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ABSTRACT 

A mass balance model based on energy balance at the terrain surface was developed and used to 

predict glacier accumulation areas in the Jotunheimen, Norway. Spatially distributed melt 

modelling used local climate and energy balance surfaces to drive predictions, derived from 

regional climate and topographic data. Predictions had a temporal resolution of 1 month and a 

spatial resolution of 100 m, which were able to simulate observed glacier accumulation area 

distributions. 

Data were stored and manipulated within a GIS and spatial trends and patterns within the data were 

explored. These trends guided the design of a suite of geomorphologically and climatologically 

significant variables which were used to simulate the observed spatial organisation of climatic 

variables, specifically temperature, precipitation and wind speed and direction. 

DEM quality was found as a critical factor in minimising error propagation. A new method of 

removing spatially and spectrally organised DEM error is presented using a fast Fourier 

transformation. This was successfully employed to remove error within the DEM minimising error 

propagation into model predictions. 

With no parameter fitting the modeled spatial distribution of snowcover showed good agreement 

with observed distributions. Topographic maps and a Landsat ETM+ image are used to validate the 

predictions and identify areas of over or under prediction. Topographically constrained glaciers are 

most effectively simulated, where aspect, gradient and altitude impose dominant controls on 

accumulation. Reflections on the causes of over or under prediction are presented and future 

research directions to address these are outlined. 

Sensitivity of snow accumulation to climatic and radiative variables was assessed. Results showed 

the mass balance of accumulation areas is most sensitive to air temperature and cloud cover 

parameterisations. The model was applied to reconstruct snow accumulation at the last glacial 

maximum and under IPCC warming scenarios to assess the sensitivity of melt to changing 

environmental conditions, which showed pronounced sensitivity to summer temperatures 

Low data requirements: regional climate and elevation data identify the model as a powerful tool 

for predicting the onset, duration and rate of melt for any geographical"area: 
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CHAPTER ONE 
INTRODUCTION 

1.1. Introduction and Research Rationale 

Earth surface systems have known sensitivities to changing climate. However, the 

characteristics and behaviour of these sensitivities are not fiilly understood (Wilcock and 

Iverson, 2003). The cyrosphere in particular has been shown to respond to recent warming but 

responses are poorly understood, where isolation of cause and effect is problematic. This 

research provides a mechanism of improving our understanding of these sensitivities by 

developing a model to predict snow accumulation and melt as a function of climate and energy 

balance. By improving our understanding of the controls on snow accumulation better estimates 

and interpretation of responses to changes in these controls can follow. 

1.2. Controls on Glacier Distributions 

The controls on glacier accumulation can be conceptualised into topographic, climatic and 

energy balance variables. This research attempts to predict accumulation as a function of all 

three of these controls, in contrast to many other published approaches that largely focus on one 

or two, and can consequently only account for a proportion of observed variation (McKay and 

Gray, 1981). A spatially distributed model is presented where high spatial variability in 

modelled climatic inputs, results in high variability in resultant glacier accumulation 

distributions. 

Temperature and precipitation form the major climatic controls on snow accumulation, where 

air temperatures less than ~ TC and positive precipitation receipts are required for snow to 

accumulate. Teffiperature and precipitation profiles above the surface also impose controls on 

accumulationr where atmospheric stability and altitudina^Iapse rates determine"their vertical 
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distribution and consequently a vertical control on snow accumulation. Climatic variables also 

impose controls on local energy balance variables. Atmospheric temperature and temperature 

gradients directly above the surface control longwave emittance and turbulent heat exchanges 

respectively; where the latter provides a more important control on determining the energy 

available to melt. Cloud cover is also important in determining the local energy balance, where 

it provides a dominant control on the magnitude and character of radiation reaching the ground. 

Energy balance variables largely determine the amount of melt that can occur, driven by 

shortwave (direct and diffuse components), longwave and turbulent heat exchanges. Energy is 

largely conceptualised as a local balance where positive values indicate fluxes towards the 

surface. Controls on the net balance at a location, include atmospheric, topographic and 

temporal conditions. Where atmospheric transmittance and emisstivity, determined by 

atmospheric composition, temperature and cloud cover impose controls on the amount of 

radiation reaching the ground, termed global radiation and the longwave emittance of the 

atmosphere. High concentrations of particulates including aerosols, dust and heavy cloud cover 

conditions increase the scattering, reflectance and absorption of solar radiation, decreasing the 

amount of radiation incident at the top of the atmosphere reaching the ground. Topography, 

specifically geographic position and surface slope determine the amount of radiation reaching 

and transferred to the surface. Where relative position to the sun, determines the intensity and 

duration of solar exposure and surface slope determines the efficiency with which this radiation 

is transferred to the surface, where on steeper slopes less radiation is transferred. Topographic 

shading and exposure also impose local controls on the net radiation receipt. Temporal 

variations in radiation receipt controlled by time of year and day, control the amount of 

radiation reaching the surface at any one point, driven by changing solar position. 

Topography places dominant controls on the magnitude and distribution of climatic and energy 

balance variables, and consequently is a major element of this thesis. Strong local gradients in 

climate (Barry, 1992) and energy balance (Dubayah et al., 1990; Hock, 1999) exist in 

mountainous areas, driven by topographic variations, and result in a strong topographic 

component in observed glacier distributions. 

Snow accumulation is also controlled by local changes in mass through redistribution, 

specifically avalanching and snow entrainment and deposition by wind. The relative 

contribution that these controls place is largely a function of topography (slope and convexity) 

and climate (wind speeds and precipitation receipts) (McClung and Schaerer, 1993). 
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Methods of predicting snow accumulation use information on these variables or their controls to 

predict snow accumulation and models differ in complexity and the approach they take to 

simulating accumulation patterns. Snow accumulation rather than glacier distributions form the 

focus of many models, and the research presented here, negating the need to study controls 

other than accumulation and melt alone control glacier extent, specifically flow. 

1.3. Outline of model presented 

A primary limitation of the models presented within the literature is obtaining a balance 

between data requirements and resolution of predictions. Highly simplified models, with little 

spatial variability in climatic inputs often fail to simulate observed spatial variability in snow 

accumulation. In contrast models that simulate local variability are often complex in nature, 

driven by local climate data (measured on the glacier) and cannot be applied to other study 

areas. This research addresses this limitation by developing a predictive model that is driven by 

readily available regional climate and topographic data to initially predict local scale climate 

and energy balance datasets and secondly to predict snow accumulation. 

The inherent spatial element of this thesis uses a geographical information system (GIS) to 

store, manipulate and interpret datasets, with energy balance modelling completed within a 

number of Java programmes. The model is composed of topographic, climatic and energy 

balance components, which is reflected in the structure of this thesis. 

This research presents a valuable snow melt modeling and addresses the following research 

aims. 

1.4. Research Aims 

The overall aim of this research is to predict small glacier accumulation areas using accessible 

data, providing a repeatable and flexible model that can be applied to other geographical areas 

in the future. Small glaciers, less than 5 km in length were the focus of this research as 

prediction of larger glaciers accumulation areas would require extensive modeling of local 

feedbacks and glacier self-regulation. Spatially distributed climatic, topographic and energy 

balance variables are identified as critical to predict the observed spatial variability in glacier 

distributions. To address this overall research aim three specific research objectives were 

identified. 
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Research Objective 1 

To create a local climate dataset of temperature and precipitation, wind and cloud cover using 

regional climate and topographic data. 

Research Objective 2 

To create a suite of topographic variables from digital elevation data to improve earth surface 

process modelling. 

Research Objective 3 

To predict spatially distributed glacier accumulation areas using regional climate and 

topographic data. 

1.4 Thesis structure 

Chapter Two provides a review of the available literature relevant to the development of a snow 

accumulation model and predicting glacier distributions in mountainous areas. 

Chapter Three Introduces the area of the Jotunheimen in southern Norway the chosen area of 

study for this thesis research. This chapter describes the geological and geomorphological 

history of the Jotunheimen, and outlines the contemporary climate in the region. This chapter 

forms a necessary context for the interpretation of model output data produced during this PhD 

study. 

Chapter Four describes the methods by which a digital elevation model (DEM) of the study 

area was examined and interrogated using terrain analysis techniques in a Geographical 

Information System to derive a suite of geomorphological and climatologically significant 

variables to improve local climate predictions that were used in later modelling. 

Chapter Five describes the climate data that have been collated from field stations in and 

around the study area, identifying seasonal and spatial trends in the data to better inform climate 

modelling techniques employed in predictive climate modelling in Chapter Six. 
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Chapter Six presents the methods by which the climate data collated for the study area have 

been used in conjunction with the terrain variables from Chapter Four to derive local lapse rates 

for temperature and precipitation, cloud cover data, wind speed and direction in Jotunheimen. 

Chapter Seven presents a mass balance model with spatially distributed energy balance, heating 

and melt components to predict temporally and spatially distributed monthly snow 

accumulation in Jotunheimen using the predicted climatic datasets 

Chapter Eight presents the resultant outputs of the model developed and discusses these results 

in the context of similar studies, evaluating the success and sensitivities of the model in 

comparison to the present day distributions of glaciers in Jotunheimen. 

Chapter Nine presents the conclusions of this thesis, evaluates the success of the research 

techniques employed and makes recommendations for future work. 
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CHAPTER TWO 

METHODS OF PREDICTING G L A C I E R DISTRIBUTIONS 

2.1. Introduction 

A glacier is an ice mass that persists in its topographic location throughout successive summer and 

winter seasons. Glaciers are characterised by an area that accumulates snow or ice (the 

accumulation area) and an area that loses snow or ice (the ablation area). Snow or ice can 

accumulate through gains by precipitation, wind drifting, avalanching, riming and hoar frost. Snow 

can ablate through losses by melting, evaporation, sublimation, wind drifting, avalanching and 

calving (if the terminus of the glacier enters a water body). Glaciers are not stationary, and have a 

transfer of snow or ice (mass) from the accumulation area to the ablation area. The characteristics 

of this movement or flow are determined by the glacier's bed conditions. Glaciers can be 

characterised according to their size, topographic context, basal conditions, temperature and 

changes in mass. 

Glacier initiation, longevity and development is dependent upon a suite of climatic and topographic 

parameters that function over different spatial and temporal scales (Section 1. 2). Efforts to predict 

and understand glacier distributions largely attempt to quantify one or more of these parameters, but 

often only at small temporal and spatial scales (Hannah et al., 2000). This chapter briefly 

summarises the contemporary approaches to predicting glacier distributions. Five types of 

prediction model are identified and presented with examples and are critically evaluated with 

respect to the aim of this research. 

2.2. Classification of glacier prediction models 

Glacier distribution prediction methods vary in complexity, data requirements, temporal and spatial 

scales and the parameters they model. These models can be categorised in different ways, 

Valentine et al. (2001) differentiates between statistical, conceptual, lumped, semi-distributed and 
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physically based models. This classification is conceptual and provides no indication of the 

parameters included or the scale of the predictions. The present research outlines a new 

classification of glacier prediction models, differentiating by modelled parameters, data 

requirements and scale, creating a more informative categorisation (Table 2.1). Progresssion from 

type 1 to type 5 moves from largely statistical point based methods to distributed complex process 

models. The character and limitations of these models are described in the subsequent sections. 

Other approaches that do not directly fit into the above classificafion include quantifying glacier 

volume changes using a times series, of either topographic maps (Andreassen, 1999; Ostrem and 

Haakensen, 1999) or remotely sensed data such as terrestrial and airborne photography (Conway et 

al., 1999; Mittaz et al., 2002; Tapeiner et al., 2001), airborne and orbital visible / infra-red sensors 

(Bitner et al., 2002; De Wildt et al., 2002) and airborne or orbital active imaging radar (Demuth and 

Pietroniro, 1999). Estimates derived using topographic maps are highly sensitive to the contour 

accuracy and are dependent upon a comparable time series of maps. Remotely sensed data is 

increasingly used in glaciological applications as it provides a cheaper, informative and repeatable 

survey of potentially remote and inaccessible areas. The remotely sensed data can be used both to 

delineate glacier extent and to monitor changes in glacier volume. Sensor data is used to create 

digital elevation models (DEMs) to represent the glacier surface: successive DEMs of the same area 

will show changes in the height of this surface, implying changes in glacier volume. Demuth and 

Pietroniro (1999) argued that airborne or orbital active imaging radar is preferential to alternative 

sensor data as it not restricted by cloud cover, shadow or time of day. This opinion is in contrast to 

Gao and Lui (2001) who conducted a comparative study of sensor suitability for glaciological 

studies, reporting that each had advantages and disadvantages and no one sensor type was optimal. 

Cogley et al. (2001) agreed with the findings of Demuth and Pietroniro (1999) that active imaging 

radar provides the most robust imagery, but they suggested that its cost and large file sizes limit its 

usability. They proposed that browse active imaging radar images provide a compromise; these 

reduce the resolution and information contact of the original image. 

A review of remotely sensed investigations in the cyrosphere is provided by (Gao and Liu, 2001). 

Although this is a rapidly evolving area limitations still exist surrounding, data extraction, 

resolution, reliability and cost. Further advances in the calibration of remotely sensed data will 

hopefully provide a rapid glacier monitoring program to help improve our understanding of 

atmospheric, climatic and surface process interactions that could be fed into model development 

and parameterisation. 
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2.2.1. Type 1 prediction model: Temperature-altitude models 

Temperature, precipitation, ablation and altitude are highly correlated (Barry, 1980; Oke, 1987; 

EtzelmuUer et al, 2001; Gray and Male, 1981). As temperature and precipitation are much 

easier to record and predict than ablation, they are used to infer the equilibrium line altitude 

(ELA). This is the altitude at which losses of snow through ablation are equal to gains through 

accumulation for the balance year. It marks the altitude of instantaneous glaciation, and is 

calculated using local altitudinal gradients in precipitation and temperature and a relationship 

between winter precipitation and ablation-season temperature at the ELA (Lie et al., 2003). The 

rate of change of temperature and precipitation with altitude at a location is given by the local 

lapse rates. Lapse rates are highly spatially and temporally heterogeneous varying as a function 

of topography and atmospheric conditions. Temperature altitude models often assume spatially 

uniform variations in temperature and precipitation with altitude resulting in a coarse temporal 

and spatial scale representation of predicted snow cover (Lie et al., 2003). 

Simple ELA models only account for snow accumulation by precipitation: as outlined in 

Section 2.1 this is not a valid assumption, as this is not the only process determining snow 

accumulation. Dahl and Nesje (1992) incorporated alternative methods of accumulation by 

differentiating between temperature - precipitation equilibrium-line altitude (TP-ELA) and 

temperature-precipitation-wind equilibrium-line altitude (TPW-ELA), these were found to give 

more accurate representations of snow distribution patterns. 

Although ELA estimates only provide a coarse representation of predicted snow cover they 

have relatively low data requirements and can provide good correlations between observed and 

predicted distributions. Lie et al. (2003) had correlation coefficients of 0.8 - 0.84 between 

predicted and observed glacier distributions in southern Norway. However they stressed that 

estimates are very sensitive to uncertainties in lapse rates. This is in enforced by Plummer and 

Phillips (2003), who argued that the relationships derived between winter precipitation and 

ablation-season temperature when calculating ELAs are not transferable as they fail to account 

for the varying influence of topography on snow accumulation. 

Correlations between altitude and temperature can be supplemented using information on the 

correlation between melt and temperature, where the amount of melt can be correlated with the 

duration of air temperatures above 0°C. These types of model are called a temperature index 
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models and they are based upon the relationship between positive air temperatures and net 

radiation. 

2.2.2. Type 2 Prediction model: Temperature index models 

Temperature index models or degree day models are based upon the correlation between air 

temperature and melt (See Hock, 2003 for a recent comprehensive review of their applications). 

Most positive air temperatures are correlated with recorded melt, (Braithwaite and Oleson, 

1989, recorded a correlation of 0.96), derived either from direct on glacier measurements of 

flow or ablation or from melt predicted from an energy balance model (Hock, 2003). This 

correlation allows the calculation of a degree day factor (DDF) (Equation 2.1) usually expressed 

as mm d"' K' ' . 

^ M = DDFY^ TM Equation 2.1 
;=1 (=1 

Where M is the amount of melt (mm), n is the number of time intervals, of duration Ar and T"̂  is 

the sum of positive air temperatures (°C) during this period. 

The correlation between melt and temperature is predominantly driven by longwave radiation 

and sensible heat exchanges, which together provide up to 75% of energy required to drive melt 

(Hock, 2003). DDEs are variable through time and space representing the differing role of 

sensible heat exchanges and DDEs must be recalculated required for predictions for any new 

application area. DDE's also vary as a function of altitude, solar radiation and albedo (Hock, 

2003). Despite this spatial and temporal variability they have been widely adopted for over 100 

years, recording high prediction accuracies, low computation costs and low data requirements, 

lumping together energy balance and topographic controls on energy balance in the DDE. They 

do however require melt data to develop the factor of proportionality. 

Derived temperature ablation relationships that are applied to altitudinal lapse rates and are not 

transferable only represent local relationships. Accuracy of predictions are limited by both the 

derived correlation and the temperature lapse rate used to predict melt from the temperature 

index model. 

Temperature index models are restricted by their temporal (Lang, 1986) and spatial (Hock, 

1999) resolution-and^fail to^predict ^high-frequency variations in snow accumujation and 

10 
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ablation. Unlike the observed strong diurnal variations in ablation (Hock, 1999), a constant 

degree-day factor in temperature index models overestimates melt at night and underestimates 

melt during the day. Hannah et al. (2002) found that despite high correlation between ablation 

and their degree-day factors, their model could not replicate inter annual variability in 

snowcover and only simulated large temporal and spatial scale variations. 

Hock (1999) adapted the standard degree-day model to incorporate potential radiation, in an 

attempt to increase the temporal and spatial resolution of estimates, this did improve 

predictions but still failed to simulate the spatial heterogeneity in observed snow cover. Like 

type 1 models, temperature index models are widely used because of a lack of other available 

data. They are only useful over long time scales as they fail to simulate high frequency trends 

unless extensive calibration is performed. 

2.2.3. Type 3 Prediction model: Local mass balance 

Mass balance models use field measurements of mass changes to simulate net or spatially 

distributed variations in accumulation and abaltion. Ablation stakes are used to record 

variations in snow depth at a series of discrete locations on the glacier surface. Changes in the 

snow depth measurements are converted to volume using the snow density, which is measured 

in a series of snow pits in the glacier. These point measurements are converted to surface 

estimates by creating isolines, and interpolating to a surface representing volume or mass 

change. Predictions are made in snow water equivalent, (SWE) which represents snow by the 

depth of water it would produce i f melted, this measure eliminates density variations. Stakes 

are assumed to be representative of the elevation interval or terrain environment they are located 

in. It is therefore critical to the accuracy of the interpolation that this assumption is true 

(Williams, 1974). A time series of glacier mass changes, like the data for Storglaciaren, 

Sweden which has the longest mass balance record, with continuous measurements since 1945, 

provide an essential dataset to improve our understanding of the controls on glacier distributions 

by understanding the processes controlling local mass variations. 

Estimates of changes in glacier mass balance can either predict spatially averaged annual mass 

balance, which provides an estimate of net balance for the whole glacier or spatially distributed 

mass balance changes. The latter requires the inclusion of a continuity equation that provides an 

estimate of the glacier flow field: this distributed approach produces a more informative dataset. 

The continuity equation can often be an area of uncertainty: Gudmunsson and Bauder (1999) 

suggested an alternative by modelling the kinetic surface conditions, where surface velocity 

11 
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(derived from remotely sensed data), altitude and mass balance measurements are used to 

predict distributed mass change. The results showed that the model was highly sensitive to the 

assumptions used in velocity extraction, but provides a usefiil methodology for deriving 

spatially distributed mass changes. 

However, mass balance measurements and studies are costly in both time and money (Hagen et 

al., 1999; Andreassen, 1999), they are also subject to potentially large and unknown errors 

including uncertainty associated with density conversion models, systematic probing errors, 

stake ice melt processes and ablation gradient calculation (0strem and Haakensen, 1999). 

Extensive research has been completed in an attempt to improve the estimates of these errors 

(Jansson, 1999; Hock and Jensen, 1999). Jansson (1999) concluded that mass balance estimates 

on Storglaciaren were not sensitive to measurement errors, but were sensitive to sampling 

locations. Comparative studies between mass balance measurements and the comparison of 

repeated mapping of glaciers have been inconclusive because of the inherent errors in both 

techniques (Andreassen, 1999). However 0strem and Haakensen (1999) argued that the 

maximum error could be quantified in comparison of repeated mapping, which is better than the 

unknown maximum error in mass balance studies. Despite the clear limitations of the intensive 

field data collection and error uncertainty, mass balance studies still provide valuable 

information on glacier mass changes. Hagen et al. (1999) and Theakstone et al. (1999) 

provided examples of coupled models, combining traditional mass balance measurements with 

global positioning system (GPS) and remotely sensed data to improve and refine mass change 

estimates. 

2.2.4. Type 4 Prediction model: Local energy models 

Model types 1-3 are all limited by data collection and scaling problems. Type 4 models 

quantify surface energy exchanges to simulate melt and accumulation over a surface. 

The surplus or deficit of energy over time is known as the energy balance (Benn and Evans, 

1998). A surplus of energy will lead to snow or ice ablation, where energy is initially used to 

raise the snow or ice surface to O^C, and then to melt [at O^C], evaporate or sublimate mass [at 

any temperature] from its surface. A deficit of energy wil l lead to a cooling of the surface and 

possible accumulation of ice by condensation or freezing of water (Benn and Evans, 1998). 

Energy balance models commonly take the form: 

Energy flux available.for melt;= Qm 

12 



P r e d i c t i n g G l a c i e r D i s t r i b u t i o n s C l i a p t e r T w o 

K a l h e r i n e H A r r e l l M e i h o d s o f P r e d i c t i n g G l a c i e r D i s l r i b i n i o n s 

Qn, = Qsn + Qln + Qr, + Qen + Qh + Q e + Q g + Q p (EquatioU 2.2) 

Where, Qsn = Net short-wave radiation 

Qln = Net long-wave radiation 

Qrt = Net reflected radiation from surrounding terrain 

Qen = Net emitted radiation from surrounding terrain 

Q h = Sensible heat flux from the air 

Q e = Latent heat flux from snow-air interface 

Q g = Heat flux from the snow-ground interface 

Qp = Heat flux from precipitation 

Qsn is the most significant parameter and accounts for most of the energy available for melt 

(Gray and Male, 1981; Streten and Wendler, 1968), in most conditions, however, in cloudy and 

maritime environments turbulent exchanges can significantly contribute to melt (Streten and 

Wendler, 1968). 

Energy models can be fed either by field measurements (Brock et al., 2000a,b) or by predicted 

surface energy components (Anderton et al., 2000). 

Williams (1974) estimated ablation per pixel by predicting the heat and water exchange of the 

snow with it surroundings. His model used predicted clear sky, diffuse and longwave radiation 

components, sensible and latent heat transfers between the snow and atmosphere, surface energy 

flux and heat conduction to and from the substrate. Predictions were made on a daily basis 

driven by recorded climate data and albedo. Results showed reasonable results for the study 

area, although the model was driven by locally recorded climate data, it adopted an innovative 

approach to precipitation prediction, suggesting that standard lapse rate models should be 

replaced by multiple regressions incorporating slope, altitude and local relief The topographic 

confrols on snow accumulation raised by Williams (1974) have subsequently been the focus of 

much research exploring the spatial variability of snowmelt processes. Luce et al. (1998) 

argued that despite extensive research on the role of topography in radiative and snowfall input, 

predictions of snow accumulation still fail to account for spatial variability in snowcover. These 

authors suggested that the point measures of snowmelt are inaccurate and predictions should 

consider global measures such as snowdrift. At their study site the effects of snowdrift were 

more important than topographic~efifects on radiation. 

13 
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Cline et al. (1998) claimed that there were no widely suitable models for mapping snow cover 

in rugged terrain, and that accurate estimates were only possible by intensive field sampling that 

captures its high spatial heterogeneity. They proposed that remote sensing might provide the 

technique to do this. Surface energy balance and reflectance properties have been increasingly 

retrieved using remotely sensed data (Cline et al., 1998; De Wildt et al., 2002; Dubayah, 1992; 

Duguay and LeDrew, 1992; Gratton et al., 1993; Koike and Guodong, 2002; Wang et al., 2000). 

This method provides a repeatable and accessible means of collecting the radiative components 

of surface energy balance and has been found to show good correlations with field 

measurements (Wang et al., 2000). A time series of remotely sensed energy balance data can 

provide a higher spatial and temporal resolution dataset than is possible using the predictive 

models outlined above. However, this information is not explicitly available within the 

remotely sensed data. A radiative transfer algorithm has to be derived to convert spectral 

reflectance values to more useftil energy balance measures: the details of this are still an active 

area of ongoing research. Dubayah (1992) stressed the importance of including additional 

topographically induced radiation effects on radiative transfer algorithms. 

Intensive field surveys and point energy balance models fail to simulate the temporal and spatial 

heterogeneity of snowcover. Hock (1999) stressed the need to create a spatially distributed 

global model to account for the spatial and temporal variability in snow cover. 

2.2.5. Type 5 Prediction model: Global localised energy models 

Global localised models predict local energy balance at a location using local and global data, 

but are limited by their locally driven input data. Global data refer to variables or parameters 

that are dependent upon or calculated using their surroundings. Global variables that are 

significant when considering glacier distributions include topographic shading, exposure and 

relative altitude (Hannah et al., 2000; Pomeroy et al., 1998; Young et al., 1997). 

Hock (1999) developed a hybrid model that predicted hourly snow ablation as a function of 

potential clear sky radiation, topographic shading and observed global radiation. Ablation is 

predicted using a melt parameter that requires local calibration. Predicted distributions were 

highly correlated with the observed, but high data requirements (hourly climate data, and global 

radiation) limit its applications to accessible and monitored glaciers. The hourly temperature 

data is interpolated over the glacier surface using a constant temperature lapse rate, restricting 

the spatial heterogeneity of the temperature and consequently melt surface. Hock (1999) reports 

that one of the climate stations used in this interpolation process was discarded due its proximity 
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to a valley wall and consequently showed a local climate signal. This is similar to the approach 

of Richard and Gratton (2001) who created 'synthetic stations', but contrasts with the approach 

outlined by Arrell and Evans (2003) who argued that these local signals should be included in 

temperature predictions as they represent commonly occurring conditions. Aizen et al. (1997), 

Fierz et al. (1997) and Richard and Gratton (2001) also stressed the importance of accurate and 

terrain dependent climate predictions in glacier distribution models. Aizen et al. (1997) 

completed a study in the Central Tien Shan and argued that accurate climate and snowcover 

predictions needed to consider not only terrain parameters but also the scale of the study area 

and the annual variability in the climate processes. 

Global localised models can effectively model snow cover distributions by considering process 

spatial and temporal heterogeneity, but these models are locally parameterised and driven by 

locally recorded climate data. This restricts their application to accessible study areas: global 

models attempt to remove these restrictions. 

2.2.6. Type 6 Prediction model: Global energy model 

Global models predict local energy balance at a location using local and global data, and are not 

driven by point data; requiring only commonly available regional data. 

Tapeiner et al. (2001) stressed the importance of modelling the spatial variability in climate and 

accumulafion processes when predicting glacier distributions. Using only readily available data 

and a series of derived topographic variables they compared a linear regression and artificial 

neural network (ANN) approach to predict a known distribution of snowcover. Results showed 

that the ANN approach provided better results with a correlation of 0.81, highlighting the 

dominant influence spafial variability in terrain and climatic variables has on snowcover. 

Although the model is globally applicable and has low data requirements the 'black box' effect 

of ANN modelling leaves many unanswered questions about surface, terrain and atmospheric 

interactions. 

2.3. Conclusions 

The range in predictive models not only highlights a chronology of knowledge and scientific 

advancement but also the complexity of glacial systems. No one model or type of model can be 

identified as opfimal as this is largely dependent upon the data available, scale, the climatic 

characteristics of the study area and the desired spatial and temporal resolution of model output. 
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With respect to the aims of this research it is considered that type 5 models provide the most 

suitable framework to develop the predictive model within. Few type 5 models have been 

found within the literature, as most melt models require either local calibration or locally 

streamed datasets. It is suggested that iterative calibration of the models (outlined in section 

2.2.5) will eventually provide them with global parameters and applicability. Efforts should be 

made to derive local climate datasets from regional data using the methods outlined by Aizen et 

al. (1997), Arrell and Evans (2003), Fierz et al. (1997) and Richard and Gratton (2001) to aid in 

facilitating the global application of these models. 

Evaluation and examination of the predictive models described in this chapter stresses the 

dominant control that local factors have on the rate and character of spatially distributed snow 

and ice melt. The Jotunheimen, Norway with active glaciation at high altitudes is a typical 

example of an area with strong localised controls on snow accumulation within varied terrain. 

A brief description and summary of these local controls and topographic character of the 

Jotunheimen is presented in the following chapter and was used to determine the structure and 

parameters used within the predictive snow accumulation model. 
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CHAPTER THREE 

JOTUNHEIMEN ' T H E HOME OF T H E GIANTS' 

3.1 Introduction 

This chapter presents a brief geological and geographical introduction to the region of Jotunheimen, 

Norway. First, the broad scale geological evolution of the region since the Pre-Cambrian is 

presented. This is then followed by a description of the geomorphology of the region, specifically 

discussing present glacial conditions. Finally the contemporary environment of Jotunheimen is 

considered with particular reference to the present day climate acting upon the region. 

3.2 Location 

The region, and in particular the glaciers, of Jotunheimen, situated in the centre of southern Norway 

between 7°30' - 9°E and 6 r i 0 ' - 6 r45 'N are the focus of this research. Jotunheimen is the 

highest mountain block in Scandinavia and northern Europe. It is composed of three major massif 

complexes, Horungeme, Skvettebothogda and Bygdin. Their peaks reach between 2,000 - 2,400 m 

above sea-level (asl) extending 500 - 1,000 m above the regions' mountain plains, or plateaus. The 

Jotunheimen is part of the Fjeld region of Southern Norway. It is bordered by Jostedalbreen and 

Boverdal to the west, Gudbrandsdal to the east, Ottadal to the north and Valdes to the South. 

Jotunheimen lies within the counties Oppland and Sogn og Fjordane. Since 1980, 1145 km^ of the 

Jotunheimen area has been regulated as a National Park. The national park and the glaciers therein 

are easily accessible and amongst the best investigated in Norway, e.g. Storbreen (0strem et al., 

1988). 
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3.3 The Geological evolution of the Jotunheimen Region 

The Caledonian mountain range, of whicii Jotunheimen is part, lies northeast southwest along the 

Scandinavain Peninsula. It is situated in the most part along the boundary of Norway and Sweden. 

The Jotunheimen was formed during the Caledonian period, and is composed almost entirely of 

basic igneous strata, namely 'Jotun-norit' a composite of mangerit, norite, gabbro and olivine 

diabase. Ahlmann (1922) suggested that the preservation of the Jotunheimen area is not only a 

result of the natural resistance of Jotun-norit and its distance from the base of erosion, but also 

because it was centrally positioned during the Caledonian orogeny forming a kernal in the building 

of the mountain chain and the core of the Baltic Shield. 

To understand the present landscape of the Jotunheimen it is essential to consider the geological 

evolution of the region with particular reference to two of the major structural events that have 

impacted on the region, namely: the formation of the Baltic Shield; and the Caledonian orogeny. 

Following on from these events has been the major geomorphological remodelling of the landscape 

during the Tertiary and Quaternary periods to create the landscape in the region that we see today. 

3.3.1 Pre Cambrian 

The oldest surfaces in the Jotunheimen date to the Pre Cambrian during the time of the formation of 

the Baltic Shield. The oldest area of the Baltic Shield is believed to have formed part of the original 

structural core of the European continent with a crust some 250-300 km thick. It is composed 

mostly of Archaen and Proterozoic gneisses and which have undergone numerous deformations 

through tectonic activity. In what is now Norway some of the younger (dating from as recently as 

800 Ma) gabbros, granites and gneisses prevailed. 

3.3.2 Caledonian Orogeny 

The Caledonian mountain range in Scandinavia was created as a result of compression and uplift of 

the Caledonian geosyncline which formed during the continental collision of the ancestral North 

America and Europe during the period from the Early Palaeozoic to the end of the Silurian. The 

geosycline was largely composed of eroded materials from the Baltic Shield from the Pre-

Cambrian. The Caledonian Orogeny lasted for c. 250 million years and was a complex period of 

successive uplift and deformation. Uplift was accompanied by extrusions and intrusions of igneous 
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material, folding was accompanied by over thrusts and shearing. These extreme pressures lead to 

metamorphosim resulting in gneiss formation, largely found in Western Norway. The multifaceted 

patterns of uplift, deformation, shearing and thrusting resulted in a complex mountain range that is 

thought to have reached altitudes of more than 5,000 m asl. It is believed that this impressive range 

of intricate ridges and extensive troughs has since been subject to extensive fluvial, frost and wind 

weathering processes, removing all but the oldest strata. 

3.3.3 Tertiary Pre-Glacial Landscape 

The Tertiary period was characterized by intensive denudation throughout Scandinavia during 

warm moist climatic conditions, more intense periods followed uplift during the Alpine Orogeny, ft 

is believed that at least fifteen of these uplift and erosion cycles occurred, creating a series of 

erosion surfaces divided by more intensely eroded scars. The Jotunheimen area emerged as a high 

altitude land mass and deeply incised fjord river valleys were created on the coast. Despite these 

two prominent land surface elements, records of the erosion cycles have been preserved in the 

landscape as palaeosurfaces, (Gjessing, 1967). By the end of the Tertiary denudation, had lowered 

and altered the surface, and the palaeosurfaces were heavily incised by valleys and gorges. 

3.3.4 Quaternary Glaciatiom 

The boundary that denotes the end of the Tertiary and the beginning of the Early Pleistocene {circa 

2.4 Ma BP) saw a large fall in global temperatures and the onset of a succession of major 

glaciations within the Northern hemisphere. These glacial-interglacial (warming and cooling) 

periods were induced by the uplift of the Tibetan plateau and further amplified by orbital forcing. 

The timing of this onset is still a contested issue, some evidence suggests that localized glaciations 

may have started as early as 4 million years ago (during the Pliocene), but widespread onset of 

intermittent glaciations had occurred by the Eariy Pleistocene. At the maximum cooling of a glacial 

period, a single ice sheet covered most of Fennoscandia, and during less intensive cooling periods 

more localized glaciations occurred. The high altitude, northeriy latitude, relative maritime postion 

and incised form of the Jotunheimen area also lead to locally increased receipts of precipitation. 

The transition from localized glaciations to more extensive regional ice sheets was recognised by 

John (1984) as ordered stages that marked key demarcations in the successive advancement of the 

glaciation (Figure~3.1). However-it should be remembered that this is really a continuum that is not 
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only controlled and propagated by external forcing but also by its own climatic and energy balance 

feedbacks. The successive glaciations during the Pleistocene will have advanced and retreated 

along this spectrum. In northwest Europe it is well established that there have been three major 

glaciations termed the Elsterian, Saalian and the Weichselian, and also referred to as marine oxygen 

isotope stages (MOIS) 12, 6 and 2. There may, however, have been significantly more glacial 

periods prior to the Elsterian but terrestrial evidence to support this is limited (Lowe and Walker, 

1997). The timing and extent of these events is poorly constrained (Houmark-Nielsen and Kaer, 

2003). Although the North Atlantic climate system played a significant role in the determining the 

timing and extent of these events, local parameters in Scandinavia need also to be taken into 

consideration. Houmark-Nielsen and Kaer (2003) stressed the importance of the distribution of 

Qords and lakes and Helmke et al. (2003) described the significant impact of the fjords and 

Norwegian Channel had on the ice sheet dynamics and equilibrium. Helmke et al. (2003) proposed 

that investigations at individual sites off the Norwegian coast bring into question current 

assumptions about the influence of the Greenland and European ice sheets on the local glacial 

conditions, which will affect the timing and frequency of interglacial and glacial conditions. 

Jotunheimen has almost certainly been ice covered and modified by successive Quaternary 

glaciations. The location and altitude of Jotunheimen, suggests that it may have been at the centre 

of Norwegian Ice accumulation during past glaciations and was entirely covered at least once 

(Ahlmann, 1922). However, evidence for this is somewhat limited because morphological evidence 

in the region suggests that the majority of the glacial landforms of Jotunheimen were a product of 

the last (Devensian) glaciation. The evidence supporting this claim is outlined by Ahlmann (1922), 

who argued that the sharp alpine forms such as Store Skagatolstind would not be present had they 

been acted on by successive glaciations. He also argued that the extent of the Devensian ice sheet 

covering Jotunheimen might not have been that great, and that ice thickness was largely controlled 

by topography with the deepest ice occurring in outflow valley glaciers. 
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Onset of Glaciation 
Causes: Moisture laden winds from Atlantic and fall in global mean temp 
Results: Precipitation falls as snow at high altitude 
Outcome: Snow accumulation, snow fields and upland glaciers 

Mountain Glaciation 
Causes: Perennial snow fields and increased snow accumulation 
Results: High altitude glaciations 
Outcome: Positive mass balance, climatic and energy balance feedbacks, extensive 
mountain glaciation 

Glacier flow and 
valley systems 
initiated 

Ice Expansion 
Causes: Intense cooling, increased precipitation, topographic surface 
Results: Build up of plateau ice caps on Paleo and Pre-Cambrian pene-plain 
Outcome: Ice cap development, thickening of ice on leeward side of Caledonian 
mountains, outflow of excess ice via Western coast fluvial valleys 

Dramatic increase in 
effect of energy and 
climatic feedbacks, 
now a self-
perpetuating system 

Growth of Ice Sheet 
Causes: Persistent climatic conditions and topographic surface 
Results: Gradient of Bahic shield led to development of piedmont glaciers and ice 
caps that coalesced to extensive ice sheet 
Outcome: Axis of ice sheet moved to the east due to new extended distribution. 

Maximum Ice Extent 
Causes: Persistent climatic conditions open surfaces surrounding ice sheet. 
Results: Ice sheet grew into the rest of Europe, north to the Barents Sea and south 
to Northern France and North Germany, and East to the USSR. 
Outcome: Extensive ice sheet that may have merged with Barents Sea ice sheet 
and West Siberian ice sheet 

Figure 3.1: Adapted from John (1984; p. 46) 
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3.4 Geomorphology 

The Jotunheimen area is composed of large open palaeovalleys (Tertiary) with younger 

(Pleistocene) valleys advancing towards its centre. The palaeovalleys are remnants of a 

previous terrain and erosion surface created and shaped before the last glacial maximum 

(LGM). Using Davis' (1899) model this should be a mature and well smoothed terrain, with 

broad, flat valleys. The younger tertiary valleys are much less smooth and are characteristic of 

deeply incised glacial troughs, heavily modified during the Devensian glacial maximum. 

Jotunheimen is characterized by majestic mountain massifs and glaciers. The country's highest 

mountain peak - Galdh0piggen (2,469 m asl) - is situated within the study area. The area has 

many lakes, of which Gjende is the largest. 

The valleys dissect the Jotunheim into three regions of massifs extending from the NE to SW. 

1. Horungeme - Kvittingskolen. Containing the Horungerne, Smorstabb, Galdhoerne, 

Glittertind and Kvittingskolen massifs. 

2. Containing the Skvettebothogda, Raubergene, Koldedal, Uranaastinderne, Raudalstindeme, 

Memurmassive and Naugarssen massifs 

3. Bygdin massif proper and Gjendin. 

These massifs are old huge bodies with vaulted contours and young, sharp alpine forms at and 

near the present day glaciers and snowfields. The vaulted land surfaces are the oldest part of the 

Jotunheimen and form the initial topography at the centre of the massifs which contrasts starkly 

with the younger alpine landforms. The peak of Galdhepiggen is a vaulted part of the central 

massif Muhiple similar peaks suggest that there was a flat peneplain palaeosurface at 2,000 -

2,300 m, but Ahlmann (1922) suggested that it simply represents a long denudation period that 

has lowered the original terrain surface to a uniform level. 

Successive Early Pleistocene glaciations have shaped the landscape and the resultant forms 

were dependent upon the local depth of ice, conditions (warm or cold) at the ice-rock interface 

and the underlying topography. During less intensive glacial periods existing fluvial valleys 

were often reworked by the glaciers that flowed from more upland areas, eroding deep glacial 

troughs and flowing down through the evolving smaller lowland valleys and the coastal fjords 

on the West. 
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Each successive Quaternary glaciation modified the landsurface, but it is believed that the 

terrain surface and its constituent landforms observed today were shaped by glaciers during 

Marine Oxygen Isotope Stage six (MOIS 6) (-150 ka BP) and that subsequent glaciations may 

have only slightly modified the erosional landforms (Helmke et ai, 2003). 

During the last glacial maximum, the offshore Norwegian Channel contained a large ice stream 

moving north, this was active during several of the glacial advances during the Pleistocene but 

reached its maximum extent during the last glacial maximum (LGM). Raunholm et al. (2003) 

used digital terrain models and sedimentological investigations to investigate the interactions 

between the inland ice and the ice stream during deglaciation. The orientation and 

sedimentology of erosional and depositional landforms was used to reconstruct the channel 

deglaciation, suggesting that the inland ice sheet developed altering its dynamics giving it a new 

equilibrium, with localized areas of early deglaciation or glacial advance. 

3.5 Present Day Glacier Distributions 

The glaciers of Norway are more extensive than those of any other European country other than 

Iceland. They are concentrated into two major groups: those in the north of Norway between 

latitudes of 66° and 69°N (792 glaciers in an area of 1954 km^); and those in the south between 

60° and 62°N (950 glaciers in an area of 1900 km^; Denton, 1970) many of which lie within the 

Jotunheimen region (Figure 3.2). Under the present climate, f im lines are around 1600 m in the 

northwest of Norway rising to 2200 m in the southeast of the country. Glaciers also tend to be 

more concentrated to the west of Norway. Higher latitudes in the north can account for the 

distinct gradient in firn line altitudes. However, Von Buch (1922) suggested that increased 

cloudiness at the western (Atlantic) coast might be the driving mechanism for a longitudinal (W 

to E) gradient in f im line altitudes that also occurs. Forbes (1922) proposed that the difference 

was purely a response to the maritime influences on temperature, whereas Ahlman (1922) 

argued that temperature gradients were only responsible for a relatively small component of the 

longitudinal gradient in the firn line altitudes, and that the major component of the trend is a 

result of the spatial distribution of precipitation receipt. 

Most glaciers in the Jotunheimen region are cirque or valley glaciers (0strem et al., 1988). The 

distributions of glaciers in Jotunheimen are dependent upon the range of factors outlined in 

section 1.2. However, a range of different factors have been found to dominate their 

distributions in relation to their locality, which in part, is evident through different glacier 

orientations. Theimore maritime climate in the west of the area facilitates the growth of large 

plateau glaciers and ice fields where snow accumulation and milder climates lower the firn line. 
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Figure 3.1: Geocorrected topographic map o f the study area highhghting the distribution 
o f glaciers (in white). Source: the 1:100000 Statens Kartverk topographic map of 
Jotunheimen, updated in 1997. Although the map was updated in 1997 it is unclear i f 
the glacier boundaries were updated at this time. 

24 



Predic t ing Glac ie r A c c u m u l a t i o n Area Dis t r ibu t ions Chapter Three 
ka lhe r ino E A r r eH I'he Cieouraplu u l ' l l i e . lo tnnheiniei i 

The more varied and steeper terrain of central Jotunheimen leads to complex glacier fields and 

large cirque glaciers developing within sheltered cavities, where wind blown snow and lower 

insolation allows the growth and merging of glaciers. The drier and warmer (in summer) 

conditions in the east of the region lead to smaller cirque glaciers and ice fields. Since 1750 

most of the glaciers in the Jotunheimen area have been retreating (0strem et al., 1988). 

3.6 Recent changes in glacier extents 

Multi-proxy evidence suggests that recent retreat and thinning of Norwegian glaciers is a result 

of warming and reduced precipitation. Berstad et al. (2003) reconstructed sea surface 

temperatures in a sediment core taken from offshore on the Southern Norwegian continental 

margin. This reconstruction was compared with contemporary measurements taken from the 

Ocean Weather Ship. The research concluded that the last 70 years have been the wannest in 

the region for the past 600 years. These data that suggested a warming trend for Norway have 

been borne out by the retreat of many of the glaciers in Jotunheimen. For example Storbreen in 

the Leirdalen Valley in the central part of Jotunheimen has the longest series of mass balance 

change measurements in Norway, spanning over 52 years (Kj0llmoen, 2001). Over this time 

the glacier has shown a net mass balance change of -0.20 m water equivalent, and during the 

period between 1900 and 1988 the snout of the same glacier retreated over 1 kilometre 

(Kj0llmoen, 2001). Similar figures of mass balance change and retreat have been noted for other 

glaciers in Jotunheimen, including Hellstugubreen and Grasubreen (Kjollmoen, 2001). 

3.7 Current climate 

Norway's climate is not only influenced by its position in the northern hemisphere and the 

tracking of pressure systems and winds, but also by the influence of the North Atlantic Ocean, 

the Baltic Sea and its own land mass. Except for the west coast of Norway, its climate is part of 

the Boreal Forest climatic zone in the Koppens system, with a mean temperature of the coldest 

month is 0 "C with snowcover every year. Some areas of Northern Norway exhibit a polar 

climate where the average temperature of the warmest month does not rise above 10 °C. 

Norway's position north of 50°N latitude provides it with a negative annual radiation balance, 

with less energy is received than is emitted. The annual deficit is 40 000 cal cm at 55° N and 

67 000 cal cm at 70° N . These values would be far greater i f short winter days where not 

compensated for by long light summer nights. The energy deficit is compensated for by energy 

derived partly from-latent heat released-by condensation and partly by horizontal advection 

. fromLmore southerly latitudes 
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The location of Norway on the eastern side of the North Atlantic means that the climate is 

affected by the abnormally warm Atlantic Ocean (i.e. the Gulf Stream). Temperatures can be 

more than 9 °C warmer than other landmasses at the equivalent latitudes. Prevailing winds 

carry this warmth inland leading to a maritime climate in the west, giving rise to milder winters, 

cooler summers and more abundant precipitation. The lessened influence of the Atlantic in the 

east of the country results in a more continental climate with greater extremes of temperature 

and less precipitation, giving rise to fewer rainy days, lower relative humidity and less cloud 

and wind force compared to the west. Latitude as you travel north has only a nominal effect on 

Norway's climate as the northward drift of the warm Atlantic waters largely negates it. 

3.7.1 Pressure systems and winds 

The weather of Norway is largely controlled by the passage of depressions and cyclones along 

its coast. The Scandinavian Peninsula is dominated by westerly and southwesterly winds during 

all seasons as the net result of the interaction between the high altitude, mid latitude westerly jet 

stream, and polar fronts that develop between cold air masses fi-om the polar regions descending 

from the north and tropical, more mild air masses rising from the south. The strong westerly 

current corresponds to the polar fi-ont at the surface and the cyclones formed at the front move 

with the jet stream leading to the predominantly westerly and southwesterly winds. The net 

result of the passage of these depressions is a tendency for high-pressure systems to form in the 

centre of the country during winter and low-pressure systems forming in summer. These 

climatic characteristics produce systems of winds around the mass of southern Norway that 

circle in anti-clockwise directions during the winter and clockwise directions in the summer. 

Winter is characterised by large temperature anomalies due to the ocean atmosphere interaction 

above the Gulf Stream and heavy precipitation especially in the west. Under these conditions 

summer is cool and strong vertical convective currents bring frequent rain showers. 

These conditions do not always dominate and the westerly system can be broken down when 

deep troughs and ridges are formed in the pressure system of the upper atmosphere, blocking 

the westeriy current. High-pressure ridges bring warm air north and troughs transport cold air 

southwards. Seasonal weather is highly dependent upon the location of the ridges. In winter 

winds can be easterly or north easterly bringing with them continental polar or artic air. This 

produces very low temperatures, but lighter snowfall than under westerly conditions and very 

little snow on the leeward west coast. In summer ridge locations have clear, dry, hot weather, 

east of the ridge, north westerly polar air brings frequent showers but precipitation falls west of 

ridge where squtherly_wmds^bring cyclop activity. 
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3.7.2 Precipitation 

Precipitation patterns in Southern Norway are controlled by complex interactions of multiple 

controls. These include atmospheric circulation, distance to open sea, altitude and exposure or 

protection due to altitude. Because of the prevailing westerly to southwesterly winds the 

western areas of Norway receive the most precipitation, with the majority falling during the 

winter months when cyclonic activity is strong. Proximity to the coast is a secondary factor 

because moisture saturated air masses and cyclones move onshore from the sea and lead to a 

strong linear decrease in precipitation inland from the coast. Locations in the west of 

Jotunheimen can have annual precipitation levels as high as 3000 mm. In contrast, easterly 

locations may only receive 400 - 500 mm per year. 

This strong linear relationship is helped by the orographically induced precipitation, further 

diminishing the moisture reaching the east by deflecting it to the north and so acting as a 

topographic divide between the predominantly maritime conditions in the west and continental 

conditions experienced in the east. Precipitation largely falls as snow during the winter months, 

between November and April, in southeast Norway and from the end of September ti l l the end 

of May in northern Norway. During these periods precipitation decreases rapidly. Locally 

topoographically induced precipitation increases snowfall on windward slopes, and as winter 

temperatures decrease in line with latitude and altitude, higher snowfalls are recorded in areas 

of higher altitude and latitude. Precipitation exceeds evaporation by 200 - 300 mm a year. In 

western and northern Norway, where maritimity is pronounced, winter precipitation is dominant 

(January, October and November) and spring is the driest season. 

3.7.3 Temperature 

Norway's position on the west coast of the Eurasian continent and the surrounding North 

Atlantic Ocean and Baltic Sea lead to its temperature having strong maritime characteristics. 

These maritime influences lead to a very small amplitude between the mean of the coldest and 

warmest months. In the winter the lowest temperatures are found in the area farthest from the 

sea, and the warmest temperatures are found nearest to the sea, where the ocean and the warm 

air that blows over it have warmed the land and air. In summer the lowest temperatures are 

found in the coastal strip. Higher latitudes have slightly lower temperatures and there is a 

strong correlation with latitude and the amplitude of the mean of the coldest and warmest 

months. 

In winter, Artiejveathexjs^^^^^ temperature-inversions, which occui- when 

warmer temperatures are overlaid with a colder air layer. 
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3.7.4 Sunshine 

Norway's high latitude limits the solar altitude during the winter months, leading to short 

daylight hours and long nights. Frequent cloud cover and topographic shading also further 

reduce sunshine. This is most frequent and dense on the west coast during autumn and winter 

Insolation levels reaching the ground are further decreased by coastal and radiation fog. Fog is 

most extensive during spring and summer where all of coastal Norway is liable to fog, but it is 

largely confined to the eastern valleys of southern Norway during autumn and winter. 

Radiation (or land) fog originates over cold surfaces and is restricted to the eastern part of 

southern Norway during autumn and winter. Cloud and fog create significant feedbacks within 

the climate system, reducing the direct beam component of radiation, and increasing the 

importance of reflected and diffuse radiation and so decreasing the solar heating of the land 

surface. Cloud and fog layers can act as barrier trapping convective heat near the surface, 

warming the surface (by trapping the heat in) and they also increase the adsorption and 

attenuation of radiation in the atmosphere. 

3.8 Conclusion 

The topography of the Jotunheimen has been shaped by successive Quaternary glaciations 

resulting in a heavily eroded and shaped glacial landscape. Extinct cirques formed when cooler 

environmental conditions prevailed lie near occupied cirques and larger valley glaciers. 

Climatic conditions in the Jotunheimen are driven by micro, meso and macro scale processes 

and create strong localised gradients in temperature and precipitation exhibiting distinct 

seasonal cycles. Historical evidence suggests that the glacier accumulation in the study area is 

particularly sensitive to small changes in temperature and precipitation (Ahlmann, 1922). This 

makes the Jotunheimen a particularly interesting area to study. Topography plays an important 

role in controlling the magnitude of these climatic gradients and is also a dominant control on 

local energy balance. Topographic data detailing the pronounced local geomorphology, and 

methods of characterising topographic controls on climatic variables is addressed in the next 

chapter. 
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CHAPTER FOUR 
TERRAIN ANALYSIS 

"Many of the physical processes operating in the landscape are locally dependent on landscape 

geometry" 

Drymondera/. 1992, p 53 

4.1. Introduction 

Terrain analysis is the investigation, quantification and characterisation of topographic 

information. Extraction of quantitative form measures and derivatives of elevation have long 

been recognised as having a geomorphological significance (Evans 1972). This chapter aims to 

introduce a new suite of topographic parameters that build upon existing quantitative surface 

measures to improve our understanding of the interactions between the earth surface processes 

and terrain. These are presented following an introduction to the methods of characterising 

digital elevation data. 

Any analysis of terrain data needs to account for and incorporate any known or suspected error. 

A new method of identifying and removing spatially and spectrally organised error within a 

DEM is presented. An improved viewshed algorithm is also developed to ensure computational 

efficiency. 

4.2. Geomorphology and Digital Elevation Data 

Geomorphology is the investigation, understanding and characterisation of landforms and 

landscapes, their formative processes and the environment and system within which they 

currently lie. Changing and evolving paradigms have led to different approaches to 

geomorphological exploration and investigation. Their direction and form have largely been 

dictated by available data sources. Geomorphology has been characterised by a clear division 

"between foi-m and process studies. 
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Despite the need often to separate form and process studies, the value of geomorphology can 

only be optimised when form and process are considered simultaneously and their inter

relations realised and appreciated. However the historical lack of a routine quantitative 

approach to surface characterisation and a mechanism for the interpretation and manipulation of 

quantitative data sets restricted any successful coupling. 

The development of the microcomputer and the start of the digital era supplied the mechanisms 

and data to allow this coupling. This was achieved not only by providing an efficient and rapid 

way of storing and analysing existing data sets, but also by supplying many digital data sets. 

These were acquired by either the digitising of existing data or through new and automated 

collection mechanics such as remote sensing. This has allowed more varied analyses to be 

completed. 

The spatial distribution of phenomena had always been a dominant feature of any geographical 

analysis, and continued to be so through the development of an area of geography called 

Geographical Information Systems (CIS). Before the onset of digital data and GIS, 

geomorphologists had not been able to model spatial patterns effectively. With the use of GIS 

this was a relatively simply procedure. Consequently, more emphasis was placed on the 

analysis of the internal spatial distribution of form-process relations and less on empirical 

process studies. These developments allowed the study of form (that had been identified as 

lagging behind that of process (Pike, 1995)) to receive renewed attention. GIS provided a 

mechanism for the characterisation and quantification of form and land surfaces, by facilitating 

large dataset manipulation and analysis or areas in the same geographical area. 

Methods of quantifying topographic form are identified as important when considering glacial 

systems (Benn and Evans, 1998; Unwin, 1973; Evans, 1977). Allen (1998) in his study of 

alpine glaciers in Montana, linked negative mass balance trends to topographic modification of 

climatic variables. He reported that topographic parameters are significant at both the regional 

and local scale when predicting the local ELAs of snowfields, ice fields, cirque glaciers and 

niche glaciers. This supported the work completed in Greenland by Warren (1991) who 

proposed that topographic forcings are critical in understanding glacier systems. 

4.2.1. Sources of Digital Elevation Data 

Three main methods of capturing digital ej^evation data exist, manual surveying (commonly 

using a geographical positioning system, GPS), digitising graphical representations of elevation 
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data (commonly contour lines and spot heights) and remotely sensed data capture (either 

airbourne sensors or satellites). Digital elevation data can be characterised by their spatial 

resolution, spatial and absolute accuracies; the data capture techniques used, the required 

processing techniques and cost. Each capture method has associated advantages and 

disadvantages and the selection of data capture technique should be based on data resolution 

and accuracy considerations. 

4.2.2. Terrain models and Data storage 

Digital elevation data can be stored in three main ways, a raster tessellated grid, a triangular 

irregular network (TIN) or as a contour model. The method chosen is largely dependent on the 

data available and the intended purpose and use of the data. However the storage mechanisms 

can be collectively termed Digital Elevation Models (DEMs); Burrough and McDonnell (1998; 

300) defined a DEM as: 

" a quantitative model of a part of the earth's surface in digital form" 

A DEM provides a method for subdividing a landscape into surface elements or spatial units in 

an attempt to represent the local topography, which in reality is a continuous surface and would 

require an infinite number of points to be accurately represented. DEMs represent the surface 

topography by simply storing a sample of surface elevation points. No single storage 

mechanism or DEM is optimal, but each has its own advantages and disadvantages. Most 

geomorphological studies are effectively modelled and completed using a gridded altitude 

matrix (Evans, 1972). This research uses a raster based elevation dataset: this not only 

facilitates spatial modelling through its common spatial aggregation units, essential within this 

research project, but also provides considerable computational savings (processing speed and 

file size 23.5 MB for a gridded DEM of study area, compared to 246 MB for a TfN of the 

equivalent area). A gridded DEM also provides conceptual advantages over alternative surface 

representations and regular sampling intervals and spatial aggregation units, facilitate any 

volume and area calculations. 

DEMs have allowed the dimensionality of data analysis to be increased replacing one-

dimensional morphometric statistics with two and three-dimensional studies. Previously 

geomorphological studies had been limited to small space and time scales: the improved data 

sets-and-data storage mechanisms remove these restrictions and limitations. They allow a 
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wealth of space and time scales to be used and investigations into the important concept of the 

coupling of processes at different time and space scales to be completed. Scale is an important 

concept throughout this study and will be discussed in many of the subsequent chapters. 

4.2.3. Scale 

DEM scale can be viewed as analogous to map scale in cartography (Hutchinson and Gallant, 

2000). DEMs can be categorised on many different levels either by the source of the elevation 

data (Section 4.2.1), the structure of the surface or the method employed to store the data 

(section 4.2.2). However scale must be viewed as one of the most critical parameters when 

using any surface representation ( i f not the most important besides elevation error). The 

importance of scale in geomorphology was discussed by Schumm and Lichty (1965), where it 

was identified that landforms and processes are scale dependent. It was argued that different 

landforms and processes are dominant at different scales and that it is not possible to assume 

that a form or process present at one scale wil l be present at a different one (Table 4.1). 

