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Abstract 

This study evaluates the ability of LiDAR, IKONOS and Landsat ETM+ data to provide 
estimates of forest structure in British upland conifer plantations. Little use has so far 
been made of these technologies in the UK, whereas in some other countries remote 
sensing has become integral to forest management systems. The aim of this thesis is to 
demonstrate the application of the selected remote sensing systems to provide up-to-
date and accurate information on key forest variables such as tree height, volume and 
density. Two upland conifer areas, located in south-west Scotland and north-east 
England, were used to develop and validate the regression models used to estimate these 
forest variables. 

The ability of L iDAR to provide an accurate measurement of the ground and canopy 
surfaces was investigated in densely stocked plantations, typical for commercial forestry 
in the U.K. The results show that, despite the dense nature of the forest canopy, 
sufficient laser pulses penetrate through to the ground to generate an accurate Digital 
Terrain Model (DTM). Provided that the ground surface is accurately defined, a point 
density of 2 retums/m^ wi l l enable measurement of tree height to be made. 

LiDAR-derived top heights were found to be as accurate as field-based measurements 
(RMSE of 0.57 m). LiDAR-derived top height is easily integrated with established 
Forestry Commission models to provide volume estimations. Tree density is not 
accurately estimated using LiDAR data (RMSE of 434 trees/ha). Results strongly 
suggest that predictive equations developed for top height can be transferred to other 
conifer forests. Furthermore, the relationship between field-measured top height and 
laser-derived top height appears to be stable across different conifer species. 

LiDAR data can be used to identify tree species in pure and mixed stands. Two 
methods were developed: the first used summary measures based on the laser height 
distribution and the second the near infrared intensity. These measures when mapped 
spatially can be used to classify areas by species and to identify areas of anomalous 
growth and wind damage. 

At a larger spatial scale, Landsat ETM+ and IKONOS data can provide height estimates 
up to the point o f canopy closure (approximately 10 m). LiDAR-derived height can be 
used in place of field-based measurements to drive reflectance-based models to estimate 
height from optical satellite data. The methods developed are transferable to other 
conifer forests that are managed in a similar way. 

The results from this thesis show that LiDAR, IKONOS and Landsat ETM+ data 
provide valuable and complementary information at a. range of scales and can assist 
managers to make more informed resource management decisions. 
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Notation 
Symbols are defined where they are introduced. The corresponding SI units are the 

metre (m), the nanometre (nm) the hectare (ha) the milliradian (mrad) and the second 

(s). Some of the more commonly used symbols are the following: 

(i) Notation: Forestry variables 

Variable Name 

dbh Diameter at breast height 

G Basal area 

h Mean height 

hdom Mean top height 

K Crown width 

Ka Crown area 

Kc Height to canopy base 

Kd Canopy width to tree diameter 
ratio 

Ki Crown length 

Percent green crown 

N Tree density 

^ Multiple coefficient of variation 

S.D 

Vol Total volume 

Description 

Tree diameter at 1.3 m above ground 
level. 

The cross-sectional area of all (living) 
trees in a compartment measured at 
1.3 m above ground height, expressed 
in m%a. 

Arithmetic average height of all living 
trees in the stand (m). 

The average height of the 100 trees of 
largest diameter per hectare (m). 

Crown width (m) 

Crown sectional area (m^/ha). 

Height from the ground to tree crown 
(m). 

Derived by division of A^̂ and dbh. 

Live crown height (m). 

Derived by division of Ki and h (%) 

Number of trees per hectare (trees/ha). 

Standard deviation. 

Forest stem volume >7 cm dbh 
(mVha). 
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(ii) Notation: L i D A R terms or derived variables 

Variable 

Cv 

denfp 

lall 

vegp25 

vegp50 

vegp75 

vegp90 

Kurtfp 

LKi 

LKy 

meanh 

pczero 

Skewjp 

Name 

Coefficient of variation 

Number first pulse returns 

Intensity all 

Vegetation intensity 25'*' 
percentile 

Vegetation intensity SO"' 
percentile 

Vegetation intensity 75"' 
percentile 

Vegetation intensity 90"' 
percentile 

Kurtosis 

LiDAR crown length 

LiDAR crown volume 

LiDAR mean height 

Percentage laser returns from the 
ground 

Skewness 

Description 

Relative dispersion of LiDAR-derived 
height distribution data. The ratio of 
standard deviation and mean and is 
expressed as a percentage. 

Number first pulse retums/m^. 

Mean near infrared intensity above 0.5 
m. 

Mean near infrared intensity above 
25"' height percentile. 

Mean near infrared intensity above 
50* height percentile. 

Mean near infrared intensity above 
75"' height percentile. 

Mean near infrared intensity above 
9(f height percentile. 
Extent to which a frequency 
distribution o f scores is concentrated 
around the mean or spread toward the 
endpoints. 

Subtraction of the highest first pulse 
return from the 20"' percentile height. 

LiDAR crown length multiplied by 
the percentage of canopy returns. 

LiDAR percentile that relates to field-
measured mean height. 

Number of ground returns divided by 
total number of returns. 
Measure of the asymmetry of a 
distribution. 
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(iii) Forestry terminology 

Definitions of common terms used in UK forestry that may not be widely used in other 

countries. 

Compartment 

Mean top height 

Yield class (YC) 

Primary management unit used in forestry. 
Typically, compartments are homogeneous in 
terms of both tree species and growth. 

Average height of the 100 trees of the largest 
diameter per hectare (m). 

Measure of forest productivity for single-
species, even-aged plantations. It is derived 
from empirical models developed from 
extensive ground-based forest mensuration 
and is expressed in terms of annual volume 
increment (m^/ha/year). 

(iv) List of Abbreviations 

A L T M 

amsl 

ANOVA 

BNG 

CASl 

CW 

DCHM 

DSM 

D T M 

ESRI 

ETM+ 

FC 

FOV 

GCP 

G L M 

CIS 

GPS 

HRG 

Airborne Laser Terrain Mapper (LiDAR system manufactured by 

Optech, Canada) 

Above mean sea level 

Analysis of Variance 

British National Grid 

Compact Airborne Spectrographic Imager 

Continuous Wave (LiDAR system) 

Digital canopy height model 

Digital surface model 

Digital terrain model 

Environmental Systems Research Institute 

Landsat 7 Enhanced Thematic Mapper Plus 

Forestry Commission 

Field of view 

Ground control point 

Generalised linear model 

Geographic information system 

Global Positioning System 

High Resolution Geometric (sensor onboard SPOT 5) 
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HRVIR 

HRVIR 

I M U 

IRS 

km 
L A I 

LiDAR 

LRF 

NFI 

NIR 

OS 

PS? 

RADAR 

RMS error 

RPC 

ScaLARS 

SPOT 

SWIR 

Terra-ASTER 

TIN 

T M 

T M U 

UTM 

VIF 

VCL 

WGS 

High Resolution Visible (sensor onboard SPOT 1 -3) 

High Resolution Visible Infrared (sensor onboard SPOT 4) 

Inertial Measurement Unit (part of the LiDAR system) 

Indian Remote Sensing Satellite 

k nearest neighbour 

Leaf area index 

Light Induced Detection and Ranging 

Laser range finder (part of the LiDAR system) 

National Forest Inventory 

Near infrared 

Ordnance Survey 

Permanent sample plot 

Radio Detection and Ranging 

Root mean square error 

Rational polynomial coefficient 

Scanning laser altitude and reflectance sensor (LiDAR system) 

Systeme Pour 1'Observation de la Terre 

Shortwave infrared 

Advanced Spatial-borne Thermal Emission and Reflection 

Radiometer onboard the Terra satellite 

Triangular irregular network 

Landsat 4 & 5 Thematic Mapper 

Time measurement unit (part o f the LiDAR system) 

Universal Transverse Mercator 

Variance inflation factor 

Vegetation Canopy LiDAR 

Woodland Grant Scheme 
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Chapter 1: Introduction 

This thesis investigates the potential o f three optical remote sensing systems, airborne 

LiDAR, IKONOS and Landsat Enhanced Thematic Mapper (ETM+), for providing 

measures of forest structure in UK upland conifer plantations. In recent times the need 

to provide measurements of forest productivity, or change, at regular intervals and in a 

cost-effective manner has become increasingly important for commercial forest 

planning, especially in light of the current trend of declining softwood timber prices and 

the high cost of labour. This is particularly challenging where it is necessary to cover 

large areas that are difficult to access. Increasingly there is also a requirement to 

provide up-to-date information on forest resources for carbon budgeting, policy 

formulation, and other aspects of environmental management. 

In the UK approximately 1.4 million hectares of forested land cover is fast growing 

non-native softwood plantation forest (Forestry Commission, 2004). Upland plantations 

account for approximately 60% of this total (Forestry Commission, 2004). In upland 

areas the collection of accurate and representative field data can be problematic due to 

difficult access to forest areas and variability in growth performance. In this context 

remote sensing offers considerable potential as a technique for providing more frequent, 

unbiased growth estimates of forest growing stock. 

The utility of remotely sensed data as a source of forest information was recognised in 

the 1970s in Finland, with the systematic use of medium-resolution satellite imagery for 

forest inventory purposes (Katila and Tomppo 2001). This early work has been 

developed and adapted for use over much of the boreal forests of northern Europe and 

North America, using commercially available satellite imagery. The methods pioneered 

by Tomppo and others in Finland use data from a large number of permanent forest 

inventory plots, in combination with satellite spectral measurements, to derive 

information on wood volume by species, basal area, height and age at a forest 

compartment scale. This provides a key input into the National Forest Inventory (NFI). 

Although the use o f this type of image data is well documented in boreal forests it has 

not been adopted for use in upland conifer plantation forests, such as those found in the 

UK. This is because a systematic and extensive field dataset is required and no such 

dataset exists in the UK. 
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LiDAR was first evaluated as a method for measuring tree heights in 1985 by Aldred 
and Bonnor and in the proceeding 20 years it was used extensively to provide estimates 
of forest basal area (Means et al. 1999), diameter, volume (Naesset 1997b; Holmgren, 
2002) and canopy properties (Naesset & 0kland 2002). The advantage of LiDAR over 
optical systems is its ability to provide information on both the horizontal and vertical 
distribution of vegetation structure. 

In the UK, many forest managers believe that only aerial photography can provide the 

level of detail needed to assess the status of a crop, an assumption that is largely based 

on the ability to interpret features on the image by direct observation. Therefore, in the 

UK at least, there is a need to prove the scientific validity of the techniques and also 

demonstrate a business case for the application of remote sensing, making a clear 

linkage between the information needs of foresters and what remote sensing can offer. 

This thesis focuses on data taken from three of the most promising sensors LiDAR, 

IKONOS and Landsat 7 ETM+ and attempts to bridge the gap between research and 

operational forestry needs. More specifically, the thesis investigates the appropriateness 

of LiDAR for providing accurate estimates of forest variables for identifying forest 

species composition and for validating height estimates generated from lower-cost 

medium-resolution (Landsat 7 ETM+) and high-resolution (IKONOS) optical satellite 

data. 

1.1 Aims and Objectives 
Since less work has been conducted in densely stocked plantations, such as those 

planted in the UK, there is a requirement to test the accuracy and validity of models 

generated from remotely sensed data in UK forestry conditions. A series of research 

aims were designed to test, scientifically and practically, the potential of these data to 

provide reliable forest estimations for forest management purposes. Five research aims 

were established. The first was to evaluate the accuracy of LiDAR data and the second 

and third assessed the ability of LiDAR to provide estimates of tree volume, height and 

density and to identify tree species. Research aim four sought to test the ability of 

IKONOS and Landsat ETM+ to estimate forest height and the fifth examined the 

potential of integrating optical data and LiDAR data to provide forest height estimates. 

Each aim is presented in.more detail, below:. 
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(i) assess the effect of canopy structure, topography and laser point density on the 
accuracy of measures derived from LiDAR data in dense upland conifer 
plantations; 

(ii) assess the potential of LiDAR data to provide estimates of top height, volume 

and tree density. In forestry, these measures are most the commonly used to 

determine forest productivity and to parameterise other growth prediction 

models. 

(iii) assess the potential of LiDAR-derived crown density variables and near 

infrared data derived from SPOT 5 HRG and LiDAR to identify plantation 

species and areas of anomalous growth; 

(iv) examine the potential of Landsat ETM+ and IKONOS sensors for providing 

forest height estimates in upland conifer plantations; 

(v) assess the potential of LiDAR for providing additional height samples and 

validating forest height estimates derived from Landsat ETM+ and IKONOS 

models. 

To fu l f i l the aims o f this thesis, a series of objectives were developed to ensure field 

data were collected in a robust and systematic manner and that data processing methods 

enabled the large volume of field and image data to be summarised effectively to 

provide the various forest estimates. The specific objectives are listed below. 

(i) design a suitable method of digital collection of field data and positioning of 

tree stems under dense forest canopy; 

(ii) develop a method of summarizing and deriving LiDAR variables from laser 

point cloud data; 

(iii) develop a series of forest estimation models using LiDAR, IKONOS and 

Landsat ETM+ data; 

(iv) design a suitable method of quantifying LIDAR near infrared intensity data. 

1.2 The ForestsAFE Research Project 
Much of the research presented in this thesis makes extensive use of image and field 

data collected as part of the EU LIFE-Environment ForestSAFE project. This is a five-

year (2000-2005) European-Commission (EG)-funded project that seeks to demonstrate 

the capability o f remote sensing, combined with field data, for monitoring and updating 
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forest information across a range of European forest types. The project works in 
partnership with the UK and Swedish research institutions, namely: Durham University, 
Forest Research and the Swedish University of Agricultural Sciences and partners from 
the forest industry; the UK Forestry Commission and the National and four Regional 
Boards of Forestry in Sweden. The motivation for the project comes from the fact that 
remote sensing is still relatively under-utilised in the forestry sector across Europe. In 
response to this situation a number of demonstration products have been developed to 
highlight the potential of remote sensing for improving forest management, in terms of 
providing more accurate forest estimates, monitoring and mapping forest resources and 
providing information on sensitive woodland habitats. The project began with a 
conference held in Edinburgh, UK in 2002 (Forestsat 2002) that focussed on remote 
sensing of forests, emphasising the state of the art in scientific techniques. The project 
concludes by organising an international conference to be held in Boras, Sweden in 
June 2005 (Forestsat 2005), which wi l l demonstrate the potential application of remote 
sensing to forest practitioners. This thesis has been developed from parts of the work 
associated with the ForestSAFE project. 

For further information the reader is referred to the ForestSAFE website, 

http://www.svo.se/dokument/ac/kansli/ForestSafe/Web_UK/home.htm. 

1.3 Structure of the thesis 
This thesis is divided into ten chapters as detailed in Table 1. The thesis begins by 

providing an overview of plantation forestry in the UK in Chapter 2, together with a 

summary of how remote sensing has been used to assist forest management in other 

countries. Chapters 3 and 4 discuss the methods used to acquire and process the field 

and image data. Chapters 5 to 7 assess the accuracy and potential of airborne L iDAR to 

provide forest estimates and to identify and map different conifer species. Chapter 8 

assesses the potential o f IKONOS and Landsat ETM+ for predicting forest height; it 

also examines the potential of LiDAR to provide additional height measurements and to 

act as means of validating the satellite height estimates. Chapter 9 discusses the 

findings of this research in relation to other studies, taking three examples from this 

research and showing how these can be applied to assist foresters to make more 

informed-resource management-decisions. Lastly, Chapter 10 summarises the thesis in 

relation to the original aims. Future research directions are discussed in the conclusion. 



Table 1.1 Structure of the thesis 

Chapter 1: Introduction 

Chapter title Description Specific detail 
1: Introduction Rationale, aims and 

objectives. 
2: Plantation forestry in the 
UK 

Overview of U K plantation 
forestry. How remote 
sensing can assist in the 
management o f this resource 

Information requirements 
for management of forest 
resources 
Study areas 

3: Field data collection and 
analysis 

Dataset properties Description of field data 
collection methods and 
analysis relationships 
between field data 

4: Image Processing LiDAR: D T M , DSM and 
DCHM extraction. 
Optical data: image 
rectification o f Landsat 
ETM+, SPOT 5 HRG and 
IKONOS data 

Description of image data 
and processing methods 

5: Accuracy of L iDAR under 
dense forest canopies 

Research aim (i) 

Accuracy of LiDAR height 
estimate in dense conifer 
plantation. Factors that 
affect LiDAR accuracy in 
UK forests. 

Field survey 
measurements are used to 
compare the accuracy of 
the LiDAR ground surface 
and canopy surface 

6: Forest estimates from 
LiDAR 

Research aim (ii) 

Estimations of top height, 
volume and tree density 

Use of LiDAR-derived 
crown density measures 
and distribution 
information from LiDAR 
point data to try and 
improve forest estimates 

7: Mapping plantation 
species and areas of 
anomalous growth using 
LiDAR 

Research aim (i i i) 

Identify plantation species 
using LiDAR intensity data 
and LiDAR derived crown 
density measures. 

Use of SPOT 5 NIR data 
to check radiometric 
consistency of L iDAR 
intensity. Development of 
a technique for mapping 
plantation species 
distribution 

8: Using LiDAR to compare 
height estimates from 
IKONOS and Landsat ETM+ 
data in Sitka spruce 
plantation forests 

Development of height 
models based on relationship 
between IKONOS and 
Landsat ETM+ reflectance 
and field data. 

Use of LiDAR-derived 
height to provide 
additional sample data and 
to validate the accuracy of 
the optical height models. 

Research aims (iv) and (v) 
9: Discussion Comparisons with other 

research. Examples of 
potential applications 

Examples of how methods 
and data can be applied. 
Comments on future 
sensor developments 

10: Summary & conclusions Summary 
Future research 

Discussion ofjhesis aims, 
future research directions 



Chapter 2: Plantation forestry in the UK 

2.1 Introduction 

Timber production from British forests is forecasted to increase from 11 million mVha 

per year to 15 million m^/ha per year by 2020 (Forestry Commission 2004). The 

Forestry Commission acknowledges that this resource must be effectively managed, 

taking into account a range of environmental issues, including biodiversity and water 

quality. Further, at a national level there is increasing awareness of the carbon 

sequestration potential of these plantations for which accurate information of forest area 

and growth are required to perform carbon accounting. Therefore, there is a growing 

need for more up-to-date and precise information, at a range of scales, on the status and 

productivity of forest resources. While it is widely acknowledged that ground survey 

methods to obtain such detailed inventory data are expensive and time-consuming, for 

remote sensing to be considered a viable alternative in the UK, its value needs to be 

recognised and understood at an operational level. The following sections provide a 

historical overview of forestry in the UK and summarise current forest management 

practices. Additionally, a summary o f the issues that have prevented the uptake of 

remote sensing in UK forestry is presented. The relevance of current operational 

methods to UK forestry is also discussed, together with the applications of emerging 

techniques'. Lastly, the two upland conifer areas used in this research are introduced. 

2.2 UK plantation forestry 
The industrial revolution and the First World War depleted Britain's natural wood 

resources. Consequently, in 1919 the UK Forestry Commission (FC) was formed with 

the objective of creating a strategic reserve of timber so that Britain would no longer 

have to rely on imports in times of war (www.forestry.gov.uk). At this time vast areas 

of land deemed too poor for agriculture, were planted with fast-growing, non-native 

conifer species, such as Sitka spruce {Picea sitchensis) and lodgepole pine {Pinus 

contorta) (Figure 2.1). Sitka spruce in particular grows well in a wide range of site 

' This chapter is not intended to provide an extensive review of remote sensing literature but more to set 
the context for the forthcoming chapters. 



conditions, including the exposed upland areas of the UK with high annual rainfall 

(Hibberd 1991). 

Figure 2.1 Typical upland landscape with extensive areas planted in conifers. Source: 
Jimmy Wilson, FE Galloway. 

By 2004, 59% of the 1.4 million hectares of the plantation resource were planted with 

these species. Forest Enterprise (FE), the management arm of FC, manages 35% of this 

resource, with the remainder under private ownership. Since 1988 FC, through the 

Woodland Grant Scheme (WGS^) programme, has also assisted private woodland 

establishment. Statistics for 2003-2004 show that 98% of new plantations (18,000 ha) 

were established by the private sector, of which 6 1 % were financed by the WGS. 

2.2.1 Plantation management 

Conifer plantations are typically established or restocked at over 2,500 trees/ha (Figure 

2.2) with areas divided into individual compartments, according to tree species and 

density. At this high planting density the trees quickly out-compete any existing 

vegetation and dominate the site. By the time the crop reaches 10 m (about 15 to 17 

years) the forest canopy has closed and the understorey vegetation replaced by a thick 

mat of needles (Figure 2.3). 

The Woodland Grant Scheme (WGS) provides monetary incentives to create and manage woodland 
sites in Great Britain. The Forestry Commission is responsible for administering the scheme and pays 
grants for establishing and tending woodlands. 
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Figure 2.2 10 year old Sitka spruce crop. Figure 2.3 17 year old closed canopy Sitka 
spruce crot 

Figure 2.4 Mature Sitka spruce crop. Figure 2.5 Sitka spruce/lodgepole pine 
mixture. 

The majority of the plantations established in upland areas are not thinned because of 

the perceived threat of wind damage (Figure 2.4). Consequently, tree mortality in pure 

species crops commonly exceeds 30%^ by the time the crop is ready for harvesting at 45 

to 60 years. In upland areas, an alternative silvicultural regime was introduced in the 

1960s, when conifer species were planted as intimate mixtures. The most frequently 

used combination was Sitka spruce and lodgepole pine, planted either in discrete rows 

or alternately in the same row (Figure 2.5). The rationale was that over time the crop 

would self-thin to become dominated by Sitka spruce. In practice, a range o f outcomes 

emerged, from Sitka- or pine-dominated crops to mixtures where neither species 

dominated. Nevertheless, the high tree density, location and extent of these plantations 

mean that one of the major threats during the forest rotation is wind damage (Figure 

2.6). 

^ Based on sample plot measurements. 
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Figure 2.6 Internal wind damage Kielder 
forest. Source: David Woodhouse, FE 
Kielder. 

When compared with Continental Europe and Scandinavia, UK forests are unique in 

terms of the prevalence of non-native species, tree density, simple silvicultural regimes 

(i.e. not thinned) and short forest rotations. The fast growth rates and short forest 

rotation mean that to manage this resource effectively up-to-date information is 

required. 

2.3 The application of remote sensing in forestry 
Historically, aerial photography has been the main source of remotely sensed data used 

in forestry for updating forest maps and providing estimates of height (derived from 

photogrammetric techniques). However, since the 1970s, more extensive use of remote 

sensed data has occurred. Much of this interest was fuelled by the launch of the lower 

resolution Landsat MSS optical satellite (80 m) and grew with the subsequent launch of 

the medium resolution Landsat T M (30 m) series of satellites. Since these beginnings 

the resolution of optical data continues to improve with launch of high-resolution 

satellites such as IKONOS and QuickBird (< I m panchromatic: < 4 m multispectral). 

Since the 1990s Airborne Laser Systems (LiDAR) have also become more readily 

available offering datasets that provide accurate measurements o f terrain and vegetation 

height. In terms of estimates such as height these sources can be ranked according to 

accuracy, first L iDAR then aerial photography followed by optical satellite data. 
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2.3.1 Current methods in the U K Forestry Commission 

Standard practice within FE is to inspect each forest compartment a minimum of three 

times during a crop rotation to assess: (i) success of establishment, (ii) expected yield, 

to enable production forecasting, ( i i i ) timber quality, species composition and volume 

before clear-felling. This information is collected using a combination of field sample 

plots and I : 10 000 aerial photography. The photography is used in conjunction with 

the ground survey effort to map newly planted or restocked areas, unplanted or poorly 

stocked areas, areas of damage and to further stratify compartments according to 

differences in growth or silvicultural practices. These stratified areas are termed sub-

compartments. Digital compartment maps are generated manually from aerial 

photography and stored in the 'Forester' Geographical information System (GIS) 

developed specifically for the Forestry Commission by Environmental Systems 

Research Institute (ESRl). Additionally, 'Forester' is used to store information on the 

planting date, species, tree spacing, soil type and expected forest yield. A l l thirty forest 

districts use the 'Forester' software for running timber production forecasts, defining 

harvesting areas and managing forest inventory data. A similar management system is 

also used to record privately owned woodland, established under the WGS. 

The use of remote sensing in the UK forest industry has not yet developed beyond the 

use of aerial photography. Reasons cited for this situation include: (i) the lack of users' 

experience with remotely sensed data (ii) cost associated with acquisition and 

processing of data (ii i) difficulties in acquiring cloud-free optical data (iv) the lack of 

direct relationships between forest variables and optical data (Malthus et al. 2002; 

Suarez et al. 2005). Consequently, the current forest management/planning system 

continues to rely on information obtained from aerial photography and field survey. 

For remote sensing to be adopted in an operational context in the UK, there is a pressing 

need to establish a strong business case. Remote sensing would need to be perceived as 

complementing existing management systems and to be cost-effective when compared 

with current methods, providing reliable and consistent results. One element of this 

process involves demonstrating the potential of remote sensing and highlighting its 

limitations, under UK plantation conditions. 

Research into the potential of space^bdme remote Sensing for monitoring vegetation 

began in the 1960s principally by Colwell in the US, Ahem and Goodenough and others 

10 
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in Canada and Peso and others in Finland. In particular, Colwell's research, pioneered 
new methods of satellite photography and reconnaissance which lead to the application 
of multi-band photographic imagery for monitoring forest resources. UUimately, these 
advances assisted in the development of the multi-spectral scanner (MSS) onboard the 
first commercial satellite Landsat 1, which was launched in 1972. The MSS system was 
the first global monitoring system capable of producing multi-spectral data in digital 
format. 

However, despite the availability of such data initially from MSS sensor carried on 

Landsat 1 (launched 1972), Landsat 2 (1975) and 3 (1978) then later from the improved 

T M sensor onboard Landsat 4 (1982), 5 (1984) and ETM+ sensor onboard Landsat 7 

(1999), internationally there are still only a few examples of remote sensing being used 

to assist with forest management planning. Perhaps the best-known example is the 

application of the k nearest neighbour (A:NN) method. The ANN method uses field data 

to assign forest variable data to unknown areas by comparing spectral similarity, 

weighted by distance from the nearest known plot (Holmstrom et al. 2001). This has 

been used in the Finnish multi-source National Forest Inventory (NFl) since 1990 and 

has since been applied to national forest inventories in Sweden and the USA. 

The main constraint that restricts its application in the UK is that the kNN method 

requires a dense and regularly distributed network of sample plots that cover the range 

of variation expected in the forest (Katila & Tomppo 2001). Such sample information 

is not currently collected in a systematic manner in the UK. It is possible, however, to 

use an alternative method that relates the reflectance at different parts of the electro­

magnetic spectrum to forest structure. This is normally done by selecting target plots 

from which to measure forest variables and to relate these to the reflectance data from a 

remotely sensed image at the same location. This latter approach is more appropriate to 

the UK situation as it is less reliant on a large network of sample plots. Previous 

research has assessed these relationships using airborne (Danson & Curran 1993;) and 

medium-resolution satellite data (Donoghue et al 2004; Hyyppa et al. 2000; Nilson & 

Peterson 1994; Puhr & Donoghue 2000; Ripple et al. 1991). Generally these studies 

show that some forest variables e.g. are easier to predict than others, in particular height 

and age. It is important to note-that-the-strength-of-relationships varies between studies. 

For example, Hyyppa et al. 2000 recorded an o f 0.26 for height in Finnish boreal 
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forests while Danson and Curran (1993) recorded an of 0.71. These differences in 
relationships can be caused by the structure of the forest canopy and by forest 
management practices, such as thinning. In contrast Britain's upland conifer plantations 
are densely planted with a simple management regime (no thinning), which causes the 
canopy to close at a young age. Therefore the main limitation of the method is that 
spectral response tends to decrease as the forest canopy closes; consequently predictions 
are only valid for the first part of the forest rotation. To be applied operationally in the 
UK, more work is needed to assess whether these relationships remain stable at 
different spatial resolutions (i.e. from 4 m to 30 m) and across forest regions. 

More direct relationships, such as tree height, can be obtained using airborne LiDAR. 

The advantage of LiDAR over optical data is that the laser is able to penetrate the 

canopy through gaps to provide not only height information but also information on 

canopy structure from the distribution of laser pulses. L iDAR research has been 

conducted at two levels; the tree level and plot level (Naesset et al. 2004). Studies at 

the tree level typically use a higher density of laser returns while at the plot level lower 

sampling densities are used (1-4 retums/m^). In both cases forest measurements are 

calculated from the laser data by relating field measurements to the vertical distribution 

of laser returns, or more recently, the intensity of the laser pulse return (Holmgren 2003; 

Donoghue and Watt, in review). The tree level approach generally includes more 

processing steps than the stand level method as it requires that each tree is located 

before any estimations are conducted. Stand level estimates are made by matching laser 

data to field plot measurements and using the plot-level relationship to generate 

estimates at the stand level. In Norway, the laser data and forest records are used to 

stratify the forest based on site quality (height and age) prior to estimation (Naesset & 

0kland 2002). Previous studies have shown at either level that, although LiDAR data 

are more costly than optical data, their accuracy is indisputable. In particular, L iDAR 

data have been used to provide estimates of forest basal area (Means et al. 1999), 

diameter, volume (Naesset 1997b; Holmgren 2002) and canopy properties (Naesset & 

0kland 2002). In establishing tree height and volume the accuracy o f LiDAR-derived 

estimates is reported to be similar to or better than manual field measurement methods 

(Holmgren 2003; Naesset 2002). Consequently L iDAR data are now used operationally 

in Norway (marketed on the premise that"betteT~data results in better decisions) to 

provide forest estimates at the compartment level (Eid et al. 2004; Naesset 2005). 
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This research evaluates LiDAR as a method of estimating forest parameters at the plot 
level. Compared with other countries less work has been conducted in the UK, and 
there is some uncertainty as to whether L iDAR flown over densely planted conifer 
plantations (planted at densities exceeding 2,500 trees/ha) wi l l yield similar results. 
The ForestSAFE project has provided the first opportunity to evaluate a range of 
remotely sensed data over British upland conifer forests, from high-resolution IKONOS 
and LiDAR to medium-resolution SPOT and Landsat ET1VI+ data. These data were 
complemented by extensive ground-based survey. However, there remains a need to 
investigate a wide range of issues relating to the use of remotely sensed data in the UK, 
including the accuracy of estimations, repeatability of results, compatibility with 
existing forest management systems, cost effectiveness and geographical transferability. 

2.4 Study areas 
The two upland areas used for this study are located in Galloway Forest District, in 

south-west Scotland, and Kielder Forest District, in north-east England (Figure 2.7). 

These Forest Districts cover the range of forest conditions found in the UK. 

13 



Chapter 2: Plantation forestry in the UK 

IBI 

Figure 2.7 Location of (A) Galloway and (B) Kielder forest study areas 

In Galloway Forest District the elevation ranges from sea level to 515 m above mean 

sea level (amsl). The majority of plantations are established below 350 m amsl. Kielder 

Forest District covers a similar elevation range from 200 to 600 m amsl, with 

plantations established up to 400 m amsl. The combined planted areas of these districts 

are some 110,000 hectares, evenly divided between the two forest districts (Figures 2.8 

and 2.9). Each has an annual harvest of 500,000 m^/ha per year. Combined they yield 

10% of the UK's annual timber production (Forestry Commission 2004). These 

districts are the largest in terms of planted area'* and timber production in their 

respective countries. The predominant plantation species is Sitka spruce, although 

14 
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approximately 22% of each district is afforested using a combination of species, with 
Sitka spruce and lodgepole pine the most common combination (source FE GIS). 

40 Kilomelrea 40 K lomalr** 

Figure 2.8 Plantation distribution 
Galloway forest district. Image 
showing part of a Landsat 7 ETM+ 
scene (display bands 1.4.3) 

Figure 2.9 Plantation distribution Kielder 
forest district. Image showing part of a 
Landsat T M scene (display bands 1,4,3) 

The management of these areas is hindered by their isolation and difficult field 

conditions. The large size of forest compartments (>50 ha) also makes it difficult to 

identify and map areas of growth variability and internal wind damage. Usually aerial 

photography, flown at five-yearly intervals, is used to assist in mapping these areas. 

However, in recent years coverage has been insufficient to provide current information 

on the state of the resource (pers comm. Jimmy Wilson Galloway Forest District; David 

Woodhouse, Kielder Forest District). Remote sensing data provide the opportunity over 

both areas to better manage this resource at a range of scales from the sub-compartment 

to the compartment level. 

^ Kielder forest is one of tiie largest man-made forests in Europe (www.kielder.org). 
15 



Chapter 3: Field data collection and analysis 

3.1 Introduction 
The main objective of this chapter is to describe the methods used for collection of the 

forest mensuration data in the field. Field data were collected from two upland conifer 

forests, Kielder forest in north-east England and Galloway forest in south-west 

Scotland. More detailed forest measurements were made in the Kielder study area, so 

these data have been used as the basis for generating the relationships between the forest 

variables, height, volume and tree density, and the image datasets (the focus of Chapters 

6 and 8). The measurements included biophysical measures, which are commonly 

recorded during a conventional forest inventory (tree diameter and height), and more 

detailed measurements such as tree crown measurements (crown width, length, ratio and 

area). These data were matched to the precise spatial location of each tree within the 

sample plot, to enable a direct comparison between field and LiDAR height 

measurements. An analysis was also conducted to determine the relationship between 

field-measured height and various crown measurements, which potentially provide 

indicators of forest productivity and a way of separating different forest crops (e.g. pure 

Sitka spruce {picea sitchensis) from Sitka spruce/ lodgepole pine {pinus contorta) 

mixtures). The same measurements, summarised at plot level, also enable the study of 

factors that may affect the accuracy of LiDAR height estimates (the focus of Chapter 5). 

The Galloway study area contains a wider selection of plantation species and growth 

outcomes and so plots established in this area were used to assess the ability of LiDAR 

to discriminate plantation species and map areas of anomalous growth (the focus of 

Chapter 7). 

3.2 GIS datasets 
A summary of the GIS datasets used in this research is presented in Table 3.1. Forest 

Enterprise Kielder & Galloway kindly supplied their forest compartment boundary 

information, including an associated database containing information on stand age, 

species composition and yield class^. It was from this information that the study area 

and the ground sample points were selected. By using a combination of Ordnance 

^ Yield class is derived from empirical models developed from extensive ground-based forest 
mensuration. These models are used to provide a measure of forest productivity for single-species, even-
aged plantations. 

16 



Chapter 3: Field data collection and analysis 

Survey and Forestry Commission datasets for geo-correction of the image data, a 
greater selection of ground control points (GCPs) was extracted. 

Table 3.1 Summary of the GIS datasets 

Coverage Data Source 
Compartment boundaries, roads, Forest Enterprise 
waterways 
1:50 000 Meridian data Ordnance Survey 
1:50 000 OS raster data 
1:2 500 Land line data 
Forest Compartments selected for survey 
Sample plot location points 

University of Durham &. Forest Enterprise 

3.3 Field data collection 
Field sample plots in forestry can provide an unbiased sample of the population of trees 

that is representative of the forest structure. The objective of the inventory dictates 

what measurements are recorded. This might range from measurement of tree numbers 

to see i f a forest area has been established as a commercial crop to more intensive 

survey that includes the measurement of tree height and diameter. In many cases forest 

areas are stratified prior to measurement, to attempt to reduce the number of sample 

plots required. In the UK, a combination of aerial photography, field plots and a GIS 

are used to stratify areas according to age, species and growth rate. The number and size 

of the field survey plots required is usually a compromise between establishing 

sufficient sample plots to account for the degree of variation in the forest measurements 

and the cost. The Forestry Commission forest inventory guidelines suggest that sample 

plot size should be no smaller than 0.01 ha. 

In this study sample plot measurements are the basis for generating relationships 

between the image datasets and a range of measured forest variables including forest 

height (top height and mean height), volume and tree density. In accordance with 

Forestry Commission principles forest plots were no smaller than 0.01 ha and were 

spread over a number of forest compartments, representative of the forest structure. 

In the Kielder test area, sixty sample plots were measured in 2003. These plots were 

used to establish relationships between the image data and measured forest variables 

and are hereafter referred to as the reference dataset. A further 30 sample plots were 

also measured in 2004 for the purpose of validating the height predictions obtained from 
17 
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the 2003 dataset (hereafter referred to as the validation dataset). Both datasets were 
distributed over a range of age classes, tree species combinations and site types. More 
sample plots were established in pure Sitka spruce compartments because this reflects 
the distribution of species compositions found within the study area. 

In Galloway, twenty sample plots were established in two age classes, 33 and 48, as the 

focus of the survey was to provide measurements in closed canopy crops, covering a 

range of plantation species and yields. Table 3.2 provides a summary of the field data, 

while the distribution of plots by age and species for the Kielder study area is shown in 

Figure 3.1. 

Table 3.2 Summary of Kielder and Galloway field sample plot data 

Dataset Survey Sample No. Age GPS 
Date Size Plots Range information 

Kielder (ha) Pure Mixture (years) 
Reference 2003 0.02 24 4 A l l tree xy positions 
Reference 2003 0.16 1 1 9 to 60 recorded 

Validation 2004 0.02 30 3 to 53 Plot centres only 
Galloway 
Reference 2003 0.02 17 3 33 and Plot centres only 

only 48 
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Figure 3.1 Age class range and species composition for Kielder forest reference dataset. 

To locate the plot in relation to the image data requires accurate positioning of sample 

plots. Plots must also be laid out more than 50 m from the edge of forest compartments 

and wind-damaged areas. This is particularly important when extracting reflectance 

values above sample plots from 30 x 30 m Landsat ETM+ pixels, to reduce the potential 

for mixing reflectance values from different land cover types (Puhr & Donoghue 2000). 

Compartment edges were excluded by buffering to 50 m from the compartment 

boundary in a GIS. The location of the first sample plot within each compartment was 

randomly selected using a seeding function in a GIS and subsequent plots were 

established at 100 m intervals. In the field, navigation to each sample point to within ± 

5 m was possible using a handheld GPS. Once the plot had been located, more precise 

coordinates were recorded using a Leica series 300 differential Global Positioning 

System (dGPS); this process is described in further detail in section 3.1.2. The location 

and spatial distribution of the Kielder and Galloway sample plots are presented in 

Figures 3.2 and 3.3. 
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Plantation species 
I I Sitka/pine mix 

Lodgepole pine 

I I Sitka spruce 

• Field plots 

0 500 Metres 

A 

Figure 3.2 Location of Galloway forest field sample plots (iat. 55° 07' N long. 4° 32' W) 
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LiDAR coverage A Forest compartments 
Sitka spruce 

I I Sitka / Pine mixture 
• Field plots (validation dataset) 
• Field plots (reference dataset) 

Forest roads 
class A 
Other Forest Roads 

Figure 3.3 Location of Kielder forest field sample plots (lat. 55° 13' N long. 2° 49' W) 

21 



Chapter 3: Field data collection and analysis 

3.3.1 Sample plot design 

Forest measurement data were recorded using two sample sizes, square plots of 0.16 ha 

(40 X 40 m) and conventional circular forest inventory plots of 0.02 ha (Figures 3.4 and 

3.5). The purpose of the larger square plots o f 0.16 ha was to capture forest data at a 

scale that was equal to, or greater than, the spatial resolution of the sensors being 

evaluated. This approach has been adopted by researchers investigating LiDAR (Suarez 

et al. 2005) and optical sensors (Donoghue & Watt, in review). 

Figure 3.4 0.16 ha sample plot layout. 

To improve manageability, each 0.16 ha plot was further subdivided into a matrix of 16 

sequentially numbered 0.01 ha plots (10 x 10 m), as illustrated in Figure 3.4. The four 

comer points of each 0.01 ha plot were marked with a wooden stake and carefully 

surveyed, using a digital distance-measuring device (Vertex hypsometer). The 

dimensions of each plot were checked, by measuring the distance between two diagonal 

stakes. I f the dimensions of the sample plot were correct then this distance should have 

been equal to 14.14 m. Every tree in a plot was labelled, using a plastic marker with an 

identification ID that included the plot and tree number. This allowed each tree to be 

clearly identified, which is important when the biophysical and tree position 

measurements are made separately. 
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In addition to this dataset, sixty, 0.02 ha circular sample plots were established for 
reference (30 plots) and validation purposes (30 plots) in the Kielder study area and a 
further twenty in the Galloway study area. The boundary of these plots was 7.98 m 
from the centre and this was also determined using a digital distance-measuring device 
(Figure 3.5). The tree marking method used on the 0.16 ha plots was also followed for 
the 0.02 ha plots 

[ 7.98 m 

Figure 3.5 0.02 ha circular sample plot layout 

3.3.2 Position of ground sample plots 

Plot centres were re-surveyed using a Leica series 300 dGPS (Figure 3.6). This system 

is a differential GPS with the ability to provide positional data to an accuracy of ± 0.05 

m when the antenna's view of the sky is unobstructed. 

Figure 3.6 Differential GPS measurement of sample plot centre. 
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The differential GPS comprises two units, one set up as a reference receiver and the 
other as a rover unit, as illustrated in Figure 3.7. The reference station records the range 
measurements broadcast by the GPS constellation and compares this with the actual site 
coordinates. The range corrections are then calculated using the phase difference of the 
two carrier waves, L I and L2 (19.05 and 24.45 cm respectively), between the reference 
station and the satellite. Once the phase difference has been resolved, it is possible to 
provide these range corrections to the rover GPS unit. One constraint is that the rover 
GPS receiver must be operated in close proximity to the GPS station, to ensure that any 
satellite orbit and atmospheric delay (ionosphere and troposphere) errors are common to 
both (Dye and Baylin 1997). 

Rover receiver 
Reference receiver 
(Knovm position) 

Figure 3.7 Differential GPS arrangement used to acquire sample positions. 

A temporary benchmark was established in the study area, because the distance to the 

Ordnance Survey (OS) permanent GPS reference stations was greater than the 

recommended 50 km. The precise position of the temporary benchmark was obtained 

by recording 5 hours of data, in the same location, over a two-week period and post­

processing these data with corresponding measurements collected by the OS GPS 

reference stations. Recording data over a two-week period eliminates errors in position 

coordinates caused by atmospheric delay. After correction, the horizontal and vertical 

accuracy of the benchmark was thought to be ± 0.05 m, which is more than adequate for 

this application. 
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Sample plot positions were measured using two different GPS surveying techniques, 
static and kinematic. The static method was used in closed canopy forest, because of 
the difficulty in maintaining a constant, uninterrupted signal. The procedure adopted 
involved elevating the GPS antenna into the canopy, using an 8-metre telescopic 
aluminium pole. The pole was positioned over the middle of wooden stakes marking 
the plot centre or plot boundary. Observations were recorded at 1-second intervals and 
continued until the L I and L2 phase difference had been resolved. The time taken to 
resolve the phase difference depended on the number and elevation of the available 
satellites. Typically, 15 to 40 minutes was required to calculate an accurate position (± 
0.40 m) for each point. Calculation of the positional accuracy was based on the average 
error of four repeat surveys. 

