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A B S T R A C T 

Meteorological records have shown that the Antarctic Peninsula region has warmed at a rate of 
3.7 ± 1.6 °C during the last century. One of the most publicised aspects of this warming has been 
the retreat and disintegration of several of the regions ice shelves. It is unknown at present 
however, whether advance and retreat of these ice shelves has occurred repeatedly in response to 
natural Holocene climate change, or whether their recent collapse is the result of the recent rapid 
regional warming that has been linked to anthropogenic forcings. 

George V I Ice Shelf is the largest ice shelf on the western side of the Antarctic Peninsula and its 
northern margin marks the southern most latitudinal limit of recent ice shelf retreat. At Ablation 
Point, on the east coast of Alexander Island, the ice shelf impounds two epishelf lakes: 
Moutonnee and Ablation. These lakes are tidal, stratified water bodies with a lower marine layer 
that extends under the ice shelf and an upper freshwater layer whose maximum thickness is 
determined by the draught of the ice shelf. The first aim of this thesis was to document the 
physical limnology and sedimentary environment of Moutonnee and Ablation Lakes. 
Collectively, this information has led to the development of a conceptual model for detecting ice 
shelf collapse in epishelf lakes and has provided important baseline data for any future changes in 
the stability of the ice shelf The second aim was to reconstruct the long-term (Holocene) history 
of George V I Ice Shelf through detailed analysis of lake sediments from Moutonnee and Ablation 
Lakes. In addition, this thesis provides a detailed review of the dynamics of George V I Ice Shelf, 
which provides an important context to any future changes in the configuration of the ice shelf 

Studies of sediment cores extracted from Moutonnee and Ablation Lakes have included; 
micropaleontology (diatoms/ foraminifera), stable isotope (5'*0, geochemistry (Corg, Norg, 

C/N ratios) and physical (grain-size/magnetic susceptibility) analyses. Together with the ideas 
developed in the conceptual model, these data provide robust evidence for one period of past ice 
shelf absence during the Holocene. The timing of this period has been constrained by 10 AMS 
""̂ C dates performed on mono-specific foraminifera samples. These dates suggest that George V I 
Ice Shelf was absent between ca. 8962 cal. (calibrated) yr B.P. and ca. 7945 cal. yr B.P. This 
early Holocene absence immediately followed a period of maximum Holocene warmth that is 
recorded in some Antarctic ice cores and coincides with an influx of warmer ocean water onto 
the western Antarctic Peninsula shelf at ca. 9000 cal. yr B.P. The absence of the ice shelf during 
this time interval suggests that early Holocene ocean-atmosphere variability in the Antarctic 
Peninsula was greater than that measured in recent decades. The lake sediment record from 
Moutonnee Lake also provides evidence to suggest that Holocene (ca. 8000 to 0 cal yr B.P.) 
climatic change on the Antarctic Peninsula may have been coupled to atmospheric and/or oceanic 
changes recorded in the tropical western Pacific Ocean. 
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Chapter I - Introduction 

Chapter 1 
INTRODUCTION AND 
THESIS AIMS 

l.l.Introduction 

The Antarctic Peninsula region (AP) (Fig.2.1) encompasses one of the most 

dynamic climate systems on Earth (Domack et al., 2001). Meteorological records 

show that the region has warmed at a rate of 3.7 ± 1.6 °C during the last century, 

several times greater than the global mean (0.6 ± 0.2 °C century''; Houghton et al., 

2001) and quite different to most of the other continental Antarctic station records 

(Vaughan et al., 2003). Public attention has been focussed on the AP in recent 

decades due to the rapid disintegration of several ice shelves (see Fox and Vaughan 

(2001) and references therein) and it is now widely accepted that ice shelf retreat 

has been caused by atmospheric warming, which appears to be amplified over the 

AP relative to the rest of the continent. The catastrophic disintegration of the 

Larsen-B ice shelf in 2002 illustrated the rapidity of ice shelf collapse with the loss 

of 3,250 km^ of the ice shelf in a 35-day period and re-awakened the debate about 

the buttressing effect of ice shelves on grounded glaciers and ice sheets. Early work 

by Weertman (1974), Hughes (1977) and Thomas (1979) suggested that the removal 

of buttressing ice shelves could trigger glacier acceleration and drainage of the West 

Antarctic Ice Sheet (WAIS) thereby leading to rapid eustatic sea-level rise (Lythe et 

al., 2001). These conclusions were initially discredited by modem theoretical 

models (Hindmarsh, 1993; Huybrechts and de Wolde, 1999) and limited ground-

based observations (Alley and Whillans, 1991; Vaughan, 1993), which argued that 

the glacier-ice shelf coupling mechanisms were more complex and stable. However, 

following the collapse of the Larsen-A ice shelf, Rott et al. (2002) and De Angelis 

and Skvarca (2003) have shown that several glaciers have accelerated significantly. 
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Similarly Rignot et al. (2004) and Scambos et al. (2004) provided clear evidence of 

the acceleration of several glaciers feeding into the former Larsen-B following its 

collapse. Together these studies suggest that ice shelf removal could indeed result in 

accelerated glacier discharge and thus contribute to eustatic sea level rise. 

Not only has the recent warming trend led to ice shelf collapse, but it has modified 

the local terrestrial environment, expanding the ranges of flowering plants (Fowbert 

and Lewis Smith, 1994; Convey, 2002), shrinking seasonal snow cover (Fox and 

Cooper, 1998), causing glacier retreat (Smith et al., 1998) and altering the 

distribution of penguin species (Fraser et al., 1992). Given the overwhelming 

evidence for accelerated rates of environmental change (Houghton et al., 2001), it 

has become increasingly important to understand the long-term history of the region 

in order to put the recent changes in perspective (e.g. Domack et al., 2003) and to 

judge their long-term significance. One way to do this is to examine proxy records 

for environmental change archived on land (geomorphology, lake sediment cores 

and ice cores) and in the ocean. 

Ice shelf collapse is clearly one important aspect of this change and because recent 

ice shelf collapse has been linked to the recent, rapid atmospheric warming, 

historical collapse of ice shelves provides a useful proxy for periods of climatic 

warming in the past. This thesis uses lake sediment records from the AP to provide 

a long-term (Holocene) perspective on ice shelf stability and investigate the 

mechanisms for periods of past ice shelf collapse. Such information provides a 

long-term perspective on the Holocene variability of ice shelves and by inference, 

on climate. 

1.2. Context of Research 

This PhD thesis is part of the British Antarctic Surveys (BAS) core program, 

'Signals in Antarctica of past Global ChangeS' (SAGES-1 OK), awarded to Dr. 

Dominic Hodgson and Dr. Eric Wolff and was enhanced by a NERC-funded project 

under the Antarctic Funding Initiative (AFI) awarded to Dr. Mike Bentley 

(University of Durham), Dr. Dominic Hodgson and Professor David Sugden 

(University of Edinburgh). The PhD work has been completed under a NERC-
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CASE Studentship (NER/S/S/2001/06527) held between the University of Durham 

and the British Antarctic Survey and forms a key component of the overall research 

project. Because of this context, the thesis is clearly structured so that the data 

generated for this PhD is presented and discussed independently (Chapters 2-6) 

before drawing in data from other parts of the project to the discussion in Chapter 7. 

1.3. Research Aims and Objectives 

This thesis has two specific aims: 

1. To provide a baseline study of the present-day limnology of Moutotmee and 

Ablation Lakes in order to develop a conceptual model for detecting ice 

shelf history from the analysis of the sedimentary record in epishelf lakes. 

2. To determine the Holocene history of George V I Ice Shelf 

1.3.1. Research Objectives 

To achieve the above aims, the thesis has the following specific objectives: 

1. To understand the present day dynamics of George V I Ice Shelf 

2. To retrieve and analyse contemporary material (water samples, lake surface 

sediments and lake catchment samples) in order to understand the limnology 

and sedimentology of the modem lake environment and determine the 

provenance of material deposited in their sediments. 

3. To develop a conceptual model for detecting ice shelf loss from the 

sediments of the epishelf lakes. 

4. To retrieve and analyse sediment cores from Moutonnee and Ablation Lakes 

and to measure their physical, chemical and biological characteristics. 

5. To interpret the sediment core data using the conceptual model and thereby 

identify periods of ice shelf presence or absence. 
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6. To investigate the mechanisms for any periods of ice shelf absence within 

the wider context of AP environmental change. 

1.4. Thesis Structure 

Chapter 2 provides both a contemporary and a historical perspective on climatic 

changes in the Antarctic Peninsula region. The first section reviews recent 

atmospheric warming on the Antarctic Peninsula, its environmental impacts, 

(specifically ice shelf loss), and possible mechanism(s) for the observed changes. 

The second section reviews what is known about Holocene environmental changes 

on the Antarctic Peninsula based on information from multi-proxy archives on land 

and in the ocean. This chapter therefore provides an important context for the 

interpretation (Chapter 7) of the main body of data generated in this PhD thesis. 

Chapter 3 provides a detailed review of past history and present behaviour of 

George V I ice Shelf and concludes with a discussion about its likely fiature 

behaviour. Chapter 4 describes the study sites and outlines the field and laboratory 

techniques used in this thesis. Chapter 5 provides baseline data on the present day 

limnology and sedimentology of Moutonnee and Ablation Lakes, the results of 

which are then used to develop a conceptual model for ice shelf loss. Chapter 6 

describes the results of multi-proxy analyses of lake sediment cores from 

Moutormee and Ablation Lakes and presents the core chronology. Chapter 7 uses 

the conceptual model developed in Chapter 5 to interpret the core results from 

Chapter 6 in terms of the Holocene history of George V I Ice Shelf. These 

interpretations are then placed in a historical and regional context and their 

implications discussed. Chapter 8 presents the conclusions of this thesis, outiines 

the limitations of the work and makes recommendations for fiiture research. 
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Chapter 2 
CONTEMPORARY AND 
PALEOENVIRONMENTAL 
CHANGE ON THE ANTARCTIC 
PENINSULA: MECHANISMS 
AND CAUSES 

2.1. Introduction 

This chapter presents an overview of contemporary and palaeoenvironmental 

change on the AP and provides the context for the interpretation of the data 

collected during this PhD study. The first section examines the recent rapid regional 

warming on the AP and discusses the possible mechanisms. Then it examines recent 

ice shelf loss on the AP and discusses the possible forcing factors. The second 

section reviews what is known about past (Holocene) changes on the AP derived 

from marine, terrestrial and ice core records. 

2.2. Recent rapid regional warming on the Antarctic Peninsula 

Records of mean annual air temperature between 1950-2000 indicate that three 

areas of the world have experienced exceptional rates of atmospheric warming 

relative to the global mean (Hansen et al., 1999). These areas are; northwestern 

North America, an area centred on the Siberian Plateau, and the Antarctic 

Peninsula/Bellingshausen Sea (Hansen et al., 2001). In each of these areas mean 

annual temperatures have increased by 1.5°C since 1950, compared with a global 

mean of ca. 0.5°C (Folland et al., 2001). Temperature records from the AP show 

that climate has warmed at a rate of 3.7 ± 1.6 °C over the last century (Vaughan et 

al., 2003). In contrast, temperatures at the South Pole (Amundsen-Scott Base) 

appear to have cooled since 1958 (Fig. 2.2 and Table 2.1). Warming of the AP 

therefore not only appears to be unusual on a global scale but it also differs from the 
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Antarctic continental mean. What follows is an overview of atmospheric wanning 

on the AP and an outline of the possible reasons why atmospheric warming has 

been amplified in this area. 

Topographically and climatically, the environment on the AP differs to the rest of 

continental Antarctica (Vaughan et al., 2003). The AP forms an unbroken chain of 

rugged, alpine topography (Schwerdtfeger, 1984), which forms a climatic barrier 

separating the warmer Bellingshausen Sea on the west from the cooler Weddell Sea 

on the east (Fig. 2.3). As a result of this topography the west side of the AP is ca. 7 

°C warmer than temperatures at similar altitudes and elevations on the east side 

(Reynolds, 1981; Morris and Vaughan, 1994; Vaughan et al., 2003). Because of 

this, temperature-induced surface melting is a more important component of the 

mass balance of the ice shelves and glaciers on the west side of the AP. 

The longest temperature record in Antarctica is from the sub-Antarctic Laurie Island 

(Orcadas Station; Fig. 2.1b), which began in 1904. Continuous records on the 

Antarctic Peninsula itself began after the Second World War (Table 2.1). Analysis 

of three of these records (Faraday, Esperanza and Bellingshausen; Fig. 2.4) by 

Vaughan et al. (2001) show rates of temperature increase that are an order of 

magnitude greater than the global mean (Table. 2.1). Shorter-term records also 

reveal the same warming trend (e.g. Marambio Station; Fig.2.1b) as does the 

summer-only record from Fossil Bluff on Alexander Island (Fig. 2.1b) (Harangozo 

et al., 1997). At Faraday station, in addition to the increases in temperature, there 

has also been an observed increase in winter precipitation since 1956 (Turner et al., 

1997). 

However, owing to the limited length of these records, it remains difficult to 

establish precisely when this warming began (Vaughan et al., 2003). The record 

from Orcadas Station (Fig. 2.4) suggests warming in the sub-Antarctic probably 

started during the 1930's. Although situated several hundred kilometres north of the 

AP its subsequent correlation with the post-1950s temperature record from Faraday 

implies warming may have began on the AP around the same time (Vaughan et al., 

2003). 
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2.2.1 Consequences of recent warming 

The recent warming trend has affected several environmental parameters on the AP, 

namely sea-ice extent, terrestrial and marine ecosystems and the distribution and 

stability of ice shelves, which is described in the next section. Satellite data show a 

decrease in winter sea-ice extent in the Bellingshausen Sea from mid 1988 through 

early 1991 (Jacob and Comiso, 1993). Indeed, the west coast of the AP is the only 

region in Antarctica where a strong correlation between sea-ice extent and near-

surface atmospheric temperature is observed (Weatherly et al., 1991). According to 

Vaughan et al. (2003) this pattern could relate to the fact that the AP acts as a 

barrier to the eastward transport of sea-ice by the Antarctic Circumpolar Current 

(ACC) and because, unusually for Antarctica, the sea-ice edge in winter is close to 

the coast. The impact of the recent rapid regional warming on marine and terrestrial 

environments has been reviewed by Smith et al. (1999) and Convey (2001). It 

includes an expansion in the range of flowering plants (Fowbert and Lewis Smith, 

1994; Convey, 2001) and shrinking seasonal snow cover (Fox and Cooper, 1998). 

Quayle et al. (2002) have also documented significant ecological changes (e.g. 

increased nutrient levels) in several maritime Antarctic lakes. A reorganisation of 

penguin colonies has also been attributed to recent rapid regional warming (Fraser 

et al., 1992). For instance, number of Adelie penguins, which require food in and 

around the pack ice, are declining around Faraday, whilst chinstrap penguins, which 

usually prefer open water, are increasing (Vaughan et al., 2001). 

2.2.1.1. Ice Shelf Refreat 

The single most publicised impact of recent AP warming has been the retreat and 

disintegration of several of the regions ice shelves. On average, AP ice shelves have 

retreated by ca. 300 km^ each year since 1980 (Vaughan and Doake, 1996), 

Atmospheric warming is now considered the key driver in ice shelf retreat 

(Vaughan and Doake, 1996), but the precise mechanism linking climatic warming 

and ice shelf disintegration is still debated. This section has three aims: (1) to 

12 
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provide an introduction to ice shelves on the AP - how they form and why they are 

important; (2) to explain ice shelf retreat and collapse, how this has been linked to 

recent climatic warming and our present understanding of the mechanisms; and (3) 

finally to provide a Holocene perspective on ice shelf variability and climate change 

for the AP. 

2.2.2. Ice Shelves 

As the Antarctic ice sheet flows off the continent into the surrounding oceans, there 

comes a point at which the ice is no longer thick enough to maintain contact with 

the bed. The point at which flotation occurs is known as the grounding line. Where 

there are high bending stresses across the grounding line, ice tends to break away 

(or calve). In other areas, the ice sheet passes over this transition intact resulting in 

floating extensions of the grounded ice sheet - known as ice shelves. Ice shelves 

fiinge most of the Antarctic coastiines especially where there are bays, islands or 

bedrock shoals that consfrain them beyond the grounding line by making contact 

with the ice shelf base (Vaughan and Doake, 1996). It is these topographic 

constraints that are thought to stabilise many ice shelves. Several different types of 

ice shelf have been documented, the difference mainly being attributed to different 

glaciological inputs and outputs (Vaughan, in press) (Table 2.2). 

Some believe that ice shelves play a fundamental role in maintaining the stability of 

the Antarctic ice sheet, specifically the stability of the marine-based West Antarctic 

Ice Sheet (WAIS) (Mercer, 1978; Weertman, 1974). The WAIS contains 3.8 milUon 

km^ of ice and, i f it were to collapse, would raise global eustatic sea level by an 

estimated 5 m (Lythe et al., 2001). Most of the drainage of the WAIS is 

concentrated into ice streams, the majority of which flow into the Ross and Weddell 

seas, where there are extensive ice shelves (the Ross Ice Shelf and the Filchner-

Ronne Ice Shelf respectively; Fig. 2.5) (Oppenheimer, 1998). It was first thought 

that ice shelves acted to buttress or hold back inland ice and their removal would 

trigger a speeding-up or surge of the inland ice streams, causing rapid depletion of 

continental ice (Mercer, 1968; Weertman, 1974, 1976; Thomas, 1979). However, 

this notion was largely discredited by modem theoretical models, which disregard 

the buttressing effect of ice shelves and suggested that their removal would not 

13 
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Table 2.2. A classification of ice shelves (from Vaughan, in press) 
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>250 m a"' 

Figure 2.5. Balance velocities calculated for the grounded part of the Antarctic 

Ice Sheet (from Bamber et al. 2000). Ice shelves and floating ice tongues are 

gray. Fast flowing ice streams (Blue-yellow) feed into the major ice shelves and 

are often referred to as the 'arteries' of the West Antarctic Ice Sheet. 
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affect inland ice (Herterich, 1987; Huybrechts, 1990; Hindmarsh, 1996; Hindmarsh 

et al., 2001). More recently however, De Angelis and Skvarca (2003), Rignot et al. 

(2004) and Scambos et al. (2004) have presented compelling observational 

evidence, of 'surging' or speeding-up of several glaciers following the collapse of 

the Larsen-A/B and Prince Gustav Channel ice shelves. This discovery calls for a 

reappraisal of the stabilising role of ice shelves on groimded ice in their upstream 

catchments (De Angelis and Skvarca, 2003). The importance of this debate is of 

paramount importance to understanding the role of future global sea-level changes. 

I f ice shelves do 'hold back' grounded ice then their collapse could lead to the 

increased drainage of continental ice, leading to a potentially rapid rise in eustatic 

sea level. 

2.2.2.1. Climatic Limit for Ice Shelves 

In recent decades, several ice shelves on the Antarctic Peninsula have diminished in 

size, including the Wordie Ice Shelf (Doake and Vaughan, 1991), Prince Gustav Ice 

Shelf and the ice shelf that formerly occupied the Larsen Inlet, Larsen Ice Shelf-A 

(Vaughan and Doake, 1996), Muller Ice Shelf (Ward, 1995), Wilkins Ice Shelf 

(Scambos et al., 2000) and Jones Ice Shelf (Fox and Vaughan, 2003) (Fig. 2.3). 

Most recentiy this pattern of retreat has been highlighted by the rapid disintegration 

of the Larsen-B Ice Shelf (Fig.2.6) (Scambos et al., 2003). Several other AP ice 

shelves are showing a number of distinct characteristics, which some have 

interpreted as the first signs of collapse (e.g. George V I Ice Shelf; Lucchitta and 

Rosanova, 1998). 

The possibility that climate controls the viability of ice shelves has been widely 

discussed. Robin and Adie (1964) first suggested a climatic control on ice shelves. 

They noted that the distribution of ice shelves apparently corresponded with the 0°C 

January (summer) isotherm, concluding that this marked 'a limit of viability'. This 

idea was developed further by Reynolds (1981) who compiled a map of mean 

annual air temperatures for the Antarctic Peninsula (Fig. 2.3a). On this map the 

distribution of retreating ice shelves indicated that the -5°C mean annual isotherm 

could be interpreted as a proxy for the limit of ice shelf viability (Vaughan and 

Doake, 1996). Although the 0°C January isotherm is not extensively mapped, it 
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1 1 

23 February 2002 

Figure 2.6. Rapid disintegration of the Larsen-B Ice Shelf in 2002. A total of 
about 3,250 km2 of shelf area disintegrated in a 35-day period beginning on 31 
January 2002. Over the last five years, the shelf has lost a total of 5,700 km2, and 
is now about 40 percent the size of its previous minimum stable extent. MODIS 
images from NASA's Terra satellite, supplied by Ted Scambos, Nafional Snow 
and Ice Data Center, University of Colorado, Boulder. 
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appears to coincide with the -5°C mean annual isotherm (Reynolds, 1981; Vaughan 

and Doake, 1996). For example, at Faraday station, the mean January temperature is 

approximately 0.5°C whilst the mean armual temperature is -AA°C. These 

temperature data have since been updated using new station and borehole 

temperature data (Morris and Vaughan, 2003). Figure 2.3b shows the updated map, 

together with the distribution of ice shelves remaining around the AP in 2002 (blue) 

and those which have shown climatically induced retreat since the begiiming of the 

20* century (red) (Morris and Vaughan, 2003). The present northerly limit of 

'stable' ice shelf distribution closely follows the -9°C isotherm. Ice shelves known 

to have retreated over the past 100 yrs are bounded by the -9°C and -5°C mean 

annual isotherms (Fig. 2.3) (Morris and Vaughan, 2003). What is more, the 

isotherm appears to have been driven south by continuing atmospheric warming on 

the AP. In the 1940's and 1950's the limit of viability was the position marked by 

Reynolds' -5 °C isotherm (Fig. 2.3a) (Vaughan and Doake, 1996). In the updated 

map the limit of ice shelf viability is now the -9 °C isotherm. This change is 

consistent with the 3.5 °C ± 1.0- 20'*' century warming on the AP (Morris and 

Vaughan, 2003). Importantly in the context of this thesis, the -9 °C isotherm 

viability now covers the northern portion of George VI Ice Shelf, leading some 

researchers to suggest that it will be the next ice shelf to break-up (Vaughan and 

Doake, 1996). 

The limit of viability for ice shelves based on atmospheric temperature is now 

widely accepted although some have suggested that ocean temperature (Domack et 

al., 1995) or tidal amplitude (Holdsworth, 1977) are important factors in ice shelf 

stability. For example, Domack et al. (1995) proposed that the current extent of ice 

shelves on the west coast of the AP might be related to the temperature of seawater 

beneath them. They hypothesised that a recent incursion of Circumpolar Deep 

Water (CDW) caused the retreat of Miiller Ice Shelf Alternatively, Holdsworth 

(1977) suggested that the stability of ice shelves was limited by the range of ocean 

tides and proposed an upper tidal limit of 1 -2 m, beyond which ice shelves become 

unstable. However, a tidal control is now doubtful as tidal range beneath several ice 

shelves far exceeds this value (Vaughan, 1995). 
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2.2.2.2. Mechanisms for ice shelf retreat 

Although the -9°C mean aimual isotherm adequately marks the northern limit of 

stable ice shelves, it is still vmcertain what mechanisms are important during ice 

shelf retreat (Vaughan and Doake, 1996; Morris and Vaughan, 2003). A common 

feature of ice shelf retreat is a rapid acceleration preceding the final collapse 

(Vaughan and Doake, 1996). Remotely sensed imagery has also shown that deeply 

embayed ice fronts, calving of small elongate bergs in punctuated events, and the 

presence of melt ponds on the ice-shelf surface are all characteristic of a collapsing 

ice shelf (Scambos et al., 2000). This was highlighted most dramatically during the 

final collapse phase of the Larsen-A ice shelf, which lost 1,300 km^ in 50 days and 

the Larsen-B ice shelf, which lost a total of 3,250 km^ in a 35-day period begiiming 

on 31 January 2002 (Fig. 2.6) (Scambos et al., 2002). These rates are much faster 

than would be expected from a melting mechanism alone and have been explained 

in terms of a rapid structural failure following some external forcing (e.g. 

temperature). Structurally, some embayed ice shelves are like arches, with the 

'pillars' being formed by ice rises (places where the ice shelf groimds on shallow 

parts of the sea bed) and the arch by the smoothly curving (concave) ice shelf fi-ont. 

If too much of the structure between the pillars is removed (analogous to the 

removal of a keystone from an arch) then the ice shelf collapses (Doake et al., 

1998). This hypothesis can explain the rapidity of ice shelf collapse but it still 

requires some other mechanism to start the process. 

Increased meltwater on the ice shelf surface has long been considered to play an 

important role in ice shelf stability (Robin and Adie, 1964; Mercer, 1978) and could 

provide the link between atmospheric warming and ice shelf collapse. Mercer 

(1978) proposed that the downward percolation of surface meltwater and the 

subsequent release of latent heat on refreezing could potentially eliminate the cold 

thermal wave that exists in ice shelves from winter freezing thereby raising the 

pressure melting point. This would effectively create a temperate ice shelf, which at 

the time of Mercer's original idea, was thought to be unviable. However, the idea of 

£in unstable temperate ice shelf was questioned with the discovery of temperate ice 

shelves that appear relatively stable. For example, Paren and .Cooper, (1988) 

presented evidence that as ice fiows towards the northern margin of George VI Ice 
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Shelf, it becomes more temperate in character. In 1986, ice near the northern front 

was between -1.6 to 1.8°C, compared to -10°C further south (Paren and Cooper, 

1988). A similar situation has also been observed for the Wilkins Ice Shelf 

(Swithinbank, 1988). Hence, the idea that a temperate ice shelf is inherently 

unstable is not necessarily true. 

Doake and Vaughan (1991) used a different line of reasoning to pursue the link 

between ice shelf stability and temperature in an attempt to explain the collapse of 

the Wordie Ice Shelf. Instead of a direct meltwater connection, they examined the 

relationship between mass balance (precipitation and ablation) and mean annvial 

temperature. For mean annual temperatures higher than -12°C the net accumulation 

(N) was a function of the precipitation (P), the mean aimual temperature (T) and a 

parameter (m) related to the ablation rate by 

N = P-m(12 + T)" 

Where n = 1 for the linear model of Pollard (1980) or n = 2 for the quadratic model 

of Oerlemans, (1982) and P was assumed, for simplicity, to be independent of T 

over the small temperature range of interest (Doake and Vaughan, 1991). This 

analysis revealed a critical temperature, below which net accumulation is positive 

and above which it is negative. Doake and Vaughan (1991) speculated that small 

changes in temperature could therefore cause a significant change in the net balance 

on the Wordie Ice Shelf, effectively changing the balance from accumulation to 

ablation. They suggested that successive years of net ablation, through increased 

temperature would lead to deterioration of the ice shelf surface. In addition, rifts and 

crevasses would no longer be 'healed/glued' by winter accumulation. Together, this 

would lead to retreat through increased calving. Doake and Vaughan (1991) also 

saw a role for increased meltwater in the disintegration of Wordie Ice Shelf. 

Laboratory experiments show that the fracture toughness of ice is reduced at higher 

temperatures and by the presence of water (Lui and Miller, 1979; Sabo and 

Schulson, 1989). Like Mercer (1978), Doake and Vaughan (1991) suggested that 

higher temperature would lead to more free water at the surface which could then 

percolate down into crevasses. This cpuld increase the pressure at the bottom of 

crevasses, allowing them to grow into rifts (Robin, 1964) or join together basal 
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crevasses (Jezek, 1984). These lines of weakness would increase the production of 

large bergs or 'blocks'. In certain ice shelves (e.g. Brunt), major basal crevasses 

can form as the ice shelf goes afloat at the grounding line thus creating large blocks. 

Because of some restriction (e.g. coastline configuration/persistent sea-ice) the 

blocks are unable to flow away and remain 'glued' together by sea ice and snowfall 

(Doake and Vaughan, 1991). This type of ice shelf contrasts with more 

homogeneous ice shelves such as the Ronne, where glaciers and/or ice streams flow 

unbroken over the grounding line (Doake and Vaughan, 1991). Thus, Doake and 

Vaughan (1991) conclude that ice-front retreat would be a sensitive function of 

mean armual air temperature through changes in net balance and through rifting 

along lines of weakness caused by increased mehwater. 

A similar argument has been developed by Scambos et al. (2000) to explain the 

demise of Larsen-A and B Ice Shelves. They have suggested that most break-up 

events occurred during longer melt seasons and have been caused by surface melt 

ponding (Fig. 2.7). Building on the theoretical work of Weertman (1973) and Van 

der Veen (1998), Scambos et al. (2000) developed a thermodynamic finite-element 

model to evaluate ice flow and strain. A simple extension of this model allowed 

them to investigate crack propagation by meltwater. Scambos et al. (2000) 

suggested that water-filled crevasses penetrate more deeply than air filled crevasses 

because the water pressure opposes the ice overburden pressure (or lithostatic 

stress). Their inverse calculation for the Larsen-B Ice Shelf showed that only 

modest pre-existing crevasse depths (a few tens of meters) are needed for water-

filling to induce crevasse-deepening and ftill thickness fracture (Scambos et al., 

2000). In much the same way as Doake and Vaughan's theory, the ice shelf then 

becomes susceptible to large calving events leading to disintegration. However, not 

all the ice shelves studied by Scambos et al. (2000) conform to this hypothesis (e.g. 

George VI Ice Shelf and Amery Ice Shelf). The focus of this study, George VI Ice 

Shelf has one of the longest histories of melt ponding on its siuface but doesn't 

appear to be in rapid retreat. As will be discussed in greater detail in Chapter 3, this 

may be due to the compressive stress regime within the ice shelf, which opposes 

crevasse widening (Scambos et al., 2000). It is also likely that the Amery Ice Shelf 

(Fig. 2.1) is under compression within the region pf frequent annual melting 

(Swithinbank, 1988; Phillips, 1998; Scambos et al., 2000). Scambos et al. (2000) 
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conclude that the most susceptible ice shelves (based on melt activity) to fiiture 

collapse are the Larsen-C and ice shelves fringing the northern coast of East 

Antarctica (e.g. Riiser Larsen, Fimbul, West and Shackleton; Fig. 2.1). 

More recently Shepherd et al. (2003) have suggested that parts of the Larsen-A and 

B became susceptible to crevasse fracture through a sustained thirming. They 

showed from satellite laser altimetry that between 1992 and its disintegration, the 

Larsen-B ice shelf lowered by up to 0.27 ± 0.11 meters per year. Consistent with the 

link between atmospheric warming and ice shelf collapse they attributed the 

thinning to increased surface melting, but also to enhanced melting at the ice shelf 

base (Shepherd et al., 2003). They stated that, although basal melt rates beneath the 

Larsen Ice Shelf (LIS) are uncertain, basal melt rates of up to 2-3 m have been 

observed beneath the nearby Filchner-Ronne Ice Shelf where tidal mixing between 

local ice shelf water and warmer Weddell Sea Deep Water (WSDW) occurs 

(Joughin and Padman, 2002). They also note that WSDW has warmed by 0.32<'C 

since 1972 (Robertson et al., 2002) and that large quantities of modified WSDW 

have been observed in front of Larsen-C with a temperature of 0.65*'C above the 

pressure melting point of ice (Shepherd et al., 2003). From this they argued that 

ocean-driven melting may provide the link between regional climate warming and 

the successive disintegration of ice shelves. It is also consistent with the earlier 

observation of Domack et al. (1995) who suggested a link between the presence of 

warm Circumpolar Deep Water and the collapse of Muller Ice Shelf. 

In sununary, amplified atmospheric warming on the AP over the last century has 

been widely interpreted as the key-forcing factor for ice shelf retreat, but it doesn't 

necessarily provide the actual mechanism nor can it explain the whole picture (e.g. 

Shepherd et al., 2003). An important feature of many of the ice shelves that have 

collapsed on the AP is the relative speed of disintegration once a certain threshold 

was passed. The rapidity of change implied some internal, structural weakness such 

as the failure of a structural arch. Mechanisms advanced to explain the inception of 

this process, all involve enhanced atmospheric warming. For example, Doake and 

Vaughan (1991) developed a model, which involves the relationship between mass-

balance, and mean annual temperature to explain the collapse of the Wordie Ice 

Shelf. In this model, small changes in the mass balance of the ice shelf, when 
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combined with structurally weak ice, lead to the increase of large block calving 

events and thus ice shelf collapse. Similarly, the meh-ponding mechanism 

developed by Scambos et al. (2000) used to explain the collapse of Larsen-B Ice 

Shelf relates dfrectly to atmospheric warming, and involves the propagation of 

structural weaknesses through increased volumes of surface melt water. More 

recently, several studies have highlighted the importance of changes in ocean 

circulation under the ice shelf; specifically warm deep-water masses (e.g. CDW and 

WSDW) but it is still unclear how these changes relate to atmospheric warming. For 

example, are changes in atmospheric temperature driving changes in CDW and 

WSDW or are changes in CDW driving atmospheric changes through a series of 

positive feedbacks? 

2.2.3. Mechanisms for recent warming 

At presently it is not known what has caused such rapid warming, why it is 

amplified in the region and whether it will continue. In a recent synthesis, Vaughan 

et al. (2003) outlined three plausible mechanisms to explain the recent warming; (1) 

changed ocean circulation; (2) changed atmospheric circulation; and (3) air-sea-ice 

feedback. 

2.2.3.1. Changed ocean circulation 

Oceanographic observations have shown the presence of relatively warm 

Circimipolar Deep Water (CDW) on the continental shelf west of the AP (Hoffman 

et al., 1996). CDW is the warmest and most saline water mass in the AP region 

having a salinity maximum of 34.73 %o and a temperature maximum of + 2°C 

(Table 2.3). CDW is usually further split into Upper Circumpolar Deep Water 

(UCDW) and Lower Circumpolar Deep Water (LCDW) (Baum, 2001). UCDW is 

characterized by low oxygen and high nutrient levels (with sources in the Indian and 

Pacific Oceans) as well as by a relative minimum in temperature south of the 

Subantarctic Front (SAF) induced by the overlying Antarctic Intermediate Water 

(AAIW). LCDW is characterized by high salinity and low nutrients and is derived 

from North Atlantic Deep Water (NADW) (Baum, 2001). The split, in CDW takes 

place in the southwest Atlantic where relatively warm, salty, oxygen rich and 
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nutrient poor NADW meets the Antarctic Circumpolar Current (ACC), splitting the 

CDW into two parts (Baum, 2001). The upper branch of this split retains the oxygen 

minimum, with the lower branch also showing an oxygen minimum induced by 

high oxygen concentrations in both the overlying NADW and the underlying 

Antarctic Bottom Water (Baum, 2001). West of the AP the continental shelf is 

characterised by UCDW, which is derived from off-slope upwelling in association 

with the impingement of the ACC (Fig. 2.8 and 2.9) (Domack et al., 2003a). The 

ACC is the major eastward flowing current in the Southern Ocean. It is principally 

driven by surface wind stress (the Southern Westerlies), although there is a 

significant thermohaline component that is not yet well understood (Hofinann et al., 

1998). The southern edge of the ACC impinges on the AP shelf as it is channelled 

by the Southern Westerlies through the Drake Passage into the Atiantic sector of the 

Southern Ocean forming part of the global ocean circulation cell (Fig. 2.9). The 

southern edge of the ACC meets a colder (<-1.0 °C) more saline water mass 

(Weddell Sea Transitional Water, WSTW) driven out of the northwestern Weddell 

Sea by an East Wind drift (Domack et al., 2003a). The boundary between WSTW 

and the ACC fluctuates between the southern Bransfield Strait and the southern 

Gerlache Strait (Fig. 2.1b) (Domack et al., 2003a). 

It has been suggested that changes in the physical characteristics (e.g. temperature) 

of CDW or its rate of upwelling could influence sea ice extent, thus leading to 

atmospheric feedbacks (Jacobs and Comiso, 1997) (i.e. enhanced CDW = less sea 

ice = less solar backscatter = warming = less sea ice etc). However, at present it is 

difficult to assess this hypothesis due to the lack of oceanic measurements, 

especially time-series data (Vaughan et al., 2003). It has also been suggested that 

CDW could play an important role in the retreat of ice shelves on the west coast of 

the AP (Domack et al., 1995). A similar story is now emerging from the east coast 

of the Antarctic Peninsula (e.g. Shepherd et al., 2003) involving the relatively warm 

WSDW (Table.2.3). Consistent with this mechanism, some late Holocene climatic 

changes (e.g. Little Ice Age) have been linked to the withdrawal of CDW from the 

western continental shelf of the AP (e.g. Shevenell and Kennett, 2002; Ishman and 

Sperling, 2002). 
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Figure 2.8 : Schematic of oceanographic circulation on the western side of 
the Antarctic Peninsula (modified from Hofmann et al., (1996) and Ishman 
and Domack, (1994)). Circumpolar Deep Water circulation is indicated by 
the solid black lines lines. Arrows suggest general flow direction. 
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Figure 2.9. Global oceanographic circulation the in context of Antarctic 

Peninsula and southern Pacific Ocean processes such as El Nino-Southern 

Oscillation (ENSO), South Pacific Gyre, the Antarctic Circumpolar Current 

(ACC) and deep water flow contributed by North Atlantic thermohaline 

processes. Location of the Peru-Chile Current (PCC) is shown together with the 

location of George VI Ice Shelf (GVI-IS) Byrd Ice Core (B) and Taylor Dome 

Ice Core (T). The northerly limit of sea-ice is indicated by a bold dashed line 

(approximate) (modified from Domack and Mayewski, 1999). 
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2.2.3.2. Changed atmospheric circulation 

A second possibility is that large-scale reorganisation of atmospheric circulation 

over the AP has occurred, advecting warmer air into the region (King and 

Harangozo, 1998). Atmospheric circulation and surface temperature over the AP are 

strongly influenced by the position of the circumpolar trough (CPT) of low pressure 

(Domack et al., 2003a). The position and strength of the CPT varies as part of a 

large-scale zonally-symmetric mode of the Southern Hemisphere circulation 

variability in which pressure at all levels varies inversely between middle and high 

latitudes (Domack et al., 2003a). This mode of variability has been given several 

names, including the Southern Annular Mode (SAM) or the Antarctic Oscillation 

(AAO) (Domack et al., 2003a). Within the CPT are regions of low pressure such as 

the Amundsen and Bellingshausen Sea (ABS) (Vaughan et al., 2003). The ABS low 

drives northerly winds onto the west coast of the AP, keeping it relatively mild 

(Vaughan et al., 2003). The steep topography of the AP limits the influence of mild 

northwest air flow across to the eastern AP. Consequently the near surface 

temperatures in the west are warmer than those on the east (Fig. 2.3) (King et al., 

2003). It has been shown (Marshall and King, 1998) that extremely warm and cold 

winters on the AP are associated with circulation changes in the ABS. Thus it 

seems feasible that recent climate changes on the Antarctic Peninsula could be 

driven by circulation changes in the ABS (Vaughan et al., 2003). 

Meteorological data for the ABS part of the AP are however, limited to 

measurements starting after the mid-1970s, making it difficult to determine with any 

degree of reliability whether there have been any significant circulation changes in 

this region (Vaughan et al., 2003). Marshall (2002) has demonstrated a significant 

increase in upper westerly winds between 1969-2000 based on the analysis of 

radiosonde station data, but no increase in the northerly winds thought to be 

associated with warming. A trend to more cyclonic conditions was suggested by 

increased precipitation at Faraday Station (Turner et al., 1997) but this is at odds 

with the automatic depression-tracking data of Simmonds and Keay (2000), which 

indicates a decline in Antarctic cyclone numbers m the ABS over the period 1958-

1997. Other studies have established robust links between atmospheric circulation 

in the ABS and the El-Nino-Southem Oscillation (ENSO) (e.g. Simmonds and 
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Jacka, 1995; Cullather et al., 1996; Trenberth and Caron, 2000; Yuan and 

Martinson, 2000) whilst others have suggested a link between ENSO and sea-ice 

conditions (below). On longer timescales Villalba et al. (1998) have demonstrated 

that the 20* century (AD 1912-1984) has been characterised by extreme ENSO-

related conditions in southern South America. How these processes relate to the 

climate of the Antarctic Peninsula is still poorly understood (Vaughan et al., 2003), 

but the possibility that ENSO-related telecormections are in some way related to 

climate change on the AP remains an important question to address. 

An additional atmospheric explanation for rapid warming in the Peninsula has been 

suggested by Van den Broeke (1998, 2000), which involves the semi-annual 

oscillation (SAO), a twice-yearly contraction/expansion of the CPT causing it to 

grow stronger and move polewards (van Loon and Rodgers, 1984). During this 

phase, synoptic disturbances are more intense on the AP. In addition, several 

authors have noted a decrease in SAO strength since the late 1970's (Hurrell and 

van Loon, 1994; Chen and Yen, 1997). According to van den Broeke (2000) weak 

SAO years are associated with an enhancement of northerly winds, decreased sea-

ice cover in the ABS sector and warming over the AP. These conclusions contrast 

with Marshall (2002) who re-examined this hypothesis and found no correlation 

between changes in wind strength and temperature on the AP and weak (or strong) 

SAO years. Similarly Vaughan et al. (2003) point out that the main changes 

observed in SAO appear to have occurred after the mid-1970s, later than the first 

period of significant warming on the AP (1950-1970). 

2.2.3.3. Air-sea-ice feedback. 

A third mechanism is the amplification of global mean warming by sea-ice-

atmosphere feedbacks (Vaughan et al., 2001). The western AP is the only region in 

Antarctica that shows a strong annual and long-term correlation between sea-ice 

concentration and air temperature (Weatherly et al., 1991). Sea ice tends to suppress 

the transfer of heat from the ocean to the atmosphere during winter, and increases 

the regional albedo (Jacobs and Comiso, 1997; King et al., 2003). Both act to lower 

air temperatures and favour the production of more sea-ice (Vaughan et al., 2001). 

The opposite is also true and may account for the recent warming, with the initial 
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impetus being supplied by local changes in the greenhouse effect, caused by 

anthropogenic emissions or increased water vapour in the atmosphere (Vaughan et 

al., 2003). The directionality of the sea-ice-climate feedback is complex given the 

feedbacks between sea-ice and air temperature and the role CDW plays in 

controlling sea-ice distribution in the western AP. The relationship is complicated 

further by the apparent link between ENSO and sea-ice extent (Simmonds and 

Jacka, 1995; Yuan and Martinson, 2000). Kwok and Comiso (2002) have 

investigated the relationship between positive, neutral, and negative phases of the 

Southern Oscillation Index (SOI) and surface meteorological/sea-ice variations in 

the southern oceans. They found a strong correlation between negative SOI (warm 

phase of ENSO) over the ABS with decreased sea-ice extent associated with high 

sea level pressure. The spatial structure of the sea-level pressure-ENSO relationship 

demonstrated by Kwok and Comiso (2002) exhibit characteristics of the Pacific-

South American telecormection pattern, which has been linked to ENSO by 

Simmonds (2003) (e.g. Fig. 2.9). Interestingly several recent studies have linked 

past (Holocene) climatic changes on the AP with ENSO variability (Shevenell and 

Kennett, 2002; Ishman and Sperling, 2002). However it is unclear at present how 

these changes relate to variations in sea-ice extent. Finally, some have suggested 

that climate change in southwest Africa may effect Antarctic sea ice (Stuut et al., 

2004). 

2.3. Holocene Climate Variability: Terrestrial, Marine & Ice Core 

Records 

The recent rapid regional warming on the Antarctic Peninsula and the collapse of 

several ice shelves has focused research upon longer-term records of environmental 

change. Without a long-term perspective of envirormiental change on the AP it 

remains difficuh to judge the significance of the recent changes in temperature and 

ice shelf extent. To answer this question, research has concentrated on the 

Holocene period, particularly looking for analogous temperature maxima, to 

determine what caused them, what effect they had around the AP, and i f they were 

accompanied by any changes in global sea-level. Several lines of evidence suggest 

that the climate during the mid-Holocene may have been as warm, or warmer than 
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at present. This period of climate variability has been given several names including 

the mid-Holocene hypsithermal (MHH), the Holocene warm interval and the mid-

Holocene climatic optimum. Evidence for the MHH has been identified in marine 

sediment cores (e.g. Shevenell et al., 1996; Yoon et al., 2002; Domack et al., 

2003a), lake and terrestrial records (e.g. Hjort et al., 2003) and ice core records (Fig. 

2.10) (e.g. Mosley-Thompson and Thompson, 2003). The consensus among these 

records is that the MHH occurred between ca. 4500 to 3000 cal yr BP (Ingolfsson et 

al., 2003) in response to enhanced levels of incoming solar radiation, although the 

marine record from the Palmer Deep (Domack et al., 2001,2003a) suggests a longer 

MHH between ca. 9000 and 3500 cal yr BP (Fig. 2.10 and 2.11). The following 

section will provide a review of Holocene marine and terresfrial proxy records from 

the AP. All ages are presented as published imless stated otherwise and are reported 

as calibrated years BP (cal yr BP) or conventional ''*C ages (''*C yr BP). Holocene 

ice-core records from the AP will be considered separately. 

2.3.1. LGM to mid-Holocene (ca. >30000 - 6000 ka BP) 

The Last Glacial Maximum (LGM) provides the natural precursor to Holocene 

environmental change on the Antarctic Peninsula. The timing of the LGM however 

is poorly known owing to the lack of well-constrained chronologies for LGM 

positions of ice margins and the subsequent deglaciation, known as Termination 1 

(Bentley, 1999; Ingolfsson et al., 2003). This is largely due to the lack of datable 

material, and the problems associated with variable carbon reservoirs in the marine 

environment (See section 4.1). Nevertheless, Sugden and Clapperton (1982) 

suggested that the last maximum ice extent occurred later than 30000 '""C yr BP and 

prior to 14000-12000 '''C yr BP based on the terrestrial record. There is strong 

evidence of grounded ice sheets and outiet glaciers extending onto the continental 

shelf during the LGM (e.g. Kennedy and Anderson, 1989; Herron and Anderson, 

1990; Larter and Bartek, 1991; Anderson et al., 1991a, 1992, 2002; Pope and 

Anderson, 1992; Banfield and Anderson, 1995; Bart and Anderson, 1996; Larter 

and Vanneste, 1995; Sloan et al., 1995; Canals et al., 2000; Domack et al., 2001), 

which have enabled reconstructions of the expanded Antarctic Peninsula ice sheet 

(APIS) to be made (Fig. 2.12). The oldest '''C dates constraining the minimum ages 

for ice retreat come from glacial-marine sediments overlying tills on the outer 
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(subm), 14 McMinn (2000), 15 Nichols (1968), 16 Colhoun (1992), 17 Baroni and 
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Inferred Ice Flow Directions 
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Fig. 2.12. Reconstruction of the Weddell Sea embayment during the LGM (from 
Bentley and Anderson, 1998). Dots show sites where ice sheet elevations have 
been constrained by trimlines or over-ridden summits (minimum values). Arrows 
show flow direction indicators (striations). Contours for the former ice sheet are 
drawn perpendicular to the flow directions and their altitudes are fixed by the 
trimlines. Solid lines indicate relatively confident reconstructed contours whereas 
dashed contours are interpolated and are not well constrained. The elevation of the 
ice in the interior of West Antarctica is not well-constrained by the reconstruction. 
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continental shelf (contour lines Fig.2.12) off the west coast of the AP (Banfield and 

Anderson, 1995; Pope and Anderson, 1992; Pudsey et al., 1994). These ages 

indicate grounded ice retreat prior to 14000-13000 '"̂ C yr BP for the Bransfield 

Strait and 12000-11000 yr BP for and Anvers Island. Dates from inner shelf 

areas and fjords and bays on the AP constrain deglaciation of the inner shelf to as 

late as 8000-6000 BP (e.g. Harden et al., 1992; Pudsey et al., 1994; Shevenell et al., 

1996; Hjort et al., 2001). Deglaciation of Marguerite Bay, based on the relative sea-

level curve of Bentley et al. (2005) suggests a minimum age of ca. 9000 ''*C yr BP 

(8368 - 8850 cal yr BP at 1 sigma). In contrast, Domack et al. (2001) have 

published a record from the Palmer Deep (Fig.2.1b), which shows that the inner 

shelf further north might have been deglaciated as early as ca. 13000 cal yr BP (Fig. 

2.11). From an ice core perspective, available continental records (discussed in 

more detail below) show a 'climatic optimum' occurred between 11500 and 9000 yr 

BP when atmospheric temperatures were as warm or warmer than the present day 

(Masson et al., 2000). 

The timing of deglaciation in the presently ice-free terrestrial areas is constrained by 

minimum '"̂ C ages obtained from fossil mollusc shells from raised marine deposits, 

peat deposits in moss banks on sub-Antarctic islands, organic matter from lake 

sediments and fossil penguin remains from coastal rookeries (Ingolfsson et al., 

2003). These dates are mostly minimum ages for deglaciation since there are 

unknown lag times between retreat of ice sheets and glaciers and the colonisation by 

plants and/or animals (Gore et al., 1997; Ingolfsson et al., 2003). On King George 

Island a mollusc yielded a minimum age of 9000-8000 yr BP for deglaciation 

(Sugden and John, 1973; Mausbacher, 1991). A well-dated lithostratigraphic record 

from northern James Ross Island implies deglaciation there was prior to ca. 6300 yr 

BP (Hjort et al., 1997). A similar age has been suggested for deglaciation of Hope 

Bay (Fig.2.1b) based on '"̂ C from a lake sediment core (Zale, 1994). In the southern 

part of the AP, '''C dated barnacle fragments from an ice shelf moraine provided 

minimum ages for deglaciation and possible ice-shelf retreat in George VI Sound of 

6500-5700 yr BP (Clapperton and Sugden, 1982; Hjort et al., 2001). 

Once glaciers were inside the present coastline, glacial refreat and ice disintegration 

occurred much more slowly (Ingolfsson et al., 2003). On King George Island, 
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glaciers were at, or within, their present limits by ca. 6000 yr BP (Martinez-

Macchiavello et al., 1996), on northern James Ross Island prior to 4700 yr BP 

(Hjort et al., 1997) and the Byers Peninsula on Livingston Island deglaciated 

between 5000-3000 yr BP (Bjorck et al., 1996). On Elephant Island, '''C dates from 

the onset of moss-bank formation indicate a minimum date for deglaciation of 5500 

BP (Bjorck et al., 1991). In Marguerite Bay, ''*C-dated remains from fossil penguin 

rookeries suggest initial colonisation occurred between 6500 and 5500 yr BP 

(Emslie, 2001) which is consistent with marine geological evidence which suggests 

a minimum age for deglaciation of 7000-6000 yr BP (e.g. Shevenell et al., 1996). 

Together this data suggests that the transition from glacial to interglacial conditions 

on the Antarctic Peninsula was broadly completed by ca. 6000 yr BP. Interestingly, 

many of these records show that some currently ice-free areas were ice-covered 

until the early to mid-Holocene, which has important implications for retrieving frill 

Holocene records on land. 

2.3.2. Mid-Holocene (5700 - 4000 ka BP) 

Several records indicate glacial readvances during the mid-Holocene. On King 

George Island, Mausbacher (1991) found evidence to suggest increased glacial 

activity between 5000 and 4000 yr BP, which is consistent with the earlier 

observations of Sugden and John (1973) who had suggested glacial expansion after 

6000 BP. Similarly, Hanson and Flint (1989) provided evidence of a glacial 

readvance on Brabant Island (Fig.2.1b) after ca. 5300 yr BP. Following a suspected 

mid-Holocene ice shelf collapse (Sugden and Clapperton, 1980, 1981; Clapperton 

and Sugden, 1982; Hjort et al., 2001), George VI Ice Shelf is thought to have 

expanded after 5700 yr BP. Mid-Holocene glacial readvances on James Ross Island 

and at Hope Bay have also been documented (Hjort et al., 1997; Zale, 1994). 

Offshore, Yoon et al. (2000) have identified cold waters with extensive sea-ice 

conditions in §ord margin sediments on King George Island between ca. 6200 and 

4000 yr BP, which is consistent with Mausbacher's (1991) evidence for increased 

glacial activity. A mid-Holocene cooling is absent, however, in the marine records 

from Palmer Deep and Lallemand Fjord (e.g. Domack et al., 2001; Shevenell et al., 

1996), although a mid-Holocene cool event in the Lallemand Fjord record was 

noted (Fig. 2.10) (Shevenell et al., 1996). From this Hjort et al. (1997) concluded 
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that the readvances on land may reflect regional changes in atmospheric conditions, 

such as increased precipitation associated with warming and increased cyclonic 

conditions. 

2.3.3. Holocene climatic optimum/hvpsithermal (ca. 4500 - 2500 ka BP) 

It has been suggested that following glacier readvance during the mid-Holocene, the 

climate of the Antarctic Peninsula warmed between ca. 4500 to 3000 yr BP 

(Ingolfsson et al., 1998). This mid-Holocene hypsithermal (MHH) appears to have 

been most marked on the Antarctic Peninsula, but has also been observed elsewhere 

in Antarctica (Fig. 2.10). Currently the best dated records have been obtained from 

lake sediments on the South Orkney Islands (Jones et al., 2000) and South Shetland 

Islands (Schmidt et al., 1990; Bjorck et al., 1996) which show a period of rapid 

sedimentation, enhanced productivity and increased species diversity between 4000 

- 2000 ''*C yr BP. The MHH has also been recognised offshore in marine 

sediments. The marine record from Lallemand Fjord (Domack et al., 1995; 

Shevenell et al., 1996) shows an early phase of high productivity between 7500-

5800 cal yr BP followed by their 'climatic optimum', again reflected by higher 

productivity between 4200 and 2700 yr BP. Similarly, a climatic optimum is 

recognised between 6000 and 2500 cal yr BP from marine cores collected along the 

western margin of the northem Antarctic Peninsula (Yoon et al., 2002). The marine 

record from the Palmer Deep (Domack et al., 2001, 2003a) however suggests a 

more prolonged climatic optimum, that started significantly earlier between ca. 

9000 and 3500-2500 cal ka yr BP (Fig. 2.10 and 2.11). It has been suggested that 

this optimum was caused by the intrusion of warm water onto the westem AP 

continental shelf between ca. 9000-6700 cal yr BP (Leventer et al., 2002). As such 

the Holocene optimimi recorded ui the Palmer Deep may reflect oceanic changes, 

whilst the MHH on land may reflect atmospheric temperature changes. 

