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Abstract 

Parton distributions, a{x,fj?), are essential ingredients for almost all theoretical 
calculations at hadron colliders. They give the number densities of the colliding par-
tons (quarks and gluons) inside their parent hadrons at a given momentum fraction x 
and scale fi^. The scale dependence of the parton distributions is given by DGLAP 
evolution, while the x dependence must be determined from a global analysis of 
deep-inelastic scattering (DIS) and related hard-scattering data. 

In Part I we introduce 'doubly-unintegrated' parton distributions, fa{x, z, k f , (M^), 
which additionally depend on the splitting fraction z and the transverse momentum 
kt associated with the last evolution step. We show how these distributions can be 
used to calculate cross sections for inclusive jet production in DIS and compare the 
predictions to data taken at the HERA ep collider. We then calculate the transverse 
momentum distributions of W and Z bosons at the Tevatron pp collider and of 
Standard Model Higgs bosons at the forthcoming LHC. 

In Part I I we study diffractive DIS, which is characterised by a large rapidity 
gap between the slightly deflected proton and the products of the virtual photon 
dissociation. We perform a novel QCD analysis of recent HERA data and extract 
diffractive parton distributions. The results of this analysis are used to investigate 
the effect of absorptive corrections in inclusive DIS. These absorptive corrections 
are due to the recombination of partons within the proton and are found to enhance 
the size of the gluon distribution at small x. We discuss the problem that the gluon 
distribution decreases with decreasing x at low scales while the sea quark distribution 
increases with decreasing x, whereas Regge theory predicts that both should have 
the same small-x behaviour. Our study hints at the possible importance of power 
corrections at low scales of around 1 GeV. 
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Chapter 1 

Parton evolution and factorisation 

The theory of the strong interaction is quantum chromodynamics (QCD), where 
the fundamental entities are quarks and gluons. However, the initial-state particles 
collided in particle physics experiments—such as the HERA and Tevatron colliders 
and the forthcoming LHC—are not quarks and gluons, but hadrons. Therefore, it 
is essential to know the momentum distributions of the partons (quarks and gluons) 
inside the colliding hadrons in order to relate theoretical QCD calculations with 
experimental data. These parton distribution functions (PDFs) are the subject of 
this thesis. 

The conventional collinear factorisation approach expresses hadronic observables 
as the convolution of the PDFs with partonic hard-scattering coefficients, computed 
assuming that the hard scattering is initiated by a parton collinear to its parent 
hadron. The separation of parton emissions associated with the initial hadron or 
with the hard scattering is provided via a factorisation scale. The scale dependence 
of the PDFs is governed by Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [ 1 -
5] evolution. Both the DGLAP splitting kernels and the hard-scattering coefficients 
are calculable as perturbation series in the running strong coupling. This formalism 
is often apphed unquestioned, with a huge amount of effort expounded on calculating 
higher-order corrections to the perturbation series. In this thesis, we study simple 
modifications to standard DGLAP evolution. 

In Part I , we introduce PDFs which depend on the transverse momentum, rela
tive to the parent hadron, of the parton initiating the hard scattering. We use these 
unintegrated PDFs to calculate the transverse momentum distributions of final-state 
particles produced in deep-inelastic scattering (DIS) and hadron-hadron collisions. 

In Part I I , we study a subset of DIS events known as diffractive. We perform a 
novel QCD analysis of recent diffractive DIS data taken at the HERA collider, and 
extract diffractive PDFs. We then use this diffractive DIS analysis to calculate the 



1.1 Colour factors and running coupling 

effect of absorptive corrections on the DGLAP evolution of PDFs, arising from the 
recombination of partons within the proton. 

In this introductory chapter we concentrate on only a few aspects of perturbative 
QCD phenomenology which are particularly relevant to the research presented in 
later chapters. For more details, the reader is referred to the textbooks [6-19] and 
review articles [20-27 . 

1.1 Colour factors and running coupling 

First we give the formulae used for calculating colour factors throughout this thesis. 
We use the convention that indices a,b,... run over the Nc = 3 colour degrees 
of freedom of the quark fields, while indices A,B,... run over the (A^^ — 1) = 8 
colour degrees of freedom of the gluon field. The SU{Nc) generators satisfy the 
following properties: 

^ab^tc — 5ac 

fABCfABD ^^^^CD 

with TR = 1. 

1 
with C,^ 2iVc 

with CA = NC = 3. 

4 
3' 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

The scale dependence of the running couphng as is given by the renormahsation 
group equation. 

^ ^ ^ ^ Ja^iu-^) PKOCS) Ja,(u^) 

-1 (1.5) 

where the one- and two-loop coefficients are 

( l l C ^ - 2 n / ) _ ( 3 3 - 2 n ; ) 
127r ~ 12̂ ^ ' 

, _ {17C^^-5CAnf -SCpUf) _ ( 153 - 19n/) 

2 7 r ( l l C A - 2 n / ) ~ 27r(33 - 2 n / ) ' 

and Uf is the number of active quark flavours.^ At leading order (LO), where we 

(1.6) 

(1.7) 

^The discovery of 'asymptotic freedom' in 1973, meaning that the strong interaction gets weaker 
at small distances, earned Gross, Politzer, and Wilczek the 2004 Nobel Prize. 



1.1 Colour factors and running coupling 

keep only the first (one-loop) term on the right-hand side (RHS) of (1.5), 

«5(m') asm = (1.8) 

while at next-to-leading order (NLO), where we also keep the second (two-loop) 
term on the RHS of (1.5), 

These equations (1.8) and (1.9) allow asiQ"^) to be calculated if the couphng is 

known at some reference scale jx. Typically, ^ = Mz and asiM^) is extracted 

from experimental data. An alternative approach is to introduce a parameter AQCD 

instead of Q;5(/^^), defined as the scale at which the coupling would diverge, that is. 

asifi'^) ^ oo as ^ A^^D- (1.10) 

With this definition, (1.8) becomes 

«s(g') = 

while (1.9) becomes 

Mn(QVA^CD)' 
(1.11) 

1 

c^sm 
+ b'lzi b'asiQ') 

1 + b'asiQ^) = b In 
AQCD 

(1.12) 

This last equation (1.12) can be solved approximately for as{Q^) by expanding in 
inverse powers of ln(Q^/AQCi-,): 

b' L b' 

61n(QVA^cD) ' b- In^(QVA^CD) \ b ^ A ^ ^ D 
+ 

+ 0 
1 

In^(QVA^CD), 

Redefining AQCD to absorb the term proportional to ln{b'/b) we obtain 

(1.13) 

asm 61n(QVA2cJ 
yln ln(gVA^CD) 
b In(gVA^cD) 

(1^14) 

Note that AQCD depends on the number of active flavours, U f , with the dependence 



1.2 Deep-inelastic ep scattering 

P 

Figure 1.1: Deep-inelastic ep scattering mediated by a virtual photon 7*. 

determined by ensuring that asiQ"^) is continuous across the flavour thresholds, that 
is, 

«5("^c)L,=3 = «^(^c)L,=4 ' «5K)L ,=4 = ''simDl^^^ . (1.15) 

Due to the various ambiguities involved in specifying AQCD, such as the flavour 
dependence, the renormalisation scheme dependence, and whether it is defined ac
cording to (1.11), (1-12), or (1.14), it is better to specify the absolute value of the 
running coupUng by giving asifJ,"^) at some reference scale /i, usually at = Mz-

1.2 Deep-inelastic ep scattering 

Deep-inelastic ep scattering is mediated by exchange of a virtual photon with mo
mentum^ q = e-e', where e and e' are the momenta of the initial and final electrons, 
see Fig. 1.1. The virtual photon (7*) has spacelike virtuality = —Q^. We ne
glect the proton mass assuming that rUp <^ Q, and assume that is sufficiently 
small that Z boson exchange can be neglected. The ep centre-of-mass (CM) en
ergy squared is s = (e -t- p)^ = 2e • p, where p is the momentum of the initial 
proton. The Bjorken-a; variable is XB = Q"^/(2p- q). The 7*p CM energy squared is 
W^^{q-Vpf = Q\llxB-l). 

The total ep —> eX cross section can be written as a contraction of a leptonic 
tensor (representing e —> 67*) and a hadronic tensor (representing 7*59 —> X). The 
hadronic tensor, W^", can be written in terms of two independent structure func
tions, after utilising gauge, Lorentz, and time-reversal invariance, parity conservation 

^'Momentum' always refers to 4-momentum throughout this thesis. 



1.2 Deep-inelastic ep scattering 

and assuming unpolarised beams. The final result is 

(1.16) 
where y = {q • p)/{e -p) = Q'^/{XBS). The subscripts T and L on the structure 
functions FT^L denote the separate contributions from a virtual photon with trans
verse and longitudinal polarisations respectively. Analogous to (1.8) the very weak 
running of the electromagnetic coupling is taken to be 

where a ~ 1/137 is the fine-structure constant and rrie is the electron mass. 
The structure functions of the proton are related to the -y*P cross sections by 

F2(x„Q^) = FT(X„Q')+FUXB,Q% (1.19) 

SO the ep cross section can be obtained from the YP cross sections by 

1.2.1 Operator product expansion 

The hadronic tensor governing the •j*p interaction, also known as the forward Comp-
ton amplitude, is 

W^^i yd^xe''-^(p|r{J '^(x)r(0)}|p), (1.21) 

that is, it involves taking the Fourier transform of the proton matrix element of a 
time-ordered product of currents. An alternative strategy to the parton model for 
calculating W'' is to expand this product as a series of local operators. This is 
known as the operator product expansion (OPE).^ The most important terms in 
the operator product of two currents come from products of two quark currents 
q^^q with quarks of the same flavour. The relative size of contributions from the 
OPE to DIS is controlled by the twist of the operator, defined by t = d - s, where d 
is the (mass) dimension and s is the spin of the operator. A given operator of twist ' 

^See, for example, Chapter 18 of [6] for more details. 



1.3 D G L A P evolution and collinear factorisation 

t is suppressed by at least a factor 

t-2 

The dimensions of quark and gluon operators are 3/2 and 2 respectively, while their 
spins are 1/2 and 1 respectively. Thus the leading contribution from two quark op
erators is twist-two ('leading-twist') while the leading contribution from four gluon 
or four quark operators is twist-four ('higher-twist'). Note that a contribution sup
pressed by {1/QY~'^ does not necessarily originate from an operator of twist t. For 
example, a contribution behaving like l /Q^ could be either a sub-leading twist-two 
contribution or a leading twist-four contribution. 

1.3 D G L A P evolution and collinear factorisation 

It is convenient to use a Sudakov decomposition, whereby a general momentum k can 
be expanded in a basis of the proton momentum a lightlike 4-vector q' = q + Xgp, 
and a transverse component kj_, which satisfy the relations 

p' = 0 = q'\ p - k ^ ^ O ^ q ' - k ^ , k l = - k l p-q' = ^ . (1.23) 
2XB 

We define the plus and minus components of a 4-vector k as k"^ = k° ± k^. In the 
Breit frame 

p = (p+,p-,pt) = {Q/XB,0,O), q' = (0,Q,0), kj_ = (0,0, fct). (1.24) 

We adopt a physical'^ (axial) gluon gauge, where only the two transverse gluon 
polarisations propagate. The numerator of a gluon propagator with momentum k 
in an axial gauge is 

d,Ak, n) = -g,. + fc./ - (1-25) 

Although the propagator is more complicated in an axial gauge than in covariant 
gauges, for example the Feynman gauge where d^^ = —g^^, a physical gauge has the 
distinct advantage that ghost fields are not required to cancel the unphysical gluon 
polarisations. Choosing a lightlike gauge-fixing vector n = q' gives the light-cone 

''For more information on physical gauges, see [21,28]. 
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(a) Y (b) Y 

k O f 

P = kn + q 

O Pn 

Pn-l 

OOOOD 

OOOOCKX)000 

!t I i 

P 

Figure 1.2: (a) The parton evolution chain, simphfied so that all the partons in the 
chain are gluons. (b) The evolution ladder, given by the amplitude of diagram (a) 
multiplied by its complex conjugate. The horizontal gluons cut by the dashed line 
are on-shell, = 0. 

gauge, 
fe/i QI + QI 

k-q' 
(1.26) 

For the special case when k possesses only a plus ( p ) component, then dfjt„{k, q') = 

-g^^, where g^^, is the transverse part of the metric, that is, 

9iu 9ny 
Pnq'u + o'^Pi' 

P • >l' 
(1.27) 

In an a:xial gluon gauge, the logarithmic scaling violations of the proton structure 
function ^2(^3, Q^) are given by multiparton emission diagrams, such as that shown 
in Fig. 1.2(a), with strongly-ordered transverse momenta along the evolution chain. 
The shaded circle at the top of Fig. 1.2(a) indicates some hard subprocess with an 
associated factorisation scale /x. The ladder diagram representing the amplitude of 
Fig. 1.2(a) multiplied by its complex conjugate is shown in Fig. 1.2(b). Using a 
Sudakov decomposition of the momenta of the propagator partons, 

ki = Xip — f3iq' + ki (1.28) 
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where the Sudakov (light-cone) variables Xi,Pi G [0,1]. In the infinite momentum 
frame, the plus momentum fractions Xi = k^/p^ become the longitudinal momen
tum fractions of the proton. The emitted partons along the evolution chain have 
momenta 

Pi = ki_i - k i = ( X i _ i - X i ) p + {Pi - A_i) q' + pi^, (1.29) 

where Pi^ — — h^, while the total momentum going into the hard subprocess 
at the top of the ladder is 

P = kn + q = { X r , - X s ) p + { l - Pn) 4 + kn^. (1.30) 

Since the outgoing partons must be on-shell (pf = 0), we have 

where Zi = Xi/xi^i, and the Sudakov variables of the propagator partons obey the 

ordering 

...> Xn-1> Xn> Xs, . . . < < /5„ < 1. (1.32) 

The kinematics we have discussed so far are completely general, and also hold 
for the different types of parton evolution we will discuss later. We now consider the 
approximation made in DGLAP evolution, where transverse momenta are assumed 
to be strongly ordered, 

> kit » kl_,^t » . . . » kit » kit » kl (1.33) 

where ko is an infrared cutoff. Schematically, neglecting the running of the strong 
coupling, the diagram in Fig. 1.2(b) with n propagators gives a contribution pro
portional to 

Jkl «n,t Jkl K-l,t Jkl l^\,t 

The leading logarithmic approximation (LLA) includes a sum of all such terms. 
We write the momentum of the last parton in the evolution chain, which initiates 

the hard scattering, as k^ = k = xp - (3q' + k±. Since this parton has kt <C fi, 
it can be taken to be approximately colhnear with the proton, k = xp. We write 
a{x, p?) as a shorthand for the PDFs of "the proton, xq{x,^'^) or xg{x,iJ?). ^We" 
neglect non-perturbative power-suppressed contributions of 0([AQCD/A*]' ' )I where 
the power p > 0. These contributions should be negligible as long as » AQCD, 
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(a) 7* 

t 1 

(b) 7* 

Figure 1.3; I l lustrat ion of collinear factorisation. The hard scattering is ini t iated by 
either (a) a quark or (b) a gluon w i t h momentum k = xp. 

where AQCD is typically a few hundred MeV. The collinear factorisation formula, 

illustrated in Figure 1.3, expresses the hadronic (Yp) cross section in terms of the 

PDFs, a{x,fx'^), and the partonic (7*a) cross sections: 

JXR 

dx 

The partonic cross section a is calculable as a perturbation series in 0.3 

(1.35) 

- ^ r r - L O , ^ - N L O , _,,2 'NNLO , ] 
(7 = 0:5 [cr + 0 : 5 ( 7 +aga + . . .J , (1.36) 

where r is the smallest power of as contributing to a specific process. For example, 

r = 0 for inclusive DIS, but r = 1 for inclusive jet production. For inclusive DIS, 

the usual choice of scale is given by the photon virtuali ty, fi = Q. Currently, 

a^^ and have been calculated for a large number of processes. By contrast, 

the next-to-next-to-leading order (NNLO) partonic cross section, a-^^^° , is only 

known for a few simple processes, such as inclusive DIS and Drell-Yan (and related) 

processes in hadron-hadron collisions, but calculations of o-̂ '̂ ^*-' w i l l increasingly 

become available over the next few years. 

The partonic cross section. 

da = d^\M\'' / F, (1.37) 

is calculated for an on-shell incoming parton w i t h momentum k = xp, neglecting 

the minus and transverse components of k. The squared matr ix element, \M\'^, 

is calculated f rom the Feynman rules,^ summing over all outgoing helicities and 

colours and averaging over al l incoming helicities and colours. This averaging is 

^In fact, by the optical theorem, d$ can be written down directly from the imaginary part 
of the forward scattering amplitude, using 'cut' diagrams with sUghtly modified Feynman rules. 
Here, we prefer to keep the two factors distinct. 
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often denoted explicitly by the notation ( |A<P), or X^ |A4p. Throughout this 

thesis, | A ^ p w i l l always denote impl ic i t ly an averaging over all incoming helicities 

and colours. The Lorentz-invariant phase space for a subprocess w i t h f inal state 

particles of momenta pi is 

d * ^ ( 2 . ) v > ( . + , - x : p . ) r i 2 ^ . (1.38) 

and the flux factor for a collinear collision between the v i r tua l photon and the 

incoming parton is 

F = 4k-q = 4xp-q. (1.39) 

Since 

J d V S{p^ - ml) e{E,) = J d V i ^ , (1.40) 

the phase space element (1.38) can be wri t ten 

Beyond L O , the calculation of a gives rise to bo th ultraviolet and infrared diver

gences. Usually, dimensional regularisation is used to regulate them both, where the 

entire calculation is performed in 4 — 2e dimensions, then the divergences appear 

as poles in e. The ultraviolet divergences are subtracted according to a particular 

renormalisation scheme, while the infrared divergences are subtracted according to a 

particular factorisation scheme. Both the renormalisation and factorisation schemes 

are usually taken to be the modified minimal subtraction (MS) scheme. For more 

details, see [29] in [10 . 

The scale dependence of the PDFs is governed by the D G L A P equation. 

j ^ z P a , [z^asi^i^)) b ( ^ , ^ 2 ) , (1.42) 
dajx, ^ ^ ) ^ asitJ''^) 

(91n/i2 27r 
l'=q,9 

where the spl i t t ing kernels Pat correspond to a 6 —> ac branching in the evolution 

chain, and are expansions in 0:5, 

Pa, {z, as) = P„^°(^) + asP^.'^'^iz) + ^^aT^^^C^) + • • • • (1-43) 

Here, the N L O kernels correspond to 0{as) corrections to each rung of the evo-' 

lu t ion ladder, while the N N L O kernels corresponds to 0{ag) corrections. Note 

however, that the assumption of strongly-ordered transverse momenta between each 
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' rung' remains, so that t l ie parton ini t ia t ing the hard subprocess st i l l has negligible 

transverse momentum even after including higher-order corrections to the spli t t ing 

kernels. The LO and N L O kernels have been known for more than 20 years, while 

the calculation of the N N L O kernels has only recently been completed [30,31]. The 

LO D G L A P spli t t ing kernels are 

p L O . ^ _ ^ 1 + { 1 - Z f 
fgq U ) - <-F , 

Pi^iz) = [Z' + (1 - Z f ] , 

P^^{z) = 2C, 
{ l - z ) 

1 - ^ 
+ + ^ ( 1 - z) 

+ 

+ -{\lCA-^nfTn)5{l-z). 

(1.44) 

(1.45) 

(1.46) 

(1.47) 

Here, the 'plus' dis tr ibut ion is defined such that 

Jo ( 1 - ^ ) + Jo 1 

m - f i l ) (1.48) 

which encapsulates the cancellation between the real and v i r tua l soft singularities. 

The real parts of the L O kernels are derived in Section 2.2.3. The coefficients of 

the v i r tua l parts, proportional to 5(1 — z), can be obtained f rom quark number 

conservation 

dz P^'^'iz) = 0, (1.49) 

and momentum conservation 

f d z z [P^°{z) + P^^iz)] = 0, f d z z [ 2n/P,^0(^) + p L O ^ ^ ^ ] ^ Q 
JO Jo 

For a consistent calculation, the order in 0:5 of the partonic cross section and 

the spli t t ing kernel used in the evolution should match. For example, N L O partonic 

cross sections should be convoluted w i t h PDFs evolved w i t h N L O D G L A P sphtting 

kernels. 

Extending the lower l imi t of the integral to 0 in (1.42), w i t h the understanding 

that h{x/z,ii'^) = 0 for 2; < 2;, and inserting the LO spHtting kernels, P l f { z ) , we 
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obtain 

b=q,9 

where the 'unregularised' LO D G L A P spUtting kernels are 

(1.51) 

P,,{z) = C F \ ^ . (1.52) 

P,,{z) = P , , ( l - ^) = C ^ l ± i l l l ^ , (1.53) 

P,9{^) = ^ . . ( 1 - z ) = Tn [z' + (1 - z f ] , (1.54) 

Pgg{z) = Pgg{l-z)=2CA 
z I - z ,^ , 

+ + z { \ - z ) 
1 - z 

(1.55) 

The two terms on the RHS of (1.51) correspond to real emission and v i r tua l contri

butions respectively. The first (real) term describes the number density increase of 

partons w i t h plus momentum fract ion x f r o m the spl i t t ing of parent partons w i t h 

plus momentum fraction x/z. The second (virtual) t e rm describes the number den

sity decrease of partons w i t h plus momentum fraction x spl i t t ing to partons w i t h 

plus momentum fraction C^x. The extra factor of C, in the v i r tua l term avoids double-

counting the s- and ^-channel partons. The factor C is equivalent to a factor of a 

half when integrating over C, and summing over h. 

1.3.1 Global parton analysis 

Formally, the PDFs are defined in terms of the expectation values of suitable renor-

mahsed quantum mechanical operators (see, for example, [32]). Since the PDFs 

contain non-perturbative physics, they cannot be computed completely using per

turbat ion theory. I n principle, lattice QCD could be used to calculate the PDFs 

(see, for example, [33]). I n practice, however, the PDFs are determined using ex

perimental data, pr imari ly inclusive DIS data, but also data f rom hadron-hadron 

colliders such as inclusive jet production. The situation is similar to that for the 

running coupling 0:5, where the scale dependence is known f r o m the renormalisa-

t ion group equation (1.5), but an absolute value Q ; 5 (M | ) must be determined f rom 

experiment. I n the case of PDFs, the scale dependence is known f rom the D G L A P 

equation (1.42), but the x dependence must be determined f r o m experiment. The 

PDFs are parameterised at some starting scale Qo- The distributions a{x,Ql) '?se 

then evolved up to higher scales and predictions calculated w i t h the collinear fac

torisation formula (1.35) are compared w i t h data. The parameters i n the starting 
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distributions are adjusted unt i l the opt imum fit is obtained. Currently, the two 
major groups performing global parton analysis to DIS and related hard-scattering 
data are M R S T [34] and C T E Q [35]. We w i l l look in more detail at how these fits 
are done in Part I I of this thesis. 

1.3.2 Parton showers 

The D G L A P formalism is amenable to implementation in a parton shower algo

r i t h m (see, for example, Chapter 5 of [8]). As we w i l l see in Section 2.2.2, in the 

l imi t of strongly-ordered transverse momenta the partonic cross section for n parton 

branchings, where the n th parton branching is 6 ac, factorises as 

This procedure can be used recursively to generate a parton shower, as implemented 

in the Monte Carlo event generators HERWIG [36] and PYTHIA [37]. I n a parton 

shower, the transverse momenta of successive emissions are ordered, but not strongly 

ordered, that is, (1.33) becomes 

A '̂ > kl^t > ^ n - i , * > • • • > ^2,( > kit > kl (1.57) 

Such a procedure accounts for all {as In /x^)" terms. Note that the evolution variable 

is not restricted to being the transverse momentum. Since the branching formula 

(1.56) contains a factor 

dxn dkl i ^ dzn d f c ^ ^ dzn djklt fi^n)] 

then the evolution variable can be taken to be [A;^^^/(z„)], for any reasonable func

t ion f{zn). For example, the evolution variable used in HERWIG is related to the 

angle of parton emission, allowing angular ordering due to colour coherence (see Sec

t ion 1.5.1) to be bui l t in f rom the outset. By contrast, the evolution variable used 

in PYTHIA is the parton virtuali ty, and so angular ordering must be imposed as an 

additional constraint. By accounting for angular ordering and momentum conserva

t ion along the evolution chain, an accuracy approaching next-to-leading logarithmic 

( N L L ) can be obtained, that is, where all terms like 0 : 5 ( 0 5 I n / i ^ ) " " ^ are included in 

addition to the L L A terms. ^ 
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1.4 B F K L evolution and fcrfactorisation 
We now consider semihard processes [23] where Xg «C 1. Since W'^ = Q'^{\/XB — \) ~ 

Q'^/XB-, the small-Xs Umit is also referred to as the high-energy l imi t , » Q- The 

hard scale Q is much less than the 7*p C M energy W, but s t i l l large enough for 

perturbative QCD to be applicable, that is, Q > AQCD- I n this regime, gluons are 

the predominant partons. The gluons emitted f rom the evolution chain take away 

the major part of the plus momenta of the propagating gluons, so (1 - Zj) ~ 1. 

Consider what happens if , in addition to strongly-ordered transverse momenta, 

we also have strongly-ordered plus momenta, 

< x„ < Xn-i < C . . . < X2 < 3:1 < 1, (1.59) 

along the evolution chain. I n this l imi t the gluon spli t t ing kernel Pgg{zi) ~ 2CA/zi 

and the parton branching equation (1.56) becomes 

dal = — ^ ^ ^ ^ C A d a ^ - v (1-60) 

In addition to the factor of ( a s ln / / ^ ) " coming f r o m the integration over successive 

transverse momenta we have an additional factor 

JxB Jx„ Jx2 ^1 '̂ ^ V ^BJ 

SO the to ta l contribution in the so-called double leading logarithmic approximation 

( D L L A ) contains all terms proportional to [0:5 ln(/x^) l n ( l / x B ) ] " . However, there are 

additional [Qf5ln ( l /a ;B)]" terms which are not accompanied by a factor [ln(/Lt^)]", 

corresponding to the situation where the plus momenta are strongly ordered along 

the evolution chain, but the transverse momenta are not. The L L Balitsky-Fadin-

Kuraev-Lipatov ( B F K L ) equation [38-40] sums all [Q : 5 ln ( l / xB) ] " terms. The domi

nance of ladder diagrams such as that in Figure 1.2 is now only true i f the triple-gluon 

vertices are replaced by non-local effective vertices and the t-channel gluons are re

placed by so-called 'reggeised' gluons w i t h modified propagators, which account for 

v i r tua l radiative corrections. 

Since transverse momentum is not strongly ordered in the B F K L formalism, the 

parton entering the subprocess at the top of the evolution ladder has non-negligible 

transverse momentum, Therefore, instead of the conventional PDFs, a{x, fj?), nsed-

in collinear factorisation, i t is necessary to define PDFs which depend on this trans

verse momentum. Recall that , at least at L O , the number of partons in the proton 
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7 ' 

k i t i i A; 

2(:̂ ,̂ ?[,M3); 
p > — - — - < p 

Figure 1.4: I l lustrat ion of fej-factorisation. The gluon ini t ia t ing the hard scattering 
has momentum k = xp + k±. The unintegrated gluon distr ibut ion fg{x, k^) satisfies 
B F K L evolution. For C C F M evolution there is an extra argument pi^ related to the 
maximum angle for gluon emission. 

w i th (plus) momentum fract ion between x and x + dx, integrated over transverse 

momentum kt between zero and the factorisation scale //, is 

a { x , t / ) 
dx 

X 
(1.62) 

By analogy, we define unintegrated parton distr ibution functions (UPDFs), /a(a;, A;̂  [, /x^]), 

such that the number of partons w i t h plus momentum fract ion between x and x-\-dx 

and transverse momentum squared between k^ and k^ + dA;̂ ^ is 

f ( j.2\ 2i\ dx dk^ 

Thus the UPDFs should satisfy the normaUsation relation. 

(1.63) 

a{x,fi^) = f 
Jo 

fa{x,k^lll ]). (1.64) 

A t small X only the unintegrated gluon distr ibution need be considered. The uninte

grated gluon distr ibution fg{x,k^) satisfies B F K L evolution. For C C F M evolution, 

considered in Section 1.5.2, there is an extra argument / i ^ related to the maximum 

angle for gluon emission. Compared to the collinear factorisation approach to cal

culate hadronic cross sections, there is an additional convolution over kt. 

(1.65) 

This approach is called /ct-factorisation [41,42] or the semihard approach [23,43], 

illustrated i n Fig. 1.4.̂  The partonic cross section a'^'^' is taken off-shell, indicated 

'For a review of the fct-factorisation approach, see [26,27]. 
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by the notation ^g*\ I t is given by (1.37), calculated w i t h the incoming gluon having 
momentum k = xp -\- k±_ and v i r tua l i ty k"^ = —k^. Since the fiux factor is not well-
defined, i t is taken to be the usual on-shell flux factor, F = Axp- q. The summation 
over the incoming gluon polarisations is performed using 

Y,e,{kA)e:{kA) = 2 ^ - ^ . (1.66) 

The L L B F K L equation, which governs the x dependence of the unintegrated 

gluon distribution, is 

d\n{l/x) 
, f^dk[^ 

Jo fcf 
f , { x , k ' ^ ) - f , { x , k f ) _ ^ f,{x,k^) 

k['-kl\ {^k[' + kt)^l\ 
(1.67) 

where 0:5 = CA ^S/TT . The N L L B F K L corrections, which sum aU as[as ln( l /a ;B)]""^ 

terms, have also been calculated [44,45], and were found to be larger than the L L 

B F K L contribution, giving cross sections that were not even positive-definite. How

ever, resumming additional coUinearly-enhanced contributions stabihses the result 

(see, for example, [47]).^ 

1.5 C C F M evolution and A:^factorisation 

The (true) rapidity of an outgoing particle of mass rrii w i t h momentum 

Pi = [vt^Pi.Pi^t) = {pt, [m^ + Plt]/pt^Pi,t) (1-68) 

is ^ 

m ^ l l n ^ . (1.69) 
^ Pi 

Rapidity has the useful property that i t is additive under boosts i n the z direction. 

The pseudorapidity of a particle is defined as 

77r" ' ' ° = - l n t a n ( ^ i / 2 ) , (1.70) 

'''It has been found in [46] that predictions for the transverse momentum distribution of gluons 
calculated using either resummed N L L B F K L or L O D G L A P do not differ significantly, provided 
that the initial and final virtualities are not too close to each other. 
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where 9i is the angle of the 3-momentum of the particle relative to the z axis. 
Rapidity and pseudorapidity are related by 

s i n h 7 7 r " ' ° = ( J l + ^ ) s i n h 7 7 i , (1 -71) 

SO the distinction disappears i n the l imi t that rrii <C h^t- For a pedagogical discussion 

of light-cone variables, rapidity and pseudorapidity, see [48 . 

1.5.1 Angular ordering 

Colour coherence effects impose the angular ordering of the gluons emitted f rom 

the evolution chain, originating f rom the destructive interference between the gluon 

emission amphtudes (see, for example, [8,11]). The angle 9i between the direction 

of the emitted gluons, w i t h momenta pi, and the proton beam direction should 

increase as we move towards the hard scattering at the top of the evolution ladder. 

To be more precise, the ordering is i n the rapidi ty variable (1.69), which should 

reduce as we move towards the hard subprocess. Of course, angular ordering (or 

pseudorapidity ordering) and rapidity ordering are equivalent i n all evolution steps 

prior to the last, since the emitted partons are massless. The smallest allowed 

rapidity, r^min, is fixed by the rapidity of the subprocess, which usually has some 

finite invariant mass, so that the rapidity and pseudorapidity are not equal in this 

case. We w i l l refer to 'angular ordering' throughout this thesis, but the reader should 

bear i n mind that i t is really rapidity ordering which is implied. 

I t is convenient to introduce a variable = Pi Ivl • Then the rapidities of the 

emitted gluons are 

r/, = - ^ l n e i [ = - l n t a n ( ^ , / 2 ) ] , (1.72) 

and the 'angular ordering', 

. . . > -qn-l > T]n> Vmm, (1-73) 

is equivalent to an ordering in ^ j , 

. . . < ^ n - l < < 2 , (1.74) 

where 
P- _ ( l - / 3 n ) 

P+ x j x s - 1 
(1.75) 



1.5 C C F M evolution and fcrfactorisation 19 

provides the smallest allowed rapidity, T/min = - ( 1 / 2 ) In S. Prom (1.29) and (1.31), 

^ l ^ / ^ i ^ v / ^ y ^ ( 1 .76 ) 

where we have defined the rescaled transverse momenta of the emitted gluons to 

be 

I n angular-ordered evolution, the factorisation scale ^ plays the role of the maximum 

rescaled transverse momentum, so 

M = — Q v / S . (1.78) 
XB 

Therefore, the angular ordering (1.74) can be wr i t t en as 

Zn-lPn-l<Pn^ ^nPn < f^- (1-79) 

These angular-ordering constraints are automatically satisfied by both D G L A P 

evolution (w i th strongly-ordered transverse momenta) and B F K L evolution (wi th 

strongly-ordered plus momenta). 

1.5.2 The C C F M equation 

The Catani-Ciafaloni-Fiorani-Marchesini (CCFM) equation [49-52] resums large 

logarithms of 1/(1 — z) i n addition to those of 1 / 2 summed by the B F K L equation. 

Moreover, angular ordering of emitted gluons due to colour coherence is imposed, as 

given by (1.79). For large and smaU z, C C F M evolution becomes similar to D G L A P 

and B F K L evolution respectively. I n the small-^B regime, fct-factorisation can again 

be used, where the cross section is wr i t ten i n terms of an off-shell partonic cross 

section and an unintegrated gluon distribution, fg{x,k'^, fi^): 

^rP= ^ ' ^ ^ , { x , k l n ' ) a ^ ' ^ \ x , k l ^ ? ) . (1.80) 
JXB ^ Jo f^t 

The extra argument w i t h respect to (1.65) is the factorisation scale {j,, given by 

(1.78), which is related to the smallest rapidity allowed for gluon emission. The 
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differential fo rm of the C C F M equation, as given in [52,53], is 

d f f g { x , k l n ' ) _ . l - Q o / . p ^ ^ ( , , ( ^ / , ) 2 , f c 2 ) 

(1.81) 

where QQ is an infrared cutoff, k[ = kt + [{l — z)ii/z]n, and the azimuthal integration 

over the direction of the two-dimensional unit vector n is understood. I t is important 

to note that (1.81) is an evolution equation in the angular variable y^jx— {Q/XB)^/^ 

rather in y, itself. The gluon Sudakov fo rm factor in the D L L A is 

i^s{^J^,Ql) = exp 

The spli t t ing function is 

P,g{z,{^i/z)\kl)^as 

where the non-Sudakov form factor. 

r dq^ r 
JQI 9 ' Jo 

dz 
as 

l ^ z 
(1.82) 

A „ , ( ^ , ( / / / 2 ) ^ A ; 2 ) = exp 

[ { l - z ) z 
+ ~Ans{z,{^^/z)\k^) (1.83) 

(1.84) 

regularises the 1/z divergence in the spli t t ing funct ion (1.83) in a similar way that 

the Sudakov fo rm factor regularises the 1/(1 — 2 ) divergence. 

