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Abstract

We present a summary of the methods required to solve loop-integrals and their
reduction to Master Integrals. We then present the expansion in d = 4 — 2¢ of
the Master Integrals required for the two loop massless vertex diagrams with three
off-shell legs. The results are analytic and contain a new class of two-dimensional
harmonic polylogarithms, which match onto the allowed phase-space boundary for
the 1 — 2 process. These Master Integrals are relevant for the QCD corrections to
H — V*V* (where V = W, Z) and for two-loop studies of the triple gluon (and
quark-gluon) vertex.

We consider multi-parton collinear limits of QCD amplitudes at tree level. Using the
MHYV formalism we specify the underlying analytic structure of the resulting multi-
collinear splitting functions. We adapt the MHV-rules to enable us to derive splitting
functions without the need to evaluate the full amplitude. We derive general results
for these splitting functions that are valid for specific numbers of negative helicity
partons and an arbitrary number of positive helicity partons (or vice versa). Our
method can be used to find splitting amplitudes with higher numbers of negative
helicity partons. We present new results describing the collinear limits of up to six
gluons and up to four partons. These results will have applications in the evaluation
of higher order corrections to QCD cross-sections and jet evolution.
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“Singularity is almost invariably a clue.”
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“Only two things are infinite, the universe and human stupidity, and I'm

not sure about the former.”

Albert Einstein.
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Preface

At the beginning of the last century our understanding of the laws of physics was
shaken by the emergence of two new fields of physics. Firstly, the field of quantum
mechanics, the physics which applies at very small distances, and secondly special
relativity, the physics that governs at very high energies. As the century progressed
came the birth of relativistic quantum field theory, the unification of these two theo-
ries, to begin to explain the properties and behaviour of the Universe’s fundamental
particles. With this new theory came many new and interesting problems to be
solved, for example the role played by infinities and how to interpret them. How-
ever, through the ensuing developments we have seen some of the beauty that nature
has to share with us, the hidden symmetries obeyed by the fundamental particles,

and the strange properties that they produce, such as asymptotic freedom.

In nature we know of four fundamental forces, the electromagnetic force, the weak
force, the strong force, and gravity. The gravitational interaction is described by
general relativity (developed by Einstein) and is by far the weakest of the four fun-
damental forces. As such, the role it plays in high-energy particle physics can be
considered negligible. The Standard Model (SM) is the currently accepted descrip-
tion of the fundamental constituents of matter and their interactions through the

remaining three forces. It is described by the symmetries which are associated with

the three forces and obeyed by the fundamental particles, the quarks, leptons and




gauge bosons.

The quark model was introduced by Gell-Mann [1] in order to explain the prolif-
eration of mesons and baryons discovered at experiments in the 1950’s and 1960’s.
Using quarks as the building blocks, we can reproduce the observed hadrons and
their properties by assuming that baryons consist of three quarks ggg, and that
mesons consist of a quark and an anti-quark ¢g. In this way the spectrum of hadrons
could be explained in a similar way to how the periodic table of Mendeleev explains
the patterns in the properties of the elements. Although the quark construction
could be used to explain (and even predict) the observed hadrons, there was no
explanation as to why only certain combinations of quarks, q§ and gqq, were seen
in nature. In addition, the quark model meant that some fermionic states, such
as the A*% (which consists of uuu), appeared to possess symmetric wave-functions
under the interchange of two quarks. However as fermions obey Fermi-Dirac statis-
tics! they are required to have anti-symmetric wavefunctions under the exchange of
two fermions quantum numbers. To explain this apparent contradiction, the colour
degree of freedom was introduced by Han and Nambu [2]. This postulates that
each quark also carries one of three colours, commonly denoted red(r), green(g) and
blue(b), in addition to their flavour. In addition all hadrons are postulated to be
singlets under the colour gauge transformation, i.e. they are colourless, to satisfy
the spin statistics. Thus baryons will be composed of one red, one green and one
blue quark, making an overall colourless object, and mesons will be composed of a

coloured quark, and an anti-quark with the corresponding anti-colour.

The quark model could have proved to be simply a useful way of explaining the ob-

served hadrons, with no physical basis. Quarks had never been observed at collider

!The particles of nature are classified as either Fermions or Bosons according to the statistics
which they obey, Fermi-Dirac statistics for fermions which have half-integer spin (quantised in
units of /), and Bose-Einstein statistics for Bosons which have integer spin.



experiments, and so they could be just a useful mathematical formalism. How-
ever in the late 1960’s deep-inelastic scattering (DIS) experiments provided the first
evidence for sub-structure within protons. High-energy incident electrons colliding
with protons appeared to be scattering off point particles within the protons, quarks.
In DIS these quarks act as though they are free states within the proton, and yet
we cannot observe them outside of hadrons! This can be explained by the theory
of Quantum Chromodynamics (QCD) [3,4], and the strange feature of asymptotic
freedom [5]. QCD proposes that the colour symmetry is a result of invariance under
the local SU(3) gauge transformation. To satisfy this gauge invariance, 8 gauge
bosons, called gluons, are required. As QCD is a non-abelian theory, these gluons
will also carry the colour charge, which means that gluon self interactions are pos-
sible. This leads to a positive 3 coefficient for QCD, which means that the QCD
coupling constant decreases as the momentum scale is increased. This is the basic
statement of asymptotic freedom, that as we go to shorter distance scales the cou-
pling betwen quarks will become weaker. Thus in DIS as we increase the incident
electron’s energy we will be able to resolve more of the partonic stucture of the
proton. Conversely the interaction energy between quarks will increase as they are
pulled apart. This indicates that we can never observe a free quark (or gluon), which
is termed quark confinement, and so we never observe free quarks as final states at
collider experiments. This leads to the phenomenon of jets at colliders, as quark
pairs fly apart the energy between them is able to create new quark pairs, and so
we end up with showers of hadrons carrying the parent partons properties into the

detectors.

Asymptotic freedom means that QCD has two different energy regions. The “soft”
physics region at low energy scales, where the coupling constant is relatively large,

and the “hard” physics region at high energies where the coupling constant is rel-



atively small. We are unable to solve QCD exactly, but for the hard physics we
can use a technique known as perturbation theory. This relies on the ability to per-
form a perturbative expansion of amplitudes in orders of the coupling constant. For
abelian theories such as Quantum Electrodynamics (QED), the coupling constant is
very small and so this technique is very useful. In non-abelian QCD, although the
coupling constant is relatively large (in comparison to QED), asymptotic freedom

allows us to examine high energy QCD using the techniques of perturbation theory.

Perturbation theory is the means by which we can test the SM at current particle
physics experiments. We use it to produce testable predictions for reaction cross-
sections which can be measured at the current generation of colliders. To be able
to do so we need to understand the theory more thoroughly. To test theory against
experiment, we need to evaluate higher order terms in the perturbative expansion
to ensure that the theoretical prediction is of the same level of accuracy, or more
accurate, than the available experimental results, and those that will be produced
at the Large Hadron Collider (LHC). To do this we need to understand the source

of the divergences that arise in perturbative QCD, and be able to calculate them.

The SM provides the best method we have of explaining the behaviour of fundamen-
tal particles through field theories. Although it is a supremely accurate model, with
many beautiful aspects, it still has its problems. Some properties of the Standard
Model are deemed unsatisfactory by physicists; the hierarchy problem, the lack of
a fundamental reason why the masses of the leptons and quarks should be as they
are with such a large discrepancy between the lightest and heaviest quarks, and the
explanation for nature providing us with three “generations” of particles. At this
current time, the main problem with the concept of mass in the SM is that the Higgs
particle, which generates particles mass through its coupling to them, is so far undis-

covered up to energies of 114 GeV, though the high energy physics community is



holding its breath until the LHC is switched on to see whether it will be discovered.
To completely understand nature, the SM will need to be combined with the force
of gravity, and the theory of General Relativity that describes it. Many theories
abound as to how this should be accomplished, string theory being the most promi-
nent, but we must completely understand the physics of the SM to be able to see the
effects of these new theories. To find out what lies beyond the Standard Model, we
first have to find the limits of the model itself. The aim of this thesis is to provide a
small step along the path to testing the Standard Model at colliders, by examining
some of the properties of the SM using perturbation theory. In particular we exam-
ine the singularities that arise in the calculation of particle reactions at colliders. In
this respect we first look at the evaluation of two-loop integrals by evaluating the
master integrals required for the massless two-loop vertex with three offshell legs.
We give their expansion in € = 2 — % to elucidate their singular stucture. Secondly
we evaluate the collinear limits of tree-level processes. These are the singularities of

tree level amplitudes when two or more particles become collinear.
The outline of this thesis is as follows:

In Chapter 1 we introduce the fundamentals underlying field theories in the SM,
such as the Lagrangian of QCD and the associated Feynman rules. We then exam-
ine the Ultra-Violet and Infra-Red singularities which occur in Feynman diagrams,
discussing their origin and treatment. To treat the singularities in a mathematically
consistent way we introduce the concept of regularisation, in particular Dimensional
Regularisation which is used in the rest of this thesis. We then discuss the solution

of 1-loop integrals in Minkowski space using Feynman parameters.

In Chapter 2 we discuss methods for solving more general loop-integrals. We begin
by deriving the one-loop scalar bubble with arbitrary powers of propagators, which

we use to derive the two-loop Sunset integral and the two-loop -Glasses integral.




We then discuss the linear identities which loop integrals obey, the IBP and LI
identities, and their use in reducing large sets of integrals to a smaller basis set
known as Master Integrals. We then discuss the method of Differential Equations to
solve these Master Integrals, and the Harmonic Polylogarithms which form a natural

set of functions in which to express the solutions.

In Chapter 3 we use the method of differential equations to provide series expan-
sions in € for all two-loop Master Integrals with three external off-shell legs and all
internal lines being massless. We present the results in terms of an extended basis of
2-dimensional harmonic polylogarithms which we introduce here. For each Master
Integral, we present the differential equations which they satisfy, and sufficient terms
in their e-expansion to describe two-loop vertex corrections for physical processes.
We conclude this section with a discussion of the application of these Master Inte-
grals in the calculation of the Master Integrals for the two-loop massless box with

two adjacent off-shell legs.

In Chapter 4 we introduce the MHV construction for the calculation of tree-level
helicity amplitudes. This method uses colour ordered amplitudes and the spinor
helicity formalism which we outline. We then give the MHV amplitudes and discuss
the MHV-rules method, giving some simple examples of their use in amplitude
calculations. For completeness we discuss a second formalism for the calculation of

helicity amplitudes, the BCF recursion relations.

In Chapter 5 we consider the collinear limit of multi-parton QCD amplitudes at tree
level. We adapt the MHV-rules to enable us to calculate collinear limits and discuss
their analytic structure. We then provide general results for splitting functions
containing up to three negative helicity gluons, and for up to four partons (including
massless quarks). Using these general results we provide explicit results for splitting

functions with up to 5 collinear gluons.-and up to-3 collinear partons.



Finally, in Chapter 6 we present our conclusions. We summarise our findings, and

discuss their salient features and future applications.



Chapter 1

Field theory basics

In this section we will introduce the fundamental ideas behind the Standard Model
(SM) of particle physics, with emphasis on Quantum Chromodynamics (QCD) and
the ideas pertinent to the research in this thesis. A fuller introduction to these ideas,
and field theories in general, can be found in many introductory texts, including

references [6-11].

1.1 Fundamentals

The Standard Model is a quantum field theory describing the interactions of the

fundamental particles invariant under the group of local gauge transformations

U(l)y ® SU(2)L ® SU(3)¢

This corresponds to the combination of the Electroweak (Salam, Glashow, Weinberg)

[12-14] and colour [1-4] sectors.



Chapter 1: Field theory basics 1.1 Fundamentals

The Electroweak sector is invariant under the gauge group

U(l)y ® SU2)L

This symmetry is spontaneously broken via the Higgs mechanism to the gauge group
U(1)g of QED. The gauge particle required for invariance under this group is the
photon. As QED is an abelian theory, the photon carries no electromagnetic charge.
QED describes the interactions of electromagnetically charged particles with photons

and thus the electromagnetic force.

The Weak force obeys the gauge group SU(2);, with three gauge fields W, where
a = 1,2,3. Through the spontaneous symmetry breaking of the Higgs mechanism,
these three gauge fields mix with the U(1)y gauge field, B, to create three mass
eigenstates, the W+ and Z° bosons. The fourth superposition, between the neutral
ij and B, remains massless and is identified as the photon of the group U(1)g
of QED. The Higgs particle produced via the Higgs mechanism is responsible for
giving all other massive particles their mass through Yukawa couplings to the Higgs

particle.

QCD is invariant under gauge transformations corresponding to the non-Abelian
SU(3)c group, with N, = 3 colour degrees of freedom. The gauge quanta required
to maintain gauge invariance under this group are the 8 coloured gluons. QCD
is a non-Abelian theory, and so these gluons can have self interactions, unlike the
photons of QED. This is an important fact as it results in the asymptotic freedom of

the theory, which enables us to study high energy QCD using perturbation theory.

The QCD Lagrangian describes the dynamics of fermionic particles (quarks) carrying

a colour charge, invariant under the SU(3) gauge transformations. This gauge



Chapter 1: Field theory basics 1.1 Fundamentals

invariance requires’ there to be 8 spin-1 gluon fields, A%, where a = 1...8. The

17

QCD Lagrangian is given by

1 .
EQC’D = _ZF;UFGIW + Z wa (’L$ - m)aﬂ wﬂ + »Cgaugefia:ing + Lghost (11)

flavours

where the index a runs over the 8 colour degrees of freedom, and the (anti-) quark

fields 9, (¢) carry a flavour index which we have left implicit, and are in the triplet

or fundamental representation of SU(3).

The field strength tensor is defined as
Fﬁu = 8#A$ - aVAz - gsfabcAZAﬁ- (12)

It is the last term in this expression that makes QCD non-Abelian, resulting in

the self-interaction of gluons through the term _%FﬁuFGW in the Lagrangian. This

leads to cubic and quartic self-couplings of the gluons, which ultimately leads to

asymptotic freedom in QCD.

The covariant derivative is denoted by D, with

b =D, (1.3)

(Du)as = Oubap + z.98(75(1*4;14)61[3 (1.4)

where the t* are matrices called the generators of the group SU(3) in the funda-

mental representation. These generators obey the commutation relations

[¢%,2°] = i fapet® (1.5)

Tn general for an SU(N) gauge group N? — 1 gauge fields are required for gauge invariance.

10



Chapter 1: Field theory basics 1.1 Fundamentals

where fu. are the totally antisymmetric structure constants of the group. The t¢
matrices are hermitian, traceless and normalised such that

5ab

Tr(t*’) = 5

(1.6)

In the fundamental representation of SU(3), the t* can be given in terms of the

a

eight Gell-Mann matrices A%, via the relation? ¢ = &

Due to gauge invariance we cannot define the gluon propagator without first fixing

the gauge. We do this by adding the following term to the Lagrangian,

1 a
[fgaugefiming = _g(auAu)2 (17)

which defines the covariant gauge with arbitrary £€. The choice £ = 1 corresponds
to the Feynman gauge, which is the most common choice due to its simplification
of both the gluon and the photon propagators. The gauge-fixing term is not invari-
ant under gauge transformations. In covariant gauges, gauge invariance is ensured
through the introduction of ‘Faddeev-Popov ghosts’. The ghost contribution to the
Lagrangian is required to reduce the number of degrees of freedom of the gluon to
2, as physical states of massless vector bosons can only have two polarisations [15].
The ghost fields act as scalar particles within loops, with an additional minus sign

to cancel out the contribution of two of the gluon’s polarisations.

»Cghost = (3;17}“*)(1)51,77")

= (aﬂna*)(auaab - gfabcAg)nb (18)

BRST symmetry [16] then ensures the unitarity of the S-matrix. With gauge invari-

2In SU(2) the t® can be given in terms of the Pauli matrices via the same relation.
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ance ensured, any physical prediction based on this Lagrangian will be independent

of the gauge parameter £.

1.2 Feynman rules

In practice we cannot find exact solutions for amplitudes of particle processes. In-
stead we find approximate solutions through the use of perturbation theory. In QCD

the expansion parameter is the strong coupling constant

_ 9%

= (1.9)

Qs

and is a measure of the strength of the interaction between quarks and gluons.
Due to asymptotic freedom, perturbation in this parameter can potentially provide
accurate values for observables at the energy scales of modern collider experiments.
To find the analytic expressions for amplitudes in perturbation theory there is a
pictorial method known as the Feynman diagram method. To use this method we
must draw all possible diagrams representing a given process up to the required
order in the perturbative expansion. Then for each diagram we can assign analytic
factors to each line and vertex, to enable us to compute each diagram in turn.
These associated factors are given by the Feynman rules of the theory in question,
and are given below for QED and QCD. Finally the amplitude itself can be found

by summing all of the Feynman diagrams.

The following momentum-space Feynman rules can be derived from the Lagrangian
for the theory in question. They can be found in many references, for example
Peskin and Schroeder, appendix A.1 [6], or Aitchison and Hey, appendix F [11]. We
represent photons by wavy lines, gluons with curly lines, fermions with solid straight

-lines-and ghost particles with dotted straight lines. Lorentz indices-are denoted by

12




Chapter 1: Field theory basics 1.2 Feynman rules

the greek letters p, v, A, p, while colour indices are denoted here by a, 3,~,4. All
propagators carry a momentum p in the direction indicated by the arrow alongside

the propagator.

e Photon propagator in general (covariant) gauge.

—_—_——

i v p'p”
SAVAVAVAVAVAVAVAVI =,§{—9“+(1—5> pz}

where g*” is the Minkowski metric. For simplicity we always take the Feynman
gauge £ = 1, in which case the photon propagator reduces to

SAVAVAVAVAVAVAVAVE =)

° Spin—% propagator, i.e. quark propagator.

_— i . p+m
= =1

p_m p2_m2

where m is the mass of the particle propagated by the line. For fermions the
arrow on the propagator line indicates the direction of the momentum. Here

p denotes the contraction of the momentum vector with the Dirac matrices,
p= T pu-
e Gluon propagator in general gauge.
— i pp’
N NP1 SR (UL S L
Which in the Feynman gauge, £ = 1, reduces to

—_—

i
o, — [ M 6aﬂ
TOO000000 P -p2{g }

13



Chapter 1: Field theory basics 1.2 Feynman rules

e External quarks and antiquarks. Spinors with 3 colour components (left im-

plicit) and four Dirac components

Initial wu(p,s) or  @(p,s)

Outgoing @(p',s’) or  wv(p,s)

e External gluons. As well as the spin-1 polarisation vector ¢, external gluons
also have a “Colour polarisation” vector a®* (o = 1...8) which specifies the

colour state of the gluon.

Initial  €,(p, A)a

Final & (p/, N)a*®

e QED vertex

= —iQE’)’“

where @Q = —1 for the electron.

e Quark-Gluon vertex

)\a

= _7:937'7# = —igsta’)'u

14



Chapter 1: Field theory basics 1.2 Feynman rules

e Three gluon vertex. All momenta p; are taken flowing into the diagram.

V1p2)ﬁ
= _gsfaﬁ'y{ +guu(p1 - p2)A
+9ur(p2 — P3)u
+gz\u(p3 - pl)u }
#P1, & A, D3, Y

e Four gluon vertex. All momenta p; are taken flowing into the diagram.

v, p2, /3 /\,P:h Y
= _igg{ faﬁnf'y&n(guz\gup - gupgu)\)
faénfﬂ’m (g;wg/\p - guAgup)
s p1, o 0y P4, 0 favnf&ﬁn(gupgu/\ - g/,wg/\p) }

e Ghost propagator

- i6of
O e p = 2
e Ghost vertex
w8
= —g.fp
P
a Y

We also have the additional rules that:

15



Chapter 1: Field theory basics 1.3 Ultra-Violet Divergences

e The Feynman prescription is assumed for all propagators. This assigns a small
positive imaginary part to the denominators of all the propagators, for example
the photon propagator in Feynman gauge is assumed to be

l

Iz - —_g™)
AVAVAVAVAVAVAVAVE: o bl

The +ie term is required to maintain causality, and for convergence of loop

integrals.
e Momentum is conserved at every vertex and thus across each diagram.

e For every closed loop in a given diagram, integrate over the loop momentum

d
/ (Zwl;d (1.10)

where d is the number of dimensions of space-time in the theory and k is the

with the measure

“free” momentum running around the loop.
e Multiply by —1 for every quark or ghost loop.

e Multiply by a symmetry factor to account for all possible permutations of a

given diagram that are equivalent.

1.3 Ultra-Violet Divergences

In perturbation theory we have two types of divergence that arise. The first type
is due to the divergence of loop integrals as the loop momentum becomes large,
k — oo, these are known as Ultraviolet (UV) divergences. To remove these di-
vergences from our calulated quantities such as cross sections, we use a procedure

known as renormalisation. The principle behind renormalisation is that the fields

16



Chapter 1: Field theory basics 1.4 Infra-Red Divergences

and parameters contained in the Lagrangian are not the real physical fields and
parameters. We will call these quantities the bare parameters. In a renormalisable
theory, such as QCD, these will contain UV divergences that can be renormalised
order by order in a consistent way. This is achieved through the rescaling of the
quantum fields, masses and coupling constants involved in the theory, such that they

are all UV finite, as follows:

T (1.11)
AL = Z7 AR (1.12)
98 = Zogr (1.13)

where B indicates the bare quantitites and R indicates the renormalised quantities.
In a renormalisable theory, there will be a finite number of such rescalings needed
at each order in perturbation theory. The renormalisation parameters Z contain a
fixed divergent part such that they cancel the UV divergences of the bare quantities
leaving the renormalised fields and parameters finite. The finite parts of the renor-
malisation parameters are not fixed, and are thus open to choice. This choice is
known as the “renormalisation scheme,” typically chosen to reduce the complexity
of the final result. A standard choice is the so-called M S—scheme, but other schemes

exist, for example the “on-shell” scheme.

1.4 Infra-Red Divergences

Loop integrals can also be divergent when propagators diverge for specific values of
the loop momentum k. As an example the only non-zero one-loop QCD correction

to the quark QED form factor is the one-loop massless triangle diagram as shown

17
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q(p1)

k+m

v*(p1 + p2) g(k)

q(p2)

Figure 1.1: The only non-zero one-loop QCD correction to the massless quark QED form
factor.

in Fig. 1.1. This integral has the following form

B d*k f(k2)
I= /(27T)4k2(k +p1)° (k — p2)’°

I f(k?)
= _/ (27T)4 k2 (k2+2k.p1) (k-2__2k.p2) (114)

with p? = 0, p2 = 0. Expanding the integrand in powers of k around k = 0, the
integrand is o< k™% 4+ O(k~3%), and so at the lower limit of integration this integral

will behave as

4 3
Iso = /d k /’C dk _ =ln(0) -~ —eo (1.15)

giving a logarithmic singularity. This is because all the propagators tend to zero in
the limit kK — 0. Divergences also arise when £k — —p;, or when k — p,, such that
the corresponding propagators diverge. As these divergences are associated with low
loop momentum they are known as Infra-Red (IR) divergences. These divergences
occur as a result of the use of massless particles in our theory. The IR divergences
would remain if we used massive quarks, however, if all of the particles propagating
in the loop had a mass, then the mass would act as a regulator to ensure that the

integral was IR finite.

18



Chapter 1: Field theory basics 1.4 Infra-Red Divergences

Unlike UV singularities, the IR singularities of loop integrals cannot be renormalised
away through the rescaling of parameters. Instead, the IR singularities at loop
level can be cancelled by considering tree-level processes with additional final state

particles at the same order in perturbation theory.

At tree level singularities arise from the emission of massless particles by particles
which remain on-shell. When the emitted particles become “soft” (their momentum
goes to zero) or collinear to the particle which emitted it, singularities can arise. An
example of this can be seen by looking at the propagators involved in the emission
of a gluon from a ¢¢ pair as depicted in figure 1.2. These are the tree-level QCD

corrections to the quark QED form factor.

q(p1) q(p1)
9(k)
,y* ,Y*
g9(k)
4(p2) q(p2)

Figure 1.2: The tree-level QCD corrections to the quark QED form factor.

In these diagrams the internal propagators are

1 1

m =
2k - py 2|Ey| (Ey — p1cosOp,k)
1 1
x _ 1.16
2k - po 2| Ey| (Ey — pacos Op,) ( )

for the first and second diagrams respectively. These propagators apply for both
massive and massless quarks, and are obviously divergent when the emitted gluon is
soft, E; — 0. Hence the phase space integral for this process will also be divergent

in-this soft region; regardless of whether the quarks have a mass.
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Chapter 1: Field theory basics 1.4 Infra-Red Divergences

With massless quarks, F = p, and hence these propagators are also divergent when
the angle between the parent particle and the emitted particle # — 0, i.e. the
emitted gluon becomes collinear to its massless parent. An alternative way to see
this, is to write k = 2, P, with P? = 0, where P is the overall collinear momentum,
and z is the fraction of that momentum carried by the collinear gluon. Similarly
we have that p = 2,P, and so z, + 2 = 1 to satisfy momentum conservation. This
means that the denominator of the propagator will become 2k - p x P? = 0 and
so, the integral over the available phase space will have IR singularities in these
collinear regions. However with massive quarks E # p, and so the mass lifts the

collinear divergence.

These tree-level soft and collinear singularities will cancel those from the one-loop
processes at the same order in perturbation theory, for example here they will can-
cel against the one-loop vertex. This is because in practice we cannot distinguish
between final states with extra particles which are soft or collinear (for example
due to detector resolution), and so we must include these extra particle processes
in our calculations. The cancellation of divergences is assured by the Kinoshita-
Lee-Nauenberg theorem [17,18], as long as we sum over all possible initial and final
states (at a given order in perturbation theory) that are degenerate in the soft or
collinear limits. This cancellation works to higher orders in perturbation theory
beyond the one loop level as follows: to compute a cross section at N*LO, we must
include processes with n-final state particles at tree-level, (n — 1)-particles at one-
loop,(n — 2)-particles at two-loop etc. The initial state divergences are absorbed
into the parton distribution functions (pdf’s) as in practice it is impossible to create

a “clean” initial state of free quarks or gluons from hadrons.

Collinear singularities are discussed in more detail in chapter 5 where we will examine

multiparticle collinear singularities.
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Chapter 1: Field theory basics 1.5 Regularisation

1.5 Regularisation

A method is required to be able to deal with the divergences that we have discussed in
a consistent way. Regularisation is an intermediate step to make divergent integrals
mathematically well-defined. There are a number of different methods to regularise

a loop integral, these include:

e Introduce a high momentum cut-off on the integral. This breaks gauge in-
variance and so it is not suitable for gauge theories. Divergences arise, for

example, as logarithms of the cut-off scale.

e Give the photon or gluon mass. Giving the massless particles a small mass
regulates the IR divergences, however it explicitly breaks gauge invariance. At

the end of the calculation the mass can then be taken to zero.

e Pauli Villars. This method modifies the propagator to regulate the divergence,

but does not maintain gauge invariance.

e Lattice regularisation. This requires that we discretise space-time at short
distance scales, therefore any short distance contribution to the space-time
integral is removed. In the momentum picture this is like a high momentum

cut-off.

e Dimensional Regularisation (DR). We take loop integrals to be analytic in
the space-time dimension d. As the loop integrals are divergent when the
dimension d = 4, we analytically continue d away from 4 by a small amount to
d = 4—2¢. The advantages of this approach are that it is technically relatively
simple, it maintains Lorentz and gauge invariance, and it regularises the IR
singularities at the same time as the UV divergences. The UV and IR poles
manifest themselves as poles in the analytic continuation parameter e.

21



B O

Chapter 1: Field theory basics 1.5 Regularisation

For a more detailed discussion of regularisation methods see Muta [7]. Here we
will concentrate on Dimensional Regularisation as it is the most commonly used

procedure, and is the procedure used in the rest of this thesis.

In dimensional regularisation, with the spacetime dimension d, the space-time index
runs from 0...d — 1. We have

Iuwg” =d (1.17)

For dimensional consistency this alters the mass dimensions of the terms contained

within the Lagrangian. The action
S = /ddasc (1.18)

is dimensionless. This results in the coupling constant having dimension

(9] =2—g=e (1.19)

such that it is dimensionless when d = 4. To maintain a dimensionless coupling

constant we therefore introduce a scale p such that
g— ug (1.20)

Therefore DR introduces an extra scale into our theory. One of the most important
reasons for continuing to higher order corrections in perturbation theory is to reduce

the dependence of our theoretical predictions on this scale.

DR also alters the Clifford algebra satisfied by the Dirac matrices. We have that
{v*, 9"} = 2g" (1.21)
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Chapter 1: Field theory basics 1.6 Feynman Parameters

which modifies the contraction identities such that

Y = d (1.22)
WYY = (2-d)y” (1.23)
VYV = 497 + (d — )y’ (1.24)
VY VA = =27 = (d— 4Py (1.25)

These identities are then used in the evaluation of the dimensionally regularised

(sub-)amplitudes.

1.6 Feynman Parameters

The method of Feynman parameters enables us to phrase loop integrals in such a
way that we can use spherical integration to evaluate the four-momentum integral,
see e.g. [6,7]. We use the method of Feynman parameters to collect all denominator
terms into a single quadratic polynomial in the integration momentum, raised to
some power n. We can then complete the square and perform the integral over the
loop-momentum with relative ease. Following this the only remaining hurdle is to

calculate the integrals over the introduced Feynman parameters.

As an example, with A and B propagators in a loop integral, we can use

1 ! 1 ! 1
—~ (4 = [ drdydz+y—-1)———— (126
AB /0 “lzA+ (1- 2)B] /0 rdydlery =N (1%

which combines AB into a single term in the denominator [zA + yB]z. In general

23



Chapter 1: Field theory basics 1.7 1-loop Minkowski space integration

for any number of terms in the denominator we can use

1 : [Tzt T+ +my)

— = [ dz...dz, 0 zi—1 : .

ATHAT? AT /0 ! (Z ) [z 4™ T(m)...T(my)
(1.27)

This formula also applies for non-integer m;.

It is then possible to complete the square in the loop momentum. DR preserves
translational invariance, and so we can shift the momentum variable k by a linear

amount e.g. k — k — zp so that the integral only depends on k% and not k.

Using this method we can transform loop integrals into the form

dk 1
= / @) (K — M? +ie)" (1.28)

where M will be some function of the Feynman parameters and the scales of the
loop integral. The +ie term is due to the Feynman prescription for propagators,

and keeps the integral convergent for all values of M? (see also section 1.2).

1.7 1-loop Minkowski space integration

We are now in a position to evaluate the loop momentum integral. To do this
we could evaluate the integrations over the time and space components separately,
instead we make use of the so-called Wick rotation to enable us to use four di-
mensional spherical coordinates to evaluate the integral. We cannot do this before
the Wick rotation because of the relative minus sign between the time and spatial
components of the Minkowski metric. To overcome this, the Wick rotation changes
variables such that we have a Euclidean four-momentum by rotating the contour of

the k? integration by +m/2 in the complex k° plane. In this way we avoid rotation
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Chapter 1: Field theory basics 1.7 1-loop Minkowski space integration

through the poles in ic. The Wick rotation is defined by the change of variables

K =ik} k=kg (1.29)

where the subscript F denotes the Euclidean variables.

Our integral is then

dkg i(-1)"
h= [ G ey (130

To evaluate the integral over the loop momentum we proceed as follows. Using
d%g = k& dkp dQy (1.31)

our basic integral takes the form

I = i(—l)”/dﬂ /oo dkg kg (1.32)
b o @OE(EE+ M) '
where [ dQy is the solid angle of a d-dimensional sphere.

We can then use the definition of the gamma function

F(z)=/ooodyy"‘le‘y = /Oood(ay)(ay)z‘le—“y

oo
— CLZ/ dy yz—le——ay
0

- 1 /°° 1 -
= 07 = — dyy* ‘e 1.33
['(z) Jo ( )

where we take a to be the denominator of the second factor of eq. (1.33), giving

Z( 1) n—1_-M2y / d—1_—kZy A
. E 1.
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Chapter 1: Field theory basics 1.7 1-loop Minkowski space integration

Following this we can then use the change of variable 22 = ky to give

i(—l)l / /00 1—d _ 2 /oo i \
- . n y. z -35
L = (2m)i(n) dly ; dyy ze A drzz® e (1.35)

The following identity?

[SI1~%

™

(/_:odxe 2)d=/ddzexp (—i:ﬁ)

= /dﬂd/ dr ¢ le ™ (1.36)
0
reduces our integral to

’l(_l)nﬂ'(d/z) /00 —1—-42 _ a2
L[ =27 . dy y™ 4 1.37
T Sy MY (47

Using the substitution ¢t = M2y we have

_ =) ang-n [T ndy
Il_(47r)%l"(n) (M?) /0 dtt e (1.38)

which, from the definition of the Gamma function, eq. 1.33, gives us the overall

formula for one loop integration

/ d’k 1 i(=1)"I(n - 9) (M2)%—n .

G (=M~ (amf  I() (1.39)

This completes the integration over the loop momentum, leaving only the integrals

over the Feynman parameters to be carried out to complete the loop integral. We

3This identity tells us that the d-dimensional solid angle is given by

ors
dQg = .
/ (%)
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Chapter 1: Field theory basics 1.8 Summary

now present some basic formulas for one loop integration;

dek 1 i(~1)" T(n — %) \ don
- M*7): 1.40
/ O+ 2k g M (@t TG O M) (1.40)
dk 1
/(27r)d = (1.41)
And by anti-symmetry:
d?k k#
/ (2m)d (k2 — M2)" 0 (1.42)
and for example
/ A= / o 1 (1.43)
(27'r)d (k;2 — MZ)" - 2(7’L _ 1) (27l')d (k2 _ M2)n_1 .

which can be derived from the general result by differentiating twice with respect

(a3

to ¢°.

1.8 Summary

In this chapter we have introduced the basics of quantum field theory, beginning
with the fundamentals of the SM and the Lagrangian of QCD. We have then given
the Feynman rules derived from this Lagrangian to enable us to examine the math-
ematical structure of Feynman diagrams. In doing so we have seen that Feynman
diagrams have divergences in both the UV and IR regions, and that the UV singu-
larities can be removed by the process of renormalisation. We have then examined
the IR singularities of Feynman diagrams, which cancel between loop diagrams and
the soft and collinear limits of tree-level processes. These tree-level collinear singu-
larities will be investigated further in chapter 5. Regularisation has been introduced

to enable us to deal with the divergences of Feynman diagrams in-a mathemati-
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Chapter 1: Field theory basics 1.8 Summary

cally consistent way. Using the method of Feynman parameters, we were then able
to evaluate the loop momentum integral for the basic structure of a loop integral
in Minkowski space, leaving only the integration over the Feynman parameters re-
maining. This enables us to calculate one-loop diagrams in the following chapter,
beginning with the one-loop bubble integral, which will then lead us on to the tech-

niques required for the evaluation of more complicated integrals.
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Chapter 2

Loop integral methods

In this chapter we introduce the methods required to solve loop integrals, specifically
with respect to the methods used in chapter 3 to find the e-expansion of the integrals
required for the massless two-loop vertex with three offshell legs. In this respect we
shall introduce repeated one-loop integration via bubble insertions and products of
one-loop solutions to find two of the integrals required in chapter 3. This is followed
by the introduction of the linear identities obeyed by loop integrals, the Integration
by Parts and Lorentz Invariance identities. We then outline how these can be used
to reduce the hundreds of integrals required for the calculation of an amplitude to
a small basis set of so called “Master Integrals”, and how these can be evaluated

through the use of differential equations.

A generic loop integral with L-loops, m propagators and n legs, is given by the

integral:

dék
I(Vl, Vo, oy Umys {S”} /H 27( ld AV1AV2 — (21)

where {s;;} are the set of Lorentz invariant external momentum scales that are

involved in the integral. The set of propagators A ... A,, specifies the “topology”
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Chapter 2: Loop integral methods

of the diagram, and integrals sharing this set of common propagators are then said
to belong to the same topology. Integrals within each topology are specified by the
powers of the propagators {;} and the scales involved, {s;;}. If an integral shares

a subset of these propagators, it is said to belong to a simpler topology.

The denominator terms A; take the general form

L 2
Ai = (Z €ijkj + QZ) - m2 (22)
j=1

with ¢; some linear combination of the external momenta involved in the diagram
and m the mass of the internal line. The factor ¢;; = 0, £1 takes into account
whether a given internal line depends on a given loop momenta, and the direction
that each loop momenta is taken to flow along that line. If all the internal lines of

a given integral have m = 0, then the integral is called massless.

