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Observational Effects of Strong Gravity

by Kristian R. C. Beckwith
PhD Thesis, October 2005

Abstract

It is now a century since Einstein tore down the edifice of classical physics, ultimately
replacing it with his crowning achievement, the General Theory of Relativity, the most
remarkable prediction of which is the black hole. There are many astrophysical examples
of black holes, understanding which has long been a goal of high-energy astronomy. We
review how these observations can be explained in terms of a two-phase accretion flow.
Hard X-ray photons produced in an optically thin gas are reflected from a cool accretion
disk, resulting in a complex reflection spectra, which are dominated by a narrow Iron
Ko fluorescence feature at 6.4 keV (dependent on the ionisation state of the cool disk).
The photons that form this spectral feature originate in rapidly moving material, close
to the black event horizon. They are therefore sub ject to the combined dynamical effects
of the accretion disk and those of General Relativity, resulting in a highly broadened line
profile. The observed form of the line can then, in principle, be used as a test of the
strong gravitational field of the black hole.

We have developed a new, extremely fast strong gravity code that accurately calculates
the effect of strong gravity on photons originating close to the black hole event horizon,
including the ability to calculate the trajectories of photons that perform multiple orbits
of the black hole. We compare results from the code to the standard models describing
relativistic smeared lines available to the community, finding that they match to within

< 5%. We apply this code to the observed shape of the Iron Ko line and show that



the (poorly understood) vertical structure of the accretion disk strongly affects the de-
rived radial emissivity profile, which has important consequences for the interpretation of
observational data.

Following on from this, we consider the spectral and imaging properties of thin Keple-
rian accretion disks, fully including the effects of photons that perform multiple orbits of
the black hole. Viewed at high inclinations, these photons can carry as much as ~ 60% of
the total luminosity of the system, which returns to the disk at a range of radii. At low
inclinations, the multiple orbit photons re-intercept the disk plane close to the black hole.
For a Schwarzschild black hole, this lies within the plunging region and so the photons
need not be absorbed by the disk. The resultant ring is bright it may well be possible to
use these as a future test of strong gravity via X-ray interferometric images of accreting
black holes.

Finally, we examine the observational properties of accretion flows where angular
momentum transport is provided by the Magneto-Rotational Instability. It is shown that
the dissipation profile derived from the magnetic 4-current density in these simulations
provides a remarkably close match to that derived from the standard relativistic disk
model at large radii. At small radii however, the descriptions of dissipation in the two
models are rather different, which has important observational consequences. With this
model of dissipation, we examine the observed properties of optically thin accretion flows,
discussing the implications of these calculations for the low / hard state of Galactic Black
Holes. Additionally, we describe a simple reflection geometry for Iron Ko fluorescence,
assuming that this MHD flow is optically thick in the equatorial plane. The resultant line
shapes are markedly different to those predicted in the standard relativistic disk model,
showing that the (currently unknown) flow dynamics are also important in shaping the

line.
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Chapter 1
General Relativity and

The Failure of Classical

Physics

Abstract

The failure of the Michelson-Morley experiment led to the downfall of classical physics as
the description of the universe. Einstein, exactly one century ago!, seized this remarkable
opportunity with breath-taking audacity, remoulding the classical concepts of space and
time into a singular entity, spacetime. However, these ideas were directly in conflict with
Newtonian Gravity, which led Einstein to his crowning achievement, the General Theory
of Relativity. To date, this modern theory of gravity has passed every test to which it
has been subject with flying colours, but what of the future? As an introduction to the
remainder of this work, we outline the shortcomings of classical physics and how these led
Einstein to a General Theory of Relativity, along with one of the theories most remarkable

predictions, the Black Hole.

1.1 The Failure of Classical Physics

The beginning of the twentieth century witnessed a remarkable revolution in our under-

standing of the universe. The failure of the Michelson-Morley experiment to detect the

lat the time of writing




1. General Relativity and The Failure of Classical Physics 2

motion of the Earth through the mysterious ether, through which it was thought that
Maxwell’s Electromagnetic waves must propagate, lead to the realisation that ‘something
was rotten in the state of Denmark’. At the time, a little known Swiss patent clerk
wondered with his friends as to whether one would see ones image in a mirror whilst
travelling at the speed of light. This simple puzzle marked the beginning of a quest that
would shatter classical physics, for the young patent clerk was Albert Einstein.

Einstein finally rejected the notion of the all-pervading ether, leading to his 1905
paper, ‘On the Electrodynamics of Moving Bodies’ (Einstein, 1905), containing his two

famous postulates of Special Relativity:

‘The phenomena of electrodynamics as well as of mechanics possesses no prop-
erties corresponding to the idea of absolute rest. They suggest rather that
.. the same laws of electrodynamics and optics will be valid for all frames
of reference for which the equations of mechanics hold good. We will raise
this conjecture (the purport of which will hereafter be called the 'Principle of
Relativity’) to the status of a postulate, and also introduce another postulate,
which is only apparently irreconcilable to the former, namely, that light is al-
ways propagated in empty space with a definite speed ¢ which is independent

of the state of motion of the emitting body

These two postulates enable Einstein to derive the transformation (previously derived
by Lorentz, see e.g. Lorentz, 1928) between two inertial frames, S, S’ moving with relative
velocity w:

=y —ut); ¥y =y Z=uz t’=7(t—g§-); 7=—1— (L.1)
c 1— %;

Clearly, the application of the Lorentz Transformations result in the mixing of the

spatial and temporal co-ordinates (rotation in a four-dimensional space). Space and time

can no longer be considered as distinct entities, but instead must be unified into a single

whole, spacetime.
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The fundamental implications of Special Relativity for classical physics do not finish
there, however. Newtonian mechanics, based on the Galilean transformation was refor-
mulated such that it was consistent with the Lorentz transformations, a tedious process
that is discussed in many texts on the subject (see e.g. Jackson, 1975). More interestingly,
Special Relativity is fundamentally incompatible with the "jewel in the crown’ of classical
physics, Newtonian Gravity. Newton’s Universal Law of Gravitation tells us that the
gravitational force between two bodies, Fy is proportional to their masses, m,;, My and

inversely proportional to the square of the separation between them, r2:

mim;

FG X (12)

P2

However, Newtonian gravity makes no comment about the nature of transmission of this
force that links the two bodes. Furthermore, the theory predicts that changes in the mass
of either of the bodies, or the separation between them results in an instantaneous change
in this force. This prediction is clearly at odds with Special Relativity, where nothing can
travel faster than the speed of light.

There is a further question upon which Newtonian gravity is disturbingly silent. New-
tons First Law of Motion states that the acceleration of a body, a is equal to the force

acting upon it, F', divided by the inertial mass of the body, m;:

F
- 1.3
a= i (1.3)

For a body falling under the influence of the gravitational field of a body of mass, M, we

therefore have that:

a=—r——2 (1.4)

Here, G is Newton’s Universal Gravitational constant and my is the gravitational mass
of the falling body. Experimentally it is found that that the ratio mg/m; is a constant
to one part in 102, yet Newtonian gravity gives no indication as to why this should be

the case. Contrast this with the situation in Electromagnetism, where the force acting
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between two charged particles (with charges e;, e5, masses m;, ms) is given by:

F =8

r2
In this case, the acceleration acting on particle 1 due to particle 2 is given by:

€2 €

r2my
Here, the ratio e;/m; varies hugely, for example, electrons and protons both posses the
same charge, yet their masses differ by three orders of magnitude.

In fact, this equivalence of inertial and gravitation mass presents Special Relativity
with something of a problem. If these masses are equivalent, then it is impossible to
distinguish between a free-falling reference frame in a gravitational field and an accelerated
reference frame in free space. Special Relativity is a theory of inertial, not accelerated
frames and if we cannot distinguish between a free-falling frame in a gravitational field
and an accelerated frame in free space, then an inertial frame cannot be applied in the
presence of a gravitational field.

Einstein, however, was able to turn this seemingly fundamental contradiction to his
advantage in 1907, when he had what he later described as ’the happiest thought of my
life’:

I was sitting in a chair in the patent office at Bern when all of a sudden
a thought occurred to me: "If a person falls freely he will not feel his own
weight.” I was startled. This simple thought made a deep impression on me.

It impelled me toward a theory of gravitation

Simply put, gravity can be eliminated by surrendering oneself to its hands, which raises
a fundamental problem with the infinite inertial reference frame described by Special
Relativity. In the presence of a massive body, different paths in spacetime must be
freely falling at different rates to properly remove the effects of gravity and it is clearly

impossible to define a global reference frame that accomplishes this feat. Instead we
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must define a Local Reference Frame which is small enough that the acceleration due
to gravity is constant across the frame. This notion is embodied in the cornerstone of

General Relativity, the Principle of Equivalence:

All local, freely falling, non-rotating laboratories [locally inertial reference

frames] are fully equivalent for the performance of all physical experiments.

Einstein followed this remarkable realisation with the crowning achievement of General

Relativity, the deduction of the Einstein Field Equations (Einstein, 1916):

8

1
Ry — zguwR+Ag, = —

5 Ty (1.5)

These equations allows to relate the mass-energy density, encapsulated in the stress-energy
tensor, T, to the curvature of spacetime, described by the metric guv?. The above is the
most general form of the Einstein Equations, which includes the cosmological constant,
A. Einstein regarded these equations as too complex to allow a solution to ever be found.
However, in 1916, just one year after the publication of General Relativity, the German
astronomer, Karl Schwarzschild published an exact solution to the Einstein equations
describing the external static, spherically symmetric gravitational field of a point mass,

M, known as the Schwarzschild metric:

- -1
ds? = g, dz'dz” = (1 _ oM ) Adt? — (1 _ M ) dr? — 72 (d6° + sin® 0dg?) (1.6)

cir cir

Even more remarkably, Kerr (1963) was able to write down an explicit analytic solu-
tion describing the exterior of a rotating point mass (see e.g. Misner et al., 1973; Chan-
drasekhar, 1983). This solution, known as the Kerr metric, will be the sub ject of extensive

discussion in Chapter 3.

2Note that the Ricci tensor, R, and the curvature scalar, R are generated from the Riemann curvature
tensor, Rg,ﬂ;, which is the only tensor that can be constructed from the metric and its second derivatives
(Weisstein, 2005).
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1.2 Black Holes & Properties of Strong Gravitational
Fields

General Relativity, as encapsulated in the Einstein Field Equations (Eqn. 1.5), provides
a remarkable theoretical framework to understand the relationship between mass-energy
and spacetime curvature. However, the Einstein Field Equations are not an ab-initio
prediction of the theory, rather they were deduced by Einstein as having the correct
mathematical form to describe this relationship. Their validity (or otherwise) does not
lie in some esoteric mathematical proof, rather it lies in the experimental verification of
their predictions, which, fortunately, was rapidly forthcoming. We have already seen that
Newtonian gravity was undone theoretically by its inconsistency with the fundamental
principles of Special Relativity. Furthermore, Newtonian gravity was unable to explain 43”
per century of the advance of the perihelion of Mercury, which led some of the physicists
of the time (the mid-Nineteenth century) to suggest that either gravity did not obey an
exact inverse square law, or that another (as yet unseen) planet must exist inside the
orbit of Mercury. Einstein’s first act upon completion of General Relativity was to apply
this new theory of gravity to this problem, with the remarkable result that this new
theory explained exactly the perihelion shift. In fact, General Relativity has passed every
experimental test to which it has been subjected, from predictions regarding the passage
of light through curved spacetime to the effect of time dilation in the gravitational field
of a massive body (see e.g. Will, 2001).

General Relativity’s most remarkable predictions can be found in the Kerr metric
describing a rotating point mass, which reduces to the Schwarzschild metric (Eqn. 1.6)
in the non-rotating limit. These solutions to the Einstein Field Equations, the properties
of which will be discussed extensively in Chapter 3, predict that, if one concentrates a
sufficient amount of mass in a sufficiently small space, then the resulting gravitational field

will be so strong that not even light can escape. Naively, we can see this in Newtonian
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gravity by following the Eighteenth century amateur astronomer and clergyman, George
Michell (Michell, 1784). He proposed that if light were indeed composed of particles (as
was the case in Newtons corpuscular theory of light), then it would be subject to the
influence of gravity. As such, light would be unable to escape from a star whose escape
velocity was the speed of light, v.,. = ¢ = \/W/r*, implying that r, = 2GM/c?, which
for a star with the mass of the Sun, is approximately 3km.

In full General Relativity, such a radius is described by a null hyper-surface, un-
derstanding the nature and existence of which is somewhat more complex. Notice that
something strange occurs in the Schwarzschild metric at r¢ = 2GM /c?, known as the
Schwarzschild radius, whilst remembering that the co-ordinates in which the line element
(Egn. 1.6) is written are physically meaningless®. In the region below rg, notions of
space and time are reversed and material within this region must necessarily fall radially
inwards. Furthermore, if a photon were to be emitted by this material, then it would also
necessarily fall to ever smaller radii, independent of its in initial direction. The radius rs
therefore marks the boundary (the event horizon, ;)% from within which not even light
can escape. Any object whose radius falls within this boundary is effectively cut-off from
the outside world, able to digest any object foolish enough to approach it - a black hole.
The predictions of General Relativity as to the nature of these compact objects (i.e those
objects with r, = r;) do not end here - many of the properties of spacetime contrast
markedly with Newtonian gravity. These properties are discussed at length in Chapter 3

- here, we merely give a summary of those that are most important for our purposes®:

e Particle orbits: Stable circular orbits are only possible outside the 'marginally stable

3Note that it is possible to transform to co-ordinates where the strange behaviour of the line element

at rs disappears - a co-ordinate singularity
4Note that whilst r, = rg for the Schwarzschild metric, this is not true in general (see Chapter 3)
SLight bending and gravitational redshift are not unique to black holes - they are a fundamental con-

sequence of General Relativity. The solutions describing black holes enable us to make specific prediction

regarding these effects, which can then be tested by comparison to observational data.
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orbit’, once within this radius, particles are necessarily captured by the black hole.

e Light bending: Photons follow null geodesics, which are determined by the curvature
of spacetime, i.e. light no longer travels in straight lines. Light is able to exist in

unstable circular orbits close to the black hole.

¢ Gravitational Redshift: Photons emitted from radius r, with energy E, are received

at radius r, with energy E, where E,/E. = 1/(gu)o/ (9tt)e-

Furthermore, if we consider the general case of a rotating black hole, then we have an

additional property that we wish to test:

e Frame dragging: Material close to a rotating black hole is dragged round by the an-
gular momentum of the hole itself. Within the ’ergosphere’, no geodesics exhibiting
purely radial motion are possible - test particles are forced to rotate in the same

direction as the black hole.

Clearly, confirming the existence and nature of black holes is an extremely important
step in confirming the validity of General Relativity. The past three decades have seen
remarkable progress in attempting to accomplish this aim, driven (in part) by the rapid
development of the relatively young field of X-ray astronomy. It now seems almost certain
that supermassive black holes (M ~ 108M(,) are present at the hearts of many (if not all)
Galactic Nuclei, whilst stellar mass black holes are thought to be the compact companion
in many Galactic Binary systems. In recent years, a new class of Ultraluminous X-ray
sources have emerged, which may well harbour intermediate mass black holes, although
this result is still uncertain (see e.g. Miller & Colbert, 2004). Testing the properties of
the associated space-times remains a highly controversial topic however, but even here,

efforts have met a remarkable degree of success, as we shall shortly see.



Chapter 2
Black Holes, Accretion

and Tests of Strong

Gravity

Abstract

Astrophysical black holes are macroscopic objects, ranging from the stellar mass black
holes found in many galactic sources to the supermassive black holes found at the hearts
of many galactic nuclei. In this Chapter, we outline how such objects are detected and
examine in detail the high-energy spectral characteristics of stellar mass black holes where
gas is accreted by means of a disk. We briefly review how, in these systems, it is possible
to interpret the two canonical spectral states in terms of two corresponding accretion
geometries, which can be used to drive our understanding of the physics of accretion.
llumination of gas within the accretion disk necessarily results in the production of a
complex reflection spectrum, which, for low to moderately ionised material contains an
intrinsically sharp Iron Ko fluorescence line at ~ 6.4 keV. The observed properties of
photons emitted from an accretion disk within a strong gravitational field are determined
by both the accretion disk and the gravitational potential, which has led to the adoption
of the properties of the Iron Ko line as a test of strong gravity. We review the processes
by which this spectral feature is formed and briefly examine the observational evidence

in support of these ideas.
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2.1 Detecting Black Holes

The formation of a stellar mass black hole represents the likely end point of stellar evolu-
tion for massive stars. Calculations of the structure of the degenerate remnants of these
objects, using realistic equations of state and applying General Relativity, indicate that
the upper mass limit for a relativistic compact star is 2 — 3Mq - above this limit collapse
to a black hole seems inevitable. The question therefore is to identify such objects within
the galaxy - black holes are, by their very nature, dark objects and so we must infer their
existence from secondary data. Gas accreted onto a stellar mass compact object within
a binary system is expected to emit radiation in the medium to hard X-ray bands (see
Section 2.4), which implies that luminous galactic X-ray sources may well be associated
with stellar mass black holes. We can determine whether such as system does indeed

contain a black hole by use of the mass function, f(M):

_ PopK}  Misin®i
(M) = 2rG  (1+q)? (2.1)

f(M) allows us to infer the mass of the compact star (the primary), M; from observations
of the inclination, ¢ and the mass ratio, ¢ = M/M;, where M is the mass of the companion
star. Inspection of Eqn. 2.1 reveals that f(M) represents a minimum estimate for the mass
of the compact star in a binary system. Therefore, if we determine that f (M) 2 3Mp,
then this alone is sufficient to strongly imply that the compact star is indeed a black hole.
To date, 12 galactic binary systems have been confirmed as containing a black hole using
this technique, with a further 6 being confirmed by combination with additional data,
which implies that M, >

~

3Mp. Additionally another 22 binary systems are strongly
suspected of containing a black hole primary. For a detailed review of all of these systems,
the reader is referred to McClintock & Remillard (2003) and references therein. Of course,
the mass of the compact object in the binary system may not exceed the critical mass
for gravitational collapse - in this case the compact object is likely either a Neutron Star

for masses 1.4 — 2.0M)) or a White Dwarf (for masses < 1.4Mc). These systems are,
O] 0]
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of 3 x 108 M, concentrated within a distance of 2 x 1013m (Schodel et al., 2002; Eisenhauer
et al., 2003; Ghez et al., 2003, 2005). Furthermore, observations of the (seemingly) asso-
ciated radio source, Sagittarius A* indicate that the dark object possesses M > 10° M,
R < 27Rgs (Bower et al., 2004). It therefore seems likely that the galactic centre contains
a supermassive black hole. Taken in context, this result is unsurprising, Magorrian et al.
(1998) had already used extensive data from the Hubble Space Telescope to demonstrate
that most, if not all, nucleated galaxies harbour a supermassive black hole at their centre.

However, as with the stellar mass black holes, it is far easier to identify supermassive
black holes by looking for copious amounts of radiation being produced in a small region.
The nuclear luminosity of many galaxies (i.e emission from the very centre of the galaxy)
far exceeds that of the combined emission from the rest of the galaxy. Not only are
these nuclei extremely bright, but are also highly variable, which implies a large energy
output in a small region. The only description of these Active Galactic Nuclei (AGN)
which appears capable of describing the central engine powering the output of the galactic
nucleus is accretion onto a super-massive black hole (Lynden-Bell, 1969). One can explain
the bewildering variety of associated phenomena via the unified model of AGN (Figure
2.1, see e.g. Krolik, 1999). In this description, emission from the central disk is reprocessed
on larger scales giving rise to the wide variety of phenomena associated with these ob jects
(examples of which are show in Figure 2.1), with the model gaining widespread acceptance

through the work of Antonucci & Miller (1985).

2.2 Observing Black Holes

It seems likely that many astronomical systems contain a massive compact object whose
properties strongly resemble those of the black holes predicted by Einstein’s General
Relativity. Proving that these are indeed the black holes predicted by General Relativity
and that their properties are correctly described by General Relativity is somewhat more

challenging. To accomplish this, we need more detailed information than it is possible
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to obtain from the mass function (in the case of the BHBs) or qualitative arguments
regarding the properties of AGN.

We first turn our attention to the Black Hole Binaries. Here, if the companion star
fills its Roche Lobe, then mass transfer can occur through the inner Lagrange point and
flow towards the compact object. This includes all of the systems where the companion
star has lower mass than the primary (known as a Low Mass X-ray Binary, LMXB).
Alternatively, if the companion star is of sufficiently high mass (2 10Mg), then it is
capable of driving a strong wind, which can then be accreted by the compact object
(known as a High Mass X-ray Binary, HMXB). Independent of the type of system, the
fate of the transferred matter depends principally on three physical properties / processes

(see e.g. Frank et al., 2002, for a review):
1. The angular momentum of the material
2. The physical process by which the material loses angular momentum
3. The physical process by which the material cools

We refer to the structures formed by the gas in this process as the accretion flow, which
(generically) must provide some method for the gas to lose angular momentum (and
hence flow towards the black hole) and, if the flow is to be luminous, some method by
which gravitational potential energy released in the accretion process can be converted
into radiation. For LMXBs, the luminosity of the system is dominated by emission in
the X-ray spectral band, which has its origin in the inner regions of the accretion flow
and is accompanied by emission in the optical band due to reprocessing of the X-ray
flux. By contrast, the spectra of HMXBs are rather more complex, due to (for example)
absorption and / or a wind from the companion star. In common with many other types of
accreting objects (from young stars to AGN), BHBs also exhibit outflows and collimated
jets, which also seem to posses the relativistic velocities observed in similar phenomena

in Active Galactic Nuclei. Co-ordinated radio, infrared and X-ray observations of sources
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these sources. The recently launched Japanese observatory Astro-E2 will further enhance
our understanding, as it is capable of providing high-resolution, broad band spectra of
many of these systems.

In the most simplistic description (following Done & Gierlifiski, 2004; Zdziarski &
Gierlifiski, 2004), the X-ray spectra associated with these sources can be divided into
two categories (known as spectral states). The first of these, known as the soft state, is
dominated by a strong black body component, peaking at ~ 1keV for a 10M black
hole at the Eddington luminosity? (having its origin in thermalised emission from a cold
accretion disk) along with an additional X-ray tail to higher energies (the cut-off of which
is, as yet, undetermined). The properties of this X-ray tail allow us to divide the soft
state into three sub-categories: (i) the ultrasoft state (US, weak tail); (i) the high state
(HS, moderate tail); (iii) the very high state (VHS, strong tail). At lower luminosities
(as denoted by L/Lgqyq), Black Hole Binaries exhibit a rather different spectra, known
as the low/hard state (LS), characterised by a weak soft black body component, but is
dominated by emission at energies substantially higher than that of the disk, which cut-
off at energies 2 100keV. To produce any emission at energies substantially higher than
that of the intrinsic disk energy requires that some fraction of the gravitational potential
energy is dissipated in optically thin regions, so that a small number of electrons gain the
majority of the released energy and are therefore able to produce hard X-ray emission by
Compton up-scattering of lower energy photons.

