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“The activist is not the man who says the river is dirty. The activist is the man who

cleans up the river. ”

Ross Perot



Abstract

The UK has an obligation for its waters to meet the minimum standards as set out

in the Water Framework Directive legislation by 2015. In recent years tighter controls

on pollutants from point sources has led to diffuse sources (i.e. agricultural) having a

greater contribution to degradation in water quality.

The Catchment Sensitive Farming program has been set up to attempt to advise and

support landowners and farmers with various land mangement techniques which can be

applied to rural areas to mitigate against some of the contributions that agricultural

activities have to poor water quality.

In order for any such measures to be either cost-effective or successful at improving

water quality they must be applied in suitable areas of a catchment. This research

takes the River Eden catchment in Cumbria as a case study and uses mathematical

modelling of measured low resolution field nutrient data together with high-resolution

quasi-continuous discharge data to drive a reduced complexity diffuse pollution mod-

elling framework (SCIMAP) to identify the areas most likely to be causing water quality

problems.

Results of inverse modelling showed arable land was a particular risky land use within

the Eden catchment. Several areas (mainly surrounding the River Eden in the lower

reaches) within the catchment were identified as being the most likely to be causing

water quality problems. As a form of control the SCIMAP model was run with logical

risk values assigned to diferent landuses as well as those derived from inverse modelling

of nutrient data. The model outputs driven by the statistically improved data were very

similar to those which were driven by a priori judgment.

Several conclusions were drawn; (1) the SCIMAP model run driven by a very simple

dataset based on nationally available data produced similar results to an identical model

run driven by a large nutrient and discharge dataset, suggesting that the process of

identifying risky areas to further examine within a catchment can be completed relatively

easily (in terms of data availability), and (2) even low infrequent nutrient data can

capture enough information when combined with continuous discharge data to be used

in the SCIMAP model.
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Chapter 1

Introduction

This chapter outlines the background to the research contained in the thesis, gives a

brief summary of the methodology used, and also sets out the structure that the thesis

follows.

1.1 Background

There is strong evidence that agricultural activities are responsible for a large contri-

bution to degradation in water quality as a result of diffuse pollution in the UK (e.g.

Harris et al. 1992, Withers et al. 2002, Harris et al. 2005).

The large impact of agriculture is due to several reasons: (1) the many activities and

land uses associated with agriculture including ploughing, nutrient rich fertiliser appli-

cation and livestock impacts on watercourses which are likely to contribute to water

quality issues through fine sediment addition, animal waste and leaching of fertilisers

into channels; (2) agricultural land makes up a large area (76%) of the total land area

of England and Wales (DEFRA 2002); (3) agriculture generally has a low impact per

unit area in terms of contribution to diffuse pollution which makes it difficult to manage

because there are potentially many small inputs across a wide area.

The UK has an obligation to meet the most strignent set of water quality standards ever

with the implementation of the Water Framework Directive (Directive 2000/60/EEC,

OJ L 327 of 22.12.2000) which came into force in 2003. Member states must meet

good chemical and ecological standards in lakes and waterbodies by 2015. Research

has shown that diffuse pollution is a major barrier to meeting these standards (DEFRA

2002). Therefore in order to effectively apply mitigation measures and best practice

land management techniques it is necessary to prioritise which areas of catchments

1



Introduction 2

are to be targeted. Research has shown that blanket targetting of entire catchments

with mitigation measures is neither cost-effective (Schleich et al. 1996) or successful in

stopping pollutants entering the channel (Jokela et al. 2002).

A keystone of diffuse pollution understanding and this research is the concept of “Crit-

ical Source Areas” (CSAs). CSAs are any piece of land (on any scale) where the local

hydrological characteristics (i.e. flow from the land is directly connected to rivers or

streams) combine with a significant source of nutrient inputs (Heathwaite et al. 2005).

This concept is key for two reasons; (1) it enables more effective targeting of mitiga-

tion methods within catchments; and (2) justifies the use of the SCIMAP modelling

framework for identification of CSAs within the River Eden catchment.

To date various models have been developed to attempt to quantify and understand how

diffuse pollutants move and interact within a river catchment. One of the major problems

with these models has been a lack of suitable validation data for model assessment. Lane

(2008) has suggested that it may be time to sidestep this data availability issue and use

inverse modelling techniques of the data which is available to redfine the modelling of

processes involved in diffuse pollution.

1.2 Research Aims and Objectives

The aim of this research is to develop an inverse modelling methodology to identify land

use hotspots responsible for the observed phosphorus concentrations in the River Eden

catchment in the North-West of England. In order to accomplish this the following

research objectives have been defined:

(1) Develop a technique to improve the quality of the available water quality

data in the River Eden catchment

The United Kingdom has an extensive network of measuring stations operated by the

Environment Agency. This monitoring scheme is known as the General Quality Assess-

ment (GQA) scheme and monitors the chemical, biological and nutrient status of 40,000

km of rivers and streams (Environment Agency 2008b). The phosphorus data avail-

able from the GQA scheme consists of a monthly reading of phosphorus concentration

(mgl−1) from a particular point in the channel at that snapshot in time from 1990 to

the present day. The GQA monitoring network is more suited to assessing the impacts

of point source pollutants rather than diffuse sources, however to install an alternative

monitoring system within the timeframe of an MSc project would be impractical and

prohibitively expensive. A technique to improve the usefulness of the phosphate con-

centration data must be developed. To achieve this objective a Monte-Carlo simulation
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technique based on the Tarras-Wahlberhg & Lane (2003) Monte-Carlo based methodol-

ogy will be developed and applied to field data collected by the Environment Agency as

part of the GQA scheme.

(2) Develop and apply inverse modelling techniques to attempt to deal with

problems of data availability

The relationships between landcover and the availability of phosphorus are poorly con-

strained and uncertain (Lane 2008). The uncertainty comes from a combination of; (1)

the precision and resolution of available datasets and (2) a poor understanding of the

process cascade in diffuse pollution risk. Inverse modelling is a technique which uses the

available data to understand the process cascade and determine which processes mat-

ter in the diffuse pollution production / transport / delivery regime (Lane 2008). The

inverse modelling technique will be based on the method used in a study into salmonid

fry populations in the River Eden catchment (Reaney et al. in review).

(3) Assess the usefulnes of inverse modelling techniques for diffuse pollution

risk identification

Work has already been undertaken in the River Eden catchment to identify diffuse pollu-

tion land use hotspots using expert a priori judgments for the likely risk of different land

uses leading to diffuse pollution generation and transport. After applying the inverse

modelling techniques to the River Eden catchment this project will assess the influence

of inverse modelling (as opposed to a priori judgments) on predicted phosphorus risk

within the catchment. This will be undertaken using the SCIMAP modelling framework

developed at Durham and Lancaster Universities.

1.3 Thesis Structure

The first section of the thesis looks at general issues surrounding diffuse pollution includ-

ing its sources, impacts and the costs associated with treating it (Chapter 2). Chapter

3 reviews the development of several previous attempts at diffuse pollution modelling,

which leads to an introduction to the approach and mathematics behind the SCIMAP

risk modelling framework (chapter 4). The study catchment (River Eden) is looked at

in more detail in Chapter 5.

The next chapter (Chapter 6) looks at whether or not a Monte-Carlo based statistical

simulation model can improve the quality of the existing Environment Agency dataset

of nutrient concentrations by estimating flow weighted concentration measurements.

Chapter 7 explains the inverse modelling which was undertaken on the phosphorus
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concentration dataset and also an application of the SCIMAP risk mapping tool using

both; (1) a priori risk weightings for landuse, and (2) the landuse weightings from inverse

modelling and compares the results.

Chapter 8 contains a summary discussion of the research approach and findings from

the MSc project and finally chapter 9 briefly looks at further reccomendations for work

in the River Eden catchment.



Chapter 2

Diffuse Pollution

This chapter looks at the sources, impacts and leglisation surrounding diffuse pollution

in the UK and also considers possible techniques which can be used to mitigate against

water quality degradation caused by diffuse pollutants.

2.1 What is diffuse pollution?

Diffuse pollution is defined as pollution which can not be attributed to a particualar point

in the landscape, and hence is often referred to as non-point source. Unlike traditional

point sources, such as sewage treatment plant ouputs, sources of diffuse pollution are

both hard to identify and thus not directly controlled or monitored (Carpenter et al.

2008). Lane et al. (2008) recently suggested that diffuse pollution may not be as diffuse

as once thought and suggests that diffuse pollution is in fact made up of individual

point sources (i.e. fields with particular properties). There are a variety of sources of

diffuse pollution (see Figure 2.1) but recently the attempts to monitor and control them

have been focused on agricultural activities. There are good reasons for this; (1) 76%

of land use in England and Wales is agricultural; (2) common agricultural practices

and activities such as ploughing of land leading to increased erosion susceptibility and

the application of fertilisers can all contribute to increased diffuse pollution risk; (3)

agriculture uses significant amounts of fertilisers which contain large amoutns of nitrates

and phosphorus.

5
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Figure 2.1: Conceptual model of common diffuse pollution sources

2.2 Water quality and leglislation

Both the UK and the EU are striving to improve water quality through legislation;

nutrient over-enrichment is at the centre of the Water Framework (WFD) (Directive

2000/60/EEC, OJ L 327 of 22.12.2000) and Habitats and Urban Waste Water Treat-

ment (HUWWT) (Directive 91/271/EEC, OJ L 135, 30.5.1991) directives which aim to

both reduce the costs of water treatment and reduce eutrophication and its associated

problems. The forthcoming implementation deadlines of these directives coupled with

phosphorus being the limiting nutrient in freshwater systems (Smith et al. 1999), means

that it is necessary to regulate the amount of phosphorus entering freshwater systems

(rivers and lakes). In order to do this there is a refreshed need for quantification of

changing phosphorus loads and subsequent changes in water quality to assess whether

any mitigation measures (such as those introduced as part of the DEFRA (Department

for Environment, Food and Rural Affairs) Catchment Sensitive Farming (CSF) program

are effective and cost-effective. There are also other leglislative committments which the

waters of the UK must meet; these include (1) The Nitrate Directive (91/676/EEC, (OJ

L 375, 31.12.1991) which aims to reduce agricultural nitrate contributions to pollution

and (2) The Habitats and Birds Directive (92/43/EEC, OJ L 206, 22.7.1992).
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2.3 Phosphorus: the essential nutrient

Phosphorus (P) is the major limiting nutrient of primary productivity in many rivers

and lakes in the UK, and therefore any increase in the loading of phosphorus to fresh-

water systems can significantly alter the nutrient balance and affect the composition

and diversity of plants and creatures inhabiting the waters (Smith et al. 1999). It is an

essential element in many of the compound synthesising processes upon which plant life

depends (Brady & Weil 1999). Phosphorus is a foundation component of ATP (adeno-

sine tri-phosphate) which drives most energy requiring bio-chemical processes as well as

being an essential component of both RNA and DNA (key parts of genetic inheritence

and protein synthesis) (Cartz et al. 1979). As a result, phosphate rich fertilisers are

often applied to fields to ensure the crops have sufficient phosphorus available to them.

