timnelling induced collapse where one begins with a stable symmetric state 

and adds a gradient and induce a collapse. This region is not described by the two-
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Figure 7.10: Comparison between the G P solutions (solid) and the two-state model 
(dashed) eigenenergies, / i , as a function of the potential gradient 6 for = —4 and 
for the one dimensional confining trap (Eq. 7.6), with /i = 4 tiu}±. Black (grey) lines 
correspond to the groimd (first excited) states. Inset are shown the eigenenergies 
for small 5. The parameters of the two-state model used here are: Ej = 0.003 tui}±, 
Ec = -3.509 hLJ± and a = 3.832. 

state model. However, before discussing the dynamical behaviour we consider the 

stability in the symmetric double-well as function of the barrier height. 

7.4 Stability of a B E C in a double-well potential 

In this Section we study the stability of a B E C with attractive interactions in a three 

dimensional symmetric double-well trap. In Fig. 7.12(a) we plot the critical constant 

Ac as a function of h for the case of a symmetric double-well trap with A = 1 for 

the ground and first excited states. We find that at a critical value of the barrier 
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Figure 7.11: (a) The self-interaction energy l^^cl (dashed) and the Josephson energy 
Ej (solid) lines at 5 = 0 as a function of the nonlinearity pso for the three dimen­
sional confining trap (Eq. 3.4), with X = 1, w = a± and /i = 4 fwx- (b) Typical 
eigenenergies / i as a function of the potential gradient 6 for various nonlinearities 
(from left to right) gsi, = - 6 , -7r,0 and n. Compared to the one dimensional case 
(Fig. 7.8), in three dimensions there is an additional region (I) corresponding to 
the case where the "self-trapped" states become unstable. The horizontal solid line 
corresponds to E = 0. 

height, he, there are two branches to the stabihty curve for the ground state. The 

upper and lower branches correspond to the symmetric (Fig. 7.6(b), ciuve (iv)) and 

asymmetric (Fig. 7.6(b), curve (iii)) eigensolutions respectively, (plotted by circles 

and squares in Fig. 7.12(a)). Note also that kc reaches the maximum value at a 

height just above that corresponding to the appearance of the second branch. This 

maximum can be explained by a minimmn in the peak density which is plotted in 

Fig. 7.12(b). As the barrier is raised the condensate is spUt in two, thus reducing the 

maximum density. However, as the trap splits to form two separate condensates, the 

condensates in each weU become compressed and the peak density increases again. 
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Figure 7.12: (a) Critical psurameter fcc as a function of h for a spherical geometry 
(A = 1). Stability curves of the symmetric (curve (iv) in Fig. 7.6(b)), first 
excited (curve (v)) and asymmetric ground states (ciurve (iii)) are shown as 
circles, crosses and squares respectively, (b) Condensate density | * (0 ,0 , z )p along 
the z axis as a function of h for the state Shown are the central |^(0,0 ,0)p 
(black) and peak (*(0,0,^m)|^ (grey lines) densities, where Zm is the longitudinal 
position of maximimi density in the double-well configuration (i.e. centre of each 
well). Vertical dotted line highlights the critical value he, above which the stability 
curve consists of two branches. 

This result is similar to that of Adhikari [136], except for large h, where he finds 

that kc increases again. Our results for diffierent values of A, are similar to Fig. 7.12. 

As anticipated, we find that, for h > he, when the system is essentially composed 

of two separate condensates, the value of kc in each well tends towards the value 

in a single hjumonic trap containing the same number of atoms as each half of the 

double-well. 

Finally, the critical constant kc as & function of h, for the first excited state, *e 

(blade line in Fig. 7.12(a)) first increases, reaches a peak value, and then decreases 

approaching the value for the symmetric ground state for Ijirge h. This is expected, 



Chapter 7. Stability of a BEC with attractive interactions 132 

Figure 7.13: Density distributions |*zP along the z-axia for (a) the *p and (b) the 
'^e states for various barrier heights. In both cases we consider a spherical geometry, 
93D = —2 and /i = 0,3,10,20 hu}±, in terms of increasing width. 

as in the limit of large h, the densities distributions of *g and *e become very 

similar, as shown in Fig. 7.13. 

In the next Chapter we consider the tunneUing dynamics in the case of a B E C with 

attractive interactions in a one and three dimensional double-well potential under 

a time-dependent potential gradient. We wiU focus on small nonUnearities (regions 

I and I I in Fig. 7.8 and 7.11 for the one and three dimensionals cases) and large 

negative nonfinearities (region I in Fig. 7.11). In the latter case, and for a three 

dimensional trap, the condensate is shown to collapse at a critical potential gradient 

determined by the eigenstates. We will also consider the more complex case of 

tunnelling in an optical lattice potential. 



Chapter 8 

Josephson dynamics of an 
atomic B E C with attractive 
interactions 

The Josephson tunnelling of a low temperature Bose-Einstein condensate with at­

tractive interactions in one and three dimensional double-well potentials is discussed. 

In particular, the tunnelling dynamics of a condensate under the influence of a time-

dependent potential gradient is investigated. The condensate is shovm to collapse at 

a critical potential gradient which corresponds to a critical number of atoms in one 

of the two wells. We also show that by creating a lattice we can stabilise a conden­

sate at a nonlinearity larger than the critical value for collapse, and we investigate 

the dynamics. 

8.1 Introduction 

The successful realization of B E C s in trapped atomic gases of ^Li and *^Rb atoms 

has motivated the study of dynamical efiiects such as the condensate collapse if 

the number of condensate atoms exceeds a critical value Afc [1, 15, 75, 76, 77, 78, 

79]. For ^ L i , when the number of atoms is increased beyond Afci the condensate 

collapses, ejecting atoms imtil the nimiber of atoms is reduced below A/'c and a stable 

configiuration is reached. Elastic collisions rethermalize the gas, and the condensate 

133 



Chapter 8. Josephson dynamics of an atomic BEC with attmctive interactions 134 

grows again and thus a series of growth and collapse cycles can take place until 
there are not enough atoms left to completely fill the condensate. In experiments 
on ^Li, the magnetic field is held fixed and the number of condensate atoms grows 
up to Mcr where a partial coUapse occiurs [138, 139]. In this system, it should be 
noted that the attractive interactions can lead to the formation of bright matter-
wave soliton trains in elongated optical traps [140]. In ^Rb experiments, a Feshbach 
resonance [17] has been used to switch the scattering length firom positive to negative 
values, producing a condensate with Af » A/cr which subsequently collapses [131], 
as modeUed in [141, 142, 144, 145, 146, 147, 148]. 

In this Chapter, we investigate the tunnelling dynsunics of a low temperature atomic 

condensate with attractive interactions. We consider the case of a double-well trap 

as well as an optical lattice potentisil and show how tunnelling between two or 

multiple wells can lead to collapse. We do not, however, intend to describe the 

collapse dynamics, for which, one should additionally incorporate a suitable 3-body 

loss term [145, 149]. 

This Chapter is organised as follows. First in Section 8.2, we consider the simplest 

case of a BJJ, that is a double-well. We calculate the fractional population differ­

ence of the ground and first excited eigenstates of an atomic B E C with attractive 

interactions in an asymmetric one and three dimensional double-well potential. In 

Section 8.3 we investigate the Josephson dynamics induced by the addition of a 

time-dependent potential gradient. We study the time-dependent evolution of the 

system as the gradient is increased at a constant rate for small attractive nonlinear-

ities. In Section 8.4 we consider the case of large nonlinearities of an atomic B E C 

in a three dimensional double-well and we find that collapse occurs as the gradient 

is increased above a critical value, which can be predicted by the eigenstate curves. 

Finally in Section 8.5 we consider the case of multiple well potential, and we study 

the interesting question the possibifity of creation of stable condensates for values of 

the nonlinearity larger than the critical value [1, 15, 75, 76, 77, 78, 79]. For an axially 

symmetric trap this is achieved by adding an optical lattice along the axis. However, 

tunnelling dynamics in this case are rather complex and further work needs to be 
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done. 

8.2 Fractional population difference in a double-well po­
tential 

We present t3T)ical plots of the fractional population difference N, for the ground 

and the first excited states for the case of an atomic B E C with attractive interactions 

in a one and three dimensional double-well. Our study is based on the eigenenergy 

levels shown in the previous Chapter. We vary the nonlinearity at fixed barrier 

height, but it should be noted that similar results will be obtained in the opposite 

limit of variable barrier height at fixed nonlinearity. Our study is based on numerical 

solutions of the time-independent one and three dimensional GPEs (3.1) and (3.3), 

using the Newton method presented in Appendix A. Our studies explicitly consider 

the S > 0 limit, however, for completeness, we also plot the S <0 values, which are 

produced by projecting the > 0 solutions about the origin. 

Fig. 8.1 shows the fractional population difference for the ground state in one and 

three dimensional double-wells. In Figs. 8.1(a) and (b) typical eigenenergy levels for 

various nonhnearites are plotted. In both cases, for zero nonlinearities there is no 

loop structure in the eigenstates and the fractional population difference is single 

valued at S = 0, (zero at = 0), as shown in Figs. 8.1(i) and (iv). However, for 

sufficiently large negative nonlinearities, loop structure appears in the eigenenergy 

levels which is related to the existence of "self-trapped" states that have nonzero 

fractional population difiFerence at (5 = 0 (see discussion in the previous Chapter). 