Schumm and Lichty (1965) discussed scale in both its spatial and temporal dimensions. 

Scale Example applications 
Micro 
5 - 5 0 m 

- spatially distributed hydrological modelling 
- soil moisture 
- channel change 
- specific geomorphometry applications 

Fine meso 
50-200 m 

- applications with DEMs 
- aspect related micro-climatic variations, radiation balance, 
evaporation and vegetation modelling 

- broader scale distributed parameter modelling 
- specific geomorphometry applications 

Meso 
200 m - 5 Km 

- topographically dependent representation of surface temperature 
and precipitation linking to biological activity 

- general geomorphometry applications 
- agricultural modelling 
- wind modelling 

Macro 
50 - 500 Km 

- broad atmospheric modelling 
- GCM (General circulation modelling used for climate change 
predictions) 

- projects that require high levels of generalisation where accuracy 
is not critical 

Tab e 4.1: Spatial scale and geomorphic processes 

The introduction of DEMs has facilitated scale-based investigations as simply altering the DEM 

resolution changes its scale. Wood (1986), MacMillan et al. (2000), Arrell et al., (2001) and 

Fisher et al., (2004) all investigated the scale dependence of landform classification. These 
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authors found that the same position in a landscape could be considered part o f different 

landforms simultaneously depending on the scale and context in which it is viewed. MacMil lan 

et al. (2000) suggeseted that a local ridge identified at a small scale was classified as crest or 

divide at a larger scale and a mid-slope position at a larger scale st i l l . Similar scale dependence 

was found by Wood (1986) where investigation was not only focused on changing landform 

classifications but also on the persistence o f landforms wi th scale. In Arrel l et al. (2001) a 

landform was identified as persistent i f it was found at all classification scales: this persistence 

or dominance o f a landform was generally found to be associated wi th extreme elevation values, 

for example peaks or pits (a pit is a local minimum surrounded by higher altitude values) or 

strongly delineated landforms such as ridges. Wood (1986) examined how elevation derivatives 

varied with scale and suggested that this scale based progression o f characteristics is more 

useful than a single morphometric measure. He suggests that parameterisation o f geomorphic 

surfaces should include reference to the scale based characteristics o f the unit. 

The scale dependence o f landform classification identifies the importance o f choosing a suitable 

scale o f source data and D E M resolution. The scale o f the D E M and its interpretations should 

be matched to the natural scales o f terrain and its constituent landforms o f interest to the 

application: the D E M resolution should approximate less than half the average dimensions o f 

one complete cycle o f topographic variation in the landform o f interest. This principle was 

mathematically defined by Tobler (1969:181) in his description o f the sampling theorem, which 

states that: 

" i f a function has no spectral components o f frequency higher than w, 

then the value o f the function is completely determined by a knowledge 

o f its values at points placed 1/ ( 2 ^ ) apart, i f the smallest significant 

wavelength is s then the spacing everywhere must be (l /2)s or less." 

A trial and error process is often necessary to define the optimal spatial resolution, which is 

deemed to match the dominant local wavelength e.g. crest to crest. 

Visual examination in the present study o f the dominant local wavelengths in Jotunheimen, 

identifies 2, 000 m as the first order or primary variation (large glacial valleys), and 700 m 

(smaller cirque valleys) as the second most dominant wavelength. Although these measures are 

highly subjective this type o f approach is required to id^n t j i ^ the spacing o f landforms that are 

o f critical importance to this glacial geomorphological application. These measures do not o f 
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course account for the range in spatial extents and resolutions o f each o f the landform 

components that contribute to glacier initiation, but simply aim to ver ify that cirques, 

convexities and ridges w i l l be apparent in the surface representation. Mark (1975a) 

conceptualised this multi-resolution characteristics o f terrain surfaces; texture and grain, where 

texture is the finest roughness present in the surface (where roughness can be interpreted as 

landform elements) and the grain is the coarsest repeated landform or surface roughness 

element present in the surface. These two components o f the surface should be viewed as a 

continuum, and applied to Jotunheimen, the grain could be conceived as a large mountain ridge 

such as the Galdhoppigen (> 2km) and the texture as gullies and small channels. 

In this research application a 100 m D E M was used, supplied by the Norwegian Mapping 

Agency Statens Kartverk. This was in Digital Terrain Elevation Data format (DTED) and wi th a 

U T M Zone 33 N projection. This was selected as the most suitable product based on spatial 

resolution, recorded accuracy and cost. However, the interpolation procedures performed by 

the Statens Kartverk left both spectrally and spatially dominant artefacts in the dataset that are 

clearly not reflected in their vertical accuracy estimate (addressed in Section 4.5). This spatial 

resolution is coarser than the 25 m D E M used by Bloschl et al. (1991) in their snowmelt 

simulations, but in agreement with Evans and Cox (1995) who suggest a 200 m horizontal 

dimension o f the smallest cirques in the Lake District. Although finer spatial resolution DEMs 

provide a more detailed surface representation it is not clear that predictions or simulations 

would be more accurate, as any predictions are only as good as the coarsest or highest error 

wi thin the input datasets unless successful downscaling is performed. In both the present and 

Bloschl et al. 's (1991) studies the highest uncertainties and errors are associated with climatic 

data. It is suggested here that although combining multiple datasets o f different resolutions can 

be fortuitous in increasing the surface process variability modelled it can also introduce and 

propagate errors in the coarser scale input data that cannot be resampled wi th sufficient 

accuracy to match the finer resolution o f other datasets. This is a common problem in many 

modelling applications where consistency in the complexity o f modelled parameters is not 

maintained, leading to unquantifiable error propagation. This is particularly evident in this 

application where broad spatial and temporal scales are used throughout. This research project 

has attempted to create a compromise between accuracy and resolution, and proposes a 100 m 

D E M as an adequate and sufficienfly detailed surface representation. This selection o f surface 

resolutions was also determined by a lack o f a finer spatial resolution terrain model. 
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Digital elevation data in its raw form has limited use, but analysis between and within datasets 

can produce much more useful data. The types o f spatial analysis performed within this 

research are outlined in the fo l lowing sections. 

4.3. G I S and Spatial Analysis 

It is possible to characterise a location based on varying inclusion o f its surrounds. Locations 

can be characterised by their individual attributes, the attributes o f the locations within a 

specified distance or direction from them, the attributes o f locations within the same zone or by 

the attributes o f the whole dataset. These different spatial aggregation units are most commonly 

associated with the raster data model and were first proposed by Tomlin (1980) in her 

categorisation o f cartographic modelling capabilities. From here on these w i l l be referred to as 

local, focal, zonal and global spatial analysis aggregations. 

It is also possible to identify different methods o f characterising, describing and quantifying 

these different spatial aggregations. GIS facilitates these different analytical processes and 

spatial operations, al lowing the manipulation o f geographically coherent areas; this 

functionality can be viewed as spatial analysis. 

Analysis within a GIS is not restricted to a single data model or within data o f the same spatial 

or temporal resolution. Standard spatial analysis techniques can be modified and extended by 

the user within the GIS, creating a flexible, dynamic and robust spatial analysis toolbox. 

Typical raster-based GIS facilitate the manipulation o f DEMs, and have provided valuable 

environments for the analysis o f surface form in contrast to early manual approaches qualitative 

(Hammond, 1964) and quantitative (Fenneman, 1946). 

4.4. Geomorphology and Geomorphometry 

DEMs provide quantitative elevation datasets but these elevation data in their raw form have 

limited use. It is the characterisation and extraction o f useful measures f rom these raw data that 

form more informative data. Morphometry deals with the extraction o f surface measurements 

and the mathematical characterisation o f surfaces. Evans (1972) identified morphometry as a 

suitable mechanism to achieve a quantitative characterisation o f land surfaces. Richards (1990) 

recommended that a scientific geomorphology required and demanded such quantification. 

Evans (1972) called this application.ofmorphometty to land surfaces geomorphometry. 
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The geomorphometric measures extracted f rom a surface are dependent on the type o f surface 

and the specific objectives o f the study. As this study is interested in the controls that local 

topography place on meteorological processes it is sensible to select geomorphologically and 

meteorologically significant measures. The first and second derivatives o f elevation (slope: 

gradient and aspect, and curvature: especially plan and profile curvature) are the most 

commonly used (Evans, 1972). Slope affects the use o f gravity for geomorphological work and 

curvature controls the acceleration and convergence o f water and f lows (Table 4.2). It has been 

suggested that higher derivatives do not provide useful information (Evans, 1979; Skidmore, 

1989; Wood, 1986). 

Although it is possible to apply the principles o f morphometry directly to land surfaces, a 

degree o f modification is required to produce sensible results, as the language used to depict 

continuous terrain is not systematically equated wi th measurable attributes o f form (Pike, 1995). 

This requires the definition o f sensible areal units over which the measurements are calculated 

in an attempt to subdivide the surface intelligently. Evans (1990) suggested that it is necessary 

to analyse the earth's surface in more manageable components than those provided by the 

D E M . Clearly there is a large range o f possible surface components and Evans (1972) 

suggested that these possibilities could be seen to fa l l into two categories, which he called 

specific and general geomorphometry. 

4.4.1. Specific Geomorphometry 

Specific geomorphometry examines and characterises individual landforms and provides the 

most detailed form o f geomorphometry (although sti l l dependent upon scale). Jarvis and 

Cl i f fo rd (1990; 63) defined this approach as the: 

"measurement and analysis o f specific surface features defined by one 

or more processes and separated f rom adjacent parts o f the land surface 

according to clear criteria o f delimitation" 

Landforms are defined detached f rom their surroundings to isolate the landform signature f rom 

the 'noise' o f the surrounding land. This concept o f landform signatures was discussed by 

Evans (1972), Pike (1988) and Arrel l et al .(2001), and it is based on the principle o f a certain 

element or object being composed o f a collection o f parts, which when viewed together allow 

its unique identification. This principle is utilised in remote sensing when performing 
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Surface 

Measure 

Elevation 

Derivative 
Description Geomorphological Significance 

Elevation / 

altitude 
0 Height o f location 

above sea level. 

Provides a measure o f the relative 

position in the landscape i f the range o f 

values present is considered. 

May provide information on the 

resistance to erosion o f the location. 

Creates an instant impression o f the 

topography o f an area i.e. upland-

lowland, rough-smooth 

Slope magnitude 

Slope 1 (gradient) is the Slope is defined by the plane tangent to 

-Gradient maximum rate o f 

change o f altitude 

the surface and is composed o f two 

vector components, gradient and 

aspect. 

Gradient controls the affect o f gravity. 

Evans (1972) suggests that by 

examining the two slope components 

separately confusion produced by 

hybrid results can be avoided. 

Slope orientation 

Slope 1 (aspect or azimuth). Aspect affects the incidence o f 

-Aspect which is the compass 

direction o f the 

maximum rate o f 

change o f slope. 

radiation and wind. 

Rate o f change o f 

Convexity 2 slope gradient Controls the acceleration and 

-Profile deceleration o f near surface water 

flows. 

Convexity 2 Rate o f change o f 

-Plan slope aspect, i.e. rate 

ofchange along 

contour Hnes 

Controls the convergence and 

divergence o f near surface water flows. 

Table 4.2 Surface measures suggested by Evans (1980) 
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classifications o f spectral images. Here the surface topography characteristics are viewed 

together to allow the identification o f landforms. 

4.4.2. General Geomorphometry 

The more general approach to geomorphometry characterises a landscape unit as a whole and 

attempts to identify the overall signature o f the area rather than specific features. General 

geomorphometry defines the landscape as a continuous rough surface. Such measures aim to 

facilitate the identification o f the relationships between form and process that act on a 

landscape. 

Wood (1986) suggested that the distinction between specific and general geomorphometry 

made by Evans (1972) is polarised and that it could be more appropriately viewed as a 

continuum (Figure 4.1). 

General 
Geomorphometry 

Specific 
Geomorphometry 

Increasing spatial information mapped and 
recorded 

(modified f rom Wood. 1986) 

Figure 4 .1: Geomorphometry spectrum 

Evans (1987) discussed the examples o f studies that f i t onto this continuum and identified 

slopes and drainage basins as having elements o f both specific and general geomorphometry. 

4.4.3. Surface measure derivation 

Although geomorphometry was developed in an attempt to avoid the limitations o f previous 

approaches by adopting a repeatable and mathematical fo rm o f description, the problem o f a 

lack o f universal consistency persists. Evans (1980) commented that although there had been 

much work on the quantitative analysis o f landforms, there had been little attempt to standardise 

geomorphometric methods and little agreement on the derivatives used. The simplest approach 

to extracting surface derivatives is first order finite difference methods that calculate the 

derivatives by computing the differences between the neighbourhood units or windows (these 
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terms describe the area that is considered when deriving the derivatives) and then move the 

window o f interest through the surface model (Table 4.3). 

It should not be assumed that the more data points used to extract the derivative measures, the 

more accurate the values. Assessing which o f these models provides the best or the most 

accurate set o f solutions is a d i f f i cu l t task because performance is dependent on a number o f 

factors including surface roughness and data precision (Schmidt et al., 2003). For example, 

many extraction and surface characterisation methods work well in variable and steep 

topography where signal to noise ratios are high, but they may break down in areas o f shallow 

topography because o f low signal-noise ratios. Skidmore (1989), Hodgson (1995) and Schmidt 

et al. (2003) completed an assessment o f the different approaches above and found the second 

and third order difference models to be the most accurate. 

However the accuracy o f Skidmore's (1989) assessment has been brought into question, as the 

' true' values were themselves estimates. Hodgson (1995) suggested that methods that 

examined data in four surrounding orthogonal raster cells (Rooks case) performed better than in 

those that examined data in eight (Queens case), this result was attributed to the higher 

autocorrelation between the data in the four cells. Jones (1997) proceeded to suggest that 

although four cells are more accurate for smooth surfaces (which are typically characterised by 

high autocorrelation) eight cells provide a more accurate option in more complex or 'rough' 

surfaces, which w i l l have a lower autocorrelation. 

The two most commonly used algorithms and two o f the most accurate are the second order 

finite difference methods used by Evans (1980) and Zevenbergen and Thome (1987). The 

former fits a five-term polynomial to the attributes o f a 3*3 window (see Equation 4.1). 

Z = Ax^ + By^ + Cxy + Dx +Ey + F (Equation 4.1) 

Despite the superiority o f this model to others in terms o f accuracy, it was criticised because 

least squares are used to determine the equation coefficients. Consequently it is unconstrained 

by not forcing the surface through the central cell. It was argued by Zevenbergen et al. (1987) 

that as the central cell is often the cell o f most importance when calculating surface derivatives, 

the accuracy o f the surface model had to be questioned. Skidmore (1989) defended this model 

by suggesting that the unconstrained nature o f the local quadratic, only calculating six constants 

f rom the nine recorded cells, acts as an advantage by using the three spare, cells to smooth the 

surface damping noise and error. Schmidt et al., (2003)^ also found this model to be _less 

sensitive to errors in the elevation data producing more stable estimates. 
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Type o f Model Algori thm creator and year Description 

First order finite 

difference 

Travis (1975) Selects maximum downward gradient f rom 

those computed by comparing the elevation o f 

every grid cell in the D E M with those o f its 

eight nearest neighbours 

Local errors in terrain elevation contribute 

heavily 

Second order finite 

difference 

Ritter(1987) Computes gradient and aspect f rom only the 

nearest four elevation points (rooks case) 

Flemming and Hoffer 

(1979) 

Four grid points used and gradients taken at 

45" to the principle axis o f the D E M - 'ruler 

length' 

Evans(1980) Six-term polynomial (Equation 4 .1 , pg 38) to 

the interior grid point o f a moving three by 

three window 

Zevenbergen and Thome 

(1987) 

Nine-term partial quartic (Equation 4.2, pg 40) 

Deduce coefficients o f a partial quartic trend 

surface, which passes exactly through the nine 

elevation points o f the 3*3 D E M kernel. 

Third order finite 

difference 

Horn (1981) 

Sharpnack and A k i n (1969) 

Uses all eight surrounding cells and assigns 

different weightings. Weights are 

proportional to the reciprocal o f the distance 

and use all eight grid points. 

Wood (1986) Constrained quadratic surface. Quadratic 

regression surface that is constrained to go 

through the central elevation point o f the local 

3*3 window. 

Table 4.3 Existing derivative algorithms, creator and description 

Zevenbergen and Thorne (1987) developed a nine-term partial quartic (Equation 4.2) that is 

constrained through the centre cell and also passes through the centre o f the window cells, 

providing an irffproved alternative to Equation 4.1. The nine coefficients A - I can be 
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determined by Lagrange polynomials. The equation has a degree o f flexibility as it alters to fit 

the surface with the inappropriate coefficients equalling zero. 

Z = AxY + BxV + Cxy^ + Dx^ + Ey^ + Fxy + Gx + Hy + I (Equation 4.2) 

Wood (1986) argued the suggestions o f Evans (1979) and Skidmore (1989), that there is no 

good geomorphic reason for resorting to polynomials o f order greater than two. This suggests 

that Equation 4.2, despite being more general, does not provide the better option. However the 

constrained nature o f the surface has clear advantages i f it is the central cell that is o f greatest 

importance. Schmidt et al. (2003) also warned against the use o f this model as they found it to 

be less reliable in flatter areas where it was found to be sensitive to error in the elevation data. 

As the study area is characterised by high altitude steep terrain, smoothing f rom the local 

quadratic algorithm (Equation 4.1) was viewed to be problematic, where local maxima are o f 

primary importance in predicting glacier accumulation. Although it can be argued that 

smoothing a terrain surface smoothes the error present within the D E M , it does so at the 

expense o f maintaining any original values. In this research D E M error was analysed and 

removed separately, and consequently smoothing the terrain at this stage was not necessary. 

However, in this study flat areas are not o f primary importance and accurate measures that are 

not dominated by error are most critical. Therefore surface morphometric measures (given as 

the nine coefficients A - 1 ) were extracted using Equation 4.2. 

4.4.4. Elevation Derivatives 

Morphometry and consequently geomorphometry simply refer to the process o f characterising 

and representing surfaces mathematically. There are no rigid guidelines as to what should be 

measured and which statistics should be used. A main reason for characterising a land surface 

is to learn and understand more about the processes that are occurring or have occurred on it 

and to understand the effects on a process and the cumulative effect o f past processes. It is 

therefore necessary to select geomorphologically significant measures. 

The measures suggested by Evans (1980) (Table 4.2) do not fo rm an exhaustive list and Speight 

(1974), Wood (1986), Depraetere (1987) and Pike (1987, 1988) use a larger collection o f 

measures. However it is suggested by Evans (1979), Wood (1986) and Skidmore (1989) that 

elevation derivatives higher than two have no geomorphic meaning and by their extraction there 

is a risk o f placing to much emphasis on the empirical rather than the geomorphological aims. 
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Moore et al. (1991) suggest that the added complexity and statistics that these extra variables 

bring questions their overall usefulness. 

These derivative measures are used in a wide range o f research areas, varying f rom 

hydrological, geological, engineering and biological applications, and more recently in 

landform classification (Arrel l et al., 2001). Although these measures o f surface form provide 

valuable information about how earth surface processes interact with the terrain surface as 

individual measures, they are likely to account for only some characteristics o f a process, and it 

could be argued that a more comprehensive interpretation o f a process or set o f processes is 

possible through composite terrain measures. 

4.5. Composite and contextual terrain Parameters 

Although Wood (1986) and Skidmore (1989) dispute the use o f elevation derivatives greater 

than two (Section 4.4.4), compound or contextual parameters are of̂ ^en used in 

geomorphological studies. Scheidegger (1970) attempted to expand upon the surface 

derivatives measures as a tool for characterising landscapes and landforms, suggesting that a 

study o f derivative interplay is important, examining the system as a whole and identifying 

order within it. 

Composite topographic measures extract meaningful characteristics o f the terrain surface, 

commonly by combining elevation derivatives or measures that describe the spatial organisation 

o f the surface, its characteristics and components. 

Types and combinations o f these parameters are numerous and the application area largely 

determines their composition. Hydrological applications commonly incorporate upslope 

characteristics, both area and gradient. Soil modelling applications use information on the 

upslope area and the vertical distribution o f soil characteristics. Archaeological applications 

examine exposure using the spatial distributions o f finds and sites in relation to altitude and 

visibil i ty. 

Two types o f measures are identified here that characterise geomorphological position and 

geomorphological context. Geomorphological position refers to location within a landform 

rather than within any two-dimensional coordinate system. Geomorphological context extends 

this by quantifying how geomorphologLcal position fits in to the landscape, where position 

would provide slope profile position and context would quantify its position within the 

mountain range or valley. 
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A quantified representation o f landscape position and context can be extracted f rom within a 

D E M , but to do so requires a consideration o f what landforms are present in the landscape, 

which are critical in understanding the earth surface processes o f interest and what parameters 

are required to capture and quantify these terrain and process interactions. 

Terrain is important in controlling glacier accumulation areas (Hock, 2003), because it controls 

local climate and snow redistribution. Identifying measures that characterise local and 

surrounding terrain as important to understand and quantify. To characterise these types o f 

terrain process interactions it is often necessary to consider more than a simple focal area o f 9 or 

12 pixels to understand the process or parameter, where a surrounding zone may provide more 

useful information. The problem arises in identifying what this zone is and how to define or 

delineate it. 

A series o f parameters are now discussed that are thought to be useful variables in improving 

are ability to predict characteristics o f earth surface and atmospheric processes; specifically 

temperature lapse rates, precipitation lapse rates, near surface wind flow and snow 

redistribution. 

4.5.1. Relative Height 

Local measures o f altitude can often provide spurious results i f assumed to be characteristic o f 

the surrounding area or the driver for locally recorded climatic parameters. This is largely a 

function o f differ ing scales o f process and measurement. Two different techniques for 

capturing more representative elevation values are reported; relative measures o f local height 

and characterisation o f the scale dependence o f altitude within a zonal area. 

Relative altitude characterisation employs different measures o f central tendency and 

distribution characteristics (maximum and minimum) to provide the most representative altitude 

value and characterises the variability in altitude within a zone. The scale dependency 

characterisation quantifies the variability in altitude as the size o f a zonal area varies, 

quantifying the spatial variability in altitude values relative to a central cell. This is particularly 

useful in quantifying the degree to which local maxima or minima extend beyond the local area. 

These are examples o f geomorphqlogical position measures and are important to alleviate some 

o f the limitations o f a fixed grid size. 

43 



P r u l i c l i n g C J l a c i e r A c c u n n i h i l i o n A r e a U i ^ i r i b i i t i o n i C h a p t e r F o u r 

K a l l i c i ine F A r r e l l _ T e r r a i n .A i i a lx sis 

4.5.2. Slope position 

Slope position is an important variable in understanding many geomorphological processes, 

including discharge and velocity in fluvial geomorphology, landslides and sediment transfer in 

hillslope processes and avalanches in glaciology. 

Climatology is also influenced by slope, which initiates temperature inversions, turbulent heat 

transfer exchanges, modification o f wind strength and direction, and cloud development (Barry, 

1992; Oke, 1987). In these contexts slope position refers to the relative location as bounded by 

ridge and valley / plain locations along the slope profile. 

Glacial valleys are scale specific (Evans, 2003; Evans and McClean, 1995), and are delineated 

by the valley head and its bounding ridges, which mark the top o f the steep valley sides. This 

distinctive form is largely apparent on topographic maps, although more complex and coalesced 

forms do exist. Delineating valleys on topographic maps requires evaluation o f contextual and 

local topographic variations, with an inherent consideration o f scale: although this w i l l be 

explicit wi thin the map and the contour intervals, it is very d i f f icu l t to automate the extraction 

o f this type o f information f rom a D E M . The primary reason for this d i f f icul t ly is the difference 

in scales o f the landform and the resolution o f a D E M . Although it is possible to classify a 

D E M into its constituent elements or landforms, these to date have largely only considered cell-

by-cell (local) classification, where context i f at all used is secondary. Consequently 

classifications only identify landforms smaller than the pixel resolution and that are internally 

consistent preventing mixed pixel classifications. Common classifications include types o f 

slope, peaks, pits, ridges and passes (Skidmore, 1999; Wood, 1986; Arre l l et al., 2001). Valleys 

are significantly larger than commonly used pixel resolutions, and would not be identified in a 

D E M unless topographic context was considered. 

A methodology for extracting slope position and delineating valleys is proposed on the 

fo l lowing page, although its implementation was not possible wi thin the scope o f this research. 

Algorithms that extract ridge or channel networks commonly break down as a result o f two 

primary problems, D E M resolution and surface complexity. Both algorithms for ridges and 

channels are dependent upon a persistent trend in the land surface, surface convexity and 

surface slope respectively. However, in reality surfaces are highly complex and local scale 

roughness can often intervene, distorting these theoretically persistent trends. Where this 

roughness intervention .occurs, unless the algorithm has spatial thresholds for local variation, the 

classification o f channels or j [dges networks breaks down. A disjointed network results, that is 

highly restrictive i f any landform or process modeling follows. This lack o f flexibility in the 
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algorithms prevents them from extracting the topographic structure information stored within 

the elevation surface, although representativeness o f this information is entirely dependent upon 

its spatial resolution o f the classified data. 

Surface resolution is the second major limitation to the effectiveness o f network extraction 

algorithms. Although digital elevation data is becoming increasingly finer scale and the general 

research consensus is that the finer the resolution the better (Lane, 2003) this statement is 

entirely dependent upon the surface analysis technique used. A t this point it is important to 

evaluate ridges and valleys separately. Both ridges and valleys are scale specific (Skidmore, 

1999; Wood, 1986; Arrell et al., 2001; Evans, 2003) and cannot be effectively considered at all 

surface resolutions. However although the most appropriate spatial resolution could be selected 

(Arrel l et al., 2001), it is essential to consider scale specificity when extracting any landform 

f rom an elevation surface. Commonly any attempt to extract channel or ridge networks f rom an 

elevation surface w i l l misclassify small-scale surface elements as larger scale landforms, over 

predicting channels and ridges wi th dense disjointed networks. Although the topographic 

characteristics between these micro and macro scale features are the same, the landform 

component they represent differs, primarily as a function o f scale. There is therefore a need to 

incorporate scale into any meaningful land surface characterisation. 

A n approach that incorporates scale and flexibility in extracting valley and channel networks is 

proposed here. It initially identifies potential valley floors and channel thalwegs using slope 

gradient. Areas o f low gradient are flagged as potential valley floors and areas that concentrate 

local flow are flagged as potential channel thalwegs. This currently can be implemented within 

a GIS, however it has been identified above that more robust techniques are required to verify 

and integrate these initial observations. These initial landform classifications w i l l adopt a fuzzy 

classification, representing more and less marginal classifications. Fuzzy logic has successfully 

been applied in landform classifications quantifying landform continuums and is believed to 

provide a more robust interpretation and categorisation o f landforms and landscapes (Irvine et 

al., 1997; Lagacherie et a/., 1997). By extracting cross sectional profiles orthogonal to valley 

and channel centres and examining the variation in elevation values along these profiles it is 

possible to identify channel, valley and ridge locations. A ridge is not identified as the first 

convexity encountered, but the first persistent convexity that occurs at an appropriate scale for 

the study area and the D E M resolution. Equally, channel thalwegs can be flagged as the most 

significant (persistent) concavity, and valley floors identified as areas bounded by significant 

changes in gradient and aspect. Significance would be tested by the persistence o f local 

variations by removing the prjor l imitat iqnsof local scale roughness. 
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This procedure would require an estimation o f the dominant spacing o f valleys within an area 

either through local knowledge or map integration or the use o f semi-variograms. This would 

ensure that the scale specificity o f landforms would be incorporated into the classification, but 

would not dominate the extraction procedure, as the most significant changes in gradient or 

convexity would determine the landform delineation but would simply be used to ensure that 

this was at an appropriate scale. 

Although a theoretical methodology has been proposed, its implementation was not possible 

within the constraints o f this research project. It was therefore necessary to adopt a simpler 

quantification o f valley and slope boundaries that although it gives a less accurate classification 

provides significant computational and timesavings. 

Commonly glacial valley systems exploit and enlarge f luvia l valley networks, where valleys are 

orientated downslope. A common GIS functionality is the extraction o f drainage networks, 

although the algorithms used to extract f low paths are subject to uncertainties and calculation 

artefacts associated with these are largely constrained to fine scale f l ow patterns where the 

D E M is too coarse to accurately represent the network. Higher order streams and channels are 

more accurately represented, but they too may be subject to D E M resolution artefacts. Flow 

paths are extracted by initially identifying the steepest downslope direction for each pixel, 

indicating the direction that water would f l ow out o f the cell. This either identifies four 

orthogonal or eight (Rook or Queen's cases) possible outf low directions. Here the Queen's case 

is used as this is found to provide more accurate results. A f low network is extracted by adding 

a 'seed' or water droplet to each cell in the D E M , and tracking its path through the surface, the 

total number o f water droplets passing through each cell is recorded and represents the intensity 

o f f l ow through each pixel. Jenson and Dominque (1988) provide details o f the f low extraction 

method. A user-defined threshold is implemented to specify the f l o w intensity at which 

concentrated overland f l o w constitutes a channel. This threshold is dependent upon the 

drainage and hydrology characteristics. Tarboton et al. (1991) proposed a methodology for 

determining an appropriate threshold value for stream network delineation. 

Implementing a high f l o w threshold identifies only the largest channels within the D E M (Figure 

4.2 shows D E M used in subsequent classifications), the select o f this threshold value is 

subjective and optimal values are hard to establish. The appropriateness o f the threshold can be 

performed by a visual verification o f the extracted network overlaid on the D E M . Using this 

method a threshold o f 100 was used extracting both main and smaller tributary channels (Figure 

4.3). Although the pixels identified as channels should create a network, the sensitivjty o f the 

algorithm to local slope and the f ixed pixel resolution result in breaks and gaps in the network. 

46 



I ^ r e d i c i i i m C i l a c i e r A c c u i m i l a i i o n A r e a D i ^ l i i b i i l i o i i s C h a p l e r F o u r 

K a l h e r i n e F, ' \ r r e l l _ T e r r a i n A i i a K s i s 

This is most apparent in the valley floors, which are flat wi th gentle gradients (Figure 4.4). As 

the identification o f these lowland areas was critical to the prediction o f the meteorological 

variables it was necessary to force their inclusion in the extracted network. The characteristic 

feature o f the glaciated valley floors is their low gradients; these were successfully delineated 

by selecting all areas with a slope less than or equal to 3°, at an altitude less than 1500 m 

(Figure 4.5). Although this might appear a rather clumsy delineation method the results showed 

surprisingly strong agreement with a manual classification. The success o f this procedure is 

largely related to the characteristic form o f glaciated terrain, where rapid changes in gradient 

mark the edge o f channel floors, wi th predominantly steep eroded slopes. These valley floor 

areas were combined with the extracted channel network, creating a raster layer representing 

valley and channel floors (Figure 4.6a,b). This layer formed the basis o f many o f the 

topographic measures discussed hereafter. This result compared favourably to morphometric 

landform classifications o f Wood (1986) and Arrel l (2000). Wood (1986) used the landform 

classifications proposed by Skidmore (1999), peak, pit, ridge, pass, channel and planar units 

(Figure 4.7). Although these units appear to have clear geomorphological meaning, a lack o f 

contextual verification or aggregation and the local nature o f the classification limits the 

representativeness o f the landform units. 

O f these landform units channel and planar both describe valleys: by combining the fuzzy 

memberships to each o f these units it is possible to create a composite landform class. However 

this fails to identify broad and gently undulating valley floors and was rejected (Figure 4.7). 
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Figure 4.2: Study area DEM used within landform classifications 
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Figure 4. 3 Flow accumulation surface, highlighting flow concentrations greater than 100. 
This indicates that at least 100 pixels flow are predicted to flow into each of the highlighted 

pixels. 
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Extracted flow networks fail to identify valley floors 
in areas of low gradient. 
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Figure 4.4 Poor connectivity in flow networks in areas of shallow gradient - valley floors are 
not simulated 
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Figure 4.5 Predicted valley floors, areas of low gradient and low altitude 
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Combined channel and valley prediction 
Flow accumulation > 100, gradient < 3 degrees and altitude < 1500 m 

Ccanbined network provides a significant improvement 
on initial network but still fails to predict all valley locations 
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Figure 4.6 a Combined flow network, primary and secondary channels identifying fluvial and 
glacial structures. 
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Improved valley and channel network 
Manual weeding of high altitude classifications and subsequent 

buffering of remaining valley sites allowed classifications to fill valley 
floors and removed spurious classifications. Automated procedures 
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Figure 4.6 b Improved combined flow network, small spurious valleys removed and primary 
valleys expanded to f i l l observed valley floors. 
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Figure 4.7: Study area DEM and composite landform class extracted using Landserf (Wood, 2004). 

Channel and valley terms have been used interchangeably, as the primary difference between 

the two is scale; their climatic implications are the same although their area and degree of 

influence will differ. It is possible to tentatively apply a classification identifying secondary 

valleys as channels and primary valleys as glacial valleys. 

Like valleys slopes play an important role in earth surface processes and can be assumed to start 

at the edge of a valley floor and extend up to the ridge boundary ( i f present), some indication of 

position on this slope may be of importance in predicting meterological parameters. By 

calculating the distance of each cell away from the nearest valley or channel centre it is possible 

to quantily this position and the degree to which valley or slope dominate. The ESRI Arclnfo 
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GRID command linedistance was used to calculate the distance to the nearest channel or valley 

within a 15 km radius, where larger values indicate a greater distance to a channel and smaller 

values indicate a greater proximity to a channel (Figure 4.8). 

This is an example of a geomorphological position measure and a global spatial analysis 

technique as each pixel in the output accumulation raster is dependent upon all of the pixels in 

the input DEM. 

4.5.3. Valley context 

This relative slope position only provides a measure of local slope position, and does not take 

any account of the slope within the landscape for example, whether the slope lies within a small 

tributary or whether it marks a major divide between two valley systems. It is therefore 

necessary to associate this measure with a geomorphological context measure to identify its 

location within larger scale features, whether they are valleys or mountain ranges. 

The extracted network can be used to quantify this position, as it not only holds information 

about local channel characteristics but also contains topological information about arcs and their 

intersections and origins allowing the extraction of more contextual measures. Valley context 

was represented by the distance from the start of each valley (the distance from the start of the 

upstream line). 

Although this operation is easily applied to the channel network extracted using the Arclnfo 

algorithm, where flow direction governs the orientation and structure of the flow network, it is 

not easily implemented using the composite valley network created in Section 4.5.2. Here flow 

direction is not consistent and gradients are shallow and fluctuate: it is therefore necessary to 

consider each of these networks separately. Conceptually this is acceptable as smaller valleys 

(named secondary valleys), leading down to the main valley floor (named primary valleys) are 

likely to be controlled mainly by this distance to valley, rather than distance down valley. This 

distance from secondary to primary valleys can be extracted using the ESRI Arclnfo Grid 

flowlength command: this uses the arc coverage fde and the flow direction raster generated 

earlier to identify the upslope direction and calculate the distance from the bottom of the valley. 

Distance upslope from the end of the channel and distance downslope from the top of the valley 

were recorded and used to calculate relative distance up the local slope 

Relat[ye^stance = distance upslope / (distance upslope + distance downslope) 
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Figure 4.8 Line distance: Highlighting distance from nearest secondary channel 

Distance down primary valleys was more difficult to extract, as valley floors are more than one 

pixel wide and do not share the surface characteristics of secondary valleys. Initial attempts 

used a polygon representation of the valley classification, seeded at the upslope end and used in 

a cost surface analysis to represent down valley distance. However polygons were disjointed. 
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after merging and buffer valley polygons an improved representation was created, but distance 

measures represented per polygon downslope distance and did not show a meaningful measure. 

Consequently only secondary valley context measures were used in subsequent analysis 

(Figures 4.9a, 4.9b). 

This is an example of a geomorphological context measure and is a zonal analysis operation as 

it only requires evaluation of cells along the same arc to calculate the output value. 

4.5.4. Valley orientation 

Although distance down slope and down valley is important when considering topographic 

modifications to climatic variables, its effect is often enhanced or reduced by the orientation of 

a location with the local (whether primary or secondary) valley. The orientation of each cell to 

the nearest valley was extracted using the Esri's Arclnfo Grid linedirection command. This 

calculates the average direction of lines in a neighbourhood from 0 - 360°: the difference 

between this and the pixel aspect provides information on the valley orientation. Again this 

measure was only found to produce meaningful results for secondary valleys where surface 

aspect of valley floors and weak vector representations did not create robust results (Figure 

4.10). 

4.5.5. Maritimity 

Although local scale topographic modifications give feedbacks to local climatic parameters, 

large regional scale influences are also integral to understanding climate. One such influence is 

maritimity or the distance from the open ocean. Initially this was calculated as the distance 

from the Norwegian coastline (Figure 4.11a) highlights distance measure), however this 

provided a misleading measurement as it recorded the distance from sea, that is distance from 

the complex fjord system not open ocean. To avoid this misrepresentation it was necessary to 

initiate distance measure from of f the coastline (Figure 4.11b). This provided a more useftil 

measure of maritimity, representing the degree of continentality. 

An alternative approach would have been to simplify the coastline using a smoothing line 

simplification algorithm (rather than point removal algorithm) to remove some of the more 

complex fjord systems. This approach would still have lead to a complex coastline that would 

not represent the influence of the open ocean. 
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Figure 4.9 a Flow length measures, highlighting up and down channel lengths calculated 
from the secondary channel network. 
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Relative channel location was calculated using upslope and downslope 
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Figure 4.9 b Relative channel location calculated from channel length measures, highlighting 
position within the extracted secondary channel network 
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Figure 4. 10 Channel orientation measures, calculated from extracted secondary channel 
network and surface aspect. 
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Figure 4.1 la Marifimity measure derived 
from coastline, yellow to purple 
denoting increasing distance 

Maritimity: Distance from ofTsliore location 
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to improve clarity. 
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Figure 4.11b Maritimity measure derived from 
an offshore location. 

Exposure to coastal wind and pressure systems is only one measure of exposure that can be 

extracted from DEMs. 

4.5.6. Exposure 

Topographic exposure is another geomorphologically significant parameter, and can be 

conceptualised and measured at many different spatial scales. This multi-scale existence can be 

conceptualised as mirroring the muhi-scale character of earth surface processes, where exposure 

at any spatial scale can be quantified using an appropriate topographic search radius. 

Exposure describes the degree to which an area is subject to external processes and forcings. 

An exposed location is geomorphologically conceptualised here as subject to more frequent and 

faster winds and more extreme temperatures, where little or no shelter is provided by the 

surrounding topography. Simple concepmalisations measure exposure as the local differences 

in height - largely based on the relative height measures outlined in section 4.5.1. Although 
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this does provide a measure of how a location is positioned relative to its surroundings more 

representative or useful measures are available. 

Two types of exposure measure are detailed here, largely drawing on measure outlined in 

sections 4.5.1 - 4.5.4, type 1 quantifying the degree to which a location is exposed to air as a 

result of high surface roughness and type 2 the degree to which a location is orientated in the 

direction of channelised or constricted flow. Type 2 measures included slope postion, valley 

context and valley orientation. Two primary variants on type 1 exposure were used here: where 

subpixel altitudes are known it is possible to compare that height with the encompassing pixel 

height, quantifying how locally rough or exposed a location may be (for example climate station 

alitude). A coarser scale measure of relative exposure quantifies how a pixel ahitude compares 

to its surrounding neighbourhood, taking an arithmetic mean. 

4.6. Surface Roughness 

Measures of altitude variability can be thought of as measures of exposure and are also one of 

the most commonly used measures of surface roughness. 

Although surface roughness is commonly employed to explain chaotic states or variability in 

earth surface processes, its quantification and scale varies considerably, largely according to the 

scale at which the process is operating. When deriving a surface roughness index, it is 

important to consider what characteristics of the terrain surface results in the process behaviour. 

The index proposed here uses variations in altitude and aspect (Equation 4.2). Standard 

deviations were used to quantify this variability, where large standard deviations indicate high 

variability suggesting a rougher surface. The two variables were multiplied to produce a 

composite measure to characterise surface roughness. Large changes in surface aspect 

commonly result in breaks in slope which are often instrumental in altering earth surface 

processes. 

Surface Roughness Sr = o (Z) * o (sin 0 ) Equation (4.3) 

A composite ahitude and aspect measure attempts to provide a quantification of surface 

variability specifically addressing geomorphologically significant variables over any spatial 

area (Figure 4.12). 

Exposure is, in part, related to shade. Although shade is easily calculated within many GIS 

large uncertainties surround these calculations. Shade is also an important variable when 
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considering surface energy balance, where strong local gradients can exist between areas 

exposed to the sun for different lengths i f time. 

Surface Roughness 

Measured using the standard deviation of surface 
slope and altitude 

Surface roughness: 3 ' 3 Kernel Surface roughness: 5 * 5 Kernel 

r , . O - p > ^ 

Surface roughness: 9 * 9 Kernel Surface roughness: 12*12 Kernel 

Surface Roughness 

High 

Low 

Figure 4.12 Surface roughness calculated at increasing spatial resolutions. Identifying areas of 
rapid and slow change in surface aspect and aUitude. 
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The accuracy of terrain derivatives is dependent upon, and sensitive to, the quality of the DEM. 

Large uncertainties and inaccuracies propagate through the derivative calculations where 

spatially and frequency distributed error is present in the original data. 

4.7. Error and Uncertainty 

Error and uncertainty are present in all sampled data, the magnitude and types of error and 

uncertainty vary between datasets and data collection methods. As elevation data is commonly 

sampled at points and interpolated to a surface, many of the surface elevation values within the 

DEM wil l be estimated. It is therefore important to assess the accuracy of these estimates and 

look for any interpolation artefacts. 

Terminology surrounding error and uncertainty is sometimes vague, DEM error refers to the 

difference between the observed value and the recorded value. 

Error is commonly measured or recorded as the Root Mean Square Error (RMSE) which 

provides an estimate of the squared mean deviation above or below the recorded value. 

Normally this value is not spatially distributed, but assumed constant throughout the surface. 

Although this measure is useful, error is often spatially organised, especially in terrain surfaces 

(Guth, 1999; Li , 1994; Wood and Fisher, 1993; Monckton, 1994). This is to be expected i f it is 

considered that a landscape (in terms of its landform components) is spatially organised and, as 

Wood and Fisher (1993) suggest, that elevation accuracy is not independent of local 

topography. This therefore leads to a hypothesis that error within a DEM will have a degree of 

spatial autocorrelation. 

Research has focused on accounting for and visualising error associated with the vertical 

resolution of the DEM, by adding noise to the data, performing Monte Carlo error surface 

iterations, and through educating users of the certainty with which they can use the altitude 

surface. It is possible to differentiate between systematic, spatially and spectrally organised 

error. The former is significantly simpler to remove as it is tends to be uniformly 

distributed across the surface. However spatially and spectrally organised error present in a 

DEM needs to be removed with respect to this spatial and spectral organisation, avoiding global 

smoothing. 

Although RMSE's are commonly reported, users of elevation data must acknowledge and 

manage these errors i f the data are to be optimally used. However, Gao (1997) argued that only 
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limited research had been carried out to date to assess the impact of source data and processing 
errors in elevation surfaces. 

Although error is inherent in elevation surfaces due to measurement precision and data 

sampling, unnecessary error is often created as a result of the use of an inappropriate 

interpolation algorithm or interpolating at a too fine resolution. This can incorporate distinctive 

and problematic artefacts into the data surface that become difficult to remove because they are 

both spatially and spectrally organised. Similar artefacts can be introduced during 

interferometry or as artefacts of overlapping satellite swath data. 

4.7.1. Study Area DEM Error 

The DEM, purchased from Statens Kartverk, was studied to look for spatially and spectrally 

organised error by examining a histogram of surface elevation values and by viewing the higher 

order elevation derivatives, gradient and profile curvature. These higher order surfaces are very 

sensitive to small errors in height (Wise, 1998), with errors propagating rapidly. These 

techniques identified significant interpolation artefacts in the data that i f not removed would 

propagate significant errors throughout the prediction model (Heuvlink et al., 1989). 

Two interrelated error components are present in the elevation surface, contour altitude spikes 

due to the over sampling of contour altitudes in the interpolation process and two diagonal 

trends persisting in the data resulting from the interpolation kernel structure. 

Interpolation from contour lines to a surface often results in many pixels of contour altitude 

values in the output surface. This is a function of the estimation algorithm that predicts an 

unknown value using the surrounding sampled values. I f the surrounding sampled values (these 

are normally selected using a search radius or the nearest required number of points) all 

represent one contour line then the predicted value wil l also have the contour altitude. This is 

apparent in output surfaces where the original contour lines are often bordered by bands of the 

same value, with rapid changes in ahitude values as other contours are approached creating a 

terraced appearance to the elevation surface and a spiky elevation histogram. 

Further spikes are apparent in slope and aspect surfaces i f ahitude is recorded only to meter 

precision, as arctangent calculations only allow a finite number of possible slopes. 
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Elevation Histrogram 

Common interpolation artefacts 
are the over sampling of contour 
interval elevations in the 
interpolated surface. 

These appear as spikes on a 
histogram, where contour 
interval elevations are 
significantly more frequent than 
values = contour altitude ± 1 m 

These regular spikes propagate 
significant errors in elevation 
derivates and give an artificial 
stepped representation of the 
surface. 
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Interpolation artifacts are 
propagated and can be visualized 
spatially and are most easily seen 
in derivative plots. 

This image is the surface 
gradient, here most of the pixels 
have low gradients (dark pixels), 
few have intermediate gradients 
and areas of high gradients are 
spatially organised following the 
original contour lines, as over 
sampling along the line has 
created rapid changes in altitude 
either side of the contour. 

Note also the diagonal trends. 

Figure 4.13; Types of error present within the DEM 

Wise (2004) identifies a similar diagonal trend created when using the INTERCON command 

in IDRISI GIS (Clarke Labs.) This procedure interpolates from contour lines, by constructing 

several profiles, one horizontal along the rows, one vertical profile along the columns and two 

diagonal profiles (upper left to lower right, upper right to lower left). The presence of these 

diagonal lines in the elevation derivatives suggests that the algorithm weights the influence of 

these diagonal profiles too heavily, resulting in persistent trends in elevation values in these 

directions. IDRISI GIS (Clarke Labs.) suggest smoothing the resultant DEM at least once with 

a mean filter. Clearly an intelligent or accurate algorithm would not require these post 
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processing steps, which will significantly smooth the surface, removing extreme values (low 

maxima and minima) from the surface. 

Statens Kartverk applied a nearest neighbour algorithm to interpolate their DEM: it is proposed 

here that similar kernel shape was applied during the interpolation process resulting in similar 

diagonal artefacts; fortunately however no mean filters appear to have been applied. 

4.7.2. Error removal 

Most of the error detection and removal procedures outlined here describe processes that are 

commonly applied to remotely sensed raster images (Mather, 1999), however these are equally 

applicable to DEMs, which store information in the same format as image files, but where the 

digital number (DN) represents altitude instead of spectral or reflectance information. 

4.7.2.2. Spatial Filtering 

Spatial filters are commonly applied to raster images and use a local sample of values in an 

arithmetic operation. Local values are sampled using a kernel. Different size kernels can be 

used: a larger kernel samples more data and produces a smoother result. A kernel is a 

rectangular or square window centered on the pixel under consideration (shaded in red in Figure 

4.14). A commonly used 3*3 window uses the eight surrounding cells (shaded in blue in Figure 

4.14) in conjunction with the center cell to calculate its new value. 

The surrounding eight cells can be weighted in different ways to produce different arithmetic 

operations (Figure 4.15): common applications include smoothing and edge enhancement 

filters. 

Low pass filters are commonly applied to noisy or artefacted data. These remove any high 

frequency components (locally rough data) by averaging throughout the kernel and have a 

similar effect to mean, median or mode filters. However, it is argued by many (Wood, 1986) 

that high frequency components (equivalent to Marks' (1975), grain elements) exist in a 

landscape and cannot be differentiated from noise within existing filter algorithms: this 

discourages their use in this context. In removing the high frequency components within the 

surface, these smoothing filters provide an overall smoothing and remove local maxima and 

minima. In this particular research application local roughness, maxima and minima were 

suspected to be of significant importance in creating strong localised gradients in microclimatic 
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variables. Although they were applied to assess their ability to remove the error within the 

DEM, they were later rejected. 

Figure 4.14 Kernel structure with varying size 

Low pass fdters with a 3*3, 5*5 and 9*9 kernel window were applied to the DEM: although all 

these filters smoothed the data and muted the diagonal trends and spikes they failed to remove a 

significant proportion of the artefacts after two consecutive applications. The 5*5 kernel 

removed the largest proportion of the error, but the localised smoothing failed to remove all 

contour spikes (Figure 4.16 shows original DEM, 4.17 shows smoothed DEM). Smoothing 

filters were rejected as a mechanism for reducing the error within the DEM. 

Although simple spatial filtering techniques do not provide effective removal procedures, here 

the United States Geological Survey (USGS) apply a complex procedure of consecutive filters 

to remove horizontal banding artefacts within their photogrammetrically derived DEM (USGS, 

2004). However, the procedure in removing the majority of the artefacts also applies a global 

smoothing, and it is therfore not considered to be applicable in removing diagonal components. 

Although a number of complex filtering techniques exist none were found, during the present 

study, to be capable of redistributing the error within the DEM effectively, therefore a more 

intelligent redistribution method was required. 
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Figure 4.15 Spatial filters 

4.7.3. Kernel Density Estimation 

Kernel density estimate (KDE) plots are an extension of histograms, removing their two main 

limitations: only plotting data within set bin widths and only plotting data between a maximum 

and minimum value. Plot data appears continuous, but still as the frequency of points within a 

bandwidth. 

Statistical density estimation involves approximating a hypothesized probability density 

function from observed data, in this case pixel elevation values. Kernel density estimation is a 
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Figure 4:16 Altitudes within original DEM with contour spikes 
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Figure 4.17: Altitudes within smoothed DEM with 5*5 low pass filter 

nonparametric technique for density estimation in which a known density function (defined by 

the kernel) is averaged across the observed data points to create a smooth approximation, by 

redistributing values within the kernel width. This technique was identified as a potentially 

useful procedure for identifying and removing the error present within the DEM, as it performs 

analysis within the frequency domain, a domain we know the error to be prominently 

distributed within. KDE redistributes the high frequency altitudes representing the contour 
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intervals to values ± 10 m, the kernel width. A Gaussian distribution was used within the kernel 

to redistribute the values. 

The mdensity command in STATA was used to produce kernel density estimates for the 

elevation values within the DEM. A kernel width of 5 m was used as this was felt to be 

adequate to redistribute spikes but smaller enough to avoid over smoothing the data. 

mdensity produces a graphical output, the kernel density estimation plot. Results showed a 

much smoothed distribution where values had been redistributed to deprived altitude bands 

surrounding spikes (Figure 4.18). Although this approach showed good results KDE does not 

operate in the spatial domain, only in the frequency domain, and consequently any adjustments 

to the altitude values could no longer be related to an x,y location, so this approach had to be 

rejected. 

It did, however, identify analysis in the frequency domain as a method for distinguishing and 

redistributing artefacts or error and data values. Another technique that examines and performs 

analysis on data within the frequency domain is fourier series analysis. 

Kernal Density Estimation: Gaussian Kernel 
.0015 

.001 

I f ) 

.0005 

500 1000 1500 
Altitude (Meters) 

2000 2500 

Figure 4.18: Kernel Density Estimation Plot: Gaussain Kernel, 10 m width, 150 points estimated 
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4.7.3. Spectral Analysis and Fourier Transformations 

Rayner (1971) stated that any variable or phenomenon that can be ordered according to 

increasing or decreasing wavelengths can be viewed and treated as a spectrum. Viewing the 

variation in elevation values in the DEM it is possible to conceptualise them as variations along 

a spectrum, where the x axis represents space. Spectral analysis is the mathematical 

characterisation of these variations. I f viewed in the frequency domain, cyclic changes in 

elevation values would be apparent due to the spatial autocorrelation of the surface and its spiky 

frequency distributions (Figure 4.13). 

Spectral analysis is more commonly applied to variables that exhibit cyclic or harmonic 

characteristics similar to a sine curve (Figure 4.19). 

Sine Function 

Figure 4.19: Sine ftinction in Radians 

Despite the error's small magnitude relative to the expected ahitude, Champeney (1973) stated 

that " i f a quantity varies periodically with time it can be analysed into its harmonic 

components" (Champeney, 1973:1). However, by substituting time with space we can analyse 

the harmonic or Fourier series components of the repetitive variation in elevation values in the 

frequency domain by using a Fourier transformation. Specifically considering the DEM 

interpolation artefacts it is possible to say that 

i f j l t ) represents the quantity that varies through space, 

and i f x is the repetition period (distance between stripes) 

then 2 n / T is the fundamental frequency 

(adapted from Champeney, 1973) 
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Rayner (1971, 2) described a spectrum as the scale breakdown of a phenomenon in space or 
time. In the present application the harmonic characteristics of elevation were evaluated with 
respect to space. The calculation of a spectrum involves the fitting by least squares of 
sinusoidal curves and quantifying their amplitude and phase angles to a set of data that may be 
in one, two or n dimensions. Applying a Fourier transform is simply the process of fitting these 
curves, and the inverse Fourier transform describes the process of returning to the original data 
from the Fourier coefficients. 

Although the data are continuous and non periodic the error within the data is periodic. 

Continuous or non periodic data create a unbroken spectrum of values, in this case the 

elevations in area, for example 0, 1,2, 3, 4, 5 m. A discrete spectrum however has a finite 

number of frequencies that the data can represent, in this case the contour intervals, for example 

0, 5, 10, 15 m. The type of spectrum the data represent determines the type of transformation 

that can be applied. 

The Fast Fourier Transform routine available within ENVI was applied to a sample of the 

DEM: the operation can be identified as having three stages (Figure 4.20). The initial stage of 

the process, the forward transform, converts the data into its sine and cosine components, 

moving from the spatial domain into the frequency domain. 

Stage1 Stage 2 Stage 3 

Perform a Fast Fourier Apply a filter to the Apply an inverse 
forward transform on ^ ^ ^ ^ ^ transform output, ^ ^ ^ ^ ^ Fast Fourier 
the data ^ ^ ^ ^ r keeping both phase ^ ^ ^ ^ r transform on the 

and magnitude filtered data 
images 

Figure 4.20: Steps in performing a F F T 

The frequency or magnitude output represents the frequency of every point in the input image, 

representing both the horizontal and vertical spatial frequency components (Figure 4.21). The 

average elevation (the zero frequency component) is shown in the centre of the image, pixels at 

an increasing distance from this central pixel represent increasing spatial frequency 

components. A phase output is also created but often provides little information about the 

structure of the spatial domain image. The frequency or magnitude image is most commonly 

displayed as this contains most of the information about the geometric structure of the spatial 

domain image, where brightness represents the magnitude of the frequency component. 

Interpretation of the frequency or magnitude output is very important as it provides valuable 

information about the structure of the error. However these outputs are complex and it is first 
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necessary to understand how regular inputs are displayed in the frequency domain. Artificial 

datasets were created using to test the model under known conditions. Although the application 

of Fourier transforms to remove error within a DEM is new, the application of Fourier 

transforms to remove systematic errors within remotely sensed data is not. Despite their 

common application, literature surrounding interpretation of the frequency outputs is limited, 

therefore it was necessary to apply the FFT to artificial datasets. 

Figure 4.21: Fast Fourier Transform magnitude output for the Jotunheim 
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Frequency output plots revealed how differently spatially organised frequency components in 

the input surface were represented in the frequency output (Figure 4.21), these could also be 

examined in a histogram of the frequency domain which identified the frequency of the error 

components (Figure 4.22). These results allowed a more informed interpretation of the 

frequency output from the sample DEM. A FFT was also applied to an Ordnance Survey 50 m 

DEM of Loughrigg Fell, Lake District (Figure 4.23). Although containing error. Ordnance 

Survey DEMs do not have a spatially or frequency dominant error component, largely as 

improved interpolation algorithms and significant amounts of post processing have been 

applied. It was therefore possible to use this as an indicator of how a continuous elevation 

surface should be represented in the frequency domain. 

IlistM^am of Wavelength Frequencies in Jutunheim PuuriCT MagnituJe Output 

F A 

1MX.W 

l.Oxl(P 

S-Oxlff" 

Warclcoglh 

Figure 4.22 Frequency histogram of FFT output 
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Figure 4.23: Fast Fourier Transform magnitude Output for Loughrigg Fell, Lake District 

Results from the artificial surfaces confirm that strong crosshairs will be present in any Fourier 

magnitude surface i f there is a variation in values at the start and end of rows and columns 

(Figure 4.24). This high frequency variation in the spatial domain is very apparent in the 

magnitude output, here representing an artefact of the Fourier algorithm applied to finite data 

rather than an interpolation artefact or information about landform organisation. Although there 

is evidence of multiple horizontal and vertical lines surrounding these cross hairs they are likely 

to represent the high frequency variations between adjacent pixels. Attempts to differentiate 

between artefact and data in this area proved highly subjective and potentially damaging to the 

terrain surface and is not suggested. 

However other components of the frequency output can be identified confidently as spectrally 

and spatially organised error within the DEM. These are the diagonally organised components 

highlighted in Figure 4.21; although they can be identified, their boundaries are soft making 

their delineation difficuU and highly subjective. The extent and organisation of these error 

patches appears vague, suggesting that the error may vary as a function of the topography. 

Examination of a smaller subset (Figure 4.25) produced a much more clearly delineated 

diagonal component. 
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Most non-systematic error in terrain surfaces is topographically organised (Wood, 1986): this 

organisation is apparent in the dominance of diagonal striping in the derivative surfaces where 

areas of moderate terrain exhibit a more highly scarred surface. 

By passing the two error components through the inverse FFT (using a pass rather than a cut 

filter) it is possible to visualise these two error components (Figure 4.26). 