More recently a small number of studies have highlighted the possibility that some 

ice shelves may have collapsed in response to the MHH. Former absences of ice 

shelves on the eastern coast of the Peninsula (e.g. Prince Gustav Ice Shelf (Pudsey 

and Evans, 2001) and Larsen-A Ice Shelf (Domack et al., 2001; Gilbert and 

Domack, 2003; Brachfeld et al., 2003) and the coastline of East Antarctica (e.g. 

Amery Ice Shelf (Hemer and Harris, 2003)) appear to coincide with the MHH. 
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Pudsey and Evans (2001) provided a long-term perspective on the Prince Gustav 

Channel Ice Shelf (PGIS) (Fig. 2.1b), which collapsed again in 1995. Sediment 

cores show that during the period from -6000 to 1900 cal yr BP (Fig. 2.10) the ice 

shelf was absent. Since 1900 cal yr BP, the shelf was continuously present until it 

collapsed in 1995. One problem with this record however is a poor late Holocene 

chronology. In the absence of marine carbonate (e.g. foraminifera), Pudsey and 

Evans (2001) were forced to date the acid insoluble organic matter (AIOM) fraction. 

Each core yielded a surface sediment age of ca. 6000 yr BP which Pudsey and 

Evans (2001) attributed to the influence of old carbon. To correct their chronology 

they used a 6000 yr BP (1300 yr Antarctic Marine Reservoir Effect (AMRE) plus 

local reservoir of 4700 yr BP) correction. Hemer and Harris (2003) showed that the 

Amery Ice Shelf (AIS) in East Antarctica (Fig. 2.1) retreated at ca. 5700 '"C yr BP. 

Like Pudsey and Evans, (2001), the Amery Ice Shelf sediments contained no 

carbonate and the AIOM fraction, derived from surface sediment, yielded an 

erroneously old core top age (6548 ± 60 ''*C yr BP) which Hemer and Harris 

subtracted from all other (3 further ''̂ C ages) down-core values. As such the ages 

from these two studies must be treated cautiously. By applying a uniform 

correction, these studies assume a constant AMRE offset through time. However 

recent studies (e.g. Crespin et al., 2004) suggest that this is not the case and that the 

Antarctic Marine Reservoir Effect (AMRE) has varied throughout the Holocene. 

These problems have led some researchers to concentrate on new and innovative 

dating techniques. For example, Brachfeld et al. (2003) have successfiiUy developed 

and applied geomagnetic palaeointensity dating to sediment cores retrieved from 

beneath the former Larsen-A Ice Shelf This record indicates the ice retreated 

between 3800 and 1400 yr BP (similar to the 5000-2000 cal yr BP ice free period 

suggested by Pudsey and Evans, (2001)) for the more northerly Prince Gustav 

Channel Ice Shelf) and highlights the potential for utilising such techniques for 

accurately dating environmental changes on the AP. However, not all 

marine/lacustrine sediments are suitable for this technique (S. Brachfeld pers. 

comm.). Thus, at present, and in the absence of sediment that is suitable for 

geomagnetic palaeointensity dating, any sediment cores that contain carbonate 

macrofossils such as foraminifera possess a distinct advantage over AIOM in 

39 



Chapter 2 - Background 

providing a robust dovra core chronologies. The issue of obtaining reliable 

chronologies from the AP is discussed in more detail in Chapter 4. 

2.3.4. Neoglacial Period (ca. 2500-0 ka BP) 

After ca. 2500 ka BP the climate of the AP became cooler until 1500 yr BP (Bjorck 

et al., 1996). On land, several studies suggest that glaciers expanded during this 

period (e.g. John and Sugden, 1971; John, 1972; Sugden and John, 1973; Curi, 

1980; Birkenmajer, 1981; Clapperton and Sugden, 1988; Zale and Karlen, 1989; 

Clapperton, 1990; Lopez-Martinez et al., 1996). Moraines on James Ross Island 

suggest an ice re-advance that coincided with the Little Ice Age (LIA) in the 

Northern Hemisphere (Fig. 2.10), with lichenometric dating yielding ages of ca. AD 

1240, 1720 and 1780-1822 (Curl, 1980). Offshore, Barcena et al. (1998) found a 

significant increase in sea-ice (diatom) taxa after 3000 yr BP in the Bransfield 

Strait. Similarly, Fabres et al. (2000) and Khim et al. (2002) studied several marine 

records form the Bransfield Basin extending back 2850 years, which showed 

neoglacial cooling as well as a LIA cold-pulse. This is also consistent with the 

record from the Lallemand Fjord (Shevenell et al., 1996; Taylor et al., 2001), which 

suggests decreased productivity in the ^ord after 3000 yr BP, persistent sea-ice after 

ca. 2700 yr BP and ice shelf advance into the fjord after ca. 400 yr BP (Fig. 2.10). 

In the Palmer Deep Leventer et al. (1996) and Kirby et al. (1998) suggested that the 

Holocene climatic optimum ended at ca. 2500 yr BP and Domack et al. (2003a,b) 

identify neoglacial cooling beginning at ca. 3500 yr BP and lasting until ca. 150 yr 

BP. A LIA-type event is also recorded in the Palmer Deep, occurring between ca. 

700 and 150 yr BP and is marked by reduced sedimentation and productivity 

(Domack et al., 2003a,b). The Palmer Deep record also defines a Medieval Warm 

Period (MWP) between ca. 1150 and 700 yr BP that is characterised by enhanced 

productivity (Domack et al., 2003a,b) consistent with a record from the Bransfield 

Basin (e.g. Khim et al., 2002) which shows warming between ca. 1000 and 500 yr 

BP. 

In summary, a review of proxy records from the Antarctic Peninsula support a 

regionally consistent pattern of palaeoenvironmental change during the Holocene 
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(Fig.2.10), with events apparently synchronous throughout the region. Specifically, 

the following conclusions can be made: 

1. There is evidence for much more extensive ice cover in the Antarctic 

Peninsula region than today prior to ca. 14000 yr BP 

2. Deglaciation occurred mainly between 14000 and 6000 yrs BP, with outer 

and middle shelf areas deglaciated between 14000 and 8000 yrs BP and 

inner shelf areas as late as 6000 yr BP. Deglaciation appears to coincide with 

an early Holocene climatic optimum between 11500 and 9000 yrs BP 

recorded in several Antarctic ice cores. 

3. There was a mid-Holocene glacial advance in some areas between 5700 and 

4000 yr BP. 

4. There was a Holocene hypsithermal/optimiun with warmer and more humid 

conditions generally between 4000 and 2500 yr BP. The marine record from 

the Palmer Deep however recognises an earlier, longer climatic optimum 

between 9000 and 3000-2500 yr BP. 

5. A late Holocene Neoglacial period lasted between 3000 and 2500 yr BP, 

when the climate became cooler and glaciers and ice shelves expanded 

6. Evidence for a Medieval Warm Period has been discovered in some records 

from about 1150 to 500 yr BP. 

7. Evidence for a Little Ice Age type event has been discovered in several 

records between 700 and 150 yr BP. 

8. Recent rapid regional warming 150 yrs to present. 

2.3.5. Ice Core Evidence 

Information from continental ice cores in the Antarctic has revolutionised our 

understanding of late Pleistocene climate change and has enabled key assumptions 

and theories about the earth system to be tested (e.g. Blunier et al., 1998; Petit et al., 

1999; Domack and Mayewski, 1999). Unfortunately there are not yet any full 

Holocene ice-core records from the AP. In addition the few short ice core records 

which have been retrieved, do not provide a coherent picture, especially of 20"̂  

century climatic variability. The situation is set to improve however, as a drilling 

project currently underway at Berkner Island (Fig. 2.1) is expected to extract an ice 
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core extending back ca. 10,000+ years (Mulvaney et al., 2002). The aim of this 

section is to review what is known about ice-core derived climate records from the 

Peninsula region, before briefly reviewing the Holocene ice core record from 

elsewhere on the Antarctic continent. In the absence of a Holocene ice core from the 

AP, possible linkages between ice cores from the Antarctic Peninsula and other 

continental cores are also discussed. 

2.3.5.1. Antarctic Peninsula Ice Cores 

There are six ice cores from the AP with centiuy-long isotopic temperature records 

(Fig. 2.1b): James Ross Island (JRI) (Aristarain et al., 1990), Dolleman Island (DI) 

(Peel et al., 1992, 1996), T340 on the Ronne-Filchner Ice Shelf (Graf et al., 1988), 

Dyer Plateau (DP) (Thompson et al., 1994), and the two previous Berkner Island 

(BI) ice cores Rl and B25 (Mulvaney et al., 2002). In a recent synthesis of AP ice 

cores, Mosley-Thompson and Thompson (2003) also included two other ice core 

records in order to expand the temporal and spatial coverage of climate variability. 

The Siple core (Fig. 2.1) provides a 550-year proxy climate history (Mosley-

Thompson et al., 1991; Mosley-Thompson, 1992) that covers nearly the same time 

interval as the Dyer cores. Whilst the Plateau Remote core in East Antarctica 

(Mosley-Thompson, 1996) extends both the temporal and spatial coverage and 

allows possible comparisons between AP ice core records and those from the 

interior. The locations of these sites are shown in Figure 2.1 and the key feature of 

each record summarised in Figure 2.13. 

Figure 2.13 shows all the existing (i.e. minus Berkner Island) multi-century ice core 

records from the Antarctic Peninsula. The 5'^0 record from the Dyer Plateau varies 

around a long-term mean between 1505-1989. After ca. 1840 there appears to have 

been a phase of cooling, which lasted until ca. 1920 (Mosley-Thompson and 

Thompson, 2003) followed by progressive enrichment in 5 O values, consistent 

with observed 20* century warming. The pronounced warming observed in the last 

two decades of this record appear to be the warmest of the past 500 year record. The 

record from the DP does appear to indicate that recent warming on the Peninsula is 

exceptional over century-timescales (Vaughan et al., 2003). This is fiirther 
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(a) T340, Ronne Ice Shelf 
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Figure 2.13. The S'̂ O isotopic records from five AP ice cores plus Plateau Remote 
(redrawn Mosley-Thompson and Thompson, 2003): (a) T340 on the Rorme Ice Shelf 
(Graf et al., 1988); (b) Dolleman Island (Peel, 1992); (c) James Ross Island 
(Aristarain et al., 1986); (d) decadal averages of 51^0 from the Dyer Plateau 
(Thompson et al., 1994); (e) decadal averages of 51 ̂ O from the Siple Station 
(Mosley-Thompson, 1992); and (f) The decadal averages of 51^0, from Plateau 
Remote (Mosley-Thompson, 1996). 
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supported by borehole temperature profiles from the Dyer Plateau, which suggest 

cooling in the late 19* and early 20"̂  century followed by a warming over the last 

50 years (Nicholls and Paren, 1993). 

The warming trend at DP however, is absent in the JRI, DI and T340 records from 

the eastern AP and Weddell Sea region. Similarly, the Siple Station ice core shows 

little variation aroimd the mean (between 1500 and 1986) and no 20* century 

warming (Vaughan et al., 2003). The 6'^0 record from Dolleman Island shows the 

most pronoimced interannual variations observed on the Peninsula between 1938 

and 1986, with wanning starting around 1960. However, from the mid-19* century 

to the beginning of inferred warming the record shows an overall cooling trend 

similar to that at T340 and JRI. 

The Plateau Remote record contains century-scale oscillations, with a brief (ca. 30 

year) but strong cooling episode in the early 17* century. Following this, 

conditions remain at or above the long-term mean from 1660 to 1780 after which 

cooling takes place until 1870. Values indicate rapid warming from the end of the 

19* to the beginning of the 20* century followed by a cooling to the present 

(Mosley-Thompson and Thompson, 2003). The ca. 1200 year long Berkner 6'*0 

record (not shown) oscillates around a fairly stable mean, lacks much variability and 

does not appear to record 20* century warming. However, this contrasts with 

borehole data obtained from Berkner Island (Mulvaney et al., 2002), which suggests 

a 0.5-1.0 °C temperature increase in the recent past (Mosley-Thompson and 

Thompson, 2003). With the exception of the Dyer Plateau and Dolleman Island 

therefore, the ice core isotope records from the AP do not record 20* century 

warming. Furthermore, whereas the Dyer Plateau record shows warming beginning 

around 1920, warming in the Dolleman Island record begins much later ca. 1960. 

In summary, whilst 20* century warming has been recorded at several 

meteorological stations across the AP, only one of the AP ice cores (DP) shows 

warming over the entire century, with Dolleman Island (DI) showing warming only 

after 1960. It is worth noting however that a similar late 20* century warming has 

also been observed in a short ice core (Gomez) at the base of the Peninsula 
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(Fig.2.1b) (Peel et al., 1988). Several studies have investigated this apparent 

mismatch between the meteorological records warming on the AP and the 

reconstructed 6'^0 temperature trend inferred from ice cores (Peel and Clausen, 

1982; Jones et al., 1993, Peel, 1992; Peel et al., 1996). What these studies have 

revealed is a complex temperature-8'̂ 0 (T-5) relationship that is strongly 

influenced by regional atmospheric and/or oceanographic forcings. Jones et al. 
1 ft 

(1993) found that, in general, the 5 O records (taken as a proxy for temperature) 

are at odds with the meteorological observations over the last century. A simple 

correlation between temperature and both 6*̂ 0 and 5D from available Peninsula ice 

cores revealed a value of 0.25, leavuig 75% of the temperature variance 

unexplained. In a recent review Mosley-Thompson and Thompson (2003) suggest 

several other factors that could influence the 5'*0 ice core record on the Peninsula, 

such as: (1) temporal changes in moisture sources for different sites; (2) the 

proximity to the sea ice edge, and hence duration and extent of sea-ice; (3) seasonal 

differences in the delivery of snowfall to the site; and (4) the glaciological controls 

on the preservation of the 5'^0 signal after snow deposition. Peel et al. (1996) have 

stated that ice cores exposed to the Weddell Sea may not accurately record regional 

temperature trends but will instead reflect changes in the local weather systems. 

This scenario has been invoked to explain the warming trend in the mid-19* century 

as depicted by T340, DI and JRI ice cores (Fig. 2.13) (Peel et al., 1996). Peel et al. 

(1996) conclude that ice cores from higher altitudes sites (i.e. Dyer Plateau) along 

the spine of the Peninsula are more likely to record regional temperature variations 

than those exposed to local sea ice distributions and local weather systems (e.g. 

Dolleman Island, James Ross Island). 

More recently King and Comiso, (2003) compared new satellite-derived surface 

temperature data from the AP with four ice core sites (James Ross Island, Dolleman 

Island, Dyer Plateau and Gomez). They assessed the spatial coherence of 

temperature variations by correlating time-series of temperature at a base point (i.e. 

ice core site) with corresponding time series at all other points in the satellite 

temperature dataset. The resulting maps reproduced in Figure 2.14 highlight regions 

with which temperature at the base point is highly correlated and may therefore be 

considered representative. James Ross Island thus appears to be representative of 
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Figure 2.14. Correlation coefficients of winter (June-August) mean surface 
temperatures at (a) James Ross Island, (b) Dolleman Island, (c) Dyer, and (d) Gomez 
with other points in the satellite-derived surface temperature dataset. The base point 
for each map is marked with a black cross (from King and Comiso, 2003). Yellow 
shading shows areas where there is a high correlation (coefficient >0.75) with 
temperature variation at ice core site. Thus the yellow areas could be considered as 
those regions for which the ice core is representative. 
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the northern tip of the AP and the South Shetland Islands, whilst the Dolleman 

Island ice core appears to reflect weather conditions in the Weddell Sea (King and 

Comiso, 2003). Of the interior ice core sites (Siple, Dyer and Gomez), only the 

short-time record from Gomez correlates with temperature trends on the west side 

of the AP (Fig.2.12). It is worth noting however that the spatial coherence plots 

only provide a snapshot in time and do not take into account temporal variability. 

The lack of a suitable long-term ice core record from the Antarctic Peninsula and 

the absence of a single coherent climate reconstruction make any conclusions 

regarding the long-term nature of climatic changes on the AP from ice cores 

problematic. In a synthesis of recent warming on the AP, Vaughan et al. (2003) 

used proxy data (marine/ice core records) to suggest that the rapidity and magnitude 

of 20* century warming is unprecedented over the past two millennia and is 

unlikely to be a natural mode of variability. From an ice core perspective, this 

conclusion can only be viewed as tentative and cannot be tested until a longer ice 

core record is retrieved. 

So, how do other Antarctic ice core records compare to the available Peninsula ice 

cores? Mosley-Thompson and Thompson (2003) suggested that on millennial time 

scales the climate in the Antarctic Peninsula may be tightly coupled to that on the 

East Antarctic Plateau, although they provide no clear evidence why this should be 

the case. The S'̂ O record from Plateau Remote (PR) extends back to 4000 years 

(Mosley-Thompson et al., 1996) and shows a general cooling trend with three 1200-

year oscillations (Fig. 2.13 and 2.15). Warming is inferred between 4000 and 2500 

ka, which they note is broadly contemporaneous with more open conditions in 

Lallemand Fjord (Shevenell et al., 1996) on the west coast of the Peninsula 

(Fig.2.1b), warmer conditions inferred from depleted '̂ O values in the high 

resolution sediment core record from the Bermuda Rise, Sargasso Sea (Keigwin et 

al., 1996) (Fig. 2.15) and the Holocene hypsithermal recorded in several other 

Antarctic ice cores. Thus, in the absence of a long AP ice core Mosley-Thompson 

and Thompson (2003) suggest the Plateau Remote ice core offers a link, through 

some teleconnection, between the AP and the East Antarctic Plateau. Unfortunately 

the utility of this record for inferring long-term climatic changes on the AP is again 
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Figure 2.15. Proxy records covering the last four millennia (adapted from Mosley-
Thompson and Thompson, 2003): (a) the isotopic abundance in G. Ruber tests in a 
high resolution sediment core from the Bermuda Rise (Keigwin, 1996); (b) Total 
Organic Carbon (TOC) from a sediment core in the Lallemand Fjord, Antarctic 
Peninsula (Shevenell et al., 1996); and (c) the 100-year averages of 5180 from an 
ice core at the Plateau Remote site in East Antarctica (Mosley-Thompson, 1996). 
The apparent correlation between the Lallemand Fiord TOC record and the Plateau 
Remote ice core record led Mosley-Thompson and Thompson, (2003) to suggest 
that Plateau Remore ice core record may record climate changes on the western 
AP. 
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limited to the last 4000 years. For a longer-term perspective we must turn our 

attention to other continental ice cores. 

2.3.5.2. Continental and coastal ice cores 

In the absence of a full Holocene AP ice core, the longest records, offering entire 

Holocene 5**0 and 5D sequences are located on the central East Antarctic Plateau 

(Vostok, Dome B, Dome C -EPICA, Komsomolskaia), at coastal sites in East 

Antarctica (D47, KM105, Law Dome) and on both sides of the Ross Ice Shelf 

(Byrd, Taylor Dome) and Dominion Range in the Transantarctic Mountains (Fig. 

2.16 and locations in Fig.2.1b). In brief, all records appear to shown an early 

Holocene optimum (11500-9000 yr ago), which Masson et al. (2000) attribute to 

reduced interhemsipheric heat transport by the global thermohaline circulation 

following Northern Hemisphere deglaciation (see below) (e.g. Blunier et al., 1997). 

Secondary warm periods are observed at ca. 8000 to 6000 years ago in the Ross Sea 

sector (e.g. Taylor Dome, Dominion Range and Byrd) at ca. 6000 to 3000 yr ago at 

central locations (e.g. Dome B, Vostok) and ca. 3000 years ago at Dome C, 

Dominion Range and Byrd. Superimposed upon the long-term trend are nine quasi-

periodic millennial-scale oscillations, with a spacing of ca. 800 years during warm 

periods and ca. 1200 years during cooler periods (Masson et al., 2000; Masson-

Delmotte et al., 2004). 

In terms of the west coast of the AP, the ice cores in the Ross Sea sector (e.g. Taylor 

Dome and Byrd) are most likely to record Holocene climatic trends (Peel et al., 

1994). Research has shown that the moisture budget of Byrd Station and the Ross 

Sea sector are largely controlled by atmospheric and oceanic processes occurring 

locally in the Amundsen Sea (Steig et al., 2001) and those occurring in the Southern 

Pacific Ocean (see Fig. 2.9) (e.g. Southern Westerlies and El Nino-Southern 

Oscillation; ENSO; Bromwich and Rogers, 2001). Figure 2.17 shows the Holocene 

ice core records for Taylor Dome, Byrd and Plateau Remote. The EPICA core has 

also been included since it provides an estimate of temperature changes, although 

this may not be applicable to the Ross Sea cores. Interestingly, the Plateau Remote 

ice core profile, suggested by Mosley-Thompson and Thompson (2003) to provide a 
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Figure 2.17. Holocene ice cores (200 yr averages) isotopic records from Antarctica 
which may be representative for climatic change on the Antarctic Peninsula (see text 
for discussion): (A) Temperature anomaly data from EPICA ice core; (B) Byrd 6D 
(Hammer et al. 1994) and corrected for elevation after Masson et al. (2000); (C) Taylor 
Dome 8D (Steig et al. 1998); (D) Plateau Remote 6D (Mosely-Thompson, 1996). All 
ice cores show an early Holocene climatic optimum (11500 to 9000 yr), followed by 
cooling ca. 8000 yr. Taylor Dome ice core shows secondary optimums between 7900 
and 5900 and between 4000 and 2000. The latter profile is consistent with Plateau 
Remote, which according to Mosley-Thompson and Thompson (2003) may best 
record climatic changes on the western side of the AP. 
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link between the climate of the AP and the interior, is most similar to the Taylor 

Dome Ice core, which shows a warming interval between 2000 and 4000 yr BP. As 

noted above, this is also coincident with warmer conditions recorded at Lallemand 

Fiord on the west coast of the AP. The Byrd and TD records appear divergent in the 

Mid-Holocene between 8000 and 4000 yr BP but this could reflect elevation 

changes at Byrd (Steig et al., 2001). Thus as a first approximation, the long 

continental ice cores from the Ross Sea region, notably Taylor Dome, appear to 

record Holocene climatic changes similar to those on the west coast of the AP. 

2.3.6. Mechanism for Holocene climatic change 

In section 2.3 potential mechanisms for the recent (20*-21^' Century) AP warming 

were discussed. These suggested a complex interplay is occurring between, 

atmospheric (e.g. ENSO/South Westerlies), oceanic (e.g. changes in CDW/ACC) 

and sea-ice components. A similar story is now beginning to emerge from 

Holocene palaeoclimatic records on the west coast of the AP. In the absence of a 

detailed long-term (complete Holocene) ice core record it appears that Taylor Dome 

and/or Byrd offer the most promising ice core record of Holocene climatic changes. 

On the AP itself marine sediment sequences represent the best high-resolution 

palaeoenvironmental archive of oceanographic changes (e.g. Palmer Deep; Domack 

et al., 2001) and are beginning to provide a framework with which to compare 

forcing factors of natural variability (e.g. Domack et al., 2003b). The most obvious 

forcing mechanism is changes in solar insolation as controlled by the precessional 

index over the last 14,000 years (Fig. 2.11) (Berger and Loutre, 1991). Orbital 

calculations (Berger and Loutre, 1991) show summertime insolation at high 

southern latitudes (65°S) has been increasing over much of the Holocene (from ca 

10000 yr BP to present; Fig. 2.11). At face value this increase in insolation over the 

Holocene implies that events such as the MHH may have been initiated through 

increases in incoming solar insolation, although it cannot explain why the MHH 

ended at a time of peak solar insolation (Fig. 2.10 and 2.11). In addition, according 

to Domack et al. (2003a,b) the insolation curve is at odds with the records from the 

Palmer Deep, which indicates progressive cooling, and reduced sediment 

accumulation over the last 5,000 years (Fig. 2.11). They suggest that another forcing 

mechanism is responsible for the millennial-scale change observed in this record 
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(Domack et al., 2003a,b). One alternative mechanism may be related to changes in 

ocean circulation (Domack and Mayewski, 1999). The early Holocene optimum 

recorded in all Antarctic ice cores occurs at the same time as Northern Hemisphere 

summer insolation maxima (e.g. 11000 yr BP). At the end of the Northern 

Hemisphere deglaciation, a reduced northern Atlantic thermohaline circulation 

could contribute to warm conditions in high southern latitudes (Blunier et al., 1997). 

The end of northern deglaciation was marked by the switching-on of North Atlantic 

circulation, thereby removing the heat from high southern latitudes and ending the 

early Holocene optimum in Antarctica. This bipolar seesaw argues for 

asynchronous interhemsipheric climate response between Northern and Southern 

Hemispheres (Broecker, 1998). Several other studies have pursued the link between 

changing ocean circulation and AP climate change. On millennial time-scales 

Domack et al. (2003a,b) have suggested a link between climate change on the AP 

and the South Pacific Gyre through a connection between the Antarctic Circumpolar 

Current (ACC) and the Peru-Chile Current (PCC) (Fig.2.9). The PCC and ACC 

occur along the eastern limb of the gyre and therefore reflect changes in its strength 

of circulation and advection of warmer sub-tropical water (Domack et al., 2003a,b). 

Concurrent changes in the Palmer Deep record and changes in Central and South 

America have been linked with this cormection (Haug et al., 2001). 

Other researchers have suggested a complicated link between the El-Nino Southern 

Oscillation (ENSO) and climate change on the AP. Past ENSO variability has been 

inferred from mollusc analysis at archeological sites located on the north and central 

coast of Peru (Sandweiss et al., 2001) and fi-om palaeolimnological studies in the 

Galapagos Islands (Steinitz- Kannan et al., 1998). In southwestern Ecuador, the 

fi-equency of clastic laminae in a lake record was interpreted as linked to changes in 

ENSO (Rodbell et al., 1999; Moy et al., 2002). According to this data. El Nino was 

suppressed prior to 7000 yrs BP, and ENSO variability increased during the Middle 

and Late Holocene and peaked at 1200 yrs BP. Numerical experiments using a 

coupled ocean/atmosphere model have shown that seasonal insolation due to 

changes in the Earth's orbital parameters might explain the suppression of El Nino 

before 7000 yrs BP and the increasing ENSO variability after that date (Clement et 

al., 1999, 2000). 
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On the AP, Shevenell and Kennett (2002) and Ishman and Sperling (2002) have 

demonstrated strong links between late Holocene oceanographic perturbations in the 

Palmer Deep record and ENSO, implying that late Holocene oceanic changes (ca. 

3600 yr BP to present) on the AP are predominantly driven by atmospheric 

processes. Interestingly this teleconnection is thought to involve Upper Circumpolar 

Deep Water (UCDW), which has also been implicated in recent climatic change on 

the AP (Vaughan et al., 2001). Between ca. 9000 and 3700 ka BP the Palmer Deep 

record is devoid of foraminifera, which Shevenell and Kennett (2002) attribute to 

the presence of (corrosive) UCDW. They argue that sustained UCDW presence 

resulted in warmer regional atmospheric temperatures, decreased sea-ice cover and 

increased primary productivity. They go on to suggest that the presence of UCDW 

was directly related to decreased westerly wind strength related to ENSO 

variability. Intervals of increased UCDW in the Palmer Deep appear to correlate 

with less intense westerly winds, inferred from the sea-salt record of the Siple Dome 

Ice Core (Kreutz et al., 1997). There is also evidence from the Southern Ocean 

(Pacific sector) for decreased meridional wind strength (or ENSO) and decreased 

West Antarctic sea ice during this time period (Stager and Mayewski, 1997). After 

3700 yr BP the Palmer Deep sequence exhibits a significant shift in sedimentary 

character, which is coincident with a southward shift in the Intertropical 

Convergence Zone (ITCZ) (e.g. Baker et al., 2000; Haug et al., 2001) and an 

increase in ENSO strength and low-latitude climate variability (Sandweiss et al., 

1996; Rodbell et al., 1999). In the Palmer Deep record, Shevenell and Kennett 

(2003) suggest that this may have resulted in a general increase in the presence of 

shelf water (replacing UCDW) and westerly wind strength between ca. 3600 and 50 

yrs BP resulting in a general cooling. They suggest that predominantly offshore 

winds could push the southern boundary of the ACC off the western AP continental 

shelf, thereby depressing the volume of UCDW in Palmer Deep (e.g. Hoffinan et 

al., 1996; Smith et al., 1999). Shevenell and Kennett (2003) also argue that the 

changes observed in the Palmer Deep record occur too rapidly to reflect 

telecormections to the Northern Hemisphere oceanographic system. 

Surprisingly, Ishman and Sperling (2002) arrived at a different conclusion for the 

early Holocene when they analysed the overall foraminiferal composition of the 

same PD cores. They suggest that between ca 9000 to 3700 yr BP, UCDW was 
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absent (rather than enhanced) in the PD site and saline shelf water dominated. They 

do however agree with Shevenell and Keimett (2003) for the late Holocene period 

(ca. 3700 to 50 yr BP), suggesting a strong telecoimection between the AP and the 

El Nino-Southern Oscillation. There is a fiirther problem associated with the PD 

record, in that it appears to record a much longer Holocene oceanic warm signal 

compared to other AP proxy records (Fig. 2.10 and 2.11). This may, as some have 

suggested (e.g. Ingolfsson et al., 2003), simply reflect the paucity of terrestrial and 

ice core records extending beyond 6000-5000 yr BP. Alternatively it could simply 

reflect the fact that the PD site is recording mainly oceanographic changes, whilst 

terrestrial (lake, moss bank, ice cores) provide more direct evidence for atmospheric 

temperature changes. This could imply that the terrestrial and marine records are 

decoupled, at least for the period prior to the MHH consensus between 4500-2500 

yrBP. 

In summary, Holocene climate change on the AP appears to reflect the interplay 

between atmospheric, oceanic and probably solar forcing. The relative importance 

of each of these variables is still unclear but there appears to be a strong link 

between atmospheric reorganisations in the tropical Pacific and oceanographic 

changes around the AP. 

2.4. Summary 

Temperature records show that the AP has warmed at a rate of 3.7 ± 1.6°C over the 

last century, a value far greater than the global mean. Several mechanisms have 

been proposed to explain the recent atmospheric warming including; changed ocean 

circulation, changed atmospheric circulation and regional sea-ice-atmosphere 

feedbacks, ft has proved difficult to separate these variables and the most likely 

forcing scenario involves an interplay between several of them. The most publicised 

aspect of recent warming and central to this thesis has been the collapse of several 

ice shelves on the AP (e.g. Fox and Vaughan, 2001 and references therein). This has 

refocused attention on the role of ice shelves in controlling the stability of the West 

Antarctic Ice Sheet (WAIS) (e.g. de Angelis and Skvarca, 2003; Scambos et al., 

2004; Rignot et al., 2004). The link between increased AP temperatures and ice 

shelf retreat is now firmly established, although more recent studies have suggested 
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that changes in ocean circulation may play an important role in ice shelf stability 

(Shepherd et al., 2003). At present it is still largely unknown whether such changes 

have occurred in the past in response to natural climatic forcing, thereby making it 

difficult to judge the significance of the rapid warming and ice shelf collapse. 

Whilst there is no Holocene ice core record from the Antarctic Peninsula, high-

resolution marine (Palmer Deep, Lallemand Fiord) and terrestrial (e.g. Signy Island, 

James Ross and South Shetland Island) records show that the climate of the AP has 

varied throughout the Holocene (Fig. 2.10 and 2.11) (Bjorck et al., 1991; 1996; 

Shevenell et al., 1996; Jones et al., 2000; Domack et al., 2001). These studies have 

also suggested that the climate of the Holocene was forced by the complex interplay 

between atmospheric (e.g. ENSO/Southem Westerlies) and oceanic changes (e.g. 

CDW/ACC). Notably, ice core records suggest a period of Early Holocene warmth 

between 11500 and 9000 yr BP (Masson et al., 2000; Masson-Delmotte et al., 

2004). The end of this warmth also coincides with the appearance of UCDW on the 

western continental shelf of the AP and warmer conditions at Palmer Deep 

(Leventer et al., 2002). A secondary warm interval, widely referred to as the Mid 

Holocene climatic Hypsithermal or optimum appears to have occurred sometime 

between 4000 and 2000 ka cal yr BP and has been documented in numerous marine 

and terrestrial records (see Hodgson et al., 2004 and references therein). 

Significantly for this thesis, this warm interval has been implicated in the collapse 

of the Prince Gustav Ice Shelf on the northern tip of the AP and the Larsen-A ice 

shelf Although the evidence so far has been restricted to two studies, and these 

studies have been of recently collapsed ice shelves, this implies that the 

disappearance of ice shelves on the AP is not unique and advance and retreat of AP 

ice shelves may have occurred in response to periods of natural climatic forcing. 
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Chapter 3 
G E O R G E V I I C E S H E L F - PAST 
HISTORY, PRESENT 
BEHAVIOUR AND POTENTIAL 
F U T U R E C O L L A P S E 

3.1. Introduction 

George VI Ice Shelf (GVI-IS) is the largest ice shelf on the west coast of the AP, 

covering a total area of 25,000 km^ (Fig. 3.1). The northern margin of GVI-IS marks 

the southernmost occurrence of recent ice-shelf retreat and according to Vaughan 

and Doake (1996) is nearing its thermal limit of stability (Fig. 3.1 and Chapter 2). It 

has shovra persistent but minor retreat over the last 20 years and perhaps since 1936 

(Lucchitta and Rosanova 1998). I f Vaughan and Doake's (1996) prediction is 

accurate and we are witnessing the first stages of collapse then it is critical that we 

examine the ice shelf carefiilly in its pre-collapse phase and re-evaluate what is 

already known firom existing studies of this ice shelf Such information is essential 

i f we are to gain any insight into mechanisms for ice shelf collapse and to judge the 

significance of recent ice shelf changes. 

The aim of this chapter is threefold. First, to review what is known about the 

evolution and dynamics of George VI Ice Shelf (GVI-IS). Second, to review what is 

known about the late Quaternary history of the ice shelf, and whether this can 

provide information as to its current state and likely behaviour in the future. 

Thirdly, to discuss mechanisms that could contribute to the collapse of GVI-IS both 

in the past and the future. 
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Figure 3.1. Map of the Antarctic Peninsula showing the location of George 
VI Ice Shelf the largest ice shelf on the west side of the AP. Ice shelves that 
have collapsed in the late 20th century (labelled with dates of collapse) lie 
within a key -5 °C (blue line) to -9 °C (red line) isotherm boundary (taken 
from Morris and Vaughan 2003). This boundary now covers a large portion 
of George VI Ice Shelf Also shown are the locations of Fossil Bluff (FB), 
Hobbs Pool (HP) and Two Step Cliffs (TS) referred to in the text. 



Chapter 3 - George VI Ice Shelf 

3.2 George VI Ice Shelf - Evolution and dynamics 

The first section provides a brief introduction to the geological evolution of George 

VI Sound its topography and geology, before the glaciology and surface 

characteristics of the ice shelf are reviewed. 

3.2.1. Geological Evolution of George VI Sound 

George VI Ice Shelf occupies George VI Sound, a curvilinear channel along the 

west coast of the AP, separating Alexander Island from Palmer Land (Fig. 3.1). It is 

500 km in length with a width of 25 km in the north widening to over 70 km in the 

south (Maslanyj, 1988). It is the site of a major divide between the Mesozoic fore-

arc sediments of Alexander Island and the Lower Cretaceous magmatic arc-related 

rocks of the Antarctic Peninsula (Crabtree et al., 1985; Maslanyj, 1987). 

Since it was first observed from the air by Ellsworth in 1935 (Joerg, 1937) and later 

travelled over by the British Graham Land Expedition (1934-37) (Rymill, 1938), the 

origin of George VI Sound has been the source of much debate. It has been 

variously interpreted as a tectonic valley (Fleming et al., 1938) and/or a structurally 

controlled glacial or fluvial valley (Nichols, 1953). Many now consider George VI 

Sound to represent part of a downfaulted rift system along the west side of the 

Antarctic Peninsula that was probably the result of Tertiary intra-arc extension 

within the Mesozoic and Cenozoic magmatic arc of the Antarctic Peninsula 

(Crabtree et al., 1985; Storey and Garrett, 1985; Maslanyj, 1987, 1988). Direct 

evidence for the age of channel 'opening' however, is still limited. Field evidence 

indicates that the youngest rocks to have been displaced are Albian age (113-97 Ma) 

(BAS Geological Map, 1982) but according to Maslanyi (1988) its youthful 

topography suggests it probably formed since 50 Ma ago along an older more 

extensive tectonic boundary (Crabtree et al., 1985). This period of time is also 

correlated with the cessation of magmatism along the Peninsula (Barker, 1982). 
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3.2.1.1. Geology of George VI Soimd 

George VI Sound separates two distinct geological terranes (Crabtree et al., 1985). 

Palmer Land is mainly formed of calc-alkaline volcanic and plutonic rocks that 

constitute the Mesozoic magmatic arc of the Antarctic Peninsula (Crabtree et al., 

1985). In contrast the part of Alexander Island, which borders the sound is made up 

of thick marine volcaniclastic sedimentary rocks (Fossil Bluff Formation; Taylor et 

al., 1979), which were derived from the sub-aerial volcanic arc of Palmer Land. 

The Fossil Bluff Formation, consisting mainly of shale, arkosic sandstone, 

conglomerate and volcaniclastic and terrestrial (deltaic) material was deposited in a 

downfaulted marine fore-arc basin during the late Jiu-assic to early Cretaceous 

(Suarez, 1976; Bell, 1973). Thus George VI Sound is situated on a remarkable 

geologic boundary separating sedimentary rocks on the west from crystalline rocks 

on the east. 

3.2.1.2. Sub-glacial topography 

The topography of George VI Soimd is characterised by deep, steep sided trench 

slopes and an irregular surface morphology, with bedrock depths ranging from 400 

to 1000m (Fig. 3. 2) (Bishop and Walton, 1981; Maslanyj, 1988). Primarily a 

structural feature, the topography of the channel has subsequently been modified by 

glacial activity. The most comprehensive study of the topography of the sound has 

been provided by Maslanyj (1987). The profiles show that the bathymetry of 

George VI Sound changes along its length (Fig. 3 2). In the north, two lateral 

troughs up to 800m deep are separated by a central ridge (Fig. 3.2 profile C-D) 

(Crabtree et al., 1985). This W-shaped cross section is not apparent along the entire 

length of the sound. Where it is observed, there is a marked asymmetry, being 

narrower on the western side and deeper and more open on the east (Maslanyj, 

1987). It has been suggested that the two lateral troughs were eroded, or at least 

modified by ice during the last glacial maximum when grounded ice existed in the 

sound. The deeper eastern trough probably reflected greater ice discharge from the 

Peninsula (Crabtree et al., 1985). In the central section, the bedrock topography 

suggests a change m structiu-al trend (Maslanyj, 1987). The profiles indicate the 

presence of a prominent NE-SW trough, which becomes E-W towards the Ronne 
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Chapter 3 - George VI Ice Shelf 

Entrance. In the south, hydrographic soundings show a deep channel extends out 

into the Ronne Entrance, indicating a seaward extension of the trough shown in 

profile I-J in Figure 3.2. Similarly, in the north a deep-water charmel extends for at 

least 200 km north of George VI Ice Shelf into Marguerite Bay (Maslanyj, 1987; 6 

Cofaigh, unpublished data). 

3.2.2.Character and Dvnamics of George VI Ice Shelf 

The thickness of GVI-IS varies from 100m near the northern ice front to a 

maximum of 600m in the south at 72°50'S, 67°50'W (Fig. 3.2). The thickest region 

of the ice shelf occurs on a line between the coast of Alexander Island (Fig. 3.2) 

(72°38'S, 70°10'W) and the AP coastiine (73°06'S, 69°10'W) (Potter and Paren, 

1985). The ice shelf then thins from this point (Fig. 3.2) towards both ice fronts 

(Potter and Paren, 1985) making the thickest point appear like an inverted sill in 

profile (Fig. 3.2). The Ronne Entrance is normally ice free during the summer but 

the southern margin abuts fast ice. The northern ice front has one small polynya on 

its western margin during the summer but is otherwise icebound (Potter and Paren, 

1985). 

The ice shelf receives most of its ice from the AP (46 km^ a"') although glacier ice 

from Alexander Island (12 km^ a'') is also significant (Reynolds and Hambrey, 

1988). Flow lines constructed for the ice shelf based on the distribution and 

orientation of surface meltpools shows the majority of ice discharge is towards the 

northem and southern ends where seasonal calving occurs (Pearson and Rose, 1980; 

Reynolds and Hambrey, 1988). The ice shelf decelerates as it flows westwards 

across the sound from c. 400 ma" ' near the grounding line to c. 30 m a'' near 

Alexander Island (Bishop and Walton, 1981; Reynolds and Hambrey, 1988). In 

some places the ice shelf flows across the sound with a westerly component 

(Reynolds and Hambrey, 1988), impinging against Alexander Island resulting in a 

zone of pressure ridges. Where the ice shelf grounds an impressive ice-shelf 

moraine has been created (Sugden and Clapperton, 1981). At two places near the 

Ablation Point (Fig. 2.1b) area the grounded ice shelf blocks the mouth of two 

valleys where it impounds tidal lakes (Heywood, 1977). The environmental setting 

of these two epishelf lakes is described in more detail later. 
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In a study of the mass balance of the entire ice shelf it was suggested that GVl-IS is 

in near-balance, with accumulation matching ablation (Potter et al., 1984, 1988). 

Ablation occurs in summer at low-lying margins of the ice shelf and throughout the 

year at the bottom of the ice shelf (Potter and Paren, 1985). The major component 

of mass wastage is through basal melting, with the balance being maintained by the 

input of glacier ice from the AP and Alexander Island. To balance accvimulation 

over the catchment with ice losses the calculated equilibrium basal melt rate is 2 ± 

O.l m a' (Lennon et al., 1982; Potter et al., 1984) but theoretically it could be as 

high as 10 m a"' at the ice front (Leimon et al., 1982). The calculated basal melt rate 

agrees well with recent direct measurements using phase sensitive radar, which have 

yielded a basal meft rate of 2.78 ± 0.08 m yr"' (Corr et al., 2002). By applying the 

smaller equilibrium basal meft of 2 ± 0.1 m yr"' to the whole ice shelf this equates to 

53 km â"' total meft at the base of GVI-IS (Potter et al., 1984). To put this in 

context, although GVI-IS only represents 1.5 % of the total area of all ice shelves in 

Antarctica, it will, i f in equilibrium, supply 10% of the total meft for Antarctica 

(Potter et al., 1984; Jacobs et al., 1992). If the basal meft value of Corr et al. (2002) 

is applicable over the whole area then this value will be significantly higher. It is 

thought that such a high basal melt rate is a direct consequence of intrusions of 

warm Upper Circumpolar Deep Water (UCDW) from the southeast Pacific Basin 

which emerges onto the Pacific continental shelf of the AP and extends beneath 

George VI Ice Shelf (Lennon et al., 1982; Potter and Paren, 1985). Multi-year fast 

ice occupies the northern entrance of GVI-IS and acts to dampen tidal swell and 

protect the ice margin. As a result, the ice front advances for several years before 

breaking back episodically (Potter and Paren, 1985). Calving occurs along natural 

rifts and fissures, which penetrate the entire depth of the ice shelf along its northern 

front (Potter and Paren, 1985). 

The thermal properties of GVI-IS also change along its length. Based on 10 m depth 

profiles, Bishop and Walton (1981) noted that the temperature of the ice shelf 

warms from around -10°C in the central melt-lake area of the ice shelf (~ 70°45' to 

71°45'S) to around -2°C near the northern ice front (~70°00'S). Paren and Cooper 

(1988) investigated this fiirther using thermistor chains installed at three sites 
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between 70°00' and 70°30'S. Their observations were consistent with those of 

Bishop and Walton (1981) and show that as ice flows towards the northern ice front 

it becomes more temperate. Paren and Cooper (1988) suggested that heat from sea 

water and from the percolation of meh water at the upper surface, both of which 

release latent heat on re-freezing, progressively warms the ice shelf Recorded 

temperatures at mid depth (the coldest level in the ice shelf) were - 6°C at 70°30'S, 

-4°C at 70°15'S and -1.6°C to -1.8°C at 70°00'S depending on the time of year. 

These data show that the temperatures near the ice front are warmer than the 

freezing point of fully saline seawater (Paren and Cooper, 1988). 

3.2.3. Surface Features 

3.2.3.1. Surface Meltpools 

During the ausfral summer GVI-IS undergoes extensive surface melting (Fig. 3.3 

and 3.4). This is most apparent in the central area of the ice shelf from lat. 70°15' to 

72''00'S where surface meltwater lakes form (Fig. 3.4) (Reynolds, 1981a; Reynolds 

and Hambrey, 1988). Surface ponding has been observed on GVI-IS since the early 

1940's and begins to appear in December. Between 1989 and 2000 ponding was 

observed every year except 1994, most frequently and earliest in the region between 

Fossil Bluff and Ablation Point (Scambos et al., 2000). The distribution of 

meltpools is still something of an enigma but they appear to occur where; (1) mean 

annual temperature lies between -6 °C and -10 °C; and (2) the surface net balance is 

almost zero (Reynolds, 1981a). In addhion the compression of the ice shelf from 

Palmer Land glaciers is thought to inhibit the formation of crevasses, which could 

otherwise drain the surface meltwater (Reynolds, 1981). Instead, meh water 

percolates through the upper fim and accumulates on an impermeable ice layer 

formed by the freezing of the previous summers meh (Pedley et al., 1988). With 

continued ablation the water levels rise to form freshwater pools, except where they 

are allowed to drain in areas where the ice shelf is much thinner. Two dominant 

spatial patterns of meltpools have been identified (Reynolds, 1981a). The primary 

trend is for large elongate lakes that appear to reflect flow lines within the ice shelf 

(Fig. 3.3 and 3.4) (Reynolds and Hambrey, 1988). These are intersected by a 

secondary set of meltpools, which are thought to be wind-induced since they are 
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Figure 3.3. Meltpools on George V I Ice Shelf. The distribution of meltpools is 
restricted to between 70° 15' to 72°00'S (area shown in Fig. 3.1 and 3.4.). (a) 
Radarsat image of GVI-IS and Alexander Island taken on 6/1/2003 (British 
Antarctic Survey) showing a prominent southern boundary to the area of surface 
melt. It is worth noting that this is not a processing artefact or image boundary 
and ground-truthed by low level reconaissance (see below); (b) Oblique aerial 
photography from an aircraft taken on 6/1/2003 (photo: Adrian Fox) showing the 
dominant flow patterns (curved bottom to top) and wind induced meltpools (left 
to right); (c) showing the southern-most limit of the meltpools which forms an 
abrupt apex (inset in (a)) (photo: Adrian Fox). The horizontal distance in the 
foreground of photos (a) and (b) is ~ 2-3 km. 
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Chapter 3 - George VI Ice Shelf 

parallel to the prevailing northerly wind direction (Fig. 3.3 and 3.4) (Reynolds, 

1981a). The geographical distribution of meltpools is shown in Figure 3.4, which 

compares Landsat images taken in 1973 (9* Jan) and 1989 (early-mid Jan). It is 

difficult to assess quantitatively the relative distribution and volume of meltwater on 

the surface of the ice shelf but visually the surface pattern of meltpools is 

remarkably similar between the two images. The overall geographic distribution of 

meltpools also seems largely unchanged. This suggests that the ice shelf flow 

regime of GVI-IS has not changed significantly over the last 16 years. 

3.2.3.2. Hobbs Pool 

Hobbs Pool is adjacent to the coastal mountains of Palmer Land and lies 180 km to 

the south of the northern ice front (Fig. 3.1) (Pedley et al., 1988). The flow pattern 

of the glaciers entering the ice shelf in the vicinity of Hobbs Pool has resulted in an 

area of thin ice between the coastline and the main body of the ice shelf. Unlike 

other areas of the ice shelf, which are under compression, Hobbs Pool provides a 

localised drainage route for the surrounding surface melt water. This results in a 155 

m thick layer of low-salinity water that is close to freezing point. Colder and more 

saline water in the lower part of this layer leads to in-situ freshwater which lies 

above it. Significantly, this area of localised basal freezing is thought to play an 

important role in entraining sediment at the base of GVI-IS and provides a 

mechanism by which material is transferred from Palmer Land to Alexander Island 

(Pedley et al., 1988). 

3.2.3.3. Epishelf Lakes 

At Ablation Point, on the east coast of Alexander Island, the ice shelf impounds two 

epishelf lakes: Moutonnee and Ablation Lake (Fig. 3.5) (Heywood, 1977). These 

lakes are tidal, stratified water bodies with a lower marine layer that extends 

beneath the ice shelf and an upper freshwater layer which is derived from annual 

meh water and whose maximum thickness is defined by the ice shelf draught. The 

two lakes offer a unique opportunity to study the history of George V I Ice Shelf 

since any change in the position of George V I Ice Shelf is likely to leave a detailed 

signature in the lake sediments. This thesis wil l use the sedimentary record taken 
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Chapter 3 - George VI Ice Shelf 

from these two lakes to reconstruct the Holocene history of GVI-IS. The 

environmental setting, physical limnology and palaeoclimatic significance of both 

lakes, plus a conceptual model of how ice shelf presence/absence wil l effect the lake 

environment wil l be discussed in more detail in the following chapters. 

3.2.4. Sediment Transfer 

Clapperton and Sugden (1982) first reported on the presence of Antarctic Peninsula 

erratics (granite) along east coast of Alexander Island and specifically on the 

shoreline of Moutonnee Lake (Fig. 3. 6). The erratics are easily distinguished from 

the rocks of Alexander Island, which are predominantly sedimentary. The only 

granitic rocks of Alexander Island are found in a conglomerate (Himalia Formation) 

but these are easily identified as they are more weathered with a distinctive orange-

red weathering rind. This suggests that granite material from the Antarctic Peninsula 

is transported across George V I Sound by the ice shelf before it is deposited on 

Alexander Island. Initially this could not be reconciled with the very high melt rates 

beneath George V I Ice Shelf However, as noted above Pedley et al. (1988) later 

provided evidence for localised areas of basal freezing (e.g. Hobbs Pool) where 

material is frozen onto the base of the ice shelf and gradually makes it way to the ice 

shelf surface. In addition, it is thought that glacier ice leaving Palmer Land 

containing embedded rock debris is first subjected to basal freezing, which forces 

material up into the ice followed by melting as it moves away from the coast and 

into George V I Sound (Bishop and Walton, 1981; Pedley et al., 1998). Material may 

also fall directly on the inflowing glaciers or ice shelf and is transported supra, and 

then, en-glacially. The resuh of this is that the ice shelf leaves a sedimentological 

signature of its presence on the west coast of Alexander Island. 

3.2.5. Ocean-Ice Shelf Interaction 

As noted in section 2.3.1 the dynamics of George V I Ice Shelf are intimately linked 

to ocean circulation, specifically the presence of Upper Circumpolar Deep Water 

(UCDW) (Bishop and Walton, 1981; Lennon et al., 1982; Loynes et al., 1984; 

Potter and Paren, 1985; Potter et al., 1988). UCDW is characterised by salinity 

(34.73 %o) and temperatures (+ 2°C) maxima. This relatively warm water is thought 
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Figure 3.6. Showing (A) englacial debris at the ice shelf front, Moutonnee Lake, 
where granite clast up to 10 cm x 10 cm were observed (Photograph taken 
11/2001); (B) Granite erratics (6 pale dots) along the shoreline of ML (Photograph 
taken in December 2001). The granite boulders measure up to 40 cm x 40 cm and 
occur ~ 0.5-1 m above the present lake level. 
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to drive high basal melt rates at the ice shelf base and is fundamental in controlling 

the mass balance of the ice shelf The flux of UCDW only occurs on the Pacific 

continental shelf of West Antarctica and may be related to a combination of the 

contiguity and strength of the Antarctic Circumpolar Current (ACC) and the 

proximity of a cross shelf bathymetric low (Klinck and Smith, 1993; Hofinann and 

Klinck, 1998; Rebesco et a l , 1998). Modeling work suggests that offshore pressure 

gradients, similar to those created by northeastward ACC flow along the western 

Antarctic Peninsula, force upslope flow of UCDW within submarine canyon 

systems (Klinck and Smith, 1993) (refer to Chapter 2 for a more detailed account of 

AP oceanography). 

Oceanographic observations have shown the flux of UCDW beneath GVI-IS results 

in an increase in both temperature (T) and salinity (S) from the ice shelf base to the 

sea floor (Potter et al., 1988). Measurements show that the maximum temperature in 

the sovmd is 1.10°C, which is 3°C warmer than the fi-eezing point at the base of the 

ice shelf making it the warmest water below any Antarctic ice shelf (Talbot 1988). 

Temperature-salinity (T-S) profiles for the northern ice shelf front depict a simple 

model of fresh ice melting into warm deep water (UCDW), without the influence of 

the cold continental shelf waters found elsewhere in Antarctica (Fig. 3.7) (Jacobs et 

al., 1985; Potter et al., 1988). In cross-section. Potter et al. (1988) noted very little 

lateral variation from the northern ice front but did note a core of unmodified 

UCDW in the eastern channel trough, whose temperature exceeds 1.05°C. A 

distinctive feature of southern ice front profiles is that water found at the greatest 

depth is identical to the deep water in the northern sound and in Marguerite Bay. 

UCDW is therefore common at both ice fronts. Similar results have also been 

observed under the ice shelf at Hobbs Pool (Fig. 2.1b), a site 160km from the 

northern ice shelf front (Potter and Paren, 1985). Together these data suggest that 

there is direct seawater communication beneath the entire ice shelf 

The T-S profiles for the southern ice front are more complicated (Fig. 3.7b). The 

waters from the surface to about 200 m exhibit linear T-S trend, confirming that the 

region is dominated by the melting of ice into warmer water (Potter et al., 1988). 

Potter et al. (1988) conclude that the waters near the southern ice front and in the 
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Figure 3.7. Simplified Temperature-Salinity (T-S) profiles fi-om the (a) northern and 
(b) southern margins of George V I Ice Shelf (from Potter et al., 1988). Northern 
profiles show characteristic linear melting line of 2.5°C/%o. T-S plots for the southern 
margin show generally the same pattern but the profiles are more complicated. The T-
S gradient results from the melting of ice at the base of the ice shelf, resulting in sub
zero, fresh Ice Shelf Water (ISW). This contrast with water at the base of George V I 
Sound which is characterised by warm, saline Upper Circumpolar Deep Water 
(UCDW). 
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Ronne Entrance have T-S curves that are characteristic of open Bellingshausen Sea, 

which have been subsequently modified by ice melt in the surface layer. 