Therefore the ground state is degenerate and the fractional population difference 

acquires three values at <J = 0, shown in Figs. 8.1(ii)-(iii) and (v). These values 

correspond to a state with the population bakmced in both wells at the centre of 

the trap, thus (iV(0) = 0) and two other nonzero values that correspond to "self-

trapped" states that have most particles trapped on the left {N{0) > 0) and right 

well (iV(0) < 0), see the wavefiinctions plotted in Fig. 7.6. In contrast to one 

dimension, for large gzu < 0 the "self-trapped" states become unstable, thus there 

is no loop structure. Therefore, there is only one eigenenergy level for the groimd 
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Figure 8.1: The eigenenergies /i for the ground state in (a) one and (b) three di­
mensional double-well potential as a function of the potential gradient <J for QIB := 
0, (dark grey), -0.5, (light grey) and -4 (black lines) and 93D := 0, (dark grey), 
—TT, (hght grey) and —6 (black lines) (from top to bottom). The eigenenergies for 
5iD = 0, -4 and gsD = —6 have been shifted along the /i-axis by (fiojj.): +0.1, —0.3 
and —0.4 respectively. The fractional population difference N in & one (i)-(iii) and 
three dimensional double-well (iv)-(vi) respectively as a function of 6. The values of 
the nonUnearities used here are: gn, = 0, —0.5, —4 from (i)-(iii) and 530 = 0, —tt, —6. 
Bold Unes correspond to stationary solutions of the GPE and black Unes are the sym­
metric projections in the —S-axis. In all cases we consider h = 4 hu)±. 
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state (black line in Fig. 8.1(b)) and the fractional population difference (Fig. 8.1(iv)) 
becomes single valued again. In addition, the ground eigenstate solutions become 
unstable beyond a critical value of the potential gradient (vertical dashed lines in 
Figs. 8.1(b) and (iv)). Finally, Figs. 8.1(i)-(vi) show that increasing the interactions, 
the fractional population difference curves are sheared along the 5 axis. 

We also consider the freictional population difference for the first excited state. 

Fig. 8.2(a) and (b) show the eigenenergy levels for the first excited eigenstates 

for a range of nonlinearities in a one and three dimensional double-well. Typical 

corresponding fractional population differences are shown in Figs. 8.2(i)-(vi). For 

attractive interactions, there is no loop structure thus there is one eigenenergy level 

and one curve for the fractional population difference. Therefore, in contrast to the 

repulsive limit discussed in Chapter 5, there are no "self-trapped" states, and the 

fr«ictional population difference has only one value at J = 0. In all cases (i)-(v), the 

fractionaJ population difference as a function of S oscillates and is zero at the level 

crossings 5 = 0 ((i)-(vi)) for the ground state and 6 ~ 0.5 ((i)-(ii) and (iv)-(v)) for 

the second excited state. However, for large negative nonlinearities, the second level 

crossing for the one dimensional case occurs at J > 0.5 (Fig. 8.2(iii)), whereas for 

the three dimensional case, the eigenenergy and the corresponding population dif­

ference curve become unstable and therefore terminate at a critical Sc (Fig. 8.2(vi)). 

Moreover Fig. 8.2(v) shows that the derivative dN/d6 diverges at 5 ~ 0.5 which is 

related to a cusp-Uke structure in the eigenenergy curve at that point, (grey line 

in Fig. 8.2(b)). Finally, Figs. 8.2(i)-(v) show that increasing the nonlinearity, the 

fractional population difference curves shear along the 5 axis. 

8.3 Tunnelling Dynamics under a time-dependent mag­
netic field gradient 

We now apply the eigenstate level picture to analyse the population dynamics when 

the potential gradient is increased at a constjmt rate, (S = Rt) by solving nvmierically 

the time-dependent one and three dimensional GPEs (3.1) and (3.3) respectively. 

At < < 0 we produce a stable condensate, in a symmetric double-well, for a value for 
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Figure 8.2: The eigenenergies /i for (a) the first and (b) the second excited states for 
large (black) and low interactions (grey) Unes as a function of 6 for the first excited 
state and (i)-(vi) the corresponding fractional population difference N. Other values 
same as Fig. 8.1. 



Chapter 8. Josephson dynamics of an atomic BEC with attractive interactions 139 

the nonlinearity. The potential gradient is at f = 0, i.e., S = Rtfor t> 0, such that 

the right well has higher potential energy than the left. 

In this Section we discuss the time evolution for the states and *e for a spherical 

trap and fixed /i = 4 hu}± shown in Fig. 8.3, for small nonhnearities (regions I and 

II in Fig. 7.8 and 7.11 for the one and three dimensional cases). For attractive 

interactions, the population diffierence for the ground state induced by the addition 

of the gradient does not follow that of the eigenstate, as shown in Fig. 8.3. The 

effect of the nonUnearity is that the ground state is immediately projected onto a 

superposition of states. In contrast, the population difiierence for the first excited 

state, for slow velocities, follows the eigenstate almost adiabatically. For the 

potential gradient induces a Josephson current to the left (lower potential energy 

region), (black lines in Fig. 8.3) whereas for flow occurs to the right (higher 

potential energy) (bold black lines in Fig. 8.3). 
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Figure 8.3: Evolution of firactional population difierence N as a. function of 6 for 
a system initially prepared in state *g and *e (black lines) for an atomic B E C in 
(a) an one and (b) three dimensional double-well. The population difference for the 
eigenstates for the ground (first excited) states are also shown as solid light (dark) 
grey lines. Other parameters used here: /i = 4 hu}_L, A = 1 and R = 10~^ htj'^/ax-

The initial dynamics discussed in Fig. 8.3 is also well described by the two-state 

model Eqs. (4.18) and (4.19), (see previous Chapters), for both * j and *e states. 
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as shown in Fig. 8.4. For comparison, we also consider the GP solutions. However, 

for larger gradients the two-state model does not predict the step in the evolution 

of the population difference for the ground and first excited states, (it suggests that 

the atoms remain in the lower (left) and upper (right) well for the ground and first 

excited states respectively). This breakdown of the two-state model occurs because 

it does not take higher lying modes into consideration [60] (see also the discussion 

in Chapter 5). 

1 

0.5 

0 

-0.5 

-1 

Figme 8.4: Comparison between the evolution of fractional population difference 
N as & function of S for a system initially prepared in state * j {N > 0) and *e 
{N < 0) for an atomic B E C in an one dimensional double-well obtained by the 
numerical solution of the GPE (3.1) (bold black) and the two-state model (grey 
lines). The population difference for the eigenstates for the ground (first excited) 
states are also shown as dashed (long dashed lines). Other parameters used here: 

- -0.5, /i = 4 tiujji and R = 10"̂  hu\/a_i_. The parameters of the two-state 
model are shown in Fig. 7.7. 

8.4 Tunnelling induced collapse 

For large negative gso increasing the potential gradient, 5 = Rt, leads to an increase 

of the number of particles in one well and there is a critical gradient Sc above which 
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a collapse occurs. We investigate the possibility of observing a timneUing induced 

collapse. We study the dynamics leading to the onset of collapse but not the collapse 

itself. Note that this qualitative picture should remain correct, even if 3-body terms 

are included in the treatment, although the latter may affect the precise value of the 

onset of the collapse. 
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Figiure 8.5: (a)-(b) Evolution of fractional population difference N as a. function 
of S for a system initially prepared in state (a) *p and (b) *e (black Unes). The 
population difference for the eigenstates are aiao shown as soUd grey lines. The 
vertical dashed lines mark the critical gradient at which the eigenstates become 
unstable {So = 0.475 and <5d = 0.480 for *p and *e respectively). The vertical dotted 
lines describe where the system collapses in the time-dependent simulation. The 
collapse occurs when N reaches the maximum value liVmaxI (indicated by horizontal 
grey Unes in (a) and (b)) of the number asymmetry predicted by the eigenstates. 
(c)-(d) Evolution of the interaction energy JSjnt (thick black Une) when the potential 
gradient S = Rt is increased at a constant rate R for (c) and (d) *e, with 
corresponding eigenenergies shown by grey lines. Other parameters used here: gso = 
-7 , /i = 4 hu}±, A = 1 and = lO'^ hu}ya_i_. 

For attractive interactions, the ground state population difference induced by the 
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addition of the gradient does not foUow that of the eigenstate, as shown in Fig. 8.5(a) 
and also discussed in the previous Section. The critical gradient corresponding 
to the collapse, shown by the dotted vertical line in Fig. 8.5(a), is identified as 
the point where the interaction energy (|-Bint| = l/^lffsol / l̂ l̂ ti?") diverges, see 
Fig. 8.5(b). Note that the critical value of the number asymmetry N for which the 
time-dependent coUapse occurs is close to the maximum value of |iVmax| found for 
the eigensolution (grey horizontal line in Fig. 8.5(a)). 

This prediction becomes clearer if we consider a condensate prepared in the first 

excited state where the time evolution closely follows the eigensolution, see 

Fig. 8.5(b). In this case the collapse occurs at exactly the point where the number 

asymmetry exceeds |A/̂ max|i see inset of Fig. 8.5(b). The critical gradient at which 

the collapse is observed is found to be essentially independent of the rate R at which 

the gradient is increased. 

One can also compare the critical number needed in one well before collapse occurs 

with the prediction for the symmetric potential shown in Fig. 7.12. By defining 

Kci = A/'crlol/aoi where Af' is the nmnber of atoms in the well which collapses we 

find that î cr = 0.471 and 0.467 for ground and excited states in Fig. 8.5, which is 

close to the value of kcr = 0.470 predicted by the lower branch of Fig. 7.12. 

8.4.1 Experimental realization 

Finally, we discuss typical experimental parameters required for the demonstration 

of the tunnelling induced collapse. In the hjirmonic oscillator units discussed in 

Section 2, the number of atoms is given by. 

Af=m^ = ^ J - ^ . (8.1) 
47r a 4na y ma;j_ 

For ^Li atoms and taking 53D = -6 and ujx = 2ir x 100 Hz, we find M = 1200 

which is below the critical value for collapse. For an appUed field gradient R = 

(10~^) {hu)±/a±) the coUapse occurs at texp ~ 0-6 s. The collapse is illustrated by 

the density plots shown in Fig. 8.6. We have confirmed that the collapse C£in be 
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l¥(z,t)|^ 

Figure 8.6: Surface plot of the evolution of the density distribution {\ij){z,t)\'^ x 
lO^^cm" )̂ cilong the z-axis (mm) as a function of time (s) for a B E C initially pre­
pared in the (left) and *e (right) states with gan = —6. Due to the potential 
gradient, timnelling is induced to the left {z < 0) well for the state and to 
the right well for The condensate instabihty occurs ai t = 0.65 s for and 
t = 0.67 s for *e state. Other parameters as in Fig. 8.5. 

avoided if the potential gradient is ramped up to a gradient smaller than the critical 

value and then held constant. This would not hold if the system were very close to 

the critical region, in which case number fluctuations [69] could enhance tunnelling 

and hence induce the collapse at a slightly smaller gradient than that predicted by 

our simple model. 