Topographically organised error is largely a function of surface roughness: areas which are 

relatively flat have a small range of possible altitude values, and consequently any over 

sampling near the contour line is not readily apparent in the output surface. Areas of rough or 

steep terrain will have narrow or frequently spaced contours and again any over sampling wil l 

not lead to locally apparent banding in values as narrowly spaced contours wi l l implicitly 

increase the local altitude variability. Areas of moderate terrain tend to be the more affected by 

interpolation errors, where moderate spacing of contour lines leads to clearly delineated banding 

in the output surface. 
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Edge 
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between start and end) 

Figure 4.24 Artificial surface FFT output. 
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Figure 4.25: Fast Fourier Transform magnitude Output for the Horung Massif 
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Diagonal components Combined noise components Orthogonal components 

Figure 4.26: Error components passed through inverse FFT 

Subsets of the study area were used as the input to the Fourier transform to facilitate the 

delineation of the error in an attempt to avoid removing frequency components of the elevation 

surface rather than just the error (Figure 4.27). The success of this approach was largely 

dependent upon the homogeneity of the land surface within the subset. 

To remove the components identified as error it is necessary to overlay polygon structures on to 

the image and use these as the filters, acting as a Boolean overlay cutting them out of the 

magnitude image. The inverse transform can then be applied to estimate the missing values 

using the spatial and spectral frequency trends within the modified input image. 

Examination of the 'input minus output' DEM, showing what was removed by the FFT 

highlights the effectiveness of the procedure as the raster largely consists of diagonal stripes 

(Figure 4.26). A histogram of this image also highlights the effectiveness of the procedure as it 

is dominated by the original contour spikes. 
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Figure 4.27: FFT results for subset data 

By identifying an effective removal procedure it is possible to revisit the initial hypothesis that 

the error was spatially autocorrelated and linked to terrain roughness - predominantly areas of 

moderate relief Two statistical measures of autocorrelation, Moran's 1 and Gearys's C, were 

used to compare the organisation of the elevation surfaces before and after error removal. 
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Comparison of the spatial autocorrelation present in the initial and FFT output indicate a 

reduction in the spatial autocorrelation, supporting the hypothesis that the error was spatially 

autocorrelated (Tables 4.4 and 4.5). 

Geary c Moran I Interpretation 

0 < c < 1 I > 0 Similar, regionalized, smooth, clustered 

c=l 1 = 0 Independent, uncorrected, random 

O l K O Dissimilar, contrasting, checkerboard 

Table 4.4: Interpretation of Spatial autocorrelation statistics 

With Error After Error Removal 

Moran's I 0.9955 0.9959 

Geary's c 0.0045 0.0040 

More smooth 

and clustered 

Less smooth 

and clustered 

Table 4.5: Spatial autocorrelation data before and after analysis 

Examination of the changes in the distribution of gradients in the initial and FFT output DEM, 

showed that pixels with steeper gradients had been changed, suggesting that these were the most 

affected by DEM error in the original surface (Figure 4.20). 

Comparison of the frequency distributions of the original and FFT output DEM show some 

changes, most notable is the lowering of the highest altitudes. The histogram of the output 

DEM showed removal of most spikes and showed a much more representative distribution. 

(Figure 4.21). Although every attempt was made to reduce the smoothing effect of the error 

removal procedure, some smoothing did occur. Removing high frequency components from the 

FFT magnitude output will in some cases remove high frequency landform components, where 

the soft boundary between noise and data is unclear. Although this procedure has in places 

smoothed accurate input data it is clear from the components removed (Figure 4.22) that this is 

not where most of the changes have occurred and that it is predominantly the spatially and 

spectrally organised error that has been removed from the dataset. 

82 



i l O i l K Mi l ! , ! S l l . k i C i ' . \ . \ ' I I 111 II h i h i l l A l V :i I ) l j l i l l H l l li ! i l -

K a i l k T i n c i A r r c l l 

I lu ipic i I uu 

f r i r a i i i \ n : s h .i 

Histogram of Gradients of Pixels with Large Errors 

400 ^ 

, ^ 300 4 

u- 200 H 

100 H 
is 

Gradient (Degrees) 

Figure 4.28 Gradients of pixels with large errors 

FFT was applied to 25 subsets of the study area and was also applied to Southern Norway in 

one application. It is clear that simply applying the FFT to such a large geographical region wil l 

potentially lead to over smoothing: the FFT magnitude output (Figure 4.21) shows a harmonic 

signal, where multiple high frequency components are present at increasing frequencies. This is 

potentially representing the different degrees of surface roughness or different weightings 

within the interpolation kernel. The difference between the Jotunheimen and the study area 

identifies the smaller geographical area applications as more accurate for error removal, but the 

application to Southern Norway allows initial discussions of its surface characterisation and 

geomorphometric characteristics to be made. 

The Fast Fourier transform identified the spatial and spectral characteristics of the error present 

within the DEM. This technique avoids smoothing the whole dataset and simply alters the data 

identified as error. However, care is required as the landscape does contain high frequency 

components and filter definition is identified as a subjective procedure. 
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Figure 4.29 Histogram plots of after and before FFT a) before b) after 

Examination of the spike plot (Figure 4.30) identifies 3 modal peaks: commonly peaks in an 

elevation distribution indicate paleo-erosion surfaces, where earth surface processes eroded the 
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terrain surface as a function of climate, geology and sea level. As climate and sea level change 

through time, so to do the level of erosion surface and the earth surface processes acting on 

them. These are comparable to those described in Chapter Three. 

Altitude 

Figure 4.30 Spike plot of ahitudes in resultant DEM 

Removal of the error present within the DEM was essential to minimise propagation into 

resultant glacier accumulation distributions. Digital elevation data processing can be a 

computationally intensive component of a radiative model, specifically shading calculations that 

require multiple line of sight calculations. The following section outlines a method developed 

during this research to improve the efficiency of this process. 

4.8. Viewshed and visibility calculations 

Viewshed analysis looks at the intervisibility of two or more points in a surface, commonly on a 

elevation surface. The same calculations can also be applied when considering solar viewsheds 

which examine the intervisibility of a location on the land surface and the sun, where the sun's 

position is given by its solar altitude and azimuth. 

Areas where the line of sight between the sun and surface are intercepted for a given solar 

position will be in shade. As a significant component of this research was the calculation and 

interpretation of the temporal and spatial distributions of direct beam solar radiation it was not 

feasible to calculate each of the viewshed maps within a GIS, as the computational and time 
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costs would have been too great. It was therefore necessary to integrate a viewshed algorithm 

into the radiation component of the model. 

4.8.1. Algorithms 

Many different viewshed algorithms exist, these differ both in how they determine i f two 

locations are mutually visible (Sorensen and Lanter, 1993; Wang et al., 1996), how they extract 

geomorphometric measures from the DEM (for example slope and aspect) (Skidmore, 1989) 

and the data structures they are designed for (Lee, 1991; Floriani et al., 1994). Commonly used 

methods can be seen in Figure 4.31, using the gradient or angle between the source and the 

intermediate cells to evaluate i f the line of sight (LoS) has been intercepted. 

When A = Source 

B =Sun 

D = Pixel in azimuth direction 

A is illuminated if: 

1. FE>FD 

OR 2. Gradient AB>AD 

OR 3 . C A B > E A D 

Figure 4.31: Commonly used methods of calculating the mutual visibility of A and B 

Viewshed algorithm research has largely been divided between improving efficiency (Wang, 

1996; Dozier and Frew, 1990; Rana and Morley, 2002; and Huss and Pumar, 1997), developing 

and interpreting visibility algorithms and their resultant viewsheds (Sorensen and Lanter, 1993, 

Fisher, 1991) and quantifying and representing their associated uncertainty (Felleman and 

Griffin, 1990; Fisher, 1995). However the efficiency of viewshed algorithms as a function of 

surface complexity and spatial organization has received little attention. Computational 

efficiency was important, as it is a requirement of developing a multi-component model; 

therefore viewshed algorithm efficiency was investigated. 

This research suggests that viewshed algorithm efficiency, like elevation surface error, is 

landscape dependent, and therefore varies with terrain type; specifically terrain roughness. 

This study further develops the research reported by Huss and Pumar (1997) who investigated 

the role of surface roughness in viewshed accuracy and found that the viewsheds of rougher 

surfaces were more reliable, less sensitive to error and smaller than those for smoother surfaces. 
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As viewshed calculations are sensitive to variables other than those mentioned above (Fisher, 

1991) this research only examined the role of surface roughness on one viewshed algorithm. 

The algorithm used compares the altitude of each successive element in the DEM to that of the 

source, to assess i f it lies above or below the line of sight (LoS) between the source and 

destination (Figure 4.32). In this case the latter is in sun, defined by its solar aUitude and 

azimuth. 

4.8.2. Algorithm efficiency 

A topographically sensitive algorithm was created that accounted for surface roughness 

specifically slope reversals and breaks to minimize the number of pixels that are evaluated 

before a pixel is found to be in shade. This topographic dependence was identified using a 

tracking in vs. tracking out version of the viewshed algorithm (Figure 4.32). 

Tracking out was anticipated to improve efficiency in a 'rough' terrain or where A is 

significantly lower than the surrounding pixels: alternatively i f the terrain is relatively smooth 

or i f A is significantly higher than its surroundings tracking in was anticipated to improve 

efficiency. 

A C 
I) Tracking out 

A 

2) 

\ 

C 

A C 
2) Tracking in 

Figure 4.32: Schematic of the tracking in and tracking out search mechanisms in the viewshed algorithm 
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Dozier and Frew (1990) identified the successive examination of every pixel in the azimuth 

direction as an inefficient algorithm and suggested that extracting, sorting and evaluating the 

pixels in the azimuth direction in descending order was more efficient. This method has a 

topographical component as it assumes that higher areas are most likely to cause shade, but it 

does not consider how A compares to its surroundings and where the extracted higher areas are 

located. Therefore, although this method does provide computational savings it still fails to 

create a topographically optimal viewshed solution. In an attempt to create such a method Rana 

and Morley (2002) extended the work of Lee (1994) and suggested that a morphometric 

characterisation of the land surface into its constituent landform components can provide 

information on the potential visibility dominance of a pixel. This approach does improve 

viewshed algorithm efficiency by using a subset of the DEM pixels, identified by the landform 

classifications to reduce the number of observer target pair comparisons. However its 

usefulness is restricted by the uncertainties in performing landform classification (Wood 1996; 

Arrell, 2001) and the generalizations in the resulting viewsheds created as a result of 

minimizing the number of pixels considered. 

Viewshed efficiency was quantified using a count variable, the recorded the number of pixels 

within the DEM that the algorithm had to evaluate before location A was found to be in or out 

of shade. Smaller counts (higher efficiency) indicate local shading and higher counts (greater 

inefficiency) indicate longer shadows where shade is cast from further away. The algorithm 

was run for the three summer and winter months and calculated at eleven time intervals each 

day. This methodology was applied to a sample DEM (Figure 4.33). The terrain in this region 

is varied with a rougher more complex topography in the North West, an extensive valley 

system in the North East and a gently undulating terrain in the South. The methodology was 

repeated on a smoothed version of the DEM, the smoothing was performed by running a 9*9 

mean filter through the raster, maintaining the 100 m pixel resolution. 
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Figure 4.33: DEM of Southern Norway 

It was possible to interpret the results at a number of different levels. Initial interpretations 

could be made about the spatial organisation of count values with respect to the spatial 

distributions of altitudes and aspects within the DEM. The role of temporal variations in solar 

alfitude and azimuth was examined through a comparison of summer and winter viewsheds and 

the role of surface roughness was suggested through an examination of a smoothed and 

unsmoothed DEM. 

A summary of the counts can be seen in Table 4.6, these counts are the total number of pixels 

examined during each 90 day period. Figures 4.34 and 4.35 show the spatial distribufion of 

counts, darker colours indicate higher counts. 

Count Statistic UnSmoot hed DEM Smoothed DEM Count Statistic 
Summer Winter Summer Winter 

Minimum 0 0 0 0 
Mean 328 974 443 1142 
Maximum 6135 11865 6765 11280 

Table 4.6: Summary of count statistics 
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Figure 4.34: Summer count values, a) DEM b) 
Smoothed DEM 

Figure 4.35: Winter count values, a) DEM b) 
Smoothed DEM 

4.9. Topographic Interpretation 

The spatial distribution of counts allows a topographic interpretation of the variation of shade 

within the DEM. The higher and more complex area in the northwest has much lower counts, 

indicating that local shading is predominant (Figure 4.36a). This is in contrast to the valley in 

the East and the smoother surface in the South (Figure 4.35b and 4.36b). These have much 

higher counts indicating longer shadows where shade is cast some distance away from the pixel; 

this pattern has been identified as separate from higher values simply indicating more shade. 

The longitudinal axes of valleys have lighter pixels (lower counts) indicating local shading from 

valley walls and higher counts on the steeper valley sides (Figure 4.35b). This trend is present 

throughout the DEM, where counts increase as distance upslope increases. 
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The moderate terrain in the south has a complex shade pattern, where the valley pattern is 

supplemented by a strong aspect-dependent shade distribution. Slopes that are aligned with the 

strong east west valley network have higher counts than southerly slopes. Moderate terrain is 

largely dominated by these two trends and as the standard deviation of altitudes within this 

region is significantly lower than in the northwest there is little potential for locally cast shade. 

Landscape position or context is also an important determinant of shade. Although the higher 

area in the northwest of the study area is characterized by self-shading, an area of moderate 

terrain just to its northeast lies predominantly in its shadow (Figure 4.36b). 

4.9.1. Seasonal Interpretation 

Trends in efficiency are not only spatially dependent but there is a strong temporal variation in 

viewshed efficiency. Solar altitude and azimuth range vary through the day and year and it is 

therefore important to consider the implications that this wil l have on algorithm efficiency. 

Higher counts were expected for winter when solar aUitudes are lower leading to longer 

shadows and consequently more shade. Although this was true for the unsmoothed DEM this 

trend is not found for maximum values on the smoothed DEM, where it is likely that ridge and 

peak smoothing has reduced maximum shadow length and consequently pixels subject to shade. 

The spatial distribution of shade also changes between summer and winter months, largely as a 

function of azimuth range. 

4.9.2. Surface Generalisation Interpretation 

By artificially smoothing the elevation surface it was possible to make suggestions about the 

role of surface roughness in viewshed algorithm efficiency. Maximum count values are found 

for the smoothed surface indicating that shade is not cast from pixels near the source. This 

supports the research hypothesis that rougher surfaces casts more local shadows, advising a 

tracking out version of the algorithm. Smoother surfaces are likely to be subject to shade from 

afar and therefore support the adoption of a tracking in algorithm. Results show that varying 

the algorithm according to surface roughness improves efficiency. 

4.9.3. Algorithm Selection 

Interpretation of the count rasters identified viewshed efficiency as landscape dependent and 

found that calculating viewsheds on smoother surfaces is more computational intensive than on 
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rougher surfaces using existing algorithms. Improved efficiency is possible by selecting the 

correct algorithm for the terrain under consideration and algorithm selection should be based on 

global and focal measures of surface roughness. Selection of the most appropriate algorithm 

improved efficiency by approximately an order of magnitude. 

Although it may be possible to identify a topographically optimal viewshed algorithm for a land 

surface based on surface roughness and the number of slope reversals and breaks it would be 

more efficient still to imagine an algorithm that alternated between a tracking in and out 

algorithm based on local evaluation. I f a pixel is significantly greater than its surrounding 

kernel, shade is more likely to be cast from further away suggesting tracking in: alternatively i f 

a pixel is significantly lower than its kernel mean then tracking out is likely to be more efficient. 

It is suggested that a combination of focal and global measures is required to select the optimal 

viewshed algorithm, however as the study area is locally rough the tracking out algorithm was 

always selected as the most efficient and was used to calculate solar shade. 

4.10. Conclusions 

The description of surface geometry contained in a DTM offers the opportunity to objectively 

evaluate surface processes (Hutchninson and Gallant, 2000; Dymond et al., 1992, 1995; Wilson 

and Gallant, 1997; Moore et al., 1991, 1993). The usefulness of these descriptive measures is 

dependent upon the type of application and the measures used. Earth surface processes that are 

strongly correlated with terrain characteristics such as glaciology, fluvial geomorphology and 

climatology can be characterised using terrain parameters. Optimal parameters capture an 

element of how earth surface processes interact with the terrain surface by quantifying 

topographic position, context and exposure. The chapter outlined the difficulty in extracting 

topographic valley structures from digital elevation data and proposed a methodology for future 

study. 

The variables predicted within this chapter are used to inform climatic predictions in Chapter 6, 

where temperature, precipitation and wind are strongly dependent upon topographic form 

(Barry, 1980). Accurate climatic predictions are an essential component of accurate energy 

balance and melt modelling and therefore necessitate a detailed analysis of topographic form. 

This chapter has highlighted the need to account for error within elevation data, with the error 

present within the DEM most effectively removed using a FpT technique to minimise the error 

propagated through the model into melt predictions. The techniques and methods outlined in 
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this chapter provide a valuable toolbox to optimise the usefulness of geomorphometric measures 

and emphases the need to effectively manage error within digital elevation data. 

A methodology for using terrain information to improve viewshed algorithms was presented 

which highlights the need for equivalent investigations for other terrain dependent applications. 

This application was used to guide shading algorithm design in Chapter Seven. 
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CHAPTER F I V E 
C L I M A T E DATA 

5.1. Introduction 

This chapter presents the climate data obtained from the Norwegian Meteorological Institute for 

climate stations in and around the Jotunheimen. The chapter initially outlines sources of 

climatic data, discussing their temporal and spatial resolutions and justifies the utilization of 

monthly 30 year normal data to derive local lapse rates and drive energy balance and melt 

predicfions. Temperature, precipitation, cloud and wind are discussed, identifying spatial and 

temporal trends within the data that are used to aid climatic predictions in Chapter 6. 

Climatic data were an essential component of this predictive model as earth surface systems 

especially those within the cyrosphere are at least in part driven and regulated by climate 

(Richard and Gratton, 2001). 

5.2. Data Resolution 

The climatic controls on glacier melt and initiation can be largely attributed to precipitation, 

temperature, wind and cloud cover. The main focus of the research was the prediction of 

glacier accumulation areas, sfrong localised gradients exist in mountains (Barry, 1980) 

necessitating the creation of a local scale climatic dataset. As a flexible and repeatable 

prediction model was an aim of this research the spatial and temporal resolution of the initial 

climate data was restricted to those that are freely available for any geographical area without 

the need for field data collection, specifically regional climatic data from local weather stations. 

Although interpolation between altitude spot heights or contours can create a representative 

surface, where altitude varies continuously and exhibits a high degree of spatial autocorrelation, 

the strong localised gradients and sparse climate station locations prevented such an estimation 

process being used here. These strong localised gradierits both, in time and space are largely 
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initiated by topographic variations and controlled by the complex interactions of a number of 

climatic parameters. 

5.2.1. Spatial resolution 

The discrete point measurements from climate stadons cannot drive a spatially distributed melt 

model and required the creation of continuous climatic surfaces. Because the interaction 

between topography and climate is critical to the effective modelling of glacier initiation and 

melt, a spatial resolution common to both would facilitate the quantification of these types of 

interactions. The suitability of a 100 m spatial resolution dataset was evaluated by examining 

the sub pixel climatic variability and the contribution that this may have on glacier 

accumulafion and the accuracy with which climatic estimates could be made. A 100 m 

resolution was found to provide a compromise between estimation accuracy and process 

resolution. Clearly the suitability of the different climatic parameters varies and cloud cover 

was identified as having the largest uncertainties at such a spatial resolution. 

5.2.2. Temporal resolution 

Glacier mass balance has a distinct annual cycle. This is largely driven by the annual cycles in 

climatic and radiative parameters. Temporal resolution of the climatic component of the 

predictive model therefore needed to be a maximum temporal resolution of 1 month, so that the 

monthly variation in accumulation and melt could be modelled. Temporal resolutions finer than 

one month may be advantageous for some climatic parameters where extremes or the 

persistence of values maybe the most critical. However the reliability and representativeness of 

input data at a daily or sub daily temporal resolution restricts the number of potential sources 

and raises questions about the most useful dataset. 

5.3. Data Sources 

A number of different climatic datasets are available, differing in their spatial and temporal 

resolution, the data retrieval mechanism and whether it represents a recorded or modelled value. 

The recent increase in the number of datasets available is largely a result of the current research 

focus on climate and environmental change and increased numbers of satellite and imaging 

sensors. An increasingly large number of climate datasets are created within numerical weather 

and climate prediction models. 
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5.3.1. Modeled data 

The spatial resolution of contemporary GCM predictions is still too coarse to represent local 

and regional weather and climate, where topographic forcing from individual mountain ranges 

cannot be resolved within the model (Pieike et al., 1996). Features significantly smaller than 

GCM resolutions (generally greater than 1km) can provide considerable surface forcing on 

weather and climate (Atkinson, 1981; Pieike, 1984; Pieike and Segal, 1986; Avissar and 

Verstraete, 1990; Cotton and Peilke, 1992; Doran et al., 1992; Segal and Arritt, 1992). Peilke et 

al. (1996) proposed a mesoscale model as a method of downscaling GCM predictions. 

A recent venture to combine recorded and predicted data is Re-analysis data, this is the output 

of a joint project between the US National Center for Environmental Prediction (NCEP) and the 

US National Center for Atmospheric Research (NCAR). This is an analysis and forecasting 

system, which produces atmospheric retrospective datasets from 1948 using a suite of different 

environmental and earth observation datasets. Historical rawinsonde, surface marine and land 

synoptic data and satellite and aircraft sensor data are used to interpret, predict and validate time 

series of climatic data. A suite of climatic parameters are predicted, largely at a diurnal 

temporal scale, however the spatial resolution of the predictions is still too coarse to use directly 

within the model. 

The European Centre for Medium Range Weather Forecasts (ECMWF) devised a project (ERA-

15) to create a consistent and invariant data assimilation system, building upon the experiences 

of the NCEP project. The project created a 15 year dataset of assimilated data running from 

1979 to 1993. One of the primary objectives of the project was to create a reliable climatic 

dataset that was consistent in its design and formation because previous attempts had been 

characterised by evolving methodologies and technologies. The 'Set I ' products from the 

deterministic ECMWF atmospheric model are the most appropriate for use within small-scale 

process models and form gridded datasets with an approximate 40 km spatial resolution. They 

consist of monthly mean datasets created using a ten-day integration for the re-analysis. Eight-

day "reforecasts" were also produced every five days and for the period 1985-1990, 50-day 

forecasts from the reanalysis were performed every day. An improved terrain surface using 

mean, standard deviation, orientation, anisotropy and slope of the sub-grid orography was used 

within the model. Although this more detailed measure of surface form did improve the ability 

of the model to resolve finer scale processes it still represents a coarse and smoothed surface. In 

conjunction with the reanalysis retrospective datasets 50 years of observational data including 6 

hour forecast were produced interpolated to the observation location. 
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The ERA-15 project shows considerable improvements on the NCEP project using a greater 

number of observations, recording a larger number of global fields with an improved vertical 

resolution and provided and overall improvement on output quality (website ref). 

The NASA Data Assimilation Office 10 year re-analysis (also known as the GEOS re-analysis) 

is another example of a major reanalysis project. Multiple reanalysis datasets allows valuable 

estimates of their reliability and an appreciation of variability between them. 

ISCCP the World Climate Research Program collect and analyse satellite radiance 

measurements to monitor the global distribution of temperature, precipitation and cloud cover. 

This used a collection of national meteorological satellites starting on the July 1982 to create 

a spatially distributed dataset from 1984 onwards. Although this dataset does contain all of the 

meteorological parameters required to drive the glacier prediction model like the NCEP/NCAR 

dataset a spatial resolution of 280 km only provides a very coarse surface representation that 

would not resolve local scale processes. The slightly finer spatial resolution of the IPCC global 

surface climatological database at a 0.5° grid, would still require significant downscaling to 

represent local scale climatic gradients. 

5.3.2. Remotely Sensed Data 

Although remotely sensed datasets have a long history of use in capturing surface reflectance 

characteristics they are increasingly being used to capture meteorological parameters including 

temperature, precipitation and cloud cover. This method of data capture provides many 

advantages over point based measurements, data are spatially distributed and represented as a 

continuous surface. Although the data are not restricted by terrain and accessibility, they are 

restricted by their spatial and temporal resolution. The spatial resolution is dependent upon the 

sensor used and its calibration and the temporal resolution is either dependent upon the return 

cycle of the satellite i f it is polar orbiting or data streaming i f a satellite is geostationary. 

Calibration and transfer functions are required to convert the digital reflectance and surface 

properties recorded by the sensor to estimates of the meteorological parameters. 

Precipitation is the most commonly recorded variable with passive microwave sensors (e.g. 

TRMM) providing the most robust estimates. Since the 1950s increasing use has been made of 

radar to observe the density and distribution of precipitation. Where different reflectance values 

indicate varying intensities of rainfall, differentiation is also possible between rainfall intensity 
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and height, synoptic weather conditions may provide information on possible duration and 

form. 

Cloud cover and type can be derived from a number of different sensors (e.g. AVHRR and 

MODIS), as the interaction of clouds, aerosols and radiation was flagged as an area uncertainty 

by the IPCC (2001) the applications within earth observation sensors have recently increased. 

Stereo matching of images allows the estimation of cloud height, and cloud properties can be 

derived from information from thermal bands. Applications within the crysosphere are 

significantly more complex than other geographical areas, as the surface reflectance 

characteristics and brightness temperatures of snow, ice and clouds are very similar (Lubin and 

Morrow, 1998). Cawkwell and Bamber (2002) outlined a methodology where stereo-matched 

nadir and forward view Along Track Scanner Radiometer-2 (ATSE-2) are used to extract 

elevation differences at its 1 km ground resolution, and then it is possible to consequently 

derive either the presence or absence of cloud, and cloud height. This technique created a 

significantly finer spatial resolution than modelled alternatives and confirmed that coarser 

resolutions did mask high spatial variability in the extent and characteristics of cloud cover. It 

is also considered that the introduction of RADARSAT 2 wil l significantly help to address this 

problem (Dr D.N.M. Donoghue pers. comm.). Radiosonde soundings of temperature and 

relative humidity have also been utilised to good effect in the identification areas of cloud 

cover, delineating areas of atmospheric change. 

The accuracy of these meteorological measurements is largely dependent upon factors that 

affect the quality of the remotely sensed data, cloud cover, atmospheric transmisstivity and 

radiometric and geometric distortion. However, further uncertainties and errors are introduced 

during the conversion from reflectance to meteorological information. 

Although remotely sensed data capture does provide clear advantages in producing continuous 

data coverages, variable temporal resolution between satellites, high costs and data sensitivity to 

cloud cover still restricts the usefulness of this data capture mechanism for long term datasets. 

Small temporal and spatial applications may be less sensitive to these disadvantages, where 

capture slots may either be requested on demand or easily repeated. Equally large temporal and 

spatial applications may also be less sensitive to localised poor data quality, moderate scale 

applications are likely to be the least suited to such a dataset, where reliable temporal and 

spatial coverage cannot be guaranteed. 
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5.3.3. 30 year normal regional climate data 

Climate is constantly changing and evolving, consequently the length of the data period over 

which climatic means and normals are calculated greatly effects the value recorded. In 1935 the 

International Meteorological Organisation proposed the adoption of 30 year 'normals' as the 

optimum resolution (Sumner, 1988). This time period was felt to provide a balance between 

removing the high variability and noise present in shorter time periods whilst still capturing 

significant changes and longer-term oscillations in climate. This value was also felt to reflect a 

sensible time period that would not obscure or highlight known temporal cyles in the climate 

system, for example the 11 year sun spot periods (Tveito et al, 2000). It was also argued by 

Tveito et al. (2000) that there are significant changes in climate at the decadal scale that should 

be represented. There is a case for this argument when analysing the variation in air 

temperature during the last 30 year normal period 1960 - 1990, for nine sample climate stations 

within and around the study area of this research, where mean daily temperatures exhibit an 

oscillating pattern through the normal period (Figure 5.1). 

03 

I r 
O 
(V 

P. 

CO 

e 
0) 

Variation in Air Temperature for 9 Sample 
Stations within 30 Year Normal Period 

• 
« • 

I • il 
1960 1970 

Year 
1980 1990 

Figure 5.1: Variations in air temperature within the 30 year normal time period 

Initial interpretations of this variability propose cyclical trends in minimum and maximum 

monthly temperatures, but as the present research project is primarily interested in predicting 

glacier distributions as a function of terrain and climate, it is considered that short-term climate 

fluctuations would not alter the ability of the model, but would potentially introduce 
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unnecessary complexity. Thirty year normals were identified as the optimal climatic dataset and 

were used to drive the energy and mass balance model. 

Thirty year normals (1961-1990) of climate for stations in and around the study areas were 

extracted by the Norwegian Mapping Agency using a map-function linked to their database. 

Some stations are very close to one another, usually as a result of station closure during the 30 

year normal period, and the consequent introduction of a new station established in close 

proximity. 

The spatial distribution of climate stations is altitude limited with few high altitude stations. 

This introduces a sample bias where limited representation of high altitude conditions creates 

unrepresentative variable distributions. Where higher, colder, wetter and windier sites are not 

captured in frequency statistics. This problem is noted in many climatic applications and is an 

essential consideration in data interpretation and prediction (Susong et ai, 1999). 

5.4. Precipitation 

Precipitation describes any form of water reaching the earth's surface including, rain, sleet, hail, 

snow and rime. Precipitation is highly variable in time and space and occurs when moisture is 

precipitated or super cooled in the atmosphere. In mountainous areas it is often necessary to 

conceptualise precipitation and orographic precipitation, as the location, intensity and duration 

of precipitation events is largely controlled by the position, orientation and dimensions of 

topographic barriers with respect to synoptic weather conditions. As the orographic component 

of precipitation produces localised variability in precipitation receipt the representativeness of 

point climate station data needs to be considered with respect to topographic context. High 

variability over shorter temporal periods, where datasets are commonly skewed identifies 

monthly normals as the most informative and appropriate dataset. As statistical measures, such 

as means, cannot sensibly be calculated over daily skewed datasets (Sumner, 1988). I f shorter 

time periods are required Sumner (1988) suggested the number of rain days, wet days and dry 

days are more useful measures. 

5.4.1. Spatial distribution 

A total of 119 climate stations in and around the study area have 30 year monthly normals for 

precipitation. Recording stations are largely positioned within valleys at lower altitudes, the 

-mean station altitude is 780-m with heights having a standard-deviation of =290 m. The 

maximum altitude station is 2062 m and the minimum is 27 m. Stations are well distributed 
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throughout the Southern Norway, with approximately 15 in or directly surrounding the study 

area (Figure 5.2). 
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Figure 5.2: Location of precipitation weather stations 

Although the distribution of station altitudes is positively skewed with very few above 1000 m 

(Figure 5.3), the stations do exhibit a dispersed disfribution in geographical space. 
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Figure 5.3: Altitudinal Range of Precipitation Weather Stations 

5.4.2. Annual trend 

Precipitation interannual variability is strongly linked to seasonal atmospheric circulation, 

changes in air stability and air mass characteristics and insolation changes (Sumner, 1988; 

Barry, 1980). Annual variability within the sampled stations exhibit a clear annual cycle in 

receipt where maximums occur between July and January and minimums occur in April (Figure 

5.4). It is possible to identify a series of different climatic signals or trends within the sampled 

stations. These have been identified as Type 1, Type 2 and Type 3 precipitation variations, with 

a sub group 2b associated with Type 2 stations. By identifying slightly different annual trends it 

is possible to understand the controls on precipitation within the region. 

Al l stations share a common trend through the end of winter and the start of spring from 

January to April. This is a period of an overall decrease in precipitation receipt, with a small 

increase evident in March. Precipitation receipt increases from April until around October. 

Type 1 precipitation stations have the greatest range in values and receive the highest annual 

precipitation receipt and show a relatively rapid increase in precipitation from April, maxima 

occurs between July and November and this period is characterised by moderate variability. 

This can either be attributed to the high variability and localised nature of precipitation events 

or a progression temporal variation within the 30 year normal period. Type 1 stations are 

largely the most westerly stations. One station exhibits a significantly higher winter 
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precipitation receipt; this station is the highest station (2062 m) and suggesting a non-linear 

increase in precipitation with altitude. Temperatures largely remain above zero between April 

and October (Figure 5.7) suggesting that October, November, December, January, February and 

March are critical months for snow accumulation, although snow may fall earlier and later at 

higher stations. 
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Figure 5.4: Annual trend in observed precipitation receipts 

Type 2 and 3 stations show an overall similar pattern, and differ from type 1 stations both due to 

their slightly drier conditions and reduced variability. Type 2 stations do exhibit a large range 

in monthly values but each station has a lower variability than type 1 stations. Type 2 stations 

have a higher annual receipt than type 3 stations. It is possible to attribute the large range in 

monthly values exhibited by type 2 stations to the larger geographical area the stations occupy. 

Although the absolute monthly receipt varies between stations the annual cycle in values 

remains constant, it is therefore possible to propose that these stations are subject to similar 

climatic forcings. Type 2b precipitation stations exhibit a similar pattern to type 2 stations 

except they achieve their maximum precipitation receipt in December. 

Type 3 precipitation stations have the lowest annual precipitation receipt and have the lowest 

range in values. Minimum precipitation receipt is in April and the majority of stations have 

their maximum in July, these stations are largely at lower altitudes with a preference for 

easterly locations. 
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5.4.3. Error estimate 

Accurate measurements of precipitation receipt at climate stations are known to have large 

uncertainties, due to their restricted altitudinal range, the localised nature of mountain 

precipitation events and unreliable instrumentation. The effectiveness of instrumentation is 

largely associated with obstructions, wind effects and horizontal interception, with a smaller 

observer error. Precipitation measurements have been found to be highly sensitive to wind 

direction and magnitude (Black, 1954; Larson and Peck, 1974; Neff, 1977; Helvey and Partic, 

1983; Sharon, 1980; Sevruk, 1982, 1986; Folland, 1988; Sharon et al., 1988). Quantitative 

approaches to instrument design (Folland, 1988) and adjustment parameters (Sharon, 1980) 

have alleviated some of the problems associated with measurement accuracy, but do not tackle 

the less manageable problem of the representativeness of local precipitation, both as a function 

of altitude and topographic context and exposure. 

The sensitivity of the different forms of precipitation to gauge and instrument accuracy varies. 

Barry (1980) attempted to quantify some of these errors associated with the differential rain 

catch of different gauges (Table 5.1), although he stressed that these correction factors will not 

remain constant for different gauges and proposed that the largest uncertainties are still 

associated with local and micro scale controls on precipitation receipt. Precipitation as snow 

has significantly higher errors than rain, largely associated with dominant role that wind 

entrainment of snow can have on localised collection and the ability of the gauges to remain 

exposed and accessible during an snowfall event. 

Error Rain Snow 

Wind field deformation above gauge 2 - 10% 10 - 1 5 % 

Losses from wetting of internal walls of 
the collector and measuring container 2 - 10% 2 - -10% 

Losses through evaporation 0- 4 % 0- 4 % 

Splash in splash out 1 - 2 % 1 -- 2 % 
Overall potential error 5 - 1 5 % 20 - 50 % 

Table 5.1: Sensitivity of rain gauges adapted from Barry (1980) 

5.5. Temperature 

Air temperature predominantly varies as a function of altitude and has a dominant-control on 

snow accumulation, determining the character of precipitation and the snow surface 
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temperature. Potential temperature is sometimes used to record spatial variations in air 

temperature at different altitudes. The temperature of air parcel behaving adiabatically is 

related to pressure. In order to compare parcels at different pressures (levels of the atmosphere) 

it is helpfiil to change them to have one standard pressure. Potential temperature 0 represents 

the temperature of an air parcel brought adiabatically to lOOOmb pressure, thus 

0 = T(1000/p) exp (R/Cp) (Equation 5.1) 

where p = pressure (mb) 

T = temperature (°K) 

R = gas constant for dry air 

Cp = specific heat of dry air at constant pressure 

R/Cp = 0.288. 

Potential temperature is often used instead of the observed temperature to standardise conditions 

to compare parcels at different levels in the atmosphere. It represents the temperature an air 

parcel would have i f it were at 100 kPa. It is then possible to see how the temperatures would 

vary at the DALR and therefore may assumptions about their relative stability. Potential 

temperatures are commonly used where there is variation in atmospheric stability through a 

vertical profile in the atmosphere. Although potential temperatures do offer conceptual 

advantages mean monthly air temperatures were supplied by the Norwegian Meteorological 

Institute and are used in this research. 

5.5 .1 . Spatial distribution 

A total of 37 climate stations in and around the study area have 30 year monthly normals for 

temperature, this is considerably less than the number of precipitation stations, largely due to 

the duration of climate recording and the increased regional importance of precipitation. The 

topographic constraints on station position apply here as they did for the precipitation stations, 

with the majority of stations in sheltered valley positions (Figure 5.5). The mean station 

altitude is 761 m with heights having a standard deviation of 343 m, the mean is slightly lower 

than the precipitation stations, and a temperamre stations exhibit a slightly larger standard 

deviation. The highest and lowest stations are the same as those recorded precipitation at 2062 

m and 27 m respectively; this creates the same range of altitudes as the precipitation stations but 

with explaining the higher standard deviation as the number of stations is less. Although the 

population of stations is smaller they are still well distributed throughout the study area, with 10 " 
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in or directly surrounding the study area (Figure 5.6). Although the distribution of station 

altitudes is positively skewed with very few above 1000 m, the stations do exhibit a dispersed 

distribution in geographical space. 
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Figure 5.5: Altitudinal distribution of temperature climate stations 

5.5.2. Annual trend 

Temperature interannual variability is sfrongly related to changes in solar irradiation, where 

maximum temperatures occur during the month of maximum solar radiation receipt. A l l 

stations exhibit a similar annual cycle, where differentiation is possible by station temperature 

range and maximum minimum values (Figure 5.7). 
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Figure 5.7: Annual variation in temperature 
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Figure 5.6: Spatial distribution of temperature climate stations 
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The maximum annual station value is 15 "C in July at station 13550, aUitude 241 m, and the 

lowest -11.5 °C in January at the same station. A measure of continentality is reflected in the 

annual range of mean temperature, this can be seen to vary with geographical position of the 

stations, where lower values are found nearer the coast where the maritime influence on 

atmospheric and energy exchanges is greatest. Variations in temperature trends cannot solely be 

attributed to continentality, where topographic position also controls the range of temperatures 

present at a site. 

Temperature variations through the year can be segmented into thermal season, which are 

demarked as a function of monthly mean temperature and synoptic weather conditions. In this 

region thermal spring starts in March where temperatures start to rise from below 0° C to above 

5 °C. Temperatures above 5 °C mark the start of the thermal growing season, between April and 

May. Summer is characterised by mean daily temperatures above 10 "C and around May / June 

with maxima occurring in July. Autumn marks the lowering of temperatures below 10 °C 

starting in September, and winter is characterised by mean temperatures below 0 "C and lasts 

from December to February. The timing and duration of these thermal periods varies as a 

function of latitude and continentality, with the coastal maritime regions responding earlier. 

Although all stations exhibit a similar annual cycle three distinct groups are evident within the 

station population (Figure 5.7). Differentiation between groups is primarily based upon 

temperature maximums in July, where type 1 stations exhibit the highest summer temperatures, 

and type 3 the coolest summer temperatures. Al l stations have similar winter minimum 

temperatures (December range: 6.1 "C, January range: 6.5 "C) and differences only start to 

emerge in spring and summer, where the range of monthly temperatures exceeds 12 "C. 

Type 1 stations as a group experience the most extreme climate, with the coldest winters and 

warmest summers. Station 13550 at 241 masl has the coldest winter and hottest summer, 

station 55160 at 27 masl, the lowest altitude station, has the mildest temperature conditions. 

June temperatures do not fall below 12.5 °C and have a range of only 1.4 "C, in contrast to a 

January range of 6.4 °C. The increased variability in the winter months is potentially 

attributable to less persistent atmospheric conditions and localised exposure. It is clear that 

altitude and continentality alone cannot account for station temperature characteristics born out 

in Figure 5.8 which locates type 1 stations in sheltered positions within extensive valley. 

Temperature variations at Type 2 stations are the most common (78 % of all stations exhibit this 

annual pattern),-maximum temperature in July is-12.1 °G with-a-range of^;9-C.- January is the 

coldest month with temperatures falling to -11.2 °C. This group of stations does not have the 
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highest or lowest altitudes and are distributed throughout the terrain largely within smaller 

valley systems. 

Type 3 stations experience the coldest conditions with summer maximums not exceeding 5.7 

°C, these two stations are the highest within the sample at 1413 masi and 2062 masl. The higher 

station experiences the cooler temperatures. Although the temperatures are cooler the range in 

temperatures is smaller than at other stations with a delayed rise in temperatures in early spring, 

suggesting that winter cooling starts in October / November but does not end until April, with 

temperatures not rising above 0° C until June for station 55230. Temperatures at 55230 only 

stay above 0 °C for 3 months, in contrast to lower Type 1 stations which experience 9 months of 

above 0° C temperatures. Both stations in Type 3 are located close to the study area and 

potentially provide the most representative data for high altitude climate. 

5 .5.3. Daily Time Series 

Even though a monthly temporal resolution has been adopted as the primary period within the 

model developed during this study, processes critical to glacier initiation act over a range of 

temporal scales. Diurnal variations, in temperature, control and drive a number of 

meteorological processes including; changing the direction of energy exchanges above the 

ground; controlling the strength and direction of mountain and valley winds; and determining 

vertical structure of atmospheric stability. Daily time series for 9 stations higher than 400 masl 

in and around the study area, for the last normal period (1961-1990), have provided a 

characterization of the magnitude and structure of diurnal temperature variations within this 

alpine terrain environment. The variations captured within a diurnal timescale show high 

variability, chaotic process where the signal to noise ratio is low. Examining a period of diurnal 

change does not provide a clearer signal and where noise dominates any graphical 

representation, 

5.5.4. Error estimate 

The Norwegian Meteorological Institute state that unless there is a technical error the 

instrument error wil l be less than the error of the human data recorder. They state that the 

combined reader and instrument error is in the region of ± 0.1 °C. 
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Figure 5.8: Locations of temperature climate stations by type 

Perhaps more important uncertainties associated with temperature measurements are those 

surrounding the representativeness of a daily or monthly mean temperature when maximum or 

minimum temperatures may be more informative or critical to the process under investigation. 

110 



I ' l e d i c l i n g G l a c i e r Accuii iLi latit.ai A r e a D r s t i i b u t i o n s C h a p l e r F i v e 

K a r h c r i i i c F; A r r c l l C l i m a t e D a t a 

5.6. Cloud 

Clouds exert a major influence on the exchanges of short and longwave radiation at the earths 

surface and form an essential part of an energy balance model (Oke, 1987). Clouds can be 

characterised by the extent of their sky coverage, base height and composition. The latter is 

defined by the 1987 World Meteorological cloud classification scheme. Cloud types within the 

classification vary in their height, density and structure. Although cloud height and type do 

determine the specific reflectance and absorption characteristics of a cloud, these are still highly 

variable and are largely determined by airmass type and vertical atmospheric stability profiles. 

As these two parameters lie outside of the scope of the present study only cloud coverage was 

used to calculate surface energy balance. 

Five stations within and around the study provide monthly cloud data for the period 1981-2000. 

The data consists of the number of days with sky clear, calculated as not more than a total of 4 

oktas of clouds on the three main daytime observations (0600, 1200, 1800 hours), the number of 

days with fair weather, when there are not more than 9 oktas on the three main daytime 

observations (0600, 1200, 1800 hours), and not more than 4 on any one of the three 

observations. The number of days with overcast conditions, which have a total of 20 oktas or 

more and the mean okta coverage for the three observations times 0600, 1200, 1800 hours. 

5.6.1. Spatial distribution 

The five recording stations within the study area all occupy valley locations, and are positioned 

at 621 masl, 626 masl, 712 masl, 890 masl, 1414 masl, with a mean altitude of 852 masl. Ten 

further stations lie in relatively close proximity to the study area (Figure 5.9) and have been 

included in the datasets displayed below to provide a more robust representation of monthly 

cloud variation. 

Cloud cover and characteristics are in part controlled by topography, with strong diurnal cycles 

occurring within valley systems. Although monthly mean values provide a coarser scale dataset 

smoothing some of the finer scale variability they still represent a local signal that cannot be 

viewed as representative for the surrounding area. 
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Figure 5.9: Locations of cloud and wind climate stations 
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Air mass characteristics and solar insolation have already been identified as important variables 

in cloud formation and persistence. As these both annual exhibit annual or seasonal trends 

these have propagated into the annual cloud trends. The number o f clear sky days, where they 

are not more than 4 oktas at the three time intervals exhibit a distinct seasonal variation with a 

summer minima and winter maxima. The maximum number o f monthly clear sky days occurs 

in December, where 8 days remain clear. June, July, August and October all have Monthly 

variability that is greatest in winter. 

Within the cloud data it is possible to differentiate two distinct trends among the recording 

stations. These have been classified as type 1 and type 2 stations (Figure 5.10); Type 1 stations 

exhibit clearer conditions, wi th a larger number o f clear or fine days, fewer overcast days and 

lower monthly mean cloud cover. 

20 Year Normals for the Number of Clear Sky Days per 
Month for 15 Climate Stations in Southern Norway 
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Cloud 
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Julian Day 

Figure 5.10: Annual trend in the number o f clear sky days 

Fair weather days, where no more than 9 oktas cloud cover exist at the three time intervals, 

show a less pronounced annual cycle (Figure 5.11). August, September and October have the 

smallest number o f fair weather days and November through to May / June experience the 

largest number o f fair weather days. The maximum range in values again occurs in December 

with a total o f 9 days, in contrast to August with only 3 days difference. 
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The less distinct trend is the number o f fair weather days indicates that this level o f cloud cover 

may be indicative o f change. 

20 Year Normals for the Number of Fair Weather Days per 
Month for 15 Climate Stations in Southern Norway 
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Figure 5.11: Annual trend in the number o f fair weather days 

Annual variability in cloud cover exhibits a smoother annual variation than the number o f clear 

sky days, wi th a maximum between July and October (Figure 5.12). Minimum cloud cover 

occurs in December and increases through winter and spring to reach a maximum in late 

summer early autumn. Winter months experience a slightly higher range in values (2.2 oktas in 

December compared to 1.2 oktas in July and August). Type 2 stations have annual average 

cloud cover o f 6.0 oktas in contrast to Type 1 stations that have an average o f 4.6 oktas. Type 2 

stations have a higher range in values with a standard deviation o f 0.41 in contrast to 0.30 for 

Type 1 stations. 

20 Year Cloud Okta Normals for 15 Climate Stations in 
Southern Norway 
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Figure 5.12: Annual trend in average monthly okta cover 
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The number o f overcast days shows very little seasonal variability especially in type 2 stations 

(Figure 5.13). The maximum numbers o f overcast days occur in July and October where 20 

days out o f the month are overcast for type 1 stations and in October and December for type 2 

stations when 10 days are overcast. Type 2 have a minimum number o f overcast days in July 

when only 4 days are overcast, in contrast to type 2 stations where the minimum occurs in May 

when only 8 days are overcast. 

20 Year Normals for the Number of Overcast Days per 
Month for 15 Climate Stations In Southern Norway 
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Figure 5.13: Annual trend in the number o f overcast days 

5.6.3. Daily A i r Temperature and Cloud Cover 

Cloud cover in part controls air temperature, a relationship that involves feedbacks, where 

although an increase in cloud cover w i l l lead to a reduction in the amount o f direct beam 

radiation incident upon the surface and therefore reducing its heating effect, warming w i l l occur 

due to retention o f long-wave radiation underneath the cloud base. Increased cloud cover acts 

to reduce the daily temperature range, lowering daily maxima and increasing evening mimima 

(Barry and Chorley, 1982). Temperature fluctuations w i l l adjust atmospheric stability and 

consequently the height and characteristics o f cloud cover. 

This complex relationship is born out through the utilisation o f a daily 30 year normal cloud 

cover and air temperature dataset for 9 climate stations in Southern Norway, f rom in and around 

the study area. The size o f this dataset, and the range o f data attributes l imit the effectiveness o f 

any graphical representations o f the dataset as a whole. Examination o f the correlations 
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between air temperature and cloud cover per station (Table 5.2 and Figures 5.14 - 5.22) 

provides some information about the potential relationships between the variables, although any 

statistical deductions are not significant. 

Station Correlation 

Coefficient 

A l l 0.1041 

700 0.2093 

13670 0.0516 

18960 -0.0578 

23160 0.0918 

25590 0.0668 

25840 0.1392 

29770 0.1801 

50300 0.1778 

61770 0.2991 

Table 5.2: Correlation, by station for mean monthly air temperature and cloud cover 

Station numbers 700, 25590, 50300, 23160 all exhibit a similar trend where warmer and cooler 

temperatures tend to have less cloud cover with most stations with complete cloud cover have 

temperatures between -10 "C and -15 °C, where clear sky conditions have temperatures ranging 

between -20 °C and 20 °C. This data, that represents one year seasonal variations, may be the 

primary driver for this trend, where clear sky conditions increase the proportion o f solar 

insolation reaching the ground, thus allowing temperatures to reflect solar heating, where the 

annual trends in insolation create annual variations in surface temperature. A similar 

explanation is possible for the range in temperatures in overcast conditions. 
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Correlation between Air Temperature 
and Cloud Cover for Station 700 
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20 

Figure 5.14: Correlation between air temperature and cloud cover for station 700 

Correlation between Air Temperature 
and Cloud Cover for Station 13670 
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Figure 5.15: Correlation between air temperature and cloud cover for station 13670 
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Figure 5.16: Correlation between air temperature and cloud cover for station 18960 
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Correlation between Air Temperature 
and Cloud Cover for Station 23160 
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Figure 5.17: Correlation between air temperature and cloud cover for station 23160 
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Correlation between Air Temperature 
and Cloud Cover for Station 25590 
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Figure 5.18: Correlation between air temperature and cloud cover for station 25590 
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Correlation between Air Temperature 
and Cloud Cover for Station 25840 
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Figure 5.19: Correlation between air temperature and cloud cover for station 25840 
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Correlation between Air Temperature 
and Cloud Cover for Station 29770 
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Figure 5.20: Correlation between air temperature and cloud cover for station 29770 

Correlation between Air Temperature 
and Cloud Cover for Station 50300 

-10 0 10 
Air Temperature (Degrees Centigrade) 

20 

Figure 5.21: Correlation between air temperature and cloud cover for station 50300 
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Correlation between Air Temperature 
and Cloud Cover for Station 61770 
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Figure 5.22: Correlation between air temperature and cloud cover for station 61770 

5.6.4. E r r o r estimate 

Cloud cover data is possibly the most d i f f icul t to assign a quantified error estimate to as its 

measurement is entirely subjective, it is also unlikely that the reader error w i l l be equally 

distributed throughout each okta segment, where differentiation between 0 and 1 and 7 and 8 

oktas cover significantly easier to distinguish than 4 to 5 oktas cover. A reader error o f + - 0.5 

oktas is proposed. Although questions exist about the objectivity o f cloud cover measurements 

more important concerns arise about the representativeness o f these measurements. Repeat 

measurements during the day provide more robust estimates to allow a regional pattern to 

emerge. 

5.7. W i n d 

Wind acts over a large range o f spatial scales; those that are characteristic o f the earth's 

circulation, such as the trade winds; and those that are induced by local mountains and surface 

terrain such as valleys winds or very local phenomena where obstacles induce small eddies and 

f low separation. 

Two scales o f wind data have been selected to use within the model in the present study; surface 

wind vectors measured by ground level climate stations; and, free air wind vectors recorded 

using radiosondes. These two datasets provide very different information; free air vectors 

supply information about regional wind directions and speeds indicative o f synoptic weather 

conditions. Surface wind vectors in part represent the terrain modification to f low; faster flows 

are indicative o f smoothed exposed or channelised areas where little drag is imposed by the 
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surface; and slower wind speeds occur where high frictional drag, f rom the terrain surface, 

retards the f l o w near to the ground. 

Ahitude, season and atmospheric stability also impose important controls on surface wind 

vectors. 

5.7.1. Surface wind 

Wind speed is recorded using an anemometer; unlike older models new designs are not 

sensitive to wind direction removing the increased lags associated with the fal l ing limb o f wind 

speeds. Wind vectors used in this study are 20 year normals for the period 1981 - 1990, these 

were calculated by selecting four observations per day. The values are split into the eight wind-

sectors (each a 45° segment o f the whole 360° o f possible wind directions) and speed in 

incremental groups o f 2.5 ms"'. The data were divided into four seasons, each o f three months 

starting wi th December to February. Data coverage between the stations varied significantly 

and none o f the stations recorded throughout the night (Table 5.3). 

Station Daily Coverage 

13670 7 5 % 

15720 7 0 % 

16740 75% 

55290 67% 

61770 72% 

Table 5.3: Daily coverage of wind data 

at climate stations 

Wind not only plays a critical role in the entrainment o f snow but surface wind speeds also 

determine the magnitude o f turbulent heat exchanges at the Earths surface. 

5.7.1.1. Spatial distribution 

The same stations recording cloud cover record surface wind (Figure 5.9). Wind vectors are 

likely to highlight dominant valley winds rather than regional wind directions, where valley 

locations l imit the use o f these data, where regional trends would allow the prediction o f local 

terrain modifications. 

122 



P i e t l i c l i i i g G i a c i e i - A c c u i i i u l a l i o i i A r e a D i s l i ib i i t i ims 

K a t l i c r i i i c i i A i t c I I 

5.7.1.2. Annual trend 

C h a p t e r l-ive 

C l i i i i a l e D a t a 

Wind direction, expressed as the cardinal direction from which the wind blows is recorded, like 

slope aspect on a circular scale, at an interval measurement scale. Consequently statistical 

measures of central tendency need to be used with caution and replaced with more appropriate 

measures. 

Wind direction does not show a strong annual trend (Table 5.4), all stations have a dominant 

wind direction aligned with valley aspect, where flow is predominantly up and down valley 

according to the time of day. Variability around modal directions may either be indicative of 

variable or gusty wind condition, or represent diurnal thermally driven circulations. 

Station Spring Summer Autumn Winter 
13670 S and still S and still S and still S and still 
15720 East and West East East East 
16740 West and East West and East East East and West 
55290 West, South and West and still West, South West, South 

still and still and still 
61770 West and East West East East and West 

Table 5.4: Seasonal trend in modal wind direction 

Wind speeds show a very weak annual trend (Table 5.5), with slowest winds largely occurring 

in Spring. As the data is only recorded to a precision of 2.5 ms"', a continuous scale would 

provide more information on the distribution of wind speeds. Seasonal trends in surface wind 

speeds recorded in valley stations largely reflect the degree of surface modification to seasonal 

free air winds and consequently exhibit only a weak annual trend. 

Station Spring Summer Autumn Winter 
13670 0 - 2 . 5 0 .1-2 .5 0 - 2 . 5 0 - 2 . 5 
15720 2 . 6 - 5 2 . 6 - 5 2 . 6 - 5 2 . 6 - 5 
16740 2 . 6 - 5 2 . 6 - 5 2 . 6 - 5 0 . 1 - 5 
55290 0 .1-2 .5 0 . 1 - 2 . 5 , 2 . 6 - 5 2 . 6 - 5 Mixed 
61770 2 . 6 - 5 2 . 6 - 5 5 - 7 . 5 2 .6-5 

Table 5.5: Seasonal trend in mean wind speed ms 

Autumn and winter exhibit stronger wind speeds than summer and spring, these seasons are 

characterised by high pressure systems and turbulent conditions if the westerlies are broken by 

the development of high pressure ridges (Section 3.8). 

Information on regional wind data is provided from free air wind speeds that represent flow 

direction without modification by underlying terrain. 
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5.7.2. Free air wind 

Free air vectors, recording regional wind characteristics above the boundary layer were taken at 

ahitudes o f 300 m, 600 m, 900 m, 1200 m, 1800 m, and 2700 m above sea level using a 

radiosonde at four stations for the period 1987 - 1994. Wind speed is provided on an interval 

scale with 2 ms"' class widths. Wind direction is also recorded on an interval scale wi th 30 ° 

class widths, values are provided as annual and seasonal means. 

5.7.2.1. Spatial distribution 

Three o f the four provided stations are located around the study area, al lowing an impression o f 

regional wind f l ow through the Jotunheimen. Bodo is further North providing information on 

the distribution o f winds throughout Norway. As data is describing regional trends sparse 

station is not considered to be a major limitation during the present study. 

5.7.2.2. Annual trend 

Each station has 30 records for each season and altitude and one annual mean dataset. The data 

provides information that w i l l be used to determine the regional wind direction and air speed 

throughout the year within the Jotunheim. Detailed statistical analysis o f the variability wi thin 

and between the stations is not considered necessary for this research project. 

A l l stations exhibit and increase in the variability o f wind direction with increased altitude o f 

measurement, borne out through the increase in the standard deviation o f direction with altitude 

(Table 5.6). 

Station 300 m 2700 m Modal Class 

m s ' m s ' 

Gardermoen 3Jl 6^56 210,210,210,240,240,270 

Orland 6.21 7.19 270,270,270,270,270,270 

B o d 0 5.41 6.68 120,240,240,240,240,240 

Sola 5.57 6.91 180,180,180,330,210,270 

Table 5.6 Variations in wind speeds and direction by station 
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Despite the increased variability in wind direction the modal class largely remains constant. 

Vertical profiles o f wind speed provide information on the atmospheric structure and layer 

boundaries (Figure 5.23). 

Vertical Profiles in Mean Annual Wind Speed 
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-Orland 
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7 9 11 
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13 

Figure 5.23: Variation in wind speed with altitude by station 

Wind direction provides the more informative dataset that can be used to drive the regional 

wind component o f the model. 

5.8. Conclusions 

Monthly 30 year normal data were identified as the most appropriate dataset for this research 

forming an available and robust indicator o f monthly climate. Systematic examination o f the 

frequency and spatial variability wi th in monthly mean 30 year normal data o f precipitation, 

temperature, cloud cover and wind speeds exhibited marked spatial and temporal variability. 