The kinematic technique was used in younger plantations (i.e. less than 10 m in height) 

where it was possible to maintain the GPS signal as the antenna's view of the sky was 

not obstructed. The kinematic process involves initialising the GPS on the benchmark; 

once this position has been determined subsequent points can be surveyed relatively 

quickly, provided that the GPS signal is uninterrupted. 

3.3.3 Position of individual trees 

The position of every tree within the sample plot was determined directly, using GPS or 

through the application of trigonometric principles. The method adopted depended on 

the height of the trees and the density of the forest canopy. For sample plots located in 

closed canopy forest, where it was difficult to receive a constant GPS signal, tree 

positions were determined using the distance and angle measurement of the tree relative 

to the plot comer, marked by a wooden stake (Figure 3.8). The calculation involves two 

parts, firstly resolving the angle between each tree and the comer post using the law of 

cosines (Equation 3.1) and secondly, using Pythagoras' theorem to determine the x and 

y offset (in metres) of each tree from the selected post, by calculating h and / as 

illustrated in Figure 3.8. 
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Equation 3.1 The law of 

cos B = {a^ +c^-b^) Cosines 

lac 

Where: 

^ Corner post (known position) 

• Tree stem (unknown position) 

From equation 3.1 From equation 3.1 

c=10 Angle B = 44.4° 

a = 7 m 
Calculate h and / to give tree 
position in x andy 

1 

h = sm(B) X a 
i = cos(B) X a 

Figure 3.8 Positioning of trees in closed canopy plots. 

In the example shown in Figure 3.8 the tree position is offset by 4.8 m in x and 5 m in>'. 

In the smaller 0.02 ha circular plots tree positions were determined by their distance and 

bearing from the plot centre or edge, which was a known differential GPS reference 

point (Figure 3.9). Tree distance was measured using a digital distance-measuring 

device and bearing was measured using a prismatic compass, with an expected standard 

error of up to 0.30 m. 
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7.98 m 

Plot xy 
369000 E 
547000 N 

Figure 3.9 Individual tree positions in 0.02 ha plot. 

Taking into account the positional accuracy of the differential GPS unit for determining 

the location of the plot centre, the maximum error of a tree's position is expected to be 

0.70 m. 

3.4 Measurements of forest structure 

Forest measurements included those usually made as part of a standard forestry 

inventory, such as tree diameter and height. In the Kielder study area more detailed 

measurements were also made, that characterised the size and structure of the tree 

crown, as discussed in section 3.4.2. In the Galloway study area only standard 

inventory plot measurements were made (tree diameter and height), as the principal use 

of this dataset was to provide information on species composition and dominance. 

These plot data are used for species identification in Chapter 7. 

The Forestry Commission's forest compartment database was used to provide 

information on species and planting date. Tree measurements were recorded digitally, 

using a handheld computer that synchronised and downloaded data to a relational 

database. Table 3.3 provides summary information from the Kielder and Galloway 

plots measured in 2003; a description of each measurement and the equation used to 

derive it follows. 
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Table 3.3 Summary of standard forest inventory measurements by study area 

Study 
area Description Units Mean S.D Min. Max. 

Kielder 

A^e Crop age years 24.0 18.6 9.0 60.0 

dbh Diameter cm 19.8 2.8 14.0 25.2 

G Basal area m%a 56.2 10.9 26.2 80.0 

h Mean height m 11.4 6.8 1.5 22.0 

hdom Top height m 14.5 8.0 3.4 25.5 

N Tree density trees/ha 3,055 2,188 1,150 12,300 

V Volume mVha 561 102 309 742 

Galloway 

Age Crop age years 35 5.5 33 48 

dbh Diameter cm 17.8 3.3 11.71 24.23 

G Basal area m^/ha 56.6 12.1 33.3 74.5 

h Mean height m - - - -

hdom Top height m 19.2 3.0 13.5 23.9 

N Tree density trees/ha 2,154 401 1,428 2,809 

V Volume mVha 480 156 189 697 

3.4.1 Standard inventory measurements 

(i) Diameter and basal area 

Diameter at breast height {dbh) is defined as the girth at 1.3 m above ground level. On 

sloping ground the accepted convention is to measure ground level from the upper side 

of the tree; for leaning trees the measurement should be from the ground level on the 

under side of the tree (Hamilton 1975). In every plot, all trees greater than 7 cm were 

measured to the nearest one cm using a diameter tape. The basal area of the stem at 

breast height was calculated using Equation 3.2 and from this basal area per hectare was 

derived. 

28 



Chapter 3: Field data collection and analysis 

Where: Equation 3.2 

g = basal area of tree /', m^/ha g- ^ dbh^ 
40000 

Basal area 
dbh = diameter at breast height, m 

g- ^ dbh^ 
40000 

(ii) Tree height 

In the Kielder dataset total height of all trees was measured regardless of diameter. This 

is a departure from a standard inventory where only a sample of tree heights would be 

measured in each plot. However, it enabled the spatial location and height of every tree 

in the sample to be plotted and compared to the LiDAR height values. Height was 

measured using a Vertex hypsometer, with care taken in densely stocked plots to 

identify the top of each tree. 

In the Galloway dataset only the top height (hdom) trees in each plot were measured. 

Top height is defined as the average height of the 100 largest diameter trees in each 

hectare. This is commonly used as an indicator of site quality, since it is relatively 

unaffected by tree thinning operations (Philip 1998). Using the same ratio, top height 

was calculated by taking the average height o f the two trees with the largest diameter in 

each 0.02 ha plot. 

(i i i) Tree dominance (recorded in the Kielder dataset only) 

Each tree was classified using a classification method (Bechtold 2003) based on tree 

crown size and proximity to neighbouring trees. Five crown classes are typically used 

in forestry: dominant, co-dominant, sub-dominant, suppressed and dead. These are 

described in detail below and illustrated in Figure 3.10. 

Dominant - Trees with crowns that extend above the average o f the tree crowns and 

receive light from directly above and some from the sides. 

Co-Dominant - Trees with crowns that form the general level of the crown cover and 

receive fu l l light from the top, but very little from the sides. 

Sub-Dominants - Trees that are shorter than dominants and co-dominants, but their 

crowns extend-into the canopy of dominant.and.co-dominant trees. They receive little 
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direct light from above and none from the sides. As a result, intermediates usually have 
small crowns and are very crowded from the sides. 

Suppressed - Trees with crown entirely below the general crown level and receiving no 

direct light from either above or below. 

Dead - No live tree crown. 

O 
Legend 

I I SampI* plot boundary 

Tree canopy clasi 
• • j Dominant 

Co dominant 
Sub dominant 
SiqtpTetted 

• Dead 

Figure 3.10 Plan view of 0.02 ha sample plot trees classified by 
dominance in Kielder forest. 

(iv) Tree density and volume 

The variable tree density (AO is based on all trees in the sample plot regardless of 

whether they are dead or alive. Stocking levels were typically greater than 2,000 trees/ 

ha, but reached 12,300 trees/ha in areas with high levels of natural regeneration. At a 

tree density of 2,000 trees/ha the rate of mortality increases as the crop height increases, 

with mortality higher in species mixtures (up to 48%) compared with pure species 

(<30%). Tree volume was calculated using the Forestry Commission method from their 

Forest Mensuration Handbook (Hamilton 1975). In this method, volume estimates are 

derived from the product of basal area (G) and tree form height. Form height is in turn 

the product of mean height of the plot (h) and the crop form factor^. Thus, the product 

of tree basal area, tree height and form factor gives an estimate of tree volume. Tree 

* A form factor is a summary of the overall stem shape and is expressed as the ratio of a tree's volume to 
the volume of a specified geometric solid of similar basal diameter and height. Most commonly, the form 
factor of a tree is based on a cylinder. 
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volumes were only calculated for sample plots where the tree diameter was greater than 
7 cm and therefore had been recorded. In Kielder, volume ranged from 309 to 742 
mVha and the average volume was 506 m^/ha. While a narrow range in crop age was 
measured in the Galloway dataset, the plots show a larger variation in volume (189 to 
697 m^/ha); a range that is typical of mixed species plantations and better performing 
pure Sitka spruce crops. 

3.5 Correlation between tree height and standard forest inventory 

measurements 

Many of the measured structural variables and their derivatives are strongly correlated 

with height and are inter-dependent (Table 3.4). These facts are well documented in 

forestry and such relationships are routinely used to provide estimates of woodland 

growth and volume (Philip 1998). Estimates are typically made using growth models 

developed from allometric relationships between variables, such as tree diameter at 

breast height (dbh), tree top height and density. Often the data used to derive these 

models are based on measurement of permanent research plots, established over a range 

of tree species and site conditions. 

Table 3.4 Correlation between height and standard forest inventory measurements: 
Kielder forest reference dataset. 

Variable 

(n = 60) 

Description h Age dbh G hdom N V 

h Mean height 1.00 

Age Crop age 0.90 1.00 

dbh Diameter 0.80 0.88 1.00 

G Basal area 0.68 0.28 0.63 1.00 

hdom Top height 0.90 0.95 0.67 0.67 1.00 

N Tree density -0.56 -0.50 -0.79 -0.16 -0.54 1.00 

V Volume 0.54 - 0.30 0.95 0.78 0.16 1.00 

The strongest correlations are between mean height (h) and other measures of height 

such as top height (hdom) with a correlation of 0.90. This is expected, as the measures of 

height are related, h and dbh are also strongly correlated, as shown in Figure 3.11, with 

dbh increasing proportionately with increases in tree height. 
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Figure 3.11 The relationship between mean height and dbh: Kielder forest reference 
dataset. 

A similar trend is also observed between h and basal area (G) and crop age. Weaker 

correlations are noted between tree density (AO and volume (V), indicated by 

coefficients of -0.56 and 0.54 respectively. Removal of the two sample plots with high 

levels of natural regeneration (> 12,000 trees/ha) changes the correlation between h and 

tree density from -0.56 to -0 .81. The correlation between dbh and N is also strong {r = 

-0.75) as shown in Figure 3.12 with dbh increasing as A'̂  decreases. Strong correlations 

are also observed between G and Vand h and V. 
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Figure 3.12 The relationship between dbh (cm) and tree density (trees/ha): Kielder 
forest reference dataset. 

3.5.1 Measurements of forest canopy structure 

Measurement of forest canopy structure is not routinely carried out as part of a forest 

inventory. However, measurements of tree crowns have been used extensively in 

research, as indicators of the health and vigour of forest trees (Zamoch et al. 2004). The 

purpose of collecting canopy measurements was to (i) investigate how the canopy 

structure affects the penetration of LiDAR pulses through dense forest stands, and in 

turn the accuracy of LiDAR-derived height estimations and (ii) compare the canopy 

structure of pure species crops and species mixtures ( i i i ) find a field-based measure of 

canopy structure that adequately describes the forest structure and that can be measured 

using LiDAR (focus of Chapters 6 and 7). 

In the field, three direct measurements of tree canopy structure were recorded, crown 

width (K), length (Ki) and height (Kc), as illustrated in Figure 3.13. A l l tree crown 

measurements were made in accordance with the methods published by Philip (1998). 
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Figure 3.13 Canopy measurement illustration 

From these measurements an additional three ratio variables, live crown ratio {K^, 

crown to tree diameter ratio {Kd) and crown cover {Ka), were derived, using the direct 

measures of canopy structure. In the case of the ratio variables, tree height and diameter 

data were also used. Table 3.5 provides a summary of the canopy measurements. A 

detailed description of the methods adopted is provided in the following sections. 

dataset. 
Table 3.5 Summary of forest canopy measurements: Kielder forest reference 

Variable 
(n = 58) 

Description Units Mean S.D Min. Max. 

K Crown width m 2.5 0.8 0.9 4.6 

K, Crown length m 4.8 1.9 1.5 9.6 

Kc Height to canopy 
base 

m 6.2 5.8 0 16.8 

Live crown ratio % 60.3 33.4 18.0 100 

Kd Crown/ tree 
diameter ratio 

- 26.6 14.8 9.0 49.0 

Ka 
Crown cover % 74.0 12.5 43 105 
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(i) Crown width and length 

The crown width (K) of all living trees in the plot was measured. Crown width was 

determined as the average of two perpendicular crown diameters, across and along the 

planting row. The dimensions between opposing edges of the crown were taken using a 

distance measuring device (Equation 3.3). 

Equation 3.3 
. ( ^ 1 + ^ 2 ) Crown width 

2 

Crown length is the distance along the main axis from the tree tip to the base of the 

crown. It is obtained by subtracting the total tree height from the height to the lowest 

green whorl of branches (Kc) (Equation 3.4). 

Where: Equation 3.4 
Ki = live crown height, m Crown length 
h = total tree height, m 
Kc = height to crown, m 

Live crown ratio {Kg) is calculated by dividing total tree height by live crown height (m) 

(Equation 3.5). It is defined as the percentage of the canopy supporting live green 

foliage and is a measure o f site capture. 

Where: Equation 3.5 
Kg = live crown ratio, % 

K = ^ ~ ^ ' x m 
6 I 

Live crown ratio 
h = total tree height, m K = ^ ~ ^ ' x m 

6 I 
Ki = live crown height, m h 

The crown width {K) to dbh ratio {Kd) is calculated by dividing the canopy width by the 

tree dbh. It provides a measure of the productive capacity of the site in terms of basal 

area growth and has been found to vary between species (Philip 1998). 

Where: Equation 3.6 
Kd = Crown to diameter ratio K Crown to diameter ratio 
K = Crown width, m Kd = 

dbh dbh = Diameter breast height, m 
Kd = 

dbh 

35 



Chapter 3: Field data collection and analysis 

(ii) Crown cover 

Crown cover (Ka) is used as a measure of canopy density and competition. It is 

determined by measuring the area of ground covered by tree canopies (K), excluding 

overlap and gaps within individual canopies. This was plotted in a CIS using A: to set a 

circular buffer distance from the stem position. It should be noted that this can only be 

considered an approximation of the crown shape since it is rare to observe circular tree 

crowns in even-aged conifer plantations. More often the crowns grow along or across 

rows in the direction of forest gaps. An indication of variation in canopy shape can be 

provided through calculating the overall variation between the two crown width 

measurements used to calculate K. For young crops (<10 m ) where the amount of 

sunlight is not restricted there is little canopy width variation at this growth stage, but as 

the canopy closes light availability decreases, which can lead to irregular shaped 

crowns. Overall canopy width differences in closed canopy crops at the plot level range 

from 0.9 to 4.6 m with an average of 2.5. Figure 3.14 shows an example of a closed 

canopy plot located in a mature Sitka spruce/ pine species mixture, planted using a 3x3 

species matrix (i.e. 3 rows o f pine, then 3 rows of spruce). Sitka spruce is the dominant 

species, with the majority of the pine in an advanced stage of decay. Green circles 

denote the extent of Sitka spruce crowns; red circles denote lodgepole pine crowns; 

black points denote the location of dead trees. 

: • 

371)340 i ini iD mjit) jnun I T D U O iToMt 

Ltgend 

plot tioundary 

Tree Species 

Ttee classilicatlon 
• OCKl 

A 

Figure 3.14 Distribution and size of tree crowns in a plantation 
mixture: Kielder forest reference dataset. 
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To estimate plot area occupied by the canopy, individual crowns were merged to 
eliminate the overlap between adjacent crowns and clipped to the plot extent. An 
example for one plot is presented in the legend of Figure 3.14 (plot marked 1). 
However, owing to the difficulties in estimating canopy cover as described above and 
it's poor correlation with other forest variables this measure was not used for further 
analysis (See Table 3.6) 

(i i i ) Canopy closure 

Estimates of canopy closure can be made using a range of techniques and specialist 

instruments. These range from digitising hemispherical photography, taken using a 

fish-eye lens, to more sophisticated instruments designed to measure below-canopy 

light conditions. Both methods are typically used to provide estimates of leaf area index 

(LAI) or canopy gap fraction. However, a simpler estimate of canopy closure can be 

calculated by recording the type and proportion of understorey vegetation present in 

each sample plot. This research used this simpler approach to obtain an estimate of the 

percentage of vegetation cover in each sample plot a 1-metre square quadrat split into 4 

equal quadrants were laid out. Plots consisting of less than 50% dead vegetation on the 

forest floor were classified as closed canopy and those with more than 50% understorey 

vegetation as open canopy (Puhr & Donoghue 2000). 

3.5.2 Correlation between height and canopy structure 

Since canopy height is easily estimated from LiDAR, it is useful to determine how the 

different measures of canopy structure are related to field-measured height; and how the 

measures o f canopy structure differ between forest species. Table 3.6 provides a 

summary o f correlations between mean height and the various measures o f canopy 

structure. The strongest correlations observed (r > 0.70) are between variables that are 

derived directly or indirectly from mean height, i.e. crown length (Ki) and live crown 

ratio (Kg). The weakest relationship is between height and crown cover (r < 0.21); for 

these two variables the relationship is non-linear. 

Table 3.6 Correlation between mean height and measures of canopy structure: Kielder 
forest reference dataset. 
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Variable Description h K K K, Kd Ka 

(«=35) 

h Mean tree height 1.00 

K Crown width 0.70 1.00 

Height to 
canopy base 

0.97 0.61 1.00 

K, Crown length 0.74 0.76 0.57 1.00 

Live crown ratio 0.94 -0.61 -0.97 -0.54 1.00 

Kd Crown/ tree 
diameter ratio 

-0.95 -0.59 -0.93 -0.68 0.95 1.00 

Ka Crown cover -0.21 0.29 -0.29 0.08 0.19 0.23 1.00 

The relationships between mean height and the measures of canopy structure, K and Ki, 

are very similar. Figure 3.15 shows the relationship between mean height and K. In 

pure Sitka spruce, crown width increases with height up to 3 m and then begins to 

decrease once a mean height of 15 m has been reached. The point where maximum 

crown width is reached coincides with canopy closure, as measured by the absence (-) 

or presence (+) of ground vegetation. Beyond canopy closure tree competition limits 

further crown development and consequently crown width becomes smaller. Crown 

width is more variable in the species mixtures, where Sitka spruce starts to dominate the 

site and the presence of the pine diminishes. In these mixed stands the Sitka crowns are 

larger than in pure Sitka spruce stands of the same height. 

JO 

1.̂  

- 1 0 

A 

t 

canopy width (m) 

o Sitka spruce open canopy* Sitka spruce closed canopy* Sitka/pine mixture closed canopy 

Figure 3.15 Relationship between mean height and crown width: Kielder forest 
reference dataset. 
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The two ratios of Kg and Kd are negatively correlated with mean height, as indicated by 

Figures 3.16 and 3.17. 
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Figure 3.16 Relationship between live crown ratio and mean height: Kielder forest 
reference dataset. 

In the case of Kg, larger live crown ratios are generally associated with healthier, faster-

growing trees. The decline in crown ratio is therefore related to tree competition in 

dense stands, causing the overall crown length to decrease as trees increase in height. 

More variation in Kg is observed in species mixtures than in pure Sitka stands, where 

higher tree mortality opens the canopy and the remaining tree crowns expand to fill the 

gaps. The result, as shown in Figure 3.17, is a clumpy canopy structure, with gaps 

emerging where the pine has died. 

Kd follows the same trend as Kg with the ratio decreasing in a linear fashion as tree 

height increases. Higher ratios are observed in newly established trees, which have 

larger canopies in relation to their tree diameter. As tree height increases, the size o f the 

tree canopy decreases, but tree diameter continues to increase (Figure 3.18). The main 

outliers in the graph are located within the plantation mixtures. Trees in these plots 

have larger canopies, resulting in higher ratio values for any given height. 
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Figure 3.17 Relationship between crown to diameter ratio and tree height: Kielder 
forest reference dataset. 

The relationship between h and canopy area (Ka) is non-linear. Ka increases quickly as 

the trees establish, peaking at canopy closure (approximately 10 m canopy height) and 

then declining as mortality increases due to tree competition (Figure 3.18). Whilst some 

variation in canopy area between pure Sitka spruce of similar ages is observed, the 

species mixtures are more variable, ranging from 57 to 92%. As with Kg, tree 

competition is the main factor affecting Ka with the presence o f pine diminishing as the 

Sitka begins to dominate the stand. 
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Figure 3.18 Relationship between mean height and canopy cover: Kielder forest 
reference dataset. 

3.6 Summary 

The sampling strategy focused on selecting plantations representative of a range of crop 

ages and species. The position of field plots and trees was accurately identified, to 

enable the formation of relationships between field plots and remote sensed data. 

Verification by repeat survey measurements in open forest canopies indicated that plot 

centres and individual trees were accurate to ± 0.05 m. In closed canopy plots, the 

positions of plot centres and individual trees was accurate to ± 0.40 m and ± 0.30 m 

respectively, summing to a total positional error of ± 0.70 m. In closed canopy crops 

this level of accuracy should enable the location of individual trees. 

Analyses of standard inventory measurements reveal some differences in growth 

between species mixtures and pure species crops. Species mixtures generally have 

wider and larger tree canopies than pure crops, punctuated by structured gaps where the 

pine portion of the mixture is in decline. The most promising measures of canopy 

structure are the simplest; canopy length, canopy to dbh ratio and live crown ratio all 

provide useful measures for describing canopy density. Conversely, crown area is 

weakly related to other structural variables and for this reason it is not used here in 

further analysis. The accuracy of LiDAR benight estimations derived from selected 

canopy measures is investigated in Chapter 5. In Chapter 6, LiDAR-derived canopy 
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density measures are developed based on empirical measurements and in Chapter 7 
these measures are used to differentiate species mixtures. 
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4.1 Introduction 

The main objective of this chapter is to describe the L iDAR and optical image datasets 

and processing methods used in this research. The datasets comprise medium-

resolution Landsat 7 ETM+ (30 m) and SPOT 5 HRG (10 m), high-resolution IKONOS 

(4 m) satellite imagery and airborne Light Detection and Ranging (LiDAR) data. These 

provide a representative cross-section of image data currently available on the 

commercial market, in terms of cost, as well as spatial, radiometric and spectral 

resolution. 

The focus of the research is to evaluate the potential of different image data for 

providing estimates of forest height and structure. Specifically it assesses the 

application of LIDAR data to providing estimates of forest height, volume and tree 

density, and the application of SPOT 5 HRG data to identifying forest plantation 

mixtures. Landsat 7 ETM+ and IKONOS data are used to provide estimates of forest 

height. The first stage in this process is to prepare images for use in quantitative 

analysis. Different processing methods are applied to LIDAR and optical satellite 

images, which reflect the different modes in which the data are acquired. Regardless of 

image data type, the objective at the end of the image processing chain is to extract laser 

points or image pixels over the field sample plot. Using these data, estimates are 

derived from empirical relationships between field observations and image data. 

This chapter is divided into two sections: firstly, a description of the image data; and 

secondly, an explanation of the processing steps for each of LIDAR, Landsat 7 ETM+, 

SPOT 5 HRG and IKONOS data. 

4.2 LiDAR and optical image data 

The data used in this research offer a range of spatial, radiometric and spectral 

resolutions to forest remote sensing, as summarised in Table 4.1. The area covered, 

sensor revisit period and cost also vary between the sensors with a tendency for the 

coverage to decrease (or be customised) and for cost to increase as the resolution 

increases. Forest mapping or estimates of forest-variables at the forest compartment 

level are usually made using cheaper large-scale medium-resolution imagery (10 to 30 
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m) such as Landsat 7 ETM+ and SPOT 5 HRG, while finer resolution image data such 

as 

IKONOS (1 m panchromatic band and 4 m multi-spectral capability) and LiDAR can 

provide more detailed assessments o f forest structure. One characteristic of LiDAR that 

differentiates it from Landsat, IKONOS or any other passive optical sensor is its ability 

to provide both horizontal and vertical information on vegetation structure. 

A l l of the optical satellite sensors considered in this research have almost identical 

spectral band passes in the blue-green, green, red, near infrared and panchromatic 

bands. Landsat 7 ETM+ also records data in the short-wave infrared and thermal 

wavelengths (Table 4.1). The Airborne LiDAR used also records the near infrared 

intensity of the laser pulse, but strictly speaking these data are not radiometrically 

calibrated to a standard (discussed further in Chapter 7). As the wavelengths measured 

by the sensors overlap (see Table 4.1), sensors with different spatial and radiometric 

resolutions can be compared. However, in this research, only multi-spectral bands 

located in the visible, near infrared and short-wave infrared and the Galloway LiDAR 

near infrared data are used. 
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Table 4.1 Characteristics of LiDAR, IKONOS, SPOT 5 HRG and Landsat 7 ETM+ 
data. 

Spectral band(s) (nm) Pixel 
size. 

FOV Re-visit 
Period 

Operational 
Coverage 

LiDAR Optech 2033 
and 3033 
1064 0.20 m, at 

1,000 m 
User 
defined 

User 
defined 

First 2033 
system 

delivered in 
2001 

IKONOS Panchromatic 
530-930 1 m 

11x11 
km 

at nadir 

3-5 days 
off-nadir 
140 days 

nadir 

September 
1999 to 
present 

IKONOS Multi-spectral 11x11 
km 

at nadir 

3-5 days 
off-nadir 
140 days 

nadir 

September 
1999 to 
present 

Band 1 Blue/Green: 450-520 

4 m 

11x11 
km 

at nadir 

3-5 days 
off-nadir 
140 days 

nadir 

September 
1999 to 
present Band 2 Green: 520-600 4 m 

11x11 
km 

at nadir 

3-5 days 
off-nadir 
140 days 

nadir 

September 
1999 to 
present 

Band 3 Red: 630-690 
4 m 

11x11 
km 

at nadir 

3-5 days 
off-nadir 
140 days 

nadir 

September 
1999 to 
present 

Band 4 Near IR: 760-900 

4 m 

11x11 
km 

at nadir 

3-5 days 
off-nadir 
140 days 

nadir 

September 
1999 to 
present 

SPOT 5 HRG Pancliromatic 
480-710 5 m 

60x60 
km 

5 days off-
nadir 

26 days 
nadir 

May 2002 to 
present 

SPOT 5 HRG Multi-spectral 
60x60 

km 

5 days off-
nadir 

26 days 
nadir 

May 2002 to 
present 

Band 1 Green: 500-590 

10m 

60x60 
km 

5 days off-
nadir 

26 days 
nadir 

May 2002 to 
present Band 2 Red: 610-680 10m 

60x60 
km 

5 days off-
nadir 

26 days 
nadir 

May 2002 to 
present 

Band 3 Near IR: 780-890 
10m 

60x60 
km 

5 days off-
nadir 

26 days 
nadir 

May 2002 to 
present 

Band4SWlR: 1580-1750 

10m 

60x60 
km 

5 days off-
nadir 

26 days 
nadir 

May 2002 to 
present 

Landsat 7 ETM+ 
Panchromatic 
520-900 15 m 

185 X 
175 km 16 days 

April 1999 to 
present. 

Line scanner 
correction 

defect on all 
data after May 

3 P'2003 

Landsat 7 ETM+ Multi-
spectral 

185 X 
175 km 16 days 

April 1999 to 
present. 

Line scanner 
correction 

defect on all 
data after May 

3 P'2003 

Band 1 Blue/ Green: 450-520 

30 m 
185 X 

175 km 16 days 

April 1999 to 
present. 

Line scanner 
correction 

defect on all 
data after May 

3 P'2003 

Band 2 Green: 520-600 
30 m 

185 X 
175 km 16 days 

April 1999 to 
present. 

Line scanner 
correction 

defect on all 
data after May 

3 P'2003 

Band 3 Red: 630-690 30 m 
185 X 

175 km 16 days 

April 1999 to 
present. 

Line scanner 
correction 

defect on all 
data after May 

3 P'2003 

Band 4 Near IR: 760-900 
30 m 

185 X 
175 km 16 days 

April 1999 to 
present. 

Line scanner 
correction 

defect on all 
data after May 

3 P'2003 
Band5SWIR: 1550-1750 

30 m 
185 X 

175 km 16 days 

April 1999 to 
present. 

Line scanner 
correction 

defect on all 
data after May 

3 P'2003 Band 6 Thermal: 2080-2350 60 m 

185 X 
175 km 16 days 

April 1999 to 
present. 

Line scanner 
correction 

defect on all 
data after May 

3 P'2003 
Band 7 SWIR: 1040-1250 30 m 

185 X 
175 km 16 days 

April 1999 to 
present. 

Line scanner 
correction 

defect on all 
data after May 

3 P'2003 

4.2.1 Airborne Light Detection and Ranging 

LiDAR is an active remote sensing technique that measures distance to a target. As the 

speed o f light is constant, LiDAR records the time taken for a laser pulse to reflect back 

from the target to the sensor. This time measurement is then converted to an accurate 

distance or slant range (e.g. 1 ns time = 15 cm). L iDAR systems can be divided into 

two general modes of operation: continuous wave (CW) and pulsed (Baltsavias 1999a). 

They are distinguished in part by the size of the laser footprint (the area illuminated by 

the laser on the ground), which is typically smaller for pulsed systems (0.10 - 1 m) than 
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for CW systems (10 - 100 m) (Hudak et al. 2002). Continuous wave laser systems emit 
a continuous wave of light, which is converted into travel time by measuring the phase 
change in the transmitted signal (Wehr and Lohr 1999). In contrast, pulsed laser 
systems measure discrete returns (up to five) or digitise the full-waveform. According to 
Lim et al. (2003), in 2003 only one commercial CW laser system existed. This system, 
the Scanning Laser Altitude and Reflectance Sensor (ScaLARS), was developed and is 
operated by the Institute of Navigation, University of Stuttgart. However, by 2004 
continuous wave capability was also added to the Swedish TopEye (MK II) and Optech 
( A L T M 3100) small footprint laser systems. 

Intensity 

Figure 4.1 Comparison of continuous wave and discrete LiDAR systems. After Lim 
et al. (2003). 

The major components of an airborne laser system include a laser range finder (LRF), 

scanner, control and processing unit. A Global Positioning System (GPS) and an 

Inertial Measurement Unit ( IMU) are also integrated. The GPS provides the precise 

location o f the aircraft, while the IMU records the roll, pitch and yaw of the sensor 

(Figure 4.2). 
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Laser Scanner 

Ranging Unit [/̂  N Scanner 

LASER 
FOOTPRINT Control-, Monitoring 

and Recording-Units 

an direction 

swath width -V 

DGPS 

Figure 4.2 Components of a typical discrete return airborne laser system. After Wehr 
and Lohr(1999). 

The first component, the LRF, comprises the emitting laser and receiver. Both share the 

same optical path ensuring that the field of view (FOV) is the same for both the 

transmitter and receiver. The laser is able to generate over a short distance a highly 

directional and powerful pulse of light (pulse laser systems) or a continuous wave of 

light (continuous wave systems). The optical wavelength of the laser depends on the 

system design, and may range from 532 nm for bathymetric lasers to 1535 nm for 

terrestrial lasers. The most sensitive laser detectors are available in the near infrared 

between 800 and 1100 nm, so most LiDARs used for terrestrial applications operate 

within this range. The swath width and laser footprint (the area illuminated by the laser 

on the ground) of the scan for any given height or distance to the target is a function of 

beam divergence and the instrument's scan angle or FOV (Equation 4.1). 

Where: 

sw = swath width, m 

h-flying height, m sw = 2 h t an Equation 4.1 

0 = scan angle, ° 
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For example, at a flying height h of 800 m and scan angle 0 of 10° the swath width is 
140 m. The laser point density depends on the forward speed of the aircraft, sensor 
altitude and pulse repetition rate. 

4.2.2 L i D A R and optical image data 

A summary of the image data used over each study area is presented in Table 4.2. The 

size of each study area is defined by the extent of the area flown by the LiDAR. 

Consequently, only a small part of the satellite data is used. 

Table 4.2 Summary of L iDAR and optical image datasets over the two study 
areas. 

Location Sensor Date Image 
extent 

(km) 

Study 
area 

(km) 

Sun 
elevation / 
azimuth 

n 

Dynamic 
range 
(bit) 

Sensor 
scan / off 

nadir 
angle 

n 

Kielder IKONOS 03/03/2002 11x11 2 x 3 31/163 11 30 
Sensor 
pointing 
West 

Kieider Landsat 7 
ETM+ 

02/09/2002 185 X 
175 

2 x 3 41/155 8 0 

Kielder LiDAR 28/03/2003 2x3 2 x 3 Not 
radiometrically 
calibrated to a 
standard but most 
returns 8-bit 

10 
scan 
direction 
E/W 

Galloway SPOT 5 
HRG 

17/04/2003 60x60 1 x2 44/172 8 16 
Sensor 
pointing 
West 

Galloway LiDAR 15/06/2003 1 x2 1 x2 Not 
radiometricaily 
calibrated to a 
standard but most 
returns 8-bit 

9 
scan 
direction 
E/W 

4.2.3 Satellite data 

(i) Kielder study area 

Over the Kielder study area (6 km^), the Landsat 7 ETM+ data (path 204 / row 22) was 

acquired on 2 September 2002 (Figure 4.3) and the IKONOS data on 3 March 2002 

(Figure 4.4). IKONOS and Landsat 7 ETM+ follow sun-synchronous and near polar 

orbits crossing the equator between 10:00 and 10:30 am daily. At the time of 
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acquisition of the Landsat 7 ETM+ data the sun elevation and azimuth were 41° and 
155° respectively. The IKONOS scene was acquired at an off-nadir angle of 30° with 
the sensor pointing west. I f compared to a scene acquired at nadir the ground sample 
distance decreases from 3.2 m for all multi-spectral bands to 4 m and from 0.82 m in the 
panchromatic band to 1 m. Also, since the scene was acquired in March (late winter) 
the sun elevation was 31° with a corresponding sun azimuth of 163°. Consequently, the 
amount o f topographic shadow is more pronounced in the IKONOS image than in the 
Landsat 7 ETM+ image. This is countered to some extent by the increase in the 
radiometric resolution of IKONOS which is 11-bits (2,048 shades of grey) compared to 
the 8-bit of Landsat data (256 shades of grey). The increased dynamic range of 
IKONOS enables better discrimination between objects in shadow 
(www.spaceimaging.com. accessed 12/09/04). 

The IKONOS data were supplied as a Geo Ortho Ki t product, which means that a 

Rational Polynomial Coefficient (RPC) camera model is also provided in place of the 

physical sensor modeP, which is kept confidential for commercial reasons. The camera 

model mathematically describes the mapping from latitude, longitude, and height to line 

and sample in the image, thereby enabling photogrammetric processing to remove the 

effects of undulating terrain. The Landsat 7 ETM+ was supplied in level IG format, 

meaning that it had been geometrically processed to remove system distortions (but not 

geometrically corrected to a map projection), radiometrically calibrated to radiance 

units and finally quantized to digital numbers. 

The level of detail between the Landsat ETM + and IKONOS image over the same area 

is different, as shown in Figures 4.3 and 4.4. On the Landsat scene it is possible to 

differentiate between large areas of harvesting, young plantations and mature 

plantations. 

' Physical sensor models represent the physical imaging process based on orbital information such as the 
Earth's curvature, atmospheric refraction, and lens distortion. These parameters are used to describe the 
position and orientation of the sensor relative to the object's position. 



Chapter 4: LiDAR, optical image data & processing 
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Figure 4.3 Sample of Landsat 7 ETM+ image displayed as a true colour composite 
using blue/green, green and red spectral bands (display bands 1, 2 and 3). 

The improved spatial and radiometric resolution of the IKONOS scene means that the 

same areas are more clearly identified (Figure 4.4). Replacing the green band in the 

image composite with the near infrared band further enhances harvested areas. In this 

example the strong near infrared response is caused by the presence of logging waste. 

Also, areas of shadow are visible along the north facing edges of plantations due to the 

sensor's look angle (30°) and azimuth (41°) at the time of collection. 
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Figure 4.4 Sample of IKONOS image displayed as false colour composite using 
blue/green, near infrared and red spectral bands (display bands 1, 4 and 3). 

(ii) Galloway study area 

Over the Galloway study area the SPOT 5 HRG* 10 m multi-spectral scene (column 21 

/ row 238) was acquired on 17 April 2003. The orbit characteristics of SPOT 5 HRG 

are similar to both Landsat 7 ETM+ and IKONOS with the equatorial crossing time also 

10:30 am. At the time of acquisition the sun elevation and azimuth were 44° and 172° 

respectively. Like IKONOS, the SPOT 5 HRG High Resolution Geometric (HRG) 

sensor can be pointed off"-nadir (up to 30°). Over the study area the data was collected 

at 16° and therefore there was no change in the spatial resolution of the image. Also, 

since the topography is predominantly flat (maximum slope is 14°) the off-nadir angle is 

less important. Like the Landsat 7 ETM+ and IKONOS images, forest and non-forested 

areas are readily apparent on the SPOT 5 HRG scene. However, the increased spatial 

resolution enables discrimination of conifer species, areas of variable growth and wind 

damage, which are not as obvious from visual interpretation of the coarser Landsat 7 

ETM+ image (Figure 4.5). 

The SPOT 5 HRG was supplied with a similar level of processing (processed to level IB) as the 
Landsat 7 E T M + data. 
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Figure 4.5 SPOT 5 HRG image displayed as false colour composite using green, near 
infrared and red spectral bands (display bands 1, 4 and 2). 

4.2.4 L i D A R data 

(i) Kielder forest 

The LiDAR data were acquired on the evening of 26 March 2003 (Figure 4.6) by the 

UK Environment Agency using an Optech A L T M 2033 laser scanning system. The 

A L T M 2033 is a 33 kHz discrete return system that operates at 1064 nm (near infrared), 

capturing two returns (first and last) for each laser pulse. The system collects data by 

scanning perpendicular to the direction of flight, resulting in a zig-zag pattern of 

irregularly spaced data points (Figure 4.7). The 6 km^ study area was covered by 

twelve flight lines, 305 m wide with an approximate overlap of 70% between adjacent 

swaths, orientated in the north-south direction. The scan angle of the sensor was set to 

10° with a total field of view of 20° giving a forward point spacing of 1.8 m between 

scan lines and lateral point spacing of 0.3 m within scan lines. 
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Figure 4.6 LiDAR point data displayed using LiDAR intensity values. 
White lines are flight lines. 

On average, laser measurements were made at a density of 2 to 3 returns per metre 

(calculated using first pulse data), but point density is lower where the scan lines did not 

overlap, as illustrated in Figure 4.7. The altitude of flight was 950 m above mean sea 

level at an aircraft speed of 70 m s"'. At this aUitude, the footprint diameter of the laser 

on the ground is approximately 0.20 m at nadir. The xyz position (easting, northing and 

elevation) and intensity of each pulse were supplied geo-referenced to British National 

Grid. The height of the z position was supplied as elevation above the Ordnance Survey 

of Great Britain 1936 Newlyn Datum. The accuracy report that accompanied the 

LiDAR data indicates the accuracy in jc and >> position is 0.60 m and in z position is 0.15 

m. 
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Figure 4.7 LiDAR scanning pattern on the ground 
between adjacent scan lines. Left side of the image 
shows area of no overlap between adjacent scan lines. 

(ii) Galloway forest 

LiDAR data was acquired on 15 June 2003 at 17:45 using an Optech A L T M 3033 

instrument operating at a flight altitude of 1,250 m amsl. At this altitude the size of the 

laser footprint on the ground is 0.25 m at nadir. The study area (2.5 km^) was covered 

by 10 overlapping flight lines orientated in an east-west direction. The laser data was 

acquired at scan angle of <9° and at point density of 4 returns/m^ Overall, the 

specifications of this system are very similar to the A L T M 2033 in terms of laser scan 

rate, horizontal and vertical accuracy, laser wavelength and number of pulses recorded. 

The main difference is that the 3033 has a more powerful laser, so potentially the 

system can be operated from higher altitudes. 

4.3 Image processing 

There are a number of processing steps that are required before the datasets can be used 

for further analysis. Different processing methods are applied to the LiDAR and optical 

satellite images, reflecting the different modes in which the data are acquired. Overall, 

more steps are required in the processing of the LiDAR data, mostly because of the lack 

of image processing packages that have inbuilt LiDAR analysis tools. Terrascan 

software is used to process the LiDAR data to generate laser height values above the 
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ground. However, further processing to extract the various forest metrics requires user-
defined routines in the statistical analysis program Stata. In comparison, optical 
satellite data are relatively easily processed, as well-defined image processing routines 
exist. The image processing package ENVI was used in this research. 

The objective at the end of the image processing chain, regardless of the imagery type, 

is to extract laser points or image pixels over the field sample plot. Using these data, 

estimates are derived from the empirical relationships between field observations and 

image data. Section 4.3.1 describes the basic image processing steps used to extract this 

information from LiDAR data, for the Kielder and Galloway study areas. However, 

advanced processing steps (highlighted on the relevant method diagrams) are not 

included in this chapter, but instead described in subsequent chapters. Section 4.5 

describes the process of preparing the optical satellite image for further analysis. Only 

the process of geo-correction is described in detail. 

4.3.1 L i D A R processing 

The LiDAR data were delivered as ASCII point files containing four columns, each 

comprising x, y, z, i (easting, northing, elevation and intensity) data separated into first 

and last pulse return data. To improve the manageability of these data, the flight lines 

for each area were merged into separate files and tiled. For the Kielder study area this 

process resulted in the creation of two datasets of approximately 7,000,000 points^. At 

this stage the data in the ASCII files represented a series of points containing 

information on the position and elevation of the surfaces from which they were 

reflected. To calculate canopy height from these data the laser pulses were separated 

into pulses that reached the ground surface and those that did not. This process is often 

referred to as filtering and the large number of points requires that it is semi-automated. 

Once separated, two surfaces are generated: a digital terrain model (DTM) from the 

ground points and a digital surface model (DSM) from the canopy points. The 

difference between the two models provides a measure of forest canopy height, often 

referred to as a digital canopy height model (DCHM). The following section details the 

processes involved in generating the D T M , DSM and DCHM, while the process is 

summarised in Figure 4.8. 

' This number of points implies a file size of 130 megabytes. 
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Figure 4.8 Summary of LiDAR image processing steps. 
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4.3.2 Classification of L i D A R points 

In discrete return LiDAR data, the first pulse returns represent the first significant echo 

in the LiDAR waveform. In forested areas this is associated with the forest canopy. 