Finally, in the following Section we address the interesting question of the stabihty 

in an optical lattice potential and discuss tunneUing effects in a multi-well system. 

8.5 Three dimensional Optical lattice 

The basic idea of stabihsation in an optical lattice is that by confining the condensate 

in smaller regions we increase the kinetic energy and thus can counterbalance the 

attractive interaction, thereby stabihsing the condensate. In this way we can produce 

stable condensates for values of gsu larger than predicted in the previous Chapter. 

If the number of condensed atoms in any individual well is larger than a critical 

value then the collapse stiU occurs, but is restricted to certain lattice sites, and the 
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collapse of the whole condensate is avoided. Next we describe the model we used to 
produce the lattice. 

8.5.1 Numerical method-results 

We consider the case of a "cigar" trap with A = 0.1. At f < 0 we find a stable 

ground state solution, for a value for the nonlinear constant gsj) = 18. In Section 

7.2.1 (Fig. 7.3), we saw that for this negative value of the nonfinearity and the trap 

geometry, the condensate collapses. At < > 0 we add a lattice potential along the 

2r-axis of the form, 

VL = a,t,8m'{^) (8.2) 

where = 50 hu)\ is a constant, Â , = 4 ax is the wavelength, and 

f = i ^ /^ 'amp: ^ — Kamp 

' 1 1 , t > tramp 

where t^^^ = 50 u)J^ and = 1550 w j ^ For 0 < i < <ramp the lattice cuts the 

cigar-shaped atomic cloud into spatially separated parts. For f r a m p < t < t a the 

condensate stabiUzes, Fig. 8.7(a). 

At < = <cr = 200 wj^, we suddenly change from repulsive to attractive interactions 

by changing the sign of the nonhnear constant, gsD = -18. We then study the 

response of the condensate to this sudden change. We observe motion of atoms 

between wells and the condensate remains stable for gao = —18, Fig. 8.7(b). In 

Fig. 8.8 we plot the number of atoms in each separated well as a function of time, 

while the last graph shows the distribution of the mean number of atoms in each 

well. The results are rather complex, we observe coupled Josephson oscillations in 

most wells, except for the outermost well. Further work is needed to completely 

understeind the complex dynamics in the multi-well case. 

Varying the value of g^D we observed an interesting case at a value of gsD = —19.5, 

where the condensate in the middle well collapses whDe the condensates in the other 
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Figure 8.7: Images showing a cross-section of the condensate density at (a) t = 
175 wj^ and (b) t = 625 u}2^- (a) shows that the potential (Eq. (8.2)) creates lattice 
along the axial direction, (b) shows the response of the condensate to the sudden 
change to attractive interactions, gao = -18. 

weUs do not. Fig. 8.9. Beyond this value of the nonUnear constant and using the 

above parameters for the confining trap, the whole condensate collapses. 
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Figure 8.8: Number of particles in each well as a function of time. We observe 
oscillations as a result of Josephson turmelling. On each plot we write the mean 
number of particles in that well. The last graph shows the mean value of the number 
of particles at each well over aU time and the trapping potential, V{z) = ^Xz"^, 
X = 0.1. We notice that the majority of atoms occupy the centered well. 
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Figure 8.9: Image showing a cross section of the condensate density a.t t = 363 wj^ 
and p3D = -19.5 (h.o.u). The centered well has already coUapsed, but the remaining 
condensate remains stable. Dark gray corresponds to regions with higher density. 



Conclusion 

The main topic of this Thesis has been the study of properties of dilute BECs in one 

and three dimensional asymmetric double-well potential Josephson junction where 

the weak link is provided by a potential barrier. The Gross-Pitaevskii equations 

has provided the main theoretical tool. We induce an asymmetry in the double-well 

either by moving the barrier uniformly through the condensate or by adding a po­

tential gradient that increases at a constant rate. Our studies reveal rich phenomena 

arising from the interplay between interactions (both repulsive and attractive) and 

the timnelling (controlled by the barrier height). In particular we have highUghted 

three interesting topics: 

- We identify timnelhng resonances associated with level crossings, and deter­

mine the critical velocity that characterises the resonance. Under certain con­

ditions, the properties of a condensate in a double-weU potential can be de­

scribed by a nonfinear two-state model. We test the vaHdity of the two-state 

model, and we show that for the experimentally interesting case, a two-state 

model is insufficient to completely describe the timneUing dynamics. 

- We discuss the feasibiUty of experimental control of the flow direction by phase-

imprinting. We show that phase-imprinting can lead to significant change 

in the flow direction for condensates of up to a few thousand atoms. The 

phase-imprinting technique provides a clear signature of macroscopic quantum 

timnelling. 

- We also address the stabifity of an atomic B E C with attractive interactions. 

We emphasise a regime of parameters where the condensate is stable if the 

148 
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population in both wells is approximately equal, but becomes unstable if there 
is sufficient timneUing from one well to the other. We show that a collapse 
occurs at a critical gradient predicted by the eigenstates. 

Further work is need to study the influence terms not included in the GPE model 

and the possible appUcations of double-well systems in atom interferometry and 

precision measurement. 



Appendix A 

Numerical methods 

We describe the numerical methods that have been used in this Thesis, to solve the 

Gross-Pitaevskii equation. The Crank-Nicholson and the Newton-Raphson methods 

can both be applied to find time-independent solutions, whereas Crank-Nicholson 

method has also been applied to find solutions in the time-dependent domain. 

A . l Crank-Nicholson method 

The basic task in this Thesis is how one solves the Gross-Pitaevskii equation ( G P E ) 

which has the same form as the Schrodinger equation plus an extra nonlinear term, 

ih^^l,{z,t)=(^-^+Viz)+g\rP(z,t)\'']rP{z,t) = Hi>iz,t) . (A.l) 

As in any differential equation we are given the initial wavefimction %l){z,t = 0) to­

gether with boundary conditions that V" *) —> 0 at z —> ± 0 0 with the wavefimction 

normalised to unity, 

r°°\i,{z,t)\''dz = l . (A.2) 
J-00 

In this Section, we present a scheme to solve the G P E , originally proposed by Crank 

and Nicholson. 

150 
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It is known from quantum mechanics that the solution of E q . (A. l ) has the form, 

(A.3) 

It is cleajly an advantage to formulate a numerical scheme that conserves the prob-

abihty by keeping the evolution operator unitary even as it is discretized. This can 

be achieved by writing the evolution operator exp {-iHAt) in the so-called Cayley 

form with 

-iHAt ^ 1 - b^^t 
1 + ^HAt 

(A.4) 

which is unitajy, accurate to second-order in time O(Ai^). Thus the evolution is of 

the form, 

( l + ^iHAt) V-'^^* = ( l - ^iHAt) V-* (A.5) 

Replacing the second order derivative in the HamUtonian operator with finite dif­

ferences, one obtains. 

(A.6) 

where Uj = Vj+glipjl"^. The above equation can be represented by a matrix equation, 

(A.7) 

or more analytically. 

lAt 

0 

tAt / 

4 x r 

\ 
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iAt 

V 

iAt 

(A.8) 

Thus the problem reduces solving a tridiagonal system, = X where X = Bip* 

using standard methods [96]. Note that the left hand side of E q . (A.8) depends on 

the wavefunction at time t + At whereas the right hand side depends on the previous 

time t. The wavefunction at the new time step is obtained using an iteration method. 

The above method can be generalized to three dimensions. The Hamiltonian in 

ceirtesian coordinates has the form, 

The idea is to split the Hamiltonian into three one-dimensional operators H^, Hy, 

and divide each time step into three steps of size At/3. In each time step we solve 

for each dimension independently following the method described before for the one 

dimensional problem. 

Finally the Crank-Nicholson method can be applied to find time-independent solu­

tions by substituting At -> —iAt in the above equations. Propagating an initial 

wevefunction using negative imaginary time steps, the initial wavefunction relaxes 

after some time to the ground state solution. 

A.2 Newton's method 

Newton's method is used to find stationary solutions of Eq . (A. l ) or generally to 

solve equations of the form 

f i x ) = 0. (A.10) 

For simplicity we consider first the case of a single equation and then generalize it 

to solve difiierential equations. 
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A.2.1 Single function 

Let us suppose we are looking for solutions of the Eq . (A. 10) on a given interval, 

then using Taylor's series expansion near i , the function is approximated by, 

fix + Sx) « f i x ) + f'ix)6x + OiSx^) . ( A . l l ) 

If we keep only the first order term, we are looking for small 6x such as, 

fix + S X ) = O K f i x ) + f'ix)Sx , (A.12) 

giving. 

The Newton iteration is then given by the following procedure: start with an initial 

guess of the root ZQ, evaluate the derivative f'ixo), extend the tangent line at a 

current point Xn until it crosses zero, and set the next guess Xn+i to the abscissa of 

that zero crossing, until find the limit of recurrence: 

Fig. A . l shows a geometrical interpretation of a single iteration of this formula. 

Unfortimately this iteration may not converge if for example the derivative is zero 

at the neighborhood of a root or the initial guess is so fax firom the true root, so as 

to let the search interval include a local extremum. To ensiure convergence of the 

method, only a firaction of the calculated step (Eq. (A.13)) is taken to update the 

approximation of the root, 

Xn+i =x„ + XSx , 0 < A < 1 . (A.15) 

Close to a root A ~ 1 whereas far fi:om the root i.e. first steps, A ~ 0.1. 
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Figure A . l : Newton's method for finding root of an one dimensional function: start 
with an initial guess for the root at XQ calculate the derivative at that point to find 
the next guess of the root. 