The C C F M equation (1.81) has been used as the basis for the Monte Carlo event 

generators SMALLX [54,55] and C A S C A D E [53,56]. A reformulation of the C C F M 

equation known as the linked dipole chain (LDC) model is implemented in the Monte 

Carlo program LDCMC [57,58 . 

I n the context of the C A S C A D E event generator, attempts have been made to 

modify the C C F M equation (1.81) to include the f u l l L O D G L A P spli t t ing function. 

However, naively making the replacement 

1 1 
1 

- 2 + z { l - z ) (1.85) 

in the gluon spli t t ing funct ion (1.83) leads to negative branching probabilities [26]. A 

positive definite branching probabili ty can be obtained by making the replacements 

26,27,59 

l - z l - z 
+ z{l - 2 ) / 2 , + z{l-z)/2, (1.86) 
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i n the gluon spli t t ing function (1.83) and the Sudakov fo rm factor (1.82), w i t h a 
similar replacement for 1/z' in the non-Sudakov fo rm factor (1.84). 

Ideally, we would like to construct UPDFs w i t h an analytic solution which include 

both quarks and gluons in the evolution, the correct angular ordering, the complete 

L O D G L A P spli t t ing functions, and which are not restricted to the small-^B domain. 

We w i l l do this in the next chapter. 



Chapter 2 

Unintegrated parton distributions 
and inclusive jet production at 
H E R A 

The UPDFs depend on two hard scales, kt and / i , and so the evolution is much more 

complicated than conventional D G L A P evolution. For example, the unintegrated 

gluon distr ibution, fg{x,kl,^'^), satisfies the C C F M evolution equation based on 

angular ordering of gluon emissions along the chain, i n the approximation where 

only the 1/z and 1/(1 — z) singular terms of the spl i t t ing funct ion Pgg{z) are kept. 

So far, working w i t h this equation has only proved possible w i t h Monte Carlo event 

generators [53-56 . 

However, i n [60-62] i t was shown that i t is possible to obtain the two-scale 

unintegrated distributions, fa{x,kf, p!^), f rom single-scale distributions, ha{x,kf), 

w i t h the dependence on the second scale /j, introduced only i n the last step of the 

evolution. We call this the Kimber-Mart in-Ryskin ( K M R ) procedure.^ I n [61], two 

alternatives for the evolution of ha{x, k^) were considered: 

(i) pure D G L A P evolution, or 

(ii) a unified evolution equation [65] which embodies bo th the leading In kf ( D G L A P ) 

and ln( l /a ; ) ( B F K L ) eff'ects, as well as including a major part of the sub-leading 

ln( l /a : ) contributions. 

As expected, the gluon and sea quark distributions, /a(a;, k^,^^), extended into the 

kt > p region, and indeed populated this domain more and more as x decreased. 

A n interesting result was that the UPDFs obtained via the unified B F K L - D G L A P 

evolution of prescription (ii) were not very different f rom those based on the simpler 

^Alternative formalisms are given in [63,64], 

22 
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r 

9 

(b) 7 

Figure 2.1: A schematic diagram of inclusive jet production in DIS at LO which 
shows the approximate equality between (a) the formalism based on the doubly-
unintegrated quark distr ibution, where the incoming quark is off-shell w i t h finite 
transverse momentum, and (b) the conventional QCD approach using integrated 
PDFs, where the incoming partons are on-shell w i t h zero transverse momentum. 

D G L A P evolution of ( i ) . I t was concluded that the imposition of the angular-

ordering constraint i n the last step of the evolution was more important than in

cluding B F K L effects. Here, we pay particular attention to probing the unintegrated 

quark distr ibution at larger values of x, so prescription (i) w i l l certainly be a good 

approximation. 

I n this chapter, we refine and extend the K M R last-step procedure [61] for de

termining the UPDFs. First we note that in [61] angular ordering was imposed on 

both quark and gluon emissions; we correct this and only impose angular ordering 

on gluon emissions. Second, the K M R procedure was based on fct-factorisation or 

the semihard approach in which the unintegrated parton distr ibution is convoluted 

w i t h an off-shell partonic cross section where the incoming parton has v i r tua l i ty 

—kf. This is only valid for gluons i n the high-energy approximation where 2 —> 0, 

w i th z the fract ion of the plus momentum of the parent parton carried by the un

integrated parton. Here, we generalise the notion of fcf-factorisation and show that 

i t is more accurate to calculate observables using 'doubly-unintegrated' parton dis

t r ibut ion functions (DUPDFs) , fa{x,z,kf,iJ?), where the off-shell parton now has 

vi r tual i ty -k^/{l - z). 

I n Section 2.1 we describe how the UPDFs, / a ( x , A;^,/Lt^), can be determined 

f rom the conventional integrated PDFs a (x , ^^ ) . Then i n Section 2.2 we define the 

DUPDFs, fa{x,z,k^,n'^), and show how /crfactorisation is generalised to '{z,kt)-

factorisation'. The most direct way to test the DUPDFs is via inclusive jet produc- _ 

t ion in DIS. Inclusive jet production, particularly i n the current jet region, probes the 

doubly-unintegrated quark distr ibution in a similar way that inclusive DIS probes 
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the integrated quark densities. The idea is that the L O diagram at ^(a;^) com
puted using {z, A;t)-factorisation w i l l reproduce, to a good approximation, the re
sults of the conventional LO QCD diagrams at 0{as) computed using collinear 
factorisation. This approximate equality is shown schematically i n Fig. 2.1. The 
respective formalisms are presented in Section 2.3 and their predictions for inclusive 
jet production are compared w i t h each other, and also w i t h recent H E R A data, in 
Section 2.4. These sections not only compare the LO predictions, but also extend 
the comparisons to N L O . 

2.1 Unintegrated parton distributions from inte
grated ones 

The K M R proposal [61] to determine the UPDFs was to relax the D G L A P strong 

ordering in the last evolution step only, that is, ... <^ kn-i,t <C fct ~ where we 

have omitted the subscript n on the kt of the last propagator. This procedure is 

expected to account for the major part of the conventional N L L terms, that is, terms 

like as{aslnii^)^~^, compared to the usual L L A where only terms like {asln/j,'^)'^ 

are included. The procedure is as follows. We start f rom the LO D G L A P equation 

in the form (1.51) evaluated at a scale kf. 

The vi r tua l (loop) contributions may be resummed to al l orders by the Sudakov 

form factor, 

Ukl„^) = exp ( - ^ Y: fdCCP^] , (2.2) 

which gives the probability of evolving f rom a scale kt to a scale wi thout parton 

emission. Differentiating, we obtain 

^T,{kl^i'') _as{et) dCCna(C), (2.3) Ta(A;2, / /2) 5 i n A ; 2 27r 

so that the LO D G L A P equation (2.1) can be wr i t t en i n the fo rm 

da{xM) _<^s{k1) ^ f x ^ a{x,kl) ^T„(/c,^/x^) 
dlnkl ' 27r J^^^^ab[z)b^^,k,) Taiklp?) dlnkl ' ^^'^^ 

b=g,g 
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We define the UPDFs to be 

dink 
fa{x,klli^) = ^^-j^[a{x,k^)Ta{klfi'^) 

t 

_ , , da{x,k^) ^ dTgjklp?) 

= T . ( ^ ^ / . ^ ) ^ E / d z P . , ( . ) 6 ( ^ , ^ ^ , ^ ) . (2 .5 ) 

This definit ion is meaningful for kt > fj^o, where /XQ ~ 1 GeV is the minimum scale 

for which D G L A P evolution of the conventional PDFs, a{x, p^), is valid. Integrating 

over transverse momentum up to the factorisation scale we find that 

"/-^Ux,klt,^) = [a{x,k^)n{klp')]llZl 

= a{x,fx')-a{x,pl)Tai,xlfx'), ( 2 .6 ) 

since T a ( / / ^ , / / ^ ) = 1. Thus, the normaUsation condition ( 1 . 64 ) w i l l be exactly satis

fied i f we define 

^ fa{x,kl,p?) 
kl 

= ^a{x,^ll)TM^^i% (2 .7 ) 
fct<Mo ^0 

SO that the density of partons i n the proton is constant for kt < /̂ o at fixed x and yii. 

So far, we have ignored the singular behaviour of the unregularised spli t t ing 

kernels, Pqq{z) and Pgg{z), at z = 1, corresponding to soft gluon emission. These 

soft singularities cancel between the real and v i r tua l parts of the D G L A P equation 

(2 .1 ) . Af te r resumming the v i r tua l part to all orders i n the Sudakov fo rm factor 

(2 .2 ) the singularities must be regulated for the unintegrated distributions to be 

defined. The singularities indicate a physical effect that we have not yet accounted 

for. Here, i t is the angular ordering caused by colour coherence, implying a cutoff 

on the spl i t t ing fraction z for those spli t t ing kernels where a real gluon is emitted 

in the s-channel. 

We now apply the angular-ordering constraints of Section 1.5.1 specifically to the 

last evolution step. For all other evolution steps, the strong ordering in transverse 

momentum automatically ensures angular ordering. The condition ZnP^ < p (1-79) 

implies 
kt U , , 

, _ < ^ ^ - < ^ . (2.8) 

where, as before, we have dropped the subscript n specifying the last evolution 

step. Recall f r o m ( 1 .78 ) that fj. is entirely determined f r o m the kinematics of the 
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subprocess at the top of the evolution ladder, 

X 
x/xi 1 

(2.9) 

Equation (2.8) apphes only to those spli t t ing functions in the real part of the D G L A P 

equation associated w i t h gluon emission in the s-channel. By uni tar i ty the same 

form of the cutoff must be chosen in the v i r tua l part. We define Cmax = 1 ^ Cmin = 

lx/{iJL-\- Kt) and insert 0(Cmax — C) into the Sudakov fo rm factor for those spli t t ing 

functions where a gluon is emitted in the s-channel and 0(C — Cmin) where a gluon is 

emitted i n the t-channel. Note that there is no 'coherence' effect for quark (fermion) 

emission and therefore the phase space available for quark emission is not restricted 

by the angular-ordering condition (2.8).^ 

The precise expressions for the unintegrated quark and gluon distributions are 

— z 

+ (2.10) 

and 

. q 

+ P,,{z)^^g{^^,l^)@ 
IJ' + h • (2.11) 

The exponent of the quark Sudakov fo rm factor can be simphfied using the fact 

that Pgg{l - C) = PggiC). Then 

/•Cmax f l 1 

J o i C m i n ^ 

/•Cmax / • ! 

/ d C n , ( C ) + / dCP,,(C) 

max 

dCi^,<,(C), 

(2.12) 

so that 

T,{kl = exp ( - ^ /'""^^dC n , ( C ) 1 . (2.13) 

•^This is in contrast to [61], where a cutoff on the splitting fraction was apphed both to quaxk 
and gluon emissions. Also, in [61], the scale ^ was treated as a free parameter, which was chosen 
to be the hard scale of the subprocess, or a combination of hard scales. Here we fix /x using (2.9). 
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Similarly, the exponent of the gluon Sudakov fo rm factor can be simplified by ex
ploit ing the symmetry Pqg{l — C) = PqgiO- We have 

^j\cCPqg{0 = 2 ^ / / V I PM = Uf j\cPqg{0. (2.14) 

so that the gluon Sudakov fo rm factor is 

T,{kl ^?) = exp - / ^ ^ / dC C Pp.(C) + n , / dC P,,(C) 

(2.15) 

Sample plots of the unintegrated gluon distr ibution at jj? = 100 GeV^ are shown 

in Fig. 2.2, using the MRST2001 LO [66] and CTEQ6L1 [35] PDFs as input. We use 

the one-loop expression for (1.11). The results when using the MRST99 N L O [67 

parton set and the two-loop expression (1.14) for 0:5 are also shown, cf. Fig. 3 

of [61]. For the remainder of this thesis, we use MRST2001 LO PDFs as input 

unless otherwise specified. Sample plots of the unintegrated quark distributions are 

shown in Fig. 2.3. Note that the charm and bo t tom quark distributions are zero for 

I t is important to note that the starting point of our derivation is the LO D G L A P 

equation (2.1), w i t h LO D G L A P spli t t ing kernels and one-loop running coupling. 

Therefore, in order for the normalisation (1.64) to be satisfied, i t is essential that 

we use a LO parton set where the integrated PDFs have been determined using 

the same spli t t ing kernels and running couphng. I n [61], the MRST99 parton set 

was used, which has been determined using N L O D G L A P spli t t ing kernels and two-

loop running couphng, therefore (1.64) was found not to be satisfied. Also, i n [61] 

the angular-ordering constraints were not correctly applied and the Sudakov fo rm 

factor Ta(/io, / i^) was omit ted f rom (2.7). The refined prescription now gives (almost) 

exactly the normalisation of (1.64), as shown in Fig. 2.4. The small differences, 

especially for the unintegrated gluon, are due to the fact that the angular ordering 

constraints are not applied in the conventional global analyses which determine the 

integrated PDFs. 

2.2 (z, /ct)-factorisation in deep-inelastic scattering 

We have defined UPDFs, fa{x, kj, fjl^), valid for al l values of x w i t h bo th quarks and 

gluons included in the evolution. This was done by assuming that the transverse 

momentum of the parton ini t ia t ing the hard scattering is generated entirely in the 
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Figure 2.2: Sample plots of the unintegrated gluon distr ibut ion w i t h MRST2001 
L O , CTEQ6L1 and MRST99 N L O PDFs as input. 
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Figure 2.3: Sample plots of the unintegrated quark distributions w i t h MRST2001 
LO PDFs as input. 
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Figure 2.4: UPDFs integrated over kt (dashed hues) compared to the integrated 
PDFs (solid lines). 
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last evolution step and then imposing constraints f r o m angular ordering to regulate 
the soft gluon singularities. I t now remains to specify the prescription for calculating 
observables such as cross sections. 

The penultimate parton in the evolution chain has momentum fc„_i = {x/z)p. 

I n the f inal evolution step, i t splits into a parton w i t h momentum kn = k = xp — 

pq' + kx and an emitted parton of momentum p„ = kn-i — kn- The Sudakov variable 

P is specified by the on-shell condition, = 0, which gives 

x [1- z) 

Hence k'^ ^ -k^/{I - z). The rapidity of the emitted parton is 

Breit = i I n ^ = i I n . ( 2 .17 ) 
' 2 p- 2 XgzP ^ ' 

I n the small-x regime, where gluons dominate, the main contribution comes 

f rom the ^ —>• 0 hmit , where k ~ xp -\- kx, k"^ — —kf, and the emitted gluon 

has a large positive rapidity. I n this case, observables can be calculated f rom the 

fcrfactorisation prescription (1.80). A t small x, we would expect that the leading 

ln( l /a ; ) terms would need to be resummed. However, i n [61] i t was found that the 

unintegrated gluon based on a unified B F K L - D G L A P equation was very similar to 

the unintegrated gluon calculated purely f rom the D G L A P equation, as in Section 

2.1. 

I n [61] the fct-factorisation approach was used to calculate the unintegrated gluon 

contribution to the proton structure funct ion F2{XB, Q^) via the subprocess 7*5* 
qq. The unintegrated quark contribution was included via a L L A calculation of 

the process 7*̂ '* qg. I n [60] the normal on-shell partonic cross section was 

evaluated w i t h off-shell kinematics to estimate the cross section for prompt photon 

hadroproduction. Again, the z dependence of the hard-scattering coefficient was 

neglected. 

2.2.1 Generalising /crfactorisation 

Clearly, i t is desirable to formulate a more general prescription for the calculation 

of cross sections using UPDFs. This prescription should be vahd for bo th quarks 

and gluons and without taking the hmit ^ —> 0. The 'partonic cross section' w i l l 

necessarily have some z dependence, therefore we must consider parton dis t r ibut ions" 

fa{x, z, k f , /x^), rfonfeZy-unintegrated over bo th z and k^, satisfying the normalisation 
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conditions 

and 

f dz faix, Z, kl, I?) = fa{x, /ĉ  , /U^ 
Jx 

(2.18) 

(2.19) 

These normalisation conditions are only satisfied for fixed x and fi, independent of 

the integration variables z or kt- Apar t f r o m the angular-ordering constraints, the 

distributions may be obtained f r o m (2.5): 

Ux, z, kl /.^) = Taikl n') P'^^^') ̂  ( f ' • (2.20) 
6 

The explicit forms, including the constraints, follow f rom (2.10) and (2.11): 

Ux,z^kl^?) = U k l ^ . ' ) ' ^ e 
^i^-kt 

(2.21) 

and 

9 

(2.22) 

The universal factorisation formula involving these DUPDFs, analogous to (1.80), 

IS 

= ^ ! \ z /a(x,^,/c^A^^) a'^''^\x,z,kln% (2.23) 
„ JxB ^ Jx Jo l^t 

where a'^'"'' are now the partonic cross sections for an incoming parton w i t h (plus) 

momentum fract ion x and transverse momentum kt, which has split f r o m a parent 

parton w i t h (plus) momentum fract ion x/z and zero transverse momentum. We w i l l 

refer to this generalised fo rm of A;t-factorisation as ' ( ^ , fc()-factorisation'. 

There w i l l be an effective upper bound on the kt integration f rom kinematics, but 

note that there is no restriction to the domain kt < fx, as in conventional D G L A P 

calculations. For kt > n, the Sudakov fo rm factors Ta{ki, jx^) are defined to be 1. 

Taking the l imi t 2; —̂  0 of a"'*^* {x,z,k^,fi^) in (2.23) we essentially recover the 
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conventional fc(-factorisation prescription of (1.80). Alternatively, in the l imi t kt —> 

0, we recover the conventional coUinear factorisation prescription. 

Note that fa{x, z , k f , jj!^) is undefined for fcj < /xq ~ 1 GeV and also that (2.7) 

no longer apphes since there is now a z dependence involved. To approximate the 

kt < Ho contribution of (2.23), we choose to take the collinear hmi t kt ^ 0 in the 

hard-scattering coefficients, so that 

a'^''^\x,z,klii%^^^^ = nma^'^'{x,z,klf,') ^ a^*"(x ,^2) (2.24) 

We then make the replacement 

dz ^ U x , z , k l f , ' ) = a{x,nl)TM,f^'), (2.25) 
Jx Jo f^t 

so that the (z, fct)-factorisation formula (2.23) becomes 

dx 

X 
aix,fxl)Ta{f^l,,')a'^''^{x,t,') 

. (2.26) 

In the first term, the l im i t kt 0 must also be taken in the expressions determining 

x and / i . I n the following, we w i l l use (2.23) for brevity, w i t h the understanding 

that the kt < Ho region is to be dealt w i t h as i n (2.26). 

2.2.2 Motivation for the (z, /cf)-factorisation formula 

A t this stage, i t is perhaps unclear exactly how we should calculate the partonic cross 

sections, a'*''"* {x, z, k^, / i ^ ) , since the incoming parton is now off'-shell w i t h vi r tuahty 

k'^ = —kt/{l — z), and so the usual fcffactorisation approach does not apply. This 

issue can be clarified by starting w i t h the collinear factorisation formula one rung 

down. That is, 

where we have chosen the factorisation scale to be kt, and h is the penultimate par-

ton in the evolution chain of Fig. 1.2, so that a'^*^ incorporates the last evolution 

step. From Fig. 1.2 we see that the parton b, w i t h momentum kn-i = {x/z)p, splits 

into a parton of type a w i t h momentum kn = k = xp — Pq' + k±, which then goes on 
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kji t i 
,5(x, z,klfi% 

Figure 2.5: I l lustrat ion of {z, fct)-factorisation for the doubly-unintegrated quark 
distribution, fq{x, z, A;̂ , /Li^), shown in the final diagram. I n the first two diagrams the 
penultimate parton in the D G L A P evolution chain, w i t h momentum kn-i = {x/z) p, 
splits into a quark w i t h momentum kn = k = xp — Pq' + k±. 

to init iate the hard subprocess at a scale given by (2.9). To derive formula (2.23) 

we need to show that the partonic cross section a''*'' can be factorised to give a 

partonic cross section for the 7*a* subprocess, a''''"*, w i t h the remainder being ab

sorbed into the definit ion of the D U P D F , fa{x,z,kt, /i^). This idea is illustrated 

in Fig. 2.5 for the doubly-unintegrated quark distribution, and in Fig. 2.6 for the 

doubly-unintegrated gluon distr ibution. 

The squared matr ix element can be factorised i f we assume the L L A , so that 

only the leading 1/k^ te rm is kept and terms not giving a logarithmic divergence i n 

the coUinear l imi t are neglected. We find that 

iM-^y = 1 ^ ^ ' ^ ^ ^ ^ E ^«''(^) 1-^'*"* P X [1 + Om , (2.28) 
* o 

where l A I ' ^ * " ' ^ represents the squared matr ix element of the 7*a* subprocess, con

taining one power of as less than We have used this method to derive the 

form of al l four spli t t ing kernels, Pab{z) (see Section 2.2.3). I t is crucial that we 

adopt a physical gauge for the gluon so that the spli t t ing kernels are obtained f rom 

only the ladder-type diagrams. 

The extra terms of (2.28) are proportional to (3 and so are negligible for either 

kt ^ 0 ov z ^ 0. Away f rom these limits, i t is far f rom obvious that these 'beyond 

L L A ' terms w i l l be small, a necessary condition for the factorisation to hold. We w i l l 

observe that the main effect of the extra terms is to suppress the contribution f rom 

large z for gluon emission. In our approach, we achieve the same effect w i t h angular 

ordering, so the extra terms may be neglected. We w i l l provide some numerical 
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Figure 2.6; I l lustrat ion of ( 2 , A;t)-factorisation for the doubly-unintegrated gluon 
distribution, fg(x, z, fcf, fj?), shown in the f inal diagram. I n the first two diagrams the 
penultimate parton in the D G L A P evolution chain, w i t h momentum k^-i = {x/z)p, 
splits into a gluon w i t h momentum fc„ = k = xp - Pq' + k_i-

evidence to jus t i fy this in Section 2.4.1. 

I n (2.28), jA^'^*"*]^ should also be evaluated in the L L A for the factorisation to 

hold, so terms proportional to k^ should be neglected when calculating this. This 

amounts to the replacement fc —> x p in the numerator of |A^'''*"*p, but not i n the 

propagator virtualities in the denominator. For example, i f a = 5, the unintegrated 

gluon, we make the replacement d^i,{k, q') d^^ixp, q') = - ^ ^ ^ in the sum over i n i 

t i a l gluon polarisations. I f a = g, the unintegrated quark, we make the replacement 

k xp in the trace. Of course, x may have some kt dependence f r o m kinematics, 

so some terms beyond the L L A are included in this respect. I n Section 3.4.2, we 

w i l l briefly discuss the possibility of evaluating w i t h k ^ xp + k±, as in 

the fcf-factorisation prescription. 

The phase space d^'^'^ can be factorised easily to give the phase space d^'"'*"*: 

d$^*'' = d$^*"* X d V S{pI) = d$^*"* X 

= d $ ^ ° X 

(27r)3 

1 

(27r)3 
d'kSipt,) 

d x d ^ d f c 
167r2 

= d $ ^ * " * x - ^ d x d f c , 2 — ^ 
167r2 x(l -

* x{l - z) 
z 

5 (3 X { 1 - z ) Q 2 
(2.29) 

where we have used d^k = p • q dxdPd'^kt and d^fct = ktdktd4> = Trdfc^, after 

integrating over the azimuthal angle (j). The /? integration absorbs the delta function, 

determining as given by (2.16). 

The partonic f lux factor F'"'*"* is not well defined since the parton a is off-shell 

and non-coUinear w i t h the photon. As in conventional A;rfactorisation, we define i t 
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to be^ 

pn'a' ^ ^ prb ^ ^ 4 .q = 4xp-q. (2.30) 

Finally, we have the relationship 

da^'' = d*-^*" IM-^y / F^*" ^ ^ ^ y p„ , (^ ) da-^'«*. (2.31) 
X kf 2-K ^ 

a 

To calculate the hadronic cross section, we insert (2.31) into (2.27) 

= E f V f E -̂(̂ ) (̂-/̂ . *?) d * - - (2.32) 
h=q,g * a 

^ / a ( x , ^ , A ; ^ / i 2 ) da-^*«*(a;,z,A:^M'), 
a * 

where in the last step we recognise the 'real' part of the DUPDFs given in (2.20). 

The (z, A;t)-factorisation formula (2.23) follows easily. 

2.2.3 Derivation of splitting kernels 

Here, we derive the four LO D G L A P sphtting kernels f rom the relevant Feynman 

diagrams shown in Fig. 2.7. The presentation is similar to that given in Chapter 1 

of [11]. I n al l four cases, we shall show that the squared matr ix element factorises 

in the L L A as 

\M^''>\^ 1 6 7 r 2 i l = ^ ^ ^ P „ , ( 2 ) lA^'^*"*!^. (2.33) 
zfcj 27r 

The squared matr ix element corresponding to Fig. 2.7(a) is 

= \Cac ^ TviX^^jtYh"^] - ^ . 9 ' ) , (2.34) 

where = A'i{as{k'l) and the colour factor is 

C „ = ^^titi = (2.35) 

^Choosing another definition for the flux factor is a N L L effect. 
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Figure 2.7: Cut diagrams giving the LO D G L A P spli t t ing kernels: (a) Pqq{z), (b) 
Pqg{z), (c) Pgq{z), (d) Pgg{z). Hcre, j,k,l,q are momenta, a, 6,c = l , . . . , i V c and 
A, B , C, -D = 1 , . . . , (A/'^ — 1) are colour indices, and a, P, 7, fx, u, a', 7', // ' , i ^ ' are 
Lorentz indices. In each case, the box labelled X contains additional Lorentz and 
colour structure. 

Simphfying the trace using identities such as = - f j t + 2k-l gives 

Tr[Xac h V ^ ] - k, q') = -2eTr[Xac { f - ^)] - ^ 

X {21 • q' Tj:[Xac ^] + 2k- q' Tr[Xac f\ - k"" Tr[Xac i']} • (2.36) 

To extract the L L A contribution we must only keep the terms proportional to k^ 

in this expression, neglecting 'beyond L L A ' terms such as those proportional to k^. 

To this accuracy, we may replace f w i t h ^/z on the RHS of (2.36). Thus, 

Tr[Xac h V ^ ] d^u{l - k, q') -2^ Tr[Xac ft] 

Substituting into (2.34) we obtain 

1 - z 
+ 1 - z 

zk? 2n 1 - z 

= 1 6 7 r ^ ^ ^ ^ P , , ( z ) l A ^ ^ - ^ T , 

(2.37) 

(2.38) 
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where | A^'''*^* p should be evaluated w i t h k = xpin order not to lose the logarithmic 
divergence. 

The squared matr ix element corresponding to Fig. 2.7(b) is 

IM-^'^l' = \Cac ' IV[X„ , / t 7^ f - d,,{l,q'), (2.39) 

where dfi„{l, q') = —gj^^ and the colour factor is 

" (A^^ - 1) "" "̂  " (A^^ - 1) " A c ^ ' 

Using the identity 7 ' ' ( f - ( - 5 ^ ) = 2 ( f - ^y), we obtain 

TvlXach^'iV-WV^] i-gtu) = -2eTv[Xac{^-^{)] + 2k\l-2z)TT[Xac^]. (2.41) 

As before, w i th in the L L A we can replace f by ^/z and by so that 

T,[Xac j t r i f - mf^] i - g i ) "^^^ - 2 ^ ' 1V[^ac f ^ - 1 + 2 ^ ) . (2.42) 

Substituting into (2.39) we obtain 

+ (1 - .)^]) ( i T v l x „ / i i ^ i „ 

(2.43) 

where again |A^'''*'*P should be evaluated w i t h k = in order not to lose the 

logarithmic divergence. 

The squared matr ix element corresponding to Fig. 2.7(c) is 

| ^ r . | 2 = Ic^B £! ^^.AB d^^.{k, q') d^Ak, q'), (2.44) 

where the colour factor is 

-OAS _ — f A f B _ J_rYJ.uA.B^ _ T^.AB _ rAB 4^1 
^ - iV^^""^"' ' - Nc ^ Nc ~ (A^^ - 1) • ^ ' 
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Evaluating the trace, we obtain 

I Y [ ( f - d,,'{k, q') d^Ak, q') = 4 {l-kr'd^,>{k,(^) r'd,Ak,(^) 

+l^'d^,,{k,q') {I - ky'd^Ak.q') + ^d,,.{k,q')d,Ak.q') (2.46) 

Now in the first two terms of (2.46) we can replace 

Fd^^iK q') = \[k' + l3 e - kl) (^-g,. + 
k^^q'u + q'^k^ 

k-q' 

1 ( , Zk^ , \ L L A 1 
(2.47) 

and 

while in the t h i r d term of (2.46) we can replace 

(2.48) 

di,v{k, q') df,^{xp, q') = -g^-^. (2.49) 

Averaging over the azimuthal angle, 

f27r 

'0 

we obtain 

k_Lfj,k±,,) — .) = l ' ^ ^ ^ x . f c x . = -Ik^gt. = Ik'il - z)g^ (2.50) 

T r [ ( f - d,Ak, q') d.Ak, q') "^^^ 4 k X . + ^ (2.51) 

and substituting into (2.44) gives 

zkf 27r ^ ^ " ' ^ ^ ( - ^ ^ 7 2 ) 

^AB 

{N'c - 1) 

zk'} 2-K 

(2.52) 

where again |A4'''*^'P should be evaluated w i t h k = xp in order not to lose the 

logarithmic divergence. 
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The squared matr ix element corresponding to Fig. 2.7(d) is 

\M 

X [(2/ - A;) V ' ' + (2A; - 0"/^ - (̂  + 0 V°] 
X ( - 1 ) [(2/ - ky'g''''^' + {2k - 0"'/'^' - (fc + ifg^'"'] , (2.53) 

where the colour factor is 

AB _ ^ {ACD fBCD _ ^AB 

Using the FORM [68] program to evaluate (2.53), substituting 

and keeping only the L L A terms proportional to g^,^, we obtain 

(2.54) 

(2.55) 

zk? 2TX z{l - z) 

gAB 

{N'c - 1) 

27r 

(2.56) 

where again ITM'^'^'P should be evaluated w i t h k = i n order not to lose the 

logarithmic divergence. 

2.3 Application to inclusive jet production in DIS 

The simplest process that we can consider to illustrate the use of the DUPDFs is 

current jet production in DIS. The subprocess is simply Yq* ^ q at the top of the 

evolution chain. I n the normal collinear factorisation approach, this diagram gives 

the parton model prediction for the structure funct ion F^ixg, Q^). Indeed, measure

ments of F2{XB, Q"^) are used to determine the integrated quark distr ibution q{x,iJ?). 

I n the new {z, A;t)-factorisation framework of Section 2.2, where the incoming quark 

has transverse momentum kt, we produce a current jet w i t h transverse momentum-

kt and transverse energy ET = h- The parton emitted in the last evolution step 

w i l l emerge w i t h transverse momentum —kt and transverse energy ET = kt. 
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The inclusive jet cross section counts ah jets passing the required cuts. Having 
calculated the ep cross section f rom (1.20), we need the differential cross section 
w i t h respect to the transverse energy ET and the rapidity -q: 

% E - ^ ( ^ ^ - ^^(^•^)) - ^(J'^))' (2.57) dydg'^dErdr] dydQ 

where the sum is over jets w i t h momenta ji, transverse energy Eriji) and rapidity 

r]{ji). Experimental data are usually given in bins of y, Q^, ET, and rj, which we 

need to integrate over to obtain a prediction: 

a''P= / dy / dQ' / dEr / dr, 
Jy^^n ^ L „ JET,m.n A . i n dy dQ^ dEr dti 

/•J/max /.QLx ^ 2 ^ e p (2.58) 
= / dy / d g 2 \ 0 r?Oi - t a © W - ^ ( j i ) ) ^ ' 

X 0 ( £ ; T ( j i ) - ^T.min) © (^T.max - Eriji)) • 

The differential cross sections are easily obtained by dividing by the size of the bin, 

for example, 

^ = a^^/{ET,m^ - ET,min). (2-59) 

I n Section 2.2 we gave the general prescription for calculating the cross section. 

Recall that i t was necessary to consider the DUPDFs, fa{x, z, k f , n"^), to keep the 

precise kinematics i n the subprocess, without taking the l imi t z —> 0. We now 

check that this prescription reproduces w i t h good accuracy the conventional LO 

QCD calculation w i t h integrated partons, where all 0(as) diagrams are included, 

not just the ones which give the leading dkf/k^ term. W i t h the {z, fct)-factorisation 

approach, i n addition to the jets produced in the hard subprocess, we must also 

count the parton emitted in the last evolution step w i t h transverse energy ET = kt 

and rapidity given by (2.17). 

We also explain how the prescription may be extended to higher orders i n per

turbat ion theory. The conventional N L O QCD diagrams are at C ( Q ; | ) . These 

include aU real and v i r tua l 0{as) corrections to the LO Q C D diagrams. The hard-

scattering coefficients obtained f r o m these diagrams axe convoluted w i t h N L O inte

grated PDFs, a(a;,/i^), satisfying the D G L A P equation w i t h two-loop 0:5 and N L O 

spli t t ing kernels. Several codes are available which include these N L O QCD calcu

lations, for example, D l S A S T E R - | - h [69], DISENT [70], J E T V I P [71], M E P J E T [72], and-

NLOJET-t-f - [73]. There is no longer a one-to-one correspondence between partons 

and jets. The momenta of the outgoing partons should be passed through a jet al-
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gori thm to assign the partons to jets. A t N L O in the {z, A;t)-factorisation approach, 
we continue to use the LO doubly-unintegrated partons constructed in Section 2.1 
and only calculate the 0{as) diagrams expected to dominate. 