The denominator terms A;* in the integral can have either positive or negative
powers v;. Negative powers correspond to terms in the numerator, which will consist
of scalar products of either loop momenta with external momenta or with other loop
momenta, or of the scales of the integral {s;;}. If the numerator depends on loop-
momenta then the integral is called a tensor integral, otherwise it is called a scalar
integral. Positive powers of denominator terms v > 1 correspond to extra powers
of propagators. These are “dotted” propagators, as in the pictorial representation
of these integrals the extra powers are represented by dots on the propagator line.
Denominators with zero powers correspond to terms that have been cancelled from
the integral, and so belong to a simpler topology. These terms are called “pinched”
propagators, as pictorially it is as though the two ends of the propagator have been
pinched together. Due to these cancellations the diagrams that represent integrals

do not necessarily obey the Feynman rules of section. 1.2.
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Chapter 2: Loop integral methods 2.1 One-loop integration

A loop integral is termed planar if it can be represented by a 2-dimensional diagram
without any lines crossing each other. If this is not possible, then the diagram is
termed non-planar. Non-planar diagrams have proved to be more complicated to
solve than planar diagrams [19,20]. Most integrals we investigate here are planar,
but for an example of a non-planar diagram see the two-loop crossed triangle Fj,

which we solve in section. 3.3.2.

In general loop integrals become more complicated to evaluate for increasing num-
bers of loops, increasing numbers of denominators (both in the denominator and
the numerator) and with increasing numbers of external legs and scales. For this
reason we begin our evaluation of loop integrals with the simplest massless one-loop

bubble and its further applications.

2.1 One-loop integration

One-loop integration relies on the 1-loop Minkowski space integration formulae de-
veloped in section. 1.7. Using these formulae we will now derive the expression for
the massless scalar bubble integral with arbitrary powers of legs. Using this formula
we will then be able to solve two-loop integrals through the use of repeated one-
loop integration, or through the factorisation of multi-loop integrals into one-loop

integrals.

The massless scalar bubble integral with arbitrary powers of legs is shown in figure

2.1, and is given by the following integral:

. ddk 1
B(Vl,l/z,p ) = / (27r)d (k2)’-’1 ((p — k;)2)u2

(2.3)

In-Dimensional Regularisation (section 1.5), and using the method of Feynman
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n

vy

Figure 2.1: The massless scalar bubble diagram with arbitrary powers of propagators
represented by v; and vs.

parameters (section 1.6), this can be written as

1/1 + 1/2 ddk 1 — $)U1_1$U2_1
B(V17V2)p2) / / [IE D — k) ( )kZ]Vl'H’?
_ V12 / / ddk 1 )ul —1,v2-1 (2 4)
C(v1)T(v2) [k2 +z(1 — z)p?"™ '

where we have completed the square, performed the shift ¥k — k& + pr and used

Eq. 1.42. For simplicity, we have introduced the following notation.

Vijk... =V + l/j + Vg + ... (25)
Comparing with Eq. 1.39, we now have M2 = —z(1 — z)p% and n = v + v = vy,
and so
] —1)”12 F(l/lz - 4) 1 d_,
B(v1, v, p? _ U 2/dzM2 12 )11t
or ) = T Tt Jy )70
7;(_1)”12 F(V12 — %) 2\5—12 d_y, 1 d_po—1
= —p*)? de(x)2 (1 —x)27"2
@nf TG P J, @)
(2.6)
The remaining integral is easily solved using the definition of the 3 function.
1
- o1 T(r)0(s)
— d r—1 _ s 1= Sl )
B(r, s) /o zz" (1 —x) T+ ) (2.7)
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This gives us the general formula for the massless scalar bubble integral with arbi-

trary powers of legs:

’l(—l) F(V12 - 2) (_ - VI)F(g - V2) 2)%—1/12

(4mi  T)T(ve)T(d — v12)

[SIE-N

B(l/l,l/Q,pz) = (28)

The bubble B(vy, v, p?) is symmetric under the interchange v, < v, as we would

expect from the diagram 2.1, as we could have labelled either internal leg as v;.

The gamma function is undefined for zero argument, and so we can see that there

are singularities when

S d
2 = 3
b = d
79
d

Vg = 5 (29)

The first singularity occurs in the factor I'(v1o — %) = I'(v12 —2+¢). This singularity
is associated with UV divergences, as at vy = % a positive value of ¢ is required to
keep the argument of gamma positive. A power counting argument shows us that
€ > 0 protects against this UV divergence. For example with d = 4 —2¢ and vy, = 4

our integral behaves in the UV region as

d
/d k /k-l %dk (2.10)

which is well behaved for large £k when ¢ > 0. The remaining singularities are
associated with the factor I'(% — ;) = I'(2—e—v;) where i = 1,2. These singularities
are associated with IR singularities, as € < 0 is required to keep the arguments of

the gamma function positive.
We can see that for integer vy, v, this is reducible to B(1, 1, p?) using the property
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of the gamma function
2T(z) =T(z+1) (2.11)

and

(v)8 712 = (p°)572(p?)* . (2.12)
Due to the large number of integrals required to evaluate matrix elements beyond
the Leading Order in perturbation theory, and the increasing difficulty of solving
the integrals involved, we find it useful to express all integrals in terms of a small
set of integrals, which are called Master Integrals (Mls). For the simple scalar
bubble case in consideration here it makes little difference to perform the reduction
to B(1,1,p?), but it simplifies the calculation immensely when there are more loops
and scales involved in the process. Hence the Master Integral of this topology is the

one-loop massless scalar bubble, which we denote by BB(p?) = B(1,1,p?), and so

BB(p®) = ( 47:)2_6 F(;)(g 5122) ) (%) (2.13)

There is a common overall factor amongst Master Integrals which we denote Sp,

given by
(4m)eT(1 4+ e)T%(1 —¢)

b = Tgr7 T(1-2¢) (2.14)

To perform general e expansions we need the following expansions of the gamma

function about € = 0,

[(1+ae)=1—aye+ %2 (C(2)+v%) € - %;— (3¢(3) + 6¢(2)y + 27°) € + O(")

(2.15)
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Chapter 2: Loop integral methods 2.2 Sunsets and glasses

where a is some constant. In this expansion, < is the Euler-Mascheroni constant
which has the numerical value v = 0.57721566. .., and ¢((z) is the Riemann zeta
function, where ((2) = %2, ¢(3) = 1.2020569 and ((4) = g—g. Expansions of the
gamma function with different arguments can then be found using the properties of

the gamma function, for example we can shift the argument by +1 using Eq. 2.11.

We now find the € expansion of Sp,

. (4m)e
"~ 1672

e (1 - %4(2)62 _Teg)e - ‘1‘—24(4)64 + 0(65)) | (2.16)

Sp 3

As Sp is finite as € — 0 we can safely factor it out when performing e expansions.
Factoring out Sp, the one-loop Master Integral BB with its epsilon expansion is

given by

BB(¢*) = iSp(—¢")"*

= iSp(—¢")7= (1 +2e+4€6® + 86 + 16¢* + O(®)) . (2.17)

2.2 Swunsets and glasses

We are now in a position to see the usefulness of the one-loop bubble with arbitrary
powers of propagators. Repeated one-loop integration can be used to solve multi-
loop integrals which have bubble insertions. As an example of this method, the
simplest of these is the two-loop massless scalar sunset graph, SS(p?), as shown in

Fig. 2.2.

Figure 2.2: The sunset integral.
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Chapter 2: Loop integral methods 2.2 Sunsets and glasses

The three-propagator sunset graph is given by the scalar integral

d d
// d?l dk 1 218)
) k2 (k+1+p) L2

We can see from both the integral, and the momentum flow through the diagram,

that this can be written as a bubble insertion into another bubble integral. If we
take the k integration loop as the inserted bubble, we can see that it corresponds to

a bubble with unit powers of propagators “carrying” the scale (I + p)2.

d
67 = [ %%B(LL(HPW

_ i=DT@-rAE-1) 1 dt 1
~ (4m:  T(d-2) / (2m) 2 (1 4 p)2)*% (219

Now that we have inserted the k¥ momentum bubble, we are left with a one-loop
bubble with scale p?, and the power of the second propagator is now 2 — ¢ due to

the evaluation of the first integral.

' 1
SS(p?) = B(1,2 —

(2.20)
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Note that we could have evaluated this topology with arbitrary powers of prop-
agators, vy, 1,3, via the same method. However we have used unit powers of
propagators as this provides us with the Sunset Master Integral which is required

in chapter 3 as one of the basis set of integrals required for the two-loop vertex.

The method of Bubble insertions works because the Bubble integral is proportional
to the square of the momentum entering it, p?, and hence is proporﬁional to a

propagator with that momentum, and so a bubble is equivalent to a propagator
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Chapter 2: Loop integral methods 2.2 Sunsets and glasses

raised to some power. Hence in a diagram a Bubble can be replaced by a propagator
with additional powers. In this way Bubble insertions can be used to solve all L-loop

integrals that have the “sunset” configuration.

Factoring out S}, we find the sunset integral and its ¢ expansion is given by

['(2e — 1)I'(1 — 2¢)?
(3 —3¢e)I'(1 —e)I'(1 +¢)?

1 13 115 (865 3 \ ,
€ (32 2(3))6 -l—O(é)}.

SS(p*) = Sp(-p*)'™* (2.21)

When a two-loop diagram consists of two loop integrals which do not share a

—C0—
Figure 2.3: The glasses integral.

common propagator, the two-loop integral factorises into the product of two one-
loop integrals. A simple example of this is the four-propagator “glasses” integral
shown in Fig. 3.3.1, which we denote by GL(p?). In this case the two-loop integrals
factorises into the product of two one-loop scalar bubbles, as shown in Fig. 2.4.
They are both dependent on the same scale as there is only one scale present in the

process.

#—O0— ~+—O—=»—O

Figure 2.4: A diagram showing the factorisation of the two-loop Glasses integral into the
product of two one-loop bubble integrals.
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Chapter 2: Loop integral methods 2.3 IBP identities

The integral is therefore given by,

1
(1 — 2¢)2

1
= —(—p2)_265123€—2 (14 4e 4 12€% + 32€6° + 80¢* + O(€°)) .

GL(p*) = BB(p*)* = —(—p®) %5} (2.22)

We will use this factorisation property of integrals which have no common denomi-

nators to solve for the master integral which we call T'B, in section 3.3.2.

2.3 Integration by Parts Identities (IBP’s)

The Integration by Parts identities rely on the fact that the integral over the total
derivative with respect to the loop momentum vanishes in dimensional regularisa-

tion [21].

Integrals of the same topology will be related linearly via these identities. These
identities can then be used to express unknown complicated integrals as a combina-

tion of simpler and hopefully known integrals. This process is known as reduction.

The IBP identities are given by

ddk pH
0= /H 27r‘i<9Kl‘A"l Avm (2.23)

where 7 runs from 1 to the number of loops L, v* is any of the loop or external
momenta, and K is any of the loop momenta. With n external momenta, there
will be n — 1 independent momenta due to momentum conservation, and therefore

L +n — 1 possible independent v#. Each of these v* can be differentiated by any of
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Chapter 2: Loop integral methods 2.3 IBP identities

the L loop momenta, and so the total number of independent IBP identities will be

NIszL(L-I—n— 1) (224)

In this thesis we look to solve integrals with no internal masses, and so we can set

m = 0 in our general form for the propagator Eq. 2.2.
2
A= (Z eijk; + Qi> (2.25)
J

Using the chain-rule, the differentials involved in the IBP identities are either of the

numerator terms,

0
H 2.
or propagator terms
0 1
. 2
DRH AT (227)

Unless v* contains K* the differential of the numerators will be zero. However if

v* = K* then
0
oOK#

Kt=6=d (2.28)

The differential of the propagator terms is zero if the propagator does not contain
K*, however if it does the differential will be
8 1  —2Wieik (Z] eiykj-v+q;- U)

p -
Sy yrie A . (2.29)

We can see that the term A; - v will produce terms with scalar products p; - P
which correspond to external scales, and p; - k; and k; - k;. These last two types

can sometimes be cancelled against propagators, in which case they are classed as
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Chapter 2: Loop integral methods 2.3 IBP identities

reducible numerator terms. However if they can not be cancelled they are classed
as irreducible, which means that combinations of IBP identities are required to

eliminate them so that we can end up with only scalar integrals.

The cancellation of scalar products with denominator terms, and the action of the
differential on the propagators, means that we have integrals with either raised or
lowered powers of their numerators. For convenience we define raising and lowering
operators that have the action of increasing or decreasing the powers of propagators
by 1.

iTI(v, . v v {sii}) =1(vn,..., i £1,... v {s;}) (2.30)

We shall now use a simple example to demonstrate the use of IBP identities to

reduce a simple integral.

2.3.1 Triangle IBP’s

The one-loop massless scalar triangle with one massive leg is given in figure 2.5.

P2

L)
812 Vg

U

p?

Figure 2.5: The massless scalar triangle diagram with arbitrary powers of propagators
represented by vy, v and v3, and two on-shell legs, pf =0, p% =0.

This integral can be solved using the one-loop Minkowski space integration rules
of section 1.7 followed by a relatively straightforward integration over the Feynman

parameters. However, a simpler method is to use the IBP identities. For the triangle
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topology these are given by

0= —(d - vizas) Lo + (11" +1,24)37 ],
0=—(d—vi123)fo + (1/22Jr + 1/33+)1_IO

0= —(d - l/1223)IO + (l/11+ + 1/33+)2_Ig (231)

Hence the massless scalar triangle Io(1, 1, 1) can be reduced to bubble integrals (i~ Ip)

via the IBP identities. Using the first identity we have

0 = —(d - 4)10(1, 1,1; {Sij}) + (1 1t 41 2+)3_Io(1, 1,1; {Sij})
S Io(1,1,1) = ﬁ {10(2,1,0; 512) + Io(1,2, 0; 1)}
- d—LI{B(2,1,512)+B(1,2,312)}
= 2 {B(1,250)) (2.32)

where B(1,2, s13) can be easily found using equation 2.8. This reduction is repre-
sented schematically in Fig. 2.6, where the dotted propagator represents the extra

power on the propagator.

Figure 2.6: Figure showing the massless scalar triangle decomposed as a “dotted” scalar
bubble diagram.

This demonstrates that linear identities such as the IBP relations can be used to ex-

press more complicated integrals as combinations of simpler integrals. The example
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Chapter 2: Loop integral methods 2.4 Lorentz Invariance Identities

used here is particularly simple, in that the bubble integrals which the triangle is re-
duced to are already known. However, if the integrals from the simpler topology are
not already known, in general we can reduce them further through the use of their
own linear identities. Therefore the reduction via linear identities can be repeated
iteratively until we are left with a set of integrals that can no-longer be reduced,
and therefore have to be solved by other methods. These irreducible integrals are
called Master Integrals (MI’s) and the iterative process is known as the reduction
to Master Integrals. This process has been fully automated in computer programs

such as AIR [22] using the Laporta Algorithm of sect. 2.5.

2.4 Lorentz Invariance Identities

The Lorentz Invariance (LI) identities were introduced by Gehrmann and Remiddi
[21] to provide an extra set of identities for the reduction of loop integrals. Although
they are not always required for complete reduction, they can be necessary, for
example in the evaluation of the non-planar massless double box with light-like

legs [20]. Following [21] we present the derivation of the LI identities.

The LI exploit the fact that the loop integrals are Lorentz scalars, as they are a
function of only scalar products of the external momenta. This means that they are
invariant under Lorentz transforms of the external momenta, which in DR can be
considered a d-dimensional rotation. The infinitesimal Lorentz transformation on

the external momentum

pu N pl* + 5pl‘ = p“ + 5eﬁp" where 66’; = —56;: (2’33)
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will leave the integral I unchanged, and so using a Taylor expansion we can write

I(pla"~apn) = I(Pl +6p1)apn+5pn)

0
= I(plv"-)pn) +5plf6*1(pla --apn) + +6pﬁ I(pl),pn)
p1#

Opnt
(2.34)

which gives us the identity

ap,,#) I(py, ..., pn) (2.35)

14 a v
0 = 56g (plaplpf + - +pn

Due to its antisymmetry, de” has six independent components, giving us a maximum
of six LI identities. However these are not always independent, and so using the anti-

symmetric property of de” we can rewrite Eq. 2.35 as

n 3} o P

This can then be Lorentz contracted with all possible antisymmetric combinations of
independent momenta p;,p;, to give all of the possible independent identities. In DR
we can then exchange the derivatives in Eq. 2.36 with the loop integrations involved
in I, such that the derivatives act on the integrand, which will then give the full LI
identities. These identities will relate integrals with differing powers of propagators,
because they contain differentials of the propagators, in a similar manner to the
IBP identities of section 2.3, and so they can be used in the reduction to Master
Integrals. For three external particles there is only one antisymmetric combination
e.g. PP and so there is only one LI. The maximum of six LI is only achievable

for integrals with 5 or more external legs.
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Chapter 2: Loop integral methods 2.5 The Laporta Algorithm

2.5 The Laporta Algorithm

The reduction via IBP (& LI) identities to MIs has been fully automated via the
Laporta algorithm [23] for the reduction of generic loop integrals. This algorithm
has been encoded in programs such as the Automatic Integral Reduction package
AIR [22]. This algorithm orders the identities according to the complexity of the
equation, and then through Gauss elimination uses these identities to reduce each
integral in turn. For a more detailed explanation of the Laporta algorithm, please

see the original paper, Ref. [23], and for an example of its operation see Ref. [22].

If we wish to solve the class of integrals I(v, vy, . . ., V) then the algorithm proceeds
as follows. Firstly we generate the IBP and LI identities for I with generic v.
Secondly a seed integral is generated. This is the integral with the simplest set of
{v1,va,...,vn} that give a non-zero value! for I. We then input this set of v; into
the set of IBP and LI identities to give us the full set of identities applicable to the
seed integral. To use these identities for the process of reduction, we need to know
which of the integrals involved in each identity are the most complicated, so that

we can solve for them first. To do this the following criteria are applied:

e The most complicated integral is assumed to have the largest number of prop-

agators:
Norop =Y _ O(w3). (2.37)
where we define
1 if z>0
O(z) = . (2.38)
0 if <0

For this, it is computationally easier to provide the program with the criteria for which the
integral is zero for a given a set of v;. The algorithm will eventually find that the applicable
integrals are zero through elimination, however this is a less efficient use of the algorithm.
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o If there is more than one integral with the same maximum A/;,Top then the
integral with the largest sum of positive indices is selected (i.e. the one with

the most dotted propagators):
Ny=> 0@)(v-1). (2.39)

e If there is still more than one integral with the maximum values of both N4y
and N then the integral with the largest magnitude of the sum of negative

indices is selected (i.e. the one with the most terms in the numerator):
N_ ==Y "O(-v)u. (2.40)
i

o If there are still integrals with the same values for all three of these A/, then
one of the remaining integrals is chosen at random to be the most complicated

integral.

The identities are then rearranged to give the most complicated integral as a com-
bination of simpler integrals. This process is then repeated for all the generated
identities for the given seed integral. Having exhausted the linear identities from
the first seed integral, the whole process is then repeated by generating a new seed,
finding its identities, and carrying out the re-arrangement to give the more compli-
cated integrals in terms of simpler ones. A new seed integral can be generated by
applying the opposite selection procedure to that used to find the most complicated
integral. The identities for the new seed will be more complicated than those for
the previous seed, and if they contain any of the integrals already solved for via the
previous seeds identities, then the reduced forms can be substituted into these new

identities. The process of seed generation and reduction is repeated until the most
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Chapter 2: Loop integral methods 2.6 Differential equations

complicated integrals involved in the process under investigation have been reduced,

and can be expressed in terms of simpler Master Integrals.

There is a small degree of freedom as to the choice of Master Integrals used due to
the relations between integrals, as long as the Master Integrals themselves cannot be
related via these identities. The programs we have used choose the Master integrals
to be scalar integrals with all powers of denominators v = 1. Where this is not
possible, for example where a topology has two Master Integrals, we choose the
second Master Integral to be a scalar integral with one denominator with power

v =2, i.e. a dotted propagator.

2.6 Using differential equations to calculate Mas-

ter Integrals

The differential equation (DE) method was first suggested as a means to solve loop
integrals in [24], and was subsequently expanded in detail in [25]. The method has
been used to calculate many two-loop MI, including those with multiple off-shell
legs or internal masses [26-32]. Here we present an outline of this method, which we
shall use to solve the MI required for the two-loop off-shell vertex in chapter 3. For
further details in the use of this method to find the e-expansion of Master Integrals

we refer the reader to Refs. [26,29)].

The main idea of this method is to derive differential equations in external invariants
for the Master Integrals. These equations are then solved using suitable boundary

conditions to fix the constants of integration.

46



Chapter 2: Loop integral methods 2.6 Differential equations

2.6.1 Deriving differential equations

The differential equations are obtained by differentiating the MI with respect to the
external momenta. Via the chain rule, linear combinations of these differentials are
used to find the first order differential equations in the external invariants. To relate
the differentials in external momenta to the differentials in external invariants we

use the following chain rule:

0 Ose 0
B2 T(s) = p*N =26 =7 7(s. ,
D; 8pﬁl—(31) p; - pl* Dse (si) (2.41)

8, . . o . . L .
where p;‘ 555 will be a linear combination of invariants. This will lead to a series of
k

linear equations which we can then solve for the differentials in the invariant scales.

As an example of this method, we examine an integral Z with three off-shell legs,
which is necessary for the derivation of the differential equations used in chapter 3.

We assign to each external leg a momentum scale
8; =p? =m? i € {1,2,3}
Due to momentum conservation we can write p3 = —(p; + p2), and so we have that

S3 = m§ = mf + m% + 2p1 P2 (242)

Therefore to give independent relations between differentials, the indices j and k in

Eq. 2.41 can be either 1 or 2.
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a
The non-zero %& are then
k

881 833

_— = 2 K —_— 2 H H

8pplt pl 8]3# (pl + p2)

089 Os3

_— = 2 M _— = 2 H H 243
B Do " (P} + %) ( )

Using these in Eq. 2.41 leads to the chain rule relations

Paps = 2mig + (mt =+ md)

Mgy = (mi=mi=md) syt (= md 4 ) 2,

Piaps = (md=mi—mi)zy & (md +md = md) 7,

p’z‘a(z)fu = 2mga—rfg + (mj +m? — m%);—nfg (2.44)

We can then solve this system of relations for the differentials in the invariants. We

find

o7 . o1 oL

B = () g (k)

ju . o1 oz

g = R ) g (k)

0T 1 2 u 9L 2 2 2y 2L

om3 ~ A2 {2m2P1 Gpr (MM i) vy (249
where,

A? =mi +mj +mi — 2mZm2 — 2m3m? — 2m2m?. (2.46)

This A factor will play an important part in our investigation into the Master Inte-

grals for the two-loop vertex with three off-shell legs, which we shall see in chapter 3.

These differential equations will involve loop integrals with additional powers of

propagators, belonging to the same topology as the differentiated integral. This can
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be seen via the same argument as that for the IBP and LI identities, due to the
presence of differentials of propagators. However, as all the integrals belong to the
same topology, the reduction via the IBP and LI identities of sections 2.3 and 2.4
using the Laporta algorithm of section 2.5, can be used to simplify the equations?
so that the differential equation is expressed only in terms of the MI itself and
combinations of simpler topologies (i.e. integrals with less denominators). In order
to solve the differential equation we need to know the analytic form of these simpler
integrals (or at least the relevant terms in the e-expansion should be known), and
so it is sensible to apply a ’bottom-up’ approach to the evaluation of MI’s via this
method, working from simpler to more complicated topologies, so that the MI is the
only unknown in the differential equation. For some topologies there is more than
one MI leading to coupled differential equations. However as there is some freedom
in the choice of which two-loop graphs to use as the Master Integrals, it simplifies
the calculation to choose the Master Integrals such that they have different leading
powers of €. In this case, the system of differential equations decouples on expansion

in € (see, for example, [29]) .

2.6.2 Solving differential equations

The differential equations are exact in the space-time dimension d, and can be
solved as follows. Consider the inhomogeneous differential equation for the MI F

with respect to the external scale z,

% F(z) = A(z)F(z) + B(g). (2.47)

?To achieve this we have made extensive use of the Laporta algorithm [23]. We have a version
encoded using FORM ([33] which we have checked against the Automatic Integral Reduction package
AlR [22].
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We use an integrating factor

z) = exp { / A(:p)dw} (2.48)

such that H(z) is a solution of the homogeneous equation
—H(z) = A(z)H(z). (2.49)

Then the full solution is given by

( / H()B(z')do' +C’> (2.50)

where the constant C' has to be fixed from the boundary conditions. These solutions
are generally combinations of hypergeometric functions which are difficult to expand
in powers of €. Thus to find the e-expansion of the MI we must systematically expand

each master integral F', and all d-dependent terms of the differential equation in

powers of €
n n+m n
F= Z fie, A= Zaiei, B= Z biet (2.51)
i=—m 1=0 i=—m

where —m is the lowest power of ¢ in the expansion and n is the highest power of
¢ needed. It is assumed that the a* and V' are already known. Each coefficient f?

satisfies the differential equation given by,

Za’(az £ () + b (x). (2.52)
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It can be seen that the homogeneous part of all the equations generated by the

e-expansion is simply the homogeneous solution H evaluated at d = 4,
h(z) = H(z)|4=4 (2.53)

and so the solution is given by

fi(z) = h(z) (/m (Z o (2) f7 (") + bi(z )) dz’ + ci) (2.54)

where the constants ¢* have to be fixed from the boundary conditions at each order
in e. Note that in general each coefficient f* will depend on f*~! so we solve the
system of equations order by order, using repeated integration of the lower order
results. It is for this reason that we require that A(z) has no poles in € as then f¢

would depend on f*+! and the bottom-up approach would not be valid.

2.6.3 The boundary conditions

In general, the lowest order coefficient in € is determined solely by the boundary con-
ditions. The boundary conditions are either obtained from the differential equation
or from the master integral itself. To obtain limits from the differential equation
it is necessary to examine the singular points in the coefficients of the differential

equation. For example, if eq. (2.47) were to take the form

B(z) (2.55)

then we could multiply the whole equation by (z — a) and let x — a, then we have

0 = F(z)|g=a + B(Z)|z=q (2.56)
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giving the boundary condition on F(z). To obtain boundary conditions from the
integral itself, we can use limits where the e expansion is known, for example where
an offshell leg becomes massless. In both methods care has to be taken that the
integral has a smooth limit at the chosen point so as not to miss or introduce hidden

singularities.

If H(zx) is divergent at the boundary then the constant C is already determined by

the necessary condition,

/ ’ H Y (z)B(z)dz' + C =0| (2.57)

r=a

which can be fulfilled by choosing the boundary point as the lower integration limit.

The solution of the differential equation is then given by

F(z) = H(z)F(z) = H(z) ( / ’ H_l(a:’)B(:v')da:’> . (2.58)

It can be easily shown that this function satisfies the boundary condition.

2.7 Harmonic polylogarithms

Solving the differential equations by repeated integration immediately suggests that
the results be given in terms of Harmonic Polylogarithms (HPL’s), whose properties
are defined by repeated integration. As such HPL’s are a useful tool in the solution

of loop integrals via the DE method.

The HPL’s were first introduced in [34] as extensions of Nielsens polylogarithms,
and later extended to 2-dimensions by [35]. In this section we briefly review the
properties of one-dimensional HPL’s (1-d HPL) and introduce the concept of two-

dimensional HPL’s which we shall use in chapter3.
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2.7.1 1-d HPL’s

The weight, w, of a one-dimensional HPL, H (?, x), is the number of dimensions of

ﬁ
the vector of parameters b . This vector, along with the argument z, fully describes

the HPL.

1-d HPL’s with w =1

The weight-1 HPL’s are defined as follows,

H{a:) = fo f(a, z')dx’, ac€{l,-1} (2.50)
Ii fa, '), a=0
where,
. 1
f(lyz) = T (2.60)
1
f(0z) = ;,1 (2.61)
f(-1;z) = T (2.62)

Note that H(0; z) is defined differently to avoid the logarithmic singularity at z = 0.

Thus we have

H(l;z) = —In(1- 1), (2.63)
H(0;z) = Inz, (2.64)
H(-1;z) = In(1+z), (2.65)
and
2H(a; :1:) = f(a;7) with a€ {+1,0,-1}. (2.66)

oz
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1-d HPL'’s with w > 1

The higher weight HPL'’s are recursively defined by,

H(a, b;z) = /wdx'f(a;:c')H(?;m’), (2.67)
0
1

o
=
L
=
8
e

Il

- In” z. (2.68)

Note that only the HPL’s with weight vectors comprising only 0’s are defined dif-
ferently, and are integrated between 1 and z to avoid logarithmic singularities. All
others involve integration from 0 to z. Under differentiation, the weight is reduced

by unity,

9 H(a, B32) = f(ai0)H(Fia). (2:69)

As an example we provide the 1-d HPL’s with weight 2.

H(0,0;z) = %m?m, (2.70)
H(0,1;z) = Liy(z), (2.71)
H(0,-1;2) = -Liy(—z), (2.72)
H(1,0;z) = —InzIn(l—z) - Lis(z), (2.73)
H(1,1;z) = 51—!ln2(1—:c), (2.74)
H(1,-1;z) = L12(1;$>—ln21n(1—:c)—Li2 (%) (2.75)
H(-1,0;z) = Inz In(l +z)+ Liy(~x), (2.76)
H(-1,1;z) = Lig<1;$)—ln2ln(1+x)—Li2 (%) (2.77)
H(-1,-1;z) = %ln2(1+x), (2.78)
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where Lis is the dilogarithm

Lig(z) = — /0 ’ h‘“%t)dt. (2.79)

2.7.2 2-d HPL’s

The 2-d HPL’s were introduced in [35] as the logical extension of the 1-d HPL’s.

The common extension is the linear basis

1
fla,z) = 0 (2.80)

1
— = 2.81
fleaw) = ——, (281)

which gives the first order 2-d HPL’s as

H(a;z) = —In(a — z), (2.82)
H(—a;z) =In(a+x). (2.83)

These HPL’s were introduced in order to solve differential equations with two scales,
and with homogeneous terms containing the factors f(a,z) and f(—a,z), so that
upon integration the 2-d HPL’s provide a basis set for the analytic form of the
integral. The 2-d HPL’s are defined to have the same properties under differentiation

and integration as the 1-d HPL’s.

2.7.3 Properties of the HPL’s

HPL’s obey a number of useful identities. The most useful identity is the shuffle

identity which allows us to write products of two HPL’s as a sum of HPL’s with
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higher weight.

H(p2)H(Gz) = ) H(2) (2.84)

=Y q
where plt ¢ represents the mergers of 7 and ¢ in which the relative orders of the

elements of p"and ¢ are preserved.

For example, with p’'= (a,b) and ¢ = (c, d), we have

H(a,b;z)H(c,d;x) = H(a,b,¢,d;z)+ H(a,c,b,d;z)+ H(a,c,d, b;z)

+H(a,c,b,d;z) + H(c,a,b,d;z) + H(c,d,a,b;z).

This shuffle identity gives us the following useful relation:

H"(0;z) = n!H(w; x). (2.85)

n zeros

HPL’s also obey integration by parts identities, given as follows.

H(ml e mq; :L') = / dz'f(ml, I,)H(m2 T ml]; :EI)
0
= H(myz)H(mg- - my; z)
z
_/ dx’ H(my;z') f(mg; ') H(mg - - -mg; ')
0

= H(my;z)H(mg- - -mg;x) — H(memy; z)H(mg - - - my; 7)

+ H(mgmami;z)H(my - mg;x) — -« — (=1)PH(mg- - -my; ) .
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2.8 Summary

In this chapter we have introduced the tools necessary to solve loop integrals, fo-
cussing on the methods that will be used in the following chapter. We have in-
troduced the terminology associated with loop integrals and their general repre-
sentation. Using the one-loop Minkowski space integration rules from the previous
chapter, we have solved the one-loop scalar bubble diagram with arbitrary powers
of propagators. We have then used this result to solve the two-loop Master Integrals
which we call Sunset and Glasses, via the methods of bubble insertions and factori-
sation of integrals. We have then introduced the linear identities satisfied by loop
integrals, the Integration by Parts and Lorentz Invariance identities, and demon-
strated their use to express an integral in terms of simpler integrals. This reduction
has been fully automated, and so we have described the Laporta Algorithm which
has been used to find the Master Integrals presented in the following chapter. We
have then described the Differential Equations method for solving loop integrals,
looking at the derivation of the differential equations and the method of their solu-
tion. We have concluded by examining the Harmonic Polylogarithms which are the
natural set of functions in which to express the solutions of the differential equations.
In the next chapter we will use the differential equation method to solve two-loop

integrals, and in doing so we will reuse the expressions for the Sunset and Glasses

Master Integrals derived in this chapter.




Chapter 3

Master Integrals For Massless

Two-Loop Vertex Diagrams With
Three Offshell Legs

In this chapter we compute the Master Integrals (MI) for massless two-loop vertex
graphs with three off-shell legs. These results are published in Ref. [36]. These
Master Integrals are ingredients for several interesting two-loop processes, as well
as having applications in the calculation of two-loop integrals with more than three

external legs.

In Higgs physics, the H — V*V* decay receives QCD corrections when the Higgs
couples to gluons (via a heavy top quark loop) which then couple to the weak bosons
via a massless quark loop, as shown in Fig. 3.1. This may be relevant for Higgs
searches in the mass regions where the Higgs decays into two off-shell W bosons.
In pure QCD, one can evaluate the two-loop triple gluon and quark-gluon two-

loop vertices with massless quarks in a covariant gauge (as well as the gluon-ghost
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—_—— - V*

Figure 3.1: A two-loop vertex diagram for the H — V*V* decay. The Higgs couples to
the gluons via a heavy top quark loop, depicted here by a grey shaded dot.
q denotes the second loop as a massless quark loop.

Figure 3.2: Example two-loop diagrams for the triple gluon and quark-gluon vertices.

vertex), of which example diagrams are shown in Fig. 3.2.1 This is a useful input for
Schwinger-Dyson studies of confinement as well as exploring how the Ward-Slavnov-
Taylor identities generalise to the off-shell case. These vertices will also contribute
to the QCD background for processes at the LHC, for example through gluon fusion

and multi-jet production.

The Master Integrals presented here also form a first step towards the calculation
of massless two-loop 2 — 2 scattering amplitudes with two off-shell legs. These
processes include the NNLO QCD corrections to ¢§ — V*V* (where V = W,Z) and
the NLO corrections to gg — V*V*. Here we indicate that the gauge bosons are
off-shell to account for resonance effects in the decay of the gauge boson. As in the
on-shell and single off-shell cases, the MI include planar and non-planar box graphs
as well as vertex and self energies. Altogether there are 11 planar box and 3 non-

planar box master topologies, some of which require 2 or more MI to be computed.

1Note that Davydychev and Osland have studied the two-loop case where only one of the legs
is off-shell [37]
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The Master Integrals we present here belong to a subset of the necessary MI for

these processes.

It is well known that many of the loop integrals that appear in Feynman diagram
calculations can be expressed in terms of hypergeometric functions with parameters
that depend on the number of space time dimensions d and a number of kinematic
scales. However, expressing these hypergeometric functions as expansions in € =
(4 — d)/2 is rather non-trivial. In general the coefficients involve polylogarithms,
both of the Nielsen [38] and harmonic [34,35] varieties, and often new polylogarithms

need to be introduced.

We have seen in chapter 2 that the Integration by parts [39,40] (IBP) and Lorentz
invariance [21}(LI) identities are crucial in reducing [23] the number of Master In-
tegrals that actually need to be evaluated. Several powerful tools have been estab-
lished to deal with their solution. Often, these methods rely on the link between
the hypergeometric functions that yield (nested) sums and their integral represen-
tations that yield polylogarithms. Two of the most powerful analytic methods are
the Mellin-Barnes technique [41] and the differential equations approach [24] which
we have introduced in section 2.6. Both methods have been used extensively to
provide expansions in € for two-loop box graphs with massless internal propagators
when all the external legs are on-shell [19,20,42—44] and when one of the external
legs is off-shell [26,27]. All of these expansions have been checked by Binoth and
Heinrich’s numerical program [45] for evaluating loop integrals. Once analytic ex-
pansions for the two-loop Master Integrals were known, they were rapidly exploited

in the calculation of the amplitudes for physical scattering processes.