It is possible to interpret the two distinct spectral states observed in BHBs in terms of
two different accretion geometries (see Figures 2.2, 2.3 Zdziarski & Gierliriski, 2004; Done
& Gierliniski, 2004). The soft states correspond to a cold accretion disk, surrounded by
an optically thin, Comptonising corona, the relative strength of which is correlated with
the strength of the hard X-ray tail. By contrast, the canonical hard state corresponds

to an optically thin, geometrically thick accretion flow close to the black hole, joining

2The Eddington luminosity, Lgqq is defined as the luminosity at which the gravity is exactly balanced

by radiation pressure, for a system with negligible angular momentum
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on to a cold accretion disk at larger radii. It is important to realise that the spectral
states of individual sources evolve in time, thereby enabling us to trace the evolution of
the accretion flow. Note, however, that (in general), state transitions in LMXBs can take
place at a wide range of luminosities and so the spectral state for a particular source at
any given moment is determined by the history of the source (hysteresis, see Zdziarski &
Gierlinski, 2004). The maximum luminosity associated with the hard state (determined
by cooling processes within the flow) overlaps that of the minimum luminosity associated
with the soft state (determined by evaporation of the cold disk) and so the transition can
take place at a range of luminosities. Fender et al. (2004, 2005) have recently proposed
a model, based on combined radio, infrared and X-ray observations of a range of BHBs
which shows how the spectral evolution of BHBs can be related to the changing accretion
geometry and, more importantly, to injections of relativistic blobs into the jet- observed
in many BHBs (see Figure 2.5).

Black holes are incredibly simple objects, which can be fully described by knowledge
of their mass and angular momentum (see Chapter 3). Theoretically, we should therefore
be able to understand the behaviour of the supermassive black holes found at the hearts of
AGN simply by scaling, for a given L/Lgqq, the observed properties of the accretion flow
in BHBs (Done & Gierlinski, 2005). The principal effect (in theory at least) of this vast
increase in black hole mass is to move the peak energy of the spectrum from ~ 1keV in
BHBs to ~ 10eV in AGN (for systems emitting at Lgqq, see Section 2.4). This complicates
the picture for observations of AGN in the canonical soft state? as the 2 — 10keV spectral
band is now dominated by the highly variable X-ray tail due to the optically thin corona,
in contrast to the BHBs, which are disk dominated here (see Figure 2.3).

3such as the PG quasars (the likely counterpart of the high state, see Sanders et al., 1989; Elvis et al.,
1994; Laor et al., 1997; Boroson, 2002) and NLS1’s (the likely counterpart of the very high state, see
Boller et al., 1996; Brandt et al., 1997)
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2.3 Reflection and Iron Ko Fluorescence

In reality, the spectra of these systems are rather more complex. Consider, for example,
the situation in the soft states, where we have a cold accretion disk surrounded by a hot
Comptonising corona. Soft seed photons from the disk are Compton up-scattered into
the hard X-ray band, which we see as the tail in the soft spectra. These hard X-ray
photons are also able to re-illuminate the disk, which has important consequences for
the observed spectra (see Figure 2.4b). A similar situation is possible in the hard state,
where the source of hard X-ray photons is now the hot inner flow, which are incident
on the disk at larger distances from the central mass (see Figure 2.4a). Additionally, it
may be possible that hard X-ray photons are produced in shocked material above the
spin axis of the black hole, which are then able to illuminate the disk (the lamp post
model, Martocchia et al., 2000). Whatever the illumination geometry, many studies (see
e.g. George & Fabian, 1991; Matt et al., 1991; Reynolds, 1996; Ballantyne et al., 2001;
Ross & Fabian, 2005) have shown that illumination of a semi-infinite slab of cold gas (i.e.
the disk) by a hard X-ray power law results in a complex reflection spectrum (see Figure
2.6, left-hand panel). This figure clearly demonstrates that this reflection spectrum in
the 1 — 50keV X-ray spectral band is dominated by Iron Ko fluorescence at 6.4keV. A
detailed description of this process can be found in the excellent review by Fabian et al.
(2000), the principle arguments of which we summarise here for completeness.

Hard X-ray photons incident on the slab of cold, neutral gas are subject to one of

three possible outcomes, which can be grouped into two distinct categories
1. Scattering out of the slab
2. Absorption, followed by:

® Destruction by Auger de-excitation

e Reprocessing into a fluorescent line photon which escapes the slab
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picture is more complex, but qualitatively similar to the neutral case, up until He-like and
H-like iron ions, where line production is due to capture of free electrons (recombination),
which also results in a radiative recombination continuum (RRC). Introducing the ionisa-
tion parameter, {(r) oc Fx(r)/n(r) (where Fx(r) is the incident X-ray flux per unit area
of the disk and n(r) is the co-moving electron number density), enables to us to split Iron
Ka fluorescence as a function of ionisation state into four different regimes (Matt et al.,

1993b, 1996, see Figure 2.6, right-hand panel):

1. £ < 10% erg cm s~!: Disk is weakly ionised, reflection spectrum resembles that due

to cold gas with a strong, narrow Iron Ka line at 6.4keV .

2. 10% erg cm s7! < € < 5 x 10% ergs cm s~!: Intermediate regime - partially ionised
iron resonantly absorbs Ka line photons (provided the disk is non-turbulent), which
are trapped in surface layers of disk (until destruction by Auger effect), leading to

very weak Iron Ka line

3. 5x 10% erg cm s7! < £ < 5 x 103 ergs cm s™*: Iron is sufficiently ionised that Auger
de-excitation is no longer possible; Iron Ko photons are able to escape the disk after

multiple scatterings, resulting in strong line at 6.8keV .
4. £ >5x 10% erg cm s™!: Disk highly ionised (iron completely); no line production

Provided that the disk is not too highly ionised, it therefore seems likely that we should
expect to see a significant contribution to the spectrum in the X-ray spectral band due
to reflection from the disc surface, in particular, a strong, narrow feature at ~ 6.4keV
due to Iron Ka fluorescence. Indeed, in many sources (both BHBs and AGN), this is
indeed what we observe, however, the observed Iron Ko feature is rather broad, instead
of the narrow line predicted by the neutral reflection spectra (see Section 2.5). In fact,
Fabian et al. (1989) predicted that an intrinsically narrow spectral feature produced in an
accretion disk in the strong gravitational field of a black hole should be broadened by the
combined effects of gravitational redshift (due to the gravitational potential) and Doppler
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broadening (due to the motion of material in the disk)?. This idea lies at the heart of this
work, the spectra of accretion flows in strong gravity carry the imprint of not only the
accretion flow (which produces the spectra in the first place) but also the gravitational

field in which the photons are produced. This leads us to the somewhat bold hypothesis:

Detailed modelling of both the accretion flow and the propagation of photons
in the spacetime of the black hole enables us to perform precision tests of

Einstein’s General Relativity in the strong field regime

In the remainder of this Chapter, we treat these two ideas in turn, with accretion flows
addressed in Section 2.4 and how the spectral and timing properties of these flows may
be used to provide observational tests of strong gravity, along with the current status of

these tests in Section 2.5.

2.4 Accretion Flows in Strong Gravity

The challenge set for theoretical discussions of accretion in Black Hole Binaries and Active
Galactic Nuclei is to develop a self-consistent picture of the properties of these accretion
flows that are capable of being tested against observational data. In the case of BHBEs,
this picture must explain the two-phase accretion flow (i.e. cold disk + hot corona; hot
inner flow + cold outer disk) along with the connection to the relativistic jet. For AGN,
we have a similar picture, with the state associated with the hot inner flow + cold disk
probably corresponding to low luminosity (quiescent) AGN (such as the galactic centre,
NGC4258) and the cold disk + hot corona corresponding to objects such a MCG-6-30-15.

‘The surge of efforts in this direction in the early 1970’s led to the development of what

is now known as the standard model of accretion disks that was developed by Shakura &

“Whilst alternative explanations of the observed broadness of the Iron Ko line do exist, the level to
which these affect the line remains highly controversial (see e.g. Reynolds & Nowak, 2003, for a recent

review)
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Sunyaev (1973); Novikov & Thorne (1973); Page & Thorne (1974) and has been described
by many authors subsequently. Our discussion largely follows the excellent treatments
given in Frank et al. (2002); Krolik (1999). The standard disk model describes thin ac-
cretion disks, where gas moves on circular orbits very close to the plane z = 0 in the
cylindrical co-ordinate system (7, ¢,z). The dynamics of the disk are modelled through
conservation of both mass and angular momentum, which are enforced, respectively, by
the continuity equation and the analogue of the Navier-Stokes equation for angular mo-
mentum. Assuming that the disk is azimuthally symmetric, we are then able to follow the
dynamics by use of the (one-dimensional) surface density, & = [ p(r, z)dz, rather than
the (two-dimensional) mass density, p(r, z). We start by treating the problem in Newto-
nian gravity, which enables to examine the underlying physics without the complication
introduced by relativity (the fully relativistic version of the calculation is discussed later).

With these assumptions the equations governing the dynamics of the disk are:

%f + = ! (,;9 (rZv,) = 0; (Mass Conservation) (2.2)
J ,, 10,4 1 0G _
e (r*=Q) + o (r*Sy,) = T (Angular Momentum Conservation) (2.3)

Here, Q is the orbital frequency (for a Keplerian disk Q oc r=3/ ?) and v, is the speed in
the radial direction. The right-hand side of the second of these Eqn. 2.3, describes the
(local) gradient of the torque, G, per unit length around an annulus. That such a torque
is necessary, is clearly the case if material is to be accreted by the central object, however
the nature of this torque is unclear. The boundary conditions for the above equations are
rather different, dependent on whether we wish to discuss BHBs or AGN. In the former
case, mass streams from the companion star by Roche Lobe overflow, through the inner
Lagrange point and joins onto the outer edge of the disk. Mass is (primarily) lost from
the inner edge of the disk, whilst the angular momentum of the accreting material must
be transferred to the outer edge of the disk, where it is lost to the companion star by tidal
torques. The situation in AGN is rather different - whilst mass is still lost from the inner

edge of the disk, we have no knowledge of the source of the material forming the disk, nor
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is there a convenient angular momentum sink in the form of the companion star.

Before we can progress further with the discussion, we need some model of describing
the torque, G. Simplistically, this can be done by assuming that the torque is due to some
local viscosity, the origin of which is unspecified (gas pressure, magnetised winds, or 7).
To accomplish this, we introduce the stress tensor, T;; which describes the rate at which

momentum in the ith direction is carried in the jth direction by the (unknown) viscosity:

T, = [ Ov; v,

2
— = (V- 4)6; 2.4
w g+ 52 - 2w 94, (2.4)
For standard accretion disks, the only interesting component of T;; is that relating the

(7, ¢)-coordinates:

=P

Here, v is the viscosity. The torque between two adjacent rings is then:

Q
Trp = pv [% ¢4 ] 0 (2.5)

G = //’I‘ Trpdpdz = 2nr I/Z?;: (2.6)

In combination with Eqn’s 2.2, 2.3, this prescription for the torque allows us to write down

expressions for the radial velocity, v, (which can be instantly used to solve the continuity

v, = [% ('r 2%)] [rz% (TQQ)}—I (2.7)

Now, for time-steady disks, we can simplify much of the above discussion to yield some

equation):

important insights into the behaviour of a simple accretion disk solution. By setting the

time derivatives of Eqn’s. 2.2 and 2.3 to zero, we obtain:

M = —27r%v,; (Mass Conservation) (2.8)

r’MQ+C = -G, (Angular Momentum Conservation) (2.9)

The constant of integration, C corresponds, physically, to the angular momentum flow
in the disk, which is determined by finding the radius, r,,,, where the stress is forced to

zero. For a black hole, we expect such a radius to located at the marginally stable orbit,
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Tms, below which material falls ballistically into the hole (see Chapter 3). We therefore
have:

C=—12 rms) M (2.10)
We can therefore write conservation of angular momentum in the form:

e O - I

Thus far, our only concession to a full relativistic treatment of the problem has been
the enforcement of the stress-free boundary condition at the marginally stable orbit, 7,,,,
which we have taken as the inner edge of the disk. Novikov & Thorne (1973); Page &
Thorne (1974) explicitly demonstrated that the dynamics of the disk in a fully relativistic
calculation could be introduced by the inclusion of three multiplicative functions, the
properties of which are discussed at length in Krolik (1999). However, we can still continue
without these corrections to gain a qualitative understanding of the properties of accretion
disks as predicted in the standard model. Following Frank et al. (2002), the energy
dissipated into the gas (by the torque) per unit disk surface area, D(r) is found by

considering the work done by the net torque acting on a ring of gas, yielding:

G aQ(r) _vE [ 6Q(r)]2: _rMQ(r) 69(r) [1_ (rms)2ﬂ(rms)

4 or Q(r) ] (2.12)

or

D(r) = 4nr Or 2

r

The luminosity emitted by a disk from r; — 7y is found by integrating this function over

this region of the disk. For a Keplerian disk, we find that:

3GI;/IM (_1_ _ l) (7‘2 >r > Tms)

ro 2r
L(r) = 2/ / D(r)rdrdg = noon (2.13)
r Jo %Gr]:f” (11 = Tms; T2 — 00)

The first of these solutions, valid for regions of the disk far away from its inner edge, tells
us that the radiated energy is greater than the gravitational potential energy lost by the
gas in the disk. Essentially, potential energy that is released in the inner regions of the
disk has been transported out with the angular momentum and is radiated at larger radii.

The second of these solutions, valid for the entire disk, tells us that overall, half of the
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gravitational potential energy liberated during the accretion process is radiated away by
the disk, whilst the remainder is converted into kinetic energy of the gas.

If we assume that the disk is optically thick in the z-direction, then each element of
the disk surface will radiate approximately as a blackbody, the temperature of which is

found from the dissipation equation: (Eqn. 2.12) via:
T(r) < v/ D(r) (2.14)

Ignoring relativistic corrections (to both the dynamics of the disk and the propagation of

photons to the observer), the spectrum of the disk can therefore be approximated by:

4mhcosivd [Tow rdr
F,=——— 2.1
c2D? /,in explhv /kT(r)] — 1 (2.15)

Importantly, F, is independent of viscosity, implying that observed deviations of the
accretion disk spectrum from a blackbody cannot be due to the viscosity mechanism -
rather they will due to our assumptions regarding the vertical structure of the disk and
lack of relativistic corrections to both the disk structure equations and the propagation of
photons. This prediction, however, matches well to the observed properties of accreting
black holes, where we observe a blackbody component in the soft X-rays for BHBs and
in the UV for AGN.

The standard accretion disk model therefore provides us with something that at least
approximates the cool accretion disk seen in the soft states of BHBs. How then can we
explain the hot inner flow observed in the low-luminosity, hard X-ray dominated states
of these systems? Qualitatively, at low luminosities, the mass accretion rate through the
disk is reduced, which implies a corresponding decrease in the surface mass density, 3.
Below a certain level, there is no longer enough mass contained within an annulus of
the disk for it to be accurately described as optically thick in the z-direction. The disk
is therefore no longer able to radiate as a blackbody, which requires that, for an equal
amount of heat to be dissipated at a given radius, the temperature of the material must

rise. This in turn causes the mass density to decrease (as the material now has more
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thermal energy) and the disk evaporates, leaving us with a geometrically thick, optically
thin accretion flow (Rézanska & Czerny, 2000). If heat is dissipated in the protons, then
the low mass densities imply that it may be difficult for the flow to efficiently transfer the
heat to the electrons, which is necessary for the efficient conversion of heat to radiation.
If this is the case, then the heat may well be advected (along with the protons) into the
black hole, instead of being radiated away, known as an Advection Dominated Accretion

Flow (ADAFs, for an in depth discussion see e.g. Frank et al., 2002).

We are now in possession of a simple description of the accretion flow, which appears
to match (at least some of) the observed properties. What then provides the viscosity
driving the outward transport of angular momentum in the accretion disk? Shakura
& Sunyaev (1973) noted that the natural scale for any hydrodynamic stress is the (gas)
pressure, p and therefore proposed that the viscosity should be proportional to this v o p,
which implies an effective viscosity v ~ acsh (see e.g Frank et al., 2002). This a-model,
as this prescription has become known, takes all of our ignorance and wraps it up into
a. Unfortunately, this approach is rather unsuccessful. The only physical mechanism
that seems capable of generating angular momentum transport out through the disk is
the Magneto-Rotational Instability that was rediscovered by Balbus & Hawley (1991)
and originally described by Velikhov (1959); Chandrasekhar (1961). The essential idea
behind this instability is that a radial perturbation of an initially poloidal magnetic field is
unstable, with the growth rate < the orbital frequency. This instability is rather different
from the a-model as the free energy arises from the shear between adjacent rings of gas,
but different radii within the disk are coupled by the magnetic field - hence the instability

is fundamentally non-viscous in nature (as opposed to the a-model).

So what of the a-model? Are we to consign it to the ’dustbin of history’, despite its
successes in explaining the observed spectra? Leaving aside the problems of the viscosity
mechanism, does the a~-model give a good description of the possible form of an accretion

disk? The answer to this question lies in the stability of the a-model solution of the thin
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a strong dependence on black hole spin (see e.g. De Villiers et al., 2005). Inclusion of
radiative cooling into these simulations complicates the picture enormously, due to the
presence of three instabilities (convection, Shaviv modes and photon bubbles) which can
lead to vertical energy transport by the MRI (Turner et al., 2005). Current state-of-the-
art studies are limited to the investigation of small patches of disk around ~ 40GM /c?
from the central black hole, where gravity can be taken to be approximately Newtonian.
Generically, these studies seem to predict disks that are qualitatively similar to the stan-
dard case, with the bulk of the magnetic pressure (which is thought to trace dissipation
Rosner et al., 1978, see Chapter 6) concentrated external to the main disk body, as shown
in Figure 2.8. As an aside, we note that Figure 2.8 illustrates that the accretion stress
approximately traces the magnetic pressure, rather than the gas or radiation pressure,
in distinct contrast to the a-model. Returning to the initial thrust of our discussion, it
fortunately, therefore, it appears likely that accretion disks in the MHD approximation
are still able to provide a two-phase description of the accretion flow, which appears to
correspond well to the geometry’s observed in both BHBs and AGN. Interestingly, these
studies also give us a quantitative insight into how relativistic jets may be formed in these
systems and how these jets are related to the properties of both the accretion flow and the
central black hole (for recent reviews see, e.g. Begelman, 2001; Blandford, 2002; Meier,

2003).

2.5 Testing Strong Gravity

The obvious way to test both the models of the accretion flow and the predictions of
General Relativity is by direct comparison of their predictions to the observed spectral
properties of accreting black holes. In Newtonian physics, such a calculation is straight-
forward. Light travels in straight lines, unaffected by the gravitational potential and so
one can analytically relate the observed and emitted spectral properties of the accretion

flow. In a fully General Relativistic calculation, light no longer travels in straight lines,
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etc.) along with those due to the dynamics of the disk (Doppler shift, length-contraction,
etc.). The resulting spectra are shown in Figure 2.9, along with the intrinsic disk spectrum
for comparison. The differences between the predicted spectra for different black hole spins
at constant inclination are clearly rather small. Attempts to determine the form of the
gravitational potential using this broad spectral feature (see e.g. Laor & Netzer, 1989;
Ebisawa et al., 1991, 1993; Makishima et al., 2000; Gierliriski et al., 2001; Li et al., 2005)
not only suffer from the problems of attempting to distinguish between similar broad
spectral components, but also from our limited knowledge of the shape of the intrinsic

disk spectrum.

From an observational point of view, it is far easier to examine relativistic effects on
an intrinsically narrow spectral feature, such as the Iron Ko fluorescence feature expected
to be present when the cold accretion disk is illuminated by hard X-ray photons. Fabian
et al. (1989) first examined the influence of both gravitational and dynamical effects
on this intrinsically narrow line, finding that they resulted in a characteristic broad,
double-peaked, skewed profile (see Figure 2.10). Laor et al. (1990); Laor (1991) extended
these results to the case of maximally rotating black holes, fully including the effects
of light-bending. Further work continued apace, Chen & Halpern (1990) examined the
polarisation properties of broad optical emission lines; Matt et al. (1991) extended the
earlier results to different disk geometries and illumination patterns; Matt et al. (1993b)
demonstrated the formation of substructure in the line, due to gravitational lensing effects,
for flat accretion disks viewed at high inclinations around Schwarzschild black holes (see
Chapter 4); Matt et al. (1993a) examined the line shapes produced by photo-ionised
accretion disks; Bao et al. (1994) determined the contribution of multiple-orbit photons
to line formation for a Schwarzschild black hole (see Chapter 5); Viergutz (1993) described
how photon trajectories could be quickly integrated for general emission geometries (see
Chapter 3); Karas et al. (1995) calculated line profiles associated with a self-gravitating
disk; Fanton et al. (1997) gave an insightful description of how photon trajectories may be
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quickly integrated for flat disks to determine line shapes; Martocchia et al. (2000) (drawing
on previous work) gave a full relativistic treatment of illumination of the disk by a central
source (the ’lamppost model’®, see Chapter 6); Agol & Krolik (2000) performed detailed
calculations of the effect of relaxing the stress-free inner boundary condition on both the
intrinsic disk spectrum and the shape of the line profile, which was extended by Li et al.
(2005), who included the effects of returning radiation. Finally, Dovéiak et al. (2004) have
outlined an extended scheme for use within the XSPEC spectral fitting package (Arnaud,
1996) which enables the rapid analysis of fluorescent Iron Ko profiles in strong gravity.
Observational evidence for broad Iron Ka lines first came from the Seyfert 1 galaxy,
MCG-6-30-15, which was the first Active Galactic Nucleus to exhibit X-ray reflection from
predominantly neutral material (Nandra et al., 1989; Pounds et al., 1990). Subsequent
studies of this object, driven by Yasuo Tanaka and Andy Fabian using the joint Japanese
/ American Advanced Satellite for Cosmology and Astrophysics (ASCA), revealed a sig-
nificantly broadened Iron Ko line. As described by Tanaka et al. (1995), this feature
could be well described by line emission from an accretion disk around a Schwarzschild
black hole, viewed at an inclination of 8 ~ 30°, with the accretion disk extending down
to the marginally stable orbit (which, for a Schwarzschild black hole, is located at 6ry).
The ASCA observations of MCG-6-30-15 revealed the line emission to be highly vari-
able, associated with flaring events in the innermost regions of the accretion disk (see
Figure 2.11). In one particular set of observations (the 1994 Deep Minimum state, Iwa-
sawa et al., 1996), the broadening of the line was so significant as to exceed that allowed
by the standard accretion disk model around a Schwarzschild black hole. Explanation
of such extreme broadening requires the invocation of a disk extending deeper into the
gravitational potential than allowed by the marginally stable orbit associated with a
Schwarzschild black hole. Such an invocation can be accomplished in one of two ways,

either the black hole rotates such that the marginally stable orbit moves deeper into the

%it should be noted, however, that the physical motivation for this model remains unclear and it is

hard to reconcile the illumination geometry with the assumed dynamical properties of the accretion disk
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gravitational potential, or line fluorescence takes place below the marginally stable orbit
(Reynolds & Begelman, 1997). In the former scenario, the observed Iron Ko width allows
us to infer the rotation (’spin’) of the central black hole through the assumption of the
stress-free inner boundary condition in the standard accretion disk model. However, in
the latter scenario, it is possible to produce arbitrarily broad emission lines, independent
of black hole spin. Whilst the scenarios for line production in this circumstance are some-
what more contrived (requiring the formation of a powerful X-ray emitting corona in the

plunging region), it is currently not possible to rule them out theoretically.