The procedure involved in going from a'^'^ to cr̂ ,̂ v ia (1.20) and (2.58), is the 

same in all the theoretical approaches we describe, therefore i n the following sections 

we only describe how to calculate a'^'P. 

2.3.1 Collinear factorisation approach at LO 

I n the colhnear approximation, the LO Q C D Feynman diagrams are at 0{as). 

These are the boson-gluon fusion process, 7*5 —> qq, and the QCD Compton process, 

7*9 ~^ 95i i llustrated in Fig. 2.1(b). These partonic processes give rise to two jets 

w i t h equal transverse energy and opposite transverse momentum. There is a one-

to-one correspondence between partons and jets. There are no singularities to be 

regulated and no cutoff is imposed on gluon emission. 

We now explain a few of the details involved since this calculation offers valuable 

insights into the (z, A;t)-factorisation approach. The cut diagrams are illustrated in 

Fig. 2.8. Note that the direction of fermion number flow is not indicated in these 

diagrams. The arrows indicate only the direction of the labelled momentum and 

this is taken to be the same for both quarks and antiquarks. The contribution f rom 

diagrams (a) to ( f ) to a'^'^ need to be added together. Diagrams (a) to (d) have the 

same kinematics, so we calculate them first . We label the momenta by 

X 
q = q'-XBP, k ^ x p - pq' + k±, 

ji = k + q = {x - Xs)p+ {I - P) q' + 32 = I - k = ^{1 - z) p + p q' - kj^, 

(2.60) 

w i t h X > XB- The 2-body phase space is 

d*'^*" = ( 2 7 r ) ^ 5 ( ' ' ) ( / - f , - i , - j , ) | | 5 ( j t ) | | < ^ ( ; | ) = ^,S{j!)5Ul). (2.61) 

The two delta functions can be used to determine P and x: 

(2.62) 
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(a) 7* 

32 
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k k + q - l 

(c) Y 

Ji I 

t ' i 

Ur-^^ q 

7* ( c l )7 * 

k 

:/2 

(e) 7* 7* ( f ) 7 * l , . I ^ ^ 7 ' 
i l l 

Figure 2.8: Cut diagrams contributing to inclusive jet production in LO QCD. 
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where r = k^/Q^. The flux factor is F^*" = 4 / • so that 

x = i ± 

In practice, the condition x > XB ensures that only the x = x^ solution contributes. 

The squared matr ix elements of all six diagrams can be wr i t t en in the fo rm 

= le'9' M>^^ e,{q,X)e:{q,X), (2.64) 

where A is either T or L and the in i t i a l factor of 1/2 is to average over the helicity 

of the incoming parton. Appropriate scales have been chosen for the two running 

couphngs, = 47rQ;em(Q^) and = 47rQ!5(A;^). We have 

/ \ 1 
(a) M'^^= Y14 THrr,Tr[jtYhYhlir]dp.{l,q'), (2.65) 

\ 9 J " 

(b) M^'^ = e j j T n ^ ^ j ^ ^ ^ ^ . T r [ f t Y h Y i f t + i - ^ Y h Y ] d,Al, q'\ 

(2.66) 

(c) = e J C ^ ^ T r [ h ' V Y H h Y ] dp.{h, q'), (2.67) 

1 1_ 

P ( I + g ) 2 (d) M^-^ = ^CFTT^TTT^^T^[h'fYiHih^hr]^P.(J2,Q'). (2.68) 

For diagrams (e) and ( f ) of Fig. 2.8, the momenta can be parameterised as 

q^q'-XeP, I = X p, ji=^p + bq +k±, 

j2 = l + q - j i = { X - X s - 0 P + { i - b ) q ' - kj_, (2.69) 

w i t h 0 < ^ < X - XB < 1 and 0 < 6 < 1. This t ime the 2-body phase space 

determines 

b = x ^ r / e , ^± = ^ [ X - X B ± y / { X - X B ) { X - { l + 4r)xB)] . (2.70) 

Dividing the phase space by the flux factor gives 

d^-''" ^dk^ f x ^ y 1 1 

F r i 167r V Q V ^ t t ^ X r \ t - ' b { X - X B ) / ^ \ ' ^ '~ 
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and the squared matrix elements are 

(e) M^'^ = e J C ^ ^ ^ - i - ^ ^ - l - ^ ' I V [l/^^U^ - i h l i Y ^ H dpAj2, q'l 

(2.72) 

(f) M^'^ = ( / + \ ) 2 ^ i ) Y h Y { H d,Ah,Q')- (2.73) 

Averaging over the transverse photon polarisations in (2.64), we have 

e,{q,T)e:{q,T)^-^g;^,, (2.74) 

while demanding that the longitudinal polarisation vector is normahsed, [e{q, L)]^ = 

1, and satisfies the Lorentz condition, q • £{q, L) = 0, leads to 

e^{q,L) = ^{2xsP^ + q^,). (2.75) 

Gauge invariance ensures that the term does not contribute to the squared matrix 

element if all diagrams are included, courtesy of the Ward identity 

q^M^"" = 0 = qM'"'. (2.76) 

Therefore, we are free to neglect the q^ term of (2.75) from the outset, so that 

47-2 
eM^L)el{q,L)-^-^p,p,. (2.77) 

Finally, the contribution to the 7*p cross section from Fig. 2.8 (a), (b), (c), and (d), 

calculated with the aid of the FORM [68] program, is 

X B ^ I X 2-K 

q ' " " " " x=x± 
{P,,{z) -g{- n') [Cl^ + 4 , J + P,,{z) -q{- /x )̂ [C^^ + C^,] ] , (2.78) 

z z z z ^ z z *• ' ' •' z z 

while the contribution from diagrams (e) and (f) is 

" " ^ ' ^ V ^^•^ J' X ^ ^ \ l ~ b { X - X B ) / ^ \ 27r 

xCFXq{X,ii') C ^ , i + 4 . L . (2.79) 
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where the coefRcients are 

(3 {x + 2xsz-4xz-2xsz^ + 4xz^) ^ 8Pil-/3)xs {I - z) z 
^ x { l - 2 z + 2z^) ' ^ x { l - 2 z + 2z^) ' 

C^ = A { X - 2 P X - 2 P X B Z - 2 X Z + 4 P X Z ) , = 8 A p {1 - p ) X^ Z , 

pc P {x + x s z - x z - x s z ^ + 2xz^) _ 4p{l-P)xj, j l - z ) z 
^ x{l + z^) ' xil + z^) 

nd _ -PXZ{1-Z) . _ 
{x-XsZ) (1 + ^2) ' ^ L - U ' 

4 = ,^ ^ = 0, (2.80) 
( A - Xg) 

where 
/ ^ ( l - ^ ) .281) 

{ X - \ - X B Z - P X B Z - X Z ) { 1 - 2 Z + 2Z'^)' ^ ' ' 

Note that for high ET jet production in L O Q C D there are no infrared singularities 

f r o m either on-shell propagators or soft gluon emission. We w i l l take the factorisation 

scale to he ^JL — ET = kt, i n order to compare directly w i t h the approach based on 

DUPDFs. The inclusive jet cross section calculated using (2.78) and (2.79) was 

found to be in agreement w i t h the LO QCD predictions of the DISENT [70] and 

JETVIP [71] programs. 

A t this point i t is an interesting check to take the D G L A P l imi t , so that we 

insert @{ix — kt) and take the l imi t fct —> 0, so that the only contributions come f rom 

the ladder-type diagrams of Fig. 2.8 (a) and (c), and 

(2.82) 

w i t h X = Xg and al*^ = 0. A t lowest order, 

F2{xs,f^') = { 4 ' + ^ ' ' ) =J24xq{x,^^'), (2.83) 

leading to the well-known logarithmic scaling violation of F2, or equivalently the 

'real' part of the D G L A P equation for the (integrated) quark distr ibution, 

ag(x,//2) as{^i^) f'dz 

ain/x2 27V 
^ ^ [P,,{Z)9{^^,^^') + P,,{z)q{^^,^^')}, (2.84) 
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where the conventional choice of scale is p. = Q. Of course, for high ET jet produc
t ion, i t is not appropriate to take the l imi t kt 0. 

Let us anticipate how this calculation would be treated in terms of DUPDFs, 

where we would want to factor out the emission w i t h momentum j2 in Fig. 2.8 (a) 

and (c) into the doubly-unintegrated quark distribution, fq{x,z,kl,p?). For this to 

be possible, we must assume that = 1 = Cj^, and neglect al l other contributions. 

The diagrams in Fig. 2.8 (d), (e), and ( f ) come f rom the subprocess 7*g qg, where 

the gluon is radiated off the final quark line. Such diagrams are strongly suppressed 

in an axial gluon gauge, due to one or more of the propagators having very large 

virtualities, and can be neglected. Similarly, for the crossed quark box diagram of 

Fig. 2.8 (b). Numerically, the terms proportional to P in diagrams (a) and (c) are 

found to be very small. The one exception is the te rm proportional to P in Cj^. 

This is negative and increasingly important as z increases; that is, i t is a destructive 

interference term. I n the case of the doubly-unintegrated quark distribution, the 

same effect is obtained w i t h an explicit constraint f r o m angular ordering, so the 

term proportional to P is redundant. We w i l l look at this in more detail in Section 

2.4.1. 

Ultimately, we w i l l need to resort to exphcit numerical comparison of {z, k f ) -

factorisation w i t h the conventional collinear factorisation approach in order to demon

strate the approximate equivalence of the two methods. 

2.3.2 {z, A;t)-factorisation approach at LO 

W i t h i n the new {z, A;t)-factorisation framework developed in Section 2.2 the LO 

diagram is simply YQ* Qy i llustrated in Fig. 2.1(a), where the incoming quark has 

momentum k = xp - Pq' + kj_. The partonic cross section contained in (2.23) is 

da]:f{x,z,kl^') = d$^*^* \ M ^ f \ ' / F ^ ' ' ' \ (2.85) 

where F'^*''* = Axp - q = 2x Q ' ^ / X B - Labelhng the current jet by 

P = k + q = {x-Xs)p+{l-P)q' + k^, (2.86) 

where x > XB, the 1-body phase space is 

d^^*-'* = (27r)^(^(^) (k + q - P ) 6{P^) = 27r S{ P^ ) 

= ^ V - l ^ ^ i ^ - X i ) , 
^ 1 - XgP/x 

(2.87) 
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1*1 

/ ^ \ 

Figure 2.9: Cut diagram contributing at LO in the {z, /ct)-factorisation approach. 

where x± is given by (2.62) w i t h r = k^/Q"^. Again, the condition x > Xg means 

that only the x = x+ solution contributes. The rapidity of the current jet in the 

Breit frame is 
Breit 

VP 

1 P + 1 X / X B -

= 2 ^ " p ^ = 2 ^ " - r ^ 
1 

The squared matr ix element, given by the cut diagram of Fig. 2.9, is 

iM'rJ r = le'el Tr Y (It + e,iq, A) eUq, A), 

(2.88) 

(2.89) 

where A is either T or L. We use the same formulae, (2.74) and (2.77), to sum over 

the photon polarisations as before. 

Note that our approach is not gauge invariant since we do not include the com

plete set of cut diagrams shown in Fig. 2.8. Rather, we only keep the leading 

dkf/k'f t e rm coming f r o m Fig. 2.8 (a) and (c). We rely on using a physical gluon 

gauge where the neglected diagrams are suppressed. We represent this approach by 

Fig. 2.9, where the incoming quark is off-shell w i t h v i r tua l i ty —k1/{\ — z). Str ict ly 

speaking, the Ward identity (2.76) does not apply to Fig. 2.9. To show this we 

define the trace TYf. . . ] of (2.89) to be M ' ^ " . Then, w i t h k = xp, 

q.M'^'' = 4Q2 
X 

X B 
(2.90) 

unless X = XB which is not true for non-zero kt due to the relation (2.62). 

For example, the term of the longitudinal photon polarisation vector (2.75) 

gives rise to large cancellations between the contributions f rom Fig. 2.8 (a) and (b) 

to ensure that the Ward identity is satisfied. When the diagram of Fig. 2.8(b) is 

neglected, as in Fig. 2.9, the q^j, te rm in £^(9 , L) gives a much too large a/,. Therefore, 

we should not include the term in £^{q,L); this is equivalent to an appropriate 

choice for the photon gauge. 

According to the prescription given in Section 2.2 we should only keep the leading 



2.3 Appl i ca t ion to inclusive je t product ion in D I S 49 

dk^/k^ te rm in the squared matr ix element and so terms explicitly of 0 { k f ) should 
be neglected when calculating '^^^^ amounts to the substitution k = xp 

in the trace (2.89), leading to 

\ M p ' P = 47rae„. e l Q ' - , IM^'l' = 0. (2.91) 
Xg 

The partonic cross sections are then 

af^' { X , z, kl ^^') = I' 5{x - x^)el ap' {x, z, kl /.^) = 0. 

(2.92) 

Inserting into (2.23) we obtain the hadronic cross sections 

(Jrp 

(2.93) 

w i t h X — x^. Again, i t is an interesting check to take the coUinear hmit , kt —> 0, 

so that we insert ©(/u - kt) and take fJ. = Q. Then, x ^ XB, P 0, and by the 

normalisation condition (2.19) we recover the parton model prediction for the proton 

structure function F2 = FT + FL. 

F2{XB, Q ' ) = ( 4 * ^ + = Y . < X B q{xB, Q ' ) . (2.94) 
47r Qlein ^ 

Alternatively, taking the l imi t z —> 0 of a; and /3 in (2.93), then using the normali

sation (2.18), gives 

F , { X B , /X^) = ^ Yl '"M"^^ / ^ ' ) ' (2.95) 

w i t h X = XB{1 + kl/Q"^). 

2.3.3 Towards a NLO (2:, /i;f)-factorisation approach 

I t is beyond the scope of this work to perform a f u l l N L O calculation wi th in the 

framework of (z, A;t)-factorisation. Rather, at this exploratory stage, we aim to 

produce a simplified description using the L O DUPDFs and computing only the 

0{as) diagrams expected to be dominant. The major loop corrections are already 

accounted for by the Sudakov fo rm factor (2.2). The diagram where a gluon is 

radiated f rom the final quark line is strongly suppressed in a physical gauge. This 

leaves the cut diagrams of Fig. 2.10 as the only contributions which should be 



2.3 Appl i ca t ion to inclusive je t product ion in D I S 50 

7* b 7 

k' + q-k 

kA>P 

Figure 2.10: Cut diagrams contributing at ' N L O ' i n the (2,/ct)-factorisation ap
proach. 

included. I t is debatable whether or not the crossed box diagram of Fig. 2.10(b) 

should be included. We choose to include i t , although i t gives only a relatively small 

contribution to the cross section. 

A l l diagrams in Fig. 2.10 have the same kinematics. A n in i t ia l parton, w i t h 

momentum k = xp — Pq' + k±, splits to a quark w i t h momentum k' = x'p —P' q'+ k'j^, 

which goes on to interact w i t h the photon. The outgoing partons have momentum 

ji = k' + q and j2 = k - k' where Xg < x' < x < I and 0 < /3 < < 1. Note 

that the diagrams of Fig. 2.10 naturally include the L O contribution of Fig. 2.9 i n 

the l imi t that kt <^ k[. Therefore, the LO contribution does not have to be added 

in explicitly. 

The K T J E T package [74], together w i t h the C L H E P package [75], were used to 

cluster the three outgoing partons into jets. The je t algorithm was run in the 

inclusive mode, in the A i ? scheme and ET recombination scheme, in order to mirror 

the analyses of the experimental data considered in Section 2.4. I t is necessary to 

pass the algori thm the complete 4-vectors of the outgoing partons w i t h momenta 

h = {x'-Xs)p-^{l-P') q' + k'^ = 

f ^[x'/Xs-0'] \ 

k[ cos{4>k'x) 

\ ^ [ x ' / x g - 2 + P']J 

(2.96) 
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j , = (x-x')p+{p'-P)q' + k^-k'^ = (2.97) 

x Pn= - { l - z ) p + pq'-k^ (2.98) 

fQ[{x- x') /XB + P ' - P ] \ 

kt-k[\ cos(^fcfc'i) 

kt-k'^\ sm{(f)kk'x) 

\'i[{x-x')/xB-P' + P ] J 

[ ^ { 1 - Z ) / X B + P ] \ 

-kt cos{(l)kx) 

-kt sm{(f)kx) 

Vf [ ^ { 1 - Z ) / X B - P ] J 

where (p^'x is the angle between fcj and the x axis, (pkk'x is the angle between {kt — k^) 

and the x axis, and (pkx is the angle between kt and the x axis. Together w i t h (j)kk', 

the angle between kt and k[, only two of these angles are independent. These are 

chosen to be (p^k' and (pk^y which are averaged over by introducing two additional 

integrations into (2.58): 

(2.99) 
Jo 27r Jo 

The other two angles are given by 

(Pk'x = 4>kx + (Pkk', 4>kk'x = (Pkx + COS 

2n 

.1 ( k t - fc; cos((/)fcfcO 

k t - K 

We find that the 2-body phase space divided by the flux factor is given by 

(2.100) 

d$T " dA;;' f x 

where p' = p + { X B R ) / { X - x ' ) , and 

E 1^ - - (1 - - - ' (2.101) 

"̂ '̂  ^ 2 ( 1 ^ { ' ' ^ ^ - /3) + a ; , ( l - /3 - it!) + XBT' 

±yJ[xB{l -P + R ) - x { l - P)f + XBT' [XBV - 2 (a;(l - P) - XB{1 - P - R))] | , 

w i t h r ' = A ; f / Q ' and = - k ' f / Q \ 

The cut diagrams representing the squared matr ix elements are shown in Fig. 2.10. 

Again, we write 

^ \ e ' g ' M^^ e,{q,X)e*M\\ (2.102) 

where A is either T or L and the in i t i a l factor of 1/2 is to average over the helicity 

of the incoming parton. We take = 4:TTa{Q'^) and g'^ = iirasifJ-ji), w i t h fXR = 
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max{kt,kl). We have 

(a) M^-^ = j T ^ p I V [ ^ 2 7 ' ^ W I T I d,,{k, q'), (2.103) 

(b) M'^^ = ^^V^k' + l-kr^ WYhYift' + 4 - jt)YhY] d,AKQ'l 

(2.104) 

(c) M ^ ' ^ = e J C ^ p T V [ r T ^ / ^ T - ^ m i T l d,,{h, q'). (2.105) 

I n order to keep only the leading d k f / k f term, we make the replacement k xpin 

the numerator of these expressions, but not i n the virtualities in the denominator. 

Inserting the partonic cross sections into (2.23) we finally obtain 

^BP - (1 - P ) X ' - (X - XB)P'\'' 

* X 2n 

X 
x'=x 

X {Tn fgix, z, kl /x^) + 4 _ J + CF f,ix, z, k^ fi') C^,^} , (2.106) 

where the coefficients are 

^„ {1-2P'{1- P')) X jx' - XB) + iP' {XB - 2 X ' ) + X') ((1 - P') XB + {2 P ' - 1) x') 

^ X {{1 - P') XB - X'f 

^ , ^ 4 { 1 - P ' ) P ' XB jx' -XB+P' ix+XB-2 X')) 

X { { 1 - P ' ) X B - X ' ) ' ' 

• (1 - p') jx' - XB) ((1 -2p')x + 2 ip' (2 X' - XB) - x')) 
^ X { X ' ~ { l - P ' ) XB) {{1+P-P') { X - X ' ) + {1+P-P' + R ) XB)' 

^6 ^ 8 { l - p f p ' x B { X ' - X B ) 

^ X { x ' - { l - p ' ) XB) i i l + p - P ' ) { X - X ' ) + {1+P-P' + R ) XB)' 

_ (1 - 2/3- (1 - P')) X jx' - XB) + x' {{2P' - 1 ) X B + { 1 - 2P") X') 

(X - X') ((1 - P') XB - X'f 

4 { l - P ' ) P'^X B 

{ { 1 - P ' ) X B - X ' f 

(2.107) 

Inspection of the coefficient reveals a pole aX z' = x'/x = I, corresponding to soft 

gluon emission. We can regulate this singularity by appealing to angular ordering. 
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Figure 2.11: Feynman diagrams contributing at ' N N L O ' i n the (z, A;t)-factorisation 
approach. 

The rapidity of the gluon, w i t h momentum j2 , should be greater than the rapidity 

of the quark, w i t h momentum ji. 

Breit ^ „Breit 
'Ij2 'Iji z < 

, ^x' I 1-/3' 
wi th n' = Q—^' 

X B Y X ' / X B - 1 ' 
(2.108) 

This condition applies only to the diagram where a quark radiates a gluon. Fig. 2.10(c), 

and not to the diagrams where a gluon radiates a quark. Fig. 2.10 (a) and (b). 

2.3.4 An estimate of the NNLO contribution 

The N N L O diagrams have not yet been calculated in the coUinear approximation 

(NNLO QCD) . As we w i l l explain in Section 2.4, the ' N L O ' calculation of Sec

t ion 2.3.3 gives reasonable agreement w i t h conventional N L O QCD. I t is possible 

that a simphfied ' N N L O ' {z, A;t)-factorisation calculation may provide an estimate 

of whether the N N L O QCD corrections are likely to be important, especially at low 

ET and low Q"^ in the forward region, where there is a discrepancy between N L O 

QCD and the data. 

The four contributing diagrams, al l of which have the same kinematics (phase 

space), are shown in Fig. 2.11. Diagrams (a) and (b) are the doubly-unintegrated 

quark contribution, while diagrams (c) and (d) are the doubly-unintegrated gluon 

contribution. Encouraged by the fact that the crossed quark box of Fig. 2.10(b) 

gives only a small contribution, we may neglect the interference cut graphs arising 
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f r o m Fig. 2.11 as a first approximation, leaving only four squared matr ix elements 
to be calculated. 

This simplified approach provides an approximation of QCD, in which only 

ladder-type diagrams remain. The soft gluon singularities are regulated by angular 

ordering. There are no infrared singularities remaining. We can add an arbitrary 

number of rungs to the ladder and the answer w i l l be finite. However, w i t h more 

rungs, the number of neglected interference terms grows; i t is likely that the approx

imate treatment of these terms by imposing angular-ordering constraints wi l l spoil 

the accuracy of the method i f too many rungs are added. 

2.4 Description of HERA inclusive jet production 
data 

Data are available for inclusive jet production in DIS measured at the H E R A coUider. 

We may therefore check how well the simpler {z, fci)-factorisation approach is able to 

reproduce the conventional collinear factorisation approach, and at the same time 

see how well these calculations describe the data. 

Recall f rom Section 2.3 that at LO the (z, A;t)-factorisation approach is based 

on the simple 7*g* q subprocess driven by the doubly-unintegrated quark dis

t r ibut ion, fg{x,z,k^,ii^), retaining the f u l l kinematics. On the other hand, i n the 

LO QCD description the subprocesses are 7 * ^ qq and 7*5 —> gq evaluated w i t h 

collinear kinematics and conventional integrated PDFs, g{x,Q'^) and q{x,Q'^). 

A computer program was wr i t ten to calculate the conventional LO QCD pre

diction and the LO and ' N L O ' predictions of the new {z, fct)-factorisation approach. 

The G N U Scientific Library [76] implementation of the V E G A S algorithm [77] was 

used to perform multidimensional Monte Carlo integration. 

2.4.1 Comparison with ZEUS data at high Q"^ 

We now compare our predictions to the experimental data obtained by the ZEUS 

Collaboration [78]. This data was taken during 1996 and 1997, when H E R A coUided 

protons of energy Ep = 820 GeV w i t h positrons of energy Eg = 27.5 GeV at a 

C M energy of -^s = y/4E^El ~ 300 GeV. Rather than make cuts on the variable 

y = Q'^/{xgs), ZEUS make cuts on cos7, one of the angles used in reconstructing 

the kinematical variables using the double-angle-method, where 

5 ^ 1 - J ^ 1 | ^ (2.109) 
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Figure 2.12: Comparison w i t h ZEUS inclusive jet production data [78] at high Q^. 
The feint and bold fines correspond, respectively, to the predictions of the con
ventional Q C D approach and the (^, fct)-factorisation approach based on DUPDFs. 

In the parton model, 7*g —> q, the angle 7 corresponds to the direction of the 

scattered quark. I n (2.58) we therefore set j/min = 0 and ymax = 1 and demand 

instead that cos 7 satisfies the ZEUS experimental cuts, —0.7 < cos 7 < 0.5. 

I n Fig. 2.12 we show the rapidity distribution, do-/d?7 '̂'̂ '*, integrated over 

f r o m 125 to 10^ GeV^ and over ET irom 8 to 100 GeV. The parton-to-hadron cor

rection factors given in Table 3 of the ZEUS paper [78] have been applied to the 

theory predictions. For the results presented, we used MRST2001 LO PDFs [66] as 

input. The N L O QCD predictions have been taken f r o m the plot in Fig. 3b) of [78]; 

these were obtained w i t h the D I S E N T program [70] using MRST99 PDFs [67], a 

renormahsation scale of ET, and a factorisation scale of Q. The statistical, system

atic and jet-energy-scale uncertainties have been added in quadrature to estimate 

the tota l experimental uncertainty. A l l the theory predictions give a reasonably 

good description of the data. The N L O predictions generally give a slightly bet

ter description than the LO predictions. For the (2, A;t)-factorisation approach, the 

' N L O ' corrections are only significant in the forward region. 



2.4 Descr ipt ion of H E R A inclusive je t product ion data 56 

Note f rom Fig. 2.12 that the LO {z, A;t)-factorisation predictions are slightly larger 
than the data in the current jet (negative rapidity) region. One possible explanation 
for this is provided by a colour coherence phenomenon known as the 'drag effect' 
(see, for example, [11]), a consequence of which is that the current jet is pulled 
towards the proton direction. A constant 1 GeV shift in the z component of the 
current jet momentum is found to shift the rapidi ty distr ibution to obtain shghtly 
better agreement w i t h the experimental data. 

To test the assertion that the angular-ordering constraint mimics the major ne

glected terms in the LO QCD calculation of Section 2.3.1, we can replace Pqg{z) by 

Pqg{z) (C" +C'') and Pqq{z) by Pqg{z)C'^ i n the real part of the doubly-unintegrated 

quark (2.21), where the coefficients C were given in (2.80). The inclusive jet cross 

section calculated in this manner, w i t h separate coefficients for the T and L contri

butions, is found to be almost unchanged, as seen in Fig. 2.13, providing evidence 

that the 'beyond L L A ' terms in the conventional LO QCD calculation have much 

the same effect as an explicit angular-ordering constraint. 

I n order to verify that the extra z convolution of {z, fc()-factorisation w i t h respect 

to fct-factorisation is important, we also repeated the calculation taking the l imi t 

z —> 0 in the partonic cross section. The parton emitted in the last evolution step 

then goes in the proton direction and is not counted in the inclusive jet cross section. 

In general, the predictions are much worse, even in the current jet region, providing 

evidence that the extra z convolution of our method is important . 

2.4.2 Comparison with HI data at low 

The H I Collaboration have measured the inclusive jet cross section in DIS at high 

[79] and at low [80]. Here, we focus on the latter, where = 5 to 100 GeV^ 

I n this region, the N L O QCD corrections to LO QCD are larger than at high Q^, 

and the advantages of our approach become more apparent. Again, this data was 

taken during 1996 and 1997. 

The H I Collaboration use the electron method to reconstruct the kinematical 

variables, so cuts are imposed directly on the variable y, namely 0.2 < y < 0.6. We 

therefore set ^min = 0.2 and Umax = 0.6 in (2.58). Also, H I present their data in 

rapidity bins i n the L A B frame rather than the Breit frame, so we need to be able 

to calculate the rapidi ty in the L A B frame. 

In the Breit frame, we write the momenta of the incoming and outgoing positron 

-as-e-—ajp^beq'^eiai]^^ 

imply that = agfteQ /̂a^s and e-q = -Q^/2. I n the L A B frame, we wri te the in i t ia l 

proton and positron momenta as p^^° = {Ep,0,Q, Ep) and e"'' — {Eg, 0,0, -Eg), 
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Figure 2.13: Effect of including additional terms beyond the leading logarithmic 
dk^/kf term. Wi thou t an explicit angular-ordering constraint, as i n LO QCD, the 
extra terms have a large effect, as seen by the difference between the dotted and 
sohd feint fines. W i t h an explicit angular-ordering constraint, as in LO {z, kt)-
factorisation, the extra terms have l i t t le effect, as seen by the difference between the 
sofid and dotted bold lines. 
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where Ep = 820 GeV, = 27.5 GeV, and LAB „LAB 2EpEe =p-e. Taking dot 

products of e with p and q' determines be and Ue respectively: 

XB 
be = AEpEe-^, ae = Xsibe - 1), 

SO 

et = iEpEeXg I 4:E„E.^ - 1 

(2.110) 

(2.111) 

The momentum of an outgoing parton can be written j = ajp + bj q' + j± and 
QLAB pLAB _|_ L̂AB gLAB _|_ '̂LAB ^^le Brclt and L A B frames respectively. We have ,-LAB 

e-j = {aebj + bettj) p-q' + ex- j± 

6e(% + bjXg) - Xebj] p- q' - Bf jt (2.112) 
X 4EpEe-^{aj + Xgbj) - Xgbj P-q' - etjtCOS(j)ej, 

where 0ej is the angle between et and jt- Taking dot products of j^^^ with p^^" and 

e^^^ determines a^*° and b^^^ in terms of e • j and p- j: 

a" = p • e' 
P-J 
p • e 

bj P-q 
p • e 

(2.113) 

The rapidity in the L A B frame is then 

= -ln 
aJ^Ep 
b)^^ Ee 

4E„E, 

= 2^^ 
Er. 

bjP-q'Ee 

+ XB Xr, -
2XB 

etjt cos (f)ej 
Ee 

(2.114) 

It is necessary to average the cross section over the azimuthal angle (pej between 

the initial positron and the outgoing jet in the transverse plane. For the 'NLO' 

{z, fct)-factorisation calculation, the jet momenta are not necessarily the same as the 

momenta of the outgoing partons. I t is necessary to pass the momenta through a 

jet algorithm. Rather than use (2.114) to determine r]^^^, which would require an 

additional azimuthal averaging, it is simpler to explicitly transform the momenta 

from the Breit to the L A B frame, then to calculate the rapidities of the resultant 

momenta. This is done by first boosting along the z axis to transform the momenta 

from the Breit frame to the YP CM frame. The momenta are then transformed 

"from the 7*7rGM trame t a the l.AB"ffam^^ using tlTeTriethod described in Sectibrr6:2~ 

of [62], which involves boosts along the z and x axes followed by rotations about 

the y and z axes. The final rotation about the ^-axis does not change the rapidity 
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Figure 2.14: Comparison with H I inclusive jet production data [80] at low Q'^. The 
predictions of the {z, A;t)-factorisation approach based on DUPDFs (which is much 
simpler to implement) are in good agreement with the conventional QCD approach. 
In some bins the predictions of the latter approach are hidden beneath the bold hues 
of the {z, A;t)-factorisation approach, at the respective order. 

or the transverse energy and may be omitted. It was checked numerically that this 
method is equivalent to the method of (2.114). 

In Fig. 2.14 we show da/dEr integrated over between 5 and 100 GeV^ in 
three rapidity intervals. For the results presented, we used the MRST2001 LO 
PDFs [66] as input. The NLO QCD predictions have been taken from the plot 
in Fig. 1 of the H I paper [80]; these were obtained with the DISENT program [70 
using CTEQ5M PDFs [81], a renormahsation scale of ET and a factorisation scale 
of Q. The hadronisation correction factors used in [80] have been applied to all the 
theory predictions. The statistical and systematic uncertainties have been added in 
quadrature to estimate the total experimental uncertainty. 

The LO {z, A;t)-factorisation calculation is in excellent agreement with conven
tional LO QCD, but neither describe the data well, especially in the forward ra
pidity region. The 'NLO' {z, A;£)-factorisation calculation is in very good agreement 
with conventional NLO QCD, although the agreement gets slightly worse as E^ 
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increases.^ Deviations of the data from NLO QCD are seen only at small ET in 
the forward region. Here, the NLO corrections are quite large and it is likely that 
NNLO corrections or resolved virtual photon contributions are important in this 
region. Again, taking the hmit z 0 makes the {z, A;t)-factorisation predictions 
much worse, showing that i t is important to keep the precise kinematics. 

2.5 Summary 

In this chapter, we have presented a method for determining UPDFs, fa{x, k^,iJ,'^), 
from the conventional (integrated) PDFs, by considering the last DGLAP evolution 

step separately, and imposing angular-ordering constraints on gluon emission. To 

include the precise kinematics in the hard subprocess initiated by the final parton 

in the evolution ladder, it is necessary to consider DUPDFs, /a(x, ^, fcj,/u^). We 

gave a prescription, called {z, A;t)-factorisation, for the computation of cross sections 

using these distributions. This prescription is a natural generahsation of the kf 
factorisation approach. 

We used (z, fct)-factorisation to estimate the cross section for inclusive jet pro

duction at HERA at lowest order. Using the same LO DUPDFs, we then carried 

out a 'NLO' calculation which included the dominant Feynman diagrams with the 

soft gluon singularities being regulated by angular ordering. 

We showed that at ^(Q :^ ) the predictions of the approach based on DUPDFs, 

with exact kinematics, are close to the conventional LO QCD calculation at 0{as). 
The relative simplicity of the former approach is shown schematically in Fig. 2 . 1 . 
Similarly, at 0 ( 0 : 5 ) the predictions of the approach based on DUPDFs are close to 

the conventional NLO QCD calculation at 0{ag). 

It was seen that the NLO corrections are large in the forward region at low ET and 

low where the agreement with the data is poor. I t is possible that the simplified 

{z, A;t)-factorisation approach might help to evaluate the role of the conventional 

NNLO QCD calculation. Alternatively, the resolved photon contribution is known 

to be important in the regime where ET is much greater than Q. I t would be 

better to calculate the resolved photon contribution in terms of the DUPDFs of the 

photon.^ 

By reorganising the perturbative expansion in as to keep only the most impor-

'*In two bins the 'NLO' {z, fct)-factorisation predictions are significantly higher than the NLO 
_QCD_predictions^ Tliis is due to the jet algorithm appUed, which increases the 'NLO' (z,fct)-
factorisation predictions by more than a factor of two in these two bins only, compared^o~tHiF 
result when no jet algorithm is applied. 