However recent years have seen an over-application of these manures and fertilisers re-

sulting in high levels of phosphorus accumulation in the soils in many parts of Europe,

Asia and North America (Brady & Weil 1999).

Phosphorus inputs to freshwater systems can be classified as coming from either internal

(cycling) or external (inputs) sources. Organic matter decay or bed sediments can

contribute to in-stream phosphorus internally. External sources can be divided into

point or non-point (diffuse) sources. Point source inputs come mainly from waste-water

treatment works or industrial inputs. In recent years these sources have had much

tighter controls on them, and as, such contributions to water pollution from waste-water

treatment works are not as significant as they once were. The major source of diffuse

phosphorus inputs in the UK is a result of the application of P rich fertilisers to crops

and from livestock manure, coupled with the movement of sediment from landscape to

river (providing a transport mechanism for nutrients).

Although rivers and streams are the principle routes for phosphorus transfer from land-

scape to lakes or the sea, they function as ecosystems rather than simple conduits

(Melack 1995) which can store, release and transform nutrients. In research studies

phosphorus is described in different forms depending on how the analysis takes place;

for example the distinction between dissolved and particulate phosphorus is made based

on the filter size used to separate the fractions. Within the two classes of total dissolved

(TDP) and particulate (TPP) phosphorus there are further sub-divisions of organic and

inorganic. Typically a stream stores only a small percentage of the nutrients which enter

the catchment over a year, mainly as a result of organic debris accumulating phospho-

rus. The amount of retention is controlled by vegetation, discharge and temperature

(Munn and Meyer 1990). Figure 2.2 shows how phosphporus is transported through the

environment.
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Groundwater

Rainfall

Surface WatersInfiltration (P Storage)
Throughflow via soil

Fertiliser & manure input

Runoff erosion of dissolved 
and particulate P

Leaching of dissolved P

Figure 2.2: Schematic diagram of P transport and pathways

Phosphorus is transported predominantly with organic matter (Meybeck 1982). Soil

erosion by rainfall and overland flow are widely recognised as the main pathways of

phosphorus loss to channels (Haygarth et al. 2005). Agricultural activities such as soil

structure degradation and drainage systems, as well as the obvious large areas of soil

and additions of phosphate rich fertilisers, mean that diffuse pollution from agriculture

is taken very seriously by government (Water-UK 2007).

2.4 Source-Mobilisation-Transport of Phosphorus

Figure 2.3 shows a conceptual model of how phosphorus can be viewed as a pollutant

in terms of transport and sources.

2.5 Phosphorus: the pollutant

The nutrient enrichment of waterbodies has become a major environmental issue (Heath-

waite et al. 2003, Withers & Haygarth 2007, Withers & Sharpley 2008). Phosphorus

is widely regarded as the main contributing nutrient to eutrophication; the process of

nutrient enrichment leading initially to a plant growth boom, followed by a degradation

in water quality as excess material decays and rots in the waterbody leading to decreased

dissolved oxygen levels. Eutrophication also causes algal blooms which in turn deoxy-

genate the water which results in fish and shellfish deaths. The water then becomes

cloudy, colored a shade of green, yellow, brown, or red. Human society is impacted as
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Figure 2.3: Conceptual model of phosphorus Source-Mobilisation-Transport

well: eutrophication decreases the resource value of rivers, lakes, and estuaries such that

recreation, fishing, hunting, and aesthetic enjoyment are hindered (Bowes et al. 2005).

2.6 Agricultural sources of phoshphorus in the North of

England

Since 1945 and the end of the Second World War there has been a shift in agricultural

practices away from mixed farming systems towards intensive specialist farms which are

loacted in the areas most suitable for them (Robinson & Suterland 2002). As a result of

this, England can be roughly divided by region by its agricultural characteristics. For

example the East of England is dominated by arable farming and the West is known for
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its intensive cattle farms. This shift has caused changes in pressures on water bodies

(DEFRA 2002) including:

• Much greater stocking densities.

• Increased use of inorganic fertilisers especially in arable regions.

• Increased slurry use instead of straw based manures.

• Reduced crop rotation patterns leading to increased pesticide use.

The North West of England is characterised by naturally nutrient poor rivers and lakes

which has resulted in plants and animals adapting to these conditions and thus being es-

pecially vulnerable to changes in nutrient levels or increased siltation (DEFRA 2002). It

is for this reason that the River Eden, as studied in this research, is especially important

in the UK in terms of diffuse pollution research.

2.7 How to deal with the phosphorus problem

In order to comply with the Water Framework Directive it is clear that action will

need to be taken. DEFRA are approaching this problem with the Catchment Sensitive

Farming (CSF) program. This is a initiative to promote “best practice” land mangement

techniques to farmers to attempt to reduce the contribution of agriculture to water

quality degradation. DEFRA describe the project as:

“Catchment Sensitive Farming is land management that keeps diffuse

emissions of pollutants to levels consistent with the ecological sensitivity

and uses of rivers, groundwaters and other aquatic habitats, both in the

immediate catchment and further downstream. It includes managing appro-

priately the use of fertilisers, manures and pesticides; promoting good soil

structure and rain infiltration to avoid run-off and erosion; protecting wa-

tercourses from faecal contamination, sedimentation and pesticides; reducing

stocking density; managing stock on farms to avoid compaction and poaching

of land; and separating clean and dirty water on farms.” (DEFRA Website

Definition, Accessed December 2008)

Currently there are forty priority catchments within England and Wales in which the

CSF program is being delivered. The mitigation activities which are being encouraged

include:
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1. Livestock Management

(a) Keep stock tracks and paths well drained and away from watercourses.

(b) Avoid overgrazing.

2. Yard management

(a) Roof livestock holding areas to intercept rainfall from roofs prior to precipi-

tation being allowed to flow across heavily polluted floor areas and transport

high levels of pollutants to the watercourse (Hilton 2002). This technique is

known to be highly effective when considering phosphorus as the pollutant

(Dwyer et al. 2002).

A full breakdown of mitigation measures and suggested Best Management Plans (BMPs)

for agricultural land and building areas is given in the report by Hilton hosted by English

Nature (now known as “Natural England”) (Hilton 2002).

It is clear that even in a small catchment it would be completely unfeasible to introduce

these measures over the entire area of agricultural land. As well as costing money it is

important to convince landowners and farmers that the measures being introduced are

necessary. This identifies two needs of the ideal program delivery: (1) measures must

only be introduced where they are necessary to avoid wasting money and (2) there must

be a clear and simple way of identifying priority areas within a catchment to identify

risky areas. It has been shown that the blanket targeting of entire catchments or even

large reaches of river in order to improve water quality is neither cost-effective (Schleich

et al 1996) or even successful in reducing the amount of pollutants entering the channel

(Jokela et al 2004, Granlund et al 2005).

2.8 Costs of treating diffuse pollution

A recent estimate of the total external environmental costs of agriculture in the UK was

between £141 and £300 million per year (Environment Agency 2007). The approximate

annual costs of treating drinking water for pesticides are about £120 million; for phos-

phate and soil £55 million, for nitrate £16 million and for microorganisms £23 million.

Monitoring water supplies and supplying advice on pesticides and nutrients costs around

£11 million; off-site damage from soil erosion is put at £14 million (DEFRA 2002).
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2.9 Conclusion

It is clear that phosphorus causes in-stream water quality degradation which has impacts

both environmentally (i.e. eutrophication and associated problems) and socio-politically

(forthcoming Water Framework Directive deadlines). If the costs of treating both dif-

fuse pollution (Environment Agency 2007) and introducing mitigation measures (Hilton

2002) are considered then it is obvious that the key to successfully managing the prob-

lem is to be able to pinpoint within a catchment the areas which should be the focus

of mitigation techniques and BMPs. This project will develop existing techniques and

model frameworks and aims to highlight the areas of the River Eden catchment which

should be the focus of future diffuse pollution mitigation work. The next chapter looks

at the history of diffuse pollution modelling, how different models can be categorised

and briefly introduces the model which this project uses as the base for the modelling

framework.



Chapter 3

Diffuse Pollution Modelling

This chapter will look at the history of diffuse pollution models and their broad cat-

egories with some detail on specific models which have been developed with different

approaches. It will then introduce what could be refered to as the “fourth generation”

of diffuse pollution models, an example of which this project later uses for the River

Eden catchment.

3.1 Introduction

Traditionally models of phosphorus transfers from soil to watercourses were developed

for two main reasons; (1) to aid understanding of the processes associated with P transfer

and (2) to enable quantitive predictions of phosphorus transfers (Krueger et al. 2007).

More recently modelling approaches have been developed to attempt to mitigate against

the impact of diffuse pollutants (particularly phosphorus) on rivers and streams. This

is a result of: (1) the increased legislation concerning the status of freshwater in the

UK and beyond (i.e. the Water Framework Directive) (Water Framework Directive

2000) and; (2) because of the increasing costs of treating diffuse pollution (Environment

Agency 2007).

More recently the focus of modelling has shifted in an attempt to identify the Critical

Source Areas (CSAs) (Heathwaite et al. 2005) in order to effectively target areas within

a catchment likely to be responsible for causing the observed in-stream water quality

problems. The SCIMAP model which will be introduced later in this chapter is an

example of this approach, and the model framework which this project uses.

13
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3.2 Empirical modelling of phosphorus transfer

The original phosporus transfer models were built on the concept of relating the char-

acteristics of a site with the phosphorus loss from that site, usually on an annual basis

(Krueger et al. 2007). The broad category of empirical models can be further sub-divided

into the following groups:

1. Statistical Models.

2. Export Coefficient Models.

3. Multi-Layered Approach.

The following section will cover the properties and approaches used in these different

types of models and detail some of their problems.

3.3 Statistical Models

Statistical models are the simplest form of empirical phosphorus transport model. They

work by examining statistical relationships between the data available (i.e. land use,

soil type and soil phosphorus loss) (e.g Daly et al. 2002, Andersen et al. 2005). This

means that they cannot be transfered and applied between different catchments, or even

applied to years which haven’t been included in the statistical analysis, hence they have

limited application for mitigation purposes.

3.4 Export Coefficient Models

The earliest attempts to model non-point source pollution began in the late 1970s and

early 1980s with the development of a simple export-coefficient based approach. The

early models were developed in the United States of America and adopted by the ODEC

(Organization for Economic Co-operation) in their research into eutrophication in stand-

ing waters (Ormernik 1976, Vollenwieder et al. 1982).