Topographic position was found to play a dominant role, governing temperature and 

precipitation variations where local and contextual controls were found to play a dominant role. 

These distinct trends are used in Chapter 6 to predict spatially distributed climate surfaces, but 
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the limitations are acknowledged and over using correlations present within the data is 

identified as a potential problem. 

Limited altitudinal range o f climate stations restricts the representivenss o f observed records 

where high altitude conditions are not represented. 

Wind and cloud data provided the weakest climate datasets, where seasonal and spatial patterns 

were weak, l imit ing their use in climate modelling (Chapter Six). 
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CHAPTER SIX 
CLIMATIC MODELLING 

6.1 Introduction 

Climate, specifically temperature, precipitation, wind and cloud cover are known to be important 

parameters controlling the rate and distribution o f snow accumulation (Martin et al., 1997; 

Kayastha et al., 1999). This chapter outlines the methodology employed to create a series o f 

spatially distributed climatic datasets used to drive melt in Chapter Seven. The methodology uses 

the topographic variables created in Chapter Four and the observed seasonal and spatial trends 

described in Chapter Five to create a suite o f local climate datasets for air temperature, 

precipitation, cloud cover and wind speeds and direction. 

A flexible and repeatable approach to climatic predictions was employed to facilitate application to 

other geographical areas. Local factors including pressure systems, the maritime influence, and 

temperature inversions were accounted for in predictions, which attempted to reconstruct climate in 

glacier accumulation areas. 

The chapter initially identifies available approaches to predicting spatially distributed climate 

variables and then discusses the predictive approaches employed for each o f temperature, 

precipitation, cloud cover and wind speed and direction. A range o f temporal scales are predicted 

within the climate model and justifications are provided for each. 

6.2 Modelling Techniques 

It was necessary to reject several different methods o f creating local scale climate surfaces as they 

were inappropriate for this study. Standard lapse rate models have already been identified as too 
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generalised for this research as they cannot replicate topographically induced temperature and 

precipitation patterns (Section 2.2.1). Downscaling from a global climate model (GCM) was also 

rejected as the uncertainties and error associated with this procedure are greater than those created 

by interpolating between climate stations (Section 5.3.1). A quantitative approach to predictions 

using relationships within the meteorological datasets was also rejected as it failed to account for 

the modification of lapse rates by the terrain (Chapter 5). 

This research predicted local scale climate by extracting quantitative relationships within and 

between meteorological and topographical data. The approach quantified terrain forcings and the 

terrain modification o f the adiabatic process by characterizing geomorphological context. Accurate 

local scale climate predictions can only be made i f the processes controlling the climate variables 

are parameterised. Therefore, although the model was designed to be flexible and repeatable it was 

necessary to incorporate local factors to make accurate climate predictions. In Norway these were 

the strong maritime influence in the west evident especially when considering precipitation; the 

frequent occurrence o f temperature inversions in winter, which result in cold valley floor 

temperatures, and the dominant role that the seasonally variable pressure systems have on the 

climate. 

Data regression and general linearised modeling were identified as successful techniques for 

quantifying and predicting the complex relationships between terrain and climatic parameters. 

6.2.1. Regression 

Regression analysis predicts a dependent variable f rom one or more independent variables. Linear 

regressions take the form o f : 

y = a + bx (Equation 5.1) 

Where y is the dependent variable, x in the independent variable, b is a coefficient and a is a 

constant. Results can either be plotted as observed vs. predicted or represented as a regression line 

fitted to the data. The quality o f a regression model is normally evaluated by describing the amount 

o f variation within the dataset that is accounted for by a linear model. The sum o f the square o f the 

residuals provides a measure o f how much of the data is not explained by the linear model. This 

value, normalised by the standard deviation is called the coefficient o f determination, R^. A n 
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adjusted accounts for the number o f fitted constants as well as the size of dataset, as larger 

samples w i l l in general provide stronger regressions. A n F-test can be used to test the significance 

o f the coefficient o f determination, giving an F-distribution result (Equation 5.2). 

F= 
[X.r%n-K-\)\ (Equation 5.2) 

with {n-K-\) degrees o f freedom, 

where K is the number o f terms in the equation. 

A number o f other parameters can also be used to assess the ability o f the regression to account for 

variability within the dataset. These and other descriptive statistics are provided in the subsequent 

regression result tables, and are described in Figure 5.1. 

6.2.1.1. Multiple Regression 

Muhiple regressions predict the dependent variable from more than one independent variable. Here 

the regression takes the form: 

y = a + b i X i + b2X2 + h^x^ + .. (Equation 5.3) 

Where again, y is the dependent variable, a is the constant, b|, b2 and ba are the independent 

variables and X i , X2 and X3 are the coefficients. Statistical interpretation of the regression remains 

the same, however visualisation should be restricted to plots o f observed vs. predicted. 

Regression analysis is a powerful and useful tool to quantify relationships between data, however it 

is important to critically evaluate model predictions, both their statistical significance and physical 

meaning. Fitting more constants requires larger sample sizes. 

6.2.2. Generalised Linear Models 

Nonlinear relationships can be modeled effectively using generalised linear models (GLM): these 

are a form o f regression but use a link function such as a log link to avoid the problem o f having to 
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transform a dataset, then back transform when predicting the dependent variable. This technique is 

particularly effective when dealing with nonlinear relationships. A G L M can be set up to ensure 

physically meaningful predictions, i.e. precipitation can always be positive. Link functions 

available within G L M include reciprocal, power or log functions. 

Number o f degrees o f freedom 
in (model, residuals) and the F 
statistic: higher values o f F 
reflect stronger regression 

Probability o f getting a 
^ greater F value under null 

hypothesis, r^, adjusted r̂  
and root mean square error 
(in same units as 
dependent variable) 

Sum o f squared errors and mean 
square error, representing error 
and variance within and outside 
o f the model 

Deg rees o f freedom 

Number o f obs = 444 

F( 5, 438) = 3660.62 

P r o b > F = 0.0000 

R-squared = 0.9766 

Adj R-squared = 0.9764 

RootMSE = 1.1521-

SS df MS 

Model 24293.14 5 4858.6 

Residual 581.34 438 1.327 

Total 24874.5 443 56.15 

Coefficient Std.Error t P>|t| [95% Confidence Interval] 

Month .1249085 .0440195 2.84 0.005 .0383928 .2114241 

Altitude -.0023254 .0003442 -6.76 0.000 -.0030018 -.001649 

Month Alt -.0002982 .0000468 -6.38 0.000 -.0003901 -.0002063 

Cosine -6.726468 .077322 -86.99 0.000 -6.878437 -6.5745 

Sin -8.119309 .1264955 -64.19 0.000 -8.367923 -7.870695 

Cons 3.127605 .3161461 9.89 0.000 2.506253 3.748957 

Regression 
coefficient for 
each term 

Variables in 
regression 

Error associated 
with estimation 
o f each 
regression term 
in own units 

Student t-test 
statistic, 
representing the 
significance o f 
each term, defined 
as coefficient / 
standard error 

Chance o f 
getting t 
statistic under 
the null 
hypothesis 

Values between 
which 95 % of 
estimates w i l l be 
made 

Figure 5.1: Interpretation o f regression statistics used within this chapter. 
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6.2.3. Predictive Parameters 

Initial investigations identified the need for a suite o f predictive parameters that could account for 

the variation in climate both through the year and through the terrain. These can be split into cosine 

and sine functions that parameterise annua! cycles, topographic measures that account for local or 

regional surface modifications to climate, and interaction terms that attempt to quantify the inter

relationships between these two groups. 

6.2.3.1. Cosine and sine functions 

Most climatic variables show strong seasonal variations that are apparent on a monthly temporal 

scale. These trends were apparent in the temperature, precipitation, cloud and wind datasets 

discussed in chapter 5, where precipitation and temperature exhibited annual maxima (October and 

July) and minima (Apri l and January) respectively (sections 5.4.2 and 5.5.2). 

Sine and cosine functions provide a mathematical method o f simulating this annual cyclic 

behaviour. Where month is the month number with December as month 1: 

Cosine function = Cosine (2 FI (month - 0.5)/12) (Equation 5.4) 

Sine function = Sin (2 n (month -0.5)/12) (Equation 5.5) 

6.2.3.2. Topographic parameters 

Topography plays a dominant role in controlling local climatic gradients over complex terrain 

(Geiger, 1965; Raupach and Finnigan, 1997; Barry, 1992). Incorporating parameterized measures 

o f topographic form allows more accurate estimates o f surface climate to be made (Ryan, 1977; 

Lapen and Martz, 1983, 1996; Barry, 1980). 

It is possible to conceptualise topographic controls at three spatial scales; sub continental where the 

overall dimensions and orientation o f continental shields and coastal margins govern climate 

modifications; regional scale where relief and terrain shape impose the greatest modifications and 

local scale where slope angle and aspect are critical in predicting the modification. Barry (1980) 

suggested that these scales are more informative when combined with information on the thickness 
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of the boundary layer (< 1000 m or 10 - 100 Km), the characteristics o f the climatic processes and 

larger scale synoptic processes. Maritimity and measures o f relief are examples o f regional scale 

measures, the remaining variables outlined in Section 4.5.5 largely characterise slope or valley form 

and position and are examples o f local measures. Coarser scale predictions (500 m or greater) like 

those o f Running and Thornton (1999), Thornton et al. (1997) and Cline et al. (1998) can alleviate 

the need for these local complex topographic measures, where correlations between temperature 

and precipitation and altitude were used to create daily climate predictions. Similarly short temporal 

resolution predictions such as those outlined by Furman (1978) can be driven by the previous day's 

temperature and he found that locational parameters were not significant. Others employ derived 

altitude lapse rates in attempt to reduce the complexity o f the climatic modelling, however in the 

case o f Winstral and Marks (2002a, 2002b) modelling snow accumulation, this creates potential 

weaknesses within in the model, where wind speed is modelled in much greater detail, 

compromising the validity o f outputs. 

Although altitude is argued to be the most dominant control on mesoscale climate in mountainous 

areas (Sutherland, 1984) other topographic measures including slope and aspect impose important 

controls (Evans, 1977; Wendler and Ishikawa, 1974). Hess et al. (1975) moved away from analysis 

o f individual variables and quantified topographic controls by identifying topoclimates, topographic 

units, defined by their altitude, convexity and slope and linked these through regression analysis to 

their characteristic climates. The methodology outlined here builds upon this approach, linking 

terrain attributes to climatic parameters but adopts a spatially distributed output instead of spatially 

aggregated surfaces. The approach adopted here addresses some o f the criticisms made by Barry 

(1980) o f Hess's broad spatial scale study that did not account for spatial variability in climatic 

lapse rates. 

Although the inclusion o f topographic form and contextual measures can alleviate some o f the local 

signals recorded by climate stations, in some examples local trends can obscure regional patterns 

entirely. Richard and Gratton (2001) reported such a case and consequently created synthetic 

stations in an attempt to remove the local effects that obscured station records. 

A detailed description of all o f the topographic parameters used within this research can found in 

section 4.5. 
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6.2.3.3. Interaction terms 

Topographic variables quantify the modification to or processes controlling local climate. 

Processes controlling climate vary through the year, and lead to distinctive differences in 

meteorological patterns, as reported by Tveito et al. (2000) who found lapse rates to vary through 

the year, with lowest gradients in winter and highest in spring and autumn; and Jonsson (1937) who 

stressed that there is a seasonality to synoptic forcings. As climatic processes exhibit annual trends, 

so too does the effectiveness o f these parameters. In an attempt to quantify these dynamic 

relationships, interaction terms were used to relate parameters and months. 

The most successful o f these terms was sine o f the month * altitude, subsequently termed monthalt. 

This term provided good results as it assists in characterising the monthly variability in altitudinal 

relationships as reported by Tveito (2000). Interaction terms were also employed by Hayhoe and 

Lapen (1999) who used the product o f monthly wind speed and altitude to aid temperature 

predictions in the Rocky Mountains. 

6.2.4. Annual and Seasonal consistency 

In conjunction with the use o f the monthalt interaction term, further seasonality trends were 

introduced in an attempt to capture the strong seasonal and synoptic patterns observed in the 

climatic data from the Jotunheimen. 

Two different conceptual approaches were used for predicting monthly lapse rates: an annual lapse 

rate model and a seasonal lapse rate model. The former identifies months as arbitrary divisions 

that have no meteorological significance as the 1st January is not climatically different f rom the 

31st December and should therefore not be treated as such. This approach predicts using data from 

all months and does not identify boundaries between months. Predicting monthly estimates o f 

meteorological parameters using the same independent variables and coefficients throughout the 

year restricts seasonality in the predictions. The seasonal lapse rate model accepts that months are 

arbitrary boundaries but recognises that there is seasonality to the processes that control air 

temperature. This seasonality was used as the basis for the second type o f predictive model which 

predicts using only months within the same season. Seasonal lapse rates reflect the strong variation 

in meteorological controls throughout the year, where seasonal boundaries are defined using the 
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variability within the dataset. The sensitivity o f the model and the accuracy o f the results using 

these two different datasets w i l l be assessed to determine the most appropriate technique. 

Monthly normal data do not provide any information on variability within a month, however all the 

meteorological variables examined in this research are known to exhibit monthly variation. Two 

techniques were used to estimate this variability: extension o f sine and cosine terms for daily 

temperature. 

Within-month trends were quantified by extending the sine and cosine parameters to include sub-

month estimates of the meteorological variables: where the month term, originally an integer 1, 2, 

3... December V\ January 1 '̂ February T' respectively, was supplemented with month fractions 

relating to day number using the following lookup table. 

Month Days Fraction 

Table 5.1: Daily month fraction to use in sine and cosine function 

This methodology assumes that meteorological variables vary smoothly through the month, the 

application o f this method therefore necessitates the satisfaction o f this characteristic. 
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For meteorological variables that do not exhibit a smooth within-month variation, for example, 

precipitation, an alternative methodology is required to provide estimates o f variability within a 

month. Characterizing the potential variability within a month using a measure of standard 

deviation or variance and using the monthly mean estimated value from the prediction model it is 

possible to predict values with a frequency distribution defined by its shape determined by the mean 

and standard deviation terms. Gaussian and gamma distributions are the functions most commonly 

used for normal and skewed datasets respectively. Using inverse distribution functions it is 

possible to predict the value o f the meteorological variable at any quantile location. 

6.3 Temperature Predictions 

Spatially distributed temperature surfaces are critical when predicting snowmelt (Richard and 

Gratton, 2001; Tveito, 2003) and melt is argued to be more sensitive to temperature than to 

precipitation. 

The importance o f spatial scale in temperature controls has already been discussed (section 5.4.1), 

but important temporal variations in the controls on temperature also exist. These were discussed 

by Catchpole (1972), who states that variations occur over a continuum of temporal scales 

identifying annual, seasonal and diurnal scale processes. 

Monthly temperatures are largely dependent upon seasonal synoptic conditions, where measures o f 

terrain form and altitude distinguish between dominance in stable or unstable atmospheric 

conditions. Geiger (1965) proposes surface slope is the most influential control on day temperatures 

where imbalances in slope irradiation set up temperature and pressure gradients that control the 

local air temperature, and identifies altitude as the primary control on air temperatures during the 

night where surface cooled air falls creating altitude temperature gradients. Barry (1992), however, 

argued that although aspect and altitude can successfully be used to predict mean seasonal weather 

they are less effective at predicting temperatures at finer temporal resolutions. 

6.3.1. Controls on temperature 

Topography in part controls local and regional variations in temperature (Barry, 1992). These 

controls are largely accepted as altitude, aspect, maritimity and geomorphological context, each w i l l 

be discussed briefly with respect to their role in controlling temperature. 
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6.3.1.1. Altitude 

Temperature varies with altitude as a function o f the environmental lapse rate (ELR), this 

approximates 6 °C km ' in the free atmosphere (Barry, 1992), and varies locally predominantly as a 

function of the atmospheric water content and as a result o f radiative and turbulent heat exchanges 

over a slope. The dry adiabatic lapse rate (DALR) provides a theoretical maximum rate o f 

temperature change at 9.8 °C km' ' , although this can be increased as a result o f surface heating. I f 

the air becomes saturated and water droplets condense, they release latent heat reducing the rate o f 

cooling to the local saturated adiabatic lapse rate (SALR), which varies with the local temperature 

(between 5 "C km ' above 20 °C, and roughly the same as the D A L R at -40 °C; Barry, 1992). 

Strong correlations between altitude and temperature are largely driven by the exchanges o f energy 

between incident solar radiation and the Earth's surface, where absorption o f terrestrial infra-red 

radiation and turbulent heat exchanges transfer heat energy to the ground (Barry, 1992). Part of this 

absorbed energy is then emitted and heats the air above the ground, the ability o f the atmosphere to 

transfer this heat determines the environmental lapse rate, as lower altitudes are closer to the Earth's 

surface more heat energy is transferred and the air is warmer, although changes in atmospheric 

composition at high altitudes also affect the ability to transfer heat. 

Convection is the primary process by which heat energy is transferred in the lower atmosphere 

(Oke, 1987). A major control on the type and extent o f convection is the vertical temperature 

structure as expressed by the concept o f stability. A discrete parcel of air moving up through the 

atmosphere adiabatically does not give or receive any heat to the surrounding air. As it rises the 

parcel of air expands, as its relative pressure compared to the surrounding atmosphere increases. 

As it expands the air parcel cools as heat energy is used up. When an equilibrium altitude is 

reached the air parcel w i l l cease to rise, and release any remaining heat by mixing with air at that 

level. The variation in the degree o f mixing with altitude is a primary reason for the variation in 

lapse rates with altitude, where small amounts o f mixing near to the ground lead to large 

temperature gradients, and large amounts o f mixing at higher levels lead to small temperature 

gradients. 

Over a short time scale, vertical turbulent transfers drive the diurnal surface temperature variations, 

as outlined in table 5.2. 
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Time Radiation Budget Temperature Variation 

Night Negative: 

Long wave emission 

Surface cooler than air 

After Sun Rise Positive: 

Surface insolation 

Surface warming but mixing prevented 

by inversion layer above 

M i d morning Increasingly positive Convective mixing degrades inversion 

layer. 

Midday Increasing positive Surface warmer than air. 

Afternoon Positive Convectively unstable maximum 

temperature. Mixing equalises 

temperature and wind speeds, but often 

capped by inversion higher up in 

atmosphere. Higher mixing can occur 

when thermals develop above local 

surface temperature maxima. 

Sunset Negative Surface cooling re-establishes radiation 

inversion 

Table 5.2: Diurnal controls on temperature 

This describes an idealised situation that is modified by local weather, where increases in surface 

wind or cloud cover lead to reductions in the daily range o f temperature. 

Complex relationships between altitude, aspect and synoptic conditions often limit the applicability 

o f constant relationships. McCutchan and Fox (1986) criticise the work o f Geiger (1965) and Barry 

(1973) for fail ing to present clear and generalised relationships between meteorological variables 

and altitude and aspect. McCutchan and Fox (1986) investigated the complex relationships 

between altitude, aspect, temperature and wind speed and direction on an isolated peak, reporting 

the dominant altitudinal control on temperature and the more variant control o f aspect, changing 

with time o f day, season and synoptic weather conditions. 
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6.3.1.2. Aspect and Slope 

Many authors argue that aspect and slope cannot be considered separately in relation to temperature 

(Evans, 1977; Barry, 1992) as they interact together to determine local surface energy balance. 

Slope gradient determines the angle o f incidence o f solar rays on surface slope, determining the 

amount o f radiation transferred to the surface. Correlations between temperature and aspect can 

lead to significant temperature differences between solar and non-solar facing slopes. For example 

up to and over 7 °C o f difference was measured between south and north facing slopes at 

Hohenpeissenberg, Bavaria (Grunow, 1952). Differential radiation receipts (as a function o f the 

duration o f exposure to direct beam radiation) induce an imbalance in heat exchanges between the 

ground and the atmosphere on different slopes. These differential radiative and turbulent heat 

exchanges are often highly influential in controlling temperature gradients above a mountain and 

inducing local circulations (Geiger, 1965; Yoshino, 1975). This composite effect was employed by 

Gi l l (1982) who used a simple altitude lapse rate to predict temperature at high altitude and only 

applied aspect variations at slopes steeper than 20° following the research o f Fuh (1962). 

Local surface azimuth in part determines when and for how long a location is heated by direct beam 

radiation, and was consequently expected to be a significant variable in a multiple regression 

analysis. However, when included it was generally found to be insignificant, this was initially 

thought to be attributable to the scale o f aspect correlations, whereby the aspect included in the 

regression was an incorrect representation o f the aspect of the climate station. Initial regressions 

used the aspect raster with 100 m grid spacing. However, this is only a representation o f the aspect 

within 1000 m^ pixel area. The actual azimuth o f the climate station is unknown and can only be 

represented by the azimuth given by the DEM. Any attempt to resample the D E M to a resolution 

less than the original data would incorporate error into the analysis. The role o f aspect within the 

climate data is also likely to reduced as climate stations are unlikely to be positioned on steep 

slopes. 

A n alternative to using local aspect (100 m) is incorporating a measure o f mountain range aspect, 

where the local azimuth with respect to the larger scale landform features is likely to provide the 

main control rather than a local azimuth within the mountain range (although this is clearly scale 

and process dependent and a generalized version o f this statement should not be adopted). The 

D E M was resampled to resolutions of 200 m through to 2000 m in an attempt to capture 'landform 

of massif scale measures. However, slope and aspect still appeared insignificant in the regression 
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analysis. This was a surprising result as aspect is closely linked to incident radiation and 

temperature, however prediction validation and regression statistics were driven by aspect values 

extracted from the D E M at station sites and consequently are unlikely to provide accurate estimates 

o f their actual surface characteristics, where within pixel variation may be great. 

6.3.1.3. Maritimity 

Larger scale topographic and contextual measures also impose controls on temperature. Maritimity 

plays two key roles in modifying climate; it provides proximity and exposure to prevailing winds 

and air masses moving on land, and alters the overall moisture and heat balance due to the differing 

thermal capacities o f the land and water. High maritimity leads to very small amplitude between 

the mean o f coldest and warmest months. The Scandinavian mountain range provides a very 

effective barrier to the effects o f maritimity and eastern Norway has a marked continentally to its 

climate. 

Brooks (1918) investigated the role o f continentality in controlling temperature and predicted 

temperature using altitude, radiation receipt and degree o f continentality (defined by percentage 

land within the surrounding 10° circular area). Although the relationship between temperature and 

distance from coast has been exploited within the literature and successfully used as a predictive 

variable in Norway for both temperature (Zheng and Basher, 1996; Tveito et al., 2000; Tveito, 

2003) and snow accumulation (Chorlton and Lister, 1968); it failed to provide statistically 

significant predictions in these regressions. 

6.3.1.4. Context 

Difficulties in predicting climatic parameters from climate station records are largely associated 

with the dominant role that contextual and local parameters have on modifying local climate. 

Consequently lapse rates exhibit high spatial variability (Lautensach and Bogel, 1956; Barry, 1980; 

Richard and Gratton, 2001; Strasser et al., 2004) both within and between climatic zones and 

seasons. A i r mass type and synoptic forcings provide strong controls on lapse rates (Jonsson, 1995; 

Tveito, 2003) and accurate predictive models must incorporate contextual measures. Atmospheric 

circulation and air mass characteristics have been used as predictive parameters (Tveito, 2003; 

Chen, 1999; Lindersson, 2001; Corault and Monestiez, 1999; Huth, 2001) but the large variability 
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in temperatures within air masses or circulation systems is high, l imiting the success o f such an 

approach and rendering it inapplicable in this study. 

Tabony (1985) proposes that the scale o f shelter provided by the surrounding terrain imposes 

different controls on temperature throughout the year, where larger scale shelter is more important 

in winter months and local shelter is most important in autumn when the influence o f soil moisture 

is important. Within the seasonal lapse rate model (section 5.4), such a relationship can be 

parameterised. 

Despite a long history o f applying regressions to temperature and altitude (Douguedroit and de 

Saintignon, 1970; de Saintigon, 1976; Pielke and Mehring, 1977) most attempts to simulate 

temperatures fail to predict areas o f frequent temperature inversions (Tveito and Forland, 1999; 

Tveito, 2003), which although consistently located in valley floors, are hard to characterise using 

this position using common terrain attributes (Section 4.5.2). Temperature inversions are areas 

where temperature gradients are reversed over limited vertical distances. As cold air is heavier than 

warm air, once an inversion forms the air within the inversion layer is very stable. Mixing that 

would normally occur by the rising o f warm air is inhibited. Inversions may occur due to nocturnal 

radiative cooling, large-scale subsidence or advection o f a warm over a colder surface. Barry 

(1992) noted the lack o f statistical research on predicting their occurrence and proposes the use o f 

polynomials in lapse rates to characterise valley floors. Research has attempted to predict the 

elevation o f the thermal belt with respect to the valley floor. Obrebska-Starkel (1970) studied 

valleys in Europe and summarised the mean upper limit o f inversion layer in hil ly terrain (<500 m), 

and found the centre o f thermal belts to be 100-400 m above valley floor. Aulitsky (1967) studied 

inversion depths in high mountains finding a strong seasonal variation from 350 m in summer to 

700 m in winter, a result of deeper cold air in winter providing more stable inversion conditions. 

However, the altitude o f the top o f the inversion layer is highly variable and thought to be largely 

determined by slope profiles rather than altitude alone (Kock, 1961). This was also raised as a 

predictive approach by Barry (1992) who proposed the use o f lapse rates for different slope profiles. 

In the present research, measures o f relative height and valley context measures attempt to quantify 

this valley position. 

Radiation inversions are the most likely type o f inversion within the Jotunheim, and are most 

common during clear nights with low winds in winter. Clear skies are necessary for the surface 
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radiation to escape and overlying clouds or fog absorb thermal radiation and radiate this back to the 

surface. 

6.3.2. Predictive approaches: Temperature 

Predictive methods employed within the literature adopt either a multiple regression approach or a 

spatial interpolation algorithm that accounts for the spatial organisation o f the climate stations in an 

attempt to simulate topographic structure. 

Simpler approaches can be used successfully, i f local high-resolution datasets are available. For 

example Hock et al. (2002) employed a constant annual lapse rate o f 0.55 K per 100 m in an 

application o f their glacier snowmelt model. This was based on average conditions recorded in a 

previous field season to interpolate the hourly temperature data recorded at a local automatic 

weather station. However, they did not discuss the accuracy o f these estimates and as the model is 

largely parameterised it is diff icul t to ascertain the uncertainties introduced using this lapse rate. 

Regression approaches are far more common, as variables other than the local topography combine 

to control temperature. Barry (1992) proposed that multiple regression provides the most 

informative and intelligent interpolation. Lennon and Turner (1995) adopted four different 

approaches, simple interpolation, thin plate splines, multiple linear regression, and mixed spline 

regression. 

Kriging provides an alternative solution; it uses information on the spatial organization and trends 

present within an input dataset to predict the spatial variability within the predicted surface. Tveito 

(2002) used residual kriging, with synoptic weather conditions, latitude and longitude and a suite o f 

topographic parameters including slope, curvature and several contextual parameters including the 

mean and lowest altitude in the surrounding 20 km and sea coverage within the surrounding 50 km; 

to predict monthly temperature in Southern Norway and in unpublished data has found this 

approach to create significant results for daily estimates, but in both cases failed to accurately 

predict high altitude and winter minima temperatures (Ole Tveito, pers .comm.). He found that 

terrain parameters provided significant contributions to the accuracy o f predictions and synoptic 

weather added little. 
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Residual kriging overcomes the assumptions o f stationarity by extracting the deterministic 

component f rom the data. For example, the altitudinal component o f temperature variations, 

leaving what is termed the 'reference level' data and performing the kriging interpolation on this 

reference level dataset. Climatic surfaces are created by combining the kriged interpolations and 

the deterministic components, creating a composite surface. Hudson and Wackemagel (1994) also 

adopted a kriging method and identified altitude to be the most significant predictor o f temperature, 

showing seasonal variability, where July temperatures showed the weakest altitudinal trends due to 

the stronger correlations with latitude in summer. Susong et al. (1999) used detrended kriging to 

create temperature and precipitation surfaces at 75 m resolution for a mountainous area near Park 

City, Utah. A detrended data set was used, as kriging requires statistically stationary variable 

fields, a characteristic not initially present in the data, which was highly spatially variable resulting 

from the strong orographic control. However the resultant climatic surfaces failed to predict the 

spatial variability o f the climatic processes where topography played a dominant role in modifying 

local lapse rates. It is felt that this approach would not simulate the high spatial variability in 

meteorological variables and an approach using measures o f the terrain and its influence on 

topographic parameters would provide a more accurate and representative output. 

Kriging is only one example o f a geostatistical technique: Lapen and Hayhoe (1998) and Hayhoe 

and Lapen (1999) compared the ability o f a range o f techniques including ordinary kriging, 

cokriging, modified residual kriging, kriging with an external drift, classification trees and artificial 

neural networks to predict temperature and precipitation and compared their performance with that 

o f simple interpolation operations including inverse distance weighted interpolation. They found 

that geostatistical techniques performed consistently better but were much more time consuming 

and computationally intensive. They should be used i f accurate estimates are required: simpler 

interpolations also created reasonable estimates but failed to account for all o f the spatial 

heterogeneity within the dataset. Overall they concluded that kriging with an external drif t factor 

provided the most reliable results. 

The high spatial and temporal variability in lapse rates often limits the success o f applying locally 

derived lapse rates at different temporal scales or in different areas (Tveito and Forland, 1999; 

Tveito et al., 2000; Tvieto, 2003). Ficker (1926) proposed that true lapse rates cannot be determined 

in mountainous areas as temperature inversions, fohn and katabatic winds create a very noisy local 

pattern. Richard and Gratton (2001) suggested use of regional climate stations for more 

representative temperature estimates, especially when temporal resolutions greater than weeks are 
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required. Barry (1980) stressed the need to distinguish between the effects o f local topography on 

diurnal variations in temperature, and large scale topographic effects that modify the atmospheric 

structure. 

Multiple regressions were used to predict monthly temperatures: the results presented in the 

forthcoming sections report the ability o f the different regression models to predict temperature. 

Although examination o f the statistical significance o f the regressions provides information on the 

ability o f the independent variables to account for the variation within the dataset, examination o f 

the distribution o f values within the spatial and frequency domains is also essential to assess the 

representativeness o f the spread of the predicted values. 

6.3.3. Annual lapse rates 

Annual lapse rates were predicted using each month's data in one regression, with altitude, an 

interaction term and topographic measures as the independent variables, the results are presented 

below. Note: Figure 5.1 can be used to aid interpretation. 

6.3.3.1. Cosine and sine functions 

Sine and cosine terms used to simulate the cyclical temperature variation through the year 

accounted for the variation in mean monthly temperatures with an adjusted value o f 0.97 using 

all 37 temperature station records. 444 observations were used in total, as each monthly record for 

each station was included (37 * 12). 

The regression is statistically significant at the 95% confidence level and each o f the independent 

variables provides a statistically significant contribution in accounting for the variability within the 

dataset (Table 5.4). The root mean square error is 1.2 "C and altitudinal lapse rate is 0.004 °C per 

m. 
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Number o f obs = 444 

F(3, 440) = 5415.34 

Prob > F = 0.0000 

R-squared = 0.9736 

Adj R-squared = 0.9735 

RootMSE = 1.221 

SS df MS 

Model 24218.5623 3 8072.85412 

Residual 655.924668 440 1.49073788 

Total 248474 443 56.15 

Coefficient Std.Error T P>|t| [95% Conf. Interval] 

Altitude -.004264 .0001711 -24.92 0.000 -.0046002 -.0039278 

Cosine -6.7265 .0819453 -82.08 0.000 -6.887521 -6.565415 

Sine -7.724999 .0819453 -94.27 0.000 -6.887521 -7.8597 

Constant 3.93951 .1425014 27.65 0.000 3.659442 4.219578 

Table 5.4: Regression statistics: Mathematical Modelling 

The regression coefficients provide the following model where temperature T is given by: 

T = - 0.0043 Altitude - 6.7265 (Cosine function) - 7.725 (Sine function) + 3.939 

and implemented in a spatial model as: 

T = (-0.0043 * [Jotunheim]) - (6.7265 • (Cos(2 * PI * ((1-0.5) / 12))))- (7.725 * (Sin(2 • PI * ( (1 -

0 .5) / 12))))+ 3.939) 

Building the monthly temperature surfaces and comparing predicted and observed station statistics 

provides the following monthly temperature statistics (Table 5.4, Figures 5.2 to 5.4). 
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Month Minimum Maximum Mean Range 

January -15.187 -4.558 -9.652 10.629 

February -16.909 -6.28 -11.374 10.629 

March -15.893 -5.264 -10.358 10.629 

Apri l -12.411 -1.782 -6.876 10.629 

May -7.397 3.233 -1.861 10.629 

June -2.193 8.437 3.342 10.629 

July 1.806 12.436 7.341 10.629 

August 3.528 14.158 9.063 10.629 

September 2.512 13.142 8.047 10.629 

October -0.97 9.66 4.565 10.629 

November -5.985 4.645 -0.449 10.629 

December -11.189 -0.559 -5.653 10.629 

Table 5.4: Predicted study area monthly temperature data for mathematical modelling 
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Figure 5.2 Observed at station monthly climate data 
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Figure 5.2: Predicted Study area monthly temperature statistics 
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Figure 5.3: Predicted Study area monthly temperature statistics 
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Figure 5.4: Actual - Predicted monthly average temperature 
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Mean monthly temperature is predicted to within 4 °C by the model (Figure 5.4). Summer 

estimates are the most robust and only a very weak seasonal trend is evident in the data. This 

suggests that there is only a small structured component to the remaining variation within the data. 

Mean and maximum temperatures are predicted well, but monthly minima are predicted less 

accurately. Although there had been initial concerns about predicting winter temperature inversions 

the model performs worse when predicting summer minima temperatures, where the model under 

predicts summer minima and over predicts winter minima. Examination o f the residual plot 

highlights a distinct seasonal trend is evident in the residual data suggesting that variability within 

the data is not accounted for. 

Monthly temperature range appears to be the most poorly predicted variable failing to match the 

observed trend. The constant range illustrates the inability o f the model to predict between month 

variability and therefore suggests the need to further characterise topographic and climate 

interactions. Where recorded range exhibits summer maxima, when convectional heating, unstable 

air masses and variable cloud cover lead to greater variability in lapse rates. Smaller observed 

ranges in winter occur as stable air masses and inversions dominate. 

Ahhough the model predicts mean monthly temperature accurately (Figure 5.2) it fails to predict 

variability within the data. Therefore it was necessary to include additional variables in an attempt 

to account for this variation. 

6.3.4. Mathematical modeling with interaction variable 

The most effective interaction term for this dataset was the month-altitude variable. This allowed 

topographic and monthly variation to be superimposed onto the cosine model presented in section 

6.3.3.1. This coupled model accounted for more o f the variation within the data, consequently 

providing improved predictions accounting for the variation in mean monthly temperatures with an 

adjusted value of 0.98 using all 37 temperature station records. 444 observations were used in 

total, as each monthly record for each station was included (37 * 12). 
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The regression is statistically significant at the 95% confidence level and each o f the independent 

variables provides a statistically significant contribution to accounting for the variability within the 

dataset. The root mean square error is 1.16 °C and altitudinal lapse rate is 0.003 °C per m. 

Number o f obs = 444 

F( 4, 439) = 4501.46 

Prob > F = 0.0000 

R-squared = 0.9762 

A d j R-squared = 0.9760 

RootMSE = 1.1613 

SS Df MS 

Model 24282.4566 4 6070.61416 

Residual 592.030372 439 1.34858855 

Total 24874.487 443 56.15 

Coefficient Std.Error t P>|t| [95% Confidence Interval] 

Altitude -.0030227 .0002429 -12.44 0.000 -.0035001 -.0025453 

MonthAlt -.000191 .0000277 -6.88 0.000 -.0002455 -.0001364 

Cosine -6.726468 .0779405 -86.30 0.000 -6.879651 -6.573285 

Sin -8.286523 .1128265 -73.44 0.000 -8.50827 -8.064775 

Cons 3.93951 .1355371 29.07 0.000 3.673128 4.205892 

Table 5.4: Regression statistics for mathematical modeling with interaction term 

The regression coefficients provide the fol lowing model where temperature T is given by: 

T = - 0.0030Altitude - 0.00019MonthAlt - 6.7265(Cosine function) - 8.286(Sine function) + 3.939 

(Equation 5.7) 

and implemented in a spatial model as 

T = (-0.0030 * [studyArea]) - (0.00019 * ([studyArea] * n)) 

-(6.7265 * (Cos(2 * PI * ((1 - 0.5) / 12)))) 

- (8.286 * (Sin(2 * PI * ((1 - 0.5) / 12)))) + 3.939) 

(Equation 5.8) 
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Building the monthly temperature surfaces and comparing predicted and observed station statistics 

provides the following monthly temperature statistics (Table 5.5, Figures 5.5 to 5.7). 

Month Minimum Maximum Mean Range 

January -12.589 -4.703 -8.482 7.886 

February -14.562 -6.676 -10.456 7.886 
March -13.691 -5.806 -9.585 7.885 

Apri l -10.209 -2.324 -6.103 7.885 

May -5.049 2.836 -0.943 7.885 

June 0.406 8.292 4.512 7.886 

July 4.695 12.581 8.802 7.886 

August 6.669 14.554 10.775 7.885 

September 5.798 13.684 9.904 7.886 

October 2.316 10.202 6.422 7.886 

November -2.844 5.042 1.262 7.886 

December -8.299 -0.414 -4.193 7.885 

Table 5.5: Predicted study area monthly temperature statistics 

Study Area Temperature Predictions with iWathematlcal 
IVIodelling and the Interaction Variable 

•Month 

Figure 5.5: Predicted study area monthly temperature statistics 
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Figure 5.6: Predicted study area monthly temperature statistics 
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Figure 6.7: Predicted study area monthly temperature statistics 
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Despite a reduction o f the RMSE, an increase in the adjusted and a reduced trend in observed -

predicted monthly average temperatures the model still performed poorly for some stations. In an 

attempt to understand the local factors that were failing to be accounted for within the model it was 

necessary to examine the topographic conditions at each station. Again a seasonal trend is evident 

in the residual data suggesting that variability within the data is not accounted for. Examination o f 

the contextual controls acting at the stations identified strong topographic influences, including 

exposure to free air and valley winds, sheltering and maritime influences in or near f jo rd inlets 

(Table 6.6 and Figures 6.8 and 6.9). 

Station 

No. 

Altitude 

(Meters) 

Gradien 

t 

o 

Aspect 

n 
Plan 

Curvature 

(1/100 U) 

Profile 

Curvature 

(1/100 U) 

Description 

W a r m 

stations 

55160 

27 180 35 276 -0.1 -0.2 

Located towards the head o f a valley 
at the base o f concave slope at the 
valley intersection in a sheltered 
position. The actual altitude is much 
lower than the DEM pixel. This 
station is very sheltered and has less 
exposure to valley winds and other 
cooling topographic factors. 

63710 625 580 2.3 180 0 -0.08 

This station is located on a rectilinear 
sheltered slope at the junction o f two 
valleys. The valley is part o f the 
f jo rd system, which increases the 
maritime effect on the temperature 
range resulting in a milder climate. 

Cold 

stations 

55230 

2062 1827 22 320 0.2 0.4 

This station is located on a local 
maximum, it is highly convex and is 
a peak. This increases its exposure 
and reduces the temperature making 
it unusually cold for its height. 

55290 1403 1426 11 212 0.03 0.06 

This station is located on a slope that 
is part o f a larger valley system. The 
station is not part of a f jo rd network 
and therefore is not under a strong 
maritime influence. It is exposed to 
cooling valley winds that lower the 
temperature below the expected 
value for its height. 

Table 6.6: Prob em climate stations 
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Although these topographic conditions are unusual within the station data supplied by the 

Norwegian Meteorological Institute they are not unusual within the study area. It was therefore 

necessary to attempt to quantify these local factors in an attempt to improve climate predictions. 

Location of Problem Stations 
within the Jotunheim 

a 60 

Legend 

• Problem Stations 

Study Area Boundary 

I 1 1 1 1 r 
0 18,750 37,500 

-1 1 
75,000 Meters 

Figure 6.8: Location o f problem climate stations 
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Location of Station 55230 
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Legend 
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Location of Station 55290 
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Legend 
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Figure 6.9: Local conditions at problem climate stations 
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6.3.5. Matliematically modeling with topographic variables 

Although strong correlations between temperature and altitude are published (Barry, 1992; Hock, 

1999; Geiger, 1965), analysis and modeling o f the present climatic data showed that altitude alone 

could not adequately predict the variability within the data, specifically monthly minima and range. 

In an attempt to optimise the prediction process correlations between the suite o f topographic 

variables discussed in section 4.5 and monthly mean data were explored and a series o f regressions 

performed to investigate their ability to improve the climatic predictions. Topographic variables 

were calculated at a number o f different scales and over different kernel sizes to find the most 

representative scale for the terrain. The temperature dataset was explored and topographic exposure 

was found to be the dominant variable controlling terrain modification o f adiabatic process. 

Two types o f exposure were identified, exposure due to surface roughness (Type 1) and exposure to 

channelised air flow (Type 2). The exposure measures were calculated in Arc/INFO for every pixel 

in the D E M . 

A high or low surface roughness identifies sheltered or exposed sites that are warmer or cooler than 

they would be i f altitude was the only control. This roughness can either be at a focal (surrounding 

pixels) scale where the pixel is identified as higher or lower than the surrounding area, or at local 

scale where the altitude o f the climate station (used in predictions) is higher or lower than the pixel 

it is located within. 

Type 2 exposure quantifies how exposed a pixel is to channelised air flow. Valley winds can have 

a strong cooling effect that is larger fiirther down the valley and nearer the valley center. This 

exposure measure also identifies valley floors that are frequently subject to temperature inversions 

where air temperatures are colder than they would be i f altitude was the only control. 
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Variable Description Significance Interpretation 

Exposure Type 1: 
exposed to air as a 
result of high 
surface roughness 

Station altitude higher 
than pixel altitude 

Not significant Representing features 
at too fine a scale 

Exposure Type 1: 
exposed to air as a 
result of high 
surface roughness 

Pixel altitude higher 
than surroundings, 
using measures o f 
standard deviation, 
mean, range, difference 
between local and focal 
mean, maximum, 
minimum and the 
ranges o f temperatures 
within a 5, 10 and 20 
km radius o f the cell 

20 km radius reported 
the best results. 
Standard deviation, 
minimum, maximum, 
range and mean 
measures were all 
statistically 
significant in 
predicting monthly 
temperature 

Correlations exist for 
some variables, but 
they only account for a 
small amount o f the 
variability within the 
dataset. Again scale is 
important: 20 km 
represents larger scale 
variations but results 
are still restricted by 
limited range o f station 
context. 

Exposure Type 2: 
orientated in 
direction o f 
channelised / 
constricted f low 

Direction o f channel in 
relation to pixel, down 
valley f low length, 
distance f r o m channel 
center 

Not significant Conflicts between scale 
o f D E M and local 
variations are 
compounded by 
inaccuracies in channel 
extraction 

Aspect Pixel and surrounding 
buffer, 5 km, 10 km 
and 20 km 

Not significant Station pixel aspect is 
not a useful measure o f 
aspect, larger scale 
measures also failed to 
account for any 
variation in temperature 
variations 

Curvature Pixel and surrounding 
buffer, 5 km, 10 km 
and 20 km. 

Significant for annual 
mean but not for 
monthly predictions 

Curvature does not play 
a significant role in 
accounting for 
temperature variations 
each month and had to 
be rejected from the 
annual lapse rate 
model. 

Maritimity Distance from coast Significant annually 
but not on monthly 
temporal intervals 

Distance from coast 
does not play a 
significant role in 
accounting for 
temperature variations 
each month and had to 
be rejected from the 
annual lapse rate 
model. 

Table 6.7 Predictive variables used within climate regressions 
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Performance o f variables was mixed (Table 6.7), the most effective term, improving temperature 

predictions was diffmax, which was calculated as the difference in pixel altitude from the 

surrounding 20 km focal maxima. This was successful in predicting extreme values (maximum and 

minimum temperatures) where topographic parameterisation o f position enabled the model to 

account for these values more effectively. Mean gradient was also used in the predictions, which 

combined with diffinax can identify flat areas with altitudes lower than local maximums (valley 

floors) and steep areas with altitudes similar to local maximums (peaks). 

The regression is statistically significant at the 95% confidence level and each of the independent 

variables provide a statistically significant contribution to accounting for the variability within the 

dataset. The root mean square error is 1.14 °C and altitudinal lapse rate is 0.003''C per m. 

Number o f obs = 444 

F( 6, 437) = 3056.16 

P r o b > F = 0.0000 

R-squared = 0.9771 

Adj R-squared = 0.9768 

RootMSE = 1.1416 "C 

SS df M S 

Model 24304 6 4050 

Residual 569 437 1.3 

Total 24874.5 443 56.15 

Coef. Std.Err. t P>|t| [95% Conf.Interval] 

Altitude -0.0033057 .0003454 -6.86 0.000 -.0030476 -.0016899 

Cosine -6.726468 .0772543 -87.07 0.000 -6.878305 -6.574632 

Sin -8.119309 .1263849 -64.24 0.000 -8.367707 -7.870911 

Monthalt -0.000191 .0000467 -6.38 0.000 -.0003901 -.0002064 

DifTmax -0.0003464 0.0001743 -1.99 0.047 -0.0006889 -3.90* 10-6 

meangrad 0.0282689 .0001856 1.33 0.000 -.000118 .0006114 

Cons 3.058706 .3200933 9.56 0.000 2.429593 3.68782 

Table 6.8: Topographic modeling regression statistics 
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The regression coefficients provide the following model where temperature T is given by: 

T = (-0.0033057 * Altitude) - 6.726468 * (Cosine function) - 8.119309 * (Sine function) 

*( -0.000191 * monthalt) -(0.0003464 * d i f f m a x ) - (0.0282689 * meangrad) + 3.058706 

6.4 Seasonal Lapse Rates 

The processes that control the variation o f monthly mean temperature are not constant through the 

year and attempts to predict this variability with an annual lapse rate cannot account for the 

observed variability between summer and winter lapse rates. Seasonal lapse rates were used with 

topographical predictors to investigate their ability to improve climatic predictions. 

Predicting temperature using just altitude highlighted a strong seasonality with large seasonal 

disparities between summer and winter months (Figure 6.10). This trend represents variability in 

controls upon temperature, process complexity and interaction, shown in the annual variation in 

RMSE and adjusted for altitude lapse rates (Figure 6.10). Summer temperatures were accurately 

predicted using altitude alone, as dry and saturated adiabatic lapse rates are then primary controls 

on temperature variations. Winter month temperatures (January, February, November and 

December) are controlled by a more complex suite o f factors, including atmospheric stability 

relationships and the frequent occurrence o f temperature inversions, and so were significandy more 

diff icul t to predict. 
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Variation of RMSE and Adjusted R through year 
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Figure 6.10: Variation o f RMSE and adjusted through year for aldtude driven predictions 

Similar trends in monthly regression coefficients were found by Tveito et ai, (2000) who also 

found that different variables have variable importance in different months, specifically the annual 

trends in the significance of average and station altitude, differentiating between stations higher or 

lower than the surrounding terrain and consequently temperature inversions that frequently occur in 

valley floors. 

Winter and spring months were found to require topographic variables; specifically those 

identifying valley floors were found to improve predictions, as these located the sites o f frequent 

inversions. As the attributes o f climate station pixels can be unrepresentative o f local surface form 

it was necessary to employ more focal measures by examining the surrounding 8 pixels, (examining 

300 * 300 m areas), identifying valley and larger landform signals. A 2 km kernel window provided 

the most useful results for predicting local temperature, where measures o f mean altitude and 

gradient provided the best topographic indicators o f temperature. 

The inclusion o f topographic variables significantly improved the monthly predictions. The most 

robust predictions were made using the variables displayed in table 6.9 and corresponding lapse 
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rates are presented in table 6.10. A l l parameters listed provided statistically significant 

contributions. 

Month Variables Adjusted R M S E 

R^ °C 

January Profile300, meanGrad, distance. 0.46 1.05 

February Profile300, meanJot, meanGrad 0.49 0.87 

March Plan300, meanJot, meanGrad 0.89 0.55 

Apr i l Altitude 0.91 0.68 

May Altitude 0.94 0.59 

June Altitude 0.91 0.70 

July Altitude 0.92 0.65 

August Altitude 0.94 0.50 

September Altitude 0.93 0.52 

October Altitude 0.84 0.61 

November Altitude, profile300, meanGrad 0.64 0.75 

December Profile300, meanJot, meanGrad, distance 0.49 0.95 

Month 

Table 6.9: Seasonal lapse rate regression statistics 

Regression Equations 

January 

February 

March 

Apr i l 

May 

June 

July 

August 

September 

October 

November 

December 

19.69 (Profile300) + 0.638(mean Gradient)- 0.00001 (distance) - 8.328 

19.257 (profile300) + 0.047(meanGrad) - 0.002(meanJot) - 7.64 

-16.21(plan300) + 0.054 (meangrad) - 0.005 (meanJot) - 1.824 

-0.006 (altitude) + 5.99 

-0.007 (altitude) + 10.42 

-0.007 (altitude) + 14.72 

-0.006 (altitude) + 15.91 

-0.006 (altitude) + 14.57 

-0.005 (altitude) + 9.83 

-0.004 (altitude) + 4.86 

-0.003 (altitude) + 16.63 (profile300) + 0.032(meanGrad) - 2.85 

17.08(profile300) - O.OOl(meanjot) + 0.69(meanGrad) - 8.92*10^ - 5.89 

Table 6.10: Seasonal lapse rates 
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Comparison of RMSE and after the inclusion of topographic and exposure parameters show that 

there was a reduction in the seasonal disparity: accuracy of winter predictions increased where sites 

liable to temperature inversions are predicted (Figure 6.11). 

Variation of RMSE and Adjusted R through year 
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-Adjusted R= 
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Figure 6.11: Variation in RMSE and adjusted after inclusion of seasonal lapse rates 

Examination of the predicted monthly range and maxima indicate improved estimates, with more 

variability within the dataset accounted for. Simulation of this variability is important within this 

research, as maxima and minima temperatures impose controls on melt. 

6.5 Monthly Temperature Surfaces 

The most accurate (based on R\ 0.98) and sensible results were achieved using the geomorphic 

lapse rates, but the seasonal model also created robust results for both winter and summer 

temperatures. 
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Initial predictions used sine and cosine functions in a multiple regression with altitude, these gave 
2 o 

an adjusted R of 0.97 with an RMSE of 1.2 C. However the model predicted a constant monthly 

range, failing to account for the variability in the dataset. An interaction term was created to 

account for some of this variability. The most useful term was sine of month * altitude. The 

coupled model (sine and cosine and interaction term) accounted for more variation within the 

dataset (adjusted R = 0.98); but despite a reduction in RMSE (to 1.15 °C) the model still performed 

consistently poorly for some stations. 
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Figure 6.11: Average monthly temperature, observed and predicted, 

The inclusion of geomorphic measures, specifically type 1 and 2 exposure variables improved 

station predictions although their usefulness was varied. Relative altitude (diffmax) was the most 

successful and created the best predictions (adjusted R^ = 0.98, RMSE = 1.15°C), the other 

measures were useful for predicting other climatic variables especially wind. Distance from 

channel centre identified areas that were subject to cooling by temperature inversions and valley 

winds. Although the model accounted for more of the variability within the data it still under 

predicted monthly range with the coldest and warmest station temperatures not being predicted. 

The seasonal lapse rate model addressed this problem, where profile curvature, average altitude, 

gradient and distance to valley centre were significant when predicting temperature in all of the 

winter and spring months. Altitude alone was used to predict temperature in summer and autumn. 

162 



I 'rediet ing G l a c i e i ' D i s t r ibut ions 

Kat l i ec i i i e E A r r e l l 

C h a p t e r S i x 

( l i n i a n c Model l in ' j . 

The seasonal lapse rate model accounted for the monthly range and terrain modification of the 

adiabatic process better than the annual lapse rate model. 

Both the geomorphic and seasonal lapse rate models provided robust predictions accounting for 

most of the variation in temperature present in the dataset. Both were used in the glacier prediction 

model, where their relative performances were assessed. 

Figure 6.12: June temperature surface for Southern Norway, 3D view looks up valley towards Fjord system as 

indicated by the arrow. 

6.5.1 Diurnal temperature 

Diurnal temperature variations drive sensible heat exchanges, governing the timing of the direction 

reversal and are consequently required to accurately predict glacier melt. 

Barry and Chorley (1982) suggested that the delay in the occurrence of maximum air temperature is 

until approximately 2 pm: air temperatures lag behind the diurnal variation of solar insolation and 

minimum temperatures do not occur until after sunrise as heat energy emitted from the ground 

continues to warm air temperatures. Controls on diurnal temperature changes include local 

advection, the downward flux of solar radiation and albedo variations. Barry (1992) proposes that 
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altitude does not impose controls on diurnal temperature variations where summit and mountain 

slope sites exhibit the same amplitude of diurnal temperature range. 

Catchpole (1969) differentiated between cyclical and irregular components of diurnal temperature 

variations, cyclical changes driven by solar heating and irregular changes driven by advective 

heating and cooling from air mass movement. He proposed that the use of daily range measures 

account for both of these components in one, with a measure of the amplitude of daily variations 

representing cyclical change. Geiger (1965) termed the difference between the warmest and coolest 

hourly average the periodic daily fluctuation and the difference between the average daily 

maximum and minimum, the aperiodic fluctuation. Similar themes where also discussed by 

Steinhauser (1937) who identified periodic and aperiodic controls on diurnal temperature variation, 

periodic controls determined the daily range over long temporal resolutions but aperiodic controls 

were highly significant in controlling average daily conditions and extreme values. Steinhauser 

concluded that these aperiodic controls were more significant in predicting and determining diurnal 

temperature fluctuations where local factors provide the greatest control. This was corroborated by 

Dobremez (1976) and Mitsudera and Numata (1967) who also stressed the importance of local 

factors. 

As scale plays a dominant role in governing the processes and controls on temperature in 

mountainous areas, attempts to develop a complex predictive model comparable to the monthly 

predictions for diurnal variations were not possible. Analysis of the cyclical variation of air 

temperature on a diurnal scale (the periodic fluctuations discussed by Geiger, 1965; Catchpole, 

1969; and Steinhauser, 1937) was used to predict the magnitude and timing of variations. 

The first term from a Fourier series was used to extract the characteristic diurnal trend in 

temperature for the year 2000 at all stations: months exhibited distinct trends largely driven by air 

mass stability and surface energy balance variations, similar to those identified in section 5.3.2. 

Monthly series are presented in table 6.11, although winter months exhibit a less significant diurnal 

oscillation, noise within the data and the strong local trends associated with station characteristics 

(Section 4.4.1) obscure the trends and it is argued that diurnal oscillations do occur and should be 

included to drive turbulent heat exchanges. 
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Month Cosine 
Coefficient 

Sine 
Coefficient 

Constant Adjusted RMSE 

January -0.638 -0.984 -6.968 0.01 7.78 

February -1.149 -1.404 -3.872 0.1 3.84 

March -1.178 -1.381 1.169 0.21 2.46 

April -2.149 -2.264 8.846 0.25 3.79 

May -2.102 -1.859 11.451 0.21 3.86 

June -2.050 -1.959 14.715 0.29 3.14 

July -1.655 -1.521 12.821 0.34 2.19 

August -1.027 -1.009 8.65 0.15 2.41 

September -0.712 -0.610 6.497 0.05 2.90 

October -0.505 -0.384 0.075 0.02 3.12 

November 0.003 0.219 -3.61 0.00 6.27 

December -1.178 -1.381 1.169 0.01 3.18 

Table 6.11: Diurnal Cycles 

The diurnal data exhibit large seasonal variations, suggesting that in September, October December 

and January temperature does not vary systematically through the day. This could be due to the 

reduction in solar heating of the Earth's surface in the months with reduced daylight hours and 

lower solar altitude. Equally it is also essential to consider the degree to which local conditions at 

station sites govern temperature. As diurnal temperature variations are well documented, each 

months daily temperature variation was predicted using Fourier series which showed good 

agreement between published and predicted maxima and minima, where the former is lagged by 

two to three hours after solar noon (Figure 6.14). 

Variations in the adjusted and RMSE through the year highlight a pattern similar to that shown 

in section 6.4 where winter month predictions show the greatest uncertainty associated with the 

reduced solar heating and dominant pressure systems (Figure 6.13). 

Mean monthly values, extended using the Fourier series outlined in section 6.3.3 to day 

temperatures were used as the base constant in the diurnal Fourier series, using the sine and cosine 

functions below. To increase computational efficiency sub-monthly temperature predictions were 

performed within the sensible heat Java program 'on the fly', and not created as individual surfaces. 
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Figure 6.13: Variations in the adjusted R and RMSE for monthly predictions of diurnal temperature 

variations 
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Figure 6.14: Predicted diurnal temperature variations by month 
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6.6 Precipitation Predictions 

Monthly mean precipitation is controlled by a complex interaction of influences including distance 

from open sea, altitude, topographic orientation and exposure. Predicting monthly mean 

precipitation provides an average receipt for the month, removing the need to predict individual 

events that are highly variable through time and space (Sumner, 1988; Huff and Neil, 1957; 

Jackson, 1969). Intense precipitation events are often highly localized and may not ever be 

captured within a station radius. This temporal complexity is largely driven by highly variable 

atmospheric stability and moisture conditions. Although the complexity of precipitation processes 

is minimised using monthly predictions, simulating spatial variability was essential within the 

model. This variability is largely driven by complex local and regional topographic factors and 

synoptic wind direction (Hay, 1948). 

6.6.1. Controls on Precipitation 

The controls on this high spatial variability were viewed largely as topographic and contextual. 

Determining both the available water content (altitude, distance to open sea and orientation to 

synoptic wind and air masses) and the probable interaction between air parcels and terrain features 

(exposure, relative height, curvature), the latter collection of terms largely relate to the orographic 

component of precipitation receipt. 