^In Ref. [82], for example, the K M R prescription was appHed to obtain the unintegrated gluon 
distribution of the photon. 
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tant terms, our method provides a simple but effective way of estimating exclusive 
(and inclusive) observables. 

The logical next step is to show that DUPDFs can be applied to pp and pp 
collisions. The simplest calculation is the transverse momentum distributions of 
produced W and Z bosons. We will carry out this calculation in the next chapter. 



C h a p t e r 3 

U n i n t e g r a t e d p a r t o n d i s t r i b u t i o n s 

a n d e l e c t r o w e a k b o s o n p r o d u c t i o n 

a t h a d r o n c o l l i d e r s 

At present, it is not straightforward to describe the transverse momentum (PT) 
distributions of electroweak bosons produced in hadron-hadron collisions. In the 
usual collinear approximation, the transverse momentum of the incoming partons is 
neglected and so, for the Born level subprocesses qiq2 V (where V = 7 * , VF, Z) 
or fifi p2 —̂  H, the transverse momentum of the final electroweak boson is zero. 
Therefore, initial-state QCD radiation is necessary to generate the PT distributions. 
Both the LO and NLO differential cross sections diverge for PT <C MV,HI with terms 
proportional to \n{Mv,H/PT) appearing due to soft and colhnear gluon emission, 
requiring resummation to achieve a finite PT distribution. 

Traditional calculations combine fixed-order perturbation theory at high PT with 
either analytic resummation or numerical parton shower formalisms at low P^, with 
some matching criterion to decide when to switch between the two. In addition, a 
parameterisation is needed to account for non-perturbative effects at the lowest PT 
values. Analj^ic resummation can be performed either in the transverse momentum 
space (see, for example, [83]) or in the Fourier conjugate impact parameter space 
(see, for example, [84]). 

An alternate description is provided in terms of UPDFs, where each incoming 
parton carries its own transverse momentum kty so that the subprocesses q\q2 
and gig2 —> H already generate the LO PT distributions in the /cj-factorisation 
approach. It has been shown in [85i'86]-that=U^DFs obtained from an approxi— 
mate,solution of the CCFM evolution .equatipn^enibpdy the conventional soft gluon 
resummation formulae. 

62 
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The UPDFs that we use are obtained from the familiar DGLAP-evolved PDFs 
determined from a global parton analysis of deep-inelastic and related hard-scattering 
data. The transverse momentum of the parton is generated entirely in the last evo
lution step [60-63]. Angular-ordering constraints are imposed which regulate the 
singularities arising from soft gluon emission, while the virtual terms in the DGLAP 
equation are resummed into Sudakov form factors. In Chapter 2 it was shown that it 
is necessary to extend the 'last-step' formahsm of [61] to consider DUPDFs in order 
to preserve the exact kinematics. I t was demonstrated that the main features of 
conventional higher order calculations can be accounted for within a much simpler 
theoretical framework, named ( 2 , A;t)-factorisation.^ 

Strictly speaking, the integrated PDFs used as input to the last evolution step 
should themselves be determined from a new global fit to data using the {z, kt)-
factorisation approach. For the present work, we take the input PDFs from a global 
fit to data using the conventional collinear approximation [66]. This treatment 
is adequate for these initial investigations. However, we expect it to lower our 
predictions for quark-initiated processes by '^10% compared to the case where the 
input PDFs are determined from a global fit using the {z, fct)-factorisation approach. 
We will illustrate this point in Section 3.4 by comparing predictions for the proton 
structure function F2 in the collinear approximation and in the {z, A;i)-factorisation 
formahsm. 

The 'last-step' prescription has some features in common with the initial-state 
parton shower algorithms implemented in Monte Carlo event generators (for a recent 
review, see [87]) such as the DGLAP-based HERWIG [36] and P Y T H I A [37] programs 
and the CCFM-based C A S C A D E [56] program. The main advantage of our approach 
is that we use simple analytic formulae which implement the crucial physics in a 
transparent way, without the additional details or tuning which are frequently in
troduced in Monte Carlo programs. The PT distributions are generated entirely 
from known and universal DUPDFs. For example, fits to Z production data at the 
Tevatron using parton showers favour a large intrinsic partonic transverse momen
tum {kt) ~ 2 GeV, while confinement of partons inside the proton would imply a 
{kt) ^ 0.3 GeV [88-90], 

The DGLAP-based parton showers used in [36, 37] are theoretically justified 
only in the hmit of strongly-ordered transverse momenta, since only the collinear 
divergent part of the squared matrix element is kept in each parton branching. 
Similarly, the CCFM-based parton shower used in [56] is strictly justified only in 

^The idea is an extension of the original DDT formula [21]; however, in comparison with [21] 
we go beyond the double leading logarithmic approximation (DLLA) and account for the precise 
kinematics of the two incoming partons, as well as the angular ordering of emitted gluons. 
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the limit of strongly-ordered angles, which reduces to the limit of strongly-ordered 
transverse momenta as long as x is not too small. In this limit, the transverse 
momentum generated in all evolution steps prior to the last is negligible. Therefore, 
neglecting transverse momentum in every evolution step prior to the last should be 
a good approximation to the parton shower algorithms in which finite transverse 
momentum is generated at every evolution step. 

The goal of the present chapter is to demonstrate that the PT distributions of 

electroweak bosons can be successfully generated by DUPDFs. We do not aim to 

produce a better description of the data than existing calculations, but rather a sim
pler analytic description which reproduces the main features. With this approach, 

it is easy to see the physical origin of the PT distributions and to identify the most 

important Feynman diagrams. Since the DUPDFs are universal—that is, they apply 

equally well to all hard hadronic processes—it is important to check them in a new 

kinematic domain. 

One topical application is the prediction of the cross section for diffractive Higgs 

boson production at the LHC [91], which is driven by the unintegrated^ gluon distri

bution fg{x, k^, fM^), where /x is the hard scale of the subprocess. At the moment, the 

only possibility to check the behaviour of UPDFs in the domain /ct <C is to com

pare predictions with the observed PT distributions of W and Z bosons produced at 

the Tevatron. We will show that the doubly-unintegrated quark distributions, gen

erated directly from the known integrated PDFs under the 'last-step' prescription, 

satisfactorily describe these data, including the region of interest, PT «C MW,Z-

In Section 3.1 we describe the formahsm for {z, fet)-factorisation at hadron-hadron 

colliders, and in Section 3.2 we apply it to calculate the PT distributions of elec

troweak bosons at LO. An estimate of the dominant higher-order corrections is made 

in Section 3.3 and numerical results are given in Section 3.4. 

3.1 (z, A;t)-factorisation at hadron-hadron colliders 

We now extend the formalism of Chapter 2, which concerned deep-inelastic scatter

ing, to hadron-hadron collisions. The basic idea is illustrated in Fig. 3.1(a), which 

shows only one of the possible configurations. Al l permutations of quarks and glu-

ons must be included. The arrows show the direction of the labelled momenta. The 

blobs represent the familiar integrated PDFs. The transverse momenta of the two 

incoming partons-tO-the subprocess, represented-by -the -rectangles-labelled-ai''i^2-in-

Fig. 3.1, are generated by a single parton emission in the last evolution step. 

^To be precise, the skewed unintegrated gluon distribution is required. However, in the relevant 
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Figure 3.1: Illustration of (^,/i;t)-factorisation at hadron-hadron coUiders. (a) The 
transverse momentum of each parton entering the subprocess is generated by a single 
parton emission in the last evolution step, (b) The last evolution step is factorised 
into fg^{xi, Zi, kft, f i f ) , where z = 1, 2. 
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We use a Sudakov decomposition of the momenta of the two incoming partons, 

ki = XiPi-piPj + ki_^, (3.1) 

where {i, j) = (1, 2) or (2,1). We work in the CM frame of the colhding hadrons and 
neglect the hadron masses so that the squared CM energy is s = (-Pi+Pa)^ — 2 P\-P2-
Then, 

Pi = (P+, F f , Pi^) = yfs (1,0,0), P2 = Vs (0,1,0) = (0,0, ki^t). 
(3.2) 

The penultimate propagators in the evolution ladder have momenta li = (xi/zi) P,, 
so that the partons emitted in the last step have momenta 

Pi^k-ki = ^ { l - Z i ) Pi + A Pj - h^. (3.3) 
Zi 

The on-shell condition for the emitted partons, = 0, determines 

where = kf^/s^ so that the two incoming partons have virtuality k^ = —k'^^/{l — 
Zi). The total momentum going into the subprocess labelled a'^i'a in Fig. 3.1 is 

g = fci + A;2 = (xi - /?2) Pi + {X2 - Pi) P2 + q±, (3.5) 

where q± = ki^ + A;2x- The kinematic variables obey the ordering 

0 < pj < Xi < Zi < 1. (3.6) 

Analogous to (1.35), the collinear factorisation formula for hadron-hadron colli
sions is ^ ^ 

ai,a2-^0 ^1 Jo ^2 

where fi is the factorisation scale and the partonic cross sections a"̂  are calculated 
with on-shell incoming partons with momenta ki = XjPj . As in Chapter 2, we 
relax the DGLAP approximation of strongly-ordered transverse momenta in the 
last evolution step only. 

If -are-:gIuon momenta, then^we must additionally-impose angular-ordering^ 

small-a; domain the skewed effect can be included by the Shuvaev prescription [92-94]. 
^We remind the reader that 'angular ordering' is a misnomer. It is rapidity ordering which 



3.1 (z, A;t)-factorisation at hadron-hadron colliders 67 

constraints due to colour coherence, 

6 < S < 6 , (3.8) 

where = p j / p i and E = q~/q~^. That is, the subprocess separates gluons emitted 

from each of the two hadrons. This condition leads to a suppression of soft gluon 

emission, 

with fj,i = XiVsE and fj,2 = X2y/s /E. 

The integrated PDFs, ai{xi, /x^), of (3.7) are replaced by DUPDFs, /„. {xi, Zi, kl^, /xf), 

requiring additional convolutions over the splitting fractions Zi and the transverse 

momenta k f f , giving the {z, A;4)-factorisation formula 

n, n„ Jo ^1 ^0 ^2 Jx-l J X 2 Jo '^l,t Jo i-2 
0 1 , 0 2 " " - - -̂ 1̂ -^^2 "'O 2,t 

X fa,{xuZuklt,fil) fa,{x2,Z2,klt,lll) . (3.IO) 

Here, the '*' indicates that the incoming partons, with momenta ki given by (3.1), 

are off-shell with virtuality kf — -kf j{l - Zi). This formula (3.10) is represented 

schematically in Fig. 3.1(b) for the case where the off-sheU partons a* and are 

both quarks. The partonic cross sections in (3.10) are given by 

where the flux factor = 2xiX2S. The last evolution steps in Fig. 3.1(a) fac-

torise from the rest of the diagram, to give the LO DGLAP splitting kernels, in 

the leading logarithmic approximation (LLA) where only the dkf^/kf^ term is kept. 

Therefore, |Af"*"2|2 jg calculated with the replacement ki X j Pj in the numerator 

in order to keep only this coUinear divergent term. However, any propagator vir-

tualities appearing in the denominator of |A^"i"2|2 may be evaluated with the ful l 

kinematics, as may the phase space element d $ " i "2. 

For this approach to work, it is vital that the dkf^/kf^ term is obtained only from 

ladder-type diagrams like that in Fig. 3.1(a), and not from interference (non-ladder) 

diagrams. This is true if we use a physical gauge for the gluon, where only the two 

Jransverse_poIarisations, propagate. For hadron-hadron collisions, the natural choice^ 

should be applied. 
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is the planar gauge where the sum over gluon polarisations is performed using 

d,Ak,n) = -g,^ + + (3.12) 
K • n 

where we take the gauge-fixing vector n — Xi Pi + X2 P2- Note that = Xi X2 s ^ 
0, unlike the light-cone gauge of (1.26). Such a gauge choice ensures that the 
dkf ^/kf ^ term is obtained from ladder-type diagrams on both sides of the subprocess 
represented by the rectangle in Fig. 3.1(a). 

A related requirement is that terms beyond the leading d k f f / k f ^ term, coming 
from non-ladder diagrams, for example, give a negligible contribution. Such terms 
are proportional to the Sudakov variable Pi (3.4) and hence vanish in the limit that 
2, —> 0 or ki^t 0. Away from these limits it is not obvious that these 'beyond 
LLA' terms will be small, a necessary condition for the factorisation to hold. For the 
case of inclusive jet production in DIS and working in an axial gluon gauge, it was 
observed in Chapter 2 that the main effect of the extra terms was to suppress soft 
gluon emission. When the angular-ordering constraint (3.9) was applied, the extra 
terms were found to make a negligible difference to the cross section, see Fig. 2.13. 
For hadron-hadron collisions, although the number of possible non-ladder diagrams 
is larger, it is therefore reasonable to expect that the extra terms wiU have little 
numerical effect, at least for k^ less than the hard scale of the subprocess. A similar 
argument is made to justify the approximation made in the DGLAP-based parton 
showers used in Monte Carlo simulations, where only the coUinear divergent part of 
the squared matrix element for each parton branching is kept and angular ordering 
is imposed in all evolution steps to account for some of the missing terms. Here, we 
are more conservative and apply this approximation to the last evolution step only. 

The DUPDFs in (3.10) are only defined for k^ > /̂ o, where //Q ~ 1 GeV is the 
minimum scale for which DGLAP evolution of the integrated PDFs is vahd. The 
approximation of the kt^t < A*o contribution made in Chapter 2 was to take the limit 
ki^t ^ 0 in the kinematic variables (and in ( j " i " 2 ) , then to make the replacement 

/ / 1^ Ui^i^ ^ i ' Kt' = Mo) TaAfJ'l /^i)- (3-13) 
J x i Jo ^i,t 

where Ta.(/i^,/if) are the Sudakov form factors (2.13) or (2.15). This replacement 
ensures that the normahsation conditions (2.19) are satisfied. A better approxima-
tion, which retains_the fej.t-dependence, is lo_take the _hmit_ Zj _-̂ _Q_in the Jcjnematic_ 
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variables, then to make the replacement 

/ dZifaAXi,Zi,kl,^i^,)=fa,{Xi,kl,fl^,) = ^ ai{Xi, fil) , (3.14) 

where we have used (2.7). The requirement that fa^ixi, kf^, n^) ~ kft as k^^. 0 is 
a consequence of gauge invariance [23,95 . 

A more complicated extrapolation of the DUPDFs for kt < Ho, which allows 
both the kt and z dependence to be retained in the kinematic variables, is to assume 
the polynomial form 

2 2 
fa{x, 2, fcj , /X ) = —2 

A{x,z,i^^) + ^B{x,z,^i^) (3.15) 

The two coefficients A and B can be determined to ensure continuity at kt = Ho and 
the correct normalisation (3.13), leading to 

A{x, z, I,') = -Ux, z, ^il fi') + 2 a{x, M^) fi') / (1 - x), (3.16) 

B{x, z, /i^) = 2 fa{x, ^, fil, fx^) - 2 a{x, ^g) t M , fx^)/{l-x). (3.17) 

If (3.15) becomes negative, which is possible for kt <C fiQ, then fa{x, z,kt, fJ."^) is 
simply set to zero. 

This extrapolation of the perturbative formulae accounts for some non-perturbative 
'intrinsic' kt of the initial partons, which is often parameterised by a Gaussian distri
bution with (kt) < fio- Numerical results are insensitive to the precise form (3.13), 
(3.14), or (3.15) used for the kt < /XQ contribution. However, for the rest of this 
chapter we will use the form (3.15) which ensures continuity at kt — Ho-

3.2 Application to the Pt distributions of elec
troweak bosons 

Perhaps the simplest application of {z, A;()-factorisation at hadron-hadron colliders 
is electroweak boson production, where at LO the subprocess is simply qlq2 V, 
illustrated in Fig. 3.2, or g2 H, illustrated in Fig. 3.3. In the coUinear ap
proximation, these diagrams give the Born level estimate of the total cross section 
a. When each paxton carries finite transverse momentum fci,t, the final electroweak 
b'o'son^has"transverse rhomentumngr^=^fcf;^^^fc2;i~^ 
bution 

=aS{qt-PT), (3.18) 
dF, 
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V = W,Z 

Figure 3.2: LO Feynman diagram contributing to the PT distributions of W or Z 
bosons in the [z, /i;t)-factorisation approach. 

q = ki + k2 
H 

Figure 3.3: LO Feynman diagram contributing to the PT distribution of SM Higgs 
bosons in the (^, A;t)-factorisation approach. The triangle represents the effective 
ggH vertex in the limit Mu <C 2mt. 
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with a given by the {z, A;t)-factorisation formula (3.10). 
The squared matrix element for W production is 

= ^GFMlr\V,,,,\''x,X2S, (3.19) 

where Ac = 3 is the number of colours, gy^ = 8 M ^ G F / V ^ is the weak charge 

squared, Gp is the Fermi couphng constant, and |V ĝig2p is the Cabibbo-Kobayashi-

Maskawa (CKM) matrix element squared. For Z production the corresponding 

result is 

\M{qUl -> ̂ )P = ivT^)'^^^'^'^^'^ - ^<^'y')^27''(^^ - ^̂ '̂)] {-9^^ + 4-/Vc \ ^ COS vw J \ 

= ^GFMI{V^' + AI)X,X2S, (3.20) 

where cos^u^ = Mw/Mz is the weak mixing angle, Vq = - 2egSin^6vK is the 

vector couphng, Ag = is the axial vector couphng, and T̂ ^ is the weak isospin 

{Tl^ t = +1/2, Tl^ i, = - 1 / 2 ) . The phase space element is 

d^ql ql ^V) = (27r)^5(^) {k^ ̂ k^-q)^^ Siq' - M^) = 2n 5{q' - M ^ ) , (3.21) 

and the flux factor is F{ql q2 ^ V) = Aki • k2 = 2xiX2S. 

The partonic differential cross sections for W ov Z production are then 

Ml 

da 
{ql Q*2^V) = ^ V 2 GF Ml 5{q' - ) 5{qt - Pr), (3.22) 

where = \Vg,g,\^ and F | = 1/^ + ^2 

The dominant mechanism for SM Higgs production in hadron-hadron collisions 

is by gluon-gluon fusion via a top quark loop. For the case where MH <C 2mt, the 

well-known effective ggH vertex can be derived from the Lagrangian [96,97 

£eff = - 4 (̂ 1 - )G,.G , (3.23) 

where v"^ = {y/2 GE)~^, G^^ ^3 the_gluon field__strength tensor, and H is the Higgs_ 
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field. The squared matrix element is then 

\^(9i92 - ^ ) l - 4(^2 _ 1) [ ^ ^ ^ ^ - ^ ) 

X (fci • k2g>"' - k^kl) ih • k2gf"' - k'^kl) d^pih,n)d,,{k2,n) 

= V 2 G , ^ ^ { x i X 2 s ) \ (3.24) 

where the sum over gluon polarisations is performed using the planar gauge (3.12). 
The phase space element and the flux factor for SM Higgs production are the same 
as for ql q\ —> V, leading to the partonic differential cross section 

^"M\9l - - H ) = "^^'T'' al{Ml) 5{q- - Ml) 5{q, - PT). (3.25) 
d P T ^ " ^ " ' ' 576 TT 

For q"^ — X1X2S and qt — 0, these expressions (3.22) and (3.25) are exactly as 
in the coUinear approximation. The difference arises when we consider the precise 
kinematics 

q^ = s [{xi - p2)ix2 - Pi) - R], R = qt/s, (3.26) 

qt = \ f«i,t + k2,t\^ = kit + ^2,i + 2 /ci.t k2,t cos 4). (3.27) 

Applying the ( 2 , A;i)-factorisation formula (3.10), the first delta function in (3.22) 
and (3.25) can be used to do the X2 integration in (3.10), while the second delta 
function can be used to do the k2,t integration. In addition, we need to average over 
the azimuthal angle 0 between kx,t and k-^^t-

The final hadronic differential cross sections for W or Z production are 

± , ,± >̂0 ^1 -̂ 2:1 Jx2 Jo '^l,t Jo 

2 PT 6(fc2,t) 1 ^ ^ ,2 f f 1.2 2\ f f 1,2 2\ 
k2Ak2,t + ki,tCOS4>\XiX2-Plp2 ^ ^ U{XuZi,k,,,f,,) S,,[X2, Z2, k,^„ , X 
k-2t\k2 t + kM cos (t)\ rci x^ - P\ Pi 

91,92 
(3.28) 

with r = My/s, fc^^ = —ki^t coscf) ± yjP^ — k j f . sin^ 0, and 

(3.29) 

x f ^ ^ h + R + XiPi + ^ ± l t ( r + RT-XiPi + V - ixiPi:'"''-
ZXi I 1 — Z2 
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In practice, the kinematic constraints (3.6) mean that the X2 = X2 solution does 
not contribute. The corresponding result for SM Higgs production is 

k X f i ' : i s , i J : z . p , « ^ . , ^ . * ? , , . . ? ) (3.30) 

where r = Mfj/s, and k^t and above. Note that we have taken the ggH 
vertex in the MH <?C 2mt limit. For MH < 2mt, the correction to the total cross 

section due to the top quark mass can be approximated [8] by a factor 

2m 
(3.31) 

The ki^t < fjLo contributions of (3.28) and (3.30) are accounted for using the approx
imation (3.15).'' 

3.3 The i^-factors 

In the collinear approximation, higher order QCD corrections to the LO diagrams, 
qiq2 y or gi g2 —> H, are known to be significant when calculating the total cross 
section. The ratio of the corrected result to the leading order result is the so-called 
iC-factor. A part of these higher order corrections is kinematic in nature, arising 
from real parton emission, which we have already accounted for at LO in the {z, kt)-
factorisation approach (see Fig. 3.1). Another part comes from the logarithmic loop 
corrections which have already been included in the Sudakov form factors (2.13) and 
(2.15). However, we need to include the non-logarithmic loop corrections arising, 
for example, from the gluon vertex correction to Figs. 3.2 and 3.3. 

A large part of these non-logarithmic corrections have a semi-classical nature and 
may be obtained from the analytic continuation of the double logarithm in the Su
dakov form factors in going from spacelike (DIS) to timehke (Drell-Yan) electroweak 
boson momenta [98-100]. In the soft (C —> 1) and colhnear {kt, Kt < n) limits, the 

^Other contributions in the region ki^t < Mo, such as the inclusion of additional intrinsic partonic 
transverse momentum with {kt) « 0.3 GeV, would only affect the PT distributions at very low 
PT < 1 GeV. 
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Sudakov form factors (2.13) and (2.15) can be written 

r„(fc2,Ai2)~exp ( -
1.2 AC? 27r K 2 ' (3.32) 

where Cg = Cp and Cg = CA- Accounting for the running couphng Q.s{i^l) given 

by (1.11) and performing the Kt integral, we obtain the Sudakov form factors in the 

DLLA, 
Ca 

27rb 
LlnL , (3.33) 

where L = ln(^7AQCD) and 6 = (33 - 2n/)/(127r). 
Replacing fi^ by —/J,'^, we obtain the 7r^-enhanced part of the /^-factors via 

K{al al ^ V, H) (3.34) 

Using the identity ln(—//^) = lu/U^ + m and the Mercator series l n ( l -[- x) = x 

a ; V 2 + . . . , then 

ln//2 1 + 
ITT 

In 
= Inln/x^ + 

ITT 1 / m 

ln/^2 2 Vln^^ + .. 

The final results for the ii'-factors are^ 

and 

K{glg*^H)c^ 

T.iklfi') 

U k i - p ^ y ' 

~exp C F ^ ^ T T " 

exp CA 
« 5 ( ^ 

2TV 

(3.35) 

(3.36) 

(3.37) 
T,{kltx^) 

A particular scale choice ^j? = P^^^ ^vji been found to eliminate certain sub-

leading logarithms in the Sudakov form factors [102]. Therefore, we choose this scale 

to evaluate as{^J?) in (3.36) and (3.37). 

^Note the extra factor of 1/2 in the exponents of (3.36) and (3.37) compared to [101], where 
the Mercator series was truncated after only the first term. 
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3.4 Numerical results 

3.4.1 W and Z boson production at the Tevatron 

The PT distributions of produced W and Z bosons were measured by the CDF [103 
and D 0 [104,105] Collaborations during the Tevatron Run 1, m pp collisions at a 
CM energy of ^/s = 1.8 TeV. Measurements were made oi W ^ eu and Z —> ee 
decays; therefore, we must multiply the theoretical predictions for W or Z pro
duction by the appropriate leptonic branching ratios.^ We use the MRST2001 LO 
PDFs [66] as input, with /ig = 1.25 GeV^. As in Chapter 2, the GNU Scientific 
Library [76] implementation of the V E G A S algorithm [77] was used to perform mul
tidimensional Monte Carlo integration. The LO predictions for the PT distributions 
(3.28), integrated over bins of 1 GeV, are shown by the dashed lines in Figs. 3.4, 3.5 
and 3.6. The integrated luminosity uncertainty (3.9% for CDF or 4.4% for D0) is 
not included in the error bars for the plotted data. The LO predictions multiplied 
by the i<'-factor (3.36) are shown by the solid lines. Although the K-factov makes 
up the major part of the discrepancy, we see that the sohd lines in Figs. 3.4, 3.5, 
and 3.6 still underestimate the precise measurements at smaU PT to some extent. 
Normahsing to the total measured cross sections (248 pb, 221 pb, and 2310 pb) by 
factors 1.23, 1.10, and 1.08 respectively, as shown by the dotted hues in Figs. 3.4, 
3.5, and 3.6, gives a very good description of the data over the entire PT range. 

Although it makes sense to take /HQ as low as possible, the insensitivity of the PT 
distributions to the kt < jiQ treatment can be demonstrated by taking ji^ = 2.5 GeV^. 
The PT distributions obtained are practically identical to those with / /Q = 1.25 GeV^, 
with less than a 0.5% change in the total cross sections. 

Notice that the predicted PT distribution of Z bosons peaks about 0.5-1.0 GeV 
below the CDF data (Fig. 3.4). One possible explanation for this is provided by 
non-perturbative power corrections, part of which may be interpreted as a negative 
correction of about —3 GeV^ to the factorisation scale at which the integrated PDFs 
are evaluated [107]. Such a shift in the factorisation scale is found to move the peak 
of the PT distribution about 0.2 GeV in the direction of the CDF data, with a 
slightly larger normalisation factor of 1.24. The inclusion of small-a; broadening in 
the Colhns-Soper-Sterman [108] resummation formahsm, which has been observed 
to improve the agreement with semi-inclusive DIS data [109], has been predicted to 
have a negligible effect on the W and Z PT distributions integrated over rapidity at 
the Tevatron Run 2 {^/s = 1.96 TeV) [110 . 

In Fig. 3.7 we show the importance of the extra Zi convolutions of (2, kt)-_ 

'BR{W eu) = 0.1072 and BR{Z ee) = 0.03363 [106]. 
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Figure 3.4: PT distribution of Z bosons compared to CDF data [103 . 
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Figure 3.5: PT distribution of Z bosons compared to D 0 data [104 . 
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Figure 3.6: PT distribution of W bosons compared to D 0 data [105 . 

factorisation with respect to fcj-factorisation by taking —>• 0 in the kinematic 
variables. In this limit, A 0 and the integrals of the DUPDFs over Zi in (3.28) 
give the UPDFs, /^^(xj, kit, ixf). At small PT there is little difference from the result 
obtained with the ful l kinematics, since at small PT the major contribution comes 
from small <C 1 parton branching. However, at large PT the difference is signif
icant and the Z j —> 0 prediction overestimates the data. In Fig. 3.8 we show the 
prediction for the PT distribution of W bosons using CTEQ6L1 PDFs [35] as input 
(with ixl = 1.69 GeV^) rather than the MRST2001 LO PDFs [66]; the difference is 
negligible over the whole PT range. 

The small residual discrepancy between the solid lines in Figs. 3.4, 3.5, and 3.6 
and the data is easily understood. Note that the MRST2001 LO PDFs [66] have been 
determined by a global fit to data using the conventional coUinear approximation. 
A more precise treatment would fit the integrated PDFs, used as input to the last 
evolution step, to the proton structure function F2, for example, using the (z, kt)-
factorisation formalism at LO. We would expect this treatment to give slightly larger 
integrated PDFs than the conventional sets by a factor of ^ 1.1 and so eUminate 

The small discrepancy between the (2;, fc()-factorisation predictions and thendata?^^ 
Alternatively, it was found in the last chapter that the major higher order correc

tions to the inclusive jet cross section in DIS could be accounted for by adding extra 



3.4 Numerical results 78 

pp^ W-> ev 

10 -3 

310^1 °:20a 

10 12 14 16 18 20 
P, (Q«V) 

D 0 1994-1995 data (a = 2310 pb) 
LO prediction x K-factor (<j = 2135 pb) 
Set Z i ^ O in l<inen:iatic variables (a = 2540 pb) 

J I I—I—I L _ l — L J I I I I I I I I I L I I I I I [ L 

20 40 60 80 100 120 140 160 180 200 
PT (GeV) 

Figure 3.7: Efi'ect of taking ^̂  0 in the kinematic variables on the PT distribution 
of W bosons compared to D 0 data [105 . 
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parton emissions to the LO diagram, 7*g* —> q. In an axial gluon gauge, ladder-
type diagrams gave the dominant contributions. Thus, it is likely that calculating 
the 0{as) subprocesses qlql ^ gV and q* g* qV using the (^, A;t)-factorisation 
prescription would account for any significant higher order corrections not already 
included and so reduce the observed discrepancy without refitting the input inte
grated PDFs. 

Proton structure function F2{XB-,Q^) 

These reasons for the small discrepancies discussed in the previous two paragraphs 

can be illustrated by considering the proton structure function F2{XB-,Q'^), which 

is plotted for two Q"^ values in Fig. 3.9. In the colhnear approximation, the LO 

prediction for this observable comes from 7*5 -> q, 

F2{xs,Q') = J24^Bq{xs,Q'), (3.38) 

indicated by the sohd lines in Fig. 3.9, which gives a good description of the data 
points since this data set was included in the MRST2001 LO global fi t . The LO 
{z, A;t)-factorisation prediction comes from 7*9* q and may be obtained from 
(2.93): 

^ r i T ^ . T . < u ^ M ) , (3^39) 
9 

where the Sudakov variables x = x+ and /? are given in (2.62) and the factorisation 
scale jji is given in (2.9). The predictions of this formula are shown as the dashed 
lines in Fig. 3.9, while the first term of (3.39), representing the non-perturbative 
contributions from kt < Mo, is also shown separately as the dotted lines. There is 
a clear difference between the predictions of (3.38) and (3.39), which increases as 
XB decreases, due to the extra kinematic factor in the second term of (3.39). This 
difference would be eliminated by fitting the input integrated PDFs using (3.39). 
Alternatively, a 'NLO' prediction for F2 may be calculated from the subprocesses 
1*9* QQ and 7*g* —> qg, and can be obtained from (2.106). Here, a lower hmit of 
/io is taken in the k[ integration, and the k[ < / / q contribution is instead accounted 
for using the first term of (3.39). I t is seen that these 'NLO' predictions, shown as 
the dot-dashed lines in Fig. 3.9, give almost the same results as (3.38). 
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Figure 3.9: Predictions for F2{xs, Q^) at values of 22 GeV^ (top) and 200 GeV^ 
(bottom) in the collinear approximation, where the 1996/97 ZEUS data [111] has 
been included in the MRST2001 LO fit [66], and in the {z, A;()-factorisation approach 
using the same PDFs as input. The discrepancy between the data and the LO {z, kt)-
factorisation prediction can be ehminated by either refitting the input integrated 
PDFs or by adding some 'NLO' contribution. 
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3.4.2 Standard Model Higgs boson production at the L H C 
The PT distribution (3.30) for SM Higgs bosons of mass 125 GeV produced at 
the LHC ( a / s = 14 TeV) is shown in Fig. 3.10. To allow direct comparison with 
the results of [112], we do not account for top quark mass effects. Note that the 
peak in the Higgs PT distribution is broader and occurs at a higher PT than for 
vector boson production. This is primarily due to the enhanced g gg colour 
factor {CA = 3) compared to the q qg colour factor [Cf = 4/3), resulting in a 
larger Sudakov suppression at low PT- By the same reason the iT-factor (3.37) is 
larger. For PT < MH, the PT distribution is in good agreement with recent, more 
sophisticated, resummation predictions (see, for example, [112]), bearing in mind 
the spread in the various predictions available due to the different approaches and 
PDFs used, see Fig. 3.11. However, the peaJt occurs at a PT about 1-2 GeV lower 
than the majority of the resummation predictions. Evaluating the total cross section 
by integrating over all PT gives 38.6 pb, close to the NNLO QCD calculation which 
gives 39.4 pb [112 . 

Note that matrix-element corrections are necessary in parton shower simulations 
at large PT- Without such corrections, the HERWIG parton shower prediction falls off 
dramatically at large PT > MH [113,114], see Fig. 3.11. The same effect is observed 
in HERWIG predictions for the PT distributions oiW and Z production [115], whereas 
we manage to describe the Tevatron data at large PT > My without explicit matrix-
element corrections. The fact that our predictions are much closer to the fixed-order 
results at large PT than parton shower predictions suggests that we have successfully 
accounted for a large part of the sub-leading terms. 

OfF-shell matrix elements 

The {z, A;t)-factorisation prescription involves calculating the squared matrix element 
A^P essentially on-shell, that is, with the incoming partons having momenta fcj = 

Xi Pi. This prescription was chosen so as to approximately reproduce the coUinear 
factorisation calculation starting one rung down, for example, the 0{ag) calculation 
for Higgs production at large PT, where there are up to two hard emissions. However, 
we note from (2.28) that the non-factorisable 'beyond LLA' terms are proportional 
to the Sudakov variable confirmed by the explicit calculation of Section 2.3.1. 
Therefore, i t is permissible to calculate {M]"^ off-shell, that is, with the incoming 
partons having momentum ki = XiPi + ki^, as in the conventional fct-factorisation 

prescription. Note however, that |A4p cannot be calculated with the incoming 
partons having'ro^omentum fcj = ifPi — Pi Pj + kij^, since in this case meaningless 
non-factorisable terms proportional to Pi would be obtained. 
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Figure 3.10: PT distribution of SM Higgs bosons produced at the LHC with mass 
125 GeV. 

The squared matrix element \M{gl ^2 ~^ given in the first fine of (3.24), 

was evaluated with ki = XiPi + and the sums over gluon polarisations d^p{ki,n) 
and d„a{k2,n) replaced by the BFKL-like polarisation tensors (1.66), as in the kf 
factorisation prescription. The difference with respect to the last line of (3.24) is an 

extra factor of 2 coŝ  0, where ^ is the azimuthal angle between fci,t and fc2,t. This 

extra factor makes little difference to the PT distribution shown in Figs. 3.10 and 

3.11, except in the region of low PT < 10 GeV where the cross section is slightly 

enhanced. 