The two-loop helicity amplitudes have been evaluated for the gluon-gluon [46,47],
quark-gluon {48,49] and quark-quark [50] processes and have confirmed the earlier

“squared” matrix elements [51-54]. Similarly, amplitudes for the phenomenologi-
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cally important gg — 7 [55] and g — <y [56] processes as well as yy — vy [57,58]
and (massless) Bhabha scattering [59] have also been computed. The processes with
one off-shell leg include ete™ — 3 jets [60-62] which is crucial in making a precise
determination of the strong coupling constant at the NLC. Progress is also being
made in calculating the two-loop QED corrections to Bhabha scattering which is of
crucial importance in determining the luminosity at the NLC (see the nice review
of the current status in Ref. [28]). Here there are 33 double box graphs to evaluate
of which seven have been studied [28,63-65]. Analytic expressions for the associ-
ated vertex graphs are also known [28,29] and have been employed to calculate the

QED [66] and QCD [67] corrections to the massive fermion form factor.

As in Refs. [26-32], we employ the differential equation technique, as introduced
in chapter 2, to evaluate the MI systematically order by order in e. At each order
we encounter one-dimensional integrals over the terms in the result for one order
lower. These integrals yield polylogarithms and, because of the specific kinematics
of the vertex graph with three off-shell legs, we find it necessary to extend the set
of two-dimensional harmonic polylogarithms (2-d HPL) to include quadratic factors
in the denominator (see also Ref. [32]). Our results are therefore presented in terms

of the extended set of 2-d HPL’s.

To apply these integrals in the evaluation of the two-loop Master Integrals with two
off-shell and two on-shell legs, we present the € expansions of our Master Integrals
up to O(e?). In this way it will be possible to obtain the necessary finite pieces of

the Master Integrals for the 2 — 2 processes.
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3.1 Kinematics

We consider the vertex graph with three off-shell legs such that,

0=p1+p2+0p3. (3.1)

The three kinematic scales are p?. It is convenient to use the dimensionless variables

2 2
P1 D3
rT==, yYy== (3.2)
3 p3

together with the determinant of the 2 x 2 Gram matrix,

A= Mz y)=—o=vV1-z-y)2—dzy = /(2 — 20)(z — 21) (3.3)

where A is defined in eq. (2.46) and

zo=(1-v4)?  @1=(1+p)>

We also have the following simple relations:

VZor1 = 1-—y,

To+2z1 = 2(1+y).

In the following the dependence of A, zp and z; on z and y will be implicitly

understood.

Here we choose the kinematical configuration to suit the case of a heavy/offshell

particle with momentum p; decaying into two lighter particles with momenta p,, ps.
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3.1 Kinematics

3.1.1 Extended Harmonic Polylogarithms

The 2-d HPL’s were introduced in [35] as the logical extension of the 1-d HPL’s.

The common extension is the linear basis

1
f(a,as) = a—1z
f(—a,a:)= a_:*l_x'

which we have briefly discussed in section 2.7.2.

(3.6)

(3.7)

However, while it is possible to

use this basis to evaluate the integrals under investigation here, a more natural

extension involves the square roots that are generated by Eq. 3.3. This factor, ),

originates from the derivation of the differential equations for integrals with three

off-shell legs, as shown in section 2.6.1. As such, this factor is common amongst all

of our differential equations, and so it is natural that it should provide us with the

basis set of HPL’s in which to phrase our solutions.

basis by the (quadratic) functions,

fOE) =5,
1
f(.’L')\,.’E) = a,
1
f(iE(),-'E) - —CL' — Zo
Flane) = ———

To this end, we extend the 2-d

)

These functions are two dimensional, with explicit dependence on z and the depen-

dence on y coming from zo(y) and z;(y). The functions are chosen to be positive in

the region,

0<z<l, O0<y<l,
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which immediately implies

O<z<zo=(1-9)°<1, O0<y<ypo=(1-v2)’<1, Vz+,4<1, (3.12)

and which corresponds to the kinematically allowed shaded region depicted in fig

3.3.2

We define the extended harmonic polylogarithms in the following way,

Gla, @, y) = / fla,@)G(@; 7', y)de, (3.13)

and where the dependence on y is made explicit. This follows the definition of the
standard HPL’s, with the exception of the lower limit on the integration, which in
our case is chosen to be xo. This definition is chosen due to the boundary conditions
on the differential equations which we wish to solve. If the homogeneous part of
the differential equation is divergent at the boundary then the boundary conditions
are automatically satisfied by choosing the boundary point as the lower integration
limit when integrating the differential equation, for example see Eq. 2.58. In the
differential equations we wish to solve we often find that we can use zy as the
boundary point, and hence it is useful to define our basis functions with this point

as the lower limit of integration. The only exception from this definition is

G(xg,...,xo;z,y)z/ f(zo, 2" )G(zo, . .., z0; 7', y)dT'. (3.14)
0

This is chosen to have a different lower limit of integration to avoid the logarithmic
singularity of this function at x = g, in a similar fashion to the choice of a different

lower limit for H(0,...,0;z). However, 2-d HPL’s of this form do not appear in the

%It is also possible to define a linear basis by making the Euler transformation, A = 2t + 2 The
connection between the quadratic basis and a linear basis is detailed in Appendix A.
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results presented in this thesis.

The choice of the integration limits is governed by the kinematic boundaries. To be
able to evaluate the extended HPL’s for z — xy, the condition lim,_.,, G(1; z,y) = 0

has to be fulfilled. This ensures that

/z f(zo, 2 )G(¥; 2, y)dz' (3.15)

is finite in the limit z — .

Note that HPL'’s of the form G(0,@;z,y) and G(z\, w;z,y) are divergent in the
limit that £ — 0. This reflects the fact that taking the massless limit and making
the e-expansion does not necessarily commute. In the cases where the z — 0 limit

is smooth, we find that the HPL’s appear in the combination,

which is finite as £ — 0.

For the generalised HPL’s of weight 1 we find,

G(0;z,y) = log (x%) , (3.17)
GO\ z,y) = log (%) , (3.18)
Glzhiz,y) = 1iylog<(1_y)(1+22\_/;_)\)_2:v), (3.19)
G(z0;z,y) = — log (a"’x; "’) , (3.20)
Gla1;z,y) = —log (;1__;) . (3.21)

In the course of solving the differential equations for the MI, we also find integrands
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of the form,
1 1

S _ of . ﬁ.
)\2’ (fE—ﬂ?o,])/\ (.’L' .'130) (x xl)

These are not independent and can be reduced to the set of quadratic basis functions.

To do this we use relations obtained via integration by parts. Denoting

T, B) = / (z — 20)°(z — 7,)Pda (3.22)

we have the following relation

T L) s G- R CE Y ) B
leB) = = oo G e s+ ) (3.23)

This equation allows us to raise or lower the powers «, 3, until we are left with

solely weight one HPL’s. This allows us to see that, for example,

71

1, 2z — 1,)2
Zo CIIO/\

(IEl — IIIQ)(I - .’L‘o)%

(3.24)

For integrals with a higher weight we use the following relation, again obtained via

integration by parts,

I, ) = / (& — 20)*(z — £)°G(v, T 2, y)dz =

a+pB+2

(,B + 1)(.’1:0 — I

1 — 10)* M (z — 2,)PT f (0)G(W; 7, y)dx
+(ﬁ+1)(xo—x1)/($ 0)" (& —21)"" f ()G (; 7, y)d

_$0a+1x_ 1/6+1 .
_ (z @ +) 1)(io — ;; G(v,W,;z,y). (3.25)

) / (& — 20)(z — 2)*C (v, s 2, y)de

These equations can be used to raise or lower the powers o, 5 until we are left with

a sum of terms that can be given in terms of the basis set of higher weight HPL's.
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For example,

/m: LG(a; T)=— 2 (_ (x — $0)1/2f(a; z) + (x_—m_oLﬂG(a; a:)) (3.26)

1‘1/\ (.’El - 330) (:1: — 131)1/2 (il? - 1171)1/2

All other integrands that are not of this quadratic form are reduced to the set of

basis HPL’s by the use of partial fractions.

3.2 One Loop

At one-loop there are only two Master Integrals required. These are the one-loop

Bubble and the one-loop Triangle.

3.2.1 Two point integrals

Figure 3.4: The one-loop Master Integral, BB(q?)

The only two point integral at one-loop level is the bubble graph shown in figure
3.4 which has been calculated using Feynman parameters in section 2.1 and is given

here for the sake of completeness,

BB() = iSp(~¢") "t =55y

(3.27)
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2
My
2
mg3
2
my

Figure 3.5: The one-loop Master Integral, Fo(m?, m3, m2).

3.2.2 Three point integrals

The three point integrals with less than three massive legs are reducible to bubble
integrals. The only master integral is the triangle with three massive legs, as shown
in figure 3.5. The finite part of this diagram has been calculated in [68]. The d-
dimensional result for this integral can be found in [41,69, 70], where it is given
in terms of Appell functions. Davydychev calculated this integral to all orders in
terms of log-sine functions [71]. The generalised log-sine functions can be directly
related to Nielsen polylogarithms [72,73] and the all-order epsilon-expansion of one-
loop massless vertex diagrams with three off-shell legs is given in terms of Nielsen
polylogarithms in Ref. [73]. However, here we will convert these results into 2-d

HPL so that they can simply be combined with the other two-loop MI.

This integral is finite in d = 4. In terms of dilogarithms, the finite result is given by

s 2 2 2
Fo(ml’mZ’mS) - mgq)(mg) mg) (328)

with
B(a,9) = 1o |2 (Lia(—p2) + Lin(—py)) + In L n 12
’ Az, y) z 1l+4pzx
2
+ In(pz) In(py) + Z;—} (3.29)
2
plz,y) = [ ————y (3.30)

and A is as defined in Eq. 3.3.
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® can also be written in terms of Harmonic Polylogarithms,

®(z,y) = %{Z(H(Ol —pz) + H(0,1;,—py)) + H (0 y)H(&iiZ)

+H (0; pz) H %;} (3.31)

In two-loop calculations this integral appears in products with other one-loop in-
tegrals, and so to obtain the proper € expansions we need the one-loop triangle
expressed as an ¢ expansion itself. To be able to combine the one-loop integrals
with the genuine two loop integrals, it is necessary to express all of the integrals in
terms of the same set of functions. To achieve this we apply the differential equation

method to the one loop triangle.

The DE for Fy(m?, m2, m?) is given by

OF d—4
mint o0 (( . )A2 (3_d)m§(m§_mg_mg)) Ry
1

+ (d —3) (mg +m? — m%)BB(mg)
+ (d - 3) (m? + mg —m3) BB(m3)

—2(d — 3)m? BB(m?), (3.32)

where,

A® =mi +m3 + mg — 2mim3 — 2m2m? — 2m2m?. (3.33)

has been introduced in section 2.6, and we have seen that this factor arises from the

transformation from differentials in momenta to differentials in external invariants.

The scalar triangle is completely symmetric under the interchange of the external
scales. We choose to solve it in the configuration m? = p? with p2 > p?, p?. In this

case, A* = p{\? (with X given by Eq. 3.3) and m? = p3x mi = p3y. By performing
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a transformation of variable m? = £ — X it can easily be seen that the homogeneous
solution at d = 4 is Fm = % To fix the constant of integration it is necessary to
look for suitable boundary points. Note that the limit z — 0 is not allowed because
the one-loop triangle with only two external masses is divergent at d = 4. The only
remaining possibility is to choose a point on the parabola given by A = 0, as shown
in fig 3.3, ie. z — mp; = (1 £ /)% In this case the homogeneous solution is
divergent at the boundary and so we apply the treatment discussed in section 2.6.3.

The boundary condition for x — g, corresponding to m? — (my —m3)? is given by,

BB(m,?) BB((mg — ms)?) BB(m3?)
(m2 - m3) ms * M2 M3 +m2 (mz - m3).
(3.34)

FO(m%’ m%, mg)lm%z(mz—ma)z ==

Solving the differential equation order by order in €, we find the following expansion
in €, 2

P3

Fo(p?,pg,pg) =

p?

: —1—¢ 1 1 i 3 i
Fo(p?,p3,p3) = i(—p3) ™" Spy ( fa (;%;a_g> € +0(63)> : (3.35)
i=0,...,2 D3 p3

where,

fo(z,y) = =2G(\,0;z,y) — 2G(\; z,y) H(0; zo)

+ G\ z,y) HO;9) + (-1 +9) G(z); z,y) H(0;y),
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fo(z,y) =+2G(0,),0;z,9) + 2G(\, 0,0; z,9) + 2 G(zo, A, 0; 7, y)
+2G(z1, N, 0;z,9) + 2G(\; z,y) H(0,0; z0) — (G(\; 7, y) H(0,0; 7))
+(1—y) Gz z,9) H(0,0;9) + 2G(0, \; z,y) H(0; zo)
— (G0, X2,9) H(0;9)) + (1 — y) G(0, zA; z,y) H(0;y)
+2G(A,0;2,y) H(0; zo) + 2 G(zo, A; z,y) H(O; o)
— (G(zo, A;2,y) H(0;y)) + (1 — y) G(zo, 2X; 2,9) H(0;y)
+2G(z1, Az, y) H(0;20) — (G(z1, As 2, 9) H(O; 1))

folz,y) =

- 2G(0,0,),0;z,y) —2G(0, A, 0,0; 2, y) — 2G(0, zo, A, 0; 7, )
—2G(0,z1,A,0;z,9) —2G(},0,0,0;z,y) — 2G(x0,0, A, 0; 2, %)
—2G(70,A,0,0;z,y) — 2G(z0, T, A, 0; 2,y) — 2 G(x0, 71, A, 0; 2, 9)
—2G(21,0,A,0;2,9) — 2G(z1, A, 0,0; 2, y) — 2G(zy, 70, A, 0; 2, )
—2G(z1,21, A, 0;2,9) — 2G(X;2,9) H(0,0,0; z0) + G(X; z, ) H(0,0,0;y)
+(=1+y) Gz z,y) H(0,0,0;y) — 2G(0, \; 7, y) H(0, 0; z¢)
+G(0,A2,y) H(0,0;y) + (—1 +y) G(0, zX; 2, ) H(0,0; )
—2G(\,0;z,y) H(0,0; z9) — 2 G(z0, A; z,y) H(O, 0; z0)

+ G(2o, A 2,y) H(0,0;y) + (=1 +y) G(zo, A; 2, y) H(0,0;9)
—2G(z1, A 2,y) H(0,0;20) + G(21, A; 2, 9) H(0,0;9)

+ (=1 +y) G(z1,z\;z,9) H0,0;y) — 2G(0,0, \; z,y) H(0; )

+G(0,0,X2,9) H(0;y) + (=1 + ) G(0,0,zX; z,y) H(0; y)

—2G(0,A,0;z,y) H(0; zo) — 2G(0, zo, \; z,y) H(0; z0)+
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+G(0,20, A 2,y) H(0;9) + (=1 +y) G(0, z0, zX; 7, y) H(0; y)
—2G(0,z1, Az, y) H(O; 20) + G(0, %1, A\, z,y) H(0; )
+(=1+y)G(0,z1, 2\ z,y) H(0;y) — 2G(),0,0; z,y) H(0; z0)
—2G(20,0, Az, y) H(0; 29) + G(x0,0, A\; 2, y) H(0;y)

+ (=1 +y) G(20,0,zX; z,y) H(0;y) — 2 G(zo, A, 0; 7, 9) H(0; z0)
~2G(xo, To, X z,y) H(0; 29) + G(zo, To, N; ,9) H(0;y)

+ (=14 9) G(z0, z0, zA; z,y) H(0;y) — 2 G(zo, 71, X; 2, y) H(0; o)
+ G(zo, 21, A2, y) H(0;9) + (—1 +y) G(zo, 31, 2A5 2, 9) H(0; )
—2G(x1,0, Xz, y) H(0; z0) + G(21,0, \; z,9) H(O;y)

+ (=149)G(21,0,z);2,y) H0;y) — 2G(z1, A, 0; 7, y) H(O; o)
—2G(z1, o, A 2,y) H(0; zo) + G(z1, To, A; 2, y) H(0;y)

+ (=1 +y) Gz, zo, zX; 2, y) H(0;y) — 2G (21, 71, A 7, y) H(O; 20)

+G(z1, 71, M 2,y) H(O;y) + (=1 + y) G(z1, 21, 2X; 7, y) H(0; )

We have checked that the €® term agrees with the results of Ref. [68] while the O(e)

term numerically agrees with that given in Ref. [71].

3.3 Two Loop

3.3.1 Two point integrals

There are only two two-point Master Integrals, both of which can be obtained by
repeated one-loop integration. These are the three propagator sunset graph and the
four propagator glasses graph. Both of these integrals have been evaluated using

one-loop method in section 2.2 and their € expansions can be found in equations
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2.21 and 2.22. Here we provide their diagrams for the sake of completeness.

q O
Figure 3.6: The two-loop Master Integral, SS(¢?).

P — (OO —

Figure 3.7: The two-loop Master Integral, GL(q?).

3.3.2 Three point integrals

Master Integrals with four propagators

Figure 3.8: The two-loop Master Integral, TGL(p?, p2)

The simplest graph with four propagators is denoted by TGL and is shown in fig-
ure 3.3.2. This integral factorises into the product of two bubbles, much like the
Glasses integral of section 2.2, but in this case each bubble is dependent on a different
scale.

—€ —€ 1
TGL(p?, p3) = BB(p})BB(p3) = —(—p?)~*(—p2) 512%2

T (3.36)

There are two genuine two loop integrals with four propagators. These are denoted

by Fi and F; and shown in figure 3.3.2 The-¢ expansion of these integrals is given
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2 2
my my

m m?

Figure 3.9: The two-loop Master Integrals, Fi(m%,m%, m2), Fo(m?, m2,m3)

to order € in [74]. The corresponding two scale diagrams, when one of the legs

becomes massless, are given in [26] to order € in terms of HPL’s.

We obtain two coupled differential equations for F; and F5,

3, (d —4) m} (m? — m3 +m2)
% E(m? m2 m2) — 5 (Mg 2 3

am% 1(m1?m2>m3) 2 (d— 3) A2 F2

(d—4) (—m? +m3 + mg)F

B 2 A2 !

3d—8) (—m?2—m2+m? 3d—8
(3.37)
—((d — _ 2 .9 2
82F2(mf,m§,m2) _ ((d-3) (3d—10) (m§ —mj + m3))F1

om? 2A2m?

T oAZm2 ((3d — 10)m¥(m? — m3 — m3) — 2(d — 4)A2)> F,
1

(d—3) (3d—8) (3d - 10)
+ (d—4) A2m?
(d—3) (3d—38) (3d—10) (m? +mi —m2)

- 2
2 (d—4) A2m2m2 SS(m3). (3.38)

SS(m?)

These two integrals have different leading powers of €, and so the differential equa-
tions decouple on expansion in ¢, enabling us to use the differential equations method
in their solution. In practice, the decoupling of the equations means that we solve
for the lowest order of F}, then the next lowest order of F} followed by lowest order

of F;, which both have the same order in €. So we proceed by evaluating the F}
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term followed by the F, term for each order in € until we have the required order of

the expansion in both integrals.

The homogeneous solutions at d = 4 are found to be

FPm =1,  Fpm= %
Finding suitable boundary conditions for these coupled equations is more difficult
than for the one loop triangle. Only F} has a smooth limit for z — 0 (F; develops
additional poles in € in that limit). On the other hand, taking the limit A — 0 in
either differential equation only provides a single relation between the two integrals.
Therefore we combine both approaches. Firstly we use the limit x — 0 to fix the
integration constant of F], matching the integral in this limit to the two-scale result
given in [26]. Secondly we take the limit A — 0 (i.e. * — x¢) of F} and use the

limiting relation obtained from the differential equation to find F; in the limit A — 0,

thereby fixing the integration constant of Fj.

The limiting relation in the limit £ — zy is,

(d - 3) Fy (m%;m%a m§)|m2=(m —m3)?
F2(m%) m%) m§)|m%=(m2—m3)2 == ( M9 M3 1 2
(d —3) (3d—8) 85(my?) (3.39)

(d — 4) m22 (mz — m3) ms
(d—3) (3d — 8) SS(m2)
(d — 4) mo m§ (m2 — m3) .

Without the second boundary constraint on F; as x — 0, this would only be sufficient

to yield an independent determination of f{2.

The expansions in € are needed for two separate configurations. First, when the
largest scale p3 is situated opposite the bubble (corresponding to m? = p2) and

second, when it lies adjacent to the bubble (m2 = p%). For the first momentum
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configuration, we find that the expansions are as follows,

3

FP(p?,p3,p3) =

(2, 7 12) = (Z fl( ) ‘1o >>, (3.40)

i=-2

where,

f1—2(‘r’y) = - %)

fl_l(may) ==

DO Ot

f{)(xv y) =

~57 — 72 -1

1 1
— 5 AG0;0,y) H(O;y) + 5 G(0;2,y) H(0;y)

—((=1+y) (-1+z+y))
2
+ G(X;0,y) H(0; zo) — % G(X;0,y) H(0;y)

—(-1+z+vy)
2

_.|_

G(zA;r,y) H(O;y)

—1+:r+yG

* )

G(Mz,y) H(O;y) + (A 3,y) H(0; zo),

65 5 2
fla,y) = — (—) L i 7~ AG(0;0,9) — AG(0,1,0;0,y)

2 6

L 7w’ 7 (z+y—1)
+G(0;3,9) + 12G(AO) T Gay)
—(* (y—-1) (e +y—

+ 1) G(zA;z,y) + 5G(A,0;0,9)+

12 A
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5(x+y—1)
A
-9 —
- G(1,0,0;0,) + 2LEXY D)
A
1 y—1 1
- §G(’\a03 /\,O,y) + TG()‘voa x/\,O,y) + §G()‘7/\)0a0a y)
3 y—

1
- 5 G()‘a )" 0; Z, y) + T G()" :E)‘a 0;0, y) - G($0a A) 0;0, y)

-1
- (%) G(J;O) /\’ Oa z, y) - G(xla )‘a 0; O) y)

-3(z+y—-1)
22

G(A,0,0;z,y)

+

- (%) G(z1,A,052,) + wG(wMﬂ;w)

.2
+%H(1;y)—5H(1,0;y)+2H(1,0,0;y)—H(l,l,O;y)

~ 2 AG(0;0,5) H(0:y) + AG(0;0,9) H(,0;)

1
- %AG(O; 0,y) H(1,0;y) — 1 AG(0,0;0,y) H(0;y)

~ AG(0,%0,5) H(0;70) + 5 AG(0, X:0,) H(0;)

4 y%l AG(0, 27 0,) H(0; y) — % G(0; 2,3) GO\, 0;0, )

+ 2 G(052,9) H0:) ~ G(0;2,9) H(0,0:9) + 3 G(0;2,9) H(1,0:9)
+5G(X;0,y) H(0;20) — g G(X;0,y) H(0;y) — 2G(X;0,) H(0,0; zo)

1
+ G(A;0,9) H(0,0;y) + 2 G(X0,y) H(1,0;y)

_ Mg(,\;w,y) G(A,O;O,y)+w

2)
_S(z+y-1) —2(z+y-1)
A

22
T+y-— r+y-—1
* 2

1
3 G\ z,y) H(0,0;9) +
G(zX;z,y) G(, 0;0,y)

(y-D(x+y-1)
2\

—Sy-1)(z+y-1)

2\

(y—1) (§+ 4=V Glanz,5) HO,0;y)

=Dy =) Gane,y) 1L 09)

1 -3 -1
i — 7 G(0,053,y) H(039) + — .@; 2 ) G0, ;) H(0:20)+

G(A; z,y) H(0; o)

G(Az,y) H(0yy) + G(A;z,y) H(0,0; o)
G(Az,y) H(1,0;y)

+

+ G(zA; z,y) H(0;y)

+

+
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3(%/?\/_1)G(o,A;ac,y)H(O;y)
3(y—-1)(z+y—-1)
4\

3 1
= 5 G 0;0,9) H(0;20) — 7 G(A,0;0,y) H(0;)

—2(x+y-1)
A

—(z+y-1)
4\

G(X 23 0,9) H(0; 20) — 3 G %:0,3) H(0;)

+

+

G(0,zA;z,y) H(0;y)

_|..

+ G(X\0;z,y) H(0;y)

+

MW N =

G(X\ X z,y) H(0; zo) + %G(/\, Az,y) H(Oy)

1 3 (y—1
+ 22600 2x,0,9) HO50) + 7Y 600, 2xi0,9) H (O

3(y—1

+ 2021 603 axs2,4) H(039) — (Ca0, Xi0,9) H(0:20)
1 —1

+56an3:0,9) HOw) — (T4 Glan 32,0) H(0s)
r+y—1

~1
oy G0, Az, y) H(05y) + yT G(z0,2);0,y) H(0;y)

W=D @Y =1) gy, ohsa,y) HOy) ~ (Glan, s 0,9) H(O; 20))

+ %)

+ % G(z1,X;0,9) H(0;7) — (%) Gz, Az, y) H(0; 20)

" %y/\d(}(xl, X z,y) H(0;y) + y2;1 G(z1,zX;0,y) H(0; y)

) (2x)\+ y—1) G(zy, zA; z,y) H(0; y)

+ (y—1) Ef;_ y—1) G(z\, 0;z,y) H(0;y)

+ 3_(y2;1) G(z, X;z,y) H(0; z0)

N w G(zA, A z,) H(0;9) + ‘—3(1{{—” Glz zA;z,y) H(O5y)
+ i AG(0;0,) G(0;z,y) H(0;y) + H—f)\_*l AG(0:0,9) G(X;z,y) H(0:9)
L= @+y-1)) AG(0;0,y) G(zA; z,y) H(0;y)

4\
1 1
~3 G(0;z,y) G(A; 0,y) H(0; o) + 1 G(0;z,y) G(X;0,y) H(0; y)+
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+ 282D g5 0,.) G y) H(O:20
-1
+ % G(A0,y) G(\; z,y) H(0;y)
-1 —
+ -1 (;/\er 2 G(X;0,y) G(zA; z,y) H(0; zo)
+ 22D ErV= D) gins0,.) Garia ) HOw),
d
and, p%
2
Ps
F3(p},p3,p3) =
P
a 61 2
Fy (Pf,pg,Pg) = 512)(_ -2 X (1_; f2 ( 29 2) € +O( )) ) (3'41)
where,

fit(z,y) ==2G(\,0;z,9) — 2G(\; z,y) H(0; zo)
+G(Aiz,y) H(O;y) + (=1 + ) G(zX; z,y) H(0;y),

2

oz, y) =+ % G(\z,y) + % G(zX; z,y) + 3G(0, A\, 0; z,y)
+4G(A,0,0;z,y) + 2G(z0, A, 0;2,9) + 2G(z1, A, 0; 2, )
+ G\, y) G(A0;0,y) + 4G (X z,9) H(0,0; z0) — 2G(X; z,9) H(0,0;y)
— (G(X2,9) H(1,0,9)) + (1 — y) Gz 2,9) G(A, 0;0,y)
+(2-2y) G(zA;2,y) H(0,0;y) + (y — 1) G(zA; 2, y) H(1,0;9)
+3G(0,\;z,y) H(0; zg) — gG’(O, Az,y) H(O;y)

WG(O,Q»\;IB, y) H0;y) + 4G\, 05z, y) H(0; z)

1
+3 G(A\0;z,y) HO;y) + 2G(zo, Az, y) H(0; zo)+

+
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— (G(zo, Az, y) H(0;9)) + (1 — y) G(z0, zA; 2, 9) H(0;9)

+2G(z1, A2, 9) H(0;20) — (G201, A\ 7,9) H(0; )

+(1=9) Glew,aXi2,9) HO03) + 2 GloA,0;2,4) H(0;)

- % AG(0;0,y) G(A;z,y) H(0;y) + y2;1 AG(0;0,y) G(zA;z,y) H(0;y)
+ G 0,9) G 2,) H(0;20) — 5 G 0,) G 7,) H(0:)

+ (1 —y) G(X;0,y) G(zA; 2, y) H(0; z0)

—1
+ yT G(X0,y) Gz z,y) H(O;y),

2
zy) == GCNa,y) + (y — 1) GGz, y) + — G0, X 7,7)

4
— (72 (y—1 2 2
+ 20D G0, ana g + 5 GO 052,1) + = Glao, A 2,9)
— (72 (g —1 2
+ (m (6y ) G(zo, TN 3, 9) + % G(z1, N z,9)
—_ 2 - - 2 -
+ ( (6y D). G(z1,zX; x,y) + (w 1(?; L) G(zA, 0;z,v)

9
~ 3 G(0,0,X,0;z,y) — 6G(0,,0,0; z,y) — 3G(0, 29, A, 0; 2, 9)

- 3G(0,2z1,,0;z,y) — 8G(),0,0,0;z,y) — gG()\, A A0z, )

3(y-1)
2

- 20(370, Zo, )\,O;x,y) - 2G(I0, Iy, A, 0; x,y) - 3G(l‘1,0, )‘)O; x,y)

+ G\ A A, 0;2,y) — 3G(20,0, A, 0;z,y) — 4Gz, A, 0,0; z, Y)

- 4G($1,/\,0,0;J),y) - 2G(x1,a:0,/\,0;x,y) - 2G($1,CL‘1,)\,O;CL’, y)

3(y—1 —3(y —1)?

+ M G(zA, M\ A, 0;z,y) + % G(zA, z\ A, 0;2,y)
_ 2 2 _

+ 2 AG(0;0,9) G2, 9) + LY AG(050,3) Glai )

= (AG(0,X,0;0,5) G(X;2,9)) + (y — 1) AG(0, A, 0;0,y) G(z; 2, y)
2

— (72 _
+71T—2G(/\;0,y)G(/\;r,y)+ (m 1(3 1))G(A;O,y)G(ﬂc/\;:tc,y)

1
—(G(X\2,9) G(A,0,0,0,y)) — 3 G(Az,y) G(A,0,X0,y)+
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1
+ yT G(Nz,y) G(A,0,2X;0,y) + % G(Az,y) G(A\ A,0;0,9)

-1
+ y—- 5 G(Xz,y) G(A\, zA,0;0,9) — (G(\;,y) G(zo, A, 0; 0, ))
2

—(G(X2,9) G(z1,X,0;0,9)) + % G(\z,y) H(Ly)
—8G(Mz,y) H(0,0,0;20) + 4 G(X\;z,y) H(0,0,0; )

+2G(\2,9) H(1,0,0;y) — (G(\2,9) H(1,1,0;9))
y

+(y — 1) Gz z,y) G(),0,0;0,y) + —;i G(zA; z,y) G(A,0,X;0,9)

—(y—1
2
—(y — 1)

+

2
) G(zA;z,y) G(A, 0,2,0,9) + 12—y G(zA; z,y) G(A, A,0,0,9)

+ ———"=G(zXz,y) G\, zX,0;0,9) + (y — 1) G(z); z,9) G(z0, A, 0; 0, %)

2

m? (y —
6

2 G(zhz,y) H(1;y)

+4 (y—1) G(zA;7,y) H(0,0,0;9) + (2 — 2y) G(zA; z,y) H(1,0,0;y)

+ (=1 GlNz,9) HL1,0:9) — 5 G0, 5 2,9) G, 0;0,3)
—6G(0, A\ z,y) H(0,0;z0) + 3G(0, \; z,y) H(0,0;%)

5 )G(O,x)\;a:,y)G()\,O;O,y)
+3 (y— 1) G(0,z);z,y) H(0,0;y) + _?)—(g_i)
— 5 GOV0,0,) GO, 0;2,9) — (GO, 0:0,9) Gleo, kz,9)

3 3(y—1
+ 560, 2,9) H(1,0) + 2D

+ (y — 1) G(X,0;0,y) G(zo, zX; 7, y) — (G(A, 0;0,v) G(z1, \; 2, 7))

G(0,zA;z,y) H(1,0;y)

-1
+ (y - 1) G()" 0; Oa y) G("El’ .’II)\; z, y) + y_2— G(’\7 O; 0) y) G(I)‘v 0; z, y)

—8G()\, 0;z,y) H(0,0;z0) — (G(A, 0;z,y) H(0,0;))
1
+ § G(/\a O; z, y) H(lv O; y) -4 G($0’ )\a fL‘,y) H(O) O; -’DO)

+2G(20, X;2,y) H(0,0;9) + G(20, ;s z,y) H(L,0;9)

+2 (y— 1) G(zo, zA;2,9) H(0,0;9) + (1 — y) G(zo, A; 7,9) H(1,0;7)

—4G(z1, A z,y) H(0,0; 20) + 2G(z1, A; 7, y) H(0,0;9) + Gz, M z,9) H(1,0;9)

+2(y—1) Gz1,zA2,y) H(0,0;y) + (1 — y) Gz, zX; z,y) H(L,0;y)+
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+ (¥ — 1) G(zA, 0;z,9) H(0,0;9) + 1%‘1/ G(zA, 0;2,y) H(1,0;y)

9
— 5G(0,0,%2,5) H(0;20) +  G(0,0, 37,9 H(0;)

2
9(y-1) . : : :

+ T G(O: 07 SL')\, z, y) H(Oa y) -6 G(01 )‘, O) z, y) H(Oa IEO)
3

3 -1
+5 G(0,29, A\, z,y) H(O;y) + % G(0, zo, z; z,y) H(0; )

—3G(0,z1, Az, y) H(0; zo) + g G(0,z1, A;z,y) H(0;y)

ﬂyz—_ﬂ @ G(0, 2, 0; 7, y) H(0; )

—8G(),0,0;z,y) H(0; zp) — le G(A,0,0;z,y) H(0;y)

+ 20D a0 e y) By + 2D

+ G(0,z1, z\;z,y) H(O;y) +

G(A zX Az, y) H(0; 20)

—3 (4 —1 —3(y—1)°
+ *(Z ) G\ z\ Az, y) H(0;y) + i(yZ'i G zA 2 2,y) H(Osy)

—3G(x0,0, Nz, y) H(0; zp) + g G(x0,0, A5z, y) H(0; )

3(y=-1)
2

1
- 5 G($0) )‘a 07 z, y) H(O’ y) -2 G(xo, Zo, /\a z, y) H(Oa :I:O)

+ G(x0,0,zX;z,y) H(0;y) — 4 G(z0, X, 0; z,y) H(0; o)

+ G(zo, 20, X; 2,y) H(0;9) + (y — 1) G(20, 70, TX; 7,y) H(0; y)
—2G(zg, 71, N T, y) H(0; zo) + G(z0, 21, N 7, y) H(0; )

+ (= 1) Glao,a1,23i3,9) HO03) + L5 Glan, 22, 0,,) H(0;)
—3G(z1,0,\;z,y) H(0; zo) + g G(21,0, A;z,y) H(0; y)

+ &y;_l) G(1,0,z\;z,y) H(0;y) — 4 G(z1, A, 05z, y) H(O; z0)

~ 5 Gz, 1,0;2,9) H(O:y) — 2G(ar, 70, Niz,y) H(0;20)
+G(z1, 20, s 2,y) H(0;9) + (y — 1) G(z1, 20, zA; 2, y) H(0; y)

- 2G(I1, Iy, /\a z, y) H(Ov (L'O)

+ Gz, 21, M 2,y) HO;y) + (y — 1) G(x1, 21, 7X; 7, ) H(0;y)+
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—1 —1
+ yT G(z1,zA,0;z,y) H(O;y) + 1_/4_ G(zA,0,0;z,v) H(0;y)

30D Giana, Nz, y) HO o) + # GzA A A 2, 9) H(0;y)

—3(y—1)° ~3(y — 1)?
2

+

Gz, N,z z,y) H(Oy) + Gz, zX, X z,y) H(0; zo)

3 -1 2 _1)3
202 6@r, a0, x50, HO9) + 2 Gan, a0, 2x2,0) HO)

+AG(0:0,4) GOy a,) H(0,0,9) — 5 AG(0;0,) G\ 2,9) H(1,050)
+(1-y) AG(0;0,y) G(zX; z,y) H(0,0;y) + %l AG(0;0,y) G(zX; z,y) H(1,0;y)

3 — —1
+3 8G(0;0,9) G0, 52,9) HO:9)+ Y A6(0:0,4) 6(0,2%:2,9) H(O:0)

1 1
+ AG(0;0,y) G(A, 0;z,y) H(0; y) + 3 AG(0;0,y) G(zo, A z,y) H(0;y)

1— 1
+ Ty AG(0;0,y) G(zo, zX; z,y) H(O;y) + 3 AG(0;0,y) G(z1, A\ z,y) H(0; )

1- 1—
+ Ty AG(0;0,y) G(z1, x5 2,y) H(0;y) + —4—y AG(0;0,y) G(zA,0;z,y) H(0;y)

1 —1
— 1 AG(0,0;,0,9) G(X2,y) H(09) + yT AG(0,0;0,y) G(zX; z,y) H(Oy)

~ (AG(0,%,0,4) G(X;,v) H(0;20)) + 5 AG(0, %0,8) G(X;2,5) H(059)

-3 (y—-1)
4

~(y-1)°
4

—2G(X0,y) G(A; z,y) H(0,0;z0) + G(X;0,9) G(X; z,y) H(0,0;y)

+ (y — 1) AG(0, ;0,y) G(zA; z,y) H(0; z0) + AG(0,X,0,y) G(zA; 2, y) H(0; y)

-1
+ yT AG(0,zX;0,y) G(A; x,y) H(0;y) + AG(0,zX;0,y) G(zA; z,y) H(0;y)

1
G(X;0,y) G(Az,y) H(L,0,9) + 2 (y — 1) G(X;0,y) G(zA; 2, y) H(0, 0; 7o)

*3
1 —
+(1-y)G(X0,y) Gz z,y) H(O,0;y) + Ty G(X;0,y) G(zA;z,y) H(1,0;y)
3 3
~3 G(X;0,y) G(0, A; z,y) H(0; zo) + 1 G(A0,9)G(0, Az, y) H(0;y)
3 -3 (y—-1)

-1
+ 2 6050,9) 60, 0i2,9) H(O20) + G2 0,y) GO, 2xiz,y) HO:y)

4
1
G(X0,9) G\, 0;z,y) H(0; z0) + : G(X0,y) G(A,0;z,y) H(O; y)

1
— (G(X;0,9) G(zo, A z,y) H(0; z0)) + 3 G(X;0,7) G(zo, Az, y) H(O;v)

1 —
+ (y — 1) G0, y) G(zo, zX; 7, y) H(0; 20) + Y G();0,y) G(zo, zA;z,y) H(0y)+

9

r4]
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1
—(G(X;0,9) G(z1, A; 2, v) H(0; z0)) + 3 G(X0,y) Gz, Az, y) H(O;y)

1—
+ (y — 1) G(X;0,9) G(zy, zA; z,y) H(0; o) + Ty G(X;0,y) G(zy, zA; z,y) H(O;y)

-1 -
+ L2 G(30,9) G, 0:,) H(0;20) + % G 0,4) G(aA, 05,9) H(0:)

3
~ 5 G(Az,y) G, 0;0,y) H(0; zp) — % G\ z,y) G(A,0;0,y) H(0;y)

1
+5GAz,y) GO, A5 0,y) H(0; 20) — i G(Aiz,y) G(A, A5 0,y) H(O;y)

-3 (y—1)
4

1
—(G(\ z,y) G(zo, A;0,y) H(0; o)) + 5 G(X; z,y) G(zo, X;0,y) H(0; y)

y—1

+ 5 G(A;z,y) G(A, zX; 0,y) H(0; zo) + G(X;z,y) G(A, zX;0,y) H(0;y)

-1

1
+ G(/\;:E,y)G(xl,/\;O,y)H(O;y)+yTG(A;r,y)G(wx,w/\;O,y)H(O;y)

LW BN -

—1 _
+ —(y2 ) Gai2,9) GA, 00, 9) H(O;0) + y4—1 Gz, y) GX, 0;0,y) H(09)

1-— _
+ 252 Gax2,5) GOV A 0,9) HO:20) + L Glod2,9) GO X 0,9) H(0:)
oy — 1)? 12
+ 2D Ganm,0) G0, axi0,1) H(00) + 21
1—
+ (y — 1) G(zA; z,y) G(zo, A; 0,y) H(O; zo) + Ty G(zA; z,y) G(zo, A;0,y) H(O; y)

Gz z,y) G\, zX;0,y) H(0; )

—(y — 1)?