In the north, tidal currents and residual currents are weak and wind driven 

circulation is minimal. This contrasts with a zone of enhanced outflow 7 km wide 

and 60 m deep along the western edge of George V I Sovmd (Fig. 3.8), which implies 

thermohaline processes dominate circulation beneath the ice shelf According to 

Potter and Paren (1985) the accepted circulation model involves dense saline CDW 

being advected from Marguerite Bay southward beneath the ice shelf where it 

upwells and melts the base of the ice shelf (Fig. 3.8). The (then buoyant) ice meh is 

deflected to the west of the channel by the Corriolis effect and advected northward. 

This process is maintained by melting at the base of the ice shelf, which in turn 

causes the upwelling of water from greater depth to replace water that has been 

transported northward (Fig. 3. 8) (Potter and Paren, 1985). 

3.2.6. Tidal variations beneath George V I Ice Shelf 

Tidal measurements have been made at three lake sites on GVI-IS (Moutonnee, 

Ablation and Hobbs Pool) and at both ice fronts (e.g. Pedley et al., 1986). Much of 

the research was carried out during the late 1970's and 1980's (e.g. Bishop and 

Walton, 1977; Doake, 1978; Cartwright, 1980; Potter et al., 1985; Potter and Paren, 

1985; Pedley et al., 1986) and looked at, among other things, the dissipation of tidal 

energy by ice shelves and tidal and current spectra beneath GVI-IS. This work has 

revealed peculiarities in the tidal characteristics and behaviour beneath GVI-IS. 

Notably, there appears to be non-linearity in the tidal spectrum beneath the ice shelf, 

which suggests that the ice shelf plays an important role in dampening the tidal 

spectrum. 

3.3. Late Quaternary History of GVI-IS 

A comprehensive study of the late Quaternary history of George V I Sound was 

carried-out in the late 1970's by D.E., Sugden and C M . , Clapperton (Sugden and 

Clapperton, 1980; Clapperton and Sugden, 1982). This study indicated that George 
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Figure 3.8. (A) Cross section of George V I Sound with calculated geostrophic 
velocities contoured in cm s-1, showing inflows of CDW (southward) and outflows 
(northward) (from Potter et al. 1988); (B) Model of CDW circulation beneath GVI-IS. 
CDW flows southward at depth under the ice. Sensible heat melts the base of the ice 
shelf causing a buoyant outflow, deflected to the west by the Coriolis effect. The 
outflow, together with other stirring mechanisms lifts more CDW to the base of the ice 
shelf, thereby completing the cycle (from Potter and Paren, 1985). 
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V I Ice Shelf underwent significant changes during the late Quaternary and may 

have disappeared on at least two previous occasions (Sugden and Clapperton, 1980; 

Clapperton and Sugden, 1982). The major features of this history are summarised 

in Figure 3.9 and Table 3.1, and referred to in the text below [numbered points]. 

Based on detailed geomorphological evidence Clapperton and Sugden (1982) 

suggested that there was significant expansion of ice during the Wisconsin [2], with 

an ice cap centred to the west-northwest of the Ablation Point Massif (Fig. 3.4). The 

ice cap was sufficiently large to override the local topography leaving evidence in 

the form of eroded and scoured plateau surfaces, abraded roche moutormees and 

over steepened valley sides. Estimates of ice thickness, based on the altitude of 

erratics imply that at the head of Ablation Valley the ice sheet was >800m thick. 

General flow was to the north, with ice domes centred on Alexander Island and 

Palmer Land becoming confluent in George V I Sound (Fig. 3.10). 

A t i l l deposit in the main valley of the Ablation Point Massif indicates an ice cap of 

reduced size [3] discharged smaller outlet glaciers over the valley heads and into the 

main valley leading into George V I Sound. Good examples of this 'valley stage' 

advance are preserved in Ablation and Moutormee Valleys [4]. Clapperton and 

Sugden (1982) suggest that this t i l l deposit was formed during either a significant 

still stand during recession from the larger ice cap or a separate advance. Following 

deposition of the valley stage till widespread deglaciation of Alexander Island is 

thought to have occurred [5]. The presence of Palmer Land erratics on the crests of 

the valley stage ti l l however, indicate that an ice mass still occupied George V I 

Soimd. Erratics in the valleys of the Ablation Point massif and at Fossil Bluff (Fig. 

3.4) imply that ice in George V I Sound at this time reached an ahitude ca. 85 m 

above the present ice surface [6]. The common altitude of the erratics over a 60 km 

distance indicate that they were deposited at the ice shelf edge, probably whilst the 

land was still isostatically depressed. This high-stand appears to have been a brief 

event as no drift limit has been foimd in association v^th the erratic line. Isostatic 

uplift then followed and relative sea-level (and thus the ice shelf) fell in relation to 

Alexander Island. This period of uplift is represented by an impressive suite of 

terraces in Ablation and Moutonnee Valleys (Fig. 3. 9). 
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Figure 3.9. Geomorphological map of the Ablation Point Massif, Alexander Island 
(location shown on Figure 3.4) showing the major features of late Quaternary glaciation 
discussed in the text (from Clapperton and Sugden, 1982). 
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EVENT 

7 

8 

9 

10 

11 

Interglacial or Interstadial 

Wisconsin Maximum 

Ice-cap thinning 

Valley Stage 

Ice-cap recession 

Expansion of George VI Ice 
Shelf 

Collapse of George VI Ice Shelf 

First readvance of Alexander 
Island valley glaciers 

George VI Ice Shelf reforms, 
and advances beyond present 

limits 
Second readvance of Alexander 

Island glaciers 
Retreat then readvance, then 

recession of Alexander Island 
glaciers and George VI Ice Shelf 

to present positions 

CHRONOLOGICAL 

C O N T R O L ( Y R S 

B.P.) 

C H A R A C T E R I S T I C S & 

G E O M O R P H O L O G I C A L E V I D E N C E 

> 120,000 (Amino acid) and 
infinite " C age 

ca. 75,000 (/) or 30,000-
18,000 (?) 

ca. 6500 (Amino acid and 

Hiatella solida (Mollusc) living in open George VI 
Sound 

Ice caps on Palmer Land and on Alexander Island 
confluent in George VI Sound; Hiatella shells 

incorporated in basal till 
Land above 70Om exposed; moraines and subglacial 

meltwater channels formed 
Retreat Stadial or Advance of Ablation Massif outlet 

glaciers to edge of George VI Sound; lateral 
moraines formed 

Retreat of outlet glaciers; Ablation Massif valleys 
and lower valley of Jupiter Glacier becomes free of 

'ice-cap' ice 
Ice shelf penetrates Ablation Massif valleys to 8Im, 
Fossil Bluff to 85m and Two Step Cliffs to 1 lOm. 

Palmer Land erratics deposited 
Bathylasma corolliforme (Bamacles) living in open 
George VI Sound implying open marine conditions 
Two terminal moraines deposited at some glaciers 

Ice-shelf moraine deposited on Alexander Island, 
incorporating Barnacles; truncates valley-glacier 

moraines 
Deposition of terminal moraines on top of ice shelf 

moraine 
At least 1-3 ice-cored moraines close to valley 

Glaciers and ice shelf 

Table 3.1. Glacial history of George V I Sound Area, West Antarctica (fi-om 

Clapperton and Sugden, 1982). Numbers are referred to in the text. 
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Figure 3.10. Reconstruction of the ice sheet flow lines for George V I Sound during 
the Last Glacial Maximum (LGM). (A) Ablation Point, (F) Fossil Bluff, (T) Two 
Step Cliffs, (B) Batterbee Mountains. The main features of the LGM reconstruction 
are the strong northward flow of grounded ice along George V I Sound, and a broadly 
west-northwest flow over southwestern Alexander Island (from Clapperton and 
Sugden, 1982). 
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At some point during the Holocene, the ice shelf is thought to have collapsed, 

allowing an open marine fauna (various Mollusca) to exist in George V I Sound [7]. 

Evidence for this period of instability wi l l be discussed in greater detail below. 

Before the ice shelf reformed, local valley glaciers on Alexander Island advanced, 

leaving prominent terminal moraine deposits [8]. As the ice shelf re-formed and 

expanded it deposited a prominent ice shelf moraine, 500 m fiirther onshore from 

the present ice shelf edge [9] (Fig. 3.9). This has subsequently been overridden in 

some places (e.g. Erratic Valley; Fig. 3.9) by local valley glaciers [10]. Following 

these small oscillations, the ice shelf and valley glaciers have retreated to their 

present positions [11]. 

3.3.1. Late Quatemarv event chronologv 

Chronological control on the late Quaternary history outlined above is limited to the 

discovery of two shell bearing diamicts, one relating to the initial expansion of over

riding ice, sometime during the Wisconsin, and the second relating to a possible 

Holocene ice shelf collapse. Indication of the timing of last maximum glaciation 

was obtained from a shelly t i l l 94 to 114 m above the present ice shelf at Two Step 

Cliffs. Fragments and whole valves of Hiatella solida (an infaunal mollusc) yielded 

finite radiocarbon ages of ca. 32000 yrs BP. In contrast, amino acid ratios suggest a 

considerably greater age for the shells of ca. 120000 yrs BP or older. The 

underlying assumption here is that the shells represent ice-free conditions in the 

soimd at some point prior to ca. 32000 yrs BP and that they have been subsequently 

reworked and deposited by grounded ice sometime in the late Wisconsin. Because 

of these conflicting ages however it is difficult to say confidently when the event 

began. The latter point reflects a recurrent problem in the Antarctic of dating 

carbonate shells, which are controlled by local seawater reservoirs (see Chapter 4) 

(Berkman et al., 1998; Andrews et al., 1999). 

The second suite of dates suggests that George V I Ice Shelf disappeared during the 

Holocene (Sugden and Clapperton, 1980; Clapperton and Sugden, 1982). 

Clapperton and Sugden (1982) dated barnacle shells (Bathylasma corolliforme) 

from the ice shelf moraine at Two Step Clilfs. They obtained ages of c. 7200 '"̂ C yr 

BP, which corresponds to 5900 ''*C yr BP after an Antarctic marine reservoir 
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correction is made (- 1300 yr; Berkman and Forman, 1996; Berkman et al., 1998). 

Amino Acid Racemization analysis of the shells also suggested a Holocene age. 

Assuming that bamacles are unable to grow beneath an ice shelf, Clapperton and 

Sugden (1982) suggested that the George V I ice shelf collapsed in the early to mid-

Holocene. Reformation of the ice shelf then bulldozed the shells from their position 

in George V I Sound to an ice shelf moraine on the coast of Alexander Island. 

More recently, Hjort et al. (2001) have produced a suite of supporting AMS 

radiocarbon dates on individual shells {Bathylasma corolliforme) from sites close to 

those of Clapperton and Sugden (1982). Ages from the ice shelf moraine, using the 

same reservoir correction as Clapperton and Sugden (1982) confirm a Holocene age 

(5750-6000 '''C yr BP equivalent to 6550-6850 cal yr BP) for Bathylasma 

corolliforme. Older deposits yielded infinite radiocarbon ages and amino acid ratios 

indicating an age well before the present interglacial (and possibly dates from 

MIS5e). Together these results provide evidence that George V I Sound has been 

free of its ice shelf on at least two occasions during the Late Quaternary. This 

suggests that the ongoing retreat and collapse of some AP ice shelves might not be 

unprecedented. However, the interpretation of the shell dates relies on the critical 

assumption that they carmot grow beneath an ice shelf (Hjort et al., 2001), which 

has not been robustly tested. 

3.4. George VI Ice Shelf - Present behaviour 

Over the past century a large body of work has been amassed concerning the 

evolution, history and dynamics of George V I Ice Shelf It is clear from this work 

that it is a complex, and perhaps unique ice shelf The next two sections will start to 

examine the recent retreat history of the ice shelf and assess how the ice shelf may 

behave in future. 

3.4.1 .Retreat of the northern and southern margins of George V I Ice Shelf 

The climatic backdrop to recent ice shelf retreat has already been discussed in 

Chapter 2. According to Morris and Vaughan, (2003) the present limit of ice shelf 
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distribution closely follows the -9°C isotherm and ice shelves known to have 

retreated over the past 100 yrs are bounded by -9°C and -5°C isotherms (Fig. 3.1) 

(Morris and Vaughan, 2003). It has also been noted that this zone now 

encompasses the northern margin of George V I Ice Shelf, leading some workers to 

suggest that it wil l be the next ice shelf to undergo large-scale retreat or collapse 

(Vaughan and Doake, 1996). 

Retreat of the northern ice front was first noted by Mercer (1978), and later by 

Lennon et al. (1982) and Potter et al. (1988). Recently Lucchitta and Rosanova 

(1998) have used historical accounts and satellite imagery to document its twentieth 

century retreat history. Records show that the ice shelf has undergone persistent 

retreat over the last 20 years and perhaps since 1936 (first observations by British 

Graham Land Expedition). Lucchitta and Rosanova (1998) estimate that between 

1974 and 1992 an area of 906 km^ of ice shelf was lost at a retreat rate of 49 km^ a"'. 

Between 1992 and 1995 an additional 87 km^ of the northern margin of George V I 

Ice Shelf was lost at a retreat rate of 27 km^ a"'. 

A more detailed map of the 20"' and 21'* century (1947-2001) retreat of GVI-IS has 

recently been completed by the British Antarctic Survey in collaboration with the 

United States Geological Survey (USGS) (Fig. 3.11). The map has been compiled 

using a combination of aerial photographs and satellite imagery and demonstrates 

that the northern margin has continued to retreat, losing a further 375 km^ between 

1992 and 2001, a retreat rate of 62 km^ a"'. The map also shows that the southern 

margin has also retreated since the late 1940's, losing approximately 2,500 km^ 

between 1947 and 2001, a retreat rate of 46 km^ a"'. 

Together, these resuhs demonstrate that the retreat rate of GVI-IS significantly 

outpaces the hypothetical advance rate of a 'stable' ice shelf front. Vaughan and 

Doake (1996) have defined an ice shelf that is no longer viable as one that 

undergoes progressive retreat via a series of large calving events, which occur over 

several years without significant re-advance. Normal (i.e. stable) calving, in 

contrast, is followed by significant re-advance of the ice shelf (Vaughan and Doake 

1996), which has not been observed at either margin of the GVI-IS. Thus, George 

V I Ice Shelf appears to fit Vaughan and Doake's (1996) definition of being no 
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Figure 3.11. (a) Retreat map for the northern and southern margins of George V I Ice Shelf. (b) shows the northern ice front retreat in more detail. The the northern and southern margins of the ice 
shelf have shown persistent retreat since 1947 without significant re-advance. Also shown are the positions of the Ablation Point Massif (white open box) and the geographical distribution of surface 
meltpools (dotted line) (map compiled by A. Cook, British Antarctic Survey). 
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longer viable, which suggests that we may be witnessing the first stages of ice shelf 

disintegration. 

3.5. George VI Ice Shelf - future behaviour? 

The recent retreat of GVI-IS appears to be following the behaviour of other AP ice 

shelves, although it has yet to collapse in a catastrophic Larsen-style break-up event. 

At face value, the recent changes appear directly related to increased atmospheric 

temperature, although other forcing mechanisms (e.g. changes in ocean circulation) 

may also be important. The next section will begin to examine how and i f GVI-IS 

is susceptible to collapse. 

3.5.1.Glaciologv - A Structural Weakness 

In Chapter 2, the structural arch hypothesis (e.g. Doake et al., 1998) was discussed. 

Although this hypothesis does not provide the initial impetus for ice shelf collapse it 

has been used to account for the rapidity of ice shelf disintegration (e.g. 

Wordie/Larsen-B). However, unlike the Wordie and Larsen ice shelves, George V I 

Ice Shelf has a very small calving front, especially in the north. It is therefore 

unlikely that a structural arch mechanism will lead to the rapid disintegration of 

GVI-IS, which is long and narrow. 

One other glaciological weakness relates to the temperature regime at the northern 

ice front. Evidence has shown that the ice towards the northern margin of George V I 

Ice Shelf is temperate (Potter and Cooper, 1988). The precise reason for this is 

largely unknown but it may relate to the flow regime in the northern region of the 

ice shelf, which changes from compressional flow to extensional flow north of 

about 70°15'S. This change in flow is defined by the northward limit of meltpools 

(Fig. 3.4), beyond which surface meltwater can drain through the upper fim since 

the overall compression appears to be reduced. Thus, north of 70°15'S surface water 

is able to percolate through the upper fim where it refreezes and releases latent heat. 

The release of latent heat acts to warm the surrounding ice. As noted in Chapter 2, 

laboratory experiments have demonstrated that the fracture toughness of ice is 
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reduced at higher temperatures and in the presence of water (Lui and Miller, 1979; 

Sabo and Schulson, 1989). As such, the ice north of 70°15'S may be more 

susceptible to crevasse formation and ice shelf break-up. The change in flow also 

has implications for the meltpool induced break-up hypothesis. 

3.5.2. Surface Meltpools - A trigger for collapse? 

As noted in Chapter 2, Scambos et al. (2000) have provided evidence to suggest that 

there is a strong correlation between ice shelf disintegration and melt-ponding. 

Because water is denser than ice, it exerts a significant outward and downward 

pressure when it pools on the ice shelf surface and in crevasses. The hydrostatic 

pressure, under certain conditions in water filled crevasses, is great enough to 

propagate fractures through the ful l ice thickness thereby compromising the 

mechanical integrity of the ice shelf (Scambos et al., 2000). However, as noted in 

Chapter 2, although this process has played a significant role in the recent collapse 

of some AP ice shelves (e.g. Larsen-B) it does not appear to be the case for large 

parts of George V I Ice Shelf, which shows the most extensive melt-pooling and has 

the longest history of melt-ponding of any AP ice shelves (Reynolds, 1981b; 

Scambos et al., 2000). This apparent insensitivity to meh pools is largely due to the 

high compressive forces within the main body of GVI-IS (between 70°15'S and 

72°00'S), which effectively counter-acts the hydrostatic pressure thereby keeping 

the crevasses closed (Scambos et al., 2000). However, the absence of meltpools 

north of 70°15'S implies that the compressional stresses decrease, thereby allowing 

the propagation of crevasses and the drainage of surface water. Together with a 

more temperate ice regime, this may make the northern margin more susceptible to 

a meltpool-induced retreat. However, excluding the area north of 70°15'S, a 

meltwater trigger alone is unlikely to destabilise the entire ice shelf. 

3.5.3. Circumpolar Deep Water - a potential trigger? 

Several studies have linked changes in ocean circulation with climate change on the 

AP (Vaughan et al., 2001) and ice shelf retreat through enhanced bottom mehing 

(Talbot, 1988; Domack et al., 1995; Lucchitta and Rosanova, 1998; Shepherd et al., 

2003). Vaughan et al. (2001) suggested that UCDW could play an important role in 
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recent atmospheric warming of the AP through a reduction in sea-ice and its 

associated affects on the regional albedo. A similar argument was also developed by 

Talbot (1988) who suggested that warm UCDW could contribute to ice shelf 

disintegration through increased basal melting. Indeed, UCDW has been linked to 

the recent collapse of the Wilkins Ice Shelf (Lucchitta and Rosanova, 1998) and the 

retreat of the MuUer Ice Shelf (Domack et al., 1995). It is fiirther intriguing that late 

Holocene climatic changes (e.g. Litfle Ice Age) have been linked to the withdrawal 

of UCDW from the western shelf of the AP (e.g. Shevenell and Kennett, 2002; 

Ishman and Sperling, 2002). A comparable picture is now emerging from the east 

coast of the AP where Shepherd et al. (2003) have suggested that enhanced bottom 

melting caused by the presence of warm deep water (Weddell Sea Deep Water, 

WSDW) may have contributed to the demise of the Larsen-B ice shelf 

Superimposed upon the recent atmospheric trends on the AP and the retreat of 

several ice shelves is the apparent warming of the Southern Ocean over the past 50 

years (Gille, 2002). How this relates to UCDW or WSDW is as yet unclear. 

It is clear that CDW plays a fundamental role in controlling the climate of the AP, 

and potentially the stability of some AP ice shelves (e.g. Domack et al., 1995). It is 

known for example that CDW drives high basal melt rates (ca. 2 ± 0.1 m yr"') 

beneath GVI-IS, but it is not known however, i f this rate has changed in the past or 

whether it has changed in response to recent atmospheric and/or ocean warming. 

There is a growing need therefore to investigate the influence of warm water on the 

continental shelf and below George V I Ice Shelf and its potential sensitivity to 

climatic changes. In the absence of contemporary data we must turn to the palaeo 

record. The question now is whether we can link past changes in CDW with the 

apparent disintegration of George V I Ice Shelf during the mid-Holocene? As noted 

in Chapter 2, Howe and Pudsey (1999) have suggested that UCDW flow was 

imstable until around 12300 yr BP, when enhanced flow was noted. During 

deglaciation and into the Holocene, at approximately 10000 yr BP, UCDW 

stabilised, becoming less vigorous. Shevenell and Keimett (2002) have suggested 

that CDW was present on the continental shelf west of the AP between 9000 and 

3500 cal yr BP based on their analysis of 5*^0 and 5'^C composition of planktic 

foraminifera extracted from marine cores from the Palmer Deep (Fig. 2.1b), whilst 
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the diatom study of Leventer et al. (2001) noted the presence of 'warm water' 

conditions between 9000 and 6700 cal yr BP at the same site. Surprisingly, Ishman 

and Sperling (2002) arrived at a different conclusion for the early Holocene when 

they analysed the overall foraminiferal composition of marine cores from the 

Palmer Deep. Until the issue of UCDW presence or absence during the mid-

Holocene on the western continental shelf is resolved it remains difficult to judge 

whether UCDW played an important role in the mid-Holocene collapse of GVI-IS. 

Futiire research aimed at understanding the long-term history of GVI-IS wil l be 

required before the link between UCDW and ice shelf stability can be fiirther 

investigated 

3.5.4. Slow versus catastrophic collapse 

One final scenario that needs to be considered is that George V I Ice Shelf may not 

undergo catastrophic collapse in the style of the Larsen-B ice shelf but instead 

continue to undergo relatively slow (when compared to other AP ice shelves) 

retreat. The current rate of retreat appears to conform closely to the southward 

migration of the -5 °C to -9 °C mean annual isotherms, which is being driven 

southwards by atmospheric warming on the AP. Thus, i f we take the maximum (62 

km^ a'') 20*/21'' century retreat rates for the northern and southern margins (46 km^ 

a"') we can obtain a rough estimate of how long the ice shelf wil l take to disappear i f 

the present retreat rate continues. On the basis that the ice shelf measures about 25, 

000 km^ (Reynolds and Hambrey, 1988) it would take approximately 230 years for 

the ice shelf to disappear completely. Although this calculation is a gross 

simplification, which does not take into account variations in ice shelf thickness, 

which varies from north to south (Fig. 4.2), the rapidity of temperature change (e.g. 

3.7 ± 1.6 °C over the last century) and glaciological factors, it does provide a useful 

approximation, especially for comparison with time intervals in the past when 

atmospheric temperature may have been similar to, or warmer than, the present day 

(e.g. Early Holocene optimxim). 
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3.6. Summary 

George V I Ice Shelf is the largest ice shelf on the west coast of the AP. It has shown 

persistent retreat since 1947 and perhaps since the mid-1930's when it was first 

observed by the British Graham Land Expedition (Lucchitta and Rosanova, 1998). 

The recent retreat of GVI-IS has led some researchers to suggest that it wil l be the 

next ice shelf to undergo large scale retreat, or even collapse (Vaughan and Doake, 

1996). Given, the retreat of other AP ice shelves, both on the west side of the AP 

and the east, it is important that we understand how and why ice shelves are 

retreating. A large body of evidence regarding the glaciology, ocean-ice shelf 

interaction and late Quaternary history of GVI-IS has been amassed over the past 50 

years. Together with recent changes, this information provides a unique opportunity 

to study an ice shelf in its pre-coUapse phase, and begin to explore the reasons for, 

and causes of, the ice shelf retreat. 

Amplified atmospheric warming on the AP over the last century appears to be 

directly related to recent ice shelf retreat. However other factors such as changes in 

ocean circulation are also considered to be important (e.g. Shepherd et al., 2003). At 

present the key -9 °C mean annual isotherm lies firmly across the northern part of 

GVI-IS, which according to Morris and Vaughan, (2003), represents the boundary 

for ice shelf viability. An important feature of many of the ice shelves that have 

collapsed on the AP is the relative rapidity of disintegration once a certain threshold 

is passed. The rapidity of change implies some internal, structural weakness (e.g. 

Doake et al., 1998), but this mechanism does not seem likely to be influential in the 

collapse of GVI-IS. The melt-ponding mechanism developed by Scambos et al. 

(2000) offers a link between ice shelf collapse and increased atmospheric 

temperatures. However, it seems unlikely that this mechanism will play a significant 

role in the future stability of GVI-IS, due largely to the compressive flow regime 

within the ice shelf The meltpool mechanisms, however, may be influential in the 

retreat of GVI-IS north of 70°15'S, where the flow appears to change from 

compression to extensional flow. 
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More recently, several studies have highlighted the importance of changes in ocean 

circulation; specifically warm deep-water masses (e.g. UCDW and WSDW) but it is 

still unclear how these changes relate to atmospheric warming. For example, are 

changes in atmospheric temperature driving changes in UCDW or are changes in 

UCDW driving atmospheric changes through a series of positive feedbacks? 

Shevenell and Kennett (2002) believe that the late Holocene UCDW changes 

observed in the Palmer Deep were controlled by some atmospheric reorganisation, 

which may have originated in the low-latitude tropical Pacific (see Chapter 2). Their 

data suggests that atmospheric changes drive perturbations in UCDW. What is clear 

is that the mass balance of GVI-IS is strongly influenced by UCDW-induced ice 

shelf melting and without further contemporary records, or proxy data from the past 

it remains dilficuh to assess the importance of UCDW to GVI-IS, how long such 

melt-rates can be maintained and whether they have varied in the past. 

In light of these questions it is timely that we attempt to understand in more detail 

the Holocene history of GVI-IS. The fundamental aim of this thesis is to provide a 

long-term perspective (Holocene) on GVI-IS through the analysis of sediment cores 

from two epishelf lakes. The following chapter wil l document the physical setting 

of these two lakes and provide an overview of the field techniques, and a detailed 

account of the laboratory procedures used in this thesis. 
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Chapter 4 
F I E L D SETTING, F I E L D 
METHODS AND 
L A B O R A T O R Y TECHNIQUES 

4.1. Introduction 

The previous two chapters have provided a comprehensive review of the recent and 

past envirormiental change on the AP (Chapter 2) and a detailed review of George 

V I Ice Shelf (Chapter 3). This chapter wil l outline the field methods and laboratory 

techniques used to reconstruct the Holocene history of GVI-IS. The chapter has 

three aims. First, to describe the physical setting of the study site (Ablation Point 

Massif) and document the bathymetry and limnology of Moutonnee and Ablation 

Lakes. Second, to outiine the field techniques used during the 2000-1 and 2001-2 

field campaign. Third, to outiine and provide the rationale for the laboratory 

techniques used in this thesis and describe the protocols adopted for each. 

4.2. Field Setting 

4.2.1 .Ablation Point Massif 

The Ablation Point massif (Fig. 4.1 and Fig. 3.4 Chapter 3) is one of largest ice-free 

areas on the AP measuring approximately 18 km from north to south and 10 km 

from east to west (Clapperton and Sugden, 1982, 1983). It is flanked on either side 

by two large glaciers (Grotto and Jupiter Glaciers), which flow into GVI-IS. The 

massif is dissected by five main valleys. Moutoimee, Ablation and Striation Valleys 

frend east-west whilst Flat Iron and Erratic Valleys trend north-south (Fig. 4.1). 

Intervening ridge crest altitudes are commonly between 650 m to 750 m with a 

maximum altitude of over 1000 m. Approximately 17% of the area is covered by 

permanent snow and ice (Clapperton and Sugden, 1983). This compromises 10 
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Figure 4 .1 . Aster (Advanced Spaceborne Thermal Emission and Reflection 
Radiometer) image of the Ablation Point Massif (location shown in Figures 2.1 
(Chapter 2) and 3.4., (Chapter 3) showing, Moutonnee Lake, Ablation Lake and 
Flatiron Lake (referred to as 'upper lake' by Heywood, 1977). Moutonnee and 
Ablation Lakes are impounded by George V I Ice Shelf as it impinges against the 
Ablation Point Massif. Flatiorn Lake, in contrast, is above sea-level and is 
impounded on its southern side by the Jupiter Glacier (Image supplied by MAGIC, 
British Antarctic Survey). The late Quaternary history of the masiff is shown 3.9, 
Chapter 3. 
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small valley glaciers, 7 cirque and cl iff glaciers and numerous permanent snow 

banks (Clapperton and Sugden, 1983). The majority of these glaciers and snow 

banks occur on south-facing slopes, reflecting the prevailing wind and snow 

direction from the south (Clapperton and Sugden, 1983). The geology of the massif 

is largely sedimentary (Late Jurassic to Early Cretaceous sandstones, mudstones and 

shales), derived from deeply eroded plutonic and metamorphic terrain, which was 

subsequently re-deposited in a shallow-marine basin (Elliot, 1974). Volcanic rocks, 

probably Upper Oxfordian-Kimmeridgian also occur and are exposed rarely on the 

valley floors and basal parts of several cliffs; they consist mainly of lavas, 

agglomerates and breccias (Elliot, 1974). As noted in Chapter 3 the massif has 

undergone a complex late Quaternary history and provides evidence for both ice cap 

(ca. 75000 yr BP) expansion and local valley glacier variations (summarised in 

Fig.3.9 and Table 3.1, Chapter 3). 

4.2.2. Epishelf Lakes 

Within Moutormee and Ablation valley's, two large epishelf lakes are impounded 

by GVI-IS, which flows in a westward direction from the AP (Fig. 4.2., also see 

orientation of meltpools in Figure 3.4 (Chapter 3) which illustrates flow direction). 

These lakes were first studied in the 1970's (e.g. Heywood and Light, 1975; 

Heywood, 1977). This work revealed that the lakes are tidal, stratified water bodies 

each with a lower marine layer that extends under the ice shelf to the ocean, and an 

upper freshwater layers that is maintained by snow melt and whose maximum 

thickness is determined by the ice shelf draught (Heywood, 1977). The two lakes 

are presently at sea-level and provide an exceptional opportunity to investigate the 

history of GVI-IS since their unique environmental setting means that any change in 

the position of the ice shelf is likely to leave a detailed record within the lakes 

sedimentary records. Moutonnee and Ablation Lakes were re-visited during the 

austral summers of 2000-1 and 2001-2. The site description and physical limnology 

in the following section is based largely on Heywood's (1977) study, although 

supplementary data collected for this study is also included. 
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Ablation Point 

S O U N D 

Ice Tongue 
showing 

crevasses 

Figure 4.2. Epishelf lakes on Alexander Island, (a) Oblique aerial photograph taken on 
6/1/2003 (photo: A. Fox) of Moutonnee Lake (left) and Ablation Lake (right). 
Photograph shows how the ice shelf is prevented from entering Moutonnee Valley by a 
bedrock sill. In Ablation Valley the ice shelf is grounded along a submerged bedrock 
bar (Heywood, 1977) and is expressed at the surface as a zone of disturbance. 
Extensive melting on the surface of GVI-IS is also apparent (b) Oblique aerial 
photograph taken from an aircraft in Feburary 1998 (photo: M . Bentley) looking into 
Ablation Valley at Ablation Lake showing a prominent tongue of the ice shelf (see 
text), (c) Photograph of Moutoimee Lake taken from the hills above the lake, showing 
George V I Sound in the background and the impressive ice cliffs (see Fig. 4.3) (ca. 30 
m high) at the left-hand (East) edge of the lake. 
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4.2.2.l.Moutoimee Lake 

Moutonnee Lake (ML, 70°5rS, 68°20'W) is impounded on its eastern side by GVI-

IS, which is grounded on a partially exposed bedrock sill (Fig. 4.3). At the 

groimding line the ice shelf front has been forced upwards to form ice cliffs up to 

30m high (Fig. 4.3). The height of the ice-cliffs plus the lake water depth at the ice 

front (or draught) effectively represents the ice shelf thickness at this point. The lake 

is capped by 2-3 m of ice but, in summer, a narrow moat (~ 2 m wide) forms around 

the landward shoreline due to advected heat and the inflow of water from catchment 

snow melt (Fig. 4.3). During winter the lake ice is pushed onshore where it forms 

small compressional ridges (Fig. 4.3). A small valley glacier exists at the head of 

the valley, which at some point was much more extensive leaving behind the Valley 

Stage ti l l (see Fig. 3.9, Chapter 3) (Clapperton and Sugden, 1982). During the 

stxmmer, extensive moss and cyanobacteria patches develop, especially on the 

western shoreline of the lake shoreline and on the north facing valley slope (Fig. 

4.4). A semi-permanent snow bank exists on the south facing valley side. Detailed 

bathymetric work (Heywood, 1977; and this study) has revealed that the deepest 

part of the lake is 55 m (Fig. 4.5). From this point, our measurements show that the 

lake shallows rapidly to the east where it meets the landward side of the submerged 

bedrock sill and to the west where it meets the first of two successive shelf areas 

(Fig. 4.5). 

The first vertical profiling of the water chemistry, in late December 1973 

(Heywood, 1977), revealed that the lake is stratified with freshwater underlain by 

saline (marine) water and a two-stepped halocline at 36 m and 44 m (Fig. 4.6). 

Monitoring of lake water salinity over a tidal cycle revealed that the halocline varied 

between 36 and 39m depth suggesting some exchange with the seawater beneath the 

ice shelf (Fig. 4.7). It was concluded that seawater does not penetrate far into the 

basin but that tidal flow might be sufficient to cause some mixing between the two 

water masses. However, a mismatch between the timing of tides in M L and under 

GVI-IS (Cartwright, 1979) suggested that the water exchange was at least partially 

impeded by grounded ice (e.g. Cartwright et al., 1980). Below ca.44 m the saline 

monimolimnion is prevented from escaping by the sub-lacustrine bedrock sill 
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Figure 4.4. (a) Moss along a lake inflow in Ablation Valley (Photograph taken in 

2001-2 by D. A. Hodgson) and (b) cyanobacteria/moss patch in Moutonnee Valley 

(Photograph taken in 2001-2). 
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A Transect (50 m tiorizontal intervals) B 
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Figure 4.5. Moutonnee Lake bathymetry (A) based on data from Heywood (1977). Also 
shown are the two principal core sites (ML and MLNB) and A-B transect shown in (C). (B) 
Shows aerial photograph of M L Lake (BAS archive). (C) shows transect line A-B from ice 
shelf front to lake shoreline based on echo-sounder measurements made during 2000-1. 
Surface sediment samples were taken every 50 m in 2000-1. Also shown are the locations 
of sediment cores (1-3) and sediment traps (4). NB: position of MLNB core projected 
onto line of surface sediment transect. 
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Salinity (%o) 
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20 f4 

Moutonnee 

Ablation 

Figure 4.6. Salinity profiles for Moutonnee Lake (blue) and Ablation Lake (Black) 
measured in 1973 (Heywood, 1977). Moutonnee Lake is characterised by a two-
step halocline. This probably reflects the exchange of marine water in a zone 
between 36 and 39 m and a more stationary saline layer (beneath 39 m) which is 
prevented (impounded) from escaping the basin by the bedrock sill (see profile in 
4.5). In Ablation Lake a very steep halocline occurs between 64 and 66.25 m. 
CTD profiles were re-measured in 2000 and 2001 and are shown in Chapter 5. 
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Figure 4.7. Tidal variations recorded in November-December 1973 at (a) 
Moutonnee and (b) Ablation Lakes (Heywood, unpublished data). 
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(Heywood, 1977). The saline water is Chlorite dominated (ionic order Cl-Na-S04-

K-Ca-Mg; Fig. 4.8a) which compares closely with the ionic order of seawater in 

nearby Marguerite Bay (Heywood, 1977). Nutrient levels (N-NO2, N -NO3, P-PO4) 

were exceptionally low in the mixolimnion and below detection limits in the 

monimolimnion (N-NO3 and P-PO4, Heywood, 1977). 

4.2.2.2. Ablation Lake 

Ablation Lake (AB, 70 49'S, 68 27'W) is impounded on its eastern side by GVI-IS, 

which is only partially grounded on a submerged bedrock bar, with the grounding 

zones expressed as raised crevassed areas on the surface of the ice shelf (Fig. 4.9 

and 4.10). The grounding zone does not completely impede westward flow of GVI-

IS, part of which flows over and around the bedrock bar to form a prominent ice 

tongue extending 2.8 km into Ablation Lake (Fig. 4.9) (Reynolds and Hambrey, 

1988). Tides of up to 1.65 m occur in AB causing the lake ice to move up and down 

with an irregular diurnal rhythm (Fig. 4.9) (Heywood, 1977). Unlike ML a wide (>1 

m) seasonal moat does not form in AB due to the high compressive forces exerted 

by the ice shelf tongue which pushes the lake ice landward forming compression 

ridges up to 3 m high along the lake shore (Heywood, 1977). Water can be seen 

between some of these ridges, especially where the lake ice is fractured. The north-

facing valley side of Ablation Valley is characterised by rectilinear slopes with a 

veneer of talus. The foot of the slope has been overprinted by the 'Valley Stage' till 

(Clapperton and Sugden, 1982), which extends from the mouth of Ablation Valley 

to the valley head (Fig.3.9 Chapter 3). One other notable feature of the north facing 

valley side is the outcrop of a mixed granite conglomerate (Himalia Formation) 

(Fig. 4.11). On the south-facing valley side there are two smaller north-south 

valleys, both containing small glaciers. The glacier in Erratic Valley (Fig. 4.1 and 

4.9) terminates before meeting the ice shelf, whilst the glacier in Unnamed Valley 

abuts the surface of Ablation Lake (Fig. 4.1 and 4.9). A large glacier occupies the 

head of Ablation Valley, approximately 1 km west of the present lake shoreline and 

is the source of significant glacier melt-water during the summer months (Fig. 4.9). 

Vertical profiling of the water chemistry in late December 1973 revealed that the 

lake is stratified with deep freshwater mixolimnion and a single halocline underlain 
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Figure 4.11. South side of Ablation Valley. The Himalia Formation outcrops 

as a series of pale bands on the upper slopes of the valley and is a mixed 

granite conglomerate. This represents the only in-situ source of granite on 

Alexander Island. 
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by a thin saline monimolimnion (Fig. 4.6) (Heywood, 1977). The water below 55 m 

was Chlorite dominated (ionic order, CI-Na-S04-K-Ca-Mg; Fig. 4.8). Repeated 

measurements of the position of the halocline over a tidal cycle (Heywood 1977) 

concluded that the saline layer is in direct contact with the seawater beneath George 

VI Sound and extends 4km into the lake. This was supported not only by 

measurements of the water chemistry that revealed no appreciable difference in the 

chemical composition of the seawater beneath AB, the brackish water from ML and 

seawater collected further north in Marguerite Bay (Fig. 2.1b Chapter 2), but also 

the discovery of benthic marine fish (Trematomus bernacchii). 

4.2.3. Climate of the Ablation Point Massif 

The climate of the Ablation Point massif is dominated by the interaction of cyclonic 

depressions that originate in the southeastern Pacific Ocean and Amundsen-

Bellingshausen Sea and the north-to-northeasterly outflow of cold anticyclonic air 

from the West Antarctic ice sheet (King and Turner, 1998). This interaction is 

extremely important in determining the long-term climate of the massif with the 

former bringing relatively warm weather, strong northerly winds and a heavy cloud 

cover to the Ablation Point area, whilst the latter brings cool stable weather. Mean 

annual temperature is approximately -1.9°C during summer (December-February) 

and -17.5°C during winter (June-August) (Harangozo et al., 1997) and annual 

precipitation is less than 20 cm water equivalent. Analysis of long-term weather 

data (1961-1994) from nearby Fossil Bluff station (45 km south) has revealed that 

on multi-decadal time scales, the temperature data appear to reflect the recent rapid 

warming observed elsewhere on the AP (Vaughan et al., 2003), particularly during 

summer months (Harangozo et al., 1997). The most pronounced warming at Fossil 

Bluff appears to have been delayed compared to other central and northern records 

from the AP and shows the most apparent warming has taken place over the last 

decade (Harangozo et al., 1997). Figure 4.12 shows the summer temperature plot 

from Fossil Bluff and confirms that mean annual temperatures have continued to 

rise. One immediate effect of this temperature rise in the Ablation Point area 

appears to have been the partial break-up of the lake surface in Moutonnee Lake in 

late February 1998 (Bentley, pers. comm.) (Fig. 4.13), which occurred during the 

warmest recorded summer (ca. +1 °C). Break-up of the lake ice has not been 
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Figure 4.12. Mean summer (January) air temperature at Fossil Bluff Station, Alexander 
Island (see Fig. 3.4b for location) and nearby Rothera Station (Fig. 2.1). Summer 
temperatures have gradually warmed since 1968 (Monthly temperature data supplied by 
Stephen Harangozo, British Antarctic Survey). Break-up of Moutonnee Lake occurred in 
the summer of 1998 (the warmest summer since records began). 

Figure 4.13: Oblique aerial photograph of Moutonnee Lake taken from an aircraft (photo: 
M. Bentley) showing the partial break-up of Moutonnee Lake surface in late February 
1998. 
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reported by anyone else during the ca. 70 year period that GVI-IS has been visited. 

It is worth noting however, that late February is towards the end of the normal 

summer logistical operating season and thus previous ice surface break-up may 

have occurred without it being observed. 

4.3. Field Techniques 

It was the hypothesis of this thesis that Moutonnee and Ablation Lakes would 

contain a detailed record of the Holocene history of George VI Ice Shelf To test 

this hypothesis, fieldwork and data collection for the project took place over two 

successive field seasons; 2000-1 (M.J. Bentley/D.A. Hodgson/P. Noon), and 2001-2 

(J.A. Smith/M.J. Bentley/D.A. Hodgson/E. Verleyen). The fundamental aim of the 

fieldwork was to obtain several sediment cores from Moutonnee and Ablation 

Lakes, together with detailed water chemistry measurements and reference data 

from each lake catchment. The latter information were collected in order to 

constrain minerogenic/biogenic inputs into the lake basin and provide a valuable 

baseline data set that will allow comparisons with earlier measurements (e.g. 

Heywood, 1977) and to develop a conceptual model for detecting ice shelf histories 

from epishelf lake sediments. Owing to logistical considerations, primarily the 

safety of landing aircraft on, and then working on lake ice, fieldwork was carried 

out between the austral summer months of October and January when mean 

monthly temperatures remain below freezing. Beyond this 'window of opportunity', 

the lake ice surface, especially on Moutonnee Lake, can potentially become unstable 

due to rising temperatures and enhanced surface ablation. The next section will 

provide an overview of the field techniques employed. 

4.3.1. Bathvmetry 

Bathymetric measurements were carried out on transects from lakeshores to ice 

fronts during 2000-1 and 2001-2, building on the work of Heywood (1977). Lake 

ice was drilled using a Jiffy motorised ice drill with a 1 m long, 10 inch diameter 

auger blade and up to four, 1 m extension rods, depending on ice thickness (Fig. 

4.14). Depths were measured using a portable echo sounder, a plumb line, or both. 

The majority of depth measurements were undertaken using the echo sounder, but 
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Figure 4.14. Photograph showing the 'jiffy-team' (JAS and Elie Verleyen) 

drilling through lake ice using a Jifly drill (photograph by D.A. Hodgson, 

December 2001). 
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in some cases the echo sounder appeared to yield incorrect water depths, probably 

related to the interference of loose ice in the water column. In such cases, water 

depths were validated using a plumb line. 

4.3.2. Sediment cores 

Surface sediment cores were collected using a UWITEC short (1.2 m) gravity corer 

fitted either with a hydraulic core catcher for soft sediments (not used in season 

2001-2002) or a steel 'orange-peel' core catcher for consolidated sediment. Long 

cores were collected using a 2 m UWITEC (KOL. Kolbenlot) cable-operated piston 

corer (60 mm diameter) mounted on a lightweight aluminium A-fi-ame, with a solid 

wooden platform (Fig. 4.15). This system has been used with considerable success 

by a number of researchers, has a maximum operating depth of 150 m, and can 

collect up to 20 m depth of sediment (Melles et al., 1997; Kulbe et al., 2001; 

Hodgson et al., 2003). Where we sampled more than 2 m of sediment thickness, two 

adjacent holes were drilled through the ice (c. 1 m apart) and successively deeper 

cores taken from alternate holes with an overlap of 10-20 cm as outlined by 

Hodgson et al. (2003). Intact cores were retrieved in transparent Perspex liners, 

capped securely and carefiilly frozen vertically in the field. Surface cores were 

sectioned at 1 cm intervals in the field, stored in small Whirlpak sample bags and 

frozen (e.g. Hodgson et al., 2003). All sediment samples were shipped back to the 

UK in a freezer container (-80°C) on the RSS James Clark Ross. 

4.3.3. Water chemistry 

Field measurements of conductivity, temperature, pH and dissolved oxygen were 

carried out at 2 m intervals using a SOLOMAT water quality meter in 2000-1 and 

YSI 650 water quality meter in 2001-2 in order to measure the present-day water 

chemistry and also to compare with previous chemistry data collected in the 1970's 

(Heywood, 1977). Water samples were collected using a UWITEC or Niskin bottle 

water sampler. Selected samples, which coincided with major changes in water 

chemistry, were filtered through GF/C (0.45 |xm) glass fibre filters and stored in 

acid-washed Nalgene bottles. The filters were frozen and retained for pigment 
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analyses at BAS HQ. 

Additional filtered water samples were collected for 5'^0 and 6'̂ C and D/H 

analysis and stored in 125 ml acid-washed Nalgene bottles. Twenty ml of 

NaOH.BaCl2 solution was added to the 5'̂ C isotope samples to precipitate the 

bicarbonate. Air was excluded from the bottles and the caps sealed with PVC tape. 

Samples were stored frozen. To support the interpretation of the isotopic data. 

Meteorological data collected at nearby Fossil Bluff (~ 45 km further south) (Fig. 

2.1b) was used to supply proxy data for the sites. Regular radio communication 

between our field party at Ablation Point and scientists at Fossil Bluff suggested 

that the two sites experienced near-identical weather conditions. 

4.3.4. Sediment traps 

Sediment traps were installed in Moutormee Lake on 28/11/00 and at Ablation Lake 

on 11/12/00 to investigate armual sedimentation rates and sediment composition. 

These consisted of paired traps 30 cm long and 5 cm wide (6:1 aspect ratio) 

constructed from PVC pipe. At each site the traps were poshioned below the major 

steps in the conductivity profiles (field data from 2000). The traps were suspended 

in the water column on nylon rope with a sub-surface buoy to maintain rope tension. 

The traps were suspended from a wooden cross on the lake ice surface and accurate 

positions recorded both on GPS (precision <10 m) and using a Geodimeter Total 

Station EDM (precision <mm). Due to late-lying snow cover in 2001-2 the wooden 

crosses could not be easily re-located. Therefore, traps were re-located using a 

folding L-shaped probe, lowered through a drilled hole in the ice and then deployed 

and rotated below the ice to 'snag' or 'catch' the hanging rope of the trap. The traps 

from Moutormee Lake (installed on a single rope at depths 22m, 40m and 47m, 

position 70° 52.123' S, 068°19.635'W) were successfiilly retiieved on 27/11/01 and 

the contents of each trap transferred to Nalgene bottles. In the case of the lower

most paired frap the material was transferred immediately into light-tight Nalgene 

bottles to enable OSL bleaching tests to be carried-out for an allied project (Roberts, 

unpublished data). Biological sub-samples were preserved in Lugols iodine. We 

were unable to re-locate the Ablation Lake sediment fraps despite exhaustive 
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searches over several days. A corridor 39m long, and 16.6m wide, aligned 246°M 

from the original location of the trap was 'swept' with the probe but the traps were 

not found suggesting either rapid movement of the lake ice or failure of the trap 

suspension system. 

The new position of the ML sediment trap was surveyed using the Geodimeter and 

it was found to have moved 3.85m in a WNW direction. This is an important result 

as it demonstrates for the first time that a lake conveyor mechanism (Hendy, 2000; 

Hendy et al, 2000) is operating at this site (and by inference, probably at AB too). 

This result will allow us to make better interpretations from our core material as we 

can identify sediment transport pathways with more confidence (Chapter 5). 

4.3.5. Catchment reference datasets - constraining lake inputs 

A reference data set comprising soil, moss, cyanobacteria and valley gravels was 

collected from representative environments within the catchments of each of the 

lakes. Soil, moss and cyanobacteria were analysed for their elemental carbon (Corg), 

nitrogen (Norg) and isotopic carbon (5'^Corg) values, whilst the valley gravels were 

used to aid the interpretation of the lithological and sedimentological composition 

of the lake sediment. These samples also ensured that the study had a 

comprehensive reference data set of diatoms samples from the full range of 

environments in the catchments. Together, this information enables catchment 

inputs into the lake sediments to be identified and to discriminate them from 

marine-derived inputs from George VI Sound and its ice shelf 

4.3.6. 5'^0 and 5D isotopic analvsis of ice and snow - constraining lake water 

source 

Ice samples were collected from the ice shelf front to the lakeshore at each site in 

order to better understand the progressive transition from ice shelf ice to lake ice 

and also to help interpret the isotopic composition of the lake water. Ten holes were 

drilled along an east west transect at each site every 100 m. Samples were taken 

from 5cm, 25cm, 5Gcm and 75cm depths within the ice at each hole. Blocks of ice 
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from the ice shelf front were also sampled. The sampling at Moutonnee occurred 

before any significant melting had taken place within the lake ice, so no water was 

seen and the ice surface was snow-covered and undegraded. Snow and ice were 

sampled either as frozen samples in Whirlpak® sealed sample bags with air 

excluded, or in 20ml Nalgene® screw cap bottles, packed down to minimise the air 

gap. A selection of ice shelf ice samples and upstanding 'bergs' of ice shelf ice 

within the lake ice at Ablation were also collected for analysis. Moreover, in order 

to better understand the isotopic composition of the lake waters we sampled residual 

winter snow-pack; fresh summer snowfall and blue glacier ice from the catchments 

for isotope analyses. All 5*̂ 0 and 5D samples were kept frozen in the field and 

shipped back to the UK at -80°C on RSS James Clark Ross. 

4.3.7. Core Site selection 

The selection of the core sites were based upon two factors. First, and most 

unportantly, it was based on a detailed understanding of the lake bathymetry, from 

Heywood (1977) and our own measurements and principles of sediment focusing in 

lake systems. A second factor was the logistical considerations of collecting the best 

possible suite of cores in the time available. A summary of core material collected 

during 2000-1 and 2001-2 relevant to this study is shown in Table 4.1. 

4.3.7.1. Moutonnee Lake 

The location of core sites in 2000-1 was based on the detailed bathymetric 

measurements of Heywood (1977) and our own supplementary bathymetric work in 

2000. Together this enabled us to select the optimum axis for the surface sediment 

transect and to identify the basin's 'deep spot' along the fransect. Surface sediment 

samples were collected every 50 m (Fig. 4.5) using the UWITEC short gravity 

corer. These were collected for two principal reasons. Firstly, to judge the nature of 

the sediment and thus help determine the most suitable sites for coring operations. 

Secondly, the transect approach enabled a detailed analysis of ecological and 

physical changes along a depth transect from the ice shelf front to the lake shoreline 

and was important in developing the conceptual model for ice shelf 
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presence/absence (Chapter 5). Surface sediment material was sub-sampled at 1 cm 

resolution and transferred into Whirlpak® bags. The deepest part of the basin (short 

core site ML 15) was selected as the primary core site as it is most likely to represent 

the sediment depo-centre (Last and Smol, 2001). A 22 cm surface sediment core 

was collected at this site (ML15; 70°52.123'S, 68°19.635'W) using the UWITEC 

gravity corer fitted with a hydraulic core catcher. The cable-operated piston corer 

was then deployed a few meters away to collect four successively deeper, 

overlapping sediment cores. A total sediment depth of 5.48 cm was retrieved before 

encountering bedrock, sampled as a disk of sandstone at the base of the cutting face 

of the UWITEC corer. We are therefore confident that this represents the entire 

sedimentary sequence. 

Coring in 2001-2 built on the knowledge and experience gained during the 2000-

2001-field season and the preliminary analysis of the 2000-1 cores. The coring 

system was positioned on one of the 'shelf sites (ML 10; 70°52.053'S 68°19.989'W) 

(Fig. 4.5). Three sites were tried within 50 m of this point - each yielded sediment 

cores C.75 cm long. This indicates that the sediment drape at this site is uniformly 

thin, when compared to the >5 m core retrieved fi-om the depocentre during 2000-1 

season. Due to the coarse nature of the sediments the orange peel core catcher was 

used throughout. New bathymetric measurements were also undertaken in the 

northeastern part of the lake to find a sheltered basin in the 'lee' of the bedrock sill 

and a suitable site for an additional 'shelf site sediment core. Surface sediments 

were collected from each access hole to help determine the most suitable site for 

coring operations. The site chosen at 70°51.827S 68°19.411'W was informally 

named the Moutonnee Lake North Basin (MLNB) coring site. Water depth at this 

site was 34 m, with a ca. 2.5 m lake ice cover. Surface sediment cores were 

collected fi-om the new site with the UWITEC gravity corer fitted with the orange-

peel core catcher. The UWITEC cable-operated piston corer was then deployed to 

collect a sediment core to 190 cm total sediment depth. This core stopped in very 

stiff, dewatered and coarse (gravel) sediment, which prevented further penetration. 

It is therefore less likely that the entire sedimentary sequence was sampled at this 

site. 
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4.3.7.2. Ablation Lake 

The location of core sites in 2000-1 was based similarly on the detailed bathymetric 

measurements of Hey wood (1977) and our own supplementary bathymetric work in 

2000. Together this enabled us to select the optimum axis for the surface sediment 

transect (from the lake shore to the ice shelf front) and to identify the most suitable 

site for long-coring. Surface sediment samples were collected every 100 m (Fig. 