The last pulse return represents the last significant echo in the LiDAR waveform which 

can be associated with the ground surface. Not all last pulses penetrate to the ground 

surface and in dense forests a high proportion are returned from the upper canopy. This 

pattern is seen in Figures 4.9 and 4.10, which show the distribution of first and last 

pulse returns over a closed canopy sample plot. From this example it is clear that the 

first pulse data (coloured in black) has failed to penetrate through the forest canopy to 

the terrain surface, whereas approximately 23% of last pulses (coloured in red) were 

returned directly from, or close to, the terrain surface. 

370670 

• L*« WW* f«um 
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275 280 285 290 
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Figure 4.9 3D plot showing the distribution of 
LiDAR returns in a sample plot established in a 
mature Sitka spruce plantation. 

Figure 4.10 Histogram showing distribution 
of last pulse LiDAR returns in the same 
sample plot. 

(i) Ground D T M from laser data 

Filtering vegetation returns from point cloud data is the first step in derivation of the 

terrain surface or D T M . Several filtering algorithms have been developed to obtain a 

DTM from laser data. An explicit assumption made in filters is that the lowest returns 

in point cloud data are ground returns. A l l filters operate at a local neighbourhood level 

using either raw point cloud data or data resampled into an image grid. Within this 

local neighbourhood, points are filtered based on discontinuity measures, such as 

differences in height and slope between points or distance to Triangular Irregular 
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Network'" (TIN) facets or parameterised surfaces (Sithole & Vosselman 2004). Points 
are added to or removed from the ground surface, based on a set discontinuity 
threshold, which is often user-defined. 

In this research the filtering algorithm, embedded in the Terrascan software developed 

by Axelsson (2000), was used. This routine is an iterative algorithm that combines 

filtering and thresholding methods and is designed to model surfaces with 

discontinuities, such as those found in urban areas (Sithole & Vosselman 2003). 

Although originally designed for use in urban areas, the algorithm has been widely used 

for the identification of ground surface points and generation of DTMs under forests 

(Holmgren et al. 2004; Hyyppa et al. 2004; Maltamo et al. 2004; Xiaowei et al. 2004). 

The next steps involved in generating the D T M in Terrascan are shown in Figures 4.11 

b to d. For reference, a 1: 10 000 aerial photograph (Figure 4.1 la) shows the general 

location, with the extent of the laser data marked by the orange box. Note that this is 

included for ground orientation purposes and does not overlay exactly with the other 

image extracts. 

A T I N is constructed using a network of non-overlapping triangular elements, with the vertices at the 
sample points. 
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Figure 4.11a 1:10 000 aerial photograph of 
reference area. 

Figure 4.11b Last pulse laser 
coloured using return intensit 

data 
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Figure 4.11c Ground points identified after 
filtering process. 

Figure 4.1 Id DTM interpolated from 
ground points. 

Firstly, the last pulse laser points are loaded (Figure 4.1 lb) and low points in the data 

identified and removed. Low points occur when the distance from aircraft to ground 

has been incorrectly recorded. These may be caused by recording errors in the Time 

Measurement Unit (TMU) or by multipathing" of the LiDAR return by vegetation. 

Next, the ground classification algorithm is initiated (result shown in Figure 4.11c). 

Initially, this algorithm generates a sparse TIN by selecting from neighbourhood 

minima, within a user-defined search window size (i.e. 60 x 60 m^ area). The 

assumption is that within this area there wi l l be at least one hit on the ground and that 

the lowest point is a ground hit. Selection is progressively densified with new points 

'' Multipathing is caused by reflection of the laser pulse by a number of surfaces before it is returned to 
the sensor. This time delay means that the distance to the target is incorrectly calculated. 
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added to the TrN i f they are below user-specified iteration angle and distance thresholds 
(Figure 4.12). 

Figure 4.12 Iteration angle and distance used in the Terrascan DTM algorithm. After 
Soininen (2002). 

The iteration angle sets the maximum allowable angle between each point and the TIN 

facet, while the distance parameter sets the minimum allowable distance to each triangle 

node. The higher the iteration angle and distance, the more likely it is that points with 

higher elevations are added to the model. At the end of each iteration a new threshold is 

computed, based on median values. These are estimated from histograms, which are 

calculated using the angle and distance of each point, relative to the T f N facet. The 

iterative process ends when there are no points remaining below the user-defmed 

thresholds. The result of this process is shown in Figure 4.1 Ic. Lastly, these points are 

interpolated from the TIN to produce the DTM surface as shown in Figure 4.1 Id. 

Results from the Terrascan software are almost instantaneous, which means they can be 

visualised and parameters altered and refined. For the first run, the default search 

window size was 60 x 60 m, the iteration angle was 8° and distance values were 1.4 m. 

In open areas satisfactory results were obtained. However, in areas with a low 

percentage of ground returns, errors were observed in the DTM, in the form of 

undulations in elevation (Figure 4.13a). Based on this result the search window was 

increased to 100 x 100 m, so that the number of potential points from which the 

algorithm could seed was increased. Additionally, the distance parameter was 

decreased from 1.4 m to 0.5 m, to reduce the number of vegetation points being added 

to the TIN. Using these settings vegetation points were removed and the ground surface 

was better defined (Figure 4.13b). 
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Figure 4.13a DTM created using default 
settings. 

Figure 4.13b D T M created using refined 
settings. 

4.4 Laser Digital Canopy Height Model 

Using the DTM as a reference, all remaining returns (first and last) above the DTM 

were classified as vegetation returns. At this stage, point values were still elevation 

values above the OSGB 1936 Newlyn Datum. The relative height of each point was 

calculated by subtracting the height of the first return points from the D T M . In forested 

areas this relative height was considered to be the canopy height and in open areas, 

ground or close to ground height. Over the study area the LiDAR canopy heights 

ranged from 0 to 35 m, which is higher than the range in the tree height data (Figure 

4.14). 
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Figure 4.14 The distribution of first pulse returns 
over a closed canopy crop. 
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The LiDAR dataset was then divided into two datasets: 

(i) L iDAR data over the reference plots in the Kielder and Galloway study areas 

(ii) L iDAR data over the entire coverage areas. 

In both cases data were exported from Terrascan in a class, x, y, z, i (the class field used 

to denote first or last pulse) ASCII format and imported into the statistical software 

program Stata. 

Terrascan is able to produce surfaces in the form of TINs or grids based on the lowest, 

median and highest point values. I f a DCHM is all that is required, common practice is 

to generate the DCHM from the highest returns in first pulse data, using a defined 

neighbourhood or grid cell size (Gaveau & Hi l l 2003; Hyyppa et al. 2004). The 

disadvantage is that this provides only a single canopy height measure and essentially 

discards any additional information that may be determined from the point cloud 

distribution. However, using routines developed in Stata, a DCHM and other statistical 

measures can be produced, while retaining the original point structure of the data. 

4.4.1 Merging field and laser datasets 

A link was made between the LiDAR data and the field dataset, in order to analyse the 

relationship between the two. This process comprised two stages: firstly, the LiDAR 

data for each reference and/or validation plot were exported to a GIS, to register the 

point data spatially with the sample plot ID and to clip the LiDAR data to the extent of 

the ground sample plot; secondly, data were imported into Stata. See Appendix 4.0 for 

details of these stages. 

In Stata, the LiDAR point data were coded with the plot ID and merged with the field 

measurements, using the corresponding plot ID as a common link. Some data 

redundancy results from this process, as the number of first and last pulse observations 

exceeds the number of field observations. Consequently, the plot-level summary 

statistic in each column was duplicated to match the number of first and last pulse 

records (57,000 in the case of the Kielder reference dataset). The issue of data 

redundancy was overcame by tagging the first observation with a binary variable, so 

that only one value was used in any calculations. 
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4.4.2 Computations at plot-level 

The plot-level dataset was used to identify relationships between field measurements 

and first and last pulse height distributions. A series of statistics were derived from 

these distributions, including height percentiles, measures of canopy density and the 

shape of the height frequency distribution. Previous research has shown that for a given 

plot size and canopy structure, a certain percentile in the height distribution exists that 

corresponds to the canopy height of interest (Magnussen & Boudewyn 1998; Naesset & 

0kland 2002; Naesset «& Bjerknes 2001). Consequently, percentiles corresponding to 

the 0 to 99'*' percentiles of the laser canopy heights were derived for each plot. In 

addition, other variables were created to provide information on canopy density, such as 

the number o f ground returns and the skewness and kurtosis of LiDAR frequency 

distribution. Additional details relating to these statistics are provided in Chapters 6 & 

7. 

4.4.3 Processing laser data at the dataset level 

The three ASCII files containing the LiDAR data were imported into Stata and 

processed separately'^. The subsequent processing steps were to: (i) determine the 

spatial resolution of the output grid, which can be either user-defined or matched to 

resolution of the optical data; (ii) output grid statistics or apply estimation equations 

developed using the plot-level dataset; (i i i) export the estimation grid in ASCII format 

and import into the image processing package ENVI. 

(i) Determining the spatial resolution of the grid 

The level of rounding applied to the x and y coordinates defines the spatial resolution of 

each grid cell (Stata routine documented in Appendix 4.1). The resolution selected can 

be either user-defined or based on the resolution of the optical data. It is important to 

note that the grid size selected should not exceed the spatial resolution of the laser data. 

In this context, selecting a grid resolution of less than 1 m would provide biased results, 

as the number of laser returns ( I to 2 returns per m^) would be insufficient to provide an 

accurate representation o f the data. In this study a grid with a spatial resolution o f 4 m^ 

was used. At this resolution this provided 6 canopy returns per grid with a range of 4 to 

12 returns per grid. Figures 4.15 and 4.16 provide an example of the rounding process. 

Figure 4.15 shows the point data, prior to rounding, with a numbered 2 x 2 m grid 

This is because of computer processing limitations. 
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superimposed over the data. The rounding process groups the points, based on their x 
and coordinates, as shown in Figure 4.16. At the end of this process all of the original 
points are assigned to the centroid point of each 2 x 2 m grid cell. 
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Figure 4.15 Point distribution before rounding. Figure 4.16 Point distribution after 
rounding. 

(ii) Calculating grid statistics & exporting to ENVl 

In the rounding process, the structure of the point data is nevertheless retained making it 

possible to use all the return data to provide summary statistics (i.e. LiDAR height 

percentiles, percentage ground returns or shape measures such as skewness or kurtosis) 

at the defined grid size. The results of statistical calculations can be added to a new 

column in the data file. From this point, any combination of statistics can be exported 

in an ASCII format to an image processing software package and added as a series of 

image bands. For example, the DCHM can be generated, by identifying the highest 

return in each grid cell, and exported as a single image band in an ASCII file. For 

reference. Figure 4.17a shows the 1: 10 000 aerial photograph with the general location 

of the area of interest. Over the same area. Figure 4.17b shows the DCHM displayed, 

using 2 m height increments and gridded at a 2 m spatial resolution. Other statistical 

measures that summarise the point return data in each grid cell can also be added. By 

mapping these variables at the scale of the dataset, different combinations can be used, 

to assist in the identification of forest types and/or provide additional quantitative 

information that can be used to describe the forest structure. Figure 4.17c shows the 

same area, using maximum and median height and the lO"' percentile of L iDAR height 
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in a three band composite image, with the statistics displayed using the red, green and 
blue colour channels. Additionally, the graph to the left shows canopy height values at 
the location of the red cross for each band (or statistic). 
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Figure 4.17a 1:10 000 aerial photograph of 
reference area 

Figure 4.17b Maximum height grid at 2 m 
spatial resolution 
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Figure 4.17c Composite image based on maximum height, median and lO"' height percentile. 

4.5 Optical imagery 

The processing methodology, used to prepare the satellite data, is presented in Figure 

4.18. This process enables the extraction of pixel values corresponding to the location 

of field sample plots. These are exported to Stata, so that relationships between 

reflectance values and forest height can be analysed. As this method is identical to that 

described for the LiDAR processing, it is not repeated in this section. Processing steps 

highlighted in Figure 4.18 are not presented in this section, but are described in more 

detail in the relevant chapters. 
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Figure 4.18 Summary of satellite image processing steps. 
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4.5.1 Geometric correction 

Prior to geometric correction, the expected positional accuracy of a Landsat 7 ETM+ 

scene is 50 m and for the IKONOS Geo Ortho Kit product 15 m (Space Imaging, 2004). 

Therefore geometric rectification is essential to ensure that land surface features are 

accurately positioned in geographic space and can be precisely integrated or compared 

with other geographically registered data. The geometric rectification of the Landsat 7 

ETM+ and Ortho-correction of IKONOS datasets was performed using ENVI image 

processing software using 40 GCPs. The correction process can be divided into three 

stages, which are described below. 

(i) IKONOS Ortho-correction 

IKONOS data includes a description of the camera geometry at the time of acquisition, 

supplied in the form of the Rational Polynomial Coefficient (RPC) model. The RPC 

model uses ratios of cubic polynomials to express the transformation from ground 

surface coordinates {latitude, longitude, elevation) to image coordinates {line, column) 

(Lutes, 2004). By using the RPC model and a D T M it is possible to remove distortions 

in the imagery caused by terrain, so that image features have correct planimetric 

coordinates. Since the RPC model is calculated over the entire IKONOS scene, it is not 

possible to use the LiDAR D T M , as the area of coverage is smaller than that of the 

IKONOS. However, in the UK a geo-referenced D T M , at a 30 m posting, is widely 

available through the Ordnance Survey'^. Although the DTM resolution is coarse, it is 

suitable for this purpose as the ground topography over the study area is gently 

undulating (mean slope <10°). 

The IKONOS data was matched with the 30 m DTM and the RPC coefficients applied 

(process described in Appendix 4.2). However, after the application of RPC 

coefficients, the IKONOS image did not exactly overlay the LiDAR data. There are 

two possible causes for positional error: (i) the D T M resolution was not high enough to 

adequately represent the ground surface, (ii) and/or there were positional inaccuracies in 

the supplier's RPC coefficients. Di et al. (2003) reported that geo-positioning could be 

improved through the inclusion of extra Ground Control Points (GCPs). Figure 4.19a 

shows the IKONOS image prior to ortho-correction and Figure 4.19b shows the 30 m 

The D T M resolution has recently been updated to a 10 m posting, but this was not available at the time 
of processing these data. 

67 



Chapter 4: LiDAR, optical image data & processing 

DTM used to provide the elevation values. The final ortho-corrected image is shown in 
Figure 4.20b after the addition of extra GCPs. 

N«tr«t 

Figure 4.19a IKONOS data prior to ortho-
correction overlaid with forest boundary data. 

Figure 4.19b OS thirty metre D T M overlaid 
with forest boundary data. 

4.5.2 Projection of satellite data to U K National Grid 

The Landsat 7 ETM+, SPOT 5 HRG and IKONOS data were delivered projected to 

zone 30N of the Universal Transverse Mercator (UTM) using the World Global System 

1984 (WGS84) Datum. U T M is a grid-based projection that divides the world into 60 

north-south zones, each covering a strip 6° wide in longitude. These zones are 

numbered consecutively, beginning with zone 1 between 180° and 174° west longitude, 

progressing eastward to zone 60 between 174° and 180° east longitude ( l l i f fe , 2003). 

A l l field and stand boundary GIS data are projected using the UK National Grid 

projection. This projection is also based on the Transverse Mercator projection, with a 

modified scale factor and transformed local origin''*. Therefore, to be able to overlay 

the different datasets, it was necessary to re-project the Landsat 7 ETM+ and IKONOS 

data. This was achieved in ENVI , using triangulation transformation and nearest 

neighbour re-sampling, which ensures that the radiometric integrity of the original 

image data is retained. 

Scale factor on central meridian U K National Grid (0.9996012717); U T M zone 30 (0.9996). True 
origin U K National Grid lat 49° N long 2° W (Map coordinates East 400,000, North 100,000 in metres) 
UTM zone 30 lat 0° long 3° W (Map coordinates East 500,000, North 0 in metres). 
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4.5.3 Geo-correction of Landsat 7 E T M + , SPOT 5 H R G and I K O N O S data 

Despite having re-projected images to the UK National Grid, additional control points 

were necessary, to match the image data with GIS boundaries and field plot positions. 

For the Kielder and Galloway study areas, about 40 matched pairs of GCPs were 

collected from the LiDAR data'^ (over the study area only) and the FC forest 

compartment database. In the Kielder study area, the Landsat 7 ETM+ and ortho-

corrected IKONOS data were rectified, using the same GCPs, thereby minimising errors 

in the rectification procedure. The root mean square (RMS) error for each image was 

less than a pixel (4 m for the IKONOS, 5 m for the SPOT 5 HRG and 30 m for the 

Landsat 7 ETM+). Images were rectified using both a triangulation transformation, 

where the warp is exact at the GCP and error increases away from the point, and nearest 

neighbour re-sampling, which ensures that the radiometric integrity of the original 

image data is retained. This process generated co-registered images, where the 

coordinates of a particular feature on one image exactly match the coordinates of the 

same feature on another image. Figures 4.20a and 4.20b provide examples of corrected 

images over the Kielder study area. 

Metres I Metre g 

Figure 4.20a Geo-corrected Landsat 7 ETM+ 
image displayed as a false colour composite 
using blue/green, near infrared and red spectral 
bands (display bands I , 4 and 3). 

Figure 4.20b Ortho-corrected IKONOS image 
displayed as a false colour composite using 
blue/green, near infrared and red spectral 
bands (display bands 1, 4 and 3). 

" According to the accuracy report provided by the L i D A R data supplier the expected planimetric 
accuracy of the L i D A R is expected to be ± 0.60 m. 



Chapter 4: LiDAR, optical image data & processing 

4.6 Summary 
The objective of this chapter was to describe the processing methods used to prepare the 

LiDAR and Landsat 7 ETM+, SPOT 5 HRG and IKONOS satellite data for further 

analysis. These data represent a cross-section of commercially available, remotely 

sensed data that can be used to assist with management of forest resources. They also 

represent a range of spatial, radiometric and spectral resolutions, which enable direct 

comparisons to be made of their ability to provide quantitative forest estimates in 

upland conifer plantations. The main findings include: 

1. The band passes of different sensors are very similar, but spatial and radiometric 

resolutions are quite different. 

2. Although the image data are collected within the same growing season, the off-

nadir angle of IKONOS data and sun angle differences between IKONOS and 

Landsat may cause differences in reflectance values recorded over the forest. 

3. User-defined routines, developed in the statistical analysis program Stata, enable 

calculation of various laser metrics at any spatial resolution. 

4. LiDAR provides an accurate source of data, which can be used to geo-correct 

satellite data to accuracies of less than an image pixel. This allows the positions of 

field plot data to be accurately matched to image data. 

The processed image data from this chapter are analysed in the four subsequent 

chapters as follows: 

1. Chapter 5 - Assessment of the accuracy of L iDAR: the accuracy of the laser-

derived D T M and DCHM are compared with the field-measured data. 

2. Chapter 6 - Estimation of forest parameters using LiDAR: LiDAR-derived 

percentile heights and crown density measures are used to provide estimates of top 

height, volume and tree density. 

3. Chapter 7 - Mapping species mixtures: LiDAR-derived crown measurements and 

near infrared intensity values are compared with spectral information from the 

SPOT 5 HRG data, to identify and map conifer plantation species and species 

mixtures (lodgepole pine and Sitka spruce). 

4. Chapter 8 - Estimating forest height using I K O N O S and Landsat 7 E T M + : 

IKONOS and Landsat 7 ETM+ data are used to estimate forest height. L iDAR is 

also used to provide additional samples of height and to validate height estimates 

derived from satellite data. 
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Chapter 5; Accuracy of LiDAR under dense forest 

canopies 

5.1 Introduction 

In forestry, tree height is one of the key variables used to make estimates of timber 

volume and to derive forest growth models. This is primarily because tree height is 

relatively easily measured and is strongly related to stem volume and diameter. This 

thesis seeks to test the hypothesis that L iDAR is able to provide measurements of forest 

height that are at least as accurate as field-based measurements and therefore could be 

used in their place. The objective of this chapter is to assess the accuracy of LiDAR 

measured height'^ in densely stocked UK conifer plantations. The assessment is made 

by comparing a Digital Terrain Model (DTM) with field-measured ground elevation 

data and a Digital Canopy Height Model (DCHM) with individual tree height data (tree 

level dataset'^). The analysis is expanded to plot level so that the influence of factors 

relating to crown density, laser pulse density and terrain can also be assessed. 

5.1.1 Previous research 

A number of studies suggest that the accuracy of tree height measurements derived from 

LiDAR data in coniferous forests is comparable to field-based measurements 

(Holmgren 2003; Hyyppa et al. 2000; Naesset 1997; Persson et al. 2002). However, it 

is also widely acknowledged that LiDAR can underestimate tree height in conifer-

dominated forests, due to the low probability of a small-footprint laser pulse 

intercepting the tree apex (Nilsson 1996; Naesset 1997; Popescu et al. 2002). Another 

potential source of error is inaccurate representation of the underlying terrain elevation, 

as the tree height or DCHM is determined by subtracting the Digital Surface Model 

(DSM) from the Digital Terrain Model (DTM). Therefore, the accuracy of the height 

measurement is affected by the ability of the LiDAR pulse to penetrate to the forest 

floor. Penetration rates of Continental European conifer-dominated stands are reported 

to be between 17 and 33% of the canopy, depending on the density of the understorey 

(Kraus and Pfeifer 1998; Naesset 2002). Compared with these forests, UK plantations 

'* The analysis is conducted using the raw L i D A R height measurements with the L i D A R data compared 
with field-measured height. 
" The tree level dataset refers to measurements recorded for individual trees in each sample plot that were 
positioned using the dGPS. Plot level dataset refers to the average of all trees in each sample plot. 
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are extremely dense, with stands commonly exceeding 2,500 trees/ha (Donoghue et al. 

2004; Watt 2002). At this density the number of laser returns from the terrain surface 

decreases quickly, to less than 10% in stands of 10 m height (Figure 5.1). 
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Figure 5.1 Mean tree height against the percentage of LiDAR ground returns. 

Few LiDAR-based studies have been conducted in UK conifer forests because datasets 

are unavailable. One notable exception is a study by Suarez et al. (2005), which 

evaluated the potential of combining LiDAR and aerial photography for tree height 

estimation. However, at the time of writing, no research has been published that 

specifically investigates the accuracy of LiDAR-derived height and the factors that 

might affect the accuracy in densely stocked UK upland conifer plantations. I f L iDAR 

data are to be used to provide estimates of forest height or height-related canopy 

structural measurements, such as canopy length, it is important to determine the 

accuracy of the estimate and to identify possible sources of error. 

5.2 Methodology 

The accuracy of the two LiDAR surfaces, the D T M and DCHM, was tested through 

comparison with field measurements of ground elevation and tree height respectively. 

To test the D T M accuracy, eight transects and a series of spot heights distributed along 

forest roads were measured. Measurements of a flat hard surface, like a road, provide a 

check on the accuracy of the LiDAR instrument. 
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To test the accuracy of the DCHM, the heights of 99 trees were measured using a digital 

hypsometer. Figure 5.2 shows the location of the surveyed points, overlaid on a 1:10 

000 aerial photograph. Height measurements, recorded at plot level, were used to assess 

the influence of a range of factors on the precision of the LiDAR estimate, such as 

canopy structure, terrain slope and the number and percentage of LiDAR returns. 
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road 
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Transect 
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^ S j Open canopy 

Closerl canopy A 
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Other Forest Roads 0 

A 
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200 
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Figure 5.2. Location of ground transects and spot elevation measurements. 
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5.2.1 Description of measured sites 

Transects and measured sample plots can be classified into four site types: forest road, 

grassland, open canopy and closed canopy. Spot heights, recorded on the road surface, 

provide a benchmark, as this is a hard non-penetrable surface and so can be used to test 

the accuracy of the L iDAR system. Photographs of the different site types are provided 

in Figure 5.3, and are described below: 

(i) Forest road 

Four-metre wide compacted gravel forest road. The surface gradually slopes away 

from a centre ridgeline. Reference points were collected in the centre of the road, 

avoiding potholes and areas of excessive slope. 

(ii) Grassland 

A mixture of rushes and sedges. The ground surface is covered by a dense mat of 

vegetation and is not visible from the air. 

( i i i ) Open canopy 

Open canopy is defined by the presence of >50% grass species in the understorey 

vegetation. The understorey surface is a diffuse mix of clumps of grass, bare soil and 

tree stumps. Trees are generally less than 10 m in height. 

(iv) Closed canopy 

Closed canopy is defined by the absence of understorey vegetation, specifically 

where <50% of the understorey vegetation is grasses. Trees are generally greater 

than 10 m in height and their crowns are classified as dominant, co-dominant, sub-

dominant and suppressed. The understorey surface is devoid o f vegetation but has a 

thick mat of tree needles. 
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Forest road Grassland 

\ 
Open canopy Closed canopy 
Figure 5.3 Example photographs of the four site types measured during the ground survey 

5.2.2 Forest transects 

Seven of the eight transects were measured in forested areas. These were distributed 

over a range of a canopy development stages and terrain slope angles. Each transect 

traversed sample plots that had already been established as part of the field inventory, to 

ensure that tree position, canopy dominance, canopy structural measurements and height 

information were known (measurement methods detailed in Chapter 3). The following 

methodology describes measurement o f the ground surface and tree height data. 

(i) Ground surface measurements 

Each transect was initiated either on the temporary benchmark (red triangle on Figure 

5.2) or on points established on the road, using the differential GPS (marked yellow). 

Additional points were established when the line of sight was obstructed and it was 
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necessary to change the direction of the survey. Ground elevation measurements were 
made every 1 m, using a laser ranging theodolite (Leica Total Station 1100). From 
these measurements the horizontal (x and y) and vertical distance (z) of the ground 
elevation, relative to the benchmark position or GPS point, were calculated'* and 
converted to British National Grid (BNG) Eastings and Northings. A l l height values (z) 
were calculated in metres above the Ordnance Survey 1936 datum. Using the Terrascan 
software, the corresponding elevation value for each point was extracted from the 2 m 
resolution LiDAR DTM. 

(ii) Tree height measurement 

In each sample plot only trees classed as dominant were included in the analysis. 

Dominant trees are the tallest, with the widest canopies, and are therefore easily 

separated from surrounding LiDAR returns. In sample plots with closed canopy forest, 

all tree crown classes other than dominant (i.e. co-dominant, sub-dominant and 

suppressed) were excluded. In sample plots with open canopy forest, all trees were 

included, as there is no tree competition at this growth stage and therefore the tree 

crown classes have not developed. Figure 5.4 illustrates the position of each dominant 

tree in the canopy, relative to the D T M and first pulse laser data, for 0.02 ha sample 

plots measured in the two canopy types. 

In both cases dominant tree canopies receive a number of LiDAR hits, as shown in 

Figure 5.4. As a consequence of overlapping L iDAR scan lines, the density of LiDAR 

returns is twice as high in the closed canopy plot (2 retums/m^) than in the open canopy 

plot. 

Prior to conversion the magnetic declination (4.35° W) was subtracted from each bearing measurement. 
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Figure 5.4 Positioning of dominant trees relative to the first pulse laser data. 

Using only the highest point returns from the LiDAR first pulse data, a DCHM with a 

resolution of 2 m was created (same resolution as the DTM). At this scale, the 

resolution of the DCHM is large enough to cover each canopy, but also small enough 

not to capture multiple tree canopies. This resolution accounts for the horizontal 

positioning accuracy of the LiDAR data (± 0.60 m) and tree position data (± 0.40 m). 

Using Terrascan software, tree point positions were overlaid with the 2 m resolution 

LiDAR DCHM and corresponding elevation values extracted. 

5.3 Accu racy of the DTM 
A summary of the differences between the ground-measured D T M and the LiDAR 

D T M for the five site types is presented in Table 5.1. Previous work by Baltsavias 

(1999b) and Gaveau and Hi l l (2003) states that the vertical precision of Optech's 

airborne laser scanners ( A L T M 1020, 1210 and 2033), operated over open areas with 

flat hard surfaces, is ± 0.15 m. Table 5.1 shows that the range of height values recorded 

on the forest road is between -0.18 m and 0.15 m (i.e. ± 0 . 1 8 m), which is close to this 

threshold. The slight discrepancy between measurements (0.03 m) is probably due to 

the uneven nature o f the forest road surface. 
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Table 5.1 Summary statistics for the elevation residuals by site class 

Site Mean SD Min. Max. No. survey 
Reference (m) (m) (m) (m) points 
Forest road -0.026 0.12 -0.18 0.15 5 
Grassland 0.47 0.09 0.23 0.68 24 
Open canopy 0.24 0.13 -0.23 0.59 41 
Closed canopy 0.17 0.46 -1.16 1.16 222 

In all other cover types the average elevation residual in LiDAR varies according to 

surface type, from forest road surface (-0.026 m) through grassland (0.47 m) to open 

and closed canopy (0.24 m and 0.17 m respectively). While the mean residual of the 

grassland site is higher than that of open forest canopy, greater variation is observed in 

the surface under open forest canopy, as shown in Figure 5.5. This indicates that the 

grassland surface is more homogeneous than the surface under open forest canopy. 
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Figure 5.5 Distribution of elevation residuals for the D T M by site type. 
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(i) Grassland 

Over-estimation of the grassland surface height is probably due to the inability of the 

laser to penetrate the thick grassland vegetation layer, although it is possible that this 

could have also been caused "smoothing" during the generation of the TIN. The mean 

error (0.47 cm) is thought to be close to the actual grass height at that time of year'^. 

This is supported by the apparent planimetric accuracy of the L iDAR surface, where 

undulations in the ground-measured surface and the LiDAR-measured surface mirror 

each other (as indicated by the dashed orange line in Figure 5.6). Although some 

discrepancies are observed, it is suggested that these reflect variations in the surface of 

the grassland vegetation layer. 
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I Figure 5.6 Survey transect through a grassland site, retrieved from i 
Lgrqimd survey and DTM ] 

(ii) Open forest canopy 

Analysis of the dot plot (Figure 5.5) indicates that residuals in open canopy areas are 

generally positive. The positive bias means that the ground surface is overestimated, 

although the overestimation is no greater than 0.59 m with a mean of 0.24 m. From the 

distribution of errors, shown in Figure 5.5, it is observed that 95% of LiDAR returns do 

not penetrate to the ground surface. However, the absence of large negative residuals 

suggests that the density of ground returns is high enough to record subtle undulations 

in the terrain. 

' LiDAR survey completed 26"' March 2003 with ground transects measured August 2004. 
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(ii i) Closed forest canopy 

The largest variation in the residuals is observed in the closed forest canopy, which 

comprises 6 transects (n =222). The range in residuals (-1.16 to 1.16 m) means that 

ground surface can be underestimated or overestimated by the same amount. The 

distribution of error, presented in the dot plot, suggests that 90% of the residuals lie 

between -0.3 and 1 m. The negative error values suggest that in some areas the number 

of returns from the ground surface is insufficient to characterise the underlying 

topography, as shown in Figure 5.7. In this example, it can be seen that the low point 

density, coupled with the distribution of points, results in both under- and over-

estimation of the ground surface, compared with the measured surface. 
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Figure 5.7 Survey transect through a closed canopy site, retrieved from 
ground survey and DTM. 

5.4 DCHM accuracy 

The process of generating the DCHM involves subtracting the D T M from the DSM, 

thus any errors inherent in the D T M are propagated to the DCHM. In mitigation, the 

DCHM was normalised by subtracting the mean D T M error (using the values in Table 

5.1) for each forest site class from the height of each tree (derived from the DCHM). 

For example, in open canopy plots the D T M is overestimated by 0.24 m, so this amount 

was subtracted from DCHM. Table 5.2 provides a summary of the differences between 
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field-measured tree heights and those derived from the L iDAR DCHM for the two 
forest canopy classes. 

Table 5.2 Summary statistics for the DCHM elevation residuals, by canopy class 
(n = 99) 

Site Mean SD Min. Max. No. 
Reference (m) (m) (m) (m) trees 
Closed canopy -1.71 1.33 ^ . 1 2 1.77 80 
Open canopy -1.73 0.68 -2.57 -0.39 19 

The difference between means of the two canopy classes is small; in both cases tree 

heights are underestimated by approximately 1.7 m. The higher standard deviation 

observed in the closed canopy class indicates that there is greater variation here than in 

the open canopy class (1.33 and 0.68 m respectively). The range of values in the closed 

canopy data (-4.12 to 1.77 m) shows that tree height can be either under- or over­

estimated. In contrast, in an open canopy situation, heights of trees are consistently 

underestimated. The overall relationship between the DCHM and measured height is 

shown in Figure 5.8. The line of best fit used to predict dominant height from the 

DCHM, derived using least-squares, has an intercept of 1.07 m, with an RMS error of 

1.66 m and = 0.99. Comparison with the =x line shows that tree heights below 20 

m are underestimated, while those above 20 m can be either overestimated or 

underestimated. 
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Figure 5.8 Estimated tree height in the DCHM (dominant trees only) 
against field-measured tree height. 
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The frequency distribution (Figure 5.9) shows the spread of the height residuals in both 
canopy classes. In open forest canopy a systematic underestimation of height is 
observed, with approximately 75% of the residuals falling between -1.29 and -2.57 m. 
In contrast, in closed forest canopy the height residuals show more variability. 
Approximately 85 % of the residuals are negative which indicates that tree height is 
more often underestimated. Approximately 15% of the residuals are positive which 
suggests that tree height can also be overestimated. 

2- o 

(U
l) 

o o o o o 
0 o 
0 0 o o o 0 

0 
0 o o o o 

' h
ei

gh
t 

1 

o o o o o o o o o o 
O O 0 
0 0 0 o o o o o o o o o o O O 0 

1 
IC

C
 

O O 0 O 0 o o O 0 o 
0 o 0 o o o o o o o o o o o o o o o 
0 

-J 

A 

o o o 
0 O 0 O 0 
o 
0 o o o 

-4 u u 0 
Closed canopy Open canopy 

Figure 5.9 Distribution of height residuals in the DCHM, by site type. 

The pair plot (Figure 5.10) illustrates the difference between the means of two height 

measures, DCHM and field-measured height (hdom), against dominant tree height 

aggregated to the plot level. Closer scrutiny of the poshive height residuals reveals that 

these values can be attributed to two closed canopy sample plots with tree heights 

greater than 20 m. Pyysalo and Hyyppa (2002) and Naesset and 0kland (2002) noted 

that the accuracy of hypsometer-measured tree height in Scandinavian forests was less 

than 0.5 m. For trees greater than 25 m, however, the error can be up to 1.5 m. 

According to the hypsometer manufacturer Hagloff, a calibrated instrument has an 

absolute accuracy of ±0.01 m (www.haglofsweden.com) and therefore most of the 

observed error must be due to the operator. The largest error observed in this research 

is 1.3 m, slightly less than that observed in the two Scandinavian studies. 
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Figure 5.10 Difference between dominant tree height in the DCHM and 
mean field plot dominant height. 

5.5 LiDAR height estimates at the plot level 
To assess the influence of variables such as canopy structure, terrain slope and LiDAR 

sampling density, the analysis was expanded to include all 60 sample plots. This 

analysis was conducted at plot level, rather than tree level. Initially the height 

difference for each plot was calculated by subtracting the maximum LiDAR height from 

field-measured dominant tree height. The difference is the sum of errors from the 

DTM, tree height measurement and LiDAR system. Figure 5.11 shows the plot level 

relationship between dominant height and the DCHM, and for comparison. Figure 5.8 

(introduced earlier) shows the relationship between dominant height and the DCHM at 

tree level. 
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Figure 5.11 Estimated canopy height in the DCHM against field-measured 
dominant tree height, at plot level. 
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Figure 5.8 (repeated for reference) Estimated tree height in the DCHM 
against field-measured dominant trees. 

Both tree and plot level relationships are similar, as indicated by the ^ (0.99), however 

the RMS error is higher for the tree level dataset (1.66 m c f 0.90 m). This is to be 

expected since the comparison for the plot level dataset is based on the mean plot value, 

rather than individual tree heights. This has the effect of reducing the height variation, 

which leads to the lower RMS error. 
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5.5.1 Effect of forest structure and L i D A R related variables on L i D A R height 
estimates 

The difference (or residual) between the measured and predicted height at plot level was 

analysed by evaluating the correlations in Table 5.4 and graphically using scatterplots 

(Figures 5.11 to 5.13). Table 5.3 summarises the selected variables used in the analysis. 

These variables can be divided into three groups: (i) general forest structure, namely 

timber volume, dominant height and tree density; (ii) measures of canopy structure, 

namely canopy width and length, live canopy ratio, canopy to tree diameter ratio and 

canopy area (iii) terrain and LiDAR scanner-related variables, namely ground slope, 

LiDAR point density and percentage of ground returns. 

Table 5.3 Summary statistics of forest structure, terrain, LiDAR return density and 
percent ground returns: Kielder forest dataset. 

Variable Description Units Mean S.D. Min. Max. 
« = 60 

V Total volume m^/ha 289.41 280.36 0.00 792.58 

hdom Dominant height m 14.05 8.52 3.40 25.50 

N Tree density trees /ha 3175 1723 1450 12300 

K Crown width m 2.49 0.82 0.85 4.58 

K, Crown length m 4.75 1.96 1.51 9.59 

Live crown ratio % 63.17 33.42 17.98 100 

Kd Crown/tree dbh ratio . 26.98 14.96 9.00 49 

Crown cover % 71.18 9.99 43.00 94 

denfp 
No. First pulse 
retums retums/m^ 2.87 2.20 1.00 9.00 

pczero Ground retums % 5.83 5.19 0.17 18.63 

slope Ground slope o 4.33 2.44 1.00 16.00 

Table 5.4 shows correlations between the various plot level variables and the residual 

height values. A l l variables evaluated are weakly correlated (< 0.42) with residual 

height (Hres). However, the correlation between selected field-measured variables is 

strong, as noted previously in Chapter 4. Scatterplots are used to further evaluate the 

effect of forest structure and LiDAR related variables on height measurements made 

using LiDAR. 
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5.5.2 Analysis of height residuals using scatterplots 

In scatterplots the symbols - and + are used to indicate closed canopy (absence of 

understorey vegetation) and open canopy (presence of understorey vegetation), 

respectively. A horizontal line at zero is added to each scatterplot to divide the residuals 

into positive (over-estimation of height) and negative values (under-estimation). An 

estimate of error in field height measurements is added, by using the largest poshive 

difference between the LiDAR and field height measurement (1.22 m^°, as identified on 

Figure 5.12a). It is assumed that this error is not just additive but is also present as an 

under-estimate of the same magnitude. The two dashed lines drawn on each scatterplot 

indicate the minimum and maximum error in the field-measured height, for closed 

canopy plots only. 

(i) General forest structure 

The same patterns noted earlier in tree level data are also observed at plot level, with 

tree height consistently underestimated i f errors associated with tree height 

measurements are ignored. Figures 5.12a and b show scatter in the residual height 

against total volume and dominant height. A similar pattern in the residual error is 

observed in both variables, with errors initially high (0 to -2.2 m) then decreasing at 

canopy closure (10 m tree height) and then steadily increasing as tree volume and height 

increase. Interestingly, almost all of the residuals outside the 1.22 m threshold occur in 

the closed canopy plots located in plantation mixtures. There is no obvious relationship 

between the size of the residual error and tree density, as is shown in Figure 5.12c. 

However, it is noted that less error is observed in closed canopy plots when tree density 

is less than 2,000 trees/ha. Above this density there is no apparent structure in the error. 

Note field height residual value is less than the 1.3 m observed in section 5.1.4, as the calculation is at 
plot level. 
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Figure 5.12 Height difference between DCHM and field-measured 
dominant height against measures of general forest structure. 

(ii) Measures of canopy structure 

Four measures of canopy structure are presented in Figures 5.13 a to d, to assess their 

effect on LiDAR response. No linear trend is apparent in the scatter of the residuals for 

crown width or length (Figure 5.13a and b), but it is clear that size of the height 

underestimation is similar in both closed and open canopies. This pattern is also 

observed in the canopy to tree dbh ratio (Kd), with error increasing at high and low 

ratios (Figure 5.13c). Kd provides a measure of crown width, relative to tree diameter, 

and is highly correlated with total volume (-0.91) and dominant tree height (-0.96). 

Lower ratio values are associated with taller trees and greater tree volumes (Figure 

5.13d). 
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Figure 5.13 Height difference between DCHM and field-measured top height against 
measures of forest canopy structure. 

(ii i) Terrain and LiDAR scanner related variables 

A pattern in residual error begins to emerge when the density of first pulse retums 

(Figure 5.14a) and the percentage of retums from the ground surface (Figure 5.14b) are 

considered. In open canopy plots height underestimation decreases as the number of 

first pulse LiDAR retums increases above 2 retums/m^. In closed canopy plots the 

same pattem is not obvious, since most of the residual error lies within the 1.22 m 

threshold, even at 1 retum/m"^. Plots located in plantation mixtures consistently lie 

outside this threshold. In this study increasing the number of retums from 2 to 8 

retums/m^ did not appear to result in a substantial reduction in error. 
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Figure 5.14 Height difference between DCHM and field-measured dominant height 
against measures of terrain and LiDAR scanner-related variables. 

Less than 5% of LiDAR pulses are returned from the ground in closed canopy and up to 

17% in open canopy plots (Figure 5.14b). In open canopy plots, the error increases as 

the percentage of ground returns increases, indicating that the error is not associated 

with the ground DTM, but more with the DCHM. In closed canopy plots the situation 

is more complex and substantial variation is observed between sample plots. Plots 

containing a mixture of species show the greatest variation. Analysis of Figure 5.14c 

suggests that there is no relationship between slope and the differences in height. The 

presence of two plots above 15° slope inflates the correlation (r = 0.44), but this is 

probably related to errors in field measurement of tree height rather than ground slope. 

5.6 Discussion 
The objective of this chapter was to assess, in dense conifer plantations, the accuracy of 

the two LiDAR surfaces, the D T M and the DCHM, and the infiuence at plot level of 

canopy structure, terrain slope and LiDAR sampling density. This section evaluates: (i) 

the accuracy of the L iDAR instrument; (ii) the accuracy of LiDAR in open canopy 

crops; ( i i i ) the accuracy of LiDAR in closed canopy crops; (iv) the accuracy of LiDAR 

height estimates compared with field height estimates. 
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(i) The accuracy o f the LiDAR instrument 

The discrepancies between the raw LiDAR point data and the reference points measured 

on forest roads (±0 .18 m) are close to the vertical tolerances expected from the Optech 

2033 instrument (± 0.15 m). Also, the planimetric accuracy in x md y of the LiDAR 

survey is thought to be less than the published value of ± 0.60 m for this instrument. 

This concurs with the error levels noted by Baltsavias (1999) and Gaveau and Hil l 

(2003), who also evaluated Optech's airborne laser scanners ( A L T M 1020 and 1210). 

Therefore, LiDAR system error appears negligible and does not contribute substantial 

error to the canopy height estimations. 

