W Durham
University

AR

Durham E-Theses

A View into the development of two comparable
systems through the application of business
re-engineering in an SME

Nattrass, Carl

How to cite:

Nattrass, Carl (2007) A View into the development of two comparable systems through the application
of business re-engineering in an SME, Durham theses, Durham University. Available at Durham
E-Theses Ounline: http://etheses.dur.ac.uk/2782/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2782/
 http://etheses.dur.ac.uk/2782/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Carl Nattrass

Submitted for the degree of Master of Science

University of Durham 2007

A View into the Development of Two Comparable Systems
through the Application of Business Re-engineering in an

SME

The copyright of this thesis rests with the
author or the university to which it was
submitted. No quotation from it, or
information derived from it may be
published without the prior written
consent of the author or university, and
any information derived from it should be
acknowledged.

Abstract Page

Ideal Caravan Sales Ltd is a medium sized business with their headquarters in Durham,
England. Their main business is the sale and transportation of static and touring

caravans.

Ideal Caravans (IC) have identified a process within their business which is not
functioning adequately and does not allow the required control. As a result of this, they
have decided to review that process and implement a computer system in order to

rectify the problem.

The company have also taken this opportunity to introduce a structured framework

which they can apply to all future computer system developments.

This thesis is an examination into the highlighted problem and discusses options
available to the company. It considers off-the-shelf options as well as bespoke systems.
The thesis also defines a structured approach for the company to use in the
implementation of any future software systems. This will result in positioning the
company so that it can clearly identify, design and implement new computer systems

successfully whether internally or externally.

The thesis also considers a comparison between two bespoke systems, identifying which

is the most successful in solving the identified issue.

Acknowledgments

I wish to acknowledge my thanks to Dr. Liz Burd of the Department of Computer
Science of Durham University for her patience and logical reasoning without whom this

thesis may have read like a novel.
For her love and understanding, I wish to thank my wife Janice.

For giving me the motivation to climb the mountain, I wish to thank my two sons,

Shaun and Daniel.

List of Contents

Abstract Page 2
Acknowledgments 3
List of Contents 4
List of Figures......cccoiininnensncceisanssancsans 8
List of Tables 9
Declarationcccenereissncssnncssiosnsecss 10
List of Acronyms and Definitions 11
1. INtrodUCtiON......cceiiiceriiieraseiscnsesssssssnssssssosssssassssrsssressrsasnssrssssassssenssane 12
1.1 Thesis OULHNE.....c...oociiiiiiiiiiiieteeecee ettt e e s ea e e s e e seeas 12
1.2 Anoverview of Business Process Re-engineering.........ccocecveeeecvenenneninenne. 13
1.3 Criteria fOr SUCCESS....ccvvuirririerrenririeseeteieitetentsresnseeseaessestesbesesasreseessessessnas 14
1.3.1 The Successful Application of Business Process Re-engineering.......... 15
1.3.2 The Creation of a Structured Software Engineering Process 15
1.3.3 An informal Experimental Evaluation of the above Process.................. 15
2. Literature Review — Process ImMprovement........c.ccecvceeicssncccssnccssnsnessonsisssnasens 16
2.1 INEPOAUCHION......cutiiiieciiiieii ettt e e e e s e b e e eseaaen 16
2.2 Concepts of Process IMprovementccccceeeveveerreeieennneesceeseesnecieseesanens 17
23 The Motivations behind Process Improvementcccceeveveeeeiiecievieneenenn. 19
2.4 ODSLACIES....eeeiieriieieieitereete ettt ettt ettt ettt ettt st aenaens 21
2.5 Key RESEATCHETSueoviiiiieiiiiiiiiiiic ettt sas st e et ste s sr e s b e sbeessbenes 23
2.6 History of Software Process Improvement..........cccccecvevuerciircnriinnceereneennnnns 25
2.7 Software Process Improvement Tools and Methodsc.cccoevercierriniennennen 27
2.7.1 The Capability Maturity Model (CMM)........ccocoverieiiriieniinieecieienennnens 27
2.7.2 ISO/IEC 15504 / SPICE Draft Standard for Software Process
ASSESSIMENL. c...iiiiiiiiiiiiii ettt ettt r e e s b e be s bt e b e e e beenaee e reens 28
2.73 The Bootstrap InNtiative:ccvevieviviiiicieieiieiee et 29
2.74 Process Modelling Languages (PMLS):........coccevvviviiiniieinie e 30
2.7.5 Software Process Improvements in Regions of Europe (SPIRE)........... 30
2.7.6 User Groups/RepOSItOTIESeveviiiiiieeeiiieniie e eivee e eiee e 30
2.7.7 INEEWOTKS ...ttt s st anee e 31

6

2.8 Software Process Improvement SUCCESSESccccvervuriiriiniienreeirreeineeeserneens 31

2.9 SUMMAIY .ottt ittt ettt e et e s re e sase e sre e et e saeeessnesaneenaess 34
The Domainccccevrsueerereceeccnnees . 36
3.1 INErOAUCHION.coiiiiiieitctecteee ettt sea e enne 36
3.1.1 The COMPANY......ccceerieieririrerientrerterrreseesresreseesreassesssensesssesssessassessses 36
3.1.2 The BUSINESSccoiiirireeiiieeiieiie ettt e e ssasesbee et e seeeesanessnasssaeens 37
3.1.3 The Ideal Caravan’s Computer NetWorkccooeveveeviverreerrernneennnn. 37
3.1.4 The Problemi.......ccooviriieieniniirenieirinenreeenee et ssesteeseeesereeiens 37
3.2 A Description of the Current Domain..........c.cccoeeerieeveeeverncenrenneseeeseseseeenees 38
321 SEALT. ..o e et s 39
322 The Use of Computers within the Companyccccceeeeerereencreriinnnenns 40
323 Company Proceduresccocooviiriiiiiiiiiiniieie et 42
324 The Recording of the Bookings..........cccceevevciiiniiniicnninncneencecscreens 43
33 An Assessment of the Current Domaincocccecveevienvenrenenieenieneenieeneeeene 47
3.4 What was re€qUITEdcocceeriiiiiiiiiiieeeeet ettt a e b e 48
3.5 Key functional reqUIr€ments............cecevrrerireeeiiennieenieneseesseesensseeseseesssessses 50
Ideal Caravans Business Process Engineering— A Case Study.....c.ccccersunceens 52
4.1 INETOAUCHION. ...ttt et b e sttt ebeete s 52
4.2 The EXiStINg PTOCESS......eiicuiirieeiiriiinierieeteeitn st eeee s v ssesnesssasesseesresssnnas 52
4.3 The Proposed PIOCESScocviciieiiieiierieciieeiteriteeeeeesieeresteesaeseenessaesavees 53
4.4 The Evaluation CIIteria.........cccoceeuerieninieenienierenee ettt sveeinere s 53
4.5 The Evaluation........cccoviieiiiiiniriiiiceneceeeieceice et e s e e e abees 55
4.5.1 R.H.A. ROAAIUNNET ..ottt 56
4.5.2 BoOKINGSYSteM.COML.....ccceertirieeiinrerieeitentereecreebeeeeeeeeseesateeesseeseesanens 59
453 YourBooKIing.COML......coiiiiiriiiiiiineeteeie ettt s 61
454 TIAaCKWRETE ..ottt e 64
4.6 Comparison and Outcome of System Reviews..........cccvvvvirveneinnieeenvenennnnen. 67
The EXPeriment. ... uiicccsssecsesessscssnesssecssssnossssssssnssosssssssssasssssssaessssasssssssssssassssansssss 72
5.1 The Question of the SYSteM.......ccceevieiiiiiiiierereeeee e 72
52 RiSK ASSESSIMENTcoiiiiiiiiiiiiiiece ettt s ens 74
5.3 The Collection Of MELrICScccveeiiieiiieeciee e ea e e 76
54 Development Methodologyc.ccocviviiiiiiiiiiiiiiiiiic e 80
5.5 GUI Design Constderations.........ccccoouieiiiriiriieaneeenieeeneeenieeiieseeasnneeveseinnens 81
5.6 SUMIMIATY ..ottt e 82
The BeSPoKe SYStEMIS...cuuueiiiueeiiinseisrecissneissressnsescssnsesssssesssssssssssssssssesssssasssasssses 83

6.1 System Design OpPHiOnS.......c..eciieiiiriieeciieiieerecrreete et eere e esreeseree e 83

6.1.1 OPerating SYSLEIMSce.eeutrieririenterreniesesiesteeee e esesiestessesseesseeessessansenses 84
6.1.2 Programming Languages..........cccccoivenriniinrenieeiniesienenesiessseseessessesssenas 84
6.1.3 DAtabasesco.everirieinieriereneneerinestesretese st esesrret et saesaeers e s e s ennensaas 88
6.1.4 Methods of Synchronisation.............cccevevenerreeevinresicceseceereecee e 90
6.1.5 Designing the Graphical User Interface.............cccoceveveveevnicrrcennneennnn. 92
0.2 Other FACOTS. ...ccccevuiriirieieirerieneeesesteteee ettt e st e stes s e e e st e sneteses s esaesnesaensens 93
6.3 Identifying Changes to the Company Roles and Procedures.......................... 93
6.4 Resulting OVEIVIEWcccovvieiiiiiiiirineceseeinitseenseeas s e e seess e ss s neessenas 95
6.5 SUMMATY ...ttt ettt e sae e e besra e e e e e s e e sessaaenes 96
Evaluating the two New SYStemS.......cciecieniiiiccninscressnnsssnissssssssssssseosasassassssssssnsese 98
7.1 An Evaluation and Comparison of the two New Systems.........c.ccoveevervennee. 98
7.1.1 Comparison against Key Functional Requirements............c.cccceeveenen.e. 100
7.1.2 Comparison against Non-Functional Requirements...............cccocav..... 100
7.1.3 The System Users” OPinionsc.cecvveevvevirieriereereerienieniesessnssessessenns 104
7.1.4 The ChoSen SYStEIMc.cooviriiiiiririeciteieetereerierre et ae e ree e e ens 116
7.1.5 The Level of Success in Correcting the Problem Domain.................... 118
Evaluating the Methods used in the Re-engineering the System..........cccceunee. 120
8.1 A description of the methods used in the re-engineering processes............. 120
8.1.1 ANALYSIS .ottt a e ra e nees e 120
8.1.2 DIESIZI ...ttt ettt sttt et ereeane 121
8.1.3 IMplementationcooovieieieiinereineeeeceee ettt 121
8.2 A Set of Proposals to Improve the Methods used............ccccceevvevreerrereennnnne. 126
8.3 A Review of the Collected MEtricCs.........ccccvrierverrereseereseereeee e e eeaeneens 135
8.4 OULCOMIE. ..cuiitiiiiiieiieitcetecte ettt ettt st st sat et sstessbesetesbananeeas 139
8.5 The creation of a Structured Business Method of Software Engineering..... 141
8.5.1 The Company Procedureccccoceeeiniriincinieecesecsesee e 142
8.5.2 The Software Development Template............ccoovevveeeeciiriecinrenineiennnnn. 142
CONCIUSIONS.ccceriiisrnisnrisrinsresrissssssissssssssssnsssnssisesiosssssssonsosssssnssssssasssssosssssassasssanss 144
9.1 Work Undertaken..........oocvvveviereniinininiiieieietee et 144
9.2 A Review of the Criteria for SUCCESS........coverrriiiierierreiieieiereie e 145

9.2.1 To Demonstrate the Successful Application of BPR against a Real-life
Scenario in order to create a Computer System to correct a Problem Domain. ... 145
922 To Conduct an Informal Experimental Evaluation of the above Process

146

9.23 To Create a Structured Business Method of Software Engineering
focused on the Requirements of the Company and based on the Findings of the
Above 146

0.3 RESUIS. ettt ettt ettt e bt ets e et saesaetens 147
0.4 FUIher WOTK.....cocoorioiiierinieir ettt st aesae st sb e va e esae s b e 148
10 Appendix.. . 150
A REEIEINCES......coueiiiieiiiiiciteetee ettt et 151
B The Completed QUEStIONNAILES.coeeveruerueriieririiiirntieerereieee s ereee et eseseenes 158
C The Company ProCedureccecvereriieieeciieieeeeieeeesee et et evaeresve s 159
D The Software Development Template.........ccceeveeeerveereinieenrieiecre e 160

Figure 2.1
Figure 2.2
Figure 2.3
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 5.1
Figure 6.1
Figure 6.2
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5

List of Figures

The Process as a Key Agent within the Software Engineering Procedure..................... 17
The SPI Learning Curve. Drawn from Wieger [Wiegers99]cccoeevviciveviereineveienes 23
The CMM'’s 5 stages of Maturity [Humphry88]ccoooiiiriieiiicecicececeee e 28
Hierarchy of staff involved in caravan sales.............coccecvvevieriorieinineere e 40
Booking Diary INformation............cccoeeevriiririnirieeietn et et 43
The Booking Diary Left Hand Side..........cocoooiiiiiiiiiieeeee e 44
The Booking Diary Right Hand Side ... 45
Staff who have need to use the DIarycccocoooviiivivecesecrene e 46
Problems identified with the Current Processcocveeeveeevenieinenrenneeieieiseeeenns 47
List of Corrective Issues to be addressed by the New Systemccccceoenenininnreee 47
Data Entry Parsing..........c.ccceeveiveeiiiiciieieciesieses e seesas st e e esteenteessesstessseesaesvasssseenseans 49
R.H.A.’s RoadRunner System. Enter Job’s details Screen..............ccoccevevenriiicinnennnns 57
RHA'’s RoadRunner System DIary VIEWcc.ccieivreeerieinrecriesnoeessesrisresseessesesseeseessons 58
The Data Entry Screen of BookingSystem.COm.........cccccovevvivviiiecierieciceieciceeee e 59
The DAY SOTEEI ...eoviitiei ettt ettt sttt sttt et e bt eae s 61
Entering a Customer’s Booking in YourBooking.com............c.occceceiiienrninincnneennn, 63
YourBooking.com - The DIary VIEW.........cccovioiiiiiiieisire e en e 64
The L.oadBuilder Bookings Overview Screen of LoadBuilder.cccoocoeeviivereneanen. 65
The LoadBuilder Data entry SCTEEI.cceiriiiieiinreieetee et e see e eaeesaenrees 66
Boehm’s Spiral Model for SOftWare...........cocooviviieiiiiiieeeece et e 81
W3.org’s Web site Design Standards...........ccocoooieviiiivieicciiie e 92
Other Factors affecting the System Developmentccoeovevevecieieniiiiecenieerecieiens 93
Page 1 of the Data Entry SCreen........cccooviieiiiciiiiiiicecieteeeeeeeereieteevs e enrees et ees 109
The Weekly Diary view from the Internet based System............cccocoevivvicncenrinnennns 110
Page 2 of the Data Entry Screen from the Internet based System.c..ccecevvennenne. 112
The Daily Diary view of the Windows Systemcccecevvevieeieiiciiicineciiecreeieannn, 114
The Data Entry view of the Windows SyStem..........ccocovvieeiriiiciiiciiee e 116
Process Improvement 1. Design Stage — Optimising the Requirements Collection.... 127
Process Improvement 2. The Design Stage — Change Management 129
Process Improvement 3. The Implementation Stage — Iteration control...................... 132
Process Improvement 4. The Project Template..........cococeoiviiiiniiiiiiieicieceee. 134
Points covered in the Template for Structuring a BPR Project.ccoooooieviicviinnnn. 143

Table 3.1
Table 4.1
Table 4.2
Table 4.3
Table 5.1
Table 5.2
Table 5.3
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5
Table 6.6
Table 6.7
Table 7.1
Table 7.2
Table 8.1
Table 8.2
Table 8.3
Table 8.4
Table 8.5
Table 8.6

List of Tables

Key Functional REQUITEMENLSccvevvevieiieeiiieieieiierieesiesee e seesne e eceeresvessesssennens 51
Using QOC to illustrate The Systems and Required Criteria.............cccoveeveiereereeiinnnns 54
How each System measured up Against the Crieria............coocovevieneniiininnenenicscrrnens 68
Comparison of requirements against TrackWherecccovcvevennrivnrieeiennenen 70
The Advantages and Disadvantages of differing Technology........cc.cccoenivrrervrrnnnnn. 72
Areas 0f Possible RiSKccocooiviriiiiniiicceiercet ettt 75
The Metrics Collection Table.............ocecoiieiirieiecieeres e e saesneves 78
The Options and Criteria relating to the suitability of the Programming Languages. ... 86
A Table representing a review of the suitable of the Programming Languages............ 87
A Table Illustrating the Database Options and Criteria...........c.cceeeveervnereeercniereerennenns 89
Table Illustrating the Suitability of the Databases............cccovvvvvverireevrcneniesreeeeeinienes 89
Table showing the Options for Data Synchronisation..............ccccecervevvevivieniennncveninenne 91
A Table showing the Suitability of the Optionscccccoceveiiiirnentiiiniee e 91
The System Implementationscccecevvieiiiiiiinieieee ettt ereere e eree e sre e eens 96
The Questionnaire ReSUlLs.............ccvvciivieiieiii it et e 107
The Scores Achieved as a Percentage of Maximumccoccooeoiriiininnececrr e 108
TEETAtION 1 .ottt ettt ettt ettt ses e 122
TEETALION 2 ..ttt ettt ettt ettt sttt st eb bbb e e nee 123
TEETAtION 3 ..ot ettt ettt et ettt e st eb et e e ene 123
TEEIALION 4 ..ottt e st ettt ma ettt e e e e e s e e nan s e neenras 124
LT 1103 s e OO U USSR 124
The Collected MELHCSooviriiieieeiiie ettt ettt sre s 137

Declaration

This thesis has not been submitted for a degree at Durham University, or at any other
institution. The research conducted in this thesis is the work of the author except where

indicated otherwise.

The copyright for this work rests with the author. No quotation should be published

without prior written consent and information derived from it should be acknowledged.

List of Acronyms and Definitions

BPE
BPR
CGI
COTS
CM
CP
CRM
GQM
GUI
IC

IP
ISDN
IT

LAN
MS
NFR
(0N
OSc
PC
PDT
PHP
RHA
SE
SDK
SME
TCL
TQM
TCP/IP
VB

Business Process Engineering
Business Process Reengineering
Common Gateway Interface
Commercial off the Shelf (software)
Change Management

Company Procedure

Customer Relationship Management
Goal/Question/Metric

Graphical User Interface

Ideal Caravans

Internet Protocol

Integrated Systems Digital Network
Information Technology

Key Functional Requirements

Local Area Network

Microsoft

Non-functional Requirement
Operating System

Open Source

Personal computer

Portable Data Terminal

PHP Hypertext Preprocessor

Road Haulage Association
Software Engineering

Software Development Kits

Small to Medium sized Enterprises
Tool Command Language

Total Quality Management
Transfer Control Protocol/Internet Protocol

Microsoft’s Visual Basic

1

1. Introduction

Many large companies have ‘Operation Manuals’ which provide guidelines to staff and
managers on how to go about the day-to-day running of the company. These guidelines
will have been tried and evaluated over time, and if adhered to will help to ensure the

safe and efficient running of that company.

Periodically, these manuals will be reviewed and updated as a matter of course, but on
occasions the companies may feel it necessary to completely re-write them. This might
be the case if a company moves premises, changes one of its main products or alters its

management structure.

For smaller companies, these guidelines may be vaguer. Some companies may have no
guidelines at all, and will rely on word of mouth to pass information on. Others may
rely on their staff’s abilities to multi-skill and be able to move from one job to another.
When companies such as these do identify areas within their business which are without
formalised processes, they may not be in a position of having the expertise in order to
implement an improved formalised process. This is assuming that they manage to

identify the problem domain in the first place.

The objective of this thesis is to provide such a company with a structured approach
which it can use when implementing new systems. It will achieve this by examining the
manner in which the company currently implements computer systems. A computer

system shall be implemented as a part of this exercise.

1.1 Thesis OQutline

This thesis involves a company, which has identified a problem within a business
process, but is unsure as to how to resolve it. The area of concern is in the organisation
of the transportation and siting of caravans. Currently, the company’s caravans are

being transported without sufficient and accurate information being known by the

company. This problem has manifested itself in numerous ways such as; disruption in
transportation service, unexpected arrivals and collections of caravans, disputed
accounts with both hauliers and customers, arranged transport being rearranged or even
cancelled by salespeople not involved. The company had decided that the process would

benefit from being computerised.

Previously, the company has outsourced work of this nature to external companies but
has never been satisfied with the results. The company has tried numerous system
suppliers and feels that they have been let down each time, never getting a system which

wholly solved the original problem.

The thesis examines the problematic business process, and goes on to investigate
possible solutions to the problem and makes suggestions to the company as to which

solutions if any, would be suitable.

The thesis also considers the methods by which the company identifies, appraises and
implements new computer systems. Any shortcomings in these methods shall be
highlighted in the evaluation chapter and suggestions made which can address these
issues. As part of this process, the concept of Business Process Re-engineering (BPR)

would be introduced to the company.

1.2 An overview of Business Process Re-engineering

Business process redesign is "the analysis and design of workflow and processes within
and between organisations" [Menzies98]. A higher level of efficiency can be achieved
through the modernisation of a company’s business processes. The two main areas of

application of BPR are the people and the processes of the organisation.

Grover et al [Grover95] defined BPR as "the critical analysis and radical redesign of
existing business processes to achieve breakthrough improvements in performance

measures.”