6.6.1.1. Altitude 

Higher altitudes tend to yield an increased intensity and duration of precipitation events (Atkinson 

and Smithson, 1976) as air rises and reaches the condensation level. In reality precipitation systems 

are complex where topographic form and maritime influences are strong and dominate spatial 

distribution patterns. Exploration of the data revealed the overall altitudinal trend to have an 

adjusted less than 0.01. Although altitude does impose a degree of control a composite approach 

using other parameters is essential in complex terrain (Barry, 1992; Sumner, 1988). 

6.6.1.2. Maritimity 

Proximity to open ocean and moist air masses brought on land by prevailing westerlies and frontal 

systems increases the available moisture content in coastal areas. Strong precipitation gradients 
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exist between west and east Norway, with the largest receipts of rainfall and greatest numbers of 

wet days by the coast (Lauscher, 1976). The precipitation gradient between east and west Norway is 

nonlinear, with a large reduction in the available moisture content occurring after the Jotunheimen. 

6.6.1.3. Orographic precipitation 

The large reduction in available moisture content found east of the Jotunheimen results from the 

increased precipitation receipt or orographic rainfall within the mountains. Spatially distributed 

precipitation predictions in mountainous areas need to account for the orographic component of 

local precipitation (Hevesi et ai, 1992a; 1992b). The orographic component is the additional 

precipitation produced by the various mechanisms encountered near mountains (Bonacina, 1945), 

where prevailing winds are forced up slope and the rising air column cools and becomes saturated. 

The orographic component also includes modification to processes by lee-wave formation, 

enhanced cyclonic convergence and convective currents of air surrounding mountain peaks. The 

intensity of precipitation events is dependent upon the amount of available moisture, the height and 

longitudinal extent of the barrier, and lower troposphere circulation. Where prevailing winds are 

down-slope, local precipitation receipt is reduced, termed the rain shadow effect (Roe, 2002). 

Simple models of orographic precipitation (P) take the form: 

P = Co + C | (H) + 8 (mm) (Equation 6.9) 

Where P is in mm, Co is the rainfall at sea level, Ci is the rate of increase in precipitation with 

altitude, H is the station height in m and e is an error term. (Brunsdon et al., 2001). 

Orographic influences on precipitation occur largely on a regional scale, with small peaks in a 

larger mountain range not exhibiting an orographic component to their precipitation. However 

relationships are rarely quantified in the field and it has often been necessary to parameterize 

relationships. For example, Gill (1982) assumed twice as much precipitation on windward rather 

than leeward slopes, where the gradient is greater than 20° and there is no higher land within the 

surrounding 1 km in the windward direction. 
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6.6.2. Approaches to prediction 

In topographically smooth areas Sumner's (1988) approach, using a simple interpolation from local 

precipitation means, could be used to create precipitation surfaces, but these would not be suitable 

for areas of complex topography, like the Jotunheim, where strong local gradients exist. The few 

investigations into altitudinal precipitation gradients have shown to vary between 75 and over 300 

mm per 100 metres in Norway (Johnsson, 1937) or exhibit no altitudinal gradient, varying as 

function of topography, specifically distance from highest surrounding peak (Blumer and Lang, 

1995). 

Gregory (1968) recognised the need to account for these strong local gradients and complex 

interaction of factors. He used multiple regression to predict annual precipitation in Sierra Leone, a 

mountainous maritime environment, using distance inland, longitude, latitude and an altitude factor 

defined as '^^^'^"^^ where distance is distance inland. He found distance inland and altitude 
distance 

accounted for more than 60 % of the variation within the dataset. However the R^ value still 

remained below 0.75 and plotted residuals highlighted the weakness of the model simulating 

orographic precipitation. Improved results were received when a directional relative factor was 

included increasing R^ to 0.9. 

Spreen (1947) in his study based in Western Colorado found that regressions including maximum 

relief within 8 km, exposure (defined as the fractional circumference of a circular area with a 

diameter of 32 km not containing a barrier higher than the station) and orientation of the station to 

the direction of maximum exposure increased the R^ value from 0.55 for elevation alone to 0.94. 

Later approaches included the work of Chaun and Lockwood (1974), where focal measures of mean 

altitude were used, and Hill et al. (1981) where directional focal mean akitudes were used to 

account for synoptic and terrain conditions. Weston and Roy (1994) also discussed the use of 

directional components to improve precipitation estimates. Rhea and Grant (1974) performed a 

similar study predicting snow depth from the number of upwind barriers to flow and a directionally 

adjusted measure of slope for 200 km upwind, with an R^ of 0.8. The work of Spackman (1993) and 

Basist et al. (1994) are further examples of the successful application of multiple regression: the 

former used over 30 parameters describing contextual and topographic measures. 
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Brunsdon et al. (2001) stressed the need to employ spatially variant models and proposed the use of 

geographically weighted regression as a method of incorporating spatially variant regression 

coefficients to improve the ability of the model to accurately predict local precipitation receipt. 

Kriging has been less frequently used due to the non-stationarity of spatially distributed 

precipitation (Garen et al., 1994) (as discussed in section 6.2). Kriging is possible i f the data are 

detrended for the altitudinal effect, as implemented by Chua and Bras (1982), or as proposed by 

Dingman et al. (1988) who accounted for the nonstationarity using a precipitation delivery factor. 

Other approaches include spline interpolation exploiting the complex dependencies between aspect 

and altitude and precipitation (Hutchinson, 1995) and trend surface analysis creating isohyets 

representing lines of equal precipitation (Unwin, 1969). 

Multiple regression has been the most commonly and most successfully used prediction technique 

and was selected as the initial technique for prediction within this research. 

6.6.3. Monthly precipitation prediction 

Monthly precipitation surfaces were used in conjunction with monthly temperature predictions to 

determine monthly snowfall, where air temperature estimates determined precipitadon state. 

values for altitudinal lapse rates were lower than those for temperature (maximum 0.064) reflecting 

the more complex relationship between precipitation and elevation. 

Three different approaches to predicting precipitation were adopted. Precipitation is significantly 

more difficult to predict than temperature, summer is characterised by localised convection events 

and winter precipitation is predominantly fed by arriving pressure systems. The processes and 

pressure systems that control the type, location and duration of precipitation events change between 

months and so it was not possible to predict precipitation using the same lapse rate for the whole 

year. 

Although temperature lapse rates were determined seasonally it was felt that the strong dependence 

of precipitation on pressure systems necessitated monthly predictions. 
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6.6.3.1. Dual Lapse rate model 

The strong maritime influence in the West of Norway weakens the altitudinal increase in 

precipitation (R < 0.01), restricting the success of any local predictions using altitude (Figure 6.15). 

This strong maritime influence is borne out in Figure 6.18, showing the strong non - linear 

relationship. Exploiting this relationship and dividing the climate stations by easting (120000) 

reveals two distinct altitudinal relationships, a dual lapse rate model was developed to account for 

these two trends (Figures 6.16, 6.17). Distance from coast could also have been used here, however 

the usefulness of this value is highly dependent upon the off coast starting point and the trajectory 

of the incoming westerly systems; easting was selected as this was less subjective and repeatable 

and in other geographical areas. 

Precipitation receipts for westerly stations, where the orographic precipitation component is weak 

are largely determined by distance from coast (most successfully characterised as easting), which 

accounts for most of the variation within the dataset (Table 6.13). The easting coefficient was 

found to decrease through spring to summer and then increase through autumn to winter. This 

matches changes in pressure systems as westerly winds become less and then more influential in 

providing precipitation. Summer months are fed by convective rain events, which are not as 

dependent on distance from coast, accounting for the reduction in the coefficient. 
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Month Regression Adjusted R^ RMSE 

December -0.0037X + 505.3 ' ' 0.9776 6.142 

January -0.0032X + 438.0 0.89 12.12 

February -0.0023X +308.1 0.95 5.75 

March -0.0027X + 357.6 0.91 9.18 

April -0.0013x+ 167.5 0.91 4.46 

May -0.001 l x + 152.3 0.73 6.76 

June - 0 . 0 0 1 0 X + 155.3 0.74 6.08 

July 0.0008X+ 147.1 0.89 2.96 

August -0.0012x+ 199.1 0.67 8.71 

September -0.0032X + 443.8 0.9 11.13 

October -0.0034X +485.6 0.86 14.66 

November -0.0032X +438.1 0.88 12.87 

Table 6.13: Regression coefficients for westerly stations 

Prediction of monthly precipitation receipts in eastern Norway, required the inclusion of 

topographic parameters to account for the variability within the dataset. Although a range of the 

topographic parameters created in chapter 5, altitude and easting were found to provide the most 

robust regression using a seasonal lapse rate model to account for the strong seasonality in 

prevailing weather systems (Table 6.14). 

Winter months when westerlies dominate were most effectively predicted using altitude and 

easting. Altitude had a much greater control on precipitation receipt with an altitudinal lapse rate of 

between 0.029 and 0.039 mm per m: easting had a weaker control and precipitation was found to 

decrease between 0.00009 and 0.00025 mm with every m inland. April is renowned in Norway as 

transition month between different dominating climate systems, and was most effectively predicted 

using aUitude alone, with a lapse rate of 0.027 mm per meter. Summer months between May and 

August exhibit an increase of precipitation with easting: during summer very different pressure 

systems dominate and convectional rainfall is common and increases orographic effects. The 

dominant role that topography (valleys for convectional rainfall and upland areas for orographic 

rainfall) has on increased precipitation receipt is borne out in the easting coefficient, where more 

mountainous easterly areas yield higher rainfall. Precipitation receipt during autumn months, 

before the arrival of westerly pressure systems, is largely governed by topographic effects and 

altitude alone was found to provide the most robust estimates, with greatest altitudinal lapse rates of 

0.051 mm per m. 
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Figure 6.15: Seasonal trends in altitudinal variation in precipitation for all climate stations 

173 



f ^ r e L l i c l i i i g G l a c i e r D i s t r i b u t i o n s 

K a l h e r i n e I'. A r r e l l 

Chapiiei- S i x 

C l i m a t i c M o d c l l i i i i i 

Dsoember Prsolptaten variation with Altltud* 

100 300 300 400 500 

Fsbniary Praelptatlen variatisn wWi AWtuds 

100 zoo 300 400 
Mtltud* 

500 600 

January Prwilptatien variation with Altttuda 

10O 200 300 400 500 600 

March Praelptation variation with Attitude 

140 
_ 120 

i 100 
- — •• 

i ao 

1 " 
^ y = 23 654Ln(i) - 25 819 

R ' = 0 8794 

3 100 200 300 400 500 
Aimu4* 

600 

00 
c 
a. 

E 
E 

t/5 

April Praolptstlon variation wtth Altttuda 

1=0 

100 200 300 400 500 600 

Altitud* 

Juna Praelptation variation with Altituda 

y > 6 n22Ln(ii) • 19 436 
R = . 0 675S 

100 200 300 400 500 
Mt i l ud* 

Ausust Praclptation variaUon with Altttuda 

100 200 300 40G 
Altttuda 

May Praelptatlon variation wNh AKItuda 

y - g.t434Ln(K) * 1.7842 
R ' - 0 . 7 0 4 8 

100 200 300 4O0 SOO 

MtHuda 

July Praolptatlon varlatien with AWtuda 

100 200 300 400 500 
AttHud* 

Saptambar Praelptatlon variation wtth Attftuda 

100 200 300 400 500 
MIHucfog 

3 

< 

Octobar Pn»olptatlon variation with Altituda 

200 300 4O0 SCO 
Altituda 

NovamtMr Praclptation variation wKh Altltuda 

100 2O0 300 400 500 

Aiittudag 

Figure 6.16: Seasonal trends in altitudinal variation in precipitation for easterly climate stations 

174 



P r e d i c t i n g C l a c i e r D i s l r i h u t i o n s 

K a t h e r m e I : A r r e l l 

Cl iaple i - S i x 

C l i m a t i c Mode l i i i i t ; 

c 

140 

120 
? 100 

i 80 

1 eo 

1 40 

20 

0 

DecemtMrPreciptation variation with Altitude 

Y ' o o « a t • 7 

500 1000 1500 2000 

January Preciptation variation with Altitude 

February Preclptatkin variation with Attitude 

500 1CX3a 1500 2000 

AlUtud* 

March Prectptation variation with Attitude 

« O,0387H + 2,8929 
R*-0e i67 

00 
c 

CO 

April Prectptation variation with AltlhJde 

y = 0 0273* • 0 3901 
* • • R^ = 05937 

500 1000 1500 2000 

Altttude 

5 50 

I '*0 

May Preclptation variation with Altihide 

/ = 0.0194K+ 20 263 

1 0 0 0 1 5 0 0 

Attitude 

E 

C/5 

June Preciptation variation with Attitude 

500 1000 1500 2000 

1 ^ 

July Preciptation variation with Attitude 

y = 0 028x + 44 0D4 
R ' = 0.3 

500 1000 1500 2000 2500 

Altitude 

c 
B 

I. 100 

S 80 

1 60 

August Preciptation variation with Altttude 

y = 0 0387K • 32.964 

R ' = 04146 

October Precftrtation vartatton wHh AltttutJe 

y=0O5O4)(*24 597 

R' = 0,4879 

E 100 

S 60 

500 1000 1500 2000 

Attitude 

I SO 

I 60 

g 80 

1 60 

-f 40 

1 20 

0 

September Preciptation variation with Attitude 

y = 0 0 5 0 6 X • 2 4 , 2 0 8 

R ' = 0 4 7 6 2 

1000 1500 

Altltudae 

November Preciptatkm variation wHh Altitudd 

y = 0 051x* 12.061 

R ' = 05645 

1000 1500 

AJtttudeg 

Figure 6.17: Seasonal trends in altitudinal variation in precipitation for westerly climate stations 

175 



r-*i'ed!Cii!ig G l a c i e r DisU' ibut ions 

K a i h e r i n e b, .Ari-eli 

C h a j i t e r S i x 

Cdi inat ic .Model l ing 

c 

Dooambvr Prwjtptatton warlatton w i t h Easting 

Fsbiuary Pfocfptatlon variation w ith Easting 

120 

f ' ™ 
£ so 

1: 

y = SE'lOx"' ^"^ 
R' = 0 62W f ' ™ 

£ so 

1: 
90 MO nOOOO 130000 150000 170000 190000 210000 230000 

January Prsolptatten variation with Easting 

90000 110000 1 30000 1S00OO 170000 190000 210000 230000 

Maroh Praelptatfon variation wttti Easting 

C/5 

April Prooiptatton variatton with Easting 

H " - 0 2253 

90000 110000 130000 150000 170000 190000 210000 230000 

EsMina 

May Prttolptation variation with Easting 

90000 110000 130000 150000 170000 19O00O 210000 230000 

Batting 

1> 

E 
B 
3 

GO 

Juna Prec^tation variation with Easting y _ Q4_23X^ 
R' - 0 0003 

90000 110000 130000 150000 170000 190000 210000 230000 

JutyPriMlptatlonvarlaaon With Easting y . i B O 92x-" 
R ' - 0 0103 

90000 110000 130000 150000 170000 190000 210000 230000 

C 

S 

August Prectptatton variation with Easting 

R ' - O 1 0 8 

11OO0O 130000 150000 170000 190000 210000 230000 

Septamtwr PtaclptaUon variation with Easting 

Oetotwf Praelptatlen variation with Easting 

90000 110000 130000 15OD0O 170000 19O0O0 210000 230000 

NovsmtMr Praelptation variation with Easting 

Figure 6.18: Seasonal trends in variation of precipitation with easting for all climate stations 
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When the precipitation surfaces from the easterly and westerly lapse rate models were combined an 

unrealistic surface was created. The dual lapse rate model was rejected as the resultant precipitation 

surface exhibited a large jump in precipitation at the boundary between the different lapse rates. 

6.6.3.2. Generalised linear model (GLM) 

Examination of all of the precipitation climate stations reveals that there is strong easting effect. 

(Figure 6.18) Even though there is a topographic barrier through southern Norway, linear divides 

and steps are not realistic and a less disjointed model than described in section 6.6.3.1 is needed to 

replicate the nonlinear decrease in precipitation. A regression on a transformed data scale might 

allow this, however a GLM does the transformation and back transformation using a link function 

removing the need for the additional steps required in a normal regression. A GLM can also be 

designed to ensure physically meaningful predictions e.g. precipitation should be non-negative. A 

GLM with a reciprocal link function was used to predict precipitation using a single lapse rate. The 

reciprocal link function was chosen as it accounted for the non-linear decrease in precipitation with 

easting. 

Month Regression Adjusted R' RMSE 

December 0.037Z - 0.00025X + 57.8 Winter precipiation 0.68 12.46 

January 0.039z-0.000l7x + 4l.7 decreases with 0.61 13.32 

February 0.029z-0.00009x+ 19.5 distance from coast: 0.62 9.07 

March 0.033z-0.00012x + 27.3 Westerlies 0.64 10.36 

April 0.027Z + 0.39 Transition period 0.58 7.99 

May 0.027Z +0.00017x- 13.5 summer precipitation 0.26 12.98 

June 0.03lz + 0.00024x- 11.2 increases with easting: 0.33 12.97 

July 0.037z + 0.000l9x + 5.4 local valley convection 0.44 12.16 

August 0.047z + 0.000l8x-2.7 0.44 15.64 

September 0.05IZ + 24.2 Autumn precipitation 0.46 18.77 

October O.OSOz + 24.6 ; >- varies only as a 0.45 19.03 

November 0.05IZ+ 12.1 function of altitude 0.55 15.84 

Table 6.14: Monthly trends in precipitation predictions 
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Month Goodness of fit 

December 1 0.961 1 
January . 0.932 

i 
February 0.933 i 

March 0.928 ; j 

April y 0.784 ! 

May " 0.294 ~ 

June 0.300 

July 0.484 

August 0.483 

September 0.836 ; j 

October , 0.860 

November 0.892 3 

Table 6.15: GLM monthly goodness of fit statistics 

GLM predicted precipitation well and matched (Table 6.15) the non-linear decrease in precipitation 

from the westerly to easterly stations (Figure 6.19). 

December 

150 200 

Figure 6.19: Generalised linear model precipitation predictions for December 

However the model predicted negative precipitation as a result of the reciprocal function being used 

and GLMs were rejected as a prediction tool for precipitation as no other link function could predict 

the non-linear decrease. 
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6.6.3.3. Power function 

A power function was developed with altitude, log of easting and the sine and cosine functions (see 

6.2.3.1) to try and account for the non-linear decrease in precipitation with easting as an alternative 

to the GLM. Where the log of monthly precipitation is given by: 

LogP= a (altitude) + b(logX) + c(Sine function) + d(Cosine function) 

(Equation 6.10) 

Predicted monthly precipitation estimates for the study area simulate the heterogeneity of receipts 

expected within a variable topography, but overestimate monthly maxima and range compared to 

station statistics. The power function model performed strongest in winter {R^ 0.7 - 0.8) where 

estimates had an average error of < 5mm although individual station predictions are largely less 

than 20 mm (Figure 6.16, 6.17). The seasonal pattern in these winter errors was limited suggesting 

that this may be solely attributable to local variations or noise, where predictions were not 

consistently under or over estimating. However, predictions for summer receipts were significantly 

less successful, values falling to 0.3. This strong seasonal variation in accuracy suggests that 

processes or parameters outside of those modeled impact upon summer monthly receipts (Figure 

6.21), where estimates are consistently under-estimating summer precipitation. Although consistent 

over- or under-estimates are an indication of an area for improvement within the present study, 

summer precipitation will not contribute to the accumulation of snow during a mass balance year. 

Rain on snow events are not simulated within the melt component of the model and so will not 

contribute to ablation. Consequently the under prediction of summer precipitation does not restrict 

the performance of the model for the present study. 

This model was used in the glacier prediction model as it provided the most accurate monthly 

precipitation estimates, where all parameters were significant in each monthly regression (Figure 

6.16). 

Examination of individual surfaces exhibits the seasonality in the role of pressure systems discussed 

in section 5.5.1, where winter receipt is largely driven by proximity to windward (Figure 6.23) and 

summer receipts are driven by local convective events and the fixing of high pressure systems to the 

East (Figure 6.24). 
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Month (Log) Adjusted RMSE 

December 0.85 0.226 

January 0.79 0.266 

February 0.78 0.282 

March 0.77 0.299 

April 0.65 0.627 

May 0.33 0.341 

June 0.34 0.245 

July 0.36 0.183 

August 0.44 0.244 

September 0.68 0.268 

October 0.69 0.272 

November 0.72 0.281 

Table 6.16: Precipitation Power prediction statistics 

Month Minimum Maximum Range Standard 

Deviation 

December 25.8 192.6 166.8 29.0 
January 24.2 192.5 168.3 27.2 
February 15.6 145.9 130.3 19.5 

March 0.7 37.4 36.7 6.8 
April 3.1 54.6 51.5 10.5 
May 45.8 143.8 98.0 13.6 
June 39.5 169.4 129.9 19.1 
July 40.7 232.3 191.5 29.0 

August 41.1 211.9 170.8 27.3 
September 33.0 217.9 184.8 28.7 
October 25.8 192.6 166.8 29.0 

November 24.2 192.5 168.3 27.2 

Table 6.17: Power function monthly study area predictions for the climate stations 
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Figure 6.20: Predicted at station monthly precipitation 

Month Minimum Maximum Range 

December 21 122 101 
January 20 119 99 
February 11 85 74 
March 1 1 85 74 
April 5 74 69 
May 15 59 44 
June 27 76 49 
July 4J 104 61 

August 34 113 79 
September 30 122 92 

October 32 119 87 
November 23 133 110 

Table 6.18: Recorded Climate Station Precipitation 
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Figure 6.21: Predicted - Observed at station monthly precipitation 

Average Monthly Difference Between Predicted and Observed At 
Station Precipitation 

Figure 6.22: Average Predicted - Observed at station monthly precipitation 
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Figure 6.23: Power function February predicted temperature surface 
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Figure 6.24: Power function July predicted temperature surface 
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6.6.4. Monthly precipitation surfaces 

A number of predictive approaches were investigated to identify the most accurate method of 

predicting monthly precipitation receipts. The dual lapse rate was rejected as although it accounted 

for the strong gradient in precipitation it produced an unrealistic trend in receipts. The GLM 

provided improved predictions and successfully modelled the altitudinal and easting components to 

data, however the GLM returned extreme values that fell outside realistic ranges. Predictions from 

the power function model outlined in Section 5.5.3 provided the most accurate predictions and 

although summer receipts were consistently over estimated, winter estimates, most critical for this 

study, were strong. 

6.7 Cloud cover 

Cloud cover not only exerts dominant controls on local energy balance estimates (Oke, 1987; 

Cawkwell and Bamber, 2002) but also affects local temperature variations (reducing solar heating 

and night time long wave cooling (Oke, 1987)) and precipitation receipts (Peppier, 1931). Strasser 

et al. (2004) in their detailed study of glacier meteorology during an ablation season found clouds 

to reduce incoming radiation by approximately 30 %. Cloud cover impact on radiative and climatic 

systems identified by Strasser et al. (2004) is dependant upon cloud type (Barry, 1992), cloud base 

height, time of day, cloud coverage and air mass characteristics. The complexity and feedbacks 

associated with these systems and their high temporal and spatial variability (Schweiger, 2004) 

restricts the resolution with which they can be modelled. 

6.7.1. Controls on Cloud cover 

Despite the complexity of the processes leading to these highly variable temporal and spatial trends 

it is possible to make some general comments and discuss major controls. Cloud cover is, in 

general more frequent and thicker over mountains where increased orographic or mechanical uplift 

and convective activity from slope heating result in greater amounts of cloud with increased water 

content. This is further increased by the local and frictional drag imposed on surface flows by the 

increased relief of the terrain (Barry, 1992). Topography can further increase local cloud cover 

where clouds form in eddies in the lee of sharp isolated peaks (Whiteman, 2000). 
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Air temperature, humidity and condensation level all impose strong controls on the occurrence, 

depth and altitude of cloud cover (Tompkins, 2003). Complexity is introduced as multiple 

feedbacks exist between these climate system components, where processes at a number of different 

scales interact to create a suite of local conditions, and cloud type is largely determined by air mass 

characteristics which in turn are driven by regional climate (Barry, 1992). 

6.7.2. Approaches to predicting cloud cover 

Holistic approaches to predicting local cloud cover are not common and are largely restricted to 

large spatial and temporal scale GCMs. Exploratory techniques examining long term climate 

datasets including temperature and atmospheric humidity for a variety of cloud cover conditions 

identified noncausal relationships between temperature and humidity but failed to simulate these 

within GCM models (Groisman et al. 2000). Groisman et al. (2000) investigated the performance 

of GCM predictions for different types of cloud systems: frontal, convective and low level cloud. 

They found that all three showed areas for improvement and that variance between observed and 

predicted estimates was greater than the variance between the different system predictions, 

suggesting that large uncertainities within these complex predictive models severely restrict their 

use in local scale studies. 

Attempts to characterize individual cloud cover attributes are more commonly employed, where 

two or three parameter correlations may provide locally significant predictions. Barry (1992) 

correlates cumulus cloud cover base height, Zb (m) with air temperature (TA) and dew point 

temperature, (To) using: 

Z b = 1 2 0 ( T A - T D ) (Equation 6.13) 

where T D varies as a function of altitude, lapse rates and atmospheric pressure. Equivalent 

techniques correlate diurnal temperature changes with daily cloud cover fraction (Prof Chris Burn 

pers. Comm., 2003). Lane et al. (2002) parameterize cloud size and spacing using known statistical 

distributions, where cloud size was modeled exponentially with the number of clouds. 

Cloudiness can also be conceptualised as the transmissivity of the atmosphere, Thornton et al. 

(1997) and Susong et al. (1999) use the algorithm supplied by Bristow and Campbell (1984) to 
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predict a daily average cloudiness correction to atmospheric transmissivity from diurnal 

temperature range, as: 

P,= 1.0-exp(-bD„') (Equation 6.14) 

where P, is the proportion of clear-sky transmissivity, D̂ ^ is the diurnal temperature range and b and 

c are empirical parameters. Thornton et al. (1997) discuss the application of this algorithm in 

complex topography where they found diurnal ranges in temperature tend to decrease with altitude, 

leading to a decrease in transmittivity with altitude in contrast to the theoretically reported increase 

in transmittivity with altitude, as optical air mass decreases. The solution proposed by Thornton et 

al. (1997) is simply to remove the altitudinal lapse rates when predicting diurnal temperature range, 

clearly this is not an acceptable solution for the spatial resolution of this research, where it is felt 

that the maritime climate of Norway may in fact lead to an increase in cloud cover with altitude 

during certain parts of the day. Stochastic radiative transfer models such as those reported by 

Lane-Veron and Somerville (2004) and Lane et al. (2002) identify cloud optical parameters 

including cloud water content and cloud droplet effective radius as determinants in the effectiveness 

of transmittance. 

Comparative studies have examined the correspondence between remotely sensed cloud cover 

estimates and ground based recordings. Ground based instruments examined largely consist of fish 

eye lens sensors retrieving cloud cover fraction within the visible range. Comparisons showed 

good consistency in cloud fraction cover (Schweiger, 2004), although when combined with a 

radiative transfer model ground based measurements were found to underestimate incident global 

solar radiation by 25 - 32 % in contrast to equivalent estimates from remotely sensed sensors which 

only recorded a 3 - 7 % underestimate (Martins et al. 2003). This suggests that the additional 

information captured by the remote sensor quantifying cloud optical thickness is of key importance 

when considering local energy balance estimates. The sensitivity of local energy balance to cloud 

cover fraction was further explored by Cawkwell and Bamber (2002) who recorded differences up 

to 40 Wm'^ in the local energy balance and 1 K change in temperature. 

6.7.3. Monthly Predictions 

Predictive approaches explored within this research were largely driven by availability of data, 

limiting the use of parameterisations of atmospheric pressure and dew point temperatures, which 

187 



P i ' e d i c l i i i g ( i l a c i c ' i ' ! .)i .stribu!K>n^ 

K a t i i c r i n c h A r r e l ! 

C l i a p l e i ' Si:-

C l i m a t i c M o u e l l i i u 

were not available within this research. Although cloud type and height impose controls on the 

transmissivity of the cloud the complexity of the processes governing these parameters identifies 

this level of prediction outside of the scope of this research, where cloud cover fraction was the 

only characteristic predicted as this has the most dominant influence on absorption and reflectance 

of radiation (Cawkwell and Bamber, 2002). 

Initial investigations into the correlations between diurnal temperature fluctuations and daily cloud 

cover were made using a four year hourly dataset, however the signal to noise ratio prevented any 

statistically significant conclusions being made and was rejected as a useful climatic indicator for 

this research. Equivalent investigations were made between monthly average oktas, temperature 

and altitude each returning an insignificant correlation, clearly showing the restrictiveness of 

parameterising complex systems in a simplistic manner. 

Cloud cover predictions were required primarily to modify potential radiation estimates, where 

cloud fraction determined the proportion of incident direct beam radiation reaching the ground 

surface. Information supplied within the 30 year normals described in Section 5.6 was used to 

drive this adjustment although station data was limited and only one climate station (55920) was 

located within the study area or an equivalent location. To avoid identifying maritime or lowland 

trends and to avoid complex spatial interpolations with no statistically significance spatially 

uniform cloud predictions were made. Although this may seem an initially crude estimation, the 

spatial resolution and extent of the study area still falls within any GCM prediction and attempts to 

simulate distributed estimates would propagate large uncertainties through the model. 

The monthly distribution of clear sky, fair weather and overcast days was used with monthly 

average okta data to reconstruct daily cloud cover. To reconstruct the average distribution of cloud 

cover conditions within a month using this method, it was necessary to make a number of 

assumptions. Using guidance from the Norwegian Meteorological Institute allocations of a 

representative daily Okta coverage for clear, fair and overcast conditions were made (Table 6.21). 

Cloud Conditions Oktas 

Clear sky days 1.5 

Fair weather days 3 

Overcast days 6.5 

Table 6.21: Estimated okta cloud fraction for sky conditions 
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Cloud cover fraction predictions were made at the same temporal resolution as incident radiation 

predictions (Chapter Seven), where conditions were assumed constant for 6 days. An assumption 

of monthly average okta cloud cover for the whole month was not possible, as clear sky and 

overcast conditions impose strong alterations to local energy balance and had to be included in an 

attempt to avoid large monthly over or under estimates. 

Reconstruction of monthly estimates was integrated into the radiation modelling by allocating five 

daily okta cloud fractions for each month, using information on the number of days each sky 

condition existed for from the 30 year normal data (Table 6.22). These fractions could then be 

converted to cloud cover oktas using Table 6.21. 

Month Overcast 
Days 

Clear Sky 
Days 

Fair 
Weather 

Days 

Days 
Remaining 

Average 
Oktas 

January 16 4 5 6 5.7 

February 14 4 5 5 5.4 

March 17 4 5 5 5.7 

April 15 4 5 6 5.5 

May 15 3 5 8 5.6 

June 13 3 6 8 5.3 

July 17 2 3 9 5.9 

August 18 1 2 10 6.2 

September 20 1 1 8 6.6 

October 21 1 2 7 6.5 

November 17 4 5 4 5.8 

December 17 3 4 7 5.8 

Table 6.22: Parametersiation of cloud data incorporated within the model 

Monthly distributions (Table 6.22 and Figure 6.25) identify a late summer and autumn maximum in 

overcast conditions accompanied with a reduction in clear sky and fair weather days when 

convective and westerly systems dominate 

189 



G i j L i C i ' L ) i : - ' : il-> 

2 5 

2 0 ^ 

Distribution of IVIonthly Cloud Fraction at Station 55290 

• Overcast Days 

• Clear Sky Days 

• Fair Weather Days 

• Days Remaining 

i_ i_ 

^ I . 2 ^ 
§ t) 9> « 

Month 

Figure 6.25: Cloud fraction histogram 

6.8 Wind 

Wind flow in a valley can be viewed as a composite of thermodynamically driven and terrain driven 

flows. Thermodynamic flows have a strong diurnal component and are highly sensitive to sky 

conditions: terrain forced flows exhibit more consistent characteristics for a given area but are 

sensitive to air mass properties (Barry, 1992, Oke, 1987). Geiger (1965) conceptualizes flows as 

active and passive effects of mountains on wind: active topographic effects where differences in 

temperature and pressure induce local circulations, and passive effects where existing flows are 

deflected and modified by topographic forms. Resultant wind vectors represent the composite 

conditions of all flows operating over a range of temporal and spatial scales and modifications to 

the background flow. The high spatial and temporal variability of modifications to background 

flow render a simple interpolation between mountain climate stations unmeaningful. Further 

uncertainty surrounds the degree to which climate station wind vector normals represent local or 

regional trends, where station exposure and context can lead to a 1 0 - 2 5 % adjustment to local 

speeds (Wieringa, 1986). Although some authors simplify wind flow modeling by using an 

elevation driven lapse rate where wind speeds decreased by 0.0092 ms 'm"' such as the study 

reported by Cline et al. (1998) (where wind flow was only a small component of a larger model). 
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The complex topography and drift systems present within the Jotunheimen rendered this technique 

unsuitable. 

Wind fields in the boundary layer are largely controlled by the frictional drag exerted by the 

surface. The force exerted on a surface air moving over it is called the surface shearing stress (x) 

and is expressed as a pressure: pressure is also exerted on the air by the surface as frictional drag. 

Air acts like a fluid and the friction exerted at the base does not act through the bulk of the 

atmosphere. This results in a marked velocity profile characterized by a rapid decrease in horizontal 

wind speed as the surface is approached. In the absence of strong thermal effects the depth of this 

retardation is dependent on the surface roughness. 

Motivations for this component of the research identified surface wind speeds within the lower part 

of the atmospheric boundary layer (ABL) as the primary requirement for the wind surface dataset. 

Efforts were consequently focused on deriving accurate estimates of the surface speed rather than 

the profile. 

Accurate wind flow estimates were required for two elements of this research, initially to drive the 

turbulent heat energy exchanges (Chapter Eight), where surface flow velocities control the 

magnitude of the exchanges between the surface and the base of the boundary layer directly above 

it and to highlight areas of potential drift. 

6.8.1. Controls on wind flow 

Two interacting but separately driven components to wind flow in mountain areas have been 

identified. The controls governing the characteristics of these flows are considered separately. 

6.8.1.1. Thermal 

Thermodynamically forced flows, induced as a result of differential insolation receipt and local 

buoyancy effects on slopes; exhibit high spatial and temporal variability and accurate estimates of 

the individual components require a high resolution climatic dataset, not available here. The 

smallest of these flows are slope winds, larger scale winds occur flowing along valley axis termed 

along valley winds, at an equivalent scale but perpendicular to these are across valley winds. The 

largest of the mountain circulations occupy the entire valley termed drainage and mountain^plain 
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winds. In a similar classification Ohata (1989a) used spatial scale to differentiate and classify wind 

systems occurring on snow and ice masses (SIM) in summer into three types, general wind at scales 

over 100 km, local scale within valley or mountain range, or SIM scale for example katabatic 

winds. All are driven by horizontal temperature differences and are prominent at different times of 

the day. Although these flows are significant for deriving small temporal and spatial energy 

balances they are not to be investigated or modeled here as they operate at a finer temporal scale 

than required within the model. 

Strasser et al. (2004) found similar results to Oerlemans and Klok (2002) and Oerlemans and 

Grisogono (2002) when they analaysed a high temporal and spatial resolution dataset using a set of 

6 climate stations positioned on and around a glacier during the ablation period of 2001 to 

investigate the spatial and temporal variability of meteorological variables across an alpine glacier. 

They found glacier winds largely dominated the wind regime and had mean speeds of 2.8 ms"'. 

Consequently, topographically forced flows will be the primary focus of this study, where winds are 

largely assumed to flow from modal wind directions, deflected by terrain, with no diurnal 

component. 

6.8.1.2. Topographic 

Topography provides the dominant control on wind speed and direction in mountainous 

environments, where altitude, local slope, aspect, curvature and larger topographic features modify 

the speed and direction of flow by altering both the frictional drag and by wind direction by 

deflection. Although direct correlations with altitude are complex, global circulation patterns do 

lead to an overall increase in wind speeds with altitude (Raiter, 1963), with hill crests tending to be 

windier than valleys. Exact relationships between altitude, slope, aspect, wind direction and speed 

and free air characteristics are still not fully understood (Barry, 1992). This section will attempt to 

disaggregate some of the more dominant influences in an attempt to paramaterise terrain 

modifications to flow. 

Scale is an essential concept when considering the role of topography in governing flow. Whiteman 

(2000) introduced the term effective topography to identify the extent of the surrounding terrain that 

modifies flow characteristics, where, in rough terrain the effective topography may extend further 
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than local valleys, or roughness elements, with flows over mountains responding to larger scale 

features of the topography and not to the smaller scale roughness elements (Whiteman, 2000). 

Whiteman (2000) reports that wind speeds generally increase with height through the mid-

troposphere, where speeds in the lowest 10% of the boundary layer (up to 100 m) generally increase 

logarithmically driven by the rapid decrease of frictional drag from the Earth's surface with 

increased distance above it. Frictional drag imparted by the earth's surface varies with surface 

landcover and structure. Published roughness indices primarily quantify vegetation and urban 

landcover types and do not provide meaningful measures for complex terrain surfaces. For smooth 

uncomplex terrain, parameterisation with existing indices is possible as used by Weiringa (1986) 

who proposed a method of adjusting recorded wind speeds to account for local conditions by 

quantitfying local exposure and roughness interactions within and above the ABL. Similar studies 

predicted meso scale winds (Um) using a logarithmic altitudinal lapse rate and surface roughness 

measures (Zo) with station measured wind speed (Us), observed at height (Zs), where (U„) was 

given by: 

U,„ = Us In (60/Zo){ln(Zs/Zo)} ' (Equation 6.15) 

As existing roughness classifications do not provide estimates of roughness coefficients for 

complex or rough terrain in mountainous environments such as the Jotunheim, it was consequently 

necessary to derive more applicable measures relating to fetch and exposure from the DEM and use 

these in conjunction with more quantitative measures of terrain surface roughness (section 4.6). 

Complex modeling of surface velocity profiles over snow and terrain focuses on micro scale surface 

roughness elements, eddies and turbulent perturbations in the vertical velocity profile, especially on 

flow within the first 10 cm above the surface (Smeets et al, 1999; Brock,, 1997). Larger scale 

roughness features, affecting the first 10 meters above the surface have not, to the authors 

knowledge, received quantitative classifications relevant to frictional drag and flow retardation for 

areas of complex terrain. 

Although local roughness controls the frictional drag on near surface flows, it is also possible to 

associate areas of faster and slower flows with larger landform scale features, where high wind 

speeds are found in gaps, passes, forges, exposed areas, summits and elevated plains or plateaus,and 

slower speeds are found in sheltered and protected sites, upwind of mountain barriers or areas of 

high surface roughness (Whiteman, 2000). Subsequent discussion focuses on modelling terrain 
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modifications to flow at the landform scale, although parameterisation occurs at 100 m DEM 

resolution. 

Flow around mountains areas can be conceptualised in a stratified or nonstratified atmposphere. 

Under nonstratified conditions induced pressure fields result in greatest near surface flows at 

summits and lowest in valleys. Under stratified flow conditions, the atmosphere is more stable and 

reacts to the vertical displacement of an air parcel with a responsive buoyancy force (Whiteman, 

2000). This is largely evident in wave like responses to flow over a mountain, resulting in 

asymmetric flow conditions on the lee and windward aspects. Mountainous areas in the Jotunheim 

will largely extend above the ABL (depth of around 1000 m) and are consequently subject to 

stratified flow conditions, with smaller hills lying within the ABL are characterised by nonstratified 

flow conditions. 

Characteristing how flow in nonstratified conditions is deflected and modified by terrain requires 

quantification of deflection and flow retardation by terrain obstacles. Terrain obstacles can generate 

turbulent eddies and wakes. A wake is an area extending downwind of an obstacle characterised by 

slower wind speeds and increased gustiness. Winds are slowed downslope approximately to 

distances 15 times the obstacle height (Verge and Williams, 1981). Eddies form within and around 

the wake, as a result of wind shear or convection. The response of flows to obstacles can be in part 

be characterised by their form and orientation. 

Whiteman (2000) states that three factors determine the behavior of an approaching flow in 

response to a mountain barrier, the stability and speed of the approaching air and the terrain form. 

The behaviour proposed by Whiteman (2000) is summarised in Table 6.23. 

Fast flow Slow Flow 

High stability 

Low stability 

High terrain 

Low terrain 

Over 

Over 

Over 

Over 

Round 

Over 

Round 

Over 

Table 6.23: Idealised stability and flow over terrain 
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It is also important to consider the shape of the terrain, including length, elongation and contextual 

measures such as the presence of valleys and basins that impose controls on wind speed. Sites low 

in a valley (a contextual location similar to most of the stations used in this analysis) are often 

protected from prevailing winds, although strong upper winds can lead to gusty conditions in a 

valley. 

6.8.2. Approaches to predicting wind flows 

Simulation of flow largely follows two broad approaches, parameterisation of retardation and 

deflection and momentum and energy conserving equations of motion. The latter set of approaches 

are not directly discussed here, as it lies outside of the scope of this research. Parameterisation 

approaches are more commonly employed within studies comparable to this research as they 

provide computationally efficient solutions that capture the spatial variability in process with 

sufficient accuracy. 

Ryan (1977) developed a sheltering factor to quantify the retarding effect of the terrain, defined as: 

F„ = E' arctan (0.17YJ/100 (Equation 6.16) 

Where is the slope in percent to the horizon upwind, E' is a parameter representing air mass 

characteristics, specifically the degree of mixing. Under stratified conditions the sheltering effect 

of topography is greater and E" is defined as: 

E' = 2-0.0016E (Equation 6.17) 

Where E is the altitude, and E' varies from 0 at 1220 m to above I at 610 m. These values can be 

modified to reflect local terrain scale. 

The wind speed after the terrain modification V^d is then defined as: 

Vsd=Vb-(F„V5) (Equation 6.18) 

Where Vb is the wind speed before the terrain modification. 
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Wind direction is modified by diverting factor Fd defined as, 

Fd = -O.225Ydsin[2(Ad-0b)] (Equation 6.19) 

Wliere ©b is the wind direction. Ad is the slope aspect and Yd is the slope in percent downwind. 

Flow is diverted clockwise, i f slope aspect is counterclockwise less than 90° from the wind 

direction, and diverted counterclockwise i f slope aspect is clockwise less than 90° from the wind 

direction. No diversion occurs i f flow is parallel or perpendicular to the slope. The calculated 

diversion angle can then be added to ©b providing the resultant wind vector (Ryan, 1977). 

Ryan (1977) also provides algorithms for predicting slope and valley wind components on an 

hourly time scale to create a composite flow prediction, finding an additive approach provided good 

results. Although these topographic flows do alter the magnitude of flow during the day they are 

highly dependent upon cloud cover and temperature estimates, and consequently the magnitude of 

the error introduced into the model by parameterizing these flows outweighs the resultant benefits 

of their inclusion. 

Purves et al. (1998, 1999) successfully employed the diverting factor devised by Ryan (1977) and 

combined it with a shelter index to create ordinal surfaces of wind velocity vectors, entrainment 

potential and snow accumulation through drift using a rule-based model. Initiated with a constant 

wind speed, slope and aspect rasters of the Cairngorm Mountains and the Nevis Range were used to 

calculate topographic exposure to winds from different directions. The shelter index used a remap 

table to differentiate between leeward and windward slopes, based on divergence from the mean 

aspect of leeward slopes. Simulated wind vectors of deflection and an ordinal index of speed 

reduction showed good agreement with typical flows as reported by local experts. 

Winstral and Marks (2002a, 2002b) also employ parameterized measures of shelter to derive 

spatially distributed wind fields used to drive a snow redistribution model. Winstral and Marks 

(2002a, 2002b) also addressed the role of flow separation in contributing to localised wind vectors 

and snow depths, an area not tackled by Purves et al. (1998, 1999). Winstral and Marks (2002a, 

2002b) developed their model from data at two topographically opposing climate stations, a ridge 

based exposed site and a sheltered site. The wind flow data at these two stations were viewed as the 

extreme values along a speed spectrum, with intermediate topographic exposure locations scaled 

along this continuum. Exposure was calculated for all possible wind directions at 5° intervals. 
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Directionally specific exposure was quantified as the maximum upwind slope parameter (S'x) in a 

specified azimuth. Sx is calculated by examining all cells along the azimuth direction, and 

retrieving the cell forming the greatest slope with the cell of interest. The retrieved cell is termed 

the shelter-defining cell and Sx is defined as: 

tan" 
^ elev{x^,yj-elev{x^,y^)^ 

(Equation 6.20) 

where A is the azimuth direction, dmax determines the lateral extent of the search, (x,yi) are the 

coordinates of the cell of interest and (Xv,yv) are the set of all cell coordinates located along the 

azimuth search vector. Negative values of SJC record local exposure where the cell of interest is 

higher than the examined cells. A more robust measure recorded average Sx within 30° azimuth 

sectors. Derived values of Sx were highly sensitive to dmax, and although the authors discuss 

appropriate distances for specific processes, for example drift modeling, no mention is made of 

terrain roughness or scale. Clearly these parameters will play a large role in determining values of 

Sx and it is suggested by the author here, that these should also factor in the selection of dmax. 

This issue is explored in section 6.8.3.1.2. 

Winstral and Marks (2002a,b) also developed a measure of upwind slope breaks, Sb, identifying 

areas of flow separation. Sb is derived using two instances of Sx , describing local and outlying 

measures of slope, separated by sepdist, a user defined distance (equivalent to dmax, 60 m in the 

application reported): the difference between these two measures defines Sb. Large values of Sb 

indicate a large break in slope, which may result in flow separation and eddy development. These 

characterize areas of low flow, where the reduction in speed may lead to the deposition of snow. 

Winstral and Marks (2002a, b) used evidence of past drift to derive measures for sepdist and a 

threshold measure for Sb. Calibration of values of S^ and Sb to match conditions at the two station 

sites (less than and greater than 5° respectively in this example) before deriving distributed values 

for the study area for all wind directions. Application of these parameters to a semi-arid site in 

southwestern Idaho, showed strong correlations between predicted and observed drift and scour 

sites, implying representative simulations of local wind flows. 
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Lapen and Martz (1993) also extracted topographic measures from a DEM as surrogates for wind 

vectors, namely fetch and directional relief, to characterise the degree of wind sheltering at a 

location. These are comparable to Y„ and directional Sx 'm Ryan's (1977) and Winstral and 

Marks's (2000a,b) studies. Fetch at a location x,y was defined as the distance in a specified 

direction to the obstacle defined as 

Z ,est> Z core + N / (Equation 6.21) 

where, Zcore is the altitude at (x,y), z,est is the altitude at the cell being examined as a potential 

obstacle, / is the altitude height increment in meters and N is the distance from (x,y) to the Z,ese. / 

represents the extent of the shelter created by an obstacle, which Verge and Williams (1981) report 

to be 15 times the obstacle height. Lapen and Martz (1993) found outputs to be highly sensitive to 

the value of / and recommend a value of 0.025, although the most appropriate value is entirely 

dependent upon the scale of the analysis (process and terrain). 

Directional relief represents the relative altitude of (x,y) compared with the average altitude in the 

direction of fetch. Lapen and Martz (1993) found both parameters to be useful and indicative of 

areas where snow was entrained or deposited. They found a negative correlation between fetch and 

snow depth, where areas close to an obstacle had deeper snow cover than those far away from an 

obstacle. 

Other approaches to predicting surface winds use geostrophic winds (Ekstrom, 2002) and synoptic 

forcings (Jonsson, 1995) as the primary drivers 

6.8.3. Predicting wind flow 

Two different approaches were used to estimate wind vectors, a parameterisation approach utilising 

free air and surface wind records and the application of 3dvom2.6.5, a three dimensional model 

based upon linearised equations of motion (Vosper, 2002). 

The usefulness of both wind surfaces to predict spatially distributed flow vectors will be assessed 

within the model. 
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6.8.3.1. Parameterisation of terrain modification 

In line with the findings of McKendry (1983) the great spatial and temporal variability shown in the 

Jotunheimen wind regime illustrates the difficulty in using data from any one site to characterize 

the wind regime of an area. This modelling approach needed to cover a variety of processes acting 

over a range of spatial scales and consequently it was necessary to select geomorphologically 

appropriate variables which did not always provide the most statistically significant prediction of 

meteorological station data. This is common in many fields of predictive geomorphology but is 

especially justified here as only a small number of stafions were available to include into the 

analysis and the representativeness of these measurements is not clear. 

The methodology outlined here attempted to couple free air and surface wind circulations by 

parametertising the terrain modification to flow. This was performed in three steps, initially 

characterizing annual trends and controls on flow including local roughness and exposure to 

obstacles. This approach is in keeping with other work by Ryan (1977), Haltiner et al. (1980), and 

Winstral and Marks (2002a,b) who used a cumulative approach to predictions. 

6.8.3.2. Direction: Terrain Deflection 

Analysis of the directional component of the station recorded wind data showed a strong 

correspondence with valley orientation, where all flows aligned along valleys, representing the 

deflection of regional winds by surface flow (Table 5.4). 
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Incident Wind Direction 
Season 

337 - 21 22-66 67-111 112-156 157 - 201 202 - 246 247 - 291 292 - 336 Stili 

13670 
Winter 6.92 1,87 2,06 2.02 8.90 6.79 8,55 7.05 55.85 
Summer 11.63 6,36 11,52 7,10 17.16 7.90 4,38 7.25 26.70 
Autumn 7.67 2,58 4,84 3,94 13.53 8.41 7,31 6.06 45.66 
Spring 7.59 4,53 6,16 4,18 17.28 9.26 7,74 7.05 36.21 
15720 
Winter 11.64 5,29 9,79 0,61 4,01 7.25 42.62 18.71 0.08 
Summer 8.03 6,04 9.95 1,02 9,54 11.78 42.06 11.34 0.23 
Autumn 11.26 7,23 14.20 1,37 5,80 7.32 38.04 14.64 0.13 
Spring 9.00 5,35 13.20 0,81 9.48 11.55 37.78 12.80 0.02 
16740 
Winter 8.66 14,68 42.05 6,76 1.33 1.37 10,56 11.34 3,25 
Summer 9.06 5,27 22.12 12,52 3.19 1.81 20,38 21.09 4,57 
Autumn 7.16 12,69 38.50 11,83 1.58 1.26 11,92 11.59 3,46 
Spring 9.29 6,97 27.45 15.04 4.75 2.70 16.65 14.76 2,39 
55290 
Winter 4.95 3,93 5.21 9.09 14,85 4.99 30.05 6.19 20.74 
Summer 4.80 5,70 4.30 10,90 15,30 6.10 32.70 5.60 14.80 
Autumn 3.34 2,79 3.07 13,83 21,06 7.33 30.86 5.45 12.27 
Spring 4.83 4,91 5.27 13,53 20,49 4.59 21.62 4.95 19.81 
61770 
Winter 1.20 24.19 35.80 9,44 0,25 0.02 22.16 6.87 0,08 
Summer 1.76 10.89 14.47 11,56 2,05 0,04 47.32 10.54 1,38 
Autumn 1,22 21.28 30.90 10,31 1,24 0,00 25.76 8.89 0,40 
Spring 1,92 15.52 23.84 12,89 1.63 0,02 32.42 11.56 0,20 

Table 6.25: Seasonal percentage of wind receipts at climate stations from eight directional sectors 

Directional Deflection Absolute Deflection 

Minimum Maximum Mean Minimum Mean 

East -19.5 18.621 0.04 0 0.78 

South East -17.64 18.05 ^0.075 0 0.75 

North -18.98 18.69 -0.06 0 0.79 

North East -16.85 17.08 0.09 0 0.77 

South -19.14 17.89 -0.06 0 0.81 

Table 6.26: Deflection statistics for different wind directions 

The behaviour of wind from an incident wind direction on a slope of known gradient and azimuth 

was modelled using the previously discussed diverting factor, Fd, derived by Ryan (1977) and 

employed by Purves et al. (1992), where the diversion in degrees is given by: 
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Fd = - 0.225GpSin[2(Ad-Wd)] (Equation 6.22) 

determined as a function of wind direction Wd, aspect Ad and gradient Gp (%) of terrain downwind 

of an obstacle. Five versions of the algorithm were created, one for each of the dominant wind 

directions found within the free air records. South, South-East, East, North and North-East. For 

each iteration all cells were initialised with each of the modal directions as the downwind slope 

direction (Table 6.26). 

Resultant directional surfaces were visualized, and showed good correspondence with terrain 

features (Figures 6.27 - 6.31) and all subsequent analysis was performed on each of the five 

iterations. 

6.8.3.3. Speed 

Each of the three steps used to predict surface flow velocities are described in turn, initially this 

involved quantifying the local surface modification at the five climate stations, secondly identifying 

areas of potential flow separation and finally quantifying the role of local surface features including 

roughness and altitude. 

/. Surface Modification 

Recorded free air wind speed records were used to predict the vertical velocity profile of flow 

within the bottom 2,700 m of the atmosphere. This was used to estimate speeds at the base of the 

free air layer, 1 m above the surface. Estimated speeds were compared to observed records and the 

difference was recorded as the degree of modification to flow (T^) irnposed by tertain for each of 

the climate stations. The strong seasonal component to the other datasets used within this research 

is also apparent within free air speeds, with pronounced seasonality in the strength and 

characteristics of prevailing winds. 

The estimates for each of the five climate stations were compared with the observed seasonal mean 

speed at the climate station: the difference between the two speeds was termed the terrain 

modification factor, (T^). Although in part it may contain errors within the predictions, it provides 

a quantitative measure of the difference in speeds associated with the local and focal terrain 

structures that arguably-would not be present i f the terrain were uniform. 
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Seasonality was predicted using sine and cosine components as discussed earlier in section 6.2.3.1 

(Table 6.27) and used in a regression analysis with the aUitude at which the free air measurement 

was taken to predict seasonally variant velocity profiles. This procedure is summarised in Figure 

6.32. 

Cosine Function Sine Function Season 

0.707106781 0.707106781 I : Winter 

-0.707106781 0.707106781 2: Spring 

-0.707106781 -0.707106781 3: Summer 

0.707106781 -0.707106781 4: Autumn 

Table 6.27: seasonality predicdons 

Ninety six observations were used in the regression analysis, four stations for four seasons at five 

altitudes. The regression is statistically significant at the 95% confidence level and each of the 

independent variables provide a statistically significant contribution to accounting for the variability 

within the dataset. The root mean square error is 1.15 ms'' and altitudinal lapse rate is 0.001 m s"' 

per meter. 

The regression coefficients provide the following model where speed V is given by: 

V = 0.001 (Height Above ground) + 2.055(Sine function) - 2.397(Cosine function) + 9.943 

and implemented in a spatial model as 

V = (0.001 * I) +(2.055 * (sine(2 * PI * ((2 - 0.5) / 4)))) 

- (-2.397 * (cos(2 * PI * ((2 - 0.5) / 4)))) + 9.943) 

Examination of the values of Tn, show positive values for all stations, indicating slower flows than 

predicted (Table 6.29). Predictions were made on a seasonal temporal scale which was the most 

suitable resolution for the data which was provided in seasonal format. This temporal resolution 

was further justified as seasonal variations are also present in the distribution of free air flows. 
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suggesting that processes within the boundary layer and surface interactions impose controls on 

surface flow. 

Radiosonde data: 
measures free air speed 
at 300, 600, 900, 1200, 
1800 and 2700 meters 

Predict monthly speed 
altitude, sine, cosine. 

This would be the surface speed 
i f no surface modification / 

boundary layer effects. 

Predicted free air monthly 
surfaces for pixel altitude 

Local wind data: 
measures climate station 

wind speed at station 
altitude 

Terrain modification effect 

Tn, = free air estimate - local speed 

Figure 6.32: Initial stage of flow predictions 

Examination of the spatial variation in the degree of modification provides a limited insight into the 

geomorphological characteristics of these sites, as the limited number of stations prevents 

statistically meaningful interpretations. Yet it is possible to suggest that local topographic 

conditions are related to the extent of the modification, as summarized by Table 6.30. 
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Number of obs = 96 

F( 3, 92) = 77.21 

Prob > F = 0.0000 

R-squared = 0.7157 

A d j R-squared = 0.7064 

Root MSB = 1.5882 

SS df M S 

Model 584.242 3 194.747 

Residual 232.059 92 2.522 

Total 816.3 95 8.593 

Coef. Std.Err. t P>|t| [95% Conf.Interval] 

Altitude 0.0013088 0.0002022 6.47 0.000 0.0009027 0.0017104 

Sin 2.055029 0.2292369 8.96 0.000 1.599745 2.510313 

Cosine -2.397387 0.2292369 -10.46 0.000 -2.852671 -1.942102 

Cons 9.942974 0.3002875 33.11 0.000 9.346577 10.53937 

Table 6.28: Regression statistics for wind profile predictions 

Station Ranked Modification Terrain Description 

13670 1 Sheltered 

15720 3 Valley 

16740 5 Valley 

55290 2 Sheltered 

61770 4 Valley 

Table 6.30: Local modifications and terrain 

Tm exhibits seasonal fluctuations indicating variations in degree o f modification imposed by the 

surface on the vertical velocity profile (Table 6.29 and Figure 6.35). Autumn and winter exhibit the 

greatest values o f T|„ when westerly patterns are dominating. This suggests that although the flow 

characteristics o f the different pressure systems are represented in the free air records different near 

surface processes also contribute to surface flow vectors. This may be in part a function o f the local 

thermal regime where spring and summer, when convectional cells develop, are characterized by 

lower values o f Tn, where flows are faster, and more stagnant convective conditions in winter and 

autumn result in lower surface flows where topographic sheltering can more effectively retard 

flows. 
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Winter Spring 

Station 

Speed 
(m/s) 

Predicted 
(m/s) 

T 
* in 

(m/s) 

Speed 
(m/s) 

Predicted 
(m/s) 

T 
(m/s) 

13670 0 13.1 13.1 0.0 6.8 6.8 
15720 3.8 13.1 9.3 3.8 6.8 3.0 
16740 3.8 13.1 9.3 3.8 6.8 3.0 
55290 1.3 13.1 11.8 1.3 6.8 5.5 
61770 3.8 13.1 9.3 3.8 6.8 3.0 

Summer Autumn 

Speed 
(m/s) 

Predicted 
(m/s) 

T,„ 
(m/s) 

Speed 
(m/s) 

Predicted 
(m/s) 

T 
(m/s) 

13670 0 9.7 9.7 0.0 10.2 10.2 
15720 6.3 9.7 3.4 3.8 10.2 6.4 
16740 6.3 9.7 3.4 1.3 10.2 8.9 
55290 3.8 9.7 5.9 6.3 10.2 3.9 
61770 6.3 9.7 3.4 3.8 10.2 6.4 

Table 6.29: Predicted wind speed and terrain modification effects by station and season 

Attempts to characterize these contextual controls followed two main strands, modelling f low 

separation and characterizing roughness. Contextual measures such as valley and ridge structures 

were not explored. 