4.10) using the UWITEC short gravity corer. Firstly, to judge the nature of the 

sediment and thus help determine the most suitable sites for coring operations. 

Secondly, the transect approach enabled a detailed analysis of ecological and 

physical changes in the sediment from the ice shelf front to the lake shoreline. 

Surface sediment material was sub-sampled at 1 cm resolution and transferred into 

Whirlpak® bags. Using the bathymetry of Heywood (1977) and our supplementary 

water depth data taken in 2000-1 the main core site was chosen in a zone ca. 100 m 

from the first of the pressure ridges in the lake-ice (short core site AB2; 

70°48.974'S, 68°27.143'W). The coring site represents a natural deep trough in the 

basin. The UWITEC cable operated piston corer was deployed at this site to obtain 

two successively deeper sediment cores with a total sediment depth of 2.33 m. The 

base of the sequence consisted of a highly dewatered and compacted sediment with 

multiple clasts, sufficiently dense to cause some deformation of the steel coring 

tube. It is therefore unclear whether the entire sedimentary sequence was retrieved 

at this site. 

Following the bathymetric transect work in 2000-2001 and previous bathymetric 

measurements (Heywood, 1977) we were able to immediately take short and long 

cores from transect site AB4 (Fig. 4.10) (position: 70°48.994' 68°27.295') and 

fransect site AB8 sites (position: 70°49.086' 68°28.213'). An 18 cm surface sediment 

core was collected from site AB4 using the UWITEC gravity corer fitted v̂ dth the 

orange peel core catcher. The main coring site was chosen about 400 m inshore 

from AB2 because of the coarse-grained nature of sediment encountered at transect 

point AB2 (Fig. 4.10). The proximity of the ice shelf may have caused a large 

amount of rain-out of coarse material and so by moving ca. 400 m shorewards, but 

still staying within the deep basin (see bathymetric transect Fig. 4.10) we would be 
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more likely to get a complete but finer-grained sedimentary record of ice shelf 

fluctuations. The UWITEC cable operated piston corer was deployed at this site to 

collect two successively deeper sediment cores to 2.46 m total sediment depth 

where highly dewatered and compressed sediment was encountered. 

An attempt was made to retrieve a further sediment core from site AB8. This site is 

in shallower water, but is located on a very low gradient slope (Fig. 4.10). After two 

abortive attempts a third hole yielded a short core of 17.5 cm of brown-green finely 

textured clay, silt and fine sand. Long coring was unsuccessful because of striking 

very coarse material in one hole and the unexpected, undulating local lake floor 

topography. Because of the latter problem, a detailed bathymetric profile was 

undertaken along a c. 10-15 m length, which showed that there is a 46 cm transverse 

gradient at this site as well as the very gentle east-dipping gradient (sloping down to 

N). Because of this, coring at AB8 was abandoned. 

4.4. Analytical Procedures 

The following section provides the rationale for the laboratory techniques and 

explains the procedures adopted for each. A multi-proxy approach was adopted for 

this thesis to help reconstruct the Holocene history of George VI Ice Shelf The 

approach involved a combination of physical, biological and isotopic and elemental 

techniques. It was hoped that such an approach would provide an unambiguous 

record of ice shelf variations. 

4.4.1. Radiometric Dating 

As stated in Chapter 2 the utility of any palaeoenvironmental record is constrained 

by its ability to be placed in a historical fi-amework. Traditionally, the principal age 

control on Late Quaternary palaeoenvironmental records in Antarctica has been 

derived fi-om radiocarbon dating. However, obtaining reliable chronologies using 

radiocarbon techniques can be problematic, especially when forced, due to lack of 

carbonate, to date the acid insoluble organic matter (AIOM) fraction (Bjorck et al., 

1991; Berkman et al., 1998; Doran et al., 1999; Domack et al., 1999; Andrews et al., 

1999; Jones et al., 2000; Hodgson et al., 2003). In the marine environment this 
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largely reflects a variable Antarctic marine reservoir effect (AMRE) and the 

addition of old or new carbon. The radiocarbon reservoir in the Southern Ocean is 

dominated by the upwelling of deep water at the Antarctic Divergence, which 

produces radiocarbon ages for living marine species that exceed 1000 years 

(Broecker, 1963; Stiiiver et al., 1983; Gordon and Harkness, 1992; Berkman and 

Forman, 1996). This 'marine reservoir' has also been affected by natural changes in 

the production of atmospheric radiocarbon (Bard et al., 1990). An additional 

problem is the spatial variability of the AMRE (Gordon and Harkness, 1990), which 

can be influenced by glacial meltwater containing old carbon (Domack et al., 1989; 

Melles et al., 1994) or regional differences in upwelling around the continent 

(Berkman et al., 1998). Aside fi-om natural impacts, the Southern Ocean reservoir 

has been altered by human activities. Throughout the 20* century 'old' radiocarbon 

fi*om fossil fiaels and 'new' radiocarbon from nuclear explosions has added carbon 

to the atmosphere (Berkman et al., 1998). The 53%o differences between A '''C 

values of pre-bomb and post-bomb Biogenic carbonates, is almost identical to the c. 

50%o offset for surface seawater south of 50° (Broecker et al., 1985; Berkman and 

Forman, 1996). The bomb signal has also been observed in long-lived brachiopods 

from Signy Island (Peck and Brey, 1996). This data implies that the Antarctic 

marine reservoir has been altered by ca. 500 years during the 20'*' century due to 

nuclear testing and fossil fuel combustion (Berkman et al., 1998). Pre-bomb, the 

radiocarbon content of surface waters around the Antarctic was almost equivalent to 

the ca. 1300-year age of deep water (Stuiver et al., 1983). Thus as a first 

approximation, the general radiocarbon reservoir used for samples from the circum-

Antarctic marine system is 1300 years (Berkman and Forman, 1996; Berkman et al., 

1998). 

A fiirther problem, which can influence the radiocarbon ages of marine organisms in 

the Southern Ocean, are speciflc 'vital effects' associated with their ecology and 

composition (Berkman et al., 1998). In an example provided by Berkman et al. 

(1998), there are significant differences in the radiocarbon age of pre-bomb living 

calcareous invertebrates assumed to be the same age (1346 ± 104 yrs), penguins 

(1130 ± 134 yrs) and seals (1424 ± 200 yrs). Similarly the radiocarbon age for post-

bomb is offset by 'new' radiocarbon resulting in younger ages for the same taxa: 
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calcareous invertebrates (901± 227 yrs), penguins (606 ± 388 yrs) and seals (778 ± 

412 yrs). 

The interpretation of radiocarbon ages from marine sediments is further complicated 

by the addition of much older organic material (e.g. carbon-bearing 

rocks/microfossils/macerals) (Eglington et al., 1997; Brachfeld et al., 2003). In the 

East Antarctic for example, Harris et al. (1996) found a ca. 7000 year offset for 

modem surface samples, which they attributed to the addition of Jurassic age pollen. 

It has been suggested that these problems can be overcome by systematically 

collecting and dating modem carbonaceous/carbonate samples and thus being able 

to calculate a local offset for the older samples (e.g. Berkman et al., 1998; Andrews 

et al., 1999). For example, Andrews et al. (1999) has suggested that in such cases, 

the surface age should be subtracted for all other downcore ages. However, this 

approach assumes that the surface error is comparable to the downcore error which, 

as Crespin et al. (2004) have recently noted, is not always the case. 

It is also often difficult to obtain reliable ''*C from lacustrine environments, but for 

different reasons (Hall et al., 2000). A lacustrine reservoh effect can occur because 

of old carbon (from carbonate bearing bedrock, from old CO2 from glacial ice) or 

from the lack of aeration of deep water (Hall et al., 2000), leading to erroneously 

old radiocarbon dates. Recent studies (e.g. Doran et al., 1999; Hodgson et al., 2001; 

Cremer et al., 2004) however have demonsfrated that reliable dates from lacustrine 

sediments can be obtained through the implementation of several dating techniques 

(e.g. ''̂ C, '̂"Pb, '̂ ^Cs, OSL) and by systematically dating the various inputs into the 

lake. Indeed many of the studies referred to in this chapter have successfully 

overcome these problems by implementing more than one dating technique (e.g. 

Jones et al, 2000). In addition, where suitable macrofossils are present good 

chronologies can be obtained (e.g. Jones et al., 2000; Hodgson et al., 2001a). This 

section outlines the techniques used in this study to obtain a reliable core 

chronology. 

4.4.1.1. 2'°Pb and'̂ ^c^ 
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Despite low concentrations of ^'°Pb fallout around continental Antarctica, ^"'Pb has 

been used successfully to date sediments in the sub-Antarctic (Appleby et al., 1995), 

the maritime Antarctic (Ye and Cuihua, 1997) and East Antarctica (Bird et al., 

1991; McMirm et al., 1994; Doran et al., 1999). Some of the greatest concentrations 

Qf 2i0pj^ have occurred in lakes similar to Moutonnee and Ablation where there is a 

focussing effect fi-om large catchment areas (e.g. White Smoke Lake, East 

Antarctica; Doran et al., 2000). Several studies have also recorded well-defined 

'̂ ^Cs peaks, which relate to the fallout fi-om atomic weapons testing in 1964-5 

(Appleby et al., 1995). 

A pilot '"Cs and ^'Vb study was carried out on sediment fi-om the MLNB core to 

investigate caesium and lead radioisotope concentrations. Initially, it was hoped that 

it would also allow us to assess the carbon reservoir by comparing '"̂ C ages with a 

lead or caesium derived chronology. However, the absence of suitable organic 

material in the upper sections of all our lake sediment cores meant that '̂ ^Cs and 

^'°Pb represented the only viable dating technique for providing a core-top 

chronology. 

One cm^ of dry sediment was finely ground in an agate pestle and mortar and sieved 

through a 63 \xm mesh to remove coarse material. Sediment was then carefully 

loaded into acid-washed plastic vials designed to fit inside the recess of the detector. 

Gamma ray detection was recorded over 24 hours using an EG&G Ortec hyper-pure 

germanium well detector coupled to a 4096 multi-channel analyser (MCA) at the 

Department of Geography, University of Durham (Donoghue et al., 2004). •̂ '"Pb 

was measured via its gamma emissions between the 45.65-47.55 keV range of 

interest (ROI), and '"Cs at 659.68-664.33 keV ROI. Post detection analyses of the 

ROI files followed the procedure of Donoghue et al. (2004). 

4.4.1.2. "*C Dating 

Despite the problems associated with dating the bulk AIOM fraction of sediment 

reviewed earlier, four samples were selected from the surface and basal sediments 

of the ML and AB cores for radiocarbon dating at the NERC Radiocarbon 
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Laboratory, East Kilbride, UK. A further 11 samples were submitted for Accelerator 

Mass Spectrometry (AMS) '"̂ C dating. Ten of these dates were based on two mono

specific, handpicked foraminiferal species (either Globocassidulina biora or 

Cibicides sp; identification after Igarashi et al., 2001). These posses a distinct 

advantage over the AIOM dated material since the AMRE for marine carbonate 

species found on AP is better understood. One other AMS '"̂ C date was obtained 

from fragments of an algal mat from the surface of the ML long core. Analyses 

were undertaken at the NERC Radiocarbon Laboratory and at Beta Analytic Inc., 

Florida. A summary of the material dated, and the location and justification for 

each date is provided in Table 4.2. 

4.4.2. Physical Analyses 

Physical analyses (Loss-On-Ignition, Magnetic Susceptibility, Carbonate Content, 

Grain-Size) were performed in order to describe the sediments and, in cases where 

muhiple cores were taken from the same basin, to aid core correlation. Analyses 

were carried out at three different laboratories (Table 4.3); (1) British Antarctic 

Survey (BAS) (M. Barrett and E. Carmichael); (2) Department of Geography, 

University of Durham (J.A. Smith); and (3) School of GeoSciences, University of 

Edinburgh (S. Roberts). Where possible inter-lab procedures were standardised. A 

more detailed account of these methodologies is presented below, including 

between-laboratory differences. 

4.4.2.1. Magnetic Susceptibility 

Magnetic susceptibility (MS) has been routinely used in the study of lake sediments 

(Thompson and Oldfield, 1986; Sandgren and Snowball, 2001 (and references 

therein)). The majority of magnetic minerals foimd in lake-sediments are derived 

from catchment erosion, of either bedrock or surface sediment in the lakes drainage 

basin (Sandgren and Snowball, 2001). Because of this, changes in the intensity of 

the magnetic signal of lake core sediments may reflect changes in rates of erosion in 

the catchment. Since erosion rates are often (but not exclusively) a function of 

climate, changes in the intensity of the magnetic signal may be useful to infer 

climate changes. Changes in the magnetic signal also reflect changes in sediment 

120 



o z 

< 

o 

i 

UJ 

Q 

< 
2 

u 
E-

S 3 

:S =S — =S 
ffl CQ CQ 

o U u u 

!̂  d 5 aj .2 5 .-̂  < 

CQ e- 03 H 

S S S S 
o o o o 
<< < < 

a a K a 
o o o o 
U U U U 

^ CM rt 

2 
•a 

•a s 

•a 
1 1 

? I I 

5 
CJ 

1 
c 

13 

r 

I 

V) W) 

£ _ _ 
p p p 

W5 Wi 

2 S 

i3 !3 ^ 

o 

&n s/3 « ( « V I 

E E E E E E E E 
o o o t> O s (S »n 00 u 

oo 00 o < ^ SO 
1 <N (N 

I 
(S 1 1 t 

m <N o O o r -
>n OO 00 5! ON 

(N <N (N •V — — 

o o o o -2 .a 

U J, jU JU 
o o o U U U 
-! -J - J 
S S 2 S 2 

2 a s o o o 
CJ o u oa OQ OQ 

z z z J -J -) 2 S 2 

to h~ 00 O) o 1- N (o ^ in 

tu 
I 

3 
< 
II 

O 
< 
VI 
o 

I 
1 
o 

121 



a 
g 

z o p 
D 

tu 

§ 
3 
tu 

OS 

8 
tu 

O 

C/5 
> • 

z < 

t/2 
tu 

Z 

a 
tu 
QS 
O 
U 
tu 

o 
(N 
t/5 

fN <N < 
O O 
© O 
tN fN 

© 

J 

c 

< cu 15 
03 « 

a. 
« !/l 03 

— 2> 
G < < 

I I « 
^ ^ 1/2 or. 

O © 
© © 
fN ^' 

© 

(N 
- J 
u 
(U 

13 
c 

< 

X ac S 

3 a 

DC I 
3 
O 

U 

|C "o 
"u '-P '-P 

1 1 

Clj 

3 
O 
O 

© 
fN 
GO 
- J 

< 
(« 

u 

I 
3 O 

U 

E 6 E E o u o ^ E E E E o u o o 
— (N (N fN 

E E E E o o o o 
— — CN 

E E E E o u u ^ 

5 S 2 2 
00 
(N 
f N 

«N 
f N 

C/l C/D C/5 
< < < 
03 CQ 03 

111 
CQ QQ CQ 

s s s 

S 

on 

I 
Q 

I oi on (/) 
< < < 
CQ CQ CQ 

1/5 t/3 !/3 

< < < 
OS CQ OQ 

E S E E S 
cn 1/5 C« {« 1/5 
'̂ < < < < 

- J "rj n 

S S w y i 
CO ffl ffl ^ ^ 

S S S 

S S -Si .Si 
^ cd M 
u u o 
ui ui uj 

s i 
u — 

< on g2 Z O 5 
O 
u 

1/3 

Q » 5 ^ 1 o u •t=! t/3 ^ 
^ a S 

w 

a 
z 

o 

2 g 

^ 1 1 
W H W 

z 

i l l 
S S S 

c/) < 

© <N 

o 

-8 -S c 
§ 

u ae O U 
z 
o 

3̂  
1 i 
.2 H 

I S 
< < 

E u 

3 
Q 

E 

E 
•s 
3 
Q 

E 

S I o 

S 
(/3 I 

03 
< 

fN 

00 
CQ 

a 

E-
§ § 

< < 122 



Chapter 4 - Field Sites and Techniques 

source. ML and AB have well defined catchments that are uniformly sedimentary in 

origin, and have a defined magnetic characteristic (ca. 25 mm^ kg''). Thus any 

change in the source of sediment, for example related to changes in the ice shelf, 

will be recorded in the magnetic signal in the sediment cores. In addition, the 

magnetic signal within a lake basin is largely homogenised (Thompson and 

Oldfield, 1986). Consequently, variations in MS can be used to correlate multiple 

cores taken from the same lake basin (Dearing, 1999). 

For this thesis, magnetic susceptibility measurements are used to supplement other 

proxy records to help establish changes in sediment supply and transport. It also 

aids core correlation. Magnetic susceptibility readings were undertaken using 

standard techniques described elsewhere (e.g. Thompson and Oldfield, 1986; 

Sandgren and Snowball, 2002), Readings were obtained using a Bartington MS2 

single sample, dual frequency susceptibility meter (Edinburgh) for the ML-core and 

a Bartington loop sensor for the MLNB and AB2 and 4 cores (BAS). Although the 

equipment reads the magnetic signal in different ways (the Bartington MS2 reads 

from single pot samples whilst the Bartington loop sensor can process entire cores) 

the end resuh, or reading is comparable (Wright, 1994). There is a tendency for the 

loop sensor to smooth the data, since it takes an average magnetic signal from the 

radius of the core, whereas the signal from pot samples can be influenced by a 

specific grain or rock component within the selected sample, so may produce a 

noisier signal. A problem associated with the loop senor, relates to difference in air 

pressure within the core tube, which can result in a weaker magnetic signal. This 

can lead to characteristic 'tail/edge effects' in the MS signal. These factors are taken 

into account when discussing the magnetic susceptibility results. 

4.4.2.2. Loss-On-Ignition - Organics and Carbonates 

The organic matter of lake sediments is made up of the residue of former biota and 

is commonly used as a proxy for palaeoproductivty (e.g. Meyers, 1994, 1997; 

Meyers and Ishiwatari, 1993). The primary source of organic matter is from plants 

living in or around the lake. This can be divided further into two geochemically 

distinct groups on the basis of their biochemical compositions: (1) non-vascular 

plants such as phytoplankton, which contain little or no carbon rich cellulose and 
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lignin, and (2) vascular plants, such as grasses, trees and lake macrophytes that are 

mostly absent in the Antarctic. In addition to lacustrine (and in this setting, marine) 

phytoplankton, benthic cyanobacteria tend to dominate the lake biomass (Hodgson 

et al., 2003). During the ausfral summer, extensive algal mats develop, especially on 

north-facing valley sides (e.g. Heywood, 1977), which may get washed into the 

lake. However, Heywood (19977) measured the chemical composition of water 

from several sfreams entering ML and AB and found them to be entirely deficient in 

nutrients. Lake and catchment primary productivity is controlled mainly by water 

temperature and light, the latter being dependent on both the duration and thickness 

of the ice cover and blanketing snow (Gore, 1997). Because the amoimt of organic 

matter in lake sediments is controlled by primary production it can be used as a 

proxy for climatic changes, specifically temperature and snow cover (e.g. Kulbe et 

al., 2001). 

In this study percentage Loss-On-Ignition (LOI) was used primarily to: (1) obtain a 

quick estimate of organic matter in the core sediments. This was needed to 

determine sample weights for elemental carbon and nitrogen (C/N ratios) and 6'̂ C 

analysis (discussed below); and (2) to obtain a measure of carbonate content. 

Elemental carbon analysis was used to infer total organic content. Sequential LOI is 

a common and widely used method to estimate the organic and carbonate content of 

sediments (e.g. Dean, 1974; Heiri et al., 2001). In a first reaction organic matter is 

oxidised at SOO-SSÔ C to carbon dioxide and ash. The second reaction requires 

fiirther heating to evolve CO2 from the carbonate at 900-1000°C. The weight losses 

during the reaction are measured by weighing the sample before and after heating 

(Heiri et al., 2001). Dean (1974) concluded that LOI provides a fast and reliable 

means of determining carbonate and organic content of sediments. However, it has 

been suggested that LOI tends to overestimate the amount of organic matter because 

there is no discrimination between carbon and non-carbon sediment components. 

More recently Heiri et al. (2001) performed repeat LOI measurements on several 

hundred sediment samples and found sample size, exposure time, position of 

samples in the furnace, and laboratory measuring all affected the LOI results. 

However, by maintaining a consistent sample size throughout the sediment core. 
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and consistent ignition temperature and exposure time in the furnace, Heiri et al. 

(2001) concluded that reliable LOI values could be obtained. 

Determination of weight percent organic matter and carbonate was based on the 

sequential heating of samples in a muffle furnace (see Dean, 1974 and references 

therein) and closely followed the procedure recommended by Heiri et al. (2001). A 

sub-sample of wet sediment was first transferred to a dry china crucible and 

weighed to four decimal places using a top pan balance. Samples were then oven-

dried at 105°C for 12 hrs and re-weighed to obtain a percentage wet weight. 

Following this, samples were combusted to ash and carbon dioxide at 550°C for 4 

hours (Heiri et al., 2001) in a Carbolite ashing muffle furnace (OAF 11/1). Once 

cooled in a desiccator, the samples were re-weighed and the amount of organic 

matter determined using the following equation: 

LOI550 = ((DW105 - DW55o)/DWio5) X 100 

Where LOI550, represents LOI at 550°C (as a percentage), DW105 represents the dry 

weight of the sample after heating to 550°C (both in grams). The weight loss should 

then be proportional to the amount of organic carbon contained in the sample (Heiri 

etal., 2001). 

Crucibles were then returned to the furnace at 950°C for two hours. Carbon dioxide 

is evolved from carbonate, leaving oxide and the samples are re-weighed. Carbonate 

content (LOI950) is calculated as: 

LOI950 = ((DW550 - DW95o)/DWio5) X 100 

Where LOI950 is the LOI at 950°C (as a percentage), DW550 is the dry weight of the 

sample after combustion of organic matter at 550°C, DW950 represents the dry 

weight of the sample after heating to 950°C and DW105 is again the initial dry 

weight of the sample before the organic combustion. 

4.4.2.3. Grain Size 
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Particle size distribution in lacustrine sediments has been widely used as a primary 

indicator of energy levels and changes in the sedimentary system (e.g. Syvitski, 

1991). Variations in grain-size have been used with considerable success in the 

Arctic (e.g. Nesje and Dahl (2001) and references therein) and Antarctic (e.g. 

Bjorck et al., 1996; Noon et al., 2001) to reconstruct glacier variation and catchment 

instability, which have been used indirectly to infer climatic changes. In this thesis, 

grain-size variations are used to help reconstruct changes in sedimentation 

associated with changing environmental conditions. 

The >2 mm (gravel) grain size fraction was determined by dry sieving (e.g. Lewis 

and McConchie, 1994a,b). For < 2mm grain size fraction, approximately 0.5 g of 

sediment was transferred into a plastic 50 ml centrifuge tube and weighed on a top 

pan balance to four decimal places. Ten ml of 10% HCl was added and left 

ovemight (to remove carbonates). A further 20 ml of H2O2 was then added and the 

samples placed in a hot water bath for 2-3 hours at +85°C to remove the organics. 

Samples were then centrifuged at 4000 rpm for four minutes and half the 

supernatant decanted off. Tubes were topped up with H2O and transferred back to 

the centrifuge for four minutes. 20 ml of H2O and 2 ml of Sodium 

Hexametaphosphate ((NaPOa) e) solution was then added to reduce sediment 

flocculation. Samples were then analysed on a Coulter Laser Granulometer LS230 

particle size analyser equipped with a fluid module and PIDS (Polarisation Intensity 

Differential Scatter) attachment. This machine uses a 5 mW, 750 nm laser beam and 

126 detectors placed at a range of angles up 35° to the laser beam, measuring 

particle sizes from 0.4 ^m-2 mm. Samples were mixed thoroughly before analysis 

and loaded into the counter vessel until obscuration values of 45-55 % and PIDS 

values of 8-12 % were obtained. Background readings were undertaken for each 

run. Samples were mn continuously with offsets automatically measured every hour 

and detectors aligned every two hours; sample run time = 90 seconds; grain size 

parameters were modelled using the Fraunhofer model with sand/silt/ clay 

divisional boundaries defined by Wentworth (1922). The sub-2mm grain-size data 

was exported directly from the Coulter LS2000 software as xls-files and then the 

relevant grain-size channels extracted using an unpublished (Morgan, 2001) 
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program. The program GRADISTAT (Blott and Pye, 2001) was then used to spUt 

the grain size classes following the Folk and Ward (1957) classification. 

4.4.3. Biological Analyses 

4.4.3.1. Diatom Analysis 

Diatoms are one of the key indicators of environmental change in Antarctic 

palaeolimnology on account of their sensitivity to changes in water chemistry and 

the physical environment such as salinity, nutrients and depth (Spaulding and 

McKnight, 1999). They have also been used with considerable success in the 

Antarctic to investigate freshwater-marine transitions (e.g. Wasell and Hakansson 

1992; Verleyen et al., 2004). In this study, the proportion of marine, freshwater and 

sea-ice diatoms in core sediments will provide key information on the 

environmental conditions within the basins at the time of diatom deposition. We 

have also collected contemporary diatom samples (sediment trap) and surface 

sediments from ML to help understand the present lake limnology and overall 

diatom ecology. 

For the lake water column samples, up to 5 ml of water was transferred to a 

UWITEC plankton covmter and then analysed under an inverted light microscope. 

For core material and surface sediment material, diatom preparation followed 

techniques outlined in Batterbee (1986). Sediment samples was first sieved (0.5 

mm) to remove coarse material. Between 0.3-0.4 g of dry sediment were then 

transferred to 50 ml plastic centrifuge tubes and weighed to four decimal places 

using a top pan balance. Tubes were then arranged sequentially in test tube racks. 30 

ml of 30% H2O2 was added to each sample and then observed. If the samples did 

not react vigorously, they were transferred to a heated water bath for 2-3 + hours at 

(+ 85°C). After about one hour, samples were lightly shaken and returned to the 

water bath. Samples were removed from the heat and 1-2 drops of 50% HCl were 

added to dissolve any carbonates. The digested samples were then rinsed with 

distilled (d) H2O and centrifiiged for 4 minutes at 1200 rpm. The supernatant was 

then decanted off and the sediment pellet resuspended. This cleaning step was 
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repeated four times. On the final wash 1-2 drops of weak ammonia (NH3) were 

added to each sample to help keep the clays in suspension (Batterbee, 1986) 

Centrifiiging samples has the advantage of saving time (compared to settling) but it 

may damage individual valves (Batterbee, 1986). To evaluate possible damage, one 

sample knovm to contain diatoms was prepared using both the centrifiige and 

settling technique to investigate the impact on the diatom valves. No differences 

were noted (e.g. an increase in the number of fragments) and individual valves 

appeared to show no signs of attrition. For slide preparation, appropriate suspension 

concentration was achieved by noting the turbidity and experience from previous 

test slides (Renberg, 1990). 0.5 ml of suspension was then placed on a cover slip 

and left to settle overnight. The high refraction mountant Naphrax® was used for 

moimting the cover slip on the slide. Diatom identification was carried out using a 

Nikon Alphashot 2 microscope, fitted with a Zeiss 100/1.25 oil immersion 

objective. Fully quantitative counts were made for each sample by counting the total 

number of diatom valves on for a known volume of sediment. Species 

identification and taxonomy was based mainly Wasell and Hakansson, (1992), 

Roberts and McMinn (1999), Sabbe et al. (2001) and Cremer et al. (2003) and was 

aided by collaboration with E. Verleyen, K. Sabbe and W. Vyverman at the 

Laboratory of Prostiology and Aquatic Ecology, University of Gent (Belgium) who 

specialise in Antarctic diatoms (e.g. Sabbe et al., 2003; Verleyen et al., 2003a,b). 

Data were plotted using TILIA 2.0B4 (Grimm, 1991), TILIA*GRAPH 2.20 and 

TGView 1.1.1.1 (Grimm, 2001) and zoned using the cluster analysis program 

CONISS (Grimm, 2001). 

4.4.3.2. Foraminiferal Analysis 

Foraminifera are abundant constituents of marine sediments and can provide 

detailed information concerning palaeoproductivity and bottom water circulation 

(Murray, 1991). Their distribution is primarily controlled by water temperature, 

salinity and nutrient supply (Murray, 1991). For example, specific high productivity 

faunas are associated with upwelling zones and refiect high fluxes of particulate 

organic matter (e.g. Lutze and Coulboum, 1984; Corliss and Chen, 1988). Other 

assemblages are associated with bottom water mass characteristics and substrate 
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conditions (Douglas and Woodruff, 1981; Murray, 1991) and have been used to 

infer bottom water routes and distributions (e.g. Corliss, 1983; Mackensen et al., 

1990, 1993). The analysis of marine microfossil assemblages can therefore provide 

a unique source of information on former climatic and oceanographic conditions. In 

this study, foraminifera present in each was identified to species level in order to 

assess hydrological changes in the lake basin. 

Each sediment sample was wet sieved through 2 mm and 63 îm brass sieves, 

transferred to a petri dish, dried, weighed and examined for any macro-fossils (e.g. 

algal flakes). The >2 mm fraction was also dried, weighed and subsequently used to 

quantify the gravel grain-size fraction. The 2 mm to 63 [im sedhnent fraction was 

then resieved through a 125 (xm -brass mesh and transferred to plastic petri dishes. 

Taxonomic work was carried out on the 125 \im -2.00 mm fi-action under a Nikon 

microscope with external bipolar light source (Schott KL1500). Quantitative 

foraminiferal counts were achieved by counting the total number of tests in a known 

volume of sediment (foraminifera per gram of sediment). Species identification and 

taxonomy was based largely on Anderson (1975); Osterman and Kellogg (1979); 

Loeblich and Tappan (1988); Mackensen et al. (1990, 1993); Schmiedl et al. (1997) 

and Igarashi et al. (2001). Data were plotted using TILIA 2.0B4 (Grimm, 1991), 

TILIA*GRAPH 2.20 and TGView 1.1.1.1 (Grimm, 2001) and zoned using the 

cluster analysis program CONISS (Grimm, 2001). 

4.4.4. Geochemistry and Isotopic analyses 

4.4.4.1. 5'^0,6^H,5'^C TDic analysis of lake water samples 

Water samples for stable isotope analysis 5*^0, and 5^H were filtered 

(Whatman GF/C, 0.45 îm) and stored in 125 ml acid-washed Nalgene bottles. 

Stable isotope analysis of water was determined by C O 2 equilibrium (Epstein and 

Mayeda, 1953) for and zinc reduction (Kendall and Coplen, 1985) for and 

isotope compositions are reported in standard delta (8) notation (e.g. 8'^0 and 6^H) 

using units per mille (%o) versus Vienna Standard Mean Ocean Water (VSMOW). 
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5 C^O, D) vs. SMOW = (Rsample/RvSMOW " 1) xlOOO 

Where R is the ratio of ' ^ O / ' ^ O or ^ H / ' H (Craig, 1961). The analytical precision 

(ISD) was better than 0.05 and 2 %o for 5'*0 and 5^H respectively. Total dissolved 

inorganic carbon (TDIC) for '̂ C/'̂ C analysis was precipitated in the field by the 

addition of BaCb + NaOH solution. Samples were reacted with anhydrous 

phosphoric acid in vacuo overnight; at a constant 25°C (McCrea, 1950) and the 

evolved CO2 measured on a VG Optima mass spectrometer. Isotopic results for 

carbonate (precipitated total dissolved inorganic carbon) are reported in standard 

notation in per mil (%o) versus VPDB, based on calibration of laboratory 

standards against NBS-19. Analytical reproducibility was normally better than 0.1 

%o (2 sigma). 

4.4.4.2. 6'^0 and S'̂ C on Authigenic Carbonate 

Authigenic carbonate is precipitated in freshwater lakes as a resuh of photosynthetic 

activity (Gat, 1995). Authigenic carbonate is formed when submerged aquatic algae 

use dissolved CO2 for photosynthesis leading to a CO2 deficit in the lake water 

(Siegenthaler and Eicher, 1986). As a consequence, bicarbonate is decomposed into 

CO2 and insoluble carbonate, which precipitates: 

Ca^ +2HCO3 = CO2 + CaC03 + H2O 

If it is assumed that authigenic carbonate forms in thermodynamic equilibrium with 

the lake water (Siegenthaler and Eicher, 1986; Talbot, 1990; Gat, 1995) then, 

variations in 5'*0 preserved in precipitates reflect past changes in the isotopic 

composition of the lake water (Leng et al., 2001). In glacier-fed lakes the 5 O of 

authigenic carbonate is a function of meteoric (snow and rain), glacial meltwater 

inputs versus through-flow and/or evaporation losses. Modem, hydrologically open 

lakes in Antarctica have 6*̂ 0 and 6^H values which tend to cluster aroiuid the 

regional Global Meteoric Water Line (GMWL) (See Chapter 5) (Hermichen et al., 

1985; Gillieson et al., 1990; Richter and Bormann, 1995; Lyons et al., 1998). This 

scenario is complicated however, by the addition of meltwater derived from older 
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(e.g. Pleistocene age) glacial ice (Richter and Boraiann, 1995; Miller and Aiken, 

1996), which can cause significant deviations from the MWL by increasing the 
16 • ' 1 8 

input of more depleted waters (rich in O) leading to more negative 6 O values. In 

this study the 5'^0 and of authigenic carbonate will be used together with other 

proxies (e.g. foraminifera and diatoms) to reconstruct past changes in lake 

hydrology. 

For each sample, 2 g of dry sediment was wet sieved at 80 fxm. The < 80 \\m 

fraction was collected in 500 ml Pyrex beakers and evaporated at 40°C. Once dry 

the samples were transferred to 50 ml plastic centrifuge tubes. Fifty ml of Analar-

grade NaOH.Cl (5%) was added to each centrifiige tube to oxidise the organic 

material, and then left for 12 hours. Fifty ml of ultra-pure (MilliQ) water (pHiO) 

was added to each sample and then filtered through Whatmans No. 1 filter papers 

that retained particles to 47 mm 0 using a vacuum filter pump. 50 ml of P H 2 O was 

then passed through the sample. This step was performed three times. Filter papers 

were oven dried for 12 hours and placed in a desiccator to cool. Sediment was 

carefully removed from the filter papers and the samples crushed in an acetone-

cleaned agate pestle and mortar. The carbonate samples were measured at the 

NERC Isotope Geosciences Laboratory (Keyworth, UK). 10 mg of CaCOs was 

reacted with anhydrous phosphoric acid in vacuo overnight at a constant 

temperature of 25°C (McCrea, 1950). The liberated C O 2 was separated from water 

vapour and its stable isotope content of oxygen and carbon measured on a VG 

Optima mass spectrometer. Results are reported in 6'^0 and notation in per mil 

(%o) versus Vienna Peedee belemnite (VPDB), based on calibration of the 

laboratory standards against NBS-19 and NBS-22. Analytical reproducibility is 

better than 0.1 %o (2 CT) for both isotopes. 

4.4.4.3. and C/N on Bulk Sediment 

The ratio of organic carbon (Corg) to nitrogen (Norg) content of sediment has been 

used together with isotope ratios of organic carbon ('^C/'^C; given the notation 

6'̂ C) to differentiate between marine and terrestrial sources of organic matter and 

provide information on past productivity (Macko et al., 1993; Thornton and 
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McManus, 1994; Muller and Mathesius, 1999). The application of these tracers is 

based on the existence of differences in C/N and d^^C between different types of 

organic matter (Meyers, 1994; Schelske and Hodell, 1995; Ruttenberg and Goni, 

1997, and references therein). As a general rule, enrichment of elementary nitrogen 

and '•'C occurs in organic matter of marine origin (Fig. 4.16) (Fontugne and 

Jouanneau, 1987; Meyers, 1994). During ice shelf presence the C/N ratio will be 

dominated by terrestrial-derived C and N and will have a likely signature of 8-10 

whilst the carbon isotopic composition of the sediment will be depleted in '^C and 

characterized by freshwater algal values, yielding S'̂ Ĉorg values between -30 and -

25 %o (see conceptual model in Chapter 5). 

4.4.4.3.]. C/N Ratios 

The C/N ratio reflects protein content, which is the most important nitrogen-

containing component in living organisms (Muller and Mathesius, 1999). Together 

with carbohydrates and lipids, proteins account for the greatest part of the organic 

matter of living organisms. Marine algae generally contain more protein than higher 

land plants, resulting in a lower C/N ratio (Muller, 1975). In the Antarctic, C/N 

ratios are on the whole relatively low (~ 4 - 12), due to the absence of vascular 

plants which commonly contain a higher carbon content (cellulose) resulting in C/N 

ratios of 20 or greater (Fig. 4.16) (Meyers, 1997). Thus, the C/N ratios of planktonic 

organisms usually vary between 4 and 7 (Bordovskiy, 1965), zooplankton and 

phytoplankton have average C/N ratios between 5 and 6 (Redfield et al., 1963; 

Bordovskiy, 1965), whilst benthic organisms and bacteria are generally very rich in 

protein and have C/N ratios around 4.2 and 4.1 (Bordovskiy, 1965). Unfortunately, 

organic compounds are subject to selective degradation and alteration both on their 

passage through the water column and in the uppermost layer of the sediments 

(Kulbe et al., 2001). Partial degradation of algal organic matter during sinking can 

diminish proteinaceous compounds thereby increasing the C/N ratio (Meyers, 

1997). Conversely, lower C/N ratios have been observed in ocean sediments due to 

the absorption of ammonia derived from the decomposition of organic matter 

accompanied by its recyrstalisation and release of carbon (Meyers, 1997). However, 

it is thought that the C/N ratio in lacustrine sediments is usually preserved well 
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Figure 4.16. Elemental (atomic C/N ratio) and isotopic (Ŝ ^C value) 
identifiers of bulk organic matter produced by marine algae, lacustrine algae, 
C3 plants and C4 land plants. Data fields are from Meyers (1994). 
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enough to reflect the intensity of primary production (Eppleby and Peterson, 1979). 

There is also a grain-size effect, with different fractions having different C/N ratios 

that must be borne in mind (e.g. Thompson and Eglington, 1978; Keil et al., 1994; 

Prahl et al., 1994; Meyers, 1997). Hydrodynamic sorting of sediment can therefore 

influence C/N ratios, which can potentially bias source discrimination (Meyers, 

1997). In general, the C/N ratio in fine sediments is lower compared with coarse 

sediment (Meyers, 1997). This is because the fine fractions contain a larger 

proportion of clay minerals, which have a large surface area and negative surface 

charge, both of which enhance the absorption of ammonia. Their C/N ratio can be 

depressed by the uptake of inorganic nitrogen (Meyers, 1997). Whilst a grain size 

effect must be considered, changes in the elemental composition of sedimentary 

organic matter due to grain size are not normally large enough to erase the larger 

overall signal from the C/N ratio (Meyer, 1994). 

In the Antarctic C/N ratios have been routinely used to assess variations in 

palaeoproductivity (Lawrence and Hendy, 1989; Bjorck et al., 1991; Wharton et al., 

1993; Doran et al., 1998; McMinn, 2000; Kulbe et al., 2001) with periods of high 

primary productivity showing higher C/N ratios (e.g. Kulbe et al., 2001). Their use 

as a source discriminator however is problematic since benthic cyanobacteria and 

diatoms dominate the overall lake biomass with aquatic mosses forming the highest 

form of plants (Hodgson et al., 2003), all of which have similar C/N ratios. For this 

reason, in this study the C/N ratio will be used to assess productivity rates, whilst 

the '^C/ '̂ C ratio of organic matter will be used to detect changes in source. 

4.4.4.3.2. ^^C on Organic Matter 

Carbon isotope ratios have been used successfully to distinguish between lacustrine 

and marine-derived algae (Fontugne and Jouanneau, 1987; Meyers, 1994, 1997; 

Muller and Voss, 1999; Westman and Hedensti-om, 2002). Emeis et al. (2003) have 

even suggested a direct link between the 5'̂ Corg value and salinity. Typical values of 

5'̂ Corg for freshwater plankton lie between -30 and -25%o, whereas marine 

plankton have d^^Coig values between -20 and -25%o (Fig. 4.16). The carbon 

isotope composition of organic matter is controlled by a number of factors. 
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Biological production is the most important (McKenzie, 1985) with carbonate 

precipitation, respiration of organic matter and C O 2 exchange between the water 

and atmosphere also contributing (Menking et al., 1997). Most photosynthetic 

plants incorporate carbon into organic matter using the Calvin (C3) pathway. This 

preferentially fractionates against '̂ C to produce a shift of about -20%o from the 

isotope ratio of the inorganic carbon source (Meyers, 1997). Organic matter that is 

produced from atmospheric C O 2 (6'̂ C ~ -7%o) by land plants using the C3 pathway 

has an average 6'̂ Corg (relative to PDB) of - -27%o (Meyers, 1997). Freshwater 

algae exploit dissolved C O 2 , which is usually in equilibrium with atmospheric C O 2 

(Meyers, 1997). Because of this, the isotopic composition of lake-derived organic 

matter is very similar to that from the surrounding catchment (e.g. Nakai, 1972; 

Benson et al., 1991; Tenzer et al., 1997). For marine algae the source of inorganic 

carbon is from dissolved bicarbonate, which has a 6'̂ Corg value of ca. 0%o (Meyers 

1997). As a consequence, marine organic matter has 6'̂ Corg values between -20 and 

-22%o (Meyers 1994). The ca. 7%o difference between marine-derived organic 

matter and lacustrine organic matter can therefore be used to discriminate between 

sources (e.g. Fontugne and Jouanneau, 1987; Prahl et al., 1994; Meyers, 1994, 

1997; Muller and Voss, 1999; Westman and Hedensfrom, 2002). Furthermore, 

unlike C/N ratios, the carbon isotope ratio is relatively conservative and unaffected 

by grain size, making them particularly useful in reconstructing past organic sources 

in areas of changing depositional processes (Meyer, 1997). 

However, some studies have shown that this isotopic partitioning may not always 

exist in the Antarctic. For example Doran et al. (1994) have reported a very wide 

range of 6'̂ C values (-1.9 to -25.7 %o) for sediments retrieved from Lake Hoare, an 

oligotrophic lake in Taylor Valley, Antarctica, while highly fractionated values as 

high as -12 %o have been recorded from sea ice (Dunbar and Leventer, 1992; 

McMiim et al., 1999b). Likewise, Gibson et al. (1999) have reported a range of-5 

to -20 %o for Ross Sea sediments, whilst Rau et al. (1989) have reported values as 

low as -28 %o for marine algae in the Southern Ocean. The latter value largely 

reflects the fact that cold waters are capable of holding more dissolved C O 2 than 

temperate and tropical waters, thereby allowing greater isotopic discrimination by 

algae. The possibility that the isotopic partitioning between marine and terresfrial 
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organic algae can break down in Antarctic sediments must therefore be borne in 

mind. 

For each sample, ca. 2 g of dry sediment was dry- sieved through a 1 mm mesh. The 

sample was then transferred to a 50 ml plastic centrifuge tube with screw cap. 

Carbonate was dissolved by adding 50 ml 5% HCL (Analar made up with deionised 

water) for 12 hrs. Each sample was then filtered through Whatmans No. 1 filter 

papers using a vacuum filter pump. 50 ml of P H 2 O was then passed through the 

sample. This step was performed three tunes. Filter papers were removed from the 

vacuum and oven dried for 12 hours, then placed in a desiccator to cool. Sediment 

was carefully removed from the filter papers and the samples crushed in an acetone-

cleaned agate pestle and mortar. 50 ± 0.1 mg was then accurately weighed into 

small tin capsules (8x5 mm) using a Sautorius high precision balance. 

'̂ C/'̂ C ratios, % Carbon (C) and % Nitrogen (N) of bulk organic matter were then 

analysed at the NERC Isotope Geosciences Laboratory (Keyworth, UK) by 

combustion in a Carlo Erba 1500 on-line to a VG Triple-Trap and Optima dual-inlet 

mass spectrometer, 5̂ Ĉ values were calculated to the VPDB scale using a within-

run laboratory standard (BROCl) calibrated against NBS-19 and NBS-22. C/N 

ratios are calibrated against an Acetanilide standard. 

4.4.4.4. 5*̂ 0 and S'̂ C on Foraminifera 

The isotopic compositions (oxygen and carbon) of deep-sea benthic foraminifera 

have been used extensively to examine secular changes in global ice volume, deep 

ocean circulation and temperature and nutrient cycling (Shackleton and Opdyke, 

1973; Duplessy et al., 1980; Grossman et al., 1984a,b). This is due largely to the 

fact that the stable isotopic composition of foraminiferal carbonate reflects the 
I ft 

isotopic composition of the water mass in which it lives. In this thesis, the 5 O and 

6'̂ C composition of foraminifera are used to investigate changes in lake hydrology 

associated with different ocean water masses (e.g. Ice Shelf Water and Upper 

Circumpolar Deep Water). 
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4.4.4.4.1. Oxygen Isotopes 

The distribution of 5'^0 in ocean waters is controlled primarily by the hydrological 

cycle, i.e. the ratio of evaporation and precipitation acting on the surface water 

masses and the amount of meteoritic water stored in continental ice caps 

(Mackensen et al., 1996). Additional factors such as sea-ice freezing and melting 

(MacDonald et al., 1995) the advection and mixing of water masses fi-om different 
1 S 

sources areas (Paren and Potter, 1984) and the addition of water enriched in O 
1 ft 

(glacier/ice shelf ice) are also very important for the basic composition of 5 Owater 

at any site. The ice volume effect is formidable such that the glacial to interglacial 

transition appears as a negative shift (on a profile of glacial-age to recent values) of 

between 0.3 and 1.3 %o (Anderson and Arthur, 1983), although the ice-volume 

effect is considered to be less important on Holocene time-scales. 

Ocean temperature at the time of calcification plays an extremely important role in 

the isotopic composition of foraminifera. The overall reaction for precipitation of 

carbonate is based on a thermodynamic fractionation between O and O (Urey, 

1947). This fractionation, which offsets the 5'^0 of carbonate minerals relative to 

seawater by ca. + 30%o is a logarithmic fiinction of temperature with a slope over 

the oceanic temperature range o f - 2 °C to 30 °C, of between -0.20 and -0.27 %o per 

°C (Kim and O'Neil, 1997). Because the oxygen isotope proxy is based on a 

thermodynamic principle it is considered to be relatively robust and relatively 

unaffected by secondary kinetic effects (e.g. diffusion) (Lea, 2004), although 

secondary effects such as ontogenic (growth) are thought to be important. The 

temperature dependence of fractionation has led to the development of isotopic 

palaeothermometers or palaeotemperature equations (see Rohling and Cooke (1999) 

and Lea (2004) for more detailed reviews). The most significant complication in 

using the oxygen isotope to determine temperature is that 5*^0 of carbonate solids 

reflects both temperature and the 5'^0 of seawater. As noted above the S'̂ O of 

seawater is controlled by continental ice volume and the evaporation-precipitation 

balance or 'salinity effect'. Both effects cast uncertainty on the use of oxygen 

isotope ratios for absolute and relative palaeothermometry (Lea, 2004). In 
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addition, there are several disequilibria effects, which influence the isotopic 

composition of benthic foraminiferal calcite such as vital effects (Duplessy et al., 

1970), offsets due to ontogeny (growth) (Spero and Lea, 1996), and offsets due to 

carbonate ion concentration of seawaters (Spero et al., 1997). A more detailed 

account of these factors in provided by Rohling and Cooke, (1999). These factors 

must be borne in mind when interpreting the S'̂ O signal. 

4.4.4.4.2. Carbon Isotopes 

The distribution of 6'̂ C in water mainly depends on the biological cycle of '^C-

depelted organic matter and the effects of gas exchange at the air-sea interface. 

Thus, the 5'̂ C signature of benthic foraminifera can be used to infer nutrient 

concentrations and changes in deep-sea circulation (Grossman, 1984a, b). However, 

disequilibrium effects also complicate the use of carbon isotopes for 

palaeoenvironmental reconstructions. Factors such as ambient pore water 5'̂ C at the 

species' preferred living depth of microhabitat (Grossman, 1984a, b; McCorkle et 

al., 1985) and respiratory C O 2 (vital effects) (Grossman, 1984a) are particularly 

important. 

4.4.4.4.3. ^^O and ̂ ^C analysis 

The two most abundant foraminifera species in the sediment core {Globocassidulina 

Mora and Cibicides sp.) were selected for isotopic (S'̂ O and 5'̂ C) analysis in order 

to reconstruct oceanographic conditions at the time of deposition. Both are 

calcareous benthic species and have been routinely used for isotopic analysis 

(Shackleton, 1974; Grossman, 1984a,b; Poole et al., 1994; Shackleton and Hall, 

1994, 1997; Serjup et al., 1999). Between 15-30 handpicked tests of 

Globocassidulina biora and Cibicides sp. (after Igarashi et al., 2001) were 

transferred to plastic centrifuge tubes using a synthetic brush. 10 ml of deionised 

H 2 O water was added to each sample. Tubes were then sonicated in an ultra sonic 

bath for two minutes to remove any internal/external impurities, such as clay. The 

overlying solution was removed using a pipette. This step was repeated until all 

visible contaminants were removed. Samples were then oven dried at 40°C. Once 
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dry, the samples were carefully transferred to an acetone-cleaned pestle and mortar 

and crushed to a fine powder. 50 \xg of carbonate, weighed on a Sautorius balance 

were analysed for 5*̂ 0 and 6'̂ C at the NERC Isotope Geosciences Laboratory 

(Keyworth, UK) using a VG Isocarb on-line to a VG Triple-Trap and Optima dual-

inlet mass spectrometer. Results are reported m 5̂ 0̂ and 8'̂ C notation in per mil 

(%o) standardized to VPDB, based on calibration of the laboratory standards against 

NBS-19. Analytical precision was typically <2%. Globocassidulina species have 

been found to crystallise with isotopic values of -0.1 and 0.5%o (Shackleton and 

Hall, 1997), whilst Cibicides species have been found to crystallise 0.58 ± 0.3l%o 

and 0.0%o lighter than equilibrium (Poole et al., 1994; Shackleton and Hall, 1997) 

for 6*̂ 0 and 5'̂ C respectively. These corrections were applied to the data generated 

in this study. 

4.5. Summary 

This chapter has described the physical setting of the study site and has documented 

the limnology and bathymetry of Moutonnee and Ablation Lakes. This information 

has been largely based on work undertaken in the 1970's (e.g. Heywood, 1977). 

This chapter also outlined the field techniques used during 2000-1 and 2001-2 and 

has provided the rationale for the laboratory techniques employed in this thesis. 

This information will be used in the following chapters to reconstruct the 

environmental history of ML and AB with the primary aim of determining the 

Holocene history of George VI Ice Shelf 
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Chapter 5 
T H E PRESENT DAY LIMNOLOGY 
AND SEDIMENTARY ENVIRONMENT 
OF MOUTONNEE AND ABLATION 
L A K E S : DEVELOPMENT OF A 
CONCEPTUAL MODEL FOR 
DETECTING ICE SHELF HISTORIES 

5.1. Introduction 

Chapter 4 provided a detailed description of the environmental setting and physical 

limnology of ML and AB that was based largely on work undertaken in the early 

1970's (e.g. Heywood, 1977) and supplementary information collected in 2000-

2001 and 2001-2002. The intention of this chapter is to provide a baseline study of 

the present day limnology of ML and AB (re-measured in 2000-1 and 2001-2) and 

to develop a conceptual model that will be used to help interpret the millennial scale 

history of GVI-IS. The conceptual model is necessary to provide the basis for the 

interpretation of proxy records from the lakes, presented in Chapter 4. An additional 

aim of this chapter is compare the physical limnological measurements made for 

this thesis with earlier data (e.g. Heywood's data from 1973) and thus provide a 

perspective on changes in these lakes over the last 30-years. It is hoped that this will 

provide a useful limnological data set to use as a baseline for possible GVI-IS 

collapse. Such a dataset was available at Disraeli Fiord, an epishelf lake on the 

northern coast of EUesmere Island, Arctic Canada, which displayed very unique 

changes in its water chemistry prior to the break-up of the Ward Hunt Ice Shelf 

(Mueller et al., 2003). 
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5.2. Results 

5.2.1. Vertical water chemistrv profiles 

5.2.1.1. CTD, DOx, pH 

ML: In 2000 conductivity was relatively constant in the mixolimnion, increasing 

markedly across a halocline at 38-42, and then relatively constant in the 

monimolimnion (Fig. 5.1). Water temperature was low directly beneath the lake ice, 

stable until 30 m, followed by a thermocline to 44 m where it reached a minimum of 

-1.3°C. DOx levels were variable in the water column reaching a maximum at 12 

m, sustained low levels between 26-40 m, and a brief increase at 42 m at the 

halocline. DOx levels then declined in the monimolimnion. Similar patterns were 

observed in 2001, but with a shallower halocline, thermocline and oxycline and 

higher (relative) oxygen concentrations in the lower parts of the mixolimnion. In 

2001, pH (not measured in 2000) increased with depth reaching a maximum of 8.8 

at 32 m before a stepwise decrease, reaching a minimum value of 7.61 directly 

above the sediment water interface. 

A B : Water column chemistry was much more variable across years in AB with 

gradual haloclines occurring from c. 50 m water depth (Fig. 5.2). In 2001 the 

halocline was particularly weak with salinity rising to only 0.8 psu. Water 

temperature profiles were markedly different between years, with the only common 

factor being increases directly below the lake ice surface. In both years DOx 

decreased with depth but had a more marked oxycline below 60 m in 2001. In 2001, 

pH (not measured in 2000) increased from 7.55 - 7.82 in the mixolimnion with a 

marked increase at the halocline rising to a maximum of 8.09 at the sediment water 

interface. 
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Chapter 5 - Limnology of Moutonnee and Ablation Lakes 

5.2.1.2. Stable Isotopes (5*^0, 5^H, 6'^CTDIC) analysis - water samples 

The lake water dataset contains 31 samples from Moutonnee and Ablation Lakes 

taken in 2000 and 2001. Values ranged from - 0.9 %o to -21.07 %o for 5*^0 and 

from -9.2 %o to -149 %o for 5^H (Fig. 5.3). 