Serendipitously, the first observation of MCG-6-30-15 by the European Space Agency
observatory XMM-Newton coincided with a re-occurrence of the Deep Minimum state first
seen in the 1994 ASCA observation. Again, this particular state of MCG-6-30-15 appears
to be associated with a robust, highly broadened Iron Ko line (see Figure 2.12, Wilms
et al., 2001; Vaughan & Fabian, 2004; Reynolds et al., 2004). Detailed modelling of the line
using the more sensitive detectors available on XMM-Newton reveals it to be associated
with a rapidly rotating black hole (assuming the stress-free inner boundary condition),
with a large amount of the fluorescence being generated in the very inner regions of the
accretion disk. In the alternative scenario, where line fluorescence is produced within
the plunging region associated with a Schwarzschild black hole, then the inner radius
lies below 3ry, with virtually all of the emission being produced between this radius and
the event horizon, which seems unlikely. In fact, if we assume that the illumination
pattern generating Iron Ko fluorescence traces the underlying dissipation in the disk (i.e
illumination by a hot corona, as opposed to by a lamppost, Martocchia et al., 2000), then
the concentration of fluorescence towards the inner regions of the disk is somewhat larger
than predicted by the standard accretion disk model, even for a rapidly rotating black hole.
This can be accomplished if the accretion disk is able to extract energy from the black
hole itself, possibly by explicit violation of the stress-free inner boundary condition, as

outlined by Agol & Krolik (2000). This rather surprising result appears robust (Reynolds
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et al., 2004), but remains a rather controversial topic within the community.

Fortunately, MCG-6-30-15 is not the only source that exhibits a broad spectral feature
in the 2 — 10keV band. Approximately half of the known moderate-to-high luminosity
AGN exhibit an Iron Ko line that has been broadened to some extent (see e.g. Nandra
et al., 1997). Caution is necessary however, as seemingly broad lines can results from
complex absorption (see, for example Schurch & Warwick, 2002; Schurch et al., 2003). By
contrast, the widths of iron lines exhibited by BHBs seem correlated with spectra state
(see e.g. Gilfanov et al., 2000). However, recent work by Miller et al. (2004) seems to
indicate the existence of lines with widths comparable to that observed in MCG-6-30-15
in several sources. The robustness of these claims is untested however and their validity

remains a source of intense controversy within the community.

High resolution spectroscopy of broad iron lines allows us test our understanding of
both accretion and the underlying properties of the gravitational field. However, as we
shall see in the remainder of this work, precision tests of strong gravity using these line
profiles relies on our understanding of the (as yet unknown) properties of the accretion
flow. We are not solely reliant on broad iron lines, however. In recent years, high res-
olution timing information available from the Rossi X-Ray Timing Ezplorer (RXTE)
along with GINGA and EXOSAT has lead to the discovery of Quasi-Periodic Oscillations
(QPOs) in the power spectra of many low mass accreting compact objects. In several
BHBs, the QPOs occur in pairs related by small, well-defined, integer ratios (3:2, 5 : 3,
Strohmayer, 2001a,b; Abramowicz & Kluzniak, 2001), which has lead many authors to
suggest that they originate from the coupling of the accretion flow to the gravitational
potential (see e.g. Titarchuk et al., 1998; Stella et al., 1999; Psaltis & Norman, 2000).
This yields the intriguing possibility of probing the black hole spacetime via the temporal
variability of the source. However, the precise nature of this coupling is, as yet, not widely
understood, limiting the current usefulness of this approach. In many other systems, the

QPO frequency is variable, which is either attributed to a characteristic radius within
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The effect of material accreting onto this surface should be readily observable, despite
its high-redshift. Firstly, Narayan & Heyl (2002) propose that if material were accreted
onto such a surface, then eventually the density and temperature on the surface will in-
crease to such a level that a Type 1 thermonuclear explosion would be inevitable, as is
observed in systems containing Neutron Stars. Remarkably, no BHB has ever exhibited
such behaviour, leading credence to the existence of the event horizon in these systems.
Narayan et al. (1997) take this argument a stage further by the examination of the spectra
of a selection of BHBs in quiescence. Quiescent accreting neutron stars tend to exhibit
soft thermal emission from the stellar surface, which implies that a similar result should
be found if black holes did posses a surface (where the heating mechanism would be ei-
ther through deep crustal heating or accretion). Such emission is absent from the BHBs,
indicating the absence of a stellar surface, the natural explanation of which is that the
compact object possesses an event horizon (i.e. is a black hole). McClintock et al. (2004)
examine a particularly suitable BHB, XTEJ1118+480 (due to lack of absorption along
the line-of-sight), again in quiescence, again finding such a spectral component is absent,
seemingly confirming (for XTEJ1118+480 at least) that black holes do indeed have event
horizons. Finally, Done & Gierliniski (2003) examine the spectra of both BHBs and ac-
creting Neutron Stars when the sources are bright. Both types of sources can be explained
in the context of the same spectral model, the difference being the presence of an addi-
tional component for the Neutron Stars, which is attributed to the presence of a surface /
boundary layer (see Figure 2.13). The absence of such a component in the BHB spectra

lends yet further support to the existence of the black hole event horizon.
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Chapter 3
Mathematical

Properties of Strong

Gravitational Fields

Abstract

We introduce the relevant mathematical formalism for computing spectra in the strong
gravitational field of rotating black holes. The properties of the spacetime of such a black
hole are introduced, including the event horizon and ergosphere. The equations of geodesic
motion for both time-like and null geodesics are derived through the explicit separation
of the Hamilton-Jacobi equation. The null geodesic equations are reformulated to enable
the fast computation of photon trajectories. The properties of the effective potentials
governing these trajectories are discussed and it is demonstrated how these properties
may be used to more effectively accomplish the calculation of the photon trajectories.
The importance of multiple orbit photons to the observed properties of accretion flows is
highlighted The tetrad formalism used to evaluate physical quantities in the rest frame
of arbitrarily moving observers is introduced and several important physical quantities
evaluated. Finally, we describe how we calculate spectra of optically thick, geometrically
thin accretion disks.

- 43
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3.1 The Spacetime of the Rotating Black Hole

Many stellar objects that are likely to undergo gravitational collapse to form black holes
(i.e massive stars, neutron stars, etc.) possess some amount of angular momentum before
collapse. It therefore seems likely that the black hole that remains after collapse must
be in possession of some angular momentum. Complete studies of physical processes in
strong gravitational fields must therefore consider the case of the rotating black hole,
despite the complexities that this introduces into the calculations. In Section 2.5, we
saw that there is increasing evidence that some Black Hole Candidate objects may be in
possession of spin parameters as high as a = 0.998, so there is a clear astrophysical need
to consider rotating black holes!.

By contrast, it is almost certain that no astrophysical black hole can possess any
significant amount of charge. Misner et al. (1973) provide a simple, concise argument for
this, which we reproduce for completeness. Any Black Hole Candidate that had significant
charge would exert attractive electrostatic forces on electrons and repulsive electrostatic
forces on protons in the surrounding Interstellar Medium or Accretion Flow. The ratio
between these forces and the gravitational force of the black would be ~ 102, It is
therefore apparent that any net charge of the black hole will be rapidly neutralised and
so any astrophysically realisable black hole can be considered to be uncharged. We can

therefore characterise the source with the parameters:
J .
M = Mass; a= v Angular Momentum per unit Mass;

With this choice of parameters, the most general solution of the Einstein Field Equa-
tions describing a rotating black hole is given by the Kerr family of solutions (Chan-

drasekhar, 1983). Written in Boyer-Lindquist co-ordinates, using gravitational units

'In fact, Thorne (1974), working in the context of the standard accretion disk model, showed that
a = 0.998 is the maximum obtainable black hole spin when one includes the effect torque exerted by

captured photons on the evolution of the hole
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(G = M = c=1), the line element takes the form:
ds? = e?dt? — e® (d¢ — wdt)® — e¥2dr? — e23p? (3.1)

Here, we have defined the metric functions:

2A 22 : 29
ezu P W _ sin

. . 2pup
==, €T =——; ¢
22 Y p2 H

2
=5 e = p? (3.2)
Finally, we have that:

A=r’—2r+a* p*=r’+a’0s%; = (r’+ a2)2 — a®Asin? 6 (3.3)

The line element (Eqn. 3.1) is independent of both the ¢t and ¢ coordinates and hence
the metric is both stationary and axisymmetric. Note that, if we set @ = 0 in the above
equations, then our line element reduces to the Schwarzschild solution describing the

external gravitational field of a non-rotating compact object, i.e.

-1
ds? = (1 _ %) i — (1 _ 3) dr? — r* (d6? + sin? 6dg?) (3.4)

"
We shall now summarise some of the key results related to the line element (Eqn.
3.1) that will be relevant for future discussions, based on the concise account given by
Bardeen et al. (1972). We begin with the observation that the event horizon (’one-way
membrane’) associated with the line element (Eqn. 3.1) is defined by the outer root of
A(r) = 0:
m=ry=1+vV1—-a (3.5)
This takes its familiar value of r, = 2r, in the non-rotating (Schwarzschild) case (Eqn.
3.4). Note that 7, is also a coordinate singularity, in that the radial component of the
line element (Eqn. 3.1) is singular here, whilst we can change coordinate system and find
trajectories that cross r, in an inwards direction (the converse not being possible). It
is also important to note that, in general, the location of the null surface describing the
event horizon does not coincide with the surface described by ¢ = 0, which is described
by:
re(6) = 1+ V1 —a2cos? (3.6)
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Clearly, we have that 7.(6) > r), for all a. This stationary surface is knows as the 'static
limit’, with the region r, < r < r.(6) known as the ergosphere. Within this region, all
observers with fixed (r, #) must rotate in the same direction as the black hole (the positive
¢-direction). Observers within this region are able to access the negative energy orbits
that extract energy from the black hole (see below).

The motion of geodesics in the Kerr geometry is completely described by three non-
trivial constants of motion, which in Boyer-Lindquist co-ordinates are identified as the
total energy, E; the component of the angular momentum parallel to the symmetry axis,

L, and Carters constant, Q, where (see Section 3.2.1):

2
p
Q = pi + cos? [a2 (,u2 - ptz) + =2 ] (3.7)

A fourth, trivial constant is the rest mass of the particle, u. Note that @ = 0 is both a
necessary and sufficient condition for motion initially in the equatorial plane to remain
there for all subsequent times, whilst orbits crossing the equatorial plane must necessarily
have @ > 0.

The four-momentum of a test particle can be obtained through solution of the above
equation, recalling that p* = dz*/d\, where ) is related to proper time by A = 7/u, which

is an affine parameter in the limit g — 0. It is found that:

2-— = +/V; 2 +1/Ve;

d¢ L, aT

T (“E - sin20> N (3.8)
dt 9 (r’+a®)T
Ea = —q (aEsm 0 — Lz) + BN

Here, V;, Vj are effective potentials (see Sections 3.2.1, 3.2.2, 3.2.3):
T=E(r*+a?) - L.q;
Ve =T — A [pr® + (L, - aE)* + Q] ; (3.9)

L
Vo =Q — cos®6 [a2 (1® — E?) +m] ;
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Our interests lie in the study of optically thick accretion disks around Kerr black holes.
In the standard accretion disk model (Page & Thorne, 1974, see Section 2.4), gas in the
disk lies on circular orbits in the equatorial plane of the black hole spacetime. For a circular
orbit of constant radius, ry, we require that dr /d)\ must vanish both instantaneously and at
all subsequent times (that is, the orbit exists at a perpetual turning point). We therefore

have the conditions:
dV;(ro)
dr

Vi(ro) = 0; =0 (3.10)

These two equations can be solved to yield conditions on E, L, for the circular orbit,

specifically:

E r3/2 _orl/2 4 4
b rA/P 3R £ 9g)
. E£(r’F2ar'/? +a?) .

W r3/4\/r32 Z 37172 £ 24

(3.11)

Here (and throughout what follows), prograde and retrograde orbits are denoted by the
upper and lower signs of + and T, respectively. The (coordinate) angular velocity of
circular orbits can be obtained by combination of Eqn. 3.11 with the latter two equations

of Eqn. 3.8. We find:

e (3.12)

Clearly, for circular orbits to be possible at a given radii, the denominator of Eqn’s. 3.10

must be real, which is true only if:
r¥? _3r1/2 £ 90 > 0 (3.13)

The root of this equation, r,y,, describes an orbit with infinite energy per unit rest mass,
which corresponds physically to a photon orbit. Such an orbit is the innermost circular
orbit for all particles for a given black hole spin. We find that:

Toh = 2+ 2cos [g cos™! (:Fa)] (3.14)
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There are two key properties of the circular orbits for r > Tph. Firstly, not all of the
circular orbits in this region are bound, i.e. they posses E /p > 1. If we subject a particle
on such an orbit to an (infinitesimal) outward perturbation, then the particle will escape
to infinity. The marginally bound radius, v, is found by considering the limiting case
E/p>1:

rmb=2Fa+2VIFa (3.15)

Bound circular orbits exist for 7 > rp,. This radius also represents the minimum perihe-
lion of all parabolic orbits (that is orbits with E/u = 1). Parabolic orbits that fall within
Tmb are necessarily captured by hole. This is important from an astrophysical perspective
as particle infall from infinity can be described by a very nearly parabolic trajectory.

Not all of the bound circular orbits in the equatorial plane are stable. For such an
orbit to be regarded as stable, we must have that:

dz‘/,,.(’f'o)
dr?

=0 (3.16)

Applying this condition to the relevant part of Eqn. 3.9, it is found that stable orbits
must satisfy:

r? —6r £+ 8art/? — 3¢ > 0 (3.17)

We denote the root of this equation as the marginally stable orbit, rns, which takes the

form:

Tms =3+ Zs F (3~ 2Z1) 3+ Z1 + 22,);
lel+\/1+a2(\3/1+a+\3/1—-a); (3.18)

Zy = 4/3a? + Z?

We show the behaviour of 7, (a), ro(a) (evaluated in the equatorial plane), rph(a),

Tmb(a) and ryp(a) in Figure 3.1. In the case of the extreme Kerr black hole (a=1), we
find that all of these radii are equal, implying that the ergosphere along with the photon,

marginally bound and marginally stable orbits intersect the horizon here. This is clearly
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a contradiction as no time-like curves can exist on the null-hypersurface describing the
event horizon, which is due to a subtlety in the Boyer-Lindquist co-ordinate system. In
fact, if we consider the proper radial distance between these points, then in the limit

a — 1 these separations remain physically well-behaved, as can be seen in Figure 3.2.

3.2 Calculating Photon Paths in Strong Gravity

3.2.1 Geodesics Around Rotating Black Holes

The separation of the geodesic equations in the Kerr metric was first performed by Carter
(1968), in the process discovering the existence of a fourth quantity? that is conserved
along the geodesic path (in addition to mass, energy and angular momentum). Carter
accomplished this by explicitly demonstrating the separability of the Hamilton-Jacobi
equation® governing geodesic motion, which in a spacetime with a metric tensor g*? takes

the form:
,5 _ 005 05
or g Oz §zh

Here, 7 is proper time. The contravariant form of the metric tensor, g*® has components:

(3.19)

2 T
s 00 7y
0 -4 0 0
g% = C . (3.20)
0 0 —p 0
!A— 2 gj 20!
;2;% 0 0 - p2:si:1ne

2A physical interpretation of which has recently be given by de Felice & Preti (1999)
3The Hamilton-Jacobi description of motion originated out of Hamilton’s’ conviction that the ’particle

world line’ of mechanics is an idealisation analogous to the 'light ray’ of geometric optics. In geometric
optics, the localisation of the energy of the light ray is approximate only - Hamilton had the beginnings
of the idea was that this was the same for particles as well - 'quantum physics before quantum physics’!
Together with Jacobi, he developed a formalism by which the motion of the particle is analysed through
the Hamilton-Jacobi Function, the details of which can be found in Misner et al. (1973),Goldstein (1950)



3. Mathematical Properties of Strong Gravitational Fields 52

For completeness, we note that the covariant form of the metric tensor Jop has compo-

nents:
1— %; 0 0 2ar;in20
0o -£ 0 0
dos = (3.21)
0 0 —p? 0
‘2ar;in20 0 0 - [(72 + a2) + %‘;nﬁ] sin? §

Substituting the contravariant form of the metric tensor into the Hamilton-Jacobi equa-

tion, we obtain:

s x? (05)2 4ar 8S S A—a231n20(65)2

or ~PA\Bt) TR 0p T FAsmio \0s
0 5 (3.22)
_A(95) _1(05
p? \ Or p? \ 06
We assume that the variables can be separated and seek a solution of the form
T

Here, 6% = 1,0 for particles and photons respectively, E is the energy of the geodesic and
L, is the component of the geodesics angular momentum aligned with the spin axis of
the black hole. With much algebra, it is found that the Hamilton-Jacobi equation can be

written in the manifestly separable form:

{A[dsr(r)] 1 [(r2+a2)E—aLz]2+(Lz—aE)2+52r2}

dr A
) ) ) (3.24)
dS(8 L; 22 2 2.2 2 _
+{[ 20 ] +<sin20 aE)cos 6+ d6“a”“cos“0 p =0
From this, it is inferred that:
2
A )" _ 1 [(r*+a*) E - aLz]2 — [@+ (L: — aB)? + 6*7
dr A (3.25)

2 2
[dil;a(g)} =Q - (s_l% —a’F? + 62a2) cos? 9
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Here, Q) is a separation constant ('Carters constant’, Carter, 1968). We therefore see that

the solution for the Hamilton-Jacobi function, S, is:

s=%" _mi. L.+ / ' —VZ(T)dr + / ’ VO(0)ds (3.26)

2
Here, we have introduced the effective potentials (c.f Eqn. 3.9):
R(r)= [(r2 +a2) FE - aLz]2 — A [Q + (L, — aE)2 +62r2]

2

(3.27)
6(0)=Q—[ (6* - E* + ﬁz0]00320

The complete set of equations governing geodesic motion around a Kerr black hole
can then be obtained by setting the partial derivative of the Hamilton-Jacobi function, S
(Eqn. 3.26) with respect to the conserved quantities equal to zero. This procedure yields

the set of integral equations:

/\/_d—i— / cos& o
t=TE+2/ [2E—a(Lz—aE]A\/_
wmt ] (F0) o

This set of integral equations can be combined to yield the contravariant components

(3.28)

¢=a/r[(r2+a2)E—aL

of the four-momentum of the geodesic:

T - 2 .onf
dg L,
o _ 00 _ ? :
pPP=r=p A7 |2arE + 112(9( 27“)], (3.29)
dt
t —2 2 _
p'=—x=pA7 (2B - 20rL,)

"The covariant components of the geodesics four-momentum are then found via Po = Gapl®,
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yielding:

R(r
DPr=gnp = A( ); Po = goop® = \/O(0);

Po = 9otP' + gooP® = —Lz; Do = gup' + gisp® = E

(3.30)

Finally, we note that the relation between Carter constant, @ and the covariant compo-
nents of the photon four-momentum (Eqn. 3.7) can be found simply by rearranging the

expression for py in the above.
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3.2.2 The Null Geodesic Equations

Material in an accretion flow near to a black hole emits radiation, which is received by
a (possibly distant) observer. These photons enable the observer to form an image of
the flow, which in turn determines the measured spectral properties (Beckwith & Done,
2004). Photons follow null geodesics, which are obtained from the general case described
in the previous section by setting 42 = 0 (i.e. photons are massless). For convenience, we
reduce the number of parameters for the system by re-normalising L, and Q with respect
to E. We introduce?:
L, Q

The Kerr metric is both stationary and axisymmetric so the derived set of geodesic equa-
tions (3.28 - 3.30) are independent of both of the coordinates t and ¢. The properties of a
given geodesic path (specified by a A, ¢ pair) are therefore completely determined by the

'governing’ equation:

T dr o do
:I:/—z:}:/—- (3.32)
V Bag(r) VE,4(0)
The effective potentials take the form:
Ryg(r)=[(r*+a?) —arX]’ - A q— () —a)
)= [+ @) o - Ao~ (3~ ) .

Oxg (0) = g+ a®cos® 8 — A%cot?
Consider the radial motion of the geodesic, described by the left-hand side of the
above. We fix the ends of the radial trajectories at 7. and 7,, which leads us to the

general form for radial motion (see e.g. Agol, 1997):

sl g2
LN (TesTo

Toodr o dr "t dr
re V/Raglr) re VBr(r) T Jre /Ragr)
Here, we have denoted the radial turning point (either perihelion or aphelion) of the path

motion by 7; and s} (n = 1, 2) can take the values —1, +1 dependent on the nature of the

4) will now always denotes L,/F and is completely unrelated to the affine parameter define in Section

3.1
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path, where n is an index and not a power. From the discussion of Wilkins (1972), there -
are no bound null geodesics that terminate above the horizon, implying that at most there
can be one radial turning point along the geodesic path. There are therefore three types

of radial motion that we must consider:

1. Fromr, to r, with no radial turning point encountered, implying either (st =+1,82=-1)
if re <7oo0r (s; =—1,82 = —1) if r, > r,.
2. Fromr, inwards to perihelion at r;, then outwards to r,, implying that (s} = —1,8% = +1)

for r, <71, e < 71,.