+ U Glanm,9) Glan, 2i0,) HO9) + (v — 1) Gledi,9) Glan, i 0,3) H(050)
1-y ., . _ v =1 . .

+ T G(CI))\, z, y) G(a:la >\1 07 y) H(07 y) + '__2—__——- G(‘TA7 z, y) G(:I'.l: -T/\v 07 y) H(01 y)

The second momentum configuration is defined by,
p3
2
b
FY(p}, p3, p3) =
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P3

3

F2(pl, p2, p2) =

i=—1

= Sp(-p}) ™' (Z fz(pl p—) “+0(e )) (3.43)

Expressions for fliy2 in this momentum configuration are similarly lengthy to those for
F}, and can be obtained in computer readable form from the authors. In each case,

we have checked that the leading contribution agrees with the results of Ref. [74].

Note that solving the differential equation for the crossed triangle requires the
functions F{,(x,y) which are symmetric in = and y and in addition the functions
F}y(z,y) and F75(y,z). The functions F{y(y, z) are, of course, in principle known.
However, exchanging z and y puts them in a form that is not suited for further
integration over z. To get them into a suitable form we therefore recalculate them

directly from the differential equations.

Master Integrals with five propagators

2
mg

Figure 3.10: The two-loop Master Integral, TB(m?,m32, m3)

There are two Master Integrals with five propagators. The first is solved by factori-
sation into the product of one loop integrals as demonstrated in section 2.2, and the
second is a genuine two-loop integral. The first integral, denoted by TB, is shown in

figure 3.10. This. integral obviously. factorises into the product of-a-one-loop bubble
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diagram with a one-loop triangle. As such the graph TB is given by,

TB(p3, p3, p3) = BB(p3) Fo(p, p3, p3)- (3.44)

The € expansion for this integral is straightforwardly obtained from eq. 3.35 and we

do not show it here.

2
my

Figure 3.11: The two-loop Master Integral, F3(m?, m2, m3)

The second irreducible two-loop diagram is denoted by Fj, and is shown in fig-
ure 3.11. This integral is finite in 4-dimensions and the leading contribution has

been calculated in Ref. [74].

The differential equation for Fj is given by,

2 2 (d —3) (=m} + mj 4+ mj)

%—%‘F;;(ml,m%,m%) = A2 F3
2(3d—-10)(d -3 2(3d—-10)(d -3
- ( (d _ 4)) 5\2 ) Fl(m%’m%’mg) - ( (d IR 4)) 5\2 ) Fl(mgvm%amg)
2 a2 2 2 _ .2 2
M) it g ) — T2 ) it )
4(d — 3)*

The solution of the homogeneous equation at d = 4 is given by Fiom = % and we
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therefore take the boundary condition at A = 0 corresponding to £ — zg, so that

Fy(m3, mg,m§)|m§=(mz—ma)2 -~ d- 4)(3(522_107313) s Fi(my?,ms?, (my — mg)”)
(- 4§3(Z;_107)n3) ms Fi((mg — mg)*, my®, my?)
T (d=3) T(nrrzzz —mg3) Fy(ma?, ma?, (my — m3)?)
N ——
2 (d-3)

TGL((mq — m3)2, ms?).

(3.46)

Once again, there are two distinct kinematic configurations depending on the posi-
tion of the large scale p2. For the first momentum configuration, the first two terms

in the € expansion are given by,

P2

F3(p}, p5,p3) = <

2

D
Fa222__52_2—1—2el N NAW O(e2 3 47
5 (p1, p3,p3) = Sp(—p3) 3 Z =5 )e¢+0(€) ], (3.47)
i=0,...,1 Py P3

where,

f§ ==6GG(N\z,y) +6G(A A\ 052, y)
2
+ =~ G(50,9) G(Niz,y) + 26 (X 2,9) G(A, 0,%,0,9)

2
- 26(%7,9) G X, 0;0,9) + T G(Xi,y) H(O;9)

+2G(Nz,y) H(0,1,0;y) —2G(A\; z,y) H(1,0,0;y)+
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+ G\, 0;z,9) H(0,0;9) + 6 GOM A, A z, ) H(0; zo)

-3GO Az,y) HO;y) + (3—3y) GO\ 2z, y) H(O; )

— AG(0;0,y) G(A;z,y) H(0,0;y) — AG(0, A;0,y) G(A; z,y) H(0; )
— G(X0,9) G(A\z,y) H(0,0;y) — 2G(X;0,9) G(A; z,9) H(1,0;9)
—2G (N m,9) G\, N 0,9) H(O;z0) + G(As z,) G(A, A;0,) H(O; )

+2 (-1+y) G(Az,y) G(A, z);0,y) H(O;y)

4

fi =+ —2(? G(hz,y) —3GG(A02,y) +6 GGz, A2, 9) + 6 G(z1, A2, 9)
2l (2y D) G, 5, 2xi,5) + = (zy D 60,20, x5,0)

—3G(A 0,0 0,2,y) —9G (A A, 0,0, 0;2,9) — 12G (M M 0, 0,0, 2, )
—6G(A\ A 20, A, 0;2,y) —6 G\ A, 21, A, 052, y) — 6 Gz, A, N, A, 0; 2, 9)
—6G(z1, A, A7, 0;z,9) + 38 AG(0;0,y) G(A; ,y)

2

+ 7= AG(0,%0,9) G(X;2,) — 3AG(0,1,0,%,0,5) G(X; z,y)

6
—6AG(0,\,X,0,0,y) G\ z,y) + G(A0,9) G(A; 2, )
2 2
+ % GA0,9)G(A 052, y) + % G(X0,9) G(zo, Az, y)
2 2
2 -1 2
+ W—% G(Az,y) G(A\, zX;0,y) + % G(Az,y) G(zo, A;0,9)
2
+ = G(Xiz,y) Glay, X 0,y) — 4G(Xi7,9) G(A, 0,0,1,0,1)

—(G(Xz,9) G(A,0,),0,0,9)) —2G(X;z,y) G(A, A, 0,050, )
+(3=3y) G\ z,y) G(A\A,0,2X,0,9) + (3 — 3y) G(X;z,y) G(A\, A, 22, 0;0, y)
+ 4G\ z,y) G(X, 20, A, 0,0,y) + 4G(A; 2, 9) G(A, 21, A, 0; 0, y)

+ (3-3y) G\ z,9) G(A, X, X, 0;0,y) — 2G(X; z,y) G(zo, A, 0, A; 0, y)+
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-4 G(’\7 z, y) G(an )‘) A, 0, 0) y) -2 G()‘s z, y) G(:El’ )‘) 0, A; 07 y)

— 4G\ z,y) G(z1, A, 1, 0;0,9) + 83 G(A; z,y) H(0;y)
_p2
+66G.G(Na,y) H(Ly) + —- G(Niz,y) H(0,0,9)

+ T G0um,0) HO, 1) + = G0y 0) H(L 03)

+2G(A;z,y) H(0,0,0,0;y) — 2G(\;z,y) H(0,0,1,0;y)
—2G(\z,y) H(0,1,0,0;9) + 2G(\;z,9) H(0,1,1,0;y)
+6G(\;z,y) H(1,0,0,0;y)+ 2G(X\;z,9) H(1,0,1,0;y)
—2G(N\;z,y) H(1,1,0,0;y) + 3 (y — 1) G(A,0;0,9) G\, A, zX; z,y)
+3(y—1) G\, 0;0,9) GO\ zh Nz, y) — (G(A, 0;z,9) G(A, 0,0, 1))
+ G(A\,0;z,y) G(A, A, 0;0,9) + %ﬁ G\, 0;z,y) H(O;y)
—3G(A,0;2,y) H(0,0,0;9) — (G(), 0;z,y) H(0,1,0; %))

+ G(A\,0;z,y) H(1,0,0;9) — 2 G(zo, A; z,y) G(A, 0, A;0,y)

+ 2G(zo, Az, y) G(\, A, 0;0,9) + _Tﬂz G(zo, A\;z,y) H(O; y)
—2G(zo, A;z,y) H(0,1,0;9) + 2 G(xo, A; z,9) H(L,0,0;y)
—2G(z1, N z,y) G(A, 0, X, 0,9) + 2G(z1, Az, y) G(M A, 0;0,9)

2

+ =3~ Glan, Ni2,y) H(09) - 2G(@, Az, y) H(0,1,0;)

+2G(z1, Az, y) H(1,0,0;y) — % G(),0,0;z,y) H(0,0;y)

~ 126G\ N 2,) H0,0;20) + 3 GO X 2,) HO,0;9)

-1
+ 20U a0 A mhiz, ) HO,059) + (3 — 3y) G, A adiz,y) H(L, 05y)
3 (y—1
+ i(%——) G\ zA, X z,y) H(0,0;y) + (3 —3y) G\, X, A z,y) H(1,0;9)
—-3(y—1)°

— (G(z1,A,0;2,9) H(0,0;)) — 3G(A, 0, A, A; 2, y) H(0; z0)+
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3(y—1)
2

+ %G(A,O, A Aiz,y) H(Oy) + G(A\0,A zX 2, y) H(O; )

—9G(M\ N0, A z,y) H(0; o) + g G(A A0, N z,y) H(O;y)
9 (y-1) . . : :

+ — 5 G\ A0, zh;z,y) H(O;y) — 12G(\, A, A, 0; z,y) H(O; zo)
—6G (A A o, Az, y) H(0;20) + 3G (A, A, xo, A 2, y) H(0;9)

+3GM Az, N2, y) HO0;y) + 3 (y— 1) G A 21, 2 2,9) H(O;y)

-1 _

3(y—2) G\ Az, 0,2, y) H(0;y) + w G(A\ 2\ X, 0;z,y) H(0; )
-6 G($Oa )‘a /\) Av "L‘,y) H(Oa IO) + 3 G(:BO) >‘a /\, /\a z, y) H(O’ y)

_+_

+3G(x, A N z,y) HOy) + 3 (y — 1) Gz, A A zh 2, y) H(O )
2
+ % AG(0;0,y) G(A; 2, y) H(0;y) + 3 AG(0;0,y) G(A; z,y) H(0,0,0;y)

+ AG(0;0,y) G(X; z,y) H(0,1,0;5) — (AG(0;0,y) G(; z,3) H(1,0,0;y))

1
+3 AG(0;0,y) G(A, 0;z,y) H(0,0;9) + AG(0;0,y) G(zo, X; 2, ) H(0,0;%)

-3 (y—1)
2

AG(0;0,y) G\, 2z, Az, y) H(O;y) — % AG(0,0;0,y) G(A\;z,y) H(0,0; )

+ AG(0;0,y) G(z1, \;z,y) H(0,0;9) +

-3 (y—1)
2

— (AG(0, X, 0,9) G(A; z,y) G(A,0;0, 7)) + gAG(O, 2 0,9) G(A; z,y) H(0,0;v)

AG(0;0,y) GO\, N, zh; 2, y) H(0;y)

+

+AG(0,4,0,9) G z,y) H(L, 0,9) + % AG(0,X;0,y) G(A, 0;z,y) H(0;y)
+AG(0,;0,y) G(zo, s z,y) H(0;y) + AG(0, A;0,9) G(a1, A z,y) H(0; )

+ L2 AG(0,230,9) G 2,9) H(0,0:9) + 5 AG(0,0,%,0,5) G(A; z,3) H(03)

_ % AG(0, A, 0;0,y) G(X; 2, y) H(0; ) — 8 AG(0, A, X; 0,) G(\; z, ) H (0; o)
+4AG(0, X\, ;0,y) G\ z,y) H(O; ) + E)(yT—l) AG(0, A, zA;0,y) G(A; z,y) H(0;y)

+ AG(0, 0, X;0,y) G(A; 2, y) H(0;9) + AG(0, 21, A;0,y) G\, y) H(O; )
5(y—1 2
- (y—1)

T NGO ZA X0 Gz ) H(0y) + = GO 0iy) GO, y) H(0 )+
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2

+ 5~ G(N0,y) Gz, y) H(13y) + 3G(X0,9) G(A 7,9) H(0,0,05)

+G(X0,y) G\ 2,9) H(0,1,0,y) + 3G(X;0,9) G(A; z,y) H(L,0,0;9)

—26(50,9) GOy 2,8) HL 1,0:9) + 3 G(X0,4) G(X, 03 2,5) H(O,0;0)

+G(X0,y) G(A, 0;z,y) H(1,0;9) + G(A;0,y) G(zo, A2, y) H(0,0; y)

+2G(X;0,y) G(wo, Az, y) H(1,0;9) + G(X;0,y) G(z1, A 7, y) H(0,0;y)

+2G(A;0,y) G(z1, A 2,y) H(1,0,y) + 3 (y — 1) G(X;0,y) G(A, A, zA; z,y) H(O; zo)

- w G(X;0,y) G\, A,z 2, y) H(0;y)

+3 (y—1) G(X;0,y) G(A, zA, As . y) H(0; 7o)

- T_l) G(X;0,y) G(A, zA, A 3,y) H(0;y)

+G(\;z,y) G(X,0;0,y)*

+ (1 =y) G(X2,9) G(X,0;0,9) G(A, z);0,9) — 2G(\; z,y) G(A, 0;0, ) G(zo, A; 0,7)

—2G(\;3,9) G(A,0;0,y) G(z1, 4, 0,y) — %G(/\; z,9) G(X, 0;0,9) H(0,0;7)
—(G(A2,9) G(A,0;0,9) H(1,0;9)) + 4 G(X; z,y) G(A, A; 0, ) H(0, 0 zo)

7 (y

=D Gx2,) GO, 20,9) HO,050)

+(y = 1) G\ z,y) G(A, zA;0,y) H(1,0;y) + G(A; 2, y) G(zo, X;0,y) H(0,0;y)

3
= 5 G2,y G X;0,y) H(0,059) +

+2G (A 2,y) G(zo, A;0,9) H(1,0,9) + (y — 1) G(A; 2, y) Gz, A, 0,y) H(0,0;y)
+ G(X2,y) G(z1, A, 0,9) H(0,0; ) + 2G(\; z,9) G(z1, A;0,y) H(1,0;y)

+ (y - 1) G(/\: z, y) G(a;la 1")‘; Oa y) H(O’ O; y) - (G(/\’ z, y) G(’\a Oa /\; 0’ y) H(O, .’170))

3
=5 Gz, y) G 0,40,9) H(039) + (1 — ) G(As 2,9) G(A, 0,24, 0,9) H(0;y)

1
+3G(Az,y) G\ A, 0;0,y) H(0; zo) + 3 G(X;z,y) G(A\, A, 0;0,y) H(0; )
+ (5 -5y) G(A\;z,y) G(A, A, zA; 0, ) H(0; o)

-1
+ 2D G ) 60 A, 20 0,1) HO:)

+2G(\; 7, y) G(A, 20, A, 0,y) H(0; 20) — (G(A; 2, 1) G(A, 20, A; 0, ) H(0;9)) +
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+ (2 -2y) G\ z,9y) G(N, 2o, zX; 0,y) H(0;9) + 2G (N z,9) G(A, 21, A; 0, ) H(O; z0)
—(G(Az,y) G\ 2, A;0,9) H(0;y)) + (2 — 29) G(As 2, y) G(X, 21, 2X; 0, 9) H(0;9)
+(y — 1) G(A 2, y) G(A, 7, 0;0,y) H(0; y)

+ (5 = 5y) G(\; z,9) G(A, 2z, A; 0, y) H(O; zo)

+ w Gz, y) G(A z\ \;0,y) H(0;9)

+4(y —1)° G(X;z,y) G(A, 2\, 2X;0,9) H(0;y)

+ G(X;2,9) G(20,0,A;,0,y) H(0;y) — 8G(A;2,9) G(zo, A, A; 0, ) H(0; z0)
+4G(Az,y) Gzo, A, A;0,9) H(0;9) + 2 (y — 1) G(A;2,9) G(wo, A, 2);0,9) H(0;y)
+2 (y — 1) G(X;2,y) G(zo, 22, X;0,y) H(0sy) + G(N; 7, y) G(21,0, X, 0,9) H(0;y)
—8G(Nz,y) Gz, A, X;0,y) H(0; o) + 4G(X; z,y) Gy, A\, A;0,y) H(0; )

+2 (y— 1) G\ z,y) Gz, A, 2, 0,9) H(O; )

+2 (y—1) G\ z,y) G(z1, 27, A 0,y) H(0;9)

+G(A,0;2,9) G(A, A5 0,y) H(0; z0) — % G(A 0;2,9) G(A, X5 0,y) H(0;y)

+ (1 =y) G(A, 0;2,y) G(A, zX;0,y) H(0;y) +2G(\, X 0,9) Glzo, A; z,y) H(0; zo)
—(G(A A;0,) Glzo, A z,y) H(0;9)) + 2G (X, A;0,9) G(1, A 2, y) H(0; o)

— (G(A X50,9) Gz, A z,y) H(0;9)) + (2 = 2y) G(A, 24, 0,9) Glzo, A 2, y) H(0;9)

+(2-2y) G\, zA;0,y) G(z1, Az, v) H(O; )

The other momentum configuration required is defined by,

/P%

p3

P (92, 8, p2) = <
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—1- e]‘ % i 5 i
Rt - a5 (T a(F8)eroe). o

3 M3

Expressions for fi in this momentum configuration are similarly lengthy to those for
F3J and can be obtained in computer readable form upon request. In each case, we

have checked that the finite contribution agrees with the results of Ref. [74].
Master Integrals with six propagators

2
my

m;

Figure 3.12: The two-loop Master Integral, Fy(m?%, m% m3)

The only MI with 6 propagators is the crossed triangle which is denoted by F; and
is shown in figure 3.12. This integral is the only non-planar Master Integral required
and is finite in 4-dimensions. Considering the diagram in 3-dimensions, we can see
that this integral is fully symmetric in all three legs, and so we only need to evaluate

a single momentum configuration for this integral.

This MI satisfies the differential equation,

0 6 — d) (—m12 + m22 + m32) 8

om? Fa = A2 Fy - Az Fy(ma?, ma?, my?)
1
4 (my? 4+ my? — ma?
+ L A2 mzl? +) Fz(m22,m32,m12)
4 -—m 2 +m 2 _ m 2
a Cm A2m122 +) Fy(ms®, my?, my?)
4(d—4) Fg(m12,m22,m32)
_ 5
2(d — 4) (M2 + mg? — my?
( ) (A12m12 2 3 )Fg(m22,m32,m12)
2 d - 4 —m 2 + m 2 —m 2
-2 ) Azlmlz : : )Fg(m32,m22,m12)_ (3.49)

94



Chapter 3: Master Integrals for the offshell vertex 3.3 Two Loop

The homogeneous solution at d = 4 is F*°™ = \~2 while the boundary condition at

A = 0 corresponding to x — xg is given by,

4 (my —m
|m%=(m2—m3)2 = ( 2 2 3) FZ(mg’ mga (m2 - m3)2)
(d —6)m2my
4 2

— sz(Oﬂ? — m3)

F4(m%) mgv m%)

M3, m3)

4 (’ITLQ - ms) 2,2 2

_ m&(ma,mg, (mg — m3)”)

2(d — 4) (my — ms)
(d — 6)m3ms

2(d—4) 22 2

— ((1—6)—7n,27n,3F3((m2 - m3) ,m2,m3)

_2(d—4) (mp —my)

(d—6)m2my

F3(m§’ mg’ (m2 - m3)2)

F3(m§, m%, (m2 - m3)2).
(3.50)

We find that the first two terms of the e-expansion are given by,

P

Fy(p}, p3,p3) =

Fy(p?, p2,p2) == S (—p2)~% ( Z £ (i—

where,

—872

—47? (y—1
By =+ 2 e xz )+ D g o)

—4n® (y—1)
3

+16G(A,0;0,29) G(A\, Az, y) +8 (y — 1) G(A,0;0,y) G(A, zA; 2, v)

+ Gz N z,y) —8G(X\,0,),0;z,9) — 16 G(\, X, 0,0; 2, y)

+8 (y—1) G(A,0;0,y) Gz, N z,y) — 16 G(A\, Az, y) H(0,0; zo)

— 4G\ A 3,y) H(0,0,y) — 16 G(A, Mz, y) H(1,0; 20)+
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+ (4 —4y) G\, zX;2,y) H(0,0;9) + (8 — 8y) G(\, A z,v) H(1,0; )
+ (4 - 4y) G(zA, A z,y) H(0,0;y) + (8 — 8y) G(zA, Az, y) H(1,0;y)
—4(y - 1)’ Gz zA; z, y) H(0,0;9) — 8G(\, 0, \; z,y) H(0; xo)
+4G(\ 0,0 z,y) HO;y)+ 4 (y—1) GO\, 0,z z,y) H(O; y)
—16G(M\ A, 0;z,y) H(0;z0) + 8G(A, A, 0;z,y) H(O; y)

+4(y—1) G\ 2\ 0,z,9) HOy) +4 (y — 1) G(zA, N, 0;2,y) H(0;y)
— 8AG(0;0,z0) G\, \; z,y) H(0; zo)

+ (4 - 4y) AG(0;0,y) G(\, zX; 2, ) H(0;y)

+ (4 —4y) AG(0;0,y) G(zA, A 2,y) H(0; )

—8G(A;0,20) G(A, Az, y) H(0; o)

+16 G(\; 0, 20) GO\, A 2, y) H(0; )

+8 (y— 1) G(X;0,y) G(A, zA; 2, y) H(0; 7o)

+ (@ —4y)G(X0,y) G\, 2z, y) H(0;y)

+8 (y—1) G(X;0,y) G(zA, A z,y) H(0; 7o)

+ (4 —4y)G(X;0,y) Gz A z,y) H(O; )

fi(z,y) is given in appendix B. As with the other MI, we have checked that the

leading (finite) contribution agrees with the results of Ref. [74].

3.4 Application

To illustrate the application of these Master Integrals in the evaluation of the two-
loop box Master Integrals with two off-shell legs, we present the differential equation
for the Master Integral illustrated in figure 3.13. This Master Integral has two adja-

+————cent-off-shell-legs,-and-requires-the-Master-Integrals-S S;Fi;-and-Fy-which-we-have
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evaluated in this section. Double-box Master Integrals with more denominators will
also require the Master Integrals F3, F;, which can be seen by performing pinchings

on a general two-loop box diagram.

n P4

P2 P3

Figure 3.13: An example of a two-loop master integral with four external legs, of which
two are off-shell.

For this integral we have two external legs off-shell and two on-shell. We take

With these scales the box integral obeys the following differential equation in m?.

8[(812, S23, mﬁ, mg) i (3d — 10)(3d — 8)SS(m¢21)
am?l T 2(d - 4)77’1%312(7”3 — 323)
(3d e 10)(—8 + 3d)SS(823)
2(d — 4)(m2 — s93)0
(3d — 10)(—m2 + s93) F1(m2, m?2, 812)
2812@
(d—4)mi(mi — s19 — $23) Fa(m2, mlz,, 512)
2(d - 3)812‘19
(d — 4)(mi — s23)I (812, 823, m2, m?)

+

(3.52)
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and in s34,

OI(s12,823,m2,m?)  (3d—10)(3d — 8)5S(s23)

8812 N 2(d - 4)812(1)
+ (3d - 10)323F1(m3, mg, 812)
2812(1)
+ (d — 4)m2mi Fo(m2, m?, s12)
2(d — 3)812‘1’
n ((d — 6)(1) + (d —_ 4)812823) 1(312, S93, mz, mg) (3 53)
2812‘1’ ’ '
where
o= mzs% + m§323 — 812823 — 533 — mg — mg
= 8138923 — mimg (354)
and
si2 = (¢ +P2)2 =2p1 - P2
s;3 = (p2+p3)>=ml+2py-ps (3.55)

The denominator term ® is the typical mass scale for the adjacent mass box, anal-
ogous to A for the three off-shell leg vertex in Eq. (2.46). As a four-scale integral,
thus three ratios of scales, it is likely that to solve this integral it will be necessary to
introduce three dimensional Harmonic Polylogarithms. In this case however, the dif-
ferential equations contain ¢ as opposed to ®2, so we expect the three-dimensional
polylogarithms will be linear in the scale ratios, and not quadratic. The solutions
will then be given in terms of three-, two- and one-dimensional Harmonic Polylog-
arithms. Had we used a linear basis in solving the vertex integrals, it is unclear

how the integrations involved in the box-integral differential equations would pro-
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ceed, due to the transformation of variables z — A — 2t. The differential equations
here remain unsolved due to the lack of a definition for the three-dimensional Har-
monic Polylogarithms, and the difficulty of finding the boundary conditions for each

integral required.

3.5 Summary

In this section, we have provided series expansions in the dimensional regularisation
parameter ¢ for all two-loop Master Integrals with three external off-shell legs and
all internal lines being massless. The results are presented in terms of an extended
basis of 2-dimensional harmonic polylogarithms. The novel feature is that this basis
includes quadratic forms. These match on to the allowed phase space boundary for
the 1 — 2 decay. For each Master Integral, we have given sufficient terms in the

e-expansion to describe two-loop vertex corrections for physical processes.

The MI presented here are ingredients for a variety of interesting two-loop processes
such as the QCD corrections to H — V*V* decay in the heavy top quark limit and

the QCD corrections to the fully off-shell triple gluon (and quark-gluon) vertices.

The MI also form a staging post for the study of massless two-loop 2 — 2 scattering
amplitudes with two off-shell legs. These processes include the NNLO QCD correc-
tions to ¢ — V*V* (where V = W,Z) and the NLO corrections to gg — V*V*.
Altogether there are 11 planar box and 3 non-planar box master topologies which

remain to be studied.
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Chapter 4

The MHYV Construction

In this section we introduce the ‘MHV rules’ approach as proposed in Ref. [75].
This approach establishes a powerful framework for the calculation of tree-level and
one-loop scattering amplitudes in gauge theories, in a compact form, and without
appealing to Feynman diagrams. Here we shall concentrate on the method for
calculating tree-level amplitudes, which we will then adapt in the next chapter to

calculate tree-level multi-parton collinear limits.

4.1 Introduction

Witten’s proposal [76] of a weak-weak coupling duality between a perturbative
N = 4 gauge theory and a topological string theory in twistor space has inspired
the ‘MHV-rules’ approach of Cachazo, Svrcek and Witten [75]. For a long time [77]
it has been noted that the structure of helicity amplitudes is much simpler than
would be expected from their Feynman-rule construction. In particular, tree-level
gluon amplitudes with just two negative helicity gluons (known as maximal helicity

violating or MHV amplitudes) have a particularly simple form, as noted by Parke
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and Taylor ! [78,79]. Written in terms of spinor inner products [80], they are com-
posed entirely of the holomorphic products (i j), rather than their anti-holomorphic

partners [i j],

N _ _ L (pg)*
A1 p, g, ) = AD@3) - (=L i)’ (4.1)

where we introduce the common notation (p; p;) = (ij) and [p; p;] = [¢ j]. Helicity
amplitudes with less than two negative (or positive) helicity legs are zero, and again
this is not obvious from their Feynman diagram construction. The simple structure
of helicity amplitudes in terms of spinor products is indicative that the Feynman
rules are not the best description for helicity processes. Instead we look for a cor-
responding set of rules to build up amplitudes from vertices and propagators using

spinor products. These are the MHV-rules.

The MHV rules can be motivated by considering MHV amplitudes in a twistor
space. Performing a Fourier transformation of the MHV amplitude into twistor
space, the external gluons are each associated with a point P; in the projective
twistor space [81], and all of these points lie on a (straight) line in (real) complex
twistor space. It is known [82] that a point in Minkowski space, and therefore an
interaction vertex, also corresponds to a line in twistor space, and so we can see that
there is a correspondence between MHV amplitudes and interaction vertices in the

twistor space picture.

Due to this correspondence, the basic building blocks of the MHV rules approach
are the colour-ordered n-point vertices which are the off-shell continuations of the
MHV scattering amplitudes. By connecting these vertices with scalar propagators,
amplitudes involving more negative helicity gluons can be constructed. The scalar

propagators must connect an off-shell positive helicity leg from one vertex, with an

!The MHV amplitudes are thus sometimes referred to as ‘PT’ or ‘Parke-Taylor’ amplitudes.
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off-shell negative helicity leg from another vertex, and so the number of vertices
required scales with only the number of negative helicity legs for the amplitude.
This is in stark contrast to the Feynman rules of section 1.2, where the vertices can
only be three or four point vertices, and so the number of vertices required scales
as the total number of particles in the amplitude. The use of the MHV-rules to
construct helicity amplitudes has been proved through the use of recursion relations

by Risager [83].

It is possible to perform a parity transformation on the MHV amplitudes, such
that they have only 2 positive helicity legs and n — 2 negative helicity legs. These
amplitudes are known as MHV amplitudes, and the MHYV rules approach allows us

to connect MHV vertices by scalar propagators.

The MHYV rules are postulated for A" = 4 supersymmetric theories, so the question
arises as to how we can use them in non-supersymmetric QCD calculations? At
tree-level, QCD gluonic amplitudes will be identical to the N’ = 4 amplitudes, due
to the absence of propagating fermions at tree-level. The fermions in the theory may
as well be gluinos and it would make no difference to the final amplitude. There-
fore tree-level gluonic amplitudes are the same in both QCD and supersymmetric
Yang-Mills theories, and so we can use the MHV approach for purely gluonic QCD
processes. Tree-level QCD amplitudes with quarks are not supersymmetric, how-
ever the MHV-rules approach uses colour stripped amplitudes, and with no colour
information massless quarks and gluinos are indistinguishable. This means that
the colour stripped amplitudes are effectively supersymmetric, and so again we can
use the MHV approach to calculate the QCD partial amplitudes involving massless

quarks at tree-level.

The MHYV rules for gluons [75] have been extended to amplitudes with fermions [84]

using MHYV - like hasic vertices involving two negative helicity particles but allowing
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for up to two fermion pairs in the vertex. Vertices with more than two fermion pairs
are not allowed as MHV amplitudes must have precisely two particles with negative
helicity, and fermions always come in pairs with opposite helicity. New compact re-
sults for tree-level gauge-theory results for non-MHV amplitudes involving arbitrary
numbers of gluons [85-87], and fermions [84,88-90] have been derived. The MHV
rules have been applied to processes involving external Higgs bosons [91,92], elec-
troweak bosons [93], and more recently to QED processes [94]. The MHV rules for
tree amplitudes have further been recast in the form of recursive relations [87,92,93]
which facilitate calculations of higher order non-MHV amplitudes in terms of the
known lower-order results. In many cases new classes of tree amplitudes were de-
rived, and in all cases, numerical agreement with previously known amplitudes has

been found.

MHYV rules have also been shown to work at one-loop level for supersymmetric
theories [95]. Building on the earlier work of Bern, Dixon, Dunbar and Kosower [96,
97], there has been a remarkable progress in computing cut-constructible multi-
leg loop amplitudes in N' = 4 [95,98-106] and A’ = 1 [107-111] supersymmetric
gauge theories. Encouraging progress has also been made using MHV rules for non-
supersymmetric loop amplitudes [112,113], and recently [114] the one-loop amplitude
with 5 positive helicity particles in non-supersymmetric pure yang mills has been

calculated in d = 4 — 2e.

A second formalism has been developed to evaluate helicity amplitudes, the BCF
recursion relations {115, 116] of Britto, Cachazo, Feng and Witten. This method
arose from the observation that the expressions obtained for the infrared singular
parts of N = 4 one-loop amplitudes (which are known to be proportional to tree-
level results) were found to produce even more compact expressions for gluonic tree

amplitudes [106,117], as well as extremely compact six-parton amplitudes [115,118,
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119]. The BCF method has recently been proved based on the analytic structure
and asymptotic behaviour of the known MHV amplitudes [120]. These tree-level
BCF recursion relations for massless particles have recently been generalised in
three ways. In Refs. [121,122] a new version of recursion relations was adopted to
calculate all finite one-loop amplitudes in non-supersymmetric QCD. At the same
time, Ref. [123] generalised BCF recursion relations to include massive particles at
tree level, and Ref. [124] provides recursion relations for d-dimensional scalars and
fermions. The use of recursion relations has also been applied to the calculation of

tree-level amplitudes for the scattering of gravitons [125,126].

A comprehensive list of references and a more detailed discussion of recent develop-

ments can be found in the recent review [81].

4.2 Colour-ordered amplitudes

Tree-level multi-particle amplitudes can be decomposed into colour-ordered partial
amplitudes. This reduces the number of diagrams that we need to calculate for a

particular process.