ML: 5^H values remained constant at c. -148 %o through the mixolimnion but were 

much higher (- 9.2 %o) below the halocline (Fig. 5.3). 5̂ 0̂ values followed a 

similar pattern, being much higher below the halocline. In 2000, the S'^CTDIC 

(TDIC; Dissolved Inorganic Carbon; DIC) values were below detection, except in 

the surface layer (-2.4 %o). In 2001 5'^CTDIC values ranged from -11.4 to -0.5 %o 

with a shift to more negative values at 35 m, coincident with the halocline. 

A B : Both 5^H and 5'^0 values remained constant through the mixolinmion (Fig. 

5.3), reflecting the presence of a strong halocline (cf. ML). In 2000, the 5'^CTDIC 

values in the upper 25 m of the water column were characterized by decreasing 

S'^CTDIC from - 12.4 to - 19.4 %o, increases at 35 and 45 m, and undetectable values 

at 55 and 65 m. In 2001 5'^CTDIC values ranged from -21 to 10.6 %o and were 

variable through the water column. 

5.2.1.3. Plankton 

Analyses of plankton in 2 litres of water from each of the sampling depths revealed 

no diatom plankton in ML or AB. The absence of plankton in the water samples 

suggests that both lakes are unproductive, a fact that is likely to reflect the presence 

of perennial lake ice and/or nutrient limitation. This is discussed further in the 

following sections. Bacteria and viruses were not studied. 

5.2.1.4. Nutrients 
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Figure 5.3. S'̂ O, 5̂ H and lake water profiles; (a) Moutonnee Lake; (b) Ablation Lake. 
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Nutrients were near, or below, detection limits in all samples (Table 5.1). Nitrate 

was only recorded in the upper 5 m of ML and at 65 m in AB. Nitrite was below 

detection limits in all samples. Ammonia was detected at 5 m in AB at 36.8 i^M. 

Phosphate was present just above detection limits in the surface and basal samples 

in both lakes and at 35 m in AB. Silicate levels were below detection limits in both 

lakes. 

5.2.2. Surface sediment transects and sediment traps 

5.2.2.1. 6̂ Ĉorg and C/N ratios in surface sediments 

ML: S'̂ 'Corg values of the surface sediments ranged between -25.7 and -20.4 %o 

and were higher in the shallow water surface sediments (out to 450 m along surface 

sediment transect) and lower in the deeper water and near the ice shelf front (Fig. 

5.4). C/N values ranged between 7.8 and 10.5 and were generally higher in the 

shallower surface sediment samples. C/N values decreased from 10.5 at transect 

point 1 (TPl) to 8.4 at TP4. Both 5'̂ Corg and C/N values increased towards TP6, 

with 5'̂ Corg reaching a maximum value of -20.4 %o. 8'̂ Corg values then decreased 

rapidly, reaching a minimum of -25.6 %o at TP9. From this point 5'̂ Corg values 

remained constant along the rest of the transect. 

AB: S'̂ Corg values ranged between -25 and -15.5 %o and C/N values ranged 

between 7.8 and 9.7 (Fig. 5.5). Maximum values of both 5'̂ Corg (-15.5) and C/N 

(9.7) occured at TPl. Values of 5'̂ Corg and C/N both decreased towards TP4. From 

this point, C/N values fluctuated between 8 and 9 whilst 6'̂ Corg values increased 

slightly at TP5 before declining to a minimum value of -25.4 %o at TP9. 

5.2.2.2. Corg and Norg in surface sediments 

ML: C and N co-vary along the entire transect, fluctuatuig between 0.25-0.62 and 

0.03-0.07 respectively (Fig. 5.4). As a general trend, values increase from TPl, and 

then decrease before increasing steadily towards TP 12. From this point, values 

generally decrease reaching a minimum at TPl 8. 
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S I T E N A M E S A M P L E D E P T H A L K A L I N I T Y N I T R A T E N I T R I T E A M M O N I A P H O S P H A T E 

meq. L-1 N03 nN N02 HN NH4 P04 ^M 

Moutonn̂ e 5 0.164 0.783 -0.013 bd -1.55 bd 0.036 
15 0.168 bd bd 0 bd 
25 0.175 bd bd -0.117bd bd 
35 0.18 bd bd -0.112bd bd 
45 3.127 bd -0.385 bd -1.54 bd 4.438 

Ablation 5 0.041 -0.463 bd -0.155 bd 36.789 0.021 
15 0.085 bd bd -0.05 bd bd 
25 0.068 bd bd -0.554 bd bd 
35 0.071 -0.106 bd -0.011 bd 0.005 
45 0.072 bd bd -0.035 bd bd 
55 0.075 bd bd -0.336 bd bd 
65 0.079 0.161 bd -0.002 bd -0.233 bd 0.028 

Table 5.1. Nutrient analysis of lake water (2000-01). Abbreviations (bd = below 
detection). 
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Chapter 5 - Limnology of Moutonnee and Ablation Lakes 

AB: C and N co-vary along the entire transect, fluctuating between 0.41-0.87 and 

0.05-0.10 respectively (Fig. 5.5). Values increase, and then decrease before 

increasing steadily reaching a maximum at TP5. Values then generally decrease 

towards TP 10. 

5.2.2.3. Diatoms in surface sediments 

The diatom flora in the surface sediments from ML and AB consist of 23 taxa of 

which 4 could not be designated to species level. The assemblage compromises 

freshwater, brackish and marine taxa (halobian classification based on Wasell and 

Hakansson, 1994; Cremer et al., 2000; 2003). 

ML: Quantitative counts of the diatom composition of sediment samples taken 

along a fransect from the lake shoreline to the ice shelf front has been undertaken. 

The resulting diagram (Fig. 5.6) has been divided into four zones using CONISS 

(Grimm, 1987). Absolute diatom (valves g ' ' sediment) abundance has also been 

calculated and is shown in Figure 5.6. 

Zone 1 (TPl (Lake shoreline) - 6). High relative abundances of freshwater taxa 

occurred in Zone 1, including Achnanthes linkei (61.9%), Navicula cf. heufleriana 

(10.8%), Navicula molesta (8.5%) and Gomphonema angustatum/parvulu (8%). 

Other significant taxa (>2%) included Diadesmis perpusilla (5.5%), and Achnanthes 

taylorensis (2.1%), which tolerates both fresh and brackish water. A. Linkei, was 

only present at >2% in the first three fransect samples. Relative numbers of N. cf. 

heufleriana, N. molesta and G.angustatum/parvulum also decreased rapidly beyond 

TP3 and disappeared entirely at the boundary between Zone 1 and Zone 2. This was 

reflected in an overall decrease in the total number of valves (Fig. 5.6) from a 

maximum of 112082 valves g "' sediment near the lake shoreline to 0 valves at the 

boundary between Zone 1 and 2 (Fig. 5.6). 

Zone 2 (7-11). The boundary between Zones 1 and 2 was characterised by an 

increase in A. taylorensis and, the disappearance of all the freshwater taxa present in 

Zone I. A. taylorensis, dominated Zone 2 and reached a maximum of 91.2% at 
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Chapter 5 - Limnology of Moutonnee and Ablation Lakes 

TPIO with 41298 valves g "' sediment (Fig. 5.6). Low counts of A. linkei and the 

brackish-marine taxa, Cocconeis faciolata were also recorded. In Zone 3 there was a 

complete absence diatoms. 

Zone 4 (15-18). The lower zone boimdary was characterised by an vinknown centric 

(Plate 1) diatom at 95.5% with minor contributions from the marine diatom C. 

fasciolata. 

AB: Quantitative counts of the diatom composition of 10 sediment samples along a 

transect from the lake shoreline to the ice shelf front was undertaken. The resulting 

diagram has been divided into three zones using CONISS (Grimm, 1987) (Fig. 5.7). 

Absolute diatom (valves g"' sediment) abundance has also been calculated and is 

shown in Figure 5.7. 

Zone 1 (Shoreline (l)-4) was characterised by high concenfrations of^. taylorensis 

(94-98%) which reached a peak relative abundance 300 m from the shoreline at TP 

3 before declining at TP4 and then increasing towards the lower zone boundary. 

Absolute diatom abimdance followed this pattern reaching a maximimi of 204402 

valves g"' sediment at TP3 (Fig. 5.7). The freshwater taxa, A. linkei (2.3%) and D. 

perpusilla (2.3%) both decreased in abundance away from the lake shoreline. 

Zone 2 (TP5-7) was characterised by increasing concenttations of marine taxa, 

notably Diploneis sp.l (10%), and Unknown centric 1 (same as ML) (6.8%). 

Achnanthes taylorensis dominated the overall diatom composition (91.3%), but 

declined rapidly towards the boundary between Zone 2 and 3 and then disappeared. 

Zone 3 (TP8-10) was defined by increasing concenfrations of marine taxa, notably 

Unknown centric 1, Diploneis sp. 1, Amphora copulata and, Achnanthes breviceps 

all reaching maximum concentrations (Unknown centric 1 (86.69%), Diploneis sp. 1 

(9.5%), A. copulata (3.4%)) at the last transect point beneath the ice shelf tongue. 

This also coincided with the highest absolute diatom abimdance of 489780 valves g" 

' sediment (Fig. 5.7). 
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Chapter 5 - Limnology of Moutonnie and Ablation Lakes 

Grain-size fractions remained remarkably constant in both lakes (Fig. 5.8). In ML, 

sediment samples were dominated by clay and silt fractions, which have mean 

values of 56.3 % and 41.7 % respectively. Sand occurred in very low concentrations 

in the first two transect points (<0.77%), whilst clay increased slightly between TP6 

and TP 12. Gravel (>2 mm) was in low abundance throughout, but accounted for 

over 5% in TP6 (9.08%), TPll (5.13%) and TP12 (6.90%). In AB sand occured in 

very low concentrations in the first two transect points, reaching a maximum value 

of 2.27% at TP4. Clay% increased slightly towards TP 5 and 6 and then decreased. 

Gravel decreased from a maximum at TP 10 of 10.72% to 0.68% at TP5. A second 

gravel maximum occurred at TP4 (8.58%). 

5.2.2.5. Sediment Traps 

The dry sediment masses obtained from the inorganic component of the sediment 

trap are presented in Table 5.2, which also shows calculated sedimentation rate. 

Dry sediment mass is greater in the lower (40 m) traps, increasing from 0.1321 g at 

22 m to 0.7899 g at 40 m (Table 5.2). Sediment from 48 m depth was used for 

Optically Stimulated Luminescence bleaching tests (S.J. Roberts) and the mass is 

unknown. The grain-size composition of one sample from the 22 m trap was 

analysed and revealed that sand (47.5%) and silt (43.8%) dominate the fraction, 

with clay contributing (8.6%). 

TRAP DEPTH ( M ) DRY S E D I M E N T M A S S (g-yr) S E D I M E N T A T I O N R A T E (g-cm )̂ 

ML22 0.2434 0.0105 
ML40 1.3986 0.0397 
ML48 OSL OSL 

Table 5.2. Sediment trap dry mass and calculated sedimentation rate. OSL= samples 

used for Optical Luminescence dating bleaching test. 

Detailed analysis (light microscope) of the water samples for diatom plankton 

and/or other microbiological remains collected from ML revealed the complete 
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absence of plankton or other microbiological remains. This finding is consistent 

with the absence of plankton in the lake water samples. 

5.2.3. Reference data set - constraining lake inputs and lake water source 

5.2.3.1. 5'^ O and 5^H analyses of snow, lake ice, and ice shelf ice 

The snow and ice reference dataset compromises 42 samples taken from snow, lake 

ice and ice shelf areas of ML and AB and has been used to investigate lake water 

source. Values range from -12 .9 to - 21.3 %o for 5'^0 and from - 9 9 to -169 %o for 

5.2.3.2. 6'^Corg and C/N ratio of soils, moss, and cyanobacteria 

The dataset described in this section compromises a large group of mixed benthic 

samples including benthic cyanobacterial mats from meltpools, streams and wet 

seepage areas from the catchments on ML and AB. A detailed description of each 

sample is presented in Table 5.3 together with the result of 5^^Corg and C/N ratio. 

Values of 5'^Corg values in the reference data samples ranged between -26 .0 and -

14.1%o, and C/N values between 6.7 and 79.8 (Fig. 5.9). The samples form three 

main cluster groups, together with several important outliers. Cluster 1 compromise 

mixed benthos samples located in meltpools, or streams fed by meltpools. C/N 

values are relatively high (13.9 to 14.8), whilst 5'^Corg values (-25.4 to -23 .2 %o) are 

relatively light compared to cluster groups 2 and 3. Cluster 2 represents samples 

taken from benthic cyanobacterial mats and mixed benthos samples located in 

seepage and pool environments. These samples are characterised by lower C/N 

values (12.6-12) and heavier 5'^Corg (-19.2 to -17 .8 %o), relative to cluster group 1. 

Cluster 3 is composed of mixed benthos with epilithic and benthic cyanobacteria. 

C/N values are lower (10.5-9.7) compared to groups 2 and 3 whilst 5'^Corg values (-

18.9 to -17.8 %o) are similar to cluster group 2. 

5.2.3.3. Corg and Norg of soils, moss, and cyanobacteria 
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Corg values range from 0.2 to 13.3% Norg values range from 0.025 to 1.1% (Table. 

5.3). The valley gravel sample from ML and the soil sample from AB yielded the 

lowest C and N content. Black epilithic cyanobacteria yielded the highest C and N 

values of 13.3%) and 1.1% respectively. A fossil wood sample yielded high carbon 

content relative to nitrogen. 

5.3. Interpretation 

5.3.1. Vertical water chemistry profiles 

5.3.1.1. CTD, DOx, pH 

Since the first measurements of vertical water chemistry profiles in 1973 (Heywood, 

1977) the gross chemical structures of both the ML and AB water column have 

experienced a number of changes, most notably in the depth of the chemoclines and, 

in particular the haloclines. In ML the two-step salinity profile present in 1973 is 

absent from 2000 and 2001 profiles and there has been a net increase in the volume 

of marine water. The first interpretation of the changes in ML is that the increase in 

the volume of marine water in ML represents a long-term trend similar to that 

observed in Disraeli Fiord prior to the break-up of the Ward Hunt Ice Shelf in the 

high Arctic (Mueller et al., 2003). This involved a steady decrease in the thickness 

of the freshwater layer from the early 1960s to 2002, which Mueller et al. (2003) 

interpreted as a result of a thinning of the Ward Hunt Ice Shelf (on the assumption 

that the depth of freshwater layer is equivalent to the draught of the ice shelf) in 

response to documented atmospheric warming. A similar explanation could apply at 

ML in response to the rapid regional atmospheric warming on the Antarctic 

Peninsula since the 1970's (e.g. Vaughan et al., 2003) similar to the documented 

thinning of other AP ice shelves (e.g. Larsen-B, Shepherd et al., 2003). The second 

interpretation is that these changes are simply a result of seasonal variation. 

Heywood's (1977) CTD profiles were taken m late December, over a month later 

than the profiles in the present study. Thus seasonal factors, such as the changing 

supply of meltwater, or changing tidal ranges may be involved in the shifting 

chemoclines. In other words, Heywood may have measured a deeper halocline 
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because the meltwater/freshwater layer was thicker due to a more advance meh-

season. To determine which of these two competing hypotheses is correct would 

require a long-term monitoring study. It is worth noting however that the maximum 

change in halocline observed in ML (> 2 m) is greater than the maximum tidal 

range (72 cm) in ML. 

Unlike ML, AB is partially grounded on a bedrock sill. Therefore the shifts in the 

halocline from 66.5 m on the 30* November 1973, to 64 m on the 8'*' December 

2000 and then to a very weak halocline at 68 m on 2"** December 2001 are imlikely 

to be the result of anything more than changes in the seasonal supply of fresh 

meltwater, changing tidal ranges and the extent/distance to which marine water 

penetrates into the basin. It is \mlikely to be related to thinning of the ice shelf as 

this would result in a net increase in the supply of marine water and the halocline 

becomuig established higher in the water column. Given that the portions of the ice 

shelf reaching Ablation and Moutonnee Lakes are only a few km (~ 5 km) apart this 

may suggest that the changes in ML are more likely to be seasonal rather than long-

term. 

In both lakes, water temperature is within 1.5 °C of freezing at all depths. The 

similar depths of the thermoclines and haloclines is linked to the presence of cooler 

marine water which reaches a minimum temperature of -1.3 °C. It is interesting to 

note that the mean water temperature in AB has risen from -0.14 °C in 1973 to 0.05 

°C and 0.19 °C in 2000 and 2001, coinciding with the weakening of the halocline, 

although the significance of this is questionable. DOx values fluctuate in both lakes 

and, in general decrease with depth. This is likely to the result of well oxygenated 

water entering the surface of the lake via inflow streams and from the littoral zone 

where photosynthesis occurs, whilst at depth, oxygen is depleted by oxidative 

processes (i.e. biological oxidation of organic matter). This occurs particularly at the 

sediment water interface where bacterial decomposition of any dissolved and 

particulate organic matter takes place. 

5.3.1.2. Stable Isotopes 
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Stable isotope values also track the presence o f fresh and marine water. Thus the 

6*^0 and 6^H values in M L are distinctly different above and below the halocline, 

whilst samples from Ablation Lake are remarkably constant reflecting the complete 

dominance o f fresh melt-water at the time of measurement. Conversely, higher 5'*0 

and 5^H values below the M L halocline reflect the marine origin o f the water. The 

dual source characteristics o f water in M L are now investigated in more detail. This 

is not only important from a source point o f view but i t w i l l also provide important 

contemporary isotopic information for any future palaeoclimatic study which aims 

to interpret the isotopic signal preserved within the lake sediment. 

Generally, the S'^O and 5^H isotopic composition o f lake water inherently reflects 

the air temperature and moisture source, but also contains information about various 

inputs (glacial-melt) and outputs (e.g. evaporation). Figure 5.10 shows the 5 O and 

S'̂ H values from samples collected from M L and A B plotted against the Global 

Meteoric Water Line ( G M W L ) . The G M W L represents the correlation between 

5*^0 and 8^H in precipitation worldwide (Craig, 1961). This relationship is further 

modified i n arid climates such as the Antarctic by local evaporation lines (Gat and 

Gofiantini, 1981). Samples f rom this study plot close to the G M W L suggesting that 

the lake water is principally derived from the precipitation o f snow and rainfall, but 

also the melting o f yearly snow-patches. Together the lake water samples define a 

Local Meteoric Water Line ( L M W L ) , which is very close to the meteoric water 

lines (derived from the isotopic composition o f ppt) o f nearby Antarctic stations, 

Halley (1965-2000) and Rothera (1996-2000) and Vemadsky (1964-2000) ( IAEA, 

2004). Linear regressions o f the data (Fig. 5.10) give r^ values, which are generally 

very high (>0.92), suggesting that the lake water has been little altered by local 

processes (e.g. evaporation) and largely reflects the isotopic signature o f 

precipitation. Values also fa l l on a clear latitudinal gradient (Fig. 5.11) which 

principally relates to the temperature at which the precipitation formed (e.g. 

Dansgaard, 1964). Generally, the isotopic signature (6'*0 and 5^H) o f lake water 

becomes progressively lighter as one moves southwards (e.g. Noon et al., 2002). 

When plotted against regional reference data (Fig. 5.10), the 5 O and 5 H isotopic 

signature o f water below the M L halocline plots close to marine water from the 
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northern margin o f GVI-IS and within the fields o f multi-year sea-ice f rom the 

southern margin (Tison et al., 1991), which occupies the entire range o f isotopic 

values presented in this study. The sea-ice values come fi-om the base o f a sea-ice 

core (Tison et al., 1991) and effectively represent frozen marine water mixed wi th 

fresh melt-water. It therefore seems likely that the isotopic signature o f water below 

the halocline in M L is primarily marine in origin, wi th some dilution by fi-esh melt-

water, as is common for marine water in this region. 

The 5 '^CTDIC in M L and A B is distinctly different. In A B 5'^CTDIC values are 

generally much lighter, having a range between -21 to -9 .1 %o, whilst S '^CTDIC 

values in M L range f rom -11.4 to -0.5 %o. The heaviest 5 '^CTDIC values in M L 

occur below the halocline. TDIC comes f rom a wide variety o f sources, but tends to 

be dominated by three processes: (1) '^C/'^C o f inf lowing waters; (2) C O 2 exchange 

with the atmosphere; and (3) photosynthesis and respiration o f lake biota (Leng and 

Anderson, 2003). In addition marine water tends to have high TDIC values (Gibson 

et al., 1999; Arrigo et al., 2000). Indeed the influence o f marine TDIC is seen in 

M L , where water samples f rom below the halocline have higher 5 '^CTDIC values. 

Thus it seems likely that the 5 '^CTDIC profile in M L is dominated by the inf lux o f 

marine TDIC. The picture is more complicated in Ablation. Since the A B is 

perennially ice covered, it is unlikely that C O 2 is able to exchange wi th the 

atmosphere. In addition, the lake water column has already been shown to be largely 

unproductive (e.g. low nutrient/absence o f diatom plankton). As such, 

photosynthetic processes are also unlikely to control the 6 '^CTDIC variations in A B . 

h i the absence o f these processes, i t is likely that the 5 '^CTDIC values in A B reflect 

the varying input o f isotopically light carbon derived f rom catchment organic 

matter. 

In summary, the water column chemistry (CTD and isotopes) o f M L , and to a lesser 

extent A B , is dominated by the depth and strength o f the halocline which marks the 

transition between fresh and marine water. A l l parameters measured respond either 

to the presence o f these two water masses, or to the inf lux o f fresh oxygenated 

meltwater f rom the catchment, or both. The water columns o f both lakes were also 
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nutrient limited and as a result no phytoplankton were detected either by 

microscopic or pigment analysis (unpublished data). 

5.3.2. Surface sediment transects and sediment traps 

The salinity stratification strongly influences the parameters measured in the surface 

sediment transect and sediment traps. For example, the absence o f plankton and 

phytoplankton in the filtered samples from the water column is mirrored by an 

absence o f diatom remains i n the M L sediment traps. This is consistent wi th studies 

of other ice-covered ultraoligotrophic Antarctic epishelf lakes, which are 

unproductive due to the near-absence of inorganic nutrients, low temperatures and 

low annual fluxes o f photosynthetically active radiation (PAR) (Priddle, 1985; 

Henshaw and Layboum-Parry, 2002; Cremer et al., 2004). 

5.3.2.1. Lake ice conveyor model 

A further interesting feature o f the sediment traps recovered from Moutonnee Lake 

was their apparent in a W N W direction. This is a new and exciting result as it 

demonstrates for the first time that a rare lake-ice conveyor is operating at 

Moutormee Lake (and by inference, probably at Ablation Lake too). A similar 

process has been observed at Trough Lake in the Dry Valleys o f Antarctica (Fig. 

5.12) (Hendy et al., 2000). Here, material is transported from the floating glacier 

tongue (in this case the Koettlitz Glacier) to the lake moat via the lake ice. The lake 

ice is pushed forward annually due to a cyclical relationship between glacier 

compression and moat development around the lake shoreline. During the winter 

season compressional stresses build up as the lake ice restricts the glacier flow. 

Once the summer melt season arrives and the moat is re-established, the stresses are 

released allowing the lake ice to be pushed forward (Hendy et al., 2000). 

Periodically icebergs are calved o f f the glacier front to form upstanding ridges 

locked in the lake ice cover (Fig. 5.12) (Hendy et al., 2000). As the icebergs ablate 

they release englacial material onto the lake-ice surface or directly into the lake 

water. Fine-grained material tends to melt through the lake ice under the influence 

o f insolation and rains out onto the lake floor whilst coarser material (>1 cm) and 
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occasional large boulders are carried on the lake surface to the moat where they are 

deposited either directly or by meltwater (Fig. 5.12). Once in the moat this material 

may be incorporated into ice-push structures and/or resorted by fluvial action. 

As noted in Chapter's 3 and 4 Clapperton and Sugden (1982) first reported on the 

presence o f Antarctic Peninsula erratics (granite) along the Moutonnee Lake 

shoreline. The erratics are easily distinguished from the rocks o f Alexander Island, 

which are predominantly sedimentary. The only granitic rocks o f Alexander Island 

are found in a conglomerate (Himalia Formation) but these are easily identified as 

being more weathered. Similar observations were made during the austral summer 

o f 2002 where granite erratics were noted on the lake shoreline and also englacially 

within the ice shelf margin (Fig. 5.13). Thus it appears likely that granite from the 

AP is transported across the sound, by the ice shelf and then deposited on the lake 

ice surface where it is either fransported to the lake shoreline or simply ablates 

through the lake ice eventually reachmg the lake bottom. The important implication 

o f the lake conveyor system is that the ice shelf, when in contact wi th Moutonnee 

and Ablation Lakes, leaves a lithological signature o f its presence, which w i l l be 

found in both the lake sediments andpalaeo-shorelines (e.g. Fig. 5.13). 

5.3.2.2. Diatoms 

In contrast to the absence o f plankton in the water column, the benthic environment 

does have a diatom flora, though wi th a very limited species diversity. The species 

in the M L and A B surface sediments include taxa common to Antarctica and the 

Antarctic Peninsula such as Achnanthes breviceps. Amphora copulata, Hantzschia 

amphioxys, and Diadesmis sp. (Oppenheim and Ellis-Evans, 1989; Oppenheim, 

1990; Oppenheim and Greenwood, 1990; Schmidt et al., 1990; Wasell and 

Hakansson, 1992; Jones, 1993, Jones et al., 1993; Kawecka and Olech, 1993). The 

low diversity can be explained by the perennial ice cover, low temperatures, low 

photosynthetically active radiation (PAR) and nutrient limitation ( c f Spaulding et 

al., 1997, Jones, 1996; Spaulding and McKnight, 1999; Van de Vijver and Beyens, 

1999, Le Cohu and Maillard, 1986). A general feature o f both M L and A B was the 

absence o f planktonic freshwater diatom taxa, both in the surface sediments but also 

the sediment traps. This finding is consistent wi th several other lake studies from 
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the Antarctic and sub-Antarctic regions and is an issue that has been discussed by 

several authors (Jones, 1996; Spaulding and McKnight, 1999; Van de Vijver and 

Beyens, 1999). No single reason for this phenomenon has been presented, although 

trophic status has been suggested as an important factor (Le Cohu and Maillard, 

1986). The benthic diatoms are likely to be associated wi th the b io f i lm reported by 

divers in A B (Heywood, 1977). This is a ' thin film o f algae' extending to a depth o f 

15 m on the lake bottom. Evidence f rom this study suggests that these biofilms 

survive at greater depths, perhaps as deep as 24 m in M L . 

In both lakes the change in species composition is related to changes in lake depth 

and the transition f rom freshwater to marine water. A notable exception in M L is 

Zone 3 (TP 10-14), which contained no diatoms. This zone coincided wi th the upper 

limits o f the measured chemoclines and it is therefore likely that the extreme 

variations i n chemistry across this zone, coupled wi th the low light envirormient, are 

not favourable for diatom survival. In addition, pH could also be a factor as studies 

have shown that at higher pH (e.g. >9) diatom dissolution is rapid (Ryves, 1997). In 

the M L marine zone sediments, nearest the ice shelf front (Zone 4), there is an 

unknown centric diatom that is likely to be marine in origin and advected in by 

tides. A similar centric diatom occurs in relatively high numbers directly in front o f 

the ice shelf tongue in Ablation Lake. In both cases, the limited diversity and low 

numbers o f advected marine diatoms implies that there is very little diatom 

productivity beneath GVI-IS. 

Diatoms in the A B transect show similar changes in species composition with depth 

and salinity but without the presence o f true freshwater taxa. Instead, there is a 

change from fi-eshwater-brackish taxa (e.g. A. Linkei) near the lake shoreline to 

marine diatoms close to the ice shelf fi-ont. Brackish water taxa, namely Achnanthes 

taylorensis, dominate the diatom assemblage and account for the greater absolute 

diatom abundance in A B compared with M L . Due to the relatively free exchange of 

water f rom underneath the ice shelf into A B there is a greater number/diversity o f 

advected marine taxa (e.g. T. antarctica, Diploneis sp., and Unknown centric and 

possibly some in-situ growth. The presence o f these taxa suggest that marine water 

regularly enters the basin, but i t does not penetrate beyond TP4, landward o f which 

the water mass is predominantly fi-eshwater. 

169 



Chapter 5 - Limnology of Moutonnee and Ablation Lakes 

5.3.2.3. 5'̂ Corg Isotopes and C/N 

Similar to the diatoms, the salinity stratification also strongly influences the 

isotope values along the surface sediment transect, wi th lighter values (-25.7 to 

-25.4 %o) below the halocline (i.e. under the influence o f marine water) and heavier 

values (-15.5 to -21.5 %o) near the shore. C / N values also increase towards the 

shoreline. As a general rule (see Chapter 4) lacustrine algae have lighter S'^C (c. -

30 to -25 %o) whilst marine-derived algae are often slightly heavier (c. -20 to -25 

%o, Meyers, 1997). However, in Antarctica this approximate partitioning often 

breaks down. As noted in Chapter 4, Doran et al. (1994b) have reported a very 

wide range o f S'^C values (-1.9 to -25.7 %o) for sediments retrieved f rom Lake 

Hoare, an oligotrophic lake in Taylor Valley, Antarctica. Likewise, Gibson et al. 

(1999) have reported a range o f - 1 5 to -20 %o for Ross Sea sediments, whilst Rau et 

al. (1989) have reported values as low as -28 %o for marine algae in the Southern 

Ocean. A n explanation for such negative values is that cold waters are capable o f 

holding more dissolved C O 2 than temperate and tropical waters, thereby allowing 

greater isotopic discrimination by algae. On land only one study has reported d^^C 

values for Antarctic terrestrial mosses, lichens and algae on Signy and the South 

Shetland Islands wi th values ranging f r o m -28 and -18 %o, but mostiy between -25 

to - 2 1 %o (Galimov, 2000). The average o f terrestrial plants is -27 %o (Ehleringer et 

al., 1993), but the observed impoverishment o f plants studied by Galimov (2000) is 

likely to reflect species composition rather than geography. Lichens for example are 

known to have lighter '^C than other terrestrial vegetation. 

In addition to the biological influences, a comparison o f 6'̂ Corg values from the 

catchment reference data set wi th the 5'^C and C/N values in the surface sediments 

(Fig. 5.14) shows that the two mineral samples (soil and catchment rock) have very 

similar values to those obtained from the surface sediments, specifically those 

below the halocline. The rock sample is an Upper Jurassic to lower Cretaceous 

mudstone that i t is the most ubiquitous lithology in the catchment, and field 

observations have noted that gravel-sized clasts o f this rock are transported onto the 

lake surface by summer melt streams. Once deposited on the lake surface, this 
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material eventually ablates through the lake ice under the influence o f insolation 

(e.g. Fig. 5.12; Hendy et a l , 2000). This comparison wi th the reference data set 

suggests that at least part o f S'̂ Corg signature in the surface sediment may be 

derived from these allochthonous sources. 

The source o f heavier nearshore 5'̂ Corg values is less easy to determine from the 

reference data and could represent a mixture between partially degraded 

autochthonous organic material from the catchment, in-situ benthos and valley 

gravels. Bird et al. (1991) observed high S'^C values for organic carbon in 

meltwater sfreams feeding lakes in the Vestfold Hills , which they attributed to 

exfreme competition for available C O 2 by microbial autofrophs. The same process 

could be occurring at M L and A B and is supported by several organic reference 

samples collected from wet seepages and small pools that gave heavy S'̂ Corg 

values, notably from the epilithic and benthic cyanobacteria samples (e.g. cluster 

group 3; Fig. 5.14). 

In summary, the isotopic signature (S'^Corg) o f surface sediment indicates that a 

substantial amoimt o f material enters the lake from allochthonous sources. The 

deepest part o f each lake is characterised by an isotopic signature (ca. -25.6 %o) that 

closely resembles both that o f the dominant catchment lithology (-25 %o) and 

typical polar marine waters (Rau et al., 1989; Gibson et al, 1999), but it remains 

d i f f icuh to separate the two (biological and lithological) source signatures. In 

contrast the heavier isotopic signatures o f surface sediments on the landward side o f 

the lake shorelines are likely to reflect the inf lux o f '^C-enriched water. 

5.3.2.4. Grain-size variations and sediment pathways 

The grain-size composition o f the surface sediments in both lakes is near uniform. 

On the basis o f field observation three main sediment pathways have been 

identified: (1) fluvial; (2) aeolian; and (3) from the ice shelf The absence o f size-

sorting away from these likely source regions, suggests that the lake-ice modulates 

the transport and deposition o f sediment, for example via the lake-ice conveyor (e.g. 

Hendy et al., 2000) and by the rate at which particles migrate down the ice column 

due to surface ablation and insolation. Isotopically {b^^C) the surface sediments are 
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very similar to the valley-side gravels, which suggest a local catchment source is 

dominant. It is therefore likely that the majority o f this sediment enters the lakes 

along fluvial and glacial routes, although it has been shown elsewhere in Antarctica, 

that aeolian processes are significant. For example, passive sediment traps in the 

McMurdo Dry Valleys o f Antarctica have shown that strong winds transport 

significant quantities o f sand (50 to 1000 \i.m) and silt and clay (<50 ^m) sized 

material (Lancaster, 2002) wi th estimates o f dust flux i n Lake Bonney being 109 g 

m''^ yr"' for sand and 1.1 g m"^ yr"' for silt and clay (Lancaster, 2002). Although 

similar data is not available for Alexander Island, the Ablation Point massif is one 

of the largest ice-free areas on the Antarctic Peninsula, and the aeolian sediment 

flux is still likely to be important. 

5.4. DISCUSSION 

5.4.1. Evaluation o f proxies to record periods o f ice shelf loss 

The data presented above has provided baseline information on the contemporary 

limnology o f Moutonnee and Ablation and through the analysis o f surface 

sediments provided a detailed signature o f ice shelf presence. I f the ice shelf were to 

disappear however, i t would remove the lake ice dam, and M L and A B would 

become marine embayments. This would result in fundamental changes to the lake 

environment and leave a distinct (marine) depositional signature in the lake 

sediments. O f the parameters studied, stable isotopes clearly record the difference 

between freshwater and marine water both in the water column and in the surface 

sediments and are further supported by regional reference data. Therefore isotopic 

measurements have the potential to accurately discriminate the water source and 

help interpret the isotopic signal preserved within the lake sediment. Diatoms 

species composition is also linked to changes in salinity. However, the low nutrients 

measured in the water column and the layers o f high pH (e.g. M L 2001) may 

influence preservation o f frustules in the freshwater zone and hence in the 

sediments. Under marine conditions the sedimentary environment would favour 

preservation and thus i t is likely that periods o f marine water dominance would be 

fai thfully recorded by the presence of marine diatoms. Lithological parameters are 
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also o f value as the source region is likely to change f rom predominantly local rocks 

(and those rocks wi thin specific flow lines within the ice shelf) during periods o f ice 

shelf presence, to a variety o f sources during periods o f ice shelf absence when ice 

rafted debris (IRD) fi-om multiple sources (i.e. multiple areas o f Alexander 

Island/Palmer Land) would rain down to the sediments. The lake-ice conveyor 

system is also important as the ice shelf, when in contact wi th Moutormee and 

Ablation Lakes, leaves a lithological signature o f its presence, which w i l l be found 

in both the lake sediments and in palaeo-shorelines. 

5.4.2. Development o f a conceptual Model 

Based on what we now know about the modem day processes occurring in M L and 

A B and the signature it leaves in the sedimentary record, i t is possible to develop a 

conceptual model of: (1) ice shelf presence and; (2) ice shelf absence. In the next 

section an overview o f the two scenarios w i l l be presented and the likely response, 

based on what is already known about the contemporary processes o f key variables 

within the lake environment to ice shelf loss. 

5.4.2.1.Ice Shelf Presence 

Figure 15a shows the ice shelf presence scenario. Effectively this represents our 

understanding o f modem-day conditions in Moutormee and Ablation Lakes and is 

based upon the measured variables outlined above and what we already know f rom 

the work o f Heywood (1977). These measurements have shown, for M L at least, 

that the water column is stratified wi th fi-eshwater overlying marine water, the ice 

shelf is grounded on a bedrock sill and exotic lithologies are transported f rom the 

Antarctic Peninsula directly to the lake sediments and onto the lake shoreline. 

Field measurements have shown that the modem day lake water column is 

unproductive, a feature that is likely to reflect the attenuation o f sunlight by lake-ice 

and low nutrient levels. In M L diatom productivity is limited to areas close to the 

lake shoreline, where the assemblage is freshwater to freshwater-brackish species 

dominated The converse is tme in Ablation Lake; where diatom productivity 

appears to be highest nearest the ice shelf wi th brackish and marine diatoms 
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Figure 5.15. Conceptual model: (a) Ice shelf presence. Biologically the water 

column is sfratified, wi th freshwater overlying marine water. Freshwater organisms 

dominate the biological assemblage and sedimentation is likely to be dominated by 

local fluvial and material transported by the ice shelf, a process driven by the 'lake 

ice conveyor' (e.g. Hendy et al., 2000). Material transported via the ice shelf is 

dominated by a restricted lithological assemblage, probably exploiting specific 

flow lines within the ice shelf Isotopically, the sediments contain a freshwater 

signal; (b) Ice shelf absence. The stratified water column is replaced by a purely 

marine one. The biological assemblage is dominated by marine organism (e.g. 

diatoms), w i th the possible introduction o f other marine organisms (e.g. 

foraminifera). Sedimentation is chaotic, with a wide range of lithological types 

being deposited as ice rafted debris (IRD). Isotopically the sediments are imprinted 

with a marine signal. 
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dominating the overall assemblage. This implies that some marine diatoms are 

advected beneath the ice shelf, but not in significant numbers. In both environments 

the biological signature during ice shelf presence is relatively weak or diffuse, since 

very little in-situ productivity takes place. 

It has been shown in this Chapter (and Chapter 4) that the ratio o f sedimentary 

organic carbon (Corg) to nitrogen (Norg) content o f sediment can be used together 

wi th isotope ratios o f organic carbon (S'̂ Corg) to differentiate between marine and 

terrestrial sources o f organic matter and provide information on past productivity. I n 

theory during ice shelf presence the C/N ratio w i l l be dominated by terrestrial-

derived C and N and w i l l have a likely signature o f 8-10 whilst the carbon isotopic 

composition o f the sediment w i l l be depleted in '^C and characterized by freshwater 

algal values, yielding 6'̂ Corg values between -30 and -25%o. However, whilst a 

clear terrestrial signature has been detected in the surface sediments, a true marine 

signature remains unclear. The surface sediments o f the main cores sites in both M L 

and A B yield 5'̂ Corg values o f ca. -25 %o, which is also thought to reflect a 

terrestrial source. Ice shelf presence is therefore characterised by 5'̂ Corg values o f 

ca. -25 %o. 

The present day environment (i.e. ice shelf presence) is characterised by a relatively 

wide range in grain-sizes, but overall has an average mode, which probably reflects 

fluvially-derived material (<2 mm). Furthermore, the sediment appears to be 

dominated by local sedimentary lithologies (e.g. mudstone), which have a distinct 

carbon isotopic signatiire (ca. -25 %o). 

5.4.2.2. Ice Shelf Absence 

Figure 15b shows the ice shelf absence scenario. Importantly, ice shelf loss would 

see the present sfratified water column replaced by a purely marine one. Effectively, 

an epishelf lake would be replaced by a marine embayment. This would result in 

fundamental chemical, biological and sedimentological changes in the lake system. 

It is the hypothesis o f this PhD thesis that the present day diatom assemblage w i l l be 
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replaced during periods of ice shelf loss by an exclusively marine assemblage. In 

addition to open marine diatom species one would expect to see the first appearance 

of sea-ice related taxa (e.g. Fragilariopsis species; Cremer et al., 2002). This change 

is likely to be rapid, owing to the sensitive ecologies of most freshwater forms. A 

similar scenario has been documented in a lake on Horseshoe Island, Antarctic 

Peninsula (Fig. 2.1b) where Wasell and Hakansson (1992) have shown the 

transition from marine conditions to a freshwater environment following isostatic 

isolation. Ice shelf collapse may also witness the appearance of other marine 

organisms (e.g. foraminifera). 

A switch from a mainly freshwater water column to a marine-dominated 

environment will be reflected in the isotopic and elemental proxies. It is likely that 

during ice shelf absence, and a dominance of marine water, then the 5̂ Ĉ signature 

of lake sediments is likely to fall to between -20 and -25 %o, some ca. 5-7 %o lighter 

than present day (ice shelf presence) values. The C/N ratio is also likely to change, 

due to the influx of marine algae, which tend to be rich in nitrogen, thereby 

depressing the overall C/N ratio. 

Significant changes in sedimentation are likely to follow any change in the 

configuration of George VI Ice Shelf A coarsening of material is expected 

following ice shelf loss, in the form of ice-rafted debris. It has been documented 

above that the ice shelf transports exotic granite and metamorphic material from the 

Antarctic Peninsula to Moutonnee Lake. These differ from the rocks of Alexander 

Island, which are predominantly sedimentary in origin. Phases of ice shelf collapse 

should be marked by a clear depositional shift. Restricted ranges of igneous and 

metamorphic clasts, transported through George VI Ice Shelf to Alexander Island, 

and deposited with locally-derived sedimentary clasts, would be replaced, during 

periods of ice shelf loss, by a much broader lithological assemblage dominated by 

ice-rafted debris and locally derived sedimentary clasts from many different 

sources. 

In summary, it is the hypothesis of this PhD thesis that any changes in the stability 

of the ice shelf should leave distinct biological, chemical and lithological signatures 
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in the lake sedimentary record. Biologically, ice shelf loss would see the present 

stratified water column replaced by a purely marine one with the consequent 

changes in biological assemblages. Significant changes in the mode of transport and 

abundance of clasts are also likely to follow any change in the configuration of 

George VI Ice Shelf Ice shelf loss will be characterized by chaotic deposition of 

IRD with a wide variety of lithologies. Finally distinct changes in the chemical 

signature of the sediments are likely to follow any changes in the ice shelf This is 

most likely to be reflected in the values on organic matter, which should record 

any substantial changes in the lake hydrology. The thesis presented here is that 

through a combined biological, chemical and lithological approach it will be 

possible to provide an unambiguous record of ice shelf fluctuations. Agreement 

between the proxy records -mW clearly result in a robust record of Holocene ice 

shelf history, and thus environmental change. 

5.5. Chapter Summary 

The limnology of Moutonnee and Ablation Lakes has been re-evaluated after a 

period of 30 years. This has provided a long-term perspective on the changing 

chemistry and biology of these epishelf lakes. During this period the AP region has 

experienced a period of rapid regional warming that has resulted in the retreat and 

collapse of ice shelves north of 70 degrees latitude. Spanning 70-74.5° South, 

George VI ice shelf is now nearing its theoretical limit of stability. The role of the 

ice shelf in maintaining stratification of the water columns in these lakes means that 

they are uniquely placed to record periods of ice shelf loss both in the past (in their 

sedunents) and in the future. This chapter has provided a perspective on changes in 

these lakes over the last 30 years and provides new baseline limnological data such 

as were available at Disraeli Fiord, an epishelf lake on the northern coast of 

Ellesmere Island, Arctic Canada, which displayed very clear changes in its water 

chemistry prior to the break-up of the Ward Hunt Ice Shelf (Mueller et al., 2003). 

In Moutonnee Lake for example, the halocline may have gradually risen over the 

30-year period. It is uncertain at present however, whether these changes are 

associated with ice shelf thinning, or seasonal variability. To determine which of 

these two competing hypotheses is correct would require a long-term monitoring 

study. 
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In addition this chapter has used the reference data set presented above to develop a 

conceptual model for detecting ice shelf loss in epishelf lakes and has identified and 

evaluated a suite of proxies that are likely to change during ice shelf absence. 

Specifically, ice shelf loss is likely to cause significant changes in the biological 

(e.g. diatom), isotopic and elemental (e.g. 5'^Corg and C / N ) and physical (e.g. grain-

size/MS) signature of the lake sediments. The next chapter will present the results of 

the analysis of cores extracted fi-om Moutonnee and Ablation Lakes. 
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Chapter 6 
M U L T I - P R O X Y C O R E R E S U L T S 
F R O M MOUTONNEE AND 
A B L A T I O N L A K E S 

6.1. Introduction 

This chapter presents the biological, isotopic, elemental and physical data analyses 

of core material collected from Moutonnee and Ablation Lakes. These are used to 

develop a detailed palaeoenvironmental interpretation of each record in Chapter 7. 

Specifically, this chapter has three aims; Firstly, to identify key changes in each 

proxy record, which can then be associated with hydrological and/or physical 

changes in the lake system; secondly, to identify concurrent changes between 

individual proxies; and finally, to identify concurrent changes between cores from 

different lakes. This scaling-up from proxy to multi-proxy to multi-core is essential 

to provide a robust record of GVI-IS variability. 

As will be shown in the following sections, distinct biological changes have been 

detected in Moutonnee Lake (both ML and MLNB cores), which are considered 

here to represent fundamental changes in the lake environment, recording periods of 

past ice shelfless. In order to help focus the results and to achieve the aims outlined 

above, all data are presented and described with reference to the key diatom and 

foraminiferal zones, rather than separate zonation for each proxy record. Where 

appropriate, other significant patterns and changes are also highlighted. 

The first section will present the results of the biological data from the sediment 

cores. The second section will present the isotopic and elemental analyses 

performed on the sediment cores and micropalaeontological remains within the 

sediments, whilst the third section will present the results of physical core analyses. 

The fmal section will present the core chronology and then summarise the key 
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patterns within and between the two lakes. The raw data presented in this chapter is 

also included as appendices (Appendix 2-5). 

6.2 Biological Analysis 

This section presents the results of diatom and foraminiferal analysis performed on 

core material fi-om Moutonnee Lake. Analysis of sediment from the Ablation Lake 

cores (40 samples in total) revealed that they were devoid of micropalaeontological 

remains and suggests that the lake at the deeper core site is largely unproductive and 

/or corrosive (See Chapter 5). 

6.2.1. Diatom Analysis 

6.2.1.1. Moutonnee Lake (ML) Core 

Of the 105 samples fi-om the ML core prepared for quantitative diatom analysis, 40 

samples contained diatoms. The diatom stratigraphy can be divided into five clear 

zones (Fig. 6.1) hereafter referred to as biota zones (BZ) I to V. The depths for these 

zones are: BZI (537-500 cm), BZII (499^85 cm), BZIII (484-302 cm), BZIV 

(301-236 cm) and BZV (235-0 cm). This five-fold zonation was established 

visually, since zonation using CONISS resulted in over-complicated zonation. 

Sediment from the other 65 samples (Zones I , III and V) were devoid of diatom 

and/or other micropalaeontological remains, despite the entire slide being analysed. 

Slides from Zones I I and IV however, contained 30 diatom taxa (of which 1 could 

not identified to species level). All identified taxa are characteristic of marine and/or 

brackish water, with no freshwater taxa present (Table 6.1 and Plate 1). The diatom 

data is presented as number of valves per gram of sediment (valves g'' sediment) 

rather than percentages. This is more usefiil for assessing changes in productivity. 

For comparison, percentage plots are shown in Appendix 1. 

Zone II (485-500 cm) 
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Chapter 6 - Core Results 

The diatom data (valves g"' sediment) from Zone II in the ML core was further 

divided into two sub-zones by cluster analysis (CONISS) (Fig. 6.2). The 

characteristics of each are described in turn below. 

Sub-zone Ila (500-493 cm) is dominated by planktic taxa, notably the various life 

history stages of E. antarctica var. recta, which account for between 93.75% (499 

cm) and 54.84% (493 cm) of the assemblage (Fig. 6.1 and 6.2). Absolute diatom 

abundance in the sub-zone peaks at 497 cm, with a concentration of 27277 valves g" 

' sediment. The upper sub-zone boundary is defined by a decrease in total valve 

concentration (Fig. 6.2). 

Sub-zone lib (492-485 cm) is characterised by uniformly low diatom counts (< 5 

valves per slide). Notably E. antarctica var. recta and Chaetoceros spp. are absent 

(Fig. 6.1 and 6.2). 

Zone IV (236-296 cm) 

Zone rv in the ML core has been fiirther was fiirther divided into five sub-zones by 

cluster analysis (Fig. 6.3. The characteristics of each are described in turn below. 

Sub-zone IVa (296-282 cm). The lower boundary of Zone IVa is characterised by 

high concentrations of planktic diatoms, notably various life history stages of 

Eucampia antarctica var. recta (59.52%), Thalassiosira gracilis (3.6%) and 

Chaetoceros spores (28.6%). There is an increase in the benthic marine species 

Cocconeis faciolata (14%) between 293-289cm. Concentrations of an Unknown 

centric (Plate 1) increase, which is also coincident with increases in the planktic 

taxa E. antarctica var. recta, T. gracilis and Chaetoceros spores. Sea-ice taxa, 

notably Fragilariopsis curta (2.5%) and F. cylindrus (2%) increase from 292 cm, 

reaching a maximum concentration of 7.3% at 290 cm. The upper boimdary of sub-

zone IVa is defined by a decrease in the total number of diatom valves, particularly 

planktic species, from a sub-zone maximum of 137376 valves g"̂  sediment at 284 

cm to 74936 valves g"' sediment at the sub-zone boimdary (Fig. 6.3). For example, 

Chaetoceros spores and the Unknown centric decline from 60.72% and 11.4% 

respectively in sub-zone IVa to 11.4% and 4.8% respectively at the boundary 
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Chapter 6 - Core Results 

between sub-zone IVa and IVb. Other planktic taxa such as T. antarctica and T. 

gracilis also decline. 

Sub-zone IVb (281-268 cm) is characterised by maximum diatom concentrations. 

Planktic marine and sea-ice diatoms, most notably E. antarctica var. recta, T. 

antarctica and Chaetoceros spores, increase from a minimum at the lower sub-zone 

boundary reaching a core maximum at 276 cm of 223925 valves g"' sediment (Fig. 

6.3). At this depth, the sub-zone is dominated by planktic taxa (90.8%) with benthic 

taxa accounting for 4.7% and sea-ice taxa 1.6%. Concenfrations of E. antarctica 

var. recta, Chaetoceros spores, Thalassiosira species and general sea-ice taxa all 

decrease towards the upper sub-zone boundary. The upper sub-zone boundary is 

defined by a marked decline in the total number of valves, particularly the dominant 

planktonic taxa; E. antarctica var. recta and Chaetoceros spores. 

Sub-zone FVc (267-259 cm) is characterised by an overall decrease in diatom 

abimdance (Fig. 6.1 and 6.3), notably Chaetoceros, E. antarctica var. recta 

(intercalary, terminal and symmetric forms) and T. antarctica. The winter stage of 

E. antarctica var. recta (valve view of intercalary valve) still dominates the overall 

concentration, accounting for between 63% and 48% of the diatom assemblage. An 

overall decrease in planktic species coincides with an increase in benthic taxa, 

notably C. faciolata, which accounts for up to 27% of the assemblage in this sub-

zone. 

Sub-zone IVd (258-248 cm) is defined by an increase in Thalassiosira antarctica, 

which accounts for between 9.5% and 40.4% of the total assemblage. E. antarctica 

var. recta still dominates the sub-zone accounting for between 32.5% and 66.6%). 

The overall increase in benthic taxa, is the result of relative increases in C. faciolata 

and Achnanthes breviceps. 

Sub-zone IVe (247-236 cm). The lower boimdary of sub-zone IVe is defined by the 

disappearance of T. antarctica. The sub-zone is characterised by an increase in 

benthic taxa relative to planktic taxa, particularly A. breviceps and C faciolata. 

Overall diatom abundance however continues to decrease, with diatoms 

disappearing entirely from the sediments at 236 cm (Fig. 6.3). 
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6.2.2.2. Moutonnee Lake North Basin (MLNB) Core 

Of the 38 samples from the MLNB core prepared for quantitative diatom analysis, 

15 samples contained diatoms. The resulting diagram shows two clear zones (Fig. 

6.4). The depths for these zones are: BZl (172-135 cm) and BZII (134-0 cm). 

Sediment from BZII was devoid of diatom and/or other micropalaeontological 

remains, despite the entire slides from BZII being analysed. Slides from BZI 

contained 24 diatom taxa of which one could not be identified to species level. All 

identified taxa are characteristics of marine and/or brackish water, with no 

freshwater taxa present. 

Zone 1 (171-120 cm) 

Zone I in the MLNB core was further divided into two sub-zones by cluster analysis 

(Fig. 6.5). The characteristics of each are described in turn below. 

Sub-zone la (171-153). The lower boundary (core bottom) is characterised by the 

highest abundance of diatom valves (78369 valves g'' sediment) (Fig. 6.5) in 

MLNB. The overall assemblage is dominated by planktic taxa, particularly 

Eucampia antarctica var. recta (17.4%), Thalassiosira spA (13.9%), T. antarctica 

(10.15%) and Chaetoceros spores (6.09%). Benthic taxa are dominated by C. 

faciocolata (19.03%) and A. breviceps (4.3%). Sea-ice taxa, notably F. curta, 

contribute 8.88% to the overall assemblage. From this depth, total valve abundance 

declines, which is largely the result of declining counts of the major planktic taxa. 

The upper boimdary of sub-zone la is defined by significant decreases in E. 

antarctica var. recta and Thalassiosira sp. and also sea-ice taxa. 

Sub-zone lb (152-120) is characterised by declining valve abundances. The 

proportion of benthic taxa increases relative to planktic and sea-ice groups. C. 

faciolata constitutes between 45.6% and 100% of the overall diatom assemblage. 
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Chapter 6 - Core Results 

6.2.2.Foraminiferal Analysis 

This section present the results of foraminiferal analysis performed on core material 

from the two principal sediment cores (ML and MLNB) from Moutormee Lake. The 

data are presented as number of foraminifera per gram of sediment (foraminifera g" 

'), with additional summary percentages of the most abundant genera. This is more 

usefiil for assessing overall changes in productivity. For comparison, percentage 

plots are shown in Appendix 1. 

6.2.2.1. Moutonnee Lake (ML) Core 

Of the 105 samples from the ML core prepared for quantitative foraminiferal 

analysis, 31 samples contained foraminifera. The resulting diagram also shows five 

clear zones (Fig. 6.6), which are directly comparable with the diatom zonation 

described in section 6.2.1. Like the diatom data, sediments from BZI, III and V 

were completely devoid of foraminifera, despite detailed inspection of the sediment. 

From the samples from BZII and IV, 12 distinct foraminiferal were identified (Plate 

2). Of these, 4 were identified to species level, 7 to genus level and 1 could not be 

assigned a species name. All identified foraminifera are calcareous benthic marine 

species (Murray, 1991), with the assemblage being dominated by Globocassidulina 

species. 