3. From 7. outwards to aphelion at r;, then inwards to r,, implying that (s! = +1, 82 = +1)

for ry > 7o, ¢ > 71,.

For the latitudinal motion we can, in general, have an arbitrary number of turning
points occur along the path (unlike in the radial case). This requires a more complex ex-
pression to describe the contribution of the latitudinal motion. We introduce the variable

m = cos#:

m,
sl (]

Imm)‘sjn T (me, mo) — :i:/ _dL
Me Mqu(m)

(3.35)

= [/mm Wi m}

+ (20 — sh? (14 82)] dm

m. \/ Mg (m

The effective potential now takes the form M) 4(m) = g+m? (a2 — A2 — q) —a?m?. In the
above, m, _ denote the locations of the latitudinal turning points determined by solution
of M) 4(m) = 0 (Rauch & Blandford, 1994), whilst n,, denotes the number of such turning
points through which the path passes and sk? can take the values —1,+1. Specifically,

the case of s}, is described by two possibilities:

1. If my = —m_, then s}, = +1, —1 dependent on whether the path is initially directed

towards the 'north’ or ’south’ poles of the hole respectively.
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2. If my # —m_, then s} is in the direction of the closest of M4 — t0 M,

The sign of s, is determined by the number of turning points, n,, through which the

. 2 —
geodesic passes, s, = —1"m,

Geodesic paths are therefore described by:

2

[ohe? (o, 7o) — [Sms8mnm (Me, M) = 0 (3.36)

Ag mAq

This can be solved analytically in terms of elliptic functions, which is much more efficient
than numerical solutions. Rauch & Blandford (1994) tabulate these functions to determine
the observed coordinate latitude, 6., for photons with momenta (A, q) emitted from a
given radius and latitude which arrive at the observers’ radial coordinate. Alternatively,
Agol (1997), Cadez et al. (1998) fix one end of the radial path at infinity with some
inclination and the coordinates at which the other end crosses the equatorial plane. An
additional method, due to Viergutz (1993) fixes the ends of the photon paths at the
required coordinates, and a minimisation technique is applied to determine valid (A q)
pairs for a given number of orbits of the black hole.

Our approach combines aspects of those described by Rauch & Blandford (1994) and
Viergutz (1993). We invert the reformulated governing equation to obtain the observed
co-ordinate latitude of the geodesic, using the technique described by Rauch & Blandford
(1994):

™ dm 1 9 rslg? s ™ dm
=88 L\ (Te,To) — 5 / o —
/mo Myg(m) A ROl ]/ Myg(m)
ias dm

m_  \/ MA,q (m)

We apply the properties of the effective potentials described by Viergutz (1993) to dra-

(3.37)
—Sm8m [2nm — 51,82, (1+ 82)]

matically reduce the scale of the calculation by analytically restricting the range of A and
q to those which can escape to infinity. Then we search this range for those paths which
contribute to a given image order at the required observed inclination. These geodesics

are then projected to form an image of the system on the observers sky, which is then
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used to determined the measured flux (described in Beckwith & Done, 2004, see Section
3.4). The code therefore allows the fast calculation of geodesics linking any two points in

the spacetime that make a specified number orbits of the black hole.

3.2.3 The Zeroes of the Effective Potentials

To obtain solutions of the reformulated governing equation (3.37), we turn to the tables
of elliptic integrals provided by Rauch & Blandford (1994), as modified by Agol (1997).
These tables, when combined with appropriate numerical techniques allow us, in principal,
to determine the geodesics that link an arbitrary emitter, (e, me) and observer, (r,,m,).

In practise, however, this calculation is far from trivial. By specifying the locations of
the emitter and receiver, we have placed definite restrictions on the values of the angular
momentum parameters, (A, g) for which geodesic motion between these two locations is
even possible. The geodesic motion is dependent on the square root of the two effective
potentials, Ry 4(r), My ,(m), which requires that these functions remain positive definite
at all points along the path. If, at any point on the geodesic, this requirement is broken,
then a potential barrier is necessarily formed and no such motion is possible. Viergutz
(1993) has shown that these requirements can be expressed in terms of the interplay of
a set of algebraic functions, which we consider further here. Note that the application of
these functions enables us to provide tight limits on the region of parameter space which
must be considered in the calculation and hence hugely reduce the scale of the calculation.

We begin by introducing:

3
I
g
E
H
3
3|
I
=
3
H
3

The condition that no potential barrier exists between the emitter and observer can be

re-expressed mathematically as:

Rog(r<r<7)20; Myg(m<|m|<m)>0 (3.38)
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Since the effective potentials are linear in g, we can express these requirements as:

I<Ga(A); €2 gma(N) (3.39)
Here:
2 _ 2
Gr.a ()\) = [Ir i GXL /\)] + (A= a)2
2 (3.40)
_ 2 2. 2
Gma (A) = 1—m2/\ a‘m

Physically, these curves correspond to the locus of points on the (A, @) plane for which the
given co-ordinate, (r,m) is a zero of the associated effective potential. For the latitudinal
motion, it is found that there are two cases that we must consider (taking m as the

pericentre of the latitudinal motion and similarly 7 is the apocentre):

Ima (A) A <ay/1-m?V1-m2

Gma(A) A >ay/1-—m?V1-m2

(3.41)

The description of the radial motion is more complex, due to the existence of the
unstable photon orbits (Chandrasekhar, 1983). These orbits are described by the existence
of a further set of zeroes of the radial effective potential, Ry 4(r) = 0 that is subject to
the additional constraint 8.Ry, (r) = 0 (see Section 3.1. These conditions yield a pair
of parametric equations describing a critical curve on the (A, @) plane, which define the
apparent angular size of the black hole:

1 2 2 _
G,(T—l)- (’I"C a TCAC)
3 (3.42)

c:—c_ 4Ac— c c_12
q a2(rc_1)2[ r (T )]

Ae =

The range of values of r. is given by considering the solutions of 44 = r, (re — 3)* (cor-

responding to the radii of unstable photon orbits, either direct or retrograde, in the

equatorial plane). Following Chandrasekhar (1983), we denote these radii by 7‘1(,;:) and

(;) and so rz(,',';) <r.< r)

T ph

p
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The second complication to this discussion stems from Wilkins (1972). Specifically,
for any particle, orbits with E? > ¢* (where E? denotes particle energy; 42 = 1,0 particle
mass), are unbound, whilst orbits with E2 < 62 are bound. Since photons are massless,
this implies that the only bound orbits are those with negative E? (and so must terminate
behind the horizon), whilst all others must be unbound (except for a set of unstable, cir-
cular orbits). We cannot therefore (unlike in the previous discussion) consider trajectories
with r as pericentre and T as apocentre.

For our purposes, three particular cases describing the behaviour of the ¢ra(A) curve
are of interest. To illustrate these, we consider an extreme Kerr (a = 1) hole, with the
observer located at radial infinity and an inclination of 8, = 30°. We locate the emitter
in the equatorial plane and begin by considering the case rz(,;) < r (Figure 3.3, left panel).
Here, the region of the angular momentum (), q) plane for which no potential barrier is
formed between the emitter and observer is bounded from below by g,n.4()), as described
by equation 3.41. The upper limit of this region is provided by ¢, ()) and it can be shown
that, independent of the locations of the emitter and observer, these curves are concave
and convex functions of A, respectively. This indicates that we can provide limits on the

allowed range of A via:

_ 2ar(1-7) £ VAVISTR ( 4+ mla?) |
= A—d2(1-m2) (3.43)

The apparent angular size of the black hole is defined by the parametric curve g, (re) s A (Te).
Hence, photons whose angular momentum falls under this curve and are directed initially

inwards towards the hole from r are inevitably captured. For r,();) < r, this critical curve

intersects the graph of ¢, 4()A) at some A}~ (the exact intersection being determined

numerically) and so inwardly directed photons with A, < A < AL Gma(N) < g < go(re),

where 7, is determined by inversion of A = A,(r.), can be completely excluded from the

calculation.

We now move the location of the emitter inwards such that rz(,;z’) <r< 'rl(,;) <TF

(Figure 3.3, centre panel). We have that the valid region of the angular momentum plane
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is bounded from below by g, (), as before. The behaviour of the upper bound to the
angular momentum plane is, however, quite different. In this case, since rfj:) <r< r;,;),
there exists some r; = r, which is associated with a (A%, ¢) pair, through equations (3.42).
For A < A7, we therefore have that the upper limit of the angular momentum plane is
given by the critical curve and hence the lower limit on A is determined by At. Similarly,
above A7, the upper limit on the plane is given, as in the previous case, by ¢,.(A) and so
the upper limit on X is given by A, (7,7, a). Note that, for A < A* there are no photons
that are emitted on radially inbound geodesics that reach the observer, whilst for A > A
only those initially in-going photons with values of ¢ above the critical curve can reach
the observer. Finally, we note that for the emitter located at r < 2ry (Figure fig:2.1,
right-hand panel), the graph of g, ,()\) is now convex. However, the relationship between
the various curves remains unchanged from that described in the previous case and the

angular momentum plane remains bound.






3. Mathematical Properties of Strong Gravitational Fields 63

3.2.4 Structure & Properties of Loops on the (), ¢) Plane

We begin by considering solutions to the ’governing’ equation for a simple system where
the emitter is located in the equatorial plane of an extreme Kerr (a=1) hole (6, = n/2)
and takes the form of an infinitesimal ring located at radius 7. For such an infinitesimal
ring, the flux is undefined (since the ring subtends zero solid angle on the observers sky)
and so we concentrate our attention on the behaviour of the solutions on the (A, q)-plane
and the reference frame of a distant observer, the (e, §)-plane® (Figure 3.4). To minimise
the impact of gravitational lensing, we locate the observer at radial infinity and 6, = 30°
(as previously).

Initially, we locate the ring at r, = 8ry (Figure 3.4, left-most panel) and catalogue the
complete set of geodesics of zeroth (N = 0), first (N = 1) and second (N = 2) order. Each
of these geodesic orders form a closed loop on both the (), q) and (a, B) planes. We note
that the projections on both planes are asymmetric about the line A,a = 0 due to the
breaking of spherical symmetry by the black hole spin and also (for the emitter located
at 8ry) that the loops for each individual image order are completely detached. We now
move the emitter inwards to r, = 6r, (Figure 3.4, second from left panel), which causes
the loops associated with the zeroth and first order images to overlap. The solutions to
the geodesic equations are therefore multivalued at these points in (A, q) space, breaking
the statement by Cunningham (1975) that there are two geodesics linking a point on the
accretion disc to an observer for each value of the redshift parameter, g, which (for the
Keplerian disc considered by Cunningham), corresponds to two geodesics at each valid
point in A space. If we now move the emitter inwards to r, = 4r, (Figure 3.4, third
from left panel), we now see that the loops associated with the zeroth order geodesic now
overlaps with both the first order loop and the second order loop.

We now move the emitter further inwards, so that r,(,:;) <1e=3ry < rf,;) (Figure 3.4,

third from right panel). Here, the zeroth order loop still overlaps the first and second

5see Section 3.3.2
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Figure 3.5: As in Figure 3.4 for a Schwarzschild (a = 0) black hole, with (from left to
right) r. = 8,6,4,3,2.5,2r,. The loops display a qualitatively similar behaviour to that
described in the a = 1 case. We note that the restoration of spherical symmetry to
the system (due to the absence of rotation) has removed the asymmetry of the loops on
both planes and hence changed the points of overlap of the loops with respect to the
a = 1 case. For r, < 3ry, there are no photons with N = 2 that propagate to infinity,
furthermore for 7. < 3ry, there are no N = 1 photons that can propagate to infinity
either. More importantly, for r, < 3ry a distant observer is unable to form a complete

(that is ¢ = 0 — 2) image of the ring even using direct (N = 0) photons.



3. Mathematical Properties of Strong Gravitational Fields 66

order loops, however, in this case the first and second order loops now touch. Moving the
emitter inwards still further to 7. = 2r, (Figure 3.4, second from right panel), the zeroth
order loop now detaches itself from the first and second order loops and moves inside
these loops on the (a, 8) plane projection. The apparent angular size of the zeroth order
loop, as measured by the distant observer, is now smaller than that of the first and second
order loops, which has important consequences for the calculation of the emergent flux,
as we shall shortly see. Finally, we move the emitter down to 7, — re = 1078 (Figure 3.4,
right-most panel), the location of 7, in Boyer-Lindquist coordinates (however, this is not
the case in terms of proper distance, see Bardeen et al., 1972). All of the loops are again
detached, however, in comparison to the case where 7, = 8ry, the ordering of these loops
is now reversed on the (a, 8) plane, with the second order now subtending the greatest

angular size of the observers sky.

We now replace the central extreme Kerr black hole with a Schwarzschild (a = 0) black
hole and repeat the preceding calculation. From Figure 3.5, we see that the behaviour of
the solutions on the two planes is qualitatively similar to that of the extreme Kerr case
as we move the emitter from 8r, down to 4r,. However, in this case we note that the
loops are now symmetric about the line A\,a = 0 due to the absence of rotation in the
system and that this results in the quantitative locations of the overlap to change. Note
that we can understand the existence of these overlaps by considering the meaning of
the projection of these loops on the (), q) plane. Recall that, for given (A, q) pair, there
exists a set of roots (r;, m;) of the effective potentials Ry, (1), M. Agq (m). Whether or not
the geodesic path passes through selected members of these sets of roots depends on the
initial direction taken by the geodesic, described by the s,, s, parameters in equation

3.41 and hence different geodesic paths can be described by a single (A, q) pair.

Consider now the behaviour of these loops as we move the emitter to r, = 3ry for
the Schwarzschild hole (Figure 3.5, third from right panel). Here, we find that the zeroth

and first order loops are now detached, but in this case the second order loop does not
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exist. Moving the emitter in further to 2.5r, (Figure 3.5, second from right panel), we
find that not only does the first order loop disappears, but the zeroth order loop is no
longer closed! Finally, if we move the emitter to r, — 2ry = 1078 (Figure 3.5, right-most
panel), then we find that we are only able to image a small line segment from the ring.
To understand this behaviour, we turn to the discussion given by Chandrasekhar (1983)
regarding the ’cone of avoidance’, describing the cone generated the photons that pass
through the unstable circular orbits located at 3r,. We let ¢ denote the half-angle of the

cone (directed inward at large distances from the hole) and it can then be shown that:

1 r/2—1
tan¢) = r/3—1 V r/6+1 (3.44)

We therefore see that for r < 3r,, ¥ < /2, which implies that below 3ry, the apparent

angular size of the black hole is greater than that of the distant stars. This shows that
the black hole obscures part of the region ¢ = 0 — 27 for a distant observer when the
emitter is located below r = 3r,, which implies that the dynamics of the accretion flow

in this region are extremely difficult to directly measure.

3.2.5 General Emission Geometries

In the standard picture of accretion onto a massive compact object, the emitting material
is located in the equatorial plane in what is assumed to be a geometrically thin structure.
As such, gravitational lensing effects only come into play for high inclination systems (6, >
60°). However, if one wishes to consider emission from a non-equatorial geometry (the
case of a geometrically thick, optically thin accretion flow, for example), then gravitational
lensing effects can have important consequences even for low inclination observers. As an
example, consider again two infinitesimal rings, located at r, = 6ry, with polar coordinates
62 = 149° and 6° = 151°. We again locate the observer at radial infinity and initially
take 8, = 25° such that |6,] < |62%| (Figure 3.6 left panel). The two rings form are

mapped continuously onto the (a, 8) plane for each individual image order in a similar
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fashion to those considered previously. We now move the latitudinal coordinate of the
observer to §, = 30°, such that 62| < |,| < 68| (Figure 3.6 centre panel). The image of
the lower ring, 62 is again mapped continuously onto the (a, 3) plane for each individual
image order, as would be expected as it’s relationship to the latitudinal coordinate of the
observer has remained unchanged. This is not true however of the image of the upper
ring, ¢, which is now mapped discontinuously onto the (@, B) plane, with the even image
orders (zeroth and second) appearing from the southern hemisphere of the hole and the
odd image orders (first) appearing from the northern hemisphere. It is therefore clear
that, in order to generate a complete picture of the physical properties of such a system,
we must include the contribution of the higher orders to the calculation. Finally, we
again move the observer in the latitudinal direction to 6, = 35°, such that |6, > |ag’b|
(Figure 3.6 right panel). Now the images of both rings are mapped discontinuously onto
the (o, B) plane, which serves to further emphasise the importance of the inclusion of the

higher order images in the calculation.
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3.3 Local Reference Frames

3.3.1 The Tetrad Formalism

Many of the problems that we shall encounter in calculating the spectral properties of
accretion flows around rotating black holes will require the measurement of physical pa-
rameters (such as photon energy and direction of propagation) in the rest frame of some
(arbitrarily) moving observer. We are fortunate that a formalism capable of providing
such a description is well developed, so we are able to simply give an account of the

principle characteristics and techniques required in such a calculation.

The approach to this problem that we shall adopt is that of the tetrad formalism,
which we give a brief introduction to here (due to Chandrasekhar, 1983). Succinctly put,
we generate a set of four basis vectors for the observers coordinate system. The required

quantities are then determined by the projection of the relevant equations onto this basis.

Let us initially consider an observer who is at rest at some point within the spacetime
of the black hole. For each such observer, we define a set of contravariant basis vectors
€(x)» Where the subscript (o) denotes the tetrad indices and the superscript v denotes the
tensor indices. Associated with this set of contravariant set of basis vectors, we have a

set of covariant basis vectors:

Cla)u = gp.uezla) (345)

We require that the basis set be orthonormal, i.e

e, ef) = 5. eé‘a)e,(,"‘) = o4 (3.46)

@) (a)?

As a consequence of these requirements, we see that ef‘a)e(ﬂ)u = N(a)(8), Where 7)) is a

constant, symmetric matrix, which we shall take to have the form (consistent with the
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convention for g, ):

1 0 0 0
0 -1 0 0
Ma)(8) = (3.47)
00 -1 0
00 0 -1

The frame described by the basis vectors, €(q) is therefore an inertial frame. As a further
consequence of these definitions, the tetrad indices of the basis vectors are raised and

lowered by application of this matrix and it’s associated inverse, n(®®) je.
el = Na)pel); e =n@Bep), (3.48)

We can then measure physical quantities in the frame defined by the tetrad basis vectors

by projecting the relevant tensor quantity onto the basis:

Pla) = Pu€ln) = Pulli)(8)€L) = Pullayp)Juve™” (3.49)

3.3.2 The Locally Non-Rotating Frame

The first of these inertial frames that we shall discuss is the Locally Non-Rotating Frame
(LNRF) due to Bardeen et al. (1972). This is a frame that is locked to the rotation of the
metric, i.e. the observer to whom the frame is attached rotates around the symmetry axis
of the black hole with an angular velocity w (such that the observers resultant angular
angular momentum is zero). Throughout what follows, this observer is known as the
locally non-rotating observer. Such a frame is useful as it allows the simple description of
physical quantities - time-like directions remain time-like and the metric tensor is diagonal
(indices can be raised and lowered freely, without the introduction of additional algebraic
complexity).

Associated with the line element (Eqn. 3.1), we have the basis vectors (valid for any
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(®)
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Figure 3.7: The co-ordinate system associated with the Locally Non-Rotating Frame. The
components of the photons 4-momentum in this frame are evaluated through P(u) = Du€,)-
From these we can define the angles formed by the spatial components of pu with the
basis vectors of the LNRF through the relations cos © = P©)/P), sSinOsin ® = p(, /Py,
sin© cos ® = cos ¥ = pg)/p(e)-
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stationary, axisymmetric spacetime):

e’ 0 0 0 e’ 0 0 we?
0 —e 0 0 - 0 e 0 0
€la)e = y €la) = (3.50)
0 0 —e*2 0 0 0 et 0
we¥ 0 0 —e¥ 0 0 0 e¥

We can use these basis vectors to assign directions to the photons four-momentum, p, as

measured by our locally non-rotating observer. We introduce (see Figure 3.7):

PO sinosin® =P2. sin©cos® = cos ¥ = O (3.51)

D(t) D) P()

cos© =

We choose © to run over the range 0 — 7 and ® to run over the range 0 — 27, with
the basis vectors orientated as shown in Figure 3.7. Note that, in the limit r — 00,
these angles have simple relations to the impact parameters (’celestial coordinates’) of

the photon (Chandrasekhar, 1983, see Figure 3.8):

a= lim (—rcos¥) = lim [m] ; B=lim (rcos®) = lim [%] (3.52)

r—00 r—o0 p(t) r—00 r—0 p(t)

Evaluating p(q) = pﬂef‘a), we find:

P)=| e (1 =) —eA /Ry (r) —e"2,/0,4,0) —e ¥ } (3.53)

We can therefore express the angles formed by the photons four-momentum with the axes

of the frame of the locally non-rotating observer in the form:

e2V0nq(6). eMA™H /Ry 4(r) |

cos® = —

sin@sin® = —

eV (1- )’ e’ (1—-dw) ’ (3.54)
, e v\ '
sin©®cos® = cos ¥ = m,

The impact parameters of the photon (for an observer located at radial infinity with polar

coordinate 6, are then found to be:

A

sinf,

a=— i B =++v/q+ a%cos®0, — A\2cot?d, (3.55)
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Figure 3.8: ”A small patch on the celestial sphere of a distant observer at radius r,.
The black hole is represented by a circle of unit radius, centred about the inward radial
direction.” The red arrow indicates the symmetry axis of the hole. A geodesic specified by
the conserved quantities (\;, ¢;) appears on the celestial sphere with celestial co-ordinates

(impact parameters) (a;, 3;). Adapted from (Bardeen & Cunningham, 1973)
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Finally, we can also find particularly simple expressions of the photons constants of motion
in terms of the angles formed by the photons four-momentum and the basis vectors of the
locally non-rotating frame:

)\2
sin? @

= cos — p2p2—v) 2 2 2 2
: = v _ _ /]
It wer—Pcosw’ 1°€ (1 —Aw)“cos®© — cos® 0 |a® —

] . (3.56)

3.3.3 The Local Disk Frame

Consider an arbitrary observer, X, moving with four-velocity u* in the global Boyer-

Lindquist coordinate system:

u“=‘ut ut u? u¢|=ut 1 o™ o | vi= (3.57)

As viewed by a locally non-rotating observer, Y, the observer X will have four-velocity:

u(a)zu(t)l 1 o™ 4O L@ |=u"e¢(,°‘)=u"17(a)(ﬂ)e(a)a

(3.58)

= e’ul I 1 eyt er2mvgf ebv(yd — )
From Chandrasekhar (1983), Bardeen et al. (1972), we see that if the observer, X moves
on a circular orbit angular velocity v?, then the locally non-rotating observer assigns them
the angular velocity v(# = e¥~¥(v% —w). Similarly, the locally non-rotating observer, who
is at rest in their inertial frame, v(") = v(® = v©® =  will, in the global frame, be assigned

the four-velocity:

ua = u(a)el(fa) = e_V ]_ 0 0 w (3-59)

The inertial frame therefore rotates with angular velocity w, known as the ’dragging of
the inertial frame’. Now, since the observer X moves with respect to the inertial frame
of the locally non-rotating observer, Y with three-velocity v¢, then the reference frame of

X differs from the reference frame of Y by means of a standard Lorentz transformation
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(Misner et al., 1973):

o -e -0 0@
WO 1+ (= DR (= DO (= 1)o@
Y@ (v =D Ou® 14 (v = | @2 (y — 1)[v] 2@
Y@ (y = D@ (y = D20 @@ 14 (y = 1)|o] 2 p@)2

(@) _
Ay =

Here, v = (1 - v|7?)7! and [|v]? = [V + [v®]2 + [v@]2. The basis vectors of the
inertial frame associated with the observer X are then given by el = e(‘a)Afg]), with the
corresponding components of the photon four-momenta given by P = pae‘[’m = p,,e‘(’a)Af;;‘])
(which are far too lengthy to be written down here!). Note that it is no longer possible to
provide simple expressions of the photons constants of motion \, ¢ in terms of the angles
made with the basis vectors of the co-moving frame of the observer.