For gluons only, the colour decomposition is given by

An{pi Miyai}) =ig™™ D Te(To%w - T%m) Ay (o (1, ..,0M). (4.2)
€S/ Zn

Here S,,/Z, is the group of non-cyclic permutations on n symbols, and j*/ labels the

momentum p; and helicity A; of the j*" gluon, which carries the adjoint represen-

tation index a;. The T% are fundamental representation SU(N,) colour matrices,

normalized so that Tr(T°T*?) = §%. The strong coupling constant is a, = g2/(4n).

Note that the MHV rules method of Ref. [75] is used to evalnate only the purely
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kinematic amplitudes A,. Full amplitudes are then determined uniquely from the

kinematic part A,, and the known expressions for the colour traces.

For processes involving a quark-antiquark pair and an arbitrary number of gluons,

the colour decomposition is given by

An{pi, M, ai}, {pj, Ajy45)) (4.3)

i (T Do) A 0@ (3= 1), ),

o€ESp 2

where S,_5 is the set of permutations of (n — 2) gluons and the fermions carry
the fundamental colour labels 4; and i,. By current conservation, the quark and

antiquark helicities are related such that A\; = —A, = A where A = :I:%.

When an additional photon with momentum P, is emitted, the amplitudes have the

following form,

An({pi,s Mi, ai}, {ps, Aj 451, Py) (4.4)
—a n—2 Qo (2 Co(n—-1)Y. . A A] }\2 _ ’\n—l An.
=ieg"? Y (T%@ .. .To%e-0)y, A (1), 0(2%,...,(n— 1)), 0} Py),

oESp—2

where e is the electric charge of the quark.

When there are two quark-antiquark pairs the tree-level amplitude can be decom-
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g Q
A ~ A: > <
VRN
q Q

q Q

Figure 4.1: A figure showing the two different colour connections corresponding to the
two amplitudes A, and A, in a four quark amplitude.

posed into colour ordered amplitudes as,

An({pi’ )‘i, a‘i}v {p]1 )‘ja Z]}) = ig'n.—Z

n—4 {
k o€Sy peS;

(T .. T4k, o (T%W ... T%W);

1a+1is

X An(1g,0(1), ., 0(k), 55 (s + 1), p(1), ., p(1), 3 %)

ts+1%n

— %(TGU(I) e Taa(k))i”_s (TaP(l) .. Ta'p(l)),

xAn(la\, a(l),...,0(k), sg’\; (s + 1)5, p(1),...,p(0), n(_g’\')} (4.5)

where Sy and S; are permutation groups such that k + [ = n — 4 and represent the
possible ways of distributing the gluons in a colour ordered way between the quarks.
For i = j =0, (T%...T%)y reduces to 0. We see that the two amplitudes A,
and A, correspond to different ways of connecting the fundamental colour charges,
as shown in Fig. 4.1. For the A amplitudes, there is a colour line connecting ¢ and
@ and a second line connecting @ and §, while for the QED-like A amplitudes the
colour lines connect ¢ to § and @ to Q. Any number of gluons may be radiated
from each colour line. As before, by current conservation, the quark and antiquark

helicities are related such that Ay = —A\; = Aand Ag = —Ag = X where A, X = 1.
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4.3 Spinor helicity formalism

In the spinor helicity formalism [78-80] an on-shell momentum of a massless particle,

pup" = 0, is represented as
Paa = P,,LU,':;,, = )‘a;\d y (46)

where ), and ); are two commuting spinors of positive and negative chirality. Spinor

inner products are defined by?
MNY = €N, [N N] = —ey AaN? (4.7)

and a scalar product of two null vectors, pes = Ag A and oz = A;Z\g, becomes

pugh = —%u, N)[A, X . (4.8)

A list of spinor product identities is given in Appendix C.

The spinor representation is particularly useful because it accurately captures the
collinear behaviour of QCD amplitudes, which involve square-roots of Lorentz in-
variants. Up to a phase factor, the spinor products themselves are square-roots of
Lorentz invariants and so are an ideal means of expressing collinear limits in QCD,

as we shall see in chapter 5.

The MHYV rules of Ref. [75] were developed for calculating purely gluonic amplitudes
at tree level. In this approach all non-MHV n-gluon amplitudes (including MHV)
are expressed as sums of tree diagrams in an effective scalar perturbation theory.
The vertices in this theory are the MHV amplitudes of Eq. (4.1) continued off-shell

as described below, and connected by scalar propagators 1/q%. The full amplitude

2Our conventions forspinor helicities follow [75,76); except that [ij] = —[ijlcsw asinmref. [136]: —— ~
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is obtained by the sum of all possible combinations MHV vertices which have the

required helicity structure for the process.

When one positive helicity leg of an MHV vertex is connected by a propagator
to a negative helicity leg from another MHV vertex, both legs become internal to
the diagram and have to be continued off-shell. Off-shell continuation is defined as
follows [75]: we pick an arbitrary reference spinor 7% and define )\, for any internal

line carrying momentum g, by
A = Gaan® . (4.9)

External lines in a diagram remain on-shell, and for them ) is defined in the usual
way. For the off-shell lines, the same reference spinor 7 is used in all diagrams

contributing to a given amplitude.

4.4 MHYV amplitudes

The colour ordered n-gluon MHV amplitude is given by

(mymy)?

An 1+,...,m_,...,m_,...,n+ = = O
( ' : ) [l i+ 1)

(4.10)

with all indices taken mod n. It can be shown that any amplitudes with less than

two negative (or positive) helicity legs are zero.
A (1%,27,3% .. nt) =0. (4.11)

This is depicted in Fig. 4.2 where these states are shown as crossed circles to indicate

their null value.
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Figure 4.2: Pattern of available states (black dots) for helicity amplitudes showing the
dependence on the difference between the number of positive and negative
helicity particles involved. The crossed out states show the amplitudes that
are zero. The red circles show the three point vertices.

MHYV amplitudes involving fermions and gluons in A/ < 1 theories exist only for
one or two pairs of fermions [88]. This is because MHV amplitudes can have only
two negative helicity particles, and fermions always come in pairs with opposite
helicities, so we have at most two negative quarks and therefore at most four quarks

overall. This means that we have the following vertices involving massless quarks:

The two-quark multi-gluon MHV amplitudes are,

<m 1)2—2)\ (m n>2+2/\

[Tl +1)

An(13,...,m7, ... ,ng?) (4.12)

Here the helicity of the quark is denoted by A = :i:% while ... denotes an arbitrary

number of positive helicity gluons. Amplitudes for a quark-antiquark pair, many
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gluons and a photon are given by,

- A ey (P1)2_2’\(Pn)2+2’\

AQY,... mgN Py) = P13 - (nE) (4.13)
W oo oo pry (DT mn)
A(lg,...,m7,...,nz" PY) P12 (nP) (4.14)

In the four-quark case, there are four MHV amplitudes where two of the fermions
have negative helicity and two have positive helicity for each colour structure. For

each helicity configuration we can write,

(1s)(sn)*(ns+1)

An(1F, 85, (s 1), mg) = ST (4.15)
_ _ 1s)¥{ns+1)3
An(]-;;)""sg’(s_f_l)Q)'"anq) = <Hn><<ll+1>) ’ (416)

1=1
_ _ (1s)(1s+ 1Y% (ns+1)
An(ly,. .. 85 (s+1)g, o ng) = T 1) : (4.17)
_ _ 153 {ns+1
An(ly,. .85 (s+1)4 ... ng) = (Hn> <<”+1>>, (4.18)
=1
with the other colour ordering given by,
~ _ _ (1n){ns)?(ss+1)
An(ly, .87, (s+1d o ng) = RISV (4.19)
N _ _ (1n)(ss+1)3
An(lj,...,sq,(s-}- ]')Q’ ,n%) = m, (420)
< _ _ (In)(1s+1)*(ss+1)
An(1y,...,85,(s+ l)Q,...,ng) = T+ D) , (4.21)
. _ (1n)3(ss+1)
An(lq,...,5;1-",(8+1)5,...,n@) = —Hm— (422)

The MHV amplitudes are related by parity and can be obtained by conjugating the

MHYV expressions,

A1V, M) = ()" (A (17N, n7)T, (4.23)
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and similarly for the A amplitudes.

4.5 The MHV-rules

The MHV-rules use the MHV amplitudes as given in section 4.4 as scalar vertices.
Connecting these vertices via scalar propagators we can construct amplitudes in-
volving more than two negative helicity particles. In the twistor space picture the
connection of two MHV vertices can be pictured as the intersection of the two-lines

which represent those vertices in twistor space.

An amplitude constructed by the connection of two MHV amplitudes is denoted
a next-to-MHV amplitude, or NMHV amplitude. Similarly an amplitude which
connects three MHV vertices is known as NNMHYV, and so on. These higher order
MHYV diagrams are formed from the connection of v vertices by v — 1 propagators.
Each propagator must join a negative helicity leg to a positive helicity leg, and so
from our initial 2v negative legs we are left with v + 1 negative helicity external
particles. Therefore to construct an amplitude we must sum all graphs with v
connected vertices such that v+1 is the required number of external negative helicity
particles. In doing so we must only consider diagrams with the required colour
ordering. The number of negative helicity particles is fixed at each vertex, but the
positive helicity particles can be distributed over all of the available vertices, as long

as they maintain the correct colour ordering.

The dependence of a given amplitude on the order of MHV diagram required is
pictured in Fig. 4.2. All of the amplitudes with an identical number of negative
helicity particles lie along the same diagonal line in this state-space. Each of these
lines represents a different order in the MHV hierarchy, as the number of vertices

required-to evaluate them-increases as we move towards-the-top=left of the diagram.
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If we work in the MHV scheme the amplitudes get more complicated towards the top
right of this diagram, and so for amplitudes with more negative particles it is easier
to use the MHV scheme than the MHV scheme. However, we can see that the state
space is symmetric under the parity transformation, and thus a time saving method
to evaluate the mostly-negative amplitudes from the left hand side of the diagram, is
to perform the parity operation (i j) <> —[i j] on the equivalent amplitude from the
right hand side of the diagram, i.e the amplitude with opposite helicities. Thus to
find all of the amplitudes for a given number of particles (i.e. across a horizontal line
in figure 4.2, we need only evaluate the amplitudes with mostly positive helicities,

or equal numbers of positive and negative helicities.

To construct amplitudes we will need to use the 3-point vertices given by

A3(17,27,3%) = ﬁ%)(fﬂ) (4.24)

These vertices are zero if all of the legs are on-shell. However when one of the
legs is continued off-shell the vertex exists and we can use it to construct NMHV

amplitudes. This is shown in figure 4.2 where the vertices are given by red dots.

As an example we consider the first example of Witten [75], the construction of the
purely gluonic amplitude A(1%,27,37,47), which vanishes in Yang-Mills theory.
The two diagrams which contribute are shown in figure 4.3. To connect the vertices
by propagators we use the off-shell continuation given by equation 4.9. In this way

the first diagram gives

2M* 1 (34)*
(12)(2 ) (A1) p2 (34) (4 A} (A 3) (4.25)

where the internal momentum p = p; + po = —p3 — py and A is defined via the

off-shell continuation to be A\, = p,an®; where #-is a reference momentum. -
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legs, the sum of these two diagrams gives

[17)® (34)  (32)) _
[2n][3 ][4 7] ([2 11" 1]) =0 (4.28)

This is zero as required due to momentum conservation, see Eq. C.1, since (32)[2 1]+
O =X @)1 =0

In the same way we can draw all the diagrams necessary for more complicated dia-
grams and perform their sum. However the beauty of the MHV method is that it
allows us to find amplitudes for an arbitrary number of positive helicity particles
given a set number of negative helicity particles (or vice versa in the MHV ap-
proach). To see this we use the above example but consider the amplitude with an
arbitrary number of additional positive helicity particles, to give us the amplitude
A, (1%,27,37,47,5%,...,n"). The colour ordering must be maintained so the extra
positive helicity gluons have to come after the 4~ gluon. However in the first dia-
gram in figure 4.3 we could add them onto either vertex. This will give us diagrams
of the form given in figure 4.4, where we have to sum the first diagram over all
distributions of the positive helicity particles across the two vertices. We choose the
lower limit of this sum to be the negative leg ¢ = 4 as this enables us to easily iden-
tify the lower limit of the sum, and to recover the previous example when i = n = 4.

Therefore the contribution to the amplitude from the first diagram is given by

- (22 1 (34)"
; 2NNt )G+ 1i12).. (nl)p GBS . i~ 1Gnns (2
and the contribution from the second diagram is
(x4)4 1 (23)4 0.30)

ANY(NA){45) .. (n— Ln)(n1) p2 (23)(3BNY(N2)
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define the effective propagator

2T G+ 17 g Gl dIn ™Y G+ 17| dln)

D4 4.33
(g ting) =0 i+ 00,5 +1) 39

where we have introduced the standard Lorentz invariant matrix element
(7| p, [67) = (@)l #] (4.34)

and gi41,; = (Pit1 + -+ p;) is the propagators momentum. This effective propagator
accounts for all the spinor products associated with the propagator. Having factored
out the product given by Equation 4.31, the only spinor products remaining to give
the expression for the diagram are those numerator terms involving the negative
helicity particles (including the propagator when it is a continued negative helicity
leg). These are simple to write down, and so the final amplitude is given as the sum
of skeleton diagrams, where each skeleton is given by the simple negative helicity
numerator terms, over the effective propagator and summed over the distributions
of positive helicity particles, all multiplied by the overall factor as given in equa-
tion 4.31. In this way we can quickly give the expressions for the skeleton diagrams

as given in Figure 4.5.

ma—1my— 1

4
- = m qi n Mo m
An(mlam2)m3) Hl ll+1 (Z Z 1 l HJI >< ? 3>
1

D(i,
i=m1 j=ma Js (I'H-l,j)

m1—1mz— 1

+ Z Z mlm2 m3_|Qi+1j|77_>4

Z
i=mg j=ma .7 qi1 _7)

mo—1mgz— 1

n Z Z (my mg3) m2_|Qi+1j|77_>4>

i=my j=mg 'L Js Qi+1 ])

(4.35)

where An(my,my,my) = A.(1%,...,m{,...,mg,...,mg,...,n%), and all sum-
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mations are taken to be cyclic.

Amplitudes involving quarks are constructed in a similar way to those for gluons.
The two- and four-quark MHV amplitudes, as given in section 4.4, are used as ver-
tices alongside the purely gluonic MHV amplitude. Quark or anti-quark lines can
form connecting propagators as long as they connect opposite helicity quark or anti-
quark states. Quark lines cannot connect to gluonic lines due to colour and spin
conservation. In constructing the quark amplitudes we also have to evaluate both
colour orderings from the decomposition into colour ordered amplitudes (sect. 4.2),
and in doing so we must use the correct vertices corresponding to each colour or-

dering.

4.6 BCF recursion relations

The second formalism for the evaluation of helicity amplitudes is the use of recursion
relations [115, 116 developed by Britto, Cachazo, Feng and Witten. This method
constructs tree amplitudes as the connection of two completely on-shell amplitudes
by a scalar propagator. This is in contrast to the MHV-rules method which relies
on the connected amplitudes having off-shell continued legs. The use of recursion
relations then enables amplitudes with higher numbers of legs to be built from am-
plitudes with lower numbers of legs, so that previous results can be used to find more
complicated amplitudes. Ultimately, all amplitudes can be constructed from three
gluon vertices. The resulting amplitudes tend to have a simpler form than those
derived from the recursion relations of Berends and Giele [79]. The BCF method
has recently been proved based on the analytic structure and asymptotic behaviour

of the known MHV amplitudes [120]. Here we introduce the BCF recursion rela-

tions to complete the introduction to the recently developed methods for tree-level
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calculations using MHV type amplitudes. In the following chapter we will use these
relations to compare and contrast the collinear limits derived using the MHV-rules

approach with those from the BCF relations.

This method arose from the computation of N' = 4 one-loop amplitudes. When
expanded in terms of scalar box functions, the coefficients are found to be products
of tree-level amplitudes. This led to the proposition of the recursion relation given

schematically by
- Z Z Al — P2 (4.36)

where A, denotes an n-point tree-level gluonic amplitude, and P, ; = p,+p1+- - -+,
where p; is the momentum of the k-th gluon. The index h represents the helicity
of the particle propagating between the two amplitudes, hence the opposite sign
on each of the sub-amplitudes. However in this case, both of the sub-amplitudes

remain on-shell, and preserve momentum conservation.

In the following we will use the notation

IZp]Ik] Z @5)[i k). (4.37)

To use the recursion relations we must then mark two gluons whose momenta will
undergo a complex shift such that the sub-amplitudes in the recursion relations
remain on-shell. We choose to label the gluons such that the (n — 1)-th gluon has
negative helicity and the n-th gluon is positive. These will be the marked gluons

which we will denote by hatted momenta. The full recursion relation is then given
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Ani(+Pri+1,.. . n—2,n—1) (4.38)

Poi=pn+p+--+pi,
- Pz, -~
Pn,i = Pn,i + *,/\n—l)\n,

(n — 1| Pp;|n]
2
An— = Pn-1— _‘LAn— Xna
Dn—1 = Pn-1 (n —1|Prsln] 1
2 : —~
ﬁn =p,+ m)\n_l)\n . (439)

In practice the following identities are used to compute spinor products involving

the marked gluons with any other spinor denoted by e,

o~ 1
(+Pa) = ~(olPuslnl x
~ 1
Prie] = —(n—1|F; —,
Paiel = —(n—1{Pusle] x =
ww = = (n—1|P,n], (4.40)
where w = [B,;n] and @ = (n — 1 P,;). These factors only ever appear in the

invariant combination ww as given above.

4.6.1 An example: A(17,2% 3% 4% 57 67).

As an example of the use of the BCF recursion relations we evaluate the six-point

— ——  —amplitude-A(17,2+ 3% 4% 5= 6-). In-section-5.5.1-we-shall-use-this-result- to-test— - - — ——
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6~ 1- 5= 67 1- o+ 9 6
N i-

+ +

I AN ‘
4+ g+ 2+ 4t o+ 3+ o+

Figure 4.6: The BCF configurations contributing to A(1~,2%,3%,4%,57,67). Note that
the second diagram vanishes for either helicity configuration of the propaga-
tor.

the collinear limits we derive via the MHV approach. For this reason we choose the
‘marked’ gluons to be the 1~ and 2* gluons. Note that we have shifted the labels
from those used in Eqn. 4.38. The available BCF configurations for this amplitude
are shown in Fig. 4.6. The second diagram vanishes for either helicity configuration
of the internal line, hence there are only two BCF diagrams which contribute to the

full amplitude.

The first diagram in Fig. 4.6 is given by

—A—-i- __ 6 5 P)? (4.41)
(IP)(P6) 25 (P2)(23)(34)(45)

—~
(=]
—

\./

This can be simplified using 4.39 and 4.40 to give

(5]6 + 1|22
(311 +2[6)[61][12](34)(4 5)s35

(4.42)

Note that the pole in the kinematic invariants has changed due to the complex shift
of the marked gluons momentum. This will have interesting effects on the use of the

BCF results to calculate collinear limits in the following chapter.

The third diagram can be obtained from the first by performing a helicity conjuga-
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tion and relabelling the momenta 7 — 3 — 4. The full amplitude then reads

- ot g+ 4+ - =) = = (516 + 112]
A(17,2%,3%,4%,57,67) = <3|1+2|6]([61][12](34><45>83,5
(1]2 + 3)4]°
[45][5 6](1 2)(23)31,3) ' 4

In the following chapter we shall use this result and others from the literature to
check collinear limits derived using the MHV rules approach, and to provide a com-

parison of the structure of results from MHV-rules and BCF recursion relations.

4.7 Summary

In this chapter we have introduced the MHV rules approach of Cachazo, Svrcek and
Witten. This approach arose from Witten’s observation of a weak-weak coupling
duality between N = 4 gauge theory and a string theory in T'wistor space. Here we
have introduced the recent developments in this theory, and their use in constructing
tree-level gauge amplitudes. This construction relies on the use of colour ordered
amplitudes which we have introduced in section 4.2, and we have given the colour
decomposition of amplitudes involving up to four quarks. We have then introduced
the spinor helicity formalism in which the basic MHV amplitudes are expressed. We
have then provided the n-gluon MHV amplitudes with up to four quarks. These
amplitudes are the vertices used in the MHV rules approach, which we have then
outlined with some simple examples to show their use in the construction of am-
plitudes with arbitrary numbers of positive helicity gluons. An alternative method
to the MHV-rules approach are BCF recursion relations, which we have introduced
here for completeness. In the next chapter we will make use of the MHV-rules ap-

proach to provide a method which enables us to quickly derive multi-parton collinear

122




Chapter 4: The MHV Construction 4.7 Summary

limits. We will then use the BCF recursion relations as a basic test of our approach,
and at the same time this will provide an interesting examination of the differences

between the two methods.
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Chapter 5

Collinear limits

In this chapter we will consider the multi-parton collinear limits of QCD at tree-
level. We begin with an introduction to collinear limits and define the concept of
splitting functions. We then examine the analytic structure of multi-parton collinear
limits as expressed in the spinor helicity formalism. This structure enables us to use
the MHV-rules method of chapter 4 to derive general results for splitting functions
with arbitrary numbers of positive helicity particles and specific numbers of negative
helicity particles (or vice versa using MHV). The formulas we present are sufficient
to describe all collinear limits for up to six gluons, and we complete the set of

collinear limits for up to four (massless) partons. These results are published in

Refs. [127-129).

5.1 Introduction

The factorisation properties of amplitudes in the infrared play several roles in de-
veloping higher order perturbative predictions for observable quantities. First, a

detailed knowledge of the structure of unresolved emission enables phase space inte-
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grations to be organised such that the infrared singularities due to soft or collinear
emission can be analytically subtracted at NLO [130-132] or at NNLO [133]. Second,
they enable large logarithmic corrections to be identified and resummed. Third, the
collinear limit plays a crucial role in the unitarity-based method for loop calcula-
tions [96,97,134,135]. Collinear limits of QCD amplitudes are responsible for parton
evolution [136], and as such the n-particle tree-level collinear limits contribute to
the Altarelli-Parisi evolution kernels at N®~'LO [137,138]. These kernels control
the scale evolution of parton densities and fragmentation functions, and so are vi-
tal for the calculation of multi-jet events at the LHC. Lastly the collinear limits of
amplitudes are very useful as consistency checks of the correctness of calculations,

though this usually only applies for the two particle collinear limits.

In general, to compute a cross section at N"LO, one requires detailed knowledge
of the infrared factorisation functions describing the unresolved configurations for
n-particles at tree-level, (n —1)-particles at one-loop etc. The universal behaviour in
the double collinear limit is well known at tree-level (see for example Refs. [139,140]),
one-loop [96,141-145] and at two-loops [146,147]. Similarly, the triple collinear limit
has been studied at tree-level [148-152] and, in the case of distinct quarks, at one-
loop [153]. Finally, the tree-level quadruple gluon collinear limit was derived in
Ref. [137]. In a recent paper MHV diagrams have been used to calculate the one-

loop gluonic splitting functions in supersymmetric Yang-Mills theories [154].

In this chapter we examine the singularity structure of tree-level QCD amplitudes
when n partons (gluons and massless quarks) are simultaneously collinear. Under-
standing the infrared singular behaviour of multi-parton amplitudes is a prerequisite
for computing infrared-finite cross sections at fixed order in perturbation theory. In
general, when one or more final state particles are either soft or collinear, the am-

plitudes factorise. The first factor in this product is a scattering amplitude that
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depends only on the remaining hard partons in the process (including any hard
partons constructed from an ensemble of unresolved partons). The second factor is
the splitting amplitude, which contains all of the singularities due to the unresolved
particles. One of the best known examples of this type of factorisation is the limit
of tree amplitudes when two particles are collinear. This factorisation is universal
(process-independent) and can be generalised to more particles [137,148-151] and

any number of loops [155].

To derive the splitting amplitudes, we will exploit the properties of the MHV-rules
introduced in chapter 4. Both the MHYV rules and the BCF recursion relations of
section 4.6 are remarkably powerful in deriving analytic expressions for massless
multi-particle tree-level amplitudes. At the same time, for the specific purpose of
deriving general multi-collinear limits, we find the MHYV rules approach to be par-
ticularly convenient. The major benefits of the MHV-rules approach are that the
singularities in the kinematic invariants are explicit, without the spurious singular-
ities of amplitudes that are produced via the BCF recursion relations. At the same
time the MHV rules approach enables us to calculate infinite sequences of splitting
amplitudes — with fixed numbers of negative helicity partons and arbitrary num-
bers of positive helicity ones, or vice versa. This enables the derivation of many
splitting functions from the same set of MHV skeleton diagrams. Another useful
feature of the MHV rules is that it is not required to set reference spinors 7, and
N4 to specific values dictated by kinematics or other reasons. In this way, on-shell
(gauge-invariant) amplitudes are derived for arbitrary n’s, i.e. without fixing the

gauge.

In view of this, we will employ the MHV rules for setting up our formalism and
for derivations of general multi-collinear amplitudes. The two-gluon collinear limits

of MHV diagrams at tree-level were discussed in the original paper on the MHV-
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rules [75]. These two particle limits were found to be in full agreement with the well-
known results from Feynman diagram calculations, and as such proved to be a useful
check of the validity of the MHV approach. Here we extend this analysis to multi-
parton singularities. By starting from the appropriate colour ordered amplitude
and taking the collinear limit, the full amplitude factorises into an MHV vertex
multiplied by a multi-collinear splitting function that depends on the helicities of
the collinear gluons. Because the MHV vertex is a single factor, the collinear splitting
functions have a similar structure to MHV amplitudes. Furthermore, the gauge or

n-dependence of the splitting function drops out.

One of the main points of our approach [127,128] is that in order to derive all
required splitting functions we do not need to know the full amplitude. Out of the
complete set of MHV-diagrams contributing to the full amplitude, only a subset
will contribute in the multi-collinear limit. This subset includes only those MHV-
diagrams where all of the internal propagators go on-shell in the multi-collinear limit.
In other words, the IR singularities in the MHV approach arise entirely from internal
propagators going on-shell. This observation is specific to the MHV rules method
and does not apply to the BCF recursive approach. We will see in Section 5.5.1 that
in the BCF picture collinear splitting functions generically receive contributions
from the full set of allowed BCF diagrams!. Moreover, the functions multiplying
the singular propagators in the splitting amplitude are constrained by the MHV
rules to take a purely holomorphic form: they are functions which depend only on
the holomorphic spinor products, (i j), of the right-handed (undotted) spinors and
not on the anti-holomorphic ones [¢ j]. This points towards a simple twistor space

picture for the multi-collinear limits.

1This is because the required IR poles in the BCF approach arise not only from propagators
going on-shell, but also from the constituent BCF vertices.
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5.2 Collinear limits

To find the splitting functions we work with the colour stripped amplitudes as intro-
duced in section 4.2. For these colour ordered amplitudes, it is known that when the
collinear particles are not adjacent there is no collinear divergence [137]. Therefore,

without loss of generality, we can take particles 1...n collinear.

The multiple collinear limit is approached when the momenta py,...,p, become
parallel. This implies that all the particle subenergies s;; = (p; + p;)?, with 4,5 =
1,...,n, are simultaneously small. We thus introduce a pair of light-like momenta

PY and ¢ (P?=0,£2 = 0), and we write

Sl,n gy

(p1+"'+p")uzpu+2§—-1” sij =i+ +p)?, (5.1)

where s;,, is the total invariant mass of the system of collinear partons. In the
collinear limit, the vector P¥ denotes the collinear direction, and the individual
collinear momenta are p; — 2;P*. Here the longitudinal-momentum fractions z; are

given by
_ £ - pi
§-P

2 (6.2)

and fulfil the constraint > .-, z; = 1. To be definite, in the rest of the thesis we
work in the time-like region so that (s;; > 0, 1 > z; > 0).

As illustrated in Fig. 5.1, in the multi-collinear limit an N-particle colour ordered

tree amplitude factorises and can be written as

An(1M, . NM) = split(1M, ... ni — PY)

XAN_ns1((n+ 1)+ . N _PY). (5.3)

In the splitting amplitude only the terms which are most singular in the collinear
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(n+1)

°

°

-
°
°
1 1
N
Figure 5.1: Factorisation of an N-point colour ordered amplitude with gluons py, ..., p,

collinear into splitting function for P — 1,...,n multiplied by an (N —n+1)-
point amplitude.

limit are included. This is because upon integration over the small-region of phase
space in which the collinear limit is valid, only the most singular terms will give a

non-negligible contribution to the cross-section in question [149].

The remnant amplitude after taking the collinear limit has all legs on-shell and so
we can refer to this as a ‘hard’ amplitude. The labelling of the splitting amplitude
used here, split(1*, ..., n* — P*), differs from the usual definition because we use
the momentum and helicity that participates in the resultant amplitude P* rather
than —P~*. With this choice, it is easier to see how the helicity is conserved in
the splitting, i.e. helicity A!,..., A" is replaced by A, and so the labelling is more
intuitive. Since eq. (5.3) applies for all N, we can use it to derive the splitting
amplitude by systematically choosing N = 3 + n. In this case, we always factorise
onto a four-point amplitude with two negative helicity legs, as it is the simplest non-
zero amplitude which we can factor onto. We could choose to factor onto amplitudes
with larger numbers of external legs, possibly with extra negative helicity particles,
but factorising onto the simple four point MHV vertex enables us to easily factor

out the vertex and extract the splitting functions from the lowest possible order of

MHYV diagram.

As such we exploit the universal nature of the splitting function by choosing to start
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with an amplitude with (n+3) external legs, i.e. setting N = n+3 in Eq. (5.3). For
collinear limits where P* is a gluon (i.e. the collinear particles in the collinear limit
have the properties of a gluon), the helicities of the gluons are adjusted so that the

remnant ‘hard’ four point MHV amplitude A4(P*, (n+ 1)*, (n +2)7*, (n +3)7) is

given by
Ay((n+ D), (n+2)*, (n+3)", P =
(n+3, X)4 (5.4)
(Pn+1){n+1,n+2)(n+2 n+3){n+3, P) '
with X = P for A = — and X = n+ 2 for A = +. This ensures that we always

factorise onto the MHV amplitude with two negative and two positive helicity legs.
For collinear limits where P?* is a quark, we factor onto the four-point MHV quark

amplitudes in a similar fashion.

To read off the collinear limits from the MHV rules, we use the limiting expressions
for the spinor products: (ag), (bg) and (ba). Here a is a particle from the collinear
set, b is a particle which is not in the collinear set, and g is the sum of the collinear

momenta from ¢ +1 to j, associated with the propagators momentum. Hence, using

(ag) =Y (adlin], ()= (b1)[in], (5.5)
I=it1 I=i+1

and the expressions for spinors from the collinear set,

D =valP), l=valPl, |a)=vzlP), lo=vzlP], (56)
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we have,

(aq) — [Pn]Z<al>¢z7 = [Pn]Aw (G, 5;a) (5.7)
(bg) — [Pn](bp)zzz (5.8)
(ba) — (bP)y/Z. (5.9)

Here we introduced the definition
J
Aw (i jia) =) {al)y/a. (5.10)

I=i41

This factor A(;y accounts for the collinear limit of the spinor product of the propa-

gator with a collinear particle.

We also introduce

D(i,j, Giv15) = A 59)Aw @ 53 E+ 1A 53 5)Aw (55 + 1)
v Js Hit1,5 i+1,j <Z, 1+ 1)(.71 J+ 1)

b

(5.11)

which corresponds to the collinear limit of the effective propagator as given in equa-

tion 4.33.

Equations (5.7) and (5.8) contain a factor [P 7] which, however, will always cancel
in expressions for relevant splitting functions. As such we can read off the collinear
limits of the amplitudes from the MHV-rules expressions by replacing terms on the
left hand side of equations (5.7), (5.8) and (5.9) with the expressions on the right
hand side of those equations, and further dropping the [P 7] factors. In essence we
can draw the contributing MHV diagrams, and then write down the result for the

splitting amplitude by using these collinear terms instead of those used in section 4.5.
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Using this method we have a quick and easy way of writing the collinear limits for a
process straight from the contributing MHV diagrams, without the need to evaluate

the amplitude first.

Certain terms in the sums that arise in MHV rules need special attention. These
are the boundary terms involving spinor products particles from the collinear set
with those not in the collinear set. These terms will include (01) or (nn + 1), and

applying the rules from equations (5.7),(5.8) and (5.9) we have the replacements,

(nn+1) VZn
: - T 5.12
A(l)(z, n;n+ 1) Zl=i+1 2 ( )
_ oy L vE (5.13)
Auy(0,5;0) i &

Thus these expressions no longer include terms from outside the collinear set, giving

the required splitting amplitudes.

5.3 Analytic structure of splitting amplitudes

We find that there are two different types of collinear limit [75], those that conserve
the number of negative helicity gluons between the initial state and the final collinear
state, and those that do not. Only the case —+,, — — can contribute to the negative
helicity conserving case due to the factorisation onto a single particle, and this
collinear limit is easy to derive from the simple MHV vertex. All other limits belong
to the second class which do not conserve the number of negative helicity gluons,
and therefore we classify our results according to the difference between the number

of negative helicity gluons before taking the collinear limit, and the number after.

We call this difference AM.

Splitting amplitudes are calculated using the factorisation formula eq. (5.3). To
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facilitate the calculation, it makes sense to factorise onto hard amplitudes with the
simplest analytic structure. Hence, in the MHV-rules formalism we will always
factorise onto MHV amplitudes which are listed in section 4.4. In this case we find

that AM of the splitting amplitude satisfies the relation,
AM+2 = N_ (5.14)

where 2 is the number of negative helicities in the hard MHV amplitude, and N_
is the total number of negative helicities in the full amplitude. AM determines the

order of MHV diagram [75] for the full amplitude Ay

AM =0 = 1+, 2%,3%,... ,nt — Pt Ay =MHV

17,2+,3%, ... ,n" — P~

AM =1 = 17,2+,3%,...,n*t —» P* Ay = NMHV

1-,27,3%,...,nt - P~

AM =2 = 1-,27,3%,...,nt - P* Ay = NNMHV
17,27,37,...,n" — P~

(5.15)

and so on for all AM > 2 cases.

We can picture this using figures 5.2-5.4. These figures show that for up to four
collinear particles, only the NMHYV structures are needed to find all collinear limits.
This is because we can use the parity transformation to swap (i j) < —[i 5] which

gives us the limits which we could have calculated via MHYV. This will provide us
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corresponds to different MHV (MHV) rules diagrams. The coefficient functions
f depend only on holomorphic spinor products, while the MHV coefficients f are
purely anti-holomorphic. Moreover, f and f have dimensions,

1 ~ 1

The fact that f (f) is purely (anti)-holomorphic suggests a simple twistor-space in-
terpretation. All splitting functions can be represented as sums over the correspond-
ing poles in s with the coeflicients being supported on a single degree-one curve in
(anti)-twistor space. This pure (anti)-holomorphic representation of multi-collinear
limits is specific to the MHV (MHV) formalism and is lost in the usual Feynman-
diagram-type approaches as in Ref. [137], or in the BCF recursive approach, as will

be shown in section 5.5.1.

As we have already mentioned, each splitting amplitude can be calculated in both
the MHV and in the MHV approaches. In practice, egs. (5.16)-(5.18) imply that the
MHV approach is simpler if AM < AP, while the MHV approach is more compact

in the opposite case, AP < AM. This can be seen from figures 5.2-5.4.

In most of what follows we will concentrate on the splitting amplitudes with AM <
AP and will follow the MHV rules. The remaining amplitudes with AP < AM are

obtained from these by complex conjugation.

5.4 General results

In this section we give the results for the multiple collinear limit of quarks and
gluons. We categorise the results according to the number of quarks involved in the

limit. In each case, we give the general results for collinear limits with AM = 0, 1
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Figure 5.5: MHV topologies contributing to (a) Splitif) (m3) and (b) Split(_n)(ml,mg).
Negative helicity particles are indicated by solid lines, while arbitrary num-
bers of positive helicity particles emitted from each vertex are shown as
dotted arcs. All particles that are not in the collinear set must be emitted
from the left-hand vertex.

and involving an arbitrary number of positive helicity particles.

Limits of the type split(1*,...,n* — P*) and split(1~,2%,...,nt — P~) can con-
tribute to the AM = 0, and these collinear splitting functions are straightforward

to derive directly from the simple MHV vertex.