A.2.2 Newton's method for systems of equations 

Newton's method may also be used to find a root of a system of iV-dimensions, 

F{x) = 0 , (A.16) 

where F and x are vectors of N functions ft and variables Xi where « = 1, .-N, 

written explicitly, 

/ fi{xu...,XN) 

\ fN{Xl,...,XN) 

= 0 (A.17) 

In the neighborhood of x, each function /< can be approximated by first order Taylor 

series, 

N 
d f i 

f,{x + S x ) ^ M x ) + ^ ^ S x j = 0, (A.18) 
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where the partial derivatives appearing in the equation are the elements of the 
Jacobian (JV x N) matrix given by, 

J« = ^ . (A.19) 

For each Newton step, the Jacobian (iV x N) matrix has to be inverted. However the 

sparseness of the Jacobian matrix allows the computational scale within a reasonable 

time. The inversion is performed using the bi-conjugate gradient method [96]- This 

method is based on minimising the function, 

gix) = ^Ax"^ J Ax + f Ax, (A.20) 

which requires that its gradient is zero, i.e., 

Vfl = J • A x - / = 0 (A.21) 

which is equivalent to solving (A.18). The minimisation is performed by creating 

a succession of linearly independent search directions and improved minimizers. 

After N iterations, the algorithm converges at the solution of E q . (A.21). The 

attractiveness of this method is that it references the Jacobian only through its 

multiplication of a vector or the multiplication of its transpose and a vector, and 

can be very efiicient for a properly stored sparse matrix. 

Let us consider for illustration a set of two functions, 

fix,y) = 0 (A.22) 

gix,y) = 0 . (A.23) 

Using Taylor's expjuision of the two functions near ix,y), at first order, we are 

looking for a couple i5x,Sy) such as, 

fix + Sx,y + Sy)=0 « fix,y) + Sx^+Sy^ (A.24) 

gix + 6x,y + Sy) = 0 « gix,y) + Sx^ + Sy^ . (A.25) 
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The previous system can be written in a matrix form, 

or equivalently 

J{x,y)-Sx = -F(x,y) , {A.27) 

where J ( i , y) is the (2 x 2) Jacobian matrix. The analogue of the iteration process 

E q . (A.14) is, 

' ^n+i 1 = f ^ " V J-^(x„,j,„) • ( ^ J ^ " ' ^ " J ] . (A.28) 

Starting with an initial guess (xo, yo), this process converges to a root of the system 

provided a good initial guess. For each Newton step, the Jacobian J(x , y) has to be 

inverted. 

A.2.3 Newton's method for the GPE 

One dimension 

Stationary solutions of Eq . (A. l ) can be obtained by substituting ip{z, t) = e~*'^*^{z), 

/ i * (-̂ ) = ( - + ^ (z) + 91* (^)l') * iz) , or (A.29) 

^ + y ( z ) + g | * ( ^ ) | 2 - / i ^ * ( ; ^ ) = 0 . (A.30) 
2dz^ 

We note the above equation is of the form ^(a!) = 0, where x = (* , / i ) with a 

time-independent wavefunction normalised to unity and / i is the chemical potential. 

Using finite differences Eq. (A.30) can be written in an expUcit form, 

i¥^N f i = { ^ + V{z) + - - - ix^i 

i = N / A T = ( * ? + * i + . . . + dz-1 
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The Jacobian Jy has the form, 

/ [ ^ + n ^ ) + 3 5 | * p - M 

J(*,/i) = 

1 

1 

V 2^idz 2^2dz ••• 2*Af-id2 
- * ; v - i 

0 J 

(A.32) 

whereas 5x = (5*1, J*2 , • • • , 5 * j v - i , T h u s the solution is found usmg equa­

tion, 

M^n) + Y , ( § § - ( * n + l ) - * „ ) = 0 

and following the method described in previous sections. 

(A.33) 

Three dimensions 

The time-independent three dimensional G P E has the form, 

/ ^ ^ ^ \ 

\ 2dx^ ~ ~ 2d^ '^^ ^^'^'"'^ ^^^^^ ̂ '''̂ ' 1̂  - j * ^'y) = 0 ,(A.34) 

where / i , 530 and $(x, y, are the three dimensional chemical potential, nonlinearity 

and wavefunction. As in the one dimensional case, the wavefunction is normalised 

to unity however in three dimensions, we separate the wavefunction into real and 

imaginary parts, defining, "^ijkr where r = 0,1 such that, "ilijko = Re(*(a;i,yj,^;fc)) 

and *ijA;i = lin{^{xi,yj,Zk))- Discretising E q . (A.34) on a three dimensional grid, 

yields. 

fijkr = 

- (*<,i-l,fc,r - 2*ij,jfc,r + *ij+l,fc,r) /2Ay2 

- (*i,j,fc-l,r - 2^i,j,k,r + *i,j,fc+l,r) /2A^2 
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where Aa;, Ay and Az are the grid spacings in the x, y and ^-directions respectively. 
The Jacobi«in has the same form as in the one dimensional case, however, there axe 
more elements arising from the real and imaginary parts of *i,j,fc,r and new deriva­

tives, for example JII{J = dfijkr/d^Uj and j / ^ j ^ - dfijkr/d^]+lj. We solve 
the three dimensional problem following the steps described in the one dimensional 
case. 



Appendix B 

Analytic proof for the equation 
for the one dimensional energy 
functional 

In this Appendix, we discuss in more details the derivation of the one dimensional 

energy functional. We start firom the full three dimensional energy functional given 

by, 

EM = / dr [^|VV|2 + FholV-P + ^ffaolV-l'l , (B. l ) 

with a harmonic trap, 

V1,o = ^(x2 + y2 + A V ) . (B.2) 

The total wavefunction is of the form 

iPix,y,z,t) = <f>ix,y)^z,t) . (B.3) 

In Section 2.4 we saw that for weakly interacting condensates we assume a Gaussian 

ansEizt for the (pix, y) wavefunction, 

^ix,y) = ^exp[-ix^ + y^)/2]. (B.4) 
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We substitute the above expression for the two dimensional wavefunction </»(x, y) in 

the expression for the total wavefunction Eq . (B.3) and we perform the integration 

in E q . (B . l ) . We show the results for each term separately: 

• The kinetic energy term 

Eui. = J d r \ m ' = \ j d^|V$|2 + \ I dzm' , (B.5) 

• the potential energy term, 

Spot = / drVM' = I dziz'^m + \ j dzm^ , (B.6) 

• and finally the mean-field interaction energy term, 

^̂ int = / d r i ^ S D l V ' ! ' = ^ / d ^ l ^ l ' • (B.7) 

Adding all the above terms we find the equation of the one dimensional energy 

functional. 

£ ; I D [ $ ] = j d z [^|V*|2 + (V{z) + 1)|*|2 + ^-gw\^\' (B.8) 

where 

93D 

and 

(B.9) 

V{z) = 1A2^2 ^ (B 10) 

since we have assumed a trap potential of the form E q . (B.2). The constant 1 

represents the energy of the transverse modes and comes from summing two one-

halves from the kinetic and potential energy terms respectively. We drop this term 

since it is a constant energy shift and we derive the most common form of the 

one-dimensional energy functional. 

(B.11) 



Appendix C 

Stability of a dilute B E C with 
attractive interactions 

We review a variational method based on Gaussian trial functions to study the sta­

bility of a dilute Bose-Einstein condensate with attractive interactions in both one 

and three dimensions. We show that a one dimensional BEC is always stable in 

contrast to the three dimensional case. 

C . l stability of a dilute B E C in one dimension 

Let us first consider the case of N bosons confined in one dimensioned harmonic 

potential, 

V.r.Az) = \ z ' . ( C . l ) 

We assume that the interparticle interactions are attractive {gio < 0) where gio = 

53D/27r is the one dimensional self-interaction parameter. The explicit form of the 

ground-state wavefunction is obtained by minimising the one dimensional energy 

functional (see Appendix B for derivation), 

E[^] = {H) = I dz [ ^ | V V ( 2 ) | ' + V^trap(;2)|*(^)P + ^ 5 1 D | * ( ^ ) | ' (C.2) 
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where ^{z) is the one dimensional condensate wavefunction normaJised to unity. We 

consider a trial wavefunction of the form, 

*(^,6) = ( 6 V 7 r ) ' ^ % x p ( - 6 V / 2 ) , (C.3) 

where 6 is a dimensionless variational parameter. Substituting into E q . (C.2) yields, 

E[b] i/,2 , J _ _ \9iD\b 
4 462 2v/2^ 

(C.4) 

This energy is plotted in Fig. C . l as a function of the parameter 6, for difierent 

values of the dimensionless constant |giD| > 0. We observe that we can always find 

a minimum and thus the condensate is always stable in one dimension. We can 

also prove the stabifity firom the form of E q . (C.4). For large values of b the term 

6^/4 dominates whereas for small valura of b the term 1/46^ dominates thus we can 

always find a minimum of Eq . (C.4). 

Figure C . l : Energy for bosons interacting with attractive forces, as a function of 
the condensate size b for different values of Igwl = 10,18,27. The energy functional 
has always minima and the condensate is always stable in one dimension. 
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C.2 Stability of a dilute B E C in three dimensions 

We generaUse the above results for atoms interacting with attractive forces, gao < 0, 

in three dimensions. We can find the ground state energy by minimising the energy 

functional, 

E[b] = {H) = / d r [ ^ | V * ( r ) | 2 + V i r a p ( r ) | * ( r ) | 2 + i53D|*(r)r 

= -Bkin + ^^ot + ^int , (C.5) 

where J5kin is the kinetic, Epot is tbe potential, Ei^t is the interaction energy and 

53D = ^TrAfa/a_i is the three dimensional nonlinear parameter. We begin by studying 

the simplest case of a spherical trap and then we extend our study for an axially 

symmetric trap. 

C.2.1 Spherical trap 

We consider an isotropic three-dimensional harmonic potential, 

K . p ( r ) = , (C.6) 

and a Gaussian trial function of the form (normalised to unity). 