In the case of one dimensional motion (v = v® = 0, say), Afg]) reduces to the

familiar form:

vy 0 0 y@®
N 0 10 0
Al = 0 01 o (3.60)

In this case, which we shall refer to as the Local Disk Frame (LDF), the basis vectors of
the co-moving frame take the form (Martocchia, 2000):

e Yy 0 0 (we™ +e ¥)y®
0 et 0 0
6([':1] = (361)
0 0 e™#2 0
(we™ +e¥)y@® 0 0 e ¥y

"The photons four-momentum therefore has LDF components:

Py =7e"" (1 = MA®); pp = —e"' A /Ry 4(r)
0 ( )i Py q (3.62
Pl = —€*21/Oxq(8); Py = —e YA Pwe? ™ + 0@ 1]
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Figure 3.9: The co-ordinate system associated with the Local Disk Frame (LDF), moving
with velocity u® (denoted by green lines) and its relation to the Locally Non-Rotating
Frame (LNRF), which moves with velocity w (denoted by blue lines). The LDF moves
with respect to the LNRF with velocity u(® = u“ef?). The basis vectors of the LDF
can therefore be obtained via a simple Lorentz transformation, e = e‘(’a)Afg]). The
components of the photons 4-momentum in this frame are evaluated through Plu) = Pvef,)-
From these we can define the angles formed by the spatial components of pu with the
basis vectors of the LDF through the relations cos¥ = P6)/P), sSinXsinT = P(r)/Pi)s
sin¥cosT = cos Z = pg)/P(e).-
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As in the LNRF case, we define the angles that the photons four-momentum makes
with the basis vectors of the LDF to be (see Figure 3.9):

IM — 6“2\/@,\,(](9)

D) ve v (1 — Av?)
1 A—1_/
sinSsinT =20 = _¢ A Roq(r) (3.63)

cosY =

pg e (1—w?)
VAo D we¥—v + (@)
sinYcosT =cos= = _Prel — € /\[’U we + v\¥ 4+ 1]
Py ve~v (1 - ,\1)¢)

Subsequent calculations of the spectral properties of accretion flows around rotating
black holes will require us to determine the change in energy of a photon between the rest
frame of the emitter and the rest frame of the observer. We characterise this change in
energy using the redshift parameter, g:

— Eobserved — (p[t])observed (3 6 4)
Eemitted (p[t] )emitted

In the case where the observer is located at radial infinity, their four-velocity takes the

formu* =11 0 0 0 |, the redshift parameter, g is expressed as:

Eobserved — 1
Eemitted  ve™ (1 — Av?)

Goo = (3°65)

We can therefore express the photons constants of motion in terms of Joo and cos O:

1 e’ - A’
A= > (1 — ’Y—g) ; g=¢€"2g"2cos’ T — cos? @ [a2 - m] ; (3.66)
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3.4 Calculating Spectra in Strong Gravitational Fields

The discussion contained in this chapter thus far has been concentrated on the calculation
of photon trajectories in curved spacetime and how physical quantities may be evaluated
in the strong gravitational field of a rotating black hole. Whilst such discussions are
interesting from a purely theoretical standpoint, we cannot compare these results directly
with observations. Instead, we must combine our discussions to date into predictions
that can be compared directly with observations. Current state-of-the-art observations
can only provide us with spectral and timing information about the inner regions of the
accretion flow, direct imaging remains some way off (see Chapter 5). The subsequent
chapters of this work will focus on describing the combined effects of general relativity
and the properties of the accretion flow on the observed spectra from accretion flows in
strong gravity, in particular fluorescent Iron Ka profiles. Here, we describe the formalism
that we have developed to perform these calculations.

Consider a detector with area dA,, which is exposed to radiation for a time dt, (where
subscript o denotes evaluation in the frame of the detector). The amount of energy, dE,,

received by the detector is then proportional to dA,dt,, which we write as:
dE, = F,dA,dt, (3.67)

Here, Fj, is the constant of proportionality known as fluz and has units of [Energy][Area] ™
[Time]'. Flux measures the energy carried by all rays that pass through the detector,
however, for our purposes it is necessary to introduce a rather more detailed description,
where we consider the properties of a set of rays that differ infinitesimally. Choose a ray
characteristic of the set and construct an infinitesimal area, dA,, normal to the direction
of the ray and consider rays within the set that fall within the infinitesimal solid angle,
dS), (see Figure 3.10, left-hand panel). The energy, dE, crossing the area dA, in a time
dt, in the frequency range dv, is then given by:

dE, = I,(v)dA,dt,dS0dv, (3.68)
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This is the standard starting point for relativistic line calculations followed by (e.g. Cun-
ningham, 1975; Fabian et al., 1989; Fanton et al., 1997), which defines an an infinitesimal
amount of differential flux, dF, observed at energy, E, due to a patch on the disk which
subtends a solid angle df, on the image of the disc at the observer (see Figure 3.11).
All of the quantities contained in Eqn. 3.70 are evaluated in the rest frame of the
observer. However, descriptions of how energy is released within the accretion flow (see
Section 2.4) are defined in the reference frame of the disk. We must therefore related the
specific intensity measured by the observer, I,(E,) to that measured in the rest frame of
the emitting material, I.(E,), which is accomplished by application of Liouville’s theorem
(Lindquist, 1966). Consider a distribution function, f(z,p*) describing the number, dN
of particles crossing a volume element dV at z, whose four-momentum p® occur within
a corresponding element, dP in momentum space. The number of particles, dN is given
by:
dN = f(z,p*)(—p*uq)dVdP (3.71)

Transform to the co-moving, locally inertial frame at z such that:
dV = dzdydz; dP = pdEdS}, (3.72)
In this frame, the number of particles, dN is therefore given by:
dN = f(z,p*)EpdVdEdRQ, (3.73)

Classically, we have that (by definition) dN = I,(E,)E~'dVdEdS}, from which we see

that
L(B) _  I(E)  _ . L(E) _ L)
E2  E2/EI-mZ m0 E3 i3

Therefore, since F'(z,p*) is invariant, we therefore see that E;3I,(F,) is also conserved.

f(z,p*) =

(3.74)

We can therefore relate the specific intensity received by the observer to that emitted in
the rest frame of the disc via:

Io(Eo) _ Ie(Ee)
E3 B3

]

= I(E,) = ¢’I(E.) (3.75)
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Therefore:

dF,(E,) = ¢’I. (E.) dQ, (3.76)

For an emission line with rest energy Fjp;, then I, (E,) = & (., tte) 6 (Ee — Eing), where
€ (Te, tte) is the emissivity, which can be a function of the radius, 7. and angle, yu, = cosX

at which the photon is emitted (see Figure 3.9). The infinitesimal lux becomes
dF, (E,) = g€ (re, tte) 6 (E, — gEin:) dSY (3.77)

The total flux can be obtained by integrating over all the entire image of the disk in the
observers sky. We can write df2, = r,2dadB where «, 3 are the z, y coordinates of the

image of the disc at the observer with coordinates (r,,6,) (see Figure 3.11), such that

Fo(E) = / / 6 (e, 1) 6 (Ey — g Bins) drd? (3.78)

The a, B8 position of the image of the disc section is related to the conserved quantities,
A, ¢ which describe the contributions to the photons angular momentum from the radial,

polar and azimuthal directions (de Felice & Preti, 1999), via:

A

siné,

o= - i B =+q+ a%cos?6, — \2cot?d, (3.79)

For a thin, Keplerian disc, these constants of motion can be written in terms of the redshift
factor of the photon, g and the radius of emission, 7. and angle of emission, . of the

photon (as previously defined):

v 2,2
A= L (1 - e_> ; q= _eke (3.80)

Here, v® describes the azimuthal velocity profile of the emitting region and e~ is the
‘redshift function’ (Fanton et al., 1997; Martocchia et al., 2000), which for a geometrically

thin, Keplerian disc located in the equatorial plane are given by:

1
)
1-2(1-a0)? - (2 + a?) 2 (3.81)

S —
a+\/7"§’ Te

v®
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et al. (2003). This allows us to generate high resolution, accurate line profiles numerically
while avoiding the issues surrounding the partial derivatives of the geodesic equations
(Viergutz, 1993). We use the analytic solutions of the geodesic equations as tabulated
by Rauch & Blandford (1994) to find the complete set of light travel paths that link
the accretion disk and the observer at (r,,6,). We sort these by redshift factor, and use
adaptive griding to find the boundaries on the (a, 3)-plane for all lines of constant g.

Two adjacent boundaries, g; and g;,;, therefore define the area of the redshift bin
9= g+ 3 (gi+1 — g;) with width dg = g;1; — ¢; when projected onto the (a, B)- plane (as
is shown in Figure 3.12). We can simply determine the area of this region by dividing it
up into a set of tessellating trapezoids, as shown in Figure 3.12, the area of each of which
can be determined by a simple geometric formula. The final area of the redshift bin is
determined by summing together the contributions from all such trapezoids internal to
(9i) gi+1). Each individual trapezoid is small, so that there is no significant change in 7,
or pe (though this is not necessarily true across the total area dadf). The emissivity law
can be convolved into the calculation using the emission coordinates at the centre of each
trapezoid to weight its area before performing the summation over all trapezoids. This
approach allows us to calculate line profiles at high spectral resolution on timescales of a
few minutes on a 2GHz desktop PC.

We have extensively tested the routines that calculate the null geodesic paths against
those supplied by Eric Agol (Agol, 1997) and have found them to be indistinguishable. We
have also compared the line profiles generated by our code to those presented previously
in the literature, in particular those generated from the codes described by Fanton et al.

(1997); Dov¢iak et al. (2004) and have again found them to be indistinguishable.
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Chapter 4

Iron Line Profiles in

Strong Gravity

Abstract

We present results from a new code which can accurately calculate the relativistic ef-
fects which distort the emission from an accretion disc around a black hole. We compare
our results for a disk which extends from the innermost stable orbit to 20r, in both
Schwarzschild and maximal (@ = 0.998) Kerr spacetimes with the two line profile codes
which are on general release in the XSPEC spectral fitting package. These models gen-
erally give a very good description of the relativistic smearing of the line for this range
of radii. However, these models have some limitations. In particular we show that the
assumed form of the angular emissivity law (limb darkening or brightening) can make
significant changes to the derived line profile where light bending is important. This is al-
ways the case for extreme Kerr spacetimes or high inclination systems, where the observed
line is produced from a very large range of different emitted angles. In these situations the
assumed angular emissivity can affect the derived radial emissivity. The line profile is not
simply determined by the well defined (but numerically difficult) physical effects of strong

gravity, but is also dependent on the poorly known astrophysics of the disc emission.
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4.1 Introduction

Material in an accretion disk around a black hole is orbiting at high velocity, close to
the speed of light, in a strong gravitational potential. Hence its emission is distorted by
Doppler shifts, length contraction, time dilation, gravitational redshift and light bending.
The combined impact of these special and general relativistic effects was first calculated
in the now seminal paper of Cunningham (1975), where he used a transfer function to
describe the relativistic effects. The observed spectrum from an accretion disc around a
Kerr black hole is the convolution of this with the intrinsic disc continuum emission.

While such models have been used to try to determine the gravitational potential from
the observed accretion disk spectra (e.g. Laor & Netzer, 1989; Ebisawa et al., 1991, 1993;
Makishima et al., 2000; Gierliriski et al., 2001) these attempts suffer from our limited
knowledge of the spectral shape of the intrinsic accretion disk emission (see e.g. the
review by Blaes, 2004). It is much easier to determine the relativistic effects from a sharp
spectral feature, such as the iron fluorescence line expected from X-ray illumination of an
accretion disc (Fabian et al., 1989). An originally narrow atomic transition is transformed
into broad, skewed profile whose shape is given directly by the transfer function.

Observationally, evidence for a relativistically smeared iron line first came from the
ASCA observation of the active galactic nuclei (AGN) MCG-6-30-15 (Tanaka et al., 1995).
Further observations showed evidence for the line profile being so broad as to require a
maximally spinning black hole (Iwasawa et al., 1996). More recent data from XMM are
interpreted as showing that the line is even wider than expected from an extreme Kerr
disk, requiring direct extraction of the spin energy from the central black hole as well as
the immense gravitational potential (Wilms et al., 2001).

Such results are incredibly exciting, but X-ray spectral fitting is not entirely unam-
biguous. There is a complex reflected continuum as well as the line (Nayakshin et al.,
2000; Ballantyne et al., 2001). For an ionised disk (as inferred for MCG-6-30-15) the
current models in general use (pexriv in the XSPEC spectral fitting package) are prob-
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ably highly incomplete (Ross et al., 1999). Complex ionised absorption also affects AGN
spectra (e.g. Kaspi et al., 2002) and the illuminating continuum itself can have complex
curvature rather than being a simple power law.

However, in MCG-6-30-15 these issues have been examined in detail, and the results
on the dramatic line width appear robust (Fabian & Vaughan, 2003; Reynolds et al.,
2004). Thus there is a clear requirement that the extreme relativistic effects are well
modelled. There are two models which are currently widely available to the observational
community, within the XSPEC spectral fitting package, diskline (based on Fabian et al.,
1989) and laor (Laor, 1991). The analytic diskline code models the line profile from an
accretion disc around a Schwarzschild black hole (so of course cannot be used to describe
the effects in a Kerr geometry). Also, it does not include the effects of light bending
(although Fabian et al., 1989, outline a scheme for incorporating this) and hence does
not accurately calculate all the relativistic effects for r < 20r, (where r, = GM/c?). By
contrast, the laor model numerically calculates the line profile including light bending
for an extreme Kerr black hole, but uses a rather small set of tabulated transfer functions
which limit its resolution and accuracy (see Section 3.3.3).

While there are other relativistic codes in the literature which do not suffer from these
limitations, these are not generally readily and/or easily available for observers to use.
There is a clear need for a fast, accurate, high resolution code which can be used to fit
data from the next generation of satellites. In this paper we describe our new code for
computing the relativistic iron line profile in both the Schwarzschild and Kerr metrics. We
compare this with the diskline and laor models in XSPEC for discs which extend down
to the last stable orbit in their respective spacetimes, and highlight both the strengths

and limitations of these previous models.
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4.2 Iron Ko Diagnostics of Thin, Keplerian Accre-

tion Disks

4.2.1 Introduction

We have taken a disc from 7,5 t0 7pgs = 207, (beyond which strong gravitational effects
become of diminishing importance) for both the Schwarzschild (a = 0, 7, = 67,) and
maximal Kerr (a = 0.998, 7, = 1.235r,) cases for 6, = 5°,30°,60° and 85°.

We first consider the extent of light bending effects in a Schwarzschild spacetime.
Figure 4.1 shows the three-dimensional surface in (u,, e, g) for the complete set of light
travel paths connecting the accretion disc to the observer. There is a considerable range
of p. contributing to the observed emission at all inclinations. For low inclinations the
effect is fairly uniform, with each radius contributing a similar range in g, but with a
systematic shift to larger emission angles (smaller u,) with smaller radii. By contrast, at
higher inclinations the light bending is strong enough to gravitationally lens the far side
of the disc. This leads to a much larger range of . which contribute to the disc image at
small radii. In all cases, light bending means there is a range of y, which contribute to
the observed disc emission, so that in general, the line profile will depend on the angular
distribution of the emitted flux.

Fig. 4.2 shows the corresponding surfaces for the extreme Kerr case. The disc
now extends down to 1.2357,, far closer to the corresponding event horizon than in the
Schwarzschild case. This introduces a greater complexity to the geodesic surfaces. The
range of emission angles is from zero to unity in all cases, including the nearly face on
disc at 5°, which has important consequences for the calculation of the line profile.

To construct the relativistic line profile, we map these surfaces on to the (a, 3) plane
as discussed in the previous section, forming images of the accretion disc, as have been
previously calculated by e.g. Bardeen & Cunningham (1973); Luminet (1979); Hollywood
& Melia (1997); Fanton et al. (1997); Falcke et al. (2000). In Figure 4.3 we present images
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The form of the line profile is now determined from the flux image (representing the ef-
fects of strong gravity), together with the assumed form for the emissivity (determined by
the energy release and radiative transfer processes), which is generally taken as (ignoring

azimuthal dependence):

€ (7e, He) = € (re) f (ﬂe) (4.1)

While the flux image is a difficult numerical problem, it depends on well known physics. By
contrast, the emissivity laws considered have rather simple forms, but are determined by
the poorly known astrophysics of the disc. Of course, there are many other outstanding
theoretical issues that can produce a substantial impact on the line profile, including
(but not limited to) returning radiation or light bending that can enhance the emissivity
of the inner part of the disc (Cunningham, 1975; Laor et al., 1990; Martocchia et al.,
2000), emission from the plunging region (Reynolds & Begelman, 1997) and azimuthal
dependence of the emissivity (Cadez et al., 2003; Karas et al., 2001). However, these are

outside the scope of the current work.

4.2.2 Comparison with the Diskline Model

The diskline code assumes a Schwarzschild metric (a = 0) and additionally that light
travels in straight lines (so the angular emissivity term is irrelevant). In its XSPEC imple-
mentation it allows both arbitrary power law € (r,) o< 79 and point source illumination.
However, its analytic structure means that any radial emissivity law is easy to incorpo-
rate. We choose to use ¢ = —3, as this is approximately the form of the gravitational
energy release per unit disc area (see e.g. Zycki et al., 1999).

Figure 4.4 shows our line profiles assuming f(u.) = 1 (no angular dependence of the
emissivity) compared with those from the diskline code. We see that our new model
matches very closely to the XSPEC diskline model for a nearly face on disk. Whilst the

key difference between our model and diskline is the inclusion of light-bending effects,
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the impact of this is small at low inclinations if there is no angular dependence to the
emissivity (but see Section 3.4).

By contrast, at high inclinations, light bending not only means that the line is formed
from many different ., but gravitational lensing enhances the flux from the far side of
the disc. This lensing effect gives clear differences between our model and diskline. The
lensing magnifies the image of the far side of the disc, which has velocity mostly tangential
to the line of sight, so is not strongly Doppler shifted. This boosts the line profile at g~1
(see Matt et al., 1993b). Since the line profiles are all normalised to a single photon, then
this also makes the blue peak smaller.

In summary, the diskline model as incorporated into XSPEC produces line profiles
which are accurate to ~ 10% for inclinations of less than 30°. Obviously, if the inner disc
edge Tmin > Tms then the light bending effects become correspondingly smaller and the
match between the two codes becomes even closer. At higher inclinations the differences
between diskline and our code become larger due to the effects of gravitational lensing,
which leads to an effective redistribution in flux between the blue peak and the centre of

the line compared to that predicted from straight light travel paths.

4.2.3 Comparison with the Laor Model

By contrast, the laor code describes the line shape expected in the maximal Kerr case,
assuming a standard limb darkening law f(pe) o (1 + 2.06p.). The code is based on a
series of photon trajectory calculations, where the disk is split up into a set of rings of
width dr at r.. Each part of the ring radiates with total emissivity (radial plus angular)
given simply by the limb darkening law (i.e. no radial dependence, ¢ = 0) and the line
profile from that ring is built up from many light travel paths which connect the disc to
the observer. This produces a series of transfer functions T(re, E, — gEin:) at each radius,
analogous to Figure 4.3a-d but including the limb darkening law. These tabulated transfer

functions are read by the laor code in XSPEC and used to build a total line profile for
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any given radial emissivity:

F,(E,) = /S(TC)T(T‘e, E, — gEp)redrodg (4.2)

We compare this with our code, using a ¢ = —3 emissivity for both as in the diskline
comparisons above. We include the same limb darkening law as used by laor and the

results (Figure 4.5) show that the overall match between our code and laor is good to

~ 5 — 10%.

4.3 The Role of the Disk Inner Edge and Inclination
of the Observer

The greatest shortcoming of the currently available relativistic line models for XSPEC
is that they only allow the treatment of either Schwarzschild (the diskline model) or
maximal Kerr (the laor model) black holes. Our model is capable of calculating the
relativistic line profile for arbitrarily spinning black holes and so removes this limitation.

The principle effect of changing black hole spin is alter the value of the marginally
stable orbit, r,,(a), in particular, the higher the black hole spin, the closer this orbit
is to the event horizon, 71,(a) (in terms of co-ordinate distance, see e.g. Bardeen et al.,
1972). In the standard relativistic accretion disk models, the disk extends down to this
orbit (Page & Thorne, 1974), so if we are able to infer the location of the inner edge of
the accretion disk, then in principle (assuming that the inner edge truncates at rpq(a)),
we can determine the spin parameter of the central black hole (see Section 2.5).