The North-American model used one generalised export coefficient for all agricultural

land, which when applied in the UK was found to be far too insensitive for the huge

spatial heterogeneity in land use (stocking densities and farm management practices)

characteristic of lowland farming in the United Kingdom. The UK has also seen marked

changes in agriculture in the last 70 years, particularly after 1945 and also after joining

the European Community in 1972 (Johnes 1996).



Diffuse Pollution Modelling 15

The development of the export-coefficient (E-C) approach (for reasons above) for the

UK took place in the mid 1990s (Johnes et al. 1994, 1996) and aimed to use loading

totals from above any given point in the catchment landscape to give a nutrient loading

figure for that specific point. The basic approach to the model is as follows:

• Collect data on spatial distribution of land use (and therefore associated nutrient

applications).

• Include other sources of nutrient input (nitrogen fixing, atmospheric deposition).

• Derive export coefficients from field data and literature to determine loss from

each land use found in the catchment.

The model then uses discharge data at the given point to give mean annual concentra-

tions of total N and P in the stream. The E-C approach does not differentiate between

different species of phosphprous and thus means it is a more suitable indicator of change

in loading from year to year (Johnes & Burt 1993, Johnes et al. 1994a, Heathwaite &

Jones 1996).

In conclusion, the E-C approach to modelling of non point source pollution is very useful.

It is simple enough to be coded using a standard spreadsheet software package, and its

data inputs come from pre-existing monitoring databases. The grouping of individual

nutrient species into two totals for N and P means many of the problems associated

with the prediction of the unstable fractions and species are eliminated instantly (Johnes

1996).

The wide scale at which E-C modelling has been applied (from laboratory to plot scale)

means that this approach can be tested in a uncertainty estimation framework to evaluate

and assess the usefulness of the models (Murdoch et al. 2005, Khadam & Kaluarachchi

2006).

3.5 Multi-Layered Approach

Further increasing the complexity from simple statistical relationships via Export-Coefficient

modelling led to the multi-layered approach to phosphorus transfer modelling (Krueger

et al. 2007). The most well known example from this generation of models is the Phos-

phorus Index Tool (PIT) (Heathwaite et al. 2003).

The Phosphorus Indicator Tool was developed at Sheffield University and followed on

from the previous generation of diffuse pollution models (the export-coefficient type).
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An important part of the model is the ”indicator” aspect; the aim of the work was to

“identify appropriate factors determining P loss from agricultural land to surface waters’

(Heathwaite et al. 2003). Indicators are used in this sense to “simplify information that

can help reveal a complex phenomenon” (Heathwaite et al. 2003).

The project also aimed to develop a tool suitable for use regarding the implementation

of the WFD to “demonstrate that UK policy on P loss from agriculture is rational’

(Heathwaite et al. 2003). The tool makes use of proxies to act as indicators for P

loss, for example using erosion from cultivated land as an indirect indicator of sediment

movement and therefore P loss (Fraser et al. 1999). A key part of the PIT project is

the transparency and modular approach to developing the model, enabling the tool to

be adapted for slightly different tasks in the future (Heathwaite et al. 2003).

3.6 Physically based transfer modelling

Physically based phosphorus models include all aspects of the Source-Mobilisation-

Transport (STM) model (Krueger et al. 2007) (Figure 2.3). Attempts are made to

represent each process as accurately and fully as possible (Krueger et al. 2007) and are

often broadly based on the equations first used in the procedural models from the 1980s

(the ANSWERS model) (Beasley et al. 1980, Kreuger et al. 2007) and the CREAMS

model (Kinsel 1980).

Physically based transfer models are usually designed for specific end goals and designed

to be operated at the scale at which they were designed (Kreuger et al. 2007). This means

that attempting to use such models for a different purpose, or at a different scale leads to

problems; (1) current data measuring strategies mean that it is impossible to properly

measure the model paramaters and inputs / outputs (Kavetski et al. 2003) and, (2)

many of these parameters are not actually measurable (Beven 1989).

There are numerous examples of physically based phosphorus transfer models from var-

ious countries. A comprehensive review of several leading models can be found in Lewis

& McGechan which covers the AMINO (Netherlands), GLEAMS and DAYCENT (USA)

and MACRO (Sweden) models (Lewis & McGechan 2002). These models include many

of the processes surrounding the complicated area of phosphorus mobilisation and trans-

port from agricultural soils including soil evapo-transpiration, soil erosion, crop growth

rates, soil carbon, soil nitrogen, applications of manures and slurries and soil temper-

atures (Lewis & McGechan 2002). Kavetski (2003) and Beven (1989) both discuss

the problems associated with data availability for complicated physically based models

(Kavetski et al. 2003, Beven 1989) and therefore it is suggested for this project, and



Diffuse Pollution Modelling 17

indeed any work aiming to identify CSAs within river catchments, that they are not

best suited. This is because they are data and parameter dependent, and there is often

a lack of suitable data to resolve all the demands of the model.

3.7 Diffuse Pollution Modelling: The Next Generation

As discussed in the introduction to this research a critical concept in modern diffuse

pollution is the notion of CSAs within catchments. These are important because we

know that not all points in a landscape (even with the same landuse) contribute equally

to observed water quality problems (Gburek et al. 2000, Heathwaite et al. 2000, Quinn

2004). Connectivity (i.e. a hydrological flow path) must combine with significant nutri-

ent inputs in order for there be a problem (Lane et al. 2006). In order to identify these

points in the landscape, and therefore be able to begin focused mitigation techniques

against diffuse pollution, it is key to be able to model at catchment scale whilst captur-

ing the much smaller scale (sub 10m) hydrological processes driving connectivity (Lane

et al. 2006). This comes after research has suggested that nutrient delivery is dependent

on extremely fine scale hydrology (Burt et al. 1999, Quinn 2004).

Two methods have been used in order to include the key aspect of nutrient delivery to

watercourses in models; (1) combining physical transfer models with multi-scaled process

complexity (e.g. Quinn 2004, Lane et al. 2006) and, (2) a risk based approach to identify

the CSAs within a catchment (Lane et al. 2006). The first method was successful in

transcending scale and was able to include open ditches (i.e. small scale) in a larger

resolution framework (Dunn & Mackay 1996). However such models are still let down

by their need for calibration and the lack of suitable data to undertake this.

The second approach takes a step back from complicated physical models which attempt

to include all aspects of the Source-Mobilisation-Transport model and instead combines

the risk of material production (i.e. soil erosion and therefore phosphorus transport)

at different points in the landscape with the risk of those areas being hydrologically

connected and therefore resulting in the threat of nutrients being transported to the

watercourse. An example of this type of modelling is SCIMAP (Sensitive Catchment

Integrated Modelling Analysis Platform) developed jointly at Durham and Lancaster

Universities.
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3.8 Conclusion

This research project aims to identify the areas in the River Eden catchment which

should be targeted for mitigation methods to reduce the impacts of phosphorus pollu-

tion on water quality. After reviewing the broad categories of diffuse pollution model,

the risk based approach seems an ideal choice as it includes a comprehensive treatment

for hydrological connectivity and will provide an output map identifying potential prob-

lematic land units (Lane et al. 2006). Therefore the SCIMAP model will be used for

this research.



Chapter 4

SCIMAP

This chapter looks at the core science behind the SCIMAP model which will be used

to attempt to identify the key areas within the River Eden catchment which could be

responsible for the degradation in water quality.

4.1 The SCIMAP model: classification

As discussed in Chapter 3, the SCIMAP model is one of the newer generation of diffuse

pollution models described by Lane et al. (2006). These models combine the risk of

diffuse pollution being generated at a particular point in the landscape with the risk of

that area of land being hydrologically connected to rivers and streams, hence being a

possible contributor to in-stream water quality problems (Lane et al. 2006).

4.2 Process Representation

Reaney et al. (In review), and the project website (SCIMAP) give a comprehensive

overview of the SCIMAP modelling approach but a summary of the model development

is given here for completeness, and as an introduction to the new inverse modelling work

which features later in the document (Chapter 6). The following list summarises the

key processes which are included in the SCIMAP modelling framework;

• Generation risk of material to be entrained (pi
g)

• Delivery index (connection probability) of the entrained material (pi
c)

• Locational risk (combination of pi
g and pi

c to give pi
gc)

19
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• Routing of location risk to give risk loading (Lj)

• Transformation of risk loading to risk concentration (Lc)

4.3 Risk Generation

SCIMAP focuses on risks to water quality which can be entrained as opposed to those

which are dissolved (e.g. fine sediment). The risk generation parameter (pi
g) is calcu-

lated by:

pi
g = pi

h . pi
e

Where pi
h is the risk of there being sufficient energy to erode the material and pi

e is the

risk of that material actually being erodible. Energy available for erosion is assumed to

be a function of the area draining through a point in the landscape which enables water

depth and therefore soil erosion potential (Ai) to be estimated and also the local slope

βi which is represented by stream power index (Ωi); which is calculated by Ωi = Ai tan

βi.

The risk of available energy is defined by scaling the stream power to give a hydrolog-

ical risk of erosion combined with the topographic data layer (DEM) which is used to

determine the upslope contributing area (UCA) and local slope (βi).

In order to calculate pi
e (the risk of the material being erodible and therefore possessing

a risk) there are two methods which are available; the first is to use expert logical

judgement and set the values a priori after making basic assumptions about how different

land uses are likely to affect erodability. The second is to use inverse modelling techniques

to give a new set of land use weightings, tailored specifically for the organism or nutrient

which the investigation is being focused on. SCIMAP has so far been applied with a

set of logically assumed land use weightings (risks) and also after inverse modelling of

salmonid fry data in the Eden catchment (Reaney et al. In review).
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4.4 Risk delivery

The next step in the modelling process is concerned with the delivery of entrained

material to the channel. Reaney et al. (2007) and Lane et al. (2009) describe a method

of conceptualising a catchment’s connectivity as a series of points, each one of which can

be envisaged as having either a connected or disconnected state at any one time.

If the temporal scale in which this connected state is being considered is expanded then

the frequency and length of the connected time period of each point in the landscape

can be used to infer a distribution of connectivity. This distribution enables estimates

of the amount of material that will reach the channel if combined with knowledge of

how the temporal distribution is spatially structured around the catchment (Reaney et

al. 2007, Lane et al. In review).

In the case of entrained material delivery then the spatial structure refers to the method

of transport (predominantly overland flow) and thus means that if a point on the flow

path does not generate overland flow then this point becomes the controlling location

for all points upstream of this.