* (r ,6 ) = y63/7r3/2exp(-6V/2) , (C.7) 

where 6 is a dimensionless variational parameter. Substitution into E q . (C.5) yields 

an expression for the total energy, 

In Fig. C.2 we plot equation E q . (C.8) for different values values of 53D, as a function 

of the Gaussian width b. For a metastable condensate to exist, the energy functional 

E[b] must have a local minimum which is determined by the condition that the first 
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derivative must be zero. We observe that there is a critical value of pso beyond 

which the local minima disappear and the condensate becomes unstable, collapsing 

into a dense state. This critical value can be obtained by requiring that the first 

and second derivative of Eq . (C.8) must be zero at that critical point be. For a 

spheric6il trap, this happens at be = 5 /̂̂  and = —SV^ir^/b^^'^ ~ —8.45 which 

is in agreement with previous results [1, 75]. Taking values firom ^Li experiment, 

[128], the variational method predicts a maximum condensate number Af w 1460. 

This result is somewhat larger to the value ĝ Ĵ  = -7 .3 , or equivalently J\f = 1250 

obtained by solving numerically the G P E (2.27) for </3D < 0 and using a spherical 

potential, Eq . (C.6). In the next Section we give more details on the comparison 

between the variational method and the exact solutions of the G P E . 

Figtu-e C.2: Ground state energy, E (Eq. (C.8)) as a function of the variational 
parameter b for various values of the nonlinearity I ^ S D I = 3,4,5,6,8,10. At \g^\ = 
8.5 the local minima disappear and the condensate collapses for I ^ S D I > I S S D I -
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C.2.2 Axially symmetric trap 

We extend the variational method to an axially symmetric trap of the form, 

Hrap(r) = ^ ( r 2 + A V ) . (C.9) 

In this case, the Gaussian trial wave function (normalised to imity) has the form, 

In this section we reproduce the calculations in [76]. However we are working in 

h.o.u. which are defined in section 2.2, and for comparison with reference [76] we 

convert our final equations in h.o.u. which are set by two harmonic oscillators 

lengths: 6x0 = y/hJrruJZ in the transverse direction(s) and 6||o = yjh/mco^^ in the 

2;-direction. We begin by calculating each term in the three dimensional energy 

functional E q . (C.5), using the trial function E q . (C.IO). This yields: 

(EW.) = / d r i | V * | ^ = ^ + ^ , ( C . U ) 

( ^ W . ) = / P + A V ) 1 * 1 ' = I + (0.12) 

and 

( ^ . . ) = ^ / d r W ' = i ^ 4 . (C.13) 

Thus the three dimensional energy functional is given by 

and it depends on the variational parameters b± and and the nonlinearity. In 

Fig. C.3 we plot the above expression for the energy as a function of the variational 
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0 0 

Figure C.3: Ground state energy E as a. function of the variational parameters bx_ 
and 6|| for two values of the nonlineaxity Igz^l =• 4 (top) and 8.5 (bottom). We note 
that there is a critical value \g^\ for which the energy has no longer minima and 
the condensate collapses. 
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parameters, for two values of the nonlinearity \g3ji \. We observe that the energy 
functional has minima, however increasing |^3D|, there is a crit ical value \g^\ that 
the energy functional has no minima thus the condensate collapses. I n order to 
study the collapse, we define a new dimensionless parameter 

where k is defined by (see also Chapter 7), 

iV|a | 

bo 
= k , (C.16) 

where 60 = (6xô '||o)̂ ^̂  = ^-Lo-^ and we minimize the energy f u n c t i o n j j Eq. (C.14) 

w i t h respect to each of the variational parameters, 

yielding the following sets of equations, 

h = ( C I S ) 

and 

The solutions of the above equations give the points of possible maxima, minima 

or saddle points. The condition for a stable condensate to exist is that the energy 

functional always has minima, which means that at the local minimum 

the curvatiure is positive, that is, 

n^?lSJSVi\o. (C.21, 
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Calculating the partial derivatives we obtain, 

dbl 
= 4 > 0, (C.22) 

^ = i ( 3 A ' + i ) > 0 (C.23) 

and 

db_Ldb\\ 6J V 2r6|| 

There must be a critical value of T = Tc which the condition Eq. (C.21) is zero and 

for r > Tc ^ D < 0 which means that the local minimum becomes a saddle point 

and the condensate collapses. This value is given by, 

(C.25) 
^ 4(3A2% + 1)63^ 

whereas substituting Eq. (C.25) into Eq. (C.20) we find, 

b±c = "'̂  . (C.26) 
^2(3A26^, + 1 ) % 

Substituting Eqs. (C.26) and (C.25) into Eq. (C.19) we obtain, 

^3X% + = (1 - X % l f ( 5 X % + 3) . (C.27) 

For a given asymmetry parameter A, a real positive root of Eq. (C.27) gives fe||c and 

the corresponding values of Fc and 6xc- I n order to compare the present equations 

w i t h the corresponding ones in [76] we have to transform the characteristic param­

eters such as the variational parameters and the nonlinear coefficient i n the units 

used in [76]. Thus by making the substitutions rye = fe||c-^^''^ and 7c = rc4A '̂'̂  we 
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obtain the same equations as the ones in [76]. For example Eqs. (C.25), (C.26) and 

(C.27) become, 

4nic(3ic + 1 ) 
A i / 3 ( 5 r 4 + 3 ) ' 

(C.28) 

b±c = 
\/2r-^c(l + 3 i c ) 

(C.29) 

and 

(C.30) 

I n Fig. C.4 we plot the critical parameter 7c as a function of the asymmetry param­

eter A = U}\\/u}_L. 

Figiu-e C.4: Cri t ical values of the nonUnear parameter 7c (soUd) and the lengths 
r||c (dotted) and rxc (dashed lines) as a function of the asymmetry parameter A (in 
units hu) for bosons interacting wi th attractive forces in units defined by the two 
harmonic oscillator lengths 6||o and 6j.o. Those results are also presented in [76]. 
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We note that the peak value is 7c = 1.07 in agreement w i t h [76] or the equivalent 

value Iffaol = 8.45 obtained f rom previous derivation i n subsection C.2.1. We also 

observe that the maximum value of 7c is obtained for A = 1 thus the opt imum 

geometry for confining a BEC w i t h attractive interactions is a spherical trap. 

I n Fig. C.5 we plot the parameter fee, defined in Chapter 7 as a funct ion of A obtained 

by the variational method (solid fine) presented here and by numerical solution of 

the GPE (2.27) (dashed Une) presented in Chapter 7. Since the variational method 

gives an upper bound on the energy, the variational results are shifted compared to 

the exact values found numerically in Chapter 7. 

^" 0.5 

Figure C.5: Comparison of the crit ical parameter kc defined i n Eq. (C.16) as a 
function of the asymmetry parameter A obtained by the variational method (solid 
line) presented in subsection C.2.2 and by numerical solution of the GPE (2.27) 
(dashed line) presented in Chapter 7. 



Bibliography 

[1] F. Dalfovo, S. Giorgmi, L . P. Pitaevskii, and S. Stringari, Theory of Bose-

Eiristein condensation in trapped gases, Rev. Mod. Phys. 71, 463 (1999). 

[2] A . J. Leggett, Bose-Einstein condensation in the alkali gases: Some funda­

mental concepts, Rev. Mod. Phys. 73, 307 (2001). 

[3] D . S. Diufee and W . Ketterle, Experimental studies of Bose-Einstein conden­

sation, Optics Express 2, 299 (1998). 

[4] J.R. Angl in and W . Ketterle, Bose-Einstein condensation of atomic gases, 

Nature 416, 211 (2002). 

[5] K . Huang, Statistical Mechanics, 2nd Edition (John Wiley and Sons, New 

York, 1987). 

[6] C. C. Tannoudji, B . D iu , and F. Laloe, Quantum Mechanics, 2nd Edition 

(Hermann and John Wiley and Sons, Paris, 1997). 

[7] F. London, The A- Phenomenon of Liquid Helium and the Bose-Einstein De­

generacy, Nature 141, 643 (1938). 

[8] M . Y . Shen, T.Yokouchi, S. Koyama, and T . Goto, Dynamics associated with 

Bose-Einstein statistics of orthoexcitons generated by resonant excitations in 

cuprous oxide, Phys. Rev. B 56, 13066 (1997). 

[9] J. L . L i n and J. P. Wolfe, Bose-Einstein condensation of paraexcitons in 

stressed Cu20, Phys. Rev. Let t . 71, 1222 (1993). 

171 



Bibliography 172 

[10] A . B . Migdal, , Nucl. Phys. 13, 665 (1959);M. Hoflberg, A . E. Glassgold, R. 
W . Richardson, and M . Ruderman, Anisotropic Superfluidity in Neutron Star 
Matter, Phys. Rev. Lett . 24, 775 (1970). 

[11] J. Bardeen, L . N . Cooper, and J. R. Schriefier, Theory of Superconductivity, 

Phys. Rev. 106, 489 (1957). 

[12] P. W . Anderson and P. Morel, Generalized Bardeen-Cooper-Schrieffer States 

and the Proposed Low-Temperature Phase of Liquid ^He, Phys. Rev. 123, 

1911 (1961);R. Balian and N . R. Wevthajner,Superconductivity with Pairs in 

a Relative p Wave, Phys. Rev. 131, 1553 (1963);P. W . Anderson and W . F. 

Brinkman, Anisotropic Superfluidity in 3He: A Possible Interpretation of Its 

Stability as a Spin-Fluctuation Effect, Phys. Rev. Let t . 30, 1108 (1973). 

[13] M . H . Anderson, J. R. Ensher, M . R. Matthews, C. E. Wieman and E. A . 

Cornell, Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, 

Science 269, 198 (1995). 

[14] K . B . Davis, M.-O. Mewes, M . R. Anderson, N . J. van Druten, D . S. Durfee, D . 

M . K u r n , and W . Ketterle, Bose-Einstein Condensation in a Gas of Sodium 

Atoms, Phys. Rev. Lett . 75, 3969 (1995). 

[15] C. C. Bradley, C. A . Sackett, J.J. Tollett and R. G. Hulet, Evidence of Bose-

Einstein Condensation in an Atomic Gas with Attractive Interactions, Phys. 

Rev. Let t . 75, 1687 (1995). 

[16] D . G. Fried, T . C. Ki l l i an , L . Wilhnann, D . Landhuis, S. C. Moss, D . Kleppner, 

and T . J. Greytak, Bose-Einstein Condensation of Atomic Hydrogen, Phys. 

Rev. Let t . 81, 3811 (1998). 