/ / . Flow separation 

Obstacles on a terrain surface can modify the direction and speed o f surface flows. The 

parameterization o f f low vectors moving around or over obstacles is possible at a number o f 

different complexity levels, ranging from complex 3-dimensional f low models to simpler measures, 

using focal rather than landform scale modifications. The approach adopted here was selected to 

provide the most appropriate modification to f low for the terrain characteristics. Large glaciated 

valleys, smaller tributary valleys and steep slopes dominate. Flow on and within these landforms 

with directional modification is dependent upon upwind structures, specifically breaks in slope. In 

addition to landform scale modifications, where f low is simulated diverging around the structure as 

an integrated whole, simulations are also possible using focal or local terrain information. The latter 

provides significant computational and time savings and can predict upwind breaks equally as 
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effectively. Landform scale predictions are more suited to larger scale climatic modelling rather 

than small valley scale processes. 

Seasonal Variation in T m 
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Figure: 6.33: Seasonal varations in Tn, 

Ryan's (1977) sheltering effect, Fu, characterizing the shelter-defining cell, the cell with greatest 

upward slope, was used to model upwind breaks o f slope and flow separation, but was applied at a 

number o f spatial scales to ensure meaningful and appropriate results. This was to ensure that the 

most critical or influential break was selected rather than just the nearest. This evaluation is a 

component critical to any analysis on a D E M , where local noise or roughness is differentiated from 

landform or land surface trends or variability, 

F„ = E'arctan (0.17Gp)/100 (Equation 6.25) 

where, Gp is percentage slope to the upwind horizon (maximum o f 100%), under mixing conditions 

(a non stradfied atmosphere, section 6.8.2). E' varies as a function o f elevafion. Ryan (1977) fixed 

E' for the maximum elevation in the data (1220 m). This was adjusted to account for the greater 

range in altitudes found within the Jotunheim and was changed fi-om: 

E ' = 2 - 0 . 0 0 1 6 E (Equation 6.26) 
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E' = 2 - 0.0008 E (Equation 6.27) 

Using the calculations outlined by Ryan (1977) where E' was set to vary from 0 at the maximum 

altitude (2500 m) and 1 at the minimum altitude (0 m). 

Two applications o f the shelter-defining algorithm were used to identify local and outlying 

obstacles, to establish which provided the most useful measure. Clearly the distance to and size o f 

the obstacle w i l l alter its impact on flow. Search distances employed vary between authors 

however focusing on the absolute value o f this distance alone can be misleading as consideration o f 

the terrain roughnes and D E M resolution is also necessary. In contrast a 1,000 m search distance 

was used by Winstral and Marks (200a,b). In this research the nearest upslope gradient and the 

maximum within 500, 1,000, 5,000 and 10,000 m upwind were investigated. The variability in the 

upwind slopes through each o f these buffer sizes provided information on the variability o f terrain 

for each o f the stations in the analysis (Figures 6.34-6.36 and Table 6.31). 

Variation in Zero Counts with Search Distance 
for the major Synoptic Wind Directions Examined 
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Figure 6.34 Variation in zero counts with search distance 
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Variation in maximum slope with search distance for 
the major Synoptic Wind Directions Examined 
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Figure 6.35 Variation in maximum slope with search distance 

Variation in maximum slope upwind of climate station within 
different search distances under Northeasterly conditions 
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Figure 6.36 Variation in maximum upwind slope at climate stations 

Stations 15720 and 61770 exhibit achieve greater upwind gradients with increasing buffer 

distances, the other stations exhibit a consistent upwind gradient, this uniformity could result under 

two conditions, either on a regularly structured landform with spatially organised structures or on a 
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slope, with breaks in slope marked by smaller structures located on the slope (Figure 6.36). Stations 

15720 and 16740 are located within valleys, indicating upwind is upslope which has an increasingly 

steep gradient. 

Wind Direction Distance (m) Min Max Mean Stdev Zeros 
East Nearest 0 88.71 8.82 10.30 459161 

500 0 87.58 6.20 9.57 797093 
1000 0 87.58 6.92 9.76 665005 
5000 0 100 8.28 9.59 322524 

10000 0 100 8.66 10.15 199299 
South Nearest 0 87.91 9.44 10.42 410037 

500 0 87.91 6.51 9.93 808177 
1000 0 87.91 7.33 10.16 684492 
5000 0 100 8.86 9.99 339505 

10000 0 100 9.24 10.44 211930 
Southeast Nearest 0 87.91 7.36 9.17 540841 

500 0 86.84 6.81 9.17 612433 
1000 0 86.84 7.65 9.39 499121 
5000 0 100 9.02 9.27 231941 

10000 0 100 9.32 9.65 143310 
North Nearest 0 87.91 9.44 10.42 409861 

500 0 87.03 6.61 9.74 761909 
1000 0 87.03 7.43 9.94 634301 
5000 0 100 8.94 9.71 293541 

10000 0 100 9.29 10.19 181965 
Northeast Nearest 0 87.91 7.50 9.24 528811 

500 0 86.84 6.51 9.02 668585 
1000 0 100 7.29 9.25 556583 
5000 0 100 8.82 9.24 258483 

10000 0 100 9.21 10.00 161201 
Table 6.31: Distribution o f s opes to obstacles for stuc y area 

On balance, the greatest slope within 5,000 m, was found to provide the best results when modified 

estimates were compared to observed measurements and when the nature and scale o f the breaks 

were investigated within the surfaces in conjunction with consideration o f landforms and structures 

within the valleys. Although the largest upwind break in slope within this search radius may ignore 

smaller less significant breaks closer to the source pixel, these local features are largely very small 

and are expected to have only a minor impact on f low as show in Table 6.32 and Figure 6.37. 
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Wind Direction Distance (m) Min Max Mean Stdev 
East Nearest 0 0.27 0.02 0.02 

500 0 0.27 0.01 0.02 
1000 0 0.26 0.01 0.02 
5000 0 0.37 0.02 0.02 

10000 0 0.34 0.02 0.02 
South Nearest 0 0.26 0.02 0.02 

500 0 0.25 0.01 0.02 
1000 0 0.25 0.01 0.02 
5000 0 0.34 0.02 0.02 

10000 0 0.34 0.02 0.02 
Southeast Nearest 0 0.27 0.01 0.02 

500 0 0.26 0.01 0.02 
1000 0 0.26 0.01 0.02 
5000 0 0.28 0.02 0.02 

10000 0 0.32 0.02 0.02 
North Nearest 0 0.26 0.02 0.02 

500 0 0.26 0.01 0.02 
1000 0 0.26 0.02 0.02 
5000 0 0.29 0.02 0.02 

10000 0 0.29 0.02 0.02 
Northeast Nearest 0 0.27 0.01 0.02 

500 0 0.26 0.01 0.02 
1000 0 0.26 0.01 0.02 
5000 0 0.32 0.01 0.02 

10000 0 0.34 0.01 0.02 

Table 6.32: F„ distributions for seasons and distances for the study area 
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Figure 6.37: Sheltering from upwind obstacles under northerly conditions 

A number o f stages were needed to calculate the effect o f upwind obstacles these are outlined in 

Figure 6.38. 
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Figure 6.38: Accounting for the effect o f upwind obstacles 

A Java program was written to extract the upwind obstacles. Called UpSlope.java, it contained two 

different methods; getMaxGradient and getNearGradient. 

New surface wind velocities were calculated, modifying initial wind velocities (Vb), which were 

uniformly set throughout the D E M : data to create more informed estimates was not available. This 

was felt to provide the most accurate initial surface as predicting spatial variability in complex 

terrain using data from five stations would not produce statistically significant results. This is in line 

with other approaches where initial or boundary conditions are set at the start o f a model run. 

Vu = V b - ( F „ Vb) (Equation 6.28) 

Resultant surfaces showed meaningful spatial distributions, but they imply that it is possible to 

improve predictions using roughness measures extending the work reported by Ryan (1977) and 

Purves et al., (1998) which only looked upslope for f low separation and did not account for the 
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large modification that terrain imparts on wind speeds. Surface roughness was examined as a 

method o f improving these predictions. 

/ / / . Roughness 

Surface roughness plays a critical role in controlling flow characteristics near the surface. Although 

upwind obstacles define separation points and the downwind wake area, they cannot characterise or 

quantify spatially distributed structures or regions. Surface roughness measures provide a method of 

quantifying spatial organisation, variability and smoothness by measuring the topographic variation 

within an area. Rougher areas impose a greater frictional drag and consequently retard surface 

flows to a greater degree than smoother surfaces which impose less drag. 

Roughness measures exist in a number of different forms characterizing different terrain 

components. The surface roughness measure developed here used breaks o f slope and altitudinal 

change to quantify topographic variability. Roughness, R is defined as: 

R Zsd * Asd (Equafion 6.29) 

Where Ẑ d is the standard deviation o f altitude and Asd 's the standard deviation o f the sine o f aspect 

in degrees. Breaks o f slope and altitudinal variation were used as these were felt to most effectively 

characterize terrain roughness for flow applications. The area over which the calculations are made 

determines the scale o f the measurement and should be based on the scale o f landform, landscape or 

process under invesfigation. Examining the rate o f change o f roughness at different scales provides 

information on the structure o f the landscape, topographic form and context (Figure 6.12). 

Examining the rate o f change o f roughness within the study area, specifically looking at areas 

centered on the climate stations, provides information on how flows may operate at these sites and 

aids the interpretation o f recorded flows. Surface roughness was calculated for kernels o f width 3, 

5, 9 and 12 pixels, 300, 500, 900 and 1200 m respectively (Figure 6.39). 

Stations 1, 2 and 3 are located within a topographically rougher area at coarse resolutions whereas 

stations 4 and 5 are fairly isometric with respect to the surface roughness measures presented here. 

As roughness is scale dependent the rate of change (Rr) o f roughness provides a more useful 
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measure, calculated here as the difference between the coarsest and finest measure o f roughness 

over the distance o f 900 m. 

Rate o f change o f roughness (R^) was defined as: 

Rr = ( R i 2 - R 3 ) / 9 0 0 (Equation 6.30) 

Where, R12 is the surface roughness within a 12 pixel width kernel and R3 is the surface roughness 

within a 3 pixel width kernel. 

Minimum Maximum Mean Standard 
Deviation 

Rough 33 0 201 12.7 11.6 

55 0 213 21.8 17.9 

99 0 278 37.5 27.5 

12 0 306 47.7 32.8 

Scaled Rate 0.265 -0.04 0.039 0.027 

Rough 3 L 0 0.401 0.025 0.023 

5 L 0 0.426 0.044 0.036 

9 L 0 0.555 0.075 0.055 

2 L 0 0.612 0.095 0.066 

S R 3 0 0.589 0.039 0.037 

5 0 0.707 0.068 0.057 

9 0 0.965 0.117 0.088 

2 0 1.079 0.149 0.106 

Roughp 3A 0 0.879 0.408 0.114 

5A 0 0.917 0.477 0.113 

9A 0 0.991 0.554 0.111 

2A 0 1.019 0.592 0.110 

Table 6.34 Roughness statistics 
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Figure 6.39: Rate o f change o f roughness with kernel size for climate stations 

Both the rate o f change o f roughness and the finest scale roughness are important when considering 

flow. Local roughness provides information about terrain conditions immediately surrounding a 

location, which w i l l impose a local modification to the flow. Although influential, local 

modifications need to be considered along side larger scale processes, considering the terrain within 

the focal area to establish whether this w i l l also impose an amplified or alternative terrain 

modification effect. However, this is a local measurement and only records a small scale 

phenomenon located within a larger environment. Considering the rate o f change o f roughness at a 

location, three scenarios are possible: 

2 2 0 
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1. A n area is locally rougher than at a larger scale - a negative rate o f change in roughness 

3 
O 

Kernel size 

Under these conditions micro scale (100 - 300 m) wind speed decreases more than meso scale 

flows (300 - 900 m), flow is locally retarded but this is only a local modification to a potentially 

faster flow. 

11. A n area is smoother at the local scale and rougher at the coarser scale - a positive rate o f 

change o f roughness. 

c 

O 

Kernel size 

Wind speed at the meso scale decreases more than local speeds, locally flow is retarded but this 

effect is mirrored with a larger scale modification to slower wind. 

111. A n area has no variation in roughness with changing scale - no rate o f change in roughness. 

3 
O 

Kernel size 
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Wind speed at the meso scale and micro scale decreases equally, locally f low is retarded but this is 

part o f a larger scale modification to slower wind. 

Using these scenarios it is possible to develop a rule-based model to characterise how the rate o f 

change o f surface roughness wi l l modify f low. 

By scaling the measure o f roughness and the rate o f change o f roughness, it is possible to use these 

parameters to modify the velocity estimates created earlier. Roughness and the rate o f change o f 

roughness were calculated for an extended study area covering most o f the Jotunheimen and valleys 

to the east (this provides a more representative range o f values), and the minimum and maximum 

values for these derived measures were used to calculate the scaling algorithms, scaling is achieved 

by: 

Scaled value = (Observed - minimum) / (maximum - minimum) (Equation 6.31) 

Giving scaled rough values R, as: 

Rs = (value - 0) / (500 - 0), values ranging from 0 -0 .619 for study area 

And scaled rate o f scaled rate o f change Rrs as: 

Rre = (value - -0.5) / (0.5 - - 0.5), values ranging form 0.46 - 0.84 for study area. 

These were integrated as 

l f r a t e > = 1 

RoughS, = R s * ( l + R r s ) 

I f rate < 1 

Roughs, = R s - ( R s * ( > +Rrs)) 

To use the amended roughness parameter to calculate the resultant windspeed, gives: 

V u r = V „ - ( V „ * ( R 0 U g h S 7 ' ' ) (Equation 6.32) 
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where an exponent of 0.25 gives the nonlinear change associated with near surface flows (Barry, 

1980). 

d Results indicated that the relationship between surface roughness and wind velocity was non 

linear. Thus it was modelled here using an exponential function: this type o f relationship is present 

in many other physical systems including some o f the climatic parameters modeled within this 

research. 

Although a vertical velocity profile was predicted using free-air data, alfitude quantified height 

above the surface not height above sea level. Altitudinal relationships were briefly discussed in 

section 6.8.3.1.2 and it was felt that within an alpine environment when exposure to free air varies 

considerably between valley ridge locations an aUitudinal relationship would improve velocity 

predicfions. This was incorporated as an altitudinal flow factor, Zf, scaled using the maximum and 

minimum altitudes within the extended study area, given by: 

Zf = (va lue -0 ) / (2472 -0 ) (Equafion 6.33) 

Where the resultant predicted velocity, Vp is given by: 

Vp = V ^ - ( V , e * Z f ) (Equafion 6.34) 

Spafially distributed values o f Vp show geomorphologically meaningful results, with higher wind 

speeds around mountain peaks and in the center o f the larger valleys and lower wind speeds over 

the rougher more undulating terrain and along the valley sides (Figure 6.45). 
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The steps used to create the roughness modification are given in Figure 6.46 and Figure 6.48 

summarises all of the steps in the wind flow prediction model. 

DEM and Aspect 

Roughness 
Calculated at 3*3, 5*5, 7*7 and 9*9 

Rate of change of roughness 
Difference coarsest and finest roughness over 

900 m. Scaled 0 - 1 

Roughness effect 
Roughness and rate of change of roughness, acts 

exponentially. 

Altitudinal reduction factor 
Variable scaled 0 - 1 , higher = faster 

Figure 6.46: Steps used to create the roughness modification 
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DEM, Slope and 
Aspect 

Free air data 

Combined with synoptic 
wind direction 

Predicted speeds at 1 m 
compared to observed 

Upwind flow direction 
derived 

Terrain modification factor 
derived 

Upwind obstacles identified and F„ 
sheltering parameter calculated 

Fu deducted from uniform initial 
flow conditions. 

Local and rate of change of 
roughness calculated and 
roughness parameter derived 

Roughness parameter derived 
and resultant velocity predicted 

Altitudinal factor derived and 
final predicted velocity field 
created. 

Resultant wind field 

Figure 6.48; Summary of the wind flow pre_diction model 
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Wind speeds were assumed constant throughout a season, varying only as a function of wind 

direction. Initial investigations were made to predict local variability in wind speeds from local 

topographic form with promising results for further study. Analysis of the shape of frequency 

histogram of station wind speeds revealed correlations with local terrain (Table 6.35). 

Station Skewness Kurtosis Standard Deviation 

1 2.37 5.5 14.73 

2 3.4 11.98 18.97 

3 2.59 6.48 16.04 

4 1.48 1.45 12.55 

5 3.64 13.43 22.22 

Table 6.35 Wind speed distribution characteristics 

Stations 2 and 5 have consistently peaked histograms and are located close to valley centers 

reporting faster flow. This implies that conditions are consistent and valley winds dominate. 

Station 4 has predominantly slow flow and is located in a more exposed site with less consistent 

wind speeds, where more unpredictable flow modification takes place. This initial analysis 

suggests that it may be possible to predict the standard deviation of wind speeds at a location using 

distance from valley apex and local roughness. 

Other predictive wind flow models or analytical solutions exist. These include MS3DJH/3R 

developed by Walmsley et al. (1982) and utilized by Essery (2000) and Essery et al. (1999), and 

also the work undertaken by Jackson and Hunt (1975) on the changes in wind speed and shear 

stress around hills of different sizes and shapes. However, the model developed by Vosper (2002, 

2003) is considered more suited to the terrain in the Jotunheimen and could be manipulated and 

used more effectively with in-house developers. Although both models become unstable in areas of 

steep terrain the model developed by Walmsley et al. (1982) is specifically designed for low hills, 

but the model developed by Vosper (2002, 2003) was tested on the Isle of Arran, a formerly 

glaciated mountainous area. 
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Free Vp 
Air Min Max Mean Min Max Mean Min Max Mean 

NE 13.10 8.97 13.10 12.88 0.10 13.10 5.75 0 7.23 2.74 

W
in

te
r E 13.10 8.69 13.10 12.90 0.10 13.10 5.76 0 7.27 2.74 

W
in

te
r 

S 13.10 8.68 13.10 12.88 0.10 13.10 5.75 0 7.31 2.74 

SE 13.10 9.39 13.10 12.88 0.10 13.10 5.75 0 7.27 2.74 

N 13.10 9.28 13.10 12.87 0.11 13.10 5.75 0 7.29 2.74 

NE 6.80 4.65 6.80 6.69 0.05 6.80 2.99 0 3.75 1.42 

E 6.80 4.51 6.80 6.69 0.05 6.80 2.99 0 3.77 1.42 
a 

'u 
a 

S 6.80 4.51 6.80 6.69 0.05 6.80 2.99 0 3.80 1.42 

SE 6.80 4.87 6.80 6.69 0.05 6.80 2.99 0 3.77 1.42 

N 6.80 4.82 6.80 6.68 0.06 6.80 2.98 0 3.78 1.42 

NE 9.70 6.64 9.70 9.54 0.07 9.70 4.26 0 5.36 2.03 

li 
E 9.70 6.44 9.70 9.56 0.07 9.70 4.27 0 5.39 2.03 

im
m

 

S 9.70 6.44 9.70 9.55 0.07 9.70 4.26 0 5.42 2.03 
s 

VI SE 9.70 6.96 9.70 9.55 0.07 9.70 4.27 0 5.59 2.03 

N 9.70 6.88 9.70 9.54 0.08 9.70 4.26 0 5.40 2.03 

NE 10.19 6.98 10.19 10.02 0.07 10.19 4.48 0 5.63 2.13 

ut
um

n E 10.19 6.76 10.19 10.03 0.07 10.19 4.48 0 5.66 2.13 

ut
um

n 

S 10.19 6.76 10.19 10.02 0.07 10.19 4.48 0 5.66 2.13 

< SE 10.19 7.31 10.19 10.02 0.07 10.19 4.48 0 5.65 2.13 

N 10.19 7.22 10.19 10.02 0.09 10.19 4.47 0 5.67 2.13 

Table 6.36 Seasonal variation in wind speed variables 

6.6.8.4. Three dimensional modeling 

The model 3dvom2.6.5 developed by Vosper (2002, 2003), predicts wind vectors through terrain 

using three-dimensional linearised equations of motion. Using the boundary conditions of the free 

air direction the model assumes a steady upstream geostrophically balanced wind and potential 

temperature field varying as a function of altitude. Further inclusion of a parameterisation of the 

Coriolis force, acceleration due to gravity, conservation of momentum and thermodyamic equations 

(not relating to those mentioned earlier) modifies the flow vector in three dimensions. Further 

modifications and perturbations to flow by turbulence and eddies are included using eddy viscosity 
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and the shear stress Reynolds divergence term which modifies background shear stresses and 

determines mixing lengths as a function of Richardson number. Output wind vectors are estimated 

using finite difference approximations and are initially driven by Reynolds shear stresses and 

turbulent heat fluctuations driving change in potential temperature fields and flow velocity. Further 

details of the model can be found in Vosper (2003). During the present study the model was run 

with five of the dominant free air directions, north, northeast, east, southeast and south on a grid of 

128 rows and 128 columns with a 500 m resolution. A mean resampling algorithm was used to 

create the coarser scale resolution. Resampling was necessary in part to reduce the computational 

intensity of the operation and also to reduce the surface complexity, improving the performance of 

the model, whilst still retaining a sufficiently detailed wind field. 

Further modifications to the DEM were required to minimise edge effects within the model. At the 

east and west edges the height of the topography at the outer 8 columns of the grid was set to 0. On 

the north and south edges 14 rows were set to have a zero height. Topography was smoothed 

linearly down to zero over 20 grid points (10 km from the edge of the data) to prevent sudden 

jumps at the edge of the DEM. A small amount of smoothing was applied after that to minimise 

grid-scale noise that can lead to numerical instability. 

6.6.9. Monthly wind surfaces 

Both the topographically derived flow modification wind vectors and the three dimensionally 

modelled wind vectors were used in the mass balance model, where modal wind conditions were 

used for each season. 
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Parameter Temporal Resolution 

Temperature 

Mathematical Modeling Monthly 

Mathematical Modeling with interaction term Monthly 

Mathematical modeling with topographic variables Monthly 

Seasonal lapse rates Monthly 

Diurnal Temperature 

Mathematical Modelling Hourly 

applied to temperature datasets 

Precipitation 

Power Function Monthly 

Cloud 

Monthly mean Monthly 

Proportional Predictions 5 days 

Surface Wind 

Terrain predictions Seasonal 

3Dimensional modeling 5 days 

Table 6.37: Climatic datasets used within the mass balance model 

Surface Wind Speed under 
Southwesterly conditions 

Surface wind speed estimates from 
3dvom2.6J developed by Vosper 
(2002,2003), showing faster flows 
at higher, exposed sites and slower 

flows along valley networka 

WLidSpanl(m's| 

I I I I I I I I I 
0 3 6 12 Ki looiMni 

Figure 6.49: Surface wind speed under southwesterly conditions 
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6.7 Conclusions 

In Norway, summer months are characterised by convection where precipitation is very difficult to 

predict and temperature is more easily predicted. In contrast winter months are dominated by 

tracking pressure systems facilitating better prediction of precipitation events and leading to less 

predictable temperature lapse rates. Temperature and precipitation in such complex meteorological 

systems cannot be predicted using standard lapse rates. 
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C H A P T E R S E V E N 

MASS BALANCE MODELLING 

7.1. Introduction 

This chapter outlines the mass balance model, providing a justification and explanation of each 

of its components. The model structure is initially described and is compared to exisfing 

alternatives. A detailed description of the modelled energy components follows with a 

discussion of published parameterisations. An outline of the implemented energy and mass 

balance models discusses spatial and temporal resolutions, modelled feedbacks and initial 

conditions. 

Local energy balance drives melt (Ohmura et al.,. 1992; Male and Granger, 1981). Energy 

balance models and temperature index models allow the quantification of melt (ablation) but do 

not account for accumulation and consequently cannot be termed mass balance models. This 

chapter presents a mass balance model that uses spatially distributed temperature and 

precipitation receipt predictions with an energy balance model to predict spatially distributed 

melt. 

"Mass balance studies are concerned with changes in the mass of a glacier and the distribution 

of these changes in space and time " (Paterson, 1981,43). Changes in mass predicted within this 

research wil l not account for changes driven by convergence or divergence of ice flow or due to 

processes at the glacier bed. 

7.2. Model Structure 

Radiation modelling was performed using a series of Java programmes, that read-in files from 

and write-out files to a GIS (Table 7.1). Computational efficiency and simplicity are achieved 

by balancing complexity and prediction accuracy. Existing approaches to predicting glacier 

distributions are largely limited by two main factors (for examples see Table 7.2), firstly over 

dependence on locally derived data leading to restricted applicability and, secondly, large 
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parameterisations from sparse climatic data leading to poor representation of spatially and 

temporal variations where altitude and temperature are commonly used to derive melt. 

Model Component Java Program Methods include: 

Net radiation balance NetRadiation.java getDirectBeam 

getDiffuse 

getLongwave 

getSensibleHeat 

getNetRad 

Surface temperature GetSurfaceTemp.java 

Albedo GetAlbedo.java 

Melting MeltingMonth.java heatNew 

meltNew 

heatOld 

meltOld 

Table 7.1: Java programs: available to download from author's website 

Hock (2003) stresses the need for spatially distributed melt models that account for more than 

just altitudinal variations in accumulation. Where strong topographic gradients drive 

accumulation (Dubayah and Katwijk, 1992). The research presented here presents a temporally 

and spatially distributed melt model that is driven by radiative and climatic forcings. Climatic 

data derived from topographic variables account for strong local gradients using multi-scale 

elevation data. Accumulation and melt are predicted on a monthly time scale and data are 

stored and interpreted within a GIS. 

The radiation or energy balance describes the balance between the radiation incident on a 

surface and that reflected or emitted from it. Radiation is a form of energy created due to the 

rapid oscillations of electromagnetic fields and is transferred by photons, which have particle 

and wavelike characteristics. Radiation can be characterised by its wavelength; short-wave or 

solar radiation has wavelengths of 0.15 - 3.0 ^im and long-wave radiation has wavelengths of 

3.0 - 100 nm. Radiation can be further classified according to whether it is direct beam 

radiation, diffuse or scattered radiation, or emitted radiation. These different types of radiation 

need to be considered separately and contribute differently to the local radiation balance. 
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The energy flux from the atmosphere towards the glacier surface (go) consists of the following 

components: 

Qo = Sii\-a) + Li-L] + Qu + QL+QR (Equation 7.1) 

Where SI is the incoming short wave flux, a is the albedo, Z,| is the incoming long wave flux, 

Zt is the outgoing longwave flux, Qh is the sensible heat flux, Qi is the latent heat flux and 

is the heat flux supplied by rain (Greuell and Genthon, 2004) schematically represented in 

Figure 7.1. The radiation balance is an important factor when considering glacier mass balance 

(the relationship between accumulation and ablation on a glacier), as it is a major control on the 

amount of energy available at a location for glacier ablation (melting). 

Shortwave Shortwave 
Direct y Diffuse 

Reflected '̂ Reflected 

C ^ ^ ^ ^ O o u d ^ C^^^^^'cioud^ 

Precipitation 
(Rain and Snow) 

Reflected 
Sensible 

Reflected Heat 
Exchange 

Longwave 
Radiation 

A Snow layer 1 
Conductjve _ _ _ 
Heat 

"Exchange SnoM^/ayer2 

Figure 7.1: Conceptual diagram of energy balance snowmelt model. 

The relative contributions that each of these components have to melt differs, latent heat 

exchanges and rain on snow events are known to only provide a minor contributions to melt and 

are not modelled within this study, where large Bowen ratios {Qu IQO dominate. 

The amount of the radiation incident on a surface differs from the amount transferred to the 

surface. Radiation incident on a surface can either be absorbed or reflected, the proportion 

absorbed is dependent u p n a'limriber of factors primarily "the~suî fa"ce albedo and the angle of 
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incidence. However, other controls exist that govern the magnitude of each of the fluxes in 

Equation 3.1 reaching the surface, including atmospheric transmissivity, aspect and screening. 

Before a more detailed description of the model follows a brief evaluation of recent alternative 

models is presented to justify the character and structure of the model employed here. 

7.3. Alternative Models 

Heggem et al. (2001) stressed that radiation models are intrinsically localised in form and 

cannot easily be transferred between regions that may experience strong localised correlations 

and controls on receipt. Empirical models, including the research reported here, are largely 

concerned with spatial patterns and not absolute values (Heggem et al., 2001), therefore 

although wrong parameterisations can lead to gross over or underestimates spatial distributions 

and coherence are of primary importance here. This can also be viewed as the role of the 

different scale controls on local energy balance which operate at a global (solar constant and 

solar position), meso (atmospheric attenuation and air mass ratio), topographic (local incidence 

angles and shade) and micro (plants and microclimatology) scale (McKenney et al., 1999) and 

they therefore require a degree of localised parameterisation. 

Utilising the regression and time series analysis of the seasonal and spatial patterns of melt and 

meteorological variables it is possible to quantify their inter-relationships and predict system 

responses, specifically annual mean mass balance (Mn). Where Mn is given by: 

M„ = Co + C i T „ + C2Pw (Equation 7.2) 

Where Co - Cj are the coefficients determined using the regression analysis and Tw and Pw are 

the annual mean precipitation (a range of months commonly between October and May) and 

temperature (ablation season months only). See Hodgkins (2001) for example studies. 
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Application of degree day models (Section 2.2.2) are known to produce robust results at low 

data costs. Laumann and Reeh (1993) record DDF of 4.5, 3.5 and 4.0 for snow in Alfotbreen, 

Hellstugubreen and Nigardsbreen (Norway) respectively, and 6.0, 5.5 and 5.5 for ice on the 

same glaciers extracted for the time period 1961 - 1990. 

Despite their clear advantages, temperature index models oversimplify melt relationships, 

driven by temperature alone and therefore fail to simulate small temporal and spatial patterns. 

They are highly dependent upon the quality of the distributed temperature data. DDF's are 

particularly sensitive to conditions when mean daily temperatures are just above 0°C, authors 

alter temperature index models to account for these conditions (Greuell and Genthon, 2004). 

Hock (2003) stressed the need to develop spatially distributed melt models driven by low input 

data requirements and proposed the extension of a degree day model with energy balance 

parameters. A number of these types of model have been implemented, using clear sky global 

radiation (Cazorzi and Fontana, 1996), scaled topographic receipt and albedo (Dunn and 

Colohan, 1999), potential direct beam radiation (Hock, 1999) and an accumulated temperature 

index (Daly et ai, 2000). Each of the these models have accounted for an improved resolution 

of the smaller scale temporal and spatial patterns of melt. 

Although many energy balance models are developed, calibrated and driven by climatic and 

radiative data collected by automatic weather stations (AWS) or field season records (Hock, 

1999; Hock, 2004; Molg and Hardy, 2004) their application is limited. As these locally 

calibrated models, where in some cases one or two stations provide climatic or radiative data, 

can contain model errors are hidden within tuned coefficients and often fail to model complex 

local variations or trends where patterns are over simplified and highly restrictive in their scope 

(Williams et al., 1972; Fierz et ai, 2003) 

This research attempts to build upon the strengths of degree day models and create a composite 

approach by supplementing the temperature melt relationship with distributed radiation 

balancing estimates improving the ability of the model to account for heterogeneity in melt 

driven by topographic shading, slope and aspect. 

A number of authors have achieved this by adding a radiation term to the product of positive 

temperatures and a melt factor. Where the model results are calibrated to match known 

distributions. Examples include Kane and Gieck (1997) who found melt to be proportional to 
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short wave radiation balance and Kustas et al. (1994) who found melt to be proportional to net 

radiation. 

These approaches add a radiation term to the temperature dependent melt are reported to be less 

effective than the approach adopted by Hock (1999) which scales the DDF rather than using the 

product of DDF and temperature. Where meh (M) (mm h"') is given by: 

M = a / ) T , ^ ^ (Equation7.3) 

T < 0 

and fm IS a. melt factor (mm h ' K'"), a is radiation coefficient (mm m^ h"' K"'), I is potential 

direct solar radiation at the surface (W m'^), and T is air temperature (°C). 

Calibration of the melt and radiation factor to local conditions using measured ablation and 

runoff results in varying the values of fin and a, which for Hock (1999) on Storglaciaren, 

Norway was between 0.9 and 2.7 for fin and between 0.3 and 0.9 * 10"' for a. Varying values of 

fm was found to yield a near homogenous increase in melt in contrast to a, which due to the 

strong topographic control on incident radiation results in increased spatial variability in melt. 

Verbunt et al., (2003), Flowers and Clarke (2000), Schneeberger et al. (2001) and Schler et al. 

(2002) also successfully adopted this technique. Although these parameters were optimised for 

Storglaciaren they were not found to be simulate melt as accurately at alternative sites, where 

differences in local energy balance, lapse rates, albedo and locally significant meteorological 

parameters and processes imposed a dominant control on local meh rates. This dominance of 

local conditions on melt reduces the effectiveness of this type of calibrated factor model which 

reduces the ability of the model to be effectively applied in multiple study areas. 

Hock (1999) and Hock et al. (2002) implement this blended model by incorporating potential 

direct solar radiation. Verbunt et al. (2003) extend Hock's model including seasonally variant 

melt factors (MF) to account for seasonality in melt not simulated using temperature trends 

alone. The model produced good results but was heavily tuned to local conditions and was 

driven by AWS data. 

Although improved degree day models address many of the limitations of the classic degree day 

model they still fail to account for observed spatial patterns and are highly constrained to a 

geographical area. This research outlines a climatic and radiative forcing model that is not 
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geographically restricted creating a robust and flexible mass balance model. Correlations 

between synoptic weather conditions and melt rates (Hock, 2004) strengthen the case for a 

climatic and radiative forcing model as developed within this research that are able to account 

for the terrain driven spatial variability and the temporal variability driven by synoptic 

conditions which are simulated in Chapter Six. 

7.4. Surface energy balance 

Each of the components identified in Equation 7.1 and Figure 7.1 provide a different 

contribution to melt, and are dependent upon different environmental conditions. Methods and 

algorithms for predicting each of these components follows. 

The local energy balance model described and implemented in this research predicts incident 

radiation using variables outlined in Table 7.3, organised by group. 

Group Factor 

Radiative Solar Constant 

Astronomical / temporal Solar Altitude 
Solar Azimuth 
Solar Declination 

Topographic / geographic Solar Altitude 
Topographic shading 
Altitude 
Slope (Azimuth and gradient) 
Surface albedo 

Atmospheric / geometric Path length 
Air pressure 
Ozone 
Water vapour 
Cloud Cover 

Table 7.3: Variables used to predict incident radiation, adapted from Dozier (1980) 

Terrain and landcover heterogeneity can result in high spatially variability in surface energy 

balance (Elder et al, 1991; Fierz et al, 2003). Sridhar et al. (2003) examined the role of spatial 

scale of input datasets in determining the accuracy with which accurate local energy balance 

estimates could be made under different land surface heterogeneity conditions. Sensitivities 

were most pronounced for latent and sensible heat predictions and found the most appropriate 

scale for predictions to-be dependent upon the-heterogeneity of landcover. Landcover within-the-
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study area in radiative terms can be viewed as snow and non-snow. Although local 

heterogeneities exist, initial model conditions of no snow cover, and spatially organised 

accumulation patterns minimise the errors associated with data resolution and sensible heat 

predictions. 

Atmospheric and topographic interactions result in spatially heterogeneous distributions of 

incident radiation. Although these interactions are complex it is possible to accurately quantify 

and parameterise their individual components using a suite of solar variables defining both solar 

position and daylight hours. 

7.4.1 Solar Variables 

Incident radiation is a function of solar position, determining (with local topography) the 

efficiency of transfer of solar radiation and the duration of exposure it is therefore critical to any 

local energy balance calculations. Solar position is defined by it spherical coordinates, 

declination (8s), altitude (a) and azimuth (a,) recording its passage through the year, its passage 

through the day is quantified using the hour angle (hs). Defining how far east or west the sun is 

from the local meridian, where at solar noon when the sun is directly overhead the hour angle is 

0, and varies by 15° for each hour prior to, or after noon, with positive values denoting positions 

before noon and negative values indicating positions after noon. This removes the need to 

convert to local time, remaining in solar coordinates. 

Conversion to local time, requires a four minute time alteration for each degree of longitude 

difference between the actual and reference longitude, so converting between solar (Ts) and 

local (T|) time: 

T, = Ts + ((L - U ) * 4) (Equation 7.4) 

Where L is latitude in degrees and L, is the reference latitude. 

Solar declination defines the angle between the direction to the sun and the plane of the earth's 

equator. Following the work of Duffie and Beckham (1991) and Kumar et al. (1997) this is 

given by: 

8s = 23.45 * sin (360° * (284 + N) / 365) (Equation 7.5) 

Where N represents day number, January 1 '̂ = day 1. 
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Solar declination varies between - 23.45° when the sun lies to the south of the equator and 

23.45° when the sun lies to the north (Figure 7.2). 

Solar Declination Variation through the year 

30 

Julian Day 

Figure 7.2: Variation in solar declination through a year as predicted by energy balance model 

Solar altitude defines the angular height of the sun above the ground and is given by: 

Sin a = sin L * sin 5 + cos L * cos 8 * cos h. (Equation 7.6) 

Where L denotes latitude in degrees, 5 denotes solar declination and hj denotes the hour angle. 

Variation through the day and year are shown in Figure 7.3 where lower solar altitudes are 

found in winter. 

Solar Altitude Variation through the day and year 
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Figure 7.3: Variation in solar altitude through a year as predicted by radiation model 
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Solar altitude can be related to the hour angle, where the hour angle at sunrise (hsr) and sunset 

(hss) has a solar altitude of 0°, although Flemming (1995) proposed that solar ahitude is -0.8333° 

at sunrise and sunset i f atmospheric refraction is accounted for) and can be quantified as: 

Sin a = 0 = sin L * sin 5s + cosL * cos 5s * cos hsA.a = 0) (Equation 7.7) 

Which gives: 

hsr = cos (-tan L tan 5s) 

hss = - hsr 

(Equation 7.8) 

(Equation 7.9) 

Solar azimuth defines the horizontal direction of the sun relative to North and is given by: 

Sin as = cos 6 * sin hj cos a (Equation 7.10) 

And varies through the day and year as shown in Figures 7.4 and 7.5. 

Azimuth variation through year and day 

I 150* 
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Figure 7.4: Variation in solar azimuth through a year as predicted by radiation model 
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Azimuth variation througli day and year 
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Figure 7.5: Variation in solar azimuth througii a day and year as predicted by radiation model 

Shortwave radiation receipt at the surface occurs during daylight hours, between sunrise and 

sunset. As a results of varying solar position the number of daylight hours varies through the 

year as shown in Figure 7.6. 

Annual Trend of Predicted Daylight Hours 
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Figure 7.6: Annual variation in daylight hours through the year. 
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7.4.2 Albedo 

The shortwave radiation absorbed by a surface is commonly expressed as (1 - a) Sj,, where a is 

the mean reflectance or albedo. Variations in surface albedo exert a strong influence on snow 

surface energy balance and melt, especially following a fresh snowfall event (Sauberer and 

Dirmhirn, 1951; Paterson, 1981 and Brock et al., 2000b). Heggem et al., (2001) suggested that 

failing to include surface albedo leads to an overestimation of accumulation and an incorrect 

spatial distribution. Snow surface albedo varies over short spatial scales and diurnal temporal 

scales, as a function of angular and spectral distributions of incoming radiation, solar altitude 

(Carroll and Fitch, 1981), cloud cover (Carroll and Fitch, 1981; Melloh et al., 2002), snow age 

(Barry, 1992), snow grain size (Nolin and Stroeve, 1997; Melloh et al., 2002), snow subsurface 

variations and any material or debris surface cover (Gerland et al.. 1999; Knap et al., 1999; 

Melloh et al. 2002) (Table 7.2). 

Parameter Effect on Albedo 

Solar Ahitude Albedo increases with decreasing solar altitude 

Cloud Cover Albedo increases with increasing cloud cover 

Snow Age Albedo decreases with increasing snow age 

Snow grain size Albedo decreases with increasing grainsize 

Surface debris cover Albedo decreases with increase debris cover 

Table 7.2: Controls on snow surface albedo 

Quantification of high temporal and spatial variations in surface albedo has been undertaken 

using satellite remotely sensed data (Culter and Munro, 1996; Nolin and Stroeve, 1997; 

Robinson, 1997; Knap et al., 1999; Kloh et al., 2003; Brock et al., 2000), aerial photography 

(Corripio, 2002) or high resolution temporal sampling (Brock, 2004). Remote sensing does 

provide accurate albedo measurements, however, these are restricted by the fixed wavelength of 

the sensors and therefore cannot be viewed as representative of the whole spectrum. 
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Land Cover Albedo (a) 

Earth 0.31 

Average Surface 0.4 

Global Surface 0.14-0.16 

Global Cloud 0.23 

Cumulo-nimbus 0.9 

Strato-cumulus 0.6 

Cirrus 0.4-0.5 

Fresh Snow 0.8-0.9 

Me king Snow 0.4-0.6 

Table 7.3: Land cover albedo estimates (Barry, 1992) 

Where remotely sensed estimates are not available it is necessary to predict albedo variations, 

because many of the controls outlined in Table 7.2 are unlikely to be available it is necessary to 

use proxy variables to simulate these parameters (Greuell and Genthon, 2004). Brock et al., 

(2000a) used regression analysis to predict albedo as a function of maximum daily temperature, 

differentiating between shallow (less than 0.5 cm SWE) and deep (greater than 0.5 cm SWE) 

snow cover where exponential and logarithmic fianctions are used respectively. Where the 

albedo for deep snow (aso ) is given by: 

asD = Ci - C 2 l o g T, (Equation 7.11) 

Where T,na is the accumulated amount of daily maximum temperatures above 0°C, Ci = 0.71, C2 

= 0.11. The daily maximum temperatures attempt to account for changes in the grain size and 

rheology of the snow, for small T™, aso is constrained by a maximum value of 0.85. 

Brock (2004) attempting to improve on these estimations used data collected on high frequency 

variations in local albedo (measured at 10 minute intervals over an 11 day period on Haut 

Glacier d'Arolla, Switzerland) to develop a new method of calculating local albedo, where 

variability is driven by cloud cover and predicted using the difference between measured and 

potential incident radiation. Brock (2004) proposed that failure to account for increased albedo 

under cloudy conditions could lead to the overestimation of melt by between 1 - 3 mm snow 

water equivalent (SWE) day"'. Earlier studies had also identified strong correlations between 

cloud cover and albedo, this positive correlation, is largely driven by the multiple reflection of 

diffuse radiation between the snow surface and the cloud base (Male and Grainger, 1981). 

246 



l-'i e t l i c H i i ^ ; (1 l a c i e r \ c c i n n u l a l n i i i A r e a ! )Kir i l in l i iMi^ ( . ' l i a n i e r S e \ e n 

K a t h e i m e 11 A r r e l l M a s s B a l a n c e V I i K l e l l i n u 

Although local energy studies within the cyrosphere attempt to differentiate between small 

temporal and spatial scale variations in albedo within a snowpack over diurnal time scales, 

studies focusing on larger temporal scales and more varied landcover types assume 

homogeneity within snow assigning an albedo of between 0.6 and 0.9 with suflFicient accuracy 

(McKenney et al., 1999). It is therefore a question of resolution and scale in assigning model 

parameters, aiming to maintain consistency in the complexity each component is modelled. 

Brock and Arnold (2000) propose albedo of values of 0.9 and 0.85 for fresh snow and old snow 

respectively for conditions when other variables are unknown, average albedos for landcovers 

are given by Barry (1992) (Table 7.3). 

7.4.3 Long wave radiation 

Absorption and emittance of longwave radiafion occurs within a volume rather than at a surface 

and fluxes decay exponentially with increased distance from the surface (Barry, 1992). Snow 

and ice are almost full radiators in the longwave section of the radiation spectrum, but absolute 

values are low, because the surface temperature is tow (Oke, 1978). 

The net longwave radiation flux emitted from the sky and surrounding terrain provide only a 

small contribution to melt (Price, 1986; Rothlisberger and Lang, 1987; Hay and Fitzharris, 

1988; Braithwaite and Olesen, 1990; Paterson, 1994; Arnold et al,. 1996; Brock and Arnold, 

2000). Fierz et al.,. (2003) however, stressed the importance of longwave fluxes, especially 

emittance from surrounding rock surfaces, where they found estimates of local balance without 

longwave fluxes, poorly predicted net balance, often overestimating and propagating error to 

melt calculations. This contribution was contested by Greuell et al., (1997) and Kayastha et al., 

(1999) who found that for study areas in the Alps and the Himalayas inclusion of longwave 

radiation from surrounding slopes made only a marginal contribution to the net energy balance. 

Parameterisations of the incoming longwave radiation flux are largely driven by clear sky 

emittance, temperature and vapour pressure, either 2 m above the surface or at several points in 

a column above the surface. For clear skies, the incoming longwave radiation flux (Li) is 

represented by, 

Li cs = 0T2,,, (Equation 7.12) 
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Where £•„ is the effective emissivity of the sky, a is the Stefan - Boltzmann constant (= 5.67 * 

lO'Vm'^K") and T2n, is the 2 m above the surface temperature in Kelvin. Several 

parameterisations of s^^ exist and the method proposed by Konzelmann et al. (1994) and 

Greuell and Genthon (2004) is outlined here where is given by: 

f „ = 0.23 + c, 
1/8 

V'^2m J 
(Equation 7.13) 

Where C l is a tuning parameter and e2m is the vapour pressure at 2 m. 

An alternative similar approach is given by Arnold et al. (1996) where s^^ is given by: 

£•„ = (1 + ^n) s„ (Equation 7.14) 

where n is cloud cover (0 - 1.0) and A: is a constant depending on cloud type. Where e„ is the 

clear sky emisstivity given by 

= (8.733 * 10-̂ ) * Ta * 0.778 (Equation 7.15) 

where Ta is air temperature. 

Brock and Arnold (2000) proposed a value for k of 0.26, which following values reported by 

Braithwaite and Olesen (1990) as the mean value for altostratus, altocumulus, stratocumulus, 

stratus and cumulus cloud types. 

Predictions of L], and S^^ZXQ highly sensitive to temperature and vapour pressure profiles and 

cloud cover. Sugita and Brutsaert (1993) provided a number of prediction algorithms for clear 

sky receipts with quantified sensitivity to cloud cover. Inclusion of tuned parameters for cloud 

cover limit the application of these algorithms which are only able to predict local trends. 

The outgoing longwave radiation flux ( L f ) is driven by surface temperature and emissitivity 

(ES), the latter is close to 1.0 for snow ajid ice (Greueil and Genthon, 2004).simplifying L j from: 
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To: 

L t = EsOT ̂  + (1 - Es) L i (Equation 7.16) 

L t = o T ^ (Equation 7.17) 

A further simplification is the assumption of the surface to be 0°C (Brock and Arnold, 2000) 

where the surface radiates as a black body there is a constant outgoing flux of 316 Wm'^ (Oke, 

1987). 

7.4.4 Direct beam radiation 

The solar radiation received at a site is not only a function of solar position and local 

topography but also is also controlled by a suite of atmospheric and solar parameters 

determining the amount of radiation entering the top of the atmosphere, the optical air mass 

(defining the path of the radiation through the atmosphere) and attenuation of the radiation by 

aerosols and water vapour. 

Following from Kreith and Kreider (1978) the solar flux entering the atmosphere (!„) in Wm"^ 

accounting for elliptical variations in the earth's path around the sun is given by: 

lo = So (1 + 0.0344 * cos(360°* N / 365)) (Equation 7.18) 

Where So is the solar constant, defining the irradiance of an area perpendicular to the sun's rays 

just outside the atmosphere. Estimates from NASA record So as 1353 Wm"^ ± 1.6% (Kreith and 

Kreider, 2000), with a constant figure under much debate and subject to uncertainties a value of 

1367 Wm"^ is used here following the findings of Duffie and Bechman (1991), Kreith and 

Kreider (2000) and Kumar et al. (1997). 

Attenuation by atmospheric aerosols and water vapour reduces the mount of radiation reaching 

the surface, this is largely parametrised using Bouger's law, stating that the radiation passing 

through the atmosphere, the 'terrestrial radiation' (lb) is given by (Kreith and Kreider, 1978): 

lb = I ce - '"" (Equation 7.19) 

Where, k is the absorption coefficient and m is air mass ratio 
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The air mass ratio quantifies the mass of air encountered on the path of the radiation through the 

atmosphere to the earth's surface, representing the ratio between the path length mass and the 

mass when the sun is overhead, m varies as a function of the direction of the path and surface 

altitude. Variations in m driven by path direction are accounted for using the zenith angle (vj/) 

between the path and the point on the celestial sphere above the earth's surface. 

Where for y < 70° Gates (1980) proposed the use of a secant approximation where, 

w = 1 / cos v|/ (Equation 7.20) 

and for vj/ > 70°, when the secant approximation underestimates solar energy as atmospheric 

refraction and the earth's curvature are not considered and an adjusted approximation is given 

by: 

m = [1229 + (614sina)Y ' -614s ina (Equation 7.21) 

Variations in mass associated with surface altitude are quantified using variations in local 

atmospheric pressure, where altitude adjusted airmass (ma) proposed by Williams et al., (1972) 

is given by: 

ffja = (p / po) m (Equation 7.22) 

where p is the local pressure and pois the pressure at sea level. 

Parameterisation of solar radiation attenuation can incorporate wavelength dependent variations 

(Monteith, 1990; Monte ith and Unsworth, 1990), accounting for water vapour, O3 and CO2 

absorption (Hottel, 1976), molecular Raleigh scattering or Mie scattering by aerosol scattering 

by particulates (Kumar et al., 1997). Where absorption heats the surrounding atmosphere and 

scattering simply redirects the beam (Monteith and Unsworth, 1990). 

Beer's law states atmospheric transmittance Tb is given by: 

tb = Sp(0) (Equation 7.23) 

Where Sp(0) is direct beam irradiance below an aerosol free atmosphere, x is the turbidity 

coefficient and m is the air mass. Where t is a function of wavelength absorption and 

atmospheric concentrations. Sp(0) varies as a function of air mass and zenith, these parameters 

250 



P r e d i c u n g C d a c i c i ' A e c L n n u l a i K , ) i i A r e a l - ) i ; > l r i b u l i u n s C h a p i e i ' S e s e r i 

K a l h e r i n e E A r r e l l M a s s R a l a n c e M i n l e l l n m 

were quantified by Kreith and Kreider (1978) and atmospheric transmittance (Xb) and can be 

modelled as: 

lb = 0.56 (e""'-" + e '""^"") (Equation 7.24) 

Where the constants represent average wavelength attenuation for aerosol absorption and 

Raleigh scattering. Cartwright (1993) reported that this method estimates within 3% of 

recorded values for clear sky conditions, with atmospheric transmittance values ranging 

between 0 and 1. This parameterisation was also successfully used by Kumar et al. (1997) 

Wavelength dependent attenuation algorithms were outlined by Dozier (1980), but have not 

been discussed directly here because average wavelength approximations provide acceptable 

results. 

Attenuation of solar radiation entering the atmosphere creates two distinct directional 

components to the solar radiation reaching the ground, direct beam and diffuse. The latter 

created by molecular scattering and absorption. 

Shortwave radiation striking a surface normal to the sun's rays (Is) can be shown as: 

Is = lo Xb (Equation 7.25) 

An alternative methodology was proposed by McKenney et al. (1999) who used published 

monthly average extraterrestrial and terrestrial radiation, and altitude to predict average 

irradiance (accounting for atmospheric attenuation) at 10° latitudinal bands, and fitted a 

polynomial with and of 0.99. Both of these methods produce estimates of the radiation 

normal to the surface but further adjustments are required to account for the amount of direct 

beam radiation transferred to an inclined surface. Kreith and Kreider (1978) define this as: 

Direct Beam Radiation = radiation normal to the surface * cos (angle of incidence) 

on a sloping surface 

Where / is the angle of incidence and cos / is given by: 

Cos i = (sin 8s (sin LR * cos 0 - cos LR * sin 0 * cos asp) 

+ cos 8s *cos h *(cos LR * cos 0 + sin LR * sin 0 *cosasp) 

+ cos 8s * sin 0 *sin asp * sin h) 

— — - (Equation 7.26) 
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Accounting for solar position and surface slope provide an estimate of potential shortwave 

radiation. However cloud cover has a marked influence on the proportion of short wave 

radiation incident at the surface. The characteristics of this relationship depend on the type and 

extent of cloud cover. A number of models of quantifying this relationship exist based on hours 

of sunshine (Angstrom, 1924), cloud cover type and amount (Haurwitz, 1948; Davies, 1975) or 

cloud layers (Suckling and Hay, 1977). Heggem et al. (2001) found that cloud cover had a less 

significant role on the spatial distribution of incident radiation than albedo where the effect was 

restricted to very steep terrain areas. 

Kasten (1983) concluded that incident radiation predictions in mountainous areas were highly 

dependent on cloud cover, where higher than expected receipts were found under cloudy 

conditions where refracfion on the sides of clouds increased local receipts. Izioman and Mayer 

(2001) further developed this relationship and found that the most robust estimates of incident 

radiation were found when monthly mean cloud cover fraction was used rather than more 

complex predictive approaches. This was also found by McKenny (1999) whilst investigating 

the relationship between total daily irradiance and cloud cover, finding that there was no 

correlation and that day length provided much more informed estimates. These findings do 

however, suggest that cloudiness is a significant component of radiation models. 

Cloud cover has two primary effects on the net shortwave flux reaching the surface, initially 

scattering, reflecting and absorbing radiation (determining global radiation) and secondly 

determining the proportion of radiation received as direct and diffuse components. 

Parameterisations of global radiation receipt are commonly incorporated into potential radiation 

estimates unless detailed cloud cover information is available (Male and Gray, 1981). Geiger 

(1965) records correlations between cloud cover okta and global radiation. 

Brock and Arnold (2000) use a diffuse fraction to determine the proportion of recorded global 

radiation received as diffuse and direct components, where the diffuse fraction is given by: 

Df = 0.65 * n + 0.15 (Equation 7.27) 

where n is the cloud cover fraction (with complete cloud cover having a value of I .O). This 

proportion calculation needs to be calculated before adjustment for a sloping surface using Is. 
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7.4.5 Diffuse radiation 

Diffuse irradiance is reflected direct radiation or reflected radiation that is scattered by 

atmospheric particulates and / or clouds. This has two components, isotropic homogenous 

throughout the hemisphere and circumsolar originating f rom within 5° o f the direct solar beam 

(McKenney et al, 1999). Diffuse radiation is largely assumed to be isotropic because although 

there are slight variations wi th topography these are largely linked to gradient and are similar to 

direct beam radiation distributions (Dubayah and Rich, 1995; Dubayah et al., 1989). Inclusion 

o f diffuse radiation components are found to accentuate spatial distribution patterns o f direct 

beam radiation (Williams et al., 1972). Although diffuse radiation is assumed to be isotropic 

throughout the sky the proportion o f sky, that an area on the ground is exposed to varies. This 

can be modelled using a sky view factor (Dozier, 1980; Dubayah and Rich 1995) which 

accounts for spatial differences in sky exposure to diffuse radiation. The sky view factor can be 

defined as the hemispherical fraction o f unobstructed sky visible f rom a point. L i u and Jordan 

(1960) reported a negative correlation between direct and diffuse radiation where recorded 

under clear sky conditions, when direct beam radiation receipts are the greatest, only a small 

diffuse component is recorded with a maximum possible value not exceeding 200 W m 

Highest recorded values o f diffuse radiation are recorded when cloud cover is approximately 50 

% (Monteith and Unsworth, 1990). 

Gates (1980) parameterised diffuse radiation as ( I j ) 

Id = lo Td cos ^ P / 2 sin a (Equation 7.28) 

Where id is the radiation diffusion coefficient and can be related to Tb using a parameterisation 

proposed by L iu and Jordan (1960) relating higher direct beam transmittances to lower diffuse 

transmittances. 

T d = 0.271 - 0.294 Tb (Equation 7.29) 

Following on f rom the work o f Brock and Arnold (2000) and using the diffuse fraction 

(Equation 7.27) this then allows the diffuse component o f incoming shortwave radiation to be 

shown as: 

Id = Df *I3 * cos^ (9/2) + ttM * Is * sin^(0/2) (Equation 7.30) 
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Where the first part o f the parameterisation quantifies the diffuse proportion o f radiation 

incident on a surface f rom the sky hemisphere assuming isotropic conditions, and the second 

component represents diffuse radiation f rom the surrounding terrain where UM can be assumed 

to be the snow albedo because contributions f rom surrounding rock faces are small and hard to 

quantify. This approach is in contrast to that outlined by Fu and Rich (1999). In these authors 

solar analyst application, sky view factor and terrain view factors were used to determine each 

o f these components. 

7.4.6 Turbulent energy exchanges 

The local sensible heat balance is and important mechanism o f energy transfer identified in 

Equation 7.1 as a control on glacier initiation. Although usually playing a subtler role in the 

local energy balance, its influences is important and must be considered when predicting glacier 

distributions (Martin and Lejeune, 1998; Marsh et al, 1997; McGregor and Gellatly, 1996; 

Prowse and Owens, 1982; Moore and Owens, 1984; Scherer et al., 1998; Granger et al., 2002 

and Figure 7.7 a and b) especially during early spring melt when net shortwave radiation 

receipts are lower and air temperatures are above 0°C. Nordbogletsher (Figure 7.7a) and 

Quamanarssup sermia (Figure 7.7b), in the Greenland ice sheet show examples o f the 

magnitude o f these variations. 
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Figure 7.7: Relationship between temperature and the different components o f local energy 

balance (Benn and Evans 1998, p74, after Braithwaite and Oleson, 1990) 

Convection transports heat to and f rom the atmosphere in both its sensible and latent forms. 