In terms of the relativistic line profile, Laor (1991) demonstrated that the principle
effect of considering a maximally rotating black hole was the addition of a low energy
tail to the line in comparison to the Schwarzschild case, as can be seen by comparison
of Figures 4.4 and 4.5. In Figure 4.6 we show maps of the relativistic line profile for

arbitrary black hole spin, which we denote using the associated value of Tms(a) for the
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difference for the rapidly rotating holes in comparison to the slowly rotating holes. For
the rapidly rotating holes, the lower edge of the line is approximately independent of
inclination, whilst the upper edge exhibits a power law like behaviour. For these holes,
the internal shape of the line is roughly independent of spin, with a strong concentration
of flux in the blue wing of the line, approximately independent of inclination (i.e. the
distinctive triangular shape exhibited by the lines in Figure 4.5).

However, the behaviour of the lines associated with the slowly rotating holes is more
complex. Here, the lower edge of the line exhibits a marked decrease with increasing
inclination, whilst the upper edge takes the form of a modified power law. In these
cases, the internal shape of the line is determined by both the radial emissivity law and
gravitational lensing effects. This is in contrast to the rapidly rotating cases, where the
radial emissivity law strongly weights the emission to the very inner regions of the disk
(S 67g). All of the flux that is emitted in this region is subject to strong lensing effects
in its transit to the observer (Laor, 1991) and hence we obtain the characteristic wedge
shape. However, for the slowly rotating black holes, emission is only possible from regions
where there is a strong dependence of gravitational lensing on radius and hence the shape

of the line is strongly modified.
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4.4 The Role of the Angular Emissivity and Black

Hole Spin

The effect of applying a radial emissivity is straightforward. The transfer function de-
scribing all the relativistic effects from a given radial ring of the disc is unaffected, so the

effect is simply to change the weighting of the line profile from each radial ring of the disc.

By contrast, the effect of the angular distribution is far more subtle. A given radial
ring on the disc can contribute to the line profile from a range of emission angles (see
Figures 4.1, 4.2). The relative weighting of these is determined by the angular emissivity,

so it forms part of the calculation of the transfer function itself.

Different angular emissivity laws can have striking effects on the form of the relativistic
line profile, which we illustrate in Fig. 4.8 (left-hand panel) for a maximal Kerr geometry
(2=0.998) with the disc extending (as previously) from 1.235 — 20r, and 6, = 30°. The
line profiles here all implement the standard radial emissivity law of 7—3. However, we
now compare a range of angular emissivity laws, these being (from top to bottom at
the blue peak in Fig. 4.8) the standard limb darkening law (as discussed in Section
4.2.3), followed by the constant angular emissivity case (as used in diskline, see Section
4.2.2). An ionised disc could also be limb brightened, with the probable limiting case of
f(u) o< 1/ as expected from optically thin material, shown as the bottom line in Fig. 4.8
(left-hand panel). There is a ~ 35% difference in the height of the blue peak depending

of the form of the angular emissivity used.

However, such a limited range of radii is probably not very realistic. The disc should
extend out to much greater distances from the black hole, where the relativistic effects
(including light bending) are less extreme. However, realistic emissivities strongly weight
the contribution from the innermost regions, so the effective dilution of the relativistic
effects by including the outer disc is not overwhelming. Fig. 4.8 (centre panel) shows

the line profiles generated using the same angular emissivity laws for a disc extending
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Figure 4.8: Comparison of the relativistic line profiles generated by our model with (a)
e(re) o< 7% f(pe) = 1 (red lines), (b) €(re) o 723, f(te) o pz! (blue lines), (c)
€(re) o 173, f(pe) o (1+2.06u,) (green lines) for a maximal Kerr black hole with
the disc extending from 1.235 — 20r, (left-hand panel), 1.235 — 400r, (centre panel) and
1.235 — 6 (right-hand panel). In the left-hand panel, the relative height of the blue wing
changes by ~ 35% for different angular emissivity laws, anti-correlated with the slope
of the red wing. For the more extended disk shown in the centre panel, there is still a
~ 25% change in the blue wing height and significant change in red wing slope for the
different angular emissivities, despite the inclusion of the outer disc. Finally, in the right-
hand panel, the additional magenta line is for a limb darkened angular emissivity with
more centrally concentrated radial emissivity, oc ;45 This is very similar to the blue
line profile derived from a very different radial emissivity, oc 7,3, with a limb brightened

angular emissivity.
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from 1.235 — 400r,, again with 6, = 30°. There are still significant differences in the line
profiles, with a ~ 256% difference in the height of the blue peak while the red wing slope
changes from Fy(E,) o< E3® (limb darkened) to o< E2% (limb brightened).

Despite the expectation of an extended disc, some recent observational studies (e.g.
Reynolds et al., 2004) have tentatively suggested that the disc is very small, from ~
1.235 — 6r,. This enhances the importance of light bending. Fig. 4.8 (right-hand panel)
shows the line profiles for a disc extending from 1.235-67,, using the different angular
emissivity described in the preceding discussion. The blue peak height differences are ~
40%, and the red wing slopes are different. For comparison we also show a limb darkened
profile obtained from a very different radial emissivity of 7=%3. This is very similar to the
extreme limb brightened profile obtained from the =3 radial weighting. We caution that
uncertainties in the angular distribution of the line emissivity can change the expected line
profile due to light bending effects even at low/moderate inclinations, and that this can
affect the derived radial emissivity. This has important consequences for interpretation of
the highly broadened lines observed in MCG-6-30-15, in particular conclusions regarding

extraction of spin energy from the black hole.

Currently, the only available models in XSPEC have either zero or maximal spin. A
zeroth order approximation to spacetimes with different spins is to use the maximal Kerr
results but with a disc with inner radius given by the minimum stable orbit for the required
value of a (e.g. Laor, 1991). We test this for the most extreme case of a = 0 modelled
by a maximal Kerr spacetime with r,,;, = 67,. Fig. 4.9 (left-hand panel) compares this
with a true Schwarzschild calculation for a disc extending from 6 — 400r, with 6, = 30°
for a range of angular emissivities. The differences between the spacetimes (for a given
angular emissivity) are at most ~ 5%. This is roughly on the same order as the effect of
changing the angular emissivity, which is much reduced here compared to Fig. 4.8 (left-
hand panel) due to the larger 7,;,. Assumptions about both spin and angular emissivity

become somewhat more important for smaller outer disc radii. Fig. 4.9 (right-hand panel)
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shows this for a disc between 6 — 20r, (directly comparable to Fig. 4.4).

4.5 Conclusions

Recent observational studies have provided evidence for highly broadened fluorescent iron
Ka lines. While there are a variety of line profiles seen (e.g. Lubinski & Zdziarski, 2001),
there are some objects where the line implies that there is material down to the last stable
orbit in a maximally spinning Kerr spacetime (most notably MCG-6-30-15: Wilms et al.,
2001; Reynolds et al., 2004). However, the strong gravity codes generally used to model
these effects are now over a decade old. Increased computer power means that it is now
possible to improve on these models. We describe our new code to calculate these effects,
which uses uses fully adaptive gridding to map the image of the disc at the observer using
the analytic solutions of the light travel paths. This is a very general approach, so the
code can easily be modified to incorporate different emission geometries.

We compare the results of our new code with those from diskline and laor (publicly
available in the XSPEC spectral fitting package) for Schwarzschild and extreme Kerr
spacetimes. These previous models are accurate to ~ 10% with realistic (o< 773) radial
emissivities. However, they make specific assumptions regarding the angular dependence
of the emitted flux, which may or may not be valid. Light bending is always important for
a disc which extends down below 207, in that the image of the disc at the observer always
consists of a range of different emission angles. This can produce significant changes to
the derived line profile, especially in extreme Kerr spacetimes. Whilst calculating strong
gravitational effects is a difficult numerical problem, the underlying physics is well known.
By contrast, the angular emissivity is an astrophysical problem, and is not at all well
known as it depends on the ionisation state of the disc as a function both of height and
radius. Before we can use the line profiles to provide a sensitive test General Relativity
and probe the underlying physics, we will need to have a much better understanding of

the astrophysics of accretion.
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The results of the code are available as both a convolution and an additive model in
the XSPEC spectral fitting package. Principle features include the ability to fit to arbitrary
black hole spin, both inner and outer disk radius along with allowing arbitrary angular

and radial emissivities to be applied. Further information is available from the model

webpage.
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Chapter 5

Extreme Gravitational

Lensing near Rotating

Black Holes

Abstract

We apply the strong gravity code described in Chapter 3 of the work to explore both the
imaging and spectral properties of photons emitted from an accretion disc which perform
multiple orbits of the central mass before escaping to infinity. Viewed at large inclinations,
these higher order photons contribute ~ 20% of the total luminosity of the system for a
Schwarzschild hole, whilst for an extreme Kerr black hole this fraction rises to ~ 60%. In
more realistic models these photons will be re-absorbed by the disc at large distances from
the hole, but this returning radiation could provide a physical mechanism to resolve the
discrepancy between the predicted and observed optical/UV colours in AGN. Conversely,
at low inclinations, higher order images re-intercept the disc plane close to the black
hole, so need not be absorbed by the disc if this is within the plunging region. These
photons form a bright ring carrying approximately 10% of the total disc luminosity for a
Schwarzschild black hole. The spatial separation between the inner edge of the disc and
the ring is similar to the size of the event horizon. This is resolvable for supermassive black
holes with proposed X-ray interferometry missions such as MAXIM, so has the potential
to provide an observational test of strong field gravity.
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5.1 Introduction

Calculations of the relativistic corrections to photon properties have been ongoing for
nearly three decades, starting with the classic work of Cunningham (1975) who calculated
the distortions expected on the spectrum of a geometrically thin, optically thick, Keplerian
accretion disc orbiting a Kerr black hole. Interest in these calculations dramatically
increased with the realisation that the accretion disc could emit line as well as continuum
radiation. Iron Ko fluorescence resulting from X-ray irradiation of the accretion disc can
give a narrow feature, on which the relativistic distortions are much more easily measured
than on the broad accretion disc continuum (Fabian et al., 1989). Since then, several
groups have developed numerical codes that are capable of determining these effects both
for standard discs (Dov¢iak et al., 2004, and references therein) and alternative emission

geometries, such as optically thin discs (Bursa et al., 2004).

While the problem is well-defined, there are many technical and numerical issues which
arise in calculating the effects of strong gravity. Light bending can result in lensing which
strongly amplifies the emission, so a very small area of the accretion flow can make a large
contribution on the observed flux. In Chapter 3, we saw how to efficiently calculate the
effects of strong light bending, which was applied in Chapter 4 to investigate the properties
of Iron Ka line shapes in strong gravitational fields. Here we illustrate the effectiveness
of this approach by using the code to compute the most extreme light bending possible,
the higher order images and spectra of an accretion disc (Viergutz, 1993; Bao et al., 1994;

Fanton et al., 1997).

The first order image is from photons from the underside of the disc which are bent
back into the observers line of sight, while second order images are produced by photons
from the upper side of the disc which complete a full orbit around the black hole before
reaching the observer. Obviously such paths must cross the equatorial plane, so are likely
to re-intercept the disc. For an optically thick disc then this returning radiation adds to

the intrinsic disc emission, and can enhance the emissivity at small radii for extreme Kerr
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black holes though it has little effect for Schwarzschild (Cunningham, 1976; Laor et al.,
1990; Agol & Krolik, 2000; Li et al., 2005).

Nonetheless, the first order image of the disc can dominate the flux at high inclinations
if the optically thick disc has rather limited radial extent. Even if it does not, some of
the higher order image flux can escape to the observer through the inner ’hole’ in the
disc below the radius of the minimum stable orbit, assuming that the plunging region
is optically thin (but see Reynolds & Begelman, 1997). The fraction escaping through
this inner 'hole’ is rather larger for Schwarzschild than for Kerr, as the size of the gap
between the innermost stable orbit and horizon is larger for the non-spinning black hole.
Obviously, such paths are exquisitely sensitive to the gravitational potential, being close
to the true photon orbit point which is the (unstable) crossover between capture by the
black hole, and escape to infinity. This makes them potentially an excellent test of strong
gravity, and they could be observable in nearby luminous AGN with micro-arcsecond

imaging X-ray interferometers such as MAXIM (Gendreau et al., 2001).

Such instruments could also observe the spin of a nearby supermassive black hole
simply from the size of the direct image (Fukue, 2003; Takahashi, 2004), assuming that
the mass and distance are known. A disc down to the last stable orbit extends down
to 6 74 in Schwarzschild but only 1.23 r, in maximal Kerr (a = 0.998). Light bending
is stronger in Kerr than in Schwarzschild, but the apparent size of the ’hole’ in the disc
still changes by a factor of ~ 3. This contrasts with the case where the accretion flow
has emission down below the last stable orbit, where the size of the true black hole
shadow is rather similar for both Schwarzschild and Kerr (Falcke et al., 2000; Takahashi,
2004). Observations of the galactic black hole binaries support to the idea that there is
a disc down to the minimum stable orbit in certain, fairly high luminosity spectral states
(Ebisawa et al., 1993; Koratkar & Blaes, 1999; Gierliriski & Done, 2004). However, at
lower luminosities this is probably replaced by a more complex accretion flow which may

have continuous energy release down to the horizon (Narayan & Yi, 1995; Agol & Krolik,
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2000; Krolik & Hawley, 2002; Afshordi & Paczyniski, 2003). While the stellar remnant
black holes require nano-arcsecond imaging to resolve, nearby luminous AGN also should

have a 'hole’ in the disc from the minimum stable orbit which is accessible to MAXIM.

5.2 Images of Thin Keplerian Accretion Discs

The contribution of higher order images to the observed flux is dependent both on the
location of the observer and the angular momentum of the hole itself, together with the
assumed geometry and emissivity of the accretion flow. For an optically thick accretion
disc then any photons which re-intersect the disc after emission will be either absorbed
(and then re-emitted) or reflected by the material. Figure 5.1 shows the contributions of
both the direct (N = 0)and higher order (N = 1,2) images of a geometrically thin disc
extending from r,,, to 20r,, viewed at 6, = 15° for both Schwarzschild and extreme Kerr
black holes. The principal effect of black hole spin for the accretion disk dynamics is to
move the location of the marginally-stable orbit, r,,; and hence the location of the inner
edge of the accretion disc. In the case of the Schwarzschild hole the apparent location (as
measured by a distant observer, see Figure 5.1 top row) of the direct image of the accretion
disc is further from the origin than the higher order images, resulting in a distinct ‘gap’
where no photons are received by the observer. By contrast for an extreme Kerr black
hole, the apparent location of the inner edge of the direct image coincides with that of the
higher order images and so this gap is no longer present. Hence for high spin black holes
a large fraction of the higher order image flux returns to the inner regions of the accretion
disc. Note that the range of accessible redshifts is far narrower for the Schwarzschild disk
than for the extreme Kerr case, due to the inner edge of the accretion disk (the marginally
stable orbit) being located far deeper in the gravitational potential in the latter.

Figure 5.2 shows the same systems viewed at a range of large inclination angles,
0o = 75° — 87.5°. As in the previous discussion for the Schwarzschild hole, the inner edge

of the accretion disc is located above the location of the photon orbits and hence the
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majority of the orbiting photons are able to propagate freely to the observer. However,
photons in the first order image of the far side of the disc now have paths which pass rather
closer to the hole than at lower inclination, so the importance of lensing is increased,
strongly amplifying this part of the image. Most of these photons cross the equatorial
plane at r > 20r,, so can be seen in our simulation, but would be obscured by a more
physically realistic disc which is not entirely flat and has outer edge r > 20ry. These
photons instead would illuminate a large region of the underside of the disc as the direct
image of the disc, adding to its intrinsic emission. By contrast, the area on the sky of the
second order image remains approximately constant with increasing inclination, reflecting

the sensitivity (i.e. instability) of the two-loop photon orbits.

The high inclination extreme Kerr images are shown in Figure 5.2, bottom row. The
disc itself blocks all the higher orbit images close to the black hole, similar to the 8, = 15°
case. Part of the first order image where the geodesic crosses the equatorial plane at
T 2> 207, can be seen, and this fraction increases with increasing inclination of the observer.
Indeed, for the highest inclination system considered in this work, the apparent angular
size of the first order image is approximately equivalent to that subtended by the direct
image. By contrast to the Schwarzschild case, we note that the images of the extreme
Kerr system are strongly asymmetric about the horizontal axis due to the effect of the
black hole spin, with the degree of this asymmetry increasing with the inclination of the
observer. This asymmetry is ﬁlost pronounced for the (unobscured) first and second order
images generated from the highest inclination system (see Figure 5.3). Here, the effect
of the range of radii for orbiting photons can be seen most clearly in the second order
image. The image is offset from zero as the ones on the left are the photons which are
emitted from the side of the disc approaching the observer, so go with the spin of the
black hole and orbit at r,, while photons on the right are the retrograde ones at 4ry. The
hole in the inner disc is symmetric at 7, so it (just) obscures all the pro-grade photons

and easily obscures the retrograde ones. A small decrease in spin (e.g. to a=0.998, the
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5.3 Spectral Properties of Higher Order Images

To understand how the astrophysical properties of the accretion flow couple to the gravita-
tional field of the black hole, we generate relativistically smeared line profiles as described
in Beckwith & Done (2004) (see Section 3.4). For clarity, we briefly recap this method
here. We consider an intrinsically narrow emission line with rest energy, F,, for which

the flux distribution measured by a distant observer at an energy E, is given by:

Fo(Be) = g [ [ 9% (re 1) (Bo — gB) 1)

Here, € (re, pte) is the local emissivity of the accretion disc, which we take to have the form
€ (e, pte) = €(7e) f (te), Where . describes the initial direction of the photon relative to
the local z-axis of the emitting material. The flux at each redshift in each image order
is then calculated directly from the area subtended on the observers sky, together with
the intrinsic disc emissivity (both radial and angular). This gives the transfer function
for monochromatic flux, so the observed emission is the convolution of this with the
intrinsic disc spectrum. In the case of intrinsically monochromatic radiation, e.g. the
iron Ka fluorescence line which can be produced by X-ray illumination of cool, optically
thick gas, then this transfer function directly gives the expected line profile. Photons
produced by this emission process in regions close to the black hole enable us to examine
the properties of the multiple orbit photons considered in the preceding section from a
spectroscopic perspective.

To generate the line profiles, we apply a radial emissivity of the form €(r.) oc 773 (con-
sistent with gravitational energy release within the disc (Zycki et al., 1999) and consider
three possible angular emissivity laws: (i) f(ue) o cons., corresponding to an optically
thick disc (red lines); (ii) f(ue) o p !, corresponding to an optically thin, limb brightened
disc (blue lines) (Matt et al., 1993b) and (iii) f(ge) o< (1 + 2.064.) corresponding to an
optically thick, limb darkened disc (green lines) (Laor et al., 1990). Figure 5.4 shows the

line profiles generated for the low inclination Schwarzschild disc discussed in the preced-
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image, limb darkening boosts the effects of gravitational lensing, enhancing the flux from
the far side of the hole. This is because these photons are strongly bent, i.e. are emitted
from a lower inclination angle than that at which they are observed, so a limb darkening
law means that the flux here is higher (Beckwith & Done, 2004). The Doppler shifts
are rather small for this material, so this lensing enhances the flux in the middle of the
line. Since the line profiles are normalised to unity, this means that the blue wing is less

dominant.

The first order spectra are shown in Figure 5.5, middle row. The transfer functions
mostly retain the characteristic double peaked and skewed shape, and again the principal
effect of the different angular emissivities is to alter the balance between the blue wing and
leased middle of the line. However, there is some new behaviour for the limb brightened
emissivity. This has the largest change in emissivity with angle, and this combined with
the exquisite sensitivity of lensed paths means that this picks out only a small area on the
disc, leading to a discrete feature in the spectrum. These profiles also show enhancement
of the extreme red wing of the line, as the photons which orbit generally are emitted from

the very innermost radii of the disc.

The discrete features are completely dominant for all emissivities at second order
(Figure 5.5, bottom row). These are images of the top of the disc where the photons have
orbited the black hole, so the paths are even more sensitive to small changes than first
order. Thus the profiles are significantly more complex in structure, being dominated by
lensing. There are blue and red features at the extreme ends of the line profile which are
picking out the maximum projected velocity of the innermost radii of the disc. These
have the standard blue peak enhancement. However, the two strong features redward of

this are a pair of lensed features, from the near and far side of the disc.

Figure 5.6 shows the line profiles generated for the extreme Kerr hole at high incli-
nations, again ignoring the effect of obscuration. For the direct image (Figure 5.6, top

row), the lines exhibit the characteristic triangular shape previously reported by (e.g)
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Laor (1991), with the variation in angular emissivity acting to alter the balance between
the different regions of the line on a ~ 5% level. The lines associated with the first or-
der image (Figure 5.6, middle row) exhibit a marked difference in comparison to those
associated with the Schwarzschild black hole. In general, they are broader that those as-
sociated with the direct image and resemble a skewed Gaussian combined with a narrow
line (due to caustic formation) at g =~ 1.0. Here the principal effect of changes in the
angular emissivity is to alter the height of the blue wing, relative to the rest of the line.
Again, the line profiles associated with the second order image (Figure 5.6, bottom row)

are completely dominated by discrete features, as in the Schwarzschild case.

5.4 Image Luminosities

To understand the relative roles played by each (unobscured) image order, we consider
the variation of the luminosity of each image as a fraction of the total luminosity of the
system as a function of inclination, again for both Schwarzschild and extreme Kerr black
holes (Figure 5.7). These luminosities are generated from the integral in redshift space of
the line profiles considered in the preceding section and hence we consider systems with
identical properties to those previously discussed. In the case of the Schwarzschild hole,
we see that, for inclinations < 80°, the first order image can be regarded as a < 10%
correction to the emergent flux from the system. For inclinations > 80°, this image
contains 10 — 20% of the emergent flux, i.e. even at these high inclinations, the first
order image can still be regarded as a correction to the direct image. For the second order
image, we see that it plays a < 1% role independent of inclination. Third and higher
order images will have correspondingly smaller fluxes, so can safely be neglected.

There is a larger fraction of flux in the higher order images for the Kerr black hole. At
low inclinations, the first and second order images contain 10% and 1% of the total flux,
respectively. The variation of the luminosity fraction for the three image orders displays

an approximately power law like behaviour for inclinations < 60°, where a distinct break
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occurs, due to the appearance of a caustic in the first order image, whose luminosity
is therefore significantly enhanced. It is at this point that the peak luminosity of the
second order image occurs, which here is on the level of 10%, approximately an order of
magnitude higher than in the Schwarzschild case. Remarkably, for inclinations > 75°, the
luminosity of the first order image produced by the optically thick discs is greater than
that produced by the direct image.