PBR is the key to transforming how people work, as when people work smartly, their
efficiency will improve. Even “the act of documenting business processes alone will
typically improve organisational efficiency by 10%” [Grover95] is a considerable

improvement.

People can be motivated through better organisation of the business processes. The
increase organisation can be a result of introducing new methods. Davenport
[Davenport93] noted that Total Quality Management (TQM) differed from BPR by its
mode of application. TQM was the gradual change of process over time to benefit the
organisation, where BPR mainly takes a radical view in changes and are set within a

timeframe.

BPR was originally aimed at work-flows within the business environment, and was to
be applied to better business practices. As technology improvements have overtaken
business practice improvements, BPR has embraced technology as one of its key tools.
There are very few BPR projects in existence today which do not in some way include
IT as an integral part of it. Because the computer is such a powerful tool in storing and

manipulating information, it has become of major importance in BPR.

It is expected that some of these mentioned benefits of BRP will be felt by the company

after its introduction.

1.3 Criteria for Success

The Criteria for Success is the measure by which a thesis is judged against.

The following are the Criteria for Success for this thesis:
1. To demonstrate the successful application of BPR against a real-life scenario in
order to create a computer system to correct a problem domain.
2. To conduct an informal experimental evaluation ot the above process.
3. To create a structured business method ot software engineering tocused on the

requirements of the company and based on the findings of the above.

1.3.1 The Successful Application of Business Process Re-engineering

A company has identified a problem area within its business and wishes to address that
issue by way of reproducing the process within a computerised system. This thesis is the

result of the application of BPR upon this process.

1.3.2 The Creation of a Structured Software Engineering Process

This work aims to create a structured software engineering process which the company
can use in the future. This documentation could be used internally or externally
alongside an external company’s procedures to make a more accurate appraisal of the

company’s current situation and its needs.

1.3.3 An informal Experimental Evaluation of the above Process

The thesis needs to evaluate whether the proposed method of re-engineering was a
success, furthermore, if shortcoming are found they should be addressed and a suitable
corrective measure proposed. It also needed to ascertain whether the development of
two different systems opened up opportunities and was beneficial to the process as a

whole.

2. Literature Review — Process Improvement

2.1 Introduction

During the past 25 years, software has become an important aspect of most people’s
lives. The impact of software on society has increased from a minor role to one in which
it would be difficult to exist without; from washing machines, telephones and cars, to
simply purchasing groceries at the corner store, all are reliant upon computer sofiware at
some stage. As a result of this, there has been an explosion in the amount of software

needed, and a proliferation of software complexity.

Unfortunately, software applications can be massively complex and there are a
multitude of opportunities where the design and development can lead to unexpected
and undesired behaviour. For these reasons, researchers and developers have spent
increasing time understanding and developing the techniques and tools available to aid
software development. One of the key thrusts in this research is the study, evolvement
and improvement of the processes associated with the creation of software. The
understanding is that there is a direct relationship between the quality of the
development process and the quality of the software as a result of that process [Biro98].
Unfortunately, the software industry lags behind other technical industries such as civil
engineering despite much research being done in this sphere, and few companies have
implemented software improvement methods. There are however several high profile
Companies which have successfully implemented software improvement methods such

Motorola [Diaz 97] and Raytheon [Haley96].

This chapter aims to address these issues and offers insight into the current state of the

art but is not intended to be exhaustive.

16

2.2 Concepts of Process Improvement

In order to discuss software process improvement, a number of key words and phrases

need to be defined.

The noun process can be defined as ‘a collection of activities that convert a given input

to an output of some value’ [Hammer93]. In a software engineering environment, a

process may be a wider entity than that which is described above; a process can range

from a singular data in/data out occurrence such as an event to handle an inputted date,

a series of related events, or creation of an entire application. A better definition by the

SEI [Zahran98] is ‘the set of activities, methods and practices used in the production

and evolution of software’.

Figure 2.1 below taken from Sommerville [Sommerville97] illustrates the way in which

the process can be seen as the glue which holds together all the other facets of the
software engineering process. By using this visualisation, it is possible to see how

altering the process will affect other areas such as management and skills.

(Management]
[sans)
[Technology]

Ptocefs

Figure 2.1 The Process as a Key Agent within the Software Engineering

Procedure

The capability of a process as defined by Paulk [Paulk94] is ‘the range of expected
results that can be achieved by following a process’. This infers that a process may
produce more than one result and is therefore open to deviation by other factors. If a

process can be altered to achieve a better range of results then this can be classed as

17

process improvement. A more overall view to process capability is that of the Trillium
Experiment [Trillium94] which defines process capability as ‘the ability of a
development organisation to consistently deliver a product or enhancement that meets
customer expectations, with minimal defects, for the lowest life-cycle cost, in the

shortest time.’

As a process goes though changes, hopefully changes for the better, it is classed as
maturing. The concept of maturity was first proposed by the SEI [SEI06] as a way of
comparing companies bidding for US Defence contract work. The assumption is that
higher the maturity, the better the software system will be. Most of today’s software
process improvement models utilise this maturity concept. Maturity may come in
attained steps; these steps may have criteria connected with them to ratify the reaching

of those steps.

In order to measure the improvement in a process it must be possible to assess its state.
For this purpose researchers have realised that they can make use of metrics and
empirical studies. These are not only to support existing processes but also to evaluate
new methods and strategies:
e Metrics can be used as indicators in evaluating concepts such as system
complexity, productivity and timescales.
e Empirical methods are needed to guide the evaluation approach of processes.
e Empirical results are the quantative results of applying an empirical method
and are useful in comparing the level of success of differing methods.
e Metrics can be used in the assessment of an organisation in deciding its
readiness for process improvement.
o The anticipated value to the organisation of through the implementation of
process improvement.
e The metrics can also be used in measuring the state of the process

improvement implementation.

The Software Engineering Institute [SEI06] states that software process improvement is
‘an activity that seeks to identify and rectify common causes of poor quality in software

systems by making basic changes in the underlying software management process.’

Paulk [Paulk94] preferred the definition ‘A description of the stages though which
software organisations evolve as they define, implement, measure, control and improve
their software processes’. This entirely positive statement is indicative of his

researching style which is forward thinking and definitive.

To facilitate P1, according to Sommerville [Sommerville95], an organisation must fulfil
a number of basic criteria:

1 It should have a basic cost and scheduling management procedures.

2 It should document all software activities.

3 It should collect measurements of process and software quality.

4

It should operate a continuous process and improvement strategy.

These criteria feature in almost all software process improvement models and form the

base on which the software process improvement strategy should be built.

2.3 The Motivations behind Process Improvement

The motivation which lies behind software process improvement can be unique or
universal to an organisation; many organisations have benefited from the use of an ISO
kite mark or the TicklIt Certification on business stationery, others have genuinely
benefited from improvements in organisational structure, profit and productivity.

Zahran [Zahran98] proposed that these motives may include:

1 The rising costs of software development and maintenance.
2 The need for improved quality of software products.
3 The increasing delays in software projects.

Fuggetta [Fuggetta00] stated that with regard to affecting a company in establishing
effective practice, ‘there is a complex interrelation of a number of organisational,
cultural, technical and economic factors’. Take for example, an organisation that has
been told that the only way it will win a contract is if it implements the CMM though-

out their development process; what level of motivation might we expect behind its use?

19

In most cases, companies supply software on the understanding that they make a
reasonable profit; where projects have over-run, these profits may be reduced or lost
completely. With this in mind, it is a fair assumption that the main motivationd factor
to a profit-making organisation is to enhance or maintain their profitability. It may be

that software process improvement is considered one way of achieving this.

Paulk [Paulk94] stated that the benefits of software process improvement included:

1 The organisation is more responsive to the customer and their market.
2 The lifecycle costs are minimised.
3 The end user’s satisfaction is maximised.

Although these are stated in fairly broad terms, the point that he is making is that both
the organisation and the customer will benefit from implementations of software

process improvement.

It is highly likely that when software process improvement is first discussed within a
company boardroom, the most important question will be what the organisation will

gain through it. Consider if an organisation can:

1 Achieve a recognised standard.
Increase staff retention and motivation.
Have shorter development times.

Have more reliable software created.

Introduce re-useable components.

AN W W

Intercept errors at an earlier stage

All the above factors would benefit the company; the important factor here is the
relationship between the benefits and the cost to the company. The main cost to a
company would be time; the time taken to learn the software process improvement

model and the time taken to implement it.

Another concept is the differing perspective upon motivation behind PI; a software
engineer will have different motivations behind an implementation than that of a
business manager. The key to a model being accepted by all parties in is its benefits

being highlighted successfully. The concept of ‘levers’ was highlighted by Biro

20

[Biro98] for just this purpose; he stated that ‘levers are means used by a firm to increase
its resource generating ability. Resources are used to increase the assets of the firm and
reward employees and stockholders’. Although this statement seems slightly lacking in
respect of pointing out the benefits to all parties in the organisation, his criteria to
successful leverage are quite encompassing; they include financial leverage, operating

leverage, production leverage, marketing leverage and human leverage.

The basic motivation behind software process improvement should be that by
incorporating a model, an organisation can reduce many of the problems they currently

experience though-out a project.

2.4 Obstacles

Where opportunities are available, there is more often than not, opposing obstacles. On
the subject of problems encountered with software process improvement, Beecham
[Beecham(3] stated ‘Senior managers cite problems with goals, culture and politics.
Project managers are concerned with time scales, change management, budgets and
estimates. Developers are experiencing problems with requirements, testing,
documentation, communication, tools and technology’. This just about covers
everything, but is seen from a worst case scenario. Obstacles are part of the software
process improvement paradigm,; if it was such an easy concept, models would not be
necessary. Beecham [Beecham03] goes on to state that ‘documentation, time scales,
tools and technology’ obstacles are generally related to low maturity companies, whilst

‘organisational problems’ are more associated with high maturity companies.

Looking at an organisation as a whole, one of the first obstacles to software process
improvement is in the attitude of the staff and management towards a new way of
working. It may involve new tasks, responsibilities, more paper work or a change of
roles. This can be worrying to employees and employers alike. A positive workforce is

therefore necessary.

21

The company may be concerned about implementation costs and the return on
investment (ROI). There is also a level of risk involved in software process
improvement, for example:

1 Might the implementation of software process improvement slow
productivity down initially?

2 What are the chances of failure; if so what are the consequences? Lack of
knowledge is a big risk; many organisation are not familiar with best
practices, much more emphasis is placed on for example getting training
in the latest version of Java rather than on testing or analysis. The
chances of failure increases with the level of lack of knowledge.

3 How might the impact of implementing software process improvement
into the company effect the rest of the company?

4 How much extra work is involved? Organisations may be pushed for
time on deliverables already without the introduction of new methods of
working. See the learning curve diagram in Figure 3.2 below. How will
staff respond to extra responsibilities; there may be insufficient

commitment.

Another obstacle is the confusion caused by having multiple models which all claim to
achieve software process improvement. Without sound advice, organisations will
struggle to identify the most suitable model. Despite attempts by the likes of ISO, there

is also a lack of standardisation amongst how the models are promoted.

The complexity of many software process improvement models may also be a deterrent
to many organisations who find the adoption of them to be difficult; CMM recommend
an organisation take 18 to 24 months to achieve each level. Humphrey [Humphrey88],
founder of the Software Progress Program at the SEI recommends 1 to 3 years per level.
A ten-year program of concerted software process improvement may not seem attractive

to many organisations.

22

ESI: The European Software Institute [ESI06] is based Bilbao, Spain and
is mainly funded by The European Commission. It is currently involved
in working on the CMM with the SEI and ISO15504.

SPIRAL: Software Process Improvement Research Action Laboratory is
a joint venture formed between the University of Oulu of Finland and
some key electronic firms such as Nokia. SPIRAL have worked on
KNOTS-Q [Saukkonen01] since before 2000. KNOTS-Q is a set of tools
and methods for focussing on PI, and its areas include reuse,
measurement, software process improvement and multi-site
development. The methods are based upon a capability model but differ
from the likes of CMM by its inclusion of experimentation into its
framework.

SEL: The Software Engineering Laboratory [SEI06] is an organisation
sponsored by the NASA and was created to investigate the effectiveness
of software engineering technologies when applied to the development of
applications software. The SEL was created in 1976 and has been in
continuous operation, providing software engineering products and
performed engineering services as well as conducting a workshop each
year since its inception. The SELs aims are to understand the software
development process, to measure the effects of various methodologies,
tools, and models on this process and to identify and then to apply
successful development practices. IT has created its own model to
software process improvement called the NASA Approach which
focuses on improving the product rather than processes; hence it is a
product based approach.

SPIRE: The Software Process Improvements in Regions of Europe
[SPIRE106] is a European consortium which aims to encourage
organisations to implement software process improvement into their
business practise. Utilising the CMM up to level 3, they have researched
differing methods of its implementation with a view to providing a more
simplified path for a non specialised audience to benefit from software
process improvement improvements.

SPICE: Software Process Improvement and Capability Determination
[SPICEO06] is an organisation and also the name of a software process

improvement model. The first draft of the model was released in 1995

24

and was adopted as ISO/IEC15504 standard in 1995. SPICE continues to
evolve as more research is completed. SPICE is currently one of the most
successful research organisations in the software process improvement
field today.

7 Microsoft Corporation [Microsoft06]: Due to their influence in the world
market, they are in an enviable position to be able to implement software
process improvement into their software. Microsoft has incorporated
many of the features of CMM into their Visual Studio development suite
since 2005. They have also incorporated lean manufacturing; a term used
for business performance improvements into many of their Office
products. Although not currently working on their own software process
improvement model, Microsoft researches aspects such as the effects of
GUI design, and development tools on software process improvement.

8 The International Standards Organisation [ISO06]: The ISO occupies a
position between the public and private sectors and it defines standards
across a wide range of areas. The ISO consider research, propose and

approve standards including those of software process improvement.

2.6 History of Software Process Improvement

Fuggetta [Fuggetta00] states that software process improvement has its roots in the
development of structured programming languages such as Pascal and C. After this,
researches concentrated on the development of design methods and principles such as
top-down refinement and information hiding. Finally, there were those researches that
put forward software lifecycles such as Royce’s [Royce87] Waterfall method. The
notion of a piece of software having a lifecycle was new and it was these lifecycles

which were most influential in the advancement towards software process improvement.

In 1976, NASA started their own research into software process improvement
[Landis92] in conjunction with the University of Maryland. As software was viewed as
a key to NASA’s success, the Software engineering laboratory (SEL) was set up. Until
around 1992 they had worked on integrating SI into a waterfall method based loosely on

the Royce’s. Since then, there have been many changes, both organisationally and

25

monetary, and much of this work has since been outsourced and the CMM model has
principally been engaged. Its aim was to produce manageable, reliable cost effective
software. Despite the limitations of the adopted Waterfall method, the SEL produced a
structured, clearly defined and good sense approach to an environment which at that
time needed clarity and direction. In hindsight the SEL’s model was in-depth but
cumbersome and would be viable only with large projects; which was exactly what it
was designed for. It would have been of little use to many other companies because of

this.

In 1989, the ISO and IEC established a committee which set about converting the
SOFTWARE ENGINEERING ‘cottage industry’ of the 1970’s into a more formalised
process. The resulting standard 12207 was voluntary to organisations. It offered a
complete set of processes for acquiring and supplying software. Singh [Singh93] states
that it existed through a relationship with ISO9001 and SPICE at that time. He stated
that 12207 which was a life cycle process filled the niche between the quality assurance

of [SO9001 and the process assessment of SPICE.

Bootstrap was first conceived in 1991 as a European initiative with the aim to speed up
the software development processes in Europe. It was an assessment methodology
which aimed to highlight where organisations could make improvements. But in 1993,
attention was turned to ISO/IEC15504 a worldwide initiative of over 20 countries. It
originally was named SPICE. It drew concepts from the CMM and incorporated self-

assessments, maturity levels and the documentation process.

During the period of 1988 to present a model called CMM was being developed by the
SEI with Carnegie Mellon University. The CMM is still considered to be most popular
of the software process improvement models. It is used to determine a company’s
current process capabilities and to identify the issues most critical to software quality
and process improvement. The SEI have also created the Personal Software Process
(PSP) which is being taught by universities in the US addresses the improvements
needed to be made by software engineers. It covers planning, measurements, and quality

control.

26

Many other groups and organisations have developed spin offs to the major models,
some independently, some as part of a larger organisation such as McFeeley’s

[McFeely96] IDEAL.

2.7 Software Process Improvement Tools and Methods

Software process improvement is not only about the use of tools and methods,
improvements can be made by some simple changes in working practices such as better
documentation, planning, appraisals of completed projects etc. But when working in
such a complex area as software development, it may be beneficial to utilise a tried and
tested tool. There are a number of such tools and methods available for software process
improvement which are more widely used than others. The following sub-sections

highlight the most commonly used ones:

2.7.1 The Capability Maturity Model (CMM)

This model defines the requirements of an ideal company, and offers process
management and quality improvement concepts to software maintenance. It is used to
determine a company’s current process capabilities and to identify the issues most
critical to software quality and process improvement. It was initially proposed by
Humphrey [Humphrey88] in 1988 and since then has been refined and expanded by the
SEI at the Camegie Mellon University with help from the US government. The model
provides 5 levels of process maturity from ad-hoc state to one of continuous process

improvement as can be seen in Figure 2.3 below.

27

3 The Self Assessment Mode: To help an organisation determine its own

ability to undertake a new project.

15504 benefits software purchasers by enabling them to determine the capability of
software suppliers and assess the risk of one supplier compared against another. The
architecture of 15504 is split into two categories:

1 The Process Dimension. This is a Customer/Supplier level; includes
engineering, support, management and organisation activities.

2 The Capability Dimension. The model has 6 levels of capability; each one
having a set of attributes which work together to provide a major
enhancement in the capability to perform a process.

Each level of capability may or may not involve several defined ‘Progress
Categories’, which must be achieved in order to reach that level. Categories
cover areas such as ‘how to supply software’, ‘managing customer’s needs’

and ‘integrating and testing software’.

2.7.3 The Bootstrap Initiative:

This started in 1991 as a European initiative and its early goal was to speed up the
application of software engineering technology in Europe. Since 1993 it has been
continued as non profit making organisation with member keeping the method up to

date.

Bootstrap is an assessment methodology used for determining where an organisation
stands in terms of process maturity. By identifying an organisations strength and
weaknesses, improvement guidelines can be offered. Essentially, it is only one

component in the software improvement model. There are 3 dimensions:

1 Organisation: The rules of management and leadership
2 Methodology: The methods of developing software and their projects
3 Technology: Development tools, process optimisation and automation.

29

2.7.4 Process Modelling Languages (PMLs):

These are languages and formal specifications which allow the precise and
comprehensive representation of software activities, roles and structures. In the past 5
years, increasing emphasis has been placed on the research of PML as part of PI. But
whilst PMLs are undoubtedly a valuable tool within software process improvement,
they suffer from non-standardisation and many are complex and as a result constitute a
large time investment against only a small factor of the software process improvement
paradigm. Conradi [Conradi95] states that the key to successful inclusion of a software
process improvement is in its standardisation and interoperability as this makes its

inclusion into an organisation’s software lifecycle easier.

2.7.5 Software Process Improvements in Regions of Europe (SPIRE)

Although not strictly a model or tool, the SPIRE [SPIRE206] organisation offers a more
simplified version of the CMM implementation. As one reason why many organisations
fail to implement software process improvement is its complexity, this approach may be

important in the wider acceptance of software process.

2.7.6 User Groups/Repositories

There are in existence a small number or organisations which offer repositories for
software process improvements tools, methods and advice. One such organisation is the
Software Engineering Information Repository [SEIR06] based at The Carnegie Mellon
University in Pittsburg, USA. The SEIR provides a forum for the contribution and
exchange of information concerning process improvement activities. Members can
exchange questions or tips and contribute experiences or examples to assist each other

with their implementation efforts.

30

2.7.7 Networks

There are a number of established forums and user groups which encourage the sharing
of knowledge within the software process improvement field; one such group is called
the Software Process Improvement Network (SPIN), and has members around the world
such as the Ottawa SPIN [SPIN06]. Most SPINs are associated with sponsors and

partners, and have members from academia and business backgrounds.

2.8 Software Process Improvement Successes

There have been many documented successes of organisations utilising PI. Many of
these are published by the organisations that have worked on the model. The importance
of these successes lies not only in the results in terms of improvements made, but also in
the experiences gained in the operation of the implemented method. Just as software
process improvement in an organisation is an iterative process, so too is the evolution of

the model.

SPIRE have published a number of papers illustrating the success of their method; one
such report focussed on a Company called DataNord in Milan, Italy which noted the

following results after application:

1 15% reduction in development time.

2 Integration and debugging time was reduced by 20%
3 Customer satisfaction increased.

4 Personnel confidence and motivation increased.

5 Documentation improved.

The level of software process improvement applied in this case study as well as others
researched was relatively shallow focussing on definition of roles and responsibilities,
definition of key phases, improvement in documentation and an introduction of a
software repository. It is arguable that this level of improvement could have been
reached by simply being more organised, that said, an improvement is better than none,

especially when the overheads for implementation are so low.

31

Ferguson [Ferguson99] reports on of the application of the CMM to a company called
The Advanced Information System Inc. The company opted to use the PSP model to
target its needs:
1 To deliver defect free software and to satisfy customer’s increasingly
demanding time-to-market goals.
2 To achieve a sustained competitive advantage.