An established approach (Kirkby 1975, Beven & Kirkby 1979) for topographic wetness

index (TWI) is used within the SCIMAP framework to factor in the propensity of

each point in the landscape to generate overland flow. The Kirkby TWI expresses this

propensity as a ratio of UCA per unit contour length draining through a single point in

the landscape and the tangent of the slope and is assumed to represent the hydraulic

gradient (Beven & Kirkby 1979). Lane et al. (2004) refer to the lowest value of the TWI

along a flowpath as the “network index” (NI) (a measure of the propensity to vertical

flow in a catchment) (Lane et al. 2004).

During rainfall events, a greater number of points in the landscape catchment will be-

come connected (more runoff will be generated), the reverse happens as the catchment

dries up after the rainfall event. To this end, a point with a higher network index value

is likely to be connected for longer periods of time than those points with lower network

index values (Reaney et al. In review).

SCIMAP assumes that the controlling factor in overland flow generation is the local

topography and therefore there are two options for mapping the network index onto the

duration of connection (Reaney 2008); firstly a probability density function of all the

network index values within the catchment (using the rank NI value as a delivery index).

Secondly the percentage of time that a point in the catchment landscape is generating

overland flow can be used to assign this point a relative risk value. Both these methods

have their disadvantages; the first method represents only relative network index values
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and does not consider the frequency or magnitude of connection periods. The second

method as well as being more computationally intensive brings a return to the problems

of calibrating models without sufficient data (Reaney et al. in review). A third method

is used within the SCIMAP framework; it is assumed that there is a linear relationship

when mapping NI to connection duration between the largest and smallest 5% of NI

values (i.e. always connected and never connected values).

This connection probability is used as the delivery index (DI) for entrained material.

Lane et al. (in review) have shown that this method performs admirably when compared

to a distributed physically based hydrological model and contains significant information

about the probability and duration of hydrological connection periods.

The next stage in the SCIMAP model is to calculate a location risk pi
gc for each point

in the landscape.

pi
gc = pi

g . pi
c

This at-a-point locational risk is assumed to be the sum of all upstream risks and thus

a risk loading value can be calculated as:

Lj =
j∑

i=1

pg
i · p

c
i

Where j is the number of upslope contributing cells at that point. This calculation

however does not factor in the differences in environmental impacts which could result

from differences in UCAs (i.e. large loading values from a small UCA could have more

serious environmental impacts than similar loading values from larger UCAs) (Reaney

et al. in review). Each loading value is then scaled to the UCA to calculate risk loading

per unit area (Cj):
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Cj =

j∑
i=1

pg
i · p

c
i

j∑
i=1

ai · ri

Where ai is the cell size and ri is the rainfall weighting factor. UCAs are weighted

according to upslope contributing rainfall based on the Met Office Long Term Average

(LTA) datasets (Perry & Hollis 2004).

4.5 SCIMAP: Process flow diagram

Figure 4.1 shows the different stages involved in producing a risk map using the SCIMAP

model framework. The three required data inputs (DEM, landcover and rainfall data)

are shown at the top, and each of the boxes below represents a data layer which is

computed by the model. Each of these layers is produced and saved as a readable file,

which can be inspected using a GIS package. Thus, in the event of surprising results, or

simply for extra analysis it is possible to interrogate each of these layers individually at

any time.

4.6 SCIMAP: Current status of model

To date the SCIMAP model has been applied in the River Eden catchment with two

datasets; (1) the original application of SCIMAP used expertly judged a priori values for

erodability of different land uses within the catchment which were then combined with

the connectivity analysis to generate risk maps and, (2) inverse modelling of salmonid fry

populations in the catchment were used to generate a different set of land-use weightings

(Reaney et al. in review). This research takes observed water quality data and uses

inverse modelling techniques to pinpoint which parts of the catchment are likely to be

responsible for the observed nutrient data. The next chapter examines the characteristics

of the River Eden catchment which will be used for testing the modelling approaches

developed in this research.

‘



SCIMAP 24

DEM Rainfall
 Pattern

Land Cover

Slope

Stream PowerUpslope Area

Channels
Classical Wetness
          Index

Erodability

Point Scale
     Risk

Route risk through 
catchment (concn 
      and dilute)

Risk Map

Surface Flow
      Index

(Connection Risk)

Figure 4.1: SCIMAP model stages (SCIMAP project website:
http://www.scimap.org.uk)



Chapter 5

The Eden Catchment

This chapter looks at the characteristics of the River Eden catchment in the North

of England and concludes that it is an ideal testing ground for the SCIMAP diffuse

pollution modelling framework.

5.1 Overview and land use

The total area of the catchment is 2400km2 and includes the major rivers of the Eden,

Eamont, Irthing, Petteril and Caldew. The Eden catchment is predominantly rural with

95% of the total area classified as agricultural or rural, and only 1% classified as urban

according to the CEH land cover map 2000. The total population of the catchment is

approximately 240,000 in 2005 according to the Environment Agency Eden Catchment

Flood Management Plan with the main population centres being Carlisle and Penrith.

Figure 5.1 shows the boundaries of the River Eden catchment, the major rivers and the

population centres within the catchment.

5.2 Topography

The upper reaches of the catchment are characterised by the steep slopes of Skiddaw

and surrounding fells. The lower reaches towards Carlisle are characterised by wide,

shallow valleys. The fells exceed 950m at the upstream extents of the catchment and

remain high along the catchment boundary. Kirkby Stephen marks a change in the

rivers character and the steep tributatries disappear and the river valley widens as it

travels through Appleby and onto Carlisle.

25
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Figure 5.1: River Eden Catchment
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5.3 Geology

At the upstream end of the catchment, the higher moorland areas are underlain predom-

inantly by Millstone Grit. Between Kirkby Stephen to Carlisle, this changes with two

main lithologies; the areas to the West of the main Eden channel is made up mainly of

sandstone and mudstones. The areas to the East of the River Eden and also surrounding

Carlisle consist mainly of Carboniferous limestones.

Geology plays an important part in the response of the catchment to rainfall events.

In the south and east of the catchment there are numerous steep tributaries which are

underlain by sandstone. This promotes rapid run-off and can cause the rivers to rise

quickly after heavy rain. Downstream of Carlisle, the low relief is underlain by mudstones

from various eras. The western part of the catchment is dominated by the metamorphics

of the Borrowdale Volcanic Group and Skiddaw slates. This geology would normally

promote rapid run-off, however the large lakes (Ullswater and Haweswater) dampen this

potential and thus the contribution to catchment hydrology made by the lithology is not

as large as it might otherwise be (Environment Agency 2008).

5.4 Catchment hydrology

In the upland parts of the catchment, such as the source of the Eamont at Hellvellyn,

the average annual rainfall exceeds 2800mm. Around Carlisle this figure is much lower

than than the rainfall recorded in the mountainous areas and averages 760mm per year.

The combination of plentiful rainfall and rapid run-off caused by the topography and

geology (especially between Kirkby Stephen and Carlisle) results in quick responses

from the channels after heavy rainfall. The tributaries upstream of Kirkby Stephen are

particuarly steep and their rapid run-off regimes can cause the main channel to rise

quickly after heavy rain. Figure 5.2 shows the gradients of the main river channels

within the Eden catchemt.

The geology and hydrogeology of the catchment combines with the topographic char-

acteristics resulting in rivers with water levels that rise quickly after rainfall. In the

upland tributaries upstream of Penrith in the Eamont catchment, average annual rain-

fall exceeds 2800mm on Helvellyn. Around Carlisle and on the coastal fringe, this is

reduced to about 760mm. The average annual rainfall for England and Wales is 920mm

(Environment Agency 2008).
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Figure 5.2: Gradients of main channels

5.5 Conclusion

The River Eden catchment was chosen for this research project for two reasons; (1)

the SCIMAP modelling framework has already been applied to the catchment (Reaney

et al. in review) and thus this research can be directly assessed against existing model

outputs and, (2) the large spatial area of the catchment combined with the variety

of land uses (in a largely rural environment) make it an ideal testing ground for the

SCIMAP risk modelling approach for pin-pointing the sources of diffuse pollution within

the catchment.



Chapter 6

Creating a dataset for inverse

modelling

The SCIMAP framework offers two methods of assigning risk weightings to different

land uses within a catchment; the first being a priori values based on logical assessment

of the erodability potential of differing land uses, and the second by using a nutrient

dataset to calculate weightings based on an inverse modelling approach. The end result

is the same for both methods; a series of risk values ranging between 0 and 1 for the

land uses within the catchment, which are used to drive the SCIMMAP model.

6.1 Previous research

Research has already been undertaken in the Eden catchment using inverse modelling

(Reaney et al in review). This study used fish population data (salmonid fry) to infer

the land uses which were responsible for the spatial distribution of the fry population

within the catchment.

6.2 Background to research

Central to the operation of SCIMAP is the assumption that there is a spatially dis-

tributed land use signal which controls at-a-point water quality, whether related to

sediments, nutrients or indeed both. However, upstream of any signal monitoring point

will be a mosaic of land uses, each with differing levels of potential hydrological con-

nectivity to the receiving waters, and each with differing levels of potential risk export.

29
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Through time, this mosaic pattern will exert a complex impact upon the at-a-point time

series of phosphorus concentrations and loadings.

The aim of the inverse modelling is to determine how to calculate the weights that

each land use should be give, such that the SCIMAP model can adequately represent

time-integrated phosphorus loadings and concentrations in the channel network.

Immediately, this defines the twin data needs of the inverse modelling; (1) the data

must be representative of time integrated phosphorus concentrations and loadings; and

(2) it must be spatially distributed, in order to best resolve the land use weightings that

are most effective in discriminating the phosphorus characteristics at different locations

within the catchment.

6.3 Data sources and collection methods

The Environment Agency (EA) operates a national monitoring scheme for rivers and

canals known as the General Quality Assessment (GQA) scheme. Samples are collected

from 7000 sites which cover approximately 40,000km of rivers and canals. The GQA

scheme is designed to collect one sample per month however problems with data collec-

tion equipment mean that sometimes there are less than twelve per year collected. The

sites where data are collected are chosen based on local conditions at different reaches

of river and are often based on pressing ground characteristics such as where decisions

need to be made on land use changes or abstraction programs. Phosphates in rivers

are measured using the flow injection colorimetric method which is applied to unfiltered

water samples and processed with ammonium molybdate and potassium antinomyl tar-

trate and ascorbic acid as the reducing agent. The results are given as concentration

of orthophosphate in mgl−1. The EA also collect extra data in specific surveys or after

serious pollution incidents. However, the GQA database does not contain these extra

measurements in order to try and avoid bias.

In order to use the discrete phosphorus data collected by the EA within the SCIMAP

modelling framework, it is necessary to have a time integrated, spatially distributed

dataset of phosphorus concentrations throughout the catchment. The GQA database

provides excellent spatial distribution of data, however these data are not continuous.