3.5 Summary 

In this chapter we have extended the method of {z, fct)-factorisation using DUPDFs 

to hadron-hadron colUsions. The key idea is that the incoming partons to the 

subprocess have finite transverse momenta, which can be observed in the particles 

produced in the final state. This transverse momentum is generated perturbatively 

in the last evolution-stepr-with-a-suitable"extrap"olation for the non=pertufbative= 

contribution. Virtual terms in the DGLAP equation are resummed into Sudakov 

form factors and angular-ordering constraints are applied which regulate soft gluon 
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Figure 3.11: PT distribution of SM Higgs bosons produced at the LHC with mass 
125 GeV, compared to various resummed and parton shower predictions which are 
all matched to fixed-order calculations at large PT (apart from HERWIG) [112 . 
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emission. By accounting for the precise kinematics in the subprocess, together with 
these Sudakov form factors and angular-ordering constraints, we are able to include 
the main part of conventional higher order calculations. 

We used this framework to calculate the PT distributions of W and Z bosons 
produced at the Tevatron Run 1. The predictions gave a very good description 
of CDF and D 0 data over the whole PT range, after multiplying by an overall 
factor of 1.1-1.2, corresponding to multiplying each DUPDF by a factor < 1.1. We 
explained the origin of the need for this extra factor, which should not be regarded 
as a deficiency of our approach, but rather reflects the fact that the input integrated 
PDFs should themselves be determined from data using {z, fcj-factorisation. 

We also used the framework to calculate the PT distribution for SM Higgs bosons 
of mass 125 GeV produced at the LHC. For PT < MH, our simple prescription was 
found to reproduce, to a fair degree, the predictions of more elaborate theoretical 
studies [112 . 
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Chapter 4 

Diffractive deep-inelastic 
scattering 

In this introductory chapter to Part I I we begin by introducing the Pomeron in 

the context of Regge theory, and explain how it appears in diffractive processes, 

particularly in diffractive DIS. We describe one of the most popular descriptions of 

diffractive DIS, in which the Pomeron is treated as having PDFs just like a hadron. 

Finally, we explain how the Pomeron may be interpreted in QCD as two gluons 

or two sea quarks in a colour singlet, and we evaluate the corresponding Feynman 

diagrams at lowest order in 0 : 5 . 

4.1 Regge theory 

Before QCD emerged victorious as the theory of the strong interaction, the most 

promising candidate was Regge theory [116,117], also known as the theory of com

plex angular momentum [118], which provided a natural framework to discuss par

ticles scattering at high CM energies, s \t\. Regge theory was founded on some 

very general properties of the S'-matrix, namely Lorentz invariance, unitarity, and 

analyticity. Here, we briefly review a few key features of Regge phenomenology; for 

more details, see the textbooks [15-19 . 

In Regge theory, the scattering amplitude A{s, t) can be viewed as the exchange 

in the t-channel of a Regge trajectory or 'Reggeon' with 'angular momentum' a{t). 
The Reggeon is not a single particle, but rather a series of particles of different 

spins. For positive t the amplitude has poles corresponding to the exchange of 

physical particles of mass mj and spin Jj,-where Q ; (mf)-=-Ji . Plotting~the spins=of= 

86 
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low-lying mesons against their masses squared gives a linear trajectory [117,119], 

ait) = a{0) + a't, (4.1) 

with Q!(0) = 0.55 and a' = 0.86 GeV~^ for the p-trajectory [17]. The asymptotic 

behaviour of the total cross section for a scattering process dominated by a particular 

Regge trajectory is given by 

atotocs"(°)-i . (4.2) 

Therefore, a Regge trajectory with intercept Q;(0) < 1 leads to a total cross section 

which falls as s increases. In fact a consequence of the Pomeranchuk theorem [120, 

121], which proved that cross sections for particle-particle and particle-antiparticle 

scattering become equal at asymptotic energies, is that the cross section vanishes 

asymptotically for any scattering process with charge exchange. Conversely, if a 

cross section does not fall as s increases then that process must be dominated by 

the exchange of vacuum quantum numbers [122]. The fact that total cross sections 

are observed experimentally to slowly rise with increasing s may be attributed to an 

effective Reggeon with intercept Q;2P(0) > 1 and with the quantum numbers of the 

vacuum.^ This effective Regge trajectory was called the Pomeron [123]. I t has been 

claimed that glueball states he on this trajectory when extrapolated to positive t, 
although this interpretation is controversial. 

Donnachie and Landshoff [124] made a fit to total cross sections for pp and pp 
scattering: 

(7pp= (21.7S"°« + 56.1S-°'*^) mb, 

= ( 2 1 . 7 + 98.4 5 - ° ' * ^ ) mb, ^^'^^ 

with s in GeV^. Here, the first term is the Pomeron (IP) contribution with intercept 

< îp(0) = 1.08, while the second term is a sub-leading Reggeon (IR) contribution 

with intercept Q;/R(0) = 0.55. Note that associating Q;ip(0) = 1.08 to a simple Regge 

pole would eventually lead to a violation of the Proissart-Martin bound [125,126]: 

cTtot < C In^ s, (4.4) 

where C ~ 60 mb. However, ajp(O) — 1.08 is only an effective Pomeron intercept 

which includes the effects of exchange of two or more Pomerons (so-called Regge 

cuts). For example, taking.rinto account- the -iE-pole and the IP (2) IP cut (4.2)-is= 

^Originally, a Reggeon with aip{0) = 1 was introduced to account for the asymptotically con
stant total cross sections expected in the early 1960s. 
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modified to [18 
S2(Q2P(0)-1) 

cTtot Ajp - Ajp^ — . (4.5) 

Ins 

These multiple exchanges tame the asymptotic rise of the cross section leading to 

the ultimate preservation of unitarity. The success of the Donnachie-Landshoff fit 

(4.3) suggests that the reduction of the effective Pomeron intercept as the energy 

increases is very slow. In any case, with Q:ip(0) = 1.08 the Proissart-Martin bound 

(4.4) is not violated for CM energies less than the Planck scale. 

In low-Q^ DIS the 7*p CM energy W plays the role of y/s in hadronic cross 

sections. Hence, for Q"^ <C W^, then XB ~ Q"^/W^ <C 1 and we would expect the 

proton structure function to satisfy 

F2{xs. < 1 GeV^) ~ AJP r r i^ -^") + Am x'-'^'^^'^ 

:^AjpX-''' + Ajnx','', 

where we have taken the same intercepts as found in the Donnachie-Landshoff 

fit (4.3). At higher > 1 GeV^, QCD evolution takes over modifying the Xg 
dependence. Indeed, parameterising the HERA data for XB < 0.1 in the form 

F2{XB,Q^) = A{Q^)x-^ gives A ~ 0.1 at small < 1 GeV^, and A ~ 0.3 at 

large Q'^ ~ 10-100 GeV^. In terms of PDFs, the Pomeron is identified with the 

flavour-singlet sea quark and gluon distributions, while the sub-leading Reggeon is 

identified with the non-singlet valence quark distributions. Thus, the Regge theory 

predictions for the small-a; and low ^ 1 GeV^ behaviour of the PDFs are 

xS{x, Q^),xg{x, Q') ~ x^-^^^^") ~ ^^'^^ 

In Table 4.1 we compare these predictions with the a; ^ 0 behaviour of the MRST2001 

NLO PDFs [127] at the input scale of Qo = 1 GeV^. The valence quark distributions 

are roughly in line with the Regge theory expectations. However, the sea quark and 

gluon distributions behave very differently. The sea quark distribution increases 

with decreasing x while the gluon becomes increasingly negative with decreasing x. 
The negative gluon was introduced by MRST to achieve an acceptable fit to data; 

demanding a positive gluon would lead to a strongly valence-like input gluon distri

bution and to a much worse description of the data [127]. Such differing behaviour 

of the sea quark and gluon distributions is totally contradictory to Regge theory 

expectatioris. We will discuss this puzzle in more detail in Chapter 6. 
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Regge theory MRST2001 NLO 
xuv{x,Ql) 
xdv{x,Ql) 
xS{x, Ql) 
xg{x,Ql) 

^0 .45 ^ 0 . 2 7 

^ - 0 . 0 8 x~^'^^ 
J.-0.08 _ ^ - 0 . 3 3 

Table 4.1: Regge theory expectations for the small-a; behaviour of PDFs compared 
to the X ^ 0 behaviour of the MRST2001 NLO PDFs [127] at = 1 GeV^. 

4.2 What is diffraction? 

The term 'diffraction' was introduced in nuclear high-energy physics in the 1950s, in 

analogy with the familiar optical phenomenon. Two equivalent definitions of what 

is meant by diffraction in high-energy physics are given in [18]. The first is due to 

Good and Walker [128]: 

A reaction in which no quantum numbers are exchanged between the 

colliding particles is, at high energies, a diffractive reaction. 

The Reggeon which dominates at asymptotic energies is the Pomeron. Some sec

ondary Reggeons, contributing to non-diffractive events, also have the quantum 

numbers of the vacuum, but are suppressed at high energies. It is often difficult 

to know experimentally whether or not the outgoing system has the same quan

tum numbers as the incoming particles. A more operational definition was given by 

Bjorken [129]: 

A diffractive reaction is characterised by a large, non-exponentially sup

pressed, rapidity gap in the final state. 

The large rapidity gap, a region of the detector devoid of particles, arises from the 

fact that the colourless Pomeron does not radiate as it is exchanged. Again, the 

requirement purely of a large rapidity gap will include some contamination from 

non-diffractive events with secondary Reggeon exchange, but these contributions 

are exponentially suppressed as a function of the gap size. 

Soft diffractive reactions, such as elastic hadron-hadron scattering and diffractive 

dissociation, are characterised by a scale of the order of the hadron size ( ~ 1 fm), 

and so are intrinsically non-perturbative and therefore unable to be described by 

perturbative QCD. Regge theory has had considerable phenomenological success^ in 

^escribing such soft reactions, where there is no alternative theoretical framework, 

available. 

^hideed, Donnachie and Landshoff [124] conclude their paper with the statement that "Regge 
theory remains one of the great truths of particle physics." 
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Large rapidity gap 
Pomeron (IP) exchange 

Figure 4.1: DifFractive DIS kinematics. 

On the other hand, hard diffractive reactions are chaxacterised by an additional 

'hard ' energy scale ( > 1 GeV^) and thus they allow use of perturbative QCD to 

some extent. The ult imate goal is to translate Regge theory into QCD. We w i l l play 

a small part towards achieving this goal in Chapter 5, where we present a Q C D 

analysis of diffractive DIS. In this case, the hard energy scale is provided by the 

photon vi r tua l i ty Q'^. 

4.3 Diffractive DIS kinematics 

A notable feature of deep-inelastic scattering is the existence of diffractive events, 

7*p Xp, in which the slightly deflected proton and the cluster X of outgoing 

hadrons are well-separated in rapidity; see Fig. 4.1. The large number and distinc

tive character of diffractive events discovered at H E R A [130,131] was somewhat 

surprising [132]. The large rapidity gap is beheved to be associated w i t h Pomeron 

exchange. The diffractive events make up an appreciable fract ion 10%) of all 

(inclusive) deep-inelastic events, YP ~^ ^- We w i l l refer to the diffractive and 

inclusive processes as DDIS and DIS respectively. 

First we define the basic kinematical variables in DDIS, wi thout recourse to any 

specific theoretical model for the Pomeron. We use a Sudakov decomposition of the 

momenta of the incoming and outgoing protons: 

p = P' + ap Q\ p' = { l - xjp) P' + ap> Q' + p'^, (4.8) 

where P ' and (5' are lightlike"4-vectors" (~F'^~=^'0 "= (̂^̂^ p'j^ is a spacelike~4-~ 

vector such that p'j^ ^ -Pt^- The on-shell conditions, = = p'^, where nip is 
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the proton mass, give 

_ ml _ ml+p'^" 

'^'~2P'-Q'' 2P'-Q'{l-xpy ^ ^ 

leading to the squared momentum transferred by the Pomeron, 

, ^ ^ , ^ , . y ^ . ^ l ^ , (4.10) 
i — Xjp 

The minimum value of \t\ occurs when p[ = 0, that is, 

U „ = (4.11) 
1 - X]p 

Since most DDIS events occur for small values of \t\, and Xp <^ 1, m^, \t\ <^ 

Q"^, MXJW"^, we w i l l make the approximations mp ~ 0 GeV and t ~ tmin — 0 

GeV^ in our calculations. That is, we w i l l assume that p ~ P ' and p ' ~ (1 — XJP)P'. 

As usual in DIS, we define the photon vir tual i ty, = -Q'^, the YP C M energy 

squared, W'^ = {q + p)^, and the Bjorken-x variable, 

which gives the fract ion of the proton's momentum carried by the struck quark. In 

DDIS we additionally define the invariant mass squared of the hadronic system X 

produced by the photon dissociation, = (q + p — p'y. This definition leads to 

where xjp is the fraction of the proton's momentum carried by the Pomeron and P 

is the fract ion of the Pomeron's momentum carried by the struck quark. 

Neglecting the proton mass, the size of the rapidity gap between the outgoing 

proton and the hadronic system X is 

= Vip') -V{Q + P - P ' ) ^ \ In ^ ^ ) . (4.14) 

I f <C 1, |t , ~ 0.5, then Arj ~ l n ( l / x / p ) . 



4.4 Dif fract ive s tructure function 92 

4.4 Diffractive structure function 
Recall f rom (1.20) that the ep cross section in DIS is related to the 7*p cross section 

where a'^'^ = a'^^ + a1^, y = Q'^/{XBS), and the ep C M energy squared, s = AEgEp. 

Now consider the more specific case of DDIS. We have Xg = Pxjp, so (4.15) can be 

wri t ten 

where a are now the diffractive components of the ep or 7*p cross sections. The 

diffractive structure function, F2^'^\xip,P,Q^,t), is defined via 

dV-^P 27Ta, em 
dxjpdPdQ^dt 

{ [ l + { l - y f ] F ? ' ' ' - y ' F ^ , ' ' ' ] . (4.17) 

For small y, or assuming that F^^^^ <C Fg^ '̂̂ ^ the last term may be neglected. By 

comparing (4.16) and (4.17), we obtain 

R-(^) = (4 18) 

Experimental measurements are usually integrated over t: 

F^^'\xjp,(3,Q') = r"""dt F,''^'\xjp,(3,Q\t), (4.19) 
•̂ tcut 

where t„t . = - 1 GeV^ and t,^in ^ 0 GeV^ 

4.5 Collinear factorisation in DDIS 

Just as measurements of the DIS structure funct ion F2{XB^ Q^) are used to determine 

the PDFs of the proton, a{x, Q'^) = xg{x, Q"^) or xq{x, Q'^), so measurements of the 

DDIS structure funct ion F^^^\xjp, P,Q^) can be used to determine the diffractive 

PDFs (DPDFs) of the proton, a^'ixjp, p, Q^) = Pg'^{xjp, f3, Q^) or pq^'ixjp, P, Q^) 3 

I n DDIS, the coUinear factorisation formula for the YP cross section, analogous 

^ D P D F s are exactly the same as 'extended fracture functions' [133-135]. 
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Figure 4.2: LO contribution to DDIS in the 'resolved' Pomeron model. 

to (1.35), can be wr i t t en 

da^'p 
dxip 

(4.20) 

where a^{xjp, P', Q^) satisfy D G L A P evolution in Q^, and o""̂ *" are the same partonic 

cross sections or hard-scattering coefficients as in DIS. Collinear factorisation was 

proven to hold for all DDIS processes by CoUins [136,137], but fails for diffractive 

hadron-hadron coUisions, where an additional rapidity gap 'survival probabil i ty ' 

129] due to multi-Pomeron exchange is needed [138,139]. The same factorisation 

breaking has recently been observed for the resolved photon component in diffractive 

dijet photoproduction [140,141] and low-Q^ DIS [142] at H E R A . 

4.6 'Resolved' Pomeron model 

Ingelman-Schlein factorisation [143] is collinear factorisation together w i t h 'Regge 

factorisation' for the Pomeron exchange, where the Xp dependence of the DPDFs 

factorises into a Pomeron flux factor, fip{xjp), and the /3 and Q'^ dependence is 

given by the PDFs of the Pomeron, c^{0, Q^) = Pg^{l3, Q^) or p ( f { P , Q^). In this 

'resolved' Pomeron model, the Pomeron is treated as having partonic structure just 

hke a hadron; see Fig. 4.2 where the L O contribution to the Pomeron structure 

function is shown. Variations of this method have been used to fit DDIS data 

by many different groups (see, for example, [144-147]). Here, we summarise the 

procedure recently used by the H I Collaboration [148], where R'egge factorisation is 
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assumed, 

a^(a;^, (5, Q') = Mxjp) a^(/3, Q'), (4.21) 

F2^(^)(x^, P, Q') = Mxjp) FfiP, Q'). (4.22) 

The Pomeron flux factor is taken f rom Regge phenomenology, 

fAxip) = / d t ^ ^ ^ , (4.23) 
>'tcut XJP 

w i t h aip{t) = aip{0) + a'pt. The parameters a'p and Bp are taken f rom fits to soft 

hadron data, w i t h 

ajp{0) = 1.173 ± 0.018(stat.) ± 0.017(syst.)^°:°35(model) (4.24) 

determined f rom a fit to the DDIS data. Note that the only real use of the Pomeron 

in this analysis is as a label for a particular power law for the Xp dependence 

of diffractive cross sections, w i t h the exponent actually being a free power. The 

value of Q;JP(0) extracted f rom the DDIS data lies significantly above the Donnachie-

Landshoff [124] value of 1.08, suggesting that there are large perturbative Q C D 

contributions. 

I n the preliminary H I analysis [148], the input Pomeron PDFs at a scale Ql = 3 

GeV^ are parameterised in the fo rm 

a^iP, Ql) = ^ q T , ( 2 / ? - l ) 
J=o 

T 2 

exp ( - 3 ^ ) , (4.25) 

where C" are free parameters, and ro(a;) = 1, r i (a ; ) = x, and T2{x) — — 1 are the 

first three Chebyshev polynomials. The sum of orthonormal polynomials is used so 

that the input distributions are free to adopt the widest possible range of forms for 

a given number of parameters. The square of this sum is taken to ensure positivity. 

The exponential factor ensures that the Pomeron PDFs tend to 0 as /3 ^ 1. No 

momentum sum rule is imposed on the Pomeron PDFs. 

Al though this type of description of F^^^^ {xjp.P.Q'^) is often referred to as a 

'QCD fit', only the dependence is actually described by QCD, w i t h the xjp 

dependence being obtained by fitting a power law, and the /? dependence taken to 

be-completely- arbitrary. Clearly, we-would=Hke-to-be able to use QCD to-constrain= 

the XJP and /3- dependence oi F^-^l^xpyP, Q-),- as well-as the dependence. ^ . 3 , - „ 

I n the H I analysis [148], a secondary Reggeon contribution is also included of 
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a form similar to (4.22). The Reggeon flux factor is taken in the fo rm (4.23) w i t h 
Q!iR(0) = 0.50. The Reggeon PDFs are assumed to be the same as the pion PDFs 
149]. This contribution is found to be significant only for Xp > 0.01. 

Since the Pomeron is not a particle, and so the concept of a 'Pomeron flux' is not 

well defined, the 'resolved' Pomeron model must be taken on a purely phenomeno-

logical ba^is. 

4.7 The Pomeron in Q C D 

Attempts to understand the Pomeron in terms of QCD were first made by inter

preting Pomeron exchange as two-gluon exchange [150,151], two gluons being the 

min imum number needed to reproduce the quantum numbers of the vacuum. Ac

counting for all 0:5 \n{l/xB) terms, the B F K L Pomeron is a gluon ladder in a colour 

singlet configuration, as described in Section 1.4. The B F K L Pomeron is often 

called the 'hard' Pomeron in distinction to the 'soft ' Pomeron w i t h effective inter

cept azp(O) ~ 1.08 discussed in Section 4.1. The L L B F K L Pomeron has effective 

intercept ajp{0) ~ 1.5 while the resummed N L L B F K L Pomeron has effective in

tercept Q;ip(0) ~ 1.3 (see, for example, [47]), cf. the experimental value of ~ 1.3 

obtained f r o m fitting F2 data at large 10-100 GeV^ (see Section 4.1). I n naive 

Regge theory, i t was assumed that the Pomeron singularity is a simple pole i n the 

complex angular momentum plane. By contrast, the B F K L Pomeron, consisting 

of a ladder of reggeised gluons, is a branch cut in the complex angular momentum 

plane [152]. Assuming that B F K L effects are not important at H E R A energies, 

we w i l l regard the QCD Pomeron as being a D G L A P ladder rather than a B F K L 

ladder. 

I n Section 4.7.1 we present calculations of the lowest order Feynman diagrams for 

the two-gluon Pomeron in DDIS using the dipole formahsm, reproducing the results 

presented by Wiis thoff [153] in the l imi t of strongly-ordered transverse momenta. I n 

Section 4.7.2 we extend the same formalism to calculate the lowest order Feynman 

diagrams for DDIS assuming that the Pomeron is represented by two sea quarks. 

4.7.1 Two-gluon exchange 

First we consider the kinematics of the quark dipole shown in Fig. 4.3(a). We use a 

Sudakov decomposition of the momentum k of the off-shell quark. 

k = aq' + f3kP + k^, (4.26) 
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l± + XjpV 

(b) 
7 

q — k 

k 

Figure 4.3: (a) Quark dipole and (b) effective gluon dipole interacting w i t h the 
proton via a perturbative Pomeron represented by two t-channel gluons. 

w i t h q' = q + XBP, q'^ = 0 = p^, k]^ = -k^. The two outgoing components of the 

dipole have momenta 

q - k = { l - a ) q ' + x , ^ ^ p - k ^ , 

k = k + XJP p = a q' + Xg 

1 - a 

a 
P + ks 

(4.27) 

(4.28) 

where the on-shell conditions, {q — A;)̂  = 0 and k"^ = 0, determine 

V 1 - 0 
XJP = XB\1 + 

a{l - a) 
(4.29) 

The invariant mass of the qq system is given by 

Ml = {q + xjppf = 
k? 

a{l — a)' 

Since /? = Q'^/{Q'^ + M^), this can be wr i t t en as 

The off-shell quark w i t h momentum k has v i r tua l i ty 

,2: 

(4.30) 

(4.31) 

l - a 
(4.32) 
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since a <C 1 i n the approximation of strongly-ordered transverse momentum, fcj <C 

Q^, to which we are working.' ' 

Q u a r k dipole w i t h a transversely polarised photon 

The differential 7*p cross section corresponding to Fig. 4.3(a) is given by a kf 

factorisation formula similar to that described i n Section 1.4. I t can be wri t ten in 

terms of photon wave functions 5'(Q!,fct), describing the fluctuation of the photon 

into a quark-antiquark dipole, convoluted over a and kt w i t h a dipole cross section 

a, describing the interaction of the dipole w i t h the proton via two-gluon exchange. 

The dipole factorisation formula for Fig. 4.3(a) w i t h a transversely polarised photon 

IS 

dt 
t=o 

167r 

da 
, (4.33) 

cf. the corresponding result for DIS,^ 

2 do
ty dlt 

(4.34) 

The light-cone wave functions for the quark-antiquark dipole w i t h a transversely 

polarised photon are [153 

A;2 + a{\ - a ) g 2 
X < 

(a- l ) fc t 

(a-l)fct* 

7 = +l,/i = + | 

7 = - i , / i = - i 

(4.35) 

where 7 and / i denote the helicity of the photon and the quark respectively. Here, 

ht = kl +ik^ = {k}, k^) and kt = k] — ik^ — (A;|, — fc^). The denominator of these 

wave functions is the v i r tua l i ty of the off-shell quark w i t h momentum k: 

k\ + « ( 1 - a )Q2 = (1 _ p,)^^ + /3^2 ^ ^2 ^ (4.36) 

Note that the wave functions are symmetric under a —> (1 — a) and kt —> —kt, 

corresponding to •(-̂  ^, that is, (4:27)~-(^~("4T28)VSO" we 'only need to sum"Over~ 

^Actually, from (4.31), k1 < implies either a < 1 or (1 - a ) < 1, but it is conventional to 
take the former. 

^Note the extra factor 2 in (4.34) compared to (7) of [153]. 
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Figure 4.4: The four different permutations of the couplings of the two t-channel 
gluons to the two components of (a) the quark dipole and (b) the effective gluon 
dipole. 

flavoiu-s in (4.33) and not over quarks and antiquarks separately. 

The four different permutations of the couplings of the two ^-channel gluons to 

the two components of the quark dipole, shown in Fig. 4.4(a), are obtained by simply 

shift ing the argument of the wave function: 

D * ( a , kt, It) = 2^{a, kt) - * ( a , fc* + h) - * ( Q ; , kt - h). (4.37) 

We choose a basis where fc* = /cj (1 , 0) and It = k (cos 0, sin 0) and neglect the xp p 

components of the momenta. We work i n the approximation of strongly-ordered 

transverse momenta, k <^ kt Q, and expand D"^ i n the hmi t k 0, only keeping 

the leading term proportional to l^. Af te r doing the azimuthal integral, we find 

Jo ^D^l{a,kt,lt) = ll 
4^/2a{l - a)Q^ 

k^ + a{l - a)Q^\ 

7 = + l , / i = +1 

(4.38) 

cf. (21) of [153]. We need these expressions squared and summed over hehcities. 

{ a - l ) k t 

Oikt 

akt* 

{a-l)kt* 
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Figure 4.5: Cut diagrams giving the dipole cross sections for the two-gluon Pomeron: 
(a) qq qq and (b) gq gq. 

Neglecting a term 0{kl/Q'^) gives 

E E 
7=±1h=±\ 

(4.39) 

The other necessary part of the calculation is the cross section for qp —> qp, ob

tained f rom the process qq —> qq w i t h t-channel gluon exchange, shown in Fig. 4.5(a). 

(Note that we could equally well obtain the cross section for qp —^ qp f r o m qg —+ qg, 

but the algebra is slightly easier for qq qq.) We assume that A;̂  ~ 0 and neglect 

the XJPP components of the momenta in these calculations. 

First, we derive the differential cross section, da /d | f | , for a generic 2 - ^ 2 scatter

ing process. Let the incoming particles have momenta pi and p2, while the outgoing 

particles have momenta ps and p4. We write the momenta in the C M frame of 

the colliding particles as pi — {E,0,0,E), p2 = {E,0,0,-E), ps = ( -^3 ,^3) , and 

P4 = (-5̂ 4, P 4 ) , where pj = pi = pi = pi — 0. The phase space element is 

d $ = ( 2 7 r ) ^ 5 ( ^ ) ( p i + P 2 - P 3 - P 4 ) 

= ^ . ( 2 ^ - ^ 3 - ^ 4 ) ^ ^ 

dV4 
2E3 (27r)3 2E4 (27r)3 

(4.40) 

(4.41) 

w i t h p3 = - p 4 = {lt,Pz), E3 = Ei^ V^fTpf, and d^pa = d'^hdpz = TrdZ^dp^, so 

dl^dp. E 

4EsEi 8n ^E'^-lj ^E^' 
(4.42) 

Taking the high-energy l imi t {E > It) we have i = (pi - p^)^ = {p2 - p^)^ = -/^, 

and so, since s = (pi + P2)^ = (pa + P4)^ = 4£'^, then d $ = d |£ | / (87rs) . Since 
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do- = d $ / F , where F — 2s, we have the differential cross section 

da 
d\i\ ~~ 167rs2' 

(4.43) 

We now return to the qq qq process shown in Fig. 4.5(a), where s = 2k • p = 

aQ'^/xB — jJ^/xjp and i = -l^. The squared mat r ix element for qq —>• qq is 

M' = \ c ^ TrlYftYijt + h)] "^[YHif - h)] {-g,p){-9.c), (4.44) 

where the colour factor is 

^ 99) = -^nt^t^mt^t^] = \. (4.45) 

I n the high-energy l imi t , where only the terms to leading 0{s/\i\) are retained, that 

is, i n the /t —> 0 l imi t , 

^ ( g ? ^ qq) = ]^^ots{ll)o^s{^^^), (4.46) 

where appropriate scales for as have been chosen corresponding to the two different 

vertices i n Fig. 4.5(a). The lower vertex in Fig. 4.5(a) may be considered as the 

first step of D G L A P evolution, which generates the unintegrated gluon distr ibution 

of the proton, fgixp, t f , / i ^ ) . Therefore, we obtain the cross section for qp —> qp by 

making the replacement 

Mil) 
27r 

XlpPgq{X]p) ^ 2 C ^ = ^as{ll) - fgixipJl^^'). (4.47) 

This replacement accounts for more comphcated diagrams than Fig. 4.5(a) which 

include the complete D G L A P evolution: 

^{qp qp) = ^'^(^s{fJ'^)fg{xip, lt,fJ'^)- (4.48) 

Combining (4.39) and (4.48) we obtain 

E E / —as{^^'') -^fgixjpJlfi^) 

2567r^ 

11^ 
xipg{xip, A*̂ ) P'{l-P), (4.49) 
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where g{xip, p?) is the integrated gluon distr ibution of the proton. Strictly speaking, 

this last expression should be wr i t t en in terms of the off-diagonal (or skewed) gluon 

distr ibution of the proton, since the left and right i-channel gluons i n Fig. 4.3(a) 

carry different fractions of the proton momentum. A t small X/p, and assuming that 

^ip di^ip, IJ^) c< Xp^, then the off'-diagonal gluon distr ibution is given by the diagonal 

distr ibution mult ipl ied by an overall constant factor [93],^ 

2 2 A + 3 ^ 5/2) 

r ( A + 4) • 

Recall f rom (4.31) that 

(4.50) 

Changing variables f r o m {a, k^) to {P, p'^) we have the Jacobian 

(4.51) 

a(a, kl) da/dp dklldp 

d{P, p') da/dp^ dk^/dp^ P/Q' i - P 
= ^ - (4-52) 

Assuming a t dependence of the fo rm exp{B£, t), where the diffractive slope param

eter BD ~ 6 GeV~^ f r o m experiment, then 

J tcut 

d t e ^ ° * — — 
dt 

1 da-^'P 

t=o dt 
(4.53) 

t=o 

Accounting for the skewed effect, the change of variables f rom {a, k f ) to {P, p'^), and 

the t dependence, (4.33) becomes 

- 167r i o ^ J 2nQ^^ 2 J n d/? 
(4.54) 

From (4.18), 

^ ^ ( 3 ) ^ 
p da-^'p 

^ A-n'^a^rnXiP dp 

so after combining (4.49), (4.54), and (4.55), we finally obtain 

|2 

2>BD 

1 
= / dp^ 

Xip 

«5(/x2) 

p^ 
xipgixp, p^) 

(4.55) 

(4.56) 

which coincides w i t h (22) of [153] (apart f rom the extra factor B^JBD)- Since 

^This factor is not seen in calculating F ig . 4.5(a) since it is absent in the Umit xip —» 0 [154]. 
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Y^j ej = nf{e'j) (wi th n / = 3), this can be wri t ten 

= ry^^' fiP-cixiP; fi') (e j ) /?E^=^(/3, n'), (4.57) 

where the 'Pomeron flux factor' is 

fip=G{xip; p-^) = 
XJP 

xjpg{xjp, fj,^) (4.58) 

and the quark singlet distr ibution at a scale / i originating f rom a component of the 

Pomeron of size 1 is 

/3E^=«(/?, / i^; ^2) = cJo / ? ' ( ! - / ? ) , (4.59) 

w i t h = Rg/Bo- The notation IP — G is used to indicate that the perturbative 

Pomeron is represented by two i-channel gluons. Since only the combination of 

(4.58) and (4.59) is meaningful, all the numerical factors have been collected in 

(4.59) . I n the next chapter, we wiU use this formula (and others derived in the rest 

of the chapter) as the basis for a QCD analysis of DDIS data, after adding D G L A P 

evolution and NLO corrections to the Pomeron structure function, and replacing 

^q/G ^^^^ ^ ^^^^ parameter, Cq/c, to take account of these higher-order corrections. 

Q u a r k dipole w i t h a longitudinally polarised photon 

The dipole factorisation formula for Fig. 4.3(a) w i t h a longitudinally polarised pho

ton is 

dt 
t=o 

167r 
v=n do-

dIF 
(4.60) 

where the light-cone wave functions for the quark-antiquark dipole w i t h a longitu

dinally polarised photon are [153 

a{l-a)Q 
kl + a{l - a )Q2 

h = ± 
1 

(4.61) 
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Taking the hmi t It ^ 0 of the combination of wave functions (4.37) and doing the 
azimuthal integral gives^ 

^''^On-'ia. k., k) = /? - " 1 4.(1 - a)Q : . = ±1(4 .62) 
/o 27r " ' • " • [k^ + c,a ~ a)Q^y ' 2 

Squaring this expression and summing over the quark helicities gives 

= ' J ^ ^ « 2 / ' - l f . (4.63) 

The dipole cross section, da/dlt{qp —> qp), is the same as (4.48), giving 

= ' r d f . ' ̂  fjp^aixjp; fi')] cl% p\2p - l )^ 
^n^a^^xjp dp 

(4.64) 

where c^^^ = 2RI/{9BD); this result is a factor of 2 different f r o m (23) of [153], but 

is i n agreement w i t h [101]. Note that this te rm is twist-four due to the extra factor 

IJ?IQ'^ w i t h respect to (4.57), and hence we should not add D G L A P evolution. 

G l u o n dipole w i t h a transversely polarised photon 

Now consider the kinematics of the qqg system shown in Fig. 4.3(b). Al though this 

diagram has an extra factor 0:5 w i t h respect to the qq system shown in Fig. 4.3(a), 

i t is known to be dominant at large Mx (small /?) due to the extra f-channel spin-1 

gluon. Using a Sudakov parameterisation (4.26) of the momentum k of the off-shell 

gluon gives the momenta of the outgoing qq pair and gluon as 

i-2 I /\̂ 2_ 

^ - / c = ( l - a ) g ' + ^ - Y ^ p - A ; x , (4.65) 

k = k^xjpp = a(i + XB P + fci, (4.66) 

respectively, where Mqq is the invariant mass of the qq system. The on-shell condi

tions, {q - k)'^ = and fc^ = 0, determine 

i^f + K \ / , . «=? + "M-^ 
* = - ^ - ( ^ + ( f r ^ j ' * = ^ - i ' + S ( T 3 ^ 1 - (4.67) 

•^Note the extra factor 2 J n (4.62) compared to (21) of [153], 
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The invariant mass of the qqg system is given by 

The calculation is greatly simplified in the approximation Mgq <^ Q, in addition 

to assuming strongly-ordered transverse momenta, k h <^ Q. I n this l imi t , the 

kinematics of the {qq)g system is identical to the previously considered qq system of 

Fig. 4.3(a). The emitted (qq) pair is localised in impact parameter space, and forms 

an effective 'gluon' conjugate in colour to the emitted gluon. The {qq)g system can 

thus be considered as forming an effective gg dipole. 