Zone II (497-491 cm) 

Zone I I in the ML core has been further split into three sub-zones using cluster 

analysis (Fig. 6.7). Each sub-zone coincides with the zonation suggested by each of 

the highest splits of CONISS (Grimm, 1987). 

Sub-zone Ila (497-494.5 cm) is characterised by an overall dominance of 

Globocassidulina species. Total abundance reaches a maximum of 759 g-̂  at 495 

cm, composed mainly of Globocassidulina sp. From this depth total abundance 

decHnes (Fig. 6.7). 
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Chapter 6 - Core Results 

Sub-zone lib (494-492.5 cm) is characterised by a continued decline in total 

foraminifera abundance. Other notable features include peaks in Angulogerina 

earlandi at 493 cm and Melonis sp., Oolina globosa and Stainforthia davisi at 494 

cm. 

Sub-zone lie (492-491 cm). All foraminifera species decline, except Oolina globosa 

which shows a small increase. 

Zone IV (302-235 cm) 

Zone IV in the ML core has been ftirther split into four sub-zones (Fig. 6.8) 

suggested by each of the highest splits of the cluster analysis. 

Sub-zone IVa (302-297 cm). The base of sub-zone Ila is characterised by low 

numbers of all species. Globocassidulina species dominate the assemblage. 

Sub-zone IVb (296-266 cm) is characterised by increasing numbers of most 

foraminifera species. Globocassidulina species, notably G. subglosa and G. biora 

dominate the overall assemblage, accounting for between 50 and 78%. The rise in 

Globocassidulina sp. coincides with a maximum total foraminifera abundance of 

1074 g"' at 281 cm. Other notable peaks at this depth include maximum 

concentrations of Cassidulinoides sp., Melonis sp., and Stainforthia davisi. From 

this depth total abundance declines towards the upper sub-zone boundary. 

Angulogerina earlandi numbers remain low throughout the sub-zone. 

Sub-zone IVc (265-243 cm). Zone lie is characterised by low numbers of major 

species, notably and G. subglosa, G.biora and C. a f f . grossepunctatus and relatively 

high numbers of A. earlandi, reaching a maximum of 52.4 g"' (63%) at 248 cm. 

Total abundance increases slightly towards the upper sub-zone boimdary (Fig. 6.8). 

Sub-zone FVd (242-236 cm) is characterised by declining species numbers. 

Globocassidulina species (60%) are sub-dominant with A. earlandi accounting for 

20% of the total assemblage. 
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Chapter 6 - Core Results 

6.2.2.2. Moutonnee Lake North Basin (MLNB) Core 

Of the 34 samples from the MLNB core prepared for quantitative foraminiferal 

analysis, 20 samples contained foraminifera. The resulting diagram shows two clear 

zones (Fig. 6.9), which are directly comparable with the diatom zones in MLNB. 

Sediment from Zone II was devoid of foraminifera, despite detailed analysis. 

Samples from Zone I , contained 11 distinct foraminiferal species of which 8 were 

identified to genus level, 3 were identified to species level and 1 could not be 

assigned a species name. All identified foraminifera are calcareous benthic marine 

species (Murray, 1991). The foraminiferal assemblage within Zone I is now 

described in more detail. 

Zone I (170-136 cm) 

Zone I in the MLNB core has been fiirther split into four sub-zones (Fig. 6.10) 

suggested by each of the highest splits of CONISS (Grimm, 1987). 

Sub-zone la (170-164 cm) is characterised by an overall dominance of 

Globocassidulina species, notably G. subglosa and G. biora. Together 

Globocassidulina species account for -81% of the total assemblage. 

Sub-zone lib (163-147 cm) is characterised by maximum total foraminiferal 

abundance of 47.33 g'' at 162 cm and the continued dominance of Globocassidulina 

species (89-93%). Total (g"*) abundance then declines before increasing towards a 

secondary peak of 45.89 g'' at 154cm. The decline in overall foraminiferal 

abundance is attributed to a decline in the two major species, G.biora and G. 

subglosa. Other notable features include a relative decline in C. a f f . lobatulus and S. 

davisi. Concenfrations of A. earlandi remain low. 

Sub-zone lie (147-142 cm) is characterised by fluctuating total foraminifera 

superimposed on an overall decline towards the top of the sub-zone, which largely 

reflects the behaviour of G.biora. A peak in Globocassidulina and Cibicides species 

coincides with a decline in C. porrectus. 
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Chapter 6 - Core Results 

Sub-zone lid (141-136 cm) is characterised by an overall decrease in total 

abundance, although G. subglosa remains relatively high. Counts of A. earlandi, C. 

parvas and Melonis sp., increase, reaching peak concentrations at 136 cm. C. 

porrectus also increases, whilst numbers of G.biora decline. 

6.2.3. Summary: A combined biological zonation (BZ) 

Moutoimee Lake (ML) Core: The ML core is defined by a five biological zones 

(referred to as BZI-V), with zones II and IV containing biological remains and I , I II 

and V being devoid of biological remains (Fig. 6.1 and 6.6). In detail, BZII is 

characterised by a purely marine diatom assemblage, which is dominated by 

planktic diatoms, notably Eucampia antarctica var. recta whilst Globocassidulina 

species dominate the foraminiferal assemblage. Similarly, BZIV is dominated by 

planktic taxa, notably Eucampia antarctica var. recta, Chaetoceros species and 

Thalassiosira species. Total diatom abundance declines at 267 cm, which coincides 

with an increase in benthic diatom species. Similarly, total foraminiferal, notably 

Globocassidulina species declines rapidly at 268, whilst minor components of the 

assemblage (e.g. A. earlandi) begin to increase. This stepwise decline is also present 

in the 5'^Corg and LOI profiles presented below. 

Moutonnee Lake North Basin (MLNB) Core: The MLNB core can be split into two-

biological zones, with Biota Zone I containing biological remains and Biota Zone II 

being devoid of biological remains (Fig. 6.4 and 6.9). Like the ML core, the diatom 

assemblage is exclusively marine, being dominated by C. faciolata and E. 

antarctica var. recta. The diatoms in this zone are also characterised by a change 

form a planktic-dominated assemblage to a benthic-dominated assemblage. The 

foraminiferal assemblage is also dominated by Globocassidulina and Cibicides 

species, with A. earlandi becoming more abundant towards the upper zone 

boundary. 

The overall structure of both the diatom and foraminiferal assemblages presented 

from Moutonnee Lake suggests that Zone IV fi-om the ML core is contemporaneous 

with Zone I in the MLNB core. Specifically, the decrease in planktic diatoms and 
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Chapter 6 - Core Results 

increase in benthic taxa is common to both diatom zones. Likewise the 

foraminiferal assemblage is almost identical between the ML and MLNB cores. 

Notably, both cores show an overall decrease in Globocassidulina and Cibicides 

species and increase in A. earlandi. As will be shown later (section 6.5), this 

assumption is supported by the '"̂ C core chronology. These 'biota' zones are also 

correlated with near-simultaneous changes in the physical, isotopic and elemental 

data presented below. 

Ablation Lake Cores (AB2 and AB4): Biological zones were absent in both 

sediment cores (AB2, AB4) retrieved from Ablation Lake. This suggests that the 

lake water column is largely improductive and/or corrosive (see Chapter 5). 

Alternatively, it could suggest that we did not retrieve a complete sedimentary 

sequence from this site. 

6.3. Isotopic and elemental analysis 

This section presents the results of isotopic and elemental analysis performed on 

core material from ML and AB. The first section (6.4.1) presents oxygen and 

carbon isotope results performed on authigenic carbonate from the MLNB core. The 

second section (6.4.2) will present carbon isotope (5'^Corg) results together with 

total elemental carbon (Corg) and total nitrogen (Norg) percentage performed on the 

bulk organic fraction from core material from Moutonnee (ML and MLNB) and 

Ablation (AB2 and AB4) Lakes. The final section will present isotopic (carbon and 

oxygen) isotopic analyses performed on two foraminiferal species found within the 

ML and MLNB cores. 

Each isotopic and elemental proxy is described relative to the biological zonation 

identified above (grey shading in each diagram). A summary and synthesis of all 

individual units will be provided at the end of the chapter. 
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Chapter 6 - Core Results 

6.3.1. Authigenic Carbonate 

6.3.1.1. Moutonnee Lake North Basin (MLNB) Core 

In this section, the results of a pilot authigenic carbonate (< 80 j^m fi-action) isotope 

(S'^Oauth and 5'^Cauth) study performed on bulk core material fi-om MLNB are 

presented. The dataset comprises 16 samples taken at approximately 8 cm resolution 

(Fig. 6.11). Values range from -8 .5 to 1.9 %o for 5'̂ Oauth and -13 .0 to - 1 .2 %o for 

S'̂ 'Cauth (Fig. 6.11). 5'̂ Oauth valucs increase at 136 cm, which is coincident with the 

upper boundary of the BZI. The overall trend is one of decreasing 5'̂ Oauth and 

S'^Cauth values, before an increase in values at the core top (Fig. 6.11). 

6.3.2. Organic Isotopes and Elemental analysis 

In this section 5'^Corg, C/N, %Corg and %Norg profiles are described collectively for 

each core. 

6.3.2.1. Moutonnee Lake (ML) Core 

Values for the ML core range fi-om -26.4 to -22 .6 %o for 5'^Corg fi-om 6.8 to 12.3 for 

C/N, fi-om 0.67 to 0.21 for %Corg and from 0 to 0.08 for %Norg (Fig. 6.12). BZI is 

characterised by stable 6'^Corg, Corg and Norg values and decreasing C/N values. BZII 

is associated with rapidly increasing Corg and Norg values and a single sharp 5'^Corg 

peak. BZIII is characterised by relatively constant 5'^Corg, Corg, Norg % and C/N 

values. Values in BZIV are characterised by elevated 5 Corg? Corg and Norg % and 

lower C/N values. BZIV is also characterised by a significant decrease m O Corg, 

Corg and Norg % at 260 cm, which is broadly coincident with an overall decrease in 

total diatom and total foraminifera between 267-268 cm. BZV is characterised by 

high and fluctuating C/N values, but relatively constant S'^Corg, Corg and Norg values. 
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Figure 6.11. Moutonnee Lake North Basin (MLNB) core showing downcore 
variations in 5i80 and 5i3C performed on in-situ (core material) authigenic 
carbonate. Shaded box defines the biological zonation. 
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Chapter 6 - Core Results 

6.3.2.2. Moutonnee Lake North Basin (MLNB) Core 

Values for the MLNB core range from -28.1 to -23.2 %o for 6'^Corg from 6.7 to 12.1 

for C/N, fi-om 0.21 to 0.72 for %Corg and fi-om 0.03 to 0.08 for %Norg (Fig. 6.13). 

BZI is associated with elevated 6'^Corg, Corg and Norg values and low C/N (cf. Fig. 

6.12 and 6.13). Between 133 and 32 cm 5'^Corg values decrease gradually. The 

6'^Corg profile is also characterised by four sharp with heavier values at 136, 120, 

102 and 76 cm. Values at 120 and 102 cm also coincide with sharp increases in C/N 

values. C/N values fluctuate along a gradually increasing trend, whilst %Corg and 

%Norg decrease. 8'^Corg values become more constant above 100 cm fluctuating 

around a mean of-25.7 %o . Between -30 and 9 cm %Corg and %Norg both increase 

whilst C/N values decrease. In the upper 8 cm of the core C/N, %Corg and %Norg 

rapidly increase, reaching core maxima in Corg and Norg of 0.72 % and 0.08 % 

respectively at the core top, whilst S'̂ 'Corg values decrease. 

6.3.2.3. Ablafion Lake 4 (AB4) Core 

Values for the AB4 core range fi-om -28.79 to -23.82 %o for 5'^Corg from 1 to 22.8 

for C/N, from 0.02 to 0.83 for %Corg and from 0.013 to 0.513 for %Norg (Fig. 

6.14). Unlike the cores from ML, the sediment cores from AB were devoid of 

biological remains. Between 217-124 cm the core is characterised by relatively 

constant 5'^Corg, C/N, %Corg and %Norg values, with mean values of -25.43 % o , 8.7, 

0.18 and 0.02 respectively. 5'̂ C org, C/N, and %Corg values fluctuate between 189-

166 cm. Above 124 cm, 5'^Corg values decrease sharply at 123 cm, whilst C/N 

values increase. %Norg also increase whilst %Corg decreases. 6'^Corg values reach a 

core minimum of-28.79 %o, whilst C/N reaches a core maximum of 22.8 at 76 cm. 

At ~ 70 cm %Corg and %Norg values suddenly decrease, whilst S^^Corg values 

continue to fluctuate around a mean value of -26 %o . The C/N profile continues to 

fluctuate. %Norg values remain relatively constant, only broken by one sudden 

increase in values at 54 cm. All values increase towards the core top. 5'^Corg and 

%Corg reach core maxima of -23.82 %o and 0.83 % respectively at 4 cm. 
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Chapter 6 - Core Results 

6.3.3. Foraminiferal S'^O and S'̂ C 

In this section the results of isotopic measurements ( 0/ O and C/ C) performed 

on two benthic foraminiferal species {Cibicides and Globocassidulina sp.) are 

presented. Analysis is restricted to the foraminifera bearing zones in the ML and 

MLNB cores from Moutonnee Lake. Results from the ML core are presented first, 

then results from the MLNB core. 

6.3.3.1. Moutonnee Lake (ML) Core 

S'^O andd^^C Cibicides sp. 

1 tt 

Values for Cibicides sp. range from 3.4 to 4.1 %o for 5 O and from 0.9 to 1.3 %o for 

5'̂ C. In BZII (Table 6.2. and Fig. 6.15 a,b) 5'̂ Ocibicides and S'^Cdbiddes values co-

vary with a large increase from the base followed by a small decrease. 

In BZIV, 5'*0 and 5'̂ C values initially co-vary but in anti-phase with peaks in 6'*0 

at 290 cm and 186 cm being associated with low points in 5'̂ C (Fig. 6.15b). Above 

290 cm 5**0 values are more stable, declining gradually to 262 cm. S'̂ C values on 

the other hand continue to fluctuate, reaching a zone maximum of 1.3 %o at 284 cm, 

before declining then increasing. Above 270 cm the S'^O profile begins to fluctuate 

more markedly and is characterised by 5'^0 peaks at 260 (4 .0 %o) and 252 cm (4.1 

%o). This double peak is notable since it coincides with overall decreases in diatom 

and foraminifera abundance and S'^Corg values. 6'̂ C values vary with a similar 

pattern, but changes occur out of phase with 5'*0 values. Above 250 cm, 5*̂ 0 

values become more stable whilst S'̂ 'C values continue to fluctuate. 

5'^0 andd^^C Globocassidulina sp. 

Values range from 3.6 to 4.7 %o for S'^O and 0.3 to 1.2 %o for S'^C (Fig. 6.16 a,b). 

BZII is characterised by generally decreasing 5*̂ 0 and 5'̂ C values, both reaching a 

zone minimum of 3.6 %o and 0.1 %o respectively at 492 cm. 
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Chapter 6 - Core Results 

BZIV is characterised by declining 5*̂ 0 and values (Fig. 6.16b). BZIV is 

characterised by high 5'^0 values until 292 cm, whilst 6̂ Ĉ values are more 

variable. Between 274 cm and 268 cm S'̂ O and 5̂ Ĉ values become lighter, then 

heavier and lighter again. Above this depth both values are variable and show no 

significant pattern. 

6.3.3.2. Moutonnee Lake North Basin (MNLB) Core 

5'^0 andd^^C Cibicides sp. 

Values range from 3.3 to 3.6 %o for 5̂ 0̂ and from 1.1 to 1.5 %o for (Fig. 6.17 

a,b). 5'^0 and values broadly co-vary, first decreasing then increasing, before 
1 fi 

decreasing again towards 162-cm (Table 6.2. and Fig. 6.17b). 5 O values reach a 

minimum at 170 cm of 3.3 %o, before. Values then decrease at 154 cm. b^^C values 

reach a maximum of 1.5 %o at 144 cm whilst 5̂ 0̂ peaks at 142 cm reaching a value 

of 3.6 %o. Both S'̂ O values and values then fall reaching minimum values of 

3.3 %o at 138 cm and 1.1 %o and 140 cm respectively. 

5*̂ 0 and S'^C Globocassidulina sp. 

Values range from 3.7 to 4.4 %o for 5̂ *0 and from 0.3 to 1.2 %o for 5"C (Fig. 6.18 

a,b). 6*̂ 0 and 6''̂ C values co-vary throughout the core. Values first decrease then 

increase towards 152 cm (Fig. 6.18b). Above 152 cm S'-^C values fluctuate with a 

decreasing trend towards the upper zone limit. Similarly 5̂ *0 values decrease, then 

increase at 142 cm before decreasing again, reaching a core minimum at 140 cm of 

3.7 %o. 

6.4. Physical Analysis 

Physical analysis was carried out on all long cores (ML, MLNB, AB2, AB4; raw 

data presented in Appendix 5) and included; magnetic susceptibility (MS), % loss-

on-ignitibn (%LOI), % carbonate content (%CaCG3) and grain^size (GS) analyses. 
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Chapter 6 - Core Results 

In each diagram, the grey shading represents the biological zonation derived from 

the biological data. 

6.4.1. MS/LOI/CaCO. and %HoO 

Magnetic susceptibility, % calcium carbonate, loss-on-ignition and % water content 

are described collectively for each core and compared directly with the biological 

zonation described in section 6.2. In several instances, however, anomalous MS 

readings, coincide with: (1) core boundaries (i.e. where two adjacent cores overlap 

in stratigraphical space); (2) where the core was sectioned in the field and; (3) tube 

'edge effects' caused by difference in air pressure in the core tube between 

compacted core sediments and core tops (Fig. 6.19). The latter effect has already 

been discussed in Chapter 4. This would represent a significant problem if these 

changes only occurred where two adjacent cores were taken, as it could imply that 

cores did not overlap in stratigraphical space. This is however, not the case and is 

illustrated in Figure 6.19. The Magnetic Susceptibility profile from ML core shows 

that anomalous changes also coincide with intact 2 m long cores from single drives 

that have been cut in two. The changes that are seen are within the normal drift of 

the sensor, or in the case of core ends, the 'edge effect'. More importantly however, 

this problem does not appear to have influenced other physical, chemical and 

biological results. Any interpretation regarding environmental processes that is 

based on these physical core data must bear these factors in mind. 

6.4.1.1. Moutonnee Lake (ML) Core 

Values range from -7.3 to 31-mm^ kg ' for MS, from 0.04 to 0.4 % for H2O, from 

1.18 to 7.23 % for LOI and from 0.95 to 5.15 % for CaCOa (Fig. 6.20). In general, 

the biological zones are not well defined by these physical proxies. BZII is 

associated with elevated MS values, (although this could reflect the core boundary 

problem), together with increased %H20 and %LOI values, whilst %CaC03 

remains unchanged. BZIV is also associated with elevated MS, %H20 and %LOI 

values. The LOI profile shows a stepped decline in BZIV, which is also seen in the 

biological and isotopic data. BZIII is characterised by fluctuating MS values, which 

first show a decreasing trend followed by an increasing trend. In BZIV between ~ 
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readings performed on core overlap (e.g. between IB and 2A). 
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Chapter 6 - Core Results 

259-158 cm, "/oHiO decreases, whilst %L01 begins to increase. CaCOa values 

fluctuate markedly at ca. 4%. The depth interval 157 to 62 cm is characterised by 

high amplitude, high frequency changes in all physical parameters. Above this, all 

values remain relatively stable from -61 cm to the core top. 

6.4.1.2. Moutonnee Lake North Basin (MLNB) Core 

Values range from 26-to 52.8-mm3 kg' for MS, from 10.6 to 28.4 % for H2O, from 

1.6 to 4.4 % for LOI and from 2 to 4.12 % for CaCOs (Fig. 6.21). Biological Zone I 

is characterised by elevated MS and CaCOs values and depressed %H20 and %L01 

values (Fig. 6.21). Above BZl the core is characterised by decreasing MS and 

CaCOs values, whilst %H20 and %LOI values increase. MS and CaCOa reach core 

maxima of 52.8 mm^ kg ' and 4.3% at 170 and 154 cm respectively. MS, %LOI, 

%H20 and CaCOs values then remain relatively constant, before %L01 and %H20 

increase and MS and CaCOa decrease beginning at ca. 30 cm. 

6.4.1.3. Ablation Lake 2 (AB2) Core 

Values range from 13.9 to 51.4 mm^ kg"'for MS, from 1.03 to 3.2 % for LOI, and 

from 1.36 to 2.48 for %CaC03 (Fig. 6.22). All measured parameters are relative 

constant to a depth of ca.90 cm, when %L01 and VoHzO values begin to increase, 

whilst MS values decline then increase. The depth interval 51-0 cm is characterised 

by high amplitude fluctuations in H2O and MS, whilst %CaC03 and %LOI decrease 

steadily. The MS profile is striking; changing from low values (ca. 1-3) between 51 

and 28 cm to high values (30-30.6 mm'' kg"') between 24 and 22 cm. Values then 

fall close to the core mean (ca. 9.6-12.3). 

6.4.1.4. Ablation Lake 4 (AB4) Core 

Values range from 0.3-to 32.3-mm3 kg"' for MS, from 0.01 to 0.26 for H2O, from 

0.46 to 4.02 % for LOI and from 0.32 to 3.86 % for CaCOj (Fig. 6.23). All 

measured parameters are relatively constant to a depth of 47 cm. The depth interval 

between 47-0 cm is characterised by a zone of increasing MS values between 51 cm 
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Chapter 6 - Core Results 

and 21 cm depth. MS values then decrease at 20 cm, which coincides with 

increasing %LOI and decreasing % CaCOa. 

6.4.2. Grain Size 

This section presents the results of grain size analyses. In all cases, the <2 mm 

fraction was analysed. The > 2mm fraction has also been analysed for the ML and 

MLNB cores, in addition to the > 10 mm fraction in the ML core. Grain-size class 

data is presented in Appendix 5. 

6.4.2.1. Moutonnee Lake (ML) Core 

The >2 mm (obtained from wet sieving) and <2mm grain-size data are presented in 

Figure 6.24. BZII is characterised by a high proportion of >10 mm clast (Fig. 6.24), 

a decline in the 2-10 mm fraction and sand and an increase in % sih and clay. BZIV 

is characterised by a relative absence of >10 mm clasts, a decline in the 2-10 mm 

fraction. Percentage sand-silt-clay remains largely unchanged. BZIII is 

characterised by a decrease in >10 mm material and a rapid increase in 2-10 mm 

material from <5 % to >50% occurs. The percentage sand and percentage gravel 

increase, reaching a peak at 348 cm. % Clay and % silt fluctuate aroxmd 10% and 

40% respectively. The sediment then fines from 347 cm to 304 cm, reflected by 

decreasmg proportions of sand and gravel. Percentage clay and percentage sih 

remain constant, with only coarse silt showing a slight increase in abundance. BZV 

is characterised by increasing then decreasing coarse sediment fractions. Percentage 

gravel and percentage sand both increase from the upper boundary of BZIV 

reaching maximum concentrations at 124 cm of 22 % (gravel) and ca. 25 % sand. 

Percentage siU accounts for >40% of total sediment mass in this zone. Clay and 

fine silt percentages both increase steadily. From 124 cm, percentage gravel and 

sand fractions both decrease. The sediment surface is characterised by low gravel 

abundance and high abimdances of the silt and clay fractions. 
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Chapter 6 - Core Results 

6.4.2.2. Moutonnee Lake North Basin (MLNB) Core 

Biota Zone I is associated with an increase in coarse (>2mm and 63-2mm) material 

and a decrease in % silt and clay (Fig. 6.25). %Gravel then decreases rapidly in 

BZII (<135 cm), whilst fine-grained material increases. Fine-grained material (<63 

|am) accounts for ca. 80% of the sample mass, with clay accounting for ca. 60% of 

this fraction. Between 27-0 cm there is a relative increase in percentage clay and silt 

and a decrease in %)sand. The core top shows a modest increase in gravel 

sedimentation. 

6.4.2.3. Ablation Lake 2 (AB2) Core 

The sediment core is dominated by silt, accounting for ca. 60-70 %. (6.28) Clay 

remains relatively constant, whilst percentage sand fluctuates. Notable sand peaks 

occur at 147 cm, 70 and 50 cm, which correspond, to a clay and silt minima (Fig. 

6.26). Percentage silt and clay then increase up to 23 cm before decreasing. 

Percentage gravel increases towards the sediment surface. Overall the unit is 

dominated by percentage silt (~ 20-70%). 

6.4.2.4. Ablation Lake 4 (AB4) Core 

AB4 is characterised by relatively constant sand-silt-clay proportions. Several 

notable fine layers occur at 160 cm, 106 cm, 40 cm and 30 cm and above 15 cm. In 

addition a prominent sand peak occurs at 20 cm. Overall, the sediment composed of 

clay (ca.40 %), sik (ca. 23-35 %), and sand (20-25 %). 

6.5. Core Chronology 

In this section the core chronologies for the Moutonnee and Ablation Lakes are 

presented. The ML and MLNB core chronologies are based on ten AMS ''*C dates 

performed on samples of monospecific foraminifera (Table 6.3). Eight are from 

Globocassidulina species with the remaining two performed on Cibicides species. 

Three other dates, two performed on the acid insoluble organic matter (AIOM) 
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Figure 6.25. MLNB core showing downcore grain-size variations (a) <2mm to 10mm (b) sand-silt-clay 

percentages. Black line defines the biological zonation. 
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Figure 6.26. AB2 core showing sub-2mm grain size variations. 

225 



(Sand-silt-clay (<2mm) 

u 100 

0) 
Q 

r — I %Clay 
%Silt 
%Sand 

[%] 

Figure 6.27. AB4 core showing sub-2nim grain size variations. 
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Chapter 6 - Core Results 

fraction and one performed on algal flakes assumed to be of freshwater origin are 

also presented. Two ''*C dates obtained from the AIOM fraction of core top and core 

bottom sediments from Ablation Lake are also presented. The construction of an 

age-depth model is discussed in Chapter 7, along with the enviroimiental 

interpretation of the proxies. 

Calibration was carried-out using the Calib 4.4.2 program (v4.4) (Stuiver and 

Reimer, 1993), using the marine/INTCAL98 calibration curve. Dates have been 

corrected for the southern ocean marine reservoir by the commonly accepted value 

for Antarctic marine carbonate, 1300 ± 100 yr (Berkman et al., 1998) and thus a AR 

value of 900 ± 100 yr was used together with a value of 100% for marine carbonate. 

Ages are reported as calibrated years before present (cal yr BP). Where more than 

one calibrated range is given, the figure in parentheses indicates the percentage of 

the area under the probability distribution. All other ranges constitute 100% of the 

probability distribution over the stated 1- or 2-sigma range. 

6.5.1. Moutormee Lake (ML) Core 

The eight AMS '"̂ C dates on foraminiferal carbonate from ML core are presented in 

Table 6.3. Six of the ages are based on Globocassidulina remains, whilst the 

remaining two are from remains of Cibicides sp. Conventional '"̂ C ages range from 

8603 ± 36 at 252-255 cm to 9403 ± 33 at 494-494. The calibrated ages fall between 

8036-8269 (100%) and 8843-9065 (95%) cal yr BP at 1-sigma. The ages are in 

chronological order with any minor age-depth inversions falling within the cited (1-

sigma) error. Figure 6.28 shows the conventional '̂'C, marine reservoir corrected, 

and calibrated ages plotted against depth for the ML core. 

Table 6.3 also shows the results of two 'range-finder' radiocarbon dated AIOM 

samples and one radiocarbon dated algal flake. Conventional '"̂ C ages for the 

CAMS-78992 sample of bulk sediment from the surface of the ML core yielded an 

age of 15100 ± 50 "'C yrs, whilst sample CAMS-78993 from bulk sediment near the 

base of the ML core yielded an age of 28750 ± 180 ''*C yrs. The algal flake material 

taken from near the surface (3 cm sediment depth) in the ML core yielded an age of 
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Figure 6.28. Depth versus conventional '''C, marine reservoir corrected and 

calibrated (marine/INTCAL98) ages for the ML core, Moutonnee Lake. Unless 

error bars are shown, the size of the marker represents the total error. For 

calibrated ages, the mid-point between the calibrated ranges has been chosen. 

The attached error represents the total range. 
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19720 ± 160. These ages are surprisingly old in comparison to the ages derived 

from foraminiferal carbonate and clearly reflect some form of contamination in the 

bulk samples. The implication of these ages for the core chronology and local 

marine reservoir will be further discussed in Chapter 7. 

6.5.2. Moutonnee Lake North Basin rMLNB) Core 

The results of two AMS ''*C dates on foraminiferal carbonate from the MLNB core 

are presented in Table 6.2. Both ages are derived from Globocassidulim remains. 

The conventional '''C ages are 8721 ± 33 at 138 cm and 8903 ± 30 at 163 cm. The 

calibrated ages fall between 8167-8370 and 8350-8573 cal yr BP at 1-sigma. Thus, 

both ages fall within the age-range defined by the foraminifera carbonate dates on 

the ML core. Figure 6.29 shows the conventional ''̂ C, marine reservoir corrected 

and calibrated ages these ages plotted against depth. 

6.5.3. Ablation Lake 2 ('AB2) Core 

Table 6.3 also shows the resuhs of two dates from Ablation Lake, performed on the 

AIOM fraction from bulk sediment samples near the surface and near the base of 

the AB2 core. The surface sediment yielded a conventional ''*C age of 14180 ± 50, 

whilst the basal sediment yielded an age of 30370 ± 220. The two bulk sediment 

ages are very similar to the 'old' ages obtained from the AIOM fraction of ML core 

material, and are likely to have been affected by similar contamination processes. 

The significance of this will be discussed fiirther in Chapter 7. 

6.5.4. '̂ ^Cs and ^'°Pb Chronology 

A '̂ 'Cs and ^'°Pb pilot dating study was carried out on core top sediment (0-30 cm) 

from Moutormee Lake with the aim of obtaining a core top chronology. The post 

detection analysis however revealed undetectable levels of '̂ 'Cs or ^̂ ''Pb in the 

sediment. This may reflect one of several factors: (1) the lake ice cover retarded the 

accumulation of '''̂ Cs and "̂̂ Pb fallout; (2) that the Moutormee Lake catchment is 

not large enough to focus a sufficiently strong '̂ ^Cs and ^'°Pb signals; and (3) '̂ ^Cs 

and ̂ "'Pb fallout is uniformly low in this part of the AP. 
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Figure 6.29. Depth versus conventional '''C, marine reservoir corrected and 

calibrated (marine/INTCAL98) ages for the MLNB core, Moutonnee Lake. 

Unless error bars are shown, the size of the marker represents the total error. For 

calibrated ages, the mid-point between the calibrated ranges has been chosen. 

The attached error represents the total range. 
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The absence of a '̂ ^Cs and ^'°Pb in the surface sediment together with the 

erroneously old AIOM surface ages means that it is difficult to confidently assign a 

modem-day age to the ML and AB surface sediment. However, it is worth noting 

that in all cases, cores were extracted with the sediment-water interface intact. 

Because of this, the surface sediment of all core material is assimied to be 0 year 

BP. 

6.5.5. Dates for the Biological Zones 

The dates for the biological zones in the ML core show four key features: 

(i) The dates (within error) are in then* correct stratigraphical order 

(ii) The biological zones (BZ) from the ML core (BZII and IV) date to 

the Early Holocene (8100±108 to 7300±106 '̂ C yr BP) (8097-9067 

cal yr BP) at the 1 -sigma level. 

(iii) The upper dates for BZII (7960±149 and 8100±108 '"̂ C yr BP) and 

the lower dates for BZIV (8100±105 "*C yr BP) in the ML core are 

statistically indistinguishable (Fig. 6.30). 

(iv) The dates for the top of BZIV (7330±104 '"C yr BP) in the ML core, 

and the BZ I (7420±105 '''C yr BP) in the MLNB core are 

statistically indistinguishable, showing chronological consistency 

between the two cores. This implies that, the biological zones from 

the ML and MLNB cores were deposited contemporaneously (Fig. 

6.30). 

In addition, and as will be discussed in more detail in the following chapter, the 

statistically indistinguishable dates for BZII and BZIV in the ML core imply that 

the intervening 1.88 m of sediment (BZIII) was deposited very rapidly, perhaps as 

an instantaneous dump of ice rafted debris (IRD) (Fig. 6.30). An important corollary 

of this is that the interval BZII to BZIV is interpreted as one environmental episode. 
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6.6. Core Chronology - Construction of an Age Depth Model 

Chapter 4 reviewed the problems associated with obtaining reliable core 

chronologies from bulk sediments in marine and/or lacustrine environments in the 

Antarctic. Dating problems are due primarily to the Antarctic marine reservoir 

effect (AMRE), the addition of old (or new) carbon and specific vital effects within 

some marine organisms (Melles et al., 1994; Berkman et al., 1998; Andrews et al., 

1999). The strength of the ML core chronology is that it dates monospecific 

assemblages of well-preserved foraminifera and although species-specific reservoir 

corrections for Globocassidulina and Cibicides species have not yet been developed 

the general pre-bomb marine reservoir correction of 1300 years was considered to 

be most suitable for shells from the Antarctic Peninsula based on Berkman et al. 

(1998). This is consistent with the procedures established recently for the Antarctic 

Peninsula (Domack and McLennen, 1996; Domack et al., 2001) and the Ross Sea 

(Domack et al., 1999; Andrews et al., 1999). 

The ''*C-dated ages derived from the bulk acid insoluble organic matter (AIOM) 

fraction (Table. 6.3) yielded consistently old ages, with surface sediments dated to 

15100 ± 50 and 14180 ± 50 "'C yr BP and basal sediments yielding ages of 28750 ± 

180 and 30370 ± 220 '''C yr BP for ML and AB respectively. Such old surface ages 

are not uncommon in Antarctica (see Andrews et al., 1999), since the AIOM 

fraction may be affected by reworked carbon from detrital humic macerals, kerogen 

from sedimentary rocks, CO2 from meltwater and resuspended marine organic 

matter (Andrews et al., 1999; Domack et al., 1999; Hall and Denton, 2000; 

Brachfield et al., 2003). The old ages from ML and AB most likely reflect one or 

more of these factors - i.e. the introduction of old carbon from the catchment rocks 

(e.g. late Jurassic to Cretaceous mudstone or old CO2 from glacial melt). An 

additional source of old carbon was also identified. An organic sample, originally 

considered to be a fragment of a freshwater biofilm, yielded a conventional 

radiocarbon age of 19720 ± 160 '"̂ C yr BP and this presumably inwashed old 

organic material is likely to have contributed to the old AIOM ages. The source of 
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this material however remains unclear, and its contribution downcore is thus 

difficult to quantify. 

As a first approximation, Andrews et al. (1999) suggested that where a large surface 

error existed a reasonable radiocarbon chronology can be obtained by subtracting 

the surface age from subsequent dated samples. By subtracting the surface age from 

the basal age for each lake, the ML core spans the last ca. 13,650 ''̂ C years whilst 

the AB core spans the last ca. 16,190 ''*C years. This age range for the ML core 

however seems incompatible with the foraminiferal-derived ages. This factor may 

refiect variations in the marine reservoir over time (e.g. Crespin et al., 2004) and as 

such the AIOM fraction is not incorporated into the core chronology. Instead the 

core chronology from ML is based solely on the foraminiferal-derived ages, where 

the reservoir correction is more clearly vinderstood (see Berkman et al., 1998). 

The AB core was devoid of foraminifera (due to only partial core recovery at this 

site) and so the chronology of this site remains unresolved and will require fiirther 

work on the AIOM fraction (or additional dating techniques) before it can be placed 

in a chronological framework. 

6.6.1.Age Model Calibration 

The foraminiferal derived ages of the ML core provide an opportunity to establish a 

calibrated marine radiocarbon stratigraphy for the entire core. The age depth model 

for the ML core has been constructed using four ages that occur in stratigraphical 

order (Table 6.3). A basal date of 8841-9067 cal yr BP has been used from BZII. In 

BZIV, the age model is developed using three ages (Table 6.3 and Fig. 6. 31). The 

sediment-water interface is assumed to be 0 cal yrs BP (see Chapter 6 for 

discussion). In all cases the age-depth model has been constructed using a linear 

interpolation between the arithmetic means of the calibrated age ranges (e.g. Telford 

et al., 2004). The use of a central point (or mean) of the calibrated age-range is 

common practice, but can resuh in large error (Telford et al., 2004a,b). Thus, the 

overall error associated with the calibrated range represent the entire range of the 

calibrated ''̂ C age. So for example, in BZII, 8841-9067 has an arithmetic mean of 

8954 and an associated error ± 226 years. Where more than one calibrated range is 
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given (Table 6.3) the ranges with the highest probability (1-sigma) have been used. 

Although this is not always statistically rigorous it is nevertheless thought to be a 

reasonable compromise (J.J.Lowe, pers. comm., 2004). Linear interpolation is most 

appropriate for the ML core since it forces the age-depth model to pass through the 

''*C data points, which means that the model cannot deviate too far from 'reality' 

(Telford et al., 2004) (Figure. 6.31). However, no interpolation model can account 

for changes in sedimentation between two interpolated points. 

Because the ML core lacks any dating control in imits BZI, III and V, the ages for 

these units are based on linear interpolation (Fig. 6. 31). The age-depth model for 

the MLNB core was also constructed using linear interpolation. A summary of the 

important Biota Zone boundaries using the age-depth model is provided in Table 

6.4. It is worth noting at this stage however, that whilst the ages from BZI, III and V 

are based on linear interpolation, BZII and BZIV are well constrained by the 

foraminiferal ages. 

C O R E Z O N E DEPTH INTERVAL (CM) C A L I B R A T E D A G E RANGE ( C A L YR B . P . ) 

M L B Z I 537-500 8964-8962 

B Z I I 499-485 8962-8962 

B Z I I I 485-302 8961-8959 

B Z I V 301-236 8958-7946 

B Z V 235-0 7912-0 

M L N B B Z I 172-135 8533-8083 

B Z I I 134-0 8023-0 

Table 6.4. Calibrated ages for key biological zonation in ML and MLNB cores. 

6.7. Core summary and correlation 

At the outset it was stated that this chapter had three fimdamental aims. Firstly, to 

identify key changes in each proxy, which can then be associated with hydrological 

and/or other physical changes in the lake system; Secondly, to identify concurrent 
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changes between individual proxies; and finally, to identify concurrent changes 

between cores and lakes. 

The key changes for each individual proxy have already been established and have 

been described in detail for each core. To highlight concurrent changes within 

cores. Figure 6.30 provides a summary of the key proxy data from ML and Figure 

6.32 provides a summary of key data from AB. In ML significant and consistent 

environmental changes occurred between 500-490 cm (BZII) and 300-236 cm 

(BZIV) in the ML core and between 173-136 cm (BZl) in the MLNB core (Fig. 

6.30). These biological zones are associated with the influx of exclusively marine 

diatom and foraminiferal assemblages, elevated (marine) S'̂ ^Corg and Corg values, 

depressed C/N values, and coarse (>2mm) sediment deposition. It is also clear from 

the mono-specific foraminiferal-based ''*C chronology that the biological zones 

were deposited during the early Holocene (8097-9067 cal yr BP). In addition, the 

core chronology suggests that the ML and MLNB biological zones were deposited 

contemporaneously. This is further supported by the similarity between the diatom 

and foraminiferal assemblages in each core. Other notable features from the ML 

core include a fluctuating C/N profile (Fig. 6.30) in BZV between 236-100 cm 

terminating at ca. 99 cm with a positive 5'^Corg and negative C/N excursion. This 

zone is also accompanied by rapid changes in LOI, CaCOs and H2O (see Fig. 6.20). 

The palaeoenvironmental implications of the biological zones and the additional 

changes (e.g. BZV) are also discussed in Chapter 7. 

In contrast to ML, biological remains were absent in the two cores (AB2, AB4) 

analysed from Ablation Lake (Fig. 6.32). This could suggest that: (1) the biological 

remains have been affected by post-depositional processes (i.e. dissolution) and/or; 

(2) only the upper portion (e.g. equivalent to BZV in the ML core and Zone I in the 

MLNB core) sedimentary sequence was recovered. Total dissolution of all silicate 

(diatom) and carbonate (foraminifera) remains seems unrealistic, although not 

impossible. For example, in Chapter 5 analysis of surface sediment in Moutonnee 

Lake revealed that in the vicinity of the halocline, the wide-ranging salinities 

appeared to prevent the growth of in-situ diatom valves (e.g. Fig. 5.6; Zone 3). 

However on present data and in the absence of a reliable core chronology, partial 
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Chapter 6 - Core Results 

retrieval of the sedimentary sequence is the favoured explanation. This 

interpretation is supported by our field observations. For example, the final drive of 

the ML core retrieved a bedrock disc, which implies that we reached the underlying 

bedrock and thus retrieved the entire sedimentary sequence. In confrast to ML, no 

clear evidence for reaching the base of the sequence was discovered. Instead the 

sediment became over consolidated towards the base of AB2 and AB4, which 

prevented further penetration. 

Assuming that the cores extracted from Ablation Lake only represent the upper 

portion of the ML core (i.e. BZV) the available proxy data suggests there is no 

sfrong correlation between the sedimentary records obtained from Moutoimee and 

the records obtained from Ablation Lakes (see Fig. 6.30 and 6.32). The Corg proxy 

however, does appears to increase towards the sediment-water interface in all 

analysed cores. On a local-scale, this suggests that the different environmental 

records reflect site-specific changes, which will be largely determined by the 

processes occurring in the lake catchment. In this respect the size and the nature of 

the system (i.e. one is open (AB) and the other acts as a closed system (ML)) are 

probably the most important factors. As noted Chapter 5, ML is, largely a closed 

lake system, although tidal exchange does occur. As such, it is more likely to be 

influenced by local catchment-scale changes, imless it is influenced by large-scale 

external processes (e.g. the loss of the ice shelf dam). In contrast, available data 

suggests that Ablation Lake behaves as an open lake system that is able to exchange 

freely with the marine water beneath GVI-IS. Furthermore, the lake system 

(including the catchment) is much larger and has a more complex sedimentary 

regime. For example, in AB, the delivery of minerogenic material is likely to be 

modulated by the ice shelf 'tongue' and by local valley glaciers, which flow into the 

lake (Fig. 4.9 and 4.10, Chapter 4). Thus on a local valley scale, the sedimentary 

record within each lake may record different envirormiental processes. 

6.8. Summary 

In summary, BZII and IV identified in the ML core and BZI in the MLNB core 

represent a distinct suite of proxies. Within these zones there is a consistent 
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depositional signature in the Corg and Norg values, together with the influx of 

foraminifera, and diatoms, hi addition, there is a close replication of ecological, 

geochemical and sedimentological conditions in the upper biological zone of the 

ML core and the biological zone in the MLNB core (Fig. 6.30). In contrast 

biological zones were not detected in sediment cores from Ablation Lake (Fig. 

6.32). This suggests that we did not retrieve a complete sedimentary sequence from 

Ablation Lake. In the next chapter the palaeoenvironmental implications of the 

biological zones identified in Moutonnee Lake are discussed in detail, specifically 

the evidence the present for ice shelf absence. 
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Chapter 7 
E A R L Y H O L O C E N E A B S E N C E OF 
G E O R G E V I I C E S H E L F : 
IMPLICATIONS AND WIDER 
CONTEXT 

7.1. Introduction 

This chapter provides a detailed interpretation and discussion of the Holocene 

history of GVI-IS using the conceptual model developed in Chapter 5 and the core 

resuhs presented in Chapter 6. Central to the discussion are the marine biological 

zones (BZII and IV in the ML core and BZI in the MLNB core) identified in 

sediment cores from Moutonnee Lake, which are interpreted here as representing a 

period of past ice shelf absence. This ice shelf absence is then placed in a regional 

context and compared with other palaeoclimatic records from the AP, before 

evidence of the mechanisms leading to the ice shelf absence and re-formation are 

discussed. 

7.2. Environmental Interpretation of Core Data from Moutonnee 

Lake 

Using the age model presented in the previous chapter the next section will discuss 

the palaeoenvironmental significance of sediments from Moutormee Lake. Since 

BZIV in the ML core is directly comparable to BZI in the MLNB core (see Figure 

6.30), both in age and overall biological and sedimentological character, the 

following interpretation and discussion will focus on the ML core, which provides a 

more detailed picture of the absence of George VI Ice Shelf and its subsequent re

formation. The sediment cores from Ablation Lake did not yield a record of ice 

shelf loss, which suggests that we did not retrieve a complete sediment sequence. 
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7.2.1. BZI r537-501 cm): Pre ice shelf absence 

At the base of BZI (prior to 8964 cal yr BP) the multi-proxy core data suggest that 

the lake environment was similar to the present-day. In other words, the lake was 

perennially ice-covered, freshwater dominated and largely unproductive. There is an 

absence of biological microfossils and 5'^Corg values are similar to the modem day 

(e.g. - 25.7 %o) (Fig. 7.1). The 6'^Corg values also suggest that the sediment was 

locally derived (see Chapter 5). There is no age-control at the very base of the core 

but applying a maximum and minimum sedimentation rate (based on dated units 

within the core) suggest a time interval of between 2 and 400 years for the 

deposition of this unit. A bedrock disc of local sedimentary material was retrieved 

from the final drive of the core, which suggest that the entire sedimentary sequence 

was extracted. An alternative possibility is that the disc of sedimentary rock is a 

large drop-stone and/or clast from a glacial till. However, i f indeed the core bottom 

was close to bedrock then it would suggest that grounded ice existed in the basin 

prior to the deposition of BZI and had scoured-out any earlier sedimentary record. 

There is geomorphological evidence for both advance of valley glaciers over the 

lake site (valley stage advance) and expansion of the ice shelf sometime prior to 

6500 ''̂ C yr BP, and most likely during the LGM or during deglaciation from it 

(Clapperton and Sugden, 1982). 

7.2.2. BZII (522-490 cm): Onset of ice shelf absence 

BZII provides the first evidence of ice shelf absence. Significantly, the unit is 

characterised by the incursion of an exclusively marine biological assemblage, 

elevated Corg and Norg values (Fig. 6.12 Chapter 6) and high abundances of >8 mm 

clasts (Fig. 7.1 and Fig. 6.12), probably deposited as ice-rafted debris (IRD). The 

lowermost foraminiferal-derived age from this unit suggests that the basin became 

an open marine embayment sometime before 8841-9067 cal yr BP. The modelled 

age for the base of BZII is 8962 cal yr BP. The interpretation of ice shelf break-up 

during this zone is supported by observations of the recent Arctic ice-shelf break-up 

where initial cracking of the ice shelf led to the draining of the epishelf lake, and the 
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influx of the first marine fauna and flora (e.g. Ward Hunt Ice Shelf, Arctic Canada; 

Mueller et al., 2003). 

7.2.2.1. Diatom assemblage 

The diatom assemblage in BZII (Fig. 7.1 and 6.1 Chapter 6) is dominated by 

planktic species, notably Eucampia antarctica var. recta and Thalassiosira species. 

The benthic marine species Cocconeis fasciolata is also present in high numbers at 

the base of the core. Eucampia antarctica var. recta often occurs adjacent to or 

beneath pack-ice (Fryxell and Prasad, 1990), and is generally associated with neritic 

(near-shore) environments, where floating ice is present and/or where significant 

melting leads to a meltwater-stratified water column (Cremer et al., 2003). The 

genus Thalassiosira is widespread in Antarctic waters and is associated with open 

water conditions (Taylor et al., 2001). Thalassiosira antarctica occurs commonly at 

sea-surface temperatures of between -2 to 1°C (Zielinski and Gersonde, 1997), and 

has been observed in newly formed platelet ice in polynas (Smetacek et al., 1992; 

Cunningham and Leventer, 1998) and in 'crack' pools formed by disintegrating ice 

during summer melting (Gleitz et al., 1996). Elsewhere, high abundances have been 

noted in sediments close to the front of the Ross Ice Shelf in association with the 

formation of platelet ice from super-cooled water masses that emerge from beneath 

ice shelf (Curmingham and Leventer, 1998). The benthic species Cocconeis 

fasciolata is also present in BZII. The ecology of C. fasciolata is largely unknown 

but has typically been found living in coastal-neritic environments in Antarctic 

waters (Frenguelli, 1943; Gilbert, 1991). 

Together this diatom assemblage is indicative of a nearshore, marine environment 

associated with disintegrating ice. The assemblage also indicates the presence of a 

meltwater-stratified water column, which is consistent with the presence of a 

decaying ice shelf and large volumes of meltwater. 

245 



Chapter 7 - Early Holocene Absence of GVI-IS 

7.2.2.2. Foraminiferal assemblage 

The foraminiferal assemblage in BZII is overwhelmingly dominated (>99%) by the 

calcareous benthic Globocassidulina spp., (G. biora and G. subglobosd). Overall, 

the assemblage present (both BZII and later in BZIV) is typical of continental shelf 

and slope environments (Murray, 1991). Globocassidulina biora is an infaunal, 

free-moving benthic foraminifera, which is typically found in Antarctic shallow 

waters with temperatures ranging from -1.95 to -1.14°C and salinities ranging from 

33.96 to 34.99 %o (Crespin, 1960). It shows a strong association with high bottom 

current velocities (e.g. Mackensen et al., 1990) and has also been associated with 

coarse sediment substrate (e.g. Maxwell Bay, King George Island; Li et al., 2000). 

Similarly, G. subglobosa is an infaunal shelf species characteristic of sandy 

substrates on prominent submarine elevations that are influenced by strong bottom 

currents (Murray, 1991; Schmiedl et al., 1997). It has been documented in both 

shallow (0-100 m) and deeper waters (700-800 m) in the Ross Sea (Osterman and 

Kellogg, 1979). It forms part of the southern high productivity faimal assemblage 

described by Mackensen et al. (1993) between 55° and 49°S a zone that is 

influenced by lower Circumpolar Deep Water (LCDW) and Antarctic Bottom Water 

(AABW) (see Table 2.3 for water characteristics). It has also been found in 

association with Bulimina aculeata and Fursenkoina sp. (e.g. Domack et al., 1995) 

and appears to be related to Ross Sea Shelf Water (RSSW) in the Ross Sea 

(Osterman and Kellogg, 1979). RSSW is characteristically a saline (>34.7 %o), 

oxygen-rich bottom water mass. Indeed G. subglobosa exhibits a significant 

positive correlation to dissolved oxygen content of water masses in the Southern 

Ocean (Schmiedl et al., 1997). In the Weddell Sea, G. subglobosa has been found in 

association with Fresh Shelf Water (<34.51 %o, -1.89 to 1.5°C) to a depth of 550-

700 m (Echols, 1971; Anderson 1975; Murray, 1991). 

Cibicides lobatulus commonly occurs attached to a hard substrate (Nyholm, 1961; 

Loeblich and Tappan, 1964) and has been noted in surface samples on the 

continental margin in the Ross Sea between 100 and 400 m water depth (Osterman 

and Kellogg, 1979). In the Drake Passage C. lobatulus has been found in 
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association with sfrong currents and water temperatures ranging from 0 to -0.5°C 

(Jones and Pudsey, 1994). Cibicides grossepunctatus is an epifaunal species that is 

normally associated with hard substrates. It commonly occurs at 50-800 m water 

depths in the Weddell Sea (Anderson, 1975) and between 50 and 900 m in the 

Drake Passage (Herb, 1971). 

The assemblage as a whole indicates open, relatively shallow, marine water 

conditions. Research elsewhere in Antarctica has shown that foraminiferal 

communities are not viable beneath ice shelves (Kellogg and Kellogg, 1988) as they 

require diatoms or other primary produces for food. In detail the assemblage is 

indicative of vigorous, well-oxygenated bottom currents, typical of an upwelling 

water mass (Murray, 1991). Vigorous ocean currents are also indicated by the 

faunal data and also the apparent size sorting (i.e. most tests in the assemblage are 

of similar size) in the Globocassidulina species (S. Ishman, pers. comm.). The 

assemblage also indicates a wide temperature range -1.95 to 1.5 °C, and high 

salmities (between 33.96 to 34.7 %o). 

7.2.2.3. Isotopic and Elemental data 

Traditionally, the ratio of sedimentary carbon to nitrogen content has been used 

together with 5'^Corg to differentiate between marine and freshwater (or terrestrial) 

sources of organic matter (Macko et al., 1993; Meyers, 1994, 1997; Miiller and 

Mathesius, 1999; Lamb et al., 2004). As a general rule, marine algae tend to yield 

lower C/N values (<8) (Bordovskiy, 1965; Thornton and McManus, 1994) and 

isotopically heavier 5'^Corg values when compared to freshwater algae (Meyers, 

1997) (see Chapter 4). The Corg/Norg ratio reflects the amount of protein in organic 

matter, which is the most important nitrogen-containing component in living 

organisms (Muller, 1977; Muller and Voss, 1999b). Marine algae generally contain 

more protein than terrestrial or lacustrine algae (Owens, 1987; Meyers, 1994; 

Muller and Voss, 1999b; Westman and Hendensfrom, 2002), resulting in lower C/N 

values. The distinction between 5'^Corg in marine and lacustrine algae primarily 

relates to the way in which CO2 is assimilated during photosynthesis. 

Photosynthesis in algae biochemically discriminates against '̂ C to produce a shift 
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of ca. -20 %o from the isotope ratio of the inorganic carbon source. Freshwater 

algae utilises dissolved CO2, which is often in equilibrium with the atmosphere (ca. 

-7 %o), whilst marine algae uses marine bicarbonate, which has a 5'̂ C value of ca. 0 

%o. Thus typical values of 6'^Corg for freshwater plankton lie between -30 and -25 

%o, whereas marine plankton has S'^Corg values between -20 and -25 %o (Meyers, 

1997). 

The isotopic and elemental data from BZII show a significant shift to higher Corg 

and Norg (Fig. 6.12 Chapter 6) values and sudden spike to lower 5'^Corg values. This 

change is interpreted as a result of the influx of marine algae following ice shelf 

absence. However, the absence of a well-defined S'^Corg is surprising. It could 

suggest that majority of the material deposited during this period was locally 

derived (i.e. it has a similar S'^Corg signature to surface sediments). 