[17] S. L . Cornish, N . R. Claussen, J. L . Roberts, E. A . Cornell and C. E. Wie­

man, 5<o6/e ^Rb Bose-Einstein Condensates with Widely Tunable Interac­

tions, Phys. Rev. Lett . 85, 1795 (2000). 



Bibliography 173 

[18] A . Robert, O. Sirjean, A . Browaeys, J. Poupard, S. Nowak, D. Boiron, C. 
I . Westbrook, A . Aspect, A Bose-Einstein Condensate of Metastable Atoms, 
Science 292, 461 (2001). 

[19] F. P. Dos Santos, J. Uonard , J. Wang, C. J. Barrelet, F. Perales, E. Rasel, 

C. S. Unnikrishnan, M . Leduc, and C. Cohen-Tmnoudji , Bose-Einstein Con­

densation of Metastable Helium, Phys. Rev. Let t . 86, 3459 (2001). 

[20] G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A . Simoni, and M . Ingus-

cio, Bose-Einstein Conensation of Potassium Atoms by Sympathetic Cooling, 

Science 294, 1320 (2001). 

[21] T . Weber, J. Herbig, M . Mark, H.-C. Nagerl, and R. Gr imm, Bose-Einstein 

Condensation of Cesium, Science 299, 232 (2003). 

[22] T . Yosuke, K . Maki , K . Komori , T . Takano, K . Honda, M . Kumakura, T . 

Yabuzaki and Y . Takahashi, Spin-Singlet Bose-Einstein Condensation of Two-

Electron Atoms, Phys. Rev. Lett . 91, 040404 (2003). 

[23] E. Tiesinga, B . J. Verhaar, and H . T . C. Stoof, Threshold and resonance 

phenomena in ultracold ground-state collisions, Phys. Rev. A 47, 4114 (1993). 

[24] S. Inouye, M . R. Andrews, J. Stenger, H.-J. Miesner, D . M . Stamper-Kum 

and W . Ketterle, Osbervation of Feshbach resonances in a Bose-Einstein con­

densate. Nature 392, 151 (1998). 

[25] P. Courteille, R. S. Preeland, D. J. Heinzen, F . A . van Abeelen, and B . J. 

Verhaar, Osbervation of a Feshbach Resonance in Cold Atom Scattering, Phys. 

Rev. Let t . 81, 69 (1998). 

[26] S. Jochim, M . Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. H . 

Denschlag, and R. Gr imm, Bose-Einstein Condensation of Molecules, Science 

302, 2101 (2003). 

[27] M . W . Zwierlein, C. A . Stan, C. H . Schunck, S. M . F . Raupach, S. Gupta, Z. 

Hadzibabic, and W . Ketterle, Observation of Bose-Einstein Condensation of 

Molecules, Phys. Rev. Lett . 91, 250401 (2003). 



Bibliography 174 

[28] M . Greiner, C. A . Regal, and D . S. J in, Emergence of a molecular Bose-
Einstein condensate from a Fermi gas, Natiu-e 426, 537 (2003). 

[29] A . E. Leanhardt, T . A. Pasquini, M . Saba, A . Schirotzek, Y . Shm, D . Kielpin-

ski, D . E . Pritchard, and W . Ketterle, Adiabatic and Evaporative Cooling of 

Bose-Einstein condensates below 500 Picokelvin, Science 301, 1513 (2003). 

[30] B . D . Josephson, Possible new effects in superconductive tunnelling, Phys. Rev. 

Let t . 1, 251 (1962). 

[31] A . Barone and G. Paterno, Physics and Applications of the Josephson Effect, 

(Wiley, New York, 1982). 

[32] M . R. Andrews, C. G. Townsend, H . J. Miesner, D . S. Durfee, D . M . K u m 

and W . Ketterle, Observation of Interference Between Two Bose Condensates, 

Science 275, 637 (1997). 

[33] D . S. Hal l , M . R. Matthews, J. R Ensher, C. E. Wieman, and E. A . Cornell, 

Dynamics of Component Separation in a Binary Mixture of Bose-Einstein 

Condensates, Phys. Rev. Lett . 81, 1539 (1998);D. S. Hal l , M . R. Matthews, 

C. E. Wieman, and E. A . Cornell, Measurements of Relative Phase in Two-

Component Bose-Einstein Condensates, Phys. Rev. Lett . 81, 1543 (1998). 

[34] P. W . Anderson, i n The Lesson of Quantum Theory, J. D . Boer, E . Dal l , O. 

Ulfbeck, Eds. (Elsevier, Amsterdam, 1986), pp.23-33. 

[35] R. Feynman, The Feynman lectures on Physics, (Addison-Wesley Publ . Comp., 

(1965). 

[36] V . B . Geshkenbeim, A . L Larkin and A . Barone, Vortices with half magnetic 

flux quanta in "heavy-fermion" superconductors, Phys. Rev. B 36 235 (1987). 

[37] J. J. A . Baselmans, A . F. Morpurgo, B . J. van Wees and T . M . Klapwijk , Re­

versing the direction of the supercurrent in a controllable Josephson junction. 

Nature 397, 43 (1999). 



Bibliography 175 

[38] S. Backhaus, S. V . Pereverzev, A. Loshak, J. C. Davis and R. E. Packard, 
Direct Measurement of the Current-Phase Relation of a Superfluid ^He-B Weak 
link. Science 278, 1435 (1997). 

[39] S. V . Pereverzev, A . Loshak, S. Backhaus, J. C. Davis and R. E. Packard, 

Quantum oscillations between two weakly coupled reservoirs of superfluid ^He, 

Nature 388, 449 (1997). 

[40] K . Sukhatme, Yu Mukharsky, T . Chul and D . Pearson, Observation of the 

ideal Josephson effect in superfiuid *He, Nature 411, 280 (2001). 

[41] S. Backhaus, S. Pereverzev, R. W . Sinunonds, A . Loshak, J. C. Davis and R. 

E. Packard, Discovery of a metastable ir-state in a superfiuid 3He weak link. 

Nature 392 687 (1998). 

[42] B . P. Anderson and M . A . Kasevich, Macroscopic Quantum Interference from 

Atomic Tunnel Arrays, Science 282, 1686 (1998);C. Orzel, A . K . Tuchman, 

M . L . Fenselau, M . Yasuda and M . A . Kasevich, Squeezed States in a Bose-

Einstein Condensate, Science 291, 2386 (2001). 

[43] F. S. Cataliott i , S. Burger, C. Fort, P. Maddaloni, F . Mmard i , A . Trombettoni, 

A . Smerzi, and M . Inguscio, Josephson Junction Arrays with Bose-Einstein 

Condensates, Science 293, 843 (2001); 

[44] F . S. Catal iot t i , L . Fallani, F. Ferlaino, C. Fort, P. Maddaloni, and M . Ingus­

cio, Superfiuid current disruption in a chain of weakly coupled Bose-Einstein 

condensates. New J. Phys. 5, 71 (2003). 

[45] O. Morsch, J. H . Mii l le r , M . Cristiani, D . Ciampini , and E . Arimondo, Bloch 

Oscillations and Mean-Field Effects of Bose-Einstein Condensates in ID Op­

tical Lattices, Phys. Rev. Lett . 87, 140402 (2001). 

[46] M . Greiner, O. Mandel, T . Esslinger, T . W . Hansch and I . Bloch, Quantum 

phase transition from a superfluid to a Mott insulator in a gas of ultracold 

atoms. Nature 415, 39 (2002). 



Bibliography 176 

[47] D . Jacksch, H.-J. Briegel, J. I . Ckac, C. W . Gardiner, and P. Zoller, Entan­
glement of Atoms via Cold Controlled Collisions, Phys. Rev. Lett . 82, 1975 
(1999). 

[48] T . G. Tiecke, M . Kemmann, Ch. Buggle, I . Shvarchuck, W . von Khtzing and 

J. T . M . Walraven, Bose-Einstein condensation in a magnetic double-well po­

tential, J. Opt. B:Quantum Semiclass. Opt. 5, S119 (2003). 

[49] Y . Shin, M . Saba, T . A . Pasquini, W . Ketterle, D . E. Pritchard, and A . E. 

Leanhardt, Atom Interferometry with Bose-Einstein Condensates in a Double-

Well Potential, Phys. Rev. Lett . 92, 050405 (2004). 

[50] Y . Shin, M . Saba, A . Schirotzek, T . A . Pasqumi, A . E. Leanhardt, D . E. 

Pritchsurd, and W . Ketterle, Distillation of Bose-Einstein condensates in a 

double-well potential, Phys. Rev. Let t . 92, 150401 (2004). 

[51] N . R. Thomas and A . C. Wilson, C. J. Foot, Double-well magnetic trap for 

Bose-Einstein condensates, Phys. Rev. A 65, 063406 (2002). 

[52] J. Will iams, R. Walser, J. Cooper, E. Cornell, and M . Holland, Nonlinear 

Josephson-type oscillations of a driven, two-component Bose-Einstein conden­

sate, Phys. Rev. A 59, R31 (1999). 

[53] R. A . Webb, R. L . Kleinberg, and J. C. Wheatley, Experiments on Dynamic 

Parallel Magnetism in Superfluid ^He, Phys. Rev. Let t . 33, 145 (1974);A. J. 

Leggett, A theoretical description of the new phases of liquid ^He, Rev. Mod. 

Phys. 47, 331 (1975). 

[54] L . Salasnich, A . Parola and L . Reatto, Bose condensate in a double-well trap: 

Ground state and elementary excitations, Phys. Rev. A 60, 4171 (1999). 

[55] A . J. Leggett 1999, i n Proceedings of the 16th International Conference on 

Atomic Physics, Windsor, Ontario, Canada, Aug. 1998, edited by W . E. Baylis 

and G. F. Drake, A I P Conf. Proc. No. 477 (AIP, Woodbury, New York), pp. 

154-169 



Bibliography 177 

[56] O. Zobay, B . M . Garraway, Time-dependent tunneling of Bose-Einstein con­
densates, Phys. Rev. A 61, 033603 (2000). 

[57] J. E. Williams, Optimal conditions for observing Josephson oscillations in a 

double-well Bose-Einstein condensate, Phys. Rev. A 64, 013610 (2001). 