The dipole factorisation formula for Fig. 4.3(b) w i t h a transversely polarised 

photon is then 

dt 16TT 
t=o 

(4.69) 

Again there are four different permutations of the couplings of the two gluons to 

the two components of the effective gluon dipole, shown in Fig. 4.4(b), which are 

obtained by shift ing the argument of the wave funct ion as in (4.37). The light-cone 

wave functions for the effective gluon dipole w i t h a transversely polarised photon 

are [153] 

^"-"(a,fct) = - , 7 . \ ^ •• rn,n=l,2. (4.70) 

Taking the l imi t —> 0 of and doing the azimuthal integral gives 

r 
Jo 
/o 27r ^ v - ' - ' - ^ " * ^ A ( r ^ : ^ [ A ; 2 + a ( l - a ) Q f V" 

(4.71) 

cf. (24) of [153]. Squaring this expression and summing over the indices m , n = 1, 2 

gives 
27r 

' = ltj,{l-(3?{l-^2pf^^. (4.72) 

The dipole cross section for gp —> gp is obtained f r o m the scattering process 

gq —>• gq w i t h i-channel gluon exchange, shown in Fig. 4.5(b). Here, the squared 
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matr ix element is 

t 

X m + ls_rg^' - (A; + 2/^)^^ ' ' " + (/x - ^ ) V"] 
X [{2k + hfgf" -{k + 2 / j , ) + - fc), (4.73) 

where the transverse polarisations of the incoming and outgoing gluons are summed 

in a light-cone gauge, 

d,Ak,p) = -9,a + (4.74) 

and where the colour factor is 

Cigq - gq) = W c W ^ ) / ^ ^ ^ / ' ' ^ ^ nt'^t^] - \ (4.75) 

In the high-energy hmi t , where only the terms to leading 0 ( s / | £ | ) are retained, that 

is, in the ^ 0 l imi t , 

^{ag ^ m) = ^2iTasii'M^'), (4.76) 

where appropriate scales for 0:5 have been chosen corresponding to the two different 

vertices in Fig. 4.5(b). As before, we obtain the cross section for gp gp by making 

the replacement (4.47), which gives 

^{9P ^ gp) = ^^^(^s{l^^)f9{xiP, ll /u'). (4.77) 

Inserting (4.72) and (4.77) into (4.69), and accounting for the skewed effect, the 

change of variables f rom (a, k'^) to (/?, fi^), and the t dependence, we obtain 

'T,gg _ 
- - I I — ; i ) - ( I - ( - y.n r 

P 

(4.78) 

We must account for the fact that the off-shell gluon w i t h momentum k in 

Fig. 4.3(b) does not interact directly w i t h the photon, but first splits into a quark-

antiquark pair forming the 'effective gluon' of the dipole. To do this, we replace 

P ^ 0' in the previous formula and include the D G L A P spli t t ing for g —> qq, that 
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(a) 
7^ 

l± + x p p I t l± + XIPP 

Figure 4.6: (a) Quark dipole and (b) effective gluon dipole interacting with the 
proton via a perturbative Pomeron represented by two t-channel sea quarks. 

IS, 

Putting everything together, we finally obtain 

TP 
•99 

dP' 
(4.79) 

(4.80) 

where 

with 

(4.81) 

(4.82) 

where c^f^ = 9i?^/(165ij). Note the extra factor 2 compared to (25) of [153] (this 

was corrected in a later paper [155]). 

4 .7 .2 T w o - q u a r k e x c h a n g e 

We now consider the Pomeron as being represented by two sea quarks rather than 
_two gluons, and calculate the. lowest order Feynman diagrams using the same for-
mahsm as in Section 4.7.1. As far as we are aware, this is a completely new idea 
which has not previously been proposed in the literature. The reason why a two-
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SLQ^ 

t 

q-k 
1 1 

l± 1 i 
A; 

Figure 4.7: The two different permutations of the couphngs of the two t-channel sea 
quarks to the two components of (a) the quark dipole and (b) the effective gluon 
dipole. 

quark Pomeron is necessary is due to the valence-like shape of the gluon distribution 
of the proton at low scales; we will discuss this problem in more detail in the next 
two chapters. The quark dipole and effective gluon dipole interacting with the two-
quark Pomeron are shown in Fig. 4.6. The light-cone wave functions of the photon, 
^'(Qf, fct), are the same as those given in Section 4.7.1. The two different permuta
tions of the couplings of the two sea quarks to the two components of the dipole, 
shown in Fig. 4.7, are obtained with 

(4.83) 

that is, there are no terms with a shifted argument as for the two-gluon Pomeron. 
Since there is no It dependence here, the integrals over It in the dipole factorisation 
formulae can be done immediately. 
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(a) (b) 

k 

V 

A \ v,A 

\p,B \ a,B 

k k 

p 

p,B 

P 

p,A 

k 

p 

Figure 4.8: Cut diagrams giving the dipole cross sections for the two-quark Pomeron: 
(a) qq gg and (b) gq qg. 

Quark dipole with a transversely polarised photon 

The dipole factorisation formula for Fig. 4.6(a) with a transversely polarised photon 
is 

dt IGtt 
t=o 

84) 

where 

^ ^ i w ; ( c , f c , ) r = ^ ( i - / j ) . (4.85) 

The dipole cross section for qp gp is obtained from the scattering process qq gg 
with i-channel sea quark exchange, shown in Fig. 4.8(a). Here, the squared matrix 
element is 

= T^b^hlxl'^Yh] d^uik + l±,p) dp^ip - h, k), (4.86) 

where the colour factor is 

16 
(4.87) 

In the high-energy hmit, where only the terms to leading 0{s/\i\) are retained, 

da 
dqq gg) = -as{li)as{ix'). (4.88) 

Note that this expression is suppressed by an extra factor 0{\i\js) compared to the 
^-channel gluon exchange processes considered in Section 4.7.1, where s ~ jxjp 
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and £ = — / ( . We obtain the cross section for qp gp by making the replacement 

r< r (i'2\ . t ;2 ..2^ 
27r 

XJPCF = —xipasilt) ^ f,{xjpJlp,^), (4.89) 

where fq{xjp, is the unintegrated quark distribution of the proton. This re
placement gives 

cr(gp 5p) = — / -i^fqixp, I f , fJ,') = ^ - \ ' XjpS{xip, fi'), (4.90) 

where S{xjp,ii'^) is the integrated sea quark distribution of the proton and we have 
assumed light quark flavour symmetry, S{xip,fi'^) = q{x]p,fi^)/{2nf), with n / = 3. 
Again, we should really use the skewed quark distributions, which gives rise to an 
extra factor [93 

2^^+3r(A + 5/2) 
^^ (^^ - r (A + 3) ' ^^-^^^ 

assuming that xp S{x]p, fj,^) oc x^ at small xp. The final result is 

'Ql 

where the 'Pomeron flux factor' is 

fip=s{xip\ y?) = — 
Xjp 

^ XipS{Xip,fJ, ) 
A* 

(4.93) 

and the quark singlet distribution at a scale fi originating from a component of the 
Pomeron of size is 

P^"'='iP, fx'; fi') = c^fs ^ (1 - (4.94) 

with c^^g — 4i?^/(815c). The notation IP = S is used to indicate that the pertur-
bative Pomeron is represented by two t-channel sea quarks. In the next chapter we 
will add DGLAP evolution and NLO corrections to the Pomeron structure function 
in a QCD analysis of DDIS data. 
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Quark dipole with a longitudinally polarised photon 

The dipole factorisation formula for Fig. 4.6(a) with a longitudinally polarised pho

ton is 
Nc 
167r 

t=o 

/ ^ E 4 « e . E l̂ ^̂ t̂ ^ (4-95) dt 

where ^ 

5] l p * ^ V M r = § ^ / ? ^ (4.96) 

leading to 

'"'̂  47r̂ Q!em2;iP d/3 yyQ2 y / 

where ĉ ^̂  = 32i?^/(7295D). Note that this term is twist-four due to the extra factor 

jj^/Q^ with respect to (4.92), and hence we should not add DGLAP evolution. 

Gluon dipole with a transversely polarised photon 

The dipole factorisation formula for Fig. 4.6(b) with a transversely polarised photon 

167r 
t=o / m,n=l,2 

dt 

where 

E \D^rnn^aM)? = -^{l-(3?\. (4.99) 
m,n=l,2 ^ ^ 

The squared matrix element for gq —> qg^ shown in Fig. 4.8(b), is 

1 4 

\M\^ = 4^ I T^lYhYHhl^'i^ + r-L)] P̂<.(P - ^x, fc), (4.100) 

where the colour factor is 

Cigq -> gq) = -^j^T^it^i^^''^^^ = l (4-101) 

The dipole cross section is then 

- f^^9q^^9)=~ (4.102:). 
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so, making the replacement (4.89), the gp —> qp cross section is 

a{gp ^ qp) = — / > fgixp, I f , /x") = — '-^XpSixp, fj,'). 

(4.103) 

Again, we account for the g qq splitting using (4.79). The final result is 

i ^ S ) , = fjp=s{xip; n') {e})p^^='{p, Q'; (4.104) 

where 

P^-W,,^) = (̂ ) Pl^-jfp,, (I) ^r-H^M 
(4.105) 

with 

P'^='iP', f.') = c^fs (1 - PT, (4-106) 

where c^fs = ^ , V ( 9 5 D ) . 



Chapter 5 

A QCD analysis of diffractive 
deep-inelastic scattering data 

A simple parameterisation based on the two-gluon exchange calculations presented 
in Section 4.7.1 was proposed by Bartels-EUis-Kowalski-Wiisthoff (BEKW) in [156 . 
A slightly modified version of the BEKW parameterisation has been used by ZEUS 
to describe their recent DDIS data [157,158]: 

xjpF.'^^'^xjp, /5, Q') = cr F^^ + F^i + c, F ^ , (5.1) 

where 

\xip/ 

In 1 + ^ ( 1 - / ? ) ^ (5.4) 

and n{Q'^) = no + n i l n ( l + Q'^/Ql). This parameterisation is rather far from the 
original perturbative QCD calculations of Section 4.7.1, with several parameters 
required to be determined from experiment. 

In this chapter we perform a perturbative QCD analysis of the new high precision 
DDIS data, recently obtained by the ZEUS [157,158] and H I [148] Collaborations 
at HERA. The analysis is novel in that it treats individually the components of the 
Pomeron of different transverse size. The description of the DDIS data is based on 
a purely perturbative QCD framework. We take input forms of the PDFs of the 
Pomeron given by the calculation of the lowest-order QCD diagrams for j*p —> Xp 

112 
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(a) 

7 

xipg{xip, ̂ ^))4=&jpg{x]p, iJ? XipS(xrp,fi~ xipS(xip,fi^] 

F i g u r e 5.1: C u t d i a g r a m s i l l u s t r a t i n g t h e m a i n i d e a s c o n t a i n e d i n ( 5 . 5 ) . E a c h c o m 

p o n e n t of t h e p e r t u r b a t i v e P o m e r o n of s ize 1 / ^ is r e p r e s e n t e d b y e i ther ( a ) t w o 

t - c h a n n e l g l u o n s i n a c o l o u r s inglet or (b ) s e a q u a r k - a n t i q u a r k e x c h a n g e . T h e p e r 

t u r b a t i v e P o m e r o n f l u x f a c t o r s fip{xip; jx^) a r e g i v e n i n t e r m s of t h e g l u o n a n d s e a 

q u a r k d i s t r i b u t i o n s of t h e p r o t o n , g{x]p,iJ,^) a n d S{x]p,ji'^). T h e P o m e r o n s t r u c t u r e 

f u n c t i o n {(3, Q ^ i A^ )̂ is e v a l u a t e d f r o m t h e q u a r k s ing le t , TF{P, Q"^; ̂ J?), a n d g l u o n , 

g^{P,Q'^; ^x^), d i s t r i b u t i o n s of t h e P o m e r o n . 

( S e c t i o n 4 . 7 ) . I n t h e ' reso lved' P o m e r o n a n a l y s e s d e s c r i b e d i n S e c t i o n 4.6, t h e 

P o m e r o n is t r e a t e d as a h a d r o n - l i k e o b j e c t of m o r e or less f i x e d s ize. H o w e v e r , t h e 

m i c r o s c o p i c s t r u c t u r e of t h e P o m e r o n is d i f ferent to t h a t of a h a d r o n . I n p e r t u r b a t i v e 

Q C D , i t i s k n o w n t h a t t h e P o m e r o n s i n g u l a r i t y is no t a n i s o l a t e d pole , b u t a b r a n c h 

c u t , i n t h e c o m p l e x a n g u l a r m o m e n t u m p l a n e [152]. T h e po le s i n g u l a r i t y c o r r e s p o n d s 

to a s ingle p a r t i c l e , w h e r e a s a b r a n c h c u t m a y b e r e g a r d e d as a c o n t i n u u m series 

of poles . T h a t i s , t h e P o m e r o n w a v e f u n c t i o n c o n s i s t s of a c o n t i n u o u s n u m b e r of 

c o m p o n e n t s . E a c h c o m p o n e n t i h a s i t s o w n s ize , T h e Q C D D G L A P e v o l u t i o n 

of a c o m p o n e n t s h o u l d s t a r t f r o m its o w n sca le / / j , p r o v i d e d t h a t /Xi is l arge e n o u g h for 

t h e p e r t u r b a t i v e e v o l u t i o n to b e v a l i d . T h e r e f o r e , t h e e x p r e s s i o n for t h e d i f f r a c t i v e 

s t r u c t u r e f u n c t i o n ^2^^^^ c o n t a i n s a n i n t e g r a l over t h e P o m e r o n s ize , or r a t h e r over 

t h e sca le f i . S o t o o b t a i n ^2^^^^ we evolve t h e i n p u t P D F s of e a c h c o m p o n e n t of 

t h e P o m e r o n f r o m t h e i r o w n s t a r t i n g s ca l e u p to t h e final sca le Q. T h e e x t r a 

i n t e g r a l over /i re f l ec t s t h e f a c t t h a t t h e p a r t o n i c s t r u c t u r e of t h e P o m e r o n is m o r e 

c o m p l i c a t e d t h a n t h a t of a n o r m a l h a d r o n . 
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5.1 New perturbative Q C D approach to DDIS 

The fact that the Pomeron singularity is a cut rather than a pole implies an integral 

over the Pomeron scale, cf. (4.22), 

2,P ' ( ^ i P , A Q ' ) = E ldtx'fjp{xjp-t,')Ff{p,Q';fx')- (5.5) 
IP=G,S,GS •''^0 

see Fig. 5.1. Here, the subscript P on F^^"* is to indicate that this is the perturbative 

contribution with > Qo ~ 1 GeV. The notation IP = G, S, GS denotes that the 

perturbative Pomeron is represented by two t-channel gluons, two t-channel sea 

quarks, or the interference between these, respectively. The perturbative Pomeron 

flux factors are 

1 

Xp 

Xjp 
flP=Gs{xip\ IX^) = — 

Xp 

flP=s{X]p\ 11^) = 

—xipg{xjp,fx^) 

«5 ( / i ^ ) xjpS{xjp,fj,'^) 

2 xipg {xip,f/)x]pS{xjp,f/). 

(5.6) 

(5.7) 

(5.8) 

The Pomeron structure function, calculated at NLO, is 

Fr{P,Q'•,^.') = {e})pl:^{p,Q'•^^') + ^ ^ p 

X , (5.9) 

where (e^) = (1/n/) Y,f ^} (with n / = 3), and where the coefficient functions C^^^^ 

and Cl̂ J-o are calculated in the JIS scheme [159]. The quark singlet, E^(/?, Q^; / i^) , 

and gluon, ^{P, Q'^; /x^), distributions of the Pomeron are obtained by NLO DGLAP 

evolution up to from input Pomeron PDFs parameterised at a starting scale /j?: 

d hr{P,Q^-y?)\ a s m f'dP 
2n J3 P' 51nQ^ \9^{P,Q';i^')^ 

99 ( | , « 5 ( Q ^ ) ) ^g^{P',Q';i^') 
(5.10) 

The quark singlet distribution isE^ = vr + (F + s^ + vF' + ^ + ^ , with itP" = 

(F = ^ = vF" = cF = 5^^, so that the non-singlet distributions are all zero. The 
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contributions of the charm and bottom quarks to F f (/3, Q^;M^) â re calculated in 
the heavy quark fixed-flavour number scheme from the photon-gluon fusion process 
including NLO corrections [160]: 

X (5.11) 

where 

C ® o ^ ^ f \ ^^^.dp'c(§;,Q',ml)a!^{P',Q';f,'). (5.12) 

The input parameterisations for the Pomeron PDFs are obtained from the lowest-

order Feynman diagrams (see Section 4 .7 ) : 

^ E ^ = ^ ( ^ , fi^-^^') = c,/G (1 - / ? ) , (5.13) 

/ ? ' / ' = ^ ( / ? ' , M^) = c,/G (1 + 2/3')' (1 - ( 5 . 1 4 ) 

^S^=^(/3, Ai'; ;u2) = c,/5 /3 (1 - /?), (5.15) 

/3'/^=^(/3',A.';M') = c , / 5 ( l - / 3 ' ) ^ ( 5 . 1 6 ) 

/3E^=^^(/? ,M2;M') = c,/GsP'{l - P), ( 5 . 1 7 ) 

P'g^=^'{P',fi';f.') = c,/GS (1 + 2P') (1 - /?')^ ( 5 . 1 8 ) 

Here, the coefficients of Section 4 .7 , where a =^ q,g and IP = G, S, GS, which 

implicitly include all the numerical factors arising from the lowest-order calculations, 

have been replaced by parameters Ca/ip. We will let these normalisations go free in 

fits to the DDIS data to account for higher-order QCD corrections (effective K-
factors). Later on, we will discuss the size of these /f-factors obtained from the 

fits. The normalisations of the interference terms between the two-gluon and the 

two-quark Pomerons is fixed by Ca/cs = i/Ca/G Ca/s\ that is, the K-factor is fixed 

for the amplitude rather than for the cross section. 

In addition to the leading-twist contribution arising from the quark dipole cal

culation with a transversely polarised photon, there is an analogous twist-four con

tribution to F^^^^ arising from a longitudinally polarised photon (see Section 4 . 7 ) , 

F^,^\xjp,P,Q')= Yl ( r dn'^^Mxjp-^i')] Ff-iP). (5.19) 
IP=G;S;GS V QO 

The twist-four nature of this longitudinal contribution is evident from the ^ jQ'^ 
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factor. The /3 dependences are again obtained from lowest-order perturbative QCD 
calculations (see Section 4.7): 

Fr=^(/3) = c^iG 0" {2(3 - l ) \ (5.20) 

FT='{I3) = c^is P\ (5.21) 

Ff=«^(/3) = c^/Gs/3'(2/3-1), (5.22) 

where, as before, the parameters {IP = G,S,GS), which include all the 

numerical factors, have been replaced by free parameters, CL/IP- Again, we fix 

CL/GS = i / C L / G CL/S-

We also include a non-perturbative (NP) Pomeron contribution (from scales 

p, < Qo) and a secondary Reggeon {IR) contribution to F^^^\xip, PyQ"^), so that 

with 

<S(xiP, /?, g ' ) = fjP=Mxip) i ^ = ^ ^ ( ^ , Q'; Q^), (5.24) 

F^£\xjp,p,Q') = cmfiR{xip)Fi'{P,Q\ (5.25) 

where QR is taken to be a free parameter. Here, the non-perturbative Pomeron and 
Reggeon flux factors are^ 

with i = IP and /i? respectively, and Q!i(<) = Q;i(0) - f a- <. The integration limits are 

taken to be ^cut = - 1 GeV^ and tmin — 0 GeV^. For the non-perturbative Pomeron, 

we fix a/p(0) = 1.08 [124], a'jp = 0.26 GeV-^ and Bjp = 4.6 GeV-^ [161], whereas 

for the Reggeon we take aM{0) = 0.50 [162], = 0.90 GeV-^ [163] and BJH = 2.0 

GeV~^ [164]. Apart from Q;ip(0), these are the same values used in the preliminary 

H I analysis [148]. The Reggeon structure function, F^{P, Q^), is calculated at NLO 

from the GRV pionic PDFs [165]. For the non-perturbative Pomeron, the input 

quark singlet and gluon distributions, {P, Ql) and P'9^=^^{P\ Ql; Ql), 

are taken to have the same P dependence as for the two-quark Pomeron (see (5.15) 

and (5.16)), with different normalisations C ^ / N P and c^/Np. (Taking the same P 
dependence as for the two-gluon Pomeron, (5.13) and (5.14), gives a much worse-

^The couplings of the Pomeron or Reggeon to the proton are absorbed into the parameters 
Co/NP {a = q,g) and Cm-
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d e s c r i p t i o n of t h e d a t a . ) 

A n i m p r o v e m e n t to t h e t r e a t m e n t of t h e s e c o n d a r y R e g g e o n c o n t r i b u t i o n de

s c r i b e d a b o v e m i g h t b e to i n t r o d u c e a ' p e r t u r b a t i v e ' c o n t r i b u t i o n s i m i l a r to t h e 

t w o - q u a r k P o m e r o n , b u t d e p e n d i n g o n t h e v a l e n c e q u a r k d i s t r i b u t i o n s of t h e p r o t o n 

r a t h e r t h a n t h e s e a q u a r k d i s t r i b u t i o n s . H o w e v e r , for t h e present a n a l y s e s we a d o p t 

t h e s a m e t r e a t m e n t of t h e s e c o n d a r y R e g g e o n c o n t r i b u t i o n as H I [148] t o a v o i d i n 

t r o d u c i n g f u r t h e r a d d i t i o n a l p a r a m e t e r s , a n d s ince t h e r e a r e r a t h e r few ^2^^^^ d a t a 

p o i n t s a t l arge x p > 0.01 w h e r e t h e s e c o n d a r y R e g g e o n c o n t r i b u t i o n is i m p o r t a n t . 

5.2 Description of DDIS data 

W e fit to t h e p r e l i m i n a r y Z E U S [157,158] a n d H I [148] D D I S d a t a u s i n g ( 5 . 2 3 ) , a n d 

v a r y i n g t h e free p a r a m e t e r s u n t i l a n o p t i m u m d e s c r i p t i o n of t h e d a t a is o b t a i n e d . 

W e i m p o s e a c u t M x > 2 G e V o n t h e fitted d a t a to e x c l u d e l arge c o n t r i b u t i o n s 

f r o m v e c t o r m e s o n p r o d u c t i o n a n d o t h e r h i g h e r - t w i s t effects , a n d a cut y < 0 .45 so 

t h a t we c a n a s s u m e t h a t t h e m e a s u r e d r e d u c e d d i f f r a c t i v e cross s e c t i o n a^^^^ is a p 

p r o x i m a t e l y e q u a l t o F2^^^ (see ( 4 . 1 7 ) ) . T h e s t a t i s t i c a l a n d s y s t e m a t i c e x p e r i m e n t a l 

e r r o r s a r e a d d e d i n q u a d r a t u r e . ^ T h e is t h e n 

•(^D(3))exp. _ (^D(3)) ,H. 

j (."stat. ^ "sysJi 
(5 .27 ) 

w h e r e t h e s u m is over a l l d a t a p o i n t s s a t i s f y i n g t h e c u t s y < 0 .45 a n d M x > 2 G e V . 

W e use t h e Q C D N U M p r o g r a m [166] to p e r f o r m t h e N L O D G L A P e v o l u t i o n a n d 

t h e M I N U I T p r o g r a m [167] to find t h e o p t i m a l p a r a m e t e r s . T h e v a l u e s of Q ; S ( M | ) a n d 

t h e c h a r m a n d b o t t o m q u a r k m a s s e s a r e taJcen to b e t h e s a m e as i n t h e M R S T 2 0 0 1 

N L O p a r t o n set [127]. T w o sets of p r e l i m i n a r y Z E U S d a t a are fitted: t h o s e o b t a i n e d 

u s i n g t h e l e a d i n g p r o t o n s p e c t r o m e t e r ( L P S ) [157]^, a n d those o b t a i n e d u s i n g t h e 

s o - c a l l e d M x m e t h o d [158] w h i c h is b a s e d o n t h e f a c t t h a t d i f f r a c t i v e a n d n o n -

d i f f r a c t i v e events h a v e v e r y d i f ferent l n M | - d i s t r i b u t i o n s . F o r t h e l a t t e r d a t a set , 

i n a d d i t i o n to e l a s t i c p r o t o n s c a t t e r i n g , p r o t o n d i s s o c i a t i o n u p to m a s s M y = 2.3 

G e V is i n c l u d e d . C l e a r l y t h e cross s e c t i o n w i l l b e l arger i n t h i s case , so we a l l o w 

for t h e o v e r a l l n o r m a l i s a t i o n of these d a t a b y m u l t i p l y i n g (5 .23 ) b y a f a c t o r Nz- A n 

a n a l o g o u s n o r m a l i s a t i o n , NH, i s a p p l i e d for t h e p r e U m i n a r y H I d a t a [148], w h e r e 

d i f f r a c t i v e events a r e se l ec ted o n t h e b a s i s of a l arge r a p i d i t y g a p , a n d w h e r e p r o t o n 

•̂ In reality the various systematic errors are often strongly correlated; these correlations are 
accounted for in the HI analysis [148] but are not publically available. 

•'This data set has since been published in [168]. 
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dissociation up to mass My = 1.6 GeV is included. The ZEUS Mx data [158] do 
not include secondary Reggeon contributions, therefore we omit the fourth term of 
(5.23) when fitting to these data. We fit to each data set separately, and then we 
perform fits to the three data sets combined. 

5.2.1 . . . with a 'dummy' gluon distribution 

For our first study, we parameterise the perturbative Pomeron fiux factor (5.6) using 

a simphfied form for the gluon distribution of the proton, 

xipgixjp, 11^) = Xp^, (5.28) 

where A is independent of //^ and is determined by the fit to data.^ The normalisation 

of (5.28) has been absorbed into the free parameters Cg/c, Cg/G, and CL/G- The two-

quark Pomeron is not included, that is, effectively Cq/s = Cg/s — CL/S = 0. 

Varying the Qo parameter, we find that the best fit to the combined ZEUS 

and H I data sets is obtained with Ql = 0.8 GeV^, which gives a x^/d.o.f. = 1.05 

with Cg/NP going to zero. Later on, we will use the MRST2001 NLO [127] PDFs 

of the proton instead of the simplified form (5.28), where the minimum possible 

scale is 1 GeV. Using the form (5.28) with Ql = 1 GeV^ gives only a shghtly 

worse x^/d.o.f. = 1.07. Furthermore, fixing Cg/Np — 0 makes little difference to the 

quality of the fit. Therefore, in all fits presented here, we take Ql = 1 GeV^ and fix 

Cg/NP = 0. 

We find that each data set can be well described by this simple, perturbatively-

motivated, approach. However, different values of A and the other parameters are 

obtained from the ZEUS and H I data, as can be seen from Table 5.1. In particular, 

the H I data seem to have a fiatter xp dependence than the ZEUS data. This should 

be regarded as some inconsistency between the data sets, but not as a contradiction, 

since it is possible to obtain an adequate description of the combined data sets, as 

shown in Fig. 5.2 and by the results in the last column of Table 5.1. 

Since the normahsation of the 'dummy' gluon distribution has been absorbed into 

the Ci/G parameters {i = q, g, L) it is difficult to work out the effective 'K-factors' in 

this case, but we will do this in the next section. 

^Strictly speaking, A should depend on In/^^. We investigated this effect by taking \{n'^) = 
0.08 + CAln(/iiV(0.45GeV^)) with Qo = 1 GeV and CJ/NP = 0. The combined fit to ZEUS and 
HI DDIS data gave a x^/d.o.f. = 1.12 with CA = 0.054 ± 0.006. This is consistent with the value 
found- by HI in-a fit to inGlusive-F2 data [169] of CA =-0;0481 ± 0.0013(stat.) ± 0.0037(sysf .)T"Siiice= 
the x'̂ /d.o.f. was not improved compared to the corresponding fit which took A to be independent 
of (x^/d.o.f. = 1.07), we used the form (5.28) for simphcity. 
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1997 ZEUS LPS data (prel.) ton!S^rrLta*nt« 
Twi8l-4 conliib. 

MRW 2004 NLO Q C D fit CX') R.goeon conlnb q=,o.v>, 

Perturtiatlva conlrib. 

• Non-perturbative contrto. 
MRW 2004 NLO Q C D tit ('X') - Twist-4 contnb. ^, ^ ĵ̂ .̂̂  

1998/99 ZEUS data (prel.) 

X 

0 04 

0 02 

004 

0 02 

P = 0.007 p = 0.030 P = 0.130 

" ^ ^ ^ 

(3 = 0.480 

^^^^^^ 

\h 

^ ^ J - ; [/. 
--'-.-.'.ĵ Y 

to'* 10* 10'' 10"* 10'' lO"" 10"* lO"* 10"* 10"* 10'* lO"* 

•fi = 0.007 0.O22 ••> = 0,231 

3 = 0.100 

[1 = 0.016 a. 04 7 ;i = 0.143 

^ = 0.471 

. \ H = 0.034 = 0.609 

;- = 0-063 11 = 0.182 = 0-429 

0.121 l\ = 0,312 
= 0.859 

10"* 10"* 10"* 10"* 10"' 10"* 10"* lO"* 10' lO"* 10"* 10'' 

1997 H1 data (prel.) 
MRW 2004 NLO QCD fit (T) 

— Perturbative contrib. 

Non-perturt)ative contrib. 
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• Reggeon contrib. Q- (GeV 

0.2001.. • , 13 =0.400 0.040 P = 0.100 = 0.650 U B = 0.900 
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Figure 5.2: Fit to combined preUminary ZEUS [157,158] and H I [148] F2^^^ data 
with a 'dummy' gluon distribution of the proton proportional to Xp'^ (5.28). The 
curves show the four contributions to the total, as defined in (5.23). Only data 
points included in the fit are plotted. 
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Data sets fltted ZEUS LPS" ZEUS Mx H I ZEUS + H I 
Number of points 69 121 214 404 
xVd.o.f. 0.67 0.78 1.08 1.08 
c , / G (GeV2) 
c,iG (GeV2) 
C L / G (GeV^) 
Cg/NP (GeV-2) 
cjR (GeV-2) 

0.71 ±0 .39 
0.11 ±0 .05 

0.48 ±0 .12 
0.10 ±0 .02 

2.2 ± 0 . 4 
0.26 ± 0 . 0 5 

1.1 ± 0 . 2 
0.17 ±0 .02 

c , / G (GeV2) 
c,iG (GeV2) 
C L / G (GeV^) 
Cg/NP (GeV-2) 
cjR (GeV-2) 

0 
0.87 ± 0 . 1 3 

0.20 ± 0 . 0 8 
1.22 ± 0 . 0 4 

0.54 ± 0 . 1 7 
0.91 ± 0 .05 

0.36 ± 0 . 0 8 
1.09 ± 0 . 0 5 

c , / G (GeV2) 
c,iG (GeV2) 
C L / G (GeV^) 
Cg/NP (GeV-2) 
cjR (GeV-2) 6.7 ± 0 . 8 — 7.5 ± 2 . 0 6.2 ± 0 . 6 
A 0.23 ± 0.04 0.21 ± 0 . 0 2 0.13 ± 0 . 0 1 0.17 ± 0 . 0 1 
iVz — 1.56 (fixed) — 1.56 ±0 .06 

— — 1.26 (fixed) 1.26 ± 0.05 
i?(6.5GeV^),i?(90GeV^) 0.60,0.60 0.56,0.57 0.54,0.55 0.55,0.56 

Table 5.1: The values of the free parameters obtained in the fits to preliminary 
ZEUS [157,158] and H I [148] F^^^'^ data with a 'dummy' gluon distribution of the 
proton proportional to x'^ (5.28). The last row R{Q^), defined in (5.33), gives 
the fraction of the Pomeron's (plus Reggeon's) momentum carried by gluons at 
xip = 0.003. 

"Fitting to the published ZEUS LPS data [168], which is unchanged from the preliminary data 
fitted here apart from having smaller systematic errors, gives a x^/d.o.f. = 0.77. 

5.2.2 . . . with MRST gluon and sea quark distributions 

These fits to the DDIS data imply that the growth of F^''^^ with decreasing xp 
comes from a gluon distribution which grows as Xp^ with A ~ 0.17. On the other 
hand, at low scales ^ ~ Qo ~ 1 GeV, which are dominant due to the l/jj.'^ factor 
in the Pomeron flux factor (5.6), the gluon distribution of the proton obtained from 
global analyses of DIS and related data is valence-like, or even negative, at small x, 
while the sea quark distribution grows as a negative power of x with decreasing x; 
see Fig. 5.3. Therefore, in order to describe the DDIS data we are forced to introduce 
a Pomeron comprised of two t-channel sea quarks, illustrated in Fig. 5.1(b). 

The results of flts with this extended model, using the MRST2001 NLO [127 
gluon and sea quark distributions of the proton, are shown in Table 5.2 and Fig. 5.4. 
We set xjp g{x]p, jj?) = 0 if it is negative. Again, good fits are obtained whether 
fitting ZEUS and H I data separately or all together. However, the fit with only 
H I data is dramatically different from the other three fits in Table 5.2, with a 
much larger two-gluon Pomeron contribution compared to the other three, which 
are dominated by the two-quark Pomeron. This difference can be traced to the 
flatter xjp dependence of the H I data compared to the ZEUS data (see Table 5.1). 
"Note" that some paranieters in Table 5.2 are consistent with zero, indicating some' 
redundancy in this extended model. 
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MRST xg(x, Qo = 1 G e V ) 

• - MRST xS(x, Q„- = 1 GeV') 

CTEQ xg(x, = 1 GeV^ 

CTEQ xS(x, Q- = 1 G e V l 

MRST xg(x, Q- = 1.69 GeV") 

MRST xS(x, Q- = 1,69 GeV") 

CTEQ xg(x, Q„- = 1.69 GeV^) 

CTEQ xS(x, Q„- = 1.69 G e V l 

Figure 5.3: Comparison of MRST2001 NLO [127] and CTEQ6M [35] PDFs at their 
respective input scales of (a) 1 GeV^ and (b) 1.69 GeV^. The more recent MRST2002 
170] and MRST2004 [34] PDFs are similar to MRST2001. In (a) the CTEQ gluon 

distribution is set to zero if it is negative. 