(i i) The accuracy of LiDAR in open canopy plantations 

Results presented in section 5.2 show that in open canopied forests the number of 

ground returns is high enough (<17%) to create a DTM that characterises the ground 

surface. The mean overestimation of the ground surface is 0.24 m, which is comparable 

to the height of the understorey vegetation. In contrast, the DCHM does not accurately 

record the tree apex, which leads to an average tree height underestimation of 1.71 m. 

At this growth stage the tree shape is conical and is characterised by a thin elongated 

leader, positioned above the tree crown, as shown in Figures 5.15a and 5.15b. 

. • i i - til 
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Figure 5.15a Photograph o f a 
Sitka spruce open canopy crop. 

Figure 5.15b 3D plot showing tree locations and 
LiDAR first return and classified ground returns in a 
Sitka spruce crop. 
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When the data are analysed at plot level (Figure 5.14a) the size of the height 
underestimation decreases to around 1 m, as the number of LiDAR retums/m^ increases 
above 6 retums/m^. 

(i i i ) The accuracy of LiDAR in closed canopy plantations 

In closed canopy stands the D T M generally overestimates ground surface height by 0.17 

cm, with an associated SD of ± 0.46 m. However, plot level data suggest that larger 

errors are observed in plantation mixtures than in pure Sitka spruce stands. Density and 

structure of the canopy are the most important factors influencing the accuracy of the 

D T M . This applies, even at higher L i D A R sampling rate, as dense canopy structure 

presents little opportunity for the laser to penetrate to the ground surface, except along 

rides or through forest gaps. Consequently, the number of ground returns is low (<5%) 

and, depending on the canopy structure, unevenly distributed. The low number, and 

uneven distribution, of ground returns presents a problem in situations where the ground 

is undulating and the forest canopy is very dense. LiDAR point coverage becomes too 

clustered and irregular to create a D T M (at any resolution) characterising the ground 

surface. This effect is illustrated in Figure 5.16a, which shows an example of a 

structured plantation mixture o f Sitka spruce and lodgepole pine with trees planted on 

the top of ridges. Figure 5.16b shows the first return and classified ground return 

distribution and the location of field-measured dominant trees for the same sample plot. 

For comparison. Figure 5.17a and b show a pure Sitka plantation of the same age, 

planted at the same tree density with trees also planted on ridges. 
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Figure 5.16a Photograph of a 
structured Sitka 
spruce/lodgepole pine 
mixture. 

Figure 5.16b 3D plot showing tree locations, LiDAR 
first return and classified ground returns for a 20 x 20 m 
square sample plot located in a structured Sitka 
spruce/lodgepole pine mixture. 
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Figure 5.17a Photograph of a 
pure Sitka spruce crop. 

Figure 5.17b 3D plot showing tree locations, LiDAR 
first return and classified ground returns for an 8 m 
circular sample plot located in a pure Sitka crop. 

In both stands, the percentage of ground returns is the same (-5%), but the spatial 

distribution is very different, with a linear clustering of LiDAR ground returns observed 

in the species mixture. This effect can be explained by Figure 5.13c, which presents 

height residuals versus Kd, physical differences are observable in the canopy structure 

between pure Sitka spruce and Sitka spruce/lodgepole pine crops. In the species 

mixture the canopy is much wider, longer and denser where Sitka spruce dominates, but 

quite sparse where the pine has died. This results in almost all of the ground returns 
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being confined to canopy openings that develop along plantation rows where the pine 
trees are dead or decaying. In contrast, in a pure Sitka spruce crop, tree competition 
creates localised gaps in the tree canopy. This fragmented canopy structure allows a 
more equal distribution of LiDAR returns. 

Overall, tree height underestimation in the DCHM is 1.71 m with a SD of 1.33 m. 

However, i f error in field height measurements (± 1.22 m) is taken into consideration, 

then error is overstated and more likely to be about 0.5 m. L iDAR sampling density is 

an important factor in determining how accurately the upper canopy surface is defined. 

The canopy surface becomes more homogeneous as tree height increases and the 

canopy closes (Figure 5.12a), indicating that a LiDAR density of 2 returnsW is 

sufficient to characterise the canopy surface in closed canopy crops. Species mixtures 

are the exception; in these stands the canopy surface is discontinuous, characterised by 

tall Sitka spruce flanked by rows of dead pine (Figure 5.16b). This causes large 

variations in canopy height, which are not accurately defined at lower L iDAR return 

densities. 

(iv) The accuracy of LiDAR height estimates 

I f the relationships between height residuals are assessed at plot level, it appears that 

LiDAR measured height is less accurate than field height measurements in young open 

canopy stands and closed canopy plantation mixtures. In young plantations (i.e. canopy 

<15 m) field height measurements made using traditional measurement methods are 

expected to be within ± 0.5 m, and ± 1.2 m for closed canopy plantations (i.e. canopy 

>15 m). In comparison LiDAR operates to within ± 2 m. However, it is likely that this 

level of error would be reduced i f a regression equation were applied to the LiDAR 

data, particularly in young, open canopied plantations, where height is systematically 

underestimated. Furthermore, the inclusion of LiDAR-derived measures of crown 

density and shape could improve the accuracy of the height estimation, in both open and 

closed canopies. This is the focus of analysis in Chapter 6. It is, however, difficult to 

improve the estimation wherever the D T M is not accurately defined, as D T M and 

DCHM errors are inseparable. In this context, species mixtures are particularly 

problematic, as potentially large errors are observed in the DTM. Any improvement in 

height estimate is, therefore, restricted to improvement in the accuracy of the DCHM. 
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These estimates need to be treated with caution, as the level of accuracy is hard to 
determine without additional field checks. 

5.7 Conclusions 

When all potential sources of error are included, LiDAR is capable of measuring canopy 

height to within ± 2 m. The largest single source of error is observed in the DCHM. 

However, as forest canopy develops, small increases in the D T M error are also noted. 

Other specific observations include: 

1. D T M error increases as tree height and canopy cover increase, but is most 

pronounced in plantation mixtures. 

2. Dense canopy structure of plantation mixtures influences LiDAR penetration 

through the canopy. Therefore, increasing the density of LiDAR returns over 2 

points/m^ wi l l not necessarily improve the accuracy of the D T M . 

3. In open canopy crops the main error is found in the DCHM as L iDAR pulses are 

reflected from the lower canopy rather than the tree apex. 

4. Error in the DCHM decreases as canopy closes, but this is not the case in 

plantation mixtures where the fragmented canopy structure causes larger 

variation in the DCHM, compared with pure Sitka spruce crops. 

5. Errors in field height measurement are a substantial source of error. 

6. As tree density and ground slope change, there is no substantial difference in 

accuracy between LiDAR and field-measured height. 

7. Overall, the largest errors are in the DCHM, not the DTM. 

8. The height difference between LiDAR and field measurements for young crops 

is large, but this error is systematic and could, in theory, be corrected. This is 

examined in Chapter 6. 

9. Inclusion of LiDAR-derived measures of canopy density and shape might 

improve the accuracy of the height estimation in both open and closed canopies. 

However, larger errors may still be observed in plantation mixtures. This is also 

evaluated in Chapter 6. 
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6.1 Introduction 

This chapter assesses the accuracy of forest parameter estimations, such as tree height, 

volume and density, derived from laser scanning data. A three-stage process is used: 

First, bivariate regression methods are used to generate relationships at the plot level 

between field measurements (of height, volume and tree density) and the various laser 

height percentiles. Second, additional LiDAR-derived crown density measures are 

calculated and included as predictors in multiple regression models. Third, results from 

selected regression models for top height, volume and tree density are compared with an 

independent dataset. 

6.2 Forest estimates from LiDAR 

Previous research has shown that LiDAR can be used to provide accurate estimates of 

forest variables that at present are measured using manual field collection and aerial 

photo interpretation methods (Holmgren 2003; Hyyppa et al. 2000; Naesset 1997; 

Persson et al. 2002). Forest estimates (of height, volume and biomass), using laser data, 

are often based on statistical measures derived from the distribution of laser point data. 

Magnussen and Boudewyn (1998) showed that for a given plot size and canopy 

structure, a certain percentile in the LiDAR height distribution exists that corresponds to 

the canopy height of interest (i.e. mean height). Other researchers have also noted that 

the inclusion of measures of canopy characteristics derived from the laser height 

distribution, in combination with selected laser height percentiles, have proven useful 

for estimating tree density (Naesset 2002) and timber volume (Nelson et al. 1984; 

Means et al. 1999; Naesset & Okland 2002). Sections 6.2.1 and 6.2.2 describe the 

methods used in this research to calculate the laser percentiles and canopy density 

measures. 

6.2.1 Calculation of Laser height percentiles 

For each sample plot, the first and last return pulses above 0.5 m were divided into 

quantiles corresponding to the 5, 10, 20,...,90, 95, 99 and 100 percentiles of the laser 

canopy heights. The 0.5 m threshold accounts for undulations in terrain caused by 

mechanical site preparation (as noted in section 5.15). Other researchers have used 

higher height thresholds (up to 3 m) to eliminate laser returns from the 
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understorey vegetation layer (Naesset 2002; Riano et al. 2004). Lower thresholds are 
appropriate in UK conifer forests, because high numbers of trees are planted per hectare 
(>2,000 trees/ha) which leads to early forest canopy closure and ensures that an 

understorey is unable to develop. 

Often both last and first pulse height distribution data are used when estimating forest 

variables. For example, in the literature it is common to see different statistics derived 

from these distributions (i.e. percentile height or distribution measures), which are then 

used as predictors to derive forest estimates (Naesset 2002; Riano et al. 2004). 

Although not explicitly stated, the assumption is that distributions of laser returns are 

different for first and last pulses and therefore each provides additional information 

about the canopy structure. 

However, this assumption does not appear to be valid for this dataset (60 sample plots) 

i f all first and last pulse height returns above the 0.5 m threshold are compared (Figure 

6.1). In this region both the frequency and laser pulse distributions are very similar. 

The degree of similarity can be tested statistically using a two-tailed t test. Where the / 

test is used to compare the mean heights of the last and first pulse returns for each 

sample plot, the results show that first and last pulse data are not different at the 5% 

significance level (see Appendix 6.1). The only exception is below the 0.5 m threshold 

where the frequency of last pulse ground returns is greater than the first pulse (identified 

on Figure 6.1 by the yellow line). 

1 'H 
a: 

-J 

2000 4000 6000 
Frequency of L iDAR Last and first pulse returns 

I I Last pulse I I First pulse 

8000 

Figure 6.1 LiDAR height frequency distribution data for first 
and last pulses based on returns from field sample plots. 
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As there is no difference in distributions, the inclusion of last pulse data does not 
provide additional information on canopy structure. Consequently, height percentiles 
generated from last pulse data were not considered in this analysis. 

6.2.2 Crown density measures 

In addition to height, a number of variables that describe canopy structure can also be 

calculated from LiDAR distribution. As previously stated, these have been used to 

improve estimates o f volume and tree density. Four field measures of crown density/ 

structure, that are sensitive to change in forest height and tree species composition, have 

been identified in Chapter 3. These are crown width (K) and length (K\) and ratios, live 

crown (Kg) and crown width to tree diameter (Kd). For reference, the definitions and 

equations used to calculate each measure in Chapter 3 are shown in Figure 6.2. 

Crown width K 
Live crown ratio (Kg) 

Where: 

h- K, Kg = live crown ratio, % 
K = 100 

h 
h = total tree height, m 
Ki = live crown height, m 

Crown to tree diameter ratio (Kd) 

Kd 
K 

dbh 

Where: 
Kd = Crown to tree diameter ratio 
K = Crown width, m 
dhh = Diameter breast height, m 

Figure 6.2 Field-based forest canopy measurements. 

Two further variables describing canopy structure are also calculated: skewness and 

kurtosis (see Equations 6.2 and 6.3). Table 6.1 presents summary statistics of all the 

plot level, LiDAR-derived canopy density measures, together with a description of each 

measurement and the method/equation used to derive it. To compare suitability of each 

measure, each is plotted against Kd, as this is highly correlated with field-measured 

height, volume and tree density. 
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Table 6.1 Summary statistics of LiDAR-derived canopy and canopy density 
measurements. 

Variable Description Units Mean S.D. Min. Max. 

pczero 
Percent ground 

returns 
% 6.70 4.49 0.34 18.20 

Lki Crown length m 5.02 2.83 0.36 16.93 

Cv 
Coefficient of 

variation 
- 0.26 0.13 0.09 0.51 

Lk\y 
Crown volume 

(Riano et al. 2004) 
- 396.00 235.22 52.46 832.64 

Skewfp Skewness - -0.10 -0.72 1.95 1.54 

Kurtfp Kurtosis - 3.63 1.75 2.03 11.96 

(i) Percentage of ground returns 

The percentage of ground returns {pczero) provides a simple measure of canopy density 

and is calculated by dividing the sum of all first and last pulse observations with height 

values below 0.5 m, by the total number of returns. A l l returns above this threshold are 

considered to be canopy hits. Intuitively, pczero decreases as canopy height increases 

and the forest canopy closes (scatterplot presented in Chapter 5, Figure 5.1). Analysis 

confirms that the percentage of ground returns is highly correlated (see Table 6.2) with 

top height and tree density {r < 0.82), but less so with volume (-0.37). Further, it is also 

highly correlated with all field-measured canopy density measures; canopy width, 

length, live crown ratio and crown/tree dbh ratio {r < 0.73). 

(ii) Crown length and volume 

Crown length and volume are more complex measures of canopy density, as the 

calculation requires some field knowledge o f canopy structure - crown length in this 

case. LiDAR-derived crown length (LKi) was calculated by subtracting the highest first 

pulse return from each of laser percentile heights (i.e. 5, 10, 20,...,90, 95, 99, and 100). 

Each crown length was compared with field-measured crown length (Ki) using 

regression analysis. From all possible permutations crown length, based on the 20"̂  

percentile height, yielded the highest and lowest RMS error of 0.65 and 1.17 m, 

'̂ Despite its name LiDAR-derived crown volume is dimensionless. It is calculated using a method 
suggested by Riafio et al. (2004) where crown length is multiplied by the percent of first pulse L i D A R 
vegetation returns. 
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respectively (see Appendix 6.2). Crown volume {Lh.) was estimated using the method 
suggested by Riano et al. (2004) where Lki is multiplied by the percentage of canopy 
returns, which is the complement of pczero. Inclusion of the percentage of canopy 
returns provides a representation of the proportion of total area covered by the canopy. 
It is worth noting that the relationship between field-measured crown volume {Ky) or 
crown cover {Ka) and Lky is weak (r = 0.43 and r = -0.16). These values are not shown 
in Table 6.2. This is attributed to two factors. Firstly, field-measured Ky, is derived, 
using a model of a cone and, therefore, is a more complex approximation of crown 
volume. Secondly, in the case of field-measured crown area {Ka), the measurement 
does not account for the presence of dead trees, which have no measurable crown, while 
the LiDAR-derived measure does. 

LK is highly correlated (see Table 6.2) with the three forest variables o f interest: top 

height, volume and tree density (r < 0.69), and the four field-measured canopy density 

measures, crown width and length and ratios Kd and Kg {r < 0.71). Lkf values increase 

as tree height increases and the forest canopy closes. This is caused by an increase in 

the percentage of returns from the canopy. Figure 6.3 shows the relationship between 

lA:,, and crown width / tree diameter ratio {Kd). 
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Chapter 6: Forest estimates from LiDAR 

(ii i) Coefficient of variation 

The coefficient of variation (C,,) summarises the relative variation, or dispersion, of the 

LiDAR height distribution within each sample plot. It is the ratio of standard deviation 

and mean and is expressed as a percentage (Equation 6.1). 

Coefficient of 
variation 

mean 

Equation 6. 

As a measure of crown density, higher Cv values indicate sparse, open canopies and low 

Cv values dense, closed canopies (e.g. <20%). The inclusion of Cv has proven useful to 

other researchers for estimating basal area, volume and biomass (Naesset 1997; Naesset 

& 0kland 2002; Nelson et al. 1997). 

Cv is highly correlated (see Table 6.2) with the three forest variables of interest, top 

height, volume and tree density (r < 0.80), and the four field-measured canopy density 

measures; canopy width and length and the ratios Kd and Kg (r < 0.61). Figure 6.4 

shows the relafionship between Cv and crown width/ tree diameter ratio (Kd). 
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Figure 6.4 Coefficient of variation against crown width 
/ tree diameter ratio (Kd). 
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Chapter 6: Forest estimates from LiDAR 

(iv) Skewness and Kurtosis 

Skewness {skewfp) and kurtosis {kurtfp) of LiDAR height distribution also provide 

measures of canopy structure and density. Here, the classical measures of skewness and 

kurtosis are used, where y is the mean of a variable,)^, s is the standard deviation, and n 

is the number of first pulse returns. 

Skewness 
( - 1 

Y^-Y 
\ ) 

3 Skewness 
Equation 6.2 

Kurtosis 
( 

Y>-Y 
\ ) 

4 Kurtosis 

4 

ns 

Equation 6.3 

I f returns from the forest canopy are solely considered, then as trees increase in height 

and the canopy develops, skewness and kurtosis of the laser height distribution change. 

This concept is demonstrated in Figure 6.5, which shows the histograms of the laser 

height distribution for four forest plots with different height and species compositions. 
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Figure 6.5 Laser height distribution for four forest plots at different 
growth stages; also included is a plot containing a mixture of Sitka 
spruce and lodgepole pine. 

Compared with a normal distribution (curve plotted on each graph), the symmetry 

observed in each plot is different. Young plantations with open canopies show positive 

skewness^^ (1.54), indicating that the majority of the laser returns are reflected from the 

lower canopy. Canopies in transition approximate a symmetric distribution (Figure 

6.5b) and closed canopies show negative skewness (Figures 6.5c and d). In closed 

canopies, the higher the negative skewness, the more homogeneous the forest canopy. 

In this context, sample plots that have denser and wider canopies show higher skewness 

values, which is one characteristic that separates species mixtures from pure Sitka 

' The skewness direction is indicated by the position of the mean and median relative to the mode. If 
distributions are positively skewed, the mean and median are typically to the right of the mode and if 
negatively skewed, the mean and median are typically to the left of the mode. 
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spruce crops (Figures 6.5c and d). In comparison, kurtosis, which is a measure of the 
"peakedness" of the height distribution, is less sensitive to variations in canopy 
structure. Unlike skewness, kurtosis is not directional (i.e. negative or positive), so 
open canopies may have similar kurtosis to closed canopies. 

This is demonstrated in Figure 6.6, which plots skewness and kurtosis against canopy 

width. Compared with skewness, kurtosis is more erratically scattered and shows no 

relationship with crown width: high kurtosis values are recorded at both low and high 

crown widths. Consequently, kurtosis is weakly correlated with field and LiDAR 

measurements {r < 0.16). In contrast, skewness shows moderate to strong correlations 

with LiDAR canopy measurements {r = 0.55 to 0.72) and higher correlations with top 

height and tree density {r = 0.73). Volume is poorly correlated {r = -0.20). For this 

reason, skewness is considered the more promising of the two measures for describing 

canopy structure. 
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Figure 6.6 Skewness and kurtosis against crown width. 
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6.3 Modelling 
Regression equations were fitted to predict top height, volume and density from laser 

measurements, using the 60 reference plots. For each variable, the laser height 

percentile with the highest and lowest RMS error values was used. 

Multiple regression analysis was conducted to see i f any fijrther variation could be 

explained in the models by the inclusion of LiDAR-derived measures of canopy 

structure/density. Six predictor variables, described in section 6.1.2, were tested. These 

were: (1) percentage of ground returns (pczero), (2) LiDAR-derived canopy length 

(Lki), (3) coefficient of variation (Cv) , (4) LiDAR-derived crown volume (Lky), (5) 

skewness (skewfp) and (6) kurtosis (kurtfp). No variable was added to the model unless 

its contribution was significant at the 5% level. The presence of collinearity between 

variables was assessed by calculating the variance inflation factor (VIF). VIF measures 

the inflation in variance of the parameter estimate due to collinearity between the 

explanatory variable and other variables in the model (Equation 6.4). 

Variance 
inflation factor 

VIF, = Equation 6.4 

Here, VIFj is the variance inflation factor for the explanatory variable and is the 

multiple coefficient of determination. According to Rabe-Hesketh and Everitt (2000) 

multicollinearity exists i f VIF values are larger than 10 and i f the mean VIF is larger 

than the VIF for individual variables. 

The selected models were compared with top height, volume and density data 

measurements from 30 independent field plots. A l l samples were measured in pure 

Sitka spruce stands, because of a lack of plantation mixtures within the study area. 

Adjustments for tree growth were applied to top height and volume measurements, as 

these plots were recorded 1 year later than the dataset used to create the models. The 

adjustments were based on Forestry Commission (FC)-published annual increment data 

for Sitka spruce (Edwards and Christie 1981). Top height values were revised 

downwards by 0.58 m and volume increment by 12 m^/ha. It should be noted that the 

corrections are based on average values. 
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6.3.1 Model selection criteria 

In this research, a series of models were considered for the prediction of top height, 

volume and density. Commonly, model selection is based on assessing goodness of fit, 

using a single measure such as ^ . However, further insight can also be obtained by 

considering the RMS error of the model. This provides a measure of standard deviation 

of the data about the regression fit. The advantage is that RMS error has the same units 

as the response variable (e.g. height or volume). In addition to these measures, it is also 

important to consider other criteria. Cox et al. {in review) identify seven criteria that can 

assist in the model selection process (Table 6.3). 

Table 6.3. Assessment criteria of models as suggested by Cox et al. {in review). 

Criteria Notes 

Summary Should capture the main features/behaviour in the system, which is 
relevant to the concerns of the investigation. In statistical terms a 
model should provide some measure o f average components and a 
measure of variability. 

Physical basis Should ideally be based on physical principles. 

Physical I f it is not possible to have a physically based model then it should at 
plausibility least be physically plausible. 

Goodness of fit The model should predict close to observations, but this can be 
problematic. For example, a closer fit may be achieved by increasing 
model complexity but this may not increase scientific insight. Also an 
improved fit may cause over-fitting, i.e. the relationship becomes too 
specific to the data it was derived from. Assessment generally done 
by examining single numbers, such as ^ , but residual plots should 
also be examined. 

Simplicity 

Computability 

Comparability 

Should be simple enough to understand but complex enough to gain 
insight into the system characteristics. 

Facilities to develop the model in the restricted time framework are 
required. 

The potential to compare the outcomes of models with other examples 
in the literature. 

Similar criteria are also commonly cited in various forestry texts (Phillip 1998; Vanclay 

1998) as a means o f evaluating different models. Often, greater importance is placed on 

developing models that satisfy specific accuracy requirements, as well as providing 

realistic predictions over a range of ages and_site conditions, since the predictions from 

such models are used to make management decisions. Unreliable predictions may lead 
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to sub-optimal decisions, so it is important that limitations are ascertained before use. 
The following section evaluates a series of LiDAR-derived models generated from the 
reference dataset (60 sample plots) to predict top height, volume and tree density. 

6.4 Forest estimations 
6.4.1 Top height 

In Chapter 5, dominant height (i.e. height of the tallest trees in each plot) was used to 

assess accuracy of the L iDAR height estimation, because these trees are most prominent 

in the canopy and so are likely to provide LiDAR returns. However, in the UK the 

standard measurement used to provide a measure of a stand's productivity is top 
23 

height . Consequently, all Forestry Commission yield models are based on 

relationships between top height and age, and top height and volume. A description o f 

how top height was derived from LiDAR data follows. Two models were assessed, one 

based on pure Sitka spruce plots (« = 38) and a second that included all sample plots 

regardless of tree species (« = 60). 

6.4.2 LiDAR-derived top height 

The percentile height with highest and lowest RMS error was selected as the 

predictor for estimation of top height. In this case, laser height values corresponding to 

the 99"̂  percentile were used (Table 6.4). Between percentiles, differences in values 

are small, which implies that i f separate models for each percentile were generated then 

each model would explain a similar amount of variance. However, i f RMS error of 

each top height model is considered then differences between the percentiles become 

apparent (Table 6.4). 

Top height is the height of the tree with the largest breast height diameter in a 0.01 ha sample plot. 
This is not necessarily the tallest tree. 
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Table 6.4 Summary of LiDAR height percentiles used to estimate top height. 

Top height 

Sitka spruce 

« = 38 

Top height 

A l l species 

« = 60 

Height 

percentile 

R' RMSE 

(m) 

R' RMSE 

(m) 

10 0.960 1.70 0.978 1.18 

20 0.970 1.49 0.983 1.02 

30 0.975 1.35 0.986 0.93 

40 0.979 1.24 0.988 0.86 

50 0.982 1.16 0.989 0.84 

60 0.984 1.09 0.989 0.82 

70 0.985 1.03 0.989 0.82 

80 0.987 0.96 0.990 0.79 

90 0.989 0.87 0.992 0.72 

95 0.990 0.83 0.993 0.67 

99 0.991 0.80 0.995 0.57 

Maximum height 0.989 0.90 0.995 0.58 

,th 

The differences can also be seen in the associated scatterplots (Figure 6.7a to 1). The 

most prominent trend is for scatter to decrease above the 80"̂  LiDAR height percentile: 

i f lower height percentiles are used, top height is underestimated. Whilst the 99 

percentile was selected because of its low RMS error, the results suggest that any height 

percentile above the 80'^ percentile could be used to predict top height, without a 

substantial decrease in accuracy. 
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Figure 6.7 Top height against various L iDAR height percentiles. 

The RMS error values for top height models, shown in Table 6.4, which are based on 

Sitka spruce and all species (Sitka spruce and mixture plots combined), also show that a 

single model that pools data from Sitka and Sitka spruce/lodgepole pine mixture plots 

provides a more accurate estimation of top height (RMS error = 0.57 m). Figure 6.8 

illustrates the relationship between the 99"̂  height percentile and field-measured top 

height, together with the two regression models, for Sitka spruce and all species. The 

same patterns identified in Chapter 5, where maximum tree height and LiDAR height 
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were compared, are also identifiable in Figure 6.8. Specifically, top height is 
underestimated in both open and closed canopy plantations. Variation increases as tree 
height increases; and sample plots comprising plantation mixtures show the largest 
variation. Figure 6.9 is a residual plot of the model f i t for all species. 
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Figure 6.8 DCHM 99^ height percentile against top height. 

In the residual plot (Figure 6.9) the symbols P and M are used to indicate pure Sitka 

spruce crops and Sitka spruce/lodgepole pine mixtures, respectively. Absolute residual 

values increase with tree height, with a mild tendency for the outliers to be clustered in 

the plantation mixtures. It could be argued that recasting the model by applying a 

logarithmic transformation would reduce the variance in the residuals, an approach used 

in many studies (e.g. Naesset 1997; Means et al. 1999; Nelson 1997; Holmgren et al. 

2003). However, the outliers in the untransformed model are genuine and are caused by 

a combination of field-measurement error (up to 1.3 m) and errors in the LiDAR DTM, 

so by transforming the data these outliers may well be hidden (Figure 6.10). 

In this case, it is more important to note that top height estimates wi l l be less accurate in 

plantation mixtures than in pure Sitka spruce crops. Identification of these crops would 

therefore be advantageous i f top height were to be predicted at a wider scale using a 
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LiDAR-derived top height model. Methods of detecting plantation mixtures are further 
discussed in Chapter 7. 
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6.4.3 Considering multiple predictors 

The results show that top height is accurately estimated using a single predictor. 

However, the scatter of residuals in Figure 6.9 suggests that errors >1 m are possible in 

both younger crops and plantation mixtures. It was shown in Chapter 5 that canopy 

height in younger crops is systematically underestimated, because the laser pulse misses 

the tree apex. The underestimation in plantation mixtures is caused by a combination of 

factors, which makes it difficult to model the error 

To investigate whether the top height model can be improved, particularly for younger 

crops, multiple regression, including other percentile heights and canopy structural 

variables, was used. Beginning with an empty model, all variables were considered but 

a variable was only added i f the p-value fell below 5% (i.e. where inclusion of a 

variable was warranted because it significantly improved the fit of the model). In all, 

five variables were added to the model, including four LiDAR height percentiles and 

one measure of canopy density (Table 6.5). 

Table 6.5 LiDAR variables considered in the prediction of top height 

i ?2= 

0.99 

RMSE 

= 0.65 

Prob > F 

= 0.00 
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p99 99"' height percentile 0.66 0.15 4.310 0.000 

p20 20'" height percentile -1.50 0.34 ^.430 0.000 

p80 so"' height percentile 1.08 0.24 4.580 0.000 

plO lO"' height percentile 0.72 0.24 2.990 0.004 

pczero % ground returns 0.02 0.01 2.290 0.026 

cons Constant 0.40 0.45 0.900 0.373 

Given the strong relationships between the different height percentiles and top height 

observed in the scatterplots in Figure 6.7, collinearity between percentiles is potentially 
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a problem. Table 6.6 shows that the 20 and 80"̂  height percentiles exceed the 

recommended VIF level of 10 and also, individually, their VIFs exceed the mean VIF. 

Table 6.6 Identification o f multicollinearity between predictors using Variance Inflation 
Factors. 

Variable VIF 
p20 635.91 
p80 460.62 
plO 278.56 
p99 233.10 
pczero 3.71 
Mean 
VIF 322.38 

I f the 20 and 80' height percentiles are removed and the regression repeated then only 

the 99"' percentile remains. The analysis suggests that a simple model that uses just the 

99"̂  percentile height is the most effective for estimating top height. This is because the 

different LiDAR percentiles are strongly inter-correlated so do not warrant inclusion 

and similarly uncorrelated variables, such as pczero do not add any additional value to 

the predictive model in terms of explaining the remaining variation. 

6.4.4 Comparison with validation data 

To determine accuracy of the top height predictions, they were compared against 

measurements made in the 30 validation sample plots. Figure 6.11 shows field-

measured top height for both reference and validation datasets, against predicted top 

height. I f the same accuracy levels observed in the dominant height dataset (See 

Chapter 5), of about 2 m (canopy error̂ "* ± 1.71 m and D T M error ± 0 . 1 7 m), are applied 

to this top height dataset then the model provides sensible predictions at the two 

extremes, but in between predictions are less accurate. 

This pattern is more evident in the residual plot of Figure 6.12, which shows the 

difference between field measurements and model predictions. Three plots belonging to 

the validation dataset, which lie outside the expected accuracy of the top height 

estimate, are identified (circled). 

Included in canopy error is also field measurement error, which is thought to be as high as 1.22 m. 
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Figure 6.11 LiDAR-derived top height against field-measured top height from reference and 
validation datasets. 

-J 

•5) 
'.J 

G. 

f2 

E 2 

2P 0 

+ 

+ 
A 

* 
A A 

o 
o + + 

+ + 
o 

o 
o 

A 

+ 
k. " 

o 
o 

A 

0 ° * 4 A * 
° o ° * 

A * + 

% 
A 

o o o 
+ A 

+ 
+ 

5 10 15 20 
1 

25 
Top height (m) 

o Sitka spruce plots * Sitka / Pine mixture plots + Validation plots 

Figure 6.12 Height difference between LiDAR-derived top height and top height 
measured in the validation plots. 

15 



Chapter 6: Forest estimates from LiDAR 

Despite a growth correction (0.58 m) being applied to account for the 1 year time lag 
between measurement of the reference and validation dataset, top height is 
underestimated by 2.4 to 3.1 m in the three plots that are circled. The most likely 
reason for the difference is that actual annual height growth has exceeded the Forestry 
Commission's expected annual height increment. Apart from this cluster of plots, the 
remaining validation plots show a similar distribution pattern to plots used to generate 
the top height model. This suggests that LiDAR-derived top height estimates can be 
used in place of field-measured top height. 

6.4.5 Total Volume 

In Britain, the standard method for estimating volume is to use top height as the 

predictor. In even-age conifer plantations the relationship between top height and 

volume is non-linear, with volume increasing slowly until the crop is established. 

Thereafter it increases quickly to a maximum value (asymptote), after which the rate o f 

volume increment decreases. For this reason functions that have a sigmoid form (s-

shaped), such as polynomials, logistic and Gompertz, are often used. The UK Forestry 

Commission uses polynomial models (Equation 6.5) to estimate measurable volume^^, 

r, from top height, (Philip 1998). 

r = a + 6X+cX^ Equation 6.5 

The Forestry Commission's models are based on measurements recorded in permanent 

sample plots^^ (PSPs) which, on the whole, have been established in single species, 

even-aged stands and thus are not fully representative o f current forestry practice in the 

UK. Furthermore, the majority of these PSPs are located in more productive lowland 

conifer plantations, so there is a possibility that the results may differ when the models 

are applied to upland conifer plantations (PSP location map in Appendix 6.3). 

Nevertheless, using the top height-volume relationship a yield class system has been 

developed by the Forestry Commission, which is used to classify forest sites based on 

the annual rate of volume increment (measured in mVha/yr). For a given site, yield 

class is determined by dividing total volume by crop age. This process is further 

Measurable volume is defined as stem wood of at least 7 cm diameter over bark. 
The permanent sample plots were established in the 1920s with the aim of providing data on which to 

base yield models for forest management and production forecasting. F C currently measures 509 PSPs 
on a 5 yearly cycle. 
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simplified by plotting the top height-age relationship, presented as a series o f yield 
class curves, divided into intervals of 2 mVha/year (Figure 6.13). 
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Figure 6.13 Forestry Commission yield class curves based on top height-age 
relationship. 

For Sitka spruce species, yield class range is from 6 to 24, and for the slower growing 

lodgepole pine, from 6 to 14. In stands with more than one species, yield class is 

calculated separately for each species. The overall yield class of the stand is obtained 

by averaging the different components and weighting this by the proportion of the 

canopy each species occupies. For example, i f one species occupies 40% of the canopy 

and has a yield class of 10 and a second species occupies the remainder and has a yield 

class of 14, then the yield class is (10 x 40 + 14 x 60)/100 = 12.4 (rounded to 12). 

In this research, volume is estimated using LiDAR-derived top height (based on the 99"̂  

percentile). The current Forestry Commission yield class model is compared with 

estimates derived from fitting polynomial, logistic (Equation 6.6) and Gompertz 

(Equation 6.7) functions to field data. 
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Equation 6.6 

Eqiation 6.7 

Logistic and Gompertz^^ curves are similar in form with asymptotes at zero and the 

maximum value. The main difference is that the logistic function is symmetric about 

the point of inflection, whereas the Gompertz function is not. This means that using the 

logistic model, predicted volume might decrease once the maximum volume has been 

attained. The 1^ and RMS error values shown in Table 6.7 indicate that logistic and 

Gompertz models are superior to the polynomial model but, as discussed in section 6.2, 

this is not sufficient justification for discarding the model (regression output provided in 

Appendix 6.4). 

Table 6.7 Comparison of regression models used to estimate total volume. 

Model Volume rt = 35 
R' RMSE 

(tn) 
Polynomial 0.934 71.365 
Logistic 0.961 68.796 
Gompertz 0.960 69.205 

Figure 6.14 shows the sample data and fit for the polynomial, Gompertz and logistic 

models, with pure Sitka plantations plotted using circles and Sitka/ pine mixtures 

plotted using triangles. For comparison, the Forestry Commission (FC) yield class 

model for a crop with yield class 12 (also a polynomial) is shown (dotted red line). The 

FC model has a minimum volume of 63 mVha (i.e. once the crop has a measurable 

volume) and is constrained by a maximum volume of 778 mVha. I f a higher yield class 

were selected, the fit of the model would be the same but the maximum volume would 

increase (i.e. YC 14 = 880 mVha, YC 24 = 1,466 m^/ha). 

This function is named after Benjamin Gompertz who created it in 1825. 
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Figure 6.14 Sample data and fit of different volume models {n= 35). 

A l l models pass through the middle of the main cluster of data points (500 to 650 

mVha), so predictions are similar in this region. However, at the extremes predictions 

vary, with some curvature in the residuals observed at lower volumes (200 mVha) 

where there are less data (Figure 6.15). For reference, the residual plot for the linear 

model is also presented. As already observed in the top height residual plot (Figure 

6.9), the main outliers include sample plots located in plantation mixtures. The plot 

volumes in the plantation mixtures are higher than those located in pure Sitka spruce 

because of the more open canopy structure which leads to an increase in the mean stem 

diameter, but not necessarily increases in the top height. 

The fits of logistic and Gompertz models are similar, with curvature at lower volumes 

representing the sample plot data quite accurately. Despite this, these models cannot be 

used to reliably predict volume over the entire study area because the upper asymptotes 

(defined using the sample data) do not reflect the height values in the wider dataset: 

according to LiDAR data the maximum crop height is 38 m, whereas in the sample data 

the maximum is 25 m. Therefore, in areas where heights are encountered that are 

outside this range, logistic and Gompertz models wi l l under-predict volume and 

consequently cannot be practically applied. 
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The polynomial model provides realistic predictions at lower and higher volumes i f the 
negative intercept (-52) is ignored. Some differences are observed between the f i t of 
the FC yield class model (Figure 6.14) and the empirically fitted polynomial model, 
especially at lower volumes (200 mVha to 500 mVha). It is unclear whether the 
difference is related to lack of data in this region, or whether there is a real difference in 
growth between upland and lowland conifer plantations. Above 500 m^/ha the 
predictions from the polynomial model are similar, although the FC model provides 
more realistic volume predictions when extrapolated. For example, i f top height is 35 m 
the FC model estimates a volume of 1,122 mVha, whereas the empirically fitted 
polynomial estimates 1,295 m^/ha. 
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Figure 6.15 Residual plots for different volume models. 

On this basis, the FC model is considered to be the most appropriate for application 

over a wider area. No improvement is made to the volume predictions by including 

other percentile values or LiDAR-derived canopy density measures, as none of these 

variables are significant at the 5% level (see Appendix 6.4). 

6.4.6 Comparison wi th validation data 

Figure 6.16 shows field-measured volume, for both reference and validation datasets, 

against predicted total volume. For the analysis, only validation plots with total volume 
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above the FC model minimum volume threshold, o f 63 mVha, were considered (14 
sample plots). Differences are observed between validation plots and the FC model at 
volumes of less than 200 m^/ha. However, more substantial differences in terms of 
volume over-estimations occur above this point. Two plots in particular stand out in 
both the scatter plot and the residual plot (circled), where volume is over-estimated by 
more than 290 m^/ha (Figures 6.16 and 6.17). 
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Figure 6.16 LiDAR-derived volume against field-measured 
volume from reference and validation datasets. 

Both samples are located close together in an area with a planting density that exceeds 

3,200 trees/ha. Consequently, tree diameters are reduced (<13 cm) because of increased 

competition, but top height measurements are similar to areas with high tree volume. 

While the rate of tree mortality is also considered in the FC model, predictions are 

predominately based on top height, so any areas of anomalous growth not associated 

with height are difficult to model. 
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Figure 6.17 Volume difference between LiDAR-derived volume and volume 
measured in validation plots. 

A key weakness of the FC model is that it assumes tree density and diameters are 

homogenous and that top height can be used to provide estimates of volume. As tree 

density appears to exert a strong influence on the accuracy o f volume estimates, it 

would be advantageous i f areas that show atypical crop development could be identified 

prior to applying the volume model (This is investigated further Chapter 7). 

6.4.7 Tree density 

Two approaches were tested in order to obtain estimates of tree density from LiDAR 

data. First, models that used the different DCHM height percentiles as predictor 

variables were assessed; and second, models that used combinations o f canopy density 

measures were tested. 

6.4.8 Tree density prediction using height percentiles 

Analysis of tree density data indicates that density ranges from 1,150 to 12,300 trees/ha 

(Table 3.5). Areas of high tree density (caused by natural regeneration) are easily 

identified in Figure 6.18a, which plots maximum LiDAR height against tree density. 

Compared with other sample plots of a similar age tree density in these plots is up to 

five times higher. There is a weak relationship between LiDAR height and tree density 

i f these plots are included in the model {P^ = 0.31). Removal o f these plots increases 

the R^ value substantially, to 0.73. However,-inspection of Figure 6.18b suggests that 

models based solely on height do not summarise the relationship very accurately. Here, 
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the value is inflated by the presence of sample plots (outliers) with high density and 
low canopy heights. Little variation is observed in tree density values (2,000 to 3,000 
trees/ha) relative to changes in tree height. Simply, the model does not pass the model 
selection criteria identified in Table 6.3 and therefore is of limited use. 
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Figure 6.18 (a) LiDAR height against field-measured tree density and (b) same data 
after plots with high regeneration are removed. 

6.4.9 Tree density prediction using canopy density measures 

The second model tested was derived from regression (procedure used in section 6.3.1), 

and includes both height percentiles and the five canopy measures. None of the height 

percentiles are significant (p >0.05), but two canopy measures, skewness and LiDAR 

canopy volume (Lkv), warrant inclusion. Figures 6.19a and b show the relationship 

between tree density and skewness and Lkv 
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Figure 6.19a Tree density against skewness. Figure 6.19b Tree density against LiDAR 
canopy volume. 
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Skewness is positively correlated with tree density, while LiDAR crown volume is 
negatively correlated. Consequently, no collinearity exists between the variables when 
they are included in the predictive model. Figure 6.20 shows the tree density model 
based on skewness and LiDAR crown volume {I^ = 0.72 and RMS error = 434 
trees/ha). 
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Figure 6.20 LiDAR-derived tree density against field-measured tree 
density. 

Two distinct clusters are apparent in the residuals, which are caused by the distribution 

of the field samples (Figure 6.21). Despite this, there is no pattern or structure in the 

residuals, which indicates that the model predicts tree density equally well at both high 

and low tree densities; that is within the range of 1,000 to 3,500 trees/ha. However, the 

RMS error of the model is high (434 trees/ha or 17% of the mean tree density), limiting 

its practical use for providing estimates of tree density. 
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Figure 6.21 Residual plot for tree density. 

6.4.10 Comparison with validation data 

Figure 6.22 shows the difference between field-measured tree density and modelled tree 

density, against measured tree density, for both the reference and validation datasets. 

Here, a negative difference indicates that the model underestimates tree density. More 

variation is observed in the validation dataset compared with the reference dataset. 

There are five validation plots where the difference is greater than 1,000 trees/ha. 
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Figure 6.22 Tree density difference between LiDAR-derived tree 
density and tree density measured in the validation plots. 

The two plots circled are the same plots identified earlier in Figure 6.17 which showed 

anomalous timber volumes. This suggests that even though the prediction is not 
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accurate enough to provide estimates of tree density, it could be used to highlight areas 
of anomalous growth. 

6.5 Discussion 
The objective of this chapter was to assess the accuracy of forest estimations such as 

height, volume and density derived from laser scanning data. 