Averaging these data has the potential to produce a result biased to the sampling period,

which may not be entirely suitable for use in the SCIMAP framework. This is due to

the sampling strategy of the GQA scheme, which is not designed to sample in such a

way as to be representative of hydrological variability.
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This research will use the GQA phosphorus dataset in two ways; (1) to drive an inverse

model to attempt to produce a flow weighted dataset for SCIMAP; and (2) the average

values for concentrations of phosphorus at each site will be used to drive the model

(without statistical modelling or improvement).

6.4 Calculating load (traditional method)

Concentrations of phosphorus vary depending on the discharge in the channels within

the basin. Simply averaging a series of concentration measurements is likely to lead to

unrealistic averages if major P fluxes are missed. Therefore a discharge weighting must

be factored in. The simplest equation for loading is:

L = C ×q

where L is the load in gs−1, C is the concentration of nutrient (mgl−1) and q is discharge

(m3s−1).

If sufficient data are available then it is possible to use the instantaneous discharge and

concentration measurements to calculate the loading value. If both flow and concentra-

tion are measured continuously then the loading estimate will be minimally affected by

the changing discharge in the river over time. However if the sampling resolution is lower

(even weekly) then the error involved with this approach can be extremely large (Johnes

2007). This is due to the highly episodic nature of phosphorus transport within rivers

which is controlled by high flow conditions. Therefore the probability of missing a major

nutrient (pollutant) flux event could be very high. Missing the event would happen if

the timings of the measurements did not coincide with high flow events. For example

Walling and Webb (1985) state that 60% of the overall sediment load was transported

in 2% of the time in their review of the discharge of contaminants to the sea in the River

Exe catchment. A similar study in the Cessnock catchment of Scotland reported that

conventional spot sampling would have missed 87% of the phosphorus transfers that

their designed nutrient study collected (CIWEM 2004).
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Statistical regression models can be used as an alternative basis of loading calculation

where there are not sufficient data for the direct estimation technique to be applied (e.g.

Asselman 2000). An empirical relationship - a rating curve - is derived from the temporal

point samples where both flow and concentration are recorded and used to predict the

concentrations where only flow was recorded. A load prediction can then be calculated

by using the direct estimation method with the predicted data for concentration and

the measured data for the discharge.

However, as with all modelling techniques, caution must be applied to ensure that accu-

racy is improved and not reduced with use of statistical techniques. Firstly and perhaps

most importantly is the choice of regression model. A poorly fitting model (i.e. linear

model on non-linear relationship) could produce a severely biased load estimate (e.g.

Ferguson 1986). Where flow is the dependent variable it is important that the model is

tested for extreme highs and lows to see whether the predicted concentrations produce

anomalously high or low concentration estimates.

In order to achieve maximum accuracy with this modelling an amended version of the

Tarras-Wahlberg & Lane (2003) simulation will be used. Using a Monte-Carlo based

simulation should prevent the issues of unknown bias which arise when fitting rating

curves between discharge and a variable (e.g. sediment, nutrient concenrtation) in log-

log space.

6.5 The Tarras-Wahlberg and Lane method

Tarras-Wahlberg and Lane (2003) applied a novel combination of traditional rating

curves with a Monte-Carlo simulation to estimate suspended sediment yields within the

Puyango river basin in Ecuador in their study of transport of contaminated sediments

as a result of mining operations in the basin. This approach was necessary because of

the lack of frequent and good quality data on sediment yields; a similar problem faced

in the UK as a result of the monthly measurements of nutrients in the GQA dataset.

The term “Monte-Carlo method or model’ refers to a large ranging and widely used

variety of approaches to mathematical and physical modelling. The technique can be

broadly summarised as follows:

• Define a domain of possible inputs.

• Generate inputs randomly from the domain, and perform a deterministic compu-

tation on them.

• Aggregate the results of the individual computations into the final result.
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In the Ecuador research, each of the discharge measurements were much more frequent

than the concentrations of suspended sediments to LOWESS (also known as locally

weighted scatter plot smoothing) rating curves were applied to each daily discharge in

log space giving an estimated value of ln(C). The normal distribution of the residuals

allowed the standard deviation (SD) for each estimated ln(C) to be calculated.

A Monte-Carlo simulation (250 iterations) was used to simulate ln(C) values for each day

based on the recorded discharge; this enabled the uncertainty to be propagated through

to the annual estimates of suspended sediment yield and also holds the advantage that

no correction factors need to be applied when the ln(C) value is converted into real

space, because the Monte-Carlo simulation takes place in log-space (Tarras-Wahlberg &

Lane 2003).

Figure 6.1 summarises the Monte-Carlo methodology used in the Ecuador study;

Annual yield

Relevant Lowess fit 
between ln(c) and 

ln(Q)

Simulation of possible ln(C) given
estimated ln(C) and associated

standard deviation

Distribution of annual yield 
estimates gives uncertainties in 

Lowess rating curves

Estimation of ln(C) and associated
standard deviation for a given

ln(Q)

250
iterations

Determination of simulated daily
load (CQ) after transformation of

ln(C) to C and ln(Q) to Q

Daily for
hydrological 

year

Figure 6.1: Monte Carlo method used in Puyango basin study (Tarras-Wahlberg and
Lane 2003)

• Measured field data was used to establish relationships between suspended sedi-

ment concentration (C) and discharge (Q) for the Puyango basin were established

with the LOWESS (locally weighted scatterplot smoothing) method used as the
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framework for the relationship. This method was chosen in the Ecuador research

because it (1) makes no assumptions as to the form of the relationship (Lane et

al. 2003) and (2) is ideal for use in a non-linear relationship (Hicks et al. 2000).

• The established relationships between lnQ and lnC enabled an estimate of lnC

(and the associated SD) to be made for any value of lnQ which in turn allowed the

simulated daily load to be calculated (based on 250 iterations of sampling lnC).

• This process was repeated for the hydrological year and resulted in a simulated

annual suspended sediment yield.

• A range of annual yields could then be produced which took into acount the

uncertainty associated with the LOWESS method (Lane et al. 2003).

6.6 Data sources for Monte-Carlo simulation in the Eden

Catchment

The data requirements for the loading calculations are two fold; firstly a series of phos-

phorus concentration measurements distributed around the catchment with the date,

time and concentration in mgl−1 for each site and secondly a set of discharge measure-

ments which can be used to match the phosphorus data consisting of date, time and

discharge in mgl−1. In order to calculate discharge weighted phosphorus values (either

loads or concentrations) it is necessary to have discharge data for the same point in the

river.

In an ideal situation both measurements would be taken from exactly the same point in

the channel, however in reality this is not the case. In the Eden catchment the majority of

the discharge measuring stations are located on the main channels of the Eden, Eamont,

Petteril, Irthing and Caldew whereas there are many nutrient measuring points located

on the smaller channels and tributaries. This immediately presents a problem of whether

the data from those P stations can be used in the simulation because of a lack of suitable

associated discharge data. The map below (Figure 6.2) details a section of the upper part

of the catchment showing the difference in concentration between sites where nutrient

data are available, and those where discharge data are available.
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Figure 6.2: Comparison of nutrient and discharge data availability

The following sites were selected for testing with the Monte-Carlo simulation because

of their proximity to available discharge data: (See Figure 6.3 for their locations within

the catchment).

1. River Eden upstream of Kirkby Stephen.

2. Swindale Beck at Hall Garth.

3. River Belah at Belah Bridge.

4. Scandal Beck at Soulby.
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5. Brampton Beck D/S Brampton.

6. River Irthing at Newby East.

7. River Eden at Warwick Bridge.

8. Eden at Beaumont.

9. River Eden at Sheepmount.

10. River Eden at Eden Bridge.

Figure 6.3 shows the locations of the points in the catchment where the Monte Carlo

simulation was applied. (The numbers on the map relate to the numbered list of locations

above).

This low number of sites was used because of the lack of availability of suitable discharge

data for using on the multiple points where nutrient data is available which were located

on smaller tributaries. When these sites were tested with the Monte-Carlo simulation

they often produced negative values for estimated concentration. Although it was clear

early in the study, that the small number of suitable sites would mean that this dataset

would not be appropriate for using to drive an inverse model across the entire Eden

catchment, it was decided to use the simulation for the ten sites where good data was

available. By assessing the technique here, it is available for use in the future when more

discharge data are available.

The next task in the simulation methodology was to extract the data from the water

quality (GQA) database into a useable form for the modelling. The database is originally

in the Microsoft Access format and so firstly all the records for the Eden catchment

were exported into a CSV (comma separated value) file. In the interests of platform

compatibility and not being restrained by specific software, a MySQL database was

created and the data file was uploaded into this database.

MySQL was chosen because as well as being licensed as Open Source, it interacts very

well with the PHP scripting language and thus the data can be accessed, manipulated

and exported by PHP driven web-pages, meaning that the system can easily be adapted

and used for other catchments in the future. To access the data required for the inverse

modelling work a series of dynamically driven PHP based web pages were constructed

which populate a drop down box with the names of all the sites for which data is available

in the catchment. Upon selecting one of the locations a query is executed on the database

which extracts all the available records for that site, selects the required columns (date,

time, and value in mgl−1) and exports them as a CSV file for use in modelling. This
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Figure 6.3: Locations used in the Monte Carlo simulation

technique facilitates easy access to a dataset which was once both locked to a platform,

and proprietary software, a situation not conducive to modern scientific research.

The discharge data were also supplied by the EA and were prepared by Ian Pattison

at Durham University as part of an ongoing research project into high and low flows

and flooding in the River Eden catchment. The data are collected at 15 minute periods,

although there were some gaps in the time series where faults with monitoring equipment,

or communication breakdown resulted in missing data.

To correct these and get a complete record some interpolation was needed. A Visual-

Basic macro was written which first dealt with creating the missing time slots by way of
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a loop which examined the time between each value. If this was not 15 minutes then a

row was inserted and the time filled in (i.e. 15 minutes after the preceding value). The

loop was broken when the next time in the dataset was the correct value. The macro

then looked at the two known values either side of the missing values and averaged them

to enable a simple interpolation to fill in the gaps.

6.7 Flow weighting methodology

The technique applied in the Eden catchment essentially takes the same form as the

Tarras-Wahlberg & Lane (2003) method with some modifications. Firstly the LOWESS

regression method was not considered suitable because of the lack of data available;

instead a log-log curve was fitted to the phosphorus concentration and discharge data

and then the prediction uncertainty around that curve was used to repeatedly sample for

possible values of phosphorus concentrations for a given (measured) discharge value (i.e.

the Monte-Carlo method). Figure 6.4 shows the stages in the Monte-Carlo simulation

used in this study.