Data sets fitted ZEUS LPS ZEUS Mx H I ZEUS + H I 
Number of points 69 121 214 404 
xVd.o.f. 0.79 0.96 0.71 1.14 

Cg/G (GeV^) 
CL/G (GeV2) 
cq/s {GeV') 
cg/s {GeV') 
CL/s (GeV) 
c , / N P (GeV-2) 
cm (GeV-2) 
Nz 
NH 

0 
0.2 ± 1.5 

0.97 ± 0 . 4 0 
1.2 ± 0 . 2 

0.41 ± 0.28 
0.79 ± 0.22 
6.6 ± 0 . 7 

0 
0.050 ± 0.033 

0.49 ±0 .10 
1.23 ± 0 . 0 7 
0.21 ±0 .09 
1.16 ± 0 . 0 8 

1.54 (fixed) 

0.37 ±0 .02 
0.14 ± 0 . 0 3 

1.1 ± 0 . 1 
0 
0 

0.09 ± 0 . 1 1 
8.4 ± 1.8 

1.24 (fixed) 

0 
0.064 ±0 .024 
0.58 ± 0 . 0 7 
1.31 ± 0 . 0 7 
0.11 ± 0 .05 
0.92 ± 0.07 
6.4 ± 0 . 5 

1.54 ±0 .06 
1.24 ±0 .04 

Kg/G 0.006 ±0 .318 0.11 ±0 .14 2.2 ± 0.4 1.1 ± 0 . 2 
Kg/G 0 0 3.9 ± 0 . 2 0 
KL/G 5 ± 4 1 1.4 ± 0 . 9 3.8 ± 0 . 8 1.7 ± 0 . 6 
Kq/s 7.1 ± 2 . 9 3.6 ± 0 . 7 8.0 ± 0 . 7 4.2 ± 0 . 5 
Ky/S 3.9 ± 0 . 7 4.0 ± 0 . 2 0 4.3 ± 0 . 2 
KL/S 3.4 ± 2 . 3 1 .7±0.7 0 0.9 ± 0 . 4 
i?(6.5GeV''),i?(90 GeV-") 0.57, 0.58 0.57, 0.59 0.60, 0.66 0.57, 0.57 

Table 5.2: The values of the free parameters obtained in the fits to ZEUS [157, 
158] and H I [148] 2̂̂ ^̂ ^ data with MRST2001 NLO [127] gluon and sea quark 
distributions of the proton. The K-iactors are defined in (5.29). The last row R{Q'), 
defined in (5.33), gives the fraction of the Pomeron's (plus Reggeon's) momentum 
carried by gluons at xp = 0.003. 
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Figure 5.4: Fit to combined preliminary ZEUS [157,158] and HI [148] F^^^^ data 
witli MRST2001 NLO [127] gluon and sea quark distributions of the proton. The 
curves show the four contributions to the total, as defined in (5.23). Only data 
points included in the fit are plotted. 
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The experimental 'K-factors' given in Table 5.2 are defined as 

K^iP - (5.29) 
H/iP 

where i = q,g,L and IP = G, S. The LO coefficients, c f ^ , were derived in Section 
4.7 and are collected below for convenience: 

L O _ ^9 L O _ ^ ^ 3 _ L O _ ^^9 / r o n \ 

^ . / G - ; ^ . ^^^/G- ieSo' ^ / ^ ~ 9 i ? c ' ^ ^ ^ 

„LO _ L O _ L O _ 32fi^ 

In obtaining the numerical values of Ki/p presented in Table 5.2, we have used 
BD = 6 GeV-2, Rg{X = 0) = 1 as given by (4.50), and Rg{X = 0.26) = 4.1 as given 
by (4.91). These values of A are obtained from the behaviour of the MRST2001 NLO 
PDFs at = 1 GeV^ as x —> 0, bearing in mind that we set the gluon distribution 
to zero if it is negative. It is remarkable that the K-iactors turn out to be of typical 
size 1 to 4 (apart from Cg/c = 0) for the combined fit to ZEUS and HI data; see also 
the values obtained later in Tables 6.1 and 6.3. 

5 . 3 D i f f r a c t i v e p a r t o n d i s t r i b u t i o n s 

Prom these fits to F2^^\ we can extract the quark singlet and gluon DPDFs, 
a^{xip,f3,Q^) = PE^{xip,P,Q^) or 0g^{xip, P,Q^), from the three leading-twist 
contributions to (5.23): 

IP=G,S,GS V'^o , 
+ fip^^vM a^=^P(^, Ql) + U ^ J P ) a^(/3, Q^). ( 5 . 3 2 ) 

The DPDFs calculated using (5.32) are plotted for the eight different fits of Tables 
5.1 ('A') and 5.2 ('MRST') in Fig. 5.5(a) for xjp = 0.003 and = 6.5,90 GeV .̂ The 
DPDFs extracted from the fits to the combined ZEUS and HI data sets are shown as 
the sohd fines. We also show the Pomeron PDFs from the preliminary HI analysis 
148] multiplied by fip{xip) (given by (5.26) with a]p{0) = 1.173) and normalised to 

the ZEUS LPS data by dividing by a factor 1.26 (from Table 5.1). Notice that the 
eight different fits of Tables 5.1 and 5.2 give similar DPDFs, especially at the higher 

value, with the possible exception of the 'MRST' fit to only HI data. 
From Fig. 5.5(a), the diffractive quark singlet distribution obtained by HI [148 
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Figure 5.5: The solid lines labelled 'A' and 'MRST' show the DPDFs extracted 
from the fits in Tables 5.1 and 5.2 to the combined prehminary ZEUS [157,158] and 
HI [148] data (compared to those obtained by HI [148]). In (a) we also show the 
separate fits to the three different data sets of Tables 5.1 and 5.2. In (b) we also 
show fits to the combined ZEUS and HI data using the same value of as{M^) as in 
the preliminary HI analysis [148], corresponding to AQCD = 0.2 GeV for 4 flavours. 



5.3 Diffractive parton distributions 125 

has a slightly steeper dependence than the fits presented here, and hence HI ob
tain a larger diffractive gluon distribution. In addition, the smaller value of ^ ^ ( M l ) 
used by HI also enlarges their gluon density.̂  To demonstrate this, we repeated the 
combined fits to ZEUS and HI data using the same value of as{M'^) as in the pre-
hminary HI analysis [148]. The resulting DPDFs are shown by the dotted ('A') and 
dashed ('MRST') fines in Fig. 5.5(b); the diffractive gluon distributions are much 
closer to the HI diffractive gluon distribution, especially for the 'MRST' fit, but 
there is still some discrepancy. In our analysis, aU the input Pomeron PDFs vanish 
as either (1 — /3) or (1 — as /5 —> 1. As f3 ̂  1, the only non-zero contribution 
to comes from a twist-four component arising from longitudinally polarised 

photons. This contribution was not included in the HI analysis [148], and hence 
rather large DPDFs were obtained by HI for P close to 1, with an unphysical 'bump' 
in the diffractive gluon distribution (see Fig. 5.5). 

In Fig. 5.6 we show the breakdown of the five separate components of (5.32) for 
the 'A' and 'MRST' fits to the combined data sets. Note the large contribution from 
the two-quark component of the Pomeron for the 'MRST' fit. 

We define the fraction of the Pomeron's (plus Reggeon's) momentum carried by 
gluons at Xip = 0.003 as 

/„'„id/) [/3E°(xjP = 0,003, /?, Q 2 ) + /3gD^x^ = 0.003, /3, Q')] 

which is given for values of 6.5 and 90 GeV^ in the last rows of Tables 5.1 and 
5.2. The gluon momentum fraction, i?(Q^), is consistently 55-60% and is almost 
independent of Q'^. Taking the same 0:5(M|) as in the preliminary HI analysis would 
increase this value to ^ 65%, compared to the value found by HI of 75 ± 15% [148 . 

Note, from Fig. 5.4, that the perturbative Pomeron contribution to F^^^^ (from 
scales II > Qo = 1 GeV) is not small; as a rule it is more than half the total con
tribution. The comparison of the separate fits to the ZEUS and HI data presented 
in Table 5.2 demonstrates that there is a strong correlation between the pairs of 
parameters Ci/c and Cj/5, where i — q,g,L. That is, with the present accmacy of 
the data, it is hard to distinguish between partons which originate from the two-
gluon and two-quark components of the Pomeron.̂  Nevertheless, the final DPDFs 
are similar for the diflFerent fits. This stability increases confidence in these distri-

^In the preliminary HI analysis [148], AQCD = 0.2 GeV for 4 flavours, corresponding to 
a s ( M | ) = ai085, _whereas_we tal̂ ^̂  = 0.1190 from the MRST2001 NLO parton set [1-27:];= 
cf. the world average, a s ( M | j = 0.1187(20), from the P D G [171]. 

^The combined analysis of DDIS data with a more exclusive diffractive process, such Ss diffract 
tive J/ip production at H E R A , which is sensitive to the two-gluon component of the Pomeron, 
may help to resolve this problem. 
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Figure 5.6: The breakdown of the five separate components of (5.32) for (a) the 'A' 
fit of Table 5.1 and (b) the 'MRST' fit of Table 5.2. In both cases, the fit to the 
combined ZEUS and HI data is shown. 
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butions, so that they can be used in the description of other diffractive processes 
at HERA and the Tevatron. Of course, we must include the probability that the 
rapidity gap survives the soft rescattering of the colliding hadrons or 'hadron-like' 
states [138-142]. 

It has been demonstrated by HI that their preliminary DPDFs [148] can be used 
to describe final state observables in DDIS, namely dijet and D* meson production 
cross sections [172]. Before our DPDFs can be taken seriously we need to demon
strate the same thing. The DPDFs can be then be used to calculate the diffractive 
structure function of the antiproton, defined as 

Smax smin Jf̂  

^ m a x 

/5^''(e,/3,Q') + ^/3S^(e,AQ') (5.34) 

Comparison to CDF diffractive dijet data measured at the Tevatron [173] will allow 
checks to be made of the rapidity gap 'survival probability' [138,139], which is an 
important ingredient in calculations of diffractive Higgs production at the LHC [91 . 



Chapter 6 

Absorptive corrections in 
deep-inelastic scattering 

A long-standing question concerns the treatment of diffractive events in a global 
parton analysis of DIS and related hard-scattering data. Are they already included 
in the input distributions or must some account be taken of them in the DGLAP 
evolution? The present chapter addresses this question. We show that DDIS is 
partially included in the starting distributions and partially must be allowed for in 
the DGLAP evolution. 

The advantage of describing the DDIS data using an approach where the depen
dence on the Pomeron scale ii is explicit, as in the last chapter, is the possibility to 
use the results to evaluate the absorptive corrections AF|'''^ to the inclusive structure 
function F2. Indeed, as we shall describe below, the application of the Abramovsky-
Gribov-Kancheli (AGK) cutting rules [174,175] giveŝ  

A F f ^(a;„Q2;/^2) = -F^ {x^^Q'-1?\ (6.1) 

where F2^{XB,Q^] /J-^) is the contribution to the diffractive structure function F^^^^ 
(integrated over xjp) which originates fi-om a perturbative component of the Pomeron 
of size 1/fx. Since the equality (6.1) is vafid for each component, / i , of the pertur
bative Pomeron, we can separate the screening corrections coming from low jj, < QQ 
(which are included in the input parameterisations) from the absorptive effects at 
small distances (yu > Qo) which occur during the DGLAP evolution in the analysis 
of DIS data. Clearly, the inclusion of these absorptive effects will modify the par-
ton distributions obtained from the DIS analysis. Not surprisingly, we find that_by_ 

^Actually, to extract the 'data' appropriate for a pure D G L A P fit of F2{XB,Q'^) we have to 
include the absorptive corrections AFÎ *^^ integrated over fi^ in the whole evolution interval from 
Ql to Q\ 

128 
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accounting for these 'Glauber-type' shadowing corrections we enhance the small-a: 
input gluon distribution. 

6.1 Gluon recombination at small x 

At very small values of x it is expected that the number density of partons within 
the proton becomes so large that they begin to recombine with each other. This phe
nomenon of parton recombination is also referred to in the literature by a plethora 
of other names, such as absorptive corrections, non-linear effects, screening, shad
owing, unitarity corrections, multiple scattering, multiple interactions, or saturation 
effects. Here, we will usually refer to 'absorptive corrections'. 

The first perturbative QCD calculations describing the fusion of two Pomeron 
ladders into one were made within the DLLA by Gribov-Levin-Ryskin (GLR) [23] 
and by Mueller-Qiu (MQ) [176]. The GLRMQ equations add an extra non-linear 
term, quadratic in the gluon density, to the usual DGLAP equations for the gluon 
and sea quark evolution: 

dxg{x, Q 2 ) dxg{x, Q"^) 
ainQ2 a in (52 

dxS{x, Q 2 ) Q )̂ 
(91nQ2 a i n ( 5 2 

ocim f'dx' 
o 

D G L A P 
1 ^,2/n2\ 

xg{x,Q')]\ (6.3) 1 aliQ') 
D G L A P 10 i ? 2 g 2 

where R is of the order of the proton radius. The Balitsky-Kovchegov (BK) [177-179 
equation generalises the non-linear term of the GLRMQ equations to single ln(l/a;) 
accuracy. It is equivalent to the LL BFKL equation with an additional non-linear 
term. However, NLL BFKL contributions are not accounted for, which are known 
to have a large numerical effect. 

A phenomenological investigation using the GLRMQ equations based on NLO 
DGLAP evolution was made in [180], before the advent of the HERA data. The 
input gluon and sea quark distributions were assumed to have a small-a; behaviour 
of the form xg,xS ~ x^°-^ at an input scale of Ql — 4 GeV .̂ Since the small-a; 
gluon distribution is now known to be valence-like at low from the HERA data, 
the shadowing corrections due to gluon recombination are correspondingly reduced, 
as found by MRST in [181]. At low the sea quarks are the dominant partons 
at small x, and hence sea quark recombination should be considered in addition to 
gluon recombination. _ . _ _ -

On the other hand, Eskola et al. [182] have found that taking input gluon and 
sea quark distributions at = 1.4 GeV ,̂ then evolving upwards with the GLRMQ 
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equation based on LO DGLAP evolution, improves the agreement with F^ data 
at small x and low compared to the standard CTEQ sets. In [182] the input 
distributions were obtained by interpolating between three results: CTEQ5L [81] 
PDFs at = 5 QeV ,̂ CTEQ6L [35] PDFs at = i q GeV ,̂ and CTEQ6L PDFs 
at - 3 GeV^ each evolved downwards to = 1,4 QeV^ using the GLRMQ 
equation based on LO DGLAP evolution. This procedure of obtaining the input 
by averaging over different CTEQ PDFs is clearly strange, but is necessary since 
simply obtaining the input distributions by evolving the CTEQ6L PDFs at = 5 
GeV^ downwards to Ql = \ A GeV^ gave a worse description of the data at small x 
than the CTEQ6L result. This approach assumes that the PDFs evolved with the 
GLRMQ equation should be unchanged at large Q"^ from the conventional DGLAP-
evolved sets. However, as we will show later, this is not the case, as observed by 
MQ [176]: 

The correction term to the usual DGLAP equation is of higher twist as 
a factor of l/Q^ explicitly appears. This does not mean that shadowing 
effects go away as \/Q^. On the contrary, in order to determine g[x, Q"^) 
in terms of, say, g{x\ Ql) one must integrate the DGLAP equation be
tween Ql and Q"^. If the correction term is effective anywhere in that 
interval shadowing effects will have been included. 

Therefore the CTEQ PDFs, with input scale Ql = 1.69 GeV ,̂ will not be fi:ee of the 
effects of absorptive corrections even at large and so they should not be taken 
as input to GLRMQ evolution. It is necessary to refit the input PDFs in a global 
parton analysis, preferably using NLO QCD rather than just LO QCD. 

Using the GLRMQ equation to study absorptive corrections has several limita
tions. The non-linear terms in the evolution equation lead to a violation of momen
tum conservation. There is some uncertainty in the two-gluon distribution, taken 
to be [176] 

x'G'^'\x,Q') = ^^[xg{x,Q')Y (6.4) 

in (6.2) and (6.3), and in the value of the R parameter. In the next section, we 
show that the absorptive corrections to F2 can be extracted from DDIS data using 
the formalism of Chapter 5. We will then perform a NLO QCD parton analysis of 
F 2 including these absorptive corrections, originating from sea quark recombination 
as well as gluon recombination. 
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Figure 6.1: The total F2, measured by experiment, can be approximated by the sum 
of the one-Pomeron and two-Pomeron exchange contributions. 
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Figure 6.2: The two-Pomeron exchange contribution to F2. The equality shows the 
application of the AGK cutting rules, and the relative magnitudes of the cut dia
grams. All the permutations of the two gluon ladders (forming Pomeron exchange) 
are implied. 

6.2 Absorptive corrections to F2 

The total proton structure function, F2*^**(xb, Q^), as measured by experiment, can 
be approximately written as a sum of the one-Pomeron^ (DGLAP) contribution and 
absorptive corrections due to two-Pomeron exchange. That is. 

(6.5) 

illustrated in Fig. 6.1. A brief insight into the equality (6.1) may be obtained from 
Fig. 6.2, which shows the leading absorptive correction (the two-Pomeron exchange 
contribution) to F2. For simplicity, the upper parton ladder, shown in the right-hand 
diagram of Fig. 6.1, is hidden inside the upper blob in each diagram of Fig. 6.2. 
Applying the AGK cutting rules [174] to the IP ® IP contribution, we obtain the 
relative contributions of +1, —4, and +2 according to whether neither Pomeron, 
one Pomeron, or both Pomerons are cut. The first contribution is just F^, which 

^Here, we are interpreting the perturbative Pomeron to be a NLO DGLAP parton ladder, rather 
than the more usual interpretation of the QCD Pomeron as being a BFKL gluon ladder. 
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enters with the same magnitude, but the opposite sign, in the total AFj^''^. Hence 
the equality shown in (6.1). In this way, we are able to estimate the absorptive 
corrections, l^F^^^^Xg, Q^; A*̂ ), as a function of fi, from the pertinbative component 
of Fâ ^̂ ^ determined from the fit to the DDIS data. Integrating (6.1) over fi^ from 
Ql to we obtain 

AFt{xs,Q') = - r d/x̂  F 2 ^ ( a ; „ Q 2 ; ^ 2 ) (g g) 

That is, the leading absorptive correction is given by minus the diffractive compo
nent arising from Pomeron scales greater than Qo, where Qo is the scale that the 
input PDFs are parameterised at in a DGLAP fit to DIS data. (Note that the same 
negative sign was given in (4.5) for the IP ®IP contribution in Regge theory.) The 
fi < Qo contributions to the absorptive corrections are already included in the input 
parameterisations. To fit F2 purely using the DGLAP formahsm, we first need to 
'correct' the data for absorptive corrections, 

= Ft^{x„Q') + \AFt%x,,Q')\. 

Basically, the (negative) screening corrections have to be subtracted from the F2 
data, before the DGLAP analysis is performed. At small Xg, the effective F2 'data' 
are therefore appreciably enhanced. Notice that the original fit to the DDIS data in 
Chapter 5 required knowledge of the gluon and sea quark distributions, Xp g{x]p, /i^) 
and xip S{xip, 11^), in the perturbative Pomeron fliix factors. Since the new DIS fit 
yields modified parton distributions, we therefore have to repeat the fit to the DDIS 
data. Fortunately, the successive iterations between the DDIS and DIS fits rapidly 
converge, as we shall demonstrate. 

6.2.1 C o n n e c t i o n t o G L R M Q a p p r o a c h 

It is illuminating to show how our approach of 'correcting' the data then performing 
linear DGLAP evolution is related to the GLRMQ approach of including a non-linear 
term in the evolution equation. 

Assuming that Ql, the scale that the input PDFs are taken at, has the same 
value as that used in Chapter 5 to separate the perturbative and non-perturbative 
contributions-to DDIS, then the absorptive corrections are 

AFtixg, Q') = - f dxs> k7 (̂x ,̂ (3, Q') + F^^^\XJP, p, Q')] , (6.8) 
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where F^p^^ is the leading-twist contribution (5.5) and F^p^ is the twist-four contri
bution (5.19). RecaU that the notation/P = G, S, GS denotes that the perturbative 
Pomeron is represented by two t-channel gluons, two £-channel sea quarks, or the 
interference between these, respectively. Considering only the IP = G contribution, 
then 

F,''l'\xjp,P,Q') = r ^ — [asif^') xn^gixjp,f,')]' if'=«(/?,Q^;^^), (6.9) 
J Q 2 fi"" Xp ' 

F^^^\xp,P,Q') = [ M f i ' ) xjpg{xjp,i.')Y Ff=«(/3), (6.10) 
^ JQ2 A* XJP 

where F^=°{P,Q^; n^) and Ff=^(/3) are defined in (5.9) and (5.20) respectively. 
Neglecting the logarithmic scaling violations of F^^^{P, Q ;̂ ^^) and differentiating 
(6.5) with respect to InQ^ we obtain 

(6.11) 
This equation could be used to derive a more precise form of the GLRMQ equation, 
where the non-finear terms were calculated in the DLLA, that is, assuming that 
/? <C /5' < 1 where p = X B / X P 0. In this limit, 

/?E^=^( /3 ,Q2;Q^)^0, (6.12) 

/3'/'=^(/3',Q';Q')->c,/G, (6.13) 

F f = « ( / 5 ) ^ 0 , (6.14) 

so the Pomeron structure function (5.9) is 

( f t Q\ Q') = g/311 ̂  (I) c,ia 
(6.15) 

since P' = x/xp. A similar equation holds for the proton structure function, as
suming that gluons give the dominant contribution at small x. Neglecting the scale 
dependence of as{Q'^) and differentiating with respect to InQ^ gives 

9F2 _ as f dx / „ 2 \ ^ N L o r ^ 5 V dxg^x;Q^) 
— Z^XB 
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Hence (6.11) becomes 

dxg{x, Q^) dxg{x, Q^) 
dlnQ^ dlnQ^ D G L A P ^ J x ^IP 

which is the GLRMQ equation for the gluon evolution (6.2) with Cgjc = 3/i?^. 
The GLRMQ equation for the sea quark evolution (6.3) can be obtained from 

(6.11) by assuming light quark flavour symmetry and neglecting valence quarks 
(since we are assuming small X B ) , 

dF2{x,M'') , 2, dx,S{xs,Q') 
aing^ = ^'f^ dlnQ^ ' ^^-^^^ 

and replacing the Pomeron structure function in (6.11) with^ 

{Fr=^{P,Q';Q') + Fr=''{P)} - (6-19) 

assuming that the struck quark carries all the Pomeron's momentum. Then (6.11) 
becomes 

dxsS{xs,Q^) dxsS{xs,Q^) 
dlnQ'^ dlnQ^ 

dxsS{x,,Q') 

r'4[xMx^,Q^)rp5ii-p) 
J X R P 

ainQ2 

D G L A P 1^ B?Q^ Jxg 

2M2 1 c^im 
XBg{xB,Q'^)]' 

(6.20) 

While our approach is qualitatively equivalent to the GLRMQ approach it goes 
beyond the DLLA keeping the full P dependence in the Pomeron structure function 
and introducing sea quark recombination in addition to gluon recombination. 

We repeat that the factor of l/Q'^ in the non-finear term of the evolution equa
tions does not mean that shadowing effects disappear at large Q .̂ The absorptive 
corrections accumulate evolving from a scale Ql up to Q ;̂ however, the increase in 
absorptive corrections does fall off as 1//j^ as the scale fj, increases. Thus, the com
monly held belief that the PDFs obtained from a parton analysis are independent of 
the input scale Ql that they are parameterised at is incorrect for a fit which neglects 
absorptive corrections; larger absorptive corrections will be obtained the smaller the 
value of Ql- This fact might explain why MRST, who take Ql = I GeV ,̂ obtain a 
smaller gluon distribution at small x than CTEQ, who take Ql = 1.69 GeV ;̂ see, 
for example. Fig. 5.3. It is interesting that this hypothesis is furthern^brrdborated 

•^This replacement is needed to reproduce the GLRMQ equation for the sea quark evolution 
(6.3). Keeping the exact p dependence would give a more precise version of the GLRMQ equation. 
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MRST2001 NLO (Q^̂  = 1 GeV^) 

CTEQ6M (Qo^= 1.69GeV^) 

ZEUS2002 ZM (QQ̂  = 7 GeV^) 

Alekhin02 NLO (Q̂ ,̂  = 9 GeV^) 

L J - I 
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Figure 6.3: Gluon distribution at = IQO GeV^ from four different PDF sets. The 
size at small x increases with the input scale Qo-

by considering the ZEUS2002 PDFs [183] with Ql = 1 GeV^ and the Alekhin02 
PDFs [184] with = 9 GeV2. The gluon distributions at = IQO GeV^ are 
compared in Fig. 6.3. It is seen that the ordering of the size of the small-x gluon 
distribution, 

MRST < CTEQ < ZEUS < Alekhin, (6.21) 

refiects the ordering in Ql. However, since there are many other differences between 
these four parton analyses besides the value of Ql taken, a controlled study of the 
effect of absorptive corrections is called for. 

6.3 Theoretical calculation of F2^GLAP 

Having explained how the data can be corrected for absorptive effects to extract the 
'experimental' F^^'^^^, we now explain how the theoretical ^a^GLAP jg calculated at 
NLO. Heavy quarks are treated in the light quark variable flavour number scheme. 
The DGLAP equation for the evolution of the quark singlet and gluon distributions 
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of the proton is 

r -
Jx Z 

dlnQ^ \g{x,Q') J 27r 

'P,,{z,asm) 2nfP,g{z,as{Q'))\ (^(%Q')^ 
Pgg{z,as{Q')) Pg,{z,asm) J 

where the quark singlet distribution is 

(6.22) 

J:{X,Q')= Y1 [q{x,Q') + q{x,Q')], (6.23) 
f=u,d,s,c,b 

with s = s, c = c and b = b. The non-singlet distributions ^"^(0;, Q"^) are defined as 

qv{x, Q') = q-{x, Q') = q{x, Q') - q{x, Q'), (6.24) 

q+{x, Q') = q{x, Q') + q{x, Q') - -S(a:, Q'). (6.25) 
Uf 

Since q{x, Q'^), q{x, Q^), and E(a;, Q^) are continuous functions of Q"^, the change in 
Uf across flavour thresholds must be compensated by a discontinuity in g+(x, Q^). 
It follows that 

q^{x,ml)l^^^ = q+{x,ml)l^^^ + ^E{x,ml), (6.26) 

q+{x,ml)l^^^ = q+{x,ml)l^^^ + ^E{x,ml). (6.27) 

The heavy quarks do not contribute below the relevant flavour threshold, that is, 

-'^^^'"'^ • (6.29) 
- i E ( x , Q ' ) : Q = m» 

The evolution of the non-singlet distributions does not depend on the gluon distri
bution: 

dq^{x,Q^) ^as{Q') f'dz 
ainQ2 27r 

We define 

J^^P±{z,as{Q'))q^{-^,Q'). (6.30) 

g^>(x, Q') = ^ e} [q{x, Q') + q{x, Q^)] = (eJ)S(x, Q )̂ + qt'ix, Q% (6.31) 
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where (ej) = (1/n/) Z ) / a n d 

ql7ix,Q') = J2e}q^x,Q'). (6.32) 
/ 

Again, 9^* (̂x, Q^) is discontinuous across the flavour thresholds: 

q::'{^,ml)l^^^ = qX/{x,ml)l^^^ - ^E(x ,m^) , (6.33) 

ql7i^,ml)l^^^ = q:7{x,ml)l^^^ + ^^{x,ml). (6.34) 

The proton structure function is then 

F^^^^^ixg, Q^) = q-'-^ixg, Q^) + ^ ^ x g £ ^ 

where the coefficient functions C|^^° and C|^g° are calculated in the scheme 
159], as in (5.9). 

Since we are primarily interested in the effect of absorptive corrections, it is 
sufficient to consider the description of the small Xg data. We therefore fit to 
the ZEUS [111,185] and HI [186-188] inclusive F2(XB,Q^) data with x^ < 0.01, 
2 < < 500 GeV^ and > 12.5 GeV .̂ These are the same HERA data 
sets fitted in the MRST2001 NLO analysis [127]. We take MRST-like parametric 
forms [127] for the starting gluon and sea quark distributions at Qo = 1 GeV :̂ 

xg{x,Ql) = AgX-'^il-xf-'^'il + eg^ + ̂ gx) - A_ x''-{I - x ^ , (6.36) 

xS{x,Ql) = Asx-^'{l-xY-'%l + esVi + ̂ sx), (6.37) 

where the powers of the (1 — x) factors are taken from [127], together with the 
valence quark distributions, Uy and dy, and A = d - u: 

xuv{x,Ql) - 0.157x°-2'(l-x)3-3^(l + 5.61v^+ 55.492;), (6.38) 

xdvix^Ql) = 0.041 a;°-27(l-a;)^-««(l + 52.73x/^+30.65a;), (6.39) 

xA{x,Ql) - 1.201 x^- ' ' ' ( l -x)9- i° ( l -h 14.05a;- 45.52a;2). (6.40) 

The Xg, Eg, A.-, 5^, 4s^As, and are taken as free parameters, 7̂  and 75 are fixed 
at zero since they are unconstrained by the small XB data, and Ag is determined 
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f rom the momentum sum rule, 

f'dx [xE{x, Ql) + xg{x, Ql)] = 1, (6.41) 
Jo 

where S = S + uy + dy. The integral (6.41) can be done analytically, w i t h the 

solution expressed in terms of gamma functions. A t the in i t i a l scale Qo) the flavour 

structure of the light quark sea is taken to be 2u = OAS - A, 2d ^ OAS + A and 

25 = 2s = 0.25. The values of Q;5(M|) and the charm and bo t tom quark masses are 

taken to be the same as i n the MRST2001 NLO parton set [127]. Since we do not 

f i t to DIS data w i t h Xg > 0.01, we constrain the gluon and sea quark distributions 

to agree w i t h the MRST2001 N L O parton set [127] at x = 0.2. This is done by 

including the value of these parton distributions at a; = 0.2 i n the DIS f i t w i t h an 

error of 10%. 

As i n Chapter 5 we use the QCDNUM program [166] to perform the N L O D G L A P 

evolution and calculate the structure functions, and the MINUIT program [167] to 

f ind the optimal parameters. 

6.4 Simultaneous Q C D analysis of DDIS and DIS 
data 

The 'simultaneous' f i t of DDIS and DIS data proceeds as follows: 

(i) Start by fitting ZEUS [111, 185] and H I [186-188] F2 data (279 points) w i t h 

no absorptive corrections, similar to the MRST2001 N L O analysis [127 . 

(ii) F i t ZEUS [157,158] and H I [148] F^^^^ data (404 points) using g{xip, / i^ ) and 

S{xjp, fi^) f rom the previous F2 fit. 

( i i i ) F i t F2°GLAP _ ^data ^ \AFf'\, w i t h AFf' f rom the previous F^^^^ fit. 

(iv) Go to (u). 

As we w i l l demonstrate, convergence is achieved after only a few iterations. In 

practice, we allow four iterations of steps (ii) and ( i i i ) for all the results presented 

in this chapter. To allow for the contribution of proton dissociation in (6.6) we take 

AFt{xs,Q') = -2 / d^^'F,%,{x„Q'-n')^-2F,^,,{xs,Q% (6.42) 
- M ' - - - - — 

where the factor 2 enhancement of the (elastic) proton contribution was estimated 

f rom the normahsation factors found in fitting to DDIS data in Chapter 5. I t 
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accounts for absorptive corrections due to diffractive events involving proton disso
ciation w i t h M y < 6 GeV. Events w i t h a large amount of proton dissociation w i l l 
have a small rapidity gap such that IP ^ IP ® IP contributions could become im
portant and so our formalism, which only accounts for / F ® / F —> IP contributions, 
would not apply. This factor 2 is just if ied by a ZEUS comparison [189] of LPS data 
w i t h Mx data; the Mx data allowed proton dissociation w i t h M y < 6 GeV and a 
relative normalisation factor of 1.85 ± 0.38(stat.) was found compared to the LPS 
data. Of course, there is some uncertainty in this factor 2, but the precise amount 
is diff icul t to just i fy. The (elastic) proton contribution is obtained by normalising 
to the ZEUS LPS data [157], for which there is no proton dissociation. 

Since we have taken Qo = 1 GeV, the same value as used in Chapter 5 to separate 

the perturbative and non-perturbative contributions to DDIS, then 

^2^ei(^B,Q') = 6 ( 0 . 1 - x e ) f 'dxjp [F?^^^\xu>.^.Q^) + F^^^\xjp,P,Q^)\, 
J XB 

(6.43) 

where F^^'^ is the leading-twist contribution (5.5) and F^P is the twist-four con

t r ibu t ion (5.19). The upper cutoff of xip = 0.1 is necessary since the simple formula 

we have used for the absorptive corrections is invalid for large xjp (small rapidity 

gaps) where secondary Reggeon contributions become more important . 

I n Fig. 6.4 we show a contour plot showing [AF!'''^!/F2'^*'^ as a percentage. 

The F2 data points [111, 185-188] have been put in 20 bins along each axis and 

^^abs| jpAs.ta. averaged over each bin. A percentage increase of more than 50% 

would violate the uni tar i ty l imi t , but this does not happen for any of the data 

points. By definition [AFf'^^l is zero at the input scale of 1 GeV^ and grows to an 

approximately constant value at large Q^. Since F^^^^ increases at large Q^, this 

means that the fractional size of the absorptive corrections relative to the data falls 

away at large Q"^. This behaviour can be seen more clearly in Fig. 6.5, which shows 

the F2 data at the smallest XB values, before and after the absorptive corrections 

have been applied. The predictions of the corresponding fits, shown by the solid 

and dashed lines, respectively, are also plotted. The data points have been binned 

according to the nearest value of XB ( in the last b in only data w i t h XB < 3.6 x lO""* 

are included). 