3 To minimise the impact of staff turnover.

The application of PSP went to a much greater depth than was found in the SPIRE
example above. The company stated that the goals in terms of software process
improvement were:
1 To improve profitability of development projects by meeting cost
estimates and schedule commitments with reasonable consistency.
2 To provide a continuing management focus on the progress and visibility
of each project.
3 To enable continuous improvement of the dev process through a changed

organisational culture through many small incremental improvements.

Ferguson [Ferguson99] reports in depth about the tangible and intangible benefits, for
the purpose of this study, only the tangible benefits shall be listed. These where:

1 Scheduling over-run was reduced from 112% to 5%.

2 Effort was reduced from 87% to —4%.

3 Productivity per KLOC increased from 2days to 0.3 days.

4 Defects were reduced from 1 to 0.3 per KLOC.

Another study into the effect of software process improvement was conducted by
Herbsleb [Herbsleb94]. He based his research on findings from a broad spectrum of 13
companies. This included companies such as Hewlett Packard, Texas Instruments and
Motorola and was based over a period of 6 years. The software process improvement
‘model used was the CMM and was applied on a large scale with a view to the
companies aiming to reach the highest level of maturity within that period. The results
were encouraging and the fact that the research was based over so many can only add

credence to them. Herbsleb [Herbsleb94] found that on average:

32

1 The cost of implementing the software process improvement cost from

$500 to $2000 per engineer per year.

2 Productivity showed an increase of:
a 10% to 70% in LOC.
b 6% to 25% more defects detected earlier.
3 There was a 15% to 32% reduction in development time
4 There was a 10% to 94% increases in quality of software released,

relative to initial quality (pre CMM).
5 The business value classed in terms of return on investment (ROI) varied

from 4% to 8%.

Hersleb’s [Herbsleb94] research showed two interesting points; the cost of software
process improvement and an expected ROI. These are important figures when
encouraging the use of software process improvement in business. A ROI of only 4%
cannot be classed as highly attractive in isolation, but when coupled with the
improvements seen elsewhere in the business such as an increase in staff retention, an
increase in staff morale and more organised documentation, it begins to look more

promising.

The level of increase found with CMM compared to those of the SPIRE case studies
seem to indicate that the deeper level of its application, the better the results. This could
also indicate the depth of the level of commitment on behalf of the individual
organisations; SPIRE organisations may be looking for an easier path for software

process improvement, but will accept lesser results.

Other successes brought about by the implementation of software process improvement
are advertised by organisation who act as advisors in this field; The SEI, Quality Logic
Software Services and Abacus Technology Corporation to name but a few. Both the SEI
and Abacus use CMM, where as QLS use ISO15504.

33

29 Summary

Software process improvement first appeared in the mid 1980’s and since then much
research has been done in this field. That is not to say that there have not been
problems. Fuggetta [Fuggetta00] states that the interest in software process
improvement research is waning and this is visible through a number of symptoms:
1 Most technologies developed by the research community have not been
transferred into business practice.
2 The number of papers on software process improvement presented at
conferences is decreasing.
3 There is an increasing feeling that the community is stuck and unable to

produce innovative and effective contributions.

Fuggetta may be correct in what he is saying, but it may be that it is not the software

process improvement tools which are lacking, but in their integration into industry.

There are a number of key aspects to software process improvement, namely:

1 Software process improvement must be viable: The output an organisation
receives from its implementation of a software process improvement must
exceed its input. Without this simple rule, most organisations will not be
tempted to include software process improvement in their business modus
operandi.

2 Software process improvement must be understandable. Researchers must pitch
software process improvement techniques at a level suitable for understanding to
organisations.

3 Software process improvement must be standardised. With the creation of the
ISO, the software industry has a vehicle to push forward standardisation where
reviewed versions of models would be backwardly compatible. software process
improvement models must be internationally recognised. It would be preferable
to have one standardised world-wide software process improvement model
which could be evolved through ongoing research gathered from all the software
process improvement communities.

4 Software process improvement must be scaleable. Organisation must be allowed

to choose the degree to which they wish to incorporate a software process

34

improvement method, and in doing so must equally be able to gain a result from
doing so. The SPIRE project is a good example of this.

S Software development creation applications must incorporate the standardised
software process improvement method into their architecture. Companies such
as Borland and Microsoft are in the ideal position to do this; they should
incorporate the standardised software process improvement method into their
software design applications. This could include the collation and recording of

data, the definition of users’ responsibilities and roles and testing guidelines etc.

Emam [Enam98] found that ‘the most important factor in distinguishing between
success and failure of software process improvement efforts is the extent to which the
organisation is focussed in its improvement effort’. This statement could be applied to
most aspects of a company not just software process improvement, such as profitability
and is generally true. But that does not say that we should discourage organisations

from implementing initially a lower level of software process improvement.

In conclusion, the basic motivation behind software process improvement should be that
by incorporating a model or method, an organisation can reduce many of the problems
they currently experience though-out a project. But it should not be a dogmatic
approach, and the real reason for implementing a software process improvement should
not be forgotten. Models and methods are there to be picked over; some parts will work,

others might not.

35

3 The Domain

3.1 Introduction

This thesis will focus on the introduction of a new computer system to Ideal Caravan
Sales Ltd. To clearly understand what is needed, the current domain needed to be

examined. The following section aims to address this.

In most sales organisations, the sales representatives are responsible for an area or
region; the benefit of this being that the sales representatives are not competing with
each other internally for sales.

Using the motor trade as an example, a sales team may be organised into departments.
One department may cover used vehicles, another new vehicles, and a third trade
vehicles. IC have organised their sales team in a different manner from this; any
representative may sell any caravan onto any park. As a result of this and to a degree,
sales representative may be competing against each other for sales. Going on from this,
each sales representative works on his or her own and earns a very basic salary before
any commission is paid; the majority of their income comes from the sale of caravans.
This results in an environment of competition between the sales people. Sometimes
competition can be good amongst a team, but in other cases, it may be counter-
productive as shall be discovered. These are issues which will be explained in relation

to the proposed system.

3.1.1 The Company

Ideal Caravans Sales Ltd has been in business since 1977. It is a small family run
business with approximately 30 staff. The business has three directors who are sons and

daughters of the company founder.

IC has its main office at Langley Moor in Durham, but also has a large showground in
Clifton, Morpeth, and offices in several other locations such as Rothbury, Bamburgh,

Barnard Castle and Warkworth. The company can be classed as distributed in as much
36

as 8 of its staff are sales people and may be working from a number of locations, and a

further 6 of its staff are mobile fitters who may work anywhere in the North of England.

3.1.2 The Business

IC sell static and touring caravans to the public and to caravan parks. They are classed
in the trade as a dealership, and their area of business covers most of the North of
England. Recently, the company has expanded into park ownership. They also offer an
established maintenance and caravan transportation service. It is worth noting that the
transportation service is arranged though a selection of specialist hauliers. These
hauliers are mainly located around Hull which is where most holiday homes are built for
the UK market.

3.1.3 The Ideal Caravan’s Computer Network

The office at Durham has three servers operating an internal network as well as
managing an external private network. The Morpeth office is connected to this Extranet.
All other offices which Ideal operates from are fitted with ISDN or Dial-up connections
and are allowed ad-hoc access to the Intranet. The Intranet may be regarded as the

company’s private Internet.

The company believe that through the application of technology, it can gain an
advantage against its competitors. It currently has several bespoke systems to assist in

the running of the company.

3.1.4 The Problem

The Directors at IC identified a problem within the company’s operations which they
felt could be addressed with the introduction of a new company procedure (CP). The

identified problem was in the lack of control the company and its employees were

37

maintaining over the movement of its own and third party caravans. The lack of control
had been manifesting itself in various forms such as:
1. Invoices being unaccounted for and disputed by hauliers and customers
2. Caravan deliveries and collections taking place without sufficient organisation
3. Transportation being rearranged or cancelled by sales persons on an ad-hoc basis
4. Insufficient notice given to other departments within the company to react to the

movement of vans.

The Durham showground is small and congested. This leads to occasional logistic
problems of getting vans in and out. It is worth noting that when a large caravan comes
into Durham, there may need to be some reorganising of stock prior to its arrival and
therefore planning of van movements is essential. Further to this, when a number of
vans are being collected on the same day, they may need to be positioned in the correct

order for collection,

IC requested that an investigation take place into the relating current processes, and that
a computerised solution be proposed which would correct any shortcomings. The
company management discussed at length the preliminaries of a new computer system,

but could not agree on the format of technology to be utilised.

As a result of this, it was suggested that two solutions potentially existed; a Windows
based system and an Internet based system. The more suitable of the two would be

selected after being evaluated and reviewed.

3.2 A Description of the Current Domain

Analysis of a domain can be described as ‘the process of capturing and representing
information about applications in a domain, specifically common characteristics and
reasons for variability’ [Malhotra00]. In this case, the process would be the capturing of
data, data flows, roles and processes relating to the transportation and siting of caravans.
There are many factors to consider with regard to the options a system developer has in

re-engineering a business process. As the thesis was to be based around the creation and

38

comparison of two functionally similar systems using two different operating systems

(0OS), the numbers of factors were further increased.

The process of analysing the domain and the actual domain would be similar for each
system, but the two implementations would need to overcome different difficulties.

It is worth noting that at the time the research was done into the problem domain, IC,
despite having over 50 written CP’s, had no written procedure for the sale or
transportation of caravans. As this is a key area of the company’s business, this seemed

to be quite an oversight.

3.2.1 Staff

The average age of the company staff was in the 50’s and although most members of
staff were allocated a PC, there was very little inclination or motivation to learn new
skills. The sales team who would be the target users could be classed as being to the
lower end of the PC literacy scale. This was an important point, and as most of the sales
team were nearing retirement age, some of them may have problems learning new

technologies.

IC currently rely on the sales team supplying information to each other by word of
mouth to ensure that caravans are transported successfully. The sales manager is the
central focal point for communications within the department, and he supplies the rest

of the company with printed (or electronic) reports keeping employees up to date.

39

Figure 3.1 shows a hierarchical view of the company staff who are involved in the

process of selling of caravans and their subsequent transport.

Sales Director

\

4

General Manager

A

4

Assistant General Manager

AR

Salesperson Salesperson Salesperson Salesperson Salesperson

N/

Contact Person

\/

Contact Person

Figure 3.1 Hierarchy of staff involved in caravan sales

As can be seen from Figure 3.1, the company has a five layered hierarchy of staffing

within the sales department. Those directly involved in the process of selling caravans

extends from the contact personnel who are purely employed to meet and greet

customers coming onto the display areas, up to the sales director who is responsible for

company wide decisions relating to the sales dep

artment.

3.2.2 The Use of Computers within the Company

Emails are increasingly being used in communicating externally to customers and other

businesses. Another form of communication used by the company is by their

40

implementation of a centralised database running an application called Maximizer. This
is a Customer Relationship Management (CRM) program which allows any information
relating to each client to be stored and available to all other users. This in itself is a good
communicator as any employee can see any notes which have been entered against a
customer’s record during any period. This is useful if a sales person has returned after a
day off;, he or she can see all notes placed on the system by other employees the

previous day.

The company has several bespoke systems already in place which have been designed
and installed by various contracted companies. None of them had been a great success.
It was arguable whether these systems were not a success due to the company being
employed to write them or due to IC not specifying sufficiently clearly what was
required. One key entity of these systems was a database commonly known as the
‘Ideal’ database. This held the following information:
1. Authorised users details
2. Caravan parks details (those parks which IC operated on)
3. Lists of caravan manufacturers and their models
4. Lists of statuses. Some entities within the company have a status associated with
them. For example:
a. Vans can be classed as being; on stock, sold, or sold and salesperson paid
etc.
b. Parks are classified according to who may have dealing with them; IC
only, anyone dealer, or competitor only etc.
c. Customers may be classified as being current, buy-in, prospect or deal
etc.
5. Marketing lists. There were a number of linked lists such as advertising details

e.g. publication->newspaper->Evening Chronicle.

This database must be incorporated into any new systems, so that duplication of data

was not necessary.

41

3.23

Company Procedures

As previously mentioned, the company had no formalised procedures in place for the

transportation of vans. That is not to say that processes were not complex. The normal

process for the arrangement of the transportation of a van is as follows:

1.
2.
3.

9.

10.

11

A customer purchases a caravan.

The park is notified of the sale (To organise the tidying of the pitch etc).

The park stipulates the date which the siting of van can take place (this date is
given around 3 weeks prior to the siting date).

The sales representatives check the diary to see when fitters are available (If
needed). IC have 3 sets of fitters — each set can be pre-booked when they are
known to be needed.

The sales representative contacts the hauliers to see who can transport the van at
that time.

The haulier is arranged. A confirmed entry is made in diary. The park is notified
(approx. 2 weeks prior to the siting date).

The company Service Manager is provisionally notified of the basic details
(approx. 1 week prior to the siting date).

The Service Manager is given full details on the week of the movement; such as
the number of Land Rovers, any plumbing connection, any gas connection and
any servicing needed. It would also include any extras organised such as steps,
fridge, gas bottles, veranda etc. and/or a demonstration of the heating system.
The collection takes place.

The transportation takes place.

. The siting takes place.
12.
13.

The Service Manager confirms the siting completion (that evening).

The customer is informed the next day.

The above process provided the sales staff with at most, the following:

1

2
3
4

A basic guideline from which the sales team could work.

A diary or diaries in which to store movement details.

Basic access to information where physically possible.

A backup facility for the information in as much as there are two copies of the
diary kept.

The distribution of the current week’s information via email to certain staff.
42

6 Minimal security from general public as the diaries are left in public areas.

7 Minimal security from internal people for similar reasons.

The benefits as listed above could only be relied upon as far as the discipline of the staff

is concerned. This, as has been illustrated, was not sufficient.

3.2.4 The Recording of the Bookings

IC currently record the movement of their caravans in two diaries. The master diary is
kept at their head office in Durham. There is also a second diary at their Morpeth
showground. The master diary contains details of all movement of caravans, where as
the Morpeth diary is concerned only with caravans going out of and coming into

Morpeth.

It is feasible for a salesperson at Morpeth to sell and arrange transport for a caravan
situated at Durham. It is therefore the sales person’s responsibility to notify Durham of
the details and for them to update their diary. There are occasions when this does not
happen, or when changes have occurred and Durham has not been notified, and as
mentioned earlier, this can cause problems at the time of the movement.

Sales people arrange transport through the two transport representatives. These transport
representatives are responsible for keeping the diary up to date. Unfortunately, as these
transport representatives are also sales people, there is a regular case of bias within
priorities of bookings.

Both diaries are to contain the same information about the transport arrangement:

1 The date of movement.

The haulier.

The caravan make and model.
The caravan size.

The caravan stock number.

The caravan serial number — where known.

N N Ak W

Transport ‘From’ and ‘To’ locations.
8 The sale status of the caravan, i.e. sold, trade scrap or stock.

Figure 3.2 Booking Diary Information
43

diary is the order in which the caravans were sold; there is no concept of time. This is an

important point and often causes confusion in the depots.

A tick next to the haulier is used to confirm the haulier’s acceptance of the movement.

A tick over the complete entry confirms the movement’s completion.

At the top of each day’s entry can be seen some hand written park locations. These are
used to pre-book a sets of fitters in advance in order to advise users of the diary, and the
service department when the fitters may be needed. It also helps stop the fitters from

being over-booked.

Both diaries are available for viewing at any time in the respective sales offices. Those
offices being at Durham and at Morpeth and are kept up to date by email and by word of
mouth periodically, and when entries were made or altered during the week.
Photocopies are made of both diaries on a Sunday night and are distributed via internal

mail to the staff as listed in Figure 3.5.

1 Sales director — Used for his own information.

2 General manager — Used for his own information.

3 Service manager — Used to organise the teams of fitters.

4 Receptionist — Used to notify the caravan owners on the day of transportation as

to its status of completion.
5 Accounts — To check against invoices received from the haulage company.

Figure 3.5 Staff who have need to use the Diary

The two diaries would have their final synchronisation on a Sunday. After that the

photocopying and distribution of the pages would take place.

46

3.3

An Assessment of the Current Domain

Having assessed the domain, it appeared that the lack of fundamental organisation going

into the transportation procedure was creating the majority of the problems:

The salespeople were not making sure that they were in possession of all the
relevant information prior to committing to bookings.

The above information was not being recorded correctly.

The booking information was not being relayed to other parties who should have
been informed.

The staff hierarchy was making the process of bookings easier for some
employees than others.

That same hierarchy was allowing certain employees the right to over-ride other

employee’s bookings.

Figure 3.6 Problems identified with the Current Process

These were fairly fundamental issues and lent themselves to being implemented in a

computer system by their very nature. It appeared that to solve these problems was a

case of recreating the process but enforcing a number of set points as can be seen in

Figure 3.7.

5

Ensuring the sales person had knowledge of all the relevant transportation
information before allowing a booking.

Ensuring that that information was recorded in an appropriate manner.
Ensuring that all employees involved in the booking process had equal rights in
the process.

Ensuring that that information was made available to authorised employees
when it was needed.

Ensuring the integrity of the information.

Figure 3.7 List of Corrective Issues to be addressed by the New System

47

3.4 What was required

One of the main problems when working with small and medium sized companies is
their ad-hoc method of running a business. IC had two main domain problems; the first
was its lack of company procedure, the second was its lack of control over the domain.

Once this had been identified, it was possible to look for a solution.

Considerable amounts of resources have been deployed by many organisations with a
view to correcting such issues as these. The introduction of Total Quality Management
(TQM) in the 1950’s highlighted the opportunity of examining working practices. This
has been expanded numerous times by various researches including the identification of
the four main elements within the concept; employee involvement, customer focus,
benchmarking and continuous improvement [Daft99]. TQM ‘encompasses the total
organisation, regardless of a particular discipline’ [Anderson99]. The process lends
itself to being broken down into process chunks. IC had identified one of these chunks

on their own accord.

One possibility considered early on was the use of Microsoft Outlook as an
organisational tool, to be used together with its diary facility. Bookings could be entered
by any individual in the company and visible to all others. All employees at Ideal
already had this software installed and set up on their computers so it would have been
easy to implement. Unfortunately, the introduction of a system as such was considered
not sufficient as it did not force the users through a course of actions; it did not ensure
that the correct information was gathered. Referring to 3.2.3 where it was noted that the
discipline of the staff was not sufficient to engage in a system which relied on the staff
to oversee themselves. This was more a discipline problem as opposed to a lack of an
available tool. The system needed to force users through a set routine in order that the

information could be collected accurately and distributed correctly.
One of the key points with the system was the formality aspect. The booking of a van

movement should only be allowed when a minimum amount of information was

available, without this information, the booking would not be allowed to be processed.

48

As the information was input, some of it would need to be parsed. These can be seen in

Figure 3.8.

1. Dates should be checked against an input mask i.e. dd/mm/yy.

2. Dates should be validated; no booking allowed prior to current date, no more
than 3 months in advance etc.

3. Only parks listed on the central database would be allowed to be used. Any new
parks would need to be added together with their relevant details.

4. Double bookings should not be possible.

5. Numeric field should not accept Alpha data.

Figure 3.8 Data Entry Parsing

Going on from this, the necessary data needed in order that a booking be made
successfully must included an agreement made upon the cost to IC for the transportation
of the van and a booking reference be assigned. This could be useful at a later date in
the possible automatic creation of cost expectations. This had been a standard procedure
within the business for years, and during that period the sales staff had become so
lackadaisical in their attitude to this that this cost was being agreed at the point that the
invoice was being submitted to IC. This process had to be enforced, and so would

become part of the data input procedure.

As has been mentioned, the information kept about the bookings had to be made
available, albeit only internally. The possibility of the information being made available
over the Internet meant that the data had to be secure. The level of security should be
relative to the sensitivity of the data; bank details are more useful than caravan prices. It
was sufficient at this stage to acknowledge that only authorised users should have
access to the information. Authorised users are those as listed on the IC central

database.

Another aspect of security was with the integrity of the data as stated in point 5 of
Figure 3.7. Part of data integrity is to ensure that it cannot be spoiled accidentally, or
otherwise; only the user who added the information should be allowed to edit or delete
it. This would avoid the possibility of bookings being mislaid. It also offered the level

playing field scenario which was described in point 4. This was intended to allow any

49

member of sales staff to be able to make any booking without it being passed by more

senior members of the sales team, with the possibility of it being reduced in priority.

Another key point relevant to the above was to place the onus of the correctness of the
booking information upon the sales person involved. Should a haulier arrive at Morpeth
to collect a van and find it located second in the queue in the collection area, either the
haulier has arrived early and would have to wait, or the sales person had entered the

collection time incorrectly.

The development would create a problem in the maintaining of concurrency over a
network, the method by which this would be done would be decided later. At this point
it was only necessary to know that the network was not only in one location but could

be further expanded as the company developed.

3.5 Key functional requirements

To identify requirements, the developer needs to be able to conceptualise the system in
terms of functions, processes, inputs and outputs [Mylopoulos00]. Requirements may be
viewed in part as a wish list for functionality, and partly as those processes needed
integrally to the overall system. In order for this computer system to address those
issues discussed above, it would need to include certain functionality. It is possible to

itemise those functions having examined the current domain.

Table 3.1 will be used as a guide to the key functional requirements (KFR’s) needed in
order to achieve a minimum required system. It is a remodeling of the current system
with initial expectations of what a computerised system would provide. Addiional

functionality may be considered during the development process.

The letters ‘R’ and ‘D’ in the heading refer to Required functionality and Desired
functionality.

50

4. Ideal Caravans Business Process Engineering — A

Case Study

4.1 Introduction

Chapter 2 highlighted a process within Ideal Caravan’s operations, which was causing
concern to the company. The problem lay in the lack of control the company and its
employees were maintaining over the movement of its own and third party caravans.