6.5.1 Effect of forest canopy on the first and last pulse distributions 

Inspection of first and last pulse laser height distributions, and results of the / test 

presented in section 6.1.1, show that i f ground returns are ignored (i.e. returns >0.5 m) 

the penetration into the forest canopy of the first pulse and last pulse returns is the same. 

This is related to the way in which the Optech A L T M 2033 LiDAR system separates the 

two pulses; the first return is registered when the return energy meets the predetermined 

threshold (usually the leading edge of the pulse), while after a short time delay the 

second return is registered. Therefore, the most likely explanation, in closed canopy 

crops, is that the forest canopy is so dense that the majority of laser pulses are unable to 

penetrate to the lower canopy. Consequently, no additional information on forest 

structure is gained by inclusion of last pulse data. In contrast, in studies conducted in 

European conifer-dominated forests, which are multi-storied and not as dense (typically 

<1,500 trees/ha), last pulse data is routinely used for the calculation of forest height, 

volume and tree density (Naesset 1997; Naesset & 0kland 2002). 

6.5.2 Top tieiglit predictions 

Top height is accurately estimated using the 99"̂  height percentile {1^ = 0.995; RMS 

error = 0.57 m), with no substantial differences i f separate top height models for pure 

Sitka spruce crops and plantation mixtures are considered. It was suggested in Chapter 

5 that the estimation of canopy height might be improved with the inclusion of 

additional height percentiles or canopy density measures. However, this research finds 

that inclusion of these measures does not yield substantial improvement in the top 

height model. This is attributed to the strength of the relationship between 99"" height 

percentile and field-measured top height, which explains 99.5% of the variance in the 

model. Overall, the model still under-estimates top height in younger stands and in 

plantation mixtures. The reasons for the under-estimation are the same as those in 

Chapter 5, and can be summarised as follows; in younger stands, the tree apex is missed 
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and in closed canopy mixtures, a combination of DTM and DCHM errors contribute to 
an underestimation of top height. 

The results suggest that to predict top height from LiDAR some field-measured data are 

required to identify top height of trees. Once calibrated using these data, it should be 

possible to predict top height over a wide area using the LiDAR top height model at an 

accuracy (± 0.57 m) that is close to, or better than, traditional field measurement 

methods (± 0.50 m in crops <15 m and -1.22 m in crops >15 m). The only exception is 

that top height estimates in plantation mixtures may not be as accurate. 

6.5.3 Volume predictions 

In the UK, forest volume predictions are made using top height measurements, and 

therefore, it should in principle be possible to replace field measurements with LiDAR-

derived top height. The relationship is non-linear, so volume is best predicted with 

functions that allow some curvature. Of the four models assessed (Gompertz, logistic, 

polynomial and FC yield model) the polynomial model and the FC yield class model 

provide the most physically plausible estimates. The assessment is based on more than 

just ^ and RMS error for each model. Also considered is the ability of the model to 

provide realistic estimates beyond the data. In this context the FC yield model is more 

appropriate than the empirically fitted polynomial because, when extrapolated beyond 

the range of the data, volume is constrained by an upper limit. It is worth noting that 

there is an offset between the polynomial model and the FC model (Figure 6.14), in the 

200 to 500 m^/ha range. Although the dataset used here is small {n = 35) and quite 

limited in geographical extent, the difference implies that the FC yield class model 

over-predicts volume within this range. The models converge at approximately 600 

mVha, which is at the limit of this dataset. To properly validate current yield models, 

additional sample plots that cover a range o f sites and planting densities would be 

needed, which is beyond the scope of this research. The volume estimate is, once again, 

not improved by the inclusion o f additional height percentiles or canopy density 

measures. Also, more variation in volume predictions for plantation mixtures than for 

pure Sitka spruce stands, is observed. 

Analysis of validation plots shows that there are some deficiencies in the yield class 

model. The key weakness is that they are made using top height, alone. Problems arise 
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when crops do not develop in a uniform way e.g. have higher than average levels of 
mortality or contain a mixture of tree species. In these areas, it is difficult to make 
accurate volume predictions based on top height alone. Although not explicitly stated 
in section 6.1.2 it is possible that LiDAR crown density measures that are easily 
calculated (i.e. require no field measurements for calibration), such as coefficient of 
variation, percent ground returns and skewness could be applied spatially, to identify 
areas of anomalous growth, or the dominant species in a plantation mixture. This is the 
focus of Chapter 7. 

6.5.4 Tree density predictions 

Tree density is not reliably predicted using LiDAR height percentiles, as density does 

not necessarily change with increased height (Figure 6.18b). However, tree density can 

be predicted using canopy density measures. A model, based on skewness and LiDAR 

canopy volume, provides a realistic prediction (R^ = 0.72 and RMS error = 434 

trees/ha). However, application o f the model is limited to areas that have tree densities 

between 1,000 and 3,500 trees/ha. Comparison with validation data indicates that 

predictions are erratic in situations where the canopy structure deviates from what is 

typically encountered in even-aged plantation crops. Potentially, this means that areas 

of abnormal tree density could be identified. However, it would probably be better to 

use LiDAR crown density measures that do not need any field calibration, instead of 

LiDAR canopy volume, which requires the calculation of LiDAR crown length using 

field-measured crown length. 

6.6 Summary 
It may be concluded that LiDAR can be used to make accurate estimates of top height 

(± 0.57 m), which in turn can be used to parameterise existing Forestry Commission 

yield class models. Additional findings include: 

1. The density of the forest canopy impedes penetration of laser pulses to the lower 

canopy, which means that no additional information on the canopy structure is 

added by inclusion of last pulse data. This outcome is not the same as reported 

in L iDAR studies conducted in more open canopied forests. 

2. Top height is accurately estimated using the 99"̂  LiDAR height percentile (R^ = 

0.99 and model RMS error = 0.57 m). The inclusion of additional LiDAR 
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height percentiles, or canopy density measures, does not improve the estimation. 
The size of the RMS error suggests that accuracy of top height measurements 
obtained from LiDAR is equivalent to, or better than, those achieved using field-
based techniques. 

3. Volume can be estimated using LiDAR-derived top height. Comparison 

between the current FC yield class model and an empirically fitted polynomial 

suggests there are, however, some inconsistencies in volume predictions. These 

are observed below 500 m^/ha, but above this the model predictions are similar. 

The model is not improved by inclusion of additional L iDAR height percentiles 

or crown density measures. Additionally, the results suggest that volume is 

more difficult to predict in plantation mixtures, owing to large variations in 

growth rate. Therefore, it is important to know where the mixtures are located 

and the outcome, or the success, of the mixture. Identification of plantation 

mixtures is the focus of Chapter 7. Also, the results from the validation plots 

indicate that volume is poorly predicted in crops that do not follow a 'normal' 

pattern of growth. Crown density measures may assist in the identification of 

these areas (also discussed in Chapter 7). 

4. Tree density is difficult to predict using height data. Tree density estimates 

using LiDAR-derived canopy density measurements are more plausible as these 

measures are more sensitive to biophysical changes in canopy structure. Tree 

density predictions are relatively accurate {F^ = 0.72 and RMS error = 434 

trees/ha), but the RMS error is quite high, which limits the practical application 

of the model. Additionally, tree density cannot be predicted reliably in areas 

that exceed 3,500 trees/ha. 
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7.1 Introduction 

The results presented in Chapters 5 and 6 indicate that LiDAR provides accurate 

estimates of tree height and volume. However, it is apparent that growth models 

developed for single species stands are not directly transferable to plantation mixtures. 

This chapter focuses on the detection of plantation mixtures and identification of areas 

of variable growth. A different study area located in Galloway forest district, Scotland 

is used, because it contains a wider range of plantation types than found in the Kielder 

study area. Remote sensing data collected over the Galloway study area is very similar 

to the Kielder data set and includes sample plot measurements, LiDAR, SPOT 5 HRG 

imagery and 1:10 000 aerial photography. 

Using FC forest boundary information, three species groups are identified: areas of pure 

Sitka spruce, areas of pure lodgepole pine and areas where the two species have been 

planted together. Two approaches are assessed for detection of plantation mixtures: the 

first uses L iDAR intensity data to separate spruce and pine species and the second uses 

LiDAR-derived crown density measures, coefficient of variation (C,,), skewness 

(skewfp), percentage of ground returns ipczero) which provides a measure of canopy 

openness and the mean canopy height {meanh) which enables areas with height 

variations to be identified. The merits of each measure are initially assessed separately 

and then combined to produce classifications that both include and exclude LiDAR 

intensity. The accuracy of classification is compared with SPOT 5 HRG data and 1:10 

000 aerial photography. 

7.1.1 Plantation mixtures 

During the 1960s the UK Forestry Commission established extensive areas of forest 

plantations in remote upland areas. Whilst a majority of plantations were established 

using Sitka spruce, some of the poorer waterlogged or heather infested sites were 

planted with structured species mixtures of Sitka spruce and lodgepole pine, either 

planted in alternate rows or intimately mixed in varying ratios and combinations. The 

rationale was that the pine species was planted as a sacrificial nurse to improve the site 

characteristics; over time the pine would die back from competition from the Sitka 

spruce. In practice, as these crops have matured, two possible outcomes have emerged: 
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(i) self-thinning crops dominated by one species, usually Sitka spruce or (ii) where both 

species compete equally. Figure 7.1 shows an example where the outcome in terms o f 

species dominance is clear and therefore easily identified. However, the transition is 

harder to detect i f it occurs in remote areas or within forest compartments. In these 

situations the challenge is firstly to identify and map these areas and secondly to 

produce reliable growth estimates. 

Sitka dominated Sitka/pine mixture 

Figure 7.1 Forest compartment planted in 1960 showing two different outcomes. 
Left side is Sitka spruce dominated and right side Sitka spruce and lodgepole 
pine mixture. 

Traditionally a combination of ground survey and aerial photography has been used to 

provide this type of information, with the ground survey component providing 

quantitative measurements and aerial photography used for crop stratification purposes. 

The accuracy o f this method depends on how closely changes in crop structure on the 

ground can be matched with those observed in the aerial photography. The mapping 

process can be quite subjective being affected by a range of factors. These include 

timing, resolution and quality of the photography, size and shape of the area of mixture 

and analysis by the photo interpreter and/or field surveyor. Within this context, L iDAR 

is evaluated for its potential as an alternative, unbiased method of identifying tree 

species and mapping crop variability. 
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7.1.2 Study area, image and field data 

The selected study area contains a range of tree species, from pure crops to plantation 

mixtures. The terrain is gently undulating with a maximum slope of 14° and a 

topographic range of 230 to 300 m above mean sea level (amsl). 

LiDAR data was acquired on 15 June 2003 using an Optech A L T M 3033 system, 

operating at a flight ahitude of 1,250 m amsl using a scan angle of <9°, with a point 

density of 4 retums/m^ Other optical data available include a cloud-free SPOT 5 HRG 

multi-spectral scene acquired two months earlier on 17 Apri l 2003 and 1:10 000 aerial 

photography flown 12 days after the LiDAR flight. The NIR band of the SPOT 5 HRG 

image was used to check the radiometric consistency of the LiDAR intensity data. 

LiDAR was resampled to the spatial resolution of the SPOT 5 HRG data (10 m). 

Although the LiDAR and SPOT 5 HRG are processed at the same pixel resolution the 

LiDAR intensity is not directly comparable to the SPOT 5 HRG NIR response. The key 

differences are in the way in which passive and active sensors measure the NIR signal. 

SPOT 5 is a space-borne satellite and the response recorded by the HRG sensor is the 

average response for a 10 m cell. Since the data was not calibrated there are a number 

of factors that can affect the SPOT 5 HRG NIR response, these include; the atmosphere 

(i.e. cloud or haze), topographic shadowing sun elevation, sensor view angle and 

reflectance from neighbouring pixels. In comparison the LiDAR measures the response 

for each laser return, which represents the NIR signal for a small highly culminated 

beam of light. Factors that affect the intensity of the NIR can include pathlenght of the 

beam (i.e. the distance between the LiDAR and the target) the incidence angle of the 

beam and the composition o f the target (i.e. vegetative or inert). To ensure the datasets 

were overlaid the SPOT data was clipped to match the LiDAR coverage and then geo-

corrected, using the LiDAR data to provide GCPs. The reported RMS error of the geo-

correction process was 0.5 pixel or 5 m. 

Aerial photography was used only for reference purposes. Figure 7.2 a to c shows the 

area and the different images with species boundaries and sample plot locations 

overlaid. 

Accurate top height, volume and species data were measured for 20 (0.02 ha) field 
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plots, 17 in pure Sitka spruce and three in Sitka spruce/lodgepole mixtures. Since no 
plots were measured in pure lodgepole pine, height measurements from two areas were 
extracted from the 10 m LiDAR height grid (62 pixels). Table 7.1 summarises the plot 
data for each crop type by top height and volume. Plots measured in the Sitka spruce 
show the highest variability in both top height and volume. This is because these plots 
cover a range of forest conditions. Variation in top height and volume is also observed 
in the Sitka spruce/lodgepole mixtures though in terms of volume lodgepole pine tends 
to be the dominant species. 

Table 7.1 Summary of field plot measurements by crop type 

Crop 
type 

Tree 
species 

Obs Top height (m) volume (m^/ha) 

No. 
field 
plots 

Mean S.D. Min. Max. Mean S.D. Min. Max. 

Pure Sitka 
spruce 

17 19.5 3.1 13.5 23.9 500.7 160.6 184.2 697.4 

Pure Lodgepole 
pine* (62) 15.8 0.9 13.0 18.0 

n/a 

Species 
mixture 

Sitka 
spruce 

3 

16.9 1.6 15.3 19.0 146.4 21.3 132.7 177.3 
Species 
mixture Lodgepole 

pine 

3 
16.5 1.5 14.4 17.9 184.0 86.7 60.4 256.6 

Top height calculated from 62 pixels extracted from the 10 m L i D A R height grid. 
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Figure 7.2 Forest compartment boundaries overlaid on: a.) 1: 10 000 aerial 
photography b.) SPOT 5 HRG NIR band and c.) LiDAR NIR band. 
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7.1.3 Spectral characteristics of lodgepole pine and Sitka spruce 

Figure 7.3 shows a measured spectral reflectance profile for lodgepole pine and Sitka 

spruce needles collected from the study area and measured in the laboratory, using the 

GER 1500 spectroradiometer. While the shape of the spectral profile for both species is 

similar in the visible and NIR, there is clear separation in reflectivity between species 

suggesting that spectrally they are separable. Interestingly, the spectral reflectivity at 

the spectral band pass positions for the SPOT 5 HRG NIR band (plotted in grey) and 

LiDAR NIR (plotted in magenta) are similar (Figure 7.3), despite the broader spectral 

range sampled (780 nm to 890 nm^^) and spectral separation of the two sensors. 
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Figure 7.3 Spectral characteristics of Sitka spruce and lodgepole pine. 

7.1.4 Spectral characteristics of L i D A R and SPOT 5 H R G data 

While L iDAR systems are principally designed to record distance, many systems can 

also measure the intensity o f the laser return. The A L T M 3033 uses a laser that can 

produce a monochromatic light in the near infrared (1064 nm) region with a very 

narrow spectral width of 10 nm (pers comm. Brent Smith, Optech Canada, 02/03/05). 

The intensity of each return represents the energy from a highly culminated beam of 

light (footprint size of -0.20 m i f the sensor's operating height is 1,000 m) reflected 

from a small part of the target, which provides a concentrated^^ measurement of the 

Source www.spotimage.fr 
Laser is an active system so the pulse is unaffected by shadow or occlusions. 
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object reflectivity. The intensity measurement is proportional to the voltage of the 
return signal, so a target with twice the reflectance ideally produces twice the intensity 
reading. For example, vegetative targets like dense forest canopies are highly reflective 
in the near infrared, while targets like black tarmac act as an absorption feature in this 
spectral region and therefore return very little energy (www.rieglusa.com). Typically, 
DN values are less than 255, but occasionally specular reflection from targets like glass, 
chrome and water can cause very high digital number (DN) values of over 1,000. Over 
forest the following factors may affect the recorded intensity: variations in laser path 
length, caused by changes in the distance between the sensor and target, orientation of 
the target relative to the sensor, which may change according to the laser scan angle or 
topography; laser beam divergence, which alters the footprint size; and attenuation of 
the signal by the atmosphere. However, provided that data are acquired over a short 
time spatial differences in attenuation by the atmosphere should be minimal (Luzum et 
al. 2004). It is also worth noting that there may be variations in intensity measurements 
between LiDAR systems due to differences in receiver gain and the type of laser used. 
Given this list of factors it is not surprising that few studies have used LiDAR intensity 
data. One of the main reasons cited is the difficulty of calibrating data, so that results 
might not be repeatable (pers comm. Paul Treitz, Queen's University, Canada, 2/09/03). 

This issue of radiometric consistency can partially be addressed by comparing LiDAR 

intensity to a radiometrically-calibrated dataset. For this purpose the 10 m NIR band 

(780 nm to 890 nm *̂̂ ) on the SPOT 5 satellite, which records the average response over 

110 nm range is considered appropriate. However, it is worth noting that the SPOT 5 

HRG data was not calibrated to actual ground leaving reflectance so wi l l contain noise 

due to atmospheric, topographic and sun elevation effects. Since the SPOT 5 HRG 

image was acquired two months earlier (under cloud-free conditions) it is not expected 

that the spectral response of closed canopy lodgepole pine and Sitka spruce wi l l have 

changed substantially in the interim. 

7.2 Processing methodology 
Two approaches were used to identify plantation species composition. The first used 

LiDAR intensity data and the SPOT 5 HRG NIR band. In this instance, the SPOT 5 

°̂ Source www.spotiinage.fr 
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HRG NIR band was used to check the radiometric consistency of the LiDAR data. The 
second approach used statistical summary measures, derived from distribution of the 
laser height data, namely the coefficient of variation (C,.), percentage o f ground returns 
ipczero) and skewness of height {skewfp) to try to identify differences in forest canopy 
structure. Mean height (meanh) was also included to provide a measure of crop 
variability. Figure 7.4 summarises the processing steps involved in processing the 
LiDAR and SPOT 5 HRG data. The level of processing required for processing LiDAR 
intensity is more complex than the method based on canopy structural measures alone. 
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Species identification using 
L i D A R intensity 

Calculation of LiDAR intensity 
percentiles (Chapter 6) 

L iDAR intensity percentile 
selection 

Calibration o f intensity for path 
length variation 

Extraction o f image pixels 

2. 

Extract pixels relating to ground 
sample plot locations from SPOT 5 

Extract pixels relating to ground 
sample plot locations from L i D A R 

Export pixel values to statistical 
program Stata 

Merge pixel values with field 
plot data using plot ID 

Statistical analysis 
Comparison of different L i D A R 
measures using distribution plots 
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Calculation of LiDAR 
canopy density 

measures (Chapter 5) 
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Meanh 

LiDAR 
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(Chapter 4) 
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Spatial mapping of each 
measure 

Classification using combined 
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Figure 7.4 Summary of L iDAR image processing steps. 

7.3 Species identification using LiDAR intensity 
Although a number of studies have used LiDAR to provide estimates of height, volume 

and basal area (i.e. Naesset 2002; Means et al. 1999) relatively few studies have 
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assessed the potential of LiDAR for identifying and mapping forest species. In Swedish 
forests, Holmgren & Persson (2003) successfully identified individual trees from 
LiDAR data by using LiDAR firstly to delineate the tree crown and then secondly to 
identify the tree species using LiDAR intensity and measures of the laser distribution. 
In this instance laser data was collected using a helicopter-mounted LiDAR at high-
resolution (>10 points/m^) over forest stands with tree densities between 220 and 1,400 
trees/ha. At stand level, Maltamo et al. (2004) identified suppressed trees in multi-
layered spruce forests by summarising the height distribution of the laser data. 

Two further studies are relevant to this research: Song et al. (2002) discussed the use of 

gridded LiDAR data for urban land use classification and Luzum et al. (2004) described 

a method of calibrating LiDAR intensity data. Both studies noted that intensity values 

are inconsistent between similar targets. Song et al. (2002) suggested that the variation 

in intensity is related to the reflection angle of the laser pulse from the target and used a 

median filter with a set window size (3 x 3) to reduce this effect. In contrast, Luzum et 

al. (2004) developed a method for correcting the raw LiDAR point data. This correction 

compensates for differences in flying height, changes in ground topography, and other 

variations in path length caused by the laser's scan angle (i.e. variations in laser 

footprint size). The algorithm does not correct for the effects of beam divergence or 

other factors that affect reflectivity. The method also requires that a time tag is recorded 

for each laser pulse. From this information the path length is calculated by finding the 

difference between the sensor's position and the reflected laser pulse position. 

In this research, a combination of methods used by Song et al. (2002) and Luzum et al. 

(2004) was used. The data were converted to a grid format and intensity corrections 

were made to each pixel of the grid. There are, however, two main differences: no 

averaging filter was applied to the L iDAR grid and intensity values were not corrected 

for the effect of scan angle. This was because the time tag information for each pulse 

was not supplied^'. 

'̂ Time tag data is usually recorded, but is often discarded during post processing by the L i D A R 
contractor (pers comm. Dr. Simon Roberts, N E R C Airborne Research Facility, 25/02/05). 
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7.3.1 Calculation of L i D A R intensity percentiles 

The urban area classification conducted by Song et al. (2002) used mean intensity. 

When classifying vegetation the penetration of the laser pulse means that intensity can 

be separated by height, which enables returns that are not associated with forest 

vegetation, such as ground returns, to be removed. 

The intensity data were divided into two groups, total intensity, which is the average of 

all intensity values, and vegetation intensity. Vegetation intensity was further divided 

into four classes representing the 25'*̂ , SO'*', 75"̂  and 90"̂  height percentiles. Vegetation 

intensity therefore excludes any returns that may come from the ground surface. This 

concept is illustrated using a tree as an example in Figure 7.5, where it is assumed that 

laser pulses are equally distributed and penetrate to the ground. 
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Figure 7.5 Calculation of intensity measures 

7.3.2 Comparison of L i D A R intensity measures 

To compare the different intensity measures, the pixel values corresponding to each 

intensity variable were extracted from a transect 100 m wide and 900 m long over the 

study area. A transect was placed perpendicular to the flight direction and positioned to 

span the topographic range of the data (70 m). The transect width corresponded to the 
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swath width o f one LiDAR flight line, although given the 70% overlap additional 
returns from adjacent flight lines would also be included. Figure 7.6 shows the location 
of the transect overlaid on the D T M , with contour lines spaced at a 5 m interval also 
shown. 

flight direction 

Transect 

Figure 7.6 Transect overlaid on hill shade image. Contour lines drawn at 5 m 
intervals. 

The transect was placed so that it only covered areas of pure Sitka spruce, to reduce the 

possibility of spectral variation caused by different species. The intensity data were 

filtered to exclude forest gaps and non-forest areas, using the percentage of last pulse 

ground returns (pczero). By setting a threshold of 50% these areas were successfully 

filtered out. 

Figure 7.7 shows the distribution of each intensity measure using box plots (summary 

statistics presented in Appendix 7.1). The box represents the interquartile range, 

intersected by the median and the whiskers mark the upper and lower adjacent values, 

with points outside these indicated by dots. The greatest variation in L iDAR intensity is 

observed i f all canopy and ground returns are considered (lall). Variation decreases i f 
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ground returns are eliminated, remains relatively constant above the 25"̂  canopy 
percentile and increases below this point. Analysis suggests that intensity associated 
with the so"' vegetation percentile provides the most stable measure, as indicated by the 
box plot distribution. At this level most of the returns wi l l originate from the upper 
canopy, which is predominantly needles. Lower percentile values are more likely to 
include more woody material, which has lower reflectivity in the near infrared; thus 
increasing the variation (Watt & Donoghue 2005). 
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Figure 7.7 Variation in various LiDAR intensity percentiles across the forest transect. 

7.3.3 Normalisation of laser path length 

The topographic range over the study area is 70 m and therefore it is necessary to 

correct the intensity data {yegpSO) for changes in laser path length. It is well known that 

the intensity recorded by the receiving optics of the LiDAR strongly depends on the 

range (path length) and reflectivity of the target. For homogeneous targets the intensity 

of the return is inversely proportional to the second power of the range (Baltsavias 

1999a). The same principle is also true for diffuse targets such as forest canopy, as 

shown in Figure 7.8. In this example, path length is calculated by subtracting the 

average flight altitude (1,275 m) from the sum of DTM and the height of the vegetation 

50* percentile. Again, the same filtering method is used to mask non-forest areas. 
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Despite the obvious scatter, the general trend is for intensity to decrease as path length 
increases (R^ = 0.44), even over a range of 70 m. The high degree of scatter is most 
likely due to changes in path length caused by the laser incidence angle, as this is not 
accounted for. 
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Figure 7.8 Effect of laser path length changes on LiDAR intensity {vegp50). 

Path length was normalised by applying the equation published in Luzum et al. (2004), 

where path length is squared and then divided by the square of the average elevation 

(1,007 m) over the selected area. 

A'^int = vegpSO x path length 

elevation ^ Equation 7. 

Figure 7.9 presents the histogram of intensity before and after normalisation of path 

length and Figure 7.10 shows a spatial map of DN changes across the area of interest. 

The greatest reduction in intensity values (-10 DN) is observed in areas with higher 

elevation, which have a shorter laser path length. 
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Figure 7.9 Distribution of L iDAR intensity values before and after path 
length normalisation. 
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Figure 7.10 Change in LiDAR DN values after path length normalisation. 

7.3.4 Extraction of intensity values 

Once the intensity has been normalised for changes in path length it is possible to 

compare the NIR response for each species type between the SPOT 5 HRG and LiDAR 

data. For each target or plot, the pixel values were extracted using a 2 x 2 pixel window 

around each sample plot from the SPOT 5 HRG and LiDAR NIR data. At the same 

time, the canopy density measures (used in Section 7.3) were also extracted for the 

sample plots. To provide a relative scale, the minimum and maximum intensity values 

were identified and the corresponding DN values extracted. In both images, the 
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minimum value (darkest target) was water^^ and maximum value (brightest target) 
flying bent {Molinia caeruld) see Figure 7.11. 

Logged area p X j ^ c 

flymg bent 
(bright target) 

Water (dark 
target) 

Figure 7.11 Selection of light and dark targets, (1:10 000 aerial photograph used for 
illustrative purposes only). 

Ideally, these targets should be spectrally invariant and recorded close in time so the 

NIR response can be compared in absolute terms. Water is suitable (unless the laser 

return is specular), but vegetation such as grass is less suitable, as its reflectivity may 

vary according to the season. However, since there are no other invariant bright targets 

(i.e. concrete) within the study area, grass was used. 

Areas of specular reflectance were avoided. 
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(i) Comparison of LiDAR and SPOT 5 HRG NIR DN values between species types 

The difference in the NIR DN values in the LiDAR and SPOT 5 HRG data indicates 

that pure lodgepole pine and Sitka spruce and species mixtures are separable. Table 7.2 

provides a summary of the NIR values by sensor, for each species type/target. In the 

LiDAR intensity data, lower DN values (30 to 59) are observed in plots of lodgepole 

pine and also in plots that contain a mixture of lodgepole pine and Sitka spruce (47 to 

63). The highest DN values are observed in pure Sitka spruce plots (48 to 96). These 

plots show highest variation in intensity (S.D of 9.2 DN), which is attributed to the field 

plots being measured over a range of forest conditions, including crops with low tree 

densities and poor growth. Therefore, the combined response wi l l be the average of tree 

stem, branch and needle material intensities. 

Table 7.2 Summary of SPOT 5 HRG and LIDAR NIR values for field plots and targets 

Species type/ 
target Sensor Obs. Mean Std. Dev. Min. Max. 

(No. 
10m 
image 
pixels) 

(Near infrared DN value) 

Lodgepole 
pine 

SPOT 5 HRG 62 41 0.8 39 42 Lodgepole 
pine LiDAR 62 46 6.5 30 59 

Sitka spruce SPOT 5 HRG 177 48 2.2 40 52 Sitka spruce 
LiDAR 177 78 9.2 48 96 

Sitka spruce/ 
pine mixture 

SPOT 5 HRG 10 43 0.4 42 43 Sitka spruce/ 
pine mixture L iDAR 10 57 4.2 47 63 
Dark target 
(Water) 

SPOT 5 HRG 4 27 0.5 27 28 Dark target 
(Water) LiDAR 4 14 3.3 10 18 
Bright target 
(Grass) 

SPOT 5 HRG 4 62 1.0 63 64 Bright target 
(Grass) L iDAR 4 153 3.0 155 159 

These observations can be further tested statistically, using Analysis of Variance 

(ANOVA). In this case a one-way ANOVA was used to compare the mean NIR 

response between the three crop types (i.e. Sitka spruce, lodgpole pine and Sitka spruce/ 

lodgpole pine mixture). Two hypotheses were tested; Hq: there is no difference in NIR 

values between the three species types, and Hg: there is a difference in NIR values 

between the three crop types. The results of the A N O V A show that variability between 

crop types for both LiDAR and SPOT NIR response is significant at the 5% level, 

146 



Chapter 7: Mapping plantation species using LiDAR 

indicating that the NIR responses, at least, are not the same between one of the three 
crop types. A second test is required to compare the mean NIR values between each 
crop type. For this purpose, the Bonferroni multiple-comparison test was used^ .̂ 
Again, the results showed that the NIR responses for the three crop types are 
significantly different at 5% level for both L iDAR and SPOT 5 HRG data (ANOVA 
results presented in Appendix 7.3). These results suggest that in closed canopy crops it 
is possible to use NIR response from either L iDAR or SPOT 5 HRG to identify 
different crop species. 

Outside o f the forest areas other differences are also noted between the NIR DN values 

for the two reference targets, water and grass. The standard deviation is higher in the 

LiDAR than the SPOT 5 HRG. The LiDAR response is the average of all returns 

within a 10 x 10 m area, so for diffuse targets like grass the higher standard deviation is 

most likely caused by the inclusion of responses from the ground as well as grass. Over 

water the response might have been affected by increased sediment from nearby logging 

operations (see Figure 7.11). 

The difference in NIR response between sensors is shown in Figure 7.12, which plots 

average intensity values for each target/sample plot by sensor. For reference, a line is 

drawn between the dark and bright targets. Although the measurement scale of the 

sensors is not the same, and LiDAR data are not radiometrically calibrated to a standard, 

the relationship is nevertheless linear {I^ =0.94). Over forest targets, the dynamic range 

is 4 times higher in LiDAR (41 to 84 DN) than in SPOT 5 HRG (41 to 51 DN). 

Discriminating between species, and identifying areas of poor growth within stands of 

the same species, is therefore potentially easier, using LiDAR. 

" There are a number of possible tests available. In Stata the user may choose from the Scheffe and 
Sidak comparison tests; both provide similar results to the Bonferroni test. 
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Figure 7.12 SPOT 5 HRG NIR values against LiDAR NIR DN values for different 
species combinations and reference targets. The straight line represents the response 
from dark and bright target in both sensors. 

Differences in intensity can also be assessed visually; Figure 7.13 shows a map of 

LiDAR intensity at 10 m resolution generated using a density slice to highlight areas of 

Lodgepole pine and Sitka spruce, over the study area, with forest compartment 

boundaries overlaid. The intensity range (0 to 125 DN) is represented by a colour 

gradient. On Figure 7.13 a mask has been applied to exclude areas of non-forest. There 

are no data in the black areas and pink areas have high DN values, which are associated 

with wind damage and topographic effects. Between these limits lie forested areas. 
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Figure 7.13 LiDAR intensity map generated using a density slice to highlight pine and 
Sitka crops. 

Most of the green coloured areas (DN 30 - 50) are located in forest compartments that 

are identified in the GIS as pure pine or a mixture of Sitka spruce and pine. There are, 

however, some green areas located in pure Sitka spruce compartments that do not 

contain pine. Areas of pure Sitka spruce crops are coloured blue. Where lodgepole 

pine and Sitka spruce are planted as a mixture (GIS boundary colour magenta), the 

colours are a combination of green and blue tones. The map shows that intensity data 

can be used to separate pine and pine/spruce mixtures from pure Sitka spruce crops. 

However, some misclassification does occur, with areas of pine appearing in areas 

designated as Sitka spruce. Additionally, there is still some noise in the intensity data, 

which may be related to LiDAR scan angle, for which correction was not made. This 

problem is, however, confined to an area of sloping terrain. 

To reduce this misclassification, other LiDAR measures that are based on laser pulse 

distribution, such as skewness, coefficient of variation, percentage last pulse ground 

returns and mean height, are evaluated in section 7.4. 
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7.4 Species identification using crown density measures 
The results in Chapter 3 show that the growth characteristics o f tree species in a 

plantation setting vary, depending on the species. For example, vigorous pure Sitka 

spruce crops form a dense forest canopy and reach canopy closure relatively early 

(approx 10 m). Whereas, pure lodgepole pine or Sitka spruce/lodgepole pine mixtures 

have more open, clumpy canopies. Figure 7.14 a to c shows that the different canopy 

structures of Sitka spruce, lodgepole pine and species mixtures affect the distribution of 

the laser pulse (first pulse) through the canopy. The largest variation is observed 

between pure Sitka spruce plots, and those containing lodgepole pine. The density of 

Sitka spruce canopy restricts laser penetration to the top third of the canopy, whereas 

the clumpy canopy of lodgepole, and species mixtures, allows the laser to penetrate 

almost to the ground. Pulse distribution from pure lodgepole pine is more 

homogeneous than from species mixture. It is worth noting that the same laser 

distribution patterns observed in these plots are replicated in the Kielder forest dataset 

(see Figure 5.17a and b). This means that the same laser distribution "signatures" are 

likely to be found in other conifer plantations in the UK that are managed using similar 

silvicultural regimes. 
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Figure 7.14 First pulse distribution for a) Pure Sitka spruce, b) 
Pure lodgepole pine and c) Sitka spruce/ lodgepole pine mixture. 

Each LiDAR canopy density measure, Cr,pczero, Skewfp and mean height (meanh), 

were assessed using the same plot data and method applied to analyse intensity. The 

results are presented in sections 7.4.1 to 7.4.4. 

7.4.1 Coefficient of variation 

The coefficient of variation^"* (Cv) summarises the relative dispersion of the LiDAR-

derived height distribution data. Dense forest canopies are associated with low LiDAR 

penetration rates and therefore have lower coefficients of variation (<15%). The dot 

plot (Figure 7.15) provides a quantitative representation of the 3D laser distribution 

plots for each species or species combination. It shows that 75% of the Sitka spruce 

The coefficient of variation is the ratio of the S.D. of height to mean height and is expressed as a 
percentage. 
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plots conform to this distribution pattern, having C,. of less than 15% (summary 
statistics in Appendix 7.2). The main outliers (Cv>15%) are located in plots that have 
open canopies or forest gaps. Overall, the coefficients of variation for pure lodgepole 
pine and Sitka spruce / lodgepole pine mixtures are higher than those for pure Sitka 
spruce, which indicates that the canopy is more open. The range of C,. values for 
lodgepole pine and Sitka spruce/lodgepole pine mixtures is similar, which makes it 
difficult to separate the two crop areas using this measure. This observation is also 
confirmed statistically using ANOVA, as C,, for lodgepole pine and Sitka 
spruce/lodgepole pine mixtures are not different at the 5% significance level. 
According to the results of ANOVA, the only crop types that can be separated with 
confidence are Sitka spruce and lodgepole pine, and also Sitka spruce and Sitka 
spruce/lodgepole pine mixtures (see ANOVA results in Appendix 7.3). 

^11 

30 

C 
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Silka spruce Sitka/Pine mixture lodgepole pine 

Figure 7.15 Coefficient of variation by crop type. 

However, a more complex picture emerges when the coefficient of variation is mapped 

spatially (Figure 7.16). Colour transition from green to blue provides an indication of 

canopy or vegetation density. Areas of pine are a blend of blue and green tones, whilst 

Sitka spruce areas are solid green or blue, making it difficult without the assistance o f a 

GIS to separate these areas. Within Sitka spruce crops, solid blue tone highlights areas 

of low tree density or forest rides. Detection of forest rides is due to 'pixel mixing' 

between forest areas and the rides, as during pre-processing, areas 0.5 m above the 

D T M were excluded. The mixing occurs because the rides are generally less than 15 m 
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wide, so the pixel values become a combination of forest and ride. Wind damaged areas 
have high C,, values and appear white or pink in the image. 

Forest nde an example 
of'pixel mixing' A Area of variable 

growth 
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I I Sitl<a/pine mix 
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Field plots 

Non forest mask 0 25 
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Figure 7.16 Coefficient of variation map generated using a density slice to highlight 
pine and Sitka crops. 

7.4.2 Skewness of L i D A R height 

The degree of canopy closure and height of the canopy influences skewness. Positive 

skewness values are associated with open sparse canopies and negative values, with 

closed canopies. Unlike C,,, there is no differentiation between skewness in pure Sitka 

spruce and in crops that comprise lodgepole pine (Figure 7.17). Furthermore, skewness 

distribution overlaps between species. Statistically, none of the species can be separated 

with confidence (see ANOVA results in Appendix 7.3) and therefore it would be 

difficult to use this measure to separate tree species. 
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Figure 7.17 Skewness, by crop type. 

The skewness map confirms these observations (Figure 7.18). On the map, skewness 

ranges from -2 to 1.2 (green to purple). Negative skewness occurs when the majority of 

returns are from the upper canopy, but the laser also penetrates to lower levels of the 

canopy. These areas are coloured green and are observed in pure pine, although similar 

patterns are also observed in Sitka spruce. As skewness shifts from -2 to 0, and the 

distribution becomes more symmetrical, the colour changes from green to blue. Blue 

areas, which are the majority of the area, also represent negative skewness. However, in 

these areas the denser canopy restricts the laser's penetration to the upper canopy, which 

decreases the skewness. Near zero skewness is observed in 'hard' areas like open and 

clearfelled areas (coloured purple), where there is no difference between laser heights. 

Skewness above zero is associated with crops that have sparse canopies, such as areas 

with low stocking densities (coloured magenta) and, at the extreme (values >1), areas of 

wind damage (coloured white). 
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Figure 7.18 Skewness map generated using a density slice to highlight pine and Sitka 
crops. 

7.4.3 Percent of last pulse ground returns 

In forested areas the percent of last pulse ground returns (pczero) shows a similar 

pattern to the coefficient of variation; Sitka spruce can be differentiated from pine and 

Sitka spruce/lodgepole pine mixtures (Figure 7.19). This is predictable, as forest areas 

with high coefficients of variation (i.e. areas with dense canopies) wi l l also have a low 

number of ground returns. 
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Figure 7.19 Percent last pulse ground returns by crop type. 
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forest areas, such as forest gaps or rides, may also have high coefficients of variation, 
but these areas are separable from closed canopy forest by their high percentage of 
ground returns. Unlike coefficient of variation, differences between pure pine areas and 
Sitka spruce/lodgepole pine mixtures are more pronounced when percent of ground 
returns is mapped spatially (Figure 7.20). Black areas are those where no ground 
returns have been recorded because of very dense forest canopy. White areas show the 
opposite effect: the percentage of ground returns is very high because of the presence of 
roads and clear felled areas. Areas of forest are within the black to blue range (0% to 
60%), with the colour transition providing an indication o f canopy or vegetation 
density. Areas of pine are a blend of blue and green tones, whilst Sitka spruce areas are 
solid green or black. The larger blue areas within Sitka spruce represent wind damage, 
although pczero does not define these areas as well as 
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Figure 7.20 Percent of last pulse ground returns map generated using a density slice to 
highlight pine and Sitka crops. 
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7.4.4 Mean height 

Mean iieight^^, like pczero, does not provide a measure that describes laser height 

distribution. Instead, it can be used to identify forest gaps, wind damage and variations 

in height within similar aged crops. Figure 7.21 shows that, overall, mean canopy 

height of Sitka spruce is greater than that of other crops. However, Sitka spruce height 

ranges from 8 to 18 m, which overlaps with the height range of pine and Sitka 

spruce/lodgepole pine mixtures. Height distributions of pine and Sitka spruce/lodgepole 

pine mixtures are similar. 

20 

Sitka spnice Sitka/Pine mixture lodgepole pine 

Figure 7.21 Mean height by crop type. 

Figure 7.22 shows the mean height map. Mean height ranges from 0 to 18m (black to 

white). The map suggests that mean height cannot be used to identify different species 

combinations. However, since the age range over the area is similar, it does provide a 

useful method for mapping variations in crop height. Additionally, height can be used 

to identify areas of wind damage, forest gaps and rides. In fact, when compared to the 

other measures, mean height is the most effective measure for this purpose. 

35 
Mean height is based on the SO"' percentile laser height and is calculated using the same method used 

in Chapter 6. 
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A 

Plantation species 
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Non forest mask ^ 
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12 18m 

Figure 7.22 Mean heighit map. 

7 . 5 Summary of LiDAR measures used to map plantation species 

Graphical and spatial analyses of intensity, and other measures of canopy density and 

height, indicate that some measures are more effective than others at differentiating 

species type. While this can be confirmed statistically using one-way ANOVA, more 

insight is gained by extending the analysis beyond the sample plot data, by displaying 

the measures spatially. Table 7.3 provides a qualitative assessment of each measure 

considered. Despite the presence of noise in the data, LiDAR intensity is the best single 

measure for identifying different species and species mixtures. More variation is 

observed in physically based measures. Of all crop types, Sitka spruce is the easiest to 

identify because of its distinctive laser height distribution (refer to Figure 7.14a). The 

most promising measure, although not strictly a canopy density measurement, is the 

percentage ground returns, followed by the coefficient of variation. The result is not as 

definitive in lodgepole pine and Sitka spruce/lodgepole pine mixtures as it is in Sitka 

spruce. Skewness of height and mean height are less useful measures for discriminating 

between different tree species. However, of all measures assessed, mean height is the 

most effective for identifying wind damaged areas and areas of height variability. 
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Table 7.3 Qualitative summary of L iDAR measures used to identify plantation species. 

Variable Forest species Non-forest Comments 
Lodgepole 
pine 

Sitka 
spruce 

Lodgepole 
pine/Sitka 
spruce 

Wind 
damage 
& forest 
rides 

Intensity yes yes 

partially 

yes partially Identifies tree species but 
there is still noise in the 
intensity data, so use is 
limited in sloping areas. 

Coefficient 
of variation 

partially 

yes 

partially partially yes Identifies areas showing 
growth variability. 

Percentage 
ground 
returns 

partially yes partially Identifies areas of very 
dense forest (indicator of 
forest productivity), forest 
roads and rides. Wind 
damage is partially 
identified. 

Skewness partially no no partially Similar skewness is 
observed in many areas, 
although skewness does 
identify areas of pure pine 
and wind damage. 