However, most of the higher image order flux is expected to re-intercept the disc
plane, and hence be absorbed and re-radiated. This is especially the case for realistic
discs around an extreme Kerr black hole, where the whole of the equatorial plane is
covered by the disc from 7, to large radii. However, for Schwarzschild, the existence of a
central ’hole’ means that the flux from higher order images can escape. A realistic disc
around a Schwarzschild black hole when viewed face on has 10% of its flux in a higher
order image ring (dropping to ~ 7% for a more extended disk ranging from 7,,,, — 400r,).
Essentially, a spatial resolution equivalent to 2r, is required to resolve these features,
which for typical nearby Active Galactic Nuclei corresponds to an angular resolution of
0.01 micro-arcseconds. This is obviously extremely technically difficult, but is feasible for
an X-ray interferometer imaging supermassive black holes in nearby galaxies (Gendreau

et al., 2001).

5.5 Conclusions

Photons orbiting a black hole are exquisitely sensitive to the properties of the gravitational
field. Thus these higher order null geodesics provide the best test of Einstein’s gravity in
the strong field limit. We have developed a new strong gravity code capable of describing
these paths, and calculate them for a geometrically thin, optically thick (standard) disc
in both Schwarzschild and Kerr metrics. These higher order image paths must cross the
equatorial plane, so are absorbed where this is filled by the optically thick disc. As has

long been known, the major amplification effects of gravitational lensing are for the first
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order paths from the far side of the underneath of the disc viewed at high inclination i.e.
photons initially emitted downwards on the far side of the black hole, which are bent by
gravity up above the disc plane. Most of these paths will re-intersect the disc unless it
has very limited outer radial extent. While such discs may exist (Reynolds et al., 2004), it
seems far more likely that these photons would be absorbed by material in the equatorial
plane. However, there is some fraction of the higher order images where the light paths are
so strongly bent that they re-intersect the equatorial plane very close to the photon orbit
radius. By definition, this is below the minimum stable orbit for particles, so the standard
disc cannot exist at this point. Instead, for a stress-free inner boundary condition, the
disc material plunges rapidly though this region, so there is much less absorbing material
in the equatorial plane. This material may be optically thick at high mass accretion rates
(Reynolds & Begelman, 1997), but this depends on whether the flow in the plunging
region is smooth or clumpy. Hence higher order photons which cross the plane below 6r,
need not be reabsorbed by the disc. We show that these observable higher order photons
can carry 10% of the flux for a face on disc. Edge on discs reduce the expected observable
flux as only about half of the orbiting photon ring can be seen through the gap below

Tms, While the rest re-intercepts the disc at r > r,,,.

The situation is less favourable in the Kerr geometry as photons now orbit at a range
of radii depending on how their angular momentum is aligned with the spin of the black
hole. Photons going against the spin will orbit at radii which are larger than that of the
minimum stable orbit of the disc, so should be absorbed rather than escaping through
the inner ’hole’ in the disc (provided a 2 0.65). Thus for Kerr black holes, even though
there is a greater fraction of photons in the higher order images, we expect that these
are less observable due to the overlap between the photon and particle orbits. Also, even
though there is still a gap between the last stable particle orbit and the aligned photon
orbits, this gap is much smaller than in Schwarzschild, both in terms of radial coordinate

and in terms of impact parameter on the sky. For a=0.998, the equilibrium spin for thin
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disc accretion, r,, = 1.23r, while the rl(,;) = 1.07, so Ar = 0.16. Since the photons
orbit in slightly stronger gravity, their paths are more distorted, so the difference in their
impact parameter at infinity is slightly less than the difference in radial coordinate. Thus
the higher order images round a rapidly spinning black hole are much more difficult to
spatially resolve from the direct image of the disc, and carry less flux than Schwarzschild

as only a fraction re-intersect the plane below 7.

Thus the best chance of observing these higher order photon paths from a standard
accretion disc is with a face-on Schwarzschild black hole. X-ray interferometry could
potentially directly resolve such scales for supermassive black holes in nearby galaxies,
and such missions are being seriously proposed (MAXIM: Gendreau et al., 2001). Even
if the plunging region is optically thick, direct imaging with resolution < 2ry will clearly
show the black hole spin from the apparent size of the ’'hole’ in the centre of the disc.
The radial coordinate of the innermost stable orbit in an equilibrium spin Kerr metric is
a factor of ~ 3 smaller than for Schwarzschild, which translates to a change in apparent
size at infinity of the ’hole’ diameter from ~ 5r, (a=0.998) to ~ 14r, (a=0). This is
important as recent papers have emphasised that the true size of the shadow of the event
horizon (in effect the impact parameter of the orbiting photons, given fairly accurately by
our second order image) is rather similar in both Schwarzschild and Kerr (Falcke et al.,
2000; Fukue, 2003; Takahashi, 2004). This is true, but different to the size of the ’hole’
defined by the innermost stable orbit of the disc. For continuous energy release down to
the event horizon, the ’hole’ in the image of the accretion flow is set by the true shadow
size, but for accretion flows where the energy is only released from stable particle orbits
(the disc, as opposed to the plunging region) then the innermost stable orbit sets the size
scale. Whether the energy release can be continuous across rp,, is currently a matter of
active research (Krolik & Hawley, 2002). However, there is clear observational evidence
for an innermost stable orbit in the disc dominated spectra of galactic black hole binaries

(Ebisawa et al., 1993; Kubota et al., 1999; Gierlifiski & Done, 2004), so it seems likely
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that the accretion flow can take the standard thin disc form assumed here.

The spectral signatures of these higher order photons only become apparent for high-
inclination systems, where they carry between ~ 20% (Schwarzschild) and ~ 60% (ex-
treme Kerr) of the total luminosity of the system. However, in a realistic system, the disc
extends out to many thousands of gravitational radii from the black hole and so these
photons return to the disc before reaching the observer. Far from the central black hole,
the effect of the returning radiation is comparable to the gravitational potential energy of
the material and so these photons can play an important role in shaping the properties
of the disc here. In particular, reprocessing of this returning radiation at large distances
from the hole will potentially provide a physical mechanism to flatten (at large radii) the
7~3/4 temperature profile of a planar accretion disc irradiated by a central source, which
could help to resolve the conflict between the predicted and observed optical/UV colours
in Active Galactic Nuclei (Koratkar & Blaes, 1999).

The code used to calculate these results is an extension of that of Beckwith & Done
(2004). The new aspect described here is a set of analytic constraints on the possible
photon trajectories which vastly reduce the scale of the calculation. This, combined with
the use of the analytic integrals (elliptic functions) for the photon paths, has the result
that the calculation of a photon trajectory linking two points (the emitter and observer,
(Viergutz, 1993) can be performed by a simple minimisation, capable of being calculated
to almost arbitrary accuracy on a standard desktop PC on time scales of a few minutes.
This technique allows us to include the contribution of orbiting photons in the calculations
without loss of resolution. The code is also flexible enough to be adapted to any accretion
flow, and a future work will consider the contribution of the higher order images in an

optically thin, geometrically thick flow.
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Chapter 6

Observational
Diagnostics of Modern

Accretion Flows

Abstract

Modern descriptions of black hole accretion disks rely on the Magneto-Rotational Insta-
bility to provide angular momentum transport within the disk. In recent years, it has
become clear that the properties of accretion disks in this description are rather different
to those in the standard model. To date, the majority of these studies present results
that are defined in the rest frame of the disk. Determination of the observational charac-
teristics of the flow requires a description of dissipation within the disk, coupled to a GR
ray-tracing code. We perform these calculations based on the GRMHD simulations pre-
sented previously by De Villiers et al. (2003). We explicitly compare dissipation derived
from the magnetic 4-current density at late times in the simulations with that derived

from the standard model, showing that these two quantities are well-matched.

Using this description of dissipation, we firstly calculate the observed spectral char-
acteristics of optically thin, bound material within the disk. Observationally, such a flow
could correspond to emission from the optically thin, geometrically thick, hot inner flow
that may be found in the hard state of low mass X-ray binaries such as XTEJ1550-564
(Zdziarski & Gierliriski, 2004). The shape of the high-energy cutoff at ~ 100keV is found

129
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to be strongly modulated by relativistic effects originating in the dynamics of the accretion
flow combined with the effect of black hole spin, which should be directly testable.

In a separate approach, we examine the properties of fluorescent Iron Ka lines expected
from these GRMHD accretion flows. We assume that the mid-plane of the disk is optically
thick and illuminate this surface with hard X-ray photons. These photons originate
in either bound material surrounding the mid-plane (the disk ’corona’) or by rapidly
outflowing, unbound material (the ’jet’). The resulting illumination patterns are well
described by e(r.) o< r~7. For illumination due to unbound material, ¢ ~ —2, independent
of black hole spin. By contrast, ¢ ~ —3, —4 for illumination due to bound material for
slowly and rapidly rotating holes respectively. For a specified black hole spin, the resultant
Iron Ke line profiles are found to extend to lower energies than would be expected from
standard accretion disk models, as previously reported by Reynolds & Begelman (1997).
However, the change in illumination pattern due to bound material with increasing black

hole spin results in a noticeable change in the line shape.

6.1 Introduction

The standard model of a relativistic accretion disk due to Novikov & Thorne (1973), Page
& Thorne (1974) is essentially a parametrised, one-dimensional, time-averaged description
of what potentially is an extremely complex physical process. In these models, the au-
thors specify an anomalous viscosity to provide angular momentum transport within the
disk. However, in this description, the physical mechanism providing angular momentum
transport is unclear. Furthermore, stability studies of these accretion disk models (see
e.g. Frank et al., 2002) have shown them to suffer from many instabilities, which raises
fundamental questions about their applicability.

The key question for accretion flow dynamics is the mechanism that supplies the
outwards transport of angular momentum through the disk and hence enables the inflow

of material. It now seems likely that this mechanism is provided by the magneto-rotational
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instability (MRI Balbus & Hawley, 1991). Essentially, two radially adjacent fluid elements
within a Keplerian accretion flow are connected by magnetic field lines, which are stretched
by the relative motion of the two elements. If we imagine the field as a spring connecting
the two elements, then it is apparent that the field will act to decrease the velocity of
the inner fluid element, whilst increasing that of the outer element. Mass is therefore
able to flow inward through the disk, whilst angular momentum is transferred into the
outer regions. This instability leads directly to the generation of MHD turbulence within
the flow, which in turn provides enhanced angular momentum transport. The dynamical
properties of the inner regions of the accretion flow are crucially important in determining
global properties of the flow, such as accretion efficiency and the amounts of matter-energy
& angular momentum captured by the hole. In the MRI paradigm, although the flow does
know about the presence of the marginally stable orbit, magnetic stress can extend below
this radius (see e.g. Krolik & Hawley, 2002; Krolik et al., 2005). This is rather different
to the picture in the standard model of thin disks, where (by construction) the stress goes
to zero and the (stable) disk is truncated here. Qur calculations are based on late-time,
azimuthally averaged data from the global, General Relativistic Magneto-Hydrodynamic
(GGRMHD) Keplerian Disk (KD) simulations described in the literature by De Villiers
et al. (2003); Hirose et al. (2004); De Villiers et al. (2005); Krolik et al. (2005).

From an observational standpoint, these differences are rather important. Recent
observational studies of both Galactic Black Hole Candidates and Active Galactic Nuclei
(see Chapter 2 along with, e.g. Reynolds & Nowak, 2003; Miller et al., 2004; Fabian
& Miniutti, 2005) have indicated the existence of a highly broadened Iron Ka line in
the 2 — 10keV spectral band, which, at face value, implies black hole spins approaching
maximal (a = 0.998). In a previous paper (Beckwith & Done, 2004, see Chapter 4)
we have addressed the shortcomings of the currently available models in modelling the
relativistic effects on the line, along with the effects of the accretion disk atmosphere.

The properties of the line may well also be sensitive to the underlying dynamics of the
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accretion disk. Reynolds & Begelman (1997) have shown that emission from within the
plunging region can significantly broaden the line, although this may well be sensitive to
both the radial and angular dependence of the emissivity pattern and the dynamics of
the disk in this region. In this work, we examine the properties of the lines generated
by these GGRMHD accretion flows and compare these to the lines expected from the
standard disk models.

Connecting modern descriptions of accretion flows to observational data is not limited
to calculations of Iron Ka line profiles. The geometry for the hard state of Galactic X-
ray binary systems may consist of a hot, optically thin, geometrically thick, inner flow,
which at some (possibly large) distance from the black hole, joins onto a cool, optically
thick, geometrically thin accretion disk (Zdziarski & Gierliriski, 2004). As such, the emis-
sion from the hot inner flow should be convolved with gravitational effects which modify
the shape of the intrinsic spectrum, in particular the high energy cut off at ~ 100keV .
Observationally, this rollover is well-defined, at odds with the expected broadening due
to relativistic effects. We calculate the broadening predicted by the GGRMHD flows,
assuming that bound material within the flow is optically thin. By combination of a de-
scription of dissipation within flow with the intrinsic flow dynamics and fully relativistic
treatment of photon propagation, we are able to calculate the expected broadening of the
low /hard state spectra, which can be compared to observational data to further constrain
our understanding of both accretion and strong gravity.

The rest of this chapter is divided into six sections. In Section 6.2, we overview the
results of the KD simulations on which this work is based. In Section 6.3, we describe how
we mode] the heating distribution in the accretion flow, which we then apply in Section
6.4 - 6.6 where we describe generation of the spectra. In Sections 6.7 & 6.8, we examine
the spectral properties of emission from the optically thin, geometrically thick hot inner
flow and the Iron Ko diagnostics, respectively. Finally in Section 6.9, we summarise our

results and point the way to future work.
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6.2 Overview of Simulations

The calculations presented here are based on the results of the Keplerian Disk (KD)
simulations which have been presented in a series of papers by De Villiers et al. (2003);
Hirose et al. (2004); De Villiers et al. (2005); Krolik et al. (2005). For purposes of clarity,
we give a brief recap of the key points of these simulations which shall be necessary for
future discussions. The equations of ideal non-radiative Magnetohydrodynamics (MHD)
are solved in the metric of a rotating black hole by use of the algorithm described in detail
by De Villiers & Hawley (2003a). We work in the Kerr metric (with determinant \/—g)
written in Boyer-Lindquist coordinates, using gravitational units (G =M =c=1).

'The initial conditions for the KD simulations consist of an isolated gas torus orbiting
near the black hole, with the pressure maximum located at r ~ 25M and a (slightly)
sub-Keplerian distribution of angular moment throughout, whilst the magnetic field is
initialised to consist of loops of weak poloidal field lying along isodensity surfaces within
the torus. This work will focus on the properties of the four high resolution models
presented by De Villiers et al. (2003), which are designated KD0, KDI, KDP and KDE
and correspond to black hole spins of a = 0.0,0.5,0.9,0.998 respectively. Each model
consists of 192 x 192 x 64 (r,0, ¢) grid zones, where the inner radial boundary is located
at ri; = 2.05,1.90,1.45,1.175M for models KDO, KDI, KDP, KDE respectively (i.e. just
above the black hole event horizon in each case). The outer radial boundary is located
at 7ou = 120M in all cases and the radial grid is set by a hyperbolic cosine function
in order to maximise resolution close to the inner boundary. For the #-grid we take
0.0457 < 0 < 0.9557, using an exponential grid spacing function that concentrates zones
near the equator along with a reflecting boundary condition. Finally, the ¢-grid spans the
quarter plane, 0 < ¢ < /2, with periodic boundary conditions in ¢, which significantly
reduces the computational requirements of the simulation (for further discussions on the
effect of this restriction see De Villiers & Hawley, 2003a,b). Each simulation was run to

time 8100M, which corresponds to approximately 10 orbits at the pressure maximum,
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with the temporal time step, At being determined by the extremal light crossing time for
a zone on the spatial grid, remaining constant for the entire simulation (De Villiers et al.,
2003). The simulations are initialised to have only a finite reservoir of material in the disc,
that is, the radial boundary conditions are set such that only outflow of material from
simulation volume is permitted. As outlined in De Villiers et al. (2003), the quasi-steady-
state system is usefully divided into five main regions: (i) the main body of the disk; (ii)
the coronal envelope; (iii) the inner torus and plunging region; (iv) the funnel wall jet; (v)
the evacuated axial funnel. The amount of material accreted by the black hole during the
course of the simulation decreases with increasing black hole spin, however, even for the
a = 0 case (KDO), this corresponds to only 14% of the total mass within the disk. Note
that we distinguish between unbound and bound material within the simulation volume
by requiring that unbound material possess —hu; > 1 and be have positive proper radial
velocity, u” > 0, where h is the relativistic enthalpy and u* is the 4-velocity of the gas
(see De Villiers et al., 2005).

6.3 Dissipation & Relation to Current Density

For our purposes, the most important point of interest in the properties of the magnetic
field is to identify regions of the simulation where X-ray release is likely to occur. However,
the KD simulations were conducted with no explicit resistivity and as such do not address
the questions of where the magnetic field is dissipated, or the rate at which this process
occurs. A naive application of Ohm’s law (Power oc Current?) leads us towards considering
the magnetic current density as a trace of dissipation within the flow. Rosner et al. (1978)
have suggested that (in the case of the solar corona), regions of high current density
are candidates for regions of high magnetic dissipation (and hence thermal heating), as
high current density may trigger anomalous resistivity through mechanisms such as ion-
acoustic turbulence, although it should be emphasised that no physical model relating

current density and dissipation is currently known. In the absence of such a physical
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model, we follow Hirose et al. (2004) and simply set the heating distribution proportional
to the square of the 4-current density. With this assumption, let us define the dissipation
per unit disk radius to be:
0.9557
D(r) = / / NP (6.1)
0.0457

In Figure 6.1 we show an explicit comparison of this quantity and the dissipation
per unit disk area derived from the standard relativistic disk model (see Section 2.4
and Novikov & Thorne, 1973), where we have assumed the stress-free inner boundary
condition. Clearly, the two descriptions of dissipation are well matched for r > 10M,
independent of black hole spin. For the slowly rotating holes (KD0,KDI), this remains true
until the turnover in the Novikov-Thorne description close to r,,, (due to the application
of the stress-free inner boundary condition in the latte,r case). However, in the case of the
rapidly rotating black holes (KDP,KDE), dissipation in the simulations is in deficit by
comparison to the prediction of the standard model in this region. However, the closeness
of the match between the dissipation derived from the shell-integrated current density
and that demanded by energy conservation within the standard disk lends support to our
assumption that dissipation within the simulation is traced by the current-density.

We assume that a volume element within the simulation emits radiation with specific
intensity proportional to the 4-current density. The observed spectra of this material is
generated from this heating distribution, convolved with a transfer function (see Section
6.4). The total heat dissipated in each volume element is therefore proportional to the
locally-integrated square of the 4-current density:

ret+dr/2 pBe+df/2 pm/2
110, / / / N (6.2)
re—dr/2 JO.—d8/2 Jo

Figure 6.2 shows a map of this heating distribution for each of the KD simulations.
From these maps, it is clear that the heating distribution for the simulations corresponding
to slowly rotating black holes (KDO, KDI) are dominated by the contribution from bound

material in the disk, whilst the simulations corresponding to rapidly rotating black holes
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6.4 Calculating the Observed Spectrum

The observed spectral properties of the accretion flow are determined by a complex con-
volution of the intrinsic (i.e. emitted) spectral shape with a description of dissipation,
flow dynamics and the effect of gravity on photon propagation. The greatest uncertainty
in these calculations lies in the first and second of these properties, as we do not possess
a physical model relating the current density at a given point in the spacetime to the
local heating rate at this point, nor do we possess a physical description relating the local
heating distribution to the radiation spectrum. In Section 6.3, we saw that the local
4-current density may well provide a good description of dissipation within flow and so
we adopt this description here.

Ignoring, for the moment, the effect of the intrinsic spectral shape, the flux measured
by a distant observer from optically thin material within the disk body (i.e. ’bound’
material), moving with 4-velocity u* may be written as (see e.g. Asaoka, 1989; Laor

et al., 1990; Kurpiewski & Jaroszynski, 1999; Gierliriski et al., 2001):

- / / / T, o; 7o, 8e) ||| |2 d6l dg (6.3)

Here, ||J]|? is the azimuthal average of the square of the 4-current density, T(g, tto; e, e)
is the transfer function and dr’, df’ are the coordinate differentials measured in the co-
moving rest frame of the emitting material (the 'fluid frame’). The observed redshift of a

photon, g is determined via:

_ B puub b
g= B~ puit where u} = (1,0,0,0) (6.4)

Some fraction of the photons emitted from this optically thin material will cross the
equatorial plane of the black hole. The flux received per unit radius, 7., on this plane is

given by (Laor et al., 1990):

Teq dT" / / / 2T ga 7't'iq) re) )| |J||2d7'ld9,dg (65)
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In this case, the observed redshift of a photon, g is determined via:

E uy
Srea _ Pilres opere up =ul (Lo 08 0P ) (6.6)

g= Ee == —pﬂu‘e‘ Teq ] "‘eq’ Teq’ Teq

Note that both uf and u}, are obtained directly from the late-time data set corresponding
to the 4-current density snapshot used to generate ||J?||.

To generate Iron Ka fluorescence line profiles, we assume that the equatorial plane is
optically thick and that all incident photons are reprocessed into the line at a rest frame
energy of 6.4keV. This corresponds to a radial emissivity pattern of the form e(r.) o Fy,.

The Iron Ko line measured by a distant observer is determined via (Laor, 1991):

R0 = [ [ [ #T(0moiraetridrdg (6.7)

In this case (uf, uf. as previously defined):

E, Putlly
=_—_°2 _— fh7% 6.8
g Ereq pu u#&eq ( )

6.5 Integration of Photon Trajectories

The fate of a photon emitted in some initial direction from a fluid element with spacetime
coordinate (e, 0,) is determined by the geodesic equations discussed at length in Chapter
3. Determining the relationship between the photons initial direction and its eventual
fate requires the construction of a set of (analytically) invertible relationships between
this direction and the photon angular parameters (), q). From the discussion of Section
3.3.3, it is apparent that, for a generally moving fluid element, no such expressions can be
obtained. However, such relationships can be derived in the Locally Non-Rotating Frame

(LNRF), where it is found that (see Section 3.3.2):

_ cos ¥ L 2ua-v) (q 2 2o 2 2 A2 .
= TToeovend 1°° (1 = w)“cos*© —cos”f |a Szl (6.9)
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This enables us to quickly integrate photon trajectories and establish relationships be-
tween the initial direction of a photon (relative to the basis vectors of the LNRF) and its
fate (i.e. capture by the black hole, crossing of the equatorial plane or escape to infinity).