This chapter offers a study into the BPR of these identified issues.

There were two options identified to solve this problem:
1 Utilising a currently available package or a commercially available off
the shelf package (COTS)

2 Creating a bespoke system.

Option 1 would be considered first as it offered the quickest solution; if a suitable piece
of software could be found it would be possible to have it installed and running in a far
shorter time period than Option 2. There was also a good chance that the COTS package
would be considerably cheaper than Option 2. There would be a trial of any currently
available suitable systems and a judgment made of their suitability. In order to do this, a

set of evaluation criteria needed to be created to be used as a benchmark comparison.

4.2 The Existing Process

Figure 2.2 listed the steps that the staff should be taking to successfully complete the
process under examination. Unfortunately, much of the time these steps were not being
completed; in some cases, no documentation of any kind was in existence. Much of the
organising was being done over the telephone and any notes made were being placed
into personal diaries or onto scraps of paper. As there was no formal CP in place, and
there had been no long-term study into how the individuals in the sales team perceived
this process, it was difficult to establish exactly how organised or disorganised they

52

actually were. During the project, once the sales teams’ working practices began to be
examined, they started paying more attention to them which was misleading in as much

as a true picture of the working practices was not being observed.

4.3 The Proposed Process

The computerised system should at minimum be able to cater with the collection of data
relating to those steps in Figure 2.2. More realistically, it should guide the users through
a series of steps collecting the necessary data as part of that process. Those steps listed
appeared initially to be adequate as a basis for recreation by engineering, but there were
areas such as communication between sales representative, park owner, haulier and the
Service Department which needed improving.

The proposed process should also be considered alongside the requirements as listed in

Table 2.1.

4.4 The Evaluation criteria

One of the problems facing system designers/evaluators is how to effectively evaluate
system design to support multiple interactive users. Users are different; they come with
differing viewpoints, expectations and skills. Ross [Ross95] suggested a method of
‘combining theoretical analyses and participatory design methods’. Further to this, she
explained how with her PETRA Framework, the ‘continued involvement of users and
full active participation in the evaluation process’ was integral with its success.
Although, the PETRA framework was not to be implemented here due to it being based
upon collaborative work and would have involved unnecessary complications, an
attempt was made to involve the potential system users as much as possible.

QOC [McKerlie93] was identified as a suitable method to illustrate the evaluation

discussion.

53

4.5 The Evaluation

When the company decided to introduce a new system to control transport bookings,
one of the first considerations to be taken into account was whether there already
existed an application which would be suitable. As mentioned previously, Microsoft
Outlook had first been considered. This idea was discarded as it relied too much on the
user supplying the correct information. What was needed was a system which enforced
the need to collect and document the correct information before a booking be made
possible. Investigation showed that there were quite a number of booking systems
available, some of which compared to creating a bespoke system were very cost
effective. The basic fundaments of a booking system are quite common throughout
many business areas. This increased the chance that a viable package might be found to

suit the company’s needs.

Initially, The Road Haulage Association (RHA) was contacted for information. This
association is a non-government body that specialises in advising on all issues relating
to road haulage. They are, relatively speaking, what the British Computer Society is to
Information Technology (IT) professionals. The RHA had made it known that they have
developed their own systems under the name of Roadrunner, which would be reviewed.
There are two versions; one a stand-alone application, the second, accessed via the
Internet. Both applications were similar in functionality other than their method of

distribution and number of users.

Further to this, some more generic booking systems which were available were
reviewed such as BookingSystem.com and YourBooking.com. These are suitable for
most small to medium sized businesses and can be altered to suit the individual
business. An important aspect to these would be how much alteration would be
available and would it be sufficient for what was needed. The problem might arise that
the company was not just looking for a system which managed the transportation of
caravans, but also managed what their fitters were to do with the van once it was

delivered.

55

Also reviewed were some packages such as Trackwhere which are produced by
software companies specialising in haulage organisational software, and also a suite
specially designed for large multinational companies.

Finally, the possibility of IC employing a software development company to produce a

bespoke system was considered.

4.5.1 R.H.A. Roadrunner

The RHA has worked in partnership with a number of software developers, chiefly
RoadTech, to create a package called RHA Roadrunner for Windows. RoadTech have
produced a number of similar systems in the past. Their first version was distributed
around 15 years ago. Information about RHA Roadrunner can be found at

www.roadrunner.uk.com/products/transx.shtml.

Cost
This package retails for £100 and this includes a single user license. Each further license

cost £100 thereafter.

Data Availability
The system would be distributed over an internal network with the option of a dedicated

machine to host the database. There would be no offline capability

Expandability

RoadTech had stated that they were not in a position to make any changes to any of the
field descriptions, which would have been useful to IC.

The main data entry screen, Figure 4.1 offered a third tabbed area providing a large text
box which could have been used for recording additional information unique to IC, but
unfortunately no searches or data extraction could have been applied to this data.
Requirement 9.1 of Figure 2.1 which listed functional requirements states that it would
be desirable to be able to create a number of reports based on some of this data, for
example to illustrate the reliability and punctuality of hauliers. This would not be

possible in this case.

56

entering a number of preference details. They then need to set a number of options and

preference details.

Information for this system can be found at www.BookingSystem.com

Cost

BookingSystem.com is completely free of charge for the basic setup. Charges are
applied for alterations. It has no pop-up advertising, no spam emailing, and no selling
on of its client details. The owners, Suncrest Systems Ltd made the application viable

by offering this light version with a view to promoting extended versions.

Data Availability

Any data added would be stored on BookingSystem.com’s. It offered no offline
capability. The feature which allowed customer’s to access certain resources was
interesting. This could be used to allow hauliers to log into the system and check their

own timetables.

Expandability

BookingSystem.com allows expansion and alteration to their system. Changes to the
basic system are made on a per field basis or on a per hour basis for larger jobs.
Development can be estimated at £90 per hour, and quotations are available for larger
jobs. This would enable the expansion of the system but whether it would be able to
expand sufficiently to achieve Ideal Caravan’s requirements was doubtful. For example
either a large text box, or numerous Yes/No fields were required for information
relating to the siting of the van. The Yes/No fields require the development of at least
one completely new screen. The level of alterations needed to bring this system into line
with what IC required may result in this option not being viable. Further to this, some of
the changes needed may be more fundamental to the system and not just cosmetic, and

this would discount the option altogether.

Functionality/Interface
The main data entry screen where bookings would be added worked logically and had

organised clear displays. Data entry started with entry of the member’s details, in IC

60

4.5.3 YourBooking.com

Yourbooking.com was an online booking system. It provided a method by which a user
could organise bookings of almost any nature, from villa to video rentals. Further

information for this system can be found at www.Y ourbooking.com.

Cost
This online system was Open Source [OSC06] (Osc) and so had no costs associated

with it.

Data Availability
The data was held on the host’s server so there would be no offline capability. Data
access was gained via a log-in screen from previously created accounts. Unfortunately,

there was no facility to allow differing levels of access.

This system offered a feature where a Customer could access the web site and view
available booking options. Unfortunately, this feature offered only minimal feedback,
informing the user whether the lodge was available or not. This feature may be capable
of handling the availability of the fitters for siting jobs.

If the user wished to make a booking, they had to make a telephone booking. The

Customer could not book the lodge online; this seemed to be a missed opportunity.

62

Figure 4.8 was found to be illogical and could have been split into sub-screens; for
example, the financial information could have been removed from this screen and

placed on its own screen.

Further Options

There were also a number of software companies specialising in haulage organisational
software on a much larger scale. This is a niche market and the prices reflected this fact.
Although their costs would mean that they were not a viable option, they would be
worth at least viewing to see what features they could offer.

Fleet Computer Services Limited was one such company and has been supplying
hardware and software to transport companies for over 20 years. They offered a product
called Traffic Office system which can be found at http://www.fleet-

computers.co.uk/Page 1x.html.

4.6 Comparison and Outcome of System Reviews

A comparison of the systems was made difficult because of the large variations in their
costs, and that the systems were aimed at differing target markets. Referring back to the
criteria which the review was based upon in Table 4.1 assists in this process as it
differentiates aspects of the systems. Table 4.2 shows a summary of each system against

the set criteria.

67

2 Data Availability. Data availability was provided through 2 options; over the
Internet or over a network. MyBooking, BookingSystem were Internet based
whereas Roadrunner and Trackwhere were both network based. This reflected
the costs comparison.

3 Expandability. Both Internet versions offered only cosmetic or minor
alterations. Trackwhere and RoadRunner offered no realist expandability.

4 Functionality/Interface. Trackwhere and Roadrunner’s functionality were
nearer to what was required, than the Internet versions, but they were still not
sufficient without alterations. The two Internet systems had better data entry and

diary views.

As can be seen from Table 4.2, none of the systems were clearly suitable. The main
problems encountered for the reviewed systems were:
e None offered both online and offline capability.
e A lack of expansion; free fields which could be renamed, or the ability to add
new fields.
e Poor reporting facilities.

e Poor data entry and data viewing screens.

The most suitable system was TrackWhere, although this was still considered to be
insufficiently suitable as it had not met all of the required criteria for functional
requirements as listed in Table 2.1. The following Table 4.3 illustrates how TrackWhere

compared against those requirements.

69

needed to be considered; this was to create and implement a new system. Furthermore,
the experiences gained from reviewing the existing system can be used to direct the

design of any new systems.

71

Table 5.1 illustrates that both technologies offered benefits through their use, but came
with associated overheads. For example, the Internet version would offer better
expandability and portability, but with a greater risk due to the lack of knowledge the
company had in this field. Glass [Glass98] stated that of all project runaways, 45% of
them were a direct result of the technology being new to the organisation. This was a
concern to the company management and would need to be included in the risk

assessment.

A further point to note was that each technology would offer differing standards and
methods both during their creation, and in their finalised product. Certainly the two
systems would offer the same core functionally, but each may offer secondary
functionality which would be unique to each technology. An example of this might be
the use of ‘Tool Tip’ text, or keyboard short cuts in a windows application which may

not be available in a web page. This needed to be considered.

Referring back to the aims of this thesis which sets about examining the identified
problematic business process, and investigating possible solutions to the problem, it
might be beneficial to take advantage of these highlighted technological benefits and
incorporate as many as possible into the new system. The thesis will also consider the
methods by which the company identifies, appraises and implements new computer
systems and the actual creation of a new system would be an ideal starting block for

such a study.

After further discussion, it was suggested by IC that the two systems could be
developed in parallel and at some point in development, the more suitable be chosen.
This did not seem a viable proposition as it would almost double the development time
and therefore might compound or at least extend the time that the company would
continue experiencing the problems within the domain. It was also suggested that the
company use this opportunity to instantiate a set of guidelines for use in the
development of future in-house systems. They would take this opportunity to create a
more structured method of software development which could be applied to all future
projects. This could be used in future as the company were expecting to expand and
were looking to implement at least two more larger-scale systems in the future. The dual

development approach could be used to satisfy the structured method definition.

73

5.2 Risk Assessment

As with a proposal of any new software system, there were a number of risks involved
which needed to be assessed before commencement. Risks needed to be acknowledged
and documented if they were to be controlled, and the process of analysing these risks,

once established could be applied to all future developments.

A method of risk analysis needed to be introduced. McGraw [McGraw04] defined Risk
Analysis as “a way of gathering the requisite data to make a good judgment based on
knowledge about vulnerabilities, threats, impacts and probabilities”. Risk analysis is not
only about gathering the data; it is about being able to act upon it which in itselfis a

risk.

Previously, the company management had no concept of formal risk assessment with
regard to software development. They understood the principles of risk assessment
when applied to other areas such as health and safety where assessment is tangible. It is
more difficult to pre-empt a risk which is not necessarily physical. Whichever risk
assessment was used, it would need to be assumed that the first attempt would be less

than perfect.

Many researchers have tried to address the problem with risk assessment; Boehm
[Boehm88] stated that “Relying on risk-assessment expertise, the spiral model places a
great deal of reliance on the ability of software developers to identify and manage

sources of project risk”.

There are numerous methods such as Kemerer’s Function Points Measurements
[Kemerer96] which introduce the notion of using metrics and checklists in order to
formalise risk assessment. To varying degrees, most formal software risk assessment
methods unfortunately do not take into account the ability and experience of the
assessor as part of the evaluation process. Nor do they take into account the number of

cycles of the process needed to achieve the proffered solution.

74

5.3 The Collection of Metrics

During the process of designing and implementing the new systems, metrics would be
collected. These would be used at the review stage to compare the development of the
two systems. It is worth being reminded that the success of the system did not just lie in
its ability to fulfill the functional requirements, but also in the analysis of themethod by
which it was created. The reason for the collection of measurements throughout this
process was summarised by Briand et al [Briand96] in that if offers “an effective means
to understand, monitor, control, predict and improve development and maintenance
projects.” It also provides the opportunity for the process to be recursively improved
through documentation. One of the problem aspects to this is the skills required in
analysing and documenting such measures successfully. Not all attributes are readily

quantified; measuring the quality of a piece of software is an example of such.

A metric can be defined as an entity which can have an attribute assigned to it. One of
the better abridged definitions is that of Texas State Libraries [TSL06]; “A random
variable x representing a quantitative measure accumulated over a period”.

Fenton and Neil [Fenton00] argue that where organisations introduce the collection of
metrics into their software development process, they almost always are motivated by
one of two activities:

1 The desire to assess or predict effort/cost of the development process.

2 The desire to assess or predict the quality of software products

They also classified metrics into 3 entities:
e Processes: Any software related activity such as testing
e Products: Any artifact or deliverable from a process such as specifications and
code.
e Resources: Items that are used within a process such as personnel and software
tools.

Each entity may have internal and external attributes associated with it.

The metrics and the methods by which these metrics are collected needed to be
identified. The discovery of the measurement activity can be achieved in a number of
ways. Goal/Question/Metrics (GQM) is one such method that was prbposed by Basili

[Basili85] in 1977. He refers to it as an informal method and would be suitable for
76

smaller projects. GQM operates on the principle that if a goal is identified, then
questions can be asked relating to that goal. This ultimately leads to a metric which can

be used to assess the risk.

The project goals are multipartite in as much as it is not only assessing the success of an
implemented system, but also the success of the comparison of two similar systems, and

also the successful creation of a structured business method and CP.

Table 5.2 lists the criteria which metrics shall be based. These are the factors which
could affect the design and development process. These factors were chosen for their
suitability from the combined lists of what Kemerer [Kemerer96] and Boehm
[Boehm88], and were combined with others such as iteration times which were felt
suitable to the project but missing from the combined work. Further, there are entries on
their lists which have been excluded from Table 5.2, such as entity relationship
complexity and functional complexity which when placed into the context of the project
were considered not to be of significant benefit. There were a number of models, which
may have been used to consider theses criteria; for example Harrison and Cook’s
[Harrison87] Micro/Macro method, or by examining the system architecture as in Henry
and Kafura’s [Henry81] Information Flow model. Other metrics such as stability could

only be gathered at a later date.

77

example of this would be the choice of Apache, the Internet server software needed
so that the UNIX server could supply Internet pages at request.
Software/Hardware Installation. This would be the time taken to install any new
hardware or software required for the new systems. An example of this is the
installation of the mySQL database application on the UNIX server.

Database Table Creation and Implementation. The time taken to analyse and
create the databases for the systems.

Lines of code. The number of lines of code needed to complete each system. This is
one of the most basic metrics used in measuring the complexities of a project. By
comparing this with other elements of the systems such as number of entities,
functions and process flows, Zhao [Zhao98] highlights that it is possible to create a
metric relating to the complexity of the system.

Initial Coding Time. The time taken to write the code throughout the iterations in
order to complete the first release of the systems.

Testing. The time taken within the iterations to test the written code.

Coding due to Testing/faults. This would be the time taken to write any additional
code or make amendments to existing code as a result of the testing stage.
Additional Requirements. This will be the number of additional requirements
added during the development process after the design had been agreed.

Coding due to Additional Requirements. The time taken to implement any new

code relating to additional requirements.

10 Iteration Times. This will be the breakdown of times spent on each iteration.

11 Total Time Taken. The total time taken to produce the completed system.

12 User’s System Grading. The overall score, graded from 1 to 5, given to the system

by IC from reviews.

To be able to use the results of this experiment as a benchmark for future developments,

these metrics needed to be collected and presented at the conclusion of the experiment

in a valid manner.

79

5.4 Development Methodology

IC had identified two functional requirements which they classed as important in the
new system; the provision of a simple user interface and the simplified displaying of
data. Certainly there were other important points to the system, such as data
synchronisation, but IC was making these suggestions based on what they knew and
understood of the system. With this in mind, a suitable development lifecycle was
sought. What was needed was an iterative process, with a fairly quick start-up where the
user interface could be seen to be being developed correctly whilst the underlying more

important aspects be implemented as well.

IC previous systems had been developed off site, and there had been no form of
prototyping offered. When a version of the system was finally brought in to be
demonstrated to the company, it was fairly advanced and no option was given for

backtracking on fundamental design.

Boehm [Boehm88] proposed that his Spiral Model for software development lifecycles
worked on an iterative basis allowing the prototyping of a system. As the iterations took
place, the system could be developed to a deeper and deeper level until the functionality
was completed. This method was suitable as the basic system could initially be created
and iteratively be improved. This prototyping method would enable a basic design of a
system to be created allowing the two key requirements to be successfully implemented.
This could then be reviewed by the company and would give the designer the
opportunity of implementing factors which the company did not necessarily identify
initially as important. Wasserman [Wasserman80] proposed this method of system
design whereby lower level features of the system could be deferred until later in the
project. This is a good method from the system designer’s point of view due to its
flexibility. It was noted that this could become a problem issue if IC realised that the
planning of certain areas of the development had not been finalised, and so wished to
force a number of design changes through at a later date. This was a change

management (CM) issue and would need to be catered for.

Figure 5.1 illustrates Boehm’s Spiral model.

80

Quadrant 1 A CUMULATIVE Quadrant 2

DETERMINE T EVALUATE
OBJECTIVES PROGRESS ALTERNATIVES;
ALTERNATIVES, THROUGH IDENTIFY,
CONSTRAINTS STERS RESOLVE RISKS

COMMITMENT
PARTITION

PLAN NEXT DEVELOP & VERIFY
PHASES NEXT-LEVEL PRODUCT
Quadrant 4 Quadrant 3

Figure 5.1 Boehm’s Spiral Model for Software

Figure 5.1 represents how the Spiral Model allows the iterative assessment of risks and

metrics (top right hand segment). Other lifecycles such as The Waterfall method are less

well defined in these areas. As the collection of metrics was so important in the

experiment, changing the company’s procedures to adopt the spiral model is a

significant step forward.

5.5 GUI Design Considerations

The design of a Graphical User Interface (GUI) is deemed by most users as the most
important factor in the system development. Most users are generally not involved in

the defining of system functionality, reporting, security etc, and the only input they may

81

have into the system may be in the design of the GUI. The consequence of this is that
failure to implement a GUI to the requirements of the user’s community may mean they
perceive that the whole system is ‘incorrect’. Changes to GUI standards may have a
consequence for the company’s training requirements. Inexperienced users might need
to be trained in the use of the new GUI to be convinced that just because it is different
does not mean that it is unacceptable. Goransson [Goransson86] suggested that more
research should be conducted into this phenomenon identifying that most computer
users were not computer users but tool users and that users first introduced to new GUIs

need careful management.

IC had stated that they felt it important that the GUI should be clear and easy to
understand. This requirement had been included in their KFRs in point 5.1 of Table 2.1
With reference to Meyer [Meyer03], who states within his design principles that a
successful system should involve:

e Small interfaces. GUI design should attempt to keep the amount of information
on display at any one time to a manageable level.

e Explicit interfaces. A GUI should display information relevant only to that
process being modeled.

e Information hiding. The GUI should not show unnecessary information. An
example of this is at the point a Hotelier places a booking onto a system, the
system should concentrate only on the booking, and not display the Customer’s
details.

The above points had all been requested by IC in respect to their GUISs.

5.6 Summary

It was decided to create two different versions of the system utilising differing
technologies. Each system would be developed using Boehm’s Spiral Model, and would
provide an opportunity to examine this method of system development and document a
more structured method of software engineering for IC future developments.

The risks associated with the systems needed to be collected and assessed. Metrics
would also be collected and reviewed in an attempt to understand, monitor and control

the process of software engineering.

82

6 The Bespoke Systems

Typically a software system can be developed in a number of ways. One of the
challenges for IC and for any SME is the selection process for each development option
that arises. In IC the development options are typically concerned with the selection of
hardware platforms or software. If costly mistakes are to be avoided then it is important
that the development team select an option that is robust and appropriate for the
situation in which the system will be deployed. Knowledge gained from the decision
making process is useful in informing the future decision making processes and so
through the application of the development process, the company will collect decision
data for the first time and make this available for future projects. Unfortunately
however, it is difficult to truly evaluate decisions and therefore inform future
development practices as in the majority of cases only one of the development options
has been carried forward. Therefore ordinarily no data is available for comparison to be

made.

6.1 System Design Options

With the decision that a new system was required came a set of questions associated
with their development, such as:

1 Which OS should the development be based on?

2 Which programming language should be used?

3 How was the system to be deployed?

4 How was the data to be stored and synchronised?
5 What is a suitable GUI?

The following section will consider each point in turn. Where the options are more
complex, QOC is used to illustrate the decisions made. In other options, even though the
QOC approach has been applied, due to the simplicity of the decision making process, it

may not have been represented.