For the remaining splitting functions, it is useful to introduce the more compact
notation

split(1*,...,m7,...,m5,...,my,...,n* = P¥) = Split™(m,, ..., m,) . (5.20)

T

which denotes the splitting amplitude for n collinear partons, of which r have neg-

ative helicity.

For AM = 1, there are two possible types of splitting function, Splitf) (my) and
Split(_") (my, m2). The possible MHV topologies contributing to these splitting func-
tions are illustrated in Fig. 5.5. Only negative helicity particles are shown. In the
collinear limit, the propagator goes on-shell. Any MHV diagram with a hard par-

ticle emitted from both vertices produces an off-shell propagator. This means that

138



Chapter 5: Collinear limits 5.4 General results

only particles from the collinear set are allowed to couple to the right-hand vertex.

All hard partons couple to the left-hand vertex.

5.4.1 Purely gluonic limits — no quarks in the collinear set:

ng—4g

In this section we present the general results for the cases where the number of gluons
with negative helicity changes by at most AM = 2, and those related by parity where
the number of gluons with positive helicity changes at most by the same amount.
With the help of parity these general splitting amplitudes are sufficient to obtain

the explicit expressions for all helicity combinations of up to six gluons.

AM =0

This is the simplest case which is read directly off the single MHV vertex. The
denominator of an N-point MHV amplitude is factorised as follows (in the limit of

collinear py,...,pp):

(N, 1)1, 2)...(n, n+1)...(N -1, N) =

(\/m]'[(z, I+ 1)) x ((N, PYP,n+1)...(N -1, N)) (5.21)

=1

where the first factor contributes to the splitting function, and the second one is the
denominator of the remaining hard MHV amplitude. Hence, the splitting function

is

1
V/Z12n H;:ll(l, [+1) ’

split(1*,...,nt - P*) = (5.22)
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Figure 5.6: MHV diagrams contributing to Splitif) (m1). Negative helicity gluons are
indicated by solid lines, while arbitrary numbers of positive helicity gluons
emitted from each vertex are shown as dotted arcs.

and so by parity

(-1

split(1=,...,n~ —» P7) = = . 5.23
( )= LT .
Similarly,
22
split(1*,...,m{,...,n" = P7) = T , (5.24)
V' Z1%n Hl:l (l’ L+ 1>
and
-1 n—1,2
split(17,...,mf,...,n~ - P*) = ( )n_l Zmy ) (5.25)
\/mnlzl [la ! + 1]
AM =1

This is the next-to-MHV (NMHV) case, and in the collinear limit we need to take
into account only a subset of MHV diagrams. In fact, there is only a single MHV
diagram (or more precisely a single class of MHV diagrams) which can contribute
to Splitg?) (my). It is shown in Fig. 5.6.3 In the limit where gluons 1,...,n become
collinear. The left vertex in Fig. 5.6 produces a ‘hard’ MHV amplitude while the

right vertex generates the splitting function. We need to sum over i and j in Fig. 5.6

3MHYV diagrams where hard negative helicity gluons are emitted from more than one vertex do
not give rise to on-shell propagators and do not contribute in the singular limit.
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m

Figure 5.7: MHV diagrams contributing to Split(_") (my, mo).

in such a way that only diagrams with a singular propagator are selected in the
collinear limit. This puts a constraint 7 < n where n is the number of collinear

gluons. The resulting splitting function reads,

m—-1 n
. A 1) i,7;m1)
Split™ (m ( ( ) : 5.26
+ ( 1) \/lenH (l l+1 Zz(; ]; Z .7 QH-IJ ( )

Similarly, there are three (classes of ) MHV-diagrams contributing to Splitt™ (my, ma).

They are shown in Fig. 5.7 and lead to a splitting function which reads

mi—1mo—1 2

1 Al (4,7;m1)*
Split™ (my, m ’"2 (
p ( 1 2) ,—zlzn (l l+1 ( Z Z z ] q’L+1])

i=0 j=m,
1
+mzz zn: zm1A(1) (2 -7 m2)
e G DG, QH-I,J)
+ ( z,) . (5.27)
i=0 j=mq D(i.j, q"”J) l=i+1
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Figure 5.8: MHV diagrams contributing to Splitsf) (mq, mg).

The remaining splitting amplitudes of the form

split(1=,...,mf,...,m$,...,m+,...,n~ — P%) (5.28)

are obtained by parity transformation through the usual replacement (I, k) <

—[l, K].

AM =2

The collinear limits with AM = 2 are derived from next-to-next-to-MHV (NNMHYV)

diagrams. There are four (classes of) MHV-diagrams contributing to Splitﬁf) (my, mg)
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which are shown in Fig. 5.8. The corresponding splitting function is,

Splitgf) (my, mg) =

‘/2112711_[ (l l+1>
5T § dntmitytrimy
DD 'L 7 q,+1],k Ty Qk+1 r)

i=0 j=mg k=m; r=m2

mi—1 k mg—1

nAll mlAlk'r’mz
+ZZZZ()(J ) )4

D Z T,
i=0 j=mi k=mj r=m2 D ] q"*'l,]’k qk+1, r)

+§0: zn: mlzlmi: A (4, §;ma)* A.(l)(k,f;"h)“
k

S Sn DDGL G, Givagi Ko T Gessr)
n

k
(mima)* Ay (3, 5; k,r)

+ E E - 5.29

k=0 DD(, j, Gi+15: 5, 7 Qh1,r) ( )

i=0 j=my r=msy

where Aq)(4, j; k) is given in Eq. (5.10) and we introduce

Awy(i, ik, ) = Z Z (uv)\/2y2y - | (5.30)

u=i+1 v=k+1

This function is introduced to account for the collinear limit of the spinor product
of two propagators (g j+1gkr+1), Where both propagators contain only collinear
momenta as required in our approach. This spinor product arises when there are
more than two vertices, and either both propagators are negative entering the joining
vertex, or when they are adjacent. For computational purposes it is useful to know

the properties of this function.

Awy(i, j;k,1) =0 if < (5.31)
i=kand j=r

t=r and j=k
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S N
>r. -

Figure 5.9: MHYV topologies contributing to Split(_n)(ml,mg, m3). The negative helicity
gluons m;, my and mg are distributed in a cyclic way around each dia-
gram. The remaining leg is the negative helicity gluon that remains after
the collinear limit is taken.

The ‘effective propagator’ DD is defined by

DD(Za.7> q1; k, T, Q2) = X(Z) ka qi, (I2)X("', ja q2, QI)X(J’ k) di, q2)D(7’>Ja (I1)D(k, T, Q2)
(5.32)

in terms of D defined previously in Eq. (5.11), and x given by

. 1 i1 #£k
X(z) y 41, Q2) - A(z)(ql,qz)(i, i+1) - . (533)
Ay (a+D)Agy(g2it)  °

This accounts for the spinor products associated with the two propagators, and x
ensures the correct spinors are present when the central vertex has less than four

legs.
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Finally there are 16 classes of MHV-diagrams contributing to Split(_") (my, mg, m3),
coming from the 5 topologies shown in Fig. 5.9 and their cyclic permutations. The

individual contributions are given by

16

1 )
= AD(my,mg,mg)  (5.34)
vaz [, 1+ 1) ;

Split(_”) (mq, me, m3) =

where

me—1 n mg—1 j

A(l)(ml,mz,mg Z Z Z Z T2n1 Ay (d , J; ma)* Ay (k,m;ms)?

i=my j=mg3 k=mgo r=mg DD(Z .7 Q1+1]> k T, Qk:+1 r)

n ma—1mzg-—1

A® (my, my, ms) = Z Y3 Y 2, f0h m)* A (k, 5 ma)*

i=my j=m3 k=m; r=ma DD(Z Js Qiv1 g k,r, Qk+1, 1-)

mi—1lmsz—1ma—1 J

A®(my, my, mg) = Z Z Z Z 2 B, g;m) Agy(k, r;mg)!

=0 j=mg k=m; r=m2 DD Z -7 qi+1,5; k Ty qk+1, r)

k m3—1mi—1ma—1

A (g, my,mg) =37 3 3 Y 2, B0 ma)* A (K, 7 1m1)

i=0 j=my k=0 r=m DD 1’ ' I qH‘lJ’k Ty Qi+ 1, T)

4

k n mo—1

AP (my,ma,mg) =y Y Y Z Zomy Dm2m3 Loylhgibr)”

D 'L T,
i=my j=ma k=my r=mg3 I Git-1,51 k k1 r)

k mzg—1mi—-1 j

A(G)(ml,m2,m3) = Z E Z Z 22 (mima)* A (3, ;3 k,)°

m3
i=0 j=m2 k=0 r=mg DD(Z ]7 di+1,55 k Ty Qk+1 ,.)

m-1 n m3—-1 J

A =30 30503 (37 ) el tnlbr )

i=0 j=m3 k=mar=m3 I=i+1 DD(Z ] QH-lj,k Ty Qk+1, r)

mi—1 n me—1 j

8 4 (mama)t Ay (k,mymy
A®(my, my,ma) = S S Y Z(Z ) {ma ms) <)_( )

i=0 j=ma k=m)r=m3 Il=i+l DD(?”J’qi+l,j’k’ Ty Qk+1,r)

4

n mi—lmg-1

9 4 (mymo)* Ay (k, 7;ms)?
A()(ml,mQ,mg)_Z;ZZ Z(Z ) { ”) ().( )

=m3 k=0 r=mgz Il=i

DD(4, 4, giv1,5; K, 7y Qotr,r)
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A10) (m1, ma, m3)
AW (my, my, m3)
A (my my, mg)
A (my, my, m3)
A09 (mq1, mg, m3
AT (ma1, ma, m3)

A(16) (mla ma, m3

mi—1 n mo—1mz—1 4 m1m3> A(l)(k r m2)4
Z Z Z Z (Z ) DD(%, J, @i+1,5: K, T Qe 1,0)

1=0 j=m3 k=my r=mg [=i+l

k n mij—1mg—1 m2m3> A(l)(k r m1)4
Z E Z Z (Z ) DD(4, 7, git1,5; K, 7y Q1)

1=0 j=m3 k=0 r=m; I=i+1

g ki
m DD "& k,(h+l,ka7"],q7"+1,])

i=mj j=m3 k=mq r=mg

R st mantom
m3 DD ’L k,Qit1,4;T, J,Qr+l,])

i=0 j=mo k=m; r=m

mi—1 n r ms3—1

k 4 (myma)*Aqy(r, j; ma)*
)= Z Z Z Z (Z Zl) DDz K, Gir1,k57, 7, Qr+11)

i=0 j=mg3 k=mgr=ma I=i+l
SEEET (5 e
1=0 j=m3k=myr=m1 Il=r+1 DD(Z k q1+1 ksTy 7y Qr41 ])

T, bt
2 DD Z k,Qz+l,kaT,]aQT+1,])

i=0 j=mg3 k=mj r=ma

5.4.2 One quark in the collinear set: ¢(ng) — ¢

AM =0

This is the simplest case which is read directly off the single MHV vertex. For

positive helicity quarks, we use the two-quark MHV amplitude of Eq. (4.12) and

find,

split (17,

5 P = \/Z . (5.35)

For negative helicity quarks,

split(1,,

3
mt S Py = VEL . (5.36)
vazm Lo (G 1+ 1)
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Note that helicity conservation ensures that the helicity of P is the same as that of

q. It is often convenient to combine results for quarks of helicity A = :l:% such that,

22X
split(1),...,n" — P)) = \/? - . (5.37)
\/lenHl 1<l l+1>

Using parity we find,

split(1} n~ — Pt (=)™ 1\/—2”)‘
plit(17, ..., P¥) = IR NESTE (5.38)

The amplitudes where an antiquark is collinear with several gluons are obtained by

charge conjugation.

AM =1

Because of helicity conservation, AM = 1 implies that a single gluon has negative
helicity. When the quark has positive helicity, then the MHV diagrams contributing
in the collinear limit correspond to topology (a) of Fig. 5.5. There are two types of
diagram — one class where the quark is emitted from the right-hand vertex (and the
propagating particle is a quark) and one class mediated by gluon exchange where

the quark is emitted from the left-hand vertex. We find,

split(1;,...,m™,...,n" — Pf) =

! Vzize [, 1+ 1)
n A0, 5;m){(1m) [ m-l n (¢,7;m)
1 (1)
x| — ze | + —/z
[ ik (z y v

— & D( 5 Gitr5)
(5.39)

j=m
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In the same manner, for negative helicity quarks, the allowed MHV diagrams cor-

respond to the first and second topologies shown in Fig. 5.5(b),

1
split(1,,...,m™,...,n" — P ) =

VT ARG T
A (0,7;m)(1m)? [ T A 5im) 3
X[_Z ()l(?(OJJqu (sz) +ZZD() va|.

j=m i=1 j=m 7’ ] Qz—{—l,])
(5.40)

5.4.3 Two quarks in the collinear set: (ng)Gqg — g

In this collinear limit, the gq pair is in the adjoint representation and effectively acts

as a gluon.

AM =0

This is the simplest case which is read directly off the single MHV vertex. Unlike the
previous case, here we start with a two-quark MHV amplitude and factorise onto a
gluonic MHV amplitude. Alternatively, we could start with a four-quark amplitude

and factorise onto a two-quark amplitude. For quarks with helicity A = :!:%, we find,

242X 22\
Z
split(1+,..., 874, (s + 1), ,nt — P7) = YoV . (5.41)
vV Z12n =1 <l1 l + 1)

AM =1

For amplitudes of the Splitﬂz)(ml)-type, we find

split(1*,...,s7%, (s +1)),...,n" = P*) =
YD PRI THLELAS P
,/zlan M1+ 1) pr-Pd D(i, 5, qi41,5)
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There are four diagrams contributing to splitting functions of Split(_n) (my, my) type?,

split(17,...,s7%, (s+1),...,m™,...,n" — P~
plit( 7 Jo )= Vaz 115, 1+ 1)
4
n 2+2,\ 1 2-2A J
X[ sm <S+ m) sz
D(i, 3, giy1,5) et
slm1A2+2/\Z]8)A2 2A(st+1)

+ Z Z ©) &

=0 jst1 (Z Jan+1,])

n A2+2’\(8 ] m)(s+1m 2 2X

1) 2 [
B Z D(s, j,qs+1,5) V2 ' ( Z Zk)

Mf‘i

=0 =

j—m k=s+1
(1) (z,5;m) 242X 2 22
L3 sl 40
i=s+1 j= mD ¢ ] Qz+1]
Splitting functions of the type split(1*,...,m~,...,s7*, (s+1)2,...,nt — P~) are
a q

obtained by line reversal. These results for the two-quark sector are sufficient to

calculate all splitting amplitudes for up to four partons.

5.4.4 Two quarks in the collinear set: ¢(ng)g — v

In this collinear limit, the ¢q...J system forms a colour singlet and effectively acts

as a photon.

AM =0

In this limit the four-quark A MHV amplitudes of eqs. (4.19)—(4.22) factorise directly

onto the two-quark+photon amplitudes of (4.13). We find that,

$-2 14
2f 2k

12y (n—1n)

split(1),...,n7* = P;) = (5.44)

4Diagrams where both the negative helicity fermion and gluon couple to the right-hand vertex
in Fig. 5.5(b) can be mediated by either fermion or gluon exchange.
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N '1— .1— -
“;_.— N ; .......... \

n+1 En““ ni—i— 1 pt

N FS -

7i+ m- n 4;’1 “nt

Figure 5.10: MHV topologies contributing to the two quark collinear limit of the type
split(l;,...,m',...,n; — P;). Quarks of type Q (g) are shown as
green(red)-dotdashed lines and negative helicity gluons as black solid lines.

The negative helicity photon is shown as a blue dashed line.

AM =1
For amplitudes of the Splitgf’) (my) type, there is a single MHV diagram and we find

ol Any(0,m;1)3A ;
split(1;,...,nf — Py) = 1 % 0(0,n;1)° Ay (0, m; n).
Vaizn I, 1+ 1) D(0,n;¢1.)

(5.45)

As in the previous case, there are four diagrams shown in Fig. 5.10 contributing to

splitting functions of Split(_n) (m1, ma) type such that,

SpAl_i/t(ll;,...,m',...,n;If—»P_)

T VaEEILS (L L+ )
|:m1n1A(1)Z]m \/_\/_ anA(l an)\/z_13<iz1‘:>

j=m 7' I Qz+lj Z n;gi+1 n) —it+1
(1m)y*Any(0, 5;m) (nm)}
— Z —_— . 5.46
]Z D(0,5; q1,5) Z * On(hn) ( )
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5.4.5 Three quarks in the collinear set: ¢(ng)QQ — ¢

In this configuration, the @ is adjacent with Q and therefore the vertices in the
MHYV rules include the four-quark amplitudes of egs. (4.15)—(4.18). The factorised
amplitude is a two-quark MHV as given in eq. (4.12). Furthermore, since the helicity
of g is conserved and the helicities of  and Q are opposite, there are no AM =0

splitting functions.

AM =1

For AM =1, the two diagrams (with quark and gluons exchanged) of Splitg‘)(ml)-

type yield,
split(17,. .. 85 (s +1)§...,n" = P) = 1
Van Tl 1+ )

[Z Z Aw (@ 7 3+1? (1')(%9;3)\/2_1

~ 5h D(i, j, Giv1,5)
_ Z YA (0,55 8) Ay (0, 558 + 1) (izkﬂ (5.47)

j=s+1 D(0,7,q1,5) o

split(17F, Q’ (s+1)g,....,n" = Pf) = -

T Jam I+ )
2 (0, 78+ 1)Aw (5, 4; 8
{ZZ (1) J +1)Aw (75 )\/Z

i=1 j=s+1 Z J,qH-l])
no (1 s)A 1) (0,7;8+1 j|
— z 5.48
.7';1 D(O Ja(h] Z ¢ ( )
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Similarly, the two diagrams of Split(_n) (mq, mg)-type yield,

split(17,...,55, (s + 1)4,...,n* = P;) = s [, L+ 1)

"AlzslAlzs 3
[zz< e

i=1 j=s+1 Z ‘7 Q1+1])
j=s+1 0 Js ql]

1
split(1;, ... ,35, (s+1)g,...,n" = P7)=

T Em I )
m (% s+ 1AM, ;s 3
X[ZZ )J+)()(J)\/Z

im1 jestl D(i, j, Q1+1])
n (13)(1s+1)2A(1 0] s+ 1) (Z ) }
-y z | |. (5.50)

5.4.6 Three quarks in the collinear set: ¢(ng)¢Q — @

Here the relevant vertices in the MHV rules include the A four-quark amplitudes
of egs. (4.19)—(4.22) and the factorised amplitude is a two-quark MHV as given in
eq. (4.12) As in the previous case, the quark helicities are constrained such that

there are no AM = 0 splitting functions.

AM =1

There are two diagrams for both Splitgf)(ml)— and Split(_") (mq, mo)-types and we
find,
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. 1
split(1}, ..., 87, (s + 1)§,...,n* > PF
plit(1] 7 ( )q Q)= Vaz [ L 1+ 1)
A(l) (0, S, 1)A:(31)(0, 8 5)
D(O S, 41, s) fort
L (ss+ 1)AF(0,5;8)A0)(0,551) ( ! )
+ Z : > } (5.51)
jmstl D(O,]’ Q1,j) k=1
T _ + + + P+ — 1
split(ly,..., 85, (s +1)g, ..., n" — Q)—\/_217Hn_1<l [+ 1)
n =1 \"
AL (0,8 1) A (0, 55 5) ~
n ss+1 A31 (0,7;1
) )
+ z 5.52
—SZ+1 D(0,5,q1,) Z ) } 552
and,
split(1}, ..., s7, (s + 1)g,...,nt — Py) = 11
q q \/ZTZ;H?; (l’ I+ 1>
A2(0,5;1)A0)(0, 55 5)
W\Ys 9, (H)\Y, 5, 3
V7Zs
[ D(0, 5, q1,5) o
“ (ss+1)A(1)011 (J )}
j=st1 D(O J)ql,] 1
—~ _ + _ + — 1
split(1,,...,s5,(s +1)g,...,n" = Pg) =

VZEE [ U+ 1)
A?l)(o, s;1)Awy(0, s; 5) .
D(O,qul 8) o+

- + 1) (Ls+ 1)2A1)(0,5;1) [ <
+Z<SS DiO,J)LIJ() ’ (sz> } (5:54)
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s s+1 t
t+1>——oj C
t s+l t+1
, S s ,S+1 §
'II L. 8+1 \“ lll
L\‘j\t /. Vt

Figure 5.11: MHV topologies contributing to the four quark collinear limit of the type
split(1t,..., s%, (s+ 1)5*, . t;—", (t+ l)q‘)", ...,nt —= P7). Quarks of type
Q (g) are shown as green(red)-dotdashed lines and negative helicity gluons
as black solid lines.

5.4.7 Four quarks in the collinear set: QQ(ng)gg — g

This limit is associated with the four-quark A-type colour ordered amplitude and is

obtained by factoring onto a gluonic MHV.

AM =1

Because of helicity conservation for the quarks, AM = 0 is forbidden. Furthermore,
at least two negative helicity quarks participate in the scattering so that AM =1
splittings must be of the Split(_n) (my, mg)-type. The five contributing diagrams are
shown in Fig. 5.11. Explicit evaluation of the four independent helicity configura-

tions yields,

split(1%,..., 85, (s + 1)g, .. . t7, (t + 1);,...,n" = P7) =

vz [, 1+ 1)
s—1 t—1 :

Ay (i j, (3,5;8+ 1)
[ E E (1) Vzt3\/2t+1

’I,
i=0 j=s+1 ‘7 q’+1’-7)
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fy oyt

(1) (i ], YAW (4, j;t +1)
7' .7 qz+1,])

\/Z\/zs+13

i=s+1 j=t+1
‘ 4
s+1t st+1)< !
BIPL >
i=0 j=t+1 D, 3, gi1,5) k=i+1
‘ 3
Agy 3]t+1)(s+1t) .
_ Z z
gﬂ D(s, 7, qs+1,5) va k—z )
= =341
3
X A (i, b 8)(s + 11)° ‘ ]
N ! S 2| |, (555
; D(i,t, git1) o k;rl ‘ (%)
' ) _ B 1
spllt(1+ ,SQ’(3+1)5’ ..tq,(t+1);,...,n+—)P )=\/21_Z n_1<l [+1)
n | li=1 \b
s—1 t—1
(i ] 8)Awy (4, J; 8+ 1
[Z 5 2 = NN
1-0] il Z v Jh Qig1 j)
(4, 5; ) Am (3,55t + 1
I e
Bapri et D(i, 3, dit+1,5
4
(s + 1) (st + 1){t s)2 (
+}: > 2
im0 j=i1 D(i, j, Qz-HJ) k=it+1
_ Z Aw(s, g5t + 1Ak (s, 4; t)<3+1t>\/z_3(zj: zk)
8
j=t+1 D(s,j,qs+1) k=s+1
3
A(l)zts (s +1t)(ts)? t }
+ JZ z , (5.56
Z D(i,t, qixq t) o k;'ﬂ ‘ ( )
1
Spllt(1+ 35,(S+1)&,t3_,(t+1)q_),’n+ —)P—) = -1
v/ R1%n H?___l <la l+1>
s—1 t-—1 ) 7
Aw (i J; 9)AY 6,55 +1)
X[Z 2 D(i J(q)+1 ) Vava
=0 j=s+1 i
t—1 n A R
(I)Ht Ay gt +1) 3
55 e
rtaerd D(i, §, ¢i+1,5)
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+Z i (s+1t) st+1>(s+1t+1)2 (i Zk>4

Z n .
=0 j=t+1 s Js Gi+1,5) k=i+1

_ Z A(I)(S,j;t+1)(s.+1t)(s+1t+1)2\/2(i’ Zk)3

j=t+1 D(S)J)QS+1,j) k=s+1

s—1 ; 2 (; t
Any(3,t; 8) A% (3,88 + 1) (s + 1¢)
+ 2 2 \/Zt+13 Z 2k ],
k

P D(i,t, Git14) =i+1

(5.57)

1
Vaz [ L+ 1)

N, usal(usﬂ)
[Zz W @ \/_Z;\/Zt+13

split(17, ..., 55, (s +1)§, ... 7, (t+ 1);,...,n" — P7) =

i=0 j=s+1 D(%, J Gi15)
t—1 A P oA
(1)29t At +1) g
530> Ve
i=s8+1 j=t+1 ’L ‘] qH_l‘J)
4
(s + lt (st+1)°
DI (3 4)
i= 01—t+1 D(i ]’q“‘l’) k=i+1
B Z (1) 8, J; t—t—l)(s—l—lt)\/z_3 ( i zk>
j=t+1 (8,7, 9s1,5) k=s+1
TN (Gt 8) (s + 1) ¢
(1) (4] 3
+ - Z 2zt | |. (5.58
Y gy (2w |

5.4.8 Four quarks in the collinear set: Qq(ng)gQ — g

This limit is associated with the four-quark A-type colour ordered amplitude and is

obtained by factoring onto a gluonic MHV.

AM =1

As in the previous case, helicity conservation for the quarks, ensures that AM =0

is forbidden and that Splitif) (mq)-type AM = 1 splittings are absent. The four
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Figure 5.12: MHV topologles contrlbutmg to the four quark collinear limit of the type
spht(l+ (s+ nA (t—+— l)Q yo--ynt — P7). Quarks of type
Q (q) are shown as green(red)—dotdashed lines and negative helicity gluons

as black solid lines.

contributing diagrams of Split(_")(ml, ms)-type are shown in Fig. 5.12.

The four independent helicity configurations are given by,

split(17,..., 53, (s + 1), .. t7, (t+1)5,...,n* = P7) =

Vam Il 0, i+ 1)
i t+1t ¥ ss+1) [ <
[Z Z D(i ],Qz+1g) (k; “

4
=0 j=t+1 +1 )
. 3
ZA(1)33,3+1)(t+1t)\/_( 4 Z)
- &
k=s+1
=1 A ( 2ttss+1) t
(1) 3
- v 2 Zk
Z D(i,t, gita,t) i ;1

j=t+1 D(S J qs+1])
P

N A(l)(s,t, DA (s, t;s+ 1)
D(Sa tv qs+1,t)

Vavar], 659

split(17,..., 88, (s + 1), .. t7, (t +1)g,...,n" = P7) =

Vs [ (0 1+ 1)
(t+18)(ss+1)(s+ 1¢+1)2 !
{z Z D(i, 4, Qit1,5) (Z Zk)

1=0 j=t+1 k=i+1
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~ Z Agy(8, 738+ 1)t + 18 (s + 1t + 1)2 @(i Zk)

j=t+1 D(s, 5, @s+15) k=s+1
s-1 A ;. 2 (s + t
(& )AL G s+ 1)(ss+ 1) 5

- ; vV 2t+1 Zk

i=0 D(Z’ ta qi+1,t) " k;'-}-l

Ay (st )ALy (s, 88 + 1) 3

s/ , 5.
* D(87 ta q8+1,t) \/z_ e :I ( 60)
SPLL(LY, ... 53, (5 + 13, 87, (E+ .. n* — P7) = !

VAT 0, 1+ 1)
[ZZ": t+1t Wss+ 1)(ts)? (sz)

i=0 j=t+1 Z ‘7 quJ) k=i+1

Agy(s,gis+ )AL (s, 5; )t +1¢8) [
_Z W(s, 535 + DAY (s, 55 E)(t + >\/z_s(ksz>

j=t+1 D(Sajxqs+l,3)

_ZA(l)ltt 88+1><t5> m(izk>3

7' t, qit1, t) kit

A (s,t;t)Aqy(s, t;s + 1)
M\ (1)\Sy by 3
VZs /% , 5.61
D(s,t,qst1,) ) tH] ( )

split(1+,---,35’(s+1)11_""t¢-7'-’(t+1)2r?""’n+’_’P_) \/mn (l l+1>

[szi Z t+1t (33+)1> (Z Zk>4

’l
_OJ t+1 ] Q1+1,3

k=i+1
(s j,8+1) t+1t J
-3 SR DEID (3
j=t+1 I Qa1 k=s+1
3
1) it t)(ss+1)3 !
-5 v (3
Z t Q‘l+1 t) kz’i-{-l

A(l) (s, t; t)A(l)(s, t;s+1)
+ NEPRVE . 5.62
D(S, t, Q.s+1,t) H_l] ( )
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5.5 Specific results

5.5.1 Purely gluonic n < 6.

In this section we present compact expressions for splitting amplitudes with up to
six collinear gluons. These results are obtained directly from the general expressions

given in Section 5.4.1.

First we note that splitting amplitudes satisfy reflection symmetry,
split(1™, ..., n* — P*) = (=1)"Msplit(n?=, ... 1M — P¥) (5.63)
and the dual Ward identity, see e.g. [137],

split(11, 2%, .. n? — P%) 4 splig(2%2, 1M, ... oM — PE) 4 ...

+ split(2*2, ..., 1M p* — PE) fgplit(2%2,... ot 1M - PE) =0, (5.64)

These relations reduce the number of independent splitting amplitudes significantly.

n=2

For two collinear gluons there are two independent splitting amplitudes with AM =
0. All others can be obtained by parity and reflection. Setting z; = z and 2, =
(1 — 2), we find

split(1*, 2% — P+) = (5.65)

split(17,2% — P7) = : (5.66)
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As expected, the splitting amplitudes have a single pole proportional to (12)~!
Note that in the soft limit z — 0, we see that helicity conservation ensures that

split(17,2% — P7) — 0.

n = 3 result from MHYV rules

For three collinear gluons there are three independent splitting amplitudes with

AM = 0. They all follow directly from a single MHV vertex and are given by

1
split(1*,2%,3% — P*) = :
plit( ) = Zmaned)
2
split(17,2%,3% — P7) = “1 :
plit( ) = Zmaned
2
split(1*,27,3% — P7) = “2 .
plit( ) = Amanes)

Parity and the reflection symmetry, split(1*,2%,3= — P~) = split(3~,2%,1t —

P~), give the rest.

When AM = 1, there are three amplitudes,

(1 2)2!22
VZ1222381,2 (21 + 22) ((1 3)v/Z1 + (23)/z2)
((12)yz + (13)y/z)°
2)(23) ((13)v/z1 + (23) /=)

split(17,2%,3" - P*) =

—re (5.67)

split(1%,27,37 —» P*) = —split(27,17,3% — P*) —split(11,3%,27 — Pt)
<1 2)212
msLQ (2’1 + ZQ) ((1 3>\/Z_1 + (2 3)@)
((21) vz + (28)vz)*
515(12)(23) ((13)y/Z1 + (23)y/z2) ((12)y/22 + (13)/25)
(23)25° (5.68)
VZ1222380,3 (22 + 73) ({1 2) /25 + (13)/75)
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split(1*,2%,3~ — P*) = split(3~,2+,1t — P*) . (5.69)

In addition to singular terms like (12), we see that the splitting functions contain

mixed terms like s; 3. The net singularity is schematically of the form [ |{ ).

Note that split(17,2%,3t* — P7T) contains poles in s;o and the triple invariant
81,3 = S123 but not in s33. This is because there is no MHV rule graph with a

three-point vertex involving two positive helicity gluons.

Expressions for these splitting functions are given in Eq. (5.52) of Ref. [137]. The
results given here are more compact and have a rather different analytic form. Af-
ter adjusting the normalisation of the colour matrices, the splitting functions of

Egs. (5.67)—(5.68) numerically agree with those of Ref. [137].

n = 3 result from the BCF recursion relation

We now want to rederive the above results using the BCF recursion relation of [115].
In doing this we will (a) draw some useful comparisons between the ‘BCF recursion’
and the ‘MHYV rules’ formalisms from the perspective of collinear amplitudes; and

(b) test our expressions, such as Eq. (5.67) for split(1~,2%, 3% — P*),

We start with the six-point amplitude A(17,2%,3%,4%,57 67), which we have cal-

culated in section 4.6.The full amplitude reads

- ot 9+ 4+ £~ p—) _ 1 <5|6+1l2]3
A(17,27,37,47,57,67) = <3|1+2|6]([61][12](34><45>53»5
(112 + 3|4
[45][56](12)(23)31,3) B0

where the two terms on the right hand side correspond to the first and third BCF

diagrams® of Fig. 4.6. We now note that in this particular collinear limit, only

5The second diagram in Fig. 4.67is zéro.
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the last of these diagrams contains an on-shell propagator, 1/ss3. Nevertheless, in
distinction with the MHV rules approach which we have adopted previously, both

non-zero BCF diagrams need to be taken into account in the collinear limit.

In the 1{|2]|3 — P collinear limit, the first term in the amplitude becomes

(12)23 L (56"
Varzazas12(z1 + 22)((13) /71 + (23)y/72)  (56)(6 P)(P4){45)

(5.71)

This term factors into a contribution to the splitting amplitudes multiplied by a four-
point MHV vertex. In contrast, in the collinear limit the second term factors onto

the MHV type diagram, written in terms of the anti-holomorphic spinor products,

(12vEm+A3yE° [P
513(12)(23) (13)/z1 + (23) /) - [PA5]B 66 P

(5.72)

For the special case of four-point amplitudes, the MHV and MHV amplitudes coin-

cide and we find an identical result to Eq. (5.67).

Likewise, to test our expression for split(1*,27,3% — P*) we start from Eq. (3.4)

in [115];

[13]*(46)*
[12][23](45)(56)s13(6]1 + 2|3](4]|2 + 3[1]
(26)*[35]*
(61)(12)[34][45]s3,5(6]4 + 5[3](2|3 + 45]
[15]4(24)*
(23)(34)[56][6 1]52,4(4]2 + 3[1](2|3 + 4[5]
(5.73)

A(1+,27,3%,47 5% 67) =

+
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Taking the collinear limit 1||2||3 — P*, we find that

(1t o— o+ + 252312
Spht(l ’2 ,3 - F ) B \/2’1222331,2(2’14'22) ([13]\/Z+[23]\/Z_2)
[13]*
T s 23] (131a + 23lvE) (L2vE + [18)va)
2222[23]
+ (5.74)

VZ212272352,3(22 + 23) ([12]\/Z2 + [13]/Z3)

This result has the same kinematic-invariant pole structure as Eq. (5.68), but oth-

erwise is not obviously equivalent to Eq. (5.68). Note that Eq. (5.74) contains terms

like ([12]\/2z + [13]y/23) (rather than ({12)/z; + (13)4/z3)). Despite appearances,
a more careful (e.g. numerical) comparison shows that these two results, Egs. (5.68)

and (5.74), are in fact the same.

n=4

For n = 4, there are five collinear limits coming directly from MHV amplitudes

where the number of gluons with negative helicity doesn’t change, AM = 0,

1

split(17, 2%, 3%, 4% — P*) = NEEIPICHIET (5.75)
split(1-,2%,3%,4% — P7) = M(1;§(23><34>’ (5.76)
split(1+,27, 3%, 4% — P7) = \/M(1225<23)<34>' (5.77)

The remaining two are obtained by reflection symmetry,
split(1%,2%,37,4% —» P7) = —split(4*,37,2%,1" - P7), (5.78)
split(1*,2%,3*, 4= — P7) = —gplit(d~,3%, 2% 1* - P7).  (5.79)
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When AM = 1, there are ten splitting amplitudes however only three are imdepen-

dent,

split(1™, 2t 3% 4t - P+) = BT(I, 2,3,4)
5(12)
\/M(B 4)81,2 (21 + 22) A(l)(O, 2;3)
Ay(0,3;1)°
ﬂ(l 2) <2 3)81,3 (z1+ 20 + 23) A(l) (0, 3; 3)A(1)(0, 3;4)
A(l)(O, 4; 1)3

T (12)(23)(34)51400)(0, 4,4’ (5.80)

+

split(17,27,3%,4% — P7) = B;(1,2,3,4)
22 (23)

V727282300 (1,3; 1)A)(1, 3;4)
Z13/2A(1)(1, 4; 2)3
(23)(34)s53400)(1,4,1)Ay(1,4;4) (1 — z)

(12) (21 + 22)3
V7212224 (3 4)512A(1)(0,2; 3)
(12)3(1 — 24)°
\/5(2 3)81,3A(1)(0, 3; I)A(l) (0, 3; 3)A(1)(0, 3;4)
(12)°
51401)(0,4;1)A)(0,4;4)(23)(34)’

+

(5.81)

split(17,2%,37,47 — P~) = By (1,2,3,4)

L 257 232(12)
\/2124<3 4)81,2 (21 -+ 22) A(l) (0, 2; 3)
A2 (23)

V7Z3248230(1)(1, 3; 1) Ay (1, 3;4)
2132A1(1, 45 3)*
(23)(34)s2.400)(1, 4, 1) Ay (1,4;2) Ay (1, 4 4) (1 — 21)
21%200)(2,4;3)°
(12)(34)s3,4081)(2,4;2)Aq1)(2,4;4) (23 + 24)
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(13 (21 + 22 + 23)°
ﬂ(l 2)(2 3)81,3A(1)(0, 3; 1)A(1)(0, 3; 3)A(1) (0,3;4)
(13)*

T 2){23) B 400 (0,598 (0, 41)° (5.82)

+

where Aq)(4, j; k) is given in Eq. (5.10). The seven remaining AM = 1 splitting

functions can be obtained by using the dual ward identity,

split(17,27,3%,47 - P*) = —Bf(2,1,3,4) - B{(2,3,1,4) — B} (2,3,4,1),

split(1*,2%,37,4% — Pt) B (3,4,2,1) + B (3,2,4,1) + Bf (3,2,1,4),

split(17,2%,3Y,4~ > P7) = B;(4,3,1,2)+ B;(4,1,3,2) + B; (1,4,3,2),
split(1%,27,37,4% —» P7) = —B;(2,1,3,4) — B;(2,3,1,4) — B; (2,3,4,1),
(5.83)

or reflection symmetry,

split(1*,2%,3%,4~ — P*) = —split(47,3%,2%, 1% — P7),
split(1%,27,3%,4~ - P7) = —split(d~,3%,27,1% — P7),
split(1*,2%,37,4~ — P7) = —split(4~,37,2%, 1t — P7). (5.84)

Finally splitting functions with AM = 2, 3 are related to those given above by the

parity transformation.