Mean 
height 

no no no yes Identifies forest gaps, wind 
damage and areas with 
variable height, which 
provides an indicator of 
forest productivity. 

Yes = useful measure • No = not useful 

7 . 6 Combined classiflcation 

To improve the accuracy of the species classification, all o f the measures were 

combined and a supervised classification conducted. The following classes were 

defined using a combination of the GIS compartment boundaries and sample plot data: 

(i) pure areas of Sitka spruce divided into two productivity classes using mean height, 

(i i) areas of pure lodgepole pine (i i i ) species mixtures and (iv) areas of wind damage. 

Non-forest areas were not included in the classification, as these areas were excluded 

during pre-processing stage of the LiDAR data. Three classifications were generated 

using the ENVl maximum likelihood classifier^^ algorithm. The first classification 

included canopy density measures and height and the second included intensity data. 

As a check, the third compared the first two classifications with one generated from the 

36 
Maximum likelihood classification routine in E N V I assumes that the statistics for each class in each 

band are normally distributed and calculates the probability that a given pixel belongs to a specific '-'^^•^ 
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SPOT 5 HRG muhi-spectral satellite data using the same training areas used for the 
LiDAR classification incorporating all spectral bands. Figure 7.23 a to c shows the 
classification results for each run, with the Forestry Commission's GIS compartment 
boundaries overlaid. The classification, based on the SPOT 5 HRG imagery, shows the 
largest misclassification. In particular, areas of wind damage (not mapped in the FC's 
GIS), forest edges and forest rides are confused with lodgepole pine. Sitka spruce is 
accurately classified, although growth variations are not as clearly mapped when 
compared with the LiDAR classifications (also refer to the mean height map. Figure 
7.22). Some of the smaller areas of wind damage are also misclassified as pine. 
Overall, there is little difference between the two LiDAR classifications. According to 
the Forestry Commission's GIS the area of pure pine area is correctly classified. In 
plantation mixtures the classification provides more detail than the GIS data, as it not 
only identifies the dominant species, but also maps the spatial extent of each species. 
Ideally, the accuracy of the species mixture classification would be best tested using 
validation plots, but unfortunately no such field data was available. As an alternative, 
the classification's accuracy can be compared with a 1: 10 000 aerial photograph^^ 
(Figure 7.24a) which indicates that the match is accurate, even at 10 m resolution (refer 
to Figure 7.23 for classification legend). Lastly, the inclusion of mean height enables 
areas to be classified according to height, which is a useful measure as it proves an 
indication of crop productivity. 

Aerial photography was flown 12 days after the L i D A R overpass, on the 27/06/03. 
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Plantation species 
I I Sitka/pine mix 
Lodgepole pine 

Sltl<a spruce 

I I Non forest mask 
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I Lodgepole pine 

I Sitka spruce class 1 

I Sitka spruce class 2 
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0^— 0.5 

A 
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Figure 7.23 Forest species classification a.) SPOT 5 HRG b.) LiDAR density 
measures c.) LiDAR density measures and intensity. 
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Sitka spruce 

Lodgepole pine 

Figure 7.24b L i D A R classification Figure 7.24a 1:10 OOP aerial photograph 

7 . 7 Discussion 

The objective of this chapter was to assess the potential of LiDAR intensity data and 

crown density measures for identifying plantation mixtures and areas of variable 

growth. Although the study area is small (300 ha), results strongly suggest that LiDAR 

data can be used to provide more than just estimates of forest height and volume. The 

methods developed show that, in UK conifer forests, species can be mapped using either 

LiDAR-derived crown density measures or LiDAR intensity data. Potentially, intensity 

is more problematic to use, as it is not radiometrically calibrated to a published 

standard. For the reasons outlined in section 7.1.4 it is to be expected that intensity 

values wi l l vary between different LiDAR flights. However, i f intensity of returns are 

calibrated against another source, then it offers considerable potential for forest 

mapping. Filtering intensity data further improves the classification, by removing 

unwanted noise after which it is possible to discriminate between different conifer 

species. The technique has limited potential in areas where topography is not constant 

(i.e. laser path length and footprint vary), although it appears that a more robust 

correction (i.e. using the method in Luzum et al. 2004) can be applied i f the position and 

angle of the laser pulse is known. However, this uncertainty is reduced by using all the 

LiDAR variables in a statistical classification. In this context it is possible to resample 

the LiDAR data to any spatial resolution using the method developed in Chapter 4. 

This would allow LiDAR variables to be integrated with other remotely sensed data 

(e.g. IKONOS, SPOT, IRS or even RADAR data), which could be used to further refine 
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the classification, or to validate classifications/predictions made using other remotely 
sensed data/models. This is the focus of Chapter 8. 

In addition to identifying and mapping forest species composition, it is also possible to 

map areas of anomalous growth. These areas are best identified using crown density 

measures coupled with forest height. When compared with conventional methods that 

use manual interpretation of aerial photography, the LiDAR-based method is more 

accurate because it is easier to identify areas of wind damage and variations in height 

that are not necessarily depicted on aerial photography. 

These methods provide an accurate means of identifying different forest species, and 

areas of anomalous growth, at the stand level. It is clear that this sort of information 

would lead to improved forest yield estimations, as it is possible to exclude non­

productive areas, identify areas of poor growth and identify and map species 

composition, so that the correct yield class model can be applied. 
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from IKONOS arad Landsat ETM+ data in Sitka spruce 

plantation forests 

Chapters 5 and 6 demonstrated that L iDAR provides accurate estimates of forest height. 

The main limitation to wide-scale application of these data in the UK is their perceived 

cost (Donoghue & Watt in review). In comparison with L iDAR data, satellite imagery 

may provide a cheaper option for some mensuration and monitoring applications. 

However, despite the widespread availability of optical imagery at a variety of scales, 

including newly available fine spatial resolution satellite data, very few studies have 

tried to compare and contrast different scales of image data, especially for mapping 

forest structure (Hyyppa et al. 2000; L i and Strahler 1985; Woodcock and Strahler 

1987). 

This chapter compares and contrasts predictions of forest height in Sitka spruce 

plantations based on medium-resolution Landsat ETM+, high-resolution IKONOS 

satellite imagery and airborne LiDAR data. Regression analysis is used to evaluate the 

quality of predictions from each of these sensors, against measured tree heights. The 

first approach uses only tree height measured in the field as the dependent variable; the 

second approach uses tree height data derived from LiDAR to complement field 

measurements. 

8.1 Field and image data 

The forest mensuration dataset comprises 28 of 60 sample plots measured within 

Kielder forest study area, as summarised in Table 8.1. The sample plots exclude those 

measured in Sitka spruce/lodgepole pine mixture (16 plots), but include the 16 plots of 

0.01 ha measured in the Sitka spruce. Because of their size and close proximity, these 

plots were amalgamated to form one plot: see Figure 3.7. 
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Table 8.1 Summary of 28 field survey plots 

Variable Age 
(years) 

Density 
(trees/ha) 

Basal area 
(m^/ha) 

Height 
(m) 

Diameter 
(cm) 

Mean 33.0 2,732 47.0 11.1 17.1 
Standard 
Deviation 

18.8 2,614 17.4 6.7 5.1 

Minimum 8.0 1,150 4.5 1.5 4.3 
Maximum 59.0 12,300 69.4 22.3 23.8 

The LiDAR data were collected on 26 March 2003 using an Optech A L T M 2033 laser 

scanning system. The two satellite images were acquired in cloud-free conditions six 

months apart, with IKONOS data acquired on 13 March 2002 and Landsat ETM+ data 

on 2"'' September 2002. The IKONOS data were collected at an off-nadir view angle of 

30°. Spectrally, the band-passes of both sensors are very similar. For further details on 

image data and processing, please refer to Chapter 4. 

8.2 Estimation methods 

8.2.1 Image preparation 

The satellite data were geo-corrected using LiDAR coverage. To match the pixel size 

of IKONOS data, the Landsat ETM+ data were resampled using nearest neighbour re­

sampling, from a pixel size of 30 m to 4 m. This makes it easier to manage the data, as 

the image bands can be stacked into one file (including the LiDAR data). More 

importantly, resampling does not affect the radiometric characteristics of data (Figures 

8.1a and b). 
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1000 
Metres 

1000 
Metres 

Figure 8.1a Geo-corrected Landsat ETM+ 
image displayed using band combinations: 
blue, near infrared and red. 

Figure 8.1b Geo-corrected IKONOS image 
displayed using band combinations: blue, near 
infrared and red. 

8.2.2 LiDAR-derived height 

To generate additional height samples, LiDAR data were used to provide estimates of 

mean height for each 4 m pixel. Using field sample plots, mean height was regressed 

against each LiDAR height percentile. From this analysis the 60"̂  height percentile 

(p60) was selected based on its (0.99) and RMS error (0.88 m), as shown in Table 

8.2. It is worth noting that and RMS errors are similar above the 50"̂  height 

percentile, which suggests that any height percentile above this point could be used to 

predict mean height, without a substantial decrease in accuracy. 
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Table 8.2 Summary of LiDAR height percentiles used to estimate mean height 

Mean height 
Sitka spruce « = 28 

Height percentile RMSE 
(m) 

10 0.97 1.17 
20 0.98 1.03 
30 0.98 0.97 
40 0.98 0.95 
50 0.98 0.92 
60 0.99 0.88 
70 0.99 0.89 
80 0.98 0.90 
90 0.98 0.91 
95 0.98 0.92 
99 0.98 0.89 
Maximum height 0.98 0.90 

Figure 8.2 shows LiDAR-derived height values plotted against field-measured mean 

height at each of the ground sample plot locations. 
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Figure 8.2 Relationship between mean height and LiDAR derived height. 

From this relationship a regression (Equation 8.1) to predict mean height for each 4 m 

pixel on the L iDAR grid was derived: 

Mean height (m) = 1.51 -hO.95 p60 Equation 8.1 
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8.2.3 Extraction of plot data 

For each sample plot, mean height was calculated from field data and compared with 

corresponding image pixel values extracted from the IKONOS and Landsat ETM+ data. 

This procedure was repeated for the four IKONOS and six Landsat ETM+ image bands. 

For each sample plot, the mean of these pixels was taken to represent the plot's canopy 

reflectivity. Using the LiDAR 'mean height' grid, a second dataset was constructed as a 

substitute for field data. This was achieved by generating a systematic sampling grid in 

a GIS at an interval of 100 m between samples. A circular buffer of radius 7.98 m was 

generated around each sample, to give it the same area as a 0.02 ha ground sample plot 

and the corresponding pixel values were extracted from the LiDAR grid. Samples were 

stratified into forest or non-forest using the forest compartment GIS layer and those 

points that were located within 30 m of forest compartment boundaries were discarded. 

This process generated 410 additional height data samples over the study area (Figure 

8.3). 

• Forest compartments ^ Selected plots 
• Non-forest B Excluded plots 

Figure 8.3 Selection of additional field plots used to extract height values 
from LiDAR 60"̂  percentile height. 
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8.2.4 Regression models 

The relationship between LiDAR derived height and measured height is linear, so a 

conventional least squares linear regression model is appropriate (see Figure 8.2). For 

IKONOS and Landsat ETM+ data, various single and multiple band regression models 

were tested. Inspection of the scatter plots for IKONOS, Landsat ETM+ and ground 

data shows that the relationship between reflectance and height is curvilinear. 

^^Common approaches to dealing with the curvilinear shape of the relationship include, 

( I ) fitting something more complicated than a line (e.g. a quadratic or other polynomial) 

and (2) transforming the response (e.g. by taking logarithms) and working on a 

transformed scale, an approach used in many studies that have used optical (Ahem et al. 

1998; Hyyppa et al. 2000; Puhr and Dongohue 2000) or L iDAR data (Naesset 1997; 

Means et al. 1999; Nelson 1997; Holmgren et al. 2003). Neither is problem-free. With 

( I ) , a more complicated curve may exhibit un-interpretable wiggles and it may also 

extrapolate very poorly beyond the range of the data, even to the extent of producing 

unacceptable predictions (such as negative tree heights). This is a key weakness for an 

approach based on fitting a relationship in a training data set and then extending it to the 

wider area covered by imagery. Such problems do not arise to the same extent with (2) 

an approach based on transformations, but the need to back-transform predictions to the 

original scale is at best awkward, and other difficulties can arise, such as the fact that 

and RMS error both refer to variations on the transformed logarithmic scale. 

An approach which in many ways offers the best of both worlds, is that afforded by 

generalised linear models (GLMs). There are two main differences between GLMs and 

general linear models: first, the response may have a non-normal distribution and 

second, the transformation applied to the response variable is selected by applying the 

appropriate link function (e.g. logarithmic) in the software. One key advantage of using 

a G L M is that predictions are generated and presented on the original measured scale o f 

the response and so there is no need for back-transformation or bias corrections (Cox et 

al. in review). In this thesis the logarithmic link function was used, which thus instructs 

the software to f i t a relationship on a logarithmic scale, but to report results on the scale 

of the original response variable. 

This section draws on material adapted from Donoghue et al. (2004). ' 
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As an example. Figure 8.4 compares the f i t of a power function, which is suggested by 

the curvilinear pattern and a G L M model using the field data (n =28) and Landsat 

ETM-i- green band reflectance. The graph suggests that there are advantages and 

disadvantages attached to both model types. Superficially, the power function appears 

to be a better f i t , as the model passes through the centre o f the data points. In contrast, 

the G L M fits the upper range of the data (>10 m) but over-predicts tree height in the 

lower range (<10 m). The poor f i t of the G L M over this range is probably due to the 

low number of field observations. Despite this limitation the G L M has less curvature 

than the power function and therefore, wi l l provide more realistic height predictions 

when extrapolated. Although not so obvious in this example, i f extrapolated, power 

functions have potential to behave erratically at tail end o f the curve by decreasing and 

then increasing again. 
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Figure 8.4 Comparison of model fit between a G L M (logarithmic link, log DN 
predictor) and power function using field-measured mean height predicted 
from Landsat ETM-t- green band. 

It is, therefore, difficult to model these data using a power function because o f its 

sensitivity to outliers, which can drag the curve upwards at the tail. Figure 8.5, using 

the same spectral band, shows the effect on model fit of increasing the number of 

observations through inclusion of LiDAR height samples (n = 438). 
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Figure 8.5 Comparison of model fit between a G L M (logarithmic link) and power 
function, using LiDAR-derived mean height predicted from Landsat ETM+ green 
band. 

Here increasing the number of observations improves the fit of both models by 

extending the data range to include more newly established plantations. This has the 

effect o f grounding both models close to or at zero. On balance, the G L M is a better 

choice of model as it provides more robust predictions than the power function. 

Consequently, GLMs are used for the rest o f the analysis. 

8.2.5 Height estimates using G L M s 

For each spectral band and sensor, two linear regression models were generated. The 

first, referred to as Model A, included only the ground survey plot data (28 sample 

plots), and the second, referred to as Model B, used data derived from 410 LiDAR-

measured sample plots. In both cases models based on single and multiple band 

combinations were also considered^'. The suitability of each model was assessed using 

the criteria presented in Table 6.3. Model selection was based on two measures of 

goodness of fit, and RMS error, together with the physical or biological plausibility 

and simplicity of each model. The statistical relationships between the ground reference 

data and IKONOS and Landsat ETM+ spectral bands are presented in sections 8.2.5 and 

8.2.7. 

' This process was automated in Stata, so that all possible band combinations were considered. 
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8.2.6 I K O N O S regression models 

The relationship between height and IKONOS data was assessed using 15 possible band 

variations, extended to generate height predictions for the two datasets (Table 8.3). To 

improve interpretability. Table 8.3 is divided according to the number of spectral bands 

used to generate each model. For models (based on Model B) that use single spectral 

bands, ranges from 0.27 in the near infrared to 0.74 in the green band. It is also 

worth noting that the blue and red spectral bands correlate strongly with height with 

= 0.69 and 0.75, respectively. This suggests that height can be predicted using any 

spectral band located in the visible spectrum. Overall more complex models that 

include more than one spectral band tend to have higher ^ and lower RMS error 

values. For example, on its own, the near infrared band is a poor predictor of height, 

but when combined with other spectral bands, and RMS error of the predictions 

improve. Models that show this pattern are highlighted in Table 8.3. Lower RMS 

errors for Model A, suggest that there is less variation in the data used to generate 

Model A than Model B. The higher RMS errors for Model B (the LiDAR-based 

sample) are probably caused by inclusion of samples located near to areas of non-forest, 

damaged areas or forest rides, causing the corresponding image pixels to comprise a 

mixture of spectral responses. 

Table 8.3 Summary of regression models used to estimate forest height from IKONOS 
satellite data 

No. 
predictors Model 

Image 
Band(s) 

Height 
Model A: («=28) 

Height 
Model B: («=438) 

le RMS error le RMS error 
(m) (m) 

1 

1 1 0.69 3.54 0.68 4.46 

1 2 2 0.79 2.96 0.74 4.03 1 
3 3 0.75 3.21 0.73 4.10 

1 

4 4 0.35 5.16 0.27 6.78 

2 

5 1 2 0.80 2.91 0.75 4.01 

2 

6 1 3 0.75 3.23 0.74 4.03 

2 7 1 4 0.79 3.00 0.83 3.31 2 
8 23 0.80 2.96 0.72 4.17 

2 

9 24 0.89 2.20 0.74 4.03 

2 

10 3 4 0.84 2.66 0.79 3.63 

3 

11 1 23 0.80 2.97 0.76 3.92 

3 12 1 24 0.89 2.24 0.83 3.29 3 
13 1 34 0.84 2.67 0.79 3.64 

3 

14 2 3 4 0.89 2.21 0.83 3.31 
4 15 1 2 3 4 0.89 2.23 0.83 3.29 

172 



Chapter 8: Using LiDAR to compare forest height estimates from IKONOS and Landsat 
ETM+ data in Sitka spruce plantation forests 

8.2.7 I K O N O S height estimates using a single predictor 

Models based on a single predictor are attractive as the relationship is simple to apply 

and often more easily understood. From Table 8.3 it is clear that any of the visible 

bands could be used to predict height. Figure 8.6 shows the relationship between height 

and the IKONOS green band which has the highest and lowest RMSE. It also shows 

the f i t of both height models; Model A, derived from the field sample plots, and Model 

B, derived from the additional height sample taken from LiDAR. The form of the 

relationship is very similar, despite differences in ^ and RMS errors. The overall 

pattern is for reflectance to increase quickly below 10 m, while above 10 m little change 

in reflectance occurs as tree height increases (i.e. changes in DN values are <20 DN). 

The curves for height Model A and B are closely aligned, which suggests that 

increasing the number of height samples makes little difference to height estimates. 
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Figure 8.6 G L M height Models A and B used to predict height from 
IKONOS green band DN values, using field and LiDAR sample plot 
data. 

8.2.8 I K O N O S height estimates using multiple predictors 

Results presented in Table 8.3 show that increasing the number of spectral bands in the 

model improves the and RMS error. Fitting a more complex model is justified i f 

inclusion of additional bands improves the predictive ability of the model and i f the 
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model also has a physical basis. To show this graphically, a series of predictions are 
created by sequentially adding spectral bands. As each prediction is made, the 
corresponding residual plot is produced to show impact on predictive ability of the 
model. Figures 8.7 and 8.8 compare height predictions and residuals for IKONOS band 
2 and height models, 9, 12 and 15, based on multiple spectral bands. These are the best 
models, with 1, 2, 3 and 4 predictors respectively. The following series of plots show 
diminishing returns as predictors are added. 

Model 2 

Model 12 

| 2 

Band 2 
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Bands 2 4 

J2 wi 
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Predicted mean height (m) 

Bands 2 4 1 
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Figure 8.7 G L M height Model B, used to predict height from multiple IKONOS 
bands. 
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Figure 8.8 Residual plots for height Model B, using multiple IKONOS bands. 

The height predictions and residual plots show that the relationship between height and 

IKONOS image bands improves with the addition of the near infrared band, but does 

not substantially improve as further bands are added to the model. Figure 8.8 shows 

that residual errors in all models increase as tree height increases, with residual errors 

exceeding 5 m once tree height reaches 10 m. In model 2 (the green band), some 

curvature is observed in the residual distribution above 10 m. This is corrected by 

adding an additional band, but at the same time this also increases the scatter of the 

residuals. Consequently, a simple model based on a single predictor, the green band 

(band 2), is preferred {R^ =0.79), as the improved fit of models with more than one 

spectral band does not adequately compensate for their inherent complexity (R^ =0.89). 

8.2.9 Landsat E T M + regression models 

Since Landsat ETM+ has six spectral bands that record data in the visible, near infrared 

and shortwave infrared, it was possible to evaluate the relationship between different 

band combinations and height using 63 models. This could be expanded to 126 models, 

when height models A and B were considered (Table 8.4). The green and red 
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wavelengths show the strongest relationships, with R^ of 0.79 and 0.71 respectively, and 
NIR the weakest relationship, with of 0.45. For reference, the same combination of 
spectral bands used in the IKONOS analysis is highlighted in Table 8.4. Analysis of 
Landsat ETM+ data is also extended, to include models with shortwave infrared bands 
(Landsat ETM+ bands 5 and 7). 

Table 8.4 Summary of regression models used to estimate forest height from Landsat 
ETM+ satellite data 

No. 
Predictors Model 

Image 
Band(s) 

Height Model A 
(«=28) 

Height Model B 
(«=438) 

RMS 
error 

RMS 
error 

(m) (m) 
1 1 0.49 4.57 0.53 5.47 
2 2 0.69 3.58 0.79 3.63 

1 3 3 0.75 3.18 0.71 4.28 
4 4 0.46 4.68 0.45 5.86 
5 5 0.64 3.82 0.66 4.63 
6 7 0.66 3.74 0.59 5.06 
7 1 2 0.69 3.65 0.79 3.63 
8 1 3 0.79 3.02 0.71 4.27 
9 1 4 0.51 4.56 0.64 4.80 

10 1 5 0.64 3.88 0.66 4.60 
11 1 7 0.66 3.81 0.62 4.87 
12 23 0.76 3.21 0.80 3.53 
13 24 0.69 3.65 0.79 3.63 
14 25 0.71 3.53 0.80 3.59 
15 27 0.73 3.40 0.80 3.56 

2 16 34 0.76 3.17 0.73 4.13 
17 3 5 0.75 3.24 0.72 4.18 
18 3 7 0.76 3.20 0.71 4.24 
19 45 0.68 3.65 0.68 4.48 
20 47 0.67 3.73 0.68 4.49 
21 5 7 0.66 3.81 0.66 4.63 

3 22 123 0.79 3.06 0.80 3.53 
23 1 24 0.69 3.71 0.79 3.63 
24 1 25 0.71 3.56 0.80 3.59 
25 1 27 0.74 3.37 0.80 3.56 
26 1 34 0.79 3.08 0.73 4.13 
27 1 3 5 0.80 3.01 0.72 4.18 
28 1 3 7 0.81 2.87 0.71 4.23 
29 145 0.69 3.73 0.68 4.46 
30 1 47 0.67 3.80 0.68 4.47 
31 1 5 7 0.66 3.88 0.66 4.60 
32 234 0.77 3.16 0.80 3.53 
33 23 5 0.76 3.27 0.80 3.53 
34 23 7 0.76" 3.24 0.80 3.52 
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35 245 0.74 3.42 0.80 3.58 
36 247 0.76 3.28 0.80 3.56 
37 257 0.75 3.33 0.80 3.56 
38 345 0.78 3.14 0.73 4.12 
39 347 0.79 3.07 0.73 4.12 
40 3 5 7 0.78 3.15 0.72 4.18 
41 45 7 0.69 3.70 0.68 4.47 
42 1234 0.79 3.12 0.80 3.53 
43 123 5 0.80 3.07 0.80 3.53 
44 123 7 0.82 2.92 0.80 3.52 
45 1245 0.74 3.49 0.80 3.58 
46 1247 0.76 3.33 0.80 3.56 
47 125 7 0.76 3.36 0.80 3.56 
48 1345 0.80 3.03 0.73 4.12 

4 49 1347 0.82 2.90 0.73 4.12 
50 13 5 7 0.82 2.88 0.72 4.19 
51 1457 0.69 3.78 0.69 4.46 
52 2 3 45 0.78 3.17 0.80 3.53 
53 2 3 47 0.80 3.06 0.80 3.52 
54 2 3 5 7 0.80 3.07 0.81 3.51 
55 245 7 0.76 3.33 0.80 3.56 
56 3 45 7 0.79 3.13 0.73 4.12 
57 1 23 4 5 0.80 3.09 0.80 3.53 
58 1 23 47 0.82 2.94 0.81 3.52 
59 1 23 5 7 0.83 2.87 0.81 3.52 

J 60 1 24 5 7 0.76 3.39 0.80 3.56 
61 1 345 7 0.82 2.95 0.73 4.13 
62 2 3 4 5 7 0.80 3.07 0.81 3.52 

6 63 12345 7 0.83 2.94 0.81 3.52 

8.2.10 Landsat E T M + height estimates using a single predictor 

The relationship between mean height and the Landsat green spectral band, using height 

models A and B is presented in Figure 8.9. The relationship is similar to that of 

IKONOS, with reflectance increasing quickly below 10 m and remaining relatively 

static above 10 m (i.e. alters by less than 5 DN). Increasing the number of height 

samples improves fit of the height model slightly below 5 m, but overall there is little 

difference between the two height models. 
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Figure 8.9 G L M height models A and B used to predict height from Landsat ETM+ 
green band DN values, using field and LiDAR sample plot data. 

8.2.11 Landsat E T M + height estimates using multiple predictors 

Only small improvements in the R^ and RMS error of the height model are achieved by 

including additional spectral bands (Table 8.4). This is shown graphically in Figures 

8.10 and 8.11, which compare height predictions and residuals for Landsat ETM+ band 

2 and height models, 13, 23, 42, 59 and 63, based on multiple spectral bands. 
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Figure 8.10 Height model B, used to predicted height from muhiple Landsat ETM+ 
bands. 
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Figure 8.11 Residual plots for height Model B using mulfiple Landsat ETM+ 
bands. 

The height prediction and residual plots show that, unlike IKONOS data, the 

relationship between height and Landsat ETM+ image bands does not improve with the 

addition of the near infrared band. Furthermore, increasing the number of spectral 

bands does not substantially improve the model. Figure 8.11 shows a similar pattern in 

the residual distribution to the IKONOS residual plot (Figure 8.8), with residual errors 

exceeding 5 m once tree height reaches 10 m. It is also worth noting the similarity in 
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the predictive ability of the same spectral bands between the two sensors, which 
suggests that the response is stable across a range of pixel resolutions. In this context 
any sensor with similar spectral band passes could potential be used to estimate height. 
8.3 Validation of height estimates 

Analysis of IKONOS and Landsat data shows that it is possible to use multiple spectral 

bands, or combinations of bands, as predictors. However, analysis of multiple band 

predictors shows that, at best, these provide only minor quantitative improvements in 

model fit. Furthermore, such benefits are outweighed by the risk of fitting a complex 

model that is not supported by a graphical analysis of the empirical data. Models based 

on single spectral bands are simple, but effective predictors. The inclusion of L iDAR 

height information is helpful because it is both time-consuming and difficuh to measure 

height in the field. LiDAR-derived height data extend the range over which the 

statistical models are fitted because a greater number of both younger and older trees 

can be sampled than would be possible in the field. The additional number of samples 

provides more confidence that the empirical statistical models offer a sensible 

prediction of forest height (Wulder and Seemann 2003). 

Figures 8.12 and 8.13 use the green spectral band of Landsat ETM+ and IKONOS to 

predict height, which is plotted against LiDAR-derived height. It is apparent from both 

scatter plots that beyond a height of approximately 10 m, the relationships deteriorate. 
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Figure 8.12 Comparison between Landsat ETM+ green band and 
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Figure 8.13 Comparison between IKONOS green band and LiDAR-
derived, and field-measured, height (»=438). 

8.3.1 Spatial comparison of height estimates 

Since the estimates obtained from LiDAR and field-measured heights are comparable 

(t^ = 0.99), the LiDAR height map is used as a benchmark against which to compare 

the IKONOS and Landsat height models. For comparative purposes, predictions of 

forest height were generated from the green wavelength band for both Landsat ETM+ 

and IKONOS data, using height Model B (based on the extra LiDAR samples). This 

was achieved by applying regression equations to each pixel of green band in the 

IKONOS and Landsat ETM+ data. Although the validation dataset is not independent 

as it is also used to construct the height model it does provide a useful method of 

identifying anomalous satellite-derived estimates. For each image pixel. Figures 8.14 

and 8.15 show these predictions, classified into 2 m height increments. 
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Figure 8.14 Height prediction image derived from Landsat ETM+ green 
band using height Model B. 
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Figure 8.15 Height prediction image derived from IKONOS 
green band using height Model B. 

The Landsat and IKONOS height models show good agreement for areas with trees less 

than 10 m in height. Although the coarser resolution of Landsat data produces a more 

generalised height map, a similar spatial pattern to the IKONOS model is observed. 

To compare the differences between satellite estimates, two height residual maps were 

generated by subtracting LiDAR height estimates from IKONOS and Landsat models, 

using height Model B (see Figures 8.16 and 8.17). Data held in the FC's CIS were used 

to identify compartments where trees exceed 15 years in age, which corresponds to 

heights greater than 10 m. These areas are masked out and thereby excluded from the 
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analysis because the linear model shows limited ability to predict height beyond 10 m 
(refer to Figures 8.13 and 8.14). 
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Figure 8.16 IKONOS height difference 
map: generated from band 2. 

Figure 8.17 Landsat ETM+ height 
difference map: generated from band 2. 

Inspection of residual height values reveals some interesting spatial patterns and 

highlights differences between predictions from the two sensors. Figure 8.16 shows 

residual height values for IKONOS categorised into four difference classes. In most 

parts of the study area the residuals are within the range ±2 m, which is acceptable for 

forest management purposes. However, a number of pixels show residual values greater 

than 4 m, which is unacceptable; these are coloured red on the residual height maps. In 

particular, there are two clusters of high residual values, where forest height is 

overestimated by the IKONOS model. Area A (identified by the blue box) contains 

high levels of natural regeneration causing tree density to exceed 12,000 trees/ha. Area 
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B (identified by the green box) is a north-facing valley side (10 to 15°) and the forest 
height over-estimate is most probably associated with interaction between the IKONOS 
sensor's off-nadir view angle of 30° and ground surface aspect and slope. This may 
have resulted in localised shadowing or depression of reflectance values compared with 
an equivalent stand of trees growing on flat ground. As a consequence, forest height 
values have been over-estimated. This effect is not observed in the Landsat model 
because ETM+ is a nadir-pointing sensor. Figure 8.17 shows residual height values for 
the Landsat ETM+ model. The area of high tree density, identified as area A on the 
IKONOS height difference map, is not detected by the Landsat model. 

8.4 Discussion 

When forest height predictions from the different image datasets are compared with 

ground-based observations, it is clear that LiDAR performs best, providing an accurate 

measurement over the ful l range of age classes studied (8-59 years). I f the same 

IKONOS and Landsat 7 ETM+ band passes are compared then the green wavelength 

band, of IKONOS (4 m) multi-spectral and Landsat ETM+ (30 m) data, gave height 

predictions that are statistically very similar, despite the large difference in spatial 

resolution between the two sensors. Although regression models (Model B) using the 

green wavelength gave values of 0.74 and 0.79 for IKONOS and Landsat ETM+ 

respectively, these sensors do not make physical measurements of height; rather they 

display a strong negative correlation between forest height and reflectance. Similar 

patterns are also observed using Landsat 7 ETM+ SWIR spectral bands. The results 

achieved in this research are also observed other studies (Puhr and Donoghue 2000; 

Donoghue et al. 2004; Watt, 2002). In contrast to LiDAR, both satellite sensors can 

only predict height up to the point of canopy closure. This limitation o f optical image 

data is well known and has been reported in several remote sensing studies of conifer 

forests (Danson and Curran 1993; Puhr and Donoghue 2000; Donoghue et al. 2004; 

Nilson and Peterson 1994). 

The IKONOS green wavelength band is able to detect natural regeneration in young 

crops more readily than does Landsat. This is probably due to localised patterns o f 

natural regeneration, which can be detected using a 4 m pixel size. These patterns are 
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not always detected by the Landsat 30 m pixels (as shown by the residual values in 
Figure 8.16) because areas without natural regeneration are incorporated in the 
reflectivity of the larger Landsat pixel. The 4 m pixel size of the IKONOS multi-
spectral image therefore helps to pinpoint areas of anomalous growth that are not easily 
seen by either LiDAR height maps or the lower spatial resolution Landsat ETM+ 
sensor. Results from areas of steep terrain suggest, however, that off-nadir look angles 
can affect height predictions. 

(i) Increasing ground samples using LiDAR 

Interestingly, the results suggest that accuracy is not substantially improved by 

increasing the number of ground sample plots. This finding concurs with similar work 

conducted in upland Sitka spruce plantations in Galloway Forest District, Scotland 

(Donoghue et al. 2004; Puhr & Donoghue 2000; Watt 2002), which suggest that 

minimal field effort is required to parameterise such models. Alternatively, LiDAR 

data (if available) could be used in place of field sample plots as means of attaining 

height data to parameterise a reflectance-driven height model. 

It is important to note that accuracy of LiDAR-derived height in closed canopy forests 

depends on obtaining a sufficient number of last pulse returns from the ground. If 

LiDAR poorly predicts ground elevation, then tree height measurements could be 

incorrect by ±1.5 m (section 5.1). Also, additional error, albeit more difficult to 

quantify, may occur if the percentile height used (i.e. the 60"̂  percentile) does not 

correspond to the mean canopy height in all areas. Holmgren (2003) noted that at larger 

scanning angles, and as tree density increases, the percentage of LiDAR canopy hits 

increases. This is because more canopy area is exposed to the laser at larger scanning 

angles, which reduces the penetration of the laser to the lower canopy. 

(ii) Cost and Availability 

The cost of Landsat data is very low (US$ 0.51/ km^). The cost of IKONOS data is 

higher (US $20/km^) but they are still very cost-effective compared with field sampling 

methods. Comparatively, LiDAR data are expensive'"' (US $100/km^), but they offer a 

40 Figure based on the acquisition of data at the same specification used in this research. Cost of j gy 
processing not included. 
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number of advantages over field inventory methods. First, LiDAR is able to provide 
spatially continuous estimates of height, over the entire forest height range, whereas 
field-sampling density is less intensive. Second, the quality of the survey data is 
enhanced because it is both continuous and accurate, which means it can identify areas 
of variability more easily than field-based methods. 

Optical satellite data appear to provide an attractive alternative source of forest height 

information for forest stands less than 10 m in height, which could be used as a tool to 

monitor the success of forest establishment over extensive forested areas. Another 

important consideration is the availability of suitable image data. IKONOS data are 

difficult to obtain in the UK, even with pre-arranged tasking'*', due to cloud cover. For 

this reason, it is rare for these data to be acquired at nadir because this severely 

constrains the number of satellite overpasses that can be used to capture imagery. 

However, since prediction models are empirically based and use spectral data, other 

satellite data that have similar band-passes are also suitable for this application. This 

widens the choice to include other satellite sensors: Landsat 5 TM, Landsat ETM+, 

SPOT 4 HRV, SPOT 5 HRG, IRS LISS, Terra-ASTER, Quickbird. 

In conclusion, LiDAR provides accurate forest height data at high spatial resolution, but 

it cannot detect areas of anomalous growth that are not related to height differences, 

such as natural regeneration. For this task it is important to have spectral information at 

green, red, near infrared or shortwave infrared wavelengths. Future LiDAR sensors will 

incorporate such image layers but for the moment it is clear that optical satellite data 

remain particularly suitable for monitoring the growth status of young crops in dense 

plantation forests. 

8.5 Summary 

The results from this chapter, and Chapters 5 and 6, show that in very densely stocked 

Sitka spruce crops (>2,000 trees/ha) LiDAR is able to provide an estimate of height 

over the entire range of age classes studied (8-59 years). Both IKONOS and Landsat 

ETM+ imagery can be used to generate accurate predictions of forest height in the range 

Since 2003 only two high-resolution images (IK.ONOS or Quickbird) have been acquired over the j gg 
study area. 
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0-10 m, but above 10 m height predictions are very poor. The methodology developed 
in this research uses a combination of traditional criterion for evaluating different 
predictive models such as and RMS error, with the selection further refined by 
adding graphical interpretation of model predictions and residuals. This process assists 
in the selection of models that are both biologically and physically plausible. The 
results demonstrate the ability of optical satellite imagery to identify forest stands that 
display unexpected growth characteristics, such as areas of high natural regeneration 
and poor or incomplete stocking. The results also support the growing body of 
literature that highlights the potential of high-resolution airborne LiDAR imagery for 
accurate and detailed forest resource assessment. Unlike many other studies that have 
used satellite data to develop models for estimating forest parameters (i.e. Danson and 
Curran 1993; Puhr and Donoghue 2000; Nilson and Peterson 1994) this chapter shows 
the merits of spatially analysing the predictions to identify areas where the predictions 
appear spurious. Also, by integrating LiDAR data a much larger ground truth dataset 
can be attained to more rigorously evaluate the satellite-derived predictions. 
Furthermore, it also appears that LiDAR data can be used in place of, or to supplement, 
field-based height measurements. 
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9.1 Introduction 

Very little research had been undertaken, until recently, into the application of remote 

sensing to forest management in the UK. Apart from conventional aerial photography, 

there are no examples nationally in the UK of remote sensing technology being applied 

to assist forest managers in decision-making. This is in stark contrast to countries such 

as Sweden, Finland, Norway and the U.S.A, where medium-resolution optical satellite 

data such as Landsat TM and/or SPOT images are routinely used to map forest areas 

and to provide forest stock estimates. Moreover, in Norway, with the assistance of 

government subsidies, LiDAR data are beginning to be used extensively to provide 

detailed forest estimates at stand level (Naesset et al. 2005). 

This thesis has sought to evaluate the potential in UK upland conifer plantations of 

utilising some of the most promising commercially available, remotely-sensed data to 

provide estimates of forest variables at a range of scales. Results in preceding chapters 

have shown that LiDAR data can be used effectively in dense upland conifer plantations 

both to provide estimates of height and volume and to identify plantation species and 

species dominance in plantation mixtures. Additionally, these estimates have proved to 

be at least as accurate as conventional field measurement techniques. Canopy structure 

and tree species can also be mapped at compartment level, by using laser height 

distribution measures and/or spectral information recorded in the near infrared. Optical 

satellite data, which provide a cheaper alternative to LiDAR data, are able to provide 

estimates of forest height up to the point of canopy closure (10 m), which can be used to 

monitor the success of plantation establishment. 

The discussion which follows is divided into two sections: firstly, the results of this 

thesis are compared with other research and secondly, these results are discussed to 

assess practical applications that would provide forest managers with up-to-date 

information on forest resources. Three potential applications are introduced that use 

data and/or techniques developed in this research. The first uses LiDAR-derived height 

and crown measures to improve forest compartment maps. 
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In the second LiDAR-derived top height is used to make yield class estimates from the 
revised forest compartment maps, which are compared with existing FC yield class 
predictions. The third uses the Landsat ETM+ height model and applies this to a time-
series of Landsat TM and ETM+ scenes, to monitor forest growth and establishment. 
The chapter concludes by discussing potential future advances for remote sensing 
systems and how they could assist to meet information requirements for forest 
management. 

9.2 Comparisons with related research 

9.2.1 Accuracy of LiDAR measurements under the forest canopy 

If laser canopy heights are to provide accurate measurements of canopy height and, 

through its allometric relationship with height to forest volume, a key requirement is 

adequate characterisation of the ground surface. Since tree densities in upland conifer 

plantations commonly exceed 2,500 trees/ha, a major concern was that the density of 

the forest canopy would restrict the distance the laser pulse penetrated into the lower 

canopy, thereby leading to height being underestimated. While results show that the 

percentage of returns reaching the ground surface decreases to about 5% after canopy 

closure (a canopy height of 10 to 15 m), the calculated ground height is still very 

accurate (± 0.46 m). This level of accuracy compares favourably with two studies that 

have been conducted in more open conifer-dominated or semi-natural forests. In the 

first, Kraus and Pfeifer (1998), using an Optech A L T M 1020 laser scanner at 3 

pulsesW, reported an RMS error in a laser-derived Digital Terrain Model (DTM) of 

0.57 m in a sloping forested area ranging from 3° to 34°. Similar levels of error were 

also noted in the second study by Reutebuch et al. (2003) in which the data were 

acquired by helicopter, at a density of 4 pulses/m^. Over the range of forest conditions 

investigated, vertical error (z) was highest for uncut forest stands at 0.31 m, decreasing 

to 0.16 m for clearcut sites. Error margins for the clearcut site are comparable to those 

reported for flat hard surfaces by Baltsavias (1999a), Pereira and Janssen (1999) and 

Huising and Pereira (1998). In this research results suggest that even though the tree 

density restricts the penetration of the laser, there are still an adequate number of returns 

at 2 returns/m^ to generate the DTM. Furthermore, once the laser penetrates the canopy 

it is more likely to reach the ground surface, because of the lack of understorey 
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vegetation. Errors in the DTM are expected to be higher in species mixtures dominated 
by Sitka spruce (illustrated in Figures 9.1 and 9.2: note figures taken from Chapter 5). 
In these areas the laser points that reach the ground are clustered rather than irregularly 
distributed, due to the spatial arrangement of the forest canopy, which may well 
decrease the accuracy of the interpolated ground surface. 
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Figure 9.1a Photograph of a 
structured Sitka 
spruce/lodgepole pine 
mixture. 

Figure 9.1b 3D plot showing tree locations, LiDAR 
first return and classified ground returns for an 20 x 20 
m square sample plot located in a structured Sitka 
spruce/lodgepole pine mixture. 
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Figure 9.2a Photograph of a 
pure Sitka spruce crop. 

Figure 9.2b 3D plot showing tree locations, LiDAR 
first return and classified ground returns for an 8 m 
circular sample plot located in a pure Sitka spruce 
crop. 
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Results show that increasing the number of returns from 1 to 8 retums/m^ did not lead 
to a reduction in overall canopy height error (i.e. combined DTM and DCHM errors). 
Therefore, in order to improve DTMs in species mixtures, it may be necessary to further 
reduce the laser scan angle, so that the sensor's view of ground is much narrower. This 
would increase the probability that a laser pulse penetrates to the ground surface. 
Additionally canopy penetration may be improved by lowering the flying height, thus 
reducing the laser's footprint size (i.e. a reduction in laser beam divergence). There is, 
however, a cost implication associated with this strategy, as more flight lines would be 
needed to provide the same area of coverage. 