7.2.3. BZIII (489-303 cm): Ice Rafted Debris (IRD) phase 

BZIII is characterised by the deposition of 1.87 m of coarse unsorted gravel (clasts 

> 8mm diameter) and is interpreted as a period of rapid sediment deposition within 

the marine embayment of ML (Fig. 7.1). The AMRE corrected foraminiferal dates 

from near the top of BZII (8100 ± 108 ''̂ C yr BP/8954 cal yr BP) unit and the base 

of BZIV (8105 ± 100 "'C yr BP/8954 cal yr BP) are statistically indistinguishable 

confirming that BZIII was deposited very rapidly, perhaps as one, instantaneous ice 

rafted debris (IRD) dump. It is likely that the initial break-up of the ice shelf (BZII) 

would have generated large numbers of icebergs, and therefore melt-out and 

deposition of large amounts of coarse sediment as IRD in Moutonnee Lake (cf. 

conceptual model; Chapter 5). Unlike other Antarctic ice shelves, which are 

typically free of debris except near the grounding line (Drewry and Cooper, 1981; 

Powell, 1984) field observations (Pedley et al., 1988; and this study; see Chapter 4) 

have shown that coarse material is carried along englacial and supra-glacial 

pathways in (or on) George VI Ice Shelf For example, Pedley et al. (1998) 

suggested that material is frozen onto the base of the ice shelf and is subsequently 

transported up through the ice shelf along well-defined flow lines. Initially this 

could not be reconciled with the very rapid basal melt rates of George VI Ice Shelf 
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(e.g. Potter and Paren, 1985), since any material enti-ained by the ice shelf would be 

quickly lost through basal melting. However, Pedley et al. (1988) provided evidence 

for localised areas of basal freezing (e.g. Hobbs Pool) where material is frozen onto 

the base of the ice shelf and gradually makes it way to the ice shelf surface. In 

addition, glacier ice leaving Palmer Land containing embedded rock debris will be 

first subjected to basal freezing, which would force material upwards followed by 

melting as it moves away from the coast and into George VI Sound (Bishop and 

Walton, 1981; Pedley et al., 1998). Material may also fall directly on the inflowing 

glaciers or ice shelf and is transported supra-glacially. These processes help to 

account for the presence of granite erratics on the present lake shorelines and in 

morainic ridges along the western margin of GVI-IS (Sugden and Clapperton, 1981; 

Pedley et al., 1988). Thus, break up of GVI-IS would release debris-bearing 

icebergs and as these melted within the basm this could account for the rapid 

deposition of IRD-sized material in BZII and BZIII. 

In support of this interpretation, Gilbert and Domack (2003) have provided similar 

evidence based on the analysis of marine sediment cores from areas beneath the 

former Larsen-A and Prince Gustav ice shelves. They demonstrated that rates of 

sediment accumulation quadrupled several years prior to ice shelf disintegration, 

which they attributed to the draining of sediment-laden meltwater lakes and 

crevasses on the ice shelf surface followed by an influx of coarse gravel related to 

increased ice rafting during ice shelf disintegration (Gilbert and Domack, 2003). 

The presence of icebergs in such a shallow bay needed to deposit substantial 

amounts of sediment requires fiarther comment. At its deepest point Moutonnee 

Lake is presently ca. 55 m deep. It then shallows to ca. 35 m at the bedrock sill on 

which GVI-IS is grounded. This means that in the current configuration only 

relatively small icebergs could clear the bedrock sill and enter the lake. However, in 

the early Holocene, shortly after deglaciation it is likely that little isostatic recovery 

would have occurred following the unloading of the Last Glacial Maximum ice 

sheet over the AP. To the north (ca. 150 km) in Marguerite Bay, Bentley et al. 

(2005) have provided good evidence of 40-55 m of glacio-isostatic rebound since 

the early Holocene. In George VI Sound, where LGM ice thicknesses are thought to 

be even greater (e.g. Payne et al., 1989; Bentley et al., 1999), greater isostatic 
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depression is likely. Thus the sill could have been significantly deeper (ca. >80 m) 

at the time that the ice shelf was absent. A water depth of 80 m is very similar to the 

thickness of George VI Ice Shelf as it grovinds along much of the west coast of 

Alexander Island (see Fig.3.2 Chapter 3). Thus many of the bergs from a 

disintegrating ice shelf would easily clear the bedrock sill and enter the lake basin. 

In addition, theoretical models suggest that icebergs tend to topple over during ice 

shelf absence, forming long elongate bergs (MacAyeal et al., 2003). This would also 

allow much larger bergs to enter the basin. It is also worth reiterating the likely 

rapidity of the dumping event: BZIII could have been deposited instantaneously, 

from one dump event, as evidenced by the lack of size sorting. 

The absence of marine faima and lack of a marine signature in the isotopic and 

elemental data in BZIII is also interesting, but perhaps not surprising. BZII (and 

certainly BZIV) are characterised by a marine fauna that indicate open marine 

conditions. Key to the argument regarding the dumping of ice-rafted material is the 

assumption that the embayment was dominated by marine water. At face value one 

might expect BZIII to contain some indication of open marine conditions, other than 

the presence of IRD. The absence of foraminifera and diatoms may reflect 

unfavourable environmental conditions or simply reflect the rapidity of deposition. 

The latter interpretation is favoured here since a large dimip of what is likely to be 

terrestrially derived material is unlikely to contain marine foraminifera or marine 

diatoms. It is also possible that a freshwater surface layer, derived from large 

volumes of melted ice shelf ice and icebergs temporarily suppressed the marine 

signal (both biological and isotopic). Thus the surface waters of the basin would 

have been temporarily dominated in this period by meltwater produced from 

icebergs and freshly exposed glacier fronts along George VI Sound. This freshening 

effect has been measured at the base of melting ice shelves today (e.g. Potter and 

Paren, 1985). This hypothesis accounts for the absence of marine diatoms and 

foraminifera, since a meltwater-dominated environment would resuh in 

unfavourable conditions for marine biota and may also explain the absence of a 

marine isotopic signal. Thus it is most likely that BZIII represents an instantaneous 

dump (perhaps from one ice berg) of terrestrial derived debris. 
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The rapidity of deposition and its (likely) terrestrial source could also help to 

explain the absence of a marine 5'^Corg signal. It has already been shown in Chapter 

5 that the 8'^Corg value of surface sediment in the modem day lake environment is 

likely to reflect the local sedimentary lithology. Whilst BZIII is composed of a wide 

range of lithologies, the matrix (from where material 5'^Corg is measured) is 

dominated by locally-derived sedimentary material. Thus in BZIII the 6'^Corg value 

reflects the character of the sediment, not the environment at the time of deposition. 

One final scenario that needs to be considered is the possibility that BZIII represents 

a push of sediments as opposed to a dump. The environment at the time of 

deposition would have been unstable and high in energy. A grounded berg, 

ploughing over the bedrock sill may have pushed sediment from the ice shelf side of 

the lake over the core site. This would produce a large bulldozed diamicton 

corresponding to BZIII. However, i f this were the case then one would expect to see 

traces of the reworked marine sediments (e.g. marine diatoms) and some degree of 

sediment sorting, which is not the case. Although this remains a possibility, it does 

not change the overall interpretation of ice shelf absence. What is important is that 

BZII and BZIV are separated from one another by a rapid/instantaneous 

depositional event. 

7.2.4. BZIV (302-236 cm): Open marine conditions and ice shelf re-formation 

BZIV is interpreted as a change from the high energy, IRD-dominated marine 

environment of BZIII to a more stable mode of sedimentation in an open marine 

embayment. It is characterised by a marine foraminiferal and diatom assemblage 

indicative of open water and proximal sea-ice and a clear shift from 5'̂ Corg values 

that reflect locally derived sediment in BZII and III to 6'^Corg values that are typical 

of marine algae. BZIV not only provides detailed evidence of the evolution of the 

marine phase but it also contains information about the processes and envirormient 

prior to the re-formation of the ice shelf 
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7.2.4.1. Diatom Assemblage 

Like BZII the diatom assemblage in BZIV is dominated by planktic species, notably 

Chaetoceros spores, Eucampia antarctica var. recta and Thalassiosira species (Fig. 

7.2 and 6.1). In addition BZIV is characterised by the presence of sea-ice taxa (see 

Fig. 6.1 and 6.3). Total diatom abundance, notably of Chaetoceros, increases 

rapidly from the base of BZIV indicating a period of high productivity in an open 

marine embayment. Chaetoceros spores are widely regarded as an indicator of high 

primary productivity (Donegan and Schrader, 1972), but have also been connected 

with the presence of sea-ice (Leventer, 1992), wdth highest abundances occurring in 

water temperatures between -1 and 1°C (Zielinski and Gersonde, 1997). In the 

Palmer Deep, Chaetoceros resting spores have been associated with higher relative 

concentrations of other diatom taxa associated with sea-ice and sea-ice melt 

environments (Leventer et al., 2002) leading to the suggestion that melting sea-ice 

contributed to water column stratification, and thus the dominance of nutrient-

depleting Chaetoceros blooms. This conclusion is also supported by sediment trap 

data, which shows that a high Chaetoceros resting spore flux is related to a nitrate-

depleted, well-stratified water column (Leventer, 1991; Leventer et al., 1996). This 

is consistent with the idea that the water column in ML may have been stratified by 

meltwater during the deposition of this unit. 

The base of BZIV is also characterised by small numbers of sea-ice taxa notably 

Fragilariopsis curta and F. cylindrus. F. curta often occurs where ice retreat has 

created a melt-water sfratified surface water layer (Taylor et al., 2001). 

Fragilariopsis cylindrus has been observed amongst the dominant taxa in pack and 

fast ice (Garrison and Buck, 1989; Scott et al., 1994) and ice edge blooms (Kang 

and Fryxell, 1992), and has been also found in open water (Garrison et al., 1987; 

Leventer et al., 1993). The presence of Fragilariopsis species suggests that 

seasonal sea-ice was present near, or in Moutonnee Lake. It is imlikely that the sea-

ice would have been perennial throughout the marine phase, since the presence of 

thick perennial sea-ice would act to suppress overall diatom productivity. For 

252 



Chapter 7 - Early Holocene Absence of GVI-IS 

example it has been shown in the Palmer Deep (e.g. Sjunneskog and Taylor, 2002), 

and elsewhere in Antarctica (e.g. Kaczmarska et al., 1993; Cremer et al., 2003; 

Whitehead et al., 2005) that thick sea-ice reduces diatom composition and 

abundance. 

There is a significant decline in overall diatom abundance at 282 cm, (ca. 8840 cal 

yr BP) which implies a period of reduced productivity, perhaps cooling, related to 

increasing concentrations of fast or perermial sea-ice (Fig. 7.1). Absolute diatom 

abundance then briefly peaks at 276 cm (ca. 8775 cal yr BP). This phase is 

interpreted as a period of enhanced primary productivity and reduced sea-ice cover 

in ML. From ca. 270 cm (8705 cal yr BP) most diatom species decline almost 

disappearing entirely by 267 cm (8628 cal yr BP). Numbers of Cocconeis and other 

sea-ice related species (e.g. E. antarctica, T. antarctica) however persist until 236 

cm (ca. 7946 cal yr BP) when diatoms disappear completely. 

As a whole the diatom assemblage represents a highly productive marine water 

column in the initial phase of open-marine conditions between 300 cm (8958 cal yr 

BP) and 270 cm (8705 cal yr BP). Large amounts of ice-melt, both from icebergs 

and also catchment ice are likely to have resulted in a weakly stratified water 

column indicated by Chaetoceros and F. curia. The decline in productivity after 270 

cm was could have been associated with the establishment of perermial sea-ice, and 

perhaps climatic cooling. This 'transition' phase between 270 cm (8705 cal yr BP) 

and 236 cm (ca. 7949 cal yr BP) is interpreted as representing the first signs of ice-

shelf re-formation and the subsequent reversion of Moutonnee Lake to an epishelf 

lake. 

7.2.4.2. Foraminiferal Assemblage 

BZIV is characterised by a rapid increase in total foraminiferal abundance. Between 

300 cm (8958 cal yr BP) and 270 cm (8705 cal yr BP) the assemblage is again 

dominated by Globocassidulina and Cibicides species indicative of an environment 

influenced by highly productive, oxygen-rich bottom waters (see BZII) (Mackensen 

et al., 1993). Like the diatom data, total foraminiferal abundances decrease rapidly 

at 270 cm suggesting a decrease in productivity and available food. The overall 
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decrease in foraminiferal abundance is coincident with increasing numbers of the 

minor component, A. earlandi. The ecology of A. earlandi (partly documented 

elsewhere as Angulogerina angulosa and Trifarina angulosa) is poorly known and 

thus the significance of this change is unclear. Where it has been documented, it 

tends to be associated with sandy and/or gravely substrate and strong bottom 

currents. It has been documented in relatively cold ocean water (-1.8 to 0.4 °C) with 

a salinity range between 34.43 and 34.72 %o (Mackensen et al., 1990). The increase 

in A. earlandi after 270 cm could suggest that it is more tolerant of low productivity 

conditions. 

In terms of ocean water mass, the overall assemblage indicates that the early phase 

of ice shelf loss was characterised by a highly productive, saline deep-water mass 

that has a relatively wide temperature range (up to + 1.5 °C). The influence of this 

water mass then appears to decline at ca. 270 cm (8705 cal yr BP) when overall 

productivity declines. Cooler (?) and less productive marine water then persists in 

the basin until ca. 236 cm (ca. 7949 cal yr BP). 

7.2.4.3. Isotopic and Elemental Data 

BZIV is characterised by a rapid change to higher 5'^Corg values, lower C/N values 

and high Corg and Norg values (Fig. 7.1 and Fig. 6.12). The change in S'^Corg and 

C/N strongly suggests a renewed dominance of marine water and subsequent 

deposition of nitrogen-rich marine algae following ice shelf loss. This mode of 

sedimentation dominates the core ca. 262 cm (ca. 8552 cal yrs BP), when S'^Corg, 

%Corg and Norg values decline rapidly. This is coincident with an overall decline in 

diatom and foraminiferal abimdance and is consistent with the idea that this could 

represent the first signs of re-isolation of the epishelf lake in response to ice shelf 

re-formation. Interestingly the C/N ratio continues to be low beyond this depth, 

which might be interpreted as marine water existed in the basin until 236 cm (ca. 

7949 cal yr BP). Alternatively it could simply reflect the persistence of a marine 

signal from a lower marine water layer once the basin became re-isolated as an 

epishelf lake. 
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7.2.4.4. Quantification of the marine environment 

The data presented thus far suggests that Moutonnee Lake was characterised by 

high biological productivity in an open marine basin when BZIV was deposited. 

Marine productivity began to decline sometime between 270 and 262 cm (ca. 8705-

8552 cal yr BP), perhaps in response to the re-isolation of the epishelf lake as the 

ice shelf reformed or in response to climatic cooling and/or increased sea-ice (or 

both). In addition, the foraminiferal data also implies a possible change in ocean 

water mass after ca. 270 cm (8705 cal yr BP). A more detailed quantification of the 

marine environment is required before these links can be fiirther tested. The next 

section will therefore attempt to use semi-quantitative methods to investigate the 

marine environment during ice shelf loss and specifically addresses the following 

questions: (1) in what way did the environment change prior to the decline in S'^Corg 

values, foraminifera and diatoms, and (2) can the presence of a specific ocean water 

mass/temperature (e.g. UCDW) be detected isotopically using foraminiferal calcite? 

7.2.4.5. Quantifying sea-ice 

Although the presence or absence of sea-ice related taxa provides evidence for the 

presence of sea-ice, several studies have sought to quantify the sea-ice-diatom 

relationships through the use of the 'Eucampia Index' (e.g. Kaczmarska et al., 1993; 

Leventer et al., 2003; Whitehead et al., 2005). Fryxell and Prasad (1990) identified 

two varieties of Eucampia antarctica, a 'southem' and a 'northem'. The southern 

variety, Eucampia antarctica var. recta is typically symmetric in broad girdle view 

whilst the northem form Eucampia antarctica var. antarctica is asymmetrical (Plate 

1) (Fryxell, 1989; Fryxell and Prasad, 1990). In addition to these morphological 

criteria, the northem form is more likely to form longer chains than the southem 

variety. Fryxell and Prasad (1990) suggested that the northem form generally 

occvirs in areas of less severe or thirmer sea-ice allowing more cell division, leading 

to longer chains. In contrast the southem (or polar) form of E. antarctica var. 

antarctica occurs more often as short chains and doublets (Fryxell, 1989; Fryxell 

and Prasad, 1990). In the sedimentary record, chain length can be estimated by 

comparing the proportion of 'pointy' terminal valves (from the chain ends) to the 
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flat 'intercalary' valves (from the middle of the chain). The relationship between 

environmental conditions and chain length led Kaczmarska et al. (1990) to develop 

the Eucampia Index, to record oscillations in late-Pleistocene sea-ice on the 

Kerguelen Plateau. The Eucampia Index is the ratio of terminal to intercalary valves 

(Kaczmarska et al., 1993) (see Figure 1; Kaczmarska et al., 1993). In theory, 

warmer waters with less sea-ice should be characterised by more mtercalary valves 

(i.e. lower Eucampia Index), since the northern form is likely to be dominant. 

In this study the diatom assemblage is exclusively dominated by the southern form, 

E. antarctica var. recta. Although, the Eucampia index has ttaditionally been used 

to assess the relative importance of E. antarctica var. recta versus E. antarctica var. 

antarctica, and hence polar or sub-polar conditions (e.g. Kaczmarska et al., 1993; 

Leventer et al., 2003; Whitehead et al., 2005), it is still valid to use the Eucampia 

index as a proxy for sea-ice when dealing with a purely southern, polar assemblage 

(i.e. one dominated by E. antarctica var. recta) (e.g. Whitehead et al., 2005). This 

is because chain length is still a function of light availability and thus can be used as 

a proxy for the presence/absence or persistence of sea-ice (Fryxell and Prasad, 

1990; Whitehead et al., 2005). 

Figure 7.2 shows downcore variations in the Eucampia index for BZII & IV. These 

data clearly show that terminal valves (i.e. > sea-ice) were dominant in two phases, 

with the first occurring between 300 and 292 cm and the second between 267-276 

cm. In contrast between 292 and 276 cm intercalary valves dominate the 

assemblage. This implies that sea-ice (or sea-ice related) conditions were 

characteristic of the early phase of ice shelf absence, followed by more open marine 

conditions, which coincides with a phase of maximum productivity observed in the 

diatom, foraminiferal and S'̂ 'Corg data. The second peak in sea-ice (267-276 cm) 

occurs prior to the overall decline in diatom and foraminiferal abundance and could 

represent climatic cooling as perennial sea-ice becomes established and the ice shelf 

begins to reform. 
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7.2.4.6. Quantifying ocean water mass and temperature 

One o f the key questions that has arisen f rom this study is whether changes in ocean 

circulation influenced the early Holocene decay o f GVI-IS through enhanced basal 

melting. The next section w i l l use the 5'̂ Oforam and S'^Cforam dataset from B Z I V to 

examine this question further. This section has two main objectives: (1) can the 

foram-isotope data f rom M L be used to define the presence o f specific water 

masses?, and (2) what can the foram-isotope data tell us about the transition from 

open marine conditions to re-isolation o f the basin? 

Section 4.4.4.4 (Chapter 4) reviewed the important factors, which confrol the 

isotope signature o f benthic foraminifera. Generally, the S'^O composition o f 

benthic foraminiferal calcite is principally controlled by: (1) water temperature 
1 ft 

variations (ca. 1°C temperature change leads to a 0.23%o shift in 6 O; Shackleton, 

1974); (2) salinity (ca. l%o salinity change leads to a 0.61 %o shift in 6*^0 (Craig 

and Gordon, 1965); and (3) global ice-volume (maximum glaciation leads to ca. 

1.2%o shift in 5^^0; Chappell, 1996), whilst the S'^C composition o f benthic 

foraminifera is fundamentally controlled by (1) nutrient concentrations and (2) 

changes in deep-sea circulation (Grossman et al., 1984b; Duplessy et al., 1984). 

Overall the carbon and oxygen isotope data presented in Chapter 6 from Moutonnee 

Lake (both M L and M L N B cores) is characterised by small and veiriable changes 

and do not appear to show any consistent pattern. However, one notable exception 

in the 6'̂ Ocibicides data set is the significant enrichment (+0.8 %o) in 6'̂ Ocibicides 

starting at 264 cm in the M L core (Fig. 6.15, Chapter 6). A similar isotopic trend is 

also observed in the M L N B core, although the magnitude o f change is not as large 

(+0.3 %o) (Fig. 6.17, Chapter 6). The increase in 5'̂ Ocibicdes in the M L core coincides 

wi th a decrease in 5'^Corg values, absolute diatom and foraminiferal abundance and 

also important favmal changes in the foraminiferal data (e.g. increase in A. earlandi) 

(Fig.7.1). 

Changes in ocean temperature and global ice volume are generally considered to 

exert the greatest influence on the isotope composition o f benthic foraminifera, 
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although the 'saUnity effect' and input o f glacial water enriched in must also be 

considered (Rohling and Cooke, 1999; Schmidt, 1999). The effect o f global ice 

volume can be immediately ruled out given the short (Holocene) time interval 

represented here. Thus i f we assume that changes in 5'^0 o f foraminiferal carbonate 

are solely a function o f temperature, then Shackleton's (1974) expression can be 

used to estimate changes in water temperature (data used is shown in Table 6.1): 

Temp (°C) = 16.5 - 4.80*(6'^Ocarbonate - 5'^Owater) 

+ 0.1*(8''Ocarbo„ate-5''Owater)' 

This equation gives a maximum temperature range o f ca. 2.9 °C in M L and indicates 

that on a relative scale water temperature generally cooled towards the top o f B Z I V 

(Fig. 7.3). The major change in temperature occurs at ca. 266 cm (ca. 8628 cal yr 

BP). Such a large shift in water temperature seems unlikely over such a short period 

o f time (ca.lOOO yrs). However, a similar temperature and isotopic gradient has 

been recorded beneath the present George V I Ice Shelf (Potter and Paren, 1985) 

raising the possibility that the foraminiferal-5'^0 profile records a significant 

transition fi-om relatively warm ocean water at the base o f BZ I I and I V to relatively 

cold ocean water consistent wi th the increase in perennial sea-ice between 267-276 

cm. Essentially, the water below the present George V I Ice Shelf can be partitioned 

into two distinct water masses, which are separated by a transitional water mass on 

the basis o f their isotopic and temperature characteristics (section 7.4). Super-cooled 

Ice Shelf Water (ISW) occurs directly beneath the ice shelf to a depth o f ca. 45 m, 

and is characterised by temperature (-1.8 to -1.5 °C) and isotopic (-0.9 to -0.4 %o) 

minima. In contrast below ca. 400 m relatively warm (+0.5 to 1 °C) isotopically 

distinct (+0-0.13 %o) Upper Circumpolar Deep Water occurs. The water between ca. 

45 and 400 m represents a mixture o f ice shelf water and U C D W becoming warmer 

and isotopically heavier wi th depth (Fig. 7.4). ISW and U C D W thus have distinct 

temperature-salinity and 5'^0 characteristics, wi th a maximum isotopic and 

temperature range o f 1.0 %o and 2.8 °C respectively between ice shelf water and 

UCDW. These isotope and temperature ranges are remarkably similar to the 

recorded isotope profile and the calculated temperature change presented above. 

This could suggest that U C D W dominated the early phase o f ice shelf absence and 
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was gradually replaced by cooler ice shelf water. As such this data is consistent wi th 

the idea that intrusions o f warm U C D W played an important role in the absence o f 

the ice shelf, through enhanced bottom melting and also in promoting increased 

marine productivity. It is also realistic to assume that eventually the U C D W isotopic 

signal would be diluted/replaced by large volumes o f cooler, isotopically light 

meltwater, both f rom the melting ice shelf and local valley glaciers. 

One argument against a change f rom U C D W to an environment dominated by ISW 

or local meltwater however is the overall structure o f the 5'^Ccibicides profile, which 

shows no indication o f a change in water mass characteristics. Not only is U C D W 

defined by temperature and salinity maxima, i t is also considered to be nutrient-rich 

(Hofmann et al., 1996). Thus, one would expect a corresponding shift in the 

S'̂ Ccibicides profiles, which is not seen. Furthermore, the isotopic profile obtained 

from the Globocassidulina species does not yield a comparable pattern. However, 

this can be explained by the different ecologies o f the two species. Cibicides is an 

epifaunal species, which generally lives directly above the sediment-water interface, 

whilst Globocassidulina is an infaunal species l iving within the sediment. As a 

result, epifaunal species generally provide a more reliable record o f changing water 

types since infaimal species can be more influenced by the nature o f the sediment in 

which they live (Murray, 1991). 

In addition to these factors, unpublished data from a marine core site in Marguerite 

Bay (Pope, 1991) suggests that the isotopic signature o f U C D W as recorded in 

Cibicides species is unlike that obtained from M L . Pope (1991) obtained 

5'*0cibicicdes and 5'̂ Ccibicides values o f between 3.8 to 4.5 %o and - 0 .2 to 1.2 %o 

respectively for Holocene age sediments (Pope, 1991). This compares wi th a range 

of 3.4 to 4.1 %o for S'^O and f rom 0.9 to 1.5 %o for 5 '^C for M L (Fig.7.5). 

Significantly, the core site in Marguerite Bay is currently bathed in U C D W and 

according to Pope (1991) probably has been during the Holocene. Working on the 

assumption that the Pope's (1991) foraminiferal isotopes data can be taken as a 

isotopic fingerprint for U C D W on the west coast o f the AP then it suggests that i f 

U C D W was present in/or near M L then its isotopic signature was slightiy diluted. 

This could occur through the addition o f large volumes o f fresh meltwater, which is 
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generally isotopically lighter. For example, it is likely that the Cibicides species 

analysed by Pope (1991) survived at much greater water depths (the core site was at 

>700 m water depth) compared to the shells deposited in M L , which are likely to 

have survived either at the core site (50-80 m water depth) or on the shallow 

continental slope (<200). As such, the isotopic signature o f foraminifera in M L 

would have been more readily influenced by meltwater than the Marguerite Bay 

samples, potentially modifying the isotopic signature. This could suggest that the 

6*^0 values f rom Marguerite Bay provide a more representative isotopic signature 

for UCDW, whilst the values taken to represent U C D W from M L are slightly 

modified by freshwater. 

A further complication wi th a purely temperature-related interpretation is the 

possibility that several other environmental factors, notably changes in salinity and 

the addition o f older ice shelf meltwater enriched in '^O may have influenced the 

5^^0cibicides signature. For example, the water within and proximal to the M L 

embayment is likely to have experienced significant and rapid changes in salinity 

caused by the initial inf lux o f marine water followed by the inf lux o f large volumes 

o f relatively fresh glacier and ice shelf meltwater. Generally changes in surface 

water conditions have little impact on benthic foraminifera in deep-sea sediments. 

Cibicides species however are known to survive at relatively shallow depths (<100 

m) on the continental slope (Osterman and Kellogg, 1979) and as such, are more 

likely to be influenced by surface waters, especially i f they are well mixed. Based 

on what is known about palaeosalinity calculations (e.g. Schmidt, 1999; Rohling, 

1999) the 5'̂ Ocibicides record from M L shows a trend to more saline water 

conditions. This appears to be inconsistent however wi th other proxy data, which 

shows a gradual decline in the marine signal probably in response to the re-isolation 

of the basin and the renewed dominance o f freshwater. Finally, in addition to 

changes in salinity, melting o f (old) glacier and ice shelf ice may have contributed 

water that was eru-iched in (Charles and Fairbanks, 1990) leading to changes in 

the S'̂ Ocibicides signal. However this relationship is d i f f icul t to quantify. Certainly the 

S'^O profile becomes heavier towards the top o f B Z I V , which could suggest an 

input o f '^O rich water as the ice shelf melted. 
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In summary it remains diff icul t to precisely unravel the factors that have contributed 

to the observed changed in S'̂ Ocibicides- The present data suggests that the dominant 

factor controlling the 6'̂ Ocibicides records appears to have been water temperature. I f 

water temperature change is the dominant factor then this equates to a ca. -2.9°C 

cooling in water temperature, which is almost identical to the observed temperature 

gradient between ISW directly beneath George V I Shelf and warmer UCDW. This 

could imply that U C D W was influential in the initial decay o f George V I Ice Shelf 

and was gradually replaced by cooler, isotopically lighter ISW. This pattern is 

consistent wi th other proxy data, which shows a decline in marine productivity at 

ca. 270 cm and renewed dominance o f freshwater possibly in response to the re-

isolation o f the epishelf lake as the ice shelf reformed. A change in water mass 

above 270 cm (8705 cal yr BP) is also indicated by the foraminiferal data which 

indicates a change from highly productive, saline water (e.g. U C D W ) to less 

productive (cooler?) ocean water. 

7.2.5. L i f t - o f f / advection hypothesis 

One alternative scenario to ice shelf absence that needs to be explored is the 

possibility that the marine biological and isotopic signal recorded in B Z I I and B Z I V 

is not the result o f in-situ production during ice shelf absence, but instead results 

f rom advection o f hemipelagic sediment from beneath the ice shelf This scenario 

would require some kind o f ' l i f t ing o f f o f the ice shelf from the sill to enable larger 

quantities o f water to enter the basin and also relies on the assumption that diatom 

and foraminifera communities exist (or are advected) beneath the ice shelf It is 

commonly accepted, however, that phytoplankton communities are not viable 

beneath ice shelves because they need light for photosynthesis (Kellogg and 

Kellogg, 1986, 1987, 1988). Similarly foraminifera should also be absent because 

they require diatoms or other primary producers as food (Kellogg and Kellogg, 

1988). It is possible however, that diatoms could have been advected in by ocean 

currents from areas o f open water, although similar data has not been presented for 

foraminifera. Recently Hemer and Harris (2003) have suggested that some marine 

diatoms (e.g. T. antarctica) in sediments beneath the Amery Ice Shelf are likely to 

have been advected in by sub-ice shelf currents from the ice-free areas o f Prydz 
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Bay; some 80 km away. Their study also implies that advection o f diatoms may be 

species specific, since they later use the presence o f sea-ice taxa {F. curta and F. 

cylindrus) f rom the same cores to suggest that the ice shelf must have retreated. 

The Ablation Point Massif lies 100 km (northwards) and 334 km (southwards) from 

the open sea and thus i t is possible that open-marine diatoms may have been 

advected from Marguerite Bay to the north. However, measurements have shovra 

that currents beneath George V I Ice Shelf are exfremely weak, except at the western 

margin o f the northern ice front where a northward-flowing jet (i.e. away from the 

Ablation Point massif) o f U C D W is present (Potter and Paren, 1985) and are thus 

unlikely to transport large quantities o f hemipelagic sediments. Based on present 

data and without fiirther field measurements however, this relationship cannot be 

quantified. 

The strongest argument against the advection o f large quantities o f diatoms into 

Moutonnee and Ablation Lakes comes from the modem day lake data set and also 

the multi-proxy nature o f this study. Firstly, despite Ablation Lake currentiy being 

an open system, which is able to exchange freely wi th water beneath George V I Ice 

Shelf (Heywood, 1977), no similar marine diatom assemblage is currently advected 

into the basin. The only marine diatoms found in Ablation Lake surface sediments 

are Diploneis sp., and T. antarctica. Whilst the latter forms an important component 

o f the B Z I V assemblage, Diploneis species are entirely absent in core sediments. In 

addition, counts o f T. antarctica are generally much lower in the Ablation Lake 

surface sediments, wi th a maximum abundance o f 2,340 valves g ~ T h i s compares 

to a maximum o f 11,500 valves g " M n the M L core and suggests that advection is 

unlikely to account for the diatom assemblage in B Z I V . The presence o f any marine 

diatoms in surface sediments in A B and M L however, is d i f f icul t to reconcile 

without invoking some kind o f advection. It is interesting to note that Hemer and 

Harris, (2003) use the presence o f T. antarctica to argue for advection beneath the 

Amery Ice Shelf (also present in A B surface sediments). They note that past studies 

of diatom sinking rates have shown that T. antarctica is associated with lateral 

advection (e.g. Leventer and Dunbar, 1996; Cremer, 1999). They go on to suggest 

that T. antarctica may be better preserved on its path beneath the ice shelf because it 

is heavily silicified (Hemer and Harris, 2003). The Diploneis sp., identified in this 
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Study is also heavily silicified (see Plate 1). This implies that some advection o f 

hemipelagic sediment is taking place beneath GVI-IS, but i t is restricted to certain 

heavily silicified taxa. Secondly, the advection hypothesis cannot explain the 

occurrence o f a f u l l and varied diatom assemblage in sharply defined intervals ( B Z I I 

and B Z I V ) , at precisely the same time as major isotopic changes in 5'^Corg (related 

to in situ productivity), and parallel changes in several other proxies (e.g. 

foraminifera). Furthermore, the diatom evidence o f an open water environment 

being replaced by sea-ice taxa as the ice shelf reformed is di f f icul t to explain in 

terms o f changing currents or advection (why would the species composition 

change?). Thus, a more robust interpretation is that the diatom assemblage reflects 

in situ productivity in Moutonnee Lake and the immediate region. 

7.2.6. Evidence for ice shelf re-formation 

Figure 7.6 shows the key palaeoenvirormiental data from B Z I I and B Z I V and allows 

the reconstruction o f the environmental conditions prior to ice shelf re-formation. A 

consistent pattern within the data set is a reduction in a marine signal from ca. 270-

cm (ca. 8705 cal yr BP). S'^Corg values, for example, decrease to the more negative 

values similar to values found in modem day surface sediments. Significantly, the 

decline in marine fauna and the marine geochemical signal coincide with increasing 

levels of sea-ice inferred from the ratio o f terminal to intercalary Eucampia valves 

and decreasing water temperature, possibly due to the dominance o f cooler ISW. 

During this time interval atmospheric temperature inferred from the EPICA ice core 

(Masson-Delmotte et al., 2004) and Byrd ice core reveal a modest temperature rise 

(Fig.7.6). This slight temperature rise is however superimposed upon a longer term 

cooling trend fol lowing the early Holocene climatic optimum (Fig. 2.14 and 2.15 

Chapter 2). Excluding the ice core data these data imply that marine productivity 

and/or the influence o f marine water began to decline at 270 cm (ca. 8705 cal yr 

BP) disappearing entirely by 236 cm (ca.7950 cal yr BP). This suggests that the 

connection between the marine water in George V I Soimd and the lake basin started 

to close at ca. 8705 cal yr BP cm becoming impounded completely by 7950 cal yr 

BP. For this to occur grounded ice must have been present on the bedrock sil l . In 

other words the ice shelf must have reformed sufficiently to impound a standing 
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Chapter 7 - Early Holocene Absence of GVI-IS 

body of freshwater, perhaps in response to the period o f sustained climatic cooling 

recorded in several Antarctic ice cores (Fig. 2.14 and 2.15). It remains unclear 

however whether this data indicates f u l l or partial re-formation o f the ice shelf since 

the lake sediments provide no direct evidence for the geographical extent o f the ice 

shelf at this time. 

7.2.7. B Z V (235-0 cm): Ice shelf presence phase 

The upper most zone o f the M L core (BZI) is interpreted here as a change back to a 

freshwater-dominated envirormient fol lowing the re-formation o f the George V I Ice 

Shelf no later than ca. 7950 cal yr BP. In contrast to the 5'^Corg profile, which 

appears relatively stable, the C/N profile shows a significant degree o f variability 

and is accompanied by changes in other physical parameters, notably % L O I , 

%CaC03, MS and grain-size (Fig. 7.7). Assuming that the age-model for M L is 

broadly accurate, then B Z V represents one o f the longest lacustrine sequences on 

the AP and potentially offers a unique opportunity to study Holocene climatic 

change. 

Following B Z I V , Corg and Norg values continue to decline. The C/N profile then 

increases rapidly from 226 cm (ca. 7600 cal yr BP) reaching a core maximum o f 

12.3 at 176 cm depth (ca. 5900 cal yrs BP) before declining, then increasing to a 

secondary peak o f 9.9 at 102 cm depth (ca. 3400 cal yrs BP). Both peaks (hereafter 

referred to peaks A and B; Fig.7.7) are associated wi th more negative 5'^Corg values 

and higher Corg values. From 76 cm (or ca. 2550 cal yrs BP) C/N values increase 

steadily. 

In Chapter 4 the factors which control the Carbon and Nitrogen signature in 

lacustrine sediments were reviewed. Traditionally, total organic carbon (TOC 

equivalent to Corg) has been used as a proxy for productivity (e.g. Domack et al., 

1993; Melles et al., 1997; Vi l inski and Domack, 1998; Kulbe et al., 2001; M c M i n n 

et al., 2001), whilst C/N and 6'^Corg have been used to investigate carbon sources 

(Meyers, 1994, 1997; Mueller and Voss, 1999; Talbot and Laerdal, 2000; Lamb et 

al., 2004). It has already been speculated m Chapter 5 that changes in. Corg and Norg 
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content o f surface sediments are likely to be controlled either directly by changes in 

lake productivity and/or indirectly by the rate o f supply o f nutrient-bearing 

meltwater streams (Chapter 5). Thus the major peaks in the C/N profile in the M L 

core are likely to reflect one or both o f these scenarios. 

Scenario 1: In Scenario 1 the C /N peaks and lower 5'^Corg values reflect changes in 

the supply o f terresfrially derived C and N (e.g. increased precipitation). It has been 

shown from reference data i n Chapter 5 that catchment benthos and cyanobacteria, 

in general, have higher C /N values (Fig. 5.14 Chapter 5). Thus, an increase in the 

flux o f material entering M L caused by increased melting due to climatic warming 

or increased precipitation would result in a relative increase in carbon-rich organic 

material. This would lead to higher C /N values. However, the S'̂ 'C o f surface 

sediments in M L suggest that streams feeding M L are enriched in Corg5 with 

samples nearest the lake shoreline yielding the heaviest 6'^Corg values (ca. -14 to -20 

%o). In other words material entering the lake from the catchment generally has 

high C /N values but higher S'̂ 'Corg values. However, not all reference samples from 

the lake catchment yielded such high 5'^Corg values. Cluster group 1 (Figure 5.9 

Chapter 5) for example has high C /N values and relatively low 6'^Corg. 

Scenario 2: In Scenario 2, the C /N peaks and low 6'^Corg values represent a period 

o f enhanced lake productivity and the presence o f an extensive littoral moat in 

summer owing to favourable climatic conditions (e.g. warming). Several studies 

have shown that increased Corg (leading to elevated C /N ratio) can be used as a 

reliable proxy for lake productivity (e.g. Melles et al., 1997; McMinn , 2001; Kulbe 

et al., 2001; Lamb et al., 2004). In addition, the 5'^Corg values (-26.2 %o) are in the 

range commonly associated wi th lake algae and are lower than the core mean (ca. -

25 %o). Thus, peaks A and B could be explained by a period o f enhanced lake 

productivity. However this scenario is complicated by the fact that increased 

productivity can also lead to elevated Norg values. 

From a palaeoclimatological perspective i t is likely that both scenarios reflect a 

warmer climate. Station records show that the recent regional warming on the 

Antarctic Peninsula has been accompanied by increased precipitation (Turner et al.. 
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1997). Thus it seems reasonable to assume that increased precipitation in the past 

was associated with warmer conditions. In addition, the flux o f meltwater entering 

the lake would increase during periods o f warming. 

The MS, L O I and CaCOa profiles also show a high degree o f variability between ca. 

158 - 58 cm (ca. 5320 to 2150 cal yrs BP) (Fig. 7.7). This interval is also associated 

with increasing sand and gravel content, probably associated wi th an increase in 

mineral sedimentation rate. Together this would suggest that the lake catchment 

experienced some form o f instability (e.g. pronounced seasonality) during this 

period. L O I , MS and CaCOs values then stabilize and remain stable through to the 

top o f the core. Sand and gravel concentrations decrease, suggesting a change in 

sedimentation, perhaps related to reduced flux o f coarser material under drier/cooler 

conditions. From this data i t is apparent that C/N peak B was associated with a 

different suite o f environmental indicators compared wi th C/N peak A . Generally 

peak A is associated with stable % L O I , MS, but higher Corg (Figure 6.12 Chapter 6) 

and reduced % sand values, whilst B is characterised by variable MS, L O I and high 

%Sand concentrations. Increased sand levels suggest greater minerogenic 

sedimentation, possibly associated wi th wetter conditions as sediment is transported 

into the lake from the surrounding catchment. Greater minerogenic sedimentation is 

also supported by the MS data. Magnetic susceptibility has long been used as a 

physical sedimentary proxy for variable biogenic and minerogenic sediment supply. 

Elsewhere in Antarctica, MS has been used as a regional proxy for changes in 

biogenic productivity (Leventer et al., 1996; Kirby et al., 1998; Brachfeld et al., 

2000; Domack et al., 2001). Generally low magnetic signals have been interpreted 

as periods o f high productivity when biogenic sedimentation is greater than 

minerogenic sedimentation. This is consistent wi th C/N peak B that shows a period 

o f increased biogenic sedimentation is associated with low MS values. Together this 

data indicate that C/N peak B was associated wi th a period o f increased 

sedimentation, which alternated between biogenic and minerogenic sources. As 

such, peak B compares more closely to scenario 2 and indicates a period o f 

warmer/wetter conditions leading to an increased deposition o f minerogenic and 

biogenic material f rom the catchment, whilst peak A could reflect a period o f 

enhanced lake productivity in response to more favorable conditions similar to 

scenario 1. 
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Unlike the evidence for ice shelf absence, which was reproduced in both the ML 

and MLNB cores, some of the resuhs from BZV do not, when plotted on a depth-

scale, appear to be reproduced in the MLNB core. However, when the key data 

from the MLNB core is plotted against a common time-scale (assuming linear 

sedimentation), the major features such as C/N peaks A and B do appear to be 

replicated (Fig.7.8). This suggests that although some trends in the MLNB data 

differ from those displayed in the ML core, the key environmental changes (such as 

C/N peaks A and B) are reproduced. These discrepancies could be related to the 

relative positions of the cores in the lake basin. The ML core is situated in the 

middle of the lake basin and is likely to receive most of its minerogenic material 

from the alluvial fan deposits in the main valley floor and from a mixture of 

sediment from the north and south facing valley sides (Fig.7.9). During the summer 

the alluvial fan area is generally ice free and is colonised by well-developed moss 

patches and cyanobacterial mats which are dissected by prominent meltwater 

streams (Fig.7.9). Moss patches also occur on the north-facing valley slope 

(Heywood, 1977). In contrast the MLNB core site is situated in the lee of the 

bedrock sill and is close to a till-covered valley side. The valley side is south facing 

and as a consequence is snow covered for much of the year. The ML core is thus 

likely to reflect a catchment biological signal whilst the MLNB core in contrast is 

likely to reflect a more terrigeneous-dominated signal. This is supported by the Corg 

data and grain-size data. BZV in the ML core has a mean Corg value of 0.37 % 

whilst unit 2 in the MLNB core has a mean of 0.28 %. Similarly, the MLNB core 

has higher percentages of sand (mean 25%) compared with the ML core (mean 

18%). This would suggest that the ML core more faithfully reflects biological 

activity in the catchment, which is ftmdamentally controlled by climate. 

Finally, an additional feature of the core sediments from ML and AB (although 

absent in the ML core) is the increase in 5 Corg» Corg 3iid Norg values at the core 

top/sediment-water interface (Figures 6.13 and 6.14). It is possible that this change 

could reflect an increase in the flux of marine water entering these lakes, leading to 

higher isotopic and elemental values (as is the case in BZIV). For ML, this is 

consistent with the limnological data (Chapter 5) which has shown a thickening of 
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Chapter 7 - Early Holocene Absence of G VI-IS 

the marine layer over the last 30 years, perhaps in response to (recent) ice shelf 

thinning. As such, the change in isotopic and elemental proxies at the core top 

could provide evidence for the first signs of 20*/21*' Century ice shelf break-up. An 

assessment of the significance of these changes will require the regular monitoring 

ofMLand AB. 

In summary, the sediment record in ML provides one of the longest lacustrine 

sequences on the AP. Shortly after the ice shelf began to reform (<8 ka yr BP) C / N 

values remain low until ca. 7600 cal yr BP. This is consistent with the proxy data 

from BZIV, which suggest that the ice shelf reformed in response to a period of 

climatic cooling. The C / N ratio values then begin to increase rapidly at ca. 7500 cal 

yr BP leading to C/N peak A at approximately 6000 cal yr BP. This may reflect a 

period of enhanced lake productivity in response to warmer environmental 

conditions. Corg levels then decline between C/N peaks A and B, which may imply a 

brief period of cooling and/or drier conditions. From ca. 158 cm (ca. 5320 cal yr 

BP), LOI, MS and CaCOa values fluctuate markedly. This interval also coincides 

with C/N peak B and an increase in sand-gravel sedimentation and is interpreted 

here as a period of wetter enviroimiental conditions. This may reflect enhanced 

precipitation and/or climatic warming leading to increased snowmelt. Both of the 

latter scenarios are likely to reflect climatic warming. This period of instability ends 

at approximately 64 cm (ca. 2150 cal yr BP). From this depth proxy data indicates a 

period of relative stability, perhaps under cooler drier conditions. In addition, the 

core tops of MLNB and AB4 show increasing 5'^Corg, Corg and Norg values, which 

could be interpreted as the first signs of 20*/21*' Century ice shelf break-up. 

7.2.8. Clast lithological data - fiirther evidence for ice shelfless 

As part of the wider NERC-fimded project, the conglomerate-grade (>8 mm) clasts 

in sediment from the ML core have been identified and their source characteristics 

investigated (Fig. 7.10) (Roberts et al, in prep.). It has already been noted (Chapter 

3) that the Antarctic Peninsula is composed primarily of plutonic and volcanic rocks 

formed in a Cretaceous island arc, whereas Alexander Island is composed of 
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sedimentary rocks deposited in a subduction-trench setting (Crabtree et al., 1985). It 

was also noted (Chapter 3 and 5) that George VI Ice Shelf transports plutonic 

material from the Antarctic Peninsula (along well defined flow lines) to Alexander 

Island where it is deposited either on the coastline, or in the case of ML, on the lake 

shoreline. On the basis of these observations, it was suggested (Chapter 5) that, 

when in contact with Alexander Island, the ice shelf leaves a distinct signature 

(plutonic and volcanic rocks) of its presence both on the coastline and potentially 

within the lake sediments of ML. An expected corollary of this is the removal of the 

ice shelf would change the composition of clasts reaching ML. It was hypothesised 

(Chapter 5) that during periods of ice-shelf absence a more diverse assemblage of 

clast lithologies would be deposited in the lake from debris-bearing icebergs from 

throughout George VI Sound. 

The key data from this study are shown in Figure 7.10 classified into sedimentary-

metasedimentary (i.e. local debris from Alexander Island), igneous-volcanic and 

igneous plutonic (i.e. exotic debris from Palmer Land) groups. Significantly, BZIII 

contains the maximum number and types of 'exotic', igneous and plutonic clasts. In 

addition, multivariate statistical analysis of geochemical (REE) and isotopic (Nd-Sr) 

data (data not shown) show many igneous clasts in BZIII have a close affinity with 

the igneous provinces of western Palmer Land (Roberts et al., in prep.). In confrast, 

the number of clast types in BZV (i.e. after the ice shelf had re-formed) is more 

limited and dominated by three clast types: (i) numerous 'exotic' olive-green vitric 

tuff clasts, (ii) pale green rhyolitic clasts, which are virtually absent in BZIII and 

whose geochemical/isotopic composition is different to Palmer Land derived 

(Jurassic) rhyolitic clasts in BZIII, (iii) a limited number of foliated diorite clasts 

known to originate from Palmer Land. While the exact provenance of the olive-

green vitric tuff and pale green rhyolite clasts remains undetermined, a source in 

Palmer Land would appear most likely (Roberts et al., in prep.). The absence of 

these clasts in BZIII suggests that the flow regime and source of material changed 

following ice shelf reformation (Roberts et al., in prep). Importantly, the wide 

lithological diversity in BZIII suggests that icebergs were able to float freely in 

George VI Sound and deposit a wide-range of lithologies from several different 

sources throughout the sound. 
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7.3. Discussion 

It has been demonstrated that GVI-IS was absent at ML in the early Holocene. In 

addition, the core sediments from ML provide information on the environmental 

conditions, which preceded ice shelf reformation and those, which post-dated it. 

What has emerged from these data is the possibility that GVI-IS may have 

disappeared in response to changes in ocean circulation and/or increased 

atmospheric warming. In the next section, the tuning of ice shelf loss will be placed 

in a regional context and compared with other terrestrial and marine records from 

the AP. Following this, the post ice shelf enviroimiental history obtained from ML 

will be discussed. The penultimate section will deal more explicitly with the 

mechanisms leading to the absence of GVI-IS and the factors, which lead to its re

formation. The final section will speculate on the likely ftiture of GVI-IS. 

7.3.1.The timing of Ice Shelf loss: a regional context 

The ML core chronology shows that the GVI-IS disappeared in the early Holocene, 

with the onset of retreat occurring at 8100 "*C yr BP (8962 cal yr BP) and complete 

or partial re-formation by 7300 '''C yr BP (7945 cal yr BP). This coincides with the 

widespread deglaciation of coastal areas arotmd the Antarctic Peninsula (Ingolfsson 

et al., 1998; 2003; see Chapter 2) and immediately post-dates ice core evidence of a 

widespread early Holocene climatic optimum ca. 11,500-9,000 cal yr BP (Fig. 7.11) 

(Masson et al., 2000; Masson-Delmotte et al., 2004). The timing of ice shelf 

absence also coincides with the inferred intial influx of Circumpolar Deep Water 

(UCDW) onto the Bellingshausen Sea shelf between ca. 9000 and 3600 cal yr BP 

(Shevenell and Kennet, 2002) and warm water conditions between 9000 and 6700 

cal yr BP (Leventer et al., 2002). Thus, both atmospheric and oceanographic 

changes have been recorded immediately prior to, and coincident with, the ice shelf 

absence. 

If we now consider the original evidence for absence of GVI-IS there appears to be 

an apparent mis-match between the dates presented here for ice shelf loss and those 

originally proposed by Clapperton and Sugden (1982) and later supported by Hjort 

et al. (2001). Clapperton and Sugden (1982) dated barnacle shells (Bathylasma 

279 



CO 

8 
? 
6 

I 
D. 
< 

> -
•D 

CO 
w 

I -
O 

c: 
o 
g c 

< -

Si 

Q 
to 

C\J CD 

- I — I — I — I — I — I — I — r 

(da JA B>I) 96V 

0 0 
o 

_o 

c o 
(U 

I D 

o 

1 
c 

< 
•s 

B 
p 
c 

o 

c 

c 
c 

' > 
c 
o 

c 
o 

'So 

0 0 

. 2 ^ 
CO 

> 

13 

c2 

o 

o 
CJ 

ON 
O N 

ca 

c<3 ON 
Cu ON 

t 
"o o 
T3 

0 0 
ON 

On 

C3 

CO 
X 

CJ 

_aj 

2 & 
Q 

CO 

PQ 
1) ao 
2 
> 

o o 

•T3 

-o c 
ct 
OJ 

£? 
OJ 

CQ 

£ 

Q 

CO 

o o 

1 
o o o 
(N 

o o 
CO <N 

i5 > w 

3 ^ c < 

£ 
p 

u 
4J 
CJ 

.2P * 
dj cn 

o 
i 

- '5 s 
a. 

Q 
CO 

a> 
E o 

Q I 
^ o 

f t 
so s 

< 
n 

aj ^ 
C J ^ 

.C •-n c 
D- 3 
NO 
ON 
ON 

i2 CO CO 

n. 
CJ 

u 
x: 
0 0 

B x: CO 

o CO 

c 
o 
t/3 
C/3 
CO 

dJ 

s a 
cC 

« o 
cO 

- C 
CJ 

o o 

CO 

t j 

> E 

—• CO 

aj -iS 
- = a 

C f l 
CO 

a -J 

E 

u o 
£ 0 Q 
^ a 

OJ 
OJ 

3 lo 

aj 
G 
O 
O 

Z 
o o o 
fN 

CO 
» 

(U c o 

T3 

c 
bp 

a, 0 0 

280 



Chapter 7 - Early Holocene Absence of GVI-IS 

corolliforme) from an ice shelf moraine deposited on the western margin of George 

VI Ice Shelf at Two Step Cliffs (Fig. 2.1 Chapter 2). They obtained an age of ca. 

7200 '̂ C yr BP, which corresponds to ca. 5900 '̂ C yr BP after the 1300 yr AMRE 

correction suggested by Berkman et al. (1998). This age was later confirmed by 

Hjort et al. (2001) who re-dated several shells from the same site. Their dates 

ranged between 5750 and 6000 '''C yrs BP (or ca. 6550-6859 cal yr BP). Since no 

modem shells were found in the ice shelf moraine, Clapperton and Sugden (1982) 

concluded that the most likely explanation to account for the presence of 

Bathylasma corolliforme was that George VI Sound was seasonally free of water at 

Two Step Cliffs around 6550-6859 cal yr BP. Thus, the age range for seasonally 

open water in George VI Sound suggested by Clapperton and Sugden (1982) and 

Hjort et al. (2001) is ca. 1000 years younger than the youngest age from ML. The 

difference in age could be due to one of several factors; (1) the Antarctic marine 

reservoir effect (AMRE) is variable between foraminiferal calcite of the lake site 

and the barnacle calcite at Two Step Cliffs; (2) that Bathylasma corolliforme is able 

to survive beneath portions of George VI Ice Shelf and/or is able to survive in 

isolated marine habitats (e.g. polynas/shallow ice free areas such as Hobbs Pool; 

Fig. 2.1b); (3) that the ice shelf did not fiilly reform until 6550 cal yr BP in the 

region of Two Step Cliffs ca. 1000 years after re-formation at Ablation Point; (4) 

different glaciological behaviour of GVI-IS at the Ablation Point Massif and Two 

Step Cliffs. 