Figure 6.3 shows maps of the fractional number of photons as measured in the LNRF
for each of these possible fates as a function of (r.,6.). If we were to emit an even
distribution of photons in the LNRF at a particular (r., §.) point in spacetime, then the
corresponding point on the map represents the probability that a photon arrives at a
given destination for the black hole spin’. It is apparent that the majority of the the
photons that are emitted below 3M are captured by the black hole, with 40% crossing
the equatorial plane within the disk body. Above 3M, only a very small fraction of the
photons are captured by the black hole. In the region 3 — 10M, as much as 70% of the
emitted photons cross the equatorial plane, with the strength of this effect showing a
strong correlation with black hole spin. This reflects the change in the lensing properties
of the black holes with increasing angular momenta, as discussed by Beckwith & Done
(2005). Above 10M, the fraction of photons crossing the equatorial plane falls off to
< 50%, with virtually all the remaining photons escaping to infinity, as expected from a
simple consideration of the solid angle subtended by the equatorial plane in regions where
lightbending does not play a substantial role. In the outer regions of the simulation, the
effects of the finite simulation volume become apparent, with the majority of the emitted

photons escaping to infinity.

6.6 The Transfer Functions

The transfer functions, T'(g, to;Te, 0e), T(g, Teq;Te, 0e) and T(g, o3 Teq) are constructed
from an even distribution of photons in the locally inertial rest frame of the emitting

fluid element, the fluid frame. In our calculations, the photons are initially given an even

'Note that photons that cross the equatorial plane within the disk body are only counted within this

category, i.e. we do not 'double count’ photons



6. Observational Diagnostics of Modern Accretion Flows 142

distribution in the LNRF and so this distribution must be transformed to an even distri-
bution in the fluid frame. In our calculations, this frame is described by the construction
of an orthonormal tetrad directly from the four-velocity of the fluid by use of a Gram-
Schmidt orthogonalisation procedure (as described in Krolik et al., 2005). This approach
is advantageous to that described in Section 3.3.3 as the resulting expressions are rather

more compact.

The basis vectors are chosen so that physical interpretation is as straightforward as
possible. In particular, the time-leg of the tetrad is chosen in the direction of the four-
velocity of the fluid element (accomplished by setting eﬁ] = uM), which allows the easy
identification of the direction of proper time in this observers frame. Additionally, this has
the advantage that the time-leg of the tetrad automatically has the correct normalisation
as the four-velocity of the fluid element is subject to the normalisation condition utu, = 1.
The choice of directions in three-space is ambiguous, however - many different approaches
to their generation can be taken, all of which produce different (but equally correct)
results. This mathematical ambiguity reflects the physical ambiguity in the choice of axes
in three-space. We then orthonormalise the covariant components of the three-space legs
of the tetrad in the order (¢,r,6) in order to enable the closest possible comparison with

Novikov & Thorne (1973). We obtain (see Figure 6.4):

t .
e =u |1 v" o o*|;

_ t
€ = Ny

gut + Gt N‘f gre N[, 0 gt¢+g¢¢N¢ ;
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The photons four-momentum has moving frame components py, = pvel,:

Pl = ul [1 + 50"/ Ry (1) + 391)9\ /O q(6) — pYd

P = Niy [gtt + ges NGy + e Niysr0"y/ Rag(r) = A (gt"’ + 900N lfl) ;

6.11
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The angles formed by the photon trajectory relative to the basis vectors of the fluid

frame are given by (see Figure 6.4):

cosY = m; sin¥sin = = ZM; sinY.cos= = cos ¥V = —M; (6.12)

PR Pl Pt
The amount of emitted solid angle attached to each photon in the fluid frame is determined
by means of a simple algorithm which calculates the area on the (X, Z)-plane associated
with a given photon trajectory. The photons that are emitted with constant angular

distribution in the Locally Non-Rotating Frame are then redistributed such that they
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Figure 6.4: The co-ordinate systems associated with the Locally Non-Rotating Frame
(LNRF, blue lines) and the Fluid Frame (green lines) associated with a particular emission
point in the spacetime. We invert the simple relationships between the angles made by
the photons 4-momenta in the LNRF, ©, ® and the conserved quantities ), g to integrate
the null geodesics. The angles made by the photons 4-momenta with the basis vectors in

the fluid frame, X, ¥ are then obtained by through py, = pvep-
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have an even distribution in the fluid frame, as specified by the fractional amounts of
solid angle attached to each photon trajectory. These projections now enable us to create
maps relating directions in the fluid frame to the three destinations of the trajectory
outlined previously, which are shown in Figure 6.5. The principle difference between the
maps shown in Figure 6.3 and those shown in Figure 6.5 is that those shown here contain
the effects of the motion of the fluid elements. Relativistic beaming effects mean that
the majority of the emission from rapidly moving material is directed in the direction
of motion. Clearly, the majority of the photons from the rapidly outflowing material
in the jet-like structures situated in the regions around the symmetry axis are directed
to infinity, as can be seen from the bottom row of panels in Figure 6.5. Similarly, the
majority of photons emitted from the rapidly infalling material in the inner regions of the
flow are captured by the black hole. It is therefore far harder for photons from these two

sources to illuminate the equatorial plane and thereby contribute to Iron Ko production.

6.7 Spectral Diagnostics of Optically Thin, Geomet-
rically Thick Accretion Flows

In Figures 6.4 and 6.5, we show dynamical spectra and convolution kernels describing
optically thin, bound material for each of the KD simulations. These spectra include
photons that cross the equatorial plane, possibly on multiple occasions. In terms of
the observed states of real accretion flows, this is most likely to correspond to the hot
inner flow in the proposed geometry for the hard state of low mass X-ray binary systems
(see e.g. Zdziarski & Gierliriski, 2004). These spectra should therefore be interpreted as
convolution kernels for the broad band X-ray spectrum, such as those discussed for an
geometrically thin, optically thick accretion disk in Section 2.5.

Reynolds & Begelman (1997), in the context of Iron Ka line profiles, showed that

emission below r,,, acts to broaden the line in the case of the Schwarzschild hole. Figures
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6.4 and 6.5 demonstrate that the spectra resulting from emission from optically thin,
bound material are generically broad, independent of black hole spin. The spectral shape
is, however, strongly dependent on the black hole spin and is a result of a complex interplay

of the flow dynamics and dissipation profile.

For the slowly rotating holes, the spectra strongly resemble the profiles due to standard
accretion disks, with the addition of a broad component in the red wing of the line, which
has its origin in the rapidly infalling material in the plunging region. As black hole spin
increases, we observe a corresponding increase of the relative amount of flux contained
within this component relative to the blue wing of the line, as can be clearly seen from
Figure 6.5. Photons emitted from material on the near side of the black hole must be
emitted in a direction opposite to that of the materials motion and so arrive at the
observer with their energies much reduced. Photons emitted from the rapidly infalling
material on the far side of the hole are strongly concentrated in the direction of the hole
and so are captured, rather than being able to propagate to the distant observer. A large
fraction of the photons (~ 90%) forming this component perform multiple crossings of
the equatorial plane, as described in Chapters 3 and 5, which, when combined with the
marked increase in dissipation in the inner regions of the flow, results in the increase in the
relative strength of the red wing component with increasing black hole spin. Gravitational
lensing is always important for optically thin, geometrically thick flows as a significant

amount of flux is carried by these photons.

There is a marked difference between the spectral shapes associated with the two
fastest rotating black holes, KDP and KDE. Recall that for KDP, which corresponds to
a = 0.9, rps = 2.32, whilst for KDE, corresponding to a = 0.998, r,,, = 1.235. Below
~ 3M, material in the KDP simulation is rather rapidly infalling. As noted in Krolik et al.
(2005), there is a marked decrease in the radial infall velocities for material within the disk
for the most rapidly rotating black hole, KDE. In fact, examination of the azimuthally

averaged velocity field used to generate the spectra reveals that bound material within the
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magenta lines (KDE). The principle effect of black hole spin on the thermal spectrum
is to change the shape of the high energy cutoff, which becomes broader as black hole
spin is increased (until the most rapidly rotating case). For the non-thermal spectrum,
increasing black hole spin again broadens the high-energy cutoff at ~ 100keV. There
is also now an additional effect on the (as yet unobserved) annihilation lane at 511keV,
which becomes substantially broader with increasing black hole spin (again until the most

rapidly rotating case for both effects).

6.8 Generation of Broad Iron Ko Lines

The second approach to calculating spectral diagnostics of these accretion flows, genera-
tion of Iron K profiles is more complex. As outlined in Section 6.4, we assume that the
accretion flow is optically thick in the equatorial plane and illuminate this surface with
photons emitted from both bound and unbound material in the surrounding simulation
volume, which are reprocessed into a fluorescent Iron Ka line and propagated to a distant
observer.

Figure 6.9 shows the illumination patterns generated by this model for the four differ-
ent KD simulations. For each simulation, two different illumination models are shown -
solid lines denote the illumination pattern generated by bound material and dotted lines
the pattern generated by unbound material. Generically, the illumination patterns take
the form e(r.) o 7,9, where ¢ ~ —2 for illumination by unbound material (independent
of black hole spin). In the case of illumination by bound material, ¢ ~ —3 for the slowly
rotating black holes (KD0,KDI), steepening to ¢ ~ —4 for the rapidly rotating holes.

For illumination of the surface by bound material, simple considerations of the release
of gravitational potential energy indicate that we should expect a dependence of the
illumination pattern on radius approximately matching r—3. The proposed geometry for
the soft state of galactic X-ray binaries consists of a thin, cold accretion disk, extending

down to the last stable orbit, surrounded by an optically thin, Comptonising corona.
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shown in Figure 6.9

In Figures 6.10 and 6.11 we show the Iron Ka profiles generated for the illumination
pattern due to emission from either bound or unbound material shown in Figure 6.6. For
a given black hole spin, the profiles due to illumination by bound material are significantly
broader than those due to unbound material, reflecting the difference between these two
illumination patterns. The line becomes broader with increasing black hole spin, although
this effect is less pronounced than in the standard disk case (c.f. Figure 4.6). Consider
the lines resulting from illumination by bound material. Here, there is a clear dichotomy
between the rapid and slow rotating holes. The underlying dissipation is more strongly
peaked towards the inner regions in the rapidly rotating cases, resulting in a steeper
illumination pattern. This change is reflected in the properties of the line, which, for the
rapidly rotating holes, contains far more flux in the red wing in comparison to the slowly

rotating case.

In the standard model of relativistic accretion disks, the width of the Iron Ka line is
used as a diagnostic of the black hole spin (see Section 2.5). From Figures 6.10 and 6.11,
it is apparent that although the derived widths of the Iron Ko lines are correlated with
black hole spin, this dependence is far less pronounced than the standard case. Figure 6.13
shows an explicit comparison of the lines generated from the KD simulations with those
predicted from the standard model of accretion disks. To generate the standard disk line
profiles, we have assumed a radial emissivity law of the form £(r.) = r=9 and an angular
emissivity law f(u.) = 1. The power law index, ¢ is chosen to be —2 for comparison
with lines produced by the illumination pattern due to unbound material. Similarly, we
take ¢ = —3, —4 for comparison with the lines due to illumination by bound material
for slowly rotating and rapidly rotating holes, respectively. As expected from Reynolds
& Begelman (1997), the lines from the KD simulations are generically far broader than
those predicted from the standard disk model, with a large excess of flux in the red wing

of the line.
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Figure 6.12: Selected Iron Ka profiles for a simple reflection geometry. From left to
right, the panels show lines for the KD0, KDI, KDP & KDE simulation data sets, which
correspond to black hole spins of a = 0.0,0.5,0.9,0.998 respectively. Profiles on the
top row are generated using the illumination pattern from bound material, those on the
bottom using the illumination pattern from unbound material (both shown in Figure
6.6). On each panel we show four different lines corresponding to different inclinations
of the observer: (i) 11° (solid lines); (ii) 30° (dotted lines); (iii) 60° (dashed lines); (iv)
89° (dot-dash lines). Each profile corresponds to a slice through the dynamical spectra
shown in Figure 6.10 (at the given inclination) and again is normalised to one photon.
For the slowly rotating holes, the principle effect of increasing inclination is to increase
the relative amounts of flux in the blue wing of the line. For the rapidly rotating holes,

increasing inclination results in the line becoming far more centrally concentrated.
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A realistic direct comparison of the effects of the transfer function between the different
black hole spins is best accomplished by examining their effect on the reflection spectrum,
rather than solely the line. In Figure 6.14 we show the reflection spectrum due to cold,
mostly neutral material (£ = 100 ergs cm s~!) generated by the XSPEC model THCOMPML
(black lines, see Zdziarski et al., 1996; Zycki et al., 1999) convolved with with the 30°
kernel for KDO (red lines), KDI (green lines), KDP (blue lines) and KDE (magenta lines).
On the left-hand panel, we show the resultant spectra when the illumination pattern is
generated from unbound mé,terial, the right-hand panel using bound material. In the
former case, black hole spin plays only a small (~ 5%) role in shaping the observed
reflection spectra. However, in the latter case, the effect of black hole spin is rather more
pronounced, with a clear distinction between the slowly and rapidly rotating holes, due to
the changed illumination pattern. Not only does the line become broader with increasing
spin, but additionally the relative height between the peak of the Iron Ka line at ~ 6keV
and the end-point of the Iron edge at ~ 7TkeV decreases. However, we caution that this
feature is strongly dependent on the underlying ionisation state of the material, as can

be seen from the right-hand panel of Figure 2.6.

6.9 Conclusion

We have presented a series of calculations based on the results of the Keplerian Disk (KD)
simulations which have been presented in a series of papers by De Villiers et al. (2003);
Hirose et al. (2004); De Villiers et al. (2005); Krolik et al. (2005). These calculations
employ a modified form of the strong gravity code described by Beckwith & Done (2004,
2005) to determine various observational properties of these global, general relativistic
magneto-hydrodynamic accretion flows.

We assume that the rest frame emission intensity follows the heating distribution
within the simulation, which in turn corresponds to regions of high current density, as

proposed by Rosner et al. (1978). Explicit comparison of this choice with the dissipation
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derived in the context of the standard relativistic disk model exhibits a surprisingly close
match between the two descriptions. To calculate observational diagnostics of these ac-
cretion flows, our calculations take two distinct approaches. In the first, we assume that
the accretion flow is optically thin and consider emission from bound material. This emis-
sion is used to generate convolution kernels for the optically thin, hot inner flow thought
to be present in the low/hard state of low mass X-ray binaries, such as XTEJ1550-564
(Zdziarski & Gierliriski, 2004). All of the kernels are broader than those expected from
a standard accretion disk. Those associated with slowly rotating holes are intrinsically
narrower than those associated with the rapidly rotating cases, with a large number of
the observed photons strongly modulated by strong gravitational lensing effects. If the
low/hard state of low mass X-ray binaries really does consist of a hot optically thin inner
flow and if this flow is described by KD simulations, then the shape of the high-energy
spectral cut-off is modulated strongly modulated by black hole spin. Observationally,
this spectral feature is rather sharp, which may be incompatible with the spectral shapes

associated with rapidly rotating black holes.

In the second approach, we assume, a priori, that the accretion flow is optically thick
in the equatorial plane. Hard X-ray photons are emitted throughout the rest of the
simulation volume, with the emitted intensity tracing the heating distribution in the rest
frame of the emitter. The photon trajectories are traced to the equatorial plane and
illumination patterns for emission from both bound and unbound material calculated.
Both types of illumination pattern are similar and are well described by £(r) « r~9, where
q = —2 for illumination by unbound material (the jet) and ¢ = —3, —4 for illumination

by bound material (the corona) for slowly and rapidly rotating black holes respectively.

We find that the properties of Iron Ko lines generated from these modern descriptions
of the accretion flow exhibit rather different characteristics to those predicted from the
standard relativistic accretion disk model. However, there still exists a clear correlation

between these properties and the rotation of the hole, although much less distinct than for
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the standard case. The principle origin of this change is the fact that the accretion flow
extends below the marginally stable orbit in these simulations. This results in the line
extending to lower energies, regardless of black hole spin, as expected from Reynolds &
Begelman (1997). However, if the disk is illuminated by bound material within the corona,
the lines associated with slowly and rapidly rotating holes are rather different, reflecting
the changed radial dependence of the illumination pattern. We caution, however, that this
results is likely to be strongly sensitive to changes in the reflection model. Additionally,
it is important to note that the emission from the surface is assumed to be isotropic in
the rest frame of the emitting material and as such these lines do not taken account of
the issues concerning limb-darkening/brightening (see Beckwith & Done, 2004). Other
important questions remain, in particular the effect of introducing a physical description of
the location of the disk surface, which is likely to have a significant impact on the coronal
illumination model. These calculations are currently in progress and will be presented in

a future work.
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Chapter 7

Summary &

Conclusions

Einstein’s crowning achievement, the General Theory of Relativity, for the first time
provides a physical description of the origin of the Gravitational force, whilst resolving
the fundamental contradiction between Newtonian gravity and the Special Theory of
Relativity. From an experimental standpoint, General Relativity has been remarkably
successful, passing every test to which it has been subject, from the advance of the
perihelion of Mercury to the bending of light rays by the gravitational field of the Sun.
The theories most remarkable predictions concern the properties of spacetime where the
gravitational field is so strong that not even light can escape, the black hole. Such objects
are thought to exist in many astronomical systems, from Black Hole Binaries to Active
Galactic Nuclei. By attempting to understand the observed properties of these systems,
we can hope to test the properties of the gravitational field and hence confirm that General
Relativity does indeed provide an accurate physical description of the properties of black

holes.

In the past two decades, the launch of a series of high-resolution high energy X-ray
satellites have yielded remarkable new insights into the properties of these systems. For
stellar mass black holes contained within Black Hole Binaries (where mass transfer occurs
via Roche Lobe overflow), it is possible to explain the bewildering variety of observed
phenomena in terms of a two-phase accretion flow. Spectra dominated by a blackbody
component in the soft X-rays are explained in the context of a cool accretion disk, which
may be accompanied by an optically thin corona that Compton scatters soft seed photons
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into the observed hard X-ray tail. By contrast, spectra that are hard X-ray dominated
are interpreted as consisting of a hot inner flow, which undergoes a transition to the cool

disk at large radii from the black hole.

Attempts to explain these observations theoretically can be traced back to the standard
disk model developed due to Novikov & Thorne (1973), based on Shakura & Sunyaev
(1973). Gas accreted onto black holes is likely to be in possession of large amounts of
angular momentum, leading to the formation of a structure known as an accretion disk.
For the gas to be accreted onto the black hole, angular momentum must be transported
out through the disk, allowing material to fall inwards. If we assume that there is some
local viscosity mechanism capable of driving this process, then we are lead to the standard
model of relativistic accretion disks. Over the past three decades, it has become apparent
that this description of accretion disks has many shortcomings, not least of which is the
absence of any physical mechanism capable of providing the required local viscosity. In
fact, the only physical mechanism capable of providing the required levels of angular
momentum transport is the Magneto-Rotational Instability (Balbus & Hawley, 1991),
which is fundamentally non-viscous. In this description, accretion disks are rather different

to the standard model (see Section 2.4).

In reality, the observed spectra are more complex. Illumination of cool gas by hard
X-ray photons results in a complex reflection spectrum that is observed in many systems.
Dependent on the ionisation state of the gas, this spectrum contains an intrinsically
narrow feature due to Iron Ko fluorescence at ~ 6.4 keV. The photons that form this
spectral feature originate in rapidly moving material, close to the black event horizon.
They are therefore subject to the combined dynamical effects of the accretion disk and
those of General Relativity, resulting in a highly broadened Iron Ko line. The observed
form of the line can then, in principle, be used as a test of the strong gravitational field

of the black hole.

In Chapter 3, we detailed how calculations of the spectral properties of accretion
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flows in the strong gravitational field of a rotating black hole are performed. The null
geodesic equations governing photon propagation were derived and reformulated to enable
the rapid calculation of large numbers of photons trajectories. We outlined how physical
properties may be evaluated in the local-rest frame of the disk by means of the tetrad
formalism, before finally showing how all these calculations can be combined to generate

observed spectra.

In Chapter 4, we applied a fast, accurate strong gravity code developed from this
description to determine the expected shape of the Iron Ko line. We compared our results
to those predicted by the XSPEC models diskline (Fabian et al., 1989) and laor (Laor
et al., 1990), finding a close match (~ 5%) between the codes. However, the diskline and
laor models make very specific assumptions regarding the (poorly understood) vertical
structure of the accretion disk, which may not be correct. We demonstrate that these
assumptions strongly affect the radial emissivity derived from measurements of the line
shape, which has important consequences for interpretation of observed broad lines, in

particular those seen in MCG-6-30-15.

Chapter 5 extends these calculation to consider the contribution of orbiting photons
to the observed properties of standard accretion disks. For high-inclination systems, these
photons carry a substantial fraction of the total luminosity of the system back to the disk
at a range of radii. However, for low-inclination systems containing slowly rotating black
holes, these photons may be able to escape through the gap between the inner edge of the
accretion disk and the position of the photon orbits. This is potentially observable for
supermassive black holes with the proposed X-ray interferometer, MAXIM, and as such

has the potential to provide an observational test of strong field gravity.

Finally, in Chapter 6, we move away from the standard relativistic disk model and
examine the observational properties of accretion flows where angular momentum trans-
port is provided by the Magneto-Rotational Instability. Currently, there is no explicit

physical description of how dissipation occurs within these flows. However, we are able to
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show that there is a close correspondence between the magnetic 4-current density and the
expected dissipation profile derived from the standard relativistic accretion disk models.
Taking dissipation within the simulation to be proportional to this quantity, we show that
if the flows are optically thin, then there are observable consequences for the spectra of
Galactic Black Holes in the low / hard state. In an alternative approach, we calculate
Iron Ka profiles using a simple reflection geometry, which exhibit rather different charac-
teristics to those predicted from the standard relativistic accretion disk model, originating
in the markedly different dynamics of the accretion flow.

It is clear therefore that the observed properties of Iron Ko profiles are dependent not
only on the well-understood effects of strong gravity, but also on the poorly understood
physics of accretion. Line profiles show a clear dependence on black hole spin, but the
details of their shape are strongly dependent on both the vertical structure and dynamics
of the reflecting material. Before we can make robust, detailed conclusions regarding the
observed properties of the Iron K« line, we will need to have a much better understanding

of the physics of accretion.
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