83

6.1.1 Operating Systems

The company was using MS Windows exclusively for their PCs and servers except for
one older UNIX server which had been installed and maintained by a third party. All
company employees were comfortable using the MS Windows environment.

Despite this fact, the company where open to suggestions of other technologies,
especially those which utilised the Internet. They had considered the future of IT within
the company and were eager to take this into account. The question was, which OSs

were most suitable to support the systems.

The two main OSs which were considered were Microsoft Windows and UNIX/Linux
both based on PCs. A third technology which the company had expressed an interest in
was the use of PDTs such as Blackberrys, but as the company was not at that stage yet,
the suggestion was kept in mind for future developments. UNIX is distributed under a
number of OSc; Linux, GNU, Sco UNIX, Uniq and Fedora Linux.

One system would be developed on a Windows platform and the second on a
UNIX/Linux platform. It was decided that due to its user friendly and high level of
functionality, RedHat Linux would be used. It came supplied with Apache, a piece of
software which enables the server to serve Internet-pages at request. This collection of

software would enable the UNIX server to operate as a complete web server.

6.1.2 Programming Languages

Commercial programming languages have been around since the early 1960s

[Rosen67]. Over this time, they have developed from simple calculators to highly

complex graphically displayed development environments. Theoretically, when a

system is to be developed, the features of the system are to be taken into account and the

programming language chosen on this information.

Typically, a language would be chosen because of a variety of issues such as;

1 Costs associated with the programming language: A company may already have
purchased a particular programming language compiler for previous projects.
Rather than have the additional cost of purchasing a new compiler, they may opt

to use the one they already have.
84

2 Skills/Experience/Historical: If a company has previously developed software in
a particular language, they may be more willing to use this language again due
to the lower risks involved rather than switch to a new one which would require
new skills to be learned.

3 Code library: Companies build up libraries of commonly used code. An example
of this would be a user environment interface; a company may reuse the same

user environment for a number of projects [Doublait97].

With SME’s, often practical considerations take priority when faced with these
decisions. Each OS offered a number of programming language options. A decision
needed to be made upon which programming language was most suitable for each of the

two OSs. The following two Sections provide a list of those options.

6.1.2.1 UNIX Programming Languages

To make an informed decision, as to which UNIX programming language was most
suitable, the most commonly available options needed to be considered. The most
suitable options were short-listed, and these options were reviewed against a set of

criteria as listed in Table 6.1.

85

The Windows version of the system would be developed using VB for these reasons.

6.1.3 Databases

Whichever database was chosen, it would be hosted on either one of two servers. If it
was a Windows OS database, it would be held on the IBM 2000 server, and if it was a
UNIX OS database, it would be held on the UNIX server. Both servers were located at
the Durham office.

The question of which database was most suitable for the two systems needed to be
considered. As reviewing databases can be a time consuming process, and due to time
constraints and the simplicity of the data structure, it was agreed that the database

options should be limited to the best known and documented ones.

6.1.3.1 UNIX Databases

There are a number of databases suitable for use with PHP and CGI under UNIX/Linux.
These databases could be split into two main types, those available as OSc and those
which were sold as commercial ventures. According to The Linux Journal [Linl] and
Linux Magazine [Lin2], the most commonly used databases for Linux were
PostgreSQL, MySQL and Oracle. These three databases were consistently in the top 5
Linux databases in their reader’s surveys and so were considered in the QOC table 6.3

below.

88

6.1.3.2 Windows Databases

There are numerous databases available to Windows, too many to consider which would

be suitable for this application.

Therefore, it was decided not to review the Windows databases and that MS Access

would be used. This was for the following reasons:

| MS Access had been used for all previous bespoke systems for the company.
2 The company had licenses to use MS Access without further cost.
3 The simplicity of the data structures needed for the system would easily be

catered for with MS Access.

6.1.4 Methods of Synchronisation

The method of synchronisation would be the key to the whole project. It would be
unsuitable having a booking system with out-of-date data. The question was which

method of data synchronisation was most suitable? Table 6.5 illustrates this.

90

Figure 6.6 displays the suitability of the options when compared against the criteria.
The option for the Internet system was Option 3 which utilised SQL queries against the
main database over TCP/IP. This would keep the database programming in PHP to a
minimum and the built in security which comes with TCP/IP could be utilised.

The most suitable option for the Windows version was Option 4, which although would

incur more programming, it would allow both on-line and off-line capability.

6.1.5 Designing the Graphical User Interface

A system’s GUI is an important aspect in the success of a system and needs to be
considered fully. Table 2.1 listed the KFRs and it showed that IC had also placed
importance on the GUI. Requirement 6.1 stated that the GUI should reflect the
company’s corporate image. It should also be clearly laid out and uncluttered.

Both systems should utilise the lists of parks, hauliers and users in the existing IC
database. The diary view should represent as close a replication as possible of a normal

diary including the navigation aspects.

Drop down lists, calendars and quick text functions should be used where possible to
minimise data entry. Screens should address the requirements as stated in the W3.org

website and that this issue required further investigation.

The W3.org Internet site [Berners-Lee06] which is an international consortium for

Internet standards has this to say about design standards:

1 Content must be perceivable.

2 Interface elements in the content must be operable.

3 Content and controls must be understandable.

4 Content must be robust enough to work with current and future Internet

technologies.
Figure 6.1 W3.org’s Web site Design Standards

It was decided that for the Internet system, hypertext screens would be sufficient to

fulfill the company’s requirements. The company decided that the factor of time and

92

cost be of prime importance, but noted that the selected option would not preclude the

development of a GUI at a later date.

Therefore in summary, the design of the system would adhere to these points at

minimum, and where possible attempt to replicate the views and layouts of IC existing

systems.

6.2 Other Factors

There were other factors which would affect the system development, and they needed

to be considered. Such factors might include:

1

Set up costs. There may be unforeseen costs such as additional software licenses,
additional hardware and upgrades.

Set up time. The time it would take to set up a Web server was unknown and this
needed to be considered.

Time taken to learn the new technology/language. Again, this was unknown
prior to implementation.

The future of such technologies. L.e. is it worth going to the extent of learning a
new technology such as Tcl for a system development? Would Tcl be of any use
in the developer’s future?

The future of the developer. Which technologies would the company’s
developer benefit from learning?

Available support. Which technologies are strongly supported, well documented

and the availability of contacts experienced in those technologies.

Figure 6.2 Other Factors affecting the System Development

6.3

Identifying Changes to the Company Roles and Procedures

The introduction of the new system and managed business process had a number of high

level benefits to the company management.

These included:

93

The greater compliance to company procedures. The company would be gaining
a system which would guide the user through a set of steps which would have to
be taken before a transport booking could be made. This would be a substitute of
a formal CP. In effect, the system would be ensuring that all bookings were
made whilst adhering to the CP.

The introduction of the system would mean that the current methods of
operation might need to be altered. Kettinger [Kettinger97] pointed out that
“BPR is increasingly being considered as a transformation of the organisational
sub-system”. This is in comparison to Hammer’s [Hammer90] obliteration
concept. What was being attempted was to alter a sub-domain problem within
the company with a view to affecting the whole domain.

Ensuring a minimum set of booking details were collected prior to commitment.
This was achieved by the system rule that no bookings could be placed without a
core of essential information being provided to the system.

More even parity of treatment for full and part-time employees. This was a result
of the staff hierarchy being leveled with regard to the booking of transport.
Previously, the company had noted that certain members of the sales team,
notably those employed on a part time basis or newer members were having
their transport arrangements shuffled to suit others. This was clearly not
appropriate. If a caravan is sold, and a member of staff has arranged with the
customer to have the transporting and siting of that caravan on a pre-arranged
day, then it should not be possible for this to be altered except in extenuating
circumstances. At that point, only that member of staff or the administrator
should be allowed to alter the booking.

The removal of certain roles. With the implementation of the new system would
come the removal of the transport representatives’ roles. This role as described
in Chapter 2.3 would be welcomed by the transport representatives, as they
would no longer be needed to do work on behalf of another member of sales
staff. It also meant that they would only be responsible for the accuracy of their
own transport arrangements, not for the whole department.

The company would benefit from the opportunity to produce reports. They
would be able to create reports which highlighted trends such as which sales
members were more organised than others, and the failure rate of van

movements.

94

5 More efficient team working. There may be intangible benefits such as the sales
team working smarter. They would need to have more information at hand, and
therefore be more organised at the point of making a booking. This may set a

precedence of also improving standards elsewhere in the business.

6.4 Resulting Overview

Each sub-section of the two systems were to be created in parallel. For example, both
sets of database tables were to be created concurrently. This would allow a comparison
to be made more easily and reduce bias of the collected metrics, for instance,
consideration had to be taken of the fact that whichever version’s function was
attempted first. This system may have a slight overhead in time taken to complete it due

to the learning process.

95

aspect of the development. After the most suitable options had been chosen, Section 5.4

gave an overview of the two proposed systems highlighting any key points.

The chapter also identified what changes might take place within the company’s

operating procedures once the chosen system had been implemented.

97

7 Evaluating the two new Systems

The purpose of evaluating a project where a piece of software has been created is to not
only evaluate the software but also the way it was created and implemented. Kumar
[Kumar90] states that “the primary reason for such evaluations seems to be project
closure and not project improvement”. He suggests that in most cases within business
that the personnel involved in the analysis of a project are those who have the most to
lose if the project is not deemed a success. The result being that the evaluation is a
means to which the project can be assessed as to its completion. Kumar [Kumar90] goes
on to say that successful evaluation of a SE project should be more concerned with
looking for improvements in the project as a whole. By this method projects can be

iteratively improved.

The evaluation process shall be broken down into 3 steps:

1 To evaluate and compare the two new systems. In this step the two systems were
introduced to the company. After an evaluation period, they were reviewed by
staff and management and preferences collected.)

2 To evaluate the methods used in the analysis, design and implementation of the
new systems.

3 To assess the use of existing and modified development methods (as in step 2) to
create a structured business method of software engineering combined with a

reusable framework which IC can apply to any future software developments.

7.1 An Evaluation and Comparison of the two New Systems

There are a number of formal methods and tools which can be used in order to evaluate
software against the needs of an organisation. One such method was proposed by
Ubhayakar [Ubhayakar03]. Ubhayakar offered a framework of evaluations from which
to base a formal comparison of requirements against the entities and objects of a
completed system. Although based upon military systems, his framework centers upon a
specification language called the Prototype Verification System (PVF). By creating a

script of PVF based upon a system’s requirements, specification and design, a

98

verification process will specify the correctness of those inputs. This is an expansive
process which would be used on systems such as those which are safety critical.

A second method was proposed by Kontio [Konti95] et al which introduces a formal
screening process based on the organisations’ documentation. During the evaluation for
IC use, it was found that despite Kontio’s claim to it having a small footprint; it was felt
to be too complex for a smaller organisation to benefit and was aimed at large software
developments. The questions/ options/ criteria QOC [McKerlie93] method would also
provide a suitable approach for an SME to select from a set of alternatives. However,
the difficulty with the use of this method resides in the selection of appropriate
evaluation criteria upon which the decision making is to be based. For this reason, the
QOC approach would be adopted and two feasible development options taken through
implantation. This meant that the decision making process could be evaluated and a
more accurate assessment made of appropriate evaluation criteria to apply to decision
making in the future. When considering any system development options using the
QOC method (as highlighted previously), the difficult aspect is ensuring the appropriate
questions and criteria are used. Some researchers have published examples that can be
applied to this work such as McKerlie and MacLean [McKerlie93], but even they make
a point of stating the difficulty faced with QOC is in the experience required in
identifying the appropriate questions. A significant contribution of this work will be an
evaluation of the decision making process through the implementation of two
development options so that the predictions and final outcome can be compared. The
interesting feature of all this research work is how little they focus on NFR, instead
focusing on functional aspects of decision-making systems. A further contribution of

this work will more closely follow the impact of NFRs on the decision making process.

The two systems were implemented on a parallel basis for trials between the periods of
the 7™ of November 2005 to 30" of December 2005. The decision on which of the two
systems was to be used by the company was to be scheduled for January 2006, and the
chosen system to be implemented by February 2006.

To make an evaluation of the two systems, the following points must be considered:

1 A comparison against key functional requirements.
2 A comparison against non-functional requirements.
3 The system users’ opinions.

4 The chosen system

99

7.1.1 Comparison against Key Functional Requirements

The KFR’s were as stated in Table 2.1. Both systems were designed specifically using

this set of guidelines. Both systems achieved complete success in achieving the

functionality required in the Required column.

Requirement 7.1 of table 2.1 stated that data should be available from all company
offices. This was not achieved; there was a difference in the way the data could be
accessed at the Waren office. The Waren office was not connected to the company’s
external network; there was only an ISDN line present. The result of this was at this
location:

e The Windows system could only offer an offline version of the data.

e The Internet version could offer a slower but live version of the data.

This meant that the Windows version did not quite succeed in achieving all of the

functionality in the Desired column in as much as the data might be out of date, but due

to the use on this site, this can be judged as a minor failure. Therefore, choice between

the systems would come down to fulfilling the NFRs and personal choice, and hence

allow detailed evaluation of the ability of the QOC approach to represent and accurately

portray for decision making the selection of development options through consideration

of NFRs.

7.1.2 Comparison against Non-Functional Requirements

In comparison with the functional requirements, the non-functional requirements were

more abstract and covered areas such as the system costs, expandability and reliabilit

Table 4.1 showed the non-functional requirements. Point 4 of 4.1 was decomposed

previously into the functional requirements as stated in Table 2.1 previously. It listed

Y.

100

the non-functional criteria required for a successful system which are reviewed as

follows.

7.1.2.1 Cost

As expressed, the cost of the system was not paramount, yet was relevant. The company
was expecting value for money; the cost should be relative to the usefulness of the
system. It is important to consider how each system would compare when examined

from a cost point of view.

In a bespoke system cost may be broken down into time; analysis, design, coding,
implementation and maintenance amongst other things. Briand [Briand02] writes that
the main factor in costs associated with software development is the size of a project.
This may seem obvious, but there are other contributing factors such as the complexity
of the analysis and mode of system deployment. There are other aspects such as cost of
tools, hardware and software, but in this case, these were less important due to their

availability as considered in Chapter 4.4.

Neither system needed any new expensive software or hardware purchasing to be
implemented; therefore, the major cost issue would be dependent upon other aspects
such as development and maintenance time. Although the cost of maintenance is not
known yet, by viewing the metrics collected, it was possible to see that the Internet
based version took the longest time to create and implement. This made it the costliest
option from the point of view of time taken. The Internet based version cost
approximately 47% more than the Windows version based on time taken; see Figure
8.6.

As was previously stated, the importance of cost is relative to the effectiveness and
usefulness of the system. Therefore if the Internet based system was found to be a
considerably better system, the longer development and implementation time could be
considered as worthwhile. The answer therefore lay in the decision of the preferred

system which shall be considered further into this chapter.

101

7.1.2.2 Data availability

The requirement for data availability had first been introduced in Chapter 2 where point
4 of Figure 2.8 stated that the system must “Ensure that that information was made

available to authorised Employees when it was needed”.

The Windows version allowed bookings to be added whether online or offline. The data
would then be synchronised when the user next went online. The system was able to
highlight where the synchronisation process would cause a double booking. Ideally, the
booking which was created first of the two should be honored, but in this case, the
existing booking on the master database was honored. This meant that off-line booking

were of a lower priority to those placed on the master database; this could be conceived

by the following rules:
1 Online bookings were confirmed bookings.
2 Offline bookings were provisional bookings until data synchronisation.

This offline feature offered a distinct advantage over the Internet version allowing
employees to continue to work away from the offices. This requirement emerged as
almost redundant as the logs showed that after the initial trials, the offline version was
never used; it seemed that users preferred to operate with live data. Whilst the Windows

version was online, it operated in a similar way to the Internet version.

The only other difference between the two was that the Internet version offered live data
away from the company’s external network, for example a salesperson would be able to

access it from home if they had an Internet connection.

The criteria in the Table 2.1 stated that the data should be accessible from any of the
company’s locations. Both systems offered this functionality but in differing ways. The
Window’s system offered a slightly better data service by allowing the user to create

bookings offline and synchronise the data later.

102

7.1.2.3 Expandability

The main aspect of expandability is to ensure that the system is sufficiently adaptable so
that it can be easily enhanced to support any future changes in direction that the

company may wish to make.

The exact concept of expansion could be achieved in a number of ways such as spare
fields, buttons and using tables rather than fixed options could be considered as offering
expandability. Further to this, the expansion of the system might depend upon available
knowledge to be able to expand the system using the language it was developed in.

The Window’s version was created in VB which is a widespread language, and the
company should have no problems finding a capable programmer who could continue

with any system expansion.

The Internet based system, which had been developed using PHP may prove to be more
difficult in its expansion. PHP is more of a specialty development language, and is more

limited in its scope in certain areas such as GUI design than other environments such as

VB.

On the other hand, as a proposal was being considered whereby management and staff
who worked out on site were to be issued with PDA in the near future, the company

could foresee new developments within the business that would disperse its operations
to further sites. With this in mind, the Internet based version which could be used from

any location with Internet access would be a distinct advantage to the company.
The outcome of this was that the Internet based version offered the better options for

expansion, whereas the Windows version offered the better tools through which to

expand.

103

7.1.2.4 Key Functionality

This was discussed as part of 7.1.1.

7.1.3 The System Users’ Opinions

This section has been separated into two areas:
o The first is the inclusion of a questionnaire completed by users establishing a
points system to quantify an appraisal of the two systems.
e The second is a discussion from differing perspectives as to the successes and

failures of the two systems.

7.1.3.1 The Questionnaires

The staff at IC were requested to run the three systems in parallel: the original paper
system, and the two new computerised ones. The 2 computerised systems would create
log files during their utilisation, listing user’s usage periods. This would be useful in
recording the times taken to complete comparable work. At the end of the trial period,
each member of staff and management which had taken part in the trial was asked to
complete a questionnaire. A summary of the results from these can be found in Figure

7.1.

Research highlighted that the questionnaire could be presented in many different styles,
but given the use of QOC and the user community, it was decided that in order to gain a
precise outcome, the questionnaire would be based on metrics. Foddy [Foddy94] stated
that “questionnaires are expressions of attitudes, feelings, and opinions rather than
factual accounts of past behavior and interactions”. He went on to say “The relationship
between what respondents say they do, and what they actually do is not always strong”.
This is understandable in as much as it is part of human nature. But Foddy also states
that “[with questionnaires] there is a lack of clear conceptualism of what is being
measured”. In other words, the questioned person does not fully comprehend the

concept that he/she is being questioned over. This seems to reflect a lack of

104

understanding by the body setting the questions as opposed to the persons being
questioned. This is backed up by McColl [McColl01], who wrote about this; “individual
survey researchers need to take into account the aims of the particular study, the

population under investigation and the resources available”.

It is less subjective to request measurements using this form of assessment, as opposed
to ‘views’ which can mask an accurate outcome and be hard to accurately analyse.
Heath [Heath06] states that “it is possible to design survey instruments in such a manner
that one can probe specifically for certain benefits and improvements”, and goes on to
say that “gathering clearly defined metrics” (within a questionnaire) “benefits more
accurate results”. With that in mind, it was noted that the questionnaire will only be as

accurate as the questions are relevant and clearly understood by IC workforce.

The responses to the questions offered were to be in the form of a scale from 1 to 5, 5
being the most positive response. The system users were given a set of 7 questions, and
the system supervisors were given a set of 4 questions. All of these involved rating

various aspects of the system.

The questions given to the staff/system users were as follows:

How easy was it to learn the system within the given period of time?

This question was asked in order to establish how easily the users felt they had learnt
the new system. This would be useful in gauging the success of the GUI design, and in
comparing the two systems, it may be possible to ascertain those points which worked

and those points which didn’t.

How easily could you negotiate around the system?
This question had similar implications to the above in as much as the responses could be
used in judging how effective the differing methods of negotiating the system were

deemed.
How would you rate the data entry screen?

As the effectiveness of the data entry screen was one of the key points of the system, it

would be useful in knowing if the screen was considered to be productive.

105

How would you rate the diary screen?
As the diary screen was such an important aspect to the system, it was felt necessary to

include a metric by which it could be judged against.

How would you rate the speed of the system?
It was not imperative that the system be very fast, but it should offer at least acceptable
responses. When users are working, they do not like waiting for screens to be populated

and the response to this question would illustrate the user’s expectation of this.

How would you rate the overall functionality of the system?
This question was asked to establish if the system offered sufficient functionality.

Establishing what functionality was missing, if any, would be discussed later.

What would be your overall score for the system?
This figure would enable the system to be judged overall, and would be useful in

establishing the big picture when all of the responses were collated.

The questions given to the management/system supervisors were as follows:

How well do you feel the system has been received by staff?

It is important that an organisation knows that its staff can work comfortably with an
application; there would be a tendency for users to shy away from applications which
they did not like working with. By including this question, it would be possible to

establish how readily the users could accept the system.

How would you rate the overall functionality of the system compared with your
expectations?

This question is important in establishing the level to which the company felt the system
was functionally complete. If the system had been purchased, this question may have

related to value for money.

How reliable do you feel the system will be?
This is an important question for the company’s managers. They could only make a

judgment in relation to the time the system had been in operation.

106

compared with the old system where the sales director would make a copy of the
physical diary and email it to all sales staff on a Monday morning. This action
demonstrated the complexity of trying to introduce new operating procedures as this act

had not been planned or prompted.