Inspection of Egs. (5.80), (5.81) and (5.82) reveal that each term is inversely propor-
tional to a single invariant, in keeping with its MHV rules origins. For this type of
collinear limit, there are potentially six invariants, the double invariants s; 2, 823, S3 4,
the triple invariants s; 3, 524 and s; 4. Some poles are absent because the MHV rules
forbid that type of contribution. For example, in split(1~,2%,3%,4% — P7*), there

-are no- contributions with poles in sy3, 834 Or ss4 precisely- because these poles
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correspond to forbidden MHV diagrams.

Expressions for the four gluon splitting functions are given in Ref. [137]. The re-
sults given here are more compact and have a rather different analytic form. Af-
ter adjusting the normalisation of the colour matrices, the splitting functions of

Egs. (5.80)-(5.82) numerically agree with those of Ref. [137].

n=2>5

In total there are 64 different splitting amplitudes, but only eleven are independent.

The rest can be obtained with the help of parity, reflection and dual ward identities.

The simplest independent collinear limits can be obtained using only MHV rules,

1
V7125(12)(23)(34) (4 5)

split(1t, 2%, 3% 4% 5+ — p¥) =

2

split 1_,2+,3+,4+’5+ — P~ - -

plit( ) T GmanenGnas
2

split(1*,27,3%,4%,67 — P7) = o

plit( ) /775 (12)(23)(34)(45)
2
23

split(1*,2+,37,4%,5* - P7) = V/7125(1 2)(23)(3 4) {4 5)

split(1%,2%,3%,47,5% — P7) = split(5+,47,3%,2%,17 — P)

split(1%,2%,3%,4%,5= — P7) = split(57,4%,3%, 27,17 — P)
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split(17, 2%, 3% 4%, 5+ — P+) =/ (1,2,3,4,5)
_ (By(0,21))° v
— V2175(12)(34)(45)s12 (21 + 22) Ay (0, 2;2) Ay (0, 2; 3)
; (8w (©,3)" va
VZ175(12)(23)(45)s13 (21 + 22 + 23) A1)(0, 3; 3)A(1)(0, 3; 4)
(Aw(0,41))° Va1
V2125(12)(23)(34)s1,4 (21 + 22 + 23 + 24) A1)(0,4;4) A1) (0, 4; 5)

(A (0,5;1))°
T (12)(23)(34) (4551500 (0, 5; 5) (5.85)

+

split(1+,27,3%,4%, 5% - P*) =CF(1,2,3,4,5)

(8(0,2:2))° 21
\/2125<1 2) (3 4) <4 5)81,2 (21 + 22) A(]) (0, 2; 1)A(1) (0, 2; 3)
; (A0 (©.3:2)" vz
\/Z125<1 2) (2 3> <4 5)81,3 (21 + 29 + 23) A(l) (0, 3; ].)A(l) (0, 3, 3)A(1)(0, 3; 4)
. (A0 ©.42)" va
\/2125(1 2) (23) <3 4>81,4 (21 + 22+ 23+ 24) A(l)(o, 4; 1)A(1)(0, 4; 4)A(1)(0, 4;5)
~ (Aw(0,5;2))*
2B D)2 3)51580) (0,5 DA (0,59
(Aw(1,3;2))°
+
VZ2125(23)(45)s2,30(1)(1, 3; 1) A)(1, 3;3) Ay (1, 3; 4)
(Apy(1,4;2))°
+
\/2125<2 3) <3 4)82,4A(1 (1, 4, I)A(l)(l, 4, 4)A(1)(1, 4, 5)

(Aw(1,5:2)° V25 (5.36)
m<2 3) (3 4) <4 5)82,5A(1)(1, 5; ].)A(l)(]., 5; 5) (2’2 + 23 + 24 + 25) ’

split(1*,2+,37,4%,5% — P*) = —C(3,5,4,2,1) — C} (3, 1,2, 4, 5)

—Cf(5,3,4,2,1) — C}(1,3,2,4,5)
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split(1*,2+,3%,47, 5% — P*) = split(5*,47,3%, 2%, 1T — PH)

split(1+, 2+, 3%, 4% 5= — P+) = split(5-, 4+, 3+, 2%, 1T — P+)

split(17,27,3%, 4%, 5% — P7) =5 (1,2,3,4,5)

2% (Aw(1,3;2))°
,/z125(2 3) <4 5)82|3A(1)(1, 3; I)A(l)(l, 3; 3)A(1)(1, 3; 4)
N 2% (B(1,42)°
\/2125<2 3) (3 4>82’4A(1) (1, 4, 1)A(1)(1, 4, 4)A(1)(1, 4, 5)
2’ (Aw(1,52)" vz
\/le5<2 3) (3 4) (4 5)82,5A(1)(1, 5; 1)A(1)(1, 5, 5) (22 + 23+ 24 + 25)
({1 ))3 (21 + 22)3 N
s1,281)(0,2; 1) A1y (0, 2; 2) A()(0,2; 3)

5)
N ((12))* (21 + 22 + 23)° V21
VZ125(23)(45)51,30(1)(0, 3; 1) A1)(0, 3; 3) A1 (0, 3; 4)
12
4

t Ampa

n (( )) (214 22 + 23 + 24)° NE
VZ125(23)(34)51,44(1)(0,4; 1) A3y (0, 4; 4) A1y (0, 4; 5)

((12))°
N (23)(34)(45)s1,5801)(0,5; 1)A1y(0, 5; 5) (5.87)

split(17,2%,37,4%, 5% — P7)=C;(1,2,3,4,5)
_ 52 (A (0,%1))° V&
\/2125(1 2) (3 4) <4 5)81,2 (21 + 22) A(l) (0, 2, 2)A(1)(0, 2, 3)
+ 21?2 (A (1, 3;3))3
VZ125(23)(4 5)82,3A(1)(1, 3; 1)A(1)(1, 3; 2)A(1)(1, 3;4)
N 2? (Aw(L,43))"
VZ125(23)(34) sy, 4A(1)(1 4 1)A0) (1, 42)Aw)(1,4,4)A0) (1, 4;5)
2’ (Aw(1,53) va
\/2125<2 3)(3 4) <4 5)32 5A(1)(1 5 1)A(1)(1 9; 2)A(1)(1, 5; 5) (22 + 23 + 24 + 25)
N 2% (A (2,4;3))°
\/21Z5<1 2) (3 4)83,4A(1) (2, 4; Q)A(l)(2, 4; 4)A(1)(2, 4; 5)
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2* (Aw(2,53))° vz

Vz1z5(12)(3 )(45)33 B0 (2,52) A0 (2,5;5) (23 + 22 + 25)
n (13 (1 + 2+ 2)° V&

V71251 2)(23)(45)51,3001)(0, 3; 1) A1) (0, 3; 3) A1) (0, 3; 4)
n ((13))* (21 + 22 + 23 + 20)° V71

M(IZ)( 3)(3 4)81,4A(1)(0,4;l)A(l)(0,4;4)A(1)(0,4;5)

3 4

T 51580 (0,5 l)A(l)((<0, 5?5)(4 5Y{12)(34)(23)

(5.88)

split(17,2%,3%,47,5% — P7) =C:(1,2,3,4,5)

- 2 (A (©.21)° va
\/2125<1 2) (3 4) (4 5)31,2 (211 + 22) A(l) (0, 2; 2)A(1) (0, 2; 3)
. 2% (A (0,31)° va
A /2125<1 2) (2 3) (4 5)81,3 (21 + 25 + 23) A(l) (O, 3, 3)A(1) (O, 3; 4)
n z? (A(1)(1,4;4))3
«/2125<2 3) <3 4)82,4A(1) (1, 4, I)A(l)(l, 4, Q)A(l)(l, 4, 5)
2 (A (L,54)° vz
\/2125<2 3) (3 4) (4 5)32,5A(1)(1, 5, ].)A(l)(l, 5, 2)A(1)(1, 5; 5) (22 + 23+ 24 + 25)
. 2% (By(2,4,4)°
\/Z125<1 2) <3 4)83 4A(1) (2 4 2)A(1)(2 4; 3)A(1)(2, 4; 5)
2’ (Aw(2,54)" V7
\/2125<]. 2> <3 4) (4 5)83’5A (2, 5, 2)A(1) (2, 5, 3)A(1) (2, 5; 5) (23 + 24 + 25)
2 (80)3,54)° V&
5)84,58(1)(3,5;3)A1)(3, 5;5) (24 + 25)
))4 (Zl + 20 + 23+ 24)3 \/2_1
4)5148(1)(0,4;1)A1)(0,4;4)A1)(0,4; 5)
_ ((14)°*
51,581)(0,5;1)A1)(0,5;5){12)(23)(34)(45)

Van(12)(23)(4
N (14
VEn(12)(23)(3

(5.89)
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split(17,2%,3%,4%,5" - P7) = —-(;(1,5,2,3,4)-C;(5,1,2,3,4)
~C;(1,2,5,3,4) — C5(1,2,3,5,4)
split(1+,27,37,4%,5% - P7) = -(C;(2,3,1,4,5) — C5(2,3,4,1,5)
—C5(2,3,4,5,1) - C;(2,1,3,4,5)
split(1*,27,3%,47,5* - P7) = —(C;(2,3,4,1,5) —C;(2,3,4,5,1)

—C5(2,1,3,4,5) = C5(2,3,1,4,5)

split(1*,27,3%,4%,57 - P7) = split(57,4%,3%,27,1% — P7)
split(1*,2+,37,47,5% — P~) = split(5+,47,37,2%,1* — P")
split(1+,2%,37,4%,5- —» P7) = split(57,4%,37,2%, 1% — P7)

split(1*,2+,3%,47 5~ — P7) = split(5~,47,3+,2%, 1% — P)

split(17,27,3%,4%,57 — P*) =C5(1,2,3,4,5)
(A (0,31)° (Any(1,3:2)* va
\/2125(2 3) (4 5)A(2) (0, 3; 1, 3)81’3 (21 + 22 + 23) A(l) (O, 3; 4)82,3A(1)(1, 3; 1)A(1) (1, 3; 3)
N (Aw(0,41)° (80)(1,3;2))° v
,/2125(2 3)81,4 (1 - 25) A(l) (0, 4; 4)A(1) (0, 4; 5)82,3A(1)(1, 3; l)A(l)(]., 3; 3)A(1) (1, 3; 4)
(Ap©0,41)° (An(1,42)° va
\/2125(2 3) (3 4)A(2) (0, 4; 1, 4)31’4 (1 - 25) A(l) (0, 4; 5)32,4A(1)(1, 4; 1)A(1) (1, 4; 4)
(A0)(0,51)° (A (1,3;2))°
(23)(45)s1,54(1)(0,5;5)s2,3401)(1,3; 1)A(1)(1,3;3) A1y (1, 3; 4)
3
(A0 (©0,51)° (Aw(1,42)°
(23)(34)51,58(1)(0,5;5)s2.44(1)(1,4; 1) A1y (1,4,4) A1y (1, 4; 5)
(Aq(0, 5 1))3 (A@y(1,5; 2))3
(23)(34)(45)s1,54(1)(1,5;1)A1)(1,5;5)A (0, 5;1,5)s2,5

((12))° (A%(0,5;0,4))°
(23)(34)s1,54(1)(0,5;5)51,44(1)(0,4; 1) A(1)(0,4;4) A1) (0, 4; 5)

+
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((12))% (A2)(0,3;0,2))° /a1

+
,/z1z5(4 5)81’3 (z1 + z2 + 23) A(l) (0, 3; 3)A(1)(0, 3; 4)51,2A(1) (0, 2; I)A(l) (0, 2; 2)A(1) (O, 2; 3)

((12))% (A9)(0,4;0,2))° vz

+
VZ125(34)s1,4 (1 — 25) A1) (0,4;4) A1) (0,4;5)51,28(1) (0, 2; 1) A (1) (0, 25 2) A4y (0, 2; 3)

((12))% (8(2(0,4;0,3))° /&1

+
,/2125<2 3)31’4 (1 — 25) A(l)(O, 4; 4)A(1) (0, 4; 5)31,3A(1) (0, 3; 1)A(1) (0, 3; 3)A(1) (0, 3; 4)

((12))® (A(0,5;0,2))°

(3 4) <4 5)31,5A(1) (0, 5; 5)81,2A(1) (0, 2; 1)A(1) (0, 2; 2)A(1) (O, 2; 3)

((12))% (A(0,5;0,3))°

(23)(45)s1,54(1)(0,5;5)A(1) (0, 3; 3)51,34(1)(0, 3;4) A1y (0, 3; 1)

(5.90)

split(1~,2%,37,4%,57 — P*) =CJ(1,2,3,4,5)

((13))* (A%)(0,4;0,3))° a1

,/zlzs(l 2) (2 3)81,4 (1 — Z5) A(l) (0, 4; 4)A(1) (0, 4; 5)81,3A(1) (0, 3; 1)A(1) (0, 3; B)A(l) (0, 3; 4)

(A2)(0,5;0,4))° ((13))*

(12)(23)(34)s1,4A(1)(0,4;4)51,54(1)(0,5;5) A1) (0, 4; 1) A1) (0, 4; 5)
(Awy(0,3; 1)° (Aq)(1,3; 3))° va

,/2125(2 3) (4 5)A(2) (0, 3; 1, 3)81,3 (21 + 22 + 23) A(l) (0, 3; 4)82,3A(1)(1, 3; I)A(l) (1, 3; 2)
(A(0,5;0,3))° ((13))*

(12)(23)(45)s1,5A(1)(0,5;5)51,34(1)(0,3; 1) A1) (0,3;3) A1 (0, 3;4)
(An(©0,43)" (A (0,21)° va

+
\/Z1Z5(1 2) (3 4)A(2) (0, 4; 0, 2)81,4 (1 - 25) A(l) (0, 4; 4)A(1) (0, 4; 5)51,2A(1) (0, 2; 2)A(1) (0, 2; 3)

(A1)(0,3;3))° (A)(0,2,1))° v

+
VZ125(12) (4 5)A(2) (0, 3;0, 2)81’3 (zl + 29 + 23) A(l) (0, 3; 4)31,2A(1)(0, 2; 2)A(1) (O, 2;3)

(Aw)(0,53))* (A)(0,2;1))°

(12)(34)(45)A(2)(0,5;0,2)s1,58(1)(0, 5;5)s1,24(1)(0,2;2) A1y (0, 2; 3)
(A1) ©0,21))° (A (2,5:3))°

(12)(34)(45)s1,24(1)(0,2;2)A(2)(0,2;2,5) (21 + 22) 8358(1)(2,5;5) (23 + 24 + 25)
(Aw©0,51)° (Awy(1,4;3))*

(23)(34)s2,401)(1,4;1) A1) (1,4;2)A1y (1,4, 4) A1) (1, 4; 5) 51,54 (1) (0, 5 5)
(Aw©0,21)° (Ay(2,43))° vz

+
‘/2125(1 2) (3 4)A(2) (0, 2; 2, 4)81,2 (Zl + 22) A(l) (0, 2; 2)83,4A(1)(2, 4; 4)A(1) (2, 4; 5)

(A0)(0,51))° (Aqy(1,3;3))°

(2 3) <4 5)82,3A(1)(1, 3; I)A(l) (1, 3; 2)81,5A(1) (0, 5; 5)A(1) (1, 3; 4)
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B (A ©,41)° (Aw(243))* var
VZ125(12)(34)A(9)(0,4;2,4)s1,4 (1 — 25) A(1)(0,4;5)5348(1)(2,4;2)A(1) (2, 4;4)

~ (Aw(©0,41))° (Awy(1,43) va

VZ125(23)(34)A(9)(0,4;1,4)s1,4 (1 — 25) A1) (0,4;5)s2,48(1)(1,4; 1) A1) (1,4;2) A1y (1,4;4)

(A1) (©,51)° (Agy(2.43))°
(12)(34)A(1)(2,4;2)81,54(1)(0, 5;5)53.48(1)(2, 4,4) A1) (2, 4; 5)
(A(l) (0) 5a 1))3 (A(l)(l) 5a 3))4
(23)(34)(45)s1,58(2)(0,5;1,5)s2,54(1)(1,5;1) A1y (1, 5;2) Ay (1, 5; 5)
(Ap(©0,51)° (A (2,53))°

(1 2) (3 4) (4 5)31,5 A(g) (0, 5; 2, 5)A(1) (2, 5; 2)33,5A(1) (2, 5; 5)
N (B (©0,41)° (Aa)(1,3:3))° Va1

,/2125(2 3)81,4 (1 - 25) A(l) (0, 4; 4)A(1) (O, 4; 5)32,3A(1)(1, 3; I)A(l) (1, 3; Z)A(I) (1, 3; 4)

(5.91)

+

+

split(17,2%,3%,47,5% - P*) =CF(1,2,3,4,5)
(14)* (A)(0,5;0,4))°
(12)(23)(34)s1,54(1)(0,5;5)51,4A(1)(0,4; 1)A(1)(0,4;4) A1y (0,4; 5)
(A0)(0,41))° (Aq)(1,44))° 21
V2125 (2 3) (3 4>A(2) (0, 4; 1, 4)31,4 (1 - 25) A(l) (0, 4; 5)82,4A(1) (1, 4; 1)A(1) (1, 4; 2)
(Aw(0,51)° (Aq)(1,4;4))°
(2 3) (3 4)A(1) (1, 4; 5)81,5A(1) (0, 5; 5)82’4A(1) (1, 4; 1)A(1) (1, 4; 2)
(Aw(©0,51)° (A (1,54)*
(2 3) (3 4) (4 S)A(g) (0, 5; 1, 5)82)5A(1)(1, 5; I)A(l) (1, 5; 2)A(1) (1, 5; 5)81,5
_ (A)(0,4;1))° (A(l)(2>4§4))3 NG
./zlzs(l 2) (3 4>A(2) (O, 4; 2, 4)31’4 (1 - 25) A(l) (0, 4; 5)33,4A(1)(2, 4; 2)A(1) (2, 4; 3)
(8)(©,51)° (Awy(2.44)°
<1 2) (3 4)81’5A(1) (0, 5; 5)A(1) (2, 4; 5)33,4A(1) (2, 4; 2)A(1) (2, 4; 3)
3
(Aw(©0,51)° (Mg (2 54)"
(1 2) (3 4) <4 5)A(Z) (O: 5;2, 5)33,5A(1) (27 5; 2)A(l) (27 9; 3)A(1) (2a 9; 5)31,5
(Aw(©0,51)° (A (3,5 4))°
(12)(23)(45)A2)(0,5;3,5)84,54(1)(3,5;3) A1) (3,5, 5)s1,5

(Aw(0,21)° (Aw(2,49)° va
21Z5(1 2) (3 4)A(2) (0, 2;2, 4)81,2 (z1 + 22) A(l) (0, 2; 2)83,4A(1) (2, 4; 3)A(1) (2, 4, 5)

+

+

-+
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4
(A (2.54)" (A (0,2,1))°
(1 2) (3 4) (4 5)33,5 A(l) (2, 5; 3)A(1) (2, 5; 5)31,2 (Zl + 22) A(l) (O, 2; Q)A(g) (0, 2; 2, 5) (Z3 + 24+ z5)
(A (3,54)° (A (0,21))°
(1 2) (4 5) 84,5A(1) (3, 5; 3)A(1) (3, 5; 5)A(1) (0, 2; 3) (Z4 + 2’5) 51,2 (21 + 22) A(l) (0, 2; 2)
(A (3,54)° (Aw(0,31)°
(12)(23)(4 5)84,5A(1) (3,5;5) (24 + 25) A(2)(0, 3;3,5)s1,3 (21 + 22 + 23) A(l)(o, 3;3)
N (A (0,4,9)° (Aw(0,2,1))° /a1
‘/2125(1 2) (3 4)A(2) (0, 4; 0, 2)81’4 (1 — 25) A(l) (0, 4; 5)81,2A(1) (0, 2; 2)A(1) (0, 2; 3)
3
(A(©0,2,1)° () (0,5:4))*
<1 2) (3 4) (4 5)31,5 A(l) (O, 5; 5)A(1) (0, 2; 3)81’2A(1) (0, 2; 2)A(2) (0, 5; 0, 2)
. (Aw(0,449)" (Aw(0,31)° vz
v 21 25(1 2) <2 3)A(2) (0, 4; 0, 3)81,4 (1 el 25) A(l) (0, 4; 5)31,3A(1) (0, 3; 3)A(1) (0, 3; 4)
(A (0,3;,1)° (Ay(0,5,4))*

- 5.92
<1 2><2 3) (4 5)'91,5A(1) (Oa 5;5)31,3A(1)(073;3)A(1) (0’3’4)A(2) (O, 5;0, 3) ( )

split(17,2%,3%,4%,5- — P*) = —Cf(1,5,2,3,4) — CF(5,1,2,3,4)
—C#(1,2,5,3,4) — C(1,2,3,5,4)
split(1*,27,37,4%, 5% — P*) = —CF(2,3,1,4,5) — C3(2,3,4,1,5)
—C5(2,3,4,5,1) = C}(2,1,3,4,5)
split(1*,27,3%,47,5% = P*) = —CF(2,3,4,1,5) - CF(2,3,4,5,1)

—C$(2,1,3,4,5) — C+(2,3,1,4,5)

split(1%,27,3%,4% 57 — P™)
split(1*,2%,37,47,5% — P™)
split(1%,2%,37,4%,57 — P*)

split(1+,2%,3%,47,57 — P*)

= split(5,4+,3%,27, 1 — P*)
= split(5+,47,37,2%, 1" — P
= split(57,4%,37,2%, 1t — Pt)

= split(57,47,3%,2% 1t - P*)
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Finally, for six collinear gluons there are 27 = 128 different splitting amplitudes,

which can be expressed by 23 independent ones. To find all independent amplitudes

we have to use Eq. (5.34) for the first time. Due to the length of the results we give

here only two examples obtained with the help of Egs. (5.26) and (5.27),

split(17, 2%, 3%, 4+ 5% 6+ — P) =

(Aw(0,21))° vz

VZ126(1 2)(34)(45)(56)s1,2 (21 + 22) A1)(0, 2; 2)A(1)(0, 2; 3)

(A (0,3;1)° /a1

T 226(12)(23)(45)(56)515 (21 + 22 + 7) B (0, 3; 3) Ay (0, 3: 4)

(Aw(0,4,1))° /7

+
VZ126(12)(23)(34)(56) 51,4 (21 + 22 + 23 + 24) A1) (0,4;4)A(1)(0, 4; 5)

(Aw(0,5, 1)) vz

+
\/212!6<1 2) (2 3) (3 4) (4 5)81,5 (2’1 + 29 + 23 + 24 + 25) A(l) (0, 5; 5)A(1) (0, 5; 6)

(Aw(0,6;1))°

(12)(23)(34)(45)(56)s1,61A1)(0,6;6)’

(5.93)

split(17,27,3%,4%,5% 6T — P7) = (5.94)

2% (Aw(1,3;2)°

VZ176(23)(45)(56)s230)(1, 3; 1) Ay(1, 3;3) Ay(1, 3;4)
+ 22 (A(l)(l, 4; 2))3

m<2 3) (3 4) (5 6)82‘4A(1)(1, 4, I)A(l)(l, 4, 4)A(1)(1, 4, 5)
N 2% (Aw(1,52))°

a2 (B(1,6:2)° V7

M(Z 3) <3 4> (4 5) (5 6>82’6A(1)(1, 6, I)A(l)(l, 6, 6) (1 - Zl)
. (12)) (s + ) o

VZ126(34)(45)(56)51,2401)(0, 2; 1) A1y (0, 2; 2) A1y (0, 2; 3)

174



Chapter 5: Collinear limits 5.5 Specific results

N ((12))° (21 + 22 + 23)° /&r
VZ126(23)(45)(56)51,3A1)(0, 3; 1) A1) (0, 3; 3) A1y (0, 3; 4)
+ ((12))° (21 + 22 + 23 + 21)° V71
VZ126(23)(34)(56)51,4A1)(0,4; 1) A(1)(0,4;4) A1y (0, 4; 5)
N (12)°(1 - 20)* V55
M(Q 3)(34)(4 5)31,5A(1) (0, 5; l)A(l)(O, 5; 5)A(1) (0, 5; 6)
({12)°

 (23)(34)(45)(56)51,6A1)(0,6; 1)A1)(0, 6;6) (5.95)

5.5.2 Selected specific results for triple collinear limits in-

volving quarks

To illustrate our general results for multi-collinear limits, in this section we list
some of the triple-collinear splitting functions. The AM = 0 splitting amplitudes
are obtained directly from MHV amplitudes and we do not list them here. Explicit
results are given in Section 5.4. For the AM = 1 (and therefore AP = 1) ampli-
tudes, there are two types of splitting function corresponding to Splitgf) (mq) and
Split(_")(ml, mg). In the specific case of three collinear particles, these are related by
parity thereby reducing the number of independent amplitudes to at most two for

each splitting. Here, we list only the most compact form of the amplitudes.

999 — 4

There are only two independent AM = 1 splitting amplitudes, which can be ob-
tained by setting m =mn = 3 in Eqgs. (5.39) and (5.40). Explicitly we find,
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B (23) 2,32
\/2582’3 ((2 1)@ + (3 1)@) (22 + 23)
(13) ((18) vz + (23)2)*

split(1},2%,37 — Pr) =

R EI NN M
o o 21(2 3)z23/2
split(1,,2%,37 — P—) _\/2—332,3 ((21)+/z2 + (31)1/z3) (22 + 23)
- (13)° . (5.97)

(12)(23)s13 ({21)y/Z5 + (31)/23)

All others can be obtained by parity and charge conjugation. These expressions

numerically agree with the splitting functions given in [137]°,

split(1f,2%,3" = BY) = ——
) [[1151(§’f3>¢z—1+ 23/ (L2 + D2
A A5+ 23
Nz
+%J (5.98)
split(1,,2%,37 — P—) = _3121323
<[ 3((12) /7 + (3 /AP LA+ 23y
A+ w1312 VE + (32)/E)
NG
—|—%2—’)2+\/'z_2(23)[1 3)|. (5.99)

6Note that there is a small typographical error in Eq. (5.56) of Ref. [137]. s23 should be replaced
by s12 in the last term of the equation for split?™%9 (ki kS, k3)
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We see that the two sets of results have the same types of singularity structure as

z3 — 0 and 2; — 1 corresponding to the soft and double soft gluon limits.

q99 — g

There are again only two independent AM = 1 amplitudes, both of which can be
obtained from Eq. (5.42) by setting s = 2 and A = +3. We find,

2

+\/ZS2,3 (€2 1>\/£2f<?:°>>1>\/z) (22 + 23)’
split(1%, 27,37 — P*) = _(12)(2(2151%:@;)%)%);%)
’ V1523 ((2 1)\/32312(?;)1)\/5) (22 + 23)

(5.100)

(5.101)

All others can be obtained via parity and charge conjugation. Eq. (5.100) numeri-
cally agrees with the analogous expression given in Ref. [137]. Eq. (5.101) numeri-
cally agrees with the splitting functions given in Ref. [137] after correcting a small
typographical error in Ref. [137], Eq. (5.54). The factor of [1 3]z;3 in the denominator

of the second term for split? "% (k;, k5, k3) should be replaced by [13].

9QQ — ¢ and ¢7Q — Q

In this special case both colour structures lead to the same splitting amplitude.

There is only one independent AM = 1 helicity configuration, the specific splitting
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17, 25, 3g — P;. Our MHV rules approach yields,

_ <2 3)22
s03 ((12)y/Z2 + (13)y/23) (22 + 23)

((13)y/z1 + (23) /)
s1.3 ((12)y/Z2 + (13)4/z3) (23)

split(17, 24,3 = Pf) =

+ (5.102)

As expected, the s,2 pole is absent because there is no ¢Q collinear limit.

We can use this splitting amplitude to analyse the singularity structure of collinear
limits derived from different methods. When AM = AP both MHV and MHYV rules
are expected to yield results of similar complexity. Here we have AM = AP = 1.
In full generality, the MHV (MHV) rules approach should generate a maximum of
three terms corresponding to simple poles in $1 9, $23 and s13 = (p1 +pa2 +p3)?. We

can see from equation (5.102) that this is indeed the case here.

The MHYV rules approach finds this splitting amplitude to have the form,

. N B 2123[2 3]
split(1;, 25,35 — P) = 82,3 ([(12]y/Zz + [13]y/Z3) (22 + 23)
[12]”

NN IE R

Again, the s15 pole is absent.

By taking the limit of a Feynman diagram calculation, Ref. [137] finds,

v/ 12]((13)\/z1 + (23)/=

split(1}, 25,35 — P}) = anz 12 ((13va+(23)va) (5.104)
S9.3(22 + 23) 81,352,3

Results (5.102), (5.103) and (5.104) are for the same amplitude and all three expres-

sions agree numerically. But the analytic form of these specific representations is

different. In agreement with egs. (5.17)-(5.18), the functions accompanying the 1/s

poles, are holomorphic in the MHV result (5.102), are anti-holomorphic in the MHV
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expression (5.103), while the Feynman diagram result (5.104) contains a mixture of
holomorphic and anti-holomorphic terms. (In this case, it happens to give a more
compact result.) In general, the limit of an amplitude computed using the BCF re-
cursion relations will also provide a mixed holomorphic/anti-holomorphic splitting
function as we have seen in section 5.5.1. In this specific case, taking the collinear
limit of the compact expression for the appropriate six-parton amplitude given in

Ref. [119] exactly reproduces the MHV result of eq. (5.103).

5.6 Summary

In this chapter we have considered the collinear limit of multi-parton QCD ampli-
tudes at tree level. We have begun by introducing collinear limits and the concept
of splitting functions, before examining their singular structure in the spinor for-
malism. We have found that in the collinear limit, only a subset of the MHV rules
diagrams contribute — those where every propagator invariant s goes on-shell in the
multi-collinear limit. This is a strong restriction on the number of contributing dia-
grams, and enables us to find collinear limits without the use of full amplitudes. We
have then used this fact and the MHV rules to find general expressions for collinear
limits with arbitrary numbers of positive helicity gluons, and up to three negative
gluons, or four (massless) quarks. These general results are enough to provide all
the splitting functions for up to 6 gluons, and up to four partons. We explicitly give

results for up to 5 gluons and three quarks.
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Chapter 6

Conclusion

In this thesis we have explored various aspects of perturbative field theory contribut-
ing to cross-sections beyond the leading order in QCD. To test the Standard Model
(SM) we need theoretical predictions with the same or better accuracy than the
results obtained from state of the art experiments, such as the forthcoming Large
Hadron Collider (LHC). To increase the accuracy of our theoretical predictions for
cross-sections, we need to evaluate them beyond the leading order in the pertur-
bative expansion in the coupling constant. When we proceed to higher orders, we
need to be able to evaluate the loop-integrals which occur and the singularities which
they possess. Correspondingly, to cancel these singularities, the limits of tree-level
processes when two or more particles become collinear must also be known. These

two subjects form the basis of the studies carried out in this thesis.

To enable us to study the higher order corrections to physical processes, in Chap-
ter 1 we have introduced the fundamental underlying field theories in the SM. From
the Lagrangian the Feynman rules for the theory can be derived, which give us the
mathematical structure of Feynman diagrams. Beyond the leading order, we see

that two types of singularities occur. The Ultra-Vielet (UV) singularities are associ-
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ated with high loop-momenta, and these divergences can be removed order by order
through the redefinition of fields and parameters, a process known as renormalisa-
tion. Infra-Red (IR) divergences occur through specific values of low loop-momenta,
causing divergences of loop integrals. These divergences are cancelled when we con-
sider tree-level processes with extra final state particles. The phase-space integral
will be divergent in the limits when these extra particles become soft or collinear,
and these divergences will cancel against those arising from the loop integrals. To
deal with the singularities which arise in a mathematically consistent way we have
introduced the concept of regularisation, in particular Dimensional Regularisation,
in which the space-time dimension of the theory is analytically continued away from
d = 4 to d = 4 — 2¢. The singularities then manifest themselves as poles in the

continuation parameter e.

We have proceeded to outline some of the available methods with which to solve
loop integrals, in particular massless integrals, beginning with the basic one loop
integral in Minkowski space, which we have solved using the method of Feynman
Parameters and Wick-rotation. In Chapter 2 this has allowed us to derive the one-
loop scalar bubble with arbitrary powers of propagators. Using this result we can
solve many simple multi-loop integrals through the method of bubble insertions, for
example we have derived the two-loop sunset integral, and through factorisation we
have found the two-loop Glasses integral. When examining multi-loop processes,
the number of integrals which need to be evaluated grows unmanageable, and so
we look for an automated method for their solution. The linear identities obeyed
by loop integrals, the IBP and LI identities, allow us to express all of the required
integrals in terms of a small subset of so-called Master Integrals. This reduction
process has been automated via the Laporta reduction algorithm which we have

outlined here. The remaining Master Integrals which are not already known can
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then be solved through the method of Differential Equations. This method, as
outlined in section 2.6, relies on the use of the IBP and LI identities to express the
differential equations in external invariants in terms of previously known integrals.
These differential equations can then be solved order by order in ¢ using repeated
integration. The boundary conditions required to fix the solutions are obtained
either from corresponding integrals with fewer off-shell legs, or from the integral
itself. The Harmonic Polylogarithms described here form a natural basis set of
functions in which to express the solutions to these differential equations. This is
due to their definition by repeated integration, which matches the method of solution

for the differential equations.

In Chapter 3 we use the method of differential equations to provide series expansions
in € for all two-loop Master Integrals with three external off-shell legs and all internal
lines being massless. The results are presented in terms of an extended basis of 2-
dimensional harmonic polylogarithms. The novel feature here is that this basis set
includes quadratic forms. These are introduced as a natural set of functions which
match on to the allowed phase space boundary for the 1 — 2 decay. For each Master
Integral, we have given sufficient terms in the e-expansion to describe two-loop vertex
corrections for physical processes. The MI presented here are ingredients for a variety
of interesting two-loop processes such as the QCD corrections to H — V*V* decay
in the heavy top quark limit and the QCD corrections to the fully off-shell triple
gluon (and quark-gluon) vertices. These MI also form a staging post for the study
of massless two-loop 2 — 2 scattering amplitudes with two off-shell legs. These
processes include the NNLO QCD corrections to g — V*V* (where V = W,Z2)
and the NLO corrections to gg — V*V*. Altogether there are 11 planar box and
3 non-planar box master topologies for the massless two-loop 2 — 2 scattering

amplitudes with two off-shell legs, which depend on the Master Integrals evaluated
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here. Their evaluation remains a future application of the Master integrals and

methods described in this thesis.