[58] S. Giovanazzi, A . Smerzi and S. Fantoni, Josephson Effects in Dilute Bose-

Einstein Condensates, Phys. Rev. Lett . 84, 4521 (2000). 

[59] C. Menott i , J. R. AngUn, J. I . Cirac and P. Zoller, Dynamic splitting of a 

Bose-Einstein condensate, Phys. Rev. A 63, 023601 (2001). 

[60] E. Sakellari, M . Leadbeater, N . J. Kyls t ra and C. S. Adams, Josephson spec­

troscopy of a dilute Bose-Einstein condensate in a double-well potential, Phys. 

Rev. A 66, 033612 (2002). 

[61] E. Sakellari, N . P. Proukakis, M . Leadbeater and C. S. Adams Josephson 

tunnelling of a phase-imprinted Bose-Einstein condensate in a time-dependent 

double-well potential. New J. Phys. 6, 42 (2004). 

[62] M . W . Jack, M . J. Collett and D . F . Walls, Coherent quantum tunneling be­

tween two Bose-Einstein condensates, Phys. Rev. A 54, R4625 (1996). 

[63] G. J. Mi lbu rn , J. Corney, E. M . Wright and D . F. Walls, Quantum dynamics 

of an atomic Bose-Einstein condensate in a double-well potential, Phys. Rev. 

A 55, 4318 (1997). 

[64] A . Smerzi, S. Fantoni, S. Giovanazzi and S. R. Shenoy, Quantum Coher­

ent Atomic Tunneling between Two Trapped Bose-Einstein condensates, Phys. 

Rev. Lett . 79, 4950 (1997). 

[65] S. Raghavan, A . Smerzi, S. Fantoni, S. Giovanazzi and S. R. Shenoy, Coherent 

oscillations between two weakly coupled Bose-Eistein condensates: Josephson 

effects, n oscillations, and macroscopic quantum self-trapping, Phys. Rev. A 

59, 620 (1999). 



Bibliography 178 

[66] L Marino, S. Raghavan, S. Fantoni, S. R. Shenoy and A . Smerzi, Bose-
condensate tunneling dynamics: Momentum-shortened pendulum with damp­
ing, Phys. Rev. A 60, 487 (1999). 

[67] S. Raghavan, A . Smerzi and V . M.Kenkre, Transitions in coherent oscilla­

tions between two trapped Bose-Einstein condensates, Phys. Rev. A 60, R1787 

(1999). 

[68] I. Zapata, F . Sols and A . J. Leggett, Josephson effect between trapped Bose-

Einstein condensates, Phys. Rev. A 57, R28 (1998). 

[69] J. Javanainen and M . Yu Ivanov, Splitting a trap containing a Bose-Einstein 

condensate: Atom number fluctuations, Phys. Rev. A 60, 2351 (1999). 

[70] B . W u and Q. N iu , Nonlinear Landau-Zener tunneling, Phys. Rev. A 61, 

023402 (2000). 

[71] J. Ruostekoski and D . F. Walls, Bose-Einstein condensate in a double-well 

potential as an open system, Phys. Rev. A 58, R50 (1998). 

[72] S. Kohler and F. Sols, Oscillatory Decay of a Two-Component Bose-Einstein 

Condensate, Phys. Rev. Lett . 89, 60403 (2002). 

[73] S. Kohler and F. Sols, Chemical potential standard for atomic Bose-Einstein 

condensates. New J. Phys. 5, 94 (2003). 

[74] A . Gr i f f in 1999, in Bose-Einstein Condensation in Atomic Gases, Proceedings 

of the International School of Physics "Enrico Fermi", Course C X L , Varenna 

on Lake Como, July 1998, edited by M . Inguscio, S. Stringari and C. E. Wie­

man, (lOS Press Ohmsha), pp. 591-623 

[75] P. A . Ruprecht, M . J. Holland, K . Burnett , and M . Edwards, Time-dependent 

solution of the nonlinear Schrddinger equation for Base-condensed trapped neu­

tral atoms, Phys. Rev. A 51, 4704 (1995). 

[76] M . Ueda and A . J. Leggett, Macroscopic Quantum Tunneling of a Bose-

Einstein Condensate with Attractive Interaction, Phys. Rev. Lett . 80, 1576 

(1998). 



Bibliography 179 

[77] Yu. Kagan, A . E. Muryshev, and G. V- Shlyapnikov, Collapse and Bose-
Einstein Condensation in a Trapped Base Gas with Negative Scattering Length, 
Phys. Rev. Lett . 81, 933 (1998). 

[78] A . Eleftheriou and Kerson Huang, Instability of a Bose-Einstein condensate 

with an attractive interaction, Phys. Rev. A 61, 043601 (2000). 

[79] S. K . Adhikari , Collapse of attractive Bose-Einstein condensed vortex states 

in a cylindrical trap, Phys. Rev. E 65, 016703 (2002). 

[80] M . Edwards and K . Burnett, Numerical solution of the nonlinear Schrddinger 

equation for small samples of trapped neutral atoms, Phys. Rev. A 51, 1382 

(1995). 

[81] F. Dalfovo and S. Stringari, Bosons in anisotropic traps: Ground state and 

vortices, Phys. Rev. A 53, 2477 (1996). 

[82] M . Edwards, R. J. Dodd, C. W . Clark, P. A . Ruprecht and K . Burnett , Proper­

ties of a Bose-Einstein condensate in an anisotropic harmonic potential, Phys. 

Rev. A 53, R1950 (1996). 

[83] B . I . Schneider and D. L . Feder, Numerical approach to the ground and excited 

states of a Bose-Einstein condensed gas confined in a completely anisotropic 

trap, Phys. Rev. A 59, 2232 (1999). 

[84] D . S. J in, J. R. Ensher, M . R. Matthews, C. E. Wieman, and E. A . Cornell, 

Collective Excitations of a Bose-Einstein Condensate in a Dilute Gas, Phys. 

Rev. Let t . 77, 420 (1996). 

[85] M.-O. Mewes, M . R. Andrews, N . J. van Druten, D . M . K u r n , D . S. Durfee, 

C. G. Townsend, and W . Ketterle, Collective Excitations of a Bose-Einstein 

Condensate in a Magnetic Trap, Phys. Rev. Let t . 77, 988 (1996). 

[86] Y . Castin, i n 'Coherent atomic matter waves', Lectiure Notes of Les Houches 

Summer School, p.1-136, edited by R. Kaiser, C. Westbrook, amd F. David, 

EDP Sciences and Sprmger-Verlag (2001) 



Bibliography 180 

[87] W . Bao and W . Tang, Ground-state solution of Bose-Einstein condensate by 
directly minimizing the energy functional, J. Comp. Phys., 187, 230 (2003) ;W. 
Bao, D. Jaksch and P. A . Markowich, Numerical solution of the Gross-
Pitaevskii equation for Bose-Einstein condensation, J. Comp. Phys., 187, 318 
(2003). 

[88] D . S. Petrov, G. V . Shlyapnikov and J. T . M . Wakaven, Phase-Fluctuating 3D 

Bose-Einstein Condendates in Elongated Traps, Phys. Rev. Let t . 85, 050404 

(2001) . 

[89] K . K . Das, Highly anisotropic Bose-Einstein condensates: Crossover to lower 

dimensionality, Phys. Rev. A 66, 053612 (2002). 

[90] K . K . Das, M . D . Gkardeau and E. M . Wright, Crossover from One to Three 

Dimensions for a Gas of Hard-Core Bosons, Phys. Rev. Let t . 89, 110402 

(2002) . 

[91] L . Salasnich, A . Parola, and L . Reatto, Dimensional reduction in Bose-

Einstein-condensed alkali-metal vapors, Phys. Rev. A 69, 045601 (2004). 

[92] A . Gorlitz, J. M . Vogels, A . E. Leanhardt, C. Raman, T . L . Gustavson, J. 

R. Abo-Shaeer, A . P. Chikkatur, S. Gupta, S. Inouye, T . Rosenband and 

W . Ketterle, Realization of Bose-Einstein Condensates in Lower Dimensions, 

Phys. Rev. Lett . 87, 130402 (2001). 

[93] F . Schreck, L . Khaykovich, K . L . Corwin, G. Ferrari, T . Bourdel, J. Cubizolles 

and C. Salomon, Quasipure Bose-Einstein Condensate Immersed in a Fermi 

Sea, Phys. Rev. Lett . 87, 080403 (2001). 

[94] M . Gremer, I . Bloch, O. Mandel, T . W . Hansch, and T . Esslinger, Exploring 

Phase Coherence in a 2D Lattice of Bose-Einstein Condensates, Phys. Rev. 

Let t . 87, 160405 (2001). 

[95] H . Mori tz , T . Stferle, M . K h l , and T . Esshnger, Exciting Collective Oscillations 

in a Trapped ID Gas, Phys. Rev. Let t . 91, 250402 (2003). 



Bibliography 181 

[96] W . H . Press, S. A . Teukolsky, W . T . Vetterlmg, and B . P. Flannery, Numerical 
Recipes in FORTRAN, 2nd Edition (Cambridge University Press, Cambridge, 
1992). 

[97] B . Jackson, Vortices in trapped Bose-Einstein Condensates, Ph.D. Thesis, 

(2000). 

[98] A . L . Fetter and A . A. Svidzinsky, Vortices in a trapped dilute Bose-Einstein 

condensate, J. Phys. Condens. Matter 13, R135 (2001). 

[99] S. Stringari, Collective Excitations of a Trapped Bose-Condensed Gas, Phys. 

Rev. Lett . 77, 2360 (1996). 

[100] F. Zeunbelli and S. Stringari, Quantized Vortices and Collective Oscillations 

of a Trapped Bose-Einstein Condensate, Phys. Rev. Let t . 81, 1754 (1998). 

[101] A . A . Svidzinsky and A . L . Fetter, Normal modes of a vortex in a trapped 

Bose-Einstein condensate, Phys. Rev. A 58,3168 (1998). 