Management. The management involved in the testing of the system all did so at the
Durham branch. It may have been more beneficial to the system for it to have been
reviewed both at Morpeth and Durham, as this would have been better placed to
illustrate the system’s availability over the Internet but due to time constraints and for
ease of testing this did not happen. The agreement, in general was that whilst the staff
preferred the Internet version it offered less flexible reporting features. This was mainly
due to the reporting facilities having to be all created by code, and thus not offering the
type of GUI you might expect from a Window’s product.

The management also noted the lack of GUI refinements which would be expected of an
application; tabbing around options was difficult, screen layout wasn’t perfectly aligned
and lack of tool tips. These missing refinements were a result of using pure HTML to
format the GUI displays. As was pointed out previously, if these issues were a real
concern, they could be addressed with the introduction of a design suite such as Dream
Weaver. As these were not part of the requirements, they should be classed as external

to the review. It is difficult however to avoid being critical when requested for a review.

111

Staff. The Window’s system was evaluated both at Durham and Morpeth. The staff
liked the diary screen and the data entry screens for clarity and its Windows feel. They
liked items such as the text which pops up when the cursor is stationary on any element
of the screen. They also though that having all the options available from a menu was

better suited that having to click a series of buttons.

When evaluated at Morpeth over the broadband connection with all the other company
systems being used, the negotiation between diary days was noticeably slow. This was
due to the weekly view running a query against the database for each day of that week.
Even if each query only took % of a second, the seven queries could take 1 % seconds.
The result of this was that if a user wished to scan through one month’s bookings, it

may take up to 12 seconds.

The staff stated that they liked the ability to be able to use the system off-line. With this
in mind, according to the log files after the first two weeks no user actually used this
feature again preferring to make any changes whilst online. This feature had come with
considerable overheads in development time, taking approximately 8 hours to

implement.

113

One other benefit of creating the system in VB was if the system ever needed to be
expanded, the company was aware of individuals who could move the system forward.
They were not aware of anyone who could develop in PHP. This is an important issue

for an SME.

Design Team. Of the two systems, the Windows version was visually superior. VB
offers a development language and support tools which enables the speedy development
of software with a highly professional look and feel. For example features such as right
clicking on the tables and tool tip text were not available in the Internet version.
Development speeds were also higher in VB; with reference to Figure 6.14, it took 2%

more code to write the Windows version, but it took 18% less time.

The Windows version ran slower at Morpeth than did the Internet version, this was a
result of the larger quantity of data that an MS Access queries returns. If this proved to

be a real problem it may need to be addressed.

It was found that the company’s dated laptops struggled when running the Windows
system alongside the company’s mail and CRM applications. This was not so apparent
with the Internet version possibly due to its smaller use of system resources. However,
this is only a temporary consideration as the laptops were hopefully going to be replaced
by PDAs and new desktop PCs installed in the near future.

115

T T T T T T T T T — T,
'3 Transport Booking | Bl
~ Date and Time——— 7 - Detads

- Date: [lonsz005 | || T Deseses

| Collection Time: [0800:00 I Tl step extonsion

| Delivery Time: [110000 : T Deutlo bk

- 5 I~ “Triple hanchad
[Detade™] ¥ Anchors, chains and adjusteis
" From: ILangleyMoor _vJ 5 Ao Slands
| To: IBe‘aAdnAerl!Bay Caravan _vJ I~ Connection
- Haulier: |1 veirch2 __J - N'nge
[Ven detes ——— I™ Used idge
Van: | Cosalt Torino) || Fates rcpisedfor ooestion
' Size: '|é5_x10—;| | 7 Fiters rocued for dekivery

 Stock-No.. [32106 || Des
Serial No.: |

Completed: ‘ B r

Canoel

Delets

Update -

Figure 7.5 The Data Entry view of the Windows System

7.1.4 The Chosen System

The implementation of an Internet based version would have been appropriate
considering the view that the company were intending to invest in hand-held PDAs. An
Internet based version would have been available on PDAs with no alteration. It may
also have lead the way to further Internet based developments which many would have
considered the way forward for a company which operates in such a distributed

environment.

At the Analysis stage, the company had initially suggested that only a Window’s system
be implemented because:

e The users were comfortable with the OS.

116

e Previous developments had been done using it.

e Visual Basic was supported by good reporting tools.

e The technology was known to work on the company network — this was
reassuring to the company management.

e The staff knew how to query and work with Access databases.

Ultimately, the Window’s version was chosen by the management at IC. This was
because of the above preferences and also for the following reasons:
e The diary screen was preferred
e The offline capability was continuously liked despite its lack of utilisation.
e The speed of development

e The familiarity and the better functionality of the Windows product.

With this decision in mind, it is ironic that the staff generally preferred the Internet
version. This may have been a result of the users tuning into the current trend of
‘Internet-ising’ everything and so being familiar with the format. It may also relate to
the practice of surfing the Internet whilst the Internet browser was open, as had been
done on a number of occasions. There were a number of other non-tangible reasons why
some staff preferred the Internet based version, for example one user stated that it had

“just had a good feel to it”.

In further support of the Internet based system, it is worth referring back to Section 3.5
where it was established that those companies who were specialising in systems of this
type were creating there own Internet based systems; this seems to confirm the viability

of such systems.

Despite the fact that both systems shared the same core functionality, each had unique
quirks relating to the associated technology and were mentioned in Chapter 5.1. These
quirks sometimes impact on the user’s opinion of a system. The Windows OS offers a
multitude of such functions such as allowing the copying of text onto the clipboard, and
the availability or right mouse click options. The Internet version also offered some of
these quirks such as the ability to return to the previously viewed page by clicking the
‘Back’ button. This is despite the fact that the system was not coded to allow this

navigation. Another function was the ability to open multiple browser pages once

117

logged in to be able to see more than one week’s bookings at any one time. It is worth

considering if these sub functions had any impact on system choice.

7.1.5 The Level of Success in Correcting the Problem Domain

The main concerns with the existing method which the sales staff were using to organise
the transporting of vans was that it was ad-hoc and open to misuse. There were a
number of ways in which the company could have addressed this issue; a change of
staff structure, staff re-training, an improved paper based system or a computer system.
They chose to implement a computer system which would guide users through the
correct procedure. In effect the computer system pre-defined the process and the
organisation of the information relating to the transportation process. In as much as this,
the implementation was a success, for instance, the system ensured that the correct data
was being collected prior to the booking of movements and furthermore that the same

data was available to everyone.

Point 3 of 6.3 identified an aspect of the paper based system which had been the
competition between sales staff, and the manipulation of bookings enabling senior staff
to be able to prioritise work to their own advantage. The computerised system addressed
this successfully enabling only those with administrative privileges to make such
booking changes. This was considered to be an important aspect to recruiting and

retaining new staff which had previously been found problematic.

Part of the solution to obtaining a successful system was the correct identification of key
points within the process. The use of Critical Success Metrics (CSMs) would have
assisted in this process. CSMs are “an assessment of a running program which reflects
the business concerns that prompted the creation of that program” [Menzies98]. If the
CSMs can be identified correctly at the analysis stage, the chance of system success is
relative to their accuracy; i.e. clear accurate CSMs equates to a successful system. It
would be recommended in the CP to utilise this method of identifying success metrics

as part of the proposed formal process.

Item 5 of 6.3 pointed out that there may be other less tangible benefits to introducing a

computerised system, but despite the system being a successful BPR implementation, it
118

seemed that IC problems could not all be blamed onto a lack of formalised business
practice. It was evident that at least some of the blame was because of lack of staff
discipline, and lack of management discipline on the staff. An example of this is the
regular occurrence of sales staff arranging their day off to coincide with the
transportation they have arranged; in other words to not be available if things should go
wrong. This is not an aspect which can be changed by the introduction of a system, but
can be changed by the company’s management ensuring that those staff are available to

deal with any problems that may be encountered.
The system can only assist in as much as having its users gather and enter the relevant

information and to protect that information. The validity of the data would still be at the

onus of the users.

119

8 Evaluating the Methods used in the Re-engineering the
System

This section evaluates the methods used in the re-engineering process applied to the

problem domain. It is organised into:

1 A description of the methods used in the re-engineering processes.
2 A set of proposals to improve the methods used.
3 The rationale behind those proposals.

8.1 A description of the methods used in the re-engineering

processes
8.1.1 Analysis

The analysis stage of the project was conducted in as much isolation to IC as was
possible. This meant that IC had no input into the formal analysis of the (then) current
system and operation. It gave the opportunity of being critical of the current procedures
without the need to take account of others who may fear the proposed changes for a
variety of reasons. Whilst problems may still be present over time, currently the analysis
can be deemed a success in as much as it had clarified the working domain in an

understandable way.

The methods used included:
1. Identifying current roles and hierarchy with the company
2. Gathering and analysing paperwork involved in the current procedure.
3. Identifying and analysing workflows involved in the current procedure.
4. Identifying and analysing data flows involved in the current procedure.
5. Establishing the entities e.g. the bookings and the hauliers, and the
functionalities e.g. the booking process of the current system.

6. Analysing the problems within the current process procedures

120

8.1.2 Design

The design would be based on the functional requirements stated in Figure 2.9 and the
NFRs as stated in Figure 4.1.

Data Storage. Because of the collected documentation, it was known which entities
needed data stored about them. This meant that the database design could be created
with the knowledge that there would be very few changes expected of it as it was
implemented. The availability and security of the data had also been agreed.

GUI Environment. It had been agreed that the environment should reflect that of
previous company systems and so left very little doubt as to how it should be
implemented. Because of the requirements, the details for the data entry and diary
screen were known.

Reporting. There had been no reports associated with the paper based system, and so

the required reports had been agreed as per points 9.1 and 9.2 of Table 2.1.

8.1.3 Implementation

The systems were developed using Boehm’s Spiral Model [Boehm88]. This model
proposes designing and implementing a system through planned iterations. The newly
introduced method of tracking and controlling additional requirements is in keeping
with Boehm’s Spiral Model, which allows the filtering in of new requirements at each
iteration. With this in mind, the size, priority and impact of each added requirement,
needed to be considered before deciding whether it should be classed as a major or a
minor addition. Minor alterations may be accommodated within the cycle, but more

significant ones would need to be more closely planned.

Each iteration was broken down in to a number of stages:
1 Define the aims of the stage.

2 Assess the requirement criteria relating to those aims.
3 Re-engineer those requirements into code.

4 Test the code against requirements

121

The development of the two systems in parallel using iteration was found to be difficult

in practise for the following reasons:

With VB, the basic GUI environment can be created rapidly due to its collection
of development tools. The code could be written for each object of the GUI in a
logical order, some possibly being done much later in the development.
Functionality can be added in any suitable order. This method of development is
in keeping with Boehm’s Spiral Model. For the Internet version PHP was used
for scripting, and unfortunately this meant that the code was more disjointed in
as much as each viewed page could be perceived as a stand alone mini-
application, and consequently was more oriented by the functionality of that
singular Internet page than the functionality of the process. There were a number
of global functions, but again each had to be implemented as a separate scripted
page. This made the process of creating the two systems in parallel more
difficult.
Whilst expertise in VB was available in IC, there was no expertise available for
the development of web pages. This had an impact on making the development
process slower. Specifically, experimentation was required to ensure aesthetics
of the web pages as well as other factors such as security, platform issues and set
up.
Each web page needs a script within it to offer any level interaction.
Unfortunately, as each web page and therefore each script is executed
independently of one another, there is method of sending a message, in this case
a variable, directly from one web page to another. This obstacle may be
overcome in a number of ways within the PHP coding. The result of this is an
increase in the development time.
Writing scripted web pages require a number of linked individual programs,
much as in a linked-list approach. Each web page is a small program in itself. In
this case, for each web page to be successful it must:
1 Ensure the user is logged in.
2 Import the necessary data, possibly from the previous screens.
3 Process and display the data.
4 Record the data again for the next time it is needed.
An example of this in use would be when the user negotiates through different
days in the diary view; each time, the currently viewed date must be passed
along to the next page. When this method is compared against the VB equivalent
125

which simply remembers the date, it is possible to see why the time taken to
complete each iteration is much longer in the Internet based system than the

Windows one.

8.2 A Set of Proposals to Improve the Methods used

Boehm’s Spiral Model strongly promotes the application of project plans. IC
arrangements with regard to the setting of deadline typically lacked detail. Informal
agreements had been made about when the project should start, when it was expected to
be evaluated and when it was to be installed. The following section illustrates the

proposed changes to IC methods of systems re-engineering.

To illustrate these changes, diagrams have been used. The diagrams have 3 columns
comprising:

1 The Life Cycle Stages

2 The Processes, of which one is to be changed

3 Details of the process improvement.

126

The first proposal was a change to the method by which the requirement definitions

were collected.

Life Cycle Stage

Process

Analysis

Analysis

Process

Improvement

Requirements

Definition

Documenting

Requirements

Development

Develop system

Testing

Testing

1: Identify Key
Personnel (KP) in the
company.

2: Minimise user
involved to only KP.
3: Associate a set of
measurable
assessments with
requirements.

4: Discuss the impact
of the above against

its measurable gain.

Figure 8.1 Process Improvement 1. Design Stage — Optimising the

Requirements Collection

The change would encompass the following points:

127

1 Identifying key personnel (KP) who would represent each body of the user
community. Only these KP would have direct input during into the project. Input
from other member of staff should be channeled through their respective
representative who can consider and raise the issues in needed. These KP should
be in a position where they thoroughly understand the processes which are to be
re-engineered within their specific business area. This should control the amount
and quality of requirements suggested.

2 Associate a set of measurable assessments with requirements.

Associate a measurable assessment against a suggested requirement. This
measurement or measurements may be different from system to system, but

should be agreed before commencement. Examples of measurements are:

A Development time.

B Potential business advantage.

C Expanding the systems availability to users.
3 Discuss the above with its measurable gain.

The gain from implementing the requirement should be considered against the
time that would be needed in creating it and other issues such as the impact it
would have on other areas of the system, such as; might the life of the system be

lengthened or shortened.

This change was introduced as a result of the quantity and quality of user input. Whilst
input from the user and benefactor are always relevant, the manner in which the design
process was implemented led to numerous, highly complex and sometimes conflicting
requirements. It was considered a possibility that KP would be able to develop their

skills in this process over a number of projects in the future.

128

The second proposal was to introduce a change management procedure.

Life Cycle Stage Process Process
Improvement

Analysis
Requirements Identify and Agree
o, L g —’
Definition document requirements and
requirements close list
Development Develop system Identify
 — — .
improvements/
enhancements
A
Document the
- improvement/
Testing

enhancement for

assessment later

Repeat the

Documenting

Requirements
process found in

Figure 7.1

Figure 8.2 Process Improvement 2. The Design Stage — Change Management

129

This change would involve the following points:

1 Identify improvements and enhancements. Improvements and new
enhancements may be identified at any stage of the development process, some
may have been carried over from the requirements stage.

2 Agree requirements and close list. Once the requirements list had been agreed,
no more requirements should be added (until the next iteration).

3 Document the improvements/ enhancements for assessment at a later phase.
The improvements/ enhancements will be considered as in 8.2 at a later phase.
Note that they are not authorised as requirements until after this has been done.

4 Repeat the Documenting Requirements process found in 8.2
Once the 1% prototype of the system has been successful, the outstanding

improvements/ enhancements can be considered.

This improved process was introduced due to the requirements creep experienced. Prior
to this change, the design process and the development time was longer than had been
planned; designing the system had been scheduled for a two week period, but ended up
taking 4 weeks (pro-rata).

When the design of the system was agreed, any major changes should have been
documented for later consideration instead of being included. Prior to this, the company
insisted that changes should be included in the 1* prototype of the systems. See Table
8.6 for details of how the additional requirements amounted to almost 13% of the total

coding time.

IC management placed pressure on the development team to complete the design within
a very short period of time. This can be expected in a company where the general
expertise and understanding of computer systems is limited. If a new function was to be
omitted then expectations would need to be managed as failure to incorporate the
proposed revisions may mean that the staff consider the work to be only a partial
success. This accounted for the requirement creep, and the consequence highlighted the
importance of strict control of requirements and demonstrated a strong need for a
requirements change management process. This proposed change is represented in
Figure 7.2 which shows how after the initial requirements list has been produced; no
further requirements may be added to the first release of the system. Any new

requirements should be documented. New requirements may be included in the system

130

at a given point or after the completion of the system (in the second release) based on
assessment of the change impact and their priority. This will prevent creep and enable

development time scales to be estimated.

A proposal was created for the development stage; this proposal centered on the

identification and setting of boundaries of each iterative cycle.

131

Life Cycle Stage

Analysis

Requirements

Definition

Development

Process

Process

Improvement

Develop system

Identify iteration
cycles. Define

boundaries

Testing

A4

Develop iteration

cycle

Figure 8.3

control

Identify the iteration cycles and their boundaries.

Testing

Test current

iteration

This change would involve the following steps:

v

Make correction
and move onto
next iteration.

cycle

Process Improvement 3. The Implementation Stage — Iteration

132

Identify the main iteration cycles. Once identified, the boundaries of those
cycles should be documented. Boundaries might include a time period, the data
to be processed, a particular process flow etc.
2 Develop the iteration cycle
Engineer the software of the highlighted iteration based on the above boundaries
3 Test the current iteration
Execute and test the above software.
4 Make correction and move onto next iteration.
Make corrections or additions to the iteration to bring the iteration up to the

identified boundaries.

As mentioned previously, the project suffered from requirements creep, and a clearly
established set of requirements would help in stopping this from happening. The
company had placed the developers under pressure to make additional changes in an ad-
hoc manner once these cycles where under way. This resulted not only in requirements
creep but in time delays as a consequence. The additional time taken to implement these
ad-hoc additions averaged 12 hours between the two systems. Table 8.6 documents this

problem.

Hughes [Hughes94] suggests the introduction of process improvement iteration controls
as an aid to counteract requirements creep. As part of this, the use of tools such as
JXProject and MS Project to plan the time scales and dependencies should be utilised. It
is difficult to assess if a project is over-running if no time scales are in place. It is also
difficult in a small business to adhere to procedures and timetables when there is
management pressure to add in extra functionality, but with better planning, more

rational arrangement of their prioritisation can be made.

133

Life Cycle Stage

company could base future engineering projects.

Process

Analysis

Requirements

Definition

Development

Testing

Figure 8.4

System
development
Project -

Template

Use time
management tool
featuring Gant

charts for control.

Schedule changes
into following

releases.

Acknowledge
shortcomings in
Project and correct

next time.

The final process improvement centered upon the creation of a template from which the

Process

Improvement

Document data
flows, entities and

Processes

Define and
document
requirements.
Set targets and

boundaries

Implement change

management

Document errors

in requirements

Process Improvement 4. The Project Template

134

The process improvement strategy consisted of the creation of a template which would

help the user to:

1 Improve performance during the Analysis stage; correctly identify data flows,
entities and processes. Once identified, they need to be documented.

2 Define and document requirements, set targets and boundaries; establish
requirements by examining the current domain, the proposed system, and user
input.

3 Implement change management; put into place a change management plan
which will control requirements and development time planning.

4 Retrospectively document errors in requirements; misleading or erroneous
requirements should be documented for consideration in future projects.

5 Iteratively review the entire SE process and make changes accordingly.

The proposed solution to this problem is a guide for IC to use during future software
developments. This template could be used in all future developments. Figure 8.4
illustrates how the introduction of this improvement could be managed.

By implementing the template, IC would be incorporating those improvements
described above, and would be able to fully document the software engineering project
in a manner which instils good working practises. An example of this is at the analysis
stage; the template requests that the user itemise all data requirements for all system
variables. This approach will later aid the system’s maintenance. By this simple piece of
housekeeping, no data will be overlooked in the current process when reengineered into

the new system.

8.3 A Review of the Collected Metrics

The concept of metrics was introduced in Section 5.3 and was identified as a means to
provide a method by which the two systems could be compared. The metrics allowed
comparisons of the more tangible aspects of software development such as software
development time. However, one issue of concern with regard to such metrics is
whether those collected are those of greatest relevance. Further, there is also an issue of

the accuracy of the data collection process.

135

Having raised such issues, consideration must be made upon how to address them; if the
process of identification and collection of the metrics were being done by a specialist
team, it would be viable for them to iteratively question how and what was collected
over numerous projects. But in IC situation this process was going to be done by their
own staff who may not have the time or capability to re-assess the necessary skills. It is
worth noting that the comparison of 2 systems allowed this to be done for the 1st time at

IC, and consequently some of the metrics collected may be found to be unnecessary.

With reference to Section 5.3, the collected metrics were collated and entered into Table
8.6.