In Chapter 4 we have introduced the MHV construction. This is a recent develop-
ment which enables tree-level helicity amplitudes to be evaluated giving compact
results. To use this method we have introduced colour ordered amplitudes. These
greatly reduce the number of tree-level diagrams which need to be calculated by fac-
toring out the colour factors from the purely kinematic amplitudes. When expressed
in the spinor helicity formalism the helicity amplitudes have a simple form which
is not apparent from their Feynman rule construction. The MHYV rules of Cachazo,
Svrcek and Witten use the Maximal Helicity Violating amplitudes as vertices, which
are combined via scalar propagators and summed over all possible configurations to
reproduce the tree-level helicity amplitudes. A second method for the calculation
of tree-level helicity amplitudes has recently been developed, the BCF recursion re-
lations, which we have introduced here for the sake of completeness, and which we

have used as a check of the methods developed in chapter 5.

We have considered the collinear limit of multi-parton QCD amplitudes at tree level
in Chapter 5. Collinear limits are required in higher order calculations to cancel
against the IR singularities of loop-integrals. In general, to compute a cross section
at N"LO, one requires detailed knowledge of the infrared factorisation functions de-
scribing the unresolved configurations for n-particles at tree-level, (n—1)-particles at
one-loop etc. The factorisation properties of amplitudes in the infrared play several
roles in developing higher order perturbative predictions for observable quantities.
A detailed knowledge of the structure of unresolved emission enables phase space in-
tegrations to be organised such that the infrared singularities due to soft or collinear
emission can be analytically subtracted at NLO. Collinear limits enable large loga-

rithmic corrections to be identified and resummed, and they play a crucial role in the
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unitarity-based method for loop calculations. Collinear limits of QCD amplitudes
are responsible for parton evolution and as such the n-particle tree-level collinear
limits contribute to the Altarelli-Parisi evolution kernels at N®"!LO. These kernels
control the scale evolution of parton densities and fragmentation functions, and so
are vital for the calculation of multi-jet events at the LHC. Lastly the collinear limits

of amplitudes are very useful as consistency checks of the correctness of calculations.

We have used the new MHV rules for constructing colour ordered amplitudes from
MHV vertices together with the general collinear factorisation formula to derive
timelike splitting functions that are valid for specific numbers of negative helicity
gluons with an arbitrary number of positive helicity gluons (or vice versa). In
this limit, the full amplitude factorises into an MHV vertex multiplied by a multi-
collinear splitting function that depends on the helicities of the collinear gluons.
These splitting functions are derived directly using collinear limits of MHV rules.
A key point of our approach is that in the collinear limit only a subset of MHV
rules diagrams contribute - those where every propagator invariant s goes on-shell
in the multi-collinear limit. We observe that the splitting functions have a simple
structure, and can be written as sums over the corresponding poles in s multiplied
by a coefficient that is either entirely composed of holomorphic spinor products (¢ 5)
or entirely composed of anti-holomorphic spinor products [¢j]. This implies that

the coefficients are supported on a single degree-one curve in (anti)-twistor space.

We find that the splitting functions can be characterised by AM, the difference
between the number of negative helicity partons before taking the collinear limit,
and the number after. AM + 1 also coincides with the number of MHV vertices
involved in the splitting functions. Our main results are splitting functions for
arbitrary numbers of gluons where AM = 0,1,2. Splitting functions where the

difference in the number of positive helicity gluons AP = 0, 1,2 are obtained by the
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parity transformation. These general results are sufficient to describe all collinear
limits with up to six gluons. We have given explicit results for up to four collinear
gluons for all independent helicity combinations, which numerically agree with the
results of Ref. [137], together with new results for five and six collinear gluons. This

method could be applied to higher numbers of negative helicity gluons.

We have also considered the collinear limit of multi-parton QCD amplitudes at
tree level. Our main results are general formulae for timelike splitting functions
involving up to two negative helicity partons and an arbitrary number of positive
helicity partons. This completes the set of all possible partonic splitting functions
for up to 4 partons. Again the method here is applicable to collinear limits with
higher numbers of negative helicity partons. We anticipate that the expressions
presented here will be useful in developing higher order perturbative predictions for
observable quantities, such as jet cross sections at the LHC or in examining the high

energy limit of QCD.

The combined results of this thesis are a small contribution to the wide-ranging
efforts of the theoretical community in preparation for the next generation of partjcle
colliders. Our results will aid in the evaluation of physical processes at NNLO and
beyond, helping elucidate the QCD backgrounds to searches for new processes, and
testing the standard model to the highest levels of precision in the search for evidence

of new physics.
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Appendix A

Properties of extended HPL’s

In this appendix, we detail the connection between the harmonic polylogarithms

produced by a linear basis and those introduced by the quadratic basis of Egs. (3.8)—

(3.11).

The integrals in the quadratic basis depend on A (as defined in Eq. (3.3)) and are

of the form,

I = / %f(m)da:, L= %f(a:)dx.

With the help of one of the Euler Transformations

(t—a)(t+a)
A= 2t = 7
+r = =z (t—b)
with
1y __1+y
a= 5 b= 5

the integrals in (A.1) can be transformed into the linear basis,

e e T
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where a1, ay are the roots of the polynomial,

P = i(1+4t+4t2 — 2y + 4ty +y?) (A.5)
yielding
1 1
ap = —5(1+ VU, ar= —5(1 - VY)*. (A.6)

In the following we will present relation between the function in the z and in the ¢
basis. We will give transformations for the basis function in combination with the
measure and the relation between the integrated functions. Let the functions in the
set involving the roots be denoted by f and H and the functions in the linear basis

by g and G,

f(0)dz — g(a)dt + g(—a)dt — g(b)dt
H(0,z) = G(a,t) + G(—a,t) — G(b,t)
f(A)dz — —g(b)dt

H(\ 1) = —G(b,¢)

g(a)dt + Lg(—a)dt

f(a:/\)dx—>y_1 71

H(zA) — y_i_lG(a) + mG(—a)dt
f(zo1)dz — g(b)dt — 2g(aqz,1)dt

H(.’I?(),l, .’II) = G(b, t) - 2G(a2,1, t) y

where

with A € {a,b,a1,a2}-
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From the boundary conditions, we need limits of our extended HPLs when one of
the scales is zero. In this limit the HPL’s will only depend on one scale and so
we can express them in terms of the 1-d HPL’s of section 2.7. With explicit (z,y)

dependence, we have at weight one,

1
G(X0,y) = §H(0;y),
1
G(z1;0,y) = 2H(1;y)+H(0;xo)+21n2+§H(0;y),

AG(0;0,4) = ~2H(Liy) ~ H(0;20) ~ 3H(0;). (A7)

G(x0;0,y) is singular. At weight 2 we have for example,

2 1
G(A\0;0,y) = . H(0,1;y) — §H(0;xo)H(0; Y),

G(\ X 0,y) = EH (0,0;9),

2
G\ zX;0,) = —— (—”— ~H(0, ;) — SH(0,0;y) + 2H(, 1; \/37)> ,

y—1 6 4
GO\ 200,0) = - + In2H(0;y) — SH(0,0,4) — 2H(0, 1, -1 )
y L1, U, Y ) = 6 'Y 4 y i Y y 4y \/g 3
w2 1
G(z1,X;0,y) = 5t H(0;y)H(L;y) + 5 H(0;y) H(0; z0)
3 1
+-H(0,0;y)+2H(0,1;, ——),
£H(0.059) +2H(0, 15 =)

AG(0,;0,y) = —2H(0, 1; %) - ZH(O, 0;9) +2H(0, 1, %) + H(0;y)H(0;y — 1).

The first of these results is necessary to show that Fj is finite. Higher weight results
can be found using the linear basis, properties of 1-d HPL’s and relations between

f
dilogarithms.
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Appendix B

Fy at O(e)

fi@y) =+ 126G\ X z,y) + 8 (¥ — 1) GG\ 2\ 2,y)

+8 (y— 1) GG(aX Nx,y) +32(y — 1)’ G Gz, z); z,9)

4 §3L2G()\,0, \z,y) + W G\, 0,z 7, 1)

+ ? G\ A, 052, 9) + s_;ﬁ G(A o, Az, y) + 47T2(3#1) G20, 7xi2,)
+ ? G\ z1, N T,y) + w G 21, 232,y)

. ﬂf@ G\ 2, 052,y) - ¥ Glzo, A Xiz,y)

B w oo\ zhiz,y) — %ﬂ G(z0, 2, A 2,Y)

- §%L2 G(z1, M\ X x,y) — 4—’ﬁ—(§,’;1) o hediz,y)

20D gy o ) + 5D a0, xi0,0)

N 92_(;/‘_1) Gz A, 0;., y) + M Gz, 0, s 7, )

A 0D 6o,y v - =Y 660 0,000

+ 16 G(A,0,0,),0;z,y) + 24 G(A,0,),0,0;z,y) + 8G(),0,z0, A, 0; 2, 9)
+8G(A,0,21,A,0;z,y) +48G(A, A,0,0,0;z,y) — 72G(\, M\, 0; 2, )

+ 8,G(z\,,$0, O, A’Ov Z, y) + 16 G(/\y To, ')\, 0, Orm,*y) +’8G(A, T1, 0, 7\, 0, :B,y)+
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+16 G\, z1,),0,0;z,9) + 24 (y — 1)2 G\, zA, 2\, ), 0; 2, y)
~8 G((L‘(), )\’ 0, )‘a O; z, y) - 16 G(ZL‘(), ’\a /\) 0: 0; Z, y) - 8G($1) /\a 0) ’\7 O; z, y)
— 16 G(x1,\, ,0,0;,) + 24 (y — 1)2 G(zA, A, 2\, A, 0; 7, 9)

—272
35— AG(0;0,20) G\, X;2,9)

+24(y — 1)’ Gz, zh\ A\, 0;2,7) +

2 -1 2

+ -%(y—) AG(0;0,z9) G(zA, Ay z,y)

—47 (y-1)

A T

—4m? (y—1)
3

+12(y — 1)2 AG(0,),0;0,z0) G(z\, zA; z,y)

AG(0;0,y) G(A\ zX; x,y)

+ AG(0;0,y) G(zA, Az, y) — 12AG(0, A, 0;0,20) G(\, Az, y)

—16 (y - 1) AG(O’ )‘: 0; 07 y) G(A) ‘T’\; Z, y)

—2 72

—16 (y — 1) AG(0,,0;0,y) G(zA, Nz, y) +
2 (y - 1)°

3
2
+ 2 G0,9) GO Xia,)

G(X;0,z0) GO\, A2, y)

n G(A;0,z0) G(zA, zX; 2, 1)

—8G(A,0;0,209) G(A, 0, \;z,y) — 8G(A,0;0,z0) G(A, A, 0; 2, 9)

—16G(X,0;0,z0) G(A, o, Az, y) — 16 G(A,0;0,z0) G(\, 71, A; 2, 9)

+ 16 G(A, 0,0, z0) G(xo, A, Az, y) + 16 G(A,0;0,z0) G(z1, A\, A 2, )

+8(y — 1)2G(),0;0,z0) G(z), z\, 0;z,y) + (8 — 8y) G(A,0;0,y) G(A, 0,z z,y)
+(8—-8y)G(A,0,0,y) G(A\ zp,zA;z,y) + (8 — 8y) G()\,0;0,y) G\, 1, TA; T, 9)
+ (8 - 8y)G(A,0;0,y) G(A\, zA, 0;z,y) + 8 (y — 1) G(A,0;0,y) G(zo, \, zX; T,9)
+8 (y—1) G(A,0;0,y) G(zo,z\, N z,y) + 8 (y — 1) G()\,0;0,y) G(z1, A\, zA; 7, 9)
+8 (y—1) G(A,0;0,y) G(z1, 2, Az, y) — 16 (y — 1) G(A,0;0,y) G(zA, 0, \; z,y)
+ (8—-8y)G(A,0;0,y) G(zA A, 0;z,y) + (8 —8y) G(A,0;0,y) G(z ), zo, \; x,y)
+(8—-8y)G(A,0;0,y) G(zA, z1, Mz, y) — 16 G\, A2, ) G(), 0,0;0, z)

- 16G(X\ Az, y) G(A,0,00,y) — 12G(\, Az, y) G(A, A, 0;0, )

+16G(\, A z,9) G(A X,0;0,y) —8G(\ A z,y) G(zo, A, 0; 0, z0)+
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2
~ 8GO\ Xi7,9) Glan, A, 030,0) + T2 G(\, X, y) H(0s20)

_ 2 —4 2
S GO N z,) H(O) + 5"

+48G(\ A z,y) H(0,0,0;29) + 12G (), Az, y) H(0,0,0;y)

+

G(’\) /\; r, y) H(lizO)

+8G(A Az, y) H(0,1,0;z0) — 16 G(A\, Az, y) H(0,1,0; )

+8G(M\ Az, y) H(1,0,0;20) + 16 G(A\, \;z,y) H(L,0,0;y)

-8G(M\Az,y) H(1,1,0;20) — 16 (y — 1) G(\, zA; z,y) G(A, 0,050, )

+8(y — 1)2G(\ xx;z,9) G(A,0,2);0,1) +8(y — 1)2G(\, zA; z, ) G(A, 2, 0; 0, )

~16 (y — 1) G(\, zA;z,y) G(xo, A, 0;0,y) — 16 (y — 1) G(\, zA;z,y) G(z1, A, 0; 0, y)

47 (y — 1) —8m? (y—1)
3 3

+12 (y = 1) G\, zA;2,y) H(0,0,0;9) + 8 (y — 1) G(\, zA;z,y) H(0,1,0;y)

+ G\ zAz,y) HO;y) + G\ zAz,y) H(Ly)
+24 (y—1) G\ zAz,y) H(1,0,0;y) — 16 (y — 1) G(A\, x5 z,y) H(1,1,0;y)
— 16 (y— 1) G(aX, Az, 9) G(A,0,0;0,y) + 8(y — 1)° G(aA, X z,y) G(A, 0,2);0,7)

+8(y — 1) Gz A z,y) G\, zA,0;0,9) — 16 (y — 1) G(zA, A z,y) G(zo, A, 0;0,y)

2 (y —
~16 (y = 1) G\, X 2,9) Glan, A, 050,9) + WY 6 iz ) H(03y)
2
- -1
+ 202D Gan, Xz, H(1i) +12 (- 1) Gl Xz, p) H(O,0,0,9)

+ 8 (y - 1) G(CB/\, )‘; :v,y) H(07 L0 y) +24 (y - 1) G((L‘)\, >‘; T, y) H(la 0,0; y)
— 16 (y - 1) G(fl:)\,)\;:lj,y) H(la 1)0;3/) + 16 (y - 1)2 G(x/\,a:)\;:c,y) G()\,0,0;O, 1’0)

+12(y — 1) Gz, 2 z,5) G\, A, 0;0,20) + 8 (y — 1)? G(a), zA; 2, y) G(zo, A, 0; 0, 7o)

—47%(y—1)

2
+8(y_ 1)2 G(il))\, w/\;m,y) G(IL‘l,)\,O;O,I()) + 3 G(IEA,.’L‘A;.’L‘,y) H(Ov 1120)

42 (y—1)°
+7r(zg )

—8(y—1)*G(zA zX;z,y) H(O,1,0;20) — 8 (y — 1)? G(zA, zh; 2, y) H(1,0,0;z0)

Gz, zh; z,y) H(1;20) + 12 (y — 1) G(z), z); z, y) H(0,0,0;y)

+ 8 (y - 1)2 G(IE)\, ‘T/\; x, y) H(l? 17 O;CL‘()) + 24 G(/\a 0, ’\; z, y) H(O’ 0; $0)
—4G(X\0,Xz,y) H(0,0; ) + 8G(A, 0, A z,y) H(1,0; )
+ (4 —4y) G(A\, 0,z 2, y) H(0,0;9) + 8 (y — 1) G(A,0,zX;z,9) H(1,0;)

+48G(\ A, 057, 9) H(0,0;z0) — QO'G(A, A 0;z, y)VH(O, 0; )+
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+8G (M A0z, y) H(L,0;20) + 16 G(\, 2o, s z,y) H(0,0; o)

+4G(A, zo, Az, y) H(0,0;y) + 16 G(A, xo, A\; z, y) H(1,0;x0)

+4 (y—1) G\, zo,zA;z,y) H(0,0;y) + 8 (y — 1) G(A, zo, zA; z,y) H(1,0;y)
+ 16 G(A, z1, A z,y) H(0,0;z0) + 4 G(\, 71, \; z, y) H(0,0; )

+16 G\ z1, Mz, y) H(1,0;20) +4 (y — 1) G(\, z1, 2\ z,9) H(0,0; )

+8 (y—1) G\, z1,zA2,y) H(1,0;y) + (8 — 8y) G(\, zA, 0;z,y) H(0,0;y)
+8 (y—1) G\, 2\, 0;z,y) H(1,0;y) — 16 G(zo, A\, A; 2, v) H(0,0; z0)
—4G(zg, M\ Nz, y) H(0,0;y) — 16 G(zo, A, Az, y) H(1,0;z0)

+ (4 — 4y) G(zo, A, zA 2, y) H(0,0;y) + (8 — 8y) G(zo, A\, zA; z,9) H(1,0;9)

+ (4 — 4y) G(zo, zA, A z,y) H(0,0;y) + (8 — 8y) G(zo, ), \;z,y) H(1,0;y)
—4(y — 1) G(zo, z), z); 2, y) H(0,0;5) — 16 G(z1, A, A; 2, y) H(0,0;z0)
—4G(z1, A\ Az, y) H(0,0;9) — 16 G(zq, A\, Az, y) H(L,0; 20)

+ (4 —4y) G(z1, A, oA 2,y) H(0,0;y) + (8 — 8y) G(a1, A, zA; 2, 9) H(1,0;9)

+ (4 —4y) G(z1, 2\ A z,y) H(0,0;9) + (8 — 8y) G(z1, A, A x,y) H(1,0;y)
—4(y —1)>Glz1, oA, zX; 2, 9) H(0,0;y) + 8 (y — 1) G(z), 0, A2, y) H(0,0;9)
+16 (y — 1) G(zA,0,A;7,y) H(L,0;y) + 8 (y — 1)2 G(z, 0,z); z,y) H(0,0;y)
+ (8 = 8y) G(zA, A\, 0;z,y) H(0,0;y) + 8 (y — 1) G(z\ \,0;z,y) H(1,0;y)

+4 (y — 1) G(zA, xo, Az, y) H(0,0; ) + 8 (y — 1) Gz, zg, Nz, y) H(1,0; )
+4(y—1)2G(z\ z0,zX;z,9) H0,0;y) + 4 (y — 1) Gz, z1, Az, y) H(0,0; )
+8 (y— 1) Gz z1, M z,y) H(1,0;9) + 4 (y — )2 Gz, z1, z); z,y) H(0,0;9)
+4(y— 1)2G(z), z), 0;2,y) H(0,0;y) — 8(y — 1) G(z\, z), 0;2,y) H(1,0;20)
+16G(A,0,0, A2, y) H(0; zo) — 8G(A,0,0, Az, y) H(0; y)

+ (8 —8y)G(A,0,0,zX;z,y) H(O;y) + 24G(\, 0, 0;z,y) H(0; zo)
—4G(\0,A,0;z,y) HO; y) +8G(\,0,z0, A; z,y) H(0; o)
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+8G(A, 0,21, Az, y) H(O;z9) — 4 G(A, 0,21, Nz, y) H(O; y)
+(4—-4y)G(A\0,z1,z\ z,y) HO;y) + (4 —4y) G\, 0,2\, 0; 2, y) H(O; y)
+48G(X\ A, 0,0;z,y) H(0; zo) — 8 G(A\, ), 0,0; z,y) H(O; y)

—T2G\ M\ N x,y) H(0;zg) + 36 GO\ A\, A2, y) H(O; )

+36 (y — 1) G\ A A zX;z,v) H(O; y) + 8 G(\, 70,0, A z,y) H(0; zo)

~4G(A, 20,0, M 2,y) H(O;y) + (4 — 4y) G(\, 20,0, zX; z, y) H(0;y)

+ 16 G(A, zo, A, 0; 2, y) H(0; 29) — 8 G(A, 20, A, 0; , y) H(0;y)

+ (4 —4y) G\, zo, 2, 0;z,y) H(O; y) + 8 G(\, 21,0, \; z,y) H(0; z0)

—4G(\ 21,0, 2,y) H(O;y) + (4 — 4y) G(A, 21,0, z); z,y) H(0; y)

+16 G(A, 1, A, 05z, y) H(0; 20) — 8 G(A, 21, A, 0; 2, y) H(0;y)

+ (4 —4y) G\, x1,20,0;z,9) H(O;y) + 24 (y — 1)2 G\, 2,z Az, ) H(0; zo)
—12(y — 1)’ G\, zX, z), N3, 9) H(0;y) — 12(y — 1)] G(A\, 2\, 2), z; 2, 9) H(0; )
- 8G(z0, A, 0, \;z,y) H(0; zo) + 4 G(zo, A, 0, Xz, y) H(O; )

+4 (y — 1) G(zo, A\, 0,z z,y) H(0;y) — 16 G(zo, \, A, 0; 2, y) H(0; )

+8G (w0, A\, A, 05, y) H(0;y) +4 (y — 1) G(zo, A, zA, 0z, y) H(O; y)

+4 (y — 1) G(zo,zA A, 0;z,y) HO;y) — 8G(z1, A, 0, Az, y) H(0; o)

+4G(z1, A0, X 2,y) HO; y) + 4 (y — 1) G(z1, A\, 0,z);z,y) H(O; )

— 16 G(z1, A A, 0;2,y) H(0; z0) + 8 G(z1, A\, A, 05z, y) H(O; y)

+4 (y—1) Gz, A\ zA0,z,y) HO; y) +4 (y — 1) G(z1, 2\, A, 0;z,y) H(0;y)

+ (8 — 8y) G(z,0,),0;z,y) H(0; y) + 24 (y — 1)° Ga), A, z), A; z, ) H(0; o)
—12(y — 1)>G(zA A zh, N z,y) H(O;y) — 12(y — 1)3 Gz, A, z), zA; 2, y) H(O; )
+(4-4y) G(zA, 20, A, 0,2, y) H(Oy) + (4 — 4y) G(zA, 21, A, 052, y) H(0; )
+24(y — 1)2 Gz, 2\ M\ N3, y) H(O;20) — 12 (y — 1)2 Gz, oA, A, Az, ) H(0; y)
—12(y — 1)’ Gz, 2\, N, zX; 2, 9) H(0; ) + 4 AG(0;0,20) G(A, 0;0, 9) G(X, X; ,)

—4(y — 1) AG(0;0,z9) G(), 0;0, z0) G(zA, TA; z,y) + 4 AG(0;0, 7o) G(\, \; 7, y) H(0, 0; 20)+
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—4AG(0;0,20) GO\, Az, y) H(1,0;20) — 4 (y — )2 AG(0;0, z0) G(zA, z); z,y) H(0,0; z¢)
+4(y — 1)2AG(0;0, z0) G(zA, zA; 7, y) H(1,0;30) + 4 AG(0;0, z9) G(A, 0, A; 7, ) H(0; 7o)
+4AG(0;0,z9) G(A, A, 0; z,y) H(0; z0) + 8 AG(0; 0, z0) G(A, zo, Az, y) H(0; xo)
+8AG(0;0,z9) G(A, 21, A\ 2,y) H(0; 20) — 8AG(0;0,20) G(xo, M\, \; 7, y) H(0; 20)

— 8AG(0;0,z0) G(z1, M\, A; 2, 9) H(0;20) — 4 (y — 1) AG(0;0, z0) G(z\, zA, 0z, y) H(0; z0)
+8AG(0;0,y) G(A, Az, ) H(0,0;y) + 12 (y — 1) AG(0;0,y) G(A, zA; z,y) H(0,0; )

+ (8 —8y) AG(0;0,y) G(A, zA;z,y) H(1,0;y) + 12 (y — 1) AG(0;0,y) G(zA, \; z,y) H(0,0;y)
+ (8 —8y) AG(0;0,y) G(zA, Az, y) H(1,0;y) +4 (y — 1) AG(0;0,y) G(A,0,zA; z,y) H(0;y)
+4 (y—1) AG(0;0,y) G(A, zo, xA; z,y) H(03y) +4 (y — 1) AG(O;O, y) G\, z1,zX; 7, 9) H(0;y)
+4 (y—1) AG(0;0,y) G(A, zA, 05z, y) H(0;y) + (4 — 4y) AG(0;0,y) G(zo, A, zA; 2, y) H(0;y)
+ (4 —4y) AG(0;0,y) G(zo, zA, Az, y) H(0;y) + (4 — 4y) AG(0;0,y) G(z1, A, zA; 7, y) H(0; )
+(4-4y) AG(0;0,y) G(z1, 2X, Az, y) H(0;y) + 8 (y — 1) AG(0;0,y) G(zA, 0, A; z, y) H(0;y)
+4 (y — 1) AG(0;0,y) G(zA, A, 0,7,y) H(0;y) +4 (y — 1) AG(0;0,y) G(zA, zo, A; z,y) H(0; y)
+4 (y— 1) AG(0;0,y) G(zA, z1, A\ z,y) H(0;y) + 2AG(0,0;0,z0) G(A, A z,y) H(0; 20)

—2(y — 1)> AG(0,0;0, z0) G(zX, zA; z,y) H(0; 20) + (4 — 47) AG(0,0;0,y) G\, z); z, y) H(0;y)
+ (4 —4y) AG(0,0;0,y) G(z, A;z,y) H(0;y) + 6 AG(0, A;0,z9) G(\, X; 2, y) H(0; )
—12AG(0, ;0,20) GO\ A, y) H(0;9) — 6 (y — 1)2 AG(0, X; 0, zo) Gz, z; z, y) H(0; zo)
+12(y — )2 AG(0, 1;0, z0) Gz, zX; 7, y) H(0; ) + 8 AG(0, X; 0,7) G(A, A; z,y) H(0; )

—16 (y — 1) AG(0,\;0,y) G\, zA; z,y) H(0;20) + 8 (y — 1) AG(0, A, 0,9) G(A\, zA; z,y) H(O; y)
—16 (y — 1) AG(0, X;0,y) G(zA Ay z,y) H(0;z0) + 8 (y — 1) AG(0, A;0,y) G(zA, A z,y) H(0;y)
+6 (—2y +y) AG(0,z)X;0,z0) G(\, A;z,y) H(0; o)

—6 (=24 v¥) (y — 1)2 VI AG(0, z\; 0, z0) G(zA, zA; z, y) H(0; zo)

+4(y — D2 AG(0,2X;0,y) G\, zh; z,9) HO;y) + 4 (y — 1)2 AG(0, £A;0,y) G(zA, A; z, v) H(0;9)
+4G(X0,20) G(A,0;0,20) G(A, A 2,y) —4(y — 1)2 G(X;0,29) G(A,0;0,z0) G(zA, zA; 2, 9)
+4G(X0,20) G(A\, Az, y) H(0,0;29) — 16 G(A;0,20) G(A, Az, v) H(0,0;y)

- 4G(/\101 CEo) G()‘v )‘; :E)y) H(]-’O;:EO) - 4(y - 1)2 G()‘v()’ 3:0) G(.’L‘/\,CL‘/\—;LE,y) H(0,0;$0)+
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+16 (y — 1) G(X; 0, z0) G(z), zX; 7, y) H(0,0;9) + 4 (y — 1) G(X;0, 0) G(z), zX;7,y) H(1,0;20)
+4G(X0,20) G(A, 0, A z,y) H(0; z9) — 8G(A; 0,z9) G(A, 0, \; z,y) H(0;y)

+4G(X0,20) G(A\, A, 0;z,y) HO;20) — 8G(X;0,20) G(A, A\, 0;z,y) H(0;y)

+8G(X;0,20) G(A, zo, Az, y) H(0; o) — 16 G(A; 0, 20) G(A, 2o, Az, y) H(O; y)

+8G(X;0,z0) G(A\, z1, A\;z,y) H(0;z9) — 16 G(A; 0, 0) G(A, 1, A z, y) H(0; y)

—8G(A;0,z0) G(zo, A\, Az, y) H(0; ) + 16 G(X; 0, 20) G(zo, A\, Az, y) H(O; )

—8G(A;0,z0) G(z1, A\ A z,y) H(0; ) + 16 G(X; 0, z0) G(z1, A\, Az, ) H(0;y)
—4(y—1)2G(X;0,z0) Gz, zX, 0; 2, 1) H(0;z0) + 8 (y — 1) G(X; 0, z0) Gz, zA, 0; z, y) H(0; y)
+8G(A;0,y) G(A\ A z,y) H(0,0;y) + 16 G(X;0,y) GO\ Az, y) H(1,0;y)

—-32 (y—1) G(X0,y) G\, zA;z,9) H(0,0;20) + 12 (y — 1) G(A;0,y) G\, zA; z,y) H(0,0;y)
—-32 (y—1) G(N0,y) G(zA X\ z,y) H(0,0;z0) + 12 (y — 1) G(X;0,y) G(zA, Az, y) H(0,0;y)
+(8=8y)G(X;0,y) G(A, 0, zA; 2, y) H(0;20) + 4 (y — 1) G(A;0,9) G(A,0,z); 2, y) H(0; y)

+ (8 = 8y) G(A0,3) G\, zo, zA; 2, ) H(0;20) +4 (y — 1) G(X;0,9) G(X, 2o, zX;2,y) H(0;y)
+(8-8y) G(A;0,y) G\, 21, 2A7,y) H(0320) + 4 (y — 1) G(X0,y) G(A, 21, 5A; 2, ) H(0; )
+(8-8y) G(X0,y) G(A, zA, 05, y) H(0;20) + 4 (y — 1) G(X,0,y) G(A, zA, 052, y) H(O; y)

+8 (y — 1) G(X;0,y) G(zo, A, zA;2,y) H(0;20) + (4 — 4y) G(X;0,y) Gzo, A,z ,y) H(0;9)
+8 (y — 1) G(X0,y) G(wo, xA, As z, y) H(0;20) + (4 — 4y) G(A;0,y) G(zo, zA, A 2, ) H(0;9)
+8 (y—1) G(A;0,y) G(z1, A\, z); z,y) H(0;z0) + (4 — 4y) G(A;0,9) G(z1, A, zA; 2, y) H(O;y)
+8 (y— 1) G(X;0,y) G(z1,zA Az, y) H(0320) + (4 - 4y) G(A;0,y) G(z1, oA, Az, y) H(O; )
=16 (y — 1) G(X;0,y) G(zA, 0, A;z,y) H(0;20) + 8 (y — 1) G(A;0,9) G(xA, 0, A7, y) H(0; y)

+ (8 -8y) G(X0,y) G(zA, A, 0,2, y) H(0320) +4 (y — 1) G(X;0,9) Gz A, 052, y) H(0; y)

+ (8 = 8y) G(A;0,y) G(zA, 30, Aj 7, y) H(0; 20) + 4 (y — 1) G(X;0,y) G(zA, 70, Az, y) H(0; )
+(8=8y) G(A;0,y) G(zA, 21, Az, y) H(0;20) +4 (y — 1) G(X;0,y) G(zA, 71, Ay 2,y) H(O;9)
+2G(),0;0,20) GO\, Az, y) H(0;20) — 16 G(A, 0;0,20) G(A, A z,y) H(O; y)

—2(y — 1)2G(\,0,0,z0) Gz, zA; z,y) H(0; z0) + 16 (y — 1)2 G(\, 0,0, z) G(z\, zX; z, ) H(0;y)

—24 (y—1) G(A\,0;0,y) G\ zA;z,y) H(0;20) + (4 — 4y) G(A,0;0,y) G\, zA; 2, 9) H(0; )+
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—24 (y - 1) G(A,0;0,y) G(zA, A2, y) H(0;20) + (4 — 4y) G(A,0;0,9) Gz, A; z,y) H(0;y)
+6G(A\, A;0,20) GO, Nz, y) H(O0;20) — 12G(X\, X0, 20) G\, Az, y) H(O;y)

—6(y — 1)2G(\ X;0,20) G(zA, zX; ,y) H(0; z0)

+12(y — 1)2G(\, A;0, z0) G(zA, zA; z,y) H(D;y)

+ 16 G(M\ A;0,9) GO\, Az, y) H(O; z0) — 8G(A, A;0,y) GO\ Az, y) H(O;y)

+6 (-2y+y) GO\ Nz, y) G(N, zX;0,z0) H(0; 20)

—16 (y — 1) GO\, A 2,9) G(A, zX;0,9) H(0;9)

+4 G\ X x,y) G(zo, A;0,20) H(0; 20) — 8 G(A, A 2,y) G(zo, A; 0, z0) H(O; y)

+4 (—2y+y) G\ Az, y) G(zo, zA; 0, z0) H(0; o)

+4 G\ N z,y) Gz, A 0,20) H(0; 29) — 8 G(A, Az, y) G(z1, A; 0, 20) H(0;y)

+4 (=2y+y) G\ A z,y) Gz, o0, z0) H(0; z0)

— 4G\ Az, y) H(0;20) H(0,0;y) — 4G(A, Az, y) H(O;y) H(0,0; o)

-6 (=2+ ) (y—1)> TG\, z);0,20) Gz, z); 2, 1) H(0; zo)

+8(y = 1)* G\, zX;0,9) G\, zX;z,y) H(0530) — 4 (y — 1)* G(A, 24;0,5) G(A, ) 3,y) H(0; )
+8(y — 1) G(A, zX;0,y) Gz, X z,y) H(0;0) — 4(y — 1)2 G(A, 2 0,) Gz, \; 2, y) H(0; y)
—16 (y — 1) G(A\, zA;z,y) G(zo, A;0,y) H(0;20) + 8 (y — 1) G(A z); 2, y) G(20, A; 0,) H(0; )
+8(y — 1)’ G(A, xX; 2, ) G(zo, zX;0,3) H(Oy) — 16 (y — 1) G(, z); 2, y) Glz1, X; 0,y) H(0; 20)
+8 (y~ 1) GO\ zX;2,y) G(z1, X,0,9) H(0;9) +8(y — 1)> G\, zX; 2,) G(z1, 2X;0,y) H(0; y)
+4 (y—1) G\ zh;z,y) H(0;70) H(0,0;9) + 4 (y — 1) G(A\, zX;z,y) H(0;y) H(0,0;z0)

— 4 (y — 1) G(zo, 1,0, 20) G(z), zX; 2, y) H(0;0)

+8(y — 1)° G(z0, \; 0, m0) Gz, zX; 2, ) H(0;)

=16 (y — 1) G(zo, X;0,y) G(zA, Az, y) H(0;20) + 8 (y — 1) G(xo, X;0,) Gz, X; z,y) H(0;y)
— 4 (=2+ vB) (¥ — 1)* g G(z0, 2); 0, z0) G(zA, zA; 2, y) H(0; 70)

+8(y — 1)* G(zo, X;0,9) G(zA, Xz, y) H(0;y)

-4 (y - 17)2 C}(CL‘], )‘3 Qa :130) Q($A, .’E/\, z, y) H(O, afO)+
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+8(y — 1)2 G(z1, 10, 0) G(z\, zX; z,y) H(0;7)

—16 (y — 1) G(z1,A;0,y) G(zA, A; 7, y) H(0; z0)

+8 (y— 1) G(z1,10,y) G(z, Az, y) H(0;y)

—4 (=24 ) (y - 1)* VY G(z1,2X;0,70) G(z\, 2X; 7, y) H(0; 20)

+8(y — 1) G(z1,2X,0,9) G(&A, Az, y) H(0;9) +4 (y — 1) G(zA, A;z,y) H(0;20) H(0,0;)
+4 (y—1) Gz Az,y) H(0;y) H(0,0;20) — 4 (y — 1)* Gz, 2X; z,y) H(050) H(0,0;)
—4(y— 12 Gz, zX;z,y) H(0;y) H(0,0;20) — 4G(A\, A, 0;.2,y) H(0;20) H(0; )
+4(y—1) G\ A, 0;2,y) H(0;20) H(0;y) +4 (y — 1) G(zA, A, 052, y) H(0;z0) H(0;y)

—4(y - 1)>G(a), z), 0;z,y) H(0; zo) H(0;y)
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Appendix C

Spinor product identities

The spinor products obey the following identities, with ¢ = p;,

(i 5) =—(ji),

[ 4] =-[51,

(i) = sign (pp}) [s4],
2pi - p; = (N,

@lilk™) =GN,

and the Schouten identity,

(@) kl) =@kl + (i{kj),

[illkl) =GR+ [Ed[ks].

If =7, pi = 0, we have that

n

> (i)ik] =0. ] (C.1)

i=1
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