For each site:
Q records
P records
Q wave velocity
UCA of P site
Distance between P and Q

Match pairs of 
P and Q data

4d array of 
  P data

P loading and
concn. values 

and stats

QC statistics 
for

relationships

Thin Q data to
hourly records 

Regression relationship
for measured values at 

each location

Apply relationship to
each Q time series

Figure 6.4: Monte-Carlo method used in the study
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Table 6.1: Measured versus simulated means (P)
Site Measured mean P concn. Simulated mean P concn.

Eden U/S Kirkby Stephen 0.016 0.003
Swindale Beck at Hallgarth 0.016 0.003

Belah at Belah Bridge 0.016 0.003
Brampton Beck D/S Brampton 0.016 0.003

Irthing at Newby East 0.016 0.003
Eden at Warwick Bridge 0.016 0.003

Eden at Beaumont 0.016 0.003
Eden at Sheepmount 0.016 0.003
Eden at Edenbridge 0.016 0.003

The resulting range of estimates for phosphorus at that given discharge value were

then either averaged for a mean concentration value or multiplied by the discharge and

subsequently averaged to give a mean load and standard deviation. This all takes place in

log space thus avoiding the problems of traditional rating curve methods of not knowing

the exponent that Q is raised to a priori which leads to a biased rating curve.

A key part of the simulation is determining the number of iterations needed to obtain

the most accurate estimates of phosphorus loads and concentrations. The number of

iterations is a parameter which is set in the MATLAB code before the simulation is run.

The MATLAB code was modified to write the values of estimated phosphorus load of

each iteration into a variable for 1-100 runs in order to assess the numer of iterations

which were needed.

The residuals of the means for the four tested sites were calculated and plotted (Figure

6.5) to show the change in variation of the estimated loads as the number of iterations

increased. Even though the variations shown in the early stages of the plot (i.e. from

1 to 40) are negligible there is no discernable variation after forty iterations. As the

processing time and computing power needed to run forty simulations is also perfectly

feasible on a reasonably powered Desktop PC there is no reason to run at less than this

number of iterations, and certainly no reason to perform the simulation more times as

there would be no discernable improvement in data output.

6.8 Results of Monte-Carlo simulation

The results of applying the Monte-Carlo simulation to the ten sites where suitable data

are available are shown in Table 6.1. The sites can be referenced on the map in figure

6.3.



Creating a dataset for inverse modelling 40

Figure 6.5: Residuals of means (testing the Monte Carlo simulation)

With such a small sample size, it is difficult, and perhaps not very useful to over analyse

these results. The issue of how phosphorus behaves during and after rainfall events is

also a pertinent factor here. Research has shown that high rainfall intensity storm events

(¿9 mm per hour) can account for the majority of annual phosphorus loss from arable

land (Fraser et al. 1999). What can be done however, is to look at the technique and

potential future application. Tarras-Wahlberg and Lane used a similar technique (one

which formed the basis for this study) to great success in the Puyango basin in Ecuador,

and there is no reason why this simulation (now developed and adapted for nutrients)

can not be used in the future, should the data availability issue be overcome. In the

future, if this technique is to be developed and continued, the issue of ensuring that the

raw data captures any such major storm events will be important.
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6.9 Data Availability

Spatial distribution: The GQA database provides excellent spatial coverage of measuring

sites within the catchment (see Figure 6.2 for an example in the upper part of the

catchment where this is highlighted). As discussed in Section 6.4, the two data points for

C and q would be in exactly the same place, both temporally and spatially. However, the

current available discharge dataset has poor spatial coverage of the catchment, altough

it is at an excellent resolution for the modelling.

UCA ratios: The Monte-Carlo simulation takes the lack of spatial correlation between

the q and C measurements into account by using the relationships between the upslope

contributing area (UCA) for the data pairs. The ratio between the two UCA values

is used as a conversion factor when estimating the exponent that Q needs to be raised

to. The simulation was tested on data where there were multiple nutrient data points

on smaller tributaries to the main channels in the catchment. The UCA ratio is very

small in these cases, which can lead to the simulation calculating negative values for the

concentrations. This returns to the problem of a lack of discharge data.

6.10 Conclusion

Unfortunately there was a lack of suitable discharge data to apply the Monte-Carlo

simulation across the whole of the River Eden catchment and make use of the nutrient

data set which has excellent spatial coverage of the whole catchment. However, in the

interests of applying the technique in the future, and also to assess the quality of the raw

GQA measured data it was decided to use the Monte-Carlo simulation on ten suitable

sites.

The simulation produces reasonable results for the sites where it was possible to test it,

and some issues with the process were highlighted. Thus, should more discharge data

become available, this technique could potentially provide a valuble method of improving

theEA GQA dataset.

In the absence of a suitably spatially distributed flow weighted dataset the next chapter

details how the GQA dataset was used to drive an inverse model to determine which

land uses within the River Eden catchment are responsible for the observed in-stream

nutrient levels.



Chapter 7

Application of SCIMAP in the

River Eden catchment

This chapter looks in more detail at the data sources (and associated processing) which

are required for the SCIMAP risk modelling framework. It also details and examines two

different SCIMAP model runs: (1) using logical erodability weights (the a priori expert

judgment method), and (2) using land use weightings obtained from inverse modelling

of measured water quality data in the form of phosphorus measurements from the EA

GQA database.

The SCIMAP risk modelling framework requires the following data sources: (1) topo-

graphic data, (2) landcover data and (3) rainfall intensity data. One of the underlying

ethoses of the SCIMAP project is that the data must be readily available at a national

scale so that the framework can be distributed and applied in different catchments across

the UK without the need for extra costly, time intensive and unrealistic data collection

programs to be implemented before the mapping framework can be used.

7.1 Data sources and pre-processing

The topographic data used are the Interferometric Synthetic Aperture Radar data pro-

duced by InterMap (more commonly known as NEXTMAP data). This is supplied at a

resolution of 5m with a stated vertical precision of +/- 1m. The InterMap DTM (Digital

Terrain Model) product was selected for use in the research, as opposed to the digital

surface model (DSM) product they supply. The DTM processing has a tendency to

smooth topography, but it is a much more suited product for lowland areas (Milledge

et al. 2009). This is essential in a diffuse pollution investigation in the River Eden, as

42
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these are the areas where agriculture is likely to be concentrated, and thus a likely major

contributing area to diffuse pollution.

Several different processing steps are required before this topography data can be used.

It is necessary to calculate the upslope contributing areas (UCA) of each point in the

landscape so that the diffuse pollution can be diluted: to do this the pits and depressions

in the DEM need to be filled in order to enable both the UCA calculations and also flow

routing to take place. The Planchon-Darboux (2001) algorithm is used for this. An

important note to add is that the processed DEM (i.e. pits filled) is only used for UCA

and flow routing and not for other variables which are calculated during the model run

(such as slope). This important differentiation means that the role of depressions and

pits in the landscape as water storage mechanisms can be included whilst ensuring that

their UCAs and flowpaths are accurate (Reaney et al. in review).

It is also necessary to clip the DEM tiles to the catchment boundary to ensure that

streams and channels which are not part of the River Eden catchment do not remain in

the topography grid. If they remain in the grid then a risk of 0 is often diluted back into

the main river catchment and gives erroneous results. To ensure this does not happen a

50m buffer was added to the catchment boundary layer in ESRI ArcMap and the DEM

clipped to this.

The landcover data were supplied by the Centre for Ecology and Hydrology (CEH) in the

form of the Landcover Map of Great Britain (2000). While this dataset has its problems

(the main one being it is now eight years old) and most likely does not accurately

represent agricultural land use (which of course is the main scope of the SCIMAP risk

mapping framework), the lack of a suitable alternative means the LCM2000 is used in

the model. The data comes at a spatial scale of 30m and is resampled to the same scale

as the model is to be run at (10m in the case of the River Eden catchment) using the

nearest neighbour algorithm.

The rainfall dataset is taken from the UK Meteorological Office long term average (LTA)

annual dataset (Perry and Hollis 2004). Again the nearest neighbour algorithm is used

to interpolate the coarser scale which it is supplied at to the finer model run scale.

7.2 SCIMAP computing: hardware / software

The SCIMAP risk mapping framework is coded in the C++ language and takes the form

of a custom module in the SAGA (System for Automated Geographical Analysis) GIS

framework (http://www.saga-gis.org). SAGA GIS was chosen for several reasons: (1)

it has excellent grid handling capabilities, (2) it comes with key hydrological processing
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tools (e.g. Planchon-Darboux 2001) which are used in the pre-processing of the topo-

graphic data and (3) it is open source and therefore free to use making it an extremely

viable option in any large scale future rollout of the SCIMAP risk mapping tool across

the UK. The ESRI ArcGIS suite is also used to manipulate and process the data for

displaying and outputting in the form of maps, although there is no reason why other

GIS software (including open source alternatives) could not be used for this stage.

7.3 Modelling procedures

The first stage in applying the SCIMAP mapping framework is to prepare the input

datasets. As discussed earlier the initial stage is to resample the topography, landcover

and rainfall data to the same cell size, in the case of the River Eden catchment this is

10m as a balance of being at a fine enough resolution to represent hydrological processes

whilst remaining computationally realistic with the hardware and software available.

Each of these data layers is then converted to ASCII file format using the inbuilt tools

in ESRI ArcMap. This is the format required by SAGA GIS. The three input files are

then loaded into the SAGA GIS software (the SCIMAP tool is a bespoke module for

this software). The different landuses in the LCM2000 layer are classified by a three

digit number which is assigned by CEH. The SCIMAP tool requires these landuses to

be reclassed into a risk weighting of between 0 and 1. In the first model run logical

erodability weights were assigned based on the expert judgment values previously used

in the River Eden (Reaney et al. in review). For example urban areas are given a

weighting of 0.01 and improved pasture is given a value of 0.3.

The SCIMAP module within SAGA GIS tool then takes the three input layers and

creates new layers by analysing various topographical features and multiplying layers

together.

The different stages involved in computing the final risk maps are detailed in Figure 7.1

(Reaney et al. in review).

7.4 Using inverse modelling within the SCIMAP frame-

work

As discussed in Chapter 6 the lack of suitable discharge data meant that undertaking

Monte-Carlo simulations to give estimates of flow weighted nutrient concentrations over



Application of SCIMAP in the River Eden catchment 45

DEM Rainfall
 Pattern

Land Cover

Slope

Stream PowerUpslope Area

Channels
Classical Wetness
          Index

Erodability

Point Scale
     Risk

Route risk through 
catchment (concn 
      and dilute)

Risk Map

Surface Flow
      Index

(Connection Risk)

Figure 7.1: SCIMAP model stages (SCIMAP project website:
http://www.scimap.org.uk)

the entire catchment was not possible. Despite the potential problems of the raw ob-

served GQA data not being temporally rich enough to suitably capture major nutrient

fluxes it was decided to use this dataset and compare it to the results obtained when

using the logical erodability weights.
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7.5 What is inverse modelling?