136

[Ward01] Ward, R.P., Fayed, M.E., Laitinen, M., Software Process Improvement
in the Small, Communications of the ACM, Vol. 44 No. 4, pp10S, 2001

[Wasserman80]Wasserman, A.L, Information system Design Methodology. Journal of
the American Society for Information Science, Jan. 1980

[Wiegers99] Wiegers, K.E., Why is Process Improvement so Hard?, Software
Development Online, 1999

[Zahran98] Zahran S., Software Process Improvement — Practical Guideline for
Business Success, Addison-Wesley 1998

[Zhao98] Zhao, J., On Assessing the Complexities of Software Architectures,
Proceedings of the 3rd International Software Architecture Workshop
(ISAW3), pp.163-166, ACM SIGSOFT, November 1998

157

[SEIR06] The Software Engineering Institute Repository, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA,
HTTPS://seir.sei.cmu.edu/seir, [Accessed 12/11/06]

[Shum93] Shum, S., QOC Design Rationale Retrieval: A Cognitive Task Analysis,
& Design Implications, Technical Report, Rank Xerox EuroPARC,
Cambridge, UK, 1993

[Singh93] Singh R., International Standard ISO/IEC 12207 Software Life Cycle
Processes, Federal White Paper, 1993

[Sommerville95S]Sommerville I., Software Engineering, Addison-Wesley Longman
Ltd., Harlow UK. 1995

[Sommerville97]Sommerville 1., Requirements Engineering, John Wiley and Sons,
Chichester UK, 1997

(SPICE06] SPICE: Centre for IT Research and Technology Transfer (ITC)
University of Boras, SE-501 90 Boras, Sweden,
http://www.sqi.gu.edu.au/spice/, [Accessed 11/10/06]

[SPINO6] The Ottawa SPIN, Queensview Drive, Suite 200 Ottawa, Ontario,
Canada, http://www.spin.org/ [Accessed 15/06/06])

[SPIRE106] Software Process Improvement in Regions of Europe (SPIRE) - ESSI
project 23873, [accessed at
http://www.cse.dcu.ie/cse_www/publications.htm on 15/11/06]

[SPIRE206] SPIRE: Center for Software Engineering, Dublin City University
Campus, Dublin, Ireland, http://www.csu.dcu.ie/spire/, [Accessed
11/10/06]

[Trillium94] Unknown, Trillium Software Data Quality Methodology, White Paper,
Trillium Software, 1994, [accessed at
http://www.trilliumsoﬁware.com/site/content/resources/libraxy/pdf_detai]
.asp?ID=163 on 15/11/06]

[TSLO06] Texas State Library and Archives Commission, Available from:
http://www.tsl.state.tx.us/Id/pubs/compsecurity/glossary html, [Accessed
20/07/06]

[Ubhayakar03]Ubhayakar, S., Evaluation of Program Specification and Verification
Systems, Master Thesis, Naval post Graduate school, Monterey,
California, Jun 2003

156

[McGraw04] McGraw, G. Risk Analysis in Software Design. IEEE Computer Society.
May/June2004

[McKerlie93] McKerlie, D., MacLean, A., QOC in Action: Using Design Rationale to
Support Design, Interchi, Conference and Proceedings, 1993

[Meyer03] Meyer, B., The Power of Abstraction, Reuse and Simplicity: An Object
Oriented Library for Event Driven Design, Springer Verlag, LNCS
2635, 2003

[Microsoft06] Microsoft Corporation, http://www.microsoft.com/,
http://www.sqi.gu.edu.au/spice/, [Accessed 11/10/06]

[Mylopoulos00]Mylopoulos, J. et al., Tropos: A Framework for Requirements-Driven
Software Development, Lecture Notes in Computer Science. Springer-
Verlag, 2000

[Nogueira98] Nogueira, C. and Luqi. A Formal Risk Assessment Model for Software
Evolution. White Paper, Naval Postgraduate School. 1998

[OSCO06] The Open Source Organisation, 2006, Available from:
http://www.opensource.org/, [Accessed 06/07/06]

[Paulk94] Paulk M., Weber C., Curtis B., Chrissis M.B., The Capability Maturity
Model — Guidelines for improving the Software Process. Addison-
Wesley, 1994

[Rifkin02] Rifkin, S., Is Process Improvement Irrelevant to Produce New Era
Software, Proc. Software Quality: Quality Connection, pp13-16,
Springer-Verlag, Germany, 2002

[Rosen67] Rosen, S., Programming systems and languages--a historical survey. In
Programming systems and Languages, McGraw-Hill, New York, 1967

[Ross95] Ross, S., Ramage, M., Rogers, Y., PETRA: Participatory Evaluation
through Redesign and Analysis, Collaborative Research Support
Program, No. 375, 1995

[Royce87] Royce, W., Managing the Development of Large Software Systems:
Concepts and Techniques, WESCON, August 1970; reprinted in Ninth
International Conference on Software Engineering, IEEE Computer
Society Press 1987, pp 328-338

[Saukkonen01]Saukkonen S., Software Process Improvement Research Action
Laboratdr)-/, Annual Report, University of Oulu, Finland, 2001

[SEIO6] Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, Available from http://www.sei.cmu.eduw/ [Accessed 11/10/06]

155

[Kumar90]

[Kemerer96]

[Kettinger97]

[Konti95]

[Landis92]

[Lin1]

[Lin2]

[Malhotra00]

[Menzies98]

[McCall77]

[McColl01]

[McFeely96]

-

http://www.iso.org/iso/en/xsite/contact/contact.html, [Accessed
11/10/06]

Kumar, K., Post Implementation Evaluation of Computer-based
Information Systems: Current Practices, Communications of the ACM,

Volume 33, Issue 2, February 1990

Kemerer, C. Reliability of Function Point Measurements.
Communications ACM, Vol. 36 No 2. 1996

Kettinger, J., Teng, J., Guha, S., Business Process Change: A Study of
Methodologies, Techiques and Tools, MIS Quarterly, Vol. 21 No. 1,
1997

Konti, J., Chen S., Limperos, K., Tesoriero, R., Caldiera, G., Deutsch,
M., A COTS Selection Method and Experiences of its Use, Presented at
the NASA Software Engineering Laboratory, 1995

Landis L. et al., Recommended Approach to Software Development,
NASA Software Engineering Laboratory Series, Revision 3, 1992
Author unknown, 2006, Article 7564, Linux Journal,

www linuxjournal.com/articles/7564, [Accessed 02/09/06]

Author unknown, Linux Magazine, www.linux-magazine.com,

[Accessed 02/09/06]

Malhotra, Y. Knowledge Management and New Organisation Forms: A
Framework for Business Model Innovation, Knowledge Management

and Virtual Organisations, Hershey, PA: Idea Group Publishing, 2000

Menzies, T., Evaluation Issues with Critical Success Metrics,

Proceedings of the Eleventh Workshop on Knowledge, Banff USA, 1998

McCall, J., Richards, P., Walters, G., Factors in Software Quality
Volumes 1 — 3, General Electric, Co., Rep. GE-TIS-77 CIS 02, 1977

McColl E., Jacoby A., Thomas L., Soutter J., Bamford C., Sten N., et al.
Design and use of questionnaires; a review of best practises applicable to

surveys of health service staff and patients Health Technol Assessment
2001

McFeely, B., IDEAL: A User’s Guide for Software Process Improvement,
Pittsburgh, SEI Handbook, 1996

154

A References

[Anderson99] Anderson, M., Sohal, A.S., A Study of the Relationship between Quality

[Basili85]

[BeechamO03]

[Berard06]

Management Practices and Performances in Small Businesses,
International Journal of Quality & Reliability Management, Vol. 16 No.
9, 1999

Basili, V.R., "Measuring the Software Process and Product: Lessons
Learned in the SEL, in Proc. Tenth Annual Software Engineering
Workshop, NASA Goddard Space Flight Center, Greenbelt MD 20771,
December 1985

Beecham S., Hall T., Rainer A., Software Process Improvement
Problems in Twelve Software Companies: An Empirical Analysis,
Empirical Software Engineering Vol. 8, Netherlands, 2003

Berard E.V., Metrics for Object-Oriented Software Engineering, Article,
The Institute of Computer Science at The Polish Academy of Sciences,

Undated [Access 21/09/06]

[Berners-Lee06]Berners-Lee, Tim, 2006. The World Wide Internet Consortium

[Biro98]

[Boehm88]

[Boehm89]

[Briand96]

[Briand02]

[Conradi9s]

[online]. Available from: www.w3.org/Consortium/, [Accessed
12/04/06]

Biro M., Remzso T, Business Motivations for Software Process
Improvement, ERCIM News, Iss. 32, 1998

Boehm, B. A Spiral Model of Software Development and Enhancement.
Computer. May 1988

Boehm, B.W., Software Risk Management (Tutorial), IEEE Computer
Society Press, New York, 1989

Briand, L., Differding, M., Rombach, D., Practical Guidelines for
Measurement Based Process Improvement, A Technical Report of the
International Software Engineering Network (ISERN), May 1996
Briand, L., Wust, J., The Impact of Design Properties on Development
Costs In Object Oriented Systems, IEEE Transactions on Software
Engineering, 2002

Conradi R., Liu C, Process Modelling Langauges: One or many, EWSPT
’95, Leiden Netherlands, 1995

151

[Conradi02]

[Dafto9]

Conradi, H., Fugetta, A., Improving Software Process Improvement,
Software IEEE, Vol. 19 Iss. 4, 2002
Daft, R.L., management, 4™ Ed., The Dryden Press, U.S.A, 1999

[Davenport93] Davenport, T.H., Short, J.E., The New Industrial

[Diaz97]

[Doublait97]

[Ebert96]

[Enam98]

[ESI06]

[Fenton00]

[Foddy94]

[Fuggetta00]

[Ferguson99]

[Glass98]

Engineering:Information Technology and Business Process Redesign,
Software Re-engineering, IEEE Computer Society Press, 1993

Diaz, M., Sligo, J., How Software Process Improvement Helped Motorola,
IEEE Software, Computer Society Press volume 14 issue 5, 1997
Doublait, S., Standard reuse practices: many myths vs. a reality, ACM
Press, Vol. 6 No. 2, 1997

Ebert, A., Classification Techniques for Metric Based Software
Development, Software Quality Journal, pp255-272, Vol. 5, No. 4, 1996
Enam K., Goldenson D., McCurley J., Herbsleb J., Success or Failure?
Modeling the Likelihood of Software Process Improvement,
International Software Engineering Research Network ISERN 98- 15,
USA, 1998

The European Software Institute, Parque Techologico de Zaudio, Bizkaia,
Spain, http://www.esi.es/index.php, [Accessed 11/10/06]

Fenton, N.E.,Neil, M., Software Metrics: Roadmap, Proceedings of the
Conference on The Future of Software Engineering, Limerick Ireland,
2000

Foddy, W., Constructing Questions for Interviews and Questionnaires:
Theory and Practice in Social Research, Cambridge University Press,
1994

Fuggetta A., Software Process: A Roadmap, Proceedings of the
Conference on the Future of Software Engineering, International
Conference on Software Engineering, Limerick Ireland 2000

Ferguson P., Leman G., Perini p., Renner S., Sechagiri G., Software
Process Improvement Works!, Technical Report CMU/SEI-99-TR-027,
Carnegie Mellon Software Engineering Institute, 1999

Glass, R. L. Software Runaways: Lessons Learned from Massive

Software Project Failures. Upper Saddle River, NJ: Prentice-Hall, 1998

[Goransson86]Goransson, B., The Interface is Often Not the Prol;lem, Conference on

Human Factors in Information systems, Proceedings of the SIGCHI/GI

152

[Grover95]

[Haley96]

[Hammer90]

[Hammer93]

[HammerO01]

[Harrison87]

[Heath06]

[Henry81]

[Herbsleb94]

[Hughes94)

Conference on Human Factors in Computing systems an d Graphics

Interface, ACM Press, 1986

Grover, V., Kettinger, W., Business Process Change: Re-engineering

Concepts, Methods and Technologies, Ideal Group Publishing, 1995

Haley, T.J., Software Process Improvement at Raytheon, IEEE Software,

Computer Society Press volume 13 issue 6, 1996

Hammer, M., Re-engineering Work: Don’t automate, obliterate, Harvard

Business Review, July Issue 1990

Hammer, M., Champy, J., Reengineering the Corporation, Harper
Business, New York, 1993

Hammer, M., Champy, J., Re-engineering the Corporation, Harper
Business Press, 2001

Harrison, W., Cook, C., A Micro/Macro Measure of Software
Complexity, Journal of Systems and Software, pp213-219, Vol. 7, No. 2,
1987

Heath, Sue, 2001. Trends: eBusiness Strategy - Measuring the Future.
Available from:
http://www.cioinsight.com/article2/0,1540,1458593,00.asp, [Accessed
26/06/06]

Henry, S., Kafura, D., Software Structure Measures Based on
Information Flow, IEEE Transactions on Software Engineering, pp 510 -
518, Vol. 7, No. 5, 1981

Herbsleb J., Carleton A., Rozum J., Siegal J., Zubrow D., Benefits of
CMM Based Software Process Improvement: Initial Results, Technical
Report SEI-94-TR-13, Carnegie Mellon Software Engineering Institute,
1994

Hughes J., King V., Rodden T., Anderson H., Moving out from the
Control Room: Ethnography in System Design, Proceedings of the 1996
ACM on CSCW, Chapel Hill, US, 1994

[Humphrey88]Humphrey W., Characterizing the Software Process: A Maturity

[1SO06]

Framework, [EEE Software, 5(2) March 1988
International Standards Organisation, 1, rue de Varembé, Case postale 56

CH-1211 Geneva 20, Switzerland,

153

9.2.2 To Conduct an Informal Experimental Evaluation of the above
Process

Two systems had been created in tandem, partly because IC could not decide on the
platform which to base them on, and partly as an opportunity for an experiment to assist
in the creation of a structured modus operandi for this dissertation work. From a
practical point of view, there are not many situations would enable such an experiment
and therefore the research outcomes are potentially highly valuable to the research

community.

The fact that IC could not decide on a system indicated their lack of understanding in
what they wanted from the system, and it also could be related to the reason why they
had been the recipients of systems in the past which they felt were not entirely suitable.
The systems were developed using Boehm’s Spiral method and this method
compliments prototyping. In hindsight, it may not have been necessary to create two
whole new systems; at the point when the GUIs had been created and the functionality
had been clearly defined, a decision should have been made as to which version the
company wished to implement. This would have shortened production time and may
have allowed the designers to focus more clearly on the one system, rather that
continually referring to the other version of the system to think how it would be
recreated functionally. The benefit of taking both systems to completion did however
enable a full set of metrics for each system to be collated and therefore enabled detailed
comparisons to be made and the realities of IC initial decision making to become

apparent.

9.2.3 To Create a Structured Business Method of Software Engineering
focused on the Requirements of the Company and based on the Findings of
the Above

The new CP was welcomed by IC, as was the framework. It is not apparent at the time
of writing if these have been a success, as the company have not had the opportunity to
utilise them. Arguably, a procedure is only as good-as the user of the procedure, and
his/her understanding of it. Another aspect to this is difficulty in the measuring of the

success of the application of a method in software engineering [Anderson99]. In other

146

forms of engineering such as civil engineering, it is easier to see the results of the
method as they are more tangible. With this in mind, it would take a suitably
experienced person to be able to implement the framework on future developments and

to be able to judge its benefits.

Another aspect of this is the use of the framework in conjunction with an external party
in creating a piece of software, i.e. a software development company who may already
have their own framework in place. In this case, IC would at least be able to use the
initial sections that organise the collection of relating paperwork, process flows, entities
and requirements. This would at least help to ensure that their illustration of the required
system was accurate and clearly defined. As IC had pointed out that previously, they felt
that the systems that had been created for them had been not wholly suitable; they felt
this would be hugely beneficial.

9.3 Results

The following results list the findings made through the research and work done in this

thesis:

1 This thesis has demonstrated that by the collecting of metrics throughout the
software engineering process, original decision making plans could be
reconsidered and appraised retrospectively. This can be viewed as a form of
process improvement as the appraisal highlighted certain aspects of the original
decisions which could be altered the next time ICs needed to make such
decisions.

2 By implementing two systems in parallel, and the collection of metrics, it was
possible to make comparisons of the methods, tools and decisions of both
systems and highlight what was and was not beneficial. The outcomes are also a
demonstration of a form of process improvement.

3 It was found that due to human nature and the competitive working environment
of the staff, it is not always possible to purely implement a process and expect
the process to be adhered to; it is'hard to change established working patterns. In-
the case of IC’s, they had requested a process improvement to their working

practise, but ultimately what they needed was an enforced improved process. It

147

would be interesting to see if in the future, the staff at IC would use the system
as it was designed or might they find ways around the enforced processes.

4 This thesis demonstrated the importance of risk management. Through the
collection of metrics, it is possible to conclude that unfamiliar languages present
higher risk with regard to development time than do known languages.

5 The work highlighted some of the complexities of the field of ethnography. It is
also possible to establish that there is a considerable ‘unknown’ factor when it
comes to user input into the software design lifecycle. It was found that when
observing working patterns, those user when being observed acted differently to
when being not being observed. This might lead to the collection of false data
and data flows. This phenomenon which may be termed as ethnography was also
in evidence in the questionnaire where the system which had achieved the lowest

score was chosen as the system which was to be implemented.

9.4 Further Work

Although this thesis has offered only a preliminary study into software process
improvements, there have been a number of areas where the research could be
strengthened;

1 During the Case study, QOC was used to help in the decision making process.
One of the problems encountered was that criteria differed between some options. For
example when considering which programming language to use in Unix, it was found
that some of the criteria for considering Cold fusion were different than some of those
in PHP; Cold fusion had its own database, whereas a suitable database would need to be
sourced for PHP. Unfortunately, using the QOC tables, this was not easily highlighted.
Another problem encountered with using QOC was that whilst considering criteria, it
was found that where some options achieved one particular criterion, it was at the
expense of another. Using Cold Fusion as an example, it offered its own internal
database, but at the cost of offering less functionality of say, PHP combined with the
MySQL database.

It would be therefore beneficial for more research to have been done into offering a -
more dynamic method of illustrating these linked criteria. One such method is offered

by Shum [Shum93] who suggested the use of criterion trees and note-cards. One

148

possible extension of this approach would be to make clearer links between the criteria

and risk assessments.

2 Part of the software design lifecycle involved observing IC’s staff’s working
practices in order to identify work and data flows. It was found that whilst being
observed the staff tended to follow the correct procedures set down by ICs. This did not
necessarily happen whilst they were not being observed. This may have lead to a false
analysis of the current domain. Hughes [Hughes94] stated that ‘the reason why many
systems fail is due to the fact that their design pays insufficient attention to the social
context of work’. This application of ethnography involves the analysis of users' needs
in relation to their working practices. The study of this relationship between
ethnography and software engineering is still in its infancy. It is felt however that the
inclusion of ethnographic studies as part of the software design lifecycle would have

been beneficial and would have warranted further research.

149

10

O w >

Appendix

References
The Questionnaires
The Company Procedure

The Software Development Template

150

There should be way-points set within the cycles to say where fundamental
changes can be made up to, and where smaller changes can be made up to etc.

2. Have more focused company input. Designate a small number of key users
representing each of the system shareholders attributed to the requirements
capture process. Those people should be knowledgeable of technology use and
the key business processes.

3. Begin testing earlier in the cycle to catch the more fundamental errors more
quickly and prevent unnecessary rework.

4. Use Boehm’s spiral model of development. Set way-points within the cycle to
formalise the development parameters; where stages commence and where they
are completed.

5. Ensure that metrics are not used for political reasons. If one company manager
sees the time it is being taken to develop another manager’s system, they may
argue why their own systems could not all be implemented.

6. Offer guidance with the analysis procedure. It is perceptually better to advise
and the organisation, especially for SME’s like IC, as to what can be realistically
achieved in the way of a system, rather than to ask them what they want, and be
given too many unworkable ideas.

7. Continue Process Refinement. Use the formalised process as a working
document. It will not be correct the first time. Even the formal process should
have a CP relating to it.

8. Time management. Support time management with the use of a tool such as
Microsoft Project. This has the added benefit of not only enabling the company
management to see how well the development is proceeding but also to see how

their decisions impact the projects duration.

It was found that one of the key factors within the aspect of decision making was clear
evidence that the more decisions that needed to be made, the more complex the
management of the project. If it is possible to remove some of these decisions or to limit

the people involved, the result would be more progress.

140

8.5 The creation of a Structured Business Method of Software

Engineering

Creating a structured method or process is widely seen as a catalyst improving the way
in which an organisation operates. Hammer [Hammer01] stated that with regard to
process improvement, “The redesign of a company’s organisation can achieve a
quantum leap in performance.” Although he struggles to prove the quantum leap, there
is more than strong evidence to suggest that improvements can be made within a
company’s organisation by addressing its methods of operation and putting a more
structured method in place. In an earlier article [Hammer90], he also stated “By re-
engineering, we should obliterate them (the existing methods) and start over.” Whilst
obliterating a company’s current operational processes may seem a radical approach, it
would be worth consideration during a major business re-structure. Process
improvement may be applied to software engineering processes as well as business

Processes.

ISO 9000 incorporated software process improvement (SPI) and encourage
organisations to actively include software process improvement within their software
development process. Since then, the European Union has funded over 450 process
improvement experiments through its European Systems Software Initiative
[Conradi02]. Rifkin [Rifkin02] claims that initiatives such as these have had only
limited success. It is arguable that only limited success is better than no success at all.
Indeed, other researchers claim as much as a 7 to 1 reduction in costs after

implementing software process improvement [Ward01].

As part of IC process improvement, they had over a period of time made a concerted
effort in building up a library of CP’s. It had been requested that after the completion of
the new system, a new CP be created for the SE process. Going on from that, it was

decided to extend that concept to include a template for future developments.

This meant that there would be two documents:

1 A company procedure

141

2 A software development template (SDT). This would be used as a
working document on which new developments could be based

detailing the plan for implementation.

8.5.1 The Company Procedure

The CP would follow the format of current IC CP’s detailing the expected standards and
methods which should be promoted within the organisation. More specifically, it would
highlight key areas within the process and detail how they should be tackled. This
document should be phrased in such a way that it would be understandable to all

company employees.