I n Fig. 6.6 we illustrate the convergence of the 'simultaneous' fit to DDIS and 

DIS data by showing the input parton distributions obtained f rom a fit to F2 w i t h 

no absorptive corrections, then after each of 4 iterations w i t h absorptive corrections-

The input gluon and sea quark distributions obtained after the t h i r d and after the 

four th i teration are almost identical. 
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no absorp. corr. w i t h absorp. corr. 
F2 : xVd-O.f. 1.15 1.09 

^9 10.6 10.1 
A, -0 .50 ± 0 . 1 7 -0 .49 ± 0 . 1 0 

- 1 . 1 ± 0 . 2 - 1 . 2 ± 0 . 1 

Ig 
A_ 

0 (fixed) 
(6 ± 8) X 10-2 

0 (fixed) 
(2 ± 6) X 10-3 

5_ 0.47 ± 0 . 1 5 0.74 ± 0 . 3 0 
As 0.10 ± 0 . 0 2 0.14 ± 0 . 0 3 
\s 0.33 ± 0 . 0 2 0.30 ± 0 . 0 2 
£5 10 ± 3 9.0 ± 2 . 6 
75 0 (fixed) 0 (fixed) 

F^''^ : x V d . o . f . 1.14 1.15 
c,/G (GeV2) 
Cg/G (GeV^) 
CLIG (GeV2) 
c,/s (GeV2) 
cg/s (GeV^) 
CL/s (GeV^) 

c,/NP (GeV-2) 
CM (GeV-2) 

0.14 ± 0 . 0 3 
0 

0.051 ± 0 . 0 2 1 
0.70 ± 0 . 0 9 
1.41 ± 0 . 0 9 
0.16 ± 0 . 0 5 

0.18 ± 0 . 0 4 
0 

0.074 ± 0.032 
0.37 ± 0 . 0 7 
1.14 ± 0 . 0 7 

0.027 ± 0 . 0 3 3 

c,/G (GeV2) 
Cg/G (GeV^) 
CLIG (GeV2) 
c,/s (GeV2) 
cg/s (GeV^) 
CL/s (GeV^) 

c,/NP (GeV-2) 
CM (GeV-2) 

0.87 ± 0 . 0 8 
6.8 ± 0 . 5 

1.00 ± 0 . 0 7 
6.5 ± 0 . 5 

1.54 ± 0 . 0 7 1.55 ± 0 . 0 6 
1.24 ± 0 . 0 5 1.24 ± 0 . 0 4 

Kq/G 0.84 ± 0 . 1 8 1.08 ± 0 . 2 4 
Kg/G 

KL/G 

0 
1.4 ± 0 . 6 

0 
2.0 ± 0 . 9 

K,/s 4.3 ± 0 . 6 2.5 ± 0 . 5 
Kg/S 3.9 ± 0 . 2 3.4 ± 0 . 2 
KL/S 1.1 ± 0 . 3 0.2 ± 0 . 2 

i?(6 .5GeV') , i?(90GeV^) 0.57,0.58 0.56, 0.57 

Table 6.1: The parameter values of the 'simultaneous' fits to the inclusive F2 and 
F^^^'^ data measured by the ZEUS [111, 157,158,185] and H I [148,186-188] Col
laborations. The parameters for the F2 fit are defined in (6.36) and (6.37), while 
the parameters for the Fĝ ^̂ ^ fit are defined in Chapter 5. The /C-factors (5.29) 
are evaluated using Rg{\ = 0) = 1 as given by (4.50) and Rq{\ = Xs) = 4 as 
given by (4.91). The last row R{Q^), defined in (5.33), gives the fraction of the 
Pomeron's (plus Reggeon's) momentum carried by gluons at xjp = 0.003. Sample 
parton distributions are shown in Fig. 6.7. 
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Absorptive corrections as a percentage of F2(Xb,Q ) data 

1 0 ' ^ 

(3 

O 

1 0 ^ 

• 1-5% 

• 5-10% 
10-20% 
20-50% 
>50% 

10 
1— \—I I 11 i i | 1 — r 

-5 
TT] 1—I I I I 111| 1—I I I I I n | 1 — 

-3 H n-2 10-" Xb 10 10-̂  1 

Figure 6.4: Contour plot of the absorptive corrections as a percentage of ^ 2 ( ^ 3 , Q^) 
data [111,185-188 . 

The parameter values of this combined description of the DIS and DDIS data are 

given in Table 6.1. The th in solid curves i n Fig. 6.7 show the parton distributions 

obtained f rom the f i t before the absorptive corrections have been included; they 

are very similar to those f rom the MRST2001 N L O parton set [127] shown by the 

dotted curves in Fig. 6.7, w i t h the input gluon distr ibution going negative at small 

X < 5 X 10~^. The small differences between the solid and dotted curves arise due to 

the small differences between our analysis of F2 and the MRST2001 global analysis, 

such as the treatment of heavy quarks (MRST use the Thome-Roberts [190] variable 

flavour number scheme), the fact that we fit only the small-Xg H E R A F2 data, the 

fact that we f ix the parameters 7g = 7s = 0, and due to the large uncertainty in the 

A _ parameter, as shown in Table 6.1.^ 

The dashed curves i n Fig. 6.7 show the final input parton distributions obtained 

after four iterations between the fits to the DIS and DDIS data, and also the gluon 

After the completion of this work, it was realised that MRST let the normahsation of the ZEUS 
F2 data [111,185] go to its lower limit of 98% in [127], whereas all the fits in this chapter were 
obtained assuming that the _ZEUS and HI F2 data have the same normalisation. Repeating_the^ 
fits presented in Table 6.1 multiplying the ZEIJSF2 dafa~[rri7l85] by a factor 0.98 gives x^/d.o.f. 
values of 0.92 and 0.88 for the fits to F2 without and with absorptive corrections. The parton 
distributions obtained from the F2 fit are practically unchanged. 
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XB = 0 . 0 0 0 0 5 t o 0 . 0 0 0 3 2 

8 _ X b = 0.000053 

_ X b = 0.000078 

00 
o 

a 51— X 3 =0.000100 

I I 

^ 5|— " b =0 000130 

CM 

^ 3 

CO 

+ 4 |— 0.000170 

_ Xg =0.000210 

Xb = 0.000250 

Xg = 0.000320 

H1 data 

Z E U S data 

• H1 wi th abs . corr. 

O Z E U S with abs. corr. 

J I I I I I 

1 0 

Q ' ( G e V ^ ) 

J L 

Figure 6.5: F2{xb,Q'^) data [111,185-188] before and after absorptive corrections 
have been included. Only data points included in the fits, shown by the sohd and 
dashed lines, are plotted. 
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/ ^2 , ~ « 4 -A. .3.7 0.5. . -5 ,10 

xg(x,Q =1 GeV ) = A X ^ ( l -x ) (1 + e x ) - A x - ( l -x ) 

xS(x,Q^=l GeV^) = A„ x (1-x/ ' ( I + e.x"'^) 

no absorpt ive correc t ions 
f i r s t i t e ra t ion 
second i te ra t ior 
t h i r d i t e ra t ion 
f o u r t h I te ra t ion 

2 

10"' 10^ 10 10"̂  X 10"̂  1 

Figure 6.6: Convergence of the 'simultaneous' fit to DDIS and DIS data. 

distr ibution when evolved up to higher scales. These dashed curves show that the 

inclusion of absorptive effects yield an input gluon distr ibution which is much less 

negative, whereas the input sea quark distr ibution is largely unaS'ected. Indeed, the 

absorptive effects crucially change the input gluon distr ibution for x < 10"^. They 

change the input sea quark distr ibution much less, due to the smaller colour charge 

of the quark and, phenomenologically, due to the fact that the quark distributions 

are measured directly by F2, whereas only scaling violations and N L O contributions 

constrain the gluon distribution. Thus small changes in the quark distributions can 

be accompanied by large changes in the gluon distribution. 

In Fig. 6.8 we show the percentage increase in the gluon and sea quark distribu

tions as a contour plot in the x-Q"^ plane. For the gluon distribution, which goes 

negative for small x and low Q^, the modulus of the denominator has been taken. 

The black region of the upper plot in Fig. 6.8, indicating an increase of more than 

50% in the gluon distribution, is where the gluon changes sign f r o m negative to 

positive. Even for quite moderate x and the inclusion of absorptive corrections 

has a significant effect on the PDFs obtained. 

A study of the uncertainties due to PDFs on the N L O cross section for SM Higgs 

boson production at the L H C has been made in [191]. For Higgs boson production 
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xg(x,Q^=l GeV^) = Ag x'^^ ( 1 - x f ^ (1 + ex^'^) - A x^- (1-x)'" 

xS(x,Q^=l GeV^) = A„ x"̂ ^ (1-x/'^ (1 + e„x°-^) 

. X , 5 

T — r I I I I I I ! 1 — I — 'I I 

MRST2001 NLO 
no absorptive corrections 

^ N with absorptive corrections ' 

10 10 10 10'̂  X 10"̂  

50 F ^ . \ 

1— I I 

a^^ =100 GeV 
s 

s. 
N 

S 

' xg a^Q =^fDggy. 

MRST2001 NLO 
no absorptive corrections 

— with absorptive corrections _| 
2 

= 1 GeV 

- I I 1 1 1 1 I I I i _ 
I I I I I I 1 I I I L. 

10" 10" 10" 10" 10" 1 

Figure 6.7: The gluon and sea quark distributions obtained f rom a N L O D G L A P 
fit to F2, before and after absorptive corrections have been included. The input 
at Qo = 1 GeV^ has been chosen to have 'MRST-l ike ' parametric forms, w i t h an 
explicit term included in the gluon distr ibution to allow i t to go negative, see (6.36). 
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Percentage increase in xg(x,Q^) after including absorptive corrections | 
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1 0 ^ 
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Percentage increase in xS(x,Q ) after including absorptive corrections 
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Figure 6.8: Contour plots of the percentage increase in the gluon and sea quark 
distributions obtained f rom a N L O D G L A P fit to F2 after absorptive corrections 
have been included. 
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PDF set a{gg ^ H) (pb) 
MRST2001 N L O 33.48 
no absorptive corrections 37.11 
w i t h absorptive corrections 37.09 

Table 6.2: N L O cross section for SM Higgs boson production {MH = 125 GeV) at 
the L H C via gluon fusion. The results were obtained using the HIGLU [192] program 
w i t h different PDFs. 

via gluon fusion, uncertainties of 0 ( 5 % ) were found for < 300 GeV. To study 

the effect of absorptive corrections on final state observables we used the HiGLU 

program [192] to compute the N L O tota l cross section at the L H C for SM Higgs 

bosons {MH = 125 GeV) produced via gluon fusion. This program includes the 

f u l l dependence of the top and bo t tom quark masses of the N L O cross section, not 

only the result i n the infinite top quark mass l imi t . The code was run first w i t h 

the standard MRST2001 N L O PDFs, then w i t h the PDFs obtained f rom the two 

fits of Table 6.1 (without and w i t h absorptive corrections). The results are shown 

in Table 6.2. The MRST2001 N L O result of 33.5 pb is slightly higher than the 

MC@NLO [193] result of 32.4 pb given in Fig. 3.11, since the latter was obtained 

in the infinite top quark mass fimit. The results using the two P D F sets of Table 

6.2 are almost identical (37.1 pb). This particular observable is mainly driven by 

the gluon distr ibution at moderate x ~ MH/S/S ~ 0.01, where the effect of the 

absorptive corrections is small, and where our PDF sets are relatively unconstrained 

since we only fit the F2 data at small XB < 0.01. Therefore, the absolute value of 

the cross section obtained w i t h our PDFs is not as reliable as w i t h the MRST2001 

PDFs. A n accurately known experimental observable which is sensitive to the small-

X PDFs would play an important role in testing the PDFs obtained w i t h absorptive 

corrections. One possibility is the production of Drell-Yan pairs at large rapidity. 

For further study, i t would also be better to incorporate the absorptive corrections 

into a global parton analysis rather than the restricted analysis we have performed 

here. 

6.5 Diversion: Multi-Pomeron exchange 

I t is tempting to investigate the effect of absorptive corrections due to more than two 

Pomerons being exchanged. Unfortunately, the apphcation of the A G K cutt ing rules 

-is not as simple in this case. A speculative estimate of the size of niulti-Pomeron_-

contributions is given here using an eikonal formula. 

A t high energies, the s-channel uni tar i ty relation is diagonal in the impact pa-
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rameter (6t) basis, such that 

2 I m r e i ( s , 6 t ) = \Teis,bt)\^ + G,Us,bt), (6.44) 

w i t h (Ttot = 2 Jd'^bt lmTei{s,bt), cr^i = fd^bt \Tei{s,bt)\'^. Neglecting the real part 

of the elastic scattering amplitude, then 

Tei(s, bt) = i [1 - exp {-n{s, bt)/2)], (6.45) 

Gi„ei(s, bt) = l - exp ( - f2 ( s , bt)), (6.46) 

where > 0 is the opacity (optical density) or eikonal. For some average value of 

the impact parameter (6*)^, the ratio of the diffractive component of F j to the to ta l 

F2 is given by 

F2- _ \ U M l [ , _ e x p ( - . ( . ( 6 . ) ) / 2 ) ] , (6.47) 
Ft'^ 21mni{s,{bt)) 2 

where F f = |AF2 '̂" |̂ w i t h AF^*^" given by (6.42). Solving for Q/2 gives 

/ 2 F ^ \ 
f ^ / 2 - - l n • (6.48) 

The requirement 2 F^/F^^^^ < 1 is the uni tar i ty l imi t . The one-Pomeron ( D G L A P ) 

contribution to F2 divided by the multi-Pomeron contribution is given by 

^ S ^ - ^ (6 49) 
Fi^'- l - e x p ( - Q / 2 ) ' ^ 

so that 
pDGLAP _ pdata ^ / ^ (c r;n\ 

l - e x p ( - Q / 2 ) ' ^^-^^^ 

w i t h Q/2 given by (6.48). I t is a useful check to take the l imi t of small absorptive 

corrections 2 F^/F^^^^ < 1 <;=^ f^/2 < 1, then 

- -i^km. (6.51) l - e x p ( - Q / 2 ) 1 2 / 2 - i ( n / 2 ) 2 + . . . 2 

and f rom (6.48): 
9 \ 9 

" / 2 = - ' " l - i S l H l S ; . (6.52) 
^2 J . 

^An alternative approach would be to assume some functional form for 0(s,6f), such as a 
Gaussian distribution in ht-
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xg(x,Q^=l GeV^) = A x"̂ ^ (l-x)^'^ (1 + e x"'^) - A x -̂ ( l -x) '° 

xS(x,Q^=l GeV^) = A^ x"̂ ^ ( i V ' (1 + Egx"-̂ ) 
I 111 rmi I . . . . . . . | I r -TTTTTT 

no absorptive corrections 
with absorptive corrections (two-IP) 
with absorptive corrections (multi-IP) 

xg at = 1 GeV^ xS arQi= 1 GeV 

Figure 6.9: The gluon and sea quark distributions obtained f rom a N L O D G L A P 
fit to F2, before and after two-Pomeron and multi-Pomeron absorptive corrections 
have been included. 

so (6.50) becomes 

^ D G L A P ndata 1 + 
F.-D 

= F^^'^ + F^, (6.53) 

that is, we recover the two-Pomeron exchange formula (6.7). 

Repeating the 'simultaneous' fit to DDIS and DIS data w i t h the absorptive 

corrections given by (6.50) instead of (6.7), we obtain the input PDFs shown by the 

dotted curves in Fig. 6.9. The A_ parameter controlling the negative term i n the 

input gluon distr ibution has gone to zero, resulting in a positive small-o; input gluon 

distr ibution. The final xVd-o.f. for the F2 fit is 0.86 and for the 2̂̂ ^̂ ^ fit is 1.15; 

cf. the values 1.09 and 1.15 given in Table 6.1. Since the two-Pomeron exchange 

absorptive corrections, computed using the A G K cut t ing rules, are on a sounder 

theoretical footing, we return to using (6.7) for the remainder of this chapter. 
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xg(x,Q'=l GeV') = Ag x (i.x)^'^ ( i + EgX^') 

xS(x,Q^=l GeV^) = A„ x"̂ ^ (1-x)^ ' (1 + e„x°-^) 

X 

^ 0 

X 

I 1 1 1 1 I I 1 ' ' I I "I 1 1 1 J 1 1 

MRST2001 NLO 
— no absorptive corrections 
- with absorptive corrections 

: ^ i = 1 GeV^ 
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2 ^ 
Jig atjQ^= 1 
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Figure 6.10: The input gluon and sea quark distributions obtained f r o m a N L O 
D G L A P fit to F2, before and after absorptive corrections have been included, and 
taking a positive input gluon parameterisation. For reference the MRST2001 N L O 
input PDFs are also shown. 

6.6 Positive input gluons at 1 GeV^ 

We now return to using the two-Pomeron exchange formula for the absorptive cor

rections (6.7). Note, f rom Table 6.1, that the parameter A_ is consistent w i t h zero. 

Indeed, repeating the fits w i t h a fixed = 0 gives a description of the F2 data 

which is almost as good (x^/d.o.f. = 1.11, compared to 1.09 for a negative input 

gluon). By contrast, wi thout any absorptive corrections, the fit to F2 is much worse 

w i t h a fixed A _ = 0 (x^/d.o.f. = 1.57, compared to 1.15 for a negative input gluon). 

We conclude that absorptive corrections remove the need for a negative gluon dis

t r ibu t ion at = 1 GeV^. The fit parameters are shown in Table 6.3 and the input 

PDFs are plotted in Fig. 6.10. 
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no absorp. corr. w i t h absorp. corr. 
F2 : xVd.o.f. 1.57 1.11 

A, 
A, 

^9 

A_ 

38 
-1 .06 ± 0 . 0 9 
-1.39 ± 0 . 0 4 

0 (fixed) 
0 (fixed) 

16 
-0 .63 ± 0 . 0 7 
-1.33 ± 0 . 0 6 

0 (fixed) 
0 (fixed) 

U— 
As 
Xs 

7s 

0.16 ± 0 . 0 5 
0.27 ± 0 . 0 3 

12 ± 4 
0 (fixed) 

0.15 ± 0 . 0 3 
0.29 ± 0 . 0 2 

8.7 ± 2 . 3 
0 (fixed) 

F^^^^^ : xVd.o.f. 1.17 1.14 

c,/G (GeV^) 
CL/G (GeV2) 
c,/s (GeV^) 
cg/s (GeV^) 
CL/s {GeV') 

Cg/NP (GeV-2) 
Cm (GeV-2) 

Nz 
NH 

0.45 ± 0 . 1 2 
0 

0.15 ± 0 . 0 3 
0.25 ± 0 . 1 2 
1.04 ± 0 . 0 6 

(3 ± 8) X 10-^ 
1.11 ± 0 . 1 2 

5.2 ± 0 . 6 
1.54 ± 0 . 0 6 
1.23 ± 0 . 0 4 

0.25 ± 0 . 0 7 
0 

0.11 ± 0 . 0 5 
0.28 ± 0 . 0 8 
1.14 ± 0 . 0 7 

(1 ± 20) X 10-3 
1.06 ± 0 . 0 7 

6.2 ± 0 . 5 
1.55 ± 0 . 0 6 
1.24 ± 0 . 0 4 

Kq/G 
Kg/G 

KL/G 

KL/S 

2.7 ± 0 . 7 
0 

4.1 ± 0 . 8 
1.8 ± 0 . 9 
3.3 ± 0 . 2 

(2 ± 6) X lO- ' ' 

1.5 ± 0 . 4 
0 

3.0 ± 1.4 
1.9 ± 0 . 5 
3.5 ± 0 . 2 

(1 ± 15) X 10-2 
i?(6.5GeV''),i?(90 GeV^) 0.53, 0.53 0.56, 0.56 

Table 6.3: The parameter values of the 'simultaneous' fits to the inclusive F2 and 
Fj^'^^ data taking a positive input gluon parameterisation in the F2 fit. The K-
factors (5.29) are evaluated using Rg{\ = 0) = 1 as given by (4.50) and Rq{\ = 
\s) = 4 as given by (4.91). The last row R{Q'), defined in (5.33), gives the fract ion 
of the Pomeron's (plus Reggeon's) momentum carried by gluons at xp = 0.003. 
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6.7 Pomeron-like sea quarks but valence-like glu
ons? 

The inclusion of absorptive corrections have enabled the DGLAP-based description 

of F j to give a more physical small-a; gluon distribution. That is, there is now 

no need for a negative input gluon distr ibution at 1 GeV^. However, absorptive 

corrections have not removed a long-standing puzzle of the behaviour of parton 

distributions at small x and low scales. That is, we s t i l l have a valence-like gluon 

distribution, whereas the sea quark distr ibution increases w i t h decreasing x. That 

is, since the H E R A F2 data have become available, we have had a 'Pomeron-like' sea 

quark distribution. Indeed, this feature has been present i n al l the parton analyses 

fi:om GRV94 [194] and MRS(A) [195] in 1994, up to the present M R S T [34] and 

CTEQ [35] global fits. On the other hand, as described in Section 4.1, according 

to Regge theory the high energy (small x) behaviour of bo th gluons and sea quarks 

is controlled by the same rightmost singularity in the complex angular momentum 

plane, and so we would expect 

A, = \s, (6.54) 

where the Aj are defined in (6.36) and (6.37). I f we impose such an equality on the 

Ai values, we obtain a very poor description of the F j data. We have studied several 

possibihties of obtaining a satisfactory fit w i t h this equality imposed, including 

saturation-motivated parameterisations or including inverse transverse momentum 

ordering (which appears at N N L O ) using the calculations of Section 2.3.3, but none 

overcame the problem. The only modification which appears consistent w i t h the 

data (and w i t h the A^ = A5 equality) is the inclusion of power-like corrections. 

There may be higher-twist corrections due to the exchange of four gluons in colom 

antisymmetric states, which are not connected to F j ^ by the A G K cut t ing rules, and 

also more complicated higher-twist corrections caused by renormalons etc. Here 

we exploit the fact that such power-like corrections may slow down the D G L A P 

evolution at low Q^. Indeed, i t has been argued [196-199] that such corrections 

must inhibit the growth of as and slow down the speed of evolution as Q'^ decreases 

below about 1 or 2 GeV^. A t present, there is no precise formula to implement 

this effect. As noted in Section 3.4, Guffant i and Smye [107] observed that part of 

the non-perturbative power corrections to the W and Z PT distributions, calculated 

using the dispersive approach [200], could be interpreted as a shift in the scale at 

which the parton distributions are evaluated. We therefore m i m i c the" effect o faT 

flatter behaviour of ols at low scales by shift ing the scale i n F2{XB;Q^) f rom (^^ to 
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Q'^ + m^, where m? = 1 GeV^.^ To be consistent we must make the same shift in 

the ^2^^^^ fit, so that (5.5), (5.19), (5.24), and (5.25) become 

F,J\xjp,P,Q')= Yl r dfi'fjp{xjp;ij' + m')F^{P,Q' + m';i,' + m'), 
IP=G,S,GS '̂ o 

IP=G,S,GS VQ'o Q +m J 

F2^S {xjp, P, Q') = /,P=Np(a;^) =̂ (̂/3, Q' + m'; Ql + m'), 

F2£\xjp,P,Q')=cjnfm{xip)F^{P,Q^ + m'). 
(6.55) 

This simplified prescription enables us to obtain a satisfactory simultaneous descrip

t ion of the DIS and DDIS data, w i t h the same asymptotic behaviour, \g = Xs ( = 0), 

of the input gluon and sea quark distributions at a 'physical' Q"^ = 0 GeV^ corre

sponding to a 'shifted' Q"^ = (0 + 1) GeV^, as shown in Fig. 6.11; the corresponding 

parameter values are listed in Table 6.4. However, we do not have a solid theoretical 

just if icat ion for fixing Ag = A5 = 0 or for the value of = 1 GeV^ that we shift 

the scales by. A more detailed, and more theoretically-motivated, investigation of 

the effect of power corrections i n DIS is called for. 

6.8 Back to difTractive PDFs 

Since the PDFs are modified after including absorptive corrections then so are the 

DPDFs, which depend on the square of the PDFs. I n Fig. 6.12(a) we show the final 

DPDFs obtained f rom the three fits in Tables 6.1 ('Negative gluon'), 6.3 ('Positive 

gluon'), and 6.4 ( 'Shift scale'), compared to the ' M R S T ' fit of Chapter 5 and the 

DPDFs f rom the preliminary H I analysis [148]. The DPDFS f rom the 'Negative 

gluon' and 'Positive gluon' fits are almost unchanged f r o m those obtained f rom the 

' M R S T ' fit, because the fit to DDIS data is driven by the sea quark distr ibution 

at low scales / i ^ ~ Qo ~ 1 GeV^, and this is almost unchanged after including 

absorptive corrections. The DPDFs labelled 'Shift scale' are defined as 

IP=G,S,GS (/:• a'^ixjp, P,Q')= T { I dfi' f j p { x j p - + m') c^{p, + m'; fi' + m^) 

~+ fjp^pixjp) c^^'^^'iPyQ' + mhQl ~+ m^) +~fmixjp) a^(/3, Q' + m"): - (6.56) 

^Taking moments involves a factor (Q^ + m^)'' = (Q^)'^(l + 7m^/Q^ + •••), where 7 is the 
anomalous dimension, and so we see the power corrections suppressed by 
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in 
X 

O 
(N 

0^2 

xg(x,Q'=l Gev') = Ag x° (1-x)' ' (1 + e^x"' + y^x) 

xS(x,Q^=l GeV^) = A„ x° (1-x)^ ' (1 + e„x''-^ + y.x) 

\ 
T T 

IS" 
- r m T I I 1 i 11 

2 2 
no absorptive corrections, Q = 1 GeV 

\ ^ with absorptive corrections 

s 
s 

xgat0^v=(l-Hl)GeV^ 

xS"aTQ^^=j:i-hl)GeV^ 

r^^t t> - i G ^ 
h-x-S#t-Q-=^l-Ge¥ 

Figure 6.11: The input gluon and sea quark distributions, (6.36) and (6.37), i n which 
the parameter A . = 0 and the equality Ag = \s ( = 0) is imposed, as required by 
Regge theory. We now include 7j as free parameters in (6.36) and (6.37). To obtain 
a satisfactory fit i t is necessary to shift the scale in F-iixg, Q^) f rom to + rr?, 
where rr? = \ GeV^. As before, the continuous and dashed curves show the parton 
distributions before and after absorptive corrections are included. We also show the 
'shifted' parton distributions, at = (1 -|-1) GeV^. 
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no absorp. corr. with absorp. corr. 
xVd.o.f. 1.45 1.15 
A, 3.4 X 10-*̂  0.82 
\ 0 (fixed) 0 (fixed) 
^9 (2.7 ± 1.2) X 10^ 10 ± 1 
% (-3.2 ±1 .4 ) X 10^ -15 ± 2 

0 (fixed) 0 (fixed) 

(J — 
As 0.82 ± 0.03 0.56 ± 0.04 
Xs 0 (fixed) 0 (fixed) 

0.72 ± 0.46 4.0 ± 1 . 2 
7 5 2.8 ± 1.5 -0.04 ±2 .42 

: xVd.o.f. 1.30 1.29 
c,/G (GeV2) 
Cg/G (GeV^) 
CL/G (GeV2) 
c,/s (GeV^) 

0.57 ± 0 . 1 5 0.37 ± 0 . 0 3 c,/G (GeV2) 
Cg/G (GeV^) 
CL/G (GeV2) 
c,/s (GeV^) 

(1 ± 3 1 ) X 10-4 (3 ± 5) X 10-3 
c,/G (GeV2) 
Cg/G (GeV^) 
CL/G (GeV2) 
c,/s (GeV^) 

0.099 ± 0.026 0.072 ±0 .017 

c,/G (GeV2) 
Cg/G (GeV^) 
CL/G (GeV2) 
c,/s (GeV^) 0.028 ± 0.064 0.032 ± 0.007 
c,/s (GeV^) 
CL/s (GeV2) 

c , /NP (GeV-2) 
Cm (GeV-2) 

4.6 ± 0 . 8 3.9 ± 0 . 7 c,/s (GeV^) 
CL/s (GeV2) 

c , /NP (GeV-2) 
Cm (GeV-2) 

0 0 
c,/s (GeV^) 
CL/s (GeV2) 

c , /NP (GeV-2) 
Cm (GeV-2) 

1.40 ± 0 . 0 7 1.38 ± 0 . 0 5 

c,/s (GeV^) 
CL/s (GeV2) 

c , /NP (GeV-2) 
Cm (GeV-2) 5.6 ± 0 . 5 5.7 ± 0 . 5 

Nz 1.52 ± 0 . 0 6 1.53 ± 0 . 0 6 
Nh 1.20 ± 0 . 0 4 1.20 ± 0 . 0 4 

R{6.5GeV'),R{90 GeV^) 0.62, 0.65 0.63, 0.67 

Table 6.4: The parameter values of the 'simultaneous' fits to the inclusive F2 and 
F2^^^ data with Ag = A5 = 0 imposed and shifting the scale by 1 GeV^ to simulate 
the effect of power corrections. The last row R{Q'^), defined in (5.33), gives the 
fraction of the Pomeron's (plus Reggeon's) momentum carried by gluons at xp = 
0.003. 
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It is interesting that the DPDFs obtained from this fit are closer to the H I DPDFs, 
especially at the higher value shown in Fig. 6.12(a); however, the reader should 
bear in mind the effect of taking the same value of 0 :5 (M | ) as H I , as shown in 
Fig. 5.5(b). In Fig. 6.12(b) we show the breakdown of the DPDFs from the 'Shift 
scale' fit. Notice that the two-quark Pomeron contribution is still the dominant one, 
although the two-gluon Pomeron contribution is non-negligible, cf. Fig. 5.6(b). As 
discussed at the end of Section 5.3, the description of final state observables in DDIS 
will help to discriminate between the various DPDFs. 

6.9 Discussion and summary 

A reasonably satisfactory simultaneous description of DDIS and DIS data was orig
inally obtained using the dipole saturation model [155,201,202]. However, the de
scription of the new more precise DDIS data using the BGK model [202] is less 
good, with the model predictions tending to lie slightly below the data, especially 
at low /3 [157,168]. Moreover, the DGLAP evolution of the Pomeron parton distri
butions is not accounted for. In the dipole approach, the best fit to DIS data also 
has a valence-like input gluon distribution [202,203]. This indicates that we need to 
account for the sea quark contribution to the perturbative Pomeron fiux factor in 
DDIS; indeed, this was one of the new ingredients of the analysis made in Chapter 
5. Note that within dipole saturation models the sea quarks are generated solely 
from the gluon and therefore both have the same high-energy behaviour. In order 
to obtain a good fit to DIS data, the authors of [202,203] were forced to shift the 
scale of the gluon distribution by /Xp ~ 1 GeV^, the same value we used in (6.55). 

Finally, a comment on why we consider partons at low scales. It might be argued 
that (5^ ~ 1 GeV^ is too low a scale to work in terms of quarks and gluons. (Recall 
that we only fit F2 data with > 2 GeV^.) However, we emphasise that ~ 1 
GeV^ is the region where the description in terms of hadronic and quark-gluon 
degrees of freedom should be matched to each other. Therefore, we would like to 
obtain input parton distributions at Ql = 1 GeV^ which are consistent with Regge 
theory. An alternative approach is to adopt a hadronic description for ~ 1 GeV^ 
(see, for example, [204]); however, this does not confront the issue. Note that within 
the OPE, the leading-twist parton distributions are well-defined quantities even at 
low scales. Of course, at such low Q"^, higher-order 0:5 corrections, power corrections 

_and other non-perturbative effects _are not negligible and need to be accounted for.-
Indeed, it was one of the goals of this chapter to see if absorptive (and power) 
corrections could cure the anomalous behaviour of the gluon at low and small x. 
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(a) 

Diffractive quark singlet distribution 

od 

100 

50 

8; 

1 1 1 1 1 
1 H1 1 1 r M i l l 

6.5 GeV^ 
^ \ \ 

\ 

1 1 1 1 1 ml 1 1 1 M i l IM{ 1 1 

90GeV^ 

- V>v" 

~ M R S T ^ 

J 1 1 1 1 M . l > r 
01 0.1 

Diffractive gluon distribution 
1—I—I I 11 i i | 1—I—I I 1 1 1 

= 6.5 GeV 

M R S T 

90 GeV 

M R S T 

x,pg, Xj,S = MRST 
Negative gluon 
Positive gluon 
Shift scale 
HI 2002 NLO QCD fit 
(prel.) 

(b) 

Diffractive quark singlet distribution 
— I — I I I 11 I I I 1 — I I I 1 1 I I I 

Diffractive gluon distribution 

50 h = 6.5 GeV^ 

\VA S 

Q =90GeV Q =90GeV^ 

200 H 

0.1 1 
l r r . . l . . ,T i ,1 t> tJ 

1 I j 1 I I 

= 6.5 GeV^ 
Shift scale 

IP = G component 
IP = S component 
IP = GS component 
IP = NP component 
IR component 

Figure 6.12: (a) DPDFs obtained from the three 'simultaneous' fits in Tables 6.1 
('Negative gluon'), 6.3 ('Positive gluon'), and 6.4 ('Shift scale'), compared to the 
'MRST' fi t of Chapter 5 and the DPDFs from the preliminary H I analysis [148 . 
(b) Breakdown of the five separate components of (6.56) for the 'Shift scale' f i t . 
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Note that the characteristic size of instantons, which are a typical example of the 
non-perturbative contribution, is about 0.4 GeV^ (see, for example, [205]) , and down 
to this scale it looks reasonable to work with quark and gluon degrees of freedom. 
The relevant hadronic (confinement) scale f ^ h is smaller. I t is driven by A q c d and 
the constituent quark mass, that is, fM^ ~ 0.1 GeV^. 

In summary, we have achieved a good simultaneous description of all the DDIS 
and small-^B inclusive DIS data, in which the absorptive corrections in the descrip
tion of the latter data have been identified and incorporated. In this way a more 
physical input gluon distribution a.tQl = 1 GeV^ has been obtained, which no longer 
needs to be negative at small x. However, there remains an outstanding dilemma in 
small-a; DIS. Either, contrary to expectations, the non-perturbative Pomeron does 
not couple to gluons, or DGLAP evolution is frozen at low Q^, perhaps by power 
corrections. Note, however, that in both scenarios we still have the puzzle that the 
secondary Reggeon couples more to gluons than to sea quarks. 
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