Inverse modelling is a technique which is commonly used in the physical sciences to esti-

mate quantities that are directly or indirectly related to the measured quantity (Taran-

tola 2005). It is commonly used in climate science research as a tool to estimate the

concentration of atmospheric trace gases from the absorption features of the atmosphere

(Huang et al. 2008, Meirinik et al. 2008).

Lane (2008) suggests that inverse modelling (IM) may have an important role to play

in future hydrological models. In his text “What makes a fish (hydrologically) happy?

A case for inverse modelling” he suggests that by using IM techniques we can allow

the organisms to tell us which processes matter to them and thus use observed data to

conceptualise and also validate the process cascade in a new way (Lane 2008). Inverse

modelling provides an ideal technique for the case of modelling diffuse pollution in the

River Eden as it allows work to be carried out with the data which is available, rather

than attempting to find enough suitable data for a more complicated model.

7.6 Applying an inverse modelling technique to phospho-

rus data

The aim of the inverse modelling process for use in the SCIMAP mapping framework is

to use different randomly assigned land use weightings and determine which best match

the observed water quality data in the River Eden. The technique follows the simplified

version of the one used in the study of salmonid fry populations and diffuse pollution in

the River Eden (Reaney et al. in review).

The diagram below (Figure 7.2) shows the steps involved in the inverse modelling. The

measured chemistry data is included in the form of a mean value averaged over the

entire duration of the sampling period from the GQA database which is added to the

X-Y location of the sampling site. All this inverse modelling was undertaken in The

Math Work MATLAB software package. Firstly each different landuse unit within the

catchment area is assigned a random risk weighting (between 0 and 1) (the random

landcover grid). This layer is added to the connection grid to create a combined landcover

and connection grid. This is done for 30,000 different random land use weightings.

The risk concentration value (i.e. after the combined risk and connection grid has been

routed and diluted according to the connection grid) can then be calculated for each

point in the catchment. The correlation between these points, and those where there is

measured chemistry data (i.e. all the sites where mean phosphorus concentration has
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been sampled is then plotted for different land uses within the catchment. The resulting

plots then show the contribution that different land uses within the catchment have

made to the observed water quality.

Connection Grid Landcover Classes
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Figure 7.2: Inverse modelling of phosphorus data

7.7 Accounting for uncertainty

In order to account for uncertainty within the inverse modelling process, the standard

deviations of the means of the GQA dataset were used. At the point where the corre-

lation between cells containing measured nutrient data and those containing predicted

risk (the second to last stage in Figure 7.2) the model takes into account the value of

the standard deviation divided by the mean for each cell with observed data (σ/x).

A low (σ/x) value relates to a low standard deviation relative to the mean, and thus

this point is given more weighting in the final plots and the land uses associated with

this observed data point are subsequently rated more highly.
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7.8 Inverse Modelling results

The outputs from applying the inverse model to the GQA phosphorus dataset and

including the uncertainty weightings are below. Analysis and explanation of these plots

is given in Section 7.9.

7.9 Inverse modelling: analysis and explanation

The inverse modelling process produces two visual outputs; (1) a dotty plot and (2) a be-

havourability analysis plot. The dotty plot shows predicted variables against individual

parameters (in this case different land uses) for each simulation. The behavourability

analysis is much more useful for this research as it can be used to assign a relative risk

value to the different land uses within the catchment.

The plots are used to derive relative risk values for each different land use which form

the erodability risk parameter in the SCIMAP framework. The plots are interpreted as

follows;

(1) The x axis shows the correlation between observed nutrient concentrations and pre-

dicted nutrient concentrations of individual data cells (computational units) within the

catchment. At x = 0 it can be said that the whole sample of cells has a correlation

better than 0 and thus each starts with a generic mean and wide SD (corresponding to

the dotted lines) bands on the y axis.

(2) The relative risk value should be read off as the correlation between the observed

and predicted increases, however a caveat does apply; as the correlation increases, the

sample size decreases, resulting in the SD bands also becoming narrow to the point of

matching the mean value. This is a quirk of the modelling code and presents no issue

as long as it is noted when interpreting the plots.

(3)The general trend of the line should be used as an indicator of what the relative risk

value should be (i.e. any step changes as correlation increases should be treated with

caution and a likely due to anomalies within the dataset).

(4)Broad SD bands (around 2.66) suggest the land use is unimportant and thus if they

remain broad as correlation increases (noting the caveat above in (2) above) then it can

be interpreted that the landuse in question is not a major contributor to the observed

levels of nutrients in the river.

Based on the interpretation guidelines outlined above, the following interpretations are

made;
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Figure 7.3: Outputs from inverse modelling of GQA data using uncertainty weightings
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(1)Improved pasture: the plot shows a largely flat mean line as correlation increases

from 0 to 0.3 where it sharply decreases towards a low land use weighting. However

the SD bands remain wide as correlation approaches 0.45 and thus suggest this land

use is not as important in the catchment. A low risk value can therefore be used in the

SCIMAP model.

(2)Extensive grazing: this plot contrasts with the previous plot in that the SD bands

quickly narrow as correlation increases which suggests that there is an excellent con-

fidence in how the model is treating extensive grazing. The mean line has a general

increasing trend with the SD bands becoming very narrow from around 0.35 correlation.

A low relative risk weighting will be given to this land use in the SCIMAP model. The

same applies to moorland as it follows the same pattern.

(3)Peat: this plot is very similar to that of improved pasture although it results in

a slightly higher land use weighting of 0.2. The step change and broad SD bands as

correlation increases suggests a slightly lower confidence in the models treatment of

peat, and thus a slightly lower value will be assigned to this value.

(4)Urban areas: this plot shows a gradual increase in the mean land use weighting as

correlation increases however the SD bars remain broad. The large step change when the

correlation reaches 0.45 should be treated with caution. It is most likely a point source

signal from sewerage treatment works located near urban areas which is contained in

the nutrient data and carried through into the inverse modelling. This fits in with the

extremely low logical a priori risk value.

(5)Arable: this plot shows an increasing mean land use weighting value as correlation

increases, and although there are some small step changes the SD bands do narrow, and

thus the suggested high land use weighting will be used. This fits with high logical risk

weighting assigned and makes sense; land which has been ploughed and probably treated

with additional nutrient based fertilisers or manures is potentially a major contributor

to in-stream nutrient increases.

(6)Woodland: this plot displays a decreasing trend with associated narrowing of the SD

bars before the inevitable narrowing as correlation approaches 0.5. Therefore a low risk

weighting will be used in the SCIMAP model.

(7)Lakes: this plot shows similar trends to the urban plot and although results in a high

land use weighting, such a value will not be used in the SCIMAP model. This is due

to the broad SD bands and the mean line on the plot not deviating from the original

generic mean of 0.5. Expert judgement suggests lakes should be given a relative risk

weighting of 0 and so agrees with the interpretation of this plot.
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Table 7.1: Table to show the risk weightings used in the SCIMAP framework.
Land Use A Priori Value Inverse Model Change

Improved Pasture 0.30 0.01 -0.29
Extensive Grazing 0.15 0.00 -0.15

Urban 0.00 0.01 +0.01
Arable 1.00 0.80 -0.20

Woodland 0.05 0.10 +0.05
Moorland 0.05 0.10 +0.05

Lakes 0.00 0.00 0

Thus, the final risk weightings to be used are as follows;

7.10 SCIMAP Risk Maps

The following figures are example outputs from different stages of the SCIMAP mod-

elling framework; figures 7.4 and 7.5 show intermediate data layers created during the

modelling process, and figures 7.6 and 7.7 are the final outputs from the model.

Attribute value Scale (km)

Network Index Soil Erodability

Figure 7.4: Network index and soil erodability - intermediate SCIMAP data layers
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Attribute value
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Erosion Risk
Map A

Erosion Risk 
with landcover
Map B

Figure 7.5: Erosion risk maps - intermediate SCIMAP data layers

7.11 Analysis of results

Even before the final outputs from the SCIMAP modelling tool are examined it is

possible to use information from the data layers created during the modelling process to

infer some of the properties of the catchment which might make certain areas more likely

to be responsible for generating or transmitting diffuse pollution around the catchment.

From the Network Index grid (Figure 7.4) which is in effect a representation of surface

flow connection risk (Reaney et al. in review) it is clear that the most highly connected

areas are in the low lying areas in the west of the catchment. The least connected areas

are found in the eastern hillslopes of the Pennines and the south-western Lakeland fells.

The soil erodability data layer (Figure 7.4) also reveals some clues about the likely

problem areas: again the greatest risk of soil erosion (and therefore associated nutrient

delivery via fine sediment) occurs in the lowland areas of the Eden catchment. The

areas with the greatest energy available to them for soil erosion (i.e. the stream power

index data layer) are found in the Pennine and Lakeland hillslope. This means that

the potentially serious combination of high erosion susceptibility meeting high potential

erosive energy is avoided within the catchment.

Further analysis of the data layers created by the SCIMAP tool can give us more infor-

mation: Figure 7.5 Map A is a combination of the landscape controls and connectivity of

the catchment (stream power, flow paths, rainfall) and shows which areas are most likely
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Figure 7.6: SCIMAP output based on logical erosion risk
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Figure 7.7: SCIMAP output based on inverse modelling results
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to be susceptible to soil erosion based purely on topographic analysis (i.e. no land cover

effects). These areas are mainly in the headwaters of the catchment. When landcover is

also included (Figure 7.5 Map B) then the areas most at risk of soil erosion are shown to

be within the main valley (River Eden) where there are large areas of arable farmland

which are well connected to the main channels.

The final stages of the SCIMAP modelling process add a dilution effect to the accumu-

lated risk to effectively give a risk concentration. The scalebar on the map runs green

through red in multiples of the standard deviation of the mean of the risk value. Where

this value is more than the mean (i.e. towards the red end of the spectrum) this shows

that the risk increases faster than the dilution effect can alleviate it, therefore the area

is identified as having a risky input to it. Conversely if the risk value is a lower multiple

of a standard deviation of the mean (going towards the green end of the spectrum) it

shows there are low risk inputs to the channels.

As seen in Section 7.9, the risk values for different land uses which are inputted into

the SCIMAP system are extremely similar, and match each other in terms of the overall

relative risk of each land use. For example, arable land is downgraded from 1.00 to

0.80 after inverse modelling, however this land use is still deemed to be the most risky.

Therefore, both maps produced from SCIMAP (figures 7.6 and 7.7) using the two sets

of risk values are very similar.