Most LiDAR research reports a combined measurement error that includes height 

errors, in both the DTM and DCHM (e.g. Naesset 1997b and Means et al. 1999). A key 

finding of this research is that separating the two surfaces is beneficial, as this provides 

an understanding of how forest canopy development affects the way in which the laser 

interacts with the ground and canopy surfaces. As forest canopy height increases and 

closes, laser height distribution changes, so that proportionally more returns are 

reflected from the upper canopy than from the lower canopy. Results in Chapter 5 show 

that under-estimates in laser canopy height for young open canopied crops (i.e <10 m in 

height) are similar to those for closed canopies (± 1.4 m). At this stage, in young crops, 

the maximum laser height is less accurate than can be achieved using field-based height 

measurement methods (expected to be about ± 0.5 m). However, since the 

underestimation in young crops is systematic, it is possible that, by applying a 

regression equation derived from field height measurements, this error is reduced to 

below 0.5 m. Other researchers approach this issue by stratifying the forest by growth 

quality, with each stratum taken to represent a different laser point distribution. For 

example, Naesset (2002) and Naesset and 0kland (2002), in semi-natural mixed species 

plantations, divided forest areas into three growth stages, young forest, mature forest, 

mature forest with good growth, developing separate predictive models for each. 

However, the U.K simple management regime means that the majority of plantations 

are even-aged, planted at a high tree density and comprise single species or 

combinations of different conifer species. This leads to less variation in laser point 

distributions and penetration rate, as the forest canopy is relatively homogeneous in 
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terms of shape, density and coverage. This homogeneity means that, provided system 
parameters (i.e. LiDAR system, laser point density, scan angle and sensor altitude) are 
constant between surveys, then the LiDAR response and therefore accuracy should be 
consistent within similarly managed conifer forests. 

9.2.2 Forest estimates from LiDAR data 

This research concurs with the results of other studies, which have shown that the 

accuracy of LiDAR-derived height, after calibration to field height measurements, is 

comparable to that of manual field survey methods (Holmgren 2003; Hyyppa et al. 

2000; Naesset 1997b; Persson et al. 2002). It showed a strong relationship between 

mean top height and laser heights above the 80'"̂  percentile; within this range little 

difi'erence was observed between the percentiles, with R^ of < 0.99 and RMS error < 

0.79 m. This indicates that between the percentiles there are only minor differences in 

the distance the laser penetrates the canopy, which reflects the density and homogeneity 

of the forest canopy. Similar relationships have also been recorded in Naesset (1997b) 

and Naesset and Okland (2002). Figures 9.3 and 9.4 show a comparison of top height 

predictions from this research against the model predictions obtained by Naesset (2002). 
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Although the relationships are similar to Naesset's (2002) study, there are key 
differences in the way predictions are made; these differences can be linked to 
differences in forest structure. For example, Naesset (2002) generated separate 
regression equations for each stratum, used more than one predictor to estimate top 
height (i.e. coefficient of variation, last pulse percentiles and multiple first pulse 
percentiles) and summarised estimates at stand level, rather than plot level. Other laser-
derived variables, apart from percentile heights, are also widely used in the prediction of 
volume or tree density (Holmgren 2003; Means et al. 1999; Popescu et al. 2002). In UK 
upland conifer plantations it appears that models based on a single predictor (e.g. the 
99"̂  laser height percentile) can be used to predict top height, which in turn, by using it 
as an input into the PC's yield model, can be used to provide volume estimates. The use 
of an established model, which has been developed specifically for different UK conifer 
species, means there is less reliance on LiDAR data to provide the volume estimate. 
However, the validation data highlight the fact that the usefulness of current yield class 
models is limited when crops do not develop in a uniform way (e.g. have higher than 
average levels of mortality or contain a mixture of tree species). In these areas it is 
difficult to make accurate volume predictions based on top height information alone. 
Tree density is one variable that is difficult to estimate using LiDAR; even though the 

of 0.72 suggests that the model is able to predict tree density reasonably accurately, 
the RMS error is too high (434 trees/ha) to be useful for management purposes. The 
root cause is that, once the canopy has established and closed, the tree density still 
remains high through to the end of the forest rotation. Furthermore, trees tend to die 
standing and the crowns of surrounding trees fill any gaps created. 

However, LiDAR-derived crown density measures (coefficient of variation and 

skewness) and percentage of ground returns are sensitive to changes in canopy 

structure. So, if relationships developed at the plot level scale (i.e. 0.02 ha) were 

converted to a raster layer, with a cell resolution equivalent to the plot level field 

samples, these areas could be identified and mapped. This information could be 

summarised to provide up-dated estimates at stand level, used to redefine new stand 

boundaries or further stratify stands into more homogeneous units (demonstrated in 

section 9.2). This approach has also been advocated by Naesset (2002), Holmgren 

(2003) and Holmgren and Jonsson (2004) for providing estimates of tree height, basal 
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area and volume at stand level. Naesset (2005) makes the point that, to extrapolate the 
estimations to cover a wider area, it is important that training datasets are used to 
provide a representative sample of the range of forest types likely to be encountered. 

Additionally, other studies have noted that it is important to consider the possible 

effects on accuracy of forest height estimations caused by variations in (i) the laser 

sampling density (Naesset 2002) (ii) laser scan angle, which affects the height of 

different laser height percentiles (Holmgren 2003), and (iii) laser footprint size, which 

varies according to range from the sensor (Naesset 2004; Nilsson 1996). Consequently, 

these factors are important if LiDAR-derived estimates were to be expanded from a 

local scale to a larger regional scale. 

(i) Laser sampling density 

Indications from this research (Figure 5.13) show that, for young open canopied forest, 

the accuracy of raw LiDAR height estimates increases (to within I m of field 

measurements) as the laser sampling density increases from 2 to 8 retums/m^. 

However, this pattern is not as obvious in closed canopy conifer plantations. Overall, 

increasing the number of returns from 2 to 8/m^ does not resuh in a substantial increase 

in accuracy 

(ii) Laser scan angle 

In this study the effect of different laser scan angles on laser percentile height is 

expected to be minimal, due to the low scan angles used <10° in both LiDAR surveys 

and the high tree density (> 2,500 trees/ha). The small differences in RMS errors above 

the 80"̂  laser percentile also appear to confirm this is the case. 

(iii) Footprint size 

Any changes in footprint size will affect penetration of the laser through the forest 

canopy. In both surveys divergence of the laser was set at 0.2 mrad, which was 

equivalent to a 0.20 m laser footprint diameter on the ground for the Kielder study area 

and a 0.25 m footprint diameter in the Galloway study area. Since the topographic 

range over both areas is less than 110 m, the change in laser range on footprint diameter 

is negligible (approximately 0.01 m). 
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Overall, the results from this research show that LiDAR is able to provide a robust 
estimate of top height. Furthermore, because the canopy structure in Sitka spruce is 
similar between different forest sites (Figure 9.5), the same methodology adopted for 
the Kielder study area will also be applicable in the Galloway test area. It also appears 
that the relationship between field-measured top height and laser-derived top height is 
stable across different conifer species, if plot data recorded in pure crops and species 
mixtures are pooled. 
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Figure 9.5 First pulse distribution for a.) Pure Sitka spruce Kielder 
study area, N.E England b.) Pure Sitka spruce Galloway, S.W. 
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This is clear from Figure 9.6, which shows predicted top height for the Kielder and 
Galloway study areas. Here, the top height prediction for the Galloway dataset was 
generated using additional LiDAR areas and a further 112 field plots. These plots also 
cover a range of species, including pure Sitka spruce and mixtures of Sitka spruce and 
lodgepole pine. 
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Figure 9.6 Top height against laser-derived top height for Kielder and 
Galloway study areas (n = 202 sample plots). 

The line of best fit used to predict dominant height from the 99"̂  percentile height, 

derived using least-squares, has an intercept of .089 m, with an RMS error of 1.2 m and 

i?^ = 0.98. These results open up the potential to develop a standard top height equation 

for both pure crops and plantation mixtures, which could be applied to any new LiDAR 

acquisition. If volume is estimated using the PC's yield model, with LiDAR-derived 

top height, it is then important to match the appropriate yield model with the correct 

conifer species. This is not an issue for single species stands because stand boundary 

and species information held in the GIS identify these areas. However, the situation 
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becomes more complex when stands contain a combination of species. In these areas 
the methods developed in Chapter 7 for identifying species' dominance assist in 
mapping the different components. 

9.2.3 Mapping plantation species using LiDAR 

Results presented in Chapter 7 show that it is possible to identify different conifer 

species and areas of anomalous growth at stand level. Although the method was only 

applied over a small area, in this research, results strongly suggest that crown density 

measures could be transferred successfully to other UK conifer plantations. In relative 

terms, there are differences in spectral response in the near infrared between closed 

canopy Sitka spruce and lodgepole pine; but a classification based on intensity is still 

potentially problematic. A number of factors may affect the strength of the near 

infrared response, leading to uncertainty that response will be consistent between 

LiDAR surveys, systems or forest sites. Each area may therefore need to be calibrated 

separately for intensity information to be used. 

It is encouraging to note that Holmgren and Persson (2003) located and identified 

individual conifer species (Scots pine {Pinus sylvestris) and Norway spruce {Picea 

abies)) in a mixed species forest with low tree densities (280 to 1,430 trees/ha: 

calculated from Persson et al. 2002), using LiDAR intensity data without applying any 

form of calibration. The narrow laser scan angle used (10°), low flying height of the 

sensor (130 m) and small range in topography of the site (20 m) probably contributed to 

the result, therefore any variation in intensity values, introduced by changes in laser 

path length, would have been minimal. 

In upland areas, a greater range of topography is expected, but in these areas it is useful 

to compare LiDAR near infrared response with a radiometrically-calibrated source. In 

this context, satellite data that have spectral bands in the near infrared (SPOT, Landsat 

TM, IKONOS and Quickbird) offer a way of checking the radiometric consistency of 

LiDAR response. Additionally, any spectral data with a spatial resolution of 

approximately 10 m could also be integrated into the classification by re-processing 

LiDAR variables to the same spatial dimension. This additional spectral information 

may well improve the accuracy of the identification process. However, even without 
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spectral data, the other LiDAR measures, derived from laser height distributions, can be 
used as a means of identifying and mapping species dominance. These measures are 
particularly well suited to identifying areas of wind damage, anomalous growth and 
forest gaps. When all this information is combined, the three components necessary to 
make a volume production forecast are assembled, namely (i) the area and proportion of 
each conifer species, (ii) volume for the dilTerent species, derived using the top height 
information and applying the appropriate F C yield model (iii) the stocked area, through 
eliminating areas such as wind damage and gaps. This process is demonstrated, using a 
sample dataset, in section 9.3. 

9.2.4 Forest height estimates from satellite data 

In managed forest plantations the biophysical and structural variables change in a 

predictable way over the forest growth cycle, so that reflectance is indirectly a function 

of these forest variables. The main mechanism controlling reflectance in all Landsat 

ETM+ and IKONOS bands appears to be the amount of understorey vegetation visible 

to the sensor and shadow, as the forest canopy closes (Danson and Curran 1993; 

Franklin 1986; Nilson and Peterson 1994; Donoghue et al. 2004; Donoghue & Watt 

2005; Puhr & Donoghue 2000). During this early growth phase satellite data can be 

used to estimate forest variables. It should be noted that past research has identified a 

number of factors that can affect radiance values recorded by the sensor, such as 

localised atmospheric haze (Spanner et al. 1990), topographic shadowing (observed in 

this study) and silvicultural operations such as thinning (Nilson et al. 2001). All of 

these factors can be accounted for, if needed. For example, atmospheric effects are 

minimised if cloud-free imagery and bands with longer wavelengths are used; 

topographic corrections can be applied to off-nadir data if a DTM is available; and, 

using the PC's CIS, any areas that have been thinned could be identified and masked 

out. 

Results from this research show that forest height estimates can be derived over large 

areas from a range of satellite data, i.e. Landsat ETM+ or IKONOS, using a range of 

optical wavelengths. Additionally, results suggest that to parameterise reflectance-

driven models only a small number of field samples are required. These findings also 

concur with other research that has used SPOT and Landsat data to estimate height, 
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volume and basal area in other upland conifer plantations in the UK (Donoghue et al. 
2004; Donoghue & Watt, 2005; Puhr & Donoghue 2000; Watt 2002). A common 
theme found in all these studies is that the relationship between image data and a 
particular forest variable is consistent between forest areas and sensors (see Figures 9.7a 
to d). For height, the strongest relationships are consistently observed in spectral bands 
located in the green, red {R^ > 0.70) and shortwave infrared (R^ >0.80) wavelengths. 
Figure 9.7 a to d shows the relationship between mean height and green spectral 
wavelength for IKONOS, SPOT 4 HRVIR and Landsat ETM+ between two forest 
areas, one located in Kielder Forest District, England and the other in Galloway Forest 
District, Scotland. 
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Figure 9.7a Mean height predicted from 
SPOT 4 HRVIR green band DN values using 
field plot data: Galloway dataset 2002: 
Source: Donoghue et al. (2004). 

Figure 9.7b Mean height predicted from 
Landsat ETM+ green band DN values using 
field plot data: Galloway dataset 2002. 
Source: Donoghue et al. (2004). 
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Figure 9.7c Mean height predicted from 
Landsat ETM+ green band DN values using 
field plot data: Kielder dataset 2003. This 
study. 

Figure 9.7d Mean height predicted from 
IKONOS green band DN values using field 
plot data: Kielder dataset 2003. This study. 
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Although the satellite data used in this example have not been radiometrically 
normalised to top of atmosphere reflectance, the different sensors all show a negative 
curvilinear relationship with mean height in the green spectral band. This suggests that 
the relationship in pure Sitka spruce stands is similar at a range of sensor resolutions 
and is also temporally and spatially stable. The RMS error of these models ranges from 
1.3 m to 3.6 m, but perhaps a more robust assessment is provided when the prediction is 
mapped spatially and compared with height measurements made using the LiDAR. In 
this study, the IKONOS and Landsat pixel-level estimates were within the range of (±2 
m), which is lower than can be achieved using field-based methods in forests of this 
height (±0.5 m). Nevertheless, the pixel-wise estimates from this research are better 
than reported in general literature made at stand level, which can be as high as ± 6 m 
(Hyyppa et al 2000). Accuracy could well be improved if pixel values were aggregated 
to stand level, using stand boundary information held in a GIS, assuming that the forest 
boundary is correctly mapped and does not contain substantial areas of non-forest. 
Further, if the image normalisation methods described in Hall et al. (1991) are applied 
to a time-series of images acquired over the same area, then the reflectance-driven 
height model can be applied either retrospectively or to future image acquisitions, 
thereby monitoring temporal changes in forest height in crops that are managed under 
similar silvicultural regimes (Donoghue et al. 2005). This is demonstrated in section 
9.3. By combining LiDAR survey with satellite observation it is clear that the need for 
accurate ground measurements, which are expensive to obtain, could be substantially 
reduced and so it would be possible to generate an empirical prediction of height, based 
largely on carefully targeted LiDAR survey. 

9.3 Application of remote sensing for forest management 

Remote sensing has not been widely applied in the UK to assist with forest 

management. Malthus et al. (2002) and Suarez et al. (2005) list a range of factors that 

have contributed to the slow uptake of remote sensing approaches. These include the 

cost and spatial resolution of satellite data, lack of expertise in remote sensing and, 

interestingly, lack of direct relationships between optical satellite data and forest 

parameters. Additionally, the expansion of the state-owned resource has been planned 

and controlled for the past 80 years. This has led to investment in mapping the forest 

resource, using aerial photography and GIS. If compared with current methods, remote 

sensing is able to provide valuable information, at a range of scales, to assist managers 
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to make more informed resource management decisions. 

Tiiree applications that illustrate this are presented in the next section. These are based 

on data and methods used in this thesis or as part of the ForestSAFE project. In the first 

example, using data over Kielder Forest, the LiDAR-derived measures of forest 

structure are used to identify areas of wind damage and variations in crop growth. In 

the second, LiDAR-derived top height is used to calculate an estimate of yield class, 

which in turn is compared with the PC's yield class estimates held in the GIS. The third 

example looks at the larger scale application of monitoring plantation establishment in 

Galloway forest district. The first two examples use an image segmentation routine to 

further stratify forest compartments; this is used operationally in Sweden for mapping 

forest boundaries. The third example uses the method developed to create the 

reflectance-based height model for Kielder forest; this is applied to Landsat T M and 

ETM+ data acquired over Galloway Forest District. 

9.3.1 Using LiDAR-derived height and crown density measures to improve forest 

compartment maps 

Figure 9.8 shows a 1: 10 000 aerial photograph of a forest area, approximately 100 

hectares in size, located in Kielder Forest District, with the FC's forest compartment 

boundaries overlaid. For each area the GIS also holds information on tree species, tree 

density and yield class. In this example, the areas of Norway and Sitka spruce are 

mapped, but areas of internal and external wind damage are not mapped. Figure 9.9 

shows a composite image generated using the three laser distribution measures derived 

from the L iDAR point cloud and gridded to a 4 m resolution. Each display band 

represents a different measure, with the percentage o f ground returns projected in blue, 

mean top height in green and the coefficient of variation in red. The associated legend 

roughly divides the area into a series of classes. Without additional information it is 

probable that some of the classes would not be properly differentiated (for example, 

wind-damaged areas and areas of closing canopy). However, the irregular shape and 

spatial distribution of wind-damaged areas suggests this would be unlikely. As a check, 

spectral data from aerial photography'*^, IKONOS or Quickbird could be substituted for 

one of the LiDAR measures to assist in the classification. 

The aerial photography would need to be re-sampled to match the spatial resolution of the LiDAR-
derived measures. 



Chapter 9: Discussion 
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Figure 9.8 1:10 000 aerial photograph with existing forest compartment 
boundaries overlaid. 

(i) 

Figure 9.9 LiDAR composite image. Display bands. Red: Coefficient of 
variation. Green: LiDAR-derived top height. Blue: Percent ground 
returns. 
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In addition to providing lieigiit information, the L iDAR composite also highlights 
features that are not easily identified on the aerial photograph, in particular areas of 
small internal wind damage that are masked by shadow. While a pre-harvest inventory 
may identify some of the larger wind-damaged areas, it is likely that some would 
remain undetected. Identification of these additional areas would assist in determining 
the stocked area, which forms the basis of the production forecast. Small irregularities 
in GIS boundaries are also identified (as circled). 

However, before making the production forecast, the stocked and non-stocked areas 

need to be mapped. In the UK this is done manually, by digitising around each area. 

Alternatively the delineation o f these areas can be achieved by using an image 

segmentation method. Image segmentation works by dividing the image into spatially 

continuous and homogeneous regions (MSkela and Pekkarinen 2001). There are a 

number o f segmentation routines available, but in this research the "t-ratio 

segmentation" method developed by Hagner was used (Hagner 1990). This is a type o f 

region-growing algorithm, where spatially adjacent regions are merged i f they cannot be 

separated with a given certainty. Similarity between segments is identified by means of 

the user-defined t-ratio value. The process is iterative, with the most similar regions 

merged first. Figure 9.10 shows the result of segmentation performed on the composite 

LiDAR image, overlaid on the 1: 10 000 aerial photograph. The segmentation is further 

refined by manually classifying each segment, in a GIS, into wind damaged, non-

stocked and forest areas. 
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Figure 9.10 Segmented L iDAR measures classified and overlaid on the 
1:10 OOP aerial photograph. 

The results show that segmentation is able to provide an efficient method of mapping 

these areas. When compared with the PC's compartment boundaries, the classified 

segments provide a more accurate representation of the area of wind damage and forest 

gaps. 

9.3.2 Using LiDAR-derived top height to make yield class estimates from revised 

forest compartment maps 

The second example uses the outputs from section 9.2.1 to provide a revised estimate of 

yield class'* .̂ A five-step process (Figure 9.11) can be followed to create a yield class 

estimate from revised forest compartment maps. In step 1, the segmented areas 

generated in section 9.2.1. are used as a base map In step 2, each forest segment is 

allocated a mean top height value extracted from the LiDAR composite image. In Step 

3, the FC sub-compartment GIS is intersected with each segment, to provide 

information on species, tree density and yield class. In step 4, the updated top height 

Yield class is a measure of forest productivity for single-species, even-aged plantations. It is derived 
from empirical models developed from extensive ground-based forest mensuration as is expressed in 
terms of annual volume increment (m'/ha yr). 
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and forest attribute data are entered into the FC yield class models, to re-calculate the 
yield class for each segment. Lastly, in step 5 the revised estimates are compared with 
current yield class estimates, held in the FC's GIS. 

2. Top height 
measurement from 
LiDAR 

1. Segmented 
image: Top heights 
values given new 
segments 

3. FC sub-compartment GIS 
used to provide species, planting 
year, tree stocking data 

4. Yield class 
calculated from 
FC models for 
each segment 

5. Map of yield class 
F C Yield class 
estimates compared 

Figure 9.11 Processing steps used to estimate yield class. 

Figure 9.12 shows the difference between that derived from LiDAR and the FC in terms 

of over- and under-estimations o f yield class. The legend is divided into over- and 

under-estimates of yield class. An under-estimation occurs when the FC yield class is 

lower than the LiDAR estimate, with the opposite true of an over-estimation. The white 

areas represent small differences in growth rate e.g. ± 2 m^/ha/yr, which is acceptable 

for forest management purposes. However, errors greater than this, i f carried through a 

typical rotation length of 60 years, would exceed 15% of the average volume/ha. For 

example, i f the yield class is estimated to be 12 mVha/yr the total expected yield would 

be 720 mVha. However, i f the yield class were underestimated by 4 m^/ha/yr, the total 

yield would be 480 mVha (i.e. 60 x 8 m^/ha/yr): an underestimation of 33%. 
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Figure 9.12 Forest compartment classified by yield class difference. 

This simple analysis shows that LiDAR data, coupled with segmentation, enables more 

accurate mapping and stratification of forest areas than current methods based on 

ground survey and aerial photography. This technology could be used by foresters to 

identify areas of anomalous growth, leading to more precise production forecasts. 

9.3.3 Height model applied to a time-series of Landsat T M / E T M + to monitor forest 

growth and establishment. 

The third application uses a time-series of Landsat T M and ETM+ scenes over 

Galloway Forest District. The methodology uses three images, acquired at 

approximately five-year intervals from 1989 through to 2001, to track changes in forest 

management and forest growth. The 2001 Landsat ETM+ is used as a base image, to 

which the other images are radiometrically normalised. The method, as described in 

Donoghue et al. (2005), uses the normalisation technique developed by Hall et al. 
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(1991), after which the image data appear as i f they have been imaged under the same 
atmospheric and irradiance conditions. Height predictions are made by relating field 
height measurements, collected in 2002, to the 2001 Landsat ETM+ SWIR band (band 
7). Applying the same height equation retrospectively to earlier images creates a 
quantitative change image. In this example the SWIR band (band 7) is used from each 
image. Figure 9.12 shows an example of the image time-series over the same area and 
the processed change/height image. The change image can be used to identify areas of 
change (represented by primary colours), such as clearfelled (red or yellow colours) or 
replanted areas (dark blue to light blue colours). Also apparent are areas of no change, 
such as moorland or closed canopy forest (identified as dull colours). 

Overlaid on the change image (Figure 9.13) are the FC forest boundaries (White 

polygons) and the Woodland Grant Scheme (WGS) boundaries (Green polygons). 

WGS plantings are established using government grant funding, so there is a need to 

ensure that these plantings comply with the terms and conditions of the grant. For 

example, in the UK landowners who wish to receive a grant under the WGS must 

establish conifer plantations at a minimum density of 2,250 trees/ha and ensure the crop 

is maintained for a 10 year period (WGS 2003). 

The example shows that changes in forest management can be monitored over large 

areas by integrating time series images. This, coupled with the height model, allows 

changes in forest height to be monitored up to the point of canopy closure (as shown by 

the graph in Figure 9.13). In terms of applications, the change/height image could be 

used to monitor large-scale changes in forest resources such as wind damage or 

harvesting and to ensure compliance with woodland establishment grants. 
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Figure 9.13 Example of forest change image processed to provide temporal height 
estimates 

Using medium resolution satellite imagery to monitor forest growth and establishment 

offers a range of advantages. These include the ability to survey extensive forested 
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areas using a single image, the instantaneous nature and replicability of the survey, the 
fact that each image requires very little computer processing and the simplicity of the 
predictive models, which are easily understood. Furthermore, the predictions do not 
require a large ground survey effort and an operational system would not have to rely on 
a single source o f image data (i.e. SPOT, Landsat, IRS, Quickbird or IKONOS could be 
used). I f implemented operationally, cost per unit area of a height map derived from 
satellite imagery could be less than £0.01 per hectare (calculation based on the current 
cost of Landsat T M data). 

9.4 Further applications 

In addition to the three examples focussed on forest estimates, it is also possible to use 

the methods and remote sensing data presented in this thesis for other purposes. Two 

potential applications are discussed. 

(i) Integrated catchment management planning 

The time-series/height change map provides a means of monitoring afforestation levels 

in upland river catchments. According to current EU Water Framework Directive 

(WFD) guidelines adapted for the UK, catchments over 300 m should not contain 

greater than 30% forest cover (European Parliament 2000). Since predictions from 

optical data saturate, once the forest canopy has closed, it is relatively easy to identify 

open and closed canopy areas, within a river catchment, using regression methods 

adopted in this thesis (see Figure 9.13). Such canopy closure maps can easily be 

integrated into a GIS system, to provide forest and environmental managers with a tool 

enabling accurate and rapid identification of afforestation levels in river basins. This is 

particularly important in areas o f acid sensitivity, such as Galloway, south-west 

Scotland, where conifer afforestation may act to exacerbate acid levels. 

(ii) Model validation 

One of the key strengths o f LiDAR is its ability to provide information on forest height 

and forest canopy characteristics. A number of studies, including this research, have 

shown that tree height and volume can be estimated with the same level of accuracy as 

field-based measurements (Holmgren 2003; Hyyppa et al. 2000; Naesset 1997; Persson 
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et al. 2002). Therefore, there is considerable potential to use LiDAR both as a tool to 
validate predictions from models used to estimate volume and to use volume or height 
data to predict other variables (Nelson et al. 1984; Means et al. 1999; Naesset «& 0kland 
2002). One topical application would be the use of L iDAR to validate above-ground 
carbon estimates. For example, field measurements of stem volume or basal area are 
often used in models, to determine above-ground carbon content; these parameters are 
then related to satellite data (i.e. RADAR backscatter or reflectance). A widely reported 
weakness of current approaches, using optical or RADAR data, is insensitivity in 
estimates, once the forest canopy has formed (Patenaude et al. 2004; Wagner 2003). It 
is therefore possible that estimates relying on satellite-derived relationships might also 
contain error. The likelihood of this is increased i f models developed over relatively 
simple forests are extrapolated to areas containing more heterogeneity. In this context, 
because LiDAR data is able to penetrate the forest canopy layer and shows no apparent 
saturation, it could be used to provide independent verification of key parameters, like 
volume and height, and through this improve larger-scale estimations of above-ground 
carbon stocks. Additionally, considerable uncertainty still exists about estimates of 
C02-carbon fixation in conifer plantation forests. This is confounded by difficulties in 
estimating carbon stored in forest soil and litter. Many forests in upland Britain are 
planted on deep and shallow peatland and these soils can contribute to (i) poor growth 
leading to low yield, and (ii) an unstable root mat, leading to susceptibility to wind and 
snow damage (Cannell et al. 1993). LiDAR has the capability to identify areas of low 
yield and damage, with a high degree of precision. I f the carbon stock in standing 
timber is assessed without accounting for stocked area and the quality of the crop, it wi l l 
be considerably overestimated. 

9.5 Meeting forest management needs using remote sensing 

To manage forest resources effectively, forest planners require accurate and timely 

information on the growth and area of forests. It is clear that remote sensing can satisfy 

these requirements and provide information, to help meet the needs of forest planners. 

In this context, choice is not limited to sensors evaluated in this thesis and can be 

expanded to include RADAR or other optical systems such as hyperspectral optical 

data. Furthermore, there are advantages to be gained from combining these data as 

different sensors can provide complementary information on forest structure, which can 
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lead to more accurate forest estimates. For example, RADAR and optical data have 
been successfully combined to improve estimates of forest volumes in Sweden 
(Holmstrom and Fransson 2003). This type o f research highlights the advantages of 
combining optical data, which provides spatial and spectral information, with active 
sensors like RADAR or LiDAR which have the ability to provide both horizontal and 
vertical information on vegetation structure. In the future there wi l l be a demand for 
sensors capable of providing a range of measurements at different scales at a cost that is 
acceptable to the forest industry. 

(i) Forest management applications from this research 

The sensors investigated in this thesis cover a range of resolutions that can be used to 

provide forest estimates a compartment level through to the stand level. Small footprint 

airborne LiDAR is seen as offering detailed height estimates that can be used effectively 

to predict forest canopy height. Top height, which is a forest measurement often used to 

parameterise forest prediction models (i.e. stem volume models) can be estimated by 

selecting the relevant laser percentile height. In addition to height, laser intensity can be 

used to identify and map forest species. The level of detail in terms of separating mixed 

conifer plantations is better than any currently available satellite data. Laser height and 

intensity data can also be used to prove detailed stock maps by mapping out areas of 

wind damage, poor tree stocking, poor growth and other forest gaps. It is important 

however, to realise that LiDAR data is currently expensive and to justify its use the 

potential of the data must be maximised. Current practise favours the use of aerial 

photography as the data is widely available and it is a well established method of 

mapping forest areas and providing photogrammetrically-derived height. LiDAR, 

however, has the advantage of providing direct measurement of height unlike 

photogrammetric methods which require that the ground surface is visible. L iDAR is 

also capable of providing more accurate stocked area estimates as the laser is able to 

penetrate the forest canopy and unlike aerial photography is not affected by shadowing 

caused by cloud and sun angle. Shadowing makes it more difficult to identify forest 

gaps in densely planted forest. At a larger compartment/regional scale satellite data is 

able to provide a rapid overview of changes over forest areas. High resolution data such 

as Quickbird or IKONOS are able to provide sufficient detail to identify areas of wind 

damage, forest gaps and to differentiate different forest species. Medium resolution 
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data such as SPOT or Landsat provide a larger overview and a way of identifying broad 
scale forest changes, such as forest clearfells and larger areas of wind damage. This 
research has shown that the spectral information can be used to predict forest height up 
to the point of forest canopy closure (10 m). This offers a relatively inexpensive 
method of monitoring the development of forest crops up to the point of canopy closure. 
Additionally, i f a time series o f image data is available, then the same predictive models 
can be applied retrospectively to enable forest height development to be tracked through 
time. 

(ii) Advances in L iDAR systems 

Over the past 10 years there have been substantial advances in the capabilities of 

airborne LiDAR systems. It can be expected that the new generation of sensors wi l l 

produce higher pulse rates and operate at higher altitudes. Both attributes reduce the 

number of flight lines required to survey an area, which potentially reduces the cost of 

LiDAR survey. Recently two commercial full-waveform LiDAR systems the Optech 

A L T M 3100 and TopEye M K I I have emerged, enabling ful l digitisation of the laser 

pulse return. These systems can help to characterise the entire vertical profile of a forest 

canopy, which leads to the possibility of reconstructing forest structure in three 

dimensions. As laser technology continues to advance, it is possible that airborne 

LiDAR systems wi l l emerge, with multi-spectral capability similar to optical systems. 

Such a development would lead to enhanced use of L iDAR data for better identification 

of tree species and landuse classification. The advantage of a multi-spectral LiDAR 

over a LiDAR and optical multi-spectral scanner is that the resolution of observation 

would be same, and also each pulse would also have an elevation value associated with 

it. This information could potentially allow different vegetative components (i.e. 

needles and trunk) to be separated by height above the ground. As these new sensors 

become commercially available, the current cost of LiDAR surveys using older discrete-

return LiDARs should decrease, encouraging greater uptake. Furthermore, i f a satellite-

based LiDAR system is launched, with similar characteristics to the discontinued 

Vegetation Canopy LiDAR (VCL) programme, then low-cost wide-swath 

measurements of vegetation height and structure wi l l be possible (Blair et al. 2001). 
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(i i i) Advances in optical systems 
Currendy, airborne optical systems, such as digital cameras, provide the highest spatial 
resolution, while specialist instruments, such as the Compact Airborne Spectrographic 
Imager (CASI), provide data with the high spectral resolution. However, as the design 
of optical sensors improves, it is likely that airborne systems with these characteristics 
w i l l become standard. It is probable that new systems wi l l be developed, integrating 
other active sensors such as L iDAR or RADAR systems. Future improvements to 
space-borne optical sensors are also likely to include greater integration of sensors that 
allow simultaneous data acquisition (i.e. RADAR and optical sensor on the same 
platform). In the near future the spectral and spatial resolution of space-borne sensors 
w i l l continue to improve, to include multi-spectral sensors, which are capable o f 
measuring a wider range of spectral wavelengths. 
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10.1 Summary of thesis 
The objective of this thesis was to evaluate the potential of LiDAR, IKONOS and 

Landsat ETM+ data to provide estimates of forest variables, at a range of scales, in 

British upland conifer plantations. Results have shown that remote sensing can be used 

to improve forest resource management, by providing additional information. LiDAR 

data, in particular, provide accurate height information that can be easily integrated into 

existing models, to predict volume. Forest variability, wind damage and species 

composition can be identified and mapped, to provide up-to-date forest compartment 

maps. Optical satellite data can be used to estimate height, which provides a rapid tool 

for assessing the success of plantation establishment over large areas. Both methods 

demonstrate apparent repeatability and transferability to other forest areas. I f combined, 

these data and methods complement existing current forest management systems and 

provide the potential for targeting existing resources more efficiently. 

The following section summarises the research findings, in relation to the primary 

research aims, key scientific findings and practical forest applications and outlines 

potential areas for future research. 

10.2 Research findings 

Aim 1: assess the effect of canopy structure, topography and laser point density on the 

accuracy of measures extracted from LiDAR data in dense upland conifer plantations. 

Results indicated that, despite the dense nature of the forest canopy, sufficient laser 

pulses penetrated to the ground to generate an accurate DTM. Consequently, the main 

source of error in height estimation, made by the laser, was associated with the canopy 

surface, rather than with the ground surface. No evidence was found of LiDAR 

accuracy being affected by changes in topography, although the topographic range 

within the study area is limited (0 to 17°). The accuracy of laser height measurement 

over the forest improved as the point density increased. However i f the ground model is 

accurately defined, a point density of 2 retums/m^ is sufficient to measure canopy 

height. 
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Aim 2: assess the potential of L iDAR data to provide estimates of forest variables used 

in forest management (i.e. top height, volume and density) 

After calibration, LiDAR-derived top heights were found to be as accurate as field-

based measurements. Top height is accurately predicted using the appropriate 

percentile height (99'^ laser percentile; ^ =0.99 and RMSE = 0.56 m). Accuracy is not 

improved by including additional variables calculated from the laser height distribution. 

Further, since there is no statistically significant difference in the penetration of the 

forest canopy by first and last pulses, no additional information on canopy structure is 

gained by including the last pulse returns. 

Volume can be estimated by using LiDAR-derived top height (RMSE ~70m^/ha), 

although there are some inconsistencies between the LiDAR prediction and the current 

FC model. Further research is required to determine the cause of these inconsistencies. 

Despite these differences, LiDAR-derived top height is easily integrated with 

established PC models to provide volume estimations. Potentially, this approach, taking 

accurate height estimates from LiDAR and matching these with models specific to UK 

management regimes and tree species, derives benefits from both. Tree density was not 

accurately estimated using LiDAR data in this study using this particular LiDAR 

configuration. This is because the canopy structure remains fairly static through the 

forest rotation cycle, making any change in tree density difficult to detect using LiDAR 

flown at this point density. 

Results also strongly suggest that predictive equations, developed for top height over 

the Kielder study area, can be transferred to other UK conifer forests. Furthermore, the 

relationship between field-measured top height and laser-derived top height appears to 

be stable across different conifer species. 

Aim 3: assess the potential of LiDAR-derived crown density variables and near infrared 

data to identify plantation species and areas of anomalous growth 

Field measurements and laboratory spectral measurement of conifer needles show that 

the physical canopy structure and spectral characteristics of Sitka spruce and lodgepole 

pine are different. Consequently, LiDAR data could be used to differentiate between 
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species at stand level. Additionally, where mixed conifer species have been planted, the 

dominant species can be identified. Two methods were developed: the first generates 

summary measures based on the laser height distribution and the second summarises the 

near infrared intensity data by dividing the laser returns by height percentiles. When the 

different measures are mapped, detailed maps of forest stands can be produced. These 

enable classification of areas by species, identificadon of anomalous growth areas and 

detection of wind damage. 

The methods developed are transferable to other similarly managed conifer forests. 

However, i f L iDAR near infrared intensity data are used, a secondary data source is 

required to validate the radiometric consistency; satellite or airborne optical image data, 

recording radiance in the near infrared, would be appropriate. 

Aim 4: examine the potential of Landsat ETM+ and IKONOS sensors for providing 

forest height estimates in upland conifer plantations. 

Landsat ETM+ and IKONOS data can provide height estimates up to the point of 

canopy closure, which in UK conifer forests is about 10 m. This is because, at the scale 

of observation once the canopy has closed, there is little change in the canopy's spectral 

response. Generalised linear models allow current relationships to be handled well and 

avoid problems associated with other methods. Encouragingly, little difference is 

observed in the predictive ability of the height models as the spatial resolution increases 

from 4 m to 30 m. Landsat or SPOT data is cheaper per unit area than the IKONOS 

data. The higher spatial resolution of the IKONOS data does, however, enable easier 

identification of areas of high natural regeneration or incomplete stocking. I f the 

satellite data are collected at high off-nadir angles (probably above >20°) and over areas 

of undulating topography, corrections wi l l need to be applied to normalise the image 

data for illumination differences caused by topographic shadowing. 

Results achieved over the Kielder area concur with findings from previous research 

conducted in upland conifer plantations, located in Galloway Forest District. This 

indicates that the methods and potential height prediction models are transferable 

between regions. Furthermore, since the height-reflectance relationship is stable 

between sensors and spectral bands, an operational system could use high- or low-

resolution satellite data, obtained from a range of sensors. 
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Aim 5: assess the potential of L iDAR for providing additional height samples and 
vaHdating forest height estimates derived from Landsat ETM+ and IKONOS models. 
LiDAR-derived height is as accurate as field-based measurements therefore reflectance-
based height estimates can be made using the L iDAR data. Results from this research 
show that only a small number of height samples are required to apply parameters to 
these models. A carefully targeted LiDAR survey, ranging from newly established 
plantations to closed-canopy plantations, could provide these measurements. Similarly, 
L iDAR could be used as means to validate these height predictions. 

10.3 Key scientific findings 

(i) Accuracy of small footprint LiDAR in dense conifer plantations 

Previous research has primarily focussed on evaluating commercially available small 

footprint LiDAR systems in relatively open semi-natural or boreal forests. Only one 

other study in the UK by Suarez et al (2005) has assessed the accuracy of LiDAR in 

densely planted coniferous plantations where tree densities exceed 2,500 trees/ha. Since 

a majority of the UK plantation resource is currently managed in this manner it is 

important to determine i f LiDAR can be used to provide accurate method of measuring 

height in this environment. The following provides a summary of the key findings from 

this thesis. 

• Small foot-print discrete laser systems operating at a pulse rate of 33,000 

returns/sec at a density of 2 retums/m^ penetrate the forest canopy to provide an 

accurate D T M . 

• The main source of error in the measurement of maximum height is associated 

with the forest canopy as the laser pulse tends to miss the tree apex and is 

returned from the lower canopy. 

• No evidence was found of LiDAR accuracy being affected by changes in 

topography, although the topographic range within the study area is limited (0 to 

17"). 

• The accuracy of laser height measurement over the forest improved as the point 

density increased. However i f the ground model is accurately defined, a point 

density of 2 returns/m^ is sufficient to measure canopy height. 
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(ii) Measurement of forest height, volume and tree density using small footprint L iDAR 

Certain forest variables that are of interest to forest managers for the purpose of 

resource planning can be derived from LiDAR. Principally, this thesis focused on the 

measurement of top height, stem volume and tree density. Key findings from this thesis 

include: 

• After calibration against field-measured height, LiDAR-derived top heights were 

found to be as accurate as field-based measurements. Top height is accurately 

predicted using the appropriate percentile height (99"^ laser percentile; =0.99 

and RMSE = 0.56 m). Accuracy is not improved by including additional 

variables calculated from the laser height distribution. Statistically there is no 

significant difference in the penetration of the forest canopy between first and 

last pulses. This means that no additional information on canopy structure is 

gained by including the last pulse returns. This finding differs from research 

conducted in less dense boreal or semi-natural forest types where often the 

metrics derived from the height distribution o f first and last pulse data are used 

to estimate forest estimates (Naesset 2002). 

• Stem volume can be estimated by using LiDAR-derived top height (RMSE 

~70mVha), although there are some inconsistencies between the LiDAR 

prediction and the current FC model. Further research is required to determine 

the cause of these inconsistencies. Despite these differences, LiDAR-derived 

top height is easily integrated with established FC models to provide volume 

estimations. Potentially, this approach, taking accurate height estimates from 

LiDAR and matching these with models specific to UK management regimes 

and tree species, derives benefits from both. Tree density was not accurately 

estimated using LiDAR data in this study using this particular LiDAR 

configuration. This is because the canopy structure remains fairly static through 

the forest rotation cycle, making any change in tree density difficult to detect 

using LiDAR flown at this point density. 
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• Results also strongly suggest that predictive equations, developed for top height 
over the Kielder study area, can be transferred to other UK conifer forests. 
Furthermore, the relationship between field-measured top height and laser-
derived top height appears to be stable across different conifer species. It should 
however be noted that further ground measurements are necessary to fully 
evaluate this hypothesis. 

(iii) The use of intensity data and canopy derived measures to identify conifer 

species. 

The LiDAR near infrared response from the forest canopy can be used to 

differentiate between tree species at stand level. Previous research by Holmgren & 

Persson (2003) has also shown this to be possible at a single tree level in mixed 

species plantings. The research in this thesis highlights the benefits of using both 

spectral and metrics derived from the first pulse height distribution, namely 

coefficient of variation (C,,), mean laser height (meanh), first pulse skewness 

(skewfp) percent ground returns (pczero) for identifying and mapping the 

distribution of tree species in mixed conifer stands at the stand level. Additional key 

findings from this thesis include. 

• The noise in the intensity data caused by variations in laser incidence angle 

and the targets composition can be reduced by dividing the laser returns by 

height percentiles so that only vegetative returns are considered. 

• I f the laser time tag information is available then it is possible to correct for 

variations in laser's incidence angle and path length. 

• Variation in intensity values are further decreased by aggregating and 

averaging intensity values to a larger spatial scale (say 5 m or 10 m). 