The process o f convection involves"the vertical interchange o f air masses and can only occur in 
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liquids and gases. Sensible heat transfer is an example o f a turbulent transfer commonly 

performed by eddies which transport energy and mass f rom one location to another. Eddies 

may be set into turbulent motion by free or forced convection. 

Free convection is due to the parcel o f air being at a different density to the surrounding air. 

This situation commonly exists when the earth's surface is heated by solar radiation. I f the state 

o f the atmosphere is conducive to free convection the atmosphere is said to be unstable. The 

atmosphere near the earth's surface may be physically put into motion when it f lows over 

obstacles. This is forced or mechanical convection and depends on the roughness o f the surface 

and the speed o f the horizontal f low. Frequently free and forced convection coexist and give 

rise to mixed convection. 

I f the addition or subtraction o f energy to a body is sensed by a temperature rise or fa l l then it is 

referred to as sensible heat. The energy or heat required to change a substance to a different 

form at the same temperature is called latent heat, and is released when the substance returns to 

its initial state. Energy is taken up to move in the direction o f a higher energy state. 

It is possible to identify local or climatological factors (free convection) and static or 

topographical factors (forced convection) that control the sensible heat balance. Free 

convection is most dependent upon the presence o f eddy fluxes, i f stable air is present above the 

surface eddy fluxes and consequently sensible heat transfers are suppressed. Forced convection 

is largely controlled by local topography and wind speed. 

Prevailing air mass conditions, altitude, time o f year and terrain features influence the relative 

importance o f turbulent heat transfers (Marsh et al., 1997; Male and Grainger, 1981). Obled and 

Harder (1979) identified a number o f controls on turbulent heat exchanges specific to alpine 

environments. Their work largely focused on thermal circulation patterns in mountains and 

their topographic impact on temperature and humidity patterns. Marsh et al. (1997) examined 

the role o f sensible heat exchanges in driving melt over heterogeneous (patchy) snow cover. 

Greater temperature gradients between the glacier surface and the air and higher wind speeds 

drive greater exchanges. However Paterson (1981) reports that glacier winds inhibit ablation by 

convection, by cooling the air temperature and reducing local turbulence. 

Spatially distributed estimates o f sensible heat exchanges resulting f rom turbulences in the 

boundary layer directly above the snow surface have received little attention (Fierz et al., 2003) 

arid arelnfre(fuently incliaded in diŝ ^̂ ^ 
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Methods o f predicting and measuring sensible iieat fluxes vary in scale and complexity, 

measurement o f eddy covariance, recording turbulent mixing and can be used to quantify 

turbulent heat exchanges over a surface. Applications o f this method are restricted by high cost 

o f equipment, the high spatial and temporal resolution data requirements and instrument 

sensitivity. However, limited field records are often use to test and validate predicted exchanges 

(Arck and Scherer, 2002; Martin and Lejeune, 1998). Parameterisation o f sensible and latent 

heat fluxes provides significant advantages and are frequently used in local energy balance 

studies. 

The 'prof i le ' method uses measurements o f wind speed, potential temperature and specific 

humidity at a number o f levels above the surface to resolve local flux estimates (see Greuell and 

Genthon, 2004 for estimation methodology). This estimation process is complex and requires 

multiple altitude level meteorological data, which are commonly not available. A n alternative 

method that Denby and Greuell (2000) and Arck and Scherer (2002) hypothesised to provide 

better results are termed the 'bu lk ' method which integrates velocity, humidity and temperature 

f rom one altitudinal level to the surface. Where QH is shown as: 

QH=PaC pa / \/ 

^oh J 
I n — + 

V 

(Equation 7.31) 

and QL is given by: 

V 
In • " + 

(Equation 7.32) 

Cpa is the specific heat capacity o f air (1005 J Kg ' K " ' ) , Ls is the latent heat o f sublimation (2.84 

* 10^ JKg"'), K is the Von Karman constant (0.4), z is the height (m) above the surface. T^ is 

the surface temperature, is the specific humidity at the surface and q at a given height z. ZQ, Zr 

and Zq are the roughness lengths for velocity (u), temperature (T) and water vapour. These are 

defined as the distances above the surface where the profiles o f u, 0 and q reach their surface 

values. Much debate has surrounded the appropriate scale o f roughness parameter and how well 

it correlated wi th mesoscale surface features. Roughness lengths over glacier surfaces are 

generally in the order o f millimetres but can be significantly greater in areas o f complex 
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topography (Brock, 1997; Brock and Arnold, 2000). For snow values o f Zo varying between 

0.01 mm to 10mm, the latter apply when large scale ablation features such as ablation hollows 

dominate and values for ice range between 0.1 mm and 10 mm. Over snow, T j can adopt the 

zero degree assumption or can be given by subsurface temperature modelling. Specific humidity 

(qs ) , is driven by T j and is shown as: 

qs = 0.621 ^""^^^^ (Equation 7.33) 

Where p is the atmospheric surface pressure. Further parameterisation is required to calculation 

the Monin-Obukhov length (Lob) using a,n and tth empirical fiinctions in stability for momentum 

and sensible heat respectively. Iterative calculations are required to calculate exchanges using 

this method and although it is possible to s implify these algorithms, error increases (Greuell and 

Orelemans, 1986) and costs are still high (Arck and Scherer, 2002) 

A n alternative method proposed by Young and Woo (1997) and Arck and Scherer (2002) 

specifically for determining sensible heat f lux over snow offers significant computational 

savings using an alternative bulk method, where QH is shown as 

Qh = pCpeChU(Tp-Ts) (Equation 7.34) 

Ch is a dimensionless drag coefficient for heat and Tp is the potential temperature. 

Ch = Ccn = (Equation 7.35) 

In 
Z-d 

V ^0 y 

This assumes neutral conditions(Ccn), wi th air temperature varying at the D A L R and logarithmic 

wind speed profiles. These conditions have been argued to be uncommon above melting ice, 

which are believed to be more accurately represented under a stable boundary layer, where cool 

air lies above the surface and reduces turbulent exchanges (Gi l l , 1982; Paterson, 1994; Hock 

and Holmgren 1996). Although other authors (Grainger and Lister, 1966; Munro and Davies, 

1977; Halberstam and Schieldge, 1981; Brock and Arnold, 2000) have argued that insufficient 

f ie ld data is available to qualify this statement. 
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Accounting for stable conditions requires the inclusion o f Richardson Numbers (Ri) that 

quantify atmospheric stability, and are given by: 

AT/Az 
= ^ W (Equation 7.36) 

T [Au / Az\ 

Over snow it is possible to assume that T and surface wind speed are 0.0. The numerator relates 

buoyancy to turbulent f low represented by the denominator; (free and forced convection 

respectively) (Oke, 1987). Where a negative Rj indicates unstable conditions when free forces 

dominate and a positive Rj indicate stable conditions when inversions dominate and little 

convection occurs. Where AT and Aii are the difference between surface and reference height 

values. 

Price and Dunne (1976) use Rj to adjust the drag coefficients for atmospheric stability giving the 

stable drag coefficient (Ccs) as: 

Cos = Cen / (1 + 10 Rb) for Ri > 0 (Equation 7.37) 

And under unstable coefficients (Ccu) the coefficient is 

Ccu = Ccn * (1 + 10 Rb) for Ri < 0 (Equation 7.38) 

Where Ccs replaces Cch in equation 7.35 

Where the potential temperature Tp is 

Tp = T 
p ) 

(Equation 7.39) 

Where p is atmospheric pressure (mbars) and RIC^, Cp is the constant heat capacity o f air, R is 

the specific gas constant the constant o f proportionality can be taken as 0.285 (Mcllveen, 1992) 

7.5. Energy Balance Model 

The.structure o f the energy balance model -is shown in Figures 7.1 and 7.8. A computationally 

efficient and accessible modular structure facilitates modifications and user defined parameter 
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or component alterations. Driven by inputted monthly climatic data and a D E M the model 

calculates daily and diurnal temperature variations and predicts monthly net radiation, surface 

albedo and temperature. 

7.5.1 Model Prediction Resolution 

Local mass balance calculations are made at the D E M resolution, 100 m, which it is at the upper 

l imit o f the recommendations made by Heggem et al. (2001) in their study o f energy balance 

models in periglacial studies, but it is felt during this study that a smaller resolution in the 

radiation component o f the model could not be supported by the other model components and 

would increase sensitivity to D E M error that would be incorporated by resampling the elevation 

data. Isard (1983) investigated the role o f temporal and spatial scale on irradiance calculations 

in alpine terrain and found that both were most pronounced in topographically rough areas 

where topographic shading played an important role. Dubayah et al. (1990) investigated the 

role o f D E M resolution on incident radiation calculations. In their study radiation variance was 

found to decrease with increasing pixel resolution due to lower surface slopes and radiation 

spatial autocorrelation increased with increasing pixel resolution where larger organised 

landform features were dominant within the D E M . The 100 m spatial resolution utilised in this 

research project is supported by the findings o f other studies that showed an optimal scale to 

resolve landforms and surface processes (McKenney et al., 1999; Arre l l , 2000), where local 

topographic parameters are only a component o f the global and meso scale systems controlling 

melt. 

Important energy balance exchanges operate on a diurnal and daily temporal resolution. Much 

discussion has been reported in the literature surrounding optimal time steps and prediction 

accuracy (Fierz et al., 2003). Where Hock (1998) reported improved accuracy with increased 

temporal resolutions, and conversely the W M O (1986) and Pluss (1997) reported little or no 

improvement with increased temporal resolution. It is suggested in this study that these 

discrepancies are simply highlighting sensitivities to prediction algorithms, data quality and 

spatial resolution, terrain type and local factors, where it is proposed here that it is not possible 

to make generic statements about optimal time steps. 
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Figure 7.8: Energy balance model inputs and outputs 
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Monthly and diurnal time scales were used within the energy balance model, where process 

modelling was optimised using the most appropriate resolution. The temporal resolutions used 

within the f u l l mass balance model are outlined in Table 7.6. 

Variable Resolution Justification 

Flux Normal to the Surface 5 Days • Little Variation occurs within shorter 

time periods 

Direct Beam Radiation • 10 time intervals during daylight hours. 

constant for 5 day time period. 

Diffuse Radiation >- 10 times • Driven by solar position 

a day • Daily and seasonal trends modelled with 

J little variation lost. 

Sensible Heat Hourly • Driven by temperature and fluxes 

present day and night 

• Strong diurnal trend, driven by diurnal 

temperature data. 

Longwave Radiation Hourly • Driven by temperature and fluxes 

present day and night 

Net Radiation • Computational efficiency 

• Melt has a known sensitivity to climatic 

data and these are most robust using 

Albedo monthly mean values. 

• Potential error propagation f rom 

unrealistic albedo or surface temperature 

Surface Temperature 
> . Monthly predictions f rom extreme climatic events 

r limited the temporal resolution to 

monthly. 

Melt • Consistency and data availability lead to 

melt and accumulation calculations at 

Snow Accumulation monthly time steps 

Table 7.6: Temporal resolutions used within the model 
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7.5.2 Initial conditions 

The energy and mass balance model is initiated at month 1, August, wi th no snow cover and a 

mean surface albedo o f 0.4. The surface temperature is set as the mean monthly air 

temperature. A t month 2, September, albedo and surface temperature are predicted using the 

output f r o m August calculations. August was the first month to ensure that al l accumulation 

was captured within the mass balance year predictions. Predictions where made every month 

through the mass balance year with the model year ending at the end o f August the fo l lowing 

year. Subsequent year calculations were not made as advection is not modelled within the mass 

balance predictions where annual variations would only show deepening snowpacks. 

7.5.3 Modelled direct beam radiation 

The solar constant was assumed as 1.367 W m " (Kreith and Kreider, 1978) and variation through 

the year was modelling fol lowing Kreith and Kreider (1978) and given here in Equation 7.18. 

Following Gates (1980) air mass was given by Equation 7.21 using the secant approximation. 

Solar attenuation by aerosols was also modelled fo l lowing Kreith and Kreider (1978) shown 

here in equation 7.24, where wavelength dependence was not believed to provide a large 

contribution to melt. 

The normal to the surface was predicted using Equation 7.25 and the incident radiation on a 

sloping surface was derived using Equation 7.26. These approximations were successfully used 

by Kumar etal. (1999). 

Normal to the surface estimates were made every f ive days wi th a constant f l u x assumed for that 

period. Sunrise and sunset times were also estimated for that time period, allowing calculation 

o f the number o f day light hours which was used to calculate the sub daily time steps. Each day 

was divided into 10 time intervals, during which radiation fluxes were assumed constant. This 

was believed to create a representative net daily radiation receipt and maintain computational 

efficiency. Direct beam radiation calculations were made and topographic shading was 

incorporated for each calculation using the methods outlined in Chapter Four. Predictions were 

in made in Joules per m"^ and were multiplied by 60 (to minutes) *60 (to hours) * time interval 

in hours to convert to time step totals, which were then summed for the day, 5 day period and 

month. 
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7.5.4 Modelled Diffuse Radiation 

Diff i ise radiation was modelled fo l lowing the work o f Brock and Arnold (2000), who recorded 

good results and lower computational costs and simulated accurate spatial receipt patterns. 

Diffuse radiation was given by Equation 7.30, where the diffuse fraction turned to 1 under clear 

sky conditions and under cloudy conditions was given by Equation 7.27. The diffuse fraction 

was used to allocate the proportion o f incident short wave radiation (given here as the normal to 

the surface) that was received as diffiise radiation. 

Predictions o f diffuse radiation followed the same pattern as outlined for direct beam radiation 

in section 7.5.3. where both short wave components are only received during daylight hours. 

7.5.5 Modelled Longwave Radiation 

Longwave radiation was modelled as an incoming and outgoing flux, where positive values 

indicate fluxes towards the surface. The incoming radiation flux was predicted fo l lowing Oke 

(1987), given here in Equation 7.12. Effective and clear emissivity were predicted fo l lowing 

Brock and Arnold (2000) Equations 7.14 and 7.15 respectively. These parameterisations were 

found to give realistic results and good accurate approximations. 

The outgoing longwave flux fo l lowing Brock and Arnold (2000) was held as a constant at 316 

W m ' ^ This assumption was not reported to l imit predictions and is supported by Oke (1987). 

Unlike shortwave fluxes (7.5.3 and 7.5.4) longwave radiation driven by temperatures and 

surface and atmospheric emissivity properties operate during the day and night and were 

calculated hourly for each o f the five day periods. Mean monthly temperature read into the 

model was used to predict diurnal variations using sine and cosine functions (section 6.4). 

Predictions o f incoming and outgoing fluxes were made in Joules m"^ and converted to minutes 

and hours and summed for the day, each 5 day period and month to create monthly net flux 

estimates. 

7.5.6 Modelled Cloud Cover 

Cloud cover data outlined in section 6.6.3 was used to drive cloud cover parameterisations in 

the energy balance model: Five different cloud simulations are mo"delIed"to~allow their effect on 
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accumulation to be assessed and the most optimal model for snow accumulation to be identified. 

Cloud cover was used to both create predictions o f global radiation, where losses through 

scattering, absorption and reflectance were accounted for and to proportion radiation into its 

diffuse and direction components as a function o f cloud cover. A description o f the cloud 

variables and parameterisations uses within the model are outlined in Table 7.7. 

Parameterisation / Variable Description 

Average Monthly Okta • Average monthly okta 

• Constant for the month 

• Global radiation = normal to surface * (1 - average okta) 

Variable cloud Okta • Variable cloud cover okta 

• 5 day estimates 

• Global radiation = normal to surface * (1 - variable 

okta) 

Diffuse Fraction • Following Brock and Arnold (2000) (Equation 7.27) 

divides global radiation into diffuse and direct 

components 

Cloud Parameterisation 1 • Variable cloud cover okta 

• 5 day estimates 

• Global radiation = normal to surface * (1 - variable 

okta) (Following Geiger, 1965) 

• Following Brock and Arnold (2000) (Equation 7.27) 

divides global radiation into diffuse and direct 

components 

Cloud Parameterisation 2 • Variable cloud cover okta 

• 5 day estimates 

• Global radiation = normal to surface * (1 - (variable 

okta - 0 . 1 ) ) (Following Geiger, 1965) 

• Following Brock and Arnold (2000) (Equation 7.27) 

divides global radiation into diffuse and direct 

components 

Table 7.7 Details o f cloud parameterisation included within the model 
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7.5.7 Modelled Turbulent Heat Exchanges 

Large uncertainties surround all estimates o f sensible heat especially over snow cover (Arck and 

Scherer, 2002) and in complex terrain (Martin and Lejeune, 1998) where where topographically 

induced turbulence often leads to exchanges exceeding average values. Strategies to address 

this problem proposed the use o f improved roughness measures that considered upwind 

variations. This was incorporated into the predictions o f this study within the wind speed 

modelling component in a 'bulk ' prediction method, selected for its reduced computational 

costs and lower data requirements. 

Local estimates o f the sensible heat f lux , driven by diurnal temperature predictions and local 

wind speeds followed the Young and Woo (1997). Where the sensible heat f lux was given by 

Equation 7.34, 7.35, 7.37 and 7.38, Richardson numbers were calculated using Equation 7.36 

fo l lowing Oke (1978) and the stable and unstable drag coefficients fo l lowing Price and Dunne 

(1976) Equations 7.37 and 7.38. This methodology was chosen as it found to produce robust 

results in a review o f prediction models by Arck and Scherer (2002) and allowed for the 

parameterisation o f stable and unstable conditions above the glacier surface. 

Predictions o f sensible heat fol lowed the same pattern as outlined for longwave radiation in 

section 7.5.5. 

7.5.8 Example Energy Balance Output 

The net radiation available to melt was summed at the end o f each month, the energy balance 

components outlined in sections 7.5.3 - 7.5.6 were also summed and used to validate estimates 

and interpret glacier accumulation predictions. 

Example output f rom the energy balance component o f the model is shown in Figure 7.9 a - e. 

A l l energy balance components exhibit a marked spatial organisation, where differential receipts 

are topographically organised. Direct and diffuse components (Figure 7.9 a and b) show some 

evidence o f propagated D E M error, but this is not found in resultant glacier predictions, and is 

noticeable due to the strong slope components to predicted direct and diffuse radiation. 
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Figure 7.9: Predicted radiation components for August 
(MJ) 

a) Direct Beam 
b) Diffuse 
c) Long Wave Balance 
d) Sensible Heat Exchange 
e) Net Radiation 
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Predictions also exhibited diurnal, daily and monthly trends congruent wi th expectations. 

7.6. Mass Balance Model 

Predicted monthly net balance, precipitation and temperature were used to predict monthly 

snow accumulation. Each o f these components are known to have an important contribution to 

melt, supported by the research o f Marks et al. (1999), who used distributed climate and net 

radiation to predict melt for known precipitation events and stressed the need for accurate 

climate forcing surfaces. 

A two layer snow pack was used to represent new and old snow, where melt only occurred 

when there was a positive flux towards the surface and the snow temperature was at or above 

melting point (O^C) or could be warmed to this temperature. Melt occurred until all the energy 

or snow was extinguished, and i f energy remained heating and mehing could occur on the old 

snow. 

The model structure presented here is supported by the work o f Greuell and Genthon (2004) 

who state that spatially distributed temperature and precipitation fields must be used when 

predicting spatially distributed melt. 

7.6.1 Snow pack model 

Bulk subsurface models (Greuell and Genthon, 2004) differentiated between layers o f snow, 

their albedo and melt rates. This research used a two layer snow pack model, representing fresh 

snow (layer 1, f rom month n) and the previous months snow (layer 2, f rom month n-1). Only 

two snow layers exist at any one time requiring merging o f old snow layers, where snow 

remaining from the month before, month (n - 2 ) , is combined with the snow f rom month (n - 1 ) 

by adding the two remaining depths. Each snow layer maintains its surface temperature. 

A two layer snow pack model was believed to provide advantages over a single layer model, 

where surface temperature could be maintained for each, providing a representation o f snow 

rheology which is known to be distinct between events (Male and Gray, 1981). 

7.6.2 Heating Algorithm 

Many ablation models use a zero degree assumption when calculating melt. This assumes the 

snow or ice surface to be at 0°C, melting point.. Under these conditions if.there_is„a_positive 
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energy f l u x towards the surface all is available for melt, which is expressed (Greuell and 

Genthon, 2004) as: 

^ = ^ (Equation 7.40) 

Where dR„ff is the change in runoff, dt is the time interval, Q„ is the energy f lux towards the 

surface and L / i s the latent heat o f fusion (0.334 * 10* J kg"'), with no melt occurring i f the 

energy balance towards the surface is negative. Although this assumption is largely valid for 

many mid latitude glaciers, it does not hold for high altitude or high latitude glaciers when the 

snow surface frequently drops below zero or for early spring ablation. This was confirmed by 

Oerlemans et al. (1991, 1992), where a depth equivalent to 2 meters o f ice was heated at the 

beginning o f the ablation season and was only available to melt when this was warmed to 0°C. 

The method outlined by Oerlemans et al. (1991, 1992) was extended here to account for 

monthly precipitation events, where each months precipitation fel l at the predicted atmospheric 

temperature (Tg), and when Ta < 1 °C energy f rom the net predicted balance wanned the layer 

to 0°C when melt could occur. A t the end o f the month the most recent snow layer was 

combined with the previous layer (section 7.6.1). Resultant merged layer snow surface 

temperature was calculated by averaging the values f rom month (n-1) and month (n-2). 

The specific heat capacity o f ice is 2009 J (Oke, 1987), which is the energy required to heat 1 

kilogram o f water by 1 °C. Snow weight was calculated by multiplying snowfall depth in 

meters by water density (lOOOkg/m"^). The steps in the heating programme are outlined below: 

Snow Heating Algorithm 

1) Extract snow surface temperature 

2) Calculate degrees o f heating required to raise temperature to 0°C. 

3) Extract snow depth and convert to meters 

4) Calculate snow weight (kg) by mult iplying by water density 

5) Required energy = Snow weight * degrees o f heating required * specific heat 

capacity. 

6) Extract energy available to heat snow 

7) Calculate available - required energy to establish surplus or deficit. 

8) I f surplus, energy left saved to use in melting algorithm, snow temperature set to 0°C. 

I f deficit, snow is heated to temperature possible wi thin available energy, snow 

temperature set and available energy^set to 0. ~ 
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7.6.3 Melting Algorithm 

The latent heat of fusion is the energy required to convert 1 kilogram of snow to water, for ice 

this is (0.334 * 10* J kg ' ) . Snow weight was calculated by multiplying snowfall depth in meters 

by water density (1000kg m "*). The steps in the melting programme are outlined below: 

Snow Melting Algorithm 

1) Extract snow surface temperature 

2) I f snow temperature >= 0 °C and energy available > 0 J melting can occur. 

3) Extract snow depth and convert to meters 

4) Calculate snow weight (in kg) by multiplying depth (in m) by water density 

5) Required energy = Snow weight * Latent heat of fusion. 

6) Extract energy available to melt snow 

7) Calculate available - required energy to establish surplus or deficit. 

8) I f surplus, energy left saved to use in heating layer 2 snow, snow left in layer 1 set to 0 

m. I f deficit, part of snow pack is melted by depth possible within available energy, 

energy available to heat layer 2 snow set as 0 and snow accumulation set as net depth 

from layer 1 + layer 2. 

I f energy remains after melting new snow, heating and melting of last months snow (snow layer 

2) occurs. I f energy remains after melting snow layer 2 the remaining energy is assumed to be 

absorbed by the ground and is not available for the following months heating or melting. 

7.6.4 Example Mass Balance Output 

Snow accumulation was calculated at the end of each month and used to model variations in 

mass balance through the year. 

Example output from the mass balance component of the model is shown in Figure 7.10 a - e. 

Al l accumulation predictions showed active melt throughout the year imitated on southerly 

exposures where net balance receipts were higher. Results show a dominant topographic 

control on accumulation and the development of snow cover followed expected annual trends. 
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Figure 7.11 Example o f snow accumulation output, figures a - f show months May to August 
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7.6.5 Model Feedbacks 

Two main feedbacks are incorporated within the mass balance model, surface temperature and 

surface albedo. 

Surface temperature is driven by air temperature and snow surface temperature. Initial model 

conditions set the surface temperature equal to the monthly mean air temperature. This 

assumption continues under no snow cover conditions. When monthly mean air temperature at 

a pixel falls below 1 °C and precipitation falls as snow, surface temperature is driven by snow 

surface temperature, which is determined by the net radiation balance (Section 7.6.2) and 

monthly precipitation. Under new snow conditions (when monthly mean air temperature at a 

pixel falls below 1 °C) snow surface temperature is equal to monthly mean temperature. This 

temperature will be adjusted i f the net radiation balance is positive and heating occurs, as 

outlined in Section 7.6.2. I f the net radiation balance is negative, no energy is available to heat 

the snow and its temperature remains unchanged. When the snow cover is ablated surface 

temperature returns to the monthly average air temperature. Surface temperature is an important 

variable as it drives sensible heat exchanges, where cooler snow surface temperatures (when 

snow cover remains into the ablation season when air temperatures are greater than 0 °C) than 

air temperatures initiate negative sensible heat fluxes to the atmosphere. 

Surface albedo determines the proportion of incident radiation reflected by the surface and is 

dependent upon surface spectral characteristics. Snow albedo is included as a feedback within 

the model that is driven by precipitation, temperature and time since last snowfall. Variations in 

monthly albedo control the energy available to melt, where less energy is absorbed by the 

surface under new snow conditions. 

Two different albedo variations are modelled to allow their effect on accumulation to be 

assessed and the most optimal model for snow accumulation to be identified. For both, initial 

model conditions assume no snow cover and surface albedo throughout the study area is set to 

0.4 (average land surface albedo. Table 7.5). Under parameterisation 1, new snow is set to have 

an albedo of 0.8, which decreases by 0.05 for each month with no new snow cover. This 

assumes a linear decrease in the reflectivity of snow and is in line with published albedos for 

different age snow. Under parameterisation 2, following Brock and Arnold (2000). Initial snow 

albedo is set to 0.9, which decreases to 0.85 for any month with no new snow cover. The latter 

model reduces the proportion of radiation reaching the ground and reduces the rate of melt. 
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Snow surface albedo was calculated each month, using precipitation, air temperature and the 

previous months snow fall. Monthly variations in albedo, resulted in modifications to net 

radiation available to melt, specifically direct and diffuse components which are dependent on 

surface albedo. Higher albedos, reduce the proportion of radiation reaching the ground, which 

reduces the energy available to melt and increases the opportunity for new or maintained snow 

accumulation - resulting in maintained albedos (new or old snow). Lower albedos, increase the 

proportion of radiation reaching the ground, which increases the energy available to melt and 

decreases the opportunity for new or maintained snow accumulation - resulting in lower 

albedos (old snow or bare ground). 

7.7. Conclusions 

The mass balance model addresses limitations in existing approaches, by using spatially 

distributed climatic surfaces and monthly net balance to drive a spatially distributed melt model. 

Albedo and cloud are recognised as important controls on accumulation and have received 

specific attention within the model. Parameterisation of radiative fluxes was optimised for data 

availability, climatic and stability conditions on the surface and to ensure the model maintained 

consistent complexity within each model component. 

Temporal and spatial resolutions of the model are optimised for process modelling, data 

resolution limitations and computational efficiency. Multiple model runs driven by different 

climatic and radiative parameters outlined in Table 7.8 were used to identify sensitivities of 

snow accumulation and the model to different model inputs. 

Climatic Variables Radiative Variables 

Mathematical Modelling No cloud cover 

Mathematical Modelling with interaction term Monthly average cloud cover 

Seasonal Lapse rates Variable cloud cover 

Geomorphic Lapse rates Diffuse fraction 

IPCC warming extreme prediction Cloud Parameterisation 1 

LGM reconstructions Cloud Parameterisation 2 

Without Diffuse Radiation 

Without Sensible Heat Exchanges 

Without Topographic Shade 
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CHAPTER EIGHT 
RESULTS AND DISCUSSION 

8.1. Introduction 

This chapter presents and discusses model glacier accumulation area predictions, examining 

their climatic and radiative sensitivities and their ability to simulate observed glacier 

distributions. 

Discussion and sensitivity analysis of the model is structured around climatic and energy 

balance variables, identifying variations in winter accumulation maximum, onset of melt, rate of 

melt, energy balance characteristics and the spatial distribution of melt throughout the ablation 

period. A discussion of the sensitivity of melt to both climatic and energy balance model 

components follows, with later comments on topographic sensitivities found through the study. 

Model predictions do not account for ice flow, and predictions only identify accumulation areas, 

defined by their positive annual mass balance. Validation data delineates glacier extent and 

accumulation areas are not individually identified. Accumulation area ratios (AAR) are 

commonly used to predict the ELA and down glacier extent of the accumulation area. A value 

of 0.7 suggested by Glen (1963) is the most commonly used (Paterson, 1981). 

Analysis of resultant glacier accumulation area distributions evaluates the spatial extent of 

predictions, their topographic organisation and the rate and onset of melt. Interpretation is aided 

by draping the predictions on a Landsat ETM+ colour composite scene and examining temporal 

sequences of melt. 

8.2. Study Area Glaciers 

The glaciers within the study area are shown in Figure 8.1. This central Jotunheimen area was 

selected as it contains over 20 glaciers of differing sizes, aspects, topographic position and 

shape. _ _ - _ _ . . _ _ _ 
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Figure 8.1: Geocorrected topographic map of the study area highhghting the distribution 
of glaciers ( in white). Source: the 1:100000 Statens Kartverk topographic map o f 
Jotunheimen, updated in 1997. Although the map was updated in 1997 it is unclear i f 
the glacier extents were updated at this time. Little disagreement is shown between the 
map and the Landsat E T M + scene used in the present study. 
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8.3. Model Summary 

The glacier accumulation prediction model used within this discussion chapter has a temporal 

resolution of one month (see Table 8.2 for other resolutions used within predictions) and a 

spatial resolution of 100 m. Accumulation occurs where there is insufficient energy to melt 

snow precipitation, where energy balance is calculated using direct, diffuse and turbulent heat 

exchanges at the surface. 

8.3.1. Initial conditions and mass balance seasons 

Month 1 = August, no snow cover and albedo of 0.4. 

At month 2, September, albedo and surface temperature are predicted using the output from 

August calculations. 

Predictions are made every month for net radiation balance and melt. 

Predictions continue until the end of the following August. 

8.3.2. Prediction sensitivities 

This chapter addresses the sensitivity of the glacier accumulation model to the factors laid out in 

Table 8.1. 

Climatic Variables Radiative Variables 

Mathematical Modelling No cloud cover 

Mathematical Modelling with interaction term Monthly average cloud cover 

Seasonal Lapse rates Variable cloud cover 

Geomorphic Lapse rates Diffuse fraction 

IPCC warming extreme prediction Cloud Parameterisation 1 

LGM reconstructions Cloud Parameterisation 2 

Without Diffuse Radiation 

Without Sensible Heat Exchanges 

Without Topographic Shade 

Table 8.1 Variables tha will be varied during the model testing 
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Variable Resolution Justification 

Flux Normal to the Surface 

Direct Beam Radiation 

Diffuse Radiation 

5 Days 

Sensible Heat 

y 10 times 

a day 

Hourly 

Longwave Radiation 

Net Radiation 

Albedo 

Surface Temperature 

Meh 

Snow Accumulation 

Hourly 

Monthly 

Little variation occurs within shorter 

time periods 

10 time intervals during daylight 

hours, constant for 5 day time period 

Driven by solar position 

Daily and seasonal trends modelled 

with little variation lost. 

Driven by temperature and fluxes 

present (day and night) 

Strong diurnal trend, driven by 

diurnal temperature data 

Driven by temperature and fluxes 

present (day and night) 

Computational efficiency 

Melt has a known sensitivity to 

climatic data and these are most 

robust using monthly mean values 

Potential error propagation from 

unrealistic albedo or surface 

temperature predictions from 

extreme climatic events limited the 

temporal resolution to monthly 

Consistency and data availability 

lead to melt and accumulation 

calculations at monthly time steps 

8.4. 

Table 8.2: Temporal resolutions of modelled processes. 

Validation Data 

A Landsat ETM+ scene (Path: 199, Row 17) captured on the 21" September 2001 provided the 

major validation data set. The topographic map seen in Figure 8.1 was registered to the Landsat 

image-and both-datasets were used-to aid-prediction interpretation and validation. Landsat 
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ETM+ images have frequently been used in investigations within the crysophere for identifying 

and characterising snow and ice surfaces through their spectral reflectance properties. 

This multi-band sensor provides a high temporal and spatial resolution dataset that, with 

spectral resolutions greater than SPOT provides an affordable and well researched dataset. 

The factors influencing the spectral reflectance characteristics of snow were discussed in section 

7.4.2, and published information on the spectral reflectance properties of snow and ice surfaces 

was used to inform this research. 

Dozier (1990) discussed the complex spatial and spectral signatures found in alpine terrain, 

specifically discussing spectral reflectances of shaded snow. Hill et al. (1988) used information 

on the varied spectral reflectance characteristics of glacier surfaces to infer process or 

environmental differences or similarities, suggesting that accumulation areas can be partitioned 

into wet snow, percolation and dry snow facies. Attempts to identify these areas on all of their 

study area glaciers failed, however, and such delineation was not possible during this research. 

Classification of the 8 bands within Landsat data bands 2, 3, 4, 5 and 7 provided the most 

information. Band 1 was not used within the classifications as it was highly saturated. Hill et al. 

(1998) proposed the use of a band 5:4:2 colour composite to delineate snow and ice landcover. 

This was successfully employed within this research (Figure 8.2), delineating the study area 

glaciers and other smaller areas of potentially non-permanent snow cover. 

The colour composite image provided a raster overlay but a vector polygon coverage was 

created using an ISODATA classification which identified two classes of snow and ice cover 

which were merged to one glacier class (Figure 8.3). 
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Study area gladers delineated in 5:4:2 
conqiosite of Landsat E T M + scene 
captured tm 21st September 2000. 

I I I I I I M I 
0 0.5 1 2 Kilometers 

Slow and glacier ice are visible in cyan on the 
5;4:2 composite of the Landsat E T M + scene 

This clear delmeation also identifies smaller snow 
covered areas that are likely to represent snow 
patches and avalanched snow. 

Figure 8.2: Landsat E T M + 5:4:2 Colour Composite of Study Area 
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Classification of Landsat E T M + Image, 
glader and cloud are shown In blue class 
whldi is draped over colour cnnposite 

t 
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0 0 5 1 2 Kilometers 

An unsupervised I S O D A T A classification of bands 
2,3,4,5 and 7 was found to be the most successful 
technique for delineating glacier extent with 4 bands 
in the classified image 

Topographically shaded and illuminated snow were 
identified as two different classes, but were merged 
for this application. Initial attempts to delineate 
accumulation areas proved unsucessful and will be 
estimated using the contours on the topographic map 

Figure 8.3: Unsupervised I S O D A T A Classification of Study Area 

Attempts to differentiate between glacier and cloud cover were not possible within the present 

study and consequent vector representations o f the classified image are noisy. Without 

extensive generalisation and filtering, vectorised datasets provides a less useful tool than 
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expected. Glaciers are well represented and delineated but Boolean overlay was no longer 

feasible as an efficient validation tool where false positive overlay results of observed vs. 

predicted glacier would mask true patterns. The greatest value of the Landsat and classified 

image was gained from using them primarily as a visual validation tool and as a simple overlay 

validation dataset. 

Validation of glacier accumulation area predictions were performed, primarily to assess the 

ability of the model to accurately predict the spatial distribution of snow accumulation. 

Examination of areas of match and mismatch were performed by the user to identify any 

topographic sensitivities in the model's predictive abilities. Quantitative measures of degree of 

match, derived from the remotely sensed image, would not provide useful statistics and a more 

meaningful measure of relative performance for different aspects, altitudes, surface concavities 

and glaciers was possible by visual examination. Quantitative measures of degree match, 

between the remotely sensed classification and predictions, would include all incorrectly 

classified pixels, and this would consequently provide an erroneous statistic with limited use. 

Assessment of the accuracy of predicted snow depth can currently not be quantified, but i f a 

snow depth validation dataset were available, it would provide an optimal accuracy assessment 

tool and wil l be explored as a validation dataset for the future. 

8.5. Model predictions 

8.5.1. Lapse Rate 2 

Initial model predictions exhibited pronounced sensitivity to high altitude summer temperatures, 

these had been over predicted within the mathematical and mathematical with interaction term 

modelled datasets and consequently limited the duration of winter accumulation. The predicted 

0.0043 °C m ' lapse rate from the mathematical modelling with interaction term was replaced 

with a commonly reported lapse rate of 0.006 °C m"' (Barry, 1992) to investigate accumulation 

sensitivity. This lapse rate is now referred to as lapse rate 2. 

Initial model runs with the precipitation surfaces created in section 6.2 were found to under 

predict high altitude snowfall, with all snow ablated by April under full energy balance 

conditions. Snowfall predictions simulated the spatial distribution of snowfall but 

underestimated high altitude receipt using the limited climate station data available. Although 

efforts were made to use regional climate data_and statistically significant relationships, poor 

representation of high altitude climate failed to account for extreme conditions and could not 
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simulate high altitude receipts. Comparison of predicted and observed altitudinal gradients of 

precipitation using mass balance records for Norwegian glaciers confirmed the underprediction 

and were used to adjust the altitudinal component of the precipitation lapse rates. Using records 

from seven glaciers (Table 8.3) a value of 0.002 m m"' was implemented but found to 

overpredict snowfall with annual sums exceeding 30 m. Although the lapse rate is observed in 

mass balance records within the accumulation area, where net accumulation is analogous to net 

precipitation, gradients can be over steepened as they incorporate ablation areas which record no 

accumulation. A reduced lapse rate of 0.001 m m"' was applied and generated an annual net 

precipitation maximum at Galdhopiggen (2469 m) of 3.4 m which is within expected values 

(Barry, 1992; Dr Ian Evans pers. comm.). This altitudinal gradient is used in all subsequent 

predictions. 

Maximum Height Winter Balance Derived 
Glacier Altitude Difference Difference Precipitation 

(m) (m) (m) Gradient 
Jostefonn 1600 640 0.8 0.001 

Nigardsbreen 1800 1400 1.83 0.001 
Austdalsbreen 1650 400 1.3 0.003 

Hardangerjbreen 1800 700 1.21 0.002 
Storbreen 2000 600 1.14 0.002 

Hellstugubreen 2100 600 0.78 0.001 
Engabreen 1400 1200 4.95 0.004 

Table 8.3 Derived altitudinal gradients in precipitation from mass balance records. 

Conditions: Temperature: Lapse rate 2 

Precipitation: Adjusted Log Surface (Section 6.6.3.3) 

Cloud Cover: 80% cloud cover 

Albedo: 0.8 new snow, - 0.05 per month with no new snow 

Maximum winter accumulation occurred in April (Figures 8.4a - 8.4f and 8.5) and records the 

highest accumulation of any simulation, where cooler temperatures lead to a greater and 

maintained snow precipitation fraction. Snow cover persists throughout the year with maximum 

melt occurring in July. Positive energy balance and temperatures occur in May and June 

respectively but the lag in maximum temperatures limited widespread melt until June and July. 

Melt is initiated in valley floors and exposed gentle slopes where energy is efficiently 

transferred to the surface. Extensive melt occurs in June where most high altitude snow is 

ablated and only localised areas of snow remain (Figure 8.4 d). The spatial distribution of melt 

indicates that predicted snowfall at high altitudes is insufficient to support perennial snowcover 

and that surface slope plays a dominant role in determining the spatial distribution of net 

radiation. Although the model fails to predict extensive accumulation areas; topographically 
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Figure 8.4: Lapse Rate 2 Time Sequence of Monthly Accumulation Area Predictions 

a) March, b) April, c) May, d) June, e) July and f) August. 
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constrained glaciers are accurately predicted (Figure 8.6 b). Snow accumulation is largely 

predicted on steep slopes where incidence angles lead to less efficient transfers of radiation. 

The snow on these slopes is likely to be redistributed downslope, which is supported by 

observed snowpatch distributions. 

Extensive accumulation occurs in August when cooler temperatures lead to widespread snowfall 

which is only partly ablated (Figure 8.4 f ) . Lapse rate 2 provides unrealistic snow accumulation 

area predictions but is effective in predicted topographically constrained accumulation areas. 
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Figure 8.5: Full Model Monthly Balance for Lapse Rate 2 Model 

Seasonal Lapse Rates 

Lapse rate 2 model predictions failed to predict realistic summer and winter temperatures using 

the steepened temperature lapse rate (Figure 8.4 f) . Seasonal lapse rates accounted for distinct 

trends in temperature gradients in both summer and winter months and were combined with the 

improved precipitation lapse rate under full energy balance conditions. 

Conditions: Temperature: Seasonal Adjusted Lapse Rates 

Precipitation: Adjusted Log Surface (Section 6.6.3.3) 

Cloud Cover: 80% cloud cover 

Albedo: 0.8 new snow, - 0.05 per month with no new snow 

Energy Balance: Full 
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Maximum winter accumulation occurred in April when mean air temperature and monthly net 

balance were below zero (Figure 8.8). Accumulafion occurs throughout the year with maximum 

melt in July. Topographically derived lapse rates drive melt in early spring, when melt is 

concentrated in valley locations. Lower altitude sites are ablated in May and June with some 

high altitude sites still accumulating snow. Extensive melt occurs in July when net balance and 

temperature are at their maximum (Figure 8.8). Topographically derived lapse rates constrain 

melt to lower altitudes with snow remaining in high altitude accumulation zones through July 

and August. 

The spatial distribution of accumulation in July achieves a more representative prediction than 

seen in 8.4.1 where glacier accumulation areas are predicted. August ablation reduces the 

number of glaciers predicted but constrains predictions to glacier accumulation area locations. 

The model predicts both topographically constrained and high altitude glaciers, but is more 

consistent in predicting high altitude glaciers [Box A in Figure 8.7 f ] , where lower temperatures 

and higher precipitation results in greater accumulation. Less robust predictions are made in 

topographically constrained areas [Box B in Figure 8.7 f ] where topographic shade, local 

microclimate and redistribution of snow are important in controlling accumulation. 
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Figure 8.8: Full Model Monthly Balance for Seasonal Lapse Rate Model 
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Figure 8.6: Lapse Rate 2 July Accumulation Scenes, a) Central massif area, b) Cirque Glaciers (right: 

unsupervised Landsat classification; left: ditto with snow accumulation areas). 
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8.5.3. Geomorphic Lapse Rates 

Seasonal lapse rates improved snow accumulation predictions by accounting for topography in 

spatially distributed temperatures. Further characterisation of terrain-constrained melt using 

geomorphologically derived lapse rates was investigated. 

Conditions: Temperature: Adjusted Geomorphic Lapse Rate 

Precipitation: Adjusted Log Surface (Section 6.6.3.3) 

Cloud Cover: 80% cloud cover 

Albedo: 0.8 new snow, - 0.05 per month with no new snow 

Energy Balance: Full 

Maximum winter accumulation occurred in March as a result of a slightly warmer spring with 

maximum melt occurring between April and June (Figure 8.10). High autumn temperatures 

limit accumulation before October and gradual melt occurs through summer driven by slowly 

increasing temperatures and net radiation receipt. The annual variation in net balance exhibits a 

pronounced annual cycle that is driven by temperature and ablation trends (Figure 8.10). 

The spatial distribution of predicted temperatures results in more topographically constrained 

melt, largely focused within the major valleys (Figure 8.9b). Summer maximum melt occurs 

within shallower slopes at higher altitudes (Figure 8.9c, Box A) with thinning of accumulated 

snow throughout. 

July and August snow cover is constrained to accumulation areas but under predicts 

distributions as warmer summer temperatures drive greater ablation at all but the highest 

glaciers. 

The model accurately predicts topographically distributed temperatures but is restricted by the 

climate dataset, it over predicts high altitude summer temperatures. Topographically 

constrained glacier accumulation areas are not evident in July and August simulations and are 

not effectively predicted by the model which identifies them as warmer convex locations. 
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Figure 8.7: Seasonal Lapse Rate Time Sequence of Monthly Accumulation Area Predictions 

a) March, b) April, c) May, d) June, e) July and f) August. 
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Figure 8.9: Geomorphic lapse rate time sequence of monthly accumulation area predictions 

a) March, b) April, c) May, d) June, e) July and f) August. 
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Figure 8.10: Full model monthly balance for geomorphic lapse rate model 

8.5.4. I P C C 

Sensitivity of glacier accumulation to climatic change is a research question of critical 

importance and has received recent attention (Brun et ah, 1997 and Hock et al., 2002). A 

simplistic sensitivity approach using IPCC extreme ftiture climate change predictions of 3.5 "C 

warming by 2100 (IPCC, 2001) was used to drive the glacier accumulation area model. No 

other climatic parameters were changed. 

Conditions: Temperature: Seasonal Adjusted Lapse Rates + 3.5 "C 

Precipitation: Adjusted Log Surface (Section 6.6.3.3) 

Cloud Cover: 80% cloud cover 

Albedo: 0.8 new snow, - 0.05 per month with no new snow 

Energy Balance: Full 

Maximum accumulation occurred in March, with accumulation largely restricted to the period 

October to July. Localised melt occurs in March and April on shallow and southerly facing 

slopes. Extensive melt occurs in May and June with only localised areas of snow remaining in 

July. Highest melt rates occur in June when low altitude valley floors and shallow slopes 

receive maximum net radiation receipt and increased melt from positive sensible heat fluxes 

towards the surface. 
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Air temperature has a dominant influence on the mass balance and annual net radiation balance, 

where positive temperatures from May drive positive energy balances peaking in July and 

warmer winter temperatures limit accumulation (Figure 8.12). The rate and distribution of melt 

are in agreement with a global mean sensitivity of - 0.37 m °C"' year"' reported in Dyurgerov 

(2003), where sensitivities predicted within the model here are - 0.51 m °C'' year ' for 

maximum snow depth prediction. However this value represents an average for the entire study 

area and as discussed by Dyurgerov (2003) and Braithwaite (2002) sensitivities wi l l differ 

within and between catchments. 

The spatial distribution of melt is consistent with the warmer trends found with the geomorphic 

lapse rates in Section 8.4.3, where low altitude shallow slopes are initially melted with all 

topographically constrained accumulation ablated by July. Limited highly localised snow 

remains through the year where topographic shade and aspect limit net radiation receipt (Figure 

8.11 f ) . 

Future warming imposes clear controls on snow accumulation with limited and localised 

pockets of snow remaining under this warming scenario. Although surface temperature and 

albedo feedbacks are incorporated within the model further feedbacks or climatic changes have 

not been modelled and must be completed in future research to assess the robustness of 

accumulation predictions. However, it is still clear that mean monthly temperature has a 

dominant influence on winter accumulation and summer melt 
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Figure 8.12: Full model monthly balance for I P C C warming scenario model 
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Figure 8.11: I P C C warming time sequence of monthly accumulation area predictions 

a) March, b) April, c) May, d) June, e) July and f) August. 
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8.5.5. Last Glacial Maximum Reconstruction 

Consideration of the sensitivity of the cryosphere to future climatic change can be 

complemented by reconstructions of past climatic change and known glacier extents. The Last 

Glacial Maximum (LGM) has received much attention and climatic reconstructions are 

widespread within the literature. Barron et al. (2003) found that oxygen isotope reconstructions 

under estimate temperature. In their LGM 60 km grid climate reconstructions they proposed a 

15 °C monthly average temperature fall and 15 mm day"' precipitation reduction from present 

day conditions for Norway at the LGM. These conditions were used to drive the accumulation 

area prediction model to investigate how Northern Hemispheric glacial climatic conditions, 

cooler and drier, influence snow accumulation. 

Conditions: Temperature: Seasonal Adjusted Lapse Rates - 15°C 

Precipitation: Adjusted Log Surface (Section 6.6.3.3) - 15 mm day"' 

Cloud Cover: 80% cloud cover 

Albedo: 0.8 new snow, - 0.05 per month with no new snow 

Energy Balance: Full 

Reduced precipitation leads to less winter accumulation, but higher altitudes receive snow 

precipitation throughout the year. Maximum accumulation during the first mass balance year 

occurs in March at high ahitude locations (Figure 8.14), but these deep snow areas (2.9 m) 

laterally expand in subsequent mass balance years where no ablation occurs (Figure 8.13f). A 

positive energy balance is found from April, but melt is constrained by lower temperatures that 

require more energy to bring snow to melting point. 

Melt is initiated in March (Figure 8.14) and is distributed through lower altitude, shallower 

areas where warmer conditions and more efficient radiation transfer are found. Later melt 

occurs on south facing exposed sites, but melt is limited and topographically constrained. 

Predicted snow accumulation rises in July when precipitation increases and areas of earlier melt 

are replenished. 

Perennial snowcover throughout the study area for the entire mass balance year significantly 

alters initial model conditions, where higher surface albedo and lower surface temperatures will 

lead to increased accumulation in fiature model years. Small predicted areas of no snow cover 

would, accumulate snow by advection throughout the year. This result is congruent with 

reported glacier extent at the LGM when the area was covered by the Fennoscandian ice sheet 

and with reconstructions of cooling in Southern Norway (Lie e/ a/., 20_03b)_. 
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Figure 8.13: L G M reconstruction time sequence of monthly accumulation area predictions 

a) March, b) April, c) May, d) June, e) July and f) August. 
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Figure 8.14: Full model monthly balance for LGM reconstruction model 

8.5.6. Monthly Average Okta Cloud Cover 

Temperature and precipitation have been found to provide dominant controls on the amount and 

timing of accumulation, but radiation also plays a critical role in determining the persistence and 

distribution of snowcover. Cloud cover determines both the proportion and characteristics of 

radiation reaching the ground and consequently exerts strong control on the timing and extent of 

meh. A further model run therefore uses observed mean monthly cloud cover, averaged 

throughout the area. 

Conditions: Temperature: Seasonal Adjusted Lapse Rates 

Precipitation: Adjusted Log Surface (Section 6.6.3.3) 

Cloud Cover: Mean Monthly Okta 

Albedo: 0.8 new snow, - 0.05 per month with no new snow 

Energy Balance: Full 

Winter accumulation occurred between October and March when it reached a maximum (Figure 

8.16). Extensive meh occurred in April when the radiation balance was positive and the 

increased proportion of radiation reaching the surface resulted in greater melt where snow cover 

at lower altitudes and shallow slopes was heated and ablated. Deep snow cover remains in 

sheltered high ahitude sites in April (Figure 8.15b) where steep slopes and cooler temperatures 

limited wide spread meh until May, all remaining snow is ablated by June. The strong diffuse 

component in this simulation drives the majority of melt with direct beam radiation providing 

only a small proportion of the net radiation under cloudy sky conditions. Maximum net balance 
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occurs in July and strongly positive balances persist during summer when average cloud cover 

is lower than winter. 

Average Okta cloud cover increases net radiation and highlights the sensitivity of accumulation 

area predictions to radiative components. Sensitivity to this simulation is most pronounced as 

lower summer cloud cover accelerates melt rates. 

Snow Depth (m) 

3 0 

Figure 8.15: Monthly cloud cover time sequence of 

monthly accumulation area predictions 

a) March, b) April and c) May 
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Figure 8.16: Full model monthly balance for monthly cloud cover model 

8.5.7. Variable Cloud Cover 

Pronounced sensitivity to average monthly cloud cover necessitated an alternative 

representation: it was believed that average conditions did not provide representative values for 

monthly conditions, where extremes provide a more dominant control on accumulation and 

melt. The distribution of monthly conditions were used to drive the accumulation model where 

overcast and clear sky conditions exert dominant changes to monthly net radiation values. 

Conditions: Temperature: Seasonal Adjusted Lapse Rates 

Precipitation: Adjusted Log Surface (Section 6.6.3.3) 

Cloud Cover: Variable Cloud Cover - constant for 5 days 

Albedo: 0.8 new snow, - 0.05 per month with no new snow 

Energy Balance: Full 

Accumulation occurred between December and March where the maximum was recorded 

(Figure 8.17). The snow cover gained during the shorter accumulation period (limited by 

positive net radiation balance until November) is rapidly ablated in April as a result of the 

positive net radiation balance and a shallower accumulated snow pack. Spatial patterns of melt 

indicate little discrimination where all upland areas are ablated, diffuse radiation drives this 

homogenous melt with sheltered lowland areas maintaining some snow cover (Figure 8.17 b). 

Remaining high altitude sheltered sites are ablated in May. 
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Energy balance maximum occurs in June, when overcast skies lead diffuse radiation to provide 

the dominant melt component (Figure 8.18). Results indicate high sensitivity to extreme values. 
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Figure 8.17: Variable cloud cover time sequence of monthly 

accumulation area predictions for a) March; and b) April. 
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Figure 8.18: Full model monthly balance for variable cloud cover model 
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8.5.8. Diffuse Fraction Parameterisation 

Variable cloud cover provided a more realistic representation of sky conditions but over 

estimated meh. Simple parameterisation of the magnitude of diffuse radiation under cloudy 

conditions employed within previous model simulations (Sections 8.4.1 - 8.4.7) failed to 

simulate observed accumulation areas where net balance and diffuse components were over 

predicted. Partitioning short wave radiation normal to the surface into direct and diffuse 

components as a function of cloud cover was employed in an attempt to improve surface energy 

balance predictions. 

Conditions: Temperature: Seasonal Adjusted Lapse Rates 

Precipitation: Adjusted Log Surface (Section 6.6.3.3) 

Cloud Cover: Variable Cloud Cover - constant for 5 days 

Albedo: 0.8 new snow, - 0.05 per month with no new snow 

Energy Balance: Full with diffuse fraction 

Accumulation occurred between December and March when it reached its maximum (Figure 

8.20). The greatest rate of melt occurred in April when the net radiation balance was positive 

and cloud cover determined the fraction of incident radiation that is distributed as diffuse and 

direct components. 

Meh at low altitudes is extensive in April but cooler and sheltered locations maintain snowcover 

(Figure 8.19 b). Extensive melt occurs in May when only localised high altitude accumulations 

remain. Al l snow has melted by June when the maximum net balance is received (Figure 8.20). 

Partitioning incoming short wave radiation into diffuse and direct components extended the 

duration of snow cover but still over predicted melt. Simple parameterisations of the complex 

role that cloud cover has on surface energy balance and melt highlight the sensitivity of model 

predictions to these components and the subsequent attention that they require. 
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Figure 8.19: Diffuse fraction time sequence of monthly accumulation area predictions 

a) March, b) April and c) May 
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Figure 8.20: Full model monthly balance for diffuse fraction model 

8.5.9. Cloud Parameterisation 1 

Parameterisation of the direct and diffuse components of incoming short wave radiation did 

adjust trends within the annual radiation balance, but still over estimated melt. Simply using 

cloud cover to determine the characteristics of incoming short wave radiation cannot alone be 

used to determine surface energy balance where the reduction of incoming solar radiation by 

cloud cover reflectance and absorption imposes a strong control. Reduction of incoming 

radiation using monthly variable cloud cover was used to investigate the role of cloud cover on 

annual snow accumulation. 

Conditions: Temperature: Seasonal Adjusted Lapse Rates 

Precipitation: Adjusted Log Surface (Section 6.6.3.3) 

Cloud Cover: Variable Cloud Cover - constant for 5 days 

Albedo: 0.9 new snow, 0.85 old snow 

Energy Balance: Full with diffuse fraction and reduction of normal to surface 

by percentage cloud cover 

Maximum snow accumulation occurred in April but snow cover remained throughout the year 

(Figure 8.22). Maximum meh occurred in June when air temperatures rose above 0 "C 

Maximum energy balance occurred in July when direct beam radiation provided the largest 

component of energy for melt. 
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Figure 8.21: Cloud parameter!sation 1 time sequence of monthly accumulation area predictions 

a) March, b) April, c) May, d) June, e) July and f) August. 
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Seasonally derived lapse rates and improved albedo parameterisation provided more 

topographically constrained predictions with melt largely contained to valley floor locations 

until July. Simulated July snow cover predicted the accumulation areas for some glaciers but 

over predicts the extent of others. August melt reduces the extent of predictions but still 

classifies ablation areas of some glaciers as accumulation zones (Figure 8.21 f ) . 

Both topographically constrained and altitudinal glaciers are predicted and accumulation areas 

are well simulated. Some data resolutions issues are identified where topographically derived 

variables are propagated into the simulated snow accumulation surfaces, identifying the 

dominant role of sensible heat in summer ablation (Figure 8.22 and Figure 8.2 I f ) . 
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Figure 8.22: Full model monthly balance for cloud parameterisation 1 model 

8.5.10. Cloud Parameterisation 2 

Discrete glacier accumulation areas were accurately predicted using cloud parameterisation 1, 

however meh was under predicted with some glacier ablation areas identified as accumulation 

zones. Quantification of the role of cloud cover in reducing incident radiation is complex and 

uncertain (Geiger, 1965), cloud cover is believed to refract radiation at cloud edges and a direct 

correlation between cloud cover and incident radiation is not found. Increasing the fraction of 

radiation reaching the surface under cloudy conditions by 10 % per okta was investigated as an 

improved energy balance parameterisation. 
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Conditions: Temperature: Seasonal Adjusted Lapse Rates 

Precipitation: Adjusted Log Surface (Section 6.6.3.3) 

Cloud Cover: Variable Cloud Cover - constant for 5 days 

Albedo: 0.9 new snow, 0.85 old snow 

Energy Balance: Full with diffuse fraction and reduction of normal to surface 

by (percentage cloud cover - 10%) 

Maximum accumulation occurred in April and melt occurred gradually through spring and 

summer, largely driven by direct beam radiation (Figure 8.24). Limited differences occur in the 

pattern of melt from those outlined for cloud parameterisation 1 where again, melt is 

topographically constrained, but higher net radiation receipts lead to more extensive melt and 

thinning of the accumulation areas predicted in Section 8.4.9; resulting in more accurate 

accumulation area predictions. 