8.5.2 The Software Development Template

The SDT would allow IC to develop new systems either in-house or externally and
would reduce the risks involved. It highlights key points within the lifecycle which are
felt may need specific attention. By highlighting these points, giving examples and
mandating specific information to be recorded, it allowed the SDT to act as a map for

each particular project.

142

The SDT included advice on the following:

1
2

W

MR~ <BEEE Ee

10

11

The collection of all relevant documentation relating to the process(es).

The creation of entities and any relationships in order to illustrate the current
system.

Illustrating process flows.

Creating boundaries associate with the proposed system and project.

Formally stating what is required of the system and identifying functionality
critical to the systems success.

Identifying stages within the project.

Setting target dates for those stages.

Implementing a CM procedure which would include relevant documentation
Guidelines for the development and testing cycles. This would be of use for in
house development only.

The recording of details of point 9 such as start date, completion date, slip, and
persons involved etc.

A review procedure applied to the entire process.

Figure 8.5 Points covered in the Template for Structuring a BPR Project.

The production of the template was an opportunity to ensure that the process would be

as workable as possible whilst still offering the improvements which come with process

improvement. IC are planning a trial of the template in the near future on two new

systems; a contract management system and a job costing module.

Copies of both the new CP and the software development template can be found in the

Appendix B and C respectively.

143

9 Conclusions

This chapter summarises the work and results attained in this thesis. The thesis
examined the effects of introducing the creation of two functionally similar systems into
an SME. The literature survey reviewed the current state of the art of Software Process
Improvement and introduced a number of tools and methods which improvement can be
gained. The conclusions are drawn focusing on the criteria for success as listed in

Chapter 1.3.

9.1 Work Undertaken

The thesis undertook a study into an SME that had identified a problem domain within
one of its current business processes. Previously, the SME had found the introduction of
new software less than satisfactory and were concerned that the introduction of another
new software system would result similarly. It was suggested that as part of the software
development and implementation process, an evaluation be made of their current

method of software engineering with a view to making improvements.

Part of the thesis was a literature survey, which aimed at highlighting software process
improvement concepts, tools and methods. This literature survey was useful later in the
thesis in identifying where IC could make improvements to their software design
lifecycle. As part of this evaluation process, metrics were collected relating to the

software design lifecycle and these too would be considered later.

A case study was prepared based on IC current position within the problem domain.
This was useful in identifying the level to which IC understood the software design
lifecycle as well as identifying the where the problems lay. The case study looked into
the options available to IC and after no suitable COTS software could be found, it was

suggested that a bespoke system be created.

At that point, the concept of the experiment was introduced; two functionally similar

systems were to be created in parallel, but on differing computer platforms. One would

144

be created in Windows and the second using Internet technologies. This gave the
opportunity of comparing two sets of collected metrics and as such offered a unique

situation.

After the completion of the two systems, one was chosen and used by ICs. The software
design lifecycle was reviewed and a number of process improvements suggested to ICs.
The thesis then went on to review the collected metrics and to identify a number of

findings.

9.2 A Review of the Criteria for Success

The following sections review the criteria for success that were defined in Chapter 1.

9.2.1 To Demonstrate the Successful Application of BPR against a Real-
life Scenario in order to create a Computer System to correct a Problem
Domain.

The remodelling of the problematic business process was regarded by the company as a
complete success. It is arguable that the implementation of a manual system could have
achieved the same results; although this would have relied on the sales staff to police
themselves. The computerised system also offered more than a manual system could in
the form of management reports and control.

One of the most confounding facts of the whole project was to find that the
implementation of the Windows system was regarded as such a success by the company
when compared with the ratings as stated in Table 8.6. In those figures the Windows
based system was given only given an average of 50% rating. If we refer to chapter
7.1.3.1, we find that the company management stated that they would only class a
system as a success if at least 80% of the core requirements were achieved. The system
achieved all the required functionality in Table 2.1 and therefore exceeded the 80% of
core objectives. From this, it is possible to only assume that the ratings given in the

questionnaires were inaccurate.

145

Referring to the figures in Table 8.6, it is possible to establish a number of facts based
these figures. When considering these figures, one must make allowance for the threats
to their validity; for example the development times may not wholly take into account
the fact that one system was developed in as familiar programming language whilst the
other was not. These are however realistic with regard to the constraints of IC. With this
in mind, the following facts can be established:
1 It took 44% longer to produce the Internet based system than it did the
Windows system.
2 It took 4 times longer to produce the GUI for the Internet based system than
the Windows system. This (in part) was due in part to the ‘false-start’ of
creating the code in CGI/C++. Even if this is excluded, it still took 60%
longer to create the Internet based system.
3 Writing the code for the functions took 30% longer in PHP compared with
Windows system.
4 27% of the time taken for the Internet Based system was spent on
Researching and installing new software and hardware. This compared with

only 7% for the Windows system.

The metrics showed that the creation of a system using a technology which was new to
the organisation (the Internet) took the most time; approximately 44% longer.
According to the questionnaire which the results of can be seen in Table 7.1, it was
found that the Internet based system was also preferred by the users. Despite this fact
we saw the company management opt for the Windows version. The outcome of the
suitability of this decision will be clarified when the users adopt the system within their
working practices. It was clear that the management made the decision not on the basis
of functionality, but rather on NFR’s. This is a clear example of NFR’s having an
overriding impact on system design and hence a clear motivation to ensure that attention

is given to their collection and tracking during development.

McCall [McCall77] stated that “metrics can be objective or subjective”. Although
metrics can be interpreted from differing points of view and need to be appropriately
applied to a scenario, in this case, the collection of metrics did prove a number of

points:

138

1 Metrics are particularly successful at illustrating particular issues such as
schedule slippage, the effect of additional requirements, time taken for coding
etc.

2 Metrics are less useful in the use of measuring entities in which the users have
difficulty in understanding the concept. An example of this is where the metrics
collected from the questionnaires showed the Internet based system to be
preferred, but the Windows system was the one to be chosen. This problem can
partly be overcome by the use of Fuzzy Metrics [Ebert96] which consider the
issue of uncertainty. Ultimately, the assessments are still relying on the user

being able to understand a concept possibly too abstract for him/her.

Berard [Berard06] stated that “Although multiple metrics must be gathered, the most
useful set of metrics for a given person, process, or product may not be known ahead of
time.” This highlights the difficulty in identifying the correct metrics to collect. He goes
on to state that “When we first begin to study some aspect of software engineering, or a
specific software project, we will probably have to use a large number of different
metrics*. This research identifies that the metrics collected were in some cases
somewhat inaccurate; wrong metric being collected, not gathered accurately enough or
misinterpreted. Much of the inaccuracy results from the subjective nature of the data
gathering process for instance, the time taken to research and install the hardware and
software relating to the Internet based version was high, but could have been classed as
external to the project in as much as it was a one-off exercise. The inclusion of the
metric inflated the total time taken for the Internet based system significantly. This point
must lead to the consideration that the practice in the collection of metrics has the

potential to become more accurate over time as experience of data collection is gained.

8.4 Outcome

The analysis showed that the decision making process needed to be changed and
formalised for subsequent projects:

1. Formalise the CM procedure. Set CM parameters at points in the development

cycle. For example, it is unacceptable requesting that an offline capability be

implemented anywhere other that at the early design stage of the development.

139

B The Questionnaires

157

Ideal Caravan Sales Ltd

Transport Booking System Questionnaire

Management Version

Date completed:

Completed by:

Question

System A System B
Web/Internet | Windows

How well do you feel the system has been received by staff?

How would you rate the overall functionality of the system
compared with your expectations?

How reliable do you feel the system will be?

What would be your overall score for the system?

Please mark accordingly:

5 — highest
1 — lowest
" Carl Nattrass Page 1

~ E:\Uni\Masters\Thesis\Management Questionaire.doc

23/05/2007

Ideal Caravan Sales Ltd

Transport Booking System Questionnaire

Staff Version

Date completed:

Completed by:

Question

System A System B
Web/Internet | Windows

How easy was it to learn the system within the given period of time?

How easily could you negotiate around the system?

How would you rate the data entry screen?

How would you rate the Dairy screen?

How would you rate the speed of the system?

How would you rate the overall functionality of the system?

What would be your overall rating for the system?

Please mark accordingly:

5 — highest
1 — lowest
Carl Nattrass Page 1

“ E:\Uni\Masters\Thesis\Staff Questionaire.doc

23/05/2007

C The Company Procedure

57.1

57.2

57.3

57.3.1

57.3.2

Software Development Procedure

INTRODUCTION

The Development of Software whether in-house or externally involves a degree of risk.
Ultimately, the question is; will the supplied System be what was required? This document has
been produced with a view to creating a framework from which to base a new System
Development around.

PURPOSE

By stipulating key areas within the Software Development process, risks can be minimised or at
least recognised and controlled. The result of this procedure will be the production of a more
suitable System.

The key areas are as follows:

Time Management

The Development Lifecycle

System Analysis and Design

Staff Involvement and the Control of Input
Testing procedures

Process refinement

THE PROCEDURE

Time Management

As with all projects, it is essential to keep track of time. We should be able to tell how the project
is going in relation to set deadlines. To do this, we should use a timemanagement tool. One
such tool is JXProject. This project management tool can be found on 1:/Disk Copies/Time
Management. It uses Gant charts to pictorially illustrate the current position within a project.
Documentation is included.

Key stages (KS) within the development should be identified. Each KS should added to the Gant
chart together with an expected completion date. We can then monitor time-slip.

The Development Lifecycle

A project can be controlled more readily by the introduction of a Development Lifecycle. The
one most suitable to Ideal Caravans (IC) at this time is called the Spiral model. This method
allows us to iteratively analyse, design, implement and test sections of the project in manageable
chunks.
Before we can implement this, we must be able to identify the iterations. A good rule of thumb is
to break the-System down into areas, for example:

o Graphical User Interface GUI
Data entry
Data output/displays
Reports
Security
Functionality

57.3.3

With this example, the first iteration would be concerned only with the creation of a GUL It may
consist of:

= Set time deadlines with JXProject
= Define Staff involvement

= Analysis and design of GUI

= Implemenation

» Testing

= Alterations

The GUI would then be signed off and the next iteration covering data entry started. The skill
needed in identifying these iterations may be reliant upon experience.

System Analysis and Design

The key to the production of a successful Computer System are;
e The correct analysis of the current system
e The correct definition of the new system

If we fail to get those two processes correct, the system may fail.

Analysing the Current System. If the system is being created by External Contractor (EC), it will
be their responsibility to collect this information. Despite this fact, IC will be involved within the
procedure.
Gather all relevant documentation
Document all process flows
Document data entities
Document boundaries such as
o Staff responsibilities
Users
System availability
Security
Environments

00O0O0

Defining the Requirements for the New System. We must clearly define the Requirements of the
new system. Even if an EC is responsible for this phase, IC must ensure that the Requirements
are correct and will provide a complete System.

e Define the existing System Specification

o Define the New System’s essential Specifications

e Define the New System’s desirable Specifications

In order to correctly identify Requirements, we should identify those aspects which are critical
to the success of the System. If we can manage to quantify those aspects, we will be able to
ascertain the level to which those aspects have been achieved. These are called Critical Success
Metrics (CSM’s). As an example, consider if Ideal Caravans wished to introduce a simple
System to track a van's profits. The van may be bought and sold a number of times over its life
time. We could identify CSM’s such as:
1 The ability to identify the profitability of a van. How expansive is the functionality
relating to this function? Does it take into account external factors such as;
Interest rates Buy-m condition, repairs/renewals, transport costs etc.
2 How user friendly is the displaying of this information; Is it text only, charts,
numeric etc. Can we measure the ease of identifying traits. How critical is this?

When you consider the Requirements of a System, attempt to use this method or at least consider
it.

57.3.4 Staff Involvement and the Control of Input

The more Staff which are involved in any process increases its complexity; more ideas, more
conflicting interests, more opinion. To control this, identify key personnel involved in each process and
involve only them. Try not to allow input from other Users who are not Key Personnel.

57.3.6 Testing Procedures

Testing should take place at each iteration cycle. In our example above, the GUI was tested and
any amendments made before moving onto the next cycle. Any major changes identified may need to be
documented and addressed later. Minor changes may be added ad-hoc depending upon their size, and
the time constraints.

Involve only the Key User(s) in this process, and attempt to isolate only the process being tested. This
will help to focus the mind of the ‘Tester’.

57.3.7 Process Refinement

At the end of the project, the processes used during the Software Engineering should be
examined. If improvement can be made, implement the change and document them together with
the reasons.

57.4 OTHER INFORMATION

This document should be used in conjunction with 57.4a which is a template for the Software
Engineering process.

D The Software Development Template

160

Ideal Caravans Software Development Process

I INEPOAUCHION ..ottt bbb b b st e 2
2.1 Analysis of CUrrent SYStEIM:co.corruierirrcrumsueiiininrerenenesreiniennesnesesssresssseenes 3
2.1.1 Documentation............occeervercreininiinneniie i e 3
2.12 Process floOWSc.ceuvireiriinienecrree et 7
213 System Boundariescoceeverienmeceniiininiiniiin 9

3 DSIZN.riiieiiitietenteere et st ea s a e bR a R e sh s sr e s 11
3.1 Specification of Requirements...........cccccoreeiiirciiniiinnncnenennnnennnnen. 11
3.2 The Change Management Procedure..............ccocceveceierceenimnnecneenncnnnenineennens 14
4.1 DEVEIOPIMENL.....ceeriiruieiritertenirteer ettt er e sra e ae s bbb bt snaan 17

C:\Documents and Settings\carln.IDEALCARAVAN\Desktop\Master
Folder\Mine\College\Thesis\Software Development Process - Support.doc
Carl Nattrass Page 1 5/22/2007

1 Introduction

This document is design to be used alongside the development of a new Computer
System. It is a working document and needs to be kept up to date on a daily basis. You

will need to make copies of certain pages as and when they are needed.

This document is not necessarily in chronological order. The preferred method of
software design is using Boehm’s Spiral model which allows the reiteration of certain

aspects of the development process.

It is recommended that the document is used in conjunction with some time management

software such as Microsoft’s Project or JxProject.

C:\Documents and Settings\carin. IDEALCARAV AN\Desktop\Master
Folder\Mine\College\Thesis\Software Development Process - Support.doc
Carl Nattrass Page 2 5/22/2007

2 Analysis

2.1 Analysis of Current system:

2.1.1 Documentation

Gather all relevant documentation. This process is fundamental to a successful analysis of
the problem domain. This is the ‘what’. What we are collecting, inputting outputting,
printing, storing etc. Any piece of paper which is relevant to the current process which

you are trying to remodel should be collected and documented.

Examples of such paper would be the following:
Invoices, chits, delivery notes, timesheets, diaries, lists of products, receipts, emails,

print-out etc.

When all of the paper work is collected, we will end up with a summary of the data
which the system is managing. We can then use a formalised method such as an Entity

Relationship Diagram to illustrate the relationships between the data.

C:\Documents and Settings\carln.IDEALCARAV AN\Desktop\Master
Folder\Mine\College\Thesis\Software Development Process - Support.doc
Carl Nattrass Page 3 5/22/2007

L

Place All Gathered Documentation Here

C:\Documents and Settings\carln.IDEALCARAV AN\Desktop\Master
Folder\Mine\College\Thesis\Software Development Process - Support.doc
Carl Nattrass Page 4 , 5/22/2007

List Entities and Place them Here

C:\Documents and Settings\carln.IDEALCARAV AN\Desktop\Master
Folder\Mine\College\Thesis\Software Development Process - Support.doc
Carl Nattrass Page S 5/22/2007

Create Entities Relationship Diagrams ad Place them Here

C:\Documents and Settings\carln.IDEALCARAV AN\Desktop\Master
Folder\Mine\College\Thesis\Software Development Process - Support.doc
Carl Nattrass Page 6 5/22/2007

2.1.2 Process flows

Having collected the ‘what’, we need to collect the ‘how’. This is the process flow, the
method by which the data is gathered, input, stored, retrieved and used.

To illustrate this, we may need to use a formal method such as the Unified Modeling
Language. Data flow is more easily visualised by use of pictorial diagrams.

For example;
We may need to illustrate how an order comes into the Company from outside, it may
come in by numerous means; email, telephone, letter, word of mouth etc. We need to

know how it comes in, who receives it, how it is processed, where it is stored etc.

In many cases, when a process is automated, it may need to be redesigned as part of the

Design stage. We do not need to consider this here.

The key point here is that every single Entity listed previously should appear in a data

flow. If it cannot be fitted in, reconsider its existence.

C:\Documents and Settings\carln.IDEALCARAVAN\Desktop\Master
Folder\Mine\College\Thesis\Software Development Process - Support.doc
Carl Nattrass Page 7 5/22/2007

Create Process Flows and Place them Here

'C:\Documents and Settings\carln.IDEALCARAV AN\Desktop\Master
Folder\Mme\College\Thems\Soﬂware Development Process - Support.doc
Carl Nattrass Page 8 5/22/2007

2.1.3 System Boundaries

System boundaries could be anything which have a metric associated with them. We need

to do this in an analytical manner.

Primary boundaries are such items as start time, duration and priority.
Secondary boundaries are items such as;
¢ Staff/Management involvement. Who is to be involved in any of the
processes? What are the guide lines to their involvement?
e Who are the target Users? What is their P.C. literacy level?
e Security levels. How secure does the data need to be?
e What are the physical boundaries of the system? Single P.C, networked,
Internet etc.

These should all be documented at this stage.

C:\Documents and Settings\carin.IDEALCARAV AN\Desktop\Master
Folder\Mine\College\Thesis\Software Development Process - Support.doc
Carl Nattrass Page 9 5/22/2007

Place System Boundaries Here

C:\Documents and Settings\carin.IDEALCARAV AN\Desktop\Master
Folder\Mine\College\Thesis\Software Development Process - Support.doc
Carl Nattrass Page 10 5/22/2007

3 Design

3.1 Specification of Requirements

Here we need to specify in writing what the new system should achieve. This is
concerned with the data which needs to be stored and the functionality attached to that
data.

This entails documenting the
Current system entities.
Current system functionality
Any new entities
Any new functionality

This process also involves the prioritising of those functions which are absolutely

necessary and those which could be regarded as a luxury.

C:\Documents and Settings\carln.IDEALCARAVAN\Desktop\Master
Folder\Mine\College\Thesis\Software Development Process - Support.doc
Carl Nattrass Page 11 5/22/2007

List the New System Entities Here

C:\Documents and Settings\carln.IDEALCARAV AN\Desktop\Master
Folder\Mine\College\Thesis\Software Development Process - Support.doc
Carl Nattrass Page 12 5/22/2007

List the New System Functionalities Here

C:\Documents and Settings\carln.IDEALCARAV AN\Desktop\Master
Folder\Mine\College\Thesis\Software Development Process - Support.doc
Carl Nattrass Page 13 5/22/2007

3.2 The Change Management Procedure.

The management of change within an implementation of a new system is very important.
It is possible to allow a project to become completely blown off course by late addition to
the Requirements.

There should be a cut-off point in the form of dates which specifies when the latest
alteration may be made to a stage. After that point, any proposed changes should be
categorised into importance and documented for implementation into later system

releases.

C:\Documents and Settings\carln.IDEALCARAV AN\Desktop\Master
Folder\Mine\College\Thesis\Software Development Process - Support.doc
Carl Nattrass Page 14 5/22/2007

Place Change Management Documents Here

C:Documents and Settings\carln.IDEALCARAV AN\Desktop\Master
Folder\Mine\College\Thesis\Software Development Process - Support.doc
Carl Nattrass Page 15 5/22/2007

Change Management Document

Number:

Date: ...coovnvennen. Time: ...coceeeeennes Requested By:coceeeveees

Delete as appropriate: Addition/Alteration/Removal

Reference: = eeeevevecrecenonneee

Description:

Schedule for review (date):ccceceiennienn

Priority: ..

C:\Documents and Settings\carln.IDEALCARAV AN\Desktop\Master
Folder\Mine\College\Thesis\Software Development Process - Support.doc
Carl Nattrass Page 16 5/22/2007

4 Development and Testing

The spiral model lends itself to a prototyping method of development. The functionality
of the system should be broken down into key stages, sub stages and further stages as

necessary.

Start development from a primary key stage for the system. In most cases, this will be the
GUI, but could also be Reporting functions or the Database. Implement the stage and
allow the chosen Company representative to test it. Reiterate this process until the stage

is completed as time allows.

Each stage should be documented in the Gant chart for time-management purposes. The
dates should correspond to those in the table below. This is a way of cross checking that

all requirements will be attended to.

Each stage should be developed in isolation as much as is practicable.

C:\Documents and Settings\carln.IDEALCARAVAN\Desktop\Master
Folder\Mine\College\Thesis\Software Development Process - Support.doc
Carl Nattrass Page 17 5/22/2007

Record of Development

Stage Sub Requirement Start Tester End Spare
Stage
C:\Documents and Settings\carln.IDEALCARAV AN\Desktop\Master
Folder\Mine\College\Thesis\Software Development Process - Support.doc
Carl Nattrass Page 18 5/22/2007

5 Project Analysis and Recommendations

On completion of the project, the team involved should have a final meeting and make
recommendations for future projects. Any changes should be documented and the
alterations made to the Company Procedure and to this support document. Only by re-

evaluating and refining this process will it succeed in becoming a Company Procedure.

C:\Documents and Settings\carln.IDEALCARAVAN\Desktop\Master
Folder\Mine\College\Thesis\Software Development Process - Support.doc
Carl Nattrass ~ Pagel19 5/22/2007