• Canopy density metrics derived from the first pulse laser distribution provide 

additional method of differentiating conifer species. In a plantation setting 

Sitka spruce and lodgepole pole have different laser height distributions with 

Sitka spruce producing a denser canopy than lodgepole pine. This is 

reflected in the laser height distribution. The most useful distribution 

measure for differentiating between species is coefficient of variation. 
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• Other measures such as skewness, mean laser height, and percent ground 
returns are effective for identify gaps and areas of wind damage. Mean laser 
height is also useful for identifying variations in height, which in turn 
provides an indication of crop performance. 

(iv) Potential o f Landsat ETM+ and IKONOS sensors for providing forest height 

estimates in upland conifer plantations. 

The results obtained in this thesis for predicting forest height from medium 

resolution sensors such as Landsat and SPOT broadly concur with other research 

conducted in conifer forests (Danson and Curran 1993; Franklin 1986; Nilson and 

Peterson 1994; Donoghue et al. 2004; Donoghue & Watt 2005; Puhr & Donoghue 

2000). It is important to note that the strength of relationships varies between 

studies as does the spectral band(s) selected. These differences in relationships can 

be caused by the structure of the forest canopy and by forest management practices, 

such as thinning. In contrast Britain's upland conifer plantations are densely planted 

with a simple management regime (no thinning or pruning), which causes the 

canopy to close at a young age. Therefore the main limitation of the method is that 

spectral response tends to decrease as the forest canopy closes; consequently 

predictions are only valid for the first part of the forest rotation. Original research 

conducted in this thesis evaluates the potential of IKONOS and compares a 

predictive model developed to estimate height against one derived from Landsat 

ETM+ data. Additionally, GLMs are introduced as an alternate regression 

technique for modelling these relations. Other key findings from this thesis include. 

• Landsat ETM+ and IKONOS data can provide height estimates up to the point 

of canopy closure, which in UK conifer forests is about 10 m. This is because, 

at the scale of observation once the canopy has closed, there is little change in 

the canopy's spectral response. Consequently, little difference is observed in the 

predictive ability of the height models as the spatial resolution increases from 4 

m to 30 m. 

• Generalised linear models are used as an alternative for modelling the 

relationship between height and reflectance. Unlike many regression methods 
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GLMs are able to handle curvilinear without the need for fitting more complex 
curves or applying transformations to the response and working on a 
transformed scale, an approach used in many studies that have used optical 
(Ahem et al. 1998; Hyyppa et al. 2000; Puhr and Dongohue 2000) or LiDAR 
data (Naesset 1997; Means et al. 1999; Nelson 1997; Holmgren et al. 2003). An 
approach which in many ways offers the best of both worlds, is that afforded by 
generalised linear models (GLMs). 

• There are two main differences between GLMs and general linear models: first, 

the response may have a non-normal distribution and second, the transformation 

applied to the response variable is selected by applying the appropriate link 

function (e.g. logarithmic) in the software. One key advantage of using a G L M 

is that predictions are generated and presented on the original measured scale of 

the response and so there is no need for back-transformation or bias corrections 

(Cox et al. in review). In this thesis the logarithmic link function was used, 

which thus instructs the software to fit a relationship on a logarithmic scale, but 

to report results on the scale of the original response variable. 

• Since the IKONOS can be collected at off-nadir angles corrections wi l l be 

necessary to normalise the image data for illumination differences caused by 

topographic shadowing prior to applying any reflectance-based model. 

• Results achieved in this thesis using medium resolution satellite data concur 

with findings from previous research conducted in upland conifer plantations. 

Indicating that the relationships and mechanisms controlling these relationships 

are stable across similarly managed forests. 

(v) Potential of L iDAR for providing additional height samples and validating 

forest height estimates derived from Landsat ETM+ and IKONOS models. 

A common issue with many empirically based models is the need to test the 

robustness of predictions against an independent data source. In forestry this 

usually means that additional field measurements must be collected, which is both 
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time-consuming and expensive. LiDAR data is seen as an alternate data source that 
can be used to validate height predictions over a larger and wider sample. 

Increasing the number of height samples using LiDAR from 28 to 410 did not 

improve the height prediction model substantially. 

The mode o f measurement and spatial coverage of L iDAR means that it can be 

used to provide supplementary data to validate estimates make using broader-

scale optical sensors. In this context it identifies areas with incomplete tree 

stocking or poor growth. 

10.4 Key forestry applications 

The sensors investigated in this thesis cover a range of resolutions that can be used to 

provide forest estimates a compartment level through to the stand level. Small footprint 

airborne LiDAR is seen as offering detailed height estimates that can be used effectively 

to predict forest canopy height at the stand level while optical data are able to provide 

broader estimates at the regional/compartment level. 

(i) L iDAR Applications 

Small footprint discrete LiDAR systems were originally developed to provide high 

quality D T M information. However, over the past 10 years a large body of research has 

also assessed the potential of these systems to make forest measurements, such as 

height, basal area, stem volume and tree density. Many of these studies have focused 

on forests that are not as densely planted as UK conifer plantations. The following 

section highlights particular applications from this thesis that are seen to be particularly 

relevant to UK forests that could be used operationally should the datasets become more 

readily available. 

• Top height, which is a forest measurement that can be estimated by selecting the 

relevant laser percentile height more accurately than field-based methods. This 

research also suggests that i f the ground surface is correctly identified then 

variables such as top height estimates are transferable to different forest areas 

under similar management regimes. 
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• Top height information can be used to parameterise existing stem volume 
models. The use of an established model, which has been developed specifically 
for different U K conifer species, means there is less reliance on LiDAR data to 
provide the volume estimate. However, the validation data used in this thesis 
highlight the fact that the usefulness of current yield class models is limited 
when crops do not develop in a uniform way (e.g. have higher than average 
levels of mortality or contain a mixture of tree species). In these areas it is 
difficult to make accurate volume predictions based on top height information 
alone. 

• Additional measures derived from the L iDAR height distribution such as 

Coefficient of variation (Cv), percent last pulse ground returns (pczero) and 

mean laser height (meanh) the can be used to identify areas of abnormal growth, 

gaps and wind damage. In turn this allows forest areas to be stratification and 

mapped to produce more accurate stand maps, either manually or by semi-

automated methods (i.e. using the t-ratio segmentation routine as described in 

Chapter 9). 

• In mixed conifer plantations laser near infrared intensity can be used to separate 

different species conifers. In this respect some of the LiDAR height measures 

also provide complementary information that assist with mapping these areas. It 

is worth noting that raw LiDAR intensity is sensitive to changes in topography 

and may require calibration to normalise for topographic effects. 

• It is important however, to realise that L iDAR data is currently expensive and to 

justify its use the potential of the data must be maximised. 

(ii) Potential applications using optical satellite data 

Optical satellite data obtained from platforms such as Landsat and SPOT is used 

routinely in Scandinavia and the US at a larger compartment/regional scale to provide a 

rapid overview of changes over expansive forest areas. In comparison less work has 
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been done to evaluate the operational use of high resolution datasets such as Quickbird 
or IKONOS. This thesis has evaluated both medium resolution and high resolution 
datasets to assess their potential to estimate forest height over densely planted forest 
such as those found in the UK. 

• Medium resolution data such as SPOT or Landsat provide a larger overview and 

a way of identifying broad scale forest changes, such as forest clearfells and 

larger areas of wind damage. This research has shown that the spectral 

information can be used to predict forest height up to the point of forest canopy 

closure (10 m). This offers a relatively inexpensive method of monitoring the 

development of forest crops up to the point of canopy closure. Additionally, i f a 

time series o f data is available the same predictive models can be applied 

retrospectively to enable forest height development to be tracked through time. 

• Height models of a similar form can also be applied to higher spatial resolution 

of IKONOS. Overall the improved spatial resolution allows better 

discrimination of areas showing abnormal growth characteristics. Again height 

predictions can only be made up to the point of canopy closure. 

10.5 Future research 

A number of areas warranting further research have been identified during this research. 

• Results from this research suggest that current FC yield models are accurate in 

homogeneous forest crops, but less accurate in crops that show growth variability. 

Since LiDAR can be used to estimate volume, it could be used to test the accuracy 

of FC's yield class models over a wider range of forest sites, silvicultural regimes, 

tree species and species mixtures. This would require additional field sampling, so 

that LiDAR-derived volumes could be compared with field-measured volumes. 

The outcome may enable refinements to current yield models. 

• This research has shown that LiDAR-derived top height is as accurate as field-

based measurement, at a laser pulse density of 2 retums/m^. I f the laser pulse 

density were reduced, substantial cost savings are possible, because o f the lower 

number of flight lines required. More research needs to be conducted in UK forests 

to assess whether this approach would adversely affect the accuracy of LiDAR-

derived estimates of height and volume. This would also require additional field 

226 



Chapter 10: Summary and Conclusions 

samples. Ideally, these should be distributed over a range of forest and topographic 
conditions. 

• Results from this research strongly suggest that LiDAR-derived predictions of top 

height can be extended to other UK conifer forests. However, more research is 

required to evaluate the stability of these estimates over other forest regions. This 

could be tested by analysing additional field and LiDAR datasets, collected by 

Forest Research in Aberfoyle Forest District, Scotland. I f the results are positive 

then it should be possible to establish a methodology for future L iDAR acquisitions 

and to establish generic equations for estimating top height and volume. 

• Results also showed that the intensity o f the LiDAR return is able to separate tree 

species. However, more research is required to establish a method for normalising 

laser intensity for topographic and scan angle effects. There is also a need to 

evaluate the stability of the near infrared response between sensors and other forest 

areas. 

• Tree density was not accurately estimated in this research, using LiDAR (± 434 

trees/ha). Although tree density was not estimated using the optical data, areas of 

high tree density were detected using IKONOS data. It possible that by integrating 

LiDAR-derived measures and spectral information from IKONOS a more accurate 

estimate of tree density could be obtained. 

• Further research is also required into what additional information can be derived 

from ful l waveform small footprint LiDAR systems. 

• Topographic shadowing was shown to affect height estimates from IKONOS data. 

More work needs to be undertaken, to evaluate normalisation routines, so these 

data can be used more widely. This is particularly important given that all of 

Britain's upland conifer forests are located on sloping terrain and that imagery 

suppliers appear reluctant to provide nadir-looking data, as it restricts sensor's 

swath width and increases the number of over-passes required to collect the data. 

10.6 Conclusions 

This thesis has established a working methodology, applicable across UK coniferous 

forest sites, for processing LiDAR data. This can be used to predict key forestry 

parameters and to identify and map conifer species. Transferable methods, using optical 

data, have also been developed, enabling foresters to rapidly appraise the success of 

forest establishment and to monitor compliance. 
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A p p e n d i c e s 

Appendix 4.0 Spatially registering field and LiDAR datasets in a 

GIS 

Before import into Stata the plot IDs for each sample plot need to be allocated to the 

laser points within each plot. This is a 4 step process as detailed below: 

1. L iDAR data imported into the GIS as an ASCII table and point theme generated 

using x,y coordinates. Figure 4.0 shows laser points over the study area. 

study area 

Plot boundaries " 
• laser points 

I I Forest compartments 

Non- forest 

Figure 4.0 Sample plot location 

2. Table 4.0 shows the laser point attribute table prior to the spatial join. Fields are 

Easting (x) Northing (y) Elevation (z) H normalised (point elevation values subtracted 

from the DTM) 
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Table 4.0 Laser point attribute table 

3. 

370981.94000 582090.50000 32G.25000 4.65 
370982.6G000 582096.56060 328.51000 6.94 
370983.84000 592096,44666 327.14000 5.57 
370984.94000 582690.31666 326.80000 5.23 
37098G.03000 582696.13666 324.9rio66 3.31 
370987.03000 582696.13666 325.71000 4.ii 
370987.84000 582696.13666 326.80000 5.26 
370988.19000 582689.56666 325.96606 4.57 
370987.19000 582689.56666 325.18000 3.85 
37098B. 44000 582689.56666 323.28000 1.95 
370985.0G000 582689.75666 326.63000 5.33 
370984.0G000 582089.88666 327.65000 \ 6.35 
370983.19000 582CB9.94666 327.00000 5.76 
370982.0G000 582696.66666 327.85000 6.55 
370981.28000 582096.66666 326.12000 4.69 
370979.1 GOOO 582688.94666 325.46666 3.97 
370980.00000 582689.66666 328.06000 \ 6.63 
370981.09000 582098.94666 327.78000 6.35 
370982.09000 582088.81666 326.73000 i 5.43 
370983.00000 582088.88666 328.64000 7.34 
370984.19000 582688.69666 327.06000 5.76 
370985.13000 582688.63666 327.03000 5.73 
37098G.59000 582688.31666 322.68000 1.35 
370987.50000 582688.31666 324.36666 3.63 
370988.41000 582688.25666 324.59000 3.26 
370989.09000 582688.56666 328.68000 7.35 
370989.97000 582088.44666 329.15000 
370990.31000 582687.75666 326.37000 4.90 
370989.31000 582687.8i666 327.10000 i 5.77 
370988.59000 582687.75666 325.266661 3.87 
370987.38000 582687.94666 326.80000 5.47 
37098G.G3000 582687.88666 324.72000 3.39 
370985.56000 582(iB7.94666 324.88000 3.58 
370984.34000 582088.19666 328.17000 i G.87 
370983.34000 582688.31666 329.15000 7.85 

Using geoprocessing wizard plot ID held for each field measured plot assigned 

to laser points (Figure 4.1) 
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Figure 4.1 Spatial data join using geoprocessing wizard. 

4. Table 4.1 shows the Laser point attribute table aflter to spatial join. Fields are: 

Plot ID taken from sample plot table, Easting (x) Northing (y) Elevation (z) H 

normalised (point elevation values subtracted from the DTM) 

v.vn-.-v pm 
10 370981 94000 582090 500IX) 326 25000 321 60 4 ^ 
10 370982.66000 58209056000 328,51000 321 57 694 
10 370983 84000 56209044800 327.14000 321.57 557 
10 370984 94000 562090.31000 ]26 90aB 321.57 523 
10 37tB86 03000 562090.13000 324.91000 321 60 331 
10 370987 03000 582090.13000 325,71000 321.60 
10 370987 SJnili] 582030.13000 326.80000 321,60 520 
10 37098819000 532089.56000 325 90000 321 33 4.57 
10 370987 19000 562069 56000 325.18000 321 33 385 
10 370986 44000 562069 50000 323 28000 321 33 195 
10 370386 06000 562069 7500! 326 63000 321 30 533 
10 37096408000 562069 88000 327 65000 321 30 635 
10 370983 1 8000 582069.94000 327 00000 321.x 570 
10 370982 06000 582090 00000 32785000 321X E.S5 
10 370981 28000 582090 000CO 32612000 321 43 4 69 
10 37097916000 582086 94000 325 4000 321 43 197 
10 370980 00000 562069 00000 323 06000 321 43 663 
10 370981 09000 582086.94000 327.78000 321.43 635 
10 370982 09000 582088.81000 326 73000 321 30 5 43 
10 370983 00X10 582088.38000 328.64000 321.30 734 
10 370984.19000 582088.69000 327.06000 321.30 576 
10 37D985 1 3000 582086 63000 327 03000 321.30 573 
10 370986.59000 592086 31000 32Z68000 321 33 1.35 
10 370967.50000 582088.31000 324 )M»0 321 33 303 
10 370988 41000 582088 25010 324.59000 321 33 326 
10 370969 09000 582088 5000] 326 86000 321 33 735 
10 370969 97000 582088 44000 329.15000 321.33 782 
10 370990 31000 582087.75000 326 370X1 321 47 4.90 
10 370989 31000 562067.81000 527 10000 321 33 577 
10 370988*̂ 9000 582067 75000 325.2Q00O 321 33 387 
10 370987 38000 582067.94000 326 30000 321 33 5 47 
10 370986 63000 582087.88000 324 72000 321 33 339 
10 370985 56000 582087 34000 324 98000 321.30 356 
10 370964 34000 582088.19000 J28 1 7000 321.30 667 
10 370983 34000 582088.31000 32315000 321.30 785 

Table 4 Laser pomt attribute table joined with plot data 
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Appendix 4.1 Processing in Stata to generate statistics at different 

spatial resolutions in LiDAR data 

Stata batch file 

* Image processing in Stata pjw dec 04 

* Version 1.0 purpose to taice lidar data into Stata, calculate stats and export 

* to image processing software 

* set spatial resolution by altering rounding 

gen long rx = round(x,2) 

gen long ry= round(y,2) 

* group X and y (Easting & Northing) then generate a grid value for each group 

egen grid = group( rx ry) 

* calculate statistics: maximum height 

egen maxh =max(h), by(grid) 

* calculate statistics: percent!leheights 

egen pclO =pctile(h), by (grid) p(10) 

* calculate statistics 

egen median = pctile(h), by(grid) p(50) 

* collapse and summarise dataset into grid size i.e. 2 m 

qui bysort rx ry (maxh): keep i f _n == 1 

* sort data by descending Northing and ascending Easting : Note minus is important 

gsort - ry rx 

* format values for export to ENVI - necessary to do this as ENVl cannot cope with . or 

*missing values 

format maxh %9.2f 

format pc l0%9.2f 

format median %9.2f 

* check geographic extent for outliers using a scatterplot- you may have a couple of 

* extra grid created on the edge of the dataset that need to be deleted 

scatter ry rx, scheme(leanl) 

* returns number of columns or samples in image 

qui tab rx 

ret l i 
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* returns number of row or lines in image 

qui tab ry 

ret l i 

*export to an ASCII format 

outfile maxh medianh sdh using "U:\PHD Dataset\STATA 

files\data\mixeaxENVI.raw", replace 

After this process the raw data is rounded to the desired grid spacing with all the 

calculated statistics held within the statistics package in a row format. Figure 4.2 

displays the spatial extent of 1 band of data (i.e. one of the statistics calculated). The 

next stage grids these data (same resolution as the rounding performed on the raw data) 

and exports it to ENVI to generate a multi-band image, each band represents a different 

statistic. 

581800 

581750 

581700 

581650H 

370350 370400 370450 370500 

rx 

Figure 4.2 LiDAR data resampled and summarised at 2 m grid. Note presence of outlier 

grid cells. 
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Appendix 4.2 Image processing in ENVI 

1. IKONOS Orthorectification 

The RFC (Rational Polynomial Coefficients or Rapid Positioning Coordinates) sensor 

model is used to orthorectify data from the IKONOS sensors. The RFC ortho-

rectification process combines several sets of input data to place each pixel in the 

correct ground location. The following inputs are required: the image to be rectified, the 

RFC coefficients, and elevation information. Furthermore, the offset between mean sea 

level and the gravitational potential surface known as the Geoid is required so the 

elevation can be correctly interpreted. Finally, i f the source image does not have 

approximate geolocation information available, the rough location of the image on the 

earth's surface must be computed to provide a location base needed. 

1. Select the following option: 

" From the main ENVI menu bar Orthorectification >Orthorectiiy IKONOS 

2. In the file selection dialog select the image to be orthorectified. Click Open. 

The input image must be linked to the RFC coefficients contained in an ancillary text 

file. These coefficients are required for the rational function expansion to convert 

ground coordinates into sensor coordinates. These coefficients are provided in an 

ancillary text. Once you select a file for input, an RFC coefficient filename consisting of 

the root name of the source image plus rpc.txt. 

After you select an input file, the Enter Orthorectification Parameters dialog appears 

(Figure 4.3). Designate the technique used for re-sampling by clicking the button next to 

the Image re-sampling label and selecting Nearest Neighbour, Bilinear, or Cubic 

Convolution. 
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•91 Enter Orthorect i f icat ian Parameters 

Image Resampling Nearest Neighbor 

Background p 

Input Height|DEM 4 t 

Select DEM KJOmdtmbil 

DEM Resampling Bilinear 

Geoidoffsel|-51.989 

Save Computed DEM?|Ye8 ^ 

Outpul Result to ' File '• Memorv 

Uppei Left Coordinate o( Outpul Image 

,.^1 Proi:UTM,Zone 30 North 
• ' I Datum:WGS-84 

530864,9215 Change Proi... 

6113536.8504 N Units: Meters 

X Pixel Size [Too" 

Y Pixel Size |4.00 

Number of Samples|1367 

Number of Lines [3141 

Output Result to C Be f« Memory 

OK Cancel 

Figure 4.3 Parameters required for Ortho-correction of IKONOS data. 

The selected re-sampling technique is used to determine the pixel values in the input 

image when it is converted from its current orientation into the new orientation. The 

default is Bilinear. To specify a value for pixels in the output image that are outside the 

bounds of the source image, enter a value in the Background text box. 

3. Specify the location of the D T M - select nearest neighbour re-sampling 

The DEM re-sampling technique is used to convert the DEM from the source coordinate 

system to Geographic, WGS-84, which is required for input into the RFC algorithm. A 

fu l l projection is performed to convert each DEM coordinate into the correct coordinate 

system. 

Specify the Geoid Offset: according to Ordnance survey this is 51.989 m for the area of 

interest. The Geoid offset is a constant value that is added to every value in the DEM to 

account for the difference between a spheroid mean sea level, used in most available 

DEM data, and the constant geopotential surface known as the GEOID. The RPC 

coefficients are created based on geoid height, and this information must be used to 

provide accurate ortho-rectification. Figures 4.4 and 4.5 show one o f the IKONOS 

bands and the 30 m D T M , respectively. 
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^1 HI Orthorectified (Band 1):[Memory2] 
File Overlay Enhance Tools Window 

Figure 4.4 IKONOS band prior to correction. 
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a #1 Band 1:K lOmdtm.bi 

I File Overlay Enhance Tools Window 

Figure 4.5 30 m D T M (note file name incorrectly named 

"KlOmdtm.bi l" ) . 

2. Convert map projection 

Convert Map Projection was used to convert your geo-referenced files to another map 

projection. The conversion is done by warping the file into the new projection. 

1. Select Map Convert Map Projection. 

2. Select the input geo-referenced file and click OK. 

3. The Convert Map Projection Parameters dialog appears with the input projection 

shown at the top of the dialog. The available output projections, from the map_proj.txt 

file are displayed in the Select Output Map Projection list 
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4. In the Select Output Map Projection list, select the output projection by clicking 

on the desired type and entering the necessary parameters 

5. Click OK. 

6. The map projection is converted by warping the file using a grid of control 

points. 

7. In the Number of Warp Points X/Y text boxes, define the number of control 

points to be used in the X and Y directions. 

Using many warp points increases the warping time considerably, but can significantly 

increase the accuracy of the conversion. 

6. Click OK. 

The Convert Map Projection function uses the standard registration parameters dialog to 

perform the warping of the image to the new projection When the Registration 

Parameters dialog appears, select the warp method: Triangulation 

8. Select the re-sampling method: Nearest Neighbour 

9. Enter the output filename and select output to File or Memory. 

10. Click OK to convert your data to the new projection. 
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Appendix 6.1 result of two-tailed / test on mean height of first and 

last pulse data 

. t t e s t meanfp == meanlp, unpaired l e v e l ( 9 9 ) 

Two-sample t t e s t with equal v a r i a n c e s 

V a r i a b l e 1 Obs Mean Std. E r r . Std. Dev. [99% Conf. I n t e r v a l ] 

raeanfp 1 60 9.59473 .9116816 7.061855 7.168053 12.02141 
meanlp 1 60 9.654251 .9167055 7.10077 7.214202 12.0943 

combined 1 120 9.624491 .6437188 7.051587 7.939379 11.3096 

d i f f 1 -.0595213 1.29287 -3.444431 3.325389 

Degrees of freedom; 118 

Ho mean(meanfp) - mean(meanlp) = d i f f = 0 

Ha: d i f f < 0 Ha: d i f f != 0 Ha: d i f f > 0 
t = -0.0460 t = -0. 0460 t = -0 .0460 

P < t 0.4817 P > t| = 0. 9634 P > t = 0 .5183 

Appendix 6.2 Calculation of L iDAR canopy length (Lki) 

1. Maximum f i r s t p u l s e h e i g h t - h e i g h t p e r c e n t i l e (5, 10, 20,..,60) 

2. R e g r e s s f i e l d - m e a s u r e d canopy l e n g t h a g a i n s t LiDAR d e r i v e d 

measure. Note I k l = LiDAR d e r i v e d measure u s i n g r e t u r n s above t h e 5 t h 

h e i g h t p e r c e n t i l e . 

Table Summary of regression R and RMS error 

Model «̂  R M S E 

(m) 

Ikl 5 0.595 1.266 

Ik! 10 0.640 1.195 

Ikl 20 0.653 1.173 

Ikl 30 0.619 1.228 

Ikl 40 0.580 1.290 

Ikl 50 0.542 1.347 

Ikl 60 0.500 1.407 
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Appendix 6.3 National network of Permanent Mensuration 

Sample Plots (PSPs) 

• < 152m 
• 152-305m 
• 305-610m 
n >610m 

Gallowav F.D 

Active 
All species (509 plots) 

• eeg 
• frown Eartti 

* &od«jBi>o 
Fr«e Drained 
Gtay 

• t-onpan Soil 
LiKiralSind 
^fining Spoit 

m Pixizoi 
» Rendzina 
a SWSoi 
» Unknown 

Kielder F.D 

Location o f Permanent Mensuration Sample Plots (PSPs). 
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Appendix 6.4 regression and multiple regression models used to 

predict volume 

( i ) Polynomial model 
r e g r e s s t o t a l v o l predhdom_all predhdom_allsq i f p l o t i d <899 

Source | SS df MS Number of obs = 56 
+ F( 2, 53) = 376.08 

Model I 3830816.22 2 1915408.11 Prob > F = 0.0000 
Res i d u a l | 269930.367 53 5093.02579 R-squared = 0.9342 

+ Adj R-squared = 0.9317 
T o t a l I 4100746.58 55 74559.0288 Root MSE = 71.365 

t o t a l v o l I Coef. Std. E r r . t P>|t| (95% Conf. I n t e r v a l ] 

predhdom_all | 8.576447 8.255854 1.04 0.304 -7.982699 25.13559 
predhdom_a~q | .8559183 .3009729 2.84 0.006 .2522431 1.459593 

_cons I -52.96225 40.07368 -1.32 0.192 -133.3399 27.41537 

( i ) Gompertz model 
n l gom3 t o t a l v o l predhdom_all i f p l o t i d <900, nolog 

(obs = 56) 

Source I SS df MS Number of obs = 56 
+ p( 3_ 53) ^ 677.99 

Model I 9741453.3 3 3247151.1 Prob > F = 0.0000 
Res i d u a l | 253836.792 53 4789.37344 R-squared = 0.9746 

+ Adj R-squared = 0.9732 
T o t a l I 9995290.1 56 178487.323 Root MSE = 69.2053 

Res. dev. = 630.3904 
3-parameter Gompertz function, totalvol=bl*exp(-exp(-b2*(predhdom_all-b3))) 

t o t a l v o l I Coef. Std. E r r . t P>|t| [95% Conf. I n t e r v a l ] 

b l I 1056.378 255.3348 4.14 0.000 544.2413 1568.515 
b2 I .1202038 .034308 3.50 0.001 .0513908 .1890169 
b3 I 18.25013 2.214326 8.24 0.000 13.80875 22.69151 

(SEs, P v a l u e s , C I s , and c o r r e l a t i o n s a re asymptotic approximations) 

( i i ) L o g i s t i c model 

(obs = 56) 

Source | SS df MS 

Model I 9744445.96 
Residual 1 250844.139 

3 3248148.65 
53 4732.90828 

Number of obs = 56 
F( 3, 53) = 686.29 
Prob > F = 0.0000 
R-squared = 0.9749 
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+ Adj R-squared = 0.973 5 
T o t a l I 9995290.1 56 178487.323 Root MSE = 68.79614 

Res. dev. = 629.7263 
3-parameter l o g i s t i c f u n ction, t o t a l v o l = b l / (1 + exp(b2 * predhdom_all + b3)) 

t o t a l v o l I Coef. Std. E r r . t P>|t| [95% Conf. I n t e r v a l ] 

b l I 778.6607 82.57702 9.43 0.000 613.0322 944.2893 
b2 I -.2809195 .0517156 -5.43 0.000 -.3846477 -.1771912 
b3 I 5.202486 .8079042 6.44 0.000 3.582036 6.822937 

(SEs, P v a l u e s , C l s , and c o r r e l a t i o n s are asymptotic approximations) 

( i v ) M u l t i p l e r e g r e s s i o n using polynomial model 

Volume 

. sw r e g r e s s t o t a l v o l (predhdom_all predhdom_allsq) I k l I k v cvfp k u r t l p _ l 
skewlp_l p c z e r o a l l i f p l o t i d <899, pe(0.05) 

begin with empty model 
p = 0.0000 < 0.0500 adding predhdom_all predhdom_allsq 

Source | SS df MS Number of obs = 56 
+ F( 2, 53) = 376.08 

Model I 3830816.22 2 1915408.11 Prob > F = 0.0000 
Residual j 269930.367 53 5093.02579 R-squared = 0.9342 

+ Adj R-squared = 0.9317 
T o t a l I 4100746.58 55 74559.0288 Root MSE = 71.365 

t o t a l v o l I Coef. Std. E r r . t P>lt| [95% Conf. I n t e r v a l ] 

predhdom_all | 8.576447 8.255854 1.04 0.304 -7.982699 25.13559 
predhdom_a-q | .8559183 .3009729 2.84 0.006 .2522431 1.459593 

_cons I -52.96225 40.07368 -1.32 0.192 -133.3399 27.41537 
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Appendix 7.1 LiDAR near infrared intensity for Clatteringshaws 

transect 

Variable Description LiDAR D N values 

Mean 

(m) 

SD 

(m) 

Min . 

(m) 

Max. 

(m) 

lall Intensity all 78 22 35 159 

71 13 37 120 

74 13 39 113 

73 14 36 114 

76 14 43 129 

vegp90 Intensity above 90'^ 

height percentile 

78 22 35 159 

71 13 37 120 

74 13 39 113 

73 14 36 114 

76 14 43 129 

vegp75 Intensity above 75 

height percentile 

78 22 35 159 

71 13 37 120 

74 13 39 113 

73 14 36 114 

76 14 43 129 

vegpSO Intensity above 50 

height percentile 

78 22 35 159 

71 13 37 120 

74 13 39 113 

73 14 36 114 

76 14 43 129 

vegp25 Intensity above 25"̂  

height percentile 

78 22 35 159 

71 13 37 120 

74 13 39 113 

73 14 36 114 

76 14 43 129 

Appendix 7.2 Summary of LiDAR distribution measures for 

sample plots 

Pure S i t k a spruce 

C o e f f i c i e n t of v a r i a t i o n 

1% 
5% 

10% 
25% 

P e r c e n t i l e s 
. 07 
.08 
.08 
. 1 

S m a l l e s t 
. 07 
.08 
. 08 
.08 

Obs 
Sum of Wgt. 

53 
53 

50% 

75% 
90% 
95% 
99% 

. 11 

. 14 

.21 

.26 

.32 

L a r g e s t 
.26 
.26 
.29 
.32 

Mean 
S t d . Dev. 

V a r i a n c e 
Skewness 
K u r t o s i s 

.1279245 

.0555863 

.0030898 
1.824438 
5.864233 

Mean h e i g h t 
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P e r c e n t i l e s S m a l l e s t 
1% 8 8 
5% 9 9 

10% 10 9 Obs 53 
25% 12 9 Sum of Wgt. 53 

50% 16 Mean 14 .62264 
L a r g e s t S t d . Dev. 2.962759 

75% 17 18 
90% 18 18 V a r i a n c e 8.777939 
95% 18 19 Skewness -.6706873 
99% 19 19 K u r t o s i s 2.35069 

skewness 

P e r c e n t i l e s S m a l l e s t 
1% -1.25 -1.25 
5% - .94 - .98 

10% - .76 - . 94 Obs 53 
25% - .52 - .86 Sum of Wgt. 53 

50% - .24 Mean - .2728302 
L a r g e s t S t d . Dev. .3711229 

75% - . 08 .23 
90% . 16 .37 V a r i a n c e .1377322 
95% .37 .53 Skewness - . 1530126 
99% .57 .57 K u r t o s i s 3.173512 

P e r c e n t ground r e t u r n s 

P e r c e n t i l e s S m a l l e s t 
1% 0 0 
5% 1 1 

10% 1 1 Obs 53 
25% 2 1 Sum of Wgt. 53 

50% 4 Mean 5.566038 
L a r g e s t S t d . Dev. 5.119756 

75% 6 17 
90% 15 17 V a r i a n c e 26.2119 
95% 17 20 Skewness 1.652421 
99% 22 22 K u r t o s i s 4.974538 
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S i t k a spruce/lodgepole pine mixture 

C o e f f i c i e n t o f v a r i a t i o n 

P e r c e n t i l e s S m a llest 
1% . 18 . 18 
5% . 18 .2 

10% . 19 .2 Obs 10 
25% .2 .21 Sum o f Wgt. 10 

50% .22 Mean .227 
Larg e s t Std. Dev. . 03335 

75% .26 .23 
90% .275 . 26 Variance . 0011122 
95% .28 .27 Skewness .3516239 
99% .28 .28 K u r t o s i s 1.856782 

meanh 

P e r c e n t i l e s S m a llest 
1% 10 10 
5% 10 10 

10% 10 10 Obs 10 
25% 10 10 Sum of Wgt. 10 

50% 11 Mean 10 . 7 
Large s t Std. Dev. . 6749486 

75% 11 11 
90% 11.5 11 Variance .4555556 
95% 12 11 Skewness .3656751 
99% 12 12 K u r t o s i s 2 .294468 

skewness 

P e r c e n t i l e s S m a llest 
1% - . 74 - .74 
5% - . 74 - .63 

10% - . 685 - .47 Obs 10 
25% - .47 - .41 Sum o f Wgt. 10 

50% - . 195 Mean - .211 
Larg e s t Std. Dev. .3503157 
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75% . 16 - . 04 
90% .205 . 16 Variance . 1227211 
95% .24 . 17 Skewness - . 1156949 
99% .24 .24 K u r t o s i s 1.621734 

Percent ground r e t u r n s 

P e r c e n t i l e s S m a llest 
1% 25 25 
5% 25 31 

10% 28 31 Obs 10 
25% 31 31 Sum o f Wgt. 10 

50% 35 Mean 34 . 5 
Lar g e s t Std. Dev. 5.169354 

75% 38 37 
90% 41 38 Variance 26.72222 
95% 43 39 Skewness - . 1856827 
99% 43 43 K u r t o s i s 2 .493009 

Pure lodgepole pine 
C o e f f i c i e n t of v a r i a t i o n 

P e r c e n t i l e s S m a l l e s t 
1% . 16 . 16 
5% . 17 . 17 

10% . 18 . 17 Obs 62 
25% .21 . 17 Sum o f Wgt. 62 

50% .23 Mean .2443548 
La r g e s t Std. Dev. . 0538553 

75% .28 .36 
90% .3 .38 Variance .0029004 
95% .36 .38 Skewness .7646102 
99% .38 .38 K u r t o s i s 3 .205268 

Mean h e i g h t 

P e r c e n t i l e s S m a l l e s t 
1% 7 7 
5% 8 7 

10% 9 8 Obs 62 
25% 9 8 Sum o f Wgt. 62 
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50% 10 Mean 10.01613 
La r g e s t Std. Dev. 1.194138 

75% 11 12 
90% 11 12 Variance 1.425965 
95% 12 12 Skewness -.4387975 
99% 12 12 K u r t o s i s 2.800671 

skewness 

P e r c e n t i l e s S m a llest 
1% - 1 . 57 -1.57 
5% -1.39 -1.46 

10% -1.2 -1.43 Obs 62 
25% - .95 -1.39 Sum o f Wgt. 62 

50% - .365 Mean - .4456452 
La r g e s t Std. Dev. . 5663157 

75% . 04 .34 
90% .22 .35 Variance .3207135 
95% .34 .43 Skewness -.2563628 
99% .58 .58 K u r t o s i s 1.926134 

Percent ground r e t u r n s 

P e r c e n t i l e s S m a llest 
1% 22 22 
5% 24 22 

10% 28 23 Obs 62 
25% 31 24 Sum of Wgt. 62 

50% 36 Mean 36 . 01613 
Larg e s t Std. Dev. 7.1092 

75% 40 50 
90% 43 50 Variance 50.54072 
95% 50 52 Skewness .3160901 
99% 56 56 K u r t o s i s 3 .252191 
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Appendix 7.3 One-way ANOVA for testing difference between 

plantation species types for LiDAR and SPOT 5 NIR response and 

various canopy density measures. 

ANOVA 
Summary o f LiDAR i n t e n s i t y 
sppgroup Mean Std. Dev. Freq 

Pine 46 419355 6 5375295 62 
S i t k a 78 039548 9 2578969 177 
mix 55 1 4 2018514 10 

T o t a l 69 24498 16 294178 249 

A n a l y s i s o f Variance 
Source SS d f MS F Prob > F 

Between groups 47993.3363 2 23996.6681 330 70 0.0000 
W i t h i n groups 17850.7199 246 72.5639022 

T o t a l 65844.0562 248 265.500227 

B a r t l e t t ' s t e s t f o r equal v a r i a n c e s : c h i 2 ( 2 ) = 15 3785 
Prob>chi2 = 0.000 

Comparison o f i n t _ p 5 0 by sppgroup 
( B o n f e r r o n i ) 
Row Mean-| 
Col Mean Pine S i t k a 

S i t k a 31.6202 
0.000 

mix 8.68065 -22.9395 
0.009 0.000 

Summary of spotnir 
sppgroup Mean Std. Dev. Freq. 

Pine 40.725806 .77182676 62 
S i t k a 48.107345 2.183305 177 
mix 42.8 .42163702 10 

T o t a l 46.056225 3.7509208 249 

A n a l y s i s o f Variance 
Source SS d f MS F Prob > F 

Between groups 2612.31369 2 1306.15684 366.42 0.0000, 
W i t h i n groups 876.899162 246 3.56463074 

T o t a l 3489.21285 248 14.0694067 

B a r t l e t t ' s t e s t f o r equal v a r i a n c e s : c h i 2 ( 2 ) = 83.1777 Prob>chi2 = 
0.000 

Comparison o f s p o t n i r by sppgroup 
( B o n f e r r o n i ) 
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Row Mean-
Col Mean Pine S i t k a 

S i t k a 7.38154 
0.000 

mix 2.07419 
0.04 

-5.30734 
0.000 

C o e f f i c i e n t o f V a r i a t i o n LiDAR o n l y 

oneway cv_h sppgroup i f sppgroup>" ", t a b u l a t e bon 

I Summary o f cv_h 
sppgroup I Mean Std. Dev. Freq. 

Pine I .24435484 .05385533 
S i t k a I .12875706 .05514065 

mix .227 .03335 

62 
177 
10 

T o t a l .16148594 .07460515 249 

Source 
A n a l y s i s o f Variance 
SS d f MS Prob > 

Between groups 
W i t h i n groups 

. 658289455 

.722060727 
2 

246 
.329144728 
.002935206 

112.14 . 0000 

T o t a l 1.38035018 248 .005565928 

B a r t l e t t ' s t e s t f o r equal v a r i a n c e s : c h i 2 ( 2 ) = 3.1903 Prob>chi2 = 
0.203 

Row Mean-
Col Mean 

S i t k a 

Pine 

.115598 
0.000 

Comparison o f cv_h by sppgroup 
( B o n f e r r o n i ) 

S i t k a 

- . 017355 
1.000 

.098243 
0.000 

Percent ground r e t u r n s LiDAR o n l y 

. oneway pczero sppgroup i f sppgroup>" ", t a b u l a t e bon 

sppgroup I 
Summary of pczero 

Mean Std. Dev. Freq. 

Pine I 36.016129 
S i t k a I 4.9378531 

mix i 34.5 

T o t a l I 13.863454 

7.1091996 
4 . 3656175 
5.1693541 

62 
177 
10 

14 . 954684 249 
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Source 
A n a l y s i s o f Variance 
SS d f MS Prob > 

Between groups 
W i t h i n groups 

48785.5572 
6677.80026 

2 
246 

24392.7786 
27.1455295 

898.59 0.0000 

T o t a l 55463.3574 248 223.64257 

B a r t l e t t ' s t e s t f o r equal v a r i a n c e s : c h i 2 ( 2 ) = 23.9602 Prob>chi2 = 
0.000 

Row Mean-
Col Mean 

S i t k a 

Pine 

Comparison of pczero by sppgroup 
( B o n f e r r o n i ) 

S i t k a 

-31.0783 
0.000 

mix I -1.51613 29.5621 
I 1.000 0.000 

Skewness LiDAR o n l y 

oneway skew sppgroup i f sppgroup>" ", t a b u l a t e bon 

sppgroup 
Summary o f skew_veg 

Mean Std. Dev. Freq. 

Pine I -.44564516 .56631574 
S i t k a I -.2979096 .38674432 

mix -.211 .35031573 

62 
177 
10 

T o t a l - .33120482 .44060643 249 

Source 
A n a l y s i s o f Variance 
SS df MS Prob > F 

Between groups 
W i t h i n groups 

1.15269784 
46 . 9925405 

2 
246 

.576348922 

. 191026587 
3 . 02 0 . 0508 

T o t a l 48.1452383 248 .194134025 

B a r t l e t t ' s t e s t f o r equal v a r i a n c e s : c h i 2 ( 2 ) = 15.1078 Prob>chi2 
0.001 

Row Mean-
Col Mean 

S i t k a 

Comparison o f skew_veg by sppgroup 
( B o n f e r r o n i ) 

Pine S i t k a 

.147736 
0.069 

mix .234645 
0.349 

,08691 
1.000 
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Mean h e i g h t LiDAR o n l y 
. oneway mean_h sppgroup i f sppgroup>" ", t a b u l a t e bon 

sppgroup 
Summary o f mean_h 

Mean Std. Dev. Freq. 

Pine I 10.016129 1.1941378 
S i t k a I 14.627119 2.571025 

mix 10.7 .67494856 

62 
177 
10 

T o t a l 13 . 321285 3.0468765 249 

Source 
A n a l y s i s o f Variance 
SS d f MS Prob > F 

Between groups 
W i t h i n groups 

1047.82349 
1254 .4737 246 

523.911744 
5.09948659 

102.74 0.0000 

T o t a l 2302.29719 248 9.28345641 

B a r t l e t t ' s t e s t f o r equal v a r i a n c e s : c h i 2 ( 2 ) = 52.6701 Prob>chi2 
0.000 

Row Mean-
Col Mean Pine 

Comparison of mean_h by sppgroup 
{ B o n f e r r o n i ) 

S i t k a 

S i t k a 4.61099 
0.000 

.683871 -3.92712 
1.000 0.000 
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