In order to quantify the differences between the two outputs some further processing

was undertaken. Firstly, each of the 195,686 individual risk points which make up the

maps were exported from the GIS package into a dataset of location (X and Y) and a

risk value. Once this operation was completed on both the maps a third map could be

generated, based on the differences between the risks at each location (Figure 7.8).

The area with most change (although it should be noted that the changes are of a small

magnitude) is between Carlisle and Penrith located on a small tributary of the River

Eden. This is shown as a cluster of dark red at approximately 348000,545000 on the

map. The CEH Landcover map of the area shows this section of the catchment is made

up predominantly of improved grassland, intensive grazing or hay / silage cut. This

land use was given a lower risk weighting in the values based on the inverse modelling,

and this area of change could reflect the reduction in risk which occurs as a result of

reclassing a large area of risky land. However, this pattern has not been reflected more

widely across the catchment.

Statistical analysis of the changes in risk between the two SCIMAP outputs shows just

how small any changes between the two maps are (Figure 7.9). This shows the majority

of changes between the risk values were very small (+/- less than 0.05).
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Figure 7.9: Comparing logical and inverse modelling relative risk change

In order to assess the differences or similarities between predicted risk within the catch-

ment and observed field data from the GQA scheme a plot was made of the means of all

the observed data points against their nearest predicted risk value. To calculate this the

NEAR command in ESRI ArcWorkstation was used to calculate and extract the nearest

predicted risk point to each of the measured data sites. A scatter plot was then plotted

and is shown in Figure 7.10. Although the R2 is low (0.14) there is a broad positive

correlation between the two. This is to expected as the plot does not compare like for

like; one axis is the means of raw field data (with associated uncertainty) and the other

is a relative risk value which has been scaled to between 0 and 1. The broad positive

correlation however, would be expected and suggests that the patterns of higher risks,

match the areas with higher nutrient levels.
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Figure 7.10: Relative risk versus observed field data



Chapter 8

Discussion and conclusion

The research objectives cited in Chapter 1 were as follows:

• Develop a technique to improve the quality of the available water quality data in

the River Eden catchment (Chapter 6).

• Develop and apply inverse modelling techniqes to water quality data to generate

risk values for land uses in the catchment (Chapter 6).

• Use the newly developed land use risk weightings within the SCIMAP modelling

framework to produce risk maps for the River Eden catchment (Chapter 7).

These objectives will be discussed in the following sections:

8.1 Improving the quality of nutrient data

The Monte-Carlo based simulation developed and used in this research project was

based on the approach by Tarras-Wahlberg & Lane (2003) in the study into suspended

sediment yield in Ecuador. In the case of this project the simulation aimed to estimate

flow weighted phosphporus concentrations from the Environment Agency datset which

consists of sporadic (monthly at best) but spatially rich (90 sites across the River Eden

catchment) phosphorus concentrations. These sites cover the main channels in the River

Eden catchment (Eden, Eamont, Irthing, Petteril and Caldew) as well as multiple smaller

tributaries.

This work was undertaken as previous investigations have shown that the majority of

phosphorus transfers take place in a short period of time (67% in 2% of the time in the
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River Exe catchment (Walling & Webb 1985)). Thus by matching known concentrations

with discharge at the sites across the River Eden, developing a regression relationship

for each of these and then applying the relationship across the duration of the discharge

time series it is possible to estimate the flow weighted concentrations (CIWEM 2004).

This method was successfully applied to ten sites across the River Eden catchment and

the results in Figures 4.8 and 4.9 show a clear reduction in variation (as measured by

standard deviation). Unfortunately there was not sufficient discharge data available to

apply this method across the whole of the River Eden catchment and make use of the

nutrient data for the remaining 80 sites. However the software code and background in-

frastructure (database) for storing the nutrient data remain in the hands of the SCIMAP

project team and thus can be applied relatively easily in the future.

This research finds that, despite some evidence in the literature (e.g. Walling % Webb

1985, CIWEM 2004) that suggests the regular time interval sampling which forms the

GQA dataset could miss many phosphorus transfer events, such data can provide a

suitable alternative for driving an inverse model.

8.2 Applying the inverse model

Inverse modelling techniques have already been used in an application of the SCIMAP

modelling framework in the River Eden catchment (Reaney et al. in review). Mean

values for phosphate concentration for each site where nutrient data was available (90

sites) were used and applied to a simplified version of the inverse modelling setup used

by Reaney et al. in review).

This method assigned risk weightings to all cells within the catchment based on their

landuse and connection probabilities and correlated the risk values for cells without nu-

trient data, and those with nutrient data (i.e. where the Environment Agency measuring

stations are). This method produces a series of risk values for different land uses within

the catchment over a simulation period of 30,000 iterations to determine which estimated

risk values best match the observed characteristics in the field. These risk weightings

can then be used as risk weightings within the SCIMAP modelling framework. Whilst

Lane (2008) puts forward a case for inverse modelling, due to issues surrounding data

availability and the principles of: (1) letting the affected organisms or environmental

indicator prescribe what hydrological processes need to be included in models; and (2)

keeping the modelling framework as simple as possible so nationally available data can

be used; it is worth noting here that the inverse model used in this research will only be
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as effective as the data which is used in it; which returns us once again to the issue of

whether the data from the EA GQA scheme is suitable.

However this GQA data was the best available within the timeframe and cost parameters

of this research and so has been included. Results from the inverse modelling match very

closely those risk values derived from expert logical judgment. For example, arable land

was asigned a slightly decreased risk value of 0.8 from its expert assigned value of 1.0.

This in many ways is reassuring. The expert judgment deemed this land most risky

and thus assigned it the highest possible value due to the likelehood of the land being

ploughed and exposed to nutrient applications. Inverse modelling of the phosphorus

data appears to have included the clear risk which arable land poses and has assigned

it a suitably high risk value.

8.3 Applying the SCIMAP model

With the new risk values for various land uses within the catchment generated from

inverse modelling it was possible to run the SCIMAP model with both the original

logical risk weightings and the new modelled risk weightings. The resulting risk maps

are very similar and do not show any obvious areas where there is a significant risk

change.

The SCIMAP framework has some clear attributes. Firstly it can be run using data

which is readily available to scientists at a national scale. Secondly once the pre-

processing of these datasets is completed the time taken to apply the model to the

River Eden catchment was less than an hour. The constraint on not using a finer spatial

resolution within the SCIMAP framework was not time or cost; it was software buffer

problems which caused consistent crashes. Preliminary investigations indicated that this

could be resolved by recompiling the SAGA-GIS and SCIMAP software to function on

more powerful 64bit computers.

The SCIMAP model outputs suggest that the most risky areas for in-stream water

quality within the River Eden catchment are in the main valley of the River Eden. The

model enables some characteristics of the catchment to be inferred before the SCIMAP

model run was completed, by analysing some of the grids produced during the earlier

stages of the modelling run. This analysis suggested the most likely areas of diffuse

pollution contribution were in the headwaters of the catchment (if landscape controls on

erosion and connectivity characteristics, stream power, flowpaths and average rainfall

intensity are considered). Once landcover was included in the analysis then the areas

shown to be most at risk are the arable farmland areas surrounding the main channel
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of the River Eden. This strongly suggests that landuse is the key controlling factor in

determining risky areas within the River Eden catchment.

8.4 Conclusions

Several conclusions can be drawn from these results:

(1) If these outputs were being used by stakeholders in water pollution, for example

Environment Agency or DEFRA officials, local rivers trusts and landowners, these people

would be advised by the maps to look at the same fields if they looked at either the

map driven by logical erosion weights, or the map driven by inverse model derived risk

weightings. This suggests that obtaining water quality data, processing it and then

undertaking statistical modelling may not be necessary, and land use combined with

local topography and rainfall data can be enough to highlight areas which need closer

examination.

(2) The lack of available suitable discharge data for the catchment and the forced use

of potentially unreliable phosphorus concentration data could mean that the results

of inverse modelling are unreliable and do not capture a vast amount of phosphorus

transfers. The resolution of nutrient concentration data that is available on the River

Eden pales into insignificance when compared to that which can be obtained using bank-

side monitoring equipment. Work has been undertaken in Northern Ireland (Jordan et

al. 2005) where equipment installed in a sub catchment of Lough Neagh is capable of

recording total phosphorus (TP) concentrations at a 10 minute resolution.

(3) Conversely the good correlation between the logical erodability and inverse modelled

risks could suggest that the low resolution data collected by the Environment Agency

as part of their GQA scheme captures enough data on phosphorus transfers to enable

risk mapping to be undertaken using the inverse modelling approach adopted here.

The next stage in applying the research conducted here, and future catchment studies

undertaken using the SCIMAP modelling framework should be to take the SCIMAP

output into the field and engage with stakeholders (the Catchment Sensitive Farming

officers, landowners, famers and Rivers Trusts) and examine the areas which the model

has deemed risky. Groundtruthing will enable us to determine what it is on the ground

which is causing the high risk levels and should provide better model validation data

than any computerised dataset.

If the SCIMAP framework is successful in identifying the areas at major risk to the

quality of water in the channels then there is little doubt that it provides an extremely
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cost-effective and realtively simple approach to identification of land use hotspots. With

the deadline for meeting the standards prescribed by the Water Framework Directive fast

approaching, I have no doubt that the SCIMAP tool could prove invaluble to Goverment

in their efforts to improve the quality of rivers in the UK.



Chapter 9

Recommendations for future

research

9.1 Nutrient data

As discussed the conclusion, both SCIMAP maps produced would result in people vis-

iting the same areas of the catchment to carry out further investigations in the field.

It would be useful to carry out the same processes that I have undertaken in the River

Eden catchment on a few more catchments (preferably with different hydrological and

topographic characteristics) to compare the risk map outputs and see if the patterns

remain broadly the same. This would perhaps negate the need to use measured nutrient

data to pinpoint land use hotspots, and instead use a simple combination of landuse

data and topography data, which is readily available at a national scale to highlight

areas which need further investigation.

9.2 Flow weighted concentration estimation

A second reccomendation relates to the flow weighted concentration work (Chapter

6). In order for this technique to be fully assessed and applied within the SCIMAP

modelling framework it is necessary to obtain more discharge data. This would enable

the remaining 80 sites within the catchment to be included, and thus a new set of land

use weightings to be generated by the inverse modelling technique.
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9.3 Public availability

Thirdly I would suggest that the outputs from the SCIMAP framework are integrated

with a new user-interface. It would be extremely viable to export the X and Y locations

from the SCIMAP model with their associated risk values and use simple software to

integrate them with the Google Maps system. Google Maps provides an unrivalled

public GIS system which includes satellite and terrain data as well as road and street

maps at a click of a button. Thus if the project was rolled out and used by stakeholders

and end-users it would be extremely easy to discuss the results and investigate further

from the office, house or meeting room.
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