[102] G. Baym and C. Pethick, Ground state Properties of Magnetically Trapped 

Bose-Condensed Rubidium Gas, Phys. Rev. Lett . 76, 6 (1996). 

[103] M . R. Matthews, B . P. Anderson, P. C. Haljan, D . S. Hall , C. E. Wieman and 

E. A.Cornell, Vortices in a Bose-Einstein Condensate, Phys. Rev. Lett . 83, 

2498 (1999). 

[104] K . W . Madison, F. Chevy, W . WohUeben and J. Dalibard, Vortex Formation 

in a Stirred Bose-Einstein Condensate, Phys. Rev. Lett . 84, 806 (2000). 

[105] J. R. Abo-Shaeer, C. Raman, J. M . Vogels and W . Ketterle, Observation of 

Vortex Lattices in Bose-Einstein Condensates, Science. 292, 476 (2001). 

[106] C. Raman, J. R. Abo-Shaeer, J. M . Vogels and W . Ketterle, VoHex Nucleation 

in a Stirred Bose-Einstein Condensate, Phys. Rev. Let t . 87, 210402 (2001). 

[107] P. Rosenbusch, V . Bretin and J. Dalibard, Dynamics of a Single Vortex Line 

in a Bose-Einstein Condensate, Phys. Rev. Let t . 89, 200403 (2002). 



Bibliography 182 

[108] V. Bretin, P. Rosenbusch and J. Dalibard, Dynamics of a single vortex line 
in a Bose-Einstein condensate, J. Opt. B-.Quantum Semiclass. Opt. 5, S23 
(2003). 

[109] D. S. Rokhsar, Vortex Stability and Persistent Currents in Trapped Bose 

Gases, Phys. Rev. Lett. 79, 2164 (1997). 

[110] J. D. Jackson 1962, in Classical Electrodynamics, pp. 136-141 

[111] K. K. Likharev, Superconducting weak links, Rev. Mod. Phys. 51, 101 (1979). 

[112] J. C. Davis and R. E. Packard, Superfluid ^He weak links. Rev. Mod. Phys. 

74, 741 (2002). 

[113] O. Avenel and E. Varoquaux, Josephson effect and quantum phase slippage in 

superfluids, Phys. Rev. Lett. 60, 416 (1998). 

[114] Z. P. Karkuszewski, K. Sacha, and A. Smerzi, Mean field loops versus quantum 

anti-crossing in trapped Bose-Einstein condensates, Eur. Phys. J. D 21, 251 

(2002). 

[115] B. Wu and Q. Niu, Nonlinear Landau-Zener tunneling, Phys. Rev. A 61, 

023402 (2000). 

[116] B. Wu, R. B. Diener and Q. Niu, Bloch waves and bloch bands of Bose-Einstein 

condensates in optical lattices, Phys. Rev. A 65, 025601 (2(X)2). 

[117] D. Diakonov, L. M . Jensen, C. J. Pethidc and H. Smith, Loop structure of the 

lowest Bloch band for a Bose-Einstein condensate, Phys. Rev. A 66, 013604 

(2002). 

[118] E. J. Mueller, Superfluidity and mean-energy loops: Hysteretic behaviour in 

Bose-Einstein condensates, Phys. Rev. A 66, 063603 (2002). 

[119] J. Javaneinen, Oscillatory Exchange of Atoms between Traps Containing Bose 

Condensates, Phys. Rev. Lett. 57, 3164 (1986). 

[120] J. J. A. Basehnans, B. J. van Wees and T. M. Klapwijk, Controllable n SQUID, 

Appl. Phys. Lett. 79, 2940 (2001). 



Bibliography 183 

[121] H. J. H. Smilde, Ariando, D. H. A. Blank, G. J. Gerritsma, H. 
Hilgenkamp and H. Rogalla, d-Wave-Induced Josephson Current Counter flow 
in YBa2Cu307/Nb Zigzag Junctions, Phys. Rev. Lett. 88, 057004 (2002). 

[122] H. Pu, L. O. Baksmaty, W. Zhang, N. P. Bigelow and P. Meystre, Effective-

mass analysis of Bose-Einstein condensates in optical lattices: Stabilization 

and levitation, Phys. Rev. A 67, 043605 (2003). 

[123] F. Sols 1999, in Bose-Einstein Condensation in Atomic Gases, Proceedings of 

the International School of Physics "Enrico Fermi", Course CXL, Varenna on 

Lake Como, July 1998, edited by M . Liguscio, S. Stringari and C. E. Wieman, 

(lOS Press Ohmsha), pp. 453-468 

[124] S. Burger, K. Bongs, S. Dettmer, W. Ertmer, and K. Sengstock, A. Sanpera, 

G. V. Shlyapnikov, and M . Lewenstein, Dark Solitons in Bose-Einstein Con­

densates, Phys. Rev. Lett. 83, 5198 (1999). 

[125] J. Denschlaget, J. E. Simsarian, D. L. Feder, Charles W. Clark, L. A. CoUins, 

J. Cubizolles, L. Deng, E. W. Hagley, K. Hehnerson, W. P. Reinhardt, S. L. 

Rolston, B. I . Schneider, and W. D. Phillips, Generating Solitons by Phase 

Engineering of a Bose-Einstein Condensate, Science 287, 97 (2000). 

[126] K. W. Mahmud, H. Perry and W. P. Reinhardt, Phase engineering of controlled 

entagled number states in a single compontent Bose-Einstein condensate in a 

double-well potential, J. Phys. B 36, L265 (2003). 

[127] J. E. Williams and M . J. Holland, Preparing topological states of a Bose-

Einstein condensate. Nature 401, 568 (1999). 

[128] C. C. Bradley, C. A. Sackett and R. G. Hulet, Bose-Einstein Condensation 

of Lithium: Observation of Limited Condensate Number, Phys. Rev. Lett. 78, 

985 (1997). 

[129] C. A. Sackett, C. C. Bradley, M . WelUng and R. G. Hulet, Bose-Einstein 

Condensation of Lithium, Appl. Phys. B 65, 433 (1997). 



Bibliography 184 

[130] J. M. Gerton, D. Strekalov, I . Prodan and R. G. Hulet, Direct Observation of 
Growth and Collapse of a Bose-Einstein Condensate with Attractive Interac­
tions, Nature 408, 692 (2000). 

[131] E. A Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, E. A. Cornell and C. 

E. Wieman, Dynamics of collapsing and exploding Bose-Einstein Condensates, 

Nature 412, 295 (2001). 

[132] J. L. Roberts, N. R. Claussen, S. L. Cornish, E. A. Donley, E. A. Cornell 

and C. E. Wieman, Controlled Collapse of a Bose-Einstein Condensate, Phys. 

Rev. Lett. 86, 4211 (2001). 

[133] A. Gammal, T. Prederico and L. Tomio, Critical number of atoms for attractive 

Bose-Einstein condensates with cylindrically symmetric traps, Phys. Rev. A 

64, 055602 (2001). 

[134] A. Gammal, L. Tomio and T. Frederico, Critical numbers of attractive Bose-

Einstein condensed atoms in asymmetric traps, Phys. Rev. A 66, 043619 

(2002). 

[135] A. L. Fetter, Variational study of Dilute Bose Condensate in a Harmonic Trap, 

J. Low Temp. Phys. 106, 643 (1997). 

[136] S. K. Adhikari, The critical number of atoms in an attractive Bose-Einstein 

condensate on optical plus harmonic traps, J. Phys. B:At. Mol. Opt. Phys. 36, 

2943 (2003). 

[137] P. Coullet and N Vandenberghe, Chaotic dynamics of a Bose-Einstein con­

densate in a double-well potential, J. Phys. B:At. Mol. Opt. Phys. 35, 1593 

(2002). 

[138] C. A. Sackett, H. T. C. Stoof and R. G. Hulet, Growth and Collapse of a 

Bose-Einstein Condensate with Attractive Interactions, Phys. Rev. Lett. 80, 

2031 (1998). 



Bibliography 185 

[139] C. A. Sackett, J. M. Gerton, M. Welling and R. G. Hulet, Measurements of Col­
lective Collapse in a Bose-Einstein Condensate with Attractive Interactions, 
Phys. Rev. Lett. 82, 876 (1999). 

[140] K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet, Formation 

and propagation of matter-wave solitons Trains, Nature 417, 150 (2002);U. A l 

Khawaja, H. T. C. Stoof, R. G. Hulet, K. E. Strecker, and G. B. Partridge, 

Bright Solitons Trains of Trapped Bose-Einstein Condensates, Phys. Rev. Lett. 

89, 200404 (2002). 

[141] R. A. Duine and H. T. C. Stoof, Explosion of a Collapsing Bose-Einstein 

Condensate, Phys. Rev. Lett. 86, 2204 (2001). 

[142] S. K. Adhikari, Dynamics of a collapsing and exploding Bose-Einstein Con­

densed vortex state, Phys. Rev. A 66, 043601 (2002). 

[143] S. K. Adhikari, Mean-field description of collapsing and exploding Bose-

Einstein condensates, Phys. Rev. A 66, 013611 (2002). 

[144] L. Santos and G. V. Shlyapnikov, Collapse dynamics of trapped Bose-Einstein 

condensates, Phys. Rev. A 66, 011602 (2002). 

[145] H. Saito and M . Ueda, Mean-field analysis of collapsing and exploding Bose-

Einstein condensates, Phys. Rev. A 65, 033624 (2002). 

[146] C. M . Savage, N. P. Robins and J. J. Hope, Bose-Einstein condensate collapse: 

A comparison between theory and experiment, Phys. Rev. A 67, 014304 (2003). 

[147] J. N . Milstein, C. Menotti, and M. J. HoUand, Feshbach resonances and col­

lapsing Bose-Einstein condensates. New J. Phys. 5, 52 (2003). 

[148] S. K. Adhikari, Mean-field model of jet formation in a collapsing Bose-Einstein 

condensate, J. Phys. B: At. Mol. Opt. Phys. 37, 1185 (2004). 

[149] W. Bao, D. Jaksch, and P. A. Markowich, Three-dimensional simvdation of jet 

formation in colapsing condensates, J. Phys. B: At. Mol. Opt. Phys. 37, 329 

(2004). 