The question of whether the AMRE is variable between Ablation Point and Two 

Step Cliffs is a difficult one to answer. Given the close proximity of the two sites it 

seems unlikely that the difference in age between the foraminifera and barnacle 

samples are related to changes in the rate of upwelling. However, on present data 

this assumption cannot be tested. It is also unlikely that the 1000 yr age difference is 

the result of different vital effects between the two marine species. It has been 

suggested that differences between Antarctic marine taxa can be estimated by the 

similarity of their 5'̂ C values (Harkness, 1979; Gordon and Harkness, 1992) 

relative to seawater which is around 0 %o. Both species yield 5'̂ C values between -

0.9 and +4.4 %o, which is within the range of most Antarctic carbonate species 

(Gordon and Harkness, 1992). Thus on the basis of the geographical proximity of 
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the two sites and the isotopic data it would seem unlikely that the younger age from 

Two Step Cliffs results from a variable AMRE or specific vital effects between the 

two dated species. 

The second possibility is that communities of Bathylasma corolliforme were able to 

survive beneath George VI Ice Shelf in isolated reftigia and as such do not reflect 

fully-open marine conditions near Two Step Cliffs. Bathylasma corolliforme is 

generally considered a deep-sea Antarctic barnacle which rarely survives in waters 

shallower than 100 m (Dayton et al., 1982). Whilst there is no evidence to suggest 

that B. corolliforme exists beneath ice shelves and grounded ice margins (Dayton et 

al., 1982) Hains and Melles (1994) have shown that some shells (e.g. Adamussium 

colbecki) survive in coastal refuges beneath ice shelves. However, unlike B. 

corolliforme, A. colbecki are common in littoral or shallow Antarctic waters (Dell, 

1990). Thus their presence on the shallow shelf beneath thin portions of an ice shelf 

should not be surprising. As noted above B. corolliforme generally survives at much 

greater depths (>1000 m; Dayton et al., 1982). However, for B. corolliforme to be 

entrained by the ice shelf and deposited within the ice shelf moraine, it must have 

survived at relatively shallow depths (e.g. <100 m). In addition to the apparent 

ecological preferences of B. corolliforme it is unlikely that it survived beneath 

George VI Ice Shelf given the original evidence that no modem shells were (or have 

been) discovered in the ice shelf moraine (Hjort et al., 2001). It is still possible 

however that B. corolliforme survived in isolated areas of open water. At present the 

upwelling of warm deep water on the west of George VI Soimd at the northern ice 

front resuhs in a discrete polyna (Potter et al., 1988). It is possible that a similar 

feature once existed farther south near Two Step Cliffs in response to some 

oceanographic change. This is also supported by observational evidence, which 

suggests that B. corolliforme is not disfributed uniformly along the western coast of 

George VI Sound (M.J. Bentley pers. comm.). It is worth noting however, that no 

systematic search for B. corolliforme along the entire ice shelf moraine has been 

performed. 

Whilst the presence of B. corolliforme dated to 6000-6500 cal yr BP remains 

something of an enigma there is no clear evidence to suggest that the age is 

incorrect. Indeed the initial explanation for its presence within an ice shelf moraine 
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along the western margin of GVI-IS still remains the most plausible interpretation. 

Certainly a longer period of ice shelf absence is consistent with the diatom data 

from Palmer Deep, which indicates the early Holocene presence of warmer UCDW 

between ca. 9000 and 6700 cal yr BP (Leventer et al., 2002). One final problem is 

that i f the barnacle age from Two Step Cliffs is taken to represent an extended 

period of ice shelf absence (between 8962 and 6500 cal yr BP) then it becomes 

problematic that no barnacles/shells of equivalent age to the ML ages were 

discovered in any of the moraines analysed along George VI Sound. One would 

expect to find barnacles, which span the entire age range from the inception of ice 

shelf break-up at ML lake of ca. 8962 cal yr BP to full (or partial) re-formation at 

Two Step Cliffs by ca. 6000 cal yr BP. One way to reconcile these ages would be to 

invoke a gradual retreat of the George VI Ice Shelf from the north. The present day 

ice shelf is retreating relatively slowly in response to the southward progression of 

the -9 °C isotherm. It is likely that i f atmospheric temperatures continue to rise then 

the northern margin of the ice shelf will eventually recede as far south as the 

Ablation Point Massif and then sometime later. Two Step Cliffs. In other words 

Moutonnee Lake would experience open marine conditions before Two Step Cliffs. 

However, this hypothesis is largely dependent on how the ice shelf refreated during 

the early Holocene, which is discussed in more detail below. Before this is 

investigated however, the environmental history following ice shelf reformation (ca. 

8000 ka to present) is discussed in more detail. 

7.3.2. A 8000 vr Climatic Record from Alexander Island 

The data presented in this thesis also provides evidence of long-term environmental 

change in ML following ice shelf re-formation. Multi-proxy data from ML indicate 

that marine sedimentation had been replaced by sedimentation in an epishelf lake by 

236 cm (or 7946 cal yr BP). Assuming that the age-model for Moutonnee Lake is 

broadly accurate, then this interval represents one of the longest lacustrine 

sequences on the AP. 

At present, the AP is characterised by a relative paucity of high-resolution 

(Holocene) climatic records. This has made it difficult to assess the regional 

significance of climatic events during Holocene and to compare relative forcing 
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factors. Recent studies from the Palmer Deep however have provided a detailed 

marine record of Holocene oceanic changes on the west side of the AP (Domack et 

al., 2001). The relative completeness of the record (ca. 13000 yrs) and its firm 

chronology has, for the first time, provided an initial framework against which ideas 

about forcing mechanism can be tested (Domack et al., 2003a). The Palmer Deep 

record shows deglaciation was underway by ca. 13000 cal yr BP. The site was then 

characterised by warm water intrusion between 9000 and 6700 yrs BP, which 

coincided with the loss of GVI-IS, followed by neoglacial cooling after 3600 yrs BP 

(Fig.7.11 and Fig. 2.11 Chapter 2) (Domack et al., 2001). The latter time interval is 

also characterised by strong century-scale (ca. 200 yr) oceanic variability (Shevenell 

and Kennett, 2002). The intention of the next section is to place the climatic events 

recorded in the ML core in a regional context. However these comparisons must 

remain tentative until the core chronology is further improved. 

The ML core provides evidence (peaks in C/N etc) for two periods of climatic 

warming; the first centred around ca. 6000 cal yr BP and the second between ca. 

3850 and 3000 cal yr BP (Fig. 7.7 and 7.11). These two events are followed by 

cooler/drier phases between ca. 6000 to 4000 cal yr BP and ca. 3000 and 2000 cal yr 

BP respectively. The first warm interval is broadly contemporaneous with warm 

water conditions recorded in the diatom flora at Palmer Deep between 9000 and 

6700 cal yr BP and other geochemical data from the same site, which shows a warm 

oceanographic interval at approximately 6,000 cal yr BP (Domack pers. comm.). 

This event also coincides with the widespread deglaciation of the sub-Antarctic 

Peninsula Islands (Bjorck et al., 1991a,b, 1996; Jones et al., 2000; Noon et al., 

2003). The cooler/drier period between approximately 6000 and 4000 cal yr BP is 

comparable to a period of cooler temperatures and seasonally variable sea-ice 

conditions between 6200 and 4000 cal yr BP recorded in Lallemand Fiord 

(Shevenell et al., 1996) and cool conditions between 5900 and 3800 cal yr BP on 

Signy Island (Jones et al., 2000; Noon et al., 2003). The second period of 

warmer/wetter conditions in the ML core coincides with the widespread mid-

Holocene climatic optimum (or hypsithermal) recorded in several lake, moss bank, 

ice core and marine records (see Jones et al., 2000; Hodgson et al., in press and 

references therein). Specifically Shevenell et al. (1996) recorded a climatic optimum 

in the Lallemand Fiord between 4200 and 2700 cal yr BP (Shevenell et al., 1996), 
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whilst the Palmer Deep record shows a major change in sedimentation at 3600 cal 

yr BP, which has been interpreted as the beginning of cooling and the so-called 

neoglacial period (Domack et al., 2001) (Fig.7.11 and 2.11 Chapter 2). 

On the basis of the limited chronological model, it would appear that the changes in 

the C/N profile from ML are broadly contemporaneous with regional climatic frends 

on the west coast of the AP as recorded in marine, lake and ice core records. The 

next logical step is to assess whether the ML record is comparable to other climatic 

records from beyond the AP. Recent studies have provided evidence for sfrong links 

between Holocene climatic changes on the AP and oceanic/atmospheric changes in 

the tropical Pacific (Shevenell and Kennett, 2002; Lamy et al., 2001, 2002; Domack 

et al., 2003a). Specifically, Domack et al. (2003a) have suggested a possible link 

between the Palmer Deep marine record and the intensity of the Peru-Chile Current 

(PCC) (Lamy et al., 2002). The PCC is the direct northward continuation of the 

Antarctic Circumpolar Current (ACC). The southern most edge of the ACC abuts 

the Antarctic Peninsula shelf as it is fimnelled through the Drake Passage by the 

Southern Westerlies and eventually into the Atlantic sector of the Southern Ocean 

(Fig.7.12). The impingement of the ACC on the tip of the AP is thought to play a 

fundamental role in the climate of the west coast of the AP and is also associated 

with tiie upwelling of warm UCDW (Smith et al., 1999; Smith and Klinck, 2002). 

Lamy et al. (2002) have reconstructed the PCC over the last ca. 8000 yrs based on a 

multi-proxy approach including sea-water palaeotemperature and palaeosalinity 

reconstructions derived from alkenone and planktic foraminiferal oxygen isotopes 

as well as palaeoproductivity indicators (opal and organic carbon). It is thought that 

the ACC delivers cold nutrient rich waters to the southeastern Pacific leading to 

high productivity in the PCC (Hebbeln et al., 2000). Thus on Holocene timescales, 

high palaeotemperatures and salinities are thought to reflect decreased advection of 

subpolar water masses by the ACC (Lamy et al., 2002). 

Figure 7.13 shows the C/N profile from ML (a) plotted against palaeoprecipitation 

(Fe content) (b), sea surface temperature record of the PCC (c); and the Taylor 

Dome 8D ice core record (d). The PCC data set is characterised by two prominent 

excursions to higher palaeotemperatures and palaeosalinities and decreased 
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Figure 7.12. Global oceanographic circulation in context of Antarctic Peninsula 

and southern Pacific Ocean processes such as El Nino-Southern Oscillation 

(ENSO), South Pacific Gyre, the Antarctic Circumpolar Current (ACC) and deep 

water flow contributed by North Atlantic thermohaline processes. Location of the 

Peru-Chile Current (PCC) is also shown together with the location of George VI 

Ice Shelf (GVI-IS), Taylor Dome ice core (T) and Palmer Deep (P). The 

northerly limit of sea-ice is indicated by a bold dashed line (approximate) 

(modified from Domack and Mayewski, 1999). 
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Figure 7.13. Compilation of palaeoclimatic data sets from Moutonnee Lake, Peru-
Chile Current and Antarctic ice core data (a) C/N profile from ML; (b) Iron content 
from PCC core used as a proxy for precipitation and the position of the Southern 
Westerlies (Lamy et al, 2001). High iron content imply increased contribution of iron 
rich volcanic Andean source rocks and decreased supply of iron-poor Coastal range 
rocks. Such conditions indicate decreased rainfall most likely induced by a southward 
shift in the South Westerlies (Lamy et al., 2001); (c) alkenone based 
palaeotemperature reconstruction that traces the advection of subpolar water by the 
ACC (Lamy et al., 2002); (d) 200-year averages of 8D from the Taylor Dome ice core 
record (Steig et al., 1998). 
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precipitation between 6,000 and 5000 cal yr BP and at 3,860 cal yr BP (Lamy et al., 

2002). These data are consistent with the two (warm) events recorded in ML and as 

such provide evidence for links between climatic-related oceanographic changes on 

the Antarctic Peninsula and those occurring in the tropical Pacific. Lamy et al. 

(2001, 2002) have suggested that the long-term (Holocene) evolution of the PCC 

has been controlled by latitudinal shifts of the Antarctic Circumpolar Current 

(ACC), which are in turn driven by the Southern Hemisphere westerly wind field 

(Southern Westerlies). Thus according to Lamy et al. (2001, 2002) higher 

palaeotemperatures and salinities in the PCC recorded at ca. 6000 cal yr BP and ca. 

3850 cal yr BP most likely reflect a decreased advection of cold and nutrient rich 

water via the ACC. Lamy et al. (2001, 2002) attribute these changes in the PCC and 

precipitation to a latitudinal displacement of the ACC and the Southern Westerly 

wind beU, possibly in response to insolation-induced changes in Southern 

Hemisphere atmospheric circulation patterns (e.g. Hadley Cell). The modem 

location of the Southem Westerly wind belt is related to steep SST gradients within 

the ACC and ENSO-related changes. It is thought tiiat less advection of the ACC-

derived water masses imply a more southerly location of this system (Lamy et al., 

2002). A southward shift of both the Southem Westerlies and the ACC during the 

middle Holocene is supported by other data. For example ice core (Thompson et al., 

1998) and lake records (Cross et al., 2000) from the South American Altiplano 

indicates increased aridity, which could relate to a more intense Hadley cell. 

According to Lamy et al. (2001) the intensification of the Hadley cell could have 

resulted in a further southward shift of the Southem Westerlies. Conversely, Lamy 

et al. (2002) go on to argue that decreasing palaeotemperatures and increasing 

continental precipitation after ca. 4000 yrs suggests a northward shift of both the 

ACC and the southem westerly wind beh. 

So, how are the changes in the PCC connected to climatic variability on the AP? 

The simplest coimection involves the strength and position of the westerly wind belt 

and its associated impact on the ACC. The westem AP is situated within the zone of 

strongest Southem Hemisphere westerly winds (Kreutz et al., 1998) and as such is 

likely be sensitive to any perturbations in its intensity or position. At present the 

westerly winds bring warm, moist air to the west side of the AP. Thus it is possible 

that a poleward displacement of the Southem Westerlies during the Mid-Holocene 
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(e.g. Lamy et al., 2002) led to higher temperatures on the west coast of the AP and 

specifically increased precipitation or warmer conditions at Moutonnee Lake. This 

is consistent with ice core data from Taylor Dome (Stager and Mayeswki, 1997; 

Steig et al, 1998) and the sediment record from the Palmer Deep (Domack et al., 

2001; Leventer et al., 2002), which indicate higher atmospheric and oceanographic 

temperatures at ca. 6000 cal yr BP. In the case of the Taylor Dome ice core record 

there is also an indication of warmer climatic conditions between 4 and 3,000 cal yr 

BP. In addition Curmingham et al. (1999) have provided evidence for a warm event 

in Ross Sea between 6000 and 3000 cal yr BP, which may suggest that the mid-

Holocene warming may have been a circum-Antarctic event. 

The precise mechanism linking displacement of the Southern Westerlies and 

warming at ML during the Mid-Holocene period is not easily determined. It has 

been suggested that the western AP hydrography is sensitive to westerly wind 

strength and El Nino-Southern Oscillation (ENSO)-like climatic variability 

(Shevenell and Kennett, 2002). Shevenell and Kennett (2002) have demonstrated 

strong links between late Holocene oceanographic perturbations in the Palmer Deep 

record and the strength of the Southern Westerlies. Between ca. 9000 and 3700 ka 

BP the PD record is devoid of foraminifera, which Shevenell and Kennett (2002) 

attribute to the presence of corrosive UCDW. They argue that the presence of 

sustained UCDW on the continental shelf during this time interval resulted in 

warmer regional atmospheric temperatures, decreased sea-ice cover and increased 

primary productivity. They go on to suggest that the presence of UCDW was 

directly related to decreased westerly wind strength related to ENSO variability. 

Shevenell and Kennett (2002) also note that intervals of increased UCDW in the PD 

also correlates with less intense westerly winds, inferred from the sea-salt record of 

the Siple Dome Ice Core (e.g. Kreutz et al., 1997). As noted already there is also 

sfrong evidence from the Southern Ocean (Pacific sector) for decreased meridional 

wind strength (or ENSO) (Lamy et al., 2001) and decreased West Antarctic sea ice 

during this time period (Stager and Mayewski, 1997). After 3700 ka BP the PD 

sequence exhibits a significant shift in sedimentary character, which is coincident 

with a southward shift in the Intertropical Convergence Zone (ITCZ) (e.g. Baker et 

al., 2000; Haug et al., 2001) and an increase in ENSO strength and low-latitude 

climate variability (Sandweiss et al., 1996; Rodbell et al., 1999). In the PD record. 
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Shevenell and Kennett (2003) suggest that this may have resulted in a general 

increase in shelf water (replacing UCDW) and westerly wind strength between ca. 

3600 and 500 ka yr BP resulting in a general cooling. They suggest that 

predominantly offshore winds could push the southern boundary of the ACC off the 

western AP continental shelf, thereby depressing the volume of UCDW in PD (e.g. 

Hoffman et al., 1996; Smith et al., 1999). It is therefore possible that the 

environmental conditions at ML during the Holocene were forced by changes in 

UCDW, associated with changes in the ACC and Southern Westerlies. This also 

raises the possibility that the early Holocene appearance of UCDW on the 

continental shelf was controlled by atmospheric changes in the southeastern tropical 

Pacific. 

In simmiary, lake sediment records from BZV in the ML core provide evidence for 

two periods of warmer and/or wetter conditions during the last ca. 8,000 yrs. These 

two events appear to correlate with changes in other AP records and also appear to 

correlate with changes in the Peru-Chile Current. This is consistent with records 

from the Palmer Deep, which have also demonstrated strong links between climatic 

variations on the west cost of the AP and atmospheric-oceanic perturbations in the 

Pacific Ocean (Domack and Mayewski, 1999; Shevenell and Kennett, 2002; 

Domack et al., 2003a). More important in the context of the main aim of this thesis 

is whether the absence of GVI-IS was associated with a climatic forcing originates 

from the tropical Pacific? However, this idea cannot be tested with present data. 

7.3.3. Mechanism for ice shelf absence vs. mechanism for ice shelf re-formation 

High-resolution multi-proxy sediment records from ML provide evidence that GVI-

IS was absent from ca. 8962 cal yr BP and had partially or fully reformed by 7945 

cal yr BP. Chapters 2 and 3, reviewed the factors likely to contribute to ice shelf 

loss, with specific reference to GVI-IS. Research has shown that other AP ice 

shelves are sensitive to atmospheric temperature and their present distribution is 

largely confrolled by the position of the -9 °C mean annual isotherm (Morris and 

Vaughan, 2003) boundary but as yet shows only modest refreat. In addition to 

atmospheric wanning, several recent studies have highlighted the importance of 

enhanced basal melting caused by changes in ocean circulation (Domack et al.. 
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1995; Rignot, 2002; Williams et al., 2002; Shepherd et al., 2003). It was suggested 

in Chapter 3 that changes in ocean circulation could play an important role in the 

future stability of GVI-IS and may have been key to any changes that have occurred 

on Holocene timescales. 

Previous research has suggested that the present day GVI-IS is relatively insensitive 

to atmospheric warming and is unlikely to collapse in a Larsen-style, melt-pool 

triggered fashion (Vaughan and Doake, 1996; Scambos et al., 2002). However, as 

noted above the early Holocene absence of GVI-IS not only coincides with 

widespread early Holocene warming (11,500-9000) in Antarctica (Masson et al., 

2001) but also, and importantly, the influx of warm Upper Circumpolar Deep Water 

(UCDW) onto the AP continental shelf (Leventer et al., 1996; Taylor and 

Sjunneskog, 2002). Based on the ice core evidence, early Holocene temperatures 

were warmer than the present day and there is also a suggestion that UCDW flow 

was more vigorous at this time (Howe and Pudsey, 1999). Doake and Vaughan 

(1991) speculated that small changes in temperature could cause a significant 

change in the net balance of an ice shelf, effectively changing the balance from 

accumulation to ablation. They suggested that successive years of net ablation, 

through increased temperature would lead to deterioration of the ice shelf surface. 

In addition, rifts and crevasses would no longer be 'healed or glued' by winter 

accumulation. Laboratory experiments also show that the fracture toughness of ice 

is reduced at higher temperatures and by the presence of water (Lui and Miller, 

1979; Sabo and Schulson, 1989). It seems likely that George VI Ice Shelf 

imderwent similar changes following a period (1000 + yrs) of early Holocene 

atmospheric warming. Although not sufficient to destabilise the ice shelf alone, 

when combined with the introduction of UCDW at ca. 9000 yrs BP, the George VI 

Ice Shelf became susceptible to cracking and large scale-failure. Whether this led to 

partial or complete disintegration of the ice shelf in the Holocene is open to debate. 

The clast data from the ML core implies that icebergs were able to float freely in 

George VI Sound between 8964 and 7945 cal yr BP, depositing a wide range of 

lithologies from a wide variety of sources (Roberts et al., in prep.). In addition there 

is evidence from much further south, at Two Step Cliffs for seasonally open water 

at ca. 6500 cal yr BP (Hjort et al., 2001). 
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In general, the mechanisms for early Holocene warming observed in Antarctic ice 

cores are not fully understood (Masson-Delmotte et al., 2004). It has been 

speculated that at the end of Northern Hemisphere deglaciation, reduced North 

Atlantic Deep Water (NADW) formation could result in warmer conditions over 

Antarctica (Blunier et al., 1997; 1998). hi effect, shutdown of the NADW would 

mean that warm ocean water was no longer drawn away from high southern 

latitudes (Broecker, 1998; Blunier et al., 1998). The 'switching on' of the 

thermohaline circulation following the end of Northern Hemisphere deglaciation 

would act to remove the heat from high southern latitudes thereby ending the early 

Holocene optimum in Antarctica (Broecker, 1998). Circumpolar Deep-Water is the 

most voluminous water mass in the Antarctic circum-polar current (ACC) (Smith et 

al., 1999) and its circulation is intrinsically linked to NADW formation (Whitworth 

and Nowlin, 1987). It is possible, although currently speculative, that the 

switching-on of NADW following the end of Northern Hemisphere deglaciation led 

to the reinvigoration of UCDW on the AP. However few studies have provided a 

long-term perspective on UCDW variability and its cormection to variations in 

NADW are unclear (Ishman and Sperling, 2002). Based on the size distribution of 

fine (< 63 jam) sediments in the Scotia Sea, Howe and Pudsey (1999) suggested that 

UCDW flow was unstable between ca. 17000 and 12500 ka yr BP. At 

approximately 12280 ka yr they noted an increase in size sorting which they 

interpreted as indicating strong flow of CDW. During deglaciation and into the 

early Holocene however they suggested that CDW flow became more stable (Howe 

and Pudsey, 1999). 

Shevenell and Kennett (2002) have provided a more detailed picture of Holocene 

changes in UCDW, from their marine isotope study at Palmer Deep. They argued 

that between 9000 and 3600 ka yr BP a sustained presence of UCDW at this site 

resulted in warmer regional atmospheric and sea-surface temperature, decreased 

sea-ice cover and increased primary production. This conclusion is consistent with 

other proxy evidence (e.g. diatom) from the Palmer Deep, which indicates the 

presence of 'warm water conditions' between 9000 and 6700 ka yr BP (Leventer et 

al., 2002; Taylor and Sjunneskog, 2002), but is at odds with the foraminiferal 
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assemblage study of Ishman and Sperling (2002), which suggests that UCDW was 

absent on the western AP shelf during this time interval. 

A consistent theme to have emerged from some of these studies is the suggestion 

that UCDW variability could be associated with atmospheric circulation (Pudsey 

and Howe, 1999; Shevenell and Kermett, 2002; Ishman and Sperling, 2002) and not 

the reorganisation of thermohaline circulation associated with NADW. As discussed 

above, regional Southern Ocean ventilation changes may result from low- to high-

latitude atmospheric teleconnections involving Southern Hemisphere westerly wind 

field fluctuations (Klinck and Smith, 1993; Charles et al., 1996; Labeyrie et al., 

1996; Ninnemann et al., 1999; Lamy et al., 2002; Shevenell and Kennett, 2002). 

From their foraminiferal-based isotope study from the Palmer Deep, Shevenell and 

Kennett, (2002) have also proposed that Holocene changes in UCDW were 

controlled by the strength or position of the Southern Hemisphere westerly wind 

field and not thermohaline reorganisation. They suggest that these atmospheric 

changes may originate in the fropical pacific and could be associated with high-

frequency ENSO variability. There is also an indication that environmental changes 

in Moutonnee Lake are closely coupled to climatic changes in the southeastern 

Pacific (e.g. Lamy et al., 2002). This raises the possibility that the absence of GVI-

IS was linked to climatic changes in the tropical Pacific. 

The prospect of a combined atmospheric-oceanic mechanism for ice shelf absence 

is an exciting (and plausible) hypothesis and it is possible that it was driven by 

changes associated with: (i) oceanic reorganisation associated with NADW; and/or 

(ii) changes in the southeastern Pacific. It remains difficult however, to test this 

hypothesis on the basis of present data. At present the only evidence for a combined 

atmosphere-ocean mechanism is based on the relative timing of climatic events 

(atmospheric warming/infiux of warm UCDW). The data presented here suggests 

links between the presence of UCDW (e.g. isotopic and faunal) and absence of 

GVI-S and it has also demonstrated possible links between changes in the C/N ratio 

in ML over the last ca. 8000 yr BP and changes in the Peru-Chile Current associated 

with latitudinal shifts of the Antarctic Cireumpolar Current (ACC) (e.g. Lamy et al., 

2002). Whether the appearance of UCDW on the western AP continental shelf is 

connected to changes in the PCC remains unclear. 
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If a combined atmospheric-ocean mechanism caused the early Holocene absence of 

GVI-IS then this raises several interesting questions about Holocene climate in 

Antarctica and the fiiture stability of GVI-IS. Firstly the combination of significant 

atmospheric warming and vigorous CDW circulation appears to be unique, at least 

on Holocene timescales. Second, i f George VI Ice Shelf was absent during this time 

interval then we should see evidence for the retreat/collapse of other AP ice shelves. 

At the present day George VI Ice Shelf marks the southernmost extent of ice shelf 

retreat on the western side of the AP whilst the Larsen-B Ice Shelf marks the limit 

on the east side. Both limits coincide with the -9 "C mean annual isotherm. All ice 

shelves on the western side i f the AP north of this boundary have collapsed or 

retreated in recent years. It is logical to suggest therefore that several other ice 

shelves north of GVI-IS (e.g. Wordie, Mueller, Prince Gustav Channel) retreated 

and/or collapsed during this phase of exceptional climate warming. However, only 

one other study has provided evidence for ice shelf retreat on the AP (e.g. Pudsey 

and Evans; Prince Gustav Ice Shelf) and this suggests the ice shelf was absent 

between 5000-2000 cal yr BP. Thus until the early Holocene history of other AP ice 

shelves is determined (e.g. Wordie, Wilkins) it will be difficult to assess the 

significance of the early Holocene absence of George VI Ice Shelf Finally, i f the 

present distribution of ice shelves is climatically controlled, the disappearance of 

GVI-IS in the early Holocene would imply that the climate was warmer during this 

time-interval than the present day as is shown in the ice core data (Masson-

Delmotte et al., 2004). I f current atmospheric (e.g. Vaughan et al., 2003) and 

oceanic (Gille, 2002) warming continues however then the GVI-IS will eventually 

disappear entirely. 

The next logical question is, i f atmospheric warming and ocean-circulation 

contributed to the early Holocene absence of GVI-IS, how and why did this change, 

and allow the ice shelf to reform? Multi-proxy evidence suggests that the ice shelf 

may have reformed in response to cooler climatic conditions. Shortly after this the 

C/N profile from ML indicates that the climate became warmer and/or wetter at 

approximately 6000 cal yr BP. This is consistent with Antarctic ice core data, which 

show an extended period of warmer temperature in the early Holocene followed by 

a temperature minimum (cold event) at ca. 8000 yr BP, then a secondary warm 
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event around 6000 yr BP (Masson et al., 2000; Masson et al., 2004). In contrast, the 

Palmer Deep marine record implies an extended oceanic Holocene optimum 

between ca. 9000-3300 ka cal yr BP, which has been attributed to the presence (and 

then absence after ca. 3300 ka yr BP) of warmer UCDW on the western continental 

shelf (Shevenell and Kennett, 2002; Taylor and Sjurmeskog, 2002; Domack et al., 

2003a). Irrespective of the relative impacts of atmospheric warming versus oceanic 

warming, it is likely that ice shelf reformation would have been largely dependent 

on the behaviour of the input glaciers and ice streams following ice shelf loss. 

Whilst there is a growing body of literature relating to the factors controlling ice 

shelf collapse there is relatively little information on how an ice shelf reforms and 

over what kind of time scales since these processes have never been observed by 

glaciologists. In their study of the Holocene history of the Prince Gustav Channel 

ice shelf, Pudsey and Evans (2001) suggested that the charmel was ice free between 

ca. 5000 and 2000 cal yr BP and started to reform after 1900 cal yr BP as the 

climate began to cool. This places a maximum constraint of 1900 years on the time 

taken for the ice shelf to re-form, but does not provide a minimum time period, nor 

suggest how the ice shelf reformed. For all AP ice shelves there are three possible 

sources of mass input; glacier input, in situ surface accxxmulation and basal 

accretion (Vaughan, in press). It is likely that the Prince Gustav Channel ice shelf 

re-formed after many years of snow accumulation on fast ice (sea ice attached to a 

land mass or groimded ice sheet) (e.g. Hughes, 1987; Vaughan, in press) and thus its 

re-formation can be adequately explained by the inferred widespread climatic 

cooling (neoglacial) on the AP after ca. 2000 cal yr BP (e.g. Bjorck et al., 1991a, 

1991b; Domack and McClennen, 1996; Jones et al., 2001; Domack et al., 2003a). 

The re-formation of GVI-IS is likely to have been controlled by similar processes to 

the re-formation of the Prince Gustav Channel Ice Shelf, but also, and more 

importantly, the behaviour of the glaciers feeding into George VI Sound. 

Unfortunately the behaviour of input glaciers following the retreat of other AP ice 

shelves is not straightforward. Vaughan (1992, 1995) reported that glaciers, which 

fed the Wordie Ice Shelf, did not show any appreciable change after its 

disintegration whilst several recent studies have shown that some ice streams, which 

fed the Larsen-A/B ice shelf, have accelerated following its demise (Rott et al., 
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2002; De Angelis and Skvarca, 2003; Rignot et al., 2004; Scambos et al., 2004). 

Thus it is possible that the removal of George VI Ice Shelf would have been 

followed by the accelerated discharge of glacier ice from the AP and Alexander 

Island ice catchments into George VI Sound where it would be glued together by 

sea-ice. It is possible that this process would have been relatively rapid although this 

question cannot be answered satisfactorily using the present data set. 

Whilst it is difficult to provide a definitive answer on how the ice shelf reformed the 

data presented here can constrain the maximum and minimum time period for this 

process to take place. If the oldest age from BZII (ca. 8962 cal yr BP) indicates the 

initial absence of GVI-IS and the Bathylasma '''C date (Hjort et al., 2001) of 5750 

''*C yr BP (ca. 6550 cal yr BP) represents the maximum age for ice shelf re

formation, this gives a 2412 year window in which the ice shelf had reformed 

sufficiently to entrain and deposit the shells within the ice shelf moraine at Two 

Step Cliffs. This is of course the maximum length of time, and relies on the 

assumption that the ages from the barnacles from Two Step Cliffs are correct and/or 

represent ice shelf loss at this site. The evidence from Moutonnee Lake suggests 

that ice shelf re-formation at this site was much quicker. Thus the maximum age 

range for ice shelf reformation at Moutonnee Lake would be 1000 years from the 

first signs of ice shelf absence at ca. 8962 cal yr BP to the age at the top of BZIV 

(ca. 7964 cal yr BP), taken to represent the re-isolation of ML and therefore ice 

shelf re-formation. However if we take the decline in diatom and foraminifera at ca. 

270 cm in the BZIV to represent the beginning of ice re-formation (ca. 8705 cal yr 

BP) whilst retaining the upper age from BZIV for ice re-formation we get ca. 740 

years for ice shelf re-formation. Thus on the basis of data from ML re-formation of 

George VI Ice Shelf took between 740-1000 years, which is approximately half the 

time allowed by Pudsey and Evans's (2001) data. It is worth noting however that 

grounded ice, sufficient to re-dam Moutonnee Lake does not necessarily mean the 

entire re-formation of GVI-IS. Whilst these are not absolute values for ice shelf re

formation they could provide useful time constraints for any future modelling 

studies. 

7.3.5. The Future behaviour of George VI Ice Shelf 
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The northern and southern margins of George VI Ice Shelf are presently retreating. 

This reti-eat appears to be related to the recent 20*/ 21^' Century atmospheric 

warming on the AP and more specifically, to the southward progression of the -9 

°C mean annual isotherm (Morris and Vaughan, 2003). A further interesting feature 

of the present day GVI-IS is the presence of warm UCDW beneath the ice shelf, 

which drives high basal melt rates beneath the ice shelf. In the context of the results 

presented in this thesis, the critical combination of enhanced atmospheric warming 

and the presence of warm UCDW imply that George VI Ice Shelf will soon decay 

completely. Whether the present day ice shelf will collapse rapidly (< decade) in a 

series of large break-up events or as slow, gradual (> centuries) retreat remains 

unclear. 

7.4. Chapter summary 

The data presented in this thesis provides robust evidence for the absence of George 

VI Ice Shelf during the early Holocene. The timing of ice shelf absence has been 

consfrained by 10 AMS ''*C dates performed on mono-specific foraminifera 

samples. These dates suggest that GVI-IS was absent at ML between ca. 8962 cal. 

yr B.P., and ca. 7946 cal. yr B.P. The spatial extent of ice shelf absence however 

remains unclear. Evidence from father south (Two Step Cliffs), suggests that the ice 

shelf was absent at ca. 6500 cal yr BP, 1500 years later than at Moutonnee Lake. 

This discrepancy may reflect varying marine reservoirs, spatial variability in ice 

shelf retreat and reformation phases, or errors in the way that the data from Two 

Step Cliffs has been interpreted. The early Holocene absence of GVI-IS recorded in 

ML immediately followed a period of maximum Holocene warmth that is recorded 

in some Antarctic ice cores and coincides with an influx of warmer ocean water 

onto the western AP shelf at ca. 9000 cal. yr B.P. This thesis has suggested that it 

was the critical combination of both early Holocene atmospheric warming acting to 

thin and weaken the ice shelf and then enhanced basal melting by UCDW that led to 

the absence of the ice shelf. The precise mechanisms linking climatic warming and 

the influx of warm deep water onto the continental shelf are unclear. It has been 

suggested (e.g. Shevenell and Kennett, 2002) that the tropical Pacific may have 

played an important role in modulating oceanographic changes on the western side 
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of the AP. Whether this teleconnection played an influential role in the initial retreat 

of GVI-IS, as yet, untested, although it has been demonstrated that links between 

the climatic record in ML and the southeastern Pacific exist at least on Holocene 

time scales. The re-formation of the ice shelf is also uncertain, although this thesis 

has speculated upon the environmental conditions immediately prior to ice shelf 

reformation and has also provided useful time-constraints over which the process 

take place. Fundamentally, the subsequent reformation of the ice shelf is a 

glaciological question and is dependent on rates of snow accumulation on fast ice 

and the behaviour of the input glaciers and how they transfer mass into George VI 

Sound. If the outlet glaciers flow unimpeded into the sound, eventually they will 

coalesce and enable the ice shelf to reform. In George VI Sound, which is a narrow 

channel this process could take place relatively rapidly. Finally, the absence of the 

ice shelf during this time interval suggests that early Holocene ocean-atmosphere 

variability in the Antarctic Peninsula was greater than that measured in recent 

decades. 
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Chapter 8 
CONCLUSION: K E Y 
FINDINGS, LIMITATIONS AND 
RECOMMENDATIONS FOR 
FUTURE WORK 

8.1. Introduction 

In Chapter 1, the overall aims of the thesis were defined as: 

1. To provide a baseline study of the present-day limnology of Moutonnee 

and Ablation Lakes in order to develop a conceptual model for detecting 

ice shelf histories from the sediment record in epishelf lakes 

2. To determine the Holocene history of George VI Ice Shelf. 

To address the above aims, this thesis has sought: 

1. To understand the present day dynamics of George VI Ice Shelf 

2. The retrieval and analyses of contemporary water samples, lake surface 

sediments and lake catchment reference material to understand the 

contemporary lake environment and its depositional signature. 

3. To develop a conceptual model for detecting ice shelf loss from the sediment 

record in epishelf lakes. 

4. To retrieve and analyse sediment cores from Moutonnee and Ablation Lakes 

and to measure their physical, chemical and biological characteristics. 
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5. To interpret the sediment core data using the conceptual model and thereby 

identify periods of ice shelf presence or absence. 

6. To investigate the mechanisms for any periods of ice shelf absence within 

the wider context of AP environmental change. 

This chapter concludes this thesis by reviewing the main findings of the work in the 

context of the original aims stated above. It also reflects on limitations of this PhD 

study and makes recommendations for future research on the western Antarctic 

Peninsula. 

8.2. Main findings of the PhD study 

/. To understand the present day dynamics of George VI Ice Shelf 

Chapter 3 provided a review of the dynamics of GVI-IS. It was noted that GVI-IS is 

the largest ice shelf on the western AP and its northern margin marks the 

southernmost limit of recent ice shelf retreat. The dynamics of the present day ice 

shelf are strongly influenced by the presence of warm Upper Circumpolar Deep 

Water (UCDW) beneath the ice shelf, which drives one of the highest basal melt 

rates in Antarctica. Presently, the mass balance of the ice shelf is maintained by 

input of glacier ice from the Antarctic Peninsula and Alexander Island. However, it 

is unknown how long UCDW has been on the shelf and for how long such high melt 

rates can be sustained. 

One of the most interesting features about GVI-IS is the presence of a well-defined 

region of surface melt-ponding, which appears on the ice shelf surface each summer 

between 70°15' and 72°00'S. The distribution of melt-ponding remains something 

of an enigma but the ponds tend to occur where mean annual temperatiire lies 

between -6 °C and -10 °C and in areas where the ice shelf is under compression. 

The compressive nature of GVI-IS is also important since it means that it is unlikely 

to become susceptible to melt-pool induced collapse through crevasse deepening, a 
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hypothesis that has been used to explain the demise of other AP ice shelves (e.g. 

Larsen-B). It therefore seems likely that in the future the ice shelf will be more 

sensitive to changes in ocean circulation (e.g. intensity of UCDW) and to prolonged 

periods of atmospheric warming leading to ice shelf thinning by bottom melting and 

surface melting, respectively. 

2. The retrieve and analyses contemporary water samples, lake surface 

sediments and lake catchment reference material to understand the 

contemporary lake environment and its depositional signature. 

3. To develop a conceptual model for detecting ice shelf loss from the 

sediment record in epishelf lakes. 

A key component of this research has been to provide new information on the 

present day linmology and sedimentary environment of ML and AB (Chapters 4 and 

5). To achieve this, vertical water column chemistry measurements were taken over 

two successive field seasons and compared with earlier measurements taken in the 

1970's (e.g. Heywood, 1977). In addition, a detailed analysis of surface sediments 

was undertaken. Analysis of the surface sediments included diatom, 5'^Corg, C/N 

and grain-size parameters. The vertical water chemistry measurements revealed that 

the physical, chemical and biological limnology of the lakes is dominated by the 

position of the halocline. In ML, the position of the halocline has changed over the 

30-year period, but it is not yet clear whether these changes are a result of ice shelf 

thinning or reflect seasonal changes (e.g. tides, or build-up of a summer meltwater 

layer). The lake water stratification also strongly influences the biological and 

chemical characteristics of the surface sediments. Samples nearest the ice shelf 

margin, and below the halocline, are generally characterised by the presence of 

marine diatoms and higher 6'^Corg values. Together with earlier limnological 

studies, these data have provided a 30-year perspective on the limnology of ML and 

AB, and new baseline data. Such data were available at Disraeli Fiord, an epishelf 

lake on the northern coast of Ellesmere Island, Arctic Canada, which displayed 

unique changes in its water chemistry prior to the break-up of the Ward Hunt Ice 

Shelf (Mueller et al., 2003). The data in this thesis can now be used to assess 
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possible filture changes in lake water chemistry, which may be related to changes in 

GVI-IS. 

The role of the ice shelf in maintaining stratification of the water columns in these 

lakes means that the lakes are uniquely placed to record periods of ice shelf loss 

both in the past (in their sediments) and in the fiiture (though changes in water 

chemistry). As such the baseline data has been used to develop a conceptual model 

for detecting ice shelf loss in epishelf lakes, and has identified several proxies that 

are likely to change during ice shelf absence (Chapter 5). The conceptual model 

was necessary to provide the basis for the interpretation of the core-derived proxy 

records from the lakes. Specifically, the model shows that ice shelf loss is likely to 

cause significant changes in the biological (e.g. diatom), isotopic and elemental (e.g. 

Ŝ '̂ Corg and C/N) and physical (e.g. grain-size/MS) signature of the lake sediments. 

4. To retrieve and analyse sediment cores from Moutonnee and 

Ablation Lakes and to measure their physical, chemical and 

biological characteristics. 

5. To interpret the sediment core data using the conceptual model and 

thereby identify periods of ice shelf presence or absence. 

The project retrieved a number of sediment cores from Ablation and Moutonnee 

Lakes, including Moutonnee Lake (ML) core, Moutonnee Lake North Basin 

(MLNB) Ablation Lake 2 and 4. Two key findings have emerged from the analysis 

of these cores (Chapter 6, 7). Firstiy, core results indicate a dramatic shift to open 

marine conditions in ML which has been interpreted using the conceptual model as 

representing a period of past ice shelf absence. During this period there is a clear 

marine depositional signature in the 6'^Corg, Corg and Norg values, together with 

foraminifera, and diatoms showing that marine waters dominated the site and that 

there were both sea ice and open marine water conditions. There is a close 

replication of ecological and sedimentological conditions in the upper biological 

zone of the ML core and the biological zone in the MLNB core. This period of ice 

shelf loss has been constrained by 11 AMS '''C dates performed on mono-specific 
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foraminifera samples. These dates suggest that GVI-IS was absent between ca. 8962 

cal. (calibrated) yr B.P. and ca. 7945 cal. yr B.P. This early Holocene collapse 

immediately followed a period of maximum Holocene warmth that is recorded in 

some Antarctic ice cores and coincides with an influx of warmer ocean water onto 

the western Antarctic Peninsula shelf at ca. 9000 cal. yr B.P. The absence of the ice 

shelf during this time interval suggests that early Holocene ocean-atmosphere 

variability in the Antarctic Peninsula was greater than that measured in recent 

decades. 

Secondly, the ML core also provides palaeoenvironmental data spanning the last ca. 

8000 cal. years BP. Significantly, changes in the C/N profile in ML appear to reflect 

oceanic-atmospheric changes occurring in the tropical western Pacific, and 

specifically changes in the Peru-Chile Current (PCC) and the strength of the 

southern Westerlies (Lamy et al. 2001, 2002). The existence of a link between the 

western AP and the PCC has also been recently highlighted by Domack et al. (2003) 

based on palaeoenvironmental records from the Palmer Deep marine core. This 

raises the possibility that environmental changes (including the loss of GVI-IS) 

were in part driven by changes in the western tropical Pacific. However, the ability 

to test these ideas is limited, at present, by a poor core chronology for the upper 236 

cm of the core. 

6. To investigate the mechanisms for any periods of ice shelf absence 

within the wider context ofAP environmental change. 

Within the literature there are only two other studies that have provided a detailed 

reconstructions of past ice shelf variation on the AP. Pudsey and Evans (2001) 

provided a long-term perspective on the Holocene history of the Prince Gustav Ice 

Shelf and Domack et al. (2001) and Brachfeld et al. (2003) have provided a 

Holocene perspective on the Larsen-A Ice Shelf. Both records suggest that ice shelf 

retreat/absence occurred sometime between ca. 5000 and 2000 cal yr BP. Whilst 

these studies have provided compelling evidence for ice shelf absence, they have 

provided little information on the mechanisms leading to ice shelf collapse. A 

unique aspect of this thesis has been the detailed investigation of possible 

mechanisms that contribute to ice shelf collapse (Chapter 7). It has been previously 
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noted that the early Holocene collapse of GVI-IS followed a period of maximum 

Holocene warmth recorded in several Antarctic ice cores and the appearance of 

warm ocean water on the western shelf of the Antarctic Peninsula. It has been 

argued in this thesis that it was the critical combination of a prolonged period of 

atmospheric warming combined with the intrusion of warm water onto the 

continental shelf and beneath GVI-IS, which led to its early Holocene collapse. 

This thesis has also attempted to take this link one step further by using the 6'^0 

signature of benthic foraminifera to fingerprint the presence of UCDW and thereby 

provide a direct link between the appearance of UCDW and the collapse of GVI-IS. 

Although not conclusive, the 6*̂ 0 record shows a transition from warmer water 

(UCDW?) during the early stages of ice shelf loss to cooler water (Ice Shelf 

Water?), prior to the re-isolation of the epishelf lake presumably due to ice shelf re

formation. This provides an important step forwards in our understanding of the 

mechanisms, which control ice shelf collapse and reformation. 

In summary, this thesis has successfully achieved its six objectives. In doing so it 

has achieved the twin aims of the thesis, namely: 

1. To provide a baseline study of the present-day limnology of Moutonnee 

and Ablation Lakes in order to develop a conceptual model for detecting 

ice shelf histories from the sediment record in epishelf lakes. 

2. To determine the Holocene history of George VI Ice Shelf 

8.3. Limitations of the PhD study 

It is appropriate at this juncture to reflect on some of limitations of this PhD 

research, since they provide important consfraints on the main findings of this work, 

and also useful pointers as to possible directions for future research. 

8.3.1. Core chronology 

One of the strengths of this study has been the ability to date well-preserved mono

specific foraminifera samples. The foraminiferal-based chronology has allowed this 
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thesis to accurately date the period of ice shelf absence, which so far has not been 

achieved in other marine-based studies. However, whilst a period of ice shelf 

absence has been well constrained by several '"̂ C dates on foraminifera, it has not 

been possible to obtain a core chronology for the upper 236 cm of the ML core, and 

specifically, the sediment-water interface and also the entire Ablation Lake core. 

The AIOM surface ages from M L and AB were erroneously old (ca. 15100 '''C yr 

BP and 14180 '̂̂ C yr BP) and are likely to reflect some form of contamination from 

old carbon. In an attempt to overcome this problem, a pilot '̂ ^Cs and ^'°Pb was 

attempted in M L in order to confirm a surface age of 0 yr BP for the core top. 

However, the pilot study revealed imdetectable levels of '̂ ^Cs and ^̂ *'Pb in core 

sediments from ML. Thus until the chronology of these cores is improved the 

palaeoclimatic interpretations, particularly those based on the upper 236 cm in the 

M L (Chapter 7) are chronologically limited. It is worth noting however, that such 

challenges are far from unique to this study and the issue of obtaining reliable core 

chronologies is a challenge faced by all marine (and some terrestrial) 

palaeoenvironmental studies on the Antarctic Peninsula. This study has provided a 

more robust core chronology than many other Antarctic investigations because it 

has dated monospecific foraminifera samples, rather than the AIOM used in many 

other foram-barren studies. 

8.3.2.Assessing the spatial pattern of ice shelf collapse in George V I Sound 

Whilst the data presented in this thesis provides a robust record of ice shelf loss at 

Moutonnee Lake, it does not provide clear constraints on the spatial nature of ice 

shelf presence or absence in George V I Sound. As noted in Chapter 7, there is some 

evidence for a period of open water conditions farther south dated to ca. 6500 cal yr 

BP, 1500 years after ice shelf absence at Moutonnee Lake. This implies one of three 

things. First there is a variable radiocarbon marine reservoir between the Ablation 

Point Massif and Two Step Cliffs, leading to different ages for the same period of 

ice shelf loss. Second, collapse and reformation of George V I Ice Shelf was 

spatially variable, with collapse occurring much earlier at ML. This is supported to 

a certain extent by the fact that the ice shelf moraine does not contain a uniform 

distribution of fossil barnacles along the coast of Alexander Island. Finally, that the 

ecology of the dated fossils is poorly understood. 
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It is worth noting here however, that an attempt to extend the spatial extent of the 

data presented in this study is in progress. As part of the wider NERC-funded 

project the group (D.A Hodgson, M.J. Bentley, J.A. Smith) did retrieve a lake 

sediment in 2001-02 from 'Citadel-Bastion Lake' (72°00'S, 68°29'W) (Fig. 2.1b). 

Citadel-Bastion Lake is situated ~ 125 km south of the Ablation Point Massif, and 

approximately 10 km south of Two Step Cliffs on Alexander Island. It is a 

perennially ice covered, entirely fresh water lake, dammed on its northern side by 

the Saturn glacier, which lies approximately 1 km upstream of the current position 

of George V I Ice Shelf. The > 3.5 m long sediment record from Citadel-Bastion 

Lake shows that the lake has remained freshwater dominated and has not 

experienced a marine incursion during the period of deposition. Furthermore, the 

core could not be reliably dated with ''̂ C, although other dating techniques are being 

investigated (Roberts, unpublished data). Importantly however, one of our key 

findings was that although it has a similar appearance to some of the epishelf lakes 

fiirther north, survey data in 2003 confirmed that the lake is 5 m above sea level. As 

a result, it is not an epishelf lake and so the loss of GVI-IS in the past wil l not have 

left a signature in the sedimentary record. 

8.3.3 Ablation Lake record 

The absence of a detailed record of ice shelf collapse from Ablation Lake suggests 

that we did not core the entire sedimentary sequence from this lake. It is likely 

therefore that both records from Ablation Lake are equivalent to some part of the 

upper 236 cm in the M L core and/or the upper 125 cm in the MLNB core in relative 

age. However, the available proxy data do not show any degree of correlation 

between the two lakes. This suggests that during ice shelf presence, the records in 

the two lakes may be influenced by local valley-scale changes. However, until a 

better core chronology from Ablation Lake is obtained it remains difficult to test 

these ideas. 
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8.3.4. Mechanisms for ice shelf collapse 

The data presented in this thesis has enabled key ideas about the factors which 

contributed to the early Holocene disappearance of GVI-IS to be investigated. 

Specifically, this thesis has explored the possibility that UCDW played an important 

role in the disappearance of the ice shelf, through the 5**0 signature of benthic 

foraminifera. However, this evidence would be considerably strengthened by 

additional S'̂ O and S'̂ C data for both ocean water (i.e. different water masses) and 

foraminiferal data from the AP region with which to compare the M L record. 

8.4. Recommendations for future work 

8.4.1. Improving core chronologies in Moutonnee and Ablation Lakes 

A recommendation for future research would be to investigate the sources of old 

carbon contamination in sediments from M L and AB that have contributed to old 

AIOM ages. For instance, it has already been noted that algal flakes within the 

sediment in the ML core yielded old (19720 "'C yr BP) '''C ages. I f one can isolate 

the old carbon fraction(s) within the core, it may be possible to obtain reliable ages 

(e.g. biomarker-specific dating as is being developed for other Antarctic samples at 

Woods Hole Oceanographic Institute and University of Arizona). It may also be 

possible to apply alternative dating techniques to the sediment cores from M L and 

AB such as the geomagnetic techniques recently developed by Brachfeld et al. 

(2003). 

8.4.2. Investigate the spatial extent of the early Holocene collapse of George V I Ice 

Shelf 

As noted above, the data presented in this thesis does not fully constrain the spatial 

extent of the early Holocene collapse of George V I Ice Shelf. As such the 

acquisition of sediment cores from along George V I Sound would help to further 
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elucidate the spatial extent of ice shelf collapse as would a more systematic study of 

the ice shelf moraines for marine shells. This type of study could be combined with 

oceanographic studies, which are concerned with understanding the circulation 

beneath ice shelves (e.g. Hemmer and Harris, 2003). There have been previous 

suggestions (A. Jenkins, pers. comm.) to (hot-water) drill through the ice shelf for 

glaciological and oceanographic research but this thesis has shown that it would be 

useful to add sediment coring to the objectives of such a study. 

8.4.3. Moutoimee Lake - long term monitoring 

To judge whether the changes observed in the position of the halocline in 

Moutonnee Lake are significant, future work should aim to monitor the lake water 

column chemistry and tides in M L (e.g. permanent moorings). To some extent this 

might act as a predictive tool for assessing changes in the ice shelf and to provide an 

early warning system for any fiature ice shelf collapse. 

8.4.5. Ablation Lake - a longer record 

It is likely that only a partial sedimentary sequence was extracted from Ablation 

Lake. Whilst this does not undermine the case for ice shelf loss recorded in 

Moutotmee Lake, a comparable record from Ablation Lake would certainly 

strengthen fiirther the argument for ice shelf loss. Thus a recommendation for fiitiire 

work would involve the retrieval of longer cores from Ablation Lake. 

8.4.6. Reconstructing Ice Shelf histories in Antarctica 

As noted above, at present there are relatively few studies that have successfully 

demonstrated the past behaviour of Antarctic Peninsula ice shelves (e.g. Pudsey and 

Evans, 2001; Domack et al., 2001; Brachfeld et al., 2003). As a result there is huge 

potential to extend the techniques developed in this thesis and those previously 

established in East Antarctica (e.g. Hemer and Harris, 2003) to obtain detailed 

histories of many Antarctic ice shelves and glaciers. This is particularly important i f 

we are to judge the significance of the early Holocene collapse of George V I Ice 

Shelf and investigate fiarther the forcing mechanism. Antarctic Peninsula ice shelf 
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collapse seems set to continue, with implications for global sea level, and so it is 

vitally important that we continue to use techniques, such as those developed in this 

thesis, to provide the clearest possible understanding of past Antarctic ice shelf 

variability and its driving mechanisms. 
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Plate 1 - Key diatoms species xlOOO 

1. Cocconeis faciolata (Ehrenberg) Brown 
2. Chaetoceros spore (neglectus Karsten) 
3. Diploneis sp. 
4. Eucampia antarctica var. recta (Castracane) Manguin - Intercalary 
5. Eucampia antarctica var. recta (Castracane) Manguin - Symmetric 
6. Eucampia antarctica var. recta (Castracane) Manguin - Pointy/terminal 
7. Thalassiosira antarctica Comber 
8. Thalassiosira gracilis (Karsten) Hustedt 
9. Unknown centric 

Plate 2 - Key foraminiferal species 

1. Angulogerina earlandi Parr 
2. Cibicides a f f . grossepunctatus Earland 
3. Cibicides lobatulus (Walker and Jacob) 
4. Globocassidulina biora (Crespin)Stainforthis davisi (Chapman and Parr) 
5. Melonis sp. 
6. Cassidulinoides parvas (Earland) 
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