The role of cloud cover in reducing the short wave radiation reaching the surface and the 

relative proportions of direct and diffuse radiation have been found to impose dominant controls 

on surface energy balance and accumulation. 
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Figure 8.24: Full model monthly balance for cloud parameterisation 2 model 
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Figure 8.23: Cloud parameterisation 2 time sequence of monthly accumulation area predictions 

a) March, b) April, c) May, d) June, e) July and 0 August. 
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8.5.11. No Diffuse Radiation 

Diffuse shortwave radiation has been identified as an important driver of melt: its effects were 

further investigated by removing it as an energy balance component. 

Conditions: Temperature: Seasonal Adjusted Lapse Rates 

Precipitation: Adjusted Log Surface (Section 6.6.3.3) 

Cloud Cover: Variable Cloud Cover - constant for 5 days 

Albedo: 0.9 new snow, 0.85 old snow 

Energy Balance: No diffuse Radiation, using diffuse fraction and reduction of 

normal to surface by percentage cloud cover 

Maximum winter accumulation occurred in April with snowcover remaining all year; gradual 

meh occurred from April with a maximum net balance occurring in July (Figure 8.26). 

Removal of diffuse radiation highlights the significant contribution it provides to spatially 

distributed melt. Northerly aspects maintain extensive snow cover throughout the mass balance 

year, where southerly aspects and low altitude warmer areas loose snow through ablation from 

direct beam and sensible heat exchanges, this is in agreement with Nunez (1980) and Olyphant 

(1986) who identify diffuse radiation as an important contribution to the radiation flux due to its 

isotropic nature, minimising spatial heterogeneity in receipt. Intermediate altitudes on less 

exposed slopes do experience active melt, but are only thinned during the ablation season. 

Thinning also occurs on northerly slopes through melt by sensible heat exchanges, which 

contributes to melt during May, June and July (Figure 8.25 c, d and e). 

The minimum snow cover occurs in August although high altitude sheltered locations do still 

accumulate snow during this period. August experiences active thinning on snow accumulation 

margins and in higher valleys although glacier accumulation areas are over predicted and 

discrete glaciers are not identified (Figure 8.25 f ) : the result is excessively altitude-dependent. 

Diffuse radiation plays a fundamental role in predicting spatially distributed glacier 

accumulation areas where melt occurs on a range of aspects and is not restricted to southerly 

and warm sites alone. 
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Figure 8.25: No diffuse radiation model time sequence of monthly accumulation area predictions 

a) March, b) April, c) May, d) June, e) July and 0 August. 
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Figure 8.26: Full model monthly balance for no diffuse radiation model 

8.5.12. No Sensible Heat Exchange 

The role of individual energy components have already been identified as critical components to 

representing spatially distributed melt, however the considerable data requirements for accurate 

simulations of sensible heat exchange necessitate a justification of its inclusion. 

Conditions: Temperature: Seasonal Adjusted Lapse Rates 

Precipitation: Adjusted Log Surface (Section 6.6.3.3) 

Cloud Cover: Variable Cloud Cover - constant for 5 days 

Albedo: 0.9 new snow, 0.85 old snow 

Energy Balance: No sensible heat exchange, using diffuse fraction and 

reduction of normal to surface by percentage cloud cover 

Maximum accumulation occurs in April with very little melt in May (Figure 8.28). Slower melt 

through summer (when sensible heat would provide a larger contribution to melt, with larger 

positive fluxes occur towards the surface) is observed, direct beam radiation provides the 

dominant source of melt during this period. 

Little melt occurs until June, when exposed and cooler valley floors experience active melt. 

July and August record extensive melt, with shrinking of snow cover up and along valley floors. 
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Thinning is less extensive than found under previous model scenarios and glacier accumulation 

areas are over predicted. 

Sensible heat is found to play a more significant role in melt than diffuse radiation resulting in 

extensive meh in summer months. Resultant distributions exhibit a dominant altitudinal 

component, where topographically derived wind fields play a significant role in predicting 

distributed melt patterns. 

As found in Section 8.4.11, discrete distributions are not predicted without a sensible heat 

component. 
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Figure 8.28: Full model monthly balance for no sensible heat exchange model 
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Figure 8.27: No sensible heat exchange model time sequence of monthly accumulation area 

predictions a) March, b) April, c) May, d) June, e) July and f) August. 
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8.5.13. No topographic Shade 

Topography has already been identified as a dominant control on predicted glacier accumulation 

areas (Sections 8.4.1 - 8.4.12), but topographic shading is often not included in spatially 

distributed meh models. Inclusion of topographic shade does increase the computational 

intensity of model predictions and its contribution to the accuracy of predictions was assessed. 

Conditions: Temperature: Seasonal Adjusted Lapse Rates 

Precipitation: Adjusted Log Surface (Section 6.6.3.3) 

Cloud Cover: Variable Cloud Cover - constant for 5 days 

Albedo: 0.9 new snow, 0.85 old snow 

Energy Balance: No topographic shade, using diffuse fraction and reduction of 

normal to surface by percentage cloud cover 

Maximum accumulation occurred in March within limited meU in April and May (Figure 8.30). 

Extensive low altitude melt occurred in June and July when temperatures and net radiation 

balance rose. Maximum net balance occurred in July and August with a minimum in January 

(Figure 8.30). Comparison with cloud parameterisation 1 model reveals localised meh on 

glacier surfaces in June which lie within topographically shaded areas, suggesting delayed melt 

at these locations under the topographic shading model (Figure 8.2Id and Figure 8.29 d). 

More extensive melt occurs in June along valley sides which are partly shaded during June. 

Less distinct differences occur in July and August when the solar ahitude is higher and 

topographic shading is less extensive. August reveals most distinct differences where snow 

cover is less extensive and restricted to higher altitudes. Lower sheltered sites are not predicted 

exhibiting a stronger altitudinal component to accumulations and strong topographic shading 

controls. 

Topographic shade imposes local controls on glacier accumulation, where melt is over predicted 

under no shading conditions. 

310 



Predic t ing Glacier A c c u m u l a t i o n Area Dis i r ibut ionb 
Kather inc L A r r e l l 

Chapter L igh t 
Results and Discuss ion 

Snow Depth 
(m) 

3.0 

0.0 

Figure 8.29: No topographic shade model time sequence of monthly accumulation area predictions a) 

March, b) April, c) May, d) June, e) July and f) August. 
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Figure 8.30: Full model monthly balance for no topographic shading model 

8.5.14. No cloud cover 

The role of cloud cover has received attention in sections 8.4.6 - 8.4.10, however an assessment 

of the dominant role it has on snow accumulation is most effective by removing it as an energy 

balance component. 

Conditions: Temperature: Seasonal Adjusted Lapse Rates 

Precipitation: Adjusted Log Surface (Section 6.6.3.3) 

Cloud Cover: None 

Albedo: 0.9 new snow, 0.85 old snow 

Energy Balance: Full 

Maximum accumulation occurred in March with very localised snow cover remaining in June. 

Increased incident radiation with no reduction from cloud cover leads to high summer net 

radiation balances where diffuse radiation as incorporated by the model provides the largest 

contribution to melt (where diffuse fractions were not included). Maximum net balance 

occurred in July and the minimum occurred in January. Greatest melt occurs in April when net 

balance is positive and radiation is available to heat and melt the snow cover. 

Localised melt occurs in March on exposed low altitude sites but extensive melt occurs on 

shallow and exposed sites in April where surface slope provides the dominant control (Figure 
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8.31 b). Accumulation areas are still present in May with some seasonal snowcover but little 

snow remains in May where widespread high altitude melt occurs. Localised snow cover 

remains in July and August but accumulation areas are not predicted and meh is overestimated. 

The most striking resuh from these predictions is the dominant role that increased albedo has on 

winter accumulation and spring ablation. In contrast to 8.4.7 and 8.4.8 accumulation occurred 

from September where although no cloud cover increases incident radiation (under modelled 

diffuse parameters), this produces the greatest contribution: this is an unrealistic prediction 

where all shortwave radiation would come from direct beam and is only an artefact of inbuih 

cloudy absorption assumptions. 

Increased snow albedos from 0.8 to 0.9 and a constant albedo of 0.85 (following Arnold et al., 

1996) have a major impact on accumulation, but still result in extensive ablation. 
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Figure 8.32: Full model monthly balance for no cloud cover model 

Analysis and interpretation of model predictions for different climatic and radiative conditions 

highlights both as important controls on the rate and extent of melt. Discussion of these 

sensitivhies follows, initially identifying sensitivities of energy balance components to different 

model scenarios, moving then to discussion of mean and maximum snow accumulation 

sensitivity to the models outlined above and concluding with a discussion of any topographic 

controls on resultant glacier distributions. 
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Figure 8.31: No cloud cover model time sequence of monthly accumulation area predictions 

a) March, b) April, c) May, d) June, e) July and 0 August. 
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8.6. Controls on Energy Balance Components 

Feedbacks included within the model, specifically albedo and surface temperature in 

conjunction with cloud cover, lead to variations in monthly radiation receipt. Sensitivities to 

both climatic and radiative components are present within the predictions, with the magnitude 

of sensitivity to these different components varying between sensible heat exchange, diffuse, 

longwave and direct beam radiation. 

Sensitivity is not defined as recorded difference from a known or observed value but as the 

difference between predicted estimates. 

Each of the following graphs uses the legend below: 

No Cloud 
IPCC 
LGM 
Monthly Cloud 
Lapse Rate2 
Lapse Seasonal 
Lapse Geo 
Vanable Cloud 
No Topographic Shading 
Diffuse Fraction 
No Sensible Heat Exchanges 
Cloud Parametensation 2 
Cloud Parameterisation 1 

8.6.1. Sensible Heat Exchanges 

Predicted sensible heat exchanges exhibit sensitivity to climatic parameters: where greatest 

fluxes occur when wanner air temperatures are combined with extensive snow cover, this is 

congruent with expectations (Male and Granger, 1981). These conditions are most pronounced 

with the geomorphic lapse rates (Figure 8.33). Simulations with limited snow cover have low 

sensible heat exchanges, where air and surface temperatures are equivalent. Al l average 

monthly sensible heat exchanges are positive, although daily cycles driven by predicted diurnal 

temperature changes exhibit negative evening components. Cloud parameterisation I , 2 and 

geomorphic lapse rate models all record a rise in sensible heat exchanges in June over snow 

cover when air temperatures rise (Figure 8.33). 
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Sensible heat exchanges only seem to provide a significant contribution to melt during summer 

months when positive temperature gradients exist between the 2m air temperature and the 

surface. The magnitude of this contribution to melt is dependent upon temperature lapse rates 

and simulated wind speeds. The detailed climatic study (Chapter 6) and predictions completed 

within this research support the findings of Male and Granger (1981) who stress the need for 

detailed climatic datasets in predicting sensible heat exchanges. 

Simulating early spring melt would not require inclusion of sensible heat exchanges where 

maximum energy for melt originates from short wave radiation, however extensive summer 

melt does require the inclusion of sensible heat (Sections 8.7 and 8.4.12). 
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Figure 8.33: Sensitivity of predicted sensible heat exchanges 

8.6.2. Longwave Radiation 

Confirming the research presented by Male and Granger (1981) longwave radiation exhibited 

most pronounced sensitivity to temperature lapse rates and cloud cover. Modelled fluxes in this 

research predict warmer, cloudier conditions to give greater fluxes to the surface (i.e. reduced 

losses. Figure 8.34). These predictions are in line with those reported by Male and Granger 

(1981). Longwave fluxes provide the least critical component to melt, where small net fluxes 

occur during summer months under cloudy warm conditions. Except under IPCC warming, 

fluxes are always negative and therefore slow the rate of melting. The reported fluxes are small 

during summer and negative fluxes are still expected (Oke, 1987), but under changing climatic 

conditions assumptions of constant outward longwave flux may no longer be viable. 
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Longwave fluxes are not computationally intensive and currently limit spring and summer 

melting. Removing longwave fluxes from the model would advance and quicken the rate of 

melt, current model predictions do not require such an adjustment and long wave radiation is 

found to provide an important role in delaying the onset of melt in spring when fluxes of 

between -8 and -10 MJ Day"' are recorded. 
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Figure 8.34: Sensitivity of predicted long wave radiation 

8.6.3. Diffuse Shortwave radiation 

Predicted diffuse radiation exhibits pronounced sensitivity to cloud cover during the summer 

ablation period. Highest receipts are recorded under clear sky conditions when a simple 

parameterisation of the magnitude of diffuse radiation is employed. This reflects the ability of 

the model to predict diffuse radiation. As identified in 8.4.14 the clear sky results do not predict 

a realistic diffuse contribution. Diffuse radiation appears to be over predicted in all but the 

cloud parameterisation models 1 and 2, this over prediction under different cloud cover 

predictions has also been reported by Fierz et al. (2003) when global radiation has not been 

correctly predicted. Much published research attempts to derive empirical relationships between 

global radiation and cloud cover (Geiger, 1965). Following the optimal parameterisation by 

outlined by Geiger (1965), represented here as cloud parameterisation 2, global radiation and its 

diffuse and direct components are more robustly predicted. Predictions are less sensitive to 

temperature lapse rate variations where all predictions are ± 5 MJ day"'. Cloud parameterisation 

1 and 2 predict the lowest mean diffuse radiation receipts, but exhibit an annual trend 

comparable to observed receipts (Oke, 1987). 
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Figure 8.35: Sensitivity of predicted diffuse radiation 

8.6.4. Direct beam shortwave radiation 

Incoming direct beam sliortwave radiation exhibits greatest sensitivity to cloud cover, especially 

during the summer ablation period, although this is less pronounced than seen in diffuse 

radiation where cloud cover is implicit within magnitude calculations. This supports the 

research presented by McKenney et al. (1999) who found greatest sensitivities in predicted 

radiation from cloud cover. Predictions using variable and parameterised cloud cover exhibit 

the greater sensitivity and smallest receipts, but are believed to provide more accurate 

representations of incident radiation. Predictions are not markedly sensitive to climatic 

parameters where different lapse rates lead to a mean difference of ± 2 MJ day"'. Cloud 

parameterisation 1 and 2 provide the lowest direct beam radiation contributions, where daily 

cloud cover reduces incoming solar radiation. Significantly higher receipts are found in July, 

when lower cloud cover, high contributions to direct beam radiation and maximum solar 

radiation at the top of the atmosphere combine to provide a high mean monthly receipt. 

3 1 8 



I 'hjiJiclHl'- ' ( i l i i c i c i X c v i i l i i i i l i l l u i n \ r c ; l i J i s l i I i>i it lul l- , 'lU 

25 1 

20 

15 

5 -

Predicted Daily Incoming Direct Radiation 
for Different Climatic and Radiative Scenerios 

Figure 8.36: Sensitivity of predicted direct beam radiation 

8.6.5. Net Radiation 

Monthly net radiation higlilights a composite signal of dependencies, most pronounced in 

summer when net radiation balance is most critical. Assuming clear sky conditions predicts 400 

% greater net radiation in June than under cloud parameterisation 2 and was found to over 

estimate melt, necessitating the inclusion of cloud cover in glacier accumulation area models. 

Monthly mean cloud cover variables reduced the over estimation of net radiation but still failed 

to account for reduced radiation normal to the surface and consequently over estimated melt 

throughout the study area. 

Net balances for cloud adjusted predictions are lower than those expected, with a negative 

balance from November to March driven by sensible heat when snow surfaces warmed from 

incoming short wave radiation heat the air above the snow surface; this combined with small 

shortwave fluxes, cloudy skies, high albedos and short daylight hours significantly reduces the 

radiation absorbed by the ground. Summer estimates are in line with results presented within 

the literature including McKenney et al. (1999) and Oke (1978). Predictions excluding sensible 

heat exchanges provide the lowest summer net balance, which was found to overestimate 

snowcover and consequently cannot be used to simulate discrete accumulation areas. Monthly 

mean net balance predictions for different lapse rate models provide estimates of ± 5 MJ day ': 

although this appears a minor difference in monthly mean net radiation plots, it was found to 

produce a more dominant influence on the spatial distribution of snow accumulation. 
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Figure 8.37: Sensitivity of predicted net radiation 

Direct, diffuse, longwave and net radiation exhibit sensitivities to cloud cover which are most 

pronounced during the summer ablation period when cloud cover is lower and daylight hours 

are longer. This is congruent with expectations, for example McKenney et al. (1999). 

Longwave and sensible heat exchanges exhibit sensitivity to air temperature but feedbacks 

between cloud cover, net radiation and albedo are also evident. 

Consideration of feedbacks between radiative and other climatic parameters revealed the 

dominant control of cloud cover and the seasonal role of sensible heat in summer. 

Interpretation and discussion of the predictive capabilities of the model also necessitates 

analysis of the sensitivity of predicted snow accumulation to climatic and radiative model 

variables. Mean and maximum monthly snow accumulation were compared for each model and 

are summarised in Figures 8.38, 8.39, 8.40 and 8.41 and discussed in the subsequent sections. 

8.7. Climatic sensitivity of predicted snow accumulation 

Lapse rate 2 with cold summer temperatures predicted the greatest mean accumulation during 

winter through summer, although LGM predictions with coldest temperatures and reduced 

precipitation predicted the greatest accumulation in July as increased monthly precipitation and 

minimal melt throughout the year resulted in deeper snow accumulation at the end of the 

ablation season when insufficient energy was available to heat and melt the snow (Figure 8.38). 

IPCC warming scenario predicted the shortest and thinnest snow accumulation with the fastest 

and earliest melt (Figure 8.38). Warm spring temperatures initiated melt identifying sensible 

heat as dominant melt driver under future warming conditions. 
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Seasonal lapse rates with cooler autumns and summers predicted slower melt, which was not 

initiated until April, and predicted the second highest mean accumulation in July (Figure 8.38). 

Geomorphic lapse rates with cooler winter temperatures predicted a greater rate of melt in 

summer when temperatures were warmer than those simulated in the seasonal model. Both 

seasonal and geomorphic lapse rates created using topographic variables better simulated melt 

than initial altitudinal and mathematical modelling lapse rates (where all snow ablated by April) 

or lapse rate 2 (initial lapse rates with a steeper altitudinal component) which could not account 

for the spatial distribution of melt and temperature. The reported sensitivity of accumulation 

and melt to temperature supports the findings of Martin et al. (1997), Kayastha et al. (1999) and 

Richard and Gratton (2001) who stress the need for representative climatic datasets that predict 

extreme as well as average climatic events. Modelling approaches that use a constant lapse rate 

of 0.006 "C m ' or 0.0055 °C m ' (for example Kayastha et al. (1999), Hock et al. (2002) and Lie 

et al. (2003a,b)) limit the resolution of predictions, where significant efforts and detailed 

parameterisations of energy balance are restricted by over simplification of climatic parameters. 

This research suggests that high-resolution climate datasets must be used in conjunction with 

robust energy balance modelling to create accurate and distributed melt and accumulation 

estimates. 

The topographically modified wind speed outlined in section 6.3.1. underpredicted sensible heat 

exchanges and the three dimensional wind flow model (section 7.3.2) provided better results 

and was therefore used in all predictions. 

Conclusions from analysis of mean snow depth accumulations are three fold: summer 

temperatures provide the critical drive for melt, which is not dependent upon winter 

temperatures or reduced precipitation. Simulations of warming and cooling predict distinct 

variations in snow cover from present day conditions and predictions suggest that current 

climate is most effectively simulated using seasonal lapse rates to model the seasonality in the 

processes controlling temperature. 
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Figure 8.38: Sensitivity of mean monthly snow cover to climatic variables 

Interpretation of maximum monthly snow accumulation revealed similar trends although three 

subtle differences are apparent; 

I . Melt at high altitudes is lagged two months after melt at low altitudes for IPCC and 

seasonal lapse rates and one month later for lapse rate 2 and seasonal lapse rates, 

suggesting that accurate representation of the altitudinal variation in precipitation and 

temperature is critical in simulating the onset and duration of melt (Figure 8.39). 

I I . LGM reconstructions predicted maximum snow accumulation until March and July when 

colder temperatures minimised melt resuUing in greater accumulation. Lapse rate 2 and 

the geomorphic lapse rates with greater precipitation and cool winter temperatures 

accumulated greater snow until the onset of melt at high altitude in June and May 

respectively. With cool temperatures at high altitude, lapse rate 2 and LGM scenarios 

predict little meU in summer, maintaining deep snow cover (greater than 2m) at high 

altitudes (Figure 8.39). 

I I I . Delayed onset of melt for seasonal lapse rate predictions results in deeper snow in June 

and July, creating a more representative accumulation distribution; suggesting that the 

timing of the onset of melt at high altitudes is critical in accurately simulating 

accumulation area distributions. Early melting permits loss of too much snow by the end 

of the accumulation season and a delayed onset of melt results in a higher proportion of 

snow remaining at the end of the accumulation season (Figure 8.39). 
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Figure 8.39: Sensitivity of maximum monthly snow cover to climatic variables 

Climatic variables are critical in determining the onset and duration of melt and accumulation 

where topographically derived lapse rates provide better simulations of spatially distributed 

melt. Climatic parameters alone cannot drive and control melt and radiative parameters are 

evaluated to determine how they control and drive melt under different model scenarios. 

8.8. Energy Balance Sensitivity of predicted snow accumulation 

Mean monthly accumulation for all radiative models predicts similar rate and depth of 

accumulation until March where greatest and lowest predictions are within ± 25 cm (Figure 

8.40). Excluding simplified cloud cover parameterisations, differences in mean accumulation 

are less than 10 cm, suggesting that it may not be necessary to model mean accumulation 

through the accumulation period where negligible melt occurs leading to minimal differences in 

net accumulation i f over simplifications of cloud cover effects are not used. 

Diffuse fraction, monthly mean cloud cover, variable cloud and no cloud cover all predict melt 

from March with maximum meh in April when positive net radiation balances result in wide 

spread melt (Figure 8.40). Limited accumulation periods and extensive early melt form 

unrealistic predictions and indicate that it is not possible to oversimplify cloud cover 

parameterisations in a glacier accumulation model as melt is over predicted and accumulation 

periods are shortened. Brock and Arnold (2000) successfiilly used the diffuse fraction 

parameterisation to predict local net balance, however this was used in conjunction with local 
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recorded global radiation and this research suggests that it is a successful mechanism of 

proportioning incident radiation into its direct and diffuse components but is most appropriately 

used after accounting for cloud cover reduction of radiation normal to the surface. This research 

also suggests that clear sky solar radiation models such as Dozier (1980) can only be 

successfully employed to predict spatially distributed melt i f used in conjunction with cloud 

cover data, or including equivalent parameterisations from measured global radiation. 

Although accumulation rates are consistent between models, their rate and onset of melt differ. 

Greatest accumulation occurred when sensible heat exchanges were excluded, delaying the 

onset of and slowing the rate of meU during summer. The results indicate that sensible heat 

exchanges account for nearly 20 cm of melt in June and July when summer temperatures initiate 

positive sensible heat exchanges over the remaining snowcover (Figure 8.40). The importance 

of sensible heat exchanges reported here are supported by the work presented by Sverdrup 

(1936), Male and Grainger (1981) and Marsh et al. (1997) who state that sensible heat is 

required to initiate large scale meh. 

Topographic shade is most critical in April and May when solar ahitudes are lower (Figure 7.3) 

and when potential melt is occurring at lower ahitudes (Figure 8.29). Although only imposing a 

local control, topographic shade affects local energy balance: the sensitivities identified here 

were also reported by Wendler and Ishikawa (1974), Isard (1983), Kayastha et al. (1999), 

Heggem et al. (2001), Hock et al. (2002) and Fierz et al. (2003) who stress the need to 

incorporate topographic shading. Topographic shading was modelled using solar altitude and 

azimuth, however other published models use a simplified approach from a predicted sky view 

factor following Dozier (1980). Heggem et al. (2001) found this approach to introduce errors, 

where the greatest impact was recorded on sloping surfaces with maximum net radiation 

differences of up to 5 MJ day ". This research proposes that an efFicient shading algorithm 

(Section 4.8) incorporated within the direct beam radiation calculations does not increase 

computational complexity and provides valuable local energy balance estimates. 

Cloud parameterisations 1 and 2 produce similar rates and patterns of melt, where more 

radiation reaches the surface under paramerisation 2 conditions, resulting in higher rates of melt. 

Greatest monthly accumulation is predicted for conditions without sensible or diffuse 

components where accumulation is over predicted. Diffuse radiation appears to be most critical 

in July where it accounts for over 20 cm of melt. 
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Mean accumulation is under-predicted when simplified cloud parameterisations are employed 

and over-estimated i f sensible or diffuse components are excluded from the energy balance 

model. Sensible heat plays a dominant role in melt throughout summer from May to August, 

and diffuse radiation drives melt later in summer, both are critical in predicting the onset and 

extent of melt. 
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Figure 8.40: Sensitivity of mean monthly snow cover to radiative variables 

Examination of monthly maximum snow accumulation reveals similar patterns (Figure 8.41), 

exclusion of radiative parameters under predicts melt and over simplification of cloud cover 

over predicts melt. 

Although exclusion of sensible heat generates highest monthly mean snow cover, exclusion of 

diffuse radiation predicts monthly maximum snow accumulation throughout the year until July. 

Exclusion of sensible heat is the only model to predict a steady increase in the maximum 

accumulation through the year with only minimal melt occurring in July. 

Onset of high altitude melt occurs in June for all but the oversimplified cloud models, with all 

models predicting consistent melt rates. Maximum snow depths appears less sensitive to 

radiative parameters where high altitude sheltered locations maintain deep snow cover all year. 

Predicted accumulation of snow until June for cloud parameterisation 1 and 2 suggests robust 

results, where summer snowfall events were reported, by Brock et al. (2000), as critical to 
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accurate simulation of glacier distributions. Monthly average snow depth provides a more 

useful dataset. 
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Figure 8.41: Sensitivity of maximum monthly snow cover to radiative variables 

Predicted radiation surfaces have a pronounced topographic distribution (Figure 7.21). 

Examination of the resultant topographic dependency highlights marked altitudinal and aspect 

component. 

8.9. Topographic Controls on predicted snow accumulation 

Topography modelled through net radiation balance components has a dominant control on 

surface accumulation where south facing slopes accumulate less snow (Figures 8.42,8.43 and 

8.44). Patterns of annual accumulation mirror those of all aspects with pronounced differences 

in summer months when direct beam radiation appears to be a dominant driver of meh. 
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Figure 8.42: Aspect and predicted snow depth for no cloud model 
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Figure 8.43: Aspect and predicted snow depth for no topographic shade model 
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Figure 8.44: Aspect and predicted snow depth for cloud parameterisation 2 model 

Parameterisation of geomorphic position and detailed climate modelling was completed in an 

attempt to simulate the complex patterns of snow accumulation with altitude and aspect. 

Examination of the resultant July snow cover for cloud parameterisation 2 (Figure 8.45) reveals 

that parameters other than altitude provide dominant controls on snow cover and it is possible to 

consider this as an indication that the model advances upon existing approaches which are 

largely driven by observed energy balance records or altitudinal lapse rates. Resultant 

distributions are influenced by elevation, solar radiation and topographic position, as in the 

research of Williams et al. (1972) and Isard (1983). The variables included in this research, and 

the topographic variability modelled, also support the findings of Wendler and Ishikawa (1974), 

Luce et al. (1998), Ferguson (1999) and Fierz et al. (2003). They stressed the need to model 

small-scale topographic influences at the snow surface, where variability in topographically 

distributed radiation balance also has a temporal component (Dubayah and Katwijk, 1992) and 

cannot simply be parameterised based on slope and aspect. 

Topographic variability and control on glacier accumulation is not modelled as effectively using 

altitudinal lapse rates or degree day models as applied by Hock (2003), Rasmussen and Conway 

(2003) or Lie et al. (2003a, b). Those studies predict ELAs and glacier distributions, where 

regional ELAs are successfully identified, but localised or topographically constrained glaciers 

are not well predicted, being dependent upon variables other than temperature and precipitation. 

This research suggests that all components of the energy balance model are important in 

controlling the spatial distribution of melt, which suggests that parameterised models such as 

Hock (1999) which extends the classic degree day model to include potential clear sky direct 

solar radiation, cannot accurately simulate snow accumulation without accounting for the 
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important role of sensible heat in summer meh (Sverdrup, 1936; Male and Grainger, 1981 and 

Marsh era/., 1997). 
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Figure 8.45: Correlation between snow accumulation and altitude 

8.10. Evaluation of snow accumulation distributions 

Prediction of discrete glacier accumulation areas suggests that topographically derived climatic 

lapse rates and spatially distributed melt play a significant role in accurate prediction of 

accumulation areas. The results reported by Tappeiner et al. (2001) in their largely correlation 

and regression based model achieved an value of 0.72, but accumulation areas not predicted 

within their model still exhibited spatial organisation. Accumulation areas not predicted within 

the research presented here are consistent and suggest that conditions required for accumulation 

in all glaciers within the study area differ and local processes including redistribution, extreme 

microclimate modifications or extreme cold or wet past climatic events may have initiated their 

accumulation. This explanation is also supported by the work of Elder et al. (1991) and Chang 

and Li (2000) who found that elevation and radiation receipt could only in part account for 

observed spatial distributions of snowcover. Catchment scale snow accumulation patterns are 

most effectively simulated using distributed melt models, rather than using altitudinal 

temperature and precipitation relationships (for example Tangbom, 1999) that cannot simulate 

topographically organised melt. 
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Cloud parameterisation 2 predicted the most accurate accumulation area distributions where 

more refined radiation estimates, topographically organised climatic and accumulation 

predictions simulated observed accumulation area distributions (Figure 6.47). 

Failure to predict snow accumulation under cloud parameterisation 2 model, can be attributed to 

the following factors: 

• DEM elevations were assumed representative of the underlying topography, inclusion 

of this subsurface elevation data would steepen slopes and increase topographic shade 

on the back wall of the cirques where accumulation would initiate. These topographic 

parameters would decrease the net radiation balance within the cirque, reducing the 

energy for melt and increasing the opportunity for accumulation. 

• Initial model conditions of no snow cover adjust the local energy balance conditions, 

specifically surface temperature and albedo. Inclusion of a cold snow pack would 

favour greater and earlier accumulation in the cirque glaciers currently not predicted 

within the model. Adjustments to the pattern of accumulated snow have known 

implications on extent of melt (Anderton et al., 2002) and would increase the 

opportunity for accumulation. 

• Luce et al. (1998), Tappeiner et al. (2001) and Mittaz et al. (2002) discussed the role 

that redistribution can play in adjusting local energy balances. This could account for 

failure to predict some accumulation areas, including those in Figure 8.46, Box A. 

However Luce et al. (1998) stress that detailed snow drifting information is required to 

predict spatially and temporally distributed estimates of adjusted accumulation. 

• Strong local climatic gradients not simulated within this research may significantly 

reduce local temperature or increase precipitation enabling snow accumulation. This too 

could account for failure to predict some accumulation areas, including those in Figure 

8.46, Box B. 

• Diffuse sky view factor was not included which decreases the diffuse radiation 

component at sheltered sites. Extension of accumulation areas into the ablation zone 

would be reduced in sheltered areas. This could account for the over prediction some 

accumulation areas, including those in Figure 8.46, Box D. 

• Not all shallow perennial snowpatches were predicted by the model Figure 8.46, Box C. 

Localised energy balance conditions, where topographic form with a spatial resolution 

not captured by the DEM or accounted for in local deposition of avalanched or wind 

blown snow, were not resolved with the model output. It is also likely that these are not 

all permanent features and do not persist from year to year. 
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• Average air temperature and precipitation could under predict cold wet periods, which 

can be critical to accumulation. This phenomenon was also reported by Semadeni-

Davies(1997). 

Over prediction of snow accumulation in boxes D, F, G and H under cloud parameterisation 2 

model, can be attributed to the following factors: 

• Failure to model snow redistribution by drifting was found by Luce et al. (1998) to 

under predict late season melt. This could account for the over prediction some 

accumulation areas, including those in Figure 8.46, Box F. 

• Strong local climatic gradients not simulated within this research may lead to locally 

warmer or drier conditions that enable greater snow ablation. This could account for the 

over prediction some accumulation areas, including those in Figure 8.46, Box D and E. 

• Long wave emittance from surrounding bedrock would ablate localised snow patches 

and thin predicted accumulation areas which could account for the over prediction 

highlighted in Figure 8.46, Box G. 

• Thermally induced wind speeds were not modelled, failing to predict increased wind 

speeds under katabatic wind conditions. This resulted in under predicted sensible heat 

exchanges reducing the energy available for melt. Increased melt rates would be 

expected in the ablation zone, reducing predicted snow cover. This could account for 

the over prediction of some accumulation areas, including those in Figure 8.46, Box H 

and D. 

• Average air temperature and precipitation could under predict hot periods, which can be 

critical to accumulation. This was also reported by Semadeni-Davies (1997). 

Using a regional 30 year normal climate data does limit the study climatic predictions to 

average or 'normal' conditions that may fail to simulate extreme events that contribute to 

significant accumulation or ablation events. However, the approach adopted here is supported 

by the work of Hannah et al. (2000). They concluded that short temporal scale datasets cannot 

be used to model accumulation and melt and propose more representative longer term datasets 

as the most appropriate scale dataset, where a wider range of melt conditions can be modelled, 

essential when a range of scales of climatic variables are important. 

The model accurately predicted snow cover where accumulation was topographically and 

altitudinally constrained, where aspect and geomorphic position played infiportant roles in 

determining glacier extent and localised net balatice gradierifs controlled accuifTulation. 

3 3 1 



Predicting Glac ier Accunudal ion Area Dislributioii^ 
Katlieriiie E A n d I 

Chapter Eight 
Results and Discussion 

Box E 

, B o x D 

B o x C 

Box H 

S Box A 

Figure 8.46 Analysis of over and under prediction of glacier accumulation areas 
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Figure 8.47: August cloud parameterisation 2 predictions draped on the Landsat image classification and 

net radiation surface 

Flexible and repeatable algorithms and an adaptable model structure maximise the value and 

optimise a model over less robust alternatives (Brock and Arnold, 2000). The model presented 

here with minimal data input requirements and no radiative local parameterisations is a valuable 

and progressive tool that can be used to predict present day snow accumulation and predict or 

reconstruct accumulation distributions for future or past environmental conditions. Equivalent 

highly parameterised and locally calibrated models were seen by Fierz et al. (2003) as a method 

o f masking model inadequacies as tuned coefficients. These calibrated models cannot easily be 

applied to new areas and form less robust alternatives (for example Hock et al., 2002; Verbunt 

et al., 2003). Equally models heavily dependent on locally recorded data (Brock and Arnold, 

2000; Fierz et a/.,1997; Mittaz et al., 2002; Semadeni-Davies, 1997; Cline et al., 1998; 
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Kayastha et al., 1999; Hock et al, 2002; Oerlemans and Klok , 2002) are restricted in their 

application and are not as robust. 

8.11. Discussion of assumptions and potential errors 

The physical basis o f the model and the lack o f parameter f i t t ing within the model increases its 

f lexibi l i ty , facilitating applications in different study areas (Cline et al., 1998). However, 

simplifications o f reality and assumptions o f homogeneity are essential within any modelling 

application. 

The fo l lowing simplifications were made in the model presented: 

D E M surface is assumed to be a true representation o f sub glacier surface 

Homogeneity is assumed within each 100 m pixel 

Snow free surfaces at start o f mass balance year are assumed 

Daily incident radiation is assumed constant for 5 days 

Constant average land cover albedo o f 0.4 

Simplistic atmospheric absorption and attenuation 

Outgoing long wave radiation is assumed constant 

Snow cover emissivity is assumed spatially and temporally constant 

Diffuse radiation is assumed f rom an isotropic sky 

Sky view factor is not included 

Rain on snow events are not included 

Advection between and within pixels is ignored 

Snow surface albedo is assumed to be spatially constant throughout equal age snow 

cover, decreasing only as a function o f time 

Snow surface temperature is predicted using air temperature and solar heating 

A l l melted snow or rain runs o f f the snow pack 

Multiple reflections between snow and cloud surfaces were not modelled 

Advection is not modelled: although identified by Granger et al. (2002) as an important 

consideration, inclusion o f advection would extend and i n f i l l accumulation areas, but it 

would not address the main areas o f under prediction, where all snow cover is ablated. 

A l l o f these assumptions affect the magnitude o f predicted net balance and snow accumulation. 

However, a high degree o f matching between predicted and observed distributions confirms that 

errors propagated through the model by employing these assumptions are limited. The validity 

o f these assumptions is under current review by tlie~ author arid within the "wider research 
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community. Comparison o f model output with other published models suggests that the balance 

o f modelled and parameterised phenomena is satisfactory and does not l imit the usefulness or 

accuracy o f the model. 

A five day energy balance time step within the model is supported by the work o f Fierz et al. 

(2003) who proposed that the complexity o f daily time steps cannot be effectively modelled, 

and by Ferguson (1999) who stressed that more complex snow melt models do not ensure more 

accurate results. 

Limitations to model predictions by spatial resolution are not only an inevitable consequence o f 

data availability, but provide a realistic dataset for climate data interpolation accuracy and net 

radiation variance. Dubayah et al. (1990) investigated the role o f spatial scale on energy 

balance models and identify reduced variance in spatially distributed estimates as the main 

limitation o f coarse resolution models. This needs to be evaluated with respect to predicted and 

observed variance in snowcover (a function o f terrain variability). The model results presented 

here accurately simulate observed variance suggesting that a 100 m model resolution satisfies 

model requirements. 

Albedo parameterisation was investigated within the model, but greater sensitivities were found 

with cloud cover. 

Errors are incorporated at every step o f the model, rendering an accurate propagated error 

estimate challenging: one is not provided here. Dubayah and Rich (1995) and Brock et al. 

(2000) identified D E M error as the most serious error component o f topographic solar radiation 

models, where high variation in local slope and aspect (which were identified as more sensitive 

to altitudinal error earlier) can lead to large variations in net radiation balance: southerly 

aspects, steep slopes and topographic shading create steep local gradients in net balance 

estimates. Error removal cannot be performed after net balance predictions as high local 

gradients in energy balance exist in the landscape and cannot be differentiated f rom error 

artefacts. This research project has confirmed this sensitivity and identified digital elevation 

data error as a critical limitation on snow accumulation estimates. It developed an efficient and 

effective error removal mechanism to improve prediction accuracy and l imit error propagation. 

Propagation o f errors through the model without error removal are visible in Figure 8.48 a and b 

where diagonal snow accumulations are predicted. 
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Figure 8.48: a) December and b) April accumulation predictions before accounting for DEM error 

8.12. Conclusions 

Driven by spatially distributed temperature, precipitation and radiation all models predicted 

spatially distributed melt wi th areas o f thinner snow cover melting first: melt patterns indicated 

spatially organised accumulation. This research addressed current limitations to existing melt 

models, where Cline et al. (1998) identified the lack o f spatial distributed climatic data as a 

major obstacle in snow melt modelling. Glacier accumulation area distributions were improved 

by seasonal and geomorphic lapse rates and more complex parameterisation o f cloud. 

Sensitivities result f rom both climatic and radiative variables, but were most pronounced to 

changes in snow cover albedo, cloud cover and D E M error. 

A l l energy balance components were found to contribute to predicted accumulation areas with 

diffuse radiation and sensible heat exchanges most dominant in controlling the t iming and rate 

o f summer melt. 

The most robust predictions were made using the cloud parameterisation model 2. Seasonal 

temperature lapse rates created using geomorphic parameters and the three dimensional wind 

f l o w modelling produced the most robust climatic predictions. Cloud parameterisations o f 

reduced global radiation and partitioning o f diffuse and direct components created the most 

realistic radiative components with diffuse radiation over predicted in all other models. 

Prediction under warming and cooling scenarios result in markedly different distributions where 

warmer summers and drier winters have the most dominant effect. 
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CHAPTER NINE 
CONCLUSIONS AND FUTURE STUDY 

9.1 . Introduction 

In Chapter one, the overall aim o f the thesis was defined: " to predict small glacier 

accumulation areas using accessible data, providing a repeatable and flexible model that could 

be applied to other geographical areas in the future. ". 

To address the above aim, this thesis has addressed the fo l lowing research aims: 

/. To create a suite of topographic variables from digital elevation data to improve earth 

surface process modelling 

2. To create a local climate dataset of temperature and precipitation, wind and cloud 

cover using regional climate and topographic data. 

3. To predict spatially distributed glacier accumulation areas using regional climate and 

topographic data. 

This chapter concludes this thesis by reviewing the main findings o f the work in the context o f 

the original aim stated above. It also reflects on the strengths and weaknesses o f the work and 

makes recommendations for future research in spatially distributed mass balance modelling. 

9.2. Main Findings of tlie PliD Research 

1. To create a suite of topographic variables from digital elevation data to improve earth 

surface process modelling 

Digital elevation data in the form o f a 100 m D E M were used to create a suite o f topographic 

variables that characterised surface form, context and position. Attempts to extend existing 

topographic descriptors were presented, termed composite or contextual terrain parameters. 

Methodologies for extraction o f relative height, slope position, valley context, valley 
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orientation, maritimity, surface roughness and topographic exposure were presented that 

characterised local conditions using information on the surrounding area and their scale based 

variability. 

Attempts to characterise topographic position to better inform process modelling used 

information on the proximity and nature o f surrounding topographic features in an attempt to 

relate surface form to surface process. Effectiveness o f characterisations varied, where 

measures using information on relative attributes or focal characteristics provided robust 

topographic indicators and measures that attempted to relate topographic form to distinct 

landform attributes were less effective and sensitive to extraction algorithms and spatial scale. 

Methodologies for addressing these limitations were presented. 

The research confirmed the need to account for error wi thin digital elevation data where 

spectrally and spatially organised error present in the D E M was found to propagate through the 

model. A n effective removal procedure, using Fourier transforms was employed and largely 

removed the observed error without over smoothing the data, minimising any associated error 

propagation. This presented a new application o f Fourier transforms and information on 

interpretation o f Fourier frequency outputs for digital elevation data was presented. 

Measures o f surface roughness were used to inform a viewshed algorithm, where surface 

roughness was found to correlate with algorithm efficiency. Search algorithms extending f rom 

the study pixel were found to be more effectively analysed using a tracking in algorithm and 

rougher surfaces were found to be more effectively analysed using a tracking out algorithm. 

This sensitivity o f algorithm performance to surface roughness can be applied to other surface 

calculations, where local and focal estimates o f surface characteristics are seen to inform 

computational efficiency. 

2. To create a local climate dataset of temperature and precipitation, wind and cloud cover 

using regional climate and topographic data. 

30 year monthly normal climate data were investigated to identify spatial and temporal 

variability that could be simulated using time series and terrain information. Topographic 

parameters were found to improve temperature and precipitation predictions f rom those using 

standard lapse rates alone. 

The j t iost effective variables for improving the accuracy o f temperature predictions accounted 

for valley locations where strong temperature gradients exist. Accounting for these topographic 
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locations better allowed the model to simulate observed trends in temperature. Monthly 

variability was most effectively simulated using seasonal lapse rates that accounted for 

seasonality in process. Precipitation was most effectively predicted using maritimity and 

altitude with a power law function that accounted for the non-linear distribution o f precipitation 

receipt. Restricted altitudinal range o f climate datasets limited the variability wi thin the 

resultant climate predictions where it was necessary to steepen precipitation lapse rates to 

account for observed winter accumulation. 

Cloud cover was found to be the most d i f f icu l t parameter to predict, where sparse data and weak 

topographic controls provided little information to inform predictions. Simulation o f observed 

trends o f daily variability in cloud cover were used where greater uncertainties would be 

introduced i f correlations present within the data were used to drive predictions. 

A method o f predicting wind vectors was presented using esfimates o f terrain modification to 

wind speeds by flow separation and surface roughness, these created realistic spatial 

distributions o f wind speeds but under predicted flow magnitude. 

Methodologies presented in climate data prediction, although applied to the Jotunheimen can be 

applied to any geographical area, where controls on temperature, precipitation and wind speed 

show little variation based on location when driven by regional climate and topographic data. 

3. To predict spatially distributed glacier accumulation areas using regional climate and 

topographic data. 

The research presented in this thesis has made a valuable contribution to mass balance 

modelling, developing a spatially and temporally distributed model with low data requirements. 

The model predicts monthly snow accumulation, driven by regional climate and topographic 

data without the need for parameter fitting or coefficient tuning. 

The research drew upon terrain analysis, climatic and energy balance modelling to create a 

model optimised for predicting cirque and localised glaciers. The research adopted a distinct 

spatial analysis approach to prediction where topographic controls on climate and accumulation 

were identified as critical for predicting observed spatial variability in snow accumulation. 

Predicted snow accumulations exhibited marked sensitivity to climate data, where the t iming 

and rate o f melt was critical to end o f mass balance year accumulation patterns. Summer 

temperatures were found to impose the greatest control on resultant accumulation patterns. 
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Sensible heat was found to provide a valuable contribution to melt in summer months when 

greater positive fluxes to the surface exist. 

A l l o f the modelled energy balance components were found to provide a positive contribution to 

melt predictions, where shortwave radiation accounted for the greatest contribution to melt. 

Sensitivity to climatic and radiative components o f the mass balance model were investigated 

where summer conditions were found to be the most critical. Radiative parameters were most 

sensitive to cloud cover measurements, where parameterisations o f global radiation and diffuse 

and direct components provided the most robust estimates. Snow albedo was also found to 

impose controls on predicted snow accumulation patterns. 

9.3 Strengths and Weaknesses of the Research 

The main strengths o f the research described in this thesis include the fol lowing: 

• A holistic approach to predicting glacier accumulation areas was developed, that drew 

upon topographic, climatic and energy balance components that were identified in 

chapter 1 as dominant controls on glacier accumulation. Published approaches to 

simulating snow meh do not attempt to account for each o f these components and 

cannot simulate observed variability. The model presented here accounts for spatial 

variability in observed accumulation areas, where local topographic, climatic and 

energy balance gradients are predicted. 

• Low data requirements and no local parameterisation or tuning coefficients maximise 

the potential applications o f this research. Alternative models are largely limited by 

study area and data requirements identifying this research as an accessible and robust 

mechanism o f predicting accumulation in unmonitored or inaccessible areas. 

• Local scale energy balance and climate predictions were accurately simulated using 

information contained within a D E M . Exploration o f the information contained within 

digital elevation data and how this can inform process studies forms an invaluable 

future research direction. New methods o f identifying and removing D E M error and 

improving algorithm efficiency using surface characteristics form valuable research 

contributions. 

• Analysis o f sensitivities to changing climatic and radiative components provided an 

insight into system responses to changing environmental conditions. The model 

presented here provides a robust tool for examining these responses where observed 

changes^ere congruent with expectations. 
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The fo l lowing weaknesses in the PhD research study are also identified: 

• Error present within the study area D E M propagated error through the topographic and 

climate modelling to the mass balance model. Although spatially organised error is not 

present within the model snow accumulation predictions, evidence o f error is clear 

wi thin some predicted energy balance components. 

• A lack o f information on sub glacier topography limited analysis to predictions on 

glacier surfaces, where shallower gradients, reduced curvature and topographic shade 

alter local energy balance conditions reducing the ability o f the model to predict 

realistic distributions. 

• Poor altitudinal range in climate station data limited the effectiveness o f predictive 

approaches based upon correlations present within the dataset. Precipitation predictions 

required a steepening o f the altitudinal lapse rate to simulate high altitude precipitation 

receipts 

• Simplistic cloud cover predictions, a result o f minimal observed data restricted the 

spatial variability in accumulation simulated within the model. 

• Limited quantitative validation o f predictions limits the analysis o f areas where the 

model poorly simulates observed accumulation areas. Limited by noisy remotely 

sensed classifications and topographic maps, efficient and accurate validation 

mechanisms could not be developed within the scope o f this research. 

9.4 Recommendations for Future Work 

This f inal section makes suggestions for the possible direction o f future work, both in the mass 

balance modelling and also in the context o f wider geomorphological and terrain analysis 

applications. 

An initial extension o f this PhD w i l l attempt to develop a more robust validation methodology. 

Initial steps would involve the manipulation o f the vector representation o f classified snow 

cover, by applying a size threshold, removing small snow covered areas and cloud cover. 

Delineation o f estimated accumulation area extent down the glacier and subsequent Boolean 

overlays using raster representations o f these refined observed accumulation area extents would 

facilitate analysis o f areas o f over and under prediction. A n alternative approach would be to 

digitize vector polygon coverages o f the glaciers delineated in the topographic map, using 

contours to identify accumulation area extent. 
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The ability o f the model to improve the spatial variability in snow accumulafion in comparison 

to alternatives w i l l be assessed by running a comparative study with other models. The low data 

requirements o f the model presented here facilitate such an exercise where other models would 

require extensive recalibration. This would provide quantitative estimates o f improvements and 

variability in model output, creating a rich resource. 

Applicafion o f the model to additional study areas and assessing any variability in model 

performance w i l l provide information on the sensitivity o f the model to local conditions (this 

w i l l primarily be driven by the spafial distribution o f regional climate data). Further extension 

o f the model to reconstruct past conditions could be applied to further our understanding o f 

system responses to changing environmental conditions. One application would be to 

investigate the use o f the model to reconstruct past climatic conditions using known paleo-

glacier extent. 

The model presented in this research is shown to over and under predict snow accumulation in 

some areas. Using topographic and wind vector data derived in chapters 4 and 6 areas o f snow 

entrainment, deposition, and avalanching w i l l be predicted to assess the role o f snow 

redistribution in controlling accumulation. Movements o f snow through the D E M after a 

precipitation event, before melt, w i l l improve our understanding o f the dynamics o f a glacial 

environment and our knowledge o f the spatial organisation o f these processes. 

Extension o f the terrain analysis components o f this research also create exciting new future 

directions, where further development o f the application o f Fourier transforms in removing 

D E M error and the use o f terrain surface characteristics to inform efficient terrain based 

algorithms are both innovative research projects. Perhaps the most notable future project 

addresses the characterisation and extraction o f valleys f rom digital elevation data. A 

methodology was proposed within this research, which w i l l be implemented to assess the ability 

wi th which it can predict valley floor, walls and extent. I f successful, a methodology for 

extracting and characterising valleys w i l l provide an invaluable contribution to geomorphology 

and climatology for better informing earth surface systems process modelling. 
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LIST OF SYMBOLS AND 

ABBREVIATIONS 

Symbol Definit ion 

Ad Slope aspect (Ryan, 1977 and Purves et al., 1992) 
Asd Standard deviation of the sine of aspect in degrees 

ANN Artificial neural networks 

asD Albedo for deep snow cover 

°C Degrees Centigrade (or Celsius) 

Cp Specific heat of dry air at constant pressure 
Co Rainfall at sea level 
ci Rate of increase in precipitation with altitude 

DALR Dry adiabatic lapse rate 
DEM Digital Elevation Model 
Dtr Diurnal temperature range. 

E Elevation (m) 
E ' Varies as a function of the maximum elevation in the data (ranges from 0 

to 1, from Ryan, 1977) 

E L R Environmental lapse rate 

exp Exponential 

Effective emissivity of the sky 

FFT 
Fd 

Fu 

GIS 
GPS 

Fast fourier transform 
Wind diverting factor (Ryan, 1977) 
Ryan's (1997) sheltering effect 

Geographical information system 
Global position system -
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Gp S lope gradient (%) (Purves et al., 1992) 

lb terrestrial radiation (Kreith and Kreider, 1978) 

lo the solar flux entering the atmosphere (Kreith and Kreider, 1978) 

/ The wind sheltering created by and obstacle (Lapen and Martz, 1993) 

K Degrees Kelvin 
KDE Kernel density estimate 
K* Net short-wave radiation 
Kl Incoming short-wave radiation 
ATf Reflected short-wave radiation 

L* Net long-wave radiation 
L[ Incoming long-wave radiation from the atmosphere 

Outgoing long-wave radiation from the surface 

In Log to the base n 

m Metres 
ms"' Metres per second 
m asl Metres above sea level 
mb Millibar (pressure) 

m air mass ratio 

P Precipitation 

Pi Proportion of clear sky transmissivity. 

p Pressure (mb) 

Qe Latent heat flux from snow-air interface 
Qen Net emitted radiation from surrounding terrain 
Qg Heat flux-from the snow-ground interface 
Qh Sensible heat flux from the air 
Qp Heat flux from precipitation 
Qin Net long-wave radiation 
Qm Energy flux available for melt 
Qsn Net short-wave radiation 
Qrt Net reflected radiation from surrounding terrain 
Q* Net all-wave radiation flux 
Qi Total incoming short- and long-wave radiation 
Ql Total outgoing short- and long-wave radiation 

R Gas constant for dry air 

R Roughness 
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R r Rate of change of roughness 
R s Scaled roughness values 
Rrs Rate of change of scaled roughness value 
Ri2 Surface roughness in a 12 pixel width kernel 
R3 Surface roughness in a 3 pixel width kernel 

Ri Richardson number 

Sr Surface roughness 

SALR Saturated adiabatic lapse rate 

Sx Maximum upwind slope parameter (Winstral and Marks, 2002a, 2002b) 

T Temperature 
T A Air temperature 

T D Dew point temperature 

Tm Terrain modification effect to wind flow 

Xb Atmospheric transmittance (Kreith and Kreider, 1978) 
Urn Predicted meso scale winds 
U s Measured wind speed 
V Wind velocity 
V i 

V p Predicted wind velocity after application of altitudinal flow factor 
Vsd Wind speed after terrain modification 
V u 

Vue 

Vur Roughness parameter 

W d Wind direction (Purves et al., 1992) 

Y d Slope percent dovmwind 

Z Altitude 
Zb Cumulus cloud cover base height (from Barry, 1992) 
Z f Altitudinal wind flow factor 
Zsd Standard deviation of altitude 

© b Wind direction 

0 Potential temperature 
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APPENDIX I 

GUIDE TO RUNNING THE MODEL FOR A NEW 

GEOGRAPHICAL AREA 

To run the glacier prediction model for a selected geographical region the following data and 

modelling steps are required. 

Data requirements 

Terrain data: A UTM WGS 1984 georeferenced gridded DEM of the area: resolution is not 

restricted akhough coarse resolutions will produce coarser scale results. 

Climate data: Monthly precipitation, temperature, cloud and wind speed surfaces of the area at 

the same spatial resolution as the terrain data. I f available data is restricted to point climate 

stations, regression and predictive approaches outlined in Chapter six can be employed to 

generate continuous surfaces for the study area. The accuracy of glacier accumulation area 

predictions wil l be highly dependent upon the quality of these surfaces (Chapter eight). 

Validation data: An optional data requirement forms a validation dataset, this can be used to 

assess the accuracy of the delineated accumulation areas. This could consist of a topographic 

map, a remotely sensed image or a field survey. 

Modelling Steps 

Prediction of glacier accumulation areas follows four main steps. 

I . Prediction of surface albedo. 

I I . Prediction of surface temperature 

III . Prediction of surface energy balance 

IV. Prediction of surface melting. 
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Each of these steps needs to be performed for each month, as outhned below and the Java 

programs outlined in the ReadMe file (seen below)(downloadable from the author's website). 

Each month's outputs are used as the following month's inputs. 

The Java programs required to run the prediction model are downloadable from the author's 

website and read in and out Arclnfo ascii rasters. Programs can be edited to alter local read and 

write locations. 
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************************************************************** 
JAVA Program files for snow accumulation prediction model 
Author: Katherine Arrell 
Contact: K.Arrell@leeds.ac.uk 
************************************************************** 

This is read-me file for the Java program. This folder contains the following files: 

Each process Java program has a run (main method) file - RunFileName.java 
Each Java program has a class file - this is a compiled program - FileName.class 

Comments are included in the program prefixed with // 
Open the .Java file that is not prefixed with Run to view the process code within a text or Java 
editor E.G Notepad or NetBeans 
You will need Java Runtime environment to run the programs 

FourierRaster.java This program creates artificial rasters for FFT transform 
RunFourierRaster .j ava 

UpSlope.java This program identifies and records upslope obstacles 
RunUpslope.java 

GetDownWindSlope.java This program identifies and records downwind slope 
RunGetDownWindSlope.j ava 

Deflection.java This program measures wind deflection by terrain 
RunDeflection.j ava 

GetSurfaceTemp.java This program calculates surface temperature 
RunGetSurfaceTemp.j ava 

NetRad.java This program predicts net radiation receipt within a DEM 
RunNetRad.java 

GetAlbedo.java This program predicts surface albedo 
RunGetAlbedo.java 

MeltingMonth.java This program predicts monthly snow melt 
RunMeltingMonth.j ava 

Count.java This program counts values within a raster 
RunCount.java 

Additional files required to run the programs are included in the folder named: RequiredFiles 
These files contain classes from Jo Wood's Landserf v2.0 package 

382 



Predicting Glacier Accuniula l ion Area Distributions 
KLatlierine E A r r e l l 

Appendix I 

STRUCTURE OF ACCUMULATION PREDICTIONS 

Step 24Surface Temp 

inputs 
Temperature 
Precipitation 
Old snow 
temperature 
Old snow depth 

Surface Temperature 
Runs from month 2 
Month 1 = air temp 

Set surface temperature to 
be air flow if no old snow 

Outputs 
Surface temp 

Step 44Meltiiig 

Step 3: Energy Balance 

Inputs 
Gradient 
Aspect 
Surface temperature 
Air temp + 2m 
Wind speed 
Albedo 

Energy Available 

Calculates incident 
radiation 
Losses through 
shade 
Turbulent heat flux 

Outputs 
Energy available 

Inputs 
Energy 
Old snow depth 
Old snow 
temperature 

Melting 
Runs from month 1 

Heats and then 
melts snow, new 
snow then old snow 

Step 1: Surface Albedo 

Inputs 
Precipitation 
Temperature 
Old snow depth 
Old surface albedo 

Albedo 
Runs from month 2 
Month 1 = 0.4 

Increments - 0.05 if 
no new snow 
0.4 if no snow 
or 0.9 and 0.85 

Outputs 
Surface albedo 

Outputs 
Snow surface temp 
Snow depth 
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